repo_name
stringlengths
6
92
path
stringlengths
7
220
copies
stringclasses
78 values
size
stringlengths
2
9
content
stringlengths
15
1.05M
license
stringclasses
15 values
ioam/holoviews
examples/reference/elements/bokeh/Area.ipynb
1
3678
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#### **Title**: Area Element\n", "\n", "**Dependencies**: Plotly\n", "\n", "**Backends**: [Bokeh](./Area.ipynb), [Matplotlib](../matplotlib/Area.ipynb), [Plotly](../plotly/Area.ipynb)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import holoviews as hv\n", "hv.extension('bokeh')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "``Area`` elements are ``Curve`` elements where the area below the line is filled. Like ``Curve`` elements, ``Area`` elements are used to display the development of quantitative values over an interval or time period. ``Area`` Elements may also be stacked to display multiple data series in a cumulative fashion over the value dimension.\n", "\n", "The data of an ``Area`` Element should be tabular with one key dimension representing the samples over the interval or the timeseries and one or two value dimensions. A single value dimension will fill the area between the curve and the x-axis, while two value dimensions will fill the area between the curves. See the [Tabular Datasets](../../../user_guide/08-Tabular_Datasets.ipynb) user guide for supported data formats, which include arrays, pandas dataframes and dictionaries of arrays." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Area under the curve\n", "\n", "By default the Area Element draws just the area under the curve, i.e. the region between the curve and the origin." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "xs = np.linspace(0, np.pi*4, 40)\n", "hv.Area((xs, np.sin(xs)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Area between curves\n", "\n", "When supplied a second value dimension the area is defined as the area between two curves." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "X = np.linspace(0,3,200)\n", "Y = X**2 + 3\n", "Y2 = np.exp(X) + 2\n", "Y3 = np.cos(X)\n", "hv.Area((X, Y, Y2), vdims=['y', 'y2']) * hv.Area((X, Y, Y3), vdims=['y', 'y3'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Stacked areas \n", "\n", "Areas are also useful to visualize multiple variables changing over time, but in order to be able to compare them the areas need to be stacked. To do this, use the ``Area.stack`` classmethod to stack multiple ``Area`` elements in an (Nd)Overlay.\n", "\n", "In this example we will generate a set of 5 arrays representing percentages and create an ``Overlay`` of them. Then we simply call the ``stack`` method with this overlay to get a stacked area chart.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "values = np.random.rand(5, 20)\n", "percentages = (values/values.sum(axis=0)).T*100\n", "\n", "overlay = hv.Overlay([hv.Area(percentages[:, i], vdims=[hv.Dimension('value', unit='%')]) for i in range(5)])\n", "overlay + hv.Area.stack(overlay)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For full documentation and the available style and plot options, use ``hv.help(hv.Area).``" ] } ], "metadata": { "language_info": { "name": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 4 }
bsd-3-clause
Jai-Chaudhary/computer-vision
HW2/HomeWork2.ipynb
1
12208
{ "metadata": { "name": "", "signature": "sha256:f22297580d7936bfad662d608318317210f7dabd3fb21c6164373a419f1648c5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "import scipy as sp\n", "import cv2\n", "from skimage.measure import ransac\n", "from skimage.transform import warp, AffineTransform\n", "from skimage import img_as_ubyte\n", "\n", "class SIFT:\n", " MIN_MATCH_COUNT = 10\n", " extractor = cv2.SIFT()\n", "\n", " \n", " \"\"\"\n", " returns list of DMatch Objects (matches) sorted by distance \n", " that contains keypoints matched in images.\n", "\n", " :param keypoints1: list of keypoint objects for image 1\n", " :param descriptorSet1: list of descriptor objects for image 1\n", " :param keypoints2: list of keypoint objects for image 2\n", " :param descriptorSet2: list of descriptor objects for image 2\n", " :returns: list of DMatch Objects\n", " \"\"\"\n", " def findMatches(self,keypoints1, descriptorSet1, keypoints2, descriptorSet2): \n", " # create BFMatcher object\n", " bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)\n", "\n", " # Match descriptors.\n", " matches = bf.match(descriptorSet1,descriptorSet2)\n", "\n", " # Sort them in the order of their distance.\n", " matches = sorted(matches, key = lambda x:x.distance)\n", "\n", " # visualize the matches\n", " print '#matches:', len(matches)\n", " dist = [m.distance for m in matches]\n", "\n", " print 'distance: min: %.3f' % min(dist)\n", " print 'distance: mean: %.3f' % (sum(dist) / len(dist))\n", " print 'distance: max: %.3f' % max(dist)\n", " \n", " return matches\n", "\n", " \"\"\"\n", " generate an image where the matches are visualizated by \n", " connecting matching pixels by highlighted lines\n", "\n", " :param imageFilename1: path to image1\n", " :param imageFilename2: path to image2\n", " :returns: void\n", " \"\"\"\n", " def showImages(self, imageFilename1, imageFilename2):\n", "\n", "\n", " # find the keypoints and descriptors with SIFT\n", " img1 = cv2.cvtColor(cv2.imread(imageFilename1), cv2.COLOR_BGR2GRAY)\n", " img2 = cv2.cvtColor(cv2.imread(imageFilename2), cv2.COLOR_BGR2GRAY)\n", "\n", " kp1, des1 = self.extractor.detectAndCompute(img1,None)\n", " kp2, des2 = self.extractor.detectAndCompute(img2,None)\n", " matches = self.findMatches(kp1, des1, kp2, des2)\n", " self.drawMatches(img1, kp1, img2, kp2, matches)\n", " \n", "\n", " \n", " \n", " \"\"\"\n", " Visualization\n", " My own implementation of cv2.drawMatches as brew binary for MacOSX\n", " OpenCV 2.4.11 does not suppourt this function but it's supported in\n", " OpenCV 3.0.0\n", "\n", " :param img1: image1 Object\n", " :param kp1: list of keypoint objects for image 1\n", " :param img2: image2 Object\n", " :param kp2: list of keypoint objects for image 2\n", " :param matches: list of DMatch Objects that contains keypoints matched in images.\n", " :returns: void\n", " \"\"\" \n", " def drawMatches(self, img1, kp1, img2, kp2, matches, name = 'DrawMatches'):\n", "\n", " \n", " h1, w1 = img1.shape[:2]\n", " h2, w2 = img2.shape[:2]\n", " view = sp.zeros((max(h1, h2), w1 + w2, 3), sp.uint8)\n", " view[:h1, :w1, 0] = img1\n", " view[:h2, w1:, 0] = img2\n", " view[:, :, 1] = view[:, :, 0]\n", " view[:, :, 2] = view[:, :, 0]\n", "\n", " \n", " for m in matches:\n", "\n", " # Get the matching keypoints for each of the images\n", " img1_idx = m.queryIdx\n", " img2_idx = m.trainIdx\n", "\n", " # x - columns\n", " # y - rows\n", " (x1,y1) = kp1[img1_idx].pt\n", " (x2,y2) = kp2[img2_idx].pt\n", " color = tuple([sp.random.randint(0, 255) for _ in xrange(3)])\n", " cv2.line(view, (int(x1), int(y1)) , ((int(x2) + w1), int(y2)), color)\n", " cv2.circle(view, (int(x1),int(y1)), 4, (255, 0, 0), 1) \n", " cv2.circle(view, (int(x2)+w1,int(y2)), 4, (255, 0, 0), 1)\n", "\n", " cv2.imwrite(name + \".png\", view)\n", "\n", " \n", " def affineMatches(self, matches, kp1, kp2):\n", " src_pts = np.float32([ kp1[m.queryIdx].pt for m in matches ])\n", " dst_pts = np.float32([ kp2[m.trainIdx].pt for m in matches ])\n", " model = AffineTransform()\n", " model.estimate(src_pts, dst_pts)\n", " \n", " model_robust, inliers = ransac((src_pts, dst_pts), AffineTransform, min_samples=3,\n", " residual_threshold=30, max_trials=500)\n", " \n", " print(\"Least Square Model(scale, translation. rotation) \", model.scale, model.translation, model.rotation)\n", " print(\"RANSAC Least Square Model(scale, translation. rotation) \", model_robust.scale, model_robust.translation, model_robust.rotation)\n", "\n", " inlier_idxs = np.nonzero(inliers)[0]\n", " \n", " affineMatches = [matches[idx] for idx in inlier_idxs]\n", " print (\"AFFINE MATCHES: \", len(affineMatches))\n", "\n", " return affineMatches, model_robust\n", "\n", " def alignAffine(self, imageFilename1, imageFilename2, affineTransform):\n", " img1 = cv2.imread(imageFilename1)\n", " img2 = cv2.imread(imageFilename2)\n", " img_warped = warp(img2, affineTransform, output_shape=img1.shape)\n", "\n", " b1,g1,r1 = cv2.split(img1)\n", " \n", " b_warped,g_warped,r_warped = cv2.split(img_warped)\n", " img_merged = cv2.merge((img_as_ubyte(b_warped), g1, r1 ))\n", " cv2.imshow(\"AffineorigImage.png\", img1)\n", " cv2.imshow(\"AffinewarpedImage.png\", img_as_ubyte(img_warped))\n", " cv2.imshow(\"AffinemergedImage.png\", img_merged)\n", "\n", " print \"Affine Error: \", self.alignmentError(img1, img_warped)\n", " \n", " def alignmentError(self, img1, img2):\n", " hist1 = cv2.calcHist([img1.astype('float32')],[0],None,[256],[0,256])\n", " hist2 = cv2.calcHist([img2.astype('float32')],[0],None,[256],[0,256])\n", " return cv2.compareHist(hist1, hist2, cv2.cv.CV_COMP_BHATTACHARYYA)\n", " \n", " def homographyMatches(self, matches, kp1, kp2):\n", " src_pts = np.float32([ kp1[m.queryIdx].pt for m in matches ]).reshape(-1,1,2)\n", " dst_pts = np.float32([ kp2[m.trainIdx].pt for m in matches ]).reshape(-1,1,2)\n", "\n", " transformMatrix, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,30.0)\n", " \n", " inliers = mask.ravel().tolist()\n", " \n", " inlier_idxs = np.nonzero(inliers)[0]\n", " \n", " homographyMatches = [matches[idx] for idx in inlier_idxs]\n", " \n", " print (\"Homography Matches\", len(homographyMatches))\n", " return homographyMatches, transformMatrix\n", " \n", " \n", " def alignHomography(self, imageFilename1, imageFilename2, homographyTransform):\n", " img1 = cv2.imread(imageFilename1)\n", " img2 = cv2.imread(imageFilename2)\n", " img_warped = cv2.warpPerspective(img2, homographyTransform, img1.shape[:2], (1000,1000), flags = cv2.WARP_INVERSE_MAP)\n", "\n", " b1,g1,r1 = cv2.split(img1)\n", " \n", " b_warped,g_warped,r_warped = cv2.split(img_warped)\n", "\n", " img_merged = cv2.merge((b_warped,g1,r1))\n", " cv2.imwrite(\"HomographyorigImage.png\", img1)\n", " cv2.imwrite(\"HomographywarpedImage.png\", img_warped)\n", " cv2.imwrite(\"HomographymergedImage.png\", img_merged)\n", "\n", " print \"Homography Error: \", self.alignmentError(img1, img_warped)\n", " \n", "\n", "if __name__ == \"__main__\":\n", " sift = SIFT()\n", " imageFilename1 = 'StopSign1.jpg'\n", " imageFilename2 = 'StopSign4.jpg'\n", "\n", " sift.showImages(imageFilename1, imageFilename2)\n", "\n", " \n", " img1 = cv2.cvtColor(cv2.imread(imageFilename1), cv2.COLOR_BGR2GRAY)\n", " img2 = cv2.cvtColor(cv2.imread(imageFilename2), cv2.COLOR_BGR2GRAY)\n", "\n", " kp1, des1 = sift.extractor.detectAndCompute(img1,None)\n", " kp2, des2 = sift.extractor.detectAndCompute(img2,None)\n", " matches = sift.findMatches(kp1, des1, kp2, des2)\n", " affineMatches, affineTransform = sift.affineMatches(matches, kp1, kp2)\n", "\n", " sift.drawMatches(img1, kp1, img2, kp2, affineMatches, 'affineMatches')\n", "\n", " sift.alignAffine( imageFilename1, imageFilename2, affineTransform)\n", "\n", " homographyMatches, homographyTransform = sift.homographyMatches(matches, kp1, kp2)\n", "\n", " sift.drawMatches(img1, kp1, img2, kp2, homographyMatches, 'homographyMatches')\n", "\n", " sift.alignHomography( imageFilename1, imageFilename2, homographyTransform)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "#matches: 57\n", "distance: min: 66.182\n", "distance: mean: 248.593\n", "distance: max: 419.063\n", "#matches:" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 57\n", "distance: min: 66.182\n", "distance: mean: 248.593\n", "distance: max: 419.063\n", "('Least Square Model(scale, translation. rotation) ', (2.2874197495623, 51.37786614914854), array([ 1192.76605199, 7763.4657654 ]), 0.869802576575406)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "('RANSAC Least Square Model(scale, translation. rotation) ', (2.593003672413597, 2.578301575009895), array([ 146.13314982, 62.798367 ]), 0.12204859657898029)\n", "('AFFINE MATCHES: ', 18)\n", "Affine Error: " ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 0.430624746516\n", "('Homography Matches', 18)\n", "Homography Error: " ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 0.881697945121\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "cv2.destroyAllWindows()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
gpl-2.0
brunez/dl_workshop_upm
notebooks/logistic_regression.ipynb
1
207463
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Logistic regression\n", "This notebook introduces logistic regression, implementing each of the examples we saw in the course." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "%matplotlib inline\n", "%matplotlib notebook\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def sigmoid(x):\n", " return 1/(1+np.exp(-x))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def get_sample(N=50):\n", " b_boys = 2\n", " b_girls = .6 \n", " x_boys = np.random.uniform(10, 18, size=N/2)\n", " x_girls = np.random.uniform(10, 18, size=N/2)\n", " y_boys = [3.5*i + b_boys*(i) + np.random.normal(0,i/2) for i in x_boys]\n", " y_girls = [3.5*i + b_girls*(i) + np.random.normal(0,i/2) for i in x_girls]\n", " return x_boys, x_girls, y_boys, y_girls" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def prepare(x_boys, x_girls, y_boys, y_girls):\n", " X1 = np.concatenate([x_boys, x_girls])\n", " X2 = np.concatenate([y_boys, y_girls])\n", " X = np.vstack([X1, X2]).T\n", " y = np.vstack([np.zeros(N/2), np.zeros(N/2)+1]).flatten()\n", " return X,y" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Generate data\n", "# We have the height and weight of a bunch of young kids, and we must guess if they're a boy or a girl\n", "N = 200\n", "x_boys, x_girls, y_boys, y_girls = get_sample(N=N)\n", "X,y = prepare(x_boys, x_girls, y_boys, y_girls)\n", "\n", "# Split train and test\n", "split = 100\n", "train_ids = np.random.choice(np.arange(N), split, replace=False)\n", "test_ids = np.delete(np.arange(N), train_ids)\n", "X_train = X[train_ids,:]\n", "y_train = y[train_ids]\n", "X_test = X[test_ids,:]\n", "y_test = y[test_ids]" ] }, { "cell_type": "code", "execution_count": 138, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Predicted coefficients: [ 1.66677306 -0.34157436 -0.04564486]\n" ] } ], "source": [ "# Train a logistic regression model\n", "from sklearn.linear_model import LogisticRegression\n", "clf = LogisticRegression()\n", "clf.fit(X_train,y_train)\n", "w = np.concatenate([clf.coef_[0], clf.intercept_])\n", "print 'Predicted coefficients: {}' .format(w)" ] }, { "cell_type": "code", "execution_count": 125, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "'Boy'" ] }, "execution_count": 125, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Predict a manually chosen instance\n", "age = 12\n", "weight = 59\n", "x = np.array([age, weight]).reshape([1,2])\n", "'Girl' if clf.predict(x) else 'Boy'" ] }, { "cell_type": "code", "execution_count": 139, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " // select the cell after this one\n", " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", " IPython.notebook.select(index + 1);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\" width=\"639.999974568686\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# compute reference points for plotting the separating hyperplane\n", "a = -w[0]/w[1]\n", "b = w[2]\n", "w\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "boys = np.array([X_test[i] for i in range(X_test.shape[0]) if y_test[i] == 0])\n", "girls = np.array([X_test[i] for i in range(X_test.shape[0]) if y_test[i] == 1])\n", "ax.scatter(boys[:,0], boys[:,1], label='Boys', color='red')\n", "ax.scatter(girls[:,0], girls[:,1], label='Girls')\n", "\n", "xb = [10,18]\n", "z = [a*x+b for x in xb]\n", "ax.plot(xb, z, label='pred', color='black', linewidth=2)\n", "plt.xlabel('Age')\n", "plt.ylabel('Weight')\n", "ax.legend(loc='best')\n", "\n", "ax.set_ylim(0,20)\n", "ax.set_ylim(0,150)\n", "\n", "plt.show()\n", "\n", "#plt.savefig('../pres/images/logreg.pdf')" ] }, { "cell_type": "code", "execution_count": 136, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Initial w: [ 0.62606724 0.37281743 0.16866454]\n" ] } ], "source": [ "# Gradient ascent by hand\n", "# first we choose a learning rate (alpha) and a random set of initial coefficients\n", "# The algorithm is in the cell below\n", "alpha = 0.005\n", "X_train_1s = np.column_stack([X_train, np.ones(X_train.shape[0])])\n", "w = np.random.rand(3)\n", "print 'Initial w: {}'.format(w)\n", "iterated = 0" ] }, { "cell_type": "code", "execution_count": 140, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " // select the cell after this one\n", " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", " IPython.notebook.select(index + 1);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\" width=\"639.999974568686\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Final w: [ 1.6667813 -0.34157604 -0.04564509]\n" ] } ], "source": [ "# Here we run gradient ascent\n", "# Note that the coefficients might not converge to the same ones as scikit-learn estimated. That is because\n", "# they use a different optimization algorithm. The corresponding hyperplane, however, is roughly the same.\n", "# After 100 iterations or so, with decreasing learning rate, we should reach more or less the same solution\n", "import time\n", "ITERATIONS = 50\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "plt.ion()\n", "boys = np.array([X_test[i] for i in range(X_test.shape[0]) if y_test[i] == 0])\n", "girls = np.array([X_test[i] for i in range(X_test.shape[0]) if y_test[i] == 1])\n", "ax.scatter(boys[:,0], boys[:,1], label='Boys', color='red')\n", "ax.scatter(girls[:,0], girls[:,1], label='Girls')\n", "\n", "xb = [10,18]\n", "z = [a*x+b for x in xb]\n", "ax.plot(xb, z, label='pred', color='black', linewidth=2)\n", "plt.xlabel('Age')\n", "plt.ylabel('Weight')\n", "ax.legend(loc='best')\n", "\n", "ax.set_ylim(0,20)\n", "ax.set_ylim(0,150)\n", "\n", "plt.show()\n", "\n", "for i in range(1,ITERATIONS):\n", " grad = np.sum([xi*(yi-sigmoid(w.T.dot(xi))) for xi,yi in zip(X_train_1s, y_train) ], axis=0)\n", " iterated += 1\n", "\n", " w = w+alpha/float(iterated)*grad\n", " alpha = alpha*0.9 # The learning rate can be shrinked to help convergence\n", " \n", " a = -w[0]/w[1]\n", " b = w[2]\n", " z = [a*x+b for x in xb]\n", " time.sleep(0.001) # Sleep to visualize the animation better\n", "\n", " ax.clear()\n", " ax.set_title(str(iterated))\n", " ax.set_ylim(0,20)\n", " ax.set_ylim(0,150)\n", " ax.scatter(boys[:,0], boys[:,1], label='Boys', color='red')\n", " ax.scatter(girls[:,0], girls[:,1], label='Girls')\n", " ax.plot(xb, z, label='pred', color='black', linewidth=2)\n", " fig.canvas.draw() \n", " \n", "print 'Final w: {}'.format(w)" ] }, { "cell_type": "code", "execution_count": 141, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.92\n", "Precision: 0.9\n", "Recall: 0.9375\n", "F1: 0.918367346939\n" ] } ], "source": [ "#Measure accuracy\n", "preds = clf.predict(X_test)\n", "print 'Accuracy: {}'.format(len(filter(lambda x: x[0] == x[1], zip(preds, y_test)))/ float(len(preds)))\n", "\n", "from sklearn import metrics\n", "print 'Precision: {}'.format(metrics.precision_score(y_test, preds))\n", "print 'Recall: {}'.format(metrics.recall_score(y_test, preds))\n", "print 'F1: {}'.format(metrics.f1_score(y_test, preds))\n" ] }, { "cell_type": "code", "execution_count": 142, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'] / mpl.ratio;\n", " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", " var x1 = msg['x1'] / mpl.ratio;\n", " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x * mpl.ratio;\n", " var y = canvas_pos.y * mpl.ratio;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " var width = fig.canvas.width/mpl.ratio\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var width = this.canvas.width/mpl.ratio\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " // select the cell after this one\n", " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", " IPython.notebook.select(index + 1);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\" width=\"639.999974568686\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# A plot of the sigmoid function\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "xb = np.arange(-10,10,0.01)\n", "z = [sigmoid(x) for x in xb]\n", "ax.plot(xb, z, label='pred', linewidth=1)\n", "ax.grid(True, which='both')\n", "ax.axhline(y=0.5, color='k')\n", "ax.axvline(x=0, color='k')\n", "\n", "plt.show()\n", "#plt.savefig('../pres/images/sigmoid.pdf')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }
unlicense
DistrictDataLabs/intro-to-python
Workshop.ipynb
1
60278
{ "metadata": { "name": "", "signature": "sha256:788d450282aca14510b4fbb415c974ba9a033b999a6b00b6289ec70286d56a52" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "An Introduction to Python for new Programmers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Welcome to _An Introduction to Python for new Programmers_! This iPython notebook serves as an instructor-led guide to the Python programming language, particularly for those who are new to programming or have very limited programming experience. iPython notebooks are a novel form of communicating about programming; creating an environment where both text and live code can be executed in an explanatory fashion. Parts of this document will contain live Python code that is interpreted by the notebook and whose output will be rendered directly to the screen. If you would like to follow along on your laptop, you can install iPython and **download this workbook from** [github/DistrictDataLabs/intro-to-python](https://github.com/DistrictDataLabs/intro-to-python)." ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Before we get Started...." ] }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Prerequisites:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although this is an introductory course, some prerequisites are required. \n", "\n", "1. The student must have Python installed \n", "2. Must be familiar with using Python on his or her operating system. \n", "3. They must also have familiarity with the command line. \n", "\n", "The following are suggested tasks to perform before this course:\n", "\n", "* [Using the terminal](http://cli.learncodethehardway.org/book/)\n", "* [Install Python](https://wiki.python.org/moin/BeginnersGuide/Download)\n", "* [Python Basics](http://www.codecademy.com/tracks/python)\n", "* [Python Hello World](http://www.learnpython.org/en/Hello,_World!)\n", "\n", "Installations:\n", "\n", "* [Install virtualenv and virtualenvwrapper](http://docs.python-guide.org/en/latest/dev/virtualenvs/) A *virtualenv* is an isolated working copy of Python which allows you to work on a specific project without worry of affecting other projects. *Virtualenvwrapper* provides a set of commands which makes working with virtual environments much more pleasant. It also places all your virtual environments in one place. \n", "* [Get a Text editor, Sublime] (http://www.sublimetext.com/)\n", "* [Get a Github account](https://github.com/)\n", "\n", "For Windows Users:\n", "\n", "* [Install Pip, Virtualenv and Virtualenv Wrapper on Windows] (http://www.tylerbutler.com/2012/05/how-to-install-python-pip-and-virtualenv-on-windows-with-powershell/)\n" ] }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Download the course materials from GitHub" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* The presentation is on github. [Github: Intro to Python] (https://github.com/DistrictDataLabs/intro-to-python)\n", "\n", "* The `Workshop.pynb` can be viewed on the iPython nbviewer application by using the following link: [nbviewer Intro to Python](http://nbviewer.ipython.org/github/DistrictDataLabs/intro-to-python/blob/master/Workshop.ipynb)\n", "\n" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Learning how to Learn how to Code" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, let's be clear- what can we accomplish in a two to three hour session? Obviously we're not going to make you an expert programmer in this time, nor are we going to impart a comprehensive theory of programming. \n", "\n", "However, there is one fundamental concept about programming that I would like ensure you all take away: **programming isn't about knowing syntax it's about learning**. Therefore, what were going to try to enable you to do today is help you **learn how to learn how to code**. \n", "\n", "In order to continually improve his or her craft, a programmer must constantly be in a state of education. From reading about new programming paradigms, languages, or frameworks to experimental approaches to reading other's code- programming is is a community activity that encourages the sharing of ideas. \n", "\n", "In particular we'll focus on clear expression of code and readability. **By ensuring you can write code in a readable form, it will help you to read other's code as well**!" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Getting Started" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's start by using the interactive interpreter to run the most basic of programs, \"Hello World!\" This interactive interpreter is also called the **\"REPL\" or the Read Evaluate Print Loop**. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "print \"Hello World!\"" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The REPL is often used during program development. Let's try running this same basic program from a file. This is called a script or a program that is run from the command line (terminal). That first line is called the \"hash bang.\" Put simply, it indicates that the file can be run as a script. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#!/usr/bin/env python\n", "\n", "print \"Hello World!\"" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Output and Input" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# This is writing to standard out:\n", "\n", "print \"Python is awesome!\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Python is awesome!\n" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "# Basic input (These values will always be interpreted as strings)\n", "\n", "name = raw_input(\"What is your name?\")\n", "print name" ], "language": "python", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "What is your name?sarah\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "sarah\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "What is Programming?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Programming is the act of creating **a set of instructions to transform input data to some kind of output**. \n", "\n", "Yeh- it's that simple. We're **making recipes of ingredients and instructions**.\n", "\n", "However, instead of food, we cook with numbers and strings. The instructions are defined as a formal language.\n", "\n", "The instructions are interpreted and executed from top to bottom, and when the interpreter runs out of instructions, the program is done!\n", "\n", "The **interpreter** is what takes your code instructions and translates them into something that your computer understands.\n", "\n", "Because of this python is called an **interpreted language** or a **scripting language**. \n" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Variables" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Variables should follow some simple rules.\n", "\n", "* be lowercase\n", "* use underscores for word separation\n", "* not start with numbers\n", "\n", "In fact Python has it's own language style guide called PEP8.\n", "\n", "* [PEP8 Guide](http://legacy.python.org/dev/peps/pep-0008/)\n", "\n", "Consider the following simple program. This small program for computing the area of a triangle includes quite a few components:\n", "\n", "* Comments (`#`)\n", "* Assignment (`a = 2`)\n", "* Variables (`base`)\n", "* Multiplication (`*`)\n", "* Output \n", "(`print`)" ] }, { "cell_type": "code", "collapsed": true, "input": [ "# Compute the area of a triangle\n", "\n", "# Ingredients (aka: variables)\n", "base = 4 \n", "height = 7\n", "\n", "# Instructions (aka: an algorithm)\n", "area = 0.5 * base * height\n", "print area" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "14.0\n" ] } ], "prompt_number": 4 }, { "cell_type": "raw", "metadata": {}, "source": [ "Interactivity is a powerful idea. It allows variables to be variable. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# The area of a circle\n", "# Must input a number or a decimal\n", "radius = input(\"Enter radius: \")\n", "area = 3.14 * radius * radius\n", "print area" ], "language": "python", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "Enter radius: 10\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "314.0\n" ] } ], "prompt_number": 20 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we create a variable called radius. Note that **the name of the variable is expressive** (much better than x or y). The value of variable is assigned using the `=` operator. In this case it is assigned the value of the return value from the `input` function. **We can run this program over and over again and by changing the input we have changed the ouput- thus making our program dynamic.** We can then use the variable throughout the program and even modify its value through code during runtime. And through this very simple concept, very complex programs from web servers to self-driving cars are built from just a few simple building blocks!" ] }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Your Turn!" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Write code with variables to print the area of a rectangle" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "# Write code with variables to print the parameter of a rectangle" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Answers:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Area of a rectangle\n", "\n", "width = input(\"What is the width?\")\n", "height = input(\"What is the hight?\")\n", "\n", "area_rectangle = width * height\n", "\n", "print area_rectangle\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "What is the width?5\n" ] }, { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "What is the hight?10\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "50\n" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "# Parameter of a rectangle\n", "\n", "width = input(\"What is the width?\")\n", "height = input(\"What is the hight?\")\n", "\n", "parameter_rectangle = 2 * width + 2 * height\n", "\n", "print area_rectangle" ], "language": "python", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "What is the width?5\n" ] }, { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "What is the hight?10\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "50\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Calculation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So let's look at what computers do best- compute things!" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print 2 + 5 # Addition\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "7\n" ] } ], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [ "print 10 - 3 # Subtraction\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "7\n" ] } ], "prompt_number": 22 }, { "cell_type": "code", "collapsed": false, "input": [ "print 5 * 5 # Multiplication\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "25\n" ] } ], "prompt_number": 23 }, { "cell_type": "code", "collapsed": false, "input": [ "print 2 ** 2 # Power operator\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "4\n" ] } ], "prompt_number": 24 }, { "cell_type": "code", "collapsed": false, "input": [ "print 5 % 2 # Modulus (aka: remainder)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1\n" ] } ], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [ "print 11 / 2 # Division with an integer\n", "print 11 / 2.0 # Division with a float" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "5\n", "5.5\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Comparison" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**True and False are booleans** in Python and are used to express truth. Let's explore some comparision operators. \n", "\n", "**Note:** Don't confuse assignment `=` with is equal to `==`; this is one of the most common programmer errors." ] }, { "cell_type": "code", "collapsed": false, "input": [ "a = 10 #ASSIGNMENT\n", "b = 20\n", "\n", "print a > b # Greater than\n", "print b >= a # Greater than or equal to\n", "print a == b # EQUALITY symbol\n", "print b < a # Less than\n", "print a <= b # Less than or equal to" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "False\n", "True\n", "False\n", "False\n", "True\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Simple Data Types" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have already seen three data types:\n", "\n", "1. Strings\n", "2. Integers\n", "3. Floats\n", "4. Booleans\n", "\n", "These are all objects in Python. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#String\n", "a = \"apple\"\n", "print type(a)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "<type 'str'>\n" ] } ], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "#Integer (whole number)\n", "b = 1\n", "print type(b)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "<type 'int'>\n" ] } ], "prompt_number": 29 }, { "cell_type": "code", "collapsed": false, "input": [ "#Float (real numbers with decimal places)\n", "c = 2.2\n", "print type(c)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "<type 'float'>\n" ] } ], "prompt_number": 30 }, { "cell_type": "code", "collapsed": false, "input": [ "#Boolean\n", "d = True\n", "print type(d)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "<type 'bool'>\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Strings" ] }, { "cell_type": "code", "collapsed": false, "input": [ "a = \"Hello\" # String\n", "b = \" World\" # Another string\n", "print a + b # Concatenation" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Hello World\n" ] } ], "prompt_number": 32 }, { "cell_type": "code", "collapsed": false, "input": [ "a = \"World\"\n", "# Slicing\n", "print a[0]\n", "print a[-1]\n", "print \"World\"[0:4]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "W\n", "d\n", "Worl\n" ] } ], "prompt_number": 34 }, { "cell_type": "code", "collapsed": false, "input": [ "name = \"Jonesey\"\n", "print \"Hello, %s!\" % name # Simple string formatting" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Hello, Jonesey!\n" ] } ], "prompt_number": 35 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Strings are an example of an **imutable** data type. Once you instantiate a string you cannot change any characters in it's set. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "string = \"string\"\n", "string[1] = \"y\" #Here we attempt to assign the last character in the string to \"y\"" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "'str' object does not support item assignment", "output_type": "pyerr", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-36-5cf8b6c54c2a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mstring\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"string\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mstring\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"y\"\u001b[0m \u001b[0;31m#Here we attempt to assign the last character in the string to \"y\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: 'str' object does not support item assignment" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Formatting Strings" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# String Concatination\n", "\n", "first_name = \"Bob\"\n", "last_name = \"Roberts\"\n", "\n", "print first_name + \" is my first name. \" + last_name + \" is my last name.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bob is my first name. Roberts is my last name.\n" ] } ], "prompt_number": 37 }, { "cell_type": "code", "collapsed": false, "input": [ "# String Formatting\n", "\n", "food = \"pizzas\"\n", "number = 20\n", "\n", "print \"I'm so hungry I'm going to eat %i %s.\" % (number, food)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "I'm so hungry I'm going to eat 20 pizzas.\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "String Methods" ] }, { "cell_type": "code", "collapsed": false, "input": [ "name = \"matt\"\n", "name.capitalize() # Capitalizes the first letter of the string" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 38, "text": [ "'Matt'" ] } ], "prompt_number": 38 }, { "cell_type": "code", "collapsed": false, "input": [ "name = \"matt\"\n", "last = \"jones\"\n", "\" \".join([name, last]) # Creates a new string by concatenating each item in the list" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 39, "text": [ "'matt jones'" ] } ], "prompt_number": 39 }, { "cell_type": "code", "collapsed": false, "input": [ "# What other methods do strings have?\n", "# You can use \"dir\" on any object to find out it's methods\n", "dir(str)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 40, "text": [ "['__add__',\n", " '__class__',\n", " '__contains__',\n", " '__delattr__',\n", " '__doc__',\n", " '__eq__',\n", " '__format__',\n", " '__ge__',\n", " '__getattribute__',\n", " '__getitem__',\n", " '__getnewargs__',\n", " '__getslice__',\n", " '__gt__',\n", " '__hash__',\n", " '__init__',\n", " '__le__',\n", " '__len__',\n", " '__lt__',\n", " '__mod__',\n", " '__mul__',\n", " '__ne__',\n", " '__new__',\n", " '__reduce__',\n", " '__reduce_ex__',\n", " '__repr__',\n", " '__rmod__',\n", " '__rmul__',\n", " '__setattr__',\n", " '__sizeof__',\n", " '__str__',\n", " '__subclasshook__',\n", " '_formatter_field_name_split',\n", " '_formatter_parser',\n", " 'capitalize',\n", " 'center',\n", " 'count',\n", " 'decode',\n", " 'encode',\n", " 'endswith',\n", " 'expandtabs',\n", " 'find',\n", " 'format',\n", " 'index',\n", " 'isalnum',\n", " 'isalpha',\n", " 'isdigit',\n", " 'islower',\n", " 'isspace',\n", " 'istitle',\n", " 'isupper',\n", " 'join',\n", " 'ljust',\n", " 'lower',\n", " 'lstrip',\n", " 'partition',\n", " 'replace',\n", " 'rfind',\n", " 'rindex',\n", " 'rjust',\n", " 'rpartition',\n", " 'rsplit',\n", " 'rstrip',\n", " 'split',\n", " 'splitlines',\n", " 'startswith',\n", " 'strip',\n", " 'swapcase',\n", " 'title',\n", " 'translate',\n", " 'upper',\n", " 'zfill']" ] } ], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [ "# What if you don't know how to use one of the methods?\n", "\n", "help(' matt '.strip)\n", "\n", "# Now that you know what it does, try it out!\n", "' matt '.strip()\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Help on built-in function strip:\n", "\n", "strip(...)\n", " S.strip([chars]) -> string or unicode\n", " \n", " Return a copy of the string S with leading and trailing\n", " whitespace removed.\n", " If chars is given and not None, remove characters in chars instead.\n", " If chars is unicode, S will be converted to unicode before stripping\n", "\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 41, "text": [ "'matt'" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Quick Stretch" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Conditionality: \"If Else\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Programs can make choices based on particular values of variables using conditional execution. Conditionality forks the flow of execution so that **some parts of the program may be executed but others will not**.\n", "\n", "This brings up a crucial point about Python in particular- **blocks of code are grouped by indentation**. Every time you get to a place where you have to define a contiguous block of code (usually following a `:`) then everything under must be indented with the same amount of space (usually 4 spaces). Dedented code does not belong to the indented block.\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Simple Conditionality\n", "if 2 + 2 == 4:\n", " print \"All is right in the world!\"\n", "else:\n", " print \"Pigs must be flying!\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "All is right in the world!\n" ] } ], "prompt_number": 42 }, { "cell_type": "code", "collapsed": false, "input": [ "# Evaluate Temperature\n", "temperature = input(\"What is today's temperature? \")\n", "\n", "if temperature > 82:\n", " print \"It's too hot, %i degrees will melt you.\" % temperature\n", "elif temperature < 45:\n", " print \"Are you crazy? You'll freeze at %i degrees\" % temperature\n", "else:\n", " print \"Perfect weather! Let's go for a picnic!\"" ], "language": "python", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "What is today's temperature? 30\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "Are you crazy? You'll freeze at 30 degrees\n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Your Turn:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Use conditionality to determine if a number is even or odd" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Answer" ] }, { "cell_type": "code", "collapsed": false, "input": [ "number = input(\"What number should I test?\")\n", "\n", "if number % 2 == 0:\n", " print \"The number is even!\"\n", "else:\n", " print \"The number is odd!\"" ], "language": "python", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "stream": "stdout", "text": [ "What number should I test?10\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "The number is even!\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Logic with Booleans" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Both a and b are True\n", "\n", "a = True\n", "b = True\n", "\n", "if a and b: \n", " print \"a and b == True\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a and b == True\n" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "#Either a or c is True\n", "\n", "b = True\n", "c = False\n", "\n", "if b or c: \n", " print \"b and c == True\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "b and c == True\n" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "#If d is not true\n", "\n", "d = False\n", "\n", "if d is not True: \n", " print \"d == False\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "d == False\n" ] } ], "prompt_number": 49 }, { "cell_type": "code", "collapsed": false, "input": [ "# None denotes lack of value but it is not equal to false\n", "\n", "a = None\n", "b = 0\n", "\n", "if a is None:\n", " print \"None\"\n", "\n", "if b is not None: \n", " print \"Not None\"\n", "\n", "print None == False" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "None\n", "Not None\n", "False\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Repetition: For and While Loops" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**The power of computers is their ability to do a repetitive task over and over again** without tiring. Most programs don't just shut down on you have executing their instructions- they wait for input from the user and respond. In order to accomplish this some mechanism is required to continually execute a chunk of code." ] }, { "cell_type": "code", "collapsed": false, "input": [ "for letter in \"a\", \"b\", \"c\", \"d\", \"e\":\n", " print letter" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "for number in range(1,10):\n", " print number" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1\n", "2\n", "3\n", "4\n", "5\n", "6\n", "7\n", "8\n", "9\n" ] } ], "prompt_number": 37 }, { "cell_type": "code", "collapsed": false, "input": [ "# You are importing the sleep function from the time module\n", "from time import sleep\n", "\n", "print \"Cooking the bacon.\"\n", "\n", "hot_enough = 180\n", "temperature = 62\n", "\n", "while temperature < hot_enough:\n", " print \"Not hot enough...\"\n", " sleep(1)\n", " temperature = temperature + 15\n", "\n", "print \"Bacon is done!\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Spam is done!" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "Cooking the spam.\n", "Not hot enough...\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Spam is done!" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] } ], "prompt_number": 52 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Functions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Functions allow you to define proceedures that happen over and over again in your code, almost like mini-programs that take input and `return` an output. Let's start by looking at a very simple function." ] }, { "cell_type": "code", "collapsed": false, "input": [ "# This function takes no arguments\n", "# Every function starts with a definition, this is where \"def\" comes from\n", "def hello():\n", " # This is a docstring\n", " '''say hi'''\n", " print \"Hello!\"\n", "\n", "# Invoke the function\n", "hello()\n", "\n", "# Help prints the docstring of the function\n", "help(hello)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Hello!\n", "Help on function hello in module __main__:\n", "\n", "hello()\n", " say hi\n", "\n" ] } ], "prompt_number": 53 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's refactor (aka: rewrite) the bacon code into a cooking function." ] }, { "cell_type": "code", "collapsed": false, "input": [ "from time import sleep\n", "\n", "def cook(hot_enough, temperature, food):\n", " print \"Cooking the %s.\" % food\n", " while temperature < hot_enough:\n", " print \"Not hot enough...\"\n", " sleep(1)\n", " temperature = temperature + 15\n", " print \"The %s are done!\" % food\n", "\n", "cook(100, 50, \"coconuts\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Cooking the coconuts.\n", "Not hot enough...\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Not hot enough..." ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The coconuts are done!" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] } ], "prompt_number": 54 }, { "cell_type": "markdown", "metadata": {}, "source": [ "* **Arguments** to functions are named buckets that can have defaults associated with them. \n", "\n", "* So far we have only seen **Positional** arguments. Positional arguments (arguments without a default) must be specified in the order of the arguments. \n", "\n", "* **Keyword** arguments (those with a default) can be specified in any order, so long as they come after the positional arguments." ] }, { "cell_type": "code", "collapsed": false, "input": [ "# postional and keyword arguments\n", "# positional arguments must go before keyword (default) arguments\n", "def writer(name, color=\"blue\"):\n", " print name + \"'s favorite color is \" + color\n", " \n", "writer(\"Samantha\")\n", "writer(\"Sarah\", \"red\")\n", "writer(\"Susan\", color=\"green\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Samantha's favorite color is blue\n", "Sarah's favorite color is red\n", "Susan's favorite color is green\n" ] } ], "prompt_number": 55 }, { "cell_type": "code", "collapsed": false, "input": [ "# A stub function that does nothing\n", "def stub():\n", " pass\n", "\n", "stub()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 56 }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Your Turn:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Write a function that checks if a number is evenly divisible by 5" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Answer:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def by_4(number = 4):\n", " '''Check if a number is evenly divisible by 4'''\n", " if not number % 4:\n", " print \"Yes\"\n", " else:\n", " print \"No\"\n", "\n", "by_4(10)\n", "by_4()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No\n", "Yes\n" ] } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Lists, Tuples, Sets and Dictionaries" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Programmers can't live on numbers and strings alone. The currency of programming is data (information), therefore we need more significant structures to represent information.\n", "\n", "* Unlike integers, floats and strings these data types can hold multiple values" ] }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Lists: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lists are **mutable** or able to be altered. Lists are a collection of data and that data can be of differing types." ] }, { "cell_type": "code", "collapsed": false, "input": [ " # A new list\n", " groceries = []\n", "\n", " # Add to list\n", " groceries.append(\"Snails\") \n", " groceries.append(\"Nutella\")\n", " groceries.append(\"Cactus\")\n", "\n", " # Access by index\n", " print groceries[2]\n", " print groceries[0]\n", "\n", " # Find number of things in list\n", " print len(groceries)\n", "\n", " # Sort the items in the list\n", " groceries.sort()\n", " print groceries\n", "\n", " # Remove from list\n", " groceries.remove(\"Cactus\")\n", "\n", " #The list is mutable\n", " groceries[0] = 2\n", " print groceries" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Cactus\n", "Snails\n", "3\n", "['Cactus', 'Nutella', 'Snails']\n", "[2, 'Snails']\n" ] } ], "prompt_number": 57 }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Tuples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Tuples are an **immutable** type. Like strings, once you create them, you cannot change them. It is their immutability that allows you to use them as keys in dictionaries. However, they are similar to lists in that they are a collection of data and that data can be of differing types. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Tuple grocery list\n", "\n", "groceries = ('Cactus', 'Nutella', 'Snails')\n", "\n", "print groceries" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('Cactus', 'Nutella', 'Snails')\n" ] } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Sets:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A set is a sequence of items that cannot contain duplicates. They handle operations like sets in mathmatics." ] }, { "cell_type": "code", "collapsed": false, "input": [ "numbers = range(10)\n", "evens = [2, 4, 6, 8]\n", "\n", "evens = set(evens)\n", "numbers = set(numbers)\n", "\n", "# Use difference to find the odds\n", "odds = numbers - evens\n", "\n", "print odds\n", "\n", "# Note: Set also allows for use of union (|), and intersection (&)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "set([0, 1, 3, 5, 7, 9])\n" ] } ], "prompt_number": 61 }, { "cell_type": "heading", "level": 4, "metadata": {}, "source": [ "Dictionaries" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A dictionary is a map of keys to values. Keys must be unique." ] }, { "cell_type": "code", "collapsed": false, "input": [ "# A simple dictionary\n", "\n", "obvious = {'sky': 'blue'}\n", "\n", "# Access by key\n", "print obvious['sky']" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "blue\n" ] } ], "prompt_number": 62 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# A longer dictionary\n", "obvious = {\n", " 'sky': 'blue',\n", " 'dog': 'woof'\n", "}\n", "\n", "# Check if item is in dictionary\n", "print 'two plus two' in obvious\n", "\n", "# Add new item\n", "obvious['two plus two'] = 4\n", "print obvious['two plus two']\n", "\n", "# Print just the keys\n", "print obvious.keys()\n", "\n", "# Print just the values\n", "print obvious.values()\n", "\n", "# Print dictionary pairs another way\n", "for key, value in obvious.items():\n", " print key, value" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "False\n", "4\n", "['two plus two', 'sky', 'dog']\n", "[4, 'blue', 'woof']\n", "two plus two 4\n", "sky blue\n", "dog woof\n" ] } ], "prompt_number": 63 }, { "cell_type": "code", "collapsed": false, "input": [ "# Complex Data structures\n", "# Dictionaries inside a dictionary!\n", "\n", "employees = {\n", " \"eid0001\": {\n", " \"name\": \"Bob Jones\",\n", " \"department\": \"Marketing\",\n", " \"interests\": [\"fishing\", \"deep breathing\", \"gatorade\",]\n", " },\n", " \"eid0002\": {\n", " \"name\": \"Sherry Lorenzo\",\n", " \"department\": \"Human Resources\",\n", " \"interests\": [\"cooking\", \"steganography\", \"cycling\",],\n", " }\n", "}\n", "\n", "for employee in employees:\n", " print employees[employee][\"name\"]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bob Jones\n", "Sherry Lorenzo\n" ] } ], "prompt_number": 64 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Quick Stretch" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "File I/O" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Writing to a file\n", "with open(\"example.txt\", \"w\") as f:\n", " f.write(\"Hello World! \\n\")\n", " f.write(\"How are you? \\n\")\n", " f.write(\"I'm fine.\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 66 }, { "cell_type": "code", "collapsed": false, "input": [ "# Reading from a file\n", "with open(\"example.txt\", \"r\") as f:\n", " data = f.readlines()\n", " for line in data:\n", " words = line.split()\n", " print words" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "['Hello', 'World!']\n", "['How', 'are', 'you?']\n", "[\"I'm\", 'fine.']\n" ] } ], "prompt_number": 67 }, { "cell_type": "code", "collapsed": false, "input": [ "# Count lines and words in a file\n", "lines = 0\n", "words = 0\n", "the_file = \"example.txt\"\n", "\n", "with open(the_file, 'r') as f:\n", " for line in f:\n", " lines += 1\n", " words += len(line.split())\n", "print \"There are %i lines and %i words in the %s file.\" % (lines, words, the_file)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "There are 3 lines and 7 words in the example.txt file.\n" ] } ], "prompt_number": 68 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "APIs" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Getting data from an API\n", "\n", "import requests\n", "\n", "width = '500'\n", "height = '500'\n", "response = requests.get('http://placekitten.com/g/' + width + '/' + height)\n", "\n", "print response\n", "\n", "with open('kitteh.jpg', 'wb') as f:\n", " f.write(response.content)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Object Oriented Programming" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we have covered the basic building blocks of a Python program, let's discuss a programming paradigm called Object-Oriented Programming (OOP). **OOP gives programmers a framework for modeling the real world by using classes - templates that describe an object's methods and attributes.** Methods can be thought of as the functions of the class while attributes are it's variables. Using this methodology, a programmer simply has to imagine the component interactions of the structure they're trying to model, then translate that into the executional components described above. \n", "\n", "* The names of classes should be \"camel cased.\" For example, \"FrogPrincess.\" \n", "* The __init__ method constructs the class when it is instantiated, it takes self as it's first parameter. \n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "class Person(object):\n", " \"\"\"\n", " Base class for all people\n", " \"\"\"\n", " \n", " #An attribute of the class\n", " population = 0\n", " \n", " def __init__(self, name, age):\n", " self.name = name\n", " self.age = age\n", " Person.population += 1\n", " \n", " def displayCount(self):\n", " print \"Total people: %d\" % Person.population\n", " \n", " def displayPerson(self):\n", " print \"My name is %s and I am %i years old.\" % (self.name, self.age)\n", "\n", "## INHERITENCE ##\n", "# Rude inherits from person\n", "class Rude(Person):\n", " \n", " def displayPerson(self):\n", " print \"I don't have to tell you anything!\"\n", "\n", "\n", "# Create Person instance\n", "bob = Person(\"Bob\", 35)\n", "bob.displayPerson()\n", "bob.displayCount()\n", "\n", "# Create Rude Person Instance\n", "rude = Rude(\"None of your business\", None)\n", "rude.displayPerson()\n", "rude.displayCount()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "My name is Bob and I am 35 years old.\n", "Total people: 1\n", "I don't have to tell you anything!\n", "Total people: 2\n" ] } ], "prompt_number": 77 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Your Turn:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Create a base class called animal with at least one attribute and one method.\n", "# Then create two more classes that inherit from the animal class \n", "# For example \"Mammal\" and \"Reptile.\"" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "A Time Formatter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to get a feel for how simple programs can be constructed, let's take a look at simple program that I wrote and use every single day. We'll walk through each line of code together and discover how this code works. This exercise will be common as you continue to learn how to program." ] }, { "cell_type": "code", "collapsed": false, "input": [ "#!/usr/bin/env python\n", "# clock\n", "# Prints out the time specially formatted\n", "\n", "\"\"\"\n", "Prints out the time specially formatted\n", "\"\"\"\n", "\n", "##########################################################################\n", "## Imports\n", "##########################################################################\n", "\n", "import sys\n", "from datetime import datetime\n", "from dateutil.tz import tzlocal\n", "\n", "##########################################################################\n", "## A Clock Printer Object\n", "##########################################################################\n", "\n", "class Clock(object):\n", "\n", " # The \"default\" formats. Add more formats via subclasses or in the\n", " # instantation of a Clock object (or just add more here).\n", "\n", " # These formats are more complicated string formatting\n", " FORMATS = {\n", " \"code\":\"%a %b %d %H:%M:%S %Y %z\",\n", " \"json\":\"%Y-%m-%dT%H:%M:%S.%fZ\",\n", " \"cute\":\"%b %d, %Y\",\n", " }\n", "\n", " # class method - bound to the class\n", " # Get the current time\n", " # tzlocal will get the local timezone\n", " @classmethod\n", " def local_now(klass):\n", " return datetime.now(tzlocal())\n", "\n", " def __init__(self, formats={}):\n", " self.formats = self.FORMATS.copy()\n", " self.formats.update(formats)\n", "\n", " # strftime takes a format and returns a string representing the date\n", " def _local_format(self, fmt):\n", " return Clock.local_now().strftime(fmt)\n", "\n", " def get_stamp(self, name):\n", " # strips \"-\" from beginning and end of string\n", " # the string is \"-code\", \"-json\" or \"-cute\"\n", " name = name.strip(\"-\")\n", "\n", " if name in self.formats:\n", " return self._local_format(self.formats[name])\n", "\n", " return None\n", "\n", " def print_stamp(self, name):\n", " stamp = self.get_stamp(name)\n", " if stamp:\n", " print stamp\n", " else:\n", " print \"No stamp format for name %s\" % name\n", "\n", "##########################################################################\n", "## Main Method, handle inputs to program from command line\n", "##########################################################################\n", "\n", "# print __name__ in the python shell to see how this works\n", "if __name__ == \"__main__\":\n", "\n", " args = sys.argv[1:]\n", " clock = Clock()\n", " for arg in args:\n", " clock.print_stamp(arg)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No stamp format for name -f\n", "No stamp format for name /Users/SarahKelley/.ipython/profile_default/security/kernel-4d56b37b-9d68-482e-958c-317352f340c7.json\n", "No stamp format for name --IPKernelApp.parent_appname='ipython-notebook'\n", "No stamp format for name --profile-dir\n", "No stamp format for name /Users/SarahKelley/.ipython/profile_default\n", "No stamp format for name --parent=1\n" ] } ], "prompt_number": 102 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
apache-2.0
Saxafras/Spacetime
Domain 18.ipynb
1
235574
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "from matplotlib import pyplot as plt\n", "from __future__ import division\n", "from spacetime.CA_Simulators.CAs import *\n", "from spacetime.Local_Measures.Local_Complexity import *\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code for 0-wildcard tiling" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def wildcard_tiling(x,t):\n", " '''\n", " Returns spacetime field of dimension (x,t) sampled from 0-wildcard tiling language.\n", " '''\n", " field = np.zeros((t,x), dtype=int)\n", " for i in xrange(t):\n", " for j in xrange(x):\n", " if i % 2 == 0 and j % 2 == 0:\n", " field[i,j] = np.random.choice([0,1])\n", " elif i % 2 == 1 and j % 2 == 1:\n", " field[i,j] = np.random.choice([0,1])\n", " \n", " return field" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run machine inference on samples from this tiling" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tiling_field = wildcard_tiling(600,600)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tiling_states = epsilon_field(tiling_field)\n", "tiling_states.estimate_states(3,3,1, alpha = 0.05)\n", "tiling_states.filter_data()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3\n" ] } ], "source": [ "print tiling_states.number_of_states()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAR9CAYAAADBZlejAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X+QlfWZ5/330fZHIv5oJELAATNkg/y0myTDCBgjSUaX\nnQnmKTa7i3EzQGWeyvJk2HErtRq3JrM7mdmdXYtarKWmZknsskBmsQQz4gTYRNwZA2gSAZHmR5sx\nmIGJKBojtJrYeD9/HNxY+8w8SvK9r9PnOu9X1alqQbjuT3+/3+u+z0XTNKqqQpIkSZIkSbmd1eoL\nkCRJkiRJUv0cAkmSJEmSJHUAh0CSJEmSJEkdwCGQJEmSJElSB3AIJEmSJEmS1AEcAkmSJEmSJHWA\ntx0CNRqNrzUajWONRmPvW36su9Fo/M9Go3Go0WhsbTQaF9d7mZIkSZIkSfplvJOvBOoDrv8/fuxW\n4FtVVU0CtgG3lb4wSZIkSZIkldOoqurt/6dGYwKwqaqqGaf/+yBwbVVVxxqNxhjgf1VVdWW9lypJ\nkiRJkqRf1C/6PYEuq6rqGEBVVc8Cl5W7JEmSJEmSJJVW6htDv/2XE0mSJEmSJKllun7BX3es0WiM\nfstfB3vuH/ofG42GAyJJkiRJkqTCqqpqnMn//06/Eqhx+vWmB4DfPv3xZ4G/OJOidZk2bRpVVYW9\nli1bFppvyZIlofk++clPhub7xCc+EZpvw4YNofU2bdoUWm/z5s1htQYGBti9e3dYvTVr1oTuzeje\nsnr16tB6fX19ofXWrl0bWm/hwoWh9Xp7e0P357333huab9SoUaH5InvLxo0b+eIXvxhWb9WqVaFr\nl/25JXtv8bml3MvnlrIvn1vKvnxuKfuyt/x/vZN/In4dsAP4QKPR+GGj0VgM/CfgE41G4xDwsdP/\nLUmSJEmSpGHqbf86WFVVi/6Bn/p44WuRJEmSJElSTUp9Y2jplzZx4sRWX4KkhKZMmdLqS1AbmTNn\nTqsvQW3C3iKpDvYW1c0hkIaN97///a2+BEkJTZ06tdWXoDYyd+7cVl+C2oS9RVId7C2qm0MgSZIk\nSZKkDuAQSJIkSZIkqQM4BJIkSZIkSeoAw2oINA54CNgH7AW+EFF06VIYPRpmzKi9lPkKC8wGwJEj\nMG8eTJ0K06fDnXfWW898xWQ/e+FrB7nzBZ+97L0zdb7kZ8/eWZj39bIS5/Ps1SBzPu/rZSVfPxhm\nQ6Ah4BZgGnA1sAyYVHfRxYth69a6qwDmKy4wGwBdXbBiBfT3w86dsGoVHDxYXz3zFZP97IWvHeTO\nF3z2svfO1PmSnz17Z2He18tKnM+zV4PM+byvl5V8/WCYDYGOAU+c/ngQOEBz0liruXOhu7vuKoD5\nigvMBsCYMdDT0/x4xAiYPBmOHq2vnvmKyX72wtcOcucLPnvZe2fqfMnPnr2zMO/rZSXO59mrQeZ8\n3tfLSr5+MMyGQG81AegBHmv1hdTEfG3u8GHYswdmzWr1ldQjcT73ZptLni/7/kydz73Z3pKvn/na\nl2evzSXP5/5sT8NyCHQBcB+wnOZ0MRvztbmTJ2HhQli5sjkdziZxPvdmm0ueL/v+TJ3Pvdnekq+f\n+dqXZ6/NJc/n/mxfw24IdDbNzbQGeKDF11IH87W5oaFmM7j5ZliwoNVXU17ifO7NNpc8X/b9mTqf\ne7O9JV8/87Uvz16bS57P/dneht0Q6C5gPxDwPeJ/rqqarwDmKywwGwBLlsCUKbB8eUw98xWT/eyF\nrx3kzhd89rL3ztT5kp89e2dh3tfLSpzPs1eDzPm8r5eVfP2G1RBoNnATMA/YBTwOXF930UWLYPZs\nGBiA8eOhr6+2UuYrLDAbANu3wz33wLZt0NsLM2fCli311TNfMdnPXvjaQe58wWcve+9MnS/52bN3\nFuZ9vazE+Tx7Ncicz/t6WcnXD6Cr9gpnYActuKB168JKma+wwGwAzJkDp07F1TNfMdnPXvjaQe58\nwWcve+9MnS/52bN3FuZ9vazE+Tx7Ncicz/t6WcnXD4bZVwJJkiRJkiSpHg6BJEmSJEmSOoBDIEmS\nJEmSpA7gEEiSJEmSJKkDOASSJEmSJEnqAA6BJEmSJEmSOoBDIEmSJEmSpA7gEEiSJEmSJKkDOASS\nJEmSJEnqAI2qquot0GhUn/70p2ut8aYXXniBK664IqQWwFNPPcWYMWPC6r3rXe/iIx/5SFi9hx56\niKGhobB6o0aN4oMf/GBYvUOHDjFp0qSwehs3bgzdLyNGjGDGjBkhtV588UW2bdvG2LFjQ+o9/fTT\nXHzxxZx77rkh9V599VVuvPHGkFoATz75JNOnTw+r9/DDD3PeeeeF1RsaGgrtZVu2bOGiiy4Kq/fM\nM88wcuTIsHovvfQSv/IrvxJWLzLfa6+9xlVXXRV2bz948CBjx44N2y/bt2+n0WiE1IL455aXX36Z\ncePGhdWL7i3RzxE+t5Tz4osvcuLECSZMmBBSr7+/n6effjrsuSX6PdHzzz/PggULwurt37+fKVOm\nhNXLftb/8i//kq6urrB6Y8eODX3OPXDgAJMnTw6p1Yr3RA8//DBVVZ3Zw0RVVbW+miVi3HbbbRUQ\n9po/f35Ytqqqqr6+vtB6a9euDa23fv360HobNmwIrTdx4sTQ/fnggw+GZRsYGKjOP//8sGzd3d3V\n8ePHw/KtWrUqrFZVVdXq1atD633mM58J3Zu33npraL5rr702NF/0+mXvLbt37w6rt3HjxtDekv25\nJXtv8bnF3vJO2VvK8j1RWdG9ZdOmTaH1Nm/eHFarFe+JgKo6wxmNfx1MkiRJkiSpAzgEkiRJkiRJ\n6gAOgSRJkiRJkjqAQyBJkiRJkqQO4BBIkiRJkiSpAzgEkiRJkiRJ6gAOgSRJkiRJkjqAQyBJkiRJ\nkqQOMPyGQEuXwujRMGNG7aXGAQ8B+4C9wBdqr0hoPo4cgXnzYOpUmD4d7ryz3nqR2SB9vvD9ab5y\novcm5O6d7s2isufLfG/I/tzi3izM3lJW4vXL3lsyrx1gvtKy906G4xBo8WLYujWk1BBwCzANuBpY\nBkyqu2hgPrq6YMUK6O+HnTth1So4eLC+epHZIH2+8P1pvnKi9ybk7p3uzaKy58t8b8j+3OLeLMze\nUlbi9cveWzKvHWC+0rL3TobjEGjuXOjuDil1DHji9MeDwAGak7haBeZjzBjo6Wl+PGIETJ4MR4/W\nVy8yG6TPF74/zVdO9N6E3L3TvVlU9nyZ7w3Zn1vcm4XZW8pKvH7Ze0vmtQPMV1r23slwHAK1yASg\nB3is1RdSl8OHYc8emDWr1VdSj+T5su/P1Pncm23NfG0u8fnLvnbZ82Xem+D6tTPXrs2Zr61FnT+H\nQMAFwH3AcprTt3ROnoSFC2Hlyub0NJvk+bLvz9T53JttzXxtLvH5y7522fNl3pvg+rUz167Nma+t\nRZ6/jh8CnU3zk70GeKDF11KLoaHmYbn5ZliwoNVXU17yfNn3Z+p87s22Zr42l/j8ZV+77Pky701w\n/dqZa9fmzNfWos/f8BwCVVXzFeAuYD8Q8G/3/FxgPpYsgSlTYPnymHqR2SB9vvD9ab5yovcm5O6d\n7s2isufLfG/I/tzi3izM3lJW4vXL3lsyrx1gvtKS987hNwRatAhmz4aBARg/Hvr6ais1G7gJmAfs\nAh4Hrq+t2mmB+di+He65B7Ztg95emDkTtmypr15kNkifL3x/mq+c6L0JuXune7Oo7Pky3xuyP7e4\nNwuzt5SVeP2y95bMaweYr7TsvRPoqvn3P3Pr1oWV2kELPgGB+ZgzB06diqsXmQ3S5wvfn+YrJ3pv\nQu7e6d4sKnu+zPeG7M8t7s3C7C1lJV6/7L0l89oB5iste+9kOH4lkCRJkiRJkopzCCRJkiRJktQB\nHAJJkiRJkiR1AIdAkiRJkiRJHcAhkCRJkiRJUgdwCCRJkiRJktQBHAJJkiRJkiR1AIdAkiRJkiRJ\nHcAhkCRJkiRJUgdoVFVVb4FGo7r77rtrrfGm73znO5x1Vtxc68SJE1x33XVh9Q4cOMDkyZPD6j34\n4INhtQAuvvhirrnmmrB6AwMDfOADHwir981vfpPu7u6wert27WLs2LEhtV5++WVGjRrFyJEjQ+q9\n8MILXH311Vx00UUh9fbs2UNPT09ILYCHH36YwcHBsHovvfQSV155ZVi9qqr48Ic/HFbvr//6r3n3\nu98dVu+8885j+vTpYfWie8u73vUupk6dGlLrhRde4OTJk0yYMCGk3r59+9i3bx8jRowIqXfkyBE+\n9KEPhdQCePrpp0PPQvbecujQISZNmhRWb/369VxwwQVh9YaGhrj88svD6tlbyonuLdnfEx08eDC0\nl0X3luj3RNH5vvrVrzJmzJiQWq14T7Ru3Tqqqmqc0S+sqqrWV7NEjFWrVoXVqqqqWr16dWi9vr6+\n0Hqf/OQnKyDsdccdd4Tm27BhQ2i9TZs2hdYbNWpU6Prt3r07LNvGjRur48ePh9WL7i3Lli0LXbsl\nS5aE5lu7dm1ovfXr14fWy95bNm/eHFZrYGAgtLesWbMm9OxNmzYtLFtV2VtKi+4tvb29oet37733\nhuazt7Rvb8n+nih7b8n+3JL9PRFQVWc4o/Gvg0mSJEmSJHUAh0CSJEmSJEkdwCGQJEmSJElSB3AI\nJEmSJEmS1AEcAkmSJEmSJHUAh0CSJEmSJEkdwCGQJEmSJElSB3AIJEmSJEmS1AGG1xDoyBGYNw+m\nToXp0+HOO+uvuXQpjB4NM2bUXyt5vnHAQ8A+YC/whboLRq4dxK9fcL7U6+fZKy/z+tlbykqcL/vZ\ny54v896E5Pd1SL1+nr0aZM7n2Ssqfe9kuA2BurpgxQro74edO2HVKjh4sN6aixfD1q311nhT8nxD\nwC3ANOBqYBkwqc6CkWsH8esXnC/1+nn2ysu8fvaWshLny372sufLvDch+X0dUq+fZ68GmfN59opK\n3zsZbkOgMWOgp6f58YgRMHkyHD1ab825c6G7u94ab0qe7xjwxOmPB4EDNCeptYlcO4hfv+B8qdfP\ns1de5vWzt5SVOF/2s5c9X+a9Ccnv65B6/Tx7Ncicz7NXVPreyXAbAr3V4cOwZw/MmtXqK6lH8nwT\ngB7gsVZfSF1cv/bl2rW35OtnvvaV/exlz5d5b4Lr185cuzZnvraW9fwNzyHQyZOwcCGsXNmcLmaT\nPN8FwH3AcprT03Rcv/bl2rW35OtnvvaV/exlz5d5b4Lr185cuzZnvraW+fwNvyHQ0FBzM918MyxY\n0OqrKS95vrNpHpY1wAMtvpZauH7ty7Vrb8nXz3ztK/vZy54v894E16+duXZtznxtLfv5G35DoCVL\nYMoUWL48rmZVNV8Rkue7C9gPBHyP/6bItYP49QvOl3r9PHvlZV4/e0tZifNlP3vZ82Xem5D8vg6p\n18+zV4PM+Tx7RWXvncNrCLR9O9xzD2zbBr29MHMmbNlSb81Fi2D2bBgYgPHjoa+vvlrJ880GbgLm\nAbuAx4Hra6tG7NpB/PoF50u9fp698jKvn72lrMT5sp+97Pky701Ifl+H1Ovn2atB5nyevaLS906g\nq/YKZ2LOHDh1KrbmunVxtZLn20HwhopcO4hfv+B8qdfPs1de5vWzt5SVOF/2s5c9X+a9Ccnv65B6\n/Tx7Ncicz7NXVPreyXD7SiBJkiRJkiTVwiGQJEmSJElSB3AIJEmSJEmS1AEcAkmSJEmSJHUAh0CS\nJEmSJEkdwCGQJEmSJElSB3AIJEmSJEmS1AEcAkmSJEmSJHUAh0CSJEmSJEkdoFFVVb0FGo3qz//8\nz2ut8aZvfetbHDlyJKQWQKPR4LOf/WxYvSeffJLp06eH1duxYweXXXZZWL1t27Zx7rnnhtX7R//o\nHzFnzpywevv372fKlClh9R5++GF+5Vd+JaTWT37yE0aOHMn73ve+kHr9/f1cfvnlXHzxxSH1onvL\nT3/6Uz72sY+F1duxYwdvvPFGWL3LLruM+fPnh9Xr7+9n6tSpYfWiz3p0vcjP5/Hjx7n77ru59NJL\nQ+o9//zz/MZv/AYXXHBBSL3du3czODgYUgvsLaVF95ZHHnmE9773vWH1HnzwQS655JKweldddRW9\nvb0htewtZUW/J7r//vv5yU9+ElYvurfcfffd1P0e/a18T1ROK94TfeUrX6GqqsYZ/cKqqmp9NUvE\nuO222yog7DV//vywbFVVVX19faH11q5dG1rv2muvDV2/1atXh+bbtGlTaL3NmzeH1RoYGKh2794d\nVm/jxo3V8ePHw+pl7y2f+cxnQvPdeuutofnWr18fWm/Dhg2h9bL3lvPPPz9sb3Z3d9tbCrK3lBXd\nWyZOnBi6fg8++GBYNnuLvWU49xbfE5WV/T0RUFVnOKPxr4NJkiRJkiR1AIdAkiRJkiRJHcAhkCRJ\nkiRJUgdwCCRJkiRJktQBHAJJkiRJkiR1AIdAkiRJkiRJHcAhkCRJkiRJUgdwCCRJkiRJktQBht8Q\naOlSGD0aZsyovdQ44CFgH7AX+ELtFQnNx5EjMG8eTJ0K06fDnXfWWy8yGy1Yv+B82dcvc77svcWz\nV5j5isq8P+0thXn2isq+fpnz2VsKc2+Wlbx3hudjOA6BFi+GrVtDSg0BtwDTgKuBZcCkuosG5qOr\nC1asgP5+2LkTVq2CgwfrqxeZjRasX3C+7OuXOV/23uLZK8x8RWXen/aWwjx7RWVfv8z57C2FuTfL\nSt47w/MxHIdAc+dCd3dIqWPAE6c/HgQO0Jyk1iowH2PGQE9P8+MRI2DyZDh6tL56kdlowfoF58u+\nfpnzZe8tnr3CzFdU5v1pbynMs1dU9vXLnM/eUph7s6zkvTM8H8NxCNQiE4Ae4LFWX0hdDh+GPXtg\n1qxWX0ktXL82lzhf9r2ZPV/mvQmkz5d5f2bOBvnzefbaW+Z8mbOB+dpe8t4Zlc8hEHABcB+wnOb0\nNJ2TJ2HhQli5sjldTMb1a3OJ82Xfm9nzZd6bQPp8mfdn5myQP59nr71lzpc5G5iv7SXvnZH5On4I\ndDbNw7IGeKDF11KLoaHmZrr5ZliwoNVXU5zr1+YS58u+N7Pny7w3gfT5Mu/PzNkgfz7PXnvLnC9z\nNjBf20veO6PzDc8hUFU1XwHuAvYD9X8P7rcIzMeSJTBlCixfHlMvMhstWL/gfNnXL3O+7L3Fs1eY\n+YrKvD/tLYV59orKvn6Z89lbCnNvlpW8d0bnG35DoEWLYPZsGBiA8eOhr6+2UrOBm4B5wC7gceD6\n2qqdFpiP7dvhnntg2zbo7YWZM2HLlvrqRWajBesXnC/7+mXOl723ePYKM19RmfenvaUwz15R2dcv\ncz57S2HuzbKS987wfEBXrb/7L2LdurBSO2jBJyAwH3PmwKlTcfUis9GC9QvOl339MufL3ls8e4WZ\nr6jM+9PeUphnr6js65c5n72lMPdmWcl7Z3g+huNXAkmSJEmSJKk4h0CSJEmSJEkdwCGQJEmSJElS\nB3AIJEmSJEmS1AEcAkmSJEmSJHUAh0CSJEmSJEkdwCGQJEmSJElSB3AIJEmSJEmS1AEcAkmSJEmS\nJHWARlVV9RZoNKpf//Vfr7XGm15//XUWL14cUgtgYGCAa665Jqzenj176OnpCau3d+9eZsyYEVbv\n0Ucf5X3ve19YvR/96Eehn88nn3yS6dOnp6z3/PPPc/LkybD127VrF9/4xjd417veFVIvurd861vf\n4tlnnw2rd+mll/KP//E/Dqu3ceNGXnnllbB606dP5zd+4zfC6u3bt49p06aF1YvuLX/wB3/AhRde\nGFLrlVdeYf78+Vx++eUh9b7//e8zbdo0Lr744pB6O3bsYOLEiSG1IP655bHHHuOKK64Iq/fMM8/w\na7/2a2H1os9edG+J3p/Hjh0Le+58/vnnOXLkCGPHjg2pl723ZH9uie4tvicqK/q55aabbuJXf/VX\nQ+rt27ePf//v/z1VVTXO6BdWVVXrC6iiXtOmTasirV69OrReX19faL21a9eG1lu/fn1ovQ0bNoTW\n27RpU2i9zZs3h9UaGBiodu/eHVZvzZo1YX2lFb1l2bJlofmWLFkSmu+Tn/xkaL477rgjNF/23jJq\n1KjQ9YvsLRs3bqyOHz8eVm/VqlVhtarK55bSfG4pK/NzS/bekv25xd5Sls8t5WzcuLECquoMZzT+\ndTBJkiRJkqQO4BBIkiRJkiSpAzgEkiRJkiRJ6gAOgSRJkiRJkjqAQyBJkiRJkqQO4BBIkiRJkiSp\nAzgEkiRJkiRJ6gAOgSRJkiRJkjrAsBoCjQMeAvYBe4EvRBRduhRGj4YZM+qvdeQIzJsHU6fC9Olw\n553118ycLzIbmK+0wHzZe4v5CvPsFZV6/byvl5c5n72lrMz5kp+97M8tqfcmpM+X+rnltGE1BBoC\nbgGmAVcDy4BJdRddvBi2bq27SlNXF6xYAf39sHMnrFoFBw/WWzNzvshsYL7SAvNl7y3mK8yzV1Tq\n9fO+Xl7mfPaWsjLnS372sj+3pN6bkD5f6ueW04bVEOgY8MTpjweBAzQncbWaOxe6u+uu0jRmDPT0\nND8eMQImT4ajR+utmTlfZDYwX2mB+bL3FvMV5tkrKvX6eV8vL3M+e0tZmfMlP3vZn1tS701Iny/1\nc8tpw2oI9FYTgB7gsVZfSF0OH4Y9e2DWrFZfST3M194S58veW8zX5hKfPUi+fsnXznxtznztK3M2\nkt8XIP36Zc+XdX8OyyHQBcB9wHKa07d0Tp6EhQth5crm9DQb87W3xPmy9xbztbnEZw+Sr1/ytTNf\nmzNf+8qcjeT3BUi/ftnzZd6fw24IdDbNT/Ya4IEWX0sthoaah+Xmm2HBglZfTXnma2+J82XvLeZr\nc4nPHiRfv+RrZ742Z772lTkbye8LkH79sufLvj+H3RDoLmA/EPA98H+uqpqvCEuWwJQpsHx5TD3I\nnS8yG5ivtMB82XuL+Qrz7BWVev28r5eXOZ+9pazM+ZKfvezPLan3JqTPl/q5hWE2BJoN3ATMA3YB\njwPX11100SKYPRsGBmD8eOjrq6/W9u1wzz2wbRv09sLMmbBlS331IHe+yGxgvtIC82XvLeYrzLNX\nVOr1875eXuZ89payMudLfvayP7ek3puQPl/q55bTumqvcAZ20IILWrcurtacOXDqVFw9yJ0vMhuY\nr7TAfNl7i/kK8+wVlXr9vK+XlzmfvaWszPmSn73szy2p9yakz5f6ueW0YfWVQJIkSZIkSaqHQyBJ\nkiRJkqQO4BBIkiRJkiSpAzgEkiRJkiRJ6gAOgSRJkiRJkjrA2w6BGo3G1xqNxrFGo7H3LT/25Uaj\ncaTRaOw6/bqh3suUJEmSJEnSL+OdfCVQH3D93/PjK6qqmnn6taXwdUmSJEmSJKmgtx0CVVX1beDH\nf89PNcpfjiRJkiRJkurwy3xPoP+n0WjsaTQaX200GhcXuyJJkiRJkiQV16iq6u3/p0ZjArCpqqoZ\np//7PcDxqqqqRqPxFeC9VVUt/Qd+bfWpT33qf//35MmTmTx5cpGL/z899thjfPzjH6/l9/77PPro\no/z6r/96WL2vfe1r/M3f/E1YvZkzZ7Jw4cKwert376a3tzes3p49e+jp6Qmr96UvfSmsFsCNN97I\nr/3ar4XUeu655zhx4gQTJ04Mqbd7927GjBnDiBEjQupF95Zvf/vbXHXVVWH19u7dy5w5c8Lq7dy5\nk2nTpoXVO3ToEB/60IfC6mXvLTfccENYrz5+/DhvvPFGaG+ZOHEiF110UUi9+++/n+9+97shtQBG\njx7N8uXLw+p997vf5cMf/nBYvV27djFz5sywev/lv/wXfvzjv++L5evxiU98guuuuy6sXnQvi3wO\nfO655/jjP/5j3v3ud4fU+9nPfsbv//7vp+0to0aN4nOf+1xYvejnFntLWdmfW1auXFlrbxkcHGRw\ncBCAU6dO8eMf/5iqqs7sb2lVVfW2L2ACsPdMf+70z1dRVq1aFVarqqpq9erVofU+85nPVEDY69Zb\nbw3Nt379+tB6GzZsCK03ceLE0PV78MEHw7INDAxUu3fvDqu3cePG6vjx42H1sveWvr6+0Hpr164N\nrWdvsbe8U9G95bbbbgtdu/nz54dlq6r8veXaa68NXb/oe8OmTZtC623evDms1sDAQHX++eeHrV13\nd7e9pSB7S3v3luzPLdG9BaiqdzDTeevrnf51sAZv+R5AjUZjzFt+7v8C9r3D30eSJEmSJEkt0PV2\n/0Oj0VgHfBS4tNFo/BD4MnBdo9HoAd4ADgP/d43XKEmSJEmSpF/S2w6Bqqpa9Pf8cF8N1yJJkiRJ\nkqSa/DL/OpgkSZIkSZLahEMgSZIkSZKkDuAQSJIkSZIkqQM4BJIkSZIkSeoADoEkSZIkSZI6wPAb\nAi1dCqNHw4wZ9dc6cgTmzYOpU2H6dLjzzvprBuYbBzwE7AP2Al+ou2Dk2kH8+gXnc/0Ks7eUk3nt\nIH0+e0thme/rYG8pyLNXmOtXjL2lMPdmUeYrb/gNgRYvhq1bY2p1dcGKFdDfDzt3wqpVcPBgvTUD\n8w0BtwDTgKuBZcCkOgtGrh3Er19wPtevMHtLOZnXDtLns7cUlvm+DvaWgjx7hbl+xdhbCnNvFmW+\n8obfEGjuXOjujqk1Zgz09DQ/HjECJk+Go0frrRmY7xjwxOmPB4EDNCeNtYlcO4hfv+B8rl9h9pZy\nMq8dpM9nbyks830d7C0FefYKc/2KsbcU5t4synzlDb8hUKscPgx79sCsWa2+klpMAHqAx1p9IXVx\n/dpb5vXLnA3M1+bsLe3LtWtvrl97y7x+mbMB7s02Z74yHAIBnDwJCxfCypXN6XAyFwD3ActpThfT\ncf3aW+b1y5wNzNfm7C3ty7Vrb65fe8u8fpmzAe7NNme+chwCDQ01m8HNN8OCBa2+muLOprmZ1gAP\ntPhaauH6tbfM65c5G5ivzdlb2pdr195cv/aWef0yZwPcm23OfGUNzyFQVTVfEZYsgSlTYPnymHoQ\nmu8uYD8Q8G8TNUWuHcSvX3A+168we0s5mdcO0ueztxSW+b4O9paCPHuFuX7F2FsKc28WZb6yht8Q\naNEimD2u4R9NAAAgAElEQVQbBgZg/Hjo66uv1vbtcM89sG0b9PbCzJmwZUt99SA032zgJmAesAt4\nHLi+tmrErh3Er19wPtevMHtLOZnXDtLns7cUlvm+DvaWgjx7hbl+xdhbCnNvFmW+8rpq/v3P3Lp1\ncbXmzIFTp+LqQWi+HQQvcOTaQfz6Bedz/Qqzt5STee0gfT57S2GZ7+tgbynIs1eY61eMvaUw92ZR\n5itv+H0lkCRJkiRJkopzCCRJkiRJktQBHAJJkiRJkiR1AIdAkiRJkiRJHcAhkCRJkiRJUgdwCCRJ\nkiRJktQBHAJJkiRJkiR1AIdAkiRJkiRJHcAhkCRJkiRJUgfoiihy+eWXR5Shu7ubK664IqQWwFNP\nPcU3vvGNsHqXX345999/f1i9O+64I2ztAH7rt36LESNGhNX7/d//fX73d383rN4//+f/nLlz54bV\n+973vkej0Qip9eyzz3LixAn+7u/+LqTeY489xuc//3m6ukJaWHhv+cu//Ev+4A/+IKzeBz/4QS67\n7LKwen/2Z3/Gv/23/zasXnRvefLJJzn//PPD6i1atIiZM2eG1fud3/mdsN4yNDTErbfemra3XHLJ\nJaH39UceeST0uSX6OSm6t9xwww3863/9r8Pq7d69O/TzuWvXLs46K+7Pi7/3ve/xxhtvhNR69tln\n+cpXvsLEiRND6j3yyCNMnTo1bW+56667Qt8zZH9uie4tt99+e+hzZ/b3RJG95Xvf+x5/9Ed/dMa/\nLqQTHT16NKIM3d3dzJ8/P6QWwN/93d+F1nvuuee48cYbw+r19fWxffv2sHrvf//7Qz+f/+7f/buw\nvQkwa9as0PU7//zzueGGG0JqPfXUUwwODtLT0xNS78UXX+TYsWMhtSC+t3zjG9/g61//eli966+/\nPjTfn/3Zn4Weveje8tprr4XWe+ONN/jN3/zNsHqf+9znOH78eFi9j370o6l7S+R94fjx4+HPLZl7\ny+TJk0PX74033gjvLZH1zjrrrLTPLSdPnmTFihUhtSC+t3zrW99i06ZNYfWyP7dE95b/8B/+g++J\nConuLVVV/UK/zr8OJkmSJEmS1AEcAkmSJEmSJHUAh0CSJEmSJEkdwCGQJEmSJElSB3AIJEmSJEmS\n1AEcAkmSJEmSJHUAh0CSJEmSJEkdwCGQJEmSJElSBxhWQ6BxwEPAPmAv8IWIokuXwujRMGNG/bWO\nHIF582DqVJg+He68s/6agfnC1y9y7cifL3x/Zt6bYL6CPHuF2TuLyX72fG4pzN5SVuJ82XuL+Qrz\nvl5W4t7ypmE1BBoCbgGmAVcDy4BJdRddvBi2bq27SlNXF6xYAf39sHMnrFoFBw/WWzMwX/j6Ra4d\n+fOF78/MexPMV5BnrzB7ZzHZz57PLYXZW8pKnC97bzFfYd7Xy0rcW940rIZAx4AnTn88CBygOWms\n1dy50N1dd5WmMWOgp6f58YgRMHkyHD1ab83AfOHrF7l25M8Xvj8z700wX0GevcLsncVkP3s+txRm\nbykrcb7svcV8hXlfLytxb3nTsBoCvdUEoAd4rNUXUpfDh2HPHpg1q9VXUovs65c9X+b9mX3tzNfm\nEp89yL1+mbMB7s12l3z9MufLvjfN196y58vaW4blEOgC4D5gOc3pYjonT8LChbByZXO6mEz29cue\nL/P+zL525mtzic8e5F6/zNkA92a7S75+mfNl35vma2/Z82XuLcNuCHQ2zc20BnigxddSi6Gh5ma6\n+WZYsKDVV1Nc9vXLni/z/sy+duZrc4nPHuRev8zZAPdmu0u+fpnzZd+b5mtv2fNl7i0wDIdAdwH7\ngYB/f+Lnqqr5irBkCUyZAsuXx9SD0Hzh6xe5duTPF74/M+9NMF9Bnr3C7J3FZD97PrcUZm8pK3G+\n7L3FfIV5Xy8rcW+BYTYEmg3cBMwDdgGPA9fXXXTRIpg9GwYGYPx46Ourr9b27XDPPbBtG/T2wsyZ\nsGVLffUgNF/4+kWuHfnzhe/PzHsTzFeQZ68we2cx2c+ezy2F2VvKSpwve28xX2He18tK3Fve1FV7\nhTOwgxZc0Lp1cbXmzIFTp+LqQWi+8PWLXDvy5wvfn5n3JpivIM9eYfbOYrKfPZ9bCrO3lJU4X/be\nYr7CvK+Xlbi3vGlYfSWQJEmSJEmS6uEQSJIkSZIkqQM4BJIkSZIkSeoADoEkSZIkSZI6gEMgSZIk\nSZKkDuAQSJIkSZIkqQM4BJIkSZIkSeoADoEkSZIkSZI6QFerL6CkU6dOcfLkybB6r732Wmi9V199\nNbTe66+/HlYL4j+fp06dCqsFMDg4GJovst7g4GBovVdffTWkzpuie8tPf/rTsFrQPOv2lnKie3V0\nb3njjTfCakFsvuy9JftZsLeU5XNLOdl7i88tZfmeqH3rtUtvCRkCbdu2LaIM//2//3fGjRsXUgvg\nqquuYvr06WH1fvSjH/H444+H1fvwhz/MF7/4xbB6jzzySGi+hQsX8l//638Nq/foo4+G5hsYGGDU\nqFEhtY4cOcK/+lf/KqQWwPnnn8/GjRu55JJLQupF95YZM2aE9U2Ahx56yN5S0OHDh0PrffGLX+R3\nfud3wur9m3/zb7jmmmtCah05coT58+eH1IL8vSX6uWXjxo3ceuutYfUWLFgQ2jvtLeXrRT63nDx5\nkqGhoZB6x44dC+0tDz74YOheec973hN69v7oj/4otHdG95bf+73f4z//5/8cVu9zn/tc6Huif/kv\n/yXLly8PqxfdW6LfE/0iQoZA1113XUQZvvnNb/Lyyy+H1AK48MILufbaa8Pq/eAHPwitd+TIkbC1\nA3j++edD873wwguh+QYHB0Pzvfrqq2H1nnrqKX72s5/x2muvhdQ7++yz+chHPsKll14aUi+6t1x0\n0UWhe/OZZ56xtxT0wgsvhNY799xzQ/fnBz/4wbD1s7eUFf3c8tWvfjU037hx4+wtBUX3lt7e3tDn\nlsHBQXp6ekLqvfjii6G95cCBA6F75amnngo9e3fddVfq3nLJJZeE5rvyyitD85133nmpe0v0c8sv\nwu8JJEmSJEmS1AEcAkmSJEmSJHUAh0CSJEmSJEkdwCGQJEmSJElSB3AIJEmSJEmS1AEcAkmSJEmS\nJHUAh0CSJEmSJEkdYPgNgZYuhdGjYcaM2kuNAx4C9gF7gS/UXpHQfBw5AvPmwdSpMH063HlnvfUi\ns4H5SgvOF37+7C3lJN+b2fNlPnuQO1/23pJ57QB7S2muXznR2cDeUpD5Csuej+E4BFq8GLZuDSk1\nBNwCTAOuBpYBk+ouGpiPri5YsQL6+2HnTli1Cg4erK9eZDYwX2nB+cLPn72lnOR7M3u+zGcPcufL\n3lsyrx1gbynN9SsnOhvYWwoyX2HZ8zEch0Bz50J3d0ipY8ATpz8eBA7QnMTVKjAfY8ZAT0/z4xEj\nYPJkOHq0vnqR2cB8pQXnCz9/9pZyku/N7Pkynz3InS97b8m8doC9pTTXr5zobGBvKch8hWXPx3Ac\nArXIBKAHeKzVF1KXw4dhzx6YNavVV1IP87W1zOcvczYg/d7Mni/7/sycL3M2yJ/P3tLmMq9f5mzk\n35vma29R+RwCARcA9wHLaU7f0jl5EhYuhJUrm9P9bMzX1jKfv8zZgPR7M3u+7Pszc77M2SB/PntL\nm8u8fpmzkX9vmq+9Rebr+CHQ2TQ/2WuAB1p8LbUYGmo285tvhgULWn015ZmvrWU+f5mzAen3ZvZ8\n2fdn5nyZs0H+fPaWNpd5/TJnI//eNF97i843PIdAVdV8BbgL2A8EfA/8nwvMx5IlMGUKLF8eUy8y\nG5ivtOB84efP3lJO8r2ZPV/mswe582XvLZnXDrC3lOb6lROdDewtBZmvsOT5ht8QaNEimD0bBgZg\n/Hjo66ut1GzgJmAesAt4HLi+tmqnBeZj+3a45x7Ytg16e2HmTNiypb56kdnAfKUF5ws/f/aWcpLv\nzez5Mp89yJ0ve2/JvHaAvaU016+c6GxgbynIfIVlzwd01fz7n7l168JK7aAFn4DAfMyZA6dOxdWL\nzAbmKy04X/j5s7eUk3xvZs+X+exB7nzZe0vmtQPsLaW5fuVEZwN7S0HmKyx7PobjVwJJkiRJkiSp\nOIdAkiRJkiRJHcAhkCRJkiRJUgdwCCRJkiRJktQBHAJJkiRJkiR1AIdAkiRJkiRJHcAhkCRJkiRJ\nUgdwCCRJkiRJktQBHAJJkiRJkiR1gK6IIt/+9rcjynD48OGQOm966aWXwrIBfP/73w+t99RTT4XW\nO3ToUGi9gwcPhtbr7+/nkksuCav3xBNPMGLEiJBaP/zhDzl16lRILYDXX3+dnTt3hn0+7S1l2VvK\neuWVV8JqAezdu5eLL744pJa9pazo3vLss8+G1QL40Y9+ZG8pKHtvGRwc5OTJkyH19u3bxznnnBPW\nW/7mb/4mdK9E18veW1566aWwWhC/ftl7S/Rzyy8iZAh0+eWXR5RhypQp/OAHPwipBXDvvfeGZQPo\n7u5OXW/kyJGh9e6++25uv/32sHr/7b/9t9B8//E//kd+8pOfhNXbtGkT06ZNC6m1YcMGfuu3fiuk\nFsCVV15pb2njep3QW/7JP/knYfW2bdsW9vl8/fXXuf/++5k6dWpIvey95fbbb+eaa64Jq/fP/tk/\nC83327/926H5br/9dntLQT09PXzpS18Kq7dp06aw9XvPe97DuHHj6O7uDqmX/b5+ww03sHr16rB6\nf/EXfxGa73Of+1zo2du6dWtovj/8wz/kYx/7WFi9zM8tW7Zs4fOf//wZ/7qQIdAVV1wRUYaRI0eG\n1WpFvUsvvTS03qhRo0Lrvec97wmtd8EFF4TVArjssstC851zzjlhtaA57I3KN3r06JA6b+rq6rK3\nFGRvKSu6t4wdOzas3uuvv87g4KC9pZCoN6BvuuCCC0LzRf1J75u6u7vtLQVlf24ZP348l156aUg9\n3xOVlf25Jbre6NGjfW4p5Bd9bvF7AkmSJEmSJHUAh0CSJEmSJEkdwCGQJEmSJElSB3AIJEmSJEmS\n1AEcAkmSJEmSJHUAh0CSJEmSJEkdwCGQJEmSJElSBxheQ6AjR2DePJg6FaZPhzvvrL/m0qUwejTM\nmFF/LfOVFZkNGAc8BOwD9gJfqLug+YoJzwa5zx7kzufZKyvx+mXvLeYrzN5SVOp83tfLy5zP+3pZ\n2fMx3IZAXV2wYgX098POnbBqFRw8WG/NxYth69Z6a7zJfGVFZgOGgFuAacDVwDJgUp0FzVdMeDbI\nffYgdz7PXlmJ1y97bzFfYfaWolLn875eXuZ83tfLyp6P4TYEGjMGenqaH48YAZMnw9Gj9dacOxe6\nu+ut8SbzlRWZDTgGPHH640HgAM0/haqN+YoJzwa5zx7kzufZKyvx+mXvLeYrzN5SVOp83tfLy5zP\n+3pZ2fMx3IZAb3X4MOzZA7NmtfpK6mG+tjYB6AEea/WF1CRzvszZgPRnL3s+92f7yr525mtv5mtj\nifsmYL52Z762NDyHQCdPwsKFsHJlc/qWjfna2gXAfcBymn/ylE3mfJmzAenPXvZ87s/2lX3tzNfe\nzNfGEvdNwHztznxta/gNgYaGmp/sm2+GBQtafTXlma+tnU3zQWMN8ECLr6UOmfNlzgakP3vZ87k/\n21f2tTNfezNfG0vcNwHztTvztbXhNwRasgSmTIHly+NqVlXzFcF8ZUVmA+4C9gMB/4ZBk/mKCc8G\nuc8e5M7n2Ssr8fpl7y3mK8zeUlTqfN7Xy8ucz/t6WcnzDa8h0PbtcM89sG0b9PbCzJmwZUu9NRct\ngtmzYWAAxo+Hvr76apmvrMhswGzgJmAesAt4HLi+zoLmKyY8G+Q+e5A7n2evrMTrl723mK8we0tR\nqfN5Xy8vcz7v62Vlzwd01V7hTMyZA6dOxdZcty6ulvnKiswG7CD4wJivmPBskPvsQe58nr2yEq9f\n9t5ivsLsLUWlzud9vbzM+byvl5U9H8PtK4EkSZIkSZJUC4dAkiRJkiRJHcAhkCRJkiRJUgdwCCRJ\nkiRJktQBHAJJkiRJkiR1AIdAkiRJkiRJHcAhkCRJkiRJUgdwCCRJkiRJktQBHAJJkiRJkiR1gK6I\nIl/72tciyvCd73yHEydOhNQCePLJJ2k0GmH1du7cybFjx8Lqff/73+e1114Lq/foo4/ygx/8IKze\nz372M973vveF1XvggQd4+umnw+pdeOGFXHjhhSG1hoaGuO+++3j88cdD6n33u99l/PjxnH322SH1\nzjrrLP7kT/4kpBbYW0rL3lv+6q/+ipdffjms3r59+zh69GhIreeee47BwUF7SyFPPvlk6N7827/9\n29B8P/rRj0LzPfroo6H5fG4pJ/q55YknnuDw4cNcdNFFIfUef/zxsPdfALt27Qqtt3v3bk6dOhVW\nb+/evaHPLfv27Qt9T9vf38+Pf/zjsHo7duygv78/rN7Ro0dDn1v+9m//lgkTJoTUe/LJJ3+hX9eo\nqqrwpfwfBRqN6qc//WmtNd50++23c8cdd4TUArj++ut54IEHwup99rOf5X/8j/8RVu+LX/wiX/nK\nV8LqffzjH+eRRx4Jq/enf/qnLFmyJKzelVdeGfpG9P7772f+/PkhtZ566ileeeUVrrrqqpB6X//6\n17nmmmu49NJLQ+rZW8qyt5T14IMP8pu/+Zth9bZu3cr1118fUsveUpa9pazsvcXnlnKie8uf/umf\n8vnPfz6kFjT/wH/p0qVh9e6++24++9nPhtX78z//c/7Fv/gXYfXuu+8+Fi5cGFbv/vvv51Of+lRY\nvey95UMf+lDY0LC7u5sf//jHVFV1Rn96HPKVQOeee25EGc4555yQOm86++yzw7IBdHWFLNf/Fp3v\nrLNi/3ZiV1dX6nznnHNOWL5zzz2X119/PfSsn3vuufaWQuwtZUX3lsizAPaW0vUi2VvKyt5bfG4p\npxW9Jet9oRX1os9edL3oz2f23tIO/J5AkiRJkiRJHcAhkCRJkiRJUgdwCCRJkiRJktQBHAJJkiRJ\nkiR1AIdAkiRJkiRJHcAhkCRJkiRJUgdwCCRJkiRJktQBht8QaOlSGD0aZsyovdQ44CFgH7AX+ELt\nFcmdLzAbmK+44HwcOQLz5sHUqTB9Otx5Z731Mp89yJ3Ps1dW4rMHpM5nbynM3lJU9nyZe0t4Nsid\nz71ZVPbe0op7+/AbAi1eDFu3hpQaAm4BpgFXA8uASXUXzZwvMBuYr7jgfHR1wYoV0N8PO3fCqlVw\n8GB99TKfPcidz7NXVuKzB6TOZ28pzN5SVPZ8mXtLeDbInc+9WVT23tKKe/vwGwLNnQvd3SGljgFP\nnP54EDhAcxJXq8z5ArOB+YoLzseYMdDT0/x4xAiYPBmOHq2vXuazB7nzefbKSnz2gNT57C2F2VuK\nyp4vc28Jzwa587k3i8reW1pxbx9+Q6AWmQD0AI+1+kJqYr72lj0fhw/Dnj0wa1arr6S47GtnvjaX\n+OwBqfNl35vma2/Z82XuLamzgfnaXPbeEpXPIRBwAXAfsJzm9C0b87W37Pk4eRIWLoSVK5t/epFI\n9rUzX5tLfPaA1Pmy703ztbfs+TL3ltTZwHxtLntviczX8UOgs2l+stcAD7T4WupgvvaWPR9DQ82b\n1c03w4IFrb6aorKvnfnaXOKzB6TOl31vmq+9Zc+Xubekzgbma3PZe0t0vuE5BKqq5ivAXcB+IOB7\n4P9c5nyB2cB8xQXnY8kSmDIFli+PqZf57EHufJ69shKfPSB1PntLYfaWorLny9xbwrNB7nzuzaKy\n95bofMNvCLRoEcyeDQMDMH489PXVVmo2cBMwD9gFPA5cX1u10zLnC8wG5isuOB/bt8M998C2bdDb\nCzNnwpYt9dXLfPYgdz7PXlmJzx6QOp+9pTB7S1HZ82XuLeHZIHc+92ZR2XtLK+7tXTX//mdu3bqw\nUjtowScgc77AbGC+4oLzMWcOnDoVVy/z2YPc+Tx7ZSU+e0DqfPaWwuwtRWXPl7m3hGeD3Pncm0Vl\n7y2tuLcPv68EkiRJkiRJUnEOgSRJkiRJkjqAQyBJkiRJkqQO4BBIkiRJkiSpAzgEkiRJkiRJ6gBv\nOwRqNBqXNxqNbY1Go7/RaDzZaDR+9/SPdzcajf/ZaDQONRqNrY1G4+L6L1eSJEmSJEm/iHfylUBD\nwC1VVU0FrgaWNRqNK4FbgW9VVTUJ2AbcVt9lSpIkSZIk6ZfxtkOgqqqerapqz+mPTwIHgMuBBcDd\np/+3u4Eb67pISZIkSZIk/XLO6HsCNRqNK4Ae4FFgdFVVx6A5KAIuK31xkiRJkiRJKqNRVdU7+x8b\njRHA/wL+sKqqv2g0Gi9WVTXyLT//QlVVl/49v676vd/7vVLX+//re9/7Hm+88UZILYBzzjmH3t7e\nsHrf/e53eafrVcLEiROZPXt2WL2vf/3rnDhxIqzeqFGj+NVf/dWwet/+9rc599xzw+qNHDmS97//\n/SG1XnzxRd773vdyxRVXhNTr7+/n1Vdf5cILLwypZ28p65JLLuEDH/hAWL3vfOc7YbUgvrf89Kc/\nZcaMGWH1Dhw4wOTJk0NqHT9+nMHBQSZMmBBS78CBA4wbN46LLroopN5f/dVf8cMf/jCkFuTvLT63\nlBX93NLb28u0adNCamXvLbt27WLmzJkhtQD27t0beh/av38/U6ZMCat38OBBrrzyyrB6hw4dYtKk\nSWH1BgYGQp/L1q5dG3pviH5P1N/fz3nnnRdS72c/+9mb99rGGf3Cqqre9gV0AVuA5W/5sQM0vxoI\nYAxw4B/4tVXUa9q0aVWkZcuWhWUDqiVLloTmW7t2bWi99evXh9br7e0NXb977703NN+oUaNC8+3e\nvTss25o1a0Kz2VvK+uQnPxma74477gjNl723bN68OazWwMBAaG/ZuHFjdfz48bB6q1atCqtVVfl7\ni88t9pZ3yt5S1urVq0Pr9fX1hdbL3ls2bNgQWm/Tpk2h9bK9J3r44YerL3/5y9WXv/zl6lOf+lQF\nVNU7mOm89dXFO3MXsL+qqpVv+bEHgN8G/gT4LPAX7/D3kiRJkiRJ0hn46Ec/ykc/+lGg+VVV999/\n/xn/Hm87BGo0GnOAm4AnG43GbpoTri/RHP7c22g0lgDPAJ8+4+qSJEmSJEkK8bZDoKqqtgNn/wM/\n/fGylyNJkiRJkqQ6nNG/DiZJkiRJkqT25BBIkiRJkiSpAzgEkiRJkiRJ6gAOgSRJkiRJkjqAQyBJ\nkiRJkqQOMKyGQOOAh4B9wF7gCxFFly6F0aNhxozaS2XPx5EjMG8eTJ0K06fDnXfWWy8yGy1YP/MV\nk/3sma8wz15Zme8N0dkg99mD3Otnbykr8/ol7y3mK8yzV1T63skwGwINAbcA04CrgWXApLqLLl4M\nW7fWXQXIn4+uLlixAvr7YedOWLUKDh6sr15kNlqwfuYrJvvZM19hnr2yMt8borNB7rMHudfP3lJW\n5vVL3lvMV5hnr6j0vZNhNgQ6Bjxx+uNB4ADNSVyt5s6F7u66qwD58zFmDPT0ND8eMQImT4ajR+ur\nF5mNFqyf+YrJfvbMV5hnr6zM94bobJD77EHu9bO3lJV5/ZL3FvMV5tkrKn3vZJgNgd5qAtADPNbq\nC6lJ9nwcPgx79sCsWa2+klpkX7/M+TJnA/O1u+z5Ut8bMmfDvdnuXL82ljkbmK/dJc+XtXcOyyHQ\nBcB9wHKa07dssufj5ElYuBBWrmxOh5PJvn6Z82XOBuZrd9nzpb43ZM6Ge7PduX5tLHM2MF+7S54v\nc+8cdkOgs2l+stcAD7T4WuqQPR9DQ81mcPPNsGBBq6+muOzrlzlf5mxgvnaXPV/qe0PmbLg3253r\n18YyZwPztbvk+bL3zmE3BLoL2A8EfI/4n6uq5itA9nwsWQJTpsDy5TH1IrPRgvUzXzHZz575CvPs\nlZX53hCdDXKfPci9fvaWsjKvX/LeYr7CPHtFZe+dw2oINBu4CZgH7AIeB66vu+iiRTB7NgwMwPjx\n0NdXW6ns+di+He65B7Ztg95emDkTtmypr15kNlqwfuYrJvvZM19hnr2yMt8borNB7rMHudfP3lJW\n5vVL3lvMV5hnr6j0vRPoqr3CGdhBCy5o3bqwUtnzMWcOnDoVVy8yGy1YP/MVk/3sma8wz15Zme8N\n0dkg99mD3Otnbykr8/ol7y3mK8yzV1T63skw+0ogSZIkSZIk1cMhkCRJkiRJUgdwCCRJkiRJktQB\nHAJJkiRJkiR1AIdAkiRJkiRJHcAhkCRJkiRJUgdwCCRJkiRJktQBHAJJkiRJkiR1AIdAkiRJkiRJ\nHaBRVVW9BRqN6tOf/nStNd706quvcuONN4bUAnjkkUd45ZVXwuq9/PLLjBs3Lqze0NAQH/nIR8Lq\nbdmyhYsuuiis3jPPPMPIkSPD6o0dO5bp06eH1bvvvvu48MILQ2q99tprXHXVVVxxxRUh9fr7+3n6\n6ac599xzQ+q98MILYdkAnnrqKcaMGRNWL7q3HD58mEsvvTSs3okTJxg7dmxYvey95cCBA0yePDmk\n1osvvsi2bdvC1u+HP/wh8+fPD7sXbd++nUajEVIL8vcWn1vKyt5bTpw4wYQJE0LqHTx4kLFjx6bt\nLc8//zwLFiwIq/fwww9z3nnnhdWL7i2HDh1i0qRJaett3Lgx9F4U2Ttb8Z5oxYoVVFV1Zge+qqpa\nX80SMVatWhVWq6qqavXq1aH1PvOZz1RA2OvWW28NzXfttdeG5otev02bNoXW27x5c1itgYGBavfu\n3WH1Nm7cWB0/fjys3m233Ra6N+fPnx+WrarsLfaWMxPdW84///ywtevu7ra3FGRvsbecCZ9byrG3\ntHdvWb9+fWi9DRs2hNabOHFi6Po9+OCDYdla0VuAqjrDGY1/HUySJEmSJKkDOASSJEmSJEnqAA6B\nJEmSJEmSOoBDIEmSJEmSpA7gEEiSJEmSJKkDOASSJEmSJEnqAA6BJEmSJEmSOoBDIEmSJEmSpA4w\n/Il1GCwAACAASURBVIZAS5fC6NEwY0b9tY4cgXnzYOpUmD4d7ryz/pqB+cYBDwH7gL3AF+ouGLl2\n5M8Xvj/NV0z43oTc+ewtZSU+e5B7/ewthbk3y0reWzLns7cU5t4syvUrb/gNgRYvhq1bY2p1dcGK\nFdDfDzt3wqpVcPBgvTUD8w0BtwDTgKuBZcCkOgtGrh3584XvT/MVE743IXc+e0tZic8e5F4/e0th\n7s2ykveWzPnsLYW5N4ty/cobfkOguXOhuzum1pgx0NPT/HjECJg8GY4erbdmYL5jwBOnPx4EDtCc\npNYmcu3Iny98f5qvmPC9Cbnz2VvKSnz2IPf62VsKc2+Wlby3ZM5nbynMvVmU61fe8BsCtcrhw7Bn\nD8ya1eorqcUEoAd4rNUXUpPs+bLvz8z5su9N87W5xGcPcq9f5mxgvraXvLdkzpd9b2bPl3lvgutX\nikMggJMnYeFCWLmyOX1L5gLgPmA5zelpNtnzZd+fmfNl35vma3OJzx7kXr/M2cB8bS95b8mcL/ve\nzJ4v894E168kh0BDQ81P9s03w4IFrb6a4s6meVjWAA+0+FrqkD1f9v2ZOV/2vWm+Npf47EHu9cuc\nDczX9pL3lsz5su/N7Pky701w/UobnkOgqmq+IixZAlOmwPLlMfUgNN9dwH4g4N89a4pcO/LnC9+f\n5ismfG9C7nz2lrISnz3IvX72lsLcm2Ul7y2Z89lbCnNvFuX6lTX8hkCLFsHs2TAwAOPHQ19ffbW2\nb4d77oFt26C3F2bOhC1b6qsHoflmAzcB84BdwOPA9bVVI3btyJ8vfH+ar5jwvQm589lbykp89iD3\n+tlbCnNvlpW8t2TOZ28pzL1ZlOtXXletv/svYt26uFpz5sCpU3H1IDTfDoIXOHLtyJ8vfH+ar5jw\nvQm589lbykp89iD3+tlbCnNvlpW8t2TOZ28pzL1ZlOtX3vD7SiBJkiRJkiQV5xBIkiRJkiSpAzgE\nkiRJkiRJ6gAOgSRJkiRJkjqAQyBJkiRJkqQO4BBIkiRJkiSpAzgEkiRJkiRJ6gAOgSRJkiRJkjqA\nQyBJkiRJkqQO0Kiqqt4CjUb1T//pP621xpuef/55Fi9eHFIL4OGHH2ZwcDCs3ksvvcSVV14ZVq+q\nKj784Q+H1fvrv/5r3v3ud4fV279/PyNHjgyrN3bsWGbOnBlW78CBA0yePDmk1gsvvMDJkyeZMGFC\nSL19+/axb98+RowYEVLvyJEjfOhDHwqpBfD000+HngV7S1nnnXce06dPD6t36NAhJk2aFFYvurfs\n3r2bSy65JKze1VdfzUUXXRRS7zvf+Q5nnRX353H2lrLsLWV99atfZcyYMSG1Xn75Za6++mre9773\nhdQ7dOgQ733ve9P2lhMnTnDdddeF1du5cyfnnHNOWL3o3hJ99gYGBvjABz4QVu+b3/wm3d3dYfV2\n7drF2LFjQ2q1orf88R//MVVVNc7oF1ZVVesLqKJe06ZNqyItW7YsLBtQLVmyJDTf2rVrQ+utX78+\ntF5vb2/o+t17772h+TZv3hxWa2BgoNq9e3dYvTVr1oSunb2lrOy9ZcOGDaH1Nm3aFFovc2/ZuHFj\ndfz48bB6q1atCqtVVfaW0uwtZY0aNSp0f9pbylm9enVovb6+vtB69pay7C3lbNy4sQKq6gxnNP51\nMEmSJEmSpA7gEEiSJEmSJKkDOASSJEmSJEnqAA6BJEmSJEmSOoBDIEmSJEmSpA7gEEiSJEmSJKkD\nOASSJEmSJEnqAP8ve/cfpXV95vf/eeuYmIA/RklAiKghjeHHkIFoiEA0YTerpZuQfsvZdP1xssDm\n7Gn5Wk7td3t07be76Wa3TeuhwbNztg0bp1ZkqxXciF3hG8XuEsCfgDiDOKaGmKERxd+DmnXw8/3j\nxo2n3T0J9v255r6v+/k45z5nVgPX/eJ6v6/7M9cCugSSJEmSJEnqAC21BJoC3AcMAHuBqyOKrlgB\nEyfC7Nm1l8qej+FhWLQIZs6Enh648cZ660VmYwz6F5wvc/+y373s+TKfTcB8pWU+m+BsKSnz2YT0\n+VI/lyWfLeYrzNlSVOrZckxLLYFGgWuAWcBFwErg/LqLLlsGW7bUXQXIn4+uLli9GgYHYedO6OuD\n/fvrqxeZjTHoX3C+zP3Lfvey58t8NgHzlZb5bIKzpaTMZxPS50v9XJZ8tpivMGdLUalnyzEttQQ6\nBDx27OsjwBM0N3G1WrgQurvrrgLkz8ekSdDb2/x6/HiYPh0OHqyvXmQ2xqB/wfky9y/73cueL/PZ\nBMxXWuazCc6WkjKfTUifL/VzWfLZYr7CnC1FpZ4tx7TUEujdzgF6gQfH+o3UJHs+DhyAPXtg3ryx\nfie1sH/tK3vvsufLfDYB87WzzNlwtrS95PlSn8/kvTNfm0ueL+tsackl0DjgDmAVze1bNtnzMTIC\nS5fCmjXN7XAy9q99Ze9d9nyZzyZgvnaWORvOlraXPF/q85m8d+Zrc8nzZZ4tLbcEOpHmL/YtwF1j\n/F7qkD0fo6PNYXDVVbBkyVi/m+LsX/vK3rvs+TKfTcB87SxzNpwtbS95vtTnM3nvzNfmkudLPVto\nwSXQTcA+IODviP+Zqmq+AmTPx/LlMGMGrFoVUy8yG2PQv+B8mfuX/e5lz5f5bALmKy3z2QRnS0mZ\nzyakz5f6uSz5bDFfYc6WolLPFlpsCTQfuAJYBOwCHgUurbvo5ZfD/PkwNARTp0J/f22lsudj+3a4\n9VbYuhXmzIG5c2Hz5vrqRWZjDPoXnC9z/7Lfvez5Mp9NwHylZT6b4GwpKfPZhPT5Uj+XJZ8t5ivM\n2VJU6tlyTFftFY7DDsbgDa1fH1Yqez4WLICjR+PqRWZjDPoXnC9z/7Lfvez5Mp9NwHylZT6b4Gwp\nKfPZhPT5Uj+XJZ8t5ivM2VJU6tlyTEv9TiBJkiRJkiTVwyWQJEmSJElSB3AJJEmSJEmS1AFcAkmS\nJEmSJHUAl0CSJEmSJEkdwCWQJEmSJElSB3AJJEmSJEmS1AFcAkmSJEmSJHUAl0CSJEmSJEkdoFFV\nVb0FGo3q93//92ut8Y7du3dz5MiRkFoAP/3pT/mlX/qlsHo7duzg7bffDqv34Q9/mMWLF4fVGxwc\nZObMmWH1tm3bxllnnRVW7+677+b0008Pq/fJT36SOXPmhNQ6fPgwIyMjnHvuuSH1BgYGOHr0KOPG\njQupl322PPfcc8yfPz+s3sDAALNmzQqrFz1b9u3bx4wZM8Lq/dEf/RHjx48Pq5d5tgwODvKRj3yE\n0047LaTevffey/DwcEgtcLaU5mwp66yzzmLatGkhtV555RXuv/9+JkyYEFLvhRde4Dd/8zfDZssj\njzzCBRdcEFILYM+ePfT29obVe/zxx+np6Qmr52xp73r3338/Z599dkitV155hTPOOIPzzjsvpN7g\n4CDf+MY3qKqqcVw/sKqqWl/NEjGuu+66Cgh7LV68OCxbVVXVlVdeGZrv2muvDc132223hdbbsGFD\naL1p06aF9u/uu+8OyzY0NFTt3r07rN7GjRurw4cPh9XLPlv6+/tD661bty60nrPF2fKLcraU5Wwp\ny9lSztDQUHXyySeHZevu7g6dLX19fWG1qqqq1q5dG1rP2VJW9GzZtGlTaL177rknrNZYPLcAVXWc\nOxr/OJgkSZIkSVIHcAkkSZIkSZLUAVwCSZIkSZIkdQCXQJIkSZIkSR3AJZAkSZIkSVIHcAkkSZIk\nSZLUAVwCSZIkSZIkdQCXQJIkSZIkSR2g9ZZAK1bAxIkwe3btpaYA9wEDwF7g6torkjtfYDYAhodh\n0SKYORN6euDGG+utF5zP/hWW+e5BbP8S9w5In8/ZUpizpZzEvQPS58s+W1Lniz6bkDufs6Us8xXX\nekugZctgy5aQUqPANcAs4CJgJXB+3UUz5wvMBkBXF6xeDYODsHMn9PXB/v311QvOZ/8Ky3z3ILZ/\niXsHpM/nbCnM2VJO4t4B6fNlny2p80WfTcidz9lSlvmKa70l0MKF0N0dUuoQ8Nixr48AT9Dc8tcq\nc77AbABMmgS9vc2vx4+H6dPh4MH66gXns3+FZb57ENu/xL0D0udzthTmbCknce+A9Pmyz5bU+aLP\nJuTO52wpy3zFtd4SaIycA/QCD471G6lJ9nwcOAB79sC8eWP9Tmph/9qXvWtzyfN5PtuXvWtzyfNl\nP5+p8yU/m+Zrc+YrwiUQMA64A1hFc7OfTfZ8jIzA0qWwZk1ze5qM/Wtf9q7NJc/n+Wxf9q7NJc+X\n/Xymzpf8bJqvzZmvmI5fAp1Ic5DfAtw1xu+lDtnzMTravCxXXQVLloz1uynO/rUve9fmkufzfLYv\ne9fmkufLfj5T50t+Ns3X5sxXVGsugaqq+QpwE7APCPg78H8mc77AbAAsXw4zZsCqVTH1gvPZv8Iy\n3z2I7V/i3gHp8zlbCnO2lJO4d0D6fNlnS+p80WcTcudztpRlvqJabwl0+eUwfz4MDcHUqdDfX1up\n+cAVwCJgF/AocGlt1Y7JnC8wGwDbt8Ott8LWrTBnDsydC5s311cvOJ/9Kyzz3YPY/iXuHZA+n7Ol\nMGdLOYl7B6TPl322pM4XfTYhdz5nS1nmK66r1p/9vVi/PqzUDsbgFyBzvsBsACxYAEePxtULzmf/\nCst89yC2f4l7B6TP52wpzNlSTuLeAenzZZ8tqfNFn03Inc/ZUpb5imu93wkkSZIkSZKk4lwCSZIk\nSZIkdQCXQJIkSZIkSR3AJZAkSZIkSVIHcAkkSZIkSZLUAVwCSZIkSZIkdQCXQJIkSZIkSR3AJZAk\nSZIkSVIHcAkkSZIkSZLUARpVVdVboNGo/ut//a+11njHjh07mDZtWkgtgKGhIT772c+G1XvwwQc5\n99xzw+pt3LiR119/PaxeT08Pv/IrvxJW71vf+hZHjx4Nqzd79mxmz54dVu/QoUNh9Z5//nlGRkY4\n77zzQuoNDAxw9tlnc9ppp4XUi54t9957L88++2xYvcmTJ/Prv/7rYfX6+/t58cUXw+o5W8rq6+sL\nu3uvv/46V1xxBR/96EdD6mWfLdHPLXv27KG3tzes3t69e0PvwuOPP05PT09YveyzJfq5ZXh4mMmT\nJ4fU+8EPfsCsWbPCZstDDz3Epz/96ZBaAHfeeSdPP/10WL3o55bss2VgYIBZs2aF1YvOF1lvLL4n\n+vrXv05VVY3j+oFVVdX6apaI0dfXF1arqqpq7dq1ofX6+/tD633pS1+qgLDXDTfcEJpvzpw5oflu\nv/320Hz33HNPWK2hoaFq9+7dYfU2btxYHT58OKxe9GxZuXJl6Nlcvnx5aD5nS3vPlgkTJoTmc7aU\nk/25Zd26daH1brvtttB62WeLzy3l+NxSVvbZsmHDhtB6mzZtCq2XfbYAVXWcOxr/OJgkSZIkSVIH\ncAkkSZIkSZLUAVwCSZIkSZIkdQCXQJIkSZIkSR3AJZAkSZIkSVIHcAkkSZIkSZLUAVwCSZIkSZIk\ndQCXQJIkSZIkSR2gtZZAw8OwaBHMnAk9PXDjjfXXXLECJk6E2bPrr5U83xTgPmAA2AtcXXfByN6R\nP1/4+fTuFRN+NiF3PmdLUanzJZ8t5ivMu1dW5v4lv3vZn1tSn00wX2nR+Wi1JVBXF6xeDYODsHMn\n9PXB/v311ly2DLZsqbfGO5LnGwWuAWYBFwErgfPrLBjZO/LnCz+f3r1iws8m5M7nbCkqdb7ks8V8\nhXn3ysrcv+R3L/tzS+qzCeYrLTofrbYEmjQJenubX48fD9Onw8GD9dZcuBC6u+ut8Y7k+Q4Bjx37\n+gjwBM1Nf20ie0f+fOHn07tXTPjZhNz5nC1Fpc6XfLaYrzDvXlmZ+5f87mV/bkl9NsF8pUXno9WW\nQO924ADs2QPz5o31O6lH8nznAL3Ag2P9RmqSPV/q85k5G/nPpvnaW+p8yWeL+dpb6rsHufuXORue\nzbZnvrbUmkugkRFYuhTWrGlu37JJnm8ccAewiuZ2P5vs+VKfz8zZyH82zdfeUudLPlvM195S3z3I\n3b/M2fBstj3zta3WWwKNjjZ/sa+6CpYsGet3U17yfCfSHOa3AHeN8XupQ/Z8qc9n5mzkP5vma2+p\n8yWfLeZrb6nvHuTuX+ZseDbbnvnaWustgZYvhxkzYNWquJpV1XxFSJ7vJmAfEPDfMGiK7B3584Wf\nT+9eMeFnE3Lnc7YUlTpf8tlivsK8e2Vl7l/yu5f9uSX12QTzlRacr7WWQNu3w623wtatMGcOzJ0L\nmzfXW/Pyy2H+fBgagqlTob+/vlrJ880HrgAWAbuAR4FLa6tGbO/Iny/8fHr3igk/m5A7n7OlqNT5\nks8W8xXm3Ssrc/+S373szy2pzyaYr7TofEBX7RWOx4IFcPRobM316+NqJc+3g+ADFdk78ucLP5/e\nvWLCzybkzudsKSp1vuSzxXyFeffKyty/5Hcv+3NL6rMJ5istOh+t9juBJEmSJEmSVAuXQJIkSZIk\nSR3AJZAkSZIkSVIHcAkkSZIkSZLUAVwCSZIkSZIkdYCfuwRqNBofaTQaWxuNxmCj0Xi80Whcfeyf\n/26j0RhuNBq7jr0uq//tSpIkSZIk6b34Rf7rfKPANVVV7Wk0GuOBRxuNxveO/bvVVVWtru/tSZIk\nSZIkqYSfuwSqqupZ4NljX480Go0ngCnH/nWjxvcmSZIkSZKkQo7r7wRqNBrnAr3Ag8f+0f/daDT2\nNBqNP2k0GqcVfm+SJEmSJEkqpFFV1S/2P2z+UbD/Dvx+VVXfbTQaHwIOV1VVNRqNbwBnVVW14m/4\ncdVXvvKVv/6/Z82aRU9PT5E3/7/atm0bn/3sZ2v5uf8mDzzwAJ/5zGfC6j388MNceOGFYfV27tzJ\nrFmzwur19fXx6quvhtW7+OKLWbBgQVi9p556irlz54bV2717N3PmzAmp9dxzz/GHf/iHfPCDHwyp\n91d/9Vf8y3/5Lzn11FND6t155508/PDDIbUAJkyYwNe+9rWwenv37g29C9Gz5cknn+SCCy4Iq/fA\nAw8wc+bMsHp/8Ad/wAknxP13Hi677LKw2XL48GHefvttpk2bFlJv9+7dTJs2Le1smThxIqtWrQqr\nF/3csmvXrrSfsxA/W3xuKSf6uSX6e6Lvf//7fPKTnwyrt27dOn784x+H1Zs7dy5Lly4Nq/fv/t2/\n46WXXgqr94UvfIHPf/7zYfV+53d+J6wWwJe//GU+/elPh9SKmC1HjhzhyJEjABw9epSXXnqJqqqO\n709oVVX1c180/9jYZmDV3/LvzwH2/i3/rorS19cXVquqqmrt2rWh9fr7+0PrrVu3LrTeJZdcUgFh\nr+j+bdq0KbTePffcE1ZraGioOvnkk8N6193dXR0+fDgs33XXXRd6NhcvXhyWraryz5bbbrsttN6G\nDRtC602bNi30fN59991h2YaGhqrdu3eH1du4caOzpSBnS1nRs8XnlvZ9bsn+PdGVV14ZOjuvvfba\n0HzZvyfK/twSPVuAqvoFdjrvfv2i/6/Dm4B9VVWteecfNBqNSe/69/8XMPAL/lySJEmSJEkK9nP/\nYuhGo7EAuAJ4vNFo7Ka5dfod4PJGo9ELvA0cAH6rxvcpSZIkSZKk/wO/yH8dbDtw4t/wrzaXfzuS\nJEmSJEmqQ9zfJClJkiRJkqQx4xJIkiRJkiSpA7gEkiRJkiRJ6gAugSRJkiRJkjqASyBJkiRJkqQO\n0HpLoBUrYOJEmD27/lrDw7BoEcycCT09cOON9dfMnC8yGzAFuA8YAPYCV9ddMDif/SssMF94NnC2\nlJQ8X+a7B6Tun7OlMM9mWcnzpZ6dyb8nSt07zFdc9ny04hJo2TLYsiWmVlcXrF4Ng4Owcyf09cH+\n/fXWzJwvMhswClwDzAIuAlYC59dZMDif/SssMF94NnC2lJQ8X+a7B6Tun7OlMM9mWcnzpZ6dyb8n\nSt07zFdc9ny04hJo4ULo7o6pNWkS9PY2vx4/HqZPh4MH662ZOV9kNuAQ8Nixr48AT9DcpNYmOJ/9\nKywwX3g2cLaUlDxf5rsHpO6fs6Uwz2ZZyfOlnp3JvydK3TvMV1z2fLTiEmisHDgAe/bAvHlj/U7q\nkTzfOUAv8OBYv5G62L+2lTkbkP5sZs/n+Wxf9q7Nma+tpb5/9q6tma+9ReVzCQQwMgJLl8KaNc3t\ndzbJ840D7gBW0dyepmP/2lbmbED6s5k9n+ezfdm7Nme+tpb6/tm7tma+9haZzyXQ6Ghz2F11FSxZ\nMtbvprzk+U6keVluAe4a4/dSC/vXtjJnA9Kfzez5PJ/ty961OfO1tdT3z961NfO1t+h8rbkEqqrm\nK8Ly5TBjBqxaFVMPcueLzAbcBOwDAv4bBk3B+exfYYH5wrOBs6Wk5Pky3z0gdf+cLYV5NstKni/1\n7Ez+PVHq3mG+4pLna70l0OWXw/z5MDQEU6dCf399tbZvh1tvha1bYc4cmDsXNm+urx7kzheZDZgP\nXAEsAnYBjwKX1lkwOJ/9KywwX3g2cLaUlDxf5rsHpO6fs6Uwz2ZZyfOlnp3JvydK3TvMV1z2fEBX\nzT//8Vu/Pq7WggVw9GhcPcidLzIbsIPgAxycz/4VFpgvPBs4W0pKni/z3QNS98/ZUphns6zk+VLP\nzuTfE6XuHeYrLns+WvF3AkmSJEmSJKk4l0CSJEmSJEkdwCWQJEmSJElSB3AJJEmSJEmS1AFcAkmS\nJEmSJHUAl0CSJEmSJEkdwCWQJEmSJElSB3AJJEmSJEmS1AFcAkmSJEmSJHWARlVV9RZoNKopU6bU\nWuMd3d3dfPOb3wypBbB27VoefvjhsHqf+tSn+K3f+q2weg888ACf+cxnwurt2LGDCy64IKze7t27\nmTdvXli9Rx55JDRfZL1nn32Wl156iWnTpoXUe+SRR5g5cyannXZaSL17772Xiy++OKQWwE033cSu\nXbvC6kXPln/zb/4NTz/9dFi9L37xi3zxi18Mq/fwww9z4YUXhtV74IEHmDt3bli9lStX0mg0QmqN\njo5y7bXX8vGPfzyk3l/+5V/yn/7Tf6Krqyuk3umnn843vvGNkFoA27Zt45d+6ZfC6m3fvp0FCxaE\n1Yt+bom+6//8n/9zXn755bB6V155Zehnn88t5dx3332hd/0v/uIvuOSSS8Lqbdu2LfQZ/oYbbuDA\ngQNh9S677DJ+9Vd/Naze9ddfzyuvvBJW7x/+w3/IwoULw+o99thjYbM6erZs27aN1atXU1XVcT2Y\nhTzlHDx4MKIM3d3dLF68OKQWwJ//+Z/zZ3/2Z2H1Lr300tB8L730Umi9kZERvvzlL4fVe/vtt0Pz\nRdc74YQTuOyyy0JqPfXUUxw5coTe3t6QelVVcfHFF3PmmWeG1Dtw4EDo2bz33nvZtGlTWL3o2fIf\n/+N/DPtcAPjYxz4Wmu/NN98Mny2RD4tf+9rXOHz4cFi9z33uc2Gz5cUXX+TQoUMhtaD53BI5Ww4f\nPhx6Np977rn0zy2R9f7Fv/gXobPzU5/6lM8thYzFc0tk7/7n//yf4bMlcnb29/ezffv2sHrTp08P\nzfev/tW/Cp0t8+bNC8138sknp50tIyMj7+nH+cfBJEmSJEmSOoBLIEmSJEmSpA7gEkiSJEmSJKkD\nuASSJEmSJEnqAC6BJEmSJEmSOoBLIEmSJEmSpA7gEkiSJEmSJKkDuASSJEmSJEnqAC21BJoC3AcM\nAHuBqyOKrlgBEyfC7Nm1l8qej+FhWLQIZs6Enh648cZ660VmA/OVlvlsgrOloPB83r2iMvcv+93L\nPju9e4U5O8vx7pWX+bPB2VJW5tlyTEstgUaBa4BZwEXASuD8uosuWwZbttRdBcifj64uWL0aBgdh\n507o64P9++urF5kNzFda5rMJzpaCwvN594rK3L/sdy/77PTuFebsLMe7V17mzwZnS1mZZ8sxLbUE\nOgQ8duzrI8ATNDeNtVq4ELq7664C5M/HpEnQ29v8evx4mD4dDh6sr15kNjBfaZnPJjhbCgrP590r\nKnP/st+97LPTu1eYs7Mc7155mT8bnC1lZZ4tx7TUEujdzgF6gQfH+o3UJHs+DhyAPXtg3ryxfif1\nMF/7ypyN/LMlez7PZ/vKnA1Ifzaz5/N8trHM2SB9vux3L3u+rOezJZdA44A7gFU0t4vZZM/HyAgs\nXQpr1jS3p9mYr31lzkb+2ZI9n+ezfWXOBqQ/m9nzeT7bWOZskD5f9ruXPV/m89lyS6ATaR6mW4C7\nxvi91CF7PkZHm5flqqtgyZKxfjflma99Zc5G/tmSPZ/ns31lzgakP5vZ83k+21jmbJA+X/a7lz1f\n9vPZckugm4B9QMDfEf8zVdV8Bciej+XLYcYMWLUqpl5kNjBfaZnPJjhbCgrP590rKnP/st+97LPT\nu1eYs7Mc7155mT8bnC1lZZ4ttNgSaD5wBbAI2AU8Clxad9HLL4f582FoCKZOhf7+2kplz8f27XDr\nrbB1K8yZA3PnwubN9dWLzAbmKy3z2QRnS0Hh+bx7RWXuX/a7l312evcKc3aW490rL/Nng7OlrMyz\n5Ziu2ischx2MwRtavz6sVPZ8LFgAR4/G1YvMBuYrLfPZBGdLQeH5vHtFZe5f9ruXfXZ69wpzdpbj\n3Ssv82eDs6WszLPlmJb6nUCSJEmSJEmqh0sgSZIkSZKkDuASSJIkSZIkqQO4BJIkSZIkSeoALoEk\nSZIkSZI6gEsgSZIkSZKkDuASSJIkSZIkqQO4BJIkSZIkSeoAXWP9Bko6evQoIyMjYfV++tOfhtUC\neOutt0Lzvfnmm6H13njjjdT1jhw5krbekSNHQuu907v3v//9IfWi70L22fLWW2+F1YL8syx6trz9\n9tthtSA23xtvvBFS5x3Rzy3Z70L2fEePHg2rBT63lJT9uSX73cv+3OJsKVurHZ5bQpZAW7dujSjD\nt7/9baZMmRJSC2D27Nlh2QD+4A/+IDTfl7/8ZT72sY+F1XvmmWd49NFHw+odOHAgtN7TTz8dP+k7\nMgAAIABJREFUWm9oaIgJEyaE1BoeHmZkZITR0dGQek8//TTjxo3j9NNPD6n36KOPOlsKWrJkSWi+\nbdu2OVsK+mf/7J9x0UUXhdQaHh5mYGAgbLYcOnSIjRs3hs2W6OeWT37yk/T09ITV+8lPfhJ6NoeH\nh0Pr/ft//+/5J//kn4TV+9rXvsa3vvWtsHoPPPBA6ueWf/yP/3FILYCTTz6Zb3/722mfW7LPlgsv\nvJDf/u3fDqv3T//pP+Xf/tt/G1bP2VJO9PdEhw4dek8/LmQJ9PnPfz6iDN/73vd49dVXQ2oBnHrq\nqWHZAG666abQfJMnT+aSSy4Jq3fo0KHQei+88EJovddeey203htvvBFW76mnnuLIkSP09vaG1Hvx\nxRdZuHAhZ555Zki9LVu2OFsKmjJlSmi+559/3tlS0BtvvBHWv7GYLRdffHHYbIl+bjnllFNCz8oP\nf/jD0HrDw8Oh9U4//fTQ/n3iE58InZ1HjhxJ/dzyV3/1V7z55psh9U488cTUzy2dMFsi756zpazs\n3xO9F/6dQJIkSZIkSR3AJZAkSZIkSVIHcAkkSZIkSZLUAVwCSZIkSZIkdQCXQJIkSZIkSR3AJZAk\nSZIkSVIHcAkkSZIkSZLUAVpvCbRiBUycCLNn115qCnAfMADsBa6uvSK58wVmA2B4GBYtgpkzoacH\nbryx3nrmKytxPmdLYZ7NssxXVua7B7H9S9w7cHYWZ/+KcbYU5tksK3n/wvPRikugZctgy5aQUqPA\nNcAs4CJgJXB+3UUz5wvMBkBXF6xeDYODsHMn9PXB/v311TNfWYnzOVsK82yWZb6yMt89iO1f4t6B\ns7M4+1eMs6Uwz2ZZyfsXno9WXAItXAjd3SGlDgGPHfv6CPAEzU1qrTLnC8wGwKRJ0Nvb/Hr8eJg+\nHQ4erK+e+cpKnM/ZUphnsyzzlZX57kFs/xL3Dpydxdm/YpwthXk2y0rev/B8tOISaIycA/QCD471\nG6lJ9nwcOAB79sC8eWP9TuphvraV/e5lz5f5bALma2PevfZm/9pb5v5lzgZ4Nttd8v5F5XMJBIwD\n7gBW0dyeZpM9HyMjsHQprFnT3J5mY762lf3uZc+X+WwC5mtj3r32Zv/aW+b+Zc4GeDbbXfL+Rebr\n+CXQiTQvyy3AXWP8XuqQPR+jo83LctVVsGTJWL+b8szXtrLfvez5Mp9NwHxtzLvX3uxfe8vcv8zZ\nAM9mu0vev+h8rbkEqqrmK8BNwD6g/r+D+10y5wvMBsDy5TBjBqxaFVPPfGUlzudsKcyzWZb5ysp8\n9yC2f4l7B87O4uxfMc6WwjybZSXvX3S+1lsCXX45zJ8PQ0MwdSr099dWaj5wBbAI2AU8ClxaW7Vj\nMucLzAbA9u1w662wdSvMmQNz58LmzfXVM19ZifM5WwrzbJZlvrIy3z2I7V/i3oGzszj7V4yzpTDP\nZlnJ+xeeD+iq9Wd/L9avDyu1gzH4BcicLzAbAAsWwNGjcfXMV1bifM6WwjybZZmvrMx3D2L7l7h3\n4Owszv4V42wpzLNZVvL+heejFX8nkCRJkiRJkopzCSRJkiRJktQBXAJJkiRJkiR1AJdAkiRJkiRJ\nHcAlkCRJkiRJUgdwCSRJkiRJktQBXAJJkiRJkiR1AJdAkiRJkiRJHcAlkCRJkiRJUgfoiijy/e9/\nP6IMBw4cCKnzjpdffjksG8Czzz4bVgvgJz/5SWi+J598MrTe/v37Q+sNDg5y+umnh9V77LHHGD9+\nfEitZ555hiNHjjAyMhJSb2BggJNOOins19PZUpazpSxnSznOlrJ+8IMfhNZ76qmnQuu9/PLLYbUA\n/sf/+B/OlkKeeeYZjh49GlIL4K233mLnzp3OlkKcLWU5W8oZi+eW9yJkCfTZz342ogyf+MQn+OEP\nfxhSC+D222/nIx/5SFi9yy67jLVr14bV+43f+I2w3gFcf/31ob+eZ555Zmi9CRMmhNb70Ic+FFbv\nrbfe4vXXXw+r96EPfYgpU6bQ3d0dUm/GjBnOloK++93vhuY744wzQuvdfPPNXH/99WH1/uiP/ig0\n37/+1/+aV155Jazepk2bwvJ98IMf5Itf/GJILYh/brn++utDP9e/8pWvhJ7N7u7u0Hpf+9rX+Ht/\n7++F1duyZUvq55axmC2zZs0KqbVhw4bUsyX6uSX6rjtbyvJ7onI+9KEPvacfF7IEitLV1cW5554b\nVu+MM84IrXfmmWeG1jvttNPCakFzwEbm+9CHPhRab+LEiaH1Jk+eHFbvrbfe4siRI2H1Jk6cyNSp\nUznzzDND6kXf9eyzZcKECanv+rhx48JqAXz4wx8OzXfSSSeF1QL4yEc+EjpbIkU/t0Qtzt8xbtw4\nZ0sb14t+bnG2lOP3RGU5W8rye6Jy3uts8e8EkiRJkiRJ6gAugSRJkiRJkjqASyBJkiRJkqQO4BJI\nkiRJkiSpA7gEkiRJkiRJ6gAugSRJkiRJkjqASyBJkiRJkqQO0FJLoCnAfcAAsBe4OqLoihUwcSLM\nnl1/reFhWLQIZs6Enh648cb6awbmC+9fZO8gvn/mKyf53TNfYcF3L/vszJwv+3NL9nzZZ0v2fM6W\nwjLfPcidz9lSVvZ8tNgSaBS4BpgFXASsBM6vu+iyZbBlS91Vmrq6YPVqGByEnTuhrw/276+3ZmC+\n8P5F9g7i+2e+cpLfPfMVFnz3ss/OzPmyP7dkz5d9tmTP52wpLPPdg9z5nC1lZc9Hiy2BDgGPHfv6\nCPAEzU14rRYuhO7uuqs0TZoEvb3Nr8ePh+nT4eDBemsG5gvvX2TvIL5/5isn+d0zX2HBdy/77Myc\nL/tzS/Z82WdL9nzOlsIy3z3Inc/ZUlb2fLTYEujdzgF6gQfH+o3U5cAB2LMH5s0b63dSC/vX5jLn\ny5wNzNfmss/OzPkyZ4P8+bLPluz5Mp/PzNmA9GfTfG0uab6WXAKNA+4AVtHcfqczMgJLl8KaNc3t\nYjL2r81lzpc5G5ivzWWfnZnzZc4G+fNlny3Z82U+n5mzAenPpvnaXOJ8LbcEOpHmsLsFuGuM30st\nRkebh+mqq2DJkrF+N8XZvzaXOV/mbGC+Npd9dmbOlzkb5M+XfbZkz5f5fGbOBqQ/m+Zrc8nztdwS\n6CZgHxDwd8T/TFU1XxGWL4cZM2DVqph6EJovvH+RvYP4/pmvnOR3z3yFBd+97LMzc77szy3Z82Wf\nLdnzOVsKy3z3IHc+Z0tZyfO11BJoPnAFsAjYBTwKXFp30csvh/nzYWgIpk6F/v76am3fDrfeClu3\nwpw5MHcubN5cXz0IzRfev8jeQXz/zFdO8rtnvsKC71722Zk5X/bnluz5ss+W7PmcLYVlvnuQO5+z\npazs+YCu2ischx2MwRtavz6u1oIFcPRoXD0IzRfev8jeQXz/zFdO8rtnvsKC71722Zk5X/bnluz5\nss+W7PmcLYVlvnuQO5+zpazs+Wix3wkkSZIkSZKkergEkiRJkiRJ6gAugSRJkiRJkjqASyBJkiRJ\nkqQO4BJIkiRJkiSpA7gEkiRJkiRJ6gAugSRJkiRJkjqASyBJkiRJkqQO4BJIkiRJkiSpA3RFFDnv\nvPMiynDCCSfwzW9+M6QWwOOPP06j0Qirt3PnTg4dOhRW7yc/+UlY7wAGBgb4zne+E1ZvcHCQl156\nKbReZP8GBgY4ePBgSK3nnnuOH//4x5xzzjkh9R5//HEOHDjAqaeeGlLvoYce4rXXXgupBflnyw9+\n8APefPPNsHoDAwOh/YO4zz2Au+66i6effjqs3imnnMIpp5wSUmt0dJRvf/vbYbPlkUceYerUqZx4\n4okh9U466aTQz70f/ehHoWfz+eefD823d+/e1LMl+rllx44dDA4OhtVztpQTPVt27doVWi/7c8sD\nDzzAD3/4w7B6P/7xj1PPloMHD4Z+T3TkyBEeffTRkHqPPfbYe/pxjaqqCr+V/6VAo1H99Kc/rbXG\nO66//npuuOGGkFoAl156KXfddVdYva9+9av8l//yX8Lq/fZv/zbf+MY3wurdcccdLF26NKzenXfe\nyd//+38/rN7dd9/Nr/7qr4bV27JlC5deemlIraeeeooLLrgg7AOyu7ubwcFBzjzzzJB6zpaynC1l\nfeITnwh9WLzzzjtZvHhxSK3ss+WP//iP+Uf/6B+F1AL4zne+w4oVK8Lq3XzzzXz1q18Nq/enf/qn\n/Pqv/3pYPWdLWc6WcrLPluzPLb/8y7/Mtm3bwur98R//McuXLw+rl322vP7663zyk58Mqfdnf/Zn\nfOUrX6GqquP6/x6H/E6g973vfRFlOOmkk0LqvOPEE08MywbQ1RXSrr82Fvki65100kmh9d73vvel\nzReZ6901nS1lOFvKip4tJ5wQ+ye7nS3lRJ+V7PWi77qzpSxnSzmdcNcjRT+3RN+96FmWfba89dZb\nLf89in8nkCRJkiRJUgdwCSRJkiRJktQBXAJJkiRJkiR1AJdAkiRJkiRJHcAlkCRJkiRJUgdwCSRJ\nkiRJktQBXAJJkiRJkiR1gNZbAq1YARMnwuzZtZeaAtwHDAB7gatrr0jufIHZABgehkWLYOZM6OmB\nG2+st150vuT1Mp9PZ0thzpaisvcvdb7oswm58zlbikp990ieL/lsSd07zFdc9s8GWnEJtGwZbNkS\nUmoUuAaYBVwErATOr7to5nyB2QDo6oLVq2FwEHbuhL4+2L+/vnrR+ZLXy3w+nS2FOVuKyt6/1Pmi\nzybkzudsKSr13SN5vuSzJXXvMF9x2T8baMUl0MKF0N0dUuoQ8Nixr48AT9DcNNYqc77AbABMmgS9\nvc2vx4+H6dPh4MH66kXnS14v8/l0thTmbCkqe/9S54s+m5A7n7OlqNR3j+T5ks+W1L3DfMVl/2yg\nFZdAY+QcoBd4cKzfSE2y5+PAAdizB+bNG+t3ovcg8/nMnA3y58s+W7L3L3W+5GfTfO0t9d0jeT7P\nZlszX5sLun8ugYBxwB3AKprbxWyy52NkBJYuhTVrmttTtZXM5zNzNsifL/tsyd6/1PmSn03ztbfU\nd4/k+Tybbc18bS7w/nX8EuhEmofpFuCuMX4vdciej9HR5mW56ipYsmSs342OU+bzmTkb5M+XfbZk\n71/qfMnPpvnaW+q7R/J8ns22Zr42F3z/WnMJVFXNV4CbgH1AwN+B/zOZ8wVmA2D5cpgxA1atiqkX\nnS95vczn09lSmLOlqOz9S50v+mxC7nzOlqJS3z2S50s+W1L3DvMVl/yzofWWQJdfDvPnw9AQTJ0K\n/f21lZoPXAEsAnYBjwKX1lbtmMz5ArMBsH073HorbN0Kc+bA3LmweXN99aLzJa+X+Xw6WwpzthSV\nvX+p80WfTcidz9lSVOq7R/J8yWdL6t5hvuKyfzYAXbX+7O/F+vVhpXYwBr8AmfMFZgNgwQI4ejSu\nXnS+5PUyn09nS2HOlqKy9y91vuizCbnzOVuKSn33SJ4v+WxJ3TvMV1z2zwZa8XcCSZIkSZIkqTiX\nQJIkSZIkSR3AJZAkSZIkSVIHcAkkSZIkSZLUAVwCSZIkSZIkdYCfuwRqNBrvbzQaDzYajd2NRmOw\n0Wj84bF/3t1oNP6/RqPxZKPR2NJoNE6r/+1KkiRJkiTpvfi5S6Cqqn4KfL6qqjnAbGBRo9FYAFwL\n3FtV1fnAVuC6Wt+pJEmSJEmS3rNf6I+DVVX1+rEv33/sx7wELAFuPvbPbwa+XPzdSZIkSZIkqYhf\naAnUaDROaDQau4Fngf9eVdU+YGJVVYcAqqp6FvhwfW9TkiRJkiRJ/ycaVVX94v/jRuNUYAvNP/q1\nsaqqM971716oqurMv+HHVP/hP/yHEu/15/qLv/gLnnnmmZBaACeddBJz5swJq/fwww9zPP36P3X6\n6afz8Y9/PKzea6+9xgUXXBBW7/7772fy5Mlh9X76058ye/bssHqbN2/mvPPOC6n14osvMjg4yPvf\n//6QeqOjo/yDf/APOPXUU0PqOVvKmjZtGvPnzw+r9+STT3L++eeH1RsaGgqdnevWrQvt35w5c5g1\na1ZIrcOHD/Pd736X973vfSH1omfLrl27mDt3bkgtgJ07d3LGGWf8/P9hIT/5yU/43Oc+F1Zv+/bt\nTJgwIaxe9ueW73//+2F3D+CMM87gYx/7WEit7M8t0bNl7969oc+4W7Zs4bnnngurF/090UMPPRRW\nC2DChAl89KMfDauXfbacddZZnHvuuSH1nnjiCdasWUNVVY3j+oFVVR3XC/h/gf8HeILm7wYCmAQ8\n8bf876vf/d3f/evX/fffX9Wlr6+vtp/7b7Jy5coKCHstX748NN+XvvSl0Hw33HBDaL45c+aE5rv9\n9ttD802YMCE03+7du8Oybdy4sTp8+HBYPWdLWevWrQutd9ttt4XW27BhQ2i9TZs2hda75557wmoN\nDQ05WwrKPlt8bin78rmlnOyzZe3ataH1+vv7Q+s5W5wtrTRb7r///r/erfzar/1aBVTVce50uvg5\nGo3GBOCtqqpeaTQaHwC+AHwduAv4DeCbwFeB7/5tP8fv/d7v/bwykiRJkiRJ+lt87nOf++vfZXvn\nnXdy++23H/fP8XOXQMBZwM2NRqNB8+8QuqWqqvuO/R1BtzcajeXAj4BfO+7qkiRJkiRJCvFzl0BV\nVT0O/G9/qLSqqheBX67jTUmSJEmSJKmsX+i/DiZJkiRJkqT25hJIkiRJkiSpA7gEkiRJkiRJ6gAu\ngSRJkiRJkjqASyBJkiRJkqQO0FpLoOFhWLQIZs6Enh648cb6a65YARMnwuzZtZeaAtwHDAB7gatr\nr0jufIHZwHzFReZztpSXuX/Bd898hWU+m+BsKSj15x7mK87ZUk7yfKnPJuYrLvq5jFZbAnV1werV\nMDgIO3dCXx/s319vzWXLYMuWemscMwpcA8wCLgJWAufXXTRzvsBsYL7iIvM5W8rL3L/gu2e+wjKf\nTXC2FJT6cw/zFedsKSd5vtRnE/MVF/1cRqstgSZNgt7e5tfjx8P06XDwYL01Fy6E7u56axxzCHjs\n2NdHgCdobhprlTlfYDYwX3GR+Zwt5WXuX/DdM19hmc8mOFsKSv25h/mKc7aUkzxf6rOJ+YqLfi6j\n1ZZA73bgAOzZA/PmjfU7qcU5QC/w4Fi/kZqYr72lzudsaW/J+2e+NpY5G/lni/naW+p8yWdL9nyp\nzybma1etuQQaGYGlS2HNmuZ2OJlxwB3AKprbxWzM195S53O2tLfk/TNfG8ucjfyzxXztLXW+5LMl\ne77UZxPztbPWWwKNjjaHwVVXwZIlY/1uijuR5mG6BbhrjN9LHczX3lLnc7a0t+T9M18by5yN/LPF\nfO0tdb7ksyV7vtRnE/O1u9ZbAi1fDjNmwKpVcTWrqvkKcBOwDwj4O/B/JnO+wGxgvuIi8zlbysvc\nv+C7Z77CMp9NcLYUlPpzD/MV52wpJ3m+1GcT8xUXnK+1lkDbt8Ott8LWrTBnDsydC5s311vz8sth\n/nwYGoKpU6G/v7ZS84ErgEXALuBR4NLaqh2TOV9gNjBfcZH5nC3lZe5f8N0zX2GZzyY4WwpK/bmH\n+YpztpSTPF/qs4n5iot+LgO6aq9wPBYsgKNHY2uuXx9Wagdj8AueOV9gNjBfcZH5nC3lZe5f8N0z\nX2GZzyY4WwpK/bmH+YpztpSTPF/qs4n5iot+LqPVfieQJEmSJEmSauESSJIkSZIkqQO4BJIkSZIk\nSeoALoEkSZIkSZI6gEsgSZIkSZKkDuASSJIkSZIkqQO4BJIkSZIkSeoALoEkSZIkSZI6gEsgSZIk\nSZKkDtCoqqreAo1G9Z3vfKfWGu/Yvn07jUYjpBbAU089xaRJk8LqfeADH+Diiy8Oq3ffffcxOjoa\nVu+1115j8uTJYfV+9KMfccYZZ4TVmzx5Mj09PWH17rjjDk455ZSQWm+++SZvvfVWWP+eeeYZFi9e\nzKmnnhpSL/tsefXVV5kyZUpYvdHR0dBZtnnz5rCzAnDSSSdx4YUXhtXbuHFj6HkZP348s2fPDqn1\n4osv8tprr3HOOeeE1Nu/fz+TJ08OOy+7d+9mzpw5IbUAtm3bxuuvvx5WL3q2HDhwgDPPPDOs3oQJ\nE/jUpz4VVu+//bf/RldXV1g9n1vKyf7c8vzzz7NkyZKwevv27WPGjBlh9fyeqKyXX36Zs88+O6xe\nZL6xmC3f+973qKrq+C58VVW1vpolYlx33XUVEPZavHhxWLaqqqr+/v7QeuvWrQutd8kll4T2b+3a\ntaH5Nm3aFFrvnnvuCas1NDRUnXzyyWG96+7urg4fPhyWL/tsufLKK0PzXXvttaH5ss+WadOmhea7\n++67w7INDQ1Vu3fvDqu3cePG0NnS19cXVquqqvCzmX223HbbbaH1NmzYEFrP55ZyL59byvJ7orIv\nn1vKGYvZAlTVce5o/ONgkiRJkiRJHcAlkCRJkiRJUgdwCSRJkiRJktQBXAJJkiRJkiR1AJdAkiRJ\nkiRJHcAlkCRJkiRJUgdwCSRJkiRJktQBXAJJkiRJkiR1gNZbAq1YARMnwuzZtZeaAtwHDAB7gatr\nr0hoPoaHYdEimDkTenrgxhvrrReZjTHoX3A++1eYs6WYzL0D8xXn7CwnOhs4W0rKfDYhfb7M5zP7\nc4tnszDzFTUW96/1lkDLlsGWLSGlRoFrgFnARcBK4Py6iwbmo6sLVq+GwUHYuRP6+mD//vrqRWZj\nDPoXnM/+FeZsKSZz78B8xTk7y4nOBs6WkjKfTUifL/P5zP7c4tkszHxFjcX9a70l0MKF0N0dUuoQ\n8Nixr48AT9DcxNUqMB+TJkFvb/Pr8eNh+nQ4eLC+epHZGIP+Beezf4U5W4rJ3DswX3HOznKis4Gz\npaTMZxPS58t8PrM/t3g2CzNfUWNx/1pvCTRGzgF6gQfH+o3U5cAB2LMH5s0b63dSC/vX3jL3L3M2\nMF+7y54v9ezMnA3PZttLni/z+cycDfBstjnzleESCBgH3AGsorl9S2dkBJYuhTVrmtvvZOxfe8vc\nv8zZwHztLnu+1LMzczY8m20veb7M5zNzNsCz2ebMV07HL4FOpPmLfQtw1xi/l1qMjjaH3VVXwZIl\nY/1uirN/7S1z/zJnA/O1u+z5Us/OzNnwbLa95Pkyn8/M2QDPZpszX1mtuQSqquYrwE3APiDgv6/x\nM4H5WL4cZsyAVati6kVmYwz6F5zP/hXmbCkmc+/AfMU5O8uJzgbOlpIyn01Iny/z+cz+3OLZLMx8\nRUXna70l0OWXw/z5MDQEU6dCf39tpeYDVwCLgF3Ao8CltVU7JjAf27fDrbfC1q0wZw7MnQubN9dX\nLzIbY9C/4Hz2rzBnSzGZewfmK87ZWU50NnC2lJT5bEL6fJnPZ/bnFs9mYeYraizuX1fNP//xW78+\nrNQOxuAXIDAfCxbA0aNx9SKzMQb9C85n/wpzthSTuXdgvuKcneVEZwNnS0mZzyakz5f5fGZ/bvFs\nFma+osbi/rXe7wSSJEmSJElScS6BJEmSJEmSOoBLIEmSJEmSpA7gEkiSJEmSJKkDuASSJEmSJEnq\nAC6BJEmSJEmSOoBLIEmSJEmSpA7gEkiSJEmSJKkDuASSJEmSJEnqAI2qquot0GhUN998c6013vHQ\nQw9xwglxe63XXnuNz3/+82H1nnjiCaZPnx5W7+677w6rBfDmm29y7rnnhtV7//vfT09PT1i9J598\nkvPPPz+s3p/8yZ8wadKkkFqvvvoqEyZM4Iwzzgip98ILL3DRRRdx6qmnhtSLni1PP/00H/zgB8Pq\nvfzyy3ziE58Iq1dVFRdeeGFYvb/8y78M/fXct29f2F0AGB0d5SMf+UhYvQ984APMnDkzpNYLL7zA\nyMgI55xzTki9gYEBBgYGGD9+fEi9559/nmXLloXUgma+WbNmhdXbuXMnJ510Uli96NkS/bk+NDTE\nxz/+8bB60fkin3NfeOEFdu/ezemnnx5S79lnn2VkZCRstgwPD3PBBReE1AK/Jyot+/dE3/ve9+ju\n7g6rF/3cEjlbXnjhBdavX09VVY3j+oFVVdX6apaI0dfXF1arqqpq7dq1ofX6+/tD633pS1+qgLDX\nDTfcEJpvw4YNofU2bdoUWm/ChAmh/du9e3dYto0bN1aHDx8Oqxc9W1auXBnau+XLl4fmW7duXWi9\n2267LbTenDlzQvt3++23h+a75557wmoNDQ2FzpZbbrkltHezZs0Ky1ZV+Z9bss+W7M8tzhZnyy/K\n74nKcraUEz1bNm7cWAFVdZw7Gv84mCRJkiRJUgdwCSRJkiRJktQBXAJJkiRJkiR1AJdAkiRJkiRJ\nHcAlkCRJkiRJUgdwCSRJkiRJktQBXAJJkiRJkiR1AJdAkiRJkiRJHaC1lkDDw7BoEcycCT09cOON\n9ddcsQImToTZs+uvlTzfFOA+YADYC1xdd8HI3kF8/4Lzpe6fd6+8zP3z7pWVuH/evRpkzufdKytx\nPmdLDTL3z7tXVvZ8tNoSqKsLVq+GwUHYuRP6+mD//nprLlsGW7bUW+MdyfONAtcAs4CLgJXA+XUW\njOwdxPcvOF/q/nn3ysvcP+9eWYn7592rQeZ83r2yEudzttQgc/+8e2Vlz0erLYEmTYLe3ubX48fD\n9Olw8GC9NRcuhO7uemu8I3m+Q8Bjx74+AjxBcxNem8jeQXz/gvOl7p93r7zM/fPulZW4f969GmTO\n590rK3E+Z0sNMvfPu1dW9ny02hLo3Q4cgD17YN68sX4n9Uie7xygF3hwrN9IXexf+7J37c3+tbfE\n/bN3bc587S1xPmdLe7N/bS5pvtZcAo2MwNKlsGZNc/uWTfJ844A7gFU0t9/p2L/2Ze/am/1rb4n7\nZ+/anPnaW+J8zpb2Zv/aXOJ8rbcEGh1t/mJfdRUsWTLW76a85PlOpDnsbgHuGuP3Ugv7177sXXuz\nf+0tcf/sXZszX3tLnM/Z0t7sX5tLnq/1lkDLl8OMGbBqVVzNqmq+IiTPdxOwDwj4O/514RGPAAAg\nAElEQVSbInsH8f0Lzpe6f9698jL3z7tXVuL+efdqkDmfd6+sxPmcLTXI3D/vXlnJ87XWEmj7drj1\nVti6FebMgblzYfPmemtefjnMnw9DQzB1KvT311creb75wBXAImAX8ChwaW3ViO0dxPcvOF/q/nn3\nysvcP+9eWYn7592rQeZ83r2yEudzttQgc/+8e2Vlzwd01V7heCxYAEePxtZcvz6uVvJ8Owg+UJG9\ng/j+BedL3T/vXnmZ++fdKytx/7x7Ncicz7tXVuJ8zpYaZO6fd6+s7Plotd8JJEmSJEmSpFq4BJIk\nSZIkSeoALoEkSZIkSZI6gEsgSZIkSZKkDuASSJIkSZIkqQO4BJIkSZIkSeoALoEkSZIkSZI6gEsg\nSZIkSZKkDuASSJIkSZIkqQM0qqqqt0CjUf3pn/5prTXece+99zI8PBxSC6DRaPDVr341rN6dd97J\nK6+8Elbv5JNP5oILLgirt3XrVt73vveF1fs7f+fvsGDBgrB6+/btY8aMGWH17r//fs4+++yQWq+8\n8gr3338/EyZMCKn3wgsv8Ju/+ZucdtppIfUeeeSR0LvwwAMPhP1aAuzYsYO33347rN6HP/xhFi9e\nHFZvcHCQmTNnhtXbtm0bZ511Vli9N954g56enrB6kb+ehw8fZmRkhHPPPTek3sDAAEePHmXcuHEh\n9X74wx/yhS98IaQWwJ49e+jt7Q2r9/jjj4eezYGBAWbNmhVW7+abb6bu5+h3y/7c4mwpZ/fu3Rw5\nciSkFsR/TxQ9W3bs2MGHP/zhsHqvvvoqc+fODasXfdedLeUMDg7yjW98g6qqGsf1A6uqqvXVLBHj\nuuuuq4Cw1+LFi8OyVVVVXXnllaH5rr322tB8l1xySWi+tWvXhubbtGlTaL177rknrNbQ0FB18skn\nh/Wuu7u7Onz4cFi+vr6+sFpVVYWfzeyz5bbbbgutt2HDhtB62WfL7t27w+pt3LjR2VJQf39/aL11\n69aF1vO5pSxnSznZvyfKPlt8bikr+2wBquo4dzT+cTBJkiRJkqQO4BJIkiRJkiSpA7gEkiRJkiRJ\n6gAugSRJkiRJkjqASyBJkiRJkqQO4BJIkiRJkiSpA7gEkiRJkiRJ6gAugSRJkiRJkjpA6y2BVqyA\niRNh9uzaS00B7gMGgL3A1bVXJHe+wGyQPx/Dw7BoEcycCT09cOON9dazf+VE9w6cLSUlv3vmK8zZ\nUk7m3uHsLM58xWT/nihz7wDzlZY9H624BFq2DLZsCSk1ClwDzAIuAlYC59ddNHO+wGyQPx9dXbB6\nNQwOws6d0NcH+/fXV8/+lRPdO3C2lJT87pmvMGdLOZl7h7OzOPMVk/17osy9A8xXWvZ8tOISaOFC\n6O4OKXUIeOzY10eAJ2huwmuVOV9gNsifj0mToLe3+fX48TB9Ohw8WF89+1dOdO/A2VJS8rtnvsKc\nLeVk7h3OzuLMV0z274ky9w4wX2nZ89GKS6Axcg7QCzw41m+kJuZrcwcOwJ49MG/eWL+TWqTun71r\nb8n7Z742ljkbpM/n7GxzifN5Ntuc+dpbUD6XQMA44A5gFc3tdzbma3MjI7B0KaxZ09wOJ5O6f/au\nvSXvn/naWOZskD6fs7PNJc7n2Wxz5mtvgfk6fgl0Is1hdwtw1xi/lzqYr82NjjaHwVVXwZIlY/1u\nikvdP3vX3pL3z3xtLHM2SJ/P2dnmEufzbLY587W34HytuQSqquYrwE3APiDgv6/xM5nzBWaD/PlY\nvhxmzIBVq2Lq2b9yonsHzpaSkt898xXmbCknc+9wdhZnvmKyf0+UuXeA+UpLnq/1lkCXXw7z58PQ\nEEydCv39tZWaD1wBLAJ2AY8Cl9ZW7ZjM+QKzQf58bN8Ot94KW7fCnDkwdy5s3lxfPftXTnTvwNlS\nUvK7Z77CnC3lZO4dzs7izFdM9u+JMvcOMF9p2fMBXbX+7O/F+vVhpXYwBr8AmfMFZoP8+ViwAI4e\njatn/8qJ7h04W0pKfvfMV5izpZzMvcPZWZz5isn+PVHm3gHmKy17PlrxdwJJkiRJkiSpOJdAkiRJ\nkiRJHcAlkCRJkiRJUgdwCSRJkiRJktQBXAJJkiRJkiR1AJdAkiRJkiRJHcAlkCRJkiRJUgdwCSRJ\nkiRJktQBXAJJkiRJkiR1gEZVVfUWaDSqz3zmM7XWeMdbb73FsmXLQmoBDA0N8dnPfjas3oMPPsi5\n554bVu9HP/oRn/70p8PqPfDAA5x33nlh9f7zf/7PnHBC3B504cKFzJs3L6ze448/Tk9PT0it559/\nnuHhYSZPnhxS7wc/+AGzZs3itNNOC6n30EMPhd6FO++8k6effjqs3plnnsnf/bt/N6zexo0bef31\n18Pq9fT08Cu/8ith9b71rW9x9OjRsHrZZ8vIyEjYZ8PAwABnn3122tny6KOP8qlPfSqs3p49e+jt\n7Q2rt3fvXmbPnh1Wz+eWsn7v936PU045JaTW66+/zhVXXMFHP/rRkHq7du3iz//8z/nABz4QUi/7\n90TZZ0vk5yw0P/tmzZoVVi86X/bnlq9//etUVdU4rh9YVVWtL6CKes2aNauKtHbt2tB6/f39ofXW\nrVsXWu+2224LrTdnzpywswlUt99+e2i+e+65J6zW0NBQtXv37rB6GzdurA4fPhxWr6+vL6xWVVXV\nypUrQ8/m8uXLQ/N96UtfCs13ww03hOZztpTjbCnL55ayfG4pa8KECaH5ImfLLbfcEprN74nKyj5b\nNmzYEFpv06ZNofWyP7cAVXWcOxr/OJgkSZIkSVIHcAkkSZIkSZLUAVwCSZIkSZIkdQCXQJIkSZIk\nSR3AJZAkSZIkSVIHcAkkSZIkSZLUAVwCSZIkSZIkdQCXQJIkSZIkSR2gpZZAU4D7gAFgL3B1RNEV\nK2DiRJg9u/5aw8OwaBHMnAk9PXDjjfXXzJwvMhtjcD6D86XuX/K7l312Zr972fM5WwozXzmZzyb5\nZ0vmfNk/150thfm5Xlb2fLTYEmgUuAaYBVwErATOr7vosmWwZUvdVZq6umD1ahgchJ07oa8P9u+v\nt2bmfJHZGIPzGZwvdf+S373sszP73cuez9lSmPnKyXw2yT9bMufL/rnubCnMz/WysuejxZZAh4DH\njn19BHiC5ia8VgsXQnd33VWaJk2C3t7m1+PHw/TpcPBgvTUz54vMxhicz+B8qfuX/O5ln53Z7172\nfM6WwsxXTuazSf7Zkjlf9s91Z0thfq6XlT0fLbYEerdzgF7gwbF+I3U5cAD27IF588b6ndQjeT7P\nZxvLnI38Z9N8bS7z/cucDczX5rLPlsz5MmcD0t8987W5pPlacgk0DrgDWEVz+53OyAgsXQpr1jS3\ni9kkz+f5bGOZs5H/bJqvzWW+f5mzgfnaXPbZkjlf5mxA+rtnvjaXOF/LLYFOpDnsbgHuGuP3UovR\n0eZhuuoqWLJkrN9NecnzeT7bWOZs5D+b5mtzme9f5mxgvjaXfbZkzpc5G5D+7pmvzSXP13JLoJuA\nfUDA3xH/M1XVfEVYvhxmzIBVq2LqQe58kdkYg/MZnC91/5LfveyzM/vdy57P2VKY+crJfDbJP1sy\n58v+ue5sKczP9bKS52upJdB84ApgEbALeJT/n737j9K7rO/8/7xhoFHCj4FoIqFBm1rIT2aCNJIE\n0Hxlw6ZqcE+620aybZLVdksxKyxb1P3Wtouuup5oaHN6FCXHkuQcPCRakpWkhViOhoRCfhASEiYr\nRnYioAEUZiCSmXy+f9xh5eu6i9Hr85653/fzcc6cMyDJ637luq73/ZnLSQJz6g5dsABmzICeHhg3\nDlaurC9ryxZYvRo2b4bubpg2DTZurC8PcveL7MYQ7M/gfqnXL/nZyz47s5+97P2cLYXZr5zMe5P8\nsyVzv+zv686WwnxfLyt7P6Cj9oQTcD9D8ILWrInLmjkTBgfj8iB3v8huDMH+DO6Xev2Sn73sszP7\n2cvez9lSmP3Kybw3yT9bMvfL/r7ubCnM9/WysvdjmH0nkCRJkiRJkurhJZAkSZIkSVIb8BJIkiRJ\nkiSpDXgJJEmSJEmS1Aa8BJIkSZIkSWoDr3kJ1Gg0fq3RaDzQaDR2NhqNvY1G45PH//3HG41Gb6PR\n2HH846r6X64kSZIkSZJ+Ga/5tw9WVfWTRqPxzqqqXmw0GicDWxqNxszj//OyqqqW1fsSJUmSJEmS\n9Kv6hX47WFVVLx7/9NeO/5jnjv9zo44XJUmSJEmSpLJ+oUugRqNxUqPR2Ak8BfxTVVWPHv+f/rTR\naOxqNBpfajQaZ9b2KiVJkiRJkvQraVRV9Yv/x43GGcA/AH8GPAocrqqqajQaNwNvqqpqyc/5MdX7\n3ve+//XPEyZMYMKECb/yC/95HnjgAd71rnfV8nP/PNu2bePtb397WN6DDz7IJZdcEpa3Y8cOpk2b\nFpa3c+dOuru7w/K2bdvGpEmTwvI+8YlPcNJJcX8W+9VXX81v//Zvh2T94Ac/4JOf/CSvf/3rQ/Je\nfvll/vzP/5wzzjgjJO9b3/oWl112WUgWwLe//W0uuuiisLzdu3czc+bM1/4PC9m6dSuTJ08Oy1ux\nYgXPP/98WN7ll18e+ut54MCBtLPa2VKWzy1l/bf/9t947rnnXvs/LCR6tkQ/t1x11VVhs+Xw4cMs\nX748dLbccMMNjBw5MiRvw4YNPPLIIyFZAKNHj2bp0qVheV/+8pf5zne+E5Y3bdo05s+fH5YXPVuu\nvPJK3vnOd4blffSjHw3LgnxfE/X399Pf3w/A4OAgzz33HFVVndjv0Kqq6oQ+gP8XuOFn/t35wO7/\nw39fRVmxYkVYVlVV1a233hqat3LlytC8VatWhebdcccdoXlr164NzRs/fnwFhH1s2LAhrFtPT081\nYsSIsG6dnZ3V4cOHw/o5W8qKni1XXHFF6NmLXr/169eH5t19991hWc6WspwtZWWfLT63tO5s+chH\nPhK6dnPnzg3rVlVVdc0114T2u+mmm0L7OVvKfmSfLUBVneCdzi/yt4ONeuW3ejUajdcBVwK7Go3G\nmFf9Z/8K2PNaP5ckSZIkSZKGxmv+7WDAm4CvNBqNBs0/Q+j2qqrubTQaf9doNLqAY8BB4I/qe5mS\nJEmSJEn6Vfwif0X8I8D/9husq6r6t7W8IkmSJEmSJBUX96e9SZIkSZIkach4CSRJkiRJktQGvASS\nJEmSJElqA14CSZIkSZIktQEvgSRJkiRJktrA8LsEWrIERo+GqVPrz+rthdmzYdIkmDIFbrml/szM\n/SK7Qfp+Y4F7gT3AbuC6ugPtV46zpSz3ZlmuX1mZzx7k7ufeLMp+hQX2C+8Gufu5N4uyX3nD7xJo\n0SLYtCkmq6MDli2DvXth61ZYsQL27683M3O/yG6Qvt8AcD0wGbgUuBa4oM5A+5XjbCnLvVmW61dW\n5rMHufu5N4uyX2GB/cK7Qe5+7s2i7Ffe8LsEmjULOjtjssaMga6u5ucjR8KECXDoUL2ZmftFdoP0\n/Z4GHj7+eT+wj+ZNcW3sV46zpSz3ZlmuX1mZzx7k7ufeLMp+hQX2C+8Gufu5N4uyX3nD7xJoqBw8\nCLt2wfTpQ/1K6mG/lnY+0AU8MNQvpCap+yXfm9n7pd6b4Pq1suRrl71f6r2J/VpZ5m5gv1ZnvzK8\nBALo64P582H58ub/85SN/VraacCdwFKat8PZpO6XfG9m75d6b4Lr18qSr132fqn3JvZrZZm7gf1a\nnf3K8RJoYKD5oLFwIcybN9Svpjz7tbSTaQ6D24G7hvi11CF1v+R7M3u/1HsTXL9WlnztsvdLvTex\nXyvL3A3s1+rsV9bwvASqquZHhMWLYeJEWLo0Jg9y94vsBun73QY8CgT8/S9N9ivH2VKWe7Ms16+s\nzGcPcvdzbxZlv8IC+4V3g9z93JtF2a+s4XcJtGABzJgBPT0wbhysXFlf1pYtsHo1bN4M3d0wbRps\n3FhfHuTuF9kN0vebAbwfmA3sALYDc+oMtF85zpay3JtluX5lZT57kLufe7Mo+xUW2C+8G+Tu594s\nyn7lddT885+4NWvismbOhMHBuDzI3S+yG6Tvdz/BB9R+5ThbynJvluX6lZX57EHufu7NouxXWGC/\n8G6Qu597syj7lTf8vhNIkiRJkiRJxXkJJEmSJEmS1Aa8BJIkSZIkSWoDXgJJkiRJkiS1AS+BJEmS\nJEmS2oCXQJIkSZIkSW3ASyBJkiRJkqQ24CWQJEmSJElSG/ASSJIkSZIkqQ00qqqqN6DRqMaOHVtr\nxis6Ozv59Kc/HZIFcN9993HFFVeE5W3ZsoWZM2eG5W3bto23v/3tYXkPPvggl1xySdq8bdu2MW3a\ntLC8hx9+OKzfU089xXPPPcf48eND8r71rW+xevVqOjo6QvKcLWV96lOf4vHHHw/Lu+qqq3j3u98d\nlvexj32MH//4x2F511xzDZdffnlY3kMPPcTb3va2kCxnS1m33norDz74YFjexRdfzB/90R+F5WWf\nLTt37mT69OlhedHPLddeey2NRiMka2BggBtuuIG3vvWtIXnRs+Wss87i5ptvDskCuO2229ixY0dY\nXnd3N0uWLAnLe/DBB0Ofk+6///6w91mIf275vd/7PWbNmhWWl/lrooceeohPfOITVFV1QsMzZBId\nOnQoIobOzk7mzp0bkgXw/e9/PzTvBz/4QWjec889F5rX19cXmnfkyJHQvGPHjoU+LI4YMYKrrroq\nJOvAgQP09/fT1dUVktfX18eyZctCssDZUtoXvvCFsPcFgAkTJnD11VeH5f3VX/1VaL+LL744dP1O\nOukkZ0sh0bPlG9/4Bl//+tfD8ubMmeNsKejYsWOpn1s+8IEPcPjw4bC8K6+8MvVsidyb99xzD+vX\nrw/LmzNnTmi//v7+8K+JMj+3TJ8+PbRf5q+Jftlv6PG3g0mSJEmSJLUBL4EkSZIkSZLagJdAkiRJ\nkiRJbcBLIEmSJEmSpDbgJZAkSZIkSVIb8BJIkiRJkiSpDXgJJEmSJEmS1Aa8BJIkSZIkSWoDw+oS\naCxwL7AH2A1cFxG6ZAmMHg1Tp9af1dsLs2fDpEkwZQrcckv9mZn7RXYD+5UW2M/ZUoPM6xd89rL3\nc7YUZr9iPHuFOTuL8ezVIPNzmWevrOTrB8PsEmgAuB6YDFwKXAtcUHfookWwaVPdKU0dHbBsGezd\nC1u3wooVsH9/vZmZ+0V2A/uVFtjP2VKDzOsXfPay93O2FGa/Yjx7hTk7i/Hs1SDzc5lnr6zk6wfD\n7BLoaeDh45/3A/to3jTWatYs6OysO6VpzBjo6mp+PnIkTJgAhw7Vm5m5X2Q3sF9pgf2cLTXIvH7B\nZy97P2dLYfYrxrNXmLOzGM9eDTI/l3n2ykq+fjDMLoFe7XygC3hgqF9IXQ4ehF27YPr0oX4l9bBf\na0vcz9nS2rKvX/Z+mfdn9rWzX4tLfPYg9/pl7gb5+3n2WlzS9RuWl0CnAXcCS2neLqbT1wfz58Py\n5c3bxWzs19oS93O2tLbs65e9X+b9mX3t7NfiEp89yL1+mbtB/n6evRaXeP2G3SXQyTQ30+3AXUP8\nWmoxMNDcTAsXwrx5Q/1qyrNfa0vcz9nS2rKvX/Z+mfdn9rWzX4tLfPYg9/pl7gb5+3n2Wlzy9Rt2\nl0C3AY8CAX+3zU9VVfMjwuLFMHEiLF0akwe5+0V2A/uVFtjP2VKDzOsXfPay93O2FGa/Yjx7hTk7\ni/Hs1SDzc5lnr6zk6zesLoFmAO8HZgM7gO3AnLpDFyyAGTOgpwfGjYOVK+vL2rIFVq+GzZuhuxum\nTYONG+vLg9z9IruB/UoL7OdsqUHm9Qs+e9n7OVsKs18xnr3CnJ3FePZqkPm5zLNXVvL1A+ioPeEE\n3M8QvKA1a+KyZs6EwcG4PMjdL7Ib2K+0wH7OlhpkXr/gs5e9n7OlMPsV49krzNlZjGevBpmfyzx7\nZSVfPxhm3wkkSZIkSZKkengJJEmSJEmS1Aa8BJIkSZIkSWoDXgJJkiRJkiS1AS+BJEmSJEmS2oCX\nQJIkSZIkSW3ASyBJkiRJkqQ24CWQJEmSJElSG+gY6hdQ0uDgIH19fWF5R44cCc176aWX7NfCef39\n/Wnz+vv7Q/NeeumlkJxXOFvKOnr0aFgWxP96Dg4OhmWBs6Wk7LPlJz/5SVgWNM+6s6Wc7M8tx44d\nC8uC2H7OlrKiZ0v2s+5zS9msVpgtIZdAmzdvjohhw4YNbN++PSQL4Pvf/35o3pNPPhma19vbG5r3\nuc99jg996ENheX/8x3/MeeedF5Z344038sEPfjA0b9SoUSFZvb29/Mmf/ElIFsCIESNYt24dZ511\nVkjeF7/4RcaOHRuSBXDRRRcxZcqUsLx169Zx0003heXNmzcv7H0B4MMf/jCf+cxnwvI+8IEP8PnP\nfz4sb9u2baGzuqenJ3S29PX1MTAwEJL39NNPp54tU6dODT179957b+jevOSSS7jxxhvD8qJnS/Rz\ny+OPPx66fjfccAOXXnppSFZvby9z584NyYL455bor4ne8IY3pJ4t2b8m8rmlnKH4muiXEXIJ9M53\nvjMihn379nHFFVeEZAEcOHAgNO+73/1uaF5vb29o3llnncXzzz8flvfWt741tN+pp54a2q+7uzus\n34EDB3j55Zc5cuRISN7JJ5/M5ZdfzjnnnBOS94//+I+ha3f66aeH7s0vfelLof3Gjh0b9r4A8bPl\nwgsvDO3X398ful9eeuml0NnS399PV1dXSN6zzz6beracccYZoXvze9/7XvhzS+bZEv3c8sILL4TP\nlqj1y/7cMhRfE2WfLZm/JvK5pZyhmC2/DP9MIEmSJEmSpDbgJZAkSZIkSVIb8BJIkiRJkiSpDXgJ\nJEmSJEmS1Aa8BJIkSZIkSWoDXgJJkiRJkiS1AS+BJEmSJEmS2sDwuwRasgRGj4apU+vP6u2F2bNh\n0iSYMgVuuaX+zMz9IrsBY4F7gT3AbuC6ugPtV1TmfuHdIHc/92ZZyd8bMvfLPlsyrx04W4pz/crx\na6Ky3JtluX7FDb9LoEWLYNOmmKyODli2DPbuha1bYcUK2L+/3szM/SK7AQPA9cBk4FLgWuCCOgPt\nV1TmfuHdIHc/92ZZyd8bMvfLPlsyrx04W4pz/crxa6Ky3JtluX7FDb9LoFmzoLMzJmvMGOjqan4+\nciRMmACHDtWbmblfZDfgaeDh45/3A/to3qTWxn5FZe4X3g1y93NvlpX8vSFzv+yzJfPagbOlONev\nHL8mKsu9WZbrV9zwuwQaKgcPwq5dMH36UL+SeiTvdz7QBTww1C+kJvZrXZm7gf1aXvL3hsz93Jut\nzfVrbanXL/naZe+Xem+C61eIl0AAfX0wfz4sX968Xcwmeb/TgDuBpTRvT7OxX+vK3A3s1/KSvzdk\n7ufebG2uX2tLvX7J1y57v9R7E1y/grwEGhhobqaFC2HevKF+NeUl73cyzcNyO3DXEL+WOtivdWXu\nBvZrecnfGzL3c2+2NtevtaVev+Rrl71f6r0Jrl9hw/MSqKqaHxEWL4aJE2Hp0pg8yN0vshtwG/Ao\nEPB3GDTZr6jM/cK7Qe5+7s2ykr83ZO6XfbZkXjtwthTn+pXj10RluTfLcv2KGn6XQAsWwIwZ0NMD\n48bBypX1ZW3ZAqtXw+bN0N0N06bBxo315UHufpHdgBnA+4HZwA5gOzCnzkD7FZW5X3g3yN3PvVlW\n8veGzP2yz5bMawfOluJcv3L8mqgs92ZZrl9xHTX//CduzZq4rJkzYXAwLg9y94vsBtxP8Aa2X1GZ\n+4V3g9z93JtlJX9vyNwv+2zJvHbgbCnO9SvHr4nKcm+W5foVN/y+E0iSJEmSJEnFeQkkSZIkSZLU\nBrwEkiRJkiRJagNeAkmSJEmSJLUBL4EkSZIkSZLagJdAkiRJkiRJbcBLIEmSJEmSpDbgJZAkSZIk\nSVIb8BJIkiRJkiSpDXREhHz729+OiOE73/lOWNZQ5P2P//E/QvMOHDgQmvejH/0oLAvi1+/FF18M\nywLYvXs3Z555ZkjWE088weDgYEgWwNGjR9m6dStnnXVWSN7BgwdDcl7xox/9KHRvPvXUU2FZAE8+\n+aSzpaC9e/eGnQWAhx9+mJEjR4ZkPfHEE/T399PX1xeSt2fPHk455RRnSyE+t5TlbCkn+3OLXxOV\n5Wwpy9lSztGjR3+pHxdyCXTZZZdFxHDhhRdy3XXXhWQBdHZ2ct5556XN+6d/+if+8i//MizvYx/7\nGF//+tfD8ubMmcOnPvWpsLy/+Zu/4Xd+53fC8jZv3hy2X44ePcrXvvY1Jk2aFJK3ceNGxo4dS2dn\nZ0jexIkT+e53vxuSBc2zEDU3Af7Nv/k3of3+8A//MLRfO8yWyPeGN7zhDaGz5cUXXwzLe/3rX897\n3vOekCxoPrdEnr2vfvWrPrcU5Gwp67/+1//Kj3/847C89evXM3ny5JCs6OeW6LP3xBNPhD+3OFvK\nyT5bop9bIr8mWrt2Lf/xP/7HE/5xIZdAUTo6Onjzm98clnf22WeH5p1zzjmheVHfRfKKzs7O0H6n\nnXZaWBbAG9/4xtB+5557blje0aNH6e/vD8sbPXo048aN45xzzgnJiz7rUQ+JrzjttNOcLQU5W8oZ\nitkSyeeWspwtZUXPllNOOSUsC+C8887zuaUQn1vKcraU5XPL/84/E0iSJEmSJKkNeAkkSZIkSZLU\nBrwEkiRJkiRJagNeAkmSJEmSJLUBL4EkSZIkSZLagJdAkiRJkiRJbcBLIEmSJEmSpDYwrC6BxgL3\nAnuA3cB1EaFLlsDo0TB1av1Zvb0wezZMmgRTpsAtt9SfGdgvfP0i1478/cL3p2evmOyzM/vZy94v\n82zJfvacnYU5W4pK3c+zV17mfp69shI/t7xiWF0CDQDXA5OBS4FrgQvqDl20CDZtqjulqaMDli2D\nvXth61ZYsQL27683M7Bf+PpFrh35+4XvT89eMdlnZ/azl71f5tmS/ew5Owtztr0fCL4AACAASURB\nVBSVup9nr7zM/Tx7ZSV+bnnFsLoEehp4+Pjn/cA+mjeNtZo1Czo7605pGjMGurqan48cCRMmwKFD\n9WYG9gtfv8i1I3+/8P3p2Ssm++zMfvay98s8W7KfPWdnYc6WolL38+yVl7mfZ6+sxM8trxhWl0Cv\ndj7QBTww1C+kLgcPwq5dMH36UL+SWmRfv+z9Uu/PzN3Ivzft1+ISnz/XrrVlXz/7tTDPXkuzX4tL\nev6G5SXQacCdwFKat4vp9PXB/PmwfHnzdjGZ7OuXvV/q/Zm5G/n3pv1aXOLz59q1tuzrZ78W5tlr\nafZrcYnP37C7BDqZ5ma6HbhriF9LLQYGmptp4UKYN2+oX01x2dcve7/U+zNzN/LvTfu1uMTnz7Vr\nbdnXz34tzLPX0uzX4pKfv2F3CXQb8CgQ8Gfg/1RVNT8iLF4MEyfC0qUxeRDaL3z9IteO/P3C96dn\nr5jsszP72cveL/NsyX72nJ2FOVuKSt3Ps1de5n6evbISP7fAMLsEmgG8H5gN7AC2A3PqDl2wAGbM\ngJ4eGDcOVq6sL2vLFli9GjZvhu5umDYNNm6sLw9C+4WvX+Takb9f+P707BWTfXZmP3vZ+2WeLdnP\nnrOzMGdLUan7efbKy9zPs1dW4ueWV3TUnnAC7mcIXtCaNXFZM2fC4GBcHoT2C1+/yLUjf7/w/enZ\nKyb77Mx+9rL3yzxbsp89Z2dhzpaiUvfz7JWXuZ9nr6zEzy2vGFbfCSRJkiRJkqR6eAkkSZIkSZLU\nBrwEkiRJkiRJagNeAkmSJEmSJLUBL4EkSZIkSZLagJdAkiRJkiRJbcBLIEmSJEmSpDbgJZAkSZIk\nSVIb8BJIkiRJkiSpDXREhLzlLW+JiOGkk07i05/+dEgWwCOPPEKj0QjL27p1K08//XRY3pNPPhm2\ndgDbtm0LXb+XX345tN9dd93F448/HpZ36NAhDh06FJL1gx/8gP7+frZv3x6S9/DDD3Pw4EHOOOOM\nkLx//ud/5oUXXgjJguZsidybP/zhD/nyl78clvfjH/84tN+ePXtC+0Hc+x7kny3/83/+T84///yQ\nvIceeohx48Zx8sknh+SdcsopoXtzx44doXk+t5SV/bnl9NNP5/TTTw/JGhgY4M4770z73LJ9+/bQ\ns/69733P55aCss+W++67j+effz4sb8+ePWm/JnrwwQd/qR8Xcgm0f//+iBg+9rGPcdNNN4VkAcyZ\nM4eFCxeG5d1zzz2h/W688UZuvvnmsLx3vetdof3+9m//lsWLF4flXXjhhaxatSos72tf+xpz584N\nyTpw4AAvvvgiF110UUje6aefzmWXXcY555wTkrd///7w2RI1NwG+8pWvhM6yjo4Ofv/3fz8s7847\n72T+/PlheSNHjuR973tfWF722fK2t72NI0eOhOR1dnayd+/esNnyt3/7t6Fn7+WXX/a5pSCfW8ry\nuaWcvr6+8Nmydu3asLzszy3ZZ8uGDRt497vfHZa3adMm5syZE5I1FLPlC1/4wgn/uJBLoFNPPTUi\nhlNOOSUk5xUnn3xyWDdoDqBI0f1OOin2dyd2dHSk7nfKKaeE9Tv11FM5evRo6Fk/9dRTnS2FRO4V\niD970XnRv57ZZ0u06NmSeW/63FKWzy3ltMNzS+bZkv25JftsiTwLkH+2/DL8M4EkSZIkSZLagJdA\nkiRJkiRJbcBLIEmSJEmSpDbgJZAkSZIkSVIb8BJIkiRJkiSpDXgJJEmSJEmS1Aa8BJIkSZIkSWoD\nw+8SaMkSGD0apk6tPWoscC+wB9gNXFd7Irn7BXYD+xUX3I/eXpg9GyZNgilT4JZb6s3LfPYgdv0S\nrx2Qvl/22ZK6X/TehNyz071ZVPZ+qd8bks+W1GuHZ6+47P0YjpdAixbBpk0hUQPA9cBk4FLgWuCC\nukMz9wvsBvYrLrgfHR2wbBns3Qtbt8KKFbB/f315mc8exK5f4rUD0vfLPltS94vem5B7dro3i8re\nL/V7Q/LZknrt8OwVl70fw/ESaNYs6OwMiXoaePj45/3APpo3qbXK3C+wG9ivuOB+jBkDXV3Nz0eO\nhAkT4NCh+vIynz2IXb/Eawek75d9tqTuF703IffsdG8Wlb1f6veG5LMl9drh2Ssuez+G4yXQEDkf\n6AIeGOoXUhP7tbbs/Th4EHbtgunTh/qVFOfatbjk/bLvz9T93JstzX4tLvP5y9wN0vfz7LW4oH5e\nAgGnAXcCS2nenmZjv9aWvR99fTB/Pixf3rz9TsS1a3HJ+2Xfn6n7uTdbmv1aXObzl7kbpO/n2Wtx\ngf3a/hLoZJqH5XbgriF+LXWwX2vL3o+BgeawW7gQ5s0b6ldTlGvX4pL3y74/U/dzb7Y0+7W4zOcv\nczdI38+z1+KC+w3PS6Cqan4EuA14FAj4M/B/KnO/wG5gv+KC+7F4MUycCEuXxuRlPnsQu36J1w5I\n3y/7bEndL3pvQu7Z6d4sKnu/1O8NyWdL6rXDs1dc8n7D7xJowQKYMQN6emDcOFi5sraoGcD7gdnA\nDmA7MKe2tOMy9wvsBvYrLrgfW7bA6tWweTN0d8O0abBxY315mc8exK5f4rUD0vfLPltS94vem5B7\ndro3i8reL/V7Q/LZknrt8OwVl70f0FHrz/7LWLMmLOp+huAXIHO/wG5gv+KC+zFzJgwOxuVlPnsQ\nu36J1w5I3y/7bEndL3pvQu7Z6d4sKnu/1O8NyWdL6rXDs1dc9n4Mx+8EkiRJkiRJUnFeAkmSJEmS\nJLUBL4EkSZIkSZLagJdAkiRJkiRJbcBLIEmSJEmSpDbwC18CNRqNkxqNxo5Go3HX8X/ubDQa/9Bo\nNB5rNBqbGo3GmfW9TEmSJEmSJP0qTuQ7gZYCj77qn28C7qmq6gJgM/CRki9MkiRJkiRJ5fxCl0CN\nRuM8YC7wpVf963nAV45//hXg6rIvTZIkSZIkSaX8ot8J9DngRqB61b8bXVXV0wBVVT0FvLHwa5Mk\nSZIkSVIhjaqq/u//QaPxO8C/rKrqTxuNxjuA66uqem+j0XiuqqrOV/13z1RVdc7P+fHVhz/84dKv\n++d66KGHOHbsWEgWwCmnnEJ3d3dY3oMPPshrrVdJZ511Fr/1W78VlvfP//zPYVkAU6dO5aKLLgrL\nW7VqVej6dXd3M3ny5JCsw4cP09/fz/nnnx+St2/fPsaOHcsZZ5wRknfffffxxBNPhGRB/Gx58skn\necc73hGWt3//fi688MKwvMcee4wLLrggLO+b3/wm5557bljet7/9bU499dSwvOjZ8vd///dh/V5+\n+WUuuugiTj/99JC8/fv3M2/evJAsgK1bt3L22WeH5fncUtaoUaP4jd/4jbC86Nly9tln85u/+Zsh\nWc8++yxvetObePOb3xySt3fvXl566SVnSyHZn1u+/vWv88ILL4TlRX9NFP1ctnHjRt7ylreEZA3F\nbPnrv/5rqqpqnNAPrKrq//oBfBJ4AngceBLoA24H9tH8biCAMcC+/8OPr6I+Jk+eXEW69tprw7oB\n1eLFi0P7vfe97w3t99nPfja039q1a0Pz1q9fH5p39913h2X19PRUO3fuDMtbt25ddfjw4bC8FStW\nhGVVVf7ZsmrVqtC8O+64IzSvu7s7dP2++tWvhvbLPFtuv/320LXzuaWs7M8t2WfLqFGjQvs5W8rJ\nPluyP7dk/5oo22z55je/WX384x+vPv7xj1fve9/7KqCqXuNO52c/OngNVVV9FPgoQKPRuAK4oaqq\nhY1G4zPAHwKfBv4A+PvX+rkkSZIkSZJ04t7xjnf8r++EW7VqFV/72tdO+Oc4kb8d7Gd9Criy0Wg8\nBvw/x/9ZkiRJkiRJw9BrfifQq1VVdR9w3/HPnwXeVceLkiRJkiRJUlm/yncCSZIkSZIkqUV4CSRJ\nkiRJktQGvASSJEmSJElqA14CSZIkSZIktQEvgSRJkiRJktrAsLoEGgvcC+wBdgPXRYQuWQKjR8PU\nqbVH2a+wwG4A9PbC7NkwaRJMmQK33FJvnv3Kie4Guc8e5F6/4LPn7CzMs1eM/QpzthSVuZ9nrwY+\nt5STvF/m2fKKYXUJNABcD0wGLgWuBS6oO3TRIti0qe4UwH7FBXYDoKMDli2DvXth61ZYsQL2768v\nz37lRHeD3GcPcq9f8Nlzdhbm2SvGfoU5W4rK3M+zVwOfW8pJ3i/zbHnFsLoEehp4+Pjn/cA+mjdx\ntZo1Czo7604B7FdcYDcAxoyBrq7m5yNHwoQJcOhQfXn2Kye6G+Q+e5B7/YLPnrOzMM9eMfYrzNlS\nVOZ+nr0a+NxSTvJ+mWfLK4bVJdCrnQ90AQ8M9Qupif1a3MGDsGsXTJ8+1K+kHpn7Ze6GZ6/VuX6t\nK/va2a+12a91Ze4G+ftlft8D0vfLuj+H5SXQacCdwFKat2/Z2K/F9fXB/PmwfHnz9jubzP0yd8Oz\n1+pcv9aVfe3s19rs17oyd4P8/TK/7wHp+2Xen8PuEuhkmr/YtwN3DfFrqYP9WtzAQHPYLVwI8+YN\n9aspL3O/zN3w7LU61691ZV87+7U2+7WuzN0gf7/M73tA+n7Z9+ewuwS6DXgUCPi7e36qqpofAexX\nWGA3ABYvhokTYenSmDz7lRPdDXKfPci9fsFnz9lZmGevGPsV5mwpKnM/z14NfG4pJ3m/zLMFhtkl\n0Azg/cBsYAewHZhTd+iCBTBjBvT0wLhxsHJlbVH2KyywGwBbtsDq1bB5M3R3w7RpsHFjfXn2Kye6\nG+Q+e5B7/YLPnrOzMM9eMfYrzNlSVOZ+nr0a+NxSTvJ+mWfLKzpqTzgB9zMEL2jNmrAo+xUW2A2A\nmTNhcDAuz37lRHeD3GcPcq9f8Nlzdhbm2SvGfoU5W4rK3M+zVwOfW8pJ3i/zbHnFsPpOIEmSJEmS\nJNXDSyBJkiRJkqQ24CWQJEmSJElSG/ASSJIkSZIkqQ14CSRJkiRJktQGvASSJEmSJElqA14CSZIk\nSZIktQEvgSRJkiRJktqAl0CSJEmSJEltoFFVVb0BjUb1r//1v6414xUvvfQSV199dUgWwLe+9S1e\nfPHFsLznn3+esWPHhuUdPHiQc845Jyxv1KhRXHzxxWF5jz32GBdccEFY3v79+7nwwgvD8vbt28eE\nCRNCsp599lk2b97MueeeG5L3xBNPMHfuXM4444yQvJ07d9Ld3R2SBflny8DAAJdffnlYXvRZ/+//\n/b/T0dERlvejH/2IX//1Xw/LGzlyJFOnTg3Jip4tjz/+OGeeeSannnpqSJ7PLWVlf26Jni3nnnsu\nU6ZMCcu78847Of3000Oyjhw5wtGjR50thUTPlte97nWpnyOy561bt44xY8aE5X3ve9/j7LPPDsk6\ncuQIF110EW9+85tD8vbu3cuyZcuoqqpxQj+wqqpaP5oRMVasWBGWVVVVdeutt4bmXXPNNRUQ9nHT\nTTeF9rvjjjtC89auXRuat379+tC8u+++Oyyrp6enGjFiRNje7OzsrA4fPhzWz9nibDkR0bNl/Pjx\noeu3YcOGsG7OlrKcLWVlny0+tzhbflHRs2XlypWheatWrQrNyz5bsj+37Ny5Myxv3bp1FVBVJ3hH\n428HkyRJkiRJagNeAkmSJEmSJLUBL4EkSZIkSZLagJdAkiRJkiRJbcBLIEmSJEmSpDbgJZAkSZIk\nSVIb8BJIkiRJkiSpDXgJJEmSJEmS1AaG3yXQkiUwejRMnVp/Vm8vzJ4NkybBlClwyy31Zwb2Gwvc\nC+wBdgPX1R0YuXYQv372Kyr1/nS2lOXZKyr7+qXu52wpy9lSVvJ+qfdn8tmSfW9m75f67MGQnL/h\ndwm0aBFs2hST1dEBy5bB3r2wdSusWAH799ebGdhvALgemAxcClwLXFBnYOTaQfz62a+o1PvT2VKW\nZ6+o7OuXup+zpSxnS1nJ+6Xen8lnS/a9mb1f6rMHQ3L+ht8l0KxZ0NkZkzVmDHR1NT8fORImTIBD\nh+rNDOz3NPDw8c/7gX00b1JrE7l2EL9+9isq9f50tpTl2Ssq+/ql7udsKcvZUlbyfqn3Z/LZkn1v\nZu+X+uzBkJy/4XcJNFQOHoRdu2D69KF+JbU4H+gCHhjqF1KX5OuXvV/q/enatTbXr6Wl7ufebG3J\n1y97v9T7M/na2a+1pT57ELZ+XgIB9PXB/PmwfHnz9i2Z04A7gaU0b0/TSb5+2ful3p+uXWtz/Vpa\n6n7uzdaWfP2y90u9P5Ovnf1aW+qzB6Hr5yXQwEDzF3vhQpg3b6hfTXEn0zwstwN3DfFrqUXy9cve\nL/X+dO1am+vX0lL3c2+2tuTrl71f6v2ZfO3s19pSnz0IX7/heQlUVc2PCIsXw8SJsHRpTB6E9rsN\neBQI+DP+myLXDuLXz35Fpd6fzpayPHtFZV+/1P2cLWU5W8pK3i/1/kw+W7Lvzez9Up89CF+/4XcJ\ntGABzJgBPT0wbhysXFlf1pYtsHo1bN4M3d0wbRps3FhfHoT2mwG8H5gN7AC2A3NqSyN27SB+/exX\nVOr96Wwpy7NXVPb1S93P2VKWs6Ws5P1S78/ksyX73szeL/XZgyE5fx21/uy/jDVr4rJmzoTBwbg8\nCO13P8ELHLl2EL9+9isq9f50tpTl2Ssq+/ql7udsKcvZUlbyfqn3Z/LZkn1vZu+X+uzBkJy/4fed\nQJIkSZIkSSrOSyBJkiRJkqQ24CWQJEmSJElSG/ASSJIkSZIkqQ14CSRJkiRJktQGvASSJEmSJElq\nA14CSZIkSZIktQEvgSRJkiRJktqAl0CSJEmSJEltoFFVVb0BjUb1u7/7u7VmvOKHP/whixYtCskC\n2LNnD5MnTw7L27p1K6ecckpY3oEDBzj99NPD8s4880wuu+yysLyenh5+67d+Kyzvscce44ILLgjL\n27dvHxMmTAjJeuaZZ9i5cydnnXVWSN5TTz1FX18fI0eODMlztpRVVRWXXHJJWF702YueLf/4j/9I\nZ2dnWN6OHTs499xzQ7Kef/55Ro0axdlnnx2S98wzz3DppZdyxhlnhOTt2rWLrq6ukCzIP1t8bikr\nenZ+6UtfYsyYMSFZzpayomdL5DMuwIYNG8KyIP9siX5ued3rXsekSZNCsp555hn6+vo4//zzQ/Ie\ne+wxPvnJT1JVVeOEfmBVVbV+AFXUx+TJk6tIt956a2jeypUrQ/Pe+973hq0dUH32s58N7bd27drQ\nvPXr14fm3X333WFZPT091c6dO8Pybr/99tC96Wwpa9WqVaF5d9xxR2he9tkyatSo0PMXOVvWrVtX\nHT58OCxvxYoVYVlVlX+2+NxSlrOlHGdLWc6WsrLPlsxfE61bt64CquoE72j87WCSJEmSJEltwEsg\nSZIkSZKkNuAlkCRJkiRJUhvwEkiSJEmSJKkNeAkkSZIkSZLUBrwEkiRJkiRJagNeAkmSJEmSJLUB\nL4EkSZIkSZLawLC6BBoL3AvsAXYD10WELlkCo0fD1Kn1Z/X2wuzZMGkSTJkCt9xSf2Zgv/D1i1w7\niF8/+xXjbKlB5n6evaJSvzd49srL/N7gbCkq9folP3vZ+6Xem5B+tqTvxzC7BBoArgcmA5cC1wIX\n1B26aBFs2lR3SlNHByxbBnv3wtatsGIF7N9fb2Zgv/D1i1w7iF8/+xXjbKlB5n6evaJSvzd49srL\n/N7gbCkq9folP3vZ+6Xem5B+tqTvxzC7BHoaePj45/3APpo3qbWaNQs6O+tOaRozBrq6mp+PHAkT\nJsChQ/VmBvYLX7/ItYP49bNfMc6WGmTu59krKvV7g2evvMzvDc6WolKvX/Kzl71f6r0J6WdL+n4M\ns0ugVzsf6AIeGOoXUpeDB2HXLpg+fahfSS1cvxaXuJ97s8XZr6WlPn/J1y57v9R7E1y/VpZ87bL3\nS703If36Ze03LC+BTgPuBJbSvD1Np68P5s+H5cubt4vJuH4tLnE/92aLs19LS33+kq9d9n6p9ya4\nfq0s+dpl75d6b0L69cvcb9hdAp1M87DcDtw1xK+lFgMDzc20cCHMmzfUr6Y416/FJe7n3mxx9mtp\nqc9f8rXL3i/13gTXr5UlX7vs/VLvTUi/ftn7DbtLoNuAR4GAPyP+p6qq+RFh8WKYOBGWLo3Jg9B+\n4esXuXYQv372K8bZUoPM/Tx7RaV+b/DslZf5vcHZUlTq9Ut+9rL3S703If1syd5vWF0CzQDeD8wG\ndgDbgTl1hy5YADNmQE8PjBsHK1fWl7VlC6xeDZs3Q3c3TJsGGzfWlweh/cLXL3LtIH797FeMs6UG\nmft59opK/d7g2Ssv83uDs6Wo1OuX/Oxl75d6b0L62ZK+H9BRe8IJuJ8heEFr1sRlzZwJg4NxeRDa\nL3z9ItcO4tfPfsU4W2qQuZ9nr6jU7w2evfIyvzc4W4pKvX7Jz172fqn3JqSfLen7Mcy+E0iSJEmS\nJEn18BJIkiRJkiSpDXgJJEmSJEmS1Aa8BJIkSZIkSWoDXgJJkiRJkiS1AS+BJEmSJEmS2oCXQJIk\nSZIkSW3ASyBJkiRJkqQ24CWQJEmSJElSG2hUVVVvQKNR/Zf/8l9qzXjFzp076e/vD8kCaDQa/MEf\n/EFY3iOPPMKUKVPC8u6//37e+MY3huU9//zzTJs2LSzv0UcfZeLEiWF5f/M3f8PIkSPD8i666CK6\nu7tDsg4fPkxfXx9vfvObQ/L27NnD4OAgp512Wkjed7/7Xa688sqQLIBdu3bR1dUVlhc9W/bs2cPk\nyZPD8r7yla9Q93vdq731rW9l5syZYXnRs+yb3/wmv/7rvx6S9eMf/5hvfvObjBo1KiTvmWee4d/9\nu3/HmWeeGZJ3zz330NvbG5IFPreU5nNLWW9605sYP358SFb22fLQQw/xtre9LSQL8j+3OFtaO2/v\n3r1MmjQpJCv6a6K9e/dy8803U1VV44R+YFVVtX40I2J85CMfqYCwj7lz54Z1q6qqWrlyZWjeqlWr\nQvPuuOOO0Ly1a9eG5o0fPz50f27YsCGsW09PT7Vz586wvHXr1lWHDx8Oy1uxYkVYVlVV1a233hqa\nl322XHHFFaFnL3r91q9fH5p39913h2X19PRUI0aMCFu7zs7O0Nnic0tZPreUlf25JfNs8bmlLGdL\nWdmfW6K/JgKq6gTvaPztYJIkSZIkSW3ASyBJkiRJkqQ24CWQJEmSJElSG/ASSJIkSZIkqQ14CSRJ\nkiRJktQGvASSJEmSJElqA14CSZIkSZIktQEvgSRJkiRJktrA8LsEWrIERo+GqVNrjxoL3AvsAXYD\n19WeSGg/enth9myYNAmmTIFbbqk3L7IbpO8Xvj9dv3Kiu0Hufp69sly/snxuKSf53szeL/PZg+T9\nfG4py9lSlv2KG36XQIsWwaZNIVEDwPXAZOBS4FrggrpDA/vR0QHLlsHevbB1K6xYAfv315cX2Q3S\n9wvfn65fOdHdIHc/z15Zrl9ZPreUk3xvZu+X+exB8n4+t5TlbCnLfsUNv0ugWbOgszMk6mng4eOf\n9wP7aN7y1yqwH2PGQFdX8/ORI2HCBDh0qL68yG6Qvl/4/nT9yonuBrn7efbKcv3K8rmlnOR7M3u/\nzGcPkvfzuaUsZ0tZ9itu+F0CDZHzgS7ggaF+IXU5eBB27YLp04f6ldQjeT/3ZwvL3A3S9/PstbbM\n65e5G5B+b2bvl31/pu6XfG/ar8XZrwgvgYDTgDuBpTRv9tPp64P582H58ubtYjbJ+7k/W1jmbpC+\nn2evtWVev8zdgPR7M3u/7Pszdb/ke9N+Lc5+xbT9JdDJNAf57cBdQ/xaajEw0NxMCxfCvHlD/WrK\nS97P/dnCMneD9P08e60t8/pl7gak35vZ+2Xfn6n7Jd+b9mtx9itqeF4CVVXzI8BtwKNAwJ+B/1OB\n/Vi8GCZOhKVLY/Iiu0H6fuH70/UrJ7ob5O7n2SvL9SvL55Zyku/N7P0ynz1I3s/nlrKcLWXZr6jh\ndwm0YAHMmAE9PTBuHKxcWVvUDOD9wGxgB7AdmFNb2nGB/diyBVavhs2bobsbpk2DjRvry4vsBun7\nhe9P16+c6G6Qu59nryzXryyfW8pJvjez98t89iB5P59bynK2lGW/4jpq/dl/GWvWhEXdzxD8AgT2\nY+ZMGByMy4vsBun7he9P16+c6G6Qu59nryzXryyfW8pJvjez98t89iB5P59bynK2lGW/4obfdwJJ\nkiRJkiSpOC+BJEmSJEmS2oCXQJIkSZIkSW3ASyBJkiRJkqQ24CWQJEmSJElSG/ASSJIkSZIkqQ14\nCSRJkiRJktQGvASSJEmSJElqA14CSZIkSZIktYFGVVX1BjQa1dvf/vZaM15x9OhRFi1aFJIF0NPT\nw2WXXRaWt2vXLrq6usLyVq5cybPPPhuWN2XKFP7Fv/gXYXmf//znGRwcDMubOnUqU6dODct7+umn\nw/J++MMf0tfXx1ve8paQvB07dvCNb3yD173udSF5g4OD/Kf/9J9CsgC2b9/OxRdfHJYXPVt2794d\neha2bdsWtjcB/u7v/o6TTor7/1hmzZrF9OnTw/L+4i/+gtNPPz0k68UXX2Tu3Lmcd955IXmPPvoo\nW7ZsCZst0c8t99xzD0899VRY3rnnnsvv//7vh+VFz5ZHHnmEKVOmhOXt2bOHyZMnh+Xdf//9jB8/\nPiwv+rmlt7eXc889NyQverb43FJW9q+JomdL9OyMzIv+mmjPnj385V/+JVVVNU7oB1ZVVesHUEV9\nTJ48uYp06623huatXLkyNO+9731v2NoB1Wc/+9nQft3d3aH9vvrVr4b2u/vuu8Oyenp6qp07d4bl\n3X777aFr52wpa9WqVaF5d9xxR2he9tkyatSo0H7OlnKuvfba0H6LFy8O7Zd9tqxduzY0b/369aF5\nPre07mzJ/tyS/WsiZ0s50bNl3bp1FVBVJ3hH428HkyRJkiRJagNeAkmSJEmSJLUBL4EkSZIkSZLa\ngJdAkiRJkiRJbcBLIEmSJEmSpDbgJZAkSZIkSVIb8BJIkiRJkiSpDXgJBw1kFwAAIABJREFUJEmS\nJEmS1AaG1SXQWOBeYA+wG7guInTJEhg9GqZOrT+rtxdmz4ZJk2DKFLjllvozA/uFr1/k2pG/X/j+\nzLw3wdlSUuK9CflnS+Z+2WdL9n7ZZ4v9CvPslZP8uSXz+x6Q+uwB+fsxzC6BBoDrgcnApcC1wAV1\nhy5aBJs21Z3S1NEBy5bB3r2wdSusWAH799ebGdgvfP0i1478/cL3Z+a9Cc6WkhLvTcg/WzL3yz5b\nsvfLPlvsV5hnr5zkzy2Z3/eA1GcPyN+PYXYJ9DTw8PHP+4F9NG9SazVrFnR21p3SNGYMdHU1Px85\nEiZMgEOH6s0M7Be+fpFrR/5+4fsz894EZ0tJifcm5J8tmftlny3Z+2WfLfYrzLNXTvLnlszve0Dq\nswfk78cwuwR6tfOBLuCBoX4hdTl4EHbtgunTh/qV1CL7+mXvl3l/unYtLnm/7Pszc7/M3SB/v+yz\nxX6ty7PX2ly/Fpe037C8BDoNuBNYSvP2NJ2+Ppg/H5Yvb94uJpN9/bL3y7w/XbsWl7xf9v2ZuV/m\nbpC/X/bZYr/W5dlrba5fi0vcb9hdAp1M87DcDtw1xK+lFgMDzc20cCHMmzfUr6a47OuXvV/m/ena\ntbjk/bLvz8z9MneD/P2yzxb7tS7PXmtz/Vpc8n7D7hLoNuBRIODPiP+pqmp+RFi8GCZOhKVLY/Ig\ntF/4+kWuHfn7he/PzHsTnC0lJd6bkH+2ZO6XfbZk75d9ttivMM9eOcmfWzK/7wGpzx6Qvt+wugSa\nAbwfmA3sALYDc+oOXbAAZsyAnh4YNw5Wrqwva8sWWL0aNm+G7m6YNg02bqwvD0L7ha9f5NqRv1/4\n/sy8N8HZUlLivQn5Z0vmftlnS/Z+2WeL/Qrz7JWT/Lkl8/sekPrsAfn7AR21J5yA+xmCF7RmTVzW\nzJkwOBiXB6H9wtcvcu3I3y98f2bem+BsKSnx3oT8syVzv+yzJXu/7LPFfoV59spJ/tyS+X0PSH32\ngPz9GGbfCSRJkiRJkqR6eAkkSZIkSZLUBrwEkiRJkiRJagNeAkmSJEmSJLUBL4EkSZIkSZLawC98\nCdRoNE5qNBo7G43GXcf/+eONRqO30WjsOP5xVX0vU5IkSZIkSb+KE/nb65YCe4EzXvXvllVVtazs\nS5IkSZIkSVJpv9B3AjUajfOAucCXfvZ/Kv6KJEmSJEmSVNwv+tvBPgfcCFQ/8+//tNFo7Go0Gl9q\nNBpnln1pkiRJkiRJKqVRVT97r/Mz/0Gj8TvAv6yq6k8bjcY7gOurqnpvo9F4A3C4qqqq0WjcDLyp\nqqolP+fHV+973/v+1z9PmDCBCRMmFC3xig0bNvDII4/U8nP/PKNHj2bp0qVheV/+8pf5zne+E5Y3\nefJk3vOe94TlrVixgueffz4s7/LLL2fmzJlheZ/4xCc46aS4P4v96quv5rd/+7dDsn7wgx/wyU9+\nkte//vUheS+//DI33HADI0eODMlztpQ1bdo05s+fH5a3c+dOuru7w/K2bdvGpEmTwvIOHDjAtGnT\nwvK2bt3K5MmTQ7IOHz7M8uXLnS2FjBo1ig984ANhebt37w59n92xY0foWYieLbt27aKrqyss76Mf\n/WhYFsQ/t7zwwguMHz8+JG/nzp2MGTMm7WzJ/tyS/WuiK6+8kne+851hedlnS91fE/X399Pf3w/A\n4OAgzz33HFVVndjv0Kqq6v/6AXwSeAJ4HHgS6AP+7mf+m/OB3f+HH19F+chHPlLR/G6lkI+5c+eG\ndauqqrrmmmtC+910002h/a644orQfrfeemtov/Hjx4f227BhQ1i3np6easSIEWHdOjs7q8OHD4f1\nc7aU/YieLXfccUdo3tq1a0Pz1q9fH5p39913h2U5W1p7tqxcuTI0b9WqVaF52WdL9ueWnTt3huWt\nW7fO2VJQ9ucWvyZq7dkS/dwCVNVr3On87MdrfltCVVUfrapqXFVVvwH8HrC5qqp/22g0xrzqP/tX\nwJ7X+rkkSZIkSZI0NE7kbwf7WZ9pNBpdwDHgIPBHRV6RJEmSJEmSijuhS6Cqqu4D7jv++b+t5RVJ\nkiRJkiSpuLg/pVaSJEmSJElDxksgSZIkSZKkNuAlkCRJkiRJUhvwEkiSJEmSJKkNeAkkSZIkSZLU\nBobfJdCSJTB6NEydWnvUWOBeYA+wG7iu9kRy9wvsBvYrzn7FOFsKC96b9PbC7NkwaRJMmQK33FJv\nnv2Kyrw/s8+W7Hsze7/MZw9IvX7ZZ0v2vWm/wrL3YzheAi1aBJs2hUQNANcDk4FLgWuBC+oOzdwv\nsBvYrzj7FeNsKSx4b9LRAcuWwd69sHUrrFgB+/fXl2e/ojLvz+yzJfvezN4v89kDUq9f9tmSfW/a\nr7Ds/RiOl0CzZkFnZ0jU08DDxz/vB/bRvImrVeZ+gd3AfsXZrxhnS2HBe5MxY6Crq/n5yJEwYQIc\nOlRfnv2Kyrw/s8+W7Hsze7/MZw9IvX7ZZ0v2vWm/wrL3YzheAg2R84Eu4IGhfiE1sV9rs1/rytwN\n8vfj4EHYtQumTx/qV1KP5P0y78/M3YD0ezN7P/dn68q+dvZrbfYrw0sg4DTgTmApzdu3bOzX2uzX\nujJ3g/z96OuD+fNh+fLm/+ubTfJ+mfdn5m5A+r2ZvZ/7s3VlXzv7tTb7ldP2l0An0/zFvh24a4hf\nSx3s19rs17oyd4P8/RgYaD7kL1wI8+YN9aspL3m/zPszczcg/d7M3s/92bqyr539Wpv9yhqel0BV\n1fwIcBvwKFDzn+///5e5X2A3sF9x9ivG2VJY8N5k8WKYOBGWLo3Js19Rmfdn9tmSfW9m75f57AGp\n1y/7bMm+N+1XWPJ+w+8SaMECmDEDenpg3DhYubK2qBnA+4HZwA5gOzCntrTjMvcL7Ab2K85+xThb\nCgvem2zZAqtXw+bN0N0N06bBxo315dmvqMz7M/tsyb43s/fLfPaA1OuXfbZk35v2Kyx7P6Cj5p//\nxK1ZExZ1P0PwC5C5X2A3sF9x9ivG2VJY8N5k5kwYHIzLs19Rmfdn9tmSfW9m75f57AGp1y/7bMm+\nN+1XWPZ+DMfvBJIkSZIkSVJxXgJJkiRJkiS1AS+BJEmSJEmS2oCXQJIkSZIkSW3ASyBJkiRJkqQ2\n4CWQJEmSJElSG/ASSJIkSZIkqQ14CSRJkiRJktQGvASSJEmSJElqAx0RId/4xjciYjhy5Ahf+9rX\nQrIAbrvtNs4777ywvO7u7tB+Dz74YNjaAcyaNYv/8B/+Q1jezp07Q/stWLCAadOmheV98IMfpNFo\nhGQNDAzwV3/1V7z1rW8NyXvooYf4h3/4B84888yQPGdLWdGzZd++faF5f/7nf86HPvShsLxrrrmG\nk06K+/90HnroIY4dOxaS9dRTT3HzzTczfvz4kDxnS1kXX3wxb3zjG8PyvvCFL/Bnf/ZnYXnvec97\nGDlyZFjeI488wogRI8Lyop9bHnroobDnlqeeeooXXniB73//+yF5DzzwAP/+3/97OjpCvvTirLPO\nSj1bsj+3+DVRWZm/JvrWt77FsmXLTvjHhUyiuXPnRsRw8OBBrr766pAsgHvuuYf169eH5c2ZMye0\nX39/f9jaAfT19YX2O3bsWGi/Y8eO8e53vzss7wMf+ACHDx8Oy7vyyivp6uoKyaqqissvv5xzzjkn\nJM/ZUtZQzJbIvP/8n/8zhw4dCsu7+OKLQ/uddNJJXHXVVSFZBw4coL+/39lSyFDMlsi9+YUvfCH0\n7P3mb/5maL8jR46kfm4ZMWJE2tny7LPP8vTTT4dkAXR2dqafLdmfW/yaqJzMXxP19fX9Uj/O3w4m\nSZIkSZLUBrwEkiRJkiRJagNeAkmSJEmSJLUBL4EkSZIkSZLagJdAkiRJkiRJbcBLIEmSJEmSpDbg\nJZAkSZIkSVIb8BJIkiRJkiSpDQyvS6DeXpg9GyZNgilT4JZb6s9csgRGj4apU2uPGgvcC+wBdgPX\n1Z5IaL/w9YvsBun7he/PzHsTnC0lefbKcnaW42wpL3M/z15Zift59mqQ+b3Bs1dU+vcGhtslUEcH\nLFsGe/fC1q2wYgXs319v5qJFsGlTvRnHDQDXA5OBS4FrgQvqDg3sF75+kd0gfb/w/Zl5b4KzpSTP\nXlnOznKcLeVl7ufZKytxP89eDTK/N3j2ikr/3sBwuwQaMwa6upqfjxwJEybAoUP1Zs6aBZ2d9WYc\n9zTw8PHP+4F9NG8aaxXYL3z9IrtB+n7h+zPz3gRnS0mevbKcneU4W8rL3M+zV1bifp69GmR+b/Ds\nFZX+vYHhdgn0agcPwq5dMH36UL+SWpwPdAEPDPULqUvy9cveL/X+dO1am+vX2jKvX+Zu5N+b2ftl\n35+Z+2Xfm9n7Zd6bQPp+Wffn8LwE6uuD+fNh+fLm7WIypwF3Aktp3i6mk3z9svdLvT9du9bm+rW2\nzOuXuRv592b2ftn3Z+Z+2fdm9n6Z9yaQvl/m/Tn8LoEGBpqbaeFCmDdvqF9NcSfT3Ey3A3cN8Wup\nRfL1y94v9f507Vqb69faMq9f5m7k35vZ+2Xfn5n7Zd+b2ftl3ptA+n7Z9+fwuwRavBgmToSlS+My\nq6r5EeA24FEg4O8P+anAfuHrF9kN0vcL35+Z9yY4W0ry7JXl7CzH2VJe5n6evbIS9/Ps1SDze4Nn\nr6js7w3D6xJoyxZYvRo2b4bubpg2DTZurDdzwQKYMQN6emDcOFi5sraoGcD7gdnADmA7MKe2tOMC\n+4WvX2Q3SN8vfH9m3pvgbCnJs1eWs7McZ0t5mft59spK3M+zV4PM7w2evaLSvzcAHbUnnIiZM2Fw\nMDZzzZqwqPsZgl/wwH7h6xfZDdL3C9+fmfcmOFtK8uyV5ewsx9lSXuZ+nr2yEvfz7NUg83uDZ6+o\n9O8NDLfvBJIkSZIkSVItvASSJEmSJElqA14CSZIkSZIktQEvgSRJkiRJktqAl0CSJEmSJEltwEsg\nSZIkSZKkNuAlkCRJkiRJUhvwEkiSJEmSJKkNdESE9PX1RcRw5MiRsCyAn/zkJ2FZAEePHg3tF/3r\n+dJLL6XO6+/vD807duxYWBbE9ntl7X7t134tJM/ZUlb22TI4OBiWBfGzJTKvv7/f2VJQ9tly9OjR\nsCzIP8ucLeW89NJLITmvGBwcdLYUlP2sZ58t2b8m+mWEXAJt3749Iobt27czduzYkCyAqVOnsnnz\n5rC8e++9N+zXEqC3tzc073Of+xwf+tCHwvL++I//mPPOOy8s7/HHHw/99bzhhhu49NJLQ7J6e3uZ\nO3duSBbAiBEj+OIXv8hZZ50Vkvf9738/dO3e8IY3OFsKeuKJJ0Lz5s+fz+c///mwvG3btoX26+np\nYdSoUSFZvb299PX1MTAwEJL3+OOPc9pppzlbComeLZdccgk33nhjWN6HP/xhPvOZz4TlZX9uiZ4t\nf/InfxKSBc3nlnXr1oXNli9+8Yt+TVSQXxOVdeONN/LBD34wLO+GG27gsssuC8nq7e1lz549Yc8t\nT/9/7d1vsJTlmefx7y0HplZAOYBi1AE1k6iABNCNFcDEsNlhKolhskVNJqYo/81WXmQdajOVWnd8\nYaUq2ehmyy2suPmzo8YxujuzpIgku8UZE2K2QKIEA8rBIyd/EGUNGhUjhxgB733RrSKCAnP31d13\nfz9VVNoOx+v5nft+rufpyz59du06rq8LGQJ96EMfiijDwMAAv/vd70JqAZx00kl8+MMfDqv3xBNP\nhH0vobGJI+tNmDAhdP3e8573hOZ76aWXQuv9/ve/D9ufw8PDvPLKK7z88ssh9UaNGsWCBQuYNGlS\nSL3BwcHQtRseHra3FLRr167Qes8991zo+o2MjIT3lqh6w8PDjIyMMHv27JB6zz//vL2loHb0lsh8\n3reUFd1bou9bPvjBD4b1lvvuu8/XRAX5mqisMWPGhOa78MILQ18TRd+3HA8/E0iSJEmSJKkHOASS\nJEmSJEnqAQ6BJEmSJEmSeoBDIEmSJEmSpB7gEEiSJEmSJKkHOASSJEmSJEnqAQ6BJEmSJEmSekDn\nDYGuuQamTIFZs1pe6gzgR8AW4BHg2pZXJDQfTz0FCxfCjBlwwQVwyy2trReZjTasX3A+16+wms89\nqDuf515Z5iur5nMP6s7nda8s168sXxOV494sy3xlteHa3nlDoKuugoGBkFL7gc8DM4EPAJ8Dzm11\n0cB89PXBzTfD4CCsXw+33gpDQ62rF5mNNqxfcD7Xr7Cazz2oO5/nXlnmK6vmcw/qzud1ryzXryxf\nE5Xj3izLfGW14dreeUOgBQugvz+k1C5gc/PxCPAYjUljSwXm47TTYPbsxuNx4+D882HnztbVi8xG\nG9YvOJ/rV1jN5x7Unc9zryzzlVXzuQd15/O6V5brV5avicpxb5ZlvrLacG3vvCFQm0wDZgMPtvtA\nWmX7dti0CS6+uN1H0hKuX3erev0qXzvzdTnzda+as0H1+aq+7oHr18Vqzga4N7tc7fmi9qdDIGAs\nsAJYRmO6WJ09e2DJEli+vDFdrIzr192qXr/K1858Xc583avmbFB9vqqve+D6dbGaswHuzS5Xe77I\n/dnzQ6BRNDbTXcCqNh9LS+zf39hMS5fC4sXtPpriXL/uVvX6Vb525uty5uteNWeD6vNVfd0D16+L\n1ZwNcG92udrzRe/PzhwC5dz4E+B2YCsQ8Ps13hCYj6uvhunTYdmymHqR2WjD+gXnc/0Kq/ncg7rz\nee6VZb6yaj73oO58XvfKcv3K8jVROe7NssxXVvD+7Lwh0OWXw7x5sG0bTJ0Kd9zRslLzgM8AC4GH\ngY3AopZVawrMx7p1cPfdsGYNzJkDc+fC6tWtqxeZjTasX3A+16+wms89qDuf515Z5iur5nMP6s7n\nda8s168sXxOV494sy3xlteHa3tfSf/vxuOeesFIP0IZvQGA+5s+HAwfi6kVmow3rF5zP9Sus5nMP\n6s7nuVeW+cqq+dyDuvN53SvL9SvL10TluDfLMl9Zbbi2d947gSRJkiRJklScQyBJkiRJkqQe4BBI\nkiRJkiSpBzgEkiRJkiRJ6gEOgSRJkiRJknqAQyBJkiRJkqQe4BBIkiRJkiSpBzgEkiRJkiRJ6gEO\ngSRJkiRJknpAX0SRtWvXRpRh+/btIXVes3v37rBsAL/4xS9C6w0PD4fW2717d1gtgF/+8peh+QYH\nB5kwYUJYvc2bNzNu3LiQWjt27ODAgQMhtQD27dvH+vXrw76f0Xslul7tveXxxx8PrTc0NGRvKWTH\njh2MjIywZ8+ekHpbtmxh9OjR9pZCau8t3reU5X1LOb4mKsveUtbevXvDagE88sgjnHzyySG12nHf\ncjxChkBnnnlmRBmmT5/Or3/965BaANdffz2XXHJJWL1PfepTYd9LgPvvv58vfvGLYfWuv/56vve9\n74XVGxgYCP1+Tp48ObTeKaecElZv3759rFy5khkzZoTUW716NWeccQb9/f0h9fr7+0PXrvZ67egt\nkfkmTZpUdW/5yle+wosvvhhW7/vf/35YvhNPPJHLLrsspBbAeeedx7XXXhtWb8eOHd63FOR9S1nt\n6C0zZ84MqRV93+JrorJq7y2LFi3ixhtvDKv3ta99jY997GNh9dasWRP6mmjv3r2h9y3HI2QIdNZZ\nZ0WUYeLEiWG1gLBG/pqxY8eG5ouamL6mv78/NN8pp5wSWm/KlCmh9U4//fSwevv27WNkZCSs3pQp\nU5g6dSqTJk0KqRfdW6LrTZo0yd5SUO29ZfTo0WG1oPEfkiJ7S6S+vj7vWwqyt5Rlbymn9vsWe0tZ\n0b1l7NixYbUATj31VF8TFXK89y1+JpAkSZIkSVIPcAgkSZIkSZLUAxwCSZIkSZIk9QCHQJIkSZIk\nST3AIZAkSZIkSVIPcAgkSZIkSZLUAxwCSZIkSZIk9YDOGgI99RQsXAgzZsAFF8Att7S+5jXXwJQp\nMGtWy0udAfwI2AI8Alzb8orUnS8wGxC/P81XTuW9pfZ89pbCgvPVvH5e11ug5nz2lqKqXj+v6+XV\nnM9zr6zKeyd02hCorw9uvhkGB2H9erj1Vhgaam3Nq66CgYHW1mjaD3wemAl8APgccG6ri9acLzAb\nEL8/zVdO5b2l9nz2lsKC89W8fl7XW6DmfPaWoqpeP6/r5dWcz3OvrMp7J3TaEOi002D27MbjcePg\n/PNh587W1lywAPr7W1ujaRewufl4BHiMxiS1pWrOF5gNiN+f5iun8t5Sez57S2HB+WpeP6/rLVBz\nPntLUVWvn9f18mrO57lXVuW9EzptCHSw7dth0ya4+OJ2H0lLTANmAw+2+0BapPZ8te/PqvPVnA2q\nz2dv6W41r1/N2cB8Xc/e0r1cu65mvi5X6fnXmUOgPXtgyRJYvrwxfavMWGAFsIzG9LQ2teerfX9W\nna/mbFB9PntLd6t5/WrOBubrevaW7uXadTXzdbmKz7/OGwLt39/4Zi9dCosXt/toihtF42S5C1jV\n5mNphdrz1b4/q85XczaoPp+9pbvVvH41ZwPzdT17S/dy7bqa+bpc5edf5w2Brr4apk+HZcviaubc\n+BPgdmArEPAZ/2+oOV9gNiB+f5qvnMp7S+357C2FBeeref28rrdAzfnsLUVVvX5e18urOZ/nXlmV\n987OGgKtWwd33w1r1sCcOTB3Lqxe3dqal18O8+bBtm0wdSrccUfLSs0DPgMsBB4GNgKLWlatqeZ8\ngdmA+P1pvnIq7y2157O3FBacr+b187reAjXns7cUVfX6eV0vr+Z8nntlVd47AfpaXuFYzJ8PBw7E\n1rznnrBSD9CGb3jN+QKzAfH703zlVN5bas9nbyksOF/N6+d1vQVqzmdvKarq9fO6Xl7N+Tz3yqq8\nd0KnvRNIkiRJkiRJLeEQSJIkSZIkqQc4BJIkSZIkSeoBDoEkSZIkSZJ6gEMgSZIkSZKkHuAQSJIk\nSZIkqQc4BJIkSZIkSeoBDoEkSZIkSZJ6gEMgSZIkSZKkHtAXUeS2226LKMPGjRvDagE88cQTnH32\n2WH1nnzySW666aawek8//XRovi1btoSu3+DgIC+88EJovV27doXV27JlCzt37gyp9cwzzzAyMsLG\njRtD6m3evJnt27dz0kknhdR76KGHeOmll0JqATz66KOklMLqrV+/PnRv2lvK14tcv5NPPpnx48eH\n1Nq/fz8rVqwI6y0bNmxg6tSpjBo1KqTe6NGjvW8pKLq3/PSnPw3N9+STT4b2lgceeIDBwcGweuPH\njw/tLd/61reYNm1aSL1HH320+vuWyHPv2WefDe2dL774YtX3LUBovlWrVvGrX/0qrN7OnTurfU20\nYcOG4/q6kCHQ0qVLI8qwZ8+esFoAr7zyCt/97nfD6l1xxRVcd911YfW+8IUv8KUvfSms3ooVK1iy\nZElYvZUrV/LJT34yrN4PfvADPv7xj4fVGxgYYNGiRSG1hoeH2bt3L+973/tC6o0fP55LLrmESZMm\nhdQbGhoKPfcWLVoU2st++MMf2lsKqr23nHrqqVX3lhtuuCGst3z961/3vqWg6N7ykY98JDRf9H75\n8pe/zO233x5Wb+XKlXz0ox8NqTU8PMxFF13Eyy+/HFKvv7+fr371q1XftwwNDYXVu/POO0PPhb6+\nPj796U+H1Yu+bxk3blzofct5553Hd77znbB60b0l+r7lm9/85jF/XcgQaMyYMRFlGD16dFitdtTr\n6wtZrteNGjUqPF/N6zdmzJhq840ZM4Z9+/aFn+uR9SK149yLZG8py95STjt6S61rB/X3lhNOiP1U\nheheFp0vurdE876lnHb0sprrRX8/a+8t0fctx8PPBJIkSZIkSeoBDoEkSZIkSZJ6gEMgSZIkSZKk\nHuAQSJIkSZIkqQc4BJIkSZIkSeoBDoEkSZIkSZJ6gEMgSZIkSZKkHtB5Q6BrroEpU2DWrNbXeuop\nWLgQZsyACy6AW25pfc3AfGcAPwK2AI8A17a6YOTaQfz6ma+sivOFn3tQdz73ZlnmK8v7lmJq7y3m\nK8x8xdR+31L1dQGqz1fzuQe05dreeUOgq66CgYGYWn19cPPNMDgI69fDrbfC0FBrawbm2w98HpgJ\nfAD4HHBuKwtGrh3Er5/5yqo4X/i5B3Xnc2+WZb6yvG8ppvbeYr7CzFdM7fctVV8XoPp8NZ97QFuu\n7Z03BFqwAPr7Y2qddhrMnt14PG4cnH8+7NzZ2pqB+XYBm5uPR4DHaExSWyZy7SB+/cxXVsX5ws89\nqDufe7Ms85XlfUsxtfcW8xVmvmJqv2+p+roA1eer+dwD2nJt77whULts3w6bNsHFF7f7SFpiGjAb\neLDdB9Iqla+f+bpX7ede7flq3puA+bpZzdmov7eYr7vVnK/mbED1vbP2fO7PMhwCAezZA0uWwPLl\njelbZcYCK4BlNKan1al8/czXvWo/92rPV/PeBMzXzWrORv29xXzdreZ8NWcDqu+dtedzf5bjEGj/\n/sY3e+lSWLy43UdT3CgaJ8tdwKo2H0tLVL5+5utetZ97teereW8C5utmNWej/t5ivu5Wc76aswHV\n987a87k/y+rMIVDOjT8Rrr4apk+HZcti6kFovtuBrUDA7w9piFw7iF8/85VVcb7wcw/qzufeLMt8\nZXnfUkztvcV8hZmvmNrvW6q+LkD1+Wo+94Dw9eu8IdDll8O8ebBtG0ydCnfc0bpa69bB3XfDmjUw\nZw7MnQurV7euHoTmmwd8BlgIPAxsBBa1rBqxawfx62e+sirOF37uQd353Jtlma8s71uKqb23mK8w\n8xVT+31L1dcFqD5fzece0JZre19L/+3H45574mrNnw8HDsTVg9B8DxC8wJFrB/HrZ76yKs4Xfu5B\n3fncm2WZryzvW4qpvbeYrzDzFVP7fUvV1wWoPl/N5x7Qlmt7570TSJIkSZIkScU5BJIkSZIkSeoB\nDoEkSZIkSZJ6gEMgSZIkSZKkHuAQSJIkSZIkqQcc1Qdtp5S2Ay/Bks58AAAHPklEQVQCrwL7cs7v\nTyn1A/8ATAO2A3+Rc36xRccpSZIkSZKkf4ajfSfQq8ClOec5Oef3N5+7DvhhzvlcYA3wH1txgOod\ng4OD7T4EdZG1a9e2+xDUJewtOhb2Fh2t3bt3t/sQ1EXsLTpa3reo1Y52CJQO83cXA3c2H98J/Hmp\ng1Jv2rp1a7sPQV1k3bp17T4EdQl7i46FvUVHyyGQjoW9RUfL+xa12tEOgTJwX0ppQ0rpr5rPTck5\n7wLIOf8GOLUVByhJkiRJkqR/vpRzfue/lNK7cs5Pp5ROAf4J+Gvg3pzzxIP+znM550mH+dr8jW98\no+QxH9HDDz/M3LlzQ2oBrF+/nokTJ77zXyxkw4YNHM16lfLud7+befPmhdX79re/zZVXXhlW78c/\n/jGnn356WL0//OEPzJo1K6ze6tWrOfvss0NqPf/887zrXe/irLPOCqk3ODjI2rVrufTSS0Pq/exn\nP+PVV18NqQUwYcIELrvssrB6AwMDPPPMM2H1au8t27Zt473vfW9Yvccff5xzzz03rJ69pZyhoSEW\nL14cUgvqv2+ZMGFC6Lm3YsUKpk6dGlZv8uTJnHPOOWH11q5dy5gxY8LqzZkzh5kzZ4bU+u1vf8u9\n994blm///v2MHz+eJUuWhNT7yU9+wo4dO0JqQfx9y9atW5k+fXpYvXXr1jF58uSwevfffz+f/exn\nw+pFvyaqvbeMjIwwbdq0kHqPPfYYy5cvJ+ecjuXrjmoI9KYvSOkGYA/wVzQ+J2hXSuk04Mc55/MP\n8/fjrv6SJEmSJEk94liHQO/428FSSicCJ+Sc96SUxgJ/CnwRWAVcCdwEXAHcW+KAJEmSJEmSVN47\nvhMopXQ2sJLG5wL1AXfnnG9MKU0E/hH4Y+AJGr8i3k/IkyRJkiRJ6kDH/ONgkiRJkiRJ6j5H+9vB\njllK6c9SSkMppW0ppf/QqjqqQ0ppe0ppc0rp5ymlh9p9POosKaXbUkq7UkqPHPRcf0rpn1JKj6eU\nBlJKJ7fzGNUZjrBXbkgpPZVSerj558/aeYzqDCmlM1NKa1JKgymlR1NKf9183t6itzjMfrm2+bz9\nRW+SUvqjlNKDzXvawZTSf2o+b2/RW7zNfrG36LBSSic098Sq5j8fc29pyTuBUkonANuAfwX8P2AD\n8Jc556HixVSFlNKvgAtzzi+0+1jUeVJKC2h8IP3f55xnNZ+7CXgu5/yfm4Pm/pzzde08TrXfEfbK\nDcBLOeeb23pw6ijNX2pxWs55U0ppHLARWAxchb1Fh3ib/fIp7C86RErpxJzz3pTSKGAd8DfAJ7C3\n6DCOsF8+gr1Fh5FS+vfAhcBJOedPHM9rola9E+j9wHDO+Ymc8z7gf9K4UEpHkmjhO9PU3XLOa4FD\nB4SLgTubj+8E/jz0oNSRjrBXoNFjpNflnH+Tc97UfLwHeAw4E3uLDuMI++WM5v9tf9Gb5Jz3Nh/+\nEY372xewt+gIjrBfwN6iQ6SUzgQ+CvzdQU8fc29p1YvuM4AnD/rnp3jjQikdTgbuSyltSCn923Yf\njLrCqTnnXdC4OQdObfPxqLP9u5TSppTS3/kWfB0qpXQWMBv4KTDF3qK3c9B+ebD5lP1Fb9L8cY2f\nA78B7s85b8XeoiM4wn4Be4ve6r8CX6Dx2vk1x9xbfOeFOsX8nPNcGpPNzzV/pEM6Fn7KvY7kvwHn\n5Jxn07jB8q3Vel3zR3tWAMua7/A4tJfYW/S6w+wX+4veIuf8as55Do13F16SUroUe4uO4JD98sGU\n0oewt+gQKaWPAbua70p9u3eJvWNvadUQaCcw9aB/PrP5nHRYOeenm//7LLCSxo8USm9nV0ppCrz+\nWQ3PtPl41KFyzs/mNz4A778D/7Kdx6POkVLqo/GC/q6c873Np+0tOqzD7Rf7i95Ozvl3wP8BLsLe\nonfQ3C//G7jI3qLDmA98ovlZuv8DWJhSugv4zbH2llYNgTYAf5JSmpZSGgP8JbCqRbXU5VJKJzb/\nyxoppbHAnwJb2ntU6kCJN0+9VwFXNh9fAdx76BeoZ71przQviK/5N9hf9Ibbga055+UHPWdv0ZG8\nZb/YX3SolNLk1350J6X0L4B/Dfwce4sO4wj7ZZO9RYfKOf9tznlqzvkcGvOVNTnnpcD3Ocbe0pLf\nDgaNXxEPLKcxaLot53xjSwqp66WUzqbx7p8M9AF3u190sJTSPcClwCRgF3AD8D3gfwF/DDwB/EXO\neXe7jlGd4Qh75cM0Pr/jVWA78NnXfnZavSulNB/4v8CjNK4/Gfhb4CHgH7G36CBvs18ux/6ig6SU\nLqDx4ayv/dKTu3LO/yWlNBF7iw7xNvvl77G36AiaPzL4N83fDnbMvaVlQyBJkiRJkiR1Dj8YWpIk\nSZIkqQc4BJIkSZIkSeoBDoEkSZIkSZJ6gEMgSZIkSZKkHuAQSJIkSZIkqQc4BJIkSZIkSeoBDoEk\nSZIkSZJ6gEMgSZIkSZKkHvD/AU4aXvJxObdzAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x120807190>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "state_overlay_diagram(tiling_field, tiling_states.get_causal_field(), t_min = 10, t_max = 50, x_max = 40)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.68002562571\n", "0.739440226292\n", "0.739599303525\n" ] } ], "source": [ "print tiling_states.entropy_rate('forward')\n", "print tiling_states.entropy_rate('right')\n", "print tiling_states.entropy_rate('left')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "rule 18 domain" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "np.random.seed(0)\n", "domain = ECA(18,domain_18(600))\n", "domain.evolve(600)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "np.random.seed(0)\n", "domain_states = epsilon_field(domain.get_spacetime())\n", "domain_states.estimate_states(3,3,1, alpha = 0.05)\n", "domain_states.filter_data()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3\n" ] } ], "source": [ "print domain_states.number_of_states()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAR9CAYAAADBZlejAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtwVed99v1rYXEwlgEBNgp2iB0ajCQkS4oJDhCbw+Mh\nxQk4T2kzxaYxop52xk/L9M14BtszbXpOGw8tNGqaQKpxDczYMTgJtMCDIwVcgRsThAHZQqQYiAiy\nLR8AYZARWu8fGzW8Huc1kHv99l6/9f3M7LF8QNe+dK/7t5fu2ZKjOI4FAAAAAAAA3wbk+wkAAAAA\nAAAgeRwCAQAAAAAAZACHQAAAAAAAABnAIRAAAAAAAEAGcAgEAAAAAACQARwCAQAAAAAAZMBHHgJF\nUfTdKIpej6Jo3yX/rCSKov8bRdHBKIq2RlE0PNmnCQAAAAAAgF/H5bwTqEHSnA/8s2WSno/j+DZJ\njZIeDf3EAAAAAAAAEE4Ux/FH/0dR9AlJG+M4rrr4922S7o7j+PUoikol/TiO44nJPlUAAAAAAABc\nrav9nUA3xnH8uiTFcdwp6cZwTwkAAAAAAAChhfrF0B/9diIAAAAAAADkTdFV/rnXoygac8mPg73x\nq/7DKIo4IAIAAAAAAAgsjuPoSv77y30nUHTx0e+Hkh68+PFXJP3gSkKTMmnSJMVxbPZ4+OGHTfvV\n1dWZ9luzZo1p3oIFC0zzampqTNfvmWeeMe03evRo034tLS1m3TZs2KBHHnnELK++vt507bzPlnnz\n5pn2u+eee0z7rV+/3jRv48aNpnmeZ8tTTz1l2o37lrAP7lvC4r4l3MP7fcuqVatM8xoaGkzzmC1h\nWc+WzZs3m2W1t7en4r7lcv4X8esk7ZQ0IYqiY1EULZb0dUn3RFF0UNLsi38PAAAAAACAAvWRPw4W\nx/HCX/Gv/lfg5wIAAAAAAICEhPrF0MCvrby8PN9PASkybdq0fD8FpMT48ePz/RQAOMR9C64E9y24\nXMwWJI1DIBSMioqKfD8FpMj06dPz/RSQEr/xG7+R76cAwCHuW3AluG/B5WK2IGkcAgEAAAAAAGQA\nh0AAAAAAAAAZwCEQAAAAAABABhTcIdBqSZ2SXrYI6+iQZs2SKiqkykpp5crEI133W7JEGjNGqqpK\nNqefcT/TtZOknh5pyhSppibX8bHHEo0z7+f5+mS2BMW1GZj39fM8O5ktYbH3wqJfWM7vW1z3Y7aE\nxfoFV3CHQA2S5liFFRVJy5dLra3Srl1Sfb3U1pZopOt+ixdLW7cm9/k/yLif6dpJ0uDBUlOT1NIi\n7dsnNTZKzc2JxZn383x9MluC4toMzPv6eZ6dzJaw2Hth0S8s5/ctrvsxW8Ji/YIruEOgZknvWIWV\nlkrV1bmPi4ulsjLp+PFEI133mz5dKilJ7vN/kHE/07XrN3Ro7q89PVJfX6JfX/N+nq9PZktQXJuB\neV8/ye/sZLaExd4Li35hOb9vcd2P2RIW6xdcwR0C5c2RI9Levbm3kHtEv3Tq68v9SENpqTRjhlRe\nnu9nlAyv6yf57ibRL+289svC7PS6dv3ol270Sy/P3ST6pR39guAQSJK6u6UFC6QVK3Knb97QL70G\nDMj9SENHh7Rjh7R9e76fUXie189zN4l+aee5n/fZ6XntJPqlHf3Sy3M3iX5pR79gOATq7c19sRct\nkubPz/ezCY9+PgwbJt17r7R7d76fSVie189zN4l+aee9Xz+Ps9P72tEv3eiXXp67SfRLO/oFVZCH\nQNHFh4m6utzbxJcutUr03S+Ocw8rxv1M166rSzp5Mvfx2bPStm2//HnRhJj2k3xfn8yWoLg2A/O8\nft5nJ7MlLPZeWPQLy/l9i+t+zJawWL+gCu4QaK2knZImSDoq6cEkw5qbpbVrc//nkJoaqbZW2rIl\nyUTf/RYulKZOldrbpXHjpIaG5LIk836maydJJ05IM2fmut15pzRvnjR7dmJx5v08X5/MlqC4NgPz\nvn6eZyezJSz2Xlj0C8v5fYvrfsyWsFi/4IoS/exX4X7LsGnTpAsXLBN991u3zi5LMu9nunaSVFkp\n7dljFmfez/P1yWwJimszMO/r53l2MlvCYu+FRb+wnN+3uO7HbAmL9Quu4N4JBAAAAAAAgPA4BAIA\nAAAAAMgADoEAAAAAAAAygEMgAAAAAACADOAQCAAAAAAAIAM4BAIAAAAAAMgADoEAAAAAAAAygEMg\nAAAAAACADOAQCAAAAAAAIAOiOI6TDYii+Hd+53cSzeh39uxZ3XfffSZZkvTCCy/ovffeM8s7deqU\nbrrpJrO83t5e3XXXXWZ5W7Zs0bBhw8zyjh49qpEjR5rljR07VpWVlWZ5zz77rK6//nqTrHPnzun8\n+fMaO3asSd6xY8c0d+5cs+ulublZURSZZEnSoUOHVFpaapZ37bXXmu71H/3oR+rt7TXLO336tNm1\nKUkDBw7U5MmTzfI2bNhger1Yzs5z587p9ttv1y233GKS19raqsOHD2vQoEEmedy3hMV9S1jct4Rj\nfd/S0tKimpoakyxJ2r9/v+m18sorr6i8vNws7+DBg7rtttvM8rzPlnfffVcf//jHzfKKi4tVVVVl\nkvX222+rsbHRbLYcPnxYTU1NiuP4yr5RieM40UcuwkZ9fb1ZVhzH8apVq0zzHnjggViS2WPZsmWm\n/e6++27Tftbrt3HjRtO8zZs3m2W1t7fHQ4YMMVu7kpKSuKury6zfo48+anptzp0716xbHMdxQ0OD\nad6aNWtM87zPlvHjx5v227Rpk1m39vb2uKWlxSxvw4YNprOF+5awD+5bwuK+JdzD+r7F+2zhviXd\ns8X7fYv1bJEUx1d4RsOPgwEAAAAAAGQAh0AAAAAAAAAZwCEQAAAAAABABnAIBAAAAAAAkAEcAgEA\nAAAAAGQAh0AAAAAAAAAZwCEQAAAAAABABnAIBAAAAAAAkAGFdQjU0SHNmiVVVEiVldLKlclnLlki\njRkjVVUln5WHfqsldUp6OfEkmfcz7SbZr5/ltSn5Xj/2XniOZ6f32eK9n+drU5L7fp5nJ3svMM/r\n19MjTZki1dTk+j32GHnk/UreZwv9wiusQ6CiImn5cqm1Vdq1S6qvl9raks1cvFjaujXZjH556Ncg\naU6iCZcw7mfaTbJfP8trU/K9fuy98BzPTu+zxXs/z9emJPf9PM9O9l5gntdv8GCpqUlqaZH27ZMa\nG6XmZvLI+1DeZwv9wiusQ6DSUqm6OvdxcbFUViYdP55s5vTpUklJshn98tCvWdI7iSZcwrifaTfJ\nfv0sr03J9/qx98JzPDu9zxbv/Txfm5Lc9/M8O9l7gXlfv6FDc3/t6ZH6+pL/2pKX2jzvs4V+4RXW\nIdCljhyR9u7NvZXOI/qlG/3Sy3M3iX5pR7/08txNol/a0S99+vpyP05UWirNmCGVl5NHXuHxuPcu\n5bRfYR4CdXdLCxZIK1bkTt+8oV+60S+9PHeT6Jd29Esvz90k+qUd/dJpwIDcjxN1dEg7dkjbt5NH\nXmHxuvf6Oe5XeIdAvb25L/aiRdL8+fl+NuHRL93ol16eu0n0Szv6pZfnbhL90o5+6TdsmHTvvdLu\n3eSRVzi87z3n/QrvEKiuLvd2uaVL7TLjOPewkId+0cWHCeN+pt0k+/WzvDYl3+vH3gvP8ez0Plu8\n9/N8bUpy38/z7GTvBeZ1/bq6pJMncx+fPStt2/bL31FCHnkfwvtsoV9YhXUI1NwsrV2b+w3qNTVS\nba20ZUuymQsXSlOnSu3t0rhxUkNDcll56LdW0k5JEyQdlfRgkmHG/Uy7SfbrZ3ltSr7Xj70XnuPZ\n6X22eO/n+dqU5L6f59nJ3gvM8/qdOCHNnJnrdeed0rx50uzZ5JH3obzPFvqFV2SQcfmmTZMuXLDN\nXLfOLisP/e63DDPuZ9pNsl8/y2tT8r1+7L3wHM9O77PFez/P16Yk9/08z072XmCe16+yUtqzhzzy\nLov32UK/8ArrnUAAAAAAAABIBIdAAAAAAAAAGcAhEAAAAAAAQAZwCAQAAAAAAJABHAIBAAAAAABk\nAIdAAAAAAAAAGcAhEAAAAAAAQAZwCAQAAAAAAJABHAIBAAAAAABkQBTHcbIBURT/9m//dqIZ/d58\n800tXrzYJEuSmpqadObMGbO8d999VxMnTjTLi+NYkydPNsvbsWOHhg4dapb3yiuvaOTIkWZ5Y8eO\nVW1trVne6tWrVVpaapJ16tQpjR492uzr+dZbb+mzn/2shg0bZpL3k5/8RAMG2J2ZHz582HQvSNIX\nvvAFs6xNmzaZZUnSuXPndMstt5jlDR48WJWVlWZ527ZtU0lJiVnenj17NHbsWJOsU6dO6bOf/axu\nvfVWk7yDBw/qYx/7mNls2bt3r6qrq02yJO5bQuO+JSzP9y2dnZ3q7u5WcXGxSZ7190QHDhzQpEmT\nzPJeffVVlZWVmeVx3xKW9X3Ltddeq4qKCpOst956Sy0tLRoxYoRJXmdnp773ve8pjuPoiv5gHMeJ\nPiTFVo9JkybFlh5++GGzbpLiuro6035r1qwxzXv66adN82pqakzX75lnnjHtN3r0aNN+LS0tZt02\nbNgQd3V1meXV19ebZcWx/9kyb948035PPPGEab/169eb5m3cuNE0j9kSDrMlLO5bwj64bwnnqaee\nMu1m/T3RqlWrTPMaGhpM87hvCcv6vmXz5s1mWe3t7XmZLfEVntHw42AAAAAAAAAZwCEQAAAAAABA\nBnAIBAAAAAAAkAEcAgEAAAAAAGQAh0AAAAAAAAAZwCEQAAAAAABABnAIBAAAAAAAkAEcAgEAAAAA\nAGRAwR0CrZbUKelli7CODmnWLKmiQqqslFauTDzSdb8lS6QxY6SqqmRz+hn3M107iX6hWV6fzJag\nuDYDY/3CYraE43ntJPZeYPQLqKdHmjJFqqnJ9XvsMfJ+Dd6vTe+z030/FeAhUIOkOVZhRUXS8uVS\na6u0a5dUXy+1tSUa6brf4sXS1q3Jff4PMu5nunYS/UKzvD6ZLUFxbQbG+oXFbAnH89pJ7L3A6BfQ\n4MFSU5PU0iLt2yc1NkrNzeRdJe/XpvfZ6b6fCvAQqFnSO1ZhpaVSdXXu4+JiqaxMOn480UjX/aZP\nl0pKkvv8H2Tcz3TtJPqFZnl9MluC4toMjPULi9kSjue1k9h7gdEvsKFDc3/t6ZH6+pLfG47zvF+b\n3men+34qwEOgvDlyRNq7N/dWQY/ol270Sy/P3ST6pR390stzN4l+aUe/9Onry/24VGmpNGOGVF5O\nXhp5vDYvRb8gOASSpO5uacECacWK3OmbN/RLN/qll+duEv3Sjn7p5bmbRL+0o186DRiQ+3Gpjg5p\nxw5p+3by0sbrtdmPfsFwCNTbm/tiL1okzZ+f72cTHv3SjX7p5bmbRL+0o196ee4m0S/t6Jd+w4ZJ\n994r7d5NXpp4vzbpF1RBHgJFFx8m6upybwdcutQq0Xe/OM49rBj3M107iX6hWV6fzJaguDYDY/3C\nYraE43ntJPZeYPQLpKtLOnky9/HZs9K2bb/8HSXkXRXv16b32em9X8EdAq2VtFPSBElHJT2YZFhz\ns7R2be43xNfUSLW10pYtSSb67rdwoTR1qtTeLo0bJzU0JJclmfczXTuJfqFZXp/MlqC4NgNj/cJi\ntoTjee0k9l5g9AvoxAlp5sxcrzvvlObNk2bPJu8qeb82vc9O9/0kFSX62a/C/ZZh06ZJFy5YJvru\nt26dXZZk3s907ST6hWZ5fTJbguLaDIz1C4vZEo7ntZPYe4HRL6DKSmnPHvIC8X5tep+d7vupAN8J\nBAAAAAAAgPA4BAIAAAAAAMgADoEAAAAAAAAygEMgAAAAAACADOAQCAAAAAAAIAM4BAIAAAAAAMgA\nDoEAAAAAAAAygEMgAAAAAACADOAQCAAAAAAAIAOiOI6TDYii+C//8i8Tzej32muv6Z577jHJkqQX\nX3xRo0ePNsvbuXOn+vr6zPJuvPFGzZ071yzvySefVNLX46VGjhyp8vJys7yzZ8+qsrLSLK+pqUkf\n//jHTbJOnjyppqYms/3w1ltv6fd///c1fPhwk7znn39eHR0dJlmS1NPTo9mzZ5vlvfHGG5o6dapZ\n3s6dO3XjjTea5TU2NmrQoEFmeZ/61Kc0bdo0s7xvfvObKi4uNsv72Mc+pvHjx5tkMVvCsp4t3LeE\nxX1LOCdPntTIkSN16623muQdOHBAFy5c0HXXXWeS19LSojNnzphkSVIURfrKV75ilvfcc8/p5MmT\nZnlDhgzRHXfcYZbn/b7llVdeMZ1lra2tqqioMMnq6urSk08+qVGjRpnkvfnmm9qzZ4/iOI6u6A/G\ncZzoIxdho76+3iwrjuN41apVpnkPPPBALMnssWzZMtN+d999t2k/6/XbuHGjad7mzZvNstrb2+Mh\nQ4aYrV1JSUnc1dVl1u/RRx81vTbnzp1r1i2O47ihocE0b82aNaZ53mfL+PHjTftt2rTJrBuzJd2z\nhfuWsA/uW8Jpb2+PW1pazPI2bNjAbAmI2cJsuRLevyeSFMdXeEbDj4MBAAAAAABkAIdAAAAAAAAA\nGcAhEAAAAAAAQAZwCAQAAAAAAJABHAIBAAAAAABkAIdAAAAAAAAAGcAhEAAAAAAAQAZwCAQAAAAA\nAJABhXUI1NEhzZolVVRIlZXSypXJZy5ZIo0ZI1VVJZ+Vh36rJXVKejnxJJn3M+0m2a+f5bUp+V4/\n9l54jmen99lCv4CYLcF57ud973m/b/H8uicZX589PdKUKVJNTa7jY48lHslsCcjz3pP8r58K7RCo\nqEhavlxqbZV27ZLq66W2tmQzFy+Wtm5NNqNfHvo1SJqTaMIljPuZdpPs18/y2pR8rx97LzzHs9P7\nbKFfQMyW4Dz38773vN+3eH7dk4yvz8GDpaYmqaVF2rdPamyUmpsTjWS2BOR570n+10+FdghUWipV\nV+c+Li6Wysqk48eTzZw+XSopSTajXx76NUt6J9GESxj3M+0m2a+f5bUp+V4/9l54jmen99lCv4CY\nLcF57ud973m/b/H8uifl4focOjT3154eqa8v8a8tsyUgz3tP8r9+KrRDoEsdOSLt3Zt7q6BH9Es3\n+qWX524S/dKOfunluZtEv7SjX3p57dbXl/txsNJSacYMqbw8388oGV7Xrx/9UqkwD4G6u6UFC6QV\nK3Knb97QL93ol16eu0n0Szv6pZfnbhL90o5+6eW524ABuR8H6+iQduyQtm/P9zMKz/P6SfRLscI7\nBOrtzX2xFy2S5s/P97MJj37pRr/08txNol/a0S+9PHeT6Jd29Esvz90uNWyYdO+90u7d+X4mYXlf\nP/qlWuEdAtXV5d4OuHSpXWYc5x4W8tAvuvgwYdzPtJtkv36W16bke/3Ye+E5np3eZwv9AmK2BOe5\nn/e95/2+xfPrnmR4fXZ1SSdP5j4+e1batu2Xv4MlQcyWgDzvPcn9+hXWIVBzs7R2be43xNfUSLW1\n0pYtyWYuXChNnSq1t0vjxkkNDcll5aHfWkk7JU2QdFTSg0mGGfcz7SbZr5/ltSn5Xj/2XniOZ6f3\n2UK/gJgtwXnu533veb9v8fy6JxlfnydOSDNn5rrdeac0b540e3aSicyWkDzvPcn/+kkqMsi4fNOm\nSRcu2GauW2eXlYd+91uGGfcz7SbZr5/ltSn5Xj/2XniOZ6f32UK/gJgtwXnu533veb9v8fy6Jxlf\nn5WV0p49lonMlpA87z3J//qp0N4JBAAAAAAAgERwCAQAAAAAAJABHAIBAAAAAABkAIdAAAAAAAAA\nGcAhEAAAAAAAQAZwCAQAAAAAAJABHAIBAAAAAABkAIdAAAAAAAAAGcAhEAAAAAAAQAZEcRwnGxBF\n8fe+971EM/r95Cc/0Wc+8xmTLEl67rnndPjwYbO8UaNG6Td/8zfN8o4ePWr69XzxxRd16623muX9\n27/9mwYMsDsHnT59uqZMmWKW97WvfU3XX3+9SdZ7772nuXPn6uabbzbJ+9nPfqZJkyZp+PDhJnk7\nd+7U+PHjTbIk6fnnn1dnZ6dZ3tixY/W7v/u7ZnkNDQ16++23zfI++clPaurUqWZ5J06cUHV1tVme\n9fX5+uuvq6qqyiTrzTffVEdHh8aOHWuS5322tLe363Of+5xZ3n/913/plltuMcvjviUs6/uW/fv3\nq7Ky0iTrzTffVHd3t9n67dmzR//xH/+ha6+91iTv/PnzWrx4sUmWxGwJjdkSlufviV555RX98z//\ns+I4jq7oD8ZxnOgjF2Gjvr7eLCuO4/jhhx+OJZk96urqTPutWbPGNO/pp582zaupqTFdv2eeeca0\n3+jRo037tbS0mHXbsGFD3NXVZZbHbAlr3rx5pv2eeOIJ037r1683zdu4caNp3ubNm82y2tvbmS0B\nrVq1yjSvoaHBNI/7lnTft3ieLU899ZTp2k2aNMmsWxwzW0JjtoTl+Xui/tkSX+EZDT8OBgAAAAAA\nkAEcAgEAAAAAAGQAh0AAAAAAAAAZwCEQAAAAAABABnAIBAAAAAAAkAEcAgEAAAAAAGQAh0AAAAAA\nAAAZwCEQAAAAAABABhTeIdCSJdKYMVJVVfJZHR3SrFlSRYVUWSmtXJl45GpJnZJeTjxJ9v0s104y\n72e6dhL9QmO2hMO1GZbz2Um/gPIwW1z3c35tMjsD87x+zJawuDbDol9whXcItHixtHWrTVZRkbR8\nudTaKu3aJdXXS21tiUY2SJqTaMIlrPtZrp1k3s907ST6hcZsCYdrMyzns5N+AeVhtrju5/zaZHYG\n5nn9mC1hcW2GRb/gCu8QaPp0qaTEJqu0VKquzn1cXCyVlUnHjyca2SzpnUQTLmHdz3LtJPN+pmsn\n0S80Zks4XJthOZ+d9AsoD7PFdT/n1yazMzDP68dsCYtrMyz6BVd4h0D5cuSItHevNGVKvp9JMuiX\nbvRLL8/dJPqlHf3Sy3M3iX5pR7/08txNol/a0S8IDoEkqbtbWrBAWrEid/rmDf3SjX7p5bmbRL+0\no196ee4m0S/t6JdenrtJ9Es7+gXDIVBvb+6LvWiRNH9+vp9NePRLN/qll+duEv3Sjn7p5bmbRL+0\no196ee4m0S/t6BdUYR4CxXHuYaGuTiovl5YutcmTFF18mLDuZ7l2knk/07WT6BcasyUcrs2wnM9O\n+gWUh9niup/za5PZGZjn9WO2hMW1GRb9giq8Q6CFC6WpU6X2dmncOKmhIbms5mZp7VqpsVGqqZFq\na6UtW5LLk7RW0k5JEyQdlfRgkmHW/SzXTjLvZ7p2Ev1CY7aEw7UZlvPZSb+A8jBbXPdzfm0yOwPz\nvH7MlrC4NsOiX3BFiX72q7FunV3WtGnShQt2eZLutwyz7me5dpJ5P9O1k+gXGrMlHK7NsJzPTvoF\nlIfZ4rqf82uT2RmY5/VjtoTFtRkW/YIrvHcCAQAAAAAAIDgOgQAAAAAAADKAQyAAAAAAAIAM4BAI\nAAAAAAAgAzgEAgAAAAAAyICPPASKoui7URS9HkXRvkv+2Z9FUdQRRdGei4/PJ/s0AQAAAAAA8Ou4\nnHcCNUia8yH/fHkcx7UXH8n+j+wBAAAAAADwa/nIQ6A4jv9T0jsf8q+i8E8HAAAAAAAASfh1fifQ\n/4miaG8URaujKBoe7BkBAAAAAAAguCiO44/+j6LoE5I2xnFcdfHvb5DUFcdxHEXRX0n6WBzHS37F\nn42//OUv/8/fT5o0SZWVlUGe/Ac999xzeumllxL53B9m9OjReuihh8zy1qxZo5///OdmebW1tVqw\nYIFZ3je+8Q29886HveksGXfddZemTZtmlnfo0CHV1taa5e3atUuTJk0yyerq6tKKFSs0dOhQk7z3\n339ff/qnf6phw4aZ5HmfLfv27TPdC5bXpiTV19fr1KlTZnn33HOPZs6caZa3d+9eVVdXm+W1tLSo\npqbGJOuNN97Q6dOnNX78eJO8lpYWjR8/3my2vPDCC/rc5z5nkiVJL774ou68806zvJdeekmTJ082\ny9uzZ4/p66z3+5a//uu/1oABdv8Pmfvuu0+f+cxnTLLeeOMN/c3f/I3pfctXv/pVFRcXm+Rt2rRJ\n+/fvN8mSpDFjxmjp0qVmecyWsPieKJyuri719fUlet+yf/9+HThwQJLU2dmp7du3K47jK/sprTiO\nP/Ih6ROS9l3pv7v472Mrjz76aCzJ7DF37lyzbnEcxw888IBpv2XLlpn2u/vuu037rVq1yrTfxo0b\nTfM2b95sltXe3h4PGTLEbO1KSkrirq4us37eZ0tDQ4Np3po1a0zzmC1hWc+WlpYWs7wNGzaYzpb6\n+nqzrDiOza9NZku6Z8v48eNN+23atMmsG/ctYR/ct4TlfbZw3xLOhg0bYklxfBlnOpc+Lvd4P9Il\nvwMoiqLSS/7d/5Z04DI/DwAAAAAAAPKg6KP+gyiK1kmaIWlUFEXHJP2ZpJlRFFVL6pN0RNIfJPgc\nAQAAAAAA8Gv6yEOgOI4Xfsg/bkjguQAAAAAAACAhdr/tDQAAAAAAAHnDIRAAAAAAAEAGcAgEAAAA\nAACQARwCAQAAAAAAZACHQAAAAAAAABlQWIdAHR3SrFlSRYVUWSmtXJl45GpJnZJeTjxJ9AvMtJtk\nv35LlkhjxkhVVcnm9PO8fuy98CyvT8/XpsRsCc3xtSmJfiExW4KiX0Dct4THbAnH8+u65L+fCu0Q\nqKhIWr5cam2Vdu2S6uultrZEIxskzUk04RL0C8q0m2S/fosXS1u3Jvf5P8jz+rH3wrO8Pj1fmxKz\nJTTH16Yk+oXEbAmKfgFx3xIesyUcz6/rkv9+KrRDoNJSqbo693FxsVRWJh0/nmhks6R3Ek24BP2C\nMu0m2a/f9OlSSUlyn/+DPK8fey88y+vT87UpMVtCc3xtSqJfSMyWoOgXEPct4TFbwvH8ui7576dC\nOwS61JEj0t690pQp+X4myaBfutEvvTx3k+iXdvRLL8/dJPqlHf3Sy3M3iX5pR79UKsxDoO5uacEC\nacWK3OmbN/RLN/qll+duEv3Sjn7p5bmbRL+0o196ee4m0S/t6JdahXcI1Nub+2IvWiTNn5/vZxMe\n/dKNfukYICJTAAAgAElEQVTluZtEv7SjX3p57ibRL+3ol16eu0n0Szv6pVrhHQLV1Unl5dLSpWaR\n0cWHCfoFZdpNsl+/OM49rHheP/ZeeJbXp+drU2K2hOb42pREv5CYLUHRLyDuW8JjtoTj+XVdct+v\nsA6BmpultWulxkappkaqrZW2bEk0cq2knZImSDoq6cEkw+gXlGk3yX79Fi6Upk6V2tulceOkhobk\nsiTf68feC8/y+vR8bUrMltAcX5uS6BcSsyUo+gXEfUt4zJZwPL+uS/77SSpKPOFKTJsmXbhgGnm/\nZRj9gjLtJtmv37p1dlmS7/Vj74VneX16vjYlZktojq9NSfQLidkSFP0C4r4lPGZLOJ5f1yX//VRo\n7wQCAAAAAABAIjgEAgAAAAAAyAAOgQAAAAAAADKAQyAAAAAAAIAM4BAIAAAAAAAgAzgEAgAAAAAA\nyAAOgQAAAAAAADKAQyAAAAAAAIAM4BAIAAAAAAAgA6I4jpMNiKL43//93xPN6Pf888/rrrvuMsmS\npBdeeEGzZ882zZsyZYpZ3ksvvaRp06aZ5e3cuVN33HGHWd7jjz+ukydPmuU98MADptfnQw89pCiK\nTLJ6e3v11a9+VZ/61KdM8nbv3q2KigoNHz7cJM96tvzrv/6r9uzZY5b36U9/Wn/wB39glvf1r39d\nhw8fNsv7/Oc/ry984Qtmed5ny+7du81mdWdnp06fPm02W1566SVNmDDBbLb86Ec/Mr2P2L59u+6+\n+26zvObmZtP7CO+zpaWlxfQ+8MUXX1Rtba1Z3ssvv6zJkyebZHV2duqdd97R+PHjTfK4bwmL+5aw\nuG8JJx/3LV/72tcUx/EVfdNXlNQTutTcuXMtYnTkyBHdd999JlmS1NXVZdZNkt544w3TfmfOnDHt\n193dbdrvL/7iL3T8+HGzvE9/+tOmX8/3339fXV1dZnn33HOPqqurTbLiONZdd92lUaNGmeRZz5bn\nn39eGzduNMubM2eO6bX57W9/23TvlZWVMVsCGjBggD7/+c+bZB06dEhnzpwxmy09PT3ms8Vy7X7x\ni1+Y37cwW8Lp6+sz/Xr29fWZfiM6ZMgQt7OF+5awuG8Ji/uWcPJx33I1+HEwAAAAAACADOAQCAAA\nAAAAIAM4BAIAAAAAAMgADoEAAAAAAAAygEMgAAAAAACADOAQCAAAAAAAIAM4BAIAAAAAAMgADoEA\nAAAAAAAyoPAOgZYskcaMkaqqks/q6JBmzZIqKqTKSmnlyuQzPfez7CaZ91stqVPSy4mmXIJ+YXne\nezJeP67NoLz38/7a4H22eO7H3guMfmE53nsS9y1B0S8s77NFhXgItHixtHWrTVZRkbR8udTaKu3a\nJdXXS21tyWZ67mfZTTLv1yBpTmKf/UPQLyzPe0/G68e1GZT3ft5fG7zPFs/92HuB0S8sx3tP4r4l\nKPqF5X22qBAPgaZPl0pKbLJKS6Xq6tzHxcVSWZl0/HiymZ77WXaTzPs1S3onsc/+IegXlue9J+P1\n49oMyns/768N3meL537svcDoF5bjvSdx3xIU/cLyPltUiIdA+XLkiLR3rzRlSr6fSTLol270Sy/P\n3ST6pR390stzN4l+aUe/9PLcTaJf2tEvCA6BJKm7W1qwQFqxInf65g390o1+6eW5m0S/tKNfennu\nJtEv7eiXXp67SfRLO/oFwyFQb2/ui71okTR/fr6fTXj0Szf6pZfnbhL90o5+6eW5m0S/tKNfennu\nJtEv7egXVGEeAsVx7mGhrk4qL5eWLrXJk3z3s+wmmfeLLj7M0C8sz3tPxuvHtRmU937eXxu8zxbP\n/dh7gdEvLMd7T+K+JSj6heV8thTeIdDChdLUqVJ7uzRunNTQkFxWc7O0dq3U2CjV1Ei1tdKWLcnl\nSb77WXaTzPutlbRT0gRJRyU9mFjSRfQLy/Pek/H6cW0G5b2f99cG77PFcz/2XmD0C8vx3pO4bwmK\nfmF5ny2SihL97Fdj3Tq7rGnTpAsX7PIk3/0su0nm/e43S7qIfmF53nsyXj+uzaC89/P+2uB9tnju\nx94LjH5hOd57EvctQdEvLO+zRYX4TiAAAAAAAAAExyEQAAAAAABABnAIBAAAAAAAkAEcAgEAAAAA\nAGQAh0AAAAAAAAAZwCEQAAAAAABABnAIBAAAAAAAkAEcAgEAAAAAAGRAkUVId3e3RYzOnTtnlpWP\nvLNnz9IvoAsXLphlSdKZM2dM+/X19ZllSbb9+q+VwYMHm+RZ74Wenh6zLEk6f/68ab/z58+bZUn2\n6+d9tljmnTlzhtmS4jzr13Xvs8X668lsCcf7bOG+JSzuW9Kbl4/ZcjVMDoF++tOfWsToF7/4hVlW\nPvJOnDhhmtfR0WGa9w//8A/64z/+Y7O8hx56SP/4j/9olvfiiy+afj2/+tWv6rOf/axJVkdHh+bO\nnWuSJUlDhgzRd77zHY0YMcIk76c//aluuukmkyxJqqqqUmNjo1nej370I9Nrc/LkyXrkkUfM8l54\n4QXTfgsWLDCdLb/3e7+npUuXmuU98sgjGj16tElWR0eHuru71dvba5J3+PBhXXfddWazxft9y4YN\nG7Rs2TKzvPnz55vOzj/5kz/R3//935vl/eEf/qFuvvlms7zDhw+bXi/t7e3MlkC4bwmL+5awuG8J\n5/Dhw1f150wOge6++26LGLW2tpplSdKhQ4dM81577TXTvI6ODtO8ESNG6NSpU2Z5EydO1MyZM83y\nzpw5Y/r1PHv2rFm/Q4cO6f3339e5c+dM8q655hpNnz5do0aNMsnbunWr6bU5bNgw02vz6NGj5rPF\nst+bb75p2u+tt94y7Td48GDT67Ompsbs63no0CGdOXNG1dXVJnlvv/226Wzxft+yevVq02vzpptu\nMt171vctn/rUp0zX7/Tp0+b3LcyWMLhvCYv7lrC4bwnn7bffvqo/x+8EAgAAAAAAyAAOgQAAAAAA\nADKAQyAAAAAAAIAM4BAIAAAAAAAgAzgEAgAAAAAAyAAOgQAAAAAAADKAQyAAAAAAAIAMKKxDoI4O\nadYsqaJCqqyUVq5MPnPJEmnMGKmqKvks+gW1WlKnpJcTTbmE9fpZrp3ke/3ysPe89/M8W9h7gfX0\nSFOmSDU1uY6PPeYnz3O3fOTJ9+zkviUwz/24bwnP8/o533vMzvAK6xCoqEhavlxqbZV27ZLq66W2\ntmQzFy+Wtm5NNqMf/YJqkDQnsc/+IazXz3LtJN/rl4e9572f59nC3gts8GCpqUlqaZH27ZMaG6Xm\nZh95nrvlI0++Zyf3LYF57sd9S3ie18/53mN2hldYh0ClpVJ1de7j4mKprEw6fjzZzOnTpZKSZDP6\n0S+oZknvJPbZP4T1+lmuneR7/fKw97z38zxb2HsJGDo099eeHqmvL/mvr2We5255yPM8O7lvCcxz\nP+5bwvO8fs73HrMzvMI6BLrUkSPS3r25tyF7RL90o196ee4m0S/tvPbr68v9SFFpqTRjhlRe7ifP\nc7d85OWL173Xj37p5bmbRL+0o18qFeYhUHe3tGCBtGJF7vTNG/qlG/3Sy3M3iX5p57nfgAG5Hynq\n6JB27JC2b/eT57lbPvLywfPek+iXZp67SfRLO/qlVuEdAvX25r7YixZJ8+fn+9mER790o196ee4m\n0S/tvPfrN2yYdO+90u7d/vI8d8tHnhXve49+6eW5m0S/tKNfqhXeIVBdXe6txkuX2mXGce5hgX5B\nRRcfZqzXz3LtJN/rl4e9572f59nC3guoq0s6eTL38dmz0rZtv/xZ+7Tnee6Wj7yLPM9O7lsC89yP\n+5bwPK+f873H7AyrsA6BmpultWtz//eJmhqptlbasiXZzIULpalTpfZ2adw4qaEhuSz6BbVW0k5J\nEyQdlfRgYkkXWa+f5dpJvtcvD3vPez/Ps4W9F9iJE9LMmblud94pzZsnzZ7tI89zt3zkyffs5L4l\nMM/9uG8Jz/P6Od97zM7wihJPuBLTpkkXLthmrltnl0W/oO43S7rIev0s107yvX552Hve+3meLey9\nwCorpT17fOZ57paPPPmendy3BOa5H/ct4XleP+d7j9kZXmG9EwgAAAAAAACJ4BAIAAAAAAAgAzgE\nAgAAAAAAyAAOgQAAAAAAADKAQyAAAAAAAIAM4BAIAAAAAAAgAzgEAgAAAAAAyAAOgQAAAAAAADKA\nQyAAAAAAAIAMKLII+c///E+LGP33f/+3WVY+8n72s5+Z5h06dMg079133zXLkuzXr7W1VSNGjDDL\ne/nll1VcXGySdezYMV24cMEkS5LOnz+vXbt2mX09jxw5YpLT791332W2BHTw4EHTvLa2NtO89957\nzyxLkvbt26fhw4ebZB07dkxnzpxRd3e3Sd6BAwc0cOBAs9ni/b6ls7PTLEuSTpw4wX1LQN7vWzzP\nFu5bwuK+JSzuW8I5cODAVf05k0Ogz33ucxYxmjhxov7oj/7IJEuSSkpKdPPNN7vN+/GPf6w///M/\nN8t7/PHH9f3vf98sb86cOfr6179ulvfNb37TdP3+9m//VidPnjTL27hxoyZNmmSStWXLFt10000q\nKSkxySsvL9drr71mkiXl9oLV3JSkL3/5y65n2ciRI03znnzyST3++ONmed/85jd17733muVVV1fr\nscceM8vbuHGj2frdcMMNprPFei8cO3bMfLZYzs4f/OAHpl/Phx56yHTveb9vueGGG8zyzp8/r/fe\ne88sb+jQofriF79okiXlvifiviUc7lvC4r4lnKFDh17VnzM5BLJSVFSkW265xSxv5MiRpnmjRo0y\nzbM6Me1XUlJi2u+6664zy5KkG2+80bTfwIEDzbIk6eabbzbrN2bMGI0bN06jRo0yybPe61bfgPa7\n7rrrTPuNHj3aNO+GG25gtgTEbAmH2RIWsyUs69kyduxYs7zz58/rzJkzprPFkvX3RMyWsJgtYXm/\nb7ka/E4gAAAAAACADOAQCAAAAAAAIAM4BAIAAAAAAMgADoEAAAAAAAAygEMgAAAAAACADOAQCAAA\nAAAAIAM4BAIAAAAAAMiAgjsEWi2pU9LLFmEdHdKsWVJFhVRZKa1cmXzmkiXSmDFSVVXyWcb9TNdO\nol9g3vt53nuS89lpuXYSey8w8349PdKUKVJNTa7jY4/5yMpHnpgtQXnfe6xfUK73npz349oMy3u/\nPLy2F9whUIOkOVZhRUXS8uVSa6u0a5dUXy+1tSWbuXixtHVrshn9jPuZrp1Ev8C89/O89yTns9Ny\n7ST2XmDm/QYPlpqapJYWad8+qbFRam5Of1Y+8sRsCcr73mP9gnK99+S8H9dmWN775eG1veAOgZol\nvWMVVloqVVfnPi4ulsrKpOPHk82cPl0qKUk2o59xP9O1k+gXmPd+nvee5Hx2Wq6dxN4LzLyfJA0d\nmvtrT4/U15fs9WOZlYc8ZktA3vce6xeU670n5/24NsPy3k8yf20vuEOgvDlyRNq7N/dWLI/ol270\nSy/P3ST6pZ3Xfn19ubdVl5ZKM2ZI5eU+svKRly9er81+9Es3z/08d5Pol3Ze+xm/tnMIJEnd3dKC\nBdKKFbnTRW/ol270Sy/P3ST6pZ3nfgMG5N5W3dEh7dghbd/uIysfefng+dqU6Jd2nvt57ibRL+08\n9zN+becQqLc3dzEtWiTNn5/vZxMe/dKNfunluZtEv7Tz3q/fsGHSvfdKu3f7yspHnhXv1yb90s1z\nP8/dJPqlnfd+/Yxe2wvyECi6+DBRV5d7u9XSpVaJUhznHhaM+5munUS/wLz387z3JOez03LtJPZe\nYKb9urqkkydzH589K23b9svfJZDmrHzkXcRsCcjz3pNYv8Bc7z0578e1GZbnfnl4bS+4Q6C1knZK\nmiDpqKQHkwxrbpbWrs39Bu6aGqm2VtqyJclEaeFCaepUqb1dGjdOamhILsu4n+naSfQLzHs/z3tP\ncj47LddOYu8FZt7vxAlp5sxctzvvlObNk2bPTn9WPvLEbAnK+95j/YJyvffkvB/XZlje++Xhtb0o\n0c9+Fe63DJs2TbpwwTJRWrfOLsu4n+naSfQLzHs/z3tPcj47LddOYu8FZt6vslLas8dfVj7yxGwJ\nyvveY/2Ccr335Lwf12ZY3vvl4bW94N4JBAAAAAAAgPA4BAIAAAAAAMgADoEAAAAAAAAygEMgAAAA\nAACADOAQCAAAAAAAIAM4BAIAAAAAAMgADoEAAAAAAAAygEMgAAAAAACADOAQCAAAAAAAIAOKLEJu\nvfVWixgNGDBAf/d3f2eSJUn79+9XFEVmebt27dLrr79ulnfixAmztZOkAwcO6Lvf/a5ZnmR3bUrS\n9u3bderUKbO84cOH6/rrrzfJ6u3t1Xe+8x194hOfMMnbv3+/jhw5omHDhpnk/eQnP9Hp06dNsqRc\nP8tr8+c//7np7PzZz36mc+fOmeW9+OKLeu2118zy3n//fWZLIMyWsJgtYXmfLT/84Q91+PBhs7zj\nx4/r+PHjJllvvPGGfv7zn5vNlt27d2vcuHG65pprTPIGDhxoek999OhRZktA3meL9/uWZ599Vj/9\n6U9N8l566aWr+nMmh0BtbW0WMXr88ce1bNkykyxJmjNnjhYtWmSW9/zzz5v2e+SRR/RXf/VXZnnP\nPvusFixYYJZXXFysL33pS2Z5mzZt0he+8AWzvBtvvFFz5swxyTp06JDuuOMOsxfIkpISfeMb39Co\nUaNM8tra2sxni9XclKSvfOUr5rPFcnY++eSTWr16tVnet771LdXV1ZnlMVvCYbaExWwJy3q2TJw4\nUWvWrDHLe+655zR37lyTrHzMltbWVrPZ8q1vfct0L7z//vtav369WR6zJSzuW8I5dOiQ3nvvPd1+\n++0meddff72+/e1vX/GfMzkEGjRokEWMBg4caJLT75prrjHrJklFRSbL9T/y0c8yb+DAgaZ5gwYN\nctvPstelmcyWMLzPlgEDbH/y2XqWMVvCZzJbwmC2hGU9W6z7MVvCsb7Htc5jtoTFfUs4gwYN0vnz\n5wv+PoLfCQQAAAAAAJABHAIBAAAAAABkAIdAAAAAAAAAGcAhEAAAAAAAQAZwCAQAAAAAAJABHAIB\nAAAAAABkAIdAAAAAAAAAGVBYh0AdHdKsWVJFhVRZKa1cmXjkakmdkl5OPElST480ZYpUU5Pr+Nhj\niUea9rNevyVLpDFjpKqqZHP60S8o19em6BeU52tTYrYExut6QMyWoLzPFvN+xvvP87Upyfa1gdkS\nlPfZ4v2+xbyfCu0QqKhIWr5cam2Vdu2S6uultrZEIxskzUk04RKDB0tNTVJLi7Rvn9TYKDU3Jxpp\n2s96/RYvlrZuTe7zfxD9gnJ9bYp+QXm+NiVmS2C8rgfEbAnK+2wx72e8/zxfm5JsXxuYLUF5ny3e\n71vM+6nQDoFKS6Xq6tzHxcVSWZl0/Hiikc2S3kk04QOGDs39tadH6uuTSkoSjTPtZ71+06cn/vX7\n/6BfUK6vTdEvKM/XpsRsCYzX9YCYLUF5ny3m/STT/ef52pRk+9rAbAnK+2zxft9i3k+Fdgh0qSNH\npL17c2/z9KSvL/e21dJSacYMqbw8388oGV7Xrx/90stzN4l+aUe/9OF13Qf6pVMW9p/XtetHv3Sj\nXyoV5iFQd7e0YIG0YkXu9M2TAQNyb1vt6JB27JC2b8/3MwrP8/pJ9Eszz90k+qUd/dKJ1/X0o196\ned9/ntdOol/a0S+1Cu8QqLc398VetEiaPz/fzyY5w4ZJ994r7d6d72cSlvf1o196ee4m0S/t6Jd+\nvK6nE/188Lj/vK8d/dKNfqlWeIdAdXW5t3IuXWoWGV18JK6rSzp5Mvfx2bPStm2//HnDBJn1k+zX\nL45zDyv0C8r1tSn6BeX52pSYLYHxuh4QsyUo77PFtF8e9p/na1OS7WsDsyUo77PF+32Ldb/COgRq\nbpbWrs39dv+aGqm2VtqyJdHItZJ2Spog6aikB5MMO3FCmjkz1+3OO6V586TZs5NMtO1nvX4LF0pT\np0rt7dK4cVJDQ3JZEv0Cc31tin5Beb42JWZLYLyuB8RsCcr7bDHvZ7z/PF+bkmxfG5gtQXmfLd7v\nW8z7SSpKPOFKTJsmXbhgGnm/ZVhlpbRnj2WibT/r9Vu3zi5Lol9grq9N0S8oz9emxGwJjNf1gJgt\nQXmfLeb9jPef52tTku1rA7MlKO+zxft9i3k/Fdo7gQAAAAAAAJAIDoEAAAAAAAAygEMgAAAAAACA\nDOAQCAAAAAAAIAM4BAIAAAAAAMiAjzwEiqLo5iiKGqMoao2iaH8URX988Z+XRFH0f6MoOhhF0dYo\nioYn/3QBAAAAAABwNS7nnUC9kv6fOI4rJH1W0sNRFE2UtEzS83Ec3yapUdKjyT1NAAAAAAAA/Do+\n8hAojuPOOI73Xvy4W9Krkm6WNF/Skxf/sycl3ZfUkwQAAAAAAMCv54p+J1AURbdIqpb0oqQxcRy/\nLuUOiiTdGPrJAQAAAAAAIIwojuPL+w+jqFjSjyX9ZRzHP4ii6O04jkde8u/fiuN41If8ufhf/uVf\nQj3f/1/bt2/XsWPHTLIkacSIEfriF79olrd161a98cYbZnkjRozQhAkTzPJOnz6tO+64wyyvvb3d\ntN/Bgwd12223meVt2bJFt956q0nW22+/rdbWVg0ePNgkr7e3V7/1W7+lYcOGmeQxW8IaP368pk6d\napb3/e9/X6dPnzbLGz16tD75yU+a5fX09Kiqqsosj9kSDrMlLO+zpaqqSrfffrtZ3po1a3S53yeE\nUFNTo0mTJplkdXV16Qc/+IEGDRpkkvf+++/r9ttv1/XXX2+S19bWpvnz55tkSdKuXbs0cuTIj/4P\nA3nppZdMr03vs8X7fcurr76qsrIyk6yuri6dOXNGn/jEJ0zyWltb9U//9E+K4zi6oj8Yx/FHPiQV\nSdoiaekl/+xV5d4NJEmlkl79FX82/rM/+7P/eTQ1NcVJqa+vT+xzf5hVq1aZ5jU0NJjmzZs3L5Zk\n9njiiSdM+61fv940b+PGjaZ5o0ePNl2/lpYWs24bNmyIu7q6zPKYLWGtWbPGNO/pp582zaupqTHd\ne88884xpP2ZLOMyWsLzPFu/3LZs3bzbLam9vN50tTz31lOncnDRpklm3OI7jhx9+2LRfXV2daT/v\ns8X7fYu32dLU1PQ/Zytf+tKXYklxfBlnOpc+inR5/lXSK3Ecr7jkn/1Q0oOS/k7SVyT94Ff94a99\n7WuXGQMAAAAAAIAPmjFjhmbMmCEp947N55577oo/x0ceAkVRNE3S/ZL2R1HUotwJ3mPKHf48E0VR\nnaSjkn7nitMBAAAAAABg4iMPgeI4bpZ0za/41/8r7NMBAAAAAABAEq7o/w4GAAAAAACAdOIQCAAA\nAAAAIAM4BAIAAAAAAMgADoEAAAAAAAAygEMgAAAAAACADCi8Q6AlS6QxY6SqquSzOjqkWbOkigqp\nslJauTL5TMf9VkvqlPRyoimXsF4/y7WTWL/QHO89Sb77sffCol9Ynvee5Luf89lCv8A8z848zBbX\n/bg2w2L9giu8Q6DFi6WtW22yioqk5cul1lZp1y6pvl5qa0s203G/BklzEvvsH8J6/SzXTmL9QnO8\n9yT57sfeC4t+YXnee5Lvfs5nC/0C8zw78zBbXPfj2gyL9Quu8A6Bpk+XSkpsskpLperq3MfFxVJZ\nmXT8eLKZjvs1S3onsc/+IazXz3LtJNYvNMd7T5Lvfuy9sOgXlue9J/nu53y20C8wz7MzD7PFdT+u\nzbBYv+AK7xAoX44ckfbulaZMyfczSQb90o1+6eW5m0S/tKNfennuJtEv7eiXXp67SfRLO/oFwSGQ\nJHV3SwsWSCtW5E7fvKFfutEvvTx3k+iXdvRLL8/dJPqlHf3Sy3M3iX5pR79gOATq7c19sRctkubP\nz/ezCY9+6Ua/9PLcTaJf2tEvvTx3k+iXdvRLL8/dJPqlHf2CKsxDoDjOPSzU1Unl5dLSpTZ5kut+\n0cWHGev1s1w7ifULzfHek+S7H3svLPqF5XnvSb77OZ8t9AvM8+zMw2xx3Y9rMyzWL6jCOwRauFCa\nOlVqb5fGjZMaGpLLam6W1q6VGhulmhqptlbasiW5PMl1v7WSdkqaIOmopAcTS7rIev0s105i/UJz\nvPck+e7H3guLfmF53nuS737OZwv9AvM8O/MwW1z349oMi/ULrijRz3411q2zy5o2TbpwwS5Pct3v\nfrOki6zXz3LtJNYvNMd7T5Lvfuy9sOgXlue9J/nu53y20C8wz7MzD7PFdT+uzbBYv+AK751AAAAA\nAAAACI5DIAAAAAAAgAzgEAgAAAAAACADOAQCAAAAAADIAA6BAAAAAAAAMoBDIAAAAAAAgAzgEAgA\nAAAAACADOAQCAAAAAADIAA6BAAAAAAAAMiCK4zjZgCiKv/vd7yaa0a+lpUU1NTUmWZK0f/9+VVZW\nmuU1NTVp8ODBZnlHjhzRqFGjzPJOnz6tsWPHmuUNHDhQkydPNsvbsGGDSktLzfKOHj2qkSNHmmSd\nO3dO58+fN1u/Y8eOae7cuRo2bJhJnvfZ8sorr6i8vNws7+DBg7rtttvM8rZs2WJ2rUi2e0+Sxo4d\na3q9PPvss7r++utNspgtYTFbyLsSbW1tmjhxolneq6++qrKyMpOst99+W42NjWaz5fDhwxo+fLgG\nDRpkknf27Fndd999JlmS9MILL+i9994zyzt16pRuuukms7ze3l7dddddZnne71veffddffzjHzfL\nKy4uVlVVlUlWPmZLU1OT4jiOrugPxnGc6CMXYaO+vt4sK47jeNWqVaZ5DzzwQCzJ7LFs2TLTfnff\nfbdpP+v1Gz9+vGm/TZs2mXVrb2+PhwwZYtatpKQk7urqMuvnfbY0NDSY5q1Zs8Y0z/ts2bhxo2ne\n5s2bzbKYLWExW8J6+umnTfPWr19vmsdsYbZcLr4nCsv7fQvfE4WdLZLi+ArPaPhxMAAAAAAAgAzg\nEJ0cdZsAACAASURBVAgAAAAAACADOAQCAAAAAADIAA6BAAAAAAAAMoBDIAAAAAAAgAzgEAgAAAAA\nACADOAQCAAAAAADIAA6BAAAAAAAAMqCwDoE6OqRZs6SKCqmyUlq5MvnMJUukMWOkqqrks/LQb7Wk\nTkkvJ54k836m3ST6Beb52pTkfrZ47ud975muneR7/dh74Xnu53zvee/HbAmI74mC8n7fQr/wCusQ\nqKhIWr5cam2Vdu2S6uultrZkMxcvlrZuTTajXx76NUiak2jCJYz7mXaT6BeY52tTkvvZ4rmf971n\nunaS7/Vj74XnuZ/zvee9H7MlIL4nCsr7fQv9wiusQ6DSUqm6OvdxcbFUViYdP55s5vTpUklJshn9\n8tCvWdI7iSZcwrifaTeJfoF5vjYluZ8tnvt533umayf5Xj/2Xnie+znfe977MVsC4nuioLzft9Av\nvMI6BLrUkSPS3r3SlCn5fibJoF+60S+9PHeT6Jd29Esvz90k+qUd/dLLczeJfmlHv1QqzEOg7m5p\nwQJpxYrc6Zs39Es3+qWX524S/dKOfunluZtEv7SjX3p57ibRL+3ol1qFdwjU25v7Yi9aJM2fn+9n\nEx790o1+6eW5m0S/tKNfennuJtEv7eiXXp67SfRLO/qlWuEdAtXVSeXl0tKldplxnHtYyEO/6OLD\nhHE/024S/QLzfG1Kcj9bPPfzvvdM107yvX7svfA893O+97z3Y7YExPdEQXm/b6FfWIV1CNTcLK1d\nKzU2SjU1Um2ttGVLspkLF0pTp0rt7dK4cVJDQ3JZeei3VtJOSRMkHZX0YJJhxv1Mu0n0C8zztSnJ\n/Wzx3M/73jNdO8n3+rH3wvPcz/ne896P2RIQ3xMF5f2+hX7hFRlkXL5p06QLF2wz162zy8pDv/st\nw4z7mXaT6BeY52tTkvvZ4rmf971nunaS7/Vj74XnuZ/zvee9H7MlIL4nCsr7fQv9wiusdwIBAAAA\nAAAgERwCAQAAAAAAZACHQAAAAAAAABnAIRAAAAAAAEAGcAgEAAAAAACQARwCAQAAAAAAZACHQAAA\nAAAAABnAIRAAAAAAAEAGcAgEAAAAAACQAVEcx8kGRFH85JNPJprRb+/evaqurjbJkqSmpiadOXPG\nLO/dd9/VxIkTzfLiONbkyZPN8nbs2KGhQ4ea5Q0ePFiVlZVmedu2bVNJSYlZ3rXXXquKigqTrLfe\nekstLS0aMWKESV5nZ6e6u7tVXFxskvfmm29q8eLFJlmSdODAAU2aNMks79VXX1VZWZlZ3qZNm8yy\nJOncuXO65ZZbzPJeeeUVjRw50ixv7Nixqq2tNctbvXq1SktLTbJOnTql0aNHm309mS1hWc+WtrY2\n0/ukgwcP6rbbbjPLa29v14QJE8zyrPsxW8Kxni18TxQW3xOF5f17ou9973uK4zi6oj8Yx3Gij1yE\njfr6erOsOI7jhx9+OJZk9qirqzPtt2bNGtO8p59+2jRv/fr1pnkbN240zdu8ebNZVnt7e9zS0mKW\n99RTT5nuvUmTJpl1i+M4XrVqlWleQ0ODad68efNM1++JJ54w7VdTU2Pa75lnnjHtN3r0aNN+zJZw\nvM8W7lvCsr5vYbakd7bwPVFYzJawsvA9UXyFZzT8OBgAAAAAAEAGcAgEAAAAAACQARwCAQAAAAAA\nZACHQAAAAAAAABnAIRAAAAAAAEAGcAgEAAAAAACQARwCAQAAAAAAZACHQAAAAAAAABlQeIdAS5ZI\nY8ZIVVXJZ3V0SLNmSRUVUmWltHJl4pGrJXVKejnxJNn3s1w7iX6hOe/neu9Jrmen6dpJ9AuMfgEx\nW8Jy/rrnvR+zJSC+JwrL+d6jX2B52H+Fdwi0eLG0datNVlGRtHy51Noq7dol1ddLbW2JRjZImpNo\nwiWs+1munfT/snf3QVaXd57338e0z4g2oCAq0WHGyEMjjWYwgEYlhgwmkNxLzdagVATWnd31nqXm\nzp0tY+reZHbuechOig3O9E7t4KTLFUjpRsgMzAi3BkZNg/GBRqANNo6CaRbUVoPhQQT6d/9xIHGz\nmYo41+/b/bvO+1V1yp449Od8+vpd3/M7V51G+6WWeb+s9x5kPTtD1w7sl5j9EnK2pJX5617u/Zwt\nCfmeKK3M9579EuuH/TfwDoGmTYPm5pisESNg4sT614MGwZgxsGdPqZEdwNulJrxPdL/ItQP7pZZ5\nv6z3HmQ9O0PXDuyXmP0ScraklfnrXu79nC0J+Z4orcz3nv0S64f9N/AOgfrLrl2wZQtMntzfz6Qc\n9qs2+1VXzt3AflVnv+rKuRvYr+rsV105dwP7VZ39kvAQCODAAZgzB5YsqZ++5cZ+1Wa/6sq5G9iv\n6uxXXTl3A/tVnf2qK+duYL+qs18yHgIdO1b/Yc+bB7Nn9/ezSc9+1Wa/6sq5G9iv6uxXXTl3A/tV\nnf2qK+duYL+qs19SA/MQqCjqjwgLFsDYsbBoUUweUDvxCBHdL3LtwH6pZd4v670HWc/O0LUD+yVm\nv4ScLWll/rqXez9nS0K+J0or871nv8SC+w28Q6C5c2HKFOjuhlGjoL29vKyODli+HNavh9ZWmDQJ\n1q4tLw9YDmwErgR2A3eUGRbdL3LtwH6pZd4v670HWc/O0LUD+yVmv4ScLWll/rqXez9nS0K+J0or\n871nv8T6Yf81lfrdP4wVK+Kypk6F48fj8oDbIsOi+0WuHdgvtcz7Zb33IOvZGbp2YL/E7JeQsyWt\nzF/3cu/nbEnI90RpZb737JdYP+y/gfdJIEmSJEmSJCXnIZAkSZIkSVID8BBIkiRJkiSpAXgIJEmS\nJEmS1AA8BJIkSZIkSWoAHgJJkiRJkiQ1AA+BJEmSJEmSGoCHQJIkSZIkSQ3AQyBJkiRJkqQGUCuK\notyAWq34zne+U2rGSY899hg9PT0hWQBHjhxh+vTpYXkbN26kr68vLO+iiy5i5syZYXldXV2MGzcu\nLO+FF15g7Nix2eZF/jx7e3u5//77GTp0aEjeG2+8wac//WnOPffckLzOzk4OHjwYkgVQq9X44he/\nGJa3atUq9u/fH5Z31llnce2114blvfPOO0yaNCks78knn+Tiiy8Oyzt8+DAtLS1heRs2bOCyyy4L\nydq/fz9DhgzhiiuuCMnbvn07x48fd7Yksm3bttBrc/v27YwfPz4sL/f7lr/4i79g0KBBYXkXX3wx\no0ePDsnKfba88sor3HLLLSFZAE899RTDhg0Ly/M9UVq+J0qnP94Tbd68maIoaqf0B4uiKPVRj4jx\nla98pQDCHjNnzgzrVhRFcfvtt4f2u/vuu0P7Pfjgg6F5Dz/8cGje6tWrQ/MeeeSRsKzu7u7irLPO\nCrs2m5ubi97e3rB+zhZny6lwtqTT3d1ddHZ2huWtXLnS2ZJQe3t7aN6yZctC83KfLaNHjw69Ptes\nWRPWLffZ0tbWFpZVFEWxdOnS0DzvW9LyviWd/nhPBBTFKZ7R+OtgkiRJkiRJDcBDIEmSJEmSpAbg\nIZAkSZIkSVID8BBIkiRJkiSpAXgIJEmSJEmS1AA8BJIkSZIkSWoAHgJJkiRJkiQ1AA+BJEmSJEmS\nGsDAOgQ6cgQmT4bWVhg3Du65p/TI+4B9wPOlJwE9PXDzzfVuLS1w772lR2bdb+FCGD4cJkwoN+ck\n+yWV9bVJcD9nZ1qZ7z37JeRsMc+8nwm9NsHZklrm/bxvSch+SYXPTgbaIdCZZ8KGDdDZCVu3wvr1\n0NFRamQ7MKPUhPdpaoLFi6GrCzZtgrY22LGj1Mis+82fD+vWlff9f5H9ksr62iS4n7Mzrcz3nv0S\ncraYZ97PhF6b4GxJLfN+3rckZL+kwmcnA+0QCOCcc+r/PHIE+vqgubnUuA7g7VIT3mfECJg4sf71\noEEwZgzs2VNqZNb9pk0r/fr4X9gvqayvTYL7gbMzpcz3nv0ScraYZ97PhF+bzpa0Mu/nfUtC9ksq\nfHYyEA+B+vrqH1sdMQJuvBHGju3vZ1SOXbtgy5b6x3RzZL9qy7lfrt2cnXmwX3Xl2i16tphX7bz+\nkuv+g7y7gf2qzn6VNPAOgU47rf6x1Z4eeOIJePzx/n5G6R04AHPmwJIl9dPF3Niv2nLul3M3Z2f1\n2a+6cu4WPVvMq3Zef8h5/+XcDexXdfarrIF3CHTS4MFw663w7LP9/UzSOnasfjHNmwezZ/f3s0nP\nftWWc7+cu72fs7Oa7FddOXd7v+jZYl6186LkvP9y7gb2qzr7VdrAOgTq7YX9++tfHz4Mjz7689/H\nK1HtxCPEggX1j+IuWhSVmHe/oqg/otgvqayvTQL7OTvTy3zv2S8hZ4t55v1M6OsCOFtSy7yf9y0J\n2S+p6Nk5sA6B9u6Fm26q/+7yddfBrFkwfXqpkcuBjcCVwG7gjjLDOjpg+fL6f52htRUmTYK1a8tM\nzLvf3LkwZQp0d8OoUdDeXl4W2C+xrK9Ngvs5O9PKfO/ZLyFni3nm/UzotQnOltQy7+d9S0L2Syp8\ndgJNARkfXEsLbN4cGnlbZNjUqXD8eGRi3v1WrIjLAvsllvW1SXA/Z2dame89+yXkbDHPvJ8JvTbB\n2ZJa5v28b0nIfkmFz04G2ieBJEmSJEmSVAoPgSRJkiRJkhqAh0CSJEmSJEkNwEMgSZIkSZKkBuAh\nkCRJkiRJUgPwEEiSJEmSJKkBeAgkSZIkSZLUADwEkiRJkiRJagAeAkmSJEmSJDWAWlEU5QbUasV1\n111XasZJR48eZf78+SFZAN3d3Vx//fVheT/84Q+5/PLLw/JWrlzJoUOHwvJaWlr49Kc/HZa3fft2\nxo8fH5a3bds2WlpawvK+/vWvc95554VkHTp0iJkzZ3LppZeG5L300kuMHz+e888/PyRv48aNjB49\nOiQLnC2pOVuqm/fGG29w4MABrrjiipC8zZs38/d///ecffbZIXnR9y2PPfYY+/btC8sbOXIkv/M7\nvxOWt3XrViZMmBCWF733vvWtb3H8+PGwvAkTJoT+PNva2sJe1w8dOsRtt93Gr/3ar4Xkbd++ncsu\nuyys39NPP81v/uZvhmQBrFq1ipdffjksb+jQofzWb/1WWJ73LWn5niidF154gf/6X/8rRVHUTukP\nFkVR6gMooh7jx48vIi1dujQ0r729PTRv1qxZYWsHFN/85jdD+z388MOheatXrw7NGzZsWOj6dXZ2\nhnVbuXJl0dvbG5bX1tYWllUUzhZny6mJni2PPPJIWFZ3d3fobHnggQdCr83o+5a77rortN+CBQtC\n+y1btiw078EHHwzNa21tDV2/hx56KLSf9y3pRN+35D5bvG9Jy/dE6Zy8bylO8YzGXweTJEmSJElq\nAB4CSZIkSZIkNQAPgSRJkiRJkhqAh0CSJEmSJEkNwEMgSZIkSZKkBuAhkCRJkiRJUgPwEEiSJEmS\nJKkBeAgkSZIkSZLUAAbcIdB9wD7g+Yiwnh64+WYYNw5aWuDee8vPXLgQhg+HCRPKzwruF7p2EL9+\nkWsHrl9qGe89IOt+XpuJ2S+p3O9bQvsdOQKTJ0Nra73jPfeY98+Q++zMvV/Or+uQ9+z02kzM9Utu\nwB0CtQMzosKammDxYujqgk2boK0NduwoN3P+fFi3rtyMk4L7ha4dxK9f5NqB65daxnsPyLqf12Zi\n9ksq9/uW0H5nngkbNkBnJ2zdCuvXQ0eHeR9S7rMz9345v65D3rPTazMx1y+5AXcI1AG8HRU2YgRM\nnFj/etAgGDMG9uwpN3PaNGhuLjfjpOB+oWsH8esXuXbg+qWW8d4Dsu7ntZmY/ZLK/b4lfP+dc079\nn0eOQF9f+ddOxnm5z87c++X8ug55z06vzcRcv+QG3CFQv9m1C7ZsqX9MN0f2qzb7VVfO3cB+VWe/\n6sq1W19f/delRoyAG2+EsWPNq6Jcr8+Tcu6XczewX9XZLwkPgQAOHIA5c2DJkvrpW27sV232q66c\nu4H9qs5+1ZVzt9NOq/+6VE8PPPEEPP64eVWT8/UJeffLuRvYr+rsl4yHQMeO1X/Y8+bB7Nn9/WzS\ns1+12a+6cu4G9qs6+1VXzt3eb/BguPVWePZZ86ok9+sz5345dwP7VZ39khqQh0C1E48QCxbUP4q7\naFFUIhRF/REhuF/o2kH8+kWuHbh+qWW894Cs+3ltJma/pHK/bwnr19sL+/fXvz58GB599Od/T4J5\nH0ruszP3fjm/rkPes9NrMzHXL6kBdwi0HNgIXAnsBu4oM6yjA5Yvr//XGVpbYdIkWLu2zESYOxem\nTIHubhg1Ctrby8sK7he6dhC/fpFrB65fahnvPSDrfl6bidkvqdzvW0L77d0LN91U73bddTBrFkyf\nbt6HlPvszL1fzq/rkPfs9NpMzPVLrqnU7/4h3BYZNnUqHD8emQgrVsRlBfcLXTuIX7/ItQPXL7WM\n9x6QdT+vzcTsl1Tu9y2h/VpaYPNm8xLJfXbm3i/n13XIe3Z6bSbm+iU34D4JJEmSJEmSpPQ8BJIk\nSZIkSWoAHgJJkiRJkiQ1AA+BJEmSJEmSGoCHQJIkSZIkSQ3gVx4C1Wq1S2u12vpardZVq9W21Wq1\n3zvxv3+tVqv11Gq1zScenyn/6UqSJEmSJOnD+CD/ifhjwP9VFMWWWq02CHiuVqs9euLfLS6KYnF5\nT0+SJEmSJEkp/MpDoKIo9gH7Tnx9oFar/Qi45MS/rpX43CRJkiRJkpTIKf2dQLVa7XJgIvDDE//T\n/1mr1bbUarX7arXa+YmfmyRJkiRJkhKpFUXxwf4f678K9g/AHxZF8Te1Wu1CoLcoiqJWq/2/wMVF\nUSz8JX+u+MIXvvCz/3vMmDGMGTMmyZP/RWvWrGHbtm2lfO9fZvjw4SxatCgs76//+q/5x3/8x7C8\n8ePH87nPfS4sr62tjXfeeScs75ZbbuGmm24Ky7vnnnvCsgA+85nP0NraGpLV29vLkiVLOOecc0Ly\n3nvvPf7jf/yPDB48OCTvySef5Prrrw/JAnjqqae47rrrwvKcLWlFz5YtW7YwceLEsLzOzs6w2fL6\n66/zx3/8x6Gz5Utf+hKDBg0KyfvhD3/Ipz71qZAsgB/84AdcffXVYXnLli3jxz/+cVjepEmTmDNn\nTljen/3Zn/H222+H5d1www1MnTo1LG/nzp1MmjQpLG/Tpk2MHz8+JCv3+5ZVq1bxzDPPhGQBDBs2\njDvvvDMsb+vWraF7IfLahPzvW3J/T9TX18fo0aNLy9i2bRvbt28HYN++fTz++OMURXFqv6FVFMWv\nfFD/tbG1wKJ/4t9/FNj6T/y7IspXvvKVAgh7zJw5M6xbURTF7bffHtrv7rvvDu33yU9+MrTf0qVL\nQ/uNHj06tN+aNWvCunV3dxdnnXVWWLfm5uait7c3rF9bW1tYVlEU4dems6Xas2X16tWheY888khY\nlrMlLWdLWs6WtJwt6eT+nqi9vT00b9myZaF5uc+W3N8TdXZ2huWtXLmyAIriA5zpvP/xQX8d7NvA\nC0VRLDn5P9RqtRHv+/f/B7D9A34vSZIkSZIkBfuVfzF0rVabCtwGbKvVap3UT9TuAebWarWJQB+w\nC/jdEp+nJEmSJEmS/hk+yH8drAP4yC/5V2vTPx1JkiRJkiSV4ZT+62CSJEmSJEmqJg+BJEmSJEmS\nGoCHQJIkSZIkSQ3AQyBJkiRJkqQG4CGQJEmSJElSAxhYh0A9PXDzzTBuHLS0wL33lh55H7APeL70\nJOyXWGg3gCNHYPJkaG2td7znnlLjwvvlvH79sPdYuBCGD4cJE8rPcrYklfveC702Ie/1c7YkF7p+\nvq6n5WxJJ/e95+xMyvdEieU+Oxloh0BNTbB4MXR1waZN0NYGO3aUGtkOzCg14X3sl1RoN4Azz4QN\nG6CzE7ZuhfXroaOjtLjwfjmvXz/sPebPh3Xrys04ydmSVO57L/TahLzXz9mSXOj6+bqelrMlndz3\nnrMzKd8TJZb77GSgHQKNGAETJ9a/HjQIxoyBPXtKjewA3i414X3sl1Rot5POOaf+zyNHoK8PmptL\niwrvl/P69cPeY9q0Uq+P/4WzJanc917otQl5r5+zJbnw/efrejrOlnRy33vOzqR8T5RY7rOTgXYI\n9H67dsGWLfWPmuXIftXU11f/6OOIEXDjjTB2bH8/o3Lkun6QdzewX9XZr7py7gb59vN1PQ8598u5\nG9ivqpydlTYwD4EOHIA5c2DJkvrpW27sV12nnVb/6GNPDzzxBDz+eH8/o/RyXr+cu4H9qs5+1ZVz\nN8i7n6/r1Zdzv5y7gf2qzNlZaQPvEOjYsfoPe948mD27v59NevbLw+DBcOut8Oyz/f1M0sp5/XLu\nBvarOvtVV87dIP9+J/m6Xk0598u5G9gvF87OShp4h0ALFtQ/TrZoUVhk7cQjhP2SCu3W2wv799e/\nPnwYHn30578vWpLQfpD3+vXD3qMo6o8Izpakct97odcm5L1+zpbkwtbP1/X0nC3p5Lz3wNmZmO+J\nEst8dg6sQ6CODli+vP43jLe2wqRJsHZtqZHLgY3AlcBu4I4yw+yXVGg3gL174aab6t2uuw5mzYLp\n00uLC++X8/r1w95j7lyYMgW6u2HUKGhvLy/L2ZJU7nsv9NqEvNfP2ZJc6Pr5up6WsyWd3PeeszMp\n3xMllvvsBJpKTzgVU6fC8eOhkbdFhtkvqdBuAC0tsHlzWFx4v5zXrx/2HitWxGU5W5LKfe+FXpuQ\n9/o5W5ILXT9f19NytqST+95zdible6LEcp+dDLRPAkmSJEmSJKkUHgJJkiRJkiQ1AA+BJEmSJEmS\nGoCHQJIkSZIkSQ3AQyBJkiRJkqQG4CGQJEmSJElSA/AQSJIkSZIkqQF4CCRJkiRJktQAPASSJEmS\nJElqALWiKMoNqNWKv/u7vys146THHnuMG264ISQL4Mknn2T69OmheZMnTw7Le+aZZ5g6dWpY3saN\nG7n22mvD8jo7O0N/nk899RSTJk0Ky3v++ef5+Mc/HpK1b98+3n77bUaPHh2S9+STT7J8+XKamppC\n8pqbm/nGN74RkgWwdOlSnnnmmbC81tZWFi5cGJaX+2z56le/yv79+8Pybr/99tDXvjvvvJNarRaS\ndezYMb70pS/xG7/xGyF5zpa0nC1pOVvSiZ4tzz77LOPGjeP8888PyYt+T/Ttb3+bzZs3h+Vdc801\n/O7v/m5Y3p/+6Z/y8ssvh+V95jOf4bOf/WxYXu7vie66667Q2XL33Xdz5ZVXhuQ988wzfP3rX6co\nilMqGHKXM3PmzIgYdu3axec///mQLIDe3t6wbgCvv/56aL+DBw+G9jtw4EBov76+vtB+fX19oQP9\nrLPO4jOf+UxI1s6dOzl48CATJ04MyTtw4ACLFy8OyYL6G7XIa+Xv//7v+d73vheWN2PGDGdLQv/p\nP/0n9uzZE5Z3zTXXhP4833vvPXp7e8PybrnlFmdLIs6WtJwtaeU8W4qi4IYbbmDo0KEhedHviR57\n7DFWr14dljdjxozQa/O//bf/Frr3xowZ43uihO68887Q2XLjjTeGzZYjR458qD/nr4NJkiRJkiQ1\nAA+BJEmSJEmSGoCHQJIkSZIkSQ3AQyBJkiRJkqQG4CGQJEmSJElSA/AQSJIkSZIkqQF4CCRJkiRJ\nktQAPASSJEmSJElqAAPvEGjhQhg+HCZMKD+rpwduvhnGjYOWFrj33vIzc+4X2Q3sl1rm/e4D9gHP\nl5pyQj/Mlqz7eW2mdeQITJ4Mra31jvfcU2pceL+c18/ZkpazJS37pZXzewbyni1em4m5fskNvEOg\n+fNh3bqYrKYmWLwYurpg0yZoa4MdO8rNzLlfZDewX2qZ92sHZpT23X9BP8yWrPt5baZ15pmwYQN0\ndsLWrbB+PXR0lBYX3i/n9XO2pOVsSct+aeX8noG8Z4vXZmKuX3ID7xBo2jRobo7JGjECJk6sfz1o\nEIwZA3v2lJuZc7/IbmC/1DLv1wG8Xdp3/wX9MFuy7ue1md4559T/eeQI9PWV+vMN75fz+jlb0nK2\npGW/tHJ+z0Des8VrMzHXL7mBdwjUX3btgi1b6h+Rz5H9qs1+1ZVzN7BfVfX11X8dbMQIuPFGGDu2\nv59ROXJdP8i7G9iv6uxXXTl3A/tVnf2S8BAI4MABmDMHliypn77lxn7VZr/qyrkb2K/KTjut/utg\nPT3wxBPw+OP9/YzSy3n9cu4G9qs6+1VXzt3AflVnv2Q8BDp2rP7DnjcPZs/u72eTnv2qzX7VlXM3\nsF8uBg+GW2+FZ5/t72eSVs7rl3M3sF/V2a+6cu4G9qs6+yU1MA+BiqL+iLBgQf1j8IsWxeRB3v0i\nu4H9Usu8X+3EI0Q/zJas+3ltptPbC/v3178+fBgeffTnv4tektB+kPf6OVvScrakZb+0cn7PQN6z\nxWszMdcvqYF3CDR3LkyZAt3dMGoUtLeXl9XRAcuX1//LKK2tMGkSrF1bXh7k3S+yG9gvtcz7LQc2\nAlcCu4E7SkuiX2ZL1v28NtPauxduuqne7brrYNYsmD69tLjwfjmvn7MlLWdLWvZLK+f3DOQ9W7w2\nE3P9kmsq9bt/GCtWxGVNnQrHj8flQd79IruB/VLLvN9tYUn0y2zJup/XZlotLbB5c1hceL+c18/Z\nkpazJS37pZXzewbyni1em4m5fskNvE8CSZIkSZIkKTkPgSRJkiRJkhqAh0CSJEmSJEkNwEMgSZIk\nSZKkBuAhkCRJkiRJUgPwEEiSJEmSJKkBeAgkSZIkSZLUADwEkiRJkiRJagBNESEHDhyIiOHdd98N\ny+qPvMOHD9uvwnkHDx7MNu/gwYOheYcPHw7JOen48eOha3fkyJGwLICjR486WxI6fvx4WBbEz5a+\nvr6wLIjt52xJy9mSlrMlrejZcuDAAc4888yQvOi9kPtsOXr0aFgW5D/LnC3pfNj7lpBDoOeeey4i\nhv/5P/9nWFZ/5O3duzc0r6enJzTv1VdfDc3btWtXaN7LL78cmtfd3c2wYcNCsnp6evh3/+7f4BD0\nowAAIABJREFUhWQBnHXWWaxcuZILLrggJG/NmjWha3fhhReyfv36sLw/+qM/4pJLLgnL+/znP8+v\n//qvh+X9l//yX/j3//7fh+XdeeedfOtb3wrLe+qpp0Kvzy996Ut84hOfCMnq6elh+/btHDt2LCTv\ntddec7Yk5GxJy9mSTk9PDzNnzgzJgvp9y1/91V+FzZbnnnsudO9NmDAhdLZ8//vfD702P/7xj/Pl\nL385LO/3f//3+c//+T+H5f2bf/NvuPTSS8PyvvzlL/Ov//W/Dsv70pe+xPXXXx+S1R+z5cMIOQT6\n5Cc/GRFDV1dXWBbAzp07Q/NeeeWV0Lyenp7QvNdeey0078033wzN++lPfxqad/jw4bC8nTt38t57\n7/Huu++G5H3kIx/hhhtuYOjQoSF5P/rRj8Jny0033RSW9+1vf5t33nknLG/kyJGhP88LLrggtN9V\nV10Vun4HDx4Mny1R/Xbu3MnBgweZOHFiSN5bb73lbEnI2ZKWsyWd/rhvmTZtWthsWbduXei1OXjw\n4NBrc/fu3eHviSL7Rc+W3/iN3wj9eZ5xxhmh/a655pqsZ8uH4d8JJEmSJEmS1AA8BJIkSZIkSWoA\nHgJJkiRJkiQ1AA+BJEmSJEmSGoCHQJIkSZIkSQ3AQyBJkiRJkqQG4CGQJEmSJElSAxhYh0A9PXDz\nzTBuHLS0wL33lp+5cCEMHw4TJpSfZb+0IruB/RK7D9gHPF9qygnuveRyXr/QbuBsSS3zvZd7P2dL\nQjnvPch7/dx76WU8O3OfLfZLb2AdAjU1weLF0NUFmzZBWxvs2FFu5vz5sG5duRkn2S+tyG5gv8Ta\ngRmlffdf4N5LLuf1C+0GzpbUMt97ufdztiSU896DvNfPvZdexrMz99liv/QG1iHQiBEwcWL960GD\nYMwY2LOn3Mxp06C5udyMk+yXVmQ3sF9iHcDbpX33X+DeSy7n9QvtBs6W1DLfe7n3c7YklPPeg7zX\nz72XXsazM/fZYr/0BtYh0Pvt2gVbtsDkyf39TMphv2qzX3Xl3A3sV3X2q66cu4H9qs5+1ZVzN7Bf\n1dmvkgbmIdCBAzBnDixZUj99y439qs1+1ZVzN7Bf1dmvunLuBvarOvtVV87dwH5VZ7/KGniHQMeO\n1X/Y8+bB7Nn9/WzSs1+12a+6cu4G9qs6+1VXzt3AflVnv+rKuRvYr+rsV2kD7xBowQIYOxYWLYrL\nLIr6I4L90orsBvZLrHbiEcK9l1zO6xfaDZwtqWW+93Lv52xJKOe9B3mvn3svvYxnZ+6zxX5pDaxD\noI4OWL4c1q+H1laYNAnWri03c+5cmDIFurth1Choby8vy35pRXYD+yW2HNgIXAnsBu4oLQn3Xgly\nXr/QbuBsSS3zvZd7P2dLQjnvPch7/dx76WU8O3OfLfZLrykg44ObOhWOH4/NXLEiLst+aUV2A/sl\ndltYEu69EuS8fqHdwNmSWuZ7L/d+zpaEct57kPf6uffSy3h25j5b7JfewPokkCRJkiRJkkrhIZAk\nSZIkSVID8BBIkiRJkiSpAXgIJEmSJEmS1AA8BJIkSZIkSWoAHgJJkiRJkiQ1AA+BJEmSJEmSGoCH\nQJIkSZIkSQ3AQyBJkiRJkqQG0BQR8oMf/CAihn/8x38My+qPvJdeeik0b+fOnaF5L774Ymjejh07\nQvO6urq44IILwvKef/55Bg0aFJL16quvcvz48ZAsgKNHj7Jp06awn2fus2Xfvn1hWQB79+4N7feT\nn/wkLAvi1y/32XLw4EEOHDgQkrd9+3ZOP/10Z0sizpa0nC3p5H7fsmvXrpCck37yk5/4niih3GfL\noUOHwrIAtm7dyvnnnx+S1R+z5cMIOQS6/vrrI2K46qqr+L3f+72QLIDm5mYuvfRS8xIZMmRIaN7Q\noUND84YNGxaa9yd/8ifs378/LG/16tWMHz8+JOvhhx/mc5/7XEgWxM+WV199NWxuAvzLf/kveeWV\nV8Ly/uZv/iZ0L9x5553ceuutYXkzZszgT//0T8Py/uIv/iL053nhhReG5R09epRDhw6F5V144YVc\ncsklNDc3h+RFv846W9JytqSV833L2rVrQ2fL2LFjQ/feV7/61fDZEnlt/sM//AN/8Ad/EJb31a9+\nle9973theevWrQv9ef7hH/4h06dPD8tbv3596H3LqlWrGDduXEje2rVr+bf/9t+e8p8LOQSK0tTU\nxOWXXx6WN2TIkNC8oUOHhuYNGzYsNO/CCy/MOm/48OGheaeffnpYFsCll14a1m/48OEhOSdFz5ao\nm8STzj33XGdLQueee25YFsBFF10U2m/kyJFheUePHuXgwYOhs2XUqFEMHTo0JC/6PsLZkpazJa3c\n71ucLelEz5aoT5Gc1NzcnPUsi35PlPt9y4fh3wkkSZIkSZLUADwEkiRJkiRJagAeAkmSJEmSJDUA\nD4EkSZIkSZIagIdAkiRJkiRJDcBDIEmSJEmSpAbgIZAkSZIkSVIDGHCHQPcB+4DnI8J6euDmm2Hc\nOGhpgXvvLT9z4UIYPhwmTCg/K7pfZDewX2Khew/y7tcPsyXrfu69tFy/tHJ+XcfZkpSzJanc+zlb\nEvLaTCvz2Zl9PwbgIVA7MCMqrKkJFi+Gri7YtAna2mDHjnIz58+HdevKzTgpul9kN7BfYqF7D/Lu\n1w+zJet+7r20XL+0cn5dx9mSlLMlqdz7OVsS8tpMK/PZmX0/BuAhUAfwdlTYiBEwcWL960GDYMwY\n2LOn3Mxp06C5udyMk6L7RXYD+yUWuvcg7379MFuy7ufeS8v1Syvn13WcLUk5W5LKvZ+zJSGvzbQy\nn53Z92MAHgL1m127YMsWmDy5v59JOexXbfarrpy7gf2qzn7VlXM3sF/V2a+6cu4G9qs6+yXhIRDA\ngQMwZw4sWVI/fcuN/arNftWVczewX9XZr7py7gb2qzr7VVfO3cB+VWe/ZDwEOnas/sOeNw9mz+7v\nZ5Oe/arNftWVczewX9XZr7py7gb2qzr7VVfO3cB+VWe/pAbkIVDtxCPEggUwdiwsWhSVCEVRf0SI\n7hfZDeyXWOjeg7z79cNsybqfey8t1y+tnF/XcbYk5WxJKvd+zpaEvDbTynx25t5vwB0CLQc2AlcC\nu4E7ygzr6IDly2H9emhthUmTYO3aMhNh7lyYMgW6u2HUKGhvLy8rul9kN7BfYqF7D/Lu1w+zJet+\n7r20XL+0cn5dx9mSlLMlqdz7OVsS8tpMK/PZmX0/oKnU7/4h3BYZNnUqHD8emQgrVsRlRfeL7Ab2\nSyx070He/fphtmTdz72XluuXVs6v6zhbknK2JJV7P2dLQl6baWU+O7PvxwD8JJAkSZIkSZLS8xBI\nkiRJkiSpAXgIJEmSJEmS1AA8BJIkSZIkSWoAHgJJkiRJkiQ1AA+BJEmSJEmSGoCHQJIkSZIkSQ3A\nQyBJkiRJkqQG4CGQJEmSJElSA2iKCLniiisiYjjttNP4xje+EZIFsG3bNmq1WlheZ2cnx48fD8vb\nunUr7777blje9u3b+elPfxqW19XVxdtvvx2Wt3HjRrq6usLyzjvvPM4777yQrGPHjvHd736X5557\nLiTvmWeeYdSoUXzkIx8JyTv99NP567/+65AsgN27d4fNTYAf//jHobPzpZdeCp0tTz31FK+88kpY\n3nvvvRe6fn/7t3/Lyy+/HJa3Z88e9uzZE5L1+uuvc/DgwbDZ8vzzz7Nr1y4GDx4ckvf000+Hvu5t\n27bN2ZJQ7rPl8ccf55133gnLO//880PvW/7qr/6Kj370oyF527Ztc7Yk9MYbb4Tel+3fvz+031NP\nPRU6O3/84x+Hvifq6uritddeC8vbvn171vctH0bIIdCOHTsiYvjqV7/K3XffHZIFMGPGDObNmxeW\n19fXF5r3ne98h9/5nd8Jy/vud7/LnDlzwvJWrVrFF77whbC8P/qjP+Lb3/52WN6qVauYOXNmSNbO\nnTs5dOgQV199dUjeeeedx9e+9jWGDh0akveXf/mXoXvvvffe4+GHHw7L++IXvxg6O7/85S+H/jzv\nv/9+7rvvvrC8v/zLv2TBggVheVdddRXLli0Ly8t9tlx//fVhs2XHjh3h9y1R92TgbEkterasWbOG\nz372s2F5F110ETNmzAjJ2rlzJ9dee23YoWFzczN/9md/5mxJ5P777w/d601NTaHviT71qU+Frl/0\nfW70bFm3bl3obIm+b/nzP//zU/5zIYdAZ5xxRkQMp59+ekjOSR/5yEfCukG9X2ReU1NT1nnRP8/T\nTov97cvIfmeccQZHjx4N3etnnHFGeF6U/tjrkaJnZ/Tei55lzpZ0+mO2RIree86WtKJnS+RegPjZ\nEs3Zkk7u74mcLWnlft/yYfh3AkmSJEmSJDUAD4EkSZIkSZIagIdAkiRJkiRJDcBDIEmSJEmSpAbg\nIZAkSZIkSVID8BBIkiRJkiSpAXgIJEmSJEmS1AAG1iFQTw/cfDOMGwctLXDvvaVH3gfsA54vPQk4\ncgQmT4bW1nrHe+4xz7x/Uui1CfH7b+FCGD4cJkwoNwf6Zbbk3i/0+gzul/vey72fey8h+yXl3kss\n5/Vz76WX8WuDsyWx3Psx0A6Bmppg8WLo6oJNm6CtDXbsKDWyHZhRasL7nHkmbNgAnZ2wdSusXw8d\nHeaZ90uFXpsQv//mz4d168r7/u/XD7Ml936h12dwv9z3Xu793HsJ2S8p915iOa+fey+9jF8bnC2J\n5d6PgXYINGIETJxY/3rQIBgzBvbsKTWyA3i71IRfcM459X8eOQJ9fdDcbJ55v1T4tRm9/6ZNK3+9\nTuqH2ZJ7v9DrM7hf7nsv937uvYTsl5R7L7Gc18+9l17Grw3OlsRy78dAOwR6v127YMuW+q/f5KSv\nr/7rRCNGwI03wtix5pk38OS6/yDvbmC/qrNfdeXcDexXdfarrpy7gf2qzn6VNDAPgQ4cgDlzYMmS\n+ulbTk47rf7rRD098MQT8Pjj5pk3sOS8/3LuBvarOvtVV87dwH5VZ7/qyrkb2K/q7FdZA+8Q6Nix\n+g973jyYPbu/n015Bg+GW2+FZ581z7yBI+f9l3M3sF/V2a+6cu4G9qs6+1VXzt3AflVnv0obeIdA\nCxbUf8Vm0aKwyNqJR+l6e2H//vrXhw/Do4/+/PcNzTPvlwi7Nk+K3n9FUX9E6IfZknu/0OszuF/u\ney/3fu69hOyXlHsvsZzXz72XXsavDc6WxDLvN7AOgTo6YPny+n91qbUVJk2CtWtLjVwObASuBHYD\nd5QZtncv3HRTvdt118GsWTB9unnm/VKh1ybE77+5c2HKFOjuhlGjoL29vKx+mC259wu9PoP75b73\ncu/n3kvIfkm59xLLef3ce+ll/NrgbEks935AU+kJp2LqVDh+PDTytsiwlhbYvNk88z6Q0GsT4vff\nihVxWf0wW3LvF3p9BvfLfe/l3s+9l5D9knLvJZbz+rn30sv4tcHZklju/RhonwSSJEmSJElSKTwE\nkiRJkiRJagAeAkmSJEmSJDUAD4EkSZIkSZIagIdAkiRJkiRJDeBXHgLVarUza7XaD2u1WmetVuuq\n1Wp/fOJ/b67Vav9frVZ7sVarravVaueX/3QlSZIkSZL0YfzKQ6CiKI4ANxVF0QpMAG6u1WpTgbuB\nx4qi+BiwHvhKqc9UkiRJkiRJH9oH+nWwoigOnfjyzBN/5m1gNnD/if/9fuDzyZ+dJEmSJEmSkvhA\nh0C1Wu20Wq3WCewD/qEoiheA4UVRvAZQFMU+4KLynqYkSZIkSZL+OWpFUXzw/+dabTCwjvqvfq0s\nimLI+/7dm0VRDP0lf6b4/d///RTP9Vd69tln6evrC8kCOP3002ltbQ3L27t3LzfeeGNY3o4dO7jq\nqqvC8l588UU+9rGPheVt2LCBkSNHhuX94Ac/4IwzzgjLGzJkCL/+678ekvXWW29x8cUXc/nll4fk\n/ehHP+KSSy5h8ODBIXmbN29m0qRJIVkAmzZtYsiQIb/6/zGRZ555hlN5LfjnGj16NFOmTAnL+973\nvsdPf/rTsLwJEyZw9dVXh+UtW7YsdP1yni1dXV0cPnyY8847LyQv+r7lggsu4HOf+1xY3rp163j9\n9dfD8nKfLcOGDePXfu3XwvKOHDnChAkTwvLWrl3LFVdcEZL11ltv0dXVxZlnnhmSd+zYMf7Fv/gX\nYfctjz/+OK+++mpIFuT/nqijo4Nhw4aF5T399NNhWZD/bPnRj37EmDFjQrJ6e3s5ePAgH/3oR0Py\nurq6+PM//3OKoqid0h8siuKUHsD/A/zfwI+ofxoIYATwo3/i/7+IeowfP76IdNddd4V1A4oFCxaE\n9lu2bFlo3oMPPhia19raGrp+Dz30UGi/YcOGhfbr7OwM67Zy5cqit7c3LK+trS0sqyicLalFz5aH\nH344NG/16tWheTnPlgceeCC0W/R9y9KlS0Pz2tvbQ/Nyny3et1R3tnjfkvYRfd8ya9as0H7f/OY3\nQ/vlPlseeeSRsKzu7u7SZ8uGDRuKr33ta8XXvva14gtf+EIBFMUpnuk08SvUarVhwNGiKPbXarWz\ngVuAPwD+FrgD+AbwReBvftX3kiRJkiRJ0qm78cYbf/ZJuGXLlrFq1apT/h6/8hAIuBi4v1ar1aj/\nHUIPFEXx/RN/R9BDtVptAbAb+O1TTpckSZIkSVKIX3kIVBTFNuB/+8swiqJ4C/hUGU9KkiRJkiRJ\naX2g/zqYJEmSJEmSqs1DIEmSJEmSpAbgIZAkSZIkSVID8BBIkiRJkiSpAXgIJEmSJEmS1AAG3CHQ\nfcA+4PmIsJ4euPlmGDcOWlrg3ntLjwztd+QITJ4Mra31jvfcY94/Q+jaQfj1mXs/Fi6E4cNhwoRy\ncyD/2ZLz2oH9EgufLTm/NvTDbMl6drr30rJfWjnvPfKenblfm7n3y/21AQbgIVA7MCMqrKkJFi+G\nri7YtAna2mDHjlIjQ/udeSZs2ACdnbB1K6xfDx0d5n1IoWsH4ddn7v2YPx/WrSvv+79f7rMl57UD\n+yUWPltyfm3oh9mS9ex076Vlv7Ry3nvkPTtzvzZz75f7awMMwEOgDuDtqLARI2DixPrXgwbBmDGw\nZ0+pkaH9AM45p/7PI0egrw+am837kMLXLvj6zL0f06aVfz2elPtsyXntwH6Jhc8WyPe1oR9mS9az\n072Xlv3SynnvkffszP3azL1f7q8NMAAPgfrNrl2wZUv9I+Q56eurfyR+xAi48UYYO9a8Ksr1+jwp\n5345dwP7VV2u/RrhtSHXtTvJftVmv+rKuRvYr+rsl4SHQAAHDsCcObBkSf30LSennVb/SHxPDzzx\nBDz+uHlVk/P1CXn3y7kb2K/qcu6X+2tDzmsH9qs6+1VXzt3AflVnv2Q8BDp2rP7DnjcPZs/u72dT\nnsGD4dZb4dlnzauS3K/PnPvl3A3sV3W59zspx9eG3NfOftVmv+rKuRvYr+rsl9SAPASqnXiEWLCg\n/jHxRYuiEuP69fbC/v31rw8fhkcf/fnvG5r3oYRemxB+febej6KoPyLkPFsg77UD+yUWem3m/trQ\nD7Ml69np3kvLfmnlvPfIe3bmfm3m3i/314YBdwi0HNgIXAnsBu4oM6yjA5Yvr/+XQ1pbYdIkWLu2\nzMTYfnv3wk031btddx3MmgXTp5v3IYWuHYRfn7n3Y+5cmDIFurth1Choby8vK/fZkvPagf0SC58t\nOb829MNsyXp2uvfSsl9aOe898p6duV+buffL/bUBoKnU7/4h3BYZNnUqHD8emRjbr6UFNm82L5HQ\ntYPw6zP3fqxYEZeV+2zJee3AfomFz5acXxv6YbZkPTvde2nZL62c9x55z87cr83c++X+2gAD8JNA\nkiRJkiRJSs9DIEmSJEmSpAbgIZAkSZIkSVID8BBIkiRJkiSpAXgIJEmSJEmS1AA8BJIkSZIkSWoA\nHgJJkiRJkiQ1AA+BJEmSJEmSGoCHQJIkSZIkSQ2gVhRFuQG1WvHbv/3bpWacdPjwYT7/+c+HZAE8\n+eSTHDp0KCzvnXfe4ZJLLgnLO3bsGDfccENY3tq1axk8eHBY3u7duxkyZEhY3siRI2lpaQnL++53\nv8t5550XkvXuu+9y9OhRRo4cGZL36quvMnPmzLDrpaOjg1qtFpIFsHPnTkaMGBGWl/tsefHFF/nY\nxz6Wbd7KlStDr5fI2fnuu+9y9dVXc/nll4fkdXV18fLLL3PGGWeE5L355pth3QDeeOMNZs+eHZb3\nwgsvMHbs2LC86L3nfUta3rekk/t9y9lnnx16H/H973+fY8eOheUNGzaMa665Jizv7/7u72hqagrL\n+8lPfsJll10Wljdo0CAmTJgQkvXWW2+xfv36sNny8ssvs2HDBoqiOLUNXxRFqY96RIy2trawrKIo\niqVLl4bm3X777QUQ9rj77rtD+33yk58M7Re9fqtXrw7Ne+SRR8Kyuru7i7POOits7Zqbm4ve3t6w\nfl/5yldCr82ZM2eGdSuK/GfLgw8+GJr38MMPh+aNHj06dP3WrFkT1q27u7vo7OwMy1u5cqWzJaH2\n9vbQvGXLloXmed+Slvct6Thb0oqeLd63pH1E37dEzxagKE7xjMZfB5MkSZIkSWoAHgJJkiRJkiQ1\nAA+BJEmSJEmSGoCHQJIkSZIkSQ3AQyBJkiRJkqQG4CGQJEmSJElSA/AQSJIkSZIkqQF4CCRJkiRJ\nktQABtYhUE8P3HwzjBsHLS1w773lZy5cCMOHw4QJ5Wf1Q7/7gH3A86UnAUeOwOTJ0Npa73jPPaXG\nhXaD+PWLvDYhvF/o+uW+9+yXlnsvrZzXz72XXsbr595LLOf1c7akl/Fsce8llvt7WgbaIVBTEyxe\nDF1dsGkTtLXBjh3lZs6fD+vWlZtxUj/0awdmlJrwPmeeCRs2QGcnbN0K69dDR0dpcaHdIH79Iq9N\nCO8Xun657z37peXeSyvn9XPvpZfx+rn3Est5/Zwt6WU8W9x7ieX+npaBdgg0YgRMnFj/etAgGDMG\n9uwpN3PaNGhuLjfjpH7o1wG8XWrCLzjnnPo/jxyBvr5Sf7bh3aLXL/LahPB+oeuX+96zX1ruvbRy\nXj/3XnoZr597L7Gc18/Zkl7Gs8W9V4Kc39My0A6B3m/XLtiypf5RrBzl2q+vr/7RuREj4MYbYezY\n/n5G5ch1/U7KuV/O3cB+VWe/6sq5G9iv6uxXXTl3A/tVXa79Mn9POzAPgQ4cgDlzYMmS+ulibnLu\nd9pp9Y/O9fTAE0/A44/39zNKL+f1g7z75dwN7Fd19quunLuB/arOftWVczewX9Xl3C/z97QD7xDo\n2LH6xTRvHsye3d/PJr3c+500eDDceis8+2x/P5O0cl+/nPvl3A3sV3X2q66cu4H9qs5+1ZVzN7Bf\n1eXe76RM39MOvEOgBQvqH7datCgusyjqjwj90K924lG63l7Yv7/+9eHD8OijP/990ZKEdTspev0i\nr00I7xe6fjnvPbBfau69tHJeP/deehmvn3svsZzXz9mSXsazxb2XUAO8px1Yh0AdHbB8ef1v4G5t\nhUmTYO3acjPnzoUpU6C7G0aNgvb28rL6od9yYCNwJbAbuKPMsL174aab6t2uuw5mzYLp00uLC+0G\n8esXeW1CeL/Q9ct979kvLfdeWjmvn3svvYzXz72XWM7r52xJL+PZ4t5LLPf3tEBTQMYHN3UqHD8e\nm7liRVxWP/S7LTKspQU2bw6LC+0G8esXeW1CeL/Q9ct979kvLfdeWjmvn3svvYzXz72XWM7r52xJ\nL+PZ4t5LLPf3tAy0TwJJkiRJkiSpFB4CSZIkSZIkNQAPgSRJkiRJkhqAh0CSJEmSJEkNwEMgSZIk\nSZKkBuAhkCRJkiRJUgPwEEiSJEmSJKkBeAgkSZIkSZLUADwEkiRJkiRJagC1oijKDajVivvvv7/U\njJO2bNnCxIkTQ7IANmzYwMGDB8PyfvKTn3DVVVeF5RVFwcc//vGwvCeeeIJzzjknLO+FF15gyJAh\nYXkjR45k0qRJYXn33XcfI0aMCMl65513GDZsWNjP88033+QTn/gEgwcPDsl7+umnOe20uDPzn/70\np9x0001heZs2beL0008Py9u5cyfnnXdeWN7555/P9ddfH5b34IMPcu6554blHTt2jEsvvTQsb/Pm\nzYwcOTIk65133uETn/gEV1xxRUje9u3b2b59O4MGDQrJ6+np4dprrw3JAnj55ZdDX2cBPvvZz4Zl\nrVmzJiwL4N133+Xyyy8Py/O+JR3vW9LKfbbs2LEj9D3Yiy++yMc+9rGwvNzvW84++2zGjRsXkvXm\nm2/S2dnJBRdcEJK3b98+/sf/+B8URVE7pT9YFEWpj3pEjLa2trCsoiiKu+66qwDCHgsWLAjtt2zZ\nstC8Bx98MDSvtbU1dP0eeuih0H7Dhg0L7dfZ2RnWbeXKlUVvb29YXvRsWbp0aWhee3t7aN6sWbNC\nr81vfvObof2cLdWdLQ888EBot/Hjx4d1K4r871ucLWkfzpZ0cr9vyX22+J6o2rPlkUceCcvq7u7u\nl/uW4hTPaPx1MEmSJEmSpAbgIZAkSZIkSVID8BBIkiRJkiSpAXgIJEmSJEmS1AA8BJIkSZIkSWoA\nHgJJkiRJkiQ1AA+BJEmSJEmSGoCHQJIkSZIkSQ1g4B0CLVwIw4fDhAnlZ/X0wM03w7hx0NIC995b\neuR9wD7g+dKTiO8XuXYQ3i907cB+qWU+W3Lul/u1ab/Ecu7nfUtSXpuJ2S+tjF/XIe/Z4nuixFy/\n5AbeIdD8+bBuXUxWUxMsXgxdXbBpE7S1wY4dpUa2AzNKTXif6H6Rawfh/ULXDuyXWuazJed+uV+b\n9kss537etyTltZmY/dLK+HUd8p4tvidKzPVLbuAdAk2bBs3NMVkjRsDEifWvBw2CMWNgz55SIzuA\nt0tNeJ/ofpFrB+H9QtcO7Jda5rMl5365X5v2Syznft63JOW1mZj90sr4dR3yni2+J0rxoX7iAAAg\nAElEQVTM9Utu4B0C9Zddu2DLFpg8ub+fSTnsV232q66cu4H9qs5+1ZVzN7Bf1dmvunLuBvarOvsl\n4SEQwIEDMGcOLFlSP33Ljf2qzX7VlXM3sF/V2a+6cu4G9qs6+1VXzt3AflVnv2Q8BDp2rP7DnjcP\nZs/u72eTnv2qzX7VlXM3sF/V2a+6cu4G9qs6+1VXzt3AflVnv6QG5iFQUdQfERYsgLFjYdGimDyg\nduIRIrpf5NpBeL/QtQP7pZb5bMm5X+7Xpv0Sy7mf9y1JeW0mZr+0Mn5dh7xni++JEnP9khp4h0Bz\n58KUKdDdDaNGQXt7eVkdHbB8OaxfD62tMGkSrF1bXh6wHNgIXAnsBu4oMyy6X+TaQXi/0LUD+6WW\n+WzJuV/u16b9Esu5n/ctSXltJma/tDJ+XYe8Z4vviRJz/ZJrKvW7fxgrVsRlTZ0Kx4/H5QG3RYZF\n94tcOwjvF7p2YL/UMp8tOffL/dq0X2I59/O+JSmvzcTsl1bGr+uQ92zxPVFirl9yA++TQJIkSZIk\nSUrOQyBJkiRJkqQG4CGQJEmSJElSA/AQSJIkSZIkqQF4CCRJkiRJktQAPASSJEmSJElqAB4CSZIk\nSZIkNQAPgSRJkiRJkhqAh0CSJEmSJEkNoFYURbkBtVrxne98p9SMkx577DF6enpCsgCOHDnC9OnT\nw/I2btxIX19fWN5FF13EzJkzw/Luv/9+yr4e32/IkCGMHTs2LO/w4cO0tLSE5W3YsIHLLrssJGv/\n/v1s2LCBYcOGheS9+eab/Kt/9a84//zzQ/KeffZZrr322pAsgC1btjBx4sSwvFWrVrF///6wvLPO\nOiv05/nOO+8wadKksLwnn3ySiy++OCwv99kyZMgQrrjiipC87du3c/z4cc4999yQvFdeeYVbbrkl\nJAvgqaeeCpvTAK+//jpTpkwJy9u4cSMXXXRRWJ6zJS3vW9LxPVFavidKa82aNVxwwQVheVdffTWt\nra0hWb29vdx///0MHTo0JO+NN95g8+bNFEVRO6U/WBRFqY96RIyvfOUrBRD2mDlzZli3oiiK22+/\nPbTf3XffHdrvk5/8ZGi/pUuXhvZbvXp1aN4jjzwSltXd3V2cddZZYWvX3Nxc9Pb2hvVra2sLyyqK\nIvzazH22PPjgg6F5Dz/8cGhe7rOls7MzLG/lypXOloTa29tD85YtWxaa52xJy/uWdHxPVO37ltzf\nE40ePTq035o1a8K69cdsAYriFM9o/HUwSZIkSZKkBuAhkCRJkiRJUgPwEEiSJEmSJKkBeAgkSZIk\nSZLUADwEkiRJkiRJagAeAkmSJEmSJDUAD4EkSZIkSZIagIdAkiRJkiRJDWBgHQL19MDNN8O4cdDS\nAvfeW3rkfcA+4PnSk7BfYqHdIH79Fi6E4cNhwoRyc07Kef36Ye+Frp+zJa3M9579EnK2pJdzP/de\nWt63JGW/hHK+NsF+iYX3Y6AdAjU1weLF0NUFmzZBWxvs2FFqZDswo9SE97FfUqHdIH795s+HdevK\n+/6/KOf164e9F7p+zpa0Mt979kvI2ZJezv3ce2l535KU/RLK+doE+yUW3o+Bdgg0YgRMnFj/etAg\nGDMG9uwpNbIDeLvUhPexX1Kh3SB+/aZNg+bm8r7/L8p5/fph74Wun7Mlrcz3nv0Scrakl3M/915a\n3rckZb+Ecr42wX6JhfdjoB0Cvd+uXbBlC0ye3N/PpBz2qzb7VVfO3cB+VWe/6sq5G9iv6uxXXTl3\nA/tVnf0qaWAeAh04AHPmwJIl9dO33Niv2uxXXTl3A/tVnf2qK+duYL+qs1915dwN7Fd19qusgXcI\ndOxY/Yc9bx7Mnt3fzyY9+1Wb/aor525gv6qzX3Xl3A3sV3X2q66cu4H9qs5+lTbwDoEWLICxY2HR\norDI2olHCPslFdoN4tevKOqPKDmvXz/svdD1c7aklfnes19Czpb0cu7n3kvL+5ak7JdQztcm2C+x\n6H4D6xCoowOWL4f166G1FSZNgrVrS41cDmwErgR2A3eUGWa/pEK7Qfz6zZ0LU6ZAdzeMGgXt7eVl\nQd7r1w97L3T9nC1pZb737JeQsyW9nPu599LyviUp+yWU87UJ9kssvB/QFJDxwU2dCsePh0beFhlm\nv6RCu0H8+q1YEZcFea9fP+y90PVztqSV+d6zX0LOlvRy7ufeS8v7lqTsl1DO1ybYL7Hwfgy0TwJJ\nkiRJkiSpFB4CSZIkSZIkNQAPgSRJkiRJkhqAh0CSJEmSJEkNwEMgSZIkSZKkBuAhkCRJkiRJUgPw\nEEiSJEmSJKkBeAgkSZIkSZLUADwEkiRJkiRJagC1oijKDajViuuuu67UjJOOHj3K/PnzQ7IAuru7\nuf7668PyfvjDH3L55ZeH5e3evZvf/M3fDMt76qmnuOKKK8Ly/vt//++cdlrcOei0adOYPHlyWN7X\nv/51zjvvvJCsQ4cOMXPmTC699NKQvBdeeIGOjg7OPvvskLzjx4/zH/7DfwjJAli1ahUvv/xyWN7Q\noUP5rd/6rbC8lStXcujQobC8lpYWPv3pT4flbd++nfHjx4flbdu2jZaWlizz3njjDQ4cOBD22rB9\n+3Yuu+wyzj///JC8p59+OvR19rnnnuOaa64Jy9uyZQsTJ04My9u6dSsTJkwIy4vee7nPlpzvW156\n6SXGjx8fNls2btzI6NGjQ7LA90SpRb8n2rt3b+isjr4+X3vttbDXhjfeeIOenh5GjhwZkvfSSy/x\nrW99i6Ioaqf0B4uiKPUBFFGP8ePHF5GWLl0amtfe3h6at2zZstC8Bx98MDSvtbU17NoEioceeii0\n37Bhw0L7dXZ2hnV74IEHQrtFz5a77rortN+CBQtC+82aNSu03ze/+c3Qfg8//HBo3urVq0PzHnnk\nkbCs7u7u0NmycuXKore3Nyyvra0tLKsovG9JLfq+JffZkvN9i7MlLWdLWrnPltzvW4CiOMUzGn8d\nTJIkSZIkqQF4CCRJkiRJktQAPASSJEmSJElqAB4CSZIkSZIkNQAPgSRJkiRJkhqAh0CSJEmSJEkN\nwEMgSZIkSZKkBuAhkCRJkiRJUgMYcIdA9wH7gOcjwnp64OabYdw4aGmBe+8tP3PhQhg+HCZMKD8r\nul9kNwjvF3ptgv0Sy3225Nwv92sz99lpv4S8b0nLazMtXxvSynnvQd79Mt979kusH/bfgDsEagdm\nRIU1NcHixdDVBZs2QVsb7NhRbub8+bBuXbkZJ0X3i+wG4f1Cr02wX2K5z5ac++V+beY+O+2XkPct\naXltpuVrQ1o57z3Iu1/me89+ifXD/htwh0AdwNtRYSNGwMSJ9a8HDYIxY2DPnnIzp02D5uZyM06K\n7hfZDcL7hV6bYL/Ecp8tOffL/drMfXbaLyHvW9Ly2kzL14a0ct57kHe/zPee/RLrh/034A6B+s2u\nXbBlC0ye3N/PpBz2qzb7VVfO3cB+VWe/6sq5G9iv6uxXXTl3A/tVnf2S8BAI4MABmDMHliypn77l\nxn7VZr/qyrkb2K/q7FddOXcD+1Wd/aor525gv6qzXzIeAh07Vv9hz5sHs2f397NJz37VZr/qyrkb\n2K/q7FddOXcD+1Wd/aor525gv6qzX1ID8hCoduIRYsECGDsWFi2KSoSiqD8iRPeL7Abh/UKvTbBf\nYrnPlpz75X5t5j477ZeQ9y1peW2m5WtDWjnvPci7X+Z7z36JBfcbcIdAy4GNwJXAbuCOMsM6OmD5\ncli/HlpbYdIkWLu2zESYOxemTIHubhg1Ctrby8uK7hfZDcL7hV6bYL/Ecp8tOffL/drMfXbaLyHv\nW9Ly2kzL14a0ct57kHe/zPee/RLrh/3XVOp3/xBuiwybOhWOH49MhBUr4rKi+0V2g/B+odcm2C+x\n3GdLzv1yvzZzn532S8j7lrS8NtPytSGtnPce5N0v871nv8T6Yf8NuE8CSZIkSZIkKT0PgSRJkiRJ\nkhqAh0CSJEmSJEkNwEMgSZIkSZKkBuAhkCRJkiRJ/z979x9cZX3n/f910WgohkAEJf4oaplSAwQS\n1IUCIj/qwkIL7b3sL5SuwHbumXWn7N4ddxV3um7rdLfbDl3YZrotdLPeFXbsVOj3hla4sbCBhljF\nJASCIVSNNgiFKALhRzTJ9f3jJJWvX3YV/Vzvc673eT5mzhAt5JVXPtfnfa7z6QkCeeA9D4GiKCqM\nouiXURQ1RFHUHEXR1/v+/d9FUdQeRVF932Nu8l8uAAAAAAAAPoj3/E/Ex3HcFUXRzDiOz0VR9BFJ\ntVEUTe37n1fFcbwq2S8RAAAAAAAAH9b7+nGwOI7P9X1Y2PdnTvb9c5TEFwUAAAAAAICw3tchUBRF\nA6IoapB0TNJ/xnF8sO9/+osoihqjKFoXRdGQxL5KAAAAAAAAfChRHMfv/zdHUbGk/yvpbyQdlNQR\nx3EcRdGjkq6L43j5Jf5M/PnPf/63/1xWVqaysrIP/YVfypYtW7R///5EPveljBgxQitWrDDLe+65\n53THHXeY5dXX12vixIlmed/85jd18uTJ9/6NgUyfPl1Tp059798YyOHDh02/n3V1dRo3bpxJVkdH\nh3p7ezVq1CiTvIaGBpWWlqqoqMgk75e//KU+/elPm2RJ0i9+8QtNmDDBLK+pqcl0L1hem5JUVVWl\n06dPm+XdfffdmjlzplleY2OjKioqzPIaGhpUWVlpknX8+HGdOXPGdLaMGjVKxcXFJnm7d+/WnXfe\naZIlSc8884wmT55sluf9vsVyL0j2e33lypVmWZI0d+5cs+9nR0eHVq9erUGDBpnkvfXWW/rKV77C\nbAmE2RKW9WzhvuXD2b9/vw4cOCBJOnbsmGpqahTH8WX9hNZ7/p1AF4vj+HQURT+VdHscxzUX/U9r\nJW3+r/7cxo0bLyfmAzt48KCeeOIJkyxJuvnmm7Vw4UKzvJMnT5rmdXZ2muZ9+9vf1sGDB9/7Nwby\nV3/1V7r33nvN8rZs2aLPfOYzZnmFhYWaO9fm72s/fPiwzp49azbQe3t7NX36dA0bNswk7/Tp06Z7\n4cSJE6bX5r//+7+bz5Z77rnHLG/dunXms8Xy+/mRj3yE2RKI9Ww5cuSI+WzhviWcrq4u07yenh7T\nvC9/+ct68cUXzfL+6Z/+SfPnzzfJOnz4sB566CFduHDBJK+kpETz5s1jtgTCbAnLerZw3/LhXLxW\nmzZtUk1NzX/zuy/t/fzXwYb3/6hXFEUflXS3pMYoikov+m3/Q9KBy04HAAAAAACAiffzTqDrJD0W\nRVGkzKHRD+M4/nkURf87iqIKSb2S2iT9z+S+TAAAAAAAAHwY7+c/Eb9f0v/vhyDjOP5CIl8RAAAA\nAAAAgntf/3UwAAAAAAAApBuHQAAAAAAAAHmAQyAAAAAAAIA8wCEQAAAAAABAHuAQCAAAAAAAIA/k\n1iFQe7s0a5Y0dqxUXi6tWZN45DpJxyTtSzxJWemn5culESOk8eOTzzLuZ7p2kv36Wa6d5Lsfey88\nx/2YLYF57sfeC89zP+d7z/vs5DVDQPQLy/lsoV94uXUIVFAgrVolNTdLdXVSVZXU0pJoZLWkOYkm\nXCQL/bR0qbRtW7IZ/Yz7ma6dZL9+lmsn+e7H3gvPcT9mS2Ce+7H3wvPcz/ne8z47ec0QEP3Ccj5b\n6Bdebh0ClZZKFRWZj4uKpLIy6ciRRCNrJZ1MNOEiWeinadOkkpJkM/oZ9zNdO8l+/SzXTvLdj70X\nnuN+zJbAPPdj74XnuZ/zved9dvKaISD6heV8ttAvvNw6BLpYW5vU2ChNmpTtryQZ9Es3+qWX524S\n/dKOfunluZtEv7SjX3p57ibRL+3ol0q5eQjU2SktWiStXp05ffOGfulGv/Ty3E2iX9rRL708d5Po\nl3b0Sy/P3ST6pR39Uiv3DoG6uzPf7CVLpIULs/3VhEe/dKNfennuJtEv7eiXXp67SfRLO/qll+du\nEv3Sjn6plnuHQMuWSWPGSCtWmEVGfQ8TWeinOM48LBj3M107yX79LNdO8t2PvRee437MlsA892Pv\nhee5n/O953128pohIPqF5Xy20C+s3DoEqq2V1q+XduyQKiuliROlrVsTjVwvaY+k0ZJekXRfkmFZ\n6KfFi6UpU6TWVmnkSKm6Orks436mayfZr5/l2km++7H3wnPcj9kSmOd+7L3wPPdzvve8z05eMwRE\nv7Cczxb6hVeQeMLlmDpV6ukxjbzHMiwL/bRhg12WcT/TtZPs189y7STf/dh74Tnux2wJzHM/9l54\nnvs533veZyevGQKiX1jOZwv9wsutdwIBAAAAAAAgERwCAQAAAAAA5AEOgQAAAAAAAPIAh0AAAAAA\nAAB5gEMgAAAAAACAPMAhEAAAAAAAQB7gEAgAAAAAACAPcAgEAAAAAACQBzgEAgAAAAAAyAMFFiE3\n3nijRYyGDh2qTZs2mWRJ0r/927+ZdZOk2267Tddee61Z3ve+9z39zd/8jVne3Llz9Zd/+ZdmeQ8/\n/LAeeeQRs7x7771XAwbYnbvu3btXvb29JlnHjh3TmTNn9Nprr5nkNTU16cKFCxoyZIhJ3osvvqif\n/exnJlmSdPjwYdd5zJawmC3hMFvSnXfo0CHTvBdeeME07ytf+Yq+9KUvmeX98R//saZNm2aWt3fv\nXkVRZJJ17NgxPfrooxo1apRJ3u7duzV27FgVFJi89FJJSYluvvlmkyyJ2RKa9WzZv3+/Bg4caJZX\nX1/PfUsgTU1NH+jPmUyiI0eOWMSopKREn/vc50yyJOnpp5/W5s2bzfLmzJmjefPmmeV973vfM1s7\nSSorKzNdv69+9aum/W677TbT9RswYIDmzp1rknX48GGdPXtWFRUVJnldXV2aPn26hg0bZpLX1tZm\nunavvfaaad7x48eZLQExW8JhtoTlfbacPHnSNK+zs9M072//9m9NZ8ukSZNMZ+fAgQPdzpbOzk6t\nWrXKJEvKvCZitoTjfbZcuHDBNK+3t5f7lkC6uro+0J/jx8EAAAAAAADyAIdAAAAAAAAAeYBDIAAA\nAAAAgDzAIRAAAAAAAEAe4BAIAAAAAAAgD3AIBAAAAAAAkAc4BAIAAAAAAMgDHAIBAAAAAADkgZw7\nBFon6ZikfRZh7e3SrFnS2LFSebm0Zk3ikZ77mXaT6Bfa8uXSiBHS+PHJ5vTz3C8Ls8VzP+97z7xf\nV5c0aZJUWZnpuHIleWnIIo+8y+R9dnq/b/H8mkGS6/sW79cm/QLLwv7LuUOgaklzrMIKCqRVq6Tm\nZqmuTqqqklpaEo303M+0m0S/0JYulbZtS+7zv5vnflmYLZ77ed975v0KC6WdO6WGBqmpSdqxQ6qt\nJS/Xs8gj7zJ5n53e71s8v2aQ5Pq+xfu1Sb/AsrD/cu4QqFbSSauw0lKpoiLzcVGRVFYmHTmSaKTn\nfqbdJPqFNm2aVFKS3Od/N8/9sjBbPPfzvvfM+0nSoEGZX7u6pN7e5K8dz3meu5GX6jzvs9P7fYvn\n1wySXN+3eL826RdYFvZfzh0CZU1bm9TYmHmbrkf0Szf6pZfnbhL90qq3N/MjKaWl0owZ0pgx5KUh\nizzy0sLr7OznuZ/nbhL90o5+QXAIJEmdndKiRdLq1ZnTN2/ol270Sy/P3ST6pdmAAZkfSWlvl3bt\nkmpqyEtDFnnkpYHn2Sn57ue5m0S/tKNfMBwCdXdnvtlLlkgLF2b7qwmPfulGv/Ty3E2inxfFxdL8\n+dLeveSlKYs88nKV99npuZ/nbhL90o5+QeXkIVDU9zCxbFnmrbgrVlgluu5n2k2iX2hxnHlY8dwv\nC7PFcz/ve8+0X0eHdOpU5uPz56Xt29/5WXTycjeLPPI+AO+z0/t9i+fXDJJc37d4vzbpF5hxv5w7\nBFovaY+k0ZJekXRfkmG1tdL69Zn/OkNlpTRxorR1a5KJrvuZdpPoF9rixdKUKVJrqzRypFRdnVyW\n5LtfFmaL537e9555v6NHpZkzM90mT5YWLJBmzyYv17PII+8yeZ+d3u9bPL9mkOT6vsX7tUm/wLKw\n/woS/ewfwD2WYVOnSj09lomu+5l2k+gX2oYNdlmS735ZmC2e+3nfe+b9ysul+nry0pZFHnmXyfvs\n9H7f4vk1gyTX9y3er036BZaF/Zdz7wQCAAAAAABAeBwCAQAAAAAA5AEOgQAAAAAAAPIAh0AAAAAA\nAAB5gEMgAAAAAACAPMAhEAAAAAAAQB7gEAgAAAAAACAPcAgEAAAAAACQBwqy/QWE1NPTo87OTrO8\nrq4usyxJevvtt037vf3222ZZknThwgXTfj09PWZZknT27FnTfpZ5Z8+eNc07f/68Ojs7VVhYaJJn\nfW1a5/V/P60wW8JitoTDbAnLerZ478dsCZtlPVssWb8m8r73vPezzmO2hPNBZ4vJIdCOHTssYrRl\nyxY9//zzJlmSdM0115h1k6Sf//znpv3uuOMOPfDAA2Z5u3fvNu23aNEi/fM//7NZ3he+8AWtWLHC\nLO+BBx7Q8OHDTbLa29vV2dmp7u5uk7yXXnpJV111lYYOHWqS99prr5lem9Z5Gzdu1IMPPmiWt3Dh\nQtPZyWwJi9kSjvfZcvToUdO89vZ207xvf/vb+tKXvmSW98UvfpHZEkh7e7v+/M//3CRLkgYOHKiN\nGzeazZbvf//7uuGGG0yyJGnChAkqLy83y/M+W1599VXTvLa2NtO8l156yTSvtbXV9X3LB2FyCDRz\n5kyLGL3wwgu66667TLIk6fDhw2bdJOmVV14x7dfe3m7a78SJE6b9Xn/9ddN+hYWFOn36tFleZWWl\n2ffz8OHDOnv2rCoqKkzy3njjDU2bNk3Dhg0zyWtubjafLZZ569atM702b7jhBmZLQMyWcJgtYb38\n8svm9y2WeUOHDjXde7feeiuzJZDDhw/rrbfe0oULF0zyPvKRj2j69Olms2X79u2mazd48GBmS0C/\n+c1vzO9bLPPOnDljmnf+/HnX9y0fBH8nEAAAAAAAQB7gEAgAAAAAACAPcAgEAAAAAACQBzgEAgAA\nAAAAyAMcAgEAAAAAAOQBDoEAAAAAAADyAIdAAAAAAAAAeSC3DoHa26VZs6SxY6XycmnNmuQzly+X\nRoyQxo9PPot+YVl2k8z7rZN0TNK+RFMu4nn92HvBmV6fnq9Nyf9s6eqSJk2SKiszHVeu9JPnuRt5\nwXl/XqdfQN6f153vdfLIy+k85dohUEGBtGqV1Nws1dVJVVVSS0uymUuXStu2JZvRj35hWXaTzPtV\nS5qT2Ge/BM/rx94LzvT69HxtSv5nS2GhtHOn1NAgNTVJO3ZItbU+8jx3Iy8478/r9AvI+/O6871O\nHnk5nadcOwQqLZUqKjIfFxVJZWXSkSPJZk6bJpWUJJvRj35hWXaTzPvVSjqZ2Ge/BM/rx94LzvT6\n9HxtSv5niyQNGpT5tatL6u1N/vtrmee5G3lBeX9ep19A3p/XJdd7nTzycj0vtw6BLtbWJjU2Zt4a\n5RH90o1+6eW5m0S/tPPar7c38zbn0lJpxgxpzBg/eZ67keeH19nSz3M/r92873XyyMvhvNw8BOrs\nlBYtklavzpx+e0O/dKNfennuJtEv7Tz3GzAg8zbn9nZp1y6ppsZPnudu5PngebZIvvt57uZ9r5NH\nXg7n5d4hUHd3ZtgtWSItXJjtryY8+qUb/dLLczeJfmnnvV+/4mJp/nxp715/eZ67kZde3meL536e\nu13M+14nj7wczMu9Q6BlyzJvf1qxwi4zjjMPC/QLy7KbZN4v6nuY8bx+7L3gTK9Pz9em5Hu2dHRI\np05lPj5/Xtq+/Z2/6yLteZ67kZcI78/r9AvI8/O6971OHnm5nKdcOwSqrZXWr8/8jdiVldLEidLW\nrclmLl4sTZkitbZKI0dK1dXJZdEvLMtuknm/9ZL2SBot6RVJ9yWW1Mfz+rH3gjO9Pj1fm5L/2XL0\nqDRzZqbb5MnSggXS7Nk+8jx3Iy8478/r9AvI+/O6871OHnk5nSepINHPfrmmTpV6emwzN2ywy6Jf\nWJbdJPN+95gl9fG8fuy94EyvT8/XpuR/tpSXS/X1PvM8dyMvOO/P6/QLyPvzuvO9Th55OZ2nXHsn\nEAAAAAAAABLBIRAAAAAAAEAe4BAIAAAAAAAgD3AIBAAAAAAAkAc4BAIAAAAAAMgDHAIBAAAAAADk\nAQ6BAAAAAAAA8gCHQAAAAAAAAHmAQyAAAAAAAIA8UGAR8otf/MIiRi+++KJZVjbyfvWrX5nmHT58\n2DTv0KFDpnktLS2meefOnTPLkqSmpiYNGTLEJOvVV1/V2bNn1dnZaZJ34MABXXHFFRo6dKhJnvfZ\ncuzYMbMsSTp69CizJSBmSzjMlrC837e8+eabZlmS/fp5ny09PT0mWZL09ttvq66uzmy2tLW1meT0\ne/PNN5ktAXm/b2lubjbbC5K0b98+FRUVmWRl477lgzA5BLrxxhstYlRSUmKWRV54V199tWneY489\npocfftgs7zvf+Y7mz59vlldRUaGVK1ea5W3evNls/a655hrdcMMNKikpMcmz3guvvvqq7rzzTrO8\nP/qjP9LLL79slnffffeZ9nv44YeZLQExW8Lx/rxunfef//mf+vu//3uzvIcfflg/+clPzPK2bdtm\n+v382te+ptmzZ5vl7dixw6zf22+/rU2bNmns2LEmeVu3bjWdLWPGjDF9Xn/44YfN71s8zzLr10TD\nhg0zzRs+fLhp3jXXXGM6W86dO2d63/JBmBwC3XzzzRYxuvrqq82yspE3bNgw07zhw4eb5l1zzTWm\neVdddZVZliRde+21pv2uuOIKsywpc9hr1W/EiBEaOXKkhg0bZpJnvdetbhL7XXXVVab9rP6f3n4l\nJSXMloCYLeFw3xKW99lifZ80YsQI07zrr7/eLO/tt9/W2bNnmS2BeL9v8f6aiNkSTjZmywfB3wkE\nAAAAAACQBzgEAgAAAAAAyAMcAgEAAAAAAOQBDoEAAAAAAADyAIdAAAAAAAAAeRUnQoAAACAASURB\nVIBDIAAAAAAAgDzAIRAAAAAAAEAeyL1DoOXLpREjpPHjk89qb5dmzZLGjpXKy6U1a5LP9NzPsptk\n3m+dpGOS9iWachHv/bq6pEmTpMrKTMeVK31kZSNPxuvn/dqkX1DMFvJyNc/73vN+X0a/gLLwmsh0\n/zmfZeSRd7ly7xBo6VJp2zabrIICadUqqblZqquTqqqklpZkMz33s+wmmferljQnsc9+Cd77FRZK\nO3dKDQ1SU5O0Y4dUW5v+rGzkyXj9vF+b9AuK2UJeruZ533ve78voF1AWXhOZ7j/ns4w88i5X7h0C\nTZsmlZTYZJWWShUVmY+LiqSyMunIkWQzPfez7CaZ96uVdDKxz34J3vtJ0qBBmV+7uqTe3mSvH8us\nLOSZrp/3a5N+QTFbyMvVPO97z/t9Gf0CysJrIvP953iWkUfe5cq9Q6BsaWuTGhszb8XyiH7p5rVf\nb2/mrY+lpdKMGdKYMT6yspGXLV6vzX70SydmC3m5zuve60e/9PLazfssI4+8y8AhkCR1dkqLFkmr\nV2dOv72hX7p57jdgQOatj+3t0q5dUk2Nj6xs5GWD52tTol+aMVvIy2We955EvzTz3M37LCOPvMuJ\nS/Szp0F3d2bYLVkiLVyY7a8mPPqlm/d+/YqLpfnzpb17fWVlI8+K92uTfj4wW8jLNd73Hv3Sy3O3\ni3mfZeSR9z7k5iFQHGceFpYty7zdasUKmzzJdz/LbpJ5v6jvYcZzv44O6dSpzMfnz0vbt7/z8+hp\nzspGXh/T9fN8bUr0C4zZQl5O5sn/3vN+X0a/gLLwmshs/3mfZeSRd5ly7xBo8WJpyhSptVUaOVKq\nrk4uq7ZWWr8+8zdwV1ZKEydKW7cmlyf57mfZTTLvt17SHkmjJb0i6b7Ekvp473f0qDRzZqbb5MnS\nggXS7Nnpz8pGnozXz/u1Sb+gmC3k5Wqe973n/b6MfgFl4TWR6f5zPsvII+9yFST62T+IDRvssqZO\nlXp67PIk3/0su0nm/e4xS+rjvV95uVRf7y8rG3kyXj/v1yb9gmK2kJered73nvf7MvoFlIXXRKb7\nz/ksI4+8y5V77wQCAAAAAABAcBwCAQAAAAAA5AEOgQAAAAAAAPIAh0AAAAAAAAB5gEMgAAAAAACA\nPMAhEAAAAAAAQB7gEAgAAAAAACAPcAgEAAAAAACQBzgEAgAAAAAAyAMFFiE/+MEPLGL0/PPPm2VJ\nUn19vWleQ0ODenp6zPKampp04cIFs7xnnnlGL7/8slneW2+9pVtuucUsr6amRqdPnzbLGzJkiAYP\nHmyS1d3dre9///u66aabTPL279+vtrY2FRcXm+Q9++yzOnPmjEmWlOlneW2eOHHCdJadOnXKtN+B\nAwdM+0litgTifbZ4v2+pq6vTb37zG7O8o0ePmu69Z555Rt/4xjfM8n7961/r5MmTZnnNzc2m63fg\nwAEdOXLEJOv48eM6e/asnn/+eZO8ffv2cd8S0K9//WvTvferX/3K9DXRgQMHTNevubmZ2RJINmbL\nB2FyCLRkyRKLGHV2dpplSZlDBMu83t5e07z/+I//0J/8yZ+Y5T322GNat26dWd53v/tdLVu2zCxv\ny5Yt+sxnPmOWd+2112rOnDkmWYcPH9btt99u9gRZUlKib37zmxo2bJhJXktLix588EGTLEmaM2eO\nWlpazPIee+wx09lSUFBgOlt+/OMfa9GiRWZ5RUVF+vznP2+Wx2wJx3q2eL9vefrpp01n5wMPPKBH\nH33ULO/Tn/60ab/vfve7putnPVu2bdtmOlvOnTunCRMmmOQNHjxYd955J/ctgfzpn/6p+Wyx3HvW\n9y2bNm1yfd/ifbb8y7/8y2X/OZNDoCuvvNIiRldccYVZVj7kFRQUmOYNGGD704nW/a688kq314tl\nr4szLWeLpY985CNurxXJfu9Z51l/P5kt4TO5bwmjoMDkNvO3rGcn9y1hWc+Wt99+23yvc98ShvfZ\nwn1LWN5nywfB3wkEAAAAAACQBzgEAgAAAAAAyAMcAgEAAAAAAOQBDoEAAAAAAADyAIdAAAAAAAAA\neYBDIAAAAAAAgDzAIRAAAAAAAEAeyK1DoPZ2adYsaexYqbxcWrMm+czly6URI6Tx45PPol9Q6yQd\nk7Qv0ZSLWK+f5dpJvtevq0uaNEmqrMz0W7ky8UjTfsyWsJzvPe/9XM8W73nyPTu5bwnMc78sPK97\n3nsSzw3kkXex3DoEKiiQVq2SmpulujqpqkpqaUk2c+lSadu2ZDP60S+oaklzEvvsl2C9fpZrJ/le\nv8JCaedOqaFBamqSduyQamsTjTTtx2wJy/ne897P9Wzxniffs5P7lsA898vC87rnvSfx3EAeeRfL\nrUOg0lKpoiLzcVGRVFYmHTmSbOa0aVJJSbIZ/egXVK2kk4l99kuwXj/LtZP8r9+gQZlfu7qk3t7E\nv7em/ZgtYTnfe977eZ8t3vM8z07uWwLz3C8Lz+ue957EcwN55F0stw6BLtbWJjU2Zt4a5RH90o1+\n6dPbm3mbZWmpNGOGNGZMtr+iZHhcu4vRL9089rOeLd7zssXjtXkx+qWX526S337eZzV5qc7LzUOg\nzk5p0SJp9erM6bA39Es3+qXTgAGZt1m2t0u7dkk1Ndn+isLzunb96JduXvtZzxbvedng9drsR7/0\n8txN8t3P+6wmL9V5uXcI1N2dGQZLlkgLF2b7qwmPfulGv/QrLpbmz5f27s32VxKW97WjX7p57yfZ\nzxbveVa8X5v0Sy/P3ST//fp5n9XkpTIv9w6Bli3LvP1pxQq7zDjOPCzQL6io72HGev0s107yu34d\nHdKpU5mPz5+Xtm9/52fRE2R6fTJbwnK+97z3cztbvOf18Tw7uW8JzHO/LDyve957Es8N5JHXL7cO\ngWprpfXrM38jdmWlNHGitHVrspmLF0tTpkitrdLIkVJ1dXJZ9AtqvaQ9kkZLekXSfYkl9bFeP8u1\nk3yv39Gj0syZmV6TJ0sLFkizZyeZaNuP2RKW873nvZ/r2eI9T75nJ/ctgXnul4Xndc97T+K5gTzy\nLlaQ6Ge/XFOnSj09tpkbNthl0S+oe8yS+livn+XaSb7Xr7xcqq+3TLTtx2wJy/ne897P9Wzxniff\ns5P7lsA898vC87rnvSfx3EAeeRfLrXcCAQAAAAAAIBEcAgEAAAAAAOQBDoEAAAAAAADyAIdAAAAA\nAAAAeYBDIAAAAAAAgDzwvg+BoigaEEVRfRRF/6fvn0uiKPq/URQdiqJoWxRFQ5L7MgEAAAAAAPBh\nXM47gVZIOnjRPz8o6ek4jj8paYekh0J+YQAAAAAAAAjnfR0CRVF0o6R5ktZd9K8XSnqs7+PHJH0u\n7JcGAAAAAACAUN7vO4G+LekBSfFF/25EHMe/kaQ4jo9Jujbw1wYAAAAAAIBAojiO//vfEEXzJf1e\nHMd/EUXRDEn/K47jBVEUnYzjuOSi3/d6HMfDLvHn43/9138N/XVfUn19vSZOnGiSJUlNTU0aP368\nWd7Bgwc1ZswYs7za2loNHz7cLO/ZZ581y5Kk4cOH6+Mf/7hZXldXl+n1snXrVt1yyy0mWW+88Yaa\nm5tVWFhoktfd3a3f//3fV3FxsUleTU2NXn31VZMsSbriiitUWVlplnf06FHNmDHDLK+lpUW33nqr\nWd6hQ4f0yU9+0iyvtbVVo0ePNsuz7ud5trz11luaMGGCBg8ebJLX0tKihQsXmmRJUl1dna6++mqz\nvOeee07vdZ8Z0qhRozRlyhSzvJ/85Cc6c+aMWZ73+5YXXnhBZWVlJlkdHR06e/asbrrpJpO85uZm\nnT9/3my27N27V729vSZZkjR06FB99rOfNcvbtm2bjh8/bpY3dOhQ0+f1M2fO6PbbbzfL837f4nm2\nvPDCC1q9erXiOI4u6w/GcfzfPiR9XdKrkl6SdFRSp6QfSnpBmXcDSVKppBf+iz8f/93f/d1vHzt3\n7oyTUlVVldjnvpS1a9ea5lVXV5vmLViwIFbm3V8mj29961um/SorK037/ehHPzLtN3z4cNN+DQ0N\nZt02btwYd3R0mOVZz5b777/fdO2WLVtm2u/xxx83zXviiSdM85588knTvM2bN5vmeZ4tP/zhD027\njRs3zqxbHDNbQrOeLd7vW5566imzrNbWVmZLQLwmCvuwfk3k/b7F22zZuXPnb89W/vAP/zCWFMfv\ncabz7keB3kMcxyslrZSkKIrukvTlOI6XRFH0T5Luk/QNSX8q6f/5rz7HI4888l4xAAAAAAAA+C/M\nmDHjt+/g37Rpk370ox9d9ue4nP862Lv9o6S7oyg6JGl23z8DAAAAAAAgB73nO4EuFsdxjaSavo/f\nkPTpJL4oAAAAAAAAhPVh3gkEAAAAAACAlOAQCAAAAAAAIA9wCAQAAAAAAJAHOAQCAAAAAADIAxwC\nAQAAAAAA5IHcOgTq6pImTZIqK6WxY6WVK8lLUd46Scck7Us05SLt7dKsWZlu5eXSmjWJxtEvMON+\nWr5cGjFCGj8+2RzJvpuM18/z2kn0C8z7bDHtZ30fIWZLUJ6vTYn1C8z13pNc35eZ7z3nrzHJCy+3\nDoEKC6WdO6WGBqmpSdqxQ6qtJS8ledWS5iT22S+hoEBatUpqbpbq6qSqKqmlJbE4+gVm3E9Ll0rb\ntiX3+S9m3U3G6+d57ST6BeZ9tpj2s76PELMlKM/XpsT6BeZ670mu78vM957z15jkhZdbh0CSNGhQ\n5teuLqm3VyopIS8lebWSTib22S+htFSqqMh8XFQklZVJR44kFke/wIz7adq05PdbP+tuMl4/z2sn\n0S8w77PFvJ/xfQSzJSDv1ybrF5TrvSe5vi8z33uS69eY5IWXe4dAvb2Zt0KVlkozZkhjxpCXprxs\naWuTGhszb6XziH7p5bmbRL+0o1/68LzuA/3SzXM/z90kv/28v8YkL6jcOwQaMCDzVqj2dmnXLqmm\nhrw05WVDZ6e0aJG0enXmdN8b+qWX524S/dKOfunE83r60S/dPPfz3E3y3c/7a0zywsYl+tk/jOJi\naf58ae9e8tKYZ6W7OzPMlyyRFi7M9lcTHv3Sy3M3iX5pR7/043k9neiXbp77ee4m+e/Xz/trTPKC\nyK1DoI4O6dSpzMfnz0vbt7/z85vk5X6epKjvYWbZsszb5VasMImjX2DG/RTHmYcF624yXj/PayfR\nLzDvs8WsXxae1yVmS1Ber81+rF9Qrvee5Pq+zHTtvL/GJC+43DoEOnpUmjkz8/NwkydLCxZIs2eT\nl5K89ZL2SBot6RVJ9yWW1Ke2Vlq/PvM3qFdWShMnSlu3JhZHv8CM+2nxYmnKFKm1VRo5UqquTi7L\nupuM18/z2kn0C8z7bDHtZ30fIWZLUJ6vTYn1C8z13pNc35eZ7z3nrzHJC68g0c9+ucrLpfp68lKa\nd49ZUp+pU6WeHrM4+gVm3E8bNthlWXeT8fp5XjuJfoF5ny2m/azvI8RsCcrztSmxfoG53nuS6/sy\n873n/DUmeeHl1juBAAAAAAAAkAgOgQAAAAAAAPIAh0AAAAAAAAB5gEMgAAAAAACAPMAhEAAAAAAA\nQB7gEAgAAAAAACAPcAgEAAAAAACQBzgEAgAAAAAAyAMcAgEAAAAAAOSBKI7jZAOiKP7BD36QaEa/\nhoYGVVZWmmRJ0v79+1VeXm6Wt3PnThUWFprltbW1adiwYWZ5w4cP12233WaW99Of/lQFBQVmeddf\nf73p9fLjH/9YgwcPNsm6cOGC3n77bV1//fUmea+++qrmzZun4uJik7za2lpFUWSSJUmHDx9WaWmp\nWd7p06d1ww03mOV1d3dr+vTpZnmHDh3SJz/5Sbd5GzduNL1eXnnlFV199dUmWRcuXNCECRN08803\nm+Q1NzfrpZde0pVXXmmSd/78eX3uc58zyZKk3bt369y5c2Z53mfL1q1bzZ6HJNu9J0lvvvmmPvax\nj5nlFRUVafz48SZZb7zxhnbs2GF23/LSSy9pyJAhZrPl9ddfN5ubknTixAktXLjQLM/7a6IzZ86Y\nXZuSdMUVV+iOO+4wy2tpadGtt95qlvfCCy+orKzMJOuNN97QmTNndNNNN5nktbS06Jvf/KbiOL68\nFypxHCf6yETYqKqqMsuK4zheu3atad69994bSzJ7PPjgg6b9nnjiCdO8J5980jRv8+bNpnlPPfWU\nWVZra2s8cOBAs2uzpKQk7ujoMOv30EMPme69efPmmXWLY2ZLaNazZdSoUabrt2XLFrNura2tcUND\ng1nexo0bTWcL9y3pni133XWXaT/r9fM+W7hvCffgviUs77PF+2si6/sWSXF8mWc0/DgYAAAAAABA\nHuAQCAAAAAAAIA9wCAQAAAAAAJAHOAQCAAAAAADIAxwCAQAAAAAA5AEOgQAAAAAAAPIAh0AAAAAA\nAAB5gEMgAAAAAACAPJBbh0BdXdKkSVJlpTR2rLRyJXkf0jpJxyTtSzxJUnu7NGtWplt5ubRmTbJ5\ny5dLI0ZI48cnm9OPfkG5vjZFv6DYe0GZrp3ke/2ysPe89/M8W7zvPfN+xvfVnq9NiX5BsffIy+U8\n5dohUGGhtHOn1NAgNTVJO3ZItbXkfQjVkuYkmnCRggJp1SqpuVmqq5OqqqSWluTyli6Vtm1L7vO/\nG/2Ccn1tin5BsfeCMl07yff6ZWHvee/nebZ433vm/Yzvqz1fmxL9gmLvkZfLecq1QyBJGjQo82tX\nl9TbK5WUkPch1Eo6mWjCRUpLpYqKzMdFRVJZmXTkSHJ506Ylv14Xo19Qrq9N0S8o9l5Qpmsn+V6/\nLOw97/08zxbve8+8n2R6X+352pToFxR7j7wcz8u9Q6De3sxboUpLpRkzpDFjyEujtjapsTHz1jaP\n6JdenrtJ9Es7+qWX524S/dLOa798uK/2unb96JdO3l9DO8/LvUOgAQMyb4Vqb5d27ZJqashLm85O\nadEiafXqzOm3N/RLL8/dJPqlHf3Sy3M3iX5p57mf9/tqz2sn0S/NvL+Gdp6Xe4dA/YqLpfnzpb17\nyUuT7u7MsFuyRFq4MNtfTXj0Sy/P3ST6pR390stzN4l+aee9Xz+P99Xe145+Pnh/De00L7cOgTo6\npFOnMh+fPy9t3/7Oz1OS94FFfQ8Ty5Zl3r62YoVNXhxnHlboF5Tra1P0C4q9F5Tp2km+1y8Le897\nP8+zxfveM+2Xhftqz9emRL+g2Hvk5Wqecu0Q6OhRaebMzM/DTZ4sLVggzZ5N3oewXtIeSaMlvSLp\nviTDamul9eszf6N5ZaU0caK0dWtyeYsXS1OmSK2t0siRUnV1clkS/QJzfW2KfkGx94IyXTvJ9/pl\nYe957+d5tnjfe+b9jO+rPV+bEv2CYu+Rl8t5kgoS/eyXq7xcqq8nL6B7LMOmTpV6euzyNmywy5Lo\nF5jra1P0C4q9F5Tp2km+1y8Le897P8+zxfveM+9nfF/t+dqU6BcUe4+8XM5Trr0TCAAAAAAAAIng\nEAgAAAAAACAPcAgEAAAAAACQBzgEAgAAAAAAyAMcAgEAAAAAAOQBDoEAAAAAAADyAIdAAAAAAAAA\neYBDIAAAAAAAgDzAIRAAAAAAAEAeiOI4TjYgiuI/+IM/SDSj34kTJ7R06VKTLEnauXOnzp49a5b3\n5ptv6tZbbzXLO3z4sAYPHmyWN2TIEN15551mea2trRo9erRZ3qFDh/TJT37SLG/dunUqLS01yTp9\n+rSGDx+uq6++2iTv9ddf16c+9SkVFxeb5D377LMaMMDuzPzMmTOaOXOmWV5dXZ2uuOIKszzvs+WJ\nJ57QVVddZZbX3d2tG2+80Syvvr5e119/vUnW6dOn9alPfUq33HKLSd6hQ4d03XXXmc2WxsZGVVRU\nmGRJ/u9b4jjWHXfcYZa3a9cuDRo0yCyvsLBQ5eXlZnnbt29XSUmJWd5HP/pRjR071iTr9ddfV0ND\ng4YOHWqWx31LONb3Ld5ny8GDB83u4SXp+uuv18SJE83yXnjhBZWVlZlkvf766+rs7NRNN91kknfo\n0CF9/etfVxzH0WX9wTiOE31Iiq0e48aNiy3df//9Zt0kxcuWLTPtt2DBAtN+3/rWt0z7Pfnkk6Z5\nmzdvNs0bPny46fo1NDSYddu4cWPc0dFhlldVVWWWFcdxvHbtWtO86upq0zzvs6WystK0349+9CPT\nfsyWcKxni/f7lscff9w074knnjDN837f8tRTT5lltba2MlsC8n7f4n22eL9v8T5bJMXxZZ7R8ONg\nAAAAAAAAeYBDIAAAAAAAgDzAIRAAAAAAAEAe4BAIAAAAAAAgD3AIBAAAAAAAkAc4BAIAAAAAAMgD\nHAIBAAAAAADkAQ6BAAAAAAAA8kDOHQKtk3RM0j6LsK4uadIkqbJSGjtWWrky8UjTfu3t0qxZmW7l\n5dKaNYnGmXaTzPtp+XJpxAhp/Phkc/qxfmFZrp91N8l1P/Nr0/i5wfve897P896TfN+3eH9ep19g\nnvtx3xKW82vT+32Z+zzl4CFQtaQ5VmGFhdLOnVJDg9TUJO3YIdXWJhpp2q+gQFq1SmpulurqpKoq\nqaUlsTjTbpJ5Py1dKm3bltznfzfWLyzL9bPuJrnuZ35tGj83eN973vt53nuS7/sW78/r9AvMcz/u\nW8Jyfm16vy9zn6ccPASqlXTSMnDQoMyvXV1Sb69UUpJonGm/0lKpoiLzcVGRVFYmHTmSWJz52hn3\n07RpiV8f/x+sX1iW62fdTXLdz/zalEyfG7zvPe/9PO89yfd9i/fndfoF5rkf9y1hOb82vd+X5UNe\nzh0Cmevtzbz1qrRUmjFDGjMm219RMtrapMbGzFvNPKJfunnu57mb5Lcfzw0+eO7nuZtEv7SjX3p5\n7ibRL62s78uc53EINGBA5q1X7e3Srl1STU22v6LwOjulRYuk1aszp8Pe0C/dPPfz3E3y3Y/nhvTz\n3M9zN4l+aUe/9PLcTaJfmlnflznP4xCoX3GxNH++tHdvtr+SsLq7M8NgyRJp4cJsfzXh0S/dPPfz\n3E3y368fzw3p5Lmf524S/dKOfunluZtEPy+s78uc5uXkIVDU90hcR4d06lTm4/Pnpe3b3/l5ygSZ\n9ZOkZcsybydbscIkzrSbZN5PcZx5WGH9wrJcP+tukut+ptdmFp4bvO897/087z3J932L9+d1+gXm\nuR/3LWE5vzZd35d5z1MOHgKtl7RH0mhJr0i6L8mwo0elmTMzP383ebK0YIE0e3aSibb9amul9esz\nf8N4ZaU0caK0dWticabdJPN+WrxYmjJFam2VRo6UqquTy5JYv9As18+6m+S6n/m1afzc4H3vee/n\nee9Jvu9bvD+v0y8wz/24bwnL+bXp/b7MfZ6kgkQ/+wdwj2VYeblUX2+ZaNtv6lSpp8cszrSbZN5P\nGzbYZUmsX2iW62fdTXLdz/zaNH5u8L73vPfzvPck3/ct3p/X6ReY537ct4Tl/Nr0fl/mPk85+E4g\nAAAAAAAAhMchEAAAAAAAQB7gEAgAAAAAACAPcAgEAAAAAACQBzgEAgAAAAAAyAMcAgEAAAAAAOQB\nDoEAAAAAAADyAIdAAAAAAAAAeYBDIAAAAAAAgDwQxXGcbEAUxV/72tcSzej38ssv6+677zbJkqRn\nnnlGw4cPN8s7fvy4pkyZYpa3Z88eXXvttWZ5O3bs0JVXXmmW94lPfEJTp041y/vOd76joqIis7zr\nrrtOo0aNMsk6deqUdu7cabYfXn/9df3Zn/2ZhgwZYpK3d+9e3X777SZZktTY2KiKigqzvE2bNunU\nqVNmeQMHDjT9fp4+fVoTJ040y9u9e7euu+46s7zz58+rvLzcLG/nzp362Mc+ZpLlfbY8/fTTam9v\nN8mSpK6uLs2ePdssb8+ePert7TXLu/baazVv3jyzvObmZo0dO9Ys7+DBgxozZozbPMvvZ0dHhzo7\nO3XzzTeb5DU3N+vGG2/kviWQ/fv3mz7vHThwQOPGjTPLe+yxx5T0a/SLXX311aZ7fcuWLRo6dKhZ\n3oQJE1RZWWmSlY3Z8uijjyqO4+iy/mAcx4k+MhE2qqqqzLLiOI7Xrl1rmlddXW2a9/jjj5vm3XXX\nXbEks4f1+o0aNcq035YtW8y6tba2xgMHDjTrVlJSEnd0dJj18z5b7r33XtNr88EHHzTt98QTT5jm\nPfnkk6Z5mzdvNs176qmnzLK8z5aHHnrIdO/NmzfPrFscM1tCY7aE09raGjc0NJjlbdy4kfuWgHhN\nFPbBa6JwsjFbJMXxZZ7R8ONgAAAAAAAAeYBDIAAAAAAAgDzAIRAAAAAAAEAe4BAIAAAAAAAgD3AI\nBAAAAAAAkAc4BAIAAAAAAMgDHAIBAAAAAADkAQ6BAAAAAAAA8kBuHQK1t0uzZkljx0rl5dKaNcln\nLl8ujRghjR+ffBb9glon6ZikfYmmXIR+QZn2Y+8F53r9LNdOol9grq9N0S8o9l5Y9AuH+5bwHPfj\nNUNgXV3SpElSZWWm48qVvvKUa4dABQXSqlVSc7NUVydVVUktLclmLl0qbduWbEY/+gVVLWlOYp/9\nEugXlGk/9l5wrtfPcu0k+gXm+toU/YJi74VFv3C4bwnPcT9eMwRWWCjt3Ck1NEhNTdKOHVJtrZ88\n5dohUGmpVFGR+bioSCork44cSTZz2jSppCTZjH70C6pW0snEPvsl0C8o037sveBcr5/l2kn0C8z1\ntSn6BcXeC4t+4XDfEp7jfrxmSMCgQZlfu7qk3t7krx3jvNw6BLpYW5vU2Jh5a5RH9Es3+qWX524S\n/dKOfunluZtEv7SjX3p57ibRL+289uvtzfx4VmmpNGOGNGaMq7zcPATq7JQWLZJWr86cLnpDv3Sj\nX3p57ibRL+3ol16eu0n0Szv6pZfnbhL90s5zvwEDMj+e1d4u7dol1dS4ysu9Q6Du7szFtGSJtHBh\ntr+a8OiXbvRLL8/dJPqlHf3Sy3M3iX5pR7/08txNol/aee/Xr7hYmj9f8+Gq7QAAIABJREFU2rvX\nVV7uHQItW5Z5+9OKFXaZcZx5WKBfUFHfwwz9gjLtx94LzvX6Wa6dRL/AXF+bol9Q7L2w6BcO9y3h\nOe7Ha4aAOjqkU6cyH58/L23f/s7fgeQhT7l2CFRbK61fn/kbsSsrpYkTpa1bk81cvFiaMkVqbZVG\njpSqq5PLol9Q6yXtkTRa0iuS7kssqQ/9gjLtx94LzvX6Wa6dRL/AXF+bol9Q7L2w6BcO9y3hOe7H\na4bAjh6VZs7MdJs8WVqwQJo920+epIJEP/vlmjpV6umxzdywwS6LfkHdY5bUh35BmfZj7wXnev0s\n106iX2Cur03RLyj2Xlj0C4f7lvAc9+M1Q2Dl5VJ9vd885do7gQAAAAAAAJAIDoEAAAAAAADyAIdA\nAAAAAAAAeYBDIAAAAAAAgDzAIRAAAAAAAEAe4BAIAAAAAAAgD3AIBAAAAAAAkAc4BAIAAAAAAMgD\nHAIBAAAAAADkgSiO42QDoiiePHlyohn9enp69Nd//dcmWZL0/PPP67bbbjPLa2xsVEVFhVledXW1\n3njjDbO8j3/845oyZYpZ3tGjR02/n3v27NGoUaPM8n7zm99o/PjxJlknTpxQe3u7rr/+epO8gwcP\nqra2Vh/96EdN8qxny6ZNm/TSSy+Z5Q0bNky/93u/Z5a3ceNGnTt3ziyvvLxcv/u7v2uWd+DAAY0b\nN84sb//+/SovLzfLe+SRRzR48GCTrHPnzmnevHm68cYbTfJ+9atfady4cRoyZIhJnvXzQmtrq+68\n806zvF/+8pe6+eabzfKYLWFZzxbLvBMnTqizs1O33HKLSd6BAwf0sY99zGy2PPvss/qd3/kdkyyJ\n10Sh8ZoorKqqKrO9d+7cOd1zzz36+Mc/bpJXX1+vf/iHf1Acx9Fl/cE4jhN9SIqtHuPGjYstrV27\n1jSvurraNG/BggVmaycp/ta3vmXa78knnzTN27x5s2neU089ZZbV2toaNzQ0mOX98Ic/NL02rWfL\n/fffb9pv2bJlpv2YLWFZz5bhw4ebrp/lbNm4cWPc0dFhlldVVWWWFcfctzBbLg/3LeEwW8JitoTl\nfbZ4vm/pf00UX+YZDT8OBgAAAAAAkAc4BAIAAAAAAMgDHAIBAAAAAADkAQ6BAAAAAAAA8gCHQAAA\nAAAAAHmAQyAAAAAAAIA8wCEQAAAAAABAHuAQCAAAAAAAIA/k3CHQOknHJO2zCGtvl2bNksaOlcrL\npTVrks9cvlwaMUIaPz75LON+pmsn2a+f5dpJ9AvM+2zx3I/ZEhjrF5bj53VJrvtxbQZGv7Ac7z1J\nrvsxWwLzvn5dXdKkSVJlZabjypWJR+bcIVC1pDlWYQUF0qpVUnOzVFcnVVVJLS3JZi5dKm3blmxG\nP+N+pmsn2a+f5dpJ9AvM+2zx3I/ZEhjrF5bj53VJrvtxbQZGv7Ac7z1JrvsxWwLzvn6FhdLOnVJD\ng9TUJO3YIdXWJhqZc4dAtZJOWoWVlkoVFZmPi4qksjLpyJFkM6dNk0pKks3oZ9zPdO0k+/WzXDuJ\nfoF5ny2e+zFbAmP9wnL8vC7JdT+uzcDoF5bjvSfJdT9mS2De10+SBg3K/NrVJfX2Jv79zblDoKxp\na5MaGzNvxfKIfulGv/Ty3E2iX9rRL708d5Pol3b0Sy/P3ST6pZ3Xfr29mR8HKy2VZsyQxoxJNI5D\nIEnq7JQWLZJWr86cLnpDv3SjX3p57ibRL+3ol16eu0n0Szv6pZfnbhL90s5zvwEDMj8O1t4u7dol\n1dQkG5foZ0+D7u7MxbRkibRwYba/mvDol270Sy/P3ST6pR390stzN4l+aUe/9PLcTaJf2nnv16+4\nWJo/X9q7N9GYnDwEivoeJpYty7zdasUKq0QpjjMPC8b9TNdOsl8/y7WT6BeY99niuR+zJTDWLyzH\nz+uSXPfj2gyMfmE53nuSXPdjtgTmef06OqRTpzIfnz8vbd/+zt+BlJCcOwRaL2mPpNGSXpF0X5Jh\ntbXS+vWZv4G7slKaOFHaujXJRGnxYmnKFKm1VRo5UqquTi7LuJ/p2kn262e5dhL9AvM+Wzz3Y7YE\nxvqF5fh5XZLrflybgdEvLMd7T5LrfsyWwLyv39Gj0syZmW6TJ0sLFkizZycaWZDoZ/8A7rEMmzpV\n6umxTJQ2bLDLMu5nunaS/fpZrp1Ev8C8zxbP/ZgtgbF+YTl+Xpfkuh/XZmD0C8vx3pPkuh+zJTDv\n61deLtXXm0bm3DuBAAAAAAAAEB6HQAAAAAAAAHmAQyAAAAAAAIA8wCEQAAAAAABAHuAQCAAAAAAA\nIA+870OgKIoGRFHUEEXR/+n757+Loqg9iqL6vsfc5L5MAAAAAAAAfBiX85+IXyGpWVLxRf9uVRzH\nq8J+SQAAAAAAAAjtfb0TKIqiGyXNk7Tu3f9T8K8IAAAAAAAAwb3fHwf7tqQHJMXv+vd/EUVRYxRF\n66IoGhL2SwMAAAAAAEAoURy/+1znXb8hiuZL+r04jv8iiqIZkv5XHMcLoii6RlJHHMdxFEWPSrou\njuPll/jz8ec///nf/nNZWZnKysqClui3ZcsW7d+/P5HPfSkjRozQihUrzPJ+8IMf6MUXXzTLGzdu\nnD772c+a5VVVVen06dNmeXfffbdmzpxpltfY2KiKigqzvIaGBlVWVppkHT9+XF//+tc1aNAgk7y3\n3npLX/7yl1VUVGSS98tf/lKf/vSnTbIk6Re/+IUmTJhgltfU1KSpU6ea5dXV1WncuHFmed5ny8qV\nK82yJGnu3Llms6Wjo0OrV682nS1f+cpXVFxc/N6/OYDdu3frzjvvNMmSpGeeeUaTJ082y+O+JSzu\nW8I5fvy4zpw5o1GjRpnkNTQ0aNSoUcyWQJgtYXHfEk5HR4d6e3sTnS379+/XgQMHJEnHjh1TTU2N\n4ji+vJ/QiuP4v31I+rqkVyW9JOmopE5J//tdv+cmSU3/xZ+PrTz00EOxMu9WMnnMmzfPrFscx/G9\n995r2u/BBx807XfXXXeZ9lu7dq1pv82bN5vmPfXUU2ZZra2t8cCBA83WrqSkJO7o6DDrV1VVZZYV\nx7H5tVldXW2a9/jjj5vmeZ8to0aNMu23ZcsWs27MlrCsr03uW9I9W7zftzQ0NJjlbdy4kdkSELMl\n3bPF+32L9WyRFMfvcabz7sd7/jhYHMcr4zgeGcfxxyX9saQdcRx/IYqi0ot+2/+QdOC9PhcAAAAA\nAACy43L+62Dv9k9RFFVI6pXUJul/BvmKAAAAAAAAENxlHQLFcVwjqabv4y8k8hUBAAAAAAAguPf7\nXwcDAAAAAABAinEIBAAAAAAAkAc4BAIAAAAAAMgDHAIBAAAAAADkAQ6BAAAAAAAA8kBuHQK1t0uz\nZkljx0rl5dKaNYlHrpN0TNK+xJNEv8BMu0n267d8uTRihDR+fLI5/TyvXxb2nun60S8o77OFfgGx\n94LzvH7me6+rS5o0SaqszHRcuZK8tOR57paNPDFbgqJfWNav+ZRrh0AFBdKqVVJzs1RXJ1VVSS0t\niUZWS5qTaMJF6BeUaTfJfv2WLpW2bUvu87+b5/XLwt4zXT/6BeV9ttAvIPZecJ7Xz3zvFRZKO3dK\nDQ1SU5O0Y4dUW0teGvI8d8tGnpgtQdEvLOvXfMq1Q6DSUqmiIvNxUZFUViYdOZJoZK2kk4kmXIR+\nQZl2k+zXb9o0qaQkuc//bp7XLwt7z3T96BeU99lCv4DYe8F5Xj/zvSdJgwZlfu3qknp7k792yEtn\nVh7kMVsCol9Y1q/5lGuHQBdra5MaGzNvFfSIfulGv/Ty3E2iX9rRL708d5Pol1a9vZkfuSktlWbM\nkMaMIS8teZ67ZSMvW7zOln70S6XcPATq7JQWLZJWr86cvnlDv3SjX3p57ibRL+3ol16eu0n0S7MB\nAzI/ctPeLu3aJdXUkJeWPM/dspGXDZ5ni0S/FMu9Q6Du7sw3e8kSaeHCbH814dEv3eiXXp67SfRL\nO/qll+duEv28KC6W5s+X9u4lL215nrtlI8+K99lCv1TLvUOgZcsybwdcscIsMup7mKBfUKbdJPv1\ni+PMw4rn9cvC3jNdP/oF5X220C8g9l5wntfPtFtHh3TqVObj8+el7dvf+XsuyMvtPM/dspHXh9kS\nEP3CMn7Nl1uHQLW10vr1mb8hvrJSmjhR2ro10cj1kvZIGi3pFUn3JRlGv6BMu0n267d4sTRlitTa\nKo0cKVVXJ5cl+V6/LOw90/WjX1DeZwv9AmLvBed5/cz33tGj0syZmW6TJ0sLFkizZ5OXhjzP3bKR\nJ2ZLUPQLy/o1n6SCxBMux9SpUk+PaeQ9lmH0C8q0m2S/fhs22GVJvtcvC3vPdP3oF5T32UK/gNh7\nwXleP/O9V14u1deTl8Y8z92ykSdmS1D0C8v6NZ9y7Z1AAAAAAAAASASHQAAAAAAAAHmAQyAAAAAA\nAIA8wCEQAAAAAABAHuAQCAAAAAAAIA9wCAQAAAAAAJAHOAQCAAAAAADIAxwCAQAAAAAA5AEOgQAA\nAAAAAPJAFMdxsgFRFP/0pz9NNKPf008/renTp5tkSdLu3bs1e/Zs07xJkyaZ5T333HOaOnWqWd6e\nPXt0++23m+U9/PDDOnXqlFnevffea3p9fvGLX1QURSZZ3d3d+vKXv6xPfOITJnm7d+/W+vXrVVBQ\nYJJXUlKib3zjGyZZklRTU6O77rrLLK+2ttZ0r//jP/6jXnrpJbO8uXPn6jOf+YxZXkNDg+msfuaZ\nZzRx4kSzvH379umOO+4wyTp27JhOnjypUaNGmeR5ny1r167Vc889Z5ZXWVmp5cuXm+Vx3xKW9X3L\n3r17zb6fx44d05kzZ8zuW5577jmNHj1aQ4YMMcn7+c9/bvoahdkSlvVs8X7fcv/995u+JnrwwQc1\nevRok7znnntOjzzyiOI4vqyCJnc58+bNs4hRW1ubPve5z5lkSVJHR4dZN0k6fvy4ab+zZ8+a9uvs\n7DTt99WvflVHjhwxy7vttttMv59vvfWWOjo6zPLuvvtuVVRUmGR1dnZq1apVJllS5oWa5dq99tpr\n5rPFMu973/ue6d4rKysznS29vb2m38/e3l7TQ66BAwdq7ty5JlmHDx/W2bNnmS2B/OxnP9NPfvIT\ns7w5c+Zw3xKQ9/uWAQMGuJ0tXV1dmj59uoYNG2aS19bWxmwJyPts8X7f8sUvftH0NdGMGTNMZ8sH\nwY+DAQAAAAAA5AEOgQAAAAAAAPIAh0AAAAAAAAB5gEMgAAAAAACAPMAhEAAAAAAAQB7gEAgAAAAA\nACAPcAgEAAAAAACQBzgEAgAAAAAAyAO5dwi0fLk0YoQ0fnzyWe3t0qxZ0tixUnm5tGZN8pme+1l2\nk8z7rZN0TNK+RFMuQr+gTPsxW4Lyfm16n53e+3mfLa77cW2G1dUlTZokVVZmOq5cSV4asrKRJ2ZL\nUPQLyv19p3LxEGjpUmnbNpusggJp1SqpuVmqq5OqqqSWlmQzPfez7CaZ96uWNCexz34J9AvKtB+z\nJSjv16b32em9n/fZ4rof12ZYhYXSzp1SQ4PU1CTt2CHV1pKX61nZyBOzJSj6BeX+vlO5eAg0bZpU\nUmKTVVoqVVRkPi4qksrKpCNHks303M+ym2Ter1bSycQ++yXQLyjTfsyWoLxfm95np/d+3meL635c\nm+ENGpT5tatL6u1N/vvrOc9zNzFbgqJfUO7vO5WLh0DZ0tYmNTZm3grpEf3SjX7p5bmbRL+0o196\nee4m0S+tenszP1JUWirNmCGNGUNeGrKykZctXvdeP/qlm1E/DoEkqbNTWrRIWr06c/rmDf3SjX7p\n5bmbRL+0o196ee4m0S/NBgzI/EhRe7u0a5dUU0NeGrKykZcNnveeRL+0M+zHIVB3d+abvWSJtHBh\ntr+a8OiXbvRLL8/dJPqlHf3Sy3M3iX5eFBdL8+dLe/eSl6asbORZ8b736Jduxv1y8xAojjMPC8uW\nZd7uuGKFTZ7ku59lN8m8X9T3MEO/oEz7MVuC8n5tep+d3vt5ny2u+3FthtPRIZ06lfn4/Hlp+/Z3\n/p4L8nI3Kxt5fZgtAdEvKO/3nbl3CLR4sTRlitTaKo0cKVVXJ5dVWyutX5/5G/ArK6WJE6WtW5PL\nk3z3s+wmmfdbL2mPpNGSXpF0X2JJfegXlGk/ZktQ3q9N77PTez/vs8V1P67NsI4elWbOzHSbPFla\nsECaPZu8XM/KRp6YLUHRLyj3952SChL97B/Ehg12WVOnSj09dnmS736W3STzfveYJfWhX1Cm/Zgt\nQXm/Nr3PTu/9vM8W1/24NsMqL5fq68lLW9b/297dB1lV33kef/94zKIgDShEGXwo4/oE0uhGo5Kg\nZAdLo5gtajIxZXwa87QbLctY68IfqVSSjUmlTLR0rEo0FpPCZF0UQXdLhi0QQ4szIiDSSsAoYhPA\nQRHtBlugz/5xuxURFJxzv7fv775fVZRtR/2cT5/f+d5zf7n3di3ycLaUyn6lyv6+k974SiBJkiRJ\nkiSVzk0gSZIkSZKkBuAmkCRJkiRJUgNwE0iSJEmSJKkBuAkkSZIkSZLUANwEkiRJkiRJagBuAkmS\nJEmSJDUAN4EkSZIkSZIaQL+IkPb29ogY3n333bCsWuTt3LnTfiXas2dPWBZAR0dHaL+urq6wLIjt\nt3PnzpCcHnv27PHaK9GuXbvCsiD/n2f0bInM6+jocLaUqLOzMywLKte6s7M8ud+35D5b2tvbGThw\nYEhe9LXgbClX9GzJ/b7F50QfFbIJ9Oyzz0bE8Ne//jUsqxZ5mzZtCs1ra2sLzfvVr37FDTfcEJZ3\n/fXX8+tf/zos7+mnnw79ed5888184QtfCMlqa2tj9erV7N69OyRvy5YtPPzwwwwdOjQk7ze/+Q3H\nHHNMSBbAGWecwdixY8PyHn74YW699dawvKlTp7Jw4cKwvJtuuolf/OIXYXnf+c53GD16dFjeyy+/\nHDpb1q5dy4gRI0Ky2tra+N73vheSBfCZz3wmdLY89thjoefuyCOPDL32fvrTn4bOzssvv5wTTzwx\nLC/3+5ZvfvOb3HjjjWF5t9xyS+hsaW9vD7tvefnllznssMPCZsuzzz4beu2NGzfO2VKiDRs2hD42\nrF+/PjTvlltu4Vvf+lZY3s0338zEiRNDstra2rj44otDsqBy3/JphGwCfelLX4qIobW1NSwLYN26\ndaF5r7zySmheW1tbaN7QoUN5++23w/JOPvlkLrjggrC8jo6O0J/nzp07w/qtW7eOjo4Oxo8fH5L3\n5ptv8sUvfpHhw4eH5C1YsCB0bQ4ePDh0rdx7772h/Y455pjQay96tnzuc58LPX/vvPNO+GyJylu3\nbh3vvfce7777bkhe3759Q2fLiy++GH7fEnnt/e53vwu99o4++mjvW0o0cODA0H7Nzc2hsyX6vuX8\n888Pmy3z588PPXdDhgxxtpRoy5YtoXlvvPFGaN6AAQNCz9+ZZ54Z+pwo+r7l0/AzgSRJkiRJkhqA\nm0CSJEmSJEkNwE0gSZIkSZKkBuAmkCRJkiRJUgNwE0iSJEmSJKkBuAkkSZIkSZLUANwEkiRJkiRJ\nagC9axOorQ0uvBBOOw3GjoU776x+5nXXwciRMG5c9bPsV6p7gc3Ac1VN2Uv0+Ys8d5B3vxpce6Hr\n036lcraULOfz5+N66XI+f7nPlvB+nZ1w9tnQ3FzpOH16PnnR3cj72oPM+/m4Xq7c+9HbNoH69YPb\nb4fWVli6FO6+G9asqW7mNdfA/PnVzehhv1LdD0yp2n99P6LPX+S5g7z71eDaC12f9iuVs6VkOZ8/\nH9dLl/P5y322hPcbOBAWLYIVK2DVKli4EFpa8siL7kbe1x5k3s/H9XLl3o/etgk0ahSMH1/5+vDD\n4ZRTYOPG6maefz40NVU3o4f9StUCbKvaf30/os9f5LmDvPvV4NoLXZ/2K5WzpWQ5nz8f10uX8/nL\nfbaE9wMYNKjy185O6Oqq/rURmRfcLedrDzLv5+N6uXLvR2/bBNrb+vWwcmXlpZA5sl99s1/9yrkb\n2K/e2a9+5dwN7Ffvcu3X1VV5y9SoUTBpEpx6aj550d1qJde12cN+9S3Tfr1zE6i9HaZNgzvuqOy+\n5cZ+9c1+9SvnbmC/eme/+pVzN7Bfvcu5X58+lbdMtbXBk0/C4sX55EV3q4Wc1ybYr95l3K/3bQLt\n3l35YV95JUydWuujKZ/96pv96lfO3cB+9c5+9SvnbmC/epd7vx5DhsAll8CyZfnlRXeLkvvatF99\ny7xf79sEuvbayssdb7wxLrMoKn8i2K9UqftPmOjzF3nuIO9+Nbj2Qten/UrlbClZzufPx/XS5Xz+\ncp8tof22boXt2ytf79wJCxZ88Dke9Z4X3a1bztceZN7Px/VyZd6vd20CtbTArFmVT8BvboYJE+Dx\nx6ubecUVcO65sHYtjBkD999fvSz7lWoW8BRwEvAqcHXVkrpFn7/Icwd596vBtRe6Pu1XKmdLyXI+\nfz6uly7n85f7bAnvt2kTXHBBpds558Bll8HkyXnkRXcj72sPMu/n43q5cu8H9AvIOHjnnQd79sRm\nPvBAXJb9SvWNsKRu0ecv8txB3v1qcO2Frk/7lcrZUrKcz5+P66XL+fzlPlvC+40dC8uX55kX3Y28\nrz3IvJ+P6+XKvR+97ZVAkiRJkiRJqgo3gSRJkiRJkhqAm0CSJEmSJEkNwE0gSZIkSZKkBuAmkCRJ\nkiRJUgNwE0iSJEmSJKkBuAkkSZIkSZLUANwEkiRJkiRJagBuAkmSJEmSJDWAfhEhS5YsiYjhL3/5\nS1hWLfJeeuml0Lx169aF5r311lthWRB//lpbWxk6dGhY3nPPPcfhhx8ekrVhwwY6Ojpob28PyVu9\nejX9+/cP+3muX78+JKfHW2+9Fbo2N2/eHJYFsGnTJmdLiXKfLXv27AnJAti1axdLly4N+3nmft/i\nbClX9PnbsWNHWBbAqlWrOOKII0KyvG8pl/ct5frzn/8cmrdmzRpnS0lqcd/yaYRsAk2cODEihpNP\nPpnvf//7IVkATU1NjB49Otu8J554gh/96EdheTNmzOCRRx4Jy5syZQq33XZbWN5dd90Vev6OPPLI\nsLxdu3axY8eOsLxBgwZx6aWXhmRBZba88sorYXkPPvhg6Fq56KKL+O1vfxuWN3fu3NB+119/PZdc\ncklYXu6z5Wc/+xnbt28Py3v00Uc5/fTTQ7Ieeuih8NkSed+yYcOGsHsygK997WuhszP32TJ//vzQ\nfj/+8Y+ZPHlyWN748eOZPn16WN6jjz7qfUtJcr9vufrqq0Nn54wZM0J/njNnzmTGjBlheXfddVfo\n7Fy4cGHoc6I5c+Zw2mmnheQ99NBD/OAHPzjkfy9kEyhKv379OO6448Lyhg0bFpo3fPjw0LyoHdMe\nTU1Nof0OO+ywsCyAo446KrTf0UcfHZa3a9cuOjo6wvJGjhwZktPD2VKuESNGhOYdeeSRzpYS9e/f\nPywLYPTo0c6WkjQ1NYVlQeVacLbUb97IkSOdLSXJfbbkft/ic6Jy+ZyoPJ92tviZQJIkSZIkSQ3A\nTSBJkiRJkqQG4CaQJEmSJElSA3ATSJIkSZIkqQG4CSRJkiRJktQA3ASSJEmSJElqAG4CSZIkSZIk\nNYBetwl0L7AZeC4irK0NLrwQTjsNxo6FO++sfuZ118HIkTBuXPWzgvuFnjuwX9ki1ybkff6cLeVy\nbZbLfqXKfbZk3S/z2ZJ7v/DZ0tkJZ58Nzc2VjtOnVzUu62sPsr5v8XGvZM7O0vW6TaD7gSlRYf36\nwe23Q2srLF0Kd98Na9ZUN/Oaa2D+/Opm9AjuF3ruwH5li1ybkPf5c7aUy7VZLvuVKvfZknW/zGdL\n7v3CZ8vAgbBoEaxYAatWwcKF0NJStbisrz3I+r7Fx72SOTtL1+s2gVqAbVFho0bB+PGVrw8/HE45\nBTZurG7m+edDU1N1M3oE9ws9d2C/skWuTcj7/DlbyuXaLJf9SpX7bMm6X+azJfd+4bMFYNCgyl87\nO6Grq6o/36yvPcj6vsXHvZI5O0vX6zaBamb9eli5svIyzxzZr77Zr37l3A3sV+/sV79y7gb2q3e5\n9uvqqrwdbNQomDQJTj211kdUvlzPXQ/71Tf7lcJNIID2dpg2De64o7L7lhv71Tf71a+cu4H96p39\n6lfO3cB+9S7nfn36VN4O1tYGTz4JixfX+ojKlfO5A/vVO/uVxk2g3bsrP+wrr4SpU2t9NOWzX32z\nX/3KuRvYr97Zr37l3A3sV+9y79djyBC45BJYtqzWR1Ke3M+d/eqb/UrVKzeBUvefENdeW3kp5403\nRiVCUVT+RAjuF3ruwH5li1ybkPf5c7aUy7VZLvuVKvfZknW/zGdL7v1C1+bWrbB9e+XrnTthwYIP\nPsejSrK+9iDr+xYf90rm7CxVr9sEmgU8BZwEvApcXc2wlhaYNavy6f7NzTBhAjz+eDUT4Yor4Nxz\nYe1aGDMG7r+/elnB/ULPHdivbJFrE/I+f86Wcrk2y2W/UuU+W7Lul/lsyb1f+GzZtAkuuKDS7Zxz\n4LLLYPLkqsVlfe1B1vctPu6VzNlZun5V/a9/Ct+IDDvvPNizJzIRHnggLiu4X+i5A/uVLXJtQt7n\nz9lSLtdmuexXqtxnS9b9Mp8tufcLny1jx8Ly5WFxWV97kPV9i497JXN2lq7XvRJIkiRJkiRJ5XMT\nSJIkSZIkqQG4CSRJkiRJktQA3ASSJEmSJElqAG4CSZIkSZIkNQA3gSRJkiRJkhqAm0CSJEmSJEkN\nwE0gSZIkSZKkBuAmkCRJkiRJUgPoFxFy/PHHR8TQp08ffv7zn4dkATz//POklMLyli5dypYtW8Ly\nNm3aFHbuAFavXs19990XlgdxaxNg3rx5vPzyy2F5GzduZOPGjSFZr7/+Oq+99hrHHntsSN6yZcsY\nM2YMffv2DcnLfbasWLGCPXv2hOWtWrWKd999Nyzv6aef5pVXXgnTOoJ5AAAMxklEQVTLe++990Jn\ny+LFi3n77bfD8o444ggGDx4ckrV7925mz57Ns88+G5L3zDPPhM6W/v37hz7uvfrqq6Fr87XXXgud\nnS+99FLobFm9ejXvvPNOWF5rayvbtm0Ly3vqqadobW0Nyxs8eLCzpSS537f4nKh8PicqRy2eE30a\nqSiKkg9ln4CUis7Ozqpm9JgxYwa//OUvQ7IApkyZwrx588LyrrrqKv74xz+G5d1yyy385Cc/Ccub\nPXs206ZNC8ubM2cOX/3qV8PyTj755NAnonPmzOHiiy8OyVq3bh1nnXVW2M13U1MTra2tDB8+PCQv\n99kyc+ZMrrrqqrC8P/zhD3z9618Py/vyl7/Mn/70p7C8e+65h2uvvTYs77HHHuMrX/lKWN78+fOZ\nMmVKSNa6devYsWMHZ5xxRkjeI488wsSJE8Nmyz333MN3v/vdkCyA++67j+uuuy4sz/uWcnnfUp7c\nZ0vu9y3OlnI5W8pTi+dE27ZtoyiKQ9qFDXkl0IABAyJi6N+/f0hOj759+4Z1A+jXL+R0va8W/SLz\n+vfvH5rXp0/suy8j+0X+HPfOdLaUI/paiL7Wo6+96H6R1wLEz5Zdu3aFXuvRsyXXcwfet5TN+5by\nNMJsieRzonI5W8qV+3OiT8PPBJIkSZIkSWoAbgJJkiRJkiQ1ADeBJEmSJEmSGoCbQJIkSZIkSQ3A\nTSBJkiRJkqQG4CaQJEmSJElSA3ATSJIkSZIkqQH0rk2gtja48EI47TQYOxbuvLPqkfcCm4Hnqp4E\ndHbC2WdDc3Ol4/TpVY8M7Rd9/q67DkaOhHHjqpvTI7hf6LmDvPvlPltq0C/0+st5bYKzs2wZr00g\n+35Zz87Mrz1nZ4m89kqXdT9nS7ly70dv2wTq1w9uvx1aW2HpUrj7blizpqqR9wNTqpqwl4EDYdEi\nWLECVq2ChQuhpaWqkaH9os/fNdfA/PnV++/vK7hf6LmDvPvlPltq0C/0+st5bYKzs2wZr00g+35Z\nz87Mrz1nZ4m89kqXdT9nS7ly70dv2wQaNQrGj698ffjhcMopsHFjVSNbgG1VTdjHoEGVv3Z2QlcX\nNDVVNS60X/T5O//8qv/8PiS4X/jazLlf7rOlBv1Cr7+c1yY4O8uW8doEsu+X9ezM/NpzdpbIa690\nWfdztpQr9370tk2gva1fDytXVt4+lZOursrbwUaNgkmT4NRTa31E1ZHr+ethv/qVczewX72zX/3K\nuRvYr97Zr37l3A3sV+/sV5d65yZQeztMmwZ33FHZfctJnz6Vt4O1tcGTT8LixbU+ovLlfP7AfvUs\n525gv3pnv/qVczewX72zX/3KuRvYr97Zr271vk2g3bsrP+wrr4SpU2t9NNUzZAhccgksW1brIylX\n7ufPfvUr525gv3pnv/qVczewX72zX/3KuRvYr97Zr671vk2ga6+tvEXqxhvDIlP3n6rbuhW2b698\nvXMnLFjwwfsNqyisH8Sfv6Ko/IkS3C/03EHe/XKeLVCTfqHXX85rE5ydZct4bQLZ98t6dmZ+7Tk7\nS+S1V7qs+zlbypV5v961CdTSArNmVX5rVnMzTJgAjz9e1chZwFPAScCrwNXVDNu0CS64oNLtnHPg\nsstg8uRqJsb2iz5/V1wB554La9fCmDFw//3Vy4LwfqHnDvLul/tsqUG/0Osv57UJzs6yZbw2gez7\nZT07M7/2nJ0l8torXdb9nC3lyr0f0C8g4+Cddx7s2RMa+Y3IsLFjYfnyyMTYftHn74EH4rIgvF/o\nuYO8++U+W2rQL/T6y3ltgrOzbBmvTSD7flnPzsyvPWdnibz2Spd1P2dLuXLvR297JZAkSZIkSZKq\nwk0gSZIkSZKkBuAmkCRJkiRJUgNwE0iSJEmSJKkBuAkkSZIkSZLUAA7qt4OllNYD24EuYFdRFJ9P\nKTUB/ws4FlgP/F1RFNurdJySJEmSJEn6dzjYVwJ1AZOKomguiuLz3d+7Ffh/RVH8R2Ah8D+qcYBq\nHK2trbU+BNWRJUuW1PoQVCfeeuutWh+C6oizRQfL+xYdCmeLDpazRdV2sJtAaT//7FRgZvfXM4HL\nyzooNaYXXnih1oegOtLS0lLrQ1CdcBNIh8LZooPlfYsOhbNFB8vZomo72E2gAliQUnompfQP3d8b\nWRTFFoCiKDYDR1XjACVJkiRJkvTvl4qi+OR/KKXPFkWxKaV0JPDPwA3A3KIohu31z7xRFMXw/fy7\nxU033VTmMR/QsmXL6OrqCskCGDp0KJdeemlY3vz583n99dfD8oYOHcpJJ50UlvfEE0/w7W9/Oyxv\n0aJFHH300WF5S5YsYcCAAWF5zc3NnH766SFZW7duZe7cuWH9du/ezeDBg5k2bVpI3uLFi9mwYUNI\nFkD//v1pbm4Oy9u0aROTJk0Ky2tpaWHEiBFhebNnz2bMmDFheSNGjOCEE04Iy+vs7GTcuHFheS++\n+CKnnHJKSNbWrVvp6Ojg2GOPDcl78cUXaW1tDZsty5cvZ8KECSFZAEuXLmXYsGGf/A+W5JlnnuFg\n7jPL4n1LuaLvW4YNG8aJJ54YkvXmm2/y2c9+luOOOy4kr7W1lSVLloQ91vqcqFzOlnL5nKg87733\nXs9jbTqUf++gNoE+9C+k9EOgHfgHKp8TtCWlNApYVBTFR+4KU0pxj/6SJEmSJEkN4lA3gT7xt4Ol\nlAYBfYqiaE8pHQb8LfAjYB5wNfBz4CpgbhkHJEmSJEmSpPJ94iuBUkrHA3OofC5QP2BWURS3pZSG\nAQ8CfwO8SuVXxPvpm5IkSZIkSb3QIb8dTJIkSZIkSfXnYH872CFLKV2UUlqTUlqbUvrv1cpRHlJK\n61NKz6WUVqSU/rXWx6PeJaV0X0ppS0pp1V7fa0op/XNK6c8ppfkppSNqeYzqHQ6wVn6YUmpLKS3v\n/nNRLY9RvUNKaXRKaWFKqTWl9HxK6Ybu7ztb9BH7WS/f7/6+80UfklIamFL6l+572taU0v/s/r6z\nRR/xMevF2aL9Sin16V4T87r//pBnS1VeCZRS6gOsBSYDfwWeAf6+KIo1pYcpCymll4Ezi6LYVutj\nUe+TUjqfygfS/1NRFOO6v/dz4I2iKH7RvdHcVBTFrbU8TtXeAdbKD4F3iqK4vaYHp16l+5dajCqK\nYmVK6XDgWWAqcA3OFu3jY9bL13C+aB8ppUFFUexIKfUFWoCbgctwtmg/DrBevoyzRfuRUroJOBMY\nUhTFZZ/mOVG1Xgn0eWBdURSvFkWxC/gjlQdK6UASVXxlmupbURRLgH03CKcCM7u/nglcHnpQ6pUO\nsFagMmOk9xVFsbkoipXdX7cDLwKjcbZoPw6wXo7p/p+dL/qQoih2dH85kMr97TacLTqAA6wXcLZo\nHyml0cDFwL17ffuQZ0u1nnQfA7y219+38cEDpbQ/BbAgpfRMSun6Wh+M6sJRRVFsgcrNOXBUjY9H\nvdt/SymtTCnd60vwta+U0nHAeOBpYKSzRR9nr/XyL93fcr7oQ7rfrrEC2Aw8URTFCzhbdAAHWC/g\nbNFH/Qq4hcpz5x6HPFt85YV6i/OKophAZWfzv3a/pUM6FH7KvQ7kH4ETiqIYT+UGy5dW633db+2Z\nDdzY/QqPfWeJs0Xv2896cb7oI4qi6CqKopnKqwsnppQm4WzRAeyzXr6YUvoSzhbtI6V0CbCl+1Wp\nH/cqsU+cLdXaBNoIjNnr70d3f0/ar6IoNnX/9d+AOVTeUih9nC0ppZHw/mc1vF7j41EvVRTFvxUf\nfADeb4H/VMvjUe+RUupH5Qn974uimNv9bWeL9mt/68X5oo9TFMXbwP8FzsLZok/QvV7+D3CWs0X7\ncR5wWfdn6f4BuDCl9Htg86HOlmptAj0DnJhSOjalNAD4e2BelbJU51JKg7r/nzVSSocBfwusru1R\nqRdKfHjXex5wdffXVwFz9/0X1LA+tFa6HxB7/BecL/rA74AXiqK4Y6/vOVt0IB9ZL84X7SulNKLn\nrTsppf8A/GdgBc4W7ccB1stKZ4v2VRTF9KIoxhRFcQKV/ZWFRVFcCTzKIc6Wqvx2MKj8injgDiob\nTfcVRXFbVYJU91JKx1N59U8B9ANmuV60t5TSA8AkYDiwBfgh8Ajwv4G/AV4F/q4oirdqdYzqHQ6w\nVi6g8vkdXcB64Ns9751W40opnQc8CTxP5fGnAKYD/wo8iLNFe/mY9XIFzhftJaU0lsqHs/b80pPf\nF0Xxy5TSMJwt2sfHrJd/wtmiA+h+y+DN3b8d7JBnS9U2gSRJkiRJktR7+MHQkiRJkiRJDcBNIEmS\nJEmSpAbgJpAkSZIkSVIDcBNIkiRJkiSpAbgJJEmSJEmS1ADcBJIkSZIkSWoAbgJJkiRJkiQ1ADeB\nJEmSJEmSGsD/BzveouaSAv/DAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10f937ed0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "state_overlay_diagram(domain.get_spacetime(), domain_states.get_causal_field(), t_min = 10, t_max = 50, x_max = 40)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "22676\n" ] } ], "source": [ "plcs = domain_states.PLCs()\n", "print plcs.map_to_label('0101100010010100')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0010100\n", " 10001 \n", " 101 \n", " 0 \n", "\n" ] } ], "source": [ "print plcs.map_to_shape(22676)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n" ] } ], "source": [ "print domain_states.epsilon_map()[22676].index()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.443796261542\n", "0.739583703817\n", "0.739583703817\n" ] } ], "source": [ "print domain_states.entropy_rate('forward')\n", "print domain_states.entropy_rate('right')\n", "print domain_states.entropy_rate('left')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "79\n" ] } ], "source": [ "print len(domain_states.all_transitions())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(1, 'f:0000000', 2), (1, 'r:0000', 2), (1, 'l:0000', 3), (1, 'l:0000', 2), (1, 'r:0000', 3), (1, 'f:0000000', 3), (1, 'f:0000000', 0), (2, 'f:0110001', 1), (2, 'f:1101001', 1), (2, 'f:0000011', 1), (2, 'f:1010110', 1), (2, 'f:1100111', 1), (2, 'f:1011011', 1), (2, 'f:0111100', 1), (2, 'f:0110010', 1), (2, 'f:1100100', 1), (2, 'f:1011000', 1), (2, 'f:0111111', 1), (2, 'f:0001110', 1), (2, 'f:0001101', 1), (2, 'f:1101010', 1), (2, 'f:1010101', 1), (2, 'f:0000000', 3), (2, 'f:1010101', 0), (2, 'f:1100100', 0), (2, 'f:0001101', 0), (2, 'f:0001110', 0), (2, 'f:1011000', 0), (2, 'f:1101010', 0), (2, 'f:0000000', 0), (2, 'f:0110001', 0), (2, 'f:0111100', 0), (2, 'f:1100111', 0), (2, 'f:0111111', 0), (2, 'f:0110010', 0), (2, 'f:1011011', 0), (2, 'f:1101001', 0), (2, 'f:1010110', 0), (2, 'f:0000011', 0), (3, 'f:0000000', 3), (3, 'f:1010101', 1), (3, 'f:1101010', 1), (3, 'f:0111111', 1), (3, 'f:1101010', 0), (3, 'f:0000000', 0), (3, 'f:1010101', 0), (3, 'f:0111111', 0)]\n" ] } ], "source": [ "print domain_states.nonunifilar_transitions()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAR9CAYAAADBZlejAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3V2MVWeaH/pn7/qEoozLFGU3dtF8nME9ZiINM3RP5yLR\nKJnWOUFR5khI0ejccM4F4oKjiIuIw0goucgNc0VuuIjCqNUDDZOm6KHd3U63221PHHePsd12Yyig\nMNhQxUd98E3Vru9a58JDJok0MzG9HiY76/eTttTGvf/70bPed623nqrCtaIoAgAAAID/tdX/rgsA\nAAAAIJ8hEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAF/EpDoFqt9n/UarWLtVrt\nUq1W+//KKgoAAACActWKoniyN9Zq9Yi4FBH/OCJuRsT7EfEHRVFcLK88AAAAAMrwq/wk0Nci4pOi\nKK4VRTEfEX8aEb9fTlkAAAAAlOlXGQK9GBEj/9U/X//LPwMAAADgfzL+YmgAAACACmj9Fd57IyLW\n/lf//NJf/tl/o1arPdlfOgQAAADAX6soitoX+f//Kj8J9H5E/G+1Wu3LtVqtPSL+ICJe/WuKKv21\nadOmX6H0v9769etTcvv7+6PRaKT0Yt26dSk179u3L6Xe/fv3p9QbEXHq1KmUmo8dO5aSu3fv3rRe\ndHZ2puRu3LgxJbevry8lNyKiu7s7JffgwYMp62L37t0p9UZEnD59OqXmgYGBlNzDhw+n5J45cyYG\nBwdTsv/5P//nKbk7duxIWRP1ej2Gh4dTat68eXNKzVnPvfb29pTciIjjx4+n9Hj79u0p9XZ1daXk\nRkScOHEipRdHjx6Nf/2v/3XpuYcOHUqptyiKWLNmTUqPN2zYkJK7devWtF709vam1HzgwIGUevfs\n2ZNSb0TeuSVrXWzbti1l742MjDTduWXnzp0pPY6ItHPLli1bUupdu3bt3/5/+p9Mf39/Su6uXbtS\nrt2RI0eeqJ4n/kmgoigWa7Xa/xsRr8fnw6Q/LoriwpPmAQAAAJDnV/l1sCiK4kcR8XJJtQAAAACQ\nxF8MDf+Lam39lWa8wBPK+hUo4G/3u7/7u3/XJUAl2XvQPAyB4H9RbW1tf9clQCX9xm/8xt91CVBZ\nvhCFvxv2HjQPQyAAAACACjAEAgAAAKgAQyAAAACACjAEAgAAAKgAQyAAAACACjAEAgAAAKgAQyAA\nAACACjAEAgAAAKgAQyAAAACACjAEAgAAAKgAQyAAAACACjAEAgAAAKgAQyAAAACACjAEAgAAAKgA\nQyAAAACACmh9Gh+ytLTUFJnZuY9fGdkZFhcXU7IXFhZKz3wss+aM3MXFxdIzH8tcFxmy6s3Mtkf+\nSuYeybpvZmVn5mZoxudTs+VGNOe6yNJsey/r/hbRfGs5617xODtDs+29iOZbF834rM7a1814hmu2\nrxkyNeMeeRJPZQj005/+tPTM2dnZWLlyZem5jUYjJbdWq8Wbb74ZnZ2dpWfPz8+n1Hzz5s2Ua3f1\n6tWUeiMiPvroo+ju7i499/Llyym9uHbtWlovIiIle2pqKiV3YWEhJffxzTEj+8qVKynr4saNG2m9\n+PnPfx6Tk5OlZw8NDaX04tNPP03JvXLlSkREjI6Olp59/vz5ePbZZ0vPHR0dTVkXi4uL8fbbb8cL\nL7xQevb09HRTPasfH1hbWlpKzz579mz09fWVnnv79u20XnR3d0e9Xv4PjX/88cfx3HPPlZ6b9azO\nutdHfH5fbqZn9ezsbFovInKe1VevXk2peWRkpOnOLVnrYnJyMqXHt2/fjtHR0aY6t9y6dSulx/Pz\n8/Gzn/0s5dyStS5mZmbSelGr1aK1tfxRRlbNExMTKettcHDwid73VIZA3/jGN0rPXLZsWYyMjJSe\nu379+vjss89Kz33mmWfi937v92LZsmWlZ3d0dMStW7dKz+3v70+5dm+//XY8ePCg9NyIiK1bt6bU\nfPv27ZTcN954I60XPT09ce/evdJzN27c+F++gC5TX19fjI+Pl54bEdHd3Z3S502bNqWsi+9973vx\ngx/8oPTciIh/8A/+QXzta18rPffhw4cpvRgeHk7Jff7556O1tTVeeeWV0rMfPXqUUvO3v/3teOON\nN0rPrdfr8bu/+7vR399fenZXV1dcvXq19Nx169al5La3t8fc3FzpuRERv/mbv5myLv7dv/t38c47\n75Se29XVlfKFV0TEli1bUnoxPj6ekvvJJ5+k5EZEtLa2pjz7NmzYEJ9++mnpub/2a7+W1ot6vR53\n794tPXfjxo0pNb/22mtpZ7isc0vWuli5cmVKj69fvx43b95sqnPLiRMn4kc/+lHpuRER//Af/sOU\nc0t3d3dcvny59Ny1a9fG8PBw6bmZ+vv7U2YML7zwQsp6Gxsbe6L3+TuBAAAAACrAEAgAAACgAgyB\nAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACg\nAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgA\nAACgAgyBAAAAACrAEAgAAACgAlqfxod85zvfKT2zVqvFhg0bSs+dnp5OyY2IGBgYiI6OjtJzW1tb\nU2q+fPlyyrW7ceNGWo/feeedmJ2dLT33woULKb24detWWi8ePXqUkt1oNFJyJycnU3KXlpZiamoq\nVq9eXXr2xx9/nLIuxsfHU3oxPz8fP/rRj+Lq1aulZw8ODsbi4mLpuVeuXEnbewsLC3Hu3LnSswcH\nB2NhYaH03Hv37qU991599dWUPRIRTXUfmpqaira2tmhvby89+9133416vfzvvT18+DClF48ePYre\n3t5oaWkpPfsv/uIvYmlpqfTcoaGhlPvFp59+mpIbEdHR0dFU59nZ2dm0Xixbtiyl5sHBwZSaR0dH\nm+7ckrUu7t27l9Lj+/fvx+3bt5vq3HL79u20vffaa6+lnFsWFxeb6lndaDSiXq9HZ2dnSnZGzSMj\nIyl75InXQ1EUqa/PP6J8mzZtKiKi9Nf69etTcvv7+4tGo5HSi3Xr1qXUvG/fvpR69+/fn1JvRBSn\nTp1KqfnYsWMpuXv37k3rRU9PT0ruxo0bU3L7+vrSetHd3Z2Se/DgwZR1sXv37rRenD59OqXmgYGB\nlNzDhw+n5J45c6YYHBxMyT558mRK7o4dO1LWRL1eL4aHh1Nq3rx5c0rNWc+99vb2tL13/PjxlB5v\n3749pd6urq60Xpw4cSKlF0ePHk3JPXToUEpuURTFmjVrUnq8YcOGlNytW7em9aK3tzel5gMHDqTU\nu2fPnrQ9knVuyVoX27ZtS+nxyMhI051bdu7cmbYuss4tW7ZsSal37dq1ab3IevX396fk7tq1K+Xa\nHTlypIiIoviCMxq/DgYAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVg\nCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAA\nABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABXQ+jQ+5N//+39f\neubi4mK88MILpedOTU2l5BZFEYcPH47Ozs7SsyMipebBwcGUa/fJJ5+k1BsR8eMf/zjGx8dLzx0a\nGorJycnSc69cuZLWi9nZ2ZTsR48epeTOzc2l5C4tLcXCwkJK9nvvvZeyR65du5ZS7+LiYgwMDMSZ\nM2dKz7506VLcvXu39Nys+9Do6GgsLCzESy+9VHr2pUuX4s6dO6Xn3rp1K2VdzM/Px9GjR6O3tzcl\nO6PmRqORkjszMxPPPPNMtLaWfzx6880349GjR6Xn3r59O60XfX19Ua+X//3CN954I+7du1d67sWL\nF6PRaJSee/bs2ZT7UEREvV5vqvPso0eP0nrR2tqaUvOHH36YUvPVq1eb7twyOTmZkjs+Pp7S4wcP\nHsSdO3ea6txy48aNtGf1n/7pn0Z/f3/p2Vln8Onp6bSvGSIi2tvbS8/Oqvny5cspe+SJ90ZRFKmv\nzz+ifJs2bSoiovTX+vXrU3L7+/uLRqOR0ot169al1Lxv376Uevfv359Sb0QUp06dSqn52LFjKbl7\n9+5N60VPT09K7saNG1Ny+/r60nrR3d2dknvw4MGUdbF79+60Xpw+fTql5oGBgZTcw4cPp+SeOXOm\nGBwcTMk+efJkSu6OHTtS1kS9Xi+Gh4dTat68eXNKzVnPvfb29rS9d/z48ZQeb9++PaXerq6utF6c\nOHEipRdHjx5NyT106FBKblEUxZo1a1J6vGHDhpTcrVu3pvWit7c3peYDBw6k1Ltnz560PZJ1bsla\nF9u2bUvp8cjISNOdW3bu3Jm2LrLOLVu2bEmpd+3atWm9yHr19/en5O7atSvl2h05cqSIiKL4gjMa\nvw4GAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAA\nAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGG\nQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAAAAAV0Po0PmR0dLT0zLm5udIzIyIWFhZS\nchcXF2N0dDSWLVtWevb8/HzpmRERU1NTKdfu4cOHpWc+dvfu3ZSa792713S9WFxcTMnNWm9Z9UZE\nLC0tpeQ+fPgwZV1MTk6WnvnYxMREU+2RBw8epOROTExES0tLPPfcc6VnZ/Viamqq9MyIz/fH2NhY\ntLW1lZ6ddb/IelZn3Ssi8tbF9PR06ZkRuffkZrtf3L9/PyU3Iq/PWXtkbm6u6XoxOTmZUvOjR49K\nz3ws616UtS5mZmZSejw+Pt5055bMM9z4+HjKuaXZvq7OlHUfmp6eTlvHT+KpDIGuXr1aeubi4mJ0\ndXWVnjs7O5uS29LSEteuXYvOzs7Ss4uiSKn50aNHKdfuwYMHKfVGfD5wzKj53r17KbmPHj1K60Wt\nVmuqPZK1p5eWlqJer6dkZ62Lhw8fpvXi+vXrsWrVqtKzb9++ndKL+/fvp+TevHkz6vV6yj35zp07\nKTVPTk6mrYuRkZGUw9r8/HxKzXNzcym5RVFEW1tb1Ovl/6D0+Ph4U62LWq0Wy5YtS+nF2NhYSi/u\n3r3bVPehiLwz3MzMTNoeyepF1rkl6/plPquzzi1ZZ7j5+fmUHo+NjcX4+HhTnVuyzvaPz3AZ55as\nZ2rWGWBhYSFqtVq0tLSUnp3Vi6mpqZT1dvv27Sd631MZAn39618vPXPZsmUp3xXt6+uL8fHx0nOf\ne+65+J3f+Z2UnwRqb29P6cULL7yQcu1++MMfpn1H+5VXXkmp+bPPPkvJ/bM/+7O0XvT09KSti7Gx\nsdJz+/r64v79+6XnRkR0d3en9OLLX/5yyrpYs2ZN2rrYsmVLfO1rXys998aNGym9GBwcTMldvnx5\ntLa2xiuvvFJ69s2bN1Nqfv7551PWRb1ej61bt0Z/f3/p2cuXL0+pefXq1SnP6vb29rTviL788ssp\n62L16tUpPe7q6kr7KaOvfOUrKb24cuVKSu6HH36YkhsR0dramnL9nn/++ZQ90tHRkdaLer2e0ouX\nXnoppeYXX3wx7VmddW55/vnnU85w3d3dKT2+fv163Lx5s6nOLV/60pfS1sVv/dZvpZxbVqxYkVLz\nqlWrYmJiovTcTM8999wTD1b+Jr29vSnr7fLly0/0Pn8nEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIB\nAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAF\nGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAA\nAEAFGAIBAAAAVEDr0/iQgYGBlNz169eXnjk9PZ2SW6vV4rvf/W50dHSUnt3S0pJS8+XLl1Ou3Y0b\nN1LqjYh45513Yn5+vvTcixcvpvTi5s2bab2YnJxMyZ6amkrJzap3aWkpGo1G9Pb2lp599uzZlHUx\nPj6e0ouFhYV4/fXXY3h4uPTsc+fORVEUped++umnKT2+detWLC4uxvnz50vPPnfuXCwtLZWee+fO\nnbTn3g9/+MOUPVIURVM9q6empqKtrS3a29tLz3733XejtbX8Y9eDBw/S7smrVq2KlpaW0rP/4i/+\novTMiIihoaGU+0XWfSgioq2tLeX6NRqNlNy5ubm0XnR2dqbUPDg4mFLz2NhY051bstbFvXv3Unr8\n4MGDmJiYaKpzy+3bt1N6PDs7Gz/60Y9Szi0LCwtNdR9qNBpRr9ejs7MzJTuj5uvXr6fskcHBwSd7\nY1EUqa/PP6J8mzZtKiKi9Nf69etTcvv7+4tGo5HSi3Xr1qXUvG/fvpR69+/fn1JvRBSnTp1KqfnY\nsWMpuXv37k3rRU9PT0ruxo0bU3L7+vrSetHd3Z2Se/DgwZR1sXv37rRenD59OqXmgYGBlNzDhw+n\n5J45c6YYHBxMyT558mRK7o4dO1LWRL1eL4aHh1Nq3rx5c0rNWc+99vb2tL13/PjxlB5v3749pd6u\nrq60Xpw4cSKlF0ePHk3JPXToUEpuURTFmjVrUnq8YcOGlNytW7em9aK3tzel5gMHDqTUu2fPnrQ9\nknVuyVoX27ZtS+nxyMhI051bdu7cmbYuss4tW7ZsSal37dq1ab3IevX396fk7tq1K+XaHTlypIiI\noviCMxq/DgYAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQ\nAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQA\nAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABXQ+jQ+5I//+I9Lz1xaWoqX\nXnqp9NypqamU3FqtFt/85jejo6Oj9OyISKn5/PnzKdfu008/Tak3IuInP/lJ3L59u/TcixcvRqPR\nKD336tWrab1oNBpNtUdmZmZSchcXF2N2djYl+7333kvZIzdu3Eipd35+Pr773e/G2bNnS8++dOlS\n3L9/v/TcwcHBlB6Pjo7GwsJCSp8vXboU9+7dKz13YmIibe8dO3Ysent7S89eXFxMqTnr/tZoNKKt\nrS3a2tpKz37rrbdiamqq9Ny7d++m9eKZZ56JlpaW0rPfeOONePDgQem5Fy9ejJmZmdJzs+5DERGt\nra0p129ycjJtXWT1or29PaXmDz/8MKXmkZGRpju3ZJ3hJiYmUnr84MGDuHPnTlOdW27evJnS47m5\nufjOd74T/f39pWfPz8831dl+eno66vV6ytfVWXvvypUrKXvkzJkzT/bGoihSX59/RPk2bdpURETp\nr/Xr16fk9vf3F41GI6UX69atS6l53759KfXu378/pd6IKE6dOpVS87Fjx1Jy9+7dm9aLnp6elNyN\nGzem5Pb19aX1oru7OyX34MGDKeti9+7dab04ffp0Ss0DAwMpuYcPH07JPXPmTDE4OJiSffLkyZTc\nHTt2pKyJer1eDA8Pp9S8efPmlJqznnvt7e1pe+/48eMpPd6+fXtKvV1dXWm9OHHiREovjh49mpJ7\n6NChlNyiKIo1a9ak9HjDhg0puVu3bk3rRW9vb0rNBw4cSKl3z549aXsk69yStS62bduW0uORkZGm\nO7fs3LkzbV1knVu2bNmSUu/atWvTepH16u/vT8ndtWtXyrU7cuRIERFF8QVnNH4dDAAAAKACDIEA\nAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKAC\nDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAA\nAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKqD1aXzI4OBg6ZkzMzOlZ0ZEzM7OpuTOz8/H+fPno7Oz\ns/Tsubm50jMjIu7cuZNy7UZHR0vPfOzatWspNd+8eTMld2xsrPTMx+bn51Nys/ZeVr0REYuLiym5\nY2NjKevi9u3bpWc+9sknn0RXV1fpudevX0/pxa1bt1JyL1++HPV6PYqiKD07qxd3794tPTMiYmlp\nKYaGhuLhw4elZ09PT5eeGZH3rM66V0REjIyMpKyLBw8elJ4Z0Zy9uHHjRlOdASLynn1Ze2RmZiat\nFwsLCym54+PjKTVPTEyUnvlY1v7LWhdTU1NpXzOMjY011bnlzp07pWc+dunSpZRzS9azOutr1ExZ\n9+QHDx6krLeRkZEnet9TGQJlLNaiKKKtra303MXFxZTc1tbWKIqiqXrxODtDVr1LS0tpPW62a1ev\n15tqj0TkrIuiKNJ6kbUusnr8uN6MmrP2XkTeMyRzX2f1OGNd1Gq11HtnRs1ZvWhpaYl6PeeHpLN6\nnNWLrPtmRF4varVaU+U+1kzP6sxe1Gq1pjrPZt3fMs8tmWe4zDNAM51bsu7J2We4ZnpWR3zej1qt\nVnpu9hk8I/dJPJUh0G/8xm+Unrls2bKUSd3y5ctTfjqjVqvF5s2bY9myZaVnd3R0pPRi1apVKdfu\nhRdeSJuyrl+/PqXms2fPNl0vVqxYkZLd1dWV8tNcbW1tab2o1Wop2S+88ELKunj++efTerFp06aU\nmoeGhlJyT58+nZK7tLQUra2t8corr5SefenSpZSae3t7U9ZFvV6PX//1X4/+/v7Ss5cvX55Sc9YZ\nIOteERHx5S9/OWVd9PT0pNTc3t7edL04c+ZMSu7bb7+dkhuR9+xbvnx5yrO6o6MjrRctLS0pvejr\n60upua+vr+nOLVnroqurK6XHzz77bHR3dzfVuWX16tVp6+Lll19OObd0dXWl1NzZ2Zn6k/4Zsmp+\n9tlnU9bbL3/5yyd6n78TCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAA\nKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEA\nAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKqD1aXzId7/7\n3dIzi6KIdevWlZ47PT2dkluv1+PUqVPR0dGRkp1R85UrV1Ku3fXr11PqjYj4+c9/HouLi6XnXrx4\nMaUXN2/eTOvF1NRUSnZWbqPRSMldWlqKRqMRq1atKj373LlzKetibGwspRfz8/Pxk5/8JK5fv156\n9rlz56JWq5Wem3UfunnzZiwuLsbFixdLz/74449Lz4yIuHv3btpz77XXXovVq1eXnr24uJhS88zM\nTNp9qK2tLdra2krPfu+996K9vb303AcPHqT0YnJyMp577rloaWkpPfvdd9+Ner3870NeunQp5X7x\n2WefpeRGRLS2tjbVM3V+fj6tFx0dHSk1Z53hbt261XTnlqx1cf/+/ZQe37t3LyYmJprq3DIxMZHS\n49nZ2fjxj3+ccm5ZWFhoqq+rG41G1Ov16OzsLD0763xx48aNlD0yODj4ZG8siiL19flHlG/Tpk1F\nRJT+Wr9+fUpuf39/0Wg0Unqxbt26lJr37duXUu/+/ftT6o2I4tSpUyk1Hzt2LCV37969ab3o6elJ\nyd24cWNKbl9fX1ovuru7U3IPHjyYsi52796d1ovTp0+n1DwwMJCSe/jw4ZTcM2fOFIODgynZJ0+e\nTMndsWNHypqo1+vF8PBwSs2bN29OqTnrudfe3p62944fP57S4+3bt6fU29XVldaLEydOpPTi6NGj\nKbmHDh1KyS2KolizZk1Kjzds2JCSu3Xr1rRe9Pb2ptR84MCBlHr37NmTtkeyzi1Z62Lbtm0pPR4Z\nGWm6c8vOnTvT1kXWuWXLli0p9a5duzatF1mv/v7+lNxdu3alXLsjR44UEVEUX3BG49fBAAAAACrA\nEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAA\nACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyB\nAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAlqfxod885vfLD2zKIro7+8vPbfRaKTk1uv1+Na3\nvhUdHR0p2Rk1Dw4Oply7q1evptQbEfH666/H3bt3S8+9ePFizMzMlJ47PDyc1ovp6emU7MnJyZTc\nrHqLokjL/uCDD1L2yM2bN1PqXVxcjD/7sz+LwcHB0rOHhobi4cOHpedeuHAhpcdjY2MxNzeX0udL\nly7FgwcPSs+dmJhIqXd2djaOHz8eq1evLj0761k9MzOTdh9qbW2Ntra20rPfeuutmJ6eLj333r17\nab3o6emJWq1WevZbb70Vjx49Kj334sWLMTc3l5KbcR+KiGhra2uq82yj0UjrRWdnZ0rNH330UUrN\nN27caLpzS9a6mJiYSOnxw4cPY2JioqnOLWNjYyk9np+fj4GBgbTzYTM9q2dmZqJWq6V8XT07O5tS\n86effpqyR86cOfNkbyyKIvX1+UeUb9OmTUVElP5av359Sm5/f3/RaDRSerFu3bqUmvft25dS7/79\n+1PqjYji1KlTKTUfO3YsJXfv3r1pvejp6UnJ3bhxY0puX19fWi+6u7tTcg8ePJiyLnbv3p3Wi9On\nT6fUPDAwkJJ7+PDhlNwzZ84Ug4ODKdknT55Myd2xY0fKmqjX68Xw8HBKzZs3b06pOeu5197enrb3\njh8/ntLj7du3p9Tb1dWV1osTJ06k9OLo0aMpuYcOHUrJLYqiWLNmTUqPN2zYkJK7devWtF709vam\n1HzgwIHdzDMkAAAgAElEQVSUevfs2ZO2R7LOLVnrYtu2bSk9HhkZabpzy86dO9PWRda5ZcuWLSn1\nrl27Nq0XWa/+/v6U3F27dqVcuyNHjhQRURRfcEbj18EAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAA\nAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQ\nCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKAC/tYhUK1W++NarTZWq9U+/q/+rKdW\nq71eq9WGarXaj2u12srcMgEAAAD4VfyP/CTQNyPif//v/mxfRLxRFMXLEfFmRPxh2YUBAAAAUJ6/\ndQhUFMU7EXHvv/vj34+Ib/3l//5WRPyfJdcFAAAAQIme9O8E6iuKYiwioiiK0YjoK68kAAAAAMrW\nWlJO8Tf9y3feeaekj/krk5OTpWdGRExPT6fkzs3Nxc9+9rPo7OwsPTur5lu3bqVcu6tXr5ae+di5\nc+di1apVpedeunQppRfDw8OlZz42Pz+fkttoNFJyZ2dnU3IjIhYWFlJyr169mrIurl+/XnrmYx98\n8EHMzc2Vnnvx4sWUXly5ciUl99KlS9HS0hJ3794tPTurF6Ojo6VnRkQsLS3Fu+++G9euXSs9u9me\n1YuLiym5EREXLlxIWRfj4+OlZ0bk3Tcj8nrxySefNFVuRN6zL2uPTE1NpfUi69wyMjKSUvPIyEjp\nmY9l7b+sM9z9+/dTejw2Nhbj4+NNdW65efNm6ZmPvf/++ynnlkePHpWeGZF3H8o0MzOTkjsxMZGy\n3i5cuPBE73vSIdBYrVZ7viiKsVqt9kJE/I0nkIGBgf/yv7/+9a/H17/+9Sf82L/S0tLyK2c8TfV6\nPV566aWUIVC9nvMfeVuxYkW89NJLped2d3eXnvlYb29vSs3PPfdcSm5XV1fpmY/VarW07AyZ9WZl\nr1y5sunWxZe+9KWUmletWpWS++yzz6bkPnr0KFpaWpqqFxnPj4jPnyEvvvhirFmzpvTsrGd11p7O\nvA9lrYuOjo7SM7Nl9aKnp6epciOa71nd1taW1oss3d3dTfesbrZ7XGdnZ0qPW1pa/svXUGXLug8t\nW7as9MzHss5wWV9LZuVmytojy5cvL+3avfvuu/Huu+9GRMT58+efKON/dAhU+8vXY69GxP8dEX8U\nETsi4nt/05v/7b/9t09S298oa4Nl5ba2tsaXv/zllPysA2B3d3esW7eu9NyMn9R57IUXXkipube3\nt+l60dpa1g/6/beWL1+ektve3p6SG5H3hWhPT0/Kuujp6Sk987EXX3wxpebVq1en7ZGM3IcPH0Zr\na2tT9eLZZ58tPfOx/v7+6O/vLz0365maORDL0tfXl7IuVq7M+Q+0tra2pv2USlYvsp7VWbkRec++\nrL3X3t6e1ou2traU3GeffTal5ueee670zMeyzi2Z9+SMHre2tkZLS0tTPaszz3AvvfRSSs1ZA81m\n/CZFVs1dXV2lXbt169bFH/zBH0RExNGjR+MnP/nJF874H/lPxB+LiJ9HxKZarTZcq9X+n4g4EBHf\nqNVqQxHxj//ynwEAAAD4n9Tf+qMCRVH8X3/Nv/q9kmsBAAAAIEnz/aIeAAAAAF+YIRAAAABABRgC\nAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABA\nBRgCAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAAAFSAIRAA\nAABABbQ+jQ85depU6ZlLS0uxdu3a0nOnp6dTcltbW+PVV1+Njo6O0rNrtVpKzZ9++mnKtRsZGUmp\nNyLi5z//eRRFUXruxYsXU3px48aNtF40Go2U7Kmpqabae0tLS2nZ58+fT1kXo6OjKfUuLCzET3/6\n07h582bp2WfPno2WlpbSc7PuQ9evX4+lpaW4dOlS6dlnz56Ner3877Hcvn07ZV3Mzc3Ff/yP/zH6\n+vpKz15YWGiq+8X09HS0tbVFa2v5x6P3338/Ojs7S8+9d+9e2r3+2WefTdnX7733XkqPh4aGUu4X\nV65cScmN+Px8mHH9ss4As7Ozab1ob29PqTnrDHfr1q2mO7dk5d6/fz+lx/fv34+xsbGmOreMj4+n\nPatff/31lHPL/Px82v0iI3dmZiZqtVrK19VZNd+4cSNljwwODj7ZG4uiSH19/hHl27RpUxERpb/W\nr1+fktvf3180Go2UXqxbty6l5n379qXUu3///pR6I6I4depUSs3Hjh1Lyd27d29aL3p6elJyN27c\nmJLb19eX1ovu7u6U3IMHD6asi927d6f14vTp0yk1DwwMpOQePnw4JffMmTPF4OBgSvbJkydTcnfs\n2JGyJur1ejE8PJxS8+bNm1Nqznrutbe3p+2948ePp/R4+/btKfV2dXWl9eLEiRMpvTh69GhK7qFD\nh1Jyi6Io1qxZk9LjDRs2pORu3bo1rRe9vb0pNR84cCCl3j179qTtkaxzS9a62LZtW0qPR0ZGmu7c\nsnPnzrR1kXVu2bJlS0q9a9euTetF1qu/vz8ld9euXSnX7siRI0VEFMUXnNH4dTAAAACACjAEAgAA\nAKgAQyAAAACACjAEAgAAAKgAQyAAAACACjAEAgAAAKgAQyAAAACACjAEAgAAAKgAQyAAAACACjAE\nAgAAAKgAQyAAAACACjAEAgAAAKgAQyAAAACACjAEAgAAAKgAQyAAAACACjAEAgAAAKgAQyAAAACA\nCjAEAgAAAKgAQyAAAACACjAEAgAAAKiA1qfxId/61rdSctetW1d65vT0dEpurVaLP/mTP4nOzs7S\ns1taWlJqPn/+fMq1u3btWkq9ERFvvPFG3L9/v/TcCxcuxNzcXOm5169fT+vF5ORkSvbU1FRT5S4t\nLUWj0YhVq1aVnv3BBx+k7JHR0dGUXszPz8f3vve9uHDhQunZQ0NDMTk5WXruxYsXU3o8NjYW8/Pz\n8f7775eePTQ0FI8ePSo9986dOynrotFoxHe+853o7e0tPbsoiqZ6Vk9NTUVbW1u0t7eXnv2f/tN/\nitnZ2dJzHzx4kNKLycnJ6OnpidbW8o+Kb731VkxNTZWem3W/GBoaSjvLtre3N9UztdFopPWis7Mz\npeaPPvoopeabN2823bkla13cvn07pcf379+PO3fuNNW5ZXx8PKXHMzMzcfLkyZRzy+LiYtM9q1ta\nWlK+rm40Gik1f/bZZyl75OOPP36yNxZFkfr6/CPKt2nTpiIiSn+tX78+Jbe/v79oNBopvVi3bl1K\nzfv27Uupd//+/Sn1RkRx6tSplJqPHTuWkrt37960XvT09KTkbty4MSW3r68vrRfd3d0puQcPHkxZ\nF7t3707rxenTp1NqHhgYSMk9fPhwSu6ZM2eKwcHBlOyTJ0+m5O7YsSNlTdTr9WJ4eDil5s2bN6fU\nnPXca29vT9t7x48fT+nx9u3bU+rt6upK68WJEydSenH06NGU3EOHDqXkFkVRrFmzJqXHGzZsSMnd\nunVrWi96e3tTaj5w4EBKvXv27EnbI1nnlqx1sW3btpQej4yMNN25ZefOnWnrIuvcsmXLlpR6165d\nm9aLrFd/f39K7q5du1Ku3ZEjR4qIKIovOKPx62AAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFAB\nhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAA\nAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAI\nBAAAAFABrU/jQ77//e+Xnjk1NRVtbW1Nkzs3Nxc//OEPo6Ojo/TsmZmZlJqvXLmScu0uXbqUUm9E\nxLvvvhv1evmzzY8//jhWrFhReu7ly5fTejE/P99Ue2R2djYld2lpKRYXF1Oyz58/n7JHPvvss7Re\n/Pmf/3mMjY2Vnv3RRx9Fe3t76bmZPY74/D5Xtg8//DDl+t24cSMltyiK+NGPfhQvvPBC6dlZ94tG\no5GSW6vVoqWlJeU58sEHH0RXV1fpuaOjo2n3i9bW1qjVaqVnv//++ynnobNnz6bcLwYHB1NyI/Ke\nfVl77+HDh2m9WFhYSKl5aGgopeZPP/206c4tWetiYmIipce3b9+OiYmJpjq3DA8Pp/R4cXEx3njj\njZRzy6NHj5rqWb20tBRFUURLS0vp2dPT0yk1j4yMpOyRDz/88Ine91SGQL/zO79TemZra2vMz8+X\nntvW1paS29raGl/96ldj2bJlpWfX6/WUmr/0pS+lXLs33ngjpd6IiJdffjml5ps3b6bkvvbaa2m9\nWLZsWdpabqbciM+/sMvIXrt2bcq6GBgYSOvF3/t7fy9++7d/u/TciYmJlF5cuXIlJbe7uztaWlri\n5ZdfLj379u3bKTWvXLkyZV3U6/XYunVrvPjii6VnN9v9oq2tLRYXF2NxcbH07F/7tV9LW8tZPV5Y\nWCg9NyJi06ZNKb24fv16Su65c+dSciMiWlpamuo8u3z58rReZD2rX3zxxZSav/e97zXduSXr3rly\n5cq08/fo6Gj81m/9VunZWeeW48ePp62L3/zN34yvfOUrpee2t7c31Xp7bGlpqfTMrJpXr16dst6u\nXbv2RO97KkOgvr6+0jMzvoMUESkT4YjPD9l9fX0pQ6CsmpcvX55y7Z555pnSMx/r6elJq7nZepEx\nHY/I23tZ9UZEynf1IyJWrFiRsi66u7tLz3xs1apVKTWvXLkyrRcZuaOjo9Ha2tpUvcj4acTHent7\nPasjUn7q5bGsdZHx00UReffNiLxeZD2rs+qN+PwLjgxZeyTrvhmRdw5oxmd11v7LvCdn9Hhubi7m\n5uaaal97Vv+VrPtQpqzf0Ojs7Ey5ds8+++wTvc/fCQQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAA\nABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZA\nAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQ\nAYZAAAAAABXQ+jQ+5NVXXy09c3FxMV566aXScxuNRkpuS0tLfP/734/Ozs7SsyMipebPPvss5dqN\njIyk1BsR8e6770atVis99+LFiym9uHHjRlovpqenU7KnpqZScmdmZlJyl5aW0rLPnz+fsi5GR0dT\n6p2fn48333wzRkdHS88+d+5ctLW1lZ575cqVlB5fv349FhcX4/Lly6Vnnz17Nlpby3+8TkxMpKyL\nubm5+PGPfxx9fX2lZ8/Pz6fUnHV/m5mZiZaWlpS1/MEHH8Ty5ctLz713717aeWjlypVRr5f//cL3\n3nsv2tvbS88dGhpKuV9k3YciIur1elM9q+fm5tJ60dbWllJz1rq4efNm051bstbFgwcPUnp89+7d\nGB8fb6pzy9jYWNree+ONN1LOLbOzsyk1Z+XOzMxErVaLjo6O0rOzar5582bKHhkcHHyyNxZFkfr6\n/CPKt2nTpiIiSn+tX78+Jbe/v79oNBopvVi3bl1Kzfv27Uupd//+/Sn1RkRx6tSplJqPHTuWkrt3\n7960XvT09KTkbty4MSW3r68vrRfd3d0puQcPHkxZF7t3707rxenTp1NqHhgYSMk9fPhwSu6ZM2eK\nwcHBlOyTJ0+m5O7YsSNlTdTr9WJ4eDil5s2bN6fUnPXca29vT9t7x48fT+nx9u3bU+rt6upK68WJ\nEydSenH06NGU3EOHDqXkFkVRrFmzJqXHGzZsSMndunVrWi96e3tTaj5w4EBKvXv27EnbI1nnlqx1\nsW3btpQej4yMNN25ZefOnWnrIuvcsmXLlpR6165dm9aLrFd/f39K7q5du1Ku3ZEjR4qIKIovOKPx\n62AAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAA\nAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAI\nBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABrU/jQ/7kT/6k9MxarRbr168vPXd6\nejolNyLi6NGj0dHRUXpua2trSs0XL15MuXbDw8NpPX7zzTfjwYMHpedevHgx5ufnS8+9ceNGWi8m\nJydTsqemppoqd3FxMaanp6O3t7f07A8//DBlj4yNjaX0YmFhIV599dW4ePFi6dlDQ0MxNTVVeu6l\nS5fSerywsBAffPBB6dmXLl2KycnJ0nPv3r2b9twbGBiIVatWlZ5dFEVKzY1GI+0+1N7eHm1tbaVn\n/+f//J9jbm6u9NyHDx+m9GJycjJWrVoVLS0tpWf/+Z//eTQajdJzs84tWfehiIiOjo6mOs/OzMyk\n9WLZsmUpNZ85cyal5tHR0aY7t2Sti9u3b6f0+NGjRzExMdFU55bbt2+n9Hh2djZOnTqVcm5ZXFxs\nqmd1o9GIer0enZ2dpWdn7ZHPPvssZY98/PHHT/bGoihSX59/RPk2bdpURETpr/Xr16fk9vf3F41G\nI6UX69atS6l53759KfXu378/pd6IKE6dOpVS87Fjx1Jy9+7dm9aLnp6elNyNGzem5Pb19aX1oru7\nOyX34MGDKeti9+7dab04ffp0Ss0DAwMpuYcPH07JPXPmTDE4OJiSffLkyZTcHTt2pKyJer1eDA8P\np9S8efPmlJqznnvt7e1pe+/48eMpPd6+fXtKvV1dXWm9OHHiREovjh49mpJ76NChlNyiKIo1a9ak\n9HjDhg0puVu3bk3rRW9vb0rNBw4cSKl3z549aXsk69yStS62bduW0uORkZGmO7fs3LkzbV1knVu2\nbNmSUu/atWvTepH16u/vT8ndtWtXyrU7cuRIERFF8QVnNH4dDAAAAKACDIEAAAAAKsAQCAAAAKAC\nDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAA\nAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQ\nCAAAAKACDIEAAAAAKqD1aXzIt7/97dIzG41GLF++vPTcycnJlNy5ubk4duxYdHZ2lp49OzubUvPQ\n0FDKtTt//nxKvRERb775ZkxOTpae+4tf/CKWlpZKzx0aGkrrxfz8fEr2w4cPU3Kz1vHi4mIsLS2l\nZH/00Ucpe+TKlStpvfj+978fn3zySenZv/zlL2NmZiYlN6PHw8PDURRFfPTRR6Vn//KXv4zp6enS\nc4eHh1PWxdLSUgwMDERfX1/p2VNTU031rF5aWorOzs6o18v/Htk777wTi4uLpefeuHEjpRdFUaT1\n4u23347Z2dnSc3/xi1+UnhmRd6+PiFhYWGiqPfLgwYOm68XHH3+cUvOlS5ea7tySdYYbGxtL6fGd\nO3fizp07TXVuuXr1akqPFxYW4tSpUynnlkePHqXUnPX1+uNnaUtLS+nZWTV/9tlnKXvkZz/72RO9\n76kMgX7/93+/9Mx/9a/+VTQajdJze3t7Y2JiovTc5557Lv7ZP/tnsWzZstKz//AP/zClFxs2bEi5\ndr/85S9T6o2I+Pt//+/HP/2n/7T03NnZ2ZRevPfee2m9WLlyZcpAbPXq1Sl7pLe3Nx48eFB6bkRE\nW1tbTE1NlZ77yiuvpKyLt956K21d/KN/9I/iq1/9akp2Ri8ePHiQknvu3LloaWmJX//1Xy89OyKn\nFz/4wQ9S1kW9Xo9/8k/+Sbz00kulZ/+bf/NvUmpetWpV3L59u/Tc9vb2mJubKz03IuK3f/u3U9bF\nf/gP/yGlx8uXL0/5Aiki4qtf/WpKL2ZmZlJyR0dHU3IjIv7lv/yXKddv9erVMT4+XnruihUr0nrx\nL/7Fv0jpxVe+8pWUmt955520Z3XWuaW3tzfl3tnb25vS4xs3bsStW7di69atpWdH5DyrX3/99bR1\n8Y1vfCPl3PJHf/RHKTX39PSkrLdMzz77bNy5c6f03P7+/pT19qTX7akMgVasWFF6ZmtrTukZE8WI\niFqtFitWrEgZAmXV3NbWlnLtMn4a6rFly5al1JyVm9mLjO/eRuTtvax6Iz7ffxk6Ojqabl10dXWl\n1ZyRm9Xj5cuXR2tra1PdLzo6OkrPfCxrXTTbszpT1rpob28vPTMi774ZkftMbaY9HZH37MvaIy0t\nLU3Xi/b29qZ7Vmftv8x7ckaPu7q6Yvny5U11v/Cs/ivN+KzOqjnzzPkk/J1AAAAAABVgCAQAAABQ\nAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQA\nAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVg\nCAQAAABQAYZAAAAAABVgCAQAAABQAa1P40N+8IMflJ65sLAQX/rSl0rPbTQaKbktLS3x2muvRUdH\nR+nZS0tLKTVfu3Yt5dpdu3Ytpd6IiNOnT0dLS0vpuUNDQym9GB4eTuvF7OxsSvbk5GRK7tzcXEru\n0tJSzM/Pp2RfuHAhZV3cuHEjpd6FhYV46623Ynx8vPTsc+fOpdzfLl++nLb3lpaW4tNPPy09++zZ\ns9He3l567vj4eNre+8lPfhJ9fX0p2Rk1T09Pp+TOzMzEM888E21tbaVn/+IXv4gVK1aUnnvnzp20\nXqxYsSLq9fK/X/jBBx9EZ2dn6blZz+qs+1BERK1WS7l+U1NTKbmzs7NpvWhpaUmp+dKlSyk1X79+\nvenOLVnr4v79+yk9vnv3boyPjzfVueXWrVspPZ6fn4+f/vSnKeeWmZmZtOdIVm69Xk85a2XVfOvW\nrZQ9Mjg4+GRvLIoi9fX5R5Rv06ZNRUSU/lq/fn1Kbn9/f9FoNFJ6sW7dupSa9+3bl1Lv/v37U+qN\niOLUqVMpNR87diwld+/evWm96OnpScnduHFjSm5fX19aL7q7u1NyDx48mLIudu/endaL06dPp9Q8\nMDCQknv48OGU3DNnzhSDg4Mp2SdPnkzJ3bFjR8qaqNfrxfDwcErNmzdvTqk567nX3t6etveOHz+e\n0uPt27en1NvV1ZXWixMnTqT04ujRoym5hw4dSsktiqJYs2ZNSo83bNiQkrt169a0XvT29qbUfODA\ngZR69+zZk7ZHss4tWeti27ZtKT0eGRlpunPLzp0709ZF1rlly5YtKfWuXbs2rRdZr/7+/pTcXbt2\npVy7I0eOFBFRFF9wRuPXwQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAA\noAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAI\nAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAAoAJan8aHfPvb\n3y49s1arxYYNG0rPbTQaKbkREcePH4+Ojo7Sc9va2lJqHhoaSrl2169fT+vxW2+9FZOTk6XnXrhw\nIaUXN2/eTOvFo0ePUrKnpqZScicnJ1Nyl5aWYmpqKlavXl169ocffpiyLsbGxlJ6MT8/Hz/4wQ/i\nk08+KT37woULMTMzU3rupUuX0no8Pz8fH330UenZFy5ciOnp6dJz79y5k7IuZmZm4uTJkyl7JCKa\n6lk9NTUVbW1t0d7eXnr2O++8E4uLi6XnPnz4MKUXjx49ilWrVkVra/lHxbfffjtmZ2dLz816Vl++\nfDklNyKio6OjqfbI7OxsWi+WL1+eUvOZM2dSah4dHW26c0vWurh7925Kj+/fvx937txpqnPLxMRE\n2t773ve+l3JuWVxcbKqvGRqNRtTr9ejs7EzJzqj52rVrKXvk448/frI3FkWR+vr8I8q3adOm/5+9\n+43R8j7zQ389z/wDxmN77GHsYD+EP1qyNW0VVijt0VGrHmn3xfKmVZH2zaqiakVRhXQWnVNRuuLo\nvCznTdGpRNt06dkmsJA1Q8JmGydxnKSJnKxxHNtjGP4ZbJiBYWb4P8w883/u84Kwu6c929jsfbl9\ndH8+0q11vMz3uXTdv999/+ZiwEVElH6tX78+JbfRaBTNZjOlF+vWrUuped++fSn17t+/P6XeiChO\nnTqVUvOxY8dScvfu3ZvWi97e3pTcjRs3puT29/en9aKnpycl9+DBgynrYvfu3Wm9OH36dErNAwMD\nKbmHDx9OyR0cHCyGhoZSsk+ePJmSu2PHjpQ1Ua/Xi+Hh4ZSaN2/enFJz1nuvs7Mzbe8dP348pcfb\nt29Pqbe7uzutFydOnEjpxdGjR1NyDx06lJJbFEWxZs2alB5v2LAhJXfr1q1pvejr60up+cCBAyn1\n7tmzJ22PZJ1bstbFtm3bUno8MjLScueWnTt3pq2LrHPLli1bUupdu3ZtWi+yrkajkZK7a9eulHt3\n5MiRIiKK4lPOaPxxMAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABD\nIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAA\nqABDIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqID2z+JD/s2/+Tel\nZzabzXj66adLz52cnEzJnZ+fj3/37/5ddHV1lZ49NzeXUvOZM2dS7t2ZM2dS6o2IeO211+LGjRul\n56bVYEIAACAASURBVJ4/fz7u3btXeu7Zs2fTerG4uNhSeyRrHS8vL0dRFCnZb731VsoeuXTpUkq9\nS0tLcfz48XjnnXdKz7548WKMj4+Xnjs4OBhzc3Ol546OjkZExJo1a0rPvnDhQoyNjZWee/Xq1bR1\n8ZWvfCWee+650rOnp6dTan748GFK7uLiYnR0dERbW1vp2a+//nrcvXu39Nzr16+nrYunnnoq6vXy\nf7/wu9/9bkxMTJSee+7cuXjw4EHpuW+//XbpmY8tLCy01B558OBBynsvItLe1e+8805KzRcuXGi5\nc0vWGW50dDSlxw8ePIg7d+601Lnl8uXLae+nP/iDP4iXXnqp9Oys58XU1FRaLyIi2tvLH2VknVsu\nX76cskd+/vOfP9kXFkWRekVEsby8XPr1K7/yK0VElH6tW7cuJbfRaBTT09Mpvciq+Z//83+eUu/v\n/u7vptQbEcU3vvGNlJqPHj2akvvP/tk/S+tFb29vSu6GDRtScvv7+9N60dPTk5L7r/7Vv0pZF//0\nn/7TtF689dZbKTX/4R/+YUru7/3e76Xkvv/++8XZs2dTsgcGBlJy/8E/+Acpa6JerxfXrl1LqfmV\nV15JqTnrvdfZ2Zm2944dO5bS47//9/9+Sr3d3d1pvXj11VdTevHVr341Jfdf/+t/nZK7vLxcrFmz\nJqXHWe/qrVu3pvWir68vpeZ/+S//ZUq9v/M7v5O2R7LOLevXr0/J/c3f/M2UHg8PD7fcueUf/+N/\nnLYuss4tX/ziF1PqbTQaab3IurJq/if/5J+k3LuvfvWrRUQUn3ZG85n8JFCtVmuJzMzcx9mZ+WXL\nqjfjdxUfy6y51XqRpZXWcDZ75M+0tbWlPeszc1up5lZcF54Xf0aP/0yrvauznm+tqtV6Ye/9mczv\nn1rtXZ21r72r83Nb0f9o9671vgMFAAAA4FMzBAIAAACoAEMgAAAAgAowBAIAAACoAEMgAAAAgAow\nBAIAAACoAEMgAAAAgAowBAIAAACoAEMgAAAAgAowBAIAAACoAEMgAAAAgAowBAIAAACoAEMgAAAA\ngAowBAIAAACoAEMgAAAAgAowBAIAAACogF86BKrVai/XarUf1Gq1oVqtdqZWq/2vv/j3vbVa7fVa\nrXaxVqt9t1arPZNfLgAAAABP4pP8JNBiRPxvRVFsjoj/KSJ212q1X42IfRHxRlEUX4iIH0TEv8gr\nEwAAAIC/jF86BCqKYqwoivd/8c9TEXE+Il6OiL8bEV/5xS/7SkT8vawiAQAAAPjL+VR/J1CtVlsX\nEV+MiLci4oWiKMYjHg2KIqK/7OIAAAAAKEf7J/2FtVrtqYgYiIjfKYpiqlarFf/FL/kv//ef+u3f\n/u0//ee/9tf+Wvz1v/7XP22d/5X5+fno7y9/7jQ9PZ2SW6/X49vf/nasWLGi9OzFxcWUmoeHh+O1\n114rPffq1asp9UZEvP3229HR0VF67oULF1J6ce3atbReLCwspGQ/fPgwJTdrHS8vL6dlZ62L69ev\np9S7tLQUP/rRj+L27dulZ585cyZWrlxZeu6VK1fSnkN//v+W6cyZMynP+ps3b6asi4WFhXjjjTfi\nhRdeKD17bm4upeZms5mSOz8/H0899VS0t3/i49En9u6778bTTz9deu7t27fTetHX1xf1evn/DZGf\n//znsWrVqtJzL168mPK8uHz5ckpuRERRFC11np2bm0vrRb1eT6n5ww8/bKl3dea5ZWpqKiX3wYMH\nKT2+c+dOjI+Pt9S5ZXR0NO1d/cMf/jDl3JL1Tp2ZmUl7DtVqtejs7Cw9e3Z2NqXmsbGx0vbIBx98\nEGfOnImIv8Q5tiiKX3rFo2HRd+LRAOjxvzsfj34aKCLixYg4/xd8bZFh06ZNRTwaPJV6rV+/PiW3\n0WgUzWYzpRfr1q1LqXnfvn0p9e7fvz+l3ogoTp06lVLzsWPHUnL37t2b1ove3t6U3I0bN6bk9vf3\np/Wip6cnJffgwYMp62L37t1pvTh9+nRKzQMDAym5hw8fTskdHBwshoaGUrJPnjyZkrtjx46UNVGv\n14vh4eGUmjdv3pxSc9Z7r7OzM23vHT9+PKXH27dvT6m3u7s7rRcnTpxI6cXRo0dTcg8dOpSSWxRF\nsWbNmpQeb9iwISV369atab3o6+tLqfnAgQMp9e7Zsydtj2SdW7LWxbZt21J6PDIy0nLnlp07d6at\ni6xzy5YtW1LqXbt2bVovsq5Go5GSu2vXrpR7d+TIkSIiiuITzHT+/PVJf3vn/4mIc0VR/N9/7t99\nMyL+4S/+eUdE/NEnzAIAAADgM/ZLf965Vqv9zxHx2xFxplarvRePplm/GxH/V0S8WqvV/lFEXIuI\n38osFAAAAIAn90uHQEVR/CQi2v6C//evl1sOAAAAABnK/9v+AAAAAPgfjiEQAAAAQAUYAgEAAABU\ngCEQAAAAQAUYAgEAAABUgCEQAAAAQAUYAgEAAABUgCEQAAAAQAUYAgEAAABUgCEQAAAAQAUYAgEA\nAABUgCEQAAAAQAUYAgEAAABUgCEQAAAAQAUYAgEAAABUgCEQAAAAQAUYAgEAAABUQPtn8SHHjh0r\nPbNer8fGjRtLz202mym5RVHE1772tejq6io9u729PaXmS5cupdy769evp9QbEfGjH/0opqenS889\nf/58Si9GR0fTejE5OZmSPT09nZL78OHDlNylpaVoNpvR399fevZ7772Xsi4mJiZSerGwsBDf+ta3\n4vLly6Vnnz9/Pubm5krPvXz5ckqPx8fHY2FhId5///3Ss8+fPx+zs7Ol5969ezftvfeNb3wj+vr6\nSs+OiJZ6Dk1NTUVHR0fKu/onP/lJLC8vl56b9eycnJyM1atXR1tbW+nZb775ZszPz5eem/WuvnLl\nSkpuRERXV1dLnWfn5ubSerFq1aqUms+cOZNS89jYWMudW7LWxd27d1N6PDk5Gbdu3Wqpc8vt27dT\nejw7Oxt//Md/nHJuWV5ebql39fT0dNTr9Vi5cmVKdkbNw8PDKXvkgw8+eLIvLIoi9Xr0EeXbtGlT\nERGlX+vXr0/JbTQaRbPZTOnFunXrUmret29fSr379+9PqTciilOnTqXUfOzYsZTcvXv3pvWit7c3\nJXfjxo0puf39/Wm96OnpSck9ePBgyrrYvXt3Wi9Onz6dUvPAwEBK7uHDh1NyBwcHi6GhoZTskydP\npuTu2LEjZU3U6/VieHg4pebNmzen1Jz13uvs7Ezbe8ePH0/p8fbt21Pq7e7uTuvFiRMnUnpx9OjR\nlNxDhw6l5BZFUaxZsyalxxs2bEjJ3bp1a1ov+vr6Umo+cOBASr179uxJ2yNZ55asdbFt27aUHo+M\njLTcuWXnzp1p6yLr3LJly5aUeteuXZvWi6yr0Wik5O7atSvl3h05cqSIiKL4lDMafxwMAAAAoAIM\ngQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAA\noAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqwBAI\nAAAAoAIMgQAAAAAqwBAIAAAAoAIMgQAAAAAqoP2z+JB/+2//bemZc3Nz0dvbW3ru1NRUSu7i4mJ8\n+ctfjq6urtKzFxYWUmo+e/Zsyr07d+5cSr0REa+99lqMjo6Wnnvx4sW4f/9+6bnnz59P68Xy8nJK\n9uTkZEpu1jouiiKtF2+99VbKHrl8+XJKvUtLS/G1r30tfv7zn5eefenSpZiYmCg998yZMzE/P196\n7s2bN2N5eTleeuml0rMvXboU4+PjpecODw+nvZ/+43/8j9HX11d69szMTEu9qxcWFmLFihXR1tZW\nevb3vve9uHfvXum5Y2Njaevi2WefjVqtVnr266+/Hrdu3So998KFCzE5OVl67s9//vOUZ33Eo3dU\nxv17+PBhSu6DBw/SelGr1VJq/tnPfpZS84cffthy55asdTE2NpbS4/v378fdu3db6tzy8ccfpz2T\njx49Go1Go/Ts6enplJqzchcWFqJer6e8q5vNZkrNly9fTtkj77333pN9YVEUqdejjyjfpk2biogo\n/Vq/fn1KbqPRKJrNZkov1q1bl1Lzvn37Uurdv39/Sr0RUZw6dSql5mPHjqXk7t27N60Xvb29Kbkb\nN25Mye3v70/rRU9PT0ruwYMHU9bF7t2703px+vTplJoHBgZScg8fPpySOzg4WAwNDaVknzx5MiV3\nx44dKWuiXq8Xw8PDKTVv3rw5peas915nZ2fa3jt+/HhKj7dv355Sb3d3d1ovTpw4kdKLo0ePpuQe\nOnQoJbcoimLNmjUpPd6wYUNK7tatW9N60dfXl1LzgQMHUurds2dP2h7JOrdkrYtt27al9HhkZKTl\nzi07d+5MWxdZ55YtW7ak1Lt27dq0XmRdjUYjJXfXrl0p9+7IkSNFRBTFp5zR+ONgAAAAABVgCAQA\nAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVg\nCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAA\nABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABXQ/ll8yLe//e3SM2dnZ+O5554rPXd6ejol\nt1arxXe/+93o6uoqPXthYSGl5uHh4ZR79/HHH6fUGxHx9ttvR2dnZ+m5Fy5cSOnF1atX03qxvLyc\nkj05OZmSm7WOi6JI68XFixdT1sXw8HBKvcvLy/GjH/0o7ty5U3r22bNnY9WqVaXnfvjhh2nPoVqt\nFteuXSs9+8yZM7Fy5crSc0dHR1PWxeLiYvzgBz+I/v7+0rNnZmZa6l29uLgYK1eujLa2ttKz33vv\nvXjmmWdKz52YmEjrRW9vb9RqtdKz33333eju7i49N+tdnfUcish7V09NTaXkzs7OpvUiIlJqvnz5\nckrN165da7lzS9a6uH//fkqP79y5E+Pj4y11brl+/XraM/k//+f/nHJuyVoXzWYz7XuGWq0W7e3l\njzKyzi03b95M2SNnz559si8siiL1evQR5du0aVMREaVf69evT8ltNBpFs9lM6cW6detSat63b19K\nvfv370+pNyKKU6dOpdR87NixlNy9e/em9aK3tzcld+PGjSm5/f39ab3o6elJyT148GDKuti9e3da\nL06fPp1S88DAQEru4cOHU3IHBweLoaGhlOyTJ0+m5O7YsSNlTdTr9WJ4eDil5s2bN6fUnPXe6+zs\nTNt7x48fT+nx9u3bU+rt7u5O68WJEydSenH06NGU3EOHDqXkFkVRrFmzJqXHGzZsSMndunVrWi/6\n+vpSaj5w4EBKvXv27EnbI1nnlqx1sW3btpQej4yMtNy5ZefOnWnrIuvcsmXLlpR6165dm9aLrKvR\naKTk7tq1K+XeHTlypIiIoviUMxp/HAwAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACg\nAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgA\nAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACrAEAgAAACgAgyBAAAAACqg\n/bP4kK997WulZ9ZqtdiwYUPpuc1mMyU3IuLVV1+Nrq6u0nPb29tTar506VLKvbt+/Xpaj3/84x/H\nzMxM6bnnz59P6cXNmzfTejE1NdVSeySr3qIoYmpqKlavXl169vvvv5+yLiYmJlJ6sbi4GN/+9rfj\no48+Kj373LlzsbCwUHrulStXUno8NjYWi4uL8cEHH5Sefe7cuZifny899+7duynrYmZmJk6dOpWy\nRyIireaM3Onp6ejs7IyOjo7Ss3/605+WnhkR8fDhw7Rn8urVq6NeL//3C998881YXFwsPffChQsp\nz4uPPvooJTcioqurq6Xe1bOzs2m9WLlyZUrNZ8+eTXuPtNq5JWtd3L17N6XHk5OTcevWrZY6t9y5\ncyelx3Nzc/Gtb30r5dyyvLzcUs+h6enpaGtrixUrVpSenVXzyMhIyh45c+bMk31hURSp16OPKN+m\nTZuKiCj9Wr9+fUpuo9Eoms1mSi/WrVuXUvO+fftS6t2/f39KvRFRnDp1KqXmY8eOpeTu3bs3rRe9\nvb0puRs3bkzJ7e/vT+tFT09PSu7BgwdT1sXu3bvTenH69OmUmgcGBlJyDx8+nJI7ODhYDA0NpWSf\nPHkyJXfHjh0pa6JerxfDw8MpNW/evDml5qz3XmdnZ9reO378eEqPt2/fnlJvd3d3Wi9OnDiR0ouj\nR4+m5B46dCgltyiKYs2aNSk93rBhQ0ru1q1b03rR19eXUvOBAwdS6t2zZ0/aHsk6t2Sti23btqX0\neGRkpOXOLTt37kxbF1nnli1btqTUu3bt2rReZF2NRiMld9euXSn37siRI0VEFMWnnNH442AAAAAA\nFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAA\nAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFAB\nhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFAB7Z/Fh3z5y18uPXNhYSFWr15deu709HRK7vLy\ncvz7f//vY8WKFaVnLy0tpdR89uzZlHt38eLFlHojIr7zne/E2NhY6bkXL16MycnJ0nM//PDDtF4s\nLi6mZD98+DAlN6ve5eXltOzTp0+n7JGrV6+m1Lu0tBSvvvpqvPfee6VnX7p0KW7fvl167pkzZ1J6\nfPPmzVheXo6XXnqp9OxLly7FrVu3Ss+9ceNGyrpYWFiIr371q9HX11d69tzcXEu9q+fn56O7uzva\n28s/Hn3/+9+PBw8elJ47MTGR0ou5ubno6+uLWq1Wevb3vve9uHPnTum5Fy5ciKmpqdJz33vvvZTn\nUERErVZLuX9TU1MpuZOTk2m9qNfrKTW/8847KTVfuXKl5c4tWWe4sbGxlB7fv38/7t6921LnlpGR\nkbR39fHjx+Pll18uPXtmZial5mazmfaurtVq0dHRUXp2Vi8uX76cskfef//9J/vCoihSr0cfUb5N\nmzYVEVH6tX79+pTcRqNRNJvNlF6sW7cupeZ9+/al1Lt///6UeiOiOHXqVErNx44dS8ndu3dvWi96\ne3tTcjdu3JiS29/fn9aLnp6elNyDBw+mrIvdu3en9eL06dMpNQ8MDKTkHj58OCV3cHCwGBoaSsk+\nefJkSu6OHTtS1kS9Xi+Gh4dTat68eXNKzVnvvc7OzrS9d/z48ZQeb9++PaXe7u7utF6cOHEipRdH\njx5NyT106FBKblEUxZo1a1J6vGHDhpTcrVu3pvWir68vpeYDBw6k1Ltnz560PZJ1bslaF9u2bUvp\n8cjISMudW3bu3Jm2LrLOLVu2bEmpd+3atWm9yLoajUZK7q5du1Lu3ZEjR4qIKIpPOaPxx8EAAAAA\nKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEA\nAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKAC\nDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKAC2j+LD1leXm6JzOzcx1dGdoalpaWU7MXFxdIz\nH8usOSN3aWmp9MzHMtdFhqx6M7PtkT+TuUeynptZ2Zm5GVrx/dRquRGtuS6ytNrey3q+RbTeWs56\nVjzOztBqey+i9dZFK76rs/Z1K57hWu17hkytuEeexGcyBPr+979feubc3Fw888wzpec2m82U3Fqt\nFj/4wQ9ixYoVpWcvLCyk1Dw6Oppy765evZpSb0TEe++9Fz09PaXnXr58OaUX165dS+tFRKRkT09P\np+QuLi6m5D5+OGZkX7lyJWVd3LhxI60XP/3pT2Nqaqr07IsXL6b04qOPPkrJvXLlSkREjI2NlZ59\n7ty5ePbZZ0vPHRsbS1kXS0tL8eMf/zhefPHF0rNnZmZa6l39+MDa1tZWevaZM2eiv7+/9Nzbt2+n\n9aKnpyfq9fJ/aPyDDz6I5557rvTcrHd11rM+4tFzuZXe1XNzc2m9iMh5V1+9ejWl5pGRkZY7t2St\ni6mpqZQe3759O8bGxlrq3HLz5s2UHi8sLMRPfvKTlHNL1rqYnZ1N60WtVov29vJHGVk137p1K2W9\nDQ0NPdHXfSZDoN/4jd8oPXPlypUxMjJSeu769evj448/Lj336aefjl//9V+PlStXlp7d1dUVN2/e\nLD230Wik3Lsf//jH8eDBg9JzIyK2bt2aUvPt27dTct944420XvT29sa9e/dKz924ceOffgNdpv7+\n/piYmCg9NyKip6cnpc+bNm1KWRd/9Ed/FP/pP/2n0nMjIv7W3/pb8aUvfan03MnJyZReDA8Pp+S+\n8MIL0d7eHq+88krp2Q8fPkyp+Q/+4A/ijTfeKD23Xq/H3/k7fycajUbp2d3d3XH16tXSc9etW5eS\n29nZGfPz86XnRkR88YtfTFkXX/7yl+PNN98sPbe7uzvlG6+IiC1btqT0YmJiIiX3ww8/TMmNiGhv\nb095923YsCE++uij0nN/5Vd+Ja0X9Xo97t69W3ruxo0bU2p+7bXX0s5wWeeWrHXxzDPPpPT4+vXr\nMTo62lLnlhMnTsR3vvOd0nMjIv723/7bKeeWnp6euHz5cum5a9eujeHh4dJzMzUajZQZw4svvpiy\n3sbHx5/o6/ydQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAA\nAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGG\nQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAGGQAAAAAAVYAgEAAAAUAHtn8WHvPrqq6Vn1mq1\n2LBhQ+m5MzMzKbkREQMDA9HV1VV6bnt7e0rNly9fTrl3N27cSOvxm2++GXNzc6Xnnj9/PqUXN2/e\nTOvFw4cPU7KbzWZK7tTUVEru8vJyTE9Px+rVq0vP/uCDD1LWxcTEREovFhYW4jvf+U5cvXq19Oyh\noaFYWloqPffKlStpe29xcTHOnj1bevbQ0FAsLi6Wnnvv3r209943v/nNlD0SES31HJqeno6Ojo7o\n7OwsPfutt96Ker3833ubnJxM6cXDhw+jr68v2traSs/+kz/5k1heXi499+LFiynPi48++iglNyKi\nq6urpc6zc3Nzab1YuXJlSs1DQ0MpNY+NjbXcuSVrXdy7dy+lx/fv34/bt2+31Lnl9u3baXvvtdde\nSzm3LC0ttdS7utlsRr1ejxUrVqRkZ9Q8MjKSskeeeD0URZF6PfqI8m3atKmIiNKv9evXp+Q2Go2i\n2Wym9GLdunUpNe/bty+l3v3796fUGxHFqVOnUmo+duxYSu7evXvTetHb25uSu3HjxpTc/v7+tF70\n9PSk5B48eDBlXezevTutF6dPn06peWBgICX38OHDKbmDg4PF0NBQSvbJkydTcnfs2JGyJur1ejE8\nPJxS8+bNm1NqznrvdXZ2pu2948ePp/R4+/btKfV2d3en9eLEiRMpvTh69GhK7qFDh1Jyi6Io1qxZ\nk9LjDRs2pORu3bo1rRd9fX0pNR84cCCl3j179qTtkaxzS9a62LZtW0qPR0ZGWu7csnPnzrR1kXVu\n2bJlS0q9a9euTetF1tVoNFJyd+3alXLvjhw5UkREUXzKGY0/DgYAAABQAYZAAAAAABVgCAQAAABQ\nAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQA\nAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVg\nCAQAAABQAYZAAAAAABXQ/ll8yO/93u+Vnrm0tBQvvvhi6bnT09MpuUVRxOHDh2PFihWlZ0dESs1D\nQ0Mp9+7DDz9MqTci4rvf/W5MTEyUnnvx4sWYmpoqPffKlStpvZibm0vJfvjwYUru/Px8Su7y8nIs\nLi6mZL/99tspe+TatWsp9S4tLcXAwEAMDg6Wnn3p0qW4e/du6blZz6GxsbFYXFyMl19+ufTsS5cu\nxZ07d0rPvXnzZsq6WFhYiKNHj0ZfX19KdkbNzWYzJXd2djaefvrpaG8v/3j0gx/8IB4+fFh67u3b\nt9N60d/fH/V6+b9f+MYbb8S9e/dKz71w4UI0m83Sc8+cOZPyHIqIqNfrLXWeffjwYVov2tvbU2p+\n9913U2q+evVqy51bpqamUnInJiZSevzgwYO4c+dOS51bbty4kfau/trXvhaNRqP07Kwz+MzMTNr3\nDBERnZ2dpWdn1Xz58uWUPfLEe6MoitTr0UeUb9OmTUVElH6tX78+JbfRaBTNZjOlF+vWrUuped++\nfSn17t+/P6XeiChOnTqVUvOxY8dScvfu3ZvWi97e3pTcjRs3puT29/en9aKnpycl9+DBgynrYvfu\n3Wm9OH36dErNAwMDKbmHDx9OyR0cHCyGhoZSsk+ePJmSu2PHjpQ1Ua/Xi+Hh4ZSaN2/enFJz1nuv\ns7Mzbe8dP348pcfbt29Pqbe7uzutFydOnEjpxdGjR1NyDx06lJJbFEWxZs2alB5v2LAhJXfr1q1p\nvejr60up+cCBAyn17tmzJ22PZJ1bstbFtm3bUno8MjLScueWnTt3pq2LrHPLli1bUupdu3ZtD8ds\nxwAAIABJREFUWi+yrkajkZK7a9eulHt35MiRIiKK4lPOaPxxMAAAAIAKMAQCAAAAqABDIAAAAIAK\nMAQCAAAAqABDIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABDIAAA\nAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABDIAAAAIAKMAQCAAAAqABD\nIAAAAIAKMAQCAAAAqID2z+JDxsbGSs+cn58vPTMiYnFxMSV3aWkpxsbGYuXKlaVnLywslJ4ZETE9\nPZ1y7yYnJ0vPfOzu3bspNd+7d6/lerG0tJSSm7XesuqNiFheXk7JnZycTFkXU1NTpWc+duvWrZba\nIw8ePEjJvXXrVrS1tcVzzz1XenZWL6anp0vPjHi0P8bHx6Ojo6P07KznRda7OutZEZG3LmZmZkrP\njMh9Jrfa8+L+/fspuRF5fc7aI/Pz8y3Xi6mpqZSaHz58WHrmY1nPoqx1MTs7m9LjiYmJlju3ZJ7h\nJiYmUs4trfZ9daas59DMzEzaOn4Sn8kQ6OrVq6VnLi0tRXd3d+m5c3NzKbltbW1x7dq1WLFiRenZ\nRVGk1Pzw4cOUe/fgwYOUeiMeDRwzar53715K7sOHD9N6UavVWmqPZO3p5eXlqNfrKdlZ62JycjKt\nF9evX4/nn3++9Ozbt2+n9OL+/fspuaOjo1Gv11OeyXfu3EmpeWpqKm1djIyMpBzWFhYWUmqen59P\nyS2KIjo6OqJeL/8HpScmJlpqXdRqtVi5cmVKL8bHx1N6cffu3ZZ6DkXkneFmZ2fT9khWL7LOLVn3\nL/NdnXVuyTrDLSwspPR4fHw8JiYmWurcknW2f3yGyzi3ZL1Ts84Ai4uLUavVoq2trfTsrF5MT0+n\nrLfbt28/0dd9JkOgv/k3/2bpmStXrkz5XdH+/v6YmJgoPfe5556Lv/E3/kbKTwJ1dnam9OLFF19M\nuXff+ta30n5H+5VXXkmp+eOPP07J/cY3vpHWi97e3rR1MT4+Xnpuf39/3L9/v/TciIienp6UXnz+\n859PWRdr1qxJWxdbtmyJL33pS6Xn3rhxI6UXQ0NDKbmrVq2K9vb2eOWVV0rPHh0dTan5hRdeSFkX\n9Xo9tm7dGo1Go/TsVatWpdS8evXqlHd1Z2dn2u+IfuELX0hZF6tXr07pcXd3d9pPGf3qr/5qSi+u\nXLmSkvvuu++m5EZEtLe3p9y/F154IWWPdHV1pfWiXq+n9OLll19Oqfmll15Ke1dnnVteeOGFlDNc\nT09PSo+vX78eo6OjLXVu+dznPpe2Ln7t134t5dzy1FNPpdT8/PPPx61bt0rPzfTcc8898WDlv6Wv\nry9lvV2+fPmJvs7fCQQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVg\nCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAA\nABVgCAQAAABQAYZAAAAAABXwS4dAtVqtq1arna7Vau/VarUztVrt//zFv++t1Wqv12q1i7Va7bu1\nWu2Z/HIBAAAAeBK/dAhUFMVcRPwvRVFsiYgvRsRv1mq1L0XEvoh4oyiKL0TEDyLiX6RWCgAAAMAT\n+0R/HKwoiuYv/rErItojooiIvxsRX/nFv/9KRPy90qsDAAAAoBSfaAhUq9XqtVrtvYgYi4jvFUXx\ns4h4oSiK8YiIoijGIqI/r0wAAAAA/jLaP8kvKopiOSK21Gq1pyPiG7VabXM8+mmg/88v+4u+/rd+\n67f+9J83b94cmzdvfoJS/2vr168vJefPm5mZScmt1Wrx9a9/Pbq6ukrPbmtrS6n58uXLMTAwUHru\njRs3UuqNiHjzzTdjYWGh9NwLFy6k9GJ0dDStF1NTUynZ09PTKblZ9S4vL0ez2Yy+vr7Ss8+cOZOy\nLiYmJlJ6sbi4GK+//noMDw+Xnn327Nkoir/wNfDEPvroo5Qe37x5M5aWluLcuXOlZ589ezaWl5dL\nz71z507ae+9b3/pWyh4piqKl3tXT09PR0dERnZ2dpWe/9dZb0d7+iY5dn8qDBw/SnsnPP/98tLW1\nlZ79J3/yJ6VnRkRcvHgx5XmR9RyKiOjo6Ei5f81mMyV3fn4+rRcrVqxIqXloaCil5vHx8ZY7t2St\ni3v37qX0+MGDB3Hr1q2WOrfcvn07pcdzc3Pxne98J+Xcsri42FLPoWazGfV6PVasWJGSnVHz9evX\nS9sjQ0NDMTQ0FBGPvpd8IkVRfKorIv6PiPjfI+J8PPppoIiIFyPi/F/w64sMmzZtKuLR4KnUa/36\n9Sm5jUajaDabKb1Yt25dSs379u1LqXf//v0p9UZEcerUqZSajx07lpK7d+/etF709vam5G7cuDEl\nt7+/P60XPT09KbkHDx5MWRe7d+9O68Xp06dTah4YGEjJPXz4cEru4OBgMTQ0lJJ98uTJlNwdO3ak\nrIl6vV4MDw+n1Lx58+aUmrPee52dnWl77/jx4yk93r59e0q93d3dab04ceJESi+OHj2aknvo0KGU\n3KIoijVr1qT0eMOGDSm5W7duTetFX19fSs0HDhxIqXfPnj1peyTr3JK1LrZt25bS45GRkZY7t+zc\nuTNtXWSdW7Zs2ZJS79q1a9N6kXU1Go2U3F27dqXcuyNHjhQRURSfcqbzSf7rYH2P/8tftVptZUT8\nRjwaAH0zIv7hL37Zjoj4o1+WBQAAAMB/H5/k55I/FxFfqdVq9Xj0dwj9YVEUr9Vqtbci4tVarfaP\nIuJaRPzWfysEAAAAgP9+fukQqCiKMxHxa/8///5uRPx6RlEAAAAAlOsT/dfBAAAAAGhthkAAAAAA\nFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAA\nAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFABhkAAAAAAFWAIBAAAAFAB\n7Z/Fh/yH//AfSs9cXl6Ol19+ufTc6enplNxarRa///u/H11dXaVnR0RKzefOnUu5dx999FFKvRER\n3/ve9+L27dul5164cCGazWbpuVevXk3rRbPZbKk9Mjs7m5K7tLQUc3NzKdlvv/12yh65ceNGSr0L\nCwvx9a9/Pc6cOVN69qVLl+L+/ful5w4NDaX0eGxsLBYXF1P6fOnSpbh3717pubdu3Urbe8eOHYu+\nvr7Ss5eWllJqznq+NZvN6OjoiI6OjtKzf/jDH8b09HTpuXfv3k3rxdNPPx1tbW2lZ7/xxhvx4MGD\n0nMvXLgQs7OzpedmPYciItrb21Pu39TUVNq6yOpFZ2dnSs3vvvtuSs0jIyMtd27JOsPdunUrpccP\nHjyIO3futNS5ZXR0NKXH8/Pz8eqrr0aj0Sg9e2FhoaXO9jMzM1Gv11O+r87ae1euXEnZI4ODg0/2\nhUVRpF6PPqJ8mzZtKiKi9Gv9+vUpuY1Go2g2mym9WLduXUrN+/btS6l3//79KfVGRHHq1KmUmo8d\nO5aSu3fv3rRe9Pb2puRu3LgxJbe/vz+tFz09PSm5Bw8eTFkXu3fvTuvF6dOnU2oeGBhIyT18+HBK\n7uDgYDE0NJSSffLkyZTcHTt2pKyJer1eDA8Pp9S8efPmlJqz3nudnZ1pe+/48eMpPd6+fXtKvd3d\n3Wm9OHHiREovjh49mpJ76NChlNyiKIo1a9ak9HjDhg0puVu3bk3rRV9fX0rNBw4cSKl3z549aXsk\n69yStS62bduW0uORkZGWO7fs3LkzbV1knVu2bNmSUu/atWvTepF1NRqNlNxdu3al3LsjR44UEVEU\nn3JG44+DAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAAAFSA\nIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAA\nAFSAIRAAAABABRgCAQAAAFSAIRAAAABABRgCAQAAAFSAIRAAAABABbR/Fh8yNDRUeubs7GzpmRER\nc3NzKbkLCwtx7ty5WLFiRenZ8/PzpWdGRNy5cyfl3o2NjZWe+di1a9dSah4dHU3JHR8fLz3zsYWF\nhZTcrL2XVW9ExNLSUkru+Ph4yrq4fft26ZmPffjhh9Hd3V167vXr11N6cfPmzZTcy5cvR71ej6Io\nSs/O6sXdu3dLz4yIWF5ejosXL8bk5GTp2TMzM6VnRuS9q7OeFRERIyMjKeviwYMHpWdGtGYvbty4\n0VJngIi8d1/WHpmdnU3rxeLiYkruxMRESs23bt0qPfOxrP2XtS6mp6fTvmcYHx9vqXPLnTt3Ss98\n7NKlSynnlqx3ddb3qJmynskPHjxIWW8jIyNP9HWfyRAoY7EWRREdHR2l5y4tLaXktre3R1EULdWL\nx9kZsupdXl5O63Gr3bt6vd5SeyQiZ10URZHWi6x1kdXjx/Vm1Jy19yLy3iGZ+zqrxxnrolarpT47\nM2rO6kVbW1vU6zk/JJ3V46xeZD03I/J6UavVWir3sVZ6V2f2olartdR5Nuv5lnluyTzDZZ4BWunc\nkvVMzj7DtdK7OuJRP2q1Wum52WfwjNwn8ZkMgf7qX/2rpWeuXLkyZVK3atWqlJ/OqNVqsXnz5li5\ncmXp2V1dXSm9eP7551Pu3Ysvvpg2ZV2/fn1KzWfOnGm5Xjz11FMp2d3d3Sk/zdXR0ZHWi1qtlpL9\n4osvpqyLF154Ia0XmzZtSqn54sWLKbmnT59OyV1eXo729vZ45ZVXSs++dOlSSs19fX0p66Jer8df\n+St/JRqNRunZq1atSqk56wyQ9ayIiPj85z+fsi56e3tTau7s7Gy5XgwODqbk/vjHP07Jjch7961a\ntSrlXd3V1ZXWi7a2tpRe9Pf3p9Tc39/fcueWrHXR3d2d0uNnn302enp6Wurcsnr16rR18YUvfCHl\n3NLd3Z1S84oVK1J/0j9DVs3PPvtsynp7//33n+jr/J1AAAAAABVgCAQAAABQAYZAAAAAABVgCAQA\nAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVg\nCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAAABVgCAQAAABQAYZAAAAA\nABVgCAQAAABQAe2fxYd8/etfLz2zKIpYt25d6bkzMzMpufV6PU6dOhVdXV0p2Rk1X7lyJeXeXb9+\nPaXeiIif/vSnsbS0VHruhQsXUnoxOjqa1ovp6emU7KzcZrOZkru8vBzNZjOef/750rPPnj2bsi7G\nx8dTerGwsBDf+9734vr166Vnnz17Nmq1Wum5Wc+h0dHRWFpaigsXLpSe/cEHH5SeGRFx9+7dtPfe\na6+9FqtXry49e2lpKaXm2dnZtOdQR0dHdHR0lJ799ttvR2dnZ+m5Dx48SOnF1NRUPPfcc9HW1lZ6\n9ltvvRX1evm/D3np0qWU58XHH3+ckhsR0d7e3lLv1IWFhbRedHV1pdScdYa7efNmy51bstbF/fv3\nU3p87969uHXrVkudW27dupXS47m5ufjud7+bcm5ZXFxsqe+rm81m1Ov1WLFiRenZWeeLGzdupOyR\noaGhJ/vCoihSr0cfUb5NmzYVEVH6tX79+pTcRqNRNJvNlF6sW7cupeZ9+/al1Lt///6UeiOiOHXq\nVErNx44dS8ndu3dvWi96e3tTcjdu3JiS29/fn9aLnp6elNyDBw+mrIvdu3en9eL06dMpNQ8MDKTk\nHj58OCV3cHCwGBoaSsk+efJkSu6OHTtS1kS9Xi+Gh4dTat68eXNKzVnvvc7OzrS9d/z48ZQeb9++\nPaXe7u7utF6cOHEipRdHjx5NyT106FBKblEUxZo1a1J6vGHDhpTcrVu3pvWir68vpeYDBw6k1Ltn\nz560PZJ1bslaF9u2bUvp8cjISMudW3bu3Jm2LrLOLVu2bEmpd+3atWm9yLoajUZK7q5du1Lu3ZEj\nR4qIKIpPOaPxx8EAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEA\nAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKAC\nDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKAC2j+LD/n93//90jOL\noohGo1F6brPZTMmt1+vxla98Jbq6ulKyM2oeGhpKuXdXr15NqTci4vXXX4+7d++WnnvhwoWYnZ0t\nPXd4eDitFzMzMynZU1NTKblZ9RZFkZb9zjvvpOyR0dHRlHqXlpbiG9/4RgwNDZWeffHixZicnCw9\n9/z58yk9Hh8fj/n5+ZQ+X7p0KR48eFB67q1bt1LqnZubi+PHj8fq1atLz856V8/OzqY9h9rb26Oj\no6P07B/+8IcxMzNTeu69e/fSetHb2xu1Wq307B/+8Ifx8OHD0nMvXLgQ8/PzKbkZz6GIiI6OjpY6\nzzabzbRerFixIqXm9957L6XmGzdutNy5JWtd3Lp1K6XHk5OTcevWrZY6t4yPj6f0eGFhIQYGBtLO\nh630rp6dnY1arZbyffXc3FxKzR999FHKHhkcHHyyLyyKIvV69BHl27RpUxERpV/r169PyW00GkWz\n2Uzpxbp161Jq3rdvX0q9+/fvT6k3IopTp06l1Hzs2LGU3L1796b1ore3NyV348aNKbn9/f1pvejp\n6UnJPXjwYMq62L17d1ovTp8+nVLzwMBASu7hw4dTcgcHB4uhoaGU7JMnT6bk7tixI2VN1Ov1Ynh4\nOKXmzZs3p9Sc9d7r7OxM23vHjx9P6fH27dtT6u3u7k7rxYkTJ1J6cfTo0ZTcQ4cOpeQWRVGsWbMm\npccbNmxIyd26dWtaL/r6+lJqPnDgQEq9e/bsSdsjWeeWrHWxbdu2lB6PjIy03Lll586daesi69yy\nZcuWlHrXrl2b1ousq9FopOTu2rUr5d4dOXKkiIii+JQzGn8cDAAAAKACDIEAAAAAKsAQCAAAAKAC\nDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAA\nAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQCAAAAKACDIEAAAAAKsAQ\nCAAAAKACDIEAAAAAKqD9s/iQN998s/TMqamp0jMjImZmZlJy5+fn4yc/+UmsWLGi9Oysmm/evJly\n765evVp65mNnz56N559/vvTcS5cupfRieHi49MzHFhYWUnKbzWZK7tzcXEpuRMTi4mJK7tWrV1PW\nxfXr10vPfOydd96J+fn50nMvXLiQ0osrV66k5F66dCna2tri7t27pWdn9WJsbKz0zIiI5eXleOut\nt+LatWulZ7fau3ppaSklNyLi/PnzKetiYmKi9MyIvOdmRF4vPvzww5bKjch792Xtkenp6bReZJ1b\nRkZGUmoeGRkpPfOxrP2XdYa7f/9+So/Hx8djYmKipc4to6OjpWc+9rOf/Szl3PLw4cPSMyPynkOZ\nZmdnU3Jv3bqVst7Onz//RF/3mQyBXn755dIz29raSs/MVK/X4+WXX04ZAtXrOT/Q9dRTT6Xcu56e\nntIzH+vr60up+bnnnkvJ7e7uLj3zsVqtlpadIbPerOxnnnmm5dbF5z73uZSan3/++ZTcZ599NiX3\n4cOH0dbW1lK9yHh/RDx6h7z00kuxZs2a0rOz3tVZezrzOZS1Lrq6ukrPzJbVi97e3pbKjWi9d3VH\nR0daL7L09PS03Lu61Z5xK1asSPt+7/H3UGXLeg6tXLmy9MzHss5wWd9LZuVmytojq1atSvse9Ul8\nJkOgdevWlZ6ZtcGyctvb2+Pzn/98Sn7WAbCnpyfl3mX8pM5jL774YkrNfX19LdeL9vac7b1q1aqU\n3M7OzpTciLxvRHt7e1PWRW9vb+mZj7300kspNa9evTptj2TkTk5ORnt7e0v14tlnny0987FGoxGN\nRqP03Kx3auZALEt/f3/KunjmmWdKz4x49A7J+imVrF5kvauzciPy3n1Ze6+zszOtFx0dHSm5zz77\nbErNT/rN1yeRdW7JfCZn9Li9vT3a2tpa6l2deYZ7+eWXU2rOGmi24m9SZNXc3d2dcu9eeOGFJ/q6\n1hvPAQAAAPCpGQIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIB\nAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAF\nGAIBAAAAVIAhEAAAAEAFGAIBAAAAVIAhEAAAAEAFGAIBAAAAVED7Z/Ehp06dKj1zeXk51q5dW3ru\nzMxMSm57e3t885vfjK6urtKza7VaSs0fffRRyr0bGRlJqTci4qc//WkURVF67oULF1J6cePGjbRe\nNJvNlOzp6emW2nvLy8tp2efOnUtZF2NjYyn1Li4uxve///0YHR0tPfvMmTPR1tZWem7Wc+j69eux\nvLwcly5dKj37zJkzUa+X/3sst2/fTlkX8/Pz8e1vfzv6+/tLz15cXGyp58XMzEx0dHREe3v5x6Of\n/exnsWLFitJz7927l/asf/bZZ1P29dtvv53S44sXL6Y8L65cuZKSG/HofJhx/7LOAHNzc2m96Ozs\nTKk56wx38+bNlju3ZOXev38/pcf379+P8fHxljq3TExMpL2rX3/99ZRzy8LCQtrzIiN3dnY2arVa\nyvfVWTXfuHEjZY8MDQ092RcWRZF6PfqI8m3atKmIiNKv9evXp+Q2Go2i2Wym9GLdunUpNe/bty+l\n3v3796fUGxHFqVOnUmo+duxYSu7evXvTetHb25uSu3HjxpTc/v7+tF709PSk5B48eDBlXezevTut\nF6dPn06peWBgICX38OHDKbmDg4PF0NBQSvbJkydTcnfs2JGyJur1ejE8PJxS8+bNm1NqznrvdXZ2\npu2948ePp/R4+/btKfV2d3en9eLEiRMpvTh69GhK7qFDh1Jyi6Io1qxZk9LjDRs2pORu3bo1rRd9\nfX0pNR84cCCl3j179qTtkaxzS9a62LZtW0qPR0ZGWu7csnPnzrR1kXVu2bJlS0q9a9euTetF1tVo\nNFJyd+3alXLvjhw5UkREUXzKGY0/DgYAAABQAYZAAAAAABVgCAQA/L/t3X2Mlvd5L/jrnldgwM7E\nwyTBHg4vG5IGVQoNaVX1j5Ptbs82nKppi3S0+0dFpZaiCqlBe3IoiVDTVbVbun8UnWppm5azWxsC\niQEZx4mTOI5fUqcyNjZgXgeDbYa34TW8zDzM+71/gBsrp2liel+kT+7PR3pkmPB8nyvX8/vd92+u\nmQEAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACg\nBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgA\nAACgBgyBAAAAAGrAEAgAAACgBtruxYs8/PDDKbnz5s2rPPPWrVspuUVRxCOPPBLTpk2rPLu1tTWl\n5iNHjqS8d6dOnUqpNyLi6aefjmvXrlWee/To0RgbG6s898yZM2m9GBoaSskeHh5uqtypqaloNBrx\nwAMPVJ69d+/elD0yODiY0ovx8fF4/PHH4+jRo5Vn9/f3x9DQUOW5x44dS+nxhQsXYnx8PF5++eXK\ns/v7++PmzZuV5165ciVlXTQajXj00Uejp6en8uyyLJvqXj08PBzt7e3R0dFRefbzzz8fo6Ojlede\nv349pRdDQ0PR3d0dbW3VHxWfffbZGB4erjw363rR39+fdpbt6Ohoqntqo9FI68W0adNSat63b19K\nzefOnWu6c0vWurh8+XJKj69duxZXrlxpqnPLxYsXU3o8MjISu3btSjm3TE5ONt29urW1NeXz6kaj\nkVLzm2++mbJHXnvttbt7YlmWqY/bL1G9RYsWlRFR+WP+/PkpuX19fWWj0Ujpxbx581JqXrduXUq9\n69evT6k3Isrdu3en1Lxt27aU3LVr16b1oru7OyV34cKFKbm9vb1pvZg1a1ZK7saNG1PWxerVq9N6\nsWfPnpSad+7cmZK7efPmlNwDBw6Uhw8fTsnetWtXSu6KFStS1kRLS0s5MDCQUvPixYtTas6673V0\ndKTtve3bt6f0ePny5Sn1dnV1pfVix44dKb3YunVrSu6mTZtScsuyLOfMmZPS4wULFqTkLl26NK0X\nPT09KTVv2LAhpd41a9ak7ZGsc0vWuli2bFlKj0+fPt1055aVK1emrYusc8uSJUtS6p07d25aL7Ie\nfX19KbmrVq1Kee+2bNlSRkRZvssZjR8HAwAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAA\nAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAE\nAgAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACA\nGmi7Fy/yxBNPVJ45PDwc7e3tTZM7NjYWX/va16Kzs7Py7JGRkZSaT548mfLeHT9+PKXeiIgXX3wx\nWlqqn22+9tprMXPmzMpzT5w4kdaL8fHxptojo6OjKblTU1MxOTmZkn3kyJGUPfLmm2+m9eK5556L\nCxcuVJ69b9++6OjoqDw3s8cRt69zVXv11VdT3r+zZ8+m5JZlGd/4xjfi/e9/f+XZWde82LKlAAAg\nAElEQVSLRqORklsURbS2tqbcR/bu3RtdXV2V5w4ODqZdL9ra2qIoisqzX3755ZTz0MGDB1OuF4cP\nH07Jjci792XtvRs3bqT1YmJiIqXm/v7+lJrfeOONpju3ZK2LS5cupfT48uXLcenSpaY6twwMDKT0\neHJyMp5++umUc8vNmzeb6l49NTUVZVlGa2tr5dm3bt1Kqfn06dMpe+TVV1+9q+fdkyHQL/zCL1Se\n2dbWFuPj45Xntre3p+S2tbXFxz/+8Zg+fXrl2S0tLSk1f+ADH0h5755++umUeiMiPvShD6XUfO7c\nuZTcJ598Mq0X06dPT1vLzZQbcfsTu4zsuXPnpqyLnTt3pvXiZ3/2Z+NjH/tY5bmXLl1K6cXJkydT\ncmfNmhWtra3xoQ99qPLsy5cvp9R8//33p6yLlpaWWLp0aTz44IOVZzfb9aK9vT0mJydjcnKy8uwP\nfvCDaWs5q8cTExOV50ZELFq0KKUXZ86cSck9dOhQSm5ERGtra1OdZ2fMmJHWi6x79YMPPphS8+OP\nP95055asa+f999+fdv4eHByMn/u5n6s8O+vcsn379rR18dGPfjQ+/OEPV57b0dHRVOvtbVNTU5Vn\nZtU8e/bslPV26tSpu3rePRkC9fb2Vp6Z8RWkiEiZCEfcPmT39vamDIGyap4xY0bKe3ffffdVnvm2\n7u7utJqbrRcZ0/GIvL2XVW9EpHxVPyJi5syZKeti1qxZlWe+7YEHHkip+f7770/rRUbu4OBgtLW1\nNVUvMr4b8W09PT3u1REp3/Xytqx1kfHdRRF5182IvF5k3auz6o24/QlHhqw9knXdjMg7BzTjvTpr\n/2VekzN6PDY2FmNjY021r92rvy/rOpQp6yc0pk2blvLevec977mr5/k7gQAAAABqwBAIAAAAoAYM\ngQAAAABqwBAIAAAAoAYMgQAAAABqwBAIAAAAoAYMgQAAAABqwBAIAAAAoAYMgQAAAABqwBAIAAAA\noAYMgQAAAABqwBAIAAAAoAYMgQAAAABqwBAIAAAAoAYMgQAAAABqwBAIAAAAoAYMgQAAAABqwBAI\nAAAAoAYMgQAAAABqwBAIAAAAoAba7sWLfOUrX6k8c3JyMh566KHKcxuNRkpua2trPPHEEzFt2rTK\nsyMipeY333wz5b07ffp0Sr0RES+++GIURVF57rFjx1J6cfbs2bRe3Lp1KyV7eHg4JXdkZCQld2pq\nKi37yJEjKeticHAwpd7x8fF45plnYnBwsPLsQ4cORXt7e+W5J0+eTOnxmTNnYnJyMk6cOFF59sGD\nB6Otrfrb66VLl1LWxdjYWHzzm9+M3t7eyrPHx8dTas66vo2MjERra2vKWt67d2/MmDGj8tzvfe97\naeeh+++/P1paqv964UsvvRQdHR2V5/b396dcL7KuQxERLS0tTXWvHhsbS+tFe3t7Ss1Z6+LcuXNN\nd27JWhfXr19P6fHVq1fj4sWLTXVuuXDhQtree/rpp1POLaOjoyk1Z+WOjIxEURTR2dlZeXZWzefO\nnUvZI4cPH767J5Zlmfq4/RLVW7RoURkRlT/mz5+fktvX11c2Go2UXsybNy+l5nXr1qXUu379+pR6\nI6LcvXt3Ss3btm1LyV27dm1aL7q7u1NyFy5cmJLb29ub1otZs2al5G7cuDFlXaxevTqtF3v27Emp\neefOnSm5mzdvTsk9cOBAefjw4ZTsXbt2peSuWLEiZU20tLSUAwMDKTUvXrw4peas+15HR0fa3tu+\nfXtKj5cvX55Sb1dXV1ovduzYkdKLrVu3puRu2rQpJbcsy3LOnDkpPV6wYEFK7tKlS9N60dPTk1Lz\nhg0bUupds2ZN2h7JOrdkrYtly5al9Pj06dNNd25ZuXJl2rrIOrcsWbIkpd65c+em9SLr0dfXl5K7\natWqlPduy5YtZUSU5buc0fhxMAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQC\nAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAa\nMAQCAAAAqAFDIAAAAIAaMAQCAAAAqIEfewhUFEVLURSvFkXxlTu/7y6K4qmiKPqLovhmURT355UJ\nAAAAwL/Gu/lOoE9HxJF3/H5dRDxdluWHIuKZiPhslYUBAAAAUJ0fawhUFMVDEbEsIja/48OfioiH\n7/z64Yj4jWpLAwAAAKAqP+53Am2MiP8SEeU7Pva+siwvRESUZTkYEb0V1wYAAABARdp+1B8oiuI/\nRsSFsiz3F0XxiX/hj5Y/7H945JFH7qK0H1lXzJ8/v/LcW7dupeRGRGzdujU6Ozsrz21ra0up+dix\nYynv3cDAQFqPn3nmmbh+/XrluceOHYvx8fHKc8+ePZvWi6GhoZTs4eHhpsqdnJyMW7duRU9PT+XZ\nr776asoeuXDhQkovJiYm4itf+UocO3as8uz+/v4YHh6uPPf48eNpPZ6YmIi9e/dWnn38+PEYGhqq\nPPfq1atp972dO3fGAw88UHl2WZYpNTcajbTrUEdHR7S3t1ee/Q//8A8xNjZWee6NGzdSejE0NBQP\nPPBAtLa2Vp793HPPRaPRqDw369ySdR2KiOjs7Gyq8+zIyEhaL6ZPn55S84EDB1JqHhwcbLpzS9a6\nuHz5ckqPb968GZcuXWqqc8vly5dTejw6Ohq7d+9OObdMTk421b260WhES0tLTJs2rfLsrD3y5ptv\npuyR11577e6eWJblv/iIiP8rIgYi4o2IOB8RQxGxJSKOxu3vBoqIeH9EHP0hzy8///nP/9Pj2Wef\nLauwaNGiMm4Pnip9zJ8/PyW3r6+vbDQalfx//0Hz5s1LqXndunUp9a5fvz6l3ogod+/enVLztm3b\nUnLXrl2b1ovu7u6U3IULF6bk9vb2pvVi1qxZKbkbN25MWRerV69O68WePXtSat65c2dK7ubNm1Ny\nDxw4UB4+fDgle9euXSm5K1asSFkTLS0t5cDAQErNixcvTqk5677X0dGRtve2b9+e0uPly5en1NvV\n1ZXWix07dqT0YuvWrSm5mzZtSskty7KcM2dOSo8XLFiQkrt06dK0XvT09KTUvGHDhpR616xZk7ZH\nss4tWeti2bJlKT0+ffp0051bVq5cmbYuss4tS5YsSal37ty5ab3IevT19aXkrlq1qrL369lnn/2n\n2cpv/uZvlhFRlj9ipvODjx/5nUBlWX4uIj4XEVEUxb+PiP9cluVvF0Xxf0fE70TEn0fEioh4/Idl\n/Mmf/MmPehkAAAAAfohPfOIT8YlPfCIibv+k0WOPPfauM97Nvw72gzZExK8URdEfEf/Tnd8DAAAA\n8G/Qj/xOoHcqy/L5iHj+zq+vRsT/nFEUAAAAANX613wnEAAAAABNwhAIAAAAoAYMgQAAAABqwBAI\nAAAAoAYMgQAAAABqwBAIAAAAoAYMgQAAAABqwBAIAAAAoAYMgQAAAABqwBAIAAAAoAYMgQAAAABq\nwBAIAAAAoAYMgQAAAABqwBAIAAAAoAYMgQAAAABqwBAIAAAAoAYMgQAAAABqoO1evMgXv/jFyjMb\njUbMmDGj8tyhoaGU3LGxsdi2bVtMmzat8uzR0dGUmvv7+1PeuyNHjqTUGxHxzDPPxNDQUOW5r7zy\nSkxNTVWe29/fn9aL8fHxlOwbN26k5Gat48nJyZiamkrJ3rdvX8oeOXnyZFovnnjiiXj99dcrz96/\nf3+MjIyk5Gb0eGBgIMqyjH379lWevX///rh161bluQMDAynrYmpqKnbu3Bm9vb2VZw8PDzfVvXpq\naiqmTZsWLS3Vf43shRdeiMnJycpzz549m9KLsizTevGd73wnRkdHK8995ZVXKs+MyLvWR0RMTEw0\n1R65fv160/XitddeS6n5+PHjTXduyTrDXbhwIaXHV65ciStXrjTVueWtt95K6fHExETs3r075dxy\n8+bNlJqzPl9/+17a2tpaeXZWzW+++WbKHvnud797V8+7J0OgT33qU5Vn/vEf/3E0Go3Kc3t6euLS\npUuV5773ve+NX//1X4/p06dXnv3Zz342pRcLFixIee/279+fUm9ExC/+4i/Gr/3ar1WeOzo6mtKL\nl156Ka0X999/f8pAbPbs2Sl7pKenJ65fv155bkREe3t7DA8PV577kY98JGVdPPvss2nr4pd/+Zfj\n4x//eEp2Ri+uX7+eknvo0KFobW2Nn/mZn6k8OyKnF1/96ldT1kVLS0t88pOfjIceeqjy7D/90z9N\nqfmBBx6Iy5cvV57b0dERY2NjledGRHzsYx9LWRdf/vKXU3o8Y8aMlE+QIiI+/vGPp/RiZGQkJXdw\ncDAlNyLiM5/5TMr7N3v27Lh48WLluTNnzkzrxR/+4R+m9OLDH/5wSs0vvPBC2r0669zS09OTcu3s\n6elJ6fHZs2fj/PnzsXTp0sqzI3Lu1U899VTauviVX/mVlHPLn//5n6fU3N3dnbLeMr3nPe+JK1eu\nVJ7b19eXst7u9n27J0OgmTNnVp7Z1pZTesZEMSKiKIqYOXNmyhAoq+b29vaU9y7ju6HeNn369JSa\ns3Ize5Hx1duIvL2XVW/E7f2XobOzs+nWRVdXV1rNGblZPZ4xY0a0tbU11fWis7Oz8sy3Za2LZrtX\nZ8paFx0dHZVnRuRdNyNy76nNtKcj8u59WXuktbW16XrR0dHRdPfqrP2XeU3O6HFXV1fMmDGjqa4X\n7tXf14z36qyaM8+cd8PfCQQAAABQA4ZAAAAAADVgCAQAAABQA4ZAAAAAADVgCAQAAABQA4ZAAAAA\nADVgCAQAAABQA4ZAAAAAADVgCAQAAABQA4ZAAAAAADVgCAQAAABQA4ZAAAAAADVgCAQAAABQA4ZA\nAAAAADVgCAQAAABQA4ZAAAAAADVgCAQAAABQA4ZAAAAAADVgCAQAAABQA4ZAAAAAADXQdi9e5Ktf\n/WrlmRMTE/GBD3yg8txGo5GS29raGk8++WR0dnZWnj01NZVS86lTp1Leu1OnTqXUGxGxZ8+eaG1t\nrTy3v78/pRcDAwNpvRgdHU3JHhoaSskdGxtLyZ2amorx8fGU7KNHj6asi7Nnz6bUOzExEc8++2xc\nvHix8uxDhw6lXN9OnDiRtvempqbijTfeqDz74MGD0dHRUXnuxYsX0/bet771rejt7U3Jzqj51q1b\nKbkjIyNx3333RXt7e+XZr7zySsycObPy3CtXrqT1YubMmdHSUv3XC/fu3RvTpk2rPDfrXp11HYqI\nKIoi5f0bHh5OyR0dHU3rRWtra0rNx48fT6n5zJkzTXduyVoX165dS+nx1atX4+LFi011bjl//nxK\nj8fHx+Pb3/52yrllZGQk7T6SldvS0pJy1sqq+fz58yl75PDhw3f3xLIsUx+3X6J6ixYtKiOi8sf8\n+fNTcvv6+spGo5HSi3nz5qXUvG7dupR6169fn1JvRJS7d+9OqXnbtm0puWvXrk3rRXd3d0ruwoUL\nU3J7e3vTejFr1qyU3I0bN6asi9WrV6f1Ys+ePSk179y5MyV38+bNKbkHDhwoDx8+nJK9a9eulNwV\nK1akrImWlpZyYGAgpebFixen1Jx13+vo6Ejbe9u3b0/p8fLly1Pq7erqSuvFjh07UnqxdevWlNxN\nmzal5JZlWc6ZMyelxwsWLEjJXbp0aVovenp6UmresGFDSr1r1qxJ2yNZ55asdbFs2bKUHp8+fbrp\nzi0rV65MWxdZ55YlS5ak1Dt37ty0XmQ9+vr6UnJXrVqV8t5t2bKljIiyfJczGj8OBgAAAFADhkAA\nAAAANWAIBAAAAFADhkAAAAAANWAIBAAAAFADhkAAAAAANWAIBAAAAFADhkAAAAAANWAIBAAAAFAD\nhkAAAAAANWAIBAAAAFADhkAAAAAANWAIBAAAAFADhkAAAAAANWAIBAAAAFADhkAAAAAANWAIBAAA\nAFADhkAAAAAANWAIBAAAAFADhkAAAAAANdB2L17ki1/8YuWZRVHEggULKs9tNBopuRER27dvj87O\nzspz29vbU2ru7+9Pee/OnDmT1uNnn302hoaGKs89evRoSi/OnTuX1oubN2+mZA8PD6fkDg0NpeRO\nTU3F8PBwzJ49u/LsV199NWVdXLhwIaUX4+Pj8dWvfjVef/31yrOPHj0aIyMjleceP348rcfj4+Ox\nb9++yrOPHj0at27dqjz3ypUrKetiZGQkdu3albJHIqKp7tXDw8PR3t4eHR0dlWe/8MILMTk5WXnu\njRs3Unpx8+bNeOCBB6Ktrfqj4ne+850YHR2tPDfrXn3ixImU3IiIzs7Optojo6Ojab2YMWNGSs0H\nDhxIqXlwcLDpzi1Z6+Lq1aspPb527VpcuXKlqc4tly5dStt7jz/+eMq5ZXJysqk+Z2g0GtHS0hLT\npk1Lyc6o+dSpUyl75LXXXru7J5Zlmfq4/RLVW7RoURkRlT/mz5+fktvX11c2Go2UXsybNy+l5nXr\n1qXUu379+pR6I6LcvXt3Ss3btm1LyV27dm1aL7q7u1NyFy5cmJLb29ub1otZs2al5G7cuDFlXaxe\nvTqtF3v27EmpeefOnSm5mzdvTsk9cOBAefjw4ZTsXbt2peSuWLEiZU20tLSUAwMDKTUvXrw4peas\n+15HR0fa3tu+fXtKj5cvX55Sb1dXV1ovduzYkdKLrVu3puRu2rQpJbcsy3LOnDkpPV6wYEFK7tKl\nS9N60dPTk1Lzhg0bUupds2ZN2h7JOrdkrYtly5al9Pj06dNNd25ZuXJl2rrIOrcsWbIkpd65c+em\n9SLr0dfXl5K7atWqlPduy5YtZUSU5buc0fhxMAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFD\nIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAA\nqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQC\nAAAAqIG2e/Eif/VXf1V5ZqPRiPvuu6/y3Bs3bqTkjo2Nxd/8zd9EZ2dn5dmjo6MpNR88eDDlvTt4\n8GBKvRERTz75ZJw9e7by3KNHj8b3vve9ynMPHTqU1ouJiYmm2iNZ63hqairKskzJfvHFF1P2yPHj\nx1PqnZycjO3bt8fevXsrz+7v748LFy5UnnvgwIEYHR2tPPfcuXMRETFnzpzKs48dOxaDg4OV5771\n1ltp6+Lhhx+O9773vZVnDw8Pp9R88+bNlNyJiYlob2+P1tbWyrOfeuqpuHr1auW5Z86cSVsXM2fO\njJaW6r9e+M1vfjMuXrxYee6RI0fi+vXrlee+9NJLlWe+bXx8vKn2yPXr11PuexGRdq/eu3dvSs3H\njh1runNL1hnu3LlzKT2+fv16XLlypanOLSdOnEi7P33xi1+MBx98sPLsrOvF0NBQWi8iItraqh9l\nZJ1bTpw4kbJHXnnllbt7YlmWqY+IKKempip/fPCDHywjovLHvHnzUnL7+vrK4eHhlF5k1fxHf/RH\nKfV+7nOfS6k3IsrHHnsspeatW7em5H7mM59J60V3d3dK7oIFC1Jye3t703oxa9aslNy/+Iu/SFkX\nf/AHf5DWixdffDGl5i9/+cspuX/3d3+Xkrt///7y0KFDKdk7d+5Myf3t3/7tlDXR0tJSnjp1KqXm\nj3zkIyk1Z933Ojo60vbetm3bUnr8W7/1Wyn1dnV1pfXi0UcfTenFI488kpL7l3/5lym5U1NT5Zw5\nc1J6nHWvXrp0aVovenp6Umr+sz/7s5R6P/3pT6ftkaxzy/z581NyP/nJT6b0eGBgoOnOLb/7u7+b\nti6yzi0f/ehHU+rt6+tL60XWI6vm3//930957x555JEyIsp3O6O5J98JVBRFU2Rm5r6dnZlftax6\nM76q+LbMmputF1maaQ1ns0e+r7W1Ne1an5nbTDU347pwvfg+Pf6+ZrtXZ13fmlWz9cLe+77Mz5+a\n7V6dta/dq/Nzm9G/tfeu+T4DBQAAAOBdMwQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQC\nAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAa\nMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqIG2e/Ei\nTz75ZOWZY2Nj0dvbW3nu8PBwSm5LS0t8/etfj2nTplWePTExkVLzwMBAynv31ltvpdQbEfHSSy9F\ne3t75bnHjh1L6cWpU6fSejE+Pp6SffPmzZTcrHU8NTWVlp21Ls6cOZNS7+TkZDz//PNx+fLlyrMP\nHjwY06dPrzz35MmTadehd/63SgcPHky51p8/fz5lXYyPj8fTTz8d73vf+yrPHh0dTam50Wik5I6N\njcXMmTOjra3649Grr74a9913X+W5ly9fTutFT09PtLRU//XCV155JWbMmFF5bn9/f8r14sSJEym5\nERFlWTbVeXZ0dDStFy0tLSk1v/766011r848twwNDaXkXr9+PaXHV65ciQsXLjTVueXcuXNp9+pn\nn3025dySdU+9detW2nWoKIro6OioPHtkZCSl5sHBwZQ9cvDgwbt7YlmWqY/bL1G9RYsWlRFR+WP+\n/PkpuX19fWWj0Ujpxbx581JqXrduXUq969evT6k3Isrdu3en1Lxt27aU3LVr16b1oru7OyV34cKF\nKbm9vb1pvZg1a1ZK7saNG1PWxerVq9N6sWfPnpSad+7cmZK7efPmlNwDBw6Uhw8fTsnetWtXSu6K\nFStS1kRLS0s5MDCQUvPixYtTas6673V0dKTtve3bt6f0ePny5Sn1dnV1pfVix44dKb3YunVrSu6m\nTZtScsuyLOfMmZPS4wULFqTkLl26NK0XPT09KTVv2LAhpd41a9ak7ZGsc0vWuli2bFlKj0+fPt10\n55aVK1emrYusc8uSJUtS6p07d25aL7IefX19KbmrVq1Kee+2bNlSRkRZvssZjR8HAwAAAKgBQyAA\nAACAGjAEAgAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAAAKgB\nQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGjAEAgAA\nAKgBQyAAAACAGjAEAgAAAKgBQyAAAACAGmi7Fy+ybdu2yjNbWlpi4cKFlec2Go2U3LIs40tf+lJ0\ndnZWnt3W1pZS8/Hjx1PeuzNnzqTUGxHx/PPPx/DwcOW5R48eTenFuXPn0npx48aNlOzh4eGU3Js3\nb6bkTk5ORqPRiN7e3sqz9+3bl7IuLl68mNKL8fHx+NrXvhYnTpyoPPvo0aMxOjpaee6JEydSenzh\nwoUYHx+P/fv3V5599OjRGBkZqTz36tWrafe9xx57LHp6eirPjoimug4NDQ1Fe3t7yr36u9/9bkxN\nTVWem3XtvHHjRsyePTtaW1srz37hhRdibGys8tyse/XJkydTciMiOjs7m+o8Ozo6mtaLGTNmpNR8\n8ODBlJoHBweb7tyStS6uXr2a0uMbN27EpUuXmurccvny5ZQej4yMxBNPPJFybpmammqqe/Xw8HC0\ntLTE9OnTU7Izah4YGEjZI6+99trdPbEsy9TH7Zeo3qJFi8qIqPwxf/78lNy+vr6y0Wik9GLevHkp\nNa9bty6l3vXr16fUGxHl7t27U2retm1bSu7atWvTetHd3Z2Su3DhwpTc3t7etF7MmjUrJXfjxo0p\n62L16tVpvdizZ09KzTt37kzJ3bx5c0rugQMHysOHD6dk79q1KyV3xYoVKWuipaWlHBgYSKl58eLF\nKTVn3fc6OjrS9t727dtTerx8+fKUeru6utJ6sWPHjpRebN26NSV306ZNKbllWZZz5sxJ6fGCBQtS\ncpcuXZrWi56enpSaN2zYkFLvmjVr0vZI1rkla10sW7YspcenT59uunPLypUr09ZF1rllyZIlKfXO\nnTs3rRdZj76+vpTcVatWpbx3W7ZsKSOiLN/ljMaPgwEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAA\nQA0YAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQ\nAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEAAADU\ngCEQAAAAQA203YsX+eu//uvKM0dHR6O7u7vy3KGhoZTciYmJ+MIXvhCdnZ2VZ4+Pj6fUfOjQoZT3\n7siRIyn1RkQ8+eSTce7cucpz+/v749q1a5XnHj16NK0XU1NTKdk3btxIyc1ax2VZpvXixRdfTNkj\nJ06cSKl3cnIyvvSlL8Urr7xSefbx48fj4sWLlecePHgwxsbGKs89f/58TE1NxYMPPlh59vHjx+PC\nhQuV5w4MDKTdn/7+7/8+enp6Ks++detWU92rx8fHY9q0adHa2lp59re+9a343ve+V3nu4OBg2rp4\nz3veE0VRVJ791FNPxaVLlyrPPXbsWNy4caPy3FdeeSXlWh9x+x6V8f7dvHkzJff69etpvSiKIqXm\nl19+OaXm119/venOLVnrYnBwMKXH165di6tXrzbVueXNN99MuyZv3bo1+vr6Ks8eHh5OqTkrd3x8\nPFpaWlLu1Y1GI6XmEydOpOyRffv23d0Ty7JMfdx+ieotWrSojIjKH/Pnz0/J7evrKxuNRkov5s2b\nl1LzunXrUupdv359Sr0RUe7evTul5m3btqXkrl27Nq0X3d3dKbkLFy5Mye3t7U3rxaxZs1JyN27c\nmLIuVq9endaLPXv2pNS8c+fOlNzNmzen5B44cKA8fPhwSvauXbtSclesWJGyJsMTJ08AAA31SURB\nVFpaWsqBgYGUmhcvXpxSc9Z9r6OjI23vbd++PaXHy5cvT6m3q6srrRc7duxI6cXWrVtTcjdt2pSS\nW5ZlOWfOnJQeL1iwICV36dKlab3o6elJqXnDhg0p9a5ZsyZtj2SdW7LWxbJly1J6fPr06aY7t6xc\nuTJtXWSdW5YsWZJS79y5c9N6kfXo6+tLyV21alXKe7dly5YyIsryXc5o/DgYAAAAQA0YAgEAAADU\ngCEQAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEA\nAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA0Y\nAgEAAADUgCEQAAAAQA0YAgEAAADUgCEQAAAAQA203YsX+frXv1555sjISLz3ve+tPHd4eDgltyiK\n+OY3vxmdnZ2VZ4+Pj6fUPDAwkPLevfnmmyn1RkS89NJL0dHRUXnusWPHUnrx1ltvpfViamoqJfvG\njRspuVnruCzLtF709/enrIuBgYGUeqempuL555+PK1euVJ596NChmDFjRuW5r7/+etp1qCiKOHXq\nVOXZBw8ejOnTp1eee+7cuZR1MTExEc8880z09vZWnn3r1q2muldPTEzE9OnTo7W1tfLsffv2xf33\n31957sWLF9N60d3dHUVRVJ796quvRldXV+W5WffqrOtQRN69emhoKCV3ZGQkrRcRkVLziRMnUmo+\ndepU051bstbFtWvXUnp85cqVuHDhQlOdW86cOZN2TX7uuedSzi1Z66LRaKR9zlAURbS1VT/KyDq3\nnD9/PmWPHDp06O6eWJZl6uP2S1Rv0aJFZURU/pg/f35Kbl9fX9loNFJ6MW/evJSa161bl1Lv+vXr\nU+qNiHL37t0pNW/bti0ld+3atWm96O7uTslduHBhSm5vb29aL2bNmpWSu3HjxpR1sXr16rRe7Nmz\nJ6XmnTt3puRu3rw5JffAgQPl4cOHU7J37dqVkrtixYqUNdHS0lIODAyk1Lx48eKUmrPuex0dHWl7\nb/v27Sk9Xr58eUq9XV1dab3YsWNHSi+2bt2akrtp06aU3LIsyzlz5qT0eMGCBSm5S5cuTetFT09P\nSs0bNmxIqXfNmjVpeyTr3JK1LpYtW5bS49OnTzfduWXlypVp6yLr3LJkyZKUeufOnZvWi6xHX19f\nSu6qVatS3rstW7aUEVGW73JG48fBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrA\nEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAA\nAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBgyBAAAAAGrAEAgAAACgBtru\nxYt86UtfqjyzKIpYsGBB5bmNRiMlNyLi0Ucfjc7Ozspz29raUmo+fvx4ynt35syZtB5/5zvfiVu3\nblWee/To0ZRenD9/Pq0XQ0NDTbVHsuotyzKGhoZi9uzZlWfv378/ZV1cvHgxpRcTExPx9a9/Pd54\n443Ks48cORLj4+OV5548eTKlx4ODgzExMRGvvfZa5dlHjhyJsbGxynOvXr2asi5u3boVu3fvTtkj\nEZFWc0bu8PBwdHR0RHt7e+XZ//iP/1h5ZkTEzZs3067Js2fPjpaW6r9e+MILL8TExETluceOHUu5\nXrzxxhspuRERnZ2dTXWvHhkZSevF9OnTU2o+dOhQ2n2k2c4tWevi6tWrKT2+ceNGXLp0qanOLVeu\nXEnp8ejoaHzta19LObdMTU011XVoeHg4WltbY9q0aZVnZ9V8+vTplD1y8ODBu3tiWZapj9svUb1F\nixaVEVH5Y/78+Sm5fX19ZaPRSOnFvHnzUmpet25dSr3r169PqTciyt27d6fUvG3btpTctWvXpvWi\nu7s7JXfhwoUpub29vWm9mDVrVkruxo0bU9bF6tWr03qxZ8+elJp37tyZkrt58+aU3AMHDpSHDx9O\nyd61a1dK7ooVK1LWREtLSzkwMJBS8+LFi1NqzrrvdXR0pO297du3p/R4+fLlKfV2dXWl9WLHjh0p\nvdi6dWtK7qZNm1Jyy7Is58yZk9LjBQsWpOQuXbo0rRc9PT0pNW/YsCGl3jVr1qTtkaxzS9a6WLZs\nWUqPT58+3XTnlpUrV6ati6xzy5IlS1LqnTt3blovsh59fX0puatWrUp577Zs2VJGRFm+yxmNHwcD\nAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAa\nMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAAAIAaMAQCAAAAqAFDIAAA\nAIAaaPtx/lBRFG9FxPWImIqI8bIsf74oiu6I+HJE/LuIeCsi/lNZlteT6gQAAADgX+HH/U6gqYj4\nRFmWS8qy/Pk7H1sXEU+XZfmhiHgmIj6bUSBwd8bHx3/SJUAtHTp06CddAtTWc88995MuAWrJ3oPm\n8eMOgYp/5s9+KiIevvPrhyPiN6oqCvjXm5iY+EmXALV0+PDhn3QJUFs+EYWfDHsPmsePOwQqI+Jb\nRVG8XBTF79352PvKsrwQEVGW5WBE9GYUCAAAAMC/3o/1dwJFxC+VZXm+KIrZEfFUURT9cXsw9E4/\n+Pt/8oUvfOFu6/uhxsfHY/bs2ZXnDg8Pp+ROTU3F3/7t38a0adMqz56cnEyp+dChQynvXX9/f0q9\nERHf+MY3YnBwsPLc/v7+uHHjRuW5r7/+elovbt68mZKdlTsxMZG297Ky9+zZk7JH3nrrrZR6Jycn\n49FHH419+/ZVnn38+PG4fPly5bkHDx5M6fH58+djamoqHnzwwcqzBwYGUmo+e/ZsyroYHx+PRx55\nJHp6eirPHh0dbap79djYWHR1dUVb2497PPrxffvb347r16v/qxMvXryY0ovR0dHo6emJoigqz/7W\nt74VV65cqTz32LFj8frrr1e+//bt25eypyMiiqJIef+GhoZScm/cuJHWi5aWlpSa9+7dm1LzyZMn\nm+7cknWGGxwcTOnztWvX4urVq011bjl9+nTavXr79u3x0EMPVZ5969atlJobjUbavbooimhvb688\nO6sXJ06cSLkO7d+//66eV5TlD53d/PNPKIrPR8RQRPxe3P57gi4URfH+iHi2LMuf+Wf+/Lt7AQAA\nAAB+pLIs39VXbH7kl7qKopgRES1lWQ4VRdEVEf8hIv6PiPhKRPxORPx5RKyIiMerKAgAAACA6v3I\n7wQqimJ+RDwWt3/cqy0ivliW5YaiKN4bEY9GRF9EnIrb/0T8teR6AQAAALgL7/rHwQAAAABoPj/u\nvw72rhVF8atFURwriuJ4URR/lPU6QERRFP+tKIoLRVG89o6PdRdF8VRRFP1FUXyzKIr7f5I1wk+j\noigeKorimaIoDhdFcbAoij+883H7DxIVRdFZFMWeoij23dl7n7/zcXsP7oGiKFqKoni1KIqv3Pm9\nvQfJiqJ4qyiKA3fufS/d+di73nspQ6CiKFoi4v+JiP8lIhZHxP9WFMWHM14LiIiI/y9u77d3WhcR\nT5dl+aGIeCYiPnvPq4KffhMR8b+XZbk4In4xIlbfud/Zf5CoLMvRiPgfy7JcEhEfjYhPFkXx82Hv\nwb3y6Yg48o7f23uQbypu/+NcS8qy/Pk7H3vXey/rO4F+PiJeL8vyVFmW4xHxpYj4VNJrQe2VZflC\nRHzvBz78qYh4+M6vH46I37inRUENlGU5WJbl/ju/HoqIoxHxUNh/kK4sy8adX3bG7b+3sgx7D9IV\nRfFQRCyLiM3v+LC9B/mK+O9nOO9672UNgR6MiNPv+P2ZOx8D7p3esiwvRNz+RDUien/C9cBPtaIo\n5sXt70h4MSLeZ/9Brjs/jrIvIgYj4ltlWb4c9h7cCxsj4r/E7cHr2+w9yFdGxLeKoni5KIrfu/Ox\nd733fuQ/EQ/81PC3wEOSoihmRsTOiPh0WZZDRVH84H6z/6BiZVlORcSSoijui4jHiqJYHP/9XrP3\noEJFUfzHiLhQluX+oig+8S/8UXsPqvdLZVmeL4pidkQ8VRRFf9zFfS/rO4HORsTcd/z+oTsfA+6d\nC0VRvC8ioiiK90fExZ9wPfBTqSiKtrg9ANpSluXjdz5s/8E9UpbljYh4LiJ+New9yPZLEfHrRVG8\nERHbI+KXi6LYEhGD9h7kKsvy/J3/XoqI3XH7r+F51/e9rCHQyxHxPxRF8e+KouiIiP81Ir6S9FrA\nbcWdx9u+EhG/c+fXKyLi8R98AlCJ/zcijpRl+V/f8TH7DxIVRdHz9r+AUhTF9Ij4lbj9d3LZe5Co\nLMvPlWU5tyzLBXH7c7xnyrL87Yh4Iuw9SFMUxYw733keRVF0RcR/iIiDcRf3vaIsc75TryiKX42I\n/xq3B03/rSzLDSkvBERRFNsi4hMR8UBEXIiIz8ft6fCOiOiLiFMR8Z/Ksrz2k6oRfhoVRfFLEfGd\nuH0TLu88PhcRL0XEo2H/QYqiKH42bv8FmC13Hl8uy/L/LIrivWHvwT1RFMW/j4j/XJblr9t7kKso\nivkR8VjcPmu2RcQXy7LccDd7L20IBAAAAMC/HVk/DgYAAADAvyGGQAAAAAA1YAgEAAAAUAOGQAAA\nAAA1YAgEAAAAUAOGQAAAAAA1YAgEAAAAUAOGQAAAAAA18P8Di9+8Hl2h5pgAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f7dc39d4bd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "diagram(identity.get_spacetime(),t_max = 50, x_max =50)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "states = epsilon_field(identity.get_spacetime())\n", "states.estimate_states(3,3,1)\n", "states.filter_data()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.991619089679\n", "0.994375130694\n", "0.994375130694\n" ] } ], "source": [ "print states.entropy_rate('forward')\n", "print states.entropy_rate('right')\n", "print states.entropy_rate('left')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
ini-python-course/ss15
notebooks/Linear Regression.ipynb
1
6118
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Linear Regression" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial shows how simple it is to implement a linear regression in python.\n", "\n", "So a regression is about fitting a function (in the linear case a line) to given data points. Therefore the reconstruction cost is minimized such that for all datapoints x the squared distanze between its target value y and the function value f(x) of the fitted curve is minimal.\n", "\n", "1) We need some data so create an array x with shape (100,1) that contains the numbers from -5 to 5.\n", "\n", "2) Initialize the random number generator of numpy to 42.\n", "\n", "3) Now add Gaussian random noise to x with a standard deviation of 1 and store the result in an array y.\n", "\n", "4) Plot the datapoints as yellow dots in the range $x\\in[-10,10]$ and $y\\in[-10,10]$" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "# your code here" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# our solution\n", "from solutions import *\n", "decrypt_solution(solution_regression_1, 'foo')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A linear regression for datapoint matrix $X$ ($D \\times N$, D datapoints and N input dimensions) and target matrix $Y$ ($D \\times M$, D datapoints and M output dimensions) is defined as:\n", "\n", "$min \\langle \\frac{1}{2}\\left(\\vec{\\vec{A}}\\vec{x}-\\vec{y}\\right)^2 \\rangle_d = min \\frac{1}{2}\\frac{1}{D}\\sum_d^{D} \\sum_i^{N} \\sum_j^M \\left(a_{ij} x_{di}-y_{dj}\\right)^2$\n", "\n", "where $\\langle \\cdot \\rangle_d$ is the average over the Training data. \n", "\n", "We ignore the bias value for now!\n", "\n", "1) Set the derivative to zero and solve the equation for $A$ to get the optima $A^*$. (Hint: If you have problems with the closed form solution with abitray dimensions, first solve the equation for 1D input and output)\n", "\n", "2) Now plot the result" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "# your code here" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# our solution\n", "from solutions import *\n", "decrypt_solution(solution_regression_2, 'foo')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A common way to integrate a bias value for many machine learning methods is to add a dimension which is constant one for all datapoints!\n", "\n", "1) Modify the code by adding a second constant dimension to x and add 10 to y to shift the datapoints verctically.\n", "\n", "2) Now plot the result in the range $x\\in[-10,10]$ and $y\\in[0,20]$, notice that you have to select the first dimension of x in order not to plot the constant dimension!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "# your code here" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# our solution\n", "from solutions import *\n", "decrypt_solution(solution_regression_3, 'foo')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By using a polynomial expansion of x we can fit a polynome to the data.\n", "\n", "Fit a ploynome of degree 5 to the data " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "y = np.cos(x[:,0])+np.random.randn(100)*0.5" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "# your code here" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# our solution\n", "from solutions import *\n", "decrypt_solution(solution_regression_4, 'foo')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now perform the same using the linear regression function np.polyfit(x,y,5) of numpy. Notice that x,y are 1D arrays here! " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "# your code here" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# our solution\n", "from solutions import *\n", "decrypt_solution(solution_regression_5, 'foo')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
balmandhunter/jupyter-tips-and-tricks
notebooks/Data_Cleaning.ipynb
4
23404
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Clean data\n", "\n", "Coal mining data from [eia.gov](http://www.eia.gov/coal/data.cfm#prices)\n", "\n", "Combining and cleaning the raw csv files into a cleaned data set and coherent database. \n", "\n", "Generally a good idea to have a separate data folder with the raw data.\n", "\n", "When you clean the raw data, leave the raw in place, and create cleaned version with the steps included (ideal situation for Notebook)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/json": { "Software versions": [ { "module": "Python", "version": "2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]" }, { "module": "IPython", "version": "3.1.0" }, { "module": "OS", "version": "Darwin 14.3.0 x86_64 i386 64bit" }, { "module": "numpy", "version": "1.9.2" }, { "module": "scipy", "version": "0.15.1" }, { "module": "matplotlib", "version": "1.4.3" }, { "module": "pandas", "version": "0.16.1" } ] }, "text/html": [ "<table><tr><th>Software</th><th>Version</th></tr><tr><td>Python</td><td>2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]</td></tr><tr><td>IPython</td><td>3.1.0</td></tr><tr><td>OS</td><td>Darwin 14.3.0 x86_64 i386 64bit</td></tr><tr><td>numpy</td><td>1.9.2</td></tr><tr><td>scipy</td><td>0.15.1</td></tr><tr><td>matplotlib</td><td>1.4.3</td></tr><tr><td>pandas</td><td>0.16.1</td></tr><tr><td colspan='2'>Tue Jun 02 19:34:55 2015 PDT</td></tr></table>" ], "text/latex": [ "\\begin{tabular}{|l|l|}\\hline\n", "{\\bf Software} & {\\bf Version} \\\\ \\hline\\hline\n", "Python & 2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)] \\\\ \\hline\n", "IPython & 3.1.0 \\\\ \\hline\n", "OS & Darwin 14.3.0 x86\\_64 i386 64bit \\\\ \\hline\n", "numpy & 1.9.2 \\\\ \\hline\n", "scipy & 0.15.1 \\\\ \\hline\n", "matplotlib & 1.4.3 \\\\ \\hline\n", "pandas & 0.16.1 \\\\ \\hline\n", "\\hline \\multicolumn{2}{|l|}{Tue Jun 02 19:34:55 2015 PDT} \\\\ \\hline\n", "\\end{tabular}\n" ], "text/plain": [ "Software versions\n", "Python 2.7.10 64bit [GCC 4.2.1 (Apple Inc. build 5577)]\n", "IPython 3.1.0\n", "OS Darwin 14.3.0 x86_64 i386 64bit\n", "numpy 1.9.2\n", "scipy 0.15.1\n", "matplotlib 1.4.3\n", "pandas 0.16.1\n", "Tue Jun 02 19:34:55 2015 PDT" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# %install_ext http://raw.github.com/jrjohansson/version_information/master/version_information.py\n", "%load_ext version_information\n", "%reload_ext version_information\n", "%version_information numpy, scipy, matplotlib, pandas" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/Users/jonathan/github/jupyter-best-practices/notebooks\r\n" ] } ], "source": [ "!pwd" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# The cleaned data file is saved here:\n", "output_file = \"../data/coal_prod_cleaned.csv\"" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "df1 = pd.read_csv(\"../data/coal_prod_2002.csv\", index_col=\"MSHA_ID\")\n", "df2 = pd.read_csv(\"../data/coal_prod_2003.csv\", index_col=\"MSHA_ID\")\n", "df3 = pd.read_csv(\"../data/coal_prod_2004.csv\", index_col=\"MSHA_ID\")\n", "df4 = pd.read_csv(\"../data/coal_prod_2005.csv\", index_col=\"MSHA_ID\")\n", "df5 = pd.read_csv(\"../data/coal_prod_2006.csv\", index_col=\"MSHA_ID\")\n", "df6 = pd.read_csv(\"../data/coal_prod_2007.csv\", index_col=\"MSHA_ID\")\n", "df7 = pd.read_csv(\"../data/coal_prod_2008.csv\", index_col=\"MSHA_ID\")\n", "df8 = pd.read_csv(\"../data/coal_prod_2009.csv\", index_col=\"MSHA_ID\")\n", "df9 = pd.read_csv(\"../data/coal_prod_2010.csv\", index_col=\"MSHA_ID\")\n", "df10 = pd.read_csv(\"../data/coal_prod_2011.csv\", index_col=\"MSHA_ID\")\n", "df11 = pd.read_csv(\"../data/coal_prod_2012.csv\", index_col=\"MSHA_ID\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "dframe = pd.concat((df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(['Indepedent Producer Operator', 'Operating Subsidiary', 'Contractor'], dtype=object)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Noticed a probable typo in the data set: \n", "dframe['Company_Type'].unique()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Average_Employees</th>\n", " <th>Company_Type</th>\n", " <th>Labor_Hours</th>\n", " <th>Mine_Basin</th>\n", " <th>Mine_County</th>\n", " <th>Mine_Name</th>\n", " <th>Mine_State</th>\n", " <th>Mine_Status</th>\n", " <th>Mine_Type</th>\n", " <th>Operating_Company</th>\n", " <th>Operating_Company_Address</th>\n", " <th>Operation_Type</th>\n", " <th>Production_short_tons</th>\n", " <th>Union_Code</th>\n", " <th>Year</th>\n", " </tr>\n", " <tr>\n", " <th>MSHA_ID</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>102838</th>\n", " <td>4</td>\n", " <td>Independent Producer Operator</td>\n", " <td>2712</td>\n", " <td>Appalachia Southern</td>\n", " <td>Bibb</td>\n", " <td>Hebron Mine</td>\n", " <td>Alabama</td>\n", " <td>Permanently abandoned</td>\n", " <td>Surface</td>\n", " <td>Birmingham Coal &amp; Coke Company</td>\n", " <td>2477 Valleydale Rd. S. B3, Birmingham, AL 35244</td>\n", " <td>Mine only</td>\n", " <td>10572</td>\n", " <td>NaN</td>\n", " <td>2002</td>\n", " </tr>\n", " <tr>\n", " <th>103184</th>\n", " <td>5</td>\n", " <td>Independent Producer Operator</td>\n", " <td>2480</td>\n", " <td>Appalachia Southern</td>\n", " <td>Fayette</td>\n", " <td>Berry Mine</td>\n", " <td>Alabama</td>\n", " <td>Temporarily closed</td>\n", " <td>Surface</td>\n", " <td>Midas Coal Company Incorporate</td>\n", " <td>401 10th Avenue, S. E, Cullman, AL 35055</td>\n", " <td>Mine only</td>\n", " <td>9725</td>\n", " <td>NaN</td>\n", " <td>2002</td>\n", " </tr>\n", " <tr>\n", " <th>100329</th>\n", " <td>55</td>\n", " <td>Operating Subsidiary</td>\n", " <td>123618</td>\n", " <td>Appalachia Southern</td>\n", " <td>Jefferson</td>\n", " <td>Concord Mine</td>\n", " <td>Alabama</td>\n", " <td>Active</td>\n", " <td>Underground</td>\n", " <td>U S Steel Mining Company Llc</td>\n", " <td>8800 Oak Grove Mine Road, Adger, AL 35006</td>\n", " <td>Preparation Plant</td>\n", " <td>0</td>\n", " <td>United Mine Workers of America</td>\n", " <td>2002</td>\n", " </tr>\n", " <tr>\n", " <th>100851</th>\n", " <td>331</td>\n", " <td>Operating Subsidiary</td>\n", " <td>748182</td>\n", " <td>Appalachia Southern</td>\n", " <td>Jefferson</td>\n", " <td>Oak Grove Mine</td>\n", " <td>Alabama</td>\n", " <td>Active</td>\n", " <td>Underground</td>\n", " <td>U S Steel Mining Company Llc</td>\n", " <td>8800 Oak Grove Mine Rd, Adger, AL 35006</td>\n", " <td>Mine only</td>\n", " <td>1942153</td>\n", " <td>United Mine Workers of America</td>\n", " <td>2002</td>\n", " </tr>\n", " <tr>\n", " <th>102354</th>\n", " <td>28</td>\n", " <td>Independent Producer Operator</td>\n", " <td>55306</td>\n", " <td>Appalachia Southern</td>\n", " <td>Jefferson</td>\n", " <td>Lindbergh</td>\n", " <td>Alabama</td>\n", " <td>Active</td>\n", " <td>Surface</td>\n", " <td>C &amp; H Mining Company Inc</td>\n", " <td>P.O. Box 70250, Tuscaloosa, AL 35407</td>\n", " <td>Mine only</td>\n", " <td>168446</td>\n", " <td>NaN</td>\n", " <td>2002</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Average_Employees Company_Type Labor_Hours \\\n", "MSHA_ID \n", "102838 4 Independent Producer Operator 2712 \n", "103184 5 Independent Producer Operator 2480 \n", "100329 55 Operating Subsidiary 123618 \n", "100851 331 Operating Subsidiary 748182 \n", "102354 28 Independent Producer Operator 55306 \n", "\n", " Mine_Basin Mine_County Mine_Name Mine_State \\\n", "MSHA_ID \n", "102838 Appalachia Southern Bibb Hebron Mine Alabama \n", "103184 Appalachia Southern Fayette Berry Mine Alabama \n", "100329 Appalachia Southern Jefferson Concord Mine Alabama \n", "100851 Appalachia Southern Jefferson Oak Grove Mine Alabama \n", "102354 Appalachia Southern Jefferson Lindbergh Alabama \n", "\n", " Mine_Status Mine_Type Operating_Company \\\n", "MSHA_ID \n", "102838 Permanently abandoned Surface Birmingham Coal & Coke Company \n", "103184 Temporarily closed Surface Midas Coal Company Incorporate \n", "100329 Active Underground U S Steel Mining Company Llc \n", "100851 Active Underground U S Steel Mining Company Llc \n", "102354 Active Surface C & H Mining Company Inc \n", "\n", " Operating_Company_Address Operation_Type \\\n", "MSHA_ID \n", "102838 2477 Valleydale Rd. S. B3, Birmingham, AL 35244 Mine only \n", "103184 401 10th Avenue, S. E, Cullman, AL 35055 Mine only \n", "100329 8800 Oak Grove Mine Road, Adger, AL 35006 Preparation Plant \n", "100851 8800 Oak Grove Mine Rd, Adger, AL 35006 Mine only \n", "102354 P.O. Box 70250, Tuscaloosa, AL 35407 Mine only \n", "\n", " Production_short_tons Union_Code Year \n", "MSHA_ID \n", "102838 10572 NaN 2002 \n", "103184 9725 NaN 2002 \n", "100329 0 United Mine Workers of America 2002 \n", "100851 1942153 United Mine Workers of America 2002 \n", "102354 168446 NaN 2002 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Correcting the Company_Type\n", "dframe.loc[dframe['Company_Type'] == 'Indepedent Producer Operator', 'Company_Type'] = 'Independent Producer Operator'\n", "dframe.head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Average_Employees</th>\n", " <th>Company_Type</th>\n", " <th>Labor_Hours</th>\n", " <th>Mine_Basin</th>\n", " <th>Mine_County</th>\n", " <th>Mine_Name</th>\n", " <th>Mine_State</th>\n", " <th>Mine_Status</th>\n", " <th>Mine_Type</th>\n", " <th>Operating_Company</th>\n", " <th>Operating_Company_Address</th>\n", " <th>Operation_Type</th>\n", " <th>Production_short_tons</th>\n", " <th>Union_Code</th>\n", " <th>Year</th>\n", " </tr>\n", " <tr>\n", " <th>MSHA_ID</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>103117</th>\n", " <td>50</td>\n", " <td>Independent Producer Operator</td>\n", " <td>67199</td>\n", " <td>Appalachia Southern</td>\n", " <td>Cullman</td>\n", " <td>Mine #2</td>\n", " <td>Alabama</td>\n", " <td>Active</td>\n", " <td>Surface</td>\n", " <td>Twin Pines Coal Company Inc</td>\n", " <td>1874 County Road 15, Bremen, AL 35503</td>\n", " <td>Mine only</td>\n", " <td>177381</td>\n", " <td>NaN</td>\n", " <td>2003</td>\n", " </tr>\n", " <tr>\n", " <th>103246</th>\n", " <td>4</td>\n", " <td>Independent Producer Operator</td>\n", " <td>11075</td>\n", " <td>Appalachia Southern</td>\n", " <td>Franklin</td>\n", " <td>Bear Creek</td>\n", " <td>Alabama</td>\n", " <td>Active</td>\n", " <td>Surface</td>\n", " <td>Birmingham Coal &amp; Coke Co., In</td>\n", " <td>P.O. Box 354, Lynn, AL 35575</td>\n", " <td>Mine only</td>\n", " <td>46049</td>\n", " <td>NaN</td>\n", " <td>2003</td>\n", " </tr>\n", " <tr>\n", " <th>103006</th>\n", " <td>3</td>\n", " <td>Independent Producer Operator</td>\n", " <td>5161</td>\n", " <td>Appalachia Southern</td>\n", " <td>Jackson</td>\n", " <td>Bledsoe Mine No 1</td>\n", " <td>Alabama</td>\n", " <td>Mine closed by MSHA</td>\n", " <td>Underground</td>\n", " <td>A L Select Inc</td>\n", " <td>P.O. Box 864, Stevenson, AL 35772</td>\n", " <td>Mine only</td>\n", " <td>500</td>\n", " <td>NaN</td>\n", " <td>2003</td>\n", " </tr>\n", " <tr>\n", " <th>103183</th>\n", " <td>8</td>\n", " <td>Independent Producer Operator</td>\n", " <td>19348</td>\n", " <td>Appalachia Southern</td>\n", " <td>Jackson</td>\n", " <td>Henager</td>\n", " <td>Alabama</td>\n", " <td>Active</td>\n", " <td>Surface</td>\n", " <td>Gtm Mining Corporation</td>\n", " <td>15693 Alabama Highway 71, Pisgah, AL 35765</td>\n", " <td>Mine only</td>\n", " <td>55187</td>\n", " <td>NaN</td>\n", " <td>2003</td>\n", " </tr>\n", " <tr>\n", " <th>100329</th>\n", " <td>23</td>\n", " <td>Operating Subsidiary</td>\n", " <td>52009</td>\n", " <td>Appalachia Southern</td>\n", " <td>Jefferson</td>\n", " <td>Concord Mine</td>\n", " <td>Alabama</td>\n", " <td>Active</td>\n", " <td>Surface</td>\n", " <td>Oak Grove Resources, Llc</td>\n", " <td>8800 Oak Grove Mine Road, Adger, AL 35006</td>\n", " <td>Preparation Plant</td>\n", " <td>0</td>\n", " <td>United Mine Workers of America</td>\n", " <td>2003</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Average_Employees Company_Type Labor_Hours \\\n", "MSHA_ID \n", "103117 50 Independent Producer Operator 67199 \n", "103246 4 Independent Producer Operator 11075 \n", "103006 3 Independent Producer Operator 5161 \n", "103183 8 Independent Producer Operator 19348 \n", "100329 23 Operating Subsidiary 52009 \n", "\n", " Mine_Basin Mine_County Mine_Name Mine_State \\\n", "MSHA_ID \n", "103117 Appalachia Southern Cullman Mine #2 Alabama \n", "103246 Appalachia Southern Franklin Bear Creek Alabama \n", "103006 Appalachia Southern Jackson Bledsoe Mine No 1 Alabama \n", "103183 Appalachia Southern Jackson Henager Alabama \n", "100329 Appalachia Southern Jefferson Concord Mine Alabama \n", "\n", " Mine_Status Mine_Type Operating_Company \\\n", "MSHA_ID \n", "103117 Active Surface Twin Pines Coal Company Inc \n", "103246 Active Surface Birmingham Coal & Coke Co., In \n", "103006 Mine closed by MSHA Underground A L Select Inc \n", "103183 Active Surface Gtm Mining Corporation \n", "100329 Active Surface Oak Grove Resources, Llc \n", "\n", " Operating_Company_Address Operation_Type \\\n", "MSHA_ID \n", "103117 1874 County Road 15, Bremen, AL 35503 Mine only \n", "103246 P.O. Box 354, Lynn, AL 35575 Mine only \n", "103006 P.O. Box 864, Stevenson, AL 35772 Mine only \n", "103183 15693 Alabama Highway 71, Pisgah, AL 35765 Mine only \n", "100329 8800 Oak Grove Mine Road, Adger, AL 35006 Preparation Plant \n", "\n", " Production_short_tons Union_Code Year \n", "MSHA_ID \n", "103117 177381 NaN 2003 \n", "103246 46049 NaN 2003 \n", "103006 500 NaN 2003 \n", "103183 55187 NaN 2003 \n", "100329 0 United Mine Workers of America 2003 " ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dframe[dframe.Year == 2003].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Final Cleaned Data Product" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "dframe.to_csv(output_file, )" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
erinspace/share_tutorials
1_SHARE_API_Basics_py3.ipynb
1
42984
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Calling the SHARE API\n", "----\n", "Here are some working examples of how to query the current SHARE database for individual results, metrics, and statistics.\n", "\n", "These particular queries are just examples, and the data is open for anyone to use, so feel free to make your own and experiment!\n", "\n", "Soon, we'll need a URL to access the SHARE Search API\n", "\n", "If you want to learn more about Python, the language that we are using to access the API and play with the data, these are a few great guides:\n", "+ [The Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)\n", "+ [Code Academy Python](https://www.codecademy.com/learn/python)\n", "+ [The Python Tutorial](https://docs.python.org/3/tutorial/index.html)\n", "+ [SoloLearn Python -- App for Android](https://play.google.com/store/apps/details?id=com.sololearn.python&hl=en)\n", "+ [SoloLearn Python -- App for iOS](https://itunes.apple.com/us/app/learn-python-pro/id953972812?mt=8)\n", "\n", "And a quick introduction to Jupyter Notebooks:\n", "+ [Running the Jupyter Notebook](https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html)\n", "+ [Basics of Jupyter Notebook](https://www.packtpub.com/books/content/basics-jupyter-notebook-and-python)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "SHARE_API = 'https://staging-share.osf.io/api/search/abstractcreativework/_search'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The SHARE Search Schema\n", "\n", "The SHARE search API is built on a tool called elasticsearch. It lets you search a subset of SHARE's normalized metadata in a simple format.\n", "\n", "Here are the fields available in SHARE's elasticsearch endpoint:\n", "\n", " - 'title'\n", " - 'language'\n", " - 'subject'\n", " - 'description'\n", " - 'date'\n", " - 'date_created'\n", " - 'date_modified\n", " - 'date_updated'\n", " - 'date_published'\n", " - 'tags'\n", " - 'links'\n", " - 'awards'\n", " - 'venues'\n", " - 'sources'\n", " - 'contributors'\n", "\n", "You can see a formatted version of the base results from the API by visiting the [SHARE Search API URL](https://staging-share.osf.io/api/search/abstractcreativework/_search)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Service Names for Reference\n", "----\n", "Each provider harvested from has a specific . Let's make an API call to generate a table to get all of those \"internal\" names, along with the official name of the repository that they represent.\n", "\n", "The SHARE API has different endpoints. One of those endpoints returns a list of all of the providers that SHARE is harvesting from, along with their internal names, official names, links to their homepages, and a simple version of an icon representing their service, in a parsable format called json.\n", "\n", "Let's make a call to that API endpoint using the requests libarary, get the json data, and print out all of the shortnames and longnames." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Here are the first 10 Providers:\n", "Research Online @ University of Wollongong\n", "http://ro.uow.edu.au\n", "au.uow\n", "\n", "Ghent University Academic Bibliography\n", "https://biblio.ugent.be/\n", "be.ghent\n", "\n", "Pontifical Catholic University of Rio de Janeiro\n", "http://www.maxwell.vrac.puc-rio.br\n", "br.pcurio\n", "\n", "Lake Winnipeg Basin Information Network\n", "http://130.179.67.140\n", "ca.lwbin\n", "\n", "PAPYRUS - Dépôt institutionnel de l'Université de Montréal\n", "http://papyrus.bib.umontreal.ca\n", "ca.umontreal\n", "\n", "Western University\n", "http://ir.lib.uwo.ca\n", "ca.uwo\n", "\n", "BioMed Central\n", "http://www.springer.com/us/\n", "com.biomedcentral\n", "\n", "Social Science Research Network\n", "http://papers.ssrn.com/\n", "com.dailyssrn\n", "\n", "figshare\n", "https://figshare.com/\n", "com.figshare\n", "\n", "Nature Publishing Group\n", "http://www.nature.com/\n", "com.nature\n", "\n" ] } ], "source": [ "# Requests library allows you to send organic, grass-fed HTTP/1.1 requests, no need to manually add query strings \n", " # to your URLs, or to form-encode your POST data. Docs: http://docs.python-requests.org/en/master/\n", "import requests\n", "\n", "# Json library parses JSON from strings or files. The library parses JSON into a Python dictionary or list. \n", " # It can also convert Python dictionaries or lists into JSON strings. \n", " # https://docs.python.org/2.7/library/json.html\n", "import json\n", "\n", "# This takes the URL and puts it into a variable (so we only need to ever reference this variable, \n", " # and so we don't have to repeat adding this URL when we want to work with the data)\n", "SHARE_PROVIDERS = 'https://staging-share.osf.io/api/providers/'\n", "\n", "# this requests the data from the SHARE_PROVIDERS and uses the json library to parse it into this list variable\n", "data = requests.get(SHARE_PROVIDERS).json()\n", "\n", "# literally prints out the sentence in the quotes on the screen\n", "print('Here are the first 10 Providers:')\n", "\n", "# this is a for loop (https://wiki.python.org/moin/ForLoop) to repeat the same tasks for each of the items in the \n", " # list of our SHARE providers (what we put into the variable \"data\").\n", "# for every item (called 'source' below) in the list, we print out the title, website, and provider name, \n", " # formatted so each is on a new line (\\n)\n", "for source in data['results']:\n", " print(\n", " '{}\\n{}\\n{}\\n'.format(\n", " source['long_title'],\n", " source['home_page'],\n", " source['provider_name']\n", " )\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### SHARE Schema\n", "\n", "You can make queries against any of the fields defined in the [SHARE Schema](https://github.com/CenterForOpenScience/SHARE-Schema/blob/master/share.yaml). If we were able to harvest the information from the original source, it should appear in SHARE. However, not all fields are required for every document. \n", "\n", "Required fields include:\n", "- title\n", "- contributors\n", "- uris\n", "- providerUpdatedDateTime\n", "\n", "We add some information after each document is harvested inside the field shareProperties, including:\n", "- source (where the document was originally harvested)\n", "- docID (a unique identifier for that object from that source)\n", "\n", "These two fields can be combined to make a unique document identifier." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Simple Queries" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's get the first 3 results from the most basic query - the first page of the most recently updated research release events in SHARE.\n", "\n", "We'll use the URL parsing library furl to keep track of all of our arguments to the URL, because we'll be modifying them as we go along. We'll print the URL as we go to take a look at it, so we know what we're requesting.\n", "\n", "We'll print out the result's title and sources where it appears." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The request URL is https://staging-share.osf.io/api/search/abstractcreativework/_search?size=3\n", "----------\n", "LEDAPS corrected Landsat Enhanced Thematic Mapper image data for Shortgrass Steppe collected on 2011-06-17 -- from ['providers.org.datacite']\n", "Test entry from ezid service for identifier: doi:10.6085//TEST/20152611351448160.0758426051207266 -- from ['providers.org.datacite']\n", "LEDAPS corrected Landsat Enhanced Thematic Mapper image data for Shortgrass Steppe collected on 1990-04-20 -- from ['providers.org.datacite']\n" ] } ], "source": [ "# furl is a Python library that allows you to easily manipulate URLs. https://github.com/gruns/furl\n", "import furl\n", "\n", "# In cell 1, we put the URL for the SHARE API into the variable SHARE_API. We can use it even down here!\n", " # We are parsing it using furl and putting it into a new variable called search_url\n", "search_url = furl.furl(SHARE_API)\n", "\n", "# We are limiting the arguments that we can attach to the URL to 3 -- so we grab the first 3 entries from the API\n", "search_url.args['size'] = 3\n", "\n", "# We are requsting the information from the search_url and parsing the JSON that we requested and got back \n", " # (requests.get!) like we did in cell 2. We put it into this list variable \n", "recent_results = requests.get(search_url.url).json()\n", "\n", "# This is called a 2 dimensional array -- a list that looks kind of like a matrix. A list can store other lists. \n", " # This is a way to create two-dimensional (2D) lists in Python -- 2Dlist=[hi,my,name,is,erin][but,my,name,is,vicky]. We can print out 2Dlist[1][4] and we would see \"my Vicky\" because we start counting at 0 instead of 1\n", "recent_results = recent_results['hits']['hits']\n", "\n", "# we need to do this to initialize/define the list -- look at this for more information: \n", " # http://stackoverflow.com/questions/6667201/how-to-define-two-dimensional-array-in-python\n", "recent_results\n", "\n", "#We are printing out on the screen the variable search_url\n", "print('The request URL is {}'.format(search_url.url))\n", "\n", "#This is just so we have a nice visual queue between the url that we searched and the actual data we are grabbing\n", "print('----------')\n", "\n", "#Another for loop! For all of the items in the results we just grabbed, we are printing out the variables \n", " # called source and title\n", "for result in recent_results:\n", " print(\n", " '{} -- from {}'.format(\n", " result['_source']['title'],\n", " result['_source']['sources']\n", " )\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's limit that query to only documents mentioning \"giraffes\" somewhere in the title, description, or in any of the metadata. We'd do that by adding a query search term." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The request URL is https://staging-share.osf.io/api/search/abstractcreativework/_search?size=3&q=giraffes\n", "---------\n", "Genome reveals why giraffes have long necks -- from ['providers.org.crossref']\n", "Odd creature was ancient ancestor of today’s giraffes -- from ['providers.org.crossref']\n", "Genome reveals why giraffes have long necks -- from ['providers.com.nature']\n" ] } ], "source": [ "# we are reusing that variable search_url from the cell above! We are querying (hence the args['q']) the API to try \n", " # and get items that have the word 'giraffes' in them\n", "search_url.args['q'] = 'giraffes'\n", "\n", "# We are requsting the information from the search_url and parsing the JSON that we requested and got back \n", " # (requests.get!) like we did in cell 2. We put it into this list variable \n", "recent_results = requests.get(search_url.url).json()\n", "\n", "# This is called a 2 dimensional array -- a list that looks kind of like a matrix. A list can store other lists. \n", " # This is a way to create two-dimensional (2D) lists in Python -- \n", " # Exmaple: 2Dlist=[hi,my,name,is,erin][but,my,name,is,vicky]. We can print out 2Dlist[1][4] and we would see \n", " # \"my Vicky\" because we start counting lists at 0 instead of 1 (computer science quirk)\n", "recent_results = recent_results['hits']['hits']\n", "\n", "# We are printing out on the screen the variable search_url\n", "print('The request URL is {}'.format(search_url.url))\n", "\n", "# This is just so we have a nice visual queue between the url that we searched and the actual data we are grabbing\n", "print('---------')\n", "\n", "# Another for loop! For all of the items in the results we just grabbed, we are printing out the entries that have \n", " # the keyword 'giraffes'\n", "for result in recent_results:\n", " print(\n", " '{} -- from {}'.format(\n", " result['_source']['title'],\n", " result['_source']['sources']\n", " )\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's search for documents from the source CrossRef" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The request URL is https://staging-share.osf.io/api/search/abstractcreativework/_search?size=3&q=sources:providers.org.crossref\n", "---------\n", "Communicating Accessibility Resources Benefits Everyone -- from ['providers.org.crossref']\n", "The Devil Is in the Details -- from ['providers.org.crossref']\n", "Progression of coronary artery calcification by cardiac computed tomography -- from ['providers.org.crossref']\n" ] } ], "source": [ "# we are reusing that variable search_url from the cell above! We are querying (see that arg again) for everything \n", " # from the source provide CrossRef\n", "search_url.args['q'] = 'sources:providers.org.crossref'\n", "\n", "# We are requsting the information from the search_url and parsing the JSON that we requested and got back \n", " # (requests.get!) like we did in cell 2. We put it into this list variable \n", "recent_results = requests.get(search_url.url).json()\n", "\n", "# This is called a 2 dimensional array -- a list that looks kind of like a matrix. A list can store other lists. \n", " # This is a way to create two-dimensional (2D) lists in Python -- \n", " # Example: 2Dlist=[hi,my,name,is,erin][but,my,name,is,vicky]. We can print out 2Dlist[1][4] \n", " # and we would see \"my Vicky\" because we start counting at 0 instead of 1 (computer science quirk)\n", "recent_results = recent_results['hits']['hits']\n", "\n", "# We are printing out on the screen the variable search_url\n", "print('The request URL is {}'.format(search_url.url))\n", "\n", "# This is just so we have a nice visual queue between the url that we searched and the actual data we are grabbing\n", "print('---------')\n", "\n", "# Another for loop! For all of the items in the results we just grabbed, we are printing out the entries that are \n", " # from CrossRef\n", "for result in recent_results:\n", " print(\n", " '{} -- from {}'.format(\n", " result['_source']['title'],\n", " result['_source']['sources']\n", " )\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's combine the two and find documents from CrossRef that mention giraffes" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The request URL is https://staging-share.osf.io/api/search/abstractcreativework/_search?size=3&q=sources:providers.org.crossref+AND+giraffes\n", "---------\n", "Genome reveals why giraffes have long necks -- from ['providers.org.crossref']\n", "Odd creature was ancient ancestor of today’s giraffes -- from ['providers.org.crossref']\n", "Of Caucasians, Asians, and Giraffes: The Influence of Categorization and Target Valence on Social Projection -- from ['providers.org.crossref']\n" ] } ], "source": [ "# we are reusing that variable search_url from the cell above! We are querying (see that arg again) for entries \n", " # that use the keyword \"giraffes\" from the source provider CrossRef\n", "search_url.args['q'] = 'sources:providers.org.crossref AND giraffes'\n", "\n", "# We are requsting the information from the search_url and parsing the JSON that we requested and got back \n", " # (requests.get!) like we did in cell 2. We put it into this list variable \n", "recent_results = requests.get(search_url.url).json()\n", "\n", "# This is called a 2 dimensional array -- a list that looks kind of like a matrix. A list can store other lists. \n", " # This is a way to create two-dimensional (2D) lists in Python -- 2Dlist=[hi,my,name,is,erin][but,my,name,is,vicky]. We can print out 2Dlist[1][4] and we would see \"my Vicky\" because we start counting at 0 instead of 1\n", "recent_results = recent_results['hits']['hits']\n", "\n", "# We are printing out on the screen the variable search_url\n", "print('The request URL is {}'.format(search_url.url))\n", "\n", "# This is just so we have a nice visual queue between the url that we searched and the actual data we are grabbing\n", "print('---------')\n", "\n", "# Another for loop! For all of the items in the results we just grabbed, we are printing out the entries that are \n", " # from CrossRef that are about giraffes\n", "for result in recent_results:\n", " print(\n", " '{} -- from {}'.format(\n", " result['_source']['title'],\n", " result['_source']['sources']\n", " )\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Complex Queries\n", "The SHARE Search API runs on elasticsearch - meaning that it can accept complicated queries that give you a wide variety of information.\n", "\n", "Here are some examples of how to make more complex queries using the raw elasticsearch results. You can read a [lot more about elasticsearch queries here](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'https://staging-share.osf.io/api/search/abstractcreativework/_search'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# reset the args so that we remove our old query arguments.\n", "search_url.args = None \n", "\n", "# Show the URL that we'll be requesting to make sure the args were cleared\n", "search_url.url " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Query Setup\n", "\n", "We can define a few functions that we can reuse to make querying simpler. Elasticsearch queries are passed through as json blobs specifying how to return the information you want." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#just like the json library from cell 2\n", "import json\n", "\n", "#this is called a function -- we DEFINE it (def) and name it something useful for us. It makes it easy for us to \n", " #reuse this later on by just calling the function by typng it's name, and adding the appropriate values in the \n", " #parentheses (called arguments). To learn more about functions: \n", " #http://www.tutorialspoint.com/python/python_functions.htm\n", " #http://docs.python-guide.org/en/latest/writing/style/?highlight=function\n", " \n", "# This is a helper function that will use the requests library, pass along the correct headers, and make the query\n", " # we want\n", "def query_share(url, query):\n", " headers = {'Content-Type': 'application/json'}\n", " data = json.dumps(query)\n", " return requests.post(url, headers=headers, data=data).json()\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Some Queries\n", "The SHARE schema has many spots for information, and many of the original sources do not provide this information. We can do a query to find out if a certain field exists or not within certain records. The SHARE API is set up to show an empty list if the field is empty.\n", "\n", "Let's query for the counts of documents that have a content in their tags field." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# we are making another list of all the items with tags\n", "tags_query = {\n", " \"query\": {\n", " \"exists\": {\n", " \"field\": \"tags\"\n", " }\n", " }\n", "}\n", "\n", "\n", "# we are making another list of all the items without tags\n", "missing_tags_query = {\n", " \"query\": {\n", " \"bool\": {\n", " \"must_not\": {\n", " \"exists\": {\n", " \"field\": \"tags\"\n", " }\n", " }\n", " } \n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2443294 results out of 4914457, or 49.72%, have tags.\n", "2471163 results out of 4914457, or 50.28%, do NOT have tags.\n", "------------\n", "As a little sanity check....\n", "49.71645901062925 + 50.28354098937074 = 100.00%\n" ] } ], "source": [ "# we are making a list of the results from searching items with tags\n", "with_tags = query_share(search_url.url, tags_query)\n", "\n", "# we are making a list of the results from searching items without tags\n", "missing_tags = query_share(search_url.url, missing_tags_query)\n", "\n", "#Gets the total number of hits from each search\n", "total_results = requests.get(search_url.url).json()['hits']['total']\n", "\n", "# getting the percentages of hits with and without tags, respectively, using the built-in float function, which\n", " # returns a float number (written with a decimal point dividing the integer and fractional parts.)\n", " # read more about float function: https://docs.python.org/3/library/functions.html#float\n", "with_tags_percent = (float(with_tags['hits']['total'])/total_results)*100\n", "missing_tags_percent = (float(missing_tags['hits']['total'])/total_results)*100\n", "\n", "\n", "# this simply prints out the list of results that have tags by iterating over the list we already made \"with_tags\"\n", " # it then prints out the percentage of total \n", "print(\n", " '{} results out of {}, or {}%, have tags.'.format(\n", " with_tags['hits']['total'],\n", " total_results,\n", " format(with_tags_percent, '.2f')\n", " )\n", ")\n", "\n", "# this simply prints out the list of results without tags by iterating over the list we already made \"missing_tags\"\n", " # it then prints out the percentage of tota\n", "print(\n", " '{} results out of {}, or {}%, do NOT have tags.'.format(\n", " missing_tags['hits']['total'],\n", " total_results,\n", " format(missing_tags_percent, '.2f')\n", " )\n", ")\n", "\n", "# Visual cue, printing the percentage of results with tags + percent with no tags (we make sure it equals 100)\n", "print('------------')\n", "print('As a little sanity check....')\n", "print('{} + {} = {}%'.format(with_tags_percent, missing_tags_percent, format(with_tags_percent + missing_tags_percent, '.2f')))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Using SHAREPA for SHARE Parsing and Analysis\n", "\n", "While you can always pass raw elasticsearch queries to the SHARE API, there is also a pip-installable python library that you can use that makes elasticsearch aggregations a little simpler. This library is called [sharepa - short for SHARE Parsing and Analysis](https://github.com/CenterForOpenScience/sharepa#sharepa)\n", "\n", "### Basic Actions\n", "\n", "A basic search will provide access to all documents in SHARE in 10 document slices.\n", "\n", "#### Count\n", "You can use sharepa and the basic search to get the total number of documents in SHARE" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "4914457" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Sharepa is a python client for browsing and analyzing SHARE data specifically using elasticsearch querying.\n", " # We can use this to aggregate, graph, and analyze the data. \n", " # Helpful Links:\n", " # https://github.com/CenterForOpenScience/sharepa\n", " # https://pypi.python.org/pypi/sharepa\n", " # here, we import the specific function from Sharepa called basic_search\n", "from sharepa import basic_search\n", "\n", "# this performs a basic search over the SHARE dataset and returns a count of the items in it\n", "basic_search.count()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Iterating Through Results\n", "Executing the basic search will send the actual basic query to the SHARE API and then let you iterate through results, 10 at a time." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LEDAPS corrected Landsat Enhanced Thematic Mapper image data for Shortgrass Steppe collected on 2011-06-17\n", "Test entry from ezid service for identifier: doi:10.6085//TEST/20152611351448160.0758426051207266\n", "LEDAPS corrected Landsat Enhanced Thematic Mapper image data for Shortgrass Steppe collected on 1990-04-20\n", "Chemical composition of essential oils of three Pistacia cultivars in Khorasan Razavi, Iran\n", "Test entry from ezid service for identifier: doi:10.6085//TEST/20152611351448190.5563383046761334\n", "Test entry from ezid service for identifier: doi:10.6085//TEST/20152611351448200.9788127569002799\n", "Test entry from ezid service for identifier: doi:10.6085//TEST/20152611351448150.3484667860365027\n", "Compiled Tree-ring Dates from the Southwestern United States (Unrestricted)\n", "None\n", "Area-based Amino Acid Composition for three types of interactions in the BNCP-CS dataset\n" ] } ], "source": [ "# this captures 10 items in the SHARE dataset -- that's what the basic search function is for\n", "results = basic_search.execute()\n", "\n", "# this prints out the 10 items we added to the list variable, results (above)\n", "for hit in results:\n", " print(hit.title)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we don't want 10 results, or we want to offset the results, we can use slices" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['providers.org.datacite']\n", "['providers.org.datacite']\n", "['providers.org.datacite']\n", "['providers.org.datacite']\n", "['providers.org.datacite']\n" ] } ], "source": [ "# this performs a basic search for items number 20-25 in the SHARE dataset (useful if you know where your things are\n", " # in SHARE dataset) \n", "results = basic_search[20:25].execute()\n", "\n", "# prints out the provider for the items capture in the list, results (above)\n", "for hit in results:\n", " print(hit.sources)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Advanced Search with sharepa\n", "\n", "You can make your own search object, which allows you to pass in custom queries for certain terms or SHARE fields. Queries are formed using [lucene query syntax](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax), just like we used in the above examples.\n", "\n", "This type of query accepts an exists field. Other options include a query_string, a match query, a multi-match query, a bool query, and any other query structure available in the elasticsearch API.\n", "\n", "We can see what that query that we're about to send to elasticsearch by using the pretty print helper function. You'll see that it looks very similar to the queries we defined by hand earlier." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\n", " \"query\": {\n", " \"exists\": {\n", " \"field\": \"tags\"\n", " }\n", " }\n", "}\n" ] } ], "source": [ "# Sharepa is a python client for browsing and analyzing SHARE data specifically using elasticsearch querying.\n", " # We can use this to aggregate, graph, and analyze the data. \n", " # Helpful Links:\n", " # https://github.com/CenterForOpenScience/sharepa\n", " # https://pypi.python.org/pypi/sharepa\n", " # here, we import the specific function from Sharepa called ShareSearch and pretty_print\n", "from sharepa import ShareSearch\n", "from sharepa.helpers import pretty_print\n", "\n", "#we just created a local name for ShareSearch function for us to use\n", "my_search = ShareSearch()\n", "\n", "# Lucene supports fielded data. When performing a search you can either specify a field, or use the default field. \n", "my_search = my_search.query(\n", " 'exists', # Type of query, will accept a lucene query string\n", " field='tags', # This lucene query string will find all documents that don't have tags\n", ")\n", "\n", "# this prints out (prettily!) our search, transformed into a dictionary data type\n", " # read more about dictionaries here: http://learnpythonthehardway.org/book/ex39.html\n", "pretty_print(my_search.to_dict())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When you execute that query, you can then iterate through the results the same way that you could with the simple search query." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['CDL.LTERNET', 'CDL', 'dataPackage', 'Dataset']\n", "['CDL.PISCO', 'CDL']\n", "['CDL.LTERNET', 'CDL', 'dataPackage', 'Dataset']\n", "['CDL.DIGSCI', 'CDL', 'Paper', 'Dataset']\n", "['CDL.PISCO', 'CDL']\n", "['CDL.PISCO', 'CDL']\n", "['CDL.PISCO', 'CDL']\n", "['CDL.DIGANT', 'CDL', 'Dataset']\n", "['TIB.R-GATE', 'TIB']\n", "['CDL.DIGSCI', 'CDL', 'Image']\n" ] } ], "source": [ "# we are taking the my_search variable from the cell above and executing the search, placing the results into a \n", " # new list called new_results\n", "new_results = my_search.execute()\n", "\n", "# this for loop prints out the tags for each item in the results we gathered \n", "for hit in new_results:\n", " print(hit.tags)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Debugging and Problem Solving\n", "\n", "Not everything always goes as planned when querying an unfamillar API. Here are some debugging and problem solving strategies when you're querying the SHARE API.\n", "\n", "### Schema issues\n", "The SHARE schema has a lot of parts, and much of the information is nested within sections. Making a query isn't always as straight forward as you might think, if you're not looking in the right part of the schema.\n", "\n", "Let's say you were trying to query for all SHARE documents that specify the language as not being in English.\n", "\n", "We'll guess as to what that query might be, and try to make it using sharepa." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# this creates a new search for us to use!\n", "language_search = ShareSearch()\n", "\n", "# this sets the search query we are using for our new search! all the items that aren't in english\n", "language_search = language_search.query(\n", " 'query_string', # Type of query, will accept a lucene query string\n", " query='NOT languages=english', # This lucene query string will find all documents that don't have tags\n", ")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "ename": "AttributeError", "evalue": "'Result' object has no attribute 'languages'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/Users/erin/miniconda3/envs/share_tutorials/lib/python3.5/site-packages/elasticsearch_dsl/utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, attr_name)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 120\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_wrap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_d_\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mattr_name\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 121\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mKeyError\u001b[0m: 'languages'", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-17-f7e8b99a9f64>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mhit\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mresults\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlanguages\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/Users/erin/miniconda3/envs/share_tutorials/lib/python3.5/site-packages/elasticsearch_dsl/utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, attr_name)\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 122\u001b[0m raise AttributeError(\n\u001b[0;32m--> 123\u001b[0;31m '%r object has no attribute %r' % (self.__class__.__name__, attr_name))\n\u001b[0m\u001b[1;32m 124\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__delattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattr_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAttributeError\u001b[0m: 'Result' object has no attribute 'languages'" ] } ], "source": [ "# this allows us to search through 10 results and find the languages of each\n", "results = language_search.execute()\n", "\n", "# for each item in results, print out the language it is in\n", "for hit in results:\n", " print(hit.languages)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So the result does not have an attribute called languages! Let's try to figure out what went wrong here.\n", "\n", "Step one could be that we are trying to find something that does NOT match a given parameter. Since languages is not required, this is returning results that do not include the languages result at all!\n", "\n", "So let's fix this up a bit to make sure that we're querying for items that specify language in the first place." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# let's try that again! creating a new search from the ShareSearch() function\n", "language_search = ShareSearch()\n", "\n", "# this sets up our new query: if the field called 'language' exists, grab those results\n", "language_search = language_search.filter(\n", " 'exists',\n", " field=\"language\"\n", ")\n", "\n", "# count the number of entries that have a language field\n", "language_search.count()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# grab the results of the search for a language field!\n", "results = language_search.execute()\n", "\n", "# Let's see how many documents have language results.\n", "print('There are {} documents with languages specified'.format(language_search.count()))\n", "\n", "print('Here are the languages for the first 10 results:')\n", "\n", "# for each item in results, print out the language it is in\n", "for hit in results:\n", " print(hit.language)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So now we're better equipped to add on to this filter, and then narrow down to results that are not in English.\n", "\n", "When we printed out the first few results, we might have noticed a second problem with our query -- going back to the [SHARE Schema](https://github.com/CenterForOpenScience/SHARE-Schema/blob/master/share.yaml), we might notice that there is a restriction on how languages are captured - as a three letter lowercase representation. Instead of \"english\" let's look for the three letter abbreviation - \"eng\"\n", "\n", "We can modify our new and improved language query by adding on another query to our started language_search. We'll use the elasticsearch query object Q, and invert it with a ~ symbol, and search for the term \"eng.\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "# Elasticsearch DSL is a high-level library whose aim is to help with writing and running queries against Elasticsearch.\n", " # Read more about elasticsearch here:\n", " # http://elasticsearch-dsl.readthedocs.io/en/latest/search_dsl.html\n", " # https://pypi.python.org/pypi/elasticsearch-dsl\n", " # https://github.com/elastic/elasticsearch-dsl-py\n", " # this imports the function Q from the library \n", "from elasticsearch_dsl import Q\n", "\n", "# sets up a new search -- for results that have english ('eng') in their language field\n", "language_search = language_search.query(~Q(\"term\", language=\"eng\"))\n", "\n", "# execute our search and throw it into a new list\n", "results = language_search.execute()\n", "\n", "# Let's see how many documents have language results that aren't eng\n", "print('There are {} documents that do not have \"eng\" listed.'.format(language_search.count()))\n", "\n", "print('Here are the languages for the first 10 results:')\n", "\n", "# Check out the first few results, make sure \"eng\" isn't in there\n", "for hit in results:\n", " print(hit.language)\n", " print(hit.title)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
vbsteja/code
Python/math/.ipynb_checkpoints/Health outcomes with Linear Regression-checkpoint.ipynb
1
2184
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from sklearn import datasets, linear_model, metrics\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import PolynomialFeatures\n", "import math, scipy, numpy as np\n", "from scipy import linalg" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_set = datasets.load_diabetes()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "x_trn,x_tst,y_trn,y_tst = train_test_split(data_set.data,data_set.target,test_size=0.2)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((353, 10), (89, 10), (353,), (89,))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_trn.shape,x_tst.shape,y_trn.shape,y_tst.shape" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "feature_names=['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "lr = linear_model.LinearRegression()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def regr_metrics(act, pred):\n", " return (math.sqrt(metrics.mean_squared_error(act, pred)), \n", " metrics.mean_absolute_error(act, pred))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
selimnairb/2014-02-25-swctest
lessons/swc-setdict/setdict-json-instructor.ipynb
1
11081
{ "metadata": { "name": "setdict-json-instructor" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Sets and Dictionaries in Python: JSON (Instructor Version)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Objectives\n", "\n", "* Correctly define \"JSON\" and give simple examples of valid JSON structures.\n", "* Describe JSON's strengths and weaknesses as a storage format.\n", "* Write code to read and write JSON-formatted data files using standard libraries." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Lesson\n", "\n", "The example above used two data file formats: one for storing molecular\n", "formulas, the other for storing inventory. Both formats were specific to\n", "this application, which means we needed to write, debug, document, and\n", "maintain functions to handle them. Those functions weren't particularly\n", "difficult to create, but they still took time to create, and if anyone\n", "ever wants to read our files in Java, MATLAB, or Perl, they'll have to\n", "write equivalent functions themselves.\n", "\n", "A growing number of programs avoid these problems by using a flexible\n", "data format called [JSON](glossary.html#json), which stands for\n", "\"JavaScript Object Notation\". Despite the name, it is a\n", "language-independent way to store nested data structures made up of\n", "strings, numbers, Booleans, lists, dictionaries, and the special value\n", "`null` (equivalent to Python's `None`)\u2014in short, the basic data types\n", "that almost every language supports. For example, let's convert a\n", "dictionary of scientists' birthdays to a string:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import json\n", "birthdays = {'Curie' : 1867, 'Hopper' : 1906, 'Franklin' : 1920}\n", "as_string = json.dumps(birthdays)\n", "print as_string\n", "print type(as_string)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "{\"Curie\": 1867, \"Hopper\": 1906, \"Franklin\": 1920}\n", "<type 'str'>\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "`json.dumps` doesn't seem to do much, but that's kind of the point: the\n", "textual representation of the data structure looks pretty much like what\n", "a programmer would type in to re-create it. The advantage is that this\n", "representation can be saved in a file:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "writer = open('/tmp/example.json', 'w')\n", "json.dump(birthdays, writer)\n", "writer.close()\n", "\n", "reader = open('/tmp/example.json', 'r')\n", "duplicate = json.load(reader)\n", "reader.close()\n", "\n", "print 'original:', birthdays" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "original: {'Curie': 1867, 'Hopper': 1906, 'Franklin': 1920}\n" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "print 'duplicate:', duplicate" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "duplicate: {u'Curie': 1867, u'Hopper': 1906, u'Franklin': 1920}\n" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "(Note that strings are stored as Unicode.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data read in is the same as the original:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print 'original == duplicate:', birthdays == duplicate" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "original == duplicate: True\n" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "But it is *not* the same object in memory:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print 'original is duplicate:', birthdays is duplicate" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "original is duplicate: False\n" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data file holds what we'd type in to create the data in a program,\n", "which makes it easy to edit by hand:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cat /tmp/example.json" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "{\"Curie\": 1867, \"Hopper\": 1906, \"Franklin\": 1920}" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "How is this different in practice from what we had? First, our inventory\n", "file now looks like this:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cat inventory-03.json" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "{\"He\" : 1, \"H\" : 4, \"O\" : 3}" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "while our formula files are:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cat formulas-03.json" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "{\"helium\" : {\"He\" : 1},\r\n", " \"water\" : {\"H\" : 2, \"O\" : 1},\r\n", " \"hydrogen\" : {\"H\" : 2}}" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Those aren't as intuitive for non-programmers as the original flat text\n", "files, but they're not too bad. The worst thing is the lack of comments:\n", "unfortunately\u2014very unfortunately\u2014the JSON format doesn't support them.\n", "(And note that JSON requires us to use a double-quote for strings:\n", "unlike Python, we cannot substitute single quotes.)\n", "\n", "The good news is that given files like these, we can rewrite our program\n", "as:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def main(inventory_file, formula_file):\n", " with open(inventory_file, 'r') as reader:\n", " inventory = json.load(reader)\n", " with open(formula_file, 'r') as reader:\n", " formulas = json.load(reader)\n", " counts = calculate_counts(inventory, formulas)\n", " show_counts(counts)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The two functions that read formula and inventory files have been\n", "replaced with a couple of lines each. Nothing else has to\n", "change, because the data structures loaded from the data files are\n", "exactly what we had before. The end result is 51 lines long compared to\n", "the 80 we started with, a reduction of more than a third." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h3>Nothing's Perfekt</h3>\n", "\n", "JSON's greatest weakness isn't its lack of support for comments, but the\n", "fact that it doesn't recognize and manage aliases. Instead, each\n", "occurrence of an aliased structure is treated as something brand new\n", "when data is being saved. For example:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "inner = ['name']\n", "outer = [inner, inner] # Creating an alias\n", "print outer\n", "print outer[0] is outer[1]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[['name'], ['name']]\n", "True\n" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "as_string = json.dumps(outer)\n", "duplicate = json.loads(as_string)\n", "print duplicate\n", "print duplicate[0] is duplicate[1]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[[u'name'], [u'name']]\n", "False\n" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The diagram below shows the difference between the original data\n", "structure (referred to by `outer`) and what winds up in `duplicate`. If\n", "aliases might be present in our data, and it's important to preserve\n", "their structure, we must either record the aliasing ourself (which is\n", "tricky), or use some other format. Luckily, a lot of data either doesn't\n", "contain aliases, or the aliasing in it isn't important.\n", "\n", "<img src=\"files/json_alias.png\" alt=\"Lack of Aliasing in JSON\" />" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Key Points\n", "\n", "* The JSON data format can represent arbitrarily-nested lists and dictionaries containing strings, numbers, Booleans, and `None`.\n", "* Using JSON reduces the code we have to write ourselves and improves interoperability with other programming languages.\n", "* JSON doesn't allow for comments, and doesn't handle aliasing." ] } ], "metadata": {} } ] }
bsd-2-clause
huazhisong/race_code
leetcode_ws/hash table/30. Substring with Concatenation of All Words.ipynb
1
3580
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "You are given a string, s, and a list of words, words, that are all of the same length. Find all starting indices of substring(s) in s that is a concatenation of each word in words exactly once and without any intervening characters.\n", "\n", "For example, given:\n", "s: \"barfoothefoobarman\"\n", "words: [\"foo\", \"bar\"]\n", "\n", "You should return the indices: [0,9].\n", "(order does not matter)." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class Solution(object):\n", " def findSubstring(self, s, words):\n", " \"\"\"\n", " 每次判断单词是否在words_set里面\n", " 需要注意的是bar的出现的次数比在words中多\n", " :type s: str\n", " :type words: List[str]\n", " :rtype: List[int]\n", " \"\"\"\n", " words_set = {}\n", " word_num = len(words)\n", " for word in words:\n", " if word not in words_set:\n", " words_set[word] = 1\n", " else:\n", " words_set[word] += 1\n", " word_len = len(words[0])\n", " res = []\n", " for i in range(len(s)+1-word_len * word_num):\n", " curr, j = {}, 0\n", " while j < word_num:\n", " word = s[i+j*word_len: i + j*word_len + word_len]\n", " if word not in words_set:\n", " break\n", " if word not in curr:\n", " curr[word] = 1\n", " else:\n", " curr[word] += 1\n", " if curr[word] > words_set[word]: break\n", " j+=1\n", " if j == word_num:\n", " res.append(i)\n", " return res\n", " " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[0, 9]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Solution().findSubstring(\"barfoothefoobarman\", [\"foo\", \"bar\"])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def all_sorted(s):\n", " if len(s) == 1:\n", " return s[0]\n", " else:\n", " return s[0]+all_sorted(s[1:])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'foobar'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_sorted([\"foo\", \"bar\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
mrocklin/streams
examples/fibonacci.ipynb
3
1268
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# A Stream of Fibonacci numbers" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from streamz import Stream\n", "source = Stream()\n", "\n", "s = source.sliding_window(2).map(sum)\n", "s.rate_limit(0.5).sink(source.emit)\n", "\n", "L = s.sink_to_list()\n", "s.sink(print)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "source.emit(0)\n", "source.emit(1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "L" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }
bsd-3-clause
bloomberg/bqplot
examples/Applications/Feature_Vector_Distribution-Iris-Digits.ipynb
2
18373
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Tutorial for building a feature vector distribution plot\n", "\n", "In this tutorial we will build an interactive widget using bqplot and ipywidgets. bqplot is a powerful interactive plotting library for jupyter. Its main power comes from how well integrated it is into the ipywidgets library. There are a few things you should understand before diving into this tutorial.\n", "\n", "\n", "### ipywidgets:\n", "\n", "* Widgets: Widgets python objects which link directly to their html counterpart allowing easy interaction between js,css,html and python.\n", "\n", "* Boxes: Boxes allow you to group widgets together, this can be either vertical or horizontally.\n", "\n", "### bqplot:\n", "\n", "\n", "* Figures: Figures are a canvas that you will mark on. Its best to think of the figure as another widget (which it is)\n", "\n", "* Marks: marks are things that you draw onto the figure, these are composed of a variety of chart types such as bars, lines, histograms etc. You can put a bunch of marks on a single figure.\n", "\n", "If you are used to matplotlib, the paradigm of how axis and scales are used in bqplot can be somewhat counterintuitive at first, so take some time to read the documentation and play around until you understand them. Once you do, they are very powerful when you want to link multiple plots together.\n", "\n", "* Axis: Axis describe what the lines around a figure will look like. Only figures have axis, marks don't.\n", "\n", "* Scales: The scale describes how ranges should be displayed ie. linear or logarithmic. Scales are used by both axis and marks. Their max and min can auto aujust to the data, or be set. Be careful, you can add an axis to a figure that has a different scale than the one a mark you are adding to the figure has.\n", "\n", "* Tooltips: These allow you to add information on hover. They only accept three fields 'name', 'x' and 'y'. So in this tutorial we put all of the infomration we want to show into the name column as a string.\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from ipywidgets import HBox, VBox, Dropdown\n", "from bqplot.marks import Scatter, Bars\n", "from bqplot.scales import LinearScale, OrdinalScale\n", "from bqplot.figure import Figure\n", "from bqplot import Tooltip\n", "from bqplot.axes import Axis\n", "import numpy as np\n", "\n", "# simple function to return the bins for the plot\n", "def get_h_bins(df, bins, f_lim):\n", " if f_lim:\n", " return np.arange(\n", " f_lim[\"min\"], f_lim[\"max\"], (f_lim[\"max\"] - f_lim[\"min\"]) / float(bins)\n", " )\n", " scale_max = int(df.describe().loc[\"max\"].max() + 1)\n", " scale_min = int(df.describe().loc[\"min\"].min() - 1)\n", " return np.arange(scale_min, scale_max, (scale_max - scale_min) / float(bins))\n", "\n", "\n", "def feature_vector_distribution(\n", " features, label_column, bins=25, group_columns=None, f_lim=None, colors=None\n", "):\n", " \"\"\"\n", " features (dataframe): a data frame of feature vectors along with a label column and other metadata\n", " label_column (str): the name of the column in the features dataframe that refers to the label infomration\n", " bins (int): the number of bins in the histograms\n", " group_columns (list): if you want other metadata in the tooltip, these columns will be added\n", " f_lim (dict): this sets the limits for max and min of the plots to a constant\n", " {'max':10, 'min':10}. otherwise defaults to the values of the current features\n", " which can be misleading.\n", " colors (list): list of colors to use. Internally has a list of 10. If the labels\n", " are longer you will need to pass your own\n", "\n", " \"\"\"\n", " dist = \"640px\"\n", " third_dist = \"213px\"\n", "\n", " if f_lim:\n", " sc_x = LinearScale(min=f_lim[\"min\"], max=f_lim[\"max\"])\n", " sc_y = LinearScale(min=f_lim[\"min\"], max=f_lim[\"max\"])\n", " else:\n", " sc_x = LinearScale()\n", " sc_y = LinearScale()\n", "\n", " scale_y = LinearScale(min=0)\n", "\n", " x_ord_legend = OrdinalScale()\n", " y_lin_legend = LinearScale()\n", "\n", " if group_columns is None:\n", " count_column = features.columns[1]\n", " group_columns = []\n", " else:\n", " count_column = group_columns[0]\n", "\n", " if colors is None:\n", " colors = [\n", " \"#E6B0AA\",\n", " \"#C39BD3\",\n", " \"#73C6B6\",\n", " \"#F7DC6F\",\n", " \"#F0B27A\",\n", " \"#D0D3D4\",\n", " \"#85929E\",\n", " \"#6E2C00\",\n", " \"#1A5276\",\n", " \"#17202A\",\n", " ]\n", " box_color = \"black\"\n", "\n", " feature_x = Dropdown(description=\"Feature 1\")\n", " feature_y = Dropdown(description=\"Feature 2\")\n", "\n", " feature_x.options = [\n", " x for x in features.columns if x not in [label_column] + group_columns\n", " ]\n", " feature_y.options = [\n", " x for x in features.columns if x not in [label_column] + group_columns\n", " ]\n", "\n", " feature1 = feature_x.options[0]\n", " feature2 = feature_y.options[1]\n", "\n", " feature_y.value = feature2\n", "\n", " tt = Tooltip(\n", " fields=[\"name\"], labels=[\", \".join([\"index\", label_column] + group_columns)]\n", " )\n", "\n", " scatters = []\n", " hists_y = []\n", " hists_x = []\n", "\n", " h_bins_x = get_h_bins(features[[feature1]], bins, f_lim)\n", " h_bins_y = get_h_bins(features[[feature2]], bins, f_lim)\n", "\n", " for index, group in enumerate(features.groupby([label_column])):\n", "\n", " # put the label column and any group column data in the tooltip\n", " names = []\n", " for row in range(group[1].shape[0]):\n", " names.append(\n", " \"{},\".format(row)\n", " + \",\".join(\n", " [\n", " str(x)\n", " for x in group[1][[label_column] + group_columns]\n", " .iloc[row]\n", " .values\n", " ]\n", " )\n", " )\n", "\n", " # create a scatter plot for each group\n", " scatters.append(\n", " Scatter(\n", " x=group[1][feature1].values,\n", " y=group[1][feature2].values,\n", " names=names,\n", " display_names=False,\n", " opacities=[0.5],\n", " default_size=30,\n", " scales={\"x\": sc_x, \"y\": sc_y},\n", " colors=[colors[index]],\n", " tooltip=tt,\n", " )\n", " )\n", "\n", " # create a histograms using a bar chart for each group\n", " # histogram plot for bqplot does not have enough options (no setting range, no setting orientation)\n", " h_y, h_x = np.histogram(group[1][feature1].values, bins=h_bins_x)\n", " hists_x.append(\n", " Bars(\n", " x=h_x,\n", " y=h_y,\n", " opacities=[0.3] * bins,\n", " scales={\"x\": sc_x, \"y\": scale_y},\n", " colors=[colors[index]],\n", " orientation=\"vertical\",\n", " )\n", " )\n", "\n", " h_y, h_x = np.histogram(group[1][feature2].values, bins=h_bins_y)\n", " hists_y.append(\n", " Bars(\n", " x=h_x,\n", " y=h_y,\n", " opacities=[0.3] * bins,\n", " scales={\"x\": sc_x, \"y\": scale_y},\n", " colors=[colors[index]],\n", " orientation=\"horizontal\",\n", " )\n", " )\n", "\n", " # legend will show the names of the labels as well as a total count of each\n", " legend_bar = Bars(\n", " x=features.groupby(label_column).count()[count_column].index,\n", " y=features.groupby(label_column).count()[count_column].values,\n", " colors=colors,\n", " opacities=[0.3] * 6,\n", " scales={\"x\": x_ord_legend, \"y\": y_lin_legend},\n", " orientation=\"horizontal\",\n", " )\n", "\n", " ax_x_legend = Axis(\n", " scale=x_ord_legend,\n", " tick_style={\"font-size\": 24},\n", " label=\"\",\n", " orientation=\"vertical\",\n", " tick_values=features.groupby(label_column).count()[count_column].index,\n", " )\n", "\n", " ax_y_legend = Axis(\n", " scale=y_lin_legend,\n", " orientation=\"horizontal\",\n", " label=\"Total\",\n", " color=box_color,\n", " num_ticks=4,\n", " )\n", "\n", " # these are blank axes that are used to fill in the border for the top and right of the figures\n", " ax_top = Axis(scale=sc_x, color=box_color, side=\"top\", tick_style={\"font-size\": 0})\n", " ax_right = Axis(\n", " scale=sc_x, color=box_color, side=\"right\", tick_style={\"font-size\": 0}\n", " )\n", " ax_left = Axis(\n", " scale=sc_x, color=box_color, side=\"left\", tick_style={\"font-size\": 0}\n", " )\n", " ax_bottom = Axis(\n", " scale=sc_x, color=box_color, side=\"bottom\", tick_style={\"font-size\": 0}\n", " )\n", " ax_top = Axis(scale=sc_x, color=box_color, side=\"top\", num_ticks=0)\n", " ax_right = Axis(scale=sc_x, color=box_color, side=\"right\", num_ticks=0)\n", " ax_left = Axis(scale=sc_x, color=box_color, side=\"left\", num_ticks=0)\n", " ax_bottom = Axis(scale=sc_x, color=box_color, side=\"bottom\", num_ticks=0)\n", "\n", " # scatter plot axis\n", " ax_x = Axis(label=feature1, scale=sc_x, color=box_color)\n", " ax_y = Axis(label=feature2, scale=sc_y, orientation=\"vertical\", color=box_color)\n", "\n", " # count column of histogram\n", " ax_count_vert = Axis(\n", " label=\"\", scale=scale_y, orientation=\"vertical\", color=box_color, num_ticks=5\n", " )\n", " ax_count_horiz = Axis(\n", " label=\"\", scale=scale_y, orientation=\"horizontal\", color=box_color, num_ticks=5\n", " )\n", "\n", " # histogram bin axis\n", " ax_hist_x = Axis(label=\"\", scale=sc_x, orientation=\"vertical\", color=box_color)\n", " ax_hist_y = Axis(label=\"\", scale=sc_x, orientation=\"horizontal\", color=box_color)\n", "\n", " # create figures for each plot\n", " f_scatter = Figure(\n", " axes=[ax_x, ax_y, ax_top, ax_right],\n", " background_style={\"fill\": \"white\"}, # css is inserted directly\n", " marks=scatters,\n", " min_aspect_ratio=1,\n", " max_aspect_ratio=1,\n", " fig_margin={\"top\": 0, \"bottom\": 60, \"left\": 60, \"right\": 0},\n", " )\n", "\n", " f_hists_y = Figure(\n", " axes=[ax_left, ax_count_horiz, ax_top, ax_right],\n", " background_style={\"fill\": \"white\"},\n", " marks=hists_y,\n", " min_aspect_ratio=0.33,\n", " max_aspect_ratio=0.33,\n", " fig_margin={\"top\": 0, \"bottom\": 60, \"left\": 10, \"right\": 0},\n", " )\n", "\n", " f_hists_x = Figure(\n", " axes=[ax_count_vert, ax_bottom, ax_top, ax_right],\n", " background_style={\"fill\": \"white\"},\n", " marks=hists_x,\n", " min_aspect_ratio=3,\n", " max_aspect_ratio=3,\n", " fig_margin={\"top\": 20, \"bottom\": 10, \"left\": 60, \"right\": 0},\n", " )\n", "\n", " f_legend = Figure(\n", " marks=[legend_bar],\n", " axes=[ax_x_legend, ax_y_legend],\n", " title=\"\",\n", " legend_location=\"bottom-right\",\n", " background_style={\"fill\": \"white\"},\n", " min_aspect_ratio=1,\n", " max_aspect_ratio=1,\n", " fig_margin={\"top\": 10, \"bottom\": 30, \"left\": 20, \"right\": 20},\n", " )\n", "\n", " # we already set the ratios, but it is necessary to set the size explicitly anyway\n", " # this is kind of cool, inserts this into the style in html\n", " f_legend.layout.height = third_dist\n", " f_legend.layout.width = third_dist\n", " f_hists_x.layout.height = third_dist\n", " f_hists_x.layout.width = dist\n", " f_hists_y.layout.height = dist\n", " f_hists_y.layout.width = third_dist\n", " f_scatter.layout.height = dist\n", " f_scatter.layout.width = dist\n", "\n", " # we create some functions that allow changes when the widgets notice an event\n", " def change_x_feature(b):\n", " h_bins_x = get_h_bins(features[[feature_x.value]], bins, f_lim)\n", " for index, group in enumerate(features.groupby([label_column])):\n", " scatters[index].x = group[1][feature_x.value]\n", " h_y, h_x = np.histogram(group[1][feature_x.value].values, bins=h_bins_x)\n", " hists_x[index].y = h_y\n", "\n", " ax_x.label = feature_x.value\n", "\n", " def change_y_feature(b):\n", " h_bins_y = get_h_bins(features[[feature_y.value]], bins, f_lim)\n", " for index, group in enumerate(features.groupby([label_column])):\n", " scatters[index].y = group[1][feature_y.value]\n", " h_y, h_x = np.histogram(group[1][feature_y.value].values, bins=h_bins_y)\n", " hists_y[index].y = h_y\n", "\n", " ax_y.label = feature_y.value\n", "\n", " # when the user selects a different feature, switch the data plotted\n", " feature_x.observe(change_x_feature, \"value\")\n", " feature_y.observe(change_y_feature, \"value\")\n", "\n", " # return the stacked figures to be plotted\n", " return VBox(\n", " [\n", " HBox([feature_x, feature_y]),\n", " HBox([f_hists_x, f_legend]),\n", " HBox([f_scatter, f_hists_y]),\n", " ]\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Iris Data Set" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Install scikit-learn\n", "!pip install sklearn" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sklearn.datasets import load_iris\n", "from sklearn.decomposition import PCA\n", "from sklearn.preprocessing import scale\n", "\n", "np.random.seed(42)\n", "\n", "digits = load_iris()\n", "data = scale(digits.data)\n", "n_features = 4\n", "# n_pca=3\n", "# pca = PCA(n_components=n_pca).fit(data)\n", "df = pd.DataFrame(data, columns=[\"feature_{}\".format(x) for x in range(n_features)])\n", "df[\"leaf\"] = digits.target\n", "df[\"extra_info\"] = [np.random.randint(100) for x in range(digits.target.shape[0])]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "feature_vector_distribution(\n", " df, \"leaf\", group_columns=[\"extra_info\"], bins=25, f_lim={\"min\": -3, \"max\": 3}\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Digits data set, with PCA applied to reduce to 10 features" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.datasets import load_digits\n", "from sklearn.decomposition import PCA\n", "from sklearn.preprocessing import scale\n", "\n", "np.random.seed(42)\n", "\n", "digits = load_digits()\n", "data = scale(digits.data)\n", "\n", "n_pca = 10\n", "pca = PCA(n_components=n_pca).fit(data)\n", "df = pd.DataFrame(\n", " pca.transform(data), columns=[\"pca_{}\".format(x) for x in range(n_pca)]\n", ")\n", "df[\"digit\"] = digits.target\n", "df[\"test\"] = [np.random.randint(100) for x in range(digits.target.shape[0])]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "feature_vector_distribution(\n", " df, \"digit\", group_columns=[\"test\"], bins=20, f_lim={\"min\": -7, \"max\": 7}\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" }, "toc": { "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "toc_cell": false, "toc_position": {}, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
t-vi/pytorch-tvmisc
misc/gaussian_process_regression_basic.ipynb
1
42930
{ "cells": [ { "cell_type": "markdown", "metadata": { "cell_id": "05DE16FF3E9B483788D3B192E7AF6F73" }, "source": [ "# Gaussian Process Regression in Pytorch\n", "\n", "*Thomas Viehmann*, <[email protected]>\n", "\n", "Bayesian time!\n", "\n", "I could not write a Gaussian Process introduction better than [Rasmussen and Williams in the canonical book](http://www.gaussianprocess.org/gpml/), so you will just follow the link.\n", "\n", "This notebook touches selected aspects of Chapter 2 (Regression) and Section 5.4 (Model Selection for GP regression, we use the marginal likelihood).\n", "\n", "As usual, the best part is that Pytorch will do the gradients for us.\n", "\n", "(Note that the explanations are in no way finished.)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "cell_id": "C56FA1DC11504021833EAF55BEF3E07D" }, "outputs": [], "source": [ "from matplotlib import pyplot\n", "%matplotlib inline\n", "import IPython\n", "import torch\n", "from torch import nn\n", "from torch.autograd import Variable\n", "import numpy" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "7D0580E460BC4D258B714A255A53612C" }, "source": [ "Let's have a very cheap cholesky layer.\n", "\n", "If you want to be a hero, write a autograd triangular solve function. I think that would be both more efficient and more stable." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "cell_id": "9BF8B14EE53A47A08E2A7082A831858F" }, "outputs": [], "source": [ "class Cholesky(torch.autograd.Function):\n", " @staticmethod\n", " def forward(ctx, a):\n", " l = torch.potrf(a, False)\n", " ctx.save_for_backward(l)\n", " return l\n", " @staticmethod\n", " def backward(ctx, grad_output):\n", " l, = ctx.saved_variables\n", " # Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1}\n", " # TODO: ideally, this should use some form of solve triangular instead of inverse...\n", " linv = l.inverse()\n", " \n", " inner = torch.tril(torch.mm(l.t(),grad_output))*torch.tril(1.0-Variable(l.data.new(l.size(1)).fill_(0.5).diag()))\n", " s = torch.mm(linv.t(), torch.mm(inner, linv))\n", " # could re-symmetrise \n", " #s = (s+s.t())/2.0\n", " \n", " return s" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "B0752DA711874B3A9E068AB2F952EC8A" }, "source": [ "So let's do Gaussian Process Regression. We use the basic RBF kernel but with automatic relevance detection and a gaussian likelihood (i.e. noisy data).\n" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "cell_id": "8E992D5F44DA489C89BDEF3E536700EA" }, "outputs": [], "source": [ "LOG2PI = numpy.log(2*numpy.pi)\n", "class ARDRBFKernel(nn.Module):\n", " def __init__(self, n, lambda0=None, sigma0=None):\n", " super(ARDRBFKernel, self).__init__()\n", " self.n = n\n", " if lambda0 is None:\n", " lambda0 = torch.ones(n)*0.05\n", " self.lam = nn.Parameter(lambda0)\n", " if sigma0 is None:\n", " sigma0 = torch.ones(1)*0.1\n", " elif numpy.isscalar(sigma0):\n", " sigma0 = torch.FloatTensor(1).fill_(sigma0)\n", " self.sigma = nn.Parameter(sigma0)\n", " def forward(self, x, x2=None):\n", " # todo stabilize\n", " x = x/self.lam.unsqueeze(0).expand_as(x)\n", " if x2 is None:\n", " x2 = x\n", " else:\n", " x2 = x2/self.lam.unsqueeze(0).expand_as(x2)\n", " x_ = x.unsqueeze(1).expand(x.size(0),x2.size(0),x.size(1))\n", " x2_ = x2.unsqueeze(0).expand(x.size(0),x2.size(0),x.size(1))\n", " sqdists = ((x_-x2_)**2).sum(2) #.squeeze(2)\n", " return self.sigma.view(1,1).expand_as(sqdists)*(-sqdists/2).exp()\n", "\n", "class GP(nn.Module):\n", " def __init__(self, K, x, y, var0=None):\n", " super(GP, self).__init__()\n", " if var0 is None:\n", " var0 = torch.ones(1)\n", " elif numpy.isscalar(var0):\n", " var0 = torch.FloatTensor(1).fill_(var0)\n", " self.var = nn.Parameter(var0)\n", " self.x = x\n", " self.y = y\n", " self.K = K\n", " def predict(self, xstar=None):\n", " Kxx_inv = torch.inverse(self.K(self.x)+Variable(torch.eye(self.x.size(0)))*self.var)\n", " Kxxstar = self.K(self.x, xstar)\n", " Kxstarxstar = self.K(xstar)\n", " mu = torch.mv(Kxxstar, torch.mv(Kxx_inv,self.y))\n", " cov = torch.Kxstarxstar-torch.mm(Kxxstar.t(), torch.mm(Kxx_inv), Kxxstar)\n", " return mu, cov\n", " def forward(self, xstar=None):\n", " Kxx_noise = self.K(self.x)+Variable(torch.eye(self.x.size(0)))*self.var\n", " L = Cholesky.apply(Kxx_noise)\n", " Linv = L.inverse()\n", " alpha = torch.mv(Kxx_noise.inverse(),self.y)\n", " if xstar is not None:\n", " Kxxstar = self.K(self.x, xstar)\n", " Kxstarxstar = self.K(xstar)\n", " mu = torch.mv(Kxxstar.t(), alpha)\n", " v = torch.mm(Linv,Kxxstar)\n", " cov = Kxstarxstar-torch.mm(v.t(),v)\n", " #print (self.K.lam.data[0], (0.5*self.y.dot(alpha)).data[0],L.diag().log().sum().data[0],self.y.size(0)/2.0*LOG2PI)\n", " neg_logp = 0.5*self.y.dot(alpha)+L.diag().log().sum()+self.y.size(0)/2.0*LOG2PI\n", " if xstar is not None:\n", " return mu,cov,neg_logp\n", " else:\n", " return neg_logp\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "582380B3DDE44415B06F652C6940AF71" }, "source": [ "Let's have a regression example" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "cell_id": "7D9AA2647C2C4AD6A42AA374EFF07F28" }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x7fa246b15668>]" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEyxJREFUeJzt3X2MY1d9xvHnIVleqk1JtWuLKNnNFBFQzagl1EqDEG0c\nUJWmKJFoXAWJNyntKmGmBYFU0SKlkKoCKhUqtJ7SRUENlELWAdFtlPwRyl3xombpbNiEiZdEGwrN\niqg2G9iwKqQs/fUPe6zZycz6esb2HZ/5fiQr1+Ozvj+fzDxz59xzz3VECACQlucVXQAAYPQIdwBI\nEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCLixqx7t3746ZmZmidg8AU+no0aM/jIjS\noHaFhfvMzIwWFxeL2j0ATCXb38/TjmEZAEgQ4Q4ACSLcASBBhDsAJIhwByBJajQaarfb/eftdluN\nRqPAirAZhc2WAbB1NBoNzc/Pa2FhQVmWSZJqtZparZYkaW5ursjysAGEOwDV63UtLCyo1WppdnZW\nktTpdFSpVFSv1wuuDhvBsAwAlctlZVmmUqmkTqejTqejUqmkLMtULpeLLg8bQLgDQIIIdwBqt9uq\n1Wr9I/blI/harXbOSVZMD8IdgJrNplqtliqVipaWlrS0tKRKpaJWq6Vms1l0edgATqgC6M+Gqdfr\n/TH2LMvUbDaZKTOlHBGF7LharQYLhwHAcGwfjYjqoHYMywBAggh3AEgQ4Q5gXSxJML04oQpgTSxJ\nMN0IdwBrYkmC6cawDIA1sSTBdCPcASBBucPd9gW2v2X73jVee4Htu22fsH3E9swoiwQweSxJMN2G\nOXJ/l6Tj67x2i6QfRcTLJH1M0kc2WxiAYrEkwXTLdULV9mWSfl/SX0t6zxpNbpT0gd72PZL223YU\ndfkrgE1jSYLplne2zN9J+jNJF63z+qWSnpSkiDhr+7SkXZJ+uOkKARRmdYiXy2WCfUoMHJax/UZJ\n7Yg4er5ma3ztOUfttvfZXrS92Ol0higTADCMPGPur5V0g+3vSfq8pGtt/9OqNicl7ZEk2xdKerGk\np1e/UUQciIhqRFRLpdKmCgcArG9guEfEn0fEZRExI+lmSV+JiLesanZI0tt72zf12jDeDgAF2fA8\nd9t32L6h9/ROSbtsn1D3hOv7RlHcSqxxAQD5DbX8QEQclnS4t337iq//TNLYrkdmjQsAGM5UrC3D\nGhcAMJypWH6ANS4AYDhTEe4AgOFMRbizxgUADGcqwp01LgBgOFNxQpU1LgBgOC7qWqNqtRqLi4uF\n7BsAppXtoxFRHdRuKoZlAADDIdwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLc\nE8LdqgAsm4q1ZTAYd6sCsBLhngjuVgVgJYZlEsHdqgCsRLgDQIII90RwtyoAKxHuieBuVQBW4oRq\nIrhbFYCVuBMTAEwR7sQEJIQL1DCsgeFu+4W2v2n7YduP2v7gGm3eYbtj+1jv8UfjKRfYfpYvUFs+\nOb588nx+fp6Ax7ryjLk/K+naiDhje4ekr9u+PyIeXNXu7oiYH32JwPbGBWrYiIFH7tF1pvd0R+9R\nzEA9sA1xgRo2IteYu+0LbB+T1Jb0QEQcWaPZH9h+xPY9tves8z77bC/aXux0OpsoGwBwPrnCPSJ+\nERGvknSZpKtsz65q8q+SZiLi1yV9WdJd67zPgYioRkS1VCptpm5g2+ACNWzEULNlIuLHkg5Lum7V\n109FxLO9p5+U9JsjqQ4AF6hhQ/LMlinZvri3/SJJb5D0nVVtLlnx9AZJx0dZJLCdzc3Naf/+/f0x\n9mazqYMHD2r//v2am5tjWiTWlGe2zCWS7rJ9gbq/DA5GxL2275C0GBGHJP2p7RsknZX0tKR3jKtg\nYDtavsp4eVpkpVJRlmX9IRvW7cdqXKEKTJGVYb583mp5WiSzZ7YHrlAFEsS0SORFuANAggh3YIow\nLRJ5Ee7AFGFaJPJiPXdgirBuP/JitgwATBFmywDANka4A0CCCHcASBDhDkwJbrWHYTBbBpgCy2vK\nLCwsKMsySWJNGZwX4Q5MAW61h2ExLANMAdaUwbAIdwBIEOEOTAHWlMGwCHdgCrCmDIbFCVVgCrCm\nDIbF2jIAMEVYWwYAtjHCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACRoYLjbfqHtb9p+2Pajtj+4\nRpsX2L7b9gnbR2zPjKNYAEA+eY7cn5V0bUT8hqRXSbrO9tWr2twi6UcR8TJJH5P0kdGWCQAYxsBw\nj64zvac7eo/Vl7XeKOmu3vY9kl5v2yOrEgAwlFxj7rYvsH1MUlvSAxFxZFWTSyU9KUkRcVbSaUm7\nRlkoACC/XOEeEb+IiFdJukzSVbZnVzVZ6yj9OYvW2N5ne9H2YqfTGb5aAEAuQ82WiYgfSzos6bpV\nL52UtEeSbF8o6cWSnl7j3x+IiGpEVEul0oYKBgAMlme2TMn2xb3tF0l6g6TvrGp2SNLbe9s3SfpK\nFLXcJAAg13rul0i6y/YF6v4yOBgR99q+Q9JiRBySdKekz9g+oe4R+81jqxgAMNDAcI+IRyRducbX\nb1+x/TNJ3IIdALYIrlAFgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AEEe4A\nkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7AExAo9FQu93uP2+322o0GmPbX547MQEANqHRaGh+\nfl4LCwvKskySVKvV1Gq1JElzc3Mj3yfhDgBjVq/XtbCwoFarpdnZWUlSp9NRpVJRvT6em9gxLAMA\nY1Yul5VlmUqlkjqdjjqdjkqlkrIsU7lcHss+CXcASBDhDgBj1m63VavV+kfsy0fwtVrtnJOso0S4\nA8CYNZtNtVotVSoVLS0taWlpSZVKRa1WS81mcyz75IQqAIzZ8myYer3eH2PPskzNZnMsM2UkyREx\nljcepFqtxuLiYiH7BoBpZftoRFQHtWNYBgASRLgDQIIGhrvtPbYz28dtP2r7XWu0ucb2advHeo/b\nx1MuACCPPCdUz0p6b0Q8ZPsiSUdtPxARrVXtvhYRbxx9iQCAYQ08co+IpyLiod72TyQdl3TpuAsD\nAGzcUGPutmckXSnpyBovv8b2w7bvt/3KEdQGANig3PPcbe+U9AVJ746IZ1a9/JCkyyPijO3rJX1J\n0hVrvMc+Sfskae/evRsuGgBwfrmO3G3vUDfYPxsRX1z9ekQ8ExFnetv3Sdphe/ca7Q5ERDUiqqVS\naZOlAwDWk2e2jCXdKel4RHx0nTYv6bWT7at673tqlIUCAPLLMyzzWklvlfRt28d6X/sLSXslKSI+\nIekmSbfZPivpp5JujqIufQUADA73iPi6JA9os1/S/lEVBQDYHK5QBYAEEe4AkCDCHQASRLgDQIII\ndwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuOEej0VC73e4/b7fbajQaBVYEYCNyL/mL9DUaDc3Pz2th\nYUFZlkmSarWaWq3uTbfm5uaKLA/AEAh39NXrdS0sLKjVaml2dlaS1Ol0VKlUVK/XC64OwDAYlkFf\nuVxWlmUqlUrqdDrqdDoqlUrKskzlcrno8gAMgXAHgAQR7uhrt9uq1Wr9I/blI/harXbOSVYAWx/h\njr5ms6lWq6VKpaKlpSUtLS2pUqmo1Wqp2WwWXR6AIXBCFX3Ls2Hq9Xp/jD3LMjWbTWbKAFPGRd0N\nr1qtxuLiYiH7BoBpZftoRFQHtWNYBgASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABA0Md9t7\nbGe2j9t+1Pa71mhj2x+3fcL2I7ZfPZ5yAQB55LlC9ayk90bEQ7YvknTU9gMR0VrR5vckXdF7/Jak\nv+/9FwBQgIFH7hHxVEQ81Nv+iaTjki5d1exGSZ+OrgclXWz7kpFXCwDIZagxd9szkq6UdGTVS5dK\nenLF85N67i8AAMCE5A532zslfUHSuyPimdUvr/FPnrNoje19thdtL3Y6neEqBQDklivcbe9QN9g/\nGxFfXKPJSUl7Vjy/TNIPVjeKiAMRUY2IaqlU2ki9AIAc8syWsaQ7JR2PiI+u0+yQpLf1Zs1cLel0\nRDw1wjqxTTUajXNuFNJut9VoNAqsCJgOeY7cXyvprZKutX2s97je9q22b+21uU/SdyWdkPRJSe8c\nT7nYDpYDvdFoaH5+Xq973ev04Q9/uH+nqPn5eQIeGID13LGlLAd6pVLRwYMH9aY3vUmPP/64JGnn\nzp06c+aMKpUKN+3GtsV67phK9Xq9f2u/Wq2mU6dO9V87c+aMSqUSwQ7kQLhjSymXy8qyrH9z7lOn\nTql72gfAMAh3bHkRoV27dvUDv1arnXOSFcBzEe7YUpZPmnY6He3cubP/9d27dyvLsv6QTbPZLLBK\nYOsj3LGlNJtNtVotVSoVPfHEE/rQhz6kV7ziFXrsscd0+PBhZVmm/fv3a25uruhSgS2N2TLYchqN\nhur1ev+kabvdVrPZJNAB5Z8tQ7gDwBRhKiQAbGOEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ\n4Q4ACSLcASBBhDsAJIhwB4AEEe4AkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABA0M\nd9ufst22vbTO69fYPm37WO9x++jLBAAM48Icbf5R0n5Jnz5Pm69FxBtHUhEAYNMGHrlHxFclPT2B\nWgAAIzKqMffX2H7Y9v22Xzmi9wQAbFCeYZlBHpJ0eUScsX29pC9JumKthrb3SdonSXv37h3BrgEA\na9n0kXtEPBMRZ3rb90naYXv3Om0PREQ1IqqlUmmzuwYArGPT4W77Jbbd276q956nNvu+AICNGzgs\nY/tzkq6RtNv2SUl/KWmHJEXEJyTdJOk222cl/VTSzRERY6sYADDQwHCPiDcPeH2/ulMlAQBbBFeo\nYiwajYba7Xb/ebvdVqPRKLAiYHsZxWwZ4ByNRkPz8/NaWFhQlmWSpFqtplarJUmam5srsjxgWyDc\nMXL1el0LCwtqtVqanZ2VJHU6HVUqFdXr9YKrA7YHhmUwcuVyWVmWqVQqqdPpqNPpqFQqKcsylcvl\nossDtgXCHQASRLhj5Nrttmq1Wv+IffkIvlarnXOSFcD4EO4YuWazqVarpUqloqWlJS0tLalSqajV\naqnZbBZdHrAtcEIVI7c8G6Zer/fH2LMsU7PZZKYMMCEu6mLSarUai4uLhewbAKaV7aMRUR3UjmEZ\nAEgQ4Q4ACSLcASBBhDsAJIhwB4AEFTZbxnZH0vcl7Zb0w0KK2Dq2ex9s988v0QcSfSDl64PLI2Lg\nrewKC/d+AfZinmk9KdvufbDdP79EH0j0gTTaPmBYBgASRLgDQIK2QrgfKLqALWC798F2//wSfSDR\nB9II+6DwMXcAwOhthSN3AMCITSzcbV9n+zHbJ2y/b43XX2D77t7rR2zPTKq2Scjx+d9ju2X7Edv/\nZvvyIuocp0F9sKLdTbbDdnIzJ/L0ge0/7H0vPGr7nydd47jl+FnYazuz/a3ez8P1RdQ5LrY/Zbtt\ne2md1237473+ecT2qze0o4gY+0PSBZKekPRSSc+X9LCkyqo275T0id72zZLunkRtW+jz1yT9Um/7\ntpQ+f94+6LW7SNJXJT0oqVp03QV8H1wh6VuSfqX3vFx03QX0wQFJt/W2K5K+V3TdI+6D35b0aklL\n67x+vaT7JVnS1ZKObGQ/kzpyv0rSiYj4bkT8r6TPS7pxVZsbJd3V275H0utte0L1jdvAzx8RWUT8\nT+/pg5Ium3CN45bne0CS/krS30j62SSLm5A8ffDHkhoR8SNJiojUbl2Vpw9C0i/3tl8s6QcTrG/s\nIuKrkp4+T5MbJX06uh6UdLHtS4bdz6TC/VJJT654frL3tTXbRMRZSacl7ZpIdeOX5/OvdIu6v7lT\nMrAPbF8paU9E3DvJwiYoz/fByyW93PY3bD9o+7qJVTcZefrgA5LeYvukpPsk/clkStsyhs2LNU3q\nTkxrHYGvnqaTp820yv3ZbL9FUlXS74y1osk7bx/Yfp6kj0l6x6QKKkCe74ML1R2auUbdv96+Zns2\nIn485tomJU8fvFnSP0bE39p+jaTP9Prg/8Zf3pYwkiyc1JH7SUl7Vjy/TM/9U6vfxvaF6v45dr4/\nXaZJns8v22+Q9H5JN0TEsxOqbVIG9cFFkmYlHbb9PXXHGg8ldlI178/Bv0TEzyPiPyU9pm7YpyJP\nH9wi6aAkRcS/S3qhumuubBe58mKQSYX7f0i6wvav2n6+uidMD61qc0jS23vbN0n6SvTOLiRg4Ofv\nDUn8g7rBnto4qzSgDyLidETsjoiZiJhR97zDDRGR0r0Y8/wcfEndk+uyvVvdYZrvTrTK8crTB/8l\n6fWSZPvX1A33zkSrLNYhSW/rzZq5WtLpiHhq6HeZ4Bni6yU9ru6Z8vf3vnaHuj/AUvd/YFPSCUnf\nlPTSos9qT/jzf1nSf0s61nscKrrmSffBqraHldhsmZzfB5b0UUktSd+WdHPRNRfQBxVJ31B3Js0x\nSb9bdM0j/vyfk/SUpJ+re5R+i6RbJd264nug0eufb2/054ArVAEgQVyhCgAJItwBIEGEOwAkiHAH\ngAQR7gCQIMIdABJEuANAggh3AEjQ/wODCPxB2Js5WQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa24709a780>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "N = 12\n", "X = torch.rand(N,1)\n", "Y = (torch.sin(12*X) + 0.6*torch.cos(25*X) + torch.randn(N,1)*0.1 + 3).squeeze(1)\n", "pyplot.figure()\n", "pyplot.plot(X.numpy(), Y.numpy(), 'kx', mew=2)\n" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "cell_id": "37D848D2C2374C19894E433C3C5F1A58", "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Final loss 15.55954647064209\n" ] } ], "source": [ "K = ARDRBFKernel(1)\n", "gp = GP(K, Variable(X), Variable(Y), var0=0.1)\n", "\n", "def closure():\n", " opt.zero_grad()\n", " nlogp = gp.forward()\n", " nlogp.backward()\n", " return nlogp\n", "\n", "opt = torch.optim.LBFGS(gp.parameters(), lr=0.1)\n", "for i in range(10):\n", " opt.zero_grad()\n", " nlogp = gp.forward()\n", " nlogp.backward()\n", " opt.step(closure)\n", "print (\"Final loss\",nlogp.data[0])" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "EF88856D8CAF446380AC9BFEADCE4647" }, "source": [ "And we can plot with the credible interval" ] }, { "cell_type": "code", "execution_count": 101, "metadata": { "cell_id": "0912147330F74C12B0E6E1E38FBD8C60" }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x7fa244e59240>]" ] }, "execution_count": 101, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXlcW3X2//86gYQ9YSesYStQ6GqZ6oyjUh21blW0am3r\nVrXjNq3185txGUc/o99Z9KP2Y8c6H2uta2u1Kuo4LqNjGR1nbG1rV1qWAmELhJ1AgJDk/fsDwlAK\n5Ca5yc3yfj4ePBrgnXvPLcnJued9zusQYwwcDofD8S9kUhvA4XA4HPHhzp3D4XD8EO7cORwOxw/h\nzp3D4XD8EO7cORwOxw/hzp3D4XD8EO7cORwOxw/hzp3D4XD8EO7cORwOxw8JlurE8fHxLDMzU6rT\nczgcjk+yf//+DsZYgr11kjn3zMxM7Nu3T6rTczgcjk9CRFoh63hahsPhcPwQ7tw5HA7HD+HOncPh\ncPwQ7tw5HA7HD+HOncPhcPwQ7tw5HA7HDxHk3ImonoiOENFBIjqtfpFG2URENUR0mIjOEN9UDofD\n4QjFkTr3JYyxjml+dwmAWWNfZwL489i/HA6Hw5EAsZqYrgTwOhsdyPodEUUTUTJjTCfS8b2WwcFB\ndHZ2wmAwYHh4GIwxyOVyREZGIiYmBkqlEkQktZkcDifAEOrcGYC/ERED8CJjbMuk36cCaJzwfdPY\nz/zSuTPG0NXVhcbGRvT09Ey5pqOjA/X19QgLC0N6ejrUajVkMr7FweFwPINQ5342Y6yFiBIBfEFE\nJxhjX0/4/VShKZv8AyJaC2AtAGRkZDhsrDdgNBpRXV2N7u5uQesHBwdRVVWF5uZm5OfnQ6lUutlC\nDsc3MJvN6Ovrw8DAAEwmExhjCA4ORlhYGJRKJcLCwqQ20acR5NwZYy1j/+qJqAzAYgATnXsTgPQJ\n36cBaJniOFsAbAGA4uLi05y/N8MYg06nQ01NDaxWq8PPHxgYwA8//ICcnBykpqbyVA0nIGGMoaOj\nAzqdDt3d3RjN5E5NeHg41Go1kpOTIZfLPWilf2DXuRNRBAAZY8ww9vgiAI9PWvYRgHuJaCdGN1J7\n/SnfbrVaUVVVhdbWVpeOwxhDTU0NjEYjZs2axR08J2BgjKG9vR11dXUYHBwU9Byj0Yja2lpotVpk\nZGQgPT2dpzYdQEjkngSgbMwRBQPYwRj7jIjuBADG2P8B+ATApQBqABgB3Ooecz3PyMgIjh49it7e\nXtGO2dLSArPZjNmzZ3MHz/F7hoaGUFlZKTiVORmLxYK6ujq0tbVh9uzZiIqKEtlC/4Rmui1yJ8XF\nxczbJX9NJhMOHz6M/v5+txxfrVYjPz+fO3iO39Le3o7KykqYzWZRjkdEyMvLQ3JysijH80WIaD9j\nrNjeOsn03L0dk8mEgwcPwmg0uu0cra2tCAkJQVZWltvOweFIAWMM9fX10GoFSY87dNzKykoYjUZk\nZ2fzwGgGeAJrCkZGRnDo0CG3OnYbWq0Wer3e7efhcDyF1WpFZWWl6I59Io2NjaiqqppxQzbQ4c59\nEhaLBUeOHMHAwIDHznnixAmPno/DcRdWqxUVFRUuFx8IQafTobq6mjv4aeDOfQJWqxXHjh1DX1+f\nJOe1WCwePS+HIyY2x97RMZ1Kifi0tLSgvr7eY+fzJbhzH4MxhqqqKnR1dUlyfqPRiJMnT0pybg7H\nVWzvH086dhtarRY6nd9UXosGd+5jaLVaj9xKzkRLS4tkHy4cjivU1dVJ+v6pqqoStVzZH+DOHaNV\nK95yaydm2RiH4wl0Oh0aGhoktYExhoqKCphMJknt8CYC3rl3d3ejsrJSajPGGR4e9poPGg7HHr29\nvaiqqpLaDACj750TJ07wDdYxAtq5DwwM4NixY173YmhqaoLBYJDaDA5nRoaHh73u/dPV1YXm5map\nzfAKAta5Dw8P48iRI16bAuElXhxvxlYZ441pkNraWo/0qHg7AenczWYzjhw5gqGhIalNmZa+vj7e\n3MTxWurr6712A9NqtfL0DALQudtqyt2lFyMmtbW1vPad43V0d3dLvoFqj76+voBPzwSUc7darTh+\n/LjT6nSeZnh4GE1NTVKbweGMYzKZcPz4canNEERdXZ1X3527m4Bx7jbBofb2dqlNcYiGhgavzGty\nAg9bo5KvvB4tFktANwYGhHO35eDa2tqkNsVhLBaL198CcwKDtrY2STpQXaG9vT1gGwP93rlbLBZU\nVFT4pGO30dzcjOHhYanN4AQww8PDqKmpkdoMp3B2NKav49fO3TZsw9eijckwxtwqn8rhzIQtHeOt\nZcP2MBqNAak947fO3WAw4MCBA15bruUoOp0uoDeHONKh1+vR2dkptRkuUV9f77MfTs4i2LkTURAR\n/UBEH0/xu1uIqJ2IDo593S6umcJhjKGxsREHDhzwK2fIGOO5d47HMZlMPpuOmcjIyEjAvX8cGbO3\nHsBxAMppfv82Y+xe101yHoPBgOrqao/rsXsKnU4HjUaDkJAQqU3hBAgnT57EyMiI1GaIQlNTE1JT\nUwPm/SMocieiNACXAdjqXnOcw2Aw4NixY9i/f7/fOnZgNHrnde8cT9HV1eXThQiTsVqtAbV3JTRy\n/18AvwIQNcOaa4joXABVADYwxhonLyCitQDWAkBGRoaDpv4HxhgGBwfR2dkJvV4fUCJbLS0tyMjI\ngFwul9oUjh9jsVi8Ru1RTHQ6HTIyMhAaGiq1KW7HbuRORJcD0DPG9s+w7C8AMhlj8wB8CeC1qRYx\nxrYwxooZY8UJCQlOGQyM3iru3bsXJ0+eDCjHDoy+6QK9rZrjfhoaGvxqz8pGIFWeCUnLnA1gGRHV\nA9gJ4HwienPiAsZYJ2PMVoj9EoBFolo5iUCsWZ1Ic3Mz15zhuA2j0ejXm4+tra0YHByU2gy3Y9e5\nM8YeYoylMcYyAawA8BVjbPXENUSUPOHbZRjdeOW4iZGREb/KhXK8B1tNuz8rKgZK5ZnTde5E9DgR\nLRv7dh0RHSOiQwDWAbhFDOM409PU1OTXb0CONOj1evT09EhthttpbW31y7TTRBwphQRjrBxA+djj\nRyf8/CEAD4lpGGdmjEYjurq6EBcXJ7UpHD/BbDYHjNCWrR9m1qxZUpviNvy2QzUQ4GWRHDGpr6/3\nGcVHMdDpdH59vdy5+zDd3d0YGBiQ2gyOHzAwMBBwwYLVavXryjPu3H2cQHtDcsSHMYbq6mqpzZAE\nf648487dx2lra/Ob9nCONATKJupUmM1mv1WM5M7dx7FarWhtbZXaDI6PEkibqNPhr5Vn3Ln7Ac3N\nzX754uS4H61WO76pWFZWdsp84e7ubpSVlUllmscYGhryufGbQnCoFDLQsViA48eV+P77WFRVRaGx\nMQwGgxwWCyEy0oyEhGHk5Rkwb14vFi/uRFiYZzpph4aGeFkkx2EmbqKWlZVh06ZN+PDDD7Fx40YA\nwIYNG8Zb9UtLSyWz0xM0NTUhMTFRajNEhTt3AfT2BuPDD1Px178mQ68PhUzGkJk5gNzcfkRHjyA4\nmKGvLxhtbaH45JNkvP9+GkJDLTjvvHZcf30DsrKMbrexpaWFO3eOYBhjqKmpGb/jKykpwYcffgit\nVos1a9YAAHp6eqDRaFBSUiL4uFYroNeHoLExHH19cgwNySCXMyiVI0hKGkZGhhFBQd53l9nX14e+\nvj4oldMpmvse3LnPwNCQDO++m4adOzMwMBCM4uIu/PzntSgu7oJSOfVUF7OZcPSoEn//exK+/DIJ\nn3+uRkmJHnfddRKJie6bg9rZ2YmhoaGAULvjuE57e/spKZiYmBhs3LgRa9asGd9cjY6OxsaNGxET\nEzPjsQyGYPzjHwnYuzcWBw7EYGBgereiUFiQn2/Aj3/ciXPO6UBamvdovDQ1NaGwsFBqM0SDO/dp\nOHpUiSefLEBTUzh+8pMO3H57raAIPDiYYcGCXixY0Ivbb6/Fe++l4Z130vHdd3G47bZaXHNNM4jc\nY7NOp0NWVpZ7Ds7xGywWiyibqHV1Edi5Mx3l5QkwmYKQlDSEkhI98vIMyMgwIjZ2BCEhFpjNMvT2\nytHcHIrq6igcPBiNLVtysGVLDhYu7EZpaTPOPrsDMol3ANvb2zE8POw3wzxIqo244uJitm/fPqee\nW1VVhZaWFpEtGsVqBV59NRPbt2uQmDiEX/6yEmec4VqZWGtrCJ57Lg/ffReHs87qxAMPnEB0tPjl\niwqFAmeddRZkUr9LOF5NbW3tacJZ3d3d4zn26OhoAP9Jy0yO3ltbQ/HSS1nYvTsRoaEWXHhhGy67\nTIdZs/oFBy5tbSH48sskfPRRCvT6UOTmGnDHHXX40Y+63Bb8CCEjIwPZ2dnSGSAAItrPGCu2t457\ngQkMDAThN7+ZgzfeyMRFF7Xi5Zf3uezYAUCtHsbvf38E69ZVYf/+GNx55yLU14eLYPGpmEwmnx9k\nzHEvAwMDaGw8bY4OysvLodVqodFosG3bNmzbtg0ajQZarRbl5eUAAIuF8M47abj11h/hX/+Kxw03\nNOCtt77Dhg3VyMsT7tgBIClpGKtWNWDHjj14+OEKDAwE44EH5uGRR+agvV26yFmn0/lNUxOP3Mfo\n6pLjl7+cj/r6CNx7bzWuuqrFLRFEZWUkHn54LoaHg/DEE0excKG4zSOxsbGYN2+eqMfk+AeMMRw6\ndGjahqWysjKUlJSMR+nd3d0oLy9HaWkp9PoQPP54IY4dU+EnP+nA+vXVou4hjYwQ3nsvDa++momg\nIIZf/KIaS5dKI2tdUFAAtVotybmFwCN3B2hrC8H69QvR0hKGJ588jNJS9zh2AMjP78fmzQcQHz+M\nBx6Yh++/n3mzylG6urr8XsqU4xzt7e0zdqKWlpaekn6xPf7qK4Y77ihGXV0ENmz4BsXFT4heHCCX\nM6xY0YiXX/4eubn9ePLJ2XjyyXwMDXneRfmL3kzAO/f2dgXuu28BursV+J//OYTi4m77T3IRtXoY\nzz33AzIyjPj1r+eK7uD9tZ2a4zxmsxk1NTUOPcdW+/7EE/ciJqYJTz31Bd5//0Zs2rTJbc1NqalD\nePbZQ7jxxnp8/rka99xzBvR6z6ZpDAYD+vr6PHpOdxDQzr2vLxi/+tV89PbK8cwzhzBnjuf+oCqV\nGc88cxAZGUY88sgcVFSIV1/b2trKO1Y5p1BXV+eQvK3VCmi1NwMoBFCBnp4z8MgjK8fz8o7UvjtK\nUBDDmjX1+OMfD6OtLRR3330Gqqsj3Xa+qfCH6D1gnfvgoAwPPzwXzc1h+N3vjiI/3/ODtlUqM55+\n+hDi4014+OE5aG4OE+W4w8PD6OrqEuVYHN/HYDA45KysVuCZZ/Lx4YdnYOnSHYiOjkZvbw96enoE\n176LweLF3fjTn35AUBDDunULsX9/tNvPaUOv1/u81rtg505EQUT0AxF9PMXvQojobSKqIaI9RJQp\nppFiwxjw5JMFOH5ciUceqRB9U9MRoqNH8OSTh8EY4Ve/moeeHrkox+WpGQ7wn5moQrFagY0b8/DJ\nJ8m48cZ63HFHrRuts09W1gA2bz6A5ORBPPyw+CnM6WCM+bwgnyOR+3pMP/j6NgDdjLFcABsBPOmq\nYe5k+/YM/OMfibjjjlqce26H1OYgLW0Qv//9EbS3j1YkWCyu7+Z2dnb6fOTBcZ2WlhYYDMLuShkD\nnn8+Fx9/nIJVq7S46qofcP/9G8Yj9ujoaPT09GDDhg2ndLe6m/h4EzZuPIT09EH8+tdzsXdvrEfO\n29LS4tPpTUHOnYjSAFwGYOs0S64E8NrY43cBXEAkZSvC9Pz733HYti0LF1zQhuuvP73eVyqKivqw\nYUMVfvghBtu2Zbp8PMYY2tqkKSXjeAfDw8OorRUeee/YkYGysjRcf30DbrutDv/4h/3ad0+hUo3g\nmWcOIjNzAI88MgcHD7o/RWMT5PNVhEbu/wvgVwCmkzlMBdAIAIwxM4BeAF6nYtXaGoLf/74Aubn9\n+OUvKyXthJuKSy5pxeWXt2DHDg3++c94l4+n0+l8OvLguMbJkycFN+R88UUitm7Nxs9+1oaf/7wW\nRKOlkevWrRvPsdv0Z9atWyeJSqRtjyolZRCPPDIHNTURbj+nuzrhPYFd505ElwPQM8b2z7Rsip+d\n5lWIaC0R7SOifZ7WT7ZYCL/7XSGsVsJjjx1DSIhn5Hgd5Re/qEZBQR/++McCtLW5VgJmNBoF35Jz\n/IvOzk7o9XpBaw8ejMZTTxVgwYJu/PKXJ04JeqaqfZdS/lepNOOppw4jPNyMBx6YB53OvUJ5NkE+\nX0RI5H42gGVEVA9gJ4DziejNSWuaAKQDABEFA1ABOO1+hjG2hTFWzBgrTkhIcMlwIUwcPvDGGxoc\nPTqMc875b6Smeu8fS6FgeOSRClito5u+Vhc/g3x9U4jjOBaLRfBM1La2EDz2WBFSUwfx+OPHoFB4\n/51eYuIwnnzyMEZGZHjggXno73ev/qGvRu92nTtj7CHGWBpjLBPACgBfMcZWT1r2EYCbxx4vH1sj\n6avE1oCxYcMGfPutBa+/HoaIiHPw+ee/8/rpMqmpQ7j33hr88EMM3n03zaVj6fV6v9HK4Aijvr5e\nULRpMsnw2GNFsFgITzxxFFFRU8tYeyNZWUY88cRRtLSE4oknZsOdL/HW1lZYXY2yJMDpOnciepyI\nlo19+zKAOCKqAXA/gAfFMM4VSkpKxjd/Hn30BhDNxcBAldsbMMTikktacc457di6Ndul3KLZbEZH\nh/QVQRzP0N/fP6Uw2FRs2pSLykolHnzwONLTvUdXXSjz5/di3boa7N0bh5decp+So8lk8sn3kEPO\nnTFWzhi7fOzxo4yxj8YeDzHGrmWM5TLGFjPGpC2OxX+GD4SExMFqbYfV2u7RBgxXIQL+67+qEBU1\ngqeeKnCpPJKnZgIDxhgqKysFrf3ssyT89a8pWLlSi5/+1HeVRJcta8GyZc14++0MfPFFktvO44up\nGb/uUD1xIgrDw757iSrVCNatq0Z1dRR27XI+PdPd3e2zm0Ic4TQ3NwvaQG9uDsWmTbMwf34P1qyp\n84Bl7uXee2swb14PnnkmD3V17qmg6enpgdHo/nGZYuK7ns8Oen0vHn10HYB2qFTSNWC4yrnnduDs\nszvwyiuZaG52vjKA17z7N0NDQ6irs++ozebRqrGgIIaHHz6OoCAPGOdm5HKGxx6rQHi4Bb/9bSEG\nB93j1nwtevdb5/7ss4dgNh9HUlI2XnlF2gYMVyAC1q+vglzO8Oyz+XB2m5qLifkvjDFUV1cL2jh/\n4w0Njh9X4v77q9w609fTxMaa8OtfV6ChIRzPPZfnlnO0trb6VHGCXzr3lpZQHDjwCPLyfo8///lp\nr2jAcIWEBBPuuKMWBw7EOJ1XHBwc5DXvfkpHR4egCVxHjyrx5psaXHxxK5Ys8WyfiSdYtKgHN96o\nxeefq/HZZ+IP2zCbzYJ7B7wBv3Tuzz+fi+BgK/7f/zvPqxowXOGKK1pQUNCHF1/MhtHo3L0031j1\nP8xms6CadpNJhqeeKkBCwjB+8QthNfC+yE031WPhwm4899ws0VRWJ+JLqRm/c+7/+lcc/v3veNxy\nSz0SEvxHOEsmG+1e7eoKweuva5w6hl6v98l6Xc701NbWChKIe+01DRobw/H//X+ViIjwndSCowQF\nAQ89dALBwVb84Q8Fote/GwwGn7kD9ivnPjwsw/PP50KjGcDVV/u+2P5kCgsNWLpUh/feS0NDg+NR\nCa959y96e3sFRZLV1ZHYuTMDS5fqPDJpTGoSEoaxfn01jh1TYefODNGP7yuDPPzKue/alQadLgz3\n3VeN4GD/3Dy8445ahIRYsXlzrlObq7xqxj+wWq2CdNrNZsJTT+UjOtqEu+8+6QHLvIMLLtCjpESP\nV1/NRE2NuFOc9Ho9RkZGRD2mO/Ab597VJceOHRk455x2LFgg3fANdxMbO4JbbqnH3r1x+O47x4U3\nuc67f9DU1ISBgQG76955Jx01NVG4775qn5IXcBUi4L77qqBUjuD3vy+AySSeq7NarT6xf+U3zv21\n1zJhMskknxzjCa66qhnp6Ua8+GK2U52rvrTjzzmdwcFB1NfX212n04Xitdc0OOecdpxzTuCl41Qq\nM375y0rU1UXizTfFTc80Nzd7fWmxXzj3hoZwfPxxCpYta/FJjQxHCQ5muOOOWmi1EQ6XfJWVlaGi\nomL8e71ej82bN4ttIsdN2GrahWyMb96cC5lstIMzUDnrrC5cdFErduzIQG2teN2rvjDIwy+c+4sv\nZiMszIKbbtJKbYrH+OlPO1BU1ItXXskU3JFnU8pcu3Yt6urqoNfrsWTJEtx7773cwfsIHR0dgpzK\nnj2x+PbbeNx4o9avmpWc4e67axAVZcb//E++qNUzTU1N4h3MDfi8cz94UIV//SseK1c2IDra+zc5\nxIIIuPPOk+jsDMG776YLes5Epczi4mLMmTMHFRUVKCwsxLXXXutmizmuIrymnfCnP+UiPd2Ia691\nbZRkZGQkEhMTkZaWhvT0dCQnJyMmJgZyuTiD3D2BSmXGvffW4MQJJcrKUkU7bnd3t1frzbhX5d7N\nMAZs2ZKDxMQhXHONd3+KuoM5c/pwzjnteOutdFx+eQtiYmb+cLN16a5Zs2Y8+ktISMDu3buRmJjo\nCZM5LlBfXy9oM/ydd9LR3ByOp546BLnc8bywUqlESkoK4uLipnXijDEYjUZ0dHSgtbUVg4PenQ49\n/3w9vvgiCS+/nI2f/rQTarU4QnpNTU3Iy3OP3IGr+HTk/t13cTh+XImbbtJ67dg8d3P77bUYHg7C\n669nSm0Kx4309/cLSgO0tYXgzTdHN1F/9CPHatojIiIwb948LFy4EGq1esbonIgQEREBjUaDxYsX\nY+7cuVAqlQ6dz5MQARs2VIGIYePGWU5rNE2mtbXVa8sifda5W63Atm2ZSEkZxMUXe39ZkrvIyBjE\npZfq8PHHyWhtnXnmand3NzZs2ICenh5ER0cjNjYW7e3tWLJkCa+g8WIYY4Jq2gFgy5bRoRX33OPY\nJqpGo8GiRYsQGxsLcnByPBEhLi4OCxcuRFFREUJCXJv96y6SkoZx22112Ls3Dl9/7foAemC0LFKn\n04lyLLHxWef+zTfxqKmJws031/ttw5JQbrxRCyLgzTdnliUoLy+HVquFRqPBtm2jSpmFhYWoqKjA\nrl27PGQtx1FaW1vR19dnd11FRRS++ioJ113XiKQkYZuoQUFBmDdvHrKysiCTueYOiAgJCQlYvHgx\nUlPFy22LyVVXtSAnpx8vvJArmjRwU1OTV8p62L06Igolor1EdIiIjhHRb6dYcwsRtRPRwbGv291j\n7igWC/Dqq1nIyBjABRfwjsvExGFcfnkLPv00eUbN99LSUqxbt258GpVKpcLOnTvx/PPP45577vGg\nxRyhjIyMoLZ2tHdj4sB3YPROzDYPmDHgz3/ORUyMCStWCNtEVSgUWLhwIWJjY0W1OSgoCLNmzcK8\nefO8buM1KIhh/foq6PWhdoMhoZhMJq/s/Bby0TUM4HzG2HwACwAsJaKzplj3NmNswdjXVlGtnMQn\nn0Shvj4Ct9xS7xfDBsRg1aoGBAdb8cYbmTOuKy0tPUUp02KxcMfuxdTV1WFkZOSUge/d3d3jKbZN\nmzahrKwM33wTj6NHVbj11jqEh9uv95PL5ViwYAEiI8VtzZ9IbGwsiouLvS4XP3duHy6+uBXvvJPu\nlEbTVDQ2NnpdU5Nd585G6R/7Vj72JdlVmM3A88/HITu7H+ed53+a1M4SF2fClVe24Isvkhx6wfb0\n9PARfF6KwWAYFwabWMa6Zs0arFmzZjzFdvbZS7BlSzY0mgFceqn9/aegoCDMnz8f4eHh7r4EhISE\nYMGCBVCrxddXd4W1a08iJMSKP/1JnM1Vo9EoSFPfkwhKOhFREBEdBKAH8AVjbM8Uy64hosNE9C4R\nCSu8doLt24H6egVuvbUOLqYI7RISEoLk5GTk5eVh/vz5WLRoEYqLi7FgwQLMnj0bGRkZiI6OdngD\nyl3ccEMDFAorXnst06HneeMtZaBj60S1YStjtY2LtG2Kb9y4EV9/XYTm5nDcdddJBAXZ91RFRUVu\njdgnI5PJkJ+fj8zMTI+d0x6xsSO47bY67NsXK9rmqlar9aroXVCdO2PMAmABEUUDKCOiOYyxoxOW\n/AXAW4yxYSK6E8BrAM6ffBwiWgtgLQBkZDin9XD11UBDQxvOPtt9n5JxcXFIT0+HSqUS5LjNZjO6\nurrQ1tYm6ad3TMwISkubsXNnOlav1iIrS1iDRWtrKzIyMrzmQ4oz+oErZBO1vz8Yb7yRiUWLurB4\nsf3O1ezsbNFz7EIgImRmZkKhUAiu/HE3y5a14K9/TcYLL+TizDO7EBrq2qaowWBAV1cX4uIcF/Rz\nBw7FvoyxHgDlAJZO+nknY8y2Pf8SgEXTPH8LY6yYMVackJDghLlAVBRw/fW9cIcfCgsLw4IFCzB3\n7lyHIvLg4GAkJiZi7ty5OPPMM5Gamupy5YGzXH99A8LCLA5F73wEn3dhNpvHN1FtTC5jDQsLQ09P\nD+6997/Q19eFlSv34YMPymY8ri1okZKUlBTMnj1bUhtsBAUxrFtXDb0+FO+8I87/S319vddE70Kq\nZRLGInYQURiAnwE4MWlN8oRvlwE4LqaRniApKQnFxcWIjo526ThhYWGYNWsWzjzzTKSkpIhknXBU\nKjNKS5vx9dcJ0GqF51R9QcI0UNBqtad1ok4sY12+fDkGBwcRHCxHX181cnM3YdOmteObq1OhUCiQ\nn5/vFXdnSUlJKCwslNoMAMC8eb0499x2vPVWBjo6FC4fz2AweE3uXUh4mQxgNxEdBvA9RnPuHxPR\n40S0bGzNurEyyUMA1gG4xT3muofMzEwUFBQgSMTSm5CQEOTl5UlSLbB8eRNCQqzYsUN46ouP4PMO\njEbjlJ2oE8tYL730Umg0GpjNIwAiodf/edzxl5SUTHnc/Px8KBSuOy+xSExM9JoI/uc/PwmLhfDy\ny1miHK+2ttYronch1TKHGWMLGWPzGGNzGGOPj/38UcbYR2OPH2KMFTHG5jPGljDGTsx8VO8hKysL\nmZmZbovTEyeuAAAgAElEQVRoIiMjsXDhQuTm5nosVRMdPYLLL2/Bl18moaVl+rr3iZjNZq+JOAKZ\nmpqaaR2DrYw1JiYGDz30AoAEAP3o6+se31ydWOZqQ61We00eeCJJSUnIz8+X2gykpIxqU332WTIq\nK13faDYajV7RteqzHapikJaWBo1GnEaGmSAipKWlYdGiRR6rUrj++kYEBTGHZkjy1Iy0dHZ2CtYI\nf/ttYTliuVyOnJwcV8xyK8nJycjOzpbaDKxerUV0tAkvvODc+MrJ1NXVwWyWdvJVwDr3mJgYj7/o\nIyIisHDhQiQnJ9tf7CLx8SZccokOn32mRnu7MK0PPoJPOqxWK2pqhOnBHDkyhN27VwBoR3R09Hh5\npK3BaSI5OTle1yU6mYyMDKSlpUlqQ0SEBbfeWofDh6NFKY0cGRkRNC3LnQSkc1coFJg9e7Ykm0tB\nQUHIz89HXl6e289/ww2NsFhIcJQH8Jp3qWhubhYsm7tp00EAFUhPzxzXCLI1OJWXl4+vU6lUSEpK\nco/BIpOTkwNnK+jE4rLLWpGd3Y8XX8wRZeZqU1OTpFVoAencCwoKJN9cSklJwfz58xEc7D5JfbV6\nCBde2IaPP05Gd7ew6I2nZjyPyWQSHOVVVUWipuZBLF78Wzz33LPjOfiNGzdi3bp1KC0tHV+bm5vr\nFdUxQiAiFBQUQKVSSWZDUBDD3XefhE4XhvffF0f47MSJE5IVKgScc1er1ZI0cUxFdHQ0Fi5c6FaJ\n1JUrtTCZZHj3XWG3vQMDA7zm3cPU19fDInD+27ZtWVAqR/Cb3yw5ZfM0JibmFMeuVqsRFRUluq3u\nJCgoCEVFRQgNFVYE4A4WLerGmWd2Yvv2DBgMrgdeAwMDkqVnAsq5BwcHe93mUkREBM444wy36Xxk\nZAyipKQdH3yQKvjFyqN3z9Hf3z+uH2OPI0dU2LNnJ6666gdERo5+GExUhrQhk8mQlSVOWZ+nUSgU\nmDt3rqhlyY5yxx21GBgIdqiUeCYaGhokGaYdUM49KyvLKzeXbOJK7qqkWbVKC6MxGB9+KKypqq2t\njde8ewDGGE6ePCl4/dNPfwHgXpSXXz+lMqSNtLQ0rx2YIYSIiAgUFRVJdv6cnAFceGEb3nsvDXq9\nOP+PFRUVHp+3GjDOPTw83CNVKs6iUCgwf/58tzj4nJwBnHlmJ95/Pw3Dw/b/5Lzm3TN0dnaeVt0y\nHceOKdHQcAtiYnLR0FB/mjKkrXkpODhYcokBMYiNjZX0LvvWW+sAAK+8kinK8cxmMw4fPozhYWFD\nVMQgYJy7GJNm3I1cLsf8+fMREREh+rFXrGhEd7cCn38uTHqVp2bci9VqdShqf/11DVSqaGze/PSU\nypC2/Ht6erpX3p06Q1pammTVPmr1MEpLm/G3v6lRVyfO+3FoaAgHDx70mMS2d3s7kYiMjER8vDiy\nnu7G5uDDwsQZImBj/vweFBT04e230yFk766zs9OjUUag0dLSIrj08fjxKOzdG4frr2+cUblQLpd7\n7Xg7ZyAi5OXlSbYxvHKlFmFhFmzdKt7+xeDgII4f94z0VkA4d41G4zMlYcB/UjRi5k2JRvXeW1rC\n8PXXwuqJec27e3C0weWNNzRQKkdw3nnHTlGGnNy8lJ6e7tbSWimwVdBIcTeiUpmxcmUD/vWveBw+\nLF6Jpqf2s/zeuYeHh/tM1D6R0NBQzJs3T9Q369lndyAtzYidOzMEtVjrdDqvEEDyN7RareDW9Kqq\nSPz73/G49tpG7Nnz99MGnNual7755htJVEg9QWhoqGQqktdc04T4+GG8+GK2KLIEnsTvnXtaWppP\nRe0TiYiIwJw5c0SzPyhoVHOmqioKBw7YlzYeHBwUNDCCIxyj0Yjm5mbB619/PRORkaNDWCYPOJ/Y\nvLR+/Xq/i9onEhMTI4kGTUiIFbfcUoeKChW++ca3gkS/du5yudxn2q+nIzo6GgUFBaId76KL2hAb\nOyxYUMwb1O38CUfkYGtqIvHtt/FYvrwJERGjGyWTB5zHxMRg+fLlfpVrn4709HRJ7sKXLm2DRjOA\nbduyBO1XeQt+7dyTk5MlbYYQi6SkJNHmTyoUVixf3oR9+2JRXW2/7FKv10uubucv9PT0oKOjQ/D6\nN97QICLCjGuumTnST01N9euo3YZNokDsYgN7BAUx3HprHbTaCHz5pe8Ei37t3P0pB6nRaEQTVrri\nCh3Cw83YudN+PbTVaoVerxflvIEMY0yw6iMA1NVF4OuvE3D11U2IjJz+w1Umk0muqOhJgoODUVRU\n5PGy5nPP7cCsWQa89lomRkZ8I83rt849Li5OUo0KsbFFLWI0OUVGmnHFFS0oL08UNMyDp2Zcp62t\nDf39/YLXv/GGBuHhZixffvpUpomo1WrJRfA8TWRkJPLy8jx6TiLgttvqoNOF4dNPvbcZciJ+69y9\nuRvVWWxlYWLcgi9f3gSZjGHXLvvRu8Fg4GJiLmCxWE4beD0T9fXhKC9PQGlpM5TKmVNi/tCN6gxq\ntdrj7/HFi7swZ04v3nhDI6jTW2qEDMgOJaK9RHRobE7qb6dYE0JEbxNRDRHtIaJMdxgrFIVC4TXK\nj2ITFhYmSllYfLwJF17Yhk8/VaOnx34NMY/enaexsdGhIShvvqlBSIgV1147c9SekJDg8fyzN5Gb\nm+uxyWaALXqvRUdHiGCdJikR8vEzDOB8xth8AAsALCWisyatuQ1AN2MsF8BGAE+Ka6ZjJCUleb3U\ngCvExsaKssG6YkUjTCaZIO3qtrY2wbK0nP8wPDyMhoYGwesbGsKwe3cirrqqGSrVyIxrAzVqt2G7\nk/Vk0cSCBb0oLu7Cjh0ZMBq9u1hDyIBsxhizJQvlY1+Ta7muBPDa2ON3AVxAEhaXq9XC9FN8GY1G\nM+UwZEfIyDDi7LM78MEHqRgcnPmFarFYeMeqE9TV1TnUkbh9uwZyuRXXXdc44zqVSgWlUumqeT5P\nWFiYqKXCQlizpg69vQq89553b2QLCm+JKIiIDgLQA/iCMbZn0pJUAI0AwBgzA+gFcNq4dSJaS0T7\niGhfe3u7a5ZPQ2RkpFuEt7wNIsLs2bNd3kxbsaIRBoMcf/2r/fwlT804hsFgcEiArbk5DF9+mYRl\ny1oQEzNz1B5IFTL2SEhI8Oj/x+zZBpx9dgfefjsdfX3eW4IqyLkzxiyMsQUA0gAsJqI5k5ZMFaWf\n1qnBGNvCGCtmjBW7a16irzctOYJCoXA5/15U1Id583qwa1cazOaZb7b4xqpwHC19BIA338xAcLAV\nK1bMHLWHhob6pKSGO8nOzvboncyaNXUwGoMcmk/saRxKTDPGegCUA1g66VdNANIBgIiCAagAeH70\nCCD5kF1PEx0dDY1G49IxVqxogF4fiq++SrS71pHW+UCmo6MDvb29gtfrdKH429/UuOIKHWJjZ958\n9WVJDXchk8lQWFjosWau7OwBLFmix/vvp6GryztLUYVUyyQQUfTY4zAAPwNwYtKyjwDcPPZ4OYCv\nmASKUyqVyq9q24Wi0WhcilrOOqsLWVn92Lkz3a44kl6vx8jIzCmDQMdRrXYA2L49A0FBDCtWzLz5\nGhQUFBB7Ss7gaYGxW2+th8kkw/bt4ozjExshkXsygN1EdBjA9xjNuX9MRI8T0bKxNS8DiCOiGgD3\nA3jQPebOTKBF7TZkMhlmz57tdNUA0Wjuva4uEt99N3MJqdVq5YM87NDU1OTQQIbW1hB8/rkal12m\nQ3z8zFG7Wq0OCKkBZ4mNjXX5TlYoaWmDWLq0FX/5Swra2rxvrKGQapnDjLGFjLF5jLE5jLHHx37+\nKGPso7HHQ4yxaxljuYyxxYwx4R0bIhKozh0YrRqYNWuW088//3w9kpKGBAmKNTc3cyngaTCZTNBq\ntQ495623MkAErFxpv2SSb6TaJzMzE9HR9lVPxeCmm+oBjFY5eRt+UwyuVCp9eiiwGCQlJTn9ARcc\nzLB8eSMOH47GsWMzp3iGhoYkmebuC9TV1TnUD6DXh+CTT5JxySU6JCTMPPkqLi4uoJuWhEJEKCws\n9IgsQ1LSMC67TIdPPlFDp/OulLDfOPdAjtpt2MaSOfuivuyyVkRFjeCtt4RF75xTMRgMDpeL2vY5\nbrjBftQeCLK+YqFQKFBUVOSRjeeVK7WQyUb1gLwJv3HuvDRsFLlcjvz8fKeeGxZmwVVXNePbb+Oh\n1YbPuLarqwtGo9Gp8/gjzpQ+dnQo8PHHKbj44jao1TNH7eHh4S43rQUaKpXKIwM+EhJMWLasBZ9/\nrkZzs/fcWfmFc4+IiOC3qxOIi4tzuqLi6qubERJiEVS/29Q0s/ZJINHe3u5Q6SMA7NyZAYuFsGqV\n/Rx9amoqL390grS0NI/c1a9c2QC53IrXX/ee6N0vnHtc3GnNsAFPbm6uU3sQ0dEjuOSSVnzxRRLa\n22dO77S2tvKySIxKMzha+tjZqcBf/pKMiy5qRUrKzJU1QUFBAdWcJyZEhPz8fLcHf7GxJlx1VTO+\n/DIJDQ3eEWj6hXPnKZnTCQ4Odjo9c911jbBaya52htVqRUtLi1Pn8CcaGhowPDxzWmUyb7+dDrNZ\nhtWr7efaefmjawQHB2POnDluFxNcsaIRCoUVr7+e6dbzCMXnnbtcLkdUVJTUZnglsbGxTqVnkpOH\nUFKix1/+koL+/pmdSnNzs0PCWP7G4OCgQ6qPANDVJcdHH6XgZz9rQ2rqoN31fCPVdSIiItwuMBYd\nPYKrr27CV18lor5+5j0rT+Dzzj0uLo7nImcgJyfHqeqZG25ohNEYbFe32mQyBbRaZE1NjcM1/++8\nk46RERlWr7afa4+JiUF4uPSOwh9ITEx0e5/Addc1IjTUgldfzXTreYTg887dX4dyiIVcLndqJFlu\nbj+Ki7vw3ntpMJlmfpk0NjYGZFNTZ2cnOjs7HXpOT48cH36YivPP1yM9nUftniY7Oxsqlcptx1ep\nzJg79/f4xz+AkydH1Wm7u7tRVlbmtnNOh087dyLizl0A8fHxTlUM3HBDA7q7Ffjss5k384xGIzo6\nOpw1zyexWCyorq52+Hm7dqVheFhY1B4aGsqLBURGJpOhqKjIbQ1OZWVl2Lv3MRAtwUsvRaC7uxsb\nNmzApk2bPO7gfdq5K5VKvtEkkFmzZjn8f7VwYQ/y8/vwzjvpsNd02dDQEFDRe0NDg0P6MQDQ2xuM\nsrJULFmih0Zjv0cgJSWFpxzdgEKhwJw5c9zyf1tSUgKNRgPGKrBnTwluvvk2aLVaaDQalJSUiH6+\nmfBp586jduEoFArk5OQ49Byi0dx7c3M4/vnPmSN/g8GA7u5uV0z0GYxGo8ObqADw7rvpGBoKEhS1\ny2Qyvxzy7i0olUqn0pX2iImJwcaNG6FSRQNoh8HQjejoaGzcuNHjTWjcuQcQarXaYUGln/60HWlp\nRrz1ln05YEcFs3wRxhiqqqocvkvp6wvG+++n4txz25GVZT9qT0xMhFxuf3A5x3mSk5ORkuKeQdcT\nbwrsDcFxFz7r3OVyuUcnn/sDNu0ZR25Hg4JGKwAqK5U4cGDmD4be3l6/j97b2trQ09Pj8PPeey8N\nRmMwbrpJ2Aegu5wO51Ryc3NF3WC15dh7enqgUkWDKAH9/aM/8/R7w2ede0xMDM9HOkF4eLjDetcX\nX9yGuLhhvPmm/efV19f7be7dZDI5rB8DAP39wXjvvTScc047srMH7K6Pioriw689hNgbrOXl5eM5\n9lde2YbVqz8GUAitVovy8nJRziEUn3XuPCXjPBkZGQ61YysUo3M9Dx6MweHDM0c5/hy919TUwGw2\nO/y8XbvSMDAgPGrn5Y+eRcwN1tLSUqxbt248x37DDUNQKj9HevqTKC0tFcFa4fisc+cKec4jk8kc\n3ky6/PIWxMSYBMma1tXV+V303tHRAb1e7/Dzenvl2LUrDeedp0dubr/d9XK5nMtXS4BSqXRarmMy\npaWl4/4pLMyKVauG0Nj4Kxw65L76+qkQMkM1nYh2E9FxIjpGROunWFNCRL1EdHDs61H3mDtKRERE\nwA/mcJWYmBiHxKhCQ6247rpG7NsXi4qKmVMGBoMB7e3trproNYyMjKCqqsqp57711miFzC231Ata\nn5yc7PS4RI5rqNVqt9w1LVvWgtjYYY93rQqJ3M0A/osxNhvAWQDuIaKpptB+wxhbMPb1uKhWToJH\n7eKQk5PjUO37lVe2QKkcESRrWldX5zeaMydPnoTJNPNs06no7FTggw9S8bOftSEzU5j2Pd9IlZac\nnBzRR/SFhlqxcmUDDh6MwQ8/eGb8HyBshqqOMXZg7LEBwHEAkiYFuXa7OCgUCmRlZQleHxZmwbXX\nNmLPnjhUVs5cqTQ4OOgXipEdHR1ODwTfvj0DIyMy3HxzvaD18fHxCA31rlFtgYZMJkNhYaHomYEr\nrtAhPn4Yr7ySabekWCwcyrkTUSaAhQD2TPHrHxPRISL6lIiKRLBtJjvcefiAIiUlxSFVzdLSZkRG\njuCNNzLtrq2vr/dpvXeTyYTKykqnntvWFoKPP07BJZfokJoqrJOVR+3egW2DVUyJYIXCitWrtThy\nJBp79nhGxVaw9UQUCeA9APcxxvom/foAAA1jbD6APwH4YJpjrCWifUS0z59ysr6MrfZdKBERFixf\n3oRvv41HTU3EjGvNZjPq6+tdtFAaGGOorKx0+sPJtvF8443CKmT4GD3vIioqSvQO1ksu0SEpaQgv\nvpjikehdkHMnIjlGHft2xtj7k3/PGOtjjPWPPf4EgJyITpugwRjbwhgrZowV84oA7yEqKsqhqPHq\nq5sREWEWVPfe3NyM/n77VSLeRktLi8OKjzaam8Pw6afJuPzyFiQlCRviwcfoeR9qtVrUuymFgo1F\n75H47DPRDjstQqplCMDLAI4zxp6dZo16bB2IaPHYcZ17Z3AkISsrS3C7e1SUGVdf3YR//CPRbvQO\nwKl2fSnp7+93qlnJxmuvaSCXWwVNWQL4GD1vJjc3V9SGsqVLW5GePoQDB0Q75LQIidzPBnAjgPMn\nlDpeSkR3EtGdY2uWAzhKRIcAbAKwgvnSu5kDuVzu0KT4a69tQmTkCLZts78h29fX5zObq2azGceO\nHXP6w6imJhJffpmE0tJmxMYKq7DhY/S8F9sGq1g6P8HBDG+9VYFf/1qUw818LnsLGGP/BDDj/SJj\n7HkAz4tlFEca1Go1dDod+vomb6mcTlSUGStWNGLr1mwcO6ZEUdHMz6mtrUVcXJxXV4PY8uyDg/aH\naEzHiy9mIyrKjFWrhKtG8o5U7yY0NBSzZ8/G4cOHRTqeZ+Jen+1Q5YgPEWHWrFmC1199dRNiYkzY\nujXL7gaRxWJBZWWlV6dnmpqaXGq++v77GOzbF4vVq7WIjBQmU8DH6PkGsbGxyMjIkNoMh+DOnXMK\njmyujrZWa3HwYAwOHLBf6dHd3Y3m5mZXTXQLXV1dOHnypNPPt1qBF1/MQXLyIK68Uvg1unumJ0c8\nMjMz3TqiT2y4c+echiObq1dc0YLExCFB0Tsw2u3pbdUzAwMDOHbsmEvH+PLLJJw8GYnbb6+DQiHs\n7iQsLIwL4PkQMpkMs2fP9hl5CO7cOafhyOaqQsFw8831OHFCiW+/tT/vkzGGY8eOOaWu6A5MJhOO\nHDkCi705gjMeQ4aXX85Cfn4fSkqEi4vx8kffIzQ01C0TnNwBd+6cKVGr1YJLwC6+uA3p6Ua8/HK2\n3VmrwKg0wYkTJyTPv5vNZhw+fNjhWaiTef/9VOj1ofj5z2shtKkxKCgIarXapfNypCEpKcknlDu5\nc+dMyVSbq2VlZadotXd3d6OsrAxBQQy33VaL+voIfPqpsLmfHR0dqKurE9VmR7BYLDhy5IjLKaKu\nLjnefFODs87qxMKFwic08fJH3yYvL8/rxyBy586ZlqioqPEhzWVlZdi0adP4uDDbOLFNmzahrKwM\n557bgblze7BtWxaMRmE5yYaGBknq322Ovbe31+Vjbd2ajeFhGe66y7GmJ17+6NvI5XKvT89w586Z\nkezsbAQHB6OkpAQajQZarRZr1qzBmjVrxseJlZSUgAi4++6T6O5WYMcO4SVjVVVVaGtrc+MVnMrI\nyAgOHTrk1BzUyZw4EYXPPlPjmmuakJEhvDY+Li6Olz/6AQkJCYiPP01lxWvgzp0zI3K5HFlZWYiJ\nicHGjRsRHR2Nnp4e9PT0IDo6enycGAAUFBhw4YWteOeddLS2CpdMPX78uEcc/NDQEH744QdBTVr2\nsFqBP/0pFzExJsHiYDZ4+aP/kJubK6p6pJh4p1UcryIlJQWRkTPrt9u4/fY6EDFs3SpcygAYdfCN\njY1u22Tt6enB/v37YTQKG5phjy++SEJFhQpr19YiIkJ4pU1ERITowyA40hEaGorMzEypzZgS7tw5\ndiEiREdHY8OGDeMRuy2Ct+XgbSQmDuP66xvx978n4ehRxwSXTp48icrKSpfKEifDGINWq8XBgwdF\n05YfGAjCli3ZKCzsxYUXOnbHkZ6ezssf/Yy0tDSvHCDEnTtHEJ9//vl4jn3btm3Ytm3beA6+vLz8\nlLU33NCIhIQh/O//5sFiccyRtba2Yv/+/aKkTgwGAw4cOCB6Vc7Wrdno7lZg3boawaWPwOgQiMTE\nRFFt4UiPTCZDbm6u1GacBq/F4gjinnvugdlsRlZW1nj9+8aNG1FeXo7S0tJT1oaFWXDPPTX47/+e\ng7KyVCxf3uTQuYxGIw4cOAC1Wo3MzEyHxcYGBweh1WqdHo83E8eOKfHhhym4+upm5OcbHHpuamqq\n1+ZnOa4RGxs7fjfrLZBUjSTFxcVs3759kpyb4zxNTU2CtM4ZAx56aC4OH1bhtdf2IiHB8QHTwGhK\nKD4+HklJSYiJiZm29XtkZATd3d1oa2tzesiGPUZGCD//+SIMDATjlVe+R3i48PSRTCbDj3/8Y6+v\njeY4T19fHw4IEGqPiorCokWLnD4PEe1njBXbW8cjd45DpKSkQKfTYWBgYMZ1RMAvflGNNWt+hBde\nyMVjj1U4dT7GGNrb29He3g4iQmRkJEJDQ8cbgEZGRmA0GkXbKJ2Jt99OR11dJH73uyMOOXYASE5O\n5o7dz1EqlYiPj0dHR4fUpgDgOXeOg8hkMsGywKmpQ1i1qgHl5YnYs8d1gSzGGAwGA9rb26HT6aDT\n6dDR0eERx97QEIbXX8/Eeefp8ZOfOH5nkJ6e7garON5GVpb94TWegjt3jsNER0cLHgu3YkUDNJoB\nPP10Pvr7ffNG0WIh/OEPsxEWZsEvfuH4+L3ExESvHlLCEY+IiAiv0Z0RMkM1nYh2E9FxIjpGROun\nWENEtImIaojoMBGd4R5zOd5Cdna2IOlThYLhwQdPoKtLgc2bczxgmfhs356BEyeUuO++KsTFOb53\n4GtDHjiuodHYHxzvCYRE7mYA/8UYmw3gLAD3EFHhpDWXAJg19rUWwJ9FtZLjdYSEhAi+BS0oMGDF\nigZ89lkyvvvOt/TLKysj8frrGlxwQRuWLHF8SlNsbKzgBjCOfxAZGekVOv12nTtjTMcYOzD22ADg\nOIDJqkdXAnidjfIdgGgiEiYPyPFZUlJSEBERIWjtzTfXIzNzAM88k4/eXt9IzwwOyvCHP8xGTMwI\n1q+vduoYPGoPTLzh7+5Qzp2IMgEsBLBn0q9SATRO+L4Jp38AcPwMmUwmWBlPoWB46KHj6OmR48kn\nCwRNbZISxoCNG/PQ0BCOBx88jqgox4eLqFQqLjUQoKhUKkRFRUlqg2DnTkSRAN4DcB9jbHL74FRt\niKe9fYloLRHtI6J9rgwi5ngPKpVK8NCJvLx+3HnnSfz73/F4913XxLOm05YXi08+UeOLL9S4+eZ6\nLFrkXGOKN0RvHGkgIskF4gQ5dyKSY9Sxb2eMvT/FkiYAE2u90gCcJtTNGNvCGCtmjBV7y44yx3Vs\nssBCuPrqZvz0p+3YsiUbx487FtnYHLpNW37dunXYsWPHadryrlJTE4FNm2ahuLgLq1c7pvhoIyoq\nyivyrhzpSEhIkLS3QUi1DAF4GcBxxtiz0yz7CMBNY1UzZwHoZYzpRLST48UoFArk5AirhCECfvWr\nSsTFmfDb3xahq0vYi3/isJAFCxYgLS0NTU1NeOmll7Bq1apTtOVdobtbjkcfnQOl0oyHHz4OZ2ch\nazQaLhAW4MhkMqSkpEh3fgFrzgZwI4Dziejg2NelRHQnEd05tuYTALUAagC8BOBu95jL8VYcmbka\nFWXGb397FD09o47UZLL/Mpw4LOT+++8/RVhscHDwNG15ZzCZZPjNb+agq0uBJ544ipgY51QkIyMj\nERdnf1g4x/+xTTKTAiHVMv9kjBFjbB5jbMHY1yeMsf9jjP3f2BrGGLuHMZbDGJvLGOOiMQEGESEv\nL09wtJqf34+HHjqBY8dUePrpPLsbrJOHhfT19YkaGVutwFNP5ePYMRUeeugECgocEwWbSGZmJo/a\nOQBG9d6l+qDnHaoc0YiMjHRoE+m889qxZk0dvvhCja1bHW/bZoxBqVROqy0v/DjA88/n4u9/T8Lt\nt9fivPOc3+znUTtnMlJF79y5c0TFUYne1au1WLasGTt2aPDmm9NXl9g2TXt6ek4ZjKBSqfDss89O\nqy1vD8aALVuyUVaWhmuvbcTKlQ0OPX8yWVlZPGrnnEJsbKwkG6vcuXNEJSgoyKGp8ETA+vXVuPDC\nVrz8cjbeeWfqyL+8vHx803T79u24/fbbkZ6ejsbGRhw8eBAbN27EunXrTtOWnwnGgK1bs7BzZwaW\nLWvGXXedhCt+WalU8goZzmnIZDLB5cJi4hutghyfIjY2FomJidDr9YLWy2TAAw9UwmSS4c9/zkVv\nr3xsFut/1ticdklJCWJiYrBq1SpceumlpwwLccSxWyyEZ5/NwyefJOOyy1qwfn21S44d4FE7Z3qS\nkpLQ2Nhof6GIcOfOcQu5ubno6uqC2SysszMoiOE3v6mAUmnGjh0adHSE4P77qxASYh1fM9l5x8TE\nOLGVqmgAAAp4SURBVOTQbfT1BeN3v5uNvXvjcOON9bj11nqXHXtsbKxLlToc/yYyMhKRkZHo7+/3\n2Dl5WobjFhQKhWDddxtBQcCGDVW49dY6/O1vatxzzxlobhZ38HBlZRTWri3GgQMx2LChEmvWuO7Y\nAe/S8eZ4J0JlssWCO3eO20hMTHQ4B00E3HSTFn/4w2Ho9SG4445FePfdVFgcG3x0GsPDMrz0Uhbu\nvvsMMAY899wPWLZMnD67pKQkyXVEON6Pp4ejc+fOcRu22nchuu+TOeusLmzZsg9z5/Zi8+ZZuOuu\nRdizJ9ZhwTGLhfD550m49dYfYccODS66qBUvvbQPhYXO17FPRCaT8aidI4iQkBCPCsnxnDvHrYSG\nhiI3NxeVlZUOP1etHsYf/3gEu3cnYMuWHDz44Dzk5hqwdGkrzjuvHfHxUw/OYAxobAzH7t0J+Owz\nNVpbwzBrlgFPP33QaRGw6UhPT+dTljiCSUhIQGtrq0fORUwi7dXi4mK2bx9vZA0EGGM4cuQIurq6\nnD7GyAjhb39T48MPU1BdPZoCSU01IjPTiISEYQQHW2EyydDaGora2kh0dIQAABYt6sJVV7Xg7LM7\nRMmtT0ShUGDx4sWCRdM4HJPJhKNHj+KMM5wfVkdE+xljxfbW8Vclx+0QEfLz8/H9998Lrp6ZjFzO\ncNllOlx2mQ51deH4/vtYHDmiQnNzGA4dUsFqJQQHMyQlDWH+/B4sWNCDH/2oC0lJwyJfzX/Iycnh\njp3jEAqFwmOpGf7K5HiEkJAQzJo1C8ePH3f5WFlZRmRlGXHddU0iWOYcKpXK4xtkHP/AU3LnfEOV\n4zGSkpL8wiE6KpLG4UzEUzN1uXPneJRZs2YhJCREajNcIj09XfDsWA5nMp4KCrhz53gUuVyOwsJC\nqc1wmrCwMGg0GqnN4HDswp07x+OoVCqfrQ3Pz893qm6fw/E03LlzJCEjI8PntFhSU1M92oTC4bgC\nd+4cSSAizJ4922fy72FhYcjOzpbaDA5HMEIGZG8jIj0RHZ3m9yVE1Dthvuqj4pvJ8UcUCgWKioq8\nvurE9kHE0zEcX0JI5P4qgKV21nwzYb7q466bxQkUlEqlQ8M9pCArK0vw8G8Ox1sQMiD7awDO941z\nOHZITk5Genq61GZMSVxcnNfaxuHMhFg59x8T0SEi+pSIiqZbRERriWgfEe1rb3d+CDHH/8jOzkZ8\nfLzUZpxCWFgYCgoKvD5txOFMhRjO/QAADWNsPoA/AfhguoWMsS2MsWLGWLGnWnA5voEtr+0t6Y+g\noCDMmTNHksHGHI4YuOzcGWN9jLH+scefAJATkXeFYByfICgoCHPnzpW8+5OIUFRUJLkdHI4ruOzc\niUhNY/etRLR47Jidrh6X459s3rz5lMHZer0emzdvHv9eLpdj/vz5CA8Pl8I8AEBBQYHDE6Q4HG/D\nriokEb0FoARAPBE1AXgMgBwAGGP/B2A5gLuIyAxgEMAKJpVIPMer2bx5M+6991688MIL2L17NwBg\nyZIlqKioAADcc889AEZLJBcsWIBDhw5hYGDAozbm5eV5fNYlh+MO+LAOjsfQ6/Xjzty259Le3o7C\nwkLs3r37NMXIkZERHD16FL29vR6xLy8vDykpKR45F4fjLEKHdfAOVY7HSExMxO7du5GQkID29na0\nt7cjISFhSscO/CdF4+5IWiaToaioiDt2jl/BnTvHq5HJZCgoKEBubq5bShJDQkKwYMECjw1Q4HA8\nBXfuHI9hS8vYInZbBL9kyZJTNlknQ0RIS0vDGWecIWoFS0JCAoqLi72m/JLDERPu3DkeY9euXaio\nqEBhYSGOHj2Ko0ePorCwEBUVFdi1a5fd50dFRWHRokUuzy4NDQ1FUVERioqKeB07x2/hM1Q5HsNW\nDXPttdeO59h3796NXbt2jf/OHjKZDOnp6UhOTkZLSwtaWlowNDQk6LkRERFIS0tDUlISZDIe13D8\nG14tw/FpGGMwGAzo6uqCwWDA4OAgRkZGAIxuyIaFhUGpVCIuLg4RERFcSoDj8witluGRO8enISIo\nlUqeN+dwJsHvTTkcDscP4c6dw+Fw/BDu3DkcDscP4c6dw+Fw/BDu3DkcDscP4c6dw+Fw/BDu3Dkc\nDscP4c6dw+Fw/BDu3DkcDscPkUx+gIjaAWidfHo8gA4RzfEF+DUHBvyaAwNXrlnDGLOrUS2Zc3cF\nItonRFvBn+DXHBjwaw4MPHHNPC3D4XA4fgh37hwOh+OH+Kpz3yK1ARLArzkw4NccGLj9mn0y587h\ncDicmfHVyJ3D4XA4M+DVzp2IlhJRJRHVENGDU/w+hIjeHvv9HiLK9LyV4iLgmu8nogoiOkxEfyci\njRR2iom9a56wbjkRMSLy+coKIddMRNeN/a2PEdEOT9soNgJe2xlEtJuIfhh7fV8qhZ1iQUTbiEhP\nREen+T0R0aax/4/DRHSGqAYwxrzyC0AQgJMAsgEoABwCUDhpzd0A/m/s8QoAb0tttweueQmA8LHH\ndwXCNY+tiwLwNYDvABRLbbcH/s6zAPwAIGbs+0Sp7fbANW8BcNfY40IA9VLb7eI1nwvgDABHp/n9\npQA+BUAAzgKwR8zze3PkvhhADWOsljFmArATwJWT1lwJ4LWxx+8CuIB8e0im3WtmjO1mjBnHvv0O\nQJqHbRQbIX9nAHgCwFMAhE3D9m6EXPMdADYzxroBgDGm97CNYiPkmhkA27xEFYAWD9onOoyxrwF0\nzbDkSgCvs1G+AxBNRMlind+bnXsqgMYJ3zeN/WzKNYwxM4BeAHEesc49CLnmidyG0U9+X8buNRPR\nQgDpjLGPPWmYGxHyd84DkEdE3xLRd0S01GPWuQch1/zfAFYTUROATwD8wjOmSYaj73eH8OYB2VNF\n4JNLe4Ss8SUEXw8RrQZQDOA8t1rkfma8ZiKSAdgI4BZPGeQBhPydgzGaminB6N3ZN0Q0hzHW42bb\n3IWQa74BwKuMsWeI6McA3hi7Zqv7zZMEt/ovb47cmwCkT/g+Daffpo2vIaJgjN7KzXQb5O0IuWYQ\n0c8A/BrAMsbYsIdscxf2rjkKwBwA5URUj9Hc5Ec+vqkq9LX9IWNshDFWB6ASo87eVxFyzbcBeAcA\nGGP/BhCKUQ0Wf0XQ+91ZvNm5fw9gFhFlEZECoxumH01a8xGAm8ceLwfwFRvbqfBR7F7zWIriRYw6\ndl/PwwJ2rpkx1ssYi2eMZTLGMjG6z7CMMbZPGnNFQchr+wOMbp6D/v/27VA3YSCO4/j33oEnmNue\nAE8ywRNMYTC8wxwPgOMZJubQEzMYFAnJBCETmIag0IhOXMWCGYHuDi7fT1LTNM3/32t/aXrXEDrE\nzzTfSats1zk9b4EeQAjhkRju+6RVpjUDBs2qmS5wqOu6au3suWeU/5ht7gNr4iz7a7NvTHy4IQ7+\nO7ABFsBD7poT9PwB7IBls81y1/zfPZ8c+8mdr5Y5c5wDMAG+gBXwkrvmBD0/AXPiSpol8Jy75iv7\nfQMq4Eh8Sx8CI2D0a4ynzfVYtX1f+4eqJBXolj/LSJIuZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXI\ncJekAhnuklSgH2s1VHaHhI0nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa246ed8dd8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "xstar = torch.linspace(0,1,1000)\n", "mu, vsq, nll = gp.forward(xstar=Variable(xstar.unsqueeze(1)))\n", "cred_size = vsq.diag()**0.5*2\n", "pyplot.plot(xstar.numpy(),mu.data.numpy(),'b')\n", "pyplot.fill_between(xstar.numpy(),mu.data.numpy()+cred_size.data.numpy(), mu.data.numpy()-cred_size.data.numpy(),facecolor='0.75')\n", "pyplot.plot(X.numpy(), Y.numpy(), 'kx', mew=2)\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "B2A048522FDA4F3C8666F773BA8F809F", "collapsed": true }, "source": [ "I appreciate your feedback at <[email protected]>." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cell_id": "513CA294C85944AC9417C7C16DCEB8EC" }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
thewtex/TubeTK
examples/CTP-Head/3-CreateBinaryVesselsFromCTPCTA.ipynb
1
12798
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook is intended to demonstrate how select registration, segmentation, and image mathematical methods of ITKTubeTK can be combined to perform multi-channel brain extraction (aka. skull stripping for patient data containing multiple MRI sequences).\n", "\n", "There are many other (probably more effective) brain extraction methods available as open-source software such as BET and BET2 in the FSL package (albeit such methods are only for single channel data). If you need to perform brain extraction for a large collection of scans that do not contain major pathologies, please use one of those packages. This notebook is meant to show off the capabilities of specific ITKTubeTK methods, not to demonstration how to \"solve\" brain extraction." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import itk\n", "from itk import TubeTK as ttk\n", "\n", "from itkwidgets import view\n", "\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "InputBaseDir = \"../Data/CTP-MinMax/\"\n", "\n", "CTPMaxFilename = InputBaseDir + \"max3.mha\"\n", "CTPMinFilename = InputBaseDir + \"min3.mha\"\n", "CTPBrainFilename = InputBaseDir + \"max3-Brain.mha\"\n", "\n", "imMax = itk.imread(CTPMaxFilename, itk.F)\n", "imMin = itk.imread(CTPMinFilename, itk.F)\n", "imBrain = itk.imread(CTPBrainFilename, itk.F)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2130778f5f2d4b17aa7e2da544406563", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Viewer(geometries=[], gradient_opacity=0.22, point_sets=[], rendered_image=<itk.itkImagePython.itkImageF3; pro…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "view(imBrain)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "ImageType = itk.Image[itk.F, 3]\n", "\n", "imMath = ttk.ImageMath.New(Input=imBrain)\n", "imMath.Threshold( 0.00001, 2000, 1, 0)\n", "imMath.Erode(10,1,0)\n", "imBrainMaskErode = imMath.GetOutput()\n", "\n", "imMath.SetInput(imMax)\n", "imMath.AddImages(imMin,1,-1)\n", "imDiff = imMath.GetOutput()\n", "imMath.ReplaceValuesOutsideMaskRange(imBrain, 0.0001, 2000, 0)\n", "imDiffBrain = imMath.GetOutput()\n", "imMath.ReplaceValuesOutsideMaskRange(imBrainMaskErode, 0.5, 1.5, 0)\n", "imDiffBrainErode = imMath.GetOutput()\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1 590.79504\n" ] } ], "source": [ "tmpA = itk.GetArrayViewFromImage(imDiffBrain)\n", "tmpAE = itk.GetArrayViewFromImage(imDiffBrainErode)\n", "zMax = tmpA.shape[0]\n", "clip = 0\n", "while((np.amax(tmpA[clip:clip+1,:,:])>1000) | (np.amax(tmpA[clip:clip+1,:,:])==0)):\n", " clip += 1\n", "if(clip>0):\n", " tmpA[0:clip,:,:]=0\n", " tmpAE[0:clip,:,:]=0\n", "clip = 1\n", "while((np.amax(tmpA[zMax-clip:zMax-clip+1,:,:])>1000) | (np.amax(tmpA[zMax-clip:zMax-clip+1,:,:])==0)):\n", " clip += 1\n", "print(clip, np.amax(tmpA[zMax-clip:zMax-clip+1,:,:]))\n", "clip = clip - 1\n", "if(clip>0):\n", " tmpA[zMax-clip:zMax,:,:]=0 #Happens to imDiffBrain since this array is a view of an itk image\n", " tmpAE[zMax-clip:zMax,:,:]=0 #Happens to imDiffBrain since this array is a view of an itk image" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8273ce1297bf48f7bb5815995a744c44", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Viewer(geometries=[], gradient_opacity=0.22, point_sets=[], rendered_image=<itk.itkImagePython.itkImageF3; pro…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "view(imDiffBrain)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ -4.23602295 -145.46159363 296.73384094]\n", " [ -33.55116272 -160.39572144 298.94630432]\n", " [ -52.35710144 -206.85745239 296.73384094]\n", " [ -25.80754089 -144.90847778 278.48101807]\n", " [ -48.48529053 -193.02955627 305.03057861]\n", " [ 0.74201965 -167.03311157 264.1000061 ]\n", " [ -45.16659546 -175.88296509 317.75224304]\n", " [ -5.34225464 -133.29304504 307.24304199]\n", " [ -58.44137573 -155.97079468 292.86203003]\n", " [ -6.44848633 -155.41767883 264.1000061 ]\n", " [ -43.50724792 -140.48355103 327.70832825]\n", " [ 26.18534851 -133.29304504 285.1184082 ]\n", " [ -46.82594299 -157.63014221 276.82167053]\n", " [ -18.61703491 -128.86811829 290.64956665]\n", " [ -31.33869934 -128.86811829 297.28695679]]\n" ] } ], "source": [ "imMath = ttk.ImageMath[ImageType,ImageType].New()\n", "imMath.SetInput(imDiffBrainErode)\n", "imMath.Blur(1.5)\n", "imBlur = imMath.GetOutput()\n", "imBlurArray = itk.GetArrayViewFromImage(imBlur)\n", "\n", "numSeeds = 15\n", "seedCoverage = 20\n", "seedCoord = np.zeros([numSeeds,3])\n", "for i in range(numSeeds):\n", " seedCoord[i] = np.unravel_index(np.argmax(imBlurArray, axis=None), imBlurArray.shape)\n", " indx = [int(seedCoord[i][0]),int(seedCoord[i][1]),int(seedCoord[i][2])]\n", " minX = max(indx[0]-seedCoverage,0)\n", " maxX = max(indx[0]+seedCoverage,imBlurArray.shape[0])\n", " minY = max(indx[1]-seedCoverage,0)\n", " maxY = max(indx[1]+seedCoverage,imBlurArray.shape[1])\n", " minZ = max(indx[2]-seedCoverage,0)\n", " maxZ = max(indx[2]+seedCoverage,imBlurArray.shape[2])\n", " imBlurArray[minX:maxX,minY:maxY,minZ:maxZ]=0\n", " indx.reverse()\n", " seedCoord[:][i] = imDiffBrain.TransformIndexToPhysicalPoint(indx)\n", "print(seedCoord)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "**** Processing seed 0 : [ -4.23602295 -145.46159363 296.73384094]\n", "**** Processing seed 1 : [ -33.55116272 -160.39572144 298.94630432]\n", "**** Processing seed 2 : [ -52.35710144 -206.85745239 296.73384094]\n", "**** Processing seed 3 : [ -25.80754089 -144.90847778 278.48101807]\n", "**** Processing seed 4 : [ -48.48529053 -193.02955627 305.03057861]\n", "**** Processing seed 5 : [ 0.74201965 -167.03311157 264.1000061 ]\n", "**** Processing seed 6 : [ -45.16659546 -175.88296509 317.75224304]\n", "**** Processing seed 7 : [ -5.34225464 -133.29304504 307.24304199]\n", "**** Processing seed 8 : [ -58.44137573 -155.97079468 292.86203003]\n", "**** Processing seed 9 : [ -6.44848633 -155.41767883 264.1000061 ]\n", "**** Processing seed 10 : [ -43.50724792 -140.48355103 327.70832825]\n", "**** Processing seed 11 : [ 26.18534851 -133.29304504 285.1184082 ]\n", "**** Processing seed 12 : [ -46.82594299 -157.63014221 276.82167053]\n", "**** Processing seed 13 : [ -18.61703491 -128.86811829 290.64956665]\n", "**** Processing seed 14 : [ -31.33869934 -128.86811829 297.28695679]\n" ] } ], "source": [ "# Manually extract a few vessels to form an image-specific training set\n", "vSeg = ttk.SegmentTubes.New(Input=imDiffBrain)\n", "vSeg.SetVerbose(True)\n", "vSeg.SetMinRoundness(0.4)\n", "vSeg.SetMinCurvature(0.002)\n", "vSeg.SetRadiusInObjectSpace( 1 )\n", "for i in range(numSeeds):\n", " print(\"**** Processing seed \" + str(i) + \" : \" + str(seedCoord[i]))\n", " vSeg.ExtractTubeInObjectSpace( seedCoord[i], i )\n", " \n", "tubeMaskImage = vSeg.GetTubeMaskImage()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6cf4e97b23284babbbea303ca890486a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Viewer(geometries=[], gradient_opacity=0.22, point_sets=[], rendered_image=<itk.itkImagePython.itkImageF3; pro…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "imMath.SetInput(tubeMaskImage)\n", "imMath.AddImages(imDiffBrain, 200, 1)\n", "blendIm = imMath.GetOutput()\n", "view(blendIm)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "LabelMapType = itk.Image[itk.UC,3]\n", "\n", "trMask = ttk.ComputeTrainingMask[ImageType,LabelMapType].New()\n", "trMask.SetInput( tubeMaskImage )\n", "trMask.SetGap( 4 )\n", "trMask.SetObjectWidth( 1 )\n", "trMask.SetNotObjectWidth( 1 )\n", "trMask.Update()\n", "fgMask = trMask.GetOutput()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1c076e7382c44780af543f9ac8aa9882", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Viewer(geometries=[], gradient_opacity=0.22, point_sets=[], rendered_image=<itk.itkImagePython.itkImageUC3; pr…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "view(fgMask)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "enhancer = ttk.EnhanceTubesUsingDiscriminantAnalysis[ImageType,LabelMapType].New()\n", "enhancer.AddInput( imDiff )\n", "enhancer.SetLabelMap( fgMask )\n", "enhancer.SetRidgeId( 255 )\n", "enhancer.SetBackgroundId( 128 )\n", "enhancer.SetUnknownId( 0 )\n", "enhancer.SetTrainClassifier(True)\n", "enhancer.SetUseIntensityOnly(True)\n", "enhancer.SetScales([0.43,1.29,3.01])\n", "enhancer.Update()\n", "enhancer.ClassifyImages()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "scrolled": true }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4c4cced2556c430d970025baaaad9545", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Viewer(geometries=[], gradient_opacity=0.22, point_sets=[], rendered_image=<itk.itkImagePython.itkImageF3; pro…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "im1vess = itk.SubtractImageFilter( Input1=enhancer.GetClassProbabilityImage(0), Input2=enhancer.GetClassProbabilityImage(1))\n", "\n", "imMath.SetInput(imDiffBrain)\n", "imMath.Threshold(0.0001,2000,1,0)\n", "imMath.Erode(2,1,0)\n", "imBrainE = imMath.GetOutput()\n", "\n", "imMath.SetInput(im1vess)\n", "imMath.ReplaceValuesOutsideMaskRange(imBrainE, 1, 1, -0.001)\n", "im1vessBrain = imMath.GetOutput()\n", "#view(enhancer.GetClassProbabilityImage(0))\n", "view(im1vessBrain)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "itk.imwrite( im1vess, InputBaseDir + \"diff3-VesselEnhanced.mha\", compression=True)\n", "\n", "itk.imwrite( im1vessBrain, InputBaseDir + \"diff3-Brain-VesselEnhanced.mha\", compression=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
alandschaft/DataScienceMeetup
Medical_Text_Classification.ipynb
1
292325
{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "# Medical Text Classification with IPython Notebook\n", "\n", "The purpose of this notebook is to show a simple medical text classification workflow using IPython notebook." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Standard imports and settings" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib as mpl\n", "mpl.rcParams['font.size'] = 16.0\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd # process data with pandas dataframe\n", "pd.set_option('display.width', 500)\n", "pd.set_option('display.max_columns', 100)\n", "pd.set_option('display.notebook_repr_html', True)\n", "import seaborn as sns\n", "sns.set_style(\"whitegrid\")\n", "sns.set_context(\"poster\")\n", "import time\n", "import os" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Few words about IPython Notebook\n", "\n", "**Some of the main features of the IPython Notebook app include:**\n", "\n", "* In-browser editing for code, with automatic syntax highlighting, indentation, and tab completion.\n", "* The ability to execute code from the browser, with the results of computations attached to the code which generated them.\n", "* Displaying the result of computation using rich media representations, such as HTML, LaTeX, PNG, SVG, etc, up to publication-quality figures content.\n", "* In-browser editing for rich text using the Markdown markup language, which can provide commentary for the code.\n", "* The ability to easily include mathematical notation within markdown cells using LaTeX." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "**Personal advantages for my projects:**\n", "\n", "* Great support for ** Interpretable Data Science ** - This greatly contributes to the process of harnessing the medical expertise of the users to train the algorithms better. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Architecture of IPython notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"images/ipython_architecture.png\">" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# The data \n", "\n", "The **Ohsumed** test collection (available at <ftp://medir.ohsu.edu/pub/ohsumed>) is a subset of the MEDLINE database, which is a bibliographic database of important, peer-reviewed medical literature maintained by the National Library of Medicine. The initial subset I consider in the project is the collection consisting of the first 20,000 documents from the 50,216 medical abstracts of the year 1991. The classification scheme consists of the 23 Medical Subject Headings (MeSH) categories of cardiovascular diseases group: \n", "\n", "| Category | Description | \n", "| ------------- | ------------- |\n", "| C01 | Bacterial Infections and Mycoses |\n", "| C02 | Virus Diseases |\n", "| C03 | Parasitic Diseases |\n", "| C04 | Neoplasms |\n", "| C05 | Musculoskeletal Diseases |\n", "| C06 | Digestive System Diseases |\n", "| C07 | Stomatognathic Diseases |\n", "| C08 | Respiratory Tract Diseases |\n", "| C09 | Otorhinolaryngologic Diseases |\n", "| C10 | Nervous System Diseases |\n", "| C11 | Eye Diseases |\n", "| C12 | Urologic and Male Genital Diseases |\n", "| C13 | Female Genital Diseases and Pregnancy Complications |\n", "| C14 | Cardiovascular Diseases |\n", "| C15 | Hemic and Lymphatic Diseases |\n", "| C16 | Neonatal Diseases and Abnormalities |\n", "| C17 | Skin and Connective Tissue Diseases |\n", "| C18 | Nutritional and Metabolic Diseases |\n", "| C19 | Endocrine Diseases |\n", "| C20 | Immunologic Diseases |\n", "| C21 | Disorders of Environmental Origin |\n", "| C22 | Animal Diseases |\n", "| C23 | Pathological Conditions, Signs and Symptoms |\n", "\n", "\n", "## Downloading the data:\n", "\n", "* [Cardiovascular diseases abstracts](http://disi.unitn.it/moschitti/corpora/ohsumed-first-20000-docs.tar.gz) (the first 20,000 abstracts of the year 1991)\n", "\n", "** The following code assumes that the data is extracted into folder with the name 'Data' in the same folder of the IPython notebook**\n", "\n", "## Storing the data in a sql database\n", "\n", "The following code iterates over the extracted data and converts the ohsumed directory structure to a single sqlite databse with the data. The original dataset is already divided to Test and Training datasets. We will keep this division." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import sqlite3 as sqlite\n", "\n", "def get_all_tables(c):\n", " \"\"\"\n", " Helper function - Gets a list of all the tables in the database.\n", " \"\"\"\n", " all_tables = []\n", " c.execute('SELECT name FROM SQLITE_MASTER WHERE type = \"table\"')\n", " for tbl in c:\n", " all_tables.append(tbl[0])\n", " return all_tables\n", "\n", "def drop_tables(c, tables):\n", " \"\"\"\n", " Helper function - Checks that the specified tables exist, and for those that do, drop them.\n", " \"\"\"\n", " all_tables = get_all_tables(c)\n", " for t in tables:\n", " if t in all_tables:\n", " c.execute('DROP TABLE %s' % t)\n", "\n", "def create_documents_table(c):\n", " \"\"\"\n", " Helper function - This function uses SQL to create the Documents table\n", " \"\"\"\n", " drop_tables(c, [ 'Documents' ])\n", " c.execute(\"\"\"CREATE TABLE Documents ( \n", " DOCID TEXT PRIMARY KEY,\n", " NOTE_TEXT TEXT, \n", " CATEGORY TEXT\n", " )\"\"\")\n", "\n", "def add_document(c, docid, text, category):\n", " \"\"\"\n", " Helper function - Adds one document to sql Documents database\n", " \"\"\"\n", " c.execute('insert or replace into Documents values ( ?, ?, ? )', (docid, text, category))\n", "\n", "def ohsumed2sqlite(src_root_dir, dest_sqlite):\n", " start_time = time.time()\n", " print 'Converting ohsumed directory structure {0} to sqlite database'.format(src_root_dir)\n", "\n", " conn_out = sqlite.connect(dest_sqlite)\n", " c_out = conn_out.cursor()\n", "\n", " fout = open(dest_sqlite, 'w')\n", " fout.close()\n", "\n", " create_documents_table(c_out)\n", " # Process the ohsumed directory\n", " dict = {}\n", " for root, dirs, files in os.walk(src_root_dir):\n", " for f in files:\n", " category = os.path.basename(root) # directory name is the category\n", " with open (os.path.join(root, f), \"r\") as cur_file:\n", " data=cur_file.read()\n", " if f in dict:\n", " category = dict[f] + ',' + category\n", " dict[f] = category\n", " add_document(c_out, f, data, category)\n", " conn_out.commit()\n", " c_out.close()\n", " print(\"--- ohsumed2sqlite %s seconds ---\" % (time.time() - start_time))" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Converting ohsumed directory structure .\\Data\\ohsumed-first-20000-docs\\training to sqlite database\n", "--- ohsumed2sqlite 1.50699996948 seconds ---\n", "Converting ohsumed directory structure .\\Data\\ohsumed-first-20000-docs\\test to sqlite database\n", "--- ohsumed2sqlite 1.83299994469 seconds ---\n" ] } ], "source": [ "# Convert the training data\n", "ohsumed2sqlite('.\\\\Data\\\\ohsumed-first-20000-docs\\\\training', 'training.sqlite')\n", "\n", "# Convert the test data\n", "ohsumed2sqlite('.\\\\Data\\\\ohsumed-first-20000-docs\\\\test', 'test.sqlite')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data exploration and preparation \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Read the data from the sqlite databases into Pandas dataframes" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [], "source": [ "con = sqlite.connect('training.sqlite')\n", "\n", "df_train = pd.read_sql_query(\"SELECT * from Documents\", con)\n", "\n", "con.close()\n", "\n", "con = sqlite.connect('test.sqlite')\n", "\n", "df_test = pd.read_sql_query(\"SELECT * from Documents\", con)\n", "\n", "con.close()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Output a random sample of 20 records" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>DOCID</th>\n", " <th>NOTE_TEXT</th>\n", " <th>CATEGORY</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1919</th>\n", " <td>0004299</td>\n", " <td>Sensitivity of digoxigenin and biotin labelled probes for detection of human papillomavirus by in situ hybridisation.\\n The sensitivity of digoxigenin and biotin labelled DNA probes for the detect...</td>\n", " <td>C02,C04,C09,C13</td>\n", " </tr>\n", " <tr>\n", " <th>3197</th>\n", " <td>0000531</td>\n", " <td>Absence of brown product FFI in nondiabetic and diabetic rat collagen.\\n Accumulation of brown products in long-lived proteins might be an important factor in determining long-term diabetic compli...</td>\n", " <td>C18</td>\n", " </tr>\n", " <tr>\n", " <th>3861</th>\n", " <td>0007389</td>\n", " <td>Immunoblastic T-cell lymphoma presenting as an eyelid tumor.\\n A 59-year-old white man presented with an ulcerating mass of the left upper eyelid of 6 months' duration.\\n A biopsy specimen of the ...</td>\n", " <td>C04,C20</td>\n", " </tr>\n", " <tr>\n", " <th>1791</th>\n", " <td>0007955</td>\n", " <td>The prevalence of subfertility: a review of the current confusion and a report of two new studies.\\n The difficulties inherent in measuring the prevalence of subfertility are discussed.\\n Four sub...</td>\n", " <td>C12</td>\n", " </tr>\n", " <tr>\n", " <th>714</th>\n", " <td>0000565</td>\n", " <td>Phospholipids from rat, human, and canine gastric mucosa. Composition and metabolism of molecular classes of phosphatidylcholine.\\n To validate a recent proposal that a phospholipid lining with a ...</td>\n", " <td>C06</td>\n", " </tr>\n", " <tr>\n", " <th>60</th>\n", " <td>0005909</td>\n", " <td>Early postoperative care of the cardiac transplantation patient: routine considerations and immunosuppressive therapy.\\n The authors have attempted to outline the current state of the art with res...</td>\n", " <td>C01</td>\n", " </tr>\n", " <tr>\n", " <th>5171</th>\n", " <td>0004416</td>\n", " <td>Serial left ventricular performance evaluated by cardiac catheterization before, immediately after and at 6 months after balloon aortic valvuloplasty.\\n Although impaired ventricular function has ...</td>\n", " <td>C14,C23</td>\n", " </tr>\n", " <tr>\n", " <th>5828</th>\n", " <td>0007682</td>\n", " <td>Longitudinal study of diagnoses in children of women with unipolar and bipolar affective disorder.\\n School-age children of unipolar depressed, bipolar, chronically medically ill, or normal women ...</td>\n", " <td>C23</td>\n", " </tr>\n", " <tr>\n", " <th>3193</th>\n", " <td>0000521</td>\n", " <td>Association of elevated fasting C-peptide level and increased intra-abdominal fat distribution with development of NIDDM in Japanese-American men.\\n The Japanese-American population of King County...</td>\n", " <td>C18</td>\n", " </tr>\n", " <tr>\n", " <th>5269</th>\n", " <td>0005114</td>\n", " <td>Pressure threshold for shock wave induced renal hemorrhage.\\n Studies were performed with an interest in determining a pressure threshold for extracorporeal shock wave induced renal damage.\\n Hist...</td>\n", " <td>C12,C23</td>\n", " </tr>\n", " <tr>\n", " <th>2428</th>\n", " <td>0005912</td>\n", " <td>Brucella endocarditis: the role of combined medical and surgical treatment.\\n Brucella endocarditis, although a rare complication of brucellosis, is the main cause of death related to this disease...</td>\n", " <td>C01,C14</td>\n", " </tr>\n", " <tr>\n", " <th>3818</th>\n", " <td>0006685</td>\n", " <td>Prehospital administration of inhaled metaproterenol.\\n STUDY OBJECTIVES: We conducted a study of the prehospital use of inhaled metaproterenol.\\n DESIGN, SETTING, TYPE OF PARTICIPANTS, AND INTERV...</td>\n", " <td>C08,C20</td>\n", " </tr>\n", " <tr>\n", " <th>5665</th>\n", " <td>0006905</td>\n", " <td>Squamous carcinoma metastatic to the sternum.\\n A 63-year-old man had a 10 x 16-cm sternal mass 18 months after a second aortocoronary bypass operation.\\n The resected lesion was a metastatic tumo...</td>\n", " <td>C04,C23</td>\n", " </tr>\n", " <tr>\n", " <th>3247</th>\n", " <td>0003370</td>\n", " <td>Early detection and treatment of hyperlipidemia: physician practices in Canada.\\n We surveyed primary care physicians in Canada to determine their current practices regarding the detection and tre...</td>\n", " <td>C14,C18</td>\n", " </tr>\n", " <tr>\n", " <th>5230</th>\n", " <td>0004849</td>\n", " <td>Subarachnoid hemorrhage caused by a fungal aneurysm of the vertebral artery as a complication of intracranial aneurysm clipping. Case report.\\n Intracranial aneurysms are an uncommon manifestation...</td>\n", " <td>C01,C10,C14,C23</td>\n", " </tr>\n", " <tr>\n", " <th>1502</th>\n", " <td>0009007</td>\n", " <td>Changes in thermal and mechanical pain thresholds in hand amputees. A clinical and physiological long-term follow-up.\\n In a previous study, allodynia to cold and vibratory stimuli was found in th...</td>\n", " <td>C10</td>\n", " </tr>\n", " <tr>\n", " <th>5565</th>\n", " <td>0006590</td>\n", " <td>Adverse haemodynamic effects of high-dose aprotinin in a paediatric cardiac surgical patient.\\n High-dose aprotinin for reduction of intra- and postoperative blood loss was associated with profoun...</td>\n", " <td>C14,C23</td>\n", " </tr>\n", " <tr>\n", " <th>903</th>\n", " <td>0008463</td>\n", " <td>Primary sclerosing cholangitis.\\n Primary sclerosing cholangitis is a rare disease of unknown etiology.\\n Sclerosis of the bile ducts may actually be the final result of multiple factors such as a...</td>\n", " <td>C06</td>\n", " </tr>\n", " <tr>\n", " <th>380</th>\n", " <td>0005157</td>\n", " <td>Prospective study of estrogen replacement therapy and risk of breast cancer in postmenopausal women [published erratum appears in JAMA 1991 Apr 10;265(14):1828] \\n We prospectively examined the us...</td>\n", " <td>C04</td>\n", " </tr>\n", " <tr>\n", " <th>3246</th>\n", " <td>0003265</td>\n", " <td>The electroretinogram in minimal diabetic retinopathy.\\n The pattern and diffuse flash electroretinograms were measured in 20 normal subjects and 40 diabetic patients who had either normal fundi o...</td>\n", " <td>C18</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " DOCID NOTE_TEXT CATEGORY\n", "1919 0004299 Sensitivity of digoxigenin and biotin labelled probes for detection of human papillomavirus by in situ hybridisation.\\n The sensitivity of digoxigenin and biotin labelled DNA probes for the detect... C02,C04,C09,C13\n", "3197 0000531 Absence of brown product FFI in nondiabetic and diabetic rat collagen.\\n Accumulation of brown products in long-lived proteins might be an important factor in determining long-term diabetic compli... C18\n", "3861 0007389 Immunoblastic T-cell lymphoma presenting as an eyelid tumor.\\n A 59-year-old white man presented with an ulcerating mass of the left upper eyelid of 6 months' duration.\\n A biopsy specimen of the ... C04,C20\n", "1791 0007955 The prevalence of subfertility: a review of the current confusion and a report of two new studies.\\n The difficulties inherent in measuring the prevalence of subfertility are discussed.\\n Four sub... C12\n", "714 0000565 Phospholipids from rat, human, and canine gastric mucosa. Composition and metabolism of molecular classes of phosphatidylcholine.\\n To validate a recent proposal that a phospholipid lining with a ... C06\n", "60 0005909 Early postoperative care of the cardiac transplantation patient: routine considerations and immunosuppressive therapy.\\n The authors have attempted to outline the current state of the art with res... C01\n", "5171 0004416 Serial left ventricular performance evaluated by cardiac catheterization before, immediately after and at 6 months after balloon aortic valvuloplasty.\\n Although impaired ventricular function has ... C14,C23\n", "5828 0007682 Longitudinal study of diagnoses in children of women with unipolar and bipolar affective disorder.\\n School-age children of unipolar depressed, bipolar, chronically medically ill, or normal women ... C23\n", "3193 0000521 Association of elevated fasting C-peptide level and increased intra-abdominal fat distribution with development of NIDDM in Japanese-American men.\\n The Japanese-American population of King County... C18\n", "5269 0005114 Pressure threshold for shock wave induced renal hemorrhage.\\n Studies were performed with an interest in determining a pressure threshold for extracorporeal shock wave induced renal damage.\\n Hist... C12,C23\n", "2428 0005912 Brucella endocarditis: the role of combined medical and surgical treatment.\\n Brucella endocarditis, although a rare complication of brucellosis, is the main cause of death related to this disease... C01,C14\n", "3818 0006685 Prehospital administration of inhaled metaproterenol.\\n STUDY OBJECTIVES: We conducted a study of the prehospital use of inhaled metaproterenol.\\n DESIGN, SETTING, TYPE OF PARTICIPANTS, AND INTERV... C08,C20\n", "5665 0006905 Squamous carcinoma metastatic to the sternum.\\n A 63-year-old man had a 10 x 16-cm sternal mass 18 months after a second aortocoronary bypass operation.\\n The resected lesion was a metastatic tumo... C04,C23\n", "3247 0003370 Early detection and treatment of hyperlipidemia: physician practices in Canada.\\n We surveyed primary care physicians in Canada to determine their current practices regarding the detection and tre... C14,C18\n", "5230 0004849 Subarachnoid hemorrhage caused by a fungal aneurysm of the vertebral artery as a complication of intracranial aneurysm clipping. Case report.\\n Intracranial aneurysms are an uncommon manifestation... C01,C10,C14,C23\n", "1502 0009007 Changes in thermal and mechanical pain thresholds in hand amputees. A clinical and physiological long-term follow-up.\\n In a previous study, allodynia to cold and vibratory stimuli was found in th... C10\n", "5565 0006590 Adverse haemodynamic effects of high-dose aprotinin in a paediatric cardiac surgical patient.\\n High-dose aprotinin for reduction of intra- and postoperative blood loss was associated with profoun... C14,C23\n", "903 0008463 Primary sclerosing cholangitis.\\n Primary sclerosing cholangitis is a rare disease of unknown etiology.\\n Sclerosis of the bile ducts may actually be the final result of multiple factors such as a... C06\n", "380 0005157 Prospective study of estrogen replacement therapy and risk of breast cancer in postmenopausal women [published erratum appears in JAMA 1991 Apr 10;265(14):1828] \\n We prospectively examined the us... C04\n", "3246 0003265 The electroretinogram in minimal diabetic retinopathy.\\n The pattern and diffuse flash electroretinograms were measured in 20 normal subjects and 40 diabetic patients who had either normal fundi o... C18" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.options.display.max_colwidth = 200\n", "\n", "df_train.sample(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Creating binary classification dataset\n", "\n", "** As we see, each document is assigned one class or more. ** In this exercise I would like to implement a simple binary classification workflow, so I define 2 binary classes:\n", "* **Positive / True** - Documents that belong to class **C14 - Cardiovascular Diseases**\n", "* **Negative / False** - Documents that do not belong to C14\n", "\n", "The following code converts that data to a binary classification dataset:\n" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import re\n", "\n", "def ConvertCategoryColToBinVal(df, poscat):\n", " df['CATEGORY'] = df['CATEGORY'].apply(lambda x: bool(re.search(poscat, x, re.IGNORECASE) and True))\n", " \n", "ConvertCategoryColToBinVal(df_train, 'C14')\n", "\n", "ConvertCategoryColToBinVal(df_test, 'C14')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's take another look at the data:" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>DOCID</th>\n", " <th>NOTE_TEXT</th>\n", " <th>CATEGORY</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>6060</th>\n", " <td>0008845</td>\n", " <td>Causes, diagnosis, and treatment of pharyngitis.\\n Pharyngitis is a common disease of the respiratory tract that can be caused by several different viruses and bacterial organisms.\\n Clinically sp...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>978</th>\n", " <td>0005872</td>\n", " <td>Secondary correction of the unilateral cleft lip nose using a conchal composite graft.\\n The secondary deformity of the unilateral cleft lip nose has many components.\\n One is the dorsal dislocati...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3655</th>\n", " <td>0003185</td>\n", " <td>Ability of anti-HIV agents to inhibit HIV replication in monocyte/macrophages or U937 monocytoid cells under conditions of enhancement by GM-CSF or anti-HIV antibody.\\n Monocyte/macrophages (M/M) ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4045</th>\n", " <td>0002256</td>\n", " <td>Alcohol and trauma. An endemic syndrome.\\n Injuries are a pervasive and costly problem, and alcohol use appears to be an important risk factor for injury.\\n We examined the blood alcohol levels an...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2447</th>\n", " <td>0006180</td>\n", " <td>Dose-dependent reduction of myocardial infarct size with the perfluorochemical Fluosol-DA.\\n The perfluorochemical Fluosol-DA has been shown to reduce infarct size.\\n However, the dose-response re...</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>3284</th>\n", " <td>0004261</td>\n", " <td>Clinical review 16: Parathyroid hormone-related proteins: coming of age in the 1990s.\\n The last 3 yr have yielded a fertile harvest of new information on the HHM clinical syndrome and on the nove...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4031</th>\n", " <td>0000997</td>\n", " <td>Treatment of phenobarbital poisoning with multiple dose activated charcoal in an infant.\\n A 28-day-old infant developed lethargy, hypotonia, and hypothermia following a phenobarbital overdose sec...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>5510</th>\n", " <td>0006332</td>\n", " <td>Clinicopathologic features and long-term results of alpha-fetoprotein-producing gastric cancer.\\n During a 10-yr-period, 24 cases of alpha-fetoprotein-producing gastric cancer were experienced in ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1653</th>\n", " <td>0002449</td>\n", " <td>Geriatric pharmacokinetics and the kidney.\\n The general population is aging and, as a result, drugs are increasingly prescribed for a variety of medical conditions in a group of patients with mul...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4737</th>\n", " <td>0002332</td>\n", " <td>Changes in circulating norepinephrine with hemofiltration in advanced congestive heart failure.\\n In congestive heart failure (CHF), hemofiltration is associated with an obvious decrease in circul...</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>5448</th>\n", " <td>0006046</td>\n", " <td>Focal nodular hyperplasia of the liver.\\n Twenty-four patients underwent biopsy or resection of the liver for focal nodular hyperplasia (FNH) at Memorial Sloan-Kettering Cancer Center from 1978 to...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4405</th>\n", " <td>0009743</td>\n", " <td>Subtle injuries of the Lisfranc joint.\\n In fifteen patients, a subtle injury of the Lisfranc joint (tarsometatarsal articulation) was found.\\n The lesion was defined as a diastasis of two to five...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>490</th>\n", " <td>0007578</td>\n", " <td>Immunocytochemical profile of benign and carcinomatous effusions. A practical approach to difficult diagnosis.\\n One of the great challenges in the cytodiagnosis of effusions is the distinction be...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>121</th>\n", " <td>0004622</td>\n", " <td>Measles incidence, vaccine efficacy, and mortality in two urban African areas with high vaccination coverage.\\n Measles incidence, vaccine efficacy, and mortality were examined prospectively in tw...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>5399</th>\n", " <td>0005694</td>\n", " <td>Abdominal trauma in pregnancy. When is fetal monitoring necessary? \\n The type and duration of observation and monitoring of mother and fetus after abdominal trauma are dependent on gestational ag...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2139</th>\n", " <td>0002320</td>\n", " <td>Transient left ventricular filling abnormalities (diastolic stunning) after acute myocardial infarction.\\n A variety of experimental studies suggest that diastolic left ventricular (LV) function c...</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>5899</th>\n", " <td>0008051</td>\n", " <td>Stress adaptation and low-frequency impedance of rat lungs.\\n At transpulmonary pressures (Ptp) of 7-12 cmH2O, pressure-volume hysteresis of isolated cat lungs has been found to be 20-50% larger t...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4989</th>\n", " <td>0003536</td>\n", " <td>Perioperative arrhythmias after Fontan repair.\\n Arrhythmias are well-recognized sequelae of the Fontan repair.\\n A prospective analysis of perioperative arrhythmias after Fontan repair was perfor...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4396</th>\n", " <td>0009331</td>\n", " <td>Motor unit numbers and contractile properties after spinal cord injury.\\n The number of motor units in the thenar muscle group was estimated in 11 patients with cervical spinal cord injuries.\\n Th...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2280</th>\n", " <td>0003481</td>\n", " <td>Nonuniform regional deformation of the pericardium during the cardiac cycle in dogs.\\n We hypothesized that local contact forces between the pericardium and the heart cause regional variation in p...</td>\n", " <td>True</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " DOCID NOTE_TEXT CATEGORY\n", "6060 0008845 Causes, diagnosis, and treatment of pharyngitis.\\n Pharyngitis is a common disease of the respiratory tract that can be caused by several different viruses and bacterial organisms.\\n Clinically sp... False\n", "978 0005872 Secondary correction of the unilateral cleft lip nose using a conchal composite graft.\\n The secondary deformity of the unilateral cleft lip nose has many components.\\n One is the dorsal dislocati... False\n", "3655 0003185 Ability of anti-HIV agents to inhibit HIV replication in monocyte/macrophages or U937 monocytoid cells under conditions of enhancement by GM-CSF or anti-HIV antibody.\\n Monocyte/macrophages (M/M) ... False\n", "4045 0002256 Alcohol and trauma. An endemic syndrome.\\n Injuries are a pervasive and costly problem, and alcohol use appears to be an important risk factor for injury.\\n We examined the blood alcohol levels an... False\n", "2447 0006180 Dose-dependent reduction of myocardial infarct size with the perfluorochemical Fluosol-DA.\\n The perfluorochemical Fluosol-DA has been shown to reduce infarct size.\\n However, the dose-response re... True\n", "3284 0004261 Clinical review 16: Parathyroid hormone-related proteins: coming of age in the 1990s.\\n The last 3 yr have yielded a fertile harvest of new information on the HHM clinical syndrome and on the nove... False\n", "4031 0000997 Treatment of phenobarbital poisoning with multiple dose activated charcoal in an infant.\\n A 28-day-old infant developed lethargy, hypotonia, and hypothermia following a phenobarbital overdose sec... False\n", "5510 0006332 Clinicopathologic features and long-term results of alpha-fetoprotein-producing gastric cancer.\\n During a 10-yr-period, 24 cases of alpha-fetoprotein-producing gastric cancer were experienced in ... False\n", "1653 0002449 Geriatric pharmacokinetics and the kidney.\\n The general population is aging and, as a result, drugs are increasingly prescribed for a variety of medical conditions in a group of patients with mul... False\n", "4737 0002332 Changes in circulating norepinephrine with hemofiltration in advanced congestive heart failure.\\n In congestive heart failure (CHF), hemofiltration is associated with an obvious decrease in circul... True\n", "5448 0006046 Focal nodular hyperplasia of the liver.\\n Twenty-four patients underwent biopsy or resection of the liver for focal nodular hyperplasia (FNH) at Memorial Sloan-Kettering Cancer Center from 1978 to... False\n", "4405 0009743 Subtle injuries of the Lisfranc joint.\\n In fifteen patients, a subtle injury of the Lisfranc joint (tarsometatarsal articulation) was found.\\n The lesion was defined as a diastasis of two to five... False\n", "490 0007578 Immunocytochemical profile of benign and carcinomatous effusions. A practical approach to difficult diagnosis.\\n One of the great challenges in the cytodiagnosis of effusions is the distinction be... False\n", "121 0004622 Measles incidence, vaccine efficacy, and mortality in two urban African areas with high vaccination coverage.\\n Measles incidence, vaccine efficacy, and mortality were examined prospectively in tw... False\n", "5399 0005694 Abdominal trauma in pregnancy. When is fetal monitoring necessary? \\n The type and duration of observation and monitoring of mother and fetus after abdominal trauma are dependent on gestational ag... False\n", "2139 0002320 Transient left ventricular filling abnormalities (diastolic stunning) after acute myocardial infarction.\\n A variety of experimental studies suggest that diastolic left ventricular (LV) function c... True\n", "5899 0008051 Stress adaptation and low-frequency impedance of rat lungs.\\n At transpulmonary pressures (Ptp) of 7-12 cmH2O, pressure-volume hysteresis of isolated cat lungs has been found to be 20-50% larger t... False\n", "4989 0003536 Perioperative arrhythmias after Fontan repair.\\n Arrhythmias are well-recognized sequelae of the Fontan repair.\\n A prospective analysis of perioperative arrhythmias after Fontan repair was perfor... False\n", "4396 0009331 Motor unit numbers and contractile properties after spinal cord injury.\\n The number of motor units in the thenar muscle group was estimated in 11 patients with cervical spinal cord injuries.\\n Th... False\n", "2280 0003481 Nonuniform regional deformation of the pericardium during the cardiac cycle in dogs.\\n We hypothesized that local contact forces between the pericardium and the heart cause regional variation in p... True" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_train.sample(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### How many records do we have in the test / train datasets ?" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training data has: 6286 documents\n", "Test data has: 7643 documents\n" ] } ], "source": [ "\n", "print 'Training data has: ', len(df_train.index), ' documents'\n", "\n", "print 'Test data has: ', len(df_test.index), ' documents'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data distribution" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAH5CAYAAAC7y0kLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGXexvH7TE0lCb2jIEhHiooFcW1YAV2xd8R1Ebvg\nit3VdxU7q+DaXevau9jFRpXeey/pPZlMOe8fsCwogQQmec7MfD/XxeWVZCa5B5PMzTO/8zyWbdu2\nAAAAAESFy3QAAAAAIJ5QsAEAAIAoomADAAAAUUTBBgAAAKKIgg0AAABEEQUbAAAAiCIKNgAAABBF\nFGwAAAAgiijYAAAAQBRRsAEAAIAoomADAAAAUUTBBgAAAKKIgg0AAABEEQUbAAAAiCIKNgAAABBF\nFGwAAAAgiijYAAAAQBRRsAEAAIAoomADAAAAUUTBBgAAAKKIgg0AAABEEQUbAAAAiCIKNgAAABBF\nFGwAAAAgiijYAAAAQBRRsAEAAIAoomADAAAAUUTBBgAAAKKIgg0AAABEEQUbAAAAiCIKNgAAABBF\nFGwAAAAgiijYAAAAQBRRsAEAAIAoomADAAAAUUTBBgAAAKKIgg0AAABEEQUbAAAAiCIKNgAAABBF\nFGwAAAAgiijYAAAAQBRRsAEAAIAoomADAAAAUUTBBgAAAKKIgg0AAABEEQUbAAAAiCIKNgAAABBF\nFGwAAAAgiijYAAAAQBRRsAEAAIAoomADAAAAUUTBBgAAAKKIgg0AAABEEQUbAAAAiCKP6QAAkKhs\n21ZZWZlycnKUk5Oj4sICBQMBhaqqdvwJVlUpFKxSKBiUJLndbrncHnm8Xrk9Hrk9Hrk8bnl9SWrU\nooUaNWqkxo0bKzMzUy4XaygAYIJl27ZtOgQAxINIJKLCwsIdhTl73Vplr1+nnE2bFC4vlV1ZoXBF\nhezKCkUqt/03JRxUViSorGBAqXZYXpclt2XJY2n7fy25Lckta9vXkBSxbYVtKSxbEXvb20HbVrFt\nqdDjU5HLq2KXR/InyUpKluVPkpWUJJc/WVZSsnxpaWrcooWatG6jxq3aqEmTJmrdurXS0tLM/gUC\nQJygYANALQUCAS1fvlwLZ0zXstmzVJWXrXBhviJFhcoIVykzXKWsUJUauaWGXo+yvG55LMt07B2q\nIrYKgiEVhsLKD9kq9Pq1xe1XZWoDuTOy5M7MUqN2B6rb4UeoS48eatGihSwH5QcAp6NgA0A1SktL\ntXjxYi2cNkWrF8xXuCBf4cJ8uUsK1S5Yrg5WSO2SfPK64q98FgRDWlkZ1hpPsrL9KduLd0P5GjVW\n57791LXvoerQoYP8fr/pqADgOBRsAJCUnZ2tyZMmaf5PPyhckKdIYb78ZSVqHyxTB4+tVn6vXKzi\nKhCJaG1FUKvl0VpvisJpDeRq2FgNO3TSMYOHqnffvvJ4uLwHQGKjYANISBs3btT3n36ixb/+rPDW\njcoozFO/cJk6pvgo0vugKBjWb1W2liZlyGraXCltDtCRp5yu/gMGKCUlxXQ8AKhXFGwAcc+2ba1e\nvVrfffSBVs+aqdCWjWpanKd+dkAHJHuZL64DleGI5laENN/XQKHGTeVt0Up9jh+kASecoIYNG5qO\nBwB1ioINIO7Ytq0lS5bo+w/e06aF8xTaskktS/PVzwqqdZLXdLyEFLJtLS6v0mxPqsqzmsjVtKUO\nPuJInTB4qFq0aGE6HgBEFQUbQFyoqKjQ1598rKmffKjIhrU6oKxA/TxhNfUxD+xEtm1rTUVQU13J\nym/cQlkHd9Vpl16h7j168IoCgJhHwQYQswoKCvTxm69r8Q/fyb1pnY4IFKpHCiMfsag0FNaPVS6t\nbNBYyQcepGOHna9jjjuOCyYBxCQKNoCYkpubq3dfeE6rpv6s1C0bNTBSqvbJPtOxEEXBiK2ZFWHN\nSs6Sq117DRx2vk449VTKNoCYQcEG4HiFhYV675WXtGzyd0rbvE4n2uVqySx1QojYtn4rD2l6SkO5\n2x2kP513gf500iDKNgBHo2ADcKTS0lJ99MbrmvfVF0retFbHR0rVjlKd0MK2rZnlIc1IaSRf+446\n/YqrdPjRRzMSBMBxKNgAHGXRggV64/GHFVm2SMdVFagT4x/YjZBt64cKWwsbttLBJwzShX+9Rqmp\nqaZjAYAkCjYABwiFQvrgjdc09d3/qO3WtTrFH1GSy2U6FmLEmoqgvvBlytOpm86/8RZ17d7ddCQA\nCY6CDcCYLVu26OVHxin3t6k6tjxHPZMZAcG+qwxH9EWVS+ubtdOhZ56tsy66RF4v31MA6h8FG0C9\nsm1bP33/nT751wQ1WL9Cg60KZXm5YA3RtaAiqB+SGyvjkH669JZb1bp1a9ORACQQCjaAelFWVqbX\nJjylpd9MUq+CTTom2SU3F6ehjhWHwvo05FNeq/Y6/tIrdNLpZ8jF+BGAOkbBBlCnli1dqtceeUhV\nS+bptGARO4HACNu2Na0irGkNmqn9n07U8JvHKCkpyXQsAHGKgg2gTixbskTP3Xunmq1arDN8ISW7\nWTWEM6wLhPShr6HaDzpdw28eLb/fbzoSgDhDwQYQVatXr9Yzd41Vw+ULdJYvKD8vx8Oh1lQG9WFS\nYx182hBdfv1N8vnYEhJAdFCwAUTFxo0bNeGO25SyZK6GeQJKYsUaMWJlZUifJDdR18Fn6dJR17Hz\nCID9RsEGsF+2bt2qp+8aK8/83zTMXalUijVi1LLKkD5PaaLuQ4bpkmtGcRw7gH1GwQawT/Ly8jTh\n7jsUmj1Nw6wyNfC4TUcComJJZUifpzZVnz+frwv/crXcbr63AdQOBRtArRQVFWnCvXerbPpPGmaX\nsIc14tbCypC+TGuuQ8+5UOcNv5KiDaDGKNgAaqS0tFQT779Peb98p3PCxWrso1gjMcyvDOur9OY6\n/sqRGnzuuabjAIgBFGwAe2Tbtt595SVNefFZnRfMU3M/F4AhMf1UaWtmq0664bHxateunek4AByM\ngg2gWitXrNCTN12nAdmrdHgSFy8ClZGI3gglq8Hxp+jau+5lxxEAu0XBBvAHVVVVevKuO1Qx+Std\n4A3I5+JIc2BnawMhvZ3STH8ec7uOHXSy6TgAHIaCDWAX30+apPceul/nVWarrZ85a6A6tm3rq4BL\nyzp01+jH/6mmTZuajgTAISjYACRJOTk5GnfDteq4cp4G+W1ZFqvWQE2UhsJ6VWk6YPAwXXnzaHYb\nAUDBBhJdJBLRS08+ruXvvamLVaJ09rMG9smSQEgfpbXUZff9nw494kjTcQAYRMEGEti8WbP07O1j\ndFrBenVLolgD+yti2/oo4FZ2t34a/egTyszMNB0JgAEUbCABlZWV6dFbb1HyzJ91tj8kN+MgQFQV\nBEN61ZWpQy+7SucOv9J0HAD1jIINJJhfvv9Ob94zVpcF89WUw2KAOvVrwNZvB/bUHROfVUZGhuk4\nAOoJBRtIEKFQSI+OvVVJP32lob4QFzEC9aQwGNbz7iz9+Y57NfCkQabjAKgHFGwgAaxasUKPXPMX\nnVu8QQf6mbUG6ptt2/ok4FbB4cfq1ocfk8/nMx0JQB2iYANxzLZtvTbxaS17/QVd5q6UlwNjAKPW\nB0J6PbWFrn3iKXXp3sN0HAB1hIINxKni4mLd95fh6r9mgQ7zU6wBpwjbtv5d5Ve78y/Tpddez7gW\nEIco2EAcmjVtml4cc6P+EspThpeREMCJpgdsTW3fU/f86wWlpaWZjgMgiijYQByxbVvPPTJOeR+8\noQu8VayMAQ6XVxXS877GuuqR8erVr5/pOACihIINxImSkhLdM+IKHbN2vnr7XabjAKihiG3r9Sqf\nmp19kYbfdAv/MAbiAAUbiANzZszQ86Ov01XBfGUyEgLEpFmVEf10QHfd98IrSk1NNR0HwH6gYAMx\n7s1nn9HKlybqYh8jIUCsyw+G9K+k5rrj32+qVatWpuMA2EcUbCBG2batR267VU0mf6bj/PwYA/Ei\nEInoqUi6Ln3sKfU57HDTcQDsAwo2EIOqqqp0+/BLdeyKOerBFnxA3LFtWy8F/ep97RgNOf8C03EA\n1BIFG4gxBQUFuv3Cc3VJ4Vq19DFvDcSzzwJuhU8bpmtuv5MRMCCGULCBGLJy+XI9OuJSXRPKU7qH\ncg0kgpkBW7916697n3lOHo/HdBwANUDBBmLErz98r/dvv0UjPeXysJIFJJR1gbDeatJB//faW2rQ\noIHpOAD2goINxIB3XnpRK557ksNjgARWFAprgreJbn3xVR1w4IGm4wDYAwo24GC2bevJu+9U+tcf\n6kR/xHQcAIYFI7YmhFN19v89oiMGHms6DoBqULABhwoGg7rrL1fqyMXT1YudQgBsZ9u23gj61eHK\nUTrniitNxwGwGxRswIGKiop0+8Xn6/yclWrj52JGAH/0TZVLxScM0Q33PWA6CoDfoWADDpOdna27\nzjtL11TlKIOdQgDswYyAtHLAqRoz7hHTUQDshIINOEhOTo7uOudM3RDKVbLbZToOgBgwM2Br+YBT\ndeu4R01HAbAdBRtwiNzcXN05bCjlGkCtzQzYWnbUKbr14UfZaQhwAJ7FAQfIy8vTnecM1fWUawD7\noJ/fUqdfvtBDo28W62aAeTyTA4bl5eXpjnOG6vpgrlIo1wD2UT+/pYN/pWQDTsCzOWBQfn6+bj/n\nTF1XlUO5BrDf+vq2lewHb7mJkg0YxDM6YEhBQYFuHzZU11dlK5VyDSBK+vosdf51EiUbMIhndcCA\nwsJCjR02VNcGtlKuAURdX7+lLr9O0j9uvoGSDRjAMztQzwoLC3XbsKEaVblFaexzDaCO9PFb6jrl\nK0o2YADb9AH1qKioSH87e4hGVWxWOuUaQD2YFbC1qP9Juu2xJ9jCD6gnrGAD9aS4uFh/GzZU11Cu\nAdSjPn5L3aZ+qYdG32Q6CpAwWMFGnbr44os1Y8aM3X6scePG+vnnn/f6Od5//32NHTtWU6dOVWZm\nZrQj1ovKykrdOPR0jSxdz/HnAIz4JSCVnzNcw2+82XQUIO55TAdA/Ovbt69uvfXWP7zf6/UaSFP/\nbNvW7ZdfoiuK1ynDx48cADOO8kvvv/OKvmzfQYOGDDUdB4hrPNujzqWnp6tnz56mYxjz8K2jddKa\neWrm58cNgFln+UL610P3qlW7A9T9kENMxwHiFjPYMG7evHkaMWKEDj30UHXv3l0nn3yy/vOf/1R7\n+5ycHF1//fXq37+/DjnkEF144YV/GEP55ZdfNGzYMPXq1UsDBw7U+PHjFYlE6vqh/MGbzz6jpj99\noS5+ftQAOMMIb6X+de1ftHXrVtNRgLjFsz7qnG3bCofDCoVCu/yRpE2bNumSSy5RWlqaxo8fr4kT\nJ+qAAw7Q3XffrWXLlu32840ePVrr16/Xgw8+qAkTJigpKUlXXXWViouLJUlTpkzRiBEj1LZtWz39\n9NMaPny4XnrpJd1///319pgl6efvvtXalyfqOD+XOQBwDpdl6VoV6e6LzlNFRYXpOEBc4jVr1LnJ\nkyerW7duf3j/1KlTtXz5cvXp00ePPPKI3O5tF//17NlThx9+uGbMmKFOnTr94X6zZs3SqFGjdOyx\nx0qSOnbsqJdfflkVFRVq0KCBnnjiCfXu3VuPPvqoJOnoo49WRkaGbrvtNg0fPlytWrWquwe73aoV\nK/ThnWN0rbdKEttiAXCWJLdLI8o2auylF+rRt96Vy8V6GxBNFGzUuX79+um22277w/vT09M1cOBA\nDRw4UIFAQMuXL9eaNWs0b948SVIwGKz2840fP15Lly7VwIEDdcwxx2j06NGSpIqKCs2fP1833HDD\njlVySRowYIAikYimTZums846qw4e5f8UFRXp4RGX6hZ3OXvOAnCsJj6PTlu/SA/ceL3ufPKfpuMA\ncYWCjTqXlpa22xVsSQqHw3rwwQf19ttvKxgMqm3bturXr58kVXvy2OOPP66nn35aX3zxhT777DN5\nPB6ddtppuu+++1RcXKxIJKLHHntMjz322C73syxLubm50X1wvxMKhXT7xedrZDBXXrbjA+Bwnfwu\nZU//Vi8+8ZiuuIF9soFooWDDqIkTJ+qdd97RuHHjNHDgQCUlJamyslLvvvtutffJyMjQ2LFjNXbs\nWC1ZskQff/yxXnrpJR100EG64IILJEkjR47U8ccfv8v9bNtW06ZN6+yx2Latu/96lc7LWakMP+Ua\nQGw42i+99/bL+qp9B500eIjpOEBcYOgKRs2ZM0c9evTQoEGDlJSUJEn68ccfJe1+BTs3N1fHHHOM\nvv76a0lS586dNWbMGLVo0UJbtmxRamqqOnfurLVr16pbt247/vh8Pj3++OPasmVLnT2Wif+4X30X\nTFFbyjWAGPNnX0g/PHiPFs6dazoKEBdYwYZRPXv21LPPPqvXX39dHTt21Pz58/XCCy8oOTlZ5eXl\nf7h948aN1a5dOz3wwAMqLy9X8+bN9cMPP2jz5s064YQTJEnXXXedrrnmGqWnp+uEE05QQUGBnnzy\nSbndbh188MF18jg+efst6dO31c/PzDWA2HSVt1KPjLpKd733SZ2+2gckAgo2jLrqqquUk5Ojp556\nSpWVlerbt69eeOEFPfnkk5q700rKzhcLPv744xo3bpwefvhhFRUVqUOHDnr00Ud1xBFHSJKOO+44\nTZgwQU8//bTef/99paWl6aijjtItt9wiv98f9ccwd+ZMzXziIQ33haP+uQGgvuzYvu+S8zX+k0kJ\nc9ouUBcsu7oryQDsVWFhoW4fPEijrWK52DEEQBxYFwjr+34n6M5/Pm06ChCzmMEG9pFt27pnxOW6\nOlJIuQYQN9r63Wo584dto28A9gkFG9hHz457SMevX6wMtuMDEGdO9Nv6+cmHtW7dOtNRgJhEwQb2\nwezp05X34ZvqlcSPEID4dKW7TP8YcVm1h34BqB7tAKil0tJSPT/mBl3gqzIdBQDqjN/l0oXFG/Xg\nLTeajgLEHAo2UEv3/uVKjQjmMncNIO619bvVfPr3+uzdd0xHAWIKBRuohVeffkqHrZyrhl52uASQ\nGAb5bX33xDhlZ2ebjgLEDAo2UEOrV63S0tdf0OFJrFwDSCwjrBLd/5fhuz1hF8AfUbCBGgiHw3r4\nmqt0mafSdBQAqHcpbpdO2rJczz38kOkoQEygYAM18OQ9d+rPhevkc7F6DSAx9fS7tPXDt7R4wXzT\nUQDHo2ADe/HbtKkKffOpOvqZuwaQ2C7yBvTUDaNUVcUuSsCeULCBPaioqNCLf7tF5/rYBxYA3Jal\nC8s3a9zom0xHARyNgg3swYM3XqfLAtmy2JIPACRJrX0epU37QbOmTTMdBXAsCjZQjem//qKGc6ao\nmY/READY2VB/WC/dNVaRSMR0FMCRKNjAboTDYf37njs01B82HQUAHMdlWTq9aL2ef/Rh01EAR6Jg\nA7vxwmOPaHDJRkZDAKAaXZI8Wv3h29q6davpKIDjULCB38nJydHqj95WZ3YNAYA9usRVpkduus50\nDMBxKNjA7zxy03W6WKWmYwCA46W6Xeq0cr6+++Jz01EAR6FgAzv56dtv1H75PKV53KajAEBMOMlv\n64OH/4+9sYGdULCB7UKhkP7zj/t0sp+r4gGgpizL0rkV2Rp/952mowCOQcEGtpv4jwd0dtlWLmwE\ngFpq6/eo7IdJWrVypekogCNQsAFJGzduVPakD9Xez2gIAOyLC7wBPXnz9bJt23QUwDgKNiDp8Zuv\n10WuCtMxACBm+V0uHbllpd5/9RXTUQDjKNhIeF9/8rG6rVmkZDc/DgCwP45IsvTTC8+otJSdmJDY\naBRIaIFAQJ88Pk7HJ5lOAgDx4eJgvh4dc7PpGIBRFGwktKfuvVvnVGSbjgEAcaOJzyPvrF+1csUK\n01EAYyjYSFh5eXkqmPy12nJiIwBE1dm+oP519x2mYwDGULCRsCbed5fO4cRGAIi6JJdLjVcu1NLF\ni01HAYygYCMh5ebmKjBzijK9bMsHAHXhTF9Qz993l+kYgBEUbCSkiffeqXNUZjoGAMQtv8ulFqsW\na+G8eaajAPWOgo2Ek5OTo+Bv05TB6jUA1Kkh/rBe/PvdpmMA9Y6CjYQz4Z47NMzF6jUA1DWvy1Lb\ndcs0Z+ZM01GAekXBRkLJzs5WZPZ0ZXhYvQaA+nBGUkT//sffTccA6hUFGwllwt13aJir3HQMAEgY\nHstShw3LNXPKFNNRgHpDwUbC2LJlizR3uhqweg0A9erUJFuvPfSA6RhAvaFgI2FMuPt2DXNVmI4B\nAAnHbVnqsnmlfv1xsukoQL2gYCMhbN68Wa75vymd1WsAMGJQkvT2Iw+ajgHUCwo2EsLEu+9g9RoA\nDHJZlnpuXaPJX39lOgpQ5yjYiHsbN26UZwGr1wBg2vFJ0vtPPGI6BlDnKNiIe/+6506dzeo1ABhn\nWZa65KzXrBnTTUcB6hQFG3GtuLhYkcVzlcbqNQA4wolJ0tvjHzcdA6hTFGzEtdee/qdODRWbjgEA\n2M7rsuRdtVSFhYWmowB1hoKNuGXbtlb+8I1aJ3lNRwEA7OSMSIleeZJVbMQvCjbi1s8/fK+eBZtM\nxwAA/E5zv1drf/petm2bjgLUCQo24tanz07UMcl8iwOAEx1WvEVff/aZ6RhAnaB9IC7l5uYqee1y\nuS3LdBSjbNvWe6URXZYd1uAtYV2bG9acwK4rRq+XRHTB1rDO2BLWrXlhrQ/VfEUpO2xryJawlgd3\nvc+aoK2Rudu+5tj8sPLDu3782eKIHiuM7PsDAxDzjkh26+uXnzcdA6gTFGzEpVcef1RnqNx0DOPe\nL7P1XImtk1Ms3ZvlUku3pbH5Ea3YXohfLYnozVJb56RZGpvpUrktjcmLqCyy95KdH7Z1e35Elbu5\n6eNFETVzS/dluVQWkZ4t+d+NcsO2JpXbuiQ9sf/xAyQ6y7LUcMNKbdiwwXQUIOoo2Ig7kUhEm6b9\nrCY+j+koxk2qsHVcsqXz0lzq7bd0a6alLLc0qdxWecTWO2Xbiu7QVJeOSLL0j4bbSvak8j0X7J8r\nbY3MjSgvLO3ulqtC0mkpLh3it3RCsqWVO61wv15q66QUS43dFGwg0Z3hqdLLD3N8OuIPBRtx56tP\nP1H/4q2mYzhCuS2l7NRjXZalFEsqjUiLg1KlLR2R9L8bpLks9fRJMwLVF+zSiK37CyI6MsnSrZm7\n/xXSzC3NDtgqi9iaVyU1374N+eaQrckVts5Po1wDkBp43CqeO1NVVVWmowBRRcFG3Pn23y/psGQO\nlpGk45MsfVNh7yi775dFtC4kHZtsacP2WeuWv/urau62tDFc/edMsqQXm7h0XYZLSdX05BHpLn1a\nbuvMrREtrLJ1Rfq2XzWvlNoakmopw0XBBrDNcRV5eu/fr5iOAUQVr6EjrmzYsEENN6ySVV3zSzCX\npltaHbJ1a/7/Lii8PN1S/yRLb5ba8kp/uBA0xSWV7eH6Q49lqeVefnMcnmTpP81cyg1LLdzbvsaa\noK3fArZeaeLSpPKIPiizleaS/trApYO8/P8CElXXZK/Gf/Sezr9yhOkoQNSwgo248sqj43S6J2A6\nhmM8WGhrUZV0XQNLjzR06YI0S6+W2Pq4LCJbUnW1NhoLzEmWpdYea0eBf7kkonNSLW0OSxOKbV2b\n4dLRSZbuyo8oyF64QEI7YOs6zZ8zx3QMIGoo2IgbwWBQhXNmKsPDeIgkLa2yNbnS1g0ZLp2e6lJP\nv6XL0l36c6ql50psJVtSUFL4d+W2PCKlRnlBeWmVraVBaUiqpZ8qbfX0Sd19loakWCq1pSXB6H49\nALFlUFJE/3nyMdMxgKihYCNufPTWGzq2PMd0DMfYuH3v6S6+Xd/fzWcpYG9bvbYlbfndvPWWsK02\nUR4ee7EkogvSLPksS4WRbRdTStsuuky1pPw9zHwDiH9+l0uhFYtVWVlpOgoQFRRsxI0ZH32gHsle\n0zEco8X2bfAWVO26Qr0kaMsj6egkSz5Jv+y0kXXJ9l0/evuit4Q9N2BrS1g6dft2JlkuqWB7+Q/a\ntoojUjWbkQBIIEcHCvTFB++bjgFEBRc5Ii4UFRUpefNaiX69Qxefpd4+aXyRrZJIRG08luZW2Xq7\n1NaZqdv2oR6SaunlEluWImrlsfRmaUSplnTKTnv7rQ3aCkr7fCHiiyURXZL+v1ns/n5Lb5Xa+ro8\notUhKc31x1V2AImnR7JXEz96X2eef4HpKMB+o2AjLnzw2r91bKhE8tLUdvb3hi69UWrrvTJbeRFb\nLd3SNRmWTkvZtmR8Rboll6R3y2xV2La6+aRbM11K2ekqx/HFEWWHpVeb7n62fU+1e0qlrQpbOj75\nf0vUB/ssXZFu6dkSWw1c0p1ZLvkS/Eh7ANtOdnRvXKPy8nKlpKSYjgPsF8u2uXwfse/Ws4fomtzl\npmMAAPbDovIqFY+8XedcdrnpKMB+YfIRMa+wsFDJm9aZjgEA2E9dkr367YtPTccA9hsFGzHvg1df\n0Z/CJaZjAAD2k2VZ8m1co9LSUtNRgP1CwUbMWzL5Ox2YzOw1AMSDgcEiffzmG6ZjAPuFgo2YVlxc\nrCTGQwAgbnRM8mret1+ZjgHsFwo2Ytrn776tAaFi0zEAAFFiWZasjWsVCARMRwH2GQUbMW3u11+q\nI+MhABBXDq0s0HeTJpmOAewzCjZiVjAYlL1xnSz2UAaAuNI7xaufP3jHdAxgn1GwEbN+/O479anI\nNx0DABBlbstScO0qRSIR01GAfULBRsya/O5b6pvMYaQAEI+6luZpxtSppmMA+4SCjZhk27bKV6+Q\n18V4CADEoyOTLX35+r9NxwD2CQUbMWnhwoVqX5RjOgYAoI4kuVyqWL/adAxgn1CwEZO+efdtHelj\nNg8A4pk/N5tTHRGTKNiISdlLF6mhl/lrAIhnPauK9euPk03HAGqNgo2YY9u2wls3m44BAKhjPVN8\nmvb5p6ZjALVGwUbMWbNmjVqWFZiOAQCoYz6XpYqN60zHAGqNgo2YM/nzT9VXVaZjAADqgZWzhWPT\nEXMo2Ig5K6ZPVZskr+kYAIB60C1QrJnTppmOAdQKBRsxJ7x1M8ejA0CC6J3k1s+ffGQ6BlArFGzE\nlLy8PKWFNSV/AAAgAElEQVQV5pqOAQCoJ6lul4rXrDQdA6gVCjZiys/ffqPe4TLTMQAA9Si8dbPC\n4bDpGECNUbARU2Z/97W6pPhMxwAA1KOOFYWaN3eu6RhAjVGwEVOqNm+Qm/lrAEgo/Xy2Jn/0gekY\nQI1RsBEzKioq5M7dajoGAKCeZXk9ylm62HQMoMYo2IgZ03/9Vd0rS0zHAAAYEN66SbZtm44B1AgF\nGzFjyuef6JAUj+kYAAAD2pYVaPny5aZjADVCwUbMKFm3RsluvmUBIBF1VZVm/fSj6RhAjdBWEDMi\n+ex/DQCJqm2yT8vnzDIdA6gRCjZiQklJiVIqmL8GgETlsSxVsdCCGEHBRkxYunSp2gU4YAYAElm4\nqMB0BKBGKNiICYumT1N7rm8EgMRWVMCJjogJFGzEhDUL56tVktd0DACAQS2qyrVu3TrTMYC9omAj\nJgQL8jjBEQASXPtQhRbOnm06BrBXFGzEBObuAADtU/xaNH2K6RjAXlGw4XiRSER2caHpGAAAw1Ld\nLpVs3mQ6BrBXFGw43vr169W8qsJ0DACAA9i8ookYQMGG4y2eP18HhijYAAApXEjBhvNRsOF4i6ZN\nUftkdhABAEgZlaXKyckxHQPYIwo2HK9w43o18LhNxwAAOED7YJkWLVhgOgawRxRsOF6kiAscAQDb\ndPB7tGjqr6ZjAHtEwYbjhYvyTUcAADhEY69bW1auMB0D2CMKNhyttLRUSWUlpmMAABzCsixFSotN\nxwD2iIINR1u3bp1ahgKmYwAAHMSuZGcpOBsFG46Wm5OjDAo2AGAnEQo2HI6CDUfL3bhBWR7LdAwA\ngJMEKk0nAPaIgg1Hy920QZls0QcA2IkVqFQ4HDYdA6gWBRuOlrt5s7K8HtMxAAAO0iASUn4+O0zB\nuSjYcLSqslL5XIyIAAD+JyscVG5urukYQLUo2HA0u5I5OwDArrLCVcrJzjYdA6gWBRuOZgfYQQQA\nsKsst6Wc9etNxwCqRcGGo7EVEwDg9xp63cresM50DKBaFGw4mh2gYAMAdpXpdSt38ybTMYBqUbDh\naDZ7nQIAfsdjWQqVlZmOAVSLgg3Hsm2bixwBALvHAgwcjIINxyotLVVKOGg6BgDAgcJcowMHo2DD\nsfLz85UhTuoCAPyRTcGGg1Gw4Vh5eXnKDLJNHwDgj7hGB05GwYZj5efmqIHNCjYAYDciEdMJgGpR\nsOFYVZWV8nJKOgBgd2zbdAKgWhRsOFYkFJYlGjYAYDdsVrDhXBRsOFYkHJKLfg0A2A07wgo2nIuC\nDceKRMJ8gwIAdo8VbDgY/QWOFQlF5LJYwgYA7AYz2HAwCjYcKxIJMYENANgtm11E4GAe0wGA6kTC\nYWawge0ikYhOXlmgo3p2Nh0FcIQ5qzfoQdMhgGpQsOFglngBENjG5XKpU6MMjTp9gJJ8XtNxAONe\n/Hmh6QhAtRgRgWN5vD5xkTjwPydGKvXjwlWmYwCOwAuccDIKNhzL4/cpyEUswA5nNEzRlEUrTccA\nnIGL4OFgFGw4ljcpSSGWsIEdXC6XyvMKVFkVNB0FMI5nBzgZBRuO5fP7FWIFG9jFiXalJi9kFRtg\nBRtORsGGY3n9SQrRr4FdnNEwRVMXMYcNuFxUGDgX351wLK/Xq6DFtyiwM5fLpTLGRADOmYGj0V7g\nWF6vVxFeAgT+YJAdYEwEYAUbDsZ3JxwrLS1NpW72+wV+7/SGyZrKdn1IcC6vz3QEoFoUbDhW06ZN\nVUDBBv7A5XKpLJ8xESQ2NwUbDkbBhmNlZmaq2EXBBnZnkF2pHxYwJoLE5fLw/ADnomDDsVwul5SU\nZDoG4EinN0zRNHYTQQKjYMPJKNhwNCspxXQEwJEYE0EiKw9UKTW9gekYQLUo2HA0V3Ky6QiAY50i\nxkSQmApKy9WkWXPTMYBqUbDhaFYSBRuozqlZKZq6iIKNxFNYWq6mLVqajgFUi4INR3MxIgJUy+Vy\nqSK/UBWBKtNRgHpVWB5QMwo2HIyCDUfzpKYqzHFdQLVOZkwECagoEFLjxo1NxwCqRcGGozVu0VIF\nwbDpGIBjnZqVommL2U0EiaWwooqCDUejYMPRmrZpp7xgyHQMwLEYE0EiqgzZSk1NNR0DqBYFG47W\ntF075bGADezRKQowJoKE4vJ6ZVmW6RhAtSjYcLRmzZop381xuMCenJKVzJgIEovbYzoBsEcUbDha\nkyZNVEDBBvaIMREkGk5xhNNRsOFomZmZKmGlAtirUxTQ94yJIEG4vCy8wNko2HA0y7JkJXMhC7A3\np2QlazpjIkgAVaGQ/Kkckw5no2DD8VwZWaYjAI7HmAgSxfqcAh3cvYfpGMAeUbDheK6MLNkcNgPs\n1WmMiSABrM0tVvdevU3HAPaIgg3Ha9mxk3I5bAbYq0GMiSABrC+u0EEHHWQ6BrBHFGw4XvcjjtLy\nAAUb2Jv/jomUMyaCOBbx+OX3+03HAPaIgg3H69qjh1Z5U0zHAGLCaQro+/krTMcA6owniecDOB8F\nG47XqFEjlSSnm44BxIRBWcmasWS16RhAnbBtW24KNmIABRsxwcpkJxGgJraNiRQwJoK4lF1Yorbt\nO5iOAewVBRsxwZXZ0HQEIGacblcyJoK4tCo7X90O6Ws6BrBXFGzEhCYHtFd+MGQ6BhATTmqYqhmL\nGRNB/FlXWK4uXbqYjgHsFQUbMaHHkUdpRSU7iQA1wZgI4lVZ2KWsLEYG4XwUbMSEbj17aaWHC1uA\nmjpdlfqOMRHEGU9SsukIQI1QsBETmjZtqoLkVNMxgJhxUsNUzWRMBHHGncTzAGIDBRsxwbIsubnQ\nEagxxkQQb0rKK5XVtJnpGECNULARM9hJBKidwVaAMRHEjRWbc9WjTz/TMYAaoWAjZmS1baeiIBc6\nAjV1UqM0xkQQNxZuLdIRRx5lOgZQIxRsxIyjTxusmQHbdAwgplQWFKqsMmA6BrDfgp4kpadzqi9i\nAwUbMaNP375ampJpOgYQU85gNxHEgUgkIl86v/8ROyjYiBkej0eupi1MxwBiykmN0vTbkjWmYwD7\nZcWmHPU67AjTMYAao2AjpmS0P0ilIeawgdpgTASxbu6mfA087njTMYAao2Ajpgw4Y6hmVUZMxwBi\nCmMiiHUlEbeaNm1qOgZQYxRsxJRD+/fXomTm8IDaYEwEscy2bXnT+L2P2ELBRkzxer2ymzQ3HQOI\nOZUFBYyJICZtzCtUx+49TccAaoWCjZiT3q69KsKMiQC1MdgK6Nt5jIkg9sxel60/nTjIdAygVijY\niDlHDx6iWRVc6AjUxokN0/Tb0jWmYwC1ll1pq127dqZjALVCwUbMOfzIo7QgqYHpGEDMCeQzJoLY\n403LkGVZpmMAtULBRszx+/2KMIcN1NpgF2MiiC25xaVqdWAH0zGAWqNgIyaltDlQlRHmsIHa2DYm\nstp0DKDG5qzdqmNPOsV0DKDWKNiISUeddobmlIdMxwBiTlU+h84gdqwtqlTXrl1NxwBqjYKNmHTE\nMcdonp85bKC2Bruq9M3c5aZjADXiTs2Qy0VVQezhuxYxKTk5WaHGzUzHAGLOCQ1TNWvZGtMxgL1a\nszVXXfocZjoGsE8o2IhZjbv2VFGQ7fqA2mJMBLHg51VbNfTsYaZjAPuEgo2YNeSKK/VdyG06BhBz\nBlsBxkTgeFXeNGVmckQ6YhMFGzGrY8eO2pjFdn1AbZ3QKI0xETjaprxCHdTjENMxgH1GwUZMS+/U\nhWPTgX0QYEwEDvbTis0669zzTccA9hkFGzHt1Isv00+VplMAsedMK6CvGROBQ5W6ktSkSRPTMYB9\nRsFGTOvTr5+WNmhsOgYQc45rlKbZjInAgXKKStS2YxfTMYD9QsFGTLMsS0kHHqRgxDYdBYg5gbxC\nlVbwEhCc5adlG/XnCy4yHQPYLx7TAYD9NeiiyzRlzBQdk8KOIkBtnOkK6Jt5KzT08O6mo9Sp6Ss2\n6PHPf9Wb152z433F5ZV66YfZmrlqo8K2re5tmumygYeoZdaeD7D6fPYyffLbEuWVVqhlVrrOOqyr\njulywI6Pr8st1JNfTNXG/GJ1bdVE157SX1mpyTs+/vIPs1UWqNI1gw6P+uOMFwW2V61atTIdA9gv\nrGAj5h15zDGam86sHlBbxzVK0+yla0zHqFNLNubo8c9/3eV9oXBEd73znWat3qQLj+6lMWccLb/H\nrb+98bVyS8qr/VzvT1uk576dqV7tmuv2MwfquG7tNeGr6fpizv9m2Z/+arqaNEjV7WcOVHlVUC9P\nnr3jY/ml5fpmwUqdd2SP6D/QOFFYVq5m7TqYjgHsNwo2Yp7L5VJqxy6qjLCbCFBbVQXxOSYSDIf1\n/vRFuvPtb+X53VHb01du0NqcQt1w6hE6+ZCOOuSAFrr59KPUpEGq3vp1/m4/XzgS0XvTF+rozu10\n9YmHqVe75hrcr7MuGtBLr/40R4FgSJK0JrtAg3odpB5tm+nYrgdq9daCHZ/j7SkLdFy3A9UoPaXu\nHniM+3HJev35gotNxwD2GwUbceGMK0Zocvx1BKDOnemKz91Eflu1Se9PX6TLBvbWqb07yd7pMo1N\nBSVyuSz1OqDFLvc5uGVjzVq9abefr6g8oPJAUL1/d5/OLZuoIhDUkk25kqSmGWmau3aLygNBLVi/\nVU0zUiVJWwpL9cvSdTr78G5RfJTxJzvoUvv27U3HAPYbBRtxoc+hh2pZRjPTMYCY86eGaZqzbK3p\nGFHXqUUjPTtiiE7rc/AfPtY4PUWRiK28342DZBeVqrCsUuHdvBqWkeKX1+NWTnHZH+6z838vHXiI\nvpy7XBf+8x0t2ZSriwdsOyzlzV/n6dTendQgJSkqjy8elVUG1LBVW9MxgKjgIkfEBcuylNmtp0pn\nfqU0Dxc7ArXx3zGRtOT4KX8N06ofw+h7YEs1SEnSY5/9qpEnHqbM1CRNXrxG89ZtlSRVBkNK9ft2\nuY/b5dKAzu304czFatM4Q73aNdf63CK9uX2kpHL7iEi/9q308l/PUm5JuZpnpsntcmldbqHmrN6s\nZ0YM1rfzV+qTWUuV6vdp+HF91b5pVh39DcSen5as09CRt5mOAUQFK9iIG2dd9Vd9W0W5BmorXsdE\nqpOe7NdtQweosKxC1738mS55+j3NWLlRQ/p1lm3b8nt2v/Z05XF91a99Kz388c+66J/v6qGPf9Y5\nR2wb+fB7/3cfv9ejVg0byL199vv1n+fpzMO6akthqZ777jdddXw/HdGpjR74YLKC4XDdP+AYsbY8\nom7dGKFBfGAFG3GjS9euer5RS6li9zOUAHbvTw3TdMuytTqzf+LsbtG5ZRNNvHKwsovK5HJZapye\nopcnz5bf65HHvfu1p2SfVzeffpT+euJhKiirUPPMNG3KL5EkpSX5dnuf5ZvztGJLnm45/Si9M3Wh\nurdpqq6tm6pzqyZ67ae5WrY5T91aN62zxxkr1mzNU/fDjzYdA4gaVrARV7qcdIpWVQZNxwBiTrzu\nJrI7pZVV+m7BKlVUBdU0I1WNt+/qsSanQAfuYWRj5qqNWrElXyl+744V6tU523YJqe5+r/08V8P6\nd5fX41ZRRaVStxdxl2Up1e9VYVli/J3vzbfLN+uCSy4zHQOIGgo24sqFV4/UJC8zjUBt/dkV0Fdz\nEmNMJBgO65+Tpmr2ms073rc+r0gL1mXr0A7VH3Dy+axleuvXeTveDkcimjR3uVo3ylCLzPQ/3H7+\nuq3aWlSqE3tu29c5MyVpR6EOhsMqqaxSRoo/Wg8rZlVWBZXcpJVSUti+EPGDgo24kpycrOTuh6gs\nzJ7YQG0MbJimucvjbzeR3clKTdbhHdvopR9ma8qy9fp12Tr9/b0f1DwzTaf17rTjdutzi7Rqa/6O\nt0/u3VG/rdqk/0yZr3nrtujxz37Vsk15uuLY3rv9Oq/9PFfnH9ljxyx2v/attHB9tr5fuEqv/zRP\nqX6fDm7RuG4fbAz4esFqXTTir6ZjAFFFwUbcuXj03/RpkMsLgNoKFhSqpDz+RhYsy5Jl7fq+UYMO\nV8+2zfTM19P1zNcz1LV1E/393ON3uVjxmW9m6KGPf9rx9mEdWmvkoMM1edEa/d8HPyqnuEy3nzVQ\nvQ9s+YevOX3lBlVWhTSw64E73texRSNdNKCXXp48RzNXbdToM46Sl12PtDno1sEH/3E7RSCWWba9\n8/b7QHy4+cwzdF3+Clm/f1YFUK3J+aVa1+8wnXVE4lzsCLMWrduicNejdc75F5qOAkQVK9iISydc\neoVmVLD9FVAbAxumaU6CjInAGX5em6czzz7HdAwg6ijYiEuDBg/RlAbNTccAYk6ooCAux0TgPMXl\nFWrUtoO8Xq/pKEDUUbARl1wul9oO+JO2BNiyD6iNs91V+mruMtMxkAC+XLBGl119jekYQJ2gYCNu\nXXr9jfrE3cB0DCCmDMhK05xl60zHQJyzbVtFrhS1bt3adBSgTlCwEbcyMzMVOaiLqiJcxwvURrig\nQMXlFaZjII7NXLVRJw75s+kYQJ2hYCOunXv9zfoywE4iQG2c7alKmENnYMasTcU66eRTTMcA6gwF\nG3GtZ+/eWt2srekYQEwZkJU4h86g/uUUlaht155yuaggiF98dyPuHXrmMC2oCJmOAcSUcGEhYyKo\nE5/OX6cruLgRcY6Cjbh31kWX6NsUjiMGamOYO6iv5rCbCKIrt7hUDQ88WJmZmaajAHWKgo245/V6\n1fHkM7SqklVsoKaOzkrV3OXsJoLo+mjuGo28abTpGECdo2AjIVxx4836OLmJ6RhATGFMBNGUU1ii\nph27qUEDtk9F/KNgIyH4fD71OPMcLWEVG6ixYe6gvmRMBFHy8fy1+usNN5uOAdQLCjYSxsUjr9Hn\nqc1MxwBixtFZqZrHmAiiYGtBsZof3EPp6emmowD1goKNhOHxeHTYeRdrXkXYdBQgZoQLGBPB/vtk\nwTpdff1NpmMA9YaCjYRy3vAr9XWDFqZjADHjXE9QX85mTAT7bktBkVp27qm0tDTTUYB6Q8FGQnG5\nXDr28is1g1VsoEaOzErVvBWMiWDffbJgPavXSDgUbCScoedfqMlZrWTbtukoQEwIFxSqqIwxEdTe\nprxCtenWW6mpqaajAPWKgo2EY1mWTr36Wv0SMJ0EiA3bxkSWmo6BGPTZwg36y7U3mI4B1DsKNhLS\noCFDNa1Ra1axgRo4MitV81euNx0DMWZjboHa9eyrlJQU01GAekfBRkKyLEtnXn+Lvqs0nQSIDRHG\nRFBLny3aqKtGXW86BmAEBRsJ69iTBmluswMUYRUb2KvzGBNBLazNyVeHQw5TcnKy6SiAERRsJLTz\nxozVl5WW6RiA4/VnTAQ1ZNu2Pl6wUX+5jtlrJC4KNhJa/6MHaGmbTqqMRExHARyPMRHUxHcL12jY\n8Kvl9XpNRwGMoWAj4d3w2Hi9FuIiHGBvGBPB3pRVBrQm6NWfjj/BdBTAKAo2El7btm3V+OTBWhEI\nmY4COBpjItibt2cu1+i77zcdAzCOgg1IGjn2Dr2X2oJt+4C9CBcUqrCs3HQMONDyzblqd0h/NWvW\nzHQUwDgKNiDJ4/Ho4rv/ro8CbtNRAEc73xvUl7OXmY4Bh7FtW18s3ayrubARkETBBnboP+AYZfc4\nVAVBRkWA6vTPTNWCFYyJYFeT5q3UpdfcJLebRQpAomADuxj9yBP6tzvLdAzA0SJFjIngf4rLK5Tt\nSlf/I480HQVwDAo2sJOMjAwdeukITQ8wiw1UZ9tuIoyJYJu3Z67Q6Lv/bjoG4CgUbOB3zr1iuH5s\neqCqIpRsYHcYE8F/LdqQra5HHadGjRqZjgI4CgUb+B3LsnT9o+P1RshvOgrgWJFCxkQSXSQS0Tcr\nc3X5VVebjgI4DgUb2I0OBx2klGNP1lr2xgZ26zxvUJNmcehMIvt49nJdddMYuVxUCeD3+KkAqnHd\nPffpPynN2Bsb2I3+malauHKD6RgwJK+4VOVpTdW7T1/TUQBHomAD1fD5fDp37N2aFODHBNidSGGh\nCksZE0k0tm3rtRkrdOs9nNgIVIfmAOzBgONP0Lqu/ZRXxagI8HsX+IKaNJsxkUTz8ezluvTam5WW\nlmY6CuBYFGxgL24b/7Re9DVmVAT4ncMyUrVwJbuJJJI12QVS8/Y64qijTUcBHI2CDexFWlqaLn5g\nnN6p8pqOAjhOpLCIMZEEEQqH9dHCjbrl9rtNRwEcj4IN1MBhRx0t1wmna1kgbDoK4CgX+IL6YvYS\n0zFQD96atkQ33/OAPB6P6SiA41GwgRq64d779WHDA1QZiZiOAjjGYRmpWsRuInFv3totOqDfAHXs\n1Ml0FCAmULCBGnK5XLr1mef1YiTVdBTAUWzGROJaSXmlft5cpitHjjIdBYgZFGygFtq0aaPD/nKd\nJgcs01EAx7jQF2JMJE7Ztq2Xpy7RfY88Kcvi9x5QUxRsoJbOuvhSLe3RX5uqmMcGJKlfRgpjInHq\nk9krdNE1NykrK8t0FCCmULCBfXDnPyfoldQWCkbYug+Qto2JFJSUmY6BKFq+OUfedl105NEDTEcB\nYo5ls7kvsE9WrVih5y89V1d7K0xHAYybWVSuOd176fxj+piOgigoD1TpxZlr9M8XX5XLFZ21uL/9\n7W/68MMP93ibUaNGadQoZr0R+yjYwH748LVXVfDUP3R8kukkgHk3BpN1/2WDTcdAFEz8fq7ufPJf\natKkSdQ+5/r161VQUCBp22z3mDFjdOCBB2rkyJE7btOsWTM1a9Ysal8TMIXNLIH9MPSii3XvlF+0\nftZ3auPnxwmJzdo+JpKVzk47sezjWcs19PK/RrVcS9suEm/Tps2Ot5OTk5WVlaWePXtG9esATsAM\nNrCfxj7xT73WoDX7YyPhXeAL6YtZS03HwH6YtmKDmvQ6UsedeKKRr3/xxRfrrrvu0vDhw9WrVy/d\nf//9ev/999W5c2cVFhbuuF1xcbE6d+68y8jJ2rVrNXLkSPXp00eHHnqoxowZs2PFHKhvFGxgP3m9\nXt3x4qt6KpKuCBNXSGD9MlK0eDW7icSqVVvytNadpSuuHrn3G9eh999/Xx06dNDEiRM1ZMiQGt0n\nNzdXF1xwgbZs2aJx48bp3nvv1Zw5czR8+HAFg8E6Tgz8Ea9pA1HQqlUrXTn+X3ph1HCN8AVMxwHM\nKSxkTCQGFZSUadKaQj353Mumoyg1NVVjx47d8fby5cv3ep9XXnlFwWBQL774ojIzMyVJPXv21KBB\ng/TZZ59p6NChdZYX2B1WsIEo6dmnj44ac5c+CLhNRwGMudAXZkwkxlQFQ3p5+go9OH5i1HYM2R/t\n2rWr9X2mTZumXr16KT09XaFQSKFQSM2bN1f79u01derUOkgJ7Bkr2EAUnTz0TG1cvUq/vP2CjvKb\nTgPUv74ZKXpt9QZpINv1xQLbtvXcT/N11yNPKTXVGa86NGzYsNb3KSws1Lx589StW7dd3m9Zlpo2\nbRqtaECNUbCBKBt+4816YN1aNZ76pQ72s5qNxGMVFiq/pEwNGRNxvDenLtZlN45V69atTUep1n+P\naI/sdCF5eXn5LrdJT0/XwIEDdd111+3yftu2HfMPByQW868FAXHotkef0KR2PbW1KmQ6ClDvLvKF\n9cWsJaZjYC++XbhavU85S/0OO8x0lD1KS0uTJGVnZ+9438yZM3e5Td++fbVy5Up17NhR3bp1U7du\n3dSxY0dNmDBBs2bNqte8gETBBuqEy+XSAy+/qhcbtFFZmO37kFj6ZKRo8eqNpmNgD+av26pgi046\na9i5xjLU9Jy7/v37y+/364EHHtAvv/yid955R4899ph8Pt+O21x++eUqKSnRiBEj9O2332ry5Mm6\n6qqrNGXKlD+MjQD1gYIN1JGkpCT9/bX/6J9WlsJs34cE898xETjPxvwizSySbhhzm9Ec/x392Jv0\n9HQ98cQTys/P19VXX60333xT48aNU0pKyo7btGjRQm+88YaSk5M1evRo3XTTTbJtWy+99JI6d+5c\nVw8BqBZHpQN1bPmSJXpu+IW6xlNe4ycUINbNLirXjG49deHAvqajYCelFZV6YcZqjX/h37usAAOI\nLlawgTrWsXNnnXHvg3oryJMZEkdvxkQcJxQO64VfFusf4ydSroE6RsEG6sGAE07UAcNH6ZsAK9hI\nHIyJOEcoHNYzP8zT6AceUVZWluk4QNyjYAP15NzhI1Ry0pmazkGPSBCX+CLsJuIA4UhE/5o8Tzfc\nN04dDjrIdBwgIVCwgXp0/b33a82xp2saJRsJ4JCMZMZEDAtHInrmh7m67p6H1LFTJ9NxgIRBwQbq\n2S3/GKf1xw3R1ADXFyP+uQoLlVdcajpGQgpHInrm+7kaddf/qdPBB5uOAyQUCjZgwE0P/EObTjxL\nv7KSjTh3iZ8xERMikYienTxP19z1gDp36Wo6DpBwKNiAITfc94CyTz5bP3HhI+JYrwbJWrJ6k+kY\nCeW/5frqsX9Xl64csgKYQMEGDLru7vtUcNo5mkzJRhxzFRUxJlJPtpXr+Rpx273q2r276ThAwqJg\nA4aNuuNulQ4+Xz9QshGnLvGHGROpB7Zt67kf52v4rXepe4+epuMACY2CDTjAX2+7Q5VnXqTvKNmI\nQ4yJ1D3btvXc5Hm6/JY71bPXIabjAAmPgg04xFVjblPoz5fqmyp+LBF/XEXsJlJXbNvW8z/O0yU3\n3a5evXubjgNAFGzAUa68ZYzsYZfrqwA/mogvlyRF9PlvjIlEWyQS0fM/ztNFN9ym3n37mo4DYDue\nxQGHGX7jzXKfN1yTKNmII73Sk7V0DWMi0RQIBvX093N12ei71KffoabjANgJz+CAA11+/Y1Kufhq\nvVflMR0FiBpXYaFyGROJioKSMk34abHueGwCM9eAA1GwAYe6aOQo9Rh7vyYEkxS2OfURse/S5Ii+\nYExkv63JztebC7bo8ef/rZYtW5qOA2A3KNiAg51w+mBd/tyretjOVGkobDoOsF96Miay32at3qRf\nC63w6yUAAA0ASURBVF164rmXlJqaajoOgGpQsAGHO7hrN93/4Wd6qkFbbawKmY4D7Bd3EWMi++qr\n+atU2KSj/v7w43K73abjANgDCjYQAxo2bKgnPvxMH3U6XHMCjIsgdl2SxJhIbdm2rf9v796Dq6zv\nPI5/ziUnOcGQEC4hCIZrQAOIuIjFirqlMx2RGrZWu5VqCstiq+2iKNTZVYuobNdboWXqWKhCi1at\nW0GFIl4iiHgpKwK5kIQkgAm5kJOcXE9OzjnP/kHraLXl9kuec3m/ZjKQP+B8h8kM7/zyfc5v4+4i\n5cycrVtvv9PucQCcAgIbiBEej0crn9qg6m9cr61BTq8Qm06sidTYPUbMCIZCeqLwY127aInyr7ve\n7nEAnCICG4ghDodDP75vubJuXabfBD2yePgRMcjl96vR32b3GFGvtbNLawr3a8nKn2va9Ol2jwPg\nNBDYQAzKv3Ge8lf9Wo+G0xSIROweBzgtN7MmclI1TS16es9hPfzkeuXk5Ng9DoDTRGADMWrKtGm6\n+4VNejx5qBp5+BExZFKaV2WHeTeRv2ffkTq9Vtut1es2KD093e5xAJwBAhuIYdnZ2Xps81ZtHDFZ\npd28jR9iB2siXxSJRPTc+yXyDc7Vz1atUVJSkt0jAThDDoslTiDmRSIRPXr3Up2z40+anczKCKLf\ngbYu7czN003/zBXfktTU2q7fflihHyy7R1Mummr3OADOEifYQBxwOp2662ePaNx/PqRV4XPUGSay\nEd0mpnl1kDURSdIHhz7Rpqo2Pbbud8Q1ECcIbCCOzLrmm1r24itaM2A0KyOIeu4EXxMJhcNav+uA\nXOMv1cO/fIKbGYE4wooIEIcikYhW//ReRbZv0rc8ITkcDrtHAr6gqK1Lb+fm6eYEXBM51tyq5z6q\n1pKfPqTc8ePtHgeAYZxgA3HI6XRq8f0P6NKVq/WIlS5/iNNsRJ+8BH03kcKSar3VGNHqp58hroE4\nRWADcWzGlVdpxeY/acN5F2o3V6wjCiW1+NXYkhhrIsGekNa+vU/DLrtaKx5+XMnJyXaPBKCXsCIC\nJIjfr/219j71hOa7OpTi5HtrRIeiti4V5uapIM7XRKrrfXqp5Jj+678f1YgRI+weB0Av439ZIEF8\n598W6rbnNml1/5Eq5gFIRIm8NK/K43hNxLIsbdlbrr09aVqz/hniGkgQBDaQQIYPH67Vm7eocs48\nre9OUpgfYCEKeOJ0TeRwo0+/KDyg6Tcs1N3LH5Db7bZ7JAB9hBURIEEV79+nNXcu1pzWGl2Q7LJ7\nHCSworYuFY67QAVfu8TuUYwIhkJ64cODGjB2kn5810+4kRFIQAQ2kMAikYieWvW4yl58Vt9Tm/q7\nCW3YY3F3ih6cf63dY5y1PZW1er+uQ7ffc79Gjx5t9zgAbMKKCJDAnE6nFty+REs3bdMz4y7RpoBT\nfM8NO3j8LWpoabV7jDPW0t6pXxXuU9LEy7X6N78lroEExwk2gE+9t3OHNj5wn77ZWqvxrI2gDxW3\nB/TW2PNjbk3Esixt/bhCvpRMLb13hdLT0+0eCUAUILABfE44HNbaRx9W9eY/aJ7alMbaCPrI4u5k\nPTg/3+4xTlllXZNeLqlVwW136NIZM+weB0AUYUUEwOe4XC4tWvoT3fHHrfrd6H/SqwEHayPoE0l+\nf0ysiXT39GjDrgOqSBmmX274PXEN4As4wQbwD+0qfEvPPrhcc9trNS6ZtxlD7yluD+jNMRP0/VnT\n7R7l73qv/Kg+Oh7UkvtWKCcnx+5xAEQpAhvASYVCIT35PytV8+pLmufsUD8XP/xC7/iPQLIeWhB9\nayL7Dh/TjmqfvnHddzQn/1/sHgdAlCOwAZyy+vp6/XzpHco4uE9zPT1cuQ7jljYEdEvBXGUN6G/3\nKJKkgzUNer28Xl+9+lpd/683ysnXPIBTQGADOG0V5eVau/weZVYUa64nqGSiA4YUtwf0xpgJmm/z\nmkhVfZO2ltZq6sxZumnBQrlcPOwL4NQR2ADOWHlZmdbdf68yK4o019NDaMMIO9dEao4365XiGo2f\ndpkW3PJDeTweW+YAENsIbABn7a+hPbCiSPmENs6SHWsijS1teml/tc6beLEW/WixvF5vn702gPhD\nYAMwprysTGuX36OBh4o50cYZK2kP6PU+WhNpbuvQH/dWadDY8/XD2+9SWlpar78mgPhHYAMwrqy0\nVOtW3KeBh4o01xMitHHaentNpLWzSy99VCnvsFG67c5lyszM7LXXApB4CGwAveavoT3oUDGrIzgt\nSxu6dUtBvvE1kbKaRhUeqtfAnLFa+KPFysrKMvr3A4BEYAPoA2WlpXp65Qo5K0o0O9ymc1OS7B4J\nUa60PaDtoydo/tfPfk0kFA6rsKRaFa0hXTzza7rhu/OUnJxsYEoA+HIENoA+4/f7tXHNL1RR+IYu\nbKnVTK9TLofD7rEQpc52TcTX1qEt+6vV02+Avv29+Zo2PXpviAQQXwhsAH3OsiztertQLz/5K3mr\nyzXbaldWMqfa+LylDQEtKsjX0AHpp/Xnio7W6Z2q4xo2Lk/f/8GtGjx4cC9NCABfjsAGYKumpiZt\nWPW4jr67Q9Na6/UVr1NOTrUh6WBHQK+NOrU1kWBPSK8XVelol3TZ16/W3G9fL7fb3QdTAsAXEdgA\nooJlWXpj6xZte3qd+h89pDnOLmUmEUiJ7mRrIsd8fr1WclSO9CH67oJFmjR5ch9OBwBfjsAGEHXq\n6uq04bFHVP/n3fpKe6OmeV1ycKqdkJY1BPTvf7Mm0tzWoTdLjqjZ8mj0xCm6sWC+MjIybJwSAD6P\nwAYQtcLhsLZt3qSdLz4v60iVpnf5dFGqmxWSBFLWEdC2URN0w+VTVFhyWLUBadiYCbrhpgKNGDHC\n7vEA4EsR2ABiQjAY1PZXX9Gu/31BkSOVuqTTp6nEdlxrD4VVGHTq+R63Zs2+RtfNu1kTJkyweywA\nOCkCG0DMCQaDen3Lq3rnxecVPlqtyR1NusTr5CKbOODrCenNkEd1A4cq84JJmlOwQBfk5bEiBCCm\nENgAYlo4HNZ7u97R9mc3qrOyXOe21OsKd4gHJGOEZVmq6gpqt6uf/EPOVdbkqZq7YKFGjhxp92gA\ncMYIbABxpaKiQpvXP6X6/XuV0lCrycFWTUpNUgqn21HBsixVdgX1gSNVzRkD5c4ervNnXK5Z1+Zz\nbTmAuEFgA4hbbW1t2r1zpz7YtkWdnxxRpOGYcgOtuthjaQAn3H3CsixVdAb1oStV/oxBcg0drryv\nztSVs69Rdna23eMBQK8gsAEkjFAopH0ff6wdL29SY1mJwvXHNLS9WVPVrZyUJPZ8DbAsS+WfBvVg\nubPP1cTLr9BVs+dwQg0gYRDYABKWZVk6cuSIdmzdorIP3lWorlapLcd1YbBdeakeJTkJ7n8kbFk6\nGuhRedipw55+CvYfoKTs4Zp0xVW68urZGjJkiN0jAoAtCGwA+IyWlha9W1ioPW9uV7CpURF/s8L+\nFmX1dOm8YKfGeN0J9wDlZ0O62tNP4f4ZcqZnKmnQII258CJNvnSGcnNzlZKSYveoABAVCGwAOAnL\nslRbW6vSAwdU+uf31VBV9ZfwbparvVUjero0SkHleD0x/TBlyLL0yWdCOpSWIdeATLkzB2nsFEIa\nAE4VgQ0AZ6G7u1uVlZUq2ft/KtuzR52N9Yr4W2QFOmV1B2R1B3ROJKwMK6T0UFDpVlgZSS5luF1K\nczt79aIcy7LUHo6oqSesxp6wfC6PfC6P/M4kKcUrh9crR8qJD6c3Ve5+aRqVl0dIA8BZIrABoBdF\nIhG1trbK5/PJ5/PpeF2djtd8oqa6Y/Ifb1Qk0CUrEFDkLzEe6Q7I6unRiey2JOtvf7Ukh1Nynvhw\nuFyf/l6OE587klPk8KbK4U1V+qDBys4ZqayRo5SVna0hQ4YoMzNTLpfLxn8VAIhvBDYAAABgUOwu\nCwIAAABRiMAGAAAADCKwAQAAAIMIbAAAAMAgAhsAAAAwiMAGAAAADCKwAQAAAIMIbAAAAMAgAhsA\nAAAwiMAGAAAADCKwAQAAAIMIbAAAAMAgAhsAAAAwiMAGAAAADCKwAQAAAIMIbAAAAMAgAhsAAAAw\niMAGAAAADCKwAQAAAIMIbAAAAMAgAhsAAAAwiMAGAAAADCKwAQAAAIMIbAAAAMAgAhsAAAAwiMAG\nAAAADCKwAQAAAIMIbAAAAMAgAhsAAAAwiMAGAAAADCKwAQAAAIMIbAAAAMAgAhsAAAAwiMAGAAAA\nDCKwAQAAAIMIbAAAAMAgAhsAAAAwiMAGAAAADCKwAQAAAIMIbAAAAMAgAhsAAAAwiMAGAAAADCKw\nAQAAAIMIbAAAAMAgAhsAAAAwiMAGAAAADCKwAQAAAIMIbAAAAMAgAhsAAAAwiMAGAAAADCKwAQAA\nAIMIbAAAAMAgAhsAAAAwiMAGAAAADCKwAQAAAIP+H9M0b38IjwoUAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x24a3b550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.axis('equal')\n", "plt.pie(\n", " df_train.CATEGORY.value_counts().tolist(), \n", " labels=['False', 'True'], \n", " autopct='%1.1f%%', \n", " colors=(\"#E13F29\", \"#D69A80\"));" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**The accuracy of a dumb classifier that classifies all the documents as False is >80%**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Baseline classifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## We define a trivial baseline classifier that simply look for the string 'Cardio' in the text" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import re\n", "\n", "def baseline_cpr_classifier(txt):\n", " if re.search('Cardio', txt, re.IGNORECASE):\n", " return True\n", " else:\n", " return False\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Testing our baseline classifier" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Ytrue = df_test.CATEGORY.tolist()\n", "\n", "Ypred = []\n", "\n", "for index, row in df_test.iterrows():\n", " Ypred.append(baseline_cpr_classifier(row['NOTE_TEXT']))\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparing actual values to the predictions of the baseline classifier" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Actual</th>\n", " <th>Predicted</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1598</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>6700</th>\n", " <td>True</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>7296</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4630</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>626</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>6721</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>366</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>870</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2489</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3567</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3058</th>\n", " <td>True</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3725</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>7455</th>\n", " <td>True</td>\n", " <td>True</td>\n", " </tr>\n", " <tr>\n", " <th>7082</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>6063</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>7470</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4234</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>346</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4351</th>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3262</th>\n", " <td>True</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Actual Predicted\n", "1598 False False\n", "6700 True True\n", "7296 False False\n", "4630 False False\n", "626 False False\n", "6721 False False\n", "366 False False\n", "870 False False\n", "2489 False False\n", "3567 False False\n", "3058 True False\n", "3725 False False\n", "7455 True True\n", "7082 False False\n", "6063 False False\n", "7470 False False\n", "4234 False False\n", "346 False False\n", "4351 False False\n", "3262 True False" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dictY = {'Actual' : Ytrue, 'Predicted': Ypred}\n", "\n", "dfY = pd.DataFrame.from_dict(dictY)\n", "\n", "dfY.sample(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Assessing Classifier Performance\n", "\n", "### Confusion matrix and derivative estimators" ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<table border=\"1\" cellpadding=\"3\" cellspacing=\"0\" style=\"border:1px solid black;border-collapse:collapse;\"><tr><td style=\"background-color:White;border-left: 1px solid transparent;border-top: 1px solid transparent;\"><b></b></td><td style=\"background-color:LightGray;\"><b>Predicted&nbsp0</b></td><td style=\"background-color:LightGray;\"><b>Predicted&nbsp1</b></td></tr><tr><td style=\"background-color:LightGray;\"><b>Actual&nbsp0</b></td><td style=\"background-color:Ivory;\">True&nbspNegative</td><td style=\"background-color:Ivory;\">False&nbspPositive</td></tr><tr><td style=\"background-color:LightGray;\"><b>Actual&nbsp1</b></td><td style=\"background-color:AliceBlue;\">False&nbspNegative</td><td style=\"background-color:AliceBlue;\">True&nbspPositive</td></tr></table>" ], "text/plain": [ "<ipy_table.IpyTable at 0x24c8d9e8>" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "from ipy_table import *\n", "\n", "confusion_matrix_binary = [\n", " ['', 'Predicted 0', 'Predicted 1'],\n", " ['Actual 0', 'True Negative', 'False Positive'],\n", " ['Actual 1', 'False Negative', 'True Positive']\n", "]\n", "\n", "make_table(confusion_matrix_binary)\n", "apply_theme('basic_both')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Sensitivity (Recall) or true positive rate (TPR) $=\\frac{TP}{TP+FN}$\n", "\n", "#### Specificity (SPC) or true negative rate $=\\frac{TN}{TN+FP}$\n", "\n", "#### Precision or positive predictive value (PPV) $=\\frac{TP}{TP+FP}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Confusion matrix and derivatives of the baseline classifier" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[6226 116]\n", " [ 922 379]]\n", "6342\n" ] } ], "source": [ "from sklearn.metrics import confusion_matrix\n", "\n", "conf_mat = confusion_matrix(Ytrue, Ypred)\n", "\n", "print conf_mat\n", "\n", "print sum(conf_mat[0])\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Some code to prettify the printout of the confusion matrix in the notebook:" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def render_confusion_matrix(ytrue, ypred):\n", " return pd.crosstab(pd.Series(ytrue), pd.Series(ypred), rownames=['Actual'], colnames=['Predicted'], margins=True)" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Predicted</th>\n", " <th>False</th>\n", " <th>True</th>\n", " <th>All</th>\n", " </tr>\n", " <tr>\n", " <th>Actual</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>False</th>\n", " <td>6226</td>\n", " <td>116</td>\n", " <td>6342</td>\n", " </tr>\n", " <tr>\n", " <th>True</th>\n", " <td>922</td>\n", " <td>379</td>\n", " <td>1301</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", " <td>7148</td>\n", " <td>495</td>\n", " <td>7643</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "Predicted False True All\n", "Actual \n", "False 6226 116 6342\n", "True 922 379 1301\n", "All 7148 495 7643" ] }, "execution_count": 88, "metadata": {}, "output_type": "execute_result" } ], "source": [ "render_confusion_matrix(Ytrue, Ypred)" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Accuracy: 0.864189454403\n", "\n", " precision recall f1-score support\n", "\n", " False 0.87 0.98 0.92 6342\n", " True 0.77 0.29 0.42 1301\n", "\n", "avg / total 0.85 0.86 0.84 7643\n", "\n" ] } ], "source": [ "from sklearn.metrics import classification_report, accuracy_score\n", "\n", "print\n", "print 'Accuracy: ', accuracy_score(Ytrue, Ypred)\n", "print\n", "print classification_report(Ytrue, Ypred)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Even though the accuracy is OK, the recall is misearable. Let's build a real classifier**" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#Building a ML classifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Vectorizing textual data using Bag-of-Words (or Bag-of-Ngrams)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our vector space is a dictionary of all the N-grams in our set of documents." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Defining tokenizer to extract better features from the text" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from nltk.stem.porter import *\n", "from nltk.tokenize import word_tokenize\n", "import string\n", "\n", "stemmer = PorterStemmer()\n", "def stem_tokens(tokens, stemmer):\n", " stemmed = []\n", " for item in tokens:\n", " stemmed.append(stemmer.stem(item))\n", " return stemmed\n", "\n", "def tokenize(text):\n", " text = \"\".join([ch for ch in text if ch not in string.punctuation])\n", " tokens = word_tokenize(text)\n", " tokens = [item for item in tokens if item.isalpha()]\n", " stems = stem_tokens(tokens, stemmer)\n", " return stems" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Vectorize the test data" ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X_train = df_train['NOTE_TEXT'].tolist()\n", "Y_train = df_train.CATEGORY.tolist()\n", "\n", "vectorizer = CountVectorizer(tokenizer=tokenize, ngram_range=(1,2))\n", "\n", "wcounts = vectorizer.fit_transform(X_train)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### What is the dimentionality of our vector space?" ] }, { "cell_type": "code", "execution_count": 102, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<6286x355860 sparse matrix of type '<type 'numpy.int64'>'\n", "\twith 1452481 stored elements in Compressed Sparse Row format>" ] }, "execution_count": 102, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wcounts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** We have 6286 documents in our training set, each has 355860 features (the combination of all the uni/bi-grams)**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The first 200 features" ] }, { "cell_type": "code", "execution_count": 103, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[u'a',\n", " u'a a',\n", " u'a absolut',\n", " u'a accuraci',\n", " u'a acid',\n", " u'a activ',\n", " u'a adrenalectomi',\n", " u'a after',\n", " u'a alon',\n", " u'a alpha',\n", " u'a alphasubunit',\n", " u'a amino',\n", " u'a an',\n", " u'a analog',\n", " u'a analysi',\n", " u'a and',\n", " u'a antibodi',\n", " u'a antigen',\n", " u'a antiifnalpha',\n", " u'a aortic',\n", " u'a apic',\n", " u'a aqueoussolubl',\n", " u'a are',\n", " u'a as',\n", " u'a assay',\n", " u'a assessmentreferr',\n", " u'a ata',\n", " u'a atmospher',\n", " u'a atrial',\n", " u'a attempt',\n", " u'a averag',\n", " u'a b',\n", " u'a babi',\n", " u'a baboon',\n", " u'a background',\n", " u'a backtoback',\n", " u'a bacteremia',\n", " u'a bacteri',\n", " u'a bacteriolog',\n", " u'a bad',\n", " u'a baffl',\n", " u'a bake',\n", " u'a balanc',\n", " u'a balloon',\n", " u'a ban',\n", " u'a band',\n", " u'a bandlik',\n", " u'a barbitur',\n", " u'a bard',\n", " u'a barium',\n", " u'a baromet',\n", " u'a baroreceptor',\n", " u'a barrier',\n", " u'a basal',\n", " u'a base',\n", " u'a baselin',\n", " u'a basi',\n", " u'a basic',\n", " u'a basketweav',\n", " u'a bath',\n", " u'a batteri',\n", " u'a bauermeist',\n", " u'a bcc',\n", " u'a bcell',\n", " u'a bcrabl',\n", " u'a bdvinfect',\n", " u'a bdvrelat',\n", " u'a bear',\n", " u'a beat',\n", " u'a becaus',\n", " u'a becker',\n", " u'a bed',\n", " u'a begin',\n", " u'a behavior',\n", " u'a behaviour',\n", " u'a below',\n", " u'a belowthekne',\n", " u'a bench',\n", " u'a benefici',\n", " u'a benefit',\n", " u'a benign',\n", " u'a bent',\n", " u'a benzodiazepin',\n", " u'a beta',\n", " u'a betaadrenerg',\n", " u'a betaadrenoceptor',\n", " u'a betaagonist',\n", " u'a betablock',\n", " u'a betachain',\n", " u'a betacl',\n", " u'a betahemolyt',\n", " u'a betasympathomimet',\n", " u'a better',\n", " u'a betweenheel',\n", " u'a bewild',\n", " u'a bfg',\n", " u'a bgl',\n", " u'a bia',\n", " u'a biatrial',\n", " u'a bicommissur',\n", " u'a bicornu',\n", " u'a bicycl',\n", " u'a bidimension',\n", " u'a bidirect',\n", " u'a biexponenti',\n", " u'a bifoil',\n", " u'a bilater',\n", " u'a bile',\n", " u'a biliari',\n", " u'a biliou',\n", " u'a billingham',\n", " u'a bimod',\n", " u'a bind',\n", " u'a bing',\n", " u'a bioartifici',\n", " u'a bioassay',\n", " u'a biograph',\n", " u'a biolog',\n", " u'a biomechan',\n", " u'a biomedicu',\n", " u'a bioprosthesi',\n", " u'a bioprosthet',\n", " u'a biopsi',\n", " u'a biotinyl',\n", " u'a bipariet',\n", " u'a bipedicl',\n", " u'a biphas',\n", " u'a biplan',\n", " u'a bipolar',\n", " u'a bipotenti',\n", " u'a biraci',\n", " u'a birth',\n", " u'a bisexu',\n", " u'a bisinu',\n", " u'a bite',\n", " u'a biventricular',\n", " u'a black',\n", " u'a blackout',\n", " u'a blackpowd',\n", " u'a blackpowderrifl',\n", " u'a bladder',\n", " u'a blade',\n", " u'a blalocktaussig',\n", " u'a blank',\n", " u'a bleed',\n", " u'a blind',\n", " u'a block',\n", " u'a blocker',\n", " u'a blogt',\n", " u'a blood',\n", " u'a bloodbrain',\n", " u'a bloodcontamin',\n", " u'a bloodi',\n", " u'a bloodless',\n", " u'a bloodliquid',\n", " u'a blunt',\n", " u'a boari',\n", " u'a bodi',\n", " u'a bohr',\n", " u'a bold',\n", " u'a bolu',\n", " u'a bone',\n", " u'a boni',\n", " u'a booster',\n", " u'a borg',\n", " u'a borna',\n", " u'a bottom',\n", " u'a bout',\n", " u'a bovin',\n", " u'a bowel',\n", " u'a boy',\n", " u'a boyfriendlov',\n", " u'a bp',\n", " u'a brachialjugular',\n", " u'a bradycardia',\n", " u'a brain',\n", " u'a brainstem',\n", " u'a branch',\n", " u'a brdurd',\n", " u'a breast',\n", " u'a breastpreserv',\n", " u'a breathhold',\n", " u'a bridg',\n", " u'a brief',\n", " u'a broad',\n", " u'a broaden',\n", " u'a broader',\n", " u'a broadli',\n", " u'a broadspectrum',\n", " u'a broken',\n", " u'a bromin',\n", " u'a bromodeoxyuridin',\n", " u'a bronchial',\n", " u'a bronchodil',\n", " u'a bronchoplast',\n", " u'a bronchu',\n", " u'a brother',\n", " u'a brown',\n", " u'a brunetti',\n", " u'a buccolingu']" ] }, "execution_count": 103, "metadata": {}, "output_type": "execute_result" } ], "source": [ "feats = vectorizer.get_feature_names()\n", "\n", "feats[:200]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** At this point of the workflow, there are many feature selection and engineering techniques we could apply. Some generic, some based on natural language processing and some unique to the medical domain. However, to keep it simple for now, let's move on to the classifier:**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Naive Bayes classifier\n", "\n", "* **Naive** conditional independence assumption: The counts of individual features (or n-grams) are independent\n", "* **Bayes' rule** is used to calculate the conditional probabilities for each class/feature pair: \n", " $P(Y|W)=\\frac{P(W|Y) \\cdot P(Y)}{P(W)}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$\\implies P(Y|w_{1}, w_{2}, ..., w_{N})=\\frac{1}{P(W)} \\cdot P(Y) \\cdot \\prod_{k=1}^{N} P(w_{k}|Y)$\n", "\n", "Since the probability of all the features is not dependent on the probability of Y and all we care about is finding the Y that is most likely, we can drop $\\frac{1}{P(W)}$ and stay with:\n", "\n", "$P(Y|w_{1}, w_{2}, ..., w_{N})=P(Y) \\cdot \\prod_{k=1}^{N} P(w_{k}|Y)$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We estimate the probabilities from the training set using multinomial distribution with a smoothing factor alpha:\n", "\n", "$P(w_{i}) = \\frac{count_{i}+alpha}{overallcount_{i}+alpha \\cdot N}$\n", "\n", "<img width=\"575\" src=\"words_proba.png\"/>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fit (aka train) a classifier with some ad-hoc parameters on the test data" ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "MultinomialNB(alpha=0.1, class_prior=None, fit_prior=True)" ] }, "execution_count": 111, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.naive_bayes import MultinomialNB\n", "\n", "clf_nb = MultinomialNB(alpha=0.1)\n", "\n", "clf_nb.fit(wcounts, Y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Most Predictive Features\n", "\n", "A cool feature of the Naive Bayes classifier is that it can list for us most relevant features for each class. These are the features that are most relevant to the positive documents. Some of them are trivial English words, that will also appear in the list of features relevant to the Negative documents. However - we also see some domain specific features, such as **arteri** and ** coronari** :" ] }, { "cell_type": "code", "execution_count": 112, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Positive word -3.82: the\n", "Positive word -3.84: of\n", "Positive word -4.15: in\n", "Positive word -4.18: and\n", "Positive word -4.77: to\n", "Positive word -4.81: with\n", "Positive word -4.86: patient\n", "Positive word -4.89: a\n", "Positive word -5.14: wa\n", "Positive word -5.41: were\n", "Positive word -5.57: of the\n", "Positive word -5.58: for\n", "Positive word -5.71: than\n", "Positive word -5.73: in the\n", "Positive word -5.85: by\n", "Positive word -5.87: or\n", "Positive word -5.96: arteri\n", "Positive word -6.00: patient with\n", "Positive word -6.01: that\n", "Positive word -6.04: is\n", "Positive word -6.09: after\n", "Positive word -6.11: group\n", "Positive word -6.15: coronari\n", "Positive word -6.16: less\n", "Positive word -6.19: from\n" ] } ], "source": [ "pf = [(clf_nb.feature_log_prob_[1, i], feats[i]) for i in range(len(feats))]\n", "pf.sort(reverse=True)\n", "for p in pf[:25]:\n", " print 'Positive word %.2f: %s' % (p[0], p[1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test the classifier with the test data\n" ] }, { "cell_type": "code", "execution_count": 117, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Read the data from pandas dataframe to an array\n", "X_test = df_test['NOTE_TEXT'].tolist()\n", "Y_test = df_test.CATEGORY.tolist()\n", "\n", "# Convert the text to arrays of numbers\n", "counts_test = vectorizer.transform(X_test)" ] }, { "cell_type": "code", "execution_count": 118, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<7643x355860 sparse matrix of type '<type 'numpy.int64'>'\n", "\twith 1468293 stored elements in Compressed Sparse Row format>" ] }, "execution_count": 118, "metadata": {}, "output_type": "execute_result" } ], "source": [ "counts_test" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**We have 7643 documents in our test set, each has 355860 features - exactly the same features we set while processing the training set of course.**" ] }, { "cell_type": "code", "execution_count": 119, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Predict the values of the test set\n", "predictions = clf_nb.predict(counts_test)" ] }, { "cell_type": "code", "execution_count": 120, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, True, False, False, False, False,\n", " False, False], dtype=bool)" ] }, "execution_count": 120, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Look at the first 20 predictions\n", "predictions[:20]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Confusion matrix and derivatives of the classifier" ] }, { "cell_type": "code", "execution_count": 122, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Predicted</th>\n", " <th>False</th>\n", " <th>True</th>\n", " <th>All</th>\n", " </tr>\n", " <tr>\n", " <th>Actual</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>False</th>\n", " <td>6064</td>\n", " <td>278</td>\n", " <td>6342</td>\n", " </tr>\n", " <tr>\n", " <th>True</th>\n", " <td>292</td>\n", " <td>1009</td>\n", " <td>1301</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", " <td>6356</td>\n", " <td>1287</td>\n", " <td>7643</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "Predicted False True All\n", "Actual \n", "False 6064 278 6342\n", "True 292 1009 1301\n", "All 6356 1287 7643" ] }, "execution_count": 122, "metadata": {}, "output_type": "execute_result" } ], "source": [ "render_confusion_matrix(Y_test, predictions)" ] }, { "cell_type": "code", "execution_count": 124, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Accuracy: 0.92542195473\n", "\n", " precision recall f1-score support\n", "\n", " False 0.95 0.96 0.96 6342\n", " True 0.78 0.78 0.78 1301\n", "\n", "avg / total 0.93 0.93 0.93 7643\n", "\n" ] } ], "source": [ "print\n", "print 'Accuracy: ', accuracy_score(Y_test, predictions)\n", "print\n", "print classification_report(Y_test, predictions)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**As expected we improved the accuracy compared to the baseline classifier, and dramatically improved the recall on the positive documents - from 29% to 78%.**\n", "\n", "**Before we move on to optimize the classifier, let's look at some other interesting output type of Naive Bayes - some insightful output besides the predictions on the test data**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Get the indices of the elements that with wrong predictions" ] }, { "cell_type": "code", "execution_count": 138, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[13,\n", " 24,\n", " 25,\n", " 41,\n", " 52,\n", " 80,\n", " 174,\n", " 246,\n", " 353,\n", " 416,\n", " 467,\n", " 731,\n", " 991,\n", " 1005,\n", " 1038,\n", " 1047,\n", " 1068,\n", " 1120,\n", " 1140,\n", " 1176]" ] }, "execution_count": 138, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iwrong_predictions = [i for i,v in enumerate(zip(Y_test, predictions)) if v[0] != v[1]]\n", "\n", "iwrong_predictions[:20]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Probabilities of a particular classification\n", "\n", "Bayesian models like the Naive Bayes classifier have the nice property that they compute probabilities of a particular classification -- the `predict_proba` and `predict_log_proba` methods of `MultinomialNB` compute these probabilities. " ] }, { "cell_type": "code", "execution_count": 139, "metadata": { "collapsed": false }, "outputs": [], "source": [ "proba = clf_nb.predict_proba(counts_test)\n", "log_proba = clf_nb.predict_log_proba(counts_test)" ] }, { "cell_type": "code", "execution_count": 140, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 1.00000000e+000, 2.94055710e-037],\n", " [ 1.00000000e+000, 2.56434674e-112],\n", " [ 9.99999993e-001, 7.36050607e-009],\n", " [ 1.00000000e+000, 3.67672356e-048],\n", " [ 1.00000000e+000, 2.17669993e-030],\n", " [ 1.00000000e+000, 1.25863592e-081],\n", " [ 1.00000000e+000, 2.47597297e-173],\n", " [ 1.00000000e+000, 2.14988957e-053],\n", " [ 1.00000000e+000, 5.70562372e-108],\n", " [ 1.00000000e+000, 4.42691208e-041]])" ] }, "execution_count": 140, "metadata": {}, "output_type": "execute_result" } ], "source": [ "proba[:10]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The output of `clf_nb.predict_proba(counts_test)` is a `(N example, 2)` array. The first column gives the probability $P(Y=0)$ or $P(False)$, and the second gives $P(Y=1)$ or $P(True)$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Commonly it is more comfortable to work with the log values of the probabilities - the results of `clf_nb.predict_log_proba`**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calculate and plot the differences between the True and False probabilities" ] }, { "cell_type": "code", "execution_count": 141, "metadata": { "collapsed": true }, "outputs": [], "source": [ "diff_prob = proba[:,1] - proba[:,0]\n", "diff_log_proba = log_proba[:,1] - log_proba[:,0]" ] }, { "cell_type": "code", "execution_count": 142, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "diff_prob:\n", "\n", "mean: -0.662949326315\n", "std: 0.746432184454\n", "\n", "diff_log_prob:\n", "\n", "mean: -94.3395679123\n", "std: 150.446111867\n" ] } ], "source": [ "print 'diff_prob:\\n'\n", "print 'mean:',np.mean(diff_prob)\n", "print 'std:', np.std(diff_prob)\n", "\n", "print '\\ndiff_log_prob:\\n'\n", "print 'mean:', np.mean(diff_log_proba)\n", "print 'std:', np.std(diff_log_proba)\n" ] }, { "cell_type": "code", "execution_count": 143, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-120.99198123, -105.33481755, -45.92763286, -115.47860148,\n", " -126.40541505, -158.90170764, 30.44267742, -27.78738764,\n", " 404.37342916, -157.70848569])" ] }, "execution_count": 143, "metadata": {}, "output_type": "execute_result" } ], "source": [ "diff_log_proba[-10:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Distribution of the predictions on the test set, as function of the difference between the True/False log probabilities" ] }, { "cell_type": "code", "execution_count": 149, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.lines.Line2D at 0x2962ad30>" ] }, "execution_count": 149, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAIbCAYAAAATuvqyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X1M1Ge+///XMKNouak3TD0IiLRW4agV3fW042EtSgpu\nk9M2DVZqtiIonibEznpKN92jiaZWw3Y1Eam3lCqK68rWZanJpkaibshitrHfn4n1gLQauZFdOgVk\nDzcCwvz+sDOns4OD4uwHis9Hwh9zfa7rPdfMxxl5zfW5GJPT6XQKAAAAAAwQMNwTAAAAAPDoIIAA\nAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAw9xXACkpKVFycrLmzZuntLQ0Xbp0yWf/\nmpoapaena/78+VqyZIkKCgq8+ly8eFHLly9XfHy8UlJSdPLkyXvWczqdWrVqld544w2P9tbWVsXG\nxnr92O32+3lYAAAAAAxmGaxDaWmptmzZouzsbM2dO1dHjx7VmjVrVFZWpsjISK/+zc3NysjI0KxZ\ns5SXl6crV65o165dMpvNyszMlCRdu3ZNa9euVVJSkux2uyoqKrRx40YFBwcrJSXFq2ZJSYk+//xz\n/du//ZtHe3V1tSTp0KFDCgoKcrdPmDDhwZ4FAAAAAIbwGUCcTqfy8/O1YsUKZWdnS5IWLVqkZcuW\n6fDhw9q0aZPXmGPHjqm/v1/79u1TYGCgFi9erJ6eHh04cEDp6ekym806ePCgoqKitHPnTklSQkKC\nWltbtWfPHq8A8re//U2//vWv9cQTT3jd19WrVxUWFiabzTbkJwAAAACAcXxeglVbW6vGxkYtXbrU\n3WaxWJSYmKiKiooBx1RWVspmsykwMNDdlpSUpLa2Nl2+fNndJzEx0WNcUlKSampq5HA4PNo3b96s\n5ORkzZ07V//4pe1Xr17VrFmzBn+UAAAAAEYEnwHkxo0bkqTo6GiP9sjISNXX13sFAuluaJk2bZpH\nW1RUlLteZ2enHA6Hzz4un376qa5cuaJ3331XTqdTJpPJY8zVq1fV1dWltLQ0PfPMM3r++edVWFjo\n6yEBAAAAGEY+L8Fqb2+XJI/9Fa7b/f396uzs9DrW3t4+YH/XMV81v3+fLS0t2r59uzZv3qzQ0FCv\nufX19en69esKCgrSO++8o4iICJ07d047d+7U7du33ZeMAQAAABg5Bt0DIslr5cElIMB7AWWglQoX\nk8l03zW3bt2qBQsW6Kc//ek9axUUFCg8PNy9GX7hwoXq7OzURx99pKysLI0dO9bHowMAAABgNJ+X\nYIWEhEiSOjo6PNo7OjpkNps1fvz4AccM1N91LDg4+J41JSk4OFjl5eX605/+pI0bN+rOnTu6c+eO\nnE6nnE6n+vr67k48IEALFy70+ktcCQkJ6urqUl1dne9HDgAAAMBwPldAXHs/6uvr3Xs0XLdjYmLu\nOeYff/mvr6+XJMXExCgoKEhWq9XdNlCf3/3ud+rs7FRSUpJX/dmzZ+vo0aOKjo7WuXPn9MILL2jS\npEnu493d3ZKkiRMn+npoXr744osH6g8AAAA8Kn70ox/5rZbPADJ9+nSFh4frzJkzWrRokSSpt7dX\n58+f15IlSwYcY7PZdOLECXV1dblXSMrLyzVx4kTFxcW5+5w9e1Z2u919yVV5eblmzpypSZMmaf36\n9R5fOuh0OvWrX/1KnZ2deu+99zR9+nS1tLRo8+bN6urq0urVq919T58+rZiYGE2ePPmBnwx/PrEY\nGaqqqiTJ/W8PowfndvTqfeIJjXE4pPBwqbFxuKcDP+J1O3pxbkevqqoqdXZ2+rWmzwBiMpmUlZWl\nrVu3KjQ0VAsWLFBxcbHa2trcv/TX1dWppaVF8fHxkqSVK1equLhY69atU2Zmpqqrq1VQUKCcnBxZ\nLHfvLjMzU6mpqbLb7UpNTVVlZaVOnTql3bt3S5IiIiIUERHhMRfX5WCzZ8+WdHfT+osvvqi8vDwF\nBAToySef1GeffaYzZ85o7969/nuGAAAAAPjNoN+EvnLlSnV3d+vIkSMqKipSXFycCgsL3Xsv9u7d\nq7KyMnfytVqtOnTokLZt2ya73a6wsDBt2LBBGRkZ7pqxsbHav3+/duzYofXr12vq1KnKzc1VcnLy\nPedhMpm8Nq5v375de/bsUVFRkRwOh2bMmKH8/Px7rs4AAAAAGF4m50Bf5vEI+uKLL7gEaxRiSXj0\n4tyOXlyCNXrxuh29OLejl+sSLH/+nuzzr2ABAAAAgD8RQAAAAAAYhgACAAAAwDAEEAAAAACGIYAA\nAAAAMAwBBAAAAIBhCCAAAAAADDPoFxECAIbf7du31dTU5Ld6U6ZM0bhx4/xWDwCA+0UAAYAfgKam\nJh0p+4tCJ0x+6Fp/v9WsVS8/q+joaD/MDACAB0MAAYAfiNAJk2WdEjHc0wAA4KGwBwQAAACAYQgg\nAAAAAAxDAAEAAABgGAIIAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAAAACGIYAAAAAAMAwBBAAAAIBh\nCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQAAAAAIYhgAAAAAAwDAEEAAAA\ngGEIIAAAAAAMQwABAAAAYBgCCAAAAADDEEAAAAAAGIYAAgAAAMAwBBAAAAAAhiGAAAAAADAMAQQA\nAACAYQggAAAAAAxDAAEAAABgGAIIAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAAAACGIYAAAAAAMMx9\nBZCSkhIlJydr3rx5SktL06VLl3z2r6mpUXp6uubPn68lS5aooKDAq8/Fixe1fPlyxcfHKyUlRSdP\nnrxnPafTqVWrVumNN9546LkBAAAAGD6DBpDS0lJt2bJFL7/8svLz8xUSEqI1a9aooaFhwP7Nzc3K\nyMiQ2WxWXl6eXnvtNe3atUsff/yxu8+1a9e0du1aTZs2TR9++KESExO1ceNGnT59esCaJSUl+vzz\nz2UymR5qbgAAAACGl8XXQafTqfz8fK1YsULZ2dmSpEWLFmnZsmU6fPiwNm3a5DXm2LFj6u/v1759\n+xQYGKjFixerp6dHBw4cUHp6usxmsw4ePKioqCjt3LlTkpSQkKDW1lbt2bNHKSkpHvX+9re/6de/\n/rWeeOKJh54bAAAAgOHlcwWktrZWjY2NWrp0qbvNYrEoMTFRFRUVA46prKyUzWZTYGCguy0pKUlt\nbW26fPmyu09iYqLHuKSkJNXU1MjhcHi0b968WcnJyZo7d66cTudDzQ0AAADA8PIZQG7cuCFJio6O\n9miPjIxUfX29RyBwqa2t1bRp0zzaoqKi3PU6OzvlcDh89nH59NNPdeXKFb377rtyOp0el2ANZW4A\nAAAAhpfPANLe3i5JCgoK8mgPCgpSf3+/Ojs7BxwzUH/XMV81v3+fLS0t2r59uzZu3KjQ0FC/zA0A\nAADA8Bp0D4gkr83fLgEB3vnlH1cqvs9kMt13za1bt2rBggX66U9/6re5DaaqquqBx2Bk6+rqksS5\nHY0etXN78+ZNtbS0SgFjH7pWS0uLvvrqqxH7Qc1T372/9965o68fkfP7qHjUXrePEs7t6OU6t/7k\nM4CEhIRIkjo6OjRp0iR3e0dHh8xms8aPHz/gmI6ODo821+2QkBAFBwd7tP1jn+DgYJWXl+tPf/qT\nTp06pTt37ki6GzicTqf6+vpkNpuHNDcAAAAAw8tnAHHtr6ivr3fv0XDdjomJueeYuro6j7b6+npJ\nUkxMjIKCgmS1Wt1tA/X53e9+p87OTiUlJXnVnz17to4ePTqkuQ0mLi5uSOMwcrk+ieHcjj6P2rl9\n7LHHdKXxa1mt1ocv1t+jp5+e4bWHbqTo/W5le4zF8sic30fFo/a6fZRwbkevqqoqv6+Y+7xOafr0\n6QoPD9eZM2fcbb29vTp//ryee+65AcfYbDZduHDBY7mmvLxcEydOdP+jtNlsOnv2rPr7+z36zJw5\nU5MmTdL69et18uRJ988nn3yihQsXavbs2Tp58qT+9V//dUhzAwAAADC8fK6AmEwmZWVlaevWrQoN\nDdWCBQtUXFystrY2rV69WpJUV1enlpYWxcfHS5JWrlyp4uJirVu3TpmZmaqurlZBQYFycnJksdy9\nu8zMTKWmpsputys1NVWVlZU6deqUdu/eLUmKiIhQRESEx1xcl1zNnj3b3TbY3AAAAACMLD4DiHQ3\nUHR3d+vIkSMqKipSXFycCgsLFRkZKUnau3evysrK3EtvVqtVhw4d0rZt22S32xUWFqYNGzYoIyPD\nXTM2Nlb79+/Xjh07tH79ek2dOlW5ublKTk6+5zxMJpPXhvPB5gYAAABgZDE5+cIMSdIXX3yhH/3o\nR8M9DfgZ16SOXo/aua2trdUf/vS1rFMiBu88CEfTTb3y/AjeA/LEExrjcEjh4VJj43BPB370qL1u\nHyWc29HLtQfEn78nP/jfqgUAAACAISKAAAAAADAMAQQAAACAYQggAAAAAAxDAAEAAABgGAIIAAAA\nAMMQQAAAAAAYhgACAAAAwDAEEAAAAACGIYAAAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggA\nAAAAwxBAAAAAABiGAAIAAADAMJbhngAAjEa3b99WU1OT3+o1NDSor6/Pb/UAABguBBAA+CdoamrS\nkbK/KHTCZL/Uq7terQlhU/1SCwCA4UQAAYB/ktAJk2WdEuGXWi3f+m81BQCA4cQeEAAAAACGIYAA\nAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiG7wEBgEdMb0+PGhoa/Fpz\nypQpGjdunF9rAgBGJwIIADxi/vfvrSo736iIqNt+qff3W81a9fKzio6O9ks9AMDoRgABgEdQyOOT\n/PYt7QAAPAj2gAAAAAAwDAEEAAAAgGEIIAAAAAAMQwABAAAAYBgCCAAAAADDEEAAAAAAGIYAAgAA\nAMAwBBAAAAAAhiGAAAAAADAMAQQAAACAYQggAAAAAAxDAAEAAABgmPsKICUlJUpOTta8efOUlpam\nS5cu+exfU1Oj9PR0zZ8/X0uWLFFBQYFXn4sXL2r58uWKj49XSkqKTp486dXn8OHDeuGFFxQfH6/X\nXntNlZWVHsdbW1sVGxvr9WO32+/nYQEAAAAwmGWwDqWlpdqyZYuys7M1d+5cHT16VGvWrFFZWZki\nIyO9+jc3NysjI0OzZs1SXl6erly5ol27dslsNiszM1OSdO3aNa1du1ZJSUmy2+2qqKjQxo0bFRwc\nrJSUFEnSRx99pF27dunnP/+5Zs+erVOnTmndunX6zW9+o2eeeUaSVF1dLUk6dOiQgoKC3HOYMGHC\nwz8zAAAAAPzOZwBxOp3Kz8/XihUrlJ2dLUlatGiRli1bpsOHD2vTpk1eY44dO6b+/n7t27dPgYGB\nWrx4sXp6enTgwAGlp6fLbDbr4MGDioqK0s6dOyVJCQkJam1t1Z49e5SSkqL+/n4dPnxYr7/+utau\nXStJstls+vzzz1VSUuIOIFevXlVYWJhsNptfnxQAAAAA/xw+L8Gqra1VY2Ojli5d6m6zWCxKTExU\nRUXFgGMqKytls9kUGBjobktKSlJbW5suX77s7pOYmOgxLikpSTU1NXI4HAoICFBRUZGysrI8+pjN\nZvX29rpvX716VbNmzbq/RwoAAABg2PkMIDdu3JAkRUdHe7RHRkaqvr5eTqfTa0xtba2mTZvm0RYV\nFeWu19nZKYfD4bOPJD311FN64oknJElNTU364IMP1NDQoOXLl7vHXL16VV1dXUpLS9Mzzzyj559/\nXoWFhYM9ZgAAAADDxOclWO3t7ZLksb/Cdbu/v1+dnZ1ex9rb2wfs7zrmq+b379OltLRUv/zlLyVJ\nK1as0IIFCyRJfX19un79uoKCgvTOO+8oIiJC586d086dO3X79m33JWMAAAAARo5B94BIkslkGvB4\nQID3AorT6bxnf5PJ9MA1FyxYoOLiYn355ZfavXu3urq69MEHH8hkMqmgoEDh4eHuzfALFy5UZ2en\nPvroI2VlZWns2LG+Hh4AAAAAg/kMICEhIZKkjo4OTZo0yd3e0dEhs9ms8ePHDzimo6PDo811OyQk\nRMHBwR5t/9jHddwlOjpa0dHR+vGPfyyLxaL3339f//Vf/6V/+Zd/0cKFC73uPyEhQb/97W9VV1en\nGTNm+Hp4Xqqqqh6oP0a+rq4uSZzb0Wikn9ubN2+qpaVVCvDPByG3bt3SmLE9cjgcI6qWJLW0tOir\nr75SZ2enX+o99d0HVb137ujrEXp+MTQj/XWLoePcjl6uc+tPPveAuPZ+1NfXe7TX19crJibmnmPq\n6uq8+ktSTEyMgoKCZLVaB6zp6tPe3q4//OEPampq8ugTGxsrSfrmm2/0zTff6MSJE2ppafHo093d\nLUmaOHGir4cGAAAAYBj4XAGZPn26wsPDdebMGS1atEiS1Nvbq/Pnz2vJkiUDjrHZbDpx4oS6urrc\nKyTl5eWaOHGi4uLi3H3Onj0ru93uvuSqvLxcM2fO1KRJk9Te3q5NmzbpP//zP7V+/Xp37T//+c8a\nM2aMYmJidOvWLW3evFldXV1avXq1u8/p06cVExOjyZMnP/CT4ZofRg/XJzGc29FnpJ/bxx57TFca\nv5bVavVLvZZvJsgydrxf6vmzliSpv0dPPz3D6w+WDFXvd5fojrFYRuz5xdCM9Nctho5zO3pVVVX5\nbYXbxWcAMZlMysrK0tatWxUaGurej9HW1ub+pb+urk4tLS2Kj4+XJK1cuVLFxcVat26dMjMzVV1d\nrYKCAuXk5MhiuXt3mZmZSk1Nld1uV2pqqiorK3Xq1Cnt3r1b0t3LsN544w0VFBQoKChIcXFxunDh\ngj7++GO9+eabCgkJUUhIiF588UXl5eUpICBATz75pD777DOdOXNGe/fu9euTBAAAAMA/Bv0m9JUr\nV6q7u1tHjhxRUVGR4uLiVFhY6N74vXfvXpWVlbmTr9Vq1aFDh7Rt2zbZ7XaFhYVpw4YNysjIcNeM\njY3V/v37tWPHDq1fv15Tp05Vbm6ukpOT3X1ycnI0efJknThxQn/9618VGRmpTZs2KS0tzd1n+/bt\n2rNnj4qKiuRwODRjxgzl5+ffc3UGAAAAwPAyOQf6Mo9H0BdffKEf/ehHwz0N+BlLwqPXSD+3tbW1\n+sOfvpZ1SoRf6l298v9kGTteTz398I/Xn7UkydF0U68878dLsJ54QmMcDik8XGps9EtNjAwj/XWL\noePcjl6uS7D8+Xuyz03oAAAAAOBPBBAAAAAAhiGAAAAAADAMAQQAAACAYQggAAAAAAxDAAEAAABg\nGAIIAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAAAACGIYAAAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAA\nAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQAAAAAIYhgAAAAAAwDAEEAAAAgGEIIAAAAAAMQwAB\nAAAAYBgCCAAAAADDEEAAAAAAGIYAAgAAAMAwBBAAAAAAhiGAAAAAADAMAQQAAACAYQggAAAAAAxD\nAAEAAABgGAIIAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAAAACGIYAAAAAAMAwBBAAAAIBhCCAAAAAA\nDEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQAAAAAIa5rwBSUlKi5ORkzZs3T2lpabp0\n6ZLP/jU1NUpPT9f8+fO1ZMkSFRQUePW5ePGili9frvj4eKWkpOjkyZNefQ4fPqwXXnhB8fHxeu21\n11RZWfnQcwMAAAAwfCyDdSgtLdWWLVuUnZ2tuXPn6ujRo1qzZo3KysoUGRnp1b+5uVkZGRmaNWuW\n8vLydOXKFe3atUtms1mZmZmSpGvXrmnt2rVKSkqS3W5XRUWFNm7cqODgYKWkpEiSPvroI+3atUs/\n//nPNXv2bJ06dUrr1q3Tb37zGz3zzDNDmhsA3Mvt27fV1NTkt3oNDQ3q6+vzWz0AAEYLnwHE6XQq\nPz9fK1asUHZ2tiRp0aJFWrZsmQ4fPqxNmzZ5jTl27Jj6+/u1b98+BQYGavHixerp6dGBAweUnp4u\ns9msgwcPKioqSjt37pQkJSQkqLW1VXv27FFKSor6+/t1+PBhvf7661q7dq0kyWaz6fPPP1dJSYme\neeaZIc0NAO6lqalJR8r+otAJk/1Sr+56tSaETfVLLQAARhOfAaS2tlaNjY1aunTp/w2wWJSYmKiK\niooBx1RWVspmsykwMNDdlpSUpH379uny5cuKj49XZWWlXnnlFY9xSUlJ+vTTT+VwOGS1WlVUVKSQ\nkBCPPmazWb29vUOeGwD4EjphsqxTIvxSq+Vb/62mAAAwmvjcA3Ljxg1JUnR0tEd7ZGSk6uvr5XQ6\nvcbU1tZq2rRpHm1RUVHuep2dnXI4HD77SNJTTz2lJ554QtLdTyY/+OADNTQ0aPny5UOeGwAAAIDh\n5XMFpL29XZIUFBTk0R4UFKT+/n51dnZ6HWtvbx+wv+uYr5rfv0+X0tJS/fKXv5QkrVixQgsWLBjy\n3AAAAAAMr0H3gEiSyWQa8HhAgPcCitPpvGd/k8n0wDUXLFig4uJiffnll9q9e7e6urr0wQcfDGlu\ng6mqqnrgMRjZurq6JHFuRyN/n9ubN2+qpaVVChjrl3q3bt3SmLE9cjgcI66ev+fW0tKir776Sp2d\nnX6p99R37++9d+7oa167owrvyaMX53b0cp1bf/IZQFx7MDo6OjRp0iR3e0dHh8xms8aPHz/gmI6O\nDo821+2QkBAFBwd7tP1jH9dxl+joaEVHR+vHP/6xLBaL3n//fW3YsGFIcwMAAAAwvHwGENf+ivr6\nevceDdftmJiYe46pq6vzaKuvr5ckxcTEKCgoSFar1d02UJ/29naVl5fLZrNpypQp7j6xsbGSJIfD\nMaS5DSYuLm5I4zByuT6J4dyOPv4+t4899piuNH4tq9Xql3ot30yQZez4EVnP33NTf4+efnqG1568\noer9bmV7jMXCa3eU4T159OLcjl5VVVV+W+F28Xmd0vTp0xUeHq4zZ86423p7e3X+/Hk999xzA46x\n2Wy6cOGCx3JNeXm5Jk6c6P5HabPZdPbsWfX393v0mTlzpns1Y9OmTSopKfGo/ec//1ljxoxRTEzM\nkOYGAAAAYHj5XAExmUzKysrS1q1bFRoa6t6P0dbWptWrV0uS6urq1NLSovj4eEnSypUrVVxcrHXr\n1ikzM1PV1dUqKChQTk6OLJa7d5eZmanU1FTZ7XalpqaqsrJSp06d0u7duyXdvQzrjTfeUEFBgYKC\nghQXF6cLFy7o448/1ptvvum+/GqwuQEAAAAYWQb9JvSVK1equ7tbR44cUVFRkeLi4lRYWOj+pvG9\ne/eqrKzMvfRmtVp16NAhbdu2TXa7XWFhYdqwYYMyMjLcNWNjY7V//37t2LFD69ev19SpU5Wbm6vk\n5GR3n5ycHE2ePFknTpzQX//6V0VGRmrTpk1KS0u777kBAAAAGFkGDSCSlJGR4REgvi83N1e5ubke\nbXPmzNHx48d91kxISFBCQsI9j5vNZq1du9b9TehDmRsAAACAkeXB/1YtAAAAAAwRAQQAAACAYQgg\nAAAAAAxDAAEAAABgGAIIAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAAAACGIYAAAAAAMAwBBAAAAIBh\nCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQAAAAAIYhgAAAAAAwDAEEAAAA\ngGEIIAAAAAAMQwABAAAAYBgCCAAAAADDEEAAAAAAGIYAAgAAAMAwBBAAAAAAhiGAAAAAADAMAQQA\nAACAYQggAAAAAAxDAAEAAABgGAIIAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAAAACGIYAAAAAAMAwB\nBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQAAAAAIYhgAAAAAAw\nzH0FkJKSEiUnJ2vevHlKS0vTpUuXfPavqalRenq65s+fryVLlqigoMCrz8WLF7V8+XLFx8crJSVF\nJ0+e9OpTWlqql156SfPnz1dKSoo+/PBD9fb2uo+3trYqNjbW68dut9/PwwIAAABgMMtgHUpLS7Vl\nyxZlZ2dr7ty5Onr0qNasWaOysjJFRkZ69W9ublZGRoZmzZqlvLw8XblyRbt27ZLZbFZmZqYk6dq1\na1q7dq2SkpJkt9tVUVGhjRs3Kjg4WCkpKZKk3//+99q4caPWrFmjf//3f9fVq1eVl5en5uZmbd68\nWZJUXV0tSTp06JCCgoLcc5gwYcLDPzMAAAAA/M5nAHE6ncrPz9eKFSuUnZ0tSVq0aJGWLVumw4cP\na9OmTV5jjh07pv7+fu3bt0+BgYFavHixenp6dODAAaWnp8tsNuvgwYOKiorSzp07JUkJCQlqbW3V\nnj173AGksLBQL730knJyciRJNptNfX192rFjh37xi19o/Pjxunr1qsLCwmSz2fz6pAAAAAD45/AZ\nQGpra9XY2KilS5f+3wCLRYmJiaqoqBhwTGVlpWw2mwIDA91tSUlJ2rdvny5fvqz4+HhVVlbqlVde\n8RiXlJSkTz/9VA6HQ2FhYfrJT36i559/3qPP9OnT5XQ61djYqKeeekpXr17VrFmzHvhBA/jh6+7u\n1rfffqvHHnvML/UaGhrU19fnl1oAAODefAaQGzduSJKio6M92iMjI1VfXy+n0ymTyeRxrLa2Vs89\n95xHW1RUlLvezJkz5XA4NG3atHv2sVqtevfdd73mc+7cOY0bN04RERGSpKtXr2rcuHFKS0vT//zP\n/2jixIlatWqV1qxZM9jjBvAD9+233+qPf76m6EbT4J3vQ931ak0Im+qXWgAA4N58BpD29nZJ8thf\n4brd39+vzs5Or2Pt7e0D9ncd81Xz+/f5jyoqKlRaWqpVq1Zp3Lhx6uvr0/Xr1xUUFKR33nlHERER\nOnfunHbu3Knbt2+7LxkDMHqFPD5J1ikRfqnV8m2TX+oAAADfBt0DIslrlcMlIMD7j2gNtCriYjKZ\nhlTzwoUW/8oYAAAgAElEQVQLeuuttxQfH68NGza4xxcUFCg8PNy9GX7hwoXq7OzURx99pKysLI0d\nO9bXwwMAAABgMJ8BJCQkRJLU0dGhSZMmuds7OjpkNps1fvz4Acd0dHR4tLluh4SEKDg42KPtH/u4\njrv88Y9/1C9+8QvNnTtXBw4ccIeKgIAALVy40Ov+ExIS9Nvf/lZ1dXWaMWOGr4fnpaqq6oH6Y+Tr\n6uqSxLkdjbq7u3Xnzh05HA6/1Lt165bGjO15JOr5e24tLS366quv1NnZ6Zd6T333QVXvnTv6mtfu\nqMJ78ujFuR29XOfWn3x+D4hr70d9fb1He319vWJiYu45pq6uzqu/JMXExCgoKEhWq3XAmq4+LseP\nH9fbb7+tZ599VocOHfIIJ998841OnDihlpYWjzrd3d2SpIkTJ/p6aAAAAACGgc8VkOnTpys8PFxn\nzpzRokWLJEm9vb06f/68lixZMuAYm82mEydOqKury71CUl5erokTJyouLs7d5+zZs7Lb7e5LrsrL\nyzVz5kz3Skt5ebnee+89JScna+fOnbJYPKfa3d2tzZs3q6urS6tXr3a3nz59WjExMZo8efIDPxmu\n+WH0cH0Sw7kdfW7evCmLxSKr1eqXei3fTJBl7PhHop6/56b+Hj399AyvP1gyVL3fXaI7xmLhtTvK\n8J48enFuR6+qqiq/rXC7+AwgJpNJWVlZ2rp1q0JDQ7VgwQIVFxerra3N/Ut/XV2dWlpaFB8fL0la\nuXKliouLtW7dOmVmZqq6uloFBQXKyclxh4jMzEylpqbKbrcrNTVVlZWVOnXqlHbv3i3p/8KF1WrV\nG2+8oS+//NJjXrNmzVJUVJRefPFF5eXlKSAgQE8++aQ+++wznTlzRnv37vXrkwQAAADAPwb9JvSV\nK1equ7tbR44cUVFRkeLi4lRYWOje+L13716VlZW5k6/VatWhQ4e0bds22e12hYWFacOGDcrIyHDX\njI2N1f79+7Vjxw6tX79eU6dOVW5urpKTkyVJly5dUnNzs0wmk372s595zMdkMumTTz7R7NmztX37\ndu3Zs0dFRUVyOByaMWOG8vPz77k6AwAAAGB4DRpAJCkjI8MjQHxfbm6ucnNzPdrmzJmj48eP+6yZ\nkJCghISEAY89++yzqq6uHnRe48aN09tvv62333570L4AAAAAhp/PTegAAAAA4E8EEAAAAACGIYAA\nAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQAAAAAIYh\ngAAAAAAwDAEEAAAAgGEIIAAAAAAMQwABAAAAYBgCCAAAAADDEEAAAAAAGIYAAgAAAMAwBBAAAAAA\nhiGAAAAAADAMAQQAAACAYQggAAAAAAxDAAEAAABgGAIIAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAA\nAACGIYAAAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQ\nAAAAAIYhgAAAAAAwDAEEAAAAgGEIIAAAAAAMQwABAAAAYBgCCAAAAADDEEAAAAAAGIYAAgAAAMAw\nBBAAAAAAhrmvAFJSUqLk5GTNmzdPaWlpunTpks/+NTU1Sk9P1/z587VkyRIVFBR49bl48aKWL1+u\n+Ph4paSk6OTJk159SktL9dJLL2n+/PlKSUnRhx9+qN7e3oeaGwAAAIDhM2gAKS0t1ZYtW/Tyyy8r\nPz9fISEhWrNmjRoaGgbs39zcrIyMDJnNZuXl5em1117Trl279PHHH7v7XLt2TWvXrtW0adP04Ycf\nKjExURs3btTp06fdfX7/+9/rv//7v7V48WLt3btXr7/+ugoLC7V9+/Yhzw0AAADA8LL4Ouh0OpWf\nn68VK1YoOztbkrRo0SItW7ZMhw8f1qZNm7zGHDt2TP39/dq3b58CAwO1ePFi9fT06MCBA0pPT5fZ\nbNbBgwcVFRWlnTt3SpISEhLU2tqqPXv2KCUlRZJUWFiol156STk5OZIkm82mvr4+7dixQ7/4xS80\nbty4B54bAAAAgOHlcwWktrZWjY2NWrp0qbvNYrEoMTFRFRUVA46prKyUzWZTYGCguy0pKUltbW26\nfPmyu09iYqLHuKSkJNXU1MjhcMjpdOonP/mJXnnlFY8+06dPl9PpVGNj45DmBgAAAGB4+QwgN27c\nkCRFR0d7tEdGRqq+vl5Op9NrTG1traZNm+bRFhUV5a7X2dkph8Phs4/JZNK7774rm83m0efcuXMa\nN26cIiIihjQ3AAAAAMPLZwBpb2+XJAUFBXm0BwUFqb+/X52dnQOOGai/65ivmt+/z39UUVGh0tJS\nvf766xo3btyQ5gYAAABgeA26B0SSTCbTgMcDArzzi9PpvGd/k8k0pJoXLlzQW2+9pfj4eG3YsGHI\ncxtMVVXVA4/ByNbV1SWJczsadXd3686dO3I4HH6pd+vWLY0Z2/NI1PP33FpaWvTVV1/57YOfp757\nf++9c0df89odVXhPHr04t6OX69z6k8/f0kNCQiRJHR0dHu0dHR0ym80aP378gGMG6u86FhwcfM+a\nktzHXf74xz8qKytLsbGxOnDggMaOHTvkuQEAAAAYXj5XQFz7K+rr6917NFy3Y2Ji7jmmrq7Oo62+\nvl6SFBMTo6CgIFmtVnfbQH1cjh8/rvfee0+LFi3Snj17NG7cuIea22Di4uKGNA4jl+uTGM7t6HPz\n5k1ZLBZZrVa/1Gv5ZoIsY8c/EvX8PTf19+jpp2d47ckbqt7vVrbHWCy8dkcZ3pNHL87t6FVVVeX3\nrQ0+V0CmT5+u8PBwnTlzxt3W29ur8+fP67nnnhtwjM1m04ULFzyWa8rLyzVx4kT3P0qbzaazZ8+q\nv7/fo8/MmTM1adIk9+333ntPycnJOnDggEf4GOrcAAAAAAwvnysgJpNJWVlZ2rp1q0JDQ7VgwQIV\nFxerra1Nq1evliTV1dWppaVF8fHxkqSVK1equLhY69atU2Zmpqqrq1VQUKCcnBxZLHfvLjMzU6mp\nqbLb7UpNTVVlZaVOnTql3bt3S7p7bffmzZtltVr1xhtv6Msvv/SY16xZszR+/PhB5wYAAABgZPEZ\nQKS7gaK7u1tHjhxRUVGR4uLiVFhYqMjISEnS3r17VVZW5l56s1qtOnTokLZt2ya73a6wsDBt2LBB\nGRkZ7pqxsbHav3+/duzYofXr12vq1KnKzc1VcnKyJOnSpUtqbm6WyWTSz372M4/5mEwmffLJJ5o9\ne/agcwMAAAAwsgwaQCQpIyPDI0B8X25urnJzcz3a5syZo+PHj/usmZCQoISEhAGPPfvss6qurr6f\nqfmcGwAAAICR5cH/Vi0AAAAADBEBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiG\nAAIAAADAMAQQAAAAAIYhgAAAAAAwDAEEAAAAgGEswz0BAMAPW29PjxoaGvxW71/6+vxWCwAw8hBA\nAAAP5X//3qqy842KiLrtl3qre/oU6JdKAICRiAACAHhoIY9PknVKhF9qmQK4OhgARjPe5QEAAAAY\nhgACAAAAwDAEEAAAAACGIYAAAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAA\nABiGAAIAAADAMAQQAAAAAIYhgAAAAAAwDAEEAAAAgGEswz0BAI+G27dvq6mpyW/1mpqa1Ndn9ls9\nAABgDAIIAEM0NTXpSNlfFDphsl/qXf7/ajVh8lS/1AIAAMYhgAAwTOiEybJOifBLraCQCX6pAwAA\njMUeEAAAAACGIYAAAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIA\nAADAMAQQAAAAAIYhgAAAAAAwDAEEAAAAgGEIIAAAAAAMQwABAAAAYJj7CiAlJSVKTk7WvHnzlJaW\npkuXLvnsX1NTo/T0dM2fP19LlixRQUGBV5+LFy9q+fLlio+PV0pKik6ePHnPeleuXNGcOXN069Yt\nj/bW1lbFxsZ6/djt9vt5WAAAAAAMZhmsQ2lpqbZs2aLs7GzNnTtXR48e1Zo1a1RWVqbIyEiv/s3N\nzcrIyNCsWbOUl5enK1euaNeuXTKbzcrMzJQkXbt2TWvXrlVSUpLsdrsqKiq0ceNGBQcHKyUlxaPe\n9evX9eabb6qvr8/rvqqrqyVJhw4dUlBQkLt9woQJD/YsAAAAADCEzwDidDqVn5+vFStWKDs7W5K0\naNEiLVu2TIcPH9amTZu8xhw7dkz9/f3at2+fAgMDtXjxYvX09OjAgQNKT0+X2WzWwYMHFRUVpZ07\nd0qSEhIS1Nraqj179rgDiNPp1CeffKJf/epXMpvNA87v6tWrCgsLk81me6gnAQAAAIAxfF6CVVtb\nq8bGRi1dutTdZrFYlJiYqIqKigHHVFZWymazKTAw0N2WlJSktrY2Xb582d0nMTHRY1xSUpJqamrk\ncDgk3V3deP/997Vq1Srl5OTI6XR63dfVq1c1a9as+3ukAAAAAIadzwBy48YNSVJ0dLRHe2RkpOrr\n6wcMBbW1tZo2bZpHW1RUlLteZ2enHA6Hzz6SNHXqVJWXl+utt97yuQLS1dWltLQ0PfPMM3r++edV\nWFjo6yEBAAAAGEY+L8Fqb2+XJI/9Fa7b/f396uzs9DrW3t4+YH/XMV81v3+fjz/+uM+J9/X16fr1\n6woKCtI777yjiIgInTt3Tjt37tTt27fdl4wBAAAAGDkG3QMiSSaTacDjAQHeCyhOp/Oe/U0m05Bq\n3qtWQUGBwsPD3ZvhFy5cqM7OTn300UfKysrS2LFj76uWS1VV1QP1x8jX1dUliXM7Ety8eVMtLa1S\nwIO9Lu+lr++OTH133JdtPqxbt25pzNieR6LeSJ7bXXf/n+i9c0df89odVXhPHr04t6OX69z6k8/f\n9kNCQiRJHR0dHu0dHR0ym80aP378gGMG6u86FhwcfM+aktzHB514QIAWLlzo9Ze4EhIS1NXVpbq6\nuvuqAwAAAMA4PldAXHs/6uvr3Xs0XLdjYmLuOeYff/mvr6+XJMXExCgoKEhWq9XdNlCf+/HNN9/o\n3LlzeuGFFzRp0iR3e3d3tyRp4sSJ91Xn++Li4h54DEY21ycxnNvh99hjj+lK49eyWq1+qXe9xiKL\n2eK3ei3fTJBl7PhHot5Inttdd1fIx1gsvHZHGd6TRy/O7ehVVVWlzs5Ov9b0uQIyffp0hYeH68yZ\nM+623t5enT9/Xs8999yAY2w2my5cuOCxXFNeXq6JEye6/1HabDadPXtW/f39Hn1mzpzpESZ86e7u\n1ubNm/Xpp596tJ8+fVoxMTGaPHnyfdUBAAAAYByfKyAmk0lZWVnaunWrQkNDtWDBAhUXF6utrU2r\nV6+WJNXV1amlpUXx8fGSpJUrV6q4uFjr1q1TZmamqqurVVBQoJycHFksd+8uMzNTqampstvtSk1N\nVWVlpU6dOqXdu3ff98SjoqL04osvKi8vTwEBAXryySf12Wef6cyZM9q7d+8Qnw4AAAAA/0yDfhP6\nypUr1d3drSNHjqioqEhxcXEqLCx0773Yu3evysrK3EtvVqtVhw4d0rZt22S32xUWFqYNGzYoIyPD\nXTM2Nlb79+/Xjh07tH79ek2dOlW5ublKTk6+5zwG2rS+fft27dmzR0VFRXI4HJoxY4by8/O1ZMmS\nB34iAAAAAPzzDRpAJCkjI8MjQHxfbm6ucnNzPdrmzJmj48eP+6yZkJCghISE+5rkq6++qldffdWr\nfdy4cXr77bf19ttv31cdAAAAAMPr/v7mLQAAAAD4AQEEAAAAgGEIIAAAAAAMQwABAAAAYBgCCAAA\nAADDEEAAAAAAGIYAAgAAAMAwBBAAAAAAhiGAAAAAADAMAQQAAACAYQggAAAAAAxDAAEAAABgGAII\nAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAAAACGIYAAAAAAMIxluCcAYGS6ffu2mpqa/FavoaFBfX19\nfqsHAAB+mAggAAbU1NSkI2V/UeiEyX6pV3e9WhPCpvqlFgAA+OEigAC4p9AJk2WdEuGXWi3f+m81\nBQAA/HCxBwQAAACAYQggAAAAAAxDAAEAAABgGAIIAAAAAMMQQAAAAAAYhgACAAAAwDAEEAAAAACG\nIYAAAAAAMAwBBAAAAIBhCCAAAAAADEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQAAAA\nAIYhgAAAAAAwDAEEAAAAgGEIIAAAAAAMQwABAAAAYBgCCAAAAADDEEAAAAAAGOa+AkhJSYmSk5M1\nb948paWl6dKlSz7719TUKD09XfPnz9eSJUtUUFDg1efixYtavny54uPjlZKSopMnT96z3pUrVzRn\nzhzdunXroecGAAAAYPgMGkBKS0u1ZcsWvfzyy8rPz1dISIjWrFmjhoaGAfs3NzcrIyNDZrNZeXl5\neu2117Rr1y59/PHH7j7Xrl3T2rVrNW3aNH344YdKTEzUxo0bdfr0aa96169f15tvvqm+vr6HnhsA\nAACA4WXxddDpdCo/P18rVqxQdna2JGnRokVatmyZDh8+rE2bNnmNOXbsmPr7+7Vv3z4FBgZq8eLF\n6unp0YEDB5Seni6z2ayDBw8qKipKO3fulCQlJCSotbVVe/bsUUpKivu+P/nkE/3qV7+S2Wz2y9wA\nAAAADC+fKyC1tbVqbGzU0qVL3W0Wi0WJiYmqqKgYcExlZaVsNpsCAwPdbUlJSWpra9Ply5fdfRIT\nEz3GJSUlqaamRg6HQ5JUXV2t999/X6tWrVJOTo6cTudDzw0AAADA8PIZQG7cuCFJio6O9miPjIxU\nfX29VyiQ7gaDadOmebRFRUW563V2dsrhcPjsI0lTp05VeXm53nrrrQFXQIYyNwAAAADDy2cAaW9v\nlyQFBQV5tAcFBam/v1+dnZ0Djhmov+uYr5rfv8/HH39cVqvVr3MDAAAAMLwG3QMiSSaTacDjAQHe\n+cXpdN6zv8lkGlJNf81tMFVVVQ88BiNbV1eXJM7tUNy8eVMtLa1SwFi/1Lt165bGjO1xX2b5sPr6\n7sjUd8dv9fw9v5FcbyTP7a677++9d+7oa167owrvyaMX53b0cp1bf/L5W3pISIgkqaOjw6O9o6ND\nZrNZ48ePH3DMQP1dx4KDg+9ZU5L7+GCGMjcAAAAAw8vnCohrf0V9fb17j4brdkxMzD3H1NXVebTV\n19dLkmJiYhQUFCSr1epuG6jP/RjK3AYTFxc3pHEYuVyfxHBuH9xjjz2mK41f+7wU8kG0fDNBlrHj\n/Vbveo1FFrNlxM5vJNcbyXO76+7K9hiLhdfuKMN78ujFuR29qqqq/L61wecKyPTp0xUeHq4zZ864\n23p7e3X+/Hk999xzA46x2Wy6cOGCx3JNeXm5Jk6c6P5HabPZdPbsWfX393v0mTlzpiZNmnRfEx/K\n3AAAAAAML58rICaTSVlZWdq6datCQ0O1YMECFRcXq62tTatXr5Yk1dXVqaWlRfHx8ZKklStXqri4\nWOvWrVNmZqaqq6tVUFCgnJwcWSx37y4zM1Opqamy2+1KTU1VZWWlTp06pd27d9/3xO9nbgAAAABG\nFp8BRLobKLq7u3XkyBEVFRUpLi5OhYWFioyMlCTt3btXZWVl7qU3q9WqQ4cOadu2bbLb7QoLC9OG\nDRuUkZHhrhkbG6v9+/drx44dWr9+vaZOnarc3FwlJyffcx4DbTYfbG4AAAAARpZBA4gkZWRkeASI\n78vNzVVubq5H25w5c3T8+HGfNRMSEpSQkHBfk3z11Vf16quvPvDcAAAAAIwsD/63agEAAABgiAgg\nAAAAAAxDAAEAAABgmPvaAwLgh+H27dtqamryS62Ghgb19fX5pRYAAIALAQQYRZqamnSk7C8KnTD5\noWvVXa/WhLCpfpgV8ICcTknSnb4+3ayt9UvJKVOmaNy4cX6pBQB4OAQQYJQJnTBZ1ikRD12n5Vv/\nrKQAD8r5XQC53dOnP/zp64eu9/dbzVr18rOKjo5+6FoAgIdHAAEAjEgBAQF+CdMAgJGFTegAAAAA\nDEMAAQAAAGAYAggAAAAAwxBAAAAAABiGAAIAAADAMAQQAAAAAIYhgAAAAAAwDN8DAgAY1Xp7etTQ\n0ODXmnyzOgAMHQEEADCq/e/fW1V2vlERUbf9Uo9vVgeAh0MAAQCMeiGPT+Jb1QFghGAPCAAAAADD\nEEAAAAAAGIYAAgAAAMAwBBAAAAAAhiGAAAAAADAMAQQAAACAYQggAAAAAAxDAAEAAABgGAIIAAAA\nAMMQQAAAAAAYhgACAAAAwDAEEAAAAACGIYAAAAAAMAwBBAAAAIBhCCAAAAAADGMZ7gkAAPBD0tvT\no4aGBr/WnDJlisaNG+fXmgAwUhFAAAB4AP/791aVnW9URNRtv9T7+61mrXr5WUVHR/ulHgCMdAQQ\nYBjdvn1bTU1NfqvX0NCgvr4+v9UDMLCQxyfJOiViuKcBAD9IBBBgGDU1NelI2V8UOmGyX+rVXa/W\nhLCpfqkFAADwz0AAAYZZ6ITJfvskteVb/62mAAAA/DPwV7AAAAAAGIYAAgAAAMAwBBAAAAAAhiGA\nAAAAADAMAQQAAACAYe4rgJSUlCg5OVnz5s1TWlqaLl265LN/TU2N0tPTNX/+fC1ZskQFBQVefS5e\nvKjly5crPj5eKSkpOnnypFef8vJy/cd//IfmzZunl19+WefPn/c43traqtjYWK8fu91+Pw8LAAAA\ngMEG/TO8paWl2rJli7KzszV37lwdPXpUa9asUVlZmSIjI736Nzc3KyMjQ7NmzVJe3v/f3p0HRXWl\n/QP/doOANBAhEERBQY2IG8v8jKKoLBmXOC5To+U2idFxS5mEchyVqBOdOBG0MKVCC4oZXEKcMeNG\nZjEBDQZfcCwrg8lQIoMKNoIIgkY2m+4+vz98uW86jY3RS9MN308VVfa55z59Lo+X5uHcc+9uFBYW\nYteuXbCzs8OSJUsAANevX8fSpUsRExOD2NhY5ObmYuPGjXBxccHkyZMBAPn5+YiNjcX8+fOxfv16\nZGZm4u2330ZGRgaCg4MBAEVFRQCA9PR0qFQqaQy9evV6/u8MERERERHJzmwBIoRAUlIS5s6di1Wr\nVgEAxo4diylTpuDgwYPYtGmTyT4ZGRkwGAxISUmBo6MjJkyYAK1Wi3379mHRokWws7PD/v374efn\nh507dwIAIiIiUFdXB7VaLRUgarUa48aNk94jIiICFRUVSE1NRUpKCgDg2rVr8PT0RHh4uHzfESIi\nIiIi6jBmL8EqKytDRUUFoqOjpTZ7e3tERkYiNze3zX3y8vIQHh4OR0dHqS0mJgYPHjzAd999J/WJ\njIw02i8mJgbFxcWorq5Gc3MzCgoKjN4XAKKjo5Gfnw8hBIDHBUhgYODTHy0REREREXUqswVIaWkp\nAKB///5G7b6+vtBoNFIh8ENlZWXo16+fUZufn58Ur7GxEdXV1Wb7aDQa6HQ6k/f18/NDc3MzKisr\nATwuQJqamjBv3jyMHDkSEydOxMcff9zeMRMRERERUScxewlWfX09ABitr2h9bTAY0NjYaLKtvr6+\nzf6t28zFbO1jb2/fbh+9Xo8bN25ApVJh7dq16Nu3L7766ivs3LkTzc3N0iVjRERERERkPdpdAwIA\nCoWize1KpekEihDiif0VCsVTxWxrZuXHfRQKBdLS0uDj4yMthh81ahQaGxtx4MABLFu2DA4ODmbj\n/NjVq1d/Un+yfk1NTQCsN7e3b99GbW0doPxp/1ef5P79++jhoEV1dbVVxeqIeHq9Dgq9zmrHZ83x\nrHlsjz3+DDAYDN3ieGtra/Hf//4XjY2NssSzZtb+M5meHXPbdbXmVk5mL8FydXUFADQ0NBi1NzQ0\nwM7ODj179mxzn7b6t25zcXF5YkwAcHFxMfu+rXGUSiVGjRplcieuiIgINDU14datW+YOjYiIiIiI\nOoHZGZDWNRgajUZao9H6OiAg4In7/PiXf41GAwAICAiASqWCl5eX1NZWH2dnZyiVSpSXl5v0cXZ2\nhre3N6qqqpCTk4Of//zn8PDwkPo8evQIAODu7m7u0NoUFBT0k/ch69b6lxhrza2zszMKK0rg5eUl\nS7zau71g79BTlnhyxuqIeDeK7WFvZ2+147PmeNY8tscez5ArlcrucbwGLV5+eZDJuseuyNp/JtOz\nY267rqtXr8o+Q2t2BsTf3x8+Pj7IysqS2lpaWpCTk4MxY8a0uU94eDjy8/ONpmuys7Ph7u4u/acM\nDw/HuXPnYDAYjPoMHjwYHh4ecHJyQmhoqNH7AsDZs2cxevRoAIBWq8XmzZuRmZlp1OeLL75AQEAA\nXnzxxac5fiIiIiIisiCzMyAKhQLLli3D1q1b4ebmhrCwMHzyySd48OAB3nzzTQDArVu3UFtbi5CQ\nEADAggUL8Mknn2D58uVYsmQJioqKkJaWht/97nfS4vIlS5Zg9uzZiI2NxezZs5GXl4fPP/8ce/bs\nkd57+fLlWLFiBd5//33ExMTgb3/7G65cuYKMjAwAj++I9dprr2H37t1QKpUYMGAAzpw5g6ysLOzd\nu7cjvldEaG5uRlVVlWzxysvLodfrZYtHRLanRas1mfF/Ht7e3nBycpItHhGR3Np9EvqCBQvw6NEj\nHD58GIcOHUJQUBA+/vhjae3F3r17cfr0aWnqzcvLC+np6fjwww8RGxsLT09PrF69GosXL5ZiDhky\nBKmpqUhMTMQ777yDPn36ICEhAZMmTZL6TJw4ETt27IBarcapU6cwYMAAqNVq6SnoALBt2zao1Woc\nOnQI1dXVGDRoEJKSkhAVFSXbN4joh6qqqnD49L/g1kueGbZbN4rQy7OPLLGIyDY9/L4Op3Mq0Nev\n+blj3auuxOQxASbrI58HCxoiklu7BQgALF682KiA+KGEhAQkJCQYtQ0fPhxHjx41GzMiIgIRERFm\n+/vyVbIAABUDSURBVMyYMQMzZsx44nYnJyesWbMGa9asMRuHSE5uvV6El3dfWWLV1sg3m0JEtsv1\nBQ9Zfq7U1lThdE6RLMUMAHx//x7emDm6W6xPISLLeaoChIiIiGyDXMUMEVFHMbsInYiIiIiISE4s\nQIiIiIiIyGJYgBARERERkcWwACEiIiIiIothAUJERERERBbDAoSIiIiIiCyGBQgREREREVkMCxAi\nIiIiIrIYPoiQiIiI2tSi1aK8vFy2eLdv34anp6ds8YjINrEAISIiojY9/L4Op3Mq0NevWZZ4ZTev\n47VxsoQiIhvGAoSIiIieyPUFD3h595UlVm1trSxxiMi2sQChLu3Ro0eoqamBs7OzLPHKy8uh1+tl\niUVERETUHbEAoS6tpqYG//if6+hfoZAl3q0bRejl2UeWWERERETdEQsQ6vJkvXygpkqWOERE3ZGu\nRYuqqiqUlZXJFtPb2xtOTk6yxSOijscChIiIiCyi/uED5H77CDX6ElnifX//Ht6YORr9+/eXJR4R\nWQYLECIiIrIYF1d32Walicg28UGERERERERkMSxAiIiIiIjIYliAEBERERGRxbAAISIiIiIii2EB\nQkREREREFsO7YBEREZFNatFqUV5eLmtMPleEqOOxACEiIiKb9PD7OpzOqUBfv2ZZ4vG5IkSWwQKE\niIiIbJbrCx58rgiRjeEaECIiIiIishgWIEREREREZDG8BIusSnNzM6qqqmSLV1VVBb3eTrZ4RERE\nT0vuzzQukKeuggUIWZWqqiocPv0vuPV6UZZ43/27DL1e7CNLLCIi6trkvqtWeXk5vvzXLXh4vvTc\nsbhAnroSFiBkddx6vSjbgkKVay9Z4hARUdcn9121bt0oQi/PPlwkT/QjLECIiIiI/pecd9WqrZHv\n8iuiroQFCBEREZGV40MXqSthAUJERERk5fjQRepKWIAQERER2QA5Lw+Te0bl9u3b8PT0lC0edW0s\nQIiIiIi6GblnVMpuXsdr42QJRd0ACxAiIiKibkjWBfe1tbLEoe6BBQg9F7kfslReXg69Xi9bPCIi\nIiKyLixA6LnI/eDA1numExEREVHXxAKkG0o7+GfUP7KTJVbtvWrcb3bAwMCR8sTjPdOJiIhsjq5F\ni6qqKpSVlckWk7cJ7rpYgHRD9g7O8PYZLEssZc/bqCsplSUWERER2ab6hw+Q++0j1OhLZInH2wR3\nbSxAiIiIiOi5ubi6y7aonbo25dN0OnbsGCZNmoTg4GDMmzcPBQUFZvsXFxdj0aJFCA0NRVRUFNLS\n0kz6XL58GXPmzEFISAgmT56M48ePm/TJzs7G9OnTERwcjJkzZyInJ+e5x0ZERERERJ2n3RmQkydP\nYsuWLVi1ahVGjBiBI0eO4De/+Q1Onz4NX19fk/737t3D4sWLERgYiN27d6OwsBC7du2CnZ0dlixZ\nAgC4fv06li5dipiYGMTGxiI3NxcbN26Ei4sLJk+eDADIz89HbGws5s+fj/Xr1yMzMxNvv/02MjIy\nEBwc/ExjIyIiIiLrJ/eDEgGuKbEmZgsQIQSSkpIwd+5crFq1CgAwduxYTJkyBQcPHsSmTZtM9snI\nyIDBYEBKSgocHR0xYcIEaLVa7Nu3D4sWLYKdnR32798PPz8/7Ny5EwAQERGBuro6qNVqqQBRq9UY\nN26c9B4RERGoqKhAamoqUlJSnmlsRERERGT95H5QIteUWBezBUhZWRkqKioQHR39fzvY2yMyMhK5\nublt7pOXl4fw8HA4OjpKbTExMUhJScF3332HkJAQ5OXlYdasWUb7xcTEIDMzE9XV1XB1dUVBQYFJ\nEREdHY09e/ZACPFMYyMiIiIi2yDngxLJupgtQEpLSwHApFr09fWFRqOBEAIKhcJoW1lZGcaMGWPU\n5ufnJ8UbPHgwqqur0a9fvyf26dWrF3Q6ncn7+vn5obm5GZWVlc80NiIiIiLqfnhJl3UxW4DU19cD\nAFQqlVG7SqWCwWBAY2Ojybb6+vo2+7duMxeztY+9vX27fZ5lbERERETU/fCSLuvS7hoQAE+cSVAq\nTW+iZW7mQaFQPFXM1j5P8sM+P2VsRERERNQ98ZIu62G2AHF1dQUANDQ0wMPDQ2pvaGiAnZ0devbs\n2eY+DQ0NRm2tr11dXeHi4mLU9uM+Li4uRu/7pDjPMrb2XL169SfvY4tqayrReLtSllj36+6h9j5w\n7ep3ssS7rSmFvUNP6HQ6WeJ9f/8e7B0arXZ81hzPmscGMLfWEqsj4k0VBgCATqeTJb/WfrzdKbc8\nb60jVkfE6265ffigFv/tI9DY2ChLPGvW1NQke0yzBUjrtJJGo5HWaLS+DggIeOI+t27dMmrTaDQA\ngICAAKhUKnh5eUltbfVxdnaGUqk0uVZPo9HA2dkZ3t7eUsJ/ytja0x3+EwFA5Lj/19lDeLLxAxjP\nWuJZ89gYz3pidUC8G+e/kv49Q46AVn683Sm3jGclsRhPBo/jdZffHeVmtgDx9/eHj48PsrKyMHbs\nWABAS0sLcnJyEBUV1eY+4eHh+Mtf/oKmpiZpFiI7Oxvu7u4ICgqS+pw7dw6xsbHSpVLZ2dkYPHiw\nNJsRGhqKrKwszJkzR4p99uxZjB49+pnHZs7Pfvazn7wPERERERH9NHZbtmzZ8qSNCoUCDg4O2Lt3\nL1paWqDVahEfH4/S0lIkJCTAzc0Nt27dws2bN9G7d28AwMCBA3HkyBHk5+fD3d0dZ86cQWpqKt55\n5x3pl3w/Pz/s378fRUVFUKlUOHr0KI4dO4bNmzdj4MCBAABPT0+o1WrcvXsXSqUSarUaFy5cQHx8\nPHr37v1UYyMiIiIiIuuiEO2t+AaQnp6Ow4cPo66uDkFBQYiLi5OeRh4XF4fTp08brZ/4z3/+gw8/\n/BCFhYXw9PTEggULsHTpUqOYFy5cQGJiIm7cuIE+ffpg5cqVJs8GyczMhFqtRmVlJQYMGIDVq1dj\n4sSJTz02IiIiIiKyLk9VgBAREREREcmB96olIiIiIiKLYQFCREREREQWwwKEiIiIiIgshgUIERER\nERFZDAsQIiIiIiKyGBYgRERERERkMd2qAKmtrcW6deswevRojBo1Cm+99RY0Go1Rn8uXL2POnDkI\nCQnB5MmTcfz4cZM42dnZmD59OoKDgzFz5kzk5ORY6AjoaSQnJ2PIkCEm7cytbfrmm2/w+uuvY9So\nURg/fjzWr1+Pe/fuGfVhbruOY8eOYdKkSQgODsa8efNQUFDQ2UOidhgMBqSnp2Pq1KkIDQ3FtGnT\nkJGRYdQnJSUFkZGRCAkJwZIlS3Djxg2j7VqtFtu2bUNERATCwsLw7rvv4u7du5Y8DGqHVqvF1KlT\n8d577xm1M7e2LT8/H3PmzEFwcDCio6ORlJQEg8Egbe+w/IpuQqvVihkzZoipU6eKL7/8UmRlZYlp\n06aJyZMnC61WK4QQoqSkRAQHB4vf/va3Ijc3V2zbtk0EBgaKM2fOSHHy8vLE0KFDxdatW0Vubq5Y\nu3atGDZsmCgoKOisQ6MfuHbtmhg2bJgYMmSIUTtza5tKSkrEiBEjxFtvvSW+/vpr8fnnn4tXX31V\nzJw5U7S0tEh9mNuu4cSJEyIoKEgkJyeL8+fPi6VLl4qwsDCh0Wg6e2hkxp49e8SIESNEamqqyM/P\nF0lJSWLo0KEiLS1NCCFEUlKSGDlypDhy5Ig4e/asmD17thg/frx4+PChFCMuLk688sor4uTJk+LM\nmTNi0qRJYubMmUKv13fWYdGP7Ny5UwQGBoq4uDipjbm1bZcvXxbDhg0TcXFx4uLFi+LAgQNixIgR\nIikpSQjRsfntNgXIsWPHRHBwsKisrJTarl69KsaPHy8KCwuFEEKsW7dO/OIXvzDab+3atWL69OnS\n64ULF4ply5YZ9Vm4cKFYuXJlB46enoZOpxO/+tWvxIQJE0wKEObWNm3ZskW8+uqrQqfTSW3ffvut\nCAwMFOfPnxdCMLddhcFgEFFRUWLLli1SW0tLi4iJiRFbt27txJGROTqdToSFhYndu3cbtf/hD38Q\n4eHhor6+XoSEhEjFiBBCPHjwQISFhYn09HQhhBBlZWUiKChI/OMf/5D6lJaWiiFDhogvv/zSIsdB\n5hUWFoqQkBAxZswYqQB5+PAhc2vj5s+fL1asWGHUlpiYKF5//fUOP3e7zSVY2dnZmDBhAnr37i21\nDRkyBF9//TWGDh0KAMjLy0NkZKTRfjExMSguLkZ1dTWam5tRUFCA6Ohooz7R0dHIz8+H4EPlO9XB\ngwfR1NSEX//61ya5YG5t08svv4zFixfDzs5OagsICAAAlJeXA2Buu4qysjJUVFQY5cne3h6RkZHI\nzc3txJGROQ0NDfjlL3+JSZMmGbX7+/ujtrYWFy9eRFNTk1Fe3dzcMGrUKCmvFy9eBABERUVJffr3\n749BgwYx91ZAp9Nhw4YNWLp0Kby9vaX2K1euMLc2rLa2Fv/+978xd+5co/Y1a9bg8OHDKCgo6ND8\ndpsCpLi4GAEBAUhOTsa4ceMwYsQIrFixApWVlQCAxsZGVFdXo1+/fkb7+fn5AQBKS0uh0Wig0+nQ\nv39/kz7Nzc1SLLK8srIyJCcnY+vWrejRo4fRNubWdi1YsAALFiwwajt37hwAYMCAAcxtF1JaWgoA\nJnny9fWFRqNhoWil3NzcsGnTJpN1d1999RV8fHxw584dADA5R319fXHz5k0AwM2bN+Hl5QUnJyej\nPn5+flIf6jxpaWnQ6/VYvny50XnYes4yt7bp2rVrEELAyckJK1euxMiRIzF27FgkJydDCNHh+bWX\n71A6j06nQ1lZ2RO3e3p64t69ezh+/Dh8fX2xbds2NDY2IjExEcuXL8epU6dQX18PAFCpVEb7tr6u\nr6+Hvb19u31IXu3l1svLC66urti0aRNmzZqFsLAwfPvtt0Z9mFvr9DS5dXNzM2qrrKzEjh07MGLE\nCIwZM0Za6Mbc2j5z56nBYEBjY6PJNrJOn332GfLz8/H73/8e9fX1cHBwkM7DViqVCg0NDQAez6I4\nOzubxHF2dpYKGOoc169fx759+3Do0CGTP+4xt7atrq4OALB+/XpMnz4dS5YswaVLl5CSkgJHR0cY\nDIYOzW+XKEDu3LmDadOmtblNoVAgLi4Oer0eOp0OBw4cgIuLC4DHFdrs2bORlZWF0NBQqX9blEpl\nu3+BUyq7zYSSxZjLLQBs2LABPXr0gEajQWpqapt9WvPG3FqXp8ntG2+8Ib2urKzEm2++CQD46KOP\nADC3XcnT5JKsX2ZmJjZv3owpU6Zg4cKFSE1NbTenQgjm3QoZDAZs3LgRs2fPRnBwMADj8/Np8sbc\nWq+WlhYAwPjx47F27VoAwCuvvIK6ujqkpKRg+fLlHZrfLlGA+Pr6oqioyGyf5ORkBAcHS8UHAAwf\nPhxubm4oLi7GhAkTAECq6lq1vnZxcYGrq6vZPq3bST7t5bayshLTpk1DQkICHB0dodPppF9k9Ho9\nlEqllHPm1ro8zXnbqri4GMuWLYNer8ef/vQn6RIr5rbr+GGePDw8pPaGhgbY2dmhZ8+enTU0ekrp\n6enYsWMHYmJikJiYCOBxXrVaLfR6vdFaroaGBinnLi4uJufnj/uQ5R05cgR37txBWloadDodgMe/\ncAohoNPpmFsb1zqjPH78eKP28PBwZGRkdHh+u0352a9fP2i1WpN2nU4HhUIBZ2dneHl5mTwXpPV1\nQEAA/Pz8oFQqpcWvP+zj7OxstDiLLCM/Px+NjY149913MXz4cAwfPhzbt28HAAwbNgxqtRoqlYq5\ntWFXrlzBwoULYW9vj08//RSDBw+WtjG3XUfr2o+2ctl64wGyXh999BG2b9+OWbNmYc+ePdJlG/37\n94cQwuT8Ky8vl/Lq7++Pmpoak8/oH/Yhy8vOzsadO3cwatQo6fP12rVrOHXqFIYPH44ePXowtzas\ndW1H60xIq9Zis6Pz220KkIiICHzzzTdGD0e5dOkSGhsbpcuvwsPDce7cOaMHsGRnZ2Pw4MHw8PCA\nk5MTQkNDkZWVZRT77NmzGD16tGUOhIxER0fj+PHjRl+LFy8GABw/fly6uwNza5s0Gg2WLVuGl156\nCX/+859NFsMBzG1X4e/vDx8fH6M8tbS0ICcnB2PGjOnEkVF7Dh06hP3792PRokWIj483uvQiNDQU\njo6ORnl98OABLl26hPDwcACPz2G9Xo+zZ89KfUpLS1FSUiL1Icv74IMPjD5b//rXv8Lf3x9RUVE4\nfvw4XnvtNebWhr388svw9vbGP//5T6P28+fPw9vbu8Pza7dly5Yt8h2O9QoMDMSJEyeQnZ0NLy8v\nFBYWYvPmzRgyZAhWr14N4PGakP3796OoqAgqlQpHjx7FsWPHsHnzZgwcOBDA4wXtarUad+/ehVKp\nhFqtxoULFxAfH290i1+yDCcnJ7z00ktGXyUlJbhw4QI++OADaYqRubVNcXFxKCkpwYYNGwA8XjfS\n+mVnZweVSsXcdhEKhQIODg7Yu3cvWlpaoNVqER8fj9LSUiQkJJjckICsw927d7Fy5UoMGjQIK1as\nMDpH79y5g759+6KhoQH79++Hk5MTamtr8f7770Ov1+OPf/wjHBwc8MILL6CkpASHDh2Cu7s7NBoN\nNmzYgD59+uC999574jXm1LHc3d1NPl8/++wz+Pn5Yf78+XBwcEB9fT1za6MUCgXc3d2RlpaGmpoa\nODo64tixY/j000+xbt06hIaGdmh+FaIb3dtQo9EgISEB+fn56NGjB6Kjo7Fx40ajdSEXLlxAYmIi\nbty4gT59+mDlypWYNWuWUZzMzEyo1WpUVlZiwIABWL16NSZOnGjpw6EnOHjwILZv346rV68atTO3\ntqWlpQWhoaHQ6/VtLiRfv369NNvF3HYd6enpOHz4MOrq6hAUFIS4uDhpASxZnxMnTmDDhg1QKBQm\n56lCoUB+fj5cXV2xa9cunDx5Eg0NDQgLC8OmTZuMLtFoampCfHw8vvjiCxgMBowdOxabNm2Cl5eX\npQ+JzJg1axaCgoIQHx8P4PFaS+bWtv39739HamoqysrK4OPjg6VLl2LOnDkAOja/3aoAISIiIiKi\nztVt1oAQEREREVHnYwFCREREREQWwwKEiIiIiIgshgUIERERERFZDAsQIiIiIiKyGBYgRERERERk\nMSxAiIiIiIjIYliAEBERERGRxbAAISIiIiIii/n/b/ze9F9JBfQAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x2962a2b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot histogram.\n", "plt.hist(diff_log_proba, range=[-500, 500], bins=30, normed=True, alpha=0.5)\n", "plt.axvline(0, color='r')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Another view on the distribution of the prediction scores of our classifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Divide the test set into 2 sets - True (blue) / False(red) - and plot them in a scatter plot" ] }, { "cell_type": "code", "execution_count": 151, "metadata": { "collapsed": false }, "outputs": [], "source": [ "pospts = [v[1] for i,v in enumerate(zip(Y_test, diff_log_proba)) if v[0] == 1]\n", "negpts = [v[1] for i,v in enumerate(zip(Y_test, diff_log_proba)) if v[0] == 0]" ] }, { "cell_type": "code", "execution_count": 202, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAIbCAYAAACzJZJcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXt8FOXZ///JgWQ3oGQ3BCoqHhIkKCoFBanQijyenqrY\nEpG2gJK1rUr4oRarvLTl14OPVKkWBMX6bORgPSBpOdhURbEaAeEBWitKAkTwgAcgu4lisuRAvn9c\nmezs7D2zs4ckG/fzfr14aXZnZ+65d3bm+lz3dUhra2trAyGEEEIIISRlSO/uARBCCCGEEEK6FooA\nQgghhBBCUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlKMqETAa6+9hhEj\nRkTcbufOnZg2bRouvPBCjBs3DnfffTdqa2tDttm+fTuuv/56DB8+HFdccQXKy8ujGzkhhBBCCCEk\nJmyLgJ07d+Kuu+6KuF1NTQ1uuukmnHDCCXj44Ydx9913Y+fOnfB4PGhpaenY5uabb8agQYOwePFi\nXHLJJbj33nvx8ssvx34mhBBCCCGEEFtkRtqgqakJy5cvx6JFi5CTk4Pm5mbL7Z9++mkMGDAAjz76\nKDIyMgAAp512Gq6//nps3rwZ3/3ud/HnP/8Zp556Kv74xz8CAMaOHQu/348lS5bgiiuuSMBpEUII\nIYQQQsyIuBLw5ptv4sknn8Tdd9+NqVOnIlKD4cGDB2PGjBkdAgAAzjjjDADAJ598AgDYvHkzLrnk\nkpDPTZgwAXv27MHhw4ejPQdCCCGEEEJIFERcCTj33HOxceNG9OnTB48++mjEHf74xz8Oe23jxo0A\ngDPPPBMNDQ04fPgwBg0aFLLNqaeeCgA4cOAA8vPzbQ2eEEIIIYQQEj0RRcCAAQPiOsBnn32GBx98\nEOeeey4uuugiHDp0CADQu3fvkO20v48ePRrX8QghhBBCCCHWdGqJ0M8++ww33XQTAODhhx8GgI5w\norS0NPWA0lm1lBBCCCGEkM6k0yzuPXv2YMqUKfj6669RVlbWEe7Tp08fAMDXX38dsr32t/Y+IYQQ\nQgghpHOIGA4UC++88w5uvvlmnHjiiVi5cmVI/H/v3r2Rn5+Pjz/+OOQz2t9aErFdduzYEf+ACSGE\nEEII+QYycuRI5esJFwEff/wxfvrTn6J///5YtmyZMsl3zJgx2LhxI2bPnt0R/vPqq6/irLPOgtvt\njvqYZidHguzevRsAMHTo0G4eCfmmYffaampqwqefAllZWV0xLNLDyTtvALJrD6F1wEnI/OJTHDzY\n3SMiPYWmpiYMHGh+r+HzkHQGyXpdWTnL4xYBH330EXw+H4YPHw4A+J//+R98/fXXmDdvHg4ePIiD\nujv3ySefjPz8fJSUlKC4uBizZ89GcXExNm/ejPXr12PRokXxDocQQgghhBASgahEQFpaWlhC72OP\nPYa1a9di9+7daG5uRmVlJY4fP45f/OIXYZ+/++67MWPGDBQVFWHp0qVYsGABZs2ahYEDB2L+/Pm4\n/PLL4zsbQgghhBBCSESiEgGlpaUoLS0NeW3+/PmYP38+AKBXr17YtWuXrX2NHTsWY8eOjebwhBBC\nCCGEkATAepyEEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBCCCGEpBgU\nAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBCCCGE\npBgUAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBC\nCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGBQB\nhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSk\nGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEII\nIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGE\nEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQY\nFAGEEEIIIYSkGBQBhBBCCCGEpBgUAYQQQgghhKQYFAGEEEIIIYSkGFGJgNdeew0jRoywvf3Ro0cx\nfvx4vPzyy2HvXXPNNSgqKgr5N2bMmGiGQwghhBBCCImBTLsb7ty5E3fddZftHR89ehS33XYbPvvs\nM6SlpYW819TUhP3792POnDkYNWpUcDCZtodDCCGEEEIIiZGIVndTUxOWL1+ORYsWIScnB83NzRF3\num3bNsybNw8+n0/5fk1NDVpaWjBhwgScccYZ0Y+aEEIIIYQQEjMRw4HefPNNPPnkk7j77rsxdepU\ntLW1RdxpaWkpioqK8OSTTyrfr66uhsPhwGmnnRb9iAkhhBBCCCFxEXEl4Nxzz8XGjRvRp08fPPro\no7Z2+swzz6CwsBCffPKJ8v3q6mr07dsXt99+OzZt2oS0tDRceeWVmDt3Lnr37h3dGRBCCCGEEEKi\nIqIIGDBgQNQ7LSwstHx/z549qK2txdChQ3HjjTdi9+7dWLRoET755BMsW7Ys6uMRQgghhBBC7NMt\nmbh33XUXWlpaMGzYMADAyJEj4Xa7ceedd2L79u244IILotrf7t27O2OY3ygaGxsBcK5I4rF7bTU1\nNeHw4Uz06pXVFcMiPRx3e+hpS0srAGDv3r3dORzSg2hubkJ9fQuystT3Gj4PSWfQE6+rbukTUFRU\n1CEANMaNGwdAQoUIIYQQQgghnUeXrwS0trZi7dq1GDp0KIYOHdrxeiAQAAC4XK6o96nfD1GjKVPO\nFUk0dq+tpqYm9O0LU+8cIXq00tKZmRkAgMGDB3fncEgPoqmpCQMHmt9r+DwknUGyXlc7duwwfa/L\nVwIyMjLw6KOPhiUZv/LKK8jMzMS3v/3trh4SIYQQQgghKUXcIuCjjz7Cv//976g+8/Of/xwbN27E\n/fffj82bN+OJJ57Agw8+iOnTp+Okk06Kd0iEEEIIIYQQC6IKB0pLSwvr/vvYY49h7dq1USVCTJky\nBb169cKyZcuwatUq5OfnY+bMmfjZz34WzXAIIYQQQgghMZDWZqf7VxKzY8cOjBw5sruHkfQka6wa\n6flEkxPw6afMCSD2yDtvALJrD6F1wEnI/OJTHDzY3SMiPQXmBJDuIFmvKys7uVuqAxFCCCGEEEK6\nD4oAQgghhBBCUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIMigBCCCGE\nEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIMigBC\nCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIM\nigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQ\nQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEII\nIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyK\nAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBC\nUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQgghhBBCUgyKAEIIIYQQQlIMigBCCCGEEEJSDIoAQggh\nhBBCUgyKAEIIIYQQQlKMqETAa6+9hhEjRtje/ujRoxg/fjxefvnlsPe2b9+O66+/HsOHD8cVV1yB\n8vLyaIZCCCGEEEIIiRHbImDnzp246667bO/46NGjuO222/DZZ58hLS0t5L2amhrcfPPNGDRoEBYv\nXoxLLrkE9957r1IsEEIIIYQQQhJLZqQNmpqasHz5cixatAg5OTlobm6OuNNt27Zh3rx58Pl8yvf/\n/Oc/49RTT8Uf//hHAMDYsWPh9/uxZMkSXHHFFVGeAiGEEEIIISQaIq4EvPnmm3jyySdx9913Y+rU\nqWhra4u409LSUhQVFeHJJ59Uvr9582ZccsklIa9NmDABe/bsweHDh+2NnBBCCCGEEBITEVcCzj33\nXGzcuBF9+vTBo48+amunzzzzDAoLC/HJJ5+EvdfQ0IDDhw9j0KBBIa+feuqpAIADBw4gPz/f1nFI\nN+HzAQsXyv/Png243d07HpLcaNdLaytQPAvoPyD4nt8PeL3y/x4P4HKp92F3u86kK8eQDPOSwH0b\ndwV0/9eZyiTDz4kQ0v1EFAEDBgyItEkYhYWFpu8dPXoUANC7d++Q17W/tfdJkuLzAd/7HrBrl/z9\n178Cb7yRfEIg2YSKzwfMnw+8/TYwejRwyy3AihWJHZ/dc07w3KTX1cG9ciWQnx++P+P18sJbwF//\nJlaH3w9MmgRUV8l7FRVAeXm4RWK1XSRrxux91ev614qLgdWrg+8D9sZq55iBANDWBjid5mO2Oy8T\nJwI1++TvdeuAtWutLbpoxMV11wH79srfy5YBL74InH66+b4tDjlpElBdHRxmWhqwb5/16cU1/m8C\nnXSuxu8jqvnv4Wi3vsOH+2HaNHW4svIDQHI8R3ow38SpNJ5TTySiCEg0WjiRMVlYIz09+qqlu3fv\njmtMqUBjYyOA+Oeq36OPIl8z6ABg1y4cmTMHh6NIGu8sNGM0LRDACW+8gewPPgAABJ59Fh8uX47j\nubndNq7Tpk6Fo308qKzE8YULkd6eX5OI8aXX1eG0G2+EY+9ey33a3S6a4546fTpy2i064/7Crpc9\n1ah98EH4SkrgLitDnmboAkB1Vcd7esy280+ahFNnzUL2Rx8CAI6Vl+PjRx9FW9++AIC0+nqccvvt\ncOxvvw7Ky9EwZgwAIGfLFjjaPxdYswaf/v73GHjffR3bHl+8GOnNTQCAlrIyNH/rW3AaxuD73e/Q\nlp0NAKi/4gr0ffllpB07ht5btnSMKbBmDT75058AIGQsGtr72pjr69NQd98z+C/DsRp+9CMEzj4b\nANCWnQ3/pElwP/MM3JoAAICaffD97neovfXWjvN3tVdd80+aFDYG47H15D3+ONyaAAAAvw+t48fj\n40cfxQmbNnXsU/VZI2VlblRX53X8faTGDw/EuPXCg+pqFx58sBYlJaFGmbv9WdHS0goA2Ld9u+3x\nJxv19WkoLxcre9IkP/r2tQ6rDbt2E3iuxu+juhrK+e/JNDc3ob6+BVlZWR2v1dWl48YbT8PevQ4A\n+diwoTdWrKhGbu5x5T4Sfa9MZULnHnj22QCWL//QdO57AqpzeuKJJvTt29qjbNIuFwF9+vQBAHz9\n9dchr2t/a+/3ZDo8owB806Z9428auWvXovanP43biFXNmd25NN6w9Tj27oV75Ur4pk2L6XuJ9/t0\nr1wZFADaPnUJ9tr4jsyaFdV+w46hO3ezfaq2O+OHP0TzySfj0/vvR4suTM/OebtXruwQANr+Tpk1\nCw2jRsE3bVpM55Jx8CC+NX8+0NqKwFlnwfH+++pzfuaZDmMbALI/+hAD585F4wUXwD9pElzl5SFG\nt+OjDzsMfz2O/R/glNtvR9bhQx2vaQIAADLr65BZXxf2uRNefhm96vwAANezz4Z8Rr/vQSUlaO3X\nL0wAaO8PvO8+fPr73+Po0XS8O/NlDKn7V9h2Oe/+Bznv/qfj796VlWjTGTgd+3v3XQAyh4NmzkRm\n+/hOXLcOX11ySeh87P8ArvLyMNGl34+ejKZjGHTrrUg/3toxBs0wNQoOM2O1L/xYjUk4GyJyrkIF\nimGvPHTY97n/Axy4rwKbz/5JiKhozM61ZWh3FfX1abj99lOwf78YC5WVvfGnP30SNj69UCg99pTt\n7yqZiVb8dCYrV7o7DDYA2LcvBytXujFr1hHl9nbvqclGXV06Vq4UN/u0ab6kMLSNc793r8Ny7pPx\nHIyozunZZ/vjlls+68ZRRU+Xi4DevXsjPz8fH3/8ccjr2t9nnHFG1PscOnRoQsaWEHw+YPLkjvCH\n/MrKpAiX0ZRp3HP1+99LmIQugTvT58OQl14CfvOb2PZpNmeA/bmcNw9QCACN/D59kP+znwX3VV4O\nbN4MFBTENjZjyIvVOqeNHJf8/Hzkx/PdKI6h3Kdiu6zPP0fW559j8MSJwHvvyZxEOm/tnPVe/nZ6\n79iB3jt2yGfWrAEqK4PbnTUEeT//OfJWrwbS04FeWYBmPGdlI+/730fetGlA0zEAQM7774Wf62mn\nI693b+DVV8Peynn/PeS8/x7ytm4FLr3UbLbC50AnAGyRntEhAAAoBUDHvmuPALXqhx0gBn7hnXei\ntrYNw+tqAABtANRrpYJj/wdAVnb4vqqrMXjmTIm1ORboeL1XnR/u9evDts/Ly0Pe4MGhLx44AHwQ\nLlgAdAgAbQxf3P9P/GukB7ds+Dky94lhn/fii8D69R2hQ7/8JbB1q3icPfB2CAAAOBtVuNvtxbW/\nnAMX0kPCX7TV4szMDNmvIYQUAPa8m4bid3+Kk9v3WYy3UYxybN1amDQhLgsWAPv3B//ev9+Bl14q\nhKPdftCizX7+82CITpHbjRsN+1F+VzGg/z4AYMgQ4Je/zIPLlWf9wSjx+0PPaevWvC77TpqamjBw\nIEJWAlS34fz8fAwdanJ/tntPTSIMt21UVubHZX4kKoQnmrk3OwcgucKJVOeUmZkJp9OZXDYpgB07\ndpi+1y0dg8eMGYONGzfi+PGgunv11Vdx1llnwd3d32y8GA2jXbuCV+43AbcbuNH4eIoTszlL1FwO\nGyYx2Pp9HToEjBkjd5xYxqahxbz/9rfy73vfC9/n7NlAUVHoa3ov7tChQGOjCJlI4zFj9mw5T41h\nw9RBisbt9Bw7Bmjee6vz1p9zZSWOKzzSHZ+ZOlWEwK9/Ddx7L/DnPwMlJcAjDwPLngoKAEAM/zvu\n6BAApnzxBfD4Y8CnB823qa4C6uoAh9N6X7GiM4YTQs0+5LULAMBaAHSgmqfWFuC9XSECIOQ9PUOK\nghaoht8PXHstEGi0MwKkbduE0Y/f2CEAAAC+WmDCBHEY+P1wuYCyMmDUKOCUgeH7KDy1EY4FvwO+\n+125Lh55WILWjxu8fxs2hPxZjUK0IS1MVHjgRXV1UE8kI6tWAY88Iv8mTQKWLAkaywDwB58Hh/J0\n9wzVdxUjLpfkANxxh/zrLMPc6w09J/134veLOFqwQP6/KzDe+gYPDljHcdu9pyYRiTQ/7Dza7BLN\nVKrO4YEHEjeWRKE6J1t5JklG3CsBH330EXw+H4YPH277MyUlJSguLsbs2bNRXFyMzZs3Y/369Vi0\naFG8wyFdwdy5wEsvBX+pyXBznD0bWLpUjHs9OTlihGpJuHoOH5Y7TqwrGID5Heuhh4Kvud3Apk3q\nxOCGBkm41LaPNtFa76rRn+f06cHXp08PTUJ+4w15b9ky4KOPQvf3zjtRC6P0piZ8ff756H3iieL1\n1/P228DVV8v59+kD3PVwMOFVRV142E0YNg1UPP+8ubHucgNTpgA7dgDbttrbn5G8fjoPfxrEf2+T\n/gOAQ1/EdtxE8K2TxDI3JkQHAparFnoCyMJ3YDJ3gUYRahs3oq6sHCUlLlRXA9Xw4IKsChQ0yTVQ\njcEY8M4rcL5TE/r56iqkOw1CZl/oSt9ruAwBOBANfr8Y3Dt2ACNGAKWlne+Z9ngk+fbzasmFcDqA\nxbUeAHLg6mrAGD1VDxd+cVo5binwYsQIwFma2CRolwuYMydhu7NNINB9iclud/DWd/jwYUyb5oPb\nPcTeB4DkcD/r8PnkUbN1K3DRRcA99yR2/2aCIpbHZbxTuXVr4saSKFTn9MUXyRe2FImoREBaWlpY\nQu9jjz2GtWvXRpUIUVRUhKVLl2LBggWYNWsWBg4ciPnz5+Pyyy+PZjidQ7zrX7NniyGXTAZyLKjm\nwczgjDRPkebUbM78fuAPfxAPNQBkZ4tBq8LtlvCe884Tw1qjoUHGaSYSIhHD99m6bDkeSpuLRqc7\neLpuN/Dgg6Eb/uY34v2v0hnFu3YB3/62rIdGqiBkVqkJCH1dP4faNr/5jczlkCFSulOjoUG+qyjP\nO/vjj4Ft2+RpdMRgRFZVyT7vvddy3uT4X0fYwMTYTksH2o6Hbmflrb/hBuC++yT0Zdw40203YzR6\noRUXYnvoG+kZwGOPyXfk96nHZMaQIlmFWvaU/c8kms8/kxW95ctlZaZdmPkz+yHMFst2SOhWY0PI\nyw6Yh0B1UF2F9+7worpaLM56uHBNUznmDfTik0+BXPjhQWzz0NvtxGKfB1ehomM14H0UwQsPhgxR\nL3JMnAjUtOuNbdskomzNms41QF0u4K9lfjRdOwn9a6uAAHBJey5EfftsjxgB1NcHDeOsLGDjThc2\nYg6G1APlpQj/XpIcj0cqQdXo9J22mKNaIegKUeJ2y61v9257QrfjA2h/jM2Tl7tbD/h8wNixgGZ2\nVVZKBN6LLyav+aGbSktUj56LLgr3LyUDxnP6Iga/TndXTYpKBJSWlqK0tDTktfnz52P+/PnK7U85\n5RRUVam9fmPHjsXYsWOjOXznk4jyl0nuPbCFah7WrJGSgdHOjZ05NZuzhQuDxisg/79ihfmdpKAA\nmDkz1AuvP8bmzWJ8afkM+juk2S/R6vv0+SSMJycnRHhkHDmMYw8txG/xm8jT1Kjwan/0kayTL1oE\nNLUbWqtWiTddvyOrtV/96/o51LtQCgqAW28FFi9Wz5fZec+eLQawztjP9Pnkuxk8OFwEAMDrr8ux\nZswAnv6LhIxES3oG8OyzwG23hXur24weGAujvHCw1KhcsEDm30QAtPXKxns/eQQAMPK5CUjXr0Ac\nbwX++Md2AWATh1NWH5xOcUVHwpkTZngnlH17JR5EtzLjajmCVqQhQz9/qtCiOKiHC8+dMgfbPgVe\nwA/UG7nzcPx4E9CoKxk9pCg41iFFmFjmweHVLmwMlOOMNlnJ2JjmQYnDpayo6fWGGqSApE6YGqC6\nFZK6Yg/+d7XsMJZqnbmrvUBteNjSw5iDIUNkRaK0VA63aZMIFI2uNJITicsFXHZZ6Jzv29fzHodA\n11fGjmQYLlwYFAAaVVVyC47W/DA7Vnf5M1WPHgD4xz+SU9zEQzJUXO/yxOCkJlHrX3Ylb7x0loRU\nzcOMGbHNjd05TcSc+XwS+5+frzb0CwqCXmkgdIXD6pfodsu2Wp6Ctj/9Z0ywnCafT1w3ZjTpPK1V\nVRJOpF9NUAmIxkaZA7v85jfAP/+pvrtafSdmxxg7FtiyJfz1ykrgkkuA794AnHFGbCJg+nTZ/7p1\nwDXXRL+PXJcI2cpKCVUBALd5MmRa8zH81LFS3MV2Q5AACbX5XFEh4rrrZOzauNMzrFcrHA7g5JPD\nwmAiktkLuP56iTEJBIB33wU+/lgdfqSovJQRzaqGir65gFZNaUgRznnEgyEloYmojzwiX+G/fCPV\nIUW+WmRkfBn6Wnl5SOJwrsvVbhi7AIiFHOqiigNDr4baJRUoaxLPvWn4SpR1/S8aBdxxceimmqGv\nFwE9GaciJce46qFatUk2EhkaE4l4DcNoHqVWx+pOf6bqHHq6b1VFV15XZlAE2KG712tUJFpC6s9R\nZVx2BtGGCRUVicd93rzITan695dwh3vuCV91MP7CIv0SVXN95ZWmAuAL9MdyTMf/D1k7zm6cDUDx\nvajcOVa8/Xbo3ypDvK1NvNxm9O8fGlIV7Z3e5xNjtjbUAG9xu5GpiYf160NDnDSqq4HqPwNIC6sK\nFDEZGAhaSqefLseYNQvYswc4+lXkzwJAnV+MXn1tfV+tIbbfwP/9n9oILygUS/bqq8NXA04+OVwE\nZDsk+PnL+uBrx1tldeDEE9UGut8nKwfXXAO88ook/NqhpRnYuVMsVUCMWbP8g6NfRaxEFDXp6cAt\nt3Y0Q8t1uYz2O1wuiXhbsnQm/guvYAj2he0mrdUgkOIMZFeFpxQWmhigXm/ICklBU9Bzr/TMR2rw\n5vGgZX1FRwJ1a64bF5/tx8VYACCYH6CNs6KiZxjJdvriFRYGG8MZVz2MnyPqx5HR/zN7NvDCC6GP\nj6Ki6L3jkR59XeXPtEMyjaU7SbQ5ShGgR7X+NX1696/XqEikhDQauUOHyh1FM+SGDQOeeio0HMju\nepzZmmK0YUKNjeI1X7BAvb1xPg4dEiPEmMsQy69GNddffmm6+QbX9Vjjvw7nQT7T8uJfgXsU10xD\nlKEeLS1yLtp+cnLCt9lqkqiphSwdOiTfo3Glw851Y/zOdNRfeSXytCy1//ovqQ6zfn144rFGcxMw\n8gKpCKN15w0EJGTrnX+Hb184OGgJ+f3yu6wJNxzhcAJnnQX85x31cY2GJQBcfrkY2UYh4HCKB13F\nuHHA6aej8cqJcD5riGkfNUoSnPXjOxZQh9UEGq1XGRwOOe/HHzffRkV1VdDKskrERoIFACDixekM\nsZJV9ntpKfD66y78oHotZmIJfpixFie1WlR8Mh7GD/xliR/nbZPz/M8oD34y02VqULpc0lC5MxKD\nGxd7w5rJ6ZWCHy7MbC3DQlyDfNQio84XzAkxCAatek+ijeRoGxDbacatSvAFQl8vKJDUGX2D7K6q\nCJQoujvVb/nyUH+W2w289ZYkBm/aJL6fceO6bjwkMdi9rjQTRqsjoplmiTBHKQL0qLyiybBe09kY\nz3H3bnl4TZ4sf2uGcyzrcWafmzcvujChefNC3R52vwc7YiOWO7yZcTtsGH74vRzkLAmeW+Zu3Vi1\nX3Njo7glzXC5ZIx6t+WWLXIu2viN487OVmdPpaeHCg5t7mbPDi8vYfadaisACgEQOPNM9Nm8WZJs\nARlDVladbrSWAAAgAElEQVRoOJOKjIygZThnjlgGr7yi3la/6uH1qgXAwJPFPda3rzwRjR76XJe6\n8tE//iGrBGEnZmGg79yJ+v8cQOtza6GPeDie7UR6Y6McXzXGaCgolOukpCS6cCSNTZvQfKwVveIb\nBQCgPuckpDXU40TYFK7aaqKFJakZu39ZAly/aiP614YKgLaMDKBVXW3D7wdumujHAzXBxmP9dlTg\nplfKsWyttRC4777gsLxeE4O4wx0v+67JKoK3SUSo0TPv9wPrViGsrr8erxcYuX818qEIYTMIBm2c\nicwB8Pvl56t55Nevt06ItlPBx6oEqP71mhqpOqudT3dVB4qHrgyNmT1bNL+uFQ8OHQp/3LndUqhP\ne7y9/bbcyqIxCrtb3MRLZwZpdEUAiJ3rysL3lhBzlCLASE9Zc+rsX29OTvxx+10ZRmU2H3ZEXKRf\nonHfRi66SGLVc3KA2bORY1aY2erXbMTvl9WY/v1DY+x37ZKn+fjxoeU+X3/dvHyCsd46IMa2PrlX\nKy9hTD7Wxn3xxeoQn3HjcLSwEP2eMnjDIwkAABg5MvRvM+MekNcXLwZ+9SvzcLVPD4rBXF4ODBoU\nLgKOHQMUXXuVAiAS1dXo9YOr0bct9BjpxxrFwxtvf4IRI2W1aWmUKwAdA8kAtm1NiACAw4mjffoj\ntyGKeUpLCw+RWbdOMkV1LmGXCyh1hCbNAsC/HaNxqeMtZNapw7S8XuC7NeGNx75b44XXOyfEgDbq\nEMCGEWpwx+cVe1Bikhjs9QJlPg8u1FUpOpRXhP5JFMOzYEFQAADy/9rPSYWZgZ8IYdKZ++5Muso0\n0FrxaIveVsTro+zJdUxiiYi2a5J0ZcJupOvKpCdnwqAIiESySuVE/no74xwj/YqiPWak7eOdD7Nf\nonbXuPJK4KqrxN1iNLYvvzz0s8ax5udLDP3VV0f3a96yRUSAkcpK+bd0qYTPaMe2qqHWv3+wPGp2\ndnh+ARBMmjbOw/z5agEwbJi4E2N5eue6ZAXid7+zH5OxapVsa5XzUF0l1o0qXyKRlXaOBZADi6o5\ngUZF2dIoaGmJPiFYTyKbmQUacXLAJLzKDIejvQOW7rqp2RcUeRHcv68FLsaYtC1RdgHQ0W75NzYC\nN23wYHuNq+Ow48fbNEJ17vhcWF/m9XChGOXwQERD9mQPSnXn5vEAN63z4KqaihDhAiChjcBU+P3A\nc8+Fv75zZ3z7VeUuFBcDK1cGozC11/WnZ1bPIBaiDXHqKXRlK56e4vc0GvDRCqBoDPueEgCSiOuC\nIiASySyVE/Xr7YxzVP2KrrtOjMZYSg/Y2V41H/EIHONdQzN6I+VGaGOdP1+COQ8dEoPICrPwmUOH\nQqsdGd8bM0YMdFVokFYaVBv3ihXy1N6+PXxfVqgEw6BBsbtG0tLF+75zh/zTirV3ZG6arAb4auWJ\n74hgGj7/vIwvRhqQhRw7NfAj0XbcvFJQBI5XV3dPO/dE4M4Ta/Daa8230YfAeDw4tKJCaugjWOv/\n3jZzV2hxMTB1mQdX+UN7BLxZ4MHy4uAKhBPAA7qa/KrGXCqiMS6DxrCro+Rn+czQbVzw47nLvHg3\ndzy2tl2K884DnI42NMIJb5oHAa+6rGki0BJ0jRgX4vTYSU425i4UF7e3nGj/TF6eRJTOnBl6XioN\nb6XrVWhN31atCtYo6AlhRXax+3hMVh9lolEZ8FddFd0+eophb8T4HQ8dKv5Ep5OJwV1HT5HK8dAV\n51hZGRrTHu0xYxljPAJHdddYsUIM1hkz5LWnnlLvz+2WX6lVc7KiIkmifecdaXKWliZGsDHfoLAQ\nuOkmyQQzlt/Udz3Wn6exS7DbLa/df7/5ePr1C3+C+HzilTYyYICIoYsuUu/L45GOxKpEXKN3fN9e\nmYfy8vbC4hax9G+8IYm3BYXm2/l9wMCB5vsAgJzepo3JekFxvrEyaFBMIiD9WABfw4neiNFFmu1I\neH1/W6RnAH/5iyR62+w8DJcL2U+X4V/X3YHGY8CdeAT1cKG5WS2D/H4xNvf7xfte6vBiyFnA7os9\nWDbThVzvgpAVCH1NfkCMX6sSldHGrEdM5G3fobO6CqMA8fzPKYcfrm6LjXe5xDi3el87p8ZGuTWp\n8if0uQsLFoSusNTWil43no9Kw0fS9XqM349GMoUVJSIS1s7jLp7HWzIWPTRD9Si+8koRPSoB9E3q\n+drZfujUEwE96crvyZjF0XeH/E6kwGloCF0JMFbascu4caEVlyor5U6zcWN4Au6WLcBXX0mdfVUN\nfq1sKhB6TRvPecYMtVGuf9+q7KpGVpaUzgSAykqccNppCJx5JhwftMfbDxsm9ezeecf+qsPnn0le\nxdlnW2+nrR6cciqQkQm0mhjsn0UwvC06E/dCglq/DymSMqI33hhTaM9eFOBUHEQeYshZsBAA8ZQE\nPZbhxLvnTMHw+jeR+WFN+AbHW82Tu/XoQ2D8fvS9vQTfPiaGexlKUIxy5aWqCYDPq/24sz30ZnHA\ng5IJLlvGX1YWMHWqGMCa0X5zsR+5Ogve63VFHbNumchrKDeqrYJ428uN2jlOPGEvRq9+Xp74GiLt\nw+WSzyZaqMRbAtWYU5BsdHUDqFgeb8YxvvBCYr3LXUFOjto4Npv/6dMlglbzy1kZ9skWANKZPtrU\nEgHJ0J4tVXC7xWN+6aXmlXTs0J2iTeUOSEuzv6ZoJoSys0UArFihXml4441gUyv9e6onb79+oTXD\nHn9cjM65c6Obq2HDpDqQHlVG0qBBYd9n9ocf4siMGXBMnRo8b7dbgq+jCT1qO26/Fv4nJqU7NVRV\ngLqKjEzgZz8LxkGsWSN5Cjt3SlyGqnxpv3zgSGjI13DsQjUK8Tdch6mZz8PRkpicBmsBkAazbst+\nuHFV64v4+D+n43tnHMDK3Kul1KUKQ4hPCKNGA2VlwevZYCRrnvuw47d7gD+v9mM1glWBrkIF/u4v\nR0etfUNNfi28qC/88DR5cfAO4PQyD+bMcYUnL69Ygb7XrANwuuUsRURvtcfZdyWalQmVWIin5Gg0\nSbx2jfvOKoHanf0U9I+phobkDztRFQTUiu8lMsE2UZh55u22/XngAcmx0ARAfn4wMtmMVAgAAVJN\nBPTUoLBkIZpfvlZS0igAolmz627RZlYyNtrPGw36Y8eCoTpmnxs/PjzRd/RoecrrE44nTw7NNzh8\nWNblX3opfK6eego455xgrkBWlhirWrlRrSSpFup0/vnhYzv5ZKWoa3M4wn9H99wjxl6toixipxNn\n11u7qJJ/zzknNBDa5QqWYVmwIFwEOJxAc7Ny90OwD2+7r0XbtTcCy2KsFBQV6nlrRQZuwDP4uN04\nHrl/NTKgEACah9/lwtprynD+slk4B+93hDUdyitCf70AsCAjow3QrQZoBumdCK8KdORdL7SuwXC5\n8MjYcqTvEyvTC7EMO4TDNgCTKoKWqN5LX3sEJWuvwYsFb3YkE0dtXBqFRUGh9LnQVoPa58gDe0az\nXUPcSiwkuuSoGZdeKjkXkXowxDMeo9hwu+U2mKieD9FiLJ6WZ96EvEeQyATbRBGvZ37r1lDT7/Bh\neQTT9Es1EdBZmBmz36TQo2h/+Sov8rhxQfltZ3/JKNoiBQuqvnOVQR9pX6r35s6Vf3ZEiWquCgqA\n994LzWcoKAi+X1MTKhK2bgUGDwb2thsveXnKHIfW7Gyk19cHG5n5fMH+A6ee2k0iAIDLHSwTmp4B\nPPmkhClFaJ4VFSecIPOiLz36n3ekCZpmmQCh2ZO6+vMAIjYMmzwZcJaWAm+9Gl/FILu48yQJW0cG\nWnE/7sM2jMK3sQO9oIjV0Xv4/X7MeKsEme3G+mHk4VXXZFy1rjTYLcpkTg7lFSF7sgd9n3sI+kgo\nK4d6Rkbw//1+YMU6F3wIWpl3YkFoVR59MzXjvvy1eO4GL5ZcO6djeFF5rVVVkW69TTo/63biQrhH\nHAiWhozWQ94ZpTfteveNAqS+Pnjp67dJhPffVg7Gn58ATjgK3Hlnpz93jcXTamtlgVarvhxtLYqu\n6kVgVfXaiu56LNv1zKsenRddZF08L5VJLRHQlaUwgW9W6FEifvnjxwfPvzsN/HiLBZslBpttb7WW\naebeML43fbp6u2ju5j6fBEUC4uVfulTCm9raJMDylVeCAgCQakV9+wbLi9bWKg36jGPHkPfMMxLu\n8uKLYuzoG7tFi8MZbhRnZALTpknQamMj8PTTQIvaew5AjP6lS4HbbpME1eOtIgDKyoA77gC2mXRW\njpYv60UoHTsmfQo0fLVS43/DBpljzXivqAD+9CexXD610R23cDCcaQGxeB59FPjJT8IM9ISS108C\nxq+/Pmx8Z+M9XIhgeFdbryykNUsVpUN5Rch6pAy5uhAfLRwHAPJRi+tucMJ5uiIEp6JCvpfVqwEA\n/T1SXjNtVejQtAoyXnhwla4mf01WEc55JGiZer3h0WC9MgCVboHHIy5BQxKz1vA46sZWfr+UrDHi\ncCitcb1H3OxY8cbQm6EZ5Vrir9ac2pj4ayd0J5IASXSDMNOVhI4D7QbwubSI7uTnrqp4WmGh3HoA\n+8Z8V9emX7MG+M53wv06Pb3CkOqxCkgjtWRI9E02UksEdFUpTG3/yebF7koSIbjiLe9ptjoTT7Hg\n+fND7yb6xGArYWNl7Gsefa2Lr/49rcuw2Zi1a3rePMkH0LIp09NDSzT6fJJ4qxnnKrdITk74a4cO\nWVc40lNVBUyZEp8A6HMCcMopQJVhH5MnBysb+f0iOFSx9Rqa0a837qqrpIj5iBHAf/5jrwtvryxZ\nzfhAkQSrscMi78FYwai6Sq4Zq8o92Q6pHPXtb8t3+/hj8vpjj9ms+GMe16+nLT0TaccNidWTJwOn\nny6ZguPHA00iCpuREVapKK25Cf92jMZrgYvhrfXgWyUuS8POqfVPUyXKrl4d0WWtVZDR1+Q/ZSBw\nxQse5J5ubU02TfMAW3QrMLqwJTz9NPDf/x0M68rKFvc/YvCue73hVZHcebasdqtj2VkxUCUABwLy\nczF+J2YVdlTGeSJCibqsQZjx2uqC5+7o0eG307Fjoz9kV/vFVqwIv7XrF+vNSKbKOWaoVg2SKdE3\nmUgtEQCkTrZHorH7y9cb31pteu3zVl14rert673h8+eL62X0aPPkV6PB+8ILUl4zkqFuh7ffDv/8\n1VfL8VQuIf25GI/h84X2EgBiC4vSxIC+nMrx41JDbcYMsb4aGiIb5w0NIh60DsPZ2eLVj9TjQM+O\nHdbvu/Osk3aPfhUuAAAgN1f+a/QiW/Hee+GvrVoV9KSnZ5g31XI4JTRq0SJZDfF6pZtyIlYQIhny\nxwLAO/8GPvwwtJuxHQGQ2ct6hURH2vGW0JwGd56sCvn9IgRefx244w589Amw4dOz4cFTYfto0A2p\nuhpYveAAfvr+HXItnlkQFE/xNMQ6LoJmZuMCVBZI4696uPD3IXNQXi595/QoPedzXABMXNqvvBKa\n19F0DP4nV8N1f9BC7Qt/sBFYwIOOJGQ7TJ6sVEaqTsZm2Fkx0Lz2ixcH6+c//rgUHDMa9mYVdmI1\nzjtrtSIRvP46cH4nGn1z5wJ//3vw9jp0qLzWE9Ev1pthx5eajJHQiTD9kvG84iX1RECisTJmk10u\nR4PdX75dL7vdVRm9N1yffVVZKXdezbjX88ADoQbv7t1iqL/4YnTnrPpuVW6fLVuCpTv1Tbry88Ww\nrqkRMdTQIOvuTqcIGmMpUEAtSmJtsXnkCPDQQ8Gx2OG226S0Z0uLFFR3OuWpZte7r+rUe+aZwA9/\nKHNz2XTg57cEjXgrQ9y4X60+pN2YfqOn3+EMDaU53gqMvAD44INg7oDLDdxwQ3iWYXGxXK+qUCUr\nMjIlb0BvzNslls/YFAAdtB0HzjsfOHhQPNhLHxerSQvPufhi9L28GDk/Xokjfjf66ZKBW5GB72Ar\nvoOtuAoVuB1/wk0rJgLH26//XlnATe0itK1NxGRbm7ine2UB7aFEes+7knbR6Fz6MMoLK7D01nIE\nHObNtcxDWFzwe+bI64qa93qql23CwBs88HhcqFznxwM1wWpELRsqgJkmSx4d1rBuxcEYHA+1IV9W\nFn+isMsl063X2dEa9oFA9HkJkcKGrERCQrv+dhxI7lf/wTBMqpyNk7/XuaE1b70Vv3HY1R72eI5n\nZVAbH9WrVon/pKcbzN1dp6SzoAiIFytjNtnXn6xkreq9SFLarDaXZogaiUaaL1wYmn0FiGGq8uJv\nVXhrt2yRX/CaNfbvfKqViCeeCMbIqzh2TLKQPvhAtlmwQGK59bH2QGjB4kioDGvja7Nni9tP1VkY\nkNf12Woqiook5mL0aBFMixfL6w4HcOGF8vprrwUFQb9+QK9ekWvy//CHcg00NQGfImgtBAIiZl56\nKXJDrUOHJNk2nnj4s84KDyG68ELJYvTrrKZp00ItkQMHpEdDc4QuwipB09oixrzDCZx4InDoi9jH\n30m07vsAGQ1fBV+orgImTOgQO30XL8aP2s/9ONDRyThDF2R/NqpQjuvR67juOm9uAt59Fzh61Fq4\nNR0LDQdqtwrTG9pLoup6QWTuq0LpNZEtWlUIy4EDsrClGcgdHvTiYhx7ZAmyERz7RdiKAz+YBNf2\ncjx3mRfOmuD4M/dVmVvVFtawsWqo0ZBfvbpzSmeqMBrlGgUFksayrz2KLZrYfauwIbNpSXSugHag\nLTc9gfe3H8US3Ak/3PB3cmhNIrzMXV2bvrOOZ0yUrqqS1+65J7nNoUh0VxpjZ68+UAQkArM7QDKH\nHll1CzF6qeORvMuXR1+zPl7MSgHo6/Db/VVp32FNTWgWVU6OePZV9OoVauAbBQBgLgBUokQVq298\nze0WoaPK9NKYMgX429/E62vkoovEGNZcgHoCAWkOdvQosH69CJjlyzsEx/GsLKQ3tRvIWqKxnq1b\nJWdhyhRg6VrxjhcXR+fVX7vWvDGYXQoLgY8/Dhr8hYNDk3YBee/735fVi8xMafZ1663WAmDgyZLH\n8ItfyLYqoRKhAlB3EiIANPRj1Z27uoevcAIU+6mulhAvu+jCvdJh8vtqbIzaVe33S4qM0kOO1SEC\nQOP0gBj7HbkMOjZtAragvdHYakVhfoM1bDR2zW45Wmy/16vu0KsdxmrFwE5ojqojsMMh/6/VDgiZ\noznxe+xVIqFTcgVcLrz9nTuxaDsAZMWxo66nq02GzjieKir2rbfi86J/E8Nw7NAVqw8UAV1NslzN\nVt1CjB5lu5J39uxwD/fhw7HJZeM8zZ4t64p6F8PQoWov/j33iLFqXDnQiPbO5/MBY8aEzklDg4TY\nGD3vZiFDKvSfz883b/Jld922oCC4OlJbKyUxNeM8K0tin1UCoH9/yWlQCQA9u3eLiMrJCTnv9KYm\nNPXvj6zW1vDqQdnZMheVleIOanIDSJNrLBqj2EoAjLxAhMfOCPkIa9aEeupbW9VhVXX+4L7GjlWv\nxGhkZUsVnU8PigD4y1/sV/7RYyPMKIBecCDKcJ/uxo4A0OcLGBM7DbScORiZGzYEE65tuo693tgr\n1dYVe1C7pAIFTTKu3SjCT7d5gG1+/GDxJOQ2t4cJra9A5hr1WIzGrs8nibvamDRD3Y5nPFLojd2K\nPiqj3OwWkHCPfSczYwbw6qvA++/L3z09GjdZzAY7mD3+7HjRVeeZLGE48YZrxfIddsXqA0VAV5Is\nV3MkzEJKIuF2iyFrFv5jF7N52rTJXmKw2y3bzpsngbaaxz7WJ8HCheo5ueEGiZ8PBMRQdDqlZKjL\nJSEu2vj1eQIaw4aFJk5fe62UrrzuuvD6/dGs22oC5667ggIAkP/fsyd8+/x8YPNm6+ZlRhSGc5Zq\n9cHYXVg/nmgEgL7ev4pAQEKFIokAY6jO/g/EurHC2AhM4/zhUpxef0xfLTB1qsScLAtPojUl26EO\nVTJwBP1wCiKETfUQqjEYO12X4bobHHCW2nMrb8ZoZOSOxOidj+l2ZBGaEwG3W9MenvDeDUCHOPlf\nrwtlTeUdicFeeFAPF+7EAhQ0h4YJ+RfIWOx4zCdPDlY80rZbsCAxnnG7FX2M3n2zVYSYPPbtO29s\nBLxpHmUeR2clFOfmSuTi4+399ZLdcLaip5gNGqpE6bFjg2lzZpidZ7K0C4onfCqZv0OKgK4kWa5m\nIHJ9eX3cezTG8z33xF+Q12qeHnzQ/n7++c+gAOjfP3LtMxU+nyRKGunXT1xNxtUGrWSoMZfAmBis\n73lubNJ1zjlS2UYvBCKN0VgUefnyyJ/T14MzXg9nnSX5A/r4CW3l5YEH7I3rtNOU3YUj4nIDEyeK\nheR0ApdfjubvTwyNN9fz3i4JVSooDHqICwcDX34ZOQY/luTbXJeU69SXYNWoPSLj1o9F1VVYz7FA\nRAHQlp6BI0PHw1XzEnoHLARRJ9CAbOQYw2UyMuW3DUgloyjYjNG4GWWAHxi004uL9XEvxsRaHVtw\nMS6y+8QyWLcejyusfOa6dcGE4ZA8FU3Q6yzWerjwMCJb1c8+BzxXKT9pwLrWv76ptBXG6CcgMV55\nM+9+QvISdGFdTgCXogLFKEdFRWgZWatVi3jDj5I5GjcakslssIMqURowNwu0x9frr5tXW08WYr2m\nYv0OuyJZnCIgVdHL2oYGSQTVDFqjlzoaydvV2U1GzO4ohw5F3yfcKN818vNlFUBLnNWza5cIgTVr\ngvX/V6ywnocZM0JXCo4dk9fefFM9Dr0bwfje0qUSz25cuejXT/5p33H//pIHoGHWYUW18qLKUTAy\nbJisaOgbh/XqBdNolhP7StOtc88VA0zfuWjBAnMBoPHhAalEc+21QUNu27bEJ+I6nPL93nFHeD14\nDadTchj0HXFXrxZrbvPmiAZ/B+edL6KxqgppxwIY/t4zwKDTgK9gvTKi42s4w+r7R4tRALQiHRmt\nLWL8u6L/bW/BxQCA1ZiEs7dVAdsg4XuXXSbfe1kZsHIl2p74bYh42nFGMW47eyWwT9fRWFV61O9H\ny3WTOpqVfbGsAi9MKUdZmUvrRxZuVFq4zs2SaI1Ny95HERYHPKjXtZSwqvVvWVyo/ViFhZKoqxcV\nl16amNUCK+++cV9Re+wNYV1nowoeePFw9ZywsaqmvqeFHxHBKuRFZRaYPWL19IS+BJ1FV5hTFAFd\nSWc0v4oHvaydOzd8/7G6GuJ1wajmafp0Ce/Rj8+InTuKCrO5Ncp3IOg9t3JRVFZKjbS0tKABHM/6\nn5UbwfieWXOvGTNkleaBB4J9CR56SNwz+sZjxu/NuPLi85nnQ2RlAT/7WXBlAQiNpz/tNGDE1cCq\n58PH92W9VOp5/fXQTrLl5dZzo+eVV2QFYcOGYLJvJC98tDid1qE+LreIECDUstFXvrnmGglFisSE\nCbIvvaf9ow+BH/1YQrveey9iWFVvNOIw+iEfIlhazhyMet9x5NUpmp/l9AYavrbc30GchJP1IUlW\nYsThFGvxq686+gXUZBXhhaZi/C9KOoxnAPJ96bsql5ej9flFyPQfQVOvPkAzsCKjBJnL2j+T10/i\naRTu9MbFXjh13YoH+Ktw7HEvSjbOicmQ1Hur33wz2ApD37QMCIYJGdm0Sf7r8UQ21I2e8UAgGNIC\niFF8cm8/7oxwTI1Eld+0m2eg0dgIKPKpAQR/HlZjVVVP6pTmYj2AnmIERwp5UT1eVI9YDe08u9uv\nmAg6qxxrIqAI6EpivZrjCShrN3D7HT4M37Rp1mPrjlpXZqVIjeE0dqoV2bmjqMYUzdxq3VQihVMZ\nw4T0KwTGfT/1VGg4UHa2vJYohg0TAaB58WNJ+gbCm7AZKwE1NYVeR/Pmhc7Dvn1AroXxu25daEJt\ndZVUEBoxIjS8xoxPDwa762okUgCkZ0T2wPt9MgZVhyYg2KF21izg88/l7/cU11DhYLG0brwx/L2/\n/S2qnIq1uAb1cGHcyEaMGpWGPACNdY04/re1wdCiwsHSFM2q+zGAXNRFPuDIC4D9+8Vb/86/5bu7\n5VbA6US/y4uxbmoJ+tdaVIXS4vzTpRZRlrs38AU6PPsAgmFXCkv0//4P+K5qt3EYklqk0rp1oa/n\nnubCU1/OMU0tycqSBalt28y92SpDXRujMVG3L/xYsH8SBrQLqKtQgbkF5fB4wuchkjc9Gu9+tGLC\nm+bBpYZVEi9k56pcfLvVk1KRRBnBnZ1cnKiwpXHj5DGrH2NXh3Yleq6SWchQBHQ1sVzNsf66dAZu\nPoATXn1VQju64+pTGdtr1pgb90ZjMta7y7hxEsqSliahLW1tYghrgsDYsEu/byv5rv9VNzZKEGSk\nzKfKSpkDo8goKBCv7owZ8rcxMdhYGWnwYPHGz5snAslMjKjupvFgbMJmVTXHLJfCjF5Z6oo627bK\nvzMLgG+dFLmfQDRESjg2YqepmYZZwqqx4Vl2tiQGG7sBn3iilGytUXjsoyw12gQH3izwYLb/OuBx\n8bZ/0WswpjS/iOuxGv3cwMTlHuR++TFw1ZWW++qNRjTCCadZiFHhYGDUqFAxUbNPgvDLytDX6wWs\nBECs6JJQH9hXjH4KA7Qv/BizKXa3uNcb/nX893/LYkRJiRj6evr0kVQVDZUIidZQ/5VrCQb4Q8Ns\nlo3zwuUKVzaRknntevdjCc0JOMxXSbSKPVZjNauelKrEawQna2Kq6hEbS+peIumsuUrWHBWKgG8y\nBvHg2Lu3ezKKfD61sT1jRmIznlR3lKeeUnfmfewxeYrt3Ru+H41I8l3/qzbeOYqKQsOBIp1jQUEw\nB0BFWlrw/2tqgi7CVaskn8NQu9/0bmoUFEVF4RlaqnMF1E3Y9GRkiCgxC8s6+2xgwUOhHYPtNtH6\nQGEMx0PhYOCCC4Dnnw9fLcjIjL8nASCefmM9e2MJTLOwoJ07RMRFIzxMuHrgTsw4/35k/jV4rZ/e\nvBfTsRKLUQqPz4s9/99ijKrbYGt/B3LOwdAGkxUDLa7fyLatYkmOHx/2Vn3OSeiTdQwZde2CTIvz\nXytwyKEAACAASURBVGGoMjakKLQTr77lrC4J9Y+oQAnKcD0kAUDzQK/PmoQCLQchQUHm2mLExReH\niwC9ANAwhsLojd++8OP71V68XwJcXCbXi95QdwT8mPzcqrB9rlsHXDsntlOxU0UolspAIl5ceLg6\nfKORI+2NTVU9iVhjN7K1M5KLYwl56QwPebxe/J6WiB0vqScCelLBXY2eEhSoItY4fT3G8+/fX4xN\nI6o7ilmI0JEj6u65qrIF2r4iNRVTJdZed1140WR9kzE7x1i4MFRMHNcZrVVV0sX4oYeCeR1aFaKF\nC9X71AuK48fFw5+WJmLCKofBrAmbRmtrMJlclUuxahUQcId2KdLXfO8Kzh8uPR9efhl47ln1NtEK\ngJEXqOPzn30WQPtqybp1kixsFhCtIgECAAAGfboV+Gu4gJuINbgcL6MQHwARqqtq+NLycMJTi7B/\n6nSc0az43toTulvWV4SG7wBiwF96aYgx34hs9G34DGgAWl39kDFFHecPoOO66Sg56W0vOalIQr0e\nqzuq+YwcCdydsUAEgH4sUcYGWYXPmCUPG9mwQX16feGXRGm0i5RJQZHSYagv8AL+0HvWYeThDz4P\nDmunoovbubnYg4oKV8LLb9pBEy9LlgDPPResxFtQIOdvJJ7qSV1NspoQneHBjvcRaOfYifSQJ+uK\nRzKTWiKgp14h0f66tF9uY6OUdWw37AKDB8MRbSKyqqxlNJgZ4SovvZm4cbvFq6017Dp0KFiK0zie\neO4o+pKZxmtl1SrpqKyFEpn1JzAee82a0Dh6QIztuXPlyahvQvbss1LBJzMzPCTIirffDv3O9UWa\ntbArrUTpW2+FjmXPHnWHIJX7w9iETZsnI6pOylouxacIBliXlHStACgcLM28liwx98CrmnZZNfLK\ndUlYlPJ9XbhUzT6Z57feimnoncHJtnoOpEE7j68d/ZDxt3U45bzTUffPtdhx6wIMe+85ZLe2n7vm\nnXe5sPSycozYV4LvwCA+HA7UlZXjmQleXBh4ExciuKKQ4TeP8wcAuFzwe+aEhab8fbx5EuqQIbJA\n5vJCjOs4sAqf0b+3aVP4qoDGvn2h2kMzfr9f7Q1NlG4XKX5PsOfATEWy7QuYHEwM1q2IAEBuRQX+\nWlaO/13tChtvNMRay9/lAu67T4x5faGsSPNnfC9Ryc2JoCtMiFhFhpUHOxY/Yizn2t0hL9F68VVz\n3ZN9rrGQWiKgJ6/z2P11qcJS5szB4a+/hm/aNAyJJRFZI1F3PL2xbVfcrFgRexdjqwReDWP4jPFa\nqaoKGr/GebC6a7vdIh70hndVleQn6MN3AAlN0sKT9L0CIp3DkCHmqy27dokHX7XqES1aEzazhG2t\nitPVV4d+ztjZ2WCshKAPxYk2Zh+A3mgNYdRoKT3pcgXLuxjJ6ydJu7ffHhp2UlYmr69dG563oO8u\nHImKisSXLDUjsxfQEmd3YYdTrtG33wYA9NZZYLmnuzDyH/cD/jlKCy3gcOFmlAW92wAO5RWhv9Z8\nK+DBGwhvULdpE3C2haGnhab0hV/izauBp8cU46dDgr0FWgqLkH2ZB3foqsyG9R9QlRY1we8X3bh1\nq/hDLrwQKC1V53zPmSOG7jXXqPWxEc34fb8EYSKlsTE0Fv+fZ3jgdVV05AS8jyIsRmnQKDeGmlVX\nIXe1F3PiLKkTbWUg1efnzImcW9ATSoV2tgnRmfHo0XrpYznXZF0lUWE118maxNsZpJYISAVUxuvk\nyThSUhL7PjSs7gJmv/5ImT/xuA60xNNIHXS1X7TPFwxD0aMXJXbQz0Oku7bP12FEhfD22+pSnhr6\nXgHaOcybZ96bwErkxCIArFZl9N/XG2/g8H33IS0QQL/evSXcw9ggrHdvCTnKzgaKZwErVqoFACAC\nQCv/OHWqVMfZZ5G3odF/gDQHU3nk3XlSYUjj7LMlRl1PtkNCdk4/XW3x3HefePyXPo6YiVuImQgc\nFfEKAEDm8rbb5Nqz8M6rQmq0mPDiakkO7ecGJq4LWo8eeDvKlmocRh5+us2DwRP9eO4yL9KNK0p+\nSezNQSMmYAOGQFaRDq2vANaVQWsCkOnxoFRlocdgyfr9UnVWnxC8Y4f0CVyzJtxbHQhIyI8mAFwu\n+fdB+8JTmBfd74fL68XFIwOAb3DwWh9SBG+aJyS86F/7XRjfnmzrdgG1Ez24zQl42hbA6YW67E6C\nsNuB2IpYcgti6lTcg4lHZETyYHe2lz4ZAi2i8eJbzXV3r2h0JaklAnrCOk9PktIaZpV/tPjwWBuP\n6Zk+XQpma57z7GyJT6+sNL/bqOby9tuB73wntBuyWQKtnRUEqzuJ2YpKURHQYiPuvLk5tDeCGb16\nmb+Xk6MOz1FRVBQ55EnRnTgtEEDu3/4G1JmUj9y+Xf4BwAtvARP+y3octUfE4H76aUkaPn848Nln\n1l50s/cye0mpyqWPi2g06ztwLCANwC6+WKw0j0esDX032/p663FHItoYf2cO0Kj/7mwKgERSe8Ta\n6jKJ1XC5gL+W+fHeHfLeOY94kHu6vHdzsR8HHt8EGNIjXsBkAMCDNdfBWbMX6Wg/96/aM2wnTsTF\nNfvaW40F6V9bhcaVq7HEKWP0AOrK+TFYsqqKQEBoWI/RW63H7wemTDFJcDWuiOlKqcLjgX9x+Fl0\ndC72A3OdfpRuNHy+MFRIdGYSQDKF6SSKSI/fZDYhEu3BNjvX7ko+tmMapZoXPxGklghI9iskEVLa\n7Jf7RRRhCGYGsNkdT/Xr1xva8boEtOpCmgAwGraqu43ZXBYUSGiO3bvJAw9IfL5Wqw4ID28xQ7Wi\nMmaMGMvGcqJOpwiD5nYPblaWnMNvfyt/r1oFfPhh+DFycsJzK/TGfG2txDJYMWiQNPKKlIegypNI\nS0M/YwUkK/ZUA5dOCK304tZ1gNV4/vnQUCCHIuo7YnOrtFCPuJYM+u676s21cqTr1kncR7sx1bK+\nAn+58E+Y+uzzyDA71BlnyvzU26ijbxerEqwKjmdkIl2V1Pytk4CTT5Zry6pbcVa2bGO3t4LRiNXH\navj9yC2ZhIu1965dIfPaty9ySyZheCB0JUgLbSnFYgyBYeVH+44t8keql21CWkAqAVVUuLo0ZMTo\nrTbicJhoD2P4Ts0+6Xg9R/oObIhQrOnbOxSfv/U2iUUCOizzzjDWYwnTsZtboB9vcXFs+QixYOfx\nq6Wn6as5J9KEiFdkJNKDrTKX/P7EPtrtEo1pZHcOklnQdSXfTBEQKUY7Wdd5EiGlzYRONCJAv49I\nicFm9eD1oS67dokx/dBD4dvZwTgvKs/2hg323RJ2rwGtuVatwUC9+mrrcCerO8nBg+HhMoAs5Z91\nlhTHzswEzj8/NPTH2HxM4+yzZZXFbLXF55PyHMZz0MjKkvF89JEYD2+9FUz4NV5DqlCzWHA6g6VD\nduwQ4bF6NdDcJO+rmnKpwnxOPDGCCFAY0Y2NateuHoOxmbmvCpfu8yADBk++wwncdJP8PioqYhAA\nWpUmE2M/in4Axx1O3Jm3HPcfvBG9jTX8P/9M/hUOBk47HfjwgHonTcfCX3O5Zc78/vDYl02bwmLQ\nN5V4xet/R0noe7VHpAPylClhoWBNI0djbl0Z6mtcGI6dts9Zozk9G8MDWzEcW3EVKlBcXQ6v15WQ\nkBGtQZjxkikstGeM5uWJIauhN3BVib4aqhWIdm0FQIzhESMQnuxsUBydFVMfS5iOnYgs43jXr5e6\nCn37SpWnzqwYZOfxa6x2bVafIlaSzU9prIKtr2MBxJ98bJfOWGVItrnuLr55IiAZAtO6m0QIHTv7\nMAt3yc8PvVMAkmA4d27nfQ9btsjTQjNirYg35Mqpe3Rb3UlUKyoqAaCxZw/w61/LvGthQFZkZARD\nbcyuc7db3FbGCkDjxsnKg35FYvduEWtz56p/Q3bDigAJUWpWxKWfpXPlbdwoBqExPt8sbCYtPdRL\n/fln4a9Z4XBK0Had3972OjKg8LCnp4sAaGw0N6wtSVx4zxd9ClB68J5wAaBn314JN0lLE/HV2hqx\nQzD8vvBQKrOkbgD/3hbAt8ZPQm6T4v1AI5pWPocsw8tZGcDyFcD/rgYy3hgJ7IzQjwIQQXPZZcCO\nHeilu37ORhU88KINiQkad7kkH9wqMdjo4T7zTNHc9fXy3+nTZR9AqIFbWeBBeaGulGqE8B1jWJET\nHuD1YLLzobwiZBV7kKv7TDLE1BtXIqLJAdi3T/4BMp+q8qJdSVfUFklWP+XCheGPdT090ag2m+ue\nFJUd71jT2tqiXHNOMnbs2IGR+u4j8+YFQyg0NMMq2TEa1cOGJUzA7G4P2Rg6dGjc++rgl78M9+6P\nGydrpPo1Q41YvwefT0JcrO5AxmOYzSUQ3RzH+534fLJyEKmbsMaJJ0ploN//HvjRj4JzWFQkNf33\n7DH/rFmCs88XWqZ06FARS6oeBlqXYdVvqLEx/PvWh2b16ycu0paWYA6AxpgxaLr0UnxaPAtZ/QeI\nKHnk4cjzEStm4kAVemREURLUjxPgwle2t08G6nNOkhr8erSYc0Bc1CUlpgZ9GHfcKf81+d4akY1n\n8GN48JTlbmrhRh4MKz1DioIiY+JEoGYfBuALZOA4WpGOTLTioGsYMGUKGtsc0ifA4cLMxgVwLg0d\nz3L3nbj2zTldGqOuN3T9fmDZstD3b71VDPhHHgl9fe6tfpQ6dL0PHK4OHaAXDEOGqD34H/3Hjxd/\n4EVjeyjUt4aEhkItWBB+zFtuAX71q/jP18747G6noRqvHm0eAevQpqamJgwcCGRlGSWnoHoeRrrV\na6sAxltmTzEv4kVlWvXvL4+Vrg4HSqBplNBjdYqdZYHdsYbZyTrSO3mMJBo0Kf3rX8u/ZF7BqKlR\nx5qPHy/hHTfemNjjFRZGt73ZXJq5ciLt5667xEC+8srox5GpWHDLzBR3ovFm8eWXIhgmTAgKgMxM\noE8f4LvftT5WZaXcEVS1CfVaX/v/iy4K366lxbzKiFMRvNAuAJrdbql49Pe/q1c7Dh7s1OolYZit\nDvhqJcTFinPOCXvJVAAASSkAACDr1P6oySrq+PtAr8FoeWWDGPGPPCzx52PGiDC4aYYkUVuxaZP8\nM8GJYxiK9yOO6wBOxWaMDn1Ry9fQXO+jRod/8Mwz0djmwJQNHjzwuAuPPAJ4Xi5Gq6tfxyaH8oow\ncb0nZgHg94shumABcOBA8P/9ERaPtJzjOXOA9xVTYFaVtg7S++D7r8/pOKdJk+S98nLJVb/jDnMD\n+yc/Bhp1Cdaap1/D4wm/dW7YYH0++jkw204L7bEaH2C+EmGGxyNCwYxVq0QkaPMU6XuJBqvHr2Zs\nGQWA3Xr78+bJPztlY5OV2bPlfDXy84HNm83rRyTynLvSNIrWROhOEjHWb144UE/P9uiKOl7xrnP5\nfOLpN4aH9Osnht68ecDPfw784x/xfw9mIUdZWUBTU+hrxoTdRM6ldi6VlcBLL0VePdDP8ejR4U+P\nlhb5vJlH3rjt9u3Av/4VeZyq9ekHHgiN36+qkm2Mzb8AESB1dbLyoL2u/+5MKib18vmCOQmq0qcf\nfQQ8/DBQ9g/gRz+W8p/r1kVuFqbvG5AoJk6UsarCjnJdwLnnSuyBndKkGjH1NOhcfH7gmiYpKQkA\njuYAZn7wWHCD2iPAsqfECz9+fHhZ0fSM0DnSwm56ZQXzNwz8GyMwIKseBVo4UK4rLPzqNHyMVbgh\nvJFYY2MwbO2RR9D23b8DrToxt2M7nDu240Gsxw+wBgBw3/4SZGilRt156L+uDDg9NgVg9FovWRK8\nxUQTSz9iRHizsBEj1PkFGzaIJjcL2bEKnfnLEj+e8Af7MFyFChSjHPraSC6XRE3t0/3MamrMQ4KM\nc7BiRbByrpFElA1V7TOsoXj7fLndoalNqtAmbUWmtVWiGr/1LfVx6urSsXKlG/n5oY9B7ZFhvIWr\najzYqSz9TYpOthvu05m9DlJhxaWr+eaJgJ4YmNZFpNfVSf31SL/OSEJh4UK1odfWFgwXMZYJjfV7\nMLv7PvUU8MQTYjynpUlpRzs5B7GIxGgCQc3KpS5bpq4T73aLAWYlAjRaW0PDb4qK5KlpFWrk80k+\nhpGGBmlYlpsrlWMO6ppg7d4tT9bJUrIR06cHrwftO339dfWYI+UN1PmBxx+TfIBRoyKLAE0AOJwS\nBxBDPH8I7jypDmSWd1DnF8O4oBA473zrajoafXOBZ54RD/bOnZJ3YOdznUy/I9U4EfVSUhLAvfid\nesPqKsm8NGI2RzoB0IgsOCF/v48iPOsqxdXPlAKvtBfNb2yUTtjHgu7qfvDB5UpDS15RMB6+cHC7\nxdd+PVRUoPWEE5FZV9ueXxI8/BDsRSkWoxHO0C67vlo0rlwN56/mxFQRZ8mSUGNc72OorpY8fS2d\nYsQIdcMwQF5/9dWg4V1YGNz2sstCRcC+fbE/nr69I7TL8NmoQqnDix95Qi1zLXzGDkbPfW2t1At4\n882u6zasNRT3emW+Lr9czqGxEVi61PxzRgHz6qtyi1I93m688TTs3SsTo2rtYryFf+974cfTmqBb\n0Z39STsjrt2OIT5/fuLOOdHnYGd/yehHjqYNU7Rj/eaJAKDnSsZ4rngbn3WvXGn96/T5gp1so60B\nZqyis2uXJKRG04TLLlrI0YMPRv/ZaNwZ2jbRJMSq7vorVkiojL60gv7XOnu2VPCxivfXOP98eTJq\nnwPCgwLbX/f5gHeuW4jxxlyKfv3EYN1r4enOyVHnVqxaJTkOo0dLxan2MR8780xkq7oFm1FdBXxl\nEWLT5wTgqO79QKP8M3qnAXsx+dkOOSdfbeScAECM0ZzekbcDpCrQLbdIKFf7akBbZi+kJaJhVxxk\nHw/gdUzARPwNE7EOP0p73jwXORAIXc2wkzsBwIkmbMZobMHF8MKDer8Ls+cBTz3iQW6JeQLxdTc4\nkFmqKxUTCIg41KiuQrpTq1aUFvb54diJLWEdA+Ty/N609lQHnTd78uTwyjLGUpSrVlmf67JlMkxA\nPP3GhmEaLpe8rhIhqoi6kSNl4SnaMpiq6kA/mhI+nlgMcT1aj8Vovf7a/F56qdyy29sfRBQTZnkE\ngPgezM7DKGDef19tfC5ciA4BAASL1+XkyN8NDeG38M8MqTV2q0R3F921AmHmc4p1X4k8B7v7624/\nsqIVj+m4EzHWb6YI6InEc8Un4tdiFnajkvFG+ZmTI0msxmBPLUY9nl9uZ8jySCLROBdFRXLX1xJr\nYxlDQUEwDAcIX4PeskWCHVeuFGNSRXa2vG+s5a+4C2inULwLGG/cT2GhuouxRv/+4v0H1GVBtTAh\nXdJdGyArM9GUDT1uErevVX7RG4UdnzEIgFGjpUzqMutkVPTta91sTIVl+VEDhupAcQsAl1tWfr6s\nj2s3TjTiJVwpyV9WJSB0KxetuW5k/OUvwKxZtkKituBiPIw56As/7sQCYBvwj6sb8SO/ybUwpAjO\nUk9oPMnvfx++nZa7YlgJAICMESORPdqDL56rwID247yPIvzB58GaO8K92Y8/LotPujYGYWEvxiq6\n6enBSzQ9PSgANPQNw4yYhcqoDPKZM+WfXpBYrmK0W9fOtABazhyMzA/a+1kUFsE1J9y6j6ZZssej\nnotoiTYhWI9VRaMYmj7bYvnyoH8mPz/8fasq0VZ0l1c5Ug/LzjJwVUECWshVLPtK5CpKNPuLx49c\nV5ce0uMzHjPsr3+VNESrccfr86YIsEtn14yK54q3+VnftGnIr6xU35FUYTdmaB1TNM92Q4MkDOoN\n5VjOw+xYXS3LVYbvXXcB118feQxWd32rX6vbLfEGv/1t6F1g8GDx3GdmmjfzcrvlGA88IPkFF12E\nP+Me7NrlxteYjl/iD3Ci3auanQ1ccIFaBGihRocOBQtgW6GLl3B88IGExNglLV1KfOrJdoiY1Kwn\nrYSoFSNGqN2rRlTJ2cmM3yfJus89F3ficbTVHzLqfGhc8Tyc+mRyk2pLLf+PvXcPj6q63sff3GcC\nmJxJggiKQIJJkGprFKR4Q6sFL2A/UEQqRJhaL2ARG6z+aqVa/VptHhEF0doBAigSiXJR2oqKmKIF\nDa0IJBGCiIJKkplEgUlCLr8/1uycffbsc5tLMiDv8+SBTM7ss/c+5+yz1trveldOHt7vcCOtxofV\nUPnptb6M4IYLLqTkdpn1JhGpa26OQxIA9OgB8Jtxg7IxfNkMDFcULEAZmheRVeiBG43yWsEAtMak\njPYiYuhQSn3avj2Y4x8qjAxyWfXhoFwEoUBbIldlONHAKrbK31cUygG44QY1oTOUAl3RkiY1Gofo\nYA0ZIjc+Z80CVq5s6twN6N1ba7jW1mo/E/8OWFtygNBfX9EyN7pjh6Cw8IfDyG5oiA9Qzeh3u/Mr\nM+WirXJ2gr0ZuwknSXZPe3q6/RVJL3SxbJlWspMZyunp1uUwReitfJGgd0WiNoBVQWGrcyzb95s/\nn1z/MWP0C7TJ2uElQMvLMS1zPZ7EFhRimeoAAEBzMxFs+cRfgBwNPmeBOW961aNl4PMKjKCX7Hvm\nmfSGZ6ve4sUUcjNKuI2L497+gfEMHAR89ZXKXU9OIQvknnvUY6Is69kBGYnFJj79lEKUN02MQI/s\noXn9W3Ae4a5nR3vQnLWlu7DkksW4yKlg0uvFGPKNej9loR7HHC6kNnHXjpHkm5pUbg7jjGwPLhLW\n1kHuS5uYmhCnzuyvZigY/26RJuI8b56WDmQVrEYew44d9LiMGiV3AqwWDBNhZMjKjOfp0+lRUBR2\ngLzKcKQwYADlAEQj4m4FodKXeAeLJQbLlk6XCygp+SKQGJwlVT4uLFQN/alTtQXCsrLUjVIrsPv6\nioS5oReLinaOguy8DzwQubbC2UXpil2Z5ctdQVSzcOf34otpmYxWv085AVbQFdk94dyhdr6rtyKJ\nbWRl0Uqot5LK5B59vmBeu1XyZCQdLTukOhmM5pNvW3w78O3aLbRWWkrGDTPk2fzz5/T7KWKamhpc\nHVnYgTm9rgqPZc3HYVlphdRU2rn5y19oR2B4QI5RLCjGKkEvXUqZjV9+SX1gllJKCllJdqGn9lOz\nl+Y0MZEi/HFx5oo7Dge9/RcvJq1CQBUa538fMEAbgh06FHBPt993iwjbAQCokNevfhWJlnTRBiBB\n8nm87Bqdc46GNpTQ4MV3S1djEYrwqMRITDxnILCDu36NDTSmio+Bt96iQAJfpyA5pbNq8W7k4VxU\nIg3foaVByMmpUXk4epH1sjLaWCstlUe0ZYYmu4V4g7+6mjjtubnqsQ4HFe7i/VUguChWpAznbdso\n+F9WBoN9jsiCOSqhjimcPAQ79CW9fre0GL860tPbcffddcjPz4LXGyxkd//92u+vWaOWvqmtjXyl\nYB6RMDe6i9ceyfNGegzdzfW3Apnpcf/99BOtfp9yAmIF4dyh4USf+Wi7nfPLasy99FKwc2CVPClb\n+W68kcJwduZC5kyMGWN/VR09mt4oF1+svhHEthct0q+hLvZJnFcZ5YhHbS0Z5W++SXMt/p13OHQS\nlwsLgWfiZuGbktfQ57Dg0Lhc2sRqr5ekT1mfUlIop6O8nJwFXirF5aK3+rnn0tvT6g6AFWwPCKpv\n22qu55+cQgRqn09rTI4dS5yGxYvJkli9WrUkmGUjk/voc0YwRakrMCibJFA++ii4gm+Uk4tlDkAr\n4nGaX5I/YUCp+qvPjWsVlZ/fpmQgOcnAFarZSxY3H9VuacbOnsPxryOUZLwbwfUaZFAUoMgdsFY9\nANxuKAD+6PSgaKK2CBczJqWGJnwoggf/gZZa5HDQsS8t9OEnFR5ioM3UWqamNB6LEI1nhk46jbjr\nZVJlOByEM6ZwDHn2/a6qamzl1bdsmZYSZMsw74Lys7JTyGJRXRENj6Qui55kaziOBd+3SF+aKVO8\nePvtXp27AXbn1+hejJbWzSknwAq6KrsnnKfHwneDJEKff56qfTCeuV4bsieFSSnwkO0OWCVPysCM\nUN7gtSJfGg6pTjT0fT5yAmRtyyoYi3Ogt8NhFWKOBQP/FoqTGFuZmUh9YBbud7mA+yWrihGNSZT/\nFOsxeL1E+QqV9mUVPq8xbaelGVixgqw03pisryPnMyNDTWzlLRiPh44RkZERfSdANp6f/xx48EFy\n+kQnoItxHElIErNwGYYNIxmbgIxnNXLgARmgjVDw6qQyzMRCoLQUCfV1QEU9WpGARMilRlua2iDW\ncz3zhguwoKxIc8slp6dCU2BYNHwFnjzWraNnYu8eOAHMzJVbrxpDM9DGyOoqjISquZ+ZrXQ6CDPf\nDZxjG4BN2jYjxYFnxvP06Tp5CDat63B2J8IdU1ca8uEi1FevqREZwg63XXPDzilOhGi4iGixsaPR\nbnp6O0pKvsA//0kV70KZ364WtzxVMdgK2JNzIlTyNUCQROjhw5Tca1TSjz0pjzyiJq16vcHlA3v3\nDv6uHVkAsT0ezODV64sZhg/Xtm20qoZbgk/cIdFrz2i8diFztKZNC86pePhh7Y6GOI/suFFBekLW\nIHMMw8WkScY7AqWlOtQ0r1bZprqKLKs//5kIzxK079ZxuIyQJJqxAuLitf+/9trgYyoqyFqbMEF7\nfARgJAgkohVxQJ5OudacwcTl55633vFezMBCpMGH3Fzi58Ph0DhYzAEQ+1GDAfgUPwo6TXp6HDZt\nIn8jMZG+1fY97XT5b70LmH1vsEEv48mL196oTK2kjSGoghse1b8Wz2GlzRDB2G185VwNnYYvT2zi\nAIwfH70Ku5GElSrFdtqZN89epVqzCrficj10KDEXTV9HkvX/2OPG7xO75obdV5b4OtBDtCod2203\nWhV8o9Vuenq7pfmNFZxyAqzC6pNzoqG21vjO13tSxJXqgw+CnYIPP7RPaXroISoGZqcvPGSr9QMP\nhOfEMSNTVjddhBVD2O9Xx6s3Vob8fEraFdG7t7bOgDhmtnshwuvV5jEA2nn0eolexI8t2cTQyrFI\nqAAAIABJREFUZZg8WX/8st0KMygu4LbbjK9VfR21nW4hxLltK/D8It1oe3yHTnEsIxxvIZnSYcPl\nf+cVdTraSfFIdBy2bSU5lilTpAo8AKhwWYqFqk8OrUNoZ9YT0YGkKiEBXHGRSlFHB8mwcjkaSrsX\nM/Ac3ssYj9cW+wyjzGI/GpGGrLrdkv47MGAA8PrrwGk9KS8h+fgRAMChl99Fw4TgcLbMB4wUmAyo\nGdxuA6M9BLCA/+zZ9KNHwzEynvUi+VYR6THpIVLOCt/OM88AV11lzci0EluSGebLloVmRJaUmPer\nu82NUONtsnZ4gz9S7Z5C5HDKCfgBwTtlijxiHyr4lSo7W7tKVlbK5SyttLdmjfXIvawNmcFvdVWd\nNYuUc3i88YYaKWdtz5lD1Cp+Pnl9favt6UXd+/en8/z73xTVFzFoEL1xampURaE5c/SdHK+X/p6X\nJ6/0u2kTtXX55WRRMJ28OXPIwbv4YurTr38dPB6GXbv0C6uxHZI0BUhMkh8jYtIk4vObVRUuK9Ov\nrdAVGDkyELrVmRceDT5Nxd1OfL4P2FcT/DkA9DqNkrK5qru6OOcc82PswOWinSaDa9C7vgrps6eT\nFeZ2W5qHfHyG/oe2aj8UaD7tR7RJ59ktVdg1m6xY3vhd0OTGbqjnrEYOqjG48/fWHAu8eaHfu5HX\nSXWS/V3sq1Wj3Q7MAv6hGM9NTdYj7tEYkwwyZ2XBgvDbYcXCzGA1IhySYT5rFr7prb7LdmAo/lA7\nKyIRZ+4UIb8u9RCJKLnM4NerJmyEaIwvmu2eaLCVE/DOO+9gzpw52C6Rc+Px2Wef4bHHHsOOHTuQ\nnp6OyZMn47bbbtMcc8MNN2CPULFUURR8GA2ecRck5nTLuWyiPT2dDDq9yrUyREJ5iIdsfkTFnWXL\n5DKZVvsSCqmO9eHYMaBnT+3fKitV/j3rh6ywGq+vz1Nxrr9em9hbWUmrodNJ5xs0CNi3T/17cjJF\njJkTddNNwRp2//kP/TzxhKrQM3SovgMg6y+P8nJV/oIfDwDceqv63f/8h5yYadOCnQkrWvyNPliK\nT+fmaSsoGcFuEbBIIi5eJV4//TQZhocimCgNAN9bdHDi4iV6mgLESsxmqNkLbEs3P27bVrr316wh\nh+jKK3WdljbEwwkhfD9sOKeDaQwxYdXlUrAEZXBDrRcAoPP3lKvdmGnWbsDi9S/woLQUeMJLicGd\n0W8dLr7Iue9KDrwZZ//XE3zIKvGgzktzkpmtYONGVanVSqJvd/H6S0tJkCySTgf/mhk9Oh7p6Tq7\nbhZh6XXkcmFp4WY0/5VOPB+z4ENkbYJY5flHSvM+WuOL1Xnralh2ArZv3445c+aYHldfX49p06Yh\nNzcX8+fPx65du/D0008jISEB06eTJF9LSws+//xzFBUVYdiwYWpnolHQpys1/k+EegJGlWtliOST\nIpufNWu09BQjozZSfTGTEDWDUWE1mWyEjAqzZImqy5+fTxH2t94C+vULrgrMpC5l4CU69SQrrBaC\nEyviAGT0iyv5smV03bg5axo8GI4lS7TXMjWVKvZ8bDHZNS2dpDxTUii0qSjBNQBiDR3tarXihQs7\nJS470f9s4MABWGLnpyu0UxBOX3YZXOfcPDLOZZWYI4G9eyiE63TKHYC+/YAzz0SClQrPAOJ7pgAN\nqsNSk5yHsx52B9UA8HqBjAwFT9VrrdWnQL/PtsCiImNeAZxFmLAeqF1Nn2uSaQWLOFKKQJFEJzXK\n50P69PEo9NJzMyVjA0ouLcPTS9XORaqAV7iQVSn2eu33zahYmPjqWbnybJSUfAFANeYP7vRiFuaj\ndxYwaeoswMRYF19HU6fKX02/ud+Fy//x8AmjyAOYOzihxjpbW7UlaqzORbSSZbs6CTcWYWp1t7S0\noKSkBM888wxSU1Nx/LixZN1LL72E9vZ2LFq0CCkpKbjsssvQ0tKCF154AYWFhUhISEBNTQ1aW1tx\n1VVXYeDAgREbjBRdofHfHecKB3bv/Eg9KbL5mTZN+5mZUWu1L3qrlPg2eP55MriNjORwV22ZnCpf\nmKuykqoRf/FF6OeIBvLygPPPD474HzumeQPWffkl4pqb4Zg2jeb2iiuATz4hCtHtt2sdg3QFQFyw\nsVtwISnPfPI/+n36dLKoAKJMff995CPsVhGfALRbyBcQHQCHk4xumcGbmUVWTyAHoDU+GcdeWInT\nnnwwogpBR+FAAxR8c/5oFLwUsKh0KjHXQ0EGhOuSkUlZulb7tH070aNEZGSSk8sKhH34obYP27Zy\nYvhkqMYlEFu1JakncBxIWluGW+9RpEXAJk6knGS/H9i4kZhtgDUee6jGvGEkPlpFAzi43cD69Wpk\nH6Cxz5wJKEIic+/6Kvx0twdPw9iq9vnIl62ooFIdkY7Gy6AodP0WLQq/Hb1iYeKrZ88eB5Yvd2HE\nCDrm/TVeNP/0cpJSrgVwo7UAHi9hqRf/OxEjzkZ9thrrlNWZ/PBDinnNmWO9FiY754k0f3qIxXGY\n5gS8//77ePHFF/H73/8et9xyCzpkBg2HDz74ACNGjEBKSkrnZ1dddRUaGxvx6aefAgCqq6vhcDhw\n9tlnh9n9UzjpoccxN4JR9pH4Njh82Fjq8tJLg1c4I2UfO4pIPPTG6fWSIR6v86hyz5k0JwEI7m+C\nTB0+GC09FbkDw3Y2AtSonps3I+Pll8lZWLgQeO45+v9f/0oOwNKlau5Eg08/k1NUdCkuBi67jJJ5\nDx0kY7w7YMUBkKHJT8RkGepqNUnAie0tePOOdWiRKveHjh5oQj98jR9/UkJ5BcxSkiQy12BQcAMT\nJxIty0q+AwAUFATz510ZJNspivSLfdBR3El29QAAlL4ldwByc6mLRUXAH/8IrF1rjcfO8grEnQW7\nCbTShsePB+Y9RT9RkuVRFODqq7Wf1dTo9/2CC4wTfX0+YNw4Msa3baP4yI03do2i0IwZkUlCZps1\ns2fbM7CUZfPVWiqAbRK8GYe+uxN9Q4Fen+3kUMi0LyoryQGwOhehJBNHS9koHMRqUrSpE/CjH/0I\n7777Lm655RZLDX7xxRfo37+/5rOzzjoLALB//34A5ASkpaXhnnvuQUFBAS688EI8+OCDOHr0qM3u\nW0BXZn+caJkmXf2kyOZnyRJjqcxQVGUipf01dCjRXsSViq1uc+YEJwaLikheL3Hoxe+LkI2TrRoL\nFgDt7USvufhiotewxOctW1QlH5aTUFOjva6i8pIZbzyA5I8/lFsU//mP2vb8+XDw+QwA9ZVh5056\nI/NUI5EqkpQcXGkaAF55BfByHAErxrhDIpcaYdlNAKSaY8UwLiggeU0L+JmvFMkVQrIs33crCkg6\nSEA7yZOOGRNcGTqAGmWYJsG2NSeQl8GM9jvvIkqPHvj+lZWRnOfse0mSdcAAbTYvIN8xsIlhw4IN\nfSsKmnxSrUyPf8sW8+RZXfWcaMuJcvOYLu7caDqnTWR2znQbJvp6POoOCoNVdaRwEUoSsh1ZUfHV\nM3hwE6ZM6WILLBYt0yjDSPvCKuy+zmPV2I6WJGm4MKUDnX766bYaPHLkCHr06KH5jP1+5AhJvVVX\nV6O+vh75+fkoLCxEZWUlnnnmGXz11VdYunSprfOZoiv34k6kfT+zPb1o7FvpzY9ekSqADE5myEYC\ns2ZR1plYgRcgA3n4cDLIzfYqXS6quGtWz3v+/OBznXMOjUvE3LnadsRV49gxqixbUEA/7Dti1eLz\nzlN3FljexbJl9PvFF8vVgfTQJBjsycnaIm5XXGHehpmG4/GWYMWcFIe8SJjiUmUqZTSdJn9wQS49\n2U0z9O0npyANHQpceBEVKjOC4gK+/RYIBD+MUAcXsiAUMBs2nKzU1QGC+jffACtfttZ3GTragR2f\n0A9AFZcZhSk3D2MWz8SKFTPhq/DggiFNcDo6yAJkIdl339WlZLWnOBHf4KN8g3ffJSuOJ3SLBb02\nbKBEYBvVb0XOd26uPJfYChNHpPLwSE4mx2DbNmNqULhVcUOCMI935GzAxuwyfFxDJzZLZFYQxRyA\nMClQdpKQ7VK4xFfP6NFfaBODwywIavp1ixyaWKSLiLA7VV1Va5XhRGFlxwoinonb0dGBOJ3oLfv8\nvvvuQ2trK4YGXPOCggK4XC7ce++9+Pjjj3HhhRfaP7HR09OV2R/RPFckVwijJyWaCc6y+WGfyVR3\nysvpMzvnN1t1ZPenXtQ/lPGY4dJLgSNH1P7l5dFuAasObLeqsAieWrRzp1b1Jz9fm5llF3wp1507\nrXEFduywf57WVvnnx44B5/+YlIj0eOp6FYbt4ppryHkSHY3dldYSrVtbgdfKLJ2qB44Ef1hQQBF0\nZhn94heW2rKMlmZydMaNA2bMQLqiYOaDAHzuYIP9yisNk7Pjm7k5Z5Fv3qKTRcdXr7ZlRVsxuhv2\n+7DuBg/iAoo4GzYolpN1mUYFvzNgljwrNVzFZHYT58YWhHlM3FuFV+7wYOHYos5TA2yzRYHbXWTZ\nFne7ibXF7wbk5KhtGtr4MicvilnSZspIDQ3A3/9OzEe29POvzm+/FQIDYQbwTL9uwTIVX7ulpSQs\nl5oaWw6B3akKNzYqe51PnRocM2OIZt2QcNDVzpBVRNwJ6NWrVxCth/3eq1cvAECeRGf80gBxrLq6\n2rYTUP3hhzi7sBCOgORo08qV+KKkhCQxTxLENzSENUZ/4MmoDBiaWV9+iUzhmNraWtRVViLz2WeR\nJSxYdUVF6HCQzIZ3ypSozW383/6GM+++Gz0qKjTnr33wQdTdfbf8Ow0NVA2Z61v83/6m+QzV1XAt\nX47UbdvQgxnbARwtKMBXzz6L9m+/pchtJMczejTOXrlSvW6DB+OLX/wC+MUvOvsX19SEzCVc8mhg\nvN4pU4K/O3o02rn+J/70p8hOTkZ8i0R7noGn4lRW4uj55wPnn4+45mak7N+PBDHabwcHLSTrGvVN\nD206TkBzE/DJ/3C812mwWG0guOnkFDQPGIDUz3RCwQA6EAf/Bx8gVUZBskBLak1XkGhD6ceJ4Dlq\nfvNNfDl6NDrS0gAAGQMHwrVta9BxYeHQQXy9ciO+veRa9OhXh7jGRvR98EGkCgb7seRk6JXBOwon\negiSn/X19fByEtCu+npkCN+rr6+Ht66OnBCAkuW5hHlXIB+ltZXm++OP96KsjIzK8eN9qKvr0OTX\nxzU2okfh71DYQOcdgw2YUF2GJ59sx/TpWj7AFVfEYc2aM/H557SmDRzYhD/84SuUlSnYtk3b0/r6\neuzZQ99vbIzT9CEtTZ4jF/fkk1ACie2+8eOBmhrN7+yamkE830DJPHp9XoybRGOuqYnDPfeo41qz\npglPP/2Vbj9FPPVUHF5+2YXdux0YMqQJkyd7UVfXYdqua/FiZAj3TP2TT8IbUAQUEdfYGNZ8/Pe/\nTkC4I9l1amyMw6xZvbF/P/V1xYpmAB3Yt49+X7myCS+80IK0tLbO92EnJk2if0N8F+h9PbO2FmJp\nSfa+ZXj22Uzs3KkeVVWlxmpWrmxCSckXYcuaRhJ2pyqcqf3b3+KxfDlZ+uPGNWDMmLOwZ496Pdnc\nNDTEo6xsAAA1V27QoCaMHv0FKiujP3einSWCH8eUKV58+217pE0O24i4E3D22WfjwIEDms++/PJL\nAMDAgQPR1taGtWvXIj8/H/n5+Z3HNAUMESWEyIFr+fJOQwkAHHv2wLV8ua7ReCJANGwjOcb4hgb0\nFCLNzYMGkbGsg/S1a5EYINb1evvtqDlZ7enpODZsmNYJMEDigQMYMHkykiR9Y3MjOlAijg0bphkL\nm/u4wD3Z4XCE7Pi0p6fji5KSICcFQGf/Mp991vZ3GdLXrjV0ANrj4xHfrl38enzySdBxbSkpSGhu\nDvqcR/OgQegAgnMAbKIlqzeOjBwJx2efIXX3ruA+x8Uj3oTCk2Sgnd8B40oECS3NaBoyBMnffIPE\n7xqlx8Shw9BJMEJ7XDyOXHQR0je+FdL3GVIOfIG+DzwAJCSgacgQNIwdix7l5UiJsErSGQ178M8Z\n/8JPFv4ceQ/eA8fnwde3acgQJDQ2IuVAsILVSkzCT/EhhoAsluPpChp//nPNMb7x49GjvLyz7aaB\ng+AbP15jDH4/ciR6B6pEfSOpeM0boevWnYaFC79Ev36qQ6aUlSGjQX3Gh6AKbnhQh+Bie2lpHXj6\n6a+CDPrx430oL+/ReZ709OP4+c/pHmls1BrC5eU9dA3sjrS0TgM4rrERZ96jzmuP8nJ89fTTGsNX\nZhTLzrfg0V/C+V45Ug9QW7uRh999+Fv8efIRpKV1oKxM6TweAD7/3IGyMiXICdJDWloH7ryzvtPY\nLitTMH68L+x2eViZDxnE+UhKasfx45QzM3BgE8aPJ6e7rEzpdAAAYN++FE07e/Y4sHJlb9xxx9e2\n+x4qvFOmoNfbb2sCOkbvWxFMzejuu+vMDz4JkZ7e3jn2Z5/N7HQAAO3cLF/uCrrel19+JGacJ34c\nsYKIOwEjRozAqlWr4Pf74XRSkt7bb78NRVGQn5+PhIQEPPvss8jPz8dzz6l61W+99RYSExPxk5/8\nxPY5s8TiTgCysrKQxTkZJxS8XlLlCETjs8rLKaFPgJ0xMs80Pz+f9tEEQy5l/HjkjhhBvzz6KNFw\n2G5AVhYSOd65Y88e5P7zn9GjPYnnHzoUWY8+iixZEawrrtBk/Uj7NncuoOMABLUtzD1D1nvvUfXe\nUPdkA3MrRoMABI+3d29k9eyJrNNPB04/vTPxNys3N/j8WdIWOxHf3k4Jy7IaABykDkD//sDYsaS9\nmJqKFH5fXZa/wYM/Z0qKRvo1ufYwXJWVVFxr3DiVlx4XD5x3HuKZTGgn4mBJZ5872gyu998HmAOQ\n4gB69SLFngggvqMd6e+8E5G2mJOU+ukOuD76KDS1LIY+ZwB9+1JiuDDHQxs+xIDbX4PjSLCD0ZqT\nB9dvfytV0arGYDyFIrw7sBHLG8YiwVeHpAYfBj3ySDAdZP36Tj6Jw+1GDqChkGQsK+k8dNC0aYCT\nXtx+Pykm8UZoQ0MSfvvbQdi8mTtFhhgjBzJdwPT7MqAo6t94Wst997Hvq39fsYJu+/p6Os8jjwxC\nWRmpDn3+udr255878N57OeY89uJiqggdgOPzfch57z2Vu+LzkZQum4etW4GyMhSvVYLO9/bHF+Df\n161H8yK1MFrjAQWsOckUICMjA4MHS/6gg87uBHzgrVszcOWVJu3edx+wdauGApVx333IkAX1JPPR\n7x/vwflH44ksLtbO//Hj8Rg2jPLL3W4HFCUHPh+LnhvvPiYmJsLpdGoCkVHHf/7TyYlxzJqF3MBa\nzli+PXoYMzV79szCK6/Qeh9L9KCuhuyVl5WVhfz8LOnfzjorE/n5Iu8hOtDYWTGECoOgathOwIED\nB+D1evHjH/8YADB58mSsWLECv/nNbzB9+nRUVVXhxRdfRFFRUWcxsNtvvx1/+tOf8Nhjj2HUqFH4\n9NNP8dxzz2Hq1Kk444wz7HfijTdCq0ARq5DxB0ePpnFFi1Dm5FRVRBLfsWO6iiJRgVUS4fz5+sYt\nnz8hIwn27w+cfTapExnpnzFUVgKPPx5cuTcSYON9/HGgpITG9Ne/ktEUFxecKyDKlRYXGxuHhYV0\nfc0Md4dDTQTOyNBWLeYhyd9o5ylJLL+CJSNPnRpcYbi6ipwzXlu/o10recrwf/9H7fE0nP5nUwbn\nXh3nzggJiVrVoeYm3eq2AIg3f/nlZBW1tgKffmqebByqrKgR9tWYH6OHdEVVsvrJT1B34CgyfYGo\nJJJxET6GLC3hKJx4+ZLFuG3FCkCyC/D9eZdg+lUKZvgWImEpF+GqriK52AcfVD8TCfTFxfp5Bi3N\nQAt1SO/Wrq9X85Y9HsDR5MYdORuQuJfaPJyRh3Hr3BrRIisJpatXawtXhS0ZagZdNSG5UdzkUDBP\n52+y5Gm76Qgyvv2oUdSWbrthZkm/sgr4CrRM2fnqyJFaX4q/tgz5+aR0zJsHXa4MBEjzx8Q8AKah\nD2jTxPTSxn6IjoARtz5WefexDFtOQFxcXFDS73PPPYe1a9eqXPOsLCxZsgSPPfYYZs2ahczMTMye\nPRvTpqlbspMmTUJSUhKWLl2K0tJSZGVlYcaMGfjNb34T2igqK2klmDiRfj8Z3eTUVOPqHXaybqw8\nKfyC5fUC//xn1z5ZoSZYZ2WR0SmurLyTmJJCVVwPHCBJTaur6VabfGw718XlomvMK/2IISG94mnv\nv09Zje0SwzQzkxSMApr+upWR4+O1SkD19cCPfgT8+MfBFYzZeQP3Y21tLRrGjcPgDz7QjpXv56hR\n1lSJhgyhomF8UmXv3sFG9ZVX0jPv8VCRNYsJuAD08w30cOggWYaiglEoEJWLugIpDqrPwHIUtlfA\nleLA7pTzcbQ5iRwAHfSAH0N2rwYgjyRd6NiNC90+4NJXgv/4yiuqxGgI6Ajs6cQFdoHuRTFFvqG2\n5/fzhp+CjdlleOUOD5xOoLfEmpQZuNOny1WGRIRsYIeYKGx0Pr3Po6VY5HTK29UmCytQrMj7uN04\nvGwDetfTfOxGHv7qc6PxeXVsspxis/mXKT5deinFDwCTxOBughhzYnUjH35YKzwnxuFiWfEm2gpH\nZjHCMWPo3hk+XFswrqv6d6IhrsOs+leMo6KiAgUXXkga6LH4RIQCMTwwdKi+oWrx2KBtKrtPgpXj\nu/rpEsfeuzfwwQcUgX7kEe2xRUVkZMui4fy9I7bJY+ZMQIe/HzR2IPi6iNFx9n82V3PnBvdbBHur\niXNbU0PVgL4TuPIjRtCciP30++kN/vLL5hSTlBRg1y7VERDGWhnIbDK8t7xetFx6KQ7t9iIZcWQI\nPf00MHmyKvkJANk5VBeBST8wicx5T2n75Mog50dRiLsRwSq7UcW5Q4GLLpKqDn2NLJyByFCSrKIl\nwYnkNmOnxH/HvXDCT0XbRNxxJ1mI4vVhuHky0KcP/V+0SEVFGQ7H41PgbD+K3qjFcSQiGcdxEH2x\nG3mYgDI0QkFuLvmCYqXZ2bP11XyKi+mWEpGbqxqeYkRZ/FtIBrbRF8V5yM3rPKHe16JZkNho/KEc\nJ8OCR31aShO0X9K7hkbjfvRR/l4gh/2hh5KlZkGs0DZkS77MlLF6XHfDjunSHeeOdv+66r6ya2pV\nVFSggMmKCzg5nIBbbz359sasXmXZ6sBqcnPfjfrN2V1Pv2yejFZMK6up10vabCIHuqhITgeSjX3M\nmOBjMzNV9ZPkZFU1h80VoG2HP4aH3tzOmRNM29LrM2DN6WC4+GKaj5oareRoVhbqrr8e9bfdRjkl\n4lxkZdH3srPR8s03OPT4UiQnJFJ7hYXmtQCyc8jxeeWV4GP7nEG0pV27YCdnwBISk4DW4/a+c975\nlGtz5Hv9Y/qcQdeUpyMFcBBnoB+EZEVnKpGFI5SvYAV8YnVrTh4S15Sh8ctGdIy5TlOcqq1vfyT0\nyaL6BTrJypokbc64BUD1E377W+Drr0mO9aabOp2/7373MAbedBFS0II2xCMRbTiIvgCA9wvuxbbL\nijppQKJRf+edxGwDDOxtSc43b3iaGdkRN8IDDfr9gCfOjSaH0jV1B4y7A0B/fDKHysgBE9vXuw52\n2uHbu/FGKm5GaEFuLvDBB8nSeMlNN5Fi4apVPfRiGzFjuNo5rrvRnc6KlXNHu39d4QSEci8YOQER\nTwzuFsTi0xAuwqk3wHjlQPia8zyMVsnuqtAhm6dwSYMuF3D11cFOQKqOSKJs7LK3Jq9nKOrts7ky\nKpwmO57HAw8Ab76pEkfz8+mzSKCign7GjNFSlmprkblkCdLXriWB9WXLtHNRW0vFy3bsAM46iyrI\nVlUFEt11DHd+Z6BmL/3I8M3X9BNpKC7KwbFTmCsxiehlRg4AoNvf1kE56PX194DoE/mPyXNaEhLt\n05osIg4ALigAhg1DYlwcsGABWlZtRFbAATgKJ97Adfi/r9ch4dAB87YYAlx3n7sIq4v349Zlo5DU\nHsgJefll4LbbgNdfBwCcVlyMRMjHd9llwGUBA1GkiGRnAxs3ArV7fXDDg3UlwLj1bqQPoOeR0WWm\nT5dXCmYwKlxlt1AV+46hUa0o8LmLbLcbadhxbsLRY+dpS01NdM2YAZ+TQ58VF1t3sDwe3gEgXHut\nfMP03HOB5mYqYHruuRRDUJTolcYxgtX0txOpDukpyBEpJzPSptbJ4QT8kJ+GqVOBJ55Q1Vfi47XJ\nsuwOYSK9oaKmhqglzACM1iqpQyXp/ExGoxFhtGKyv/3lL6TWMHy4vB96zgJPp+noIMdARqcZPpze\nqFaKSol9Z0+zncq+7Lv//rf1lUYcoxGOHyfrS4c6lOj10v1RWBj8x2PH6G87dgANcYGiVzG4Aelw\n0nPCrL9t21QHJC7eOBm49bjKubeLoUORePAQTvPrJStK5mrcOHt5EHaxezftagTGxItu9IAfo/Ev\nJHXYz5FgHP5Hq2cjCVxSeEszhX9ff52emy1b5A1kZJKF6PNRBVyBA+/3Ayuf92E1xpNkqRc4PHYD\nsFm1phWFcgB4g9vhoM0IKzArVCXCqtNgt91Iw45z4/OR4c5j0CB7xjvvaM2YQWP1+6ldRusJxxGS\nxWymTdMIlaG5mT4bNSp8wypUI89qvM/KcVHZzbDRaHcm5lo5t2gupaTQZ9FGNOuvhouTwwn4IWPZ\nMu2qJksODRdeL1FA+AiwuEraefr1FhXZk7JmDe3zss/4J9joSTJbMf/xD2qzvJySntluCd8v0ZEA\n5PkCeXkUdWcR+KFDKQL/wAPW5DRlczVrFvDqq2qbPPLz9edWTOjWK6vIjt28mebXisNhljtQW0tq\nRllZ2nuF/W3BAuBwQniJsX376VJP9LAX2fgOPXEudiFFJ7oMgPqlKKrFsWABcN11xN03UwOSwcxx\nYNi12177iktV+okWmvyG1ykNJjseMrgysKJpAsZXP4pzsTv47199RY7ir34lpUtBcQG5yrpPAAAg\nAElEQVT1dcCi50i5KmAd8sZkcTHghqezZgEASkAVrGlFoZSU666jJbOpifyqTZuoSHMkES3jPtKU\nJDv99Hi0lYVZf0I13tk1LC7Wtmt1rsQdoXPOoRSurkIsGHlR6YPNRvXib11BtbKyWyKaS83N9Fm0\nCQuRjN5H2tE65QScjOA12tkdEk5ZOiMpTgar+5VGi4rsSZk2TfsZ/wRbfZLEFUh2nscf1yogsX6J\nhEJZ1Lyqivj4v/xl8NjNovpZWap8BW+wA4Be8Zzrr7eWyG1l8Xa56Px6ydCy/jIDPy6OdkN4OJ1E\nozrvPLnT8F+xBoABEpNIypVJY+olE3ciuJ7ABxiOX2MxGqHgXOzAP3AdEhBIyJUZ6X6/mlfx/vvh\nSX1aNeztOACJSdQ/rsaKHdQiA9+mDMTQ5m5IpB47FjeunYos6NC7Dh1UnS4e8QlAO7TXvDrYsAfI\nGFxXAsCCAuTcudqYSUsLbUYsXmxsXFtWCQpY6cPeB9KE5FdHkw8o1p7EjvqQlah9NJOH9frE0NW7\nGOKO0NSp8iVyyRJGB6LfU1LoM0UJz7DqLjYs/2o7diwKfQhhYGL8rSsdpHBY1CcKIk0NO+UERBpd\nnV0kcwuXLqW3GaDq4Ee6NnVWlrGsqB66erWUrUCSwmvYujW8fjmd+sca0W5qa4Hnn9c6IKWl2voA\nsnOZQc/RiYtTaVBMP83qjoCocDR2rDZHgL05XS6K6PL0saFDKTRX+zzw8Ufm/QeIYhMfD9x5F/E1\nJkwgMrfUAQBEB6BNycQXKADLZZ2mrEOCjzMwO9q1SciKC1i1Sv3dYWGeuxqtxwH39JC++hEuRCFK\ngGbgI8fl6NFko3Klw0kOeUUFsE0rldvY4wz0yExF4hcGdQxyBgM7diDLp+MAMMicLhuOmKJQDsDh\nsaoEpZ4kZ5uk2aYmc+Pakgwnp/hzGYDV2NCpavSTgT7csXE8EKhnwE6iKIpleU+zqH0oeQt2nBDx\nWBbtDRfh1Dngd4T0iqhnZ1MOgCwx+ETj3Ms0GGIR3eUgMYhs4u6gK0U6eh9JZ+eUExBJRNvllTkY\nols4daqWPsN08MOBeAczKc5Ir5KyJ2XJEq0xycPKk2S18NrFFwcbwJs2qf1iOvsyY96sH/w1klGD\n/v1vbZt6JSMBUgwKlcS4ZIlaBam8nJKIWRVkl0tfy9/lojfx/feTdcHmZepUoKoKtYGCUFmPPqre\nE9nZNA7+fu3Zk6Rb3nlXP9lXxN49wM9+RucvLNQvLiUiPgEJvjrcjOdwVca7eOfyRzBp7YvyY2+d\nBqxbF0xBafIHotAWjFCr1J9uxBDswpn4EjdiLRpO64ceLT7rBvakSVT4a/9+uk8CRd78SMEvjy7B\n7UmrMK5PE75tz0TT4QZkQy0sdsyhILWtDdiuX7XSNgy09tMHKJQDYGBN+3xyo/XAAaChQf1dL6Jt\nlDgMIKgA2BBUwQ0PnkIR7nN5kFghKQ5WVGTerkWEQkGyU2NAPJb557rGu8VtiWjVOeCRnQ0sX34g\n8H9VxYUZVqHE8SJp5Fk9v/hqq62VkwDCwglefUuPYWyWVhhpxHJi9yknIJKIpstr5GDwbqFIWYlE\nYnAk72CjRUXvPIWFwdKXenr5ViAWXps6laLxPNUlJYUM4vJy7Vyz7/GJwVbmg10jsWBXRgbwySfW\n+97SArzwQpAELADt22PsWCLosvHwbweGykrjvI7UVHqzP/wwnUOV1qC/DxkCBAr8eadMQZaMasTn\nJzzyCPB9T+Lau92Wuf1tr6xCwltv2auYyxm3veurcPNrE+XH+byUBCvjoAN0b7z1lklf4yw6AMF0\nJQBo73ka4o98F3x4hNEDfvwDY5CADsCE3aeB4iLlHoBqNnBVnp1oxsuYjMwGsqj74SAaBM331CYf\n8LlO0vSgbNqdYk6hxumKCz6+bz8i75sVITOxpj0e4PPP6f9pICUhAPA0uAGh/+Go4PBwwo97UQxX\ntU7Ssw1EojIwDys2uuwYfop1jXexDoLJtkSkHKFQIL5mX32V2JdOp/EyH6lXZLhxRFYcPtw+qONw\nwRXmwLrTj5CZZF2RAyBDrFKVTjkBJwq6e08tnDCJ+B2jRUX2pDzwQHDFYqsOgN4KxI9HLDg2aBBR\nZhj4uWY7AkZzYDRHvDoRL+XKw+HQVu8VoScBy4+DT6Du3ZuqaS9YYDxXZm8yUVqjpQVYsABZANJX\nrSI1Hba3XlNDxwMkJn7rrYG+9QGef0FjSJohocELNESAa6CHAzoyl8z4VRT9YlgArCsdCcf17Qdc\ncw2OrXwdPS22EC4S7KgyMYPc5yVnsEyuRpQpEPD5WgK66NuPHFWWvblwIdHg6gMUJVcG2tqakdAo\nXPdDBykpeMYM+j0Mff00+DATC/BLlCIL5ASOwQbcll6G/Q1qAxs3UjellB89y1moElyNwbgKG5GL\nvcAR2kFxMnUkkwrCstOYRcytOgk+Hy0LpaXqzohefoEVmpTUeBd2RfTyOWIBsgq+jJVpZpBHwsiz\n85qXvdpYcfhQIXdCXHCFMbBYjoKfwsnsBHRH5Y9Y2DrT60MkcgJCCVPofcfOohLOKmL2XXHVPXyY\n3ph2x2OkcCTOkctF4Rq9ZOuMDOCgTuQ5I0MuAcv+z8Ab64cPE5ebL1YGkISG30+7Rzy9LIQFP4kp\nSFVWksXA7xgMH64lYNtwALoEerUGmPH79NP0E2m6z003AQB6NjeYHBhA79OBxESix/3rX+Y1CcKB\nWIeAGW4TJlDOUSBvogWJSJYpLmVkdhr0e5GNM/ElHIEqrsfjU3DM8ypefGsA4AkYsA6H6gAAgLce\ncc4AsTspGeDrtrG+uN2dEWYngJuwDDdgHTZsGGDKf//1BB9+sXA8slu09LIhqMIj/T24u8Gt7g7U\nuOHxKFqbVYhuH162AcnryjrrEfBWut8PNGxrwvDtajK3E834AMPRMWwkRi7W91qMjG+jiLkVWo1e\nwS4Zdai75UtjAV0ddzMCM2/GjCF2q9UNaTNEK9bYXVHwWDDJYh0npxPQXXpd0XR5rd7Nen3QcwLs\nOEuhrBB/+UtkVpVQVhFxbIC1sYoa//xcm81BuKtocnKwA8BXDo6TUCQAc/lOVvgsI4OM/4IC4O23\n1WrCVp4RUVpDxOHDat4Df4wsA9ME7QDibX8rCqiuoh0NWw6AnPYDV4ZKO8rNI4P67rutN+v1UmJw\n2WobfQkRskJkfj/xDbjEbKkDkJ1De+6rV2PLFuCTbX7chUWdf05qb8aaX63GPC9ZkBs2AG+OAnTT\nsJMFJ4BBiDBnoQ7rcQMur34f06crGDmSpnh1YLp4Qzh9tQfpLfL8kl5JfrXOAGh34N2mMmhoQsK5\ne9dXoeQGD8a+X6Qa2wEr3QlgeHExsF17ng8xEh0jizDSwFkJx/gWnQRxR0FsO2oQdkXMdj66E3ZK\np3TF+WWv+ROlenAsgInfsU1pppNyCipOTiegO6kz0XJ57TgYVvvQFYnMJSWRaSuUc4vkzo4ONemW\njZXlA/DZVLzGPxCdnSRZsnX//sDHgnRjv35ap6CuTp799fvfWztvfT1VQwa0Ccg7d1IS+ahR+uNl\n0hrTplHxsM8+sy4JoimqxhnJScnA8WApj5hwABisVCV2ppLV1acPyaMuXaL9u8NJ9BeHg3aBJkyg\ne89qgjRADkB3IWcwOaB79+gf0+cMoG9fYNgwkrctKsIQN7D3suIgyc46Xu2zGvBc6cbMXK2h2H74\nU8B/hO6do9yXmRHJLFoOWainBNxtRdi2jVhGzH+2pF2fm4cf/SgOzgptUu/ADg8Asqh9PmD3FmCk\n8NU6r4GB7najdf0GJAYUgXYjD+9nu7G0i2xh2Y7ClVfKj5VRh8LKQeiKbN8IgMWMRo8GrriCNk8/\n+0zVUuiKKLKV13w0zZuTLXLu9cp1Uk45AipOTifgZEWkHQy7q4ndFUJWX0AmLRoO9KoJi6LJotzm\nzp1Eg1m1Sk2eZZr9osY/D7GIl1i4y84cjRlDL0Mm13n99dbGLGZ/AcDLL8uP1atoLAOfCK0noZCd\nTfr5Xi/w0EMUWmHt9+5N0eI//YnKr7IdgJQUYP16Mnx9QKcDkOIAmg1yH2IVMiWga68lJw6gcZaX\naw38Jj85Brl5qkFk4gDUQ0GGFX59V+CSS8gqMkJDAzlM2ytoNyggeylKdh7OyIOnXmtBNjmCDcWO\nS/MAAEeOBXa/Zt/b+TcoCv27bJmWRiSAl4qsriZ218iRwK8nuJHOR6czMilvZsYMOCXOBXvcmDH9\nTbUbq7Ghc7dgN/LggRu64q2KgsQ1ZfAv8GD7duC/BW4snaGY2sKhGN+yHALZjsKIEdpNxvh4WkKL\nioJt9LDt+DCyfbui3oEYM0pJ0aZUFRaGz7e3iu5MID3Z+PtmJk53sMZjDSenE3CyubOxgkisEIWF\nkd1p0EuGtSKavHix1kCurbUmHcAXyGL/51cTMw0ysd8+HzkBMvTtS289o+yvuXP1DX3x87w89VnQ\n2/feuZMkU1n+gEneQ2t6OjoAJB0+TPSi+fNVB8DhIBnSVasC1YT6qOeJhgOQnBL9nINf/AJ45x2g\nkePyr12rRupLSiiUKDPyGZ/dBN6eZ8HRcgTQ0TvvcqxcaX69+ArDXPKnKNmZPMGNPtMVNIqGLWco\n+nxAwnfxcAA4GtgF8LmLtAagopC06w03dNKs9jvy4GnSt5K3baOfDRsUvLa4DOmrJdalAX1FNaYV\nTECZmjcAN/rkKvj1BB9QrJOorChw/rEIIxG8i6AHu8a3GPEvKSH/W4bdu7VOUnu7tmC2rC9dnQMQ\nSr0DK2hoiMfy5a7OmJRoLIopVU5n9A1EqwZpJMwbM+2KWMh7iDZiocpzLODkdAK6wp09GVzIUFYT\nOyuErH3R2A1nHo1W7tpabSJsfr6WDsTLgdrB/PlaGk1VFeU9/OMfal+ef57qKDClHB7i/iSghicu\nuEDl7jNccQUZ/WJuAzP8WfEvq+CrDRvVLuATiFn/2Nty0yZN/xMbhMRW3rJoaiIHwKgIWSTR0gwN\n3SguHjjtNK3BLsLh1BqwZnhNopLDU3W89fJjeEyYQLIsEioUAKQfr0N8SxjalHbHFMBxJCAJkhyO\ncB02zoJM9/nw5qhibE+jiPivJBFxjwcoatPmvyxYAPzxj0K7AwbQzlTASk4XHAw+0s2juhr4+2oF\nRTKr1qLl3QgFT6EIw4YB00dSsnH6dDVR+cpAgbANG5SwDFc7xrcY8fd6iYW2bl3wjkJBATlEsYxo\nJCR7vUBh4dnYs8cBgJbrQYPC7GiYsGOQhmve/JCMXyMTp7sFF2MFJ6cTAETXnT1ZnqJIihvL2jBr\nP9rz2NFBbwsmnQBoa6yLtQdYWMiuY/Kf/wQrDI0YQQ6C0Xh5HDtG0WUe55yjRv0ffphkN6+7jqrx\nihH++HgK5ZkhNVX9P1+7ID9fX62I9U+v72YoLwf22uC+66HgQqKcsAi7btS/g4zgIUOAZ5+lj66/\nXl5pWHERlWrt2oBOok69gEiBJQTPnq3rAABAfHMYDkBuHnDffbYrC7cgEa9hHK7B23Ch0dqXRBUh\nhpzB+pqU48fDWV2FkQAG12xA3C3GFnKPQELAv1b5MHOmhELDOxgILmK1ejWwZYvW4E2DDyO2cEY+\nQF7G9u1kHc+YIbU0J0wIMJBYfncubSgqCuD/s06BsOqiblXSqa+nORD9GoDUViNVa+BEAIvBMAcA\noGXv8GEtBYj/f1cQCewapOGYNzFj/HZBIDXW6E2xGDs+eZ2AaCLaRcG68i4J11kyM+SN6guEO4+i\nm5+QoFWiqa8no1d2fgB44w01qp+ZqUbhjcYjCy0MHx4c6a6tDR6LOF6G3r2JMiNWCh43Tj2vWKhL\nRHs7jVVR9OVFeSoQD1aQjSkFiRg6lHYcQpXMiIvT7iyEiosuorYqMmjXZMoUYPlyufHe5Kdj09Jo\nTsrLycj76CPandi7l6LbPi/aJv8KFYMm4pOx61H40V1I3vW/8PsqoC1NQcLkm4FbbqG5Nkqw1VMX\nsoLUHlSU7a675H/XOE7a8ySjFZNQhuNmadkDB5Ez5vMGHABJfy+5RG7YW1HVARmjCU+3Ax1ATxwB\nAPzNNx4vLSzDzAeNQ+pi5LyoiFMTrSYHYH3yeGRvqwK2gcLkHR1qMbptW6lA3Nq1mjH4fJRTwBwA\nl0t1AHw+YF0pUGg8cxGHyJd3u4kCJObr+/3yjQ3ZhkdXcPCtIpJF0WpqSMVYL9bR3Ew1KEeNotyI\np5+mW6NXL5qTWDDYThp0YSBVz8TpatZ4rMaOTzkBseSaRbHGdXxDA1zLl6vR7kiN04ohr3f3hwvR\nzfd65QWx9OaVl9vMyqK3ndl4ZKEFnw947jnrCbg8UlPVUJQIJyeaKBbqkuHYMeM+8FQgQHvv3367\nltLEwJKl2T3I47TTgO++M+5Tfj5lYoo0J7sYlE1Vm9guQGMjVXD64x/JGbj0Uk2VYABAxcdk+TEu\nBuOSPPoosEsdZ4KvHsMqFqFnxSbcOnAxVpx2LeK/s6jdbxHe+AxkzZhB96fMAUhM4ihFIToAAHDs\nKHDzzcFzwdDRwSVky8+TBJ0dJcVFlcc7OoDnF3F/kLSzY4e602ZiScpUdRQF6JVwDLwC6RBUwVeh\nqvQEwcB65Rk+w973IJtT/5HmbtTsDeqUjGqzejUd4vEAi71uXCRJFo5WhF2PL79+PVGAmLOSkxN4\ndGq0x8lqDUSLgx8qIiUs5PXS5qwZA3TUKHXT9cUXack9cIDiL7t2yRmeYSGwBv/+GPB23ix8UEXr\ncyQNUtHEiYmUyRjYjrCySxBJ8zAGhizFD9sJCNU1i9ZTJLtL+JUrVNfR68XZhYVw7NkTXjuhQu/u\nj8Q88m6+1wu8915we7LzT5umVQyqrFSfdjvnrKmhJFrR+JaNRSYLqheWisbKzFOB9ByjadO0uxos\nWVomoP3dd8G7LwyZmdTW/ffT73zF51CQnk6qMwx81dHVq/WNXqE6acN+H5KWlKKH5NAhqMLvPr8L\nTSkdSJX8PRxk+QJGpR4JO5Lyn3pzARhSkHSRkEiOFpONEWl0ErTt+xwJ7HoxSxIAfD40JziR0kZ0\nJyNVncTEDohlCIYM0fEthOJdMuuVCQqtKwEuszh0O2gUkoX/d4Eb0y+3XsHYLoz48ps3q4ZzUxOw\naJH8ODttWkaEtxIikZA8f77cAeDF0/glV4y5NDfTZ++/H14/NODW4FQAm/NfQ/GczfA7XRGL0+mZ\nOLFEkelOiObD3Ln0f3YfxGLkPtKIKTnuLoeecWoG5kI+9BD9RPPO4Fcuq/0TMX++6gCE044Ms2bR\n6snAr6Tsqdq0Kfh7GzfSv3bnkbU5d27wnnckrovReGR94VV0GEaMkJ9b7F+hhDxw6aX0tzVr6Bqx\ncS5ZQkTVUOFyacchu/eXLaNQmN73N2+m/vFoa0OrwxF0eKsrU81nYN/9wx+AnxSE1v9Dh0L7HkCE\n8OJiNOz3Ye0NHvRo0qcmFeB/SG22yIcPBXrF3mIVCYmUM/HYY6oxN2ECSWrqoA4uJDTwhQCqaAdk\n3Dhg6ZJOB6AOLkzHYvTJVaSR8g6n9r5qHpSHW8vdmDcPmDePbH5fQEHVv0BLM+o8pwCPB3jC68Zu\n5HV+Vqvk0E4Th1olBw0TtJ1yu7XFxPkIP/sbSxZ+M7cIzyxTpHKbXQFmOBcVkUBXNOHzkWNWXExO\nNsaPB+Y9RT/8RYoxuFyt2LGja17jUghrcGLlTtzvnI+HH47+Rj0zfiN5Lluw857tAjBn6ZFH6Ofy\ny/XrnIaKGBtyJ06enYATjUsvg51IcTQQyhzq7amJIQhRpuPDD4kmsmWL9Xm0snMjy0GYOjV4x2HJ\nEq1KD3si7WQSzZ8v57ofPEh/4+sWsHbE0ANPwRk6lIx/QD5OVqgLIC3+m2+2fn+cc4616yneg3l5\nFCqbO5f+NmpUUP7Du7luJH+yA1dA/Tzxsyr5XmdCgrX+ihALdiWnkDEKGCvtJKcQx3vbVrQs24Aj\nXp0KSaHgggLgm2+AQzo5GDwUF/XT7yeaUkQRRg6B2XfbWmkXYNMmUuLpJMYH7nuuZkItMlGKiYhD\nh6ZCMADKxRBoN5nworTvbGSNGgkn3NBU5AUo2R0AevQEjgIv/rwMHy9Sj2FRardbh49fWkqUMcEK\nFyP2KZPcmDkD8BcvQPUr27GlqQALfTPQZ7pW1ceImtId9bCs8OUb9vsw7H0P/uAAFjS50QjFkJ5k\nl4Mv0oeySjwo9ArOWHdmRQcgLmsu13G8/PJ+ZGcPlr5+xOLoKSn02SlECDGWsStzliL9/MbYkDsR\n19HREQYBtftRUVGBgoEDQ6ujHYv1t0XjVTRUrfZPaKdpzBh1N0DWTqTnYu5ccqnN8NBD1p0AWZuy\n74sZYMy4Fg3ycB1HszHyjk9+PiX/WiEdytotKtIm7hqdW6wyDNDuxNVX6ztp/PVmffL7KXma0abY\nPAr3ZNFFZei15CXMhdCfOXOAJ5/sPFfLzp04hD5ITkoJjZYiYva9NC/FxRR15OFw0ltcMLifw524\nAps6edutcUlI7LBIxRGLmw3KBi67LLg6sB5y8yjbcOzY4PHrqewYIUQZ0GBYcCL69gNuuinALXlO\n+7dhw7EFI3HbNjIy0+DD67gRueB2H836yoqocW/ejPNOR0r9YbSdfgYSvz2E2bNpB4DH7Nn07+J5\nPmzG5ciC4JSzeySA/fu1fPncXPW0xcXy9rvZfjWEEfOmYb8P9aPGI7uF7vXP4vOwbmoZ3EXGRcrs\nsHnEObsXxfgdtM+i/457sdBZpGkv2snHLS0t6NsXSE5O7vyMX2pHj65Geno7Tj89X/cVUFOjxlyW\nLAnOBwg77hjhd66sP7Fo4sQi9F65PIvVytxVBt6V+fn5UeppaKioqEBBgXwX/uTYCQg14yIWXTNx\nhyGU/kki5l8++yzS165Fll5isGwOb7xRW0HX6HyxMoeyDDBGdRHvh3B3c8TqwSL4nY/KSuDxx4MV\neGR98EuMpSVLqMaClbmdPJmUTT77jH5PTqadlw8/1O6e6N1brE9z52rHxnIpBIdqfHUtfrv5dkzY\nV4pzwUUB33hDrXHA31tmDkDOYEo+Namoa4gmP/D110EfKwqwyXclGpCGjOSjyG2xmKfgcJIVwCUU\nY18NOQHZOdb6Wl1Fcyobv10HQHHJJU9DQoe5E3LoIDlaDmfw3y64AENmFqHPeADVPrjhwdH406DJ\nLzZzVixEjH89wYesEg8lEgeKc7nd9LVGKCjFRMyA4KBs2dJpZRqp+5yoMOLL75rtwcgW9Xk8p70K\nI3Z7oChFhkZ4OBx8D9yYkqFWh27NycOkjW58HEhKXrYMWLECuOeerk8+5pfaysp2NDTEY+JE/Y1l\nVhxdhogovUTQ/jDqT6yZOLFkLjDolTR64IHY62ukcXI4AeEgmvUEIoFQ+icx6NPXrkXd3Xcjy46H\nWl5OK4vR6qa3+ohPFV+4iyEjg3Y7+Gwco6fMSiKxXgYYy0uI5JPsclF0//HHga1bgePHjQt3bd1q\nrV3Z5lx9PTllo0apEg+lpcGyokOHktIPXyaUd0Z27lSdkVDurfJy6gd3T6Snf4tnVnwP3++uBz7k\n+sMcH6vjZtH7Rx8lJyY9ncJxDRJOscNJztL+/RSdlkWaDx3USmLmDMYv2zci0UcGe3ub1eUvjtre\nJXEYdu8mKtL111sz5L/6yuI5ddCjJ8m9fPtteO2IsOqEyIz5VaugAFj2yBQcu3k6zmmvgp7AUDhI\nnz6+k2oyJWMDkheXIV1ROiksC6tnYBTe7dzlAUBUsIBClMej6Kr7AAZUmFjSzIwAIqIAFJiTGX6g\nPNuNj2voy4kZCppWlAFvUdXk32xz4+PtasP19VRwu4nbUItEAbBQsHy5K2S1lkgovZAx7ALwcFSV\nZ2LJxLHrPHWVw2DkLMXK3EULJ4cTEBOaVyc4ZOovgPnqZrT68E+VrDjXzTdrqSVmK0KoYY24ODJe\ny8tDC9nIagzwv7PovlExMICSiMMBPwZR4pRX4xGrGosoKTHfVfB66ZqxPWUewj0R39CAwS++iMyD\n7wS3Y0U6tffppDBUX0f0nXHjVMNdkfUxYJQ/v4hCuexYjp/eiZZmYNhwyj9pakIiR2WJtxx9N6DK\nDBkC/OpX+kb0aWnAd4FE4+QUa/kDRkhMBD6JfB2DsODzAs8vgrL0VZzZHmI9iNw8cx1Nob4AVpPl\nqPLxFWzxLUbeK1chnndW2C6DnrRoAFJeP8xVhwBYdhTEw4Do+RfnznOjZtSGTjpQTXIezp3nxt/D\nVQDilJicAEoHbcBVShk+9ymorwduvUfB4sVFmD5dex4G3gGIBLrSR2OvApnWhd12Qt1JiMVIulXY\ncZ66Wlc/lpylrsTJ4QTE4p6XVUTjiZY4Rd4pU4y/w+bwxhuDC1+FCj5J9y9/0SY6Dx1KOvh2wylm\nT6o49rg4bWTdbshGXIlefZXaY0Y2vzLx9+GxYxTNZnkYeXmqXKbZNTdTkJFJnNbV0XxauX/EQmZi\nHsoLL5CjYCXp2OvFgFtuQcq+ffK/W6md8N132ggzXwVYSnnhrid/rOgAMIwcSdbBdIkQpeg49DoN\n+P478z4DRFtyOuVVhnv0pDDzWWeRhbJlC0Wlw0WjxfoFModIhp69gCPfh9enAGSqSwdxBhxoRgbo\nOh6PT0FSe+CaZedQnorTGbb11klhKV6tSz2ykvQaRIUplqgOiRazBXlSzWGB869fH2C9SfT7I4H0\nAQqwqQxbZpOFfO48NzrSFGzZYvw9U6NaKPiWsq8Kv4AHTwWcrOpqyqWQOQAMGRnavAyz5GO9/ujt\navSQaQALmDLFi/LyLMuxQ/FVEE5V4VB3EqxuvJ8McdBY1dU/2XByOAHAienGRcvVlThF7VboAy4X\nRZjFTCKj1cRs9RHHmJVF0pg82S4U6BnS/Ng3bZI7NJs2ab9jZJSLK5HI/5cVE/gBkdwAACAASURB\nVGP/Z2M8dowMe6YYZLb74ZTwru3AChWL5R2I1+eJJ8yLkvHXeP58fQfAKsz44q4M1dC2mwybkUmq\nPLyRxqNnT5rv+Hhg9Gjgttuoqu/nJmPq2w/42c/k+RsOJ1WcTUsj68Xno4pDXYGevWhMopoSQLz/\nhATVcUpKDt0B0FQeVuGLc0HpUB23fvga1cjBKtyEHi4nbnxpAtLeWk1/FCw60djLEBvPzVOvoZWd\nA4aMTMDtjp6Cj8eCo8AO4wzjvUIaSXU1MctYTTu7kBnL6QMUjHy9qPPvvMHMwBvhVqhCfj8QzgqV\nm0sbeKvlt0HQmIz6o1fX4Le/Ne9Heno7Nm9WGYviRq34WhBfBXyF4a6KO1rdeI/VOOjJ6Kyc6Dh5\nnIATEdF0dUWnyCqH2O6uCjteXEn5fVN+jLW1VKGF6dZbWRFkdBwj54kfu8wJ4HMdzNqyC1l5Rr79\nRYvktR/4qLzfr61iI8JI4pSNn7+GU6cSZ52nCOkl7Zo5AP37hzc/aYo8mp2RqcpO8gYmU9S55Rb6\ne5Nf1wAFoI2Ax8VTFuLq1XIHAKCo//ff0XmY0WZFxvTQQaIjJSUH/63JT7KaXq88n8ESQpT9PPK9\nvmHf1qrKbgKhKzT1OYPuv3XrgFde0ezW9Oqfjq+aB+HMb1RVplzsRd2wsRiyuAhpCoDzgnknMmPv\nf+JGBm/BT5ggt+Y7w/2B6+3KoH4G/m476VVsz6rz4fdbrpjMQ0fV1BTi/JWUABMnatsSDWYAGDZM\nmxxtVizM5wNu3ejG41xl5OZBeXg/zg0EdjRyc0kxiKcD5QQ2fRwOdTqsXIdQipdt2UJLXt++5u0D\nqgJMeTntzlx/PcVseGG0114DxowJ/i6rMGwX0TCGxVe+HZJBpAgJZu3YMS9OOQxdg1NOwCkEI5Rd\nFXEljYvTV83hz2OlbrdopI8ebc150stzYN+58UZg+HDjtmQKQLz0p1gcTezrmDHBTpAIvag8X403\nMxMYPBi45BK1CJfR3InXUHQCKivV8VtFQgJwww3az2bNQvOKFdrdgMGDibsuu/6DBtE5V61Sjcfs\nHJINYaHBa65Rk8XnzQOWL1cdBIAcAD0aC0+B6WiniLwVdPLGAezdY3wsDz1Del+N9TZEpCvAypXA\ngw9GvqZAJKRZv/kauPtusuoGDtQ4AYlf7MOZFyjAN9qvjByJoDIAPGTGnt8ZB02dq4Dl2LDfh5ax\n4zsVaDThYYvhfj2KSfDn5u01THCjZZmqiIOcwVQMkSlGBfrndisaOlJODlFi+FpaXq8Nfj7X2Zea\n3KiuVvvl9QLPP08xGCOK0ciR9hwOjwf4uEaos/BzN5bOUIKmSG/aWHEx8fNQIFK8ACrKfdNNtDz2\n6WP8fTEGUlUlT6fauZNeO0OHRsYoDZXBbCduJisIL6pk6x0bSpzHajuyUj7hOgynEDpOOQHdiRPV\n1TXbJzVKShXHaOZwhFPFw4waVF4u7ysrjgVQX6+/XmvQtrTI94Gt9lWk5+hF5dvaaGdl3z7i59fV\nAd9/r+YWmM0du07HjpGKkYjycnJK8vPV8fGOR1YWJen+739UqMzvBxYuBN59V6154HJh/4oVyHjx\nRWTu3Uv9Zf277rpgtaSLLqTw5Ntvq8ZjXBxRZ4qKyEIYN041oG65BWiQ7Bz07GmJyrJlC3Gh09ev\nNzfuv/5aXxOwKzFpEuUSiOO2S4XqfTpd+whx/jXYu0d/PmsEBygunq6rzxc2/8bnA9Zc78E0nwH9\nxiTMrEcxAfSi6QoUPhReXAy/H/DEueHrULBxo4K6ejKKM13AxEua4FzKSZUG+qcUFQUZxgsX0uZg\nSBPBUdwmZmzAcyhDo+Bp8ZFzKzkRVouFscrIADDbIZ9yRUGnhCsr6gbYUyYy6w9zNqZPJ+Of4bPP\niFr16KPydkNBampkjdJQYm1WDWPZq4gvncMb6JEiJEQj6fdEZHnrIVYTuk85AdGG0ZU/EV1dvWi3\nGUIhT3q9chmGiy+ml6AV54mtIiIth6G2VpuwnJ9PRjmf+Dt6dHC7VveBhw8P7usVV9AbioFJaaam\nBn8/KUmboKu3sppRpvRQVQVceCH97N6tUpCysqia8bp1qgMg9jegitSeno7aOXOQmZ+v7ceCBfTm\nYbsmSUlUw8Dj0RqQe/eolsrChVrNfRk3Pz5BznkX0IRk/G7bBKROV/DmJVfDaeYEvLLStM0uwUcf\n0dwJtQf8v5iEw69uxtmtFnMwDgcogPEJQHtbhDupA1n9go52Kqi2bh3tEg4YEPQ1mbHnPNwBCD7P\nwoWAM1SGVQB6FBP2fwY+mr54MfDGCh8mltIOhBPAldiACZ2Gd8Ao9gI5u4sxUufcorE8Ywb51FYr\n9GoHoVVL+qOyEEW+B3W/YmWTxOwYOxWFZc7WqFH26D1W+zxypNYJsAqjzWIefEH57jZKQ+2DlddI\nV+GHlvTb1UpHdnDKCYgmrFz5WFhV7ED29Ir7pHl5QHu7WqwqL8+46JiVUocMQ4dSpJlFzvnvGMFI\n/aiwUE3G9fu1Bb127iQnR7YPLOP/W6k4IkuILilRi3nx3x8+3FytyQplyggfSygntbXAtdfqKwQJ\n2v/xDQ3AffdpVYUWLdLWKDh+nPqWYLDsVFSY99eiQetAC6ZiOR6r/iO2pzl0DbPuwDGkoAp56N0n\nCWcmfAMc5OoHVHxMuz8C6jftQGKrfCegFfFI1BPnl81X337hy5XyYDKs778PVOgUMfPWU7nezZuD\nLDmZsRd3eXATFRVANdwYw3HS9zvyMMBqknAIqK4mFtytXg96czUIhqAK7oAqThp8nfSY3UMmYGSj\ntTyCSCYrT0QpDt46A8vWK53KOxkZlD7Bn8+MamR0jKy/gJzeI3O20tLsjclqn0Xn5JxzaMPRDHwc\nTiyQnpdHm8CpqSdGfI6H+CrKypIzUWXHhkpIOFGJDXYQajQ/lp2eU05AqLByN8TylY8ktm7VEg6n\nTtVyx0XJS1GSUqaWI84dQLsJvDMRyl6qTP2IcewBlQbEw+mk702bBrS2AgUFJHkqZo5t3hy8swME\n3yezZlGIkTewa2tJmlP2fbF2uaxAWqiUKSMYSYSef37nf+MbGnB2YaEqh8qg99a55hpyEBi1JSOT\nxMN9PuCCC0ykNO0lzP4Y2wEA/y1wY+SepRGsshseUtGMamUk8kf5gVKJ7r/Pq42qx8XjzG/0HaTv\n0APH+uRqEnJ1ERdPFhpLtg4TzQlOpFxwAVliTU3GeQz1dbqhXyvG3gUXANu2KZiOxXgKswEAFTfO\nw9027nejaLbIL2cQS2XwSIMPqzG+0ylp/fcGND67GDvnUo7LufPcSDfoX0gVet1ucrg5edoEXx2K\nFA8mrCvCDTdQn+vriSoTSelRvr92C48VFACNjSHsfFjoE++cTJ1q3UDj43BGsaVo0Tmi0a5MG8Kq\njkSofTjZk35jOZofDuI6OmTlSU8cVFRUoKCgwPzASD5p4t0wdKj8bpg7F3jkEe1nDz0UeSfAwtgq\nA8Zqvp2KwXrn0ovQszkwGrdMMlQ0Fh96iP6N1twZzZfs2q5Zo11B9SD2z+g+ue8+7Y4DQLSkykp5\ncrTR9ZXN98yZwIsvmqv96MEodAQQbSqQF1B7113I0iM2czkGLUOG4NBfliF5/Hh5gmpuHhqfXgzf\n2EIMOC6h7oQQvV6Iu1CW+yAZJoVjI59o2/t0lXZjE23pLiQ0GFiX6YotdSH//02G871/yesWiLjz\nLvqXK56mD9XxagcQr3dYbh7xZqZODaIyaTD7XktWb8Z5pyOl/jDaTj8Did8ewsGDZHROHevDE/s4\nozsnD4lr7Fm5RonBCxeSSg8fTa+vDzb2dyMPE1CGOYoH03xPadovcd2L/89LY8zNjawR3ok//5kU\nqnjMvhfFKMK8ecLHs6NTkbe4GLrnEh0ENg9A9It7tbS0oG9fIDlZot4F++9Dq698uzBqN9LOQaxx\n0mOtP2awYs7p3VfRun+swshO1l3PTyqwK/DII/Rz+eXGoR0z6EX4RcyaRVebIRrubqTHZgbm7l96\nqfZzvTkQIc6d0R5ltOaOhX5YTXXxb2vW0PjYzsMLL1in1vAwuk/uv58MbR6HD8vn0Ki/gHyugNAd\nAKeTpB9TUtTPRNnMykpr17utDejXj6yCd96hlVRPoaa6Co3u2Zh0vAR/xzQc5dTID2fkoSLzGvPz\ncRWG69IH4aKCDrw5qpgqv/7oR+bft4trr9WpakzQJS4pJg6Aw2lbXtS54XXVAVBcwK3TgIIL5QdX\nVNBOQHJK8N942dOMTPA7L4YvjOoq+JevxoJr1uKrPvIXzlEHt+tjhvYAvenIUfrX54Oy4M94/dg1\nnYY4ACTu5ZSdZGByNMXFnedl0eyiIq0RqigkyrR5M3DHHSShecMNQHY2JcNOQBlKXPfCd+u9ePfO\nMkyfrWDSTcGnrOMuLZ9zEFHMnEmOF4MB7UhWziISMGqXRednz6YfXsBJNvfhQHKJIwqrr/xItRuN\n17rZayRS8HppmZ8717jPofTHatuxBmY2PfQQ/cTSDsIPgw7UXbScrkj87Y6xuVyU4aXHVbe71ydW\nEmbz1B1J016vNup//fXBhbZksOukuFyUi8DItHp9sTJ+2d7viBHyY3l5Uz34/cCf/qR1Itr0efje\nKVPQ6+234RDpQAwHDxJ16ne/M03o7X9oK0owFUAcegSyQuuQgbH1i/Hr+hcRZFqKNQVYFaKmJmT+\n61/IrFgEVAB4a63heUPGP/9J+Rf//KeUamSh4oAc2dnALpuOJ68c5POShVVSQrKyokNxwQU0T7J6\nC8dbqBZA//4k6WojYbq0FHjOC0xGcE6DHw6qKrzoOZJu5aoF+yBITMKHhO8a6YOjR+jfsWOBfTX2\nXlpG1XxNSuNu2kQG/LZtJOd5552Aw6FgrLsIigJ0Us59brS+vYGcEdAOgQeqMZ4GH0ZsiUDom+tv\nwwQ3/r5agePKMrhHeSilKdC2203513wxso0bQ6s/YNadjRu1n+XkBKv3RGMHQuyHSEl65RXrdQJi\nEScqkzialJnupuOES2GK1fTPH4YTEGnYuRsiceWjsW8WbptGc2BkwMu+pydg3BVPjTgPjz9uXe4U\nIGP76qvlFYj9fq38pnifPPCAPt/f66VES3b+0lLSu7RCFZo7N3iHJTUVOO+8YMlOPbS2Bn/GU4S4\nvranp+Pg//t/yC4s1C9wVlVFGYqXXgaUrjI8dS60VJJM1OOXWI0h2B18cEszRasnTiSpFWZ1/PnP\nWq3+cHT7jfDN18DKl4GBg8jqsGq4+7w45lCQ2qQTtjSiYtmBogBvvknOLHNSzh5Alu2hQ/rf++Zr\n+hGSxpuRjBSQE7kXg6CgARmgdg9n5OGJejfc8MCF4HE50aT+UrO3kzLUun4Dbu0ow8c1ZKFu2AC8\nOcqDONHx1LuGRgW89Kr5ut0a56B1/QY8f3UZmhxKp6ylWN33hht0DFpFwfNXl6F5LxnoHrg7pTrT\n4MOa+PE4Z1sVsA3mpHk9CM5M/cINWNxCykSv5RZpmlQUWpJ4J6Cmxkb9AYvweILVYK++Ojr0HrN+\niAnIS5YEsy3DQbQ47HrtRmKXoTsQTeelux2jE1HM0Qp+GE5ApJ/grrwbzNzfUMYWCZfabrEqs+91\nh4sszsOrrxonw4pgcqJGOQV5gUq0MokJozl86CGtA1JVRcnITz6pfy52HWWYPFme8aiHb7/V1jOQ\nOWsAMHcuTt+1C+lr1hjuFgAgJ2YQ0NbjNCQc/c56XwL4Hy7ATyFJGmbJrbz1sX277fbDwuf7KHpu\nA/6mDkhEYQkh5hl0IjePnC620/TGGxT59/mAl14CvthvrR1BWWgnhqAZKajGEPwU/+50ANqUDKy5\n/Gm4X/NgBLbY6mri3ir8HAtwGZxwwo+O6jjUfl+BAVa+PGy4tuQtB58P2L0FclUowTlI3FuF5r0e\nzEMRNmwArrzS+LTiJkKTQ8E8aC1shwNwN3lwTrtBTQOrEPqb3aIqE8lkNh0OSRtdgEid1+cjldzt\n2ymZmPn33YVovfL12j0RE2d/CIjVaH44+GE4AdF4grvqbjBzf0MZW6Rcan4OGFlP7IMsUh0rT5I4\nD7IKt5mZ1F8md3rOOVTMyumUz7WscNrEifoVU2TXzeulUJYIMYqvdx1lVY4XL1Y51gwpKSrlRyxg\nxktUZmWRA5Cdrb3eAQfE1pO0rwatCanGNJnsHFKUCuj61yTnwdNCkd5rk96WJw2XlmothYICY5Wh\npOTIVM/l8Z09xyYDkiJokUBiEvDII2gtnN5JUWldv4GSZ6dPD2vcBSAlo8HYiyzwyjT1mPzGzegZ\n2AFoRRwSeRWnpGQqgKYTzf8lSjXt4RBACckcBmVrv5+dY+gAjB8PfFPtxmpOTrRz18CApF9dTWzH\n3Fy5io2MfrJ4sVZZiCV2dhVEbr4dPX8NTChSRudwubRypKHC5yNGJtvJ2LaN2GNr18q7IxvrtGnh\n90O2PEfjtaXX7pgxNN7hw2nT+ESIOk+dCjzxhPpaSUmhzyKBSDtGJ1picrTww3ACgNgxPKOB7h6b\nUUT6RNfUmjSJqtsyxMerFXHDWUHEOSstVUWp/X45rea887SOlhFEQW7RAbj0UnI0WGRfrI/Ao7aW\njuPvMZmEq0WktOlkExZcSJmYHR3kBPzsZ4DTiYwJbkxfrcDR5MPp/p8Bn6ZRATOeA19fR6HDmTNV\nI0Y0Gvnz+HyRpwgdOxrZ9kJF63G0FxYikZufxL1V2DJ5IS5KAuR6KQQ/HEhCKxIhoYNx0BjsAfRs\nUSlAiejAMSTDhwx8l9oPfcueQdpZaWQRbNdKnbY7nMhqkikaBZyIHj2Bo6BiY4HwsH9IATzOGWjy\nKFJbVaWIUDKvGx5cPAwYuditlrLdoGr5izx+p1Nfv19GP1m9Wnu8308qwB6hpsHhjDyUNrnxK5/N\nyLbQ35qkPHiOq/0VOf8h1R8wyp+QQFHI+Rk7ltSTvN7IyJF6PFoqE2BMZ5KNtUeP0M8PdC//XDy3\nz0dOwImAZcu0qWTNzcGvjlARyVhuKNf3ZHUafjhOwImKaLjWkXapjaQTYjm7SZyH/HwyQBkNZ+hQ\n2t8WaTmPP67l8vMriNW5le0YsPP07h18vMtFpUVZdP/55+klLVaEGTvWWqXgUaO0b+rbb6cKwSEa\n9lL070+7IHwFZsWlL99x/Djwr3+pxnnOYGDN/8/el4dHUaVfn05C0h3ApDoJIipbEhIQlwEFEVFw\nhRlFxkRUHMKQHmdUYCJOnNHPbXD5iRpFVIRROxBwY4kTwcFxAQQEhSE6ImIiRBaV0SzdiUK6CVm+\nP96u1K1bt6qrOt1ZgPM8PJruqntvLV31Luc9bwkSJQn5Ls5AkZxqJwAAli8na0iWp0xNI4OflwWN\njjZ0AI7A0VqU3Aq7QztfpGFRIpRFlGCtg3auwIy+r+KlmImwNYqzAftiMzCk4QvN583RMYhqUjsG\nTVIyor2UPWpEjMZxiEcDFuJmPFOfj4w7A8bhiBEaJ6ApbRCidmnnbEWP7uQESBLwwAOWtenrAt18\nZ48GRsvbMJajzwfc+4ELdYGaBDlqbrWoldfPp8JiqVVGFACeqnGhbqGEt9ZbNJY5S/efXhfqlig7\ni4xky0W5evUTBoOsWqVIqQLBOwBHCvyxBtM+CIaO5J93NPe9MyNc8U6r57iji5IjiRNDIrQrQ8+1\nbgvaS69KpB8XKa06GVY0xPjz8PHHxFtnz0u8gLW9bZu+08OPWVJC31nRNKusVMuHpqQQp5+l91RW\nUr54yRLFaZC7/AYz5Hv1IkeS1aCbNInW+uCDwN13k0MkQ+TI5OSInRUe8fHkBDz4IHDffUDRUsCZ\nJN525xdq43zvHor8er0UYmQNFK9H23nY61Hr01fspcxCWrryWVo6UYV4DD8fuP0O+G67C6uvL8LR\naEWeFBmZwD//qb9u0Vi9TjW3rRGC1VgEAd8/OAXVyDz4Pr7IEHM2DtuTkJbZTfhdVFMjWropcqKN\naZmIfmc19RsYMRKNMUb5BUYm0+HQfLfqh4uwG5maz1t4WdoARJF4nt3jcpExL0NIhwlYjo4H8rHk\nbUkjZakHl4uYcTJSU7Vjs/KYubMl/HBTPu735rcWDIckGxoJbc12hhkpT5eLVIZYiM7xSXQ+tIcq\nekcgUhKxnQEnMwFdEfX1Yv69FYSTQqQX/X78ce22kexNF4q7LjoP7N+iY7vwQn15VHZMo/Xw4/KY\nNk1xQPTkIqqqgFmz1MXMosLm+HiFXhQfT9H5RYu0TzU5b+vx0HVKTqZjlTsqy/nQ+noy7ANzNZ5y\nCo6deioce/eqr+/Bg+RgyMfd0ABcepOiZR8VrSk81eA//1FnAFg0GVNWWsGuqaWFsiUrVigFxc4k\n4IILgBkz4Kirw81jxwJNDcoaH36YCMkDBgD9+9PnXDS7Falp1BK1rYW9APCL9eJpFqIIjx1+OL3i\nLEiP308mGtZOcUM127Gj1LBt4kTEzAwIZK5fD5SXQVQPWgNJRbEBoKG1VCZl4pGamQBmwgU3HPBh\n+DAbRl5qR9OSJxDjDa2jsVU6jNWoOdsEnW+ILhrTSAk4FITM+Tc1KFc/EaZ1mM3gSBLFI6wWBrPF\nxOedBzx8pwenvhlopmbhPenx0CNORwwt4ujKRcHhoOy0R2fmnJyue47DjROnY3BXBW9IiigrJiL5\nYesYbLROkVRle3RMlhGsU3GoTxZ+X0B9TXr1ArZuVYcHg62HHdfjAV56Sclhx8UR550dz+Oha88b\n+XY7NV9iwb+9SkqAZ58lAq/sDOh1as7LE7c25I+ZQ9XttyPF5QKuvx6ordUWyY4Zg4bzz8eheW8g\nli34DNYFeNhwfYObB1/sm5pGmoV8V1WW2sM6IhmZdO53fqG/PUASmz//rO0L0Od04KqrgCWCom6r\niLMDR/3Bt+MRxLHa3y0dp157ARxvva7+whYFfPwxapEA79jrMOCYQcffAE0Lbjcw7xnhJo09E5GT\nvBYb9/UHwHXNZYpPX/C78PhCtXUnd5wVdQyG1wvfC26sWAE84SEpTlFHXgv1rZZh1CVXDzt3Ar/5\njVKaExtLdCHZpwwFVo7RcFv2y+xs4viYGdTiOoKdt/376W+AtrNybvhi4lPwEz7udhnOPhaQFebe\nk2Y7u/bqRfEYOQ7SXjhe+ec8gr1aI9mZWU+Z3Oz+onVF3M4KEUZ28slMQGcH71rzBZydhTAoiqi3\nV0hDfpJs2KD//cUXK3SalSuJ+mP2ySI6tpIS6hFQVUWG+aRJocmszplDzgJLYhVVUzmd5Gicc466\naJh3AAYNohCb/HTLyaGOx6wDAIh16C+91Hx9Bweb3w/8/vcU/Rdh8+bA+eceORMnkvSHiKM/MJXo\nPGacAJEzITej4sEa9KzBXF4GOAT0L55ff2C/eLtDP1CXorYgphvQeEzoADQgCr74U5EwIEnQj8AG\noCVoZqX/sT1AhaBqsqUZWLYMrzgewKpjS7EGE5ECnSi8TNMSndsRI4HRoxHjcmEB3wCM5eMHLL9b\nvMCK9xW9eSHtQ+4YvH8/kJsLR3kZpgGYkLQWKyYX45YZksYBsFIzEGl4vcAtt6hr8xsayNZuC3de\nkkC1Mm434IauBW54PiwWA+uuw8RxGDFB9++nMiX5MThunDUniS8mno7FyJAdAADYtQv1j89H/FPG\n70n+8VdZSbd5exvhHama3V7OhyhRPmFCZOohRK81KwXLx2uPAOBkTUDXANtfW/Ti7aywWnsQSk9w\ntr86T9GRi6gff1zNp//6a4WqFGof8qVL1Yb0rl3kCLDjhJsgmZpK3HgjJCUpUp55ebSmp57Sb+LF\n4oorQtI19KcHOPfBahGqq4EExrjIyDRuY2qzAVOnUjMwHuxnGZkk2yra3+czz+UHtE6VHnw659NK\n8XBWNkXuZdiiyAHQQSyakVD/P7p/+/XnvrWQ0NXpF3Fw9Wfw+YAbsErfAZDx2WcB4j3D5Zc7Ngc4\n62Yp7CydxuOhiPEjjwA+WWyJ7RjM0MJ61ZRhpt1toAykHK5l/r0IAUL7DF8Bzk9VCO3BqDhut/hn\ntWWLMTfe1HqysigbM+8Z+n/BYIbnQ68YOMwI1l149mx1HKShQckKhAtFRe0r2yrDzCsm1NdQOMG+\nSh9+mP4/kmsRGeZme1l2BFgzrLM6AKHcRyczAV0NOTnAwoXhJyt2dP6xogK46CKF7mK2/N5IqlKO\nqG8T6MVv2xZ6yb/HI846bN5M/9hx5PBBfT1ZO7KOPzuHiYyJfHmu2OHAGKO1xTA/aasyni0tlCFh\nawjYtSxapKUjjRmDA088AeeyZebmqPMCvXpTAbNsHeoxEiv2Urh09Wpq1yrXEsjGJktbqKtT8/wl\nJ0XlZcpOUjLQr59xVsFMjUK4kJFJXAN2vha+lFcHzU3Ajz8Ct91O58aITiWCjqOy8dBAfPABMF0C\nBA1/1RgyJEQdSjX4CK7XS7XuCfDiGXCUsprQ6gPYsUNuQMVEzB0AitPWYtHtSodheRwRNUbkV9ps\npH+/fTuwZg0lrex2i6fQSM2H4dYkDJkHmGu9FjFEuruwy0VlO3J7k8WYjhwsw7BAl/GdGIr7qvKw\nj+u3yCOcyWuPh/o7FhUZv9Y6i/JMZ1AlGjmSfkPt1Zn5eEKo99HJTEBXgsdDkV3ZAejVi2gp4SLM\nhTsEwI978cXAX/+qdVM9HqLWsAZmOMvvL7xQ/FkoJf/yMRkVBvNqQXl5JCn61FPi8ys7C/n5pN8/\nYQI9CQMuvbfC03oa139qkAmKi1M3GQvlGn7xheIAREeTRSY3eNu6lYqFZQweDJSUoDkxEZ6pU9VZ\nD1bdiEflT+ScFRSQsVIbpGlW//7Apk2tSjQYN476IOTn09t/wYKAWHnASLRFkfHPcvZrqolKxUau\n7dy5bA8H4Jxzgdl3kfEsAr8mPRz1U1awd2/9bboZK/bwyMQeVFQAR8Zn0vMpSAAAIABJREFUo5lv\n1MUj0BrWCwkFyEcB8uFFeCy6BHixClmIhUDnkc3q6BSusspACfDi/5wFcHkLkDPRizcWeXHx9gI4\nFhZg6rVe81F4QYfhX5W6NQ5AVhbx2efNUwLzIh+X/WzvXorrsPu0CTK3Zvs2YPs2/OG1cbh0wP7W\nr1WZC1E2p51keNjuwvPmUZ2EjNhYbf2AESQJuPpq5e+fIeFyrMMcPIg5eBBjsRFeOINmA8IlnCe/\nJp56Kvhr7XhWnjGCKFF+772RES5sL0FEEdoryxPqfXQyE9CVICIshqMTR6RCAKKOvDIth3VT588X\nc9TNgHfx2S64srvv9dIccr45NpZ08Rct0o4XjDYjiq6fcopxt1iz51fuPbB5M/DMM60SkUcXvYUf\nKjcCcGI+8pCNFTgLTATQ4SA5jGXLlGLiigoqNubBRvlFYK2TpiZSH9q6lf6WJPondxZuVNR5mhMT\n1aTJnBxyWPUyEc1NVEC7erUS4efBGiR1dUpkf/s2auBWVKSVDgX0I+pr1tB8cgbB7wcWvqhzIgRw\nxOvTgDQIcPR5HDyohIZF1mGPHuYpRevW6ddgAOSk8UXOQZAALyZunI2oIPSiLZ85cOZOLzbc4obN\nQ02x1q6VjOnkgjA5ry4DAC64lQ6/LLgMUG22C6+4JXY4AEqC4rUFXkxekYVeNWXAEqAAqwHYkAHq\nOD1h31q8tqAYM+8PzXn5dDvwQJZCodej3VhhcMr7sE2NdbMDAqWl2GwXEmfnAg2KrLTt2FEscc7G\nc5P+qR0vDNkcMwimItS/PyVXQy0MBtROBQDUwokn4+eoHneVlfSIuukm/XHCwcdvQy/FDkN7R8uN\nePbt2Zk5kugsWR4jWHIC1q1bh7vvvhufffaZ4XbffPMNHnvsMezcuROJiYmYMmUKbr31VtU2O3bs\nwBNPPIE9e/bg1FNPxR//+EdkZWVZP4KTiAwirecfzNHo1cvcE4h/kuTkaEv+WQcAoP9fulSs7Wez\nWadG8Q5AZqYi42r2Kcq/NRiN+N6Vu/AWJuF6lMALJ/6Fa9ROgM9HuXVWTWjqVHHHnPp6tSNgt9NL\nv18/YN8+4CdO2pI1MufOBfbsUf7es4c+mz6d/uafshs30jl48UVtx2IZIgdgxEjia7S0EH/D7ycH\ngDWO9+6hsOmP/xOPK0JNNTlKDzxAf3u9rRKXQvCqQKYdAECXo1/rJcfj/feBxETt9zEWHslGBn6/\n/nQP2aJM04ycqMa/ul2HvocMlIFA3XX/sj0bS3+ThWnNdO4mYC2yy4vhdkviIlGdAlRJIsfhhReA\n95Z78VuvG6OwRThvbWExXlklAchHdjb91GWKyerVRAdhHYGZdjdQo1zbDKiPawjK4C11AzBR1arT\nYbiOaY5l93txF8iYXols3IBVuHALcNY8cpBkAzgtjW5tnh4jw+/XFvLy7DdJooOsLSzG29e6Ue0B\n3DUu9M6V8O8e2q7QsdEGxbuWu4pZhxlfo39/asdhBCMlIt7RGDIEuOwyurc6C0SGdWehqnRE8WtH\nFUC3F9qTYhXqfWT6jfPZZ5/h7rvvDrpdTU0Npk+fjoyMDMyfPx9fffUVnn32WURHRyM3UNRYUVGB\nP/zhD7j88suRl5eHzZs347777kOPHj1wNZvTOwk1IvW0yMsjPjXbGfedd9quixZMC19vu5QUij6H\nqt5j9hemF6Izct2DHZPdTgavLAz+1ltE2RJdN9bZCJKBGIvN+AiXYiw2omdKPBAscfKDAU9cnouX\nNr3gAq0TcNppyv+LqrY+/VRxAkRwOoHbb6d5Pv88yKJBXXLnzAHuvFPfOJdhxQGQ8cYb1HsgOprm\nGTUK+OYbsaHsDxQVx8aGNpcRKgSGdmwc1cW8xVGFJKdWjjQYDhyApWJhAKnYD+jXJcMbfzoK62+E\nGy644MagZuX6DEEZXHCjRc+gNuCvSxLwwEwv7v0wCzFe2sYHpTEZOTLAtBxgR8BwXrJETZupqCBW\n2P33WzpkDBsmOE6RoRmwYrfkuvHpdsp81LH0J68Xt32QhZiAcz4DL8COBmA7gGlr8FZRScCBIRXO\nZcuohn/IEEr8yQ5BRgY5CHxGYeJEpTMvK+DzyioJ8zzKOa8rB4p+Pw+3fjlOyQbExlnj1kQIbfU1\neJWjpUvJ+ZMzBqyj0dRE1JIjR6iROF9Cxz/mwg3RK23aNFoT23JF3razKM8c70b58YxQnbigTkBD\nQwOKiorw3HPPIT4+HseOGbwlALz22mtobm7GwoULERcXh0suuQQNDQ34xz/+gWnTpiE6OhovvfQS\nzjzzTDz99NMAgIsvvhherxcLFiw46QQYIVKuutMJXHON2gn4+uu2u6x8Yew776j7G8gOTDiPSxTF\nN3Ke+M9bWoxdd3atGzZoawP8fjIq2f2nT9eKEgNqZyMzk/j21frFj+dgF4rHzMd5i/OASQbOoMdD\nBr4RVQTQ0snGjQN2cI2iYmJoPKeTqrb44x05Ujy2SFj5k0+AWx+ie0uv0VetF7j5ZvpvJFBXC5QG\njnHC+ODbe2qAHj0jsxYeDUeJ4sOiWyzw+utk3ZbuEO8nRPjbvwRjyjnswK+z1Z/V7vfiq9lunPn9\nFvQ12tntRsxe5fnjwFE02bohuuVoq4P2eEUWslGMOkhC3nwpX/PNRe8bB6bB47GhVy1lsxrTMuGY\nqea/G8ppShKGFObjgSwytgGK6vv9wJZcN0Yz67ez9Qx79yBx2QvIf+ABzfh1dfQTZKP8InGeGiZh\nVs5kH0Sok/qb49ZEsplCBMDTrWpqSC9gzRr1+cvPV5KgeiV0ZpyAtmhlGL3S9CgiJ43v4w8dQbGy\neh8FdQI2bdqEl19+GX/729/g9XpRWFhouP3WrVsxatQoxMUpkZzLL78cCxcuxJdffonzzjsPW7du\nxaRJk1T7XX755Vi9ejWqqqqQYlRUeKIjUq56vED3PBxg13vvvdqnYltVieT9fT76x4Z9Vqwg5yY+\nXr8zSEmJEslevFjZxswx5eWJG3jx2LxZ20fgr39VOxtlZSRXsmKFsn6bTcMbHzcOQKqFNwy75owM\nMsT1cM899EZlncFPP6XxNm6k6/evfyl1HYMH02eiN+rjj2udqTvvBOpjgnf6jZQDECoO/9J+c9Vx\nRdLHGog6dMklFp2AEHDGmcChQ8IC6WYAp+MH/AXPYALWIheFuDZqbWs2oApJWOrPxqpcxWiu3e9F\nzbgsjG6gbY4iDnEIRKdNFKBGRQNgbhU52/CMTrZBE9XnOCgxLhd6Aaq/ecNXxOt/bYGXqEUAJJcL\nxcXU/8DnI9nLhQsBB4DRRgcToNCKxuf7BfC0FvkxKUJ2NmVA2HKn7GwE59aEoT9AZ4DHI86SdO9O\nNKBQS+jCweXWe1V3BhWek2gfdIX+AkGdgLPPPhvr169Hjx498Pzzzwcd8MCBA7iQU2M588wzAQD7\n9+/HoEGDUFVVhb59++puc9IJ6AC0h8vKPxVDedLyvb+Nik/LyhSDVk+bjd1/0iQxdScnh7jtgPpX\nLCvmyE3DAIro22zqvgSA+knv8VBRK4+dOylnbLOR8c1H3dk6CbNvGIAUh0pK6P/56Dx7jZ1OEi+f\nNEk9965dZNQ/9RRJiM6dS+szygKIjm/bNgC9gWDKM21BTDfKqMTFUVMvQNtJOMJoRDRiYKA01L0H\ncOqp4gZpenC5AhyYCMpLVFdrHYDoGCAlBVEMHWoIynADVuG9yYU4vWQiuvurkYIaFCJXVRfw1Wx3\nqwMAAHE4ioN9RqLvjaMNCN2B7TMy0XJgO9CoFLiySE0l/1iWhJQkKoPRQMRBscBJSQAVF7fWFqxd\nC6m4GPn5EgoKFBqPGy5MwFpxQTNANS4mwfPns7MD9e+CotpVq7TlTqaakBnJi3ZSuFxkxNdwZUSi\nLMmf/9y2uTqrod7RSt5dBZ3pPHV2ilVQJ+DUU0+1NODhw4fRvbu6I6X89+HDh3H48GHVZ6Jt2gWd\n6S7pDOgIl9Xqk5Z3Gth+CcEgGluvjaCRyg3vTKSmkqPB9z7nDWn+uPnsQVSU0mdg6FBg/Hjt/tOm\nhXZNxo1T9jPKIMifi2g/ixdT1B8A3n1XUTFauhQxS5eikXXq26L2JMJZQ0kXPyABuq9bGtYdG4Ob\n8Sa6gytgbzwW4O/bgJunkJSoXkdiFXTUfELBGWfCe+hnSM06BvuRw8AlN1CDs/XrgS/+qz+W5CQr\n0O0mxyaSEKkS3Xor1c7Me0b1cbITmJy4Cg6/Ql8bgjK8gly0bBmtG+X/7ozR6CsyNAWVo81jBgH+\nI62bNKZlIu5KF2bbldYQ115Lt67XS4ZyyMHsADVmhg/YnOrCjgoa5G9ON6kLydAxlusgIRvFeHmE\nG6OH+4H33lPuudQ0yvIhuEoOezrYKeRT4/NRjEBWEDqRIElMy5DAT0uUJfH5iAEVE0PJSjkeE2kq\nhhmTwuOh9fXqpbwCzK6Lf/2tXEmJboejc5kwHW1ataX9z4loEoZdIrSlpQU2keoKAJvNhpYAvUFv\nm6go660LvuajrkEQVVuLftOmwR5QOvG/8QYOFBWRzOFxCl9A7SfouZK10376CVHl5a1NoDxTp4b9\n/CRXVYHP+VRVVaFaZ43Jzz+PFNZot2ho8mPrzv/TT63nIfnpp9Vz7tqFqvvvR/WsWeodmfMGAFFP\nPKG+x9LTcWD8eDR//bVwXpV6zq5dqL7gAvRIT1fv/9vfojnI9Yu56CKkxsYiKhAebI6Nxb6zz8Yp\nd9wBIHAd2bX+9JPm93C0Xz/ExMYimg0x1tSgOj8fLXa7+nxUVmLApEnY8/LLqApkCm1+P5huAm2G\nZ+hQeP7v/yAVF+Pzzx3485ezUAcJr+BWbMQYxAmj7i1oWrkSLTExiOGM22bYWiUwjyVKONanD+J3\nf2V5XS0Q5zRivt8P/6Sb4XnvIzh94oLihtWrcfiSS5BQVoZo4RaEj1OuxrCbf4f4g99aWltDUjJi\nQ2iu1RwVjahANsA/YCAOjRmDxNWrcUqihJgATet/iek49/nLUP/eSvCl9ReBtOn915YgceY98Pwn\nCc4WCtXujclA97zLsIdRmLLV1UEK9EzwZmWhRe78XF0NZ+Ad0eyIB3zA/qefxNUJ1airq8Ejjzix\nfn0PeDyKDs6P5V6U3vw8fvUrH42VkGDqmG11dTjjzjth3/ctHADe6FuCghuL4ItLxBVHPcBy9fY/\nHPKgfs8ejB1rQ0nJGdi3j7QpnQMciLtvEvYktMA2frz6uKqrW+t9nnzShuJicjKysryorm4xKgVq\nxdixNtx5pzJfSYkfjz56CAMG9Gn9bMAAP8aO/R579hg7tLaxY3FGSQns++i+8g8YiO/HjkULq/7V\nSbF4sXL+rr66Dvffrxx/375HsXZtCw4eJDti4EA/pk8/DLu9BVOnevDTT8346afg78Px46Pwxhv9\nsGcPjZue7sf48Qfw9ddipa3a2ihMm6Zs/8YbfhQVHUBiYrPuNk7nMVx3XR1uvbWmdV1GeP75ZOza\npbw5WMVt0XwdATPnIdLgz9OuXcD991dh1iz9H1m41m3azupECLsT0LNnTxw5ckT1mfx3z5490aNH\nD9Vn/Dby95GEc9myVoMHAOx79sC5bJnWsDuBwRuGPT/8MOyOkmfqVPT88EOVoesR5vT10WKzwcbx\n5pvsdtRefz16fPop4gJ8AdHYoc4fv307kp9/3tAxak5MxIGiIqETxc/b6HQihgtntdjtuvsbQVq+\nvNUBAICohgb0/dOf0C0wvug68r+HuAMHhGM7dKSBY/x+ZEybhqiAI3N04ED4Bw6EPXDum6OiWr8D\ngMZTEvDzZZe1RrYd//0vHAZKQPYvvwRAxhQ+XwsX3HDDhe/QH2UYjHMhpoNFNx6jzACHKLTQGiZM\ngGfKFEjFxbpOQBOga6QbkZpiT4kFrr4QKBHzsmM9NXAKvmPnK0c6yr+x42KIHYCmODuijwra0QJo\nttvReEoCYn6uM1gl0AIbbEwGJKq5Cb6MTLTExsKfmoo+994L+0G6H44lSvjl6qtxZMoUdE/oCW9W\nFrpv3txqSLKw7/sW6XP+htgWchyqkIRHkp7E/61eBXtcC11LoNX4BoDumzfj+2ef1RjvzfHkBLQk\nJKCuzoZZs87AwYNqUXi5wdiQL8uAL/XHEkEqLlYdQ/zBbzFj7Cvw5ObCV3c96j/Z1OqE7UYm/vLJ\nn/HIlMNISGjBs89+rzLoExLoXLYkJMATUMPjkZDQgtxcY1qXxjlKSEBxsdRq7ALAvn12vPdegu4a\njNCSkIDvn322dY7vrr4By4v7WRqjM6BHj2bV8R89asPy5U4gUJj97bd2XH31L4YGoAiJic0oKjqA\nZcsoHDx1qsfQIFy2zNlqQALAnj12LFvmVM3Lb+PxdIPd3hIWA1k0X21tlOn1hwtmzkNnRFdddzgQ\ndiegX79+OMipknz33XcAgAEDBqB79+5ISUlp/Uy0jVUMHjzY2g6CmoOUlBSkWB2nC0H2TE2fq4ce\nUmnC2/fsQca//x1+ctunn7bm4Ox5ecgwysE9+ihRUBjdNZsgGxA9axaSnnxSld/THTvY/PyccXHo\nXlqK7qWlSNm8OXiecdQoWiqgzje+8QY14vrhB8RcdRVx7RnlpJRHH0WK06m/vyhf6fGgac07miV0\nYxwM4XU0WYPT/bvvdCsUWSM/7ttvgZkzqci5slL1HQDE/FwH52mnEUXC7Vb3HhAgfvdXSPvzn4Gf\nf0aa14MrgNbi1D5RVVS1ahExP9fB6XDA+dFHVDjetx9wUOv8RAP4D87HwYSz8du6IkSZmSwjE91+\nczOip02xvC7W4TgDBzBVxwGALUrXAQAA+w/fA7+fToXeooyA5ARuvBG2ujrgjddVXznKywG0IP7L\nnarPu9V64ezTB87zz6cPvF6irZWWkiYjV7gc+7NS4J2CGrz4003ovpwiZUnbtpGIO2N82/d9i9Pf\n/QiOB4gHI2eL/X46K8nJ6Xj7bbHoFd9gzL7vW6R99JE5jntSkvajsjIkJScD6el44TdrcHQh0ZTc\ncKHuoAR2aPl0AMw4bVHe8XqpmWHAMU7atg0oLkZSknaMpKQknH9+kngNonEDa6rNduGVj9KBpPOR\nnQ3cxdQcbNuW1GlrhFtPDbfWxx+nv2VlZhYpKSkYPFj9jDP7Pgw8fgFt7lYFjt0snFf0mBWtTQ/8\nq8hoLI8HmDxZ2Xbz5pR2aVLV1mMMB/jzNHQo8OijKXA69dcQrnVbtrPaCaUa6TQFYXcCRo0aheXL\nl8Pn88ER0GH/8MMPIUlS64kZNWoU1q9fj7y8vFb6z4cffohBgwbB2R5ErM7SnaMzQjY0N2xon/ms\nVM3wdQv19dqnfkoKqdyYHTvYNkaSoLt2UZGs3G/AiEjIExXnzlUq+l55BRg0CLj7bn2Cpxmi4/z5\niK5WO0VHEI/u4LQdea3HvDwimBqlMB0Oaz3PS0uNVZMWL6YOyYIoshBykW8AQ1CGdXYqSg0Zb7wB\nyIZ0TDfdzYbY9+O0l57DD1PW48wmxVFo7JeKmBibovkvOYGBA+FLPxtNN0/BKXo1ASbRHQbFzGYa\ngH35JfDqq8Att2ibsnk9dE39IkfCRBR4//4AOTswruQEBqYqPPikZI3zoarfKC+jeg0OS5YAE6aS\nuI18iHLSOCsroI4lwBl9ABxSf+bzQUNXEoIvSgaoK3UWtQP22yXMM9NQTEZblXd0inZdrnxhPYEp\nf4NbU82CtShsILlVvtg2mARpR0KvK7O8Vr7moj1e7R4PqV+zGDw4/E3BzCpuAx1X2NwZTKtQyhs7\nw7o7Cm12Ag4ePAiPx4PzzjsPADBlyhS8+uqr+OMf/4jc3FyUlZXh5ZdfRn5+PmIC3TBzc3ORnZ2N\nvLw8ZGdnY+vWrVizZg2ee+65ti7HHLqCblNHgDc0WYnKwYPprSp3wW2P8yWKfLNGu8dDhqS8Xrn5\nVbjXxs7JF8wWFSnGrlGlFv9U5rv5fvMN7af3lA7xqV6PONQ7z0CKh+ld8M47Stca+fiuuUbfCYiP\np6pLg9abzd26IUruITJokLpXggh+n74DwHfq1YHQAbBFAWefDRw9GrzZGBtJF9CG2Hkap2choUnN\n7/9vwiU4/yK7uutT6Q44SneYMz4jjdIdwJQp+opCXi91YjYLZ5JidU6cqHYs5Dluu53u4+xsNE7L\nVWn/azBsGCor6loLb3cjE8/7XXjxWmDTJsDht4El/ZSXU/IgNVVR5UmAF3cnujHxKh8aN6Uh5tu9\nrWP9abkLy6aKJfJVkIuSc3PJ+G+d0Nj41kWElHdEXXcBg74GBmtKbVDkVnm1na4M+Ry99BLQsydw\n113to29Rxt3m11wj1lzQU6o2i2CK2x2NzmJaWVXk6Szr7ghYcgJsNpumoPfFF1/E22+/3ZoGSUlJ\nweLFi/HYY48hLy8PycnJmD17NqYzXUUzMzOxaNEiFBQUYNasWejTpw/mzp2Lq666KgyHZBKdXbcp\nzIiqrSV+eUqK/h3OG5qyAxAdTUbVU0/R33wUOhJl9WYi35H65eodj6gNJBvtZiu1QhGWbivy8tD8\nwouI8ijGcQq8aOibCrB2YFmZIocqr0+ne3I9HGjYtBOJAyRqZKXnKLB1GR6PVsfPCkw4AEL0Po3o\nKQA5hzyiohkJTGtqQAn12gLfc756E9gZWGtFhZh209HQcwASEun6WznXEyeSMblli/hYvR7Swy8s\nBCQJMSXFaJiWi9jSbdptnUnAzJlYYZupptpAAjw0zQOCJdjtZERdcw3Q7A3UAdSWAUuAaikdy3EH\n/LDTWF4J1wYciqBBeEkCRo9WOwHMVyLju6CAEiktLfTzCVu/LYFcqjwprxpUUGAcGTcLVmUnqJPT\ngdBTV+KzIbNnA336UN8Eswjna0x+nIaj34AejEyYjoxsd1XTqi3rlu+dqqpkTJ0aQRnnCMDW0tLS\nNSqAdFBaWorhFjSYI47OqDPl8cB/4YVK8efQoeIn0UMPAQ8/bG7MBx9UNO957flwPOVEa5HnjCSC\nHQ97fUV0JL318uPGxqqzAYMGkWSknEUAtLKjwc6zxwOkp2tpO/Hx4nav8hgA0ZMWLNBs9yTyceTB\np+gwKiqAESOs0YIYNAA4hN6ItdInwBYF3HgjSS7yBq3kVD4bmEqZK5mao4cRgd4GAmMvUmgG0Kp5\nFtPNMOvQXjgWZUe3Zv2aAg3sDro3TfQpaEzLxKIriUYzw/sIHEsWasdatw7o3x9eL93WvM84YgTw\n7s7ecPp/wiGchtNxCBkZZIy/8AKwaBFwFwrwF6ilS5/GXZpmYrNnmzSKeRpPRqYwrM53/ZUhr0+C\nuXGCrsVETUFBAclhshAeL3dsFbGZuDZAB8rIIL+N7brbnvUAVssn+O0B9fVISgKyshowZw7Qu7fY\nC+C52215jRnt21GvMXldeqZIZzRT2oqOOib++qen+/Hpp/ZOdU6N7OSw1wSc0Iik298WzJ+vUn/R\npZLw4QOTY3fKriqhItjxGNGReLAGNZ+1yMkBnn2WhK9PPRWorVUyLStWqBuOyfdRsKzH/PliA13k\nAMjHNneuovsPoMkWjegWipZ/hcGYi3vRqpm1dKl5B0DP8YhzqGk4wdDSTIXD48YBbxVz3zHxC6/X\nXCOt0YG+ru3gBDRE2xHb5FccgEQJmDBBU4jbEbDkAACUMTCZNYjZW4aRe6cBAI5ir5YaddpprfUA\nkgS886oX7/zWDZ+fsgG+WAnbtwPymYuPB1BPdjRApRx6iLcDEByaKUNTFPIXbMjz0mUoUfjg4wRd\nj6DJmWgfs30H+GNLynYhd5WkGis/v231zEbQG5d3qMyUTwTLhtTUEB3o44+JoWfm9duW11hnpZLo\nRbY7q5nSFnTkMfH3zp499i5lAp10AsKJrm4Qy0+zBx+kUFtTgDoRGwv066eouIQrt2jkuoeSz4xU\nKGDDBvF48vl6/HEqdOXDmSLuvZw9efxxYPly6nXAy53wBFMrBchW8emnqntWdgAILRicae5St0RH\nwybfL0OHUoXnVVepnYb0dOBYMhWVskiUgFovdFG6A/j8c+3n7D5mHIDUNKXLVCjdd03WKsiIbeKs\n0VovyaIOGGi+ILqL4gLs0P9y37dKt6sXXkDfFStwh59+O1n2tfi1vxgNUKxAmYEqSWTw1QVUTzVd\nejMy8ZtnXXjxFjW1JTtbx9CEwDIVdRgOBQbj1O73YvW1btg8dAxr10pBDV8jY9mE36JZUyK0yzOa\no61iR3rjBiv0bQt2726/16+ewd0ZC07bYqZ01gxCVze9OhLWO3OdRNdDXh786enK30ZPIqeT8u3l\n5cCYMfRv924yFh98kP6xLnZOjrqTaVwcfRYMsuv+8MP079JL1QYj65Dwc4YyHrvdQw/RP9H3eXl0\nflhs3qw/ntNJoUoRB57tJMyvs6DAWrOzoiLl2DIySLvur39Vrykvjwq4WaSmqj9jr9XQodQdWAdn\noQwbf/kVnHMD84jGB/UBODhvnnK/LFlCDg7b+C8piaLw+/epd+5zOhG9g6G5Kfg2wWhGHg/w3XfA\n1KnWHYA4uzX+vF2nNHj3brr+YYEFWlUng8/rJ8tw0UJVgXF/PxWsmoHcpfdp3IXlfe4CiovR9xwJ\nmzYRJWb2bDI2V63SGpqvLQhYpvOeoX9ZWWStmoDLRT9BHqa49F4vGiZmYZrnGfwFz2AVsvBjubfV\nwNaDnrEMKLZ9fn7bIvd6c8hG/Lx59M/UqfJ66RlXUAB3gVd37W2F10t1GQKVV0vgH/vBjPVgrxEZ\nVl9jnRUeD4nXZWYGf8WeaODvnfR0f4c7elZw4mUCIunK6rn9ojnb06V2OlsbT6UYFQazSE2lijoW\nIrd66VIqGpZx9Ch9FswFN+O6W6nU0RsvL09NwZk0yVyx8aRJWjnQcIQW+HWKEBsLnHmmIoGSlKQu\nQJa7j376KenAb9miKCetWUOGveyUdOtGn8mSFDk5ankKwJDSFPNK6zV9AAAgAElEQVTDQaIpLV5M\n8338MVVlfvJJ6zZRzc04/e9/V94Io0er7wmA1rN8OQBOFvLQD8bnwhJagGHDgXPOoQLVr74CmhqV\nr70eYML40IY2S2GSi4/1HIamJmDnTvF3wcBmTOwOys4FU0DqhNiNTBz+sgUjdNae7ISqkD0+HkBA\nJtTlonrmfQFfsg4Snu+Wj49WAgAZnhKA/CDh6l+VahV8fC+4qUdBkLA3G323XBjsdreqIQEkdeuC\nGy1WJEg5RIrCI0PkHOTm0s9cOB9XfzAxai0KQfUHPEzTmQTgMwwsxQggwS6zxpgVSo9V6klnK5S1\nmp3gj1dGZ4q2RyrjYsZMY++dqqoqTJ3qgdMpiBJ0UpxYTkAkiGP8XcI/SQDtnCUlwY3RYHPxxlyQ\nfZsTE1E9a9Zx3RBNg/p69blfuFAdfdd7ijmdxEHn5UD1oFdLkZJiLivCo6FB4TwACh9CBDnbIB8D\nL/pdVqZ1ytj/93hIUUeSyHhet05LRwLI6TjnHDJgr7xS5QQAUHc85h0AGT4fNE6AWaiUfQwQEwM8\n9hhFIXd+EdpcoSAqmt48weYs3UEFzSHgy96XoX7gqTh/3wpEe6s71gGQnHTfbNgA/KhWTmqOtSOq\nQXGaaqOdWNV0HRpghw8OuOHCIr1of0Ymrit0oWoV4FjUDPjUCSVJIp+2oAB4/30qL3juOSARXlRe\nmqUY2AznRGRoDhsGYLt66hUrgOumepGYG1zjP1ysIQBwSsCkIIavkSqOVU691TlEUfvt2+mfcD5O\njnRQsyJHClDiz+ejtevSmUx4Nrxz4vUCt91GDllTk5qJaQZmjfWuTj2xWsNgFLeSVcPNjBNJRKIu\nw4q5KN87X3/dCRXiguDEcgLC/evVu0vY8R56SDvn9OnW18HP9cQTirHVkZU9obrg4XbdRePZbOrz\nbIV+w4+XmUlOhdwnARA7f3LEu7qa5ps0SX1t8vK0zogI1dXq/+/Vy7j5lhE++ID+K8oCsPdUeTlw\nww1Ajx7ADgGnu74euPBC4KabVOs55nSquhILkZJi7fzLOPc8oj7V1QH//GdwSs6wYdbnkGF3AL/+\ntbYA2Qyam9C091tVx19deD1EL7JSIA0gsexTvI8bMRId96I52GckvjtjNIbOyUbCnbkaBwCA2gGw\nSRjf9A6+Q38ApOv/N6cb0cd8KEcaMkBqTlVIxrfDJmPk0hlIlCTk5wPxS1sAweWWJPLzHnuM/vZ6\ngbcvcWOaR6zNLzI0HXChcuVaVY+CJzwupM12Y3QENP5b4XKhcc3a1v4Ju5GJtyQXJgXZTc9YDpdE\nqNEcvHPAIpT5/H4qOduwQXEgVPu3odmaw0FjNTR0TdpNeyGYw8PGG306j9zMTCp760hVbBbhzriI\nzMWX5npwj6PjiiIiQSA5sZyAcKM9QwL8XGy0NRzzhnp3heqCh9t1F43H8/EBtTEdrDZCHs/no6ed\nLAe6ciVxAOSIOev8PfSQ2oDftYuKgGXlH6cTmDbNWFo0OVk9BkD7tLQQ3579LpOr3M3JAV58Ub3N\nJ5/QP95xHD9efU9VVpJMaHKy/tqqq5WmYSkpwLRp2H/FFThz1ixFgYptMhfYBjfdRPPp2a+Sk/bh\nC4R/9SuyFmSDICmZOtXKdQTvv690qZVlQgsKqBqU7wIbDH4f8P335rfnEF3/i/mNLToAABnQk7Hc\n8n4sGhGFGJjoNiyAN8qJ8YcKUXdIwqNTCjDdG/zcJrZ4cQNW4RnkIwFerLVnob+nDPAAe5GK7RiO\nRsTgLsxD9qX9MTKECLbbDdgEPuiWLcAnUKvfKJCwYnKxpkdBkyDZxHcebhP9RpKw6MpiHN3rhgM+\ntMCGsd+68doCF2bebzxQOLMPVuZgnYMtWygDYAiuz0FFbCbcDdpUh64DYbLZWluoRG2BUfyqsxbO\nWgEfbxw8mF4z8uuuVy/ldcS+xrpaRsQqJHjw+6JLgcqOkVWKlALSieUEdESpvmjOxYvVdKCOlgxo\n690VqgsebtedH0907vmWjYB+PlMe76GH1E2y+IZZwZ5+RUXq3PS996p5+NHRihKT0wmccoraiB88\nGPjTn2jdN90EbNsG/PQTNW+6805tzQPvQMjgHUc960Vvfx5VVUB8PBr79sWBoiJkFBbSy5ptMvfu\nu8CAAXR/VVcD6E3c9sOHFb38qGjg9ddJLnXhi+o5du9WGwQ11WpLZeZMpXqxpETZf80a4Pnn6drt\n3w9U/mTumJqaqJGVXKwaGwc06NCb2hmnoB6noB4tYEuCrTU9C9UBAIDm5hbMxAt4ATPhERSG/i/6\ndJzWpF/j4YIb/f3KtUxDRev/vxabi6TsYkDAGzcDXimoGkn4y/ZsfKdHWQFwze8kjHPnt7briI0F\nNg1yIblUGWc3MrHe5sLMwD5B6TcmPAS/XUIhXNToLDBP5Yq1qP1dMV7hZDuDob0MYfkn53Kpj5+d\nTzl0CX8oLEbiKrUcqSkHwuKaTCsjMfB4gOefp0DHo4+G1rVXFL86XqQ3+Xjj11/TtZ88mf6Wj1d+\nbXY2hMsR482Hx1Lmo3clc2La2euJVMz5xHICwh19NuNU6M1pdR38XHFxilHXVieiq5Mc9aB3nvUa\neLFPbeZJUl/jQ3ywuWQZ0bw8ynWz1J2qKm2vAXldH3yg5td7PFrJhcsvVzuNMtatAz78UAnR8PMG\nw4UX0ptbRPjU0/nnwW7z+utq7f6mJmDWLKohYOfgo/3NTRTRnzEDWL9e3WRpyBCtpv/69fRflq8w\nZox63L176JzJEfduscCxBhihxRYNW2mABmV3AGedRVbC++9TkXypgCLVAVBXiFjv9XgM0egGcjqb\n4xyIOmpO9SgJXtyBhRiLDchFocro3mfPxM3+QhQhp5XiAwDlSIcbLiTAi8vtW4Qa/gCQ2lAGrAqN\nx0KGsITc8kKswUSkoBrJqEEhcpGNYpSXS8KI86pV6n59DQ1AaYWE11HcqlDkhgu5dsWyNJS0NElj\ncbmAlCI3hjD0pV41ZVh4uRvz/PlGu2oQqiHcFowbR20ehg+nn6wsIap2jiQUFxMVS5YjNXIgVDDo\nmMzDbHZEfpzX11NSt6wsBQCVfYViqIviV8fraxSg10GwtkIdHcsEwuOIsU4EGzOcVg/AIIHfVXF8\nOgFGrmA4o89mjXnRnFbXIWo2ZaEw+LiDWXff6DyLntrXXEO88pUrWw3qw8mDsQ+ZOAsG9AdZRnTj\nRsqVyvQfGbxBLa9rwwaDgwzgiy/EhjqfkQjmAPCO4z330L/HH6dshczZHzoUGDtWof3IGDWKah6+\n+Ub57J13EHX99XAuWyZ2Gv77X+M1yfB6ab7u3YHh5wMXXEBRfhFt6ov/0r+lSyl7sGqVWPKTpdwc\na0Bd/GlIqNdy2GXY2B4Jfh8Z/VOmUCdnk/KRltGjJ503UxKo4UE3NOFgn5FIuWoYHG8vB0w6ATKG\noAw5WIZcFOIZzAYA3NcyDz8jAetwJeqQABts+A8uwAuBGPpae5YqCyDCli3AkBCMWNkQ3p27Cinb\nlSyWrLzDdxA2wvDhQF2dhGfKaR9LkXUdGovXla8x0idPBrBIvXs9c7ta4dqbMYT37yfJVIBkPvv3\nDz4uD97Qr6sjJwAwp/dv2mEJs2ejp24DdIyh3tkpQ2aN+87YJK2tjpihE+HJA/7dcV5PpJyu488J\niFROTu+X2576X/xc4aoByMmJvEsfzidfuK6xyGiV+fMMelV/jSXIRxVSMBYGikHyE+eee9QVU4C2\ncZiMc8/VqhAlJSkKP7KWv1mlIrYANzmZqDgxMcDFFyuUIkB9DZ56itbGq1p99JH6nnjnHWpaxjo4\nZWVIevllOPRkL30+zfkU4tVXFXoQQB2UZ84kOpAeaqrJabvxxuDjA+gRY83YBUDOxZLF1vczi8MW\n6gjCiL4Th1EVpdV+CQHcZFuOy1s+aI36LzqaA8CGDFBdSBWS8QXOxky8gIvsn4kdACY7sxuZuHW7\nC72zgkTAdeg2khRoBs3RTUZhC+6zA1OyXeCpRiIqzYwZ9E/P/nS5yO+U1XtTU42dhE2bgAfWAHsD\nyZHWCP9MF7BBiXbvRibciAyhff9+it7LWY9x4yj2YNURsNrYS1RQarquIYwFEGZUmcMBM0ZaV6AM\nWTHuO5v8aVth6ER0sNcTqemPPycgEjm5rvDLtQLR8SxZooSKFi8O37F5PGQ4FhUpkeq2nr9wXGOP\nh4xak+iZEo/rq0rwES7FOTB4o/h8dFzXXKN2AmQpT75vwbp16v3T04lHb0HLvxXJyWRwL12qFDP/\n5z/03S+/kHOid45ET/ONG4n4uXo1KQZ5vUrXYgaJb7+tlggNBawDAAAVe0mMXEQHYuH1kNxIWjpR\ngPSQlIzomq4n3xYxfPAB0bRChLPFAycj5s9SgAAgBdX4AwLOk14N9LEGHOwzEisPjW4tzK0zMiyD\n0W1cLlQuVRR/fIjDRdiGi/zbgGuLqE6Es3xF1BbA2P5kFXtV6r0cjWU3MnFbqQt1zCay4exySXjt\nsmKk/OLG94eUwmQZSUlU2x4OzJ6tpT3Nnk1iW+GCy0Wndy9zG7z3Hv3XdA+FDkA4411mjLSuQhnq\nqsZ9xClKHXxiIjH9yY7BZqD3y+2qEB3PhAkUbd68mbjU4WgFKDsbTz2lpqp0hvM3f75YD1+EoUNx\n0yd5mPWgE+tnlqDh/FGBDkYCyJx4gbGM99+nIl+55eJFF2kpPdddR+HFOXPon9wETG47effdZKH0\n7asdf8AAZV+HQz32rl3kjJlpcynD6wVeegk4eJAahQ0ZQsXImZnKNklJbXcA9LB9GzUn69ffeLvP\nPiOD9pxzgWhBXGPYcKWq7SQIFXvJgk1NUz4bMBDf9z5fvL1eB+Q24rszRuMZ5AsbSWmgpxojQ5IQ\nu7oYRc67sBUj4QBT0O2poXs3QOuS/YlFi6hYVS4zMbME1tDdu5dZgiQBhYU42GcktmIkclEoPC5/\noFnyiwuB7w8B0QKnoqaGfOBIsdBUYLr7Gk3Id0pmqVKSpPUp9+2j82u6y3CEwHd0HTwYmD69Grff\nXhX2WJ5spMmP7pNoX7S1Q7PVztHHA44/J+BEvIrhgKiJVlsRqTys3jU228vdLFJSyOAuKYG0dD7m\n+P6KO9ddi9gdnxCVSOQIyJ/xa4yLI0OadYZEHH4950J+uzz5JDlVIqN23z7j4y4qUhyQwYMVToMe\nfvc7bQjxttsMQqERwN495KDedjvQvYd4my+/JFWgnV+QshKPSy+lMO+AgbrTHEUsGs/oF6ZFdwDi\n7Nb32b5d3Vju0CEkjx4Er03w1vztbw2bnLXExKImMdV4vt6nqcfIyMRZ81y6hmUoSOwvYeKmfEQP\nG679sqa61WLXo7a0CV4vkJuLvoe24SJsQyFykQC15ZuRAcT5vMgufwQbcQn+gmdwZ8szWGvPwmXD\nvKq6+rCsCWSEx8Yqf8fG0meta87KAuY9Q/8MrHWZqj97Nv3jaVt2g1swXMcSCnjD8OOPgbvvrsKs\nWdXtbqifKOZJuF/FVtAWR6ytTkRXxPFHBzLS7wqVTNUeZfDB1hfq+gP7JVdVwTN1qrI/ezxtaUQV\nCtp6/kTXGLBG2crJUevmR0dTEzdJUqL5soF77bXaiD1AjgDLwWePi13jhg36nH5WhSeY4DT72W23\naXsGVFcrPQn4axwfr3VARo6kIl+9c3TokPazb74Bfv5ZNWdzdDSiRALrAI7Age6ijk8AcEoC8HOd\n+DseNhvVNojQwsheej3US0Cm/rDKIgYOS9xtLkVutBMpAZlCRibw7LNkqBs1U2MblMXGaY/xqB/2\n4tcRc2Z/HK4CevgDb+8BA4mOZlA/YGtsQNLNV5NjoXfufvwfZR5uvLGVI5IoSaoa0D9ke5G4YAFQ\nWoqoI0fU+5tUjZEkYOSIFuAz/VMhgl5TJOESRAo3XKZCLkx+OzUfV15Jh/yHbC8aJmahFycy0N9f\nhtti3FhvoYjZLPr3p0eQsDDYQJNfVH7BUvXlBIL8vVFTsY4GT6P4KaAY3N5FuqHwuiO1xkiO25XZ\n012VChUqjj8nANBexXDo4EeyIKSigpRXZGOSX1+o62f2SwHQ88MPKRotUhqKRN8C3hCVG0dZ7ecu\nAn+NRZ2ZjciWS5eqdfObmoj7Lhv7enISPKZNU0f/9ZSoRE5AXJziAPTqRXpkeoLTJSXqa/TWW9Qz\ngFfwYXsSbNyoVf5hUVNDFKEnn9R+5/HQGAcPqj93ONROAKDrAADAlzgLF4IzCs85l2RPN24EPivV\n7hQVrajlpKUTuXjft7pzaHDttSqeeGtr1W8NMh+ffaZsv2WL+blMoLHfQMT8XBtyES4LtkfAMURj\nJSbj18MSkfj++3Q/GBUxH/WTI5CeZnhvx3y3Hz1uu52utd8PvPGGVtZVD0VFdJ+21mdwfQwq9gJX\nXaUi3bcall4v0eEqiG8TJTuPzS3KhmZVY0R0vKRkItoXFGCGD9g40IXPvlX2/+AD8gONuOtWhWsu\nHAHkFjLbFLiBGjENcdgwIKMuMpr//ftTDYDGsBdsu2ULsN5H50NOFvLlF3r9EuRz4/fT/jJ1qr0a\neVlBbW0UJk/WPmbbLLoXxLq2YmRGUuckUoZ6V6l7OAnC8ekE8AjHXRkp99DjIW64iI4jzxfq+rn9\n7Hv2KPvxxxMJJydU58lsiILdzoymfTBUVirjmXEAhg4159CInKG0NLVqTmUlvX3mzBFf7+nTtZ+N\nH6/N4rA9CZxOclBEDoCMf/yDHMN584Dly8lZ8fvp7S4Kjf5ksukWgIrYwdjUMFbrBHz/PVkEfr/Y\nCcjJUVsbQdV5OEPz44/pbW6lEnH7NjJem5qsORxBUIpzkXSoHv2PhScnzuYyuqEJ16EE3d8IXKe0\ndIq0V+wV7guAHAEz97bDQZb5I4/oOwB874UPPiDaVUkJ015WUNS9YoW6CleG2y1eO/vbNqMa4/XC\n5/XBZ0uCs4XoTh5bEmJefBWn5OYC5WVwAHhFWotxKG7l7VdUmJPl1F2CIFMxulDH0uaRkQnHTBeK\nZ5pzMIx6kul9JzLc3yp0IZHr7nvrdhfqOJUlXgnISCnI5aL/v/JK4IorrBUGs2vPzib1X/Y42tSt\nmcOyZU7NI/XCC5XkakiGcZit63AZ1Pwr9Xg21Du7BGtnw4nhBEQK4bjb5s9vXyqOHiLl5BiNq0d5\nMfMQ5bfLzCSeuxzJD5bNyMmhRlDNFjuoZmaS8k98vPlrLnKG5s/XSmfW11NGw0zvAIDWIOpJYAU/\n/0yG//k6BaFGiIkBGht1vz7t1mvQHH8PDi9Yih71zD3uqaE3+YwZRDNhjW7JqbYaJk40XgObNZCx\nd49ikchWg98PDExVZwPsDjV9xkhdSG8fFtExQJP6fPRCNc48pt9Ft61QUa327qEeC71PI+pNiKiW\n0hGT7UIioKhLMWiOisH3yefB/8sxDDr2hXp+kr4hB/L778UTyNz8MElAqhCwdB0BQ78KyViByVjQ\nMgMvP+3GaIb6cqpX3UcgAV6M2tIGC9NMmqBVRoe51yQnUEjpAgmmfBzdrsVG34kM91dWScgPrHnL\nFpADEGLXZtHaMjLMNT0T7btggVKStHYtnaLcXINuzWEAy64MyTAOk3UtvxrNvgqCjcW/UidMaPu4\neujIJmJdnYrUETgxnIBI3JWRvNtSUtTrC3X93H7+9HTYO0sVkt75Ez1EJ01SqDIy5s5Vb1dWRso5\nN9xAfwcz0Jcu1ToAvXop53XFCrV6UHIy8PvfW6cy6TmK/DUdPFhuZUl/8429Fi/Wp2y9+67+vcHP\nExurLvZtCxob1TURHOKTHLhnjhOAwFFZvpwixS++SDSs7duBb78lyszCF0lJacwYcS0GC6MmW7yk\npOQEbp5CId9hw+izRQvNHStADsA//0ldkEUOQ1MjzcHQfs5E5BwAIUp3WFfyOedcNCAG35TbsOno\nBXjBOxO9cyW8VehF4rfarEhdcw/0rdTh/ft8HB1If7MFDJ9cksCI8KuzAc32eOCIdgwhOI57Cqrh\nh13XsE12AvCQA7AmNgup28uo10CoFmawTIUso8OeH6+HQt4mnSKjKLzou9xcMqCDrfkTQJMBkMHT\nefRqI6z2EjA6LvYxVV5Oj3a2TMnK2CJMnepBcXFKp4jBseBfjfyrwOorXPRKHT+exgqHSSR6xXWU\nnP7xnOGIFE4MJyASd2W47jZRke7WrVpueSjrZ/arChQGZ3QGl9jjURu0gLEiEduNV84WFBVpt3M4\n2vZrnzZNOa/XXKN2AqqrKfJu1QHQcxT5a+rzqQ3lo0fJCB43LviTNVghPEt0lTtNL1mi5fuHgmnT\nUHXkCGx+P5I/+UQ5Z+xb5Z571I4KABz6gf5ddx3w9tvkBLCc+Yq9xrQWI8gFowsWqIsevR4y4m+6\nie6V7GwKtZWLOdoa+H20VqvZo/aGUXEwD2cS8PrreM4tYd5O5eO6cuCr2W6M5uoYGhEDCbXisTIy\nqfg6iAPQJCXjpg9c2BFIyqxZQ3ax3S7hD0vfRtzLC1D+Ziku9q/DKfgF3tq2KVA54ENGBnDWPBeQ\nq6brXFfoQtUqYNQWNzkAMpgCWRZhoaMYyehEANu3089szBjl0QAEN+zT0qjH4O7dis8sI8xNfU1B\npFPQFiQmNhsmUkMyjMMQcORNC9GroK2Ijw+PSWT0imsPw5t3QE7COk4MJwDovCXfZg38UNcf2M/z\nySdwLltG9IuOJMoZ9XAHtA9RGayTJaJQ8dmTYBA9rO+5R3mqbDNoUGUWwRxF9po+9JB2/wsvVF9z\nvXvAaiH8nDnkDJx1lro42ioCNRHVP/2EqNpaJCcn03UYOVKdMZHv8cceA+avVFNmGo6Sw9WkTytS\nIVHS56hLTmDgQGDECKCujrI5PPw+pcZA5hjMnm3ckIxFSYk+1YZVJRIhKhr49a8pA2KlSNiZRI6H\n2eJcK1i4UGO9JcALF9w483ttgXQMtNepAd1Q2fscnFH4PLBsmfF8khOF163GjiXKnHv3sh11JYwb\ndz8W+YEf0Aen4Bc0GiR7NBDQbW6QPsCUwplI7K+1XBMlSbHzdaLgMkRUm8JCLW89KLKzA1yXwG8v\nNs5SZzBRFD5Q70x989LUvQwASn7JRb5JSaQwzJdl8IZ9drZCv9m+Xekvx7L1+Ci8oXqSALJT5fPR\n2lknJVjSMhzFxnx8wgzb05AFHOx9HiKFeNy40M0XPb8kHCZRR0be9fQzOoqK1FVx4jgB4UY4KUaR\ndlA8HvSbNo0Kg4GOJcrp9Q5gn0wbN1KmQE9WUwQ2im8GZmRG25qHtYK8PC0F6e236S1l9TqZeTKn\npgJffUUFx4C6MLipifj+w4dT1HLbNu21iI+nJy6AlKeeQsLbbytvb5keFB+vZB5kNB2DurwV5h2A\n+O5EZt22Tav0Y3fQukt30L/ly6n2wAjlZWTBjR5t3gkQOQB9TqdQ6/btxk5AcxNRvq6/Hnir2Nx8\nAB2HqAmaFdgddC15R+Kxx4B332013n4s92IVsjAEZcAhkIHaYOwoxuIYzvixlCzGUaOM13Hjjahz\n9Nf9urycOvgKUcDzhwQQ0G1SvHuBVYGovh5dx0B+VDZUt2zRUl2uvVa57U0ziFatUp/ThqOW6EBG\nxjpAP+3hw4FSQc09QKJgdrt4nezpKShQHy/rSOgdq5UMAe9UyZCdlN/9Dnj1VXoM8lmAESNayyja\nBKtJdlMsYL33Obfzj4vewpJpG/HHe5yq/UU6Ejk5wY9Fz7/oKHpOKPoeVtYmes0tXdr2Yz3RCotP\nOgGhoiOJb1Yxf77iAACdjyg3Zoya8+900t/s05Y1wkUO2L33Wp83mMyoUR7W46G6hE8/1Ua+ZRg5\niqInzeWXq52Ab76hjiVJSRQqa2lRh6ja+rRKTSVNfBnDBQ2W5LUOHqzOvtTXUzvQf/8bybxTV1am\nHMfcuUo4LyUFQLS5tbGa9q1zHgHeeJ1064efr9aj9/vUNJhgDoCMTZuAs88GYroBjcfM7cPjqquo\n5awpWlELWTVWYdZR4tH7NODYMXJORDShAOdfNt72THsBQ0qZ42g4Sk5O795iJScW5WUGFnwADkdQ\nPfnhwymRg8D33aJbgCZQMysgeAjeAt1GiURLcIwqxqgEN4YNAxwzaUw9Q1UG2wiprRx1UwsFAJcL\nEpPBEBnrw4ero+qhwO/X/87oWM0IOAHaGgAZspOSkEA/K94ByMgIjwMAWH+Etinyze3cu3IXjj41\nH5e+O0flSMivv4suokduVRXFxIzidsGck0jFGfVecaHqe4QjPtmWYz0RC4tPOgFtQWelGHVmiJ4a\nfNEvYOxkhdMBCyYzKsrDejwUPZYN3c2bgX/9i6QpRbUcDz1EBY89eyrdOEVPmp07oUFhoVaqU69v\ngPy0EhUd+3xUOG2zUT7fyjlzOsUqRNu2BZebZPP5VVVAwmCgTodTzsLh0DoBMvZ9a47GZKTkI0PO\nHISK1DT6r9m6AoAMeluUusmZVQiUiIT4+WdynvTQv19rhF3KzsaIfQIK1aEfyCrjJUFFGDaMrDhR\nPYczKWDAKtFiH6dHn5FBNJUZMwDHBc2AD5Di6gH2p1leRqpRctaFD0ubbCqmNfAlzEM+MuqA4pmk\n7KlnqALkm9eY9DVVMLk+7UID25tIOchZALtda8wnJQWn0Xi91J7DCHI7jUjVA4jOfbgyAIC4T0BH\nGHwiR2LpUnXMRdbH0KsLsOqchCvarfcqNtu2py1OldUYmxmciIXFJ50AI7RXXijS8+Tlwf/GG0o2\noCOJclYMeCMny6wDZtR5t75erchjVmZ0/nx1xB6gfeSnBTvnxInAyy+T0XrwIPHwb71V/KQZOVJL\nuxFp9ev1DWDfEvI5lo+RN+CN3niic8aTZ3v1As45xxplCwDscUCd6AtO67/Wq/2MxaEgqjt2B3WE\nnj3bWEEoFKSly5WsxMUIJmMqQlscAMkJnN7HnN6/kQMAG0tvyPEAACAASURBVFDvUyLsS5fqZ1CM\nGq3JkB2iK68EuncHdn6h+nr7gMnY5JZajUZWT/6qq+h0sgZlfHwL4NNp9MzSrvgiXpOcFD0Dn41y\n2/1e3AUaxw2SzxwxgmIAPA3HNEfdalWtQVdfefc1a7R1AAA5AKyz4nRSPCKYEe12tyaJhIiNJfbb\n9u1sYbc1h0AvI8QqDfEYPZr+a4YZFgyiPgFGhjZggQUseoZyO+/EUMyH+ffw5s30r63OSrij3R0V\nC9UzJU7EaH5bcNIJ0EN73UntMY/TiQNFRXAuW4YUuYC2I38RkXxqsA9fvhOyKILOwqrMqN787PUs\nKFBHrY8epbewCPfeSxkF2QkJosOvAf+WmDOHQjK8wwIojofcswAQ10Ww92NJidLZurISWLdO7TQF\nw5AhQGwfnYZjImNfxwEwA78PyPtz6PvrYcRIdSiyoMC4DiAS8HpofjOReSPYbGrjvg3H8UOvcyH9\n8B3iA5KrNYmpOCUqFt2aaX1HEYc/l07Fd6VizXdDPfl4TiLUmRSc7mWWk2IErxe3fZCFGNDvZwLW\n4t7UYhQWSq3rDFkhJxzrY9Bi8FOZPFlhSJltLKaHESPov9uZImp1YTd3HQ0m4DNCNpvakdArgNbr\ngxAOGBna8qtl/HgqTdJNqBq90zduRP3j81FUBNxXlQcvnEJHQk8fAxCrZlspUWyPaLfZ9bS1tFJk\nSkQqu3C8Ivrvf//73zt6EW3B//73P/Tp0yf8A8+dC6xcqfxdWUlPqHHjOsc8Mif9o4+Ac8+lJ5IB\nqg4fRv3IkUi54Yag24YNFtdoapy+fekXLRpTfviuXEkP3TffBPbtU76vrAQ+/xzYYUD/uOIKelqM\nG0dji47h3HPJkGc7ywweDLz0Eq2NvZ7HBDzzIUOAxEQl3zt0KPHrnU56w/znPzSvHuUlKYkq5rZu\nFTeaY++hjz6icyHCiBHAffcp52vtWjLQAwW/qrHOPRe4+Wa1wV9dDUyfjuqMDHTbvx/ReiRipxM4\n7zw0jRuHX6b/GdHFb1ERb7jhiDfH6x8xkrjy/7OoOZiaRvcUQOouW7eS9WJ0P0UKXi85ubFxdCxN\nTcARs2L6MkSWY2hynNFHfkb3xl9a/473exHdolzjGDShDgn4BBehpoZesiz7raaG6vAvukj5LH5h\nAWJ8R9DSsycePvIX/GXEx3SsI0cC//sf4AtwhDIy6Tdq8fkyeDD5sTylJyMjMJx7AaLWrmn9PAXV\nmHSjHT2vVhbpcNCaL7oogo/VwYOBdesVJ4073gUL6KcrQkYG+amXX65do8wyeucdKm1at46SWg4H\nTfn+++qagtRUuv2rq2l7EVTXsXWCNcCnn9AxyBMEIJ+/Sy8FLjnbi4s+XwDH51uBwYPhkByYOJHG\nGzWKDvm112i9wvkYNDU1oWdPIDpaXINUXV2NjAw/tm1LDvoIBdSvlq1biWUnP7I1MHqnOxzodtU4\npLrGocXuwKWXisdxOEjJ2G4nYTBezfngQbrmstoxu73emDJEr4RLLw2vaWN2PVbWbRZtOb62rqc6\nYBOkpKSY36kdYGQnn8wEdEV0hXyXlcogI2oQP84TTyjGMT8mHwIQPd0PHNBfM+/2Gx3Dli3BC4Nl\n2GxKqC4ujmQUJUmcx9TLUrCoqaHGZbL+/4YNYlqOx0NGaq9e2nMxdCitiQ+ZiEJq9fX6sq4OB2pu\nvRWOzz5Dt1odrr/HQ92RP/kEeKeUCmMfeojeZGY72wbj98d0U4zCYOPMmUNrsFILEGenIvHHHqNe\nA/JaUtOIHmSm23AkIMvApKQAlaIMi3kctiehh986yb0aTiTDWgVqj0YtzUYXzYHfjqzgJF83Z0BG\nZubMkELBwSLRIjgcYeoVYAbsRBa1SGXKktGmRo29JIkeLy+8AHz2Gd1msqRosMJu9QTBey+0Hqug\n7oEtgA43EhObW+kkokfohg3Kozmc0XOz7F85yp2XJ378GilOG82Zk9M+0W6zCf9wEwNyctRmQlyc\nOXWlSK2ns+OkE6CH9soLhTJPV6heMbNGM46CqHOK0ZjBcPCgWvpz8GAShhbldo2OwekEnnySKhqn\nTyfjffFi7fVk54qPJwKtLJkZbD4jyHpoorfE0KH01GM/S0kBbrxRCRuxNCAWI0fSC5nl/vv94nWl\npAATJ6LfzTer1aeM8E05hRgLC8moFqFvP+CXXxQt/aRkynzcead+Aa5ZZR+/j3Qd4+PVn9sdwG9/\nSxma7du1DsJRv9JfgEXFXuD2OyiDtGKFeVWicODVV4Mf9ykJFLY0oFY19j4du2rPwE5/KnLwuunp\na3ucjm8yJmJHKXAHtJ2XWeegIjYT7gYizJ+f6sUrtVmI42g2LpeOtSoq2AfoXDscGivXipFuyMoR\nFPDWZrtUdJTVq7Xa+WGBhWJgEW0mHMWzkgQ88IByPt1u5RiNCrtD0u436TBY7UMQDEaGNtuj0hIM\n3umhxO9CVc2Woaenr/ca6upYulTLwJVflSehxUknQA/tJQHalaRGww09I5s1UPUMABGMiJQswtWC\nsaJC3XDrrLNIe18vvFRfT7lGWUffbAaHdSRYyOeGvYfq6ymkyRcOV1Upbzw5LOTxAMnJCq1Jllq9\n7TY191/UdEse89e/hl2UcQnW6cftFjfMSk2jdbEOwOrVQP/+ZHnccgvwxX/1xzWDxmPAz1x18k03\nKVbTc8+p1WeCYcsWOodnnEGOkRWloLbAjOOTlmYs7RkVjZgff8B5+AGZ+Nz01LU2CXjvfaQnSHjs\nOi9uqFiJFKjP13LchB5OOyZPBpKmujDlVQmlpcDsJjfiGBnSISjDm1e64ZDaHvIVNfQKmTMuKOB9\nxS0ZauezAfvsbG3wnnVQ/pDtReIqHW/FpFEsjzduHHDZZdaKc80Y1EbnU17KzJk6TpdVFSQTiFSn\nYj1Dm30lmY7VGbzTQ43fBVPNNoKenn64jeITTV//eMFJJ8AI7ZUXsjpPV6heCTUn5/Opn3S8Yg+L\nXr3Ux20lZGKmBePEicDDD2s/kzF9ujbkMH06ac/LY/PrkB0AQPsGyMsjLil7rMnJ1OX5zTfJwmBJ\nuu+8o9CQZPUJo27MgFbeVEZKilILMH26ep2VlfQ9+xn7HY8xY0g5aMEC7XeDDKQ/gIBFxUSta6pJ\n4WfePFJZMpspsYplyxTJzbVrgRdfpBqIoMpCNkUFJ5hiUUcgJsgjnjk+O8wVGTciGnE3ToIjAYAE\nFC0FKu64FqfsehNxTUSTqkzKRMvkGZg4Q4IfdCusWEFMtv8AuIQb02HzE3md5eU0BxSU+MJgeR1p\nmYjhjEojiktIMEgVyJ2VAaI0lZdL5DsGkkELFih+MF8MnQAvrpmXhUSII/0+HxCsxIA30A2Lq3UO\nLZhBbeZ86p4iKxa7BYchzDXVrXA66bXAP7Lr6+kxPWEClWwZdRNWDSZ4v4jE3kSf6Q3Z3vFCKw2/\nOgtDuSuYR50JJ52AroiukD0wk5MT/Vp5nrqs2JOcrH06i7oEi0ImgwfTuLLha/apMHu2+DO2wRaP\nAwfoiSjS6xdx8/m1X3ONtvh29Woy9gsL1duXlamdCCM6kXzMc+eK1YKqqoB//EMtA8oiLY0cssZG\n4vYzaLLblaJgue+DHtVo0XJ6i2dnk6Gt6QUgoK1s30bXM9RmXmbAau6XlwFPP23OAWiLglGkkZZO\n98Ytt4SVphSDJsS8uRh4fzWwcCES77gDw+WsSVIyMHkyes2YgZk6zbbccGEC1lJXYoCyPx98oKmr\niI6mbM3heipWfhp3wQEfWmCDH3bEXenCzDAS8s3QiISdlUGUpmwUo6aGdkqAF64GtYNwww1K4ysX\n3MiEONLv9QK//8CFx5lz1DgwDTE+HzlKgcWFw+GJlEFteQJJQm1hMb6aTefsrHkuJLaB5hUqRC1W\nWBXpoUPbZtyKVJyMlJ14hBKXDNUotmLYdyaGclcwjzoTTjoBXRVduXqFDS/w5ESR8ehwiHOh99wj\nHl/0FACCPxX4sIdInvPAAaXp1rnnUsMslvZy8KCaSDphAr2tRo4kmg1b+Ct6GutJjMydq9/+U173\nhg3a73jak56sB0DNzkQOQGysYvgPGqTJzET7/Wh0Oikqe889igO0YoXa4agLUHC8XgqJ6jUDEyFc\nDoAjnq6HHLWPig6tj0B0DGnh87SizoTzz6c6ioAD0IgYxEBfcrYJNkRbcWo8NcCNk9Wf1VSTVROw\n1l7zkwHMog4SslGMl0e4Sffd5wMWaWsKbAEFKVn06BmojcnZgsbAoXLGRbSXtwrFdJ1x44BBv7gx\n5JCa0jTT7sZj/nwkQO0g5KAIKzEZLxyaCRgVQAfgdgM7KugcueCGHX7c6P0AyfI5krMGJsZqK8LN\nwdeD1wtk5UooL6drnJGrzmqEleZlAP7V4fOpW6y01bjlS5H0PgsnQjWKO5NhbxVd2Txqb5x0Aroq\n2puAZ3W+UPuJ8/ulpBCNiH+S5eQYr0f0FDB6KvDrWrlSzMM/eFDpVAMA6emUL/6BoYLs2kVGOxtV\n93opmh/saax33iZN0q4lPl5bABwVpdAoRN2Yzz3XWnXZ6aerj+2bb0gmJCFB5VDEeDz0t0yglbMa\nrBNQVkbF09Ex7ceblwI5/pISMvZ99WoVodhYrepQnJ3oR7m5+utsagzuAJjt6gvKJ4QmzmmATZtU\nFCVjBwBBHYB6OBCP4NyFpuUrEO0lx2Ny0lq8iGKN+k/vDAlDCvPJjmV/Twa4z14An58i670zJKEx\nGipnnI+q/1juRcPELKBGoevUFhYHDFXgLsEYN98ErPoE+E25W8lyAEhBDe7AQozFBuSiEDdgFRzw\noRxpyAAJ7O+3Z6I/d0B1kPAM8nEXCpDsZbIkgayBy5UfcQM92PkMV3Q+WFYj7DQvA7CvjoceCu/Y\nHUVVibRRfJKC03VxfDkBJ0plSnsT8NoiaWCmn/jcuaS0I+9XUkLCz5WVRFOZNEmZTy5sDbfcAR/2\nMNsAa88e4MIL1YYyQIa2XhjF6GksH//06fT34sX0maibcG4uHTM7j+wA9OoFLFmiLhYGyDHRw8UX\nkyoP+yTv2VN7bKWl4naifKcdUYhrw0c6LWAjgBEjyZi/4Qb9aL9IdjQmhpwc2frxeoGiouBdfnuf\nRtfr/ffp76uuAq67DmjQ6ffAICJn5LTTTNcpiNXU1TDjANTDgXivQj3qVVOGvznd+H8estacTq2q\nZ222Cw1L16JXjdrhakQMotEAW8A5ucNPnY2nJq1FbGGxhi4iIxwUFxfc6vWUl+Gr2e7WSLWG0pSR\nCSnfhWIAu3MBbNcMiSEowxpMbC2gLkc6FuAONMCOI791YQYkSNBG35OdgEiBNVJFsqJ5DFU9Ixyd\nNwPeGenePTzjhtu41UtS/3/2vj08ivJs/94cdwOYzCZBEaVIgkkQT2BBRFRstdiCaIlIrYCy9VNL\nLEJjK7+iaGs/bU1FKlE+dZGDCo2JgmhUUFEiRSLQqghECKIgpyQ7iUJ2E3L4/fHsZN55553DnpKA\n3NfFBezO4Z13Z955DvdzP4qz0Z3MllCu/RQF58TFyeMEdKfKlFgj2nk6K+cpEkkDO2NaskSlkQBk\n2LLcef58ovEoTgNg/tvHwlEUGbWiz/x+69We7xWgtIZ0OLRKPnl5NB8i+hRAc/Hzn5vXILCIi6M3\n6ZVX0lv80kuBO+8Ebr1Vv20gYH5cpaXlCy/oC50//xRCkzcjE6gVFB4zaA1y8IUGa+/TgZ491Q64\nThep9YwbFzof/thRquqcM4csimnTrB0AyU0WUP/+wNlnk0WyZo3aE+GLL+i4nYXUNOCRR0j21Ky/\nQpQRQJLOWTjnHGBYtlZrXoFCAzlUR9SXMyU/bhhPhcENzxWhd+thpECrENa7bidQaj8MrBiIzoAM\nT7uXGHecxWzX8FagozQFjycBGLnIg5YbypGwW59FYhWUcrAL78SPQ1FrIbAceH8rUZCkUi/eHA14\nr/Yg4JQwPt8DTBMXzcaa028W6Y9mdN6KdsR+nwoZf3R7MdEPQPZAhqRzRlasAKLRQ9TKuA3ndcK+\nFruz2RKqYX+KgnNi4uRxAk5kAltXorNXoRkzgGee0avPsB0/7colsDBzGgC6zkcfJYdDJNEpqghj\ni4lzc8kQ5zMEubmktsMVy2LkSG1UPTeXKsyU/Y3mWXQfK3KdANGjpk5VVYHMZFHtOgAAZRCef179\nf20t9TTgi4gHDNC2ejVCRQU5Aj/5ib2sCt+2VQCWrqKjzxw5rKVvBfzAq2XW580eCOzfrzeUt2zR\na7WbQfaRctS4cVRboRS5KuHRqVNDa04WKdrbgVtuicgBCIei5EYDWtPciK9X+wPctcWDBgBtdTKc\n7V6SvdEVtxL1BTLwbdCwPe1fjwMykJQIIMSSEMV4VXTsa6uJp+8yUOPho+oiw/u8eR7kTFONTQ2l\niYUkIWFlGfxFxWhbUYIeATL8Rc3YjjMJKpaC5AJQkMOMMTg4vx/wOjwIeKXYNipD50b6rbIayvcv\nFcuYWDKBHMGFANaV46WryzR1J1VVFH9QuPxK03e2r2MoMDJu+VfnM89ol2Y76O5mS2cZ9j8UEkcs\nEOncnTxOwA8J0cxR2lmFonk+t5tWSp4HvGSJarTm5ZHRbKTmI6ob4OUr2XaP/GotulY7xcQAORKL\nF6sReYeDCn7ffls7P7Nn0x+23wF7zaGs9uy11dQQzUZ50pVxP/aYdg6NJD3tQmS4jxpFxdIcFajV\n6cTxM8+Ek6cIbdtG0XkrWHUDFsAB4Ch6oCerHdlg0LGYxZl91Sg9QNZGUZG+EdiQIXqtdivU1eqP\no6i+nH++sRNwRh9ygL8SUKzCRRgFyy2Ix2FkoBaZOAd7cRrCy1zE9zsbOHcgvtkP/PrAPDRAQipk\nPFo9Aa5qxghftAgjNpTCAXHXYEcc/Z1wWgrA2s4WevMiRaJZ0PL0Rbr72qi63ipNkyT79BtJguuv\nc4DC6R079OToYcfjkvFKW37HLiIKEtvCV/YUYvx4tS/B669ToilWjoAo0j9tmtqJ2Cp6L8uUUNuy\nhR4nq8bOVlkNSQIKnF61TgMAqnbi4lQvAPGOvCJyRQXw5puA1xuHtDSL7J4F+FdnTQ0tJW+/3X2i\n+ScCunM2pLsjGnMXF5uhdQFmzCDjS8HJXJmiGH4PPkh/Yv3ERPt8s2drf6vMTG3UescOKio1Oh8/\nno0btccDaLW//HLVTTaSzly3TlXdUcIeilPAtpOcP1816GvVlD527CD+/pgxpBrEjpc9nl0JCP4+\njrfB1la6F+/YYT4nABXChovRo4W684GcHHz94otEIeLxX5PGXukZ1G33vPPCGg5PE7FEVjbRk1gH\nQLE8sgeq22UPJItFBFcYUh6BAGUHjPCrX1HWZchQe8e78KLQxwDQfBshLh4JaEVfHMa52CV0AI5Z\nKtcHsW8fULkJ/Q5swiJM69DT1xnh48ZhZOUT+D2eQCkmIBWyuGFVvSoRusQ9C/WLzMPRLxXL+EVV\nEWahCKmQjccZCPYmKCoii5WHcm8EjXCDj7jByppjypBQhEIUoRD+VWs09SGJbU24213a8f8MiyW1\nuFh1AAD6t6gVRyxRWUllNhMm0P/Lykg1eeZMvZrP+PEUHa+sBBYupMQgP83cdIWFIUPIAVGQk6OW\nVM2fr09m7tgBLFsWu/elEt+xgx+S2WIEozjkKVgjGnN38mQCfmiVKdHK09mN8kczL8j/Vj4fsGCB\ndpuUFOMcrOg3/vBDchxYWs6OHRS5NzPAKyoo62CUx+Vd7cxM8TEqKiiD8dFH4vsulHk26jisnN+s\nOoudM76LsMtFakJLl9Jnfj/VG/CFvwocDlXEOjeXzjtlCjBokCqLmpSEA3/7G9rS0sjp4iVIlf4B\nPHr2ooLd6dOp7mD0aFsFtCziQtXoHzWKzqVE3BctIgO8oIDmgQ/xihoYXXwxsGK5/XNKbuC114BD\nB8XfZ2WrkqkXXEBZlnrOGmJVhrIHUn8FM+UiEZKdwIsvUn1C5Sbtd2f21RQQu6D/HY7HJeGLc25A\ne/UefI5BGIWKDmUbDZwuTSfoQdjZ0VBLB6ZWYxB24oUhxTh36Rydcd0SpMw8gULAB9SUmkSM5SBd\nhNPv5wt5v0rMxtnvrEXCHo62FTx5WKo3HH2sZXU5bmsvw+Zq2jnTDUzldpk4EagJ+lYiClJ9vgfP\nBxOIlYJi48pKNcEYbXoQH+lnUVVFDojTKT6316t1WABg925t8oXP2CxZoi8aNx6UOkeuAg/KCmJT\nGGwGuw3qzWCkA3EKP0x0BS3K0d4eSquK7octW7Zg6FCbEbQfMHYE6R15eXn6LzvrzhOdR9TB1siY\n5gzylrzBKBr7IfwuNx3uhiv0RvOoUfoeAykpZATz4Pn2Pp/esQDMm34VFmqFpa2u3wz33aenTZkd\n3855+O/mz9d3RRbh3HPVbsmvvaa+4SUJx/r1g3/IEGSkp5vKPTYDOIAzkMQyzdMziNcAUDixtZWs\ngz3VwmNYYkAWkJZGXZl4w/u8wcAXgjd2sMGVrmoV0FqD115LPHvGyDWFmUTohRdRMfs772iv9ayz\ngf37xPs4XcCkSVrdxEOHqArSqnAZIAdiyRKtA+F0UQG5Sf1EMxKwD2chC3sBAF/G5WJK2yJMwTJM\ncvwL7vbgfEhuCv9ylKgNw2bhP0M9uGvtBGGxbAfSM8hxDf4G6RecjuS6IziAPuiLAx2bzZxp4gQU\nFQHzntB89II0C6+eU4jqrWqHXxf8+C20vQn8d82C64FC7N0brCcPXpZRJ16do+DVn/sfmNXR3yAV\nMj5In6BSfnJy9QdmDlqf78Evg5KkAG3GR8vZz0TKS5FCGc6GDXonJD1dLeXh56ioiDIGPNjfzmgb\ny87HNjy05uZmnHkmcPRokvD14vVWIS2tTfw+DAFKvQHLxAyloRgfY4q0GdmJiK6ag1iYPaZ2lo3x\nhDoPdvcxs5NPOQE/EERyc0YFRneryAi97z5VMpTF3Lm6bR/Gg3gID2PwYGDTlX9ASjFnICvHUgqD\nN20Cjh83b5ql6OuPGyfmxk+fTsWxn34KfPed9rtRo8w7CttFKM4Rv5/RqiD6buVKrRpRJBgwgOaD\npUsxEDoBAOBOpzljuQQdlscm3XGEOLMvcPPNqlGg8BGqmWi1lW5/VjaRrAGtkdHQANxzD1Gbwmks\nJoJi0PM1BHaQlQ1ccw1ldtavD63g+K67aV5+8Qv1WsJomNZh2L9zgxpNl9zAyy9TgzIlGp6di4XX\nlCHglPCbfBlpv7MokJ45q8NKTB+ciWS5Ft87TsNp7VTjkJ1Nt6yhgShwAvx3zUKxq1BjcM5CEX4P\n7XZL3LNw5epCXH+9vk595kyg0GNsoOfkAG+OLoJrobETAACz75ZR4GQKfJ1MgS9n3BZ5Jc2YUxHc\nN9grockpCRNtlkZ0GOCj9spywmLYMLVeAICmfgHQ/3ZGTgBg4ehx4xL5A4oTkJSUJCwMPnw4uu9D\nI4PSytAUvNLw4IPdpzC4s9AVbY9i4XhEYmeFey/YmTszO/nkoQOdQucjlCc3FPKaUddc0aZoxEOY\nC2wDnr3qTtybu1qr6HP//WJloORkcTMwZWy33y52ADIygPfe0xNNFYh48eFARGYdO9Z6lTIr9BZ9\nd/vtVOh89dV6hyZUsIXB8fEU1WdxwQVAUn9g8yfaz3119Cb3eNQ3en4+OQF2MX681mqQJDKUWSfA\nqnFX9W6yTDZuVCPlq1YRx/14s/m+oSLgB5YtC2/f6t3qdTntPysAqIvzJ59ojf4wHJuRI4GRgWJg\nD9PESvaRJOlrrwFr1sDvByat9WDzM2SZlZdLeNMZb15ZoIS1ZRnxweLmlHaqT/gT/gJXnQuOBrL2\nhAagAV3EAy21ZX2WB7f6ynG6TNttRy7+5vNg5UyxUJUzoKX6NC0uxyFZ7dpbVUWSngU55RoHaH27\nBwgawjk5wK+nS5BRKO5OPI1Roiovh/Nq9fgdXYgDDM0pUIaAoGuwUKozwq5evHqP3088fxaVlfRH\nYVatWmVeGGxGN7IDkXrRokVAaSktPbNnA2ecoZZMsTh8OLxzGkHElj1V8GofnS0v2t1VmUJBpHN3\nygk4hfAQrRUuFOUhbtsvkIdf4A2cF+T5Hip5Ffj3G9qmYbKsldhU0NREzZSOHxdHro8baBImJxs7\nAIrTYQU7YSMRXUlxjoxoVUodQSioqCBaSnOUjVzeAQCo9qDsFWBCPinpsPD7tXKcxcX6GgHJTVQf\nXkUnK5uyM9HAmjXaBlvh0pLsoLUlrCi8BqFKgPrqVCK3TdRBQjscyAgK5x9Jz0Xv/HyVHsaP59Zb\ngQ8/RLFXwmZm+qqqgBXJQ3A7TLI7q1aR9er1wsHdQ7/FM4AMHPnFamzodw0+/dKJRQFSFVIp/WKt\nSQnaj3+TD3zx29H4Wu4BBxz4BD82HJLbDXjatUpRp8tU68BG+QNO7bkTPB4shqSzvYuK9Ko7X8z0\nYiRb41G1E57RXryaU4iqKugKq5VaiycMVHE04KVuw9T6ZNV79u6lGnuRw8Q6IXPmmB9v0SLgd7+j\nNhpKVsNu52ORehFL43r3XVreOsPoFi3JnS28dwonNrrqXjjlBJxCeLm4UF1pozs8lIJuZtvGRmDT\nC35Mq1PpP2cc2UYOANuJ5bLLjKUyDx4krvukSRQhZeU1Bw8WU4ZERbSjRlFhq525M3KeAO3nublE\n/1GyEcp8GXVLZik9bJaDXUmMKtlCdQCSkqhAeOVKQ+qPEHV1wL0zqUCV5dZnZVMRMmsE8Q6A0v13\n2TJg61YqTna5yKBVLIZHHlGJy+efr86rCGf0IVIzXyPQYpEtiDbaWoGUHkDjMfH3aRLQrx9lIyxr\nEaiZmiWuvRZ46SU1u+GIM60pSA8q7NQgAyWYiPaJ01FQ6tU7cgrqaoOGsN5AfbypAFfiLQwI1hfo\nIPtUS90Avet3oXf9LowEcFWw8LeqSlKj3wZakx0f7Cw/JQAAIABJREFUyzJabpiAkUx9wo+xGdcm\nrkPSw2W47V6V5pOeTiUrrlLd4TRITw/ehspJgpF3CUAhG3mXZYzY4DWURWXhcqk+xaUbIOxCDFCU\n/euvtfx8jRHNS91y8qihJgn4mgmn07j+3wxKPbwy106nWvISLpWJpSht3x55dNfOq9FsSbfCiaRn\ncjJp+XdH56ur7oVTTsAPAT4fMp56iv79yCP6QtFY5izZlWPlSm2UntW6t7tSB7dN8flw64YbgI0m\n286fb90w68sv6c3z73+rXYdralRuuBUUXn2k3WGUfyvYuZPqGW66if6vzNfcuWJKD/tZU5OxYzJm\nDNF+vvnG3nhFaG6mdpxVVcCjj+LYunVwNDUhxU5dwX+3qrwAxagVdVfmMXSotqC1oUGNZor4/1Y8\n+RtvpOxDdbUaTY+Lp6ZjLH7Un+bKTuGtFVwpgF+Q4enZU+8ExCcAkyd3GGr+ogWoWrEVmwODMAof\nIQe79MdBu07ph0etNBCJN9+B1A8/VDMqqal6RSIBMlGLnm4nrp8uwUjwh0V+fjChE/Q14uKAhjYJ\nb+HnmI6nzXf2eND+z/8HtJrPe0gRcZABu+kmL24+oM/mZR/fCazxoqys0JJmtB258EK1tCdOBCTI\nQJGXLOK1a/UN4wBgwgSMrNqJkVCVi87IkXD2wx4cubVcWzTs8aiOi8cDTNCfPydHXVJDMeT9fqC4\nSG2mpnD3O5IEEHsGskysRLZAORDQFwkbRfJZh8Pv10byAwFyuOx2HObpROwYogG7r0ajJb0rhPdE\niIbxHqmZ0N0ciO7qfHVF1+VTTsDJjuDTm6k8vRUV2qc3XHKc1Qpn1aGXH2MoT2PwmpJ4ozMSd37p\nUq3DUFNjrgLEG9l2r0FE82lsFMuYulz2VgS+SRdAY+M7JrOruIizHwr8frrelBTsf+oppD/3nD0n\nANAa6wAZS5dfTgXCPsFbPCubpEr5aOa0acQn8Hr1xzRDshNYvlxv+IpoOampZPWsft3+8Y0gcgAA\nveMBEFVo40Y07GvA8VumIkPehYsA9EQtPsQVSEEjzobA2D/rLFMn4F/yNej561JM9TH3TL1su2Hb\nxImASwJZ+EuXqtkAltYUNGBLvdokU1sbPRYBnwkdSWkEJkloPS0VCbK9TFN6Og3JDHv30mNRYJH4\nEiYSGJqRLAO3vORBw3EyjJOSgCnXy8bdpZXIu/LvIAZhJ54b5kXfeYW4bZqEQ3Vl8MCLDDcwfhE1\nJxOd3+8H3nd4MM2p7RpsaDxzDkxLdi7VagiYblVV1Geh4H0xfai4WKznP3GisVyoAj6DYBRV19Uz\nGIBnfuXnazMLgwZFFt2182r0+YwZmN3B0IxWjC8SDn13rY3oCoObRXdxjE45ASc7YlUBY7bC2enQ\nqyCcFULU/EuRAmX34x2VjAwy6ljJCkX/XlSkPHUqGeKNjcAbb2g7GLPnCuUaRFFvh8OeUzV/Pv2d\nkaGl4fAUpfR0GrPPZ+zsKQ6AaE5YiORU09NJ0Do4hv4vvoj2SBwKgGQujYzQUaPExeKVm+i7s88O\n7VxNAfpjB599Gh3lpHBQtRPf3vBbDGpSo/7ZqEZ2sNK0FQ7Es/Sf7IFEmZo6VY1CcwjACfgE196z\np7UTECyyhSwTHUxxABRVIL4JmwATJwLJDg+OlDBRb1btiN03zrqX5Y5gRLyhjgxAM6r7zJnklPA9\nAxS0ZOciwYyMHvQOvEVADVMy1NwM7JvrRb9Q+jYEMXIkUFSqGK6SeS+E4PldAAxa2RmPm7GWFwbU\nYm0RLt6ipw/5F3hR7CoUJkidTrG6LgtZphISlq7j84VPJVLAO2zKZSqFwbE0rIxec+zS3dWGZnco\ngO0OY+hu6E6OkS0noKSkBM8//zwOHz6MvLw83H///bjoIuOuleXl5XjmmWfw9ddfo0+fPrj11lsx\nefJkzTbjxo3Drl3aF5UkSdjIa7LHEt3FFetKREKOM1rhzDr0Wm0byQqh5GBZmhHrqEyZAvzf/6nd\nWy+/nAp53W7xPCjfKW+uzExS/1E+D+caRMasy6WOldWyA+jcc+dSxFuURRChrs5+//raWqITffSR\nvh+C4gCxSEnR5dyTRZmIUGFmgK5aRU4Yq/qiQPbZ1+0PF9GSBQ0DWU3GzxE5AA7KWP385yqZ+ppr\nhE5ALdzojUO4Dm/rD1ZrUDcTRMsZfZGwaBEd/5FHtJkX2Uc8junTyQILKj15PFSwe6hKViPckz1I\n6y8B0/XFu8YXmgBwP0EdMrCu90Q8eGR6B69eqIojQAMk5IOi7i4EcOEF7RhymYscHAsejSyHJloF\nQM1uAPrmcx6PLWpVxGCs5YBxKw/k5FCNAV9/UFICzDN4zCZNsqYfeb1iqs6kSXTrsD0Z7BQFG0G5\nzObmyF/nVq9G0WtuxAhaqk42U6I7cuhPZHQnx8jSCXjttdfw0EMPYfr06Tj//POxbNkyeDwerFq1\nCmeddZZu+/LycsyaNQvXXnst/vjHP+LgwYOYN28eDh06hPvuuw8Aafh+9dVXKCwsxLBhw9TBJHRi\nYqI7uWKxhNnTqzhB111HXPGUlNg6Q3l50Vk5+GtKTla79vK/o+KoiISBWWPeKLPB7yfL9hSA7I6d\nX03feou+q6gg6U6leVY42LaNCoZHjyYHyKi9pctFhiPvBFx0kf4zu45INCH7qJi4rIzCvXZ7B5zg\nOOp0o2fAysFpJzrRRx+p1q+B+k8GfJiMl22duzVVQnyDet8lHPpWDbVv2aLfYdMm4P33NRQSqawM\nry4Cmq8PNsjygTriKuF6gbXOcsb/VykHcLuBGsB/22/x+eftOB7vwnnzPNhbKqHBQGdehHnzyO9v\nbydHQKkjmPkTYKSJ46CMqYPqzzHPcnKg5/QbZTcEykU8t11oCEco8cmCP192cKhKjb0LHmCd6qwc\nSc/F3+rElnl2tn0OPw+3m/YNikF1jC2a/Q0iQTh0HlFCtStjjdEy3iOhNp1yILo3TJuFtbe34yc/\n+QmuvPJKzJ07FwDQ0tKCMWPG4KqrrsIcgf7XuHHj0KNHD6xYsaLjs/feew+/+93v8M477+Css87C\njh07cOONN+Ktt97COeecE9EFhN0sLJpdOrp7RsHnQ03wt8pUCoNj2abP5yODn+fTi5qAhTsOVhKT\n7xI8YgS97V0ubUFtOL+3nf2sGnQZyXmynxmdK1pQKEwLF2rrNJSxAtaNxDIzhUpLTQMGoB2A0yIj\nYNgszA6GDSf9eVmmcRop07ANwRKToq/v34k4ft6FSPziU/s73P1bsuT8fuBf/4osQ2JUIzBzVlAk\nXtttF0Mv0RdjG23LNATrgCzDX1SMqhVb8O/AECxAAariB+H01kNoPb0PEg4f0LHeeJ14O02y/vQn\n8q01w5mpEfQBoO05x56Dx9ChJES1ejXQUsdkPFYHMx42YWrj8xKfok7DIcLKp6jfK+OLmbTBvwd5\n8ORi7QZsYzA7w+DnUVFd6t8/7EswBdssTIRoNM/0+YhNyi+J992nJnynTNEuoV3REbg7mCfdYQyd\nAbv3VWd3SQ67WdjXX3+NAwcO4Oqrr1Z3SEjAVVddhQre8Api7969uPPOOzWfDRkyBK2trdi4cSNu\nuukmVFVVwel04kc/+lGo19L9cCJkFNxu1N5zDwAgM9KCYJvnw9SpwONc914RFSbcEIPbTSss/0YH\nKHqtRLBD0WsLF3azCOy9IZrnUKPsublUtLphgz5iz2NbUD718ceJLCuab/4aAMoSSRLRk+66S9tF\nOSMDmDQJ3x8jZRvnddeRNWSlPGTVuVeE1laiOOXn0xiMagiU4yo89dtvBw4dDO1cLM7oE9n+ESDR\nmYhWKQPxNotjUVKi5emHi7h4c3pWQQGJsO9mOgWLoDgjos9ZBNWdXNW7cRGAi7AJP8G7KgurLRin\nKirSWJ0GLQF0h2a/LywM9oLjou6ixlPKsY0cgFTIGPOFF/4tQEtQ7vMJFCLVJyN7phcjR6qDsjK6\nDRIjBAuJz3Bgdj5ZBiZMk1BVRRtk1VHEX8mA5OQQOzEUH8TOb3WiQXnNFXH0qiVL1PjXwoXaWFhX\n0D66ui4h2mM4GRyKWBSNhzsvpk7A3r17AUBnrJ911lnYt28f2tvb4eAKHfv06YNvuZDN/v37NX9X\nVVUhNTUV9957LzZs2ACHw4ExY8Zg9uzZ6NGjh72RR4po5ahExvRjj6kG74l6l0YCheDJquuYzW84\nK0R1NXDeecZdfxWEqtfGIxKdt1AcLZ+PyKRWcDqB3/xGrWNQnA1R5kV0DqOx8p/zDszOnUTgZROH\nbW3AihXIUIqUjbowJyWpMjHJLvtFuSy2bKY/bBOxZCcVNQN6hR05WEtho7jUFL1701zwfQs6A+3t\niB9zLd1/VnMWF6/Njsg+24o/OhjVQGQPJE5McTFl2pSCctkHbPGhJS4JCW3B3zknlwreRdmI4Dtj\n716Kwk/a78XNB7QcmxzsQg8EZVOV+3beE7pGV5bGrMCwFxmjogZeZu0KUiFjZdwEnMt28AXJgJZi\nAgZV7iRefXk56heVBY1q7Ti6oxHMa/cD9BPffTf53kD4BrypoxMheCers8yI2bOp9EpZJlNStMuw\n1ZJ8siJWhvqJEHO1i2g7RuHOi6kTcPToUQDQGeY9evRAW1sbGhsbdd+NHz8eTz/9NC6++GL87Gc/\nw8GDB/Hwww8jMTER/mAEqKqqCnV1dcjLy8PUqVOxY8cO/POf/8T+/fuxWBTZjQViqd/FhgK6610a\nTaIe+8Tz+c/MTAqXRFuq4fbbrR0ABX5/ZBmHztB5mz/fuBMxi4ICfYbF7aY+B2xnZF5BCKDo+cMP\nG4+f/R39fq0DU1NDRdFsMy0fZ+Dxv0ffvtRP4MsvVSegyQ+EQwdSwBrjTQHgiIlxHI3agcTErnEA\n4AC2bqE/diAy3LOy9M3QwkVuHv2Gzxjr+ye0NeMTXILt7iswfpEHycu8EOT+AKezQ66zuRm43OB4\nLgQdGDZrZCcKHrQIt28ADlV5AKZw+KViGQVOL1UDMNasMyBjVrBCl23ixfPns7KIP3/1Vi/OrdR3\n8FX+zY73i5nejqi6Mo6QAvmcxKem0NgEoZYRmFGfnM7oG/B2x2e1ncjZW7GClp5Yw+2mZPQVV1Ai\n1yqZG62yuHDQWRH0WBrq3amgtjvBrFfF/Pni5u4KTJ0ApVyAj/YriBNE2e688074fD489NBDePDB\nB9GrVy/88Y9/xOOPPw5XMDr+hz/8AS0tLRg8eDAAYOjQoXC73Zg1axY2b96MSy65xPSCeSg8rLAw\naRL9ffgw/QkRcWPG4EfLl8MZVDo67nYjkcv/1cyZ00HH6SooDtiOHTsQV18P97JlcPz4x8CPf4x2\npxO+yZPRFsYcxNXX40dTp3Zcf8uCBUhgjcOaGtQcO4baMOfXCP0aG8EHe1qTkxEvcAyaysqw98Yb\n0ZaWFtbvHVdfD3fQuPZVVdFx7OzH3RuBgQPx9ZgxaBPcrxk1Nci0OF5g4EB8/ctfAhs3wr1sGY1n\n8uSO8cStWtXxuSMQQMYLL2gPUFtreC/qfke3W784hNhNt7WuDvGiDssmaM7sjaSa6IfP2gBY5QTa\n4hMQxxicTWf2RePpp5v0dBUjqNlj8r0DDsvOvjY6/3I4niYhMdj7oKXXaYjbvt3ymm1jp7019kx8\ni/U+YOlfP8f1m95FJlzoATUbcTh1AL6/6ioU3NWI5mbqjeGFB2PxOnKgzQbEQdworK6uDr5dYglU\nR0MDzrr3Xji/2oORAEqDEfoGSEiFjAnLbwDqg8/jypXY/+STAIBpb96LFFBNy3Uox+/7vYyrrjqK\n2tp2/P3vDpSV0V0wYYKM1NR2uBvrdAo6ruRWZGU1A9u1n3/1lb4upa6uDrt2WddsNDTQuV0XPQfP\nRV44k9shT5iA9tpa027dDQ0O3HvvWfjqKyoSX7kygCef3I/UVOP7atEiN6qq0nWfn3NOAFddtR+7\ndoV+T0Y6Pjvb8eOuqgKKiupw331HDGsC2PdhJKivj8PYsVlobLQnanLxxXWYM4fu68mTfUhLi0IT\nQhuor4/D1Kk/wq5dNI/LlwewZMnXMTn/U09lYNs29W22bRswZ04N7rknhO7yBqipyQC4N2VNTQ12\n7Ij82NFAtO6rUCGal337anHppT2xa5czfCegV69eAIBjx47Bzbhxx44dQ3x8fIdRrzlgQgIeeOAB\nFBYW4sCBAzj77LPR2tqKOXPmIDWYus/NzdXtN2rUKACUJQjVCehKtKWl4eslS8yNr24E3tgLDByI\nr5cssW3Y8nAvW9ZxLABaByCGOPDXvyJr3DjEHVcFu9uTkoTZgeQ9e+BetiwsR4yfr17vvmt7vvh7\ngzXYefgmT0avd9/VzKWCY0OHonHYMPiCMrua8bzzDo5eeWWHI6dcY1x9PdJWrbL9e4h+RzuGsxHa\nHA7EWwiAtzniEMd04m3q9yN8++ijOHP2bDi/+TrkczYOOg+Ij0fCgQNI4gqHra5D5HzENzQg9Z13\n9OOGA3EmRrpVnsOBdt21R4pA37Pgv+ginPbuu4hvCiDh++9s72vPKbGHvjiI3+MJtJWrc96CeHyG\nwfgYl6F2zC34Var2uhsg4UaswmJMwTDoMx/t8fEdEqHH0yQ4mprgaGhAu0IFYyCVlcH5lVqgznYU\nvi9tIfrUq/e486s9kIKdfFO+0e7z9JCn8GzZLABk+E+bpn2O5AkT0KOiouNcB9MG4rLia9CzZxsC\n977T8fnuxBz8b83dmn3POSeACROsFb+0BnA61pzzoKUhr6CsTOownAHgq6+cKCuTdNdhhfPPb8Qj\njxywdc5QYHd80bqOWGHZMjd8Pr0ZNXQoUdm2bNGGqt5+O7Vj+3ff7RUzQ1w0TsUBAIBdu5xYtswd\nFcNcQX19HJYtc6OyUtD4MkqYPNmHd9/t1XEtAwcGMHly194LynUDwE03HUBqaviS0uyxQnESRfMC\nQPObG8HUCVBqAfbt24ezmYY8+/btM1T1+eSTT9De3o5hw4YhKysLAPCf//wHAFVMt7a2YtWqVcjL\ny9NUUAeCBoMUBtkwkgr/qGHECPrb5wM++URDs8l85BG1IDdShJnTUzzTnFWrAMbYc+7ahZy33w4/\nn5YpiF+zKjLRvn4FeXnAnXcCCxZ0fJTw/fcmw8xEZjj3ydy5+vl67bXQaj6C94ZVpB8ff0z1JCyd\nbPBg9FizBj3cbtqfH8+ePR2qPJl8N+jKSi1FyOy3EPyOhoZznz7AQfNi2Thj0TFmmzag9+nU5XbY\nMCQXFGCAJFE+v6gIWLbMfgFxVjZSSkpUHXsT2ooISeecA3BOQMKxo+Jxox1wxAERGPFxmZniTsFh\nwnnsGJxv2qgp4fBF8oXIOeMoEr42aBYXJth7JwGtCMCJd7IKsELywrUKePbvHlw5PqWDJdYACbdh\nKfHpg3SaVkcC4tub4XCnAzUA0jOQWFcL979WwP3f/4qJ9en6SPaPhwIzrwAm+ROBhfzm+u0BYP16\nCUt99N2mTeliDv/q1R08lT4eD/ooGwQ/37ABuKNSpRYBpKqzaJETkpRtOHcKioqAr75S///VV058\n8EG2LVqO6LLS09MxcKD4egHgD38gpVe2aHr58hTTsYarXGp3fKLtevRIx6pV6R3nFI27sDAdeXnp\nMVUHAoxff2vWkPHP0mLotaiaXLt2OfH22zmdIkgoHmcm8vIs30q2xzNxola1W4nHDR4MPPJIJtzu\n6Jzr44/Za3fC7c4xHFOs6U/8dSuO3ZAhoY+JP1ZFRWZINCp+XubPt3YAAAsnoH///ujTpw/Wrl2L\nyy67DABw/PhxfPDBBxg9erRwnzfeeANbt27F6tWrOz578cUXkZaWhosvvhjx8fF46qmnkJeXh6ef\nVl/Ua9asQUJCAi6++GJbA++2iCWHvDOrYuw+QaLagpUrSYnGat9Ix2JkzPKabdEWJo52zQd7ffff\nT3/CuX94gmRWFtUZhPM7skXdPPr2BY4f76AjtCUmajIyhkhJAXjO7JHDwGmnUbFosMkUJAn461+B\nO+4g9SMzqcuevYDJk7UtS2+9lZrC2W3ylZ5Bc3bLLfZlNdvbAFcK4A+zb0IUHQAAQH3ovSQa4URj\nU2JoDgCr7CS5gV69ABtZm35ntKLMMQEJC8nA71dejg9XlWHGXAnffSPj54fIkpyGRbgJpQCAB5If\nR1LgCBAXzK2w2R2j2gCPBy2ry5Gwm86zHbn4R70HiwX698jKhl/247PPHMiSBiJDJuea18U35PAb\nVboGP3/fDzRwlKEhQ+wbyqJEmt3uukoZgdKozS0BtbIHRUUS8vOB0lJ1O2U8oSr4GBVeWyk0SZK+\n1sKoSZioJoPt1WBU7N1V+iK9e1N5lkhwrbFRryQUDsIxA2Kt1c9z0puaqJn76NHRM4FCMeo7y1Ti\nr1vJsCgx4VDGFGm9A19ozP/mRjB1AhwOB+644w785S9/wWmnnYYhQ4bgxRdfRENDA2677TYAwDff\nfAOfz9fRQfjmm29GaWkp/vKXv+CnP/0p3nvvPbz55pv4y1/+Amewic2dd96Jhx56CH/9618xevRo\nfP7553j66acxZcoU9OnTx94Vd2fESpMrGlUxdlaDUJ4gI6enM8rezRwQv5+UbCJtgMafIyMjuppv\nRtdndDyrJ7uxUb9aGh2L347vrswWeLPYHNSDDxZ9V//0p0hbtQqZSpMzIwweDFQK5EN371LlJlev\n1nYuqqggNZotWyhj8GqZdt9XXgHOPltrAZSW2nMAFIO2rhb49a+pkjAUbX27FpkNHEc8Evm2uNFE\nUrKuwDkFAfwYmw12MACbmZF9FPITyKiydRHH45Jx1pjzgcUMTbJqJ/qt8eK1RR603DABCcHo/xQs\nRQkm4u0B0/FX+XHA5hSrhqYEXF4Gx26myLdaChrxjJUbCKDlnbVwLX4GwwFUIRtrpbtxw80ulDg8\naHgmcuke0e1hUF4nhCiZVlmpU0oVQpKAVxfJaqM2Gdi+mOojiouljgwMb7gb+TUiQ56XT62qImUh\ntn+AmaMgcjhE52G38/tJdpM9p+KgseNu7qT2IFYxP15wjVUSiqYgodUrqLP0LViMHt116jeiObr4\nYoq0R1ujxC46u6iZ/82NYFnNcsstt6CpqQlLly7FkiVLkJeXB6/X29Et+Omnn8aqVas60muDBg3C\nU089hSeffBJlZWXo168fHn/8cYxT9MUATJo0CYmJiVi8eDFKSkqQmZmJ6dOn43/+538iuOSTDLyB\nBlBjrEhhZzUI9W41M/rtuO9m25iNJZYOCDsmxbFobASiVe/BNjsLda6Va/b5SAuf5f2vWgW8+aaq\n5f/MM2J1JqNVVZET+L//o+979SJ1n7o6/VhqaoCUFLT064fae+5B5umna4/JY+RIoDYRMGsqxjoE\nq1ZRR6Hp0+lN/957+u2XLAH+8x9Np1oMGWJ8fBasQeuroz88TksFvmsQ7x8lTv+/MRyzMA8LnTNx\nUSBG3ZB79gR8MVA5Muih4ABwDC5sx3n475R/4g6pVLy/19sRtQeATNRiOp7GnXHvw8EXBufkChVy\n9I2oJNTBgDOjWLlFRUjYo9LqcrAb78rXYutWwDPEi7VZHmyuJsvYKEptBlmmW5eHQTNnAKpkKgDM\nf1jG1Vu9SIFWrWjLFvpjR2Y0rdQL1OkVjJ5oDk2pyMiQF6Gykv4Y9Vlgz8c7HGYOg7JdNCLp0Ybd\nV05XGOL8+WNlcHZ2piEcA/qbb+j+efNNarAejbnnr1utUQid+hSLOVR+c1GTdwW2Stpvv/123H77\n7cLvHnvsMTz22GOaz66++mpNgzERJkyYgAkTJtg5fXioriYZSYAMt2B9wgkB3kArKaEQEl9xHs5d\n0pmdNuy475Hm7WKxshmNaf58vTHcu3fov0F1tZarHyqULMiVV+plOvnC4poaWvnefts69zh2LFBf\nr7/P8vKAX/2KOgSZaeCxb7nGRup7oMieDh5M5N3x3wE3/tJexH1PNXDVVUQX2mNAWXn9daDxmPr/\nqp3ktEQFDuC554C33gKWLw+vv4EN9DujFbfemIqc9pHAwhg5ASIHJ8boAT+2u69AfmF/AAYylwZi\n/Am7dyLOxc23AVeFNzTr6tT2GYB9I34iSpBZWQtUAs9K5Vh6WxkckhSWLr7Xq38009ONx8FKpqZC\nxrHrJmAkdmIk1B4EbG1ByDKjEaC4WGzI81QdFlZ9FkQwchjY2yQ/3x6NSIEoljZ/PqmpdEVBaTRe\nV7E2uMNBVzs4PMwS5jt2RLcvKnvdY8YYF3pb/W5dNYf2dK1ONPCNpM47D/jiixPHEeANNJF+/KhR\nFKHm7xITIz+uvl5beWJkcMeykRr/9Bk1W/v73+laGhu1PP/MTJXyYkUKFK3+yv/N9jUatwhTp4b2\npPp8wGWXGTsAdueaH6MV7IROjLoO79hBNCjeAUhJIdoQm3tn33J8Z+KePYFXF4dGuamtoT9GEHEm\nzCL0PXsBR40LyLkDUZek9evJ2poyxb5uP2C7WddZhzajYO0NlNVY+zpQvdtyn1ih3REHhzJ/CYlA\nv37GDhiP3qfrah0mXh+ASwIAA/4Hr4FvhhC6TU2cqNbu5+drTwsALwU8uEkqx+kynbcG6ciEWnNw\nurwTvV/34vr1hVFr6jVxorEzcc896mPkgRd50EbwHzjDi8JDIVr83NxuRy680FrMVka0LFMMSgSW\nqrNhA2UADIdg02jn4ffrswOLFolrGnj4fMQsVJbJV16h5YJep5l4991e+Pjj7tfCxwq8sXjvFB+k\nTrIczWKI3SnToMzRDTeYM1SjAfa6d+wwfvfYMfK7orvzyekE8I2kmpros/Xru25M0cbo0WIHwCSq\n7l62zF5Oravd+iVLSPmH5aRnZNDfRpFtFvw8rFhBnym62uFWCYlWojvvJMUe5XurY86fLy645auo\nws3Y5OaKs0Y8pkwB/vY3+w3XRGhsBG64AXEtjpphAAAgAElEQVTPPiuWPlVWNOVaWluBQJSXnAED\nqH+BYkQmJAItBkXKkhsYP17LTbeCr04NuQ4fbt8JcMQBN94ILH/Z3va7d5Ea0jXXdJkTcAwutCIJ\npyFIf+rXj8ZUWkrW2Nq1xmNLShYSsV1OxkkTGfGKJblgAVmbSsYiJxdtRz4H/GKFJhYiQ7OgQMxJ\nX72aDMHqaglPowz3SV5kDQCc8CNzyzOa49b67EfbeS67aEzTpxvvu307ZQA88GIENui2CTRRDKu6\nWj2epTHNWOnr1wN3bREpFZlnObxeffLT7VbPrfykHo92npXxhVJsLJozh0OfHSgttfebLFigfd3x\nS+KuXU57EeHOzJ7bRIexGMUKWKPLVD73+ym5q8xjZ/ZBDcckcbspTjpypDaO2pUN27rCyLfCyekE\niJRK7KiX8Oiqh19PNAO+/lp9ycbFiVvARbPypLPyljNmEG+djYwfOUJOG3stfGMcs2vj54Gnh1jN\ni9G4lVVFoZnNm6d1VMJdFRMSyJCdMkV1AKwWdn6MKSlUlffww2RVDB+ufXvzK9/ChfYdgMGDiVIn\nKhTets28BwN/LVmXA1nZ0TN0R40iw/7GGynqbuQAANT9d+tWINkZOrVHlgFBzwBDtLcBqalaHrsV\ntm4Fhg41PiRMehBI7tAyLAL0gB9oZzIXe6pR+btlGLjkAUiQySLblEoWK5/hcDjECkWCXjL6sUvA\nAw8ABQXwL/Bi61bgP0M9eHCFvp+M0e5GhiZPMdnN3HYNkDBHLsTMK4BCj4wjV66jIlqoUfNpNs5v\nxGW3a/x6vUByQNbIo/qRDBeaOsbyuOzBr25Wl33bFKWglX6+B8gYDzQEnYisLGsHwAiijIbZb2A3\ngSM6hhmlKFx50pAgWIvllR/iyaW0Fne5TxCld77RKwcwLvPq7G694ZgkbjdlqR57jCQ0hw/vusJg\nFt3Jrzw5nYBLLqFfnP8sFHSmHCcP3u3ltcXa2oCf/5xc8hDG45s8mbTkO4tMaDf/NXVqdCu+rHq3\nW0EZN7tyAHRPsIbwdddpnRc7q6KIrNjSQlQchba2dKn1wq44JJddRk5TYyPwwQf03dKl+vDd2LHa\n0M6SJcZjzMigzspOp1ZdaeVK4IILdPObUlmJhG++oYyLco2KMzN2rPZaqncDQ38MuNND46lnZJKz\n5PcDDfX0WfZAkgcdO9YW7QZHDocuzZkWDCdPm2afFqPA5SKrpriY5kYx0lmZTRYtLWJORRCmwjIR\nOgBGOGdLCW4ZORkr06cheU/QmRmQBezfr1UbEjlVbmMSvMiAkyFhwrpCMqYrgRnxcbCndB0SU8jw\nAEmvl2HJOC9lAODBGTmSYbSdHX8gYFz8andMHng7HAAAcKEJ/8ZwbMTIjsJglyuya2SVieyqFBll\nWUQI5zcQ3QfsMYzoRGZFxLIMPPssLRfnnquNASUlqbG0gQMDmDHD4g4TGNkrRszHn2toLe5MsyCW\nMGPAhsI67Y5wu4ld3F3QlaalCCenEyCaTaczdNpGZ+o58WDdXmXcLI4c0Y/HIvLelpbW+TQfO+77\n7Nl67TQ+8pybS86PsqKb5fSs3nB2i3nfeovOX1FB4xszRntPWBX2itx91jFavJgkCxQotDWDHhw6\nLF0qlisVgY3IUmWc8XFra8W/m6KQxKHHli3Iuv569e366qvkMIwdK65n2bKZ6DKhgK0LSHZSoXJh\nIVkQMTKAAVB0OxT6kAKl8FWSiAciy0RKbm0ROwCOuNDqDVjExdvviRAiMlGHPzf8DskNzO+4pxq4\n4ELgs0+Nd3S6xNlKGBtwfNS+tTUEPU0D8EZkdjbQq1XG6K/I8lyf5YHHQyHktP4Srl9fCK8XmAbj\n6LJejcjeWIwi1x4P8PoSANxtvBEj8URQ5Yg1fsOJfnu92izI7t32qE6h9g4IBYaGPNSLlDwelJVJ\nuvMXFRkXEbPHVFikCpqbKXk4eHANJk/2wajRlBmOhBj3iSm6sEq4OxQkn4iwMi07O0twcjoB/IOR\nl6dVKulq1ytUiCgzgCoZKjIw2c9ZhJpT64w70mjcvG792LHqPmYdac0oCJmZ2m4uRhA9qaK3H9tU\ni10VeXf/lVdo/C6Xqt2/bp3WCVAQycK+bh1lLnJztco8MV6t41g++LZtwNVXi69NQSTymk0BIneb\nWTCpaWrGIFZIk8QUmAn59PsqYcnx483pTzYLiMVwAIPywg7XBZAIP1yQ8J3hNoPwhf7DxESLA/vJ\nedq4UadlaaQCEwvwRuxv8mX0nKr2JZjhKEcCyoAgV95ONDscNSKzyLUkAeNXe3B4rFqozBbxOp1E\n3QHMo9+RGOpm+0ecZTE414YN+vvgpWIZBe9P0Ej+SmVl1OPBBvjfhmeRAhRjmTRJ8IUI3Fp8qPdg\nzD/SjSzfKNXvmb1y2M/T0ylJnJ7e9TSWkw0+H/Doo5SkV0y9zjBVHe3tZtZU98eWLVswVMSjZY1X\nvx94/HHt9w8+aG4M80bc4MFd6zhUV6vUD0Dfl9tibGG1Se9OczB3LvDnP2s/M/oN+XHn5WkNcDvj\nF53vvvvU7ABg3h1ZtL8CZR5lWatilZysqljZ7a9w+eVqpRab6za7Zn5+eCQlEe+bV9PizxcimgEc\nwBlIMie22MfMWWSx8Eb2gCzgiivCi+CHAkGTLABk1G/erIYs5z0h3n/YcKpa8/uBhc+It7GD226n\nfhFcM7BQ0IhkxMcByW3aY9QgQ6OaA4BoPhMn2h/zsOFUPxOUdFkQ8OBRphlXKmQ8N8yLIUOASWtV\nff5D8X1weushtJ7eBwmHD+DbbxG5tSv6PWbOCsnKLSqiy2Fx111q7EE0LNE+M2eqp5Vl4LbxMq6o\nZpqcMUW8Sv8A0TFERbl8DwHeCWG3Mfsu2uDPxaNkWBFGVlr/PkZj9nqVOVKCEkkacTll6T18OIT3\nIbMWy1Nm4Iob3N3ilSgYXkSGudFxeNOjO1yzCN2BZ2/HzhKZVStXGvfmtDJV7cDQTsbJmgkArOk0\ndvbvTsK3WVmqwO26dVrdq1jlJMOlRHXl06ice8wY4uyHYvizmDGD1EqUaHpuLnD//fTHTnMys7qE\nbdvI5U9JAe64gzp5JCRo+1kovQDmz6dtHQ7xtbA+PBuN37EDuOkm9RjseNl7+623gE8+0Y6vuZkc\nG9F1sedjnI62xETEhVN8HykkiZqKKV2Fhwwh0rKd0HJIcqECGDTKQsBPmSvFORTB6SJrpX9/4LPP\niBoWbjZAkmhNmDkTDdu+QWqjwbhMkIImNDtc5FC4XKivb8fy11xoCwQwHU9rN544keZ43To1YmtG\nSarcRP0ejtO9cre0FP8+53V8+FV/pELG6qQJyKrcCVQCZdnlWHg3daKSXjgKtAJoC95zHZYf0xjO\nrl5kFGGmRmQEq+bSXi+wuVrCZqMmZybHMGvIpSCU4ulo9SCw02WYRU5OsM+fcVlMB9jrCQRoWfJ6\n9X0EjOI0h4OlQbZeVcwaLyF0syCWr8No8suNXmVGrNNomhuRzlF349mbQWRahqr4HU2cvE4Ai3Dp\nFd1Nz4kdT6zFb8NFrJ5Go9+QXT2mTNG605GGLNjagrY2KhS261T4LQw6NucnGqdRtJ6dz/nzxZx7\nBeXlpAKkrODsvuy9xDsBRnjsMe35mpuBESNQm5uLnmvXwrl/v/G+cXHUfbjB3qkskT2Q3v5FRWRh\nzJmj/d7joUZiZpKWZg5AOApCLLZuoQzF0qVk4PN1CwE/8ItfEEF59WqQ9k8YyMpWLazXXkPJn/Zi\n8uKr4IRertMKSa1+KmB+7z2k9e+PSX8iesaRkvc7VHOQk6tavIxV6T8kw7XcJPNyXB1PvFyLZRiH\nZ+5ej4u3eMkBCCJh904U/HQBsG4d4gNBR1rh2Xi9WqWlqp1Ud1AXzFTYaaPL9yVgOg/bBW9Q830I\n+NPLMqmrssjKsn/anBw6x9Sp4mPYpVJFm9ZjhlC6DA8bRgkxjwdwwYOWd8s7uki3ZOciwWCilDYT\noj4C//oXLTezZolf4/X1cXjuuXS88Ubo1ItQzAKr12Gkxm9Xly5GA9EwGU60ebB7D3VG3UX8Qw89\n9FBsTxFbHDx4EGeeeab5Ri6XqnZy5ZVkGHW1i+jzkVH1wQfAhRfak9JTcOGFtNqx+bmFC02PURsk\nR2ZmhtDOOozz4LHHiP+u4MgRmne7xa5GEP2GAP37lVdo1Vi+nFpvsufeuJGMsVDmV7kO9q1VV0e1\nBB9+SHMyaZLxMX0+ajJllA3o3VsvicrPET+Pom0/+EDVcRPhwAHgGNNNl91Xuf8aG4k4y6oJ5eaS\nvAZ7fT4fZS3Y4wHA4cNI2LcPyQctos/t7WhtasL36Il4CzpQI1yIQyuEpcNn9AFunUw56jXvAB9v\nBN57n4xBdrwuFynYbN6sP8aZfcVcfhai4t1QIfsoWzJ4sHgcgQDwpUFYlEd8griOYsCAoDxqACgu\nxvmfPIfkgya1GFZoaaHMyqRJcEkuDLvChR6TricfJS6OQrX/+Q+pGGVlAdu3w+8HPB9OxhX1q9AD\n9pS54gJ+DBvlRL9+oN9Q82U88Nmn6IljiEM72tvb8WfMxe9H/Fu/rZ85X10tOW+XXaZ+JsuUJfr3\nv4kiJ0l0ryQ7gREjUD/7MSx4Ser42u4y4XLRafLygF//mkrOPv4YeO89/a1YXExLBoubbwZ+9jP1\n/3l5tK/yGJ5zDk3v2WdTOVhpqfEx+H1zctR4hR1Eur8IxcU0Jwrq6ojt6PHoz/Xyy8BPfkLnkwMu\n3LL8ehyQndiIEXhcegxjfiUZjkV0ntRU4N57WzF2LNCzZ7xuHxIt64n33jtNs0RH61XFvtrXraNM\nhOgcivGrvL6sXisiiF4BV14Z+TWwCMcMCAXRMBliOQ+hmGph2VnQz3Hv3sBvf0sOfjRMVTM7+YeR\nCQBiE9UP142PNDzQWVSl7kaJ4ptPrVtnrdZTUUFzHc3coFmYQZER5ceSkUFv7c8+I0NL1DAsVPDZ\nkfR0vTSoCKKaienTaWyXXkqUJ36ujJqcHT+OpGhcC4BGpxuNASCDl0lR4Igjx6y0VBvhr9qp5y/I\nMhl+IvTpAxz4NvyBJiXb59+XlFCk/5VX1Ii1FUTUGiOnZMtmcnIdDmD3LiTZO4M56mpJEpUVkn//\nfZrnyk3qdvPnA22tcAGYg3Kswjj8BiHWYYgi80OHas+jwO/XSstaycyK6ENKpqCwUBetXrqUmE7T\npxurAlnRW+xSaXhDgqe3rF1L7DaAfgqRMaMcI1IFn1gqAIV6Lh0tqlo8n2xxcah49FFqFBYq7JZp\nsUuryBZU9DwaGyOPXneGOFDMzIDghF61DngKMyAj/IPGah46i2bUlabWD8cJiDYiuTvMcld2j2vX\nqQk+aBk1NagfP16v5W6FUJ0nkTKT3091GdG4s62KWlm1HgXRWF0jHVv//mQIGhV2i5qoic6fm6tu\na9VPgkfv3kSZ4u8/pX6gMztqs3SboOTn55+5MHzr08b7TJpEYT6rN78sA+PGAV/t0X8XF09OQIio\nQxrWSL/CDTe74JqcDzz3HD1LVjx+Xx1Vb/bta98JCFXuMxYdhis3UW+V114D1qwRNzxjxjkIO/EB\nRmM7cjV69x04LRWIj1dpUe504rhIEjkbbOVramrQ6QgSt+MTqDZAKUROzyBr/dZbyUI2ovaI6EOM\nRSlS+XnmGTq1VWHtkiXk24l4+vxnRlr3PBS6TlGRVs6zqorEtrKz1c+zs7XHiJTqE22qkNk1s+eS\nZXXJskuP4n8LVg/BqpOyWYsUM8PR7muZX1prarSvpORkiktVVIgdhFDBvgL8fqqNmD8/+kZk1GOo\nzISOBvBx8qu4tOlDyHCHZcDHyojuTJpRV7HPTzkB4SJWd0c0j8s8aJkA0r1erZZ7rF3axkbK1SrK\nTNE4p1kFjVIFdvvt9momzEI7ouuwktw0Gltysp4O0tREfPDRo82zPXPnkrWi1BjU1tJnbCMvVmCY\n7bfA48gRylKMGWM+LyLMmEFOTJjKQBq404GXXgJuuYWMwqYAsH49Lu6ZZr7fl1/S+Hfv0n4uMv5E\nDgBAhivPqwAoy2AiW/ov/Ap/lR/Aty6gMFUmmpndQl5RVPtEQMBPTQl5MroB/HAhH2UoSZ6KwU3c\n/f7LXxKdTOHw++rIgH/ySeLTKBH9668nA3/RIrT99HzE+4/S88OyjOpq4W93wtW/f0xC2KJoPu8w\n+Hw01HHj9PvzenvRiLS3t2uPG6qmXyy661rJilpds6huYNEia4eJ/y2am7V1BZKk1UhgIWqRkpJC\n2R9RApTdL9zX8tSplLXh9Tx4ByHc6LWiIXGiFMYC0E3ouU3bUDZqPj4Y/XDYBnw4RnR3UBTqapxy\nAroCschdie5m7kHTabnH2qWdO1dbSGrnnOE8lbwxvXKlXoOLn187oR12VZk9Ww23+P1kjBpRZ1j0\n62eslz98uPX8l5Roi4xra4EFC7Tf/+QnROUZPlyVwvD5KFLNC2Vv20ZKLbxuHtvfwGj+WxhKCht+\nM8OIERS+VM7lTqcQ6osvaotl91TrqCztcMDBFsxuEfDqe/YiQzIUq0YUaTdxAFrhQE804BXciIT1\nQwA/xJHxcJAm0VyG2sm4s9DeRjUA6RmmmYz2uHicNiUf0yQJWfIwYDH3W7lcRONij1G1E03jbkRy\nC3N/19UCzzwNvP8+2pxOwH9U2PyvpAS4vgCQzELYFkXAfLQ6VNTVAZ9/bm9by0g7Y1H/Jt+D8nJJ\nYwg7HFQGo6DagCZjdGij/gJ29hUZ8naOaXXNIipVaWl4DtPIkeFnMqZPj15HWdGrnX1F8LEpxUFQ\n9g3XCO3swthYGM+jRwOjOzESbscE6MJebJ2GU05AuIjk7jDLXYVzXKO72QpmMpZd4SKH+1SuXGkc\nxTcav2jVZKvhRJmBGTO0OvkVFRS62rSJqvhEYxszxpiiwxo3Rk6cFd9+507V0aqoAN58E/joI9pX\n1CkHIAtKMcp791Yr1+67T6taVFJCvQZSUsji2cVE4O04ABkZNF/LlpFj0toK5N8D9D5dJTybwIH2\nIBXEpEj36PfEiV+3jihXAFkOK1caZwMAQHLb7jQcj3ZMwcv0ny2bgD2CZyEpmZykUKg8Qy8B/vlP\nyohEE5EqG/GoqlKzHslOisx/p5V5crS14o7tM4nOM1Pw2zrFHGyNA6A5507EuYLXkJICMPXo25GL\nv/k8qLEygi1kfCRJQlkZ+dQlJebNvjweejR83C2jRORTIcMDOnZ7wAMgBKeUq11IKy/Hq4vK8Hyp\n1HHuSJqphVu3YGboR0NW1EhATeg8WDhJdqlERkZ6OPuJXsuhvtqtYkjdEVHhyXcD69qO49TdyiJj\ngVNOQLiI9O4wyl2Fc1yju9mK124kPB2tahizB91G5iKipzKc3OCSJWI5TQXz5+vpMHV1wAUXUCn/\n7Nn6sQHGFB3F4QjXiRNB6SVhhMxMrWNx5AhJPYjGyDoYKSm6Q7XBgTgzacvaWqKCLV5M9JmzzwYO\nBL8bMsQeTcaOSk9zE3HKX3tNNRauvJJ+G85YBUAOwMsvB1V1OEtk6CXA8ePAZ58an0/26bv8NjdR\npLmhgcZgZYQPyALOP59qMSIpUhYhKYkczLC7EHNgj9MUML62yk0UzuOLptkIPBOZP444JMJG5+g4\ncpb/gVkA9I20ABiHrBWL0qBIWJIkPPCAtrWEKPosScRgU4SYADI+hw8HqrfKKMWEjlqII6vLgUI1\nLG5JxRHULqSVelGoWP9eYOK1HixZIpk6KtFGrPoHAGLZVL7OQZk3Z0DGXWsndMiGipwky2xB8H3j\nBrB+5Qz86R/krD/ySKbt0ji7r+VovtrtojNt6qhkHU4g67q7KcVHG6ecgEgQq7sjWsdlHrTmZ59F\n0qFD2u8/ZQwdvsNyNHKLRg96pEZvNOaHXzV545i/Zp9PlXXgoRTkvv02XQc/tg8/1PcDZ1dpu05c\nfDxF0+1e3/LlavTe7aa3ZXu7PjPx0UfWBdCCrJGpA8Cipob0FD/9FFAUIAoKqOB0T7Xprraxfz9R\nolh+uQhx8aSrOHeu2Eiur6fQ8Pjx5gpAaWnAIW5/OxShYcNJ/eadd2LX0fj779R/885KrMHP2Zl9\nVZUhWaYK19RU7P+mFWcd0lKGWuFAvHJP5eSi7cjnRAcK4s2cQlRVUdT9f91FmOgHIAetRiMVIAUC\nQ3vDNC82jizsMCLNjNu9e+nWUhyA9HS6rNRU4Ox/eTHIpx67d51agBwuFWfThwGcs3RCR3+G48Xl\naG0uAyB1nNsuA85uYTILWTavvw/nmCy8Xi29CQCuuUZMN5oFLxIgcJLseiPc+0Z69VXMePZZtKWl\nwe2OQnVuCIilyXCC2NQqDCajs0gI3SAZ0S1wygk40SB6Qszu5uCD9t2+fch4gTM6hg9Xj8ka5b17\nR2+8ogfdrtEbbWUhflx2lXWsFIn46+Cv1+2miLhSVwDYux5e+sHvJ0P6wguJXvHRRyROzsLlIgUg\nWQa+/lr9/OhR4M47ycjlrzNcUnQoOHKE6BhDxwL/cyd9JuB6AwjPcD3wLTXfsqLjtLUCK5Ybf1+9\nm+43MwcgMYmcmlcNuh8ZoFYaiOqWobi4cguSouX8WMFsHjvDQTjwrSo3yij59JEydJu+gNtw7lAJ\nV1wBsiivzNV8X1ZGzcsmlgSN44UA1pVT9sFEBcgIH1cC8yqtDXNZpiJglgpUV0f89cJCqmPGQvG+\ntqLpXO1CdVIutmxtx3DG8M1q3gkPvHgChZpz24FVkS6fqQC0josCXuEn2jXZLGPMrLNwyBC8b9zL\nlqH2nntsH+JE6EjbWRHrWBrPnTnP0XCceHPsRMQpJ+BEgtkTYnE3191xB3p9+CGS9wR50nl5ZJQC\n+kXyyBHjwlF2LNF212OtLCQ6n5GyTm4ujeEPfxBHyhMStIWyoZ6PhZUTx0s/yLKaORk5Ult8rRQt\n9+ql5e03N5NqkgiyrP1/SgoZbO+9p9Kf2PvBDpxOPd1swwZgQzXwzhoy3ETSljm5VOh7661qEWli\nkqbjbAcSEoGW4+r/Q5XWNILV73q8WetgWaA1zY2V7eMxWK7AcNlEAjUsOBB2t+Hk5Og7AaIeB1U7\ndbSneLkWLWnpSKinrM125OIJFCKzQcJKzqBsCzKGvF5gersXrjqtwf/N96noZzUuztDejlx4QRat\nFc3F6zVvv+Eq8JAzEm4XYsai3rABuKPS01FfEC0YZTpEmYqrr9Yb4MOGkR8HaCU9w6UGhZJJ8MKD\n61CuSs+G0eU5Ujz22InVkTaWiGXWobMLnCNxnETm2LPPxiEtzQbFsRvhlBNwIsHsCbG4m9vS0rD3\nxReR8/bb9IHVkzt1qsoD57cNxV0PM3MRlrJQJOCj7m+8Ya65f++9FMlm6wiUzMUf/kC0G0XCU5kX\nI8fJalU1+903bCCjn5Wd2LaNVInCxbRpwFNPUb5ecRzmzQMmT7YvEXrrrVScKypOrtpJPAoeQ4aS\ntbFmDfD66xTu9PvFtCFHnNYBMINlxJszpI8c0X/GI17fiVS/TQIweDC2JIzAoS0OTEAM9PzDdQAA\noKE+slMPyArK1gSvKz2DVJ/mzNErOQnqHhImTcT6T1z4ZIvK82/YLej7FozAz5sHZLoBXrB09YGh\nGJPUgKxmEyNRYGjr6gpCgMKu448NQBMWt23sBq30jQAaKvWG75dxufC2eYTHiET+U5SpED2aI0fS\n3+GqDPEQTRmgLrn5+eq8NUDC7KwyrLjGS2VU3EVaXb88ZQZq/vYqzm2iNXR7/GAcuvp22O0WYtZb\n4IeKk50nbwei1/KyZW7cc4/NfjDdBKecgB8Q2tLS7EeiZ8+OXDTZKnPx2GNEZ1FoSV0N1gExM3bZ\n+bn/fnHmQgFb72DmOIW7qrrdFFXnteeuv54aWikNyZKTAYUOdt556ucOh1503OVSOx8r473tNrIE\n7DoBTiepAxkpFA0aBPz3vyrtJjGJqEpKQyjFwvB6xXUDJpKeOtx2G12TLJNjUs9lPnhDev8+iwM6\ngAEDqN7CTGGotQX49L8Yhv9iQATdMDsdXOalHeQSAdBmX+LiyDoqLaX/K5ZcvQ3nIicXKChApVfC\nPAuhqBYmsfA3nwfXpZd3cOW3IxfFmI7i5ul4bpiXjFUjSzhoaA/yAGdMABps8tnz80ncSskGpKeT\nj6o5hUGoPVTajOo0SMhHGe6TaMfHZXJa3G5tPUA4NQes0SzShhgyhOrbeccl2oXCfNMwUc8A9daS\n4JL0JzK6/h491G2eXOrGU00fYgYoyDK/dQYcd56GN96wR8kTibRlZp649I/ujFM8/c7HKSegsyAi\nj4WaT4vVE9JV7fbeeos+q6hQi2ojkUrtDIwapZUkNcpcKFCuWfk3+/kNNxg3CwPUe6axkehJRs3K\nRHP18MOUrZg8Gfj2W3IKJInOs2EDNW8CgGuvBZ5/Xnvejz+mQmZ+vN99B9v49FPxfAAUMXY6tbz7\n481aY1/hdfNUpVCRnkFzkJpK861zAMJBO9UVJItlL0XIgD05UhYNKX3QM7kZ8bIJFyWaOLMvdVPm\noviKA+CHCy5W0nP3LjXyr6CoyLyD8bDhmq5OoRaYNkBCycQyXLzFi48rtUpBG0cWYiRjVEbSyEqB\nLFNiTHEA3G5yABQ1WjsIpRuvdmwS9vsLsZCpN/D5tPUAoRjmsgwUF5McqnI92dmkbqwU6ebkUM2+\nlVpStGHUM8Bq3oyu/3e/024nw42HwARZfBS1HTFCfFxeJ4PH1Kmx4an/0JtXnUgFzqLX7uTJoa/z\nXY1TTkBngI+Iv/IKRV8VI8ku3z2WT0gokWgrA11ZyYzUdABrB8HutYa6atrZ3khaVdSTIBIo/eNf\neYXqDswoV3l5pOPvcpl3N+av6/vvqVnZggXABx/Q+G+7TW1g9tFHdGw2wl9RIdbxP/NM48ZnLAYP\npuJlo67NffsCW7daH+fgQbWHQbioq+Lt/agAACAASURBVCUrbvRofafhSBFNLX4BUqfeSLSqcePM\nFY+igZxcsj6Li8VN2QC4ILCGSkqo25IdKzEnVyhrExQMwpAhZHzyh0qMbwdagVkowvosD349XQJQ\niAcMovl8dHjpUr3hbtcwF3UKDqUoNxywY1vwiIxZwfoAoTSqTfBzomD3buCuuyhGAGgNfv4aI1UE\n6irMmAE884z9kibR0svHYJRyumjiRCg+7gycKFQj0Wv38OETqx4AOOUEdA54g5enVITCd+8OT4iZ\n0cmvZMnJKvUk1Gi+1bWGumra3Z6vDxDx+3kYOQ7JyaTWI0nGPRt27AAefFDbCVh0z9x0k/F82FVh\nuv127Wc7d5JzkZGhNdp5SdDBgynqO3as+jZMT9dXTPbpQ0XJvGoRC0WDn6WdDMiieWYbfJWUmBf7\npmeQrmBZmbhwWIFRDUJXIj6Brtfo+s46m4xrrze2DkCyk37b888nB6Cy0nTzJiQgGUzhdF0tjVHh\ni/j9QFa2mg3IyqbfyOXSEb/r8z2YME1t+rQ7uAvvCEjBLMrv8QRmOMqRAOK7GEXzecO9ro78qPXr\noxPRVqQzYx4hl4P6+MG6gOtQjtlZZfB41JPaNczN1HZcLntOTSwUgRSE62DY2c/tpjYll12m0noG\nDgwEo7Z6iVDR0tuhAgXz10AkkfxoF8XGKqvwQ89WsOBfu4eDjd9PpDk65QScQngwMtD5laypiSg0\nPO0lGnSfUFfNULoE23FAlJqGCy6gY4wZA/TsqTWAm5ooFPnww6pjsXixPqL+wgvAn/8c2WqhrDw+\nH7B5M7BPwG0/LiimdbnEdQUKRo2i8S1dSk7AuHGqFOm4cVqn9uBB+mMHrOEeF0fdhVknwMhAPqMP\nUXsUzoKZA6Bg6FCal2hnAwRoQhKSQWPyw4WE83KQ+MV/tRtZNUFzu2PPwQAom7Fls2H0n0UboHUA\nFBw6BFxyiVp8nT0QuPu3RPliLUWuYVfz0nIcqiPte4B+noULKYFYVgakBw/vYOYqYbcq/xkKzcbn\nC+7mYXhC+fnaegbBfPNGZmaijMsrvUAlcNvrHixeJcXuZ/J6OxpkAcAg7KTiWIYbL0mUXJk5k/4/\nb15ot02o0fxQ5jyUiuVQHQz20NraAdqPb2ielaXtozhmzNchqbikpFgb490pkh+rsXSna+yuqK+P\nw8SJJ84cnXICOgMi/XuWDtS7NxlUJytGjxZr53cH8p9Vl2ARfD6tNCdrPBv1WGBDA9dfr436AxR5\nZx2YUJ0kn4+MaKvCXZ9Pm9vOzFTvPaOc+QUXaIuEBw9W5+nqq+0XC5th9y77v/+hg2QpFhTY2z4r\nm6Lqt95KZOGqKuDo99ptzuhDxw0X1/4M2LYN+9v64HeH/oBncRcy4IMLfjTu+gqJyc7Q6EN79pCl\nw0lbdiXiRB8mJlFTOra4evcucg55a5Fr2NW7bieexzT8Bos0NBeF1/2o0UBEJG0G+fn0KLVxNp4z\noHVCUFys1qUYVNSyxumnH8qYvVXtDHxddTleKi5DwZxOcNaCUOIVAN0eCxZQwkzpYTBtWvAyoDXA\nPR5J48y43RTZFtGvogKDDs1WjoAdByPcBmxsXGfHDmMHINz4VKSR/GiWwcVKarOzJTxPRCxb5j6h\n5uiUE9AZEBm8sgyMGEFG15EjZGR1Z3fRLkJZySKlNoW6aobaJdgI8+cbF72KeixMmaInmSqdk3mw\nzsLKlRR9V8Zudm88+qg9Y/zLL+nN7/PRWGtqKLrvcKhj5jsTr1ihpf2wzd1KSqzPaRcdsiTBuU1K\nNm7apRQOezzA6tX6CL8jTlUQ8vmIglJRYVy0KpJJEWneG2HNOwCAs/AtnsedcEMtQE5pbrB3DBZH\nv6cMzPjx5ERffTXxWb4Q0Ml0iKB3QBAN6IFUHLPe0CgL4/drBeUNLLTLsAmlmIB8lBny3dvjEwD2\nZ1i71tR6LS3VOwBuN+Bp57oGs/eWoMEYH8jevsGratWDIvPyFi+AGBUI8A4gI31qxPGvqqKGagXv\naw1wqawMZWVS5xX7Cjo0RyQlxB86iipFPKIZn1q3zv7+3SUudgo/LJxyAjoLvME7f7426trd3UW7\n4FeyKVNit6qFumqG0iU4EowfT2+m48eJJsHz8HfsoLfw8uUq917kLISSR9y0yf74Pv1U6/zwDk0r\nZ/gadUri72EeAwaQtWKk8CO5VYnNoGQkCgoovLl1K8mIfv65OVVFkshZKiqi+VSi7ayEqOwDFr8g\n3l8Brxokygw4XSSvum8fcOSw4aFYByAisOM+62wb0qVBBR9RAW+ISMUxtCAeCbDpBLFwushQVxwu\nJVRrkNUYhJ24x+nFI4FCpELGH91eTPSjw5IPtCVrj18taCZggYkTtVF0K4iizS8PAcCVTAwZYu9Y\nIRnfRlyX/PyOz18KeFBVJT7QBZViA1wqLIxpQfPJhHDiU6KysIoKWtLtLuPRKvmzGx8Llbve3UT7\nuiP3fvJkHyoqMrvNHFnhlBNwMsDGkxBXXw/3smWqwHEsnxZlJesMAiG/alrNhVmXYLtPqxIBN8oG\nLF2qklKNCmRXr1YdgN691ah/uHnESy815vSz6N3b/rZmx1AKpkVwuYhytHevuQPwxhtqQzCHgwyc\n/HwKn1XtBCo3UfGvCGxDKEmiP9FU6+nbV+8EnHcecMUV1EnZxAmICWw4AICBgo8dCLIeHQ5AfAIV\ngQuuuSUuCe3t7UhsD9aaOOKAG28Elr+sbsRGgcvKiLNSqXVa70j7F37cW0b/fR8hw7cLWAjEx1MG\npbXdgVAgKhYl5pgHLavLO3j2xxGPROUauQZjbLQ5FTJ+UeXFql0BXIWByAFlnZoG5KJpsgfFJgmP\nkKkrRjQaQPP5xPRyPC3InmRlAdV7gCvsTlasYJLFiNqhg3OalaUmnjpDztQISoxJ1Luxs+N7duJj\n4byeu1O2orvWJ6SltXWbObKDU05AVyFaLrWdJ8Hnw4+mToVz1y7jbWKBziYQhroqhLuiKVr7SmGw\n30+FuAr4qjQePA3pyBHKFlx6qX7bxkbqQWA1vvvvJ8dCcUxcLiAtTV+kO3Uqbav0aADIYHc4VDpR\nUpLxNcTH03gffxwYOFArL5qZSSHXtWuB//zHfA7GjCHNxvx8qpGoCzYV++c/tUWzdbWAO11VyHGn\nx5jMHMT55wNHj2qpSUoBrRTl5+aCC4mmZdrVOAKw82cEM9pTaws5AAJ6VkJbM57H7bjEuR2DzgOS\n/jlPjVyLoFSysoYugIRD3+KSQ9psjSOYkWpEiubzI+m56G1iUBoXmUp44fJFuGH3OGSiDoloRQ0y\nsGfIRAxfKpY5TYWMUgTrANqAY3BiKy7Ex7gMjVcUoJxRNxIZ+CFTV4xoNMq/g+hdtxN/dHvx/3x0\noPTgY9HeDjy+0IPhTLdhZb4i6SwcMmIoJcQeOhCg5UbppaD8BsePU/uT+Pjub4TFClZZhXBfz91B\noBDo3vUJ3WWO7OCUE9BViJZLbedJmD9fdQCMtjkZEM6qEEmn3r//nf49d67WCTCCopIkoiFVVFB3\nXbZo1+0maozCVzdw8DruoRdf1MqELF5MBhdLObr/fvG9B6i9HcyyBCxVaNcuoKAANVddBQDIfOQR\ncoy+/NJ6Lt55hwx5XgNfpJrDcjmMwq2yrK0DiBSspbF+vZaSJPvE9Qpn9qXma6tWmXcS5vHNN7Fz\nAACSbT16VB2vI1jiq8wVS8syQ3MT0LOXrqi6ARJ+EXgNM68ACvtDX6eRPZA+42kuM2fqMgIixMc7\ngFbgH5iFDDcw/nVrg9KoyHTQ9lJkQr3fMlGLLxOcuuMp0eZfVGnrAHoggCH4FKfhKB7+rMDQwFcu\nVZETjQUmTgRquMeiqIh+j3yUwRPsL5A80YNfQwqrmNYODJ2LEKSE2GPYEG3qOHRRkSotC9D1FRdT\nsk5ZhhYuVGMfsXQG+BiUgtxcNZbzQ3VITqH74pQTYIZYE85OFHdRNA/hNN0SZTu6I6kvVPDXyfZG\nUMA2GuNpSAoUQepx40iSs7ZW+z3v1PBvnb/9TT3vZZdpo/kZGeJOxyyU/4dCFdq8GbWLFgEAMt1u\n8/4ALHx1pNRjFaFWagUAshKUYmDl/7Js3+h2uuwZ25JbPcf/b+/O46Oqzv+Bf7JvhGQGgoIJW1AS\ni7Kp7BpAIIIILasosgwo/UJL4ZsWBCwgrVgLuITFogECKJWSsvmjFRS1IFgqqFRZlGBiMCAhM+Rr\nkgnZ5vfHyZ259869syQTkjCf9+vFSzNz5869Nzcz5znnOc+xWoGvv3beRmukJP8HUZD87beBJ57w\nvL6/T1Yx1lcRHI6QSZOAgwfFfVBc7Fid2dgCeOst4PHHPTsOVQBwBknIgEavvDxVzGYTE76nT1em\nuQwa5DIIsNUEdQYjgALANi8Nj5mA2Do0XHt4mNcvxYAHhwLId36+E7Ixq3ItDuM5p+fUKUDygbUW\nLUQjV5erNBrV4xFzTEgz6Lz8vAFrkIbOnYGs2fU3mba2lXqk18p786XG/Lp1jutVm2Dl5EllP4Q0\ncPmPf9R+ANyTryl1HxQgBneLihx9Po0lZQWo3/z+m/G13tjmJzRVDAL0NNaEMzVP/hLmzkXZjh2O\n0QBv/lq0rsOePcqSkZ4suiUdq6tVcet6jRvqU0FrMvTWrfoLjekljwJiW8A5AJDIyyNqrckgUTdS\nr11zrFfgyty5YgVjT8t+XriAwOvXUR0bK37u1cvzIEKrcS3X8z5RwhVQpo9s2SJSneRrCuhJ7CRG\nYPbvd6QcuXEprCP2rINYqElWp11JZz7E+XOisb1/vzjmupQd1RIRCVhL3W9XoxrAT9lXYPyyZiTD\nalUGTOZCsZxugHd59wDwRXgvTCoT5T0V9eYzMpRVmLIviF5/dZpLnz7KBeMAfIcENEcJWsCMgJqR\nisCaa61osNYytyVijgmV7zvmBVR2Eo1pLQYD0CfDhIJHMhWjB5L7Q07hvkQLHswWx7HHYEJZmQFr\n1yob3OXlYsmEsjIxx95exlPrkF2l0eg8rr4UnmbhfPJJ3bN0ahtc6FU3ApQfXe72pzX/o0cP7TXv\najsAXpevqZAQ5UdpYxqEr6/8/pvVdGpM8xOaMgYBehpzwpmcJ38JRiNyMzNh3LYNcfKJwbXp3vjq\nK2DyZM+vjavRDr1rPHdu7f6y5deitFQ0bKT91feng/o8PUms3LNH+WkpVQiaNk3/dXqTcT1x6JBn\nFZSOHhUlR3fsAH74wfU+r12Dcds2XPvVr8TPzz4rGpWepASVWV3nq5vNjkpB8gakxexZz78URGRk\neBwAAMA/r9yDGxsy7Cu1es1qFS09XwcAHTqKuRQb1nv8kkAAxuJLjge0rtu//+1d+lKNLrGXsLnN\nOvyn12w8MVu2aJZWuVUtZ844lRi9htvQAarUOvXq1RaLCKCldKP9+8XfkietWYMBwXscreRgN63g\nnQcN2IX9OIzBiFRNuq66825kfSZb0ddyAGM3ZCHIKPYXA4s9JSejzISymkm8bhvKemk0Go/r9cSr\nX65uLAOioTxmjO/SgrzhagVjb2jFTABw+LBnH0Ge8LQpoNUH5U2fSEOoj2SEm9l0airJFI0Zg4Bb\ngdZfgqqBXx0bi2u/+hXikpMdz3sSrmuVh3Q36bMurNa6dSMYjeLT2BddEa6CJF+Md2qNIMhHWLRE\nyiZJepKGJHf8uGf16oxGMX7+7LPKBcjU6wfovXbAAM+/gaV8/7Iy4Ngx4EvZyrrfXQRe3+DZfrQ8\n+GCtWjcDcRgfYVDt3rNFS3EeWot7ebtgmNr162IS9eHDjv2retJrpRajAICYzNvrynr0KjoIzN4L\nwCBapYcOKTdM7CTmqMjSga62SEL03T0RoUoHuq1NkGb6DeBIqZhtWYsI+boQF74VweJzzqk5mrxa\n9hbIQ3sMwgd4F4+iJUSwdB6dcOq9cDxuUa4bYEIG1pjT0NFgwV8ssoXFcMDlWgi15WlPvNRYnj5d\n2Uuutb20CNmpU2Kh7dnac6YBaPfE+6gIkMf70/p1vvOOGPjcvl25ZEt9DgzrTbWqTQE6PbdC9iw1\nLpqLQBLEX1iXLo6fm1LCmdTAf/558e+hhxB4/bpyG71wXe3UKefHysqUK+N6e22ys0UD7dAhUWFG\nIpWe9OS4XPH03FzRuIb2xb2ys8VsL63n1PtYulT803oecARwy5c7lwgFgGBZnK6+ztK3zu9/L/59\n/bX474AB+uflzbWQRgXS0kTlHykACApSHJN58mTl69SNQElYGNC2nePnzkliVAkQ+RJ9+3p2XB4d\newt76+H6WBNyQu508wKHROQiFf/0/L0enwTM+qV4z8JrwOkvnbepawAAiN76SZNEGs0DvURVoboG\nAICohKRVijWqmfNjQRr9RlLdfkD8V71w25AhQPv2uL4pC5nG+ViN+UgpzILp4ydhC5GtARAahrYZ\ny8V9IVMdLgLfl18W/7J3/Mf5GP6j8ZgnLBYRXaxapVnO1mQSDdE8tMeDOILVEMf/c+xFvkV/4YE/\ndnReWEwaFfB1Q9lTBoNY6FxNPnAjDbK8/roIFjZsEMue6Fb6rQku5s0T/zwdVTCZRGlPVx54oPaj\nFLGxokbBuXOOj8fapqR40xSQf5wbjc4f0XVJi3H1ldSYNOWmkz/iSICeppxwptEIVqRseCNY5xaZ\nMsVRscWba5OdLeqtSz3WoaHiU95iETO43nnH+2OsD1qBxMqV4v/Xr1emKHz1lfjGkaoFAb5LjPzN\nbxy9/56MRngzudeTbiXpMfmiYFVVjkpHc+ei+scfRZAplTJt1UpUvFG7cQPIvwxMnSZ+52PHKieL\ndkwEYmKBouvOr/XW+PH21sP27UBqhXdVg+6AF6k8t98uWlKuJgL7ag0DxcJntevBd/Kvf4l7euJE\nZXWlkmLnbbt10168TSqDo5UKVPM58eYuAzaZTTAhAyZkIPy7MgRAPo/lhphPUZPfUf36cgRZi1H5\nf+JvLQYWFMGA0hsaKXGu0uT05g/o1eSXtTrl6SaffGLAmhOOLucMmDC5xQG0KhSvlyZJd+4s4iqc\nVB7G/T2BeQ/6tjyn25541bmbTAbs2yc+hiWHDtX09sOCM9Mz8NgFcW7SqEV2tov0JYsFhowMsWay\nFydmMIjYUH4cav361f06+SJdpK5NAV+lrNxKGcoNiaMpSgwCXLmVE848nUS7ebNYuVU+W+uuu2pf\nb23aNOcJrPJ9FxSIRqRUR7823Qi1mSCs/mTQkpmpv0JuZqbymnjziS29t9WqrLvfpYtIydG6zq6C\nDPX5y9N4pGvhaZBiNjsm58rVBAB49VXE5eWh2ccfAxdrJuoaDCLFRKthVlkucsF37xa9r/K0mYsu\nWgTekFcUAtD9ZAY6wUf7VmvR0rHWwU1Xh/khchezRQDrtrxqAPA//yOCYXlvf0ioqPJz4t+iHGhi\nJ8fEYFl1m/AyWc19AAVwHn2wWoF1GQYAaXgh7E8IsRYjtEIEI7swBtOxCQEawU9FVQBCZKtFSW3f\n8DKLcoK3vKGvV5Nf1dqV0k1MJmX+fctEAzIHZKHvmQzcfTdwOMKE6eEGmEzAW+tMGCSr1X8GSTj9\ngMnnK/a6LMevEeQYsrIwZIhB0fi+cAF4a50Fcw6PQb/z59APHqYvaez/+qYsvLnL4HwsGlyt4NxQ\noyV6buWmQH1orNerqdR7uZkYBNSHhg41NRrBTikbUrguLXjVq5f2vhITRaPtySeB/HzR2JHGOutL\nbUcZJN52RehVQJJfQ3lgouXqVdE4iowULZmjRz07VvV7JyWJFoe6opCau0nVjzwiJpFGRjqqFckn\nS5eWao90qEcdXn3VOfBp1UrcB8nJwNWrzk05KXdALxDwtfAI0YsdHi7uG1XrQ6sspNoPaI3AoEC0\nSIpD6NdfuN5YYjCKSdC7dnk18RiAWGcgMrLey4N6TL2onCYbMGOGaEjv3StSBauqlCMDF74VqVGP\nPQarFcgIMKEsQzSMTbYMRMhSZOJwDeaAFjDaxAjKhZAkzDtowqmaWHJ5wA2Ey979bpzDfox0qtRT\nhlCEf/kZ8OVn9obomJpFvOZDNcFbp6Fv56JkjtYiVa9sMeAVpKFzkXIQoSxcWas/AyJAqC1XxZB0\npzjoBDkREc4b33tCua19fgPSkJio0yDX2P/ekRl4uWYBM6eBFY1RCfkoRqdOYnQgPNz5HG/qQmeN\nkNksPrLj4m7eHIdbUVMZTdFTH01LBgG+1lhCzdRU8UnZuzewcCGqf/xReztp5dgjR8QMJq1jTUwU\nk0p9YfNm53Sgdu3EwlOAckErOW/vfm+6IrQ+GbZuVQYSVquYLOvu3LQmUgP6n9jq9z53TqSyuDt2\ndcUUQHzr7tzpWGwsORl49FFxLupJx3Fxzq+Xj3RI962WkSNFkKE3KiKx2YD77hMTyaWRiJAwkdgN\niB70rVtdN6ATO4nfvavqNWVW55aQbHZjxN13o7JdIoJztUcDrsGIIXgfRVUGPPugBXOuPORZoz4s\nDNi2zf12WqqqGk8AAIg5Op9/rlwhWb0YGiBGC5YuFSM5FotI51KLiIDFlGbvNY+BBXGZGXi8g/PK\nWX+1jYcVIuDPqDCh6KKjdVdtc+7xVwcAebgDCZBVsDp/Du+Ny8D5fA+63NU1+QExmuGiZI6rRark\nsYXYtQEZ50X60wJjBkaNNQG1mBhc21r8Viug1dluX8tNXsX1IvCgarv4NsAvR7meGKx2TfZnqrgm\nOqMSWVkGt437uqxF0NSZzaKfLjPT0QfVqtXNWfyMGpf6aloyCPC1hg411XeKxSI+LbQ0xLEmJooJ\nrFIZzM2bxae5qwZ+Xe/+2obP8kDCbHYETIDocbaqFp7SCwAGDBDnqbdCb23OQauii3rV4rNnHalF\nGzYoG+3qtKvISOXz8pEFeWABiF5gvXUM1IYPB/76V/H7rq4G/rgJaN/e0YCUGttaq/3GGhyTnN0t\nCCZN8AREcDFliiNl5cS/ERxrEBN4P/5YLOql0hxFMCED3U9C5Mc//jhQLQUuoSKgUk/4vXJZVC/q\nmOj5QmQSrZWRvRVYM0FbOs66iI1V5pWMHSsmU7zxBlBZ4by9ulEnCQ0Dhg7FmemrMOI8UIqx2ITp\nuNt8DjADNxCGsJp5AN8EJmFt9RzdlJNSRCIG/2f/uTi8JZqVKe+7PMQrgwAAl2TVhTJgwiOytBzF\n4luKkjmyKkWuRgtquqT7fAJskuXNa3mkjwXjcsegfZk4d0x333rV6vGuTS1+iwWYesiElbJzr+yU\nhGCTyZ6PLw8C/mwxYYRsfgM6J2FClsl1zKIKoq62SEJGoU4Oj86ohCEtzW2KVH0tdNbY6a1AfPWq\n+PphAOA9V5nCDZ3A4Y675lptj59BwK1G706ZOLHhjkktMVFMRpRzFXjUJVjRCyAsFkcg8vLL7ucQ\nqFOMSksdjU53evdW9sL/7W+il1xqWMtLe+qtqqw+h0ce8ey9JVq99lOmiOPQm+tgtYrzfvRRZRDg\naQAgnYvRKH7f5eWO8o/qRoFWPvp1i2MSbMeaUiJ6gcCePY6e9Q0bnBvk1y2i93r3bqfVfFvCjP14\nDHG4JtKGftlC2bCuKAf69kVl6Q3txcMuZgO3twaueBEE+IIvGv+SiAjn0ZQlS0Ta1/Dhjt9PaM1I\njvr3Jym/Afz85+hXZkU/AE9BudBWGG7gGHrhOPoho9okaurX/EoTE0VsKzVObTW5/8UQVYo2j96H\n4X+fjsRy8b5nkYT5eFkEGbLce/kKxkUw4NnELPx1SIbIMNTKpenXz+XKxXaywKcfgP2hBzCyPMtp\nsTRpsxHnM9Dei1QkvR5vb0nx9WfZypSksCEmzKk59/Bw5WuKYMDO8VmYE+5Fzo1qQkLoWBNun25A\nUS3LhfpTyk9tVyCmutHLFG4sCRy1VZfjZxDga01pLev6OtbGFFJrBRBLl4oeTqnh3a+fyAXet0/8\n7KpSjjzslheATk5WNuwlXbqIx+XHoF6N98YNRbUdp/fWOofUVLFvb74l5BOE4+LEcQUE6Kf1vPuu\nGEWSr00gkSWnVkNVazg8HOjeHUhPV94HzRwlJ/VSFXS5mzQsT63R65Evs4q5LY89JquwI8RBFtho\nVfmJiMDrQ7LQ68IU3K9ezAoQoyq+XhzMF9q1B3780fUohcEoktxzckTv/8mTYiLFnDnAvfeK+S3z\n5ol75557xBwIvZqRgOK9tFbaPY5+WCPqyWDWeMf0H6nBKCrxwD6PowRRAIAbrdujxYdZ+GSeaCnG\n/K8Jpf9jwNhCZe49AMzHKsS3AQpGmfDEbAMiDC66jdVpQS1aiuthsShboqrAJ7H8HN54IAPH+6Up\nGq1Sz/UI/Xd0IjXctXq8x44F1q1z1E8IDRWP6e1HHkgUwWC/1vNkDX+tqkJPzDYArq6TFlngGAvt\nScoWC/BWmQnjVSMN8gjBVcqPN+ffFLhrsElfn3qDxJ5+TTemr+HGRCtTuKETONS0fneummt1OX4G\nAb5W2/pYvvqL1btTtOYE1Ectr/oIqefOFb3nUuM5Obluwcq+fcoKRTduiEaOenTCFa1rZ7GIWvdS\nik1cnOih3rrVs316c/0jIx0Tu+UJo3fdBeTlOacqAaIR17u3qOJz9aoYyZCv96B29qwjJUh+T0VG\nAsOGiSDo2jXnxUbKysQckn79HNf573+vWT/AqJmqYAsMQkCte7YD4HGlHCn9qEVLx/+7WrUYEBVv\nTGKC639wv0YQEKC9NkBj8MMPootdq9deYjGLVYjffNOx7sCJfwPvvy/u3/btgU2bRCtNCp4Mnv89\nX4PRvshWTsidyKgQjb/OnUWcoe7xTUsDZoy1ILp/MWADAmp+t2VlosyoaVOa/TUffwxkZBhQak0T\nt1e2rAJRPoDDB4DZWXCbiz9okAhSL14U98WG9WJRNjfpO/36Af102s0uU5Fk1A1gtV27lAXUysvF\nY9KAgrwH3WrV3o+6V17qxH9rQc44lgAAIABJREFUnQXdT2agRw8gArWbsyCnNTVHnJsB65GFBcYM\nsT7gHGVXv6uUH3fn39S4arCpvz7lg8RxcWLwVq9gnJyvvoYZSNx8rn539VF6lUFAffC2PpYvG856\nd4rexGBf1/Kqr5BaXmXGm4ozWkFRs2badey9pb52r76qrCBUUCBSjnr3Vpb+1HLkiP5qvlrn8NRT\n4v0iIsQKtVKg4S5NKSBAeYxXrypLTuid5549ooJUYaF4j+3b9beXyAOtr74SE3Vn/B4ZGc6pCg91\nseC+05t1dgTR6DQaHaUnFVzdDxoBwr59jka/sQXw1ltiPQa9hvKQIQCA2dZVOB9+CnAqhX8TKiDV\nVmWF5/e6euGxC986WmLr1imvj6v5GTKFMNgb8QAQn2DD/wwDyjQqwDj2bUHs9DGItJUAAFoGmAGb\nyPIClL3E8kbnnDnAmekZuPuEF9WA9OY21Lz2k+mynn71iIFOo97Ryy7ucb2Gr0TdAJZIDXepgS9X\nVib+zK1WEVtLJT+1vjIeeEDEcOq3NkCUBcX5c2LU5UPfz7h9a50FI85nYAREULTInIaCCCBN9RZa\ny0v4I/XXp7tBYk/3U5uv4aaeIuONxpTA4ep3p9dcq8vxMwhoDHzdcG6sRXpr69VXlWk2586JHPs9\ne/Q/keRdGPLeeKnHXl6hKCxMTNz1llS6QSqxqjVZ98gR8U8q/fnvf+sv5KX3e1cHdupKP/JPZ2nB\nLj2ff+782JQpjtKm776rXKdA+iTZulV/4rOXwsssmC9L3yiCAWH9LLiv5Ih2Iz8sHEhNhTUsBgeu\nDcCDRfuV6Tt6DEaRNrV7tyNFJTxC2etvLlQsUIVPPtHODx81ChHZF9ANGulPvhQTC/z0k8f5/tag\nSITe1hJB+S4a+laNSlLesFjE5HCV6lgjAq/rBwOVCEIAbDDCsfhb8MULIu/cVTeuKu0m0KacRK03\nMdS+Iq6bcrCu3kvt0xPAyyekwMMAg25RfuVxODYz4DFTGiK8bFfLG+7q1J3ERNHwv6Dxp2I2Ay1a\nOP5UO3fWDgAAeLxOQq1ZLBi/cwxa1YyESGsPqEcbLBbnRcblZUndLojWxHjbYBs4sGG+zhtbikx9\nauwLnLlTl+NnEEDeczVGqK4mk5RUPyG1Xs+52Szq3WuVu5S2MxqdKxS5W8NezWwWLQ7pPI8cEak4\nSUnO8wIAR+nPPXu0Sz64Iw/sli51/nR+9FGgf3/xs6tRB3WXm3pBsoUL3a8doeFGx44IGz5c/O6l\nkQb1hOc5c4ArFsw69Li9dvsjOIBnE7NEPvLsvcCECcDXqmtzowzY8TYiACQjCSOxD2swD33hZjJn\ndTWw423x/7EG8fP/FWlv67QilKy312pVBCf1FgAA4vfjRVpURFUp4CoA8MINhCAMskpAITXJ1xkZ\nziVTwyMQOHoUyn66gYDduxFW7Zx+FowqRQDgS1JPOKBqi2v11o8dC6xa5Vi3oGZBL3cd3vJJxufP\n1yyo5eHEWd3a/Rq0Grnyhrt6QTCrFXj9df39jR/vmPjrquzmmU+AfqrHP/kEuNtXk3IzMhxzACDW\nHlhgzMBjpjT1Zk4BzZAh+ufvi0nD168HYts2I+LiXDeY6iMdxlWDzVc90o2pZ7upaCx9p7X93dX2\n+BkEuHKzEuL0fuuNMSHPkzFCeY+4Vu+4t9TXR6JVI0urga3VhaFVocgb6tEJAPjmG/HNP368mNWl\n1eMv/wYwm4GNGx0Jr2Fhope/No4fd6zlkJQETJ7svoZ9nz6i51/2u7NYgBuZ/8DtV79yrB2xZ49o\nebRsqVkZqCI2Ft+vX487hw0T11g+YiEfgWnWDFi5RlFh526cE5VbDGlATpHrlKma7ddgnlNVGISE\nOqezFMkaoHo1+QMCnWcZDhoExMQ4Jsdq1cL3UhWAIE82vNEweREn0Q33QjWvoaIm+VpLmRXYshnh\nYeFAyxiUGxJR+n0hYq1uJke3aOm+G9feKhYpjLagYHEBa6h7whV149UtxrFja2bcnkMEgEE1vdEH\nDhjEa1RBQ4GhE5qNGoJTZyIw84SjBGgMRK82pEatD4vVe9LIlQcVrrL9Ond2X9c/J0fMja8sNGGX\nalXjmSdMuF1/mYQ6Gz8eHo2KqFcTdhVUeVtVyGwGpkxph2+/FZGSq8XS6ysdRq/B5qseaV/sh4FE\n/dNq4t3sUQmPOrV27tyJoUOHomvXrpg4cSK++ML1ipoHDhzAyJEjce+992LYsGHYptEY+eyzzzBu\n3Dh069YNw4YNQ1ZtaqHVJ+kT4Pnnxb+HHhKP1Qfpt/7734t/0iJNN+v9vaE3Rih/Xt6QkyaX1oWU\nk962rXfH1hAiI8Wn+5494lNT0qqVo4EvfQMYjcoZbzdueDaJeO5c5b7Vzp0Dduzw7Hhlny5mM/DX\nPq+KAEDy1VciWPjzn0UAYDAAUVGKXYRcvw7DO+849rd8ufiXmOj4fxefYhH73gEWLwZGjPCoF7wv\n/o1MPIU/dNgE66z5wLz5wEcfAT3v8+yc5WzVYlK4xeLID9+wXqQE7dwJFBXVLDlcNx4FAPaNb27f\njDmwJaoQhBCtuQ1Wq2hZdU7SfvGNMuDqjwg9/xViW4WhsmMn+1OV7ToqJxAbW4j5GB6WnqyOEFWp\nAmrunXnzxD91jXspPUjx+rQ0x6xSjZVw7a8xGHB9UxYyjfOxGvPxkGUvRhx/Dne8nIbbOzuOc4FR\n2attT53xEfkhu7s8Y8eKCjmSkBBg6lRxbdw13i0WsdZfYaGoHDQWWVgNce5jIcqdOl3P2lLfN52T\nxLwIrc06yzbzIt1H+pN9+WXxb8wY14WrAPE1IQUAgPNXmHw7V1919UX+EVqXxl9d96PVLGkM/ZC3\nCldNTG9+d2azSA5YurR2TUS3QcDu3buxbNkyjBo1Cunp6YiOjobJZMKlS5c0tz9w4ADmz5+PDh06\nYP369ZgxYwY2bNiAP8tWW83OzsaMGTPQtm1brF27FikpKVi8eDHee+8978+gvtzsTwD1b72hPoHq\nw4cf1i2AMZtFDrx6gqOnXRP10YXx1FMi+VZOXrVIClyklXmvXhXnUNfrsHSpSHdKSXEdFFV6sBjV\nF184ZhSiZl6z1vxg+aRhiwUoKXHaJOL0affvBwC/+IWoNS+X/4OoOuPFCrqdcQEZD21HxHM1Laf2\n7cWqt7UhrRKrnvxqLhRdppMni3SimyEwyO1CYjYfBwkRE0birmZXtJ8MCBCtyk2bRCPeldwcBD84\nAHigF9CjJ4KDAuwTiKsMLfHGY/uxald7t400AIDBgGqpNG2gGE2UGsnqXuK6enOXAYvMaViDNHsj\neNcu0aCWAo/x473bp7R23apV7hul3u533jxl30FFhSOIcBdAZGQoP4KkEqLSudf2mDTPVRrimFcT\nqLtYhVl+rb0ZhdCrKkS+4auAhJz5oonni75ql98mNpsN6enpmDBhAmbPng0A6Nu3L1JTU7FlyxYs\nWbLE6TUbNmxAt27d8Nprr9kfMxqN+PWvf41JkybhjjvuwMaNG5GQkIDVq1cDAPr37w+LxYJ169Zh\n2LBh3p0B1S/1eJW7MUKt1B1XlW88ed/SUuce/gEDnCcGP/WUSJbVW1/dV+lVUlAizb6LjBTzC55/\nXrnPrVu1V+GVxoG9GW/VS3WS1/53pWVLsZ38W9pqFb38NWlNQw6tBHAUV9ESrWom3hZHtkKz0qsa\nO1Sy3nsvotxuBeDtt8WCUp4KC9dNkYk4uBd4JEVcs+JiUbY01uBVMGF3/pxIAVIrvCZahB07AqdO\ner9fT3ROEtW7rls8GgkJqKpEdWgYAr25jnqaxyDiH3sQUaxzzaTk8l27XJdRrVG1dx+CLM7bBVmu\n4f+27MLLSKtzJs2MsRbEZWbgmllMLL+9s0G/51iV7iPl+XfubJ8qINYk0KBIQbGYRPUcjcpAFouI\nH6XlFSZPVtb8r835aqW4uCslWlsGQ03hrZr+AN2eeI2DclXf375zDyZHaG1WX4uHzZ0L7NhRZh8N\n0PvYZToMNXa+mLztMgjIzc1Ffn4+Bg0a5HhBcDBSUlJwRKfCSU5ODp555hnFYz169EBVVRWOHTuG\ncePG4dixYxg9erRim8GDB2Pfvn0oKChAnNR72pAa+hOgod8f0E+KVFeqUTesP/5YNJLl90hdVvnV\nuh8GDnSeEDx6tLJG/7Fjjgm/6n3u3Ckm00ZGOgcE7oIF9V9eaakYFahNUJGaKr7devd2BCta9FKd\n1AFAZKQ4HvVjn34qAiR1QnFBgZgI/O676C9L47qKFni3xTT84r1ZwNTRLtOsqkNCYJkwAS1dnScg\nrqtejrmWkFAR6B08KOZvnFTV58//AZgg66LN2gUEh3i+f7WqKlE9SGthrXvv9ToIqEAIQuQTbdUC\ng0Sj31UNf72XagQANxCMMHgwAiSnN1EasK+PAEB73QkVM2Jg1AgA1PSq+3ikpnzoFLO4ZpNbHEDo\npizE6rUQZQn3VitwOMCE6eEGx1SBmsZraKijd12zEayTuG+xAKNGORrQJ04A77yjjLW9PV+9hrW7\nUqKeUE9CNhqB/ftF/Ouywa0qpXp16wGE7stCxi6Dbn3/unAbXOicj6trIf9YT0/Pw969sYiLi3O5\nNmRTrhjjjcY4/bA+NKbzbAxNPMBNEJCTkwMAaNeuneLx+Ph45OXlwWazIUA18bN169b44YcfFI9J\nqUOXLl1CaWkpCgoK0FaVypCQkGB/z0YRBDT0J0B9v39t1i2XN+S1VjaRz5waONB5YuyHH3p2Hur3\nLSgQvfpSA1/rr0XrNVu3OoIO9fPnzjkm9sqP25ezwVz9lavfx2IRQUBdlZYq6/63auUIhp59VlyT\nq6qe/U8/dZqQ2wqFmDgtEpE9Ex334cGDYluVwIoKxO7dK3riXd1Xa9fW9CZ7OFm8oly8Z1qa6LZ9\n9FH39ekrXTS6XQpwDjIA0VC3WJRrHnggH7fh6s8Go1vBB2IuhVYPvzeLowUEivkLLliMnXBb0QUE\nuEkn8ph8PQ4XE/yLEI19eBTD8Q/dbeSVdupEVdayVeE5YJdOq1PVlRxhMGBOzVOrVikb1OXloixn\nv37ajWCxKwMA59WBZRl19m3VPvnE895sb1Jc9NYA0ONqErLLhrvGdc8cmQHreOcXeRAvuuVq8TA5\nvfMpV9UIUH/c3nlnAjIzc9Gnj+u2RmOpGFOf/GU9gMZ2no1l8rbLIKC4uBgAEKWaCBgVFYXq6mqU\nlpY6PTdq1CisX78e3bt3x7Bhw3D58mUsX74cISEhsFqtKKnJJ9bap/w9G4WG/gSor/f31V+DqyDB\nV2lBkilTHMnAvg6IvvpK5Nn/+c+eja95+pfn6q/c23E8vQpJWqS6/+r3NBpFQNCnjyNI6NIF6NpV\ns5KRtAv7fWi1agYBdu7uK/UIhaekciYeLlDlROpxd0lnwa/qKjFfIcC7wqCRAeXo9vXbXh6DC7/4\nhbiuLkYNbjd7P6LgUvYFR8srPFx3szcxEwDQQqMc6H9wH/6FB7HHYEKRRbQ23fVcS23350oDEKa/\nmWvqRcA8yMnp108/lvCkV1pO6k+QnDgh9lGXNCh3pUQ95U35UleumUVs2KmTcqL2oUPaK0HXF0/O\nR/1x++234di2zYg+fer32JoCf1kPoDGeZ12beL4IJFx+s9lqeoLUvf32Fwc6v/yZZ57BxIkTsWzZ\nMvTq1QuTJ0/GxIkTERkZiYiIiFrtk3zM0xkp6io03oSZ0t05YIDycU9mv2i978KFrmcouTtWdxV1\nMjM9n1HjTdkEX5Z60LqeasnJosdf7z0TE8UIiPzYtWZatmzp/LvWWam57M47YZ482f195W25WGML\nMQIwcqRznXo98sZ6i5ZAj551a3xL9HrhNSbploQbEWtTdQd7cwxhGg3uDz8ULb4HPF+7QfH28h8M\nRmXVHkm4ixm3OhWCKjslIeyXJvR+QPtl/8KDWIM0DJto8Gjip7zai9UqfpfV8oPXqDijGVHoLYQl\n342HFWlc9cybTM5LjHTqJFJsHlBdE08nreodW10m0NaZyYSrLRzXXRrZCQ+3L6htl51d98m5dakY\nRORP6trEcDkSEB0dDQAoKSmBUbb3kpISBAUFIUKj8RAcHIznnnsOaWlpyM/PR0JCAqqqqrBkyRLE\nxMSgWbNm9n3IST9Lz3vjrJva4gRYa8Zoz549i5YFBVAPghYUFOCaxnUM3LgRxpoSr+bJk1H9449i\nEiOAwNRUtNuxA+HffgtANAZzU1NRLdtPyy5dEKfqZdZ7L0/ft7avkZ4PKCtD7J49CJaP2xcUoGDJ\nEpgnT3Z7TnYTJ4r/enBsTsfqwbXTfN2f/oR2U6bYX6d2rXdvFHhyPLJjb1lc7HQ/XBs50mk/LUtK\nnLYr6dkTF/78Z1SFhYn5PKrn5b/r5l6M8lXGxOL79HTE/OUvaKExIbX0nnsBAJH/VVYlMo8aBVvz\n5gAAy5gxMGRloYUql788rhVCC9xPdvZEaefOsN53HwJq0oVsYWEIuHEDUe/8tfY7vVGGqrBwBMkn\nRJsLUfiXv8CyeDHif/MbhH93EQBQGWtAsM5E6KrQMNxo3x4IC8PVOXMQXTMD1jJmDADAkJWlOO6i\nYcPQZskS+77LOnTEpZQU2GrutYCXXnJ6jWXMGAyLuYaA1BSU/SoL4d/n2t//PO5EBkyIja1EamoO\nYmJEEHntmuZyEwCATZuMOH9eWYWouFhEAd+qjkM6F5vGDo2FhVDXMiosLIRZ9nfz0ksByMoSregx\nYyy4ds2meVyFhUZAtbfCwkJ8+63oNFizJgBvv23EmTPhuPvuMkyaZEZFhQ1JSUacOKH/OldcHduo\nUeK/rq5jfSh5bRX+3+z3YL4eggyYYOwQgZSUCzXHWbvzdMXT34+WiopyFBVVIrSmlmpqaiB27HCs\nDdCpUynGjcvH2bM38QI2Uuprc+edZUhNzcXZs67TD5uam3Ge8nZWU+EyCJDmAuTl5dlz9qWfO3To\noPma//znP7DZbHjggQeQWNNF8vnnnwMAkpOTERkZibi4OOTl5SleJ/2st1/yHfPkyYh+/31FA9Q8\nebLmttWxsbj2q1/pPpebmalseMfG1vq9PH3f2r5G/XzLzZs1t3F3Tr5Q2/eRXtfijTdg2LEDQaoV\ngG0u0jb0aP2OCmfO9Gi7S+npqAoL031e/rs2P/EEQg7+F6E1c40qY2JRFRWFsHwxh6gqNAzlHTrA\n2q0bzJMmwaZVrQei4Zv/hz8AgKJBXNahI8zTpileZxkzBlFHjii2yf/DH5AwezZCvKgiVB0SikDV\nYmTVIaG4sngxqu64Q/F4QFERoo4fR5isQWwLCESAajShMiYWwUXaK+reSExE5JmvnR63xcTg0iuv\n2BvBRcOGaZ5LVVg4cjdtUhybWd61CsCssQiafN+WMWMU19IWE6P5GvtxpacjavMOXPnHBRy/cR/W\nYg4CYpth3brv7QGAL7g6DonW710KfiQxMTZMn+6+oTpmjAVHjkThu+/E31aHDmUYM8ZxvWNibPjl\nL50DVXevc8XTY7uZou6Ixj2Z45CVZcAoVGPMmEuIibHV6Txd8eU1iI2tRmZmLrZtE52Z48blIybG\nByOEtwD1tZk82YzY2FsrAAD85zy9FWCz6YzxQ6QDDRo0CCkpKVi6dCkAoKKiAqmpqRg4cKBmidCl\nS5fi1KlT2L9/v/2x//3f/8Unn3yCjz76COHh4fjd736Hs2fPYu/evfb0n9/+9rc4f/489u3b59UJ\nnDx5Ej179vTqNf5IikyTk5PFAzdzmnxjmpIvUeevd+nS9GZDZWcDffsqJ0zX9hw8/R1pbKe4t1zs\np7y8HPlnLAjdWrN4oDS+76osiTq329hC5Fq0b+943l0dQa1tpHkGUppRi5Yi7ejIEZELDwCJnUSu\nQ0SESEvatUvs67//FaVZX37ZcRxa77l2LXDqFNCzp3ivJ55wlNnsnCTSe3btEnMtDh1yvK/0XM1K\nt/bH9PI/tM5l3z79Y6tndSntKM+//wFt0AaXURHXGqEF+VDVm6jfA/HRruqrzGVj09jOs7y8HG3a\nwD4SoOb0fUjkA431vnLVTnYZBADA22+/jRUrVuDpp59Gjx49sH37dnz++efYs2cP4uPj8f3338Ns\nNqNbt24AgDNnzmDcuHGYOHEiHn74YXzwwQfYvn07VqxYgXHjxgEAzp07h7Fjx2LgwIEYO3Ysjh07\nhszMTLz22msYOnSoz06OHBrrzdmgGmNw4q1GcA6e3lvl5eXIz9f/YtZVXy0MvWLs9dWacbXvuh5L\nY2uF1YF9YvDrt8Ng/RFVt7VG8I+1CALIbzEIoIbQWO+rOgUBALB582Zs3boVFosFycnJWLhwIbp2\n7QoAWLhwIfbu3avIgTp8+DBeeeUVfP/992jbti1mzpyJkSNHKvZ59OhRrFq1ChcvXkSbNm0wa9Ys\np7UD6npy5NBYb05q+uo9CCC/1OLe2xBWeJVBAHmNQQA1hMZ6X7lqJ3u0/vy0adMwbdo0zedefPFF\nvPjii4rHBg0apFhgTEv//v3Rv39/T96eiIiIiIh8iPU4iYiIiIj8DIMAIiIiIiI/wyCAiIiIiMjP\nMAggIiIiIvIzDAKIiIiIiPwMgwAiIiIiIj/DIICIiIiIyM8wCCAiIiIi8jMMAoiIiIiI/AyDACIi\nIiIiP8MggIiIiIjIzzAIICIiIiLyMwwCiIiIiIj8DIMAIiIiIiI/wyCAiIiIiMjPMAggIiIiIvIz\nDAKIiIiIiPwMgwAiIiIiIj/DIICIiIiIyM8wCCAiIiIi8jMMAoiIiIiI/AyDACIiIiIiP8MggIiI\niIjIzzAIICIiIiLyMwwCiIiIiIj8DIMAIiIiIiI/wyCAiIiIiMjPMAggIiIiIvIzDAKIiIiIiPwM\ngwAiIiIiIj/DIICIiIiIyM8wCCAiIiIi8jMMAoiIiIiI/AyDACIiIiIiP8MggIiIiIjIzzAIICIi\nIiLyMwwCiIiIiIj8DIMAIiIiIiI/wyCAiIiIiMjPMAggIiIiIvIzDAKIiIiIiPwMgwAiIiIiIj/D\nIICIiIiIyM8wCCAiIiIi8jMMAoiIiIiI/AyDACIiIiIiP8MggIiIiIjIzzAIICIiIiLyMwwCiIiI\niIj8jEdBwM6dOzF06FB07doVEydOxBdffOFy+9OnT+PJJ59Ez5498fDDD2Pt2rWorKxUbDNy5Egk\nJSUp/vXp06f2Z0JERERERB4JdrfB7t27sWzZMsyePRv33HMPtm3bBpPJhL179yI+Pt5p+/z8fEyd\nOhU9e/ZEeno6Ll68iFWrVqGkpAQLFiwAAJSXl+O7775DWloaHnjgAcfBBLs9HCIiIiIiqiOXrW6b\nzYb09HRMmDABs2fPBgD07dsXqamp2LJlC5YsWeL0mn/+85+oqqpCeno6wsPD0bdvXxQUFGD79u32\nICA7OxuVlZUYPHgwOnToUA+nRUREREREelymA+Xm5iI/Px+DBg2yPxYcHIyUlBQcOXJE8zU//fQT\ngoODERYWZn8sJiYGpaWlKC8vBwCcP38e4eHhaNeunS/OgYiIiIiIvOAyCMjJyQEAp8Z6fHw88vLy\nYLPZnF6TmpqKiooKrF69GkVFRTh9+jQyMzMxZMgQhIaGAhBBQExMDH7zm9+gZ8+euO+++7BkyRKU\nlJT46LSIiIiIiEiPy3Sg4uJiAEBUVJTi8aioKFRXV6O0tNTpuc6dO2PFihVYtGgR3nzzTQDAz372\nM7zwwgv2bb755hsUFhYiOTkZU6ZMwdmzZ/Haa6/h0qVL2LJliy/Oi4iIiIiIdLidEwAAAQEBms8H\nBjoPJHz44YdYvHgxxo4di+HDh+PHH3/Ea6+9hmeeeQabN29GaGgofvvb36KyshJdunQBAPTs2RNG\noxHz58/HZ599hvvuu8+rkzh79qxX2/sjq9UKgNeKfM/Te6u8vBwFBcEICQm9GYdFTZyx5vunsrIK\nAPDtt9825OFQE1JRUY6iokp79oEavw+pPjTF+8plEBAdHQ0AKCkpgdFotD9eUlKCoKAgREREOL1m\n9erV6N+/P5YvX25/rEuXLhg+fDj279+PMWPGICkpyel1AwYMACBShbwNAoiIiIiIyHMugwBpLkBe\nXh4SEhLsj+fl5elW9cnNzcWIESMUj3Xs2BGxsbHIzs5GVVUV9u7di+TkZCQnJ9u3KSsrAwAYDAav\nT0K+H9ImRaa8VuRrnt5b5eXliImBbu8ckZw0Ah0cHAQAuPPOOxvycKgJKS8vR5s2+p81/D6k+tBY\n76uTJ0/qPudyYnD79u3RunVrHDp0yP5YRUUFPvroI/Tu3VvzNfHx8Th16pTisdzcXFy/fh3x8fEI\nCgpCeno60tPTFdscPHgQwcHB6N69u9sTIiIiIiKi2nM5EhAQEICZM2dixYoVaN68OXr06IHt27ej\nqKgIU6dOBQB8//33MJvN6NatGwDgl7/8JX73u99hyZIlGDFiBAoKCrB27VrEx8dj9OjRAIBnnnkG\ny5Ytwx//+EcMHDgQ//3vf7F+/Xo89dRTaN26df2eMRERERGRn3O7RO+kSZNw48YNbN26FZmZmUhO\nTkZGRoZ9teD169dj79699mGQxx57DDExMdiwYQPmzJmD5s2bo1+/fpg/fz4iIyMBABMnTkRISAi2\nbNmCnTt3Ii4uDrNnz8bTTz9dj6dKREREREQAEGDTKvbfhJw8eRI9e/Zs6MNo9Bprrho1fd7MCcjP\n55wA8kyLe29DWOFVVN3WGsE/5uOHHxr6iKip4JwAagiN9b5y1U52OSeAiIiIiIhuPQwCiIiIiIj8\nDIMAIiIiIiI/wyCAiIiIiMjPMAggIiIiIvIzDAKIiIiIiPwMgwAiIiIiIj/DIICIiIiIyM8wCCAi\nIiIi8jMMAoiIiIiI/AyDACIiIiIiP8MggIiIiIjIzzAIICIiIiLyMwwCiIiIiIj8DIMAIiIiIiI/\nwyCAiIiIiMjPMAggIiKoo0aIAAAPe0lEQVQiIvIzDAKIiIiIiPwMgwAiIiIiIj/DIICIiIiIyM8w\nCCAiIiIi8jMMAoiIiIiI/AyDACIiIiIiP8MggIiIiIjIzzAIICIiIiLyMwwCiIiIiIj8DIMAIiIi\nIiI/wyCAiIiIiMjPMAggIiIiIvIzDAKIiIiIiPwMgwAiIiIiIj/DIICIiIiIyM8wCCAiIiIi8jMM\nAoiIiIiI/AyDACIiIiIiP8MggIiIiIjIzzAIICIiIiLyMwwCiIiIiIj8DIMAIiIiIiI/wyCAiIiI\niMjPMAggIiIiIvIzDAKIiIiIiPwMgwAiIiIiIj/DIICIiIiIyM8wCCAiIiIi8jMMAoiIiIiI/AyD\nACIiIiIiP8MggIiIiIjIz3gUBOzcuRNDhw5F165dMXHiRHzxxRcutz99+jSefPJJ9OzZEw8//DDW\nrl2LyspKxTafffYZxo0bh27dumHYsGHIysqq/VkQEREREZHH3AYBu3fvxrJlyzBq1Cikp6cjOjoa\nJpMJly5d0tw+Pz8fU6dORUREBNLT0zF16lS8+eabWL16tX2b7OxszJgxA23btsXatWuRkpKCxYsX\n47333vPdmRERERERkaZgV0/abDakp6djwoQJmD17NgCgb9++SE1NxZYtW7BkyRKn1/zzn/9EVVUV\n0tPTER4ejr59+6KgoADbt2/HggULAAAbN25EQkKCPTDo378/LBYL1q1bh2HDhvn6HImIiIiISMbl\nSEBubi7y8/MxaNAg+2PBwcFISUnBkSNHNF/z008/ITg4GGFhYfbHYmJiUFpaivLycgDAsWPHkJKS\nonjd4MGD8c0336CgoKC250JERERERB5wGQTk5OQAANq1a6d4PD4+Hnl5ebDZbE6vSU1NRUVFBVav\nXo2ioiKcPn0amZmZGDJkCEJDQ1FaWoqCggK0bdtW8bqEhATFexIRERERUf1wGQQUFxcDAKKiohSP\nR0VFobq6GqWlpU6v6dy5M1asWIHNmzejV69eGD9+PFq2bIkXXnjB7T7lzxMRERERUf1wGQRIPf0B\nAQHaLw50fvmHH36IxYsXY+zYscjMzMRLL72EoqIiPPPMMygvL6/VPomIiIiIyHdcTgyOjo4GAJSU\nlMBoNNofLykpQVBQECIiIpxes3r1avTv3x/Lly+3P9alSxcMHz4c7777rn3ib0lJieJ10s/NmjXz\n+iTOnj3r9Wv8jdVqBcBrRb7n6b1VXl6Oy5fFvCIid/rbqgEAlRWivPSZM1835OFQE1JZWYmiIiA0\nNFTzeX4fUn1oiveVy29jaS5AXl6ePWdf+rlDhw6ar8nNzcWIESMUj3Xs2BGxsbG4cOECfvGLXyAu\nLg55eXmKbaSf9fbrilZaEmnjtaL64sm9FRcHAJXuNiPC1wf/af//z3CyAY+EmqLKSjitT6TG70Oq\nD03pvnIZBLRv3x6tW7fGoUOH0LdvXwBARUUFPvroIwwcOFDzNfHx8Th16pTisdzcXFy/fh3x8fEA\ngD59+uDw4cOYO3euPf3n/fffx1133aUYcfBEz549vdqeiIiIiMjfBS1btmyZ3pMBAQEIDQ3F+vXr\nUVFRgfLycqxcuRI5OTl48cUX0bx5c3z//ff47rvvcPvttwMAmjdvjoyMDFy5cgURERH4/PPP8dxz\nzyE6OhrLly9HSEgIEhISsHHjRpw7dw5RUVHYsWMHdu7ciaVLlyIxMfFmnTsRERERkV8KsGnV+VTZ\nvHkztm7dCovFguTkZCxcuBBdu3YFACxcuBB79+5V5EB9/PHH2LBhA7799ls0b94c/fr1w/z58xW9\n/EePHsWqVatw8eJFtGnTBrNmzcLo0aPr4RSJiIiIiEjOoyCAiIiIiIhuHazHSURERETkZxgEEBER\nERH5GQYBRERERER+hkEAEREREZGfYRBARERERORnGAQQEREREfkZBgG3sLVr1yIpKcnp8c8++wzj\nxo1Dt27dMGzYMGRlZTlt8/7772PkyJHo2rUrRo0ahY8++ugmHDE1ZqdOncLkyZNx//33Y8CAAViw\nYAEKCwsV2/DeIl/YuXMnhg4diq5du2LixIn44osvGvqQqJGrrq7G5s2b8cgjj6B79+4YMWIE3nrr\nLcU2GzZsQEpKCrp164bp06fj4sWLiufLy8vxwgsvoH///ujRowd+/etf4+rVqzfzNKgRKy8vxyOP\nPIJnn31W8XhTvq8YBNyivvnmG7z++usICAhQPJ6dnY0ZM2agbdu2WLt2LVJSUrB48WK899579m2O\nHz+OuXPnolevXli3bh06d+6MOXPm4Msvv7zZp0GNRHZ2NqZOnYro6GisWbMGCxYswKlTp2AymVBZ\nWWnfhvcW1dXu3buxbNkyjBo1Cunp6YiOjobJZMKlS5ca+tCoEVu3bh1efvlljB49Ghs2bMAjjzyC\nF154AW+++SYA0Sn2+uuvY8aMGVizZg1++uknTJ06FcXFxfZ9LF26FHv37kVaWhpWrlyJ8+fP4+mn\nn0Z1dXVDnRY1ImvXrsV3333n9FiTvq9sdMuprKy0jRkzxvbggw/akpKSFM/97ne/sz366KOKx377\n29/aRo4caf/5iSeesM2cOVOxzRNPPGGbNWtW/R00NWrLli2zPfzww7bKykr7Y6dPn7Z17tzZ9vHH\nH9tsNt5bVHfV1dW2gQMH2pYtW2Z/rKKiwjZ48GDbihUrGvDIqDGrrKy09ejRw/bqq68qHl++fLmt\nT58+tuLiYlu3bt1sb7zxhv25oqIiW48ePWybN2+22Ww2W25uri05Odl24MAB+zY5OTm2pKQk28GD\nB2/KeVDj9fXXX9u6detm6927t23hwoU2m81m++mnn5r8fcWRgFvQli1bYLVa8eSTT8KmWhD62LFj\nSElJUTw2ePBgfPPNNygoKEBZWRm++OILDBo0SLHNoEGDcPz4caf9kX+48847MW3aNAQFBdkf69Ch\nAwDYe2h5b1Fd5ebmIj8/X3GPBAcHIyUlBUeOHGnAI6PGrKSkBD//+c8xdOhQxePt27eH2WzGp59+\nCqvVqrivmjdvjvvvv99+X3366acAgIEDB9q3adeuHTp16sR7z89VVlZi0aJFmDFjBm677Tb7419+\n+WWTv68YBNxicnNzsXbtWqxYsQIhISGK50pLS1FQUIC2bdsqHk9ISAAA5OTkIC8vD5WVlWjXrp3T\nNmVlZbh8+XL9ngA1SpMmTcKkSZMUjx0+fBgA0LFjR95b5BM5OTkA4HSPxMfHIy8vj4EiaWrevDmW\nLFniNAfuww8/ROvWrXHlyhUAcPp8io+Pt6d3fPfdd4iLi0N4eLhim4SEBKcUEPIvb7zxBqqqqvD0\n008rPoOkz6umfF8FN/QBkGcqKyuRm5ur+3xcXByio6OxZMkSjB49Gj169MDp06cV20g5alFRUYrH\npZ+Li4sRHBzsdhu6tXhybzVv3lzx2OXLl/HSSy/hnnvuQe/eve2TnHhvUV24+oyqrq5GaWmp03NE\nWv72t7/h+PHjeO6551BcXIzQ0FD7Z5AkKioKJSUlAMRoQmRkpNN+IiMj7UEE+Z/s7Gz85S9/QWZm\nplPH6q1wXzEIaCKuXLmCESNG6D6/aNEihISEIC8vD6+//rrmNlIEq54sLAkMDHTb0xYYyMGjW40n\n99ZTTz1l//ny5cuYOnUqAGDNmjUAeG+Rb3hyHxG5s2/fPixduhSpqal44oknNItkSKR7ymaz8b4j\nherqaixevBhjx45F165dASg/mzy5Zxr7fcUgoImIj4/HuXPndJ+/fPkyRowYgRdffBFhYWGorKy0\nf6FWVVUhMDAQzZo1AwB7hCqRfm7WrBmio6NdbiM9T7cOd/eW3DfffIOZM2eiqqoKmzZtsqf78N4i\nX5DfI0aj0f54SUkJgoKCEBER0VCHRk3E5s2b8dJLL2Hw4MFYtWoVAHFflZeXo6qqSjGvqaSkxH7P\nNWvWzOmzSb0N+Zdt27bhypUreOONN+xV8Gw2G2w2GyorK2+J+4pBwC3i+PHjKC0txa9//Wun5372\ns59hzpw5mDNnDuLi4pCXl6d4Xvq5Q4cOiIyMRGBgoFM5vry8PERGRiomxZB/+fLLLzFjxgw0b94c\n27ZtU+RBRkVF8d6iOpPmAuTl5dkDTOlnaSI6kZ41a9Zg48aN+PnPf44//vGP9p7Wdu3awWaz4dKl\nS4r5JpcuXbLfV+3bt8e1a9dQXl6O0NBQxTb333//zT0RahTef/99XLlyxen3f/78eezZswfPP/98\nk7+vGn4sgnxi0KBByMrKUvybNm0aACArKwsTJkwAAPTp0weHDx9W1Kd9//33cdddd8FoNCI8PBzd\nu3fHoUOHFPv/4IMP0KtXr5t3QtSo5OXlYebMmWjVqhX++te/Ok2EAnhvUd21b98erVu3VtwjFRUV\n+Oijj9C7d+8GPDJq7DIzM7Fx40ZMmTIFK1euVKRadO/eHWFhYYr7qqioCCdOnECfPn0AiM+vqqoq\nfPDBB/ZtcnJycOHCBfs25F+ef/55RZtq165daN++PQYOHIisrCwMHz68yd9XQcuWLVvW0AdBdRce\nHo5WrVop/l24cAFHjx7F888/b59Ml5CQgI0bN+LcuXOIiorCjh07sHPnTixduhSJiYkAgJYtW2Ld\nunW4evUqAgMDsW7dOhw9ehQrV67E7bff3pCnSQ1k4cKFuHDhAhYtWgRAzCOQ/gUFBSEqKor3FtVZ\nQEAAQkNDsX79elRUVKC8vBwrV65ETk4OXnzxRacJ6kQAcPXqVcyaNQudOnXCM888o/h8unLlCu64\n4w6UlJRg48aNCA8Ph9lsxu9//3tUVVXhD3/4A0JDQxETE4MLFy4gMzMTBoMBeXl5WLRoEdq0aYNn\nn31WN6+bbl0Gg8GpXfW3v/0NCQkJePzxxxEaGori4uImfV8F2Fhz7Za1ZcsW/OlPf8LZs2cVjx89\nehSrVq3CxYsX0aZNG8yaNQujR49WbLNv3z6sW7cOly9fRseOHTFv3jw89NBDN/PwqZGoqKhA9+7d\nUVVVpTm5d8GCBfZRJ95b5AubN2/G1q1bYbFYkJycjIULF9on5hGp/f3vf8eiRYsQEBDg9BkVEBCA\n48ePIzo6Gq+88gp2796NkpIS9OjRA0uWLFGkmVmtVqxcuRLvvfceqqur0bdvXyxZsgRxcXE3+5So\nkRo9ejSSk5OxcuVKAGLOZVO+rxgEEBERERH5Gc4JICIiIiLyMwwCiIiIiIj8DIMAIiIiIiI/wyCA\niIiIiMjPMAggIiIiIvIzDAKIiIiIiPwMgwAiIiIiIj/DIICIiIiIyM8wCCAiIiIi8jP/HzWfSXah\nurTvAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x4ee50a20>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import random \n", "\n", "plt.scatter(\n", " pospts, \n", " np.random.uniform(0.9, 1.1, len(pospts)),\n", " color='blue')\n", "\n", "plt.scatter(\n", " negpts, \n", " np.random.uniform(0.9, 1.1, len(negpts)),\n", " color='red')\n", "\n", "plt.xlim(-500, 450)\n", "\n", "plt.ylim(0.8, 1.2)\n", "\n", "plt.axvline(0, color='r')\n", "\n", "values = np.array(diff_log_proba[iwrong_predictions])\n", "\n", "plt.axvspan(\n", " np.mean(values)-2*np.std(values),\n", " np.mean(values)+2*np.std(values), \n", " facecolor='b', alpha=0.1)\n", "\n", "plt.axvline(np.mean(values), linewidth=1);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Optimizing the classification pipeline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Scorer function" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When optimizing parameters for classification pipeline we can write or define our own scoring function. The optimizing routine `GridSearchCV` which runs a **brute force parameter search**, will select the parameters that got the **highest** score.\n", "\n", "### What do we want to optimize exactly?\n", "\n", "When classifing medical documents, we sometimes want to **maximize sensitivity** (recall) while keeping specificity and accuracy in check. In other words - the sensitivity is our **target optimization parameter**. To maximize sensitivity, I'll define a scorer function that returns the recall score." ] }, { "cell_type": "code", "execution_count": 199, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.metrics import recall_score, make_scorer\n", "\n", "# Define scorer function that returns the recall score\n", "recall_scorer = make_scorer(recall_score)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we build a full pipeline and use the `GridSearchCV` sklearn utility to fit the best paramaters for the pipeline. Normally I use longer lists of parameters, but that takes hours to run.\n", "\n", "NOTE - we will use `GridSearchCV` default 3-fold cross-validation. Other cross-validation schemes can be defined if needed. " ] }, { "cell_type": "code", "execution_count": 201, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 17.2s\n", "[Parallel(n_jobs=1)]: Done 36 out of 36 | elapsed: 10.9min finished\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Fitting 3 folds for each of 12 candidates, totalling 36 fits\n" ] }, { "data": { "text/plain": [ "GridSearchCV(cv=None, error_score='raise',\n", " estimator=Pipeline(steps=[('vect', CountVectorizer(analyzer=u'word', binary=False, decode_error=u'strict',\n", " dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',\n", " lowercase=True, max_df=1.0, max_features=None, min_df=1,\n", " ngram_range=(1, 1), preprocessor=None, stop_words=None,\n", " st...28>,\n", " vocabulary=None)), ('clf', MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True))]),\n", " fit_params={}, iid=True, loss_func=None, n_jobs=1,\n", " param_grid={'vect__ngram_range': ((1, 1), (1, 2)), 'vect__max_features': (20000, 30000), 'clf__alpha': (0.05, 0.1, 0.2)},\n", " pre_dispatch='2*n_jobs', refit=True, score_func=None,\n", " scoring=make_scorer(recall_score), verbose=1)" ] }, "execution_count": 201, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.feature_extraction.text import TfidfTransformer\n", "from sklearn.grid_search import GridSearchCV\n", "from sklearn.pipeline import Pipeline\n", "\n", "pipeline = Pipeline([\n", " ('vect', CountVectorizer(tokenizer=tokenize)),\n", " ('clf', MultinomialNB())\n", "])\n", "\n", "# Define some possible parameters for feature extraction and for the classifier\n", "parameters = {\n", " 'vect__max_features': (20000, 30000),\n", " 'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams\n", " 'clf__alpha': (0.05, 0.1, 0.2)\n", "}\n", "\n", "# find the best parameters for both the feature extraction and the\n", "# classifier, based on the scorer function we defined\n", "grid_search = GridSearchCV(pipeline, parameters, verbose=1, scoring=recall_scorer)\n", "\n", "grid_search.fit(df_train['NOTE_TEXT'].tolist(), df_train.CATEGORY.tolist())" ] }, { "cell_type": "code", "execution_count": 203, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Best parameters set found on development set:\n", "\n", "{'vect__ngram_range': (1, 1), 'vect__max_features': 30000, 'clf__alpha': 0.2}\n" ] } ], "source": [ "print(\"Best parameters set found on development set:\")\n", "print\n", "print(grid_search.best_params_)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Try the optimized classifier on the test set and output the performance parameters" ] }, { "cell_type": "code", "execution_count": 204, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Use the optimal classifier to make predictions on the test set\n", "\n", "opt_predictions = grid_search.predict(df_test['NOTE_TEXT'].tolist())" ] }, { "cell_type": "code", "execution_count": 205, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Predicted</th>\n", " <th>False</th>\n", " <th>True</th>\n", " <th>All</th>\n", " </tr>\n", " <tr>\n", " <th>Actual</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>False</th>\n", " <td>5928</td>\n", " <td>414</td>\n", " <td>6342</td>\n", " </tr>\n", " <tr>\n", " <th>True</th>\n", " <td>240</td>\n", " <td>1061</td>\n", " <td>1301</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", " <td>6168</td>\n", " <td>1475</td>\n", " <td>7643</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "Predicted False True All\n", "Actual \n", "False 5928 414 6342\n", "True 240 1061 1301\n", "All 6168 1475 7643" ] }, "execution_count": 205, "metadata": {}, "output_type": "execute_result" } ], "source": [ "render_confusion_matrix(df_test.CATEGORY.tolist(), opt_predictions)" ] }, { "cell_type": "code", "execution_count": 206, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Accuracy: 0.914431505953\n", "\n", " precision recall f1-score support\n", "\n", " False 0.96 0.93 0.95 6342\n", " True 0.72 0.82 0.76 1301\n", "\n", "avg / total 0.92 0.91 0.92 7643\n", "\n" ] } ], "source": [ "print\n", "print 'Accuracy: ', accuracy_score(df_test.CATEGORY.tolist(), opt_predictions)\n", "print\n", "print classification_report(df_test.CATEGORY.tolist(), opt_predictions)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Comparing the performance of the optimized classifier to the performance of the the classifier with the ad-hoc parameters shows, that while the accuracy of the optimized classifier is a bit lower (91% compared to 92%), the sensitivity for True documents, which is our target performance parameter, increased from 78% to 82%." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
robblack007/clase-cinematica-robot
Practicas/practica5/Practica.ipynb
1
7119
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Generación de trayectorias por medio de LSPB" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "El objetivo de esta práctica es generar una trayectoria para un robot manipulador, de tal manera que no tenga cambios bruscos de posición o velocidad.\n", "\n", "El algoritmo general que vamos a usar se llama LSPB (Linear segment with parabolic blend), en el cual vamos a tener una velocidad de crucero para el manipulador, así como un periodo en el que el manipulador acelerará constantemente y otro periodo en el que desacelererá.\n", "\n", "Una trayectoria generada por este método se ve asi:\n", "\n", "![](./imagenes/LSPB.png)\n", "\n", "En la primer sección se tiene una aceleración constante, en la segunda una velocidad constante y en la tercera una aceleración constante de signo contrario a la primera.\n", "\n", "El método por el que se generó no es particularmente dificil, tan solo es un poco engorroso de programar, por lo que para facilidad de esta práctica, este método ya esta programado, tan solo hay que importar el código:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from generacion_trayectorias import grafica_trayectoria\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vamos a hacer una prueba en primer lugar:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ts, qs, q̇s, q̈s = grafica_trayectoria(0, 2, 0, 1, 1000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En la gráfica anterior podemos ver no solo la posición en el primer cuadro, si no tambien la velocidad y la aceleración en el segundo y tercero, de tal manera que nos damos una mejor idea de la trayectoria.\n", "\n", "Vamos a generar un conjunto de trayectorias para un ejemplo, primero empecemos importando ```pi```:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from numpy import pi\n", "τ = 2*pi" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vamos a generar una trayectoria en la que en los primero dos segundos se mueva de $0^o$ a $90^o$, en los segundos dos segundos de $90^o$ a $-60^o$ y en los ultimos seis segundos de $-60^o$ a $240^o$:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ts, q1, q̇1, q̈1 = grafica_trayectoria(0, 2, 0, τ/4, 100)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ts, q2, q̇2, q̈2 = grafica_trayectoria(2, 4, τ/4, -τ/6, 100)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ts, q3, q̇3, q̈3 = grafica_trayectoria(4, 10, -τ/6, 2*τ/3, 300)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Si quiero concatenar todos estos arreglos que generé, tan solo tengo que sumarlos:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "qs = q1 + q2 + q3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Esta trayectoria la podemos graficar:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from matplotlib.pyplot import figure, style" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from numpy import linspace\n", "fig = figure(figsize=(17, 5))\n", "ax = fig.gca()\n", "ts = linspace(0, 10, 500)\n", "ax.plot(ts, qs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pero mas importante, puedo generar una animación, tomando en cuenta que es un pendulo simple:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Se importa la funcion animation para crear la animacion, y rc para poder mostrar el video\n", "# directamente en el notebook\n", "from matplotlib import animation, rc\n", "rc('animation', html='html5')\n", "# Se importan las funciones necesarias para calcular la cinematica directa e inversa\n", "from numpy import sin, cos, arange" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Se define una funcion para calcular la cinematica directa del sistema\n", "def cinematica_directa_pendulo(q1):\n", " # Se definen constantes utilizadas para graficar el sistema\n", " l1, l2 = 1, 1\n", " xs = [0, l1*cos(q1)]\n", " ys = [0, l1*sin(q1)]\n", " return xs, ys" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Se define el tamaño de la figura\n", "fig = figure(figsize=(8, 8))\n", "\n", "# Se define una sola grafica en la figura y se dan los limites de los ejes x y y\n", "axi = fig.add_subplot(111, autoscale_on=False, xlim=(-1.1, 1.1), ylim=(-1.1, 1.1))\n", "\n", "# Se utilizan graficas de linea para el eslabon del pendulo\n", "linea, = axi.plot([], [], \"-o\", lw=2, color='gray')\n", "\n", "def inicializacion():\n", " '''Esta funcion se ejecuta una sola vez y sirve para inicializar el sistema'''\n", " \n", " # Se inicializa la linea vacia para evitar que al principio exista una linea en la grafica\n", " linea.set_data([], [])\n", " return linea\n", "\n", "def animacion(i):\n", " '''Esta funcion se ejecuta para cada cuadro del GIF'''\n", " \n", " # Se obtienen las coordenadas x y y para el eslabon\n", " xs, ys = cinematica_directa_pendulo(qs[i])\n", " # Se actualiza el estado de la linea con las coordenadas calculadas\n", " linea.set_data(xs, ys)\n", " \n", " return linea\n", "\n", "# Se hace la animacion dandole la funcion que se debe ejecutar para cada cuadro, el numero de cuadros\n", "# que se debe de hacer, el periodo de cada cuadro y la funcion inicial\n", "ani = animation.FuncAnimation(fig, animacion, arange(1, len(qs)), interval=20, init_func=inicializacion)\n", "ani" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
robertodias/study
python/recommender/recommender3.ipynb
2
163587
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## BUILDING A RECOMMENDER SYSTEM ON USER-USER COLLABORATIVE FILTERING (MOVIELENS DATASET)\n", "\n", "We will load the data sets firsts." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import math\n", "\n", "#column headers for the dataset\n", "data_cols = ['user id','movie id','rating','timestamp']\n", "item_cols = ['movie id','movie title','release date','video release date','IMDb URL','unknown','Action',\n", "'Adventure','Animation','Childrens','Comedy','Crime','Documentary','Drama','Fantasy','Film-Noir','Horror',\n", "'Musical','Mystery','Romance ','Sci-Fi','Thriller','War' ,'Western']\n", "user_cols = ['user id','age','gender','occupation','zip code']\n", "\n", "#importing the data files onto dataframes\n", "data_df = pd.read_csv('ml-100k/u.data', sep='\\t', names=data_cols, encoding='latin-1')\n", "item_df = pd.read_csv('ml-100k/u.item', sep='|', names=item_cols, encoding='latin-1')\n", "user_df = pd.read_csv('ml-100k/u.user', sep='|', names=user_cols, encoding='latin-1')\n", "\n", "#dropping unecessary columns\n", "#Voting Timestamp - Removed\n", "data_df.drop(data_df.columns[[3]], axis = 1, inplace = True)\n", "#Movie Title, Video Release Date and IMDB URL - Removed\n", "item_df.drop(item_df.columns[[1,3,4]], axis = 1, inplace = True)\n", "#Occupation and Zip Code - Removed\n", "user_df.drop(user_df.columns[[3,4]], axis = 1, inplace = True)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " user id movie id rating\n", "0 196 242 3\n", "1 186 302 3\n", "2 22 377 1\n", "3 244 51 2\n", "4 166 346 1\n" ] } ], "source": [ "print(data_df.head())" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " movie id release date unknown Action Adventure Animation Childrens \\\n", "0 1 01-Jan-1995 0 0 0 1 1 \n", "1 2 01-Jan-1995 0 1 1 0 0 \n", "2 3 01-Jan-1995 0 0 0 0 0 \n", "3 4 01-Jan-1995 0 1 0 0 0 \n", "4 5 01-Jan-1995 0 0 0 0 0 \n", "\n", " Comedy Crime Documentary ... Fantasy Film-Noir Horror Musical \\\n", "0 1 0 0 ... 0 0 0 0 \n", "1 0 0 0 ... 0 0 0 0 \n", "2 0 0 0 ... 0 0 0 0 \n", "3 1 0 0 ... 0 0 0 0 \n", "4 0 1 0 ... 0 0 0 0 \n", "\n", " Mystery Romance Sci-Fi Thriller War Western \n", "0 0 0 0 0 0 0 \n", "1 0 0 0 1 0 0 \n", "2 0 0 0 1 0 0 \n", "3 0 0 0 0 0 0 \n", "4 0 0 0 1 0 0 \n", "\n", "[5 rows x 21 columns]\n" ] } ], "source": [ "print(item_df.head())" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "#Ajust release date to get only the year\n", "item_df['release date'] = pd.to_datetime(item_df['release date'], errors='coerce').dt.year" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " movie id release date unknown Action Adventure Animation Childrens \\\n", "0 1 1995.0 0 0 0 1 1 \n", "1 2 1995.0 0 1 1 0 0 \n", "2 3 1995.0 0 0 0 0 0 \n", "3 4 1995.0 0 1 0 0 0 \n", "4 5 1995.0 0 0 0 0 0 \n", "\n", " Comedy Crime Documentary ... Fantasy Film-Noir Horror Musical \\\n", "0 1 0 0 ... 0 0 0 0 \n", "1 0 0 0 ... 0 0 0 0 \n", "2 0 0 0 ... 0 0 0 0 \n", "3 1 0 0 ... 0 0 0 0 \n", "4 0 1 0 ... 0 0 0 0 \n", "\n", " Mystery Romance Sci-Fi Thriller War Western \n", "0 0 0 0 0 0 0 \n", "1 0 0 0 1 0 0 \n", "2 0 0 0 1 0 0 \n", "3 0 0 0 0 0 0 \n", "4 0 0 0 1 0 0 \n", "\n", "[5 rows x 21 columns]\n" ] } ], "source": [ "print(item_df.head())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " user id age gender\n", "0 1 24 M\n", "1 2 53 F\n", "2 3 23 M\n", "3 4 24 M\n", "4 5 33 F\n" ] } ], "source": [ "print(user_df.head())" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "#Convert Gender column to numeric\n", "user_df['gender'].replace('F', 1,inplace=True)\n", "user_df['gender'].replace('M', 2,inplace=True)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1989\n" ] } ], "source": [ "#Adjust columns replacing NaN with the mean\n", "meanYear = int(round(item_df['release date'].mean()))\n", "print(meanYear)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "item_df['release date'] = item_df['release date'].fillna(meanYear)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n" ] } ], "source": [ "print(item_df['release date'].hasnans)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "#merge it all\n", "data_item = pd.merge(data_df, item_df, left_on = \"movie id\", right_on = \"movie id\")\n", "data_item_user = pd.merge(data_item, user_df, left_on = \"user id\", right_on = \"user id\")\n", "dataset = data_item_user" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " user id movie id rating release date unknown Action Adventure \\\n", "0 196 242 3 1997.0 0 0 0 \n", "1 196 257 2 1997.0 0 1 1 \n", "2 196 111 4 1996.0 0 0 0 \n", "3 196 25 4 1996.0 0 0 0 \n", "4 196 382 4 1994.0 0 0 0 \n", "\n", " Animation Childrens Comedy ... Horror Musical Mystery Romance \\\n", "0 0 0 1 ... 0 0 0 0 \n", "1 0 0 1 ... 0 0 0 0 \n", "2 0 0 1 ... 0 0 0 1 \n", "3 0 0 1 ... 0 0 0 0 \n", "4 0 0 1 ... 0 0 0 0 \n", "\n", " Sci-Fi Thriller War Western age gender \n", "0 0 0 0 0 49 2 \n", "1 1 0 0 0 49 2 \n", "2 0 0 0 0 49 2 \n", "3 0 0 0 0 49 2 \n", "4 0 0 0 0 49 2 \n", "\n", "[5 rows x 25 columns]\n" ] } ], "source": [ "print(dataset.head())" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>user id</th>\n", " <th>movie id</th>\n", " <th>rating</th>\n", " <th>release date</th>\n", " <th>unknown</th>\n", " <th>Action</th>\n", " <th>Adventure</th>\n", " <th>Animation</th>\n", " <th>Childrens</th>\n", " <th>Comedy</th>\n", " <th>...</th>\n", " <th>Horror</th>\n", " <th>Musical</th>\n", " <th>Mystery</th>\n", " <th>Romance</th>\n", " <th>Sci-Fi</th>\n", " <th>Thriller</th>\n", " <th>War</th>\n", " <th>Western</th>\n", " <th>age</th>\n", " <th>gender</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>100000.00000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.0000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>...</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.00000</td>\n", " <td>100000.00000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " <td>100000.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>462.48475</td>\n", " <td>425.530130</td>\n", " <td>3.529860</td>\n", " <td>1987.956310</td>\n", " <td>0.0001</td>\n", " <td>0.255890</td>\n", " <td>0.137530</td>\n", " <td>0.036050</td>\n", " <td>0.071820</td>\n", " <td>0.298320</td>\n", " <td>...</td>\n", " <td>0.053170</td>\n", " <td>0.049540</td>\n", " <td>0.052450</td>\n", " <td>0.194610</td>\n", " <td>0.12730</td>\n", " <td>0.21872</td>\n", " <td>0.093980</td>\n", " <td>0.018540</td>\n", " <td>32.969850</td>\n", " <td>1.742600</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>266.61442</td>\n", " <td>330.798356</td>\n", " <td>1.125674</td>\n", " <td>14.154889</td>\n", " <td>0.0100</td>\n", " <td>0.436362</td>\n", " <td>0.344408</td>\n", " <td>0.186416</td>\n", " <td>0.258191</td>\n", " <td>0.457523</td>\n", " <td>...</td>\n", " <td>0.224373</td>\n", " <td>0.216994</td>\n", " <td>0.222934</td>\n", " <td>0.395902</td>\n", " <td>0.33331</td>\n", " <td>0.41338</td>\n", " <td>0.291802</td>\n", " <td>0.134894</td>\n", " <td>11.562623</td>\n", " <td>0.437204</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>1.00000</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>1922.000000</td>\n", " <td>0.0000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>...</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.00000</td>\n", " <td>0.00000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>7.000000</td>\n", " <td>1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>254.00000</td>\n", " <td>175.000000</td>\n", " <td>3.000000</td>\n", " <td>1986.000000</td>\n", " <td>0.0000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>...</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.00000</td>\n", " <td>0.00000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>24.000000</td>\n", " <td>1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>447.00000</td>\n", " <td>322.000000</td>\n", " <td>4.000000</td>\n", " <td>1994.000000</td>\n", " <td>0.0000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>...</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.00000</td>\n", " <td>0.00000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>30.000000</td>\n", " <td>2.000000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>682.00000</td>\n", " <td>631.000000</td>\n", " <td>4.000000</td>\n", " <td>1996.000000</td>\n", " <td>0.0000</td>\n", " <td>1.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>1.000000</td>\n", " <td>...</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.00000</td>\n", " <td>0.00000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>40.000000</td>\n", " <td>2.000000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>943.00000</td>\n", " <td>1682.000000</td>\n", " <td>5.000000</td>\n", " <td>1998.000000</td>\n", " <td>1.0000</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>...</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>1.00000</td>\n", " <td>1.00000</td>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>73.000000</td>\n", " <td>2.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>8 rows × 25 columns</p>\n", "</div>" ], "text/plain": [ " user id movie id rating release date unknown \\\n", "count 100000.00000 100000.000000 100000.000000 100000.000000 100000.0000 \n", "mean 462.48475 425.530130 3.529860 1987.956310 0.0001 \n", "std 266.61442 330.798356 1.125674 14.154889 0.0100 \n", "min 1.00000 1.000000 1.000000 1922.000000 0.0000 \n", "25% 254.00000 175.000000 3.000000 1986.000000 0.0000 \n", "50% 447.00000 322.000000 4.000000 1994.000000 0.0000 \n", "75% 682.00000 631.000000 4.000000 1996.000000 0.0000 \n", "max 943.00000 1682.000000 5.000000 1998.000000 1.0000 \n", "\n", " Action Adventure Animation Childrens \\\n", "count 100000.000000 100000.000000 100000.000000 100000.000000 \n", "mean 0.255890 0.137530 0.036050 0.071820 \n", "std 0.436362 0.344408 0.186416 0.258191 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 0.000000 \n", "50% 0.000000 0.000000 0.000000 0.000000 \n", "75% 1.000000 0.000000 0.000000 0.000000 \n", "max 1.000000 1.000000 1.000000 1.000000 \n", "\n", " Comedy ... Horror Musical \\\n", "count 100000.000000 ... 100000.000000 100000.000000 \n", "mean 0.298320 ... 0.053170 0.049540 \n", "std 0.457523 ... 0.224373 0.216994 \n", "min 0.000000 ... 0.000000 0.000000 \n", "25% 0.000000 ... 0.000000 0.000000 \n", "50% 0.000000 ... 0.000000 0.000000 \n", "75% 1.000000 ... 0.000000 0.000000 \n", "max 1.000000 ... 1.000000 1.000000 \n", "\n", " Mystery Romance Sci-Fi Thriller \\\n", "count 100000.000000 100000.000000 100000.00000 100000.00000 \n", "mean 0.052450 0.194610 0.12730 0.21872 \n", "std 0.222934 0.395902 0.33331 0.41338 \n", "min 0.000000 0.000000 0.00000 0.00000 \n", "25% 0.000000 0.000000 0.00000 0.00000 \n", "50% 0.000000 0.000000 0.00000 0.00000 \n", "75% 0.000000 0.000000 0.00000 0.00000 \n", "max 1.000000 1.000000 1.00000 1.00000 \n", "\n", " War Western age gender \n", "count 100000.000000 100000.000000 100000.000000 100000.000000 \n", "mean 0.093980 0.018540 32.969850 1.742600 \n", "std 0.291802 0.134894 11.562623 0.437204 \n", "min 0.000000 0.000000 7.000000 1.000000 \n", "25% 0.000000 0.000000 24.000000 1.000000 \n", "50% 0.000000 0.000000 30.000000 2.000000 \n", "75% 0.000000 0.000000 40.000000 2.000000 \n", "max 1.000000 1.000000 73.000000 2.000000 \n", "\n", "[8 rows x 25 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Data distribution\n", "display(dataset.describe())" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>user id</th>\n", " <th>movie id</th>\n", " <th>rating</th>\n", " <th>release date</th>\n", " <th>unknown</th>\n", " <th>Action</th>\n", " <th>Adventure</th>\n", " <th>Animation</th>\n", " <th>Childrens</th>\n", " <th>Comedy</th>\n", " <th>...</th>\n", " <th>Horror</th>\n", " <th>Musical</th>\n", " <th>Mystery</th>\n", " <th>Romance</th>\n", " <th>Sci-Fi</th>\n", " <th>Thriller</th>\n", " <th>War</th>\n", " <th>Western</th>\n", " <th>age</th>\n", " <th>gender</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>196</td>\n", " <td>242</td>\n", " <td>3</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>196</td>\n", " <td>257</td>\n", " <td>2</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>196</td>\n", " <td>111</td>\n", " <td>4</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>196</td>\n", " <td>25</td>\n", " <td>4</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>196</td>\n", " <td>382</td>\n", " <td>4</td>\n", " <td>1994.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>196</td>\n", " <td>202</td>\n", " <td>3</td>\n", " <td>1993.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>196</td>\n", " <td>153</td>\n", " <td>5</td>\n", " <td>1988.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>196</td>\n", " <td>286</td>\n", " <td>5</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>196</td>\n", " <td>66</td>\n", " <td>3</td>\n", " <td>1995.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>196</td>\n", " <td>845</td>\n", " <td>4</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>196</td>\n", " <td>173</td>\n", " <td>2</td>\n", " <td>1987.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>196</td>\n", " <td>238</td>\n", " <td>4</td>\n", " <td>1987.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>196</td>\n", " <td>94</td>\n", " <td>3</td>\n", " <td>1990.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>196</td>\n", " <td>762</td>\n", " <td>3</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>196</td>\n", " <td>381</td>\n", " <td>4</td>\n", " <td>1994.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>196</td>\n", " <td>306</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>196</td>\n", " <td>8</td>\n", " <td>5</td>\n", " <td>1995.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>196</td>\n", " <td>70</td>\n", " <td>3</td>\n", " <td>1994.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>196</td>\n", " <td>655</td>\n", " <td>5</td>\n", " <td>1986.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>196</td>\n", " <td>13</td>\n", " <td>2</td>\n", " <td>1995.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>196</td>\n", " <td>692</td>\n", " <td>5</td>\n", " <td>1995.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>196</td>\n", " <td>1022</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>196</td>\n", " <td>287</td>\n", " <td>3</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>196</td>\n", " <td>269</td>\n", " <td>3</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>196</td>\n", " <td>285</td>\n", " <td>5</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>196</td>\n", " <td>110</td>\n", " <td>1</td>\n", " <td>1995.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>196</td>\n", " <td>251</td>\n", " <td>3</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>196</td>\n", " <td>393</td>\n", " <td>4</td>\n", " <td>1993.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>196</td>\n", " <td>663</td>\n", " <td>5</td>\n", " <td>1979.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>196</td>\n", " <td>580</td>\n", " <td>2</td>\n", " <td>1995.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>49</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>99970</th>\n", " <td>598</td>\n", " <td>898</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99971</th>\n", " <td>598</td>\n", " <td>243</td>\n", " <td>2</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99972</th>\n", " <td>598</td>\n", " <td>308</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99973</th>\n", " <td>598</td>\n", " <td>312</td>\n", " <td>5</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99974</th>\n", " <td>598</td>\n", " <td>313</td>\n", " <td>5</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99975</th>\n", " <td>598</td>\n", " <td>260</td>\n", " <td>3</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99976</th>\n", " <td>598</td>\n", " <td>895</td>\n", " <td>2</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99977</th>\n", " <td>598</td>\n", " <td>691</td>\n", " <td>2</td>\n", " <td>1998.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99978</th>\n", " <td>598</td>\n", " <td>349</td>\n", " <td>4</td>\n", " <td>1998.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99979</th>\n", " <td>598</td>\n", " <td>538</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99980</th>\n", " <td>873</td>\n", " <td>294</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99981</th>\n", " <td>873</td>\n", " <td>328</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99982</th>\n", " <td>873</td>\n", " <td>307</td>\n", " <td>3</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99983</th>\n", " <td>873</td>\n", " <td>750</td>\n", " <td>3</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99984</th>\n", " <td>873</td>\n", " <td>258</td>\n", " <td>3</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99985</th>\n", " <td>873</td>\n", " <td>339</td>\n", " <td>3</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99986</th>\n", " <td>873</td>\n", " <td>321</td>\n", " <td>1</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99987</th>\n", " <td>873</td>\n", " <td>879</td>\n", " <td>2</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99988</th>\n", " <td>873</td>\n", " <td>286</td>\n", " <td>2</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99989</th>\n", " <td>873</td>\n", " <td>259</td>\n", " <td>1</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99990</th>\n", " <td>873</td>\n", " <td>289</td>\n", " <td>2</td>\n", " <td>1996.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99991</th>\n", " <td>873</td>\n", " <td>292</td>\n", " <td>5</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99992</th>\n", " <td>873</td>\n", " <td>269</td>\n", " <td>2</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99993</th>\n", " <td>873</td>\n", " <td>875</td>\n", " <td>1</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99994</th>\n", " <td>873</td>\n", " <td>300</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99995</th>\n", " <td>873</td>\n", " <td>313</td>\n", " <td>5</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99996</th>\n", " <td>873</td>\n", " <td>326</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99997</th>\n", " <td>873</td>\n", " <td>348</td>\n", " <td>3</td>\n", " <td>1998.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99998</th>\n", " <td>873</td>\n", " <td>358</td>\n", " <td>2</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>99999</th>\n", " <td>873</td>\n", " <td>342</td>\n", " <td>4</td>\n", " <td>1997.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>...</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>48</td>\n", " <td>1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>100000 rows × 25 columns</p>\n", "</div>" ], "text/plain": [ " user id movie id rating release date unknown Action Adventure \\\n", "0 196 242 3 1997.0 0 0 0 \n", "1 196 257 2 1997.0 0 1 1 \n", "2 196 111 4 1996.0 0 0 0 \n", "3 196 25 4 1996.0 0 0 0 \n", "4 196 382 4 1994.0 0 0 0 \n", "5 196 202 3 1993.0 0 0 0 \n", "6 196 153 5 1988.0 0 0 0 \n", "7 196 286 5 1996.0 0 0 0 \n", "8 196 66 3 1995.0 0 0 0 \n", "9 196 845 4 1996.0 0 0 0 \n", "10 196 173 2 1987.0 0 1 1 \n", "11 196 238 4 1987.0 0 0 0 \n", "12 196 94 3 1990.0 0 0 0 \n", "13 196 762 3 1996.0 0 0 0 \n", "14 196 381 4 1994.0 0 0 0 \n", "15 196 306 4 1997.0 0 0 0 \n", "16 196 8 5 1995.0 0 0 0 \n", "17 196 70 3 1994.0 0 0 0 \n", "18 196 655 5 1986.0 0 0 1 \n", "19 196 13 2 1995.0 0 0 0 \n", "20 196 692 5 1995.0 0 0 0 \n", "21 196 1022 4 1997.0 0 0 0 \n", "22 196 287 3 1996.0 0 0 0 \n", "23 196 269 3 1997.0 0 0 0 \n", "24 196 285 5 1996.0 0 0 0 \n", "25 196 110 1 1995.0 0 1 1 \n", "26 196 251 3 1997.0 0 0 0 \n", "27 196 393 4 1993.0 0 0 0 \n", "28 196 663 5 1979.0 0 0 0 \n", "29 196 580 2 1995.0 0 0 0 \n", "... ... ... ... ... ... ... ... \n", "99970 598 898 4 1997.0 0 0 0 \n", "99971 598 243 2 1997.0 0 0 0 \n", "99972 598 308 4 1997.0 0 0 0 \n", "99973 598 312 5 1997.0 0 0 0 \n", "99974 598 313 5 1997.0 0 1 0 \n", "99975 598 260 3 1997.0 0 1 0 \n", "99976 598 895 2 1997.0 0 0 0 \n", "99977 598 691 2 1998.0 0 0 0 \n", "99978 598 349 4 1998.0 0 1 0 \n", "99979 598 538 4 1997.0 0 0 0 \n", "99980 873 294 4 1997.0 0 0 0 \n", "99981 873 328 4 1997.0 0 1 0 \n", "99982 873 307 3 1997.0 0 0 0 \n", "99983 873 750 3 1997.0 0 0 0 \n", "99984 873 258 3 1997.0 0 0 0 \n", "99985 873 339 3 1997.0 0 1 0 \n", "99986 873 321 1 1996.0 0 0 0 \n", "99987 873 879 2 1997.0 0 1 0 \n", "99988 873 286 2 1996.0 0 0 0 \n", "99989 873 259 1 1997.0 0 0 0 \n", "99990 873 289 2 1996.0 0 0 0 \n", "99991 873 292 5 1997.0 0 0 0 \n", "99992 873 269 2 1997.0 0 0 0 \n", "99993 873 875 1 1997.0 0 0 0 \n", "99994 873 300 4 1997.0 0 1 0 \n", "99995 873 313 5 1997.0 0 1 0 \n", "99996 873 326 4 1997.0 0 1 0 \n", "99997 873 348 3 1998.0 0 0 0 \n", "99998 873 358 2 1997.0 0 1 1 \n", "99999 873 342 4 1997.0 0 0 0 \n", "\n", " Animation Childrens Comedy ... Horror Musical Mystery \\\n", "0 0 0 1 ... 0 0 0 \n", "1 0 0 1 ... 0 0 0 \n", "2 0 0 1 ... 0 0 0 \n", "3 0 0 1 ... 0 0 0 \n", "4 0 0 1 ... 0 0 0 \n", "5 0 0 1 ... 0 0 0 \n", "6 0 0 1 ... 0 0 0 \n", "7 0 0 0 ... 0 0 0 \n", "8 0 0 1 ... 0 0 0 \n", "9 0 0 1 ... 0 0 0 \n", "10 0 0 1 ... 0 0 0 \n", "11 0 0 1 ... 0 0 0 \n", "12 0 1 1 ... 0 0 0 \n", "13 0 0 0 ... 0 0 0 \n", "14 0 0 1 ... 0 0 0 \n", "15 0 0 0 ... 0 0 0 \n", "16 0 1 1 ... 0 0 0 \n", "17 0 0 1 ... 0 0 0 \n", "18 0 0 1 ... 0 0 0 \n", "19 0 0 1 ... 0 0 0 \n", "20 0 0 1 ... 0 0 0 \n", "21 0 0 0 ... 0 0 0 \n", "22 0 0 0 ... 0 0 0 \n", "23 0 0 1 ... 0 0 0 \n", "24 0 0 0 ... 0 0 0 \n", "25 0 0 1 ... 0 0 0 \n", "26 0 0 1 ... 0 0 0 \n", "27 0 0 1 ... 0 0 0 \n", "28 0 0 1 ... 0 0 0 \n", "29 0 0 1 ... 0 0 0 \n", "... ... ... ... ... ... ... ... \n", "99970 0 0 0 ... 0 0 0 \n", "99971 0 1 1 ... 0 0 0 \n", "99972 0 1 0 ... 0 0 0 \n", "99973 0 0 1 ... 0 0 1 \n", "99974 0 0 0 ... 0 0 0 \n", "99975 0 0 0 ... 0 0 1 \n", "99976 0 0 0 ... 1 0 0 \n", "99977 0 0 0 ... 0 0 0 \n", "99978 0 0 0 ... 0 0 0 \n", "99979 1 1 0 ... 0 1 0 \n", "99980 0 0 1 ... 0 0 0 \n", "99981 0 0 0 ... 0 0 1 \n", "99982 0 0 0 ... 1 0 1 \n", "99983 0 0 0 ... 0 0 0 \n", "99984 0 0 0 ... 0 0 0 \n", "99985 0 0 0 ... 0 0 0 \n", "99986 0 0 1 ... 0 0 0 \n", "99987 0 0 0 ... 0 0 0 \n", "99988 0 0 0 ... 0 0 0 \n", "99989 0 1 1 ... 0 0 0 \n", "99990 0 0 0 ... 0 1 0 \n", "99991 0 0 0 ... 0 0 0 \n", "99992 0 0 1 ... 0 0 0 \n", "99993 0 0 0 ... 0 0 0 \n", "99994 0 0 0 ... 0 0 0 \n", "99995 0 0 0 ... 0 0 0 \n", "99996 0 0 0 ... 0 0 0 \n", "99997 0 0 0 ... 0 0 0 \n", "99998 0 0 0 ... 0 0 0 \n", "99999 0 0 1 ... 0 0 1 \n", "\n", " Romance Sci-Fi Thriller War Western age gender \n", "0 0 0 0 0 0 49 2 \n", "1 0 1 0 0 0 49 2 \n", "2 1 0 0 0 0 49 2 \n", "3 0 0 0 0 0 49 2 \n", "4 0 0 0 0 0 49 2 \n", "5 1 0 0 0 0 49 2 \n", "6 0 0 0 0 0 49 2 \n", "7 1 0 0 1 0 49 2 \n", "8 1 0 0 0 0 49 2 \n", "9 0 0 0 0 0 49 2 \n", "10 1 0 0 0 0 49 2 \n", "11 0 0 0 0 0 49 2 \n", "12 0 0 0 0 0 49 2 \n", "13 0 0 0 0 0 49 2 \n", "14 1 0 0 0 0 49 2 \n", "15 1 0 0 0 0 49 2 \n", "16 0 0 0 0 0 49 2 \n", "17 1 0 0 0 0 49 2 \n", "18 0 0 0 0 0 49 2 \n", "19 0 0 0 0 0 49 2 \n", "20 1 0 0 0 0 49 2 \n", "21 0 0 0 0 0 49 2 \n", "22 0 0 0 0 0 49 2 \n", "23 0 0 0 0 0 49 2 \n", "24 0 0 0 0 0 49 2 \n", "25 0 0 0 1 0 49 2 \n", "26 0 0 0 0 0 49 2 \n", "27 0 0 0 0 0 49 2 \n", "28 0 0 0 0 0 49 2 \n", "29 1 0 0 0 0 49 2 \n", "... ... ... ... ... ... ... ... \n", "99970 0 0 0 0 0 40 1 \n", "99971 0 0 0 0 0 40 1 \n", "99972 0 0 0 0 0 40 1 \n", "99973 0 0 0 0 0 40 1 \n", "99974 1 0 0 0 0 40 1 \n", "99975 0 1 1 0 0 40 1 \n", "99976 0 0 1 0 0 40 1 \n", "99977 0 1 1 0 0 40 1 \n", "99978 0 0 1 0 0 40 1 \n", "99979 0 0 0 0 0 40 1 \n", "99980 0 0 0 0 0 48 1 \n", "99981 1 0 1 0 0 48 1 \n", "99982 0 0 1 0 0 48 1 \n", "99983 0 0 0 0 0 48 1 \n", "99984 0 1 0 0 0 48 1 \n", "99985 0 0 0 0 0 48 1 \n", "99986 0 0 0 0 0 48 1 \n", "99987 0 0 1 1 0 48 1 \n", "99988 1 0 0 1 0 48 1 \n", "99989 0 0 0 0 0 48 1 \n", "99990 0 0 0 0 0 48 1 \n", "99991 0 0 0 0 0 48 1 \n", "99992 0 0 0 0 0 48 1 \n", "99993 1 0 0 0 0 48 1 \n", "99994 0 0 1 0 0 48 1 \n", "99995 1 0 0 0 0 48 1 \n", "99996 0 0 0 1 0 48 1 \n", "99997 0 0 1 0 0 48 1 \n", "99998 0 1 1 0 0 48 1 \n", "99999 0 0 0 0 0 48 1 \n", "\n", "[100000 rows x 25 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Show the current Dataset Structure\n", "from IPython.display import display\n", "display(dataset)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Genre user id score = -0.462037184259\n", "Genre movie id score = 0.103906128463\n", "Genre rating score = -0.514671809931\n", "Genre release date score = 0.981214096734\n", "Genre unknown score = 0.199839967994\n", "Genre Action score = 0.997266179049\n", "Genre Adventure score = 0.998638681572\n", "Genre Animation score = 0.997662265757\n", "Genre Childrens score = 0.990137693577\n", "Genre Comedy score = 0.99333890982\n", "Genre Crime score = 0.994547788211\n", "Genre Documentary score = 0.896100959944\n", "Genre Drama score = 0.996313565788\n", "Genre Fantasy score = 1.0\n", "Genre Film-Noir score = 0.9976604411\n", "Genre Horror score = 0.992888170977\n", "Genre Musical score = 0.993823652939\n", "Genre Mystery score = 0.997655839113\n", "Genre Romance score = 0.991029666727\n", "Genre Sci-Fi score = 0.999280954782\n", "Genre Thriller score = 0.997210432658\n", "Genre War score = 0.996194572353\n", "Genre Western score = 0.997934902169\n", "Genre age score = 0.976652941984\n", "Genre gender score = 0.992743720756\n" ] } ], "source": [ "from sklearn.model_selection import train_test_split\n", "from sklearn.tree import DecisionTreeRegressor\n", "\n", "# Calculate Feature Relevance to the Dataset\n", "for name, values in dataset.iteritems():\n", " # Clone Dataset for Feature Relevance calculation\n", " backupData = dataset.copy()\n", " # Clone the Column to be predicted\n", " y = backupData[name].copy()\n", " # Drop column, that will be used for prediction\n", " X = backupData.drop(name, 1)\n", " # Split Data for Model calibration\n", " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=72)\n", " regressor = DecisionTreeRegressor(random_state=72)\n", " regressor.fit(X_train, y_train)\n", " score = regressor.score(X_test, y_test)\n", " print('Genre {} score = {}').format(name, score)\n", " # User Id and Movie Id have a weak relation within the other features, but " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Based on Feature Relevance we are going to \n", "# 1st Remove the user id from the dataset\n", "smartdata = dataset.copy()\n", "smartdata.drop(smartdata.columns[[0]], axis = 1, inplace = True)\n", "print(smartdata.head())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 2nd Lets translate the Ratingo into a more discrete evalution (like and dislike)\n", "# 1 - 2.9 : DILIKE\n", "# 3 - 5 : LIKE\n", "\n", "for name, values in smartdata['rating'].iteritems():\n", " print(values)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAHzCAYAAAAadT1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8VOW9+PHPd2ayr2SDsBnAICKu\ngBu4t7UW7aLt7X6xrVVba+v1/mztrbf23t622hWXbtrW0kVbrVpb95W6g0EUEGTfCQFCFrJnZr6/\nP85MmIQkMwmZc5LM9/0ir8mc7fuc88yEeeZ5zvcRVcUYY4wxxhhjDPi8LoAxxhhjjDHGDBfWQDLG\nGGOMMcaYCGsgGWOMMcYYY0yENZCMMcYYY4wxJsIaSMYYY4wxxhgTYQ0kY4wxxhhjjImwBpIxxhhj\njDHGRAQGsrGIXNrfelV96MiKY4wxxhhjjDHeGVADCbgk8lgGnAk8H3l+HrAEsAaSMcYYY4wxZsQa\nUANJVT8HICKPAjNVtTryvBz4+dAXzxhjjDHGGGPcM9h7kCqijaOIGmD6EJTHGGOMMcYYYzwz0CF2\nUUtE5CngPkCBTwAvDFmpjDHGGGOMMcYDoqqD29FJ2HBW5OmLqvrwkJXKGGOMMcYYYzww6AaSMcYY\nY4wxxow2A03z/bKqzheRgzhD67pWAaqq+UNaOmOMMcYYY4xx0ajoQSopKdGKioo+1ze1B9myv5l0\nv49jxuUNaewVazYQKCgb0mMmKtiwtyv28RMKupav2tXQbbvYdfHWJ7pvuHEvGWPGUpidzoHmdkLh\nQZ7EIEXPvWf5kqkjGEaBNes39XrdkyW2Tvqqczfiexk7Nr6XscHq3K3YsfGtzpPP6tzq3IvYsfFT\nNTa4f93zOuuoqKg47DOfG46fUND12dmL696xZ+N+VS2Nt8+oaCDNmTNHq6qq+lz/nX+8w+9f3QrA\nQ18+kynFObR2hhhfmHXEsTPKKylfuOiIjzMY1Yuv64q99ZYFXcsrbnys23ax6+KtT3Tf6sXXMX7h\nIuZNHcM7exqpawkN8iwGJ3ruPcuXLHsa2lgdeYMtuGB+r9c9WWLrpK86dyO+l7Fj43sZG6zO3Yod\nG9/qPPmszq3OvYgdGz9VY4P7173k2Zupqqo67DOfG7besqDrs7MX133brRcvV9U58fYZbJrvEeWV\njfs5aVIh6X4ff1u+k4vveJmzf/gCb2w94HXRRjQFdjW2MSE/w+uiJF16ICXeKsYYY4wxKW/Uf+rb\n29jGhr1NXDRrHGdPL+XepdvZVd9KMKz8x1/forGt0+sijkgC+AVOmlhIc4e7vUdeKMpJZ/ZRYzhx\nUqHXRTHGGGOMMUk04AaSiPhF5NnBBBORChGpEZElIvJ0ZNkNIvKyiPxZRNL6WjZYr2zaD8C8o0v4\n6OwJALx35lge/NKZVDe08e2/r2Y0DDN0m0+ErHQfeRkBDjS3e10cV4zJSac0b/T3lhljjDHGDLXJ\nBYOdftV9A24gqWoIaBGRwd5Z9Yyqnquq7xORUuA8VZ0PrAQ+3NuyQcYB4MX1+ynKSWdmeT4XHjeO\nR66Zx22fOInZR43h2vOP5u9v7ebHT68jHHYaScFQmJ+/sJHXN9f2erwfPL6Wj/ziFVo6gkdSrJFP\nIODz0RkKkyLtIw62ddLQYj2OxhhjjDEDtb1h5Hx27rcp10s676gsoE5E7gGaowtV9asJxDxPRF4C\nHgLWA0siy58FPgW09LLsgQSOy0sb9pGfmdY1DOrtHfU8sbqaD504AZ9PALoNkfrq+ZXsaWjj5y9s\nYuPeJn7+qVP4+1u7+dFT68hM8/HGt95DXuahDqyt+5v59YubAXhy9R4uPWViIsUalQQI+ISag22M\nnJf74NW3dLB8Wx3W2WiMMcaYke7uFzZ4EteLxBCD0W8DSVXzAETkf4E9wB9xPhvfAWQCLw4wXjUw\nHWgHHgHygZrIugZgDFAINPZYFteTq6u5+k9vAvDiDeeRme7jM79ZSkluBl85/+he9/H5hB9cejyT\ni7P54ZPreHz1Hv74+jYA2jrD/Hnpdq4+Z1rX9nc8v5H0gI+OYJjXNtWmdAMp4BMyAj5yMo5oBOSI\n0doZ4mBbsKun0RhjjDFmJGpq7+B7T633uhjDWqKDAS9U1dNini8UkWXA66q6LtFgqtqO0zhCRB7F\naQhNiKzOB+ojPz2XHUZErgSuBJg4+Si+/reVjM3PoKaxnV/+ayOhsNIWDPHI5+cxqSi7zzKJCFef\nPY0Hl+/kq/etAODmS2by/Lt7+c1LW7jkxPH8a90+Nu5t4qEVO7li/hTWVh9kXc3BRE97VOoIhdl3\nsJ0t+5q8Loor0nw+DrZ1ErQGkjHGGGNGsMbWIOleF2KYS/QepJCIfDqSoMEnIj8GjgeeBBCRk0Tk\nH/EOIiKxs7TOAzYC50Sevwd4HXijl2WHUdW7VHWOqs4hI5em9iB/vuI0Pn3aZO5btoP7q3Zy+ZkV\nTC3NjXtyPp9w7fmVAORmBLj0lIlcc97R7G9qZ94tz/NfD6/id69s4YSJhXzl/Eqmj81jfc1BQh5+\nWJ4zMcez2ABhhY4w7G9OjXtygmFFBCIjNY0xxhhjRqTxhX13HBhHoj1InwJui/wokAacCvwBQFXf\nEpEpCRznLBH5Lk4v0suqulREXhSRl4HtwCJV7ei5LN5BG9uCXFhRxNFleVx19jQeenMXxbnpXHtB\nZYKnBx86aTyZaT4mF+VQkJXG6VOLWfz5U1m9q4Fzppdy3Ph8RJxPx9PKcmjrDFPT2Jbw8YfaX66e\nT873PAvfJdvvww+M9kTfTW0dvLH1AMHRfqLGGGOMGfVy06Gpw92Y0YlhMxZf527gQUiogaSqW4EP\nRZ+LyFJVXRVtMEQ3S+A4jwOP91h2K3BrvGX9ae8MMeco51alycXZvHLj+aQHfORmJJ5OUER4/6zy\nbsvOmV7KOdNLD9t20hin5b3jQEvCxx9Kbs083B8B0gSOHpvDzvpWQqN85NmO+lY6g2Gvi2GMMcYY\nc8TcbhyNNPGy2H1dVX8oInfQvQGUKyJPAn4RqQS+CryaxHL2S4HKsYeG0hXlJHdkZfSepp11rUmN\nM5z5fUJBdjpl+VlkZ/jpaBvdXStTS3II+Hx0hEb3eRpjjDFm9CvLCbC32b08xAtPGe9arKEQ7x6k\ntZHHKmB5zM8ioANnqNx9OMkWhrS/TER+JiIvichtiWxfWZYXf6MhMr4wExHYUed+D9Jw6D06RJk0\nJoui7NGfya61M0x5YRYTx3h775cxxhhjzJFa9t8XuhrvtFnxcwIMJ/HSfP8z8ri4l9V3A4iIH8hR\n1SG7IUdETokc8ywR+aWIzFXVN/rcHpiWQDKGoZIR8DM2L5MdB9ztQRpOjSPFSVywbu9BginQq5Kd\n5qc4N53QaB9LaIwxxphRbdWuBtfmIxLgjMn5fGBm4nkBhoPEb9KJISL3Alfj3Ju/HCgQkZ+q6o+G\nqFxn4EwSS+TxdJzsdr06bnwBWen+IQqdmElFWex0oQep3A+vfW/4NIyiVJWOYIjG1k62N4z+THbZ\n6QH2NLTRaQ0kY4wxxpiEbBlGX+4PRKJpvnuaqaqNwIdxki5MBj47ZKUa4GSx4kHq5akluUmP+8Dn\nZw3LxhFAmt/H2PwsSnIzcbdp6o1tB1rITg9QkDX6hxMaY4wxxhyp4TTyaaBEdeDfiIvIO8BJwL3A\nnar6LxF5W1VPHJJCiVwD7FPV+0XkUmCiqt7eY5uuiWKLi4tnV1RU9Hm89dUNtCchAVlGwEd6ay3R\n2Fv2NxNWZUpJDj4XWm0r1mwgUFCGALMmFHQtX7enkY6Yno7jY9aB07Ua5QdmxqyPXdffvnmddZRP\nnExze5CMgNPODqmS4fcjAh3BEE3tIdo6QyiQlxkg4BMa24KoQla6n3BYae4I4hMhL8NPMKwU5WSw\nu76VjlAYVQiGw/Q23VSwYS+BgrLDyueG6HXPD8BRY5Mfv7qhlf2RdDPR84bD6yZZonXuRWxweitF\npOu6uxV7/Z5G2iPvo+i5T8qBwsLkx3+3uoHOyN+sVKvz9TUHaY9kjHT7fR779y8auzwDSkqSH7+x\ntZPtB1qc4cseXPe65g7aQ2Gqd+5wPXZ9Swd1LZ34fULtnl2e/22fnAsFBcmPHworW2ubCYaUlgN7\nUup93h4M094ZQgQ2bt7qap2v3d1AMPK5wu2/MZ2hMJv3NREMKx317l/31o4QneEwB/bsoqKigj0N\nbTS2dXb9zT1SgnMLhl8gKz1AXmaAYEhpaHVGGpXlZzAmO931/89j/7Z37Nmoqhq3gyihIXYiMh34\nJTBWVWcB/wRqgZeBF0XkKA71+AyF14CrgPtxJov9fc8NVPUu4C6AOXPmaFVVVbf1sWMri4awYD2V\nPHszVVVVvLxhP5/57VIA3jd3ErdcdkISozoyyispX+hME1UV00rvOa60qkcLvr/1ie5b8uzNfHnR\nAxxo7iCkYaYVZ/L02n28sm4fzZFbkgJALk435cT8NGpbQ0xK83HqlGJqGtt4c0cDsW+NNCCY7uOk\n/Ewa24Ls7ScHZfXi6yhfuOiw8iVTOKwokD1heq/XPVnO/+5jpDU7v0fP263YcKjOvYh9+9Pv8LPn\nt5KbIQR2fc3VOo99L0TPPYg7595bbFyKHRvfi9gzv/0ELR3hbvG9rHNw59wff3sX1/7lLRTY9Xv3\nr/s1f17Ou9UH2feTL7oe+yv3LqdqywF8PqHh9i+5WufLNu/nmntXoKoEdl1D+cJFHA084UL8pZv3\n8/G7nM8NHSn2Pv/YnU/yxk7nw0JgGLzP3Yr9+5c28p3H1nWLDe5d98vufJl39zZR8fhNVFVV8aE7\nXuLtXUP58b27bD8EAkJauyLASZMLePDL87s+v3pR59tuvfjNRPZJdIjd3cA3gU4AVb0R2K6qH1DH\nNuC8gRW3b6r6JtAmIi8BYVVdlui+tXWNrt14FqWq/PblzRTnpPOF+VP4yxs7eG5tjatl8EJZXgbg\npFV/fHUNSzfXdTWOYoWB7Y2dtHSGqW0JsmFfIyt2NBy2nQItHWFqmztobBteCfpbOoK8tHE/L67f\n53rszc2uhxw2fvr8VhQ42G73fqWKdFJzvrEPnDiBzAC99pi74fWNe9m035s/Nn4R2oNK0IOTv+fV\nLexr6mB/86F7adf2s/1Q+sNLm1yKNPxEG0epZtcBb/9DX7eviVDM+2zT3uQ1jgBaQtDY7ny5HMaZ\nP3OkSDRJQ7aqLotODCsi3waKI4+x/neoCqaqXxvoPm43jKJue24DL6zbxzfeP4MrzprCP9/ezSNv\n7eaCY8d6Uh63fOD4cZx8VCHF2eks3VxLQ1v/+fSjb8mNe/vP/tceDJKZFqAt6F5+/njqWjptolhj\nXFA/vL4bcc2vl2yg2cN8N7Wt3v19a2qsp67Vm5N/YvVeT+IC7G3Y71ls443zZo7n7td2eha/qd1p\nmOYCtU3tNLn0thOcHpnKce5NyXOkEu1B2i8i0zj0GXcaUA8042SyuwioiN1BRMaLyJsi0iYigciy\nw+Y2SnRZPF41jjpDYe58fiMfPHE8V509lTS/jzkVY1ixo86T8rjJ5/MxoTCbnQfaeG5t7z0rg0mT\n2NIJ9a3Dp3EEUJqbwZicNPIyB5X40Rhj+lWSm9wJzuPx8ovd57ak5qTrm6x9lHKu/23CA6KSSoG3\nd9a7Gi/aZ9jWOTJ6DxNtIF0D/BqYISK7cBpIF6nqT1T1e8C5wIQe+xwALgBeh+5zGwHpIjI30WXx\nCtczsYCbGtuCBMPKVy+oxOdz/os5YWIhOw60UtecGl+FfvneKvoaGDG8mjmDlx7wMfuoIk6bWux1\nUYwxo9Bv/rXB0/inVxQSGEHDX0aDA6nxEcHE2ON1ASJa2oOsqz7oetyHV+zigaodrscdjIQaSKq6\nWVXfA5QCM1R1vqpujdkkG5jaY582VY3tRultbqNElw1bze1BJhRmMa00p2vZCZGsHF423NxUkpfu\n6bePxhgz0q3d1+5pfF/Az0mT+51RwxgzSjS0dvLQCvcbKk0dSk2jt3/rEtXveCER+Yyq/klEru+x\n/AacHrP9OJmiS4l//1EhEL0jsQE4DqfHLZFlvZWtK823P780Tujkae8Mc8y4PCQmrfdxkQbSWzvq\nWVPdyOZ9TXz3w7PICIzOGYPu/eKZnH/rs2yuGxkvemOMMd29srHW6yIYY1zS3BFk6/4WT2KPL8z0\nJO5AxbuhItot0vOuqvsij7fhjKKqUdV4o6nqgfzI7/mR56EElx0mNs13RnmlZymu2oOhbr1HAAVZ\naVQUZ/PTZ9Z3LZs+No8rzprac/cR693qBk7678d467tOisahaByl+eia+8UYY4wxxgy9cFjxKu9U\nZiDRu3u81W8DSVV/Hfn1F6p6pPmNe5vbKJjgsmFLgWmluYct/+Spk/n5Cxu56eKZPPLWLn71r018\n6rTJ7K5vpTQ3k4LsNPcLO4Q6w1DfObTJMaxxZIwxxhiTXGF17rHxIl3CD55814OoA5doSq5XRWQL\n8FfgoR73FvVKRNKAJ4ATgaeA/+LQ3EZvR+c2imS5i7tsuCrISuP4iYfPBHzVOdO46pxpAEwtyeGj\nv3qNM295nvqWTjLTfNxz+amcMc1u+DfGGGOMMe5RVc9mnDvQNDKykyTUQFLVShE5FfgE8C0RWQP8\nRVX/1M8+nTg9QLGW9rLdYfMdDWYOJK9MLsrmuPGHN5Bizako4otnTeGVjbVcEZlI9vuPr+UfX5nX\n7d6lkSgLSM0ErcYYY4wxI48IfWYfTrbQCJn3PeFJXSI9OctE5PvAT4HFQJ8NJNPdtxbM7Pq9LD+T\nr/9tJT96ah2nTS2mOCed7HQ/E8dkkz5CxmYeP6GAqluc+4+8moPKbW9sruVg+8j45sOYkWp8foDd\njaNlggBjjBl+bN77+BJqIIlIPvARnB6kacDDwKlJLNeodtkpE3nkrV38YskmfrFkU9fyyrJcfnf5\nXCYVZXtYuoG7dDo8tD7+diPZH1/dwvefeJewjpCvPowZoaxxZIwxxmtxG0giMhbYiJPS+1M4qbfP\nUNXlMdus4vDeugagCvg/VT0sf6iIVOAMuVsLdKjq+2LWjceZYLYQeFZVLx3QWQ1zfp/wpy+cxs66\nVmoa29jf1M7u+jZue24DF9/xMh+fO4kLZpRxylFjSPMP/x6ln35+AdtvfYyqXu5MW3b9XE796Rvu\nF2qIvbRhvzWOjDFJMwMYGbcuG2PM6JdID9LvgS8A3wJW4yS+uA74bcw2T+Akw7g38vwTkcfGyP6X\n9HHsZ1T1M70s/wmwAvg0sE5E5qrqyP+UHUNEmFSU3a236NxjSvnBE+/yu5e3cNeLm8nLDHDuMWUE\nfILfJ4zLz2RcQWbX43Dyt28s6HWoXVlZGVtv6X3dSHLzJbP4+N2vEQyF2ep1YYwxo441jowxZvhI\npIFUAqwBKnEaSAKUiMgsVV0d2Waeqs6L2WeViLyiqvNEpLcGUNR5kWx1D6nqz2KWzwZuUtUmEdkN\nnAOMqgZSb6aW5nL3v8/hYFsnr2ys5el39vDKpv2kB3x0BpW9B9sIWyeGJyYUZfHyN84HIOMOjwtj\njDHGGGOSRjTOsCERWQJkA4WqOl1ETgd+BbSo6pmRbd4GrlTVpZHnpwJ3q+qJIrJCVU/u5bgZOA20\nduAR4JuqujKybitwtao+KSLP4qT7/s8e+18JXAngy8qfHSgoG+w1OCLBhr14FTuvs46KioohP25L\nR5C2zjBFOel9brNizQYCBWWk+YROD1pt0et+/IT+MwgOlc5QmNZOZ8aATZu3dtW5G/FX7Wro+j32\n9ebWuUfjexk7Nr6XscHq3K3YsfGtzpPP6tzq3IvYsfFTNTZ4W+de8PK6d+zZqKoa9/6VRHqQrgde\nAoIi8gpQCnwM+EPMNlcAvxORXJwepkbgChHJAX7Q20FVtR2ncYSIPArMAlZGyw/kR37PB/b0V0BJ\ny6B84aIETmXoVS++zpPYfoExz9xMVVXVkB/7hO88RbgtyNP//d4+G0kZ5ZVMuHwRZ08rYsnGA0Ne\nhnii1z2aSS/ZGlo7Wb7tAOEwLLhgPuULF7HVpdixwxNjX29unXs0vpexY+N7Gdvq3L3YsfGtzt2L\nb3Vude5m7Nj4qRobvK1zL3h53bfdevGbieyTSAaAd4BncBpE/wN8APgwsCW6gaq+oarHAycBJ6nq\nCaq6TFWbVfX+3g4qInkxT+cBm2KeLwc+GWlgTQD+1XN/Vb1LVeeo6hx/tjstUC8cU+zDj9PqnFGa\nzqkTszi3spBnrpsXb9dBa2xzskht3tfU5zYTC7P47wUz+P0VZ/DK9WcwISdpxemTW/+JgTMh8BlT\nSzyZ3Le383Tz3L2M3TOWl7HdZHU+PGK7yep8eMR2k9X58IjtpuFS5xPHZHHN2VP4wrzJrsTLiDzO\nm5LHrR9xpr0Z7nWeSAPpNeBzOFnqbgEeAK6JLAOc4XIi8qnI8q+KyLdF5NtxjnuWiCwXkVeB3aq6\nVESid3fcAMwBqoGqyBxMKWldbZgQzsV/d18Hy3a2smRDPR/7+StHdNzl2+pobOs8bHlz+6EUu9sP\ntPS5/+6GVr7/2Ls8sGw77130Gruaj6g4g+Jm4odgMMifXt/K3S9udi3mcOXmde8Zy8vYqczqPPVY\nnaceq/PUsauulZ+/uIXfvrLdlXjtkcdXthzkpofXAMO/zvtsIInIOBGZDWQBFTjZ6K4A/gM4oKqx\nSZ0fAT4EBIHmmJ8+qerjqjpbVc9U1a9Hll0bedypqpNUNV9VPzTgs0oBtUcwX+ma3Y1c9stXuenh\n1Yetq2ls6/p9d31rn8cIK3Qq3PDQKlpSYMKxf7xdzVPv1PDyxv1dy9x6c/cWx/7Ae8PqPPVYnZtk\nsTpPPcOlzr3M93X4V/PDU3/3IF0IXA5MBO4GjgIygTBQJyIrVfWEyLYTVfX9ySyoGTqrdzs3q72w\nbu9h6/bENpAa2g5b31OaOA2l0a4oJ+OwZV520xtvWJ2nHqtzY4xJPX32IKnqYlU9D6eRlIczF9IJ\nkZ9z6D630asicnwSy2l6+NBxg78XZmdk6Fx7MEzPLIbRHqTsdD/VvfQgNbcHueqPVWSl+TiqKIOX\nbryAC2YUDbosI8W5M8r46gVH84V5U1yPPVzGLA+H2G4abtd4uJVnNBpu13i4lWc0Gm7XeLiVZzQa\nbtfYi/JkBnyUZbkeFoCZZe7ftJ6Ue5BU9UGcoXMzgM8CC4GFqrotZrP5wHIRWSciK0VklYis7OVw\nZogsWVc76H2j9xZ1BMPsb+o+Vq+m0RkpetKkQqp76UF65K3dPPVODQABn58s2planDvosowkPp8Q\n8IvXxfCcDQFJPW7WuQf5XowxJqVkpvsZn3/4yJhkywnAyRVjXI87GHEbSCLyK2AX8G3geJyepLNF\n5NKYzS7CmUj2fTg9SxfTvYep5zFPE5FXReQlEflZj3XfEZG3RWSJiFw/4DNKEQ3B+Nv0ZUfdoZ6h\n7Qe63ypW09hGbkaAo8tye70H6d09jeRmBGjtDLNpfwtn/+w17nbpJj8vvbZxP/ct3cHf39rdtczu\nTRjdvLzGqVznHuR76WJ1Pjxiu2m4XePhVp7RaLhdYy/KU9/SyVs17fE3HGLNQbjvjZ2uxx3SJA0x\nzgT2RrZtAV4EjgUuFpHoXEUH+/jpyzbgfFU9CyjrZXjef6rquar604TPxCRs+4EW5hw1puv3WHsb\n2ynLz6C8IIvGtmC3rHYA62sOcnTZoR6jcJyJhkeLUIqcp+lfqnyAMIdYnRtjTOpJpIHUCpyIM4nr\nN3Ey2bWo6ueBeyPbLAeqIo/LY573SlX3qGp0/FYQCPXY5FYReVZETkr0RFJN79O3dhcMHZ5erq0z\nxL6D7ZwxrRgR2F7bvZeoprGNsXmZjC/MBKC6ofv6jXubmD42l3S/j7F56Tx27ZlcetLYQZ/HSDG/\nspQPnzSe9808dK5ujRseLmOWU42X193q3BtW56nH7kdJPVbnkJcRoKIgkSbA0AoA751Z6nrcZM2D\n9CjwJnBf5HEr8BcAVb048jhFVadGHqM/U+MdWEROAEpUdU3M4ttVdTbwJeCO3vcEEblSRKpEpCrU\n0pDAaYwOAaAoCxac0P8L7PuPr+Xk7z7D9truPUQ7Ij1GR5flMi4/8/AepIOHepAAdtcfug/pQHMH\n+5s6qCzLY1x+Jl85fxrZmZn84KMns+Km8zl/evdkDXniNOQyB3muw817jxvHh06e4HUxPDfcJ3cz\nQ8+LOh8tfzdGigk9bq+093nqsTpPHWX5GVx34SzmlbvTSMqM5Mz+w+Wn8evPnupKzCOVSJKG7wKn\nAj8CGoFa4MOxSRhE5Lme+/W2rMf6IuBOnHuaYuMdiDxuiFOuu1R1jqrO8WcXxDuNUSMIHGiFh1fu\n63Obts4Qv315CwfbgjywfEe3dTvqnAbRpKJsJhdld7sHSVWpaWyjLC+D8oLDe5DW1zijJivH5rKr\noZUfPrmBbzzwNq9u3M8H73yZ59cf6BbroEIHED9ZuOnPcBmz7EXsVDnPRGIPt/IkO5YXfzeG2zV2\nszy7eowitve5N7GHW3lGQ6zhHtuL8uyub+X6+1fySrU7E1m2Re7W+NTvl7oSr6ehnij20ugPsAi4\nFvgJTq/OncAlIpIZaeiUiMgYESmK/FQA4/s5dgD4E3CDqu7psS4/8lhC//M0pbxd9a08uXrPYctf\n3bSfUNj5327Juu4NqWiP0qQx0QbSoR6kmsZ22oNhJhdlM64gE5HuPUjr9jgNpBnj8kFBUWqbO2hp\nD1HXMlKm/ho6dm9C6rE6Tz1W56nH6tykAneaRiNXfz1Il0R+vgDcgpOh7n3AD4ALI2m+r8K532gG\n3e8/egR4tGemOhG5QUReBpYAc3HuNdoUyVq3TkTSgB+JyBZgM9AUWWZ68OPMSXTtfW+yoaZ7Pozn\n391Ldrqfr11QyapdDd16gdZWH6QwO42S3HQmF2VT09hOW6dzC9jGvU0ATCvNJc3vozQ3o8e+jRRk\npTE2P4PsdD/HjcvnaxdUMruiiJ/828nJP+lhxu5NSD1W58k31qO5OfpidZ56rM5NsgyXOs/LTOPE\nie5PqjA1z/WQg9bfRLGfU9Vwsg1LAAAgAElEQVTPAQrMVNXLVPUy4LiYbW5T1SnA/+txD9KJOL1N\nsZnqzgLOU9X5wD+BLwMfA9ZFtv8d8GHgJmCtquYDz0aWGSAXp2H0/spCHrjqdKaW5pKdHuCmv6/u\nmvC1rTPEU+/UMP/oEj54ktOJ98+3ndTU4bDy+pZaTppUiIhQOdZ5pS7fVgfA0i21+ARmjneSE04q\nyu7qNQqFlZc27GduRREiwuTibO5aOIfzjh3LuIJMZo3P54ErT2P5ty7go7NKufzUcdz9meP58aXH\n8d2Lp3DlvIn89tOz+ODMMZxSnsGnTilhXkUeU/Od8wIoHOBQWLf/qDS1BWlo6Yi/4Sjn5Th1GyPv\nDTevxdKbF5ADzJ4YcD2213Xu/jTUh/zz05MpzT703N7nqcfqfPT79XnO39WyvEx+f/np/G7h7KTE\nKQUqi+HqeZP5ziXH8LvPnMz3PjyDP3/pbNo6nPF2w73OExnCVqGq1THPa4DpsRuo6h0iMguYScy9\ntar6h8ivQeAEnJ4jcBo+n8JJG57IsgcSOZnRriny+OSGep7c8DolPuH698/gvx5exfxbXyAzzUd9\nSye1zR1cfmYF00pzOXNaMbc+uY77q3bS3B6kuqGN/3iPU33nHlNKYXYaV/9xOeMKMtm0r4n5laUU\nZjs58j5wfDnffXQN5/14Ce2dIXY3tPGtBccCsO9gO799eQsXnzielTvr+dnT62ls6+Rg+6GEhL9f\n1n34312vHMp9/2b14fn36wfY31tx42OuvcGq61v5a9UOwmH30333NWbZqz/ybsbuee5exnaT1Tks\n3xn0LLYXzrvxMbb0WObmuV/y5+7z2dn73JvYqfY+Hw6x3eR1nV/1gvN3tbGtg4tuf4k9jcn50ncf\nsK8WNvSYJ7MgayNXnTMNGP51nkgDaYmIPIWTxU6BTwAvxG4gIjcD5+I0kB7HmTj2ZeAP0Ux1QD2H\n0nk3AGOAQpzED/GWmT588tRJhFRZurkWVcgI+HjvzLGceXQJAHd88mR+9a9N7KxrJT3g4+RJhXwo\n0rOUmebnj58/jd+/upXm9iDzK0v40rnTuo698IyjaOsM8c7uBkSErx5dwkWzxnWtDyvsrGtl8/5m\nWjqCBEOjd66g3Q1th52fl/+RGW9Ynacet+q8Z+PIeMfe52a0C4WVpraeM+wkX3N7kJZ29+MOhmgC\nE2CKyEeAsyNPX1TVh3usX4UzV9IKVT1RRMYCvwEWAn8H/g2YDRynqj8UkVOAzwDPJbJMVa/vpUxX\nAlcCSFrm7LTiiYM4/SMXbNhLoKDM89jHTziUyW/Vru5pz2PXxVuf6L55nXVUVFQMruCDtGlfE60d\nIWZNKGDFmg0ECsoOK18y7WlsIxRW9u7e2et1T5bYOumrzt2I72Xs2Phexgarc7dix8a3Ok8+q3Or\ncy9ix8ZP1djgbZ17wcvr3rFno6pq3Js6EmogxT2IyBuqOldElgPnAQeB1cA24H9UdamIlAH3qOoC\nEfk6znxKSxJZpqr39xc/o7xSyxcuOuLzGIzqxdcxHGLHftvVsyux5zdh/a1PdN+SZ2+mqqrPuYCT\nIhp7w/cuInfiMZQvXOTat3zf++dq/rDU6Sre+tuv9XrdkyW2Tvqqczfiexk7Nr6XscHq3K3YsfGt\nzpPP6tzq3IvYsfFTNTZ4W+de8PK6b7v14uWqOifePkc8Q5SICLBSRAqBu3Gy2L2JMzzuvcBrIvIv\nnPuWJohIPXA5Ts/SeGCGiDQA3wYmqepe4NTIsv8E1h1pGUejkgyvS+CupvZg1+/7Dh5+/1Ky7T1o\nyRmMMcnzy8tO9LoIxpgU4c70sCPbEV8jdbqgTlLVelX9FU6jaCFwPlAGvAhcAJQDf1XVQpxhdMeq\n6luqOk1VCyLLHokcdp2qFqjqWFV9+0jLOFLFziTvj/m9KMvPrz53utvF8dS22kMT2tY0uj+F5C0f\nOZZTJo3h2HH5rsc2xox+X3owZf+rM8a4LD3gIz/dm2ZSdkA8iTtQCV0dEckSkWP62eR1EZkLoKpb\nVXWlqrapal3MNlOBlZHf3wLOiDl+DjBOVTdGFhWJyIsi8msRiW0npJQ2nIZRBoeyW+T64ezpZZw8\nuci7gnkgOsEtQL0Hk9JmZWVx2ydP5hefSU5KTGOMMcYYN6QFfGSkedNAOqokN/5Gw0D8m5RELsFp\n0DwZeX6SiPyjx2bn4Qyl2yQiK0VklYis7LHNOuCcmO1js9NdFD1+xHxVPRvnHqYr+yjXlSJSJSJV\noZaG3jYZFUJA7ICytDQfM8rz8ftGRgt8qGyNaSDVeTAX0b6D7azc2cCa3Y3xNzbGDNrWWxZ0/aSS\neVMKvS6CMSZFCNDhUebhlo5g/I2GgUSaj98BTsVJ042qvgVU9NjmImAazrC6S4CLI4/g1MMncCaY\nPVtENgHH4synFPUR4KHoE1U9EPn1YWBWb4VS1btUdY6qzvFnu5fJzE29NYFy03089c6ebj0qqWBb\nbTOBSKOwzoMepKFIZmKMMX3581Xz7L4AY4wr0vw+8jLTXY/rA0pyR8ZN9InMgxRU1QYnF0PvVHVb\nz2UiMl5E3gROBvbiJG/IwJlLaRzwdGS7BpxrNkFELsWZD/WTwFVADvDgQE5oNJlenMa62u6NAQmk\n0d4ZZk316O01683W2maOn1jAWzvqafCgB6ksP5OZ43VUz/VkjPHW5kivWcbi6zwuiTFmNAv4hWPL\nc2lsaSVJc8X2ygf4R8gAqES+sFotIp8C/CJSKSJ3AK8msF8jhyZ8LcZpHBUA24E1kWUAO4Bfq+q5\nkZ6jUuDnQBDoAMKJnsxo07NxVJINJbnp5Gelsbu+1aNSeWN7bQtTinMoyErzpAcJYHxhFpOLsz2J\nbYwZ/SpufGxQM74bY8xAlOZmctsnTmZ+ZamrcUNAQ9voGWJ3Lc7wuHbgPpxGT9yvt1S1SVXPBaqB\n63FyDlyrqucDf+FQkoZy4DQRuSWSMrwQ+EPkHqT34/RADVtuTXKV7oP2oI9gWAmrMiMmm5q/n/1G\ng5aOILsb2phSksM/rpnP/7uwv3whxhgz8ljDyBjjFhF46p0amtpC8TceQgrsa3I/E/FgxB1ip6ot\nwLeAb4mIH8hR1YGcXQGwDNgHpIlIDTAR+GFkfSVQB/wK576lWg71PDXQPZnDiJANJHKHUCZOqzER\nHWHo6AhT19RBaV4GR5cdygJSMDKGcw7alv1Oiu+ppbnWg2OMGZXmjIeq3V6XwhsVAdg6Mr5UNmZU\nCKuyaV8zzZ3uDtLyAWOy3L/3aTASyWJ3r4jkR1JxvwOsE5EbBhBjJTADmA88jtP4eYpIkgZVPRCZ\nS+nvOAkZ6oFo90h+5Hlv5Rq2WezWJJh9aTBt6LSAnzBCe+ehVn9JbiK3ko1cG2qaAJhWluNxSbyR\natm8jElFf/vqAqaPznxDcVnjyBh3+USoa+mg9qC7Cb+yMnyU5I2Mb/UTGWI3U1UbgQ/jNHAmA58d\nQIxynF6ivap6uarOw2kkPS0iOZFeKYB5wCZgPTArsvw9wOu9HXS4ZLFbtcvdxtnYPD9nHV3CpOJD\njYWdB0b3/y6vb64lLyNAZVme10XxxCd/+YTXRTDGuODpb6ZeenOTmlI1nb/XzplezNi8DIJhZfO+\nJuqbXU56pVCSMzKmN02k6yFNRNJwGkh3qmqniMRN5SUik4HVQB5wD9ApIuNx7tFarao7ReQDwP0i\nEsIZWndM5PiVwAGcRA0XDerMRqm5E4s5o7K427KSvNHbg7RsywEeXrGLBSeUp9zcT1HLtqVsnhJj\njDHGDJH/+9AJrNrVwE0PQmaaD/H5SHYuNH8kgt8HGQE/aYGR8VkukU/Wvwa2Am8DL4rIURy6R6g/\ne4GjcOYyeg/wOeCDwInACSJyIvAaMFFV60XkezhJGf6Jk9kuAMwE3hzICbmt5x0xg/k2JPpS6a3V\n6YssV+CYsmwCGQFaO7rfVPexuRXdnl86K4+HVh8ccDm81BkKU9fcwe6GNpZurmXlzgb2HWynatsB\njirO4ZsXHet1ET2z6ZYFdgP3MPFRrwtgjEm6D7gUJ9H7lY0ZKpOKs5lUnM23fcI151VSte0A972+\nlW117UmL+cVzKmjtCNHcEaIsL5NZ4wv5ZdKiDZ1EkjTcDtwes2ibiJyXwH5tQJuIHAO8iHM/0WvA\nd3EaSWeo6tsxuwRxepfA6XWqw+lFyoisG3Zy06FkQgFVvTSKLp0OD63ve98TJuSxaW8zXz53GmPz\nM5h/dDEX3vYKjW1BFDijooD7rp7P4le3sGZ3I+MLM6lt7mDbgRZmVxQB4BdhfEEGH587odux/+ej\nZ/Do6qfpAC6Z2X+Oi9/+++CSBB5s6+Q3L22mIxQmGFI6Q2HaOkPsrm/j3T2NNLUHOXFiIdnpfjpD\nSk1jG80dITpDYVragzS2BckI+MjNDFDX3EFjj7SPk4qyKMhK4yvnV/L5eRUUZg+/m/qW/edprsXa\n6uH8KMMhthfxe4v9w++706G91RrFnhiXE2BPc/e/RZtdqnPjjbe/OZ8Tf/Byt2V3ulTna+x97onk\n95n07fVvnMPpt/7Lo+jdzakoYk5FEVefczTtnSHm3/I0+5qH9spcdnI5N150HG2dIXbVt7L/YDsF\n2WlDGiNZEhqbJSILcFJ9xw4c/N8BxPDjJGWYAOwHzsFJ+BA9/nicXqbvRhbNU9UDIrIZ+CKwqJcy\nXQlcCZBRWEZpdoC0gI+MND9+n3DSpEJqGtvZ09BCS6fSGQzS3hmmuSNMUCEgUF6YzpSSPNo6Q+xp\nbCfdL2QGfNS3BhGUycU5HGhqZ3tdK20dYUSgMDuNaaU5hBWOGZfPk4/3ftI//fwCfhrz/Oa/v83i\n13d2Pf/HtWcfts/b37nwsGULz5wCwKsb9/PqplrGZNOVwa4wO40FJ4ynsV0pi9nnidW7SUv3kQas\nqjn8WwHhUG/V2zsauGDm+K51EwrS2dXQ95jU6B+WA82d/N9ja7uW+31Cml8oL8hiWmkOWekB1uxu\nIBhW/D6hLC+DCYVZpAeEzDQ/+ZlptAfDNLcHGZOdRlFOBkU5aZTmZXDSpDGMKxj+Y1QfXr+Zq0pL\nvC6GcVFVVRWnnnqqK7G8bJje8vGj+O+/Hjb/96j356vn8ZE7XyIYPtSf72ade6lnnf/jK/M8LI17\nCgoKDnuvpcr73MvYXtp8ywLm/+AJWtrDVLsce9yY3GF53UWhIDuTpvY22oPhuA3I3DRhQnEOzW0d\ndIYVUTh+YiE56QHW1Rxkx4FmSvMymTWxEIDMND/TSnOZVup8fhWgsnR4J94SJ4FcPxuI/AqnJ/g8\n4Dc4o0yWqeoXEgogsgSn8XMM8EtgLs5n7GtV9XcikgE8CnxNVdf02HcZ8LaqfrG/GDkFY7S0fCLF\nuRkcbOskGFKCYSUzzYcqtAed3o00v4/cjAAiTopDgMyAn7ag03GV7veTmdZ73oqm9mDXPnmZaV3D\n4rZu3UpFRQUAtU3tVDc4uen8PuHY8vxejpS4ts4QHSHnZZqdFiDQY/rhtRs2UTR2AoVZ6WT0Ue7e\nVDe00Rk57rj8TNIDh/ZtaO1kf5PTqMpO91NekNVt3+h1OLBnV9d5H4lQWGnucL6xDfh8ZKcfmtXp\nQHNH14S4Pa/nyrUbmDXjaHzi/ljWFWs2kFZQxoxxeQT8iV/3oYw9JiedCYVZ8XdIQuz0gI/pY91P\nmLFizQYyCscyc/yRva8GGzutoIyZ5Xn4fN7UeVFOOuOtzl2Nncp1nhHwUWl17nrs4tz0w/7fdSt2\nKtf5LJfmtOwtdkluhutfCsd+do1qaO2krTNEa0eIYFhRIN0vZKT5CUe+NAr4fWSm+cgM+Lt9dhyo\ntRs2MXb8JIpy3BkdtK22maZ257NmW/VGVdX4hVfVfn+AlT0ec4Gn4+0Xs/8qnDmPXgPexUnY8C+c\ne48AFgMfidk+HciI/L4O+GYfx70SqAKqxpSN1xfX71VV1be21+k/396lf122XZes26sb9x7U+5Zu\n05seXqm/fGGDbtl3ULfsa9Jn1+zRFdvrtLUjqC+t36fPv1ujdc3t2pfN+5r0mXf26Fvb67otnz17\ndtfvtQ0tevL/PKnTv/WYXr34jT6Plaj9B9v0+bU1+sqGfdrWGTxs/cTK4/Q3L27S5vbOAR338ZW7\n9St/Xq7fe2yNtrd3P+7uuhb9/D1L9eO/flVfWFtz2L4bag7qM+/s6XbeRyIYCuvSzbX63No9Wl3f\n2m1dbUOLzv7fp3X6tx7TL/5+Wbd16eOO1vrmjiEpw0BljDta5/7fM57FPvamx3XVtn2exJ7+X4/p\nomfWuh47Gv+Tv37Vs9infc+7Op/53094Wue/eG6d67Gj8T9z92uexfa6zt/dUxd/4yTETuU6P/37\nqVvndy3Z4HrsaPyFv3nds9hn/uBZz2If51Gd9/YZbvPeg7ro2XX6rYdX6lV/eEM/ffdr+j//WKUP\nLt+ui55Zr4ueXa8PL9+hS9bt1YNtA/vc2dPEyuP0zW0HjugYA/HUql16wnee0hNuflKBKk2k/RJ3\nA1gaeXwdGI9zT9CGBPZLA57Fme5nFXApsAR4Hrg8ss0ZwMHI8iXAR4CxOIkZXsQZjlcYL1bPig6H\nw4c9j/70t008vW3T24uspaUl7rES1V+5jqSREgwe3uCK1dnZ94s/HA4PWQMp9ph96e16po87Wmub\n+m7QJtPJJ5/sSVyvYw91nQ9Uql53q3OL7Sar89SLbXWeerH7qvNQKNT1GP1dVQ/7DJ2s+G5ItIGU\nyD1Ij4pIIfCjSMNFcYbaxeuZ6sQZWoeIjMUZWvdjnOF5eyPbvIaTkKEbETkNeALn3qUHReS/VHVp\nAmWN7t/v80S3ibdPX7Kyhq57PNGYA+X3+/tdHwj0/dJIRpn6O2Zf1zMU7n94aLK4PfRiuMT2Wqpe\nd6tzi51KUvW6W51b7OEgWqaeZUvWZ9HhLJEsdtHECQ+KyKNApqomPDuqiHwMp2G0BOe+rDtE5AZV\n/Vs/MbsaV8b0JXpPmDHGGGOMMUMlbgNJRLKB/wQmq+oXRWSyiJylqo8mGOMmYG6010hESnGG3vXZ\nQDImEdZAMsYYY4wxQy2R/r17gHac+4UAdgL/N5AY0cZRRG2CcY3pl1dD7IwxxhhjzOiVyD1I01T1\n4yLySQBVbZWBDUZ8UkSeAu6LPP840MfsQcYkLuzVTG/GGGOMMWbUSqSB1CEiWUTmFhWRaTg9SglR\n1RtE5DJgHs49SHep6sODKawxsUI2xM4YY4wxxgyxRBpINwNPApNE5M84DZ3LBxJEVR8EHhxw6Yzp\nhw2xM8YYY4wxQy2RLHbPiMibwOk4PUBfU9X9iQYQkUuBW4GyyP7iHFbdnzLZjCqWpMEYY4wxxgy1\nPhtIInJKj0XVkcfJIjJZVd9MMMYPgUtUde1gCmhMX6wHyRhjjDHGDLX+epB+0s86Bc5PMEaNNY5M\nMlgDyRhjjDHGDLU+G0iqet4QxXhHRFYC+3oc/4IhOr5JUTbEzhhjjDHGDLW48xGJSLaI3CQid0We\nV4rIxQOI8eGYWNF7kOISkZ+JyEsictsAYpkUYj1IxhhjjDFmqCWSxe4eYDlwZuT5TuAB4NEEY9So\n6gmxC0RkSn87iMj7gM8CuTg9UHNV9Y2+tl+1q4GKGx9LsDhDq3oYxN56y4LD1sWWqef6/tbFru9v\nXTT2P74yj8/+8hUaQoM7hyPREQzTGXJ/MqRV/Vz3ZOl53VMtttfxLbbVucVOfmyv41tsq/NUi+0V\nr19ziXBjothCEbkskuobETkWp4E1q599jgVuABYCz+Fk0OuzgZTqer7IBvIi6G/fRF68H7zzlQGU\ndGh9/K7XXY85Y1ye6zF7q0+3/7AMl9hu8vI/D6tzb1idD4/YbrI6Hx6x3WR1nnoGU+dJnygWKAb+\nJiLtQAjIBFrj7JMLrIv83oDTYOpGRK4ErgTw55cOoDhmNCgvyOT/vW+663GLczN4IfK7/VFLPVbn\nqcfq3BhjUo9onBvdReS9wE3ATOBpIhPFquqShIOIfBj4OpAHXKqqG+Jsfw1OUocvA3cC41X19h7b\ndDWQJC1zdlrxxESLM6SCDXsJFJR5Hvv4CQVdy1ftaui2Xey6eOsT3Tevs46Kiopu6zbUNNAW7L7v\n2l0NBBl60XPvWT43rFizgXETJlFekOlJ7N7qPJmidd7X682N2LHxUzU2pEadx4q+3q3O3ePl3xgY\nHtc9Verc/rYPj9jgbZ17wcvr3rFno6pq/BwM/TWQIkPpJgItHJoo9vVEJooVkTuI9DoBU4AzgHpg\nDbBVVb/az76nAFcBxwBrgXtUdVlf22eUV2r5wkXxipQU1Yuvw83Y6UAgAD++7Dg+8oH3Ur5wUdLu\nQepv35Jnb6aqqqrPfc84ysd9X7rosOMNleh19+Kb3eKKY5l73a958rqzXY+dUV7p+nl3jVn24Jp/\n6vuP8WojnsX38txTNXasVHu9D4fr7uU1h9S77qke2+v4qRr7wJ+vZ/JnfkqTy7muxuYGuHBWObd+\n6TLPzn3brRcvV9U5cXdQ1X5/gOXxtuljv4WRn0dxEjssB36DM3Tu5QT2vw2nQfXzeNvOnj1bvWKx\nUy/+xMrjdMqNj2prR9D12FbnFjtVYnsd32KnXnyLnXrxLXbqxQeqNIF2TNwuJuB1EZk7wIYaqrpY\nVRfj9Bw9AmSr6hU42fBO6W9fEUkDjsPpgZohIqcNNL4xyZIR8BNW2H6gxeuiGGOMMcaYIZZIkobz\ngKtEZBvQjDPMTrVH6u5+5ODcvzRFRDYDfpxEDX1S1U7gPQke3xhXZQR8BIHN+5qZPtb9rHbGGGOM\nMSZ5EmkgXXSEMXw4DaQWYBlOkoedR3hMYzyTkeajGdiyv9nrohhjjDHGmCEWt4GkqtuOMMZ2YBMw\nG6ex1A588wiPaYxnfCKU5mWweV+T10UxxhhjjDFDLJF7kAZFRGZEfn0Jp/fo8cjjr4C0ZMU1xg1T\nS3LYbD1IxhhjjDGjTiJD7AbrehG5Gvh3oDFm+Ydwki/cm8TYxiTV1NJcnlxd7XUxjDHGGGPMEEta\nA0lVnUlcRdYAzwCxM5D6kxXXGDdMK82hrqWTuuYOxuSkuxKzprHNlTjGGGOMMaksmT1IUZWRnx1A\nEBiLk9nu2y7ENiYpppbmALB5fxOzc4qSHu/rf3ub+6t2UpL0SMYYY4wxqS2Z9yCNE5HZQA1wDXAr\n8BPge0AoWXGNccPUklwANu1L/n1Iq3c1cH/VTj46e2LSYxljjDHGpLqkNZCAC4EfA0XAp2N+LgDq\nkxjXmKSbOCaLrDQ/7+xqiL/xEbrrxc3kZgT49iUzkx7LGGOMMSbVJfMepMXAYhEJA+dEFkvkJ+7N\nFCLyM2AO8Kaqfi1Z5TRmMAJ+H3OnFPHa5tqkxqluaOWxVdV87swK8jMt+aMxxhhjTLIlswcp6hfA\nScBUYBJOVrvl/e0gIu8DPgvMBTJEZG6yC2nMQJ1dWcL6mibW7G6Mv/Eg3f7cRlSVhWdWJC2GMcYY\nY4w5xI0kDfNU9Ssxz/8oIr+Ks8+xwA3AQuA54HTgjb42XrWrgYobHzvigg5G9TCJvfWWBV3Le5Yn\ndl289Ynu6+V5x8bvWb5keX7NHr5y3wpCCnmRZR+dPZHbn9vA5fcs49QpRaT5fUh0BwFVUFXC6uS1\nD6uiqqhGf8dZp9q1vuu5wsG2Tt7e2cAXz5rCpKJsoPtr3a1z763O3Y4dGz9VY4PVearFBqvzVIsN\nVuepFhu8rXMveHndE+VGA2mMiPwbTgY7H05jR/rfhVxgXeT3BpwGkzGeuefVrXSEwt2WFWan84cv\nnMZPn1nPO7sbCYad9U7DCHw+8IkgRB4FRASfgOA8jy73RZbTtR4yAn6+8f4ZXHn2VNfP1/TOzT/o\nZniwOk89VufGGFHV5AYQeQOYDGwAwpHfF6vqzf3scw2wD/gycCcwXlVv77HNH4FLASQtMzut2JsM\nX8GGvQQKylyP6xOho76mK/bxEwq61q3qkTggdl289Ynum9dZR0VFRb/HTabode9ZPjesWLOh1+ue\nLLHXNdS4l7HjJ1FekJn0uD25fd7Q/dzdrvPeYoP7de527Nj4XsSOFX3NWZ27x97nqVPnXr7Ph1ud\np8LrLTa+V59dAfwitEc+v3px3Tv2bFRVjXuLkRsNpHk4o5Leg/PFeB1wsqpe1s8+pwBXAccAa4F7\nVHVZX9tnlFdq+cJFQ1ruRFUvvg63Y/uAr19Yydc+taArdn/D6Aa7rr/1Jc/eTFVV1WFlc6vLNnrd\nvfiWL6O80vXY0eva/NcbOPrKO3jtmxe4Fjsqet7g0TAMl+vcy9ix8WP/xrg+DMOD2LHcfq+lcp1H\n2fs8dep8OMSOjZ8KsWPje3nd9yy+jnEefG7O8MPxEwv55/9e7lmdb7v14uWqOifuTtp1X0RyfoA3\ncZI0/BDYCrwA7Ehgv9tw0oH/PN62s2fPVq9Y7NSL72XsydNn6VHfeFQbWztcj211brFTKb7FTr34\nFjv14lvs1IsPVGkC7ZdkThT7byLyJHA88BAwCygE3gIOxtk3DTgO5972GSJyWrLKacxIkhFw3rLb\nals8LokxxhhjzOiUzCQNfwG248x5NBYn8UIu8AmcxAt9UtVOnCF5xpgYaX4fHUB1QxuzPLgnxBhj\njDFmtEvmPEiXAUuBLOBB4JM4Q+vKVXVGEuMaM2qlRXqQqhtaPS6JMcYYY8zolLQGkqo+rKofx7kH\naRJOj9JkEdkpIm8lK64xo1nAJ6T5hd31bV4XxRhjjDFmVHJjHqRpOJnr7sfJYleJk53OGDMIY/Mz\n2WM9SMYYY4wxSeFGA6kd+GPM8xrgZRfiGjMqjS/IYneD9SAZY4wxxiSDGw2ku3AmfX0ap7HU7EJM\nY0at8YWZvLG1zutiGGOMMcaMSm40kK4ASgF/5HkI2ItzX5IxZoCOKs7hkbd30x4MkRHwx9/BGGOM\nMcYkLJlZ7KK2A+9X1Seyh2YAACAASURBVICqBoALgR0uxDVmVDqqOBtV2Fln9yEZY4wxxgw1NxpI\nucA8Ebkr8nwXMM6FuMaMSkcV5wCwrdZGqxpjjDHGDDU3GkhFwFnAOSJSAXwaKI63k4j8TEReEpHb\nkls8Y0aWiuJsADbubXIl3o4DLVyx+A1XYhljjDHGeM2NBtI+YB3OPUcPA2OIM8RORN4HfBaYC2SI\nyNxkF9KYkaI4N4OK4myWbj6Q9Fj1LR1cfs8y/rV+X9JjGWOMMcYMB24kaWgFvgHMV9VTRGQacEac\nfY4FbgAWAs8BpwN9foW9alcDFTc+NkTFHZjqYRB76y0LDlsXW6ae6/tbl+i+0dhnV2bw4ob2wZ3A\nEejv3JOhpaWFT//uTVo7Q12vN7diw6HrXhJ5fs70Uu57YwePraymJDcdn09QhbAqqqAokX8xy0BV\nDz0q3ZaHFeDQtsGw8puXNrPjQCt/+sJpnP27Q691t8499rXodp17GTs2/nCIDVbnbsYfDrHB6tzN\n+MMhNliduxl/OMT2ipd1nqikNZBEZJGqXofTS7UDyBORnThD7lbE2T0Xp9cJoAGnwWT60PNFNpAX\nwpHsC3jSOPLCdQ+8w6rdDd2WufXm7q1OrjpnGk++s4dr7n0zqbFzMwL8/NOncNrUuKNiU4KXde72\nf6TGYXVuksXqPPVYnY8coqrJObDIbFVdLiLnAPnATECANUCDqv6rn32vwRma92XgTmC8qt7eY5sr\ngSsBfFn5swMFZUk5j3iCDXtxK3a638fRZbn4fQLAijUbumIfP6Gga7tVu7p/kI9dF299ovvmddZR\nUVHR73F7c/yEgoS2iyd63XuWzw19Xfdkib1esa83t849Gj+9tZaCsvGMy890JW5P0evu9nmD+9fd\n6zqPcvu13ld8e5+7x4s67+3cU+F9HsvL6+7l/yux8VMh9vo9jbSHtFtscP/1tnb9JoI5JfE3HAIZ\nAR+hsBLwCQG/j+LcdDZt3upZnXfs2aiqGvcWo6Q1kLoCiKwCvg/8Q1WbI8u+pqp9Jl8QkVOAq4Bj\ngLXAPaq6rMc2XQ0kf37p7IlfuidJZ9C/6sXXUb5wkSuxTq0Yw/1Xn9n1PKO8sit2f71A/Q2xG+y+\nJc/eTFVVVb/H7c3WWxYMSbdu9Lp78a1L9Lq7FXv+jY+xM/J77OvN7a7p1gduYPzCRaz49vtciduT\n29e92zAMl19vvcUG9+o8qq+/MW7HT4XYs298jNrI76lW58Ptvebl6w3cv+5e/r8SGz8VYv/o0dX8\n/OVt3WKD++/zimNn/X/27jxOivrO//jr2z0XwwwjMhwjCCOHgojXDAGvJB4xyWIuk7gb81NiDkw0\nBzk0ZHO4SXYT3BwC0RzmcInJbjYxx2owJkGN0XiOmIggCOKgjMMNA8MwzNGf3x/VPfQ00z0NTFX1\nUO/n49F0T1d95/2t+lb18O2q+ha87eZAss4YW0VbZxdDS4qYMGIol9eN49LXnRtam2+8+bKnzay+\nvzJBDNJQijeK3Wrn3K+cc+8CrslVwMxWAO3AmUAis3OUnOd2M6s3s/p4efDfLgKcPCT7tGyNPq2k\n97SzTujdBMcB76kbQbmDuz5yFovfM513nzmamy+fxg+v7nusisys9J/7qkeu6f2VzaWv+d962sie\n17fMOnS+kuTzpBGOZVfVUp62Oi4/fXSfOecfYf0Gq0f6acOglBXF2dXWyf6O7sCzU4Jc7jC3r/72\n26BFNTtITy+cQ3HGe1FZ76msmpLwsgtFkPX58Pm9r7IIc71Hpc1vuOw0rj9/AuOrSnreC6M+I8rL\nWHpNHW+ZPoqR/c+et3FlUA4MAaYML+K+61/Dt/75DJZe8xq+/s4ZfOVtp3JO8pT9gm9z72LtgX8A\n7wHuAXYBdycfjwFbga5+yhYDy5Nl7wdm5Zq/rq7OwqLs6OVHNfukqTNswmd/b6/ubgslP6rrParZ\nYecrO3r5yo5evrKjlw80WB79GD9HsXsUaMYbeOs7wLnARUAn8P1cBc2sE7jEx7qJyGGKxxwJoGV/\nJzVVOQ6fioiIiAxivnWQzGwjsNE5lwB+BPwBeBHYAfzEr1wR8Uc85ugEWto6w66KiIiIiG+CuA/S\nSUATcDVQhneLlbcGlC0iAyTuvNETW/argyQiIiLHLt8GaXDOXe6cuxwYAdwBHACWAN8F9vqVKyL+\nSA0vrw6SiIiIHMv8PIrzluRzDLglmTURbxCySh9zRcQH6iCJiIhIFPh2BMnMrjGza4A9wMfwRrFb\ng3c9UrtfuSLij3jMEXOwW9cgiYiIyDEsiPsgbQd+DnwW7yjScGBbALkiMsCOKy9hV1tH2NUQERER\n8U0QAyVsxruf0TYggXcv1AMB5IrIADuuvJjdOsVOREREjmFBdJCmAK8CYwCXfK80gFwRGWDHDSlm\nt44giYiIyDEsiA7SccA1QB1wBfAS8OsAckVkgA0vL2HzHl1CKCIiIscuP4f5Ptk59yWgGLgdmAoM\nA+4BSvIof4tz7mHn3GK/6igih2dERQlb9+oMWRERETl2+XkEaQ3wMHAXUA8MwbtR7KXJ6d/OVtA5\ndylwFVABrHLOzTSzp7LNv7KphdoFywaq3oelOaTskfGDy924cM4h01N16mtaf9PzmbZzcwszv7yM\n33/yYu6892Fu/Xuwp101N7UEmgfw6Lpt7GnvyLne/ZJa780hZlcDU0ZV8suGTexoPcCICv/PlD3Q\n1c29K5s5cXg5K0No80JY71HLzswPWlTXu9o8eutdbR699Z7K3r11L7O/tAxKHZv3WmD5AOfVloX6\n9zxffnaQ3gn8C/AOoBlvkIYDwGN5lJ0G3ADMBe4HZgNZO0hRtK374OvMHSx9I+hr58s1vb+yKQe6\nYdt+mPW1+494GY5WkB8s33vgBW65fz0JC/aDBPreqcP4YwZQVzscgDcu+itVQ4oxAAMDzCz5DIZ5\nz8nV1ec0UtPTf06bz4z2rgQdXQne85rxQLDLHdaXLtmyw2rzoLMzl11trjYPMjtIavPCyA5SobT5\n/s4EmzuAjuD/T/O3Ru80/UJvc986SGb2W+C3zrm1wFC8jpIB0/GOJOVSAaxNvm7B6zD14pybB8wD\niA8bOUC1Funboxt2HtI5CvMPWVjOHj+cr75tOk827iKRMHDeyCvOueRz75+96S7t/bSfkzP0OS31\nOxy8/pRRvHZKNd++PqylPiiKbR51avPoUZuLiDOfvxF3zr2KdzToM8DFwLuBb5lZRY4y1+MdcboO\nuBU4wcyWZMzT00FyxWV1xSPG+bMA/ehq2UpR1ajAc+POcWD3lp7sGWOreqZlHrpMn9bf9HzLVnbu\nora2Nufv9VNqvWfWLwjPrF7X53r3S/p6Td/eglr2VH6Y2an86SdPoqQoiNu39Ra1Nk8Jermz5Ye1\nvanN1eZ+WtXUQiKkbCisz/aw2zyo7PVb9rK/K9ErG4Jf790tW4mH8H9XgKohxezY3BRam3dsXm9m\n1u9/JILoIHVzcHjv1uTrcjOL5yhzNnAtcArwPHCHmT2Zbf7SmilWM3fRwFX6MDQvnU/Q2VVlcX7y\n/87k3AsuoGbuopzXCsGh1xLlmpZv2erlN9HQ0JC1nN9S6z2Mb/lKa6YEnt1zznIIy52ZDdmvbfMr\nO5X/uz/9lTfPqAkkO13U2jwltdwQXJv3lR/W9qY2V5sHlV8I2RDeZ3uQy97Y2Mjrv78qlGyAkxYs\nw0LKvvRbD/DCtv103nUjxe/6z8ByhxZ5p86fO/l43jXzJN72huz/f/VD+va28ebLnjaz+n4LmZmv\nD7xBGs4FVuCNXvcZ4Bd5lFsM7AZu62/euro6C4uyo5ev7HCUjJlsP3p4QyjZUV3vYbd5VJc9qtlh\n5ys7evnKjl4+0GB59F/8HOZ7avLld4EvABOAzcCFwA/6KVuMd62SAVOdc7P8qqeIDA4x53h19/6w\nqyEiIiLHOD9HsfuUc+4jeJ2hTcCzyffLgS8CD2YraGadwCU+1k1EBpmimNM9mERERMR3fo5i5w2g\n4FyTmV3oV46IRENxPMbWPe1hV0NERESOcX4eQUr5m3PuLmAV0JV608y+GkC2iBwjiuI6giQiIiL+\nC6KD9DG8a4nOST6TfFYHSUTypiNIIiIiEoQgbijSgXdPo78BHwRONLMTA8gVkWNIUcyxr6Ob1gNd\n/c8sIiIicoT8HMXuU865T+EN0HAnsAv4OrDNObfcOTfJr2wROfYUx73bqekokoiIiPjJzyNIlclH\nDfAl4DLgJOB4YBZwl3MuuLtUicigVhT3Pq50HZKIiIj4yc9R7L4M4Jx7P7AB7wjSMqAY+ARQB6wD\nbvSrDiJy7CiOx2gHtugIkoiIiPgoiEEahgIfBS4ArgEagTYzSzjnLgsgX0SOAUUx7xS7bTqCJCIi\nIj7yrYPknJsJXI43Yt3/AI8Bw4G9wO0AZvZ8jvK3APXACjP7hF/1FJHBIR5zlBXHdARJREREfOXn\nEaQngXZgO951R+cA5cCpQAXwxWwFnXOXAlcl51vlnJtpZk/5WFcRGQROOG4IG7btCySrqzvB7Q9v\noKWtM5A8ERERKQx+dpCuxjuCdCnwF+A7wGLgM8Dr+yk7DbgBmAvcD8wGsnaQVja1ULtg2VFX+Eg0\nF0h248I5vaal1+lIp+WansouwRvHPWip/Mz6+WXtlt1c9cMGuhIJVgWcDYeudzi0bY7lbIBq4LxJ\n1fyy4RVue3A9pUUHx5ix5B3WLHmrtYM/H5yeOe1g2UPLmMHD67bRsHEXF00d1fMZozYPLjs9PwrZ\n6flqc7V5VLLT86OQnZ5fKG0ehjDbPF9+dpC+gvd/jSJgBvBzYAjwY6AMuD5H2QpgbfJ1C16HSfJ0\nOBvC0W6gYXSOwvDv96xhZ1vva1+C2rnD/BArNB+6YCJ/eWEr3/jj2v5nPkrVFaV8891n8K66cfz8\nc957avPoUZtHj9pc/KI2HzycZX6dOtABzv0ReBj4GTAMr+N0gZmNyFHmeryby14H3AqcYGZLMuaZ\nB8wDiA0ZVldUNcqfBehHV8tWCiF7xtiqnvdXNrX0mi99Wn/T8y1b2bmL2traPssEIbXsmfULwjOr\n1/W53v2Svn6ztXkQ+WFmp+eHkZ3Ys5XJk05iaEkQ49r0FvT2BuG2+f6ObjoTCQBe3NAYWpsHvexh\n7+cpYW5vEO5+HrU212d7YWRDuG0ehjDXe8fm9WZm/d7myM9BGqaa2Rq8m8POA+7DO6K0AnhnP8Uf\nA65Nvr4YuCNnVnEpNXMXHV2Fj1Dz0vkFkd2Q9m1X5jcUDf2cRnckZauX30RDQwMAd965jC+uOpIl\nOHKpZc+sXxBKa6ZQM3dROKcDZGnzIPLDzE7PDyN7252f5LxP/5AfzZ0ZSHa61PYG0WjzbXsP8Nyr\nLZQXx3ntebNDa/PUskdlP08Jc3uDcPfzqLW5PtsLIxvCbfMwhLneN9582Yq8CpmZLw/g9uTzg8nH\nX9NeP5BH+cXAbuC2/uatq6uzsCg7evnKjl7+mImn2oyb7rNEIhF4ttpc2VHJDjtf2dHLV3b08oEG\ny6Mf0+8hpiNlZvOSLz8PjAZqzexCYD6wJldZ51wxMB3viNNU59wsv+opItKfspI4e9q7aG7REOMi\nIiLHOt86SGluAf4VSDjnrgbOAN6aq4CZdZrZJWY23MwuNrMnAqiniEifypIj5r24rTXkmoiIiIjf\nguggTQJuBIYCM5OP0gByRUQGRGlxHID1W9VBEhEROdYF0UEqwbv30SvAp4GNePc2EhEZFIpijmFl\nReogiYiIREAQHaQH8TpGY4FNwJnkvgeSiEjBmTyqQqfYiYiIRICfw3zfgzfIQiVep+hJ4ADevZDu\noJ/rkERECsnkURU8sGZb2NUQERERn/l518O78UavW4d336MxQAUwAtBQUCIyqEweVcEvGzbR0tZJ\nVXmx73nLnm3mx49s8D1HREREevOzg/Q2vNHr7gR+DKwEEsApwFwfc0VEBtykkRUArN/WSt2E4b5m\ntXd2s+A3z1JZ6udHtIiIiPTFz2uQas3sWaDdzJaY2YNm9pCZ3Y53mp2IyKAxeZTXQXoxgIEa/vBc\nM3vbu/jmFWf4niUiIiK9+fn1ZFnyebFz7ufAbRw8te44H3NFRAbcuOHllBTFWLd1r+9Zv3jyFSaM\nKGf2SSN8zxIREZHe/OwgPeWc+xAwEXg7cDmwDejCG/pbRGTQiMccp4+t4snGXb7mbNjWyhMv7eTG\nN51CLOZ8zRIREZFD+XmK3XzgGuCTeEeOOpPPowHnnJvnnKvsq6Bz7gTn3BbnXMI5t8THOoqI5O28\nydWs3LSbHa0HfMv46WMbKY473lU3zrcMERERyc63I0hmtgU41zm3B/gh8F7gRqAW+E/gHcANzrkl\nZvadjOLjgT8k5y1xzs00s6eyZa1saqF2wbKBX4g8NBdAduPCOYdMS69T5vRc0/Itm8r+7XXncuV3\nH2X/kS3CEcu17H75wm/+QUt7V8/2FmR25nqPWnbY+dXJny87vYbF96/jP+9by6ffeDJDiuMAOOdw\nePc1SJhhBmZGIuM5Nb3nZzs4f8KMF7a08t9PvMzbzhzLqErvLOWobm9h5ytbba5s/7PDzo9q9rbm\nPaH937WmsijUv2v5CmqIpOvxrklainez2HYze7Nzrhx4HsjsINUB9wLXAfcDs4GsHaSoy9zIDmcj\nOJqyAO/47qOHNf9g9YXf/INfNGzq9V5QO3dfbRL0B0uhZAepr/U+ZXQl7z/vJH7yt5f434ZXfMmd\nOHIoC948tc/6qM39FdZ/GLJlq839pzYvjOwgqc2hK2GB5qVr3tsVeOaRtLkz83clOef+gtc5Ggu8\nD++eSKeY2cXJ6Reb2f0ZZT4PPA0sAL4GzDazr2TMMw+YBxAbMqyuqGqUr8uRTVfLVsLIjjvHgd1b\nerJnjK3qmbayqaXXvOnT+pueb9nKzl3U1tYeUmZ0ZRFlJSVs3NHWq9wJVWVsbmkn0e+S5Se13jPr\nF4RnVq/rc737JX39pm9vQS17Kj+M7HSp9R61Ni/Zv4PaCbWUFvt5RnTfgl7ubPlBb+sQ/PYe5f28\nr2XX9hZcftTavNC2Nwj+83XV2vWUHT+Gto7uQHMBJowo58UNjaG1ecfm9WZm/f5BDeII0hV490Aq\nAX4N/Dn5HgCZnaOk3RwcCnxY8uesXHEpNXMXDUhlD1fz0vmhZI+uLObvt17fk92Q4yhQQ8Y3E7mm\n51u2evlNNDQ0HFLm0xePZNrYCXzwpw29yn37itP5+rLn2LpvYLpIqfWeWb8glNZMoWbuosC+8el1\nKkLa9hbUsvecDhBCdrrUeo9am2/96SeZ/enb+eHV9YFkp0stN0Sjzfva17SfB5ednh/V7Q3U5sdy\ndrowP19HTTyV193wI57a6O+gQ335/vvqefOF54fW5htvvmxFPmWC+Ery9UAl3jVFdwP1wIX9lHkM\nuDj5+mLg8cwZzOx2M6s3s/p4efA9/6D825vGMH2kN+hfDBhR7qgbN4w73veannky/4Afzh/0oymb\n8o7p3lDE46piXH/xTKaPHcZnLp4AeIcOF11xBm87cxxPfvHNvcqNzvL7/vdDs4kfdi2OXX21SZin\nQUThFIywpa/jirIiXtji/9DiuUSlzQttvyq0+sjAUpuHo9CWM4z6VA8tYf7Fk/nghdX9zzwAhpfC\nsDgsvmIGdROODyQz3RGtY+9CYf8eeNcYrQfagI3JxwFgSY4yxcDLeCPfvQLMypVRV1dnYVF29PKV\nHb38MLPHTpluk/91mXV1JwLPVpsrO0r5yo5evrKjlw80WB79lyBOsavFO7XuFbxBnhzwAbxrjPpk\nZp14I9mJiERacTxGZ7exbe8BxlSV9V9AREREjkoQp9jtAkYCa4EXgDOBO8xsaQDZIiKDWnHcu1ns\n5j3tIddEREQkGnw7guScm4x3mclngCuBrwBVeEeQznLOvdvMJvqVLyJyLCiOx+gANre0w4lh10ZE\nROTY5+cRpEXAXmAG8Aa8I0lxoBFvZLo7fcwWETkmFMe9j+nNLUHfjllERCSa/Owg1ZrZs8A7gFVm\ndgbwkpmdDrwIXORjtojIMaEo5iiOOzbvORB2VURERCLBzw5S6mrifwBdzrkYsM4591GgGgjnzq4i\nIoPM6GFlbNE1SCIiIoHwcxS7p5xzH8K7DukU4E9AAvgyUA683cdsEZFjxphhZTTrFDsREZFA+HkE\naT5wDd7ADM8BO/COGm3GG7RBw3iLiORhTFUZW3SKnYiISCB86yCZ2RYzOxf4FF5n6BHgU2Y23cx+\nC3zOr2wRkWNJ6giSd487ERER8ZNvHSTn3CPOuTcDfwTGAt8E/uCc63DOdQBdfmWLiBxLxlSV0d6Z\nYM9+fWyKiIj4zbdrkMzsfOfcGcCH8O6B9KW0yXuBB3OVd87dAtQDK8zsE37VU0Sk0I2p8sa8ad6z\nn6ry4kAy2zu7A8kREREpNH4O0gCwEvg5MNnMOvMt5Jy7FLgKqABWOedmmtlTPtVRRKSgjRteDsC6\nLa1MHTPM1ywz41t/eoHvPfQiw31NEhERKUy+dpDMLOGc+wfwFufcR4AJyUznTbaJWYpOA24A5gL3\nA7OBrB2klU0t1C5YNqB1z1dzgWQ3LpzT835mfdKn9Tc937JhLnd6fmb9/HLfyiY++ctnSSSMxoCz\n09dztjYPIj/M7PT8qGVXAzPGVjGyspSv3/s8963a7H2A4v1jGGZ4j9Rrkj+bJV/bwfeSP0PvMgnz\nnlv2d7Jm817eesYJ/OAOtbn28+Cy0/Ojmg1q86hlQ7htHoYw13u+/BzFLqUG+BUwEtgArAXWADNz\nlKkAmpOvW+DQLzKdc/Occw3OuYbutpaBrbFIhp8/8Qqd3Qm60y6SD/PDRcIRVpvHY47F/3ImY6rK\neL55D6tf3cPzzXtYs3kPL2xpZf3WVjZsb6Vxexsv72zjlZ1tvLp7P5v3tLN1bzvbWzvYua+D3W0d\ntOzvZG97F60Humjr6KK9M0Fnd4JEwus8DS8v4Stvm87ifzkzlGUtNNrPo0dtLiLOr1GRnHOT8e6B\nVAR8D/hIctLrgCYz+3GOstcD24DrgFuBE8xsScY884B5AK64rK54xLgBX4Z8dLVspajq4D1vix10\npq3SytIiaquHsrLp6DpxRTFHV8L7xQ4oK46zd3tzT/aMsVU982ZmpU/rb3q+ZSs7d1FbW3v4C5KH\nfNZVar1n1i8Iz6xe1+d6V3Yw+VFo84QZrQe8ARle3NAY2np/bu16yoaPYfKoikBzU4Ju8/TPnvTP\n9ijta9rPo7fe1ebBZT/X1ELqv4hhfsY0NjZSW1vLtr0H2NF6gM6EfyOkVpQUkcBweDc9H1paFOpn\ne8fm9WZm/R4g8rOD9HvgX83sWefcQiAO/AaYCFwLzDezFVnKnp2c5xTgeeAOM3syW1ZpzRSrmbto\noBehX0NLYP0P55PKHlIED8+fRf03nwC8nuEDn7mQ8dXlR/WN1KQRZcyeNIJHX9zJzn0dHF9ewgde\nO5EPvOMN1MxdxM/fchznnXderzLpeblOsTuc0+/Sp1cvv4mGhoYjXqZczv/aMjbtyT1P81JvvQd1\neDZdac2U0LMhuEPyhZCdnh+V7PVbW9nd1sF558wKbb2PnnQqU+bdyiOfvSjQ3JSg1/u1Sx/ij8+3\nAoXxGQPaz6OWDWrzYz275zS3pfNDW+/19fU0NDSwY+9+vvB/q/nr2s3sy3ukgPy99zVjOXv88fzt\nxR2MHT6Ej7x+MuUlRYGv9/T/2268+bKnzay+30Jm5ssDeC7t9YMZj1bggX7KLwZ2A7f1l1VXV2dh\nUXb08pUdvfyoZo+ZdKrVffXPoeVHdb1HNTvsfGVHL1/Z0csHGiyPfoyfgzSUpXXCLkyf4Jxbb2ZZ\nv5J0zhUD0/FOiZ/qnJtlZk/4VlMRETlEzDkN9y0iIpHj5yANTznnPgTgnBvtnPuxc+4PzrkPAOuS\nz30ys04zu8TMhpvZxeociYgEzzndD0lERKLHzyNI84HfOufeize893PABcBxwLuA+4CsAzWIiEi4\nYs4bHKajK0FJURCDnoqIiITPt794ZrbFzM4FvpzM+RPQbGbnmFkToK8lRUQKWMx5z+1d+rgWEZHo\n8P0rQTN7EHgJ+G9gL4Bzbjbe/Y1ERKRAxZzXQ9JpdiIiEiV+nmKX7lPA3cAk59zf8G4a+66AskVE\n5Ai41BGkjkS4FREREQlQIB0kM1vhnHsd3n2NHLDWzHwYcV1ERAZKzDm6gf06giQiIhESSAfJORcH\n/gmoTWZe6pzDzL4dRL6IiBy+nmuQ1EESEZEICeoUu3uAdmAloHM1REQGAZc8x05HkEREJEqC6iBN\nxBvm+92k3UAWb4Q7EREpQDF1kEREJIKC6iBVAE8CJwMXAtfgXYuUlXPuFqAeWGFmn/C9hiIi0kvq\nFLsD6iCJiEiEBNVBOgDcBAzBO83OJV/f1NfMzrlLgavwOlarnHMzzeypgOoqIiLoFDsREYmmoDpI\nY4FZeB2iB4AmYGGO+acBNwBzgfuB2UDWDtLKphZqFywbsMoejuYCyG5cOOeQael1ypyea1q+ZVPZ\nF0wp5eF1B45sAY5CrmX3Q1tbG1f8sIH2ru6e7S2obDh0vYeZDX1vN35mp+dHITs9P8zs45KHkB5Z\nt4PRlWUYYAaGJZ/BzDCA9Pczppmlz39oeTLeTxhMHlUR+L6mNtd+HvZ6V5sf29np+YWQHZYw2zxf\nQXWQngE2AB8HvgpchNf5yaYCWJt83YLXYZIsMjeyw9kQjqYsEErnKAzzf7WKNVv29novqJ27rzYJ\n+kNVPFFr86KYY8qoCn69YhO/XrEp0Oy550wINC+bqLW5qM3FP2rzwcOlvr3zNcS5/8IbqOEPeKfb\nAWQd5ts5dz2wDbgOuBU4wcyWZMwzD5gHEBsyrK6oapQvde9PV8tWCiF7xtiqnvdXNrX0mi99Wn/T\n8y1b2bmLiuoaQKz7ygAAIABJREFUtu09QFfC/20oU2rZM+sXhGdWr+tzvfslvU2ytXkQ+WFkp0ut\n96CXG4Jf9ii3efqyu9ZtnHry5J5roYKk/TycNg/6s137udo87GwIt83DEOZ679i83sws1l+ZoDpI\nPwBeC1QBPZUyszFZ5j8buBbvxrLPA3eY2ZMZ8/R0kOLDRtaN+8gd/lS+H81L51Mzd1Ho2bmOAuU6\nxe5Iy1Yvv4mv/tc9/PSRDTzWuPsIl+DIpZY9jG9dSmumBJrd63SALG0eRH4Y2ekKYb2rzYPLTuX/\n6LfLuWp28EeTCmF7g2i2edjrXW0eXHZ6flSzIdw2D0OY633jzZc9bWb1/ZXptwc1QF4PfBY4D+9a\npNSjT2a2Au++SWcCiczOUXKe282s3szq4+XBf5sdtgtqy3teZ25g6T/3tfHlmt5f2XRvPq2GRVfW\nsfjd05k7exz//b7T86v8AInKIen+2jBoUckutOUstPr4mTUEmDW+hJJ4jEfWbQssO0xht/lrQ8zO\n9Xco6Owghd3mYWarzXO/57fxw4fw7XeexsLLpweae/4oWHLFacAgaHPv4ll/H8BuvMEZej1yzF8M\nLAd24Q3SMCvX76+rq7OwKDt6+cqOXr6ywzHqpGk2+2vLQ8mO6noPu82juuxRzQ47X9nRywcaLI++\nS1CDNCwA3sjBkehmA1nHjTWzTuCSAOolIiIFqqw4TnNLO3vaOxlWVhx2dUREJCKC6iCdD5wI7AES\nwA7gTQFli4jIIFRaHKMDWLellboJwwPJXL+1lcbt+wLJEhGRwhRUB+lsvE4SeNc91QHnBpQtIiKD\nUFlRPNlB2htIB2l3Wwfv/N6jHFeuo1UiIlEW1CAN44B/AE8DjwGfBj4QULaIiAxCJUUxyopjvLCl\nNZC8v6zdRsv+Tr757jMCyRMRkcIUVAepCRgNdAD7gRrguwFli4jIIDVlVCXrtu7tf8YB8Lf126ka\nUkzd+GBO5xMRkcIU1Cl2Y4CfAz8D1gPDgLcFlC0iIoPUlNEV/G39dt9zzIxHX9zBORNHEAvjzrQi\nIlIwgjqC9ArwKPB14LfAHODKgLJFRGSQOmV0JVv2HKClrdPXnJd3ttG0ez/nTR7ha46IiBS+oDpI\nw4Abgel4R5O+Dkxzzi11zk0OqA4iIjLInDy6EoAXfD7N7tEXdwBwzqRqX3NERKTwBdVBKgd2Agbs\nwzvN7nngHuDegOogIiKDzJTRFQCs2exvB+mRddsZM6yMSSOH+pojIiKFL6gOUhXQhddBehb4JtBq\nZncB9wVUBxERGWTGHjeEUZWlPLFhh28Z3QnjkfXbOX9KNc7p+iMRkagLqoP0KHAZ3hGjIcBpeB0m\nzOzjfRVwzt3inHvYObc4oDqKiEiBcc5xwZSRPLJ+Ox1dCV8yHlm/nZb9nVw0dZQvv19ERAaXoEax\n2453H6RGvJvEvgn4draZnXOXAlcBFcAq59xMM3sq2/wrm1qoXbBsQCucr+aQsj947rie5W5cOOeQ\n6ak69TWtv+n5TNv2agunfW4Zz319Ds899xyX/WzjkS3IEWpuagk0D+CB1ZvZ2XYg53r3S2q9N0cs\nOzM/aFFd74XS5qmrgS47o4Zfr9jEnY9v5APnnzSgWfsOdLFo+QtUV5Rw8bSDHSTt59rPlR1cftCi\nut5T2a3bWzn/88vY2u3dfycoVcBF00eyMsQ2z5fvHSTnXBy4HDg1+Xg7cCvwEPCZLMWmATcAc4H7\ngdlA1g5SFP3o0U09rzN3sPSNoK+dL9f0/sqmdBm02uFvcAMpyA+W7z3wAt9evh7DAslL19c6DuOP\nWRjZmcseZnaQ1Oa9vf7kkVwwpZqv/n41331wPWXFcWIxcDgSZph5w3Qb9Pyc6PM9g+Rz6v2OrgQG\nLP6XsygtigeyjH1RmxdGdpDU5oWRHaRCafO9B7rZ1B1oJAAtwG9XbQMKv8197yCZWXfynO7NeB2i\n/zGzp1zuE70rgLXJ1y14HaZenHPzgHkA8WEjB7TOIpke3bDzkM5RmH/IJBxq83A45/jh1fX8suEV\nnm/eQ0eXYWYkzIg5h3MO5yDmvE5TLOaVcZCc7j3T62dvnnjMccm0UdRNOL7PbLV59KjNRcSZ+f+N\nuHNuN95Q33vxjghNAyaYWXmW+a8HtgHX4R1tOsHMlmTM09NBcsVldcUjxvm3ADl0tWylqMrf89aL\n4zGmjqmkcfs+9h7oAqAkHqNt5+ae7Bljq3rmzzx0mT6tv+n5lq3s3EVtbW3ey5D+e6tKHeOrh+Ws\nU39S6z2zfkF4ZvW6Pte7X9LXTfr2FtSyp/LDzE7PDzMb1OZBSu1rYbX5pJNqGTakOJDsdEF/xhRK\ndnp+VLMhGvt5oX22R6XNU9a9+BKjx46jadd+uhL+9gNizhFzUFFaxPChJVSUFoX62d6xeb2ZWb9j\nMATVQfoA3nVHJwEOb5jvx83slizznw1cC5yCNxz4HWb2ZLbfX1ozxWrmLhrweuejeel80rPffCL8\n4ZXs8581DJ7Zk/t3VpTAF95yGt/4wxpKimJ85z1nUX9SNbvbOrj6R4/T1tnNbf/vLE4/cyY1cxfl\nvFYIDr2WKNe0fMtWL7+JhoaG3AtyGJmL71vNLX95CQe9jtP86ZOv5Z9u+as3okea1HoP41u+0pop\ngWf3nLMcwnJnZkP2a9sG2pQFy0jdHjToZU/fZgthvUelzdMFva9ltvlPfrec986aEEh2ujA+YzKz\nIRptHuXsMPfzMD9f//SnPzHvgc5QstOFub2dfubZ/N/yh2lr7+DKHz5Ky4GBz3DAP9ePZff+Tk4f\nW8W0sVXUTzieyrLiUD/bN9582dNmVt9vITML5AG8BZgPXJ169DP/YmA3cFt/v7uurs7Couzo5Ss7\nevnKjl5+yZjJ9r2/rA8lW22u7Khkh52v7OjlAw2WR7/F12uQktcZPQi8Fq8zmdKBN+T3T7OUKwam\n4x1MmOqcm2VmT/hZVxERkXR72zv7n0lERI45fg/S8FtgBvAqMB54Bvg48BvgvGyFzKwTuMTnuomI\niPQp7hz7DoQwzJOIiITO7xvFXgqcA1SZWQLv5rDP4HWORvucLSIickRiMce+A5lXP4qISBT4fQQp\nZmYvOOfWOOeuAn4IPA20Av7cEl1EROQoxRzs61AHSUQkivzuIKU6QVOBpXhHkA7gHbkK7458IiIi\nOcR0ip2ISGT53UEa4pxLH7W5OPkQEREpWHGdYiciEll+d5DOADYBjwMf4uBIdkPxbgArIiJScGLO\n0aoOkohIJPndQfo+UANMAO5Le78baPI5W0RE5IjEHLR16BQ7EZEo8rWDZGbnAjjnPmZm3/EzS0RE\nZKBoFDsRkejy+whSyvedc7cA5+KdZrcGeNDM7ggoX0REJG8x5zSKnYhIRPl9H6SU1cB7gc14p9bV\nA5/JVcA5d4tz7mHn3OIA6iciItIj7hztnQm6unVHChGRqAnqCNKJwBAz6xnRzjn3j2wzO+cuBa4C\nKoBVzrmZZvaU/9UUERGBWPLrw30d3VQNCeq7RBERKQRBdZD2A7PwRrPDOTcRb6CGbKYBNwBzgfuB\n2UDWDtLKphZqFywbsMoejuYCyW5cOKfn/cz6pE/LnJ5rWq7pqewY4dzxN5WfWT+/rN2ymytvf5Lu\nhPF8wNlw6HqHQ9vmWM5Oz49Cdnq+2jycNi+KxegCvvHHNdRUDQHAzDADA1Jf9xkH38OsZ1r6+6mf\n6fn50Glm3vuv7Nrf62+a2vzYzU7P136uNg8rOwxhtnm+guogbQQedc7txvv/dDnwTI75K4C1ydct\neB0m8cHRbqBROfnk3+9ZQ8v+zl7vBbVzh/khJr2pzaOjsqyI8uOG8LPHXz6scs55F9o655LP4PDe\nTP85c77U9Akjhg70oshh0n4uflGbDx4u7aw3/0Kcex3eDWJPxPsb8DLQaWYPZZn/emAbcB3e/ZJO\nMLMlGfPcCVwO4IrLyotHjPNvAXLoatlKUdWoo/odU0ZV0LR7P+DdnLB2xFCea2oh1TIxoLgoRllR\nnJKiGM7B8PISVr3wYk/2jLFVPb9vZVNLr9+fPq2/6fmWrezcRW1t7SFlRgwtZse+3h0JP6TWe2b9\ngvDM6nV9rndlB5OvNvdfap9O/3yLQpunf5aFuezPPr+emnEnMrKyNNBc0H4e5LKHvb2FuZ/3texR\nyE4X5r7W2NhIbW0ta5r30Jnwvx8Qc454zDG0NE7VkGJe3NAYWpt3bF5vZtbvedO+dpCcc6/NNd3M\n/pql3NnAtcApwPPAHWb2ZLbfU1ozxWrmLjqaqh6x5qXzOdrsxoVz+MJvV7J+WytvmDaaD1wwkStv\nf4zHNuzEAZNGlFF9XDlvOb2GHa0dVFeW8Y6zxlI1fio1cxcxd+YYvvzOup7f9/Hbl3H3ht6/P12u\n0+jyPcWuevlNNDQ0HFKmceGcw/6G5EjKpNZ7kIfFU0prpoSeDcEdki+E7PT8qGZDCKdhpH2+RWG9\n9zr1JsTPmIpxp/Chb/0vt/zzmYFnaz8Pd3uDaOznYe5rhbKfh7mv1dfX09DQwJfuXsmdj76Mn12k\nYWVxRg8rY8TQUi44uZpZJ43gvHNmhdbmG2++7Gkzq++3kHcutD8P4J7k42FgN9CFd1ZW8jTsnGUX\nJ8vc1l9OXV2dhUXZ0ctXdvTylR29/DCzq048xa7+8ROhZKvNlR2lfGVHLx9osDz6MH7fKPYtAM65\nBryhve8FXgROBp7OVs45VwxMT3akpjrnZpnZE37WVUREpBDEY4497f6fqiwiIn0LapCGSuBHwAnA\n9Wb2Z+fco9lmNrNO4JKA6iYiIlIw4jHH3nbdpFZEJCy+dpCcc3OAzwMjgXnAB4A3OOdOAzRUj4iI\nSIaYc+zVESQRkdD4fQTpHmATsALvvkYx4DV4I9q95HO2iIjIoBOPOVp1BElEJDR+d5D+Gdjqc4aI\niMgxI+ZgX0c33QkjHnNhV0dEJHL87iB9zszOBnDO/drM3umcO9vMVvicKyIiMiilOkWt7V1UlReH\nXBsRkejp90ZJRyn9q6+Jyecf+ZwpIiIyaKU6SBrJTkQkHH53kKyP1zpfQEREJIuY8/5MaiQ7EZFw\n+H2K3RnOuT14naIhyddFzrm9eDeKHeZzvoiIyKASjzk6gdYD6iCJiITB7xvFxp1zceCPwKeAWr8z\nRUREBrN4zxEknWInIhIG3zsrZtbtnDsZWAo8CyRSk4Df+J0vIiIymMRiOsVORCRMfl+DlFIFjAC6\ngL3JR2u2mZ1zJzjntjjnEs65JQHVUUREJHTxmI4giYiEKajT3f4O3Ae8muf844E/4J2SV+Kcm2lm\nT2WbeWVTC7ULlh11JY9EcwFkNy6cc8i09DplTs81Ld+yqey7PnwO/3HPczzTtPfIFuII5Vp2v9x4\n1z/Yva+jZ3sLMjtzvUctO+x8ZavNg8wekTzFbtOu/exu68DMO+XCzJLPYJj3nP46NU9ySKQ+pyXf\np9f7kDBj1at7Qv18g+i2eVSzw86PenZYwt7m8hFUB+mLwD3ATqAj+TC80+76UgfcC1wH3A/MBrJ2\nkKIucyM7nI3gaMoCvOv7jx3W/IPVjXf9g9+s2NTrvaB27r7aJOgPlkLJDlKYfzzU5uEolDZ3Dk4Z\nXckP/rqBH/x1Q2j1UZsHn6393H9q8+g5kjZ3Ztb/XEfJOdcEFAMvJd+qAT5tZr/KMv/ngaeBBcDX\ngNlm9pWMeeYB8wBiQ4bVFVWN8qn2uXW1bMXP7JEVJbR3epdtdXQniMccZUVxhg8tYe36DT3ZM8ZW\n9ZRZ2dTS63ekT+tver5l05d7xtiqQ8rFHXSnbVp9zXM0UvmZ9QvCM6vX9bne/ZK+3jLXexCytXmQ\n2en5anP/hdnm6VLrPcztDYJf9qC3t3TrXnyJ6pqxDC8vCTQ3Jeg2DzM77O0tqp/tUf27kq6xsZHa\n2toB/X9ZNi75iMdjVJYVMfa4IaHuax2b15uZ9XuJUVBHkCqBmWa2FiA5aMP/AH12kIDdQGoI8GHJ\nn7NyxaXUzF00QFU9PM1L5/uWHQOuu3AyL2zZi1mCl3e2c9yQIk6pGcYV9SdSV1/fk92Q4yhQQ5bT\n5Pqanm/Z9OVuWDiHUz+3jLa0DlHt8DIad7UDMKQIGv790HmORio/s35BKK2ZQs3cRYF949PrVISM\n9R5kfpjZ6flq8+Dyw8hOl1rvYW5vYXyzm1puCH69j6idxvHv/TZPff6SQHNTgm7zMLOjvJ+H+dle\naH9XIPj9vL6+noaGhkCOppXEHcVxx/FDS3jT9Bo+f9mpoe5rG2++bEU+ZYIapKEDuMk59x7n3OXA\naXiDNmTzGHBx8vXFwOOZM5jZ7WZWb2b18fLge/4DbeRQ75zz1Hd2o4bG+PWHZ/FPM8bw+TnTuPZ1\nk/m3t07jE5eczPvPq2VazcFbSGX+AT+cP+i5yubze1LzrP76nJ7e9t1XnshfPnsxp4wqp2ZYCc//\n+6HzSP76aocwD8cHmf291wX1EVVYotzmYSq05QyjPhWlRWzbe0D3YAqA9vNwFNpyhlmfez/+Gl9/\n/9zXnMhn3jiFz//TVD79hpP56MWTfc3L5ojWsXdBp78P4IXk4w/Jx1rghRzzFwMvA53AK8CsXL+/\nrq7OwqLs6OUrO3r5yo5eflSzJ06bYRM++3t7aVtrKPlRXe9RzQ47X9nRywcaLI++S1Bfz84Avg/s\nB9qTr2dkm9nMOs1svJkVm9mJZvZEQPUUERGJrKKY99+C7a0HQq6JiEh4fO0gOee+45z7DvAPvCG7\nN+EdEToJ+Iaf2SIiInJ4iuLe6d7qIIlIlPl9SUhD8vn1ePdC6vY5T0RERI5Q6gjSjn0dIddERCQ8\nvnaQzGwpgHPuXOAjwN3APj8zRURE5MgUxbwjSDtb1UESkejytYPknFtkZvPxjiAZ8N6MWb7tZ76I\niIjkzzmoLC3SESQRiTS/T7G70zkXB1bgDcwgIiIiBWxERYk6SCISaX53kG4G2oBzgKF9TH/I53wR\nERE5DMcPLWHnPg3SICLR5XcHaTzwIeA6vBu+/gBvqG8REREpQMcPLWXTrrawqyEiEhq/74O0z8we\nwjuK5IATgEnJx0Sfs0VEROQwVVeUsFOn2IlIhPl9BMmSz18D3g7MAsp8zhQREZEj5J1i14GZ4ZwL\nuzoiIoHzu4N0hnNuD971Rw44Dq/TZEBXroLOuVuAemCFmX3C53qKiIgIUF1RSlfC2LGvg+qK0rCr\nIyISOL/vgxQHSHaSPgF8CjgL+H/ALdnKOecuBa4CKoBVzrmZZvZUtvlXNrVQu2DZQFY9b80+Zw/l\n4I2jRgBXDIfiYrjyyjpWNrXkLFu7YBmNC+cc9rR8ylYnXycSCWKxGPfeey/X/dX6nP904NmcNT08\njQvn9Lvsfmlrawstu3bBMppDzK6m/+3Gr+ww2zzs9a42D17Y6z3sNp86phKAVa/u4XUnj/Q9t6Wt\nk5/87SXOHH+c2jyEbO3n0cuuBlatWkVLSwtX3r3Lt6zZwOPJ11cAl799BLNnzw61zfPl9xGklBiw\nFHgL8GGgCRiSY/5pwA3AXOB+vHWctYN0LEu/q+4O4HvJ7XjJoqeBg42d/sGWvgH09aGXmn40ZQEe\nWbeNnz76En96flvOZRjIzlF6HYL8QL/7mU3c+OuVmFng2Zk7dF/tFkT+yqYWaghn2cNo877Wu9o8\nuGy1eThtDjBjXBWlRTFu+r/nmDpmWM/7xsEvwSzt+7D0r8as1/dk+cxvrGzaw459B7ju9ZN66qI2\nDy5f+3k023zOnY2+5z2e9vqXwC9/twN+F36b5yOoDtJq4BpgPvAV4GpgZY75K4C1ydcteB2mXpxz\n84B5APFh/n/DJYd6fvMeVmz075uHQvKrpzfRlUj0ei+Mb9wkXGrz6Ilim1eWFfOf7zqdn/ytkQ3b\nW3EcvA4p2yVJ6dcquV7vZ3mdNteZJ1bx0YumcOaJx/GFo638AIhim4tIb86s79OiBjTEufHArXj3\nQzLgUeATZrYxy/zXA9vwhge/FTjBzJZkzNPTQXLFZXXFI8b5twA5dLVspahqlK8ZMZd6dkyrOfht\n3jOr1/Vkzxhb1fN+5qHL9Gn9Tc+3bGXnLmpra7OW81tqvWfWLwjZ1rtf0tdt+vYW1LKn8sPMTs8P\nMxui0eYpQW/r2fKj0ObpwlzvYbf531evY8bUycRjwQ8OEbX1rs/2wsiG4Le3lWvWQ2XwBxdiznHi\n8UN4cUNjaOu9Y/N6M7N+R/EOqoP0Z+DdZrY7+fNw4Bdm9sYs858NXAucAjwP3GFmT2b7/aU1U6xm\n7qKBr3gempfO50iz4w6681j9l0wdxZrNe3jn2SfwyUsPHkwrrZnSk53rVLgjnZZrevXym2hoaOh5\n/6M/fojfr2vtf2EGSGq9h/EtX2q9B5mdWu/p21vQh6bDzE7Pj0J2en4Y6z0l12dMkPlRafOUMNd7\nIbT5Q397nNkTR4SSHXabR+Uz5uwvL2Nn8q6YQe9rb/raMtbsCScbDl3vYWxv40+ZwQlzv8XmPZ2B\n5JUXOYqL4rx5xijef/5kZpx5dmif7RtvvuxpM6vvt5CZ+fYAvgMsAbYmn9MfW/spuxjYDdzWX05d\nXZ2FRdnRy1d29PKVHb18ZYejZMxk+7+/N4WSHdX1HnabR3XZo5oddj7QYHn0Yfy+UWwD8DTeWAPv\nSL5+GmjEu3lsn5xzxcB0vNPxpjrnZvlcTxERESkAO1sPhF0FEYk4v4f5XgrgnNsC3A1ckpz0WpLX\nD2Up15k2r4iIiETEjn0dYVdBRCIukFHszOw+59zzwP/iDXDzSTPbHkS2iIiIDA5FMacOkoiEztdT\n7JxzU5PPZwMlwKt490Aan3xPREREBIB4zLGzVR0kEQmX30eQnnXOtQPleJ2xzJHogroPk4iIiBS4\noliMnTqCJCIh8/UIkpmVmNkw4O1AkZn1eviZLSIiIoNLUdyxs00dJBEJl9+j2KXcCKx3zv2nc26x\nc+43zrmzAsoWERGRQSAeczqCJCKhC6qDdBxwZvL1NcCpwK+dc5UB5YuIiEiBK4o5drV10J3w/yb2\nIiLZBNVB6jazPXgDNfwOKAOqgRXOuY8FVAcREREpYEUxhxns1ml2IhKioDpIXc65l4CPAOuA84GX\ngDOAzwRUBxERESlg8Zj33xKdZiciYQqqg7QW+DFwmpl9FegGbjCzNuD9fRVwzt3inHvYObc4oDqK\niIhIiIriDtDNYkUkXL53kJxzcWAC8FPggHNuPFAMrAEws/v7KHMpcBUwEyh1zs30u54iIiISrpK4\n99+Sxu37Asvs6EqwdW97YHkiUvh8H2rbzLqdc2cA9wKGd/3RSXhHlaZnKTYNuAGYC9wPzAaeypax\nsqmF2gXLBrLaeWsugOzGhXMOmZZep8zpuablWzaVffYJMVa8mjiyBTgKuZbdD21tbVz+g6c40NXd\ns70FlQ2Hrvcws6Hv7cbP7PT8KGSn5xdCNqjNg8wvhGwIp82ri2IMKyvi9882M6aqDOecb7kJMzZu\n38f3H9rA6GGl+mxH+3mQ+YWQHZYw2zxfQd2L6D68Ts6fgX3ASOC0HPNX4HWgAFrwOkySReZGdjgb\nwtGUBULpHIVh/q9WsX5ba6/3gtq5+2qToD9UxaM2jx61efDed24tSx5YzyPrtweSd/q4Kua9dhL3\n/Yf3s9pc/KI2Hzycmf9DaTrn5vbx9pfNrDbL/NcD24DrgFuBE8xsScY884B5ALEhw+qKqkYNaJ3z\nVdm5i73FwwPLK4nHKI47qitLeXFDI6nlnjG2qmeelU0tvcqkT+tver5lKzt3UVtbm7Wc37patlJU\nNeqQ+gXhmdXr+lzvfklft6nlDio7PT+M7HSp9R70ckPwy64290SpzdMF/RkD4bZ5X+s9jO1t5Zr1\nTJ0ykeJ4UJdnH6Q2D3c/j8L/JdKte3EDQ46vYVcIo0UWxxz7d20Jrc07Nq83M+t3Jw/qCNKIZNZw\nYAdwNgePEPXlMeDa5OuLgTty/XJXXErN3EUDUM3DV738JrZf8uVAshwwaeRQzh4/nDeeNoZ/uuj8\nnuVuyHEUqCHLaXJ9Tc+3bPXym2hoaMhazm/NS+dTM3fRIfULQmnNFGrmLgrndIDkcsOhbeN3fhjZ\n6VLrPejlhoPLrjYPVpTaPF1quSEabd7Xeg9re/vYkrv44AUTQ8lWmx/72enCaPOUU047g/d/4xd8\n76ENgeYC1B5fzmO3zAutzTfefNmKfMoE9TVJHXAj8GGgFFgJdGab2cxWAO14N5dNmNmTfcxzu5nV\nm1l9vDz4nj/AhGT3cqD/gH581vF86c2TOXlECb/+yCwWvXs6n3jdBB7/3EX84Ko6vvr20zhvcnXP\n/Jn56T/3Vbdc0w+nbOb7VXG48OQhXNHH9A/O6n0e+XvOGM2osoM/j0s+P7ng9YxKm7Vx4Rw+P6nP\nyMgckj6cdghCVLIbF87h5BFwYgi3s1abh5NdaJ8pUV3vYS13zDk27dofSnaK2jz47LCFUZ+K0mI+\nfvEUVnzxEl43xb//Q19dP4bPXHQS/zbnZD5ywXj+9/1n8YtrvXHXCr7Nzcz3B/A0UAU8k/beyhzz\nFwPLgV14gzTMyvX76+rqLCzKjl6+sqOXr+zo5Ss7evkVY0+2j/73ilCy1ebKjkp22PlAg+XRd/H1\nFDvn3N3JlxOBO4GJae+Nz1bOzDqBS/ysm4iIiEhKUdyxfe+BsKshIgXA71PszsE7e2odsArYDvwC\n7/S6v/icLSIiIpKXoliMHfvUQRIR/ztIY/COHJ2Mdw3SEODLeDeO7etSFREREZHAFcUdO/cFP6qX\niBQeXztIZtYN/AuwAG9ghn8FjgNOAN7qZ7aIiIhIvopiXgcpkfD/9iciUtiCGMXO4R09mgBcDyzB\nG3zhcwFki4iIiPQrHnMkDHbvzzrIrohEhK8dJOfccuB0vFPtDHgCuBQoB7r8zBYRERHJV1HM+y/R\nTl2HJBIFQwqFAAAgAElEQVR5ft8o9iLgAN61R0PwjiB14w3SMMLnbBEREZG8FMUdXcCO1g4mjwq7\nNiISJl87SGYWA3DOFSeH7sY5Nxw40cye9TNbREREJF9FMe8u5RqoQUR8vwbJObcUeNA5N8w5dzzw\nLPCAc+7bfmeLiIiI5CN1it12dZBEIi+IQRpOB4aa2R7gcuAnwCvoRrAiIiJSIOLx5BGkVnWQRKIu\niA5SDChxztXg3fvor+Rxap9z7hbn3MPOucV+V1BERESizQHHDy2huWV/oLlmGlZcpND4PUgDwLeA\nrwF/xztydBtwO3BetgLOuUuBq4AKYJVzbqaZPZVt/pVNLdQuWDaglc5Xc0jZRcAryezGhXMOmZ6q\nU1/T+puez7Str7ZwyoJlLL/hQr5614P86aUjWowj1tzUEmwgcPczm9jVdqBne8u2bv2QWu/NEcvO\nzA9aVNe72jx6611tDtXA9BOG8fdXdgeS29Wd4H+eeoXfrNgUub8rmflBi+q+lsre3hze/5tPHV3M\nyhDbPF++d5DM7KfOuXVAHd4XNPeb2Wog1zVI04AbgLnA/cBsIGsHKYrSx0jP3MHSN4K+dr5c0/sr\nm9Jt3vCEF3zjwSNcgqMX5AfL4uVruPWBDRjBf9PX104dxh+zMLIzlz3M7CCpzQsjO0hq88LIfu2U\nkfzHvc9T/+/LKY47Ugd3Up/9B3+m18/0MT11ZChz3tT7Hd0J2jsTnDPx4KC+avPgs4NUKPt5ZyLQ\nuF5Wb/HuM1bobR7EESSAnwJrgLuAVufceDN7Ocf8FcDa5OsWvA5TL865ecA8gPiwkQNbW5EMz2xs\nOaRzFOYfMgmH2jx61ObR8r7zaulKGI3b9/V85ju8a5Oc99TzTOb7kPGz62NaT2Gcg/MmVXPxtFGU\n3TTwyyIiR875fe6rc+5jwE1AK3Ac3v2QWoDzzeyFLGWuB7YB1wG3AieY2ZKMeXo6SK64rK54xDjf\nliGXrpatFFWFc8OE9OwZY6t63s88dJk+rb/p+Zat7NxFbW0tAOu27KW9K9ivI1LLnlm/IDyzel2f\n690v6W2Src2DyA8zOz0/zGxQmwcpta+pzf2n/Tzc7O6WrQwfPZYJI8oDyU4X9N80KJz1XgjZEO5+\nHoYw13vH5vWWug1RLkF0kNYDs8xsR/LnC4GfAUOBfwALzOyxjDJnA9cCpwDPA3eY2ZPZMkprpljN\n3EU+LUFuzUvnE2R2KeCKYOroCv7wtQ9SM3dRzmuF4NBriXJNy7ds9fKbaGhoAGDzrlYuW/Iw2/cf\neSepceGcwzoEmlrvYXyzW1ozJfDsnnOWQ1juzGzIfm3bQHvjwmWsTV4OUAjLHtVsCK7N00V9Xwsy\n+5QFyzhAOG2e/tkf9LKHmZ2e33HXjQx7zzdZ9eU3EY+5fkoNrNR+BmrzIPPDzN75809xygcXs21/\nd2DZKTXDSljxnetCa/ONN1/2tJnV91vIzHx9AA8Co4BPAA3AMrzhvouAeuClLOUWA7uB2/rLqKur\ns7AoO3r5yo5evrKjl6/s6OWHmT1x2gyb8Nnf27otewPPVpsrO0r5QIPl0X8JYpjvDcBGYE6yc3Q/\nUGtmXWbWAHw/s4BzrhiYjndt41Tn3KwA6ikiIiISuNKiOACN2/eFXBMRgWAGaXgZWJj2c2X6RDO7\nObOAmXWiG8mKiIhIBJQUxWgDXtnVFnZVRASfO0jOubtzTTOzt/qZLyIiIlLoimKOIcVxXtkZ7E1q\nRaRvfh9BOgdoBnbijS9Qmjbtkz5ni4iIiAwKJx4/REeQRAqE39cgjQE6gWLgLOA5oBH4s5k95HO2\niIiIyKBw4vByXtmpDpJIIfC1g2Rm3cnn84B1wAPABXij2ImIiIgIcOLxXgfJfL79ioj0L4hR7Lqc\nc5cDI4F/BX6Fd0RJRERERICJI4eyr6ObrXsPhF0VkcjztYPknFsKjMC7FunDQBMwC/i4n7kiIiIi\ng8nE6goANmzTUN8iYfP7CNJVwGi8ztFPgTpgCvBz59wen7NFREREBoWTRg4F4KWA7oXU1Z3g//7e\nFEiWyGDj6yh2ZhZzzp0EfAyoTc/TEN8iIiIinpphZZQVx3hxW2sgef92zyp+9vjLVAeSJjK4BHGj\n2N8BPwbuARL5FnLO3QLUAyvM7BM+1U1EREQkdLGYY8bYKho27vI96x+v7ObnT7zMlbPG86flvseJ\nDDpBDNLQbmZLzOxBM3so9chVwDl3Kd7peTOBUufczADqKSIiIhKacyaOYOWm3Wzd2+5bRld3gi/8\n7jmqK0r53Jun+pYjMpj5dgTJOfeImZ0PnO6cawe6AQMcYGZWkaP4NOAGYC5wPzAbeCrbzCubWqhd\nsGzA6n44mgsku3HhnJ73M+uTPi1zeq5puaaHudzp+Zn188tzL2/n6v9aQVd3grUBZ0Pf6z2o/ELI\nTs+PQnZ6vtpcbR6V7PT8KGSn56dOc7v87HHc+uB6PvKzFZw3aQRF8cP/HtsMEmZ0J4zu1HPy0ZVI\nsKZ5LyubWrjtyrOpLCvu9X+oKKz3QmnzQtnPwxBmm+fLtw5SsnMEsOj/s3fmYVIV5/7/vD0LO8OO\ngMKggojiwuK+gFuiqLkuMTFGjfkZs5gYY+LVazQas2luTIjmuqCJms1ojDvuC+6Kw6IIoqKAiGyy\nDAzDDLO8vz+qeuZM0z3dM/Q5Z6Dfz/P0093nVNW3qt46dWo7dXCzQR/RvMQu2yb/3YH3/e9KXIfJ\nCIGoK4btleufXsiGmroWx6LKuzgrMaMlZvPCw2xeeMRp8/J+3fjNqWP4/TMfcNML69iWVyIlBIoS\nQlFCKE4kSAgUFyXo0bmYX52yN5P3GbQNsTfag13n2w8S1gvJRORUVX1ARBYAR6jqqjb4vRBYDXwP\n+BMwWFVvTHHzN/wLZ6Wkc9eSvjvnL/JtoL5yFcVlAyLRKi1KsFNZZ0Sga2kxcxcsbNIeM6Ssyd3c\nZZUt/AXPZTufq98edesoLy/PGucFyyqpy+qq7STzPTV+UTB7/odp8z0sgjYJlreo0p7Uj1M7qB+n\nNpjNoyR5rZnNw8eu88K1eaJqNd37DWZY366R6KbSEa7zQihvQYLtmKjpWlrEhtXLY8v3LSsWqqpm\nnZoNs4M0S1XHisi9wJ6quk8b/I4Fvg3sAbwH3KmqMzK57zRohA46d8o2x7k9LL/7YqLS/ulx5eyx\n8wC6dSpiv11603XIyCbt9i6xa6/ffs9eTUVFRU7xDmPEJJnvccx+dRo0IlLtFssBAuUt8in5GLWD\n+oWqDYVh8yAd4Vozm0enHdSPSvvUG19g1mfVsWh3FJvX/+cyik+7nllXHUufbqWRaAex6zz6+rXL\n4BEMPCf6dnPnIvjimMHc8qMzYsv3JdefOFNVx2f1pKqhfIDZ/ns6UA88BTyS/OTg/4/AeuD/srkd\nN26cxoVpF56+aReevmkXnr5pF55+oWqP3GtfHXbZY/rmx2ti0S/UfC9U7bj1gQrNoR8T5jbfXURk\nf+AfwHDgPtwGDVkRkRJgL9yzSqNE5EBVfTO0mBqGYRiGYRQgnYoT1AIfr67igOF94o6OYXQIwuwg\nLQd+738vBZLvMtoAbAHuyORRVeuAY0KMm2EYhmEYRsFTUpygKCF8srY67qgYRochtPcgqeokVZ0E\n3ALsAswG5gBDgJvD0jUMwzAMwzByQ4AhvbpYB8kwAkTxotifAhNU9VygBjgAuCoCXcMwDMMwDCML\nQ/t0Zem6zXFHwzA6DFF0kBLavMX3eGBNRLqGYRiGYRhGFnbp05WlNoNkGE1E0VF5UkSeEpFvACXA\nNOCJCHQNwzAMwzCMLAzt05W1m7awsSaMNxcaxvZHaJs0iEgCOF1VLxWRU4HDgGeBl1T1wbB0DcMw\nDMMwjNxJviR26drNjB5cEnNsDCN+wtzF7vfAWBE5G7ddd5LdRORKVR0XorZhGIZhGIaRA0P7uA7S\nJ2urGT24Z8yxMYz4CXOJ3QO4TRnKcbvXTQWWAQcC9iSgYRiGYRhGB2CXPskZJHsOyTAg3BmkHwMH\n4955dAlQ5I+vAY4LUdcwDMMwDMPIkbIuJZR1KbGtvg3DE+YM0q6q2gP4EBiMm00aAIzCPYtkGIZh\nGIZhdACG9ukaWQepsVF57J3PeHvp+kj0DKOthNlBqhORrsAw4HfAImAnYCLQtTWPIjJYRFaKSKOI\n3BhiHA3DMAzDMAqeKDtI1z+5gO//czb3z/w0Ej3DaCthLrHbF6jEdcLOBxqBmUA3Wm7akI6huK3A\ny4FSEZmgqm9lcjx3WSXll0/LR5zbzPIOoL34uslbnQvGKfV8a+dy9ZvU/ulBXfnVG9FPybeW9rD4\n4b9mUrW5oam8Ramdmu9xakP6chOmdlC/UPPdbB4NHSnfC007bv1C1e7n/+81pCfT5i7n5Q9XM3Jg\nD4TmxpoGWm3qjyaPNbtpdqQprbxmt8rT81Zy20sf87UDh/Lzk/fit98tzHzvCNpxEXc9kwuhdZBU\ntUhEKoDvAq8AM3DX0YHAIVm8jwMeB74HPAccBGTsIBU6qYWsLYVgW/wCsXSO4uCSe2cz7Z0VLY5F\ndXGns0nUFUshEme+m83jIc4GQ0ezeaGUN7N5M18Zvwt3vrqYs/88I3StSXv05+cn70UiIaFrpWI2\nLzzaY3PR1G5+nhCRCcDNwBHAq8BfgLOAXYE9VXVtK35/ipttuhz4NXCQql6b4uYC4AKARJee44rL\nBoSRjKzUV64iDu0EsCWgPWZIWdO5ucsqW7gNnst2Ple/PerWUV5entZPFCTzPTV+UTB7/odp8z0s\ngvlbn8HmUejHqR3Uj1MbzOZRkrzWzObhY9e52TwObYDi6s/Zc8RukeimUkh1TJBgOyYO4rzOt6xY\nqKqa9RGjMJfY3Qb8EngS1yn6LVDl/08FTm/F73oguRF/T/8/I1LSiUHnTtnW+LaL5XdfHIt2z04J\n3p96UZN2RSuzQBUZlsmlO5+r337PXk1FRUVaP1GQzPfU+EVBp0EjGHTulHiWHAXKW1Rpb5qSj1E7\nqB+V9ugrp1Fd31LbbB4tyWstzvIWlc0P+/k0Pt3cUhsKw+ZxXudx2ryQr/PUtP/uH48zcY/oG+wd\noY6B6OvXzoNGsFNM7eYigU/viu86X3L9ibNy8RPmJg1FqvoAcCpuid1DwGhVPQfYPYvf14Gj/e+j\ngTdSHajqVFUdr6rji7pGP7IZFUWB352BslKYNKI3//vlfZuOp1bmbancW/ObazjnHTAoZz2j7aSz\nQ5zT8VFqD41MaWvm/3Iyfbsm6BrmMFIGCtnmcRJnOl+52mweBx0tjztafKJAgBmLMi4q2qHoKDYf\n0KMTF07clZ0i1t21dycu++KIiFXbmceqmvcPMBZYCEzwvxcB/8//Hgu8m8V/CfAJUAcsBQ5szf24\nceM0Lky78PRNu/D0Tbvw9E278PRNOx567rKHnvPnN2PRLtR8j9vmceoDFZpDXyassdEbcLNTz+Je\nFNsZ+Lr/dMbtbpcRVa0j3sFjwzAMwzAMI2Q6FSdYsmZT3NEwjBaE0kFS1UkAInIQMAh4WlU3+WMj\nge5h6BqGYRiGYRjbD6XFCT5dt5n6hkaKi8J88sMwcieUDpKInJpy6AsizVs5qns2yTAMwzAMwyhg\nOhUlqG9UllfWsEufrnFHxzCA8HaxO6mVcwpYB8kwDMMwDKPAKS1OsBlYsqbaOkhGhyGsJXbnhRGu\nYRiGYRiGseOQ7CAtXrOJw0b0izs6hgGEt8Tu66r6dxG5JN15Vf19GLqGYRiGYRjG9kNJUYIuJUUs\n+tw2ajA6DmEtsevmv3uEFL5hGIZhGIaxA1Derxsfr66KOxqG0URYS+xuE5EiYIOq/iEMDcMwDMMw\nDGP7Z9d+3Zj3WatvgMkrNXUNrNxQE5mesf0R2jviVbVBRE4GrINkGIZhGIZhpGV4v248OW8FW+ob\nKS0Od6vvmroGTrjxZXp2LglVx9i+CXvD+ddE5E8icriIjE1+QtY0DMMwDMMwthNGDOxOQ6PywcqN\noWv9+ZVFfLx6E18ev3PoWsb2S2gzSJ5D/Pe1gWMKHJXNo4j8ARgPzFLVH4YQN8MwDMMwDCNmJpT3\nAeDNRWvZe0hZaDqrNtZw8wsLOW70QM46cJgtcTIyEmoHSVUntcefiBwHnA10B+aJyARVfSuT+7nL\nKim/fFo7Y7ltLI9YuwzoA/zu/41qSvfi6yandbst54BWz3fZtInbXp3BeQeOp2rDeuavq+Lrt89t\nc3ray/Jl0a1VTlJdXU11nStvcVB++bSm8pbJNjuqNsRj8zi1k/pxa5vNo9ePWzsumy++bnIs9avZ\nPF6bAwzu1YVd+3fj0bc/45uHliMieddTVa59dD5bGhq54oQ9gfjv53Fp96it5dn3P2b++2v5/Wsr\nI9P+9RlD+drYMbFe57kSagdJRDoBpwHlQS1VvTaTH8+ewKXAucBzwEFAxg5SIVHpP6f9eUHTsdSK\nLVgI0lV6yfPpOkK5+v14fT2/eXQ1v3n0iW1L0DYQZYV+f8USfvrQfFQ1cu10F3Wc+qYdjzZkHrSI\nQt+0o9eGwrJ58LuQ0p36v5DSXn75NJJvPjr/sF254sG5nHDjK+zUs1OLTlKwu6RAoyqN6jo9qsn/\n6Y65/40KG2rqWLKmmp8cN5Lyft1axKXQbP7B5zWcf+d7kWgGueK+T7jivk+a4hJnOyobYT+D9DDw\nJaAe2BT4ZKM7sNz/rgR6pzoQkQtEpEJEKhqq4+mFG4XDw3OW09DYSKPvIEH7Ljhj+8ZsXniYzQsP\ns3k8nHnALlx90mh6dSnh86otrN5Yy+qNtazaWMNK/1mxoYbVG2tZt2kLGzbXUVVbz+a6BuoaGmlU\nSAgUJxJ0KknQrVMxPbuU0LtbKf26lzJiQA+uO3UMF07aPe6kGtsBooEGX94DF3kXOF5Vl7bR34XA\nauB7wJ+Awap6Y4qbC4ALAKSk87iSvvE8bFdfuYrisgGhhJ0QKEokqGtobHG8Z+diupQWsWzp0ibt\nMYE1u6lTl2NS1vO2dj5Xvz3q1lFeXp7WTxQk8z01flEwe/6HafM9LIL5GyxvUaU9qR+ndlA/Tm0o\nDJsnibqsQ+HaPEgc+d4RtIP6ZvPwsbrdae++63B6dA77kfytidPmumEVRWUDaAyvC5CRhMCW9fHZ\nfMuKhaqqWSeIwu4gTQUOVdW92uhvLPBtYA/gPeBOVZ2RyX2nQSN00LlTtimu7WX53RcTlvbUr+zJ\nkx9s4IMVlSxcvYlGVQ4Y1ouj9xrMiAHdOfqIQ5q0My2F25ZzrZ3v9+zVVFRUAFCxcAWn3zGzPUls\nN8l8j3rNNECnQSMi125aIx8ob1FPTcehfdKU6cxdsamFflTaD7y2mEsemReLNmyd73GWdYjO5mOu\nmMZGPyYUddqD9V9HyPdCsXk6/ai0j7x8Gkv870KzeUe4rwT149Be+dcfcdmtD3LNyW1qpuaFOG1e\nfd+lHPrjqcxeGv0A9/hhvXj02m/EZvMl1584U1XHZ/Xk1mrm9wO8C7wDzAcagCX+/1zgnRzD+COw\nHvi/bG7HjRuncWHahadv2oWnb9qFp2/ahadv2oWn33OXPfSbd86IRdtsHg9AhebQDwnrGaQhwEnA\n8cDH/n8ZbqOGUhF5pzXPIlIC7IV7Fm+UiBwYUjwNwzAMwzCMAqS0KMGn6zbHHQ2jAxLWostFqroE\nQESOaatnVa0D2uzPMAzDMAzDMHKhpEhYXmkdJGNrwuogDRCRS1KOdQ/o3RGSrmEYhmEYhmFkpaQo\nwYaaejbV1tOtU/QbNRgdl7BKQxGuQyS4jRa+APTAbfFdhns3UvRPxBmGYRiGYRgGroNUDyyvrGH3\nAd3jjo7RgQjrGaTlqnqtqv4c1xEaCcxT1d7A0cCrIekahmEYhmEYRlZKitwraFdU1sQcE6OjEdYM\nUvClx6XAv4DRIvKxPzcI/w4jwzAMwzAMw4iakqIEm8GeQzK2IqwO0tGB30OBK4BPgF7A58D+Ieka\nhmEYhmEYRlZKitxCKptBMlIJZYmdqq4VkYtFZALuXUgP4178+ggwD7f9t2EYhmEYhmHEggj07VbK\n8g3WQTJaEtYzSAA74172ujewGPgzboOGd4BhIeoahmEYhmEYRlZ2KutsM0jGVoS2p6Gq/gRARKbj\ndrA7FDdzVAbUA93C0jYMwzAMwzCMbAwq68yy9dZBMloS6qbvIpIA7gRW4jpIB+OeQ5qbg98/AOOB\nWar6wzDjaRiGYRiGYRQeO5V1ZuaSdZFq1jU0RqpntJ3QOkgiMhW3xfeewE3Aa8DvVTVrKRSR44Cz\nce9SmiciE1T1rbDiahiGYRiGYRQew/p0Y111HSs31DCwZ+dQteoaGvnZw/N47O3P6BSqkrGthDmD\nNBTohHv+aDTwMiAi0gfcRg6t+N0TuBQ4F3gOOAjI2EGau6yS8sun5SfWbWR5B9BefN3krc4F45R6\nvrVzufpNau83WJjzmbYvAdtAa2kPg+rqav7rlhnUNDQ2lbeotGHrfI9TG9KXmzC1g/qFoB3U7wja\nYDaPUr8jaIPZPEr9jqANhWfzfsDhI/vB4zDl2Q+YtMcARCSjX1VF/XejQqMqGvhWlMbGlP/+fKPC\ns/NX8uIHq/nqhF34w9SOYfM4iNPmuRLmM0hfFFfKluI6S1/EvROpAagFerfivTvwvv9dieswGRlI\nLWRtKQjb4heIpXMUBz+4910+XrOpxbGoLu50Nom6UjUcZvPCw2xeeJjNC4s9BvbglP2HcM+Mpdwz\nY2moWp2KE1z7pb045+By/vB9d8xs3jER1fAbuCKyM+4ZpEOAE4G+qtqrFfcXAquB7wF/Agar6o0p\nbi7Av2w20aXnuOKyASHFvnXqK1cRpvZOPTuxamMtAAkRhvTuAkCPTiXMee/DJu0xQ8qa/MxdVtki\njOC5bOdz9dujbh3l5eVp41zX0MjaTVtYX11HfaPS2MYyVpwQ9hzUc6u4BEnme2r8omD2/PT5HhbB\nfAiWt6jSntSPQztIMt+j0n53WSXJkht12uO2eZKoy3om/ajLOhRuvheazdNpQ2Hke6HW7XFqB+uY\nRNVqhuwylF5dSyPRDvLhR4sYOGRnlq6tpjHkbkDn4gR1DYoIdCkpok/3Uj76eHFs+b5lxUJV1ay7\neIf5DNJFuA7RYUBX3AtipwDP5uD9ddx7k8C9dPbOVrVKOjHo3Cntj+w2sPzui/Om3bkEauqa/48e\n1INbz9yPU257g5q6BvYY2IPvTRpBj87FTCjvQ5chIxl07hT6JKDi15lngSpaWWKXej5Xv/2evZqK\nioq06ajZUs/f3ljCM/NXsnB1FWs31bU4f/xeA3hi3qq0fgG+PmEwvzxt/1Zns5L5nhq/KOg0aASD\nzp0Sz1KEQHmLKu1NU/IxaAdJ5ntU2mfc8jIzlmwAmtNeKDZPkszzOLSD+lGXdYje5kHizPdCs3k6\n7UKxeaHW7XFqT75+GvP8k/ir//YjTrv271x/+j6RaAfZY+/9uOX+p/jtk/NZsKI6VK0jR/RjwYoN\nFInwhb134ug9d+LoIw6OrW5fcv2Js3LxE+Z7kMqB+4GZwHXAFlW9GddB+kVrHlV1FlAD7Ac0quqM\nNG6mqup4VR1f1LWMksC54Z1bX7+Xib5A/8D/1MzpEfjdGbj4iEHskmaz8hOGtr6Od/F1k/n3aQMY\n0BVOHN2fM8f15sdHD2fBLyaz+LrJ7Na3mOsn9eK+8w9i6ICePHfxEdz5jQk8cOFhHDaiHxPK+5BI\nCEXACXsUM+vXk7cKP93vXM63xW8mOpcWc94hw7n9nPHc+62DeeN/jiS5ovcIYMqZY1l83WRGpoT7\n7cOGcscZY/nlafu3qpU8XihT0u21Q1j6ceZ7lNr3ffdwrjlhJD8+enhkmknitnmhane0OqVQ8r0j\naceN1e07NtMum8w5Y93v4kSCNZu2xBKP7p2LOXxEf568eBJTv7Y/t561D+XbGGZv4Oxxg+gD7AL8\n1969+OCXx3PT1/bn/u8ezH3fOYjLjt+Tg3frC2wHdbuqhvoBKvz37MCxt7P4KcF1pNbhNmk4sDX3\n48aN07gw7cLTN+3C0zftwtM37cLTN+3C049Tu/fQUXr6La/Gol3INk/2S7J9Qn0PkmeLiHQBt5xf\nRHbDbdKQEVWtA46JIG6GYRiGYRiGESlFCWHD5vq4o2FkIIoO0jXAk8AuIvIP3GYN50WgaxiGYRiG\nYRgdjqKEsLGmLrtDIxZC7yCp6tMiMhP3LiMBfqiqn4etaxiGYRiGYRgdkaKEsKHGZpA6KmFu0gCA\niDynqmtUdZqqPqaqn4vIc2HrGoZhGIZhGEZHJCFQVVtPQ9j7bBvtIsxtvjvjtvfuJyK9oWkjs57A\n4LB0DcMwDMMwDKMjU5RwzeKqmnrKupZkcW1ETZhL7L4NXIzrDM2kuYO0Afi/EHUNwzAMwzAMo8NS\nlBAagA01ddZB6oCE1kFS1T8CfxSRH6jqTWHpGIZhGIZhGMb2RJE0d5CMjkfozyABK0SkB4CIXCki\nD4jI2Ah0DcMwDMMwDKPDkfBL7Gyr745JFB2kq1R1o4gcBnwBuBu4JQJdwzAMwzAMw+hwJJ9Bshmk\njkkUHaQG/z0ZuEVVHwZKI9A1DMMwDMMwjA5HkbgO0kbb6rtDEkUHaZmI3AacATwuIp2CuiLyRRGZ\n7j/LReS/RKRSRJaKyHoRuTWCOBqGYRiGYRhGJDTNIG22GaSOSOgvisV1jL4I/E5V14vIIODS5ElV\nfRJ4EkBE3gSeBT4G3lLVC0TkFhGZoKpvZRKYu6yS8sunhZqITCzvANqLr5u81blknFo7l+18a+dW\nLqtk+OXTeP7HR3LNfS/y4tL2paG9tJb2sLi/YgnrNtU1lbcotZP5Hke649SOW9+0zeamHb1+1BRq\nvpvN4833vhEtsVNVVEGBRlXmLF3Pe8vja7sO7u7a7VHT1vSG3kFS1WoRWQUcBnwI1PvvFojIrsBK\nVRTF6KAAACAASURBVK0SkRFAZxG5DtdhOgjI2EEqdFIv7mAhyHbht9dvI+5im3TDi+2P+HbEDU8t\n4JYXP4pFO91FHcfNLA7tuCrwjqhtNi887UK1eSGXN7N59NpREtQWYJc+XZjy7If8/Y0lTZ0YVfXf\nzb9Jc66xxTlN6z8T9Y1hpTA7n1W5745u89A7SCJyNTAe2AO4EygB/g4cmuL0VOBB/3sK8ApwCjCa\n5ncoBcO9ALgAoKhn/zCibhhNzP1069GOOG9kRjyYzQsPs3nhYTY3ouKmM8fywKxPqW9UBBABQfw3\niH9OKfV4IiGuYbyV+5b/EdnqeHm/bnz57njSuz0h2loXMx8CInOA/YFZqrq/P/aOqu6T4u5F4FRV\nXSMiFwKrgY3AWcAMVb0xxX1TB6lbt27jRo0a1UJ3ZeVmVlVtAWBo3858sqamTfHuVJRg5E49Mk4D\njhlSBsDs+R9SXDagTWFnQ4BOxQkatHlqNDlSkBDo0bmE3l1LWfjxIorLBlDWuZihfbs1+X/vs0rq\nA2ZNxjVJapqC51s7Fzzfo24d5eXlgBuxqKyuo7a+gY019Wyua2hKR1FCaGj0oxx5pL5yFcVlA7aK\nXxQEbR6F/rxllSQHe5Lpjkobmm0eh/bStdVU1dYjApvXrozU5guWV1LnMz6Z9gHFMHBg+PrB67DQ\nbL56Yy0bauoQhMrVn0Vq83T5XgKMikC/vlH5ZE01dQ2NVK9dEXm+f7ByI3UNypb1KyPXXrJmE1W1\nDYhA7bpor/OPV1exaYu7ZyVt3ldg8ODw9Zes2cQG/4B+oV3n6a61QtB+b1klyS0Z4sj3BSs20NAI\n3basbWrDZeKDlRuprW9k78FlyFbTFNtGsh0Vh823rFioqpp1D4ZQOkgi0k1VN/nfM1T1ABGZpapj\nRaQb8HqwgyQiOwF/U9Vj/fk9gW/hOkkHAFeq6oxMeuPHj9eKiopYpk2X330xg86dElr4CWhqHAtQ\nJLDfLr256JjdOfbIQxl07hSG9Srmxcu/0OQnNR9SR8JaO5+r355PXsX9T01n5MCeLFpZyVPzVvLk\nvGXMX1bNlnaks60k8z2OUb5Og0Y02TwK/aBNguUt6qnpOLS/dNN03l62qYV+VNrDL5/W1LGPOu2F\nbPNL7p3F43NX0KWkiPm3fj9Sm8eZ769+sJqz/zKDxhi0IV6b7/uzaVT6G0fU1/nIy6c13bOS2ud3\nhyuvDF//yzdN562U+g0Kw+bprrVC1Ybo8n3UFdOoaYR+z15NRUVFRnf/rljKpfe/A8A93zqIg3fr\nm9d4JNtRceT7kutPnKmq47P5yesSOxE5BLgD6A4MFZF9gXq/i10vEfkW8E3g9oCfcuAdYKWIPA38\nN/AQ0B/XN7irtc4RxLtJQ9gEl4km15R2LYHywIzRkvXRbxG5bP1mrnpoHqfsvxO/mraAjbUxLmg1\ndliSnaM4CHdu3cjEA7OXA1BTX1hb37754XIKtRatjGJULQPppB+ugisj0H4rxvrNKExqcqhkausb\nmPLsh+zWvxufrK3mufdW5r2DtD2Q722+/4B7GewaEbkY976jnsD9wH9wzyH9TFVvSvH3iKqOUNXj\ngGXAO6raCbgGeD7PcdyuaQDeXLSO/3thYazxqGtoZPXGWh6a/Zl1jgzDMLaRx975LO4oGJ7VcUfA\nMGLimfkrOev2N1m2fjNXn7QXR4zoz+Nzl1PfUHjtvLy/B0lVkxs+7wz8ERgF/BSoA14AZqbxNklE\nXhaRH+GW1E33x5M72BkBahvh3opPY42DKtTWNTBmcM9Y42EYhrEj0CXRkN2RYRhGSGze0sD3/zmL\niiXrOG3szhw+oh9fPWAon1XWcF/Mbc44yHcHaalfZqfAFcAD/nMFsBa3vO5dEZkf8LMcGAlMAo7B\n7Xi3wZ+rBHrnOY5GnkgkYFNd4Y0qGIZh5Jt56+KOgWEYhcxHq6uorW/k5rPGcsMZ+yIiHLPnAMYP\n683vn/mATbWFtew53x2k7wAXAkOAT4H9cM8U9QTK/Ocz4M2kB1WtVdVNqloPPAYs9O7x3+vTCYnI\nBSJSISIVDdXRv3Cq0GloVDZsrqPK3gBtGIZhGIaxXbNwlXtB0YgB3ZuOiQj/c8IoPq+q5d63lmby\nukOS1w6Sqn6uqmep6kDcRgvDgVuBg4HXgC+r6nhVPS/pR0R6BII4FNdBOtL/PwZ4I4PWVB/W+KKu\n0W/1XOg0qrKxpgHJ+yLNjomqsnBVFe+v2Bh3VAzDMAzDMPLKh6s2UpwQhgU2AQMYN6wP44f15trH\n5vPC+6tiil305LV5KyI3Jj+4zRp2BwYB/XAzSulmgw4XkZki8hrwmaq+CbwkIq/gZqAeymccjfyg\nuB325iwtjNm75ZWbeXb+Cp6ZtyLuqBiGYRiGYeSVD1dWUd6vG6XFW3cNfnbSaIb06sLF/5rDM/NX\n0ti44+/zmu/x/864Ts2HwO+A94D5wGHAvcBbIvK0iPw84GcNUIvboK3EH7sCqAcG47YMNzoo66ra\n9gLe7ZWla6uZuWQdcz5Nu+LTMAzDMAxju2Xh6ip275++yb3Pzr347en7ULm5jm/9tYK7XlvcdO7p\neSv47t9nsnLDjtUezOt7kHAzRkf554nw7z+aBxyNW2L3DHAibqe6q72fJd5PjYj8Q0TGAHNVdWKe\n42aEQMOOP4gAQGOjsnpjLQ1qm1IYhmEYhrHjUFvfwJI11UweMyijm0N268tvTh3DVQ+9y7WPzeeP\nz33ICWN24p4Z7tmkQWVd+NlJo6OKcujkewZpCNANQEQuAu4BdsNt290VeB84FeiT9KCqK1Q12e2s\nx80k7em3/b5ORCTPcTTySKFsjf9ZZQ2fV9Wytqo27qgYhmEYhmHkjUWfb6KhUdl9QOZFWyLCmQcM\n5fEfHs74Yb1pbFTumbGUfXYu46Bd+/D8gpURxjh88j2D9FtgjohMx80S9cO96DW5M90bQBFuGd6s\noEcR2Qfop6rzRWQEsA63wcNJwCOpQiJyAXABQFHP/nlOhpErxQlcl3YHp3pLA1vqGymQCTPDMAzD\nMAqEBcvdBlR7Dsr+bsuRA3tw/3cPYdXGGh6e/Rn/tf8Qnnx3OVc9PI+PVlexW4Zletsbee0gqeqf\nReQJ4Gzc5grdgJ8Ae3gnNySdAkcl/YlIH+BPwBk+nLX++EPA/qTpIKnqVGAqQKdBI6zdGgMJYKee\nXVlbXcvazTt2L2m3/t3YbUB3GhobeSfuyBiGYRiGYeSJWZ+so0tJEcP7dcvu2DOgR2e+dcSuABy9\n50CuengeX7/jTXp2LqEoIRw1agA/+cIeWULpuOS1gyQi5wM/BHYG5gAHAa+r6lGt+CkG/g5cqqor\nRKQbsA+uM7UzMDefcTTyQ2lRgkFlnfjxsSNZtHYTt77wIRt24Fci7Te0N6eM3Zm6hkYejjsyhmEY\nhmEYeeDxucu5f+anTBrVn5Ki9j15M7hXF07edzCPvP0ZCRGWrd/M/OUbOG6vgeyzc688xzga8r3E\n7ofABOANVZ0kIqOA60Tkz8BgVT1eREYDB6vqn72fL3s/1/vHjf4HuA3YALwAlIjIGFXtcB2lcyYM\n5vq7o9XsJFBaKuxU1oXl0Uq3YOTAHjz740l0KS2isVE595ByrvzPHB6cu7qFu84CNTvA/F7X0mLO\nGL8LAN+MOS6GsSNz2PAevLKo8N439vMTd+Pqxz6KOxoG8K//6huJzsie8MGGSKQMowXrqrdw7aPz\nWfR5FS+8v5p9di7jihP23KYwp3xlP645eS/6dCtlffUWjrrhRc647XXK+3ajb/dS6uqV3QZ057jR\nA/OUinDJ9yYNNckNF0Skk6ouwC2lewq3ZTfAB8DFSQ+qeo+q9lfVif7zuqruo6qHqeq5QB15fMpl\n8XWTWXzdZEb07bzV8V3KSlsck4D7Pl0SlLX0wrWn7Z+vaDXRObAlRe/OCS45ajh7D+7KHoO6cv5h\n5dx41v5c9sW9uOGMZu2bvjKmRRhXnTAqZ70fTdqlxf8uOZYIEehSWgRAIiF061zKJcfvzdfGDaas\nFIb0LOaio3bn3u8dzIljduLQXftw6bG7859vH8Rd3xjLV8cP5ugRfRjeu5RScQWxCJfn2wsPfG9s\nJDonjtgx1vPuCDx04bhIdA4d3ikSnY7I1HMP4meTR/GXc8fHHRUAHj9neCQ6p0/Ynb0HdKV7voct\nc+QXJ+9JeZ/O2R2GwKUTB2d3FBL77VS61bGePbM/h5EP/vmDYyLRMToOt31tv1j1J48ZQLcSqKyu\n476KpXywsorvT9qd/3z3EHbu3XWbwk4khD7d3PXUq2spU88ex8n7DmZIry5Ub2lAUZ54dzmzP1mX\nj6SEjqjmb3hfRB4EzsN1gI7CbbRwpKr2EpHZqrq/dzdHVbOWEr9xw29UdXKac02bNEhJ53ElfXfO\nWzraQn3lKorLBsSuPWZIWdPxuctavrw1eC7b+Vz9xpnuoH5q/MJi6dpqNtS4NYRb1qfP97AI2iST\nzaPQj1M7qB+nNpjNo9IO6pvNw8dsbjaPQzuoX6jaEK/N46BH3TrKy8sj1Vy6tpr6RmXtkgWqqlmn\nA/LaQWoRsMiRQBnwY9zW3s+o6lgROQi4XlWPzOK/D26jhzNUdUVrbjsNGqGDzp2Sp5i3jeV3X0xH\n0F58XXMfsvzyaS3cBc9lO5+r3zjTHdRPjV9YzFmyjm//o4L6BuXdmy+MVDtok0w2j0I/Tu2gfqFq\ng9m80LTBbF5o2mA2LzRtiNfmcdDv2aupqKiITG955WYO/s3znH3QMH55ypiZqpp9iYKqhvoBxgKv\nApX++wNgnyx+ioHHgQNz0Rg3bpzGhWkXnr5pF56+aReevmkXnr5pF56+aReG/hNzl+uwyx7Tt5eu\nU6BCc+hbhL7aWVVn+dmkPXCPmLyvqtn2O9tq4wZVfT3cmBqGYRiGYRiGsSPx0eoqgDa9oym0DpKI\nnJrh1EgRQVUfyORXVe8B7gknZoZhGIZhGIZhFAIfra5ip56d6dYp925PmDNIJ/nvAcAhwPP+/yRg\nOpCxg2QYhmEYhmEYhrGtfLR6E7sNyP0luJD/bb6bUNXzVPU8QIHRqnqaqp4G7BWWpmEYhmEYhmEY\nBri9Fj5eVdWm5XUQYgcpQLmqBt9puhIYGYGuYRiGYRiGYRgFyuqqWjbW1rNrv7bNIEXxSrrpIvIU\n7pkiBb4KvBCBrmEYhmEYhmEYBcqi1ZsA2LWNM0hR7GL3fb9hw+H+0FRVfTBsXcMwDMMwDMMwCpdF\nn7sO0vAOOIOU3LHONmUwDMMwDMMwjALms8rNbKqtb9Oucu1l0eebKC1OMLhXlzb5C/0ZJBE5VUQ+\nFJFKEdkgIhtFZEPYuoZhGIZhGIZhdCzWVG3hN0+8F4nWR6s3MaxPV4oS0iZ/UWzS8FvgZFUtU9We\nqtpDVXtGoGsYhmEYhmEYRgeiT7dS7qv4lNUba0PXendZJaMHt73bEUUHaaWqRtNNNAzDMAzDMAyj\nw9Kveye21Dfy9zeWhKqzckMNKzbUsM/OvdrsN4oOUoWI3CsiZ/rldqf6TRsyIiKDRWSWiNSISCTP\nSRmGYRiGYRiGES6dihMcPWoAf39jCTV1DaHpvLBgFQAHDu/TZr9RdD56AtXAcYFjSuubNqwFjgZy\n2u1u7rJKyi+f1u4IbgvLO4D24usmb3UuGKfU862dy9VvfWUNP31gLj+bPJLXF63jG3fNbF8i2klr\naQ+Ld5dVUlvf2FTeotRO5nsc6U7VhvTlJkztoH6h5rvZPBo6Ur6bzaOhI+W72TwaOlK+x6Hdz/8/\n/rfTeG9teHoDupcw48rjmnSLgYU+vecfvitn3v4GVz70LucfPpxupcWIgKrzqwqKNv/HvfRVaXaD\nPx88lvSzua6BqS9/zK79u7FXO5bYRbHN93nt8FMD1Ii07YGqQiX1AmtLh629ftdu2sLjcz9j/eYt\nPD9/Re6R3U5ZsHwDT77bMp1RVWzpbBJ1pVqIxJnvZvN4iGuwK5O22Tx8zOaFh9m8mTA7RwCrquqY\n+IvmNNcHzh28W1++N3E3bp7+EffP/DQU/dLiBH85dwLt6U+INnfDQkFERgK3AANVdW8R2Qe3acMv\nc/A7HThGVevTnLsAuMD/3Rt4dxui2Q/4vJ1+xwKfbIP/bYnDWGBWyBrZtHMNM9/uxgHRTls5+gFD\nyY/NtydtyF9Zbw/JtLelvOdb22weLWZzs3kc2mbzaDGbx2fzbHneljZjW9uXcbbhuqlq/2wOo+gg\nvQhcCtymqvv7Y++q6t45+J1Ohg5SirsKVR2/DXGM1X++wohSIxlWrmGG4G6TqrbtrV95oK3p3lG0\nk/oAhahtNi88bbN54WmbzQtPu5Btnk23LXFrazribsPl4jaKTRq6quqMlGOtdngMwzAMwzAMwzDi\nIIoO0ucishvuGSpE5HRgeWseRKRERJ4F9gWeEpEDw4+mYRiGYRiGYRiFThS72F0ITAVGicgyYBFw\nVmseVLUOOKYNGlPbH70O4T9fYUSpMTXlO1/aubprbRfEMGlruncU7Th1O4q22bzwtM3mhadtNi88\nbbN5+920xy3E34bLShTPIF3if3bBzVhtAiqBmao6J1RxwzAMwzAMwzCMNhDFErvxwHeA3kAv3M5z\nE4HbReS/I9A3DMMwDMMwDMPIiShmkJ4CTlPVKv+/O3A/cApuFml0qBEwDMMwDMMwDMPIkShmkIYC\nWwL/64BhqroZqI1A3zAMwzAMwzAMIyei2KThn8AbIvKw/38ScI+IdAPmtydAERkHHIRbtrceeENV\nK/IR2e1BPy68zXoD65MzghFqdySb9wTui0o/Tdo3qOpfTTtSfbP5Dq6dRt9svoNrp9E3m+/g2mn0\nC8bmaeIyQVXfikM7qjiIyF5Ag6ouCBw7UFXfzOo37CV2PjLjgMMAAV7ZloIoIn8AOgHP4jZ76Inb\n8a5BVS/KwX8R8F+kNLaBh7K9kDYf+ilhhdboF5GLVXWKiOwL3ITbZr0YuFxVX25jWEcBVwEbAod7\nAu8CJcBHwM2qusm774577uwg3HNnyTy+TVU3BsIdpaoLRKQU92za3qlheXdTgFFADVCKm5HsDHyo\nqj9oS1ragogkZ1hvwNn8OVwe/C/wKu2weTv0g9qVQBkwBXjQtEPTBrN5oWmD2bzQtMFsXmjaULg2\n3+ow8KSqHuvd9FLV9f73iTS3x+7XNB2FtrSlRaQXze3HyYGw/xOMQ74RkRuAgbh3r/YFvqmqq0Xk\neVU9Kqv/KDpI+UREXlLVI3I9nsbd34B3aC6gyQ7Ovqr69bD1A+7z1tHKEP7zqnqUiDwNfE9VF4pI\nP+BhVT20jWG9AhynqtWBcG8HjgW+CBwKnKiqp3j3jwB/Y+s8PkdVT0oTx1uAJcBDqWF5dyuB36UJ\n7yeqOrAd2ZNruqtxF/xYYFbyMLCPqvZtq83bqb8FmI1/j1hSH5hn2qFpm80LT9tsXnjaZvPC0y5k\nm7/h9Vpoq2pf7ybZHvsNbmD7YVx7bGdVPS9NmDm3pUXkeVxHahVuUH01rnPYGShNxiHfiMiLqnqk\n/70PcCNwKXB9Lh2kKJbY5ZsKEbkV17HYgDPK0TQX+GyUq+rZKcdmi0iusyrbqp9kXJoL4kEReamN\n4WSij5/56aOqCwFU9XMRaU+PuBYYAwSnJMcBH/lpywUiEszTvsB/VLXR/18nIv8BLs4Q/p6q+l3/\nOzUscM+t7YZ7h1Yyz3fFjQqEyXu4zUSuBrrSbPP/9Z26ttq8Pfqv467TYHn7g2mHqm02Lzxts3nh\naZvNC0+7kG1+iqpWBg+KyDNp3B6S7FQAT4rIixnCbGtb+j1gs6oeFtB/kZZ7FOSbYhEpVdUtqvqO\niJwC/B3YKxfP290MEoCI7A8cTPPyrddVdXaOfn+C22Z8Oq6AlgFHAC+r6m/D1g+E8XtaXqTJjlat\nqmbqSLQl/KsDf/+oqutFpAfwv6r6nTaGNQi4HDfScSCuQDcAh6nqe36J3OuqOs67/xpuid07NOfx\nXsDtqvqPQLgLcCMJfYBDfRxbhOXd/QQ42btN4EZA+gLTcrVZe/DpXqOqW1JsvgF4ta02b68+Lu+C\n5W1G2OulC13bbF542mbzwtM2mxeediHbXFW3pBwvTi6HE5H1uDbbaGB33x5LAG8F22MBv5cCR9Lc\nlu7p/2/VlvZhLwB2Tw0bODB1SV6+EJEDgMWquipwrAj4sqr+K6v/7bGDtK34pWYH4Bru64EKVV0d\nQzySF2kyHm+EfZGGgYiUAL1TCmExMJLmSuCDXC6CdGH54x3CZoZhGIZhGDsaIrI37jGP9/z/rrhl\neG9kcJ9sl40DFgILNc2GCyLyJeAZVa0OHOsKjFDVt/OfkvwQxTbfHQrfezwSOAq3XvJo4EjfoI+a\nhP8UA0X+Eyoi8sdt9C8iMllEvigiNwKoah2uo5d000tV61V1Pm526GTgFBGRlLAuEpFdg8dUtS5N\n56gj2cwwDMMwDGOHQdyGBpcBl4nIoyLS33dofp3B/ZOq+jluIPxA3OD1RSJyXRrntwDPichDInKu\niPRW1eqO3DmCApxB8g+WzWXrzRFy2qQhj/H4A25HttQH3PK2k4qk397woEyjATmG+SjumaDPgT2B\n81X1fQnsCpLrw34i8jHwNrAT8CTwgKrOTaPZIWxmGIZhGIaxo9HWDQ0C7bwXgUnJZ85F5JXgc0b+\n2AuqOklEhgOn4l73U4vbNOzmcFO2DahqQX1w6yNzPh5iPF5qy/F2hH8D7mG0u4BHgf7++PPtCOtJ\n/30xrmP0HdwudTcBTwNfCoab/A28mBJO6v8X/HdX4DQf3wrgt+2xGfAN4E8R2vAU3PNQo7K4+wYw\nOPD/DmB0e8L09jw9z+mYiHswM+c0ZUtHG/XLga/53zsBT+GWUc4HHsdtAf9YtjgAi4F+adxcg9vx\nsC1x2gn4F24r0mQ8RkZUrjKlI6c4Aa/57wZgDjAPNxBxCZCIIg15yIP94oh/QDP5KW9nOBcDXduj\nB4wHbvTnt6lO89e2AicFjj0GTMziry54bYddt/o4/i3wvxj3zGna6z6H8HKum4LaPr+mtVfbl9sT\nstj6Xdw9uVdY+ZkHe/zUX3fv+DgfmMFdU1lNc2468H6gbJ/ujyfrp76BcyuAZf73emB+jvH8Dm53\nXAjcG732+G3Mgz8AFwf+PwXcEfh/A3BJXOF5PznVMzmG9SpuR7nk/97+WliZwf0K4K/Ap0CXwPGK\nNG5fSHNsIHBBHstsk/3z9SnEJUqPiMhjbP1g2aMRxyNfu+FlYry2HA34t3+orj2U+u9TcA2zf6rq\nreK2/z4KmIpbg5pkrN/JZE+/3C75QF73dIGrm8b9D/Afv2wudbTi4RSbJTfWiNpmqZwJvAJ8FdcI\nz8Q3cDfFzwBU9fw8hJlPJgJVwGu56otIUZZ0tIVy4Gsicg/wIHC3qn7B6+yHG21Ky7bEIfiAaspx\nCcTjq4F4DAQ+aK/etpBLnLxNGlT1EO9ts6ru588NwL20uwy3i1NHZz/c7HfW+CftmMmebaQpz7aR\ni3EDPtVZ3KXTW4wbKMoXn+IavG2pL2vVLZFuQbKMZfOcaoscbLMJ2FtEuqt7CfmxuAZzu2hjvZDU\n7uL/99sG7f1wnYbH05wLXo93AxcCv8pTuc0bInIwcCIwVlVr/XMmpencqttcoLWyepambECQrJ9U\ndQ0uvxCRa4AqVf2diJTjOvHZ4lmsqrdmTVAOZCjXrwFfBqb49ks/XDstySFk3pk3GLbgttTOS3gp\n5FrPBOOT6Rr+EW7FzyoAVV0nIif7OKfjQP99FX5HYXHvwLwqjdutlt2p6kpc2zEWcrru8tnb2l4+\nuIJ5As6QZwITYorH/sD3gP8Bvgvsn8ew2zQakCWs4EjBHkCZP14RcHNQljC64pbEBY/tm8VPOfBu\nwGZ3APfjRrVuBGbgGoeHezffwI9y4l5G9rr3d5d3/xrwMc2jTIJ7Sdy7uCV8X/HHbwZO9r8fBP7i\nf/8/4Jc+XgtwN9YP/XcX7+a/fVhv4yqF03Gdj+RIWhcCo1u+/M31cfg97sY8EmgEfuXDWeH9T8Pd\neE8Hjse9/TuZVxOBR/3v43zaZwH/Brr744uBn/vjc3Ev3y2nefTuHdzI6QPAskC4DT7fP/Fu/4nr\nKE/HXUMzaB4dnYnr9B/gz38cyMty4GWvP4vmWas3cEsnF+JmRybiR29xz7C94vNwDW6r93/gOm9/\nwY02fgpcRGDmBdcgfN/H5R78DJKP06+BF4EfA/1xnfO3/OdQXAd9iQ8/mYaLcOVlCrAR2Ozz4ys+\nvi8C9+HK43XAWT5f5gK7ee2ttPzxvriZ2NnAbV67H/AL4IfezVFe76KUa2Qi8ELSJv5Ylf/enBKv\nW3zcZ+DK2/0+fnOBlwLx+qc/9g7wg0DZSebteGC6/30NcLeP/2Lc8onfev9PAiXe3Tgfl5m4kdNB\nAXtcT+BaxjXGPsGN7M/xeXyA91uPu44vx5Xt2bgb+uPAWlwZWQx8yYf/EK583OHT/A/c8txXcdfu\nAd7dAT7cBv+9R0o9lK7cTvTxvx9XH/wDV0Yuwu30OZfmWfJbcA3JecDPA2FvwV1L7+De9dYDWI7b\noRPcCPkG3LtD7vLhvIArk0fiyuh7wF0Z6tCJuMbmU8Cx/ljTDBJuUG62j+tfgE7+eAPNdVQVbpn0\nCtwL34fhloYn34Ey1Lu7C1eHvYAbDb8G1wB6GlemOgN3eq3ZuGU54Ortem+Puf7YX3HPQzwWKGc/\nCaTrXW+Xbrh68W1/7CuBcpWM/xe93d4Gnkux92yf1ltx9epEXHm5zOdTwscruQIjgaun+uEaju/6\ncF+iudyuprncdvP5+pbXSZbLu304jwLP48rFEp83X8GVpSvIrV45CfcKjtm4+m5gIM9a1GGB/DvH\n2+9tmmfPkvXTh7h69dCUsjTB59nbPg49CNTVacpekw1SjlelOdZkX2/X94Dbfb48TfP9dTotHjEn\nPwAAGNhJREFU6++gv7tIM4NE6/fDn+EHBNPEaTDwqf89huZ6rjfuHZbrcR2c52i+p34pJQ03e7sM\nyzG8Utyytre8fX7u3W9Vzklfz+SUVtLUu9nagfn84NoNC4Bn8Pdn3KtcnsTV8y/jV7HQevvtT7j6\ns6ltlMP9pqn8ZI1nlJnSET60XC72GM3Lxa6LIS7jgO/7wvJ9tnFKOCXsA4ABKceK0lUEOYQ1LPAp\n8Rf3D3CV7zcILB8L+BmDWxp1WSY32dzhO0g+3qf5wj0LWAo8gluGcQLwrHf/DX/BnOIvsN7++F2+\nskjgtrBc6I+f5i/QItxI/CfAIF+B/K93MwO3uyC4m/sXfLwacG+/Brfs8Epcp+U1/JQ37h1UyYty\nfCBd03GNzMFes79PyzzcTi/gGoc/xDU4F/syMhhXiZ7u3X8CdPPubwG+jrtxvxQ4fhnwM/97Mc0N\n3u/hp/fxNxnv/88+v97HvVBvoo/LzsAkn+4vB/LmJVyZUNz1dA6uU/m0P74vMMe77wp09r9H4DvY\nNDfiLsItQ5hIc8PoJp/vlcAZuIbH67iy9xquojua5oZxP9x1Ndfr9cQ1RIIdpJsDtvgnbrt6gKG4\nm9pFXuM13I2rnw//DNwN6g6ay8tIH9/1uLLTCdfZTN7YfghMyaTlf98YsNFkn5f9cOVsViCc9UDf\nlOtnIq6DPjxwLNhBSo3XZh/3h3AvJ8Tn/UpcA/YKXIO8OKUMLyZzB+mVgK2rgeP9uQdxb1ov8XmZ\nbGR+heZBh+nADf536rW8JZCmnrgyvw5X/itwDdkL/Xd/mlcDPO5tXoarK+px9UwCd8P8C+7m+iXc\nW9+D4Td4v+tpvr5bK7eVuGsjgSszh6XmV0o+Fvk074Pr/Cc7gXNoLvNP4LbWBVf2ZwfqsX8F4r4h\nJV37palfJ3r7Ho5f4uz/T8TZeyl+mSauU3JxoP5JDuooro5LDj49Cpzrf38zkId3+bCLAmVjJs2N\n2x8Dd/rfo3DXT2dv60Zc5+t+f2wOLeuBa0jfQToN9/qI5PHk4N10XDnt79M4PMUOPWku45tx94H7\ncQ3MyhTtqwP5chzuHX/g6pgh/nev4D0oEJ9fA19PXpe4xmgPXN2ZfMXFabgG8UO4a3Opz5ujya1e\n6U3z8+Tn03w9XcPWdVgJbpvp92m+npN58k9vg+64e1EtroF/JK7h/jF+MJnm66Upn9KUvem0XGLX\nN1g/pbhtsq+3az2+POM6iF8PhHlzBn93kdJBIvv98L/TxT0Q/mJcXf1tXFvxF7h66lAfbjHQ07vt\nh6s7xKehkZSB4xzCOw43qCC46/ox3GqZTOV8ccCOOaeVDPVuFB9vl+RgcQ9ch/wnuI7mCO/mQJof\n1biL9O23U2luvwXbRtnuNzfnGtdCXGIXXC6WfLAsuVwsMlI2aXgPV+GcJyLnaB42aVDVGWmONeBu\nsG0Na0nyt9+hpAuuoViCu7APFpFXVfWvATddcRfB3ri97w8SkdeSbtKEldEd7gJJjjomvOZSf/zH\nuMooySTcBXicqm4IHH/I23q+iAz0xw4D7vH5stI/bDgB17m6WERG40Ynevv3CByMazz3BWpwNw9w\no9FfwN2o7lS/laWqrs2StRNwDc3VPj8acDdncA21nYHhuAbTMFX9TNwbqVG3pOhJ4CQRuR/XsP5v\n3M1sNPCq3zSwFNdwS/KA/56Jq2CCnImbITkL1+g9Ezcy06Cqn4rI7rhR5E7efW/clPxbuEbUCNwL\nfOfilujUichcmu1TAvzJLw1rwHUusnEYbkZiZ1W9z++0kxx1m4ZbilOJm0VILuE8HNe4rQYQkUdS\nwrw38PsYYHRgg8WegfRNU9VaoFZEVnmtf+E69Gtw1+0oXEP1LVVd7vU+8nHE58WkTFri3k12BN4W\nqjpNRNb534tFZI241wGMAlapW5aSygxVXZQh/1LjlVzS0RfX2QA3mJK8XnfCjUp2ATbmUIYBngjY\nugg3CphMezlu1nlv4Bmf9iLcLEmSYJksz6BRhhtx7YlrVPTyOptwN8n1uM71EbhyCK4R8gSunp/r\n82AebhZBU8pmMnxwDeYVqnqK/99auZ2hqp/6sJPPEKW7l5whIhfgGlSDcNfofFwjaiauLCeXFU3D\nDbiAK8vBuvzRQNxXpqSrHGfDrVDVl0UEETk8cHgPYJGqJpeNJpd9TfHxOktVK0SkHjeqnVxGfTDN\ndcffcNdnkn9ry+U7j6jqZv/7MNyAB6q6QESW0JyXDar6iohMwdU76ZaopWMu8DsRuR7XUE99SeVB\nuOd6F3ndZHkuA+4WkRG4OnIXXJ1yFH6JUYC/4GbQpuA6hHf6468Cd4nIfTSX4VSOA04W9y6/bjgb\nLcN16qep6loROQw3wHUJrh5dhrs+GsitXtkZuNffo0pxs+xJUuuwgT6N96vbgSyYJ8fgyiW4Z9A2\n4OrWe3GrGZar38I5eW+VlhvTpmOrJXY5skhVk2U5tV64d2vnGTmI1u+H2cJ6Fbf07RDc7OgQ/7sS\n1wgX4NcicgTumhmCy2OAJbr1hljZwjvOf5Kve+mOq89epvVy3p605lLvhsFhuM0ZNkPTxl+dcfnw\n70CZ6hTwk679dgTN7bemthHZ7zc5l59C7CCNFpG/4qbzOuFuhuAMFCXjVPWIlGMPishLEcejrUxQ\n1aP977+IyDOqeqyIPIsbgczVTS7u6nEdonJVPVtErsSV2SrcTeoPuJtIsBx/jGukj6Tl2ujawG9J\n+W6Bqi4Tkd64pRkv4Ub5zsCNfG0Ukd1wDcg7RERxjTXxepox57amSV9E+uKXvInIYp/ur+BG4RtJ\nf63ei2vQrMXdSDf69c7PqOqZGTST+ZCab11xN869fXprcbMBj9PydQBbUvw9pqrniUiVqu7h03JN\nUkdVG6V5O/Yf4WYq9vVh1qTEbR5uBOjhwLFkHgXtlywXwWMNtLRna3bYFPidAA4ONOIQkaNxM7qp\n4Rf5+I/Djbqdh7PR7SluGwP/g7bbSsvrtRbfO3Cj0qNSNDKlJ5Wgn1KfjlW4vEq+ViCBG6T4Lm5E\n9mZV3ZgSTjLPYeu6MmjrOvVDdTSnXXCzVQeTnkxlMsgvcEtOjsDN1FbQnO5NuE59f5xtLsGNnp6J\nGzQ4JBBOJtv8Arc07FjckqXpAT+tldvUMrJV/MXt3PQTXH23TkTuws1I1YvIZtyypq/iytxRuNmR\nriJypNcLdlKDcU8tc8Xi3hR/tT+W+hzOr3BLT5Pr7rO2bj01tH49Bc+llsXg/9b0kmE8gltqOBHX\niU8SLH/gy6CqfiAiyevxNyLytKpem6KZLu6/wC1LOkVENvnw/okbcGvRyVTVpSKyUkSOwo1sn+WP\nf0dEDsQNTs3xHehUBDhN3U6vVaraXUTKcJ3eXQNuwHU2z8INFP7NH8ulXrkJ+L2qPiIiE2n57Gi6\n8pkpTzLVTzNx95lW720i8hSuc1Ch2/58amq8uwT+t1bfbRUtWr8fZgvrNVz9MQZ3XS7FlZENuI5z\nU73jB4kW01w/pgs7W3gTgd+o6m1bJaT1ct6etOZS74ZBunogAazXzM9/pmu/Qfoyme1+k3P5Kbj3\nIOEquKtwsxDZHiwLkwoRuVVETheR4/z3LeRvk4awWCUil4nI8X4GKPkgb1Eb3eTibiUwAHhWRB4H\nvoVrAO2CG31JnRkAt477VOCv4rY5b42XgK+ISJGI9Mc1vpKjta/jlmG+hBu9+Yn/BldJrVfVYapa\njnsuaR2uIfNNcS9AQ0T6ePcbcVPJqbyJe59Tcj37KuBsH2Y1biRwLa6sih8hnBTwPx23DO5bNI+K\nvAEc6md7EJGuIpJtpmYjbhbhr6o6DLc2+c9e/3wyN2zWAUeLe4AeEekjIsNa0SnDjUI2AmfTbOdk\n/jyPG7SYHPCzwMcBf/P/HDe62Rov4d671cXP0GTc5AE3Ivv95B/fyHnex+3AgLsuuFG+c3ANxqf8\n8T7kTjqtZHzP8seOx41kJ3kQ11EfBlSLyLcC/ifgZgyz4sv3SNxza4rrEA3xp1/HjTy+7+N4WbJT\nGyjDi2meQTgtF80A7wP9xT38jYiU5HBtbqRlueuPW1b2J1yHMZUy3AxbHW7JRjIPP8wxjmU0P5if\nGn6mctsawWu+J+6mXOlHP4+HpvuOqOrjuLom2Dj4FLc2P91IcUZU9UFV3c9/Uh+OT8687usPLcAN\nyOzu/5+NW7KajddwHTponm3OhWA5H4lbavR+ipu/ANfq1q97WIyr6xCRsbiZdURkMFCtqn/HdazG\npvh7HVfHJt0ny3PQ3iUB7b/ibJfKHbiH4e9LzpCJyG6q+qaq/gxXL+3C1nX9U8AP/MAVIrK/qlbi\nnjHaX9yL0V/CDbT8Fde574HrNOdKMC3n5uD+OdyMZl8fp2SePA18X0T2EJERgfppP9xs+WBf5yAi\nPSTlPYSq+gVf7vK1eU8+aM/9MMiruA0r1qrbAGctbkD0YFzZaqp3RGQSrp7elvCewrUhuvv4DhGR\nAa2U82B529a0RsUruJUvnX06J+PbOyLyZWh63+a+rQWCu26+6ttvwbZRe+43aSm4DpKqLgl86vyx\nKlV9IuJ4XIJ7IHsAbknYANza03+EpSkiFycb7/7/4yLSq43BfB33IP0Y3AX9I3/86ja6yerO2+da\n3I27P24XuFpcY+Na3AWyFar6Pu5G/G8/25OJB2l+UPV53BrdFf7cy7g16gtxndY+NDdWTsaN+AR5\nD7cO9hFc53cOrlMFbingrSIyR5p3SsIvnfgfmh9qfl1Vg7Mn/8EteVqOaxzeQqAB42/Uj+EaXI/5\nY6txDbx7ROQdXKU5qpU8APdMwUTgGHFLcG7HNbzLcUsHM+1aVe3j9DSuA/EMbvlQJm4GzhWRN3CN\n9eRIzju4wYo5uBmr8cAkccuG+uBGko/APaSctQGgqrNwHcY5uDxsrZF5ETBeRN4RkfnAd3wH4l5g\nhIh85OMxADeztRrXaf0Ed3Nqy8DKVlr++M+BI0RkFm55xSeBtGzBlY/7cMuCjw3E6Rr8zogZKAUO\n926fxXVob/fnHsbdh+bibupzcEslL/JpfUdE3ga+FojjH8XtTpl1F7MgPg2nA9f7MOfQclYnHS/g\nZkQ2i8hSXHkZglsGlK6D8g9c3lbgBjA24Z4pyZXfAr/BlePU8DOV29aYCjwh7v0fb+OWzMzDNcJf\n/f/t3XusXFUVx/HvjwZ5lSDVijGB1IiKDa0vVAqaKCpGUUCDVlOQShOjgRT/aJCECI0iAR8YUoIE\nIhhAtCmv1BKBQmmB0qYIlJZCBBKaiBClKmDxCV3+sdZ0DtO5d+beW9o77e+TnPTMmT3n7DM9d2b2\n2XuvVWX2B/auv9MVtD//IH/wHkjeRNmefkgOySIi/k32gi6q62ALGaygl7nkcPB15GfzmX0e+zJg\nQh1rITC7hn9tFRHPRES3ZOY3ApPqc/XbtKNJTgPW1PZzyJtVzf09Tw6JvamuvdaNpB+Rd+JXNso+\nw9ANk8XkcKerG9t+LGm9pEfJ76JHyOt2an3WzyR7qvYkP+P2qceQf+ObyIZm63toKflj+ZrG91A/\n5pP/h/fWPocVERvI62BFvScX11Nzyc/eJXUuy+r/eCo5wX8msKBes5QdP+pmxEb5fdi0npzbs7pj\n24s1RLH5uTOLvOkw6v3VTYzrgVX1d3ID+Tkx1HXe/JwZ67m+hjKp64OSNiiHByNpjqQnJC2XdKWk\nS2v7ZEk3SnqglqOH2m8N01xMXmM3kaMBXiTfvzl1fW0gf/MM52YqsAuN30aj/L7p/h60R0PYjqQM\n87jNZjKIxKfHsF+R/69bujy3kQwW0PNDdJj996x3v+c2gnI/JX+0vUr+WD4tIp5XIzmt2a6o/kYe\nIgNj9Nsbslurm0DryTDFL/YqPx5JOomMiHXKzq6LgaQjgJ9FxMd6Fh79MQb+urVdh6RJkXPk9iFv\nnn2GvLnzAfLm4DLgkYg4Q9L15NDs+yQdAtweEe8ZZt8TI2JzXfP3kPmQxt3oqd1xDtJ4sZnX3kWA\nbBxMH+mOlHkDfkfevZpBjoeeRt6xuiEizpM0l+zhuFvSpsisxhvJO0YT6/X3kS3tP5Ffzv+qLvVf\nkHdN7yPHyy7vUe9+z63fctszp5PZQFAGCVlCBpxw46gPkj5F9tJcPKg/MiUtIHuFP7ez62Ig6Wyy\n12rW63iMgb9ubZczVzmnEXL46ClkJMy/AUhaRDvIStcARF3msrZcUd9ve5O5/cZd4wjcg9QXZVS1\nbbrolJNtl0TESIZytF77IHBM54ehKlDBCPc1hQxOcFRErG60/CeQ443nRsS6zh6kjgbSU/XcWmVU\nnsURcV0NH/hmRNyvnCd0JvDW4erd77mNoNxKMhLVf+vxgeR48CMi4iDMzMzMbMyU833PJ6MB/1PS\ncuAS4MSIOLXKzCVTBJwhaRNwcHQE+Bh0u90cpF7UMfEQ2pmft7PP046g1/TZUe6vGVLyKzWf4WEy\n58HUoV+21dPREVZTOT9p/4i4v7ZfTwZB6FXvfs+t33KtDM9AZngm5wH1O/bdzMzMzHo7APh7NY4O\nI0OI70sGPDmwfic3g/UMFYBooA10A0nSlOrhaD2epwwxjKS5kh5TToj+TW3bT9JVNYnsYUkn1PbZ\nkhYp47Hf0eU4m+tfSbq09nsrOS9mVCLiuVaPSMf2V7qV78PLVcdWSNlPRsR0MqdGP5MphwoH2umV\nXvXu99xGUG5NRPylY9urETHinE5mZmZmNqTbyCA568jAIqvJqRcXkIFj7iSjDrdG/wwVgGig7cpz\nkM4ms2f/R+1IbeeQ2XlPq21rlDl3IOfuTI/hEyN+kUxCNY2M9/8YOW54POkWUnZ5PdcKCdlXkIbI\nnB3/kHRk9U59teeLzMzMzGwgVXTJbUYzSfp9RFxRPUg3Ux0KNW1j5o6t5etvoHuQelgH/ErSybQT\n4x0LnF2hEpeTPSuH1HNLezSOoJG5NyKeJaN4jCvDhJSFRkjIEexyDjmhbhXZo+QJpGZmZma7l/n1\n+/lRMk/iLTu5Pq+rQe9B6ppduxxHNmiOB76nTBS1Nat1cyfKbNj9ZtfdrlEtJH2LTAB2TZ/ljwem\nRsSFWysUsRE4XJWpOyJmd3ttRCwgs263Hk+p1U3A4Y3tP2m8bENETK9JehPJmPU7RT9BMSTNBu6o\nBqyZmZmZjVFEzOtdatcx6D1IfwbeIulNkvYiJ/23coccHBF3A2eRE/wn0iWr9QiPN1Tm3lGLiMv7\nbRxV+cXNxtH2UvOrul0Px9Udgw8B76cjEd84NJsMZ25mZmZmNmID3UCKiP8B3ycnjS2hncV4AnCd\nMhPxw2SCtxdoZLWu4A4/2Hav3VUo7QvILOQvA2vIOUjnS3pS0oer3CRlBuJ1klZLmi5pD0kbG3Oh\nkPSUpIMkzZc0r7a9Q9JtyuzF91b0kM56zFY7e/HbJa2qoBN9n0vznCQ9LukyMhnlwZKOrX0+pIxz\nf2tEvI9MFPadStD6mjKSJtb+zq26PCrpikZDtO+AGR31GzIoRrdjKZMrHkEOrVwraR9JH5S0ot7T\n26tha2ZmZmbWXUR46WMBppBD+qaRDcsHyTk+Ak4AbqlyC4Dzav0YYG2tXwJ8o9Y/AtxZ6/OBebV+\nF/DORpllXeoxG7i01hcDX6/104HNozinLcCR9fjNZC/ZfvX4u8C5tb6cbHwMV2ZSY9/XAl+o9WeB\nvWr9jfXvBcDJrW3AE619NvbxJWAp2eB9G/ACcFKPYy0n8yNBNobvBybX45nAVTv7WvLixYsXL168\nePEyfpdBn4O0oz0dEesBJG0A7oqIqJ6qKVXmo1R8+IhYVsP/DgAWAucCV5PR4BY2d1y9MEcBi9TO\nRrxXj/ocTTsW/bXARaM4p2b+pCPJnEkrqw5vAFZ1lB+uzCcknUXGy59EBor4Le2AGbfQntR3LHB8\nq/eMdsCMxxvH2hoUA3hWUjMoxlDHano3ObdqadV1AvBcH++JmZmZme2m3EAamWauoC2Nx1tov5fd\ncgcF2Yg4VNJk4ES2ncuzB/BC5HC2kRhr0IhmcAqR0fy+Nkz5rmUk7Q1cRvbe/FGZj6oVNKPvgBld\nbHN+PY7VWdcNETGjxzHMzMzMzIABn4M0Tt0DzAKQ9HFgU0S8FBFBxo2/GHg8Iv7afFFEvAQ8LenL\n9VpJem+PY62knZto1nao+2rgaEmHVh32lfSuPsu0GiibqjfspHp+LAEzhgqK0fVYpZXrCeAPwGRJ\nM+oYe1bjzMzMzMysKzeQtr/5VEZh4ELg1MZzC4GT6Rhe1zALmCPpEXLI2DaBCzqcCZwu6QHggLFU\nGiAinifnOP266r8aOKyfMpFBMK4E1pPD6B6ol4wlYMbNwJO1z58DK6oOQx0L4JfA5crIexPIxtNF\n9Z6uJYcxmpmZmZl1pezYMDMzMzMzM/cgmZmZmZmZFTeQzMzMzMzMihtIZmZmZmZmxQ0kMzMzMzOz\n4gaSmZmZmZlZcQPJzMzMzMysuIFkZmZmZmZW3EAyMzMzMzMr/wd5KSOhlVaj4wAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1a7c9e0190>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Produce a scatter matrix for each pair of features in the data \n", "pd.plotting.scatter_matrix(dataset, alpha = 0.3, figsize = (14,8), diagonal = 'kde');" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Feature Scaling\n", "# Scale the data using the natural logarithm \n", "log_data = np.log(dataset)\n", "# Scale the sample data using the natural logarithm\n", "log_samples = np.log(samples)\n", "# Produce a scatter matrix for each pair of newly-transformed features\n", "pd.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "item_list = (((pd.merge(item,data).sort_values(by = 'movie id')).groupby('movie title')))['movie id', 'movie title', 'rating']\n", "item_list = item_list.mean()\n", "item_list['movie title'] = item_list.index\n", "item_list = item_list.as_matrix()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "recommendation_list = []\n", "for i in recommendation:\n", " recommendation_list.append(item_list[i-1])\n", " \n", "recommendation = (pd.DataFrame(recommendation_list,columns = ['movie id','mean rating' ,'movie title'])).sort_values(by = 'mean rating', ascending = False)\n", "print(recommendation[['mean rating','movie title']])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
neuro-data-mining/materials
very_basic_python_code_testing.ipynb
1
7067
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import warnings\n", "import numpy.testing as npt\n", "import numpy as np\n", "import sys" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Resources\n", "\n", "- Errors & Exceptions in Python:\n", " https://docs.python.org/3/tutorial/errors.html\n", "\n", "- Built-In Excpetions in Python:\n", " https://docs.python.org/2/library/exceptions.html\n", "\n", "- Numpy Testing:\n", " http://docs.scipy.org/doc/numpy/reference/routines.testing.html" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Assert statements" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example: Assert that a specific version of Python is being used" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def check_python_version():\n", " print 'Python version:\\n', sys.version\n", " assert sys.version_info < (3,0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "check_python_version()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def improved_check_python_version():\n", " print 'Python version:\\n', sys.version\n", " try:\n", " assert sys.version_info < (3,0)\n", " except: \n", " raise AssertionError('Incompatible version of Python: use Python version < 3.0')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "improved_check_python_version()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Raising errors\n", "\n", "- Anticipate and catch errors\n", "- Raise a more informative error than the default error" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example: Division in Python versions < 3.0" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def test_type_float(var):\n", " if not isinstance(var, float):\n", " raise TypeError('Expected input type == float')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "f = 1." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Since the input type is a float, no error is raised.\n", "test_type_float(f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "i = 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Since the input type is a list, an error is raised.\n", "test_type_float(i)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def incorrect_divide_by_two(var):\n", " return var / 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print incorrect_divide_by_two(f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print incorrect_divide_by_two(i)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def correct_divide_by_two(var):\n", " '''\n", " Divides input by two.\n", " \n", " INPUT\n", " var : float\n", " '''\n", " test_type_float(var)\n", " return var / 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "correct_divide_by_two?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print correct_divide_by_two(f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print correct_divide_by_two(i)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Raising warnings" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example: Division in Python versions < 3.0" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def divide_by_two(var):\n", " if isinstance(var, int):\n", " warnings.warn('Performing floor division. Input type == int', Warning)\n", " return var / 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "divide_by_two(1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "divide_by_two(np.array([1]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def divide_by_two(var):\n", " if isinstance(var, int):\n", " warnings.warn('Performing floor division. Input type == int', Warning)\n", " if isinstance(var, np.ndarray):\n", " if var.dtype == int:\n", " warnings.warn('Performing floor division. numpy.dtype == int', Warning)\n", " return var / 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "divide_by_two(np.array([1]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
jmhsi/justin_tinker
data_science/courses/temp/courses/dl1/lesson5-movielens.ipynb
1
20047
{ "cells": [ { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Movielens" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "%reload_ext autoreload\n", "%autoreload 2\n", "%matplotlib inline\n", "\n", "from fastai.learner import *\n", "from fastai.column_data import *" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Data available from http://files.grouplens.org/datasets/movielens/ml-latest-small.zip" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "path='data/ml-latest-small/'" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We're working with the movielens data, which contains one rating per row, like this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "ratings = pd.read_csv(path+'ratings.csv')\n", "ratings.head()" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Just for display purposes, let's read in the movie names too." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "movies = pd.read_csv(path+'movies.csv')\n", "movies.head()" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Create subset for Excel" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We create a crosstab of the most popular movies and most movie-addicted users which we'll copy into Excel for creating a simple example. This isn't necessary for any of the modeling below however." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "g=ratings.groupby('userId')['rating'].count()\n", "topUsers=g.sort_values(ascending=False)[:15]\n", "\n", "g=ratings.groupby('movieId')['rating'].count()\n", "topMovies=g.sort_values(ascending=False)[:15]\n", "\n", "top_r = ratings.join(topUsers, rsuffix='_r', how='inner', on='userId')\n", "top_r = top_r.join(topMovies, rsuffix='_r', how='inner', on='movieId')\n", "\n", "pd.crosstab(top_r.userId, top_r.movieId, top_r.rating, aggfunc=np.sum)" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "## Collaborative filtering" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "val_idxs = get_cv_idxs(len(ratings))\n", "wd=2e-4\n", "n_factors = 50" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "cf = CollabFilterDataset.from_csv(path, 'ratings.csv', 'userId', 'movieId', 'rating')\n", "learn = cf.get_learner(n_factors, val_idxs, 64, opt_fn=optim.Adam)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "learn.fit(1e-2, 2, wds=wd, cycle_len=1, cycle_mult=2, use_wd_sched=True)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Let's compare to some benchmarks. Here's [some benchmarks](https://www.librec.net/release/v1.3/example.html) on the same dataset for the popular Librec system for collaborative filtering. They show best results based on [RMSE](http://www.statisticshowto.com/rmse/) of 0.91. We'll need to take the square root of our loss, since we use plain MSE." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "math.sqrt(0.776)" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Looking good - we've found a solution better than any of those benchmarks! Let's take a look at how the predictions compare to actuals for this model." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "preds = learn.predict()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "y=learn.data.val_y\n", "sns.jointplot(preds, y, kind='hex', stat_func=None);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analyze results" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "### Movie bias" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "movie_names = movies.set_index('movieId')['title'].to_dict()\n", "g=ratings.groupby('movieId')['rating'].count()\n", "topMovies=g.sort_values(ascending=False).index.values[:3000]\n", "topMovieIdx = np.array([cf.item2idx[o] for o in topMovies])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "m=learn.model; m.cuda()" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "First, we'll look at the movie bias term. Here, our input is the movie id (a single id), and the output is the movie bias (a single float)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "movie_bias = to_np(m.ib(V(topMovieIdx)))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "movie_bias" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "movie_ratings = [(b[0], movie_names[i]) for i,b in zip(topMovies,movie_bias)]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Now we can look at the top and bottom rated movies. These ratings are corrected for different levels of reviewer sentiment, as well as different types of movies that different reviewers watch." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "sorted(movie_ratings, key=lambda o: o[0])[:15]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "sorted(movie_ratings, key=itemgetter(0))[:15]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "sorted(movie_ratings, key=lambda o: o[0], reverse=True)[:15]" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "### Embedding interpretation" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We can now do the same thing for the embeddings." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "movie_emb = to_np(m.i(V(topMovieIdx)))\n", "movie_emb.shape" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Because it's hard to interpret 50 embeddings, we use [PCA](https://plot.ly/ipython-notebooks/principal-component-analysis/) to simplify them down to just 3 vectors. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "from sklearn.decomposition import PCA\n", "pca = PCA(n_components=3)\n", "movie_pca = pca.fit(movie_emb.T).components_" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "movie_pca.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "fac0 = movie_pca[0]\n", "movie_comp = [(f, movie_names[i]) for f,i in zip(fac0, topMovies)]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Here's the 1st component. It seems to be 'easy watching' vs 'serious'." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "sorted(movie_comp, key=itemgetter(0), reverse=True)[:10]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "sorted(movie_comp, key=itemgetter(0))[:10]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "fac1 = movie_pca[1]\n", "movie_comp = [(f, movie_names[i]) for f,i in zip(fac1, topMovies)]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Here's the 2nd component. It seems to be 'CGI' vs 'dialog driven'." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "sorted(movie_comp, key=itemgetter(0), reverse=True)[:10]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "sorted(movie_comp, key=itemgetter(0))[:10]" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "We can draw a picture to see how various movies appear on the map of these components. This picture shows the first two components." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "idxs = np.random.choice(len(topMovies), 50, replace=False)\n", "X = fac0[idxs]\n", "Y = fac1[idxs]\n", "plt.figure(figsize=(15,15))\n", "plt.scatter(X, Y)\n", "for i, x, y in zip(topMovies[idxs], X, Y):\n", " plt.text(x,y,movie_names[i], color=np.random.rand(3)*0.7, fontsize=11)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Collab filtering from scratch" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "### Dot product example" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "a = T([[1.,2],[3,4]])\n", "b = T([[2.,2],[10,10]])\n", "a,b" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "a*b" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "(a*b).sum(1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "class DotProduct(nn.Module):\n", " def forward(self, u, m): return (u*m).sum(1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "model=DotProduct()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "model(a,b)" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "### Dot product model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "u_uniq = ratings.userId.unique()\n", "user2idx = {o:i for i,o in enumerate(u_uniq)}\n", "ratings.userId = ratings.userId.apply(lambda x: user2idx[x])\n", "\n", "m_uniq = ratings.movieId.unique()\n", "movie2idx = {o:i for i,o in enumerate(m_uniq)}\n", "ratings.movieId = ratings.movieId.apply(lambda x: movie2idx[x])\n", "\n", "n_users=int(ratings.userId.nunique())\n", "n_movies=int(ratings.movieId.nunique())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "class EmbeddingDot(nn.Module):\n", " def __init__(self, n_users, n_movies):\n", " super().__init__()\n", " self.u = nn.Embedding(n_users, n_factors)\n", " self.m = nn.Embedding(n_movies, n_factors)\n", " self.u.weight.data.uniform_(0,0.05)\n", " self.m.weight.data.uniform_(0,0.05)\n", " \n", " def forward(self, cats, conts):\n", " users,movies = cats[:,0],cats[:,1]\n", " u,m = self.u(users),self.m(movies)\n", " return (u*m).sum(1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "x = ratings.drop(['rating', 'timestamp'],axis=1)\n", "y = ratings['rating'].astype(np.float32)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "data = ColumnarModelData.from_data_frame(path, val_idxs, x, y, ['userId', 'movieId'], 64)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "wd=1e-5\n", "model = EmbeddingDot(n_users, n_movies).cuda()\n", "opt = optim.SGD(model.parameters(), 1e-1, weight_decay=wd, momentum=0.9)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "fit(model, data, 3, opt, F.mse_loss)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "set_lrs(opt, 0.01)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "fit(model, data, 3, opt, F.mse_loss)" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "### Bias" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "min_rating,max_rating = ratings.rating.min(),ratings.rating.max()\n", "min_rating,max_rating" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "def get_emb(ni,nf):\n", " e = nn.Embedding(ni, nf)\n", " e.weight.data.uniform_(-0.01,0.01)\n", " return e\n", "\n", "class EmbeddingDotBias(nn.Module):\n", " def __init__(self, n_users, n_movies):\n", " super().__init__()\n", " (self.u, self.m, self.ub, self.mb) = [get_emb(*o) for o in [\n", " (n_users, n_factors), (n_movies, n_factors), (n_users,1), (n_movies,1)\n", " ]]\n", " \n", " def forward(self, cats, conts):\n", " users,movies = cats[:,0],cats[:,1]\n", " um = (self.u(users)* self.m(movies)).sum(1)\n", " res = um + self.ub(users).squeeze() + self.mb(movies).squeeze()\n", " res = F.sigmoid(res) * (max_rating-min_rating) + min_rating\n", " return res" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "wd=2e-4\n", "model = EmbeddingDotBias(cf.n_users, cf.n_items).cuda()\n", "opt = optim.SGD(model.parameters(), 1e-1, weight_decay=wd, momentum=0.9)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "fit(model, data, 3, opt, F.mse_loss)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "set_lrs(opt, 1e-2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "fit(model, data, 3, opt, F.mse_loss)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Mini net" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "code_folding": [] }, "outputs": [], "source": [ "class EmbeddingNet(nn.Module):\n", " def __init__(self, n_users, n_movies, nh=10, p1=0.05, p2=0.5):\n", " super().__init__()\n", " (self.u, self.m) = [get_emb(*o) for o in [\n", " (n_users, n_factors), (n_movies, n_factors)]]\n", " self.lin1 = nn.Linear(n_factors*2, nh)\n", " self.lin2 = nn.Linear(nh, 1)\n", " self.drop1 = nn.Dropout(p1)\n", " self.drop2 = nn.Dropout(p2)\n", " \n", " def forward(self, cats, conts):\n", " users,movies = cats[:,0],cats[:,1]\n", " x = self.drop1(torch.cat([self.u(users),self.m(movies)], dim=1))\n", " x = self.drop2(F.relu(self.lin1(x)))\n", " return F.sigmoid(self.lin2(x)) * (max_rating-min_rating+1) + min_rating-0.5" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "wd=1e-5\n", "model = EmbeddingNet(n_users, n_movies).cuda()\n", "opt = optim.Adam(model.parameters(), 1e-3, weight_decay=wd)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fit(model, data, 3, opt, F.mse_loss)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "set_lrs(opt, 1e-3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fit(model, data, 3, opt, F.mse_loss)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" }, "toc": { "colors": { "hover_highlight": "#DAA520", "navigate_num": "#000000", "navigate_text": "#333333", "running_highlight": "#FF0000", "selected_highlight": "#FFD700", "sidebar_border": "#EEEEEE", "wrapper_background": "#FFFFFF" }, "moveMenuLeft": true, "nav_menu": { "height": "123px", "width": "252px" }, "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 4, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false, "widenNotebook": false } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
McDermott-Group/Simulation
Microwave Design/Transmission Lines/QuarterWave Resonators/QuarterWaveResonatorCalculations.ipynb
1
8411
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Motivation\n", "\n", "We need to have a very good method of selecting resonator lengths such that we minimize the time it takes to fabricate suitable frequency-targeted qubit devices for readout with an amplifier. We must also ensure that these devices are spaced in frequency enough such that individual readout resonators are easily resolved in frequency and phase space for a given coupling rate $\\kappa$. \n", "\n", "# Method\n", "## Capacitance and Inductance of Bare CPW (no crossovers)\n", "\n", "Using the geometry alone, one is able to calculate the phase velocity of the CPW by finding the the capacitance per unit length. (See [Goppel](http://arxiv.org/pdf/0807.4094v1.pdf) and [Gupta](https://www.scribd.com/doc/112426565/Gupta-Et-Al-1996-Microstrip-Lines-and-Slotlines-2nd-Ed) (p. 382) for details.) The calculation to be done are\n", "\n", "The total line capacitance per unit length (Gupta 7.8c) becomes\n", "\n", "\\begin{align}\n", "C_l &= 2\\epsilon_0\\left(\\epsilon_r+1\\right)\\frac{K(k_0)}{K(k'_0)}\n", "\\end{align}\n", "\n", "where $K(m)$ is the complete elliptic integral of the first kind and $k_0$ is a geometry dependent terms\n", "\n", "\\begin{align}\n", "k_0 &= \\frac{w}{w+2s},\\\\\n", "k'_0 &= \\sqrt{1-k_0^2}.\n", "\\end{align}\n", "\n", "Using only the geometry and materials information, we are able to calculate the characteristic impedance of the CPW along with the phase velocity and relative permittivity of the CPW.\n", "\n", "## Lumped Element Approximation (LEA)\n", "\n", "We know that the resonance frequency of the cavity will be pulled by adding in extra capacitances (grounding straps, the coupling capacitance $C_{\\kappa}$, the qubit pocket, etc.) and inductances (say from coupling in inductively). The frequency that we specify in the function `calcQuarterWavelength()` below is the frequency we desire *after* taking these capacitances into account.\n", "\n", "For now just the basics: use the desired frequency $\\omega'$ and calculated $Z_0$ of the CPW resonator to calculate an effective $L_{LEA}$,$C_{LEA}$ (Pozar 6.34), resonant circuit. This lumped element circuit will ring at the target frequency $\\omega'$ following\n", "\n", "\\begin{align}\n", "\\omega' &= \\frac{1}{\\sqrt{L_{tot}C_{tot}}} \\mbox{ where}\\\\\n", "C_{tot} &= C_{LEA} + C_{parasitic} \\mbox{ and}\\\\\n", "L_{tot} &= L_{LEA} + L_{parasitic}.\n", "\\end{align}\n", "\n", "The desired action now is to strip the parasitics out and calculate $\\omega_0$, the original frequency of the resonator before it gets pulled down. From Pozar,\n", "\n", "\n", "\\begin{align}\n", "C_{LEA} &= \\frac{\\pi}{4\\omega_0Z_0},\\\\\n", "L_{LEA} &= \\frac{1}{\\omega_0^2C_{LEA}},\\\\\n", "\\end{align}\n", "\n", "which can be used to find\n", "\n", "\\begin{align}\n", "\\omega_0 &= \\left(\\frac{1}{2}\\left(-\\frac{1}{\\delta\\omega} + \\sqrt{-4C_{parasitic}L_{parasitic}+\\frac{1}{(\\delta\\omega)^2} + \\frac{4}{\\omega'^2}}\\right )\\right)^{-1}\n", "\\end{align}\n", "\n", "where\n", "\n", "\\begin{align}\n", "\\frac{1}{\\delta\\omega}&=\\frac{L_{parasitic}\\pi}{4Z_0}+\\frac{4C_{parasitic}Z_0}{\\pi}.\n", "\\end{align}\n", "\n", "(n.b.: in the $\\pm$ of solving the quadratic, the $-$ is non-physical, so the function below only uses $+$.) After we have the non-pulled frequency of the resonator, we can find the half-wavelength by using the already calculated phase velocity set by the geometry as\n", "\n", "\\begin{align}\n", "\\frac{\\lambda}{4} &= \\frac{\\pi v_{ph}}{2\\omega_0}.\n", "\\end{align}\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Coupling Rates\n", "\n", "We know that the coupling to the shorted end of the resonator will result in an additional inductance to the circuit above. The coupling quality will be \n", "\n", "\\begin{align}\n", "Q_c &= \\frac{2 Z_0 L_{LEA}}{\\omega_0 M^2},\n", "\\end{align}\n", "\n", "where $M$ is the mutual inductance between the resonator and the common feedline. This makes the coupling rate of the resonator to the cavity\n", "\n", "\\begin{align}\n", "\\kappa &= \\frac{\\left(\\omega_0 M\\right)^2}{2Z_0L_{LEA}}.\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Some non-pythonic code" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "import numpy as np\n", "import scipy as sp\n", "from scipy import special\n", "import re\n", "import os\n", "\n", "from collections import namedtuple\n", "from scipy.constants import speed_of_light,mu_0,epsilon_0,pi\n", "\n", "from QuarterWave import *\n", "\n", "### Resonator Parameters ###\n", "# Center trace width (um)\n", "CPW_w = 10\n", "\n", "# Gap from center trace to GND (symmetric on both sides) (um)\n", "CPW_s = 6\n", "\n", "# Target resonator frequency (Hz)\n", "LEA_f0 = 6.6 * 10**9 \n", "\n", "# Target coupling quality factor\n", "RES_Qc = 1e5\n", "\n", "# Substrate relative permittivity\n", "SUB_er = 11.7 # intrinsic silicon\n", "\n", "### Parasitics ###\n", "\n", "# Qubit pocket to ground is 10 fF in series with 60 fF\n", "LEA_Cqb = 10.6*62/(10.6+62) * 1e-15 # (F)\n", "\n", "# Coupling capacitance to SFQ driver at the end of the resonator\n", "LEA_Csfq = 12e-15 # (F)\n", "\n", "# Total parasitic capacitance\n", "Cparasitic = LEA_Cqb + LEA_Csfq" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "---- Resonator 0 ----\n", "\n", "Coupling Q: 75000\n", "Target Center F: 6.55 GHz\n", "Coupling Mutual: 7.05 pH\n", "Unpulled F: 6.644 GHz\n", "lambda/4 length: 4476.47 um\n", "Required ext. l: 346.87 um \n", "\n", "\n", "---- Resonator 1 ----\n", "\n", "Coupling Q: 10000\n", "Target Center F: 6.65 GHz\n", "Coupling Mutual: 18.71 pH\n", "Unpulled F: 6.885 GHz\n", "lambda/4 length: 4320.14 um\n", "Required ext. l: 146.53 um \n", "\n", "\n" ] } ], "source": [ "RES_Qc = [75000, 10000]\n", "LEA_f0 = [6.55e9, 6.65e9]\n", "LEA_Csfq = [0, 12e-15]\n", "static_lengths = [3029+60, 3609+125]\n", "for n in range(len(RES_Qc)):\n", " Cparasitic = LEA_Cqb + LEA_Csfq[n]\n", " RES_params = calcQuarterWavelength(CPW_w,CPW_s,LEA_f0[n],SUB_er,Cparasitic,0)\n", " LEA_mutual = calcMutual(RES_params.z0, RES_params.L, 2*pi*RES_params.f0, RES_Qc[n])\n", " resonator = calcQuarterWavelength(CPW_w,CPW_s,LEA_f0[n],SUB_er,Cparasitic,LEA_mutual)\n", " \n", " print '---- Resonator {0} ----\\n'.format(n)\n", " print 'Coupling Q: {0}'.format(RES_Qc[n])\n", " print 'Target Center F: {0} GHz'.format(LEA_f0[n]/float(1e9))\n", " print 'Coupling Mutual: {:.2f} pH'.format(LEA_mutual*10**12)\n", " print 'Unpulled F: {:.3f} GHz'.format(resonator.f0/float(1e9))\n", " print 'lambda/4 length: {:.2f} um'.format(resonator.quarterlength*10**6)\n", " print 'Required ext. l: {:.2f} um \\n\\n'.format((resonator.quarterlength*10**6 - static_lengths[n])/float(4))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "py-mcdermott", "language": "python", "name": "py-mcdermott" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-2.0
mne-tools/mne-tools.github.io
0.20/_downloads/dfd4175ec1a2c7f21de3596573c74301/plot_multidict_reweighted_tfmxne.ipynb
1
6294
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Compute iterative reweighted TF-MxNE with multiscale time-frequency dictionary\n\nThe iterative reweighted TF-MxNE solver is a distributed inverse method\nbased on the TF-MxNE solver, which promotes focal (sparse) sources [1]_.\nThe benefit of this approach is that:\n\n - it is spatio-temporal without assuming stationarity (sources properties\n can vary over time),\n - activations are localized in space, time and frequency in one step,\n - the solver uses non-convex penalties in the TF domain, which results in a\n solution less biased towards zero than when simple TF-MxNE is used,\n - using a multiscale dictionary allows to capture short transient\n activations along with slower brain waves [2]_.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Author: Mathurin Massias <[email protected]>\n# Yousra Bekhti <[email protected]>\n# Daniel Strohmeier <[email protected]>\n# Alexandre Gramfort <[email protected]>\n#\n# License: BSD (3-clause)\n\nimport os.path as op\n\nimport mne\nfrom mne.datasets import somato\nfrom mne.inverse_sparse import tf_mixed_norm, make_stc_from_dipoles\nfrom mne.viz import plot_sparse_source_estimates\n\nprint(__doc__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load somatosensory MEG data\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data_path = somato.data_path()\nsubject = '01'\ntask = 'somato'\nraw_fname = op.join(data_path, 'sub-{}'.format(subject), 'meg',\n 'sub-{}_task-{}_meg.fif'.format(subject, task))\nfwd_fname = op.join(data_path, 'derivatives', 'sub-{}'.format(subject),\n 'sub-{}_task-{}-fwd.fif'.format(subject, task))\n\ncondition = 'Unknown'\n\n# Read evoked\nraw = mne.io.read_raw_fif(raw_fname)\nevents = mne.find_events(raw, stim_channel='STI 014')\nreject = dict(grad=4000e-13, eog=350e-6)\npicks = mne.pick_types(raw.info, meg=True, eog=True)\n\nevent_id, tmin, tmax = 1, -1., 3.\nepochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,\n reject=reject, preload=True)\nevoked = epochs.filter(1, None).average()\nevoked = evoked.pick_types(meg=True)\nevoked.crop(tmin=0.008, tmax=0.2)\n\n# Compute noise covariance matrix\ncov = mne.compute_covariance(epochs, rank='info', tmax=0.)\n\n# Handling forward solution\nforward = mne.read_forward_solution(fwd_fname)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run iterative reweighted multidict TF-MxNE solver\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "alpha, l1_ratio = 20, 0.05\nloose, depth = 1, 0.95\n# Use a multiscale time-frequency dictionary\nwsize, tstep = [4, 16], [2, 4]\n\n\nn_tfmxne_iter = 10\n# Compute TF-MxNE inverse solution with dipole output\ndipoles, residual = tf_mixed_norm(\n evoked, forward, cov, alpha=alpha, l1_ratio=l1_ratio,\n n_tfmxne_iter=n_tfmxne_iter, loose=loose,\n depth=depth, tol=1e-3,\n wsize=wsize, tstep=tstep, return_as_dipoles=True,\n return_residual=True)\n\n# Crop to remove edges\nfor dip in dipoles:\n dip.crop(tmin=-0.05, tmax=0.3)\nevoked.crop(tmin=-0.05, tmax=0.3)\nresidual.crop(tmin=-0.05, tmax=0.3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generate stc from dipoles\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "stc = make_stc_from_dipoles(dipoles, forward['src'])\n\nplot_sparse_source_estimates(forward['src'], stc, bgcolor=(1, 1, 1),\n opacity=0.1, fig_name=\"irTF-MxNE (cond %s)\"\n % condition)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Show the evoked response and the residual for gradiometers\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ylim = dict(grad=[-300, 300])\nevoked.pick_types(meg='grad')\nevoked.plot(titles=dict(grad='Evoked Response: Gradiometers'), ylim=ylim,\n proj=True)\n\nresidual.pick_types(meg='grad')\nresidual.plot(titles=dict(grad='Residuals: Gradiometers'), ylim=ylim,\n proj=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n.. [1] D. Strohmeier, A. Gramfort, J. Haueisen\n \"MEG/EEG Source Imaging with a Non-Convex Penalty in the Time-Frequency\n Domain\", 5th International Workshop on Pattern Recognition in\n Neuroimaging (PRNI), 2015\n DOI: 10.1109/PRNI.2015.14\n\n.. [2] Y. Bekhti, D. Strohmeier, M. Jas, R. Badeau, A. Gramfort\n \"M/EEG Source Localization with Multi-Scale Time-Frequency Dictionaries\"\n 6th International Workshop on Pattern Recognition in\n Neuroimaging (PRNI), 2016\n DOI: 10.1109/PRNI.2016.7552337\n\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.8" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
SGenheden/lammps
python/examples/ipython/interface_usage_bonds.ipynb
1
184005
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Using LAMMPS with iPython and Jupyter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "LAMMPS can be run interactively using iPython easily. This tutorial shows how to set this up." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Installation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Download the latest version of LAMMPS into a folder (we will calls this `$LAMMPS_DIR` from now on)\n", "2. Compile LAMMPS as a shared library and enable PNG support\n", " ```bash\n", " cd $LAMMPS_DIR/src\n", " make yes-molecule\n", " python2 Make.py -m mpi -png -a file\n", " make mode=shlib auto\n", " ```\n", "\n", "3. Create a python virtualenv\n", " ```bash\n", " virtualenv testing\n", " source testing/bin/activate\n", " ```\n", "\n", "4. Inside the virtualenv install the lammps package\n", " ```\n", " (testing) cd $LAMMPS_DIR/python\n", " (testing) python install.py\n", " (testing) cd # move to your working directory\n", " ```\n", "\n", "5. Install jupyter and ipython in the virtualenv\n", " ```bash\n", " (testing) pip install ipython jupyter\n", " ```\n", "\n", "6. Run jupyter notebook\n", " ```bash\n", " (testing) jupyter notebook\n", " ```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from lammps import IPyLammps" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LAMMPS output is captured by PyLammps wrapper\n" ] } ], "source": [ "L = IPyLammps()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# 2d circle of particles inside a box with LJ walls\n", "import math\n", "\n", "b = 0\n", "x = 50\n", "y = 20\n", "d = 20\n", "\n", "# careful not to slam into wall too hard\n", "\n", "v = 0.3\n", "w = 0.08\n", " \n", "L.units(\"lj\")\n", "L.dimension(2)\n", "L.atom_style(\"bond\")\n", "L.boundary(\"f f p\")\n", "\n", "L.lattice(\"hex\", 0.85)\n", "L.region(\"box\", \"block\", 0, x, 0, y, -0.5, 0.5)\n", "L.create_box(1, \"box\", \"bond/types\", 1, \"extra/bond/per/atom\", 6)\n", "L.region(\"circle\", \"sphere\", d/2.0+1.0, d/2.0/math.sqrt(3.0)+1, 0.0, d/2.0)\n", "L.create_atoms(1, \"region\", \"circle\")\n", "L.mass(1, 1.0)\n", "\n", "L.velocity(\"all create 0.5 87287 loop geom\")\n", "L.velocity(\"all set\", v, w, 0, \"sum yes\")\n", "\n", "L.pair_style(\"lj/cut\", 2.5)\n", "L.pair_coeff(1, 1, 10.0, 1.0, 2.5)\n", "\n", "L.bond_style(\"harmonic\")\n", "L.bond_coeff(1, 10.0, 1.2)\n", "\n", "L.create_bonds(\"all\", \"all\", 1, 1.0, 1.5)\n", "\n", "L.neighbor(0.3, \"bin\")\n", "L.neigh_modify(\"delay\", 0, \"every\", 1, \"check yes\")\n", "\n", "L.fix(1, \"all\", \"nve\")\n", "\n", "L.fix(2, \"all wall/lj93 xlo 0.0 1 1 2.5 xhi\", x, \"1 1 2.5\")\n", "L.fix(3, \"all wall/lj93 ylo 0.0 1 1 2.5 yhi\", y, \"1 1 2.5\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAAAG3RFWHRTb2Z0d2FyZQBMQU1NUFMg\nMTUgSnVsIDIwMTZ/hHVIAAAgAElEQVR42uzdeXxV5dn/+8+99jxmJCGQhDCHeVJEaJ0VEcQJnAfU\nFgW1DhUrTuBQa61trWOd6tBqHSoOiKKWIsgoyDyEkBESApmTPSR7Z+99nz8WK8Y+zznn9zu1v2N9\nrverf/Xq3uteezX5srKva91Ka40QQoj/eQz5CIQQQgJACCGEBIAQQggJACGEEBIAQgghJACEEEJI\nAAghhJAAEEIIIQEghBBCAkAIIYQEgBBCCAkAIYQQEgBCCCEkAIQQQkgACCGEkAAQQgghASCEEEIC\nQAghhASAEEIICQAhhBASAEIIISQAhBBCSAAIIYSQABBCCAkAIYQQEgBCCCEkAIQQQkgACCGEkAAQ\nQgghASCEEEICQAghhASAEEIICQAhhBASAEIIISQAhBBCSAAIIYSQABBCCCEBIIQQQgJACCGEBIAQ\nQggJACGEEBIAQgghJACEEEJIAAghhJAAEEIIIQEghBBCAkAIISQAhBBCSAAIIYSQABBCCCEBIIQQ\nQgJACCGEBIAQQggJACGEEBIAQgghJACEEEJIAAghhJAAEEIIIQEghBBCAkAIIYQEgBBCCAkAIYQQ\nEgBCCCEkAIQQQkgACCGEkAAQQgghASCEEEICQAghhASAEEIICQAhhBASAEIIIQEghBBCAkAIIYQE\ngBBCCAkAIYQQEgBCCCEkAIQQQkgACCGEkAAQQgghASCEEEICQAghhASAEEIICQAhhBASAEIIISQA\nhBBCSAAIIYSQABBCCCEBIIQQQgJACCGEBIAQQggJACGEEBIAQggh/hv27+qNmpvtmZmBVKpDPlMh\nhPj3OXgwvmyZnj9ff18CoLzcNnDgIsg3jHfk8gghxL9Pv34bhgxpvfBC9fbb/2oGfDcB4HK5IAsi\nEJPLI4QQ/z6dnToaJTPzO3ir7yYA2tuT8DUkI5GtDQ1xuUJCCPHvUFR0SnNzPBJBqe9NAPS0a1e0\nuloukxBCfMduuOEWKPsO39D+71hlSQmbN8vFEkKI78yyZenf+Xva/01rXb9eywUTQojvSnNzxnf+\nnjIHIIQQ/0NJAAghhASAEEIICQAhhBASAEIIISQAhBBCSAAIIYSQABBCCCEBIIQQQgJACCGEBIAQ\nQggJACGEEBIAQgghJACEEEJIAAghhJAAEEIIIQEghBBCAkAIIYQEgBBCCAkAIYQQEgBCCCEkAIQQ\nQkgACCGEkAAQQgghASCEEBIAQgghJACEEEJIAAghhJAAEEIIIQEghBBCAkAIIYQEgBBCCAkAIYQQ\nEgBCCCEkAIQQQkgACCGEkAAQQgghASCEEEICQAghhASAEEIICQAhhBASAEIIISQAhBBCSAAIIYSQ\nABBCCCEBIIQQQgJACCGEBIAQQkgAyEcghBASAEIIISQAhBBCSAAIIYSQABBCCCEBIIQQQgJACCGE\nBIAQQggJACGEEBIAQgghJACEEEJIAAghhJAAEEIIIQEghBBCAkAIIYQEgBBCCAkAIYQQEgBCCCEk\nAIQQQkgACCGEkAAQQgghASCEEEICQAghhASAEEJIAAghhJAAEEIIIQEghBBCAkAIIYQEgBBCCAkA\nIYQQEgBCCCEkAIQQQkgACCGEkAAQQgghASCEEEICQAghhASAEEIICQAhhBASAEIIISQAhBBCSAAI\nIYSQABBCCCEBIIQQQgJACCGEBIAQQggJACGEEBIAQgghASCEEEICQAghhASAEEIICQAhhBASAEII\nISQAhBBCSAAIIYSQABBCCCEBIIQQQgJACCGEBIAQQggJACGEEBIAQgghJACEEEJIAAghhJAAEEII\nIQEghBBCAuA/yVal4i5X0uWqUOpNpf6pGnI48HgOGcYnSl38X6pCCCEB8B9s3KBBzp//3DZt2oBg\ncDA81PO3fHZ2YP58LrmkT07OAKVOkg9LCCEB8INRarczfTo33sikSfj9hlI+YNSoo/857jhuvpnT\nTycz01DKBZfLTYAQ4t/PLh/B/wFtQEkJr7zC2rWtoVCT1q2A03m0XFfHG2+wb59ubGzUugXc8pEJ\nISQAfhh2J5MZa9b02bGjORwuj0T2QzO8umWLWR3rcg2qq4vEYpXt7fu1roYu+ciEEBIAPwz/gEgk\nkhWJxOEIlEIc7rKqt8Ziuw8f1tAIpdAB1fKRCSEkAH4YXjvlFO68c/YZZwBRsMGvDSMjlXpca7Kz\nWbfuvKFDndAODnjW6fxbPC4fmhDi302+BP63KzcMnnqKxYsvAj/coNSHY8YUZ2ZONcsvvMBvf3uL\nUplwPnw4eHDfPn2Og3Ple2AhhATA/xl7lMLr7XQ6dyn11Ld/+W5WKul2J93uCqXe+C+/l6NOp9nC\nv0ypC79dbbLb8XozlFo9fPieTZtWwctaL9G6pqpKFRRM83jCDseW889vfeut1VqXwk+13lxdTVbW\nJLf7bYejRKkXvv2G25WKu1za7a42jL/93wwTHDGMz5S65NvVwzYbXm+r3b5eqV9ItAghJAC6lSo1\n/KSTWLDAfdxxA1yu4TDP+i25Qaljhg2z3XGHberUAYHAYLi/5y/Q3FzvzTdz8cV9evUaACf2DAav\nN2vOHK67LrOoqL9hbOvq2gfAi1onQyEKCrj1Vv+oUf3t9rVtbbtghdaAOx7HbueOO5w//vFAj6cY\nbutxuDEDBjhvv13NnNkvLW0QPNJzJZmZgfnzufLK3Ly8/kqd0jOHXK7el17KDTekDxpUZLMdC9Ml\nA4QQ8h2AqU8wyBVXcPLJ1NY6tm+3xWLpwJgxQLbdzsyZXH89L77Ixo1GKOSzSgBTpnDjjXzxBevW\nGY2NrlSqu+QtLuaGG2huZuNG48ABRyqVb72wX24uP/kJ/fuzd6+tpMSeSPSySjkeDxdfzAUX0Nrq\n2LrV6OgIWqW9u3YNu+465s/nzTdZv161tXm1/mYlxxzDTTexbRvr1hlHjriSySuVem30aCCrf3/m\nzUMptmwxKivtyWSeXHIhhASAqSWZ9K9aRWUl27cfisWaIAIYBtAO7NjBSy+xZk1TJNIILVYJ4OBB\nXn2VPXu6mpoatP5WqbWVd96hpYXa2vpUqhmcVrWtszNt+XL8fkpL67q6mo7ejBlAWyqVs2EDra1s\n3lzb0dEErVapBSgp4U9/4quv2tvbG//pcHV1/OUvVFTQ0NCQSjWDq7saCvHee8RiVFXVJ5NHVyKE\n+B9Paa3/9XfZs8c1fPhlkIxEPly5svXTT3nySf0f9Cl8YBjHBINBt7uuvb28o2MHVMOx5q9lmOLz\n5QUCjeFwRSSyR+sSGG+9cILL1T89PdLZWRkKlaRSW2GcVRpqtw/PyEimUtVtbfsTiU3QClMA6GsY\nY9PT3TZbTXt7WSy2FergOAD8cFwwmOnxHAmFyjs6dmpdAccAoGGy15sfDLZGIhWRyN5UalePlYxx\nOgdlZHTG45Xt7aXJ5GZos/4kNdBmG5mRoeBAW9v+rq6voRFe0Fr+3y/Ef5Dm5ozMzDlQdujQilWr\nOlav5tln/9WfYrkDAPhc6/q2Nn9bWxQOQi1E4E4ApkE4EsmMROJQB+UQs0rAglgs78gRDQ2w79ul\n+YlEeUODDVqgHNqgwapelkrVNDd7IATVcATardL50NzeHmxv74BaOAAdVulECEej2dFooscwQffh\nbo3H9xw5AjTBfohCjVX9aTJZ2djogDaohGZokksuhJAAMD315JPU11/44IMxSMJHhYVrDxxog2Va\nc955zJlzwbnnAp1gwCNKBbR+Wmvy8/n003NGjnRCGBzwtMMxsqvr51ofsNsL9+49a8gQP7SBC/7i\n9y8Lhz80/9396ae8/vqFf/5zFBQszcn5vL7+bbN0zz306jX7llsS0AUfDRiwqaKiE/6mNVOm8PDD\n5590kmENE/zWZuuTTP5K62R6um3z5pmDB7uhHZzwgsu1JBb7u9b7lBq6Ywc333zhypUhsMM7aWmf\ntLXJRRdCSBcQFBZy0kmp55+fBAoecrno1avY45kFBx0OHn2UBx64APzwM8NYOnZscWbmWbBZKV5+\nmV/96ialMuFC+HDIkIK8vONhhlKFd9/NRx89YrfnwLHwVl5esLBwtGHcqBQ//jFOZ8N77w2FVfBE\nIEB+/jCH43dK6YwMrrqK3//+FHDCPQ4HGRnFfv8sKDUMnnuORYuugDSYq9TSUaOGZGeb3T62Z5/l\niSfuUCoLpsOHAwbk5ucfC7OUGvqTn7B16/61a3NhGLyane0uLBxps90ljUBCCP1d2L3bqfXVWl8Z\nDqcvXcqNN343b/uv2wLa7U66XGXw52+fbBl0Op3a7a5Rail8BnNBa/0IpAoL9ZAh2uttNIwvYJvd\nfgNora+HQxkZeuxY7fWG7PbNcMTvv9t62y0ul54wQXs8MadzD+jCwqdhNmitPzEMPXZs0uVKuVyV\noE844V24GrTWL4IeMkT366c9njqllsNqpa4HrfVCiOTl6eHDtdfbYrOthX1O542gtb4QygMBPX68\n9nqjdvs2CGdk/BKmgtZ6ncNhrqTL6SwFXVz8J7gMtNZLlNKjRpnDBAeUeu+//B+g3W7XHk+9YayA\nK/m+XEchRFNTuta3aD2jttbzxhtcf/138OP5Q74D2KzUuDFjWLjQOP30gX7/YLi3xz97B/bt6/r5\nz7noor5ZWf1hLzynNfALrRPNzZx2GnPnZhUWFhnGjkSiBIBnzRb+wYO57Tb/iBFFdvvGcHiP9Yae\nWAyvlzvvdE6ePMDtXnXgQAmYf9h5L5Wio8O48041Y0ZRWtqW1av3wp+0Bq7VmpYWZs/m8st75+b2\nV2qP1uUAPKx1oqWF44/nhhvSBwzoZxhb43Gz9JbWRiRCnz4sWOAZN67I4fiypWUvLNca8HV1YRgs\nXGg/+eSBXu+6kpIS+IvWwOtaEwo5Fizg/PMLMjIGwG973gqkpwduuIFrr+3Vt2+RUifBSXKjIIR8\nB/CfKMvh4JxzuPZa4nE2blThsA8YZ/Xp/PjHzJvH8uWsWaOamlxad5ccI0Ywbx41Naxdq2pqHKlU\ngfXC/Lw8rr2W3Fy2bTP27bMlEjlWKdfv55JLOOss6uocW7canZ1pVunnNhvTpjF3Lq++yvr1qr3d\n2+NwTJzI/PmsX8+aNaq+3ql193sGBw3iuuvo6GDDBqOqypFK5Vmloqws5sxh+HD27rXt3m3r6sqy\nStluNxdcwGWX0dZmbNqkotGAVfrb2LGMH8/117NkCWvXqpYWd8+VjB3LvHmUlLBmjTp0yJlM9pMf\nESEkAP4TtWvNli288ALr1tVHIkd76lOpo+XKSl56iZ07O5qbj/bUd5caG3n9dRoaOHTIbJx3WdVw\nNOpfuhSnk/37DycSTeYnmEoBLclkxpdfUlvLli01nZ2N5gxBKoV53F27eOEF1q9v6W7h7z5cTQ0v\nv8z+/cmGhgatm839AMxqWxtvv004zIEDR5LJJrOFP5UCGuPx7E8/ZeNG9uwxhwmSVqktleqzcSPR\nKBs31nV0NJkzBN2HKy3lxRf5+utwa+s/r+TIEf78Zw4e5PDh+u5hAiHED9QPeQ7gz0od7/Pl+nyN\nkUhFNLpb69IeffrHulxFaWmhzs7KcLgkldoB1kwtw+324oyMRCJRHQqVJhKboM1q4S80jNHp6U7D\nqGlvL4vHt8IRmGj++QSODQbT3e7DZgs/VFt9+gZM9nr7BALNZgu/1nthrHW4cU7nwPT0aCxWFQ7v\nSya3QovVwj/EZhuekUEqdaC9vTSR+Bqa4XgA8pQal5bmcTgOtbeXxWLb4ZA1MeCFSX5/ltfbEA6X\nd3Ts1rq8x4lPcrsLgsH2jo6KSKQkldrV48RHORxD0tNjXV3VoVBpMrkJ2uFlmRgQ4ntA5gD+9/wD\n2iORjEgkBnVQATG4w6oujMV619enoB72QVeP0s8Sif0NDQa0QBmE4LBVnZNKHWxuNrstq6ARWq3S\nhdDY3h5ob49CLRyEqFU6A0LRaFY02gWHoQziPQ53Rzy+p76+ez+ATqiEZQDMTyYrGhvt0AoV0AqN\n1gsv0/pQa6sXwnAADkPIKp0PLeFwejjcCYegCjp7HO6ezs6czs6EdeKJHqVbu7r2NTQoaIIyiECt\n/NgJIX8C+k/08pw5nHba+ZdfnoIuUPArpdxav6A1Q4bw1lszx493QBTs8JTdPiyR+IXWR1yu3D17\npg0a5IMQOOHPPt/SSORjrTcrdcyXX/L7389assTsxF/aq9fyhoa/mf9GfuwxYrEL7rmnC1LwUVHR\nxqqqDnhPa6ZN42c/O++ss4AYGPCYYeSkUo9pTW4uq1bNGDbMbQ0TPO90vhuP36h1pc3Wf/durr56\n1oYN5kreCgY/bm//wDzchx+ydOmsF1/sBOCjvLyVdXVvmaXbbmPIkAvmzUtAApYNHry1rCyp9V+1\nZsIEnnzynClTbNABdnjcZuufTC7SOur3e7dvP2vQIK914i97PB90dMgPiRA/VD/YLqBGt5t77uHh\nh8+BANxqGB+NG1ecnn42bFGKV17hgQfmQRZcCkuLi/vl5U2BM5XK/dWveOONh2y2XJgC7/btm15Q\nMFap65Q6Zvp02tpqly8fCLnwTFoa+fnDHY5HlSIvj+nTefrpE8EBi5xOsrKKfb4LoMpm4/HHWbz4\nYkiHeUp9NHp0cVbW6eZC//QnHn3050plw7mwdODAvL59J8L5SvW/7Tb+8Y/dmzf3htHwek6Ot7Bw\nlGEsUIqJE8nKann77VHwOfzO56NPn2KX62mlOgMB5s/nscfOBC/8wm4nECgOBmfBXqV46SUWL74W\nMuFqWDpixMCcnBPhDKW8Tz7JH/94r2HkwGmwtLAwOz9/glKXSSOQED9UP7w5gJDDYbbwr4RNhjEf\ntNY3wpHMTD1mjPb5Qnb7Jjjg8dxunf4Ot1tPmKC93rjTuRt0Xt7v4TzQWn9mGHrcOO3xaLe7EvSx\nx/4VrgKt9Sughw6NOZ1mC/8nsEKp60BrvQg6+/TRw4Zpn6/FZlsDO61hgiuhOhjU48Zpny9qt2+F\npmBwEUwBrfVGs4Xf6004nftA9+//HFwMWusPlNKjRyfdbrOFX5966vtwDWitnwY9cKAeMEB7vfWG\n8XdYaxjzQGv9c2jNydEjR2qfr81m2wBlLtdN1omXeL16wgTt83U6HDuhMyvr1zAdtNZf2Gx6/Hjt\n8aRcrjL4i8wECCFzAN936en+G27gpz/Nys/vp9TuVOoQAE9qrUMhRo3ittv8w4b1s9m2dHTst17k\njsXIyOCuuxyTJvV3uVbW1ZXCEq2BD1IpEgnuuotp04qCwc2bNpXCK1oDV2lNe7vz9tu57LLeOTlF\nSpVovRWAxVrrtjZOOon589OLigoNY2ciUQbAq1oTiTBgAAsWeMaM6edwbGhv3wdrtAb8XV243dx9\nt+3EEwd4PGsqK0vhr1oD72hNR4excCHnnVeQnr5txYp98JLWwHytaW3lggu4+upeeXn9lNqTSpkb\nCz+mdaqtjYkTufnm4JAh/Wy2bbFYpXXijo4OcnO5807XsccWOZ2rm5r2wUdaA8FkEqW4+251+ukD\n/f6BcI/cCggh3wF8b61VasqPf8zcuZSVsXq1qq11JJNpwDHHALn5+VxzDYEAmzap0lJbMtnLKvUJ\nBLjkEk46iYoK+9atKhbrftUtdjtnncXVV5NMsm4d7e1eqwRw/PHMncvKlaxeTUODU+uNEyaYVffQ\nocydS1MTa9ao6mp7KtXHemFhTg5z5lBUxPbttj17DLOF/5hjgF5eL7Nmcf75HD5s37xZdXT4rdJd\nhsFpp3Httbz5Jl9+qVpb3Vp/s5Lx45k7l61bWbVK1dU5te5+z4yiIq69FmD9elVebksmc7tXkpHB\n5ZczYQIlJbbt2414PMMqZTqdzJzJnDmEw2zYYE5RTFdqmTQFCSEB8D0UAo4c4dVXqaujrq4+lWoy\nO9ljMaAzHHYvWQJQVnY4kWg0e+pjMaApkfCtWEFpKdu21XTvBxCLAW1as3Urzz3H2rUN4XAjNFsl\ngKoqXnyRvXtjjY3mU/i/KYVCvP46LS0cPGiupPtwLZ2dGUuX4vNRUnKoez8As5RM9lqzhoYGNm2q\n6eg4uv1ALIZ53D17eO45Nm1qbWszJwa+OVxtLS+/TGWlrq+v17rniafa24233yYep6rKnF3oXklD\nV1fep5+ydSs7d9bG400Q73nimzbR1cW6dYejUXMlAfmJEeIH5Ac1B/A7pSbb7UPS0+NmC38yuRna\nrcb5AYYxKi3Nbrbwd3VtgQarcb4XTAgGgy7X4VCovLNzBxy0+vQdMNnr7e33N0ciFdHoHq33wWjr\niMc6nf3T0iKxWFU4XJJKbYeRVmm4zVacnp5KpQ6EQvutYQLzof+FSo1OS3Pb7bXt7eXx+DY4bE0M\npMHEQCDD7a4Phys6O3dpXWn16RtwvMeTHwi0RqOVkcherffAKOtw4xyOQenpnfF4VThcmkxu6bH9\nwBDDGJ6ebsDBUMjcD6DZ2u0gT6lxwaDP4agLhcpjse1Qa00MeGCSz5fj9TZGIhUdHbu1LoNqWCp3\nAEL8/0HmAP5f3Kb1A0rta2w0rE72KByC2wC4PpWqbmlxWS385nysWboSjrS3ByACNXAIIlbpXAhF\no5nRaBwOW8MEt1lHvDce79PQkIIG6wH93aVbk8mypiZzP4AKaId6q3qN1jWtrW4IwQFogDardCk0\nhUJpoVCHNUzQYZVOhVBHR6+Oji44AmXQ1eNwC7u69jY0AE3WMMEBeBeAG1OpyuZmB7RCJbRCk/XC\nOVrXtbX5IAwH4TCErdJsaItE0q0piirolN/+QsifgL63In7/fWVlZw4aZI5HOeE1r/fDaPRTrXcr\nNWLzZu6554Lly812+w+zspY3NZnf9PLCC1RUnP/II3HQsKxfv/XV1RH4UGsuvphZs86ZPRtrmOA3\nhpGZSv1Ba4qKWLp0+ujRTqun/jmnc2w8fovWNQ5H/t69zJ59wbZtZk/9m4HAslDoI63XKTV5xQpe\neOH8N9/sABt8lJv79yNH3jFX8sADeL3nLViQgBQsGzjw64qKuNbvaM3JJ3PPPTNPO82AGNjgcZut\nIJl8SGuysli/ftrQoR6IgAP+5Ha/39m5Uusywxi0cyfz5l3w5ZfmSpakp3/S2vq+ebh33uGLL85/\n5pkYKPgoP//Lmppm+Exr5s1j4sRzr7kmBQn4uLh4x759P1HqRckAIX4oflBdQL4nnuC55xYbRm84\nGT4oKMgsKBin1NVKjbj0UsrLK1euLIAieD493SgoGG63P6wUAwZw3HFdL710PBjwoMtFdnax13sB\n1DqdPPQQDz44G9LgRsNYNmbMsMzMqbDeHCZ46KGbIQdmwUeDB/fNy5sE5yiVv3gxS5Zs27kzD8bD\nW717+wsLRxvGLUpNPuUUksnDS5cWgwf+4PfTt+8wp/MPSpGdzcUX88QTp4Eb7rLbSU8v9vtnQ7lh\n8PTTLFp0JWTCT5T6aOTIQb16nWye+fPP8/vfL1QqF6bBR0VFOfn5E5S6UKlB8+ezYUPJhg19YBi8\nkpXlLCwcYbPdpxSjR1NYGHrjjQnQBY94POTmFrvds6HN6+X223nkkZkQgJ8bBh6POUUhhPjh+E+Z\nA2i02bTfH7Lbv4L7vr3sSqW0zxd3OndBLDv71zADtNYrzE52r1e73RWgR416Da4ArfVfQA8blnC7\ntdd7SKllsBx+Clrrh6ArP18PHap9vmabbTVssdnMYYKfQE16uh47Vvv9Ubt9Cxzy+e60FrPZ6TR7\n6hMuVwno/PwnYRZorT9SSo8Zoz0e7fFUK6UnT34b5oDW+jnQgwfHnE7t8x0xjM/gC2s/gDsglJur\nR4zQfn+bzbYe9jgc5n4AM2C/36/Hj9d+f6fDsQNa09MfgFNBa/2l3W4OE6Rcrv2gBw9+ES4BrfU7\nSumRI1Nut/Z4apT6AJbCtaC1/i3ooiI9aJD2+cwpig3WMMFNUJ+VpUeP1n5/2G7fBPd/+xKUW5dg\nNzwjEwNCyBzAd/nth9udNWcOt97qHzq00GYbA+dYPekVhlF01lncfbdj4sQil+vLxsYy60/VGWYn\n+733MnVqf7//q50798NrWgOXaU04bLvzTi65JC87uwhK4Xmtgbu1NtrbmTaN+fMzCgsLDWN3Mmm2\n8L+gtQqHGT6cBQs8o0YV2u1fRyLdwwT+eJy0NO691/ajH/V3u1fX1JSZzfvmSEFXF/fcw8yZhcHg\nlnXr9lsPWZtrDhMsWMBVV+Xk5vZTqkTrfQD8WmvV3s4JJ/CznwUHDSo0jJ1dXWYL/1KtHdEo/fqx\ncKFr/Ph+DseG1tYy+LvWQHoigdPJffepU08d6POt27+/DN7QGnhGa6JRddddzJ7dNzOzP5SC+Ved\n27SmrY3zzjOnKAqV2ptK7QXgCa1VKMT48fz8575hwwptttFwrnUJygxjwNSp3HOPOUUxFObJxIAQ\n8h3AdyWzXz/mzMFmY906tX+/LZnMASZOBPLT07nkEiZOZO9e27ZtR1v4J04E0p1OZszgiisIhVi3\njnDYa5UAfvQjrr6a5cv54gsaG51ad5eMYcO45hpqavjiC3Xw4NEW/okTgT55eVx1FTk5bNpk7N1r\nJBLZVinX72fWLKZNo7LSvnkznZ0Bq3SHzcbUqVx1Fa+9xpdf0t7u6XE4jj2Wa65h/XpWruTIEafW\nfa0X+gYN4uqriUb58ksqKmypVK5V6pedzeWXM2wY27cbO3caXV0ZVinT7ebcc7nkEurr1YYNKhLx\nWaV/HHsso0dz9dUsWcKqVTQ3u3quZMwYrrmGkhK++ELV1trN/QAmTgSyCwqYMwePh/XrVWmpYU5R\nTJwI9E1L4+KL+dGP2LfP1j1FIYSQAPjXvaXU+b17O956i64uKirMTnYHEIkADfF43+XL2bqV7dtr\nYrFGiFmltlSKjRvp6mLNmsORyNGe+kjk6Pvu389zz7FrV6Spqd7sqe8udXby6qs0NFBbaz6F32VV\n26PR4Lvv4i/BU70AACAASURBVHSyb19dV1ej+QlGIkBTIpG+ciVVVXz99cHu/QAiEaBVa7Zt45ln\n+Oqrpvb2xn86XHU1L7xAWVlXzxZ+s9rWxuuvE4lQXf3NfgCRCFDf2ZmzdClffsmuXYfi8UZzP4BI\nBGhJpfqsXUtLCxs21EajR2cXug+3Zw/PPsu2be0tLQ3/tJK2Nl5+mZoa6uqOdM8uRCJAZyjkfvtt\ntDanKHqWGuLxws8+Y9cuc4qiEaIwTalP5OtiIb7f/jPmAP5hsw1PSzOgJhwuszrZJwCQp9TYQCDg\ncNSFwxVWJ7vZOO+BSV5vjtfbFI1WWp3s3X36k1yuwkAgHItVRSL7UqmdMNwqjbLbh6SlJZPJA9Zj\n8UPWQ//7KzUqLc1pGLWhUFlX11ZosBrns+CYQCDN5TJb+M39AMyJAQcc7/Hk+f0t0WiVNUwwwjrc\nMQ5H/7S0jni8Ohzel0ptg1aYDMAwm604LQ2tD4ZCZYnEZmi1ZhfylRoTDHrt9kOhUHk8vh3qrNmF\nABzn82V5PA2RSGVn5y6tK3pMDEx2uwv8/vbOzspotCSV2t1jJWPt9kFpafFE4kA4XJpMfg1tMAmA\nQYYxIi3NrlRNKGROUTRZswu5MD4YDDidh0OhiljMnKJ4Vn77C/Gd+p87B/BJKlXZ0uKEth6d7Neb\nj8FRqq693QcROAhHIGSVrlCqLRrNiEbNTvZq6LRKwK+VyovFklYLf6JH6T6lSpuabNAM5RCBOqt6\ns1IHWlvN/QCqwdxlzCzNVaohFAqEQh09hgnM0iyl2js6sjs64nAEKiDe43C/VCq/sbF7P4A47LO+\nq1ioVHlzc/d+AO3QYL3wRqVq29q69wOo73Hi1yjVHImkRyLmfgDmMEH34R5TKqezM9ljmKC7dL9S\nJU1NCpphP5gnYlZvV6qqpcUFbVAFLdBsleYpdbi93Q/RHsMEQoj/AN//LqBSpfSuXfqEE86FU2E6\ndGVmfti98jff1DfeeA6cCWeBLihYA9PM6nXX6ZdfPhtmmP/NsGE7rQYbPXy43rRpGsyEqTAdDjgc\nvwGtdZPbrcvKdHHxuXAaTIc2v/910FpvBb1+vZ4581w43TxcTs6n3Sv5wx/0okUzYZp5uAEDvoLz\nzerMmfqDD2bA2dY69xnGHWapTx+9e/dUOAfOgOlQ53I9DVrrKptN79unjzmm+8Q70tLe7T7cxx/r\nq646B6aaK+nT5ws4wazeead+4omZMN1cyZAhW5Uy25/0pEl61aqzrBM/Cyrs9gdBax0PBvX+/afD\nOXA6TIcmr/dl0FrvBb19uz7llO7PJJmV9VH3Sl57Td966zeXoF+/dVYjlhBCuoD+JYPnzWPjxn0b\nNuRDMbyUmWkvKBhhsz2gFKNG0b9/+PXXj4UUPOx2k5NT7PHMglavlwULeOSRcyEItxgGLldxRsZ0\n2KEUL7/M/fffADlwMXw0dGhBXt5kmK5U5mOP8corm0pL+8Ak+FufPsGCgjGGcYNSY887j8OHD3z+\n+UDIgaeDQfLzhzkcv1WKggJOPVX/8Y8ngQsWORxkZAz1+2fBAbudxx7jgQcuhUy4Xqllo0YNyc4+\nzTy9l1/mkUcWKJULZ8NHAwb07tv3WJilVL877+STT3Zu29YXxsCfe/VyFxaOtNkWKsWUKXi9jUuW\njIblWj/m9ZKXV+xyXQzJ9HSuuYbf/W4a+M3vn/3+4mDwPNinFM8/z+LFP4FsuAqWDR/ePzf3x3Cy\nUo5nnuGppxYplQenwIfWFMUcpYqvuYYdO/avWZMPA60pihF2+y+VoriYESM6Xn11EhjwkMtFdvZQ\nr3eW/NtKCLkD+P9sF2ifT7vd5aCHDHkRLgWt9Zughw/XHo/Zwv8RLIWfgNb615AqLNRDhmi/v9lm\nWwUbrU72eVCXkaHHjNGBQMRu/xqq3O5brdPf6nLpCRO0359wufZCMjf3t3AOaK2XG4YeO1Z7vdrj\nqVJKjxv3OlwJWuuXQA8ZknC7zRb+T+FzpeaC1vpuiObl6eHDzRb+dbDd2g/gYqgIBPT48ToQ6HQ4\ntkO933+PtZL15n4Afn/K7d4Pul+/Z+BC0FovUUqPGqW9Xu311ij1Prxr7QfwBOj+/WMul/b7Gw3j\nH/Clda9zKzRlZ+tRo3QgELbbv4J9TueN1uF2ezzm4bqczt0Qycx8GM4ErfU/zCkKn+/oFMWwYS/D\nZaC1fh30sGEpj0f7fHVKLYNl1iX4JSQKCvTQodrvb7HZVsNNcisghNwB/G/ZqdSI449n8WJOP32A\nz7ehtLQCXtcauEhrOju55x4uuigvK6sflMELWgN3mO3q557L9ddnFBSYneylADyjtS0SYfx4Fizw\njhhRYLdv6+zsfiy+Px4nJ4f77rNNnlzkdq86cqQCzIclZKZSAIsXM2NGv0Bg89at5eYz/eEarYlE\nbHfeyZVX5uTkFCpVqvVzWgMPaW0PhTj9dH72s+CAAQWGsTuRqADgr1rbo1GGDmXhQtfYsYUOx+Zw\nuMJaSVpXF34/ixapk07q7/Wuqa6uAHOjx7+awwT33sv55/dNTy+Ccms/gJu0Jhx23n47116b1adP\ngVL7tC4B4Hda28JhJk/mttt8Q4cW2Gw74/ED1uE8sRj5+dx7r33ixH5O57rm5gowu3cyk0nsdhYv\n5swz+/v9G/fuLYe/aA1cqjUdHeruu7nkkt7Z2T0vwV1a29rbOfts5s9PLywsNIxj4QwZCxDie+l7\n+iVwhsvF2Wdz0UUcOcK6dUQiXmDSpKPlE07giiv44ANWrtRNTU6tvymNHMmcOezfz4oV+uBBezKZ\nb72wV34+V1yB38/ataqkxEgkelmlvGCQWbM48URKSozNm5XZwj9pEpBht3PmmVx6KdEoq1fT3u7u\nuZJJk7jqKlau5O9/p76+50ocQ4Zw1VU0NbFyJZWV9lQqz3phQW4ul15Kv35s2qR27VJmC/+kSUC2\n18t553HuuRw4YNuwQUWjPqt0v2FwyilcfjlvvskXX+jWVlfPEx83jquuYutWVqzg0CG71oXWC9OK\nirjySrRm9epvpigmTcLcD+Ciixg/nh071NatKh5Ps0pHpyguvtjc0uDoFEX34X70I664gmXLWLHi\n6BRFd2nECObMoaqKFSs4cMAOfeXnTAgJgP91LalU/tq1tLaydm1tJNJgdrK3tR0t793LM8+wfbvZ\nyd7Us5RI8OKL1NVx6NCR7v0A2tqAaHu79623UIr9++sSiUZzmKCtDWjo6vJ99hm7d7Nli9nJHrFK\nreZj8Z98kg0b6kOhf15JZyfPPktpaUdjo/nQ/29K0SivvkprKwcOHE6leh6uKRrNWrIEn489ew51\ndTWa/3uzlEz2+uILamvZsOFAR0eDObtgloAdO3j6ab7+urmt7Z9PvK2N55+nujpx5Ig5TOC0qonW\nVvvrrxOPU1HxTyd+OBbru2wZX33F9u218XijuR+AeeKpVL9164hEWLOm7r9egpISnnmGXbtCzc31\n/7SSeJyXXqK+ntrab4YJhBDfP9/TOYA/KzXR6832eJqi0YrOzt1aV/RoV5/schX4/aFYrCoSKdF6\nNwyzSmPt9kHBYFcicSAS2W91spst/IMMY0QwaFeqNhwutzrZzcb5XBgXCASdziPhcEUsthMOWo3z\nLjje48n1+Vqi0cqOjj1a7+8xMTDR6SwKBKLxeHUksi+V2gHFVmmkzTYkGNSp1MFweL+1M4E5u9BP\nqdHBoNtmOxQKlXd1bYMj1uxCBhzr82W43Q2RSEVn5y6otk7cDse73X38/raOjqpodK/WJT1OfILD\nMSAYjHV1VYfDpanU1h7bDww1jOHBoILacLgskfgaWqzZhT5KjfX7/Q7H4XC4e5jAPHEfHOf19vJ4\nmqLRys7O3VqX97gExzudBYFAOBarjkZLUqldPVYyxm4fHAwmkskDPU78ZRkLEOJf8z9oDuDv0BKN\npkejnVAHB6DT3PkWgF8r1TsWS0I97IdEj9IipUqamw1ohjKrk93cwvdWpapbW3t2srdYL7xOqSOh\nkNnJXgN1ELFKFynV3tGR1dERtx6LH+9xuIeV6tPUpKEB9kGyR+kupfa3tNihxRomOGxVb1Cqpq3N\nAyFrmKDNKl2rVGMkkhaJdMAhqIEOq7RBqU87O3t1dibgCJRDV4/DPaBUQVOTeaOwH2JQaX1XsUCp\nytZWhzVF0QZN1gvnKVUXCplTFN3DBPOtKYpWa4riEByAWI/DPaJU76am1H93Ce5Vap91CcohCrXy\nsyvE99P3tAvoF7/QTz5ptrGfCXro0O1KmR0veuJEvXr1mTDD6mSvstt/BVrrWCCg9+/XAwacDafB\nWdDi873W3cm+bZs+9dSZcIrZrp6d/Un36b/yir7ttrNhqtk4X1S0weoC0ldeqd944yw4y1zJiBF7\nDeNo+9CgQXrr1jPgbDgDzoJap/MJ0FrXOZ26rEyPHDkTToWzIBwMvg1a642gV6/Ws2bNtBape/de\n0b2SRx7RDz88A840VzJo0NdKmV1A+owz9PLl02C6tc4ym22RWerVS5eUnAZnWwMKDR7PC6C1LjcM\nvXevPv747hOPZ2R8M0Xx3nv6pz811z8NdEHBl1YXkL75Zv3cc9O7T3zYsJ1KXWeWxo7V69ZNhRnW\niVc7HI+C1jrk8+myMj14cPfZtfp8f5FGICGkC+h/USItjZ/8hN/97mwIwu02G15vcXr6TLOT/YUX\nWLz4OsiBy2BZcXG/3r2nwFSlnM88w9NPr62szIcT4P38/PSCgrFK/VSp4jlz2LWrbM2aQiiCP6al\nUVAwzOH4tVIMHcro0Z2vvjoFbPCA00lW1lCfbxbUu1zcdx+//OVFkAk3KIXdXpyVdQZ8be4H8OCD\nt0JvOB+WDRrUp2/fiXCeUr1/+Uv++tcte/fmw3j4a26ur7BwlGHcrtTEM88kHK79+ONh8LnWj/t8\n5n4ATylF796ccw5PPXU6+GCh3U4wWBwIzIZKm40//IHFi+dAL7gGPh4xYmBOzonmR/bSS/zmN3cr\n1QemwrJ+/bLz8ycodYlSA265hS++2LN5cyEMg5czMx2FhSNstvuV4phjyMlpffvtYyAOj/SYoogG\nAtx0E48+eg6kwa2GgdttTlHsUYo//YnFi+dDLlwCy4YOLezd25yi8P/hDzz//Iby8r5wPCzp0yet\nsHCMUvOlEUgIuQP4fxZ3uXQg0GyzfdGjk/2bh9EHgxG7fTOU9uhk3+F26wkTdCCQcLn2QCQz81fW\nJPDnhqHHjdN+/9EW/uHDX7E62V8FXVysPR7t9x82jE/gY2s/gMUQ69tXFxfrQKDVZlsDm639AOZA\ndTCox43TwWCnw7ENDnq9C6yVfGXuBxAIaLe7FHRe3uPWJPCHSunRo7XPp73eg0otgTfhKtBaPwN6\n4MCk2639/gbD+Dv8w/qH9u3QmpOjR47UwWDIbt8Iu6xhAq31Pp9PT5igg8Eup3MXNAeDi61J4FV2\nu7lVgPZ4ykEPGPAcXNw9RTFihPZ6tc9nTlG8b+0H8CjowsKYdQlWwTprimI+HDanKILBqMPxNZS7\nXD+zVrLNugRJl2svxLKzH7UmgY9OUfj92uutVuptuRUQQu4A/ns5OY477mDu3Iy+fQuU2m91sj+h\ntTMSYcoUFizwDhuWb7PtiscPWi/yx+MUFLBokW3SpH4u1/rm5ir4WGugVyqFw8EDD3DWWf38/q/2\n7Km0OtmvNIcJ7r2Xyy7Lzc4uhDJrP4BFWjvDYWbO5MYb04qKCgyjJJk0+/Rf1trZ0cGYMSxc6Bo9\nusBu3xaNVlkrSevqIiuL++/nhBOKPJ7VdXVV8K7WQLb59/H77+fcc/PT0oqgwvpmYp7WRKPGwoVc\nc012Xl6hUvu1Nvv0f2Oe+CmncOut/sGD8222PYlEtXU4d2cngwZxzz32Y44pcDq/am+vglVaA1mJ\nBD4fDzzAaacN8PnWV1RUmWME5hRFPM6iReYURSFUWPsBLNCaSMR5++1cf31Gfn6BUqXWFMXT5vYD\nxx3HHXd4hg8vsNt3xGLdwwSBWIw+fVi82Jg8uZ/bvbaxscrakqFXKoXdzv33M316YSBQBA/IrYAQ\n3xvfly+BNyp13Gmncfnl7NjBZ5/p2lpbMlkITJkCpBUWcumlGAYrV2KzHX0Y/ZQpmPsBzJrFscey\nbZv6+mtisUD3q5xOpk1j9mwaGli9mlDIbZUAJk/m0ktZvpzPP9cNDU6tvykNG8bll3PwIJ9/rqur\nbWYL/5QpQO+8PC6+mF69WLOG3btVIpFplXJ8Ps47j6lT2bfP2LiRjg6fVcq02Tj1VC66iFiMlSt1\nW5ur5+EmTOCyy1i/ns8+00rZtc62XugZMIDLLycSYcUKDMNIJnOtUmFWFhdeSHExmzapbduOtvBP\nmQJkuN3MmMEFF1BTw9q1RCKenid+wglccglLlvD3v2ulvnXio0Zx+eXs3ctnn+maGps5RWGeQkEB\nl16K282qVXRPUUyZAuSlpXHBBUyezI4dxubNdHb6uy+Bw8HUqVx4Ia2trFplTlGcq9T70hQkhARA\nt1bgwAH++EdqapKHD3/Twt/UBMRaW11/+QuJBOXldYlEg9nJ3tQEHI7FCj76iK++6n4YfcwqtaRS\nRWYn+/r1deFwvdlK39R09JCdnTz9NHv2hLs72btLsRgvvkhjIzU1R5LJRrOTvakJaA2H099+29wP\n4FD3fgBNTUBDIpH+2WeUlvLVV2YLf8gqNWvN11/zxBNs3tzQ3n70Kfzdh2tr49lnqaiI1dcf6W7h\nb2oCdCikXnmFSISqqsPJZGPPE+/o6P3ee6Sns3Nnbfd+AObhksk+q1ZRX8/atTXR6NEW/u7D7drF\nk0+yY0dra2vDP514Mslzz3HoUKqu7kgq1fPEo21t3jfeIJX61hRFUxNQH4/3+/hjtm5l69aDnZ0N\n0NHjErBhA/E4GzYcDocboAm88mMnxPfD92UO4HdKHW+3DwgG411dByKR7k5289n3xYYxPBAwlDI7\n2bdAi/Wo/b4wNhDwOxxHwuGKeHwHHLL69H0wyePp5fU2R6NVVid7d5/+ZKez0O8Px+PV0ei+VGoX\nDLFKY202s5O9JhLp7mQ3n30/SKkRgYDTZqsLh8ut/QDMxvkcmODzpblc9ZFIpTVMYHbHu2GS293b\n52vr6Kjq6NijdSkMtQ430eHoHwh0WCe+HVqs2YURhlEcDKJ1TSRi7gfQZs0u9FNqtN/vtdvrIpGK\neNwcJjD79NNhoteb6XabLfy7oKrHif/Y5err94c6O6uj0b1a7+1x4uPt9kGBQDyZPBiJlCaTW3rM\nLgw1jOGBgL3HJWi2LkEfGOv3B5zOeusS1FqXwAuTPJ4cr7elxyU4CB/IHYAQ/5t+yHMAt2m9SKl+\nzc1As/VY/CbzKTdwm1KVbW3d+wG09yhdp1RdKOS39gMwO9nN0iVKtXV0ZFgt/OYwwU09WvjzmptT\n0GB1sneX7lZqX0uLDVqsYYJD1ijTjUpVt7e7IWQNE7RaL7xWqfpIJBiJmJ3v5jCBWdqh1Kedndmd\nnV1w2BomuKlHC39+czPWfgAJqLWqdyhV3trqsPYDCEO9VZqnVG0o1L0fgLkBmVm6Uqlma4qie5jA\nLG1XankslmNNUZjDBDf12AihpKXF6DFMUG19V3GLUlVtbU5ot4YJmq0XzlXqcDhsXoIaOAJhq3SR\nUm0dHZk9LkFMfvsL8f3xfekCys7WJSU6P3+61T/e5PX+CbTWZUrpPXv05Mkz4BSYBomeD6NfskTP\nnWu+ahrowsK13Q+jv+km/fzz5iTBVNDDh+82jKPtQ2PG6PXrzZZ5swX+oMPxO9Bat3u9Zif7DKuF\nvz0Q+CtorXeC3rRJT5s2A042D5eb+3n3Sv74R71wofmGZ4IeOHATzDKrs2frd981m/engh41qtRm\nu8ssFRbqnTvNx/2fDtPgiNv9R9BaH7DbdWmpHjduhtXC35me/h5orTeA/vxzfeml0+FUcyV9+66C\nU833XLRI//a35rG6pyiuNksnnKBXrDijx4lX2u0Pm6WMDF1aqgsLuy9Bs9f7KmhzS4adO/UJJ3Sf\neCo7++Nvb8nQvX5dVLS+e4pi7lz9yitndl+CESP2dE9RCCGkC+ioF1/ksce+qK3Nh1NhaUFBZn7+\neKWuUmrgzTezevWeTZuKYDC8lJFhKygYbj6Mfvx4evdue+ut4yAFv3S56NWr2Ou9ACJ+PzffzKOP\nng8ZcLNh4HQWZ2RMg91WJ/tNkAcXwseDB+f36TMJZioVePxxXnhhQ3l5ARwL7/TuHSgoGG0YNys1\n8qKLqKqqXLlyEGTBU36/2cL/uFL078/kyYkXXzwZ3HCv3U56enEgMAtqHA4efpgHHrgCsmGuUmg9\nODv7FFhrDhP88pe/gL4wHT7u3z+nb99jlJqtVMF99/HBB9t37OgHo+C17GxXYeFIm+1epY476STg\nyIcfjoG/a/0bj4fevYvd7guBrCwuvZTHH5/Rc4oiLe0cKDMMnnmGxYvnQi5cAR8PG1bUu/ePzAd2\nPvccjz/+5cGDBXAifJCfn1FYOFapnyg1+Prr2bRp34YNRTAAnk9LUwUFw+32X5tbMgwYEH799cmg\nrCmKYp/vAnNLhjvu4Fe/uhAy4SalsNuHZWaeIf/sEkLuALTWdYah09ISLtduq5P9xJ4Pow8EtMdT\nqZQeOPB5q5PdfBi99vnMFv6P4QOrk918GH3c5dLBYKvN9mWPTva5UJuerseO1WlpnQ7HVih3uW62\nTv9rcz+AYFC73fsg3qvXo3A2aK2XGYYeM8bsZD+g1LvwZzB313oe9ODB2uPRgUCDYXwOn4K5H8Av\nINy7tx4xwmzhXw9bbTazhf9cKPP79fjxOi0t7nTuhDqfb6G1kjV2+9GVeDxloPPzn7JuI/6mlB45\nUvt8Zgv/h/AOmP+u/z3ooqKk262DQXOKYpU1RfEzaDCnKNLSog7HZtjrcHRPUew09wNIS0u6XHug\nPT39QTi95xRFIKC93iql9JAhL1lbMrxmTlF4vdrvP2IYn/TYkuF+iPftG3O5dDDYZrOtgY2GYU5R\nXA0H0tL0uHE6LS3mcGyDR+VWQIj/sXcAB+z23rNns2iR7dhjC53Oze3tB+EWeF+pnGQSn4+HHuLM\nM4t8vg3l5dVwEbyvlBdIJFi8mEsuyc3KKoAKmAHvKzUcbNGo4447uOGGtMLCfMPYn0qVw/tKTQNX\nRwfHHcfCha6RI/Pt9l2x2AF4X6n3lUqLx+nThwce4Ec/6ud2r21oOADXwPtK9TaHCR56iJkzC4LB\nflAF58P7SvUCYjHuu485c7JzcwuUKodp8L5Sk8AdiXDWWdx6q3/AgHzDKEkmq+B9pa4yW/hHjuTe\nex3jxuU7HFsjke6VZCcSZGTw4IOcckp/r3dtTU01XAbvK9VXa7TmwQeZPTsvI6MQKmEmvK9UEdDR\nYSxcyNy5GX365CtVpnUJvK/UyeCORjnxRBYs8Awdmm+z7enqOmgdzh+L0b8/ixcbkyYVulwbW1sP\nwnx4X6ncVAqPh4f+L/beM8zq6mzbP9fudfbMnl4ZmnQQUITQexNFBUus0ZjoY3xiizVEFEQQEBtR\no8YUn8RYwIagoIBI7wgDzAwwvcPU3ct6P6z57dmQvO/x/6T/R/f9ycPL3173mvuYmb2d87qvxcyc\n2c3h2F1cXAbz4SMhnEAoxMKF3HRTRlqa6mQ2fCTEYDB6vaaHHuLee5MKC/N0umJtBFeAxedj+HAe\nf9w0eHCewdAX5idsAYlK1A9XP+QfgQvcbq65hgED2L0bg4Fg0Alzx4wBqvbtY+ZMtRYfs1l2dFg1\nCaBXL669lo8/VuC8ScouSafj+uspLmbDBllRoYec2IM1NVx3HXY7mzdLvV6Ew2ma5PnuO+bOZdw4\nDh8WRqMi2ZVUsns3U6Zw9dU0N3ci/PGdZGZy3XVs3syGDVEhDPGd+HzccAONjXzxhdTpdNFoZuzB\n06eZN4+CAr79FoNBhELJmtR44ACXX84VV1BSotu+XXq9Nk06vmMH48czbx7hMJs2yebm8y5us3H9\n9Rw8yIYNsrpaL2VB7LimJq6/nmiUTZukXi8ikXRNihw/ztVXM3Qoe/cKg0G5KJRUsXcvM2Zw1VXU\n1LB1K+3t542gsJBrr2XdOr744sKLR6Ncfz1nzrBhgxTivBFUVnLttaSksGULen2niyJRiUrUT/AX\nQI3Pl7N2LVu2cPhwVTDYCGGgvh44F4nkbd1KYyM7dlR5PIofVxKA38+LL3L0aEtzc4OUTfFSJMJr\nr1FXF62urouR7PX1QEdrq+OddxCC4uIuM0F9PVAfDPb4/HMOHWL//gq/v1HlAdTXE0+y79lT197e\ncEEnra28/DIlJZ5YHkBM8vl4801aW6mo6EL46+uBRo8n/f33sdk4dqwmGGxU/319PdAUDqdv2kRZ\nGTt3lsfyAJQEHDzIiy9y8ODZlpZO70LsOPX/9ysrg3V19VLGXzzQ1mb+618vzAOorwdq/f68jz9m\n+3YOHaqK5QFoIyjYto3mZnburPZ4Lry418tLL1FU1BZzUcSkUIjXX6exkaqqumg0/uvc2t7u+uc/\n0es5ebImHG76/+022kQl6qdRP6QP4COdbrDdbjMa6zs6ToVCh6FeA+ddMMJqVXkAZRrJHsPVx5pM\nuQ5Hh99f7vOdkPI49NKkYXp9L6czFIlUer0lGsmudt/3EUKR7DUezymNZB8IQDYMtduTTKYGj+eM\nRrIrcN4GIy2WTJut2ecr8/uLpDwFvbXjRhmNBQ6HLxis8PmUmaCnJg3W6y9yOmU0GjMTtGtL/3sI\nMcjhMOv1dR6PygNo1MD5NLjEZks2m5u83jOBwFGo0BwDFrjMbM6229v8/nKf77iUJ+M6udRg6O50\nBkOhSq/3ZDR6GFo0hL+/TtfX6dRBjcej8gBaNO9CPgxxOOxGY73HoxD+Wm0ESXCZ1ZpmtZ7zes8E\nAseksTAWuQAAIABJREFUPBM3gtEmU77D4VF5AFIWxY1gqF7fy+mMaCPYD+2ad+EiIfo7nSadrqaj\n41Q4fBDOahs4EpWoRP2/68fmA1gvZXVHh01bRt8E7fBbKYEbhWj2+ZJ9PrWMvhp8mgQsESLr3DlF\nsp+GUJz0eyFOtrQILQ8gAK2aeq8QZW1tZmiDMo1kV9Ivhaj3eBwej8oDaIAOTTopxKd+f6rfH4Q6\njWSPHbdIiJzmZglNmpngC20T0SNClLS0qDyA0+CFWvizhvBXtrdboQPK4Vxck7cK0ej1urxev2Ym\n8GrSfiG+CATSAwGVB1AGwbhOnhQiv7lZwFnNTHBWU+8X4nRrqwla4Ay0Q5O2/+dXQtR0dNg1F0Vj\n3AhuEKLZ50vx+QJQC1XgjzvuGSGyz52LQKNmJvhtXBBC95YWvTYCP1RpLop7hChra7NAG5RDi/p8\nk6hEJeqHqh+KAtoL8ssv5Y03zoRJClePX0a/YIF8/vnpMFXx4/HL6MeMkV9/PRlmwFSYEbeMPpqc\nLIuLZbduszQ6PraM/qQi2cePnxVD+NPTN8Su/49/yHvvnQnqZWX37rvhKqX+8pfyr3+dBtNVJwMH\nntDpOjeA9u0r9+1Tr6YQ+Fqz+RWQUjaZzbK0VPbrN0vzLnhdrg9ASnkA5I4d8sorZ8EE1UlOzmaY\npF5z1Sq5cGHsavKiiw4KoTaYyssvl59+qr4g00AOGXLKYHhaSdnZsqhIZmfP1PwQTVarclGc0enk\niRNyxIjYxcNud5eLYt06edttXSMoKNgOs5X68MPylVfUWcpFcVSnuycWybBtW/wIKo3GlSCl9GuR\nDLERtDkc/wApZRHIgwfllCldF8/M/DIBAiUqUT9BCuiS8ePR6xs+/ngYfCXlsrhl9Ljd3HwzL7xw\nBSTDg3HL6Et0Ol57TS2jz4YbYb22jH6WEOL113nxxW0VFQUwGtZqy+jvFuKiX/2KffuKd+7sAXnw\nalISeXn9jcYVQjBwIL17e955ZwwYYKHRiNvd1+GYB81WK48+yrPPXg9pcLcQ6HR90tKmwGGF8D/1\n1EOQC3Ph8549s3JzR8A1QqQuX87f/rb35MlCGAr/SE+3FhQM0ukeFWLolVfS2Fj55Zf9YbOUz9ts\nZGf3NZvnAbm5TJvGa69NBwc8qtfjcPRNSroayg0GVq7kqaduhyz4BRAK9cjIGAcfKVvD0qVf19UV\nwBRYV1CQmp8/VIhbhCh85BG+/PLogQPdoY9yURQU9DcYFgvBqFE4HGc//PBS8MGzmotiHoRcLu68\nk5Urr4IUuE+nw2Tql5IyMxbJ8OSTv4EcuA7WX3RRXk7OKJgjhHn1av74xx1lZd1gBHyQne0sKBii\n0/23EP1uu42iotJt23pABrzidCoXxaoECJSoRP1EPgEcAulwSIejVojP4AONZH8OZLduUatVulwt\nev03cST7f0Gd2y2HDJHJyT6jcT+ciCPZO5fRJydLi+UEtKWkLFZvkGPL6JOSpN1eLsT7ECPZ/wyy\nTx9pt0uns0Gn+wI+00j234MvJydoNkuXq91g2BFHst8IZ5xOOWyYTE4OmkyHodxqfUDrZKfRqJh6\nhfBHMzOfh7kgpVwrhBw0SDqd0uGoFuIj+AfcAlLKl0H26CFtNpmUdFav/xo2CaHMBA/AufR0OWiQ\nTE72GI174UhcHkCRzaYuHjGbj0Gj07lAkzYrF4XLJW22M0LIwsJX4TqQUv4DZP/+0uGQTqdyUawB\nFbW2BCL5+RGLRY1gG3yrjeDXMRdFcrJyUcRHMnS6KJKTlYvCGxfJ8HncCJSL4i9wE0gp31AuCrtd\nJiUpF8UNiU8DiUrUj/gTwC4hhgwYwOLFXHddltudD2UwB9YK0Qvw+8Xjj3P33a68vFwhTklZAmuF\nmAI2n4/x43n0UUv//opkr4K1QqxVCH+PHjz9NKNG5ZvNe5ubq+AuWCtEdjSKzcaSJWoZfTeohHmw\nVohkIBzmqae45Zb09PR8Ic7ALFgrxDCw+HzG3/2O3/7WUViYq9OVRKNnYK0Q14AtEGD4cBYsMA4Z\nkmc0fufzVWudpIbDZGXxzDNMmFBgtW6rr6+EW2CtEDlSYjDwzDNcfXVOcnIBlMNcWCtELhAIsGAB\nd97pzs7OE+K0dvExYPf5mD6dhx6y9e6dq9efCIcrteMcgQD9+rFwoe7SS/NNpgPt7bGvSWYkgsvF\nM88wfXqh3b6zrKwSroO1QliAaJRFi7jhhkxtBJfDWiH6gs7v1z32mHJR5ApRKuUpWCvEdLD5/YwZ\nw2OPmQcMyDUYioLB2MVTQiG6dWPRIkaPLrBYdp07VwV3xkZgsfDMM8yZk5+UVAAVcDWsFSIVzUxw\n661pmZl5QoxJvB1LVKK+3/pe/wicpNMxZgxXXUU4zJdfynPnjFJeNW5cp2wyMX8+hw+zbl1Up1PL\n6DvV+nrmzUOn48svYyS7kkJHj3LllQwfzu7dwmiUgYBDk8p27WLqVObMoaoKszkK5tgLAnl5XHMN\nGzawfn0UDPFSMMj8+VRW8vnnCuHPiqllZVxzDWlpfP01ej2hULImtRw8yOzZTJvGkSPCZMLns2nS\nye3bmTCBuXNpa8NiUd6FruNcLubNY+dO1q2LCqGXsuviLS3Mn09HBxs2RHU6XdzFOXmSuXPp00eZ\nCQgGkzSpZs8eZszg8ss5dQqTSYIl/na9e3P11axZg80WFeK8Eeh0zJ/P8eOsWyd1On0kkht7sKaG\na67BbGbjRqnTCUjTJP+RI1xxBaNGsW8fRqP0++2adGrnTiZP5sorqa//DyPIyuKaa9i0ifXrlZng\nJiHeSUBBiUrUj/IXQKOUHDzIqlUcOXK2uVntvqe6ulMWgldeobo6GL+Mvroa8LW1Wf/6V8JhSktr\nwuFG1Xd1NVDj93f76CO2b+fgwcpAoFHlAVRXA2ej0cJt22hpYffu6o6OBoXSx45rbeWFFzhxou3s\nWQXOd0mhEK+9xtmzVFbWxfIAqquBc+3t7n/8A6OR48erQ6H4ThqCweT16ykqYvfuCp9P7SXt7ERK\n9uzh+ec5cKChre3C4xobefllzpzxNTR0IfzV1UDY6zW89RYeD2fO1EYinUx9dTVQ6/Vmf/ABLhff\nfadcFBFNaopEcr7+mupqduyoiCH8seO8Xlat4rvvzjU3X9gJsHo1tbXhmpouhL+6GuWi+NvfkJKS\nkpqYi0J1Egh0/+QT9uxh376uPAD15YpGe27fTkcHe/fWtLc3XjCC5mZefJHi4vampq6JJypRifq+\n6nv1AbwqxGUmU47d3u73l/v9imTvoakjDIbuDkcoHK70eos1kl3x4wN0ur4Ohx5qvN5TGsmuwPkC\nGGK3O4zGBq83RrIrXD0JRlosaVZrs89XppHsMU5/jNGY73B4A4EKn0+R7N01aZhe38vhiESj1XEk\nuwLnLxJigMNh0ulqPZ7TGsmuHAPZMMxmSzKZmrzeM8Hgd1Clcfp2uMxszrLZWv3+cr+/SMrSuIuP\nMhi6ORz+UKjS5yuORr+Dc1r8wGCdro/TiZTVHk+pZiZQS/97CDHIbrcaDPUez+lQ6BA0aI6BVLjU\nalV5AGWBwFEoj+P0x5tMOXZ7RyBQoZkJYhe/VK/v4XSGwuEqr7c4Gj0ErZp3ob8Q/ZxOvRC1Hk9s\nBMoxkAcX2+1Oo7HB6z2jjUBd3AkjLZZ0q7XF5ysLBJSLIjaC0UZjgcPh1VwUx+As/CPxCSBRifpP\n9b/eB3C3lM8KkREMhqEBzkAIHohD+Lu1tAhtGX0IWjT1v4U43dYWW0YfT7L/UogajyeWB6DMBOqp\nM3r9h36/2+9XJLsyEzwQh/BnNzdHNZI9HCc9IkTP1lZFsp86n2S/S4iK9vYYyd4KzZqV6TYh6r3e\nJK/Xp63F92ivWSTEp4FAWiAQgnooh2DccU8KkdfSgmYmUP6GB7QghNLW1lgegBfq4S0N4a/q6Ijl\nAZyDNu2pnwtx1udL9vlUHkBN3MW3C/FFMJgZDEag/t9G8IQQ3VpadHBOG0HsNX8jxJm2NjO0QpkW\nyfCGFoRQ5/E4wKuZCTrgVSmBUp1ureaiiJkJHogLQlAuikYohXDip3+iEvU91/dMAaXBJJimVk5e\nfHHXMvqsLFlUJHNypmswfmwZfYxknwETYcYFy+g//VTefvt0mKBI9sLCnXCFUh96SK5ePQWmKC5o\nwIAine4+JV16qfz22wkwDabADKg2mV4EKaXP4ZAlJbJnzxkaHd/hdP4rnmSfOnUGjFfHZWV9Fevk\nz3+WDz00DSYpcL5Xr/1CzFfqjTfKd9+dDFNVJ4MHl+j1ndBOjx7y0KFAWtp0rZMGi+UNkFJWG42y\npEQOHhy7eDAl5WOQUu4EuWWLnD9/eqyTvLxt6lwp5ZIlcunSqTBZ/Zu+fY9oZJGcMkV+8UVsBMpF\nsUxJWiTDDG0ELXb73+MjGUaPnhH7Ose7KD78UP7619Nhojou3kVx773yjTe6RjBw4Amd7qFYJMOu\nXRMgdvHBCQooUYn6cfsAGqX8SsovpLwFCATUMvpOkn3Zsq9rawthAnwat4y+8He/Y+PGowcO9IQe\n8Ia2jH6pEIwcict17oMPRkIIFmvL6OdB0OXi179mxYr5kAb/rS2jnw4nNJL9PsiD+bC+V6+cnJzL\nYK4QltWrefXVHWfOdIdL4L3MTHtBwWCd7kEh+t1yC8ePn/rmm95gg5fsdnJy+ppMLwtB794MHRr4\ny18mgxV+bzDgcvV1OudDndnMU0+xePEtkAm/BCKRXhkZE2CtMhMsWrS5qakAZsL6bt3S8/OHCXGd\nEDmLF/PeeweOHesBA+CvbrexoGCAXr9QiJHTpuHz1axbNxS2SPmcxUJmZl+rdT6QkcHVV/Pyy3Ni\nLgqrtW9KyuVwWq/n5ZdZuPAuyIlzUYyGmULw5pusXLm1urobjIGPcnJcBQUXC3GXimTYtu34nj29\noABeT0oiL6+fclEMG0Z2duu7745WeQBGI253H4ejK5Jh2bLrIB3u0VwUU1Ukw1tvsXDhA5AHG6Vc\nL+XhxNv/RCXqx/0JIL46l9GnpEiL5Tg0Op1/gMtASrlJLaNPTlYI/7/gNY1k71xG73TKpKQGnW4D\nrNVI9qchmJsbtVplcnKbwbAdvhVC5QHcHltGn5ISNJkOQUkcyb7XZOrsxGotAW9q6lKYBVLKT4WQ\nQ4ZIl0s6HFVCrI0j2V8F2auXtNuly3VWp/sK1sOdIKX8HbRmZgbNZpmS4jEYdsM+vf6/tONO2u3q\nuIjZfBSqbLaHNekbg0H5DKTNdhpkTs6LcA1IKf8FKmBAOp21Ot1n8C+4DaSUy0F26yZtNpmcrFwU\nmzXj9D0xF0VKit9o3A/H4lwUh5WLIiVFuSiaXa6nYAJIKb9QCL/LpRD+9+FPGqr/tnJROBwK4f8i\nLpJhAfhyciJWq0xOVi6KnVokw01QlpSkRhAymY7A6bhIhkQlKlE/rTwAVzBIv34sWsRll+WZzQfb\n22vgYVij+PHkZJ59lpkzCxyOAqiCa2GNEHb18OLF3HhjelpaHpTDbFgjxAAwBoPi8ce5915nQUGO\nTndayjOwRojZ4AwEGDOG3//eOGiQItlrYY0Qa4Rwh8N068YzzzB2bL7Vuvvs2Rq4A9YIkSclFgvP\nPsvcubkuVz5UwVWwRogMIBzm6ae5/XZ3VlauEGUwA9YIMRKS/H7jQw/x4IO2Xr1ydbrSSKRSO84Z\nDHLxxSxcqBs+PM9o/M7rjXWSGQ6TkcGzzzJlSje7fXtNTTX8HNYox4Bez5IlXHddVkpKPlTAHFgj\nRA8gGGTBAu66y5WXlyPEaSlLYY0Qk8Dp9zNlCo89Zu7XL1evPxEKVWnHuUIhLrqIRYuUi2J/a2sN\n3AtrhMiJRklKYulSZs/O10YwD9YIkQRIyeLF3HJLWnq6GsEsWCPExWAJBHSPPhpzUZyKRstgjRBX\ngSMQYNQoFiwwDBmSazQeCwRqEm/BEpWoH65+yGVw+W43V1xB//588w16PeCAqydMAKoVwj9jBiUl\nimQ3axJA9+5ceSWA1RoRwiBllxSNctVVFBfz6adRIXSQFXuwooK5c7HZ+OILqdcTDqdqklch/GPG\nsGcPBoMEmyaVbN/OxInMnk1trSLZTfGdpKYydy6bN2O3K4S/S2pv5+qraWzks8+iOp2IRjNiDxYX\nc+WV5Ofz9dfSYJChUJImNSqEf9o0jh4VRqMEqyYd37aNMWOYMwePB4slIoQx/jizmauu4uBBdXFl\nJuhU6+u56ioiET7/PKrXi0gkTZMi333HnDkMGcL27dJgkIGAXZMqdu5kyhRmzuTMGczmaHv7eSPI\nz+fKK1m3TpkJzhtBKMRVV3HmjOpExI+grIy5c0lOZuPGqE4HpCS+BROVqJ/mL4Aqny/v/fdJTubw\n4cpgsEHlAZSXA43hcO7XX1NTw65dXSR7eXnnk21trFxJUdG5c+c68wBikpS88goNDeHqakWymzS1\ntbXV9de/Apw82YXwl5cDtYFAz08+Ye9e9u6t8PsbVB5AeTlwLhpl+3Y8Hvbvr2lr6zQTxI5rbGTV\nKkpL2xsbFckek2QwKF57jbY2ysoUwh87rqGjI+Of/8Rm4+jRqlgegJLC4fQNGygpYfv2Mq+3Qe3L\nVF8TKfvt28eKFRw50tjScuHFDQZeeomqKn9dXZ2UnZx+eTng83isb71FMEhpaVcQQnk5UO33F3z4\nIVu2KBdFA4Q0qSkSKdiyhYYG9uyp7Oi4cAQtLTz/PCdOtMRcFDEpGmX1apqaolVVtTEzQXk50Nza\nmvK3v2EwcPx4l58jUYlK1A9UP2QewIdCDLbbbQZDvdd7RssDUPy4G0ZYLG6L5ZzPV66R7DFwfrzR\nmKtIdr//hJQnoZsmXarX93A4wpFIlddbopHsCuHvL0Q/h8MgRK3Xq/IAWjRwPg8uttmcRmOTzxcj\n2RWu7oSRZnO61drq95drJHsMnB9tMKg8gEqf76SUx+I6GarT9XY4pJTVXq9C+Ds070JvIQba7Wa9\nvt7jORUOH4ImzbuQAZdYrclm81mvt0wzE6iL22GEyZRts7UHAuV+/wkpi6FQO26kXl/ocATD4Sqf\nrzgaPQItMBiAQTpdH7tdp1wUkch+aNO8C4Uw2G63GwwNcSNQjoFkuMxiSbVYmn2+8kDgGJTFXXyc\n0ZhrtyuE/4SUJ+Iufole39PhiGgjOAhtWu5CXyH6OxxGIeq8XpUHcE5jSROVqET9v+tHlwcA1R6P\nHTqgUluL/7qUwHVCnPP7U/x+P9RqJPtDUgI7hNgQCmW1tETjzAQvaz9EHhWie2trPMneoT14txBn\n2ttjeQDtcST7bULUeb1OUHkAF5DsHwYCqYFASCPZA9oLAguFyG1pkXFmgs9gi5TAg0L0bmtTeQDK\nTFCj5QH8SoiKjg4btGtr8Vs1M8FNQjT6fMk+nw9qoA688EcpgcNCrAsGlYsiZiZ4KB7hb21Fc1FE\noEVT/1uIU+3tJmiFM+CBBs1FcYcQ1ZqLImYmeE1KoNxgeM/vT/H7g5qZwA+r4xD+7P/LCB4Rokdr\nqw6atRF4tE7uEqK8vd0M7ZqZ4Fzi2zpRifoB64eigHaA3LxZXnvtVBin+PH4ZfSLF8tlyyZrpoHz\nltFPmiS//HI8KLpcDhsWW0YvU1PlyZMyP3+ahvDHltGXCiGPHZNjxkyD8eq4jIyuZfQffCDvumtq\nTOrRY6/G3sh77pFvvjkJFMUvBw06qdc/pqRBg+Tu3W3JyVNhCkyHOrP5VZBStlitsrRUXnTRNA3h\n9ycnrwEp5RGQe/bI2bO7Lp6buzWWB7B6tXziiSkwUV28T59DQtympKuvlmvWTIApcS6KZ5SUlyeP\nHo1mZsbY/3M2219ASlmu18viYjls2DQN4Y+mpa0DKeV+Fclw001dnXTr1uWiWLBArlrVNYIBA4p0\nut/GIhk2bx6njWA6VJlML4CUMqJFMsRG0K65KE4KIY8ckRMmdI0gK2tTggJKVKJ+ahTQBiFGTZ1K\nIFC7bt1w2Crl0rhl9KSnM28eL788F9xwv06HydQ3JWUmnNbpeOUVFi68B/LgBqCjQy2j/1jR/StX\nbq2q6gEj4cO4ZfQ9772X7duP7959EWTBq04neXmdy+iHDiU3t+3dd8eBAZ40GklJ6eN0zoN2u537\n72fZsp9DhsoDgIvS0ibBGiF4+20WLtza0lIAc2BD9+6ZeXmXwHwhXKtW8dZbu0tLe8IQ+J+0NHNB\nwUC9/gkhBs2fT0VF2VdfDYStUj5vtZKV1ddiuRbo1o1x4yJvvDEDkuARvR67va/LdSVUGo0sXcqi\nRXdCDtwKBAKFmZmdLoq//IUlS75qaOgOE+GzvLyU/PyhQtwhRMGCBXzyyeEjR3pDL3gzOVnk5fU3\nGJ4VYti4cej1DR99NAK2SvmMyURaWh+b7Rq0SIZVq66Jc1H0dbunxyIZnnzyt5AP82FD7965motC\n99prvPTStxUVPeASeD8z01FQMEine0CIi+68kwMHinfsuAiS4BWHg5ycfibTS0K8k4gESFSifgqf\nAL4DmZQkk5LqdbrP40j2ZyGSny/tdpmS0mowbIsj2buW0bvdQZPp4Pkk+wG1jN7tllZrsUayT4xf\nRp+cLB2OSiE+hDc0kv1NtYze6ZQuV5NOtxE+0Uj2R6EjKytqtUq322Mw7Ioj2efBKYdDDhsm3e6I\n2fwdnLZY7tM62W4wdHZis52CUHr6cu3d9IdCyIEDpcslnc5aIT6Fd+BmkFK+ALJ7d+lwyOTkZr1+\nC3wJyrX7W2hKSwtaLNLt9huN++CgXh/LAziqXBRut3JR1Nntj2vSJr1e4fYxF8VqUJ7kvysXRVKS\ndLmUiyIWybAIgnl50maTKSnKRfGNlgdwB1QqF4XbHTKZDsGJf3dRuN3KRdEeF8nQ6aJITpZOp3JR\nxCIZXlMuCqdTJief1eu/glsTnwYSlagf8SeAb4UYOHgwS5dyww0ZbnceVMEVsFaIPqALh/nDH7jn\nnqS8vBwhyqQ8rS2jTw4GmTKFJ54w9u+fYzAUh0I12jJ6dyhEnz4sWcLo0XkWy4HW1nq4F9YKka9I\n9ueeY86cPKczH2pgPqwVwq0aWrKE225LzcjIFaICZsNaIUaAPRQSjz3G/ffbevTI0elOR6MVsFaI\nn0NSKMSoUSxcqLv44lyjscjvr9M6yYhEyMtj6VImTiyw2XY2NtbBbbBWiAIpsVpZtox587JSUnI1\nM8FaIQqASISnnuLXv07OyckRohxOwlohxoMrEDA+8ACPPGLu0ydHry+NRLqCEEIhBg9m8WJGjMgz\nmQ57PPWalBuJkJbGsmXMmFFgtxdADdwAa5WLQq/n2We58cb01NRcqNQiGQaAMRRiwYKYi+KMlCoI\nYbYybUyYwIIFhoEDcw2GE8FgrXZcWjhMr14sWcLYsfkWy97m5jotkqFAShwOnnuOK6/MTUrKgxot\nkiEDzUzwi1+4MzNzhLgs8XYsUYn6fut7/SOwW6dj1ChmzaKjQ5HsBimvmjSpU9bpmDOHI0dwONTu\n+xzoVKurmTMHIRRTD6RqUujQIWbOZPhwtm2TGsKvpLJvv2XiRKZN49QphfAbYy8IZGUxezbr12Oz\nRUAfL/l8XHEFFRV89FFEpxPRaGZMLS3l8stJTWXDhqheTyjk0qSWvXuZPp2JE9m7F4MhqrbwT5oE\nnPzmG8aMYcYMGhowmzu38MeOs9uZM4cdO5SZQCdlt9hxTU1ccQUdHXzySVSnQ+UBKOnYMWbPpndv\nvv46ajDIYNCuSbUK4Z8yhaIiTKbOLfyx47p3Z9YsAoGYi6JLkpIrrqCoCIcjIoSA7NiDFRXMmYPZ\nrNIaALcm+Q8eZMYMRo5kx44LRnBq2zYmTGDaNMrL/8MI0tK4/HI2bcJqVd6Fm4X4ewIKSlSifpS/\nAOql7L9/P8uXc/RoY0tLJz9+6pTWi4EXX6Smxl9b24XwnzoFdHg8jrfeIhxWy+gbVN+nTgHVfn/h\nhx+ydSv79yuEP6BJTZFI4ZYtNDayd29le3u9QvhjxzU2smIFxcUtTU31UjbGS9Eor7zCuXPRysqu\nLfzqNdva0v72N4xGioqqQ6H4TuqCweTPPuPwYXbtKvP7O/MA1FPRaJ+dOwkGOXSorrX1wuMsFlat\noqzMU1/ftYX/1CkgGAiYXn8dr5fTp2tiZgJ1cY8n9913SUri8GFlJohqUkM4nP3ll5SVsXt3mcdT\nrxD+2HEtLaxYwbFjTefOXdiJTseLL1JfH4zPAzh1Cmjr6Eh6+22iUU6erI6ZCbQR9Fy7lh072Lu3\nPBBoUHkAp04BZ6PRnt98Q3Mz+/dX//sI6utZuZLS0tampq7jEpWoRH1f9b36AFYLMcJkyrZaO4LB\nCr//uJQlkK+po/T6Qrs9FIlU+XwlGsmudt8PFqKPw6GH2jiSXTkGusNgm81uMDT6fGdCoSNQr+Hq\nKXCZ2ZxmsTQrhB/KoEA7brzRmGezeYPBSr9fkex5mnSpTtfT4YhEozVxJLvafd9PiP52u0mnq/N6\nT2skuwLnc2GY1ZpkMp31+VQeQI3G6SfBZSZThtXaFghUBALHpTwVd/HRBkM3uz0QClX6/cXR6FFo\n1rwLQ3W63na7kLLG54uZCZR3oRcMstuten2D13s6HD4MjZpjIB0utVhSzOZmv78sEDgGFXGc/kSj\nMcdm69AufjKuk5F6fXe7PRSJVPt8JdHoYWjVvAsDhehrtxsUwh+J7IdWbQTdYIjN5jQaG71eNYI6\nbQTJcJnZnG6xtPj95cFgkZRn4kYwzmDIs9t9oZByURxP5AEkKlH/9/pf7wO4R8pFQsSW0VdAEF7R\nvuEfE6JbW5uAc1AMUWiHR6QE7hHi9Pkke6NGsv9CiGqvN7aM/iy0x5Hs7wYC7kAgGGcmWB2H8Oe0\ntqo8gAtI9oeE6NnWpodmKIUgBLROfiVEeUeHRSPZ2+OsTDcLUe/zJfl8Pqg+30xwQog1wWB6MBgW\nWWznAAAgAElEQVSCOs1M8EpcEEJ+ayvQBKUQgXPacb8Vok97eywPwAd1mpngDiGqPB6bhvA3x7ko\n6s3mv/n9yX5/4N/MBHuFWB8KZbW2qtSB8vNH8IgQ3bURKDNBh9bJ3UKc6egwa5EMnrhIhtuEqNVG\nUHX+CE7r9e8FAqlxI4g3EzwpRE5rq4wbQeKnf6IS9b3W90wB2WEcTFII/9ChXcvoc3Pl0aMyM3Oy\ntk8/toy+k2QfPnxKjB+PX0b/xRfy5psnw1hFnnTvvhvmKvWJJ+QLL0yACQqcj19G/7OfyS1bGp3O\nyTAZ5PDhNWbzyyClDLtcsqREFhZO0Rbce5KS3gcp5QmQR47IiROnxMD57OyvY1v433lH/va3k2Cc\n6qR37wNCKOhI3n67/Pvfx8NEdfEhQ07p9U8pqU8fuX+/NzV1sobwN1mtb4GUssFslqWlsn//KTAB\npkPI7f40hvBv3y6vukpdPOaiUBtM5cqV8umnJ8J4dfF+/Y4K0bmLdNYsuW7d2NgIhg2rMBpXKCkz\nUx4/LnNypmgjaNVcFKdVJMNll035jy6KTz+Vt9/eNYIePfbEXBQPPij/+MeuEQwadFKvf1RJl1wi\nv/32XFKSuvi0BAKUqET96H0AHVJulfIrKW8GfL6CrKyfxUj2Z5/d1NDQE8bCJ7m5sWX0BU88wWef\nHTl8uA8Uwp+0ZfTLhWDcOIzGxrVrR8E3Ui5Sy+jt9nkgU1K49VZWrboWMuA3ahl9aupU+FAIXn+d\nJ5/8pr29G1wDtLRk5+SMgI+F0CuSvby8FwyHf2Vk2AoKBul0jwjR5847OXiwePv2vrBVyhdtNnJy\n+pnNVwD9+9O3r/fvf58CNnhCr8fp7JuUdA2ctVp5/HGWLLkNclQeQCjUIzNznMoDePttnn56y9mz\n3WEarC8oSM3PHybETUKkL13KO+/sO3nyIugHf0lJMeTnDzAYFgkx7PLLOXeuasOGYfCN5qLoY7XO\nA3JymDmTV1+9EtwqD8Bs7ut2z4Iyg4FVq5SLIl9zUeRnZ486P5KhJ4yCtdnZSQUFg3W6e4Xo/tBD\nbNx4dP/+PpATc1EYjc8LwWWXqUiGMSDhKaORlJS+Dsc8CCYlcdddrFhxA2TBf2kuislqBG++ycKF\n37S1FcImKb9IvPdPVKJ+9J8A4qtzGX1amrRaT0K9w/GE1s8XKg/A7ZYOh1pGHyPZO5fRu1wyOblR\np/syjmT/A/hzcqTdLt3uDoNhZxzJfnNsGX1aWthsPnI+yb7LaJTDh8vUVGmzlUJ7Ssoz2vv6j4SQ\ngwfLlBSZlFQjxMfwZ7gRpJSvgOzRQyYlyZSUZr1+M6yDX4KU8kFoTk+PWq0yNdVnNO6FPTpdLA/g\nuM3WeXGLpQgqrNaHNGmLXi+HDZOpqdLhKBPin7BKS9f6J8j+/WVysnS5lIvinxo7vxQiBQXS4ZBu\nd5vBsA2+0lwUd0FNSkrQYpFpacpFccRguOcCF0VamnJRNDmdf4CRIKVcr1wUbrd0OpWLIhbJ8CbI\niy5SI1Auilgkw2Pgyc6WNptMTfUYjbviIhmuhVNOpxw2TKalKRdFidn8m8Qb/0Ql6qeZB+AOhxk8\nmGeeYeTIXLP5SEdHA6wTYp1C+NPSWL5cLaPPhzq4FdYJkQ4YDCxbxs03p6Wn50A1XAPrhBgBZmUm\nuO8+e2Fhtk5XJmU5rBPiOkgJhZg4kT/8QT94cI7BUBwM1mnHZUQi9OrFsmWMH59vte5vbm6Ae2Gd\nEIVS4nSyfDlXXZXtcuVCLdygJEAInnmGX/4yOSsrW4hKmAvrhJgIyeGwePRRHn7Y0qtXtl5/Ohqt\n0o5LCYe59FIWLeKSS3JMpmM+X+ziOdEoubk89xxTpxbYbOrid8SOs1h47jmuvz7D7c6FapgP64QY\nCDplJrjnHmdeXo4Q5VKehnVCXA7uUMh4//0xF0VpOFyrHZcaDjNgAEuW8LOf5ZrNh9rbG+D3sE6I\ngmgUt5vly7n88jynMw9q4WZYJ0QWmpng1ltTMzJyhKiCq2GdEKPBFg6zYAH332/TRlAB64S4RY1g\n7FjlosgxGk8EAo2Jt2CJStQPVz/kMrg8t5sZM+jXj02bonp9FOwwe8oUoFoh/BMncvQoRmMETJoE\nkJ/PtGn4fMpMoJeySwoGmTWLkydjJHtW7MEzZ5g1C6uVTz+N6PUyHHZrknffPqZOZfRotm2Lagi/\nkkq2bmXsWCZPpqxMkeyG+E5cLmbMYPNmxdTr4jtpbmbWLBobSUqKCKHgnE71+HFmziQvj/Xro3q9\nBKcmNe7cyaRJjBvH/v3SaFQIv5KKNm9m5EimTuXsWcxmhfB3HafXM2sWBw5gt0eEEFLmxI6rrmbW\nLMJhZWuQkKpJkUOHmD6dwYNVMkE0ELBpUsW2bYwfz8SJHD+uzATnjSA7m+nTCYexWJSLokvy+Zg1\ni9OncTrVCDJiamkps2bhcik/hwRX4lswUYn6af4CqPB4Ct59F5eLQ4e68gCKi4GGcDj3yy8pL2fv\n3jKPp3MLf3Fx55ONjTz3HCdONJ09q3bfd0lC8MILNDYG45fRFxcDze3tKW+9hRCcONGF8BcXA9V+\nf++1a9m5kz17Kvz+evBq0tlotPc339DSwsGD1W1t9Rd0YrezYgWnT7c2NtZFow1xUiQU0q9eTVub\njM8DKC4G6trasv7+91geQIN6oLgYqA+F0j//nOPH2bVL5QG0xL4m0Wj/PXtYtoyjR+tbWuovuLjR\nyPPPU13tra2tjeUBFBcDHp/P/vrrhEKUllbHtvAXFwOVXm/he++xaRMHDlQEAg0Q1KTGSKRARTLs\n21fR0VEP5x1XX8/y5Zw8ee7s2Qs7kZKXXqKpKVRZWRuNNsR1cratLfXtt9HrOX68KjaCRCUqUT9Q\n/ZB5AO8LMchms6ll9BrJrnD1DLjUbHabzc1+f3kwqEj2GKc/yWjMsVo9oVClthY/R5NG6fXdbbZw\nNFqtmQlaNXB+kBB9bTajTqdI9oPQooHzhTDEalV5AGUaya5w9RS4zGRSeQAVgUARnIFc7bjxBkO+\nzeYLhar8fkWyZ2vSpTpdT7udaLTG5yuNRg9AuwbO9xOiv81m0enqfb4zmpmgEIAcGG6xJJtMZ/3+\n8mDwKFRpnL4LRhiNWVZrezBYEQickLI07uKj9fpCuz0YDlf7/cXR6HfQonkXLhZC5QHU+nwK4W/X\n0g56waA4F8VhaNBGkAYjzOZUs7klEFB5AOVxI5hoMOTabN5QqNLvPynlibhOLtPpetjtUW0Eh6FN\nSzsYKEQ/m82o09XHjSCRB5CoRP1/qR9bHsDnUOX12jWSvSWOZK8zm/8aCKQEAjGS3aeR7HuE+DwU\nyg6FYiR7KI5k/50Q3dvbVR6AYuq98LiUwJ1CnPF4LHEk+1mNZL9ZiFqfz+nzxUj2jjiS/d1gMC0Y\nDEIdVEMgjmT/vRB5bW0SmuA0hOEEbJQSuE+I3u3tsTyAIBi0Tu4QotzjsUEHlEMbNGt5AB0Oxx89\nnmS/3w/V0ABezUxwTIg1oVBGKKTyACrPR/gf1VwUZ7WLt2vH/ZcQpzo6Yi4KHzTAWxrCX+X1qjyA\nSmiGNm0EVUbjO4GAOxAIQC3Ugl8bwU4hNoTD2W1tykVRdv4IHhSiZ3u7XhtBGPxxIyjTRlAGHYk8\ngEQl6oetH4oC2gvy22/l1VdPhDEKA+/WbSfMUS0tXy4XLx4P4xQ/Hr+MfsYM+fnn1TbbBIXwDxsW\nW0YvMzIUyT5J26ff7nS+GyPZjx+XI0d2cfrxy+g//ljecccEGK2O69VrnxAKOpIPPCBffXUsqAQC\nOXhwiV7/eyUNHy63b292uSZqS/MbLJY/gZTS43DI0lLZq9ckmADTIJCS8hFIKY+BPHBATps2MQbO\n5+V9EwPh33xTPvzweBirOunb94gQiiySN9wg33tvDEzQXBRlBsNSJXXvLg8fDqanxzpp1lwUVUaj\nLCmRQ4ZMgvHqlPT09SCl3K4iGa67rmsE3bvvirkoFi2Sy5aNi41g4MDjOt2DSpo4UW7cWGe3T4i5\nKEyml8+PZIiNIOaiKNEiGbpGkJ39dYICSlSifmoU0HohLpk9m5aWqg0bLoFtUi7RltHPA7KzmT2b\n1auvgjS4L24Z/Qfqf/EvXLjN6+0G1wHt7WoZfSfJ/txzm2tre8MI+DAry1FQMFinu1+I7g8+yNdf\nH9u3rx8kw+q4ZfSMGIHb3fz++xNAD08aDLhcfZ3OeeBPSuLuu1m+/CbIhl8LQTTaKz19YhzJvrW1\ntQdcDl8UFqbn5Q0X4johbC+9xGuv7Tx9ug8MgndSU035+QP1+ieF6H/TTZw8eXrr1kHwjZQrLRYy\nM/taLPOBnj255JLgn/88G1zwsE6H1do3OXkO1JpMPP00ixb9CvJBuSi6ZWePVmaCv/yFxYu/bmzs\nBePg09zc5Pz8IUL8Wojcp57igw8OHj3aF7rDGy4XeXn9jcbnhPjZlCkEg7WffTYStkm52GTC7e5r\nt3dGMsyfz8svz4cMuFcIdLq+qalT1QhWr+bJJ7d5PN1jLorc3BGxSIbnn99aVXURDIf3NBfFw0L0\n+s1v2L79xO7d/WGrlC/b7eTk9DWbVyfyABKVqJ/IJ4BjIFNSFMK/IY5kXwShvDzpdMrU1HaDYXsc\nya6W0YcsFpmeHjabD8N3cSR75zL69HRps5VAU1LSkzAapJSfqWX0qakyKalaiLVxJHvnMnqXS6ak\nnNPrv4oj2R+GtsxMabfLtDSf0bgHtmt5ANOh2G6Xw4bJ9HRpsRyDUrP5Xq2TbSoPIC1NOhxnhPgf\nWKYFnL0HcsAA6XZLl6tOp1sHf4WbQEq5AmS3bjIpSbrdrQbDN7Ae7gQp5W+g3u2OWq0yPT1oMh2A\n/Xp9zExwRLko0tOVi6LaZntEk75ULoq0NOl0KhfFS5o19y/KRZGSIlNSmnS6L+E9LZLhSeWicDhk\naqpyUcQiGW6JuSjS0yNm8xEoiotk2K1cFOnp0m4vhRaX62kt4Oxj5aJITY25KGKRDKtB9uwpXS7p\ndisXxS8TnwYSlagf8SeAnUL0HzqUFSu48ca01NQcqIUbYaMQl4FBSp5+mnvvdRQUZAtRKWUZbBTi\nOkgLhw0PPMCCBfoBA7INhtJwuA42CrFRIfwDB7J0KWPG5Fksh9vamuBJ2KgQ/tRUVq7kiitykpJy\noR7ugI1C9AAMBp57jttvT8nIyBaiBq6HjUJMAWckwoIFPPSQpUePLJ2uPBqtgo1CPAipkQjjxvH0\n0wwdmm00ngwEzmqdZEcidO/O8uVMmpRvteZDI/wWNgrRE3A6WbGCa6/NTE7OgTq4BTYKMRgQgiVL\nuPvupJycbCGq4BRsFOIKSI9ExCOP8Nhjxj59svX605FIrXacOxJh+HCWLGHkyByz+ZjXG+ukIBol\nK4sVK5g5M9/hyIMG+DVsFCIHzUxw002paWnZUAM/h41CjAazlDz1FPfdZ+/WLUunq5CyAjYKcROk\nhcNMm8aTT+oGDco2GEpCodgIMiMR+vZl2TLGjs2zWg+2tjbCo7BRiO5SkpLCypUxF0U9/AI2CtEb\n0OtZupQ77lAuiuEwLfFRIFGJ+h7re/0jcJJOx4gRTJxIU5Mi2fVSTp02rVOORpk2jcOHsdnCOh2R\nSDZ0quXlqH9ISlIku1uTQvv2MXkyw4bx1VcRvV4h/Eoq27KFsWMZN46iImUmMMZeEEhLY/JkQiFF\nsuvipfZ2pk2jogKHI6LTEY2mx9STJ5k2DbebTz6J6PXRUMipSS07dzJxIqNGsX27MhOYNenE118z\nahQTJlBZ+R8ubjYzZQo7d2K1hoUQUubFjqurY/p02ttJSlJfk9SYdPgwU6fSq5dKJoiCTZNqFcI/\nZgwHDvyHi+fnM3kyra3/oZNQiGnTKCrqNBNAVuzBM2eYNg2TCZfrghH49+5l8mQuu4zNm1UnVk06\ntXkzo0czbhwnT2IyhcEQ30lyMlOmsGkTFou6eGbiOzJRifqx/gKol3LAnj0sXcqxY/XNzXVSNgBF\nRZ2y0cjKldTWemtquvjxoiKgzedLev11IhFKSqpjeQBFRUClz9fjvff46iv27esi2YuKgMZIpPCr\nr6ip4cCBLpI9dpzLxbJllJaea2q6sBNFsp87F6qoqIlE4o9raG/PePttlQfQRbIXFQG1gUDyxx+z\nfz+7dpX5fPUqD0B1Eo32/fZbPB6OHKlpaen0LsSOs1pZsYKKivb4PICiIsAfDFpWr8bn49Spmgsu\n3tGR/z//g9PJoUMVgUC9ygMoKgLqQqHsDRsoLWXv3jMeT72CbWLH1dezdCnHjzf++wj0elator7e\nX11dE43GH9fi9Sa/8QZSqjyA+jipyufr9cEHfPMNe/aU+/31Kg9Au3hPFclw8GBlW9uFI3A6ee45\nTp1qbmxM5AEkKlHff32vPoCXhVAke0cwWKmR7FmaOlqvL7TZQpFItd9fopHsCuG/WIg+NpteiLo4\nkl1tnO8Jg61Wu8HQ5POdCYePQIMGzqfBCJMp1WJpVcvooTwOV1ckuy8YrAoE1Fr8WCeX6XQ9bbao\nlDVxJLta+j9QiH5Wq0mnq/f5TmskuwLnC2CoxZJkNJ71+8tCoe+gTnMMpMAIozHDam0PBCqCweNS\nno5zDIzT6wtstkA4XOX3F0tZBOc0hH+4ECoPoNbnOxWN7ocOzbvQBwbabFa9vsHnUy6KJs27kAWX\nmM0pcS6KqriLTzEas61WjzaCkriL/0ynK7Tbw5FIjd8fc1EohH+IEH1sNoMQdT7f6UjkALRp3oUe\nMNhqdRgMZ/1+lQfQoDkGUmGEyZRmsbQGAspFUR538QkGQ57V6g+HK/3+YilPQBP8M2ELSFSi/lP9\nr/cB3CvlQiGyQqEwNPwbyf47IQrb23VwFk5pCP/vpQR+LcRpj8cEbXAa/HEk+y1C1Ph8MZK9JY5k\nrzQa/x4MuoNBtYw+3kywW4jPwuEcjWRXZoKjsEVD+Ht1dMTyACIQ1Tq5Q4gyr9cKbVCukezKynSD\nEHV+v8vv98WZCRTCX6LTvRsKpYdCIaj/NzPBo0IUtLcDTXAGwtCmHXePEH07OmJ5AAFI0qTbhKj0\neu3QARXQBi2ameCc1fonvz8lEPBDjWYmUBc/JMTaUChLc1FcMIKH/s1F4dOOu1OIgR5PLA/AFxfJ\ncJMQNT6fU4tkaD4/kuGdYDA1GAzFmQliF39CiLz29ig0aWaCxE//RCXqe63v3wcwCsYpfnzo0K5l\n9IWF8siRUHq6Wpo/FVodjv8BKWWlwSBLSuTFF0+I8ePaMvpvQX71lbz++nExhL9Hjz1wtXrNp5+W\ny5ePgTEKnI9fRj9hgty0qc7hUOEEcvjwOrP5j0pyuxXJPkFD+H0u14cxkv3oUTl2bBenn5OzBSao\nB997T/7Xf42DnynpoosOCXGLku6+W/75zz+DseriF1982mBYrKSBA+WePe0pKbGLn7XZ3gYpZbPV\nKktLZZ8+EzSEP5Kaug6klIdB7t4tL798PIxRx3XrtiPmonj5ZblgwVgYrS7ev/8xne6/lTR3rvzo\no3KrdVyci2JVfCRDVtZ4bX1/zEVRrtfLkyfl8OFdI8jM7HJRbNggb765awQ9e+4TYp5SH39cvvDC\n6NgIBg8u0eufOD+SYTxMUg8mKlGJ+tH7AHZIuVXKGwGPRy2j71yLv3jx142NfeBn8HF2dlJBwRCd\n7jdC5D31FB9+eOi77wZALrwet4x+9OTJRCJ1n346Gr6V8um4ZfSkpXHddbz44vWQBfdoy+gnxZPs\nHR09YS7Q3JyZl3epItn/9CdWrfqmqqovDIV309MtBQWD9PrHheh1zz3s2nVi1y6F8L9os5Gd3ddi\nuQ4YMoSCgvZ//GMa2OExvR6Ho6/LNRfa7HYefJClS++AfLgdCAS6Z2aOhTXKu7Bw4Zbm5t4wFdbn\n57vz84cK8Qshkleu5O2395SU9Ic+8HZysi4/v7/BsESIwddcQ3V1+aZNw2GbygNIS+trs10DFBQw\nYUL0T3+aC2lwv06H0djP7Z4B7wvBc8/x9NPf+nyFcD3Q3p6bnT0yNoJnn91UX98HLoO1cS6Kgscf\nZ926I4cPD4BU+KPDQW5uX5PpRSEYOxaTqXHt2nHwrZRPGgwkJ/d1OOarSIbbbmPVqhshB+66wEXx\n+ussXLitvb0nfCXll4n3/olK1E/hE0CsDqpl9JmZ0mYrhhq7/VGtn85l9OnpMimpSogP4WVQbyrf\nUsvo3W7pdp/V6zfFkeydy+idTpme7jUad8EWjWRXy+hDFovMyJAWy9HzSfYdimTPyJAOx2kh/g5P\nqzfIUq4RQg4aJNPSZHJyrU73KbypkewvguzeXSYny9TUFr1+K3wCd4CU8j44m5Ym7XaZkREwmfbD\nLs1MIKU8ZrV2XtxqPQ5nLJb7NekrvV4OHSozMqTTWS7Ev2AFXAFSyndA9usnU1NlSopyUbwD6hPG\nYuWiSEqSaWkdBsN2+BJ+BVLKX0JVcnLUapUZGcpFcSjORbFPuSgyMqTdXnJ+JEOniyI9XbpcykWx\nGq4FKeXrykWRkiLdbuWi+FCLZHgY2jMzpcMh09OViyIWyXA5lDgcctgwmZmpXBQn4yIZEpWoRP20\n8gDSFcm+dCmjRuWYzcc8nmbYIsQWIQqjUbKzef55Lr881+nMhUa4B7YohN9iYcUKbr3VnZaWpUUF\nbBFiGtiUmeD++62FhVk6XaWUVbBFiLshIxIx3HcfTz3F4MFZRmNpKFSvHZcdidCvH8uXM358rsWS\nD+fg97BFiF5S4nbz/PNcfXWWy5UDDfAr2KIQfpVM8KtfubKzs4SogZtgixBXgjsa5fe/55FHTL17\nZ+n15dFojXZceiTC6NE88wyXXppjMp30+2MXL4hGKSxk5UqmTy+w2/OgCe6HLUJcBDgcrFzJz3+e\nlpqarTH1W4QYDQaVTHDvvfb8/CwhqqEctghxI2REIuJ3v+MPf9D3759lMJwOh+u04zKiUS6+mOee\nY/ToXIvlaEfHOU3qISWZmTz/PHPmKBdFI9wd60SN4Be/UC6KWrgFtggxExxSsnAhDz5o6dEjM24E\nD6qJT54cc1GUBINnE2/BEpWoH65+yGVwuW43kybRpw/r1kU0fnzCjBlA9ZYtjBnDyJHs34/BoEh2\nJQFkZTFuHM3NmM1hIXRSdkleL5MmcfIkNltYCCAj9mBJCZMnY7EoM0EUUjTJu+v/sPee4XFW99rv\nbz3T1btG1XKXiyxLlm3ZxsaAEyAJEAKkkcImIewUQgiBBJKADS4YAy6YHggltATCphrTbNyNe5eL\nrN4lW336/M+HpWc8dvY55z3nfXdCkrk/cV33NbPWYl3SzGP97v+9jfPPp6KCjz8OW60hcJjW8Y8/\nprKSWbM4ehSbLQiW6J3ExzN3LuvWRUj2M1ZHBxddRHs78fFBpQQyIi88cIALLyQvj+TkkMUSgjjT\n6ti4kdmzmTZNhwl0EYK2Dn/4IVOnMns2zc3Y7eceXIQLL2T3bh0mQCQnslxdHRddRDBIYqLeSZpp\nhXbu5IILKClhzRq9k8gV1GuEf8YM9u7Fag2ecwUZGZx/Pv39OBxBUNFWXx8XXcTJk/oKJPoKqqq4\n8EKSk3WsIQxJsR/BmGL69/wAqO3vL3rxRZKT2bNHk+xBYP9+oDUYzHv/faqr2bWrZmCgVU/h379/\n6JVNTSxZwtGjHadODZHsEcti4aGH6OjwNja2hMNtGi3fvx/oGhxMf/JJ3QdwBuHfvx9o8HjGvvYa\nGzeyfbtG+AdNqyMUGr1+PZ2d7NvX0Nvbqkn2yHKJiSxdSm3t6fZ2nV2IWP5w2L5qFb29odrapkiY\nYP9+oLmvL/fZZ3G5OHBAFyEo02rx+zPffpsDB9ix4+TgYKvuA9i/H2gLh8dv3crixRw+3HL69FCY\nILITh4Nly2hu7m9paYkg/Pv3A70+X9JjjxEIcPx4UyjUFmXVDQyMePll1q5l1646n69Npyj0csFg\noa5k2LOntr+/Dc76/5yaypIlHD/e2dnZcs4VGAbLl9PV5TP7ACLLdQwMZD79NBaLTlG0gSX2IxhT\nTP84/SP7AF5VaqLL5bJYOr1eTbJ3mbi6G6ba7Wl6GL1Jskdiol+wWnNcrsFAoMHnOypyHDJNa5Zh\n6D6AZq/3hEmy69n3k5Ua63LZlGrzeiMku04MjIRSpzPBRPg1ya5xdR0myHQ4en2+ejNMkGUud4HF\nkh8X5wsEGn0+PRY/spPphjHS5UKkxes9EQ7vhT4TnJ8A410up0b4zTCBTgwUQLnDkWy3n/Z66wKB\ng9BscvppMNVmy3Y6B/z+Br//iEh11E7mWCyFLlcgFGr2eo+JHILTZv3AFKXGxMUZ0Or16hTFgJkY\nGAMlLle8xdLh9daaYQJ9BVk6ReFwdPt89X7/IWiIuoJ5VmuuyzVoHvxY1MFnGsbwuLiweQU6RaGz\nC6VKFbtcNsNoN8MEPSZLGlNMMf0/61+tD+BdaPB4In0AvVF9AJ1O55M+X6rfr/sAOqJI9j1K/TUY\nzOnrC0HH35Dstyg1or8/Mow+DD6420T4Jw4ORobRR5Ps31aq2etN9Ho9f0Oy11osL/j9GSbJ3no2\nyX6HUvl9fboPQIcJqmGNCPAzpcYMDFihG6ohCC5zJ9cpVe/xuMw+gP6oPgBfUtJDfX0pPp/uA+iC\nATNMcESpVwKB7EAg9N+FCW5Talh/v+4DOGmmKPRyP1JqwsCA7gPQYYJs0/quUo0eTwIMQj30RKUo\nWhyOZ8wUhQ4TRFcyvBUM5vb1haPCBEfgYzNFMfLsKwiby12vVM3goBP6oBYG9YNdTDHF9I/SP4oC\n2guybZtcdtkZXL2o6Mww+lWr5K67ZsJMTeNED6O/4gp58816l+s8E+E/M4w+N1cOHRK3e7ZJskeG\n0ddqkr2iYnYE4Y8eRr9mjXzve+fBTL2T0aN3K6Xnhsodd8iqVTNglt5JaekJi2W+tior5WyiMRsA\nACAASURBVNNPOxMTZ8MFIFOmdLhcfwAR8SclyfHjMnz4HDgfvgCBtLS3QESOgOzbJxdeODuC8BcU\nbIJL9Xs+/7zccsssmKF3Mm7cAZOikeuukxdfPO5wDB28rKzeZlumrdGjZfduT3p65OCRFEWr3S4n\nTsjEiWcm+2dlrYWhSoaNG+VrXzsvcgXRKYr775eFC89cQUnJUcP49dmVDJEraHE4HomuZMjLm20e\nPJKiiFQyzD47RTEnBgLFFNO/FQX0nlKlV15JS0v9Rx9Ng026DyA9vTg+/iqgoIALL5QnnrgasuDm\nqGH0f1GKZcs0yT4CruHMMPoIyf5xW9s4qIDXzGH0tyk17I47eO+9A3v3ToINIqujhtFz3nk4nZ1v\nvHEBbBb5vdVKYmJxYuI1EE5J4T/+g4ce+h7kw4+AYHBkVtb5Okzw5JPMn7+hr280XAp0dmbk55cr\n9aZStkcfZfXqzbW142ECvJCWZi0omGC13qNU8fXXs2/f8U2bSmGjyDKnk6ysYpfraqC4mAkTPM89\n9xVIgdsMA4djXGrql+FVpfjd71i0aLPPV6T7AAYHC3JyZuowwbPPcs8967q6iuE8eCs3N6mgoNQw\nfqpU9pIlvPTSriNHJkIBPGmmKB5UquJLX6Knp+n992fCJpF7bTZSU8fqFEVODl/5Co8++g1ww8/M\nFMVF+gpWrGDBgo2Dg6PgSuD0aXde3jRdyfD00yxbtq65eTxMgVczM52FhRMtljuUGv7LX/LJJ4d2\n7ZoUnaJwOL4FL8SGgMYU07/DE0AVSEaGpKXpYfQvmiT73eDNy5PkZMnKGrDZtsKHSv3IHEZfl5Qk\ncXHidoedzv2wL4pkHxpG73ZLQkI1PAe/M62hYfRZWZKSoofRP2qS7EPD6NPSJCOj22JZB6+bfQC3\nQndWliQmSna2z27fARsj38FFquLi/E6nuN3ich0+m2Rfb7EMQe6JibVKvQyL4RIQkVdAxo+XzExJ\nTW03jPfgj3AtiMhSCBcWSkqKZGb2Wa2b4F1zMv6PoSU1VeLjJTs76HDshR2GEekDGEpRuN0SH38M\nGlyu285JUWRnS3KyTlGsgCujUxTp6ZKerlMUkUqGO2EwJ0eSkiQrS6coIpUM34STiYkhl0vcbp2i\niK5k2BJ1BTpFcTecF52iyMqSlJRWw3gbnoBvgois0imKtDTJyOixWNbDf8YeBWKK6V/4CeAzpcZO\nncry5XoYvdtk6jcr9QVwGAaLF3PzzXGFhdmG0STSAJuV+hG4RbjtNu6+W02c6LZaa4LBNtis1Gal\nckSYPJllyzjvvFynswC6TWuUCG43K1ZwxRU5ycm50Ak/h81KlQJOJw8+yA9+kJyd7VaqFa6HzUpd\nCcnAggXcdpt95EhNsjeb75kdDttuuomFCykvz7HZTvj9p02rQISxY3noIebNy4+Ly4fT8DvYrNRY\nIC2N5cv5xjcyU1NzTKZ+s1KzQNlsLF3KT36SkJeXrVQL1MFmpa7VB7/zTn73O0txcbbFUhcOt0bt\nhMpKli7VfQBHPJ7IwUeIUFjI8uV86Ut5CQm50AW3RnaSkMDy5Xzve2nmFdwAm5X6ErgMg0WLuOUW\n17Bh+goaYbNSPwN3OGzceqtOUWRbrSeDwXZzudxwmJISHnhApyjyoRvug81KjRYhK4sVK/ja17KT\nkvTBfwablSrXV7BsGTfckOR2u5UqhbmxR4GYYvo76u/6R+B4w6C8nBkzaGzUJLsSmXXppUN2IMCc\nOezbp5l6IBuG3JMnmTsXERISND+eZlqBzz5jzhwmTdJhAo3wa6tWI/xTp7J7tybZrZE3BFJTmTWL\nvj4cjgCoaKu7m/PPp64OlytoGBIOZ0Tcw4eZO5fUVBIT9U4STKt70yZmzaKsTDcTaHBeW1UffkhF\nBZWVHD+OzaYR/jPLWa3Mns3WrUMHF8mNLNfUxNy59PURHx80jHAoFDk4u3czZw6jRpGcHDQRfm21\nrF/PjBlUVLB1q05RnHXw3FxmzKC1Fbs9cM4VeL1D9QkuVwThH3JPnGDuXKzWyBWkmpZ32zZmz6a0\nlDVr9E7splX98cdMn860aezfr1MUZ+0kMZHzzsPrjYQJCmM/kTHF9K/6AdAqMmHrVhYt4siRFhPh\nl717tavsdu6/n7a2/ubm5nBY4+ra7fH5Uh59lFCIo0cbg0HNj2urbnBw1Msv88EH7NxZ6/O1gt+0\n2kKhog8/pL6evXtr+/pa4azlkpNZvJjq6s6OjnN2ElbK8tBDnD7tq69vNsH5ofccGHD/4Q9YrRw6\n1BAIRFtNPl/KG2+wfTs7dtR4PG3Qb1rt4XDxxo309HDwYGNPz7kHj4tj6VIaGnpaW885+GAwGP/w\nw3g84erqyBR+bdX39w974QUSEyMpirBptQQCOe+9R1UVu3dXDwy0Qlf0co2NLF7M0aNtf3sFVisP\nPEB7+0BUH4B2T3m96Y8/jghVVY3n7MTjGfPqq6xbF+kD8EYOHgqN1JUM+/fX/e0VJCWxZAk1NV0d\nHTpMYI39RMYU099Rf9ccwEqlplqtbqdzIBBo8PurRKoh3XTPN4xhcXGaZD8ucgi6zaH/FUqNcbks\n0Ob16rH4AyY4PxZKnM54q7UrimTXuLoOE6Tb7T1+v0b4GyDDXO4LFkuuy+UJBptMkj3NtGYZxnCX\nS8LhFp9Pj8XvNYf+T4Zil8tuGO1er+4D6DHB+eFQ5nAk2WynfL46sw9Ac/qZMNVmy3I4+jTCD7VR\nB7/AYilwufzBYJPPp8finzKzC9OVGhUXp0Ravd7qcHgP9JnZhQkwweVyGUaHz6dTFKfMxEAeVNjt\nqXZ7t89XFwgcgqYoTv9iqzXH6RwIBBrNK4gcfI5hDHO5QuGwvoKDUVcwRakxLpc1KkXRZ17BaCg1\nr6AuGNwHHeYVZMNUmy3D4eg1r6A+6grmWSx5Lpc3GGz0+Y6JHIVOeCUWC4gppv9O//Q5gJtFfq+U\nu78/QrL7o0j2XypV1N+v+wBqzGH090Qh/A7ogRrwQb5pfVupJq83wRxGH02yN9vtT/v96f8dyb5N\nqTdDobz+fjFJ9gBUwUciwE1KjRoYsJp9AGGwmstdp1SNx+OKItm7IlGmzMwlnZ3JPp8HmuAU9Jth\ngmrDeD4QyAoEgtAKLX+D8Bf29wNdUAtB6DeXu1GpcQMDNuiBaghAuml9V6l6M0WhwwSRPoDe+PiH\nBwfPSVHoMMEBpV4NBnP6+3UfQOPZKYpfKDViYED3Aegwgc9c7vqoFEUNeGGYaVFYuLShQfcBNP5N\nJcMfA4GMQEBXMuiHA30FO5R6PRTK7+8X6IB6CMZ++8cU099Zf/8cQAXM1Px49DD6UaNkzx5vRsYs\nOB9kypTIMPoWk2SfBbM1rp6d/SGIyGcgGzbIVVfNjCD8I0fuNOeGytKlsmjRdKjUJPukScciw+i/\n+EVZs6YpLm6mifC3OZ1PaCszU6qqJC9P72Qe+FJS3gARqdYk+4wZZwbc5+dv0P8hIv/1X3LDDTNg\nhl6uuHifUno4qNx8szzxxGGbbYaJ8NdarUu0VVYmW7Z0JyfP0r0CU6acjo9/HkSkPz5eTpyQ0aNn\nwRy9SkbGGhCRgyA7d8oll8w8O0VxhX7PJ56Q3/ymEqbrnUyYcMQwfqmtb3xD/vKXGqdz6ODl5U12\n+yptDRsm+/cHs7IiBx9ISvrz2ZUMZ64gJ+djEJHNZiXDzEh2YfToXUpp2koWLJBly/QVXGimKO7W\n1vnn60qGWXCBOXs1pphi+hfPAewQ2SzyLc4eRq9J9s7O8VAJA01Nehj9L5RyL1rEyy/vOnKkFDLh\n8YQE8vLG2e0rlZp66aX09TWtWXMebBZZYLWSkjI2MfEawO3m8st55JFvQx78WCnC4dGZmRdohH/l\nSubP3zQ4OAYuB7q6svLzpyj1pkmyr29ungil8HJ6ur2wcKLFcpdSI37xC9avP7xzZxlsFFnucpGd\nXex0fh2oqCAzs/vPf74EHLoPwOUqTkm5DF5Riptu4v77NwUCRXAd4PEMc7tnaYT/6aeZP//Tnp5i\nuBACra0pBQWTlXpLqfiVK3nyyW3V1ZNgFDyTnExBwTibbalSE771Laqra9atmwqbRJbY7aSnj42P\nvxoYMYLKysDTT18FWfALpbBadYriz0qxcCH33rvJ6x0JXwd6e3MjCP+zz7Jw4cft7RNgGryena1T\nFL9SKn/+fP76170HDkyGDSKPxMeTmzvO4Vit1MwLL9SVDHNhi8hdUSkKMjL45jdZteq7UAA3ciZF\n8bpSPPoo8+dv7O8fA5+IfBT77h9TTP8OTwARDQ2jz82VhIQT8Ee47Zxh9G63RvjfgBVmQvVJkNGj\nJSNDMjJOWywfwysmyf5rPYw+OVncbq/d/hl8YpLsl8HxhIRwXJzk5IjLdQgORpHsm6xWmTJFcnIk\nMbFGqRdhPswGEfmLUjJxomRnS1pam2G8G0WyPwRSVCTp6ZKV1Wu1boD/MvsAboL29HRJTBS3O+Bw\n7IYtUX0A+53OoYPHxR2Faofj56b1oWFIWZnk5EhycoNSf4H74SsgIs+BFBdLZqakp3daLB/A8/Bd\nEJH54MvLk9RUyc4etNm2wvtwA4jIdTpFER8vOTnidO6H3RZLJEzwWdQV6BRFpJLhLZ2icLt1EcKb\nUZUMj+oURUaGZGbqFEWkkuFXOkWRnCxut05RrI9OUcTHh1wuyc3VKYroSoaYYorp36sPIEeEykru\nv58ZM3Kcznzog+1KbVdqFDBsGCtX8pWv5CQm5sBpuB226yn8CQmsWMF116VkZrqVaocfw3alroQE\ni4XFi7n1VkdRUZZhNIk0w3alfgu5IurWW7n3XkpL3TZbTTDYaS6XL0JJCQ89xAUX5LlcedADy2C7\nUsV6LP7KlVx1VVZyshu64BewXamZmGPxb7wxMScnW6k2uAG2K3UtZCrF/Pncead19Ohsi6UhHG41\nl8sVYe5clixh2jS33X7c54scvEiEUaNYsYKLL86Pj881wwTblZoApKSwciXXXpuelpYNnfBT2K7U\nJWC32bjvPn7+c1dBQZZSLdAI25X6T/2n2jvu4O67mTAh22qtC4XazeVywmGmTtUpinOuYLQI+fms\nXMkVV7gTE3PgFPwKtmuEX4cJrr8+OTs7W6l2+E/YrtTVkGwY3Hsvt91mHzEiO+oK9MGNW25h4ULK\nytw228lA4FTsK1hMMf3j9I/k7nI1iT92rJ4OrxH+6V/+MtD08cdMm8bkyWzerBF+i2npP7cybdoQ\nyQ4q2urrY+ZMjh7F6QwoJZAZcauq9NQH4uMDhhGCFNMa2LyZmTOZODHC1NtN6/gHH1BRwZQp7NsX\n6QM4s5zTSWUlHo9m6hE5Y7W2MmsW7e3ExQWUCkN65IV79zJrFrm5mqnXCL+2Otavp7KSSZP45JOQ\nOYVfW4fff5+yMqZO5eRJHSZQ0csFg8ycye7dQwcXyY4sd/Ik551HIKAH9GuEX1uh7duZNYvx40lK\nCloswagrqP/oI6ZNo6yM7duxWgPnHDw1lWnT6OzEZjv3Crq7mTWLkycjV5ARcQ8d4rzzSEwkIUFf\nQWLsRzCmmP49PwBq+vuHv/ACSUns3l3n87VCCII7dwItwWDee+9x9Ch791b392uSXVuANT2dhQs5\nfrytq6tFpC3KslitatkyOjsHGhs1U28x3dNeb+bjjwMcOdJgDqPXVoPHU/znP7N+PTt21Ho8rTBo\nWu2h0OiPP6alhQMH6np7NcpyZidJSSxeTF1dV3u7rh+IWEFwLl9OX5+/pkZP4Y8s1zowkP/MM7hc\n7N9fHwi0gjKtZr8/88032bOHXbs0wt8d+X8SDo/fvJmBAaqqmru7zzm41enkvvtobe1tbo5M4ddu\nfyCQ8vDDBINy/HhjKNQaZdUODIz6059ITWXnTo3w+yObDAYLdSXDvn01/f26COHMcqmpLFpEdXX7\n31yBslgsDzzAqVOe+vomM9ag3S6PJ/uJJ7BYIimKWB9ATDH9A/WP7AN4SamJTqfuA6gNhTTJrnH1\nfJNk7/H56k2SPYKrX2K15jidg4FAo99/VOQEpJjW+YYxzOUaGkYvchB6THC+QqkxTqdNqXafL0Ky\na3B+DJQ6HAlW6ymfrzYY3A8dJq7uNkl2jfBrkj3VXO4LFkue0+kLhZpMkj3ZtGYpNcLlQqTV59Nj\n8SPgfCmMczqdFkuH11sTCu2FbjMxUATldnuyifAfhFbz4FlQYbXqPoBGv/8I1EQd/ALDKHS5gqFQ\ns893TOQInDazC9OVGu1yGdDm9Z4Mh3dDv9l2MB4mOp3xFkunz1drVjLoK8iFqTZbmi5CMK8gcvCL\ndYoi6goiB59jGEUuVzgcbvH5ToTDB6KuoByKXS59BTXmFcT6AGKK6X9F/4p9AF5vgtkH0BdFsvfE\nxa30eCLD6DvPJtlfCgZz+/v1MHodJjgGH4oAP1dqxMCAHkavwwRhWGQi/BM9Hj2MXocJRsJd+rdP\nQcGSxsYkn0+T7NFhgnqr9elAIDMQCEDr2ST7bqVeDoUKBgYwmwkCUAvviAD/qdTYwUEbnIZq0PWH\ni0yEv87rjYM+qINBOAVPiQDh1NTF3d2pfr/XDBNE+gCOGcbzwaC7vz8IbX8TJrhFqaKBASMqTOA1\nl9MIv91MUfgh37S+pVSD15sIA9Bw9hV0Op2P+nxpJsJ/TiXDq6FQXn9/GDrMMMFh+MQsQhg1MGCJ\nOrjFXO77StWYV1AL3lgfQEwx/WP1D6SARCQDKiMT56OH0T/+uNxxx1SYpvnxkpIqw7hdW9dcI6+9\nVuN0VpoI/5lh9IWFcuBAMCtrBsyBi2DQHEZfb7XKsWNSVjYDztPL5eaug/NhK8hHH8m3vz09gvCP\nGbNHqe/o97z7bnnwwb1W69BOJk8+abXeq605c+Tjj9sSEmaYCH9XXNwftZWaKseOSWHhDJgNF0Ew\nPf0dEJFjSsmBAzJnzpmOgcLCLSbqI6+8Ij/72TSYrpcbP/6QYQyhMj/6kTz77FG7fbqJ8DfY7Q9p\na/x42bGjPzV1hpmi6E1MfBlEpMvplBMnpLj4zMHNFMUekK1b5fLLKyMHHzlyRyRFsXKl3H33mSuY\nNOmYxXKnti6/XN56q97lqjQP3uZ0Pn52JUPkCrxmimKokmHq1MjBZ8QQoJhi+relgIAOka0im0UW\nRQ+jHz6cGTOCf/jD18ENP1cKGJuRMU+D84sXc++9m73e0XAVQ8Pop8LbmmRftOiT9vYSqIC/ZGa6\nzGH0BXfdxX/91979+8tho8jquDhycsY5HN+AyrlzEWl7662LYIvI7ywWEhKKk5K+BqSn8+1vs2LF\n5mBwGPwQ8PuHZ2fPhjeV4rHHNMleDBdDuL09LT+/TKl3leKJJ1ixYmNDQymMhxdSUiwFBeOt1kVK\njf7P/+Szz45u2zYFNoksczjIzBwbF3c1UFLCiBH9L754OSTDrwwDu704NfVSDc7ffjtLlmz2+0fC\ntUBfX35OTiW8pYsQFixYf/r0BJgBA01NiQUFkwzjXaXSHniA557bcexYGbjhSTNFsUKpyVdeSVtb\n/YcfzoItIvdYraSkFCcmXg3k53PRRTz++LcgF36qUxQZGRfq0MYDD7BgwSaPZyx8FTh1Kisvr0Kp\nd5TimWe4776P29pKoAxezchwFBZOtFh+r9Sw3/yGNWsO7NlTDptEPhLZEvvHn5hi+nd+Aojot3oY\nfWqquN0em20brDVJ9m/BycRESUiQvDxxuQ7CboslgvBv1cPo8/IkMVEPo7/DtN7Qw+hzciQtTQ+j\nX21+vV0FMmKEZGZKVlaP1fop/AX+A0TkFujKyJDkZMnJCTgcu+DTKJL9cFxcOC5O8vIkLq4KjkSR\n7J/oPoC8PElOrlfqVbjXDAm/CDJunLjdkp7eaRjvw9PwbRCRRRAsKJD0dMnOHrDZNsPbZh/ADdCU\nkiKJiZKbG3Y698H2qDDBLt0HkJcXSVH80rTeNQwpLZXc3EiK4kEzJDyUosjKksxMnaKIVDL8Gvrc\nbklNlZwcnaKIVDJ8FU4kJEh8vL6CQ2dXMgylKPLyJClJpygilQyv6RRFTo5OUbwTVckQU0wx/bs/\nAUS0UMSlp4Hecotz2LAsw2iFZtil1K1QoBR33MGCBUycmGW11odC7bBLqV0a4Z86lQcfZM6cXKcz\nD/pNa6wIBQU8/DBf/Wp2UpIbTsNvYJdG+HWY4Ic/TMrOzlKqA34Ku5S6FtKsVhYt4te/to4cmWUY\nzSIt5nvmiahbbmHxYqZMybbbTwYCPaZVJMKECaxYwbx5eXFxudAH98EujfBnZbFqFd/8pkb4u+CX\nsEupi8GiwwQ/+1lcXl6WUm3QALuUuhFyDYO77uL3v1fFxVkWS0M43B61E2bPZtkyZsxwOxz5UQcf\nLcLIkaxaFUlR9MDvYZdG+HWY4PvfT8nMzDY7EnYpdQ0k6DDBL3+pUxQtIvoKfgf5wK9/rVMU2TZb\nXTDYYS5XIEJ5OQ89xPnnn3MF40TIy2PVqkiK4jS8GvviH1NMnw99XubvblOqct48pk1j3z49oD8M\nWTDlsssAjh2jspJwmLg4zY+nmlZgyxYqKxk7VqPlQbCbVu0HHzBlCiUleix+AIzIG+oPgPJyOjo0\nyU601dnJ9OnU1eFw+JUKQ0bE3b+fykpSUjTdH4J40+pev55p0xg3jqSkgMWiZ99rq2rNGsrKmDyZ\ngwexWgNKGSJnltOfYcGgDhOIiDuyXF0dlZX09uJyBcw+gCHrs8+orGTECB1rCILTtFo++oiKCiZM\nYN06sVg0wn9mucxMysupq8Nm030AZ6y+PqZN4/BhfXCdohhyq6qorMRqxeXSB08xLc+mTUyfztix\nJCYGLJYA2Eyreu1aysuZNIkdOyJXcLVSr8U+A2KKKfYBEFE7cPQo991HW1tvU1ME4fdt3w70BwLp\nq1cTDEpUH4C26gYGxvzpT7z3XnQfgLZag8GitWs5eZIDB06aw+i1BThSUli4kJqa9s7OZpG2KEsZ\nhn3ZMrq7PXV1zeFwa9RyXR5P7hNPYLNx8GBDIBBtNfh8Ka+9xubN7N5d4/G0QH9kJ+Fw8fr1dHZy\n+HBDd3fr2cs54uNZvJimplNRfQDa9YfDiStW4PUGq6sbg8Ho5Zr7+4c/+ywJCezZU+f3t0LYtJoC\ngZx33uHgQfbti/QBnFkuI4N77+X48RYT4T9j2e0sXUpHR5+ZoojspNfvz3zkEd0H0BAMtkZZdYOD\nxS+/zIcfsnNnrdfbCt6oKxipKxkOHqzt7dUYlS32YxdTTJ8P/SNzANFaoNQMwxjmdAb0FH6Rw9Bt\n8uPTlRrtdFqgzefTJPuAOXF+PEx0OIaG0YdCmmTXo/bzNMlut/f6/Q0myR7B1S+2WHKdTm8w2GSS\n7JFU6hylinQfgN9fHQ4fgF5z6H85FDuddsPo8Pl0H0CfCc6Pgsl2e5LNdtrnqwsGD0C7Cc67YarV\nmulw9AcCug+gLmon8wwj3+XyB4PNfr8OE5wyEf6ZSo10OhW0+XzV4fBe6DezCyUwwel0GUanz1dr\nhgn0wQthis2WqosQAoGD0BKVGPiSxZLtdHoCgcZAoErkJCSZ1lzDGOZ0hs6+gnwApio1xum0KtVu\nhgkGzOxCMUxyOOKt1lM+X10wuB86zeyCDhOk2+19fn99IHAYGqEG1sSeAGKK6f+j/tVyANG6W+Tn\nSo0YHFRwCmohBH5YYvLjJR5PpA8gAEWRYfTFxUuOHk3w+QZNkr3HJNk7nM7VPl9kGH1nFMm+S5Ps\nAwN6GL0OE5yA90WAHys1enBQ9wGchDC4zJ18V6karzfSB+CDCXC73onbvbCtLdnv95pj8SN9ADUW\ny9PBYFYwqBH+6DAB8EulCgcGFHSaY/E95nI/UGq8x2OHbnNAf7ZpfVupeq833kxRDMBp8+CexMT7\n+/vTAgHdBxAdJjis1AuhUM7AgO4D0GGCavPgNyk1YnDQYoYJdIoicgU6RdFrhglGRVIUI0cuPnky\n0efzQAP0nl3J8HggkBkI+EFniT2x3/4xxfT50eeEAtIqhukwB2TKlH5zGH2nJtnHjZseIdndbj2M\nfjfIli1yxRVTYWjU/qhRZ4bRL18u8+eXw1QNzpeWnrBY7tLWV74ib7/d4HJNM0n2DpfrKW3l5Mjh\nw5KTM91E+P2pqW+CiNQYhibZp0cQ/oKCjXCJfuG778p111VEEP5x4w6Ys0jl9ttl9eoDVuvQTsrK\n6my2+7U1bZps3NiVlDTdRPi74+P/BCLiS0yU48dlxIgzB8/MXAsicgRk716ZN29a5ODDh2+HK/V7\nPvus3HrrlAjCP3FilWEMTVr97nflpZdOOByRg59JUYwcqSsZhq6gvHwwOfm1SCXD8eNSUnLm4Lm5\n6+AC2K4rGa6+empk6P+YMXuUula/5333yeLFuy0WffC5Mf4npphiFND/nY6IbBOZDn2NjfGFhSWG\nsVap9Pvv5/nndxw9OgU2ijwWH69J9tVKlV1xBR0dDR98cD5sEZlvtZKUNDSMPi+PL36Rxx//LuTD\njxkaRj9XJwYefFCT7OPgK0BnZ0Z+/hSl1pgk+yetrZOhFF5KS7MVFk6wWBYoVfTrX/P++wf27KmA\nTSIPOZ1kZRW7XFcDM2eSkND1+utfAgW/NgyczuLU1C9rcP6GG3jwwc3B4Aj4PjA4WOh2z4R3leKp\np7j77g29vRPgfPC1tCQXFpYq9b5S9kce4ZFHttTWlsNweDopifz8cTbbA0oVX3cdBw+e2LhxGmwR\nWWyzkZZWrFMUY8YwaZL32WevgQydojAMnaJ4UynuvptFizb7fGPgas6kKN7TKYp7713X2TkJpkJ3\nQ4PLvAL3okW8+uruw4d1dkGnKIodjmtg2iWX0N/f/N57F8JWkbuiUhSvK8UVV7B69aZQqBA+EVkX\n++4fU0yxJ4D/Vw0No8/Lk7Q0PYz+Ifhq9DD67GzJzu6xWtfBSybJ/ivoycqStDTJMOHRYgAAIABJ\nREFUzfXb7TvgI5NkF5Gj8fGSkCAFBRIXd+Rskv1Tq1XKy6WgQJKT65R6GX5vWq+ATJggubmSkdFh\nGO/BYybJfj9IYaFkZorb3W+1boK/wvUgIj+B1rQ0SU6WvLyQ07kXNkWFCfY6nSGXSwoKJCHhGPwB\nImGC9w1DJk+W/HxJTW1S6nVYApeCiDwDMnas5ORIZuYpi+UjeBZ0XPl34MnNlfR0yc312u3b4D0z\nRfFtqElMlMREyc/XKYqdUX0AQymKgoJIiuL2c1IUeXmRFEWkkuFhnaLIzpbs7F6rdT28YvYB/BJO\nZWZKaqrk5ekURaSSIaaYYoo9AfwvaSwwahQPP8xll7kTE93QC/Nhn0b4U1N5+GH+4z+SMjOzlNJM\n/T6lvgNJDgf33cdtt9mGD88yjFaRVtin1D6lCnWYduFCJk/Ostnqg8Eu0yoSYcoUli/nggtyXK5c\nGDCtifphYvVqrr46IyUlG7rhTtin1BeBxERWrODHP47Pzc1UqgN+DvuU+hFkW63cey+//a0xZkym\nxdIs0h7ZCRg338zSpUybphH+QdMaBYwfz6pVXHJJbkKCG/pgCexTqhTIzOThh/nOd1LT07PMAf37\nlLoanDpMcPPNjoKCLMNoh2bYp9TtMMxi4Xe/i6QoGkKhDnO5Av3s8uCDzJ6d43DkRu1knAjDh0dS\nFNnQC3fBPqVmA8nJrFzJD36QmJWlr+AXsE+p70GqzcaSJdx+u3XEiEzzCmKKKabPoayfz23FOxyU\nlVFczLp1WCyaHy+9/PIhOzWVkhJqa7Fa/UC01d3NlCkcPRqN8A+5hw4xdSoOB06nX6kgJJvWwIYN\nVFQwapRm6gNgNa3ja9YweTLjx0fG4qvo5axWJk/m9GlsNr9SInLGamqiooK2Nr2TEKRFXrhrF1On\nkpODy6V34jStjo8/prycMWN0VYCuH9DWoXffpaSEiRM5fBir1a8U0ct5vZSVsWcPdrsfwpAZWe74\ncaZOxe+P7CTVtEJbtlBRwYgRxMX5LRZdP6Ct+rVrKStj3Dg2bPhvriAxkdJSmpqw2fwg0VZXF1Om\ncPJkZLmM2M9ZTDHFPgD+19UUCOS98w6HDrF//4n+/hboAs+WLdp1ZWRwzz1UV2uSvTXKstvtlvvu\no6urr6GhyUT4tdvr92c/8ghKceRIg8nUa6vO4xn/8st89BG7d9d4va3gMa3WUGj0hx/S0MDhw7U9\nPboP4MxOkpK4914aGjra2nQfQMQKKxX/wAMMDHhPnmwKhaKX6/B4Cp96CqeTffvq/X7dB6CtRp8v\n84032LGDvXurBwdboMe0WsLhCRs30t3NsWONp09rhP/MTlwuliyhtbW7uVkf3Gq6nlAobeVKgsHQ\nsWPnHLyxv3/088+TksKuXRrhD5hWczBYqCsZDh6s7uvTA0HPLJeWxj33UFPT2tl5zk4sVqt96VK6\nu/vr6prMPEdMMcX0OdTnJQdwjlYrNdVmS7HZev3++mDwELREcfpftljcDocnGGwMBI6KnIR407rA\nMIY5nUPD6E2SXc++nwa6D6AjKkygwflxMMluT7BaT/n9GuHvNDn9PJhqtabb7f2BQINJsieYy11s\nGLoPQCP8xyHOtGYrNcLpRKTN7z9hhgl0dqEcxjkcDoul0+fTfQC9ZmJgJJTZ7clWa7ffXx8MHoQ2\nk9PPgQqrNctuHwgGm8wwQeTg8wyjwOkMhkItfv8xkSo4bdYPzFBqtNNpQLvPdzIc3gMD5rfyEpjg\ncMRbLF0+n65kOG0mBgpgqs2WarP1BgI6RdEcdQVfslhyHA5PMNgUCBwVqY7ayVylipzOsC5CEDkE\nPfB87M+/McX0v6d/5RzAOXoNOgKB9CiSfTCKZH82FModHAybJLsfjpjD6H+i1KjBQQNOmyS7Fe43\nEf6JXq/LJNkDUAx36l9Mw4cvrK1N8vs9ZpggQrI32e2PBQKZwWDAJNkjCP8WpV4LhwsGB4FOaIQA\n1MNbIsAPlSr2eGwmwq8rIe83Ef5any8O+qEOPDAFbtY7ychY0NUV6QOIDhOcMIyng0F3MBiEdmg9\nuw/gJqWGDw7qPgAdJgiYy31PqRKPxw69ZphgGNyrXzhp0qIDByJ9AANnVzI86PFkBAI+0E9gkSvY\nr9QLoVDe4KDuA2iGAJyAtWYRwmiPxxqV5/hT7Ld/TDF9PvX5pIBEREFZBOEvKTkzjP4735FXXql2\nOCpMcP7MMPoRI2TvXl9GxlSYDVJeHhlG32SzaZK9AmZqXD0v71O4CLaBrF8v11wzBYZG7Y8du08p\nPRxUFi+WJUt2WywVGmOfPLnGal2srXnzZO3a5vj4CjO7cCou7jltZWRIVZXk50+F8+BCCGdkvAci\nckIpOXxYZs6siCD8RUVb4XL9wr/+VW68sQym6Z1MmHDYMH6hrZtukqeeOmKzTdE7KS9vsttXaqu0\nVLZt60lJmRpJUSQmvgoi0hsXJydOyJgxU2GWXs5MURwA2bFDLr10SgThj05RPPaY3HnnNsMYuoJJ\nk86kKK6+Wl5/vdbpjFxBu9P5VFQlQygrS1/BhTH+J6aYYhTQ/w+FRXaLfCbyM6UAPYz+XaWYP5+F\nCzf5fMVwJWeG0X8QRbJPhnLoqq/Xw+g/Uip34UL+/Ofdhw9Pg80iq1wu3O5ip/PrMP3ii/F4mt99\ndx5s030AcXHFyclXwH8pxde+pkn2YfADwOcrcrvPgzVK8fDDzJ+/aWBgInwBgm1tqYWFk5X6UCn+\n8AcefHB9U1M5jIXnkpNVQcF4q/U+pUbefDMbNhzZsaMStogstdtJTy+Oj78aKC/H7e555ZUrIQFu\nVQqrdVxa2sU6u3DzzSxduikQGAPfAnp7c3Nzp8NanV2YP//T7u5JUGmmKCYZxkdKJa5YwVNPbTtx\nogIS4fH4eHJzi+32h5Wa+I1vUFtbu27dbNgqssBqJTlZ9wH8VSlmzQo+9dSmcDhHpyhCoZFZWefr\nK1iyhHvv3eT1jofLgc7OzIKCKfoK/vhHFi36uL29DDaIfBz77h9TTLEngP8dXamH0SclSWGhxMUd\nOptk32S1+pxOKSyU5ORapV6MItmHhtHn50tGRrthvAsrTZJ9OUhRkbjdkpPTZ7VugFdNkv3n0JGe\nLmlpUlAQcjh2w7ookv2AyyXx8VJYKAkJR+FJiIQJPjIMKSuTwkJJTW1Q6i+wwMy+Pg9SXCx5eZKV\n1WWxfABPwjdBRBaAPy9PsrIkN9djs22FN+EHICL/AfXJyZKcLAUF4nLth61RfQCf2e1Bl0uGDZPE\nxGqlnoObTettnaIoKIikKO6Hy0BEHgMZNUpyciIpihfguyAit+kURUaG5Of7HY4dsBbOSlEkJuor\nOAJ7oioZNugURWFhJEVxR+yLf0wxxZ4A/o/oryLDNcl+zz2UlGRZrU2hUCccUuqQUkVK2W+4geXL\nmTPH7XTmgNe0JogwYgSPPMKVV2YmJ2dBH9wDh5T6ApCayqpV3HBDgtudqVQX/AoOKfUjyHA4WLKE\n3/zGGDUq02JpFWmPWo7bbuO++5gyJctuz4c+0xoJTJ7MqlXMm5cbF+eGAVgNhzTCn5fHI4/wzW+m\npaZmQQ/8Dg4pdRXYEhNZvpybbnLm52cq1QnNcEgXIVit3HMPd9/NuHFZVmtzONwRtRPLz37GAw8w\nc2a2w5EbdfCxQHExq1dz2WXuhIRs6IclcEgj/BkZrF7NddclZWZmKnUafg2HlPo+JLlc3H8/t95q\nKyrKNAz9lwb9nsMtFu68k4ULKS3NtNkaoq8AqKxkxQrmzs1xuXLAE/tiFVNM/wyyfv63+IZSV44d\nS1kZ4TAOh88wgpACE664AvBv2kRZGcOG4XL5DUNP4ddW7fvvM2kSo0eTkIBh+EGZFkBcHBMm0Nio\nwwQSbbW1UVpKXZ1m6jXCP+Tu3UtZGSkpGnIPQpxpdX/yCWVlDB9OfHzAnMKvrSPvvsvEiYwdy86d\nWCwa4T+zXCjExIn09WG1+pQKi2RFlqupYfJkenux231KBSE1Ym3bRlkZBQU61hAAu2k1f/ABpaWM\nHEl8fNhi8YMRfbr0dMaN4+hRLJZzD97Tw6RJHDmiYw0a4R9yDx+mrAyLJXLwyBV4Nmxg8mSGDSMu\nzm8YgdjA55hiin0A/J9SD3S0tWWuXEkoFKqqaggEWsAC/Zs2AY39/cUvvEBqqkb4NRSkreZAoGjN\nGo4d49AhTbK3mxaQkJrKggXU1bV2dDSLtEZZFqvVdf/99PT019Y2mmEC7Xb7fPmPPab7AOoDgRYw\nTKve603585/ZsCGC8PebVmsoNO6TT2ht5ejRup6ec5ZLSEhg4UKamztbW5tNhF+7QUh56CG8Xt+J\nE5E+AG21DQ6OfOYZEhLYvVv3AYhpNfn9uW++yb59kRTFqejlMjNZsIDq6qZTp87ZicvhsCxZQldX\nT2NjJLug3YFgMPvhhxEJR6Uohg4+ODj+xRd5/3327NFX4IVLlHo/9geAmGL6fOtzmgM4R6+bfQDt\nfv/JcHgvDJjgfAmU2O1xFsspv7/OJNk1rj4MKqzWNLu9z+9vCAY1yR7h9L9sseQ4HN5gsNkk2Z2m\ndYFSRU6niLT6fNUmya6H/k+DsQ6H3TA6fb6acHg39JvgfDGU2u1JVutpv78+GDwAHWZiIB8qrNZM\nu70/EGgMBI5AA7jM5S42jHyHIxAON/v9x0WOQZdZPzBbqZEOh4J2v786HN4PfWZ2oQzGOxwuw+jy\n+3UfQI+ZGBgOFTZbis3W4/c3BIMHoTWK07/MYsnWCL/fXwW1UQefp1Sh0xkKh1v9/uMiR6DbzC7M\ngNFOp9VMUeyJuoKJUGK3x1utp32+ulBoP3SZLGlMMcX0f0r/RjmAc/8VCEq8XkcUyT4K7ta/YiZO\nvPfQoaQokj3SB9AdF/eAx5MRDOo+AB0m+IsIsE+p50Kh/MFB3Qegnxt64V0R4Aalxng8VjNMEIYk\neNBE+Et8Phf0Qy34oRRu1TvJz1/Q1JTi93ug8ewwQb3V+lgwmB0MBqPCBJFq3J8rNczjUdBlhgn8\n5nLfV2qC1xvpAxDIg/v0C2fOXLR1awL0Qz14YAb8WAQIpqTc09MT6QPohgEzTHBUqT+YKQrdTOCD\nNlhnFiGM9HgscMoME1jNnXxHqYleb6QPIAjF8Fu9k7Fj7z12LMnvH4y6gphiiumfQJ9/CkgrG8ph\npmbSc3PXwYWwH+Szz+RLXyqLIPzRw+gffVR++9vthjGE8JeWVlut92jrqqvkr3+tdTrLTXC+0+V6\nRlsFBXLgQDg7ewqcBzJ5cjAt7W0QkTqrVY4dk/Lycpihlyss3Axfhp0gH3wg1147GYZG7Y8ff9Aw\nhlCZ3/9eHnpon9VarsH58vIGm+1BbZ13nqxb156YWK6zC1Om9CYkvAQiEk5JkWPHZNiwKTBLL5ed\n/QGIyFGl5MABmTu3DCq1NXLkDrhKv+dLL8nPf75Rqal6JyUlxyyWITLnhz+U5547ZreXmQh/q8Px\nmLaKi2XnzoG0tPKoFMVfQUQ6HA45cULGjz9zBXl5n8KFEKlkmGxewcwYAhRTTP8kFJD1n+WDqtX8\nvlwVH09OTnFX11U+X8k111BfX/vJJ3PhIZFPrdahYfQ9PW8pdfn+/aF58zaGw7kanA8ERmRlzWlu\nXqvUxceO8fWvb/J6J8J4kI6O9IKCsuPHP1bqoo8+YvHij9rapoABLXV1OcOGTejtXafUBfPn89Zb\n+/bvnwGrRfY6nWRmFnd2Xj04OGXOHCyW9jff/DIsFHnfYsFuH5eaemlX17tKffnYMebN2xQMjoKL\ngf7+/NzcGXV1Hyr1hYMH+clPNvb1lYIbBpubEwsLS6uqPlHqwldeYeXKjfX1U+E0LElMJC9v3OnT\ny5W65cYb2bnz2JYts+Bhka12OykpYxMTr+7rY8IEnntu4Kc/3SCSBjdGUhRtbWuUuvTECb7ylU1+\n/3iYBpw6lZ2fX1Fd/ZFS87ZtY8GC9adOlUMCnKqvTyssnNjXt06pC1au5Pnnd1RVVcIjIofj4nC7\ni7u6vu71ll1+ua5kmAfLYv/sE1NMsSeA/4kngIiGhtHn5UlOTq/V+mkUyT40jD4jQwoKgg7HLvgg\nimQ/HBcnSUlSVCTx8VXweBTCv85ikfJyKSqSlJR6pV6FO03rJZDx46WgQLKyOi2W92E1XAMisgRC\nBQXidkte3qDNthleA50fvhGaUlIkLU2GDROXax98GtUHsNvhkPh4KSqSxMQT8ExUH8B7ug9g2DBJ\nS2s2jDdgIXwRROQpkNGjJT9f3O5ui+VjeBq+DSLyG+h3uyUrS/LzfXb7Z/AO/BBE5CqoTkiQ5GQp\nKtIpiu2GEUlRbLZagy6XFBVFUhS3mtbrOkVRWKhTFO9EVTKsABk+XHJzJTdXpyhegu/HvvjHFFMs\nB/A/rWlAVharV3P99YlZWRlK6QH9VUrdAKlxcTzwALffbhkxIsMw2qENqpSqUmqkJtkXL2by5Eyb\nLQ9ORSylqKxk5UouvDDH5XKDz7RKgaIiHn2Ua65JT0nJhH64B6qU+ioYupngxz925eZmKHUKbocq\npX4BuQ4Hixfz298yZkyGxdIm0mG+5wjD4Je/ZNkypk3LcjjywGNaY4FJk1i9mksvzYmPzwYPrIQq\npSqA3FweeYTvfCc5IyMTeuH3UKXU9yE+IYHly7nlFnthYYZhdEIrVCm1EEbYbNx9t+4DyLRaW8Lh\nTnO54YZh+fGPWb6c2bOznc4c8JvWBGDMGB59lK9+NTMpKQsGYAlUKXUxkJ7O6tX88IcJ2dkZSp2G\nutiXqZhi+meT9Z9ux07DYOxYRo+mqipCshd/9auRv5QzfjxHj2qmPgTpEffAAUpKsNsjTH2SaQ2s\nX09JCfn5OJ0+w/CDxbSOv/suEyboifk6TED0cnozLS2a7g+LnLEaGpgwgfZ2zdRrhH/I3bGDSZNw\nu3E4fCbCr62ODz+kpITCQlyugGFohF9bh95+m3HjGDWKPXswDF0/cGa5wUHGjcPjwWr1QQgyI8sd\nPUpJCYEANpteLsW0gps2UVJCbq6m+/1gNa36NWuYOJGiov/+4PHxjBlDdXXkCvJjP0wxxRT7APif\nVnM4PGnrVubPp6amqatLk+w9GzZo12W325cs4dSpnqg+AO0OBIO5Dz+MUuHDhxuCwZYoq2FwcOKL\nL/LBB+zdq0l2j2m1hEKj166lpoaqqpO9vS0QvVxyUhL33ENjY1t7u14uYinDSFq2jIGBwZMnG0ym\nXrunvN7hTzyh+wDq/H4dJtBWvc+X+dprbN3KgQMnzD4AbTWHwxM+/ZSuLo4frz99+pyDJ8XFqYUL\naW8/ZfYBRJbzh8OZK1YQDPqj+gC01To4OPa550hOZs+eGp+vBQKm1RQMFr7zDocPc+jQ8f7+FuiM\nPnhaGvPnU1fX3Nmpd2KN/TDFFNM/m/45cgDRul+pCovFbbd7gsHmQECT7JHo6ReUKnQ4wiKtfv8J\nk2TXs+9nwhiHw6pUh99fY5LsGpyfCJNstgSr9bTfXxcKHYAuMzGgwwTpNlt/INAYDB6GJnCYy33Z\nMHIdDn8o1BwIHBM5EbWTC5Qa7nAg0u7367H4kaH/U3UfgGF0+Xw14fBe6DMTA2Og3GZLslp7AgHd\nB9Bhcvr5UGGxZNntg8FgUyBwBOrBbi53sWEUOBzBUKg1EDgmcgxOQRYAs2GU02lAh99/MhzeB/1m\n28FkmGimKHQfQLeZGBgOFVZrqs3WFwjoFEVr1MEvM4wch8MbCjX5/UehBtrgtdgfgWOK6X9M/745\ngGjdLnKrUrkejx5Gr0n2U/CBCPAjpUZ7vRGSPQQuWGEi/BN9Pt0HUAtBmAi/1r+zxoxZcPx4UiDg\niSLZ3xQB2hyOFX5/ZjAY/JswwU6lng+HCz0eoNMci++FN0SA65Qa5/XqPoBaCIMbHtDLXXLJwrVr\n480+AD9MhZu0lZ19V3t7aiCg+wB6oR/+KgLUWCyPhkI5Hk8I2v4mTPATpYZ7PIYZJghC2Dz4tUrp\nFEWPGSY4k6KYMuWe3bsTYdAME5wPPxABBhMSFg0M6BRFJEygf8UfUuoP4XC+xyPQbl5B7Ld/TDH9\n8+mfjgLSGgOTTYS/3el8Uh9k7FjZtWswLW2yRvjLyvypqW+CiLSbJPtkmKHp+Pz8jXAx7ALZvFm+\n+tVJEYS/uHi/Ujfo93zwQbnnnp0WyxDCX1ZWZ7Mt1daXviTvvNMYFzfZRPi74+Nf0FZ2thw+LLm5\nk2EWyKRJkpn5PojIScOQqiqZPr0UKvVyw4dvhyv1C99+W66/vgSGEP6JE6sM41fa+tWv5JFHDtps\nZebBmx2O1dqqqJBNm04lJQ0dvLx8MCnpLyAinoQEOX5cRo6cDDP1e+bkfAJfhMMgu3fLF74wCaZr\na/To3Up9S7/nM8/Ir361xTCm6IOXllZbLAu0de21upKhFOZoN6aYYopRQH83HRXZI3IF0NWlh9Gv\n030ACxasO3WqAsqgo67OVlg4wWLZoFTm0qX86U87q6pmwhaRVU4n2dnFLtfVUH7ZZXR1Na5dezFs\nF7nTMHC5ilNSLoP3lOLSS3nsMd0HcD0wOFjods+Cj5Ri+XIWLNg4OFgKF4KvtTW5sHCyUp/qAf33\n3/9JS8t0GAX1tbXk54+z2TYoNfy22/jww4O7dp0HW0WW2mykpY1NSLgKqKwkOfnUa699DRxwi1IY\nxtj09C/oof833siDD24OBMbCN4Du7pzc3Knwia4fuPvuDb295VAJPY2NrsLCEsP4VCnn6tU89tiW\nmpoZsFnk8bg4cnPHORxXwLjvfY+qquoNG86HbSLzLRYSE4uTkq6Cd5SirMz37LMbw2G37gMIBEZk\nZ8+BD5ViwQIWLtzs85XApyLrY9/9Y4op9gTw93wCiGiDJtlHjJCUFD2MPkKyvwoyYYIUFUlWVodh\nvAfLTZJ9GciwYZKXJ3l5AzbbpiiS/afQlpYmmZlSVCRO5174KKoPYJ/TKYmJMmKEJCYehz9EhQnW\n6j6AESMkLa1JqdfhLpgOIvJHkLFjZdgwcbtPWywfwuPwDRCR34MnN1dycqSgwGe3b4M34HoQkf+r\nvXsPjrK+9zj+/u01JISEXIBwDWGTQCBBBFGsFuWgrdWq1bZqj54Z5/RmbbU9087YehlbUcRaBkHw\nUtsej63a1noXLQIKgop3CBBMSEhCyIXcbyS7z+7+zh+Pzzba6jhz8LTo5/XvN7vP8yST/Ww23+/z\nvRTqx4yxOTl2+nSbnr4bthmT2gfwajBoMzJsUZHNyqoz5oERwwSPu/sApk+3eXltPt+TcCt8Cay1\nd7pTFFOm2IkT+wKBF+F+uNSboujOz7fjxtlp09wpimfhW95zVqWn26wsW1RkR4/eB3fB9/TGX0R/\nAfxzzTDGf8UVrFrF4sXj09ImQBxqjKkxZq4xlJaybh0XXJCXlZUPg3Ab1BhzHpCfz9q1fPvb6RMm\n5BrTC9dCjTFXw7j0dG67jZ/+lEgk1+9vt7bde85IIMA117BiBfPn54dCE2HAK5UawwknsGYNZ55Z\nkJExDqLwANS4LfzTprFuHZdckp2T4w4T3AQ1xlwGadnZrF7ND34QmjzZHSZohRpjboBp4TDLlrn7\nAPICgTZrO1Jn4vdz9dWsXOnuAxh54bOBOXNYu5Yvf3lcZuY4GIJVUGPMmUBBAevWcfnlmfn5ecb0\nwg1QY8x3IXv0aFau5Mc/9k+fnuvzdcBh7zmLg0Guv56bb2bu3DxvikJEjmnHfPNe3pgxlJUxfjzB\nYKqFv/grXwHq169n1iymTCEcTnWyuyWAcJiiImpq8PmikBxZammhpITGxlRPfU6q+tZblJWRlUUw\nOGyMA6O8Us/GjZSVMWGCO2fgtvC7paqnnmLmTHdpgXs4O/JwsRgzZtDejt8fNSZh7bhUtbaWmTPp\n6yMQGHbvDp0qvfwyZWXk56fOJOiVmp97jrIyJk0iHE54ixD+drjsbAoL2bkTv/+DZ9LdTUkJe/e+\ndyaQm6pWVjJrFn6/O2AR9/qIREQB8E+zf2Cg7P77yc5m587UPoCuF14Amhyn8JlnqKqiqqqmv78Z\n2r0SkON2sjc2Nre3N1vbMqIUDgYzbr2Vvr6++vqmZNLt03erA44zde1agkFbWZnaB+CWGoeHj3v4\nYV54gcrK2qEhdx+AW2pOJGZt2kRTEzU1B3p6mt2GotSZZGZy0020tBxuaUm18L9XNSbn9tuJRof2\n729KJFpGlDqj0eL77iMjg50762OxZrBe6WAsNvGxx3jzTbeFvxm6Rh4uP5/eXg4cONjZ+YELH52W\nFrr5Zjo7u5uaPnC4aDJZsHo11sarqlIXLiLHtGNvDuADfmvMnGAw3e/vdpwGr5PdbZyfAfMDgZxg\nsN9xmrxO9lTinevzFYTDUXcfABwY8Yp2hjHTwmFrbVssVmvtXuj1bvq/CEpDoZDP1xGL1SeTb8ER\nb2JgNhwXDGYGAj2xWKM3TOD26RfCfL8/PxQadJymeLwKmkacydk+36RQyEkmWxynxtoa6PTWD5xu\nTFEo5HP3AVhbCQPetoMFUBYKjfL5umKx+mTyHejzdgwUw/xAIDsY7HMcdx/A4REDCuf7/eNDoeF4\n/JDj7IMG8HulL7hTFMlkq+PUWPsudEMO4A4ThMNBY1LDBIPwW/37V+T/i+YA/oEnoNFxxjiO28k+\nDN3wlPfC9FNj8uJxx+tkPzKik/3eZHLy0BDQDq0Qg0HvgZcbUzo8HIRub5ggF1a7z3nRRcv+9Kd0\n6PeGCebDD91SYeENDQ3ZjjMEh2AA+uBxa4GmYPCOeHzC0JC7D6AThuFP1gKvGPNAMjl9eBjo9IYJ\nErDGa+GfE42GoBcOgIVCWOYe7rTTfrFly2gYhAaIwqnwbbeUm3ttV1eO18LfO2KYoMbnuyuRcKco\nDsNhb4rieW8RQsSbonCHCR70vpOXGDMnGk2DfjgASWjWb6TIse5Y7wKy1gZ2NeCRAAAO4klEQVRh\nDiyExbDw765oJrx30//jjjsQCNzsfsEll9g//rEuHK7wWvi70tP/2y1Nn2537ozl51e4Lfxz5yby\n8p4Ba21TMGhrauzcueWpFv5p016Bc2E72BdesBddNBtOcFvjZ8/e6/Nd7T7nsmV2xYq3/f73WviP\nP74pFFrllpYssRs2tGRkVLgt/PPn92dm/tEt5ebad9+1U6ZUuDfZnzPHTpiwEay1NcbYPXvsKaeU\nw4nu4SKRN4xxb1NqH3nEXnHFFmPea+GvqKjx+69zS1deae+7ryoYnOtd+N+mKMrL7Y4dfdnZ7oX/\nfXf/GKjwpigq1AIkcux3AX0a7uAS+8gPIqqsBf5gDNFo4fjxpxw6tNmYJTU1XHDBtmh0LpRCoq1t\n7JQp86qrtxrz+S1bWLZsc3v7iQAcamiYVFhY1tOz3ZjPLV/OI4+8vXv3qbDW2jfDYfLyStvbLzxy\n5OSlS4lGW55++suw3Nr1Ph+BwMycnC90dGww5sx9+1i6dFsiMQPOBPr7J02ceGJ9/YvGnLZ3L9/8\n5rbBweNhPAw0NY2eOrW8qmqbMac8+ii/+tWWpqaT4RDsr6+PlJTM6urabsznrrqK7durduxYDGus\n3R4MkpU1MzPza319zxhz9iuv9D300FZrs+G7xpBMRvLzT29t3WjM0v37Oeus7Y4zGxYAnZ35kyfP\nr63dYszi11/nhhu29PQshF//o29prz7wEfl0+azcwuvfrd2Tnj47HP58JEJbW3Vx8RZ4B/7HWmBT\nILA4FKqYMYOurkOnnfaKtW94eyV/b8yl0WjhlCmFQ0Pd1133RiKxD9oAeDYWm9vWNjYn5z/y8qJb\nt769ceNBaAXgUWsr6usnh0JnFRXR2lo5c2anMbtT95AIhxeEwydFIrS3182e/ZK1b8DvrAWe9vnO\nmTBh1vTp9Pa2fvWrO5LJXfAubLb2HmMifX0TCwomOk7funVvxeP7oROAJ+PxiqamzIyMr+XkxFta\n3li0qAXqYaO1Zxoz98CB4nB4yYwZtLbui0Q2w274g7XAtmDwlHD4+Bkz6OxsXLjwZWt3fMirv4h8\n+nyGWjlKQyGuv97dB5AXDE50F+0aU2dMiTGBb32L1atZsmR8evo4iHul+UBxMXffzde/PjY7Ow+O\nwG1QZ8w3IJCXx513csUV4YkTc43pgeuhzpifweT0dG69leuuc/cBtFvbmTpcIMBPfsLtt7NwYX4o\nVADDXmm2Mcyfz9q1nHXWBG+Y4D6oM+YkYOpU7r6byy4bk5ubCwOwDOqM+Q5kZmdzxx388IeBqVNz\nfb5uaIc6Y+6G4nCYX/yCm26ivDw3EHBb+N3DFft8XHklq1Zx6qnj0tLGQ0K/EyL6C+BTeKl5eRQX\nEwq5Te4xGANFF1wADG7eTGkpeXkEAsNeC79bqnnqKYqLKSggGEy18Lsl918oTJvGgQP4fMOQGFmq\nrycSoa0Nv3/Y2wfwXnXHDkpKyM52e+pjEPRK7X/9K6WljBtHMBjz+aJgvNLuJ54gEnG7+/H5osYk\nrf3b4fr7mT6dnh73TOKQmzpcVRXFxcRi+HzuxECWV4pv3UppKTk5qTPx63dCRAHwKXO3MedkZk5e\nvRpjnL17G7xO9o5Nm4DmoaGK3/+eZ5+lsrJuaKgZhr3SIXcfQG0t1dX7e3sPQatXAvKysrjxRpqb\nW9raDlnbMqIUCASyV6xgcLC/ru5gIjHycL2OM+Puu919APXePgC31BCN5v/5z2zfzp49+wcHm6Ev\ndSbJ5JwtWzh8mLq6+u7uQ9aOPJPsjIzATTfR3t7R3HwomXRb+N1qAsavXEk8PlxdnVqE4Jbah4dn\n/e53ZGWxa1ddNNoMcf1OiHxmHPNzAB/fQ8aUhEIBYzoc54DXye5ODBwH5cHgaL+/x3HcfQDdXjbO\ngAV+f04wOBiPu/sAWsB4z3muzzcxFIolEi2OU+3dbNl1hjGFoZCB1DBBn3fT/0UwMxQK+3ydXgv/\ngHer/TKYFwiMCQT6HKcxkdgNHd678kJY4PfnB4ND8fghb5gg5WxjJofDCa+Fvxq6vdmF0yASDvvd\nfQDW7oIBb3ZhAcwOBt19AA3J5E7o0/8ARP4laQ7g/+QxKI/FRo3oZG+BTdYCZxlz0HGyHGcImuAI\nnAXfsBboGjVq+fDw+ETCgZb3DxO8Y8yvk8lpw8N4mwli4MBfrAUuNaYsGnX3ATRCEibDCve19bzz\nfv7kk6l9AHFYBN9zS5MmXdvcPDYej3rDBP3egoGGQOCORKIgkXD3AbjDBIfhRW8RQtHwsA+6vGGC\nAKyzFrjYmPJo1N0HUA8WGuAla4FzjWlwnExviiIK3fo9E/ns+BTMAXx8o2A2nASLYc77rx2YBSe4\nffqzZu025r27Xa5ZY6+//jWfb57bOD9vXmMweLtbOv98+/jjDaNGlXst/L2jRz/oliZNsrt32wkT\n5sAisOXldty4DWCtbfD7bXW1nT+/LNXCX1T0GlzoPvC55+xll200Zr57JuXl7/r917ila6+1q1bt\nCgRSLfyt4fA6t3TyyfbFF9szM+e4swvHHz+UlfUoWGvjWVm2psYWFqYuvOT9F+6DMm92YYG6+0U0\nB/BpdeTDP9xIfRT2V7+fcHhmTs6XOjufN+aMysrk0qUvJZNT4TxgcHBKQcGixsYtxiyurubii7cN\nDc2DKTDU3Dxm6tSKffteNubkDRtYvnxjW9vJ7h8c9fXTi4tndXe/asxJN9zA00/v2rnzdLjT2ldD\nIcaOnTl69FcHBtYb86XNm9sfe+xFa9+w9nGfDyjJy1vS1rbZmCXV1ZxxxrZ4vBROAbq7x0+efEJt\n7UvGnFpZyfe//1J//0LIgq7GxpypU+fs3fuKMYsefJDVq7c1NJwKd/2jy0/oAx+Rzyqt8v6gx5PJ\nioaGgnD47BkzaG7eVV7eBu96N3V4Oy1t3qhRJ5eU0NpaW1KyFd6E+60FnvP7/62nZ3YkQldXyxe/\n+Goy+SbcYy3wG2P+c2Bg8pQpk6PR3ltueTMe3weHAXjScSqamzOzsy/Oy3NaWl5fsuQgHHL/aWFt\nRX19UVraGZEILS17S0o2wV5vDeQrodCitLQFJSW0tzdUVGyz9lX4jbXAYz7fVwoKiouKivv62i+9\n9LVkcicc0I9WRN5Pt3T8oLusLcjM5Pbb3X0AOX5/F3RCgzENxswKhfjZz1ixggUL8kKhCe6teNyS\nMcHLL+fOOznzzAnp6eMg4ZVOBCIR7rmHSy7JysnJhSH4JTQY8x1Id4cJrroqOHlyjjG90A4NxtwG\nRaNGccst3HgjZWWpFn73OUv9fn70I1auZNGi/HB4/IjDVRjDvHmsW8c55+RnZuaBA8/pnb6I6C+A\nj7bVmM+feCJTp9LY6PbUOzAWpl14IcDrr1NUREaG21MfgzSv1L1hA5EI2dluyW3hd0t7n3iCoiLy\n8/H7MWYYkqknBIaHmTSJgwcxZtiYuLV5qWp1NYWF9PW5j3IgO1Xato1IhMzM1Jn4vVLz+vVEIuTm\n4vfHjXFnF8435nFlgIgoAD5CK/TV1o5Zvpz+/p76+qZkshl80Pb888BQIlF4550Eg/HKynpvmMAt\nHRoaGvvQQ2zaxJ49+4eGmmHAKzUnEmUbN9LYyP79td4+ALcE5Gdm+n7+c9raWltbP3A4n8+X/8tf\nEo0O7N/fmEiMLPXEYqX33ktGBpWVB6JR996cbqkhFpv46KO89hr79tUMDjaP6GoVEVEAfKhNEOzs\nnLZ5M9a2OU6ttY1wBG7o6wNOhcMvvxwyptNx6pPJ3TDklSpg6O23MwOBXq+Ff9grRcBXU5NXXz/o\ntfCnHgWc298/qaMjnky2xOM1cBgGvepSKHrxRR+0O06ttbUjzuQk6NmxI83n63KchvefyUxwdu/O\n3rev33EOemfyiN7+i4gC4KPdY+1lxsyMRt19AE2QGHFb/AuNqYjFUvsAktAKG60FTjfmUDw+Nh4f\n9oYJ+uAJ74H/ZcyERMLdB9ANw96N4XBb+KNRAx3QCg487JUuNmZOLObuA3CHCargLWuB84ypd5zU\nPgAHOuFZ74HXGJMbj0ehGfphQD9XEVEAfBwPWJtrzHjIhgBsHfHe+S/WhoyZAWMgDbphl1d9wVqg\n1JhMSIco7BjxwJXWFhkzBjIhCdtHlO61dqIxOZANvvcf7mFrM42ZAlkQgi0jSk9Y6zOmFDLBnW57\na0T1VmuLjRkDGeDAK3r7LyIKgI+p88NfMT96/cC7H16t+/BS84eX+j+8lPzIM6nRi76IfCS1gYqI\nKABEREQBICIiCgAREVEAiIiIAkBERBQAIiKiABAREQWAiIgoAERERAEgIiIKABERUQCIiIgCQERE\nFAAiIqIAEBGRo++TWgjT1qZoERE5aoLBrGMjANasWaiflojIZ+4vgHPOOVffVhGRT0Ddv2IAdHTE\n4R2wxgSOHHlZPyURkU9IR4fT08NR2fl9dAJg/fpkR8c7oRADA1pELiLyCWpvZ88eurqOwlMZa4/O\nS/bixWbcOIaG9NMREfkEWUsyybPPHoWX7qMWACIicmxRs6aIiAJAREQUACIiogAQEREFgIiIKABE\nREQBICIiCgAREVEAiIiIAkBERBQAIiKiABAREQWAiIgoAERERAEgIiIKABERUQCIiIgCQEREFAAi\nIqIAEBERBYCIiCgAREREASAiIgoAEREFgIiIKABEREQBICIiCgAREVEAiIiIAkBERBQAIiKiABAR\nEQWAiIgoAERERAEgIiIKABERUQCIiIgCQEREFAAiIqIAEBERBYCIiCgAREREASAiIgoAERFRAIiI\niAJAREQUACIiCgB9C0REFAAiIqIAEBERBYCIiCgAREREASAiIgoAERFRAIiIiAJAREQUACIiogAQ\nEREFgIiIKABEREQBICIiCgAREVEAiIiIAkBERBQAIiKiABAREQWAiIgoAERERAEgIiIKABERUQCI\niCgAREREASAiIgoAERFRAIiIiAJAREQUACIiogAQEREFgIiIKABEREQBICIiCgAREVEAiIiIAkBE\nRBQAIiKiABAREQWAiIgoAERERAEgIiIKABERUQCIiIgCQEREFAAiIpLyvwqOPC0KOsgdAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.image(zoom=1.8)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAAAG3RFWHRTb2Z0d2FyZQBMQU1NUFMg\nMTUgSnVsIDIwMTZ/hHVIAAAgAElEQVR42uzdd5xV1b34/c86bc70XphKGXoVEUXFht1YsBC7QdRo\noikGa4ixF9SoUSMKdkFFBAVBQIpU6XWG6b2XM+WcOf3svZ4/TvCXW/Lce58n3puf9/t+5b/Bk5l9\n9mt/zll77bWU1hohhBD/+1jkEAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGE\nBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARA\nCCGEBEAIIYQEQAghhARACCGEBEAIISQAQgghJABCCCEkAEIIISQAQgghJABCCCEkAEIIISQAQggh\nJABCCCEkAEIIISQAQgghJABCCCEkAEIIISQAQgghJABCCCEkAEIIISQAQgghJABCCCEkAEIIISQA\nQgghJABCCCEkAEIIISQAQgghJABCCCEBEEIIIQEQQgghARBCCCEBEEIIIQEQQgghARBCCCEBEEII\nIQEQQgghARBCCCEBEEIIIQEQQgghARBCCCEBEEIIIQEQQgghARBCCCEBEEIIIQEQQgghARBCCCEB\nEEIIIQEQQgghARBCCCEBEEIIIQEQQgghARBCCAmAEEIICYAQQggJgBBCCAmAEEIICYAQQggJgBBC\nCAmAEEIICYAQQggJgBBCCAmAEEIICYAQQggJgBBCCAmAEEIICYAQQggJgBBCCAmAEEIICYAQQggJ\ngBBCCAmAEEIICYAQQggJgBBCiH+H7R/1Qj09trS0RNP0yzEVQogfTlNTaPVq/Ytf6H+WANTUWIcN\n+yPkWyyfydsjhBA/nKKiXSNG9M2apZYu/f/bgH9MAGJiYiAdvBCUt0cIIX44gYD2+UhL+we81D8m\nAG63AfvB8HoPdnWF5B0SQogfwuDB5/T0hLxelPqnCcDfKinxNTTI2ySEEP9gv/zlb6D6H/iCth/i\ntywvZ98+ebOEEOIfZvXqlH/4a9p+oN/1u++0vGFCCPGP0tOT+g9/TXkOQAgh/peSAAghhARACCGE\nBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARA\nCCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIISQAQggh\nJABCCCEkAEIIISQAQgghJABCCCEkAEIIISQAQgghJABCCCEkAEIIISQAQgghJABCCCEkAEIIISQA\nQgghJABCCCEkAEIIISQAQgghJABCCCEkAEIIISQAQgghJABCCCEkAEIIISQAQgghJABCCCEBkEMg\nhBASACGEEBIAIYQQEgAhhBASACGEEBIAIYQQEgAhhBASACGEEBIAIYQQEgAhhBASACGEEBIAIYQQ\nEgAhhBASACGEEBIAIYQQEgAhhBASACGEEBIAIYQQEgAhhBASACGEEBIAIYQQEgAhhBASACGEEBIA\nIYSQAAghhJAACCGEkAAIIYSQAAghhJAACCGEkAAIIYSQAAghhJAACCGEkAAIIYSQAAghhJAACCGE\nkAAIIYSQAAghhJAACCGEkAAIIYSQAAghhJAACCGEkAAIIYSQAAghhJAACCGEkAAIIYSQAAghhJAA\nCCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAgh\nhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQEQAghhARACCGEBEAIIYQE\nQAghhARACCEkAEIIISQAQgghJABCCCEkAEIIIX5cbHIIxH9ol1ImHIJfaC1HQwj5BiD+VyhXioyM\nU8aMOTUl5UKl3lNKjokQEgDxY9NssXRZrYeUeuVvrvLDkpKYN4/nnuPEE9Pt9myYLQ0QQgIgflQy\nM/Ovuipz6tQJsbEnw0NKERtLQYE9NZW8PKxWTNOnVBBi5VgJ8WMh9wAEVVbr8Dvv5L77+OgjS329\n0+/PBH75S3p6aj/9dOirr2K1BktLG0KhVpDP/0JIAMSPR8Bioa+PnTspLw8EAv3gharXX28PhepM\ns3PXLodSrnC4Xutj4JfjJYQEQPy32aIUcAh+/Xcm4XRZrQoaTHMDPPBfn6hTGYnkr1+fevCgt7v7\nmMdTB93wcCDQD3EwIRyOAw/UA3CTvB9CSADEf5PU1DNHjKC9Pd/tflep2f/y+n5EqQmDB2defz1l\nZfElJQPB4N1KvfZvGrBSqVa48++04TsIdnen9fQEtG7XuhR8EAefRf/9E0+wcePULVtiYNuECa3l\n5W8odZfMBxXi/35yE/ifWiAxkYce4rnnmDIlw+HIgdlKBRwOw+kkLo6EhDSHg1tv5YknOOOM2Pj4\nGMiG1X8zUWcgJoa8vMsSEy9UavHfmcDzkNN5fVnZKtNcp/U6aIdFaWm3ArBXKYqLqam5AW4B3O7c\n/PxTlZojc4GEkACIH5QzLY1hw0hIwGIJKBUCJzivvto6cyaXXspFF4UtFlpa2LSJysqeYDA6fH/J\nxIkMHUpGRpPNlnDLLfzpT5x55iCnMw9+/S8v3LuVKlGqJBDg449vsVjWQAU8FR+vcnNPiItboVRx\nYiLhcKvLVQe3af1tUxPx8eNSU2fJeyPE//1kCOif13ylZsXHD379dWw24+jR+nC4DSxwbPnysGlG\ntI5At2FkrFiRuGmTq6urzO+vAy/Q20tCApmZmdXVTJvGqFEkJkas1gg4oN1iadd6ktZNVuvJo0YB\nur5+3+OPfw0nwnKtn1dqTnt7WlHR1OrqiNdbccstboslDMAnhjGkoaFo8OCzPJ6Aw9EQDu+E2f9m\nOGirUtnQAZvgURksEkICIP6r7tf6I6W6duxwKNUdDtebZin44b5gMAgGmHAKuDs7k7q7/abZAmUQ\nhBcbG9MhXakRMTEjlyxh/Xr27q0PBNohCDnTp+f4/YwaVXDSSTz7LEePqldeSa6tzdf6AHys1H1a\nf6TUjXFxeWecgdWauW9feU/PGAAWaP2WUneEQjG/+Q2HD4/csaPX6/29Uk/9zVW+1+E444QTCASG\n1dbGBIMPKfWMNEAICYD4W3uUGqxUv9ZH4cq/c4m8cdq0x7777vtJOCbcBmd9/4+Tkzl2jGuvvWv7\n9jC4wAKnwu+0tiuVr/VjgYB/27Z4m80VDDZEItE81O7blxMXF5eURGYmNhteL4bhgxCkwXUnncSE\nCTcOH056Oi+8QHU17e3O/v4Uw7heqSUFBefa7VxzDT//OQsWcPCg1etNAjIyiEQwDEwzdcYMHn+c\nzZttr72W2NxcoPXFSq35mz9whVIzJQlCSAD+12qwWqdOm0ZKStb+/daurn87vQcoUWrc3r1/vP/+\nMZs3J0EMbJkwoaeqarFSN2hdqdSIPXt46qldO3cC30DD+PH0929obPxQqWqLpWjFCjo6nrnjjsRg\n0AdN4AY3POrzFfp8J3Z3X+TzOR95hK6uho6OJq1b4N3cXLq7iYkhLg6tOXqUigrc7n6tByAeGD7c\n195OaSmLF7Nnj8vn64F+YNIkrFYsFqxWEhPx+ejrIxKJdiUDtip1htYehyMxKekKp/OYUpvhl5IB\nISQA/wsVjRjBc8/h9/Poo7E9PUmRyE1Kffg3F8RvlDrv8supq6vdufNc+LPWf1LK39WVVlh4VW3t\ngN0eBEpK6t99d6Vp1kKD1g3JyUU227kZGe6+vkORSFF5edvjj8fCh2CFWLgXLvn+/2L06C8qKga5\nXGHT7DCMSnDBk62tcRD93/SEhCHPPIPPV9HeXmuadWDCys2bvVonbdiQs3t3p9td7fNVgwfWbdpk\nV8qmlB2mZGfbW1pob6/q6WnUugk+OOkk3O6OmJjsOXMYP14tXpy3b9/QUOhmpT6QBgghAfhfZb1S\n548ZQ1UV3d309vYd/3zdarHUap0GY7KyzsvNDaxZc+jLL2ujH7HhXq2/tFguz8523n03e/YM37dv\ny623HoU6WKf1SqUuGz2a++6jujrpgw+yW1refOCBXjgAu7UO5eU5hg7dt2PHrUq9ozXDhvHtt1fM\nmfPoN98o6IYeCMEbWgOHlJr0yiuLfv3rvIoKrXW31tXQCz3wB62ngcftTvV4Alq3QTUE4X6tbVpb\n4QLobGvL7OoKmWa7YZSDFxqOHStKScnOzOSSS8jNZe1a02LRkPgvD8t2pRKgHq6QKgghAfixqoXy\nurpRzz9POFzX2lprGPVgQu5JJ+V6PGjNH/5AQ4Nz4cKM+vpjWi+024mLw24/1enkZz9j5kyef95Z\nWmoLBrvg49NO46yzLjv3XFJTOe00/H4cjuiknWOwVGugzOWaeMIJ2Q5HXjBIYSE7dnDnnVs3bGiD\nLZACX8TGvuP3A5UWy6TFi4Eb0tPvdbns0ANBCMLK6HV52TL27bvuuedM8IGCbDisNaCTktTRo/zu\nd3/4/HMNnTAAAXja6x3l9V6flJT94YfExlJS0hwOd0aXFUpPd7vdTZHI6Li40ydMwOUqaG//WqmF\nsFwyIIQE4MfnTq3fUKq2stIKLtOshTa40WqtLy0dnJzM5MmMH4/Hg80WUsrU2nHttRgGkYh31arM\nQ4cIhThypC0Y7AE3REfbiURobOTpp6mrc3V1tWvdATYYcDjqw2ErsHNnQWLi3EhkS1PTmffcs2Pt\n2iVaH4T74dazzqKi4mK//32lblm7lupq18MPf+J2u2ETtI0fj9+/obr6YqXWzJjB44+733xzPJxi\nsZxzzjn9u3YtHhgAOu32rEOHePbZ/V984YJNUH7++aUbN/7ZMN7UGvjCYhmzerXTYunw+2sNoxxC\nQF5eUnHx2ECAU0/lppv44IP0Tz9N6+ubKGeJEBKAH6u73nrrzjvucEL00a0w3GMYU73ey73en9jt\nPPEEbW3d7e2tptkOt3344S/s9oBpdplm7Jdfpm/Y0NrXVxUI1EAY3igtDUMYplitea2tgUikJRis\ngE54Z9Qo4uPHBQKYJnPnUlWV/OGH2a2tb3z55WEogT1alylFYyOFhZOCwcTe3ncuvPD8uLhPfb69\n8InWQEtKSt6ECQV1dXMMg0WLuPba9X191RBrmud0dydnZxcPDCxS6rYtW1i2rPydd5YaRh0stFpx\nOrNjYob6fECFUlfs3v3KySdHZzQ1gBsmwJclJYPt9kybLXfmTIBgMKi1Hwy4Qqkv5EuAEBKAH5vc\nXL7++tXMzJe6uh7PykoqKjq6f/9LprlQ6yeVimlqyuvsDJtmayhUBe3ghfvC4QicAD29vUl9fT6t\nW6AW/BBdluegUp8YRv7AgIZuaIQwfFZeXuxwDE9KSpgxg+nT8fuJiYmAAi9sz8sjM3N0bi7PPUd8\nPE8/nbR7d3o4/KDPF/x+ISA45HbnlZWNzMkZ0tW1d8gQq9W6Gd7RGvDGxMTn5Z2fnt7e2/vlmWdO\njotbFgpVwddav6vUdK83IyWlyOcDRr7wAmVlVzidtwYCEXDCNXCb1plKTQuFHjCM3GXL2L6d6upK\nr7cZ+sEq54kQEoAfmVVKXbpsGS+9tLW7uwb2dXefM3p0UXz8XR7Pe0rNO3z4VxMnDvb7ARc0Qxg+\n/v6D8IoVbN1608svh4+Pv19//GVPmDnzhNmzm37602v9fgdsLi7eVl39Apih0N3d3RccPvz96FCb\n1p3w4QknEBODw0FHB1rT1YXfP6C1HxLgo5EjKSjA5yMQuGTIEB55hO5ux5tvZtTUbDOMRihXymGx\nDL35ZmbNYsmSnC+/zPJ43vT5qo+P3c/WmjFjyM4e1NrKBRfw3HP6wgtXBwJZ8PHUqfT3r6moOF+p\nLq2PKbXaMALl5clVVZ5IpNk0S8APn8vHfyEkAD8aLVZrXkbGpcnJrddcs1vro3AQhpjmOSUlSUOG\nnNTSkt3Ts2TixF84HB+GQmshHrZOmdJw+PBTSv1ea84+myef7Hv33ZHwCjTl5jrT04+UlMxW6km7\nPa+sjGuu2eb3F8ODsbFkZw9pbJwWCj2o9YtKxVZV5TU3ByKR5uOjQ4sPHnRCrFKj4uKGzp+PYXTX\n1NQZRlP03qxSZGURG0tMDBYLEydy6BB2ewhMyIRRM2d2rV/PmDEMGkRMTMhiCYGC1yyWUqXeh/la\n09TEoEFnpqQ0fPPNjvXrnbAfPtY6nJdnLy7OqqzM17rKYhnz+edj+vp+O2dOumGEoAUC4JHTRQgJ\nwI9GhVIjL7mEG25g9ercVaty3e7DsAQGxcfz4INMnMjLL6dv2pQZCLwSCrXDfq0/VIpAoCgr65SW\nlmVKXV1dzc03b+zvr4UurTdarTPy84cnJd3b338kHM5buvTgkSM74H2tFyk12uvNz8q6vLl5o1K/\n+/LLhy6/PG9gQEPX8dGheyEenFrf5/U2HTxoVcplGHVa18EALCovT4QkpRItltMHDeLpp+ns7Gtp\nid6TsEL/li2NwWDmsmXs3ElJSY3X2wpuyDjttIxgcL7b3e10ZsydyymnsGBB1saN2YHAcnhba6DC\n5Srq7BxpsfzOMIavXUtFRefDDw+GZyEbVsbEvBwMLpaP/0JIAH404p1Opk1jyhT27MFmM8AGxbNm\nsW0bWVmYJpGIFwJggQUWywGlAlBTXz/MZpuRl2d0dx8sLrbabN+Pv39jmqccPhw/cuR4j2dIc/O3\nDz98BDoAuE1rr9MZP2bM6NjYwQ0N2y6//N7ExAs9nlhwwKZJkyqOHMkxzRejF9kVK+678spY6IdO\nMCEBbtM6V6kkreMM4+nW1sKvvoqYZlsoVAXN4IM/9vQMh+CBA8lHj/aHQo2GUQoBqNi7NycuLjkp\nKT05mREjSEnBao2uY2oDr93ebRjjhg3j/PMpLR21Z8/OCy4ojIv7xOfbC0stlulz5nQvWZIcDP7b\nA7hRKRfMkjAIIQH4v057JJL/9ddUV3PgQK3X2w7d0Lt+fUcgMOovf8HpDJWV1YVCLdGZ9dOmZft8\nk3t7CQT4wx8wDOubb2aWl2+PRFqgQSmrUj9TKv7yy/ntb/nii4R33knp6grB21Zrv83WYhhjrrqK\nBx9k1arYt95Kbm//yOMZBYu1XmmxYLGMSEs7q7sb4OSTefnlecnJE/r70+HA1KmBysqVfX1Aq9bH\nlBqzahU1NS/+5jcWcEETROCvH8/HjJlXVpYWiQSgBTzggUcCgSGBQH5Pz3lO58hFi0hI4MiRumCw\nFUyIP+20eNPkrLO44w7+8hdraand7//I59sPn2n9lVKYZkJMTJLX+68PX0LCjOzsSF/fIaXW/X/a\n9UwIIQH4QWxSyoAKuPvvX5j2RSJq797Uw4f7gsHGcLgMQvBIX99E6N6/32mx9IbD9VqXgA+qDx7M\nj493pqSQk8OUKTQ1ERMTHX9Ph6JZs1CqfPlysrLQGr8frX0QgeQrrwSaVqwgLY1AALc7utBbGDS8\npNQxmFZfn1lUNKq394BSk0tKuOeezf3950I6+Jqa4goKRvf336bU3TDp3Xfp6emcN8+EjyEOtg4a\ntLytDTim1Jj9+5/84x/XfPXVHyEevi0s/Lax8Wn4VGvgXaX6du2KtVp7QqGG4/d1D333XQyMzs9n\nxQoOHeoJBHrBDS8rtUGpSRYLy5c7g8HL4EOlbvr+YKam8tBDJCXZ3n47p6Sk2DCuUkpuEQshAfhn\nGNyJP2fwYFyuYR7P+0rd8ncuTHdmZDzZ3Z0WCgWhFbrAH71W3njjQ4sXJ8IANABQCo/5fMN8vsKu\nrhvc7pjnn6e/31df33J8/L1r7VpD68ZIZNTXX1NWRn19eX9/M7RD1apVGhoMY9z69VRW0tRU3tfX\nBK2wZOxYurq8fX3renuvtFiGT5hAc3Pz+PE7td52fHT+G6v1vIKC8Skpi/z+ikCAtDTPz3726cDA\nQdindTg/n0GDitrbb1Hq/Vtvpaqq7ptvvoG9WlfExzNo0PD29vNDIaBKqdkHDjw6eXJCOOyFRgiB\nCx4IhW6H1LVrc3bubO/rq/T5asADeZMm5fX2MmECF13EqlVF337b6vP9TqkXU1NJTqawkLPPxuMh\nPj5isZiGkSZnnRASgP9xPbGxaffey+TJvPlm1tatucHgHUq99e82YPHieUuXTnv7bSAe3rTZFkQi\n7TExOceOPXP48IclJa/AvtNPr961681I5HmtgblKbezsHLx6tda6PRis1roOAvAHt9uAIWDW1aU3\nNfkMo8UwysAPDwYCwESgsTG9tdVvGG2mGf2Rv7MzNiMjvrDwvLIyHniAKVN46aX0b75J9/s1HFMq\nCCOtVoqLuflmli3L/+67DZdf/hn4YEn0UYPOzqmjRuU7nXP8fubN45JLtgaD3QBs9flGejx5OTlT\nGhs/UeraF17g4MGbY2J+Egwmwu7TT6/67rsFhvGi1vzmN+++8kpKX190KaEKCEJDVVWKUskXXcS5\n53LgADabCbHApZfidvt27Ih79VX8fl1T0xKJdMpZK4QE4J9BWmoqEyZ8PxUyDI5/999dcAEPPND1\n6afnwSS48swzIyUlE12unKef5uOP95eV7YKHAa2HJCef6HJF/6MXRozgm29eLCqyQS9E1+P8PyuG\n3nTTLz76KCcUMqANvOCDFdGfvvPObXPm5IXDBnSAD7zwp66uEV1dQ+32yWlppKQQCBAKRSf+A2Mu\nvhjTNPft49JLmTCB7dux2QgGE+AB2K7U6VrvDYenlpZmFxVlNzeXDx26EUqP/z63a10RHz/SYjkr\nKyvU17d/7tzJ2dlfB4MT4adKAYNTUu5wuVYpdWlZ2ewvv/xZfb0BblBQCvMHBn4VE5O8ejVHjrBr\nV0Mg0Ake+G7xYrdpRmD4qlVK67ZAoEbrCgjImSeEBOB/XG1//9BFi4iN5dCh+mCwLfq1wG6viESm\naX1MqRSlwlpXw4z+/m8HBpogBFe2tNj8/p86HGVz544eNGi7YbTDNriyqcmanz+sp+dGpV6PiUmu\nqOCuuyYoNU/rGNg6YcK+o0dvVOojrUlP59Chvxw48NGxY8/B0TPPPLh162vRq//VVzN37qvp6Qtc\nrkVQev759Zs3LwiHf691vFLTw+EXenvHLVhAXFyooqI2FGoBoH/XLofF0uX3Fy5bxubNHDrUFAx2\nQgiGnn76UJ+P4uJf5uTw7LM4nfzpT6kHDuRGItugQqkIGDAhI4P778dmcyxalFNRsbSj4xv4Quv9\nSlFfbx8/fmR1dXJr64rRoy1gg0cSEoaeemr1pk2vRSIva71YKXPTpiS7vdvvrw+FKiAEfzAMP4yH\nUV6vA/qgFsJQJGeeEBKA/3E7fb7erVudVqsrGIxu2RiAtHHjpvX3m/HxY4YPZ/RoSkriGhpW7d69\nBd7VuspiYfBgZs+2r18/eNeuzW1tlcefet3ncEwZOrTQ6XzE798YDF65YMHBdetWaL1b610OB8nJ\ng2Njp/l8h5WauH07jz++raxsB7xnt5OYmBUTUxAIkJvLnj1cfPFKl+sIPAaYZn5S0miXC/BqHYyL\ne9fvdx06FGux9EYijVofBR882tPjgJMgsHZtvM3W6fPVRiLlEIb2I0ey4+NVYiKZmeTk4HajtR9C\nkAwjL7sMrTFNOjs5+2za2oiPjyilIQPIyxudmMiDDzJ1KvPnp6xZk+zzfQmLtP7KYhmqVG5Cwpi+\nPuCGTz7507XXJoMPWqATvLAhmrSPPmLduukffWQBB3yTk/Nte/u/2mVMCCEB+O81fPiNTU1PFhTE\nR1e9hyBcrtSx8vIx6ekhm815//2cfDJPP53Y3h7v89mB4uLcxESuu46zzqK21nbggCUYTIIapdoh\nVykGBrLPOCP74EF7V9d7zz7bCM0AbA+HT3G5MnJyrqira9Gazs7mJUvWal0Ox8LhE4PBvKSkqwIB\nNm7kvvu+LSnZDO9q/YhSV7e12XJyCl2uq5T6PDExZu/eOxcuvP+VVxINI3p7FrDDS1oDc5Rq8XoT\nIPqj6GqjT7jdeW53dlvbJcnJOfPnEwq5q6sbDaMFLNC3bZtVKavFYrfZ7C+/TH9/uL6+xTCia5FS\nUGCvrf3rSqV9ff2m6QUDFinVBz/p6orLyjqtr2+5Uldu2DAnJeXqvr7ozvXrRo0qrai4W6nXsrNZ\nudL3619fCNvhpbg4cnNH9/Ze/u89KyCEkAD8t0hOprSUn/98mlJztXaCE34D12j900Dg1JaWW9LT\n6ezkwAHa2noMwwMRoKCgu60tfuNGKis5eLA5GOwGLww744xhfj89PTz3HKbJY4/F9fYmh8PVcC8s\nVmqu1qSlMW1aXnJy1rFjO668shIaYbPWDVYrLhcjRowPhcrHjNkI1bAPgMe1bklJyTOMs53OokBg\nscdzwyuvHH3vPRu8BZlwYNo0b2npcrcb6I2Nfbu+niuvPP/AgSDEwhs229uRyJPHP2h/qtSQ7dst\n0B0O12hdC174Y2+vFawww2IZ9sUXWuu2QKBa62oIwOe7dw+22098801iY9319dXBYDQ5t2Vk9PT2\n0tHB4MFj3e6Uzs7Pzj3XD7nwvtZrrVZiYkanpT3Q03Oko2PCwoW7e3ub4GutX1VqVE9Pdn7+dfX1\nLRZLmdZL4S35KiCEBOC/wR6lkqEVzj56lCef3Ltu3TKtD2qtCwtVfv6eXbuu1/o9rYHvbLZpixYR\nG9vV0lIVCjWACcu//VYBX32VHBPT7vHUhEKVEIGOQ4cy4uKsKSk0NNDXR29vn2kOQBycNW0aPh/D\nhzNrFnPn8tFH9tbWuI6OHvgwLo74+KKxY3nlFTo6eOqp+CNH0g1jO3wCR5SywLjTTmPmTLZsGbpp\nU4fX+/DChSEogyatH1GK1tb4/PxRZWXXKfXxRx+xcOG+w4eHw3S4dupU6utP7Oz861+enf3T5ubH\n8vMd0A/NYB6fHQQwZcrd+/cP93pt0AfVYEAD3Af3hMPdFRWxSvWbZqPWpeAHMjLiQyF+/3smTmT+\n/JT161P9/tafc/MAACAASURBVG/hCgCWm+bY+vqCESMKRo0qKCk5tmjRUagC4B6tG6zWounTk04+\nOWnHDpqaZpjmOUptkgYIIQH4QQViY6eedBJud1Fd3fbx4zMdjmWGUQdAaVfXuPHjs+323FAI6HY4\nvjWMrvr6WKXcptkEFeCDR6Dk0UcXPPpoAvigGVrBC0+43dlu9zX9/aOef55IpKGlpdYwGkADDQ04\nnceamsaEQhw9Sn19KBTygA847zyA1lY6Oqirw+v1aO2DRCi+6CIMo2XrVi69lFmzaGtj50683ji4\nDiqPfz/Y5XCcMnXqSQkJi/z+vTfeOCY1daNhNMO1Wg8MGpRQUDCsq2u2UvOUGnb4MA89dLZSc7RO\nh11TppQcOPDXDSbT0zl69LXrr1+zZcszYAU7PKPUy1pv0ZpLLvnlmjXRwf3oTfKxsKKiYmZ2NkrR\n3o7H4zFNHwAzp0xh7Ni3Bg8mLY1XXolucRNfWpphGJlAaioWS1FhIY88QlwcnZ0xbW1xoZDcExZC\nAvDDKrNYRs+axQMP8MUXzrfeSmpvXxMKVcNarYFjgcC4SCQvMXG4y9Vis+Xt2PHQmjWzH388VWsf\nuEDDMq2ZNo1Zs+5cuHBmS0sIgNfs9nfC4Se0Bt5Qqr6iwgI9plkHzeCGJ1tbk6AIBn/9ddz+/aHO\nzhK3ux664buvvlJK5cXGFjz1FD5ffVNTnWk2gobunTudNluvYeRt24bLxY4dzV5vF/TA+JNPHt/f\nz6BBeDyjrVbGjeO88+I/+6ywvHxdb+9O+FJrYG9X19nDhw9OSHjY4ynTetiOHdVLl67UOhsetViI\njR2ckDDd7W6y2QqOHGHevO+2bVsF26JROeWU7v37p/l8NRbLsJKS17u7P9mz5yk4evrpZd9992fD\neE7rnT09E//yF5xOT01NTSjUFD3KXV04naSkEBNDezu1tdGqeaMbCE+fjtYcPcqBA4TDtLW5TLM/\n+sSAEEIC8MMxrFYSE+nvp7cXw/BCCGKgTKkSKAO2b7clJt4cE1MSDOZt3Fg7f/4QeBH6i4rIytq9\nb184MdFeXs61165saUmHGXDd1Kk0NEzu6AAarNa7KivvGjEiDvrBDREohHlaAw8pFeroSO3qCphm\nm9bHwAtzDUPBbR5PwZEjaN1tmjXQAf3waH9/LEwA++bN6bt2ubzeumCwEoLgqa5OTEwkO5uhQ5Nd\nLm66CaXYupWqKothZEGVUq2QAjQ1JU2dmlRRkdDauvyuu5qhCbZr/bhS57a1JcTEzE5MbBwY+HTs\n2IkOx+emGf1i8f396rG1tcN+/nO2bz928OAOeF4p7PbChIQp/f1vaP2aUl3HjjmV6jOMRq2PgQ9e\naGhIhAQ4Kykp74knGBioa2mpP161b1evNiHJap3y2mtATWdndSQSfTxCCCEB+AH9dX2F8nJaWo71\n9TVCGyyZNo1QaHRvLy4X991HcrJ10aLskpLPf//7cjgC/Vq322w5kcjJ6eldPT178/MzLJa1sEhr\nYCAnJyE/f1hn52yl3n32Wdas+aXNtiAS+Q5KTzzRqK//6vhDYc/cdx8TJ/72xhvN4wMpbtih9QGl\nJu/Y8dvTTnNAdF2dMMyAX2gN3KJUj8+X4vNF159oim7R7nLlulzZkGWxnJaVZV+yhFCImpq2SKQb\n7DB8+vThPl+4uvqvY/TPPJO8dm2S318JLylVr9T1SjFxIpdfzhdfFKxb1+T1vhcK1cHG6APMWlcn\nJBSnpJyVmzuwaNHBSKQSXHBA6wvb2+MHDRrW3z9TqRV33/3r115LAi+0AnAHnKM1kKXUC2533pEj\nWutu06yGLuiHh0zThKtMs7Gx0Q59WtdBC/TL2SmEBOAHtU9rs6kpvbU1YJqtx9dXOHrgQEF8fEpK\nCoWFnHUWXi8JCRGLRRtGAyxLTAw7nTkXXsjtt7NmTeZnn2X39q4zzbrjr7m3u/vsESNG2e3zI5Ft\nDz44PTf320ikE84EV0NDekHBqN7e3yn1Yn4+W7YwY8YYeBZqTjvNrKj4rLsbmHzppbhc98bG/tnv\n3wOHhgxBqf11ddco9ZnW7193HT/5yU9uuMEA4OtRo0oqKl7X+hmtM5TKMs1XOztHL1ligZaBgWrT\nrIQwdB05khkfb3U68fmorqanJ3pHGsi99FJM0/Xtt5xxBiefzPbtps1mgAM+z8khLY1gMBSJFE+c\nyMMPc/BgwttvZ7S2HtW6DZZoXZeYOOTEEwuqq4sjEX7zm1fWrXu7qurPsCw+fvjw4Z3l5W8rNUfr\nztxctm+/d+hQG/TAAHySkbG1u/sMrYFKq/Vx00wAT3Si0dixA/X1a5S6WO4DCyEB+IH8UetblcqL\nRKLrK/jBC38IBkcHg0N6em7IzIx/7TUCAV1d3RKJdES3tD3xxKadO4dOnMjIkWzbhtUa3Tbr67g4\nj93eaxjFFgtJSY5bb83csCFSW7ustfUoLNUa+NJiubywcITD8axpVjY3j3j44Y0NDfvgYtBNTZb8\n/KEu141KfVRRwfXXb/f7u+CQ1jvs9tPGjx+TmHid291osxWWljJr1k9hPdxkseB0jk5NvaSnB+jW\nmtzcuW1tdX19duiHuuNDT0/292f3919ot09+4w1iYnobGqpDoeggTNPGjQ6rtSsUSl+5kkOH2LOn\n1ueLDjoxZAgOB3a7w2YjPZ3iYqqqon+yhnxYqpQNhuzdOyw5+XG3e09xsWmx7IfDWr+q1DCXK6ug\n4LKamlaLpUbr6fPm/USp2VqnwidxceTmTvD5PlPqGq1HTJny0c9+VvqrXy2IRAqgvbU1p6hoak3N\np0oVQ83f3zNgj1I9cAAellQIIQH4r3rnnnvweDa+996MESMwze3V1S/CM1oDqy2W4lWrLFq3BwLV\nWkfXONu0dWsMDF27ltpaSktrPZ626J4tU6Yk2myJWlNfz9y5xMdTW2tvbIwJhSLQabV6THMIYLGo\nBx6wf/dd8fbtOz79dD28+f0Dw8OGTbLb54fD60aOHGSz7YDo3NPlkcjopqa0wsIrW1pCXu+hUaOU\n1bobPtT6F0qNb2gYVFg41u0uVaoBLq6tfeHBB7d99tkLWg+AE+6Hl+AVrYGXlOqsrHQq1W+aDVqX\ngw/meb1OOAWM7duTHY6eQKDh+NLWX+zaFQtxFkucxXJiURGPPUZ9fWt3d4vWbfDh5Mn09ODxcO+9\nWCyx7703qKpqu2lG7/3eo/UGq/XcESMyr76aw4edNTVrliz5Fhq0BuYrNai9PaWo6KTKyheV+t2C\nBXzxRVUkMgD3a/2WUtc7HBk220+HD6e7u6Czc5VSf4Zv/uYqX22xFBcUTB06NNLSkh4MPqLU49IA\nISQA/3m7lTr5iy944IFayG5sHDd58tCmptOiz6M+/PAlGza8PGPG365X0wq/Mc3bQB05kl5e7g6H\nm8PhYxCErTt2pFitaQ5HfnIymzdjGDQ2dhlGHzgh6/zzswyjdds2rr6aG25gYMCyb5/F50uEDqu1\nzzTHxcWRn2+//vrc9ev9bW1bIpGu47/ki1r3x8ZyzjkUFjoWL847enRnJBK9Z/AXrZcodX0oNGTi\nRLq781pavhk6NMtmW6p1N3wQHz/sxBNrd+4cHYkADB7826amuwoKksELnaBhCDwXvW7+9KfPLl2a\nEgz6oQVcMAC/0zoWnIZxtWH01dbmtLQEIpHWcLgCeqG3vj41JYXhw7noIpqbSUw0LBZMMwsYOZJw\neFp8PPfey/TpPPVUQktL3MCAhpVKXab1/VovVWpWYuLgmJjfJSYav/51STBYBe9qDdyhdYPdnvCL\nX3D11bz9dtby5ekez8nQZrEQnUcLxRMm8OSTVFXZXn89rbZ2sNaXKrVKGiAkAHII/pMmp6URibQ1\nNR0DIxAY5/HkxsbOtVprldoBN334YSosguh6Na9ZrW8axjdatzgcb4TDmZFICNrABX642zDyDSMv\nFJodCExauNAKdT09VYZRAxGo3bo1wW7vN83cvXsJBNizp83vd0EvZJ9zTnYkQijEgw9SW8uRI7aO\njljDiAFOOgmLBas1OT+fmTOJiWHtWm2xAOlATg6h0CkWCzfdxJw5vP9+yuLFKb29qyKRetih9VKl\nhhnGkNTUE7q62u32nPJyfvWra5T6VOsdUHLiiTQ2ruzqAkhN5ciRB8vKTj961IR4+Gbs2PKyskWm\n+UL0knriib89cCDf7zehC9ohBPN7eob19NwWDPLqq/T2Rhoa2gyjE+xAXBx2e6S3l8ZGtm+nqckV\nibghAJdNnMiwYXg8s+Ljja4u6wMPkJZmffvtnJKSYZHIVUp9PmwYGRnxTie5uVitRCI+CIAJg666\n6q/vnNYEAmRnU1sL+JWKaJ0hJ7QQEoD/pG+VSoYTduyo8fsDMEMpioq46y5Wry7cvLnF55vb3OyC\nbVp/abFcPnWqUV19qssF5D366JMWy8F58+4wjATYnJ29sqPjsuOfPR9XqqGtzaFUn9b10A79MM/n\nS4EzIHb9+ozt2zs9nppAoAqCULNzZ6rDkZaXx8qVNDfT2dltmr3RifDhMIaBaXp6exPfew+tqaxs\njUS6ohfZ4mIcDtt335Gais+H1xs6vonY60ptUmoTXNPUpEKhWXFxdX7/kuLiCTbbcq3f1PoWpVwN\nDemFhSNcrt1Knbx5M888s6O0dDy8ofVXFgsWy6j09Au6uoCumJjMysqXbr31q02b5kESbB037mBp\n6Yta22FDW9uwZctM02zx+6u1roEAfHDokANyLZbT33/fEhvb0d5eEQz+dXJnby8JCaSnExtrdbk4\n5xwCARITo4vNpQPjxtHbWxsIZHz8MRs3UlFR5fO1wAA0rV2rAFCQk5xsffRROjra2tubTbMVLHJO\nCyEB+M8IxsaeNW4cfX29f/6zV+seyIiP56KLOP98Dh9WdruGWDgBgA1an9fYGFdQMKKnZ51SF5SX\nc+652w2jCBZmZpKfX9zVdadSC7Tmuuse2bZt5vTpyVp7wIAXrNa3DeOZ45+j3zhwIMXjie642wB+\neMTny/T5fubzjX7ttVAoVNPXF72MhmHR4cMGmDBYqVHLl9uUavP5akwzuq7yyp07neBQqvDzz9m5\nk7q68oGBJuiFwilTCt3uc7q7GTGCmTNZv37whg1tXu/iSCQ6O/N9rVdZLJdaraPGjaOxseacc7Zq\nXQfVACzVemx9/ZDi4qk9PT1Wa6NpZr777qEtW76GQ1pvtdlISChOSDjf47lZ698qVezxWKEXqiEC\np8IdkAW3mmZ3c3OcUh7TbIJK8MOfGhvTIFWpFKUmp6Ulvv46wSBVVd8vNvf1ypV9WneAr6Qk0Wp1\nRyJNplkCAZg3MKAg2oCrvd7c7u6wabaHw5XQBQNyWgshAfgPVVutxbfcwpw5LFmS+vHHab2946Ej\nHE5ds4bSUnbtavD7O6OrZmZm+mJi7oFdHR3nhEITBg+e0NFRMmqUS6lSWKb1Wqv1wuLioUlJZ/T1\nfajUTU1NXHjhLFgP18HVJ55IU9OpnZ1Ap8ORVVl515w5V2/aZEAYgNlwldbAC0pVtLQo6IFq6IdO\neAhC0K/1L5Wq83gc4IY6GAAX3Kd1DFyvdbC6OqWubsAwWo7v09tcXp6fnNzh82VfdBEXX0xFhXI4\ntNfrhOU5OaSnEwpdmprK44+Tl8cLL6Tt3JkVCm2G++ETpX4CGz2e24LB5NmzOXgw5ujRTY89tgei\n2wxsNIwz2toS8/PHlJdvU+ql8nJmzDinpUVHl/wcOvRoXd1srd/QmoKC65ub07X2Qy8Av1dqvtaf\nQpHWSVo/7XKNWLVKQbvfX2Oa5RCAJ7UOwj6t5yqVZhhBaIYg3AOPw2qtgUNKva71kGBQgQs6IAw3\nyZkthATgP+RwOMjNxWYjEjHADwbsDwb1pk3JMTHdPt/3u5eQlRU3ZMiIcHhESwtPPIHDwauvZhw+\nXGEYPQBsMc1p+/YlFxRc73B0dXevKSiIVSq6ScANSp1VX58xePBwl2uXUqd8+ikffHBo69ZssMGT\n2dmJOTklR4/eodR8p3NuTc01w4bFQi9YYUV6+gaX67zo94bTT399//7gBRdc1t0dAid8kZKyuq/v\nyuhPX3/9l3ffnWWaIWiNPhUMz3g8IzyeGQ5H9jffUF/Pzp0NPl8n9ADDhmG3Y7dTU0NaGuEwkYgX\nAhAP502fTihEMNhdUcEdd3D55cyfH19d7QiFvHA/vKfUY1rvtNtPzc6eMmoUTU3HRo3aACNggdab\nbDbi4salpV0dfdjt6aeXbNiw4YMP7oT3bLbTx44NNjTc2Nf3yfHhsp8rNdrrjS5FVwshuB2egB1a\nH1XqhY0bueOOyTU1cbB90qSB6upbB/76KX/SzJkLb7ml8brrLvL7U+Dz1NSc3Ny2qqpFSt0m94GF\nBED8v6gPhQpXrGDPHqqryz2eFuiBb6HT70/y+6PTYDrAC58fO1Zksw1JSEgvKmLECHp7sVoDSkWi\nyypkZDwTH8+llzJ7NsuWZX72WWZf31qtF2gNLNZ6pcVymdU6aswYmppqr712q9Yd0AortF5ntV4w\neHBxUtKv+/p2BwIXvPPOfRbL+6a5EbYnJqr8/PEDA7uUcsP59fXceOOa7u58SIZHMjNjBg0a63av\nU+qC00/ntddeycp6vbNzERw94wzvoUNL3e7ZWgMfKGXZsiV11y6X318fDFZAGL7cudMJTqUKnc4h\nL72EUgPl5fXhcEt0aKW2NjrxP6AUlZWsXk1FRUco1AcDcOrUqad6PBQUnDpoEM8/j2Hw4osphw8P\nMowdACwxjKL6+mFDh57j9ZpOZ30wOCgtbTdUa/0rpYY1Ng4qKJjg9b6k1G+1JivrzaoqZsw4o7FR\nQQysHz9+oK7u7oEBYPzIkbS11TQ3T4ck6GtpSSkqmlRe/qRSt9hsBWVlzJq13e+fAu9r/a5StyQk\nDCoouKKurtdqbTLNbfBLKYGQAIh/a7dphisqUqqrBwyj2TCie35dD2d/8cV5V1wRgRj4KC7uU5/v\nVq1PDocn9/Y+oFTq888TCHhrapoNozX6UNiIEU0HDxaMHEl2Ng6Htlj+uqFJcTF+P37/pcnJPPoo\nhYX86U9p27dHh1mie/xuNM2zjhxxjho1tq+vsKlp81NP7YdmaNF6gVJ39vXlZGTkxMTo1tYDgwcr\nq3UDvK01sNJiuSwvb2Ru7siBgZYdO3ZNmmSFozALaGuLz8sb7nZHnxm+eeHCP91+e4rfH73l0Ab+\n4wNHDq1/5fO17tljV6onEqnTOrqy6VMtLbHghCFKJS5blhwf39bdXREI1EEYjMZGa3w86elYraSn\n096OafqViu4jRlLSa3Z7r9eLaaoHH1QHDw7dtGlvT090sOvPWn+o1E1paYW5udMbGg4pNenrr3n2\n2W+bmsbAAq2fUqqzpSWrsHBK9IP8c8+xcmVlMOiFV7ReZrFcnZY2LCdnXm9vTyCwdfjwJKt1J7yv\nNTA7OhaXm5tx001UVycdOOD1+x9Q6jlpgJAAiH/lvief/O28eRmGEZ3a74MBOCMtDbt9SULCCwMD\nz40eTTA4trZ2OnwVfRrLYhm6caOCzlCoRusa8MFXu3alWSwFX37JoUOUlVV6PK3QDUSvkjExqrmZ\nzExMMzqXMQhxwMiReL3z09K45BLuuYelSxPfey+5u9uERRZLh8VyhVLExPDii3R0qD//Oa2qapth\ntEKVUiaMs1gYP56ZM/n007zVq3MGBr46vgzRsbi4MSedVFRTc1coxC23cPvtd6WnX+5yGWCHtaNH\nH6uoeNM0ow+FceGFv1+3Lg7c0AwazoHvx0/uV6qnszNRKZ/WzVAFAXiqvT0D0mBGamrmM8/g8/XU\n1X2/jxgTJzrt9kHAKadw++0sXMiuXcrjiYdapdrBgF2Njac4nVMmTaKjo/OSS3ab5j44BsDvtX5P\nqZvj4gbFx9+WmclTT9W43e3H/7SrTdNISrLOno3NlrZ8eVFj41bDuBMalEqwWOIsluFKcd113HMP\nixZZq6ocfn86nK/UemmAkACI/2PSJD755KU33nijpeVNiIcd2dlfdnRYZ81i/fpyr9cNVY2NwydN\nGtLUNDUcBpg8+crq6meGDYs+FFYPGirgXq1/YRhGSUlqebk7EmmOREohCB8cORIP8UqNiI0d+vLL\nWCy+Y8eiwywWwG5n0KCqI0eGp6URCuH1atP0QRgyZ8786y/Z20teHj09KBWACKTB8CuuQOuejRuZ\nPJnhw0lICFmtYbBCjVI10ApjSkoKCgsL2tsrPvhg5O7dK1yuXHhP66+tVhyO0WlpF3V3AxUWy8iD\nB5/q7x+ya1cG7C0qwm4/VFMT3Z6+wWqdX1nJvffe/tVXIegHBdfCT7UGMpT6S2/v4O3b0borEvl/\n2PvT96iq9Psff+2aM5E5gUASSAgEwjyDEwriALSKrXS3tkMrLa22vnFotXFscW5UulVU2llamVQU\nBUSQGUQCIZCxMs+VVKXmSlWdOmd/Hxzjx+v6/f4Cu9aVR6krlTq7qvY6+77XvVajlK162O/Ro+lG\no5Byms3G229z+LAzEHCCG4ouvLBoYGCe39/e2MjKlVx9NW+9lfP55xl+vwJbhOg2GCRcKoTi9Vof\ne4ySEv71r6wjR4ZGo7cI8X5GBjabsayMFStob+fgQdHRYda0tfDezTcjBBDZuJGuLnbv5uxZfzis\n16wy45/2OOIEEMfP6DKb8+rr+fOfv+7sPAUVUnpzcnQdJ9dcw6pV9VL2wrFgsCQcLszKWtbdvVOI\nKzo6uPHGyfAwpMCBzMyPXa6P9VvLkpJHGhoyYzG9B+uDINwk5UghEqV8KBTqOXHCDHqZRbdeeLeq\nKgXShCjZsYMzZ2htrfb7O6APWnbuFEIYIDslxfb007hcfZ2dP4vc3fv3CyHaIpGMbds4doyKiqZQ\nqAf8UDx7drHPh8PBU0+Rnc26dZknT35ZV/cVfCIlsE3TJrS05I8aNd7r/acQDyxfTmVl/alTS+Df\nUh4wmS6aNKl0yJDfer2bhbj+zTfZsaN6924r7IT6YcMSs7LOnju3QogNUh6E8eXlT06frtNhF6gQ\ngbs1LU/TboKUgweHnjrlCgSaQiE7+KCnoiI7MdGYnJyckEB2NrEYkUhAygHQIHfZsv/3Dp08SXEx\nSUkYDGEhovo8xCWXEIlQXc1HH9HbS1eXQ1VdYAHXF18EY7EBVa1RlJxdu7KOH+/v768NBJrAMyi1\niiOOOAH8T6NaiByDQZOyQ8q8Tz6p3L//G9ggJfCDy7UoKamsrIxrr60OBIKwTUogkpBgLS2dYLMV\ntrfvGzEiyWD4Cq6BpyZORNPyXa5rhFgDZT/++Nwzz+z64ovVkAwHpk7tOHfuFSFadHr4xz8efeKJ\nRPCD7ryWBH+SMl+Iv0ipNjent7WFVLVT06phAFaHQgYwwLWhUP7evaqmOWIx+2DE2OMejwHKQDlx\nYojJ5IlGW2Mx3Yiit7Y2Z8gQsrMpLkbTMBrDoEAqdBoMHVLOgn1e782hUIHN9kBiYv+WLac3beoC\nDwBfqOqE9vZMRbk6Jyfm9VasXDk+K2u3ojigQ8o9RuOlI0aMSU1d5PEA4++8k/r6m222y8LhDDg+\nZ07vmTNbBwY+G3Sr9geDmcFgBHqgEaKD4WjZMN1kmvXxx+zcSX29fWCgA0LQtmuXACGEAEXKka+9\nhskUO3euRVF05jv42WcDUqYYjWPffTcWi7X5/fVS6i6nj3m9fvDDKAi6XOn9/WEpu6EKFD2uJ444\n4gTwv4wTQswaPZo5czh7NrG6eu/q1aegG3YIkQaLRo3i5ZcZGOCll9IqK4eq6nIhnhZizA03/FSg\n/+CDNKdzj6Y1wXopHRkZuVOnDqutzVHVsj/9iaamll279kC5lO8KQSAwIi9vbmvrVUJsz87m8OE1\n//nPqPb2LPhx1qxwff2XHg/QLiWbN/9l+fKhmhYbbM/eBJfpuV1CrJdydCRiBBd0QwyK4BkpAZme\n/rTHkxaNDgz65gfgWa+30Ov93ZAhw155BU0L19a2xWL67jl83rzhodBstxuPByl55hmamjI2bRre\n01Mn5R9gtxBXQrqi8NBDpKeb3nln6LlzO5zOw4NcuFvT5ra3JxcUnO/12oUoaW5m0aLvw+FZMA1w\nuXLy8qY0Nl4txBdSfvDkk2RmLvvrXyVEwABPC/GilK8PutEFq6qSB8e7zuq0FwzqtCfgEug7csQi\nhFNRWjRNTxt+VNOicHksZnc6DdAPjRCA6b+U+rz8MgbDn1etUsEFBrg9/tGPI04AcYy02Vi5kmuu\nYe3a5JYWm9frh88WLiQhAZuN5mYSE+nv1+XwEUgFg9lMVhaKQiikF+h/0n1Ctdeba7MNS0gYFwjw\n2GNcccWBcFgPWf+TlCet1hkTJ45zOt8bGDjb1zfxhRf2d3RcBikQam9PzM8f5/XuFuKym27i1luf\nT0t7y+P5CJLh2LRprWfPPi/Ew1LOXLp05sqVXdddtzAUSocjZWW4XN/39OiXI9544/EjR6a9/roZ\nkmBbUtLmYPAOKYFNQow+cMAohDMabZKyDgagtaIiLznZnJrK6NGMHs3ixXz7LQkJKhjhikWLAISg\nq4sFCwiFSE5WDQZNVTPBbTL1q+rV0OtwJOflDbvsMk6fbikqOijlj6AXwc7YbJOnTi3u7FwYDjNs\nGAcPsmDBQjgAq4zGC6dMCdnt1/h8ev1tld1+X0lJhqqGoQMU+JfN9l04vPznfXzbtqd++1v9zNQC\nGvxNiDekvA1mHjx42YUXJkEALLBj1KizLS0/DWCPH8/WrSxYMAFegB/T0vKKixsrKh4VYk38EBBH\nnAD+l6EYjbS18f33NDT0KYoXgkBnJ+EwkUhvKJTzzDOEQn0tLbqgRUCLoozWC/QtLTWDBfpNWVlu\nszlJ0/jhh/S0tL8qyqlRoyIGg+7MrP+vr6PRGW1tqb/5DR0dGeXlJ959dy9Uw0G9kOL3TywsnOh0\n2j/8QvaGHQAAIABJREFUsOTEiR0eTzWclfJDIRgYKMzNndfRsVuIy+x2fve7g6HQLPBBXUvL2DFj\nxrvdbwvx59JSPvooeNddvwUDPDx2LJo23m7X774/g4nRqBV8g53qFvhHMDgyGBzucBTAwnCYtWup\nr/c4nT1S9gE1NQBSBiORpNdfJxymsbEzFusFI6RfdFF6LFY8MIDTyfPPYzLx5JOJ/f1DFCU4uLzf\nRyKT+/vTNe0uq7XV4Shcs2ZfR0clbJLyb0JM6+hILihYWF3dbjDUSpm3efNtZvNCRRkKCfBtbm5y\nWtrcxsbXhSiApZdeyhNP/F9a2lyPZwhY4cD48fT2rvV4Qpp29MIL30lIeHVg4J9Sfj84cfZIf79d\niJKqKh588JuennPQqfuMqmpxVtb5DsenQvwuzgFxxAngfxbnQqH0zZsTd+7s6+2tHRhohii8VlMT\nghCUQuGxY0jZp6qN0A4B+FFKtakpvbU1qKpdg4UIMjPT8/NnOZ08+STBoHH9+qy6usOa1gVBs9li\nMJiNxt8bDFx7LY88wsaNNDZaBwYypfzWbPaaTHNtNh54gNJS3nwz5+jRnbW1ewYd/2+SsjoxcbzF\ncuHIkfT11ZSURI3Gw4OP/luIsf39uQkJf05NDTU2npk50w3NsEHKmsTEcdOnj2xtnRGNtplMm2pr\nuf76ssrKIXBs7tyWkyffV5QnB7e/dUIk1daOaG8fiEbbw+E6cMCz7e0SJEwVouTLLw3QPTDQKGUt\nRKDm6NFMqzUrMdGQnExbG4EAbrdXyiAkAbm5BAI3G40oiuWBB7DbC/fsqfjwwxOgj8K9KOXXBsPi\ngoKMa6/NOHHC2N6+dfXqBpgLesNgs8Fwvc1WMGLEXR4PkUjjnj3FXu8ej2cOvCvlLULUtLSMmzw5\nqaws6cgRg91+bGBAdyv6WFXzW1tH5+YWTptGdXXXxIlHNO0gvC0lcL2UHWlpI2KxyzMzQz7fD0Js\nh2fjNBBHnAD+B3FASk9PT0pvb1DTOqAOwnC3lAz6XD42cqSevusAFXSjgjuFGKppymCBPgCf1deP\ntVrLZsxg4kTsdszmqBAqZELS8uVIiaaFtmzB5eL77zl3LhIKefRUlssvtwFnzjB5MunpWK1RIWK6\nvmX4cAYGiETGW608/jjZ2bz+enZ5+VFFcUKlEBqcp1/G88/jdCa++25uc3OdlLotz/GBgXEDA/lZ\nWVO7ugoeeIBvvjlTXX0xzAWi0ZGZmTMGC0dkZt5rtz9RUpLn9UroA322699SAq1G43OaprsyeAZd\nGc7C6nB4eDic6/Uus9nGr12LqrZ1dDTGYvrxghEjSExMNxoZN4477+TTTzl2THi9iVIyapTuY7p4\n2DAef5yhQ3n88cSensRIpBHeNRodBkMEpki5p739Ut2w6OuvC/fvP3TixDF4wWAIms3v22wkJnLf\nfYwfj8dja221xmIFQEbGO6mpGI088QRjx7JmTcqePanhcAy6DYaolBEYk5PD3/+OoiR+8MGwxsbx\nmrZEiB1xDogjTgD/a3h240aqqu589tkIuEHAbwYfyn73Xd5/f5nReL2qpsOJyZN/rKy8UYjVQrxx\n+DA33zyxsTEZjhUVHWpqWiTlxnC4pKHB8vzzuN2+trZOTesBE9Ru26ZomiKlXVWH792bfeaMv7+/\nxu9vhj44s3u31WBIMpny33wTs5mzZ1sVpVufJR4xAqsVi4WODsrK0DTM5siggGfS0qVIiZTEYpx3\nHqdOYbMpQkgpc+F7IW6V0pmVlWU0Ls7MdL30UrmmNUEf3KD/ftSo4t7eU0KUw4rGRp588iqj8R5V\ntYIAI9w8uA6FGza86fXWPPTQHYqiuzK8bjRuUNUXB3fMN4RoraszQb+mNUM7eOGz06ezDAaTlPMM\nBt57jx9+8Pl8TindwLBhepIBjY3U1tLQQE9Pv6b5wAJpV14JoGloWvahQ1x5JZddRmWlbsKaCNk3\n3QSgqqFvvkk8dYrmZlpaehXFoxtKz5qFEJw5g9dLXR1ut1fTAmCAYUuX6k+L38/ll9PQQFJSTAgB\nOfFvQhxxAvifwg4hlsybx6uvBu++uxDWQ0thIQkJJ+vqfi/EJxdfzPPPB++5Z4+qToC/m82kpRXa\nbNMHBsbNmoXdXtfWdjHckZBAbm5xZ+fTkcgJsDocI3fuVDWtJxptkLIVQvBwODygmyVApL8/0+OJ\nSNkjpS7ufCAaTYLlULp/v8VgcEYizYNlpW0nTiQJkWwwjElOznn1VTRNqatrj8V0eggdO6aPBViT\nknjhBXp6fF1d3ZrWCya4uKyMvLyssWO5+26OHcv89NOhfX3nYJOUgNvlysrIGDdtGnZ7kte7vrh4\nptH4kaomwSR4aeRIhgz5obLyD0L8d8kSHn10YPHinYqSC78XYtmMGbK5ea7T+dM6LllyZ3n5X6ZP\nTxxMGNYbyLdIWaiqqyDjhx/ya2rcwWBTMNgATthy7JgRjEIMN5lmvPEGBkNbT49dUVpAg9o9e6wG\ng81otBqNfYqSvnMn1dW/NGHt2Lo1FIsNqKpHVWe9/36C2dzidNYrShNosHfPHgOkGY1TX38ds9nZ\n1taoKG0AtO3dazEaLQZDxpAhrFtHX1+0o0NfMXP8+xBHnAD+R9BsMIzKzFySmtp97NiPs2ZpUA8t\nuo3ljBnTrdYNinLq+++n/d//7ervr4PPpVwnxEyPJycnp6y1lXvu4cMPaxTFD4cGBsr8/rzc3Glt\nbWvALWXJwIAR+qEVNMj6RROYO+9k/vyVy5droG/TvwW9Cfk7IZojkZ/1LQrMhGulHC9Egqo+4vWO\n3rfPKETfLwQ8TzidujjyUper4PPPFVXtikTs0AFPpaTg8ZCRwdSpzJxJYyNmsyKEkJLCQsLhkqIi\nXnmFaJTnnhty+nR2LPayqvYNxuqetlqnjhw53mh8TlW/2rFjaWfnDpfrHGyR8s9CLGxtHZKfX9Lf\nv0KIDTk5nDrF0qUL4C7IgqrzznOUl38aDutJ91x88b/2788OhRRwgC7PfwSMYJTyFkXpaGmxCOHV\ntBZoBR88Eg4nQiIkwByQ+/alWizOUKh50IR1dSCgq/vnQE93t00In5Rt0AYB+JumGeBGTXPU11uF\n8KhqK9RDEB4LBq1gg6t8vqItW1RN6xwYsEvZDOH4tyKOOAH8L+CcEBMuuYRbbmHv3mHbt+d5PLvg\nSgCGqiopKeLee5O/+664snLXsWOfD8oZ75WyKz09b/z4C7u6mm+4ITs9/cxgRG1jSkrxhAnF3d0v\nKMrM2louv3x6S0siHJo0ia6u3T/fKWdlcfIkixbNhsegecQIc3r66XPn/ijER1J+unUrn38+deNG\n3W1t36hRJ5qblwlRLWWHyTSiru650aN1AU8TSFgAtwzyyn1CjAwGde/7FojBM35/kd8/tavrEpMJ\nv5+amk63u0fKXiA7G5uNYBBVpa+PcFifuU2B/yYn+81mVyw2ymIhJSXlmmtSDh1Senv/c/p0Obwr\nJfC2lN8ajYuKiyfYbOui0dO9vVMffvhgRcV34JBynRB4PLlDh05qablMiN3Z2VRU3LNs2bIffjBA\nCIzwH6v1y0hkhf7iZ8266ccfh0gZgACosN5i+SYa/dPPlPnww6+88EJqKDQAHYMmrPohplaI0tOn\nl02dmiFlCPSx4bGwUf/bG274y3//O2Qw3xi4Fa4YfNr7hSjy+42D+QoqlMY3hjj+N/C/Ho2XaLEw\nbx7nncfQoZjNKpjg2tmzmTmzKDOTFSu49VZKSsxmswmyoddotAtxXIg8ISgttS1dOiojo9XtTh18\nwqOBAHZ74bhxMzMz28aN+6SlZTaMgbaWFkaMGG82rxXimBBs3syzzx5saDgBHVIe6+4mJaUoKeli\noLiYvDzvjh1Xw1EpnzObycgoTU6+Dj4VYsT777Nt21KT6UP4FtrhozFjZghxlxBAlRAvnzhxz8yZ\nn8J+eH/KlEcMBg3ul/KslEerqho+++zMmTOnBwZqwAebysu/Onq0o7GRZ5/ljTd6mptbVLVDv5JJ\nk1LOP3/kBRekTZ7M009zyy2MGGExGJIhAA6DoVmIs0KUCsGwYTz4YOLkySPN5m8+/ni7lGdBp8mG\n1laGDZtlMr0jxO6+Ph5++PCJEznwGVwJXxUW5ubnzxLiT0LsF4I1az5ctGghHIElsGXEiKEFBRca\nDGuEAJg4kdtvX1VY+Clsg9PwSnLyZYPLXnrvvVRVvWS1psC1Qnw+c+YX2dlzAWg1mXjssfWTJpXB\nfng5NXXz5MkTzOaXhQDqDIa1FRV3zZy5GfZAJ3wwYsTFsFj/p3HEET8B/IrRp6pFe/fS3U1FRZvf\n3wN9QH8/RqNLUTL37+fsWWpruxWlH2KQs3BhTixWEomQnc1jj7F/P2fPmjyeZE37nRCf2mzLkpJ4\n+GGmTOHVVzP37s0KhyW8I+V7QtwaCuUPG7bK4XBEo98uWDApKWmPlLUAHFDVC3t6UkeMWFJXd66p\nacIrrxzzenX1zleKMrGrawj8Pisr7PWe+OMfy9LTd8VixbBNyj1GI1ZrWUbGVS4XULZwIY2NjZWV\n0+FKgwGrdXRq6sVuN7BEiPdisaGBQAwc0A0RuAkKpXzM7y8sLxdSOlW1CdphAew7fjzTZMq2WvNG\njeLwYdracLncUvogEXKvuAJNQ1GoruaWWxg1ispKY3W1UVEisN1gaBTCBSPNZjIzk5YvT9q/P9bV\n9eFHH52BatCkBL43mS6eMKEsLe23bvf8sWMxGBxHjhwHu5TADoNhSXHx6GHDHvX7Y1ZrXTRadtdd\nO1tbR0IBPFpcjMk0rq7uOiG2ZGVx4gSXXro/EumFXVJe2tY2ZMSIEpfrdiH+c//97NpVWV19As5J\n+YEQN4dC+cOGndfWdpUQ26+/noqKujNnyuDfUp6y2cjKKvN4bgnEUyPjiBPArx3lqmosL886d84b\nibRFo7UwAP+y201QLMS0Tz9NsljaPZ4GRdEzbBsPH041m1NtNrMQfPklFRV4PP1SeuHTyy/HYEg6\nfZrsbFQVRdHDswxAYuJVRmOsq8u0fLlBymG7doW6u78OBtvheymBx6QMJybaLrwwJycn5/TpM1u2\nVA4K1ddISW4uTzxBLGZ7772hDQ3b3e6qQeuFzZpW0to6ctSoCX6/bqQ8b2CgPBLxwV5Nu6itLSE/\nv9TjuVmID1atWlNaWnP33bcqSiJ8m5m5zeXS3d9YvvyhzZut4IE+UOErqNC0/Gi0MBr9a339+LVr\nY5FIvdPZoGlNoELz/v2JJlOS2RzTtLSvvyYpibq6bkVx6fWtBQuyVLU4EsHn4/HH8ftpbrY4HImx\nmBPWwIdC3CTlVlUd09o6XFGuzM+no6Pu0kv3g2vwrXlDysnNzfnXX8/06abPPss/eXL3t99uGpx4\nOG2zTZ0xo6i19e/hMJs28cwzB5qafhys+XxrNC4qKipOSXnc692/du38oqLjsZhefbtZyh+t1pll\nZeP7+/8bDtdv3jymvv7HaFR3OtoeiRR3daUWFPy2qSloNjfEYnvhvrgkNI44Afwq8Rn0R6OZ0WgU\neqAHBuAeKfViend/fwIEoA26IACPhUKZMM3rPc/vL2lr84VCdre7Qco2OLRnj0WIISbTuPXrsdmi\nNTXN0ehP4VnTp2eYTKgqDzxAfT2nThkdDpuqakBeHpqGqtrmz+fllzl8mK6uhEAgQ0rKyrBasdko\nKWHhQpqbSUpShdArdy6jsV/T/gh7fL4b6+rypk8nECiw248fOXJ6cJfcZzReUlhYbDS+qmknX3ll\nRnHxYUUZBRvz8w0ZGcX9/TcK8ZgQY8vLX6iv/6ii4lUonzUrVFv7pc/3c7P6X0LUt7QIcEnZAP3g\ngEdDoSGQDAuEmLx5s81o7PT5GmKxeohB/eHDaWZzms1mSUvj0CGcThwOl6Z5IQEunDnzwkCA/PzX\n09KCisKDDzJ6NG+9lfvDD/nR6GFgyBCs1m/y84lGue46xozh+HFhMoloNBWqhdAj6afW1OSOG5fb\n2dm5cOFRKSuhZvBtPaBpizo6Es4/v6C+PqW5eVdT05nBoQ3gy2h0Zk9Pyh/+QFvbmCNHyisqWgab\n809J+ZnBsKysTFx1VdLevUUVFb3R6J+EeDfOAXHECeDXh++kHCLEBDCADb4rLDzY2nqFEDulfPn/\n/o/Cwt+vWhUGFTampHzh9/9xcCN4XYiz7e2alL1QDwG4X1WNcFss5iovtxoMbkVplfIchODQsWPZ\nZnNpcTGffUZrK729Tk3zgA0YMwaDAYMBVaWykupqgsGfLCj0DIBQCJeLV1/F5Yq2t3dpmgNMkDl/\nfmYsVhIKXejzUVbGk0+yc6fptddSOjuHS/mjEC4oABQlacWKpOPHx5w7921j4xH4RMrjFsucoqKR\nCQmzQ6GxV13FmTN1VVUn4FIId3QkFhSUVVXdJsQ7Ujpttnuamm4uKtLPByq8bDL9NxZ7ZHAd7hWi\n0+22DZqY6tLMRwcGsgcGMn2+ZR7P5HXr1FjM/ovTAx0dJCWRlUVBQVJXF9Onk5KCzaaPvCUDS5cS\niRAOOw4dyv3sM4YM4dy5zmi0DzQYP3fueL/f09jIAw8wbx7r1mXu2pU5MOCDPRaLarMZhFiVkMA9\n97B4Mf/8Z2pPT5LfnwpkZ+tLfYPBwNKlPPYYmzZx7pw5EBgiJWPGIARCLElL409/Ys4cOjos1dXG\naDQeFRBHnAB+tfAN7mU1iYkMHTq6u/vSaLTXZss5c4YlSy6BNngyP9+YnDyhtvYGITZKyeTJd506\ndeO0aboHpxkehpdgq5ShIUOe9vuTIQitAFwI96hqsaqutttLX3stoihNHo9dSjvE4KuDBw1ghCmp\nqUM7O/F6zzmdzVK2wKbDhyMQgVEGw6ht2zRN6wqH7VI2wS0mU93Ro5k2W1ZiIklJJCTgcOBwoCgB\nCMPM+fOJRIJVVfzlL8yfz5o1CQ0NFkXJBeCooszp78/KzV3Y3Myjj7JyZbmieOHfUn5nNC4cPrwk\nNfVyjwfIevVVPvjgr0bje6q6FP44fjw+37yOjgVC7JWSiy5aV1GhXXbZ9Q5HCAzwQWLiZ6GQruo5\nK8S30Whje7sR+qXU586SYE13dyakQ5oQk5KT89avx2SiqqpNUXrAAD9s3jygaSEpYzBx+/ZEk6k7\nEGiKxfSkYk9dXVpycnJy8k8EGY3qpTYJlquvBpBS7N6Nz0dlJd3d/arq15Wds2bpk1++776js5Pt\n2zlxYiAQ6JfSp9ODlGiau6sr9+BB7Haqq7ui0X6IwEIhvosfAuKIE8CvGAcGBsb5/XnDhi1tbW2K\nRHI2bTrZ1FQBr+spKNOnl6SkLPb56g2GMWfO8OCDv4Pt8KTFMmPaNFdl5aJQCEh88MHn/P6j//zn\nPVKeHDUKo/FkQ8No2CLli0LUdXcD/WAHP0yGR6TU/Y3v83hyfb6YlL1S6kL1D6AWdsF6TSsOBH6p\nU7w3FiuMxfLC4RyPZzxcGQhYGxtxOGr6+1ul7IBIdbXVYglKmVRZiddLfb0e1z4AYav1NxBpaLCO\nHz/OaAzOnXtSUY7Dh4N+znPa25Pz8+f7fE1CFFVWxhYsOKCqXfBHKWuSksaNHz+2r29ZJLJRiBva\n27n++u0ORypMh0eKizEYJtntes7wxMcfnzhhwg3XX584eHr4rKDgdFvbS/BfKXOESJfyab9/7L59\nFiH6BkfewvBILKZAFKZCh9+fOFiFc4IPnunvz+vvX2CxTHr7bZKTlbq6xkhED6qs/OILTUoNAqp6\n4UcfkZLi7eysD4dbQYHvdu1SpdTAJeXQQ4cKzp1z+Xx2n68JemHT0aO609EQIWZs3ZpstXZ6PA3R\nqN77ie/+ccQJ4FeOlVJ2mUx5EyaUpKWV2O0VTzyxB3R/nG9VdW5nZ3J+/nK73aEouyZNKrZYdsMG\nKZ8TYkZfX+bw4ZPtdofNlnviBEuWlEs5Ao62t8+bMmVsSsq1fj/wtxtvvPbjj23gBjNsLyysbGur\nkvJtKWuEGHf69N1TpxrACTEIwTf6pvPEE6+MGtW4cuVtkYgAM6yBVwbTu4DVQsienuy+voimdWua\n3sf+R29vMkwXYvann6babG0uV300qldgbFOmjI7FGDeOVavYujXp3XeH9PYWwLdCuOAlKVuMxuTC\nwuwrr8w+ebJl8uRDUtb9HE8fCo1zu4dmZ98Vi3n6+vbl5ycbDHsGM+hPWq0zpk0b3dn5j1DoGyGu\nrK5m0aKL4CCchI9NJlJTJ6Sn3+J2A71SMncuGzc+X1ycMDjyFoXfwm/0S5syhU8/ZeHCxZ2dYbDC\n3+Hf8JKUwHoh3GfOJBgMnlisTcpKPcU+Go2BCpeAu7U12WAIaFq7lDqv/F3TNNBAwoDPl+X3R6V0\nQA1E4FHQCWCplA63W7eSbodOvRwXRxxxAvh146gQ8+bMYe1azp1j7dqUhoahmibhsBCzwOTzcfnl\nxpkz83bvDvX07I9G+wF4RHf2nzZtdkdHQFFOTZ6sGgy18IWUjwgxpbMzJT9/Ym3t3UK8dujQtrNn\nPzhzZhesNBpJTp6YkfEHlwsYd911VFXda7H8Oxpdn5OTOmLEuYqKFUJsGD2ab75hwYI9kUge3Gex\nzJg9u/fkyTkDA/prVpKTn2lpYdWqRz7/XJ8oDkMI3pKy2WBYL2Vfb2+SEAEpO6AZQvDj6dNDYOzc\nuYRC+P2oagiisGjuXMJhxo0bOWoUzz6LwcATTyS6XCmKEoGA2axo2vVCkJ/Pffdx4EDaRx9l9/Z+\np2ktPzdUotEZNTWZEydm9vQM7ejYNX58FE4MTs/dLcSI1tbCwsJ5fn/Uau2IRn+E5TfdNAmeAAvY\nYO+ECW21tceFcMMVTU3cccfXnZ158EBi4tg5c1oOHSpWFKDVaPxLbe3fSkuHqGpwMEDtKYPhv5r2\nhJR1QowtL79l+vRMVY2AAwS8YjZ/pSgrdWqZPJkNG26ePRtwgxHuh17YIWWFEFOOHmXdut9t2hSB\nGGywWj+JROLfjjjiBPArhxFITSUUwukkGg1IGYE0OP+ii4hGsVr529+oquLUKWNvr01VDdBjMPil\nzDYYyM5m1arknTtHnT17LBbTtYzPSbnLaLw8N3ecxfJvKZsvuACr9RR8IuVtQuS1tJQUFc0PhUhK\n6hoYKN+yxQse+MHpXFRcPNJgeA6ONzTMeeCB3e3tp+C/Ur4ixAy3Oyc3d0JLyyIhNhgMheXlrF17\n6ssvvfAd1F9+edPevW8oSpUQZV9++WJjY/MjjzwdDkcgCBImwUOK8pAQY7/5hrNnaWur9vna9fnY\n9vafREeqit1OIIDL5dY0PyRC8uLFPy1TXh7FxZSXYzRGhJBSflNaysiRhMO/N5m47Tb+8Ac2bEj/\n9NM0r3cnrIIfhQjAAtjp8610u5PvvpuWlqLvv/d5vc8fOdICP0oJfCwEAwMFQ4cWmM2xrq4fi4qs\nJpOex7lJiLGxWEFa2sS+PqDwnXf45ptbzeZLFSUHbHB0zBgCgcVdXR0GgxPGVlU9YbOtD4f3gA3O\nFBZiMFzY0nKfELdBWXk5q1f/FrbDMzbbxEmTHJWVl4fDwJQbbqC3t/3LLwshH+4uKyMQmNLaepkQ\nu+NVoDjiBPArRhuUlpenPvEE/f3NPT1tUrbDv7OyZH29MJtJTWXbNpqb6etzapobEmDookVDVZVz\n57j9doqLqa011dYaY7Fs8JpMAU0rkJJo1PDww1RUjNq796Tfr0tK3pHyZSHuC4VYvRq7PW/HDpfL\ntQc+lLJWCBQl+dZbk48dM9bW7vzyy52DMwGrpGweMmTUxInT29vfVNXTmla4d2/D229vVdVWeEkI\nIFlVb4dTUObz9T7++NZwOADXwO9nzKC9/UuH42kp1wihtrZmdHSEVLVrMGT4uY6OJEiC2VbrhJdf\nRlVburubVLUFNKjatcssRGskcum4cTid2O1tbneXlD2A0UhWFlarNRAgORmPB58vNBiOVnb55cRi\nKMpPP1Om8MADbNlCebnR50uW8s0hQ0hKUlX1WrOZhATWrqW52fTaaxnNzQdjMd247TAs7+gw5OWd\n19d3WIjzjx4NLVmyU1HmwhYplwrxY0vLzPT0GYsX09KSXl+/76abdB+kOimB74zGhWPHjs/OfjkY\n9IXDx6dPz7Va98J/pPyXEBPd7ty8vGlNTYeEuKC5mSVL9g8MdMMLUtqTk0smTSru6lqjKB8IcXOc\nA+KIE8CvtgQEOJ3DPB5VSoeq2qEfnnI6dTOyy6zWsa+9Fo5EGr1eu5QNcLfF0nzoUIrZbDIY0nbv\nJiVFH4bqBwmpCxemSjlcUZg5kxUreOcdjh8Xfn8iMGMGQtw3cyYTJ3LzzXz2Gfv3099vlZKxY4vT\n0rj3XmbO5B//SGhutsZiZmgUoh+6YJ7ZTHJy2pIlaceOaX19/3ngAb2l/LWULouFSCRnwYKckyel\n2/36jTcCp0E3YvPk5KQVFBT39f0oxKO7d//5ssuGaVpscPThbngGvpbSLMTLkUhrQ4MR3JrWNBgm\n/FAkYoO5YKmry25uDsViHYpSCwF4p6oqERKFyBBi6KZN7N1Lc3NdKNQOfvCdOGEzmSwmE2YzZjPN\nzXzyCceOhfx+l5QeYPZsTCajwZCga2GHD6ejAyHCEIMs6DAYbgS8XkaPLhg/PtNu3z9vngPOwp/g\noBAvQYKU3HYbN9/M+vVJXV1JbncvvCREoxAhSAJ3U1P6H/7A0KFDPv+80G4/Eok0AnCPlKdttqmZ\nmfPGjaO9vXrUqL1QM9gSPxoMltTXF4wbV9DZmdvf/18h/hDngDjiBPCrxCtSXidESSxmABd4IQJN\noJ/9/ylETVeXACc0QAAeikYzo9F0WCrElE8/tZlMHV5vQyym6zur9+9PMZt7BwamWyxs2MDhw65A\nwAluQK8pS0l1NW+8QUWFz+3uk9IFpKQEe3vTKivp7aWpSfe1j0LxggXFkQgDA0jJc8/R3U1np9Xe\n/dbqAAAgAElEQVTlSlHVA7AlPZ2MjMzp03n5Zex2enoSfL40Vd0BN8JGIW6Q0ul0pqWllU2eTEND\n9WWXTQQvbIUUOD59urumZnkoBChSsnXriuuuSwQfBCAGd8FCfePLyPib2z10YEAFB/QN6i/vgTQp\nb5MyZLcPaWoKqGrHYIz7U/39NrCBFXLg/O7ugpoadyDQ4Pc3QC98v3evRQirEBaDoSw72/jUUzgc\njp6eDk3Tna5HnHfeiGCQSy5hxQo2bEhyOJJcrkZ4b/58UlJISsJqbdu8mVCIykra2/2xmK77HH7l\nlfqQHYpCdzcrViAlx48bmppMqpqrV/wUZWp2Ni++CLB2bfqZM8NiscPQazQKuC45mUceYfJkXnkl\nc9++7HD4L0Ksj3NAHHEC+PXBnZi45cwZFi8u6ehIgx9nz+46ffrTaBTwJiY+0NDw29GjreAGCzwC\na+FjKV0WyxpF6ezv/3kYqgf88HAkkhmJXAQphw8Pq6hwBQJNoZAdfPD2uXOAhDlWa35Dgy8cbgkG\n66EPNpaXDzMYZn/0UZLV2uZ01imKLt3pPXky1Wq12mykpXHyJO3t9Pf/7MzDnDkAbjdVVdTW4vd7\npQxAMiyePp1gkPz80aNHs24dPh8vvJBaWZmjqkegSspnhVAcjvT8/Kn19XcI8VZZGf/5z9q0tHUe\nz7fwdXJyUXGxo7Z2gxArpOSTT1784otDb711r5Qp8H1+vsFiqWtuXqFpz0rJ+PF31dRkaVoEOkGF\n1UK8KeXan3fM229//Z13skOh2KD8RoEHNM0Eemz9PV1dw53OmKZ1x2J2cMAdJlNbRYUai4264AJq\na+nsDCnKT7p+j4fOTgYGQuFwbTg8fOtW4759we7u6mCwBfzQfuCAzWhMMJkSzGaDwSA2byYSoaWl\nJxZzgQWYNQuTCYeDrCx6e9G0AYhCKuRcey3A4cNkZaGqxGL/z9gjjjjiBPDrQ/r997Nlyw9dXYtg\nIuDz5Q0bNkMfDH7zTd5990GD4QNNW2WxzJgxw3n69PyBgQ1CrDhw4JXvvqt6/vl/KEoIgCeFWCel\nblPMRRf9++DBzGAwCt3QCFG4HzQ4CN9GIjmRiAq9oJ8bHoKbNK23pydBiICUbdACQXjK682AVFjS\n11f60ktEIrW9vU2a1gwq7N29W0BRYuLIZ58lGKzr6WnWNL12T28viYlkZ2My/UQS0ag+LDYEKoXI\ngf1dXZdOmjQuPf3ffn9TVVXRmjUHPZ42qJHyDSHudLtz8/NX9PUNWCzVilKQkrJXygz4Tm9xl5SM\nzcm5qqenUYhWeH3Jkq937HgYEuGHsjIcjmU/O2BfcAHvvXfXwYO/s9sF+MEIq+FF2Kqv1dNPM2HC\nc8uW6VrYHp0eYrGSQOA6IQo//9xw6FCkq6s6GGwFD2yoqAjoVSZIhEBnZ2p3d1DTOqU8B2F4PBD4\nOUvgEqOx7KOPhJTtfr9d0/Qogu/37bMKUZKSkv388wwMuJua2lS1EwzQ+s03SBnStHHr12O1Rmtr\n/5+xRxxxxAngV4Zuq3XYyZP85jflmtYDr+vZ65Mmzejs/FDTjq5cOSs7+5CmdcL30egMlysrPf1O\nq7XL6/38ootmJiZuU5QIrDaZ5px/vvPEiRmhEEBaGlVVf73uumuOHQMiYICVg/Vlrrlm+m23Xbl0\nqQmiYISr4QMpueOOq99+O0vK8KB05xq4+RcWFPbGxp+defSa0sOaBtwRCIyorZVSOqXUGxi58FJ7\neyoMgfmpqUPXrCEY7G5tbR30fJ40efIklwu3m95e0w030NZWtH9/xddfV8EGPe5YykBiYvKf/0xu\nbsInn4yorj7k91cMDkb9R9NyW1qmJiXNnj+fjo7slpbvduzYB2elvFUIe0tLyejR0z2esMXSoSij\nOzr47W932O0p8AnsM5tnTZ3qrqpaHAwCXHUV//gHV16ZBesgFY6UlBy029vhYqMx79tvv1i4MLWr\nK6RpnVJWQQiegg4pgTaTqaC6mtWr79u6VU9mNsClsGJw0VqNxjdVtdnlMoMXmsADLrhf08xwv8cz\n8vBhIWVfLNYopc64q4NBCRfD/6+xRxxxxAngV4VjQsxdtYqvvipva/vZaNMaDmM2J956a+KhQ8Ju\n39nXZ4ftUjYYDEycyO9+x+ef53355TC//61QyA5fSPmKELrFwrjm5johxp44wdNPH/vhh6GwXsre\nzMycUaPqKiruF+J+szmvpobrrvsj7Ib3S0uR8kBdXZfVmnf27BcHD75bW/sEtBcUkJh4So+llLLF\naLyrru62sWN1Z54oROFLfZu74gqefPLOOXPMoLsXPGc0fqiqD0oJDBXiZa+34MQJoC8Wa4ROuNdq\nDXZ2JmVkMHQokybx0ENs28bp07o4h2nTMBoxGpMLC7nuOqTk22+l0ShUNRsoLCQa3ZqV1erxcNtt\n3HQTb701ZOPGFLc7FSqEuAW+CQbvdTqHrFxJS8vogwdPjRixC1phg5Qb4GkhZjkcSYpya2Kiw2is\n0LTLWlq2dnUdg3NS1iYl0dNzYXq6x+c7o6p5x49vk3KoqirQBQLWWSzzolH97St4/32++qpm+3YV\ndoG9uBij8Xh9vT6QDBR+/PFz3d11jzzy92jUD1b4p9H4pqp+IeUJIWbt3//k/Pl6xn0XqL8YsuOO\nOx55+23d2KMFxOBgYBxxxAng14BqIcbn5c0tLubNNysGBr6FPvhOiKEwISeH++6jpASXy9raah0Y\nMAMXX5yckMCMGYwfz969mtGogAmehC+EWCVlZ1racCEuTU3t9ft3zpo1zmb7StMadJpxu68qLi5J\nT1/hdNYoSt6mTacrKw/D+1I2JCePnj59vN3uikbztm4tt9vLoV3Kw2bz+dOmlSQnL/b7gZF//zu7\nd68ymd6Mxf5bWooQB2pqlgmxOSXFVF3N1VdfDPdCOlRNmIDLdVF3t36ZB2FMZeXfJ00yg3tw2PiJ\nSGRCJFLkdJYYDHPT0ti0iWPHBny+fl2cIyXRKJoW6e+3vv8+ikJjY3cs5tQjc/PyMJkwm43Hj2Mw\n0N6O0xmMxQIQhSkLFhCNXhSJMGUKDz/Mpk1UVJj8/hQpXzGbnUZjUNOWAZGI5cEHcTpzt28f6XCs\nr6ysgKvgCyGuLipi1So6OtI2bhzW2fn26tWl8AyMgCQ4OWKE0Wa7srHRaTS2a9rUgwcD99zztaJ0\ngl3Kcqt1+vTpxQkJF+vjcnfcwfLlvjvv/CoaNcDdQvxm5ky1sfF8lwuYtWwZodAdSUkXBYMZcHzW\nrLry8v8T4lUp/UlJKWfPPnfgwHt1da+DFRzQEO8AxxEngF8NxhcV8dxzuN38618ZtbWFmvbIRRcx\nbBjp6eEtW2wnT1JXR0tLXyym+8XjcHRGo0O//JIzZ6ioaAyFeqAfSmfOLPV4yMoaXlTEypWcOpWz\nbdtwp3NbONw8GK67S8rLz52zlpWVpqUVtLYeWL26YvCOMiMaxWTKXrAg++TJmtWrj4EDgN2x2Jyu\nrpT8/Ak1NRVCTKmvZ+HCQ7FYHzR1dBTNmDHCbi+OxUzbt/Pii8dPn/4euqQE7MnJJaWlpS7Xv4S4\nR8ox997LqVO3WiyXR6PpcHLWrPry8rdU9UkphRDva1r2sWMja2v7A4EGn68BHPBuRYUKGowyGEo3\nbzZAVyjUoGm1EIWtx4+bhbCATYgRmzezb1+svb02FGoDHwTPnEkym39wOGanp7N5M0ePhgIBnVcS\nFy5MhCxNIxYjJYXbb+fgQfbvp7fXIuVbF1zwkzdqWhqXX86BAyQkqEIYpKwDh8nkUdV+Kb/t6roi\nN3fo8uU0NaVWVh658MI2ODfYS/g+Gp3ucmXn5d3c2moXoqSpiUWLtns8Z2GLlH8V4pK2tuT8/DFu\n92Ehzm9u5pprvg8G58EyITAYilJT5/X3Ayn/+hdvv/2D3f4jnIzv+3HECeBXhiNCnHfBBeTnEwwi\nRFgIBW4/cOA/paWqx3PC7Z753ns2k6nZ6axXlEZQ4bWaGhNoJ0+mnjnjjUTaYrFqiIK7oSE9NZX8\nfObOZdEi3G6sVlUIk5SfFBaSl0c0uj4lhd/8hvvuY+vWxHfeSe3tVWBbQgJJSRkzZrB27S8VnGbY\nJMTTUu43meZbLFNmzcJubxw79oCUlbBJym1CFJ0+XZyV9Ux//8lLLhmelLRT05oGL21vMFji9eYN\nH35Vc3O1EOObmrj00gPR6By4TgiEKE5Lm+tyAVJKJk5849y5X4pzohCGxyAMKzStyeezgBeawQ9O\n+BtYpDTD9VIGW1qGtLcHVbVzsEr+D6czCUZCzpEjBdXVLr9f55U+OLN3b6LRmGQyJZvNQwoK2LCB\nurqo09krZT/gcOiGnXR389JLtLT4ent7NK0XPpw/H5MpRdPyo9HJoRALFnDXXWzYYG5utobDbfAP\nIaqEcMNIoL+fpUuTHI6Sw4criop2QZPeX/nZ8VSIiaWltLfXjhq1D6rgfSnvE+Ly9nZLfn6J2/29\nEBefPh15+OGDmtYR3yfiiBPArw/dEKqrS1yzBrfb1d7erqpdYIB1tbW9YISu7m6bED4p26ANAnC3\nlFcI4YhGM6LRMHSBGwLwnNs90u0eL8R8k4kXX+TcuV6PxyFlH5CdjcWCxVJ75EhpaiqBAD4fqhoE\nBVi8GCnp7PxJwenzeQYVnMsnT6a4eH5uLs8/T3Iyzz2Xevx4lqL4oUWIa/Py+PvfCYctGzbk2O37\ngsHTsGvwRnWl7lA0enThRRdRVdVUXHxQynLYKOVfhbisrS0hP7+kv/9mId5OSrLW1t75pz/9fs8e\nA3jBBF+MGlXX2tqlabNhqd3O9ddfefp0GGzwTW7uXodjgZRAp9k8vKbm9pKSnFgsAl0g4Tz4q5TA\nLUKEAoGsYFD5Ba88GI2mgd6XviEQGNXZGYxEWgMBu5TtsK6+Xvdrm20y5Xd1hRWlIxyuh244fOhQ\nqtGYZrFk2GztPl/ppEkcOEBtbSAS0eMTChYtIhbTgwQoLeXJJ/nqK6qqzH7/ECnfTk4mKUlTVUXT\nFubm8sILWK2sXZt+6tSwWOwgAC9LechkusBonDpmDO3tZ6ZO7QL7z12WOOKIE8CvCcfA3NdXsHev\nJqVDURqgA4Jwr5QMH86xY8sKC9OlDEEYNLgKgB3p6cZvvgktXnxxf38S7M3K+sLpvEZK4HUhks6c\nGWq3ByKRtkikFjzw6cmTNiFsAJTqDjzt7VU+Xzs44OQXX6iQa7P9/1Fw+nwkJmI2IyV9fQwM+KUM\nQQqM/M1vcLuZNw+7HZtNEUJCNjBuHJGI7pI/Y+jQn7a5p59OOX48TVH0lNt/S/m9yXRxUdFEi2Vd\nLFYRDM7+5z9P7tuXDh9BCrxvMGA2j01KWpOWhtNZVVKiGI1F0AfPJCeTlzfe7X5diCHwx88+Y/Pm\nVWbzW4ryHVSXlhKNHmpqWirEV1K+P2UK69ffMHeuAC8Y4T8229fh8M+KpueFyOvrk9AH9RDVVx6q\nhdgYi43w+QAnNEEM/qqqeao6NBrNDgTmwLCvv049dszrdNYEAs16//bo0WSzOdliMdhs9Pby9dcc\nPx4LBPRpCc4/H6PRYDBYhaC5mexsvF5d+B+BVKCggGDwgqIiXniB/n5eeSW9pqZK01zxTSKOOAH8\nKrFWyluEGBOJGME9OLv0XykbDIbRFRU8/PBfhdgk5WFoHzkSi6Xcbl8uxKann+aTT0663dPg+Zwc\nMXz4mP7+O4R4S8opsEtRcrxefVC2HSLwICRIaYHloLa2ZnR2DvzCgeeBWEyDmwOB4bW1Uso+KRvA\nDSPg1ebmdLggMbHopZfQNGdDQ8ugfNOxf392crLhpZdwuUK/iAnDYiE5+SfTBYcDr5dAQJ8LC+lh\nW6mpoYGBYiA93XDXXWm7dxfV1n65bt2P0AIbQcKbmnapwyEefZScHNavzzl16mgs1gebpHxTiNFe\n77Dk5LuMRr/7/2PvPP+jqteu//1NT09ISO8Qem+CCIooRVTEeizYju1Yju0UC4IiokePKIp67IoV\nlSLSayCETgiQ3sukTOrMZPrM3r/nxTbe53n+g4c76zPvsplPsjf7Wntf17rW6i248cbR0dHbgkEr\nlElZGh4+esKEIS0tV/j9ZUKMKiriuedug60wGR5PSzNGREytqXlaiHek7AkLe66i4poRI8zgBQOs\nMxheE+JFKUc98shrl19ef999f/b5BOzPyNjV3Lzgvx/DX3vt+2XLYru7fVK2SlkKfljR1xcN0ZAL\ns7q7s6uq7H19VXZ7LbTB4b17jWAUwiBEcnh48ptv4vc7amoa+4X/DB5MZiY6HQkJdHcjpVeIAMQN\nFIkBDBDAxYqvpBwsxGCIg8IpUyqKinYKsfDNNzl5smbTpm1S/kfzhDEaL500KS8i4mWXi2uu4YYb\niqW0wvGurvm5uUOio6+w24GZs2fPfPHFWfPnG8AAeydObC0t/SUQ0EKGeeaZB995JzUY/MOBxw35\n2o9+/fXRG274Q8H5ml7/laI8JWWYEB96PM1nz+qF6FaUeinrwAUrnM4lLlf2r78qUrb5fDVSNoAX\nvjp/3gxmMAkx3GLJe+stQqG2xsb6UEjzTGbUqHCTKbOujscfJzmZ6mpjba1RUTphx+zZGAwYDIsN\nBurqmDwZRcFs1pIaY4GYmAfNZkwm3n6burqor75Kslp/cTpLYZOUQIHXO9rpTE1KmtTU1AVUVtYe\nOqR5rgG79PoFo0aNio+/rrMTGLRyJd9997JO97WqXgp3jhqFwzGzpeWEEJfU1zN/fr7Plwr/josj\nLS2ntfVJIdZq5+rRR1m69I7k5Efb20PQCXq4+48UAWDOnE/y8xNdrqCUHVCuEa2i6EEPFnjA4cg5\nckQHXaFQrZR14IYNRUVRQlwWHx/96qvY7Z3/1RIcwAAGCOCiRaeUwDadjsrKERkZI7q6Kv/xj+Ep\nKbv9/pb+Y3aFQpPPn48ePTra4fBMn34qGKyE36R8Toi5VqslI2OEw3GXEN+eO8fjjz8F22E64HSm\npqZOb2hYIsTm7GwOHPh0y5bP6+vXQOmoUXi9+fX1C4XYOXw4n3/+WnT0u07nPigdO5aOjitsNqDe\naEyuqvp7Tk4YOMEGKsyBR6R8XIihHo8WE1YHKtwK10mZJEQUmKR82uttLCnRQ4+i1EMj9MGekycT\n9PpRsbGWvXsxmaittYVCPdr/A5sNRdE+XU5nwnvvEQopVVXWUKhd88oeP15vMhEby/Tp+HyYzUEh\n0FaxdLo2KY3QWlGROmLEnJEj1fr607ffXgY9/efwB1UdUl+fl5d3pdstLZY6v39IauoxVW2FO6Ws\niIgYkZR0xfjx1NWV5+Tsh1L4VsrfdLrr9PqcmJjpPT0AS5awahXXXfd9e7sHDkBRfHxCZmbV+fN/\nF+ItKcnOprDwoRtvvPfkSQHdYIDH4DU4oDHEvffyyCMvz5ihjbVbQNVC1iBGyte7uzMPHVKltIVC\nNdACroE7ZAADBHDR4+qICJ57juxsPvoo8cSJ7W1tR+FtIdp0Oj3cIYR5yRKefZZNm8I/+yymoyNX\n62JLWWA0zsrMnBgZ+YnXWzR+fKTJlA9fSAmcNJmmjR07radnczBY19CQ+7e/7WtoOAml/T7DOVbr\npcEg773H228fczpbYQTUNzTk5OWN6Olp1unqpUz+5ps79frFihIPRTk56HRn6upuEeLrmJjwL7+c\nceONJjDCvtGjW6qqPhbCJiXQa7HEVVU9mZWlMUcPKJADj6pqtqq+2N09cf16k07XaLdXh0Ja6uH7\nlZUhCEIIRgiRt2ePXogOv79Oygrwwb7Cwiid7pLsbFavprGx22ZrU1UbrL/8clQ10+u9xOEgKYnX\nX6eoSPfuu9ENDQEpHXBeCC/cC7vc7jyTiWXLRGHhkPz8Y62tNngByoUYmZPDO+/g9/PmmzHFxUmK\ncgSAAimvbW42+Xy3h4U16HQnpLytpmZTff1++EpKYItOd0NW1rBBg57u6jojxOTGRh5/PP/UKTNs\nhBORkUNGj24qKpobDAJMncqGDSxcOByWwyA4MX16z/nzmzyeDVLy8MPcccfKK64wQA+0Qwh+HJgA\nD2CAAC56mBMTmTABiwWTyS9ECKIg7dZbAYTo3riR2Fg8Hm1yqEVokZCgut3DdTqGDWPBgvCNGzNL\nSwsDgT9Ug9HBIIMG8eqr7N2bfeBA4aZNe+BjKYFjbneez5dlND4nRPn8+fGRkUf63Re+ECKnoyNj\nwQKqq6NravYsX34OJsFmKQuNxpnjxo2IirrN6QyfO5djx9YI8Y2UlwB9fWkZGbPq6/8mxDS4dcMG\nPvnkbr3+ekVJgHMTJ2K17ujsfFNK4HkhrJ2dZnBCI7TDo/BOv0eFLyLCUln5ZkaGuV/6GYJWeEpV\n71ZVb319WlubX1Fa/P4qsEHxsWODzebE8HBjVBTx8UipyZw84Ietf1hyhkJ5R4+yeDFLl9Lby/Hj\nwu2OgKk334zBQFUVJhNdXQSD7n6rIiIjlxkMIj6exx7j5MnsPXs6+/peKSmx9odQAr9KeUNNDTNn\npnZ1JZeUnMjKMur1P0n5sZQfw9dCDPF6MxMTH2lruyDE2JYWbr99R1XVAaiWcpUQdHSEB4N/Npub\ndboiKRcfOJALqyAOvjYY3g2FBm6NAQwQwEWO/whxfVRU6rp16HSyrKwpFNKMiNt27FCkVKVsDIVG\n7txJaSnNzWUOhybgITdXFxaW2NzM0qVER3P0KP1pMMycCcSHh7NoEddfT3W1zmSSHk84+M3mvlBo\nOhAXx4svGvfuzT1+/JjL1QfVQkQKschi4bHHWLKENWti2toiHA5nfyTvllBojNUak5l5WWmpdfPm\n9KlT66XshXuk3KvXXz18+BCT6d9hYR6X6+Rtt42Ijd2rKFMgFtoaGlJycob39CwXYmVS0usNDVx9\n9Z3V1ZrX0K8jR9LR8Uh3d6EQdlh0+DBr1lyp1/9FUbSJwi8REZvc7j9LCfxDiHS3G+iCJgjCPwOB\n7EAgra9vrM220OWyvPQSHR31HR1NUlqh99gxk15v0uuNer1dVdOPH8ft5tixVo9HMzJSCgp8oVBf\nKJS8ejUeT0d9vTaYFcDEidEGAzNncueduFwUFNDXFwaf5uaSnU0ohKJ8mZDANdewbBkbN+paWsJ8\nvoOK8jgcFaJd81BKSGDu3Pi2tvgzZ06lpQV0uq39XLtMStLTLU8/jdWasWuXvafnnZqaMvhIp5uz\nZEnP7t05roEO0AAGCOBixyNS/iTEsAMHjEJ0BgL1qqrFiL/U16eFjA/7vwU82lzxt9On43W68XFx\nET/9hBBUV/+PU0J3N1J2hUKD9++noYFjxxq93k7oBfPs2WYhTMePc9ttXH01DQ36oiKdzxcNeUuX\notfbfvkFh4PiYlpaev6wPk5ICLpcTwuR39m5ODY2eckSzp/vPnMmut+e7AtVvbKlxfzUU0RGhn/3\nXVpV1U67/Wi/hv0nIW7NyBgSHr5SURo7OrJeeim/piYK9sBtUNbQMCo391KLBYMh2N5+avbs1PDw\n3xQlEabDSzk5GI3jqqpuE2KVEG+ePcvSpZeWlJjh4IQJFefP/0dV35USeEEIYbMld3cHVbVdUarA\nDit6e3+fS0MumA8cGHz8eKfLVe/zVYEXlttsPpgCWcePA12KUgtNMA/yjx6N1ukmGY0oCkeP2lyu\nTm2okJCg+RSh1xcfOTIhGOTCBWprVb/fKaUHRs2dSyCA18uYMdxwA8uW8dNP1NWZvd6jqvqfrCxy\nc3//hjlzeOIJfvuNY8d0vb1hUvZBk6ricg2Kjk4dIIABDBDA/wbc+sknrz/0kNYxb4AgjIQXtD5D\nbCwlJQ9mZPw/Ap57pcxVlNd6esZs2GAQosXlqlEUzWf4/cpKIA7EgQNxhYVdHk+9318JQThz6FC0\nwWCA6IMHqa+nqMjq83WBC5zbt7uDwQqPJ+n779m2zdHaWuHzNWgEkJ1tDAtLhXnnz/P3vzNjBqtX\nR7a1RbjdQ4FRo36YMAEhuOUWenrYsUPqdDpVTYSQxeIKhWYIQUQEr75KQUHWnj0nv/nmINwCd4EJ\nfvZ6V0jJe+/R2Gj84IP4+vq9Hk8RbJcSOGEyXTJ58tCIiHlud96NN3L6dFll5WSYJwR6fV5c3Jzu\n37XyqxMTl3Z05ASDWmyOHfwg+831zgsx7ocf1t1+e6zbre3QNYEPPpASuEGI0aGQ5shmAwVOw2+q\n+oyqhhUWJp092+Px1Hu91eCCH0+eNIBBCAP4pMzdvz+6tDTU2VnicGgdLXtRUZTZrDebi6zWSSNH\nUlBASUnQ67VL6QZycn7fN1YU6uv56ivOnvXa7V1S9kCY9t4wcSKDBye1tt4kxMaBMcAABgjgYsak\nSXzxxbMJCdO7urT4qgNpaYdbWjYLMcNgSD53jpUrH9Lrv1CUw1A6e3ZRQcEHUnZrOb1CNNrt5n7m\n6IWe/lVYZs589+jRGI/HBy3a4jE8EwwmB4O3gm779hiLpb2vry4Q0GjjpZ4eF2SAo7k5UgiXlFYp\ntXeRrUVFiXp9ktk82GymtZWTJ2lp6Q6FnNo0YtAggkHZ0iI+/RSnk4aGNlXtBCMYZs+O1ekcBw+y\nYAE33kh7O4cOyb4+C8xdtAidDr1+mk6H10tWFjYbOt0fWYwFQsySck8weInNFpeWdld9fePGjVn1\n9WeDQTvskHJmY+OgzMzhvb1PC3E3TCwo+Oazz/LXr39Eyhg4MWWKvbx8q+b2DONeeomoqKUxMXc7\nHJrwZsf48a3l5R8I8ZiUWx5+mLi4Y//611+lPDVuHDbbXpvtdSnvEMLp8QzyeLRAhUbwwRnYDAYp\n9bAIlI6O+K4uv5TtUpZrXhS9vdEQBemQceDA4AsX3D095Q5HPdhgy6FDqpQKKDA2LCy7ttbh8dS7\nXNXQDp9FRpYKkZ2UFOzqGiPEU1L+jwJ1AAMYIICLDPV6fU5ZGY8/vrurazJ8KmVpeDjJyTC6GkQA\nACAASURBVLN9Ptzucp8veePGiq+//llR6uA7k4mYmESTKVWLdRw16p3ycubOXdza6gYzfBUW9ovX\nC3SYzYlVVU8tXbqwoCAEevjQYPg0FPrdaviJJ/6zbl1kX58XrNAC7j9ciJ94Yum6dYOl9IMNBMTC\nYilnhELDQqEHfL7LvviCsLCOtrbqQKABVPixsDAIqTrdsB9/lKra4vHUqGol+OHkwYNRer1PVbOO\nHMHh4NixVre7E7qBc+dQlJCqhlTVZDLpVq7EZutoa/sji3HWqFGkpLxgsWC3c9NN5gkTsvbvLysq\n6oFvpAR+0+muy8oaNmjQE11dbUBPT8vPP++RMg7mQ6i9PTYjY3xlZZkQ5XBTcTGLFv3icETDN1J+\nJgROZ2pa2qUNDXcK8V1+Po8+WiZlNtTX12s6qLeFeA7GFRRcO2sWoICAHUlJx2y203BQO12fforb\n/dTTT8t+mewDMK+/Xj8pRKCnJ95uD/TTgxteklJjoIrXX3/n+eeTvF4tk6cCQqDPyBjt8xEXx9VX\nc/Kkobb2KkXRdpsHbpYBDBDAxYaclSvZv7/80KHd/bPBuFCIiRO5/35+/DHtxIndy5f/CA7YLeUP\nQkwIBlOjoob4/Q16fXZZGc88s7O1NQmGw7NDhyLlhNran4W45dtv+frrs0eP5sLlcOvMmbKqamJn\nJ8CwYeze/cjOnUtqa4Mg4SOT6etAAAjFxBjOnv1m167Pa2r+BVWzZrnPn//Z4fi0v/qsEqKrqSlc\nCKeqNkMVeOBlCMCNqlrjcBigF+rAC2fgqVAoMRRaDOYjRxLOnOnxeBr8/krwwqtWawi0z+VCpHV3\nh1S1LRjUHoSXR0ZitxMfr8/KIimJF16goIBz5wy9veGqersQD8F2mF9WZpo0KTc5OaO6+tjixdVg\nhWNSAgcMhiszM8fPmkVlZVRHxw8TJhihsJ88HtAUtKNHT7RYvtPp2ubMOSPlefhZyi+EyHG7M1JS\npjc1jZswgba2983md/3+DnjeYiExcZzH82xfX74QV1x9NatX+xcuzIL34WB0dNawYQ3FxauEWCYl\nsHbdOkKhvzz1lIR2MMCi/sU0/vpXLrvsqaSkm2w2PbjBALOgsLp6ZkwMq1czdiwvvxxmtYZ5PDkD\n98kABgjgonrw1+nSjUZHKFSuqrPS0g4Eg51wUIhhQqQlJ7NoEdnZ7Nsn9XoJkfCllEAlYLPpEhNT\nu7qy//1v9uwp37t3O3wiJVBksUzS62ckJUmH48Jdd+XExe1VlFbYBzc3NenS0nK7urYKcX1tLX/9\n657a2sFwKdw7ZQotLRPb2gDD55+zdm1hbe1puAtoa4tITR3mcNwqxE9Scvvty06dunvq1EFSevp3\nrK6Dr6UsEWLMqVP8/e8L8/MDYII3hXhbSk0sz9Spa06fHuT1apZt1v9qvgNMnvxwUVGuz6dtTrVB\nEF5zuYa6XFmtrWl6/cxp09iyhfPn6e3tltIB4TBn8uQ5fX1MmMCyZWzdavzww8i2NruUX5rNisUC\nXBkby8qVZGWxenX0wYOxfv9GWAFVQvjBBz/BLI+H5cupqkrZujWruzsLgPulPGexjB87dqbPR2Vl\n5a23HgIX/CDly0IkWa1JmZnXejw4HC379h3fuxcogTopvxUiy+/PTkyc3toKcOmlfPRRaN68EfAW\nWIcMwWg8XlGxS4gFN9/M8uVcf/13Nls0fJySYh49+sz+/Sul3BsK/SpEWEUFHR00N3eFQg7NmmkA\nAxgggIsDLUZjznXXkZaWsHfv0Lq6n1taHktJeSwvj+HDGTy47f33U77/nshIzp9vDgQ6tH8TFdXq\ndl8BsrJSDB48Lyqq9plnCqAPOvq/dqzJxDPPkJQkPv88+dy5fb29p/oVnHU6Xa4QUzIyvG1tR4cM\niTIYfu2njZ7Bgwfl5OTabEVCTDp2zLl+fb6U9fCRlBfCwsZOm5ZVV/eg38/48WzdysKFi2A3HIHK\nzEwRHn62svIOIb6//nrq6+uOHcuDxTrd3OnT3SUlVzqdQKfZPLiq6pl7712Yn6+V/F0jR5ZUVGj+\nRc6wsOiqqo/vuWf7wYP/hFjYFxf3fW/v/VIC0UK8oyjxxcV5Vmufx1Njt9dI2QhvxcbS1kZkJBYL\n7e3YbASDLil9oL/22t9Px8mT+P00N+N0auIcE2Rdd93v01dFmRoKkZvLXXexcSP798ueHrOURER4\ng8FkIbjkEh55hG++ST12LCsQOA5FQiwBn9PJrbdy/fWsX5+yfXuSy/Vb/1rAXVLWRUXljhx5WWdn\np15fqaqXPfHE9o6OC2CV8qzFMjExcXpOTqi19fQvv0wpL9/Y0HAQvpKyPCxsZHT0IINhSDC4Rsoj\nBsP0zz83mEzNNltVMFg/QAADGCCAiwlpWVk8+yxmM9XVhqYmcyDw57a2zydOpLDQbbMd6+sbs2OH\nRa/v8HjqFKUC/EBeXqpOZyktFU8+ycSJfPJJUkFBqt//C/yUkEB2NlFRxrQ05sxBUYiMDOp0qmYl\nNmgQfn/u1KksX05xcdjHH8dbrfmhUFv/L9PX0zMoLW3UlCmUl5fOmLEX6vuNnU/4fGOLi9PS0tI6\nOqrOnx92//27y8v3928aHzYYZk+aNCwqak1f3+mtW6e0tp7w+x1wWFXntrZGpKePKCu7XYgfNmzg\nq6+KCwpy4QMp9+r1WCzD4+IW9fTsFGLhrl18+GHR4cPb4U+wbPRoVDWnt3eJEJul7A0P1x8+/P6U\nKSVWqyplJ1SCG1612xPt9pFwjctlqqykvb3Ubm+CVji7dav2d5l0utFr16LX99TX1wWDTQC05+dr\nawEmvd5kMOD1sm4dxcV2u71Tym5gxowwgyHs/HnmziUzk99+U/R6FSJg0uLFCOE4cIDRo0lO1lb2\nAppdT2Rkn9/fqyg6IYiOttx3nyU/X62t3VxQsA9ugD1CzBszhlWraGgwrFsXV1f3ZWnp0X7maPD7\nRwqREB6e6XB0mUz7FaW9pcUCfVI2gWYWNIABDBDAxYBfhLg5PZ19+wiFaG7uVBQ7mGHTjh0t0ABv\nf//92jvuCAcXNIIDZsCBc+dyw8KyBw1i4kTS0rBYAjpdCEzAnDl4PLjdjgsXYj78kFCIqqqWUKhD\nO79jxmAykZBAWhplZX/IbCKBIUPwerPGjeO992hu5o03IsvKBitKH3Tq9YqUd0dF8cIL5OSwbt3g\nEye2HzjwI1zX/4fsVJTZjY0RV10V0dg4qKTkyOnTJ/tjT06ZTFNNpmkJCV85HKdvu21YbOxuRdGs\njX5V1fGNjYlG4/U5ObKtrXjBgtTIyO2K0gwfStkcE5MxeXJaVdUTisLgwfrTp/ngg6tNplcCASN0\ngwmmwfPaIpUQsq0tvqPDr6ptqloBXnhGM12AW6CtrMwEvaraIGU1uGF5X5+2FmCGTLikuzu9urrP\n52vweKqgE47k50fqdAlmc/r69YSHc/58UyCg5aP5jx1TVbXB6x3/ww/s38+FC7Veb5tWnSdPjjIY\nolSV6mr+9jeSk2lpMTc1mRUlCNcuXIjZjN9PaipWK0L4+ocfPwrxJylbpaSvT+92Xw/5weCKl176\n06uvxoEH+kD2v8YNYAADBPD/PU5Danv7+E8/1UF9b2+VotSAAmvACg033khm5v1xcUt6ewMQBv8x\nGL4Mhdao6uVu93NS5nz6KeHhFBc3+v3aU/yhjRvdUrqltAiRt22bXgib11urqmXgh11HjkTodLMy\nMlixAqu1pbOzRco2WD9iBBYLgwdjMOBw0NqK1+uS0gvRMHjxYoDiYkaNIiwMo9EvRBAi4dZJkxgz\nhkDgQb2eu+7i8cf57DNTU1NYZ2cydOn1XimnDhrEs89iMJi//DK5snKH3X4UVsA5If4CiVFRrFqF\nyyXWrYsvL9/vcp0FTeWid7tpaxs2ZEhuY+OJrq5LVq06+9NPG0IhN1wLD116KQ0Nm7QOe3z8KquV\nBx54ftcuFWzgB3e/OKfLbE6oqnoyOzuyv0sm4W5Y9EcljYnh5Mk3R4xI9Ps1EU4NBOFJRYlTlEeC\nwVG7d1v0+k6fr15RyjXD544OFYaA9/TpKIPBHgg0KUoJ+OFQYWGcXh9vMiVHRuqPHsVopKlJC/I0\nAlVVBAIhRTG88godHe3/pXT6U2YmkZF/jokhOTn82mtzDx/29vSsffXVUbAaUkEP1QPVfwADBHDR\n4A0pVwrR2N5uFMIuZQPYwA5HpGTwYNauZdGi7b29GXA13DF1Kk1Nk222lVIC3wlhP3zYrNN1BwIN\nqqo50b+kqtpUc6qUoz2ePyx0NB3nM1LeoSiepqbk9vaAorQGg5XQAx9XVERAOMyMjU1auRKXq7Gl\npUFVm0FC/e7deiF0Ol36unXodGppaVMw2Ka1O/r6NN//oF6Pw8GJE9TWevx+B3gg4Zprfg+QmTdP\na9MrOh2qOlhroeh0CIHNxpAh1NSg0/mECMEgID0drzf10ktZtYqTJw3r1sU2NX38/fclUN3fklIy\nMvRpaeNaW/OFuKKykmXLTuzZY9dcOZOTI5KSLly48IAQn0mZ8P33fPHFvXr9IkUZDLvi4lIyMprK\nyv4tRDLcFRPD6dO89dZ8g+GfoZABQqCDDDgjpTc8PKyi4u2srIj+l7A+6O0fmTB16vLTp2ODQW9/\ngI8TnlCUdEVJDwTu9nonf/aZSaer6+6uCoXqQIG3a2u9MKFf6dQeClWDDd6Ki8NoZMQI0tJ4+WUO\nH6aszGi3R6rqMfAN1P0BDBDARYnlUt4gRLSULlBhS3a2t6WlW6+vVtXpy5cXXLhwqF/240hMjMnK\nGtLZ+aAQn0p559q1rz35ZAS4+5eSlvSLRwHWrKGhYdb77wsww/s63QeqqpXOx4TI9Pm09KsOCMDD\nUg4WIgpetdvTi4okdCpKNXSAE170eAxwDQw7dMgoRFcgUN+fIbOuutoCZoiBtG3bIo8dc3d2lrrd\nDdALtfv3W/T65Oho/fvvY7crjY2tiqI1o7QWiiql0OvDV6/Gbrc3NVn/cL1PTcViISkJoxGfT/O8\nC4ITftDrK4VogPmRkWRlDR0+PLWu7tDw4QlG40+qWg2VmhlRVlZedPQ/7fYDQlx56JB97drdijIN\ntkj5jRBLExIyY2P/pte7uruPOByXvfFG8fr134ZCOnhWp5uzYEHv4cNfu1zVOl3esWO8++4cvf4p\nRZEQ1r9CAVTrdHkXLqx88skx+/eHQzjk5+Yeq6t7EzZLeUqI7YpibWszC+GQshFawAnPSnlciM+l\nzPX7NaVTOwThrd7evN7eLJ3uyrAwduyguBi7vUdKB0QM1IYBDBDARYwtUgohUuBHg4HU1LAFC8KO\nHBEVFdu//PIwlPUfdqK7e96wYblRUbMcDiZM4Ntvn09KmmKzmSEMDowZU19evlqIF6R0REbGFBay\ncOGNkCfEtdOnByoqZvb2Aowb98Hhw93XXjvH6YyGI5MmVZ8797wQWhQBn332jwcf1CyIHRCEGfCs\nlMCfhBjr9/9hUKHAIHhcSoMQg+B+8NpssZ2dfwRjeeFFrzcCbvN4hmzcKKVs9XprpKwBX38LRYHL\nhcjat09VVS0Isxk88MupUxFCzEtN1b/0Eu3tDZ2dzVK2wNeXXorBEBcMDu/r45JLePJJvv8+/PPP\nozo7tweDtXA/APtU9eqyMsu4cXkdHSkNDQcvv7wdKmGLlMBSKRk9mnfeoaYm8ssvE5ubP/niiwoo\nh51SfiTEHLs9Lj5+sctVJmXe+fMNH320WVGi4V64efp0WVs7tbMTyHvqKU6cqCwomAPvS1lksZCQ\nMKytbZHXC0x9/vmpM2bceP31sVK6IfDHrAWmz5s3/emnW2+66WqPJxYOxcf/0N29VErgSyGqi4ry\nmpv7PJ6q3t5aKRthwAV0AAMEcJFDavU3IYEnn2TsWHp7LXV15lDID8/1H3NEVee1tobr9XdHRVnP\nnz8xdqwZtIXhDUIQDOakpMyxWq8RYseyZfz003GbrRrapFzQ3GzKyBhmt98lxLcFBbz++lGncxos\nFAIp8+LjZ3V0AKSksHPnawkJw7q64qAoLw+//3hT03VCvKfT/VheztKl40+fDgcL7I+P39bdDYSk\nbNTrs0pLeeWVv/74o+ZQpId58KCUwJNC5LlcerCDZvff1G+gD9wnxHCfTwvCbO4PwswU4l4pQ62t\nSZ2dAUVpV5RKsEP+8eOJRmNSWFi3xzPs8sux2ejqCoVCWoXdMm0aHg9Dhjyk03HnnfzlL6xfH/nV\nV1Hd3cfhy9xcxo4lPJywMEaMYPJknE6MRi1Jphu+0ulKhJgvBMEgEybkhEKG1tbvH3qoE6phm5QP\nCXFtU5MlPX1oV9dmIZbU1nL11YcDAc1+aK/fP6mzcxA8EBnZodcXq+q8jIxFkA/PmUwTZ8xoP3Hi\nW5+vXq/PKS3lvvuOeDzT4MthwzCZsru7te2KS2Gvx3Ohqem/ZU4tA7VhAAME8L8BfVJGnT5NfT21\ntR2hkB0UWDhuHDk5OJ0rLBZyc7njDvbuTd+xo9Xp3NHf87lNk5aPHDm6t3dTIFCzatXQrKwzqtoO\nm6Q8ajRemp09VKd7S1XzZ80aGh5+GD6T8nYhLm1oSMnNHdbd/aIQr/3wA++9V9DdPR/+I+UZs3ny\nmDEju7vfdrvbVDVn//6S4uJZEIJX4+N1GRkj7fbnhHhDyqwvv2TnzopNm/TwG9QPHYpOd7Sq6iYh\n1kdErK2uZsGCK2prBRjhc6Px+35xDtOmfVlYaL/mmlkORzQU5uTsrq+fI0STlCQk3N/dnRUIAJp3\naQAeVdXhfn+O3z9PiGHbtnHmDFZrWV9fE3QCbW1YLERGCqMRLY29uzugKBo9aDInfD66u7FaWbWK\npqaujo5WVW2Hry+/HCGSAgGsVl59lYgIVqwI6+yMCgT2wEIAPpHysMEw2++fkJY2prPzzJAhXiGK\n4HspgX9KSWamePFFWloSN23K6Oj4oLn5LHwj5QdCTHQ6kxMTxzQ15Tz7LAcOlJ4+fRi+1NJ4Lrkk\nzWjMCQaB4StWDM/NXXrPPQbQzFxvh1sGBgADGCCA/w04bbdPXb8+wmRq6O6uCgRqQQF6e4mKIjGx\n9dy5jCuuYM4cyssxGhUwggwLcwaDDlXdKuVEmy367rtpbh56+PDZxsa+/oDcZEVByug77oguLBQN\nDYUeTxcAP0j5sxC3KMrQsLDXQqG6229PjIs7KmUpANsCgVFtbTFDh8ZIOay6uujxx7dDN/wg5Sad\n7saMjLz4+OU9PZVCDC8ocD/99I5AwAr12urs5Mm5TU2zfL6Id9/lk0+O1dePgilw/5gx2O1TrdY5\nQnwsxLBz53j66UMOxyXwWlwcqamZTU0jFOW4ENP37ftiw4bDn32mubkdGzHieEXFGvhJSuAVIYJN\nTXEtLR5V/SPU/l/NzVEQBclC5G7ZwvHjWK3lLlcz9MCv+/b5pPSCF4br9Wnt7f5QqDUQqIQOOFFY\nmGA0JoSFxcTEUFNDMEhXV6+q9kE43DNyJBkZuFyzU1N5+WVcLsNHHw2uqipQ1Y/CwoiNxWIhPJzp\n07nrLvbtY+9eOjtNUnphixCPSdk+aFByePiCxMSeNWtOK0oDaJfgnNudp6qZ0dFju7sZPZrNm5k7\n9zJ4DmxpaabBg8+eO3e3EOsHOGAAAwRw0WOvqrbZbGFCaFs/TeCGt5ubB0O8EMl6fca+fVitnD7d\n5HZ3QBeISy+N0etjVHWF38+wYbzwAhs3cv68oa8vUkoyM5EyNyWFF14gOZmeHktLS5jfb4QOvd6j\nqqOBqChWruTgwdwDB4729rphHVQJcZ8QYUOG8OabnD3LmjVRdXWpUp6BPUIEgO5ubr45vKZm+NGj\np2bN2gEN8LO2FOb3j3c4kiMintLrGx566JiUVtCk/TVRUUNHjcqz2eYHg8MeeYSioqqCgn3wmZQ7\ndbqFRmNWZORUh2P6TTcRCtl++GGflEmwxmwmISHHYpnh8wEdJtOK6ur78vJSQ6FQv13EfLhXc08S\n4hkp/Y2NsVarR1VbVLUUPPCKlD7wQd0llzx74kRGf5JMM4Tg6VAoJxRK83rvdLnGr12LlI2trbWh\nUIO2eRsIEB9PZiZ6PePGUVWF0RgQQoU/e72fL16Mz4fPR3U1H3xARYW7q6tDVbvADDeMGEFycvLk\nyTz+OPv3D/rhh8SurnP9+Y6n4eaWFoPXe4vRWFJWNuapp3ZarWegV8ojRuNlQ4Zkh4df6h7Y/RrA\nAAFc7GgyGFZXV/Pww/cfOKA9qEq4HxZLaRYiTcrnQiH98ePxxcV2n6/R79e2go8eOhRjMMQajbEW\nS0R4OBs3cvSor69PE5CQk6Plw3D2LEYjVmuXojjBCIkLFqCqbfn5XHcdN91EczOFhbjd4TD+1lvR\n69HpsNvxeunu1sIR/RAH82bOxOfj0kv55z/55htKSoxud7SUH5tMToPBq6oLhGDIEJ59lq1bM/fu\nbXG7i/ul/QUu11CPJyMi4rlgsOk//znx0Ud9/T5CZ6Rc2NYWHgotNZnKN24cWVOz3+VqgoNSvifE\nRLs9KTl5XEPDFiFu2LWL77571mj8JBjcC+XZ2Vgspyor/yTEj1L2Ssl99z3w1VdJoZCWHxmCl3S6\nz1R1jZSByEh++eXtO+74raBgFYRB/qRJNefOfakor2mWbUI019QYhOhV1QZoAid8WFsbB3FCzE1O\nNr7xBj09zubmFlXVph1Hf/7ZK6VHyhSjMau52e33N3k8ldAG7wwahM9HUhJjxjBsGCdPotcHtOsd\nGeny+x8Ugtxcli41796dc+rUvp07N/drTAtDocs6OuJSUkbW1CwW4teBl4ABDBDARYzMNWvYurXk\n8OFw2APF8fEJ6enVJSUvCuHXbv4PPnjj8ccH+f1+aOtPg/mroqQqSpLfP8vlmnX0aFZFRU9fX7XD\nUQs22Hz4sE6IJL1+2scf63S6+o6O6lCoDlSoy88PNxi6FSXl0CFsNo4ebfZ4tJQr/8GDfkXxhULh\nFkvk8uV0ddV1dDRJ2QwfJybS2FjU1jYpLY1Nmzh50uV290jpBNNVV5mEiAZDfj5z5zJrFidPSqNR\nATMQGekLBK7V6UhI0J6FM3ftauvr2w43A3CbEGRlcc89xt27s48fP3juXGH/rPivUtZHR+fExc3N\nyPC0txcuWDA0MvLXYLAZyqU8bjJNnzJlaHj4VW43IGNjxblzn504sb68/A2IgFOjR9PR8beurmoh\nSuGGf//7ZGHhTjgh5c9CoKpDExJm2WxAvV7/ZEXFAyNGREjZB32g9LfREoToSkvb0dKStWOHoqrt\ngYDmROSFFxQlCIWjR68uLU3p7tb0tVUQgtU9Pek9PWOFuEIbUVRUNDgcbVqK56RJkUaj6exZ7rqL\n6dOpqdGfO6cLBGLhIyH+IuU/payKiBg2adKw2to3tWbdAAcMYIAALj5sE+LaceP47jv1qqv2h0I2\nsEq5Uae7KTU1LyHhCpttkxA33norzzzz7ODBV3d2SjDDFybTV4GAZtxv1evTDxz4zxVXDHa7g1La\nQHs/eBGElHeGQi1WqwkcUjZAMzhhmccTBZeB8eDBQcePd7vdWjJiAJZ3dmrdknl9fck9PSEpbf2p\niq90dERAFgzOz88oLu50Oqv6+mqhG4r27rXodGF6vScUit+2jZISjh9v8Hg6wAFMm2YxGDoPH+aq\nq1iwgJoaTCYVzLBkxgxmzEiNiuK227jiCmpqDEVFwu+PBmJiCAYDipIzaRLLlnHmTPinn8a3tGxy\nucr7TRH2B4PTOzri0tLGVFXdIsTPu3bx5puFFRXHoEzKu4WoamgYlpeXOnkyxcUmm+3btWuroAGA\nW6S0xsamDx06rLt7nxBXrVzJ/v3PGo0fBINf5OYSHX2suPgOIb6Xsmv4cHbtuubpp/+9ZYseeqAR\nVMiCb6R0h4ezc+cLDzwwb88eEwTBAFf2K2jfEUJfVja4psYVDFqDQS0oJr+wMM5gSDCZ0vbupaSE\n8+dbA4Fu8MFf0tKIjOz0ek2A359y1VUpZ88aurs/F+LPAxwwgAECuGhQr9PlDBp0bXR064ULJ8eO\nNUBJfyf9GyknNTTkwNVpaXR3X/jpp7GlpZs6O3NgNtx3ySU0NY1pawPaDIb0/HyOHFkYFvai1yvA\nDnpIgTIpGTOGLVtuz8uLARd4QIEU+I9WShIT13Z2xno8vn5zZm+/OXOVTrdcyiGhkJaq6AQ/fCQl\n8LAQHqczvq8vIGU7lEEQngkGteireaAWFMScONHj8zUEAhUQgEOHD0fpdELKjIMHaW/nxInm/jEG\nXV0I0RUKRezbR2UlZ89a/f4uzVdn6lQMBpNeT2ws6emUlGj+RQrooFKIanhRyjNm83idbnp8/Pd9\nfWcXLEiPjNwrZS0Ad8Kw+HhWryY8nFdeiejpiQ4EGuFP/ZegwOG4PRjMTUvLdTpbVqw4JqX2W5W2\nto7OyckS4jkpPxPigbo6HnqoYP/+ajgN4VAwejTd3S02W4UQIw4d4r33ivbvHwpj4NFp02hv/62p\nCWjS658+e/b5iROTQqEgtEMX+OAJVU0LBB4NBuWvv0aaTG1OZ20gUA1BbSqTljZYrx/c08Nbb+H1\n8sor4XZ7bCi0VIhvBjhgAAMEcBGgVIjRc+dy993s25e6dWuaw7EL7oGjQgh4HnIMBp5/npgYPv44\n8fz5TaWlv/TTgyclJTwjY35nZ5UQx+Cew4cbVq363ufzwYNCzL/66r7jx79zOm0mU1JVFY88cjds\nhrt0ugXTpvkqKjbb7cBxIaYfOPDkt98u+uILLeLqx8jIn/vDx4c9+OCPM2ZUPvzwdYFADJxKS/ut\n5XdJ+sfDh/PNN3dPmybBAXp4Glb3x77z3ntvPflkjM/nhRboBDc8qSiDFOVOMBQWxp850+v1amkw\nAXivulpAGrB9e7TJ1O5y1QUC1RCCAwcPWoSw6HSTNP+i5mZrV9fv/kWXXUYwONzhaBvFDgAAIABJ\nREFUIDl5rNlseOIJEhKMX3+dWlJS4HKdhz2jR3P11fPvuIMTJ2hpwe+nt9euqi4Ih7tHjyYrC7d7\nhl7P1Klcfz3ffZeyY0eyy3UKfpTSbjYTDKbOnJl6/rxwOt/OzZ0oxI9SnoMzUt4oRGV9/fARI9JG\nj+bcudorrsiXshma4EMp3SkpEdnZGc3Nu4WYv307e/febzYv8fvNEAU3w+PaiZo4kV9//SQrS1vn\nboY2cMG3FRVpOl2a2TxsyBAaG+nsxOFwSOka2AoewAABXDSIMJmYOZPLLqO0VJN1GuCya65BCAAh\naGjgkkvweLBYgkJols4Og6FHUXKys5kxI2zQoGGFhQ6X6+Vly4xwFn6Rco0Q8zs7oxITFzqdF4LB\npPXrz+3fvw0+kfI5Ia6yWi0ZGSMcjruE+Pbmm/H72zdsmAjh8EJeHkKMrKq6SYjPLJa4khIWLSoM\nBKbCf5KSSE/Pamu7X4hHYcqRI7z22p9gMzwfFjZq7Ni2c+cWasmUCxeyevUziYlzOzoUCIMNERE/\nud2afJPvv3/rzjvjfD5tjNGqjTGkBP4iRIfTGQme/lLohmdU1QQ3KEp3Q0NSa6u/37+oF0pOnUoN\nDx8UHU1SkklRuOYaAgE2b1Z0OhQlHsjOpquLhoZSq3X0mjWoqtVqrQuFGkECPh+xsaSmxpaWMn48\nWVmEhQV0uiDogdzc2BkzWLuW4mJefz3c5YpX1R+k/DQiAiAyclNEBKmpvPUWgQArV0bY7bGh0EG4\nFYBAd3dEfPyEnBxPc3PBokXDIiM3+f0j4JclSzhz5tumJoCxY9m+nbvvHiLEh1L6AdDmJffCUFWd\n7PW+XFeX9+abBAINVmudojQOhAEMYIAALhp0KEr2/v20tnL2bJPLZdO2mc6elVJKkFK6QqGYtWvx\n+0M1NdZQSNOcxMyeHaMoTJ7M3/7Gl19y/rzB5YqGm4VYJOV2Ia4GPB5GjcpSlLCmpl9XrCiHVgDe\n0LIPMzOH6vVrFKXwl19mVlcfcLut8JUW+TJlSk5j43S/P+6tt/jqq5PV1WfgOykPGQyXjxqVER4+\nxeWaMn8+drt1z558+FTKD4UY5XCkpKQsbWqqFGK41crixVs6OoZAHjw3fDiqOqq6+jsh7nz6aRYu\nfDg2dondLsEIu/8rDeajtWvp6lry6qt+ELA9O/tEQ8MbWqM/Pf2vLS3p/+Vf5Idlfv9Qvz+ztzcF\nFg0eHP7xx/j91NZqdkNG2LpjR4+U3WCBpspKA/Sqan2/sOeD2tpYiBUi3WCI3bCBQ4coLq7zeLRn\ncGJi0OupraWqCo/HKaVbK75XXfU/16+mhtZWurpwOh1SuiES7s7LIyUlbv58nnuOPXvCP/00tq3t\nR5frPPwiJVdeSXR0NDBqFLt3c889Bw4f3iDlRilbY2NTJ02qOHz4XUUJaWR53XUfb9tWV14uoEdV\n66AVnAN1YgADBHBx4Iyi6E+dSrhwweHzNQYCFZpJTlubBO0zTYghO3fqwOb310pZCT4oOXo0qCgT\nY2PZsIGTJ51ut+bbk3nllZl+/wSPJ1hXx3PPMXEiq1ZF2myRHk8bvAZHheiA0YCiRN19d9TRo7rq\n6t/OnTvSL7Yp9PnG9vWlGo3PQuUTTwxLSjqiqlrT57SiXN7VFZeUdK3LdXj37tl2e6HXq6WPPSql\nLzzcMnfuoOHDB504UZqevhcq++NNysPDR5pMsxISXHZ74TvvzNy8ebPdngbr/0iDiY1d1Nu7WYgl\nJSXMnTsbDsGLJhPx8SM6O292u38U4k+nT7/39tsHfvzxaSmjoWDKlK7S0l+93j/363O+6eoatnmz\nDtq83lpV1RybX5fSDtuEGFJa+pdRo8LBCQ5QIB0ek3KQEPFS/j0Y9J88qVk6NyqKZqr6XXHx3NjY\n5JUrcTgqbbZ6KbX3hqPbton+y5dgNuf9618Eg03NzdrjuQT0etLSSErCYMDvR1W9QmgFvVqny0tJ\nQYirjMbC8vKZ9913MD9/g5Sa6LOkry/VaEyLiBjvdAL86U+88cbDDQ2PlZRYwA59EOqXJA1gAAME\n8P89tkJPIBAfCAT+S9ZZ3u9iD9wvxCiv1wQO0MyEz8Lzfv9tEJ+fn3b2bKfTWeNy1UAvtJw8GWc2\nh4eFSaMRm42iImy2XkXRtIyjrroKvx+/n7o6/vY3Ro7E6QxrbLR4vfr+pbC5QpCczF136Xbvzjly\n5LDN1thvoPaslKSkMGlSptEYW1u778SJI3AbFAmhwpSrruKttzh9msZGs9MZq6o90KXX+6QcmZXF\nP/5Be3vk118nNzV90dBwFLS91q1aGgxcn56udHaeHTOmR4gK2CLlCiHGtrXFCHFnQoLH4TgxZUqi\nxbJTynNSviUEnZ0J6emTampuF+IHKbseeICHHlo3bZqx/0T5YFw/A7FiBYcPP2k0rgsGj0LplClK\nff1v3d1Aj3bAL7+8fMstmqWzZtjZB0/D23Z7itOpQIeqVoMDeuDvivLH5bvH46kvK9NB9389nn9W\nUZEixKKeHhobaW6u7u21StkC340di9HIsmWUlIR/+mmC1frx/v1F8HH/tS5R1WkHDsSGh99rNBYJ\nMensWW66aUtlpQ82Qbx2zED1H8AAAVw02CllnBCjQYAF9k6Y0FtVtcPj+f3HSUlfVFYyd+50q9UI\nZvgtJmabw3GLlKSnf9LSEt/X55eyHTSZzct9fQl9fYNglsEw/ZNPMJs7WlqqA4EGkOAoKoo0mfRm\nsxfCzp2jsZGGBi2lRELi/PmoqvPoUW68kauuoqpKd/IkPl8kkJlJMGjt6Ul/4QVuu433349ub4+w\n2wfBwptvJjISs5myMk6c4Nw5+vrsUvZB5B9hAMCcORw/TliYZrsWAuLj8fvXmExGi4XlywmF9B99\nNLiiolJROuCEEPPBoiisWEEgEP7VV8m1tQU+XzkAf5fysNE4e/z4iZGRPwSDtUIcg7sOHkyAT/t7\n6LszM082Nd0gxJb0dA4e5MorDwaDXXAF9DY2xmVkDO/tfVKItVJyzz3ce+9TMTGXOxwWCIdP9PoP\nFWWzlGzd+tTixfp+0c4PgwYd7OmZ+0cJHjKEffueyM3VHs+dEIKNUgKrhNA1Nia0tPgUpVVRKsAD\nrra2yCuvZOhQ6uvR6/2ggheIiVH8fmcodK/ZHHvvvWRmhv30U0Zp6a8TJwZhR3/i5gAGMEAAFyF6\n+2/vfwnhs9niMjMnV1X9Q4g3pWT9et5442BLywSIhuVJSWGJiXNLS5t0ujIpH7rttrs2bJDgBD08\nCvP6v+oNITrr6y1COFW1CarADa/09Gg+OdP0+ku++MJsNDZ0dlb2h4zXHjoUYTC4g8HovXuprOT0\n6Wafr0vrhqenYzDozpzB46G0lNZWRyjUp0UTFxerLleP1+tW1azXX1dcrvKOjjop6+EZs1kLA0hL\nSuLNN7Fane3t7ar6P8mURqPRYMDpZOJEGhsxmQKgQDxcsnAhUuLxMG8e1dVERChCAIkgw8L6gsHB\nivK7fcX+/TkHD7a73f+sre2C/VICJ00m4uOndXZukbKxpSXrpZf2W63F/dYL23S6a7OyhsXFPd7d\nfUiIy5uamDdvu8MxEZYIsXj27MD58xN7exk+nM8/Xx4d/a7TuRc2R0bq0tImeDzfCXGnlA16fXZZ\nGc88c70Q90jZevnlVFf/pGWTwWMWy/M+X1ogoIAN+sALh7u6rjl9mpdfprm57Y8gtqlTsVj0JlPc\n/2HvveKkKvO23etZlTonOtG5yTlLUlF0QMWICbPj6JjGcYyYI4o5hzEjDAaUIKKSYwMNTWiazjlW\nVYfqUKErr/XsgzXtnh2+b3/v3vvota5fH9FAs4qq517rH+5bUWhu5vrriYpi3z5qakQ4vCNy+keI\nCMAfhMek/FVRLk5JGZea+lRvb6sQ+Xv29Kxfv1fKCjgoZbOixI0YkXLllSlHjypW6/fr1qXB11CW\nkJA3dmxzaenzQjwvZV9U1OOtrX/Jz9dt6PtAwrm/zx3Cc0J02u1R4JKyDVrBA097vQnwJ2DbtkSL\npdvjaQoG6yAE64uLzULECZH1/fds3z5otVZ7va0wCG82NPRDH8yE4fX1mpQ9UtaBBx4PBPSIsVt8\nvryurqCqWv3+OrDCRbCtqChGUWIUZVJKStRrr+F0Dra2dgw5K4RPnlSEUMxm3n2Xnp5Ae7tN0/S+\nrjjzzASDwVdUxKWXsnQpzc3KkH3Fl9HRgyaTW1WTpSQU4umnKS3N37HjxPffF/9HpWWblOdXVERP\nmTI6PT2vsfFQXl5AiAPwtZTPCHG5zWbOzh7Z38+77/L220dcLjuclvJ9If7qcAzLz7+ssdFjNA5q\nGjt21Pz66xY9wnfUKIYPz7bZbhTiGymT33nnk46Oklde+YumVSxeXLdnz/vh8CkwtbQMt9sDqmoL\nBuugFzYeO5agKPGKkmA05sfHx3zzDVJSX28Lh3Ur0AgRIgLwR+EbKWfU1g5fuDAxMTHx0KHm888/\nIGUHfARWRSnMy+OFF4iN5dlno7u6YoPBAeiX8lshbggGC9PS5tnt3wtx3U8/8dln9xkMX6rqfqgZ\nPRpVPdzUdIUQP0nJ+ee/UF5+9eTJKeAFL2hwPSzTz8e33vrokUfiPR4vdAwNYj4OJimXSelqb4+3\nWgc1zSplOfjhESmBg0KctXv3XeefrzsYq+CDX/XUxoSEJ9zuPI9HXyVrBhUehhgpo1Q1TlUf6+4u\n2LpVStkZCDRI2QI+eL6rS4FzFKVw/XpVVa1+f4OUzeCH4v37EwwGIWXG3r1YrRQXtw3ZV3DmmbEG\nQyxkhsPMmMGtt6KqHDyIyxUNZGURDhMKfRgXx0UX8cQTbNli+eSThM7OPVI2ALBCSofJlFpQcGZ2\ntvOyy06Ew4eH3Lbvl/InRbkiNjb+rruorBx/9Ojh++/fDJ0A1Nvto0eNGm4yDQ+FGDGCzZvD559f\npGlvCoHBMDwmZoLLdSZ8pWm5Pp8+yKSngNXCWk1L0LTMcPieYHD8Dz8YhbB5PA2qqm9IRIgQEYA/\nCt/qW7srVuB2Y7Vaenpiw2EVpt56K2YzO3dSWUk4THd3n6a5IBo6FGU4tLe05IbDF6SkDLpcxVdc\nMTYhYZuqdkCNHhIwbdpou/1pn2+jEFdarSxdeiP8AkVQlZkZm5paVVV1VIg5ixfz2mv3ZmRc1tUV\nAgW+ior6zu/XKyd8/PEtf/tbuqrq8/sKPAZXCbFByrNmzkRVn4+NfXdw8KMRI4iOLq6svE6I5TBj\n797XN2w48vHHyzXNAJvj479xu/VF1kohJm7cSGfnm/fea4R+0ItRa/UfN2PGw6WlI9xuBfqgAVQ4\nDlXhcGY4vAwMe/akHD7s8HqbAwHddefw3r1xBkO80egIBM4Qgn/+k+Jih9vt0OVh5EiMRozG03v3\nTomLY2CAvj7CYY+UAdg9bhw5OQwOpl50EQ88wNatiatXp/T0JAHR0RgMGI1TjUauu4677+bjj5XK\nSpPPlwylAFT6fKOlzI6LG9/fz+rVvPji7p6eWjBJeWFvb3xaWr7LNXXp0vduuaX1+usv8/sT4cCY\nMXi9Rzs6Dg6J5T+EaHY69QznlqGec4QIEQH4o7BdiAvGjePYMRwOHI5+KfVTPrxt24Df3+7zTf/g\nA6Rs6epqGLIpzpk5M8fpxOXioYfw+2PXrMlqbv7V5aoD3TxydyAwurQ0bcSINLd7ZGfnjuzsWEXZ\nMTQhs9VguMjrnTB+PF1d1p07D+/YoUA6TIO/T56MyzWltfU8IfZMm8bq1V+lp3/Q3f0JrDKZ5k+c\n6GtqutnlKhFi9oEDvPRSyeCgA8qs1qlz5+ZbLNMCgRn33YfTaV+16jdNuwIemj4dt3uE271IiFdh\n5qpVeDyOxx5TYC1Ew8aYmFV6AzwpicrKt26+eeveva+BHiOzbGh2qE6IMfv3v3fOOYlD9hXWIVO8\nNFUdFgyeB3GHDmWWlfV7vc1ebx044adDh8xgFsKraZN27lTq6rDZqgYG2vUNCSlJT68uLx9fUEBK\nCkIghN6nZelSVBVV9f/8Mw0NbNjAqVP9Pl8/uOAbg6FYiGq4oqvLEgxeazQeW7AgKyZm75Cjpz8r\nK2rkyJlNTUc2bZrb0nLI758Gq6U8brHMGj9+ktN5h9sNlAvxXkkJzzxzyfbtXoiC39LTd+oxbREi\nRATgj0A9ZDU3T37nHUKhuu7uBlXVaybPdHUNwGhoa242wYCU+jbTjQZDW01NXlIS48axZAm1tcTF\nqUIIPVc9LY1g8DIh4q66irvuYsOG5G++GdbXt0PTnhXCrijALLOZ++/n3HP5+OPUbdtSvd7NQ9rQ\nkpBQMGlSodX6ejjMunXcd9+27u4qqJXyYSHGtLen5uVdVl/vVdVTCxakxcQUwZdSfibEuCNHspKS\nHne5aj78cNzWrdsGB5vhX1I6UlNTJ0zIbmp6WtNmvvsuiYnu22//3u0+DvfA7QsXUldX4PU2K0ph\naSkvvnh0//6fYTE8OWkS4fDumhrdEnnMV19RX39VTMydXq/uCPRbaurPDsflv/dLV65896mnhvl8\nQeiEZgjAY1KawCTlZYDVOqyz069pdk2rBh98VlubCMOEGL9jhx7H1jAwYAU7lK5fH5QyJKVdVZO2\nbRt++HDnwECd19sIbkibNi3N5RrZ0sLkyVxySfzmzfnV1Ye9Xn1g6ZgQZ4wYQU5O5qRJsTU1u0pL\nd8FqKYFNwWCh1TosL296be1RIXphcltby/79o6ELXo6PJzt7wsBAkxDtsA1eiXSDI0QE4L8390n5\nnhBNzc0K9EnZBN0wAJ9L2WY05tXU/Hn06DhwwyCocL+qzvN4Jng8fzcYeO89uruDVqv990mb8eMx\nm00HD5KXR1wcmgboNmrDr7pK/4nBvXvJzcVkQtN8oK/gdhkMNk2rg4KOjhGTJ49obm4YO3YfnBoq\niL8l5Tohlk2apFx8cdyePSPLyo54vXq94uqoKMu99zJhAl9/nVlSsrWxcS/oNZ8ojwevd9KYMcHm\n5sMPPDArLe27/v4jQ3mKjB072NW1UFHqNK3wwIGG1as3aVoj/FNKW3Jy1rRp2fX1w1WVxx7jT38a\nvO66jV5vIsTBa6mpIjd3bF/fv8c6ly1j+fIHPvzwMrsd0GtZNwz9G3TvHa666unjxzXoBD8Mwp1S\nZgrxkJSioWFYS4tXVa3hcLXe5wiFVFBhGngGBpKcTr+UNtBr9HVVVaOTk9Nzc7njDmJiOHZMqa83\nqGo6kJ+fHxXFPfewdClvvRXf1hbtdGbDASFa4GUpvxfiuuTkgqysAkUJ2mxHr766Afrg2yHvuez5\n8+nszGhslKHQ3UJ8EtGACBEB+O/NVzBdymhwQgBCQ/ZqeW+8wc8/P2w0fhoOr54/H5ttc0vL5UNT\n53s7OgrXrQtrmtXnq5eyBQLw68GD0UIYoHDLFk6fpr6+xu22ggM6tm3Tf1x/MDj5yy9JSKCqqtHv\nt0IYMubNy/D5pttsvPoqCQm89lrS0aPpoVA/kJyM0YjJdEVSEnfcwdy52O3m6mpjMDgMWLgwJS2N\nhQtJSyMhQVUUTTcvy8oiEIi76CKefppt28wff5xgt3/a03MMboHvhThDiJFnnhm7YEHswYPU1/98\n//0N0AQ7pARcAwNZVVXjUlPf7O0tev31s7/77se+vuOg+2BvUZRLCwtHJyc/3d9/QoiZLS0sWfKD\n3Z4Kw+Hl/Hzi449VVv4oxDWFhRQVceONO0+c6IYiqD7nHP/p0+v6+4FOKXnjjQeXL89UVT3XfgB8\nQ6OlNUKMO36c99+/dc0aFVygwBGQPt90n+/e9HTzhg1ISWNjZzjcC2YgJ0ft7cVmo6iIpiZHKOQE\nLyyYPXuBx0N+/nUpKcTF8fbb1NSYP/44paXFJ+V7BoPbaFyoKNx0E/fcw+rVsatWxTkcBZHPRoSI\nAPy3p0xK4LDROP/yy7u3bftcr4mPHatHxe4Nh7tAtreL7Ozhra23CrFayqdHj360vr7w/9gv3Q8l\nUkZJeQOotbXJjY2D4XCHqlaCH54e8vucB86TJ2MUZSAcbtW0cvBBw8mT2XFx0SkpREfjdhMMesAP\n8cDChagqodDAwYMZBw/S2EhVlT0Y7NPXAmy2Tqcz86uvMJupqGgPhbp0Y7X8fMxmEhLweOjvR1X1\ncLE1CxcSDBII0N7OI48wYgQOR1Rrq8Xna4S1ZrPbaAxIOW7KFB5/nOrquFWr0q3WT9rbjw31A4Dt\nUl5qtxsWL06rr08oLz9QUOCDXUMT9CVm8+z4+DOGD5/qcBxvbp519937DxxYL+VnUj4nBDZbVFbW\nyP7+a4X4YeFC3n33nbff/riz8zOIh6IZMzrKy98W4iEpxz3zDNXVLT/8kAn3xsfnz51bt3fvB+Hw\nB1ICewyGSd98YxCiw+WqV1V9fHbD4cMJQqSsW2f57TdHV1e1z9eiD/a0txMbS3Iy2dmkpzN8OA0N\nCOEXQpUy6dprkbJ70yYMBtra6OoKhMMeCMC1QvwQeQiIEBGA//Y0qep8vz89Pj7H660TYszp0zz+\n+NbOTj0qoCI6etLkyRkmU3Yw6I6Ojq+tfeOee3Zu3fqqlLrD2l+GCs0A69c/dM016aoaHLIa9gzl\nqPDnP3P//U/OnJkAXmiDMPTCCz7fCJ/vNq+34I03UNX+urrWcLgDBBRt3hyEkJQazPrxx3iLxTow\nUB8MNkAY3qury4Hx27ZZFKXb729S1SoIwMYjR4xwSVOT0tSEzVbT398uZQcEKyvNZjNmc0DTLMeP\nU11Na6u+nCzAvGiRWYh4IYiJYdo0enowmYIg4cszzmD6dIJBQqFHTCZuvZU77uDjjy3NzVGBwEF4\nz2QaMBqDmjY7J4dnn8XlMn/6aVpDw9pffjkIxwB4QcrqmJjxc+aMV5QVmsa//sVVV23q7DwBp6T8\nUgg8npysrLut1jZFKZPy0tzc7X5/B1R5PPlGY1Zs7ASnE2DBgm2a1tLXZwYXNEMf9MPjcK2UA3Z7\nXGfnoKZZQa8pvWS3p0ASJApxcU4Ozz+P3W7r6rJqmg0afvpJlbIlGBz5008UF2tWa5Xb3Ta0zxEh\nQkQA/vtzk5SccQapqRldXWMefZSTJxt27Ng2NFhS5fdPCoezExKudzjit2/no49Kt2/fJOVuKSks\nJDn5aGnpTUKslZK77uLaa59NTPzM6dwIcbDGZPokFAJYsoS33+byy6fB45ACx2fPPn7s2IdS6sZw\na4ToOHbMAL2q2ixlIwzCE5qmQhjOgq6+vt9d7Nt1x38p/yxEq88XDW5oAS/0wiNwM2C1pnZ2Bv6j\n9fpid3cMxMBMg+GML7+MMhqbHI7aUEh3PTq5Y0eUolgUZWRODitW0Nra3dNjk7IL6O/XK1FERYUV\nhe5u9u+nrs4ZCDhhEKIvvDBat9R2uZg5k+pqLBY9wz0E+43GNkXplnKsxUJ09LBFi4aVlFTl5OyG\nqqEe+O1S+mJioi+9NAby9u0L9PR81t6uG6O+K8RFDkdcWtpip/NXIS5ubX39mmt+Kyn5Ejxggqfg\nXVgHM/bv55tv7vvsswD0goAL4M7fAyZzcn7r6Mjq7g5pmj0UqgMHPOnzhWAaBNrbk6xWr6ZZpdRD\n7X+M3P5HiAjAH4SQzWbs7Z1rMJS88cbsgoK9gUDP0LfmKAoOh3H8+MkVFbXnnLMHuqBdryDZ7VNH\njsy2WMYGAowbx7ZtLF68xemshGfgqoULQ6dP39zb+60QNzQ3s3Tp5rq6HdAk5XGzmaSkbItlrN8P\nsGjRLRUVT0yapHcj7KDB+b8XXj77DIvFeu+9j3q9fgiDBr9IWacoX58+zd//fvb+/UAUPAHvQZOU\njBr158bG3HBYgy7wwlNCfCLlS1ICzwlhs9stQujLyW3ggYdDoTiIhbuamrKsVr+qWoNB/ZR8r6HB\nAmYwQ6IQGZs3xx84MNDTU+31NoMbTm/fblEUs6LkJycrr76Kw+Fub7cNbRrHn312vJR5Ph9RUbzx\nBuXldHREOZ2JmjYADB+uj4FGz5rF889TU0Ntram3N1ZVvbBbiAsBr5fRo0f6fFF2+7r8/BQhfoIN\nUp6Ojp4yZ471yJGpgcCMv/6VgQHb2rVJ8C00jRyJohypr79aiPVSOrKzOXhwyf33v7J5s74l1wUh\n+HeR56KL/rxtm96NsIEWcYGOEBGAPw5tBkPekiWMGZO0Y8eImpqfW1pOwANQK0ScEPkTJ/Luuzgc\nvPRSrMuVoqpFsEVK4GQgMNXny1GU+w2GI7W1c++9d0d9fRGslrJaCNrbTePGTa6tjevtXV1YmAG/\nwBf6HwyFZnk8w1NSxtpsZGdz7BiXXz4bHoJhcDw/H5Opq7GxRYhauGDvXt/VV2/0eiVszM8nM/No\nScktQqy5805OnKgrLp4GjycmZk+fXltUlKOqVUJMOHHi65de2r5p0wMQDyVTpkib7VKHQ7/eF/7+\n96s++CBZykHww6bMzH2dna/DFinbjMb3VTXH69UXaK0Qgn9ICSQIEQu3SOnp7k50OHyaZoNKCMKj\nwaD+bHGz35//yy+qptkDgQYp2+AGRTl96NAwiyU1OtoyahTHj1NZicule9jFApMnIyVS0tfHzp00\nNtLb26tpToiB82fOpKOD558nJ4cXX4xzOBICgXVS6i9jid8/ZXAw22J5VMryzz+fvH//Tq+3DZqk\nPGmxzJg5c2RHx/t+/wEhFrS28uCDxVu2tMJBSIKtCQnfuFyAzWzOqqn5+rrrfjh27FmIhQFojNz+\nR4gIwB+EvOHD+dvfyMqiocHY0GAKhwXMXrYMkwmDgYoKurpobWVw0CWlF+KApCS/z3exyURBAWed\nlbhlS0Fd3catW3fD36BRiPFZWf+e6nn55fjDh5NDoW9+H46EO6UMRkeb09OvTEhosdsPZWfnCLEd\nmqUE9DSYjMsuo7TU0tGxfuFCH+hzOFXR0RMmTMgwGrNCIZYv1xPE+uC0y5XGzztDAAAgAElEQVRt\nNObExU1zOifcfTd1dc1bt26HainvEKK1pSV/xIiJLtcHQlxjNmeWlW3Ytu3z+voVsCMmhuHDJwwM\nXOn3A3krV75pMpUvX357OBwD+2bN6jh9Wm/MuqT8XavuPX48DD16YA5s168rO/tvNttIr1eBfmgB\nFf6uabnBYE4wmOl23+b1Fr7yihwc1D3sWkCD33bt0sMYRlgsE95+2+f31/f1NUrZCK8lJ9PZie62\n3d9Pb2+/pnnAAmRm4vFcZDQyfjzXXmtavz63tHRrXd0O+EZKwBIM4nanXX45J09aGht/yc9PVZTV\nmlYNt8HD06YxODjC5bpQiG3vv8+6dadOntwPNZFzP0JEAP5QfCbEzWlp0Tt3YrHQ2NgVDveBAbT9\n+72hkDcU8kuZ9/LL+HytbW0tmvbvHJJx46Isliibjbvvxmzm5ElDY6NRVQMw9brrMBo5epRAAKuV\nwUG3lD5dNsaMwePB67V6vdn33MOCBaxalblnT5bPt17KVw0Gr8lkUpRzhg3juefIz+eFF2K7u+P8\n/p1DfeYqv3+CqmYLcZ8QeoLYcfhGyteEuKirK8rvv9ZgOP7JJ7N2797n9+uLrV/oc+4uV3Z29t9s\ntt5QaP/48XEGwylok/I9Icb19qbn5Nzc2tptMNRo2oKsrH3hcAEsBtzunMzM2W1tFwuxymRKr67m\nwQf3nzihwXZoPe+8gZKSbz0eoMVgKKio+OiFF/b98MNyKaPgQG7uL+3ta38/UlNSPu/vz6qvl1L2\nSKk7/jvgKSklnLrqqvc3bKhpawMcUjaAC17q70/r77/QbJ72wQcoir2jo/H3gMnhw4mNzW5u5tpr\nyc3l8GHKywmFkoBRowiHxyQl8cgjnHEGK1bEdnTEeL3rNK0W9ksJ9AwbljZpUnZj47aRIznvPO38\n8/epamfkwxAhIgB/NO6Ucq/BMO1f/zIrStvAQH04rM/YPNvZOQiDMA/yysuR0qFpjdAFC2BbSUmq\n0TgjNVX56SdUlebmLlXVB9KDe/Z4Q6Eev3/0m2+iaT3Nzc2q2vbvl9xIdjbR0RnV1cyY8Z+5uCZI\nuu46AE1j/37a2ujpobu7T1Xd+n9VUpJncPDqhARyc03XXpuzc2fdyy+XSqkniF0jBOnphkWLEvfs\nGVlR8Vt9/fYhQ2bgDil7LZZhS5cqw4albds2sqXloKrWA/APfett0SLLeeel79mjNjWtt9kqhorj\np6Ojp0yefFZv78ZgsC4USl+7tmLjxg1SnoR/AA5HUkbGaI/nAiG2f/EFO3fWbtq0WcoSKZ0ZGWRn\n51mttwvxpZSdJlNmeflfX3/9rlWrTNALYfAPVdK44AJeeeX+6uqbqqos0AcCroIbpQTeFcJWX2+G\nAU1rgUbwwPpTp1IVZXJCwrD164mOprLSFgw6QAApKRgMQbfb1NyM3097u0NVnRCG38zmRiFqYBSk\n1dRMTEtzNzeXTprkhaqhdIEIESIC8Mdiu6a19/REgQtaoROc8MnvG0mnTj04bZoZdDuaEOyCQ1Lm\nhEIvdHdPWrPGAG1OZ72q6srxTHe3F6ZC++nTRuhT1WZoBg98WV2dCImKkm82j1mzhqQkTp5s8fvt\nEILGjRtDmhaSMijlzI8+wmi0Wa26DZEExoyJs1iIiuLxxykt5dQpQ09PtJRxwNixI1JTueceJk6k\no8NcV2cKhzOAceN+v8Zho0bx0EMEAlRUGNvbzZqWo98sS5mXm8vy5cTF0dJibm+PCgTC0G0weDQt\nXlHIzOSyyyy//lpw8uSO558/Bu1QIiVgS07Omjz5rNbWwnCYSZP8F1/8WzCoC1Jpb++5kyblxcTM\n8ngqhZi4Ywc//li9dm08rIX27GxTWtrJsrLtQlwwbx7ffMNVV22pqoqCH8FZWEhc3JHy8huE+DY/\n/4HW1rvy8+PBDf2ggYC7IUPTXnM6J2/aZDEY7B5Pk6rWQgi+O3bMCMMNhjO/+kpERdk7O+uCQb3c\nFD1jxshweOTAAHFxPPYYlZXxq1al22x7payNfAwiRATgj8mrUl4oxDAYBAmbR4483dR0pxCfSTnu\njjuoqLjPYlkYCCRD2Rln+OrqfnY69YLMk0K0OBx6MqI+kN43NDzK3LkPHT2qD2h2gwZXw7VS5giR\noGmP+/3ugwdjjcbeQKB1aH7/SZ/PD35YDLamJosQA5rWOnTPu/348QyTadrEiWzaRF0dDkevlAMQ\nDaSkDPT0JB04QHk5dXWdoZB+UJKU9L9fZGcnv/6K201HR7eq9uuV9PR0hKC1lf37kZL29p5wuB+i\nIH3x4nRVlaWl3HwzU6ZQWamUlyvBYC98qSjNQvTCrMxMJk6MTkgYVVRUOnfuNqgfenQ4rqrn9vQk\nqeqfTab6UIieHvtrr20MhZqgU8rDJtN8RZlRWKharceLi2fdeOO20tKf9WoVlEVFTZ0/P9dieSoQ\nYMcOHnxQ38kqgqqzz7aWlPwrENBnNO8Vot3l0l/kVtCzmh8DE9yqqt0dHdFCuDWtDRrAC8dPnMiL\niUlPSmL8eKZO1RsM+q5DXuRjECEiAH9Ytg1Ni/9oMBATMyk5+eq+vjIhpjY2cvHFRYHAAsgGb0dH\nTG7uRJdLl4eV//wnVVXXfvCBBwzwU0rKtr4+4JAQZ+7e/fYrr2zatesFKMrIiB82rK6m5ikhOnR5\n+PTTl+6+Oz4Y1DfCvDAw5CdKejonT96em5sgpQcGQIMNUo4UYnkwaKiuHvvee95AoHFgoEHKRv2e\n98iRVEWZ+e23MSZTW39/fSikP4t8e/To7xc4wmic/NlnUtOaBwbqNU3/DT8UFwM5RuOMzz83QFNv\nb72qNkEYmg4ciDMapZQZW7dSUvJ7jSUEKeefn6KqhYEAY8fy1FNs2EB5udHtjpfyHYPBpihuKZcK\nQVYWS5dG79hRePLkzhtvrIdKeACOCzF/0iRefpmWFsOHH6Y0Nn5dXPx7EgCQFArhcmXPnZtdXl43\nduxeqIRPpfxMCDye7LS0qR0dAOec83FpaXjx4it6ev7t6JmXd6St7WW9snT22TccPJgipQ/0GM5o\neDwUmuJ0LnY6LzSbWbGClpaunh67lF2RD0OEiABEcEh5pxCFLS0FSUmLR42iqall1KgiKUuGfPN3\nGAyLs7PHJCVd0N9PWhq7dqnPPXcGNMMzycmG3NyJLtdKIZ6cPJlQyH74cDGcknKzolyemjomPX1R\nZ+dmIS4/+2zee295auo8h8MM0bCnoKC4peUKIV6HMSdP8tRTtwrxrZSfjxlDVFTR6dPLhGiUkmXL\n3vnhh2qbTUrZC3oWmB2ehqWaZnc4ooVwS9kGVvDAU/9xaX8Jh5s6O39PAtBd+58EAbeEw202m1kI\np5TNQ7Y8T3u9SbBEiGkbN8aaTDa3uzEUqocw1BYVJZrNSRZLVFwcGzdSXOx3u/ukdEHi4sWJUhIO\nh0+e5NZbmTWLpiZjebkhGGyCby++WA8JYHCQzEza2wF9syEMTJ6M34/fnz9uHG+/zcAAK1bEOp3J\nqtoLwJ1Sdg0bljF6dKHdXibE1LY2rrtuS09PBnwp5cmoKFJTx/X2Xjc4WCbE1OLib594YsO+fflm\n86z587uOHFnr9z8sJfC6EBZ91yEctoZCteCAwci7P0JEACJ8JiVpabz0EllZvPpqYlFRSjDo/f1B\nQdPmtrUl5OZe6fN19/VVTJumCNEIn+hJYZmZBRkZ/+jqai0vz//ww+NDnp1rpBzb3Dxu7Nhzg0H8\n/oaiolH33ferwzFNP7ksFtLSxnZ3f+H3t2kaZWVN69b9ImUlNNlsI+bOHW40ZoXDLFzI558/WF5+\nbXW1BfSG80pF+VjTtkvJmDF89NFNixf7IAybs7OLrFYH7JQSqBVibFnZ5VOnxoMLBLxpMHyhqhv1\nm+7Nm6+84opEKT36c0Ni4lan80opgfuEsDmdMTAIbUOJu0/5/Wl+/zw4+9ChgurqPre73ulshE6o\n2rMnzmiMM5mCqpq5axfl5VRU2ILBXt2Wp7yccDisqlJRTC+8QE9Pp93eoWk23U87HCY2lpQUQiHs\ndjo6cLtdMAhx4DGZOsNhi6IQCo2bM4fKyqq8vF1QM7RL/EsgMKGzMykv79K6Oq+mHZg3Ly8q6gCM\nCgZnOZ0Z6ekT29q+FuLP+fnLW1sfyc//P+06RGx/IkQEIALrhFhWWIjBQG8vPp9HSh/EAMOGqV7v\nk4pi8niYOVPMn5/+228j2tsPSFkDwA1SemNiYpYsiVWU2P3763/91T609rVBymaDgdGjuftuNm7M\nPXBg3+HDe4dOrm3B4IyenpSrrqKmJu706QO33VYB7VAkZZUQlJWNSk19yeE4tG/fmddf/0t1dQKs\nhU2KctH06eHm5j/19QG8+CKffXYjbIR/REeTkTG+r+8Gn0+/qLF33MGpU2+aze8Hg0uFuGr6dNrb\nz+rpAZg2jY8++jIh4X2X63MoT0uLzsycVFX1pBArpfzwu+84ePDKjz7ygwK/pKVt7em5SErgz0L4\nPJ60wcGQlF1QDQF4IhBIDgQSYZEQMzZujDObbS5XQyhUDyFY2dYWhCDMFyJ79+6wpnWGw/XQBRPh\n05qaaIiGM+LiClauxO9vbW/XB6gkxM2ZMyocJhDg/ffp6GDlyrjKylRV7QPd338M7O3svCgvL+HG\nGxOKi5WmpmK/vx7ek7IrJSVDiAsTE7vc7t9aW5fcd99SRblL06IhFhTYEzn9I0QEIAJghbrOzjHv\nvIMQAw0NzeFwh/6N0aMNUVGpisLgIA8+iM3GiRMGm80SDhcAI0agaTEzZvDii9TVUVenmxncJMTa\nmTMxmTITErjwQubP5/BhaTRquqhMnEgodLPZzG23ceutfPBBVGOjJRDog8+NRofBMGHCBJ58koaG\n2K++Smtv//z48WNDndK/CzGntTUlL2/8wMAeIc47fNize/cx+FzKN4WY0NOTmps7s77+diHeiIpK\nqajgkksOBoP98JOUC1pb0/Lzx/b1PSLEm0eP8txzB12uduiQcpOiLM3MHJOael5XV4kQs0tKPPfe\nOwv2w+dJSeTmjuvvXyHEM1J+PWkSq1bdfMYZAvrBCJuGDz9mtz8LX0t5vxCdAwOx4AE9BcwD//x9\nLFWIEYGA8h+WDA2wXcphQsTDsx5PXkUF0KtpjWCHpUKcOnYsOzo6bcIEenpobcXr1Zfy4mHOuecS\nCOD3Y7WyfDkjR/Lcc9EdHVE+XyF0KkrmnDnceSfFxRkbNmT19b2+ZUsjJMHByLkfISIAEf6Th6T8\nQgjbqVMmIfpVtVnKehiEX0tKUgyGYSbTmJwcNmygu5vOzh5N02dm/m1o4/WyZw+NjfT19Q2ZGaBp\nDA5a/f5RmzZRXMyxY21+fzd4AaORqKiQotDRwa5d1NT0BwID4IG4Cy+MA8xmpk/H6cRkCgkhpQxA\nixBWmAYHe3uXDA6Ozc8f29/fduaZh6W0AfCIlHuMxvMmTx6flPSm09nt96esXn2sru74UCfjJ0W5\noqBgTHr6m25305w5RXBq6GHlWymnNDePTE//07RpNDXVzJ69G5phu17jCgQK09PPstkqhJh0/DjP\nPrsMNkMZbDKbGTZsitf7oNP5qxDvv/UWTuc1L77oBwm/jB1bU1//qBBvSMnEiV8UF7suumjewEAS\nHJo9215W9kMgAPRK2WwwFFZV/WPcOMvQ3G0YrpLynGBwXDD4aGVl1ooVDA62WK0tmqY/HISqq01m\nMxZLCEynT9PURHu7Ixx2goDMCy9k7FjOPZf2diwWVQijlP2R0z9CRAAiL8H/LT/AVFWNATfYQYIG\nN0k5OhwuDIcfaWkZ/+mn4XC4eWCgTtP04saPhw8LmBAVNeGttwJ+f11vb6OU+jjNV6WlYYiH0O7d\ncUajw+drDoVqIAirTp82QZIQqZs3J+zd2+twVPt8zTAIlTt3WhRlVFYWL71Ee7uju1v3Vlu9YAGa\nVjA4eKbTaW1vN951F+edx5dfZu7cmen1RsEPQlwr5UZVPbehwbRoUbLXm3zkSPmKFQfAOnSBswwG\nZs/mrLNYs2b4/v25fn8JNAthFOI9IbJSU3n7bYJBXn898dSpjHDYPVTjqouLGzN+/EKfLzQ4WDZr\nVkJU1O6h6Z3HhEhra8vLy1scHU0w2P3oo8c07UzYD39VFIzGcampS7q7fxLiiqIiVq4sGhiYD9MB\np3P48OGzWlouFWKLlIVPPcXu3XeZTB+HQkfh9Ny5jcePjw2HV0oJ/EuInLIyKWWPpjVAD8TDi11d\nsUMup3O++MJoNLZ0d9eFQnrAZ9H27Wc7HHi9nD5tczo7pezWA2QiRIgIQIT/KzukFELkQiqcPPPM\nrhMnvvf7f28SrhSivrNTT4NphAHohidBgfv8/trWVobMDHSrg6fBJiVXX/32hg3x4IUOcIAHbpMy\nS4ibpHR1dyf29HiltA0V05cHAnFwV0tLtt0eGDLm7IZTR46kWyyZcXFKfHxqfDyTJpGZidkcECII\nRrh25kwmT/5w9GjGjuX11zlwgKYmi9udqGk/TZ/O3LlYLMOTkjjzTCZMICEhbDCEwQKF116ru3JS\nW4vJRG8vwaBHSj8kAMOGSa83TUrmzOH6603ffptTVnbY72+HHUIYYAn86nLdk5XFc8+xY0f6+vWZ\n/f1lsEnKG4UY1dIyZvTohQYDHk/LggWHpSwdUo7T0dFTpkwZ3dl5kd9PZiYHD3L++ftDIf2lQ1VH\npqTM7u4GaoW4uazs4alTTdA3tJTX/x8V/BeFsFutFnBJ2Qqt4IHTmhZ16lR6ba07EGgLBmvADZ7I\nuzxCRAAiL8H/CDlkQsDAQEZm5pSWlguF2CYlEyc+WVFx+aRJumekCT42m38IBrdIyfnn88orN8+Z\no9cuJHwSFfWT3/+zlMH4eHNV1UP19eefPh2CaNiSnLy5vx9dGy64gAceuHvJkhD0gQIJ8KuUwMNC\n5Hq9QA90QBgeDwYLg8EctzvTbp9nsUxYvZrkZMrKmv1+uz5p43JhMhEby+AgBw9y8iRud7+UHr3i\nFAjgdrcMDo5cu5akJE6caPX79Sp87/btYSlVTRMGw/CVK/H5upub21RVj6ZhzBgRFZXc1sbSpcTF\nsWOHZjAQDg+DxRdcgKIgRM6uXcycyZQpHDuG0ajnAzNs2DcxMa1+P9Ons3gx336bvXt3ttd7bOil\n3u33T+nrSxfi3thYe3f3ydGjY4QoG/KxcGZkJObmjnI47hDii7vu4tSpu83mRcFgMpTOndty4sQa\nPW4BOOecZysqlk2alAReGAQNfpKS9PQVPT1poZAePGmFgP7rESJEBCDC/4QHpGyIixs1ZcoIq3V+\nKNSoKCMrKnj00btgE5wLd44di99/WWvrKSGmtbaybNkV8BuUQlNBAUbjGY2N5UJM/vVX3nrrSEXF\nWIiGFZmZ5vT0cQMDtwvxlKKMqKzkttvOg1yjcd655/YcPvwvPZlyzJi3Sko8F1xwXn+/bszZVlb2\nfSi0fOjw+koIz9GjsQZDfzDYOhQ/+UF9fRRY4Nz4+LyOjqDbXe1wNEvZAmuOHdOHcBLBs29frMHg\nCARahvaQn3E69Xn8P0H+0aMCHOFwI7TB2fDr0aPJijIxMTFxzRqEoKbGFg736O+hykrdz7krHB65\ncyft7ZSXt7hcndANjB+PxZJ28iTz5zNxIomJYUUJ60WYuDhfMHiDEEjJM8/Q0DD855/zHY5dUp4a\n+i846nAsHjVqRHz8Cper6NNPz96372AweBZcAAQCBampZ9jtAMnJVFRw9dXXwy/wr3POoaVlQ2tr\nqRDTi4qe+eqrM1etMoAZxNBobIQIEQGI8P9A8eDgqEAgPzX1Zru9Q8qRhw7V7tr121D5oiwqaurI\nkSPnzqWmpjY/fw9UDA13HjCZFqSkTJ89m9ZW26WXHta0KmiGrVLuNBgW5eePSkhY5HSO+Mc/2Lu3\n8sSJIhgbDs8bGEhLSxvb2npYiPl79/LKK0X9/dNgHjA4mJeZOae9fZEQO6Vk2LC/dHS8kJOjl5Xa\nwQc3wIVSAk2KstPtzvB4VOiWsg4G4Rso09PYL730tV9+iRvKF3PDwNBNsZ4l8NTMmWYYgC5QYSOc\nkjJFVV/o75+waZNRiE6vt1FV9U7GSx0dGkhIAaWsbFh1tTsYbA+FqsAPvx0+HK8oaUbjuHXr2LuX\nY8ea/f4u8AGzZkWbTNFAbi433cRPP7F7t+ztNUtZAG2K4pAyG3A6Y5YsiTl50tzY+Gtt7bGhVrY9\nOXn46NEzOjsbhCiHpS++WFxSsl3vZo8eTUZGRmvr9Ntuo6/Pum7duXAAdkWO/ggRIgLwv87NUpKY\nyPTphUlJmY2NB+68sxJ6YasQ8XDW6NG88w5eLy+/HH/qVGo43A9+s1lKOcNi4fHHmT2bt95K3rYt\n2edzwFYpgd2atqC9PToh4broaOf7759Q1UZwwAdSOtPTE0eNymtvn3zmmQSD9h079g+ZC1XHxo6f\nOHFMd/crgcBGIa6srubppxcPzbPHwN6pUzuqqt4XIgOWffDBCIPhznvv1Uctga/j4nZ4PFdK2WWx\nZNTUPGa3zztxQoFo2FVQUNzScpkQP0s54c47qa+/IyrqT35/ChybN6+7tPQHv19fGbtHiBa3O2oo\njNcNff9h4cADDzz33nupoVAI7NADPnhQylhVfUBV/UVFcbr3UTisP3PsKypKNBgSTaYRkybx0Uec\nPu3q7++Rshe+P/98NC0vEAhUVvLII8yZw0svxXZ0RIfDUXBUiFaYrSgoSsZFF2WcOGHo7v76s89q\noQGAnubmtIGBs2JiGletGllcvNvr1fcqIu/nCBEiAvBfoMFgGHXHHfzjH6xdG/3FF3E9PW747pxz\nSEwkLo7qagYHsdnw+XTT/3iIuuwyQC0qIjqa/n68Xv1bGjBiBB7Pq3FxjB3LQw+xf3/imjWp3d1l\n8J2UwKm+vnOqqyenpLiLi09dcEG3XkUBYI/Xm3f69PARI4a7XCM7O3eMH59rMq3XtDTYLeVXQuB2\nZxuN98fFedzu4r///Yz09EmwEhKhODU1LiNjRm2tXVGsUmasXXvy1KkZ8NGQg8LY7u6lXq+amGgo\nK+OCC/b5/fNgJtDXl56VNa2p6XIh/mky/bOhgWuuuaC0NADRsCEhYYtrKDxxwgR++eWFn3+e2dxs\ngDj4LSlpw8DAOv3YnTPnlZKShEBA74E7wQX/0LRUTbsmFJpbVpbT2Oj2+1u93lrohoqDB5PN5pSo\nqLCiWJqaCARoa+sNh/XG75z58+d4vQwO8uqrhMM8/3xMX19CKGSFVUK0GAwFy5Zx/vmsX5+zf/++\nmprjv4drRogQISIA/+toRiMGA21tdHaGwmEPBAC3G7udwcF2lyt35Ur8fmtLS4uq6kHBFVu2ACpM\n/eQTYmJ8DQ1NwaD+LWJjSU8nKopx4ygs5NgxDIagEFJKUlI0n++cggIefZSOjvjVqzM7OmqkfBCq\nhTDCYiFir76aO+/kxx+Tv/02pa9vUyh0O4TguBDjAJdLPPkkqhq3dm1WU9P33d3/Lvjo682qWnDh\nhXR2pldUFD/77GawA7A9EJje3Z1iNN6WkuJyOk8VFhoU5Xfvo/Lo6MnTpo20WhcGAlmvvca6daWn\nT4+CeHh2+PCYYcMmVlXdLcSLJlN6XR333LOtuXkmpMHLBQXExY12Om8QYoUQIysrn/jb3+bu3atA\nDGxNSdnc13f1kPndaz09GYGACt3QACF4IhAYHgikud0XGAxnfv21ISrK3tlZGww2gwahxkZTdDRR\nUTQ20t9Pf7+eFBYDOUuW+A4dYtEi5s7lwAFpMGi6YWqECBEiAvBfpTEUGv3LL+L4cWy2Sre7DRzw\n5cmTLnBBIeSVlgpwqGojdIALHg0GBVwMvRUV0UIMqGqblBXggzUVFYlCxMCi7m66u2loaO3vt0nZ\nCYwfr1gsJCZy7rkUFREdHRZCSDn5yisRAkVp+flncnOJiUHTJPhBgwmXXIKm/fvL6+Xyy2lqYvNm\nTQhFTxEYOZJQaLqicPXVPPYY331nsFqj7fYMeFRRbIqyDITBwMqV2GwJ//rX8I6OfZr2uzn+fr9/\nstM5PD39AY/H9vDDR6Vsg074SMrtBsMFWVmTLJaPVLUxGExfvbps164tQwWr4xbLrLlzC6KiZvt8\nIx9/nAMHqg8ePANMsCIz05SRMba//3YhlsPYEycee++9C9esMUIIjPA8vDn097wgRM+Qq3P7kKvz\nS11dyXBBVNT4N98kHG6xWptUVU8K69i/3x8Oj9q4kUOHKClpDQS6wQcXCbE18hAQIUJEAP5LHJEy\n2NGRbLN5Nc0mZRV4YQW0SNlpNmfW1T1aWKj3S/sgDH+HBVICZwkxW1UTYBB0M4mL4SYpC4X4G5jq\n6tJaWrzhsDUUqgYPbC0uTjIY5hUW8tprtLUNdHXZNa0bvAcOqJqmStkWChX8/DOnTtHQUON2W8EB\nrsOHjYqifykWCx99RE+P2tHRqWk9YAJSUjAaA3Y7fj+lpTQ2hvx+F3hh2MUX/zuN3Whk0SIOHtRV\nR5EyF0hKIhi8SAimTWPZMn78MevnnzPd7hPwF/hRiAmA2cxTTxkOHBh58OCh55//6T92zQ4Gg7P6\n+9NNpgekrHvllTH5+QdCIQd89x898BddrlYpKS9v/uGHKXAY3jKZ5syc2V9evnhwEHDHxDzX1nZ9\nXt4wKb3gBAmXwF+kBD4WormuzgB9mtYEVnDCsx7PIgju3h1nMuk7d9UQHOq+RIgQISIA/wVekPIW\nIbJUNQx2UOFFRcnUNCDz449Zu/YGg2GpqqbAtzEx40aNGmho0HdxD44Ywdtvd1x//SU+X0l2tjkh\noaKm5i4h9Nj3R4XI9PlU6IIeCMADUt4RDgebmnI7OwPhsNXvrwU73OFwZIAKuRCurU1ubPSEwx2q\nWgU+eL6vzwj613kGw4jvvlM1rcPr1aMCAvDt8eNmUKBg+/b4U6eCPShRRT4AACAASURBVD0VLler\nXmzZtcuiKBaDIT0zkzfeoLXV1dXVqWndsHrePCwWTKb4Q4eYPp1Ro4iNDRsMITDAxeecg6p2nTjB\n1VdzzTU4HIZjx4TXGw8bo6LcJtOgql4qBAUF3H47W7bkHTq0r7W1YqjPsUfTFlmt0QsXZtfXJ9bV\n7f7zn+ugAw5KuUKIOV1dyTk5U2pr9wlx7m+/8eGHDxsMX6nqfmgsKMBiOV5Xd50QT8K9R4/ePWdO\nNDjBAyHYJCVwixA2ny/e59OHo/rAHXkfR4gQEYD/d6yRMlaIXIiFE+PH09//XF9fl6JUSnlmauoe\nVZ0BG6V8XYiszs6kvLwz6utfE+Kxt9/mhx8qfb7ZsM9uX5yePi45+ZK+PqDdbH7j5EmuuGJGW1s8\n7B42bH1vr94sfVyIXLdbggNaIAwz4JGhu9eHhEhT1dCQt9rg0JGns1yIES6XAv3QAEFohcfADFdD\nqLs7xeEISGmXsgoG4UmfLwai4frBwTy7PRAOd/j9dWCDzUeOxAoRI0SUEOmbNnH8OGVljYODdhgA\nmpowGPo1LePQIfr6OHrU6vM5oB+UBQviFSUevMXFLF3K2WdTVqaUlOD3xwEjRhAK3Wc2c9ddLFvG\n++/HWa0xAwNdcB0Az0h5xGyem5x8xpgx2GzVS5akxsdvVdV2aNRzxGbMGBMbu8TjmbJsGR0dT0RF\nfeD3r0hMzJ4woa6k5CEh3pZyzVNPERu78MknQxAD4YjZZ4QIEQH4/8KglMBSIQaampKuuMKYkJCx\nfbu/vf1Hh6Ma9BHJ5VKuV5SrExIKo6Mfi40NP/FEeSBQAZ9JeZ8QU1tbM3JzJzqdLwjx3F/+ws6d\nJ63W+fBBXp5ITh7Z13eTEE8L8eqJE9x++4JTp4xggJ25uSfa268SYoOU/qSkt4uLA5dcMqe3Nw4O\nTp5cVVl5nxAfSgn0Rke/XlfHJZcsrqtTwQQvC/GOlPukpKCAQ4e46qoHjh5VoRMELIK/Sgk4LJa3\ngsFctxtwQDOE4WEpY6S0wF8gdPx4YlmZMxhsGxrffKW93Qi5YN6xY1hRUbfH0xQI1EMQju7ZE2sw\nxBoMSFn466+UlnLiRJvf36MnrqSlYTTS10d/P8eP09raHwq5wAeXTZvGqFF4PHNTUli5kuho3nkn\npbT0oNtdOZQdvy0cnmO3JyQn3xIf79qw4eS6dR3QDcdcrmwhRiQlze7tdcXGJpw4wYUXXgN74cfI\n0R8hQkQA/n/hr5A0bhzLlzMwQEWF0WaLCodVkNHRAVX1a9rZQH8/zz6L2Wz84ouM6upcVV0qxCYp\n1wmxbPjwEenpj/b0NH/1VeHEiWWq2gvH7PbZhYX5UVGzfL5xS5ZQUVFbVTUN3pey2GwmOXmSy3W7\n0wlE3Xcf69cf6+ubB5cpCibTmKSkRXoYAAx76SXWrj3W0DAabjQa58+Z03fq1H2Dg2uEuKW1lfvu\n21dS4oMd0Dx6NEIcqqvTdSV19epXampOvvTS/9befUdZVd77H38/55w5085UpgBTGHoTFAEVEDWC\nomBijBU1XqOJ8cpPY4slESNIgin2WKJRxIKiCIpIUXoTxikMML33fs7M6XU/vz+OwzLXX3Lv+l2T\nlax8X4v/NnvPnH32ej6z936e7/feSMQEu3NytrS3v3Vq3HzvvceWLk0LhfzQAdFKpS9rDfxEKbvb\nneJ2+6ADWsAHPwuHh4XDaXA5RLZvT7JaezyexlAo2q79vcLCGEhWKvv99y07dgx2dlb5fE3Rwqh2\nO4mJ5Ofj95OXh9OJUv6hdcvk5uL1rkxIYMwY7r+fgweT167N6Ooqgze1vk+p77W2WnJzx9ntx73e\nc9euPdLaelJGfyEkAL7tewEPW7dit9PZ2WcY0dbq6sIL40ymuOh/6OzkvPPo7SUhIaSUhgywWywz\ngZYWLr88wesdvW9fRXm5G97V+hmlzhoYyMrOntLUxKOPctddJcHgAADvh0KjWlpG5uefXlXVbTJ1\naX16QUGZ1p2wxTBmNzdn5OdPGRx8SKknMjPZu5eFCw8ZRgfsD4fnHjuWnpd3Tn//qP7+jaNGFZjN\n72v9p1MzO2fOHN3cPCcQ4JJL+NWvXHfc8XkkkgprMjPJySno7LxVqde0jnYpuDc19fyBgRiwwRtW\n62vBIFCi1KsHDvDnP1+xdm0EIrApLe0jh+Oa6Jg7ciSFhc/n5SV5PNEH8T3gHnoedZ3Wzvb2pI4O\nr9ZtWpdDAJ5saUmHVKXmpaRk/e53BIPuurqWSOSrZmHDhxMfj9XK2LGMHk1JCSZTQCmt9Q1K3Q09\nHR3DU1NnTZ2q6+uLnnhix9deRwshJAC+BZWQ2dw87aWXIuFwg8NRaxj1EIbCzz6LNZliTaY4k2l4\nUlLcM8/gdocaGzsikW4wQ/p556WHw9hsPPYYR45QURHjcNgMY6lS72rtsFrTCgouzskZmDu3KBL5\nYmjV0tNar1HqP0KhnIULcTqzjx0raWpyDNVs2Ggy/SA3d/ywYff39Z3s7T3t6af3dnVVwSatW61W\nbruNJUv485+zPvkk0+N5LxJpGvoUh/z+aS7XSJvtfrO5fseOsXb7doejGj7SeqfZvHDy5AKbbZ7T\nybhx7N7NxRdvHhg4HRbCjXPm0NAwvbsbOPOHP8ThaP/gg8kQhMdHjLBmZk4aGNil1IKUFMrKuPfe\nmSbTKsMIQgz8wWR62jCata4zmcaVlS2dPj1b6yB0gwkS4b5oBVat/zAwMGb/fhP0hkINWteDFz4o\nLrYpZYJF7e3Y7dTXt9jtHVp3wjtz5+L1kpTEE09QXKyeeSa5sTFH6xK5XoWQAPgW3af1aqXqOzrM\n4IB66Ic++Fk4bAMbJMINPt+YTz5B606/v17rWvBD5RdfZMTGZk6ZwvbtHD/OwIBd66/axeTlpV12\nGXfeySefpL711rC+vlzwxsRYlLKYTD+Kj2fRIlavZscO2tvjvd4Mrb+v1LJoLZ2GBr7znYyBgYyS\nkpI///kQPBsTQ3Z2akICBQUkJAA+pQKgYOvw4aSkhAOBRSYTEydy551s3Ji3d+++L788BK9rDRwx\njLO/+CIpM/MWrZsaGg6PGpWp1AF4Q2sglJsbk5tb0NMTSk6OOXGCxYt3e71t8KbWu8zmBX7/9DFj\n6O6uGhyc9PjjRRs3vmMYHlhuMi087zxXScnZTicw7g9/4MiRx2NjXwoEPoO6Cy/sO3Lkba+XaAXW\nO+5g6dLHzzvPCoMQ7fcyCDdBgda3gLWuLqulJTp9NlrYufHYsZykJGt+PsEgAwOEwx4IQLpcr0JI\nAHy7Htb6SqUSIdpt6k2b7VO3e+mpZ815ef/Z1jbR44kZSogInIRH/P4lfv+5ZWUTOjvdXm+t3V6v\ndRO8lpdX09U1oaCA1NToAaLLuxKuvvqrGfqGQSBAWRnV1Xi9g+CBj84/H78fj4fJk1m9mm3baGmJ\n83jStY69+24GB+vWrJnx9tts20ZFRb3P1x5Ni9xc4uMtVmtWURGLFnHuuRw6FG1OGQ+kpBjB4E1m\nc9JNN3HRRbzzzsidO3N8vo+GHhwBJT09Z/t8MzMyXA7HkYICs8l06mZlQUoKjz1GVhbPPZdRVLT5\ntdfeBTvs0/oJpRZ2dyeNGDHe6dyh1KLjx/XFF28PBNrhLsDhyMjKmtTUBLBwIS+8wOLFo2EVpMEX\nc+a0FRevCwa3RH+H0aPva2oa4fMZX5s+u9Lr/a7Xe8nRowmPPkpvb0NPT6vWbXKlCiEB8PfwodYm\npR6Bh0eMiE9LO72q6i6lntO6KyZmeGXlSw8/vPfDDx/ROlp8+P+cqkIzevQLTU3lzc0G9GpdA254\nqrX1DKUmbN9OTQ11dbVOZzt0QeXGjRGtw1pHtB6VnJzR0GA4HCft9iatW8FTXp4YF0dcHD4fhYWU\nl+PxRLOh+YUXOgOBkkjEU1pqM5sHQ6EWwzgJfviwqCjZZEo2mdItlvGbNnH0KIWFzX5/T3R+zpln\nmmJiMouKmDOHyZNPNYqJAYYNIxDwB4NnjxnDAw/Q2Ji0dm12W9tew3gxI4Nx40hPJyuLCRMwDMxm\nP4QgBZ41mcqUGg3h5mbL5MkXjB7tam3dPX26C44NlfvvHTYs0eVaYLU2KFUI191448cNDXuhSutX\nlcLtzs3OPrO1dYlST8OEsrInV678fOPGB7ROhm0pKe8NDt6i9UNK0dMz3G4PGUZ3JFIDA9HpqkII\nCYBvnaE1sM1svjQra3J6+h19fYVKnfXJJ7z77smPP/5Q64Na+0eOjMvPLyks/JFSLyUkxFVWLrvr\nrps+/tgC/WCGK+EGrX+vFDU16Q0NnnC4PRKJllB+MBAIQRAi8GO7PWtgIKR1t9ZV4IWVfX2pMBq+\n09+fXV8fGhgodzgatW6DR7ze3mgf9nA4NRz2QRv44Uq4QuupSiUbxp3hcGj37qShhbLRks679u+3\nmUwpZvOkd99l506Kipr8/i7w81VB/ziLBZuNefMIhYiNDUeL+F98MS4XAwOd1dUjnn4awwhUV7eG\nw51ggqx587L8/tOdTubO5Y47ePfdpLVrU/r7C+GnsEupPrg2P5+bb6a+fsyePYNO52+KipqHuhP/\nROum5OSCKVPGdnbODocnPPwwpaX1W7Zs0/pKeGTiREymcYODVyr1fEzM/aHQ2FAI6INBCPzlCgkh\nhATAt2yjYUxrasrNzp6Um0t9ffl3v5udlPRJKBSdf3Kst/ec004bpdQvtN7s9V7zzDMlW7bY4F1w\nFBSQlHT0xInrlVqn9b1KZUUi0X5Vg+CF8KnSBenpFBbeNX480AsR+Bk8AZ9ovUypoMOROTgYHsoG\nD7TDbq33KXX+hx+ycuWssrIE2D9tWm1FxXKlyocWynb6fMk+39ebU95jGPGGcUc47Dt40Gax2AOB\npqFZ/1sPH7aZTEkm04yCAn7zG5qb7T09HYbRA7euW/cDpZxam2Hcvn1m6A2FGrWuAh/UFRUNT0zs\ndrnGLlmCz4fbHTEML4Rg9oUXEgoRDDJjBvfey3vvUVxscrlsWvfBDqUWaQ0cdrmySktHZ2U95nQ2\nrF59EPzQBU9pXZOYOGH27Ly6ukmh0MgnnlgXCJQuX35dJJICGr6U0V8ICYC/q1e1ZvJknnkGu53f\n/jb55MmdLtcxuAqAiSYTSg1btGhYYWGkv//Fp5/uhBZwaF0SG3vmnDmj4uLO9PsZOfKpQ4ecS5ac\nNzCQBAfOPLOrvHxTIPDVz3jlFZ5++mqlbtT6k7i46dOn9xw/vtjvB5bCuTt33rFwoRoqGf1mcvIu\npxOYnZJCTExvff0COEspDGN8ZuaFXV3RQ76ZkcGmTRfOnx9dKPtxaupHAwPXRUfMadN+c/Lkfyna\nfK/W8ZHI0khksKEht7MzEA63BwLV0BWty6a1H0q3b191ySWn+gRoqIJf+XwFPt+FSo3dvJniYpqa\nKl2uVuiD4MmT1piYI52d56SksG4dhw+7XS671gPw4bx5eDyMGYPLdZ7FknDrrcyfz5tvjti7N9fv\n3wjrtAZKvN4J4XCW1ncptf+++84bMWJ/JHIafChDvxD/MyY5Bf8b+5UiNRWtcTgIBj0Q7Z9+/cyZ\nTJ2aNnMmv/89t95KTk6c2ZwC9RB9mflFMIjTOTwzcyrw2GO89tqXg4Nnw7WAwzE8N/csuFopzjyT\n3FznunX7tJ4Iu/x++vuzcnLOhCuVOnfaNCKR5YmJiVAOz6elxefnz4iJeUmphEWLOHiw1uNxwRta\n1zQ1MXLk5NjYF5UCuO8+1q17VKmpsHnkyLi8vMlK/VCpCqV4881fXHrpW7AJyuGF5OQroErrUq0f\nmD59aySyze3e7fcf1LoYBuBdrb/QuvQHP8Bs/qnN9gZ8Dm9NnfpTGA3vaP1rrY9qvb2h4cjhw7tb\nW0vD4ePggxU9Pava26sNo+7QoeCzz3bt2XPM5aqDPhiorKS/n7g4Ro8ekZrKnDlMmnTqnYQV3DEx\nLSbTWUphNifedFP2uHETzeZNnZ0VMvoLIXcA/zBt0FNVlbVqFW53R0tL86n+6XY7cXFEIpSUUFPD\n4OCA1i5IhHaTqUHrZVr3DBuW5fNdmpDQfvvtxVpXQg38KVruZvr0SRbLm1BdWjrxV7/aOzDQBJ+d\nqrF8xhnjOzsXe7389rc8/3yRx2OHCq3fUOrm5OSc3NyfdnS4N26sC4cbwA6faP2iUhMGBobn5JzV\n0NAWG5t7+DDf/36Z1i1wuLv7O/n5Y5OSLnY6p9xyC1VVDbt3z4EUWFFQQELC5MrKpUq9FBubWlPz\nu1tv3bpz56/BCntmzmwoK3tMqQcSExMqKvje93a63bPgFwkJZGXl1tRMiPZqP+usXzQ2/ufo0dmG\nEW0T5gf3UKlnHnjgxd//PsPrDWndDZUQgl/b7Vl2eyakKzUlLm7c22+TlkZR0anm9bb5822GQW0t\nDzxATg69vXGtrXGRiJIrUggJgH+Y67V+V6n8o0c19IbDddABLni6sTERFiQmjn3iCbzeyu7uBsNo\nAgNyZs/OcTrJzMwaNoybb6a6OmfLln67vQb2aA18FA7PHRhIXLaMqqqJhw4VfvZZ8dBLUWBHMDir\npyd92LBbk5MHvvvdkkjkyNDWm7XebbFcOH++6ZprbLt3jy0r6wkGo41Q7hjKlVlpaQQCTbNnf6F1\nLWzVerlSF3R02Gy2H1qt/W+8UfT6653QD89ofdRqPfuss8Yp9SQcCwQuePnl0j17tsAhrd9TilAo\nx2R6xGpt8XjGPPfc0RMnossF3lNqQjhckJr6w97ej5T6flsb1113OVwPI+HkrFn7iopejn6YK65g\n5co71q+/rqVFgQvMcDNcoTWglBql9Sqfz7NvX4LF0v+15vVlhw4Ns1pH2GzmoiJOnKClpTccHgSz\nXJFCSAD8I70HU8Ph6Kz/PgjD+0OD9StKVdXWonWf1rVgh/8wm5vKywtSUxk+nLlzuekmPviAPXtw\nOGK1Zto0DOM2s5krruDee3ntNcrKLG53MmCzGeFwwDCWmc2MHh3tJZn65psZPT0ZQHw8MTHExMxP\nTubHP+bss+noiKmstASDGeCzWr2RyDDDICuL225j27ZRO3e2ezxlsE+pa0CNH8+yZezaNey997L6\n+8sgWggoNRTC50u77rq0wkJLY+PHq1cfH2pscJ3WjBsXe889VFaO2bu3+MknP4NmACYBLS1qypRJ\nNTVJ3d0f5OZmKrUJ7Fp3paWRkZFpNqdEIsyYwUcf8d3vftjSkgjroSMrKzk39+SxY7cp9YrW/RZL\n+o4dHD/+xD332AIBL7SACwbhwWAwLxi82eeb/eqrVrO5obe3NhxuiHbcFEJIAPzDfKy1UmoMpIMJ\njn7tGfRamGoYVrBDCB5U6tZI5GyPZ5LHM7ujY35yMi++SGnpwOBgj9Z2wGwmJsatFHV1rF9PYeGg\nx2OHQWD+fJPJFG8yxStFbi5jxvxFL8mrriIUIhRyfP551oED1NZSUdEZDNohAPELFsQrZezbx6JF\nXHQRJ04QE6MhDs5fsqR6xw5OP50pUygqwmIJRR9hnXEGgcDEjAweeoiJE1mxIqG9Pd7n64bNBQWM\nHVvT3Dzhzju56y7WrqWoKDp759OMDNLSpqWmsnw5U6awenXK55+n+P3rh5aS1blcw+PicqPrvz79\nlBtu2HHixA54TevX4DOz+eKxY8eZzb+FL5WaXVzMpk3NTz5phrch2kjyAXgGtmsNrFSqvaMjFga1\nbh7qxSaEkAD4h9J/5cXjIa2BbKU+jok5Z+bMgRMnfubxRFtZvaJUSklJbk3NoM/X5PXWQh+sKSsz\ngQXS9+zJKS7ucTrrPJ46cMDBzz+PVcpqMvWEQhdNnkxvL7W1p3pJHlu/3m8YAa29Ws/84AOb1do+\nOFgXDNZBGI7t3p1oNgcjkczt26mt5fDhJp+vBxxAaWmXYUzcvZvOTiormwcHO6EbCASIiQmaTNaq\nKrq6aGvrj0S+Gl5HjcIwBpubqapi7VoOHhxwufq1HgCmTcNsNpeXEwrR0sLgoFNrL5ggEh/fGwic\nO2IEw4Yln3/+lKNHC3NyPoXuUy8DoMAwMJnifvrTuAMHxpeXb5s5s8BqfT8YPA5HtHZkZqZNnXr8\nwIEcwwCYO/fR8vKrp05Nhei79wh8LG+AhZAA+KfSrfVKpc7p6krNzZ1WXX2tUuu1vtlme9btzvb7\nw9AN9RCEn4MFLgeP05nucgW17oRqCMK9kYgFbLAIYqqrsxobPV/rJXl/KBSGMMyGLrs9MboQDNrA\nAz8PBtPgMmD//tSjR+1eb1MwWAUheKyjIw0sJ09m1NS4Q6G2UCja8PKlqqo4mGg2z/nzn5XF0trd\nXRMKRbuxb9q3LwIeSDtwIKesrN/tbvB46sAO2/bujVEq02I5/Y9/xGp1NDXVB4MtAJjPPHO4ycQZ\nZ/Dgg7z1FpWVVq83VesV+fkUFAAoNTY9nWXLmDkTuz22rs4aDr8aDNYOdQKocDjmJSaOiIub4PUG\nbLbYqiqWLv0hbIZDYECrjP5CSAD8E3o02uVq5sxxiYkXezxfKjV7x46fb926+NlnzRBtsviToYoR\nXXFxw4uKbpw2zRh6L/r9oVpsZGVRXPzz/Pz/0ktyZ3Traafx8ccsXLi0qSkAYTBg1tCsebKzn+zp\nSfH5/NAO3eCFF7UGfqlUVjgcXYbWA36oh1fh55FIV2trLDi1boFGcMNyiMBZ4PZ4MjyeIHRBDQTh\nAa0tWt8SDPZUVsYqNWAYzUPL0w4fPRoPM7Ky+PRTSko8Xq9Daxd8NfoDWjtPnEgrLKS5mdra7lDI\nASF4WandSl2odXkkMs/lykxP/57XG7t1K08+WXj48PavvR4XQkgA/JP6PBQ6p7s7LTf3psbGjlAI\nrXtee+1sOAIfZGcn5eScOHbsFqVe13r4XXfx0Ud3m0xrDGPdmDHExh6prHxPqeuSkzl2jIceuspk\n+g/DSIAk+Dwt7QOHA+iLjc2orub227c1NSXBZXDDzJm0t3/S1QUUKnXWzp33vfPOwjVrImCF7RkZ\nm/v6AHJzf/3FF+7Fiy9wOJJgz5Qp9PXt7+mpgEfGj7++tjYNPOACA+bA29EBd/58Vqy4ZsECwANm\neBB+C5u1ZuTIOzs7k8AD0YVnc+Bnkci9kL1798jSUvvgYLXL1QB9sGn/fiA6hCebTLPXrbNZrc12\ne20w2AARyJkxI8fhICnpMqVwOJg4cWIw2HTBBQe0roMmubCEkAD457dcazIyuPrqmNNPH7VrV/kl\nl+yCBtgWLcE/btwYm+18p7PNas0tKeHyy4sMowdK2trOtFrPyciYPjh41Ok8e/XqkvXr3zGMHDgL\nVo8ejc021uFYqtS7H3/MmjXHdu3aMvRUvT8zc1hBwdienjuUenHxYgyj+4MP5kAX/C4zU+XmTrDb\n71Tq+Tff5OWXjzgcM8ENFU1NU8aPn+Z2v+bzldfWrrvqqm0bNvwfqJ86FadzT2vrd5R6Ranxx4+z\nbNl1sAUeGVqffInfD7BixfNHjuxas+YerY9PnEggcKipaRccBN/AwLDBweijrQoIwiNDo7+G7xpG\nV09PglJurVugJVrbrqZmVHo648aN7OvjN78hKYkVK2yHD6cEg42wVf78F0IC4J/fMaXOuOIKHnqI\nPXsoLbU4HAmGEQTggGEs7OhIzM2dVFGRu2wZW7aUNDd/1c5wxAjuv59AIOGNN4bX17/96qtlUAu7\ntAaOxcWdERNzTmrqJJdr3+WXn5acvDUcPtUG62h//+Lx48empDw6MHBo69Z5PT173e42WKP1pybT\nkoKC8ampvxoYKL7ppinDhhVCGRzR+ndK5Xd1pc2YQUzMiGPHKjdsqId6rWtttvGnnTauq+uSUGj8\nbbfx5ZfVR47sgde1flqp6XZ7Vk7OjPr6SFqaeefO0C9/WaR1Ohxvbp4+ffqErq4lfv/tEyawbt0t\ns2ZpsIMZ1iQk7PB6ox3ESpWasWMH69ff/PrrPgiAAdXwhNs93e0e39a2cMwY+vro6GBwcNAwPJAo\nV5UQEgD/EpxK0dXFhg2UlRkDA9FpM/HgsFiugOL29plpaWfn54deeqksECiBXjis1NzzzuOii6ip\nISEhrBTQD9tstmBsrDscPiMvj7vvpqsr9Z13Rra3b3Q6q4eahQH5WuNyxS5ePLykJLa2dltR0X5Y\nozXwmdZL+vstl12WUVGReOLE0f7+dngESpW6Fmz5+TzzDI2NrFqV4HKlRSJLlboIxns8ebGxD1os\nTa+8UrB376FgMNqM+J5oaaMZM+b09YW83vJZswaVaoK9Wj+l1PT+/jStb09I6KqtLZ0162rYBOfA\nsqys5GHDZtXUrFbqYa1nLFqE2dzz/vv58CpEoOdrf92PV2pzW9vkJ59E646WloZwuGXo1kEIIQHw\nz65W66xjx8a2trq83rrBwTqtW+H1M84gNjbN68XvZ8UKurtjXnxxWH19nGGsv/tukpJYu5ann6a3\n19/W1mkYPdHq/LNnW2Ni0pUiNpYlSzh0iMTEiFKm6HTUqVMJhwmFxiYnc889zJvHqlWJra1xbnc8\nkJ0NPBAby623cv31PPtsfH19XCCQDZddeeVXTXcrKqivp7oat3tQaw/Y4Efx8SQmsnIlBw8WfP55\nYXV1M1wFHykFnB0Tw+TJXHllzIYNeaWlbaFQtBb/vVqTl2d58EE6OoZv3lzQ07Nr6AnVBpPpqpSU\nMSNG3NLR0W4y1Wl9vsOx1+1uhc5vPNip1folpVorKy1K2SORRmgCl1xVQkgA/Eu4VevnlBrR3h7R\nuheqwQvbysryrdbRyckJZ5zBhAl4vZjNAYgAmzf39PWdcLtHb9gQNowOv79W60bww959+2xmc5LZ\nPHHUKJ56iqYmd3d3l2H0wptTp2KxEBeHxRJwOOLr6wkGaW7uDYWcEABOPx0IHThASws7d1Jd3R8M\nDkQbwhQXh30+ZyDgjkTyf/1rPJ66jo4mw2gGDc2RSMGll3LVjc3AvQAAC4BJREFUVfT2cuCAdrni\n4Yp58776eM3NXH01I0dy4ABmM6FQGnDOOQBz53LrrXz2GXv30tdnNYwblHoc8qCwufms0aOzf/AD\nysriGho+LSw8dY/yTe/AGYaRAE5wQAQ2yAsAISQA/lW8ClO1toADYsAJP9F6TiBwY2/vZRUV5lWr\n6O3t7+hoN4xO+ElDgxkSYIzbbQY71IIB6XC3YaQYRkYodE99fX5nZyAcbvP5qqEdXi0vt0AMWGC4\nyTRv7dqY+PjO7u7qYDA6i3/7zp06epxNm5J37err66vy+RrBC6ubmqKFFmZBTnm5hj7DqIN+uBQc\nhlFw+DBuN4cPd7jdvdAP9PZGP5rd7U5//31iY6ms7AiF+qJlZgcHAerr+dOfqKjw9ff3GIYd3lmw\ngEhkjN/vq6jg/vuZO5df/9rW0ZHg8cT+9bN3UGtghFIZYIZjMvoLIQHwL+SE1kCiUqnQ/rXxa7lS\nMR0dedu3hw2jKxSqhQ7wROfv33ADkydfsHy5ghj4LCPjs76+Z4b2fUSpXKcT6BtqPnwI3tB6pFJW\nuMkw+jo64sGtdSvUgRd+obWG0g0b3r3qquTeXq/W7VAFfng4ethrruGuu+6cPz9a3cgLAbgN/hAO\nxx04kFFcbPd6m/z+GvDCczU10d9krFJTN22KNZk6PZ6GSCS6eO2FqipgrtU6qrnZEwg0eTw10AGV\nhw6lWa3p8fFhs5m2Nr74gvb2/nDYCcH/7hx2yrgvhATAvy7PN4awx7W+Xakxfr8J7NAG0WW9RUrN\n2rmT+++/BbbB6qQkcnOnOp3PK3Wn1kycuKq42HfxxZf190e/yC1paZ85HEBH9Eds337tpZcOA/9Q\nd9yNWlcrNfFPfyIYvDg5+ZdOZwjsYIKvGtJnZ1NczOLF8+B+aFuwwCgre6ev7yOtr1dqwOdL8/mC\n0AGt4IfDQ319/1OpFqczDlzQDA4YgGVaA79VakRfnwHRB19h+KXfP9zvz3Q6LzKbz33jDeLiejo7\na4LBJqnmJoQEwL+hl7UepVQaJMGBmTPdNTWfulyzxozB7W6tri6Gd7V+VamfuFw5OTlzGhsPKnXu\noUM8/vje/v6xYIVfpqbG5OVNc7n+oNT9WrNkCfff/0JS0h9drscuvpiKivfa2oCJq1aRl+e98cb1\nTqcLbjGZFpx/vrOo6D2Xq9ZkGl9ayi9+sf/kyb1wA9DRYRoxIq+v72qlPli5Eptt8b33RuNr27Rp\nodbWPQNf9V1/6bHHMIwlK1d6IR62jh5d0tR0jVJPxcQ8WFGxeMqUGAiABfrgyFAErlSqt6UlQSmX\nYbRADfjkUhBCAuDfULPWwENKedrbbfn536msbG5oGLV+fYXP5wXgJ1p/YbWeHRMza/x47Pb2c8/9\nQuujQ5Nq3lLqh5mZ+SNHLm1trVNqXGMjV1+9y+VqBrq6Bjo758BWpRYfOMDVV79rtx+Bd7T+rVIL\nuruTR4y4wuNpNAyKiurff/8TrU/AIa1bU1LyZs8eYTZnRyJcey0LFiyBfZANLc3N+aNGne7zrVHq\n+/HxaV9+yeLFl8JuuNdiISVlSnLyE4ODPaFQ7ubNq8zm1yORP37j1udRrW9UapjWXnCAln5eQkgA\n/Dt7QuutZvPirKys732P0tLO9evd0DC0NU9r0223ccklvPZa9tatWR4PsF6pa7X+odZFsbGzxo7N\nWbSIEyfax449ZBj7YYXZTHp66hVXpB4+TGfn2/PnAweG6g4tAPx+5szJTEhIqKjY/eMfV0LbUB3T\nky5X3uHDExMSHvN4dk6caFHqxFC3g5eV+rHDkZ2X96PBQVyuytNOc5pMlbBR63uUmtTamlFQMCY2\nlqqq8oceOjDUsvib3tY6UamRYIVyGf2FkAD4N7c4I4Plyxk9mhUrEru7E/3+8cB555GQkGqzMX48\nqamYzX6lgqDg2tNPZ9IkAoFZqamsWEFeHitX2vr6kgKBIOSPHcvjjxOJ0N0d19ubGAp9BGszM8nK\nAnJjY7ntNq65hqeeSmxqigsGe+E5k6nFZPJofWleHrffTldXxoYNeV1de7S+BDYpBWSBo6cn87bb\nOO003npr5JdfNgWDLmg1mR5WKiM3l+eeo72d1auTKioy/2azRo+M+0JIAIivmM00N9PXR3e3PRKJ\nFgTF6aSnp8Hjmf7WW2zdyokTDT5fB/gBn4/YWGw2wmF6enA6sdsHDMMNVkBrSktxOunttRuGExKA\nGTOiPyp08CBtbezZQ11dfzA4CB7IvPRSDINIBJuNpUvZu5cdO3R3t0Xr719wAUp99a+6mkWLGD6c\nLVsiJpMGG+QtXYpSNDbidNLRgd/v0toHyfK1CiEBIP5bRX19s156CbO5o6OjLhxuAg2vlJX5IA7c\nxcU2s3kgFGqJRE6CH16oqUmAeJhktZ7x/POYzV2trfXhcHQB1/GWlunPPEMkUtfdXR+JRFcD7Pj8\n8+jP0pC+YUPijh19vb2VPl90oVn97t3xFkuCxZKam8sf/0htrbe3t9sw+oCWFrQmWrba6Ry+di1x\ncZw82RYKdYMJerZsCUYiFotl+MqVuN3NbW3NhtEiX6oQEgDif2JPKNTR0BCr1KBhNEM9uOFR6NL6\nEqVaQ6GUUMgHbeCDAXhFa5tSKfBAMNhZW2uFAcNoGtpxdyDQ2NhoBofWDdAJjlNT/mERDHZ1JfX0\neA2jbWhBwC99viRIhOvd7lHt7b5gsNnrrYYOeLKhIbqOTMMEpaZs3RprNnf7fA2RSBUEYbnT6YeL\nIbekRENvJFIHPdGulkIICQDxt/1c6x8plaK1GwbB+NrcmO1aK6UmQhIkgA8KtQbcWgMzlDrbMGzg\nBjsYsEHraUrN1DpaQcEPoW/0TbxCqRGGEQQ7KGj/2jTNx5XKsds19EIthOG+r+17i1LNXm/80Nx/\nFziGDr5EqamRiAWiDY1DUrZBCAkA8T+0RutUpbLB8o25Mfqvj6SlWgOZSmWBBcq0Zmj5cZpSGRCB\nhm/svklrpdQoiIOqv9y6XOsFSsVBCCzQ+5c7vq71eKVyIQLx4Id9Q7t/qrVSqgDSQEGxjP5C/FsF\nQHe3SU7u/0Z1l/r/O5Mn/187Vv3No3X99a3rutTf+FoP/vWtXV/bJBeDEP97MTEp/xoB8PzzZ8m3\nJYQQ/3Z3AJdd9j05rUII8XfQ8M8YAH19YTgGWimL13tYviUhhPg76esLDQzwrbxZ+3YCYOtWo6/v\nmNWK2y2v+4QQ4u+ot5fycuz2b+FQSn9LMzTOP19lZeGTco5CCPH3pDWGwbZt38LQ/a0FgBBCiH8t\nMj9PCCEkAIQQQkgACCGEkAAQQgghASCEEEICQAghhASAEEIICQAhhBASAEIIISQAhBBCSAAIIYSQ\nABBCCCEBIIQQQgJACCGEBIAQQggJACGEEBIAQgghJACEEEJIAAghhJAAEEIIIQEghBBCAkAIIYQE\ngBBCCAkAIYSQABBCCCEBIIQQQgJACCGEBIAQQggJACGEEBIAQgghJACEEEJIAAghhJAAEEIIIQEg\nhBBCAkAIIYQEgBBCCAkAIYQQEgBCCCEkAIQQQkgACCGEkAAQQgghASCEEEICQAghhASAEEIICQAh\nhBASAEIIISQAhBBCAkBOgRBCSAAIIYSQABBCCCEBIIQQQgJACCGEBIAQQggJACGEEBIAQgghJACE\nEEJIAAghhJAAEEIIIQEghBBCAkAIIYQEgBBCCAkAIYQQEgBCCCEkAIQQQkgACCGEkAAQQgghASCE\nEEICQAghhASAEEIICQAhhBASAEIIIQEghBBCAkAIIYQEgBBCCAkAIYQQEgBCCCEkAIQQQkgACCGE\nkAAQQgghASCEEEICQAghhASAEEIICQAhhBASAEIIISQAhBBCSAAIIYSQABBCCCEBIIQQQgJACCGE\nBIAQQggJACGEEBIAQgghJACEEEKc8n8BV6onOVwQeAcAAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.thermo_style(\"custom step temp epair press\")\n", "L.thermo(100)\n", "output = L.run(40000)\n", "L.image(zoom=1.8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Queries about LAMMPS simulation" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "System(ntypes=1, nimpropertypes=0, nbonds=1014, nangles=0, orthogonal_box=[58.2767, 40.3753, 1.16553], ndihedrals=0, yhi=40.3753, atom_style='bond', bond_style='harmonic', zlo=-0.582767, improper_style='none', xlo=0.0, style='lj/cut', xhi=58.2767, kspace_style='none', zhi=0.582767, nbondtypes=1, angle_style='none', dihedral_style='none', dimensions=2, natoms=361, boundaries='f,f f,f p,p', ylo=0.0, nimpropers=0, nangletypes=0, molecule_type='standard', atom_map='array', units='lj')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.system" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "361" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.system.natoms" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1014" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.system.nbonds" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.system.nbondtypes" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Communication(comm_style='brick', comm_layout='uniform', proc_grid=[1, 1, 1], nthreads=1, mpi_version='MPI v3.0', nprocs=1, ghost_velocity=False)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.communication" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[{'group': 'all', 'name': '1', 'style': 'nve'},\n", " {'group': 'all', 'name': '2', 'style': 'wall/lj93'},\n", " {'group': 'all', 'name': '3', 'style': 'wall/lj93'}]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.fixes" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[{'group': 'all', 'name': 'thermo_temp', 'style': 'temp'},\n", " {'group': 'all', 'name': 'thermo_press', 'style': 'pressure'},\n", " {'group': 'all', 'name': 'thermo_pe', 'style': 'pe'}]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.computes" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.dumps" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[{'name': 'all', 'type': 'static'}]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.groups" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Working with LAMMPS Variables" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "L.variable(\"a index 2\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'a': <lammps.Variable at 0x7faf041580f0>}" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.variables" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "L.variable(\"t equal temp\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'a': <lammps.Variable at 0x7faf041580b8>,\n", " 't': <lammps.Variable at 0x7faf04158240>}" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.variables" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "2.0" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import sys\n", "\n", "if sys.version_info < (3, 0):\n", " # In Python 2 'print' is a restricted keyword, which is why you have to use the lmp_print function instead.\n", " x = float(L.lmp_print('\"${a}\"'))\n", "else:\n", " # In Python 3 the print function can be redefined.\n", " # x = float(L.print('\"${a}\"')\")\n", " \n", " # To avoid a syntax error in Python 2 executions of this notebook, this line is packed into an eval statement\n", " x = float(eval(\"L.print('\\\"${a}\\\"')\"))\n", "x" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.363092663783386" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.variables['t'].value" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.181546331891693" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.eval(\"v_t/2.0\")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [], "source": [ "L.variable(\"b index a b c\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'a'" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.variables['b'].value" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.0" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.eval(\"v_b\")" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['a', 'b', 'c']" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.variables['b'].definition" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [], "source": [ "L.variable(\"i loop 10\")" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1.0" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.variables['i'].value" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "2.0" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.next(\"i\")\n", "L.variables['i'].value" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.3620868669308006" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.eval(\"ke\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Accessing Atom data" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<lammps.Atom at 0x7faf04157a58>" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.atoms[0]" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['charge',\n", " 'force',\n", " 'id',\n", " 'index',\n", " 'lmp',\n", " 'mass',\n", " 'mol',\n", " 'position',\n", " 'type',\n", " 'velocity']" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[x for x in dir(L.atoms[0]) if not x.startswith('__')]" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(14.081609521719168, 0.920541427075243, 0.0)" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.atoms[0].position" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.atoms[0].id" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(-0.08810676648167072, -0.8755151505832499, 0.0)" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.atoms[0].velocity" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0.809523377179948, -1.4360462290451692, 0.0)" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.atoms[0].force" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "L.atoms[0].type" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
topgate/training-gcp
CPB102/tensorflow/tfstart.ipynb
1
8552
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Getting Started with TensorFlow\n" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "何はともあれ TensorFlow を始めてみましょう!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "import tensorflow as tf\n", "import numpy as np\n", "\n", "print(tf.__version__)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Hello TensorFlow" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Python を使って足し算をしてみましょう(決して馬鹿にしているわけではなく大真面目です)!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "a = 1.\n", "b = 2.\n", "c = a + b\n", "\n", "print(c)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "当然ですが 3.0 と答えが表示されます。\n", "\n", "今度は TensorFlow で同じような足し算をやってみましょう。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "a = tf.constant(1.)\n", "b = tf.constant(2.)\n", "c = tf.add(a, b)\n", "\n", "print(c)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Tensor というオブジェクトが表示されますね。\n", "実はまだこの時点ではデータフローグラフが作成されただけで、足し算は行われていません。\n", "足し算を実行するにはセッションを介して実行する必要があります。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.Session() as sess:\n", " result = sess.run(c)\n", "\n", "print(result)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## 行列演算" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "NumPy と TensorFlow で行列やベクトルの計算方法を比較してみましょう。" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### NumPy" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "a = np.array([5, 3, 8])\n", "b = np.array([3, -1, 2])\n", "c = np.add(a, b)\n", "\n", "print(c)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### TensorFlow" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "a = tf.constant([5, 3, 8])\n", "b = tf.constant([3, -1, 2])\n", "c = tf.add(a, b)\n", "\n", "print(c)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.Session() as sess:\n", " result = sess.run(c)\n", "\n", "print(result)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### TensorFlow + placeholder" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "計算をするたびにデータフローグラフを作っていると、データフローグラフがどんどん肥大化してしまいます。\n", "そのため、 TensorFlow には一部の値を差し替えつつデータフローグラフの共通部分を再利用するための placeholder という仕組みが存在しています。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "a = tf.placeholder(dtype=tf.int32, shape=(None,))\n", "b = tf.placeholder(dtype=tf.int32, shape=(None,))\n", "c = tf.add(a, b)\n", "\n", "with tf.Session() as sess:\n", " result1 = sess.run(c, feed_dict={a: [3, 4, 5], b: [-1, 2, 3]})\n", " result2 = sess.run(c, feed_dict={a: [1, 2, 3], b: [3, 2, 1]})\n", "\n", "print(result1)\n", "print(result2)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "典型的な使い方として、学習時に使うデータを placeholder で定義しておくという方法があります。\n", "placeholder に対して少しずつ学習用データを流していくというのが TensorFlow で機械学習のアルゴリズムを実装するときの定石です。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## tf.Variable" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "TensorFlow では、計算に使われた値は基本的に捨てられていきます。\n", "`tf.add` の結果はセッションを介して実行するたびに計算し直すことになりますし、 `tf.constant` の値はメモリ上に保持されず必要に応じて再生成されます。\n", "後から `tf.constant` の値を書き換えることもできません。\n", "\n", "ただし tf.Variable だけが例外で、値をメモリ上に保持し続けて後から書き換えることも可能になっています。\n", "ニューラルネットやその他多くの機械学習手法で weight として使うことが想定されています。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "v = tf.Variable([1, 2])\n", "assign_op = tf.assign(v, [2, 3])\n", "init_op = tf.global_variables_initializer()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "tf.Variable 最初に初期化処理を行う必要があるので `init_op` を実行します。\n", "その後 `v` の値を表示すると `assign_op` を実行する前後で値が書き換えられていることが確認できます。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with tf.Session() as sess:\n", " sess.run(init_op)\n", " print(sess.run(v))\n", " sess.run(assign_v)\n", " print(sess.run(v))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "tf.Variable に何の値が入っているかという情報はセッションと紐付けられています。\n", "計算グラフは tf.Variable を計算にどう使うかという手順の情報だけを持っており、具体的な値の情報はセッションが持っているということを覚えておくと、コードを書く時に混乱せずに済むでしょう。" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
blehman/Data-Science-45min-Intros
model-selection-101/model-selection-part-1.ipynb
25
12953
{ "metadata": { "name": "", "signature": "sha256:2339f9b9331c1e7f79753f37c7ed2f30bb5197835d4a6595222c295c9148ee5f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#Model Assessment and Selection\n", "##Ideas and Examples of Trade-offs\n", "Scott Hendrickson\n", "\n", "2015 April 3\n", "\n", "(With very heavy borrowing from ESL!)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "import matplotlib.pyplot as plt \n", "%matplotlib inline\n", "from IPython.display import Image" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "Image(filename=\"Selection_003.png\", width=600)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "Image(filename=\"Selection_001.png\", width=600)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "Image(filename=\"Selection_004.png\")" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "Image(filename=\"Selection_002.png\", width=600)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###In real life, things are messier..." ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.neighbors import KNeighborsRegressor\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.linear_model import Lasso\n", "from sklearn.linear_model import LassoCV\n", "from sklearn.linear_model import Ridge\n", "from sklearn import cross_validation\n", "from sklearn import datasets\n", "from sklearn.cross_validation import cross_val_predict\n", "from sklearn import linear_model" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "# boston house prices data set\n", "boston = datasets.load_boston()\n", "print boston.keys()\n", "#print boston.feature_names\n", "print boston.DESCR\n", "print boston.target[:10]" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###KNN regression to for housing price prediction..." ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Set up many trials on same data set to understand \n", "# test vs. sample error\n", "# variance in estimates\n", "n_trials, n_max_neighbors = 50, 100\n", "err_train, err_test = np.zeros(n_max_neighbors-2), np.zeros(n_max_neighbors-2)\n", "for i in range(n_trials):\n", " X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(boston.data, boston.target, test_size=0.3)\n", " x_complexity, y_train, y_test = [], [], []\n", " for k in range(n_max_neighbors, 2, -1):\n", " clf = KNeighborsRegressor(n_neighbors=k)\n", " clf.fit(X_train,Y_train)\n", " x_complexity.append(k)\n", " y_tmp = clf.score(X_train,Y_train)\n", " y_train.append(y_tmp)\n", " err_train[n_max_neighbors-k] += y_tmp\n", " y_tmp = clf.score(X_test,Y_test)\n", " y_test.append(y_tmp)\n", " err_test[n_max_neighbors-k] += y_tmp\n", " plt.plot(x_complexity, y_test, color=\"blue\", alpha=0.2)\n", " plt.plot(x_complexity, y_train, color=\"red\", alpha=0.2)\n", "plt.plot(x_complexity, err_test/n_trials, color=\"blue\")\n", "plt.plot(x_complexity, err_train/n_trials, color=\"red\")\n", "plt.xlabel(\"Number of Neighbors\")\n", "plt.ylabel(\"Fraction Correct\")\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "Image(filename=\"Selection_005.png\")" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The last term scales as the 1/number of nearest neighbors. As the complexity of the fitting model goes up (lower k!) the variance of the model goes up. Large k averages over a larger data set, smoothing our predictions.\n", "\n", "###Compare other comlexity... Linear" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# simple single value gut check\n", "lr = LinearRegression()\n", "boston = datasets.load_boston()\n", "y = boston.target\n", "# cross_val_predict returns an array of the same size as `y` where each entry\n", "# is a prediction obtained by cross validation\n", "predicted = cross_val_predict(lr, boston.data, y, cv=10)\n", "fig,ax = plt.subplots()\n", "ax.scatter(y, predicted)\n", "ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)\n", "ax.set_xlabel('Measured')\n", "ax.set_ylabel('Predicted')\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "Image(filename=\"Screen Shot 2.png\", width=600)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "##############################################################################\n", "# LassoCV: coordinate descent\n", "diabetes = datasets.load_diabetes()\n", "X = diabetes.data\n", "y = diabetes.target\n", "\n", "rng = np.random.RandomState(42)\n", "X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features\n", "\n", "# normalize data as done by Lars to allow for comparison\n", "X /= np.sqrt(np.sum(X ** 2, axis=0))\n", "\n", "# Compute paths\n", "print(\"Computing regularization path using the coordinate descent lasso...\")\n", "model = LassoCV(cv=20).fit(X, y)\n", "\n", "# Display results\n", "m_log_alphas = -np.log10(model.alphas_)\n", "\n", "plt.figure()\n", "ymin, ymax = 2300, 3800\n", "plt.plot(m_log_alphas, model.mse_path_, ':')\n", "plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k',\n", " label='Average across the folds', linewidth=2)\n", "plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k',\n", " label='alpha: CV estimate')\n", "\n", "plt.legend()\n", "\n", "plt.xlabel('-log(alpha)')\n", "plt.ylabel('Mean square error')\n", "plt.title('Mean square error on each fold: coordinate descent ')\n", "plt.axis('tight')\n", "plt.ylim(ymin, ymax)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###Now on the boston home price data..." ] }, { "cell_type": "code", "collapsed": false, "input": [ "# is L1\n", "n_trials, n_alpha = 30, 80\n", "err_train, err_test = np.zeros(n_alpha), np.zeros(n_alpha)\n", "for k in range(n_trials):\n", " X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(boston.data, boston.target, test_size=0.3)\n", " x_complexity, y_train, y_test = [], [], []\n", " for i in range(n_alpha):\n", " a = 5*(i+1)/float(n_alpha)\n", " clf = Lasso(alpha=a)\n", " clf.fit(X_train,Y_train)\n", " x_complexity.append(-np.log(a))\n", " y_tmp = clf.score(X_train,Y_train)\n", " y_train.append(y_tmp)\n", " err_train[i] += y_tmp\n", " y_tmp = clf.score(X_test,Y_test)\n", " y_test.append(y_tmp)\n", " err_test[i] += y_tmp\n", " plt.plot(x_complexity, y_test, color=\"blue\", alpha=0.2)\n", " plt.plot(x_complexity, y_train, color=\"red\", alpha=0.2)\n", "plt.plot(x_complexity, err_test/n_trials, color=\"blue\")\n", "plt.plot(x_complexity, err_train/n_trials, color=\"red\")\n", "plt.xlabel(\"-log(alpha)\")\n", "plt.ylabel(\"Fraction Correct\")\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "# simple single value gut check\n", "lr = Lasso(alpha=5*1/float(40))\n", "boston = datasets.load_boston()\n", "y = boston.target\n", "# cross_val_predict returns an array of the same size as `y` where each entry\n", "# is a prediction obtained by cross validation\n", "predicted = cross_val_predict(lr, boston.data, y, cv=10)\n", "fig,ax = plt.subplots()\n", "ax.scatter(y, predicted)\n", "ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)\n", "ax.set_xlabel('Measured')\n", "ax.set_ylabel('Predicted')\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "Image(filename=\"Screen Shot 1.png\", width=600)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "# is L2\n", "n_trials, n_alpha = 20, 80\n", "err_train, err_test = np.zeros(n_alpha), np.zeros(n_alpha)\n", "for k in range(n_trials):\n", " X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(boston.data, y, test_size=0.3)\n", " x_complexity, y_train, y_test = [], [], []\n", " for i in range(n_alpha):\n", " a = 5*(i+1)/float(n_alpha)\n", " clf = Ridge(alpha=a)\n", " clf.fit(X_train,Y_train)\n", " x_complexity.append(-np.log(a))\n", " y_tmp = clf.score(X_train,Y_train)\n", " y_train.append(y_tmp)\n", " err_train[i] += y_tmp\n", " y_tmp = clf.score(X_test,Y_test)\n", " y_test.append(y_tmp)\n", " err_test[i] += y_tmp\n", " plt.plot(x_complexity, y_test, color=\"blue\", alpha=0.2)\n", " plt.plot(x_complexity, y_train, color=\"red\", alpha=0.2)\n", "plt.plot(x_complexity, err_test/n_trials, color=\"blue\")\n", "plt.plot(x_complexity, err_train/n_trials, color=\"red\")\n", "plt.xlabel(\"-log(alpha)\")\n", "plt.ylabel(\"Fraction Correct\")\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "# simple single value gut check\n", "lr = Ridge(alpha=5*1/float(4))\n", "boston = datasets.load_boston()\n", "y = boston.target\n", "# cross_val_predict returns an array of the same size as `y` where each entry\n", "# is a prediction obtained by cross validation\n", "predicted = cross_val_predict(lr, boston.data, y, cv=10)\n", "fig,ax = plt.subplots()\n", "ax.scatter(y, predicted)\n", "ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)\n", "ax.set_xlabel('Measured')\n", "ax.set_ylabel('Predicted')\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "Image(filename=\"Screen Shot 3.png\", width=600)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "Image(filename=\"Screen Shot 4.png\", width=600)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next Time:\n", "* Better definition of DOF\n", "* AIC and BIC\n", "* ROC curves\n", "\n", "...and more!" ] } ], "metadata": {} } ] }
unlicense
JamesClough/dagology
examples/calculations/causal_set_example.ipynb
1
311254
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2017-04-04T17:11:05.222584Z", "start_time": "2017-04-04T18:11:04.696720+01:00" }, "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import networkx as nx\n", "import numpy as np\n", "\n", "import dagology as dag\n", "from plot_utils import *" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2017-04-04T17:11:06.038514Z", "start_time": "2017-04-04T18:11:06.033123+01:00" }, "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2017-04-04T17:11:07.792324Z", "start_time": "2017-04-04T18:11:07.576067+01:00" }, "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# define causal set sprinkling parameters\n", "N = 200 # number of points\n", "D = 2 # spacetime dimension\n", "R_m = dag.minkowski_interval(N, D, fix_ends=False) # create coordinates in Minkowski spacetime\n", "G_m = dag.causal_set_graph(R_m) # create graph" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2017-04-04T17:11:09.549143Z", "start_time": "2017-04-04T18:11:09.191802+01:00" }, "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# de Sitter spacetime\n", "KT2 = 3.5\n", "R_ds = dag.de_sitter_interval(N, D, KT2, fix_ends=False)\n", "G_ds = dag.causal_set_graph(R_ds)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2017-04-04T17:11:14.738695Z", "start_time": "2017-04-04T18:11:12.305385+01:00" }, "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/james/Research/repos/networkx/networkx/drawing/nx_pylab.py:125: MatplotlibDeprecationWarning: pyplot.hold is deprecated.\n", " Future behavior will be consistent with the long-time default:\n", " plot commands add elements without first clearing the\n", " Axes and/or Figure.\n", " b = plt.ishold()\n", "/home/james/Research/repos/networkx/networkx/drawing/nx_pylab.py:137: MatplotlibDeprecationWarning: pyplot.hold is deprecated.\n", " Future behavior will be consistent with the long-time default:\n", " plot commands add elements without first clearing the\n", " Axes and/or Figure.\n", " plt.hold(b)\n", "/usr/local/lib/python2.7/dist-packages/matplotlib/__init__.py:917: UserWarning: axes.hold is deprecated. Please remove it from your matplotlibrc and/or style files.\n", " warnings.warn(self.msg_depr_set % key)\n", "/usr/local/lib/python2.7/dist-packages/matplotlib/rcsetup.py:152: UserWarning: axes.hold is deprecated, will be removed in 3.0\n", " warnings.warn(\"axes.hold is deprecated, will be removed in 3.0\")\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAHVCAYAAAAJnF2uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFX3B/AzW9I2m5BkN40kpJAESAi9l4QooZcAgpgA\nIohUpQgooiK+ovxsIEUUkCJilIAREARUBERUhFdAkC69t/Rkk93v74/N7pvNzO5OKAbhfJ5nHmB2\n5s7dTdg7Z+695woAQIwxxhhjjDHGWBVQVHUFGGOMMcYYY4w9vDgoZYwxxhhjjDFWZTgoZYwxxhhj\njDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwx\nxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgo\nZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFW\nZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhj\njDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwx\nxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgo\nZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFW\nZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhjjDFWZTgoZYwxxhhj\njDFWZTgoZYwxxhhjjDFWZTgoZYyI6MQJopEjiby8iBQK859paUTp6bb7Ro40H8sYY4yxB5PUPQG3\n/4zdUwIAVHUlGKtSGzcS9elDVFJi3hxRq81bZiZRp07/TP0YY4wx9s+wd0/A7T9j9xQHpezhduIE\nUUICUUFB5c7z8CDav58oKure1Isxxhhj/yw59wTc/jN2T/DwXfZwe/dd572jUkpKiN5//+7XhzHG\nGGNVQ849Abf/jN0T3FPKHm5eXkS5ubd/bnb23a0PY4wxxqqG3HsCT8/bv3dgjEninlL2cMvLq5pz\nGWOMMXb/OHFCfqCZl2eee8oYu2s4KGUPNaOHx+2f7Ol59yoihbP/McYYY/fexo1E8fGVO6dPH26P\nGbuLOChlD63Lly/TkpISMtzGuQYiOpOYeLer9D8bN5qTLSxaZH5yC5j/XLTIvJ+f0DLGGGN37sQJ\notRUoqKiyp3Hc0sZu6s4KGUPpaKiIurYsSO9aTDQbaQ5ohIi6r51Kx0+fPhuV83cQPbpY87+VzHh\nQkmJeT8/oWWMMcbu3CuvEBUXV/68khKiTz+13XfihHmNcxcXIkEwby4u5jXPuc1mzCEOStlDBwA9\n9dRT9Mcff9BJIupDRPlEoh5TlG3lGcqO7UNE+/LyqGvXrnT9+vW7W0HO/scYY4zdGxWnxqxceftl\n5eX9rzwPD6KaNc3llW/DS0qIPvuMKC6ORzkx5gBn32UPnbfeeotefPFFm32RRDSOiAYQkScR5RHR\n10QkEFH3cvu2Vq9OE86fp5Plzk1KSqJNmzaRi4vL3amg3Ox/nP2XMcYYk2/jRvNIo5KS21sO7k65\nuxMdOMBrnDImgYNS9lDJysqi1NTUOyqjXbt2tHXrVpt9Tz/9NH300UckCMIdlU1E5ie3cv5bKhRE\nRuOdX48xxhh70J04Yc7JUFBwV4oDmR9cV1pcHNHXX3NgylgFPHyXPTT27dtHaWlpov0elczA+9NP\nP1Ht2rVt9i1cuJA++OCDO6qfBeRm9b3X2X8ZY4yxB4WcqTGVcNuPoA8e5ISFjEngoJQ9FC5dukTd\nunWjAoknpBV7NzUaDQ0fPpyUSiVptVpR0FpSUkLXrl0jLy8vm/3jx4+njXfYyACg5SaT04zARqWS\naMCAO7oWY4wx9tBYsaJqhuxK4YSFjIlwUMoeeEVFRZSamkpnz54Vvebr60v5+fnWfysUClq9ejV1\n69aNAND8+fOpUaNGpNfrbc67evUqhYWFkSAIFElEc4nohslEHTp3JqOn522vJ9qvXz+anp/vNCNw\nkdFIe+/lkjSMMcbYgyQvr6prYIsTFjJmg4NS9kADQE8//TT98ssvotc8PT3pxo0bNvveeust6tCh\nA/3www/k6+tLNWvWpGPHjtHChQtJpVLZHPvnn3/SczExtJ+IniYibzL/h1Lm5xMWLqz08JzFixfT\nqlWrHGYELp/9t9Po0XT69GnZ5TPGGGMPK9lTY8qfcw/qYSW1pAxjDzFOdMQeaFKZdomIlEolGSsk\nCapduzYdPHiQiIgiIyOpSZMm1Lx5c8rJyaHLly9TixYtaNCgQdbjI4loPxFpHFXAw4No/36nCQ0O\nHDhA9erVo/L/HSOJaE5EBHW+fp0oL4+K1GpaVFxM7xNZs/8mJCTQzp07yZPnlzLGGGOSCgoKaHPN\nmtT54kWqTJ78205mJBcnLGTMintK2QMrKytLMiAlIpo+fToNGTLE+m8fHx8aO3YsCYJAe/fuJbVa\nTampqbRt2zZ65plnKCMjg7p3725zzngiUjupA2QMz8nPz6dWrVpRxedDOTodPXr4sHnZF6OR3IqK\naGZIiM1yNPv376f09HQymUxOasIYY4w9fIqKiqhnz5404eJFp1Nj/nFK5f/WS/Xyuu2pP4w9CDgo\nZQ+kP/74g9LT0232KRQK2rBhA02cOJHatWtHX3/9Na1cuZLq1atHAQEB1LBhQyIiyszMpD59+lBS\nUhLt2LGDAgICqFOnTrR06VKaP38+JSQkEBFROpHTJ66Ck+E5AKhNmzaUW2FdUkEQaOvWraK1T+fP\nn0/e3t42+77++mt66aWXnNSEMcYYe7gUFxfTqI4dqceWLbSXiNzJ3Psp5zFuCRGd9vS8Z0N4QUQo\nLTWvSw6Y/1y0iDPzsocWD99lD5xLly5R06ZNRYmN3nnnHZowYQJdunSJmjRpQnPnzqUePXpQSUkJ\neXl50bVr18jDw4NiYmIoIyODGjVqRLGxsfTFF19QYWEhDRw4kI4cOUIXLlyguLg4upmTI+upDgSB\nBDs9maNHj6Z58+aJ9r/11ls0efJkcVkA1a1blwoLC+nkyZM2ry1fvpwGcEZexhhjjEpKSuitxEQa\nv2sXqcn2IbKRzL0yjobmgoiWENFgJ8fdEzKn/jD2IOGeUvZAsZdp95FHHqEJEyaQwWCgPn360NCh\nQ6lHjx5ERPT3339TYGAgaTQa2r9/P5WWllp7TRMTE2nbtm3UvHlz8vb2pm+//ZZCQkLoq6++Irl5\n/HIA2r9/v2j/l19+KRmQNmnShCZOnChZliAINGXKFNLpdBQQEGDz2tChQ+nnn3+WWSvGGGPswVRa\nWkoTevak8bt2kYbEo5qUZA40HfXKCHRvAlI4uS4RcWZe9lDioJQ9UIYPHy7KtOvr60vr168nIqIx\nY8aQXq+nl19+2fr6wYMHKS4ujoiIVq9eTX369LGuXWoJSgVBoNGjR9OcOXOIiCg5OZmONWvmdD1R\nAxF9SkTdunWjy5cvW/cfO3aMnnjiCdHxbm5ulJmZSQqF/f+affv2JY+LF+n7WrUom8xPfG8R0XsG\nA43t1o0z8jLGGHtoGY1GGjx4MMVu2OA078M/3gMq97qcmZc9hDgoZQ+Ufv36kaurq/XfarWaNm/e\nTG5ubvTRRx/RTz/9RMuXL7cJ+soHpZb5pBaJiYm0fft2MplM9Pjjj9OePXvo6NGjRETUcMUKMjkI\nHonMc1LeJ6IzZ85Qr169qKioiAoKCqhVq1ai7L9ERAsXLqSwsDCHZaq2bKHNly9TzPbt5EXm/8Te\nZF6WZuuNGzQzKYny7rf12BhjjLF7zGQy0bBhw2jFihWy8j44c7eDVmcPsm1wO84eMhyUsgfK9evX\nSafTUY0aNcjd3Z1eeuklatSoEf3000/0yiuvUFZWFmm1WptzLEHpoUOHKDc3l5o0aWJ9LSQkhLy9\nvenQoUPk5uZGQ4cOtQ65FWrWpItz5jhdT9Qy8/Pnn3+mp59+mlJSUujq1auiuvfp04fS0tIcv8ET\nJ4j69CG1wUDqCtPBXci8PM3bp07RhJ49OSMvY4yxhwYAGj16NH3yySdERKR1cnxVMBHJnvpDvNQb\ne8hwUMoeGLt27aJx48bRt99+SwMHDqT4+HiaOnUqnTt3jvr27UvLli2j6Oho0XmHDh2iuLg4yszM\npN69e4uGzlqG8BIRjRgxgj799FNrttwZ//0v/eexx2ixQmEdSptNRB8TUQIRfVvhWitWrKCdO3fa\n7FMoFBQQEEALFiywDhu26913zcN6HFATUd3vv6cpU6Y4Losxxhh7AACg8ePH06YPP6S5ZJ7SUlVD\nc53JIuc9pgYiMvTr9w/UhrH7Bwel7IFw5swZ6t27Ny1dupRKS0vpww8/pFWrVpHBYKDU1FR67rnn\nqGPHjqLzSktL6ejRo1SrVi3rfNKKkpKSrEFpaGgoJScn0/Lly+n48eP01Vdf0aSPPqLcN9+kakSk\nIqJqRDSGiE6KSpK2ZcsW2r9/P/n5+Tk/eMUKp0GpCxENIKKZM2fS8uXLZdbiNpw4YV5TjddYY4wx\nVkUA0IsvvkiHZ82i/WSeyuJN92dQqiBzkiNn66WWEFHTzz+ngoKCe18pxu4TvCQM+9fLy8uj1q1b\n04ABA2jUqFHUuHFjmjx5MqWnp9OTTz5JxcXF9Pnnn0v2Qh45coQ6depE3377LSUlJdG5c+dEPaWn\nT5+mpk2b0qVLl0gQBNq2bRsNHz6cGjduTNHR0fTKK6/Q7t27qUuXLpLDch15+eWXafr06fJPUCjM\n65k5YSRzgOzi4kJbt26lli1bVqpeTm3cSNSnjzlALh8kq9XmLTOTqFOnu3tNxhhjrIJp06bRp6+9\nRvvJPIXlfpdNRI8TUSaRaKkaA5kD0j5kHmnl6+tLZ8+eJQ8Pj3+8noz907inlP2rmUwmGjBgADVq\n1IjGjx9PL774ItWuXZvS09Np9uzZtG/fPlq8eLHdYbGW+aSrV6+mXr16SWa9tcxPPXz4MBERtW3b\nlkwmE61bt47Gjh1LRES3bt2i+Ph4SktLozZt2siqu1qtpuHDh1fq/Za6u8s6zjJnxWAwUM+ePe9u\nRt6yea1UUCDutS0pMe/v04d7TBljjN1Tb775Jr322ms0nshppt3KuJe9NZ5kDjgTyDzVx9HUnxs3\nblBUVBQVFRXdwxoxdn/goJT9q02dOpWuX79OH374IX3//fe0atUqWrBgAf3www80c+ZMysrKIo3G\n/rNTS1BqmU9qT/l5pYIgkFarpeDgYPLy8iIiouzsbPL19aUVK1bQN998QzVr1nRa95KSEkpNTaXC\nwkJZ7/XChQu0uLhY9jI0FlevXqVu3bpZ58HeMRnzWnmNNcYYY/fSe++9Z82dIDfTrpw1Qu/18EHL\nQ+OTZJ7q42zqz6VLlyg2NpaKi4vvcc0Yq1oclLJ/rU8//ZQyMjJo9erVlJ+fT4MHD6ZPPvmEcnJy\nKC0tjVauXEnh4eEOyzh06BDpdDo6e/as/R7OEyfohTNnaOCYMUQKBRk9PWnUwYPkfuEC/f3330Rk\n7in19vYmIiKtVkubN28WZfmV8ttvv9FTTz1FzkbRGwwGatCgAf2f0ShrLsr2hg1t9h04cIDS09Ml\nl6GpNBnzWnmNNcYYY/fKvHnzaMKECdZ/y820ayKizkQOs+YX0L2bjwqyfWgs15kzZ6h27dpkMFRq\nURnG/lU4KGX/Srt27aIJEybQ2rVrSa/X08iRIyk1NZVatWpFPXv2pClTplC7du2clnPw4EE6d+4c\npaamkkqlEh+wcSNRQgLV+ukn8igtJQJImZ9PAw0G2pWfT98//zwRmXtKq1WrZj0tIiKCXn31VVnv\nJSMjg/7zn/84PKZFixZ05coVOknmuSbOlqFZtXcvNW/e3Ob1tWvX3p2MvHLXTuM11hhjjN1lCxcu\npNGjR9vsk9va5JHzobPyJsncPssYokgia6ZgY9mfc8v2S/n777+pTp06VOLsoTBj/1IclLJ/ndOn\nT1Pv3r1pyZIlFB8fTytXrqQ//viD3nrrLRo8eDA1bNiQxowZ47Sc0tJSOnbsGO3cuVMy6275uZNC\naanNS0qTiVxKS6n/mjVU+OeflJ2dbe0pJTI3HjNmzJD9nl555RVatWqV5Gvp6em0d+9e67/lzkX5\n7bffqHbt2jZl/d///R8tW7ZMdr0kyV07jddYY4wxdhetWbOGnnnmGZt9rq6utNHPr1JTWxwNnb1L\nE11EQETriagwKIg6EtlkClaU/fl02f6KawVYAtg9J06Q0sWFwNnu2QOIs++yf5W8vDxq1aoVDRo0\niMaPH09nzpyhxo0b07fffkubNm2irKws2rZtG7m5uTkt6/Dhw9ShQwfKz8+nixcvklpdIU3CyJFE\nixY5HKpaQkQ5wcHkcfUquZWUkKDVUkm/ftRzxw7acORIpd6bu7s7bd++nRo3bmzd9/bbb9OkSZMk\nj4+KiqJTp045HJLr6elJ7u7uNlmBXVxc6IcffqBWrVpVqn4WWcHB1PniRYfzdwxEVDxwIGnvNABm\njDHGyly9epWaN29OJ0+aZ16q1Wpq3rw5nd+xw2n23XwyP7gtP2czJiaGjh49anPcXDIHh3LmqFYG\niMiSbeIAETnKp1u+rh1JOlMv1GoSONs9e4BwTyn71zCZTJSenk6NGzemcePGkclkoieffJLGjh1L\nly5dorlz59KaNWtkBaRE5vmkWq2WunfvLg5IiWTNnVQTke+FC+ReUmKeg5KbS8LixfTlkSM2TzqV\nSqXT+hQWFlKPHj3o/PnzRES0ceNGuwEpkTnJU506dRyWmZeXRx4eHuTq6mrdZ1m79dSpU07rVNHE\niRNpwsWLsua1tixbJ5Yxxhi7Gw4ePEjZ2dkUGxtLSqWS2rVrRzt27JA9taV8QOrn50eXL18WXeM9\ncr6OKIioWOJajhSUXV9OpmAXIhpH5h7STDIH2xWDZIGz3bMHDAel7F/jpZdeops3b9KHH35IgiDQ\nrFmzrAHWk08+SatWraLq1as7LuTECXMPqJcXpfbuTbsOHaJXL1+W/kKXOSeyYkIEFUAaMjckkWQe\nWrR+/Xry8/NzWtaFCxeoR48etG/fPurevbvodUtwGxERQWlpaVSvXj2b1/v16yc65/Tp06Ljbicj\nb2ZmJr3zzjuyG/8/Cwupbt26sstnjDHG7Nm5cyf17duXVq1aRbt27aKePXvS5s2bra/LndpCROTj\n40P1tVp6IztbNKeTyH4bBzIHrFvLXlOTvIy+BiJaUvb3geQ8KFUT0SCSF8CCs92zBwUY+xdYvnw5\nIiMjcfXqVQDA/v37odPpsG/fPtSqVQsff/yx80I2bAA8PAC1GiCybia12rx/wwabw01arc1xld2K\nifCRWo3nn38eAPDXX39BpVJZ2i+Hm9RxcXFx6NChA3bs2IGNGzcCAN555x2bY5588kn07t1bsszk\n5GTRvq5du6K0tNTpR3fkyBEIgmBzbiQR5hDhFhFMgoBchQJzyvaXP65v376V/Gkzxhhj//Prr79C\nr9dj06ZNAIBXX31VVltqb+tIhLyydrpiu51X9nr5Nq607M+viZAvcZ7Jyf1AXll5CoXC6bGWzVh2\nTTnHmry8qvgnxNid46CU3fd27twJvV6PP//8EwBQVFSEunXrYtGiRejWrRuGDx/uvJDjx82Bp6Mv\ndg8P83FlfqxTR9TwVHbLUShQXFxsLTMzM/O2GtCoqCiEhobi559/tnlb3333nc1x9evXR0FBAcLC\nwkRlCIKAVq1aifZPnDjR4UeXm5sLV1dXu3Vr2bJl2Ud8HGPHjpU85v3335f742aMMcas9uzZA39/\nf6xbtw6A+GFs+c3d3V1yf1BQkM0D1TyZQWTFB7HOzqsYcJYPci3lyA1KTWWBqdwA1mg0VvFPirE7\nw8N32X3t9OnT1KdPH1q6dCnFxcURkXkuZVRUFJ0+fZpu3rxJs2fPdl7Qu+/KW1uz3BCYukuXUqmD\nw+XwBMjF5X8zQXr37m2ztpoc3t7eNHbsWIqNjaUWLVrYvFZxWO7BgwdJqVTS5s2bRfNkAdBvv/0m\nmof69ttv09KlSyWvDYBiYmIcLto9YsQIIjInXnr//fcpNTVVdMy4ceNo+/btdstgjDHGKjpw4AB1\n7tyZFixYQF27dqUFCxbQ82VLsVm4ubmRq6srKRQKKiwsFJUxefJkunTpEk2ZMoU6d+4sa0ismsxz\nOsuTc56JzHNNHQ0drgy5E2xyiah58+ZkMplu80qM3QeqOipmzJ7c3FwkJCTg3Xffte7bunUrgoKC\n8MknnyA0NBSXLl2SV5jcobjlhsC89957GF6jBoqUShicPA2VU56FyWRC69atZfeSrly5EhEREdi+\nfbvkW6tevbrN8fv27QNgHi7ctm1bUXk+Pj4ICAiw2adWq7Fjxw5R2W3atHFYNz8/PxQWFtqcYzQa\nERISIjpWpVLh3Llz8n5ejDHGHmqHDh1CUFAQMjIyAACffvqpaBqJSqVCUFAQlEqlZBs1evRo1KhR\nA0lJSXj55ZcxY8YM2UNib1UoS+55eU7a9ByZ5eQQYS6JhwpX3IrJPMyYiNC8eXPuMWX/WhyUsvuS\n0WhE9+7dMWTIEJhMJgDArVu3EBYWhnnz5kGn02H37t3yCxQEeUGkQgEAWLt2LYKDg3H69GmYjh1D\n8dNPmwNMhQIlHh7YL6OhMCqVwKhRktUpKioSBYb2Ni8vL+sQWSldunSxOX7ZsmU216kYtBIRYmJi\nRENydTod/v77b+u59obilt8mTZokWaebN29Kzov18fFBUVGR/J8bY4yxh8vx47j5xBPIEQTzA2Ct\nFic6dEC0QmHTngiCgFq1asHPz0+yferduzeioqIwe/Zs/Pnnn/D09ASR/CGxluGzt8qCw8qcV3Ho\nb/ltLpHoQXfFzVAWaCbJOLZiPR9r2NB638TYvwkHpey+NHnyZLRt29ZmPmZ6ejoGDx6MqKgoLF++\nvHIFVqKn9I8//oBOp8Mvv/wiKsZoNCIuLk72nJTzdno3AeD06dNwcXFxGvh5enpakztIeemll2yO\nHzdunM3r58+fh5ubm6hcqfml8fHxyMnJwcqVK53WSxAEnDhxwm69fvnlF8nzHn30UW4wGWOMiW3Y\nAKO7u8MERJa2pGHDhoiMjJRsZ5o2bYrY2Fj83//9HwBg4cKF1tfk9nhWvH5l5oLOIbLbeyvn/sFA\nhEllx9kLSk0SdbJ8ThPj47mdZf86HJSy+86yZctsMu0CwBdffIHo6GgkJyeLgi5ZRowQZd2VanRu\npqUhLCwMX3zxhWQxzz77rLVhkZO9r0WLFjaBdUXOgj8/Pz9Uq1YNBoPBbhmrVq2yOaddu3aiY7Zv\n3y4a9kRESElJEe1r06aN5LE6nc7m3506dXL6sdvrbX3nnXecnssYY+whcvw4jO7uTh/2RpJ5mGqj\nRo2gqNB7SkTQarWIj4/H9OnTAQArVqyweV3OkFhHAaec4yxDf+1l3LfcP9gLOEsqcS17n1Na8+ZV\n/ANlrHI4KGX3lYqZdgHg3Llz0Ov1SE9PxyOPPIKSkpLKFywj+24eEeLc3DBt2jTJIjZs2CBqWKRS\nxldcFmXs2LGS5RkMBgQHBzsMSokINWvWxJgxY+y+taNHjyIoKAjVq1dHhw4dkJWVJXncBx98ICpb\npVIhMTHRaR38/PxEva1r166V9dGHh4fbnKfRaERZhBljjD3ccgcOlDV/MkOnQ1xcHG7cuAFfX1/J\nNnPKlCkwmUyih7ZyeyrvNCgtddKmEskbmnu7m2Weafv27av6x8qYbByUsvvGqVOnEBQUhA3l1gs1\nGo1o3749evfujYiICFy7du32L2BnndKKw4IGDRokOvXcuXPw8PCQbFjq1q3rtPFZtWqVTXkmkwnN\nmzd3eh6ReU5pZGQk5s+fL/m2LEN0Zs2ahREjRjj8CNLS0iQDzri4OLvXV6vVeO2112z2hYWFyVrf\nFAAuXLgAHx8faDQa63AmS2p/xhhj7NKlS8hVKGQFXNmCgNOnT2P48OEgIgwcOBCCIEChUEChUGDk\nyJEwmUxYu3at3XbN3kinu7VVTJIktd1Jj21l6tCtW7eq/vEyJgsHpey+kJOTg7p16+K9996z2T97\n9mzUrVsXfn5+1qyyd+T4cWDUKOQqlTAJAko0GlHPJhFh9uzZ1lMMBgPq1KkjalAsjd+pU6fg7e3t\nsPHRarU4cuSItcwhQ4bICkgtW1RUFPR6PbZs2WL3rf34449o0aKFw7dfWlqK0aNHi8qPjo62O8xo\nx44domD2jTfeqNTHvmzZMsTGxmLXrl1wdXWFSqXC0aNHK1UGY4yxB8/Vq1cRHx8vf86mIOCTTz4B\nkbkn0N/fH0TmBH6enp4wmUzYtGmT5DSUij2m5Uc6VWbOqKPXy2fDdbTdztzWymzle2tnzpxZ1T9m\nxpzioJRVOUum3aFDh9pMzD948CB8fX0RHByML7/88s4vdPy4eW6pVgsjEUo1GmDECDxbIXstkTmJ\njyUAtDyNrbjVr18fBoMB6enpGD58OPr16+ewAUpISEB+fj5mz54teb3MzEyHiY9atmwJvV5vE9yW\nd/PmTWg0Glk9mE8++aSsYFij0eDkyZMAgE6dOqF58+aoVq2a/KV4yphMJrRr1w6zZs3Cl19+CRcX\nF3h5eSEnJ6dS5TDGGHtw3LhxAw0aNMALL7wAk8yEhAYPDygUCmg0GkRERICIEBERgUceeQRdunTB\n1q1brQGpn5+fZAZ6qfZVbpDoLCi1zHt1dk252Xxvd7tVVo+5ZX+3ZDLGiBHm+yHG7jMclLIqN3ny\nZCQmJtokBCouLka9evUQHR2NKVOm3PlF7AzdNapUyCfC8xLDV93d3TFr1izJxsTFxQXnzp3Dl19+\niejoaOQ2PY3bAAAgAElEQVTl5aGoqEiyR7X81qNHD9FSLESEjz/+GACwbt06ycQNlq1r166Ijo7G\njRs3JN9meHi43aC1PJPJJGvYMZE5I++JEydQrVo1XL9+/baXdDl8+DB0Oh3Onj2L5557Dmq1GrVq\n1eI11Rhj7CGUnZ2Npk2bYuzYsTCZTNjVsKGsOaVziRAYGIigoCCoVCr4+fkhLS0NU6dOxaBBg6wB\nqb+/P8aMGQOdTge1Wm1t08oHakYi5CoUmEuE5SRvTdCvyXmSQ0dtqmUq0L3sKXVUT6jV5vuhclOl\nGLsfcFDKqtTSpUtFmXYB4IUXXkB4eDg6d+4se+6iXTKSHJk8PNA6KEhWkEZE+Oabb3D+/Hn4+/vb\nLB1z5coVeHl5yS6HyLy4d3k9evRweHzXrl3xyCOPSGbk7dGjh+xe5dzcXGg0Gqf1Cw8Px/PPP48n\nn3zyzn4OAF599VUMb98exmeeQZ5SCSMR8lUqfnLLGGMPkdzcXLRq1co6/3PmzJmyl1qLUSqhVCrh\n7e0NV1dX9O7dGyUlJUhMTLQGpEFBQRgxYgR0Oh1CQkKs+x1lzc8nQqGM60eSOUnRSY3GuiyLiQj7\nyvY7a1NVKhWSk5Pv6ZzS/LLN4XEeHtzusvsKB6Wsyvz000/Q6/U4ePCgzf4dO3bA29sbkZGRuHXr\n1p1fSMZyMFCrceOJJ2StG2pZZ7NDhw545ZVXRJf7/fffrQkXVCqVwyC1e/fuNucajUYkJCSgdu3a\niI+Px6OPPio6R6PRoHXr1hg+fLhoHbJXX31Vds/y2bNn7c4jtaxh6uPjg4EDByIiIgK//vrr7f8M\nyhRnZSFfEGBUKm0+/1KFgp/cMsbYQyA/Px9JSUkYMmQIjEYjPvroI2vbYy9otMz5NJK5h3FeWXDY\nvn17GAwG7Nu3z1pGSEgIhgwZAp1Oh+joaGtAKifoLSwL5hz1glrqWFIhMZOjnlLLvYWfnx9CQkKg\n1Wpl1cdE5uVhKl6nsGyzV8+1Eq9J3fdg1Kiq/nVgzIqDUlYl/v77bwQGBtpk2gXMw3mCg4Ph5eWF\nv/766+5cTOY8FXh54fPPP3cYkKrVaty8eRPz589H48aN7a4f+uGHH8LLywuvv/46iEhySK7lCXF5\nX331FerXr4/c3FzExcVhwYIFovVBiQg1atRAbGws5syZIzq/c+fOTj+SgoIC+Pn5Sb7HBg0a4OLF\ni5g+fTquXLmCsLAwhIaG3vlC3DJ6rPnJLWOMPbgKCwvRvn17DBgwAKWlpfj8889FCYmiiPBL48bI\nLgtCTWVBqVTwdXLePPz111/WNrZGjRoYOHAgdDod6tevb1O2nJ7JYiJ8SvaXepPbmys1p9TDwwMH\nDhxAkyZNnAbhlvc30s0NW2Jj7dbFXj1lDw328qrqXwnGrDgoZf84S6bd999/X/Ra37594eHhIXsN\nTFkEQd6Xs0IBAEhKSpIM1lQqFSZNmoQjR47Az8/PadA8d+5cNGrUCKGhoaKyHn30UdF6qyaTCQ0a\nNMCaNWsAmOdg6vV6ZGVlWZdSKb+1bNkSAQEB2LRpk7WMv//+G8HBwQ7rZTKZUK9ePcn36OLiAl9f\nX1y+fNl6fHJyMry8vGyuc1tk9FibVKrKPbktl7wKgsBJHBhj7D5VXFyMLl26oG/fvigpKcH69etF\no3UEQcCwYcPg4eGBR8LDYXR3dzpMNbosIHV1dcXjjz8OnU6HNm3aiNo3uYGao+Vc5Aa29rLvenp6\nivbJWe/c0SZ1fyA7iVLZfQ9j9wMOStk/qrS0VDLTLgBkZGTA1dUVU6dOvTsXswQslXhiuGfPHodD\neJcsWYKmTZuKeiilmEwm1K9fX7JRGiUReK1btw4JCQk2iX8yMzNRo0YNzJ8/X7K3tW/fvtDr9Th0\n6JD1mt7e3rhy5Yrdej3xxBOS7y0wMBCjRo2CRqNBfHw8CgsLcerUKfj6+mLz5s3Q6/V31nsts8fa\npNXKK89O8ipO4sAYY/cXg8GA1NRU9OzZEwaDAT/++CPc3NxEAall+TM/Pz/ceuIJpwFgKRGKyoKw\nHEHAYldXDG7bVrKNkxuolUqcezcD2zvdoqOjrfcDXSRWD6hMPUs9Pav6V4MxKw5K2Z2pZE/VpEmT\nzJl2Dx2yOc/o6YkFSiX6N216d7Kx2gtY7G1qNQqHDEF4eLjDxkClUqFZs2ay6rhjxw5RgKvRaLB3\n716Eh4dj9erV1mNNJhMaN26MVatWicqZMGECOnbsiMcee0xy3bWhQ4ciKioK165dAwC0bdvW7nqm\nb7/9tuT7atOmDS5cuIDg4GC88cYbcHNzQ69evfDiiy/iueeeAwAsXrwYNWvWxPXr12/nJyK7x9pI\nJOpFFuGhwIwx9q9QUlKCfv36oXPnzigqKsLu3buh1WpFAamvry/q1KkDd3d37NmzB7kV5mzK2UoE\nQXJeZ4JGIzupkFRAWadOHQQFBckObI0k3St6p5uXlxdu3rwJtVoNV1dX6PV6NG7cGBV7TOX26H6o\nVIryejBWVTgoZbevkj1Vlky72RkZkucVkzkL7h33cMkJWCpsJg8PDG3XTlajEBAQgHPnzjmpwnHJ\nOZs+Pj744osvsHv3buj1ehw7dqzso9yAuLg4yWC3pKQEbdu2xUsvvWSTRdCyubq6YsCAAdZldZ59\n9lm8/fbbonK++eYbyfcTFBSE7OxsAMD333+PoKAgTJ48GW5ubtBoNDa9oxMmTEBycrLdubSOGJwM\nwyp/Q1AxAZSIzORVnMSBMcaqjtFoxIABA9C+fXsUFhbi4MGDaFStms2SLLeI8E14ONqFhUGtVmPD\nhg1o0aLFHa3jWX5eZ28PDxQoFKJ5qfYCtYpDb/V6PWbPno22bdvKDpRzFQqkpKRILgHnaEtISJDc\nb1nGJpsIJkFANhEy/f3R0NsbwcHBNkveWI6XO/fVaXvL2D+Eg1J2eyrZU2XJtHt048Z738MlJ2Ap\n1wCVurkhY9AgUSPgXfZlL9VANGzYEHl5eZKXv3nzJmrVqiU6Jzw8HHFxcfDz88Nvv/2GefPmoV69\nesjPz0ezZs2QkZFh9y1ZejEXLFgANzc3UWBavXp1pKSkYMiQIVi8eDHS0tJszj9y5Iio0SIyzyGt\nuK7ptGnT0K5dOzRp0gQKhQKZmZnW10pLS9GlSxc888wzlUp89Mcff2C+IDh9cluiUGChqysUCoVk\nZmOrSiSvYowx9s8zGo0YOnQoEhMTkZ+fj5s3byLN19dhYp+vhg1Dp06doFarkVchS3tltlIiLCNC\nfa0WhZUop2KSIpVKhZ9//hmxsbFo1aqVrB7IUqUSW2Jj0blzZ8l7AXubTqeTPN5RMiSDiwse8/SU\nnHbkLIlS+d7kkSNHVvWvC2MclLLbVImeKptMu/9ED5fcgIUIR1NSkBgSIpqvqVKpoNfr8csvv9hd\nNiU1NVXUs2kymdC5c2fRsVOnTkXDhg0REhKCSZMmoXr16jh79iz69++PDh06oFatWk7XY92+fTsC\nAgLw+uuvSw4Lat68OeLj4zF+/HjExcVZz7t16xaqVasm+R7Wr18vuk5paSmSk5MRGhqKkJAQeHh4\nYO/evdbXs7OzERcXhw8++EDWj8MSUMt9cjt90CBERESIAmIblUxexRhj7J9jMpkwcuRItGzZErm5\nueadx4+j2En7X6RUIrqsl3GVv/8dreNpIsKvMssolQjU/Pz8MH/+fGRkZFiz4Mttx85t24aGDRvK\nDkizsrLQtGlT0X451zO4uNhNilSZJErPPvts1f7SsIceB6Xs9lQiaU18fPz/Mu3+Ez1clQhYTCYT\n4uPjbQJPQRDg4+ODLVu2YPz48ejUqZPkXE4iwgsvvCC6/JYtW2zmdvTv3x8mkwmHDx+Gt7c32gQH\nY3fTpshVKKzDcLbWqSOrd/jdd99Fo0aN0K1bN8nAtH///ggMDISLiwsKCwtRUlKC2NhY0XEBAQGS\n2Y8ttm7dCoVCgRUrVsDHxwc6nQ4XLlywvn7y5EkEBgY6zcibl5eHRo0aWa8r58lts2bNkJKSgpiY\nGKjVauzfv19Urol7Shlj7L5kMpkwbtw4NGnSxGat8eIhQ2TNc8wKCUFiYiIKDhxwGsTKCUzlHFdE\n/1tmpfzQYoO7Oxa6utoEcc7asW4qFbKysiSTE9rbQkNDRVl0FQrFHWf7Lb9JjZaquE2YMKEKf3PY\nw46DUnZ7KpG05umnn7YO9TT9Ez1clQxYfvvtNygUCuvwF0uyn8uXL8Pb2xtBQUF4//337TYwS5Ys\nsbn8wIEDoVKpEBoaihYtWqCwsND62sZnn0UeEUolFt02urk5nU9rMpnQp08fDBo0CMHBwaIhO48+\n+ii2bt0KpVKJjIwMdO3aVVRfT09Pa1Ike0aNGoUBAwYgODgY69ats2bkLSgosB6zfft2hxl5jUYj\nUlNTRdcf3LYtLvTq5fDJ7ahRoxAREYHQ0FB4e3uL6vt7s2ayGuqD7do5fJ+MMcbuHpPJhBdffBH1\n69fHjRs3rPsLCwvlz8dUKpGbm4t9+/ahn5cXSt3cbrvHVG5QWkqVG+56p8u4yNlat26NIldXWfV3\nlu23Ro0aICJZc1wnT55chb9B7GHGQSm7LXJ7qnKVShQXF1vPy1epKhUw3o7jKSlOGzCjUgmMGgWT\nyYR+/fohODgY0QoFlmu1yFepYBIEFLq44FMvL7w2cCAAcy+lvaeP27ZtAwC88847UCgUyMrKwrVr\n12zW+8Tx4+ZETo4aUBnzabOzsxEbG4sXX3wRPj4+1mDZ09MTWVlZAIBWrVqJ0u0TmbPz/fHHHw7L\nz83NhY+PD86ePYtXXnkFycnJWLhwIbRaLXr27Gkzl/STTz5BzZo1JYPciRMniq7fuXNna2ZdqR5c\nyzZixAjs2bMHfn5+8Pb2RkxMjPX3aMeOHYhWKGQNoYoiwm+//ebkN4YxxtjdMG3aNMTHx+Pq1avW\nfQaDAY0bN5aduMgkCCgoKECdOnWwaNEiNPDysgkAi8r+lHUvIXPLIfmJgco/4D137hymTp1qty2r\n2PN6q+zfjoJXhUKB+vXrQ6/Xyw6qTRXKr+fpaZM0SaFQICAgAEqlUnJd04rbSy+9VIW/RexhxUEp\nuy0/1asnq6fqUHKy9Zw333xT1lAUAxFKhw+/rXrt378f8e7ushqXk1u24IMPPkDt2rXRTaWy+4TU\nkhHYZDJJ9vwREXx9fbF48WIoFAr85z//ka6cjPm0JYIAk4yEA3/++Sd0Oh2GDx+OmJgYVKtWDV9/\n/bW15zI9PV2ynl988YXTshcsWIDU1FQA5vmlSUlJeO211zBq1Ch4e3vj5Zdftjn++eefR1JSkk1G\n3o8//lh07bp16yInJ8d6zMCBA21e9/b2hkajgVarxe+//w4AWLJkCSIiIqBWq9GlSxdcuXIF1atX\nB5H8p9pubm5Oe4YZY4zdmTfffBO1atXCpUuXrPuMRiOSkpIgCILsh9ImLy+MHDkS/fr1s87lTEpK\nsuZGkDPPsmLA5uxeZV9Z++vsOMswWY1Gg9OnTwMw9w7v2rULoaGhNm1aZXpey2/PP/88ioqKkJKS\nguxKvM+K5T/u7Y2kpCRruUqlEq6urrKG8RIRpk2bVlW/SuwhxUEpq7QPP/xQ9mT/KCIcOXIEmzZt\ngiAIss97+YknKl2v69evIzIyUnZjEB4eDj8/P7QKDHTewJX1YN66dQtRUVF2v8R79uxpv4Iye5eL\n3Nxkvd+VK1ciKioKLVq0QKdOndCwYUPMnz8foaGhkkONp0yZ4rRMk8mEhIQEbN682brvwoULCAoK\nwubNm9GmTRt4eXnh888/t75eWlqKrl27YtiwYTCZTPjrr79EyaF0Oh3OnDljc6158+bZHJOUlIQj\nR47giy++QGRkJG7evAkAeOaZZ9CiRQsoFArRZx9JhL+7dEG+Wm19Siw1hCosLMxpIinGGGO35733\n3kPNmjVx/vx56z6TyYQePXpAEAS0a9cO53v0kPUwe1VAAGrUqIGAgABr2yAV8FWmF9HZPUe+zKHF\nt4jg7u6OEydO2Lz/U6dOwcPDw6ZtqmzPq+XhrU6nw5YtW7BkyRJZD/IdlZ+g0aBbt27W8l1cXKDR\naCAIgqw5r6+//vo//avEHmIclLJK+fbbb61DPyrTU1X+yZzc8+bNmye7XiUlJWjfvr0oYJlDhEJX\nV5gEQTJg0el0spYqKZ8R+L///a/k0FgiwiOPPGJ/Dc9KzMP9+eefZb3vMWPG4NFHH4VOp0OnTp3Q\nrVs3yWzBtWvXllXezp07UbNmTVFW4S1btiA4OBiHDh1CaGgotFotfv31V+vr2dnZiI+Px+zZswEA\nkyZNsmkEd+/eLbrW7t27beoYHBxsfW3kyJHo3bs3TCYTioqK0LRpU0RHR4ve18SJE23qTmQ/mUOH\nDh1kfQaMMcbkmzdvHsLDw609hxaDBg2CIAho2rSpdX1SuYGapY1NTk5GcHCwZLLB5eR8GG8xEb52\ncs/xmKen7HwXpUT44YcfbN7n+fPn4eXlZVO3201QFBAQgB49ekCr1UKhUFS6V7j8ViIImCcI0Gg0\n6N27t02b3MTX17ruqbNhxW+99dY/+evEHmIclDLZDhw4AK1Wa/NlFUWEj11ckKdUVmqyf/kkASZB\nQIFajUVubjbnKZVKfP/997Lq9vzzz4uuoVKp8MknnyA/Px8FBQXWYZ8Vtxy5yZfKzXNdvHix3fdm\nbw1PuQkLDO7uCA0NtZmTY09xcTFatGiBtLQ0hIWFSa5VFhkZieDgYHz99ddOy0tPT8e7774r+drL\nL7+MRx99FPv27YOXlxf0er1N76dl6Z/PPvsMYWFhaNCgAVQqFVavXm237v7+/qhZsyYaNWqErKws\nazBcWFiIBg0aYM6cOQCAr776SvS+WrRoYfMAwGQyISwsDDVq1IC7u7vkz0ZObzFjjDF5Fi1ahNDQ\nUJw8edJm/7hx4yAIAhISEnD+/HnUrFkTlXkoTUQICQmBv7+/3R69yvRG2ktM1MTXF02aNEGBzCy/\nt4gQERFhbfsuX74MHx8fUd1uybmnIOkERdWrV7cJwu19ZnK2fLUaSqUSPj4+1sD0doYVv/POO1Xx\n68UeMhyUMlkuXryIsLAw0RfVjBkzcPPmTfz0008IDw+HTqfD2LFjHQaklm3cuHE2X3T79u0TBRM+\nPj44duyYw7p99tlnorI1Gg06d+5sc9zSpUsl6yE3+ULFjMCDBw+222NacbmVLVu2YJ6MRqWYCN9E\nRGDSpElISUmRNeT07NmzCAgIgK+vr6geLi4uuHnzJn799Vfo9XqHSY6uXr2KatWq4fr165KvW+aX\nTp8+HVlZWfD29kZcXBzy8vJs3qdKpULXrl1Ro0YN0RCnikwmE7Zv346mTZuKXjt+/Dj0ej12796N\nffv2ITAw0Oa9WeadljdgwAC4urqibt26kp8HEWHNmjUO68QYY8y55cuXo3r16jh69KjN/tdffx2C\nICAmJgY3btxAy5YtRcHk5yqVOWdD2WYgc89nxQfa9pZjcxawOZu3qdfr4e/vj6tXr+LatWvYoFDI\nmntq6dmMjo7GgQMHoNfr7+i+wljhPSYlJYky5AqCgM6xsZhD5iRPcoctgwgmhQL9+vWzTn8Z9sgj\ntzWsmIgwa9asKvpNYw8LDkqZU/n5+WjSpInoCyo+Pt56zMSJE5GUlIQZM2ZgzJgxmDFjhsOGRK1W\nSw5zzcrKEh1bu3Ztm7XOytuzZ48oMFQoFKhTpw7Wrl1rc2xpaSkiIyNFmefkPtGsmBF4woQJUCgU\nWLp0qahMQRCwbt06AMDhw4fhVtYLLKcxaK7XY/LkyWjbti1ee+01WT+jHj16iD43QRDg6uqK//73\nvwCAjIwMhIWF4eLFi5JlzJw5E08++aTD61jml27duhWvvfYa9Ho9unXrBqPRCKPRiF69eqFx48ZQ\nKBT45ptvZNU9Ly8PHh4eKCoqEr325ZdfIiIiApcuXUK9evWsvd0ajQY1a9a0WW4HAGbNmoWwsDA8\n88wzSExMtJlLY9lUKhUOHz4sq26MMcbEMjIyEBQUhIMHD9rsnzt3LgRBQFhYGHJycvDYY4+JvoO7\nqVTIFwSYKiQ+chZI2tsquzxLcHAwQkJCcOnSJRiNRjyVmIh8GfcA+RXKlJoqU9n7ikJXV7i5uUGp\nVOKpp56SLKv8/YXs+5Vy9y0mkwndu3eHIAj4KjgYBiejw0rJ/IBAqi7l80kwdrdxUMocMhqNNnMR\nLJurq6t1fcolS5YgKioK165dw86dO9GoUSPMmTPH7pe1n58funTpYvear7/+uuiczp07i3oNL1++\nLEp+oFQqkZSUhOrVq1uXHrE4ffo0dDodunbtavNkUs7cjxJBsM4pBcy9swqFwjrv9bPPPhM90fX0\n9MSPP/6I4OBg6z7LU11DhfIrNsZ+fn744IMPEBwcjC1btjj8GX3xxReSn7NWq0VCQgLCw8Nx5coV\nAMCrr76K5s2bi4I5o9GIyMhIm3mi9mzevBnVq1fHhQsXkJqaioCAALzwwguYNGkSWrdujcTERLRq\n1QpJSUk2ywE5Uq9ePbvXHjVqFKKiotCzZ0+UlpYiMTERffv2haurK1JSUmyGSv/444+oUaMGBg8e\njGrVquH8+fOSGZOrVauG3NxcWXVjjDH2P2vWrEFAQAD27dtns3/FihUQBAGBgYHIzs62yS1g2aIV\nCqcBoL2eOjmbnCVPFAoFfvnlF+ta2nLuAUxEWFuJesidU/qRWo1x48ahWrVq1uzC5beKD91lj+wq\nK39rXBwAcxufnJwsO5uvicQPB7RaLQRBwPr166vi1449BDgoZQ5NnjxZ9CUZFhaGESNGADCvGanX\n63Ho0CEA5rmALi4uDofcCIKA6dOn272myWRCp06dROc9//zz1mMMBgPatm0Ly1PS8uuAFajV+KVR\nI5v1Pi3JciyJF6Kjo60JceT2YM6fMAGAOUGPSqXCsGHDbOo9fPhwUZ2lFqpO0GiQP3iwuedVoUCR\nm5voqa4gCPD29sacOXMQGBiIs2fP2v28fvzxR9Fc36CgIIwcORIuLi42S7YYjUb07dsXaWlpNsHc\nxo0b0bBhQ8m5sFKmTp2KAS1bomjIEOQqFDCSeW7uroYN8XiTJiguLkbXrl3x9NNPyypz2LBh+OCD\nDyRfy8jIgIuLC958800A5qRKMTExGDVqFNRqtU2yo1u3bsHd3d08TGnYMPznP/+B0Wi0zmcqv8XF\nxYkSOjHGGLNv/fr18Pf3x549e2z2r127FoIgwNfXFzdu3EBxcTEeeeQRUdv/ZVniQWfBVMUEQM42\nQRDQunVrydExUlvz5s3Rt29fEMnvfTSR8zVGLVtl5rtqNBp0794dISEhNvdOcXFxonIr01NqKX/y\n5MkAzIFpZYLa8g8HLIF+QEAABEHAhg0bquLXjz3gOChldi1atEj0hRgTEwMfHx9cuXLFmthm48aN\n1nPOnDnjdA4IEcHLywvnzp2ze217iYmWLl0KABg9ejSI7M8nMalU5mVcyr44R48ejZSUFLi4uKBO\nnTro2LEjBgwYYC1X7ryU5cuXw8PDA61atRIFWyaTCQ0aNHD63r/77jvR+x06dKjoOD8/PwQEBGDi\nxIlo2bKl3ay+hw8fhkqlglKphCAI0Ol0aNy4MZ577jmoVCo89thj6NSpE8aMGQPAPBy7cePGeOON\nN6xldOvWDYsWLZL5mwGUrluHAoUCpRXS6BcTwejuDmzYgJycHMTHx8uah7J48WKkpaWJ9p88eRJ6\nvR6ZmZnQ6XT47bffAPxvndahQ4dCrVbj008/tZ4TGRkJX19frFu3DjVq1IDRaMStW7ds0vVbtn79\n+sl+z4wx9jDbtGkT9Ho9fvnlF5v927Ztg0KhgJeXl3VUDgCsXr3aJk9EX61W9nxIqQRAUoGo5e/j\nxo1DmzZtJHsbnW2V7X2UO8S4MvNdtVotlEolQkNDERwcLJnDg0heD6xljm758i1Luxg9PSv1Xss/\nHLAkUgwICIBCobBZOo6xu4GDUibpu+++E82XCAgIQKdOnfDGG29YAw7LEiCAeW5g+aGq5YMrqS/X\nmJgYh0MoT506JVrew8XFBS+++CLkPomEhwfWzZqFyMhIhIWFQa/XIzw8HDt37hQlVZI7LyUgIEBy\n/iNg7sXz9vaWfL+1atVy2EPcvHlz0TkRERGoU6cOOnTogPHjx4vOuXHjBnx8fKDX61G3bl189dVX\n+OOPP+Dn54fAwEDExsYiOjoa06dPR0xMDBYvXgzAnMI+JCQEq1evxqlTp+Dr62uTsMih48fNAb+T\nzx3Hj0s+uJBy4MABREdH2+wrLi5GkyZNrNmAMzMzERERYV2/NCMjAxEREdaHDZbhv7169UKLFi2w\nePFiNGzYEN9++y0AcyItqQcmnFWQMcYc27p1K/R6PXbs2GGzf+/evVAqlfDw8MCFCxes+3fv3g0/\nPz80atQICoUC9Tw9YXRzkx0QlToJ+Czrns8lQqGLC4xkXt5Ebk9m+a3S8zRJ/hBjSx1zFAqn8121\nWi18fHzg7+/vsDxn9z0GIiRJnDt9+nSs8/auVKKkig8HLKO/AgMDoVAoJB+yM3a7OChlIocOHRIF\nVu7u7li4cCFCQkKQk5ODrl27YtiwYdbeQkuSG6mAVKfTIS0tTfILtmPHjg4zzH7++ed2v5xlPTFU\nqbCwbO6hWq2Gj48Ptm7dKjmcs/wWGxuLkJAQyde0Wi2ys7Pt1vnNN9+UPM9Z0iKDwSDZ0xoVFYWU\nlBTUqFHDZnkVg8GA2rVrQ6PRICAgwGaNuGXLliE0NBTu7u4YP348goKC8OGHH0Kv12PXrl0AgN9/\n/x06nQ5PPfUUnn32WVm/GwCAESPM67Y6+tzLretacYi3lNLSUmi1WpvMv+PGjUO3bt1seqTHjBmD\n1NRU675x48YhJSUF0dHR0Gq1OHfuHF5//XV07NgR/fv3x4IFC9CrVy+bz0Xq5oYbVsYYk/bTTz9B\nryE+f8oAACAASURBVNeL1uc8cuQIVCoVXF1dcerUKev+U6dOITg4GK1atbIuR3LlscecthtSwZC9\n5WCs+RkqDAWu2Avp4uIiWkP0du4lKm5yhxiHhoaiffv2CAwMtE45srcpFAp4eno6LfN2Mw4TmRMY\nVSYolXo4YJkuFBQUBIVCgR9//PGf/pVkDygOSpmNK1euICIiQvQltGrVKrRo0QJLly61maNo8dJL\nL4nOUavVeOqpp6zzChs2bCj5JTlu3DiHderfv7/keXKfbuar1VCpVAgODsaCBQvQpUsXyfIEQYBa\nrYaXlxcOHDgAjUZjM8S3YqAoNR/x559/lpxHGhoaajfrbXnFxcVo166d6Pzw8HCkp6dDr9fj2LFj\nMJlM6Nq1K9RqNfz8/LB9+3ZRWc888wwCAwMRFBRkvamYO3cuqlevjvPnzwMAVq5cCYVCgW3btjmt\nm5VWK+tzN5XLVrx06VJrMix72rVrZ+1R/frrrxEWFiZanqaoqAiNGjWyDgm2zC2eMGECvL29ERER\ngVWrVqF169YICAjArVu3UK1aNZsn+IMHDxZ9vq6urqKF3xlj7GFnWU7MMuLE4syZM3B1dYVarbZZ\ntu3mzZuoU6cOWrVqBYVCAW9vb+zevVt2u1E+4LOXsEjufM0EjQbe3t7w9fWVXEu0MuVJbc6GGPv7\n+6NTp07Q6XT4/fff7S5LVz4odRaQlq9z+bXe5a4RX9leYXvv0RLoWwJTqXsQxiqLg1JmVVhYKFpP\njIjw1ltvITMzE/Xq1cOiRYtEwcWKFStE5yiVSkybNg2+vr7WgGDv3r12vygXLFhgt16lpaWSw4Ll\nzgMpJXNQOHjwYEydOtVuHd577z38+uuvePfdd9GgQQPUrVsXW7ZssTsct0OHDjb1/PvvvyXXLGvW\nrBn0ej22bt0q6+dw48YNxMbGSjZwaWlpqFevHiZOnGidfzJ//ny7P89atWpBrVZj5syZWLZsGSIj\nIzFlyhQ0a9YMhYWF1iGwTZo0QUFBgaz6OUtSYdmMZPv1MmnSJCQmJtrNyDt58mS89tprOHXqFPz9\n/bFz507J406cOAG9Xm8drnvx4kVUr14ds2bNgqurK1q1agW9Xo/IyEgcOHAAQ4cOxYwZM/5Xf5MJ\nMTExos83MDAQ+fn5sj4Dxhh70O3duxf+/v7W5c0srl69Cg8PDyiVSvz555/W/ZaHqk2bNoUgCNBq\ntdaROXLbDZDzobFzSdxDWnErJsKxDh3g7e0NPz8/yYeR5bfOgoA8IpQqlXfUi1j+HiglJQU6nc6a\nQf/KlSuVCjydba5ly8kcPXoUs599Fh8qFNaEj7dIeihzZebPlioU+MzHByqVSnLqS/nAVKlU2m2z\nGZOLg1JmZTAYRAl3hgwZgqKiItSsWRPvvvuuaBimVM+gv78/UlNT0aRJE5shq7NmzUKPHj0kv9wc\nTZo3mUzWZWnKZ9qVOwQlmwgJCQnIyMiw++UeHR2Nt99+23q99PR0REdH4+mnn3bYiFgyAt+6dUsy\nU15wcDBmz56N7777Dv7+/qJFxu05fvy4aC6uWq1GtWrVrNepXbu20+y2hw8ftjYev/76qzUw7NWr\nFwYPHoy2bdviyy+/RP/+/dGvXz9ZmXILXVzkfe6CgIULF1rPKy0tRbdu3ezWec2aNejUqROaN2+O\nmTNnOqxDZmYmwsPDcePGDQDm4WX+/v6YNWsW1Go1aru4YHN0NIrKMj3mCAJMw4dbMzIXFhaKUu0T\nEfr27Ss7AzFjjD2o9u/fj4CAAJspIwCQk5MDb29vKBQKcw9oGZPJhIEDByI+Ph6CIECj0Vjnn5pM\nJhTIHLortRTJ7bb9OYKA5cuXo1mzZrKCvBilEt9ERNy1ZEyurq747LPPbD6/3r17i/JZ2EsOKQiC\n3fsPS3LD5ORkDNDpUOrmJms4b2Wz93793nuoXbs2XFxcRD3XM2bMQGJiIgRBsAamcpaVY8weDkqZ\njYkTJyIiIgKCICA5ORkGgwGzZ89G27ZtERgYaDOEx9KjVfFL+Oeff8akSZPg7u5ukzynffv2WLNm\nDebOnSv5Jevp6SlaiBsA5s2bByL78ygcbcVEWKBSYdOmTXbnagQFBeG///0vdDqddbhoQUGBdU5p\n586dMWLECLsNz5IlS5CSkiLa/9xzz+H48ePWbIUff/wxYmJiRENS7dmxY4c1251l02g0sASoNWvW\ntJtwqbywsDBotVqEhYXhxo0b6NKlC4YMGYLo6Gh4eXnBYDCgoKAAzZo1w7Rp0xyWtWLFCnykUsle\nf80yh9ciJycHdevWlczIe/78ebi7u6Njx46ylmp59tln0aNHD2sQ+cEHH6BevXpY2b49DBI3LkaF\nwiYj88GDByV/no6SUTHG2IPur7/+QlBQED7//HOb/QUFBdDr9RAEQTTlY9q0adZ7Bw8PD5v5p9eu\nXcOnXl5O241SInwq8Z18O20/yNwraEmMKHdTKBSy1xiVM6c0NTXVZqpTbm6uNbOuQqGwm9+ifv36\ndstUKpVwcXGBr68vmul0KFKpHNbVQIScss+juOxzdnR8+ey9arUaW7ZsQWxsrCgwbdu2LQwGA1q3\nbg1BEBAcHAyVSmXzsIKxyuCglFl9/PHHSK5RA4WDB8Pg7g6TIMCk1WKxqyvahYXZZNrNyclBQkKC\n6MtyxYoV1qVRAgICrMfn5ubC09MTOTk5ACCZFImIUKNGDVy+fNl6XnFxMWrVqnXbcz7yiBBF5jmg\n9r7g165dC8C8zqhlfmt2drZ1aMr69euRm5vrsIyKW2JiojWwysrKQlhYGK5du4YJEyagXbt2dpd3\nqUhqaLRCoYBCoUC1atVEi5dL6d+/P1JTUxEYGIjHH38ct27dQp06ddC0aVNoNBrrzcPFixcRFhaG\njIwMyXJ27NgBrVYrez5PAy8v6HQ66zxYC0tG3orrnK1fvx5KpdK67IszRUVFaNy4Md5//30A5qfx\nC5o2df6UuywzMGD+nZeat5SZmSmrDowx9iA5duwYqlevjmXLltnsLykpQWhoKARBEGVTX7p0Kfz9\n/SEIAtzc3LBp0yZRuV+++absdTvLfxffbtsPIhRK5Hcov9WuXVtyf2XWGJVzP9C3b1+UlJQgPz8f\nSUlJeOKJJ5CcnIzo6GjJ4xUKhWTvqSAIcHFxgYeHB/z8/DBhwgRc69dP1hIxjv5dcauYvdfPzw97\n9uxBzZo14eLiAnd3d3To0AFEhJSUFPw/e2ce3lS19f9zMjRTmzZNmqTpXDqXFgptKVCgzLNMMok4\nMMpwBb0yVXDAmauAE3rh4hW9oChaEAHFAbyCosggiIBUROZZWqbSNvn8/gg5t2mSNsX7vr9XzPd5\n1vPAOTn7jN17r73W+n6rq6tp2bKlm2O6ffv2/9HvNICbEwGnNAAAPvnkE4aEhjo1Jmul2VwTBCoU\nChxr1gDONMxbbrnFo8N88MEHAWcaZuPGjQkNDeXMmTMAlJSU0LFjR+l8FRUVxMfHe+2QCwoKuHr1\nqvTbr7/+mldEscER0vpY6BQKhVtd6MmTJzEajezfv5/MzEzCwsIIDw/HaDRy4MABvvzyS0RR9Em+\n4DKbzeZRnzllyhS6detGZWUlvXv3ZtSoUX6niT7yyCMe54iIiKBx48YkJSXVyQQM8MwzzzBp0iS6\ndOlCeHg4S5YsYdeuXYiiSHFxMRaLhV9++QWAnTt3uumBuuBKJ3ZJ9PjL/me1WmnUqBGpqamSlAv8\nh83RFRk/cuQIFouFtm3bsmzZMr+eC/xHx/Sbb76B0lKnPm1934dCITEDgzPiWlt6SKPRBAbVAAII\n4E+FX375hdjYWBYuXOi23W63SzwH7777rtu+zz77DIPBgEwmQ61W8+GHH3q0u3XrVsLDwxkVFeUX\nY25NuxFmXFebviKZ4eHhaLVawsPDvWY5NWSMq22+2H6HDh1K586dGTZsGNXV1YwePdrr8Uql0usc\no0lwMId795YinhcEgYPdu4NOd0MOO4Knc1rXvaWmpvLTTz+RmJiISqUiNDSU9u3bI4oiffr0oaqq\niry8PMkxVSqVfi2aBxBATQSc0gDYs2cPeeHhVNenIXY9wjR16lSPDqt///7Y7XYqKytJTk7m448/\npkuXLqxatQqAUaNGMXfuXLfzHjp0yCM91WVDhgzB4XDw22+/kZKSwjU/9c0cQt06YIIgoFarSUhI\nYO3atW5C3wCzZ88mKiqKoKAgfvzxRwYNGsQdd9xBRkYG5eXlLFmyhGPHjvlMBVapVBw9etTjGVdW\nVtKmTRsee+wxLl68SJMmTST9zfpQXV3tQaB011130b59e7Kysrj11lvrdHA/+ugj2rdvz7lz57DZ\nbISEhDB79mwKCwsxm80UFxeTnZ0tpVqXlJQQFRXFkSNHACfxUnJyMhaLxe0aEgWBRSoV5TIZdsGp\nw/bv7GyP526z2WjcuDGdO3emqqpKuq7XX3+dxMRETpw4QWFhIU888YTkQDcE77//PvHx8VwdMcL/\nAbkGM3BVVRWZmZketTvR0dFurL0BBBBAADcrDh8+TEJCAi+99JLbdofDQfPmzREEZ6lKTfzwww8Y\nDAYpnXTlypUe7R49ehSbzUZycjJJSUmMLCpib8eOboQ8C2Qyn+P1jWiIIviOZOp0OuLj4xk4cCD9\n+/cnKirKY2yrOcb5o10u/T4xkaCgIPLy8ryqGMTHx3Pt2jUWLlzo9fjU1FSvEdKeMhmXBAF7LRKm\na0LD5F1qW7UgUFHj3hapVHVGf9u1a8fhw4eJj49HpVIRFhYmRUiHDBlCdXU1OTk5bo7p7t27/yc/\n2wBuMgSc0j85Tp06RUJCAns7dKhfQ0yp5McOHTw6qmbNmkkOzYsvvihFHx999FGmTZuGw+HAZrOx\nf/9+j/N/8MEHPjvAmTNn0qNHDyZMmAANYHwNCQnxSRwgl8tp2bKlz5pFl8P97LPPAvD8888zevRo\nRo8eTd++faXjSkpKvLbfoUMHnw7isWPHiIyM5JNPPuHw4cPYbDYpdbgujB07FrlcLjnCMpmMu+++\nW3IWY2ulVtfGyZMnMRgMOBwOvvvuO3Q6HWq1mjVr1vDqq6+SmprK0KFDGThwoHTtTz/9NM2aNeP8\n+fO0b9+etLQ0r/frIjU4f/48wcHBVFZWepXcMZlMZGRkON9lrecdExNDp06dsNvtbNiwgYKCgnqf\nSW1MmjSJKw1gTUQmczv+4MGDXhcaXCzFAQQQQAA3K44fPy6RGdaGS6LshRdecNt+4sQJyfFQKpUs\nX77c49jLly+Tk5NDfHw8iYmJdO3albfeegu9Xi9FK9VqNa+//rrEl1DbGsIW63LUfEX7GjVqRMeO\nHUlKSuLll1/GZDLRu3dvn3OQhpharaawsJA77rgDm81Gjx49iIuL8/hdUVGR1/lJTk6O13TiREHg\ncgOYixtqNcmaZDIZCoWizvu87bbbOH78OLGxsahUKgwGA82aNUMURe666y6qq6vJzs6WHFOVSlWn\nRnkAAdREwCn9E+PKlSsUFBQwc+ZMvzXEarPNRUZGShG1CxcuYDabnSkbpaUc7t2bS3K5xH7KuHFS\nLV9N/PWvf/XZAaamplJZWYk9ONjv61MoFDz99NM+2/TlwC1fvhy5XM6tt95KYWGh5MRlZmZSUVFB\ny5YtefTRRzl27BhRUVE+26/JOFwbn3/+OVarlaNHj0r6bzt27PD5+wULFqBUKmnfvj2FhYW8//77\nLFu2DLlczrx589i/fz9Go5GwsDC++uorn+1YrVZJh3Pq1KmIosjEiRMBmDhxIp07dyY3N1eSTnE4\nHAwfPpz4+Hh69erFunXrPBgD8/Pz3c4RGxvLgQMHKCsr8zq4hoSEEBcX57YSv2bNGtRqNcOGDcPh\ncHDx4kW0Wq1P2RhfqFy1quErxiEhbt/km2++6VXLznVtAQQQQAA3G06dOkV6erqbbJYLffv2RRAE\nHn/8cbftly5dIjs7m6CgIBQKBW+++abHsXa7nX79+hEZGUl8fDwdO3ZkxYoV6PV69Ho9Wq2W9rGx\nfJubyyW5HLvgZMqvLWNS7qdD5sqSWiIIvHH93zWlUbomJdGyZUsuXbrE9u3biYiI4OGHH6ZFixYe\n5Ru+rCYDsDfZlcaNG1NeXk5hYSHR0dHccccdaLXaettVqVQ+CY/+oVI1uGa0IVZb1sYfyZri4mKO\nHz9OdHS05JhmZmYiiiLjx4+nurpaYmG22Wyo1Wr27dv3P/YNB3DzIOCU/klht9sZPHiwlCbrbySy\nZgemVqvdag+nTZvGiBEjnOymWi2O2pFXpdKN/bTmtRQUFHjt/JRKJevXr2dRUFCD2PDqchoVCoVH\nB7l9+3aUSiW33XYb1dXVZGVlUVJSQlVVFcHBwZw/f57jx49js9n8Ijyqqy7yiSeeoHXr1lRWVrJ8\n+XJiYmK8pol+/vnnKJVK2rRpQ0JCglSfCzB9+nTkcjkff/wxn376KaGhoVitVrff1ES3bt2kVOrh\nw4eTk5ODRqNh7dq1VFVV0bFjR0aPHo3NZpNqgh5//HF0Oh1Tp05l1apVWCwW5HK5RGRQU58OoHfv\n3hJB0IEDBwgPD3d7Jmq1GoPBgMlkYv369Rw7dgyr1cqaNWvIysqSCIuysrIaxt5XWur8rm5kUK7x\nTTocDgYPHkxMTIzH+9y0aZP/1xNAAAEE8AfA2bNnycrK4qGHHvLYd+eddyIIAlOmTHHbXl1dTffu\n3SUm1pqyXzVRXFyMwWAgNjaWdu3a8cEHHxAaGopOp0Or1XKn2Yxdo6FaJqsz0ukvE+47ZnO9daC7\n58yRrm/evHnk5+djMpnqHc8Fwf8a0z59+nD8+HESEhLQarXExMRgtVq9timTyQgKCiIxMdHrflEU\nudSQDKAbMG+yNr4yzWrawoULpdRsl2OanJyMKIpMmTKF6upq0tPTJbkYl55qAAHUhYBT+ifFgw8+\nSMuWLaXURMcNREprpuscOnSI8PBwTmzaVL+DUIP91IWzZ896ODEuk8vl/3U2PLPZLGlcnjhxguDg\nYJo1a0Z1dTUA69atIyUlhcrKStq3b8+aNWuw2+20a9fOawdem9hApVL5FJK22+306NGDv/71rwA8\n9thj5OXlcfnyZek3Bw4cQKPRkJmZiclk8iAMcDgc9OjRg6CgIPbv388rr7xCeHg4HTp08JqaPG3a\nNGbPns2ZM2cICwvjyJEjJCUlodfrOXHiBOfOnSMpKYkZM2YQERHB/PnziY6OZseOHURFRaHX62nb\nti0zZ85k/vz5dOvWzeMcM2fOdEbdr+Ozzz7zIGwwGAwkJCRgNBrddGwPHTpEZGQka9euZeTIkR51\nTXVi3DiPWpsG2/Vv8sKFC8TExLgtaowZM8b/awkggAAC+APgt99+IycnRyqxqYnJkycjCAJjx451\n2+5wOBg3bhwqlQqZTOaR0uvCm2++iVarJSoqitatW7Nu3TrJIdVoNLSyWJykin6M5/6O/R38+J2j\nxtzD4XB4rfv0FSFtyPxj0KBBDB48GIVCgdlsZujQoV7b7devn9fsHLlcTnR0NM8995zf6csOwdNh\nri+Cek0Q2ORDeqY+x1Qul7Nu3ToOHz6M1WpFpVJhMpmIi4tDJpMxa9YsqqqqSElJkRxTjUbDwYMH\n/2c+6ABuCgSc0j8hXAQzLpIfu93OW+HhDYpE1tazHDZsmHO1ddw4v2pTqVVbCPDtt9/WmTpyo2x4\nviw/P1/SDLNYLFy8eFG6FofDQadOnXj55ZeZOXMmxcXFTJkyxaMNpVLJc889R0xMjEcKUEREhM8O\n+Ny5c8TFxfHee+/hcDi4/fbbufXWW7Hb7fz2229YLBbMZjOxsbG88847XtuorKwkNTUVg8HA+fPn\nmTBhAmFhYTz88MMev33rrbfo378/c+bM4c477wTg559/RqfTkZ+fj91uZ+/evURERDB8+HDkcjkb\nN27k6tWrpKeno1KpiIuLk9KYS0pKPM7x7rvv0rt3b7dtCxYs8HhmZrNZWjmtKf+zefNmIiIieOSR\nR7jjjju83rNX+LmgUq9lZkJpKV9++SVGo5GMjAx69uyJUqkMREoDCCCAmwZlZWXk5+czefJkD4f0\n0UcfRRCcbLG18be//Y2goCBEUeTVKVOc431IiDPT6no5xHfLl6NSqbBYLBQUFPDJJ59gMBgIDg5G\no9FgtVopu/32ehcSa843/Bn7/YmoOmowr3tjtfdlN6JbajQaWbFiBSEhIQ2al2g0GtRqtcTB4W+k\ntFz4DymT/fr/K+s55pIgkCyTeZ3b+GPBwcHs2LGDX3/9FYvFgkqlwmw2Y7PZkMlkPPnkk1RWVpKU\nlCQ5plqtVmL7DyCA2gg4pX8ybNiwgYiICLfC89tvv93vlcBkmcyD7XXr1q1ERkY6nTp/HYQa7Kcu\nVFVV+dTtclmRILBLcK4AumyX4K6pVdP0er0kVO3NrFYrGo1GqresiR07dmCxWHjvvfdISUnxOFYm\nk0kRvSFDhki6XTUtPT3dTQqlJr799ltJw7OiooLWrVszY8YMKbU2Pz+f4uLiOt/nuXPnCAsLIy0t\nTdJA0+l0fPLJJ26/27t3LwkJCSQmJrJlyxZpe0lJCUFBQZIju2TJEmQyGUVFRfTs2ZNRo0bRr18/\nSRrno48+Iioqyo1F14WffvqJ2NhYj+3jxo3zeC6iKJKfn09RUZFb/eiSJUuIiooiKSmpzvuuCcd/\nkwTieirvrFmz6Ny5M9euXaNp06bodDoOHz5c94WUlnqdpHmrow4ggAAC+P+Bixcv0rp1a8aNG+fh\nkL7wwgsIgkCvXr08jluxYgVKpRJRFHlj6FBnX1lrAdqhUHBJEBgYHEzz5s3ZuHEjRqMRvV6PWq3G\nbDZz4MABqvwst6iZmeViwi0XRamesyYTrr8svfaQEJ+cEwqFArVa7ZHh42/btVNhu3Tp4leNZs1x\nUa1Ws3TpUsC5QHAjDrEryunvQr5cLr9hx9Rms3H48GF++eUXzGYzKpUKq9VKREQEMpmMuXPncu3a\nNRITExFFEavVik6n8zrnCiCAgFP6J8K+ffswm818+umn0jbXINSQDiwnJ0cazBwOB+3atfuPrpm/\nDkIt9lOA+++/n06dOtGvXz+vxAOu66u9+ucrUqpQKMjIyCAiIgKj0eizU73//vt9PrM777yTCd26\neZAbvCqXk2swMG3aNMCZfmyz2Rg+fLhH+507d6aystJr+y+//DJNmjThypUrnDp1Cp1Oh1wup2/f\nvvTs2dMnS3BN7Nmzh6CgILp3785vv/1GXFwcer1eIqACZx2QSqWiSZMmHhORCRMmoFQq+eSTT8jK\nyqJPnz5kZWWRnJzs1JYbNYoxY8bw7LPPYjQamT59utfrsNvtUv1tTbhSoL0tGOTn5zN69Gi3a5oy\nZQpyuZyTJ0/We+8///wzZX5OGPw2rZaqffsoKChg3rx5nDt3DqPRSFxcnMQy7YHrddQeWQI+6qgD\nCCCAAP634Vq4HDlypMfYsmTJEgRBoG3bth7HbdmyRRqTH7/77npLdK6IIlvffhuTyUR4eLiU2rl3\n71527tzpd0pqbRIelz3yyCMecwR/27QLdaem9ujRw8ORbEjb9TlxEydORKVSeWxXq9WIoijpuT//\n/PO4nHF/U4dlMplUp1rbma9P1kahUHD//ffXe/3erHHjxly4cIHS0lJMJhMqlYqoqChJv/bVV1+l\noqKCuLg4RFHEYrEQHBzsNkcJIAAIOKV/Gpw5c4akpCT+8Y9/SNu++OILj87Z1YFV6XQgk1Gp0Xjt\nwFyO3KpVq8jMzPxP5OwGI6VvvPEGiYmJnDt3jl9//RWz2exxXQ2tKZXJZGRnZzN27FhWrFjhs0MV\nRZENGzZ4fW47n3rKp6Nu12i402zm7bffBmD16tXEx8fTv39/j3OMHTvWK4Orw+Fg6NChjBw5kscf\nfxyFQoFKpSI2NpYLFy74/X5XrVqFQqFgypQplJaWEhwcTEZGhpszHBYWxtSpUz2OdTHlKRQKabLi\nWhgwGo0YDAZ+++03ysvLCQoKokuXLj6d5YKCAjZu3Oix/ezZsx4EUTKZDL1eT0pKipuGrd1ux2g0\n0q1btzpZby9duoTBYLhhcXWfdj29/Oeff5bqeX/44QdUKpX3ml1/iJa81FEHEEAAAfxv4erVq3Tp\n0oXbb79d4k5wYdWqVQiCQPPmzT2OKy0tRa1WIwgCo0aN8qtEx65QsFijwWKxEBQURHh4OLt27WL/\n/v3OrKpa5Ea+zBsJj2vMHjFihJtUWUOimTabTTpOLpeTl5eHIPiWk/P3esuvRwJ9zTVSU1N9cmcI\ngkBoaChdunThn//8p9t2fwIGLgLB6OhodDpdgyK0LlMqlVI9cUOtU6dOVFZWcuDAAYxGozSP0ev1\nyOVy/vnPf3L16lViYmIkxzQkJCSgBR6AGwJO6Z8AFRUVFBYWSlE9cApl15b4cJmrnm/37t3o9XrC\nwsIQRdGDDr1Kq2VpaCgbFy+W2q0eO9avVJO911cDwZn+azKZ2LVrF1euXCE/P9/jmm4khUWj0ThT\njd54A4fDIdHbe7Pg4GB+/vlnt+d29ptv6tUHq1aryTUY2LlzJwB33303I0eOpEWLFh7nqOl41cTF\nixeJjo5GLpfTp08fQkNDMZlMHtdTH5544gkUCgWvv/46n3/+OUFBQdx9990A/Prrr6hUKkl/tSYc\nDgcjRoxALpfTtm1bysrKSEpKIjk5mbCwMEJCQti5cyeLFi2iZ8+etG3b1u1bqol77rnHp+TOhAkT\nPNKiXGQYFotFYv0Fp+6oxWLx+czsdrs0IfFnwaLBlPnXF02WLFlCRkYGV65c4d133yUoKMgzsv47\n6qgDCCCAAP5r8FFCcO3HH+nZsycDBw70KL3YsGEDgiCQlpbmsQh47tw5QkNDEQSBwYMHO/f7ufBc\nJooolUrCwsLYtm0bv/76K7GxsbRt27bB43ltIkFBcEYWa0Yc/W3zFbkcmUyGSqUiIiKCjh07xfrP\nhAAAIABJREFUStlJ3uYGCoXC77a/yctj0aJFXtvp0qVLnQ6ry1QqlVfHuK6Ip0ajQaVSsXTpUqxW\nKwkJCfTq1QtBcEYxvWUq+bKgoCAmTpzo9TnMnTu3zijzXXfdhcPhYP/+/VKEPD4+XsoAe/vtt7ly\n5Qo2mw1RFDGbzej1er+yogL4cyDglN7kcJHoDBgwQIrwXLp0yavshcs5O378OKdOncJmsxESEsJX\nX33F6vHjva7UVYqik9HuenriounT/YpoJoki27dv5+TJk8TExEhSIqdPn/bqlN5oTUdkZCRGo5Fd\nu3Zx9OhRgoODfXaoycnJlJWVAU5H/j2rtf4InFLJT126EB8fz5kzZ7hw4QKxsbG89dZbHsLZoijy\nwQcfeLyjHTt2oFQqkcvlRERE8OGHH/LSSy+Rnp7eoGgpwKBBg1AqlXy3fDnft25NmeB0yK4GBVFi\nszF94ECPY55//nkyMjJYvXo1MpmMrKwsxo4dy7Rp09BoNEyYMIGEhASaNGnCmjVrOHPmDImJibz+\n+usebb3yyitOWaBa2LBhA1arlSVLlngMagaDgdzcXEwmE7t37wac9UsdO3YkMjKSNWvWeLTnGnBd\nVtdKcqVwA07p9fRyh8PBkCFDePj222HcOK4GBWEXBK6p1f+pF/0dddQBBBBAAP8V+CghcCiVVMhk\nbLVYnCz7NZzVXStXIooiMTExHg5pRUWFNE/o2bPnf/Y3QD4uNDSULVu2cPLkSZKTk+nevbvkYNU3\nT7gsuOuNlouih4ZpTYe1odlUWVlZNGnSBFEUueOOOzwWTAVBkBaXG9K2QqHwOcfw5gD6I79S129c\nacxyuZzQ0FC+//57fv31V9RqNVarlfDwcI4dO0bLli39vi61Ws348eM9rmH79u2SzrmvY12M+nv3\n7iUsLAyVSkWjRo2kWt3333+fK1euYLVaEUWRiIgIwsLCJOLNAP7cCDilNzkeffRRN7kRu91OUVGR\nR0cil8tp2bIlzzzzDBUVFbRo0YLw8HBnuq+f6Ylnv/kGvV7vd21qcHAwBQUFbjIiAJ06dfqv1nQU\nFhYSFxdHaWkpBoOBmJgYn85p165dqaqqYtiwYX47wuj1TJs2jfbt21NZWcknn3xCdHQ0mzZt8mDe\n0+l0bN++XbrX48ePExYWRkxMjCSV4nJEJ06cSJcuXbySCvlCVVUV4xMSuCRcZxqscZ0OUfyPc3Z9\nUvLZwoVERkZKbHgdO3ZEEATeffddjEYj69atw2Qy0aNHD1QqFRUVFYCzjjUiIoIvv/zS7fxfffWV\nRwrYyZMnsdlsfPTRRwDMmTNHeh4ymYw33niDjh070qNHD+Lj4zl16hSHDx/GbDZLjLw1NVFnzJjh\n9d25VpKrr6eeX1MoqPTyHfr7Tl24+M47XBZFD7ZIu0Lh/Lv4HXXUAQQQQAC/G36M0bUX5lykRENC\nQz3See12O82aNUMQnDWmbg6rv5FSQeDLL7/k/PnzZGdn06dPHzdnpq55wtXr5i/TfmFhIQqFwq+5\nh1wuJzc3V3Jms7KyvKa6uoh5/LneG2H/F0WRhIQEKYrYEIfUFSEWRZFXXnlFOl6j0fDdd9/x9ddf\nExkZicFgQK/XU1BQwAMPPOC3BI4gOLOYRo4ciWt+qFAoCAoKYs+ePRQVFdXpmC5ZsgSAH374gdDQ\nUFQqFcnJyQQFBaFQKFizZg2XL1/GYrFIjqnBYODs2bP/m381AfwfRMApvYmxdOlS4uLiOHHihLRt\n0qRJXjuRkpISHA4HVVVV3H777VitVsaPH+88yM/0xM8zMjwchPqK67VaraSVCjB16lTkcjkvvvgi\nWq2WxMRE/vKXv/hNi35JLicpKcnj/tq3b49WqyU4OJgTJ06wZcsWnx1qq1ataIgjjExGdXU13bp1\nY9KkSYAzVXX48OF89NFHHgNOVFQUR48e5cqVKyQnJxMcHMzAgQO59dZbueeeexgwYID0Lrp168aE\nhqR9lpY6I9d+XLddoeCyILD3eorspk2bMJvNZGVlkSKXs71lSwgJwSGKlAkCb4SEMPu6nAw4tVyt\nVut/6N1LS7k2apQzOnt9Nd5xzz3c0bq1G4uww+HgjjvuIDo6mqKiIu6++27OnDlDo0aN6N27N61b\nt+bq1auSs+yqNz5z5gzLli2rcyB94oknAFg9f369K9u+7JogcNF1nzcw2fNpgUhpAAEE8D8Bf8Zo\nX/2Xl3r3Pn36IAgCzZo184igbs3L8yuV9atmzSgvL6dFixb07dvX75TUNwRnlLTOcV5wn0vI5XJm\nz55NZmam1zaXhYfTSBAk9lcXv0FYWJjXccRXtLORIPBxcjKVWm2d8xqXjR49Gp1O53VfWFgYMpkM\nq9XK448/Xue4Vvu4kJAQpkyZQl5enhQpdTmq4eHhtG3blldffZVvv/0WURQpLCwkKSmJqVOnutXT\n1mcmk4mnnnoKURQJDg5GqVSiUqnYuXNnne0oFAo+++wzAHbt2oVer0elUpGSkoJSqUShUPDpp59y\n6dIlIiIiEEVRIsU6d+7c/9qfTQD/9xBwSm9SbNq0iYiICCkdEpz6pN46kM6dO0u/eeaZZ7BYLBQW\nFv6HJMfPlVFfpAT1Wa9evXA4HCxbtsypf/bqq8TExKDX69m9ezePPPIIr8rl9Q6EVaLI2yYTY8eO\nlepgalvfvn2lQbZ2ekpta0ikFOD8+fMkJyfz+uuvc+nSJZKSkigpKeHll1/2aLtZs2Z06NABlUrF\n5MmTycrK4uLFi1RUVJCbm8u8efMAuHDhApmZmbz44ov+vfgbmZxcj3JHR0fz4YcfSqnalbUigJWC\nwGVRZP1990mne/7552ncuDGXV6zwmjpWLZNxRSajevVqt8u8evUqJ0+e5OLFi2RnZzN37lx++OEH\nTCYT7du354477qBv374SidT06dPJycmpk7whLy+P6upqdu7cyQLhxsmPLgkC3VNSnBJHfjzP6utW\n128qRRGHa5EngAACCOC/id+j1Vyr3t21cJ2cnOxB6vbUU0/5ncraSHDWM9aOkNZnr8hk9epr1uaP\nEASn/NqePXtIT0/3aFMmk6HT6cjMzJRScn3NEdLS0qTrrc2jcUEQ+KdWy9oXX5Qirb6inMXFxVRW\nVlJYWOh13FIoFMjlcmw2mxtbbl1ms9lo3rw5zZo1A5y8H67zv/3222i1WqltlxRd586d0el0REZG\nkpeXx+bNm1EqlfU6p2FhYfzlL3+hefPmfPTRR4iiKEU91Wo1H330kXQ+b1aTe2Hnzp2EhISgUqlI\nT09HoVCgVCr54osvKC8vx2g0IooiRqMRo9HoU0YvgJsfAaf0JkRpaSlWq1VKlwRnWqW3jlGtVksd\nQElJCeHh4URHR7vn9zeghsRb5+TqvNVqtVRTUtvuuece5HI5kydP5t5778VsNjNnzhzWr1+PWq32\neyBcOG0aERERfPXVVx6Dzrx582jcuLFExONwOIiKivLZqfpDbmCXy90G9D179mAymfjmm2/YtGkT\nVquV06dPe41Qy2QyHnjgASwWCwcPHpTacOl9bd68GYCDBw8SGRnJunXr6n/5NzA5cSiVlERFUVxc\nzJktW+pdpb4sCOy4XgPscDh4cMgQrtYXya6DffbQoUPS97py5UpsNhvdkpP5ICaGq0FBIIrYg4N5\nRSbzuSKtVqspLS3l3LlzBAcH+7+gUMNqp2H17t3bWYPlzzP049tcXI/mbAABBBDADeH3ajVfX1id\nP38+guDM5qmd0vvcc89J/a2/qayiKDaIBTYkJMRvptsyL45u8+bN2b9/v1e985iYGF555RVczp23\n81ssFul667vHffPmMXr0aK/taDQadu3axZAhQ2jfvj0RERFeo68xMTF+16CGhITw7bffotFomDlz\nJkeOHJHY/kNDQ9HpdJSUlEjXX1RUhN1u5+233yY3NxeNRoPZbOaRRx7h448/5tKlS4waNcrrgoHV\nakUul9OzZ08mTpxIy5YtKSkpQRAEiVlXo9Ewb948r869N7mX7du3S45pZmYmcrmcoKAgvv76a8rK\nyjAYDIiiSHh4OBERERK/RwB/LgSc0psM58+fJzU1lQULFkjbDh06REREhEfHodPpeOWVVwAn2U5Y\nWBhhYWFuNY/ADUVKXcLJ8fHxdO3alQ4dOjBmzBgGDx7sVYNUEJyrqps3b0av15OXl8cvv/yC0WiU\nVhH9GQhVKhVPPvkkAGvXrpU63JCQEE6fPs3BgwexWq18/PHHgFO71deg6a8jfOh6mooLK1euJDo6\nmhMnTjBlyhQGDBhAVVUVPXv29DiHVqt10411YfXq1cTExEiLA67aypqRb6+4wcnJRbmcqqoqPk5K\noqqeSUGVKPJPnU6icq8eO9Yjquph9bDPfvnll0RERLB3716W3n47V2SyBtXuvPrqq1RVVUk1M/6m\nXjuEutPL/U3Nrfbj25TL5V7lcgIIIIAAfhd+T6T0uv3ctSuJgpN4rjaPwblz5zzmEBkqFUsNBi7K\n5X6lstZnWq2W6OhoZ+mHH9drFwSvUdHCwkJatmzpNW1WFEWio6O9nr8m/4M/Y3+FQkG2l3N06tSJ\nJUuWoNVqyc3NpVGjRsybN4/Vq1fXWTtan73xxht07dqVoqIiHnroIdLT05kzZw7du3fn9ddfJy4u\nDq1Wi9VqlVJ5R40aRdn27SxUKrkkl0uEUT+0awelpVRXV5Ofn+91DnTPPfegUCjo168fI0eOpF27\ndvzrX/9CEATMZjMqlQqtVsuwYcMkJ1+hUJCens5jjz1GkyZNKC8vd/uOtm7dSnBwMCqVisaNG0uO\n6bZt27hw4YKU0hweHo7ZbA44pn9CBJzSmwjXrl2jffv23FcjvbK8vJysrCyPDken05GVlUV1dTUn\nTpwgKioKs9nMsmXLPNr9pUePBtG3azQaduzYQUhICGfOnAHgvvvu44EHHkChUDB58mSv6SpKpZLo\n6GhCQkLYs2cPzZs3JywsjDlz5kiOrD+1qgUFBVRUVLB9+3YUCgW9evVi+vTptG3blsrKSr744gvM\nZjP79u0DoLi42Gd6kT+OsEaj4dKlS27P7JFHHqFVq1ZcuHCBjIwMli1bRnl5uYdWpyAILFy40Ov7\nnDFjBp07d5ZWrP/1r39JREC+4G9kr7Y5RJG1a9dS7ueE4LJSKT3n/xb77D/+8Q86xMXh0GjqbKd2\nPVG3bt2w2+106tRJ2tYQtmaZTEafPn28Thga0o7r26xQq6VUr9rfptls5ujRo3U+hwACCCCABuF3\n1JTWHtMqV63yeoqaBHVqtZrs7GxatWqFKIro9Xoef/zxBqXp1jSXPMtnn31Gmb9jliBw4rXXJHK+\nmmY2myV2V3/O73LKWlutUoZUfQuS1wRn/WvN9N4yQWBRUBB3FhaSkJCAUql0S2N1EQfdiAUFBREf\nH8+4ceOIjo5mxowZVFRUEBISwrlz5zh79ixKpZLg4GDWrl2LUqmkmyBQqVR6pENfEwSqVCpYu5Yz\nZ85gsVi8jn9/+ctfUCgUDBo0iNtvv50uXbpI0War1YparUar1ZKZmUmTJk0wGo0UFRVx1113MWrU\nKLp16+amlQ7wzTffoNPpUKlUZGVlIZfLUavV7Nq1i/PnzxMaGopMJsNgMGC1Wp1lNAH8aRBwSm8S\nOBwO7r77bm655RbJiamuruaWW27x6Gi6dOlCREQEmzZt4urVq+Tn55OQkMDUqVM92v3xxx/J1un8\npkOXy+U0atSIY8eOYTKZpHZee+01EhMTMRgMrF+/nokTJ3oVkRZFkaeeeooJEyZgNBq59957iYuL\n495773VLucnIyKhzwBk0aBAhISGkp6dz7do17HY7vXr1Yty4cQAsWrSIlJQUzp8/j91ur5OVzh9H\nOD4+3o0Qwm6307dvX8aMGcN3330npeNqtVqPzt9V9F8bVVVVFBUV8fDDD0vbZs2aRcuWLd3IoWri\n05SUG6qldOj1zntowCp1hw4dGDlypN/H+MM++2V2dr1RV9cCSFhYGAaDgWPHjvHAAw+4PdOG6uC1\nb9+eFi1aeNTINKQdURR54YUXuHTpkpTq5M0KCgq4du1avc8igAACCMAv+MOQ7695KbV4//33JfbV\nmJgYmjVr5uaQvvbaazgcDnJycnz2e75MoVBgMBhYt24dwcHBfvW5Necdhzds8KoLrlAoePnll7FY\nLHWeX6lUolQq6a/ReF2ArnPc9PJ7l3N/t9VKYWEhaWlpnD59mi+//JKwsLA6ZenqMrVazapVq4iO\njqagoACHw8GGDRvIy8sDnJlhKSkpGI1GbDYbGxcvrnfeVq1WQ2kp3377LaGhoR5zE5lMxqRJk1Ao\nFAwfPpyBAwfSu3dvnnzySQTBKbmnVqvR6XQYjUbuuece2rRpQ15eHtOmTaNbt26MHj3agyzr66+/\n9nBMNRoNP/74I2fPniUkJASZTEZYWBg2m01Sjwjg5kfAKb1J8OSTT5KTk+O2qjR16lSPjq1///7M\nmDGDYcOG4XA4GDp0KMnJyXTr1s2jhuT8+fMSk62/NSQWi4XHH3+czz77jDZt2rhdi0qlYvbs2Ywd\nO5ZTp075LO5PSUkhJCSEDh060LZtW2bMmAFA27ZtJTHmS5cuMXTo0Do7cY1G40YxXlZWRnp6Oq++\n+irgJHTo0qULlZWVXp33hlqPHj3cnl95eTkZGRm88sorTJs2DZVKRWhoKHfeeadHukxoaCg//vij\nx3s9ceKEm5yK3W5n0KBB3HbbbR4d/fz58/1KO6ptlYLAl02aMHz4cL8jrdc0GmJiYkhLS3Nqdvpz\nLj/YZ/09/wVBIC4ujm3btkkpRbUXEhqiWScITic7MzPzhtppaTZjMBiIiIjg5MmTVFdX17nQ0SBG\n5QACCCCA+nBdp7S6Vn1/gzWaRdEZdb3OoH6oZ09SrxPTbNu2jR49etC6dWuJ+MZVAvTEE0+QkpLS\noGipTCYjNDSU999/v0F6o9I4JAgsUqnYv3+/19rGPn36oNPp6rwms9lM74yMerkUGmqXBIHPFy1i\n5syZNG7cmIiICPR6PZGRkT6vxZV2KwjORU5X9o+LDKlDhw6kpKQwZ84cwJnlVVxcjMPhIDc3l3fe\neYcjR46g1+t5Q6/3kDHz9vzO33YbAAsXLiQmJsZjbqJQKLjvvvuQy+WMGjWKW265hVtvvVVaCLbZ\nbKjVajQaDTabjVatWjFz5kxSU1N55plnaNq0qVRSVRObNm2SHFNXKq9Op+PAgQOcPn2a4OBgyTGN\njo7mypUr/3t/SwH8f0PAKb0J8M477xATE+OWFuiNaTcnJ4fdu3djNBo5evQojz32GAkJCSQlJXH+\n/Hm3NquqqujcubPHBN0fmZelS5fy0ksvMWbMGAA2bNhAREQEKpWKH3/8EYvFwuLFixEEp0aYN1p2\nrVbLqFGj6NGjB9XV1ezZswelUklMTIxE+PP000/XO+CtXbvW7b5++uknzGYz//73v6V7bNWqldQp\n1tdefYPsrFmz3M534MABzGYz6enpiKLI4MGDsdlsLFy40ONYl+xJbXzxxRdYLBYOHz4MwJUrV8jP\nz2f27NnSb3bu3CkRJvhaQKhr8MxQqTh16hSfpqbWe1ylIFA5ZgwPPvggzZs3Z7FaXf8x/rLP+hl1\ndYgiM2bMoGnTpj7fS30LKWOuC8PXtJCQEA/yCn8WZNq0acN3332HRqOhSZMmVFRUuBGDePtbrJ3y\nHUAAAQTwu1BayvH+/SkTRWmMXiU4yelulI3c1c/tnTuXAQMG0LJlS2QyGXq9XmKJf/HFF0lISCAu\nLq7eMbKm02UwGHjjjTcwGAwefa6/zvQFwclhkZOT45WvIigoiJSUFK81pnK5nNjYWD6Iibnh51PX\nc1sYFMSHH36I1WpFqVRiNBrrfS65BgMvCc7aT4fgTAleqFTSp3FjVCoVw4cP57nnngMgLy+PDRs2\nsHLlSrKzsyW25NLSUr/ToMtFkePHj+NwOBgxYoS04FD7GT7wwAPI5XLGjx9P165dGTZsGHfccQeC\n4CTG0mg0qFQqWrVqhclk4oMPPiA6OpoFCxYQGxvL0qVLPT7XL774wiNiGhISwqFDhzh16hQ6nU76\n1mJiYnxmiAVw8yDglP7B8fXXX2MymdixY4e07csvv/TonC0WC0eOHKFv37488cQTvPvuu5jNZsLD\nw9mzZ49Hu5MnT/Z7cKltSqWSu+++m7lz50rMquvXryc9PZ2dO3eSlJSETCbjvvvuw2w2M3r0aK8O\noclk4sKFCwDk5OSQkJCAVqulvLyco0ePEhERQZMmTeq8Fr1ez969e93u7aOPPsJqtXLo0CFee+01\nqSO80futbe+++650LofDIdW8jBkzBlEUWXGdudabU926dWtnnWYtPPPMM25pnydOnCA2Npa3336b\n48ePe5A3JAoCr19nobUL/yH08TbZcEW5hw8f7ndk8IF+/aiurqZv374URkb6dcxzfjil9uBg/wZ9\nvZ7jx4/Xu5DgWkgpF0Wp5ucNvZ6X77+f5ORk4uPjPY7xlu5VUxrA14LM6tWrefPNN9FqtQwaNIjz\n58/7nAitriWRE0AAAQTw38SgQYPQaDRu/WCDo6Y17KpcTv8mTZDL5ej1ep5++mkAlixZQlRUFKmp\nqQ0aJ8PCwnjppZcwmUxe9/tLVudi/dfpdISEhEgR15qWk5NDnz59fHJZXPq97MU+rExwOnRWq9Uv\nlt1+arXPBdArMhkfjBtHSEgIDz74IOfOnSMkJIQrV66QnZ3NypUr3d5/Q0pxmjRpQllZGVeuXKFZ\ns2YMGzbM49pefPFFFi5ciFwu595776WoqIgRI0ZIigpRUVGo1WoUCgV9+/YlOTmZLVu2YDabWbhw\nIREREXzxxRce3+mGDRvQarUEBQVJrLyhoaEcOXKEEydOoNFoJMc0Li7O6/wogJsHAaf0D4xffvmF\nyMhItwnu0aNHPTp5lUrFN998w/r160lMTGTTpk2Eh4djsVg8OjJw1n/W1XHK5XIMBgMhISE+mXSD\ngoJYsWIFOTk5PPvsswAMHjyYl156CYVCQWxsLODUn5TJZLRr186j1kIURUpKSli0aBEymYxFixaR\nn5+Pw+GgZ8+ePPzww9xzzz31dvS102oBnn32WZKTkzEajR4pm7/XZDIZu3btAuBvf/sbGo2GNm3a\noFar6dOnD+3bt8dut0srk7WPd6VW14TdbueWW25h0qRJ0rbvv/8ek8lERkaGRxuxsbFu/08UBF6R\ny+uNcguC/6naixcvZunSpQ065r333vP5PV+7do3XNBq/9Girxo716lB6M4vFwqFDh3A4HMyfP59h\nw4YBMG7cONq2bXvD5By1ZQWsVitnz55l8uTJBAcHS7XRtb/pJUuWYLVapch3AAEEEMB/G1OmTPEg\nAboRqSyXVQoCL4siISEhPProo4Cz1tRisXglU6zPQkNDfTqkgiD4HemryfqfkJDAm2++6bVPT0pK\nYuHChR77GhKVbajZ67h/ibwxMRFBEGgaElJ/2rJWy20tWmAwGFiwYAHdu3fnnXfeITc313PO4OcC\n7yW5nLS0NDp27Mi1a9ckSbqa5V/BwcH88MMPACxYsAC5XM4DDzxAq1atGDdunFTT60rlFUWRDh06\nMGrUKP79738TERHBggULMJvNHkECgE8//VRyTDMyMpDL5RiNRk6cOMHRo0fRaDTI5XKCg4NJSEgI\ncDLcxAg4pX9QuFhdXZqbLlRXV3tMhN9++20qKytJT09n8eLF0qqma2Cpic2bN9cp5NypUyciIiL4\n8ccfUSqVzJgxg759+3r9bUREhJuDNXv2bHQ6HTExMdhsNiorK8nMzEQURUaPHo1Go/E4t0ajQaPR\nUFhYyCOPPMKUKVNYsmQJTZo04fz580RFRWE0GiVdMqVSybhx49wGvhMnTnjc5y+//IJGo/GpU+qv\nmLUv02q1vPXWW6jVanr27EmvXr1ISkritttuo6CggBdeeAH4D2Ny7eO9vZvz58+TkJDAO++8Azgd\n1datW3scWzvtWhCcdSFardanYHht8ydVW6VSedDo13eMTqeTBreacDgcFBQU+B2p7VRHvWZNk8vl\nbquzp0+fJjQ0lLKyMiorK2nfvj0hISENpuq///77effddz22Dx06lOrqaoqKiiTJJdfzz8jI4P77\n76d79+489dRT5OfnB1Z9AwgggP8RzJ07lzFjxhAcHCyNZw0hEfJmFwSB6dOn43A4WL9+PSaTiWbN\nmv2usdKbiaLYYLK6ms5eXFycR1mHeN2hjo6OdosgN5SDwSE0LLXY2/0pFAp+/fVXiouLSUxMZNy4\ncbziRQbNw5RKvsjKom/fvuj1embNmkV6erpHmVJ5eTn/1Gr9KsW5MmIEeXl5JCUlMWzYMOx2O+vW\nrcNms/H4449Ligg2m42ffvoJcPJXyGQypk+fTm5uLpMmTZIi5a76V1EUiYmJYcWKFZSUlBAZGcnT\nTz9NQkICJ0+e9PheP/74YzQaDUqlktTUVORyOWazmdOnT3PkyBHUarXkmCYlJXmw+gZwcyDglP4B\nUVlZSefOnZkwYYLH6lhlZSVFRUWSTqiLuXX+/Pl06NCBnJwccnNz6devn1R/4MLhw4frZapbuXIl\nOp2OTz75BLlczvfff8+FCxe8MukKguDGHJueno5cLpcc6gkTJqDRaOjfvz8ymYzWrVuTkpLitdB+\nyZIltG/fniVLlhAREcGOHTsoLi5m6NCh7Nu3D7VajUwmw2w2Ex0dTa9evdBqtbRq1Yq77rrL7TmV\nlZXRuHFjhg8f7vWag4ODiYyM5Nlnn5VW6GrudwlVh4WF1ZuSk5aWxrRp02jTpg2//fYbOTk5TJ8+\nHaPRyP79+wGns5mSkuJ2nK6GDmhNbNu2DZPJxL59+3jwwQc9zteyZUsPh9pgMDCwWTMWq9VclMkk\nuZKXhLo15Xy9099r3mqYx4wZI+33N+rqj7lqnmqiT58+LF68GICzZ8+iVqtp27at1+N9dudzAAAg\nAElEQVTVarXX52K327nrrrsoKiry2L9ixQp+++03YmJiCAkJ4dlnn+XHH38kLCyMkydPkpGRwYoV\nK+jXrx9jx471/w8/gAACCMBPvPXWWwwcOJCtW7fyyy+/IJPJ6BAX12AnrKbZBQGHw8GmTZswGo3k\n5eU1KNPEnxRW1/ifKAj1kg/VJqtzmVarlRyb2vv69u3LgAEDUCgUN+ykV/px3DVBYIEXvgOFQkFu\nbi4jR46kWbNm3HvvvcTExPhNGHglKIj58+cTHh6O0Wj0iJJeuXKFjIwMvxd4RxYVceLECdLT04mN\njZVUGGbPnk3r1q0lmRar1UpMTAyHDh0CnFlgMpmMWbNm0aRJE/76179is9kQRVFKV1YoFJhMJo4c\nOcLChQtJTEzkr3/9K3l5eV45FdauXSs5psnJycjlcmw2G+fOnePQoUOoVCqJECklJcVDTzeAPz4C\nTukfDA6Hg7Fjx9K9e3ePP0iHw8GYMWNISUmhoKCA7du3Y7fbOX36NCaTiS5dupCXl0dmZqaHqPHl\ny5e9rnjWTK+Ji4ujqqoKURTJzc0lJydHqo9s166dV8IZURT5/PPPueeee6SUDICJEycil8vp0qUL\nRqMRuVxOYWEhgwcPlqJLNS0vLw+dTkfXrl156KGH+OmnnzAajezZswez2UxkZCSDBg2iVatWpKWl\n0a5dOzZu3IjJZCI1NZW5c+cCTgKnbt26MWTIEK8DZGhoKBkZGaxatQqbzUZOTg5Lly5FpVKhUCho\n3rw5Xbt2ZfDgwcydO5fmzZvXOcCmpaURGxsraYu6amwnTJhAQUGBxHh84MABNyfQl3YpwN///nev\neqc6nQ6LxeJW/2gXBK6IIlWi2CAnT6PRNIi0wpf5or/v3r27dO9///vfPfb7S6pVlw0ZMsRj0Qag\npKTEjRm6qKiowSm89913HwaDgZMnT9K0aVO3fU2bNsXhcLB3715phfn06dMMGzaMv/3tb2zcuJGY\nmBiOHTtGamoqr732WoP6gAACCCCA+rBx40YKCwul/z/11FN07NiRRf37N1j6xGUOvZ7t27djMplo\n0aKFX+R/NceU3r171+mY1myvmyBwVfAelXRc31fXAmViYiJxcXEe55PL5aSnp/PFF1/4nSJc264J\ngof2Z23z5TDr9Xo2btyIXq93Oo+Jic7MqQbUgM6aNQur1YrRaCQ2NpbTp08DzsyrVq1auT1DfxZ4\nBw8ezOHDh4mLi8NisfD8889jt9vp2bMnkyZNYsuWLajVahISEkhMTJRINZ988klkMhmzZ88mPT2d\nBx54QCKtMpvNyGQylEol7dq1w26389hjj9GkSROGDh3qJl9YE6tXr5Yc08TERORyOXFxcVy4cIGD\nBw8SFBQkZX6lpaUFHNObDAGn9A+GZ599lqysLA+nEuD5558nLi4Oq9XqxsQ7evRoWrRoQWZmJmaz\nmdJaGmQOh4MhQ4Z4dJ7FxcWsX7+emJgYOnXqxDPPPMPly5dRKpW0aNGCWbNmMXPmTM6fP49er+ex\nxx6rc6B57733pGhRWloaoiiSl5eHRqOhb9++qNVqSdLGG4GRTqejcePGVFRU0K1bN5566imaNm2K\nVqvl4MGDfPrpp2RnZ9OsWTPS0tK47777+Ne//kVUVBQWi4V169Yxfvx4OnTo4JUFr2nTpsTGxtK6\ndWuKi4vJzMykRYsWANx1111kZ2fTvHlzoqOjJemP0NDQOqU/BMGZ0lkTGzZswGw2U1BQIJFFgJOJ\nzqUZq9PppFSZ2nA4HAwfPtyNWMJsNpOWlkYPUWzwhMPX4FnboWzSpAm9evUixgtrbU1TKBSIokjX\nrl2ZOHGiz98VFxezadOmOh3C7OzsOs/lyzIzM32y2167do2IiAjp76C+7ABfNmDAAMBZ2+uqDwoN\nDXWLcK9Zs4bg4GBatGjB5s2bpYWd4cOHM2XKFPbs2YPJZGLbtm3e/+ADCCCAAG4A+/fvp1GjRtL/\nKysriY2N5ZlnniFNqeSD2Fhp0a9C8CTCq22utNVyUeRds5lUP6KeLnNpYHpbTPXqUAr1R/ku+xi3\nalrXrl29js8hISFs3brVf41tH+evFDydZsf17Xd7GRdVKhUJCQmoVCoKCgpQqVR06tTJqQurVPq3\nMCA4HdNLcjklkZE8N3482dnZnDp1il69enl9lq/I5ZRdP87bAm+rVq0oLy+ntLQUi8WCwWBg+fLl\nnD9/nsTERJYtW8asWbOIjIwkKSmJ1NRUaaH90UcfRSaT8fjjj5OUlMT9998vkU255lkKhYLHHnsM\nh8PBhAkTaNeuHe3atWPixIk+F45djmlcXJz07Vy8eJHS0lKUSqXkmGZmZnp1bgP4YyLglP6BUFJS\ngs1m49dff/XYt27dOkwmE0ajkY0bN0rbt23bRmhoKJGRkZjNZtavX+9xrEsIuab17t0bu91Ov379\nWLBgAeB0hg4ePIhMJmPLli28//779OrVi3/84x8MGDCAsrIyr2yjLoeyqqqKtm3bMn78eIKCgtBq\ntSiVSoqLi7FareTk5PCvf/2LN954g0aNGlFYWOjRzvjx41m5ciVpaWkMGDCAoKAgqWbQbrcTFxfH\nhx9+iMlkIioqijfffJOHH36Y9PR0dDodiYmJXgW+jUYjKpWKl19+mdOnTxMfH09CQgJhYWFs27aN\ny5cvk5GRQU5ODkOGDEEURT788EN69uzJrFmz6h1k//nPf7o98xdffJHU1FSMRiO7d++WtjscDo4e\nPYrBYCAyMpJz5855/Ra+/fZbRFGkUaNGWK1WvvrqK85v3XpDqVne6nK82bFjx9i8eXO9v8vIyCA0\nNFRa3WzXrp3P39a1ap6fn4/JZPK7DrZmm/379/c62LkwadIkHnroIf7yl794HO9v1DQoKEgiK3rp\npZcoKSmR9Ntq/32FhYVx55130rJlS9577z1OnjxJREQEu3fv5p133iE+Pt5NUzeAAAII4PegvLwc\nrVbr1g++/PLLhIeHM3v2bCIiIqSoWkNrKxtSShEcHEzTpk09SlS8mSvd1p+0WhfxUn1tqtVqcnNz\nvY751TrdDTulDkGgqo5rq/l8dDod48ePZ/78+SiVSomldujQoYyIjKQyKMivSGltB9iuUODQavnH\ngAE+y22USiWlpaW0bt2af//738ybNw9BENxkeEaOHCl9I99//z3h4eGEhoayYcMGdu7ciclkYvv2\n7eTm5tKsWTOSkpLIzs6W5icPPvggMpmMp556ivj4eO69917JMXWN36IosnnzZqqrqxk4cCB9+vQh\nIyNDkrepjffeew+NRoNCoSAqKgr5dUKmy5cv89NPP6FUKqVnmZWVFXBMbxIEnNI/CL777jtMJhNb\nt2712OeKtiQnJ0tpquB0cLKzs9HpdKSlpUksuDXxwQcfeEzCMzMzKSsr49dffyU8PFyKXgKMHz8e\nnU4HwMGDB4mOjqZDhw6888479O/fn9tuuw2NRuM1EjmsoIBPU1OlFbsyQWCZwUBeeDgbN25k48aN\n2Gw2TCYTu3fv5umnn/aa/hkREcGdd96JUqnk73//u9v9PPzww0ycOJE1a9ZIkjfbtm2jXbt2KBQK\nr+1pNBoWL16MyWSiU6dOVFVVsXnzZkRRpLi4mJycHKqqqtizZw/h4eHExcURGxuLwWDgpZdeomPH\njl4jzbUdnS1btri9mxEjRtC8eXNycnI8iva3bt2KRqOhWbNmHkxzZ86cwWAwkJCQgMlk4quvvgJg\nS/Pm9aYU+TJfhAyiKJKfn8+6deu4ePGiW2qQL9u3bx86nY7MzEx69+7N1q1bG5wea7VaSU5OZvny\n5fTv39+vY7RaLYIgsHz5cpo2ber1e3dhx44dPjXjvDnKTz75pFemaavV6qaddvr0aaxWK5s2bXJ7\n1wMGDCAsLIzhw4fTtm1bwMli2KZNGxwOBw888ABdunQJDKwBBBDAfw06nY6ysjLp/xs3bkQul7N1\n61ZmzJhBp06dpH6zofrWCL6zbFymUqlITEzklltu8bvvDwoK8juttkwU/RpbsrOzvTL9LlQo/uv6\npLWfT4pcTqdOnaiurubpp5/GYrEgk8kwGAy0slio9rOWtC6rUCi8vgeFQsGiRYsAaN68Od9++y3g\nlKMTRVHKNJPL5UyePFn6TjZv3kxoaChhYWHs2rWLJUuWkJyczNatW6V5UqNGjcjNzZW+r6lTpyKT\nyZgzZw4xMTGMHj1acpS1Wi2iKCKXyzl37hwVFRV06NCB4cOHY7PZpDKw2li+fLnkmEZGRiKXy8nK\nyuLq1avs27cPhUIhOaZNmzYNjJ83AQJO6R8Ahw8fJioqipKSEo99Z86cISEhQarHrLkq+sILL6BQ\nKGjTpg233367R+Tohx9+8HDSwsPDpbTG6dOnu0mQ/Pzzz+j1elJSUgDnZDskJITQ0FAeeughCgoK\nqKiooFGjRnz++edug0VdtQ2VQUGwdi2nT59GrVYzcuRIHA4H6enpLF261INsRiaToVAomDBhgsfz\n+OWXXzAajVy9epVZs2aRkZGBzWYjPDzcK9OuKIp88sknpKWlsXr1ajp16sT999/PypUradKkCTab\njTZt2jBnzhzAKZeTmJiIRqOhZcuWZGVlYTAYePTRR+sdGNVqtVtqZ0VFBfn5+aSkpLgRQrnw1ltv\nodFoGDRokPTuKioqSEtLQ6/Xc/r0ad5++20SExN57bXXKP8dqUjVdVy3Uqlk9+7dTJs2rd577Ny5\nMw6Hg65du6LX68nKymLmzJmSyLY/Fh8fz6hRoyQm28aNG/t1XElJCevWrZP+Zmw2m0890O+//95r\nG7X1Xl33/8033xAaGkrv3r099rdq1crtb+v9998nKSnJLX348uXLZGZmEhwcLOkKV1dXk5uby+uv\nv05VVRVFRUU8+OCDXq83gAACCKChSEpKYt++fdL/+/btS79+/Rg4cKDEoN+tWzc3ciFXLb9L37qu\nccNXlo2L8ddisdCnTx+vfa1Yh0Ppr0apXRR9ZmfVNJ1Ox6FDhzzGsBth38WP51Lz+bwkCIwYMYLF\nixcTHx9P586dpWDBcpPJL6f4Rt5D165dOXz4sDQ2NW7cWJKqAyguLkYmkzF+/HhMJhNyuZzi4mJp\n/0cffYRer8dsNnP48GHGjx9P3759eeGFF8jLy6NHjx4kJiZSWFgojXWTJ09GJpPx7LPPYrPZGDp0\nqCSdplQqJQbka9euUVZWRtOmTRk3bpzb4nptLFu2THJMzWYzcrmc5s2bc+3aNfbs2YNCoSAoKAiV\nSkXz5s3rzJAK4P8+Ak7p/3GUl5eTnZ3N3/72/9g77/im6v3/n+yONE3aJE3TvQctpYPZQostUKZI\nQUbFypCpoFecCIIIigMcbPSCgFxE0csVvCjbPbiAoqjAVREZlw3S0pnn7480H5smbVPv1zt+N6/H\n4/PooznJOSfnnHzen/d6vZ5y2VZVVUV+fj49evSgTZs2ThnNM2fOoFKp6Ny5M9nZ2VRUVDh99vz5\n80IfyzEUCgU7duwA4Pr165hMJsEQCzBo0CDGjx9P+/btxWuOctiwsDBOnjxJZWUlGo2GnJwcAgIC\nUNZH8Fqa+G31+lujRo3CYrHw9ttvk5qayqlTp9xmN9VqNSdOnHB7zW644QZeffVVamtr6datG2q1\nmtjYWLekDPPmzWP58uV0794dm83GhQsXiIuLo6ioiCeeeIJ58+aRnp5OcHAwR48exWazUVpaSps2\nbfDz82PEiBFYLBZUKpWLbqW7ERoa6iQDcvLkSSwWC3q9nn379rl8l+nTp+Pn58ejjz6KzWajf//+\nqNVqpx7EYcOGoVar/6n+mIoWJHDMZrPLa2lpaW6v6bPPPktZWRn33HMPRqMRq9XK8uXLBQ1/c0On\n0wnZogsXLnDPPfe0+BlJsuvTOfRIHfj4449FiWxDXLp0ye0z5a5XNlGhYG9aGldlMuokiUqNhuWN\notJ6vd4lqFBaWsqdd97p9Nrx48dFmfhNN90E2DPiISEhXLhwgX/84x9ERESwefNmt8+1F1544UVr\n0LVrV3bv3g3A4cOHhcRGcHAwYWFhjB07FplMJhyGhoG4X+Ryj2xH4yobh1alXq93myF1HEelUhEY\nGEhxcbGLc+qpnurVeqe0b9++zdqHG2+8EfiVKLLhtt+SIW7NuCqTYTQaxXn279+f6upqpk+f/puJ\nllq6Dz4+Ppw7d87pWYiPj3fhqbjjjjuQy+X069dP6IPOmTNHbH/ttdfQ6XTExcVx6tQpOnbsyOOP\nP07Pnj2ZOXMmxcXFREdHU1hYKCqGJk+ejFwuZ8GCBYSEhNCnTx/i4+Od7n1oaChVVVWcPn2a2NhY\n7rjjDiwWC0ePHnX7HK9du1Y4pg5izE6dOlFdXc2XX37p5Jg6tOy9+O+E1yn9D0ZNTQ29e/dm3Lhx\nLj8ym83GmDFjyMvLw2QyOU02dXV1JCYmYrFYCA0NFX1vDffbWFRbkiReeOEF8Z7Vq1dTXFws/t+1\naxfR0dFs3bqVgoIC8bpjkf3xxx8DcOjQIXQ6HSqViqNHj7Jp0yaP+kNq5HL+EhlJbW0tw4YNIy0t\njeeff54bb7yRgoICt+ebk5NDeXm5y3Vbu3YtxcXFlJeXk5GRgVardes8tW3bll9++QWr1epUFv3V\nV1+hUChYvXo1NpuNESNG0K5dO2644QZsNhtXr14lJiYGlUolmFsdPaaO4zhKVdwZyE6dOjndz48+\n+oiAgADi4+OdSkEd93nAgAH4+flx0003oVarWbNmjdjucGTi4+Op1Gh+kzGrkiTODR3Kbbfd1qxh\nbzj0ej1xcXGUlZVhMpmctqlUKkpKSnjhhRdYtGgRsbGxBAcHuywGGg+5XM4bb7xBZGQk27ZtY+XK\nlR6di1arZd68eSxcuJC0tDQnErBXXnmF6OhowU5YV1cnDGTD4e5eFUv2sqjqRs5+rUIh+oW0Wi0H\nDhwgKiqKdevWieM6NHR37drldD/ff/998Tw6MhiTJk1iwoQJwK+OdFMkV1544YUXnuLmm29m/fr1\nAIwaNYpHH32UEydOYDAYyMzMJC4uTjDLN3QqY2NjPc9WNpgz09PT8fHxQavVuq0qcZDgSZI9e/n2\n229jNptJT093Cnx6qlG6RC7n/vvvx2q1MnPmTLf2ITk5GYVCwbhx4wB75q3xexqzvV+T3Mu+VEme\nZ0kdw1a/PvDx8SEpKUnYeJvN1up9NTcc1U7+/v4MHjyYoqIip/VEeHi4y1oQoKysDIVCQZs2bejR\nowcKhcKp9WXlypXodDrat2/P0aNHsVgsbNiwAbPZzAcffEBRURFRUVH07dtXtBrdfvvtKBQKFi5c\niMlkIjc314XLIy4ujurqao4ePUpoaCjjx48nISHBxZl2YPXq1cIx1ev1KBQK8vPzqa2t5cCBAygU\nCjQaDWq1ms6dO3sd0/9SeJ3S/2Dccccd9OjRw61I8IIFC0hJSSEsLIzty5bBxIkQEAAyGRUqFUsk\niWy9nvfee8/ls1OmTHGZlMeOHSt+xDabjezsbLZs2QLYndi2bdvy2muvsXnzZvr27QvY+1zlcrlg\nqAW74ZMkyUnM+bpa7ZlxCwgA7P0McZLEwdxcoat5Xa1mseTavzJkyBAXvdXy8nIMBgPFxcWMGDGC\n6Ohotw6QwWBg7NixDB061OnzP/30k5DyOHnyJBUVFeTk5GC1WoV8x4EDB0SEWaVSIZfLCQwM5Mkn\nn2TLli08/vjjGI3GJol8HnvsMadjrly5Eq1Wy5QpU1zuV0VFhSgrvfnmm8XrVVVV5OXlMX36dI4f\nP84ffX2pUypbbcyuSRI5BgM///xzs6REDR24P//5z8hkMt59913Cw8NdMo86nY6ZM2eKyHS7du1a\nZLldunQpZWVlTJw4kV27dnmkaadUKlm+fDkhISHs3r2bcePG0a9fP6fekunTp5OXl0dlZaXbUjJ3\nvaLJKhWVLVzLGo2GZyZNorCwkIMHD2IymZx6Sbdu3Up0dLQLU/by5cvRaDRERUVRXV3NpUuXCA0N\n5dNPPwVg6dKlpKWlNcke7IUXXnjRLI4dg4kTua5S2dlatVpWajQc+etfSUxMZNasWahUKsLCwlCr\n1WIOjIuL4+zZs5jNZo/bQS7X24QePXrg4+ODr6+vWxZYpVIpWm/UajWpqalYLBY2bdrEhQsXiImJ\nET2Inmpsxstk6PV6Dh061KTNUCqVtG/fHoVCQf/+/T3mN2hKluxqK+3rlXpeBrVajdFodKqE8VSb\n1NP74Ovry759+0Rwv3fv3qIyy2g0iuBsYwwaNEhkIUtLS5HL5SxatEhsnz9/Pjqdjr59+/Luu+9i\nsVhYtGgRycnJnD9/nvz8fCIiIhg8eLCQaLntttuEY2o0GklPTxd64I5AfmpqKjU1Nfztb3/DZDIx\nYsQIunTp4lLZ58CLL74oHNOAgADx3NXV1bF//37kcjk+Pj6oVCry8vK8jul/IbxO6X8onn/+eVJT\nU7l8+bLLti1btmCxWOjUqROrhw4FPz8XOvGGvZoN4S77lJeX50Sm8/HHHxMbGysW9kuXLiU/Px+b\nzcb69esZOnQotbW1JCQkkJCQQFpaGoDoI83Pz3c6psfRQLkcgPUjR1LehK5mhUzmwvjnrh8zIyOD\nyMhISkpKXL6vRqMRhAMymczFcV+1ahVDhgxhzpw5dOzYkevXr3Py5ElMJhM6nY7Tp09TU1Mjeln0\nej1BQUEoFArhWFRVVYne06aM3quvvup03NGjR6PRaPjsT39yCjLU+vuzVC4nUaFAr9dz/PhxoUk7\nYMAA4ZTveeklyltRwtuYQTEzM5OTJ0+SkJDQrLEuKCjg6aefJikpiREjRhAXF8emTZuc3pOVlcWD\nDz4I2KUI2rdv36ymnUajYe7cucTHx3PgwAEnZkB3QyaTMX36dHbu3InRaGTJkiWCmbp79+7cc889\n4ro6WKQ7duzosp94mcxJ0/WyJLFUJuODmJiWKfpVKuomTqSgoIBHHnmEbdu2YbFYnCSXxowZIyL0\nDTF48GDkcjm33347YM/uZ2ZmUltbi81m47bbbmtSZ9ULL7zwokm8/bbbNUGNTEa5TMafbr2VCRMm\niDk2OjpaZDBnzJhBbW0tKSkpLJY8y1a+INl1MzUaDRqNhuLiYpd51rF/h4zH9u3bUalUYv4DXPTJ\nPdXYVKlULF26FF9fX5KTk90S4ymVSlJTU5u1KZ4OT7K4Dc/1FYOB9PR0xo8fT25uLsHBwXz44Yds\n3LjRo2vsybBJdibiv//97+J6VldXU1JSwoABA6iqqkKr1TqRXjWEzWajqKhIOKYTJ05ELpc7aWhP\nmzaNgIAAbr/9dp544gk6dOjAzTffzJQpU7h27Rq5ubmEhYVxyy23iDXJiBEjhGMaHBxMdHQ0ffr0\nEddSLpfTtm1bamtr2bFjB2azmeLiYrfJBgeWLVuGj48PCoUCrVaLQqGgX79+2Gw2Pv/8c+RyuZCT\ncaxbvfjvgdcp/Q/Eli1bCA0N5YcffnDZdujQIUwmE8OHD+e2rl2x+fk1P2H5+dmjpthLBxtnhSIi\nIoTelAOlpaWifOPixYuYzWYOHDgA2J3a0aNH8+CDD+Lr68vOnTvx8fHh6NGjqNVqIiIiePnll8W+\nLl686HnfhE5H7XfftehYlctkLhnTP/3pT+KYL774ImFhYU1SpFssFs6fP09WVhY6nY62bds6ZaVG\njBjBihUrsNlsDBkyhLKyMmw2G5999hm+vr707NmTsWPHolarxUTrkLixWq1CI/add97BaDRiNBoZ\nOHCgSxTXx8dHOLFgNyLjIiK4JknY3AQZan18GKjREB8fz9NPPy1YkhviueLipgml6o15w6hv4+tY\nWlrKd999h8FgICsrq8mosl6vZ8uWLfj4+PCHP/wBsJMcaLVa2rdvT5cuXcTr586da7bfVqPRkJ+f\nj1wuZ+3atS06xY7hYDN+5ZVXiIqKYtq0aeTn5/OPf/yD+Ph4XnzxRXFdHPIIni56PA6k1AcprFYr\n77zzDkuWLCE5OZmLFy8CcOXKFaKioti2bZvTfaquriYwMBCtVsvixYux2Wzk5+eLEvqKigoyMzN5\n9tln3cwQXnjhhRducOyY3eY3M2dVq9XkWiw4gnsqlYqIiAiKi4uxWq2MGjXKzsMgeZatjK3fj1qt\n5oYbbnCZpx0OqUKhwMfHhz179hAbG8u0adOwWCxcunSJ9957z20LRWPipesaDYvc2C2HXV+/fj0m\nk4nRo0d7ZEN+y2gNOZLj+ixevJjq6mpyc3O59dZb0ev1qFSq30y01HjYJIk4SeLxxx93ehyqqqro\n378/JSUlKJVKFyb/hrDZbHTq1AmVSkVaWhp33nkncrmcV155RWy/7bbb8Pf3Z/bs2dx0002MGjWK\n8PBwtm/fztWrV+nYsSNWq9Wp5WzIkCEolUoWLFhAUFAQISEhToEDlUpFZmYmdXV1bNiwgbCwMHJy\nclyk1Rpi8eLF+Pr6olAoBHtwSUkJNpuNTz75BLlcjp+fH0qlUrRdOaoHHMF+AgLs/zcIInvx74fX\nKf0Pw4EDBzAajaJHsyHOnj1LTEwMd9xxB9HR0VwfNcqjbA6TJ3P8+HEXshpfX1/hbDpw5swZ9Hq9\nWFTfddddTpmeZ599luLiYiwWC1FRUdhsNtq0aYNeryctLY2MjAwnR6tr164eRQNr68/VIdDd7ASs\nVLK0kQFzOHi7du3CbDazatUqtwbFbDbTs2dPEbEsLi4mLi6OkpIS6urqsNlsmM1mvv/+ewCuXbtG\nRkaGkNpZvXq1KBEpKioSvaVDhw4lICCAoUOHOvW6lpSUEB0dzZNPPsnWrVtdzickJORX3dljx7D5\n+jb73Ws0GlLqy60asio6kJeXR5zkvuyoJaFxx5g3bx6HDh2isrLSbdTbsZjZs2cP/v7+3H///YDd\nAB49epTLly9jMpkoLCyksrKS9u3bN3ksx34CAgKIiYkR2mYtjeHDhzsRGD300Kg7QPMAACAASURB\nVEPk5eVRVFTEAw88wLfffovJZHLS7H3rrbd+08Ki2VGf3d+9ezcWi4Wff/6ZqVOncsMNN4iy+x07\ndhAeHs6lS5ec7tWaNWtQqVTodDq2b98upJ1Onz4N2CWXzGaz2xJ8L7zwwgsXTJzY4pqgSrJn1RyE\nMX5+fpw/f579+/eLbKYngbvGOqXumMsbOqQajYa9e/eSmprKvHnzAHvv4bBhw9y2ULgbcrmcgQMH\nuiWqc5ArffbZZ9hsNu666y6P9vlbhuO6NCXB1linVC6X895774mKK3U9sWCsJPEXSXK77mlNcPRa\nA3vaMCkAdsb+Xr16IUmSKK1tCnV1daSnp6NUKhkxYgSTJk0SXA8AtbW1DBgwAF9fXxYvXkxiYiLT\npk0jIiKCixcvcvnyZbKzs7FYLEydOtXeN2uziaD8M888Q1BQEAaDwamVRqVSkZOTQ11dHc8//zxx\ncXHExcWxePHiJs/1+eefd3FMR4wYgc1m44MPPkBWT4KVqFDwcXCw+2upUtmDOI0qCr3498HrlP4H\n4eTJk0RERLBx40aXbZWVleTl5XH77bdjNBrt7KsBAZ5F0XQ62rVr5zKxujvOo48+KkpqvvnmG5c+\nhDvuuANfX19uueUWIV9hMBjw9/fn2rVr+Pn5iezdunXrPHYAWtvwX1Ove9Xw+5hMJoKDg1m3bp1L\nVkySJPr27cs333xDcHAwBoOBrl27cu3aNTIzM4mMjOSRRx7hyy+/JDY21uma/Pjjj1gsFt599122\nbNmCQqFAJpOxdu1aJMmepTUajaSlpREdHc2IESOEPM9PP/1EYGAgBoOBo0ePMmfOHJfzatu2rb3v\n0IMFhU2pZFl9CdSMESOcIn/Vvr4scZNFbm40VSa7adMmfvnlF4KCgmjXrp3bXp3AwECMRiNJSUku\nJTKzZ89GrVY3y4ro6+uLj48Ps2bNIikpyUX6p/FQq9UEBgYSHx/vErSpq6vjxhtvZMSIEYLBdvv2\n7YSEhHDs2DEuX76MTqcjNTUVHx8fVvn5/Z+UTTn6oAHmzp1Lbm4u169fp2/fvkLaCOxkRrfeeqvT\nOdfW1hIeHo6fnx9BQUEcOXKE+++/nxEjRoj3bNu2TfQ2e+GFF140Cw/XBJclOyGOXq9Hr9dz5swZ\nHn30UbfzbopazVKFgisyWauCnA6bIZfLUavV7N27l+zsbB544AFxuh9//HGTn4+NjXVbqePr68vu\n3buZP3++y7aAgAARaLfZbAwdOtRjW9iUE9zk+Um/9pg6nMq6+v/dXR+1Ws327duFzR0l2Z3Xxmsf\nx77+IkmskTwvoW54zo0rc86fP49cLqesrKzJslgHampqhFrB6hkz2JWSwhXJTthEQAC148dzc3Y2\nPj4+LFmyBKPRyLBhw4TdunTpEm3btsVsNguJGZvNRp8+fVCpVDz55JMYDAYMBgPdu3dHkuw9yWq1\nWpBAPvTQQ2RkZBASEsJf/vKXJs91wYIFwjF1/B0zZgwAe/fupbckUe7mGruMBhWFXvx74XVK/0Nw\n7do1srKyRASxIRxlE/369SMxMZFVq1bZN3jYP9iQHc8xZsyY4XKc6upqrFYrX3zxBQC9e/fmmWee\nEdvPnz+PXq9n8ODBWK1Wvv76a9EzcOutt/LDDz8QFhYG2MsWG0Y/m4q4/mb2uXrK8cbfKzw8nMjI\nSJfXY2JiRPby8ccfR6FQEB4ezquvvsrJkyexWq0YjUZuvfVWxo8f73Jt9uzZQ1BQEP7+/oSGhmKx\nWFAqlURERHDw4EGeeuopsrKyBBV6hw4dBLX6448/TkpKiigjcUcC0bdvX2weLigqfXx4LDfXXorb\niLbfXQS7ocFu/JpMJiM0NNTldR8fH/r27UtqaipPPfUU48ePd+uYGgwGkpOTeffdd52u1+uvv94s\nsZFjsTFp0iRUKhV/+MMfml0cOM5z48aN3HvvvcycOdPlHl29epX09HSmTp2KyWTi73//O0uWLCEp\nKYmEhATMZjPl5eV07NjRY8mB5kaNTMbG+n2C3THu3bs39957L1evXiUjI0Po2/7yyy/ExcW5yL0s\nXLiQzp07ExQURHx8PD///DNRUVHs3LlTvGfOnDl06dKl2dIrL7zwwovWrAkCAgL4+eefmTx5MoWF\nhW75D2QyGX379qWwsJC2bdsKm96cs+ZwMhzvU6lU7N27l7y8PCZNmiQCdcePH3erMSqTydiwYQNy\nuZz4+HiyAgOd+v6vSBKXhg+nZ1ycyDg2HEajka+//prvv/8eo9HY7Hn+q4fD7o2SWl77XJMkCiTP\nS6gbO9MNFQUuXLiAwWCgW7dujB07tkXHtLKykhEGA9ckyZU8UaXC5ufHxOhofHx8mDt3LtHR0cTH\nx7NhwwZxvDZt2mA0GgWpo81mo0ePHqjVaubPn49eryckJITk5GQkyZ4tVavV5ObmUldXx+jRo+nU\nqRNGo9HpuzTGk08+6eKYTp48GY4do9ZTIqn6ikIv/v3wOqX/AXCURNx2221um7KffPJJMjIy6Nev\nn5COAFqVKU1MTBQT1sCBA91OShs3bqRbt26AnTk0MTFRLIRrvv2WzeHh/CKXY5MkfpHL2d+5M/Ey\nGU8++SRdu3bl7bffpqioCIDOnTu7TMiN+0Mqpfqy3d8ydDoAhg8f7nQMd72LKpVKlOPabDYKCgoo\nKioiNzcXo9HIl19+ycGDB9Hr9SiVSuFINMTp06cJCAhALpezZ88e0tPTkcvlJCcns2LFCurq6oSY\ntL+/P9u3byciIoLXX3+dqqoqEhISiI+P56WXXqKuro6YmBiX8/TUQbfJZC32Ejc2VIGBgZw7d86t\nEY+Ojnbbz6NQKCgrK2PhwoXU1tZSUFDg1tAmJiYKRmYHHnrooSYNs1wux2KxEBwcTEBAADqdrkVG\nxKSkJNFjsmvXLiet3Ib44YcfsFgsTJgwgaysLK5fv05cXByyehKI6dOnI0mei7M3N8plMib06MHg\nwYPF7+n8+fNERkayefNmfvrpJ8LCwti0aRMA7733HqGhoZw/f16c7+XLlzEYDNx5551YrVaKiorY\ntGkTSUlJ4rdXV1dH//79ueOOO9x+Zy+88MILoFWZUodNfOaZZ9zOuTKZjCVLluDr60tkZCRhYWEo\nFAoUCoXbAKe7eV6pVLJ792569erFyJEjxTzpaBNqvD5YLElU+fgI5/MdlYpyyTWY7SiPff+hh9xW\nRZnNZrfa2q0ZGo3mn/p8UyNWarrst+FwZEBbU0LdeN3z486dMHEidVotdZKELSCATSEhzCwtbZ4A\n6NixFtcYNj8/uoWFodVqGTVqFF26dMFkMglOjXPnzpGUlERQUBALFy4Efl1/OYgNAwMDiY2NJTAw\nEEmSnAiKqqur6d+/P/n5+U1yrDgwb948QX7kKOX9ICOj5fa2hqN+TenFvxdep/Q/AH/4wx8oKChw\nmwnZvHkzVquV++67j44dOwp6b4C9aWktlnbYlEq+KSwkNjaWBx988NdSUTfo2rUrGzdupKqqiqSk\nJCEJw9tvu9VrrJIkqlUqqnr0sJd3SBIVKhXfFRU1W9oTExPDiRMnfrNwdJ1SKaJatbW1YkJrbOQc\no02bNuI7bt26leTkZCoqKsjLy2Pw4MHExcVx4cIF3njjDSTJTphw5swZ8ZmKigratWuHVquluLiY\nsLAwhg4dypIlS5DJZPTs2ROwT8JGo5GQkBDi4uLYvXs3RqOR/fv3884772C1WjGZTJw6dYoLFy64\nGFOPs3cqlUd9Q0vrdbx8fHxYv349K1asID093W10Ojs72+21M5lMIlu+ceNGQevvzoA7hK8/+eST\nJjVaJUnivvvuw2QyER4ejkajafa9Dqe3e/fuoh+mqqqKwMDAJunt9+7di9FopLi4mI4dOyKXy8nK\nyqKoqKjV19omNb8YyM7OpkuXLjz88MPi+B999JHoS963b59TpPfuu+92kSC68847eeCBB+jbty8R\nERFMmTKFfv36OVVNXLp0ifj4eNauXev2O3vhhRf/4zh2DNq08cjZ+UtkJDU1NWzatKlJhnitVsuR\nI0eQyWTodDrUarVgDZckqUXJLplMxo4dOygpKeGmm24S8/fFixddqmgcjlfjyp+WArXlksSO5ctb\nrLTxZDiIER3VUE3xUvyzY5EH38sxLku/OrKt5YlwXFNbo0ynTaWiQi5n2Y03Nu2YetBKhEpF+ahR\nom2qU6dOFBQU0LNnT7HfM2fOEBcXh16vZ/ny5YDdMc3NzRWtOzqdjvT0dLEO8PPzQ6VSUVhYKFh9\nu3fvTkpKiuA6cYdHH33UiZW31evLen4IL/698Dql/2YsXbqUpKQkLly44LLtiy++wGg08txzz2Gx\nWDhx4oTYtmnTJuIkz0o7svV6vvrqKwAnMeWGOHjwIGFhYVRXV7NgwQKKi4sFY1mNhzqj7hbt7ibL\nuXPnAq2Qimk0bL6+ov5/zpw5tGvXjpSUFLfHmjlzJmazmSNHjlBbW0taWhpvvvkmYO/hDQ0NZdCg\nQRQXF7Nr1y4iIiIwmUwiAFBXV8egQYMIDAxkwYIFzJ8/H39/f+677z5sNhvt2rVDJpMJ0qGdO3ci\nl8u56aab6N+/Pxs2bCAyMpLTp08zePBg4QgDgiWuobFqKchQp1B4HP2r8vXls88+Q6FQsHz5csGi\nPHjwYLfarU2x3mZlZVFbW0vnzp1ZvHgxgYGBbjObAwYM4Mcff2wyOCBJ9nLd3r17c//99xMYGNhi\nGZhSqSQ8PNyFIXrgwIGsW7euyd/VypUrRVlySUkJly5dEhJAnl7rKklivVLJiRtvpLI+ev+LQiEW\nA0qlkm3btgkCsoYO48KFC8nJyaGyspI333wTq9XKTz/9REVFBUlJSU793EeOHMFkMnHmzBkSExMJ\nCQlh3rx5BAcHi2wGwJdffonRaOTgwYNNfm8vvPDifxAOGRgPdKqv189fjoyVuzl4xowZzJo1C4PB\nIObMOXPmCCI6d9lJd05pz5496dGjhwimX716laioKKf3/TOkc3UKBUyejM1mY8KECS2eU1PDQZw0\nYMAA9u/fT2RkpMeke60drWkdqW1mP6WlpU2y2ntyTSvkcuY3YMl1gocZd3Q6fvjhBwICAoiIiMBq\ntZKYmOikcXrq1Cmio6MJDAxkzZo1gN0x7dChA76+vkyfPh2tVktmZqZ41rRaLUqlkp49e3L+/Hna\ntGlD165dyc/Pd0rMNMbMmTOFY9rqaihvpvQ/Al6n9N+Ibdu2CSKWxjhz5gxRUVE899xzhISEsGvX\nLrHtyJEjogzTk9KOuLg4wQTaFG6//XbmzJnD2bNnMRqNHD58GIB/DB78mwlh3PU6SJLEd999B8D1\nVjq71TIZ1+Vy6uozuA6H791333VrJHv37o3NZuPuu+/moYceYtWqVXTp0sVpEt69ezdms5lOnTrR\npUsX7r//fiZOnIjZbKasrIzp06djMBgYM2aMEI3et28fUVFRvPrqq3z//fdIkr2X1RHF69q1K+Hh\n4XTu3JnHHnuMRx55hE6dOnHkyBEMBgMxMTHCMX7++edbZUjKpXrCAU+umVzOY489xtChQ/Hx8WH4\n8OEAHDt2DL1e78KW6JAHcGfkRo4cSXx8PLW1tezbt0+837G9uLgYvV5PXFxck0bU39+ft956i5iY\nGDIyMlwWJ+4WNXK5XGiQNcSyZcsoLS1t8nk+fvw4CoUCg8EgSrT/+te/Ikn2sjJP5Q72NtBpW79+\nPTfeeCMDBgwgJiaGvLw8JkyYgM1m46uvvsJkMvHBBx8AdqM7aNAge28L8NRTT4kqhU8++YSQkBCn\nbHzfvn1ZuXIlR44cEeyEY8eOpX///k7fa/369cTFxTUbMfbCCy/+h+CBDEzD4XBKG8/hjqHT6Thw\n4ABDhgwRDmtkZCRWq7XFIKK7sWPHDgDKy8tF/2DDsUiSqGmUIW3VqHcmLl68SHBwcKvOTaFQkJiY\nKHpfVSoVs2fPbrGd5J8ZrXGWLkuSYEmWy+Xo9XoUCgVDhgwRuult2rRxe01brKJTqVgfFOSWn8HT\nNYZNkmDiRGr9/e1BW7mcFzUaMnU6J3WAn3/+mYiICAICAkRAtq6ujqysLPz8/Ljnnnvw8/MjMTFR\nXPuAgACUSiV9+/blxIkTREZGkp2dTWkLpccPPfQQPj4+rcqU1tYHN7z498PrlP6bcOjQIYxGI++/\n/77LtuvXr9OlSxcefPBBsrOzeeqpp8Q2R8ancVTs844dua7RNFna4dDadIcLFy4IBr7x48czdepU\nwO4YX/XUAXIzGrPCSZJEeno6AH/5y188mzjrR51WS+2ECZS0a8eCBQv46KOPMJlMHDx4kAMHDjhF\nDB2SLfv37xfX2mq1Eh4ezocffujy/efPn09mZiZqtZqZM2dSU1NDUVERWq0WjUZDly5d+PbbbwkJ\nCWH37t0A7N+/H6PRyIEDB4iJiSEoKIjCwkJqamo4dOgQarWaqVOnEhoayrZt2xg8eDC33nor8+bN\no3PnzoSFhXHp0iV++uknJ9ZZT4IMv3hqwHU6MjMzWbZsGbr6vuJffvkFgKlTpzJs2DAXZ745Y+zI\ncB8+fJigoCDhwI4cORKj0SjKqN2NtLQ0hg0bRnBwMAMHDsRSr5PX1FCpVISFhaHT6YiKinKhhj9+\n/DhGo9Ftb/T169dFCXVRURE9e/YkLi6OqKgoevbsKY7RFPuh41pvHDXK5Zhms5mrV69y9uxZrly5\nQlpamuiX2bZtGxaLRQiYX758mbi4ODZs2IDNZuP222+nT58+1NTU8OCDDzJw4EDxm3z33XdJS0vD\nZrOxbds24UzHxMS4kCNNnTqVPn36tEhW4YUXXvwPwJNSyxbscsN5d/jw4eTm5oo52sfHR/AJyOVy\n+vfv77bSprm5/KOPPiIrK8vt9orW9P25WyPIZKLMszXOoUMyxM/Pj5ycHAICApo8R8cwGAwEBQXh\n6+v7m3tOW9M68pfISMaNG4dGoxHtLnK5nLZt2/Laa6/h6+vLsGHDXMgKPT1GXUAAKSkpgowI7Pbz\nmkLh8Tk2Lg+ulux8C3fGxzslQ44fP47VaiUgIIC33noLsLdfpaeno9VqmTRpEj4+PgQFBYk1kU6n\nQ6lUcuONN3L48GHMZjNJSUlC+cEdbDYbAwYM8Gh96RjXJIm36zXCvfj3wuuU/t5wI9h7rayMrlar\n2/JDm83GyJEjKSkpYdSoUQwZMkQsXGtqasjNzXXp5cjNzaW2tpZ//OMfnDx50kn/qeF49tln3Z7i\n008/TWlpKQcPHsRsNnPx4kWqqqro2rXrb2fHrR+XG53D7NmzOXr0qL3BXfIsWzWusFBcg7///e8E\nBQVhNBpFz2t5eTkJCQkiihsUFMRTTz1FYmKiyCg5MpfuYLPZ6Nu3L0qlkuDgYL766iveeecdZDIZ\nMpmMNWvWkJaWxguNJq0NGzYQFRXFmDFjiI6OJjk5mTvvvBOAdu3aYTAYWLBgASEhIXz77beCXTkx\nMZFevXoxatQoMjIyXO6To3/kivSrYHjDIIMnk22NTMal0lJMJhMdOnTgj3/8I6NHjxZRxvPnz2M0\nGlmxYoWLI+qu/Far1YqymUcffZQpU6Ywd+5c1Go1fn5+bkXTHSMkJIQff/yRl19+GXW9xmpzRlut\nVpOcnMxtt93Gxx9/LBYCe/fudbr+qampTpq4jnvZuXNntFotFy9e5OLFiyQkJBAQEEBUVJT47TSl\nM2erf21OTAzdu3entrbWaf/h4eGidxbsckGhoaGCtn7RokWkpqZy+fJlAP72t79hNBr59ttvqa6u\nprCwkClTplBZWUl6eroo+bXZbKSmpgrW3aefflowSUdERHDt2jVxzOrqavLy8pg9e7bb59kLL7z4\nH4KnpZbN2GVJkkhOTmZ8URHrdDphe65IEjuSkoTtcVSoOAiPHDbXYUPy8/PdzulNBTtLS0v/adK5\nKzJZi85kw5GamopcLicoKIiQkBDS0tLw8/Nj06ZNzWaCU1JSMBqN6HQ6tFrtb86meuos1UgSLz74\nIAkJCVitVj7//HPkcjmBgYGoVCp69erFggULkMvlvPLKK9x+++2CgMrjayqXc+rUKRISEnjqqaeo\nrKykT58+HicMmtteLpPxbP16yIEffviBkJAQAgIC2L59O2Bf16akpKDVaikrKxMZ6/DwcGQymcgO\nl5SU8PHHHxMcHExYWBgrV650+3PYvHkzCoXCYynCcsm+HpDJZC4qAl786+F1Sn9POPo8GkUCqyWJ\nKpXKrWDv448/TnZ2Ni+88AIpKSlOpEQTJ0506XMICAhw6jsDmDZtWpOG4e1Gx6ytrSU2NpaPP/6Y\ngoIClixZAth1Ffv160e1r+8/ZTDqJImOHTsycuRIPv/8c44ePUp6ero4J0+Z5Rx6V5cvX8ZqtRIS\nEkJ5eTk2m42SkhJ0Oh3Lli1j/fr1PPDAAxQWFnLnnXdSVFTEmTNn8Pf3p7i4uMlbtW7dOnx9fZkw\nYQJRUVHo9XoCAgIIDAxEqVRSUlLiNtP80EMPkZSURM+ePQkODiY2Npbly5ezaNEiCgoKCAsL45FH\nHqF9+/YcO3YMq9XK7NmziYyMbFGXMz09ndraWurq6hgwYIB43dPJtk6SuKZQ8LrZTN2RI1RUVNC2\nbVuWLl0K2DPEAwcO5PHHH3c67vDhw52cZZPJhFarFWXXbdu25b333sNmszFixIhmDbmPjw+ffvop\n1dXVxMbGetSnI5fLyczMpKKiArCXrJrNZkJCQvjpp5/Etb/nnnuYNWuW0/2YNGkSSqVSaNU5ZFpU\nKpUgUvDo+vn5MaJjRx555BGn/d98882sXr3a6bVPPvlEZM3BruXbq1cvQeyxbNky0tPTKS8v59Kl\nSyQnJ7No0SL279/vxFa4bNkyBgwYANid1NLSUuLi4rBardx///1Oxzx16hRhYWEuv2cvvPDifwy/\noZrJXa/igh49qFQqm7TF96Sm0qFDB9RqNXK5nNzcXGQymfg/LS2NnJwct0R67kbfvn3p06eP55U/\nbkaVJLHRDctuUz2vM2bM4OGHH0aS7GWxBw4coG/fvkRFRQmiI3frptGjR3P8+HF0Oh0Wi0V8R4cN\n9/f3x2w2e+Soemq/T6emclUmEwSSr5pMvPTQQ4SEhGAwGFCpVNxyyy1kZGQQGBjIV199xb59+/D1\n9fW8b7W+9PnEiRPExsaKtdn/hbZ8lSSxXKXis88+c3pcjx07JtYU7733HmB3TBMTE9HpdAwePFho\nwXfs2BGZTEZQUBAKhYKhQ4eydetWjEYjwcHBLnqs27Ztc1IYaE6K0KEF27CiUKlUuq1e9OJfB69T\n+nvBkz6PRoK9b7zxBmFhYbz11lsiu+LA4sWL3fZLCM3SemzduhWr1UpmZiYREREu79dqtYL0CGDL\nli3k5OTw2muvkZ6eTk1NDStXriQpKYkPP/yQFSrVb+4pRZKoUKvJzs5m165d2Gw2brnlFreTtCfM\ncmvWrKFnz55MnjyZ0tJSJkyYwNy5c9Hr9dx+++3iO9XU1FBYWMh9991HcXEx7dq1o6ysjMDAQLeE\nUgCTJ0/mrrvuIjg4GK1Wi0KhYNu2bYwbNw65XE5kZCSXLl1y+VxdXR3du3dHq9Xy2GOPkZ+fj8lk\nYvPmzQQGBnLXXXfRq1cvBg0axPjx44UD466f0uEAO8qCRo4cKY5z+fJlTCaTx5Ntw9fqlEr7s/b2\n24JU5/PPP+f69etERkYyYMAAUaplMBgYNWoU33zzDatXryYrKwuZTCYyvJ999hkWi0VkEN96661m\nDfArr7wC2DOIISEhzTqwDbc5hLgdmDFjhugpcZB17dixg44dO4r3rFq1yi743cBpfPjhh+nYsSOp\nqali357221y77TZCQ0NFRBfgueeeY9y4cS7PwcaNG4mIiODkyZPU1NTQq1cvIeHicDBH1ZcD//3v\nf8disfDXv/6VWbNmCVKx8vJyjEaj6DGvqKggOzubqKgofH19RZ+3Ax988AFms1mUC3vhhRf/e6jT\nalttlxtnSj2tWnIQvPn5+SGXy0U56R//+EdefPFFNBoNAwcOpE+fPs3ahby8PPr160eHDh3sMjC/\ncX3hjreiKac4OjqaF198Ea1Wi1qt5sMPP+TAgQOEhISQmZnZ5Ln6+fmxZ88eMjIymDNnDmazWQQ4\nHbZ81apVjB071kl6r7nRnP2ukexyeS4yOPVScFdffZXg4GACAwMJCAigT58+REdHY7FYOHz4MGvX\nrmWJB9e0SpL4prAQsK+ZGt+zYkmiQiZzZe+VWsceHBkZKbS8Hfjuu+8ICgoiICBAVDtVVVURGxuL\nXq9nVLduLJYkp4z9Sz4+JMjllJaW8vLLL2OxWDAYDIL4b/fu3W4D/a1lLvbx8WlWF9WL3xdep/T3\ngoeU2o7makeP4jvvvENERARvvPGG2NX27dsxGAwuC/rG2bvDhw9jMpn46KOPWLFiBT169HD7I42J\nieHcuXMA9OrVixUrVhAdHc3OnTtFr+b7779PRETEP8WMVyVJnL35ZkwmEzU1NbzwwgvNTtQymQyl\nUtmkBppMJqNTp07U1NRw+fJlQkJC8PHxIScnx0VO5+zZs0RGRrJw4UIUCgVz585l2LBhLiW4DiQl\nJfHpp5+SkpKCTCYjNjaWm2++mbCwMJYtW4ZWq6WgoEBkvxri0qVLyOVy5s6dS3p6Og8++CAhISH0\n7NmTZcuW0aVLF2bPnk1SUhKrV69mzJgxLt9NqVTy0UcfMW7cOBQKBY888ggKhYLnnnsOsE+4zU22\nHhmK+iDIpk2biI6O5sKFC9xxxx1oNBpOnz5NWFgYMTExhIaGiuNGRkaSkpJC7969ueuuu4iNjWXi\nxImAvVe3Ob06jUbD+fPnuXr1apOMvY0XEwaDQeiMNcwC1tXVUVJSQlRUlNDzraysRKfTcf78efbv\n349SqRTnBvDyyy8TExPDuHHjnI7Tmijyjh07CA0N5dSpUwDs27fPSWKo6ozlDAAAIABJREFUIebN\nm0dWVhbXrl3j8uXLpKamiuftl19+ISUlhT/WEyd9+OGHmEwm/va3v5GVlSVKke677z7uuususc+f\nf/4Zi8WCTqcjKSnJJVv//PPPk5GRQcWhQy5tAkyc6BT08sILL/7/wvnz5/lTUFCrnDp3PaWespG/\nLEm8pNEIrfErksShbt14Z8kSQkJC2LdvHwUFBZSVlTkFURvbup49e9KhQ4dWlVk2PpfmGP4bj169\negneCLlcztNPPw3YWdybI+dzZOyysrK49dZbyc/PJzIyEoPBgK+vL+Hh4bz44osMGDCAiooKUlNT\nW6yAas5ZWiPZZfZasuPnP/0UnU6Hn58fZrMZvV7Pww8/jNlsxmg0tirIsG3bNhe9d0myl3NfXrAA\nFAqX6++pU1or2dcBY8aMcXl2Dx8+jMFgQKfTCceyqqqKMrO5ydYaR7ntjqQkVtx/P+Hh4VitVt58\n802PM/SejICAAA4dOvQv/S17YYfXKf290ApK7dOnTxMZGcn69evp3r07DzzwgNjNt99+S3BwsEsj\ne2hoKOfPnxfvc/TOORa9V65cITAwkKVLlxIZGenyo+vatSuHDh3CZDIxe/ZsbrrpJk6ePInVauW1\n116jffv24r3NRfVamvR6xMYyduxYwF7W2NQkkJaWxqFDh1i7dq1gH3X3Pl9fX37++We+/vpr/Pz8\nkMlk7Nu3z+0t+PTTT9FoNJSWlgqZjczMTJf3/fTTTwQHBzN+/HiMRiOpqank5+cjl8t54oknALv0\nTEBAgMh+NUZubi6BgYEsW7YMi8XC448/TmRkJF26dBEEOevWrUOn07nV5ezVqxc//vgjISEhFBQU\nMGbMGFGKumbNmia15PR6vb33t5VBkD/84Q90796doKAgkpKSePXVV3nssce45ZZbMJlMGAwG1q1b\nh0ql4uWXX6ZDhw4888wz6HQ6+vXrx+nTp5tkz+0WFsYyhcKuXSuTcV2tZplCQWmnTk3e/9DQUCIj\nI3nsscf46KOPUCgU+Pv7O/VvlpeX065dOywWi3D2BgwYwPLly9FqtXTq1Ek4bXv37sVkMvHkk0+6\nHMvTfhubTAbArFmzyM/Pp6amhurqarRardusuc1mo6ysjBtvvJHa2lq+//57kREF+PrrrwUTMNjL\nkqOiooSe7Y8//sjx48cJCgpyKtv/6KOPMBgMKBQKF6ZEm83G/IICKhUKbI3vv0olMuReeOHF/1+4\ndOkS2dnZrQ4cO5wRuVzOunXrCAwM/Kd0m+sUCsoliSP1gcxr164RFhbW7KJfrVY7lVmO8mA9gSSB\nTEa5SuU209VU0DM7O5u9e/eK3kRfX1/q6urYv3+/0zk0HiqViqCgIMEtkZ+fT3h4OAMGDKBz586E\nhISgVCrZtWsXQUFB/PTTT+zZswdHgLW5gG1Tw6N+03o7/vPPP+Pv749KpSJTp2Ntg17gy5K9NLVc\ncnXuGjv07qqXFAoFq2fMaBWrs7tRrlKJEm+HHWyIQ4cOodfr0ev19kqgY8eweXDMKkmiUqlkxU03\nERoa+ptYoVsaRqORI0eO/Kt/1v/z8Dqlvxc8pdSur5ufPXs29957L0VFRaI08sKFCyQkJNClSxeX\nH8w777wjDlVTU0OPHj2cMiwAI0eOZOHChdTU1DB27FiXfaSmpjJ58mSCg4M5fPgwHTt2ZM6cOcye\nPdvlve6ieo5Jr6V+0JKSEsC+KHdnODQajZP21OLFi0lJSWlyorFYLISHh6PT6Rg7diw33HCDWybS\ngwcPEhAQQHJyMn/9618xGo2EhoaK3j8H/vjHP5KZmUlQUBAFBQWcOHECjUZDjx49MJlMHD58GJvN\nxvDhw/H393fbYD99+nRGjBiBxWJh9OjRlJWVMWbMGNRqNUeOHGHz5s1YrVa3vS5qtZq0tDTatm3L\nM888I7JqL730Enl5eU1OmvHx8eh0OrsD04ogCNgzd/7+/vTv358dO3YQGxvLkSNHCA4O5r333iMw\nMFAw/m3dulUQTOn1elJSUtw6pCqVit6S+wBGjUxGhVxOXzf3NDw8nIiICPr37y/u44wZM5DL5SQk\nJDg5aI7MoV6vZ+/evbzwwgsEBARgNptFD+qRI0cICQlhxYoVLtc7LCzMY6r4KzIZX3zxBbW1tRQW\nFvLwww8D0L179yZ7OauqqsjPz2fatGmAvcTWZDKJkvk1a9aQmJgovtPs2bPp0KEDs2fPFs/x4MGD\nef755532+9JLL2EymZDL5XzxxRe/bvDEiDdqE/DCCy/+u3H16lU6NQjyNRU4bs4uDx8+nNdffx3/\nejkPj+yHB/PMrFmzWu0ALJIk6lrqLVWpsE2axN133+3xfqOjo/nkk08IDg7GaDSSl5dHREQEd955\np9v2JkmShDOZnZ0tqmwcWbisrCyuXr0qMpQpKSmEhIQwceJEpk2bRlJSEmFhYSiVymZtd1Ojtb2g\n33//Pf2VyiZ5OSoVCt5Rq7mu0QhntbnSVcc127lzJ6v8/OxSKb/xeaiSJDaFhtK9e3fBdOyuferA\ngQMEBAQQHBzM5dLSVjFJVyqVjM7PbxXpVGveGxYWxo8//viv/nn/T8PrlP5e8NBJKFepGDp0KBs3\nbiQqKkqU1VZXV9O9e3f69+/v8kOZMmWK06HuvvtuevTo4VJaumvXLtLT07HZbFRXV9O5c2eXfaWn\np3P//fczevRoUQ5cVVVFSkqKeE9z/Rae1uu/8MILTZZXNGZVtdls3HTTTXTr1q3J4yoUCl544QVq\na2vJy8tj+X33uZQv/iUigtUzZjBq1CiGDh3KypUrMRgMLj2BBQUF+Pj4EBsby7lz5+jduzdlZWWY\nzWYefPBBEhMTuXz5MlVVVbRv3x5fX1+hR+nA5s2b6dWrF8888wxpaWlERkaK/t7c3Fwhu+POIfXx\n8cFkMpGTkyMyfYcPHyY4OLhJmvt+/fphsVjIzMy0S7V4GgSRywF71rp3795YLBZ2795N7969efbZ\nZykoKOCNN95gxYoVSJK9v8JRSj58+HB0Oh29e/d2OR+lUsmobt2obkF7tnEPkMlkQiaTER0dLRhr\nHUhKSkKr1To5qwCff/45Op0Oo9EoAjaOvsrz58+TkJDAs88+S3x8vNM5ajQakpKSPI5Gf9ejB1FR\nUZw5c4YzZ85gtVp5b9UqPsnOtmvsNlEm6ziHFStWALB27VpiYmI4e/YsYNcEHjp0KDabTfRZDxo0\niE6dOrFo0SLef/99EhISXAItU6ZMQa/Xk63XUzV2rOeBiAYZci+88OK/G9euXaNr164uc3CySsXn\nHTtyVS7HJtn7EislqVlnRKPRoFQqPZYAaWmeOdCEvWrJEajy8fHoGNdbIcMik8l48803sVgshISE\n8Mwzz2AwGDh06FCT8mVms5nAwEDCwsIICAgQ/BIOHVM/Pz9eeeUV4uPjiYqK4urVq/j6+tK5c2eU\nSiX33XcfjzzySJNESy2N1rDmAnDsGLUaTbPvrfXxoX1QEM899xw6na7ZrGJYWJggzqz19/+nngeH\nrR8+fDhpaWlIksSgjAy3bSZf/vnPBAQEtFqCsEqSeCchoVWOZmFhYauez9jYWNG+48XvD69T+jvh\nWlmZRz0af/TzE/2kjuZqm83GuHHjKCwsdGGES01NFRkhsJO7xMfHC+mThqirqyM6OlqUt54/f95J\nz9MxbrvtNtLS0oSG5aJFi0hOTubhhx8mIyODl19+WUwq/5fDwWrnDhcvXiQ8PNxF/qbhKC0tBeDM\nqlWUS/WEPo2ur83Pj8o33yQrK4uFCxcyZswYVCqVyFQdPHgQmUyGTqfjyJEjPPDAA3Tv3p3q6mre\nfvttwsLCGDVqlHCMLly4gNVqJTAwkOPHj4vzPXXqFAaDgbq6Om699Va6du1KTEwMb731FgqFwsnJ\nd4zs7GzCw8OFKHZwcLAguQEYNGiQ2++dkpKCyWRiz549ouTaU5bk6xoNr7/+OjExMVy6dInt27dj\ntVrZtWsXZrOZRYsWMXDgQB588EHat2+PSqUiJyeH2tpacnJy3PbfyOVyEhMT7Y5SC1HOhv1MJpOJ\nwMBA1Go1RUVFLv2SR44cQaVSYTKZXMpWN27cKAihwsPD+fzzz6mqqqJbt27cc889boM5OTk5diMj\neVDuVh/1nzFjBl26dKGyspIvnniCcklyjR67KZN1ZGsdJEkPP/wwXbp04fr161RUVNCuXTuhvVpZ\nWUleXh7jxo0TJUNZWVlC8siB6upq7klNddtv0+Koj6x74YUX/72oqKhwu6iOjY0lLy+PsLAwdu3a\nRefOnT1eqHfo0IF1gYH/FKGhY7iTmpHL5cTHxzdpy8PCwuytEh7s3x1rsLuhVCqZMmUKSqUSs9nM\nY489xtq1aykuLm5SncBisaDVagkNDWX06NH4+fmh1WqRJLusWUREBFarFY1GQ0ZGhiCuW7FihSgL\n3rRpE1u2bGmyn7al4XEZdf18fnXkyJZJ+5RKDt9wA3FxcSxZsgSDwcCwYcPcHj81NZUrV67YHzZP\nA92N/nfX73vvvfcyXK/nmiRR2zgjXm8/v1248Ddl7N09c00NtVpNeXk5RUVFoo3K0QbW3O8lNTVV\nJIy8+H3hdUp/J0wuLva40Tw0NJQXX3xRfPbZZ5+lTZs2dO/e3emHoVKpnEpPHaREjVk5G2LWrFlM\nbpAl+eabb1xEn2UymVgAb926FYvFIqJljrLa77//npCQELf9qb91mM1mF1Y2B65du0ZiYiL+/v5N\n9lNKksTSadM8Yjk+sWcPZrNZ9H8UFhZy+vRpkanbtWsXGzZsIDo62mnymTlzJt26dSM3N1fIgxw5\ncgStVktcXJyTfmRERARHjx7l+vXrdOjQgYyMDO6++263vSWFhYUoFAoGDx4sWJXHjh1LYb0m6+uv\nv+72+yoUCpKTk4V0D8D777/PixqNR0GQFyTJifEO7Lqj3bp1Y9SoUUydOhWdToder+fYsWMYjUbB\nbuww0I1HYGCgvcTFw8zdZcmegU1JSSEoKIg1a9aQnZ0tyJUaYsqUKeh0OgwGA5s2bRKvb9myBZlM\nhq+vL8nJycyePZuysjIGDhzotvy8Xbt2Tv83J0VU5+srHExHOe20m25qdZnsnj17xO+zrq6OIUOG\ncMstt2Cz2Th69KhgQQY4d+4ccXFxDBs2jLy8PFatWkWPHj2cL8axY9h+q0STI7LuhRde/FfCoSHZ\neG7LysoiPj6e3r17M2HCBAoLC1Gr1S7rh+bGP0No2HA0dhp9fHwoKSnBz8+v2eyhp85YQwdELpc3\n60iEhoai0+kICgri1KlTdO/evUlnzGw2k5qailarZceOHZjNZtLT08U5L126lCeffJL4+HjBOPzE\nE09QV1dHaWmpKD+Nj4/nH//4R7PB9OaGp4RTu9u04cSJEx5nFuu0WqZNm0ZBQQGLFy8mOjqamJgY\nt+dwww03UFlZSY2H/aSVUsuVcrGSZwRONR5mzJt75iRJapKTpGvXroBdCrGkpMRJZ9cd10fD4ZBr\n8+L3hdcp/R3w5z//mZYWvg0jSTKZTDB9vf3221gsFmbOnOnyo5g/f744xokTJ7BarS7ZlMb48ccf\nCQoKEjIaYGcJbbzvyMhIdu3aJdh7G2Pr1q1u6c4bO7ieDp1O5yS10RC1tbXceOONlJWVMXfuXFJS\nUpqc5BdJdqKFZieu+vLFbdu2ERoayrJ772WFUslVmUxoeZ4dMoQcg8Gl37S2tpaePXtyxx13EB4e\nzubNmwE7G65Go6Fnz56izLKkpERIoJw8eRKLxeKWiS8pKQmj0Uh8fDwymYzNmzczaNAg/Pz8yMjI\nYNasWW4/5yh/zs7Odskqjiss9DgIolAo+PDDD8Vn6+rq6NWrF5MnTyYoKIiUlBRycnIA6NSpE8nJ\nyajVarcLAJVKRXp6uv358tRASnaNOrPZzNSpUwG7TIrJZHJylsFO5hEcHIxOpyMwMJBDhw5x9OhR\n1Go1AwYMYPDgwfj7+9vLWrOzefPNN13Osynj27D0vE6yl5Ct1Gg498knTudQXl7Oq0aja4S3iees\nIVavXk1sbCxnz56lvLycnJwcHnvsMQBef/11oqOjRZXDN998g8lkom3btsyfPx+LxcLXX3/96848\nIbNqangzpV548V+L6upqBg4c6DKHpaens3r1apKTk4mIiKBPnz5Ca/HEiRPNEvk0Hs2tV1ojAeJY\n02g0GoYPH05OTk6LxEeeOmMNWYM9Ibfp3r07s2bNIiEhoUmnWC6Xk5eXR2BgIE888YSQkXNU6fj6\n+mI2m3nzzTeZPXs2KpUKSbIHd0eNGkVubi5vvPEGcXFxyOVyhgwZglRvZxsexyG71txoDWuuXq/3\nOLNYJ0n88MMP9OvXj/HjxzNo0CCUSqVbmUFJkigoKGC5QuHRPXkrKspJ1/y33l+bSsUxX99WZ+wb\nZ0qbCwg49O7BzsXSUP/daDSiUCiEXmrjzzbmefDi94HXKf0/xuXLl51KZGMliVdNJmw6HbWSRK1W\nyxK53CWSZDAYBGPomjVrXJyS/Px8QYDk0C90MMO2hMLCQjZs2CD+79+/v1tnUq1Ws2bNGrf7eOaZ\nZ5g0aZJTWaRarW6yFKa54ePjQ1lZWZPnO23aNPLz86mqqqKuro6uXbs2GRFtLTHA+pEjqZDL3Rre\nGo3GLVPpuXPniIyMZP78+ZhMJr755hsAVq5ciUaj4b777gNg/vz5wskCeOqpp8QzsEj61fmp9fdn\nmUJBilotjPaVK1cwGAzExMQ0+V0HDBiA1WpFpVLx2muvieNcuXKFoKCgJhcVNTKZSzlNcHAwP/zw\ng8t3HDRokHA0ATp06MBLL73k9nxkMhkvvfQSgwcP5pZbbqGyhd4Wx6j29SUwMJAuXbpQXV0tzuHN\nN98UUjUNsXjxYjIzM9FqtYSHhxMUFERCQgLV1dVUVFSI7P38+fNdIqRN9Q41HiqVig0bNnDPPfcI\ntuiG8FgL0I3zN336dHsJ8Ndfc62szC6IXt9P8356OuPqs+MAO3fuJDg4GIPBwKRJkxg/fvyvO/K0\nh7TRsCmV3p5SL7z4L0VNTQ0333yzy5yVnJzM2bNnyczMxGQyUVBQgEKhYOfOnQA89NBDtG3btlW2\nuSmOiDVu7Erj0dBpdLS9ZGVlERsb63Kcxg5la5wxd5+XJPf6pAqFgjfeeMOFX8AxtFot8+fPRyaT\n0aZNG6ZMmUKnTp3w9fVFpVKJarR9+/ZhMpnYsGEDSqUStVqNr68vcrmcv/3tb9hsNrp27UqbNm3E\nfhvboaysrCbtUkMHtqVkxijp1/WEp8GCSh8f4uPj+eabb7Barej1eqZOnUpKSkqTEjae3pPihASG\nDh3arCSLp+u0qx4cs6lnzjGauteSZJe/afzbSk5OFtujo6Px8fGhS5cuGI1G8ZwFBASgVqt5/fXX\n/x1TwP8UvE7p/zEmTpzoMtkcfustmDhRZOauq9X/j733jmvq7N/Hk5Oc7EEmkBACQQzIlA0iIKKC\nW+uouAdWiwP0UWvrHlXbqrVP3etx1dY+WrXVWm3tsO62ah3Vuh5HxV0HiKxcvz/iuZ+EnEDw6Wf8\nPt9cr9f94kVycnJyxv2+3+u6sEoodHFMaZrGypUrcerUKYSGhjpNYEz/IsMCm5+f75Itc4ft8+dj\np8kEyOWwcbl4zOFgnUyGZK3W5aHt3bs3636HDBmCOXPmQKfTISIiAjweDzKZDGazGUlJSfUau9pj\n4MCBrN+zYsUKhIaGErmbZ8+eISoqChRFgc/nuxijBhED/AdMpUeOHIFOp8Pbb7+NsLAw0ncxevRo\nCAQC7Fy4EDc7drQTRnC5qJZKsZzPx8A6DEwZh4PdI0eiW7duGDp0KHbs2OE2+tumTRvweDycPHkS\nrVq1glAoJFndmTNnOhmSpTweauRy2CgK1VIp1kqlmNG/v8s+nfpHABw+fBgymQw0TUOr1eL8+fOI\njo5GQECAy2clEglCQkIwYcIElJWVoXHjxh5Hu5dQFHQ6HUpKSlzOc3FxMdq3b+9E8lNVVYXw8HAM\nHz6ckE4wxAOHDx+GRqMBTdMuEVKKouos/XYcAQEBkEgkOHbsGHx9ffHLL784H5inBAwsZbI1NTWY\nnZ6OchbZFhtN4xlF4Z8OOm6rVq2CTqdDZGQklErlv530BpJAMKOMy0X5C/ZfL7zw4v8/qKmpQd++\nfZ3m9w85HBLYqpJIsEooRLbZDB6Ph127dgEAli1bhpCQEDRr1oyV4LCuERYW9tJOY7hAAJ1OhyFD\nhqBp06Zo0qSJy/6VSiX6s9gjTyvL2EZERAS6dOnCuhZxV5YpEomwd+9e6PV6opep1+uh0WggkUiQ\nmJiIq1evIjAwEIBdW1qhUMBgMCAgIAA0TZOy3StXrhAddh6PR75TJpNh9uzZ0Gq1pM9UJBJBLBYT\nZ9Bxred4vmsHB7YHBLhdT9Rncw/Hx5PqG+ZY9uzZg3HjxsFsNkOv17OeI0+vSbt27fD06VPQNM3K\nzO/pOq26ju90d885rqPrcki1Wq3TeofBnTt3nMp4zWYz0aBlWJY5HHtmWigUYvv27fY1olcX/L8E\nXqf0L8SPP/7o8iCs7dEDkEhcFqPuJtrOnTujpqYGubm5iI+PB4fDISWhADBnzhwkJCQ4kR3Vid27\nYZNIXB7wSo6dBKh3LSIlDodDygsd0axZMzRv3hx/+9vf4OPjg9jYWBiNRowbNw7NmzeHWq3G3r17\nG8SCVrscYt++ffD19SXaUDabDfn5+QgODkZmZiYRrDaZTKTspEGZ0uHD66c4r4OpdPHixYiOjsaQ\nIUPQqVMn1NTUoKamBm82bYpSjhuipXqOq4zDwYl//hNWq9VtD1Bqaio0Gg2GDRuG9PR0PH78GCEh\nIVAqlTh//rwLq69MJnMqjU5MTHS7EGjbti3JwFdWVkKlUsHX1xfp/v441LSpk+7Zhw4GIC8vjzDS\nfvTRRxC+CLJ4Gu1euHAh6zmuqKhASkoK3nnnHafXd+3aRUpqlEoliouLcfXqVfj7++OLL77AhAkT\nwOVynRxTNrZjd+PQoUPw8fFBYGAgFi1ahMzMTKegia2BkjtO8CAYUsbh4KdPPiEfGT9+PHx8fNAu\nLAw/p6TYA0qe3usO9x8zx/Tr14/1fHvhhRf/O1FTU+Mk5Vafg3DwhWTV559/Dj8/P+Tm5qJbt264\ndOlSg3oceTwe6/aeOihxcXGIiYlhZe3v2rUrzp8/73adwDhjTyiqzh5Fx5GSkoKEhAS88cYb0Gq1\nrG1GtQdN09i/fz86dOgAsViMDz74AD4+PqAoCkKhEGvWrEFsbCzOnTsHq9VKrkn//v2JvEnPnj2R\nkJAAuVxOHBaFQgGpVEpKhQsKCjB+/HjCaaDVahEfHw+hUAij0ehW67v26NKlC6ovXED5S7AkMzY3\nPz8fcrkcFosFn332GeE7eO211yCTyVjJGN05yGzXpFevXjAajTh79iwpcWZGQ3uGme8s5djXUJ6Q\nKZnNZkJaWfs3vPrqq3UmcQoLC0n2mqIoBAYGQiKRQKFQgM/nE4JHpVKJjjRtr6rz6oL/l8DrlP6F\nePr0KQYOHEgehGyzud7FaO1ID7Pgj4+PR0VFhVPG5vPPP4fBYMDNmzc9O6BLl+olAXrO5yOEZSKq\nXaYgk8kQGhqKfv36IS4uDkKhEElJSbh69SqEQiEmT54MABg3bpzbibU24Q9FUURQ+dy5c4RRlsG8\nefNgMpkQGRmJ0tJSjBs3Dj4+PhCJRPj1118hFAo9ys5VURRQWOhx4767/jubzYbevXujT58+SEtL\nw4wZMzwWe3Y3qnk8bFKpMGHCBNZzplarYTabsWnTJtTU1CAvLw9jx47FrVu3CAGQ4/Y+Pj7YuXMn\nfH19cfXqVVRWVqJx48YwmUyEtKf2d0ybNg2Avf8xKysLs5o1q3PxkcfhoFOnTrDZbNi1a5dTVN3T\nhYtMJnPul3TAtWvX4Ovr6yS7s2TJEmJcMjIyoFAoYDQaCTnS5cuXIRQKweVyER8f7zH7IUVRyM3N\nRU1NDY4cOQKhUIh27dohMjKSPAPV1dX4WK2u9z6r5vHYAxoe9ILW8HhYK5US2ZiamhpMio9vcFSc\nMeBsC4ePPvqo3inDCy+8+J+HzWbDiBEjyLPrKWP4qW3boNPp8Morr6BFixa4efMmQkJCwOfznYK5\nLzs8dVDYsn+5ubl4+PDhf3wMjqNFixYIDAzErFmzoFKpEBsbi8ePH2PlypVuP8PlchETE4OlS5dC\nLBajqKgIOp0OwcHBEAqF8PHxwZo1axAUFISff/4ZsbGx5LokJiaCw7FzYhw9ehT9+/dHVFQUOBy7\nM9+yZUsnJlehUAiDwUAcJolEAo1GA5lMhtdff90jp7R///7QarW42727S3KjrsHmuE2aNAkzZsxA\nkyZNsHDhQoSGhuLevXtEWq2+4c5xZYavry++/fZbLFu2zOn1l+kZbsg9R9M0Tp06hfDwcHC5XJde\n6hYtWrhIJjriypUrJCjBDCZTqlKpCIN0Q5j7vXg5eJ3SvxA2mw2tWrVCYWEhoqOjcbNTp3oXo5Vu\nHsR3333Xad9nz56FTqfD4cOHPT8gDxbDFRwOLrRq5RK5FIvF+PnnnwHYCVi4XC5mzJiB0NBQtG3b\nFlwuF/fu3UNBQQEaN26MzZs3A7BncutyAGr3HSgUChw4cAAWiwVr164lh75r1y4ieM3IpFRWViI2\nNhZ8Ph9du3bF9u3bPc7OrZ86teEaYCwoLS1FREQE3nnnHRiNRlzNy3t58hnm+Ph8l/PPGDadTkd6\nVgG7rE9QUBC2bt2Kn3/+mZQQMZ+bOXMmAGDhwoWIjY1FUVERcnNzERwcjEOHDhGyHWZ7Pp+PWbNm\noaamBmFhYfhx3bp6nexyHg8xMhlmzJjBLk/w4p52zLLWNiJcLhd+fn64c+cO63n+4osvYDKZcPfu\nXRw8eBB8Ph/dunWDTqfDhQsXIBKJQNM0jh07Rrbn8/no06ePx+THzJtMAAAgAElEQVQeQqEQGRkZ\nTt+7atUq0DSN1157DcHBwSgvL8egQYM8vs8u793r+mM8zLKWCwRo3bq1PXP9ksEOtiCX4zN94cKF\neiYNL7zw4n8SNpsNY8eOdXp2PSKK4fOxRiJBfn4+YmNjce3aNTRp0gQCgQAWi8WpzeO/ezRv3hwP\nHz6Ev7//X7pfmqYxZ84cKBQKp7af48ePu2TrmDFnzhy0b98eFEUhKSkJISEhCA0NhVgsxmeffYaD\nBw9Co9FAKpXixx9/RFpaGgDg9OnT4HK5MJlM2LFjB/R6PbZv3w4ejweRSAQejweapsHj8Ug2lWkr\nCQgIgE6ng1AoJESDvr6+boOncrkcxcXFWLFiBUwmE5YsWdIgDc8auRzLadrFFlAUhQ0bNmDq1KmI\niIjAsGHDkJSU5Jat1nFoNBps3LgR/fv3rzMb3aZNG1RWVjrJxzW0Z/hlhtVqxYMHD0iWmllTyeVy\nyOVyDB48uM5saffu3REdHY1GjRoRZmeDwQCRSARfX1/QNI11UqlHGudeDoeXh9cp/Quxbt06NG3a\nFFVVVfaeOA8Xo09Z+gj5fD5hSH3w4AFCQkLwj3/8o2EH1ICSw+LiYpdjMBgM+OOPP9CqVSvo9Xro\ndDps2rSJ9A1cuHABGo0GCQkJ+PHHH7Fv3756J44uXbq4OGBCodCJIOi3336DWq2GVqslmVQGV65c\ngVQqBY/Hg8lkAofjWXaO+6KX1tPzURfOnz8PnU6H1atXN1jsmdWAsJwnHo8Hq9XqJNfD4Pjx48Q5\n27RpE7hcLtLT09G9e3fSM2Gz2ZCZmQmJRIK7d+9i0aJF6NatGwA7M7DRaET79u2h0+mgUqnw5ptv\nIjExETYPAhk2msZWf3+3Rp8xCFu3bsW5c+fclmqJRCLExsY6MUM7YsKECcjKyoJEIkFycjIpZ4uO\njkbz5s1JD9CRI0eg1+vRvXt3zJw5k9wXtUdgYCA5ZobRl8lMOqKgoAA0TSMjI8OJnc+T+ywmJsb1\n93iq90ZRyMzMxPTp0xvMtOtJ35VarSZOvBdeePG/E5MmTXJ5dj21M2U0DYvFgsuXLyM+Ph4CgQAm\nkwkLFiyo1zb/JyM7O9vte4mJibh3757HpaoNGZmZmZBKpQgICMAff/wBwB7AZyvhZIZKpSK2QK1W\nIyQkBCKRyCkovnfvXnA4HCxYsAAtW7bE9evX4e/vD4lEQtYqH374IbhcLvz9/REUFAS5XE5sXWMe\nD4s5zoHZtRIJmgiFaN68OUaMGIE9e/aQyi9Hu5mRkYEFCxbAarXi7t27ePfdd9GkSROPg+o2LhcA\ncOzYMVaOCh6Ph61bt+Ktt95CaGhonXacGf3794fRaMT169cBAEVFRXVKqEydOtWlKqshPcM8Hg9f\nffUVyUJ7Mvh8PpYvXw61Wk2OjbkPUlJSIJVK8fbbb7t97ph1REREBJo1a0Yypn5+fhAIBPaeVA+v\ngZft/uXhdUr/Ity5cwd6vZ5kFwF4LAht43JZG83VajV+//135OTkYMyYMQ0/qAaQs9hsNtLD6jhC\nQ0Oh0Wig0+kwZcoUwk4WGRmJnj17YtasWQgICMCBAwc8zlDl5+e7vJaeno7nz5/j4cOH9jIJi4W1\ntxUANm7c6OLosJV4OPZAcjgcLGaZEGuPCg4HV9q2rffUfvrppwgKCmpwnx/bqE1pTlEUoaTPysqC\nVCp10kMFgKVLlyIqKgobN24kk+aKFSvI+zdu3IBer0dISAgWLVqEJ0+eQK1WE8bdmzdvwmaz4eDB\ng/Dx8QGPx7P3eXoYyKhwQyDElIiFhYWha9euKCsrq5OVr1GjRujVqxdrBPPp06cQCoWQSqV4+vQp\nALvuLo/Hw4kTJ7Bnzx5IJBKIxWK8//772LNnD4KCgli/JyEhAT4+PvD398fgwYMxdOhQ+Pv7s17b\nmpoaxMfHs7ISMvdZjQNpWO0scGGtKKmnZeMVIhFu3boFf39/jz/jrlS39hAIBMjOznYikPLCCy/+\nd4Etm6lSqTxeS9RwODhz5gwyMjIgFArh5+eHZcuWsQYGG8L/4LjwZ3udx+MhOTnZ5XU/Pz/cvn2b\ntZyXw7FnOj1lSGcGsz3DiKrX64mu+uXLl6FlIXBkO9527doRBl02jgOxWAyFQoGUlBSEh4fj1Vdf\nha+vL3bs2IGSkhKo1Wr4+PhAKpWiSZMmCA0NBZfLRXsez63zVUnTeLplCywWC959912IRCK0atUK\nVquV6INzuVwcP34ckyZNQnx8PO7evYvg4GCPHaJHHA5WrVqFr7/+2q22OJ/Px9KlS+vUjmWGXC6H\n0WiEWq0mQdy0tDQEBQU1+Np5Wv5dUFCA6urqevuDmWysQCBAfn4+Ro4cifz8fCLvwuFwEBkZSdiV\nxWIxqepjQ1paGvz8/LB//36kpKQQ/VJmf39FtZ0XdcPrlP5F6NWrF8aNG0f+Ly0txdP6dA2ZoVBg\n1apVrA+dSqVCdnZ2nfXwbtFAcpY///yTNcKoUChgsVjQsmVL5OXlITs7G1qtFn5+fvjzzz9B0zSG\nDRvmEpVjY0RljKFjBooZ/fr1Q+vWrREZGUkIn2rDZrM5kT8wbISlLyYMR2e0dg+rpyUkES96VuvD\nmDFj7Gy7nk5ULKOCw8HKF72QjLEcNWoUKIpC06ZNMWnSJOh0OiQnJ7uchz59+kCpVOKLL75Au3bt\nIBQK8f3336Oqqgrp6emYPXs2rly5Ar1ej++++w5/+9vfWIMbEyZMAI/Hg9Fo9HjxwyZYzeHYS0QL\nCgpQXl6O9PR0REVFudWy9fHxwf3795GcnIypU6e6/L6cnBwIXrA5fvvtt9i+fTsMBgPGjRuHV155\nBTabDXFxceDz+Rg4cCC2bt3K+j0ajQY9evRAXFwcZs+ejcTERMyePRutW7d2e22PHz/uco8xkj5P\nKYow7R09epT19x0/fhyA3flf5oHem43PxyqRCPv378c333zTILbC+hYCc+fORWpqKiwWi5PWsRde\nePG/B4yEWG3b+8svv3hMtFYpkSAvLw9CoRA6nQ7r1q1jzWi5IzOqb2g0GrcM8SaTyem7BAIBrl27\n5jbbpdPpsHjxYrRq1Qrjxo2DQqGoM/vG4dhJ/5KTk9GiRQsoFApQFEX4LG7evOlWD7V2mWzz5s2h\n1+tB0zSCg4PRv39/l/WG2WxGv379wOVyMXDgQAwdOhRCoRBXrlwhpbfFxcUICAiAXq8Hn89HkkZT\n7xrDJhbj2ObN4PF4mD59OsxmM2lTciRLunz5MoYOHQqdToeEhIQG9WVyuVzI5XJ8//33KCoqavB1\nZgYTUI6OjgZFUbh69SquXbsGjUaD5cuXO7UCeTLq60l1XCO2b9++Tm3XzMxMlJaWIjk5GZGRkTAa\njZDJZOjRowdUKhVxuCmKIr2+ZrMZIpEIBw4cYH0Gt23bBpPJhH79+qGsrAyJiYngcrmgaRo+Pj7e\nTOl/A7xO6V+AXbt2wWKxoKysDAAIocxOk6l+chSKQkVBASwWi4ucDDPqa9J2i+HD622Mr+RwUDl0\nKPnIjz/+yJrxbNSoEXJycpCVlYXNmzeDy+Xi/fffx40bN6BWqwlLGbN9UVERZDIZpFIpqxETCASs\n36PT6ZwkV2pj/vz5ZFumHKSSZWIu5XAwxGh0cRg8LSHR6XRu+x0ZlJaWYiVNN1js2XGUcuylPhyO\nnZkvICAAUqkUc+fOhU6ng1KpxJdffgmKouxlnQ5Yt24dxGIxli5divLyclitVshkMgwfPhytWrUi\nRnbv3r3w8/PD4cOHoVarXc5tVlYWOnTogMDAQI/LxGpndzkce0+H0WgkTK9MeVP79u2Rl5dHtvP3\n90dISAhomka7du1QUlKCoKAgbNy4kRzT+PHjwefzsWvXLuzduxc6nY6UnzLapKNHj0ZMTAx69eoF\nsVjsdkETFxcHrVYLpVKJM2fOQKlUYubMmRg7dizrdWUi03XdL45Me2vWrCH3PpfLJcRRZWVlMJvN\nHpMjHNqwAXq9HhcuXPA4oPW4nmxH3759cefOHfz2229QqVTQarWkLcALL7z43wFGTsRxyGQyHD16\nFABwMDbWI4dkscMCevPmzaw2ViAQQK1Ws0qs1TcEAgECAgLAZ+FBYBwAxn6mpaW5lRqJjIxEamoq\nfvnlFxgMBly/fh0hISH1OqZSqRRt2rSBTqeDXC4ngcotW7Y42RjHIRKJ8Mcff5ASY2b/fD4fhYWF\nKC0tRfPmzTFs2DCnip3o6GiEhoZCr9cTsiKGNFClUmHcuHGIiIjAzZs3oVQqwefzsdXPr97rVMnh\nYFdwMNLT0xEZGQmr1Qq5XI5//etfWLZsGZRKJXg8HgwGA9q1a0cCAS+j5Xru3DlUVVXVWV7tbkgk\nEowdO9apDzgpKQmzZ89GQUEBysrKoNFo0Lt3b4/2JxKJIJPJMGDAAI+253K5bgPazPph5MiRRKXB\narWCpmlIpVIYjUb4+/sjLCwMBoMBFEWh1QvuFJ1OB6lUysqvUF1djaCgIMhkMjx8+BClpaVo2rQp\nOZYlHM8CA/dfffW/be74vwavU/of4smTJwgMDMTXX39NXps8eTJSUlKQExzs0SQyKDMTQ4YMgc1m\nQ79+/Vgfwtdff91jXVKCS5dQIxbX+/3DW7d2ihJOmzaNdTJ4++23odVq8fXXX4OiKFy/fh1bt24F\nRVGkwT81NRXz5s1DUVERWrVqBbFYjGHDhrH+JsY5qf363//+d9afs3PnTmIIPZ2go1lKRy0cDtYr\nFHWWkPB4PERFReH58+esx2Kz2TB06FCPjsPGMpGxOcE8Hg8WiwUqlQpbt27F/PnzYTQakZeXhxkz\nZoDP5+P7778HYJ88w8LCsHr1auh0Ohw/fhwlJSWQyWSgKMplwp03bx4SExPxeps2ONmsGdHXqpJI\nsF4mw/OzZ5GYmPhSLHmOhAI3b95E48aNSWlSXFwcdDod1q5di6+//hojRoxAUVERIiMjMWLECNA0\njYkTJ+L06dPQ6XQ4cOAAtmzZAj6fb2c3hr0UWS6XIzIyksjXTJkyBXw+HxcvXsTVq1fdLmSKi4vB\n5XJhsVgwYMAArFu3Dl27dkWvXr2wbt06l+taXl6OZs2aeXyPMUx7BQUFkMlkeP/99xEUFIT79++j\ndevW5DjqCoZUCYWERn7lypXQarUeX4fTL3qq3Bl2iqJI1nbmzJmIj4+HyWQihCBeeOHF/yz+8Y9/\nuDy3EomEsI9v3LixwQ7J+vXrWUszeTweVCoVEhIS6s1Ksg2mBcJsNrst3bRYLDh79qxbfdSkpCSo\n1WqcPXsWffr0wZQpUxAdHU3KVes7BrlcDqlUSmzhyZMnSVa4dstFVFQUcVzS09OdnGmRSEQ0oB8/\nfozk5GQUFRXBZrOhpqYGvr6+CAoKQkFBAWF/Z0hzJk6cCKvVipKSEvTt2xcCgQDR0dENKrF98OAB\nmjVrBq1Wi7lz5yIjI4NUOfn7+4PH40EoFDqV4DakL3P48OHkHnvw4IHb1ha2oVQqMXjwYISHh2Pa\ntGmk6iw6OhoKhQJ79uwBYK8WKy4uRlhYWJ37Cw0NRUZGBsxmM6Kjo93K33kyBAIBcnJyMG/ePPD5\nfEyYMAGlpaUQCoVo3LgxaJpGbm4uYmNjMWzYMJSVlcHPzw8URaFNmzbgcrmQyWTQ6XSsnBKLFy+G\n0WjE+++/D8C+xo+JifF4TVDK4SBBpSIl5V40DF6n9D/EqFGjMHDgQPL/pk2bYDabiTSKpyQ8zA1c\nVlbm9gFn5C8agkW5uajg8+2yKHVMYm+88Qb5zJMnTyAUCl2iqHw+H6+88grS09MREBCAY8eOwWQy\nkfKGsLAwbN68GVeuXIFKpYJOp8P69euh0+mc6O0dR0pKikuZrUQiwYkTJ5x+x8mTJ50W3/8JxTiH\nw3Hba+E4hEIhunbtyhoMWLRokceGYiDn32y0dfVRNG7cGEKhEJs3b4ZOp8OVK1fQtWtXKJVK7Nix\nA9HR0ZDL5bh69So2bdqEtLQ02Gw2bN26FUFBQThz5gw0Gg0EAgESExNRWVlJjtdms2F2ejrKWUpJ\nqykK1SIRchsw6Toee/PmzYkBXbRoEQ4ePAiKoqBWq/Hw4UN8+eWX8PPzw5UrV3D9+nWoVCrs3bsX\nvr6+GDNmDPh8Pj7++GPs2bMHGo0GNE2jQ4cOsNlsePr0KWJjY/H2228jOzsbU6ZMwa1bt2AwGBAa\nGoqVK1eyCrSLxWJ8/vnnOH36NLlvFi5ciJ49e2L16tWIiIhwkltizpFjv7Mn9xjDtMdUR/Tp0wcj\nRoxg7YVx108zql07cgyHDx9ukPF7fvasUzl7enq6E3GFQCAgz3ZFRQUiIyPRrl07tG/fvuFBLi+8\n8OIvB0Ps52h39u/fD8DeRsA4Wp6sJWq3Gji2szAlnWlpaR6R27gb7du3h1gsxvLly2GxWFizrbVt\nOjNiYmLQtm1bTJ8+HdevX4ePjw/i4uIwduxYdOjQATRNIyIigpDMuDuG2m0oe/fuBU3TkEgk4HK5\naNSoEUJCQuDj44ObN2/ivffeA4/HIz2bGo0GSqUSZrOZVA49fPgQTZs2xcSJEzF27Fio1Wrk5+ej\nuLgYX3/9NXFmR48ejZCQENy8eRM7duwAj8dD9+7dodfrPW67qOHYNcINBgOCg4OxYsUKZGZmYu7c\nuUTn0905yAwIwGIuF4+5XLfridTUVOh0OqeqmN27d3vUR8zj8ZCQkACNRoPvvvsOFosF06dPd3q/\nT58+qKmpwcWLF6HValnJuRwHTdNITk4GRVEoKCjArl27WNdgdQVK2rRp4xJMZoL1ffr0QWRkJIRC\nIWiaRmBgICIjI4kMWmlpKfR6PZGAY2RjGjdujGfPnjndS2VlZVAqlbBYLMRGjhw50uP1HrOmDgoK\nQklJyV8/Yfwfh9cp/Q9w+PBh+Pv7k2jbkSNHoNVqcerUKdIrxywwtwcE4DGX61Yio1GjRqisrERZ\nWRmaNGlCNBcdH0qKolyYWOvC6dOnodfrsW7KFKxXKFAjl9tJjeRyfKRWuzhFDPvc6NGjkZCQ4NbY\nMKW82dnZhP68Z8+ekMvlePLkCXr16oXY2FiMGjUKgD2a1q9fP7eRU7asbEBAAG7dugUAKCkpcWFU\nbUhE0hND67gocBwikcilbJYpp/XE4WgoxfmYMWPQqFEjzJgxA8nJyXjw4AFMJhO0Wi1+/fVXSKVS\nNG7cGI0aNXLKzhcVFUGtVmPKlCn49NNPIRKJ0Lt37387Hh5IjDDOpqeTLpfLJWzKGzZsQF5eHkQi\nEZo1awYej4fIyEjiGH/wwQeIiIjA48ePMXjwYEyePBnFxcXo3bs3OnfuDIFAgP3790MikYCmaZSU\nlKC6uhodOnQgVO4lJSXw9/dHREQEpk2bhu+++46VjIjD4RDiCsZR9PHxgUAggFKpxNWrVyESiVxY\nch0NL4fjueA30z9SVlaG+Ph4Vi1YtiGTydCqVSuycLh9+7bTM1/fdehI07h9+zZOnjyJOXPmoH//\n/pg+fTrWrVsHDsdeTi2VSmEwGLBt2zYAwNGjR+Hr64v4+Hi89957Hs8lXnjhxX8NvvrqK9LmQtM0\nyUKVlJQgICDAac4IFwhwOjOTrCXKhUJ8GxHh0bzdWShEixYtSKvBy/SUMvN+UlISdu/ejYSEBLcl\nlrVHWloa1q9fj4iICFRUVGDkyJEwGAwYPnw4BgwYQMiS/P39kZubC7EbMj3mGD7++GMAQFVVFTp1\n6kS2X7hwIVq2bIkOHTrg9ddfx9mzZ8Hn8wlZTWJiIjIyMjBo0CBIpVKEhoYSIsF79+7Bz88PWq0W\n+fn56Ny5M9544w0YDAZwOBxkZWWBz+fjp59+wr179yAWi5GQkECcmBqZzCObYVMoYLVaYTKZcObM\nGWi1WuzevRs6nQ6dOnWCyWRitW1cLhdjxozB8ePH6z0/M2bMgE6nw7Fjx3D16lUEBgZ6tA7q2bMn\nfHx8kJqaipycHFy5cgUGgwFisZjYp5CQEMKhEh0d7TFplq+vL3r06AGdToesrCySgaxv6PV6vPnm\nmxgxYoRLcuatt94iPCVMUIKmaYjFYty4cYNs9+TJE2i1WlAUhby8PHC5XPD5fGRkZJAKLAZvvvkm\nfHx88P3337OSjzmu99yt6Tkce6b+4cOH/2Vzx/9FeJ3Sl0RFRQUiIiLwySefAACuX78Og8GAnTt3\nAgCuXbsGrVZLFuNqtRo//fSTU4at9ujZsyd69uyJPn364JtvvsHu3btdJnyZTIZTp055dIy5ubkY\nMWIE9Ho9fvvtN6f3rl275tLvQdM0PvzwQyITEh4ezmq4goKCEB8fT0phjEYjVq1ahc6dO+P48eNQ\nq9UICAjAkydPANgnA5PJhKZNm7qdSNn0y5KSkvDgwQMkJSW5vOcp660jEUxdUTiBQMCaceNw7E7z\nP//5TwDAuXPn6qSb94TNjimxZZvINRoNBg0ahOzsbLRt2xbjxo3DuXPnIBAIMHToUMyZMwc+Pj5Q\nq9VOE+mkSZOgVCqJAz116lSIxWLMnTvXvoGHmrVMZjmEw8EyPh9PHQikak+6KSkp8PHxQVJSEgC7\nU8bcU7Nnz0a7du0wYcIEAPYs5PDhw5GXl4fffvsNGo0Gt27dQlBQEHbu3Emi4zKZDEOGDEF2djZG\njRqF7OxsVFRUkN/ZtWtXCIVCXL9+3UXLz3E0adIEJ0+ehJ+fH5o1a4aNGzfC398ffD4fR44cQXh4\nuNPz8NFHH7ns42WY9nbs2FHv9acoCkePHsWGDRvQsWNHMp+wleHWF+zo06cP+e6TJ0/CZDKhuroa\nhw8fxp07d0DTNHJycqDRaEj1QVFREbp27dpw3WMvvPDiL8W3334LhUIBjUaDvXv3Eoe0oqKCtBE4\njjlz5kCv1yM+Ph6DBw/G3LlzIRQKYeXz662sKKcohL4Ipr6sQ8oMkUiECRMmQCAQQCqVYtGiRXXa\n186dO8NqtUKv1+PQoUMoKSkh2tNFRUWgKAopKSnw8/NDly5dsGvXLuh0ujptLUVR2LZtG/r06QOF\nQgGRSIQhQ4YgMDAQCoUCKpUKFy9ehJ+fH+RyOSiKQnh4OGH5t1qtmDRpEsRiMaKiolBeXo5169bB\naDQiJCQEzZs3R4sWLRAYGAgulwu1Wg2TyYTRo0cjMjISkZGRhH3X398fN27cQPmgQR7xiJQNHAi1\nWo3ExEQMHz4cmzZtQqNGjZCRkQGRSMTqrEmlUrRq1QrBwcFYvnw5li1bVuc1UiqVWLp0KTQajVsC\nqNrXVKfT4bfffkP//v0hEomQotPhYuvWqJJIUMOxSxMxmXej0Yi+ffu6lZ1hWwsx67+JEyciNDSU\n9Ow6llSzHZvZbEZ+fj4mTZrkkiQ4f/48cZiZPlwOx+6YMz3ZDJ48eQKVSgWKotC2bVvCrtu3b1+n\n7UpKStxeB8fzxawPjUaj2/s/LS3NRT3BC/fwOqUviRkzZjiVGMbExODdd98FYF+At2nTBrNmzcIf\nf/yBgIAAfPrppwDsZQTusnIcjl1L0TGDs2vXLhfnxWQyuZYFXLpkdzwcegXXyWRIVKvxzTffsP6G\nI0eOuBAhUBQFk8mEnJwctGzZEmlpafDx8WE9Vqb5e8WKFWjfvj02bNiA5s2bQ6PRYPeLHjnmfOTk\n5EAmk+H06dOsDy+Xy8Urr7zi8jqb5uSIESM8ZiN0zJRu3rwZLVu2dHvud+3a5bZkSPSCGZWtB/Zl\nBuPMs70XHh6Oli1bYvDgwTCZTNi9ezeWLFkCiqJw8OBBQjbx5ptvAgC++eYb+Pv748SJE/D398fe\nvXths9nQuXNniEQibN++3WMm5kccu/H7+OOPodPpIBAI6iz1EolEpAz29OnT4PP5oGkaJpOJRFj3\n7t0LAKisrEROTg5Gjx6NXr16Ye7cufjqq69gNpvRoUMHcDh2bdyysjJERkZCqVSSKgTAXhofEhKC\nt956C40aNXI5luDgYHz55Zfo1asXKIpCREQExo4dC6PRiMrKSowcORI0TSMkJAQ9evQg+z148KBL\n8IfL5aJCJGpQppQJRNV37ePj4wHY+3zkcjmePXtWb08Oh2MP3DAG13EwpX4AkJSU5FRNERUVhbCw\nMPTu3Rtmsxm3b9/G06dPERQUhKlTp8JsNjudYy+88OK/BwcPHiTO0+nTp8nrNpsNBQUFLs/50KFD\nYTabkZqaio4dO+KDDz6AUCiEQCDA3e7dUVMPEzwTdPSkl7SuPnXHOVIsFuPVF6QuzZs3Z90uODgY\nNTU1sFqtMJvNKC8vR3h4OAIDAzF16lRwuVwkJyfD19cX7du3x6VLl4j0itlsrvN4KYoismCMjnuL\nFi0gFosxYMAAdO/eHTweDxRFISAgwMk5uHz5Mvz8/LBgwQLSj6jX63Hu3DncuHGDaIjyeDxCoHPh\nwgXYbDakpaWR86RWq3Hx4kUAwOxBgzwKDrz56qsYPXo0Hj9+jPj4eEycOBGRkZFQqVSsjLMM+VFs\nbCx+/fVXQu5Um1W49lqRcfrYrl3t1+bPn4/Vq1fDZDLh999/x6xmzVgz71VcrltNbCawPGDAAOh0\nOtbACpPFbN26Nfr164clS5bUuSbmcrmYP38+MjMz8d5777mUbo8cORJvvvkmORcDBgyAUqmEXC6H\nyWTCvXv3nLZ/9OgRlEqlk2NKUZSLAkBKSgrr8YjFYqK5yzimGo2GrJPZzm1xcfFfNm/8X4fXKX0J\nnDt3DlqtFjdu3EBNTQ06d+6MgQMHklLJ1atXo2nTpnj06BESEhJc9DbdsewyNzRDcMDgvffec9ku\nKSnp37Xwu3fbCVdqZcIqOBxUCgSERIUNn3zyicu+hUIheZi7du3qtm+Ey+UiOjoae/bsgVwux5Yt\nW6BWq4mRcjz+qKgotG7dGnPmzMG2bdvcGsKMjIw6DWGbNm1QVVWFzz1gNmaMMEVRSE5OhlAoxIkT\nJwizquMIDAzEmTNn8MYbb7j97v80ulx7KBQK6PV65OTkuOKAna0AACAASURBVLyXnZ0Nq9WKMWPG\nwNfXFzdv3kSzZs0gl8sJm2xgYCCWLFkCg8GAffv2AbBH3v38/HD9+nWUl5cjIiICEomkQVIvjAj5\nxIkT6y3L4fF4+OOPP1BaWgqdTodGjRrh6NGjEIlEyMjIwN69e2EwGAiT8Z9//gmr1YrJkyfD19cX\nz549Q3x8PCiKwqxZsyAUCtG0aVPodDqEh4eTQM+pU6dIafyXX37Jem2YUp3S0lKykMnJySHPX3R0\nNFavXk0WQQBw5coVF8PO4XDQtWtXj9irmZ7Sp0+feiz07WigsrKyWA137TFkyBDweDy89957TtFk\nhUKBLVu2kP2tXr0aHTp0IP8XFRVh/Pjx8Pf3R35+PlJTU/H8+XOi6VpYWIiOHTt6+0u98OK/EceO\nHSO6lCdPnnR6jyHVcRwtWrRATEwM0tLSkJ6ejpUrV5KA4eHDhxsUdKzPJjXEzlksFuTl5QEAFixY\nwLoNl8tFYmIiAgICkJmZidDQUAiFQkJCl5SUBF9fX7Rp0wZPnjxBSkoKZs6ciaysLKSkpDgFRt3Z\no6KiIgB25QOTyQSBQEACl0yWk62M8vDhw9BqtZgwYQI4HA5iY2NRVVUFm80Gq9UKDodD/q5ZswYA\n8PPPP5MSUabqBQAuXLgAPp9fZxl1GYeDoSYTaJomdvbu3btQqVQwGAyszplcLkdYWBgUCgVCQ0OR\nk5ODY8eOQaPRuGQja5d7e7qOYUpqjx8/jiVLlqC5weARSWbtclW5XI5JkyahoKAAU6dOhdVqdZv9\nDA4OxrJlyxAQEIBLly6xBnSHDRsGi8UCmUwGk8mElStXYtCgQeT6PX78GCqVCvv374der4dUKgWX\ny4Wfnx8SEhIQHh6OVq1auZTnPnjwgEgKMY4pl8sl/aru5OUYjfT79++Te5Lpnw4ODib3qq+vL/mM\nVqvFn3/++VdMG/9PwOuUNhA1NTVo1qwZFi9eDMC+cG/evDlhab1x4wa0Wi1OnjyJHj16ID8/32nB\nx5CN1JV9UigUuHnzJvkMo0lZe7vu3buj5vff7Q5pXcboBUOoO0ybNs1l30lJSaisrERkZCQpr2Er\nvVWpVHj//ffRrl07WCwWKJVKJ0YzhrL92rVruHLlCjQaDdauXctKVc/h2Ms03GWNmjRpgkePHmHh\nwoUeE8GEUhSWLl0Kk8mE4OBgaDQaHDhwwGWitFgsePjwIZ4/f+62jPdlBp/PR5cuXVjfoyiK3B/t\n27d3eb9Pnz7Q6/UYNGgQMjIycO/ePXC5XLRs2RLjx49H69atQdO0E9EWAMydOxcpKSmoqKjA7du3\nodVqPZZ6qRYKAQDPnz9ndZbYFgXx8fEkOs0Y2n/+858QCAQoLCzEG2+8gby8PMLwfPHiRfj6+iIt\nLQ2FhYUkcnro0CEsX74cHI69lP369eswGo3YuHEjGjVqhI0bN+LMmTMuJBoURUGlUjkt7hjJAA6H\ng6NHj+LGjRvQaDSorq4mPTDLly9nvdY6nc4eUb90yc6MW8+zVX3hAqvuLjPEYjEhYeBwOPjss8/I\ncbZt27bee0gkEsHX1xdGoxE+Pj4wGAzgcrmIi4tDZmam0/zCVGJcv34dgJ2xOicnBz/88AP0ej3a\ntGmDfv36wWazoW/fvhg1ahQSExNZxeO98MKLvx4nTpyAUqmEUql0IVv7/vvvXZwGi8WCFi1aIDk5\nGU2aNMG6desgEAic2Nj/U31pDseewRKJRGSOZ6Te6pufFAoFqqqqXHrya4+cnBz07NkTAoEA/v7+\noCgK8fHx0Ov1yM7ORnl5OUaPHo327dujX79+iI6OhkAgwODBg50In9h6I6VSKQ4ePEick549e5Lf\nIRaL6yScWbhwISiKQnFxMQQCAXJzc5Gfnw+KoogN4XK5KC8vR0VFBdRqNSQSCUQiETp27IisrCw8\ne/YM33zzDclyMoRTTygK1RwOnvJ4uP/qq0hUq8Hj8Uh10PPnzzFu3DhERkaynuuQkBDodDrQNI03\n3ngDycnJCAkJQXZ2Nnx9fSEWiwnDvcVigdVqbbB26KRJk6DVarFgwQL4+fnh/PnzONms2Uux8H/4\n4YfYvXs3WrVqhQ0bNkAgELi1cUKhEL6+vjh//jwAYOzYsU7JD5qmkZ6ejosXLxJSpA0bNtgDxi+w\naNEidO/eHRMnTkRqaiqKi4tJFnPBggWIj48nVUG1ce/ePdJK5ZgxnT9/vtuKue3btwOw9zFLJBLS\na8zYdiaA0bhxY3LMFEURdQ0v6ofXKW0glixZgrS0NNTU1GD9+vUIDg4mTpjNZkPbtm0xbdo0TJs2\nDcnJyS5kKhMmTEDHjh1RWFhY50TRpEkTp89WVVUhLi7OaZv09HRUDB5cb68gk81xh4qKCla2vEGD\nBkEoFCI1NRUymcwtoUGzZs0wYMAASKVSJ2a0n3/+GVqtFseOHSOvFRUVgaZpxMXFuY3IRkREuDg/\nWq0WV65cwS+//EImDE8IeaKjo1FdXY1Zs2YhLi4OSqUSERERWLNmjcv3tm/fHjU1NTh69GiD9Nsc\no2LMUKlUSE9Px+jRo50itrW3i4yMxJMnT/Ds2TPW0uCRI0dCr9cjLS0NHTp0QEREBHg8Hj755BOo\n1WoEBgbCYDA4NfTbbDZ07NgRI0eOBGDvNVzC5Xqmp8rnw3bxIquWGEVReP31192eh6+++srpvpo2\nbRpomsby5cuRnJzs5Ph8++23RFIgISEBH330EUJDQxEYGIh+/fqBx+Nh/fr1OHr0KGiaRs+ePXH7\n9m3WBcmiRYvw4YcfIjs7GzabDT/99BMUCgWioqJIKfGiRYuQn58PADAajejduzfr9ZBIJPjhhx8A\n2HtVeioUqBaJXJ8xB53S8ePHuzW6fD4f2dnZEIvFKCgowPXr10kJmSf9pzweD8OGDUNWVhb8/PwQ\nGxsLo9GIU6dOkaAR09fOoLCwkBjhR48eQSaT4fnz51iyZAnCw8MRHR2Nd955B/fu3YOvry8+++wz\n6HQ6l/4bL7zw4q/FmTNnoFKpoFAoiFQTg3/9618uVRsymQydOnVCTEwMAgMDsXHjRggEAvB4PNIW\nUVFRgTI+/6UzpWq1Gq+88goyMjLInMiQwCiVSo/6ERliRIlEgilTpqBly5ZO8ysTEDaZTKScNDg4\nGDqdDhkZGSgrK8Mnn3yC4OBgvPnmm7BYLKBpGl27diXBzCNHjoCmabfZUoVCgZycHEilUmInuFwu\nevXq5dYhuH79OgIDA9GzZ09SScPY/h49eoCiKISEhBCb27ZtW/B4PPD5fHzzzTeorq5Gfn4+cnNz\n8fz5c4wcORIxMTGEBTYqKgoLFy5Eu3bt0LNnT6xcuZKUuGZkZKBx48aIjo7G7NmzXX4P00M6ZswY\n0DQNs9mMkpISREdHg8/nIyYmBjt37oRer8cHH3wAlUqFHj16QKvVsiY92NZvs2fPBmDnVAgODsai\nRYtgNps9JmxyvJ8oiiIcGEajEXq9nmTPW7duzZpsMJlMuHPnDi5evAi9Xg+hUEjOXUJCAiQSCbp2\n7YqvvvoKHM6/A+CAPUEUGhqK77//HoGBgQgJCcGhQ4cQEBBAJAo3bdoEf39/qFQqp5YyBnfu3IFE\nIgGPx3Orc8uMefPmkc/9+uuvsFqtuHPnDnk+HDV6aZpG27ZtiQwPj8dzUrjwwj28TmkDwGRBz549\ni4MHD0Kr1eLMmTPk/X/84x+IiYnBxo0bERgY6BKd++677+Dv74+7d+8SbUWmZ4HtIXj11VedJtNH\njx4RoyWXy+3ZWg/Ldpi+NzYwLG2Mk1ibVv4xh4OPX7D1MtEkx+PkcrmQSqVITk4mx3vjxg0EBARg\n69atTsffuHFjSKVSREVFYcWKFR5T02/evBmPHz920UbzhPV2zJgxsNls6N27N/Ly8kDTNDp16sSq\nn8poY9ZVxus4GFKo2s7bmTNnkJCQgJkzZ0IsFpO+FLZSlnbt2qG6uhq3bt1yKcfh8XgoLCxEaGgo\neDweFi1ahMzMTIhEIigUChgMBkybNg1xcXEoKysj5/rPP/+ExWLB5s2bsXnzZlg4dtHueu8TPh+/\nvOiXYTP6UqnUrRPGsCEysNls6NKlCwQCAbZt2wadToeff/4ZgJ1wgOnBmDNnDsrKyuDj44PMzEwA\nwJAhQ8Dn8/Haa68hLCwM/v7+iI2NdfnOjIwMpKSkoLS0FGFhYfj888/Rvn17TJw4ETweD2vXroVQ\nKIRWq8X69evx8OFDyGQyp2tPotqcFwRacjnKBw1CttmMVatW2asMCgvtzxBF2f8WFgKXLmHt2rWs\n50IikeDu3bvYv38/EhISoNVqERQUREruz5w5U29pNCPts27dOsTGxqJ58+ZElmnw4MEAgB9//BFG\no5HIGgB2g2k0GlFVVQXA3mf63XffwWazYciQIcjNzYW/vz927tyJjz76CFFRUfjkk08QFBTkLTPy\nwov/Ily4cAEajQZyudwlAFRWVoamTZu6zAE9e/YkfYHr16+HUCgEj8fD559/DsCuV92jRw8cVKnq\nJf9zzGwxdlyv16Np06ZYsmSJU2Daz88PPB4PMTExhGivPlvIOGoM1qxZQ3gnRCIRQkNDodFowOFw\nSLVH06ZNUVpaivPnz0Or1WL27NnQ6/WgaRrZ2dlkDmMwefJk8n3uguQMDwWXy8UPP/yAuLg4TJs2\nzeV6PHjwAE2aNMG7774Lm82G1157DUFBQaSUk6ZpyOVyqNVqdOzYkWQyKYpyWtdUVVWha9euaNWq\nFTQaDW7fvo19+/ZBJpMRh7i8vBwtW7aEWq3G22+/DaVSCZFIBKlUyqrNStM0UlJSEBMTA4vFgujo\naERFRWHs2LEICQmBwWBAUFAQevfujQ0bNsBoNEIulyM8PNxlPeJuDBo0yGl9OX78eLRo0QJz5871\nmOSvmvPvcmCKoojzzuFwsHz5cuj1evj4+CAkJATFxcWsa93IyEhYLBYsXLgQUqkUQ4cOxZgxYyCT\nyRAVFQWZTIbCwkL4+/uTLDtgl7hp2rQp9u/fD6vVCqPRiJKSEkgkEnTu3BmdOnUCn8/HsmXLoFQq\noVKpcPXqVZf7oKSkhKzR2rRp43J8PB4PAQEBTudqzZo1JMh9+/Ztp8QEc/9IpVKMGjWKZEx5PB7e\neecdT6eL/2fhdUo9hM1mQ4cOHTB9+nT861//gr+/P3bt2kXe/+OPP4guJ1O+64hHjx7BbDY7kZD0\n798fOTk5UCgUbp2gBQsWOO3n0qVLsFqtGDRoEPR6vcdlO44MoY44e/YsZDIZtFot0tLS0FkorDP7\n2IHPx/hXXnHRQlvM4eD8i/PBaEsS5lfYjWdeXh5yc3NJKSJzTuojXujfvz+sVqtLpthx0ujWrRtr\nxpIZy5cvR3l5OVJSUtC3b1/weDyMHz/ehdmXy+Xiyy+/RHl5eb2kRmwkQFwulzCiXrx4ETRNQyAQ\nwGg0gs/nk56H2vti+gwPHDjg8r5SqUR8fDyUSiUMBgPRTDObzejfvz+GDx+Ovn37onv37k4TJ1Mm\nxgQR6it3ZkbtaDpDt87lcqFUKjF69GjWUiOpVIqzZ8863V+VlZXEsCxevBihoaF4/Pgx0tPTIRKJ\nkJeXB7FYjM6dO6Nz584k0GOz2RAeHg4ul4sTJ06w9mtmZWUR2Zji4mJ88cUXMJvNMBqN+OijjyAU\nCnHq1CmsXr0aHI6dIOv77793EhF3l22v5HLxnM+vsx/7hx9+cBtUcYzKXr16lfSxDhs2DH/++We9\nLM00TaNly5Zo0qQJvvzyS2g0GkyYMAF+fn6YMGECwsLCCLHH4MGDifwSg5SUFMIE/sYbb2DKlCkA\n7GXZqampGDp0KJEZatu2LWbNmoWRI0eiS5cu3jIjL7z4i3H58mXSUnDo0CGn92w2G1599VWXOaBj\nx44wGAyk5UUkEoGiKEKaaLPZMHjwYHRr2hRlHszrZZx/B2spisLKlSuhUqnw3nvvQS6XE0eMz+dD\nIBAgNDQUQUFBeP/994nDWp9zOn/+fPK7KisrYbVa0alTJwQFBZGAMpNRDQwMhNVqxa1btxAREYHx\n48dDpVKBpmnEx8eTligG27dvh1QqJesFX19fNHrBBsumy8o4yLdv30ZISAiWLl1K9lVWVoa0tDSM\nHTuWvMY4vDExMYgQibCEy8XjF/utEIux+MV+R48e7XJ9KyoqoNfrERMTg+rqagwePBgKhQJPnz4l\n26xcuRJyuRyvvfYaCgoKwOVyWfsoGemy6OhodOnSBRRFYe/evcSWjxkzBvfv30dUVBQCAwMxePBg\nfPDBB5BKpaykRmwjLi4OISEhpN0GsK/RcnNzMWrUKDyrr/ruxSh9ocDg+DuY66vVavH3v/8dJpMJ\n2dnZoGkawcHBrOsfRgYoJyeHaGgPGTKESBAyDneTJk3A5XKxfft25ObmYs2aNRg0aBBat26NUaNG\n4fPPP4fRaMSCBQtgs9mQm5sLmqYxc+ZMqFQqxMTEuNxXAHDz5k2SIHJMunTo0AEffPAB+Hw+bt++\nTbYvLCx0WpvfunXLqcrBwuFgBU3jMcce6H784r4MffHceeEeXqfUQ2zZsgURERFkMnC8IRmHdfTo\n0TAYDNixY4fL5/v06YPhw4eT/1esWAGr1Yo///wTEydOxOuvv46hQ4e6PKxcLpeQ2DC4f/8+goKC\nMG3aNI97BdkypUx/HUNp/eDYMXupYh37qaFpPOPYGdgcX6/gcFDO46Fyxw507NiRNQqXlJQErVaL\nn376Cf369cPYsWOxbt26Ons4GdKkxMRE1nOj0+nw4MEDdOjQAb169WJl62Uc13379uH27dswm80Y\nMGAAKIoiDIbMdkzT/L179+otW2L6Ox0NgVgsxv379wEAw4YNg1AohEKhIEafy+Vi8uTJLs6MRCIh\nUbxZs2a5fBefz0dUVBSSk5Oh0WiQnp4Of39/9O3blziqKSkpTnTpjx8/dsrMNiT66WhgpFIpwsLC\nMHz4cKLzNWXKFNZgQlhYGJECYvDw4UNoNBoEBwejX79+CAsLg0AgwI4dO1BVVUWyvs+ePcPSpUuR\nnJyM33//HXq9HlqtlrW0nGHUBewRb7PZjK1bt0Kj0aB79+7IyspC69atMW/ePOzbtw9+fn4QCATI\nyckhRtGTvmR3/diXL18mUf/ao3Pnzk7b/vjjjwgLC4NarYbRaHT7Ocf7SqFQ4NKlSxCJRHj//feR\nn58PPz8/HDhwAMHBwZgzZw60Wi1Onz6N+/fvQ6/Xkyw0AKxduxbt2rUDYBeWT09PJ+/dunULRqMR\nxcXFCA4Oxi+//EJIpOLj41104LzwwouXx7Vr1+Dn5weZTIYDBw64vM9GqpKamgq1Wg2NRoOlS5dC\nLBaDoiisX78egH3NUVRUhJSUFGzR6eptzbBxONhZ6zvEYjEKCwuJXEpoaCixFxKJBF988QVxhCQS\nCeRyOU6cOOGWuIYZTLBs3rx5CA0NhdVqxZYtW0hGTSqVQiAQYN68eRg2bBgMBgM6d+4MnU5nl7ex\nWl0kNL7++mtIpVIIhUL069cP27ZtQy7H7mi7C6DfWr2afP7y5cswGAz49NNPUVlZiXbt2qFv376k\nNPi9994DRVEoLCxEO4rCcz4fVRTlst/nfD56KhROjOeAfY61WCzIyspChw4dIBaLnVhinz17BpPJ\nhK+++gomkwkqlQrvvvuuy7ljsrD79u2DRqMBTdPIzMxEXFwcfH19oVKpiH25e/cuwsPDERAQgIKC\nAlaVBLY2JI1Gg2fPnmHOnDkICwtzcrYePnwIi8WCtRKJRz2lK4VCDB06lDiNjjZs+vTpmDVrFgoL\nC0kLk1wux549e1gTCEqlEjdv3oRCocD9+/dRU1ODnj17Qi6Xw2AwkJJY5n5UqVR4+PAhkS/84Ycf\nSH8sUxpfU1ODFi1aQCAQoKCgAGq1GkOGDGF9Tn/55RdyLEzwpVGjRigvL4dEIiHtUACQnJxM+rkZ\n3Lx5ExqNpt62snYURSQGvXCF1yn1AA8ePIC/vz8OHDiAjh07ujQtb9y4EREREYiNjXWqO2fw8ccf\nw2q1kvLKAwcOQK/X48KFCwDskTyVSoUbN26QRmnHIZfLcanWwvj48ePQ6XT4KTm53smjksNB9bBh\nLsc1d+5ciMViSKVSO+GCB1qW9Y1nFIXeL0h2HM+P2Wy2T3Zr1wKw1/Iz5ZwhISEIDQ1lNXBSqRTr\n169nnVylUimWL1+OGTNmICkpCeXl5XX2BSiVSvz22284deoUEanm8/lo1aoVuFwuGjVqhMDAQNy+\nfRuZmZl1Gl7Ha6PVajFy5Eio1WpMnjwZgD3oIJFIMGTIEJIlDQwMBE3TaN++PTZt2uT0m2bOnOl0\nbdi+PzU1ldDUT58+HY0aNYLJZMLw4cMRFhZGBLI//fRT0m/h+PlHHl5Dx0ypn58fxGIxycQNHjyY\nEBNRFIWJEye6HGe3bt1csm0XLlyAUCgkfSVdunQBYC+DYXpJ3n33XdTU1CAtLQ1GoxGLFi3CwoUL\nXfbP4/EImy+DI0eOQKVSQavVElr97du3IysrC0VFRZg+fbpLmdSHLIbDZbD0Yz969MhtIEWhULhE\nYt9++20UFRU5LczqGgEBAVi1ahVOnDiBJk2aIDc3F6NHj0Z2djYAe+mvTqfDW2+9BavViqdPn2LN\nmjVITEwkLINlZWVQq9W4du0aysrKIJVKnRZ6R44cgU6nw5AhQ5CRkYGFCxeiefPm+P33352Muhde\nePHy+OOPP2A0GiGVSvHdd9+xblNTU4Nu3bqR5z8kJARqtRq+vr545513CBnLihUryGemTp2K6Oho\ndO7cGaX1SMGwzeuOTgtDOCQUCiGXyzFx4kQYDAYMHjwYKpWKVMqo1WqUlJTg4cOHdc5fPB4Py5Yt\nI9nQTz75BFKpFDRNk0zsli1bYDab0atXL0ilUiiVSkgkEgQEBLi0EBw6dAgymQwCgeDfPaaXLtmV\nBepai3C5diLIFzhx4gR0Oh3atGmDvLw8EtRctmwZKIrCyJEjkahWo6qe/VaLREhQqYhKQlVVFSIi\nIvDZZ5/h2rVrEAqFUKlURHMWsNuAV155BfPnz4fFYiF9qo7nzcLhYKufn13ujsvFc6EQizkcNFUo\nIJPJkJqaisjISOj1erJvJgvMVrFTV3sIkyGeNm0aIiMjiWzKs2fPEBcX5zGRpIXDwbZt2zBjxgxw\nuVxkGI1OmeunFIV9jRsjjKYhkUig0Whw//59PHr0yIU4UyaT4cSJE+jevTuWL19Ozm3btm0hl8sh\nkUhITzFN05DJZFixYgWaNWsGPz8/VFdXE8JFx7JvZk0hFAqRnZ0NuVxOAicMHj58SEqNORx7EiA1\nNRUcjp27pbCwEDKZDDU1NaisrIREInEJvgPAHz/84DEB59dff13X1PH/LLxOqQcYNGgQRowYgfHj\nxyMzM9PJ4SopKYFOp0OLFi3Qv39/l8X4jRs3oNfrySLv2rVr8Pf3d5qwAOC1117D5MmTcfXqVdZe\nifDw8P+PvfcOj6ra3sfPOdMn02smM5lJJr2QghACIZ2WBBKE0KWKkAREQASlKEUEaYL0IkhVQUq4\nGlApXlQQpQmIKCCIlA8gCiEJaTPv94/h7DuTmSQTr7/n/u4163n2H4SZM/u0tfda613v6wIFARyB\nT+fgYAfMsJGXYGLPni5zu3TpEgQCAUQiEbZs2eL4o7f9qQ2MKorCGaeqDEtdnpqaiqKiIpf5r169\nGu3atcPy5cvdekWdx5tvvunGYCuRSCCVSrFp0yb4+/vj1q1bOHbsGPR6PaKiohATE0MElZ2/FxQU\nhN9++w3FxcUwGo1ISEgAn89HWloaKisr8cILL9Rbba07FAoFlEolgoKCcPz4cWi1WpSWluKrr76C\nSCRCUlISXn75ZWg0GkgkEgQGBmLu3Lngcrn48ssvkZ+fD4Zh0LVrV3C5XHz99dfk2jx+/NgjPTxb\neVUqlVi0aBGMRiM0Gg3S0tIwbdo0UvVKS0tz+643QZhz35GPjw/y8vIgEAhQW1sLu92OVq1aERi1\nwWDAgwcPMHDgQLffcoZxsbZ48WJQlKOfSKPRYMuWLUQXLioqCiqVCnv37kVeXh74fD62bdvmFsTR\nNA1/f38XKBZr4eHhMJvNCA0NJYLVEokEQUFB2L9/v1vl29sg3RllUFNTgy5dunh8Hrhcrgukn7Uu\nXbpg165dDUpBsSM8PBwdO3aE3W7Hpk2b0LNnT0ilUrRp0wa7du0ix9y3bx98fX0Jw3dtbS3at2+P\nFStWkM88//zzJEmSkpLi5nPWr1+P0NBQZGdnY9iwYUhMTMTKlSuxfft2WK1WPHjwwO1cmq3Zms07\nY1E5Pj4+9WqFA8CJEyeg0WiwePFi4s9NJhOmTJkCuVwOmqbx9ttvk88vXLgQYWFhpI+xsV5Sdtjq\n8TkqlQparRYcDgeHDx9GbW0tQkJCSEWKZeFt3bo1Pv30U7z33nuN+jGapiGRSPDee++RgIKiHKyk\n69atg6+vLxYvXkx00dnP1002njlzBjKZDDweD1lZWf8KNrxIoNs4HLeEYt++fcHlcvHVV18BADZv\n3gyGYTBixAjodDpczcryijjyl27doNVq8c033xCSvdraWuTk5KCwsBAcDgdFRUWw2+24c+cO1Go1\npk6dCqvVisuXLyM5Odllb9KFciT06/I+VD/RBO0jk0Gv12PdunWkR5Pdhx4+fNgtad9YNZuiKGzZ\nsgV2ux2vvPIK4uLicPfuXZd9ljdEkuy6Fx0djQKLpcHPH58+HePHj0ePHj3wzjvvkHeDfV66d+8O\nu92OXbt2IS0tjdyzyspKpKSkkL5P9vwkEgkUCgV69uyJoqIi2Gw2IitY12pra9GqVSsIhUIEBQVB\nLBbju+++A+BAlPn7+0Mul0Or1WLt2rWk7Yrd6xR07IgVFIUqoRB2msYjhnE8g3VRVIWFsDeyH6+h\naSx9ct2cSUCbzWHNQWkjduDAAbIJZgMa1ux2O7p3bz71dwAAIABJREFU7060w+pWSGw2GzIyMohO\nYllZGeLi4jxu2C9dugSNRoNHjx5hz549Hp1I9+7dCdyE/f2hQ4fijeRkPOZwPEJqnZ0H22Rts9kQ\nHR0NLpfrAimGt1DgRsYDisLhw4dx69YtmEwm9O3bF0lJSS7BPDsPdiOs0Wg89qtYLBbcvHkTarXa\npY+xX79+yMjIgEajwcmTJ1FZWYmIiAh88MEHuHPnDhEg91RxTElJQVVVFebNm4fY2FhotVrw+Xw8\nfvzYoyZsfHw8aJoGh8NBUFAQ2rZti6ysLHC5XHTq1AkDBgyAn58fFixYgOvXr0Mul8NkMmH37t2Q\nSqUwm82wWq0wmUzYtWsXEhIS4Ovri0ePHkEqlWLQoEFo3749xGKxS4/HmTNnPFaIhw4dSqCg3bp1\nQ69eveDv7w+VSoWzZ8967E+iKO/gqmz2k8/nY+TIkYiMjIRYLAYAfPLJJ0RjTqvVIiYmBllZWXj4\n8KELdIeiHNlyZ3jLzZs3IZfLoXpCic9WqVnG3h07diAyMhI+Pj4ICQnBqFGjPFYV+/TpQ8TVndl+\njx49CrPZjOzsbPB4PKhUKly+fBlJSUmQy+UeafK9hTM792O/8MILHq8tSytf12pqaiCTyTB37txG\nNwlcLhdqtRq//PILAGDChAno168fEhMT4e/v70b6sXTpUoSHhyMqKgorV67EuXPnoNFoCMHa+fPn\n4efnh5qaGkyfPh0TJ050m9/o0aPRqVMnREdHY9KkSdBoNLhx4waKioo8VrybrdmarXG7d+8erFYr\nxGIxYcn1ZCyj+Icffoj79++TPs7CwkKo1WrQNO2CvlqzZg0sFgvy8/ORkZHRpBaeRwyDmTNnevQ9\nNE2TfUp5eTlCQ0NBUQ4ZlwMHDkChUMBkMmHQoEEkac7lchtscRGJRJBIJBCJRODxeFAqlSToXLdu\nHTgcDmHa5/P50Gg0LmvGxYsXSY9pWloaqWwC8DqBbpdKyVcWLVqE8PBwbNiwAQaDAcuXLwfDMBgy\nZAh8fX0dSb8mEEfu3bsXGo2GrLuvv/46kpKScPHiRfj5+SEmJgavvfYaCgsLkZ6ejoCAAFy+fBm9\nevVCTk4OWrduDQ6HAyvlCEgbW5eHJCcjKCgII0aMgMlkIs9FVVUVEhMTyXX3VDXlcDhubTBt27aF\nzWaD3W7HuHHjPOp1OxNJ2igK5TyeG5EkRVEI5XAa72sWi1H5/fcIDAyETCbDN998Q94RLpeLmJgY\njB8/HhUVFVAqlS6yiCyRIbsf4nK56NevH9GgPXjwIC5evAiZTEbIKutaTU0NKVbIZDIYDAbcunUL\nISEhkEgkCAkJweLFiwE49uNcLhdCoRAj/P09BtvODPxNfS4rntwjHo+HH374oTF38rey5qC0ASsv\nL0dQUBDmzp0LrVaLCxcuuPz/e++9R1jQnLU5WVu4cCGSkpJIlalXr14eq6ms5efnE9kMT/2lFEW5\n9AwCDrhFfHw81kyahA+0WjwWCACGQY1YjOU07eI8aJrG7t27MXfuXDAMg/j4eJeNbq2Pz18SlNZS\njuxrXFwcBgwYQFjRPNnp06ehUqkIe++cOXNw4MAB9OvXD3w+nwhKs83/Go0GM2fOBI/Hg1wuJ6QP\nU6ZMcSNp+fXXX6FQKNCnTx+36zhkyBDYbDYMHTqUBK5sdtj5c6zkT0JCAhYuXIgOHTpgxowZkEql\nUKvV0Gg02Lp1K/h8PiZOnEgc3NGjRwnTolqtxsWLF0k19dSpUxAIBCgoKMDs2bPB5/MJ9NbPz48w\ntD5+/BhSqdQjmdLgwYOh1WoJo9+zzz6LqKioemHQTcl+0jQNkUiEBLUaD595xtGsT9Mo43CwXiRC\n+ycM0sHBwYiIiMDzzz+Py5cvu8FxfH19cevWLVRUVCA0NBRSqRS//vorevbsSa73pEmTADgSFBaL\nBWKxGHq93qP0S0REBDgcDr766iscOXIEWq2WsF937NgRa9asIfemT58+yM/PR/fu3Qn7Xd3R1H7s\nVatW1XtdPWX5AUcVxNO51B3sBtS5V71Tp07IyMhA27ZtCXV/XRs1ahSSk5NJcmbixImEFRAAkpKS\nsHv3bhw5cgStWrVy+351dTVSU1MxatQo+Pr6YsCAAcjNzUVFRQXi4uKwbNkyj7/bbM3WbJ7t999/\nR2hoKEQikUcZCtaqqqrQvn17TJs2DY8fP0ZSUhKsVit69+4Ng8EAmqZdWGPZ/UavXr2QkpKC9evX\nQy6Xe42A2SyXk0DIkw8aP348Hj9+jJSUFPj4+JCA4c6dOxgyZAj4fD5omoZSqQTDMGjXrh02bNhQ\nr39lh0AgAMMwOH36NACHr8/JyUFwcDCBYmo0Grz66qvQ6/W4cuUKrl27Bo1GAy6Xi8TERDdpPW8T\n6DaKQllZGbZs2QJ/f3+S8Bs9ejQoypHoNxgMhDm+qcSRLFHfunXrYDAYcOPGDezYsQO5ubm4c+cO\nrFYrITq8dOkSBg4ciA4dOqBnz57o2bMnvv/+e6zl81HbSFBawzBYTtNITU3FwIEDodfrIZPJcPXq\nVTz99NPIy8tDSUmJx4BUJBIRJBL7/wKBwGU/64nHwrmSe/z4cYSFhdXLvO9tK8z9fv1I5T0jIwNF\nRUUoLy+H1WqF2WxGTEwMpk+fjqFDh7oVby5cuOASlEokEgIvf+utt7Bx40aoVCocPny43neuuroa\nEREREIvF4PP58PHxgUgkQkpKCkaOHOmyf/zhhx8QyuE0jXeiCc/lc889B4pyVH3Z57LZmoPSBm3i\nxIno2rUr2mg0+KVrV0cWhKYBqRTlQ4Yg/gmM0lkWhrXvvvuOaGsCwKxZszzqljrbt99+C39/f1RX\nV6O6urpe9ldWwJe1n3/+GTqdDnv27IG/vz+2b98OAIiPj3dj+WR7ASUSiUsgXVpairV8vndalo0M\ntnfFx8cHarXajW3Q2f7v//4PMpkM7du3h8lkcoEzLF68mFTLRCIRAgMD8frrrxM2U4VCgXv37uHU\nqVPQarW4deuW2/FffPFFPPfcc0hJSXG7jnPnzkVlZSWSkpJIJdTZEdM0jf3792Pv3r0IDw9HdXU1\nrl27BolEAh6PhwMHDmDVqlUQiUSYMWMGyQh/+umnSE1NJefvDOlcsWIFYmJisGjRInC5XOzatQt8\nPh9ZWVm4c+cOJBIJWrduDbvdjiVLliA3N9cjY52Pjw+ysrKgVCqRk5OD7Oxsj2RQnoaVovBLt26o\nFovrldHJYRhUMAzsdaBMVRQFm0gElJTgxx9/hFarhcViwdKlSz3qbiYnJyM7OxsCgQBffvklud56\nvR4SiQS+vr749NNPcfv2bahUKkRGRnqET4eHh8NutyMrKwtCoRA3b97E5s2bERAQgL179yIgIACP\nHz+GxWLBpk2boFarYTAYPGZ/WcKEpvSUHjx4sN7NnFqtdoHNOtuUKVO8kn4pKCiAWq3Gtm3byHcN\nBgPkcjlkMpnHgBdwZH87deqELl26wGq14saNG7BYLKRfZePGjcjKykJVVRUkEgl+//13t2PcvXsX\nFouFSEMFBQVh+/btpL/UmUCp2Zqt2eq3hw8fIioqCiKRiMi21GcFBQXIzc1FTU0NevXqhYCAAGRm\nZsJisYCmaRdkwz/+8Q/o9Xr07t0bSUlJ2L9/P4E+NgUBQ1GOqpmvr69HvxQYGAixWIxFixbhxIkT\nEIvFGDduHLZv304+07p1a8hkMrz55psoLCzEvn37GvRvDMOgW7du5FzeeOMNhIaGErZTrVaLXbt2\nQafTYeTIkQgNDYXBYCBanM5SZ8S8rEg9oBy65zqdjuzT/vnPf4LD4SA8PJzoaAMOnotHjQSHZB0U\niXDhwgUiY+NMQvXKK6+QZEJkZCQYhsHUqVMxcuRIJCcno7CwEKmpqWQv6K0maDmXCy6XC5PJhEmT\nJkGlUsHf3x9du3ZFVVUVPvroI7c1imEYPPfcc+jbty/Zk4wZMwaLFi1CXFwcysvLPcqasYSGmZmZ\n0Gg0WLZsGa5evQqhUOiGiqIo71thSmkamzdvRpcuXSCRSAjPwe3bt8Hj8ZCbm4vQ0FCMGDHCLYla\nW1tLglKBQEAg30KhEAqFgqCk2KR+fVZZWQmr1UqOFRUVhczMTNdK/BO737dvk3gnvC3sPKRprFq1\nCoMHDwa7n6tvjf+7WXNQWo+dPHkSGo0Gw41GR0N9nc05i/X/pk7lEnBUuFq0aEFIfXbt2gWTyeQx\naKprGRkZ2LhxIwCHsHOLFi3c+gMkEolbIPzxxx/DaDTis88+g1arxfHjx/HRkiV4T6UitObOdOnO\ngaLNZkNMTIxXi1tTtNAoylHdqgs7dL5OiYmJePnll2EymTBmzBjk5uaS/9+7dy9xsgzDICkpCTab\nDU899RQsFgteeuklJCcno0WLFuSa1bXffvsNarUa3377LWGAcx47d+7EvXv3wOFw0K9fPxdnPmLE\nCMTHx8Nqtbr047GBQk1NDYE2+fv7k8xbQUEBYYxzlsUBQPRSBw4ciJCQECgUCsTGxiI4OBhr1qzB\nmTNnwOVyMWDAABgMBhJgyeVytwXHZDIhKiqKEEQ0lrFmh5+fHwoKCjzKuni7yWGzgwcPHiQV448/\n/hjjxo1zWxR5PB5WrFgBu92OZ555Bj169EBpaSm0Wi2MRiMMBgPatm2LV155hWy0nAeXyyXkF2y/\nk16vR2VlJaZNmwaZTIaVK1di9+7dSExMBACsXLnSo14bh8PBnDlzwOfzvTrPWqEQP3/2mUdmQ3bx\njo+PJwRDzlZeXu4VsREryTRr1ixS5bx37x4J2lmJofqMJV5KTU1F9+7dsWfPHoSGhqKyshIVFRVQ\nq9W4evUqOnXq5JbQYo31dzNmzIDJZIJer8f9+/fx3nvvISgoyEUHtdmardnc7dGjR4iNjYVIJKr3\nPWNt5cqViIiIwMOHDzF+/Hj4+/sjPj4eoaGhoGnahenz0KFD0Gq16N27NxITE3Hy5Ek33+1t/x+b\nlFMoFJDJZB57D9PT08lv5+bmgs/nE0JEiqJQWFgInU6HH374AUajETabrVGpmNDQUPzxxx84dOgQ\nVCoV0Vs9cOAANmzYAJPJhB07dkCj0UAsFoOmaYSFhXkkkwHgVe9e7ZPzZwl3akeOxHe7doHL5SIr\nKwv+/v5IT09Heno6rl+/jujoaK+rzsufaKzOnz8fiYmJ6NGjB/z9/fHzzz+jS5cuKC4uxssvvwwO\nh4OSkhJIpVIEBgZi+vTpaNGihSuZk5fVNTvDoE2bNhCLxdBqtdDpdOByufjss8/w5ZdfuiGVKMoh\ngxYcHIzFixcjLS0NWVlZMBqNuH79OgYOHIiUlBS3fQWPxyMBKeCQIdTpdHj22WfRsmVLaLVat/XQ\n21YYG0WhuLgYJpOJ8GCwNnv2bCiVSgwbNgwBAQGQSqX4yYmoCgBEIhGsViv5fYZhYDKZCIN0cHBw\no+9pbW0t4dxgA9N62XCbAOe+cOEC1gkEXvN2SKVSnD17Fv379wdFOZQfmtfZ5qDUo9XU1CAuLg7Z\nYWGNkgh5kowYP348ej4hFjp79iw0Go3XDc2ffPIJoqKiSO8oy8xbF1YaFBSE+/fvu3z31VdfRWpq\nKnbv3o0BKhVsQiFqPTlqDscFB89maxpb3MopCo8beeGcM7LOjrGu2e129OvXD3369IHdbseHH36I\niIgI+Pr64vTp07h06RIkEgmhj2cYBkqlEoWFhfDx8cGuXbtgs9kQHh5OFsb6bObMmejfvz8uXrzo\n5kxFIhFOnDiBFi1agGEYEkS88MILsNvtiI2Nhb+/P4F1rF692sEyl5KCN954AwkJCRg7dixxiHPm\nzCHBCntuda2srAxRUVEYO3Ys1Go1fH19MXDgQGg0Gly5cgU7duwATdMIDw9HQEAAdu/ejb1797oR\nH8nlchQXF0OlUnnsPfU0FAoFLly40KA2bFNZaVevXg1/f3+o1WqcPn2aiMBzOBxwOBwMHTqU3IfW\nrVuTzPe1a9cgEAgILNtZGJ0dNE3DaDS66PuWlpaSPtFDhw7Bx8cHvXr1Qnp6OrZu3QrAsZGjn8DX\n67IBbpXLyTPa2GZufESEx2QGu3grlUqcOHHC7R7bbDaPTNp1A2Q245ueno4bN25AqVSiuroahw4d\ngtFohFKpdCHAqs+uXLkCvV6P0NBQLFy4EHl5eaS35oUXXsCUKVMwd+5cNz1TZ9u6dSusViuKiopg\nMpnwUo8eQGEhKng82Kgn/VmeyB2ardn+5lZRUYHWrVtDKBQ2Kvdw5MgR6HQ6/PTTT3jrrbeg1+sR\nFBSE6Oho0DTtIllx7NgxaLVa9OrVC61atcKlS5fq1eN27v+rDwHj7Hs2btwIs9nsUXKLbRPaunUr\nKMpRmQoMDASfzwefz4fBYIDdbkdISAjeffddcDicejWb2dGmTRtoNBqit7pz505ynuvWrYPJZILJ\nZCK+tS4xootdvuzYezWwRtVNoFc/8emTYmIQGBiI5cuXE51rlmixqVXnbt26ITc3FzabDcuWLUNA\nQAA0Gg2WLFkCLpeLhQsXYsqUKYiIiCDrnDNvBACHX21svaUcgU91dTWMRiNJLEgkElgsFo9JUzZ5\nvmzZMphMJqxduxZRUVHIzs5GXFwc9u/f77ZvEAgEMJvN4HK56NChA+FJmT9/PhiGwddff43XXnsN\nFEUR0iDVk8KHN+fwgKLImnbr1i3o9XrCYlxRUQFfX1+Eh4dj+PDh8PHxQc+ePcl1+vHHH4lETmZm\nJultViqVhNVfoVC4sTc7m81mQ25uLng8HqZOnUr2fEKh0KWHlZi3CQOahl6vb/LzY7FYUFZWRti3\nfX19G630/q9bc1B6+bJjo+UEzT2VmIj2BgP2GI1u8MWGNueAgxjJaDTit99+w7179xAYGEg2yt6Y\n3W5HfHy8C/Tngw8+8LgQderUybUntLYWnTt3xpzhw1HTSDBtFwiAy5exYsWKehe3ch7PbXFrSkbW\neSxfvtzlPFkZF/YFZKGZOTk5yMvLQ0hICPh8Pvz9/eHn5wepVEqywwqFAtXV1Th//jzUajUiIyMJ\niZMnKy0thV6vx5kzZ3DgwAG36pWfnx90Oh0YhoFKpUJeXh54PB4OHz4MlUqFkJAQrF69Grdu3YJE\nIkFOTg6uXbsGmUwGi8UCgUCAp556ipAC8fl8CIVCj33GrF28eBEajQYJCQkIDw8nIuZJSUl4+PAh\nyUo7V45HjhxJAh2pVIr09HSyqHq6h3VFxZdTFI5u3oyqqio36RznTPefYaUdO3YsoqKiYDabce7c\nOQQEBBBI9Oeff45t27bBYrG49RazgWh9GmtKpRJTp06F2Wx2yZqzC5Rer8eaNWsQGxsLiUSCqqoq\n/PTTT1AqlV4/q03ZzDmPxMREjwkXAOjatWuD32UD2ry8PJhMJnC5XPxz/Xps12pRIxYTwe1tCgXs\nly7V+xw52xdffEG0DVnN1kuXLuHChQswGAw4evQooqOjGzzGhAkTkJmZiVfi4lBGPWGwdL5+7CL9\nxFc2B6nN9nc3tiVBKBSS3sT6zJl9/8MPPyTSLy1btgRN0y794N999x10Oh3y8/MRFxeHGzdueIRO\n1jf0ej1eeumlev+fJe1zlqNxHsOHDyetKhRF4cyZM+jQoQORBAMc+us+Pj6EkMgT0qVuMExRFNau\nXetyXSoqKmCxWMAGGSqVikhj1WslJbCLRG7+vTE0VzlNY/2UKQAccn+xsbEuc+xCUXhcT+uKpz3O\nwTVryB6S9dtruFxkh4Vh1qxZiIyMxLZt26BWq6FWq12SFna7HYcjI72qrp1ITITNZkPv3r1JC1bn\nzp09wrDDwsKwbNkyaLVaSKVSLF26FDqdDu+++y5MJhMSExPdqtusLF5QUBAWLFiAHj16IDc3F9ev\nX4efnx9GjhwJq9UKtVoNrVYLHx8fkjRpCrM/l8vFxYsXAQDFxcUIDAwkFcKlS5eiY8eOiImJQV5e\nHjgcDnbv3g3AwSYfFRWF9PR0KJVKDB48GHw+HxwOh7BU6/V6t32x87Xu168feDwe3nzzTeh0OpSU\nlECr1YJhGFgsFncIr5cJg4d1mJSbskfu3bs3AAcqgaIcEHpPUOK/i/29g9KSEke2zYPzKadp2EWi\nJm3Of//9dyKQXF1djbS0NELk0hR77733XMTuAaBXr14etREnTJjg8rnffvsNu3x8GnXMdorC3c6d\n681uCoVCXL9+3a0n9c9u4jkcDo4cOQLAodtqNpvdApQrV64QUiOhUEhIgs6cOYO1a9eCoigih/LH\nH38gISEBq1atIk6zuLi43mu6ePFi5OTkAHAwGHqaY3Z2NpYsWYLo6Gi0bNkSPB4Po0ePJr2T7dq1\ng06nw8GDB1FbWwtfX18wDEOgju3btwdFOeCY+fn5/9JUq8c+/PBDGAwGtFapsJyiUMnnOxjuuFy8\nr1Yj7gnJEevAy8rKEBISgu7du+PWrVtITU1Fhw4d3M6jIadoF4lg//hj9O3bl8B9+Hw+unfvTnqY\n/wwrbW1tLbKzs9GqVSvEx8cTiYHCwkJoNBqo1WqcPXvW5fzPnz8PjUbjApt2HoMGDcLp06eh0WjQ\ntWtXjKpD7//GG2+AoijMnz8fAwcOhEKhwObNm/HHH3+gb+vWXmcs674D0dHRZJGuOye5XI4WLVog\nOTkZvr6+HmVTJk2aVO974Px+mc1mqNVq/Pjjj3gpOhplFOUm2F7L4bgz/DVgmzZtgl6vh9FoxGuv\nvYZOnTrBbrcjOTkZ27dvh0KhcBFLr2s1NTUYlJTUOEKEHZ4YCJut2f4mVlVVhbS0NAiFwn9Jq9Vj\n5eXlaNmyJebPn48vv/wScrkcCoUC7dq1c5HEABxJN4PBgB49eqBFixa4e/cu0tPTG/UrrB6oSqXC\nggULYDAYGvw8W7ns2bOnx3YOoVBICHLGjBmDyZMnEw6GNWvWkCQYTdMwGAwEHeOpl58dLVu2dFkX\nq6qqkJ6eTrQnTSYT3n33XahUKiiVShdG3rp2aO1a7DYaHXswhgGeoDoa8lnVFAV7URF+//13Ivnh\nPDp06IDH588Do0ahxsfHgRKRybDZCWFTd6211fGXVRSFSi4XwwwGfPTRR9BqtTh27BhOnToFnU7n\nQP5cvoxjLVuilGo8kC6jKLSUy9GmTRukpqYSGRhPa9TMmTOxbNkyPPPMM/j++++h0WgglUrx1ltv\nQaPREEKgukGpyWRCfn4+DAYDKioqUFVVhZycHGi1WkybNg1fffUVgXLPmzcPO3bsIERDTa0QSqVS\nUjEeMWIEBg0aBMCR4PH390dJSQkiIyMJmdGePXugVCoxatQoxMTEwNfXF+3atcPixYtd5ARZToRx\n48a5PCd2ux0jRowAn8/H3LlzERwcjHfeeQcA8Mcff5CkeLdu3VwLVV6sgXVb1pz3yJ4KO3XvF03T\nZC6s3Fx0dHSDe8f/Zfv7BqVewD+8HgwDu92O3r17E3hcUVERcnJyPPaaNWY1NTUIDAwkWlqAo8fM\n19fXI5Sw7mJY10E29DJ5ekHYfkpPrLVNGc4OMz09HY8ePcLx48eh0Whw5swZj+eenZ1NnK1Wq0Vx\ncTHu3LkDi8WC/v37g2EYWK1WREREIC0tjby4jR23srISZrOZQEXGjx/vNl+z2Yza2lqMHDmSbBTM\nZjOqq6tRVFREKPBtNhveffddiMViMAyDF198EQsWLIBAIIBYLIZcLsexY8fQvn17THmSka3P1vbo\ngXLKcwBpE4lQFBgIuVxOgp8TJ05Aq9Xil19+wUcffeR2DlaKapSavYrHQ3uDAVKpFFwuFxaLBUFB\nQbh79y6sVqvXUBznSinwL5IP9rq8//77UCqVEIvFaNGihUv28sGDBwgJCcG8efM86rFyOByiI7Zn\nzx4YDAbodDpy/9hAq3fv3oTw4PPPP4dWq8Vnn32G91UqrzK3yygKJSUlGDJkCCiKQseOHVFcXEyy\nls6Dy+XiwoULePToEaKjoz0iILZs2dLgOzFjxgxkZmZCIpEgNjbWwTB4+TLsjfkiD20C9dmUKVNg\nNBrRoUMHREVF4YMPPsCWLVvQqVMn5ObmNlrNeTxsWNMJz5owv2Zrtv8Fq6mpQefOnSEQCPDuu+82\n+Fm73Y7+/ftjwIABuHDhAmEgZfUqO3fuTALSX375BWazGd27d0dkZCRhv21sveVyuejduzcoysEZ\nwcq6NAar1ev1ePToEY4ePeqRl+D555/H+PHjwefzsX79eqSlpZGWmldffRVscEtRjirnkSNHYLFY\nGuynf/HFF2G32wnSh8/nQ6lU4pdffsHbb7+NwMBAvPPOO1AoFFCpVLhy5YrH6zp58mSXvkRvobDl\nPJ5HYkCRSIQlS5aQ4929excqlQqAI3hm4cXsWttYIFYjECBBrXZpPzl27Bj6yGSo5HIbrfJ60gSd\nP38+0dasO//Ro0fDbrfj5s2bUCqVqKqqwrlz56BSqSCVSjF//nzodDosXbqUJBDY+8aSBbGyKIAj\nwapWq5GVlQWNRgOj0Qij0Yi5c+di//79blqrTakQ6vV6/PHHHygrK0NoaCg++OADAA6W+44dOxLy\nQxYFlZ6ejhUrVkCr1SIxMZGc3+eff07OQ61Ww8fHB0ajkQR6gIPwUiAQkBa3l156yeU5unfvHnx8\nfNCFolDN4zWuVes0PLWssed3//59tG7dGl26dEHHjh0bTFhf+fRToLAQZRyOgzWaw4H9b4hE+vsG\npV6IL3s9ZDJs3rwZkZGRqKiowKpVqwiJwZ+15cuXu0A3AcfmPCAgwA3qKBQK8e233/7rg17O217n\npfDz88PkyZNx5coVPP/8824vTUN9iA39f05ODsxmM06cOAE/Pz/s3bvX4zkfOXLERUz5xRdfJNCo\nqVOn4ty5cxAKhYRB+Nlnn3X5fn0VWNbWr1+P5ORkshgmJye7zXXSpEmoqqqCTCZDWloaxGIx2rRp\nA7VajejoaAQEBKCiogISiQRcLhebN2+GQqEKLBCtAAAgAElEQVQgWd6VK1di586dMJlM+O677xAY\nGFh/Bt2LYMQuFqP1EwgxG9S98cYbSExM9EhssNfDwlZ3VFEUVnG5kMvlaNu2LSH/YY/tDRSnlmHc\nhMkBELkXo9GI8ePHQ6fTwWq1omPHjoRN0mazIS8vD8OGDSMbp7qbqwkTJmDw4MHkuG+++SYCAwMR\nFhaGyspKfPbZZwgNDSX93wzD4Prhw/glJ8chYePlO1ApFAIASkpKYLVaweFw8Prrr7v12nC5XAIl\nW7x4MTIyMtz6hb/55pt6e3tpmsbQoUNx/vx5iMVixMbGom3bto6klTe+qE6bQENms9nQo0cPQk5h\nNBpx584d0rc7YsSIhg/gbY/Tn5xfszXbf7uxwZRAIHCDonqyefPmoWXLlvj5559hMpkgk8mQnp5O\n+AlYX3L79m2EhIQgJycHYWFhuH37NqZPn97gusuOiIgIorkdHx9P+uXkcnmjsNq0tDSUl5cTRFLd\nsXDhQkQKBNgfFIRSmoaNcsBUVzIMIp5U3LhcLkHDbNmyBTRNe0RasWPOnDkYMGAA+Hw+ZDIZLjtt\nvt966y0EBQVh9erVkMlkjmSph/1UWloa9u3bB8CRJPAW5VPrYT6pqak4e/Ys/Pz8HBDby5dhLywk\nkmiQSnEwPBwhT3y8t5DVsykprpO+fBlVXuw9qwQCt+paSkoK/P39Pa6bHA4Hx44dIz/Trl07Ikl0\n5swZKJVKyGQyTJ8+HQKBAK1bt4ZerwfDMEhPT0ePHj0gEAgII25JSQmMRiOOHj1KKqQzZszAr7/+\nSqrjdefAVghLGcYrFF1QUBAqKirw7bffQqfT4fr166iqqkJAQACOHDmCzz77jMBzFQoF5s2bBw6H\ng6eeesplf8Am2CnKgaYTi8VQq9X44osvMGPGDAgEArzwwgsYNmwY8vLyPBaL7h471jjBY517WzfY\nDgwMJDwoq1atIse+ffs2FAoFKisrMWbMGJdrkJCQQAL6upDxapr+2yGR/r5B6Z/ZeNXzYD545hlo\nNBqcPn0a//znPwmJwb9jFRUV0Ov1+P77713+PnDgQPTq1csjEyuB5Xk5d+eg9JlnnoFSqcStW7c8\nUoQHBweDx+MhPz+/wcxr9+7d3f7Wu3dvTJw4EWKxmAQ/de3mzZsE28828vfp0wdDhgwhMNgpU6Zg\n9OjREAqF4PF4MJvNbhuC6dOno02bNh6bxWtqahAeHo6SkhLcunULUqnUI2vgc889h9jYWISEhGDK\nlCmgKEf/IAvhjYiIAE3TWLBgAUpLS+Hj40OCDtbmzJmD+Ph4ok3qURbHy2CkdNAgCIVCdOnSBYCD\n5dHTvK2U98HYgycLgk6nw5o1a6DRaPDJJ584gkjKOyjOl3UYj5cuXQqRSISBAwdCrVZDIBAgMzMT\naWlpmDJlCsxmM3bt2oXZs2cjISGB6MN6CkpXrVoFlUqFq1evAnBUGliR84VFRdip16NKKISdplFK\n0zgkFqOccoe/NjqeQJA3btyIAQMGEAh23ZGfn0+eU41G4yZ4fevWLY9JAjYgbdGiBaqqqpCcnEwg\nceQYTSC68NbKy8sRExMDqVSKLl26YMyYMRg3bhyeffbZxhkKvdXq+zfm12zN9t9qNpsN+fn5EAgE\n9UpBOdu+fftgMBjwww8/ICYmBgqFAhkZGaBpGgkJCQ60z+XLeDxsGB4xjIOQjabxaNAg7Jw3r961\nlh1xcXHQaDQIDw/H5MmTwefzweVywTAMqTSuW7euUeRTmzZtIJfLPfqxLhSFxxxOvVWwbJpGaGgo\nOeenn366Xq111iemp6dDIBDAx8fHzZ8CwIIFCxAcHIylS5fCx8cHKSkpLsFEdXU1JBIJ/vjjD9jt\ndgwbNgxldXvgG1j/nOeTnJyMR48eAQBOnTqFPjIZaoVCj61dFTSNPjKZ19wLjzgcEugBwM9ZWV4T\nCbItKhTlICE6d+4cLl686DHJIBAIEBISQtBjCxcudCHNOnnyJEmgW61WBAYGwmq1QiKRQK1WIyUl\nBVarFa+99hquX78OvV6P4uJiBAcHE+3wkSNHEuhwffc2JycHFEW58aDU9534+HjU1NRg9uzZSE9P\nh81mIxV5ADAajeByuRg+fDjZs2k0GsK7cu/ePXC5XIwZM4aQdolEIuj1ekilUggEAgwePBjz5s1D\nbGwsuc9u5gWjMyjHHquUpt2C7cDAQGi1Wpw9exa//vqrW19ou3btsG/fPtjtdjz33HPgcrng8/lI\nN5vxuLF9y98IifT3DUq9ZdVq5P/LKArxTzS7rl69SnQX/wqbNWuWS6ADOPpWTSaTR/gpgSR4WQGu\nfPI9oVCIadOmYdCgQTh8+LBb0CmXy5GYmIjMzEx07doVmzdvrtch8fl8t2Bj2rRpyMnJQWBgIAYM\nGOBWYaqqqkJCQgIEAgH8/f3Rvn175OfnI5TDcRC9SKUk+PgqLg65UVGQyWTQaDTQaDQ4dOgQOZbd\nbkffvn3Rr18/j8y3H374IWJiYhAUFAS5XI5vvvnGI4nUsmXL8OOPP0IikcDf3x80TSMgIIDotcXF\nxcFut6NLly5gGAZSqRSzZ892mcfgwYORl5eHvXv3wmAw4Nq1a66TaUIw8sUXX4DD4WD8+PH1BnPL\nvHhe2VFLOZje2GzemjVrXAJdb6A4rNQI4GC7FQqF6Ny5M6FcFwgEUKvV+OCDD6DVarFp0ybI5XJo\ntVrs2bPHLbEikUgwdepUwvA4cuRIFBYWujwnY8PCPM7L2/P2dG0BB7tgQUEBAgMDXebEZvtfe+01\nAEDv3r3dINlVVVX1MmLSNA21Wo2bN2+ipKQEIpEIwcHBrlJBTRRs99Zu3boFrVYLuVxOCDZ8fX2h\n0WgaFuv+swm7Js6v2Zrtv81YSS+BQIC333670c+zfASHDx9Ghw4doFQqkZKSApqmERsb6wiySkpg\nFwrdqnx2mkY5VT95II/Hg1QqRWhoKLp27YrBgwcjISEBNE2DpmnCv8D6+MrKSpf+O0/wWg6HA6PR\nSJK/bLLTmyRlnFRKzlmj0ZB1ig2QnYMTgUAALpcLkUhUb8sNAMydOxehoaGkPeblXr3+RSpE0w5d\n0cJCzC8oQOvWrbHX399rwh12PnVJ9HD5siMgbeAYdrG4STIoGRkZqKiowOeff+51e4xdJsP48eMJ\nqdD06dNJm83AgQPJNY2NjSUyOlwuF8uWLQPg0K/XarUubTPPPvssGIaBXC5HYGAgZDIZhg4diuDg\nYNA0jaNHj5JK7MyZM9GyZUvodDpMnjyZtOc0prttsViQk5ND1nEul4tBgwZ5lLVjR8eOHVFTU4Pk\n5GTMmzcPNTU1CAkJwcGDBxEaGoq2bdvCbDbDaDSS55RlBv7HP/4BLpeLmzdv4p133iGBKas7L5PJ\nsG3bNiKFU695ue6Vejh/toXImS24rs2bNw8jR44E4EBanDp1Cl9//TVWeUj21B01NP23QSJR/+kJ\n/MfM2yZmLtcrnPzYsWMRExPjgsf/d+3+/ftQKpX49ddfXf6+b98+0mPJvhQhISEkM/O4Rw+viI42\nUo7ApKCgAAKBgDSu112kunbtiq5du+LRo0fQarX48ccfMXbs2Hqdkp+fH8LCwsDhcEiFLz09HX/8\n8QdatWqFN954w+V8Ro0aBZlMBqlUioCAANy9excHJ0xAGfUEvlDnuttEIpyYNQsSiQSRkZHQarUu\nlemKigq0adOG0No7m81mg0wmA5fLxcmTJwE4+lHr6rWpVCocOHCABL9Wq5U4fR8fH2i1WkydOhUc\nDofooGo0GpfKdlVVFVJSUjBhwgQsWrQILVq0cF38mkA3Djho8xtaDLxmzaUc8BqRSIQffvihQQbf\n5TTdIKFVfHw8vv/+e6LD9ujRI8yfPx+xsbGYMGECoqKioNVqsXDhQlitVvK5NWvWQCKRkEVKLBbj\n6aefht1ux5EjR0DTNHx9faFQKP6l73v5svfkY14MZwjy+PHjERAQ4HYNxGIxDh06BLVajS1btiAw\nMNBNzN0TWYZzoH3kyBHU1NTAbDZDoVCgVatWruyA/x9USlk7ffo0xGIxzGYzWrVqhZSUFLRt27bB\nHrir3mTy/6L5NVuz/bcYW43j8/lYsGBBo59/+PAhwsPDsWrVKgwdOhRKpRJt2rQhcl81NTUOnyYQ\nNPhePabc4Y8RERHw8/ODQqHAmDFjkJiYiJycHJJQZhlx2QAFAD766CPCiD548GAwDAOz2ezms0JC\nQlBZWYlPPvkEAoHAu3aOJ5+x0zQqeDzs9PWFlXIguJ5//nnExsaCx+ORnkw2sPEG+jx79myEh4dj\nc//+KGP9dh0/Xk7TWNihQ5MJd9jK8MKFC//1g14imGq9rMraZTL0798f7dq1g0wma1IwGx8fj/v3\n72Pz5s3w8/PDiBEjYDabER0djePHj0Mul2PVqlXYsWMHCUwFAgF+//13AI61iU3ar1q1CsHBwSgu\nLgaXyyXBYmJiInQ6HYxGI2JjY9GrVy/w+XwkJCRApVJhwoQJsNvtuHLlSqPEWSKRCHw+H2VlZfD1\n9QWfz0fLli0hEAgwevRodOjQod6Kaf/+/XHt2jVoNBqcPHkSW7ZsQXx8PFQqFTQaDb744gvy3DAM\nQ/bFBQUFUCgU5Pa99dZbLvu54OBg8Pn8xqXVvNyP1YV+s8kdmqYREhJSryTNpUuX4Ovr60ZgVOMl\nt81jPr/Rd+V/waj/9AT+Y+aF46mhaawTCl3YZll5DU84+dTUVI/VuX/Hxo4dixdffNHt78OHD3cR\nM37qqacwe/ZsBzQgI6NRPVF2oVu1ahXpi/TEvte/f3/ExcURyMPUqVMxYsQIJCYmErZWTyMqKgoH\nDx6EVqsFTdPYv38/AAf80WQyEY2yjRs3QiaTgcPhQKVS4dy5c/ixpKRRsh6IxVg2bhwUCgVSU1MR\nGhpKHDHgwPCbzWbSPM/aiy++CC6XC19fXxd4xQcffOAy//HjxyM2Nhbr1q3DggULSHaXoijs2LGD\nEDzw+XwS3K5cuRIJCQkuAcdvv/2G4OBgrFmzBsOHD0dubi6BINX6+HjljCp4PAAOZlVP15qVf/G2\nWminKPzDYsE777yD4OBgjBo1qt77ePz48QYJK9gNkEQiwc8//4xdu3aRjCQLc0tMTCSC1+3atUOX\nLl0IaVSvXr0gkUgQHBzsErAvX74cFEUh3WzGl7GxJHD70xVRD6OMonD5k0+I3p6nc+vUqRMA4OWX\nX4ZEInGRagLgkhjydF3Yasrbb79NNFnPnTvncoybeXlN0oVtqu3cuRMCgQC+vr4YOnQowsPDCdth\nXTtz5gyiRaIm9db8u/Nrtmb7/7vZ7XYUFRWBz+fX24LibDabDd26dUNhYSFmzJgBhUKBmJgY0DSN\nwMBAVFVVAQBq+/b1KoG86YlPYTkV2HVs9uzZMBqN6N69OwkIWCkt5wT5oUOHSOWKZcHv0aMHuFyu\nx+oVW139+OOPvSe+cxps0r66uJgws3fu3NllLcnOzoZOp3Pzh57s7RdeQHkjQQMbbHpLuMMwDAID\nAwl3BIFiN4F11Zuq7I3u3fH999+T/YO3yeNShsFvv/1GrsHatWuhVCohEomQl5cHm82Gc+fOwdfX\nF9u3b0dRUREJxjIzMwE4AvrRo0cTssAff/wRffv2RZs2bQhsNyMjA3w+H61atUJAQABEIhHhaRg5\nciTsdjuuXr3qMYHhPAICAtCpUyfI5XKYzWa0adMGVquVBKetWrWCWq1G7969ybWoO1566SVs2bIF\n4eHhKC0thVKpRJ8+fZCYmIiCggKSPOfz+QgLC8OdO3cQGRmJ9PR0cp127twJHo8HhmFIAOzn5+dC\niOXxnZVIvLovztBvsViMnTt3omPHjqAoB+FXeno6qeLWtejoaBcCUwBNCoad0Xj/q0b9pyfwHzMv\n2HfLKAq5TnAFuVyOsrIydO7c2eMLxeFwGoSi/Bm7fv06VCqVS8AFOLKwFosFJSUlKCgoQNeuXWE0\nGlFYWAjqieMtf/Ig132wnSFBQqEQ4eHhRP/SeeTl5cFoNLpUam/dugU+n4+srCy0atUKOp2uXifV\nvn17qFQqUllkxYlPnDgBjUaDrVu3QiqVgqZpKJVKfPzxx7h37x42SaWNZyF5PNiLiojwdceOHZGZ\nmekSaLJyIsePHwfgCOpY0eSMjAysXr3a5ZrK5XIwDIPc3FyYTCZkZWXBbrdj+fLlpM+GpShnqdDb\ntm1LEhF2ux0ZGRmu0Ew4NEl1Oh3279+P1NRUTJw4Eb/99hs2+vh4taht8PHB4sWLPWYY61uAGxp2\nikLZE2Zb1pl6GiyB1nvvvQfn4Nc5ObOMohBEUfjoo49ItfjEiRPk3FkZBL1eD7VaDb1eDx8fHzAM\ng+zsbCKLcuHCBbdn/820tCafmzfDeXOSkJCAuXPnup27TqdD+/btwTAMtm7diilTpkAkErksKM79\nPvVlfu12Ox4+fEiIF2bNmuVyjteuXUOUUNh4EPhv9pS89tpr4HK5kEgkUCgU8PX1dUugsQmjP/Vc\n/Y16Xprt72cvvvgi+Hw+Zs6c6dXnp06diuTkZKxdu5ZAbGmahslkwuPHjwE4IHw1Xm5IKymHTERm\nZiYOHToELpeLESNGQK1WIy8vDyKRCBqNBjRNg8/nY/78+WQux44dI60xLC8B4NBBZfc2zpUlZzmK\n8vJy7yXCGvALpaWlLsy1kZGRYBgGhYWFMJlMpA2kXissbJQvwBmW641sHRvgtWzZEklJSRCLxdiw\nYYPXQYKN8q4qGyUUwtfXl/yutwRJFcOGuVyCDz/8EDKZDEajES1btsTUqVMBOBKJer0e27dvR4sW\nLUjg//777xM9dHYfNGjQIHTo0IFAiSUSCQnwOnXqRGCoPB4PMTEx6NSpE65cueIRRSQQCEgShKIc\nVfHS0lIsXLgQFEWhsLAQ3333HVQqFSQSCTQaDeLj49GzZ0+EhYV5ZHqmKAqLFi1Cv379MHz4cPj4\n+BAEItsKxCZR8vPzSQWeRS7s27cPYrEYERERGDlyJIGyMwwDPz+/epnn79+/j21KZZOg3waDAaNG\njcJPP/0EtVqNFStWgKIcmuue2tRYv1CX+dfbSimrhepNH/t/s1H/6Qn8R62kBDUCQaMZNZlMhmnT\npuH1118H4Gisrg9XL5FIcO/evb90moMGDfKYITl48CBMJhNu376N+Ph4DB482GUuVorCuxIJKvj8\nBpnQPJ0Lm9VyDjAAYMmSJVAqlWjZsiV69OjRIMELRVHo27cvNm3aRBwSS0C0YcMGgvlXqVRYtGgR\ngbs+5vO9W/BkMpSWliIoKAgSiQTt2rUjmT3W9uzZQzRM+Xw+8vLyYLfb8fXXX8NoNJL5HDx4EDKZ\nDM899xy++uorCAQC5Ofnw263w2AwENhT//79CURqxIgRiI+Pd6GQv3r1qhuMF3BkqnU6HY4dOwar\n1YqQkBCvoUYpT/oo6g5vvl932CkKpU8IBNjNTd3Eyrp160iWlIXUZtN0vdnnSi4XdzduhJ+fHxG6\ndra5c+eCy+UiNjYWAoEANE1j3LhxoCiHrtj27dvdH/q/UrLJ6dzLOBy3d6Du86/T6QiTdkFBAWH/\nW7x4MVq1agWbzYbi4uJ6n3mxWAypVEpgviNHjgSXy0V0dLRL0qS0tJT0sNYbBP5FOqB2ux05OTng\ncDhIN5uxhsdzVOqfsEpWDx+O3Cf6rM7Pl/PGzk65J7madUqb7X/dJk+eDB6P12ilhbXt27fDbDZj\n+/btRJ6CpmnodDriE+x2O4YPH94kdItarcb58+dhMplgNpthsVjQpUsXCIVCWCwW0DQNHo9HqmSA\nI2ARiUSIjIyEn58fYem/cuUK/Pz8IJFIQNM0jEYjQkNDUVRUhDZt2mD06NF4/PgxOnfu7DV5kMfx\nBEGxd+9esm6Gh4dDKpWiXbt24HA4KCoqQkhICO7cuVP/RfWyelmXwKixYbFYwOfzkZmZidatW0Ms\nFqPayxaRBw347fpkULxdt8soClcPHCCnz6LOTp06hTfffBNWqxVms5m0YZw8eRI6nQ7r168nbTEc\nDgf79u0Dh8PBggULMHz4cKSmprq0n6xatYpozIrFYvj5+YGiHCifhQsXIikpyaUPmR0DBgzA6NGj\nIZVKkZ2dDblcDqVSieLiYmi1WvTo0QNSqRTLli3DO++8A39/fzAMA39/f0gkErz//vse0XnsWrxm\nzRoolUokJSUhJiYGc+bMAU3TWLJkCQIDA8EwDHQ6HdHuPXXqFA4fPgwfHx8EBATgzp07yM/Ph9Vq\nJWoNQqGQtFo5W1lZmQPN5eV9sVKOxE1cXBwqKyvRu3dvEhuwLVYSicSjHODJkycRHBxM9qinTp3C\nWj6/8Z5ShoG9qIjo/+5esOBfWqpP1nD8j8jH/L2DUgDbZs1qNKPGMAzu3r1LvrN//37STO1pOMNz\n/go7f/489Hq9R0bZUaNGYdCgQTh//rxbgEHTNL7//nvU1tY2yVGzGqF1A4wDBw5Ar9fj+eefB5fL\nJdCSBQsWNNj8vn79egwbNgxmsxn9+vVDTU0N0tPTweFwwDAMBg8eDJvNhuHDh6Nbt26OHkovFgWW\nWOXixYuEzCUsLMytr3fKlClgGAbh4eEu96V79+6YP38+ampq0KJFC4waNQr9+vVDSEgItmzZgqee\negpZWVmgKArt2rXDs88+SzKeNE0jKysLP//8M3Q6Hb744gtyXE8wXsDhsIKCgsgxGwpGnBe1+sgB\nvMm41h2VNI0FhYX46aef3PqHKcoB2/rmm2+gUqmQnJwMnU7ngFM3ck/KaRprJk1yez6//vpraLVa\nkuFkGAYBAQEQCAQkmeBxM/JXSjZRjr6jDT4+2LRpk0ddVHZIpVIoFArCBsn2IAsEAjx48ABt27bF\n66+/Xi+kWSAQQCAQkCz21atXweVyIRaLcfr0aXJ6tbW16NSpk8t3rRSF1TwebFKp49mWyRyQ2L9o\noamqqsIQvd7j81b9JOlQH6kKRVFYPn48vklIwMMnkhBVlBOF/f/QothszcbarFmzwOPxMMmDb/Nk\nZ86cgUajwbZt2yCRSKBSqUjilW2BsdvtGDduHEJCQpoUlK5ZswYdOnSAXC5HTEwM2rZtC6FQiLCw\nMHC5XCLzwfaRsiytoaGhmDdvHpGYu3btGkwmE1QqFTIzM+Hn5wcej4edO3fCbrfjwYMHeOqppxAU\nFIS0tDSsoOl/C61SIxYTYqMZM2aQdVoqlSIuLg58Ph/Dhw9HfHx8/TJ6TYA41q3ANaQWwDAMIiIi\nwOFw0KtXL8TGxmIVhwNbI4F43arscprGY4HAKxkUb9f9uLg4VFRUEG3yzz//nFyO6dOnIzg4GFqt\nlvSMfvPNN9BqtZg+fTo5Z4Zh0LFjR8TFxSEpKcmNebZ79+4oKCgAl8sFj8cDTdMICgqCSqWCQqHw\niITr27cvzpw5A61Wiw0bNoBhGEyYMAFr164Fj8fDokWLUFpaCr1eD61Wi61bt2Lw4MEQi8XQarWQ\nSqUICwvDggULEBsb60JMNG/ePALt1Wg0UKvV2LBhA2H/jYmJQZ8+fcDhcPDFF18Q5YOnnnoKEokE\ner0eN27cwLRp09C2bVuUlZXh6aefJnBehUIBo9FIeCqqqqpckI/e3Jf27dtDrVbjp59+wrfffguD\nweDCrrxy5UpQlKO/ds2aNS7X2263w2w249y5c7hw4YKDr4TyLhjeNmsWbDYbekkkKKMo92f0fyRB\n/LcPSm/cuIGSkhICAdi7d69HbS21Wo2qqircu3ePwAAaCsQyMzP/0v7Srl27YuXKlW5/LysrQ1BQ\nkEcpFlbG4rnnniPOuX///vXi+SnKgdX38/ODUql0CRYuX74MnU6H5cuXQ6vVok2bNti8eTMA4MKF\nC/Wyj1KUoxF8//79iIqKgtlsRmpqKsRiMXg8HjQaDfLz8/HWW2/9iwjoTxC/FBcXQy6XIyIiAr6+\nvkSfq7y8HBaLBQKBANnZ2S5N5ufPn4dWq8WCBQuQlpaGQ4cOwWAwYMCAAQCAzz77jDhHlUpFCHho\nmsacOXPA4XDw0ksvET0v1tHZbDZkZGTgzTffdLtfniRHrBSFz8LCHOfDMHjsQZ/M02gKsRHrVI9O\nmwalUukRjsPj8XDw4EGMHTsWU6dORadOndAvIQHXZTKvtE8rnejnAeDOnTvw9/fH7t278cwzz0Aq\nlZL7LhAIEBoaildeeQUZGRluAfxfJdlEhliMNZMmoUWLFpDJZG5av+yiaDKZsGnTJjKNHTt2IDw8\nHFqtFhEREThw4IDH956tpKtUKpjNZpw6dYrcbx6Ph8mTJ7uc3ksvveTxnh48eNDT6//XmBdEUfUJ\ngQ8ePBh2ux12ux2vJSQ4+sXqfv9/ZFFstmYDHGyZPB4P48eP9+rz9+7dQ2BgIN5++20CWWTZP53J\nT6ZPnw6LxQKdTgebFxIUoBxJo2effRaxsbEwGAwICQmBUChEdHQ0BAIBOBwOJk+ejF69euH999/H\n1atXCXHg7du3YTAYcOrUKVy/fp38dlZWFqKionD37l1EPWG0v3PnDmpra9GzZ0+IxWIwDPOnEDnO\no/bJHoDdoG/fvh1+fn4kQAkJCYFIJEK/fv2QlpZG4M3OZm9CpXTChAkuvstTpc95sLrRNE2joKAA\nQywWd9/WgJ9kGAYff/wxqqurG9Rl9bTuN1YQ6dOnDwwGg1uBwG63Y+LEiQgJCYFWqyVJ1KNHj0Kr\n1SI7O5usS6yMyoMHD1yOcerUKRgMBmzYsIEkqMViMYKCgtC/f3+P7UK9e/dGVVUV2rVrh5kzZ8LX\n1xcbNmyAxWJBbGwsYmJikJmZiZqaGmzbtg1hYWHQ6XTYvXs3NBoNUlJSoNPpwDAMXn31VaSmpqKg\noACxsbH45JNPoNfrsWnTJvLbQ4YMQXZ2NkG5cblcrF69GkKhELdv30br1q3J2svj8XDhwgVs2bKF\nVEsBh3RQZmYmSe4bDAa0bt0a5eXl6DdWo8cAACAASURBVNu3r9s59ktIwCchIR7vS8eOHREcHIxt\n27YBADIzMz3uyxcvXgx2P11SZz1k5dnYqrQ3wXBXDscBPfZC2/6/vZXmbx+UAg62VqFQSP79008/\nedx4tmzZEk8//TTGjh2LlJQU5ObmNuh0xo0b95fN8YsvvkBQUJBH0d+33nrL4yZ5zJgxWLFiBXkZ\nR48eDcDxwvj5+bn0ObDDaDRi+PDhmDJlCtq1a4fHjx/j4cOHiIyMxJw5c2AymVBcXIyPPvoILVu2\nhN1uR3V1NYRCIZ5//nkwDOPxuCqVCvv37ydZTA6HAz8/P9y4cQPh4eGQSCSkr+Rs+/aNZmbtXK4b\nscq0adOg1WrRuXNnaDQanD17Funp6RAKhTh79iySk5Px8ssvu3ynT58+EIvF+O6777B582ZwOBz8\n/vvvuH//PmHp5fP5GDBgAJRKJTgcDjZt2gSdTofZs2eDYRhs3LgRM2bMQHJyMoFnsjBe515Jtjez\n7tDpdC49w7W1tejQoQMkEkmDFXlve33sFIVvEhLw+TvvwNfXFxaLxe1YPj4+2L17N7RaLVnkHrz3\nHspp2utsfhmXS4J+tho+efJkzJ49G2q1Gjk5OYiPj4dIJCKL5Q8//IAOHTq43Zc/q5VZd641DIMK\nhkF1cTHRBzMYDB6TKK1bt3aRYGL7oI4cOYJr166Rimd998NsNmPy5MmQy+Wora3F4cOHQdM0LBaL\nS4V+/fr1Hr9ft9fkLzcvqs915RIoyiHYTub/N1gUm63ZlixZAh6Ph1FekndVV1cjPT0dL7zwAiwW\nC4RCIRiGgY+Pj0s7z6JFi+Dn50d0zc/GxHhFdPRlYCDRI1UoFP+PvfcOj6rqvsfvnTu9ZHrLpPfe\nCElIQiC0BEgoQTAgEnp9FRBQ4AeCIFIUsVAEpCnSRaogRVCQosAHEFBeQZBYaAoJSUibWd8/Jvc4\nk7mTTHyb/sx+nvNAZu7ceu45Z++99loQCoVISEggY+nIkSNhs9mQnZ1NoJEWiwW//fYbXn/9dfTs\n2RM//vgjgoKCYDabkZ+fj4CAAMLz8P3330MikaBVq1YYPHgwWrZs6ZFEmCftIUW5oJdefvllREZG\nkgAhy7Sen5+Pnj17ugQp/y893WP+hZEjRzqNX5MnT4avr6/bcZudgxMTE5FLUagSCNw6pdWUKyz3\n7bffJufJlRzgajRNIyMjw+mzsLAwzm2HDRvG2edsNhueffZZBAUFEdUCwI5oEwgERMu0PsGV47lO\nnjyZrHOSkpIgkUgQGBjIiQSSSCT48ccfsXz5ciQnJyM8PJzUN44bNw5CoRBLlixBp06dMH78eNhs\nNrRp0wYTJkyAXq/HK6+8Ah6Ph+3bt0Mul4PH42Hr1q3Q6XQkiMvCkFlSMJYYTKPRwGQygc/nY9eu\nXUQ5QK1Wk6ww6xDrdDoX8qyKigriwLKOKdf9TkxMxM2bN6HVal2+69ixIwoLCzFkyBAAwIEDB5xU\nL+rbgjqNYUcyTMAelOHSme8RG4svEhNJcqKyLjkRIRDAy8vLjrTykBn6r0w62OyUwp4t9fb2dvrM\nnQOhUqkwbNgw5Ofno7a2FpGRkQ0OPg1JLzTV0tPTXdhk79+/70LTzePxkJKSApPJRCCTNE0TaIzN\nZkO/fv3A5/M5ne8NGzYQ5tR+/fohLy8PQ4cORevWrUldjdVqRXh4OIGUREREYOLEiTCbzYiNjUVI\nSIjLfgMCApwGuz179uCbb76BVquFyWTCpk2bsG/fPoTUQQkbevEqaBqPL11yuhdWqxW5ubnQ6XQk\nM8fn80mk6t69ewgKCnJ6JkVFRRCJRLh69SosFgsEAgHKysoQGRkJuVyO0NBQEmmkKIoUyrPMtaNG\njQLDMDhx4gS6dOmCcePGkX0vXbqUwHjZOlWuPtKiRQuXYMPdu3dx9epVzJ07123f8pjFj6YxYMAA\nWK1WpKWluexHo9Fg9erVAOyTi0gkQsm5c02u6bRSFKmtmDRpEjp16oRNmzZBqVQiNjYWr776KsLD\nwyESiRATEwMvLy8kJCTgp59+gp+fH3bs2PH7s/SQCY9tVZSdwGsn9XvkuUoigW30aAzNzibwu6qq\nKs7IOZ/PR1RUlBMM57nnnkNRURH5OzY21u2z8PPzQ8+ePbFt2zZ06dKF1CLz+XynGpbPPvvMBU7m\n5eWFzMxMt5Pbv83+QF1WSEiIEwPk32FSbLa/ty1fvpwQCXmKdnr22WfRqVMnIn/Bq5Pc+uWXX8g2\nK1euhMFggEajwZkzZ7BixQoEUZRHTPmZZjP+8Y9/gMfjEZkN1iFlCfkAICoqCmq1GgaDAffu3SPS\nHIcPH0ZoaCh8fHzQrVs3mM1mJxk1wD6n8fl8mM1mzrkqiKKwLziYwFQrKY4ac45xeYvB4HIfbTYb\nBgwYgJSUFEKAp1QqYTKZ0KZNGwwZMoT85ujRox6tCdjsZf3xfevWrXj++efdjt1sa+fvj4pGgqHV\nFIW29X7nqFfLQjcbayqVCi1atHD6bMWKFWDXb46fy+Vy5zG43n0cNmwYfH19kZaWRrJ/rVu3diKv\nCgsLg5+fHykBO3fuHIxGI/z9/e08A9nZqK2txapVqzjXhF5eXhg/fjzS0tKg1WrRokULogqxe/du\nWCwWHD9+HBaLBcuWLUNISAjWrVuHr7/+Gnq9Hps2bYLBYIBWq4Wvry9OnDgBhmEglUoxd+5cxMbG\nEsbazZs3g6ZprF69mpyLRCIhcnLz58+HSCTC+vXryXdvv/02NBoN+Hw+OnXq5CK7AtiDzCzhGNcz\nCQ0NxXfffYeWLVu69o127fDOO+8gKirKTv5ltSIxMZGbD8PBXn75ZVCUnUjs5s2buHPnDiep6IgR\nI+Dj4+PiTE+ePBkMw6B9+/bw9fX1fF30F5Zna3ZKAVy8eBExMTFOn50+fdptlspoNBIH7/Tp0w0O\nPjwer3F9JA9t586dJDsJ2Aek+pE5mqYhk8lINJWi7PBTmUzmVE/A1lnm5eW5vKQSiQRfffUVysvL\nYTab4e/vjzFjxrjAX5ctW4bu3bsDANLS0qBWq3Hjxg0UFBRgyJAhCKFpJ7bWEorCMh4PIXV6TgEB\nAQgKCsLq1atx4cIFqNVqkonyBNvPFUF88OABoTVns1SOcKDLly9Dr9fj2LFj+Prrr6HT6TB06FCE\nh4djzJgxCAwMRE5ODoRCIbp164bExEQChXGsCwKAiRMnIjs7Gx07doRYLMbly5cRFBSEjRs3ArA7\nydnZ2Xj++eeh0+k4+0dGRgbatWvHCRE7deoURCKR25qYLXq9R9Hjx3XSQXl5eS77CAgIQOvWrUmf\nGjJkCDIyMrDL1/f3ekEPm1WhgLe3N6ZOnQp/f3988sknUCgUMJlM2Lx5MyEQWrhwIdLT00k2ePLk\nyaT29J///Ceqq6uxw2JpPFtOuZdoomka3377LQA7jNhsNuPTTz/F7NmzOScjinKGzl64cAF6vZ5E\nn+tH3x2bWq1GWFgYSkpKMHbsWMybN4+gF0aNGkX2ef36dZcIrFAoxFdfffVvl5LitCbqsKnValy9\netV5H/9BTdVma7b/ta1ZswZ8Ph+DBg3y+J1ctWoVQkNDkZOTQxxSoVCIW7dukW02bdoErVYLtVqN\nU6dO4aOPPiLOR0NM+RUUhS51xHA8Hg8MwxCHlGEYhIeHk/N8+PAhqZu7ffs2AHu2Jj8/HxEREfD3\n90d+fj4hzHE0Fg7qjhGVouzO3sOHD/F///d/YJ1UTx1FrprcyspKZGZmIj09HQEBAWTeDg4ORlJS\nEiZPnozi4mIyZjaFVEgoFCI1NRVTpkzBDz/8gLNnzza4TqMoO0dDY7BdLiQJTdMkWH3z5k1MmDCB\n1Pk2dDyJRAKBQACVSgWGYTBx4kTs3r0b+/fvd9o3Wyblzmpra/HUU0/BaDQiNDQUmZmZePHFF+Hn\n50eIhOJkMqwUCFDO58NG0yjn87FBrUYITSMtLY1kpvv27etyngaDAT4+PsjJyYHZbIZarUZBQQGs\nViuuXr0KvV5PWOkvX74Ms9mMV199lTD+jhs3DkOHDsWGDRtIPemTTz6JZcuWEQKwLl26EKTQM888\ng/79+0On02HlypXkPrDbtmvXDqyzTlEU9u3bR9QoZDIZYmNjMXbsWM73l0XA1b9Gb29vXLx4kTNo\n37ZtW6IYwTqNGzduRMuWLT0aI6ZPnw6KsvNVxNQjE6QoCv3798fRo0cRGxvL+fu1a9eCYRi0atXK\ncybsOr6Vv6I1O6UAjhw5gqysLKfPioqKMH/+fJdoFtvY4nIA6N69e4P1pTKZzGmC+qNmtVoRFRWF\ngwcPAgAnzEAgEKBbt26EzIXP58Pb2xtSqZQ40o8ePYJQKESvXr3g5eVFYB71X9Jly5bBYrFArVbD\naDS6yNKUl5dDp9Nh9+7dkEqlxEl88OABBhqNqODxOCeQKoEAowMDoVar4efnh5qaGty5c8elqD6I\nonChdWs8boA92LH+jzU2giYUCpGbm4v+/fs7DR779++HyWRCeno63nzzTcI2e+XKFQQFBREZEFY+\ngxU7Hzx4sLPOaG0tySKHhITAYDDg1KlT0Ol0uFSXxT1//rxboiK1Wg2NRoODBw8iNDTUSUi8uLiY\nEOywv6/fx3JDQz1aFJzbuhVr1651Ob5AIECkUIjfCgsBhQI2mkYJRaGkf39UNJFxsYqicLVjR7z/\n/vugaRrvvPMOtFotlEol9uzZA4PBYK9R7dsXNpsNd+7cQUBAADIyMiAUCnHs2DEsXboUMTExGDRo\nUJNF0LmaRqMhdTT79u3jhOT4+PjAx8eH1OHYbDZYrVakp6cTrb7Fixe7PQZbR8rCtBMSEnDkyBGy\n2GADIg8fPkRUVJTL7+sjH/6TVuOhLu7Dur7hSKxBrIkkZM3WbH8V27BhA/h8vls5By47efIk9Ho9\n4Wpga9uuOcDX9+zZA5VKBbVajS+++AKfffaZSyayfn1hGZ+PlSIRWmo0WLJkCXFgExMTIRaLIRAI\noFAoyJxeVlZGeAK+++47APZ5Xq/XIyQkBEFBQejSpYsLYQ5rs2bNIrWd7sY5f39/zJ49G927d/99\nDqI8dxRZFI2jsXW4LVq0QExMDKKjoyEWixEXF4eQkBAX2K0ndZhsCwsLI9k3d1rUjgFfT5FHDynX\nuVggEJB12bJly5yylA01pVKJcePG4ccff0RwcDAWLlyIrl27IiQkBDKZDKNHj0bHjh05y7Ycraam\nBjExMeDxeMjMzER4eDh++eUX7Nu3D/l8vttnVEHTqNm1i+yHJeZjz0+hUECr1SI1NRVarRZ8Ph9i\nsRhLly5FaWkpIiMjXaT1Lly4AKPRiMmTJ8PHxwdXr16F2WzG6dOnMW3aNDAMg+joaCxZsgRpaWkQ\nCAQICAiA0WjE3r17oVarUVxcjIMHD0KhUDihEVsZDHiHYUiio5SiYB05EoPralN3794NnU6H8PBw\nTrbsDz74gPM5bNiwAenp6Zz9/ttvv0VsbCxZn1VVVSEoKKhJ/A+s2kD9xkLVR4wY0aD+8cqVK8Ew\nDEo9nX//wkHhZqcUdrHdHj16kL/v378PlUqFe/fuoby8nHOAEQqFZOIpKSnBjBkzEBUVBalUysnu\n6efn58J89kdszZo16NChA/l7w4YNZIJLTk6GRCIhNQLsZ1OnTgXDMLh79y5sNhsyMjKg0+kIGQJN\n02jTpo3T+fJ4PCgUCmzcuJFMqPWptAE7bEmhUGD06NHo27ev/cNr11ArFjf40jxmGITz+UhNTcWY\nMWM4B4TIyEgADWejpVIpcQABOxRbJpMhKCgIGo0GYWFhSExMdJHUGTZsGEQiEWE2nlRQgJ0+Piip\nG+yqxGKsEosRIRBAIpGgrKwMVVVVaNu2LSZOnEj2U1paitjYWMybNw8qlQoJCQlYu3YtwsLCcO/e\nPbRv397tuW/ZsgUfffQRLBYLjh49CoPBgCNHjhDyKj6fT6DXSqWS1OGyzmoQRWEXZc8Y1q9LclwU\neHt7uwQeFAoFmaxs9ck2BAKP60jZVkZRCK1j1u3Tpw+EQiEUCgW2bduGuLg49O7dGzExMU7wWBba\nExwcDKVSidLSUiQnJ/+hBY+7FhcXh5qaGnz11VcukWuBQEBqswoLC5GQkIBVq1bh3XffRUpKCqxW\nKw4fPtxgwImmaWzduhWAPRgjl8vxxBNPgKZpfPbZZwDsC4bc3FyX386YMeNfGwyaYMXFxR5Rz7OZ\ngDVr1nDux1NNtb/ypNhsfz/78MMPwefz0adPH48d0p9++gkWiwWDBg0i7LIMwxDSGcAuu6VSqaBS\nqfD555/jwoULjRLvFBYWwmQywWQyYcWKFYQcj2EYUh8oFotx8uRJAMDjx48REREBmUwGmUxGjj19\n+nSoVCqSxTWZTE4lEqwtXLgQAQEBnMFpts2fPx8///wzJ2N7OJ/vsaO4aNEil+N/8803dhbSoCAk\nJSUhMTERMpmMOCz199EQe3r91q1bN1IWwWasuBwPivKco8FKUdixY4fLfCKXyzF37twGJfLqNz6f\nT5z177//nmT6Hj9+jBYtWuD9999HmzZtGtXH3bhxI3x9fREUFASaprFgwQL7F9euoUYkaviaHLRk\njUYjTCYTkpKSEBsbC5FIhLi4OBiNRvB4PPB4PIwdOxZ6vR5ZWVlu613Z2tC+ffsiPT0d7777LpFT\n0+v18Pf3h06nw/r166HVaiEUChESEgK1Wu20Fk9JSSEZRnfrgRoeD495POJcs9wYgYGBv98HAB9/\n/LHb7DVXP0tPT0doaCj69OmDwsJCMi68/fbbyMnJafB5OFpFRQXatm3rtO8gisJSioJVLoeNplFK\n2ZMBDXExFBUVeaa48Bcvn2l2SmGPQgx2ECp+9dVXMWDAAAB2mm0upk6Ksuttsax6NTU1qK2tRWxs\nLKRSKSchSm5ubqMRr8asqqoKFosFZ8+exd27d+Ht7Y0DBw5g0aJFeOWVV5wYvWbOnIn09HTMmTMH\nfD4fgwcPxvTp0yGXy7F+/Xq0bNkSKpUK3bt3R5s2bZyikgzDYOXKlQgICMDmzZuxfft2WCwWFBcX\nk3OpqKggkdvDhw8jISHB/oUHdWfVFIVv2reHv78/J2SIz+eTSJTVakVGRga6du1KIqn1n8OjR49Q\nXl4OHx8fGI1GlJaWYtKkSfD29kZOTg4sFgu2bdsGwD6JBwUFESjT6t69YRWL3To/P9RlzAA7/KN+\nVvPmzZswm81YtWoVhEIhnnzySYwaNYqTUIhtBQUFZJBbsGAB4uPjsXv3bhiNRrRu3ZrU+7ILEb1e\nj/Xr18NsNuPJJ590O0CzDuouquEs4suDBjUq8+JJs1HODiKfz0dmZiZx9nr37k0i9C5QUAB79+6F\nyWSCQqFARESESz1NUyLjDS1MHN8L9jzFdaLmarUaw4YNw8WLF6HRaAjxwq+//spJ2sVObDRNI1Io\nxMXWrUmmuYxhsJiiUJSZSa5x7NixnOf0X4Hswp5FiY2N9Tj7/JoD5NjRfvnlF6wQCP5/Pyk229/L\n9uzZAz6fjx49enj8Tj5+/BgpKSkoLCyEUCgkAcTz58+TbU6dOgWVSgWlUolPP/0U33//vQv/g2Nj\nSV1GjhwJnU6HqVOnEuZ8mUxG5j2VSkWclOrqakJ4dOjQIQQEBAAAfvjhB/D5fAQEBCA7Oxv+/v6E\nN8DRli1bBh8fnwZhu2yNHguldGwSiQRSqRSDBw/2eDyuL5MB2JnutVot0TNv0aIFlEol0XFmm1gs\ndllbNebk9+nTB7W1tbh8+TLn9yyk0tNMaW2d4//+++97fM31r8OxsWVR48ePR1JSEiwWC9atW4ej\nR48iICCA9Bt3mbnDhw/DYDCQspmkpCSIxWJ75tZDDoDq4cNhNpthMpnw6NEjPHz4EI8fPyZMt+w9\n1uv1UCqVaNu2LYRCIb7//nu378jp06eh1+uRnp6OoUOHIj09HStWrMDMmTMRHx+PyMhIBAQEoKCg\nAAMHDoRAIADDMMjNzQVg59VQKpVYuXIlgikKVY0xVTsQ7G3ZsgV6vR4+Pj5YtmwZvvjiC5dgAfvO\ncj0TlUqFkpISREdHw2w2E0RCaWkpTCaTk7xbQ1ZVVUXKv4gfUDfPVtdffzXAXr9r1y7QNO0ZE/Zf\nnGiw2SkFMH/+fIJnt1qtCAoKwqlTp1BWVobQ0FC0bNkSHTp04MSit2/f3omg5Pjx41AoFGjXrh1n\nh/93MPK+9tpr6NOnD7p16+Z03kajkRAbCYVC/PjjjyguLobRaIRMJiNkAn5+fpg0aRKUSiVefPFF\nopk4bNgwiMVi+Pr6EkFlR0bQefPmITExEWVlZbDZbCgsLETfvn3Rv39/zJo1C1Kp1F5z2oS6s9TU\nVARRlFPt6SMeDyv4fLw6cqTTdT969AgKhQJvv/22y33t27cvMjIyIJFICItvTU0N2rVrB29vb4wY\nMQI6nQ5fffUV5s6di27dumHFihWIlUpR2YTBDgCuXr0Kg8HgNEl88cUX0Ov1WLlyJXg8Hjp06OB2\nEtJoNE4EGDabDUOGDEFeXh46duxItmPrk/z9/QnD38KFC/9laGtubi6W0XSjWmyesEJe4DgOj8fD\n0KFDYTab4e3tTWRh3NmiRYvg4+Pj8QRfvzWkQ+eujRs3jsgUZGRkwMfHBxUVFWjRogV8fX1RWVnp\nEt10bL6+vhgfEeE2k2tzmFzYmhD2tyEhIZyaw/8JYwnL6k+I7gIwczIzOUkiqqqqkJiY+LeYFJvt\n72MHDhwAn89HXl4eZ7/nMpvNhqKiImRnZ0MoFIJhGNA07cQdwXIkeHl54cCBA7h79y4nfJRtPXr0\ngMViQa9evSCRSNCrVy+89tprYBfPcrkcfD4fQUFB4PP5OHjwIGpra5GWlgaRSISvv/4ap0+fRnJy\nMkpKSuDj4wOlUonMzExERETg1VdfdbmOdevWwWw2c65r2MYiPg4fPuySZVIoFJg4cSIsFgv8/Pw8\nHnvd1UkuX76c6KdGREQgMDAQNE0TJmM+nw+NRoOgoCCn/XGVZdRvrBa6O7K6Dh06eJSFqqIorBSJ\n8MMPPwCwz8eNHTs0NBQPHjxA//79Ob9nGAYZGRmIjo7Gb7/9hm+++QZmsxmbNm1Cfn4+XnvtNRw6\ndAhms9lp3QCA6IVOnDgRfn5++P7771FeXo7Y2FiIxWK7A93YeE1RKKmr1ywtLXV5LsOHDwdF2dF+\nwcHBRBu0qKgIqampnBI+rB0/fhw6nQ4BAQGYMmUKKXEymUzo27cvAgMD0a5dO2g0GiKTJpfL8cnS\npbiQmWmvgaXsSYzGSLXqB0PXr19PyJXqBzJomsbatWtJeV79NWiFQICHTz2FSKEQs2fPJvucOXMm\n+vXr18Do8LvV1NSgd+/eTsf9I/PnoUOHnNYPDc3hNjdO7V/Jmp1SAC+88ALBc+/bt4+QCY0cORJx\ncXHIyMhAVVUVrl27huzsbJdBZejQoU4R1p49e0KlUuG5557jjEC+45B5+yNWWloKmUyGqKgoItXA\nsrRKpVIEBARg2rRphJVv3759oCiKkB/17NkTYrEYPXv2JOd97949+Pv7IzIyEkqlEh06dHCGgeD3\nybhnz56YMWMGUlNTUVFRgUs7d2KtTIZSmoatCdk3G027fcFqGQblNI1DdQxvrOXl5eGDDz7AwIED\nXe4rj8cjkEnW7t+/D19fX2g0GkyePJlQzx85cgQ6nQ4/9ejxhzI/n376KQwGg1P27/3330dgYCD6\n9evHOfGw/1+3bp3LM62qqkJUVBTZjoXtRkdHEymf77//Hlqt1qPJs5ZhXAgZKIrCmDFjMH78eM9r\nExp6flIp4txAvlq1agWDwQCBQIDCwsIG+/Pt27cbjNR70primGZlZUEikWBEhw74LCYGFQIBrBSF\nMobBGqkUeZGRnHBydjKTy+XIslga1fxkJ5fdu3cTiJJMJiN6tv8N44Ksucs+F8THu3WWR40a1eik\n2KxT2mx/JWOZsHNycjx2SAG7pFpERAQhG6JpGkeOHCHf//Of/yQanB9//DEePXrkVJZQv0VFRcHX\n1xc9evSAWCxGdHQ0tm7dCoqy8w6wjm/r1q0Jk6lOp0NSUhKEQiHOnDkDwI466dChA1JSUsAwDGJj\nY5GcnMxJMrRlyxYYDAa3KDC2icViBAQEuGwnFotJ0Jode9u0aYPWrVt7NAYzDIMPP/zQ5byee+45\nhIWFwWKxkLIVHo9HSpSUSiWuXLmC4uJi9O/fH507d0ZcXByefvrpRo85cuRIwoZavwUHB3sc7A3l\n8WA0GvHTTz8BQINZYoZhcOvWLWzevBkmkwnPPPOM222feeYZch8uXrwIo9GIt956C3q9Hr/++itm\nzJhBWHIBO0LLYrFgzJgxsFgspJYYsK8Rg4KCmgRJdtTSZe3nn3+GSCRCcnIyRCIRQkJCCGuuTqdD\n165dMXjw4AYRBkeOHIFarYZKpUKPHj0watQoxMfH4/Dhw0S+jyW7GjlyJLrUMS03RjrF2eqVjcyf\nP58zOfTGG2+QBIC7+ayaolDB4+HDOv31O3fuQKPR4Pr1626vlTWr1YqioiKX427UaBonkHRYb37+\n+eec8jHxcjmZw200DXh5YW9gINa9+GKj5/Znt2anFPb6QrZYOz8/H++++y52795N0v8skx1gh+1w\nMXTNnz+fbHP9+nXI5XKEhITg2rVrLtBBhmFw4MCBP3y+V65cQZRIhE9CQpwIapYzDCKFQty5cwfV\n1dVITEzE5ldewYN+/ZwYcJdQdvrz+hGuSZMmgcfjITw8HEqlEoMGDQKfz8f+/fvJNpWVlQgPD4eX\nl5c9avfxx4BU+ocGkFIPJoFyisIZBzKYVatWoXfv3iQa6Hhf68tvsHbu3DlSFxsREQGj0YjMzEws\nWLAAFZ4yzHLUyK1cudJFMmPgwIGcg6DRaMSyZctgNBqd+gprX331FYFnsZO8VqtF586dUVNTg7Ky\nMsTFxYGimkbI4HgObdq0wZdfqBk2xgAAIABJREFUfgmDweBx8MDGMVjbBAJU0DR2jRqFMWPGuIXA\nJCUlISkpCQaDATdv3nTbn48fP95gtN6TVn9RwtLD19+ubdu2GDx4MPqp1ajk810nIppGJZ/PWa/K\naqtpNBrc7d3bI1jU/cJC6PV6zJw5kyAw/lvmjtSBq/n7+zuNc47GpasaRNmJrVhNNXh52SfS5gxp\ns/0F7MSJExAIBGjXrl2THNKDBw9Cr9cTxlSKoojkGGCHzZrNZigUCuzatQtVVVVO6Be2sTqVbLnA\niRMnSE3ooUOHQNM0dDodQT516NABoaGh2Lx5M2w2G1JTU0FRFFatWmV/50aNQpVYbCd/oWmsFInw\nVFqak7QKa7t27SJMwA2NCZMnT8asWbM4x/etW7fiu+++I84iTdO4d+8e3njjDZhMJhiNRs7FtGMT\nCARO9w6wkwd26dIFIpEIFosFFPV7gFYkEkGj0RAuj9TUVJhMJty9exc///yzR+RCgwcPxpw5c1w4\nNNjmKY+BUCiEr68vzp4963bu4vF4UKvVWLJkCYxGIy5cuADArnzAtb1QKHQigzpz5gwh4Bs/fjxq\na2vRvn17TJ8+Hffv30dERAQGDBgAs9nsVMfMWsm5cx5zQ1SJxS6/Ly8vR0BAACwWC6xWK1566SWw\na5nY2Fh4eXkhPDwc0dHRTlqtXPbJJ59AqVRCrVZDr9djzJgxGD16NMrLy4mMUjBF4WF+fpP5LJya\nA8He7du3OaUJp0+fTjgePAlE2CgKkMnweUwMXqor62vIbDYbxowZ43Lc0NDQJkm6nD59mrMM0MvL\nC8XFxZg6dSpomoZWq8Uvv/yC48ePIygo6F8uEfxfW7NTCqBXr17YunUrbty4AY1Ggxs3bhDm0PrU\n6YA9YsIFV2FrFgG7XIivry/mzp2Ls2fPctZBsIydTbHKykqMCQpCNUdtVxVF2QmG6gb675csaZB1\nrdIBUnn48GEYjUY888wzYBgGKpUKX375Jdq2bQuRSEQ0zU6ePAmdTgeLxYIPFyxospal4zlc4Di3\n+s3KMFgtlRKnhq0zePz4Mb799luXOoGAgAAXlmDAnsXUaDTg8XiIjY2FVqvF0qVL/2WK7YkTJ6Jt\n27aoqqrCzZs3YTQaXfqFVCpFREQEKisrSbbTcRL56aefyLmxDqm3tzeEQiFef/112Gw2JxiIp+dc\n63AOGo0GGRkZaNGiBVatWgWbhxDrUsqeRXvEMGTBgzFjcOPQIeh0OgQHB0MkErklA9q2bRsWLlyI\nxMREt1k4q9WKpKQkzt972oKDgxEcHIzk5GQYjUZOtmF2Qm3r6wtrI1lOR/gzO/BTlF10+7333vMY\nol5K01i0aBF0Op3HdSj/DmPlhDy5dwqFwkUfjbUvv/ySMwudn5//X6uJbbZm+3famTNnIBQK0bp1\n6yYt4K5fvw6DwQCTyUTGu+3bt5Pvb9++DT8/P8jlcmzfvh1Wq5VTYoPP5yMmJgbZ2dnw8/PDG2+8\ngRdffBEUZdfB5vP5REqLouwlQgMHDsTAgQMB2GU7+Hw+Zs+ejb4qFaxisUv2pZqm8ZhhULt7t9M1\nsLWbjUFe09LS8OjRI0Ky5Njmzp0Lm82GPn36EKkOi8WCtWvXYsuWLUhJSUH37t1x/vz5Rh1TsVjs\nlGW22WwoKCiAWq0mxFE0TYPP50MikaB///4ICgrCpEmToNPpnEgH3Tl79du0adNIUCIrK6tRHoNH\nPB4+UKvJfJCRkYFTp05BIpG4DciyTafTQS6Xu6wj3bGxCoVCLFy4kGx34sQJaDQaeHl54fr167h9\n+zbMZjOioqLQvXt3mEwmt2M3Ro3yKPhso2mskkiw26Gv1NbWonPnzhCJRLhw4QJ5LklJSRAIBAgO\nDkZ8fDyUSiXS09NhNBqdniOX7dmzh5SRdY2IwGqxGLa6pEo5Zc9Merwec9fqkgcPHz5EQkKCy/0V\niUROSSWPiIOo39esNomkUSTQ5MmTXY7r5+dnh3x7mgygaU5JSoFAQJARADBhwgTQNI3g4GCUlZUh\nNTWVE4HwV7JmpxRA27ZtcfjwYUyZMgVjx45Fp06d4OXl1aBcw5UrV1wgh2KxGKdPnwZgZ+LUarVQ\nqVS4efMmPvroI5eFe2BgINFB9NTmDh2Kx43JdUilwOHDdnx5A9tVMgxs332H69evw2g0YufOnQgJ\nCUFmZiZatWqFqKgoPHjwAIGBgdBqtbh48SLMZjN2796Ny5cvY5VYDGtj9ZhuWhlld3g82bZSLEZM\nTAypd2jdujX27NmDW7ducS6Yu3fv7rJgZmtu2ckuIiICNE3jsVDYpMGuvtXW1qJbt27o378/pwYV\nC9ns0aMHRtbVyC5evBhpaWmora1FRUUFoqKiiAYdRdkzpGzNg9FodIEHNTVTyjAM1Go1goOD4e/v\nD5vNhiORkR4zsa5evRo5OTnIz8+HWq0m9UAdOnRAlEiEpRRFWIsf1g307AQuFApx8+ZN9O3bFwMG\nDOB0ZEaPHt2opptj45LY4fF4pG41Ojq6QTjvFr2+UQgNe+0sXJei7AEPFkrt6eRipSikpqZysk7+\np+zWrVucBE1cjcfjYd++fZz7uXPnDslWODZHHcRma7a/kl24cAEikQitWrUi2oye2KNHjxAdHQ0/\nPz8yj69fv558/9tvvyEsLAxyuRxbtmwBAGzfvt3l3RGLxfDy8sKRI0cgl8vRq1cvHD16FDRNw8vL\nC2KxGEKhkATpEhISsHHjRoSEhKC0tBTDhg0DwzDYu3dvk5hVAeDYsWMkM9vQmKBUKnH9+nVOSGzv\n3r1htVoxbNgw8Hg8hIWFYfbs2RAIBIiJicEXX3yB+Ph4BAYGArAjgBpzTGUyGU6cOAHATvqXnJxM\n6i9pmkZkZCT4fD6USiW0Wi1hhX3++eedODoePnzoMTPvyy+/jMDAQJL9c5yvuaS7xo8fj6CgIOh0\nOhgMBrz88ssuEnbumtlsdpn3zp07Rzgj6o/HEokEy5YtI9sePXoUMpkM7dq1Q01NDTIyMiAQCKDX\n6xsOdHrK7UFR+L9t26DT6Yhc0HPPPQeDwYAJdeVTc+bMQVpaGiorKzFt2jQIBAL4+/sjJiYGSqUS\nXbt2hclkahARBdhZrrsJBNzlH/9iq6IoPCoqQkVFBbKyslyeQ0JCgkug1tO1lLt3qr7NmTPH5bgm\nk4lAqz1NBpS4CfJzsWezWdn09HRs2rQJ6enpDT6DP7tR/+sT+DNYXFwcTp8+DYPBgBdffBEymQxT\npkxp9HeHDh1yGVSMRiN5MZcsWYLAwEBCcb1gwQKXTpaRkUG0tBqzgwcPYo1U6irhUb8JBLBFR6Om\nkYVzNUXhq9RUxMTE4M0330ReXh7+8Y9/oKKiAvHx8YiPj8ekSZNw+/ZtKBQKiMViJ8IEj+Uh6g0c\nLAzG06iYjcfD8OHDkZeXh9raWrz++usoKiqC2WyGn58fRo4c6XJf6xM7rFu3DklJSZDJZATaKRaL\ncTIpySPnrLKuroDL2AULqxPHNolEAo1GA5lMhpSUFISHh2PNmjWwWq1o27YtFixYgJ49ezqxucrl\ncmg0GkyfPh1BQUGc0V9PCRnepuyRNRY6w+PxoNPp7BMs5Vn9DAtXyczMREJCAt555x3o9XpMmTIF\nQy0Wj6BObE1MXFycC8xnxYoVTSYqYpmJ2fsmk8mwePFiAHZJoPpsjPXf0aY69SyULjMzk9RwewrD\neSwUktru/4aVlZVxRojdtSVLlnDup7q62i3EbePGjf+Va2m2Zvt32pUrVyAWi5GcnNwkh9RqtaJn\nz55ODqmjNmNpaSni4uIgk8nwwQcfkM9tNpsT86ZEIoFQKMSJEycQFxcHg8GAK1euQCqVIj4+HgzD\ngGEYsqBWqVS4du0aDAYDvvzyS4wfPx48Hu93RNaoUR7Xp3355ZfQarUeOVJbtmzB7NmzOcfd5ORk\nTJgwATwej8jc/fzzzySrM3v2bJItZhFLX3zxRaNBR6VSiWXLlsFkMuHdd98FRdnLJdhs5DPPPAOj\n0Uj+zsnJQUhICMkes/b6669z7p8LydOhQwdMmjQJCQkJJNDZp08f+Pn5uTjSEokE169fx48//gg/\nPz8wDOMC2xUIBHjhhRc40VJTp04l5/jdd9/BbDajqKgI3bp1czrWuHHjkJqaCplM5iTLxbKvtmnT\nBomJiaTPNNiPPeWNoGkAdrScXq/H888/Dx8fH/j5+aG8vBx79+6Ft7c3qaEF7KVefD4fFosFYWFh\n8PLyQvfu3ZGQkIDy8nL353TtGmo8TQQ0sZVRdu32zp07u9z/3NxcJ31dtv2hzKwbdvk33njDZf9a\nrZZksmtra7HX39/jtVv9fb3++utubyubuOjduzeyLBb8UlBgD0rQtP3fUaP+MqU11P/6BP5nVleH\nAYUCVopCpUiED41GRAqFTaozYQdQxxYTE4OHDx+ipqYG4eHh8Pb2xp49ewjLav3t+/fv3+ii9f79\n+7BYLB47gp7i8h/WvbAvvvgiMjMzCZPw9evXodPpoNVq8fnnnyMrKws0TaOgoOD3k/LwGDbq9yya\no5yHx1EqLy9UV1ejXbt2mDhxIq5fvw4+nw+ZTIZffvkFlZWVaNmypdM9ZRgGx44dA2BfNHh7e2PQ\noEHIzs4mdTqTJk3y2Dkb2bFjg8/ohx9+gEQiIbAoFlrj5eWFbdu2gc/no6CggMiNXL9+nSxS2Amf\nz+fDZDKRSDsbFa/fX5rCvssunjp16gSGYZyyuY3Vz8xMTSXXx06E9+/fx8KFCxFC06jg8Tw6B4qy\nZwvZBdbnn38OwH0Rf/1rdWTFK6n7O4xh8M4772DPnj3Yu3cvwsLCUFVVherqagwYMMBpH6tXr3aS\nYmgK/Jl1gM1mMyEoevz4MTao1R5Dz+/cuePRWPKvGrt49tQhHTt2rNt9ccnYUBTlRI7WbM32V7Hv\nvvsOEokECQkJTmz5ntisWbOckAeO8MrHjx8jNTUVUqkUa9eudfrd+++/D61WSzKgbOZp06ZN4PF4\nOHr0KPz9/aFWq4lGKKtrLRAIcOzYMWRlZeGVV17BtGnTwOPx7KUDdeZp1qVWJoPBYOBk/60fEBw+\nfDg2bdrksl1oaCgKCwvh5eUFmqZhMpmciHHi4+PRqlUrKBQK8Pl8pKen49NPPyXff/rpp406pjRN\nY/bs2eDz+RCJRPjoo4+gUCigVCphMBiQlZUFPp8Pg8EAjUaD2NhYeHt7OzlmFy9edHscLqgtq2lu\nNptRUFAArVaLkJAQTJ8+nTiXPB6PoINqamrQsWNHSCQSiMVip/k5NDQUFRUV+OCDDziPtXjxYvz8\n888ICgrC8uXLMW7cOLz22mvYuXMnlEolunfvDh6Ph/Xr15P5dtOmTeTaWNipSqXCF198gZycHE4S\nK9Y8Zd51RIGx/cxkMuHjjz8mpF3Hjx932f+zzz4LPp8PvV4PX19fSKVSZGdnO2l6upgnEjVNbI3p\nlqelpaFHjx4unzMM84cSK/XvGWDnOqm/fy8vLxeo7R9VThgxYkSj826fPn2QS9nJmVwSUn8hEkLq\nf30C/xOrI+ep/3JUUXZinXKH2lBPbOLEiS4dMicnBzU1Ndi7dy98fHwQGBiIiooKVFVVcTL4NiSO\nbLPZ0LNnTzz33HOeY9I9fLmslD1KaTKZXOjGWdZQLy8vtGnTBhs3bgTDML+fq6eDi0CA2tpaF60u\nTzN+X7dpA8CuEcrCiymKctIKvXHjhgtxg7e3N+7cuYMpU6agc+fOMBgMyMzMhEgkIplDT5wzdrCb\nN2+e22c0b948hIWFQaPRYNq0aRgxYgSKioqwefNm+Pn5Ye3ateDxeBgwYAACAwOxZs0aMnlKJBLQ\nNI2wsDDMmTMHgB3+HRYWxjnIOp5zTT3HsP459+7dGzt27EBISAjeeecdl/24Y2JNUCjwVFoaakeM\nIIGbUppGxaBByDSb8YFK1eSI38iRI7F//36YzWacPHmyQbH2xp7LY4ZxGmBzc3OxaNEiVFdXo337\n9kREfOrUqdi8eTMCAgKIbuwfgT+zsF2bzYYnnnjCo8mlnKbxGYc24H/KPK2poigKXbt2dVtP9957\n73H+pr6UUbM121/Bbty4AZlMhujoaIJ08NR27NjhxDzrKA/BBkolEonTXAQAH3/8MZRKJTQaDXJy\nchAfH4/Q0FDCNN6vXz9kZ2dDLBYT5yc8PJw4fF27diWEPK+88gp4PJ4Ta391dXWTmFUTEhJQWFjo\nxAyvVquxfPlyQuAWHR2NI0eOuEAcNRoN/vnPf+LVV18ln9WvW3v++edRWFiIuLg40DSN7OxsvPba\na07b7N+/3yPHlKIoHDp0COHh4Vi1ahXmzZsHpVIJPp+PPn36IDAwkGTn1Go1kXsBgK1btyI1NRUb\nNmxwem7Z2dnYvHkzZ5B30KBBeOGFFyAUChEdHW1fZ8HOzpyfn4/Vq1cjICAA9+/fx8CBA5GTk4N1\n69aBpmlCZjRlyhSIRCJER0dDr9cTDov61+bn50fIjAoKCrB161YAIA7+4MGDwTAMNm/ejOjoaEil\nUuzYsQOrVq2CyWQCj8eDQqHApUuXcO/ePfj6+mLPnj0u/fa7777DKg7tdZfmkPU7d+4cdDodkda7\nePEioqKinKDEjsYqVLDlQTqdDlKpFFFRUZxkjgCaBCl212opCpV1/z4WifCel5db+bvo6GhOh1St\nVsNkMuEdhvljMGIHjpFNmza5ZOIlEglJigB2RJgn6xou57pTp06eITuuXfOstO9PnjH9+zml1641\nTs7TxAdntVpdBHLZRbjVakXHjh2RmJiIF+vomtn6k/rbO0bFHG3FihWIj49HZWWlx9EvT53SSrEY\ncrkcgYGBnBpVXbp0AcMwGDJkCABgxowZYBjGXr/noVNq5fMB2IW66ztEnkaNWFZdVuKidevWZPJg\nbffu3S73NCMjA2q1GkFBQejWrRsYhsGJEydc6kbqO2dlDIMldWLF7DY8Hg+HDh1yuUdbt26Fj48P\niouLsXXrVuj1ehiNRgJfeumll5CamorZs2eDx+M5adiy/8bFxaGoqAg2m40wEDbmWIzOyYFt9GjA\nyws2msZDisL7FIX3qN8ziw8pCiuFQuxbvNitgLdjVJeuK7Av37YNjxnGJeJWTdN4zOOh3MP+VZ8B\n+N1338WLL77ICdl1/Kypel6XL1+GTqfDoEGD0LlzZ/z6669QKBT47LPPoNfrcebMGVy+fBmpqalN\ngj+LRCIkJiZCp9PhypUrmDVrFjlHd5OLlc/HY4bBip49PR5D/lVbv359o/2FbZGRkZzvOgCcPXvW\nLYulIzSx2Zrtr2DFxcVQKBSEaK4pdunSJSeIpmNWqra2Fvn5+RCLxS4Q+FOnTkGpVEKlUiE3Nxdt\n2rSByWTC8ePHSZZt0KBBMBgMUKvV4PF4pG49ODgYZrMZ69atg8FgIOy3jtA9Vv/wUSNIFbaV8njo\n3bs3Vq5cCaFQiOTkZGg0Ghw8eBA+Pj7Yv38/jh49ikuXLuGLL75wCu4KBAIcPXoU7733Hng8HqRS\nKZRKJYxGoxMC5PDhw2jZsiXRpJTJZMjKynK5pzt37mzUMdVoNMjNzcXw4cMBAG+++SZkMhm8vb2R\nl5eHvLw8BAYGIjw8HAKBAAkJCZgwYQJsNhumT5+OadOmAbAHFGiaxoABA9CyZUs7fHLvXpcsJk3T\nROO9e/funCi5cePGITAwEGlpaTh8+DB0Oh1yc3MJYuv8+fOErCopKQnV1dU4efKkCxEjj8fDwYMH\nAQDJycmEg8TRnnzySfD5fHz00UcICwuDSCSCQqGARqPBvHnzYDKZ4O3tjatXr+L48eMwGo1ENxWw\n93l/f/8mzaHFxcXw8fHBwoULodPp8PLLL0Mmk6Fv374NZuhsNhtxpBUKBeRyOclsc3IV/Buk6Bwz\niatXr0Z5eTknZNrf35/TIQ0ODsatW7cQFxfn2T3ianWZ0l27drn0Z6FQ6KSuwQVfb2Uw4If8fJdk\nQH3nOjo6GiUlJW7vv5N5koV2Az3+M9nfzyn9Dz248vJyREZGurwAr7/+Oi5evAitVksijoA9klU/\nsycSiXDy5Emn/X777bfQarW4fPkyysrKsNyDyE4VReG2Xt/odtWUPVs5Z84cDB8+3GVAPnz4MAwG\nA1JTUyGXy3H48GEAdh1WgUDgsayIlaIIlT4rxNzUqBGfz8eOHTvAMAx69+4NrVYLX19flwHzhRde\ncHkGPj4+SE9PB03TePfdd4lIc0PthRdewPbt210iYDqdDrdu3SLHO336NIHksv1Ao9EgODiY1FbY\nbDYUFhaib9++TvBKdqDi8XhITk4mi6YpU6Y0en4JCQkoKysj5/HWW2/haZ2OW2+rDmrLBW9RKBRO\nzqBer0dbX19UN1L34WnQo7be8Xg8HtLT0xuVI/CIFa/ee5qVlQW1Wk0G8TFjxhCtNwCoqKhAaGio\nx8GQFK0WTz31FBISEtCjRw8EBwe7nGcQRWGbyYTyOq3TaokEF7OykB8V1eRF8B+1EydOeMy0KxQK\nnfqvo927d4+TVZyiKHTr1q0Ztttsfym7ffs2lEolQkJCXOTPGrNff/0VPj4+ZPwnBGewj+d9+/aF\nWCx2qfP65ptvoNFooFQqiUNaWFiIcePGYdGiRVCpVMjJySF1iwzDIDo6msxT8+fPR15eHoKDgzF6\n9GjweDyn7GxtbS369euHpKQkLPVgjKyiKOz298d7770HoVBIeBl+++035OXlYdKkSS7XHRAQQODK\na9asIfOuVCrFrVu3MG3aNAQFBTnpu1ZWVkKhUGDgwIEIDQ3FpEmTwDCME6Mra5s2beLMWNZfC924\ncQNLliyBv78/rl69iqysLFgsFjz//PNEDkYmk8HHxwdhYWGYN28eevTo4URQOWrUKDzzzDNo27Yt\neVYffvgh5zH1ej2effZZzv4wZ84cSKVSFBUVQa/XY8SIEYiMjMSJEyegUqkIF8QLL7wAkUhEkCh7\n9+51uVa5XI6zZ89Cr9dzIk9sNhu6desGPp+PhQsXkj64YMEC2Gw2dOzYEU899RR8fX1x/fp1zJ8/\nH2lpaaiqqsK9e/ec1qGeaEqXlJQgLi4O8+fPR3p6OpYtW4ZXXnkFPj4+iI6Oxq+//trgu2Kz2dC/\nf38wDAOZTAaxWAxvb2/o9Xqy3iX911NIsZu1xGOGQVeHoAKbJLh79y4JAPD5fMjlcs4a0sDAQNy6\ndcuJkIi9R57KGtbUKRAcOnTIZd5lGMaFjKisrIzA8inKnkU9c+YMKioqGnwHGpPSczFPs9BuSDv/\nLPb3c0r/gw/ul19+cVls0zSNHTt2YNiwYcjKykJOTg5Z3LHi3fU74o0bNwAAVVVVaNGiBZYsWQKr\n1dqkBXVbD7drZTCgVatWKCsrQ0ZGBmbMmAEAuHr1KgwGAz799FPcu3cPer0eer0eJSUlqKmpQUxM\nDEo8fIkfUnZnZO3atbh9+3ajFOzuokYURaFjXW3nkiVLIBAIXGodampqOJnXeDweRo4ciXXr1nEO\nAPWf26pVqwDYYUn1t01JSUFlZSVu3rwJb29v7Nq1ixx/woQJePLJJ/H000+joKCATNoVFRVITk52\nYUU1m83QarUkkstVz8N1LY7Mjx9//DFSdbomyZw47oui7BARFhb0oG/fRhc7njqlpRznLxKJcPjw\nYSeHv77z72nfYt/TTz75hNQaXbp0CQAwYMAACIVClJaWwmazoVevXmT/ngRD2BqhH3/8EXq9npMs\nIywsDL169UJQUBBeeuklfP3119DpdPj222+bPH78Efvhhx88ZoGkKMpJB8/Rampq0K5dO87fqFQq\nUk/bbM32V7B79+5BrVYjICCgYeIVDqupqUFmZiZ53x3JdGw2G4YPHw6RSIS5c+c6/a64uBje3t5Q\nqVTo1KkTMjIysGXLFgQFBeHQoUPQarWQy+UwmUyE1MhRi/POnTswm83o1q0bsrOzwePxnAhyamtr\nMWDAACQnJ0MgEHi8FoiXy8Hn851ggG+88QZSUlKc4MxsadH48ePx4MEDrFmzBocOHQLDMBCJREQf\ntLq6GsnJyQgMDHQiFOzatStmzJgBtVqNZcuWQSQSQafTcWbM1q1b16icitlshsViwfXr1wHYHWZW\nCWDFihUICAgAwzDIz89HSEgIfH19odfrnaT27ty5A41GQ+7/999/j0uXLnHKbTzzzDNQq9VOtbKA\nHakWGBhIaoGfeOIJWCwW4jC8//77oGkaarUav/zyC5YvXw6RSIQnnngCtbW1nLI6BoMBQqHQLXeJ\nzWZDRkYGKMouKafVaiGVSnHixAmcP38eRqMRr732GgICAnDz5k3k5eVhzJgxaNGihcuxQmgav/Xr\nh3I2keCgKV1TU4Pc3FyMGDEC77zzDtLS0rBnzx54e3ujuLgYEyZMQGpqKh49etTAGwMiEcQGL0Qi\nEUJCQhAVFUVQORcvXsS7ItEfgsvaKAoX4uKAa9ewatUqFBQU4OTJkyQAvWfPHmi1WiQkJKB169ac\naB/2Xu3bt8/lu1AeD8sYBqUerG3KKApvjR3rIvNI0zQ2bNjgcm9Yqaj8/HzQNE2g7w8ePHDLqeGo\n5OGpeZokcidv+Gexv59T+h9+cBcvXnRxNKVSKfbv3w+NRoPQ0FBSRwCAU08xJiYGJSUleOGFF5CX\nl0cybU1ZUDdlu6SkJMKy6+vri7Vr1yI0NNSpTubLL7+EWCxG7969AQAlJSUeDTCOdYUpKSmIiIhw\nOwl5ku1JSkoiTn1CQgJCQkJc8PY///yzy0Kdz+fjww8/5BwEhEKhyzNzrAfgYiEdPHgwoqOjnaQ+\nTp48CaPRiLt376KyshIZGRmExdlms7lE7thFzyeffII2bdpg/PjxLnAfrjZnzhwy+X799dfQ6/X4\nuWfPRhEAjs9CJpORY8lkMuj1euzfv99+IR4GbhobvG0UhVqaxpy6SZmmabIQk0qlJPPIBadqCjPz\nlStXoNfrcezYMbzxxhtkR4JFAAAgAElEQVTo1KkTtm3bhsDAQHTt2hWLFy/GvHnzXO5jY8EQo9GI\n+/fv49atW5y6fnw+H+fPn4eXlxdyc3NRXl6OmJgYEtD4T9ujR48QHx/faH9hm5eXl1ut2AkTJrj9\nnSO5SrM125/dHjx4AJ1OB19fXyc0iac2ZswYMjb36tXL6buJEydCKBRi5syZTp//+uuvCAsLg1qt\nRvv27ZGSkoIffvgBPj4+2L59O3x8fJCQkEDgrzwej0CDvby80Lp1ayxcuBApKSkwm83g8XhOWTur\n1YrBgwcjOTnZaY7wdI4Xi8XEOT9z5gz0ej1x9oDfYZj5+fmk1vzUqVPg8/kQCAS4fPmy0/VevXoV\nGo0GarWaLJ7feustDBw4EAqFAqNHj0ZSUhKWL18OvV7vBGcE7CzpXI5h/cbK0rH2z3/+E2q1Gkql\nEuvXrwdN09BoNCgoKCAlOY7rKwCYOXMm+vXrh3nz5qF9+/ZISEjAypUrndZUDMPg3LlzeOqpp5zq\nIbdu3Qqz2Uy4EAYOHAiapu2SPHX3SK/X4+2334ZMJkNgYCAePHiAN998EyKRCFFRUUhNTUVeXh7n\n/OGuRv/27dvw9vYGwzDg8/k4cOAATCYT5HI5zpw5g6KiIkydOtVOOhgSgrNnz3Kun3g8Hi5cuAAA\nGDp0KFasWOH0zEeMGIHc3FwUFxdDp9Nhz549ZC5ltxkyZAjat2/fKNqAXeOwMG+hUIiwsDB0796d\nrFOaCpd17MdsedusWbOcgjXHjx+HTqfDyZMnUVlZSbgjHJufn59TsqdDhw7kO5VK5TS/N7Xmk22O\n95a1x48fIy0tjZTusUy8paWlTnqp9du2JvLa2Gw2lHsqz9icKf2T2X8hxb1jxw6XTmY2mzFp0iRk\nZWXBx8fHqaaLC66ZkpICk8mEO3fucFJNOy6orZRd14gruxhEUdgTEIAqiYSQ1dTfTiAQwGQyYefO\nnURUekCdFIijvfHGGxAIBNi/ZAkwahSsUqlHUSV3ReiNNXcQH7bW5PDhw1AoFJyQm3/84x+ck0D9\nzwwGA3bv3u3iGLEMuIA9cu7I3kpR9szq8OHDiYNcWVmJyMhIp7rgu3fvIigoCGvXrsUrr7zitJhg\nnWNfX1/Ex8fj0qVLHjnlTz31FGJiYrB06VIEBATAz8/PnjX1sF+zNZ6jRo0i+6RpGk8//fTvN+/f\nTKZlk0rxVFoaaJqGv78/CQKoVCrOZ6zVaj3OlFYIhQgODibMl9XV1QgMDIRSqcTp06dx7Ngxl2fX\nlMaSlHC9f+datcJjoRBWioJNocBnMTF4pkuX/wrM1Wq1csKT3LU5c+a4zRht2LDBZXtWK5ENijVb\ns/0VrKSkBEajEWazudHsDpetWbOGOKSdOnVy+m7WrFkQCASYPHmy0+fl5eVo2bIl1Go12rZti6Sk\nJPz2228YMmQIRowYgfbt2xMHiF0wx0qlWEzZESE2ikKFQIBVYjHiZDLweDzC4QD87jwkJSW5yJA4\nrgUqRSJOlnu2tWjRAiUlJQgJCXHhr5g/fz4SEhLIPWOD63w+H2fPnuW8V8uXL0dgYCACAwPx8OFD\nXL16Fd7e3mjfvj0SExMxdOhQLFmyBMeOHYNeryflP5WVlUhJSUFkZCQn+qR+a9WqldOzPHLkCKlr\nZfVLlUol2rRpA4lEAp1OhyNHjpDtHz16BJPJRGT/EhMTsWfPHqjVasjlcpjNZggEAhiNRmzduhUW\niwVVVVWk5GjXrl3w8fHBnDlzYDAYMHz4cLRo0QLHjx+HwWAgREOnT5+GRCJBTEwMKioq0LlzZ9A0\njaKiIly9epWT2C8+Ph4PHz50uq+lpaWIjIyEXC7Hxo0b0bJlS4jFYhw6dAh6vR4KhQIHDhyARqNB\ncXExXnrpJVKT7NhomiZcHICdLdcxiL5gwQLExcWhpKQEhYWFGD9+PKKjo7F06VKn86mtrUXv3r3R\no0ePRgl3WH4VR8fU29vb6fwacvqq675zDBKH0DRu3LhBjj106FBC+nXhwgUYDAbs37+fEC/Vvw9G\no5Fk+QHg/Pnz0Ol0ePrppyEUCpGSksL5Ti2p4+loDL1HURSnDjkL83/yySed5tDy8nJONB/bGiLU\n5DKbzYZBgwb9oZKnP6P9/ZxSD2pKWRHef8W4dL5iY2Ph4+ODnJwcTJw4kWxrtVrxxBNPuGyfn5+P\nTz/9lBPmotFoyIJeIpHg1q1bnMXeFGWPHC5duhRRUVE4d+4cpyOg0Wig1WrRp08fJCYmIjAw0KWW\nwGazYWpiIsooykUfrb6D0lhUqbEmlUoxc+ZMt9+vWrUKtbW10Gq1CA4OdmKIu3//Pry8vBolVOjd\nuzeB/7711luQyWSQSqUYPXo09Ho9vvnmG7LPn376iTiNfD4fSUlJTgP01KlTOeUyrly5AqVSSZxQ\noVAIHo8HhmEwbtw4MAyD8PBwDBgwAPPnz2/wnKdOnUoWKJ06dYK3tzf8/PzsEKwm1Pd26NABPB4P\nNE2T6LJYLP4d9uShg8vWYTSaMeXz8a5YjEWLFkEikYBhGJfFCCv9UlJ3jiy7XkP7rWUYLOXxnLIZ\nVVVVCA0NhV6vR3V1NS5duuTRwsdxIm9sm1zKzqxbW4/proqyO+D/Ddr1yZMne3xNERERbh3L8+fP\nc5JxbN++HTU1NS5QtmZrtj+rlZWVwdvbGwaDwXNyEAf78ssvyVxbX4B+0aJFEAgEGDdunNPnNTU1\nyMnJgVqtRkZGBuLi4nD//n0cOHAAfn5+eP7555GZmQm5XE7QO73l8gYzMfPq2OYB+5w7ZswYJCYm\nQqvVutV01mq1SElJQVhYGLKyslyghWwzm81ODi9gr7G0WCwoLi4GAFy7dg0ikQgMw3BKgTieW7du\n3ZCQkIAnn3wSVqsVAQEBmDhxIqRSKRYvXkyOxRLOHT16FMOHD4efnx8EAgHmzp3rETooOzvbCeWx\nevVqqNVqUh7l5eUFuVwOHx8fpKWlQafTOTnTS5YsQYsWLaDT6aBSqaBQKKBSqXD27FmUlpZCLpcj\nISEBZrMZaWlpmDFjBvR6PbZs2QJ/f3/MmzcP/nW1uTabDe3bt4dYLMbOnTud7snx48cJdNXPzw/j\nx4+HSCTC2LFj4e/vj27durlcW9u2bUkWsqqqChkZGZBKpaREp7q6GnFxcZBKpTh06BCpWf7/Cgtx\nKCwM5Xw+CUYspn53nOo/uylTphB2f0dyxn379iEgIAA9e/bE4MGDOeeKqqoq5OTkYMCAAY3KJVqt\nVrLGcEea52nJFqtL6yjj1KlTJ3z88ce4fv06vL29SYClpqYGffv2dfq9UCiE2WwmfZtFL7BJh44d\nO7rtc7NmzcKuXbvcBs8dt+OymTNnIiUlxanfPn78uMFjBgQENDkIzHKkNJUc8s9qfz+n1AP23TKK\nQobJ1ORalPpWUFDg0ukSEhIQFxcHnU5Hat8Ae/SEqx6Az+ejc+fOGD16NPmsRYsW6NSpE5599llo\nNBpEREQAALZt28bZ0cViMdRqNb7++mvEx8dj9uzZnBFXlUoFsViMX3/9FRMmTECHDh2cI2PXrtkX\n3Q3cOxtlryNsKKrEtieeeMLty96/f3+Eh4c3+PuvvvoKgwcPxtSpU2E0GknR+6BBg8jkXV+/lG0s\nnII1m80Gk8mEkJAQxMfHY9myZQgJCcH9+/fJNgcPHoREIoHBYIBeryeMdyxpAVfd3fnz54kzKxaL\nQdM0IiMj0aZNm//H3nWGR1Vt7TO9zySZPpNJm/QCKaRAEkJCMbQQCKGFIKFJR6oCIoI0kSYqIFcQ\nLk1AmghXRKWIFEEQkSYRBARC6AmQNpn3+zE525nMmWSi995Pvy/refaPZM7Zp++911rvel/ExcVh\nzZo1YLFYMBgMaNasGSQSCaNjlJ2dTSaDiooK6HQ6mM1mdO7cGYMHD0a1VOpeZrEmQ0nfm6ysLGzZ\nsgUURcFoNOL58+e4mJHhFiz7u4QEPK+PgpzeXijEihUrIJfLnYIsriKn7mThO4WFQaVSESja2LFj\nkZWVhbZt22LOnDkICAio8x2q3cLCwuqExPZs1qxefdb/9MDvSrKFqYlEIpcLy/v37zsxMrNrmDob\nrdH+Tvb8+XOYTCaoVCrCet4Qu3PnDpkzmjRp4vDbP/7xD3C5XCetQKvVivz8fHh6eiI+Ph5hYWG4\ne/cuSkpK4OvrizfffBMGgwFNmjQhY168l5fbC0er1YqXX34ZTZs2hcFgYJyz6ebv7w+z2YzWrVsz\nclXYtz59+pBrOHnyJFQqFdFTvHnzJiQ12drakFsmKy4uhk6ng7+/Pz788EMMHToUo0ePhkAgwD/+\n8Q/ExsaSbb/66itIpVLI5XJwanSm4+PjUVBQQBzMusayDh06ONTATpo0CSwWC9nZ2di4cSP4fD48\nPDzQtm1bpKamQqfTEaKdu3fvgsvl4tVXX4W0psbW/vrmzZsHlUqF9PR0eHp6gsPh4KOPPoLZbMa8\nefPQpEkTzJkzB4BtTler1TAYDFjNIPlFM7SnpqbCarUSuZmYmBi89dZbjMz63bp1Q1VVFbp06QKh\nUOhUAlJWVobQ0FBCONldIqkzsDGzeXOn85o1axamTJmCY8eOEXLGZ8+ewd/fH/3790dCQkKdEF2a\nd2TUqFH1Ok4WiwWJiYkNmnuZ2ieffAKtVotbt26RvkNDQ3Hw4EGYzWanrO7s2bMJLFyr1SIuLg6J\niYmIiorCr7/+ivDwcEJ4ZQ/frt04HA5SU1NRWFgIPz8/LF261OW2TIoMGzduhK+vrwM8u6KighHG\nbb/+rn099Zk9YVNda6lGndK/utWhU2qf3UtNTa03KlSXWSwWRkZerVaLfv36oWXLlg4f9+3btx20\ntei2adMmmEwmvP/++0hKSsLZs2chFouhUqmwa9cuBAQEkD5c4dRVKhW6deuGvLw8WK1WHDx4kLFO\nTqvVYtSoUaiqqkK7du0wduzY3y/IjSxzNZeLHTXkDfW1q1evumSapTN4CQkJKCgoYISn8Pl8bJs/\nHzv0elSJxYT9dFmNlMuSJUvw0ksvOe3H4/Fw5coVp+dlMBgQGRmJuLg49OzZExMmTEBaWhqZCHfu\n3Am1Wg1PT0+MHj0azZo1I8x1a9eudeqvqKiIZK/pRUJUVBS6detGSCu6d++O1157jWieMTnpTZs2\ndYAvzZo1CzExMQgODsbChQsRGRmJf0qlbjmSy2oWR2azGTExMaRfOiudlZWFX774As/qybw+pSgk\nqlRuF9dba4gg7IXiKcq96J6rLHw/tRo6nQ5vvPEGoqOjsWXLFvj4+ODBgwc4c+ZMnQszGh5PUY4s\nyHQ9DdO+KpUKFYMGwVpf7cZ/ECLz7bffuiRHqN18fX0RHBzMuICwWCyMEVuVSvWHYI+N1mj/W1Ze\nXg5/f394eno6BBEbsj897/r7+zv89vHHH4PL5RK5LnubOHEiFAoF0SClg5LDhw9Hjx49oNFokJ6e\n7lA7+j7lHsTOOnw4Jk6ciKioKPj5+RFCJFcLaB8fH6SlpeHo0aMQCoWIjIxE//79Xe4zYcIE3Lhx\nA0aj0SbvBpuDSde71s4A1mV79uyBXq+Hl5cXli5dipSUFMhkMgwdOhQikYjMn8ePHycBWhpKSmcv\n33rrLRK0rWtMy8nJIYHy6upqUqM7d+5cBAUFQSaTIS4uDsnJyWjVqhV8fX3x22+/oXfv3mjTpg1E\nIhFkMhm0Wq0DQeGtW7egUCgQFRVF0Ex6vR6zZs1C69atMWzYMFitVpw7dw46nQ5btmwhMmRnzpwh\n/Rw+fBhqtRqLFi0Cl8tFnz59YLVaMXr0aHC5XAQGBuLp06dQq9WMax4ej4f33nuP8T4/e/YMAQEB\naCqVwiIU1vkOPWOxsPfddx32X7RoEfr37w+dTkdqYl999VW0bNnSIZtYlz169AjR0dFOQf3advPm\nTZcSdO42gUCA27dvo0mTJkTdwGq1QiQSISoqyilDuWDBAgQGBuL69esYO3YsLl68iJKSEuKUKhQK\nUupV17fRpk0b+Pr6QiwWIy8vD2azGVarlTHJRFE29MG9e/fIeRw7dgxqtZrU8gK2LC4TGpJuXl5e\n9d7T2vbuu+8y9kVnoZ9xuTZuHDtiq7+D/f90SgHbAxoxwvbA2GxUS6VOupQURRGimj9qpaWlUCgU\nTi+OQqFAdHS0A4nIzz//DIVC4QR54HK56NWrFwDbR7lp0ybweDx89tlnKCoqglqtBmAbtIxGI6MD\nR1E2SKw9JLe8vBzt2rVz2s7DwwOffPIJHj58iMDAwN8dLjdhnU9YLMZrrt0MBgOKi4sRFhbGCOEJ\nDQ1FWFgY3n33XQwZMsRpm0yKwjOGSb6CslGH7x01yuWxY2NjHaKCpaWlEAqFuHr1KrRaLUJCQjBn\nzhxkZWVh4MCBOHXqFFQqFb777jts27YN3t7e6NixI5o1a4b27ds7LVjKy8vRrFkzsNls4kQolUrI\nZDJSQ0KTIfXp04dsw2azHWpL1Wq1Ay341q1bYTKZcPv2bRQWFkKj0SAlJaVBmq8sFgtqtRq//fab\nwznTNYrvjR2Lf3G5sFL1w7Ld1cp7wmJBo9E4vW/u1EHYi2Xbw3wmT56MRYsWITIyEu3bt4dQKCRZ\nQaaaYrpFREQgKCiITAb0N9alSxf4+PggIiKC6OHat3bt2sH6v0i7/uuvvzIuZpiaSqVCTk6OAzum\nvTFJJ0kkEnz99df/9vNutEb7T1llZSWCgoKgUChQXFxc98aFhbbAqkxmK3eQyWAdNgztagjXdDqd\nw+a7d+8Gl8t1qgkDgIULFxL904CAADKWHjhwAAaDAbGxsWjVqhUJfPF4PLBYLLdr5csEAkRERCA4\nOBiRkZF1fusymQypqak4efIkxGIxQkNDUVpaitLSUjLOuVpMz58/HwDw+PFjwjC+adOmBj+H4cOH\nIzExEeHh4ZBIJOByudBoNAgPD8eZM2dQVFQEDw8Pwl9Az4UmkwljxoyBTqfD2bNnMXz48Hod0759\n+5JkQVRUFAIDA0kGdsiQIVCpVOjYsSNiYmKQnp4Oo9GIoKAgQsLTt29fHDhwAN7e3g71nC1atCAa\noHw+H1wuFzk5OejSpQssFgvOnz8PvV7vwLD68ccfIyAgAA8fPsQPP/wAjUZDdEi3bt0KDodDMov9\n+vUDRdlqBlNTUxnlt9q0aVPnfS4pKcFaicQtub8PhUKH4PuiRYugUCiIru6PP/4IT09PqFQqHD58\n2O1nfffuXQQHBzvJIdF269atOt87d1pMTAxat26N3bt3o23btoTB+ebNmw73lLYlS5YgICCA0bF+\n8OABke3p2bMnY6LCfk169+5dvPfee9Dr9VAoFPDy8sLTp0+RmJgIpVKJ3Nxcp/1eeuklALY5Wq/X\nkzpjwBY86du3r9M+9HuuVqsxZ84cvNiAksHVq1fXew/tz+HvZP9/nVIG2759u8ND5fF4DYoYurJL\nly4x1gpmZmZCp9Ph0aNHqKysRHx8PJYuXYpWrVo5bCcSiUgUlmYWbNu2LQAbpEIkEgEApk6dil69\nemHMmDEuX1Q6ckfb5cuXGc9NJpOhsLAQP/30E1QqlY1hrwF1i5s2bXJr8ElKSsK5c+dw+/ZtJx1I\nNpuNjRs3QqfTYffu3UhLSyOZxIY4Ya6OPWzYMHIfzpw5g8jISAC/67NqNBp88sknCAsLg0KhIFTe\nADBnzhyEhoaCzWY7LfxpWBe9EKEoW9bKaDQiIyPDAQZ2/PhxIp5OO7A01IvD4eDbb78l/Z48eRJq\ntdohMmvvfLnLGsfn86HT6VBUVOR03gU6nUsorZWi8Gmte+qOU1lBUVhTMyHUfgaP3XifQP1O0GTf\ngoODUV1djcGDBxPiiw8++AAffPCBy2culUrx0UcfgaJscGUWiwWJRILMzEy88847yMnJQWhoKNLS\n0hi/C3dZgf/dtOslJSWIiopy65uixbs9PDwY2R03b97stI9GoyETa6M12t/BqqqqEB4eDplMVr9k\nkQt0VCWLhacUhW4ikcO8+PXXX4PL5SI7O9vJIV2/fj0kEgkhmqODhk+fPkW6jw8+8/FBKZtN6vxW\ncrkIqJnPGqLtHRUVxcj8XrvFxsbizJkzkEgkMJvNDiSKJ0+erFN6Zc2aNXj27BlMJhNYLJYD435D\n7NmzZwgJCUFOdDQ+EosJN8BTDgc/paWhbUAAWCwWJk6cCKvVitjYWHA4HKSkpECr1eKHH34AYJuD\n6spi2TsBVqsVKSkp2LZtG5RKJVgsFs6ePYuePXtCqVTipZdeQkBAAHg8HjQaDSQSCZHvqqiowODB\ngzF06FAANoIsHx8fhISEoGnTplCr1SRAfPPmTVy8eBEGgwHr1q1zuvYxY8YgPT0dBoPBgSARsBFn\nsdlsTJ8+HdYrV7BKKCT3pkosxhqJxGmNUh+E093AaAmbjaZNm6KsrAzl5eUIDQ0lpV7V1dVISEiA\nwWAgTmpD7Pr16/Dx8XGCGRcVFdWpsOBOE4vFuHLlCqZMmYLp06ejb9++WLNmDSorK9GyZUt4eHg4\nIBjfffdd+Pv7k3Kq2jZ+/HgkJSUR8iimY/r7+4PD4eDQoUMAgC+//BKpqamIjo4Gm82G2WzGgAED\nSElffn4+2TcoKAiPHz/GkydPEBkZ6UB6ZLVaMXjwYKfjcTgcbN++HStWrMC3336LI0eOICEhwa17\n//HHH9cbuNHr9fWSUv1VrdEprWVTpkyBXC6HSCSyMc3SMhl/0nbs2MH48nTs2BEjRozAlClT0KFD\nByxYsICw79kvvktLS1FZWYm2bdsS/VDA9tKz2WycP38eSqUSv/32Gzp16gSVSuXyhaW1Cp8/f46E\nhASMGTPGSaeTy+UiODgYZWVl2LlzJ7y9vd2uW3xcc861j+tqUT1mzBgAwLVr1xg/rl27dkGtVuPo\n0aMEEuKuM0RLoHC5XKSnpzv1v2HDBgC2D71bt27keb399tsICQkhREoymcwhQFFZWQmlUonw8HAo\nlUpSkwPYWO3obDeLxYKHhwdUKhV++OEHMnAtWbIET548QWhoKIFmzZ8/nywgOnXqBJlMhsuXLwOw\nRQiNRqODMPPnn39ep+YrvSiqjQBgs9nIz89H8+bNUV5eTvqzXrmCsnpqRCt5PITZwUfdDQ4Mzsj4\nU06eheG9SUlJwb179zB+/HgolUrk5eVBoVC4rFMODQ3F2LFjIZfLwePxiKba1KlT8dZbb2H8+PEo\nLS1FcHAweDweWrdu7XB/ZTKZ25nhf2em1GKxMBJkuGobNmzA6tWrkZWV5dTXjz/+6ESColQq4e3t\n3QjbbbS/jVVXV6Np06aQSqX1ww7d4JGw2tWBHz9+HDweD5mZmU4O6eeffw6xWAyDweCgoQkAH2Rn\n4zmb7TIoeH3FCrfRRqVsNkaNGoULFy44yJvVRgupVCqcO3cOMpkMvr6+TsRku3btYiwJohvNZ8Bi\nsRgZRBtiP7/zjkvk0lOKwtL27QEAGzZsgEajIUHB2tqOrogfa7exY8eiffv22L17N5YvXw42mw2j\n0Yjbt2+jZcuWUCgU8PPzg0gkAovFglarRXl5OTIzM7F06VI8evQIBoMB+/fvR3p6OvLy8sBmszFs\n2DDMmzcPHA4HSqUSERER0Ov1hOG9tt24cQNCoRCdO3dm/P3dd99FBxYLlXw+LLXmDwub7UQIyWKx\nHKDFTtaAwIbBYMCUnj2xPziYBEogk+Fcy5aIVSjQv3//P8yufvnyZej1eiJfUlxcjIiICLfnKXsn\n1P7v5ORkADYCro4dO2L8+PGYO3cu8vPzERsbiw4dOpBzWLZsGXx9fYncS21bsmQJwsLC8ODBA5fo\nqaZNmwKAA7HltWvX4O3tjcOHD4PNZoPL5eKdd94hv1dWViI4OBje3t4wmUzYsWMHOnTo4JBwsFqt\nGMWA1uNyuU5Z5gcPHkAul9f7LHbt2lUn6RLdXnnlFTef4l/PGp1SBvv+++/xyy+/ICwsDBKJxIGQ\n6M/Ya6+9xvhBKhQKKJVKbN68GWw2G2+++SaqqqrQpEkTmM1mhIeHo0uXLhg0aBDatm0LqVTq4EzI\nZDKkp6djwYIFuHHjBqRSKbRabZ2sdlu3bkWPHj3Qu3dvWK1WfPPNN05Og0AgQF5eHgBgxowZbsFG\nrDweLrZu7XQ8NpuNjIwMxmwZRVFYvnw5cnNzGT+4Nm3aYM2aNfD398eJEycgl8sbnGHbsGEDHj9+\n7JSNlUgkuHDhAmbOnOkA1bZarcjNzYWnpyfkcjmhY6cjum+99RbS09ORnJyMbt26wc/PD/fv38fu\n3buJQ8rhcMDj8aBWq7F7927S97Vr16DX65GYmIiQkBCIRCKMHj0afD4fQqEQHA4HIpEIBQUFaNGi\nBR4/fozo6GgCtQJsE0JdEGkPDw80adIEPB6PkYmRFni3r5U6m5LiVr3T4Zp+6b7qy9B24nAITLb2\nvS9xc4Kln6NGo8Hw4cMhlUrx6NEj7NmzB97e3igsLERgYKBLtj+lUomff/4ZXC6XCNdzuVy0adMG\nFosFmzdvRk5ODioqKhAfHw+RSAS5XA4fHx+wWCwy2e4wGP7rtOuTJk1ye4Kn9RNTUlJIrRhtDx8+\ndHr/6feTiayh0Rrtr2hWqxXNmjWDWCx2uRh1MDe4EOhv9uzZs+Dz+WjVqpUTn8SJEycIl4M9iQ4A\nnNq8Gc/qGxfEYiAvzy32/7UyGSwWC44cOQKlUkkYZXv37u2QJaHZQY1GoxNb/s2bN6HVanHkyBHG\ngKx9Gzx48J97KG44/hCL8eC77+Dh4QG5XA6lUon58+dDq9U61N8BtkBc+/bt6x3vwsPDsWHDBixc\nuBAdO3aERCJBUlIS7t+/D41GAxaLRbRWY2Ji0KdPH5w+fRparRZPnjzB1q1bIZVKkZ2dTeT6xo0b\nB71ej/379xOHxGw2Mwbt6Ll5/Pjx0Ov1zORQhYWoqOeZ26O6goKCnFBM9lZV332uadUyGV6Li3M5\nNz9nsVBhF+T+IzALuzAAACAASURBVHb69Gmo1Wps3bqVkSCwPgeKhnMHBweDw+GgX79+UCgUuH//\nPq5fvw6tVot58+YhNjYWLVq0wMKFCwnCbeXKlTCZTA6BIXuj5X1+/fVXl0oOKpWKkdzJYrFAIBAg\nIyMDcrmcBMA++ugjsk11dTVyc3ORlZUFsViMlJQUwhJstVoZ520+n48RLtYGGo3GqaTK3vbv3++S\nJ6N///4wGAzk70uXLrn7CP9y1uiU1mE3btwgsMC7d+/+W/pkquFks9nw9fUFj8cj8hbz589Hamoq\niouLYTaboVaroVKpsG7dOmRmZjr06enpieDgYFRWVmLYsGEQCoU4efJknexnPB4PUVFRDh/k2rVr\nGT+iVatW4fjx425lxcq5XOxbtsyBjEUoFKJDhw4QiUR49uwZxo8fzyhDwWKx8MUXXzCSNc2cORNT\np05FixYt8NVXXzUowzZq1ChyjWfOnHHSAw0PD0evXr0cBhzAVicjkUiQkpKCjh07YuPGjfDx8cE3\n33wDpVKJq1evori4GP7+/ujQoQOhcqcdehr2sWTJEqf3oKCggMB1J0yYgFGjRhFY7b59+8BmsyES\niRAXF4fIyEgUFBQQ5/HRo0d1MhOz2WzweDx07tyZRNmZyHHMZjMiIyOxYMECHDlyxO16J6tc7gQr\nixAKUdyjB0pYLFhr9L3qYmDm8/lITEx0y8mzz3jTWf7c3FzMnj0bWq0Whw8fRmlpqct7wmKxEBwc\nTKjT6WYwGMhC7sSJE4iNjUVBQQGys7Mxf/58IsyekJAAoVCI5OTk/zrtOg01dqfR0PzLly9Do9E4\n0Oi7WuSlpKQ0wnYb7W9jVqsVzZs3h7BWvVyd5mZ20iKVQigUIikpCRaLxaGLS5cuQS6XQy6XQ6PR\n/C6fBRsz6nq53L1gVd++brH/B1AUevbsCZ1Oh71796KyshKXLl0imRe1Wo2uXbtCqVRCp9M5EK0A\nNmhzamoqYYy9efOmS+giPV/ZZ4oabO44/hSFX2UyhNWw5H733XcAgC1btkCn0+HcuXMOXdJwzfrG\nvezsbPTv3x8rV67E22+/DZlMhi5dupAMMQ1L1mg0iIyMxOjRo5GXl4dp06ZhwIABUKvV8PPzQ35+\nPqZMmQI+n4+TJ0/i6tWrEIvFkEgkiImJQUZGhpO8R1paGkaOHAmr1YoDBw5Aq9U6w0jdIYjkcPAe\nZcvaqVQq/Pjjj4y3+dSpU1glELg1Zx729UUln/8fn6v+9a9/MaKg6Hrquhot2VJcXIzjx4/j+fPn\nyMvLw+LFi2G1WqFWq9GxY0coFAo8fPgQEydOxNy5c7Fq1Sp4e3u7HANobdwzZ85g7ty5Lo9Py+7U\nturqasjlckRERCAuLg6PHj1CREQEJBKJA0S7pKQEGo0GUqkUKSkpZNxgcoLpdbCrbGjLli1JPTLT\n9bhKMr388suoqqqCXq/Hp59+6pDR/Ttao1Naj3355ZeQSqWIiYlxGJD+qFksFsYCdxaLBZ1Oh+rq\naiLuS0eB33nnHbBYLOj1erRs2RILFy4k/T19+hRcLhdr167FnTt3wOFwMG/ePKxYsQJhYWEuJVEo\nygaNrV2LUzu6k5ycDE9PT/j5+YGi3Ktb3LVrF0wmE+njtddeQ9OmTeHj44O1a9eiuroa33//vVMG\nj9bKLC4udjpXNpuNL7/8Erm5ucjLy0NFPexzdHtMUU6Z7pUrVzr1r1QqHaQz3nvvPYSGhuL06dPQ\naDSIjo7GlClT8Prrr0MqlTo8g3PnzkGpVJKBmWYRbNKkCWHts7dt27ZBpVKBy+VCKBRiwYIFEIvF\nyM/Px8CBA5GVlUXOUSwWg8vlkgnbYrEgMzOzzoGeJi+wd77T0tIwZ84cp2379OlDsuoNqZc8cuQI\ngbaq1Wq0bdsWLVq0wNSpU+tliOVwODAajZgxY4bb8F8zZWNrpuUe9u7dC4lEgtmzZ6O6uhrZ2dl1\nTjx0FJdm/hWLxSTrDdjIG8RiMaKjo0l9c58+fRAYGEj01ujrre8buOiCAKKh5ooFmKklJyeTANPk\nyZMxfvx4h76mTp3qtE+HDh3g6+v7hzQdG63R/ttmtVqRlpYGgUDQsExAA+COMTExTg7pb7/9BpVK\nBYlEAqVS6eQwTJo0yW3EB3g8QCRyi0SODhrR88fs2bMhFAqhVCpx5coVIk3GFDCfPn062rRpQ7K9\nP/30E+RyOfr3749p06Yx1pm6BYV2ZW46/lYXY+TGjRuh1+sdnH3AJqPBJJVXu5lMJhw7dgxWqxV9\n+/YFi8WCSCQiSCcvLy9s3rwZKpUKgYGBGDduHIRCIXE2BQIBtm3bBo1GA5FIhB9//BF+fn6YPn06\nCfpHRUWhffv2KC8vR1VVFbKzs9GrVy+HjPr8+fMRHx/vgGRz995UicUoKyvDxo0b4e3t7UBwCNg0\nz3U6HTqEhLg1ZxYmJf3HUT1PnjxhTCLExsa6NW9RFIXAwECHAOqhQ4eItnZERAQ8PDyQmpoKAISo\nyGg0ktKm2kZD3vft24fFixczHlMsFkMmk0EulzutD2m2ZA8PD8ycORPNa+R1Hjx4gODgYIjFYkIi\n9MUXX0CpVMLDwwOxsbGYM2cO3nrrLafjiUQiUt/ryl566SW8W4sxGbDVhdMyN7Vbu3btUFVVhc8+\n+wxJSUkNe3h/UWt0St2w2bNnQ6lUonv37n9KIoa24uJixqiHUCjE9evXERERQVh5aR2xhQsXQqPR\ngM1mY+XKlaSvV199FV5eXjh27BgiIyNhMBhw9OhRqNVqXL58GefPn3fpILRu3dqpBqW6upo4PXq9\nHoMGDXKKVhLKaR4PForCE8oxKyYUCiEWi7FmzRpERESAx+MhNjaW6HnSEIWdO3c6FWwHBATg3r17\nkMvlTr9ptVr88ssviI+PxycajVvRwp9atSJ90kYTEdW+HzTOf8+ePdDpdAQWsnfvXuh0Onh7e6Nf\nv35Qq9UOjIwVFRVOWbrY2FgyYNgbzXgnEokQEhKC/Px8sFgsJCQkoLKyEhUVFUhLS8OkSZNIVt1s\nNiM5ORkWiwUTJkyoc4APDg4murT279WmTZtgtVrx4osvkv/TVOZ0kMTdeslqmQw+Pj544403wGKx\nsGzZMiiVSjRp0gTXrl2DWq0mdZtMDqlMJsOWLVvI83WXoMmeTW7y5MkQCoU4deoUIyyebkFBQbhx\n4wa4XC5YLBaBE02cONHhuezcuRMUReHixYsYOHAgBgwYgJKSEigUCkICwvQNlHI4pHaX/gYSEhL+\n9Dhx7dq1OuvCa38zNPOoxWKB0Wh0mGi3bdvmtE98fDxMJpNbWoSN1mj/VWNgycWwYeiXnAw+n++U\nUavXGkAMU3u8fvjwIXx9fSEUCuHl5UWkKWj77rvvIJVK3Q/o1Wq0c1rOZuNDoZARWTJx4kTCnMpm\ns3H48GEYDAZ4eXk56DfSdvDgQeh0OhJwLioqgp+fHyHp6dGjBxmLax9LqVQ6wYDdMnedcroxZOj+\n+c9/wmg0OgUcysrKnKT1mJxqmrBn+PDh5NrWrVuHY8eOQSqVwtfXF1u2bIFKpYJcLodYLIavry+y\nsrIwf/588Pl8rFy5Eu3atYNarSYIp5ycHLz55psICgpCeHg4unbtioKCArRr185BNxUAkQ6hCZQa\ncm+sLBbZ5Z133kFISAhZt1y7dg0mkwmZmZlgsVh1zpnPKAod2Wy3kU9/lP+gtLQUKSkpjHNL7edl\nP4fSnCj271+/fv0c7mFoaChmzpwJqVSK3NxcREVFAQACAwOhVCpdZvVv374NPz8/rFmzBsuXL2ec\nLw0GA4YPH46LFy9CoVBApVI5BGOmTp2KmJgYDBo0CCNHjiQOMQDcu3cPAQEBEIvFWLt2LdRqNQ4d\nOkRQdExoBJFIBKPRWC87+JIlSzB8+HCH//3444+MpU/0Wo8O0nfr1s3BL/g7W6NT6oZVV1ejU6dO\n0Ol0mDZt2r+lz48//pjxRdPpdOjRowesViuuX78Og8FAyG3Gjx8PNpsNjUaDixcvonDfPqwSCPC0\nZmFcwmLhTIsWaKHVOtQw0mLO9i0kJASdO3dmXDw/ffoUEydOhMlkgre3t8vFsF6vR8+ePdGtWzen\nSSIkJASAreaCU1NTWFZWhunTpxMIQ0lJCWMNYGpqKmJjYxnJXdLT07F8+XK3M2wXdu8mWlz2E8jT\np0+divKFQiH2799PSJXs7c033ySscps3b0ZiYiLeeOMNG2NtQQFxeijKlvUODAx0oJsHbJE2X19f\notd54sQJyGQyiEQidO3alTi59+/fh9FohEwmQ1JSElgsFnx8fNC7d2+Xz4KibJBsLy8vJ4d70KBB\nGDJkCACbDE2LFi0gl8sREBCAyMhIcDgceHp64p8yGaz1wIyqWCxsNxgwZcoUvPDCCxg3bhzEYjHM\nZjOUSiX8/f2hUqkYSQXYbDbEYjF27NjhFPmzJ2iqLf1CT2r0u7pv3z4YjUZMnDiREQ5v70B6enpC\no9HA09OTOMlhYWEO1PtnzpyBWq2Gr68voZZ//PgxunTpgj59+jC+ozweDyEhIRgzZgwjxTyTbq27\nVlJSwigDURt2TlE27UP7CXrv3r0OLH7nz593mih1Oh3y8vL+fB1ZozXav9vqYcktZMgk1GvDhgH1\nEbhRFB726eOw2/Pnz4lupUKhIHBT2ioqKhAQEAAul+s2x4GrZqUoPHv3XZc643w+H0qlEl27doWP\njw8UCgVjVvPevXvw9vYmEhrPnz9HUlISWbcMGTIEFGULSHt5eTHyDfj4+DSc9MxdqSy6ucjQffTR\nR4ywzKdPn5Lgqbe3N5o3b+7kVHfs2BF79+6FSCQCl8slwdHCwkJ8+umnEIvFaNasGQYMGEBKZzgc\nDo4fP47Y2Fj4+/tj2rRp0Ol0hKUWACFY/PXXX2E2m+Hl5QWlUuk0v9P2+PFjBAUFNVhK7zFF2VQO\namzy5MmIj48nfAmdO3d2eF4BFIV/CASolskANhsWiQTL2GxkBgVBqVT+R5ninz175qQSQVG2ILDJ\nZMLOnTsdOC/i4uKQmJgIk8mEL7/8EtOmTUNaWprDNvb6rEOHDoVAIMDixYvRqlUraDQabNq0CWw2\n2yXEtaSkBDExMZg1axZWrVrF+B2Fh4cjJiaGZLLPnTtHAhaPHz/GvHnzEBYWhuLiYixatAjZ2dlo\n1aqVw3GKiooIOZi9P8BUt01n62sjAJhs3759SE9PJ39fvnyZ6NzXbgqFggRvaH3h/yuIp0an1E17\n9OgR/P39oVar/9SCE7DVSiQmJrpkKps1axaePHmCqKgoB5joihUr4OPjg+bNm6NAp8NzNtuJza2S\nomxF9Xv3kv0qKirIsWjmr4qKCrRs2RKvvvqqy/McMWKES/igWCyGVqvF559/jsTERLz66qtO22ze\nvBlTp05Fjx49oFAoEBcXh/LyckRHR2PVqlUICQmBWq1mpID39fXFP//5T4fibfsJmqLcy7DJZDLc\nv38f2dnZDnWZgA3mQcM5KcqmH+bj44OPP/7Y6V5UVVVBpVIhKCgIfn5+OHfuHHx8fNC3b1+HTDQN\ntw0ODib04fT+GRkZ0Ov1RE/Tz88PMpkM58+fR1JSEqZPnw4AuHLlCoGEHDx4EL6+vozPwL41a9YM\nQqEQCxcudAgQjB07FgaDAVqtllx7WVkZTp06BbFYjACKwgccDiwSCSOkrHZ7SlHoGBqKHTt2ICQk\nBJs2bYJSqYRWq0VsbCzYbDZ69OjBuNgRiURYsWIFYmJi6r0e+9aqVSuIxWLcu3cPt27dgk6nw4ED\nB/DZZ585bUs7pEFBQYiOjoZUKiUMyPQ2u3fvhsFgwI8//ojbt2/DZDJhy5YtSE9Ph6enJ44ePYpX\nXnkFLVu2dGDBpptWq8XMmTORmpqKGTNmYPLkyU7C2jqdzkGawV2zWCzo1KmT0zHtGTjpxuFwnAiK\nunfvjuXLlwP4fXFkvw+Xy8XixYthMplcLqoardH+V8xNspwG18B99ZVbTmEPtZqUzFRVVSEtLQ08\nHg9yudxBmou2CRMmEMfoX/7+qOZy/5RjCg4Hm+fMYazPo+cWk8kEmUzmBO0EbBmmzp07ExRIdXU1\nevbsSVA9tDZxeno6rFYrNm/eDB8fH0YkVUREhCMEtT5zs6bUobnI0P3jH/+Aj4+PE4FNSUkJ0Wnu\nnZCALWo1kVd5QlG40q4dmkgkYLPZ2L59OwoLCyGrQfU8efIEH3zwAQQCAQQCAWJjY8Hn8yEQCODp\n6YlBgwbh22+/BZvNxpgxYyCXyx3QVS1atMCWLVvw+uuvg8fjwd/fHwMHDnSJiDl37hxUKpWNwGnY\nsHrfDSuPhw01CCp7eZy8vDxIpVK0adOGsUaz9lr04MGDYLFYMJlMKBcI/tRzcGVlZWVo06aN07kk\nJSWhpKQECxcuhNFohL+/P95//320bdsWISEhBJm1f/9+GAwGFBUV4eHDhyRoymKx8M033+C7776D\nUqmERCIhpVEcDgcajQZcLpdR6qSyshLt2rXDkCFDsH79ekbJlPj4eKhUKhTWGj9OnToFkUgEg8GA\ngIAAgj7YtWsX4uPjnbRjy8vLkZiYCIlEAqlUirNnz2LdunVOxxQKhfDw8HCbRPDGjRtEK5lm/2Ua\nB9hsNgk6AcDixYuRn5/foGf4V7ZGp7QBdvbsWZLlovWM/ohNmzYNcXFxYLPZiImJccoystlsNG/e\n3IFeGrAtOD/44AN0CgvD8/ogIXaTt8ViQXJyMrp27YoVK1YgMTERFouFQBFcOdlbt251+tDYbDa8\nvLyQnJyM/Px85OTkQCQS4fTp007XoVAo4OHhgZs3b+LSpUvg8XjIz8/HDz/8AB6PB4FAgN9++w0V\nFRWMUaZ27dqRbe0X1fbbBFA2yRNXGTbaQXn06BGio6OxYMECh2vcsGEDTCYTQkJCIJFICHtpbVux\nYgXi4uIQGhqKDh06IC0tDUuXLiXHYLFYkEqlUCqViIuLQ1hYGPr27UueH+0cCgQCbN26Fenp6RAK\nhUS0uqioCL6+vli5ciVCQ0OxfPly7Nu3DzqdDvv3769TlyoiIgLR0dEICwtzqOXt27cvwsPDMW/w\nYKzgcGysfTVwuFvZ2SigmJ36+uqdBAIBvL29sXTpUqhUKpw6dQrp6engcrnw8fFhzOixWCykp6fj\n5ZdfdnkdFEURnVY+nw+xWAydTkdIubKyspCWloYZM2bgzp07ToM2fY9yc3PRtGlTAuul30upVAov\nLy907NgRs2bNQn5+PhISEjBz5kxYrVaYTCa88MILWLNmDQICArBkyRLGcwwLC4PFYkHr1q3RoUMH\nDBkyBFevXnW67roCPq6MCZ7NFJihKMoJrnPv3j0oFAo8evSIoDtq77No0SL4+vo6TGqN1mh/CWsA\nS26D+3UjU/ouRcHPzw/Xrl1DTk4OeDwepFKpba6vBSm2SCRYVjPPtGnTxi2G1fqalbJlvvbs2eNS\nxoXH4zktqml75513EB8fTxBB06ZNQ1JSEp4/f074BBITEx0cqf79+6NTp06MUF66ZMQtcyegULvV\nkaFbvnw5eRb29vDhQ3QTifCUsmXPmeaobYMGke0PHToEoVCIli1bYt++fRCJROBwONDr9ZgxYwYJ\nSi9cuBChoaHIzMxERkYGcnNz8cEHH5B+tm/fjoCAAFK76ufnBz8/P0JyxGQbNmyA2WzGk9On65da\n4/NR+sMPCAoKgkQiwfnz5/H06VMkJSURB612OQcdXKCturoa3bp1Q5s2bcDlct0n32rA91ReXs5I\nmNesWTNSClZWVgZPT0+YzWYiVWg0GvHpp5/izp070Ov1Do6afTkbneHetWsX+vTpg0WLFsHDwwMs\nFgvr16+HyWRyOie6LKlTp04uNTyTkpLg5+dH5Gtq25QpU8h29nXYRqMRL7zwgsOx+vXrh65du+LX\nX3+FWq2GSCRihJMrFAp8+OGHbt9bq9VK1CACAgJcrpHsE1VWqxVRUVE4cOCA28f5q1ujU9pAo+se\n1Gq1++x/dnb48GGoVCrweDz07dsXlZWVjBlTLpeLGzdukP0sFgu8vLzw22+/4X7Png0abF5++WW0\nbt0alZWVqK6uRqtWrYgm2fnz56FWqxkjwQDQtWtXB1hqcnIyhEIhioqKUFZWhvj4eKjVaphMJkgk\nEqfMqtlsJgPn7t27wWaz0aZNG1JHSf/24MEDp6wORVH45JNPMGnSJPD5fMbIUUxMDIRCYb26ZtnZ\n2bhx4wYMBoOTBtj48eMRFhYGb29vvPzyy0734Pr161CpVPjpp59w8eJFqNVqxMTEODjI9ES3adMm\nPHjwAIGBgTAajXjvvfewdu1aqFQq8Pl8zJgxA6NGjYJQKMTq1asdjvP999+Dx+MhNzeX/G/RokUu\nZU4oygZP3bp1K9hsNnJycsj/x44dC6vVivc6dkSZC+28+rKioGx1LqUcDpax2Q6OvkAggF6vx7Zt\n2/Dxxx/Dw8ODBCGY3uWkpKQ69fICAwPh7+8PT09PImR94MABqNVq8Pl8yGQyaLVahISE4NmzZ2je\nvDljP507d4bJZMLixYvBYrEcYMLp6ekYMmQIAgMDsXnzZvB4PHTr1g1WqxXLli2Dt7c3cnNzoVar\nsWXLFicnUy6XE5j28uXLcefOHXh6epKak9pkQkFBQU41R3UZE+TIw8ODMXNSm8gIsC1K+9RAEKdP\nn+60z4ABA/DSSy9hwIABbp9TozXaf83chYA2tAauAfBJ+jvncDiQSqW2xbMLSHEFReE5m01QSUNM\nJpdBPreui6JQKRIBABYuXOhyrHzrrbecLpHma6Czi+vWrYOfnx+KioqwbNkyUBSFyMhIJyezpKQE\ngYGBePXVVxkX81lZWe7rWNbcJ3ev11rPc3z33Xfh7+/vyGZbWIhqkajOfi1CoUM2fdWqVURurWfP\nnvDy8oJIJEJmZiZ0Oh2p2RsxYgSqqqoQFxeHESNGOEApaX1Iui73119/hY+PD0wmEyZOnOjyHo0c\nORIZGRnoUAM/d4Xq6imX4+HDh3j06BF8fX0hlUrRokULJCYmwsfHB0FBQQ6OD5/PdyL6GT9+PFq2\nbIny8nLMmTPn384UX1FRgc6dOzu9I9HR0Q51yLNnz0aXLl0wYsQIeHp6IiYmBgUFBbBYLMjIyGAs\ngbtz5w5ZO0okEpSXl+PQoUPw9vYGn8+HVqvF6tWriYapvU2bNg3x8fEOPBX2LT4+HtnZ2Q4qDPa2\nZcsW6PV6rFq1ClwuFz179gQKC1E1eDDJxNN17cvGj0dsbCyePn0KwJbVr308DodDyBEbKs3SpEkT\nQirK1Grryp46dQr+/v7/Fq6bv4o1OqV/wIYPH46mTZsiKCioQaQAjx49gslkImy+9Mv1zjvvMEZa\noqOjCQT05MmTCAsLAwCU1UfzbTd5r1ixwqEgGvgdHmpP5KPX650gQfv374fRaMS6deuIniqfz0dO\nTg7y8vJgtVpx48YNIl8ya9YsvP32207XQcMJASAvL49MALGxsQ6RpJ9//tnJcRGJRDh27BiMRqNT\nvyKRCN27d4fZbEZsbKxLhjK6zZ49G8ePH/8dVlNjQUFBCAsLI0Xy27ZtI79ZrVZkZmYSKRLAFpig\nnxcdYebz+Zg6dSrZ5vLlyyTCKRaLwePx0L17d3z44YcQCAQYO3asw722Wq0YNmwYmjVrBp1Oh2vX\nrhH4DtO1BFAU3qdsjH3VFIUSisJ7Nf9PTk62vVuFhTZR+AYsiuxbNYeD8txcfMDlksH5sd1xAgIC\ncOzYMeIwHj582CkowWazERwcjLNnz7rM9np4eODo0aMoKChAqxpiqqSkJDRt2hRfffUVeDwe0RX1\n9PR0ybQbHByMadOmISsri8CydDod0X3lcrl4++23sXPnTqjVamg0GkydOhWXLl2CSqXC1KlTIRQK\nsXnzZifItFgsRuvWrREVFUX0X8+dO4e33noLfD4fRUVFKC0tJdlwqVSKO3fuuD02HDp0yOne8Xg8\nRqbujIwMxkkoOjoaX375JXbt2sU4Mf/rX/+Ct7e3E7lZozXaX8LcJctpaA2cm/1a7L4XOjPjLqT4\n53/9i4zLtWvj6w0g17q2r7/+GmKx2CXBCUU5ZktKSkoQFBREyk5oOYyffvoJGzZsAB30Y4I9AjY5\nLI1Gw8gaSlE2TgK3rbAQ9/X6eh3TCorCDqOx3qDd4sWLYTabf9dvdCObXkFRuN+rF+nj4sWLEIvF\nYLFY8Pb2xt27dxEaGgoWi4X3338fXl5eYLPZUCqVuHHjBuEYkMvluH37No4cOQK1Wo0JEyYgOzub\n9Hv16lV4e3vDYDC4RFhVVFSQ0ov6eBNo/c2ioiLC9k7rbD58+BBKpZJkFGsfb9myZQgODsaDBw9w\n4cIFEsh2VeJUSVGoEggcyrzqssrKSqcSFTrQYQ9zvn79OpHLW7t2LaQ1MkvFxcWYOXMm0tLSGLPv\n9+7dQ2BgIFkjxMbGkkBAVlYWfH19MWnSJPTu3dthv5UrV8JsNuPjjz9mXEM3bdoUCxYscGZErrE9\ne/ZAo9EQyPT27dvRkc1GOZfr9J5Vczh4xmLhXg0J6RdffOEEfWez2UhNTUVERAT8/f3RtGlTt2Hw\njx49ciCorN2aN2/u1Nfw4cMxc+ZMt/r/u1ijU/oHjMaUp6SkoFWrVm5lQ6xWK3r37g1PT0+o1WpC\nDf3LL79ApVJh/fr1jPWb3bp1Q3V1NebMmYPRo0fjp59+cruA3cpiQavVOoh80zZ//ny0bt2aOMaL\nFy9GVFQUqYN78OABvL29sW/fPgCAwWAAh8NBmzZtkJubi4iICKxcuRLTp0+HpKaO48KFC7BYLEhN\nTXVa0P/88884d+4cuFwuAgMDwePxsGfPHqhUKodI6IEDB5wyQ3Rm0f5/XC4X6enpSExMxNmzZ8Hj\n8dC7d29ER0fXCXXdu3cvNm3aBF9fXxQVFWHlypXg8/k4ePAgANsEbV938NFHHyE6OppQlldUVCAh\nIcGhz6CgMPVg3gAAIABJREFUIJjNZmRlZTkMuFu3biXbhIeH49ChQxAIBGjXrp2TU7F06VJERkbi\nyZMnWLJkCSIiIjBjxgzGa6Anmtr1xHTUtXLXLlunf6TOp/Y7xDCh2UN5xWIx5HI5vv/+e9y9exci\nkcjh/svlcvz888+MzhWbzcbo0aNhNptx69YtUjO1evVqZGdno0+fPujfvz+Cg4NBBwDMZjPjPeFy\nubh06RI8PT1hMBgglUoJI3L37t2xZ88eUJSNnGvlypUQCoUYN24c1Go1YmNjsXDhQgQEBMDb25uR\nPGnRokVQqVS4desWQkND4enpiXgvL9zs3BklLBaqKQrWGlj0rcOH8eKLL2LSpEn1DyY11rVrV4fj\nsVgsxoCE0WgkUVp7O336NHx9fXH+/Hmn4AxNjObv7489e/a4fU6N1mj/VXMzo1ktk/1H+n1c61sL\nCgpCab9+bkGKT9QhvbZKIHA7e1glkUAikcBgMJBsnKt+aT3C/Px84jgWFhYSrofdu3cTR6y+Ncrs\n2bPRqlUrRlJEimLOzrqyL5Yvd4uEMICykRO5cpZpe/vttxEcHGxjE3bzWT5hsfDzzz/j+vXr8PHx\nQU5ODiQSCfh8PhYsWACtVguz2QwWi4X8/HwkJydDIBAgNDQU9+/fx+TJk+Hr64tXXnkFGo0Gn3/+\nOZ49e0ZUDWgrLCyE0WiEVqtlvEfFxcUu1Q/69OnjNOafOHECBQUFJDPq4eGBW7du4dq1a/D09IRe\nr8fQoUMdnBNaLaCwsBB37951KvcIoCh8wOMRtYQqsRiFmZnoHB7uVobNYrGgV69eTucfGhrqJEeU\nm5uLN954A3fu3IFarYZKpUKLFi2Qnp4OrVbLyBZdUlKC+Ph4TJ48Gb/88gtZP/D5fIwZMwbp6enQ\n6XTIzc3FK6+8Qvb77LPPoNPpsG7dOkb4eVhYGAnQXL161em4X3/9NdRqNY4fP/77PwsL3dJ2Pb5h\ng0sFjdjYWJSWlqJjx44wm82M6Dume+CK5IyibORetYPcz58/h5eXl7Mu7t/cGp3SP2h0UXLz5s2d\nCHSYbN26dZDJZBAIBASWW1VVheTkZCxcuBCnT5+GRCJhrMebNGkSMjIy8Omnn6JVq1Z45iahwhMW\nyyXWnIaprFq1CoDNaR48eDCysrJQVVWFHj16YPTo0QCAr776CiwWCxEREZg6dSoSEhIwcuRIyGQy\neHh4QKPRQK/XIyQkBI8fP8bixYudolYDBgyATCYjWbzo6Gh4enri9ddfR9u2bR3u34cffkj2o8mF\nan/4FGWDrl6/fh0JCQmYNWsWgoODsWjRIhIVZfq4eTwerly5gtdffx1hYWHQaDTg8XgOC/2lS5ci\nJiYGv/zyCxFgpu9R//79wWazSf9yuRx8Ph8XL15EWloaIZkoLy9HQkICBAIBWCwWoqKiIJPJEBwc\n7KR3S2eq6foZq9WKDh06MJ5/gyA5DWVEbGB7SlGIqmHTtVqtiIyMhIeHB3Gw6Ovu0qUL47WsXr0a\no0aNwhtvvIEXX3wRIpEIZ8+exeHDh5GSkkIYkgUCAaKjoxnJfuhADi0mHxISAi6XC39/f1CUjTCr\nrKwMX3/9Nfz9/SGVSsHj8bBlyxZoNBr4+/sjMjISHTp0QL9+/RgnmtGjR2Po0KF47bXXAACXLl1C\nd4nEFgCofV94PEAsxoP166FUKhkDQkx269YtB2dy0KBBTt8Qj8dzOQGNGjUK06dPxw8//OCAKuBy\nuTh06BBGjBiB/v37u3UujdZo/yvmZhZsk1LpgPxxp9/6iGYqKFvWqva3765MVinDophu8V5ezuOE\ni3NYweUSpEyrVq0IjNhV3/369UNYWBiePXuGhw8fIiQkBMuWLcOhQ4fAYrGg0Wjc0le3WCxIS0vD\n3LlzMXz4cMZjuSs5ceLECbdlviiKQk5OTr21q3PnzrVpVzZAXsVoNCIgIADZ2dkIDAxEYWEhkSbZ\nuHEjmjRpAolEAoVCgcuXL8PDwwNGoxHx8fG4d+8edDoduFwuNm7cSM7jtddec5R7gQ3hpdfroVar\nGXUmDxw4wOiYnjp1CoGBgQ7/02q18Pf3h7e3N44ePQqlUgm1Wo02bdpg1qxZuHjxIrRaLSlBorO6\nR48eJeVUTHMkh8PBwIED0aVLF3C5XBw/fhxxcXHYunVrvc+Trre0b0FBQU4a919++SX8/f3x/Plz\n5OTkICIiAiNHjsT169chEAiQmZnptE4uLy9H69atMXjwYPKbvY78h5MnYyWPR5BaFUIhMGwYzm7f\nDpVKhTVr1jB+H4GBgbh16xZ8fX2xfft2p2s6duwY1Gq18/rYjTGomsvFCoaSmm7duoHFYhHtb1pO\nSqlU1hkMfv78OSOTMd1EIhG+//57p/02btyItm3b1vv8/m7W6JT+Cfvyyy+h1WoRERGBuXPnutzu\nl19+IY4SnZEDgFmzZiEjIwPXr1+Ht7c3tm7dihdffJHRMRUIBFi1ahX8/f2xRiKB1Y1J9rxdTQST\n/fDDD1Cr1SR6RWtkduzYEeHh4Xj+/DlKS0uhUqnQunVr3L59G3q9Hps3b4ZOp4NAIEAgi4XrnTrh\nCVUjjM3hYI1Egvk1MhlsNhuRkZHw8/OD0WgkUdGysjKo1WqEhoYiLi7OgVQAsMnYiEQixnsREBBA\nmM369etH6l6uXLkCrVaLBQsWMEbO6EYP4gKBACkpKTAajQ7HtlqtyM3Nha+vL3FEAJuOlH0222w2\ng8vlIjs7G82aNcPNmzcRGBiIDz/8EAMGDCB6pL169QKbzYZAIHCKdp07d86ppvfChQsuocjvMUz0\nTo2uJ26odlwDWwVF4UBEBAAbUzOXy8XcuXMhlUrB5XIhl8tdZjazs7NRWVkJtVqNL774Amw2GytW\nrCDXT0sKjR49GhRFYcWKFU4ZdPrvnTt3IjIyEhKJBCwWi8i/CAQC4sRNnjwZo0aNInBqGuZLa7pm\nZGTgk08+cTrP5ORk3Lx5E56enigqKrI9oMJCG/SprvsjFmPFxIno3Llznd8g/d21atUKBQUFkEql\nyMrKcppo+Xy+S5KGsrIyKJVKXLt2DZWVlYTUgaIoLF26FAcOHIDRaGzYQr7RGu2/bW5AZekMW0JC\ngvsSCIWFKKvHuaT7jYqKcvju3EYlsdno3Lkz4uPjoVQqncaRAso9ZvNgDgeFhYXIzMwEj8dDTEwM\nPvroI0YiQLq9/vrrqKysREZGBsaMGYNTp06RLFtDpF1u3LgBtVqNEydO4MUXX3RiUGez2W45MTdu\n3LDN01TdcFX7lpeXV2/WbubMmW4HCZ7zeDCZTBCJRDCZTLh+/TquXLkCjUYDsVgMPp+P4cOH4+rV\nq1AoFPD29sb27dtJtjQtLY3IftiX+hQVFcHDw8NJc/LSpUukPrU2uc369euRmprqRFRUWlqKffv2\nOd0LhUJB+Epu3LhBGP3ptQON5tqxYwe8vb2xZcsWVFdXM2YzKYrCjh078N5774HH42HkyJFo3bo1\n0WRtGxCA6pdectIEtq8zvXPnjsO5BwQEOMkRVVZWIiwsDDt37sTWrVtJQKCkpATt2rXDuHHjkJCQ\ngAkTJhDn02KxoHv37ujWrRsJStCSfKtXryaBjdqEVlYuF88oCjuGDGGEuNOSRp07d2bMUp45cwYa\njYbZUfyDqIqXX34ZarUaW7duhUgkQnh4OJ49e4bTp08TLdTaTjxgm/uZiKNEIhGGDx8ODw8PbN68\nmfF7aNu2LTZt2sT429/ZGp3SP2lz5sxBbGwsjEYj44BdVVVF6hfsdZhOnjwJtVqNS5cuITo6GvPm\nzQMAIplipmwOyGPq91q+f/D5iJbJcHb7drcm7w8nT673/F977TVkZ2eTgeLMmTNgs9mYMWMGLBYL\n2rdvDz6fT2o6vvrqK+h0Ouj1erSnKDxnsVDFwIJnFYuxsmtXHD16lEwCtQfyGzduQCAQICMjAyqV\nyqmmtXYUkaIotGzZEhRlgy6NGzcOXC7XYb+DBw9CrVajoKAAPB6PUZqEXuSvWLGCQG9rG02OQJMR\n7du3j0Q76Qg0zRKnUqnQrl075Ofn48KFC5BKpYT0ae/evUhLSwOLxYJIJHIYYO7evQt/f39b7VKN\n0SRJrhYgJW4MmKAoQC5HtVT6H3VKQdmy8atWrQKLxcLMmTMJROrNN9/EmDFjGK9BLpdj6NCh2L17\nNxITE2E0Gok4NmCDPCmVShw8eBBarRYsFsulTEJBQQGqqqqIVIBEIoHRaASbzXZg+IuNjYXZbMaC\nBQuQmZkJoVAIjUYDgUAAHo+HpUuXQi6XO/RNC9C//vrrROcVgNssoVUvvQSz2YzPP//c5fdHIxTa\ntWsHs9mMhQsXOjAo04vBzz77zGUfmzdvRkZGBgCbE9+hQwdUVFRg48aNKC0tRUBAgBO5V6M12l/S\n6iAVqp1hS01NZYSy17aqqip8mJPjVubObDYjMzOTHMNd/VGrXE5KZW7evIlhw4YhOjraYf4poGzI\nirqYzSnKBtXjcDh4//334evri8rKSpIFdUV6l5qaio4dO+Knn34Ch8OBRCL5Q0GozZs322DLpaU4\ncOCAU1CYx+Phiy++qLOPiooKl/NXXW3QoEH1Is5OxMXVm3WuYrPxAY8Hb29vKBQKmM1mXLhwAYGB\ngVi8eDGaNGkCNptNypfOnDkDkUiE6OhotGvXDnq9HgKBABEREQgNDUViYqLDOQwaNAgzZsxwOreL\nFy9Co9HAw8MDGzZsAACCINq7dy9heG/evLmDHmltkkaFQkFgsY8fP4ZWq4VIJIKfnx+R8dq+fTu4\nXC7GjRsHAIRpvnYbOXIkOc78+fPB4/EwceJEJCUloQufb5MVrM0MXIP2oetN33jjDYSGhiIiIgI+\nPj6MckQLFy7ECy+8gOLiYmg0Gnh5eeHbb7/F3LlzkZycjKqqKjx48ACRkZGYPXs2rFYrhgwZgoyM\nDAJFpuG0hw8fBgoLbYRVdTznZ5RzgIOW/1mwYAESEhKcYOsXL16EXq93HVz5A/XnkyZNgk6nI/P8\nd999R2C85eXlWLVqFZRKJdLT0x0CL1VVVQ7klPZt4MCBAOCSs+bXX3+FUqkkZYD/l6zRKf2TVl1d\njaysLPTs2RPNPD1RlJPjEHU6HBkJs91LBtiEoIODg7Fp0yZ07twZAwcOdBiM7/3zny4nUKJBuncv\nKvl8l7TomTWL2boWxIDNCQ4NDcXWrVsJhIeutevTpw/MZjN69OhBtrdYLAgMDESEUGhjHqzr4xWL\nMbcGhujh4fE7WYGdHT58mEwQ9jWuJ0+edIIv6nQ6aLVaaLVadOrUCRqNBp07d0bv3r0d7t/q1asR\nEBCA8PBwkj1j+vAHDBiAN998ExKJxIHcqLi4GFqtFuvXr4dKpcKnn35KFgO0c6lSqYjTs2nTJvj5\n+SEyMhIjRowg206ZMgUjR44Ej8fDxo0bYTabCd17WVkZWrRo4cBEV1VVxaj/RVE2lmGTydSgeuK1\nUmnDSDb+QKuuuSc9e/aEVqsFl8tFjx498NtvvzHCbfl8Pi5cuAClUon27dujSZMmkEqlOHLkiMN9\n4HA4MBgM2LBhg0uHlM1mo23btpg3bx55xnS9rz3pVHFxMTgcDgYMGACr1YqnT59CLpeDzWZDLBYj\nODjYKTPJ5XJx+PBhPH36FCqVypHpsAEsobt27UJoaCipSa5tdP1w8+bNMW7cOEb4FV075soyMzOx\nfv16rF27FoGBgQ5ERqNGjfo/pWHWaP8PrLDQhvSQy2Fls1EuFOJOTg6CGdAvbdq0cWthVlhYiKZS\nKfYGBKCUw4G1RkaMKXPXrFkz4pi6g0yppCj80r49mjZt6nDMXr16Oc097mYPe/Xqha5du2Lp0qUO\n13Du3DkHeKN9mzt3Lng8HoRCoVOtX0Osf//+ZL2yc+dOJ9SRWCzGsWPH6uxj165dGD9+vFOAVSgU\nolOnTi5lrkaNGlWnY2q9cqVe6Z3nFIXmNWU5AwcOxIQJEyAWizFy5EgkJydj6NCh2LZtG3g8HmEx\n/+KLLwhyisPhEJRP+/btwePxHBBuFy5ccAmLptUMFAoFtm3bht27dyM6OppcU2pqKgwGg0MgevHi\nxU73gS61GDlyJAYNGoTLly9DIpEQebvMzEykp6fDaDRi0aJFjPeSiWTnjTfeAI/Hw+KRI92SFXx/\n3DiEhoaiqKgI9+/fZ6zNvH37NpRKJS5duoS8vDyYzWa88sor+Oabb6DVah1UJG7fvg2z2YwXXngB\nzZo1Ixwmhw4dcoTTugnlt4fcT5o0CdXV1Th69Cg0Go2TnNDVq1dhMpmwZs0a1+9XAzOlr7zyCoHM\n29uRI0fA5/OJQ15QUACVSkWST9XV1cjPz3d6ZiqVikgs1mUzZszA8OHD69zm72qNTum/wR49eoQB\nej3KuVxGR9KeNh4Ahg0bhvz8fIwZMwb/w957h0dRru/js7M9m91stu9m0zZ9SSWkAClAgITeg3Qi\nRUI/CCh8VIogojQFBARRQDjSRESjFIEIAiLSm5zQm9TQ0pO5v38s87plNlk8/j6/z/Hkvq73umCz\nO7MzOzPv+zzP/dx3ixYtHBesHlCYGKkUzL/+hZywMFzr2NEmkU/TeMzjuUxwCoUCZ86cqfX7//TT\nTzAajZg6dSrS09NRXV2NsWPHgqZp+Pv7O1BL2ZtwGZ+PqjqC0mqaxkKKwpo1azBt2jS0bt2ac8JZ\nunQpeDweQkNDiVLvnj17XPr7BAIBRCIRDh06BIlEgr59+6K0tBQxMTGE+mn/PRMTE4lisLvAJiMj\nA+PGjYNGoyG8/dzcXNIb+uGHH5LgmKZp0DRN/ETtMX78eBIQ0TSN1NRU4rHJKveyVCE/Pz/k5uai\nR48eDpkzrsoiS9vWaDTIzs5GmYfCRc/4fI/6T7k8SbleczceP7dd0Wq1EAgESEhIwLNnz9CkSRPO\n8836+06ePBk0TSMiIsIlE11TUwOhUIgxY8agb9++LttgF3oCgYDQnEUiEakwNm7c2OE669ChA1Qq\nFcmafvnll/Dz8wPvuRAY61VnPxYsWADAZktgr7gI4IVUQhmGQevWrYkFkz0KCgpgMBjQpUsXdOnS\nhVPdcPjw4bUu0lhq8f79+4ltEYvCwkKYTKYXUgivRz3+r2LMmDGcia5OnTrVWWHLzc0lKpUVFRW4\nf/8+p1onO7Kzs5GTk+PRM/QZZesbtU+EAbbkaHh4eK37qW14e3sT9X17bN261a29Fp/Pd6FWvihY\nmxi2XWDVqlUu+/H19a0z8P3qq69Ibz87+vXrh9jYWPj4+CAxMZHzGOoSiGO+/RaVfD7nHMVQFMoo\nCu1oGvn5+YiJiUFoaCjCw8Mhl8sxYMAAMudOnz7d5uf5PEBcuXIlsRHLz8+Hv78/8d0OCgpyCELb\ntWvntsf21KlTUKvVUCgUiIqKIqrIABAUFIRt27ZBo9Hg5MmT2LJlC5RKpQujKyoqijCF2Of3qVOn\nSLtJy5YtUVVVhREjRnCeQ5lM5tbPduLEiVjC47kIJTqPaprGGh8fTtqpPfr374/XXnsN27Ztg06n\nQ1RUFG7evAl/f39Ohs///M//QCAQYPHixQD+UIu2Zza9KI127NixYBgG9+/fR0BAALayYo/PcePG\nDVgsFrJPLjAMg71Wa51JqGqaxs0uXfDGG2+gWbNmLk4KLFjngFatWhF9DG9vbxw6dAivPG9vsx8G\ngwFBQUFo166dW8ouYFsfBQcH48iRI7X9LP+xqA9K/woUFaGmDqoBKz7zzTffICgoCO+//z4iIyNd\nKTYeZIgYytZsvVapBPO892Dr1q0wGo2cXp/BwcEu1Fln9OrVC2KxGJcvX8aePXug0+mQm5sLiURC\nene++OILmEwmqFQqVHloNVIqEgGwVb+Sk5PdPhTy8/PB5/Ph4+ODS5cuoaKiAoGBgSRgSE1NBU3T\nEAgEGDx4MFJSUmA0GnH//n1i6cEKEgG2G7dLly5o3LgxETdwN/nPmjULmzZtgr+/P1asWIGwsDCU\nlpaisrLSpXIVHR2N8ePHu3z/x48fk75hgUCAf/7zn6BpGjqdziHpsH//ftJvaU89sxd3YodQKCRN\n+jNnzgSPx8OnXl51PjSrnicDKMq9JLwnPqV1/b2Sx8MSPh8DBgwgi6iHDx9i5MiRLsciEolgsVgI\nDbZv377g8XiIjIx0qFIDNkq8VCp1qwTJ4/EwY8YMhz4Xq9UKHo8HHo9Hsq/sefXx8cHbb78NwJap\n1Wq1CAwMxKRJkzh7jyMjI8EwDKqqqhAcHIwDBw44fD9Ps6lVMhkAW/Zco9E43INsRn3w4MFo1KgR\nJ/0qJyenTmXKmTNnon///ggMDHToOS0pKUFISIjL5FyPevyn4sGDB1CpVIiKinJ4FtTV53jo0CGY\nTCbyvC0tLSVzgl6vh9VqddgmOyeUlpaidevWHov2sAk5Fhs3boRAIEBgYCDS0tJq9Zt2N5zv3+vX\nr0Ov1+Onn35Cz549Xd5P0zQ2bNjwb59r1iaGrXItWLDAYT/uLFCct5GQkIA7d+5AIpGAYRjU1NQg\nKSkJ2dnZGD16NBo2bMh53LVuv6gITB3rrSqxGM0DAtCoUSN4eXkhMDAQ4eHhyMzMJMElwzDo1q0b\nhEIhjhw5gqFDhyI4OBhCoRBSqRSFhYWkB9VoNOL1118nX2HPnj2IiIhw2wd7/PhxKBQK8Hg84mBQ\nVVUFkUiEiooK4ncvl8uhVqtx7NgxWK1WSKVSeHl54ezZs4iLiyO+qCzGjh0LHo+H2NhYnDp1yq2F\nSF29hqUeJrdrvL1r3c7+/fthNptx/fp1GI1G+Pj44MiRI2jXrh3nOmnVqlXw9/fHzp07iWKxVqsl\n54jgBWi0I0aMINdWu3btXDy87969i8jISFKldIepU6d6LCTJ/OtfyMvLc3FccMZ3330HoVCILl26\noKioCHK5nDMJzvYjnz17FpMmTar1+t+9ezdiY2M99w/+D0N9UPpXwEPrDUYgwKdeXlj2nIPO+oQ6\n4AUUU6tpGvDyQtHChdBoNDh8+DBqamrQoEEDl4s+LS3NrV9SWVkZIiMjodFo8Mknn0Cn02HXrl3I\nyclBZmYm2rdvj19//RVqtRoBAQG2fgkPHxo1FEWCsvPnz0OtVruYPrNIT0+HSCRCWloaRo0ahfT0\ndCQmJmL06NGwWCxQqVTEU+zMmTOkkgbYlMhCQ0MdxC+ePXuGhIQEREVFcYpPsEMqlaKoqAiTJ0+G\nUCgkGTs22GIDWn9/f3Tq1MnlIcRObmKxGHw+H927dwePx0N0dDSys7ORn59PHiAbNmyAr68vRCIR\n3nrrLQC2B7uzHZBAIHDwn+rUqRN0Op3HmXv7ajkXZewkVTctzRNhjveHDYNYLIZYLIZKpcKbb77p\ncn6NRiPOnTsHrVYLs9mMN954A0KhEJmZmfDy8nI4nyzlh1XRdQ7SaZqGTCbD9evXkZmZSf7G4/FA\n0zQiIyOxc+dOACDJFbPZjJMnT4JhGGRnZ8NisWDUqFHYt2+fS1BqMplIZXT9+vWcZt374+Lqzqby\n+fjM25tkuceMGUMC8nv37sFisWDYsGEICAjArVu3cOHCBYcqUGRkZJ1CLgzDICQkBImJiZjk1D8+\nduxY9OnTp9bP16Me/2l477330LZtW1itVojFYoSHh2PMmDFuF2gMwyA9PZ2Iz1RXV5ME1qRJk8Aw\nDHbt2oXw8HDEx8eTIJLtGSwtLUVWVpbHtNusrCxCJ+7YsSPx9WYYBrNmzYJWq0V4eDinyjfX4PP5\nhCpbXV2NjIwMzJw5E9evXydKsVyf4VIcfVGwNjHs8/nNN98En8+HRCKB2WzG/fv3a/38tWvXYDKZ\nUFFRAYFAQF7fs2cP/P39oVQqcfnyZcTGxnIe+3vvvce9YQ97+vfHx0MkEiE4OBgKhQJTpkxBnz59\nkJOTQ9ZCVVVViImJgUgkQnx8PJ48eYK8vDzQNI3WrVvj6NGjJLhUKBSEVskwDBo2bIht27a5Pf4m\nTZrAy8sLcrkc+/fvJ/RRwJYoEQqFEAqFREjp2LFjuHr1KqZPn47o6GiHdiYA2LRpE8xmM7Zu3Upo\n2lznzUH/wA08VTGuzRO4uroa8fHx+Oc//4lBgwbBbDZj+vTpeP/995GamurSsvL1119Dr9fj7Nmz\nAP6oTHMFi54mfkuFQpIYmD17tst+i4uLER8f7yBYyYWPPvqInD93Sagqmrb5vhcU4J133nFJQrnD\nli1bIBAI0K9fP04xKr1eD61WS4SXVq9ejZfsfHad0bdvX8Lk+juiPij9K/ACgWQVj4cSisKZOXO4\nt/UnFFNLKQrf2PWdPX78mJPeM2DAAM7Je+zYsejRowfJ7H744Yf47bffoNVq8eTJEzRp0gQKhQLJ\nycnE4NnTY34mEGDEiBFkXwsXLkRycjJnBaiqqgpmsxkCgQCJSiUevPQSkQIvF4vxhUqFqOcVt9TU\nVNy/fx8Wi4VMDK+88gpyc3MdjvHGjRtQqVTg8XgOFE/nERgYiJ49eyIiIgK5ubmYP3++Q8DCBkn2\nvY8sZs2aBS8vL3h5eWHjxo2gaRoikQjt2rVDcXExGjRogA8//BCHDx8mFjMjRoyAUCjEqlWrXChp\nNE2ThQwAHDhwwOH3fBG5fXfDYwGPWvYzKjQUYrEYAoEAP/zwAz744AOX/dgLUe3duxc+Pj7g8Xjw\n8vJCu3btoFKpsG/fPgC2YM3f3x+rVq1yEdjg8/ng8XiIi4vDjBkzEB0dTc4V+97k5GQsWrQIPXv2\nJErMq1evhl6vB8MwWLx4MXQ6HVq3bk0snez3YaEoFAQH4ylNg+Hx8JSmcTEnx0GJcN26dR4lBsr4\nfEwfMIBQCx8+fAidTofDhw8jIyMDffr0gVarJQuS77//HhqNBhKJBD4+PpxiEs4oLCyEWq1G69at\nXQJ7lkVQj3r8ncBWObdu3Yq9e/eiuLgYCQkJmDx5Muf7WWXu6upqMAyDpk2bgsfjEbszwBZgJCYm\nYuX0hrd6AAAgAElEQVTKldi1axdu376N4OBgEsiWlJS4bUfgGh06dMD27duh1+tBURRu3bqF7777\nDkajEd27d4dAIIBEIuH0IeYaEokEFy5cwNSpU5GVlYVHjx4hPj4eM2fO5KQzs8/df5clYW8Tw56n\n48ePE2GgyMhIB1aKM9hgtKqqChRFOczL7du3R2pqKt544w08evTIpVLNDi6LFU/XHk94PKSkpEAm\nk2HmzJkIDw/HzJkzSbsEuwZ59913QdM0goKCUFFRgZqaGpLw3LRpE/bu3QsejweJRILQ0FDyuXXr\n1iEzM5Pz2I8ePQqTyUTmboVCgcWLFyMjIwMnT56Ej48PfHx8EB0d7eJvev78edA07UAPPnjwIDQa\nDY4ePYry8nK3gbxSqfQoUPJYBFGhcLuNjz76CJmZmdi+fTtUKhUSEhKwb98+6HQ6l/nrxx9/JMrO\ngE0zRKfT4Z133nF4HbCtA1dKJB4lfpnnfZXsfu0t054+fYrGjRvXmrQCbIWC2nq/aygb448ZPhwo\nKsKGDRvg7+/PqZHiDixzzmg0OuxHrVYjKirKIQHzyy+/uPSns3j06BF8fHxw7949j/f9n4b6oPSv\nwJ+x3mC9JJ3xJ7wlGYoC2rd32MzZs2ddqm8URblkpXbs2AE/Pz/cvn0bzZs3R4MGDTBq1CiMHj0a\nkyZNQlVVFdLT04n6G6m29u7t0fc6Fh2NiIgILF++HICNVtuqVStCp3SGvcdZjZMqXCVlE3oaHhyM\nhIQE9OrVCz/88AP8/PxQXFyMsrIyxMXFOVCEz58/D5VKBS8vLygUCkilUmRlZXHSeVmBiKioKIe/\ns3Y2S5YsgcVicRCSKSgogEQigUAgwL59+5Ceng6hUIiAgAAkJydj6tSpuHTpErRaLdRqNb766ity\nHho3bsz5PWJiYki2j2EYxMXFubwvnM/3WG6fa3gqmFRNcVcIrGIxfH19wefzSZP/1atXyUKMHfa9\nEY8fP4bJZIJIJCK0pWXLlqFp06aorq5G27ZtMWHCBJSVlcFisbh8Zx8fH1y4cAGPHj0i5yM/Px8U\nZaMH0zSNZcuWQaFQIDQ0FEuXLsWyZcvQp08fnDt3DjKZDCEhIbh37x7S09Mdtu0u0GfslAhPnDhB\nKhzu3g+hEIyXF/4RGYk33ngDjRo1IlnNJUuWQK/XIysrC3q9nmRGWVugPn36oEuXLjh//nztz5vn\nyMjIgEqlcugZLSkpQVhY2F9SKalHPf4v4tNPP0VaWhpZaN67dw9Wq5X07rOorKxEREQECp7rObD+\nyS+//LLLNjdu3IiUlBSyzd9++w0Gg4H0xD179oyzB5LP53O2AMjlchiNRiiVSqIqumvXLtIDv2XL\nFrz11lsePavZ7Wm1Wly/fh0dOnRAXl4eoSB///33nIrtQqGwVn9ET8DaxBw+fNjh9d27d0MikSA5\nOdktAwsAtFotbt++DT6f71DBOn36NFQqFXx9ffHo0SM8fPjQreq8s8XKi7C0evTogd9++w3+/v6Y\nPXs2QkND8e677yInJwd9+vTBmjVrYDabUVhYCLFYTHQvysvLYTAYwOfzcfXqVXTt2pUkYNkke2Vl\nJfz9/fHLL7+4HHdubi7mPC88HD58GD4+PmTtwfabHj16FNeuXYNer8fu3bsB2Ob79u3bY8CAAbBY\nLCgtLcXFixfJtcgwDKfOAkVRREHYmb7qjOLiYnyhVnsk4MW4EdO5d+8etFotDh06BLPZDIVCgQMH\nDiAwMBBbtmxxeC9rPcgymH799VfodDqSNGErqKdPn0Z1dTWCgoJeyI/97t27MJvNDv2rZWVlaNGi\nhYuIqDN27drFuU62H/YFAtbf1L5VzFOwlWH750WTJk3Qr18/h+/49OlTSKVSTlrwsmXL0K1btxfe\n938S6oPSvwJ/IpAkXpLO8JAKzDmcgtwvv/ySU2SBXbA+ePAAZrMZ27dvx6BBg9ChQwfcvXsXBoMB\ncrkc165dw9ixY5GSkkKos2xVC336eBSUrqZsojH2XpzXr1+HVqt1adQuLS1F24iIOtX1aqRSJKlU\niIiIwLRp0zBs2DCiFnjhwgVoNBocOXIE9+7dQ0hICFasWIEvv/wSMpkMcd7e+EQsttE+KFuQtYj6\nI5jr37+/w0NKqVRCrVYTEaSRI0cSCx1WEY/P52P58uXIz8+HQCDA7t27MXLkSLRq1Qpmsxlr165F\naGgoUd5lMXbsWJffRq1WOwS9rN2K82KDqy/B05GUlITHHl5Tzn5cFEURui6Px3OgCpWXl8NqtZL3\n2StOs/ZCw4YNg6+vL8RiMaxWK6qqqmC1WpGXl0eoN+zEFBgYSLZlNpvx8ccfg2EYhIeHk0mYx+PB\n398f/v7+8PLyAk3TSFKp8KXRCMjlxHD7c4UCcd7eKCoqcjnvFopCRR2+v/DyQsHChQ4VXDab+pTP\nt9GcFArbPV1UhN9//x1BQUHk2v/ll18wZ84ciMViGI1GUgFg3zdlyhTo9fo/vFDrwP79+8Hj8chi\nhsW4ceNqpf7Uox7/6aiurkZ0dLRDJfDWrVsICwvD3LlzyWsfffQRoUCywiLdu3fnXKRWV1cjLCzM\nQWX10KFDZOEN2IRLnFW62edxRESEy+vBwcFITEwkz664uDjQNA0+n48ZM2aApmlMnz7dJZHnbmi1\nWowYMQLNmzcn+2PPwZ07d6DRaFzmCrFYXKcCf13YsGEDsYmxx/r16yGRSJCdne229z02NhZHjx6F\nRCJxEW0aPHgwrFYrZs6cCcAW6LD+ys6DtVgB4LGexTOBgATCFy5cgNlsxty5c2GxWPDee+8hJiYG\nUqkUp06dAmDzyOTz+URo6ffffwdN01CpVNi7dy90Oh1h+rCJjrlz57o8b9k1iH0V+dChQ8RSzsvL\ny2Hts2PHDhiNRty4cQObN29GZGQkysvL0b17d0yYMAGRkZHETtCdzgJFUfj000/x4MEDNGjQwC31\nubS0FOnp6R63AY1s04ZzO0OHDsXo0aMxYsQI4g3fqVMnjBkzxuF9RUVFMJlMpM/52LFj0Ov1LknT\ntWvXwmQyOWii1Jb4ZRPFNTU1yMnJcRDHqqysRPv27fHSSy/V2u955MgRzvvZORnEbuPy5cswGo21\n2rPVhi1btkAul4PH46FBgwYQiUQQi8WcbTr+/v6c7X0pKSn/dqLp/zrqg9K/An82kOSiRnigvut2\ncAS5kydPdpmovLy88Ouvv6JHjx4YM2YM5syZg7i4ODLpDBo0CHK5HMuXLydVwm3btmH79u0wGAw2\nWfAXUEeTSCSYO3cuTCYTUQZcu3YtoqKiHBTtBg0ahO2hobbqVG3bFQpxvVMnaLVamEwmrFy5EgEB\nAaRZfv369QgODkbjxo3x2muvke2v69fvhWmvvr6+pLoJ2AKvpKQkzJgxA2azGTRNY+TIkfj444+J\ntxxgezCmpaVhyJAhEIlE6NKlC1atWuUgOvX48WMEBAQ4LCBY02zAljRgJzL7sWbNGtLv+qIjISEB\nQ4YMwWq5vM5MaQVFYblY7DYAZrPILAYOHAixWEzEGj799FPyt7Fjx6Jly5Y4cOAAgoKCwOfzoVQq\nsXjxYrz77rsQCAREbn7cuHEICwtD//79QVE2anXHjh3BMAw5br1eTyaUgwcP4vTp0/D19f3DcJvj\nWKolEux97TWX49hqNnt0zVW98gqsVqtLosdZjILFiRMnoNVq8c477xA7o5iYGMjlcpSUlKC0tBQp\nKSmYPHmyi0pjbbh//z40Gg0aNWrk8PpPP/0Eg8Hwt6b21KMeAPDNN9+QpBaLa9euISgoCEuWLMGT\nJ09gMBhw9OhRTJkyxbbIzcmptWqyfPly5OTkuOzHYDDgt99+w+7du9G0aVNOKm9SUpKL0iw712Zn\nZyMpKQlisRgWi4WwOljW0t69ezmrrVxDJBKR1gX7QA0A8ch2/oxEInFUNv0TyMvLc0gysvjwww8h\nlUrx0ksvcZ7b7OxsfPvtt5DL5cRjk8XNmzfh4+MDlUpFKKe///47zGazyzHweDxs3rwZBw8exDI+\n36O565ugIIfr4/z58zCZTJg/fz4MBgNkMhkaNGjgQO9csGABaJomz+K5c+eCpmlYrVaEhIRg0qRJ\nxIv78uXLePz4MVQqlQNddfDgwQ5Wb4Dtmc0mNJVKpYsy7owZM5CSkgKTyUQU6i9evAiBQIC8vDwA\nNrqwu+uCx+Ohd+/eYBgG169fR0BAgIv1SVVVFTp06EA+42kbkD3VHbDRSw0GA7799lsoFAqkpqZi\n3rx5aNSokYMv6K1btxAcHEycEU6ePAm9Xs8pTMYwjEMS2j7xu1wsJjRa+8QvYBNFbNq0KUk+VFdX\no2fPnujQoYNbGzbAljhgvc1rG2yw++jRI1it1jrt2dzh+++/J4WYOXPmkBYmoVCIwYMHu7y/VatW\nLsHvmTNnYDKZ6hQ//E9HfVD6V+DPBpLumsjdGIjXOTiCXNaSgivYCgsLw4YNG2AymYjKHsMwiIyM\nREJCAqRSKVJTUx1EVD788ENER0d73CjPmgzrdDpMnDgRSUlJKCsrA8MwyM3NJXLan332GSIiIjxu\ncIdCgQULFiA8PBwajQbz589HYGAgnjx5Qqppfn5+f2TKiopsTeq1bNNZIMhgMMDHx8dFYv/SpUsQ\nCASgaRqZmZlEUddZYOD27duQy+Uwm82wWCx48OABJk+ejKZNm6K8vByrV69GcHAw8SZ9tXNnW4JD\nLic9jYucvhMrjuROCr62kZycjE2bNiE8PNzjTGmiUolNmzZxVtyHDx9O6E4rVqyAVCqFQCBAaGgo\njhw5Ao1Gg19++QXLli1DeHg4Hj58iFGjRqFZs2YYMGAAIiIiIJPJiLDR2rVr8emnnyI0NBSzZ8+G\nQCCAVCqFWq3G3bt3sXLlSlCUrY80JSUFFEVh0qRJiIqKwtOnT/FGr14vLAIVEBDgcX9NqVCIrl27\nEppyREQEVCpVrT6JX3/9NXQ6HcRiMUwmE9q0aYPu3btjypQpyM3NRa9evTBx4kR07drVIzU91svW\nz8/PIVlSWlqK8PBwBwXeetTj7wqGYZCRkeFC7bx48SLMZjM6duyIvn37EgGTpk2b1nl/lZeXw2Qy\nuVDzli9fDovFgjVr1qBNmzZ4/Pgxef7Yj5SUFM4kImtLtn//fkLfZYWUWLz//vsv9Cx3p2JvTxG2\nH1Kp9A8PyD8BZ5sYe0yaNIn4gDqf47y8PKxYsQIqlYozWfbGG28gMDDQocJ98+ZNl35/NvDy9vZ+\nIbG/vn37OijksqrnLB163rx5iI+Pd+hJHjhwIAQCAU6cOIHq6mqEhIRAIBAgODgYr776KmbOnAmh\nUAitVou7d+9i/PjxZB1z48YN+Pr6OhzrkydPiDXQ+PHj4e3tDb1e75DQZW0+rFYrANv13a9fPzRo\n0ADZ2dnYt28f57VFURRpjxIIBBgyZAgAW4JCr9eTwKampoYzke3cO/mEw1aQoii88847ZDupqalY\nsmQJAgMDIZfLsWXLFmi1WofK3sOHDxETE0Mo9adPn4bBYOBMvDIM49af3dfXF1KpFDt37oSfn5/D\n5woLC6HX68n6rKamBnl5eQ5iY1y4efOm24q88zhy5AgqKyvRqlUrjBw50u02a0NhYSE0Gg3RI2Hb\ngHg8Hrp06QKhUOjS/z169GhC/2Yxfvx4BwXovyvqg9K/CgUFQF0UQOdRSxM5MRB/kcDUTZBbXl7O\nnYWyWKBWqx2azHfs2IHIyEiYTCaIxWI0atTIITPDMAyGDRuGEg+P1Z7+2a9fP/Ts2ZNw6O/fvw+T\nyUR8OE+dOuWxPybrATlgwACkpaXBYDAgNzcX+fn5mDZtGpKSkhAfH/+H+fgLmjHz+Xy89NJLmD17\ntovK2sSJE0kv0eHDhyGVSh16nFisXLkSZrMZGo0GeXl5aNmyJSoqKtCtWze0adMGGo0Ge/fuRWBg\nIGZlZHD20dpnLXv16kX28d1336FVq1YeL2LY3h57o25PM6V+fn6cWcUmTZoQ5VcvLy+IRCJ4e3sT\ndb3NmzdDp9NBo9HgwoULqKyshEajgVqtxtmzZ3HlyhUIhUJ4eXnh66+/hslkIl6bWq2W9PCsWLEC\np0+fJtQ3VoSCzUYPGjQIGRkZWCmV1umda/8bi0QiWz/QC/QoPXnyBOfPn4der0dFRUWdVkt3796F\nSqWCUqmEWCzGvHnzcOXKFUilUjRs2BA//vgjdDqdx7TdiRMnonHjxtDr9Q6Z4AkTJiA3N9ejbdSj\nHn8HHDp0CH5+fi600MLCQvB4PAwaNAgURSEuLs6tdYcz3n//fU76+7Rp0xAcHIyOHTsCgFtxHj6f\nzxk8DBs2DKtXrwZF2TQKnFFZWeniVVnbGDhwoNtjWLFihYNdFjtkMhl+/PFHj84DF5xtYlgwDIOB\nAwdCJpM5KMYDNqYWS1Hm8rt8/Pgx1Go1tFqtQyBx7do1zmNwnruqnJ7dXKwne/V7NqHo4+ODDz/8\nEGazGfPnz3egETMMg+TkZMjlcjx48ADbtm1DQEAA+Hw+ZDIZampqMHDgQNA0jQYNGuDs2bPw9fVF\ncXExXn31VQcKa1lZGeLj4yGRSKBWq3H9+nUUFhZCJpPBZDKRc8KKIAYHB2PdunWYOnUqkpKS8OjR\nI4SGhkKhUHBea2KxGMePHwcAEpiylc1Dhw5Bo9Hgp59+wrhx41w+72wn07dvX5SUlLgVz/rkk0/w\n6aefIiUlBf/4xz/g6+uLefPmwWKxuNiRNW3alHiHnj17Fkaj0aWyz55rLn9uiqKgUCggkUhw5MgR\nXL9+HSaTiXzuzp078PPzIzRqhmEwatQoNGnSpFahp+LiYsTExHh0jwUHB6OmpgZDhw5F27Zt/1SF\n8ueff3bwYL1z5w4CAwOxbt06vP7666QKL5VKcfv2bfK5JUuWODATKisrodfr3TpX/J1QH5T+lZDJ\nPA4gKyj3TeQOKCryeJtMLUHurVu3OCXEU1JSHCbsdu3aITQ0FL1794ZSqURsbKzLzVhZWYmv/Pxe\nKADQarUoLi7Gs2fPEB8fj3nz5gGwyZwLBAJ89NFH2L17N554Khr1/FjLysqQlJSEdu3aISoqCr6+\nvtDr9bh9+zaKior+EGl4QTNmirIZWBcXFyMvLw9dunRBTU0N1q9fT3o6hw0bBpFIBLPZ7JKZY3tQ\nzp07h2XLlsFqtaJ58+YYN24cLly4AKFQiN69eyMlJQULRo2qs9JeStMot+tHLSwsdLFMYQNIZ+Va\ngUCAY8eO4cSJEy5UXAtFYTGPRzKl7gST2ACRnQyjo6MRGxuL4cOHg8fjQSgUwtvbG6tXrybf8cKF\nC/Dy8kJ8fDyqqqqwbds2WCwWtGvXDgAwf/58REVFQSKRIDU1FSKRCMOHD0ezZs0gkUigUqkgEAhw\n584dyOVy8Pl8qFQqUJSNLsfiyJEjEAgEKBOJXug3ZsW3PO1Rqn7u2TZu3DgHWrg7lJeXIy0tDV27\ndoWXlxeaNGkCtVqN6dOnQ6lUokOHDoiKiqrTU47F+vXrERQUhDFjxjh4wB08eBB6vb7OALke9fi7\nYXh2Nn5NSbE933k8QC7H7shIDHwuZGY0Gj0OSIE/giRneiXDMGjWrBmMRiOhKA4bNsxFTZOiKNLz\n7jxYH2UuoaW1a9eiSZMmnL2p7kZtNhevvfYaJ53YmYr5onC2iWHBCtXJZDKHKu7ChQuRn58Ps9ns\nUBm0x6JFi6DRaIhgHotLly659eGkKAqj2rZFTX4+ngkEqKEoPOPzUdynDzI56L8TJ07EnTt3EBER\ngQULFuD48ePQ6/VYtGgR/Pz8sGDBAoSGhhJRurKyMhgMBlgsFiL2+PLLL8M+yGWDzczMTPTq1QtT\npkyBr68vCdorKyvRpEkTiMVibN++HWKxmFyLu3fvJv6pt27dQkJCAlavXo1jx45BLpfDZDLh999/\nx8OHDzkdA9q2bYvjx4+7zB0LFy4En88nFbWCggJOSrder3dJnrDH/uTJE/j4+HBev0qlEp999hm8\nvb3RrFkzdOvWzcFdobKyEm3btiUVapYybb8usEdeXh7nb8uuNQ5+/jmQn48ab28bfVcuBzNsGPo3\nberA4Js8eTIaNmzooMfhjNLSUqSlpXl8f02YMAFz5sxBbGxsrSrT7nD8+HHodDriDlFRUYH09HSH\nqvzo0aNB0zTkcjkaNGhAro+9e/eiSZMm5H1fffUVpz3d3xH1QelfiRdQ4X1GUeiTmurZdtu2rXN7\nlRSFAw0b1rqZgwcPcqq9spPbxYsXIRaL0bx5c+h0OuzduxctW7bkbJovPnIEJXUcL0uhEQgESEpK\nwssvvwyGYXDlyhUYDAbs2LEDL730EiIjI9GlSxfodDpc79ixzopmFU079M+yWbTU1FQIBAKYzWaS\nLdu0aROCg4NfmG7MjjZt2qCkpATp6ekYPHgwRCIRBAIBfv31V6SmpoKmaRe1O9aOhFWbA2x9Jh07\ndkRQUBCCg4MxceJESKVSpKeng/GgissIBOSYi4qKOCdrmqY5s5y+vr44ceIEZ7Wcoig0atQIFEWR\nHk6uyYidpLKysnDgwAHk5OSgb9++EAqFxCO0X79+5HgfPnyI8PBwLF26FNnZ2Rg3bhx69OgBnU6H\nPXv2kMzwpUuXsGLFCvB4PCQnJxOxogkTJkAgEEAsFiM2NhZ8Ph8Gg4FUY9lEyd27dxEcHIy5c+e+\nkKIwm4W8fPkyPhGL6+xRquHzgREjUFZWBo1Gw+0xbAeGYZCXl4dmzZpBrVbjp59+QmZmJho3bgw+\nn4/CwkIoFApkZGR4RNs9efIkoUMbjUYimMV6DNurHNejHv8VKChAjVTqlunRU6GARqMhWgOe4n/+\n538wbNgwl9cXL16MwMBA9OvXD9XV1TCbzfjpp58QHx/v8szkotCyyb0pU6Y4bJdhGMTGxqKgoACn\nT59+oYqpvW2IPWpqatCtWzckJCSQ93p5eREWy5+Fs02MPcrKyogFCxssbdq0CZ07d0ZwcLBLoM+C\nVbHV6XQufYD/+te/OKuEFEXhwIEDGDFiBAwGAzIzM0nF/OLFi5zJAj8/P4eAgFWB/eijj0ivaWBg\nIElW3rx5ExKJBDk5OThw4ADMZjMyMjLA4/GwceNGPHv2DHK5HL6+vmjWrBnkcjn69+9Pzn+rVq0g\nEomwa9cunD17FmFhYQ7HtmvXLnh5eUGj0djWAQyDPXv2QC6XIzg4GPfu3UPz5s05j8O+d9MZs2fP\nBp/Px/Tp0/Hxxx9zrgd8fX1d1I6JiCVsFUUuL10ejweTyQS5XI4ZM2YgPj6eJORramrQp08ftGvX\nDpWVlURcyl5bwh6jR4/m/F3ZNqDXYmNRxue76D1U0zRKaRrVz4O9d955B1artVYthaqqKnTs2NFl\nXzExMW59g9977z34+fm5MAM8wblz52A0Gsm8zDAMhgwZgo4dO7okyQYPHkzWUGPHjgVgq6j6+vqS\ntUHHjh3xySefvPD3+E9EfVD6V8LDahxD/UEvGTVqVN3bLSoCJJI6A8D051RYdzh69KjbCW/NmjVo\n1aoVVCoVEhMTiXfWpUuXCP3SGXsmTvSI/snj8SCXyxEREeEg7sC+xlYOhw0b5lF/7jOKwhfPqTYs\n1q9fDx6Ph6ioKERERJCbGwBGjRr1p+jG7PjHP/6B8+fPk0z3unXrMGTIEAgEAuI/t2PHDgC2YCwi\nIgJLlixx+H7l5eVITk5GZGQkxGIx8vLyEBsbC7VajWpPK+wKBYqLixEZGcn5G3JVTn18fDBhwgS3\nE3tCQgJEIhEiIiJA07Tb91EU5RB8P3r0CGq1muxTJBKR5EVlZSWysrJIn82DBw8QFBQEoVCIuLg4\nPHz4EMHBwdi8eTPpLY6MjCRiH507d4ZGo4FUKoVMJgOPx0NCQgL59+XLl8k5bdq0KVloeFopfUrT\nKCsrw9OnTxEbG/tC8vNr1qxB69at67xl58yZA6vVCpPJhM2bNwOwUXnYKnNOTg7kcjnxUKwNDx48\nQEhICNauXYtvv/0WKSkp5G+vvfaag2R9PerxXwEP5gnGywtH1q8nbRKegl0Q2tPpABuzIz8/H6mp\nqejXrx+ioqIAgPhYOj8vw8PDOe0miNf3cxQUFCA2Npbcw8OHD3f7DOYKEthKjDNKSkqQnJyMrKws\njBw5EitWrIDZbHYQ0/szcGcTA9jmhfDwcMhkMnz33Xc4cOAAUlJSEB4ejnPnzrnd5qZNm+Dt7c25\nfjl58iSnEJREIoFcLuekbJ45cwZqtdrlM6Sd5znY5OiSJUtgNBoxb948mEwmfP755wBs4nF8Ph+T\nJk1Cly5dMGHCBGIBd+jQIezevRtisRharRY8Hg/vvvsuGIYhvYLfffcdAODbb7/lnDdYSndISAjx\n7ty1axeGDBnC2fcoEomIIGBtmDp1Kmia5hS5VCqV2LNnD6qqqjB48GB06tQJo0aNclFXvnv3rlu7\nlJEjRzqsCxmGwejRo5GWloaSkhIUFRXB39+fBPjOmDx5Mud2RSIRhEIhCleurFMDBF5e+OzNNxES\nEoKbN2+6PRcMw5Aqt/1o1KgRVCoVBg0a5CA4SVE2hoVarXZxiPAEly5dcgnGFy5ciOjoaLcV1969\ne5PAdNeuXWAYBr6+vvj9999x+/ZtKJXKP1Wt/U9EfVD6V8KDilc1ZbNJ8STb6QA34kf2AWBYWBi0\nWi1++OEHl4+XlpbCarWiY8eO5GFtoWx2KPbUzYLgYAzNynLI5ixYsACZmZkuGZ4JEya4NMpDocCp\nzEwX+qdUKiVquZs2bcIvv/wCmUyG0NBQZGZmIjc3l9BuUVCAUpquNdgVCASEp88Ggr1790ZERAQs\nFgsUCgWxoCkvL8cGrdYjxb7CmBjOCZD1hJNKpRg/fjxomiYT1+7du2EwGHD58mW0bNnSRRadxaRJ\nkyAUCtG+fXvw+XycPHkSmzdv9rjCx9C02z5SrgksNDQUISEhnNXT6OhofPrpp4iJiYGvry+EQsJQ\nWOoAACAASURBVCH4fL4DfYy1u6Eom+2BfcZw8+bNxBZGKBRCp9PB19cX586dQ35+Ptq2besQbE2Z\nMgU8Hg+zZs1C165diWjA22+/jZSUFHz//fegKBs1OJzPx6HERDym/hBfWMrnw0JR5EHPMAz69++P\nbt26oaamBv/617+whMfz6Dd+3K8fampqiG8hRbnvr63k8WyT4/PelbS0tDo9QLdt2waj0Qir1UqS\nOw8ePEBYWBimTZsGrVYLoVCIIUOGIC0trdb7v7q6Gjk5OSTA79atG1EzZHu8PO1HrUc9/jbwRPH+\nue3aDz/8AK1Wi4MHD3q8+eHDhzvQAwEbdfX111/HvXv3oFQqkZOTg5qaGlitVsjlcs5qi7vkob1N\nS0ZGBum3++2336DRaIjCrqfbs9eFsMft27cRGBhIFMKXLVuGgICAOpkedcGdTQxgaxUymUzw9vbG\nxo0bERAQgAYNGuDkyZNut8cwDKxWK/R6vcO8UVNTgx49ekAmk3EmXQUCgVta8JEjRziTrM6qtKz3\n5NKlS2EwGDBv3jwH25Lly5eDpmnMnz8fGo0GsbGxiIuLg0QiwZUrVzB06FB4e3uTebB///4QCAQO\nQnSLFi3CK6+84vIdO3XqhD59+kAikUAkEpFnO5f1i0AgQFRUlEcJyB9++MFlHcPqYHz99dfkfdnZ\n2S4iO/a4evUq53rI3mkAsM3jsbGxKC4uxqVLlxAQEECOxRnvvPOO2+uYnDdP1tJ8Pj6VyUiS2h1e\nf/11l33FxMSgWbNmyMrKQkxMDDZs2IDGjRuTv3t7e7v4rXqC69evIzg4mFj4ALaKuF6vrzOZ0KVL\nF1thRSRC+aBBeMbng+HxUC4W44fISBfLx78r6oPSvxIeVvmcAzYej+dAnah1+yNGAAoFmOd9gM79\nf82bN4dWq3XJSo4ePRrJyckIDg7GrVu3kGcwuK1y2i/CAdvCODU11eEhwzCMC/1j5cqV5O8bNmxw\nUWxVKpVEsdRkMuGLL75AZGQkEW2ZPHkyOnToYDOvPnMGhTExeEzZAnmuY/Xx8cHx48fRvHlzsmgf\nNmwYWrRoAYVCAbPZTCxnpvXvX2c1rISi0MjXF2+99Ran2myzZs0we/ZsUBTlMsFMnz4dBoMBOTk5\nnJWvb775BiaTCdOnTwePx0O/fv3QuHFjlJeXo9RDMatSN1nL+Ph4zJ071yEryufzcfnyZU6xCKFQ\niEWLFmHcuHHIysoCRVEwmUzo1q0bpFIpzGYzoqKiSM8Ja5KekpKC8vJynDt3DjKZDCqVCmKxGAqF\nAiNGjEBQUBBZgDh7b8XHx0Mul0OtViM2Nhbl5eX48ssv4e/vj59//hkikQhdu3ZFV6nUrYBFGZ9P\nrstZs2YhMTERJSUlePToEYxGo0cVzzI+Hygq4jSuj5ZKUT1sGEpFIlswTNMoGzSITAanT5+G0Wis\nVWqepdmmpaUR4+6KigpkZmaSSvNLL70EkUgEX19fbNiwAXq93m0vzOTJk9GsWTNUVVXh3r178PHx\nwaNHj1BWVgar1epxP2o96vG3wguotAO2SpVOp8PRo0c92vylS5egVqsdbEzeeOMNTJs2DTU1NTCZ\nTNBqtcjLy4NYLEbnzp05KaNsQta5YiWVSlFYWEgssqqqqlBeXo6EhAQMHDiQ9M57OiQSidtA89Sp\nU9BqtUTkiKUh29uY/Bnk5eVx9scCNtqtSqWCQqEgDBnW69sdfvzxR4hEIqxatQqAbY2Rn58Pb29v\njB49GitXrnRhejlbr9iDYRh07tzZZS6nadpFRXj//v0kMNXpdJgzZw60Wi2pdA4fPhwCgQDdunVD\nZmYmBg0ahMjISPj6+uLSpUvg8/kwGo3kd3Zup3j11VcJS4zFli1bEBERgeLiYoSHh0MgECA5ORlr\n1651+X1lMhny8vKQkJDAKRhkj19++cWlj5TH40GhUCArKwtt27ZFZWUlGIaBRqOptcoIAO+99x7n\nNWe1WnH//n0sWbIEFosFt27dwpUrVxAUFOQQlNljwYIFnNuiaRoCgeAPdV4P729W58Ed5s2b57Kv\noKAgYlEYGRlJkrqLFi1Chw4d4Ofn59KS5QnYnmU2EQ3Y7gO2ZckTTE5I4FyX1wgExJv17476oPSv\nhgcVTa6bUiwWvzB3fdu2bZzb6t69OywWCxE+2bFjB7RaLVE29cQehaUrsjhz5gw0Gg2R3z516pTL\nQ6VVq1YOAdkHH3zg8t3UajV8fX0hk8kwdepUREVFITk5GdOmTUNFRQXi4+OJzH+vXr3Qvn37Widj\nb29vZGdnk/1WVFQgLS0NAwcOhEgkwqBBg7B//37weDyP1Ga7dOmCoKAgQqdg96PRaHDp0iVIJBJE\nRka6UDHmz59PJk9nnD17FlqtlgQgw4YNQ1xcHDp06IDc3Fys5OiLch5VNE1Eo5yzixcvXsQHH3wA\nf39/eHt7Q6PRQCKRYOPGjZzBddeuXdGjRw8EBgbCYrGApmlcvXoVffr0AZ/PR4sWLdC0aVOyeLp6\n9SqsVitiY2MxaNAg+Pv7w8vLCxKJBAMGDCDWNo0bN+bssb18+TJEIhFGjx5NlIqPHj0KjUaDffv2\nQaVSIS4uDme3bfOIRvv94sUwm824ceMGqqqqHMQLavuNSygK5Vu2YMOGDS7nxMfHh4hv9e7dGzKZ\njJiqsxg1alSti6A7d+4gKCgIOTk5aNGiBSoqKohCdKdOnVBdXY3Dhw9Dp9Ph3XffhclkQkREBAYO\nHEiSKvbYtGkTAgICyH28YMEC9OnTB4Ct6t65c+d62m49/jvhqX6DnSL9pk2bYDAYbHOgB+jdu7fD\nAnPcuHF4//33cfDgQURGRmLnzp2gKBv1UqlUgqZpjB49mrOyZLFYXF6Ty+XIyMggC/gxY8YgMzOT\nVPcSEhIIy8UdjdJ++Pr6uhU72759O/R6PaHufvDBB7BYLH+qX47F06dPERoayuk7CdgqlXK5HDwe\nD1arFYcOHapzm40bN4bBYEBNTQ3eeusteHl5YfDgwaiqqkJ8fDzeeecdUjGVSCQwmUy4c+cO57am\nTJmChIQEbN682eX8CYVCh2o18Id1x7Jly6DT6fDee+9Bq9WSgCItLQ0ymQxx3t5YLhYT8Z0nPB6+\nUKkQ9zwQpGnaRdina9euDoHqkydPYDabsXv3bnTr1g29e/cm7KO4uDgXzYjQ0FCUlZXh4MGDMBqN\nLp6vLM6dO+dWtXj8+PGorKxEu3bt0L9/f1y+fBkGg6HW3+Pp06cwm81u12HR0dEwGo0oKirCtWvX\nYLFY3Hp5cvW3sgGzQCBwrGD/ifvbGWvWrHHZF7vmkMlk8Pf3x40bN8j7MzIy0LBhQ7zyyisvPK8+\nePAAsbGxxLIP+EOh27mVyy3+xLr874j6oPT/C9hVNEHTYBQKfB8a6lIh5bphavNX4kK/fv04t9W9\ne3c0adIEN27cgF6vh0ql+uMh7ImwznPqkz2mT5+Odu3agWEYXL16FRMmTCATcJs2bZCVlYVx48aR\n97OZTufvxufzERcXR7zAbt26BbPZjC1btuDUqVNESCYyMhI7duxAQUEB+SyXklxKSorDefv999/h\n7++PQYMGgaZph6yzPd2YqwLL9rampKQ4UFnZzHhoaCgqKysxdOhQtG/fHtXV1SgoKIDRaMSvv/6K\ngIAABzrMw4cPERoaio8++giRkZFYvHgxGIZB37590aVLF5uhOuWZ71rrkBDyfZRKJSwWC9q0aUPo\nopcvX8bx48fRtWtXpKamci6OoqKiiN1K69atQdM0OnXqhPv370MqlUIul6Nly5ZkEmcXZZcvXyZ+\nmwKBgFCv2fPO9tiGhISggUSC+7m5RBGzTCTCEppGptmMdevWIT09HT4+Pvj8888RGRkJrVaLR48e\nYZ2vL6qdLHGcR41AgOViMen1GDlypOsCkKKwSi4nlPJnzz/T0McH3bt3d6HZqdVqKJVKPH36lFQj\ne/Xq5XDtl5SUQKVSuaWKsf2tOTk5iIiIwMOHDwHYqEqspRBb3Vy3bh0Am9es0WhEbm4usclhcfr0\naWg0GnKcrBjKDz/8QHqPnHve6lGP/xq8YKWUxeeffw6TycSpkeCMEydOwGg0kmdcfn4+YZi8+eab\naN26NWGT8Hg8LF26FCdPngRFUZy2MO68Nw8fPkwssVhBuejoaADAnj17sHTpUnzxxRecPZLOIyAg\ngJNSCwBLly5FeHg4Hjx4AMDW9x4aGuqwMH9RsEk2d8Htzp07SRXMEzrk2bNnIRAI0K9fP0gkEvTq\n1Qs1NTVYsmQJkpKS4O3tjaCgIOzatQtnzpyBTCZDQEAA7t+/77CdRYsWITQ0lFTBuLy2pVKpi0XO\n7t27odVq8fHHH0Or1WLWrFnQaDQ4ePAgqqqq0FetrjWx/arVCpqmIZPJiEcoACQkJDj04I4ZMwYD\nBw7EhAkTkJ6ejvLycgA2hhkrphgQEEDE/hITEwlDZ/DgwZzJ72vXrnEq9Xp7eyM9PR0CgQBbt25F\nSUkJUlNT0alTJ6KE7w6vv/46OnToAIlE4uLNS9M0lEoljh8/jhs3biA0NJQkdp3x+eefu71mBQKB\na+D2J+9vFgUFBS50b29vbxw+fBjx8fFQKBQOTIHbt29DJBIhKyurViYUFx4/fozk5GSMGzeOBLOs\nGrVz/3iteIGWhL8z6oPS/yU8ffqU+JrxeDxMnDgRfn5+LjdodHT0C2VpKioqOKk+MpkMrVq1gp+f\nH1QqlSOd4k/e8BUVFYiOjiaL6n379iE6OhqnT5/G0aNH8fDhQ4SFhTkYmrPGw1yTccOGDdGmTRtU\nVVXh8OHDpJI7Z84cNG7cGFKplDwgWrRogY4dOxLPT+ft2Xt4AjYKi0ajcUupoiibD5bRaIRer3d4\nPSUlBR06dCCTmK+vL/HIZLOylZWVaNGiBQYOHAitVkv6Vw8cOEBUZauqqtCqVSuMGTMGWVlZDhPJ\n48ePHfpdPPUMZUUWTp48iVmzZmHAgAFk0gRswZFCoeC0A1CpVFCr1ZDJZBCJRODz+UhLS8PSpUvR\nv39/SKVSLFmyhLx/7NixyM7OJt956NCh5LeTSCQk637v3j2EhIQgMTERM9PS3B5HuUCAyq1bkZKS\nAh8fHzRq1AgSiQQ3btzA2LFjPRajqpRKAbjPvFIUhTlz5kChUCA6OhrPnj1DaGgoEhISXGh0QqEQ\nPXv2xPjx41FVVYWWLVsiNTUVb7/9tsO1v3LlSrRv357zHmT7W5s2bQqdTkdUJjdu3OiQjWXFMtjr\nlN2fUqlEr169kJ2dDYZhUFxcjNDQUEJjA2xKkUFBQSgtLUV0dDTpZ65HPf4r8W8s4FasWIGAgIA6\ne9EAoG3btli2bBkAYODAgeSzixcvBp/PJzZrrHgMW+ny9/d3aW9hE7LOr2m1WmJlRlG2qirXGmDM\nmDGcftHOIz4+3u3C+tVXX0VmZiZRb3333XcRHh7O6SHqKdzZxLCIiYkBTdMwm80kIK4NbcLDsYii\nUCIQgOHxUOPtjRViMeKfW6XYb+P48ePw8vJCSEgIaYH44osv4Ofn59LD99lnn7mcK7lcbvOqtsPO\nnTsdAtO3334bOp0Op7duBSOV1nrNlVAUxrRvT9pa9u/fDwBQKpVEHfbIkSOEIhweHu4QUD98+BAG\ngwF8Ph9ZWVkwGo1Ys2YN2rZtS9g09+7dg06nw7Fjx8jn7t+/z+mbyyohs36gAoEAO3bswP3796FW\nq9GqVSu3v8Nvv/0GtVqN0NBQKJVKhIaGYtq0aeDz+WQebdSoEa5fv46wsDBOlwYAnMwk+4B07ty5\nLp+5mJNTJ3vM3f194MABl8SzUCjEzp07MWLECAgEAqJez6JHjx6kNeZFUFJSgoyMDJfq6sSJE9G8\nefMXC3D/zUD874L6oPR/EWfPnkVKSgrWrVtH+lucfSMpikK3bt1eaLs//fQTp2jRcrEYIRSFxMRE\nxw/8G9SIn3/+mXgijhs3zoGuAADnz58ndjIsiouLERYWxjkhJCUlEQXiVatWISQkBHfv3kV8fDz8\n/PzINvbs2YPU1FRkZWXhzTff5KQzOX+X1atXIygoiJPCyu6/d+/e2Lhxo8vf2Ix127Ztie+nXC7H\n4MGDycPn/PnzEAgEGDJkiMN+58+fj8TERIwcORKtW7fGoEGDXIR/xowZ47LPvIwM3OvZE495PLee\noUajkdBKx44dC4VC4UAL+vrrrzk9xkQiEXr27Ik2bdqQc5eZmYm4uDisWrUKNE3j448/Jtn45s2b\no6SkBL6+vrh58yZ27doFsVgMk8kEirJV9R8+fIiKigpkZGTg9ddfR8nJkyitw7u2XCDAKy1bYuDA\ngaAoCp9//jl27NgBs9kMxpNr8vl1uWfPHre/a5s2baDX67Fnzx7k5uZiyJAhWLRoEZRKpct7Fy5c\nCJVKhStXrmDixInk+nK+lpKTk92qXM6ePRtRUVFQq9WkN/znn3+GRqMhPWxsRcG5uvno0SNYLBbI\nZDIEBwdj69ataNu2rYsq94gRIzB16lS88cYb6NixYz1ttx7/3fBAv6E2qtuHH34Ii8VSZ5Xwxx9/\nREhICKqrq5Gbm4u3334b4eHh8PHxIXZY7733Hl577TXweDw0atSIeJrOmzcPIXbsFnZYrVaX19hg\n1WQyufVVraysRGpqKueawXm0atWK8xlRXV2Nzp07Y8CAAeTvb7/9NqKiov60YFptNjGAjc2l1+sh\nk8mQmJjotpILAL/OmFFr+8Ujjh76I0eOQCqVIjIyElu2bIFOp3MrqrRw4UKXc6VWq12ClO+++84h\nMH3rrbewUiq1WbPVcs1V8nhY97yXVi6XQ6lUYv/+/fD29gbDMKiqqkLDhg0xbtw4GAwGByXkiooK\nNGvWDOPGjcNnn30GmqYRFBQEhmHw4MEDBAcHk7l++fLlaNy4MblWrly54nKteXl5OSQ2GYZB27Zt\nbeq2hYXIyMiARqPh9BBlGAbZ2dlo06YNsQnMy8sD8ActVqFQQCAQQC6XY6aTGwKLr7/+mlOZmr3m\nZ8yY4fKZw4cPwyoWe6yIb48zZ864UJ95PB7Wr1+PFStWgKZpFx2Gbdu2OYhMeYry8nJkZ2ej33Ph\nRBarV6+GxWJxqd7Xib+Asvx3QH1Q+r8MdiJgA5dDhw5xZk+dvcxqRUGBrQrF8SB/RlHor9U6PJxq\nvL3/rYzMq6++it69eyM4ONghW8di586d0Ov1RHihuroaaWlpDtkrgUCAV199FXq9HmFhYUSq/R//\n+AdatWqFadOmQSwW48SJEwBs6sEymQwLFiyAUCjEP//5T05rFOcHbHZ2tkvw4uPjQ/zF2Mm7U6dO\nLtsaOnQoecB5e3uDz+dDpVJhwYIFKCsrQ5MmTZCfn+8ShDMMg8TERPj4+GD69OmIiYlx6D/96KOP\nXPZlNBoRExODZ8+eoaCgAGq1GqmpqS7vY7Olz549g06nQ05OjsPxcmVLWZ9Yb29vGAwGcj7UajVE\nIhFUKhWxKaEoCklJSTCZTCgrK8OgQYMwadIkyOVy+Pv7QyQSITY2FkajEdnZ2Rg4cCA6d+5seyjn\n59c9aVMUzjRvDh6Ph8GDB8NisRAJ/seeXJOUTdyAK8Bkg+8GDRoQGtGTJ08QERHBaZo9dOhQLFq0\nCN26dcOGDRsQGBiIe/fuYcaMGQ7Km0ePHoW/vz9nJWDr1q0wGAzw8/Mj1csrV67AZDIRlcPy8nIH\n2q4zioqKoFAooNfr4evri6ZNmzpkWMvKyqBWq/HNN99Aq9X+W1WNetTjbwM3+g0QCj0SBZk9ezYi\nIiJqDcYYhkGPhg3xr9atUSIQoIayWUotomzJwunTp+Pq1auQyWTQarXIyMhAWVkZdu/ejbCwMFy6\ndIkk8uyHO5/puoLkW7duQaPRQKfTkYoV1zOfoigSRDjj2bNnSExMdAgI3nrrLURHR7vtSa0LtdnE\nTJw4EeHh4cjNzYVGo0GLFi0IXdUexzZt+lOBCGBT0GXZP/b+4FyYOXOmy7ni8qX95ptvoNPp8PHH\nH9taqzy0HHtC02jcuDH69OlDAtOIiAgANl2ARo0aQaPREHYV8IevdceOHVFdXY2VK1fCaDRCKBSi\nb9++YBgGv/76KzQaDc6ePYuamhqkpqYSVlpVVRVat25NriupVEoq/PaoqalBVlYWBAIBfHx8sGfP\nHuj1ehQ43StfffUVQkJCIBaLkZycDKvVimfPnuHKlSvw9/fHW2+9BalUCpqmQdM0pybC999/z5k4\n5vF44PP5Dp6xLC5dukT6qGtjj1UIhS7399WrV2E2m132t3jxYmzduhUSiQR9+/Z1+MyxY8cIe4wV\nxfQElZWV6Ny5M7p27Uo80wHg0KFDf2i3vCCY+kopgPqg9P83MAyDHj16YOjQoW7pDe4EBBzgQca4\njM9HI19f7N27FyUlJViv0aC6jopWBUXhXs+enLssKSkhZtfuKjaLFy+G1WrFo0ePMG3aNKSnpyMn\nJ4dYiAiFQvz222+YP38+wsPDodfr8e233xJKY2xsLPr06UOUWgEgJSUFAQEBUCgUOHnyJC5evOhC\nZ2KzgIBNjIlLEl6r1WL79u3o3bs3fHx8UFNTgxs3bri8NykpCTweD15eXhg7diz8/f2Jl2fz5s2R\nm5uLmpoaEoSztM39+/dDo9FAo9FAqVQ69CF+//33LkkIhUKBuLg49O3bF7m5uWAYBgsWLIDFYnFQ\nGzQYDKisrER1dTU6deqE8PBwB1l2rmA3Pj4ePj4+UCqVEIvFEAqFZLJp0KABKMpW9Rw1ahTZB8Mw\naNeuHZYsWYJdu3ZBJBJBJpNBqVQiJCQEpaWl6Nq1KwlySebbw4fqI8omusAwDEJCQhAUFASlUolF\nHBOQ82CEQqzhqASzIy4ujpxDFlw+gjRNIyMjA2FhYfjss8+g0WiIOuTs2bMxfvx48vlXXnkF06dP\nd7nGT5w4AY1GA6vVSpJIjx8/RnR0NObPn0/e54koUWFhIYRCIWiadqnSfvHFF2jevDliYmI4s9r1\nqMd/LZz0G6BQ2P7voRjIlClTEBMT455WWlCAKrGYM+FbIRDgweefE7/hyspK9OjRAz169EB1dTXS\n09OxZs0aHD58mHNx7txjGh0d7Va0xx6FhYXQarXYt28f8vLyIBKJEBMTw/k8dPblZHHz5k0EBAQQ\ntVOGYTB58mTExsa+eIXnOdzZxCxYsADBwcH48ssv8fLLL0On06Fr164OSb5z5879P/a+Oz6Ksu16\ntm+2JZttyaZ3QgqphBRaIA1CqAFC711AehUVCR0rghQBUboiIDyCAiqIha6I0nvvpJed8/2xzG0m\nM7vZ+Lzv9zy+7vn97j+y2ZmdmZ2d+76u61znYLlIxLnOnGGDsnn27Fm4ublBIpEgISHBrjYHTdOY\nPHkyuUaurq42+/M///xzGI1GfPDBBw5bt1VT1iR2jFqNC5mZxNqsWqnESpkMSXo9R523sLAQcXFx\nKC4uJqKSZ86cwfLlyyGRSDBkyBAAwOrVq9GgQQM8f/4cJ06cgNFoxP3799G3b1/k5OTgxIkT0Gg0\nNr93wFokiIuLA0VROHnyJI4cOcJqASotLYWfnx/8/f3h6uoKd3d3nDlzBvfv30doaCjeeust3L9/\nHwEBARCLxXB3d4dEIkFhYSH5jIMHD/Ja+DDWN3xB7OPHjzkJlpoMwJoaIN0TE1nbPnjwgLdIMWvW\nLOzduxeurq4wm80sP9ubN2/Cx8cHgwcPRjcba11b169Hjx7IyckhNHhmf15eXizLnfrgZErKX6Ys\n/1+CMyj9D4Kp4qxZswazZs3i/KBEIhFOnTplfycO9NZUUBS+fiEok5ubi7Ht2tWp8lVMUQiXSm1m\nkfv06QO1Ws2x/qiJkSNHIiEhAZ6enpg5cyZiYmLwySef4Pfff0dQUBB0Oh0ePXqEoUOHIjk5GXq9\nHqdPn8ajR48gk8kwffp05OXlYcqUKaisrIS/vz8SEhLwyiuvkAby77//ntBrmeHu7o6TJ08iJCSE\nV3Bi8uTJAKxy3VKplIj58InmJCYmYvfu3TCZTMjPz0dAQADJ9NW0F3j//fcRHh6OX3/9FZ6ennj3\n3Xfh5uYGV1dXYs/z22+/cQJfhUKB48ePIz8/H/369UNCQgIKCwtB0zQiIyPJZ8lkMjRt2hSvvvoq\nJkyYgObNm6OgoIBUwL/55htOsOvj44O4uDi89957RGU3kKJwrW1bFAmFsFAUnlEU8QCVSCQoKSkB\nYO3L8PPzQ35+PiiKQlhYGORyOenT2bp1K8RiMVQq1Z9ZVgfpJxbK+thZu3YtIiIioFKpEEhZ/Xvr\novCWvTgHvgWYRqNBWFgYLz1s0KBBZIJ7LhCAfnHuH8rlSPfzYzEJlixZQrxmnz9/TijMNXH37l34\n+fkhKSmJ9DNXVVUhOzsbw4cPJwGoLdpubZw9e5b4wkYpFCju25cIRRWLRNgTEICBLVo4abtOOPE/\nCJqmMWHCBCQkJHD7yRy0eGsdEECqJWVlZWjevDlGjx6Nffv2ISwsDJWVlZBKpTbbDZhEaVpamsPV\nmkWLFiEhIQHPnj1DYGAgjEYjh74pkUjsigudPn2apYdA0zQmTpyI2NhYItRWX/DZxGzevBleXl7Y\nsmULqqqqkJubC5PJRCyzbty4AZVKhaI6EuVk1KoUXb9+Hb6+vli3bh1pM0lNTWUFDLXBiDCOGjUK\nU6ZMQXx8vM1+wm3btsFkMqFCLnfo+ErEYrQRCFBMUZzkP1+Vb/PmzfDx8cGtW7dQUlKCiIgIrF69\nmvz/nXfegVgsxtixYwEAAwcOJInXkSNHIioqCikpKTh//rxd9dua2LRpE1xdXSGXy3H27Fl88cUX\nMJlMOHv2LF599VVERUVBIpHA19cXq1evxvPnzxEfH4/p06fjwYMHiI6OxvTp0/Hll1/CxcUFbm5u\nkEqlWLlyJQ4fPsy77pJKpZDJZLzqtuXl5WjRogVnG1dXV16BL5lMRooVRUVFHBEmpvp9iTTDxQAA\nIABJREFU8OBB6HQ6GAwG7N+/n3xeUVERYmNjMXfuXLRq1YpjEWTvvhk0aBBatGjB+q2WlpaStdtf\nwc6dOxFE1S146VTfdeJ/HUxW7NSpU+jYsSPnh6VUKkmDPC/qUZ1KTk6GTCazVu5eUJ9qq53WFtZh\naJy1ER0djXbt2vHSXhhcu3YNUqkUycnJMJvNLIW+u3fvQq1WIyoqCiUlJWjVqhWys7Ph6+uL69ev\nw8XFBe7u7kTKvn379khISECzZs1w8+ZNaLVaQondsGED57oxnpgURbEydmKxGAaDAdeuXUNZWRmk\nUimMRiM2b95MxIxq7ken0+H+/ft4++230aBBAwQFBUEoFEIqlcLPz4+VVR46dCjUajWmTZsGb29v\nbNmyBStWrEBERASuXr3KER8SCAREqbeoqAgRERHEKmTUqFGQyWTQarUQi8UYNGgQsrOzoVKpiNpg\nhw4dsG3bNly6dInz4FYoFJg2bRpSUlIwYsQIeHt7o41AgBKBwCbN+8aKFazvj/FOCw0NhVAoJFl1\nZjHDeP+5urpaqdoO3ou0RoNLly5Br9djwIABNmk6rCGRoFwstmmpRFHW7PQff/zBuQ9Pnz6NbhoN\nykQiXipQTf9TwNp3NGLECABWxcqOHTuy9ldWVobk5GSkpqYiJSUFZWVloGkaI0aMQGZmJlmglpeX\nIyIiok5fuadPnyIsLAyrV6/GolatUExZe5NqH6fFxeUf4VPmhBP/P8H8dlNTU1mVFEcTvtW15sAn\nT54gMjIS8+fPR3JyMjZu3IiQkBBIJBLetoPo6Gg8fvwYBQUFaNu2rd1gquYxd+nSBUOGDMGlS5cg\nl8vRpk0bmEwmCAQCQmXdu3ev3f3s3r0bHh4epNWGpmmMHTsWCQkJNr2T7YHPJua7776DXq8nz8HS\n0lI0adIEJpMJI0eOhLu7O3x9fUH/hZ46RuCnpljOnj17IJVKkZ6ezqJW1obFYgFN0yS4S0tLI0nZ\n2ti0aRM+dHGps5JbSVEoz8+vU1uBCS5++OEH6PV60gY1aNAg9OjRgxO0LV68GGKxGFOnTkVZWRni\n4uLw5ptv4pVXXoFYLCb32KJFixz6nqZOnYoZM2YgKioKCoUCFy9exLp162A2m6HRaCCVShEcHIxe\nvXqhtLQU6enpGDp0KB4+fIiYmBhMnjyZHOOOHTuIcr9EIuGIDDHrLplMhj59+nDOjXEj4FvDzZs3\nz6a416FDh1BRUYGsrCzO/7p06YJDhw5Br9ejbdu2LN2P6upq5OXlYcCAAbh37x40Go3N7732cY4Z\nMwZNmjRhtWPRNI2CggKO2KajOHXqFOkTt7kWcrAl4f8CnEHpfwE2bNiAoKAgPH78mFAqaw5vb2/b\nKl4OPsirXwRBnTt3/lOC/OJFPO/Tx6Y9CjNSUlJYP7ZLly7BZDLh4cOH8PLyYvVTMqiqqkLTpk0x\nYMAAiEQiVo8eg59//hlSqRRdunTBo0ePEBoainbt2iEiIgJBQUH47LPP4OPjg+7du0MqleL333+H\nUqlEeXk5OnbsyJIRf/3113kfXIyoT3BwMBQKBdzd3WE2m0mfp6urK9auXUsqkvv27eNQPZlJokuX\nLiSo1Wg00Gg0SEtLI36U+fn58PDwgF6vJ43/NE2jd+/e6NmzJ7p3787ab+0J5Pz58zAYDBg/fjwo\nikJcXBz0ej3c3d2RkJBAeh8aNGiAiooKZGRkYNu2bbz3zKpVq6DX67Fw4ULodDoEURSqZDK790iV\nTEaycD///DOZYJgJpaKiglQIGbEARqwrNDQUt9q3r5N+wtDCU1NTSfWyzuwgReGPxo15K6QCgQBB\nQUGQSCS8dPf79++jmZcXquroB7K4uJBzX758OQYPHgyaphEbG8ta2DHfZ0JCAgICAkgP1ttvv03o\n6gymTZuG9u3b252oLBYL8vLyrJV/p0+ZE078R2CxWNC/f3+kp6f/WQH5N3q8bty4AV9fX8wdNAgb\ntFoUi0SwUBRKJRK8LxBwnmXDhw9HRUUF8vLy0LVrV5tKtjVRk2n10UcfQSKR4K233kJYWBj69+9P\nLGtqMnr48N5776FBgwYkCKVpGqNGjUJSUpJdJpQt1LaJuXDhAlQqFcuHklHqFwgEUKlUePLkSb17\n6pgKGcN8qont27dDKpUiJyfHoWtpsVjQp08fZGVl8fa7AsDcQYMcsm770mCwWurZeR8tkeBZ797w\n9PQk1jEbNmxASEgIK+Bhff7cuRCJRHj99ddx+fJlqNVqeHp6Ys6cOZDJZLyiQbaQkZGBXbt2oays\nDGFhYVCpVLh27RoiIiIgEomgUqkQEhKCJ0+eoGPHjujSpQsePHiAuLg40npTE5s2bYJcLudlAzBJ\nfKbdqTZmzpzJ2UahUJA1Y2lpKWbNmsVhArzxxhvo0aMHZ9v09HTigjBv3jx4e3uz5uWXX34ZLVu2\nREVFBVasWIH8/HyHrtn06dMRExPDYREUFhYiISGhXj2pDG7fvs2x8QkRCnE1N/cvtyT83eEMSv9L\n8NJLLyEvLw/FxcW8dIXk5GT+xW09KqVMgNumTRvSPE/TNPz9/REUFISgoCBelVxm0mSwaNEiknna\nsWMHgoODOT/ISZMmoUWLFvD19cWbb74Jo9FITKhr4sMPP4REIsF7L7+MJz164PkL5dnnAgHoYcMw\num1bSKVSdO7cGUOGDEF8fDwOHTqEffv2ITo6mlwTJljgO/aGDRtCq9ViwYIFmDp1Ktzc3NAhKgq7\n/fwIjfUpRWGzXo/RbdtyqqVKpRI//vgjzGYzYmJikJ+fT/pXdDodBg0ahNmzZ6Nx48bIzs6GRqPB\n+++/T86xuLgYDRs2hJeXF6Ea11TxrYmVK1eCoqx0LpFIhI0bN+LHH38kNiyJiYlo27YtZs2ahZSU\nFOzduxedOnViHe/s2bPRvXt3DBkyBK6urhAIBDiamOhQ1v9xjx548OAB3Nzc4OPjA4lEAqPRiLS0\nNGzevBnJyckcEa7PPvsMcrncIcW8YopCglaLpKQkCIVCLKXq7iO1iER4j+d7pSgKXbt2RatWrTBq\n1CjOtWSUgY/Extar4rF69Wr069cPP/30EwIDA1kT6dy5cxEaGkoEJwCwfGIZOOol+tprryElJcVa\nHXH6lDnhxH8M1dXV6N69O9q0aYOKs2cdC5AoyqYa5tVly1DC83yrzUZixqhRo1BaWopWrVqhf//+\nNlV4a4JhWp08eRJdunSBVCrFTz/9hIiICBQWFiImJgYKhcKmvzIDxraMSX7TNI1hw4YhJSXFZpBk\nD4WFhcQmpri4GCKRCCtqMHEqKirg7+8PgUAArVaLFStW4GyLFg4lNZ/07EkqZAMGDLCZ9Nu8eTMk\nEgk6duzo0LWsqqpCp06d0LlzZ06Ftby8HMHBwQ5Ztz118L55LhSS3s/z58+z1NptgbFk6dOnD7Ra\nLQwGA0JDQ+Hn58e2/bMDmqbh7u5OBPNKSkoQEBAAhUIBrVYLgUAAoVCIH3/8EQMHDkTr1q1x7949\nJCYmYuzYsTav99q1azm03fDwcMhkMrRr185mcmDRokWsbeRyOYfiO2vWLLRt25b1Pj8/P856IC4u\nDkeOHIHJZMKmTZsQGBjIUs1///33WT7imZmZ2LJlS53XrLCwEOHh4RwhsB07dsDLy+svef2WlpYi\nMTGRcw41dUL+iXAGpf8lqKioQJMmTTBv3jxcu3aN0ydJURQGDhzI3dABxdMKyloBZfaTmJiI+Ph4\nvPbaawCsk/GFCxfg7e2N4uJim3SJlStXAgBSU1NZam3dunXDpEmTyN87d+6Et7c3EhISSADz9ddf\ns8SAauK9tm1R/CL4qHncVQIBSigKEyMj0bdvX/j7+6N9+/aYM2cOLBYLgoODWQp2d+7c4b1uarUa\nGo0Gd+7cQXV1NSZFRVkpkjYmlmOzZyMmJgZMpXX79u2IiYnBwoUL8fTpUzRs2BB9+vSB0WiERCIh\nCnvDhw9H06ZNcebMGZhMJnz99dfk2DIzM0FRFD7//HN89dVXvJXvJ0+ewMPDAwqFAmq1GrGxsWjT\npg1u374NuVwOmUwGb29vbNu2jUxGJ06cwLBhw4gNTLdu3bBnzx74+fmhQYMGEIlEVoshB5MXz4VC\nNGrUCEqlEpmZmRCLxQgPD8eKFSvg7e3Nm+2sqqoi1GRH/VYZSrWjEziTVKmdLBg/fjxatWrFS9Ma\nNmwYcnNzHc7Al4hEwPDhqJDLQVPWqsbxJk1IhnL79u0wmUzQ6XTkuz116hRLJAL4k7Zbl5forl27\n4OXl9aearlN9zwkn/qOorKzE68nJKBOJHLeo4vs9OtCPWkJxWUljxoxBUVERUlJSMHr0aIfogMzi\n+9atWzCbzfD19cXly5cREBCAd999F76+vkS/wRaqq6uRm5tL+jwBa/Vw0KBBaNq0KZvW7AAYm5hl\nEyYAw4fjGfVCL0CtBj1sGNo2aACVSoVvvvkGOp0Orq6uCJdKHUpqNvf2Rn5+Ptq3b2+XnguAVJB7\n9uzp0LUsLy9HZmYm+vbty5rn5s+fT76jwBfrKVsMM0cFkRhthfLycsTGxjocVPbs2RMURWH06NEw\nmUzw8fHByZMnodfrHbL1uXLlCsxmM+u1R48ekSqnm5sbkpKSEBQUhMTERNy6dQtNmjTBqFGj7F7D\n69evs+jpQqEQcrkcmZmZdv06GSEiRogxPz+f8zkTJkzAuHHjyH71ej1nPRAcHIzDhw/D09MTGzdu\nxLhx49CjRw+yjy+//BIeHh5kDfrw4UNoNJo6721b9lG//vor9Ho9fvzxR7vb88FisRC9jpqjppf9\nPxXOoPS/CDdu3ICHhwf279/PqxjK0DJZuHgR1XU04BfzTH4dO3aEr68v6fOgaRp6vR43btzAuXPn\neJXTBAIBdu3aBTc3NxbF5d69ezAajTh69CiuXLkCg8GAjIwMdOvWjfVwWbZsGcLDw9mCAg5QFmmF\nAtkhIRg7dizc3d3RsmVLANY+C0bi22KxIDc3l5iZ1x6RkZEOf161XI5fP/8c69evx9KlS6HVatG/\nf39yLpcvX4aHhwe6dOlCFBRlMhk8PT1J/+/BgwdhNBpx7tw5vPrqqxAKhZg8eTKCg4N5BRUY/zIX\nFxcMHz4cOp0OQ4cORdOmTWE2m9GtWzcEBgbCZDKhSZMmWLNmDaRSKaZPn44GDRrAaDRi1apVePDg\nAQICApCZmQmJRIKIiAhr70w9RIgEAgHGjRsHsViMDRs2EEVbkUjE6gtmwNCNa0/aRSIRmbR3+Pjw\n0m/ro2hYOyAdMWIEfH19eW0MGOGpZ8+eOUxxpymuMAUtFgMKBS6++y50Oh28vb1Jxp+h3jC9tgym\nT59eJ2333LlzMBgMOHLkyJ8vOn3KnHDiPwtHKPQ1hy3mggOsB1osxiqe+Wr8+PF4/PgxYmNjMX36\ndIcOe8yYMWjbti3OnDkDqVSK3r174+LFizCbzVi5ciXc3d0REBBgl2JYVFSEmJgYzJs3j7xmsVjQ\nr18/4ltdH9xftw4lFAVLraR55Ys1ya0Xa5nDhw8TdpKjSU29Xu/w8axcuRISicQmO6k2iouLkZaW\nhpdeegk0TeP27dtQqVS86wq+UZ9E69y5c/HSSy+hU6dODh3b0aNHYTAY0LlzZ1CU1Y82KysLEyZM\nwIQJE9CnT58697F161a0a9eO9dq8efOgVqtBUVZBolmzZkGpVKJz587E+s7e8d2+fRv+/v5QKpWQ\nyWTk+xSLxTh//rzN7Rh9igMHDiAlJQWtW7fmragOGzYM7777Lg4fPoxly5YhOzubHC9FWZWsDx48\nCG9vb6xduxY//vgjPDw8yHrsl19+gcFgwOHDh8k+V61aZU3Y28Hq1avh4+PDYkEB1oA2MDAQ69ev\nt7u9LcyYMYNz3+Tk5NSZZPknwBmU/pfh66+/hoeHB27evInly5dzblylUsmleLyQrXeUJlSTLqTX\n63Ho0CEAQG5uLunL27p1K+82QqGQ80ADrIbKUVFRiIuLQ3Z2NhITE3knwFGjRiErK+vPH58Dk7dF\nJMKTnj1hNBrRoUMHiMViVFZW4tGjR3B1dcX9+/cxf/58uxOHWCy2VrMcFK8oeeHxNnHiRLi6umLh\nwoWs8/j+++/h7u4OuVxOPletVhNKJ2B96DG+oIxFyPDhwzkTEE3TpG+2sLAQZrMZ586dQ2hoKGJj\nY6FQKLB+/Xp4enqiT58+UCgU2LFjB+n5/PjjjxETEwMAmDJlCpo0aQKpVAqtVovi4mJUV1ejpI5q\nes2J0sXFBSKRCD179gQAjBs3DlKpFB07dsS7777Lug4bN27kvd46nQ4ikQiDBw9GVlYWtmzZwmvP\n81cqpXK5HEFBQTAYDPjpp58499iBAwdgNBqJMbnDvUp2RolAgIzAQEycOBEAv9cf8Cdt156X6PPn\nzxEeHs7xkXP6lDnhxH8YjlDoaw5bPd4O/parVSreqs+kSZNw7949hIeHs4JEW6isrERqaipmz56N\n9957D2KxGNu2bcPp06dhNBqxdu1aKBQKxMfH21343rhxA97e3qz+/OrqavTq1QutW7d2vG/OgUox\nc+2mTJnCOve6KpHMsGd7UhvvvPMOJBIJXnrpJYfe//TpU8TFxWH69Ono27evzXUF33DE2swiFuMz\nsxkymQx6vd4hUanff/8dHh4e2LhxI5o0aYKYmBiIRCIsW7YM/v7++Pjjj+Ht7U0s8WxhypQpePXV\nV8nfN2/ehEKhgEAggJeXF1GBP3ToENRqNRo1amSX/nzv3j0EBwdDo9FApVJh6tSpkEgkRKfDx8eH\n1+qIsWT55JNPSOXbVkW1d+/eRCH//Pnz0Ol0cHd3h5eXF1xdXfHll1/C398fy5YtI77gTLL4zp07\n8PPz4/iEZ2dncxLKNbFx40Z4enri3LlzrNcrKyvRokULFjuwPli/fj3nnomIiPhL/dv/F+EMSv8L\nMWfOHCQnJ6OiogIjRozg3MB8HPZROTn4pVkzQKMBLRDYfJDXHtOnTye02jlz5mD8+PFknwxdovZQ\nqVQc2w2apuHn5wcvLy/4+PjYXJQzJs+M5UZ9Jm9GiVcqlRLqcd++fTF06FDi58lUl728vDi9oQaD\nARaVyqHPKxaJsGrVKgQHB+PHH3+ETqdjZcsqKyvRsGFDKJVKCIVCKJVKuLi4EGVcwErtFAqF8PT0\nJA/b8vJyxMfHs3ws58yZA4lEgtmzZ8NkMpFJZdiwYRCLxVizZg30ej369euHcePGIT4+nvR+aDQa\ndOvWDW+88QZ+/fVXIs0uFouJfcvYsWOxw8urTuXACorCNg8PYsr+7bff4tixY9DpdPD398e8efOQ\nkJBAjvuXX35h+ahSFEW8NinKKpAFWAV/CgoKeBdfjkzgtennWq0WAQEBvObgjAhXTer0vuDguv2/\n6hiVFIXdAQGwWCywWCzo2LEjR0mwvLwckZGRdmm7zLY11QAZ7PD2dvqUOeHEfxL1SWDZU8OsB+vh\n9OnTvDoSU6dOxY0bNxAYGOgQtZOh7+7duxdZWVmQy+W4efMmvv/+exgMBqLf0KZNG7tVrxMnTnBo\niVVVVejevTuys7PteoASONgff6N9ew4jjBEnrJlQHjNmDOf6MIGTo1iwYAHEYjGvMBIfHjx4AH9/\nf7vrJ77hiHhfiUCAk9u2ERFBe9Y9wJ+2N8uXL0daWhqGDRtGbG1EIhFRqX3rrbcQERFhly6bkZFB\nxJUAoEOHDoRqu2TJEhiNRqhUKshkMnTr1g1hYWFYsmQJ774Y9WN3d3eo1WqMHTsWCoUCsbGxGDdu\nHORyOUQiEYch9/z5czRq1Ahz585Fv3790Lp1a7v3VadOnYhty/fffw+BQIBPP/0Ut2/fxq5duxAc\nHEyOcebMmYSpVFJSgsTERLJeZPDo0SNoNBpe+zjA6k9rMpnwyy+/cP43fPhwtG3b1iEBrdrgs8sx\nGo2cSuw/Gc6g9L8QFosF7dq1I4HbnDlzOA++2NhY8oO6f/8+XF1dyY/+jz/+cJhu4uLigilTpiAs\nLAyff/45CSSY40hNTeXdLjo6mpU927RpE5Gjr8vz6cmTJwgLC7MGFfWglT548ACLFi2Cm5sblEol\nrl+/jj179nAU36KjozFgwACsWbOGc9z16fdQKpXEY3Tu3LnIzMwkk/nIkSORkZEBrVYLb29vaLVa\nuLi4wNXVFampqbh16xaUSiVSUlLQpk0bVuP+5cuXCXXz888/h0QiwdChQ5GUlEQ8U9etW4eAgAB8\n+OGH8PX1xapVq2A2m2E0GnHp0iVyPitXroRYLMapU6eQlJQEtVoNgUBAgrJly5YhLCwMT48fh8UB\nmnczLy+IxWJiqePp6YlPP/0Ua9euRYsWLWA2m/Hbb7/hyZMnHDU8oVCIjIwMkgwoKCgAYKXASKVS\nXjp68As/t7qOi0muREdHw8fHh0WnZvD8+XNERkayMuhLly51WOG3rkG/qFBOmjQJzZo146g0Mr66\n9hZ8c+bMQVJSEmfbhQsXOnacTvVdJ5z434OjwSRF2f8d1sMeCwBOnjwJrVbLeT7OnDkTly9fho+P\nD0u91ha++eYbmEwmIoAUHh6O6upqfPnllzAYDFi6dClEIhGGDh1qdz87d+7kiLdVVVWhS5cujtnW\nOHj+z2rNCa6urjAajazXVCoVPvnkE06SmaIomEwmjoe0PcyePRtisZhVKbQFi8WCRo0a2Vw7mUwm\n1t81vz9HaMiurq545ZVXEBISAoVCwetiAFiD4wYNGhDxqAEDBrDWXgMHDoRIJMKoUaPQsGFDpKen\n27SGoWkaWq2WCPB9++23kEgkEIvFeOmll2AwGHDo0CGkpqZCLBYjJCQE58+fh4+PDyfZ+uTJEzRq\n1Agmkwmurq4YNGgQlEolIiIi8PTpU9A0jZdeegkymQxisRhJSUkoLS0lft6DBw/GyJEjuVZMPMjM\nzMS//vUvnDlzBkajEampqfjoo49w//59NGzYkLgdnDp1CgaDAbdu3YLFYkHnzp3Ru3dvzpy8Zs0a\njtUbg3379sFgMODo0aOc/7HaguoJxgav5j0jk8nYLTxOOIPS/1Y8fvwYgYGBhF4wduxYzkMxLy8P\n1dXVWLhwIfr27QvgT8/D5cuXY/z48bx2IbWHl5cXBg8ejLS0NCgUCtaE8/jxY9I3WXt069YNgLU/\nTqvVwmg0YsiQIUhOTq4zi3T+/HkYjUZUOdi/UywWIy0tDWVlZUhLS4NGo0F6ejoSEhJYxxQVFUXk\nvgEgMDCQ9X9H6aLPXqgCHjhwAIC1MhoTE4N169Zh+fLlCAsLQ2pqKsaPH4/u3bujWbNm0Gq1RMFO\nqVTCx8cHFRUVePbsGSdY2rFjB0wmE2QyGdLT04n6ssViwbfffguDwYDffvsNgNVTLD09HVOmTCEC\nSIzRdGFhIdRqNdq2bUvEjpgq7FdffQWTyURorIemTbPrU8rQvAsKCvDZZ59BKBTCx8cHVVVVqKys\nhL+/P3r27ImJEydylPAoyqqGFxcXB4FAgNWrV0MoFOKjWbPwuZcXnlIUUTl+j2JX8B3tI/L394eL\niwsiIyM5NDKLxYL27duz+oYY1WJ7n1Evqp5QiJUrVyI4OJjlTwsAx44dg8FgsEvb3bNnD8xmM4fl\n8MMPP9R5Lf5JPmVOOPEfw/8Uhd7BNpETNZLAx48f5/iYSqVSnDt3jlA3+WyvamPhwoVITEzEDz/8\nAIlEQsRTtmzZArPZTKxF6rIQYapuNStclZWV6NChg12qJYB6WdUx5yoQCHDgwAGMGjWKdQ00Gg2M\nRiM+/vhjXssRol7uIKZNmwaxWIwFCxbYfR9fUrv2+sve/x2hIY8ZMwZ3794ltNnarVlFRUVo3Lgx\nJkyYgNatW6N37968a6tevXpBKBQiKysLubm5cHd351WEvXz5MhE5qqqqgqenJyiKQuPGjaHX67F7\n9260bt0avXr1wqVLl6BUKhEVFYWTJ0/CaDTiyy+/BAA8e/YMiYmJ8PLygk6nQ7du3aBUKhESEsIS\n1KJpGoMGDYJUKoVUKkVWVhbxXJ88eTLi4uJ4NTZqIzU1FVu3boWPjw8++ugjvP322+jduzcaNWqE\nGTNmkPOJj4/H6tWrAQCTJ0/+0/6wFtq0acPrH8546vJV4BmdEGY9VR8wApm175HalGInnEHpfzUY\nRbWzZ88SdbzaN/XLL7+MsLAwHD58mFRYa9q3lJeX8/by1R4JCQlo27YttFotR03s9OnTvMJHFGX1\nioqIiLB6ss2dC4vFgrS0NIf6Pfbv348PXVzqVA+upCisfBG8jWvfHk979MAz6s8gZ+mLB72Pjw9C\nQ0OJ3Pf9+/eh0WiIKABFOU4X/bV5c+zduxdms5ko2h07dgxubm7Q6/Xo2LEj2rdvj+rqamIG3rp1\na2LlwlwbBleuXIGHhwf+9a9/AbD2YUilUigUClIVffz4Mc6fPw+TyYR9+/aRbaurq5GVlYVx48ZB\nr9dDLpfjzp07EIlERK2OOT+mD/T333+HwWAg2df79+/Dw8MDx7dswZ7AQFS4uABCIUqlUs5EKRAI\nkJKSgvj4eKhUKowdOxaANUvYrFkz3iq8QqFAnz59IBAI0Lt3bwDA6i5dHAo2HZnAJRIJmjRpAqVS\nyUt1mTFjBvGMBcArTsF8RrlczvL/qnZxcWgBVaVQEPGqmmBou/ZEDy5cuECy0DVx7949jmJ0IEVh\ng7v7P9anzAkn/mP4n7JlcqCnspiiEERRLOrm0aNHSXKRoijy7AVAAoPdu3fb/WiaptG5c2cMHToU\nhYWFEIvF+OqrrwBYRX/8/f0xYcIEiEQiu9VXmqYxYsQIjnpqRUUF2rVrh86dO9sOTOtpVUdRFKHV\nXr9+nfU8FAqFpKVl2rRpvOuQkfVsaWCE/GprJDB49uwZpxIqk8kwffp0eHh4YPDgwdiyZQtv9ba+\nY8WKFbh69Sr0ej1cXV1J0FNeXo6MjAz0798fOTk56N69u91kf9euXSEUChEcHIwSSs3pAAAgAElE\nQVSsrCx07dqV856tW7ciLy8PAPDGG2+AoqyVaJPJhA0bNiA7OxsFBQXkc86fPw8XFxfEx8eTZPnB\ngweRmpoKf39/GI1GZGZmQqlUwt/fn7d31GKxoEePHpBIJBCJRHBzc8PMmTPRsGFDIkRUFyIjI+Hv\n74/FixcDsAaPcrkc48aNI0noefPmISMjAzRN20weA9YKr1qt5lgd/fzzzzAYDKy1FwO+tqD64IMP\nPuB877Wt9ZywwhmU/pfjww8/RIMGDfD8+XOijlf75vbx8QFN05g5cyZrYc7gxo0bvBnG2qNz585w\nd3dH27ZteY/D1nY6nY7VX/fHH39wejBtYcPs2SipI6taTFEY1LIleul0KHvhY1rz/9WUVV4/X6Vi\nZbGWLl2KgoIClJaWIjQ0lCz4HaGLvvVCEGHGjBlIT09HdXU1rly5AqVSiYCAAMTGxrIoJ3fv3oWf\nnx+hHqlUKqjVahKEAtZ+AoPBgBMnTiAkJASurq6IioqCQqHA8ePH8ejRI4SEhPD2Sj569AgGgwEJ\nWi2WUhTKpFJYKArPKArLXpixy2QylJeX48GDBwgKCsKHH34I4M9FysSJE2GxWKDT6XDjxg3861//\nglgsxpAhQzj3h1AoxLFjx9C3b1/I5XJs27YNZWVlvBQzsViMl19+GQKBAL6+vlaFu4sXYakj2ONT\nhbY1BgwYAKFQiM8++4xzbTZt2gQ/Pz8yIZaVlSE4OJizD09PT+Tm5rIWUkVFRVgmFNaZqGCUMvm8\ndmfMmGGXtltUVITIyEiO/1hFRQWx0qk55HJ5vZUunXDCif8B1EOgp07s2WN9b60gt3ZSzsXFhUUV\n/Omnn2AymbBq1Sp4eXmxAscffviBBAb28OzZM4SFhWHNmjVITU2FSqUiFawFCxYgPDwcffr0gVgs\n5l2EM6iqqkJOTg7HN7K8vBw5OTno1q0bv3BSPa3q4uPjybrlwoULrOehRCIhcy2TAORbzzBCOI5i\n+PDhEIvFxOquJiZOnMgJSHfs2AGVSoWsrCzyPr7qV32HWCzGwYMHcfbsWVIVvnHjBvLz89GhQwfk\n5ubaTwC8AE3TaN++PUQiEbRaLTw9PbF3717WeyZPnozXXnsN9+7dI9oRHh4eWLp0Kdq2bYv8/HzO\n93nmzBnIZDKkpqZiy5YtkEgk8PX1hYeHB5KTk6FSqeDt7W2XRl1dXU08OcViMTQajcO066KiIshk\nMqLDUFxcjNTUVEilUlIw+OOPP6DX63HlyhViP1g7ecxg3bp1aN++Pes1RhBsx44dnPczbUG2EhiO\ngKZpNGnShDC3unfv7pDa8j8RzqD0b4BBgwYRe5UbN27AbDaTB5rZbMbChQvx6aefwsfHx6ZP1Sef\nfOLQAzIrKwsKhQKbN29mbb9z507W59YeZ86cYb2/dg+mPSzLy0MpT2BQc/Iek5uLqlo+prVHpVDI\nWiykpaVh586dpAezPrLzTCBWXV2NFi1aYOrUqYiOjkavXr1sZpgZFUEPDw+4urpCpVJBo9GwFHnX\nrl0LFxcXSKVS/PzzzwgLC4NGo8HevXvRvHlzltBUTRw+fBj5KpVdf9UZ8fGYMmUKmjZtyhJz2LRp\nE8LDw1FWVoZTp04hNDQU165dg4uLC1q0aIFhw4ZBJBJxsr5jx45FZWUlEhIS4OLign379nEsd4RC\nIUaNGgWhUIgxY8bA09MTFosF1UOH1lvAqPbQaDQQCARo0qQJVCoVbw/I8ePHiXk88OfEXHtfEomE\nk5W1WCwwmUwOC1Ns5VHBrIu2S9M08vPzOT2wTKKA77xreu864YQT/59hI5j8SxT6ixetVdUarIdr\n7dohpFZQ5eHhgWvXrpHNmKTU77//DrPZzGJh7N+/36byeE2cOXMGer0e3333HTQaDRITE8kzaMqU\nKUhMTERmZiakUilOnTplcz/Pnj1DVFQUp0+xrKwMGRkZ6NmzJ7eCd/EiqmQyh5KSDEWZwa+//soJ\nCDMzM0nQeubMGfz000+c/jy5XM51JrADmqbRv39/iMViVr/kuXPnOGJLDEW0VatWUKvV5BmdkpJi\nd/5yNDB1d3fHxYsXcezYMeJTnpqaivbt2yMvL89hejJN02jTpg2pSAYEBLDoq61bt8YXX3yBpKQk\nUJTVWueNN95Au3bt0KlTJ5uB7/HjxyGRSKDVamEymSASiRASEkKqrDXvXT4cOnQIer2e6FDI5XKH\n+norKiqQlZUFFxcX3LhxA6WlpUhPT0f//v2RlZWFTz/9lMXOO3v2LIxGo83+XMDqMlHz93Tu3Dl4\nenryKvFaLBbk5eVh8ODB/1YQOX/+fMTExGD79u3IyspyXMX6HwhnUPo3QFlZGeLi4vD2228DFy/i\nXpcuLPrq6dRUJGi1vI3ZNcFH/+UbWq0Wer3eaqHyAv3798eiRYuQnJzMu41arWbJmldWViI2NtYh\ncYaqqir0bNIE7wuFoF+oBz8XCrFSJkPQi0npU4WiTjNzmqJQ/UJc5/r163B3d8ezZ88gl8s5mdXa\ndNFnFLffQ6lU4tixY7h58yZkMhmSk5Oh0+mwbNky+Pj4sJrdv/rqKwiFQvTu3RsGgwE6nQ4KhQJK\npRLe3t6ERjJ27FgIhUI0bNgQPXv2RO/evbF37164uLggKyuLl55z9epVJOn1dU7yZSIRwqVStGzZ\nkggh3LlzB0ajET///DMAYMmSJRg0aBD8/Pzg4eGB7du3QygUYt26dSy1ZbPZTLLTjx49gl6v56Vw\n5+bmQiqVomvXrigsLMSIESOs96xUWm/6Vu2FyC+//ILx48fDw8MDGo2Gk8G9e/cufH19WcJaDCWp\n9qipNsig5oLCVqKClkhQKhRiDQ8VqqKiok7a7vz585GQkMBRFly8eDHvcTKWM0444cR/EDzB5P8k\nhX7FihWc335UVBSvgMpvv/0GT09PVg/crl27YDQacfr0abufs3HjRgQGBmLPnj0sgR+apjFkyBC0\nbNmS2I7xeVAzuHbtGsxmM0cltqSkBOnp6ejbty9LfOfatWvo7upq9VCvo1JMURS2bNlCtv366685\nwWZERAS6du3Kmh+PHTvGmdf9/f1ZPY11gaZpFBQUQCwW49NPPwVg7TesuU9vb28UFxeDpml4eXlh\n9erVMBqN2L59O6f1onYi1NGglKIoolDbq1cvEtRmZmby9kTWdU6tWrWCUCiEm5sb3hkzxlq5Vqth\noShUurjgPYpCA4kEY8aMQfv27dG+fXu7gW9FRQWZL2UyGVxdXSEUCqHT6XCxjt8E05I0depUeHp6\nIj4+HgKBAAqFwrqmtQGLxYKCggLk5eVBrVbj3r17yMnJIfTiwsJCjB07Fu+++y5SU1Nx584dBAQE\n2K2YP336FGq1mvSxXrlyBT4+PqQPtTamTZuGZs2a1atnuTY+++wzeHl54caNGwDgrJDWAWdQ+jfB\n5cuX7T7kKyWSOjO4FRUVHCEFW+O1116Dh4cHLl++jKqqKkKNuHPnDlavXs2rpBoQEMAKHE6cOAGD\nwUCU3uxh8eLF0Gg0WLZsGQArfWbw4MHYuXMnvv/+e4ctPSwCAaBWg6YolEok+Eil4qWI1hZvkslk\niIqKYr0mEolgMBjw8ssvIyQkBAKBgFBiBw4cSAKwixcvksAMsHqi+fv7Q61WQ6vVQq1WIzk5GStW\nrIBYLMa8efMQExMDNzc3FBUVYc6cOfD09ERqaion8CoqKkKjRo1wMiXFIeGMFVIpGjZsiPLyclI1\nnDZtGtlfbm4u4uPjIZPJcOzYMbi4uKBz5864du0aPD09kZeXh82bN6OgoAAFBQWgaRo0TSM7O5v3\nGmq1WuKRGh8fj/3791v7mx38vqop7nejVCrJZPXOO++AoiiOKEF5eTmSk5NZfRm7du3ivZf56Oh8\nVku1ExWlUin2hYZiZHY2r0/bjBkz0K5dO5uTzN69e+Hh4cFZ7NVedDEjMjLSOWE54cQ/BLUpohRF\nITs7m5cO++uvv8LDw4NVzdm0aROvj2JtjB49Grm5uZg8eTLEYjFJUFZXV6Nr165o164d/Pz8oNPp\niB4DH44ePQq9Xs9JfhcXF6NZs2YYOHAgLBYLKisrkZKSYlWSrxXcVyoUvFZ1AoEAu3btQklJCUec\nMT4+Hj4+PggPD8eQIUNYz8i3336bcw1tJXdtgaZpdOzYEWKxGLNmzeLsb+PGjQCsyWGj0QiaprFh\nwwbeJK1IJEJSUhLkcjn69OlTr6CUoig0aNAAwcHBSElJgVAoRFpaWp20XVvnlJaWhhzKmgCoTaWu\noKxJ7NkpKWjXrp3doKuqqgqdOnVCZGQkad9hrGzi4uLsVv3u37+PoKAgjBw5klislJaWksDUxcUF\nH330Ee/xjx49GmlpaSgpKYFAIECHDh3QsWNHcj0OHTqEyMhI6HQ6nDp1CsnJyaSibQvr169Hbm4u\nAKtPamBgoE39kw0bNsDf3x/379+3u097YJhcdRWMnPgTzqD07wIH6DC0A70u3333Hcdbkm+4u7vj\n9ddfR3h4OHbt2oXY2FgA1odFbm4uZDIZb2CamZnJ+rypU6eiS5cudZ5e8+bNsWzZMphMJuzfvx9H\n1q/HVqPRKpggENRZJSXXgCdQq52VlUql2Lx5M8LCwkBRVgpqz549cfnyZZbIBEVZBXzEYjEaNGiA\njIwMtGjRAlVVVXj8+DHxhNNqtWjUqBFrshw5ciQiIiLg5uYGPz8/KJVKIgJ04sQJ6HQ6NGjQAL16\n9YKPjw+uX7+OjIwMTJkyheyD8bTs378/aEctBihrBb1MKsUfrVohJzSUZFqrqqqIb9i2bdsQGRkJ\nT09PPH36FI0aNSIiAgBQWlqKxMREzJkzB4sWLeK9R6RSKQwGA8rLy4lQw+PHjyGXyx1WOearlEZE\nRICmaZw+fRoKhQJms5lIvjP3YL9+/dCpUycSLJ45c4ZDLWa+v9qZ5lWrVjm0QMjJyUHjxo15J93j\nx4/bpe1eunSJl0Z06dIl3t+fXC7nFWVwwgkn/m/CYrGgU6dOnGfBiBEjeJNTp0+fhslkYinwrl69\nGr6+vrh69arNz2GqXLNnz0ajRo2g1WqJnVxFRQURt3F3d0dAQIBdv8jt27fDbDZzEm1FRUVITU3F\n0KFDMXnyZGTbSOSdPXsWLi4uvM9bkUhEKMU1X09PT8dvv/0Gg8GAkJAQTJ06lbXP2u+nKMqmr6Yt\nWCwW3sRr06ZNyXfx8ccfo1OnTqBpGr179+a8VyKRICYmBnq9Ht9//z2qq6t5z7Hm33z035CQELRo\n0QIffPAB5HI5OnTowHst6wJ94QJKhcI62VXlL1T++VBdXY3u3bsjOjoaBoMBrq6u5PvLzc1Fz549\n0a5dO95ESmlpKZKTk1FQUMChmxcVFSE8PJzMfTt37mRtO2fOHERFReHx48coLi6GUChETk4Oay4v\nKyuDUCjEK6+8gu7duzvUp5mXl4d169bh/v37aNCgAebOncv7PiYBUxcTwR5u3rwJb2/vOi0SnWDD\nGZT+XeCAKmAlRcFSQ3nXFoYMGYLY2Ng6F+Xx8fEYNmwYvL29SUVq0aJFkMvlWLBgAZYtW8a7Xc3A\nqqysDKGhoYQaw4ebN29Cq9WivLwcBw4cQHdXV1jkcoero44Mpn9FrVYTL9CbN2+CoqwVKib79tln\nn/EGX76+vqioqECrVq1INo5p+jcYDJyJvKqqCllZWYiKiiK9kUKhEG+88Qax+vn8888hFArx1ltv\nAbBmFb29vbFr1y4A1kpcSkqK9UFcH/886s+AvFouJxV0hjL28ssvY8KECRCLxbhw4QLy8vIwcOBA\nzgP91q1b0Ov1vKISTD8P47G1ZMkSDBw4kNxXP8bH17unlAmYlUolvvrqK/j7+0OpVOKLL76At7c3\nmfjefPNNREdHk4XVw4cP4e3tzTlGsVjMkVyvab9S17BV5a+oqEBUVBRvhhewVg6io6M51KTnz59z\nvF2ZUVMQywknnPhnoKSkhAjA1ByrVq3iff/JkydhMplYgm9vv/02goOD7dpR3bx5E56enti6dSsU\nCgVatWpF/ldcXIyUlBQMGDAALi4uSEhIsFtpXLhwofX5e+qUdV3CJI7Vanzi5oZIFxdeFdby8nI0\natQIy5cvR3p6Ou9zUCAQcHzZ27RpAwA4cuQI3N3d4efnh4ULF7L26+7uTt4fFxfHUVZ1BCUlJfD3\n92cdS80e1WHDhmHJkiVYvnw557iDg4Mhk8ng7e3NoiLXTpT6+/tDKBSSlqIBAwagcePGnP0x1bs3\n33wTcrn8r/U0Dh8Ouo41I21HSdpisaBv376Ijo6Gu7s7VCoV0clYvHgxRCIRhgwZgqysLAwYMIB1\nfBaLBV26dEHr1q2h1+uJenJNPH36lAj9yWuICDIK0YzXKEOvrp0c/vDDD6FUKtG9e3ckJyfbTaYA\n1t5otVqNK1euICYmxmZV9fbt2/D29uYVVXQUxcXFiIuLQ2Fh4V/exz8VzqD07wIHK2XFYnGdu3ry\n5Ak8PT3RsmXLOhfmnTt3hkwmQ6dOnXDkyBFIpVIiugRYqUF829WkGX333Xcwm802qUFvvvkm+vXr\nZ/3j4kVUOtiPWN8AbaVMBi8vL5SXl6OsrAzx8fFQKBTIyclh0YJefvllzvn4+/tj0qRJuHv3LqmQ\n5uTkQCgUEh+42mA8YxmVOz8/P4hEIuTl5eHKlSvw9PTEokWLWBm5w4cPw2g04p133oGfnx8RrnK0\nUso7FAo8/OknSKVSeHh44Ntvv4VQKMSqVaswadIkNG/enJe+c+3aNQ7dWyAQwGAwIJCi8L5AYO0d\nFQhQLBLhq5AQBFLWanmSXu+QynFgjf26ublhy5YtcHNzg1QqRXBwMMmKN23aFFu3biWUWEbZubKy\nEk2bNuV8X0KhkCXsAVgXZvXp86m5uKiJmTNn2qTtMj1KtQ27LRYLr7crRVEsCycnnHDin4U7d+7A\n19eXPA8aNmxoty/y+PHjMBqN+Pzzz8lrjDWbPYuNgwcPwmQyYd26dRCJRCza4uPHjxEdHY0RI0ZA\nIpGgbdu2NoMgmqbxdnY2ykQiTtBTQVlF4Za3b8/Zfty4cejYsSNomsb9+/eJR2btUfsZ3alTJ7KP\nL774Anq9HmazmRW4nz59GkKhEN27d4der69TBMoWmD5RgUDAEdaLjIzE2rVrIZVKWcdnMBggk8kg\nkUg4QUjtqnC7du3g7+8PV1dX9OzZE2q1mijL106oMkHa9OnTiR1NvfBveO4yPcdRUVHQarXQaDRQ\nKpUskadNmzYRocPGjRuzKtgTJ05EbGws9Ho98Tblw8OHD8l9oFQqsXDhQnh4eODcuXOgaRrDhw8n\nfqg1cfv2bRgMBjRr1gxubm4OUWw/+eQT69okKQljx47lvb/LysqQlJSE119/vc792QLDcOvbt6+z\nHecvwBmU/l1QDzNqRx5emzdvRnh4OBISEupcnLu5uaFhw4aQyWSsqiJgpXdkZGTwBgWMIipg7eEb\nOHAg77EkJSX9+eByxCfuL47nQiHWrFkDmqbRs2dPZGVloWHDhnj+/DlLXbCoqAhqtZp1PiKRiIgc\nHDx4EAqFAkKhEDt37rRJ86iurkZkZCQoyioeJZFIIBaLoVKpEBwcTCqkGzduZAWgo0ePhlgsZvUh\n/JKW9pcrx7RAgArKSuutkMvxgViMQS1bYs2aNQgKCuKljZaXl/PeG+np6cimrBY8fOrFJRSFaS+q\npY6oHNcM+hkRjqFDh0IgEEAsFpNExpYtW5CQkACDwcDKug4fPpz3nlWpVKzvpHY23ZHBtzBkaLu2\n5OwXL16M2NhYTlZ3xowZvJ8RGhrKb6nghBNO/GPw66+/Qq1WIzc316Gg6ujRozAajYRVQ9M0Jk+e\njPj4eCLiwocFCxYgMTERQ4YMgUQiwe+//07+d/fuXQQHB2PUqFEQiUQYNmwY/04uXrS2CtmZc0qF\nQswdNIgsyvfu3csS/AOsCVhbPp9yuZxQlf/44w/Wx69duxaenp4wGo0sBtb69esREhKCTZs2wdfX\nl7daaw/l5eUICgrCF198gcaNG7NUiR8/fgylUgk/Pz/WcSqVSpZfac3E++HDhznBpkwmw4gRIxAc\nHAx3d3coFAoIBAI0bNiQ0w7l7u6OBw8egKZpDB06FDKZzK4wEAeOsquEQtZmNE1j1KhRiIyMhLu7\nO3Q6HZRKJTQaDceKaO3atRAKhRg3bhzCwsLw1ltv4f333ycepvYYcgzu3r0LnU4HJjm9bds20DSN\ncePGITExET/99BMaNGjAOr6OHTuiV69ecHNzQ0JCgkOXIy8vD2FhYTarzgwtOz8//98KJhkHhPoK\nVDlhhTMo/bvAwaxX+QtaSG3aYm0w0uGTJ0+Gj48P62EYSFF4j7L2+zEKv2sUCgRRFK+a7rNnz3h9\nIWUyGclgPXv2DL6+vhzz4cuXL8NgMPwZ6P47FcE6hoWiUF1djdmzZ6Nx48bYu3cvmjZtCuBPdcHP\nPvsMgwcPRlxcHGeSMBqN0Ov1xPolJCQEVVVVWLFiBRITEzmUJ8YwetWqVSTI1el0EIlEUCgUrKz2\nK6+8guTkZFy6dAne3t5ITEzESy+8Ur/77juEikR1Vh4dHQytt5tGw1qU1L4/5s+fz1koBAsEqKjD\nf65mBbS2eNBTiqtyTFEUYmJiUF1djS+//BJmsxn+/v6QSCRETOrBgwcQi8Usys3777/Pu6AJDw8n\nnmbMuTDJAUeHSqXiTEx10Xb3798Pk8nE6e/au3cv72d4enrWKaXvhBNO/DNw4cIF0DRN7Nfs9YkC\nVj9Tg8GAPS/aM2iaxsiRI5GWlsby0K4JmqbRqVMnDB06FKGhofD09GQtnq9cuQJvb28MGzYMQqGQ\n1ctP4EDimJZIsFGnw9SpU3Hv3j2YzWbs37+fs6v8/Hybz2CBQIDdu3fznseCBQsQEBAAvV6Pr776\nirxeUFCAMWPGYNq0aWjZsmW9En5z585Fu3btAFif9bGxsXBxccHvv/+OL774AiaTiXOMmzZtQmBg\nIEJCQqBQKJCYmIiSkhI8fPgQvr6+SEpKQkhICEwmE3Jzc+Hl5QV/f3+MGjWKUIUZZfua6vcURbEo\nyjRNo0uXLpBKpUR4qS6UO8o4q1EppWka48ePR8OGDUlFmrGosVXxXLZsGYRCISZOnAidTge1Wg0P\nDw+b8yQf9u3bR9Zber0eL730Eho1aoRHjx7h559/Rnx8PHnvli1bEBQURHxFlUplnQHgw4cPIRaL\n0aVLF5vU9AULFiA2Nvbf8gj/8MMPERgYaJex4IR9OIPSvwscnAgwciQGDx7MqbTx4erVq9DpdMQU\nuq7qVoVEgm4aDVHvq4krV67w+nJ5eHiQB8bu3bvR3NsblYMGkT6UcpkMBxs2/FOg6S/0TjoqglTp\n4oLNmzfD19cXt2/fxrZt21gUnaNHjxIjaJ1Oh3nz5nHOp0GDBqAoCgMHDkRGRgamTp0KmqbRokUL\nlrjC3LlzIRKJsGHDBty9exdarRaurq6kUqpQKJCUlESCcUb0QqfT4fXXX8eTJ08QGBiI5cuXw2g0\n2v1u/uqoksnsCmO9/vrriIiIgIuLC9zc3CAQCLBWqayzT6Uu/1G+YTabSfZ/1qxZiI2Nxbhx4yCT\nybB+/Xrk5OQgKSmJVNsPHDjAm2UPCgqCu7s7y6+3a9eu9ToWirKKLdXGzJkzkZuby5tFvXr1KhHp\nqo3y8nKOzUBERESdPTBOOOHEPxNvvfUWIiIi7FY9AWufpcFgIAED0weYkZFhc6H+7NkzhIaG4q23\n3oJcLkfnzp1Z///tt99gMpnQu3dvYhfGgoOJY4tajcjISISEhLB8sxl8+umn8PDwQOvWrW0+hzUa\nDX755RfOtkwlLTIyEnq9Hj/++CMAa/DBBMCZmZkOW2zdunULOp0OFy5cIK+Vl5cjIiICCoUCQ4cO\nxZgxY8hcTFEURo8eTRSNb9++jezsbLRo0QLZ2dlo27Ytxo0bB8BKCc7LywMAYi+XmJgIjUZDRO9m\nz54NvV6PIUOGQKvVonv37hwrkurqarRq1QpSqRT79u2zez7vvfce3nNgrVC7p3T69OkIDw+Hh4cH\nAgMD4eLiArVajR07dtj9vCVLlkAgEEAul0MgEJCEuiO4dOkSzGYz3n33XdKDKxaLib/7gQMH0Lx5\ncwDW79doNMLLywsrV64EAMTFxeHw4cM2919VVYXExESYTCabSYrdu3fD09PTri1SXfjmm29gMBhY\nvvRO1B/OoPTvgosXrcbddh4wZSIRql9w8VNTU6FQKOq0Y1m8eDHS09Oxc+dOBAsEdVbjKqVSJBuN\nvFnc77//njdQaNy4sXUhv2cPykUiVNVShLOIRH+aktdDZZYWCPCUovCLAw/fCorCnc6dYTAYCK34\ngw8+YFXU9u/fD41GA5FIRALMyZMnc87HaDQiNDQUf/zxB7y8vLBnzx5cuHABOp0Oly9fxq5duyAS\niTB9+nRUV1ejZcuWmDlzJjIzMyEWi6FUKpGRkQGVSoV+/foR25WuXbvC3d2dZKePHDnCkZ2vXXl0\nNCDnHXZEDnbv3g0vLy8sXboUXl5e0Ol0CA4ORlEdan7MsOU/Wld1srCwEL6+vvjmm29gsViQkZFB\nVBlv3boFNzc3HD16lEPFlclkiIiIQOvWrVmKerZ8S+2NlJQUTJgwgXU97NF2S0tLERsby1Ivrolr\n167BYDBALBZDIBDAaDTW6e3mhBNO/HPBVD0zMzPrtAQ5fPgwDAYDqRhWVVWhc+fO6NChg81F+Jkz\nZ6DX67Fw4UKIRCKO1zJThW3fvj1EIhE7CKoHLXTevHmQy+Us6y7AGmgYDAacOHGCJGBtPY91Oh3v\nQt9isaBnz54k4Dhz5gwAYOfOnQgMDMTVq1fh7+9vUxugJnr37s0SaGRQWlqKkJAQCIVCDBs2DMHB\nwRg8eDCSk5Oxa9cuyGQycm6TJk3Ca6+9RvowmYrb3r17kZGRQfb55ptvEsvaB2IAACAASURBVI9P\nV1dXuLq6QqFQYMWKFTAajTh48CAsFguvAGF5eTkSExMhl8ttUrzXrVtH1gp1redoFxeSmH799dcR\nGhoKX19fhIeHQy6Xw9XV1aHrd+3aNcIGa968OQwGA2/xojbu3r2LoKAgLF26lFxD5ntP9/ND+cCB\nqHRxsVrMqdXYGxyMZKMRkyZNIvsYM2aMTRVd5h4xmUxYvnw573vOnj0Lg8FARBv/Ci5cuACTycSq\n2jvx1+AMSv9O2LPHGrzZMaNmfqzl5eXw8fGB2Wy26yNVVVWFuLg4rF27FqdSU+sM7iopCseTkxEZ\nGclr9M08EGuPqV271hlUQ6EAevRwyI/z4gs/t8DAQIcevsUUhThXV1bGb86cOWQiunjxIoxGIyIi\nIpCeno7o6Gg8f/4cVVVVSEtLY52LUChEfn4+WrZsia+//homkwk3btzA/Pnz0aRJE0gkEnTo0AGA\nNfPYqlUrbN++HR4eHsjNzSWUmMzMTKhUKixZsgSFhYVISEjAxYsX4e3tjU8//RRDhgyxOVEzYhCO\nZEPtDh6RA+ZarFq1CgaDAeHh4cRTla5HbzPfcTNCT7bOq0mTJqzM/apVqyAWi6HT6fD8+XMUFBSw\nstXM2L59O/bv3w9/f39Sgdy+fXu9A1KKoji9SBUVFYiOjuY15aZpGr169SKerrVRUlJCbAI0Gg1O\nnTr1bxlxO+GEE/8MVFVVIScnB0OHDq2zx+27776DXq8nTA3G6qVXr1427UQ2bNiAoKAg5OfnQyqV\ncqpE+/fvh8FgQNOmTSGRSP7s0XcwcVytUkGv1+Pw4cMICwsjgQOT4KvZn3j8+HGOgFDNYTKZcP78\nec45VFRUICsrC82aNYO3tzcRwOvbty9GjBhBPus3O7YnR44cgdlstqnY+/DhQ1CUlU584MABAMDP\nP/8MrVZLLNEAq2UMozablpaGfv36wWKx4LvvvkNqaioAa5DbtGlTqNVqSKVSZGVloaCgAEKhEF5e\nXli8eDF8fX1x/fp1PH/+HNHR0Rx7m+LiYoSFhUGhUHDab7Zt28bqY62L+cYo88+fPx/BwcEIDQ1F\nTEzM/2PvvOObLNf/n9l0pWl20r1LW7po6aRQNpRR2VKwgMgG2S5ARUWG44iAgLIRFOQooCh6EAEH\nIBxB0SKCiEwBGZVRuvL+/VFy2zQpVI/n+/3+zsnn9bpfSvLkyZMn6X3f13V9rs8HDw8P/P39G0TB\nvXr1KnFxcQQEBNCsWTNkMhljx44VgkX1obS0lNTUVBHUL1y4kLCwMN599106yWRcv73frHvdZXI5\n1e+95/CZ7QrNtWEXa8rNzcXPz8+ldsalS5eIiopi+fLld/2c9eHy5cvExsaycOHCP30ON36HOyj9\n/w21zKhtUinX5HKnHj171vPChQv4+PiQkZFxR5+rf/7znzTV6e5Ky7QPm58fw4cPr9fo25V67XyJ\nhCq5/O6Vu379amxM7hJg/rp3r0MVsyGiOnK5XCxa9ut8/vnnKS0tJT4+nvT0dNFzMGTIEAoKCqis\nrOTUqVNOFUuz2Uzbtm0ZPHgwM2bMIDc3l9OnT4vFpbKyUliZ/OMf/xDiFWVlZTRt2lSIHDRt2hSV\nSoVOp+P06dMA7N+/X9Cpa4/acvWFhYU0NBt6x1FH5OD69eskJiYyY8YMgoKCxIbkxx9/rDmggRuS\n2pVStVotguiZM2dy8uRJl8bj9mHvpdmzZw8Gg4Ht27eL33HdBIFEUkN9qqqqIiUlhXXr1gHwzTff\n1Cui4cpf1x4wy+Vypw3g448/Xq8a5dy5c0lOTnbZh2Kz2ejTp4+gQb1XayF1ww033Lgb7IGJXYTv\nTvjkk08wGAzCG/nGjRs0b96c4cOH1xvUjhkzhk6dOhEUFERERIRTv509mdq4cWO8vb05deoUjBhx\n17W8SibjDb1eKOSeOXOGqKgoHn74YaxWq0sBnPos5uwjKCjo93WoFq5du0ZGRgZt27YlKiqKc+fO\nceXKFYKCgti2bRsrVqwgJibGJRW6urqa9PT0OwZfH374IR4eHmi1WvR6PYcOHSI0NJSkpCSHQOSz\nzz5DqVSyfv16rl+/Tm5uLg8++CD79u0jNTWVyspKunTpQlpaGsHBwWg0Gtq0aUOPHj2Ij4/Hz8+P\n6Ohopk2bJhSYT5w4gdVqdeqtvXz5MkFBQWg0mprvhBp2kyt1eTu76qaHBzaplEofH64NGEBTnY4v\nvviCl156ifDwcJKTk2natClKpRKtVsvixYvrvSd2lJeXk5+fj9lsFoq2EyZMQCaTMWLECGHtUhdl\nZWW0bNlS/DaXL1/++/d77Nhd94B4e4sK7y+//IK/v7/Db9dmszF+/HgyMzNZuXIl7dq1c7qGyspK\n2rRpI2jWfwYVFRW0bt2acePG/elzuOEId1D6/znOnDnjJK2uUqkEtePAgQMoFAqKi4vrP8n773NL\noWg4FVQmEz6cI0aMcFrwqqurad26tcM1XW3guW0SCR96eHBDIsFWR1CndoBpsVicJt98iYSvb5/D\nPr6+/bj9GIvFIkQgiouLWbZsGV26dCE9PZ309HQRXNgnmwcffJA+ffoI6mXt92vevDlJSUk899xz\ntGvXDn9/f/z9/dHr9aI/8p133iEoKMjB8PyXX34hKCgILy8vjEYjMplMCCpATTBWN2hTKpX4+fkR\nHx/P999/T0lJifC8/Jd6TeuIHPTt25d+/fqRkZFBmzZtkMlkDuJUP7Zv/4f8R8PCwsjIyCAuLg4v\nLy+ghi5T17/N4XvMz+fUqVMEBgaKyvbevXtdBpN2M/OlS5eSm5uLzWbj0qVL+Pj4uDy3q2y8Wq1G\nr9ezYcMGoqOjHX7LX331Vb203R07dmAymTh+/LjLP6tnn32W8PBwvL293bYvbrjhxp/CyZMnCQwM\nbJBv4scff4zBYGDXrl1ATTWqadOmTJo0yWVgWl5eTnZ2NhMnTkSpVPLAAw84HbN8+XKCg4MJCQlB\nr9dz6csvuXEXxsx1iYSizEyH99y3bx8KhYI+ffq4vHabzUZRUZEQAnQ1f4eGhrpsHbp48SKxsbF0\n6NCB5ORkrly5wgcffEBoaCilpaWMHDmSwsJCp+T80qVLycrKqjdpb7PZSEhIIDExkcuXL2M2m1Eo\nFPTv3194l9uP69GjB3K5XDB1rly5QmpqKsOHD6dRo0YMGDCA+Ph48RmeeeYZOnToQEFBAYWFhSiV\nSkJCQkhISGDkyJFkZ2dz48YNPv/8c4xGo6An23Hu3Dn0ej0Wi4WNGzfecU2VSCROLSMbN25Er9cT\nFBREdnY2mZmZKBQKtFptg1R+7Wq1er2eB2opLUONKr5MJqO4uJjExESuXLkinquqqqJ79+6iAPDG\nG29gtVp/r/o2xIGhTutRTEyMUEqGGv2H5ORkLl++TK9evUT/aW08+OCDtG/f/k+r39srsZ06dbqj\nr68bfwzuoPQ/AHv37kWlUjlMQAEBAWIjvW7dOuRyOXPmzHF+cQN6VZ2CDk9PoGbBa9y4sRO9BGpo\nKrUre9V/5PwSCdUqFXTujM3PTygAu1JttY+C2/2wDbEfadasmVAf7tWrF40aNSI4ONip//bKlSsY\njUakUinbtm1j2rRp4hxyuZwVK1Zw8uRJAgIChLrra6+9xsSJE0VvaGpqqst+h0OHDqHRaJBIamxB\nNBoNVquV7777jsDAQIfP5u3tTePGjZHJZDz99NPiHHFxceKYur2mt27/9073uUomc5jY//a3v5Ga\nmkrfvn3Jzc1FKpU6eNkdO3aMZF/fBvuP+vj4oNVqKSgooEuXLgQGBlJWVkZSUhIzZ850+T16enry\n9ddf07RpUwflx9WrVzt81vkSCddkMmy3TduXe3vz9dtvU1lZ6eD5V/fcTz/9tIM/b6NGjWjevDk9\ne/bk/fffd8io2mm7rhSnT548icViqVdwYvPmzZjNZry9vYmNjXXLw7vhhht/Gvv3729wn95HH32E\n0WgU4i+XLl0iMTGR6dOnuzz+9OnTWK1WJk6ciFwud8no+Nvf/iZsTIxGY4OYSUFBQcJW6/LlyyQm\nJjJ58mTCwsKYP3++y2u5du0au3fv5uuvv0YiqdGjcKr8RUQIVlFtnDhxgsDAQNq3b09ubi43btzg\ngQceYMiQISL4rr2mXL16FYvFcsd7+sILL6DRaFizZg3V1dV07twZlUqFSqUSlm4AixYtIikpiYSE\nBP75z3+Kxy9cuEBERAQqlYqIiAiHam95eTmNGzdm1apVtGvXjtjYWKKjowkPDyc1NZU+ffpQUFBA\nRUUFq1atcqnq+tNPPwlbmfqCUR8fH5f01qVLl+Lj44PZbKZp06bI5XJ0Oh2zZs2q937UxpNPPomf\nnx+9evVyGZQNHDgQuVxO9+7dycvL4+bNm8LeplWrVty6dYt33nkHs9nsKGb1J/xVBw8ezLx58wCY\nNWsWsbGxnD9/nhs3buDn5+d031577TViY2MdguU/ihdffJHExMR6ad9u/Dm4g9L/EKxatcppMsrI\nyBBZu8cff9z1gvMHfUErJBKWeHqK3go7vaS2kbcdZ86cERnPhlZKHcZtikbnzp3rnXDtQcofsSmR\nSCSMGzeOyMhI9Ho9Op3Opc/oxo0bkUhqFAC3bNkiRItiY2OJiIhg2bJlQI0MvUQi4eGHH8ZkMtGv\nXz9BzR00aFC9GeqEhAQ8PDxQqVQMHDgQT09Pl7Rdo9FIu3btUKlUREZGil7elStX1lsRbGif7ee3\naUs7duzAbDbz6KOP0qhRIxQKBUOHDhXXW1ZWRuof9B9VKBRkZGTQtGlTfvzxRywWC6NHj6ZXr15s\n2rTJKZGiVCqZPXs2Wq2Wnj17ivtWUVEhVI/re+9KqRS8vZmUkODyfnh4eDBt2jSgRo3XYDCQnp5O\nVlYWbdu25eWXX2bhwoUOwlf10XbLyspIT09n9uzZLv8Wv/vuOyGn7+vr6+Sz54YbbrjxR7Fx40YC\nAgIaZCO1detWjEYju3fvBmrYOdHR0S4TyFAjPGQ2m2nTpg1eXl4uLS2mTZtGQkKCCIDsidAbSmW9\niePOnTtz7do1cnNzBb3z+PHjhISE3JEeevbsWbRaLSaTiS5dujjN5zExMZw9e9bpdYcOHcJoNNK6\ndWs6duzIxYsXCQ0NZevWrZw+fZqAgAChVDxx4kTuv//+eq9h165dmEwmNBoNZ86c4eGHH6ZZs2a8\n/fbbyGQyQkJCuHHjBl9//TUGg4Hvv/+eoqIipyTmmDFjkEgkaDQap77YL774AqvVypkzZ8jNzcXD\nw4NOnToRGhpKVlYW7dq147777qO6uppHHnnESZH34MGDLl0P7CMuLo7r1687/WZef/11rFYrBQUF\nQjFXp9Px+OOP13s/amPFihV4e3vTvn37Owpx9e7dG4VCQZs2bSgsLGTKlCk0adKE0tJS3n//fYxG\nI/v373d80Z/wV125ciW9evVi/vz5DkmLDRs20KZNG4fT79q1C6PReMd+17th8+bNWK3Wu9o2ufHH\n4Q5K/4MwefJkp0npvvvuE5vqe+65Bw8PD8em/z/oC3pdIuHBTp0wmUxigt27dy8Gg8EhQ2jH7t27\nkclkLHARSNx1KJVc7NMHk8nEoEGD6p141/j7N0gcyZVNib+/v0svtEOHDqFQKBg2bJiQ3T948CAX\nLlzg2rVrIvCYPn06MpmMoUOHEhwczD333INKpaJLly4OPq21YbPZGDx4MIWFhbz88stoNBpUKhUp\nKSlO19e8eXO8vb3p2LEjPXv2ZMiQIfTu3RubzcapU6fQarWEhYVhNBqdeigbEjza5fStVivPPPMM\nFosFHx8fIcxgx7Bhw5yC3ob4jyoUCo4cOcIvv/yCRqMhLCyMK1eu0KRJE8LDw/H390ciqRGP2rdv\nH7NmzUKn0zkZWO/du5dYhaLBVVr7+8tkMvz8/OjRowc2m42jR4+iVCopLi7m0qVLqNVqoqKiOHjw\nII888oioRNtpu3Uz8jabjYEDB9ZrsH3p0iUiIyPJzMzE399fJC7ccMMNN/5VvPjii/WKDNbFli1b\nMBqNopXn559/JjQ0lFdffdXl8bNmzaJp06YYjUYaN27sNL/ZbDY6derkML/LZDJ++OEHpk6desfA\nqK7g0tGjRwkKCmLp0qUur+X48eOEhoby7LPPkp2d7TIxHR8f7yRKBzVBh16vJy8vj3vvvZetW7cS\nFBTElStX2LlzJyaTiW3btmEwGBysw2rj3LlzBAYGsmjRIiIiInjttdeIiori4sWLtG7dmueeew4/\nPz/hUWrX8Zg5c6ZDj+Krr76KwWBAIqlR7V+zZo3Te40aNYoHHniA69evC9ZVYWEhwcHBtGjRgszM\nTCZOnEh1dTWFhYVCkff777/HaDTWe9+VSqVLi7L169djNpspKioiOTkZmUyGVCp1ouDWh48//hhP\nT0+ys7PvygCy2Wx06dIFhUJBaGgofn5+/PLLL4Jm7krx1vYnKqXHjx9Ho9EQFBTk0E7Tp08fh+TH\niRMnsFgsfPjhh3f9nPXh4MGDDjZEbvy1cAel/0GoqqqiY8eOTpOTXTimqqqKxo0bo9Foflcia2BW\nyiZxrIKNGTPGgf6wYcMGAgMDRdN9bSxZsoQUtbpG7e0PBqbXFQpefPFFzp8/j5+fn0uaSmkDz+XK\npsSVn9bly5fx9fUlLy9PPPbmm28SHBzskJ2103mHDRsG1EiTKxQKIiIi0Gq1FBcXM3z4cKfzv/TS\nSw60j+HDh7vsB0lOTsZqtbJ//348PT2ZMGECZWVlpKSkMG/ePLp37860adNYvnw5BoPBpbBPQ4JH\nHx8fxowZg8FgwGw2Exwc7EDH2b9/v9N56xMRcjUKCwv56quvkEqlfP755/z9739HLpezY8cOVq1a\nhdlsJi4ujsmTJxMQEMAPP/xAWlqaEPewC1FtjYz8Q/2sEkkN9TktLU0wBpKTkwkNDaWiooI1a9bQ\nrl07tFotVVVVFBUVsWrVKsrLy0lOTnZJ212wYAGNGzfm2rVrTs/ZhRPatm3rMrB2ww033PhXYLPZ\nGDFiRL0ig3Xx7rvvYjKZhGf50aNHCQgIcBkc2Ww27rnnHu69914UCoVLj88TJ04QHh4u5teoqCig\nhkZaH4VUKpUK8aXaOHLkCIGBgS7n2cOHDxMbG0t1dTUFBQWMGzfOpZ9pYmKiS1XVTZs2YTabycjI\nYMSIEQwfPpyBAwcCNVRktVpdr41IZWUl+fn5TJs2jcWLF9O2bVtMJhNHjhxh165dREREUFFRwYkT\nJ1AoFGg0GlG93LJli7B/2bBhg9CYkEqlHDp0CLPZ7MQqKy0tJSgoiB07dlBSUoJCoeC+++4TAlRt\n27YlLi6OOXPmcO3aNZKSkpg6dSpBQUH1rrlSqZSoqCin9Wfjxo2YzWaGDh1KXFyc6CHNy8sjLS3t\nrsrw3333HV5eXjRu3Fhoc9wNNptNtDdFR0dTXFzsIMhV99iGrPN1W4/eeOMNZDKZQ7B58+ZNNBqN\nSFzY793f/va3Bl23K5w7d46QkBDefPPNP30ON+4Md1D6H4arV68SGxvrNEG9f1v6u7S0FL1eT2Rk\nZM0E1MCs1K06gYxGo2HAgAG0a9dOLI6zZ88mOTnZJcf+o48+okir5ZZC8YcqptUSiQgoNm/e7NJy\npqH9qq5sSrRarUO2tKqqipCQEKfADODpp58mLS2N69evc+rUKTw9PQkICKCoqIjffvuNuLg4GjVq\nhEqlwmKxsGbNGgIDA9m5c6c4x9atW7FYLA4qwHv37nWQcbcPtVrNnj17OH36NGq1WmS9jx07JrKC\nZWVlDB8+vMEBYn1DrVYTExODr68vly9fdvr+pk+fLjYdrq61drDqilIcHByMl5cX33//PTqdDpPJ\nhM1mY8aMGXTv3p2lS5cil8uFQMfPP/+MxWJh69atdO7cmR49evBbAxMo9uSDSqUiMDBQVKtnzZqF\nTCYTggp9+vRh2LBhdOnSBYDc3Fx27tzJE0884ZK2++mnn2IymRwM1mtj7NixZGdn4+vrS1BQ0F2N\n791www03/igqKyvp0KGDS5FBV9i4cSMmk0kwmeoLjqBm/xAdHU1RUREymYxPP/3U6ZgHHniAsLAw\noX0wY8YMDh065FL51T4CAwNdUoIPHz6M1Wp1CpIPHDhAcnIyUGPJEhoayvr168nNzXU6d5MmTVz2\nBi5ZsoSQkBASExN56KGHiIiI4N1332Xz5s34+fnRr18/l/fvkUceoW3btlRVVdG1a1fUarUIoFq2\nbCnYLytWrBDK6ikpKVRWVnLy5EnMZrPwPNfpdBw4cAAPDw/KyspEb3BdP8uNGzcSExNDWVkZAwYM\nIDAwkBEjRtC+fXsCAgIoKCggODiY5cuX31FZvvb+rC492k6XHT9+PGFhYahUKjQaDYMHD6aqqorO\nnTu7TETYce7cOTQaDaGhoX9obbP3OKempqJUKoUyrytMnz69wa1Hb93ufd28eTMmk4kOHTo4MJPe\nfvttWrVqBdSIb3br1q3edqqG4ObNm2RkZNTbm+3GXwN3UPofiCNHjggRHfvw8/MTm/Eff/wRlUpF\n69atsTWgp7RcUtNHWnfis3t62quNNpuNBx54gE6dOrnM4s6cOZMu8fHMk0garPRbfluxFX5XGr7v\nvvscrqOh/aquKqUSiYSkpCRBQ8nLy8PX11cINNSGzWajuLiYrl27YjKZiIiIoLS0lKSkJDIyMigs\nLMRoNJKYmEhxcTEmk4lFixaJxcZOt7EHXlCjGlhXmEcmk6FQKPDw8ODw4cO8+OKLDBw4kE2bNhEY\nGMiRI0cwGo2YzWbeeuutfzkgrZ28OHTokNPnPnfuHAEBAQwaNOiui6G/vz9yudxl1tzT05P4+Hh6\n9uzJsGHDOHv2LDqdjv379xMVFUVcXJyDSt4nn3yCj48PaWlpRERENPg3U3U7IPXz8xNU9a1bt+Lj\n40Pfvn2Bmp5ef39/Bg0aJJgEwcHBbNmyBYPB4ETbtYuB2JM7dbF06VIiIyMJCgrCz8/PTe1xww03\n/m0oLS0lMTGx3h7Ruvj73/+O2WwWCqX79u3DaDS6FGr75ptvRM+9Wq12oAqfPn0arVbLyZMnad68\nOTk5OUilUgIDAxk1atQd14YOHTq4VLn99ttvsVgsDtWn3bt3k5GRIf69Z88ejEYjJSUlNGnSxOnc\nGRkZLinNM2bMID4+nujoaEaNGoXVaiUiIoK3336bxMREFixY4HD8pk2bCA4O5sKFC5w/fx6FQsGz\nzz4L1KxHkZGRVFZWcvjwYQwGA9988w2HDx/G09OTjIwMKisrUavV+Pr64u/vLyrU/v7+Yk9h72ms\nS13t3r07U6dO5fjx42i1Wpo0acLo0aNp1aoVFotF7Ds2bdrEgAED6g1G9Xo9EolEaCgAbNu2DaPR\nyGOPPUZgYCA+Pj6o1WqKiopE8v3ChQsEBATw2cqVNVojanUNk06tpmLIEHLMZoxGo8vKdH348ssv\nxZ7nq6++QqFQoFQqMZvNTtXG9evX//5buR14uvIpvS6RMK+gAJlMxuOPPy6S9QsWLGDQoEHifH37\n9uWVV14BavQhcnJy/rTgYHV1Nb169aKoqMjNfvo3wx2U/odi69atThWtmJgYUQXbvn07CoWC6cXF\nd1XfvS6R0CE62uVi0KZNG2JiYsQfv91KxRUt1q54m5CQwEKZrEFUzPLbwjOVlZXk5eUxdOhQDAaD\ng4LqfMnd+1Xr6ym1j6KiIoYNG4ZCoXAZmNlRVlaGr68vHh4e4l4++eSTyOVyrFYrq1ev5uLFi0RE\nRNCnTx8yMjLo1q0b48ePJzo6Wvi22T9TXesc+8jJyRF02pSUFLF5mDNnDiaTid69ezN06FCkUmm9\nUvBqtRqz2dzgoFSpVIpF1A67uNOAAQOcEh32yqj9/5977jmUSiUajYZJkya5tF+55557yM/PZ/Pm\nzQwaNIhJkybRunVrJkyYwBdffEFwcLBYOFatWoVOp0OtVjN06NAG95pclUjw9fUV2ehDhw6h1+vR\naDSiyvnRRx+RlZVFUlISe/fupaKiAqVSSVJSkpOR9q1bt8jMzHRQbqwNu2R/mzZtsFqt9dLC3HDD\nDTf+Kvz8888EBAS4rHi6wltvvYXZbBaifrt27cJgMAiV3tp4/fXXiYyMxM/Pj5ycHPH4+PHjhSfj\n1atXadKkCSaTSbCx6trT1R32AK8uvv76a8xmMxs2bABqAsDmzZs7HDN37lxSU1O5dOmSg/J87TWz\nbluFzWZjzJgxZGRkEBwcTFRUFIGBgUCNmrzJZOLzzz8X/7aLQ5WVlZGWloanpyfV1dXYbDaaN2/O\nypUruXnzJomJiQ69ud988w0eHh6kp6cLtpBdZAogICDAIdH5wQcfYDKZOHDggHjszJkzGAwGDh06\nxMCBA3n44Ydp0qQJ48aNo0WLFphMJrp164ZOpyM5OVn0qtrXYJVKxQ8//MC4cePIyspCLpezePFi\ndu7cidFo5KmnnsJsNqPRaPDx8aFbt25OxYOvZszghlTqZMdXcXsf+Ovt3tmG4Pvvv8disbBp0ya+\n++47kXhITEzEy8sLg8Eg1uj9+/fj5eXl8H2ma7Vc7d/fpQPD2rVrRauaPTHzzTffCDp5WVkZGo2G\nX375hfXr1xMSElJv/3BDMG3aNLKzswVrz41/H9xB6X8wXnzxRaeJu7Yv04IFC5DL5bw/ZkxNYFqn\nYlpXTbVnz5707NnT6Zz2qqB9grly5QpxcXEOdiJ2lJaWEhsbS4ugoAZRNAbm5VFdXc3kyZNp3ry5\nmOQuXLgglH0bSveoz06m9njnnXfueE/79u2LQqEgJCSEV199lX379qHX6wkJCUGr1QpaS0lJCUaj\nkZycHAYPHoxSqaRfv34O53IlTBUYGIhcLkcul7NgwQI8PT1RKBTcvHkTqFm8PT096dixIwEBAXeU\ngl+xYgVqtVoEnL1796ZFixZ3/PwhISEONKupU6eSnZ2NyWQSokS1uWNQCAAAIABJREFUK59BQUHk\n5+fzyCOP0K5dO/z8/MjPz2fs2LEuRRh27dqFr68vn376KRaLhWHDhjn8Jjt37szcuXPZs2cPBoOB\niRMnotfr6dmzJ2v9/RuUfFikUAjq0i+//EJYWBhFRUX07t1bfK7Ro0czdepU1Gq16A/y8/OjoKDA\nKRM6ZMgQ4YdaF3ZLoCFDhhAQEEDLli3r9bxzww033PgrsW/fPgwGg7OCaT148803sVgsIvFqV+l1\nJVI4atQomjdvjkwm49lnn+XixYtotVqH4Grt2rUoFAri4+NRKpW0a9fOYb6vu2bIZDKHdpba+Oqr\nrzCZTGzcuJGtW7c62HNBTYDZq1cvhg0bxvXr1x0s5+yjRYsWwmvcjurqavr06UOzZs2QSqUYDAbh\n+free+8RGBjI8ePHSUlJ4eWXX6a6upp7771XCCxBjbhPdHQ0lZWVDBs2jHvvvddpPdiyZQsSSQ3j\naPTo0Q7PRUVFOSnvbtiwAavV6qDOvnDhQrKzs/n+++/R6/X89NNPpKSkMGnSJHJzc9Hr9cIrNSAg\nQHijN2nShE2bNnHz5k0MBgNHjx5l5MiRyOVy/Pz8mD17NgaDAYPBIPYPTv2jDbEHvO2IcDecPn2a\nsLAwli5dytGjRwkMDGTVbaX/iooKYmNj8fHxQa/Xs3v3bqKiopwS5LUZZePGjXN4PjMzE6PRSLNm\nzVAoFOzZs4fqH37gNZWKal9fbFIp1+VyLvTqRbpWy1dffXXXa64Pr7/+OmFhYS5Ftdz46+EOSv+D\nYVcKrTtx11aHs1cH96xZU9M47ucHMhnX5HKXaqpTpkwhLS3N6Zxjx44VYgBQo4ZmsVhcep6VlJQg\nl8t5OienQdYidiW6uLg4B7rS888/LzKzDbUpsXtcXpVIRPZtfq3PWR89E2roxzKZjPfee09QaE0m\nE9nZ2fTt25fhw4c7WJl89NFHmEwmfHx8CAkJIS0tTQRf3377rdM9DA4OJisri2XLlgkvtC5duiCX\nywXNJjs7m3nz5qHVau8YkFosFgCGDh1KYGAgU6dOxWq1sn379rsG5m3atKGqqooPPvgAi8VCXFyc\n06IhlUoJCAjAYrFw7do15s+fj0wmY/fu3UKBNjw8XPSX2rO5a9eupV27duTl5VFcXExMTIxDP9CB\nAwcwmUxYrVZmzZqFyWTi8OHDaLXaBicfnr4taHHz5k0yMzOZMmUKgYGBYuNls9kIDg5m3rx5QpRi\nyZIlKBQKJ9ru4sWLiYuLc9knfePGDZo0acLIkSPx9/fHYDAIb2A33HDDjf8JvP322wQGBnLy5MkG\nHb9mzRrhiW1/vcVicVTlp6bFISsri9atWyOXyxkyZIiDZdYvv/yC1WoVlaiAgAAReEZGRtKxY0eO\nHz8uKnr2YbVa693g79u3D5PJxJQpU+jatavT86WlpURHR/P6669TWlqKxWJxWr/+/ve/O73u1q1b\nWK1WoqOj8ff3R6vVCq2BJ598ErPZLFTtp06dSlZWFiNGjGD27NnYbDZyc3NZvXo1b775poMtmx32\nvldPT09kMhnBwcEOQWtiYqKgTtfGihUrCA4OFhoT1dXV5ObmsmDBAvr168eMGTO4ePGi6IvVarXI\n5XI8PT3x8fEhIyMDDw8Pse9Yvnw5HTt2BGqosyqVSijQW61WPDw8yM/Pd13xa4g9oFLpIDDkCpcv\nX6Zx48bMnDmTEydOuFR8Li8vJyIiAl9fX0wmE6tXr0ahUIjvsK4qc0lJCRKJBL1eLwLSjRs3YrPZ\n6NChA10UCqo9PamooztRLpFQqVLBHfZ1d8Jnn32G0Wi8I3vOjb8W7qD0Pxy3bt0iKyvLZRUNELQU\nT09PByntM2fO1CtcsGDBAieajlwuZ+zYsQ4U4S+++AKDweByMvby8iIoKIjZQ4cyXyLhmkx2R2uR\nyMhIhg8f7jDRl5eXo9VqxTGulGaX+/jQRKNBJpPRy9f3roGrt7e36L2tjc2bNyOTyZgzZw5Qs3hk\nZ2ejUChISUmhrKxMeHnWrhAXFRWhUCjw9/cnOztbKMpCTb+LPbDUarUEBweLxfqRRx5BqVQil8sZ\nNmwYKpWKbt26kZ2dzaxZs+4YVHp6ehIXFwfUbByUSiWLFi2iS5cutGzZEh8fH4eA1t6DUnuMHj0a\nk8lEs2bNhD9p7eHt7U16ejpLlixh3759KJVKHnzwQfHZnnjiCeRyOTExMSR4evJjhw6U3k4E3FQq\nWe3nR7pW6+TheePGDbRaLfn5+QQFBfHuu+8yf/588b53Sz709PGhsrJS9ID07duXJUuWOGTdDxw4\nQGRkJBMmTODpp5+moqKCkJAQMjMzHa7FbgXkys/MZrNx77330rNnTwICAjAajS4TMG644YYb/248\n99xzJCUluUyeucLq1asJCAgQa93q1asJDAzkWJ0q2KlTp7BYLERFRSGVSkXgarPZ6NixI1OmTAFq\nhHpkMhlarRZ/f3++/fZbdDodN27c4IMPPnBaP+xCQq6wZ88e/Pz8HNTva8NuyfHdd99x6dIlhz1A\nZmamy/Pu2bMHi8VCSkoKxcXFeHl5Cf/K1157DV9fX0aMGMHKlSsJDw/n/PnzpKam8vnnn/PRRx8R\nGxsrEtF1q8rXrl0jLi4Ob29vPvroI+bNm4dEIqFPnz7imMzMTJf2JwAvv/wykZGRQtnfbje3fft2\njEYj165dEyJDBoMBpVKJl5cXKpUKT09Ppk6dSnJyMs8//zxpaWm89957HDhwALPZzNy5c8U+Ti6X\nk5WV5VRJFvgTVix1cePGDXJzcxk/fjynTp0iIiKCuXPnujy2rKyMoKAg1Go1np6edO/enbS0NCZO\nnOjy+IMHD4q2NHvVFcB29Cg3ZbK/pMJbG3Zv9Q8++OAPvc6Nfw3uoPS/AGfPnhVKefbh4eEheh7K\nysoIDQ3FaDQ6qKq99NJLLoMepVLJ8uXLnXoZ/fz86N+/P61btxaGynYrldoVpBs3bqBSqXjooYcI\nDw+nVatWxMfHM3r06DsGW3W9pX788UeXfYu1A+WoqChMJhPTi4sbTPENCwtzUKC1y7QXFxeLx2bO\nnElkZCQGg4GQkBARTNr7Ur788kt27NiByWQSFcGEhAT0ej3Hjh0TRt6LFy8mMjJSLOR22Gw28vLy\nkEgktG7dmh49emCvckul0jsq4D788MOYTCZxruDgYPLz85kxYwZyuZzY2FiRvZ44caLot6l9Dntg\n2LhxY6eKrP27S0pK4uTJk+h0OmGzAjU9nAaDgYULF9JJJuO6RILNBTW8bgbTHuh17twZpVLJuHHj\n2LVrl9P7383mZuPGjUyZMoWcnBxu3LhBbGysg1/b9OnTGT9+PE2bNmXnzp08+eSTxMTE8PDDDzv9\nzbz77rsu/6ZmzpxJeno6rVu3JiYmhrFjx9b79+eGG2648e+EzWZj6NChFBQUNMgqBmqqdHbhPIBF\nixYRFhbmZOv28ccf4+vri1wuF1W4uXPnkpmZSUVFBceOHSMgIEBQRO1+1B07dhT9+Y899pjT+lI3\nIVkbU6ZMQaVSOanU2rFkyRLi4+O5fv06Z8+eRa1W06JFC/Lz8xk8eLBDC0V1dTVNmzZlxYoVnD9/\nnqioKO6//37kcjnjx48XnpMBAQFCHK+0tBRvb2/KysrIzs5m5cqVpKWlOQVYt27dIiMjA09PT+F3\n/ttvv+Hh4YFcLhc2NC1btnTpGWrHjBkzaNy4sRAReuKJJ7jnnnvo3bs3s2fPZvjw4URERKBQKBg4\ncKAQDNJoNKSnp1NSUoJer8disXDw4EEsFgvz5s3DarU6WPh888039V5DQ+0BkclcvryiooLOnTvT\nv39/zp49S2xsLLNuK+TWh2vXruHt7Y1cLichIYGzZ8/Wm6w4ceIEISEhNGrUiHXr1v3+xIgRTvsL\np9GACm9tXL16lfj4eObNm9fg17jx18AdlP6XYN++fU5BpMViEQvQuXPnUKvVJCYmikWtqqqKxMRE\nl4GPXq/n1VdfdQoY7EHmyJEjxXs/88wzNGnSRPhaHT9+nJCQECorK9FoNKJPpH379i7tRGoHvfbM\nrj1TW/t5Ly8vl8Fa165dsY0YQZVc3mAxpFatWlFZWcnly5dRq9U0bdpUVGk/+eQTtFoter2ekpIS\nQfex931u2LCBoKAgoW5YVVVFQUEBYWFh5OTkkJ+fT1ZWFjNmzODHH3/EbDa7zMaNGzcOvV6PTCaj\ncePGmEwmJBKJA83FVZX02rVrKBQK8T1GRUUJoR+dToe/vz+enp5Mnz6dfv36cf78eYKDg9FoNEil\nUhQKBdHR0QQFBTlRr5RKJWPGjBHy+ikpKfj6+gqD9hs3bpCQkMCyZcuYXlzMzbstdLUymM888wwZ\nGRlMmTIFi8XCqFGj6hVxutPIz88nIiKCCxcu8Pbbbzt8dwBNmjRhy5YteHt7s3fvXgwGA0VFRUKs\nq7y8nJycnHql3zdv3kxAQACTJ08mKiqK5OTkP63q54YbbrjxV6CiooK2bds69TPeCUuXLiUoKEgI\nwD333HPExsY60Gtv3LiBr68vERERSKVSpk2bhsFg4NixY5w7d47IyEgWLVoEwM6dO9Hr9Xh5eREZ\nGUl2djZQI+pn1zPw9PTkhRdeuON1LVq0iM6dO2M0Gtm+fbvT8zabjQEDBtC/f39sNhuXLl0iOTmZ\nxx9/nNzcXAe7nOXLl5OZmSkC1ePHjxMQEEDXrl2RSGosbY4cOYJOp8PPz4+DBw/y4YcfkpeXx9at\nW4mLi+PBBx+ksLDQYR2pqqqibdu2qFQq0aNqR3h4uNDsGDFiBAUFBfUmOO2f56GHHqJp06aUlpZy\n69YtYmNjefHFF/H29iYsLEy033h6epKbm4tcLsfb25u8vDzatm1L27Zt8fLywmQy8fLLLxMaGkp0\ndDQymYzo6GgiIyMdfDvr4pZK9acrpfbvo0OHDpw7d47ExESeeOKJO37HAMuWLSM8PFwIGubl5bmk\nFp85c4bIyEheeukl3njjDWH1AvwlFd7aqKyspH379oz6A0GsG38d3EHpfxHWrl3rtIFPS0sTwdSB\nAwdQKpXcc889YvI9ePBgvb2LjRo14plnnnF6PDs7m9jYWObPnw/8PmF17dqVqqoqIfduz5KFhISw\ndu1aoqKiiIqKIjIyst6AIzw8nAsXLnD27FnRw2IfCxYs4JVXXnF6TUpKyh9SbrW/bvTo0YSHh2O1\nWkXQcfbsWYxGI/7+/mzbtg34XUihT58+VFdXU1paik6nIzExUdzH3377jfj4eLRaLWq1Wnir1ZeN\nq66uFoba9kC9boBoH7V7WRQKBR988AFms1lUp/39/TEajWi1WiE+9Omnn3Lp0iU0Gg2XL1/mu+++\nw9/fn+LiYvz9/ZHJZEydOtVBXVcqlZKens6cOXPo3LkzvXv3JjIy0kFpefjw4fTt25dVq1ax2s+v\nwRnMd955h6CgINauXYvVamXHjh137Jl1Nby9vUlMTMRgMFBSUoLNZiMjI8Ohx+jUqVPodDref/99\ncnNzSUlJYdmyZbRv315kukeMGEHXrl1dChZ99913GI1G5s2bh16vR6fTuaR7u+GGG278T+Pq1ask\nJCTUS5l0hcWLFxMcHMyPP/4I1NhnJCcnC7bQyy+/TNeuXSksLBRJ6jlz5nD16lWSk5N5+umnHc73\n3nvvYTAYRO+jvTp35swZpkyZwj//+U9Bv60Pc+fOZcyYMXzyyScYDAaX4kg3btygcePGQtTu7Nmz\nIhjMyMhg7NixXL16FavVKpKmdvzzn//Ew8MDo9GIt7c34eHhvPrqq6xdu5bIyEgmTZrEI488QkZG\nBpMmTSI0NNTBJs5ms9G7d288PDxYu3at07V17dqVt956i/Xr14ug0KG65wI2m43hw4fTvHlzbt68\nya5duwS1Va1Wc/jwYR5++GFatGiBl5cX7du3Jy4uDh8fH5KSklAqlfj7+6PT6YiOjiYmJgaZTEZo\naCgXL17k2rVrBAQEYDabnXpiX3nllQa5GNRXcZw8eTKZmZmcPn2atLQ0Hnroobtap9itcQ4fPszF\nixfx9/fH19eXwsJCh2rphQsXiI+PF+r3t27dwmg0/i4c9S9WeOti9OjRtGvXrsGMAzf+WriD0v8y\nPPLII06b+b59+4oJ5K233kKhUDh4XE2aNAmVSuUyEGjdujWDBg1yerxbt26YTCZhZVJeXk5+fj4T\nJkzgnXfeoWvXrrz//vu0aNGC/fv3o9fr8fPzIzw8nEcfffSO9NScnBzKysrYtWuXqI5arVZBoezd\nu7fTa6obMmlJauigtV/n4eEhpMQrKyvJzs5Gp9M5Ne7fvHmTrKwsHnvsMTp37szgwYPJyMhwyAif\nOHECX19fpFIp/v7+tGjRot5s3M6dO0lMTKSsrMyJWlt7dO/eHavVysCBA8nLy0OlUmEymUhISGD/\n/v2Ul5cjlUpp3769CDDj4+OFyXTfvn1FULxy5UokEgk6nY4ePXrQsmVL2rRpI1SO/f39OXLkCAaD\ngdGjRxMXF0dQUJDoY9qwYQMRERF89tlnGAwGqnx8GnbPfXxET6bZbGbbtm2CuvxHhj0rbE+GfPLJ\nJ8TExDgscK+88gr9+/dnypQpNG/enI4dO2Kz2WjUqBHffvstS5YsITY21qU5+KVLl4iKiuKll17C\nYrEIdUE33HDDjf8r+OmnnwgICLhjZa4uXnnlFUJDQ/npp5+w2WyMHz+ezMxMfv31V4KDg9m7dy9X\nr15Fo9Hg5eWF1WolLy+PMWPGuAw+1qxZI5g9jRs3dnp+6dKlgn7rCrNnz2by5MkA/OMf/8BoNArr\nltr4/vvvMRgMos/zyJEjWCwW3njjDZo0aUJGRgYDBgxwet2sWbOIj49Hp9OhUCjw8/MTc/64cePQ\n6XQ8/vjjxMTEuPQUHT58OEqlst75f8qUKTz++OPA7+tqly5dXB5bG9XV1fTv35+CggJmz54tekeN\nRqNI3L7wwgskJSURHh7O7NmziYmJQaFQIJVKycvLw2w24+XlhVwux2KxcO7cOXH+X3/9tUY0MCJC\nJNrt19cQIUFXvZnPPfcccXFxnDhxguzs7Hp/E7VhF8Ks3ZJlZ+v5+PjwwAMPYLPZuHLlCqmpqTz2\n2GMOr580aZL4ffyVldJ58+YRHx/vcv13438G7qD0vwxVVVV07tzZaUNfm/v/xBNPoFAoeOONN4Ca\njOTx48fFIlN3DBo0iGbNmjk9PmTIEJEJg5pNfWxsLH379mXo0KFMmjRJUCQ7deqERqNh165dyOVy\n1Gq1CExjY2Odzt2nTx/S09NZunQpBw4c4PPPP0ev17Nz506Rpa19/NUGBqVX67yPXC4XWdqJEyfi\n7+9fbyP++fPn0Wg0xMbGUl5ezk8//YTJZBIL2p49e9BqtXh7e4vgsb5s3LBhw5g5cyaPP/44KSkp\nLu+7TqcjPT2d5cuXU1FRQcuWLTGZTIwcORKNRsM777zD5MmThSy8VCpFo9Hw0UcfCRPwjz/+mKSk\nJG7evElKSoqgJduzk3q9nm3btuHl5cWXX37J6NGj6dChA8HBwURERLBp0yagJuA2Go1s27aNyMhI\nXn/99QZnMKslElatWkVOTg4zZsxg5MiRLj9v3e/UPpRKJRaLBYvFInqaAdq3b+/gCwvQoUMH1q9f\nT2pqKhqNhlOnTmGz2fD29mb79u0YDAaXlc/KykratGnD2LFjad68OU2bNnVpC+CGG2648b+NPXv2\nYDQa/5AVxvz58wkLC+PEiRPYbDaGDBlCo0aNaNmyJQDvvvsuVqtVKL+HhITc0f5q/vz5gt3z5JNP\nOjxns9koLi6muLjY5Rw6ffp0pk6dKv5tt67Zs2eP07FvvvkmERERQsXdbie2ZMkS0TdaG9u3b8ds\nNvPzzz/TvHlzPDw8iPPw4C2TCZtajU0qpVQiYZmXF63Dwpg9e7bD66dMmYJCobhjv+G6devo1q2b\n+HdeXh5SqbRer+vaqKysJDk5GZVKhV6vx2g0kpaWhlqtZsOGDcLL9KeffiI0NJRHH31UrI8qlQqd\nTodUKsXDw8OlIvOpU6fw8fEhJSWFdevWOTCS7EKCrlRsbykUTiq2K1euJCQkhCNHjpCfn88DDzxw\nV0u00tJSEhISXFoGnjx5Em9vb7y8vHjooYfIysriwQcfdPqNHDlyBJPJVBNY/0WqwXa3gdqCn278\nz8MdlP4XorS01Ml8WiqVisyqzWaje/fuKJVKB9rLnexEnnzySUJDQ50eHzFiBFFRUYL6cvToUXx8\nfCgqKqJJkyZ89tlnnD17Fp1OR//+/bFYLMLcecWKFUgkNcI6rqirwcHBDhPgs88+i1qtxtfXl02b\nNjnQgBfKZFQ3oKd0oYvAx2AwsHjxYry9venUqVO9k+6qVasIDAzEYDCwY8cOoKb/MCQkhO+++47g\n4GA2bdrEwIEDkUqlqNVql76o5eXlGAwGtm3bhp+fHzKZjIkTJzrcA/vjte+BnY7bs2dPgoODhcG2\nXC5HqVTSsWNHOnfuzPPPP09eXh6rV6+murqaiIgIunfvTnBwMEVFRUycOJH09HS0Wi1Wq5WAgACW\nLVtGSUmJoAcNHTqUHj16ADWLaG5uLjNnzqRz586CzttQyvQ1uZwJEyZQUFDA4sWL6/2N1a2ee3h4\n4O3tTVZWFgaDgUmTJlFRUUF0dDQLFy4kICDAodfzt99+Q61Wc/r0aWQymeghtVOHgoKC6vWpHTdu\nHO3ateOhhx4iJSWF8PBwdzbVDTfc+D+Lt956i6CgICebqzvhpZdeIiIigpMnT1JeXo6vry9ZWVn8\n/PPPWCwWdu3aRfPmzVGpVEilUtavX3/H8z399NOCZVVbMRXg+vXrxMfHu6w2PvroozzzzDMOj23Z\nsgWj0ci+ffucjh81ahTdunUTwcuWLVvw8PBgxIgRxMfHC4rxmTNnsFqtfPTRRzz11FOkp6ezcdiw\nehXdb8pkVNdSVX/hhReQy+VOgWpdlJSUEBkZKf49fvx4CgsLkclkd+2nff3119HpdKKVas2aNahU\nKtRqNe3ateOpp54Sx37xxRdC9bi2/oKHhweNGjWq970OHz5cr7vCPYmJVI8YQYWXlxAS/EdsLGdq\n+YYCgtl08OBB2rVrR79+/eoVKbKjqqqKTp06OTkp1MaxY8eElU1WVla9+62WLVvWUKL/An/VQ4cO\nYTQa+eyzz+54/W78++EOSv9LcfToUQcpdYlEglqtFn0eFRUVJCUl4evr67CoTZ482eVEJpVKmTdv\nnpNQkZeXF0VFRbRs2VKosxYWFuLt7Y2Pjw/l5eWMHDmSCRMmMGfOHORyOUlJSSxdupTIyEi6dOmC\nRCIhPT3dpcDPypUrgd8D6drG1adOnRKTW7pWW6P2eoeJ65ZCQYYLexT754uOjq5XTn337t0ig2n3\nJ7WrGk6YMAGtVsvUqVNFNm7EiBEolUq0Wq1TcPPee++Rk5Mj6Lj5+fns27dPCEhIJBLuv/9+vLy8\nUCgUDjStF154AQ8PDzp06IBUKsVoNCKTyYiJiaG6upqSkhIMBgMbNmygUaNGVFVV0bt3b1Qqlegv\nvnr1Kr6+vuTm5pKfn4+npyclJSW0bt0aPz8/5s6d6+DJOW3aNNq2bctTTz1Fbm6uMOX+IjX1rj0q\nFVIpr92mJ23atOmOtO3WrVs7/GY7d+7MkCFDUCgUeHp6igVx3bp1aLVaYd9jx1tvvUX79u0ZNGgQ\nGo1GLIp79+7Fx8fHgbJeG8uWLSM6Opo33ngDi8WCwWAQytVuuOGGG/9XMWvWLFJTU7l27VqDX/PC\nCy8QGRnJK6+8QmZmJl26dMFisTBlyhQefvhhMjMzGTJkCCEhISiVSgd6aF3YbDa6du2KUqlEKpU6\nqena7U/qqsJOmDDBwT7Njk2bNmEymZxsWW7dukV6errwMd+yZQsWi4XQ0FAOHDhATEwMM2fOpFmz\nZjz11FOsXbu2RjX/iy/uGtBUe3nBsWMsX74cmUxW7zpRG5WVlXh5eYn7PmXKFJ566inmzJmDTCZj\nwYIFLl/3zjvv4O/vj16v54svviAnJ4e0tDQMBgNGo5Hg4GCxj7KzmQIDA/Hw8MDf31+sjRqNhsWL\nF2O1Wl1alf3jH/9w6VwQGxsrhIZu3rzJ0aNHWbhwIffee6/D6z///HMMBgOffvopXbt2pWfPng3q\nwZw4cSKtWrUSn8EVysvLRWVZpVLx5ptvujzOQfDo/fep8vR03m8olTXf7x18Ss+fP09YWBirV6++\n6/W78e+HOyj9L8a2bducKJGRkZGiqnnlyhUxEdon14qKCho1auQyaPDy8mLRokVOgYXVaqVly5YM\nGzYMm83GPffcQ6dOnfD09GT37t3o9XqhhpqUlITVauXDDz/koYceIjs7W/Q0PvDAA07vqVQq2bFj\nh6iSduzYkYSEBDFBLl26FI1GQ48ePejj50eVpyeVLqgpVZ6eXFy1CrlcjsFgoHXr1k7vZacz18XJ\nkycJCAhg8+bN4rFXX32V6Ohofv31V0aNGoVWq+XBBx8U2Ti76bNMJmNMQUENBUWtBqmUGwoF22Ji\niPPwwGQycerUKYKDg+nbty/p6elC4r1t27a0atUKlUpFSUkJUBOI+/n5iYVJIqlR663duzNixAjG\njh1LVlYWL7zwguhzPXbsGDabjf79+3PfffcRGBhIYGAgCxcuJCgoCA8PD6ZPn05OTo6oMn7yySdY\nLBbWrFlDQECACFS3b9/eoB6VmzIZyb6+osJd957bF9rQ0FBCQ0PFMd988w0lJSUMGzYMuVyOQqHg\n4sWLAPzwww/I5XKRsLDjvvvu49FHH8Xb25thw4aJxwsKCjCZTC4zsnav0m3btmE0GklJSeHZZ5/9\nA39lbrjhhhv/O7DZbAwePJguXbrctYpVG7Nnz8bDw4OVK1cyZ84c/Pz8SE9Pp1GjRvz666/cunWL\nzMxMtFotUVFRd2xjKC8vx9vbG71ej0KhcApAV65cSWxsrIMawTHsAAAgAElEQVTH6siRI4U2QF38\n/e9/FxW62rC3GO3YsYOYmBi2bNnCs88+S1JSEiUlJWg0GuLi4ti1a9fvgXADqJ82iYQrQUFESaVO\nVOA7ITU1VdCNZ8yYwaOPPgrUUJNlMpnQdbDjww8/RKPRoNVqRdC9bt06lEol/fr1E0nmiooKLl26\nRFJSEkOHDsXLywuj0YhUKkUul6PX6/H29kar1bJgwQKMRiOHDh0S7/PJJ5+I5HbtkZmZKSjQtXHh\nwgX8/PzEHuLbb7/FZDLx3nvv0bt3bzp37iwS0XfC0qVLHVhzrlBZWUmPHj0oLCxk3759KBQKPDw8\nhKhkbTgJHh07BqNGcV2hwCaV1vSQjhp1xwppWVkZOTk5DlRxN/534Q5K/8sxd+5cp8mpTZs2Iqg7\nduwYXl5eZGVliUXtxx9/rNeWxGKxMHv2bKfHExMTadSoES+//DJZWVl0796dtm3botPpGD9+PDqd\nDovFwsWLF4W/57FjxygsLHQITNu0aeN0bl9fXzw9PWndujWVlZW0bNlSBE12hd+oqChGjRpFM6uV\n5T4+VPn6gkxGla8vixQKOkRHYzQaadSokZADDwkJEe/hIEFeC9evXyc1NdWlH9ekSZOIjY0lMjKS\nXbt2IZPJhNk41EyIA0wmrkskTtTi8tsB3enXXiM3N5devXoRHBzM2bNn2b17NxJJTQ/JkSNHiIiI\nQKfTcenSJdEfaa8o2vtI7QrLUJMZ1Ov1zJ8/H6VSia+vL3l5eSxfvpwlS5aQkJDAli1bMBgMBAQE\nsGbNGpRKJQaDgVdeeYWcnByqq6v59ddfCQoKYvny5ZhMJnbdpvdcunRJ+OLae1RcUaOu336+RYsW\nTkrK9iSHXC6nsLBQLMheXl7CZmD9+vVYrVasVitqtZrBgwcDNUH3vffeS0xMjPgdV1ZWotPpaNy4\nMfHx8SKBsGLFCgwGA0OGDHH6/k6dOkVAQADvvPMOGRkZtG/fnlatWv2hzZ0bbrjhxv8mKioqaN26\n9R/yUn7vvfeEmJtOp2PGjBl4eHgwcOBAEYCePHkSk8kkbE/uhKlTpxIRESHYPnUpxffffz9FRUXi\n3Pfff7+THkBtrFu3DovF4hBsQU27jL+/P23atAFqgvLRo0eTkJBAYGAgAQEBqNVq3rdXzhrYYmKT\nuO6pvBMGDBjAa6+9BsCLL77ocP/tYo525d5du3bh5+eHv78/X375JVBzf81mM5s2bcLX15eYmBhS\n1Gq+btaMazIZNomEazIZixUKkn19kclk6PV6FixYgMlkEvuAGTNmCNeCXbt2ib1UXSZYbVpwXbRv\n354333yTEydOEBQUxKpVq7jvvvto27atSwuXuti5c6eDvogrVFdXc99999GuXTvRdrN3717RK1u3\nOg51BI9uo1evXvVWV2vDZrNRVFRE796979oH68b/HNxB6X857JnUupNU7Ql0+/btKJVKBxW7BQsW\nIJFIiIqKcnhdy5YtuXLlCuPGjXM657hx47BYLJjNZqKioli7di2enp5oNBq8vb0dzLRffPFFUlJS\nOH/+PCkpKWLxk0gkREREuKyY/vTTT0CNjY3JZBJZv/j4eNatW4fBYBCm2bWzsgsXLiRSImGxXC6E\nDq7JZGwJDSXidvAXHh4upOdr37tevXoJr7S62L9/Px4eHnTq1ImsrCz69u1LYGDg7z5hx45h8/K6\nK6W4KDMTvV7PV199hc1mo1WrVkybNg25XI5Wq+Xnn3/Gz8+PhIQE5syZg1qtFkmDwMBAYmNjnYKu\nZ555hsDAQGQyGRMmTGDTpk2kpqZiMBj4+OOPsVgsbNu2jYMHD4rezcTERHx8fPj2228FLevBBx+k\nSZMm/O1vfxP3pEePHg7fTYSkxv/1qkQielTm3X68Pqqup6cnKpWKnJwcQkNDMZlMyGQy7r//fh59\n9FEhZrFnzx48PDwYPHgwarWatWvXotVqOXfuHC1bthSbgh07dmC1Wmnfvj2+vr5cvnyZ/fv3YzAY\nKC4u5rnnnnO4Pzdv3iQtLY1Zs2YxZswYoWporwS74YYbbvz/gitXrhAXF1dv9bE2bDYb2dnZrFq1\nCqPRiE6nw2AwsHfvXicl1G3btgl/661bt9Z7zp9//hmdTkeLFi1ENbC2LUlde5eioqK70inXrFmD\n1WoVLCGoUXD19PSkWbNmItAoKSlBpVLRvHlzwsPD0Wq1vwe8DbUTsY+79CbWxvPPPy/0FRYtWuS0\nBo8bNw6ZTMZzzz2HRqNBo9GItpCKigqh07B27VpiYmIYYDJx4w4J3v1PP80333yDxWJh4cKFGAwG\nfHx8MJlMjBgxguTkZJdspJdeeomXX34ZmUwm/GbrYtmyZRQUFAjv1KFDh9K8efN625lqw+7FXltp\nty7sdjh5eXlO59y5cycymQwvLy/hp2uHg+DRbfTv39+pf9kVnnrqKTIyMhwS9m7878MdlLrBrVu3\nyM3NdZqsamcqX3nlFZRKpUOf3vPPP0/Tpk2xWq1IJDXS7/Z+gaqqKoeqZlBQEBUVFezatQuJpEao\np6CggJycHKRSKb169XK4JpvNxr333ktxcTEnT57EaDSiUChQKBRotVpBTa098vLyxOQ0ZMgQJkyY\nAEBxcbHwIDObzVgsFrp16yYWrWdyc+ut5pXJ5RRptcLj0y5gBDU0nMzMTJeZwosXLxIWFsaKFSvQ\n6XQkJCRQXV3NY489Rps2bWqqbQ2gDpVLJCzz9hbm3G+99RaJiYlUVlaydetWJJIar9mvvvpKUF3s\nvSI6nY7Q0FAyMzOJiYlxmKhfeuklJLerlKmpqVy+fBm5XM5TTz1FZmYmM2fOBGooNzKZDJ1OR35+\nPj4+Pnz88cfMmzfv/7F33uFR1Pkfn+0lfXs2vRHSSCWUJCSQREISei8C0gRRikgTUQ4UEPQUK5wU\nOZQDRewgiIINRBGlCiggoIBIh5C6+/r9EXaOZQMJHPc77555Pc/+wZaZ2dkw3/m095u0tDQGDBhA\nz549xaB84cKFdQaZeXl5BAcH3zAIvfahUCiwWCyEhYXRunVrUlNTUavVBAQE0KJFC3FWxlXt9Pf3\n5+WXX6Z169bo9Xr69u0L1KowBgcHc+XKFe6++270ej3vvvsuTZo04dSpU4SGhrJq1Sq6dOni5iHn\ndDrp3bs3ffr0YeXKlYSFhRESEnJLFgsSEhISfyYOHTpEYGCg6Md8I1xWWsOHDxctwSIiIvj99985\ndeoUcXFx4voAtQKDBoMBrVZbZ/uni+LiYubPn09GRgZ6vZ7w8HC3tk+Xvcv3339Ply5dePPNN+v9\nTn//+9+x2+1iQnvgwIE8+OCD5OTkMH36dC5fvkxiYiJ//etf8ff3JyUlhf379xMUFFQ73tFQO5Gr\nD4dCUa+Kq4v169eTl5cnHme/fv083tO9e3exK+hay5tJkyZRVFTE8ePHsVgs7Fi9GodW26CA+fvv\nv8dqtbJgwQICAgLw8vLCarXW2d12bTJ26tSpyOVyVq1a5XGcx44dQy6XM3bsWEaPHk2zZs3cEvs3\n4sKFCzf0YnfhdDoZN24cTZs29fBPvfZcusQhr59hbt26tVtltL4qO9QqNoeGht50HlriP4MUlEoA\ncPLkSQ8/TJVK5aZG5vLmct2cOxwOcnJyePTRR/Hx8eGbb76hpKSEoUOH4nQ6uXTpkqiAGykIfJmc\njNPHB4cgcEEQWKjREC2T8Ze//IXo6GgP70/XgvLiiy/y9ttvIwi1qnJ+fn51VksFQRCrlidPnsRo\nNLJ//36ef/55hg0bBkDTpk2JioqiVatWTJgwgefHjKl37rFGoyFBqyUuLk6UDH/zzTcJCQmp86Lm\nsg+ZMGEC06dPJyUlhZCQEP7xj39QXV1Nbm5urRVOAxfECo0GqM0mh4aGugXGjz/+OIJQa8vjmiV1\nBf1arZbevXtjs9l45JFHMJlM7N69m+3bt6PRaEhISCAzM5OkpCTy8vJo0qQJycnJdOrUCafTydat\nW9HpdLRv356hQ4eiVqt54403MBqNGAwGpk+fTkJCgjhvvH///jpbgwRBYN26dR5B6bVS9K6HRqMR\nTddHjhxJXFwcKpWKKVOm8NJLL6FUKmnUqJFYmQVo3Lgx7733HhEREXh5eRETEyMeU+fOnZk1axZq\ntZpHH32UOXPmcN9995GXlyfO+GRkZLhZDcyePZv09HR27NiB0WgkPz+fUaNG3f5/LgkJCYk/Aa4Z\n+evnMa+loKCABx54ALvdjtlsZt26dTzyyCMkJSXxxx9/8NtvvxEVFSUGGg6Hg/bt26PX60lJSbnh\ndt955x1atmzJ6dOniY2NRa1Wk56e7tZltHz5cqKjo2nbtm2Dk4CLFi0iODiYVatWERgYyIULF0SV\n3YKCAu6++27uueceioqKSExMZPbs2ezdu5fAwEAOFBbWbydyfWDq49Og4zpx4gQGgwGn08mbb75J\nly5d3F4/cOCAOGcrl8v59NNPAVizZg3BwcGcOnWKbt26MWHCBKqHDvWwafF4XGN7sm3bNiwWC3/7\n29/qrI4KglCnPc3w4cNRKBRs3LhRfK6yspLCwkJCQkIoLi4mNTX1pskHFzU1NRQXF99UaRdqLQiT\nkpJuOmsKtSJXMpkMk8nkJg65YsUKt/Gq4cOHi+NbdeGyS7rZ/wGJ/xxSUCohsn37drcBeKvV6ia/\n7nA4yM3NRaPRiGIFe/fuxWg08vzzzxMbG8uJEydo0qSJqJxXVVXFqz173rQSyZo1YhvG9ep8P/30\nE2azmWbNmtG5c2dkMhmpqak3VWl1eZ8++eSTdOjQgS1btpCWlgZAmzZtiIuLY/LkyQQGBvKCIFAj\nl9/0Yl8lCBwqLkapVJKbm0t0dDQGg6HOGQeACRMmUFBQwOuvvy5m43744QdMJhObN2/m+PHjBAYG\n1g7jN2ARdMrlQG0ms2fPnh77KykpQRAEscVVEARR3bht27bMnz8fq9XK+PHjiYmJwWg0EhoaysWL\nF0lLSyM/Px+dTsf06dNRKBScOnWKY8eOYbVa8fHx4ccffyQ0NJROnTrRpk0bzGazeMPiUhiurKwk\nPT3d47dYsmQJM2bMYOzYsSQlJd20QqrX6wkLC0OhUIjCGC5ZfKfTya5du5DJZHTs2NFtkcvLy2P9\n+vWoVCq6dOnCoEGD6NatG06nkz179ogG5A6Hg9LSUkpKSmjbtq04G2o2m8Xkwvvvv4/dbufAgQMk\nJSXRt29fkpOTGzQ3IyEhIfFnZ+XKlYSGhtY5irB161bsdruo9uqqQDmdTiZPnkxycjKnT5/m8OHD\nhISEsGTJEqC2PTgsLAyZTObW3nst1dXV2O12du3axa+//kpwcDAKhYLS0lK39917771YLBbWr1/f\n4O/08ssvo1ar3axaxowZg1KpZNy4caIC8W+//UZYWBivvvoqO3fuJNNorFeV3yMoFQS3dtEb4XQ6\nMZvN/Pbbb3z44YcUFRWJrx05cgSr1Yq3tzebNm2iZ8+eKJVK3nnnHaxWK59//jlvvvkmsbGxnD9/\nnsv12NmJD19ft9/S5Yt+/Vrbp0+fGx53165dUalU7NixA4fDQa9evejYsSNdunTB29tbFBSsjwcf\nfLBepd05c+bQqFEjTp482aBt/uMf/0AQaoUPXWtyRUUFFotFFDwaNWoUzz77bJ2fP3LkCHa7Xep6\n+hMjBaUSbqxcuRLX3GZUVJSHXUlZWZk4l+G6kEydOpWuXbvSv39/hgwZwtGjRwkKCqr1fGyAh5Tz\natvJpk2bMJvNoi2Ni0mTJqFUKjly5AiFhYXIZDIx+EpISKgzwHn99depqKggMjKST195hflX50Ud\ngkCNlxeLtFqihNqKbUMu9peVSp5++mnkcjkajYaMjIw6h+NXrlxJeHg469atw2QyuWXjXDL1Bw8e\nZMOGDVxs6DyLry8HDx7EYDDUaYY9ePBgsTXHarXSvn17MaOYnJzMl19+ycaNGzGbzRiNRhQKBb/8\n8gsAr7zyCnK5nKCgIHx9fcnMzGTZsmWkpqaSkpLCY489xujRo7nnnnuorq4mJCSEiIgIdDodd911\nl3gMEydO9PgNmjdvDsCSJUuIjo7mwIED4mvXV0nlcjkKhQK5XM4zzzwjZncbN25MZWUlTqeTgoIC\nfH19admypVtQ2qtXL5YsWYJareaVV16hvLyczMxMZs6cyY4dO1AqlSQlJVFTUyMGvq6s7JUrV8SA\nde/evZjNZjZv3sygQYMoKSnBZDLdVJxBQkJC4r+NJ554grS0NMpcCrTXKL8v8/Ulzc/Pw7bE6XQy\nfvx4UlNTOXPmDD/++COBgYGiV+mOHTtEJfcbWWZNnTpV7Dr56aefMJlMyGQyhg8fLr6nvLwcLy+v\nW1K6Xbp0qajQ/ssvv/Dtt99iMplo164darVaXO+g1qPTarWyZs0atm/fTi8/v1sKTC8rlW7HezPa\ntGnD2rVr2bhxI61atQJqK6jBwcHiKIwL17o9cuRI/vjjD2w2G5s2baJDhw44Gho0X01gQ6335rU2\nMa5HSEiIaF9XF06nk7y8PDQaDQMGDCAnJ4eZM2cSHR2Nt7c3p0+frvd7L1y4kJiYmJtWP1988UUi\nIiI4duxYg86li0WLFiEIAvHx8WJiefz48aLg0UMPPeRhBwe1PuVJSUmibZDEnxMpKJXwYPXq1VRU\nVHD//ffTrl07D7XR48eP4+vrS0xMDFeuXKG8vJzo6GhWrFhBVFQUb775prgo/N6tW73tMTVyudh2\nsnTpUnF+BWovJMHBwQwcOJDs7GxxjlKhUIjKwa6F7doLr1qt5ssvv+TLKVO4IpNRdd0+XeIAzlvI\njo4ePRqj0YhcLqdp06Zi+6eLXbt2YTKZ+PDDDz0sYlw8//zzxMXFce7cuQb5eFZfPTcdO3b0MBOH\nWusZu90uGmHrdDrKysqwWCzIZDK3eZt27dqJWcaXXnqJixcvEhsbKwoYxcbGsmzZMiwWC8XFxQQF\nBbFp0yasViunT59mxYoVYotsq1atiI2NZfHixXz66ace51+j0bBnzx6+/PJLUXXvhRdeIDQ0FIvF\n4vZemUwmBqE5OTmEh4fj7++PXq8nPT2d8vJy5s2bh8Fg4LHHHiM+Pt5tLmrMmDF0796d0NBQ0Sz8\n119/xW63ExkZSWhoKD4+PsyfPx+FQsGOHTvEz+7bt4/o6GjOnj1LdHQ0ixcvZsmSJcTGxpKQkFDv\nbIqEhITEfxtOp5OnCwooVyhwXrc+VwoClSpVnUqzTqeTBx98kPT0dM6ePSuKCrqux3//+9/R6/X4\n+PjUKSDzyy+/YDQaxdd27NghCiVd206amJiIv78/27Ztq/e7XLx4Ebvdztdff828efMIDw8nKCiI\nmTNnYjQaad68ORMnTnT7jKuNeevWrXzzzTc0NRi4EBZW731ApSBwomtXce2rjzFjxjBnzhy2bt1K\n06ZNOX36NJGRkej1eo9K8MSJEzEajajVatq1a8eoUaPo2rVrrZ2Pl9ctVUqrq6uJiYnxCEiVSiU6\nnY7c3FxRkbcuHA4HNpsNuVzOY489JgaP3bp18xizup7PPvsMi8XiJlx5Pa+++irBwcEcPHiw3nNY\nF657vxYtWuB0Ojlw4ABms5mKigoefvhhZsyY4fb+mpoaSkpKGDZs2E1biSX+80hBqcQNqaqqok2b\nNh6S24A4l5ifn4/D4WDDhg2EhoayceNGLBYLR44cYfXq1Q2uBlbp9eK2H3nkEZo3b86VK1cYO3Ys\nAwcOxOFw0Lp1a5RKJSEhIchkMkpLSxk+fDhyuVycy7j2ApwREFBrfH2T/TY4KPXxwcfHh7S0NJKS\nkggICCAsLIzXX38dqG1fio6OZsGCBSQlJYnBUV088MAD5OfnMyw/v9551suCwKN9+xIVFeXRQvr1\n11/j7++PWq1GoVDw0UcfIZPJaBMWxuHiYi5cDaYd3t4cKS0lWiYjJyeH5s2bYzKZaNu2LYMGDSIn\nJwedTkdkZCS9evVCoVCQmprKwoULSU5O5rXXXuPQoUOYzWYGDBhAdnY2drud5557DoPB4BFk+vn5\nUVpaypEjRwgMDGTNmjVs3boVo9FIRkaGx0LZqFEj5HI5HTt2RKvV4u/vj06nY9++fXTr1o38/Hxs\nNhupqals3LiRt956i9TUVLFSPXPmTAICApg4caIocgQwZMgQ0fJm6NChaDQaWrdu7XYO169fT+vW\nrSksLGTMmDHs3LkTk8lE79693QScJCQkJP5n+Pnn2g6lm60/N1CadTqdjB49mqZNm3L+/Hm2bNmC\n2WwW5xCHDRuGSqUiOzu7zl23a9fOzUP6q6++wsvLC0EQxOcTEhJ46qmniIyM9OjWup4JEybQv39/\noDaYaty4Mb6+vlgsFt577z1OnTpVp1Dd+++/j81m48CBA3z11Vc0NRioqadielkQaOLlxccff4zJ\nZKo3aF60aBH9+vVj586dNG7cmLi4OHQ6HWvXrnV7n2uO9PfffychIQGZTEZRURFFRUXs2rWLBQpF\nvQnsa2dKobYz69p7Ip1Ox6JFi9BqtWi1Wlq2bEl2dnadrcgLFiwgIiICg8GAXC5n9+7dAKxatYr8\n/Pwbfl+X0u7NWq/feOMNbDbbv9yB9MQTTyAIAiUlJUBtVXrFihVMmzaNqVOnur137Nix9bYSS/w5\nkIJSiZviyuzVJbH9xhtvoFKpRNnz/v378+CDDzJr1ixycnKoqam5pUqk68LncDjo2bMnhYWFmM1m\nTp06RVlZGcHBwcjlcl566SUyMzNFA+rs7Gw0Go1Hte4FwXOOta791tcaUykIbElPJy4uDpPJxIYN\nGwgICCAhIQGTycSWLVsoLi7mgQcecBN6uhHV1dXExcUhCA3z8RQEgUcffdRtGydPniQwMBCdTodM\nJqttlQY2T53KZUGg+rpkgGt+t+b99ykpKREFhMaOHUtOTg7Dhw8nMTERrVZL69atsdlszJ49m7vu\nuovKykqaN2/OgAEDCA0N5Y8//uDbb7/FaDR6tE/LZDKMRiNfffUVycnJPP3005w5c4bQ0FDy8vI8\nAtKsrCxkMhkpKSlMnDgRk8mEIAiiNcDmzZtRKBSMGjUKvV7PpUuXcDqdpKeni+qM999/v9gq3bhx\nY6A2A28ymejcuTO+vr60aNECuVwuzjq7eOWVV0hISKCwsJAzZ87QqFEjxowZQ3h4eIPEHCQkJCT+\n62iA8vv1Qc61uPw/mzdvzoULF/jkk08wm818/fXXVFRUkJiYiEwm87jeQq3gUVZWlttzH330EXq9\nHplMxscffyyOe4wcOZIuXbrccD11iQUdP34cqLX5aNGiBRaLBbPZLD7/1VdfYbFYRNs4FwsXLiQi\nIoITJ07w2Wef0dPXlxqttt712Gq1smjRIsLCwm46Y/ntt9+SnJzMrl27UKvVaLVaPvjgA7f3uPQb\nPv/8c86ePYvdbsfPzw+5XM4nn3xCQEAAUVf339AkwsmTJ4mNjSUxMRHl1XbjDRs2YDabWbhwIRqN\nBrVaTZMmTbjnnnvczu9bb71FYGAgTz31FIGBgaKKf1VVFVeuXMHPz6/OGVCX0u7NbIc++OADLBYL\n33///Q3fcytMmjQJQRDo378/7z/7LO/Y7VRoNLX3nT4+MGIEy2fMIDY2lrNnz96RfUr8e5GCUol6\n2b17t9jqcj2PPfYYarWa+fPnc+rUKSwWC9u2baNNmzbMmDEDZwMVZiuvVupcF/iysjK8vb0pLi4W\nZxy0Wi3vvvsuRqORDz74AKVSiV6vZ9OmTeKMxrWZwfMNDIjrC5wvCwKxSiU//fQTa9euxWaz8emn\nn6JUKikqKsLHx4dmzZoxatSoBmXjtmzZ4ibPfq2Pp0Oo28fT29tbbDutqqoiJyeHgIAA97anBszv\notezbeVKFAoFMTExaLVajh8/zocffohMJsNisWAymTAYDBiNRg4ePMjkyZPJzs7GbDaLxt5Qawl0\nfZB511130a5dO7p27crAgQPFtpns7GyP97rarg0GA8uWLSMgIACFQsGgQYMIDw9n586dhISE8Pzz\nz2MwGIiIiBD3vXbtWho3bkx1dTWNGjWiSZMmVFVVodPpOHv2LGlpabzyyiu0b9+ekJAQLBYLOp2O\nTp06uf0WHTp0ICAggNOnT9OjRw/69OmDxWJh8+bNt/V/RUJCQuJPT0OtUK4Rzrkep9PJiBEjaNmy\nJRcvXhQDjh07dnD06FFxvtSVbHbhEjy6/vk33ngDnU6HQqHAarVy9OhRKioqSE9PZ968eXUeQ2lp\nqShutH79egIDA2nVqhX33Xcf06dPJy4uTgygnn76aTIyMjwqgzNmzCAlJYULFy6wYcMGmhoMvBMc\nzCW5/Ia+2jKZjOjoaEaPHv1Pi7c6KCsrQ6PRkJqaiiAIvPPOOx7nIisri5kzZwK1ljbx8fFkZWWJ\niWuXP/uNEtioVLXr/tV261OnTpGQkEB+fj7Jycns3LlT7Cpav369GJiqVCpUKhVhYWFi8sClPTFn\nzhxsNhu7d+/m9OnT+Pr6kpSUhMPhoG/fvh6BZ01NDe3atWPEiBF1ngfALXFxJ7nvvvsoEmo93a8/\nNw6FgjJB4DdpDOe/BikolWgQ7777LkFBQR6KfU6nk65du6JWq9mwYQOLFy8mIyNDVJc70bmzx8xK\nXZXI8sGDmTRpEjk5OVRWVrJgwQIyMjKIiIigsLAQpVIpmnO//vrrREZGigI/FouF7777Dr1eL7am\nCEL9FVAxKJXJGlStHD16NADPPPMMSUlJvP7667jaYoKDg4mJiak3G3f69GkP651rH3v27GHAgAF1\nvhYSEsLx48cZM2YMZrMZmUxGr169/rnxBmS/nSoVy/z8eOSRR5DJZISEhPDwww9jt9vp37+/qKrr\n6+vLoEGD2LBhAzabjdjY2DpnSTp06CAen81mIywsjEGDBtGyZUsqKiqYOXMmsbGxHlVsm82Ga8bF\nZcCuUChEAYmHHnoIb29vpk+fDtQq6mm1Wg4dOiT+3dveKboAACAASURBVOXk5DBhwgQiIiJISEgA\nai1/hgwZwl133cXly5fRarWEhISQkJCAr68vVqtVFJ/avHkzGo2Gxx9/nBdeeIHk5GRycnLqlMqX\nkJCQ+J+hoSJ71wjn1IXD4WDo0KFkZ2dz6dIlVq5cSWBgIPv27ePjjz9GpVIREBDgkah95JFHxPX0\nWhYsWCCu367r9MGDB+tMiq9du5bo6GgqKio4evSoKPJXVFREdXU1UJs0T0xM5NSpUzidTjp37sz9\n99/vth1XcJ2fn09FRQVr164VA7eYmBjmzJlDy5YtRd2Ga3Ur0tPTad26tYe+hAtXolSlUqHVaj1e\nnzRpEm3btsXhcLBmzRp8fHxo2rQpx44dIywszOMeIFIQ2Nq0Kfj61oo2envXVrOvVkhPnz5NkyZN\nKC0tJTw8XKwUX8uaNWswm8387W9/E73fjUYjzz77LGazmSeeeAKLxcL27dvFzxw5cgSdTkerVq34\n5G9/4y2bTRTHwseHL5o0oV+LFjdMyH/11VeYTCY3O7s7xs8/17o41JOMr6sVXeLPhxSUSjSYJ554\ngqZNm3oIGFRWVpKcnIxer2ffvn3k5uYyb9483nnnHVoFBdU7u3JZEMix26moqKBjx4706tULs9nM\njh07mD17NoIgeGTgRo8eTWFhId7e3iQnJxMfH88XX3whKvMajcYGV0rx9WVcp07MVyqp8fbGIQhc\nUig8sqOCIPDGG2/gdDoZPHgwbdq0Edtn1Wo1paWlN23bdTgcFBcX3zAg9fPzY/z48Rw/fvyG3mKR\nkZFia09ycrL7DhqY/S5TqUhOTmbMmDFidXLkyJH88ssvyOVyvLy8RLEju91Obm4ugwcP9vg+f/zx\nB3a7ncLCQrHlKCQkhNDQUE6ePMnGjRuxWq2Ulpa6fQe9Xi/Oli5YsICwsDBUKhWtWrXC4XDgcDjo\n2LEjwcHBYpA6YMAAevbsSVJSkuhB+vnnn6PVannqqacwGo1ArRm5l5cXR44cYd68eahUKr7//nue\nfPJJdDodw4YNo6SkhGPHjmG320lMTOSFF17AbDYzduxYWrdufcOst4SEhMT/BHegUurC4XAwePBg\nWrVqxeXLl1m8eDEhISEcPnyYadOmIZfLadeundtnrhc8uhbXmu/n58fFixeBWvHF8PBwMelbWVlJ\nbGws77//PpWVlTRr1ozi4mKSkpK4cOGCuC2n08nDDz9MkyZNOH36NOfOnSMyMlK0unFRU1NDly5d\n6NWrFw6Hg/feew+j0UhgYCDwT2Gk65OrXl5e5ObmEhoayltvveVxXoqLi5HL5dx3330olUq316/1\nIz1//jw+Pj7ExMRw/Phx4uPjUavVHjoZeXl54vrUqlUr0dsU4OzZs6SmptK1a1esVutNhYbee+89\nLBaLKP6nUCiQyWTce++9N6xm7tq1i1KFgvI65lsrhasuCnWIY3333XeYzWaPOdo7xr/Yii7x50IK\nSiUajNPppGfPnvTr188j+Dpz5gwWi0VsfTQajRw7dowRI0YwOzcXp16P47ps1vWVyJKSEi5evEhA\nQAC5ubls27YNpVJJQUGBh5qbq4W1tLQUuVxOnz59KCoqYvny5eIFfHEdsyF1VQ4ZOZImTZrQu3dv\nCgoK2L59OwaDwWMBcrXR7tu3jz/++EPMHKpUKnQ6HampqWIbTl3MmjXLY3vXtvFOmDCBkJAQ3nvv\nPe69915xf9d/xmX3UllZ6b6DBma/HUKtT1lNTQ1paWnodDrsdjsDBgygTZs2KBQKMjMzUSqVZGdn\niwq41/8tdOzYkYceeoiqqiry8/PFmaB33nmH48ePY7fb+eijjzh48KDolSaTycRKcFpaGrGxseh0\nOsLDw8UblPHjx9OqVStOnTpFXFwc8+fPJy4uju3btzNo0CC6du2K0+lk27ZtaLVannnmGZRKJZcv\nXyY0NJQWLVpw5swZfHx86NevHwD9+vVj4sSJmM1mmpvNvObnR4VGg0MQuCiTsa1ZMzKNRn799dd/\n5b+IhISExJ+fO3wj73A4GDhwIK1bt6asrIznnnuOqKgofv31V7KyshAEwUPJvF27dnVqVQCieGFI\nSIhYfRs9erToUf3UU09RVFSE0+nkgQceoGnTpgQGBnLkyBGPbV1rZXP27Fm+++47TCaTR9BWXl5O\nTk4OY8aMwel0ivcSrrGZ3NxcevXqVWcyuW3btqLKvGuf3bt3F72zJ02ahEKhEL/LtXOkAKmpqRgM\nBk6ePElGRgYajaZOlfprxYH69Okjnr/z58/TtGlTMaHfkBbZt99+G6vVKt6XuBL6dbkGAPDzz9Ro\ntbdUkdy9ezdWq5XVq1fXezy3zR1MsEj855GCUolboqysjLS0tDp9oPbv349erycpKYkpU6bQuXNn\nysrKiI+P5605c2DkSKr1+hvOaQiCwD333COad2u1WtEPdOHChURFRbmJCrj8vqxWK8nJyRQWFvLA\nAw8wdepUBEEgWiajSq2+6YWqXKFg7/vvExISQmVlJfn5+UyePJl27dqJsxzXPxISEmjfvj09evRA\nqVQyaNAgrFYrYWFh2O12j7kRgE2bNnlkPVUqFRqNhpEjR9KvXz/i4+NZv349FouFxo0b8/TTT/PD\nDz+gVqvdPqdWq+tsy2noxfm8IHDu3DkmT55MTk4ODz30EDabDZVKJS5qOp0Ob29vvL293TzeXMyf\nP5/U1FRxPufZZ59FEGol2hMSEsjOzubRRx8VvcHat29PeHg4o0aNQhAE2rRpQ8eOHVEoFHh7e3Pi\nxAmg1uImOjpa9EI7cOAAJpMJnU5HdXU1FRUVNG/enBkzZtCjRw/GjBmD3W7HZrMxfvx4mjdvTkJC\nAnfddRc6nY6DBw/idDoJCQlh//79fDBy5A1btas1mjozvRISEhL/UzRQf+BWWh5ramq4++67KSgo\n4MqVKzzxxBPEx8fz888/4+/vj1wudxMaevvtt+tU6K2pqUEmk9GvXz8UCgUpKSk4nU4qKyvJzMxk\n2rRpGI1G9u3bxz/+8Q+CgoIwGAxuegfX43Q6GTt2LBkZGZw7d4758+eTmJhIWVmZ2/vOnj1LQkIC\nc+fOBUCn02Gz2di7dy8fffQR8fHxDB061OOewGg00qZNGxo3bsyFCxcYMGAAKpWKhQsXsnr1akpK\nSvDx8eHChQt1zpEqlUr2799PXl4eKpWKli1b1rkPm83GlV27YMQIytVqnIKA08eHVVYrYzt0wGq1\neggp3YylS5eiVCpp0aIFrvnVzMzMOhV5bzWRceDAAex2O6+99lqDj+e2uEOt6BJ/DqSgVOKWOXr0\nKHa73c0r0sWGDRvQaDS0b9+emJgY3nnnHVEJ9aeffsLpdKJQKEQJ+Loe48ePx263I5PJ3OZIJk6c\nSFZWltsFc/PmzaLgz8qVK2ncuDEvvvgi7du3RxAESuRyqtTqm1ZpW7RowYQJE4BakYCAgABCQkKY\nNWsWZrOZ0aNHexyjyWSiZcuW3HPPPZhMJlavXo1Go6Fly5YYjUZ27twpHuPJkyfFGcprs55+fn74\n+fmJgdOwYcNo164dnTt3xsfHR/yew4YNc7O8eeihh+r8XS71719vZbhSEHhJLicxMVH0KXM4HKIQ\nkK+vr+gBplKpCA4O9qiK7927F6PRKGZty8vL0ev1tG/fXpwrtVqtVFRUUFJSQnFxMTabTVTSNRqN\nrFq1Cp1OhyAI4s3Ehg0bsFgs7N+/321/Tz75JCqVSgyOjx8/jtVqxdfXl4sXL9KlSxcsFgv+/v4c\nOHAApVJJSkqKOGd6+PBhrFYrzp9+qvXfu4M3YhISEhL/laxZU3u9u/6aeJ1wzq1QU1NDnz59uOuu\nuygvL2fSpEmkpaXxxRdfiAJGrvWkqqoKu93Onj173LZRVlaGTqcTxXOubf89fPgwWq2W3r17s2fP\nHgwGA2az2aN1ti5cVdVmzZpx/vx5+vbty8CBAz3ed+zYMUJDQ1m2bBmNGjVi9uzZBAUFsW/fPlJT\nU1m9ejWFhYUe9wQWi4X09HQiIyNRKpW8/PLLAPz000+iP/eJEyfc5kgff/xxlEolf//73yktLUWl\nUnHffffVeU906dIlevv7UyaTeeh0VMtklMlkrBszpsG/VXl5Obm5uTRv3hy5XC4G2yqVir59+3qO\nIt1CRfKXX34hLCysXk/TO4HD21uqlP4PIQWlErfFV1995dauci0vvvgiGo2Gvn37EhISwsWLF3nu\nuefIyMigsrISq9XK0KFD62yPvbYa6DLC/v3334HaFqFu3brRp08ftwvmSy+9RKJOxyKtlhovLxyC\nQLVez0KNhkhBYFh+PowcSaVWi0MQuCCTeVRpZ82aBdQGRgaDAYPBwIEDB3jggQcoKCigUaNGHseY\nkpIizp/Y7XYWLVqEUqmkU6dObsbUS5cu9fiswWBgxIgRtGjRQvweVVVV5ObmotVqycvLY8zVBWbs\n2LHi555++mlsNptHQsDpdHJPq1b1ysZXazQsnzEDQRDEBXnt2rVERUWJbchBQUHo9XrUajURERF8\n+eWX4n4qKipISUlh/vz54n7z8/Px8/OjpqaGuXPnisqEeXl5tGjRApvNxgcffIC/vz8KhYINGzaI\nSslhYWF88cUX7N27F4vFUqcQwhNPPEFeXh7JyclcvnwZgE6dOqHT6di9ezc//PADMpmMYcOG8eab\nb6JSqejRowcPP/yweP67d+/O4eLiW/Z6k5CQkPif5eefa693vr61lSRfXzfhnNuhurqanj17UlRU\nRHl5OSNHjiQrK4u//vWvyGQyunfvLr63LsGjM2fO4O/vDyDOi7qu799++y0BAQHY7Xaio6MJDg6u\ns2vrRjidToYPH05WVhYnTpwgLi6ORYsWebxvz549WCwWkpKS2LhxIwsXLiQkJITnnnuOFi1acO7c\nOeLj4z3WdVeitUOHDuK2HA4HXl5ehIaGsnjxYnGO9LnnnsPX15du3brRt29flEolzz77rIegUvPm\nzWvbfv8Fb9nrqampoXPnzrRt2xar1cqoUaOw2+3MmTNHDEw9RpEaWJF0Xl3/n3nmmQb/LrfL2bNn\nWajRSOv6/xBSUCpx2yxatOiGirMjRoxAo9G4zWiUlJQwadIk4uPj2blzpyh5XtdDq9Vy8uRJHn74\nYbfq6JUrV8jMzOSxxx4T9+X88MMbDt+7qqGLFy8GICsrC5vN5jGvodFoWLlyJRaLhU8//VRs7zl/\n/jzFxcX07dvXo/1WrVaL5tlPPvkkaWlpjB49GrVaTefOnWnVqpU491lQUIBGo8E1gzJy5Ej69Onj\nIa0+aNAgAgICmD17NuHh4UycOFFUIwwJCcHpdIoJAdesC8DixYsRhPp9Tz+8/34CAwN54IEHkMvl\nvPrqq8THx9OjRw/atWuHRqNBLpfTsmVL9Ho9CQkJbtnkhx56SJzrgVpbGL1ez9KlSzl8+DAWi4Vp\n06bh5+eHTCYjJiaGJ598koSEBORyOfPmzSMoKAiZTMa0adOYMGEC48aNIzIykiVLltT5d9axY0dW\nrFjBwIED6datG7/99hsBAQE8//zzREdHM2XKFHQ6Hbm5uZhMJjp27EhgYKA4VzN48GCmTJnCxYa2\n+UgZVQkJCYnbprq6mm7dulFSUsKVK1cYMGAAhYWFFBUVIQiC6DF9+PBhD8Gj3377DZvNJv778uXL\nNG7cWFwDFy5cSGxsLFqtlsGDB99UXLAuHA4HQ4YMoVWrVnz77beix/X1fPnll2g0GlGN/aWXXiI8\nPJzw8HA2bdokrnd13bv4+fnx8ccfi9vKzMwkODgYo9HI559/zoIFC7BarVitVgYNGoRCoeCtt96i\nU6dObtvy9/f/Z8vzHZoDdjqdDB06lBYtWhAYGMjrr78OwKuvvkpwcDAzZ87E1crrNorUwErpRbmc\nGTNm3NJvcjtcuHABs9lMpHBrHq4Sf26koFTiX2LMmDEUFhaKEuwuampqyMvLQ6PREBAQwLZt2zh1\n6pSoeLpp0yZ+++23G85tCkKt0mxZWRmdO3emf//+4uJz8uRJwsLCWLZsWYNmYy4LAlGCwKFDh/js\ns8/w8/OjqKjIY1ZToVCIC5DT6WTgwIH06dOHCxcukJCQgJeXl0d116UI6HQ6ufvuu+nWrRvZ2dlo\ntVpatWrFsGHDWLRoEXFxcfTv3x8fHx/y8/M5d+4cfn5+YhUY4Pvvvxel2G02m2gMLQgCBQUFJCUl\nsWrVKgCWL19OaGgox48f5+jRo/j6+v7zvAkCf1OrOS8IHvO73t7e/PWvfwVg5MiRyGQyEhISMBqN\nPP/88xiNRmQyGYmJiQwZMgStVouvry/nz5/n448/JigoSJzrXbNmDQaDgaioKMrKymjatClz587l\n008/xcvLC29vb7RaLUVFRcjlcoqKimjdujVyuZyuXbsC8OGHH+Lj4yNWNa/H6XRis9k4fPiwOE+a\nnZ0tyvrffffdqFQqunfvjkwm48UXX+Sxxx5Dp9OJ3myRkZGEhobW60crPqTZEwkJCYl/iaqqKjp3\n7kyHDh0oKyuja9eutG/fHpPJhEKhENe+oqKi2rX8KocOHSI8PNxtW2fPniUgIABBqBXpM5lM+Pr6\n3lRY8GZcK8zksn65VrXXRWlpKb6+vvz0008Aom1KXl4eAF9//bWYNHY9fH198fX1xd/fXxw5GTRo\nEBqNhvvuu48lS5Zgt9sJCwujS5cuyOVy8ftfuHABq9UqbsutLfkOCfo88sgjJCYmEhQU5FEldlWE\np02bhiDUCjGKye8GBMVVgsDmtLRbThTcKpcuXXI7Tw31cJX48yMFpRL/EtXV1RQWFjJ27FiP1y5d\nukRERARarZaEhASqq6tZt24dWq2WV199FUAMIG4UmLZt25ZLly6RkpIimmRDrTy52Wzmt06d6r1Q\nOq7au/j4+FC+ezd/Uyq5JJfjuBqwvSD8s5W3SZMmogz9lStXSElJYd68ebRv316sdF77SE9P59ix\nY0DtjEbz5s2ZNGkSVquVgIAAwsLC8Pb2ZubMmZjNZmJiYjh37hyvv/66m0y+0+kkOztbbIvdsGGD\nWJlVq9WUlZXx6aefuqnUTp8+nfT0dAoKCtyOSafT8f3336PX62nVqpXbaz4+PmIL7Llz51CpVMhk\nMiZOnIi/vz/+/v7MmjULrVbLwIED0ev1BAYG8tRTTxEUFCRmf/fu3YvZbCY9PZ1XX32VkSNH0qlT\nJ/bv34/FYmHs2LH4+flhMBhwiTSMHj0ahUJBQkICNTU1opqzUqnkzJkzdf59HT16FIvFIi5y+/bt\nQy6Xs2DBAqqrq0lLS6Nx48YYjUYMBgPjx49n1KhRokXM0aNHUSqVjBo1SlLpk5CQkPh/pLKyko4d\nO9K5c2cuX75Mu3bt6NSpE3K5nKCgIJxOJ6tXr3YTPNq7dy+NGzd2287Fixex2WzivUJgYCC7du3C\narXyxRdf3Nax1dTU0K9fPwoLCxk8eDDdu3f3CKZmzpxJUVERUVFRnDx5UnxOoVCwbt06gDqFj4KD\ng9Hr9cTGxlKxZw/vBgdzQRBwCrVq7580bkxxbCxyudxt7nLChAkUFxezcuVKJk2a5H7Ad0DQ57nn\nniMiIoLQ0FCPLi0X8+fPJywsjIkTJ+Kq/P7+++8NKgBUKJU4rwbw/y7KysoIDAz0OOdxajVneve+\no63oEv//SEGpxL/M2bNniY6OrrP98tixY/j6+qLRaMSsZmJiIsnJyTidTi5duiS2wLj8Pusa8neJ\nK7377rvittetW9fglsxyjYYiQeCKXE7VdZ+53pqmQ4cOohfYwYMH8fb2JjIyErPZjF6vF+1NIiIi\nPPxTT5w4QWhoKHPmzBFNs/V6PV5eXhiNRjHjWlxc7KZK99prr5GWliYGa642J5lMxl133cV9990H\nQNeuXcXWGKfTSfPmzT3O17x58+jduzdGoxE/Pz+aNGlCeHg4SqVS9PiEWuGoFi1aoFarRQPt5cuX\nA7Vtumq1mm7duqFUKvHx8REFls6cOSO2zYaHh/Paa68RGRnJ4cOHadSoEZMmTcJsNovzKTKZjIyM\nDJRKJQaDQTyGadOm0axZM/Lz828oGb9q1SpKS0vFf8+ePZuioiJMJhOjRo2ioKCAcePGoVKpSEpK\nIiAggMzMTNRqNZWVlZSUlGAymaiuruZIaak0eyIhISHx/0hlZSWlpaV07dqVCxcukJubS35+PoIg\nMGDAAKqqqggMDBQFj7Zv3+7hwT1p0iS6d+8uJjllMhk7d+7kww8/JCQkRNRvuFVqamro1asXhYWF\npKSk8Nxzz7m9vnjxYgYOHMi0adNIT08XE9ZFRUX4+vrywgsvIJfL3ZK/MpmMJUuWsH79etorlVyR\ny284TvP2sGHivly+pdc6DIj8/LOHuNGtJlWXL19OYGAgERERPPXUUzc9Ly+88AIRERE88MADCEKt\nsGPFnj1QXAxXg2u3CqlMRoVSieMWlH9vh/LycoKDgz3uedRqtZu4pMR/L1JQKnFHcFXONm/e7PHa\nt99+i0ajoZFCwfm+fSlXq3EIApVaLV8mJ5Ok12MwGFCpVAwZMoTo6GiPi86yZcvYunUrJpPJbZay\noS2ZTqHW/uVm77ks/LNiOn78eAA++eQT/P39USqVTJ48mVWrVqHVaunUqRPnzp0jKiqKf/zjH27f\nd/v27RiNRhITE1EqlaJwgatF59SpU/j5+YnB2cWLF7Hb7Xz11VdAbQVULpcjl8sZN24cycnJRERE\nsGLFCg4dOoTBYODYsWMcOXIEHx8ft/OUm5vLSy+9REJCAmq1munTp7N48WIiIyNp2rSpGNQfOnSI\ngIAAAgICRO81u90ufgeHw0GbNm3QaDSo1WpkMhnffPMN1dXVFBQU8OCDD1JSUsJjjz2GyWRi69at\ntGnThqFDhxISEsJTTz2FUqkkPDxcDOIVCoU4H/Paa68RFhbGyZMnmTt3rkdw72L8+PFMnz4dqF2Q\nbDYbO3fuZNasWcjlcv76178SEhLCvHnzUCqVdO3aFbVaTXx8PH/5y1/w8/PjL3/5C0ePHiXTaLxl\nnzUJCQkJiX+NiooK2rVrR48ePTh79iyZmZmieOCaNWuYMmWKKOy3efNmmjVrJn72p59+wmAwkJqa\nik6n47XXXkOlUqFWq/n111+ZOHGiqGZ7O7jmX/Py8jw8PtesWSP6oQ4bNozCwkIqKyu5ePGiuK4P\nGTIEp9PJoEGDMJlMFBYW0rVrVxwHDtRrSedab1xztJ999pnnAa5ZU+vz3pB7nRskVdetW4fZbCYq\nKkpcT+vjmWeeISoqisGDB1MkCHWq/jqvPrYFBlJznWr+naa8vJywsDCPe0OVSsX27dv/rfuW+P9D\nCkol7hgffPABdrtdbGe9lk0TJ95UgOfMa68xY8YM5HI5n3zyiduMpCv7uGXLFpYvXy4GM0CDWzIr\nBcHDFqau9zx/zT7nzJmDzWYjKyuL5ORksrOzqaqqYsKECSgUCvbu3cv333+PyWRi7969bt936NCh\nKJVK0a4mLi6Oxo0bc/78eV588UV69+4tvnfChAncfffdQO3i4Zqz3bBhA06nkwEDBpCbm4vRaGT/\n/v1MmTKF3r17e7TtajQa3n//fYxGI23btkWr1fLOO+9gNpvZs2cPS5YsoaSkBIAePXoQHx9Pnz59\n8PHxITExEblczshrFrSysjLRyiZSEPi4USOuqFQ4BIEaLy8W63S0jY5m/vz53HvvvbRr147c3FzG\njBmDl5cXjRo1Ijw8HD8/PwRBwMvLix9++IEvv/wSs9ksZjZ/+OEHoqOj6/ybys3NFdukFixYQHFx\nMdXV1WRkZJCVlYVKpWLbypWc79OHizIZDkHgkiBwUK/noiCISsyrrFbmjx//b7FBkJCQkJC4OeXl\n5bRt25bevXvz+++/k5SUhLe3N0qlkp07d2I0GikvL2fjxo3k5uaKn+vQoQNZWVloNBpRlGfLli0o\nFAp8fHw4e/Ys2dnZoh7E7eCaf83MzCQsLEz0yf7uu+9ISUkBaoPXjh070rdvX95//30EoVZFPy0t\njXPnzlFZWcmRI0eoqKggOzubr1JSqGpAEOkYMYK8vLy6g8WGKO7Wk1R1JfNjYmKYPHnyLc17zp07\nl/zw8HoT+s5/czK3srKSyMhIj4BUqVTe1J9W4r8PKSiVuKM8+eSTpKenu5tS34JRd5MmTQgODnab\nqbx2VvLIkSNMnTqVFi1aUF5eDiNG1NvWUikI1NRzUXU9zl8XCKemppKTk8OVK1coLi5m7NixOJ1O\nUlJSsNvt1NTUiEJGrsrntm3bMBqNxMfHi22xZrOZ3NxcioqKaNGihWhwvW/fPoxGI8ePH+eXX34R\n51bnzZsnnr7Kykpyc3MpKCigSZMm/PHHH/j7+3tcoL29vQkKCqJv376kp6ejUqmwWq2sXbsWqA0y\nDQYDb731FkajkfDwcAICAsT9r1ixAplMxsKFC4Ha7HZ8fDylCkWdCYUqQaBCoeDtYcNITEzk/vvv\np7CwELvdTmBgIBaLRVRNfPDBB/H19RWfdx0TIPqkHjp0yO1vqaamBm9vb86ePUtNTQ1RUVF8/vnn\nzJw5k7y8PBo1asSI8PDaOZY6MrhuxyqT1S6ca9b8W2wQJCQkJCRuzpUrVygoKKBfv3789ttvREVF\nIZPJCAsLo23btixbtoy1a9fStm1bAD766COsVisqlYqJEye6bWvNmjXI5XJsNhu//PILNputTkux\nhlJZWSn6q7dr1w7HgQNc6t+/dkRIJgMfH6qHDqVtdDQymYwePXrg7+/P4MGDyczMdBNK+uOPP7jQ\nwECyXKOhTZs24sjQtTiGD6e6ISNKMlmdSdUff/wRi8VCo0aNGD169G0JEG1r1uw/OvZSVVVFTEyM\nx/2OQqEQu8sk/neQglKJO4rT6aRv37706tXrnxfAW5AyP3LkCGq1mi5durBw4UKPC5Hdbuf8+fN0\n69aNu+++u3aovgHquw1qfRFq1Wqv3Z9cLufbBfnjYQAAIABJREFUb78FamdnIyMjWbFiBefOnUOj\n0dCzZ08A7rnnHvr27Su+x2XtYrVa6dixIwaDgYCAAOLi4tDpdFRVVYmzo3PnzuXKlSsEBQUhCEKd\nht6nT58mJiaGjIwMevbs6aH417p1a/Ly8lCr1RiNRr755htkMhnPPvus23ZGjhxJYGAgBoOBpKQk\nvLy8+Pzzz8XXJ0+ejFwuZ8uWLYwbN47hhYX1tryWCQJLH32UiIgI0tPT8fLy4q677iI1NRVBEBg6\ndCgAL7/8MnK5nNjYWI9Wqz59+rBgwQK353bu3EmjRo0AWLlyJS1bthQz6gUFBUzt0+fWsshC3Zlk\nCQkJCYn/H8rKymjTpg0DBgxws1Xpn5XF6sBAqnQ6HIKA08eHv/v60kihEFtor2fp0qViJ9LatWsJ\nCgr6ZxfVbVBRUUHbtm3p4eNDpUrlkex0KJVcFgS66HQ8/fTTjB49mgcffJARI0bQsmVLMTG9du3a\nBt9zOASB48ePexyLw+HgSkPnSFUqj3Xt2LFjhIaG0qhRI+69997bV8T9DwoEVlVViYnt6wPSOlud\nJf7rkYJSiTvOlStXyMjIYNasWbVP3OJF7cEHH8RkMjF9+nTuv/9+jwtS8+bNuXjxIunp6bX7uDpz\ncTOf0vMNXCAu12FRExcXx/nz5wHEdt3du3ezcOFCNBoNL730EmVlZTRp0oTk5GS6dOmCt7c3MTEx\nnDhxgoyMDAYNGoTRaESn0+Ht7c2SJUt49913a9X5KiooLCxEEARSU1NveF4PHDiA2Wz2UAH29vbm\n8ccfJy4uDl9fX2w2Gzk5Oej1eo+FaPbs2cjlclJTU/Hy8uLpp5/22E9xcTFqtZrAwEDK77kHp1J5\n80BeoeAVjYbS0lKUSiVTp04lNDQUmUxGs2bNcDqdVFVVkZ+fT0ZGBj4+PkydOtVtn6+++irdunVz\ne27hwoX069cPp9NJWloaq1evJiMjg9LSUrKysqi59976kx11Ld6SkJGEhITEf4zLly+Tl5fHPffc\nw/79++moVt9wvKdMJqPqGoHD63nyySfFxOyUKVMoKCios+rYUCr27OGKXH7zQFKnI8tmY+mjj/KK\nRoPD2xvn1fuHc336kObn1+BKaZVe73EMTqeTe++9t8GB7fWKu2fOnCEuLo7o6Gj69+9/2/O2QMNV\nfwXhjiZ8a2pqSExM9Lgfk8vlbNiw4Y7tR+LPhRSUSvxb+PXXXwkKCuK9995r8EXNKZMBtRVJg8GA\n3W7ntddeIzs72+PCNHjwYHEfq1ev5ty2bTx/Nfi83ptTEGptX+prQXEqlSzz8xMFDK59tG3bVvRi\nXbp0KY0aNeL8+fNkZGTg6+vL+vXrmTRpkjjnYjAYRFEf13H26tVLrGS6vt+6det4/PHHcSnc1bd4\nfPbZZx7iRuPGjcNoNJKSksITTzxB8+bN8fLyIi4uzu2zV65cwWazIZfLUSqVtG/fvs7s6e+//45C\noSAgIACHt3eDfrsylQqFQsG8efPEOVqLxSJWhIcMGUJJSYk4l6PT6cQWZtc5MhgMbjcTw4YN47nn\nnmP9+vXEx8fz+OOPi23TJ06cAC+vWwtIXQ/J8kVCQkLiP8qlS5fIyclhco8eOP5FAboxY8YgCAJ9\n+/YlNzeXv/zlL7d/YA0YCUKl4kKrVpQJwg3V/E82bVpv6221TOaRJHU6ndx///20aNEC521UKcvK\nymjRogURERF0797dw0P+lmnoMbh+pzugy1BTU0NKSkqdAem1oz8S/3tIQanEv42vv/4as9lMTQOD\nh8sKhRiUzZ07lzZt2mA2m9mwYYOHL5XL2/Kbb77BZDKxfv16ioqKRBXf6y9mkVcXipvt/4pcTlOD\nAblcTlRUlMc2Ro0aJX63ESNG0LlzZ7777jsCAgLw8/MT23VlMhkffvih27nYunUr/v7+aDQaMjMz\nMZlMaDQacY5TpVJx7ty5Bp3XcePGIZPJ8Pf3x2az4efnR2FhIR07dmTRokVERkaSlZWF2Wx2Czqn\nT5+Or68vWq0WrVbrZg/jwul00qFDB0aNGoWvr+8ttT1PnjyZli1bisqILrGIuXPnkpycLMrpl5eX\nk5CQgJeXFwcPHhT3HR8fz9atW8V/Jycns3XrVvLz83niiSfw9/fHYDCwZcuW2oXvdgJSwTOrLCEh\nISHx/8/Fixd5y2arf26yAR0uPXr0QBAERo8eTWBgIJ988sntHdStBGE3WxPVasrqeU+ZIHBqyxZx\n106nk7Fjx9K0adPa7qwRI+rXw7jm3FRVVVFcXExoaCgdOnSgqqrq9s7BtTRk/Or6wPRfqJg6HA4G\nDhxYZ0D6wb/ZckbiP48UlEr8W1m6dCnLfH3rzTxWy+W8abUyd+5coDZwcVmL2Gw2Pv/8c7FtVafT\n4ePjQ+PGjXE4HKxcuZKQkBBOnDhBYWEhkyZN8rigCUJtG+/NFICLBAE/Pz/69OmD0WgkISHBYxsv\nv/wyUDt70qxZM5588kn69++PRqNBo9Gg1+spKiqiuLjYo+pZUlKCj48PgYGBKJVKN+ubXbt2Neh8\nnjt3juDgYPr27YvJZMJut6NUKgkLC2Pt2rWYzWZ+/PFHVqxYgb+/P4899hhQ65+q1+vx9/dHq9Xi\n5+fH0aNHPbb/8ssvk5aWRmVlJcOGDWtwC9JlpZK5c+eKs64//PADAKtXryYoKMhjX7///jsGg4HQ\n0FBRFGv06NE8/vjjQG17l16v58svvyQkJISUlBRsNlut0XhDhLNu9pAqpRISEhJ/Cm6nGljndpxO\ncnNzEQSBMWPGEBgYWNtRc6vcSrvqTR6VgsC7DbjnyM3Npbq6GqfTyYQJE0hLS+Ps2bO1x/Lzz/W2\nEruCQIfDwd13343dbqewsJCKiorb+DXq4FbX239hRMbhcDB48GCP+y6ZTMbbb799Z76PxJ8aKSiV\n+Lcza8iQei+slwWBt+bMwWw2s23bNgCWLFlCVlYWL7zwAo0bN+att97Cz8+Pp556CqPRiEqlon37\n9gBMmzaNZs2akZyczMaNG1m+fDlpaWkegkCRgnDTNl9BqPUTfe+997BYLNjtdrdM3QsvvCB+r2PH\njmG1WklNTUWpVKJUKrHb7Vy8eJGsrCw3iXqHw0FQUBDDhg0TA0OX9UuzZs0aPPMxcOBA7rvvPpxO\nJ6mpqcjlclQqFZmZmdhsNtE+ZfHixXTv3p3w8HCWLVtGz549xWNcuXIlI0eOZNq0aW7b3rt3LyaT\niR9//JHly5cTHh7Op3Fx9bY9VwoCp3r0QK1WIwiCKNu/bds2TCaT+Htez+7du9FoNLRt2xan08mH\nH34oWgF8/vnnZGZm0rVrV0pKSjCbzaJg0i1nbu/QgikhISEhcYdpaBDYgA4Xh8MhJpP79OlD69at\nb32+9A5VSrl6f+G65yhTKm94zzFu3DimTJlCcnKy2GEEsH///nqT6RdWrABqO6gsFgs5OTnu7gd3\nApeVWkO/+20kfh0OB8OGDfMISI1GIytXrryz30fiT4sUlEr826mpqeGR9HQqlEqPYOLajKGPjw/z\n588nJiaGS5cuiYPu7777LqNHjyY/P58NGzZgs9mYN28eNpsNmUzGlClTcDqd9OzZE51Oxy+//ALA\nN998g06nQyaTeVzobvbQ6XT88MMPPPvss0RFReHl5YWXlxd+fn6it6aLQYMGiTOaBoOB7t2706tX\nL44dO4bNZhMH8jdu3EhycjIff/wxer0eLy8vXCJF0dHRYkXzZnzwwQdERERw6dIltm/fTkBAACqV\nSnwMHz5cfO//sXfeYU1dbxw/2SQkYWSSEKYgWxAQxYXWiRMrarXFjdg6cLWi1lEH9ae1TmytUmfV\nWhVHXXUWR7XWLSpicQ9UFGVD7vf3B3JrDGJAu+z5PE8eH29yzj33hifnfs953+9b7gx47tw52Nra\ngsfjgcPhoF+/fgDKaoM6Ojqy+SaFhYUIDAzE119/jWPHjkGlUmHRokXwfFYO5lULCqH29igPnQKA\n69evs/m+lbF582bw+XxMmDABubm5sLa2xtOnTzFz5kz06NED9vb2EIvFCAwM/GPl93UeGqj7LoVC\nofxzeMPursXFxdDr9eBwOKhTp46Zqd4rGTjQLE+0uq9yN/8OHTrg119/hbOzM1vG5sXnDoPBgKys\nLLPhHD16FN5CIb7i88tSnF4QtjNnzsT06dNhb2+P0NDQCtNy3ggZGZZfexVTZBiGwcCBA83uiU6n\nQ3p6+p9zPZR/JFSUUv4SHj16hHdcXHAuIoKtD1libY35L6wYhoaGomfPnujTpw+AMiHm4+ODwsJC\ntGnTBv369cOUKVPQoEEDjBkzhs39XLNmDfLy8sDhcDB+/HgAZT90Wq0WdnZ2VRKlhBC4urri/v37\n+PDDD1G7dm2cPn2a3T28d+8egDKhqVQqIRAIIBKJUKNGDaxbtw5hYWEYP348mwt78+ZN9OvXD4mJ\nifD19UVkZCTIMxHesmVLKBQKqNVqfP/99y+9f9nZ2dDr9di3bx9ycnLg7u6OwMBA9OvXD0KhEEKh\nEJ6enmwOybhx4zBx4kQwDAMnJyf2mp5fNQ4LC8OWLVsAlK2yRkVF4ebNm3B0dMTcuXNhY2ODysKe\nmWevzc++w/DwcABleUK1atXC//73P4v+NqZMmVJm8Z6cjI3PlQTI5fGwWCRCLakUt27d+qNBdR4Y\nBII3ZsJAoVAolDeEBZEvRYTg/rPya5aQn5/PLsaq1Wo2gsgiMjKqXmrsJa/HpCz0NCoqCnPnzkXt\n2rWRmJgIgUAApVJp8swhlUpx8eJFs+EsWrQI7dq1Q05ODjIyMpCYmGjSTq1WQyaTwd/fn60S8Gfx\npkKtTfpkGAwePNjsGUyr1VZ4PyhvN1SUUv4yLl68CJVKhdTUVPbYhAkTzH6Mhg8fDg8PD6xduxYM\nw6BRo0ZYsmSJidhp1aoVPv74Y3Tu3Bmenp7gcrlITU2FWCyGo6MjfvjhBwBA37598cknn1R5t5QQ\nghYtWqCwsBCtW7dm63x9+umnCA8PR2ZmJrRaLZRKJWxtbdGqVSu0bdsW7u7uuHbtGlxcXLBy5UpM\nmTIF4eHhsLOzw8SJE1GrVi12ItFqtXB3d8eAAQOgUChgZ2eHEydOVHjvPvjgAwwePBgMw6BLly4I\nCQlB/fr1ER8fj7CwMFhZWcHOzg5LxowBBg5EvkAAhhAUi8WYTwg8npk3sbkqAJYsWYJ27dph165d\ncHR0xI0bN1CnTh0kJCTA1dXV5F64EYLtfD4rRF98YMglBMyPP6K0tJRdPKhKXbTJ4eHIJWW5xS/2\nXWplZSImLZ4YybMVW7m8LGSX7pBSKBTKPwsLchZzCUEdhaJKu2bZ2dmwsrKCQCCARqMxXdh8Batj\nYlDA5cL4oslQ+eJmZKRFQjqJy8XgwYPZVKJLly7h8ePHkEgksLGxAZfLNZlnfXx8THY6GYZBYGAg\nduzYwR67d++emZmjTqczCfv9s0gNCHhlOk9VUmQYhmGdk59/aTQaXLhw4U++Gso/ESpKKX8pO3bs\ngIODA65duwYAKCkpQXh4uNmPUlJSElQqFa5evYojR47A0dER+fn5bFjo0qVLYTAYsH79eoSEhMDV\n1RVisRgGg4HNZfztt9+wfv16NG3aFNbW1rCyskJoaCjEYrHFwnT06NHIycmBv78/Zs6cCaPRiM6d\nO0OtVsPJyQlWVlY4duwYcnJyULNmTQQGBmL69Ok4d+4cVCoVDhw4gODgYDg4OMD+WYirUChEUVER\nDh06xJaHGTlyJHQ6HRwdHc3MGTZt2gR3d3fk5uYiKSkJrq6ucHBwwMyZM+Hh4YGHDx9i69ataMPl\nlonDF+qKFhGCUpEIi6KiEBERgaKiIgBlZkLlDr4//fQTevTogejo6Aq/j/a+vih+xSTMSCSY3KsX\nmjZtWjXXP0tWpp+F3ZaWlmKrs/MbnRgpFAqF8jdSnrNYSXpPeYhr+bODJdy4cQM8Hg9WVlZo0KCB\nReVRymuR3/r557I55Flkl8niZkYGjGLxK4X06ilTcOPGDbi7u8PDwwMfffQRGIZB8+bNUb9+fTNR\nSghBt27d2AXdQ4cOoUaNGmaeE927dzdp07p166rd72pw5MgRi6oYVCVF5tSpU+Dz+SbXolKpcP78\n+T/5aij/VKgopfzlzJw5E4GBgcjNzQUAZGZmQi6Xm/wwicViTJgwAfXr10dJSQk6deqE6dOnA/jD\nQGfx4sVQq9U4duwYDAYDbJ7VGC0uLsa6detgMBiQnp4OoVCIdu3aYdOmTVCr1ZBIJBaLUkIIvv/+\ne1y7dg06nQ4bN27EJ598AsGzupzlpj4AcP78edjb26OWVIrcnj1RIpGwYagLuVzUeLZbe/PmTbbN\n0qVL4eDgAK1Wi9jYWLi4uCAsLIzNn3zw4AF0Oh1+/vlnNo9UoVBg7ty5UKvVf4S3ZGSgyALRGPvO\nO+jduzcYhgHDMHBxcUH9+vXx+eefIzg4uELnOysrK9xo3/6VQrCYw8FKW1uT3ViLsMS46JnIjI+P\nf+MTI4VCoVD+ZjIyTESgUSbDNyKRSXoPIQQ1atSokqvumTNnwOFwYGVlhdGjR1f62cLCQgQEBGDp\n0qWv7HdD//6VGhBFS6XYunUrunfvjn79+uHx48cIDQ3FsGHDEB0dDWtra8TFxUGlUplcH5fLZc0B\nu3fvji+++MLs3EuXLjVrU5Gb/puisLAQPj4+qCydp7opMm3atGGvQ6lUWlyJgPJ2QkUp5S+HYRjE\nxMQgOjqaXRFcvXq1mRhyc3PDO++8g4kTJ+LixYtQKpV4+PAhAGDjxo3Q6/VISEhA3bp1cfToUchk\nMnC5XNSvXx8AMHnyZAQHB8PKyooVtF9++SWkUmmF4pPD4WDgwIFmq5fW1tY4e/Ysfv31V8jlckil\nUggEAkilUqxfv97k2g6MHl0WhvqSgtq7hg0zux+jRo1ixWGbNm3g4uKCmJgYMAyD7t27Iz4+Hjk5\nOXB1dYWLiwvGjRsHjUaDXbt2/dGJhcKuqH9/BAUFITExEQsXLoSXlxdbWubmzZu4ePEibG1tTe7J\nqlWr8MTCPM5CK6uq/0FYGI5b+JyTcvnEWPyGJkYKhUKh/LO4ffs2623w/Mvf3599FrCE3bt3gxAC\ngUCAbZXMDQkJCWjfvr1FqSfNmzc3cfNnOBwYZTIsEgqRunQpDh06BKlUCjc3N9YNNzs7GwaDAVKp\nFLa2tigqKkKHDh3YOZfL5WLSpEkAysJ0bStY5M3MzGTzZcvvR+3atV/qcv8m+PTTT02fzZ5dd5FY\n/FopMsOHDweXy8WwYcPg4OCA06dP/0lXQPm3QEUp5W+hoKAAYWFhmDx5MnusZ8+eZpNPmzZtoNFo\nkJqaitjYWIwcOZL9/MyZM1GrVi20atUKw4cPx6BBg9hSK/379wfDMKhbty6kUinrOvvbb7+x4SJ6\nvR6EEIhEIkRHR6Njx45YuHAhFi5caDaOIUOG4Pr166xrbqNGjfDrr7+yYcIALMqNyedwUHDunMm9\nKC0tRWRkJAwGAwYPHoyAgAA4ODigZ8+e8PDwQG5uLqKjo1GzZk28++678Pb2NilNA6BKDoY3b96E\nVquFTCbDli1bwOfz2dXYxYsXw8XFBe7u7uByuYiIiECdOnVgtKRvQmAkBMeOHavaH4OFgrfcybD8\nFa7R4GnPnhWHV1EoFArlX8/Nmzchk8nM5uTQ0FDk5ORY3M/y5ctRnj5z6+efyxZyZbKy+Ucmw51O\nnVBHocDdu3ct6q+kpARt27aFv78/rK2tcfv2bcTFxbEO9OfPn4dMJoNGo2F3MZOTk6HT6eDp6Qmd\nToe9e/ciLy8PAQEBqFGjBjZv3gyVSoX09HRMnToVffv2NTlnVlYWtFotbGxsMG3aNPTq1Qs+Pj7Y\ntGmTxfehqpw+fdosxLY877M8Fag6jB49GlwuF8nJyQDw5svYUP6VUFFK+du4ffs2HB0d2aLIT548\nYd10nw9L6dOnD5ydnZGWlgZ7e3s2p4RhGMTGxqJFixZwcnJCz5490bBhQ9akZ+7cufD19YWLiwvk\ncjmysrKgUqmgUqmgVCohFosxfPhwXLhwARqNBrNmzYKvry8YhkHv3r3ZMRgMBjx58oTNR1UoFPD3\n98eTJ0+wfv16GAyGMhMFC3YrSzgc7PbyMrsXOTk58PLygr29Pb7++mtoNBpwOBzMmDEDCxYsgKOj\nI7y9vdG8eXN8+OGH5jezCrXeCgsL4eHhAWtra+h0OvTv3x/t27fHnj17oFarsWrVKtjb28PW1hbR\n0dGQyWTIsVCUFovF0Ov1JiHKr6LU2tqivh8T093rl5lCUSgUCuXtITMzs8K0m0aNGlVJzCQmJqIV\nIcgjBEwF+aslIpHFUTZFRUVQKpXIzMxEfn4+zp49C7VajYcPHyIvLw++vr5YsmQJ/ve//8Hf3x+L\nFi2CTqfDxYsXce/ePahUKtax/s6dO3B2dsaqVauQlJQEPz8/ODo6/rHgjbLnIzc3N1hbWyMtLY09\nvnTp0j8tp7SkpAQhISFm950QUvVSO8/x6aefgsvl4quvvnqDo6W8DVBRSvlbKa+JWV7/8+jRo2ar\ncgKBAO3bt0eXLl0wZswY9OrVi21fXFyMZs2aoUuXLpBIJBg1ahR69+4NLy8vlOef3Lx5EzweD46O\njhCLxTh79ixGjx4NPp+Prs9s5nfu3AmdTgd3d3fs27cPQFnJFG9vb7Rv3x4BAQGQSqWQyWS4desW\nYmNj0bp1a5SUlGDq1KkICQmx2BX2CZeLJUuWmN2LK1euwN7eHjY2NggPD4dIJIJMJoNUKoW9vT16\n9eqFZs2aVWwiVIWd0uHDh6NDhw7w9fWFVCpF+vbt+EYgwBMOBwwheMLhYGeNGoiuXRvW1tbg8/nY\nYjBYbC6UmJiI4OBgix4WHjx4gBVy+Sv7LiJl4ULlIcWbN2+uxl8bhUKhUP6NXL58uUKTwtatW1u+\nY5eRUVYvvbL5xkI/go0bN6Jx48YAyhbIW7Rogblz5wIA+vfvj+7du7PeDc2aNYNQKMSpU6fY9nv3\n7gWfz2dLp509exYqlQo///wzIiIioFQq2TDiwsJC1KpVC2KxGCdPnjQZR35+PpRKJa5cuWLZPagC\nM2bMqFCQ8ni8Ki08P89nn30GLpeLefPmveHRUt4GqCil/O2sWrWKrQsKwKwOV/nOmIeHB+bPnw+1\nWs2KWKCsBqq3tzecnJzg4uKCp0+folGjRhCLxeDxeMjMzGR3YMvDVKdMmYLOnTuDy+Xiu+++A1D2\nY+nm5oZOnToBAIxGI9599100aNAAHA4HPB6PzdsoLi5G8+bNMWjQIDAMg/fff9/iEFeGw4FSqTSb\nXABg//79EIvFEAgEWLhwIbhcLjgcDvr06QNPT8+XmwgNHGi28luRaLzWrh0cHR3Rq1cvtG3bFuv7\n9UMeh/NSs4Y2XC7ef//9KpkLMQyDDz74AJ07dzZzDXyeoqIiNG7c2KK+c8kf9WxnzZpV9T8yCoVC\nofyrSUtLg0gkMns+ePfddy1y1q2Kqd6riIqKYheXf/zxR3h5eaG4uBirV6+Gh4cHnjx5AgBYt24d\nNBoNGjZsaFIqrbyGuF6vx5w5cwCUVSfQaDSoV68eDAYDFixYAKPRiMaNG0MoFOLIkSMVjmXEiBH4\n+OOPLbmFFpOeng6r53wcXrzf1SExMRFcLrdC8yYKBaCilPIP4ZNPPkFERASKi4tRWlqKJk2amK3M\nqdVqKBQKJCQkoG3btibtf//9d4hEInh6emLIkCH48ccfwefzodPpIJFIwOPxoFQq4ejoiJs3byIx\nMREff/wxIiMjIRaLcfz4cRiNRrRo0QIikQg3btwAUJYXUm58JJfLcfToUfacjx8/ho+PD+bMmYOC\nggLkvljT7CWvHA4HU6ZMgbu7u1mx63v37kEmk7GhtTKZDCKRCHw+H+deyEU1ISOjrJ5nZWJYLEY9\ntRpDhgyBr68vnpw8+cpSLAU8HtyJqbmQJa57BQUFqFevHsaPH1/hcBmGMXH6Le/7ZQZR5SUB4uLi\nqlT/lEKhUChvD6dPn4ZQKDQTSj179qx0ERRAlSKKKuPBgwewsbFBTk4OiouL4eXlha1bt+Ly5ctQ\nKpVsaklKSgo0Gg1OnjyJp0+fIigoCFOnTmX7GT58OOLj4+Hs7MyGsk6cOBE8Hg8HDx6EUqlE48aN\nwefzsWfPnpeOJz09HSqVCgUFBRbexcopF8LP31+JRIJ27dph8uTJOHToUJX7nDFjBrhcLhITE9/I\nGClvJ1SUUv4RlJaWok2bNmy+5I0bN9i6nuUvOzs7uLi4IDAwEM7Ozjhw4IBJHz4+PrCxsYFer0dw\ncDDGjx/PutqVh96OHTsWwcHBmDp1KkaMGIFbt25BKpWyZgQPHz6EXC5Hp06dUFhYCE9PT3A4HEil\nUnz88ccwGAwmRgiZmZlwcHDAli1bkNer1yvDUI08Hq60bg29Xo+YmBh07NjRRGR17twZH3/8MRo2\nbAgOh8PWQrWxsak4l/Q57i9fjmKBoMJdz0IeDxPDwtC1a1doNBpcuXIFzMCBZiLwxdfzYbPPu+49\nJmXGQ0wl5kJ3796Fs7MzVq9ebfberFmzzB4quoWGojQuDpDLYXx2jnnP7ZC2aNGiavVPKRQKhfLW\ncezYsQrNd8rrgL6UKngvVMaCBQvw3nvvAQDmzZuH5s2bo6CgALVr12bDUrdu3Qq1Wm3iinvr1i04\nOTmxpeQOHDiAoKAgZGRkwNHREUuWLEF8fDxCQ0MRERGBd955B4QQrFix4pX3pEWLFhZ9zhK++uor\ns3urVCpNFuWrwpdffgkul4vPPvvsjYyP8vZCRSnlH0NOTg68vb3ZFcMNGzaY/CjK5XJERERAr9cj\nMjISdevWNZmA3NzcMGvWLCgUCnA4HBw6dAjW1tbg8XgQCATQarVYsWIFevTogVq1amHIkCEAgGnT\npsHX1xcBAQF48uQJfvjhB3A4HLRr1w5cDSKSAAAgAElEQVRcLhdNmjRha6P27dsXDRs2NBFHv/zy\nC5RKJc5t2gTjK3YrcwnBzQMHMGPGDAQEBCA4OBgzZ84EAKxduxbe3t44dOgQZDIZBAIBOBwO4uPj\n0bhxY9jZ2eHrr7+u9B6e37wZK2xsUCyRoPQ5YefJ46FmzZpQq9XYu3cvAKBAKLRogn5MzMN3yt0P\nX8WpU6fMJrOtW7eald1xcnJiw7eXLVtmdi4fHx+zXWUKhUKh/DdJTU01KYtS/qq0Fukb2ikNCwvD\n9u3bkZ2dDbVajbNnz2Lo0KGIiooCwzDYsWMHVCoVfvnlF7O2Z86cgUqlwoEDB1BSUgKlUomrV6/i\n4sWL0Gq1kEqluHLlCjw8PNjnkHfeeQelpaWVjiklJQX16tWz6N5Vxo0bN8zcjoODgxEcHFyt/ubP\nnw8ul4tx48a99tgobz9UlFL+UaSnp0OtVrO7oAMGDAAhBDY2Nhg+fDjy8vIQGBgImUwGNzc3bNiw\ngW0rk8nw6NEjBAYGQi6XQyQSwc7ODrNmzYKTkxMIIfDz80NBQQFcXFxYUVX+/8jISNa8SKfTgRAC\nnU6HwsJCAGUiWafToWnTpqygLWfdunVwdHTE/eXLkV9JjmYrQlC/fn0UFxejX79+aNq0KVQqFRvm\ns2fPHjg6OkImkyEkJATW1tawtbXFpUuX4ObmBqlUiv3797/0/s2ePRuxsbEwGo1mTsZ2dnZISkoC\nAKxcudLiHNgXS7GUv2JjYy36TlNSUqDX63E7NRUPunZFDiHsTuh8QuAjEuH8+fMAylaOBQKByXnU\najUyMzMt+wOiUCgUyn+C3bt3my1wEkJMQmRNeAM5peXisaSkBMOGDcOAAQOQkpICZ2dnZGdnY/fu\n3VCpVJWGuO7atQtqtRpXdu3C7po1USQSARwOCoVCLORyMaJjR3C5XDg5OWHy5Ml45513kJCQUOm9\nKCkpgaOjY4VeFZbCMAzatGljci+lUikiIiLw7bffVrm/r7/+GjweD6NGjar2mCj/Lagopfzj2LVr\nF7RaLTIzM5GXl4fZs2cjMzMTarUahw8fxp07d6BWqyGVSuHu7o6SkhIUFhZCIBDg6tWrsLe3h8Fg\nKAsJ7dYNABAfH8+KtDVr1uDzzz+HVCplQ0s3bNgAHx8fNGvWDN27d2dXYNu1a2eyG/v555/D398f\n7u7uWLZsmcm4ExMTERgYiCC53CTE9cUwVEIIxo8fj+LiYjRt2hQdOnSAlZUVBg8ejI4dO8LOzg7v\nvPMOWrRogfPnz8Pa2hqBgYG4ePEiW6rlZU57nTp1wsqVKwGUCdQXc0KKioqQmpoKlUqFYrH4tXZK\nFy5caPF3+n3v3i8V6+U2/JmZmWYh2yKRCIcPH67S3w+FQqFQ/hts3boVHA7HZN7g8/lIT083/7AF\ntcRf5b47duxYjBgxAunp6WydcrVajSNHjmD//v1QKpVmqUUVsWPoUORxOCh9wYuihMNBLiH4X5Mm\nuHXrFgwGAxYtWgSDwYCUlJRK+5w8ebLFi8UVsWrVKrN5fsKECVAqlcjPz69SX0uWLAGPx0N8fHy1\nx0P570FFKeUfyezZsxEQEICnT5+yxzZs2ABXV1c8fvwYZ86cgZWVFWpJpTjXqBGMUimMhKBAIECK\nXo8aHA5q1qwJW1tbrF69GqWlpYiMjIRIJAKHw8H48eMRFRXFhpYyDIOmTZti2rRprOOtSqWCt7e3\nidsrwzDo1asXmjZtyk5Iz7/XuXNnkx/0isKLCCmrv3rgwAFkZ2dDp9PB2toaNWrUgI2NDerWrQtP\nT088evQIALB9+3YIhULExsbi4MGDkEqlqFGjBuvu9/z5lUolW6j78ePHZruOM2fOhEajwffff49l\n1tYWlWJJqmAlmhBSYWhShWRkvNJQCRIJitLS0KNHD5NzrFmzprp/QhQKhUL5D7Bu3ToTYVppCO+2\nbWXCs4I6pcwLhn0vYjQa4eTkhNOnT6NDhw6YNm0awsPDMX36dHaxtzJDIhYLxHEeIdizaBGbAvPN\nN99ApVLh8uXLL+32zp07sLW1rXaqy8iRI03m3wYNGmD48OFV3ulcvnw5eDweBg4cWK1xUP67UFFK\n+UfCMAz69OmDqKgoE0e9AQMGoEePHgCAI+PHV+gGW0QIigQC5KxZA4PBAKlUiosXLyInJwdKpRK2\ntrYQCoV47733sHHjRuh0Oty4cQNnzpxhRZxcLkdMTAw6d+4MtVqNn3/+mR1DUVERGjVqhA4dOsDZ\n2ZnNhQTKao1pNBpWjMrlcqjV6gpFnaOjI86fP8/WJuVwOLCxsYFKpTJb5U1MTIRAIMDKlSuxcuVK\nyGQytGjRwuTenD9/Hq6uruz/d+7caWKf365dO7i4uGDu3LmoX78+vASCV5ZiyXthh5fP5yM+Ph77\n9++32OnPEkMlCAQoGTAA9erVQ9OmTUEIweTJk6v2R0OhUCiU/yTLly8Hl8tF7969oVarsWPHjpd/\nOCOjLERXLgfD4QByOba7u2PB8OGVnmPfvn2oVasW9u7dC1dXV4wcORKtWrXCoUOHoFKpsGvXLssG\na0EYsZHPx2IrK+zYsQM//vgjHBwcMGnSJAQEBFRaA7xLly7VrgFaUFAAg8EAlUoFkUiEkydPQqFQ\n4Pfff7e4j1WrVoHH46Ffv37VGgPlvw0VpZR/LIWFhQgPD8eECRPYY3l5efDy8sLGmTMtCsO5smsX\nm3+an5+PdevWgc/nQyaTQSKRoKSkBJ9//jlq166N8ePHo9xU58iRI1AoFJBKpVi7di10Oh1u377N\njuP+/ftwd3dHZGQkmjZtalIj7datW+BwOEhMTMSvv/4KlUpVoSglhMDBwQEjRoyAQqEAIQQcDgfT\npk0zuxcMw6BTp04QCoW4cOECxo0bB5lMhpEjR7KfSUpKQs+ePQEAWVlZUCqVkEqlGDp0KIYNGwad\nTof4+Hj06dMH1tbWIOTlZV7Kc2D7ODiYjXfz5s1V+h6NUqlFYcJ5AgG6dOkCo9HI7l5TKBQKhWIJ\nx44dg1arxaRJk6BSqUwWk19Feno6FAoF7t2799LP9O7dGzNmzECtWrUwduxY6PV67Ny5EyqVCtsq\n2WE1w0LDpRJrayiVSuzZswfz5s2Dl5cXunTpgg8++OCl8+O+ffvg4+NTrflz3LhxiIqKwpMnT/DT\nTz9hyZIlaNOmjcXtv//+e/D5fMTExND5m1ItqCil/KO5e/cuDAYDfvjhB/bYyZMnsUQkAsPnW2RY\nsHfvXohEInTu3BmlpaWQy+Vs7dKGDRuCYRi0atWKFaQKhQLnzp3D999/D4lEgjFjxmDixIlmrrtp\naWlQKpUIDQ3FiBEj2ONHjhyBr68vtFottm/fjpMnT4LD4YDH40EsFpsJUx8fH0gkEtjb20Mul0Op\nVFZo7FNcXAxPT08olUo8ffoUnTp1grW1NWsD361bNyQnJ4NhGDRr1gxSqRRbt24FwzDo1q0b+Hw+\nJk6caOas92KZl/Ic2M969oRGo0FISAi7g2xra8vWcLUYC234jYRUOW+FQqFQKJRyzpw5A41Gg3Hj\nxkGlUuHXX3+1uO3gwYMxaNCgCt/Ly8uDra0tvvjiC4SFhUGj0WDRokVQq9VVXqitSmma8jzVn3/+\nGUOGDEFERAT8/PxY08IXYRgG3t7elRoiVsSpU6egUqnYxXeGYVC7dm2LxfaGDRvA5/PRtWtXKkgp\n1YaKUso/nt9++w1KpRKnTp1ijxWKRJb9qD+zdk9KSioLf500CTtr1EAujwcjIcghBHu8vFCTzweP\nx8Po0aMxZ84cNG/eHAzD4MMPP4RQKER2djZat26N4S+E9+zatQsqlQqOjo747rvvAABz585l8z9V\nKhXOnDmD6dOnQ6lUwmAwwMvLq8JQ3iFDhmDChAlwcnJC7dq1Wdff57l//z5kMhnq1auH/Px8BAYG\nQiwW45dffoGDgwMyMjIwe/ZsSCQS1oEwMTERQUFBaNCggUk476teCoUCJ06cgI+PD3bu3ImkpCQo\nFIoqTziWGioZZbIq9UuhUCgUyoucOnUKGo0Gn3zyCTQaDc6ePWtRu/v370OhUODSpUtm761atQrN\nmzeHg4MDQkJCEBcXB41Gg/Xr11d9gFUsTfPTTz9BpVIhNTUVbdq0QXR09EtLzgBlzyBdu3a1eDgl\nJSUIDg5GcnIye+zIkSNwd3c3SRF6GZs3bwafz0enTp2oIKW8FlSUUv4VrFmzBs7OzmxoDVONIthf\ntmiBXEJQyuVWGKr6+4IFcHZ2xrJly+Dt7Y1Nmzax5kGhoaHIysqCi4sLvv/+e5OxJSUlwcXFBQqF\nAqdOnUJMTAwWLVoEAPjuu+/g5OSE27dvY968edBqtWjRooWJAZJQKESjRo1QUlIChmHw3nvvQa/X\nIy4ursJ7cfz4cfB4PEzt0wf5vXrhCYcDIyF4wuHgQdeu8BYK0b59ezAMw5aq2blzJyQSicWClBCC\n5ORkHD58GB4eHmAYBlu3bkXz5s2r9L2dO3cOSRW47poJUj6/Uht+CoVCoVAs5cSJE1Cr1Rg+fDj0\nen2lBkHPk5iYiE6dOpkdb9myJTp06IDAwECEhoZCo9Fg7dq11RtcNUrTbNu2DSqVCvv370etWrXQ\ns2dPGAwGZGVlmXX/+PFj2Nra4s6dOxYNZ/r06WjWrJmJoHz//ffZGuqV8eOPP4LP56Ndu3YWCVgK\npTKoKKX8axg7diwaNmyIoqKiqhfBtsABttTKChe2boVSqcTs2bPh7u6OwsJCJCcnw87ODvHx8Th+\n/DiUSiXS0tJMxjZkyBD4+fnBzc0NNWvWNKkV9tlnnyEkJARPnz5F3759wePxoNVqUe7OKxaLkZ2d\nzX6+oKAAYWFhsLOzY8u7vMjO+HjkEgLjC3byRYQgj8NBUUoKjh49CqVSiV27dkGn00Eul5sJz6io\nKLPdUZFIhA8++AA5OTno3bs3pk+fzl7Hxx9/bPH3lZOTA7lcDrdnor/S7+kVNvwUCoVCoVSF48eP\nQ61W46OPPoKLiwvrTF8Z+fn5MBgMOHjwIHvs1q1bkMvlkMvlsLOzg1qtxqpVq6o/sGqWptm0aRNr\n4uTo6IiOHTuiWbNmKC0tNTtF//79MWXKlFcO5dKlS2ZmRvfu3YOtrS0ePnxYadtdu3ZBIBCgVatW\nVJBS3ghUlFL+NRiNRrRv3x6xsbFgLHGv4/H+WGm04PNFhOBJTAw2b94MnU6HZs2aYfr06SgoKIBS\nqYSrqysWLFiAb775Bt7e3iblakpKStC6dWv4+fmBy+WaONMyDIOYmBhERUXhypUr4HK5kEgkEAgE\nsLOzQ1BQkNmKZFZWFvR6PaRSKc6dO2d6IyyY0IxiMeqp1Vi3bh1CQkIqdABu27YtunTpYnJMp9NB\no9GAYRjk5OTAxsYGd+/eBQBERUWxdV0t+a6eD1MuN1R60YW3lMcru5aqmERQKBQKhWIBx44dg0ql\nQr9+/eDp6cnOZ5WxbNkydA4KKnvOkMnAPItEWsTnI9jWFkuXLn39gT0rTfNi5FYJl1vpnPjDDz9A\nq9Vi7dq1UCqVCA4OxtixY80+d/LkSRgMBhMTxhcxGo1o2LAhZs+ebXJ82rRp6NOnT6XD3717NwQC\nAZo2bVqhKKZQqgMVpZR/FTk5OfD19cWKiRNfXeeLw0F+eS6JhTurORwO8vPzMWPGDHh5ecHe3h53\n7tzBmDFjEBMTA41Gg23btqFPnz7o0qWLSbhLTk4OXFxcYGVlhYSEBJNxFxYWolGjRnB1dUWdOnXY\nsN19+/YhMzMTKpUKx48fN2lz/vx5yGQyGAwG05qkFgjsYkJwsn59vPfee+jYsSMaNGhgIj779u2L\nmzdvmuWY+vr6wsXFBQDw9ddfm4Qxubi44OLFixZ9Tx999BG4L9Q3be/nh5IBA8DI5WWmRkJh2aIB\n3SGlUCgUyp/EkSNHoFKp8P777yMgIOCVO4DGrVuRz+FUGIlULBS+uUXUjAycCA83MRlMrVXrlXPi\nd999BwcHByxYsAAajealrvh169ZFSkrKS/tJSkpCvXr1TERlaWkpnJycTGqwv8iBAwcgFArRsGHD\nSkUvhVJVqCil/OvIyMiARqPByWnTAIkETAVFsHOf7c6x4aZVcID18/OD0WhE7969UaNGDfTq1QvX\nr1+HnZ0ddu3aBaVSiaNHjyIoKAhffvmlydgSEhIgFouhfrZL+Txz5syBQCAAj8cDj8eDlZUV9u7d\nC6AsZ9bDw8Nk9xUoMzgQi8WIjIz8QwBbKLALRCLUqVMHeXl5CAwMNBGeMTExqFOnDj777DOMGDGC\nFeCnT5+GRCIBAISGhrLOe9nZ2ZBKpRaF6Cxbtgxubm6YM2cOK0xVKhWuX78OhmHQr18/tGnThq6u\nUigUCuUv4dChQ1AoFOjcuTPq1KljutD7PNUMra0uX331lcnibf/+/S1qt3TpUuj1eowZMwZubm5Q\nKpXIeGFMy5cvR8uWLStsf+3aNSiVSpw/f97keEpKCurWrfvS8x48eBBCoRD16tUzqUZAobwJqCil\n/CvZs2cPNBoNru3dC3z0EUqlUhhJWa3LeaSszEl5zuaJEyeqtFMqFArx7rvvorCwEPXq1YO1tTWO\nHTuGqKgoJCUlseZFv/zyC9RqNVJTU9lxdevWDePGjYOtrS3s7OzY0Nvr16/D3t6erQ9av359ODs7\nQ6VSIT09HQDQp08f9OrVy+xa582bB5FIhM8//7zsQBUE9p07d9CnTx8QQuDl5YVFixYhMzMTwufM\nkMLCwmBra4urV6+CYRiIxWIcPnwYBoOBFY579+5F/fr1X/m9lDsOHzhwAAaDAcnJyYiIiMC+ffsA\ngK3x9tIHAgqFQqFQ/gRSU1OhUCjQtm1bREREVFyCrBomRK/DypUrTUTpe++9Z3HbRYsWwcnJCT16\n9IC3tzcCAgKQl5fHvl+eevSiyRPDMGjdujUmT55s1mfz5s3ZMnMvcvjwYYhEIoSGhlZYHYBCeV2o\nKKX8a5k/fz58fX1ZgbNw4UIEBARAr9eb/MgHBwfDOGDAKyeaEg4HJ8LD4e7uDg6Hg0mTJiErKwtK\npRI1atTA7t272aLU5eZF69evh16vZ13u3N3dcf78eaxcuRJKpRJubm7Izs5G8+bN4ezsDD6fj6Cg\nICiVSnh4eCA+Ph6enp7Izs5Gbm4uPD092dIyz9O3b18IBAKkpqaCsVRgE4KZM2eCEAIbGxvk5OQA\nAGbOnAl7e3uMHz8eJ06cAIfDwcaNG9lzubi44IMPPsCECRPYY1988cVL67eVk5mZCa1Wiy1btqBh\nw4b49NNPAYDd4d2wYQP0er1FZhMUCoVCobxpDhw4AIVCgWbNmiEyMrLMOPF5qmqi+JqkpKSYPK+0\na9euSu3nz58PV1dXNGrUCB4eHujZs6dJWtGoUaMwcuRIkzYrVqxAQECA2U7npUuXoFarKxScR48e\nhUgkQlBQkIlnBoXyJqGilPKvhWEY9O/fHx06dIDRaATDMOjQoQM6duxo8iNPCMHihIRXhuTkEoJD\ny5ejX79+8Pf3ByEE69evx+nTp8Hn8zFhwgR4e3tj3759YBgGH3zwAaKiovDpp5+icePGyMrKgkwm\nY3cXx40bB61WCz8/P2i1WnC5XDg5OeHx48dYsWIFOzEOGzYM77zzDoqLi3HixAmoVCpcuXLF5FpL\nS0tRp04dWFtb46SfH0pfMWGW8nhY+KzsDJ/Px9WrVwGU2cprtVrs2LEDWq0WWq0WNjY2JpNYSEgI\n5HI52wYos4dfsmTJS7+LnJwc+Pn5Yc6cORg0aBDatm1rEupb7lr8Yt4shUKhUCh/JXv37oVCoUCD\nBg0QHR1tmhdZjXJzr8Pu3btNnlWaNGlS5T5mzZoFV1dXeHp6QqvV4quvvmLfy8jIgFKpZHeF7927\nB7VaXeFcPHToUDM/DKBs/raysoKfn1/Fu8sUyhuCilLKv5qioiI0aNAA48aNA1BW/Fqv16Nhw4Ym\nP/QSiQR3kpPLhGklOahSqRT3799HREQEatWqBR6Ph7Nnz2LGjBngcrkYN24c3n33XQB/mBcNHz4c\nLVu2RHR0NBo1asSOzWg0onXr1uBwOCCEwNra2kRsJiQkgM/n48SJE4iMjERcXBwYhsGsWbMQFhZm\ntoqZm5uLTmIx8ggB84oJkxGLUePZeRs0aACGYXDx4kW2AHdubi6kUinq1auHDh06mJwnKCgIQUFB\nJsd8fX3LwqAroLS0FG3atEFcXBySk5Ph4eGBR48ese9fv34der0eGzZsqMY3TKFQKBTKm2X37t1Q\nKBQIDQ1Fr169/lhE/Yt3So8cOWLyrBIaGlqtfj7//HO4u7tDoVDAxsYGx44dY99r1aoVli1bBgDo\n2rVrhaXdcnNzYW9vj2vXrpkcP3nyJMRiMby9vZGbm1utsVEolkJFKeVfz7179+Ds7Iw1a9YAKJts\nNBoNbGxsTH7sW7RoAeby5bJcELkc4HKRy+eb5KCWi7gHDx7Aw8MDHh4ekEqlyM7ORlBQEFQqFWxt\nbdkQ1PLPffHFF7Czs0Pbtm3ZcTEMg/DwcLbfqVOnmoybYRj4+PigRo0aePToEXx9fTF37lxWzL64\nYnlm48ZX1vtkCAFjZYV3JRIQQtCvXz/w+XyMHj0anp6e+Oabb2A0GtGxY0dERERAq9Vi2rRpJufR\narUYMGAA+/+8vDyIxWLzMKdnjBgxAk2bNsXhw4fNjBOePn2KWrVq4X//+181vlkKhUKhUP4cdu7c\nCYVCgYCAAAwePLgsYsiCnFLmDeaUnj17ln1GEAqFCA8Pr3ZfkyZNgpubG6RSKbRaLe7fvw8A2Lx5\nM8LCwpCSkgIPD48Kdzu//vprswXqM2fOQCKRwNPTk/pAUP4SqCilvBWcPHkSSqWStTH/5JNP2BDc\n8tegQYPMhFVhYSHs7e3Nwn1nz57N5leoVCo4OTnhypUrEIlEMBgMGDNmDNtHeno61Go1AgICIJfL\n2bIpSUlJEIvF4HA4kMlkkMvluHDhgsn5MzIywOfzMWzYMPz+++/QarXYvn077t27B51Ohz179gAA\nbty4gW8lEhS9SpRyONj0TIyXu/glJCSAw+EgMjISQFmOSePGjZGfnw+RSIQFCxaw47l06RIkEgkm\nTpzIHvvll18QGBhY4X1fvHgxPDw8cOHCBRgMBpPd0NLSUrRt2xb9+vUzCQ+mUCgUCuWfwPbt26FQ\nKFCzZs2yed0C990CHq9sgfsNUFJSgpycHMTExCA5Ofm1+mIYBmPHjoWLiwusra3RsGFDlJaWorS0\nFI6OjqwJYUXtAgICsGvXLvbYuXPnIJFI4ObmhsePH7/WuCgUS6GilPLWsG7dOjg5OeHu3bsoKipC\ncHAwatSoAS8vLygUChw6dKjCdkeOHGFDbJ9fsUxLS8OePXugUqkgFovRuHFjjBs3DnZ2dpBIJCZm\nAAcOHACXy8WQIUPg4+ODs2fPwsrKCoQQxMTE4OTJk5BKpXBxcWENh8rp1KkTFAoFkpOTkZqaCpVK\nhfPnz2Pnzp3Q6/W4evUqAgMD8diSkCJSVuusTp06rBAcMWIElEolhEIhJk6cCA8PDzx48ABFRUUQ\nCATo0qULO5ZPPvkETZo0weDBg9ljCxcuRO/evc3u2759+6BWq3Hu3Dk0atSIDaEuJz4+Hk2bNqW2\n8RQKhUL5x7J161YoFAq4uroiMTGxrA7pK1J9Fi9e/EbHMGjQIMydO/e1+2EYBiNHjoRer4e1tTVG\njRoFoMwrwtvbu8I2qamp8PT0ZEOY09LSIJVK4ezs/MqarhTKm4SKUspbxfjx4xEeHo7CwkKkp6fD\n3t4ev/32G9auXQsfH5+X2pgPGTLELK+jPLdi0aJFcHZ2BpfLRWxsLPR6PYRCIWJjY9n2d+/ehUQi\ngbOzM7p06cKGDvv5+bHGRykpKZBIJGjZsqWJCdAvv/wCvV4PlUqFvXv3snU+79+/j1GjRqFNmzb4\n8MMPYbRQlBoJYd3xli1bBnd3d9y5cwdOTk7gcDiswcGxY8fg4+MDW1tb3L59G8XFxdBoNJg5c6aJ\nUI2NjcW8efNM7ld5rdjdu3dj8ODBiIyMNLmmBQsWwMvLC9nZ2a/zdVIoFAqF8qezadMmKBQKODo6\nYv78+WU7ps9SfRguF0+5XJNUH4lEgkuXLr2x848ePdoslaa6MAyDwYMHQ6FQQCQSYdKkSdDpdLCx\nsTHxeyinW7dumD17NgDg4sWLkEqlcHR0ZMN/KZS/CipKKW8VRqMRUVFR6NOnDxiGwbfffgtfX1/k\n5eWhbdu2mDRpUoXtSkpKWNdegUCAOnXqmIis4cOHw8/Pj83T1Ov14PP5bI3SH3/8Ec2aNcOnn37K\nlqQRiURmu6LTpk2DRCLB+PHjTY7XrVsXkyZNglqtxoULFzB69Gg0atQIT58+RXBwMBo0aIAnltYn\nlckAlIldpVKJc+fOIS0tDQqFAjKZDN7e3igtLcXcuXPRv39/DBw4EOPHj8eGDRvQsGFD7NmzBxER\nEezYQkNDcfDgQfb/jx49gpeXFxYuXIilS5eaGRtt374dGo3GrJA3hUKhUCj/VDZu3AiFQgGtVoul\nS5eavFee2vL84nVISMhLvRaqypQpU0zSgl4XhmEQGxvL1kZfvHgxunXrhjlz5ph87s6dO7C1tcWj\nR4+Qnp4OuVwOBwcH3Lt3742NhUKxFCpKKW8dT58+hb+/P+bMmQOGYdC1a1d89NFHuH79OhQKBdLS\n0ipsxzAMTp8+jQ0bNkAkEmHKlCnse+X5kbVr1waHw4G/vz+kUikUCgUyMzMxceJEJCQkID09nZ2w\n7O3tTcRc+Tm6desGKysrbNmyhT2+evVqNG7cGMnJyXB3d8fdu3fRsWNH9O7dG2PGjAGXy8VikeiV\nOaVGPh/46CPcvHkTer0emzZtQlZWFtzc3LB06VKkp6dDKBQiKioKPXr0wOLFi5GWlgaNRoOWLVti\n2bJlOHv2LBvmU1JSAolEgqdPnx/jAU8AAB14SURBVLL/b9GiBQYPHoxff/2VDTUu5+zZs6zDL4VC\noVAo/yZ++OEHKBQKqFQqrFu3zuS9xYsXm/lPVFRCpTrMnj0bQ4YMeSN9lWM0GuHl5QUulwudTodd\nu3bBy8vLxOPhs88+Q2xsLDIyMmBjYwO1Wo3bt2+/0XFQKJZCRSnlrSQzMxNarRY//fQTHj16BGdn\nZ2zevBlz585FgwYNTHZBKyI6OhpWVlYmtupPnjyBv78//P39IRAI4GtlhbVKJZ5yuTASgmKxGItF\nIrgRAi8vL3Tu3Bl6vR5379416buoqAiBgYGQSCS4/Mwsobi4GHq9HidPnkRCQgLCw8Nx//59uLq6\nQiaTwd/fH27P8lkq3SmVSFBw7hxCQ0MxdepUFBQUIDw83GQFdvv27eDxeLCzs8O5c+cAAI0aNYK1\ntTXy8vKQlZUFhUIBoExkenp6sm0HDx6Mli1b4tatW3BycsL69evZ9+7evQsXFxesXLmymt8ahUKh\nUCh/L2vXroW9vT3s7e2xbds29jjDMOjUqZOJKPXz82PTZV6HxYsXo0+fPq/dz/McOXIEGo0GrVu3\nBpfLRUREBFp5eOBG+/aATAaGw8ETDgdXIyMRJJdDqVTixo0bb3QMFEpVoKKU8tayf/9+qNVqXL58\nGampqdBoNLh+/Trq1q1rUly6InJycqBSqaDVak1CcK9evQoHBwfEqFTIfWZ88KIRQiGfj8erV8PN\nzQ1t27ZFRESEaXFulJWSUalU0Ov17C7ktGnT2Hpp0dHRaN26Nezs7CCVStkJsNUzYVrRefMIQVFK\nCnr06IGuXbvCaDTivffeQ3R0tJkInzhxIgghSElJAQD06NEDSqUSDMOgtLQUfD4fxcXFWL58Obp2\n7QqgzE3Y29sb9+/fR+PGjTF27Fi2v/z8fISFhWHChAnV/r4oFAqFQvkn8N1337HCdP/+/ezxBw8e\nQKfTgRACKysrnDx58o2cb82aNSZeDq9LYWEhfHx8sGbNGpSUlJQJUkJQwOWi5IVUoHIDp7vffvvG\nzk+hVAcqSilvNQsXLoS3tzdycnIwYcIENGvWDKdPn4ZSqcTNmzcrbbt3715YW1ujU6dOJuEuJ9at\nQ54FO5YZO3dCqVQiJCSEdcB7ngsXLsDKygoRERFgGAYPHjyAra0t7t27hytXrkAoFKJFixYQCoUm\nK7NuhOBoaChyeTyUPnPbnUcIejVsiLFjx6J27drIy8vDhAkTEBYWVmFNsq1bt0Kj0UAgECAtLQ0G\ngwFOTk5s2K1Go8Ht27cxbNgwfP755/jpp5/YPNEhQ4YgMjKSNXAqF9HvvfceLf1CoVAolLeCFStW\nsML06NGj7PF9+/Zhy5YtSEpKQnBw8BvJK926dStbtu1NMH78eLRv356dk4svXED+q3wpJJIygycK\n5W+CSyiUt5i4uDgSERFBunfvThISEkh+fj7ZtWsXiYuLI4MHD660bZMmTUjPnj3Jnj17yNKlS9nj\nQXv3EhGPV/mJS0qI++bNZO3atSQzM5OsXLmSbNiwweQjXl5eZMOGDeTgwYNk9OjRRKFQkOjoaDJv\n3jzSrVs3MnToUHLp0iXSokULk3ZXuVyyvE4dIjUaiZ1MRobExJDPVCoS0rUrSU5OJikpKWTjxo1k\n6dKlZNOmTUQsFpsN7+jRo6Rv377E39+fhIaGEjs7OzJy5EgyZ84cQggharWa3Lt3j5w8eZIolUrS\no0cPsnbtWnLo0CGybds2smrVKsJ7dg/Gjx9Pbt26RZKTkwmHw6n8vlAoFAqF8i/g/fffJ19++SUh\nhJDIyEhy9uxZQgghERERpG3btiQuLo7odDoyYcKE1z6XVColubm5r90PIYScOXOGJCUlkYULF7Jz\nsmDuXGLF51fesKSEkGfXS6H8LfzdqphC+bMpLi5GREQERo8ejczMTCiVShw6dAg1a9bEhg0bKm2b\nl5cHFxcXyGSyPwySZDKLXHAhlwMAkpOTodPpoFQqK7SQT0xMBI/Hw/r163H69GlYWVmhW7duYBgG\np06dAp/PZ0N4hUIh2rdvz4YOlYcWx8fHQyQS4dChQzh48CBUKhXOnj370utq3rw5tmzZgoKCAohE\nImg0Gjx+/Bj29va4du0amjVrhh07dkAul8PV1RWLFy/G8ePHoVKp2DxUAFi6dClcXV2RlZVV1a+F\nQqFQKJR/PMnJybCzs4NarTabw7OysqDT6bB3797XOsfx48dRu3bt1+oDKDMjDAkJwTfffGP6RhWf\nWyiUvwMqSin/CcpNg7777jusXr0aHh4e2L59O/R6PR4/flxp2yNHjkAul8Pb27ssFNbC0izgctk+\nEhIS4ObmBl9fX+Tm5pqdo3PnzhAKhRgwYABsbGywZMkSAMCoUaPY/BWNRoPatWuzYbwfffQRACA7\nOxtubm6QSCQ4fPgwtFotduzY8dLrMRqNsLGxQVZWFu7duwepVAqRSIQOHTogPj4en3zyCbp3747p\n06dDJBJhxIgRyMrKMjM2OnDggJn7LoVCoVAobxvffPMN7OzsoNPpcPXqVZP3tm/fDoPBgIcPH1a7\n/4sXL5qYClaXGTNmoEmTJuapNNV4bqFQ/mqoKKX8Zzhz5gyUSiV+/fVX9OzZE3379kX//v0RFxf3\nyrYJCQnQ6XQYOHCgxSuOzLN6oUCZEOzcuTNcXV3RvXt3swmjtLQUOp2urPTL4sUIDg5GSkoKHBwc\nwOfzWcdfPp8PQgiioqKg0Wiwb98+NG/eHEOHDkXfvn2hUCiQlJRU6bWkpaXBzc0NADBz5kz07NkT\nqamp4HK5mBQTgyUiEfIFAhgJwRMOByWxsegeFmbi4Jueng6NRoOffvqpKl8BhUKhUCj/Sr766ivY\n2dnB2dkZd+7cMXlv6NCh6Ny5c7V9FW7evAmdTvda47t8+TIUCkXFNcLpTinlXwAVpZT/FBs2bICj\noyPS09Ph7u6Ob7/9Fjqd7pV1NYuKiuDn5welUokrLVsCAkGlP+zFhGCzkxNrBgSUOdSGhIRArVZj\n3rx5Jv0fOHAA9vb2kMlkqF27NhrqdPhGKMQTDgdGQpDL42Ehlws3QjB06FAYDAaMHj0aMpkMjRs3\nRn5+PurWrQuxWIy8vLxKryU5OZk1JapZsyZbS3XrRx8h99nYn7+WEi4XBTweSp/VVX348CE8PDzw\n9ddfV+croFAoFArlX8n8+fNha2uLmjVr4sGDB+zxgoIC+Pv7Izk5uVr9Pn78GPLXEIRGoxGNGzfG\nrFmzKnw/r1cvs7nd7CUQAM8isCiUvwMOAPydOa0Uyl/N5MmTyY8//khmzJhB3n33XfLZZ5+ROXPm\nkFOnThGRSPTSdmfOnCGNGzcm7oSQY0VFhFtQ8NLPlgqFpHdwMFHVrUtmzZrFHr937x4JDg4mT548\nITt37iT16tUjGRkZpEGDBmTFihXEYDCQkb6+ZC3DEAEhRPhcn8WEkFJCSFLTpqTpjBkkIiKCACBN\nmjQhKpWKZGVlES6XS1q3bk3i4uJeOra4uDji4+NDateuTfr370/S0tII5/ffCQkIICQ//+U3TiIh\nxcePkxYDB5KQkBAyc+bMl3+WQqFQKJS3kLlz55Lx48cTZ2dnkpqaSuRyOSGEkHPnzpEmTZqQI0eO\nkBo1alSpz9LSUiISiUhpaWm1DAMXLVpElixZQg4fPsyaEJZz//59ElO/Ptl09SoRlpS8vBOJhJAz\nZwhxd6/y+SmUNwEVpZT/HABI165diUQiITVr1iTbtm0j9vb2JCgoiEycOLHStomJiWTJkiWkg1BI\nZl67RkhJCeE89yNfTAgpIYQ8WbKEWEVFkbCwMPLxxx+Tfv36sZ9JS0sj9erVIyKRiBw8eJC0b9+e\nDBs2jAwYMICQK1dIYc2axMpofOkYCrhcMiU6mszfvp2IxWICgAiFQpKWlkZOnjxJ+vfvTy5cuEC4\n3IrNtQMDA8miRYtIUlIS8ff3JyNGjCDkww8JWby4zH3vZfdNICB73d3JvJo1yfr1680mPgqFQqFQ\n/gvMmjWLTJo0iXh7e5O9e/cSiURCCCFk3rx5ZOXKleTgwYNEIBBUqU+xWEyys7MrdMyvjJs3b5Kg\noCCyb98+4ufnZ/Lew4cPSdOmTUnbtm3JlPr1CSc6umyef36uFwjKXj/8QEjr1lU6N4XyJqElYSj/\nOTgcDvn222/J6dOniVAoJAKBgNSsWZMsWLCAnD9/vtK2o0aNIiqVimwDyJe9ehFObCxhZDLCEEKe\nEEI2KpWkmUpFWs+dS8RiMdmyZQsZO3Ys2b9/P9uHj48P+eGHH0heXh4JDQ0lrVq1KhOkhJDLAwcS\nbiWClBBCRFwu0a1dS2JjY0mzZs1IdnY2ycvLIzdv3iQNGzYkMpmMbNu2rcK2ubm55PLly8TFxYWk\npKSQmJiYsjdWrqxUkBJCCKekhISlp5uUg6FQKBQK5b/G8OHDydixY0laWhpp06YNKSoqIoQQMmjQ\nIKJQKMikSZOq3Gd1ysIAIHFxcWTQoEFmgjQ7O5s0a9aMtGrVikyZMoVwIiPLdkJjYwmRywnhcsv+\njY0tO04FKeXv5u+LHKZQ/l6uXr0KrVaLFStWQK1WY8SIEQgPD4fRaKy0XXp6Ouzt7aFSqbBnzx4A\nZTmn1tbWkMlk6NmzJ7RaLWJjYwEAP/30EzQajYn5AMMwqF+/PrhcLgYNGgSgzH0vxxIjAkKQLxTC\nzs4OcrkckZGRqF27Nvz9/VFQUIBVq1ahSZMmFY59//79qFu3LpKSkhAdHf3HeCx05mM4nNe65xQK\nhUKhvC1MnToVUqkUkZGRKCkpAQDcvXsXWq0W/2/v/oNjvvY/jr92N5ukEfGrmKpS40tbbeJKGxKj\n4zKkjSYoMkwkWg1BNUr9aIvR0etbOhIZibmSRkqFvUWEpFoz7Z2rro6mjCFEOxNlmNBpm0v9TMJu\n9vP9Y698g/zYCD7F8zGTYXbP2T3JzM5+Xp9zzvvs3r27Sa/15JNPGidOnGhSH4fDYTz33HPG1atX\nb3j83LlzRmhoqDF79uzbLr4E3GvMlOKh1bVrV23ZskWzZ8/WokWLtHXrVlVXVyszM7PBfj169NDi\nxYvVrl07JSQkqLy8XL6+vgoPD1dISIjCwsLUs2dPbdq0SQ6HQ0OGDNEHH3yg6OhoXbhwQZKUmpqq\ny5cvKzExUdnZ2dqwYYNGjx6tQC/H7u90ymq1ymazafny5fL395fL5dK8efMUGxurY8eO6eDBg7f0\nKyoqUr9+/bRmzZqaJcWGYaiqsUO1/8vSsqWXIwQA4ME2f/58zZkzR7t371ZcXJzcbrc6duyoNWvW\naMKECTp//rzXrxUYGKgrV6543b68vFyzZs1STk6OfH3/vwLF+fPnFRkZqRdffFHLly+/rT2qgBnY\nU4qH3po1a5SSkqL+/furvLxcRUVFOnjwoDp37lxvH7fbrcjISDmdTrVo0UI7duzQkiVLdOTIEZ08\neVJff/21+vTpo7Nnz2rfvn165plnlJycrGPHjmny5Ml6++239f333+vxxx/X4MGDtWfPHnXo0EHH\nfv9dgW53o2O+ZLUq6+OPFRAQoPT0dBUWFmro0KG6cuWK1q5dq59++klHjhxRbm7uDf1GjRqlsLAw\nZWVl6cSJE7JarUpJSVGXZcs06o8/5NPQe9vtnmU+q1Z5/bcFAOBBt3DhQq1YsULjxo1TTk6OLBaL\n3nrrLZ09e1YOh8OrYBgREaG0tDSFh4d79Z5xcXHq1KnTDUUHL168qMjISIWFhSk9PZ1AivuLyTO1\nwJ9CcnKyERkZaTz99NPGyJEjjREjRjS65OXUqVPGo48+agQHBxupqanGrl27jL59+xqdO3c2iouL\njdLSUqNly5ZGly5djMuXLxtOp9Po16+f4e/vb+zfv7/mdTIzMw2r1WrYbDYjx9+/0bLt1ywW41+9\netWMb+bMmcagQYOMAwcOGK1btzbatGlj/Pjjj0abNm2M06dP17yP2+02HnvsMSM+Pt748MMPDcMw\njMLCQqNTp07GmX//23D6+TW8fDcgwDDqOv8MAICH3Lvvvmv4+/sbycnJhtvtNioqKoxevXoZ69ev\n96r/kCFDvD77u7Cw0OjevfsNR8BdvHjRiIiIMKZNm8aSXdyXWL4LyLOc1uVyqW/fvtqzZ49KSkqU\nn5/fYJ8uXbpo+fLlcjqdWrp0qWw2m44ePaq4uDjl5OSoR48eKigo0O+//664uDj9+uuvKisrU9u2\nbXXgwAFJ0pEjRzR37ly1a9dObrdbeV6M1WWxaMDWrTV3QFNSUtSyZUutWrVKubm5cjqdmjRpkuLj\n47Wq1qzm6dOn5XK59OWXX+r111/X4cOHlZiYqG3btqnTiy/K9Y9/qMJikeumO6uG3e4pFZ+XR6l4\nAADqsHTpUk2dOlWffPKJFixYoEceeUQOh0PvvPOOTpw40Wh/bwsdXbhwQW+++aays7Nrqv5evnxZ\nw4YNU3BwsFatWsUMKe5LhFJAkt1u1+bNm/Xdd9/ppZdekp+fn2bMmNHofpDXXntNPXv21IABAzRx\n4kSFhITo2WeflcPh0NWrVzVo0CClpKRo586dCg8PV3Jysr799lstWrRIO3bsUHR0tCQpISFB49u2\n1ZaqKtX3VeK2WFRhsaj6889lf/rpmsdtNps2btyoQ4cOqaSkRIsWLVJxcbEsFouys7NrvuSKiorU\nuXNnRUREyNfXV8OHD1d6err69u0rSVpWXKz3oqLk8+abqrTb5ZZkBAXJQmU+AAAaZLFYtGLFCk2a\nNEmpqalaunSpevfurfnz5ys+Pl4ul6vB/t6G0nnz5mnYsGEaNGiQJOnKlSt65ZVX9NRTT2n16tX1\nHgcH/NmxpxSo5ejRoxo4cKB69Oiha9eu6YUXXlBWVlaDfX777Tf17t1b4eHh+vnnnzVixAgVFRUp\nKSlJY8eOldvtVrdu3VRWVqaDeXnq/c9/yvXZZ7JWVOiypNN//avm/vCDNldWqkUD7+OUVJ6bq07x\n8XU+f+bMGYWHhys1NVXbtm1Tfn6+Rv/lL3rf11fBxcUyLl3SZYtFvw0dqvfLy9UrJqambP2pU6cU\nGhqqgwcPqqCgQJmZmdq7d69atWp1e39IAAAeQoZhaMqUKVq3bp1SU1M1ffp0RUVFKSIiosGz0KdN\nm6bevXtr6tSp9bbZtWuXJkyYoJKSErVq1UoVFRWKjo5W165dlZOTQyDFfY1QCtzkiy++UFJSUs1d\nzby8PA0cOLDBPlu3btXfZ8/Wa//5j0ZVVqqF260Km00tkpK0zOnUztJSBZ8+rY9PnFCA3S5LrTNB\nr//PKqmh0z/dPj6yTpnSYKGhQ4cOaejQocrPz9eG8eO1oqxMdkm+tdq4LBa5rFb5FhTI+sorkqTY\n2FiFhIQoNDRUkyZN0t69e9WtW7cGf2cAAHArwzA0ceJEORwOZWVl6eWXX1afPn2Un5+v/v3719ln\n7ty56tixo+bMmVPn8xUVFQoJCVFaWppiYmJUWVmpmJgYderUSWvXruX8cNz3CKVAHT766COtW7dO\n586dU+vWrVVSUiJ/f//6O+zcqaqYGPm43fKp9ZGqtlp11TBUnZamwPnzZamoaN7AgoKk/x4rU58d\nO3bof994Q99duiRbVVX9DQMCpMOH9a9Tp5SYmKhNmzYpOjpaBQUFioiIaN44AQB4iBmGofHjx2vL\nli3auHGj/Pz8NGvWLB06dEhBQUG3tL8+i1rfbOqcOXP0yy+/yOFwqKqqSsOHD1f79u21fv16Aike\nCMzzA3V4//33FRoaqvbt26uyslJLliypv/Hx49KYMfKvrr4hkEqSze1WgGGo5Zw5sly71vyBebHf\nJDo6Wlk9e8rdUCCVJKdT7tRUzZgxQwsXLlRsbKwyMjIIpAAANJPFYtHGjRs1YsQIjR8/XjabTZGR\nkZo+fXqd7RvaU7pv3z7l5uZq5cqVqqqq0quvvqq2bdvqs88+I5DigUEoBepgsVj06aefyt/fXy6X\nSytXrlRJSUndjVNTpVrLcevkcnl+misw0KtmIYcPy95YI6dTzrVr1b59e61evVqTJ0/W2LFjmz1E\nAADguZbYvHmzoqKiNGrUKA0fPlz79++Xw+G4pW19ofTatWtKTExUWlqagoKCNGbMGAUGBmrDhg3y\n8fG5F78GcE8QSoF6BAQEqLCwUIZhyOVyKT4+XtXV1bc23LCh8VB6J9jtUkKCd229mFGVJHtVlXx8\nfNSrVy8tWLCgGYMDAAA3s1qt2r59uwYPHqyRI0fqvffe08yZM3Xy5Mkb2tUXSpctW6auXbtq9OjR\nio2Nla+vrxwOB4EUDxxCKdCAJ554QgUFBbLZbCotLVVGRsatjbwMgM1mt0uzZnnX1ssZ1UqLRVVV\nVcrOzuZcMwAA7gKr1aqvvvpKAwYM0JQpUxQXF6eEhIQbjompK5SWlJQoIyNDGRkZGjdunKxWqz7/\n/HPZ7Y2uhQLuO4RSoBERERFKT0+X5NlrWlZWdmMDLwNgs+XlSd27e9c2Pt4TYhtgSPI1DO2YPl1+\nfn7NHx8AAKiT1WrVN998o7CwMGVmZsrpdGrZsmU1z98cSqurq5WYmKjFixdr7ty5crlc2rx5s3x9\nfet6eeC+RygFvPDGG29owoQJcjqdGjNmjG4oWu1FAGw2i0WKivK+/ezZjY7JIskuqVVioqdYEwAA\nuGtsNpt2796t4OBgFRcXKy0tTT/88IOkW0Npenq6/P39tWvXLlVWViovL49AigcaR8IAXnK5XAoL\nC1NxcbEcf/ubxp0549lPeumSDHlC3l3jxVEwt9i5U4qJkeraB1ub3S4lJTV4/ikAALgzXC6Xnn/+\neZWWlqpDhw46Wlioq0uXym/LFgUahtwtWmit06nvIyJ02s9P27dvb/hYOuABQCgFmuCPP/7QpMcf\n1/rKSgXY7bLUKnB0/YPUpHBqt3uq8jb0MWxOaAwMlK5cabzd7YReAABwW1wul4KDg/U/x45piyQ/\ni0WWWntMnfKcdW7ZulV+I0eaNk7gXiGUAk1x/Liqn3tOtsbOAG3M9aA5a5YUEiJVVNTfNiBAOnzY\n+/2ktVmtDQfe2u0am1EFAAB3zLWffpLr2WcV0ND3dHOuAYD7CHtKgaZITZWtsfDm4yM1dpj19Uq6\n3bt7ChgFBNy6B9Ru9zzelAJHN/O2CNO9KtYEAAAkSb4ZGXqksaNdnE4pLe3eDAgwEaEUaApvziR1\nuSQ/P++DZlSU5y5oUpJnGa3V6vk3KcnzeFMKHN3MmyJMTTn/FAAA3BkbNtywDahOTqeUm3tvxgOY\niOW7QFM0ZTlsaann7mZurucs08BAT/i7PkN6Lxw/fneXBwMAgNvDFhugBqEUaIqgIOnSJe/a/VkK\nB+3cKY0Z47nbWvuOrN3u+cnLa95sLAAAaLr78ZoCuEtYvgs0xf24HPZuLg8GAAC35368pgDuEmZK\ngaZgOSwAALgTuKYAajBTCjTF3a6WCwAAHg5cUwA1CKVAU7EcFgAA3AlcUwCSWL4LAAAAADARM6UA\nAAAAANMQSgEAAAAApiGUAgAAAABMQygFAAAAAJiGUAoAAAAAMA2hFAAAAABgGkIpAAAAAMA0hFIA\nAAAAgGkIpQAAAAAA0xBKAQAAAACmIZQCAAAAAExDKAUAAAAAmIZQCgAAAAAwDaEUAAAAAGAaQikA\nAAAAwDSEUgAAAACAaQilAAAAAADTEEoBAAAAAKYhlAIAAAAATEMoBQAAAACYhlAKAAAAADANoRQA\nAAAAYBpCKQAAAADANIRSAAAAAIBpCKUAAAAAANMQSgEAAAAApiGUAgAAAABMQygFAAAAAJiGUAoA\nAAAAMA2hFAAAAABgGkIpAAAAAMA0hFIAAAAAgGkIpQAAAAAA0xBKAQAAAACmIZQCAAAAAExDKAUA\nAAAAmIZQCgAAAAAwDaEUAAAAAGAaQikAAAAAwDSEUgAAAACAaQilAAAAAADTEEoBAAAAAKYhlAIA\nAAAATEMoBQAAAACYhlAKAAAAADANoRQAAAAAYBpCKQAAAADANIRSAAAAAIBpCKUAAAAAANMQSgEA\nAAAApiGUAgAAAABMQygFAAAAAJiGUAoAAAAAMA2hFAAAAABgGkIpAAAAAMA0/wen7NQN0D6okwAA\nAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc54d9e53d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# draw the causal sets\n", "f, axs = plt.subplots(1, 2, figsize=(16,8))\n", "for i, G in enumerate([G_m, G_ds]): \n", " draw_pos = {i:G.node[i]['position'][::-1] for i in range(N)}\n", " nx.draw(nx.transitive_reduction(G), pos=draw_pos, ax=axs[i], node_size=100)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2017-04-04T17:14:27.377474Z", "start_time": "2017-04-04T18:14:26.992048+01:00" }, "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Minkowski spacetime\n", "N: 200\n", "E: 9766\n", "LP: 25\n", "C_2: 9766\n", "MMD_2: 2.04\n", "C_3: 207282\n", "MMD_3: 2.04\n", "C_4: 2399957\n", "MMD_4: 2.05\n", "MPSD: 2.0536379636\n", "\n", "\n", "\n", "de Sitter spacetime\n", "N: 200\n", "E: 11920\n", "LP: 28\n", "C_2: 11920\n", "MMD_2: 1.77\n", "C_3: 332819\n", "MMD_3: 1.79\n", "C_4: 5291228\n", "MMD_4: 1.81\n", "MPSD: 1.78923290378\n", "\n", "\n", "\n" ] } ], "source": [ "names = ['Minkowski spacetime', 'de Sitter spacetime']\n", "for i, G in enumerate([G_m, G_ds]):\n", " print names[i]\n", " N = G.number_of_nodes()\n", " print 'N: ', N\n", " print 'E: ', G.number_of_edges()\n", " print 'LP: ', len(nx.dag_longest_path(G))\n", " for k in [2,3,4]:\n", " C_k = dag.count_chains(G, k)\n", " print 'C_%s: %s' % (k, C_k)\n", " print 'MMD_%s: %s' % (k, dag.mmd_estimate(C_k, k, N))\n", " print 'MPSD: %s' % dag.mpsd(G)\n", " print '\\n\\n'" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2017-04-04T17:16:10.766439Z", "start_time": "2017-04-04T18:16:10.688948+01:00" }, "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Minkowski spacetime\n", "N: 200\n" ] }, { "ename": "NameError", "evalue": "name 'initial_guess' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-13-8972bccf28d7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mC_k\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdag\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount_chains\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mG\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mchains\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mC_k\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mdag\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mde_sitter_param_estimate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchains\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_guess\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0;34m'\\n\\n'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'initial_guess' is not defined" ] } ], "source": [ "# measure curvature\n", "for i, G in enumerate([G_m, G_ds]):\n", " print names[i]\n", " N = G.number_of_nodes()\n", " print 'N: ', N\n", " chains = [N]\n", " for k in [2,3]:\n", " C_k = dag.count_chains(G, k)\n", " chains.append(C_k)\n", " print dag.de_sitter_param_estimate(chains, initial_guess=)\n", " print '\\n\\n'" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "ExecuteTime": { "end_time": "2017-04-04T17:16:37.730923Z", "start_time": "2017-04-04T18:16:37.728214+01:00" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "None\n" ] } ], "source": [ "print dag.de_sitter_param_estimate.__doc__" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
wmaciel/van-crime
src/classification.ipynb
1
23210
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import pickle as pk\n", "import pandas as pd\n", "import timeit as tm\n", "import csv\n", "import sys" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Loading data\n", "## Loading training data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training data dimensions: (295169, 63)\n", "training label dimensions: (295169, 6)\n" ] } ], "source": [ "# Open training data to pandas\n", "train_dat_pandas = pd.read_csv('../data/clean_data/train_vectors.csv', index_col=0, encoding='utf-8')\n", "del train_dat_pandas['TYPE']\n", "\n", "# Open training labels to pandas\n", "train_lbl_pandas = pd.read_csv('../data/clean_data/train_labels.csv', index_col=0, encoding='utf-8')\n", "del train_lbl_pandas['YEAR']\n", "\n", "# Save headers\n", "headers = [list(train_dat_pandas)]\n", "\n", "# Convert pandas to numpy matrix\n", "train_dat = train_dat_pandas.as_matrix()\n", "print 'training data dimensions:', train_dat.shape\n", "\n", "# Convert pandas to numpy matrix\n", "train_lbl = train_lbl_pandas.as_matrix()\n", "print 'training label dimensions:', train_lbl.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loading test data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "testing data dimensions: (34142, 63)\n", "testing label dimensions: (34142, 6)\n" ] } ], "source": [ "# Open test data\n", "test_dat_pandas = pd.read_csv('../data/clean_data/test_vectors.csv', index_col=0, encoding='utf-8')\n", "del test_dat_pandas['TYPE']\n", "\n", "# Open test labels\n", "test_lbl_pandas = pd.read_csv('../data/clean_data/test_labels.csv', index_col=0, encoding='utf-8')\n", "del test_lbl_pandas['YEAR']\n", "\n", "# Convert pandas to numpy matrix\n", "test_dat = test_dat_pandas.as_matrix()\n", "print 'testing data dimensions:', test_dat.shape\n", "\n", "# Convert pandas to numpy matrix\n", "test_lbl = test_lbl_pandas.as_matrix()\n", "print 'testing label dimensions:', test_lbl.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Concatenating test and train for final model" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "full_dat_pandas = pd.concat([train_dat_pandas, test_dat_pandas])\n", "full_dat = full_dat_pandas.as_matrix()\n", "\n", "full_lbl_pandas = pd.concat([train_lbl_pandas, test_lbl_pandas])\n", "full_lbl = full_lbl_pandas.as_matrix()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Converting one hot labels to numeric" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[4 4 4 ..., 4 2 3] [4 2 2 ..., 4 2 2] [[0 0 0 0 1 0]\n", " [0 0 0 0 1 0]\n", " [0 0 0 0 1 0]\n", " ..., \n", " [0 0 0 0 1 0]\n", " [0 0 1 0 0 0]\n", " [0 0 1 0 0 0]]\n" ] } ], "source": [ "# method to convert a one hot encoding array into a numeric array\n", "def onehot_2_numeric(onehot):\n", " numeric = []\n", " for elem in onehot:\n", " result = 0\n", " for i, k in enumerate(elem):\n", " result += i * k\n", " numeric.append(result)\n", " return np.asarray(numeric)\n", "\n", "\n", "train_lbl_txt = onehot_2_numeric(train_lbl)\n", "test_lbl_txt = onehot_2_numeric(test_lbl)\n", "full_lbl_txt = onehot_2_numeric(full_lbl)\n", "print train_lbl_txt, test_lbl_txt, full_lbl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Scaling data" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[-1.43707687, -0.46160515, 0.88683494, ..., 0.25718323,\n", " 0.46704734, -0.77932334],\n", " [-1.43707687, -0.46160515, 0.88683494, ..., 0.25718323,\n", " 0.46704734, -0.77932334],\n", " [-1.43707687, -0.16683183, 0.88683494, ..., 1.03117731,\n", " 1.0494166 , -0.51868547],\n", " ..., \n", " [ 1.57106923, -1.05115178, 0.07267337, ..., -0.45880567,\n", " -0.35490798, 0.78072654],\n", " [ 1.57106923, 0.42271481, -1.80602055, ..., 1.46893604,\n", " 1.48036877, -0.50420559],\n", " [ 1.57106923, -1.05115178, 0.79614277, ..., -0.45880567,\n", " -0.35490798, 0.78072654]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Feature vector scalling\n", "from sklearn.preprocessing import StandardScaler\n", "\n", "scaler = StandardScaler()\n", "\n", "scaler.fit(train_dat)\n", "train_dat = scaler.transform(train_dat)\n", "test_dat = scaler.transform(test_dat)\n", "\n", "scaler.fit_transform(full_dat)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Dimensionality Reduction" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# from sklearn.decomposition import PCA\n", "\n", "# pca = PCA(n_components='mle')\n", "# print pca" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# pca.fit(train_dat)\n", "# print train_dat.shape\n", "# train_dat = pca.transform(train_dat)\n", "# print train_dat.shape\n", "\n", "# print test_dat.shape\n", "# test_dat = pca.transform(test_dat)\n", "# print test_dat.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Linear Regression" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.linear_model import LinearRegression\n", "\n", "# Fit Linear Regression\n", "lin_reg = LinearRegression(n_jobs=-1, normalize=True)\n", "lin_reg.fit(train_dat, train_lbl)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Generate predictions\n", "predictions = lin_reg.predict(test_dat)\n", "print predictions.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Compute RMSE\n", "\n", "import math\n", "\n", "errors = []\n", "\n", "# compute squared errors\n", "for i in xrange(predictions.shape[0]):\n", " p = predictions[i]\n", " t = test_lbl[i]\n", " \n", " # compute distance\n", " squared_distance = 0.0\n", " for j in xrange(predictions.shape[1]):\n", " squared_distance += (p[j] - t[j])**2\n", " \n", " errors.append(squared_distance)\n", "\n", "rmse = math.sqrt(sum(errors)/len(errors))\n", "print 'Root mean squared error:', rmse" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Save model\n", "from sklearn.externals import joblib\n", "joblib.dump(lin_reg, '../models/linear_regression_model.p')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Logistic regression" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "# from sklearn.linear_model import LogisticRegression\n", "\n", "# clf = LogisticRegression(n_jobs=-1)\n", "# clf.fit(train_dat, train_lbl_txt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# predictions = clf.predict(test_dat)\n", "# p_predictions = clf.predict_proba(test_dat)\n", "\n", "# print 'predictions dimensions:', predictions.shape\n", "# print 'probabilities per class:', p_predictions.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# # Table of probabilities for each class\n", "# for i in range(6):\n", "# print str(i)+'\\t',\n", "\n", "# print ''\n", "\n", "# for i in xrange(len(p_predictions)):\n", " \n", "# for j in xrange(len(p_predictions[i])):\n", "# print(\"%.2f\" % (p_predictions[i][j]*100))+'%\\t',\n", " \n", "# print ''" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# from sklearn.metrics import accuracy_score\n", "# score = accuracy_score(test_lbl_txt, predictions)\n", "# print score" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Logistic Regression Cross validation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.linear_model import LogisticRegressionCV\n", "from sklearn.cross_validation import StratifiedKFold\n", "\n", "folder = StratifiedKFold(train_lbl_txt, n_folds=5, shuffle=False)\n", "\n", "clf = LogisticRegressionCV(n_jobs=-1, solver='liblinear', cv=folder, verbose=5)\n", "print clf" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "clf = clf.fit(train_dat, train_lbl_txt)\n", "print clf.score(test_dat, test_lbl_txt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Save model\n", "from sklearn.externals import joblib\n", "joblib.dump(clf, '../models/logistic_regression_model.p')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Decision Tree Classifier" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.tree import DecisionTreeClassifier\n", "\n", "clf = DecisionTreeClassifier()\n", "clf.fit(train_dat, train_lbl_txt)\n", "predictions = clf.predict(test_dat)\n", "\n", "from sklearn.metrics import accuracy_score\n", "score = accuracy_score(test_lbl_txt, predictions)\n", "print score" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Decision Tree Cross Validation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.grid_search import GridSearchCV\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.cross_validation import StratifiedKFold\n", "\n", "folder = StratifiedKFold(train_lbl_txt, n_folds=5, shuffle=False)\n", "parameters = {'max_depth':[None, 2, 4, 8, 16, 32, 64]}\n", "dtc_clf = DecisionTreeClassifier()\n", "\n", "clf = GridSearchCV(dtc_clf, parameters, n_jobs=-1, pre_dispatch='n_jobs', cv=folder, refit=True, verbose=5)\n", "clf.fit(train_dat, train_lbl_txt)\n", "\n", "print 'Score on test data:', clf.score(test_dat, test_lbl_txt)\n", "\n", "print 'best params:', clf.best_params_" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Save model\n", "from sklearn.externals import joblib\n", "joblib.dump(clf, '../models/decision_tree_model.p')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.cross_validation import StratifiedKFold\n", "from sklearn.metrics import accuracy_score\n", "\n", "# Generate k-fold split in the training data\n", "kf = StratifiedKFold(train_lbl_txt, n_folds=5, shuffle=True)\n", "\n", "# Do multiple runs and save'em to runs list\n", "runs = []\n", "depths = [None, 2, 4, 8, 16, 32, 64]\n", "\n", "print 'this will take a while...',\n", "for d in depths:\n", " clf = DecisionTreeClassifier(max_depth=d)\n", " for t,v in kf:\n", " trn = train_dat[t]\n", " val = train_dat[v]\n", " trn_lbl = train_lbl_txt[t]\n", " val_lbl = train_lbl_txt[v]\n", " clf.fit(trn, trn_lbl)\n", " predictions = clf.predict(val)\n", " #score = accuracy_score(val_lbl, predictions)\n", " score = clf.score(val, val_lbl)\n", " runs.append(tuple([d, score]))\n", " print d, score\n", "print 'done!'\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "best_result = max(runs, key=lambda run: run[1])\n", "print 'Best result:', best_result\n", "best_d = best_result[0]\n", "\n", "clf = DecisionTreeClassifier(max_depth=best_d)\n", "clf.fit(train_dat, train_lbl_txt)\n", "print 'Score on test data:', clf.score(test_dat, test_lbl_txt)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Random Forests" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.49753968718879971" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "\n", "clf = RandomForestClassifier(n_estimators=50, n_jobs=-1)\n", "clf.fit(train_dat, train_lbl_txt)\n", "clf.score(test_dat, test_lbl_txt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cross validation on random forests" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "this will take a while...\n", "run: None auto gini done!\n", "run: None auto entropy done!\n", "run: None log2 gini done!\n", "run: None log2 entropy done!\n", "run: None None gini done!\n", "run: None None entropy done!\n", "run: 2 auto gini done!\n", "run: 2 auto entropy done!\n", "run: 2 log2 gini done!\n", "run: 2 log2 entropy done!\n", "run: 2 None gini done!\n", "run: 2 None entropy done!\n", "run: 4 auto gini done!\n", "run: 4 auto entropy done!\n", "run: 4 log2 gini done!\n", "run: 4 log2 entropy done!\n", "run: 4 None gini done!\n", "run: 4 None entropy done!\n", "run: 8 auto gini done!\n", "run: 8 auto entropy done!\n", "run: 8 log2 gini done!\n", "run: 8 log2 entropy done!\n", "run: 8 None gini done!\n", "run: 8 None entropy done!\n", "run: 16 auto gini done!\n", "run: 16 auto entropy done!\n", "run: 16 log2 gini done!\n", "run: 16 log2 entropy done!\n", "run: 16 None gini done!\n", "run: 16 None entropy done!\n", "run: 32 auto gini done!\n", "run: 32 auto entropy done!\n", "run: 32 log2 gini done!\n", "run: 32 log2 entropy done!\n", "run: 32 None gini done!\n", "run: 32 None entropy done!\n", "run: 64 auto gini done!\n", "run: 64 auto entropy done!\n", "run: 64 log2 gini done!\n", "run: 64 log2 entropy done!\n", "run: 64 None gini done!\n", "run: 64 None entropy done!\n", "All done!\n" ] } ], "source": [ "from sklearn.cross_validation import StratifiedKFold\n", "\n", "# Generate k-fold split in the training data\n", "kf = StratifiedKFold(train_lbl_txt, n_folds=5, shuffle=True)\n", "\n", "# Do multiple runs and save'em to runs list\n", "runs = []\n", "params = []\n", "\n", "depths = [None, 2, 4, 8, 16, 32, 64]\n", "max_features = ['auto', 'log2', None]\n", "criterions = ['gini', 'entropy']\n", "for d in depths:\n", " for mf in max_features:\n", " for c in criterions:\n", " params.append([d, mf, c])\n", "\n", "\n", "print 'this will take a while...'\n", "for d, mf, c in params:\n", " clf = RandomForestClassifier(n_jobs=-1, max_depth=d, max_features=mf, criterion=c)\n", " print 'run:', d, mf, c,\n", " for t,v in kf:\n", " trn = train_dat[t]\n", " val = train_dat[v]\n", " trn_lbl = train_lbl_txt[t]\n", " val_lbl = train_lbl_txt[v]\n", " clf.fit(trn, trn_lbl)\n", " score = clf.score(val, val_lbl)\n", " runs.append([score, d, mf, c])\n", " print 'done!'\n", "print 'All done!'" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['../models/random_forest_model.p',\n", " '../models/random_forest_model.p_01.npy',\n", " '../models/random_forest_model.p_02.npy',\n", " '../models/random_forest_model.p_03.npy',\n", " '../models/random_forest_model.p_04.npy',\n", " '../models/random_forest_model.p_05.npy',\n", " '../models/random_forest_model.p_06.npy',\n", " '../models/random_forest_model.p_07.npy',\n", " '../models/random_forest_model.p_08.npy',\n", " '../models/random_forest_model.p_09.npy',\n", " '../models/random_forest_model.p_10.npy',\n", " '../models/random_forest_model.p_11.npy',\n", " '../models/random_forest_model.p_12.npy',\n", " '../models/random_forest_model.p_13.npy',\n", " '../models/random_forest_model.p_14.npy',\n", " '../models/random_forest_model.p_15.npy',\n", " '../models/random_forest_model.p_16.npy',\n", " '../models/random_forest_model.p_17.npy',\n", " '../models/random_forest_model.p_18.npy',\n", " '../models/random_forest_model.p_19.npy',\n", " '../models/random_forest_model.p_20.npy',\n", " '../models/random_forest_model.p_21.npy',\n", " '../models/random_forest_model.p_22.npy',\n", " '../models/random_forest_model.p_23.npy',\n", " '../models/random_forest_model.p_24.npy',\n", " '../models/random_forest_model.p_25.npy',\n", " '../models/random_forest_model.p_26.npy',\n", " '../models/random_forest_model.p_27.npy',\n", " '../models/random_forest_model.p_28.npy',\n", " '../models/random_forest_model.p_29.npy',\n", " '../models/random_forest_model.p_30.npy',\n", " '../models/random_forest_model.p_31.npy',\n", " '../models/random_forest_model.p_32.npy',\n", " '../models/random_forest_model.p_33.npy',\n", " '../models/random_forest_model.p_34.npy',\n", " '../models/random_forest_model.p_35.npy',\n", " '../models/random_forest_model.p_36.npy',\n", " '../models/random_forest_model.p_37.npy',\n", " '../models/random_forest_model.p_38.npy',\n", " '../models/random_forest_model.p_39.npy',\n", " '../models/random_forest_model.p_40.npy',\n", " '../models/random_forest_model.p_41.npy']" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "champion = max(runs, key=lambda run: run[0])\n", "score, d, mf, c = champion\n", "clf = RandomForestClassifier(n_jobs=-1, max_depth=d, max_features=mf, criterion=c)\n", "clf.fit(full_dat, full_lbl_txt)\n", "\n", "from sklearn.externals import joblib\n", "joblib.dump(clf, '../models/random_forest_model.p')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Support Vector Machine Crossvalidation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# from sklearn.svm import SVC\n", "# from sklearn.grid_search import GridSearchCV\n", "# from sklearn.cross_validation import StratifiedKFold\n", "\n", "# folder = StratifiedKFold(train_lbl_txt, n_folds=5, shuffle=False)\n", "\n", "# parameters = {'kernel':['linear', 'poly', 'rbf'], 'C':[64, 32, 16, 8], 'probability':[False], 'max_iter':[1000]}\n", "# svm_clf = SVC()\n", "\n", "# clf = GridSearchCV(svm_clf, parameters, n_jobs=-1, pre_dispatch='n_jobs', cv=folder, refit=True, verbose=5)\n", "# clf.fit(train_dat_scaled, train_lbl_txt)\n", "# clf.score(test_dat_scaled, test_lbl_txt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# print 'best score:', clf.best_score_\n", "# print 'best params:', clf.best_params_" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
turbomanage/training-data-analyst
courses/machine_learning/deepdive/05_artandscience/labs/d_customestimator.ipynb
1
63316
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<h1> Time series prediction using RNNs, with TensorFlow and Cloud ML Engine </h1>\n", "\n", "This notebook illustrates:\n", "<ol>\n", "<li> Creating a Recurrent Neural Network in TensorFlow\n", "<li> Creating a Custom Estimator in tf.estimator\n", "<li> Training on Cloud ML Engine\n", "</ol>\n", "\n", "<p>\n", "\n", "<h3> Simulate some time-series data </h3>\n", "\n", "Essentially a set of sinusoids with random amplitudes and frequencies." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR PROJECT ID\n", "BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR BUCKET NAME\n", "REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1\n", "os.environ['TFVERSION'] = '1.8' # Tensorflow version" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# for bash\n", "os.environ['PROJECT'] = PROJECT\n", "os.environ['BUCKET'] = BUCKET\n", "os.environ['REGION'] = REGION" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Updated property [core/project].\n", "Updated property [compute/region].\n" ] } ], "source": [ "%%bash\n", "gcloud config set project $PROJECT\n", "gcloud config set compute/region $REGION" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.8.0\n" ] } ], "source": [ "import tensorflow as tf\n", "print(tf.__version__)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/envs/py3env/lib/python3.5/site-packages/matplotlib/font_manager.py:1320: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans\n", " (prop.get_family(), self.defaultFamily[fontext]))\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD7CAYAAACCEpQdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXd4lNeZ9/95pquN2ox6RWWQBJLoYBs3sA2m2Bjc7cQpdppL2mazu9ndvPkl2Tf7ZjeJS+LYiePewQ1TDDZumCaBUGVUQBX1Xqf//phhkEAggWakkXQ+18U17dFzbp555nvOue/73EdyOBwIBAKBYHYhm2oDBAKBQDD5CPEXCASCWYgQf4FAIJiFCPEXCASCWYgQf4FAIJiFCPEXCASCWYjCEycxGAzPAeuBFqPROG+Uz68F3gNOud7aZjQaf+WJtgUCgUBw6XhE/IHngSeBFy9yzBdGo3G9h9oTCAQCwQTwiPgbjcbPDQZDkifOdQar1ebo7Bzw5Ck9QmioP75ml7BpfAibxo8v2iVsGh96fZA0nuM8NfIfDysMBsNx4DTwU6PRWHKxgxUK+eRYdYn4ol3CpvEhbBo/vmiXsMmzTJb4HwUSjUZjn8FguBl4F0gb64/0+iCvG3Y5+KJdwqbxIWwaP75ol7DJc0iequ3jcvtsHy3gO8qx1cBio9HYdpHDHK2tvR6xzZPo9UH4ml3CpvEhbBo/vmiXsGl8jNftMympngaDIcpgMEiu50td7bZPRtsCgUAgOB9PpXq+BlwL6AwGQz3wn4ASwGg0Pg1sAb5nMBiswCBwl9FoFOVEBQKBYIrwVLbP3WN8/iTOVFCBQCAQ+ABiha9AIBDMQoT4CwQCwSxkMvP8BQKv43A46Bu00N1npqvf5Hzscz4GBKhZmBpOfETgVJspEEw5QvwF0wKb3U5Pv4XufhNdfWa6XYLe1e983tVnptsl9jb7hXMJ3vu8CkN8CKsXx5GbpkMuE5NfwexEiL9gSrFYbaOKuFPgXe/1m+ntN3Ox9DCFXCI4QEViVBDBASpCAtUEB7oeXa+tksQ7+yoore7EWNdFuFbNdQvjuDonhkA/5aT9nwUCX0CIv8ArDAxZaOoYOCvoLhE/K/DO5/1D1oueR62UExyoIio0mOBRBP3M6wCNAkm6+NoWvT6IlMhAGtr6+SS/nv3Fjbz9aRXvfXmK5ZmRrFoUR0Lk9FytKRBcKkL8BR6lqqGbl/eUU9N08VWPARoFIYFq10hdTUigiuBA1+MwYdeoPH+LxuoCuP8mA5uvmcOXhY18fLSeLwob+aKwEUN8CKsWxbEgXbiEBDMbIf4Cj9A7YObtT6v4orARgJw0HVo/5TBBPyPwzudKxdQLq79GyY1LE1i9OJ7Ck+18nFdHicslFKZVc92CWK7OiSHIXzXVpgoEHkeIv2BC2B0OPj9+mq2fVtE/ZCVOH8j9N6VzxYJ4n6t5ciFkMoncVB25qTpOt/Xz8dF6vipqYutnJ3l/fzXLMiNZLVxCghmGEH/BZVPd1MNLu8s51diDRiXnrlVprFoUO63dJTG6AO6/0cDmq+fwZVETn+TX82VhI18WNpIeF8zqxfHCJSSYEQjxF1wy/UMWtn1+kk+PNuAAlmVGcsd1qYQGqafaNI/hr1Fy45J4Vi+Oo6iqnb359ZSc6qC8vpvQIDXXLxQuIcH0Roi/YNw4HA6+Km7izX2V9A5YiA73574b0slICptq07yGTJLISdWRk6qjsb2fj/Pr2V/sdAm992W1O0soMUq4hATTCyH+gnFR39LHSx8ZqajvRqWUseXaFG5cEo9CPnvcH9HhAdx3o4Hbrk5hf1EjH+fX82VRI18WNZJ2xiWUpptV10QwfRHiL7gogyYr7315ir159dgdDhal67lrVRrhwZqpNm3K8NcouGFJPKsWx1F8sp29efUUn+qgwuUSum5BLFfnxqAVLiGBDyPEXzAqDoeDw2UtvPFJBV19ZiJC/LjnhnSyU8LH9bcWq30SrJxaZJJEdoqO7BSnS+iT/Aa+LG5k2+dnsoQiWL0oXriEBD6JEH/BeTS29/PyR+WU1XSikMu49apk1i5PQDnGZtWDJitfHD/NR3l1dPSY0AaoCNeqCQvSEKbVEKZVE67VEOp61AaokI2xKne6EB0ewL03pnPbNXP40uUS2l/UxP6iJtLiglm1KI6F6XrhEhL4DEL8BW5MZhvbD1Sz61AtNruD7JRw7lmdRkSo/0X/rrvPxN78evYdbWDAZEWllJE1J5zWzgHqWvo51Th6vr9cJhEapCZMq3F2ElpXJxHk7BzCtGr81GOXbfAl/NQKblgcz6pFcRSf7GBvfh3FJ8+6hK5dEMs1wiUk8AGE+AtwOBwcq2jjtb3ltPeYCNequXt1OgvSdBcV3qaOAXYfrmV/URNWm50gfyWbViZz3cI4khPCaG3txeFw0Dtgob1niI4eEx09Q87nvc7nHT1DVNR1UX6BNjQquXvWEBY0spMI16oJDdL4xGrhc3G6hMLJTgl3uoSONrC/qJF3Pj/JB/urWZYRwarFcej1wiUkmBqE+M9yWroGeXVPOYVV7chlEutWJLJ+RRJq1YVdPFUN3ew8VMux8lYcQESoHzctTeDKeVGolCP/TpIktAEqtAEqkqNHP5/VZqer13ROp2Aa0WGcbuu/oD3aAJV7tnDGpTS8wwgOnFr3UnR4APfekM5tV89xZgkdbWB/cRP7i5vISDrJfTekER0eMGX2CWYnQvxnKRarjR0Ha/nwQA1Wm52MxFDuuzH9giJkdzgorGpn18Eayuu7AUiODmLtskQWpuuRyS5fXBVyGboQP3Qhfhc8ZtBkpaPXRKdr5tDec/Z5R6+J+tZ+qi9QTO6MeyklLoSNVyROmdD6qRWsXhzP9YviKDnVwd68eopOtvPbl/J5ZHM26fEhU2KXYHYixH8WUljVzqt7ymnpGiQkUMVdq9JYMjdiVBeP1WbnYEkzuw7Xukff2SnhrF2WQHp8yKT54/3UCmLVCmJ1owv3aO6ljt6znURbzxCHSprIP9HCbVfP4cYl8RPqsCaCTJKYPyec+XPCOX6qkyffKuD3rxfw4IZMlsyNmBKbBLMPIf6ziPbuIV77uIKj5a3IJIkbl8Rzy1XJ+KnPvw0Ghqx8dryBPUfq6OozI5dJXDEvijVLE4jzwW0Qx+Neqmjs5am3CnhzXyX5xha+uS5jyt0tq5cmIMfOn98p5i/vFtN+XSo3LY2fVkFuwfREiP8swGqzs/twLR98VY3ZYictLpj7bzSMKuKdvSb25tXxaUEDgyYbapWcm5bGc8PieMK003th1xXZMUQFq3l1bwWHSpv5z+eOsOnqZG5akjBlswCAecnh/PzehfzxreO8ua+S9p4h7l6VNqU2CWY+QvxnOGXVHby8p5zG9gG0/kruv9HAFfOizhtZnm7rZ9fhWg4UN2GzO9AGqLh5eSLXLYjFXzNztjgM8lfxnY1ZLDZE8NLuE7y1r4p8YyvfvDmDmAu4lCaDhMggfvG1xfzhreN8nF9PR88QD23MQq28+NoKgeByEeI/Q+nqM/HGJ5UcKm1GAq5fGMttV885T8gr6rvYebCWgso2ACLD/Fm7LIEVWZFjLuqaziwy6DEkhPDqnnIOljbzy38cYdPKZG5aOnWzgDCthn+5dyFPvVPMsYo2/t9rx3h0S7ZYEyDwCpLDcbFtsacUhy9uBqLXB/ncJiXDbbLZ7Xyc38C7X5xkyGwjOVrL/TelkxSldR9vdzg4XtHGzkO1VDY4M3dSYrWsXZZIbprOI2mRvn6dhnO0vJUXdxvp6TczJ0Y7qbOA0Wyy2uz8Y8cJDpQ0ERHix4/uyCEy7OIL7UbDbndgttowW+1YLHYsNjtmiw2L1e58z2rHcuZz1z+z1YbV5iA+SoufQiIi1J+QQJVPxCCm0z01lej1QeP6soT4XyI++mXT2tpLRX0XL+0up761jwCNgs3XpnB1ToxbzC1WOwdKmth1qJamjgEAclN1rHFl7njDJl/iYjb1DVrcswCFXMatK5O5aWm8VzdtGRiyMmh30NzSe54Ymy02CiraOFHbhVIhIyclHH+NYoRwmy02LDansJtdfzv8c5vdM79tlUJGRKgfEaH+rkc/IkOcr0O16klbQzHd7qmpQoi/l/DFL1upUfH01gL2FzUBsDI7mi3Xprg3GhkYsrDvWAN78+rp7ndm7qyYF8VNSxMumDo5UXzxOo3HpuGzgORoLd9cl+GRa2S22Kht7uNUYw/VTT2caux1d8ATQSaBXCZDJpOQyyRkMmfmkyRJnKsADhw47M6Zn93hwG4Hu92O1e5gNBnQqOQo5TLsDgcmi3NGcC4KuQx9iIbIYR3DmY4iXKv2aOc5Xe+pyWa84i98/tOcz4+f5q1Pq+gftJAQEch9NxlIjQ0GoKNniD15dXxacBqT2YafWs7aZc4Ny2fSrlueZGG6nvT4EF7dW87Bkmb+zz8Oc8tVyaxZljBuIbPa7DS09o8Q+obWfuzDFFapkBEcoAIJbDYHdrtzpG6zO7DZHIx3SGZ3gN1mB9vYx0oSqBRylAoZfio5KoUclUKGUilzv69SyJDLZfSbrDS09NHVaxrVFoVccq/mbu0aorH9/I5MLpPQBWtGzhhcHYMuWCOK3E0xQvynMR/sP8U7X5zCX6PgntVpXLfQuX9ufWsfuw/VcrC0GZvdQUigio1XJnFNTiz+GvGVj0Wgn5KHNmSxxBDBC7uNbP3sJEfLW/nmuszzZgF2u4PGjgGqG3uobuzlVFMPtc19WG1nS1rLZRKBfgrsDucWmA6H0wXXbTWjUsjQqOSo1UpUSplLgM8KsVLpFGiTxUbRyXbMFjspsVoWpulRq+Tu44eLuPM8zvdUCtdzpQy5TBq37/7MiNZitdHWPURL5yAtXYO0dg3S6n4+NOL/eQaZBCqlHJkk0dFrorlz8LxjJAnCtRp3ZzB8xhARopnRyQa+gkeUwGAwPAesB1qMRuO8UT6XgD8BNwMDwANGo/GoJ9qerXzwVTXvfHGKcK2G3z2yEslqpbyui52HaimsagcgOtyfNcsSWJ4Z5ZPFz3ydBel60uJDeG1vOQdKmvnlc4e4YXE8CVFB1Da5XDjNvZjMZ4fdkgQBGiWSJKd/0ILdATa7g54BCyqFjJSYYJKigkiKDiIpSst8QyTt7X3jsqete5A/vHmcqoYeQgLVPLg+87xaSp5GqZATHR4w6mI4u8NBd5+Zls4Bd2fQ2jVIS6ezk+gbtFzgnM6OqLvfTFv3ECXVnSM+l4BQrZoIV1whMtQPfYgfS5Ri4OJJPHU1nweeBF68wOdrgTTXv2XAX1yPgstg+1fVvPP5ScK1Gv7p7lwq67t4c4+Rk6d7AEiPC2bN8kSyU8JnTL38qaCrz8Spxh7Cg/1IiAykrrmPXYfrRhwToFGg8lMyYLJic/nO+wYtyGUSCZFBJEdrXWKvJUbnf57r6FLSSnXBfvzr/Yt4cmsR+cZWuvsKeGTz/CnbRF4mOWsmhQapMSSEnvf5wJDVOVPoOjtrONMxtPcMjRpnkMskFHIZvQMWOnpMnKjtOvvhu8UkRgWxIFVHbpqO+IhAn8hCmq54LOBrMBiSgO0XGPn/FfjUaDS+5nptBK41Go2NFzmlCPiOwocHqtn62UnCtWoe2pDFSx8ZqW/tR8I5Ul2zLMHt859Kpvo6jcZY2T5n/PPVjT2cauyhq8884hiNSo7VZj8v8CmTJGL1ASRFucQ+OohYXeC4ZluXc50sVjvP7SjjUGkzkaHOVNCx9ly4VLz9/Vltdtp7hoa5kM52DC1dg5gt57uTFHJpRDwkTKsm19URGOJDp2R266P3uU8FfGOB4UOmetd7FxN/wTnsOFjD1s9OEqZV88Daufz1gxI6ekxctyiO1Qtjp7xOzXRhyGylpqnXKfRNTl99S9dIv7RaKSfQT4nJ7EyndP6dDQkIC1LTO2jBYrUTFebPgxsySY7WjtKSd1AqZDy4IZNwrYYdB2v4zUv5PLYlhzkxk2fDRFHIZUSG+hM5SqflcDjdZM6OYYDWriGaOwYw1nXR2WsCnK6hrj4znxxt4JOjDWhUcubNCWdBqo75KeEE+s2cVeneYrJG/h8C/2U0Gr90vf4Y+JnRaMy/yCl9Ngd1Ktj6SQXPf1iKLsSP726azxNvFdDdZ+br6zLZcn3aVJvn05gsNg6XNJF/opmKui7qm3sZngKvUsrQqBSYzFZM54w4Y3QBpMaHkBYfQmpcCHNig/HXKOkdMPPsu0Xsy69HIZdx940GNl+XinySM1h2fnWKp7cVolDI+dl9i1g27wJV7WYAdruDkw3dHClt4nBZM5V1Z11CcpnkXtcgk0lkJoexLCuKpVlRxOh8rxChl5ncPH/h9vEeuw7V8ua+SkKD1NxxXSov7j7BkMnG/TcZuHZBrK9OPafUJrvDQUVdF18VN5FnbGHQ5AzKymUSfmo5Fqv9PKEP12pIij7rp0+MCiJgjLpGBRVtvLD7BN19ZhKjgvjWugzi9OMXG09cp4LKNp5+rxiL1c49q9NZtShuQufzlF2e5lybuvpMFFa1c7yyjZJTHZitzu9TJjGic48O9yc3TceCVD1zYrQeLd/ho9fJp8R/HfAwzmyfZcDjRqNx6RinFOLPSOG/5apkXt1Tjs3u4NvrM1mWGTklNo2HqbLpdFs/B0qaOFjSRHuP00WgUsqw2RwjVryGBKpIitKSHO0MxiZGBV12DZ3+IQuv7a3gq+Im5DKJjVclc/Py8a0L8NR1OtXYw5/eOk7PgIU1yxLYcm3KhIL90+2eslhtGGu7OF7ZzvGqNtq6h9yfSRLu4HKQv5KcFGecICsp7KI71k3UpqliUsXfYDC8BlwL6IBm4D8BJYDRaHzaler5JLAGZ6rnN4xGY94Yp5314r/7cC1vfOIU/jVL43lzXxUymcQPNs0jO0U3JTaNl8m0qaffzKHSZr4qaaLGtZuXXCYhk8DiCs7qQzRcszCe6FANSVFaryxyK6hs44Vdw2YBN2eMufeBJ69Ta5czFbSpY4ClGRF8a13GZefLT+d7yuFwcLqtn+OuWUGFa+c5GNkRKOQSmUlh5KbpyEnRXdY94aPXSZR38AaT9WV/dLiW1z+pJCRQxXULYnn3i1No1HIe25JzXh0eH70BvWqTyVX75kBJE8UnO7A7HEiAUilzZ4oE+ilZmhHBiqwo5sRoiYjQev06jTYLWLss4YKrWT19nfoGLTyxtZCK+m7S44J5eHP2ZQU/Z9I91TdooeiksyMoqmpn0LUuQ2JkYDE5OsiVPaQnTh8wrjRSH71OQvy9wWR82R8dqeP1jysIDlSxIjOSXYfrCPRT8pM7c0mMCpoSmy4Vb9hkdzgw1nTyVUkT+cZWhlw/YrVS5vbfqxQyFqTrWZEVSWZS2AjRnczrVFDZxou7TtDVZyYx0hULGGUW4A2bLFYbf9texpETLUSF+fOjO3LQX2R/5NGYqfeUzW6nsr7bPSsYrSwFOOM/uWln0khDJq3z9gRC/L2Et7/sPXl1vLbXKfw5KTo+P36a0CA1P70r94KpnD56A3rMpobWPr4qaeJgSbM71U+pkGFxBfgkCTKTwliRFcmCNP2o21J62qbx0D9k4fWPK9hf5JoFXJnE2uWJk9Ih2R0O3v60il2HatEGqHhsS/YlpaPO9HvqDC2dAxyvaqewso2ymk5GK4Tqp5Yzf044uWk6sueEj9gTw0evkxB/b+DNL3tvXh2vuoTfEB/C4bIWIkP9+MldueiCLzxy89EbcEI2dfeZOFjazIHiJmpbnOUP5DIJhwN3gbSkqCCWZ0WxLCOC4MCx/bVTdZ2Ou2IBZ2YB31yXQbxrFuBtmz7Or+fVveUoFTK+e8s8clN1Y//RJNh1OXjbpkGTldLqDmfQuLKV3kHrecfIZBKG+BByU3XkpOnISovwxeskxN8beOsG/Di/nlf2lKMNUJEUFURhVTvxEYH8+M5cZ/XHKbBpIlyOTSazjaMVrRwobqKkugOHw+mXlcsl96pafYiG5ZlRLM+KvORFbVN5nQaGLLw2bBaw4cokbl6eSHRUsNdtOlbeyl/fL8Fis3P/jc704LGYKffU5WJ3OKhu7OV4ZRsFla3UtfSPelxKbDDXLYhhaUakz1QpFeLvJbxxA35ytJ6XPypH668kKjyA8rouUuOC+eGW7HHtnzudf6h2u4Oy2k4OFDeRX97qLpKmlEvuTJ0zgdvlWVGkxGgvu56LL1ynwqo2nt/pnAUkRAby0/sWE6j0vmhUne7m8bcL6R2wsG5FIpuunnPRVFBfuFbnMpU2dfQMUXiyncLKdkpOtbvvzTMEB6hYvTiOa3Jjp3x1sRB/L+HpG3Df0Xpe+qicIH8lYUFqapr7mJccxg82zR93DvJ0/KHWtfRxoLiJg6VN7ho6imEjfJVCRm6ajhVZUWQlh3lkVOUr12lgyMLrH1fyZVEjCrnEQxuyWDw3wuvttnQO8Ic3j9PcOcjyzEi+cXPGBevh+Mq1Go6v2GS22DhR20lBZTsHS5rciQfgjEWtzI7mhiXxo5aumAyE+HsJT96A+4418NJuI4F+SoL8lTS2D7B4bgQPbci8JLHzlR/FcEazqbPX5MzHL26ivvWsH3/44qus5DCWZ0ayMP3CgVtP2jSVFFa18df3SzBb7Dy2JZt5c8K93mbvgJnHtxZS1dDD3IQQHr5t/qizS1+7VuCbNgUEaXj/00p2H6mlrWtoxGcL0nTcuCSe9PiQSa0+KsTfS3jqBvy0oIEXdxkJ8FPgp1LQ1j3Eyuxovr5m7iUvP/fFH8UZm4bMVo6WO/34pTWdTj++5PTln9H8xKggVmRFsTQjgpBxBG4napMv0dg9xH8+cxCZBD+5K5e0OM/upTwaZouNZz8oJb+8lRhdAD+6PYfwYM2IY3zxWvmyTXaHg6Kqdj46UktZTdeIYxIiA1mzLIHFhohJiQsI8fcSnrgB3cKvUaCQS3T3W1izNIHbr0u5rBGCr/0o7HYHDZ1D7PzKuQPWmUVXw0f5umANy7OiWHEZgdvLxdeuEzht2vPVKZ7cVoRaJeef71lAQuT5azk8jd3u4I1PKtmTV0dwoIofbskZsYbEV6/VdLCpobWPPXl17C9uwjYsNhAcoOLGpfFckxMzrljeBGwS4u8NJnoDfn78NM/vPIG/RoEE9A9Zue3qOaxbkTitA5ngrNH+VXET27+qdtdWGS74gX5KlmREsCIzipTYyw/cXi6+cp2Gc8amAyVN/O2DUoL8lfz8vkVEhU2Ov/ijI3W88XEFKpWc7986j/ku15MvXytfYqw9Ij4raGBPXj09/Wf3hlAqZFydE8MNS+KJuMTFd+O0SYi/N5jIDXhG+P3UCux2ByaLjftuTOf6hROrwjjVPwqL1c6XRY18eKCajh7TiGXzCrnEwnQ9y7OimOehwO3lMtXXaTSG23Qm6ytMq+Zf7l10nivGW+SdaOHZ7aXYbA6+tsbA1TkxPn+tfIXx2GS12Tla3squQ7VUN509VgJy03SsXZbo0cGQr23mMuv54vhpXth5Ao1KjsVqw26HBzdksiIraqpNu2wsVhufH29kx4EaOvtM7iLiDiA7VccSg94rgduZyvUL4xgYsrLt85P8/o0C/uXehWjHWOPhCRbPdcZaHt9ayPM7T9DePcSDt2V7vd3ZgkIuY2lGJEszIqk63c1HR+rIO9GCwwHHKto4VtFGQmQgNy9PZJFBP65qsJ5AjPwvkcsZfXxReJrnd5xArZJjttiQyWR8/9Z55KaNb7WlN2yaCCaLjc8KTrPzYA3d/eYRI/2F6XrWX5HIkvmx03KUNtmca5PD4eAtV1mGhIhAfnbPAq/6h4fT3OFMBW3pGuSWq1O45YrESWl3vEyH72+8dPaa+Di/jn1HG9yF5sAZF1i7LIGVOTGXPWgSbh8vcalf9v6iRp77sAyVq/iYWiXnsc3ZzE08f8PrybLpchkyW9l3rIFdh2rpHbCMEP1lmZGsW5Ho3shkJv1QvcloNjkcDl7YZeTz46dJiwvmx3fmolZOrO78eOkZMPPfrx7jdFs/997gmY1hPMV0+f4uBbPFxsHSZnYcrKGl8+xWokqFjGtznXGBi5V2uYBNQvy9waV82WeEX6mQYbbaCfRT8qM7cjy+3+tk1Dz55Gg9uw7X0j9odYu+TIIr5kezbnkikecEKGfiD9UbXMgmu93BMx+UcLishXlzwnh0c/akxUtauwb57cv59PSbeWxL9oi9I6aS6fT9XSoOh4MTNZ3sPFRL8amOEZ8tSNNx84pEUmKCx2uTEH9vMN4v+6viRv6+vQyFq/pkSKCKn9y1gFid59MavfWjGBiysDe/no+O1DEwdFb05TKJq3NjWLss4YKjkpn8Q/UkF7PJarPzxNYiik62s3huBN/dmOXRLQgvRvuAhX/9835kMol/uXfhpKSfjsV0+/4ul+bOAfYcruPzwtPuFe8A8RGBbLgiiYXp+oveB0L8vcR4vuwDxU38bXupuyBZRIizMuel1lT3pE2XQt+ghb15dezJq2PQZHOLvlIhcf3COG5amjDmYqzZ8kOdKGPZZLLY+MMbBZTXd7MyO5oH1s6dlBRZvT6InV9U8ed3iwkNUvOLry32yu5nl2rTdPv+JsLAkJUvCk+z61AN3f0W9/tafxU3r0hkZXb0qHGB8Yq//Je//KXHjPUwvxwYMI991CQTEKDmYnYdKGnibx+WInPlt8fpA/inexYQrvVe2t5YNo2X3gEz27+q5pn3Syip7nSPOjQqGWuWJfC9W+axMD0CjWrsQJSnbPIk09EmhVzGwvQISk51UHiyHZPFRlZSmNc7gIAANSH+ShRyiaPlbRhru1iRFTWlqbrT8fubCEqFjNTYYG5ckkBiZBCtXYN09ZkxWWwUn+pgT14dvf1mYvUBIzqBgAD1/xnP+UUOngc5WOIc8cskp/CnxGh57PacKa/yNxY9/WZ2H67l46P17tW4AAEaBTcuTWDVwthJyzgRnI+/RsGP7szhd68cZffhOvw1SjZckTQpbd+8PJGWzkG+KGzkmQ9K+MGm+ZPmehI4kckkFqTrWZCup66ljx0HqzlS1orFamdvfj0f59eTnRrOxiuTLymhICAEAAAgAElEQVSeKMTfQxwsbeLZ7aVIOIU/MymUh2+bP65R8lTR3Wdi56Fa9h1rcO+KBaD1V7JmWSLXLojxaftnE1p/FT+5M5f/evko73x+En+1YlIycSRJ4v6bDLR1D3Gsoo0391Vy16o0r7crGJ34iEC+s3Eed68280l+HXvy6hk02Vwb0LQTpw/kLz9fNa5ziV+2BzhU2syzH5QCzk0gFqXreWhj1gXL5U41nb0mdh6s4dOChhEBpdAgFTcvT2JldjSqSUotFIyfMK2Gn96Vy3+9cpRX9pTjr1awYp73Fwkq5DK+v2kev30pn4+O1BEZ5s9149gQRuA9tP4qbl2Zwvorkjlc1swH+6tp7hx0V8sdD0L8J8jhsmae+aAEAIcDrpwfxQNr507aKr1Lob17iB2Havi84PSIMsr6EA3rVySxYt7U+nQFYxMZ5s9P7szld68c5e8flqFRyVmQrvd6uwEaJY/dnsNvXszjlY/K0QdrJqUEteDiKOQyrpgXzYqsKKoaenh//6lx/634pU+AIydaeOb9EnA4hf+GxfF84+YMnxP+tq5BXth1gp//9QD7jja4hT8m3J+HNmTy24eWszInRgj/NCE+IpAf3pGDQiHxl/dKKKvuGPuPPEBEiB+PbM5GJpP487vF1LeMf5Qp8C6SJJHqWhA4XsSv/TI5cqKFv75XjN3hTIO89apk7lqVetGt8Sab5s4BnttRxs//epDPho32EyIC+cGm+fzq28tYnhXlc52VYGxSY4N55LZswMHjW4uoOt09ae1+e30GQ2Ybf3r7ON19pklpV+B5xK/+Msg70cLTLuEHuHt1GhuvSp70EsUXorG9n79tL+VfnznIl4WN2F1rOVJitPzw9hz+8xtLWGTQ+1RHJbh0spLD+M7GLMxWG3988/gl+XsnwtKMSDZdPYf2HhOPby3EZLGN/UcCn0P4/C+RrwpP8/R7xc4dqYBvrsvgyvnRU20WAA1t/Wz/qprDZc0MX7s3NyGEjVcmY0iY3O3kBN5nkSGCb6zN4LkdZfzPGwX8/J4FhARqGLLYMJmtDJltDJltmCw2TMOeD5mtrkfn+2een/ncT+3cb0KlkKFSys8+KmUoFc7XyVFBnGrs5XevHGXt8gTUSgXqM58rh/2d67VwK/oWYoXvJZBvbOUv7xZjdziQy+B7t85n4SQE28aiz2Lnxe0l5BlbR7w/f04YG65MJjV2fDVBPMlsW415uQRq/ag/3XWeMJ8R5SHLSHEe/t6Q2ep+3dNvHrGR+ERQKWXY7Y4RmWCeQCZJIzsFd+dwpmM5876zw1AqZagVzveVChlx0VqUQHiwBq2/0icGMr54T4l6/h6mrLqDP79bhMMBSrmMx27PJjMpbEptauka5K1PKskvHyn6i9J1rL8iecS2fIKpwWyx0dY9RFv3IK1dzse2riFaXY8DJutln1sC1Co5apWc4AAVaqWN7n4zaqWczKRQAvyUaJTOzzUqOWqlHI1K4Xzufu363HWcSilHJkno9UE0NXdjttgxW+2YLbazjxYbFqsdk8VOz4CZd784Re+AmYXpOuL0gZgtdkxWGxaLHbPV5jqH6/HMeazODuvM+5eKQi4jXKsmPFhDuFZz9tH1PDRILWYaYyDEfxy0dA3y+Fan8Pup5Pz4rtxxV9jzBiazjQ8PVrPzYO2IlM3lmRGsuyLZK8XjBKNjs9vp7DHR2j1EW9fgsEenuHf3j770X6WQER6sYW5SGAoZqN0irRgm1CMFWq2Uo1Erzgq1QjZi9OtwOHj9Y+e+vJ29Jr69PnNCG+nIZTL81DL8xijpk5UUyq9fzKegop3rFsSRlXxpgyKHw4HFOkonc86jDYma0920dw/R3uP811zdOeo5JQlCAtXndQpnH9WzfgGjcPuMwaDJyi//cZjWriEUcon//eE1BCqnZkThcDg4VNbM63sr6Bk4W+hp9ZJ4Vi+MJSJ0cvZ9HQ8+Oh2+ZJscDgc9/ebzxL2te4jWrkE6ekzugPpwZJJEmFaNPsQPXbAGXYgf+mGP2gAVkmuE7cnrZHc4+MeOMvYXNTE3IYQf3p5zWQv2LtWu8roufv/6MZQKGf963yJiXfs6eJLRbDJZbHT0DI3oENq7z77u7DWP+v2As3zJhWYO4cEagvzGdi356H0u3D4Txe5w8Od3i2ntcm5G/v1N80mOCZ6SL7umqZeXPjJy8nSP+725CSHcc0M6CzKjfe4GnE4MDFldbplhrhmXuLd3D2G2ju6WCA5QMSdGiy5Egy54pLiHatVTkkIrkyQeWDuXIZON/PJWnn6vhO9vmud1F0h6fAjfvDmDZz4o5Y9vFfKLry8meBK2oFQr5USHBxAdPvps12a309VrPtspDO8geoZoah+gtnn0LCmVQkbYOTMGnVZDmMvdNNVVTieKR8TfYDCsAf4EyIG/GY3G/3vO5w8A/w9ocL31pNFo/Jsn2vYm2z6rosS1scKWa1LITZ38TS16Bsxs+6yKz483ut8L16q59wYDOanhPhH08nUcDgedvSZq2gaoqu0Y4XNv6x6kf2h0v7u/WkFUuD/6YL+zAu961AVrfLYEhlwm46GNWTz+9nEKKtt47sMyvr0h0+upvcuzomjpHOTdL0/xxNZCfnb3gim/RnKZzD2SJ/78zx0OB32DlnNmDKaRHUTHwKjnlkkSkeH+xOkCSIwKIjEyiITIQIL8vd/peYIJi7/BYJADTwE3APXAEYPB8L7RaCw959A3jEbjwxNtb7I4XNbMjoO1ACzLiGTt8oRJbd9qs7PvWAPbPjvpzqNWKWXcetUcVi+OE8Gsi9DVZ6K6sZfqph6qm3qpbuwZ4SY7g1IhQxesISU22OmaGSbu+hDNtK5kqlTIePi2bP7njQIOljbjp1Zw343pXh8sbLgyiebOQWdp8+2lfPfWeT69nkSSJIL8VQT5q0iKGr0ipslsO2/GcOZ5U8cAR070c+REi/v4MK2axEhXZ+DqFEICVT43UPPEyH8pUGk0Gk8CGAyG14FbgHPFf9pQ29zrLtSWEBnIN9dlTOoXV1rdwYu7jSP29FyZE83mq1PQTsJUejrR3W+mpqnHJfZOwe/qGxlkDdeqWZSuZ+6ccAKUsvP87jMVtUrOY7dn87tXjrHvWAP+GgWbr0nxapuSy+3U3jNEnrGVbZ+dZMu13m3T26hVcmJ0AcSMkkih0wVyoqqVmqY+apt7qXH9O1bRxrGKNvdx2gAVCZGB7k4hMSoIXbBmSu+/CQd8DQbDFmCN0Wj8tuv1/cCy4aN8l9vnv4BWoBz4kdForBvj1FMSie7uM/H9//6Enn4zwYEqnvqn6wkeY9cqT9HcMcAz7xRyuLTZ/V5GUhjf25xN8hRmF/kK3X0mquq7qajvpLKui8r6btq6BkccEx6sITUuhLT4EFLjQ0iNC5m0789X6ewd4p+f/JLGtn4eWJfJ5uu9X5K5p9/MPz3+Oafb+nn0jlxuWJbo9TZ9iY6eIU42dFNV30VVQzdVDd20nOM+CvBTkhIbTEpcCHNig0mJDSZGH4h84vslTFrAd7SGzhXuD4DXjEajyWAwfBd4Abh+rBNPdhDTarPz6xfz6Ok3I5dL/OTOXMyDZloHz44kvRHdN5ltfHigmh2HarG7UjdDAlXce4OBhek6JEm6aJs+mnEwIZv6hyxul011Uy81Tb20dQ+NOCY4QEVOSjhJ0VqSooJIigo6T+iHf38z8TqNlx/dns1/vXyU5z8sxW6zcW3uxUsye8KuR26bz69fzOOpt4+jkjHhdTHT7ftL1PmTqPPn+twYwLk9qnt20NRLTXMfhZVtFFaenSGolXLih80QEiIDidEFXJKbV68f3/oeT4h/PSNDKXHA6eEHGI3G9mEvnwV+54F2Pc4/dpxwR/6/f+s84ryQrjYch8PBkRMtvPJROb2DTp+0Qi5xy1XJ3LgkHqXCNwOKnmZgyEpNs8tH3+j8YbScM6IP8lcyf064U+Sjg0iK0k77bIvJRBfs59wL4OWjvLTLiL9awdKMSK+2GRnmzyObs/n968d46p1i/vX+RbN6DUqgn5LMpLARneCgyUpdSx81zb3UNjk7hpMNPVTWny3Up5DLiNOfDSonRgURpw+YsD54QvyPAGkGgyEZZzbPXcA9ww8wGAzRRqPxTLrKRqDMA+16lD15dRwoaQLgtqvnsCDNu2Ubapt7eWHXCU41nh01rMiK5I7rUme0m2LQZKW2+Yx/3vmv+ZzpcKCfkqzkMNdoXktydBChQeoZ7Z+fDKLDA/jJnbn892tHefaDUjQqOdkp3s1gS48P4RtrM3h2eyl/eus4v/jaYhG3GoafWkF6fAjp8SHu98wWG/Wt/c4OwTVLqG/to7rprFbIJIkYnf+IoHJ8ROAlLeqbsPgbjUarwWB4GNiNM9XzOaPRWGIwGH4F5BmNxveBRw0Gw0bACnQAD0y0XU9yoqaD1/dWALDYoGfdCu/5J3sHzLz1aRVfFp5N3UyKCuTrazJmXDkGk9lGbUvviGBsU/vACJ+gv1pBRmIoSdFBJEc53TfhUxwIm8kkRgXx2JYc/veNAp56p5gf35GDISHUq22umBdFc+cA7++v5omthfyTD6SA+jIqpZw5MVrmxJzNPrLa7Jxuc3UITa6ZQksv9a397C92DlolnLOtZ//thnG1M+tX+LZ1DfKLvx3CbLUTpw/g37++5KLbL16u39Fmt7PvaANvf1blrmUS5K/kvhsNLDboJyR2vuIL7Rkwc6Kmk9LqTveoZfjt5aeWkxjpHM07XTdB6EP8Jk3ofeU6DWeqbCqsaueJrYUoFTJ+ds+C89IcPW2Xw+Hg2e2lHCxpZsncCL5zS9Ylp4CK728kdruD5s4BV/zgbBzhzd+uEyt8x2LIbOV3rx7DbLUToFHw07sWeGXf3bKaTv6xo8wdsJTLJNZfkcTaZQnTegQ0aLJSXtdFmUvwh9eT16jkpMUGnw3GRmuJCPXz6Zzv2UR2SjgPbsjkr++V8L9vHOdf7lt4wVWynkCSJL6xNoP27iGOnGghItTP62mnMx2ZTHKvbl6e5dzL+VIG87NW/O0OB09sLaK9ZwiZTOKf71nocV9kW/cgL+02UnTy7DZ7S+bquWtV+rQMVlqsdk6e7qa0upOymk5ONfa4C8spFTIyk0LJSAwlMymMRfNi6GgX2/z5MkszIhky23h+5wl+/3oB/3LvQnQhfl5rz7nwbD6/eTGfDw/UEBHqx8rsGK+1Nxu5lFn0rBX/t/ZVUlbjrAj4vVuziIvwXGaPyWLjg/2n2HWozl1UKk4fwDduziA5evRVhL6I3eGgrrmP0uoOSms6qajrcte5kUkSydFBZCSFkpEYRmqsdkT2gQdylQWTwNU5MQwMWXlzXyW/f8PZAXgz4SDIX8UP73BuBP/iLiO6YD8yEr0bcxCMzqwU/0Olzew+7FxjtvHKJBalR3jkvGdSN1/abXTXi/HXKLj3hjSWZ0b5fBDT4XDQ3DlImUvsT9R0jqh7E6sLICMxlIykUAzxofhrZuXtM+NYsyyBAZOF7V/V8D9vFPDP9y7Em7luUWH+PHzbfH7/egFPbSvi3762yKsuJ8HozLpfb13L2dINuSnh3HJVsofO28fftpdS1+J0dcgkWLsskfVXJqH2Yb9+Z6+JspoOyqo7Ka3ppLP37Ibc4VoNC9L1ZCY63TkzOQV1trNp5RwGhqx8crSBP751nP/6wUqvtmdICOWBtXP5+4dl/PGt4/zb1xajnSYF0WYKs0r8ewfM/O6VY9gdDqLC/PnepvkTHo33DVp4bW85B0rOlmTITQ3nvhsNhGk1EzXZ4/QPWThR0+UU/JpOGtvP5tgH+ilZMjeCjKRQMhNDJzUTRzC1SJLEPTekM2iycqCkmf95JZ8H12d4NUB/5fxomjsH2f5VNU9uLeKf7s6dNQsbfYFZI/5Wm53fvXqMAZMVP5Wcn9+7cEKZPTa7nb159Wz7/CQWlx88MtSfb6/PIGUK9sy9EGaLjYqGbsqqOymr6aC66Wz6pVopZ/6ccFeQNpS4iECRjTOLkUkS37g5g64+M4dKmogM0XDryjlebXPTymRaOgc4XNbCcztO8NCGTDHgmCRmjfg/+0Epp9v6kUnwz/dOLLOnrKaDv28vo8PlItGo5Ny9Oo0r50dPuXja7HaqG3spremkrLqDyoYerDZn5ySXSaTFBpORFEZGYihzYrSiNLRgBAq5jO/dOo/fvJTP+/uriY8IZJHBMzGx0ZAkiW+ty6Cjx8Sh0mYiQvzYdLV3OxyBk1kh/jsP1bjrbT+0IYuEyMtbSdvePcSfthZy3FWqVZJg9aI4brs6BbVqaqarDoeDmsYe9h+rp6ymE2NdJ4Mmm/vzhIhAd0ZOenzwrN+3VDA2gX5KfvHNZfz0T5/zt+1lRIb6ezQb7lyUCjkPb57Pb17M44OvqokI9ePK+dFea0/gZMYrQempDt7aVwXA2uUJLM289GJWVpud9/efYseBGs7sl56Z5AxY6YK9lxd9IcwWG2U1nRRUtlFQ2Ub3sPr1EaF+LMsIJSMpjLkJIdNmVyGBb5EUreVb6zL487vFPL61kP94YAmBft7b3Ebrr+KHt+fwmxfzeX7nCXTBGq+XnZjtzGjxb+se5I9vHwcgKymULZexorCqoZs/v1NMZ5/TxRMR6sc31s6d9Buzu99MoUvsS6o73CUiAv2UXLMgjjnRgWQmhjm3qxMIPMDiuRFsuCKJD76q5i/vFvPjO3O8ui9xdHgAP9g0j/998zhPbivi3762mKgwf6+1N9uZseJvstj4zYv5WG0OdCEaHt2Sc0mBpEGTlRd2neBwmdNdJJdJbLkmhXtuzqR9ElauOhwOTrcPUFDRSkFlGycbetwF0aLD/clN1ZGbpiMlJpjISK3P1TwRzAxuWZlMXUsfBZVtvPlJFXev9u5GMBlJYXxtjYF/7DjhTAG9f5GYvXqJGSn+DoeD/3m9gO5+M2qlnH+7b9ElZfYcLm3mHztPuPfOzUgM5aGNWQQHqJB5ceWq1Wansr7b6c6paHPXtJckSIsPcQu+GA0JJguZJPHghkx+/WIee/LqSIgM9Lo/fmV2DC2dg3x4oIYntxV5rebWbGdGiv8re8qpbOhGkuBn9ywY9+Kkzt4h/vxOMVWnewDn6twH12eSk+q9mucDQ1aKT7VTUNFGYVU7AybnilqNSs7iuREsSNUxPyXcq/5WgeBi+KkVPLo5m//vhTxe2GUkOjxgRLlhb7Dp6jm0dg1yuKyF53eW8e31mV5tbzYy48R/f1EjnxxtAOBb46ylY3c4+PBANe99We3eRvG6BTHctSrNK4tO2roG3cFaY22XuzhamFbN8qxIctN0GOJDxWhH4DNEhvnz3Vuy+MNbx3lymzMAHOLFFd8ySeKbNzurgB4oaSYi1J9vb8r2WnuzkRkl/tVNPTy3w7lJ2OpFcVwxjulpbXOvu7onQGSoHw9vnk+sznOpbXaHg+rGXgoqWymoaB9R+jgpKojcNB25qTriIwLFAheBzzJvTji3X5vKm/sqeWpbET+7Z2ILJcdCpZTzyOZsfv1iHu99eYrUhFCyEkLG/kPBuJgx4t836Czd4HBAWlzwmIEpi9XGi7uN7C9y7oIjl0nccX0KqxfFe0SAzRYbpTWdFFS0cbyyje5+ZzqmQi4jOyWc3FQdOam6aVnaWTB7uWlpPLUtvRwsaeblj4w8sHauVwcs2gBXCuhL+TzxZgE/v2/heRvPCC6PGSH+Nrud/++FPEwWG6FBan5614KL3pAFFa08u73UvRgqKymU79wyb8J+9RHpmKc63OWPg/yVXDk/itxUPVnJoWKhlWDaIkkSD6yZS2PbAF8UNpIQGcSqRXFebTNGF8B3Nmbyp7cLeXJbEf/xwBJRBM4DzAgVenJrEa1dQygVMv7964svOBXtHTDz1DvFlNd1ARCgUfDQxizmzwm/rHYdDgen2/rd2TknT5+TjpmmY0GqnjkxWq9mCQkEk4nTHTOfXz1/hNf2VhCrC2Cul2vyZ6fouHfNXF7eeYKn3y3mx3fmitIkE2Tai/97X57ieFU7EvDTuxaMGoRyOBx8dKSOtz+twmZ3IAHXLYzlrlVpl3wDWW125+raijYKKltp7XLGCmSSRHp8iNt/HynSMQUzmDCthu9vms//e+0Yf363mP/4+mKv7gIGcPv16ZRWtXO0vJU391Vyz+p0r7Y305nW4l9Q2cZ7X54C4L4b00mLO7+a5um2fv70diGtrpz5qDB/Ht08n6hL2DzCZLFR5Lrpik510D9oAZzpmEvmRpCbpmP+HJGOKZhdpMeHcO8N6by428gT24r41/sWebXGlUzmLALX1DHA3rx6kqKCuGKeqAF0uUxb8W/uGOCpbUUArMyO5rqFI/2ONrudl3eX89nx0wAo5BJ3Xp/G9QtjxxWgGjRZKaxqJ8/YQtHJdnc5BX2oH8szXOmYCSFi6imY1Vy7IJbalj4+PdbA33eU8b1bsrwaAPZTK3jktvn8yrXmIFYXSGLU5RVqnO1MS/E3ma38+sU8bHYHSVFBPLB27ojPi0+28/T7JQy4tiCclxzGd2/Jwl9z8ZF5/5CFgoo28o2tFJ/qcJdCjgzzZ7FBz2JDBIvmRdPWJjYmFwjOcM/qNE639pF3ooUdkYGsW5Hk1fYiw/x5aEMmj79dyJPbCvl3EQC+LKad+DscDn77cj79Q1aC/JX8/N6F7pHGwJCFp94pdm/MHuCn4Lsb55GVHHbB8/UOmDlW0UaesYWy6k73gqtYfYBT7A16YnUB7jZEHr5AMBKFXMb3N83nVy8cYdtnJ4nTB3p1VTxATqqOW1cm884Xp3j63WJ+cleuV4vOzUSmnfg798ntRyGX+I+vL0Hl2h93b14db+6rxGo7G9C9Z3X6qFk23X0mjpa3kmdsxVjbhd21tVViZBCLDHoWGfRiQ2mB4BLQBqh45LZsfvtyPs98UMIvvrbY67+hdVckUdPc5wwAT0LRuZnGtBL/vXl17r1yf3h7DuHBGlo6Bvjj28dp6nAGdKPD/XlsSw4RoSMzDzp6hsg3tpJvbKGivtudkjknRstiQwQLDXoivJytIBDMZBKjgvjGzXN55v1SHt9axL9/bdGYrtaJIHPtAtbY3s+evDoSowJFAPgSmDbiX17XyWt7KwC447oU5iaG8vJHRvYdbcCBM6B796q0EYHf1q5B8o2t5BlbOOkq1ibhXAG8yOXS8cVN1gWC6cryzCjqmvvYeaiWZz4o5dHN2V5d4+KnVvDIsKJzIgA8fqaF+Hf1mvif14/jAJbMjSAhMojH/vQF/a6AblZyGN/fNA8/lYKmjgHyTrSQb2ylptlZ416SnGWZFxv0LEzXj7vKp0AguHQ2X5NCXWsfhVXtbPv8JFuuvfRNlC6FKBEAvix8XvxtNjv/5/kjWGx2osL8GBiy8PvXCwBXQPeWLIID1Hx0uI48YwsNrf2As1bPvDlhLDY48/DFzSAQTA4ymcR3Nmbx6xfy2HGwhoTIQJZmXPr2qZdCTqqOW1Ym864IAI8bnxf//37tGN39ZpRyGW3dQzR1DCLh3GJOH+rHKx9V0NQxADizDnJTdSwy6MlN0xHgRX+jQCC4MAEapbsi53MfOjeB97Y7Zv0VSdQ09XKsoo239lVx1yoRAL4YHhF/g8GwBvgTIAf+ZjQa/+85n6uBF4FFQDtwp9ForB7rvK/sKaeivhsAiyvnPkCjQK2UceSEc3tFlULGIlcOfnZKOH5qn+/PBIJZQYwugIc2ZPHE1slxx8gkiW+vd+469tGROhIjg1gxL8pr7U13JjwvMhgMcuApYC2QCdxtMBjO3XbnW0Cn0WhMBf4A/G6s8358uIaP8+vPe79/yEq/ycayzEi+f+s8/vToSn6waT7LMiOF8AsEPkZumjMfv73HxJ/fKXYvnPQWfmoFD982Hz+1nOd3naCmSextfSE84RRbClQajcaTRqPRDLwO3HLOMbcAL7ievw2sMhgMF00B+OMbBSNe+6nkXDEvikc3Z/P4o1fxnY1ZLJ4b4dVaIgKBYOKsvyKJxQY95XVdvP5xhdfbiw4P4MENWVisdp7cVkjvgNnrbU5HPDFUjgXqhr2uB5Zd6Bij0Wg1GAzdQDjQNtbJF8+NYP3KOWSn6n1mW0O93vdSyYRN40PYNH48adfPvr6Unz3xBZ8cbSAzRc9NyxO9atMN+iDaes28uvsEf99xgl89tAK5l+pw+er3NxaeEP/RRvCOyzhmBLdfn8bqhdEoFU4Tuzr7L886D6PXB9Ha6ltTSWHT+BA2jR9v2PW9W7L41fNH+MvW42jVclJHqcLrSZuuz42m7GQbxyra+PNbBV4JAPvi9zfezsgTXWE9ED/sdRxw+kLHGAwGBRAMdFzspF9bl+kWfoFAMP3Rh/jx/Vvn4XDAk+8U0eHaN9tbnAkAR4f789GROg6WNHm1vemGJ8T/CJBmMBiSDQaDCrgLeP+cY94Hvu56vgX4xGg0XnTkLxAIZh4ZSWHcuSqVnn4zT24rwmyxebW94QHgf+wUAeDhTFj8jUajFXgY2A2UAW8ajcYSg8HwK4PBsNF12N+BcIPBUAn8GPj5RNsVCATTk9WL4rhyfhTVTb28sMuIw+HdcWB0eAAPrj8TAC4SAWAXHvGrGI3GHcCOc977j2HPh4DbPdGWQCCY3kiSxNduMtDYPsCBkiYSIwO5cWmCV9vMTdNx61XJvPvlKZ5+r4Qf35kz61cAz+7/vUAgmBKUCjk/2DSf4EAVb+yrpOTURUOAHmH9lUksSNNRVtPJW/uqvN6eryPEXyAQTAmhQWoe3jQfuUzi6feKaekc8Gp7IgA8EiH+AoFgykiJDeb+mwz0D1l5YmsRgyarV9s7EwDWqOQ8v/MEtc2zNwAsxF8gEEwpK7NjWL0ojoa2fv7+YZl7Zz1v4VwBnInZaueJrbM3ACzEXyAQTDl3XJ/K3IQQjpa38u75YdYAABLXSURBVMH+aq+3tyBNzy1XJdPeM8TT75Vgs3u35pAvIsRfIBBMOQq5jO/dOg9dsIb3vjzF0fJWr7e54cokclOdAeC3P519AWAh/gKBwCcI8lfxyOZsVEoZz24vpaG1z6vtySSJBzdkEhXmz+7Dsy8ALMRfIBD4DPERgXxrXSYms40nthbRN2jxanvOPYBnZwBYiL9AIPAplsyNYP0VibR0DfLX94q97o8fHgB+cpv3OxxfQYi/QCDwOW5dOYfcVB0l1ZPjj1+QpmfjlUm0dQ/xl3e93+H4AkL8BQKBz3HGHx8d7vTHf1Xc6PU2N16V7A4Ab/30pNfbm2qE+AsEAp/E6Y/Pxk+t4PmdRsprO73a3pkVwFFh/uw6XMvB0pkdABbiLxAIfJaoMH++e0sWNpudXz93iLauQa+2568ZFgDeMbMDwEL8BQKBTzN/Tjh3r06js9fE/7553OsBWWcJ6JkfABbiLxAIfJ7Vi+O57dpUmjoGePztQq9vArMg/WwA+OlJyDiaCoT4CwSCacHX12WyPDOSyoZu/vp+CXa7d2sAnQkAl1bPzACwEH+BQDAtkMkkvrkug4zEUI5VtPHK3nKv7gJ2JgAc6QoAHypt9lpbU4EQf4FAMG1QyGX8YNN84vSB7DvawI6DNV5tz1+j4BFXCeh/7CibUQFgIf4CgWBa4a9R8KM7cgjTqtn62UmvrwGI0c3MALAQf4FAMO0IDVLzozty8Vcr+MeOE17fBnImBoCF+AsEgmlJrC6AR7dkI0kST71T5HWXzMarkslJCXcGgD+b/gFgIf4CgWDakh4fwkMbnFVA//Dmca8uAnOWnMhyBoAP1XK4bHoHgIX4CwSCac3iuRHctTqN7n4zf3jLu4vAzgSA1So5z+0o49Tpbq+15W2E+AsEgmnPDYvjWbM0gcb2AR7f6t1FYO4AsMVZcqKrz+S1tryJEH+BQDAj2HJdCssyI6ms7+aZD0q9ughsYbqeW1cm09I5yB/ePM7AkNVrbXkLIf4CgWBGIJMkvnlzhnsj+Fe9vAhswxVJrFmRRF1LH09uK8RinV4ZQEL8BQLBjEGpkPHwbdnE6QP45GgDOw/Veq0tSZL47m3ZLEzXc6K2i2e3l2L3YmfjaYT4CwSCGYVzEVguYVo1b39axYFi79Xll8skvrMxk/S4YPJOtPDa3gqvzjY8iRB/gUAw4wgNUvOj23PwVyt4bkcZJdXeWwSmVMh5dEs2sfoAPs6v93rJCU8hxF8gEMxIYvWBPLJ5PpIET23z7iIwf42SH7tmG1s/O8kXhae91panmJD4GwyGMIPBsMdgMFS4HkMvcJzNYDAUuP69P5E2BQKBYLwYEkJ5cEPW2UVg3d5bBBYapObHd+QSoFHwwk4jxyvbvNaWJ5joyP/nwMdGozEN+Nj1ejQGjUZjruvfxgm2KRAIBONmydwI7lrlWgTm5Z3AYnQBPHZ7Dgq5xF/eLaaqwXcXgU1U/G8BXnA9fwG4dYLnEwgEAo9zw5J4bloaPymLwFJjg/nurfOw2hz88a3jNLb3e62tiTBR8Y80Go2NAK7HiAscpzEYDHkGg+GgwWAQHYRAIJh0br8ulaUZEVTWd/OslxeB5abq+PpaA/1DVv73jQI6e31vFbA0VlqSwWDYC0SN8tG/AS8YjcaQYcd2Go3G8/z+BoMhxmg0njYYDHOAT4BVRqOxagzbpke+lEAgmDZYrDZ++exBCivbWH9lMg9tmo8kSV5r78295by0s4zEqCD+78MrCfRTeq2tYYzrPzSm+F8Mw//f3p1HR1WmeRz/FknIAoQ1YU0AFR7CYiKENC3TtI3igOKCMyi22rh2n3EZxT7TR8eedhlnWud022ovo7a2Ky5salodFLfBdYQAQUJ8WBUCKFFRBGQJZP64hR05LEWSm1tYv885OVQVt+r9nUrqqXvf9773NXPgBHffYGbdgdfd3Q7xnIeA59x9xiFevr62NvlWzcnLa0ey5VKmxChT4pIxV3Nl2rZ9F7+euoB1tVuZeMLRjBvRO7RM9fX1TJ2zjFcXrKN/QQd+fk4xGelpjW4vwUwJFf+mdvuUA5PjtycDz+67gZl1NLPM+O0uwEhgaRPbFRFplJysDKZMLKZju0ymv76Sd6rCmwQWi8X48Un9KbU8lq39gvvKw+1uOhxNLf63AWPMbDkwJn4fMys1s/vj2xQB882sEngNuM3dVfxFJDKdcrO49uxisjPT+cvz1SwNcRJYq1YxLjttIAMKO1CxrJapc8K95lCimtTtEzJ1+yRImRKjTIlLxlxhZPI1m/jtU4tIT2vFdecNpbBru9Aybdtex+2PL2Dtxi2c+YO+nD6yb2MiJ5KpRbp9RESOWFbYkUvHD2T7zt38bnq4k8D2LjzfOTeLZ95YzdzKaGcBq/iLSEorK+oaTALbEv4ksA5tM7n2nGLaZmfw8OwPWLi8NrS2DkXFX0RS3snDCzh5eDAJ7PczF7OrLrxJYN07t+HqiceSkd6Ke56tYnnNF6G1dTAq/iIiwNmjg0lgy1tgJbCje7Tn8jOHsGdPPXfPWMy62i2htXUgKv4iIgQrgV1yavysHK/liVfCvTb/sUd35sJxA4JZwNMq+Xzz9tDa2h8VfxGRuGAlsCHfXJt/9nvhrQQGMHJIdyaecDSbvtrBHdMq2bo9vPGGfan4i4g08K1JYK+t5N0QJ4EBjP1eIWNKC1j/6VbunhHuRecaUvEXEdlHp9wspsQngT0Q8iSwWCzGOSf+bbzh3vIqdu8JfzF4FX8Rkf3oldeWq86KrwT2dLgrge0dbyjq3ZGFyz/l0RfDnwWs4i8icgADegeTwL7esZs7p1fy2ZfhDcruHW8o7NqWuZXrefbN1aG1BSr+IiIHVVbUlUmjj+GLLTu5Y9qiUCeBZWemM+XsEvI6ZFH+1oe8tnBdaG2p+IuIHMLJZYXfTAL7Q8iTwNq3ac2155TQLieDx15yKjycWcAq/iIiCTh79DEMH5DPshZYCaxrxxyumVhM6/Q07i2vwtdsavY2VPxFRBLQKhbj0vFFWEEH5nstT4Y8Caxv91yuOGsw9fX13D3zfWo2Nu8sYBV/EZEEZaSncdU/DKFnlza8XFHDjFfD/QIY3LczF59axNc76rhj2qJmHXBW8RcROQw5WRlMOTuYBPbIC9U88Hw1O0KcmPX9Qd04J4QBZxV/EZHD1Ck3i+vPH0q/gg68veRjbn1kPh9/vi209v6+rJCxZYVs+Gwbd02vbJYvGxV/EZFG6NI+m9uv/DtGD+3Jutqt3PLQPOZ/sDG09v7xR0czYlBXVq7fzD3PLGnyLGAVfxGRRspIT+P8k42fnjaQ+nr40zNLeOLl5dTtbv7LM7SKxbj4lCIG9e1E5crPeHi2N2m8QcVfRKSJRgzqxi8nl9K9cw5z5q/lvx5fGMolmtPTWnHFhMH06daONxdv4Ok3VjX6tVT8RUSaQc8ubfi3yaWUFeWzYt2X3PTgPKpCuCBcVut0rplYTH7HbJ57+yNeqahp1Ouo+IuINJOs1un87PRBnDemf3B65pOLKH9rNXua+XTQ3Pgs4Nw2rXl8zjLmNWKsQcVfRKQZxWIxThzWi+vPH0an3EyeeWM1d05v/oXh8ztkM2ViMZmt0/jzX6uo/ujwZgGr+IuIhOCoHrnceFEZQ47qzJJVn3Pzg++xav3mZm2jd7d2XHXWEOrr4Q+zFh/WZadV/EVEQtI2O4OrJx7LhB/05fPNO/j1YxW8UlHTrLOCi/p04rLTBrJ9x25+N60y4eep+IuIhKhVLMZpI/ty7aQSsjPTmTpnGfeWV7F9Z12ztVFW1JVJJ/Xjy607E8/VbK2LiMgBDerTiZsuGs4xPdvzXvVG/v3h+az7dGuzvf6Y0gImjDoq4e1V/EVEWkin3Cx+8ePjvlkb4NaH5/Pu0uZbIP604/skvK2Kv4hIC0pPa8WkE/tx+ZmDicXgvvKlPPqSs6su/EXbv5WjRVsTEREASgfk0yu/LX96+n1eW7CODzds5p/OHEyX9tkt0n6T9vzNbKKZVZnZHjMrPch2Y83MzWyFmV3XlDZFRL4runXK4YaflHL84G6s3vAVNz84j8UrP2uRtpva7bMEOAuYe6ANzCwN+CMwDhgInGtmA5vYrojId0JmRhqXnFrE5LHGjl17uHN6JbPmrgp1mUhoYvF392p390NsVgascPdV7r4TeBI4oyntioh8l8RiMX5Y0pMbLhhGl/ZZPPf2h/z2qUVsPoxTNw9XSwz49gTWNrhfE39MREQa6N2tHTdeNJySY7pQ/dEmbn5oHitqvgylrUMO+JrZy0C3/fzXDe7+bAJtxPbzWELHM3l57RLZrMUlYy5lSowyJS4Zc6VCpjzg5p8dz6zXV/DoC0u5/fEFXDh+EGeMOopYbH/ltHEOWfzd/aQmtlEDFDS43wtYn8gTa2sTv05FS8nLa5d0uZQpMcqUuGTMlWqZfjikG11zM7mnvIoHypewyD/h4lOKyM48eNlO9MuoJbp95gH9zKyvmbUGJgHlLdCuiMgRbUDvjtx00XD6F3Sgwmu55aF51Gzc0iyv3dRTPSeYWQ3wfeB5M3sx/ngPM3sBwN3rgCuBF4FqYJq7VzUttohIaujQNpN/ObeEcd8r5JNNX3PrI/N56/0NTX7dWHNeXa6Z1SfbIR6k3qFnYylTYpIxEyRnLmWChctquf/5ar7eUceo4h6cN6YfGelp+2ZKaGBAl3cQETlCHNc/jxsvLKUwvy1zK9fzH49WsPGLrxv1Wir+IiJHkPyOOfzrBcMYVdyDNZ9s4ZYH57Fwee1hv46Kv4jIEaZ1RhoXjhvAJacWsWv3Hn4/832mv76C3XsSvzicir+IyBFq5JDu/PInpeR3zOZ/3l3Db55YlPBzVfxFRI5gBflt+dXk4Qzrn4ev/SLh5+mSziIiR7icrHQunzCYVypqEn6O9vxFRL4DYrEYJ5UWHHrDOBV/EZEUpOIvIpKCVPxFRFKQir+ISApS8RcRSUEq/iIiKUjFX0QkBan4i4ikoGS+nr+IiIREe/4iIilIxV9EJAWp+IuIpCAVfxGRFKTiLyKSglT8RURSUFIu5mJmY4G7gDTgfne/LeJImNlfgPHARncfnAR5CoBHgG7AHuA+d78r2lRgZlnAXCCT4O9rhrvfGG2qgJmlAfOBde4+PgnyfAh8BewG6ty9NNJAgJl1AO4HBgP1wMXu/k6EeQx4qsFDRwG/cvc7I4r0DTObAlxK8D69D1zk7tsjznQ1cBkQA/58sPcp6fb84x/QPwLjgIHAuWY2MNpUADwEjI06RAN1wM/dvQgYAVyRJO/TDmC0uxcDJcBYMxsRcaa9rgaqow6xjx+5e0kyFP64u4DZ7j4AKCbi98sDJe5eAgwDtgFPR5kJwMx6Av8MlMZ3BtOASRFnGkxQ+MsIfnfjzazfgbZPuuJPEHyFu69y953Ak8AZEWfC3ecCn0edYy933+DuC+K3vyL4kPaMNhW4e727b4nfzYj/RD6T0Mx6AacS7NXKfphZLjAKeADA3Xe6e+KLwobvRGClu38UdZC4dCDbzNKBHGB9xHmKgHfdfZu71wH/C0w40MbJWPx7Amsb3K8hCYpaMjOzPsBxwP9FHAUIjt7MbBGwEZjj7smQ607gFwRdZMmiHnjJzCrM7KdRhyHoUqkFHjSzhWZ2v5m1iTpUA5OAJ6IOAeDu64DfAGuADcCX7v5StKlYAowys85mlgOcAhxwXcdkLP6x/TwW+Z5jsjKztsBM4Bp33xx1HgB33x0/TO8FlMUPRyNjZnvHaiqizLEfI919KEEX5xVmNiriPOnAUOC/3f04YCtwXbSRAmbWGjgdmB51FgAz60jQI9EX6AG0MbPzo8zk7tXA7cAcYDZQSdA9vF/JWPxr+Pa3VS+iP5xKSmaWQVD4p7r7rKjz7CveZfA60Y+VjAROjw+wPgmMNrPHIk0EuPv6+L8bCfqxy6JNRA1Q0+BIbQbBl0EyGAcscPdPog4SdxKw2t1r3X0XMAs4PuJMuPsD7j7U3UcRdFMvP9C2yVj85wH9zKxv/Nt+ElAecaakY2Yxgr7Zane/I+o8e5lZXvyMEcwsm+BD8kGUmdz9enfv5e59CP6eXnX3SPfSzKyNmbXbexs4meCwPTLu/jGwNn6GDQR97EsjjNTQuSRJl0/cGmCEmeXEP4snkgQnE5hZfvzfQuAsDvKeJV3xjw9UXAm8SPBmTnP3qmhTgZk9AbwT3LQaM7sk4kgjgQsI9mIXxX9OiTgTQHfgNTNbTPBFPsfdn4s4UzLqCrxpZpXAe8Dz7j474kwAVwFT47+/EuA/I85DvP96DMHedVKIHx3NABYQnObZCrgv0lCBmWa2FPgrcIW7bzrQhrqks4hICkq6PX8REQmfir+ISApS8RcRSUEq/iIiKUjFX0QkBan4i4ikIBV/EZEUpOIvIpKC/h9cPo5/wwPY6AAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd17c981da0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import seaborn as sns\n", "import pandas as pd\n", "\n", "SEQ_LEN = 10\n", "def create_time_series():\n", " freq = (np.random.random() * 0.5) + 0.1 # 0.1 to 0.6\n", " ampl = np.random.random() + 0.5 # 0.5 to 1.5\n", " x = np.sin(np.arange(0, SEQ_LEN) * freq) * ampl\n", " return x\n", "\n", "for i in range(0, 5):\n", " sns.tsplot( create_time_series() ); # 5 series" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def to_csv(filename, N):\n", " with open(filename, 'w') as ofp:\n", " for lineno in range(0, N):\n", " seq = create_time_series()\n", " line = \",\".join(map(str, seq))\n", " ofp.write(line + '\\n')\n", "\n", "to_csv('train.csv', 1000) # 1000 sequences\n", "to_csv('valid.csv', 50)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "==> train.csv <==\r\n", "0.0,0.41494536271196236,0.734451551569238,0.8850308030101335,0.8320492576193983,0.5876928930606661,0.20816469810142113,-0.2192422505391868,-0.5962225619744843,-0.836069183382574\r\n", "0.0,0.16050934484878304,0.3187737388366111,0.4725796299246527,0.6197758245612592,0.7583035751751281,0.8862253746803034,1.0017520552610126,1.1032678124214037,1.1893528043033446\r\n", "0.0,0.2019768145665784,0.38954713901631743,0.5493320613627289,0.6699345313575295,0.7427522829645161,0.7625914120164823,0.7280368441286417,0.6415532683388727,0.509309337136115\r\n", "0.0,0.20513560202370504,0.38685799767444984,0.5244262531017174,0.6021389789663988,0.6111264126796244,0.5503627711095774,0.4267833286114507,0.2544928576485325,0.05315577684418399\r\n", "0.0,0.20112443738388527,0.3910248758298022,0.559103685595879,0.6959810200217685,0.794018269517251,0.8477443436542725,0.8541609921610173,0.8129101260008574,0.726293800975636\r\n", "\r\n", "==> valid.csv <==\r\n", "0.0,0.4518834761927216,0.8463432780938488,1.1332529187241658,1.2761529862603307,1.256884270714006,1.077895368911241,0.7619315258995626,0.3491442536614218,-0.10801097394423191\r\n", "0.0,0.4790437748864075,0.8201581888176755,0.9251273884779285,0.7637279675979914,0.38243108423806044,-0.1089778135632325,-0.5690091192298001,-0.8652076640769141,-0.9122900603467594\r\n", "0.0,0.3825159065598339,0.6359357547959016,0.6747323732958791,0.485812213690283,0.13293431847834153,-0.2648078457410006,-0.5731794804944685,-0.6881076260362654,-0.5708049526750818\r\n", "0.0,0.09017440871015896,0.1785854105056497,0.26350408280046406,0.3432697973071416,0.4163226944765429,0.481234187353148,0.5367348983273075,0.5817394824668976,0.6153678519953671\r\n", "0.0,0.7084840320523366,1.200134233070997,1.3244794677975964,1.0434634746979885,0.44309210797471377,-0.29288903247151693,-0.9392305365880832,-1.2981174951417012,-1.2597113929215498\r\n" ] } ], "source": [ "!head -5 train.csv valid.csv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h2> RNN </h2>\n", "\n", "For more info, see:\n", "<ol>\n", "<li> http://colah.github.io/posts/2015-08-Understanding-LSTMs/ for the theory\n", "<li> https://www.tensorflow.org/tutorials/recurrent for explanations\n", "<li> https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb for sample code\n", "</ol>\n", "\n", "Here, we are trying to predict from 9 values of a timeseries, the tenth value.\n", "\n", "<p>\n", "\n", "<h3> Imports </h3>\n", "\n", "Several tensorflow packages and shutil" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/envs/py3env/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", " from ._conv import register_converters as _register_converters\n" ] } ], "source": [ "import tensorflow as tf\n", "import shutil\n", "import tensorflow.contrib.metrics as metrics\n", "import tensorflow.contrib.rnn as rnn" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h3> Input Fn to read CSV </h3>\n", "\n", "Our CSV file structure is quite simple -- a bunch of floating point numbers (note the type of DEFAULTS). We ask for the data to be read BATCH_SIZE sequences at a time. The Estimator API in tf.contrib.learn wants the features returned as a dict. We'll just call this timeseries column 'rawdata'.\n", "<p>\n", "Our CSV file sequences consist of 10 numbers. We'll assume that 9 of them are inputs and we need to predict the last one." ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "DEFAULTS = [[0.0] for x in range(0, SEQ_LEN)]\n", "BATCH_SIZE = 20\n", "TIMESERIES_COL = 'rawdata'\n", "# In each sequence, column index 0 to N_INPUTS - 1 are features, and column index N_INPUTS to SEQ_LEN are labels\n", "N_OUTPUTS = 1\n", "N_INPUTS = SEQ_LEN - N_OUTPUTS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Reading data using the Estimator API in tf.estimator requires an input_fn. This input_fn needs to return a dict of features and the corresponding labels.\n", "<p>\n", "So, we read the CSV file. The Tensor format here will be a scalar -- entire line. We then decode the CSV. At this point, all_data will contain a list of scalar Tensors. There will be SEQ_LEN of these tensors.\n", "<p>\n", "We split this list of SEQ_LEN tensors into a list of N_INPUTS Tensors and a list of N_OUTPUTS Tensors. We stack them along the first dimension to then get a vector Tensor for each. We then put the inputs into a dict and call it features. The other is the ground truth, so labels." ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "# Read data and convert to needed format\n", "def read_dataset(filename, mode, batch_size = 512):\n", " def _input_fn():\n", " # Provide the ability to decode a CSV\n", " def decode_csv(line):\n", " # all_data is a list of scalar tensors\n", " all_data = tf.decode_csv(line, record_defaults = DEFAULTS)\n", " inputs = all_data[:len(all_data) - N_OUTPUTS] # first N_INPUTS values\n", " labels = all_data[len(all_data) - N_OUTPUTS:] # last N_OUTPUTS values\n", "\n", " # Convert each list of rank R tensors to one rank R+1 tensor\n", " inputs = tf.stack(inputs, axis = 0)\n", " labels = tf.stack(labels, axis = 0)\n", " \n", " # Convert input R+1 tensor into a feature dictionary of one R+1 tensor\n", " features = {TIMESERIES_COL: inputs}\n", "\n", " return features, labels\n", "\n", " # Create list of files that match pattern\n", " file_list = tf.gfile.Glob(filename)\n", "\n", " # Create dataset from file list\n", " dataset = tf.data.TextLineDataset(file_list).map(decode_csv)\n", "\n", " if mode == tf.estimator.ModeKeys.TRAIN:\n", " num_epochs = None # indefinitely\n", " dataset = dataset.shuffle(buffer_size = 10 * batch_size)\n", " else:\n", " num_epochs = 1 # end-of-input after this\n", "\n", " dataset = dataset.repeat(num_epochs).batch(batch_size)\n", "\n", " iterator = dataset.make_one_shot_iterator()\n", " batch_features, batch_labels = iterator.get_next()\n", " return batch_features, batch_labels\n", " return _input_fn" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h3> Define RNN </h3>\n", "\n", "A recursive neural network consists of possibly stacked LSTM cells.\n", "<p>\n", "The RNN has one output per input, so it will have 8 output cells. We use only the last output cell, but rather use it directly, we do a matrix multiplication of that cell by a set of weights to get the actual predictions. This allows for a degree of scaling between inputs and predictions if necessary (we don't really need it in this problem).\n", "<p>\n", " \n", "<p> You have two tasks to complete\n", " \n", "<ol>\n", " <li>Firstly, define loss, train_op and eval_metric_ops as a function of mode</li>\n", " <li>Secondly, use the defined variables to instantiate an EstimatorSpec</li>\n", " </ol>" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "LSTM_SIZE = 3 # number of hidden layers in each of the LSTM cells\n", "\n", "# Create the inference model\n", "def simple_rnn(features, labels, mode):\n", " # 0. Reformat input shape to become a sequence\n", " x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1)\n", " \n", " # 1. Configure the RNN\n", " lstm_cell = rnn.BasicLSTMCell(LSTM_SIZE, forget_bias = 1.0)\n", " outputs, _ = rnn.static_rnn(lstm_cell, x, dtype = tf.float32)\n", "\n", " # Slice to keep only the last cell of the RNN\n", " outputs = outputs[-1]\n", " \n", " # Output is result of linear activation of last layer of RNN\n", " weight = tf.get_variable(\"weight\", initializer=tf.initializers.random_normal, shape=[LSTM_SIZE, N_OUTPUTS])\n", " bias = tf.get_variable(\"bias\", initializer=tf.initializers.random_normal, shape=[N_OUTPUTS])\n", " predictions = tf.matmul(outputs, weight) + bias\n", " \n", " # 2. Loss function, training/eval ops\n", " # TODO: Implement training/eval ops for training, evaluation and prediction\n", " \n", " # 3. Create predictions\n", " predictions_dict = {\"predicted\": predictions}\n", " \n", " # 4. Create export outputs\n", " export_outputs = {\"predict_export_outputs\": tf.estimator.export.PredictOutput(outputs = predictions)}\n", " \n", " # 5. Return an EstimatorSpec\n", " return None # TODO" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h3> Estimator </h3>\n", "\n", "Distributed training is launched off using an Estimator. The key line here is that we use tf.estimator.Estimator rather than, say tf.estimator.DNNRegressor. This allows us to provide a model_fn, which will be our RNN defined above. Note also that we specify a serving_input_fn -- this is how we parse the input data provided to us at prediction time.\n", "\n", "You have one task to complete: instantiate an estimator using the model function we defined previously." ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "# Create functions to read in respective datasets\n", "def get_train():\n", " return read_dataset(filename = 'train.csv', mode = tf.estimator.ModeKeys.TRAIN, batch_size = 512)\n", "\n", "def get_valid():\n", " return read_dataset(filename = 'valid.csv', mode = tf.estimator.ModeKeys.EVAL, batch_size = 512)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "# Create serving input function\n", "def serving_input_fn():\n", " feature_placeholders = {\n", " TIMESERIES_COL: tf.placeholder(tf.float32, [None, N_INPUTS])\n", " }\n", " \n", " features = {\n", " key: tf.expand_dims(tensor, -1)\n", " for key, tensor in feature_placeholders.items()\n", " }\n", " features[TIMESERIES_COL] = tf.squeeze(features[TIMESERIES_COL], axis = [2])\n", " \n", " return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "# Create custom estimator's train and evaluate function\n", "def train_and_evaluate(output_dir):\n", " # TODO: Instantiate an estimator using our model function\n", " estimator = #\n", " train_spec = tf.estimator.TrainSpec(input_fn = get_train(),\n", " max_steps = 1000)\n", " exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)\n", " eval_spec = tf.estimator.EvalSpec(input_fn = get_valid(),\n", " steps = None,\n", " exporters = exporter)\n", " tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Using default config.\n", "INFO:tensorflow:Using config: {'_model_dir': 'outputdir', '_service': None, '_keep_checkpoint_every_n_hours': 10000, '_task_type': 'worker', '_num_worker_replicas': 1, '_keep_checkpoint_max': 5, '_num_ps_replicas': 0, '_global_id_in_cluster': 0, '_log_step_count_steps': 100, '_save_checkpoints_secs': 600, '_evaluation_master': '', '_train_distribute': None, '_save_summary_steps': 100, '_tf_random_seed': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f65a2bc30b8>, '_master': '', '_task_id': 0, '_session_config': None, '_save_checkpoints_steps': None, '_is_chief': True}\n", "INFO:tensorflow:Running training and evaluation locally (non-distributed).\n", "INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after 600 secs (eval_spec.throttle_secs) or training is finished.\n", "INFO:tensorflow:Calling model_fn.\n", "INFO:tensorflow:Done calling model_fn.\n", "INFO:tensorflow:Create CheckpointSaverHook.\n", "INFO:tensorflow:Graph was finalized.\n", "INFO:tensorflow:Running local_init_op.\n", "INFO:tensorflow:Done running local_init_op.\n", "INFO:tensorflow:Saving checkpoints for 1 into outputdir/model.ckpt.\n", "INFO:tensorflow:step = 1, loss = 2.1511927\n", "INFO:tensorflow:global_step/sec: 13.8533\n", "INFO:tensorflow:step = 101, loss = 0.5264278 (7.220 sec)\n", "INFO:tensorflow:global_step/sec: 14.175\n", "INFO:tensorflow:step = 201, loss = 0.42215365 (7.055 sec)\n", "INFO:tensorflow:global_step/sec: 14.2523\n", "INFO:tensorflow:step = 301, loss = 0.34791386 (7.017 sec)\n", "INFO:tensorflow:global_step/sec: 14.7247\n", "INFO:tensorflow:step = 401, loss = 0.26609486 (6.791 sec)\n", "INFO:tensorflow:global_step/sec: 14.6274\n", "INFO:tensorflow:step = 501, loss = 0.21945082 (6.836 sec)\n", "INFO:tensorflow:global_step/sec: 14.4637\n", "INFO:tensorflow:step = 601, loss = 0.1646782 (6.914 sec)\n", "INFO:tensorflow:global_step/sec: 14.5217\n", "INFO:tensorflow:step = 701, loss = 0.13758004 (6.887 sec)\n", "INFO:tensorflow:global_step/sec: 14.123\n", "INFO:tensorflow:step = 801, loss = 0.1219064 (7.081 sec)\n", "INFO:tensorflow:global_step/sec: 15.7489\n", "INFO:tensorflow:step = 901, loss = 0.10583858 (6.350 sec)\n", "INFO:tensorflow:Saving checkpoints for 1000 into outputdir/model.ckpt.\n", "INFO:tensorflow:Loss for final step: 0.085023135.\n", "INFO:tensorflow:Calling model_fn.\n", "INFO:tensorflow:Done calling model_fn.\n", "INFO:tensorflow:Starting evaluation at 2018-09-12-20:01:59\n", "INFO:tensorflow:Graph was finalized.\n", "INFO:tensorflow:Restoring parameters from outputdir/model.ckpt-1000\n", "INFO:tensorflow:Running local_init_op.\n", "INFO:tensorflow:Done running local_init_op.\n", "INFO:tensorflow:Finished evaluation at 2018-09-12-20:01:59\n", "INFO:tensorflow:Saving dict for global step 1000: global_step = 1000, loss = 0.069563285, rmse = 0.26374853\n", "INFO:tensorflow:Calling model_fn.\n", "INFO:tensorflow:Done calling model_fn.\n", "INFO:tensorflow:Signatures INCLUDED in export for Classify: None\n", "INFO:tensorflow:Signatures INCLUDED in export for Regress: None\n", "INFO:tensorflow:Signatures INCLUDED in export for Predict: ['serving_default', 'predict_export_outputs']\n", "INFO:tensorflow:Restoring parameters from outputdir/model.ckpt-1000\n", "INFO:tensorflow:Assets added to graph.\n", "INFO:tensorflow:No assets to write.\n", "INFO:tensorflow:SavedModel written to: b\"outputdir/export/exporter/temp-b'1536782520'/saved_model.pb\"\n" ] } ], "source": [ "# Run the model\n", "shutil.rmtree('outputdir', ignore_errors = True) # start fresh each time\n", "train_and_evaluate('outputdir')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h3> Standalone Python module </h3>\n", "\n", "To train this on Cloud ML Engine, we take the code in this notebook and make a standalone Python module." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/content/training-data-analyst/courses/machine_learning/deepdive/05_artandscience\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/envs/py3env/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", " from ._conv import register_converters as _register_converters\n", "INFO:tensorflow:Using default config.\n", "INFO:tensorflow:Using config: {'_protocol': None, '_train_distribute': None, '_num_worker_replicas': 1, '_experimental_distribute': None, '_eval_distribute': None, '_model_dir': 'outputdir/', '_log_step_count_steps': 100, '_keep_checkpoint_every_n_hours': 10000, '_global_id_in_cluster': 0, '_task_id': 0, '_evaluation_master': '', '_save_summary_steps': 100, '_task_type': 'worker', '_master': '', '_session_config': allow_soft_placement: true\n", "graph_options {\n", " rewrite_options {\n", " meta_optimizer_iterations: ONE\n", " }\n", "}\n", ", '_keep_checkpoint_max': 5, '_is_chief': True, '_service': None, '_tf_random_seed': None, '_device_fn': None, '_save_checkpoints_steps': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7efd011d6208>, '_num_ps_replicas': 0, '_save_checkpoints_secs': 600}\n", "INFO:tensorflow:Not using Distribute Coordinator.\n", "INFO:tensorflow:Running training and evaluation locally (non-distributed).\n", "INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.\n", "WARNING:tensorflow:From /usr/local/envs/py3env/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Colocations handled automatically by placer.\n", "INFO:tensorflow:Calling model_fn.\n", "WARNING:tensorflow:From /content/training-data-analyst/courses/machine_learning/deepdive/05_artandscience/simplernn/trainer/model.py:90: BasicLSTMCell.__init__ (from tensorflow.python.ops.rnn_cell_impl) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "This class is equivalent as tf.keras.layers.LSTMCell, and will be replaced by that in Tensorflow 2.0.\n", "WARNING:tensorflow:From /content/training-data-analyst/courses/machine_learning/deepdive/05_artandscience/simplernn/trainer/model.py:91: static_rnn (from tensorflow.python.ops.rnn) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Please use `keras.layers.RNN(cell, unroll=True)`, which is equivalent to this API\n", "WARNING:tensorflow:From /usr/local/envs/py3env/lib/python3.5/site-packages/tensorflow/python/ops/losses/losses_impl.py:667: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use tf.cast instead.\n", "INFO:tensorflow:Done calling model_fn.\n", "INFO:tensorflow:Create CheckpointSaverHook.\n", "INFO:tensorflow:Graph was finalized.\n", "2019-04-04 22:20:25.388875: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", "2019-04-04 22:20:25.399578: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2200000000 Hz\n", "2019-04-04 22:20:25.400981: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x5586480e4040 executing computations on platform Host. Devices:\n", "2019-04-04 22:20:25.401122: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined>\n", "INFO:tensorflow:Running local_init_op.\n", "INFO:tensorflow:Done running local_init_op.\n", "INFO:tensorflow:Saving checkpoints for 0 into outputdir/model.ckpt.\n", "INFO:tensorflow:loss = 0.7419274, step = 1\n", "INFO:tensorflow:global_step/sec: 19.6848\n", "INFO:tensorflow:loss = 0.22478724, step = 101 (5.081 sec)\n", "INFO:tensorflow:global_step/sec: 21.8056\n", "INFO:tensorflow:loss = 0.120992295, step = 201 (4.586 sec)\n", "INFO:tensorflow:global_step/sec: 19.5339\n", "INFO:tensorflow:loss = 0.10022815, step = 301 (5.119 sec)\n", "INFO:tensorflow:global_step/sec: 17.1955\n", "INFO:tensorflow:loss = 0.07411742, step = 401 (5.815 sec)\n", "INFO:tensorflow:global_step/sec: 23.2559\n", "INFO:tensorflow:loss = 0.07213749, step = 501 (4.300 sec)\n", "INFO:tensorflow:global_step/sec: 23.8249\n", "INFO:tensorflow:loss = 0.07263194, step = 601 (4.197 sec)\n", "INFO:tensorflow:global_step/sec: 24.2606\n", "INFO:tensorflow:loss = 0.06830608, step = 701 (4.122 sec)\n", "INFO:tensorflow:global_step/sec: 24.188\n", "INFO:tensorflow:loss = 0.065488726, step = 801 (4.134 sec)\n", "INFO:tensorflow:global_step/sec: 24.158\n", "INFO:tensorflow:loss = 0.06435184, step = 901 (4.139 sec)\n", "INFO:tensorflow:Saving checkpoints for 1000 into outputdir/model.ckpt.\n", "INFO:tensorflow:Calling model_fn.\n", "INFO:tensorflow:Done calling model_fn.\n", "INFO:tensorflow:Starting evaluation at 2019-04-04T22:21:14Z\n", "INFO:tensorflow:Graph was finalized.\n", "WARNING:tensorflow:From /usr/local/envs/py3env/lib/python3.5/site-packages/tensorflow/python/training/saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use standard file APIs to check for files with this prefix.\n", "INFO:tensorflow:Restoring parameters from outputdir/model.ckpt-1000\n", "INFO:tensorflow:Running local_init_op.\n", "INFO:tensorflow:Done running local_init_op.\n", "INFO:tensorflow:Finished evaluation at 2019-04-04-22:21:14\n", "INFO:tensorflow:Saving dict for global step 1000: global_step = 1000, loss = 0.05510318, rmse = 0.23474066\n", "INFO:tensorflow:Saving 'checkpoint_path' summary for global step 1000: outputdir/model.ckpt-1000\n", "INFO:tensorflow:Calling model_fn.\n", "INFO:tensorflow:Done calling model_fn.\n", "WARNING:tensorflow:From /usr/local/envs/py3env/lib/python3.5/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:205: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info.\n", "INFO:tensorflow:Signatures INCLUDED in export for Regress: None\n", "INFO:tensorflow:Signatures INCLUDED in export for Classify: None\n", "INFO:tensorflow:Signatures INCLUDED in export for Eval: None\n", "INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict_export_outputs', 'serving_default']\n", "INFO:tensorflow:Signatures INCLUDED in export for Train: None\n", "INFO:tensorflow:Restoring parameters from outputdir/model.ckpt-1000\n", "INFO:tensorflow:Assets added to graph.\n", "INFO:tensorflow:No assets to write.\n", "INFO:tensorflow:SavedModel written to: outputdir/export/exporter/temp-b'1554416475'/saved_model.pb\n", "INFO:tensorflow:Loss for final step: 0.060268052.\n" ] } ], "source": [ "%%bash\n", "# Run module as-is\n", "export parent_dir=$(dirname $(pwd))\n", "echo $parent_dir\n", "rm -rf outputdir\n", "export PYTHONPATH=${PYTHONPATH}:$parent_dir/simplernn\n", "python -m trainer.task \\\n", " --train_data_paths=\"${PWD}/train.csv*\" \\\n", " --eval_data_paths=\"${PWD}/valid.csv*\" \\\n", " --output_dir=outputdir \\\n", " --job-dir=./tmp" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Try out online prediction. This is how the REST API will work after you train on Cloud ML Engine" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Overwriting test.json\n" ] } ], "source": [ "%%writefile test.json\n", "{\"rawdata_input\": [0,0.214,0.406,0.558,0.655,0.687,0.65,0.549,0.393]}" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "# local predict doesn't work with Python 3 yet.\n", "# %%bash\n", "# MODEL_DIR=$(ls ./outputdir/export/exporter/)\n", "# gcloud ml-engine local predict --model-dir=./outputdir/export/exporter/$MODEL_DIR --json-instances=test.json" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h3> Cloud ML Engine </h3>\n", "\n", "Now to train on Cloud ML Engine." ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "jobId: simplernn_180912_200305\n", "state: QUEUED\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "CommandException: 1 files/objects could not be removed.\n", "Job [simplernn_180912_200305] submitted successfully.\n", "Your job is still active. You may view the status of your job with the command\n", "\n", " $ gcloud ml-engine jobs describe simplernn_180912_200305\n", "\n", "or continue streaming the logs with the command\n", "\n", " $ gcloud ml-engine jobs stream-logs simplernn_180912_200305\n" ] } ], "source": [ "%%bash\n", "# Run module on Cloud ML Engine\n", "OUTDIR=gs://${BUCKET}/simplernn/model_trained\n", "JOBNAME=simplernn_$(date -u +%y%m%d_%H%M%S)\n", "gsutil -m rm -rf $OUTDIR\n", "gcloud ml-engine jobs submit training $JOBNAME \\\n", " --region=$REGION \\\n", " --module-name=trainer.task \\\n", " --package-path=$(dirname $(pwd))/simplernn/trainer \\\n", " --job-dir=$OUTDIR \\\n", " --staging-bucket=gs://$BUCKET \\\n", " --scale-tier=BASIC \\\n", " --runtime-version=1.4 \\\n", " -- \\\n", " --train_data_paths=\"gs://${BUCKET}/train.csv*\" \\\n", " --eval_data_paths=\"gs://${BUCKET}/valid.csv*\" \\\n", " --output_dir=$OUTDIR" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h2> Variant: long sequence </h2>\n", "\n", "To create short sequences from a very long sequence." ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input= [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]\n", "output= [[1. 2. 3. 4. 5.]\n", " [2. 3. 4. 5. 6.]\n", " [3. 4. 5. 6. 7.]\n", " [4. 5. 6. 7. 8.]\n", " [5. 6. 7. 8. 9.]]\n" ] } ], "source": [ "import tensorflow as tf\n", "import numpy as np\n", "\n", "def breakup(sess, x, lookback_len):\n", " N = sess.run(tf.size(x))\n", " windows = [tf.slice(x, [b], [lookback_len]) for b in range(0, N-lookback_len)]\n", " windows = tf.stack(windows)\n", " return windows\n", "\n", "x = tf.constant(np.arange(1,11, dtype=np.float32))\n", "with tf.Session() as sess:\n", " print('input=', x.eval())\n", " seqx = breakup(sess, x, 5)\n", " print('output=', seqx.eval())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Variant: Keras\n", "\n", "You can also invoke a Keras model from within the Estimator framework by creating an estimator from the compiled Keras model:" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "def make_keras_estimator(output_dir):\n", " from tensorflow import keras\n", " model = keras.models.Sequential()\n", " model.add(keras.layers.Dense(32, input_shape=(N_INPUTS,), name=TIMESERIES_INPUT_LAYER))\n", " model.add(keras.layers.Activation('relu'))\n", " model.add(keras.layers.Dense(1))\n", " model.compile(loss = 'mean_squared_error',\n", " optimizer = 'adam',\n", " metrics = ['mae', 'mape']) # mean absolute [percentage] error\n", " return keras.estimator.model_to_estimator(model)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "# Run module as-is\n", "echo $PWD\n", "rm -rf outputdir\n", "export parent_dir=$(dirname $(pwd))\n", "export PYTHONPATH=${PYTHONPATH}:$parent_dir/simplernn\n", "python -m trainer.task \\\n", " --train_data_paths=\"${PWD}/train.csv*\" \\\n", " --eval_data_paths=\"${PWD}/valid.csv*\" \\\n", " --output_dir=${PWD}/outputdir \\\n", " --job-dir=./tmp --keras" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright 2017 Google Inc. Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.6" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
luizirber/galGal
notebooks/05.Refining_RNA_data_Moleculo.ipynb
1
41705
{ "metadata": { "name": "", "signature": "sha256:080ba04a6f5882b509593d0be2a7f8c32e1e08af0f419067bd59d1f6412fea27" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Testing ortho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- First, see if Likit has putative ortholog assignments between the chick RNAseq and human proteins. If not, the eel-pond protocol has some instructions on how to calculate this. Might take a few days. Then, we can recalculate the Venn diagram with a better curated set of mRNAseq transcripts, and also give people (Jerry in particular) the gene names that are in A, C, and D.\n", "\n", " - Likit: I only have homologs of chick RNASeq and human proteins of differential-expressed genes, which total ~1000 genes as of now.\n", "\n", " - Main goal right now: how many \"real\" mRNAseq genes, i.e. genes with orthology\n", " to human, do/do not match in the genome? Nic has done exactly this analysis\n", " for fungus." ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "from matplotlib import pyplot as plt\n", "from matplotlib_venn import venn3, venn3_circles" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 64 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Preparing all RNA data" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/chicken_transcripts/global_merged.fa.clean.nr.renamed.fasta.nsq" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "make: `outputs/chicken_transcripts/global_merged.fa.clean.nr.renamed.fasta.nsq' is up to date.\r\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Preparing 'only in RNA' data" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/rna/only_rna.fa.renamed.fasta.nsq" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "make: `outputs/rna/only_rna.fa.renamed.fasta.nsq' is up to date.\r\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Preparing Uniprot" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/uniprot/uniprot_sprot.fasta.nsq" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "cd outputs/uniprot && \\\r\n", "\tformatdb -i uniprot_sprot.fasta -o T -p T\r\n" ] } ], "prompt_number": 36 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/uniprot/uniprot_sprot.namedb" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "cd outputs/uniprot && \\\r\n", "\tpython /mnt/research/ged/irberlui/biodata/galGal/scripts/make-namedb.py uniprot_sprot.fasta uniprot_sprot.namedb\r\n" ] } ], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/uniprot/uniprot_sprot.fasta_screed" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "make: `outputs/uniprot/uniprot_sprot.fasta_screed' is up to date.\r\n" ] } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Uniprot ortho" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make workdir/results/uniprot.x.chick.pbs" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mkdir -p workdir/results\r\n", "JOBID=`echo make workdir/results/uniprot.x.chick | cat pbs/header.sub - pbs/footer.sub | \\\r\n", "\t qsub -l walltime=20:00:00,nodes=1:ppn=8,mem=400mb -A ged -N pbcr.uniprot.x.chick.pbs -o workdir/results/uniprot.x.chick.pbs -e workdir/results/uniprot.x.chick.pbs.err | cut -d\".\" -f1` ; \\\r\n", "\twhile [ -n \"$(qstat -a |grep ${JOBID})\" ]; do sleep 600; done\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "^Cmake: *** [workdir/results/uniprot.x.chick.pbs] Interrupt\r\n", "\r\n" ] } ], "prompt_number": 46 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make workdir/results/chick.x.uniprot.pbs\n", "!cd .. && make workdir/results/uniprot.x.chick.pbs" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mkdir -p workdir/results\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "JOBID=`echo make workdir/results/chick.x.uniprot | cat pbs/header.sub - pbs/footer.sub | \\\r\n", "\t qsub -l walltime=20:00:00,nodes=1:ppn=8,mem=400mb -A ged -N blast.chick.x.uniprot.pbs -o workdir/results/chick.x.uniprot.pbs -e workdir/results/chick.x.uniprot.pbs.err | cut -d\".\" -f1` ; \\\r\n", "\twhile [ -n \"$(qstat -a |grep ${JOBID})\" ]; do sleep 600; done\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "^Cmake: *** [workdir/results/chick.x.uniprot.pbs] Interrupt\r\n" ] } ], "prompt_number": 47 }, { "cell_type": "code", "collapsed": false, "input": [ "#!cp ../workdir/results/uniprot.x.chick ../outputs/rna/uniprot.x.chick\n", "#!cp ../workdir/results/chick.x.uniprot ../outputs/rna/chick.x.uniprot" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/rna/global_merged.fa.clean.nr.renamed.fasta.annot" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "cd outputs/rna && \\\r\n", "\tpython /mnt/research/ged/irberlui/biodata/galGal/scripts/annotate-seqs.py /mnt/research/ged/irberlui/biodata/galGal/outputs/chicken_transcripts/global_merged.fa.clean.nr.renamed.fasta chick.x.uniprot.ortho chick.x.uniprot.homol\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "Scanning sequences -- first pass to gather info\r\n", "... 0\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 25000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 50000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 75000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 100000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 125000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 150000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 175000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 200000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 225000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 250000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 275000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 300000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 325000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 350000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 375000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... 400000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "second pass: annotating\r\n", "... x2 0\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 25000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 50000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 75000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 100000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 125000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 150000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 175000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 200000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 225000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 250000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 275000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 300000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 325000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 350000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 375000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "... x2 400000\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "----\r\n", "419276 sequences total\r\n", "30421 annotated / ortho\r\n", "182213 annotated / homol\r\n", "0 annotated / tr\r\n", "212634 total annotated\r\n", "\r\n", "annotated sequences in FASTA format: global_merged.fa.clean.nr.renamed.fasta.annot\r\n", "annotation spreadsheet in: global_merged.fa.clean.nr.renamed.fasta.annot.csv\r\n", "annotation spreadsheet with sequences (warning: LARGE): global_merged.fa.clean.nr.renamed.fasta.annot.large.csv\r\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Recalculating Venn diagram with ortho" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/rna/ortho.fa" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "python /mnt/research/ged/irberlui/biodata/galGal/scripts/extract.py outputs/rna/global_merged.fa.clean.nr.renamed.fasta.annot outputs/rna/ortho.fa ortho\r\n" ] } ], "prompt_number": 58 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/reference/galGal4.fa.nsq" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "make: `outputs/reference/galGal4.fa.nsq' is up to date.\r\n" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/moleculo/LR6000017-DNA_A01-LRAAA-AllReads.fasta.00.nsq" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "make: `outputs/moleculo/LR6000017-DNA_A01-LRAAA-AllReads.fasta.00.nsq' is up to date.\r\n" ] } ], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make workdir/results/Chick_RNA_BLAST.txt.pbs" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "blastn -query outputs/chicken_transcripts/global_merged.fa.clean.nr.renamed.fasta -out workdir/results/Chick_RNA_BLAST.txt -db outputs/reference/galGal4.fa -outfmt 6 -evalue 1e-3 -num_threads 8\r\n" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make workdir/results/Moleculo_RNA_BLAST.txt.pbs" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "blastn -query outputs/chicken_transcripts/global_merged.fa.clean.nr.renamed.fasta -out workdir/results/Moleculo_RNA_BLAST.txt -db outputs/moleculo/LR6000017-DNA_A01-LRAAA-AllReads.fasta -outfmt 6 -evalue 1e-3 -num_threads 16\r\n" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/rna/match_ortho.rna.ref.txt" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "cd outputs/rna && \\\r\n", "\tpython /mnt/research/ged/irberlui/biodata/galGal/scripts/find_match_2.py ortho.fa Chick_RNA_BLAST.txt ortho.rna.ref\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "Number of matches: 26766\r\n", "Number of no matches: 3655\r\n" ] } ], "prompt_number": 54 }, { "cell_type": "code", "collapsed": false, "input": [ "!cd .. && make outputs/rna/match_ortho.rna.moleculo.txt" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "cd outputs/rna && \\\r\n", "\tpython /mnt/research/ged/irberlui/biodata/galGal/scripts/find_match_2.py ortho.fa Moleculo_RNA_BLAST.txt ortho.rna.moleculo\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "Number of matches: 23123\r\n", "Number of no matches: 7298\r\n" ] } ], "prompt_number": 55 }, { "cell_type": "code", "collapsed": false, "input": [ "with open(\"../outputs/rna/match_ortho.rna.moleculo.txt\") as rna_mol_match:\n", " rna_mol_set = set([line.split(' ')[0] for line in rna_mol_match if line.strip()])\n", "\n", "with open(\"../outputs/rna/match_ortho.rna.ref.txt\") as rna_ref_match:\n", " rna_ref_set = set([line.split(' ')[0] for line in rna_ref_match if line.strip()])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 59 }, { "cell_type": "code", "collapsed": false, "input": [ "B_set = rna_mol_set & rna_ref_set\n", "len(B_set)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 60, "text": [ "23120" ] } ], "prompt_number": 60 }, { "cell_type": "code", "collapsed": false, "input": [ "B = len(rna_mol_set & rna_ref_set)\n", "A = len(rna_ref_set) - B\n", "C = len(rna_mol_set) - B\n", "E = 30421\n", "D = E - A - C - B\n", "\n", "print A, B, C, D, E" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "3646 23120 3 3652 30421\n" ] } ], "prompt_number": 61 }, { "cell_type": "code", "collapsed": false, "input": [ "#scale = float(max([A, B, C, D]))\n", "#v = venn3((1, 1, 1, D / scale, A / scale, C / scale, B / scale), set_labels=('Ref', 'Moleculo', 'RNA'))\n", "\n", "v = venn3((1, 1, 1, 1, 1, 1, 1), set_labels=('Ref', 'Moleculo', 'RNA'))\n", "\n", "v.get_label_by_id('100').set_text('')\n", "v.get_label_by_id('010').set_text('')\n", "v.get_label_by_id('001').set_text('D\\n%d' % D)\n", "\n", "v.get_label_by_id('011').set_text('C\\n%d' % C)\n", "v.get_label_by_id('101').set_text('A\\n%d' % A)\n", "v.get_label_by_id('110').set_text('')\n", "\n", "v.get_label_by_id('111').set_text('B\\n%d' % B)\n", "plt.title('Filtered mRNAseq\\n(only genes with orthology to UniProt genes)')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 65, "text": [ "<matplotlib.text.Text at 0x2b5617b25a90>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAARoAAAEPCAYAAACdqAuSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXd4XNWZ/z/vFGlGzZKL3G25GxtjekkwoSRA6CkkJAES\nJz9II2VTN22NA+llQ7LZtN2FALskoQVI6MV001ywMRjj3tQsWZY0o6nn98e5Y8ayRhpJc+fOvTqf\n55lHmlvOfW/7zjnvOe97RCmFwWAw2InPaQMMBoP3MUJjMBhsxwiNwWCwHSM0BoPBdozQGAwG2zFC\nYzAYbMcIjYOISKeINFj/3yQi1zloywoR+ZRTxzd4GyM0RUBEtolIxBKWThE5ICITlFLVSqlt1mbK\n+iAip4vIziKbefD4w8USrah1rq0ico+ITMlaf62IpEXk0qxlAWvZtF5lZbY9sRC2GZzBCE1xUMAF\nlrBUK6VqlFKNfWwnhTiYiAQKUc4wUMDnlVLVwCwgBPyy1zZtwHIRyfkMiogAVwLrrL8Gl2KExkGs\nX+qZWYuUiFQADwCTsms/ovlXEXnLqiX8VUTqrHIarLI+KSLbgUet5Z8UkQ0i0iYiD2bXFkTkPSLy\nhojsF5HfoEWuT6GzahW3i8gtlj2visgcEfmWiDSJyHYReU9f+yqlOoB7gIXZi4EHgThweT+XaAlQ\nA3wJuExEglk2zRaRJy37W0TkL1nr5ovIIyKyzzrH7JrTGBG5V0Q6ROQFEblORJ7uxwZDATBCUzzy\nqa2IUioCnAvs6VX7+SJwEXAaMBFoB37ba//TgPnAuSJyMfAt4H3AWOBp4DYAERkL3Al8GxgDbAbe\nSf9NpwuAm4E6YDXwiLV8EnAd8Ie+zldExgDvB17otV4B3wOWiYg/xzE/DtytlFoBRIELs9ZdBzyo\nlKoFJgO/to5Xadl2KzAOuAz4TxE5wtrvt0AEmAB8Elg6wHkbCoFSynxs/gDbgE60OLQDd1nL08BM\n6/8bgeus/08HdvYqYwNwZtb3iegagQ9osMpqyFr/APDJrO8+oBuYhm6GPNer/J3Z2/dady3wUNb3\nC63zEet7tXX8Guv7CutY+63lK4Fwr/Jutv5fCXwGCFjbTrOWVwAdwNnW918Bf88q489ocZvcy9YP\nA0/1WvYH4N8Av3XN5mat+wHwtNPPiNc/pkZTHBRwsVKqzvq8fwhlNAB3i0i7iLSjhScJjM/aJtuB\nPB24IWv7fdbyyWiR2tWr/IGcz81Z/0eBVmW9qdZ3gCrrrwK+oHRt4yjLlvN6lZep4X0X+A5Q3mv9\n+4AE8Jj1/XbgvVZtDOAbVhkvish6EVlqLZ8OnJQ5b+vcP4q+TmPRgpZ9rjsGOG9DAXDaaWg4FNXr\nbzY7gKVKqed7r8h0kffabwe6hnRbH9vPAaZmfZfs7/3YNRgEQCm1XkS+B/xYRO6yxOlgeUqpR0Xk\nLeDzvfb/OLqmtEubhwBBtGj8WinVBFxt2f9O4FEReQp93k8qpc4+zCDdREuia3UbrcXTem9nKDym\nRlM6ZDtjm4AxIlKTtf73wA8zDl0RGSciF/VT3u+Bb4vIAmv7UVlO0fuBhSLyPquH6oton0V/tg2H\nP6ObQh/KUd530DUULFsnA2cC5wOLsz4/wep9EpFLs7rM96PFKwX8A5grIpeLSND6nCAi85VSKeAu\n4FoRCVvX5kqMj8Z2jNA4i+r1vwJQSr2BdtxusXqMJgA3APcCD4vIAeB54MQcZaGU+jv6xfyLiHSg\nu4jPsda1ApcCPwZagdnAMwPY2ftlzPu7Uiph2f+NrHXZ659DO4szy64AViulHlVKNVufJuA3wCIR\nWQgcD6wUkU50r9YXlVLblFJdwNloJ/BuYC/wI6DMKvsadBOvEfgftG+sIMMKDLmRt5vZBsPIQ0Q+\nAXxKKbXEaVu8jKnRGAwG2zFCYxjpFCz0wpAb03QyGAy2Y2o0BoPBdvISGhH5kYh8abgHE5FPjPS4\nEmtw2Wn9rC9qugYZRqT4SL2fkpXeY6QjIneIyLkDbTeg0IjIOHR34+8LYdhIRyl1pFLqKTgYrHhL\n702w0WcghwdyuoqsANIh1cZziaPoVB5n5VOGykrvITqPUMwSn30i8rCIzBuibW7MCfQT4PqBNsrn\nZn0C+KdSKjZciwzOIYemjvDCuJFCn8NQBV4BP1E6JcYUdKjGTb03Eos8ynIVSqmXgBoROa6/7fIR\nmnOBJ7MXiMhVIrLJUvB7RGRi1rq0iHxaRN60Yk3+o69CReS3IvLzXsvuFZEv59j+bBHZaKUF+K3o\nFAGfylrfX0qEfm0aYN9/F50KoUN0eoTsdAeZbc4QkVezvj8iIi9mfX86M4o388tpVTe/BXzY+jVc\nnVVkg4g8Izolw0OiI6D7JI978TkReRN4U0Qy93Gtdczs9Alfsc5zjzW2JLN8lIjcLCLNlu3fyfXC\niMg7ROQl6x69KCKnZK2bISJPWef0iHUPb7HW/VNErulV1quiI9B785T1d791DidZ7/B3LfuaROTP\ncuio6kFh1VJ+KyL/sOxdKVm1QMlRK1RKRdEDLY+0tlshIteLyLPoINMZua6RiPwAnRbjP6zz+nUO\n264UnZajNeucz7LWiQycSiSzf4uIfDur3P72DYnIrdbydsvu+iyzVqBHcedmoKhLtEIfl/X9TKAF\nOBo92vLX6NiSzPo0egRrDTp+phk4x1r3CaxIWeAE9MjNTM/XWOtmjOvDhrHoSN5L0OL4RXQU7iet\n9RcDm4B51vrvAM/maVPOfdEjaV/m7ajkecCEPuwLowMLR6PjcZrQgXuV1roIUGdtuxUrChtYhhXF\nnFXWCuAt9GjdEPAE8KMc9yafe/EQUAuUZy2bmbXN6ejgxWvR0c3vte7DKGv9zcDd1rlMR8cIZa57\n9v0cjY5M/5h1HS9DJ7fKnPfzwE/R8XXvtO5nJoL7UmBllk2L0SOWA32c83TrHHxZyz5p3cMGy847\ne1/XrG0P2txrefZ9uck6/vHWNbkVuK3Xde0r6r4K+L/MPbDu5TbgCOuajB/gGj1Bjgh6a/0CdNT8\nO9DP2c/Q70HG7i8Bz6FTdwTR7o7/s9Y1WHb/AR3AehTQA8zLY99Po9+fELomeQxQnWXXvwB39qsj\neQhN77D6/wZ+nPW90tomE96fBt6Rtf6vwDf7usnoCOR3W/9fA/wjhw1XkiUc1rIdvP3A50qJMLUf\nm74xwL7TgDPQL9ZJZD3YOWx8Ch1xfDL65f4LWqjOANbmeKCvBW7pVc4TwLezvn8WeCDHMfO5F6f3\n2qcvoYlw6IvbhA5v8AMxYH7WuquBJ/oQmivIEgtr2XPo4MhpaDELZa27JXPu6Ae4DZhlff858B85\nzrmBw4XmMeAzWd/nWtfhsHvW+xnsR2j+mLXuvcDrOYTmJvSPTDs63OHvwIyse3lt1n45r1HW9p/q\n5xn7N+B/s76HrfuTsTufVCKTsta/AHzI+v/1HPv60Tl7ngUW5bDrKuCx/t6PfJpO7ego2gwTge2Z\nL0qpbnQKgslZ22SnqYygX4C+uJm3M6xdjn74+mISh6c1yP4+ndwpEXLZVDXAvpOUUk8A/4FOltQk\nIn8Qkexrkc2T6Jd2ifX/k8C70MmoVuTYJxfZtkazbO1NPvcinx6lfUqpdNb3zPUZi/512561bkev\n8jNM4vCUC9t5Oy1Fm1Kqpy+7rOV/A66wmmWXkftZ6ItDroNlR4BDU2hkSKLPqTdBtBiC9pU0Za3r\n7x4o4GdKp/+YqJS6RCm1NWt99vXPdY0m9SovF4ek91C6qbYva30DA6cS6e896GvfevS9eAgdN7db\nRH4ih/r8qtGBrTnJR2heRTcZMuyxTgg4mNFsDLoZNFhuBS4WkcXozHB/z7HdHrSjLXNMyf6OvnlX\nq7fzvdQppSqVUivzsKHffZVSv1FKHY+uts4Fvp6jnCfRtZeMsGSE51308nFlMVznXz73YjjHaEW/\nfA1Zy6ZxuOhjHXN6r2XTrW33AqNFJNyrnGz+jG5SvBuIKKV6Z+TL0Nf5HHIdrLKTHCoWGXb0Prbo\n9Kn1HCpWg6E/J2+2vbmu0e4+tu2LvRz6HoTR9zvDDuDcXs9yhVJq7wDl9ruvUiqplPq+Umohutl2\nAYfmcD4CWNNf4fkIzf3olyXDbcBSEVksIuXAD9HVwVwJhHLmolVK7UL7QG4G7lC5e7b+iY7avdhS\n0s9zaFqD/lIiDGRTzn1F5HjL2RhEq38POhVBXzyHFuQTgBeVUhuwkjDxtgOzN41ox2/v65Nvj8pg\n7wXol29WPoUrnVbhb8APRKRKRKaj2+O39rH5A+j0DB8RPaPBh9E/Hv+w7HkZnZ4haDlAL+DQCO7n\nre8/Rz8PuWhBNwGyz+E24F8sh2cV+jr8pVctLcNKoMdyfJZb4vxj4KWs6zaYHq2Bts1efz85rpG1\nfqB7cwdwoYicIiJl6KZ3dvmDTSWSTc59RY+1WiQ6n08n+scn+z04DX3/c5KP0NwMnCciIQCl1GPo\nXK93on9JZqCruhl6q7LKWqb6WP9nYBH9VJWVUvvQDsOfon9lj0A/uDFrfc6UCAPZNMC+NcAf0f6D\nbdaxf5bDxgjwCvCaUippLX4O2KZ0Woa+uN36u09EXs5hb1/XLHPMwd4L0A/nn60q8gf7K9/iC2if\n1RZ03uH/RTtAD7HNukcXAF9FX6evoWd+aLO2/RhwCrqqfx3aTxbvdayb0c9CX0KWOecIOv3ms9Y5\nnIhO93ALWtC3oH8UvpBj/zi6h+R0dG1rM/pH60PZm9H3M5Pr//6uX7aYttH/NboB+KDo3s9f9WH7\nBuu8/oK+353ojo1Y1v55pxLpRX/7TkA/qx3oJtUKrPdVRE4AOpVSL/cuMJu8Yp2srrdmpdQNA248\nSERkCXCrUqp3lbK/fXzotu9HlVK5miWGEkZE/gpsUEotz1p2BXCVUirnyGnD21i1t3ZgtlJqqM2+\n4dpwB/BfSqkH+9sur1SeSqnvFMSqXlhNki8Df8pj27OBF9GOuYyfJB8fjKEEEJHj0S/FVnSN8SJ0\nEyezvgLdJO5z3JVBIyIXonvZBN3MfNUpkQFQSn0wn+0cC6oUPf1FO9ojflg1sQ9OQY8vaUFXfS/p\nx6djKD0moLtvO4F/R3dHrwUQkXPQTYC96HEohtxchHYe70b7cy7rf/PSwKSJMBgMtmPSRBgMBtsx\nQmMwGGzHCI3BYLAdIzQGg8F2jNAYDAbbMUJjMBhsxwiNwWCwHSM0BoPBdozQ5IGIjJe301D2GVRp\nMOSLFGH2COk78b1jjCihEZ1fNSI6J2ujiNwi+eWWvRodVFqjlMqVj8YwQrCeo5j0yuUsIqtF5+Xt\nnWvHCUpqyP+IEhr0xb9A6Yz1i9EpCb6bx37T0akODQbQz9EW4COZBSKyCJ1as1Re8JKa6WKkCc1B\nlFJNwMPAQgAROVlEnrNynKwRkXdZy29CZxP7hlUTOtMxow2lxK0cmmXu4+h8OgKDnj1ivuiZIfaJ\nyBty6OwUYRH5hVXGftEzaoSkj4n/rG36fD5F5CIRec16vp8QkfnDvQCDYSQKTeZBmIKeSuYFEZmM\nznL2faVUHToh0Z0iMkYp9Ql0sqefKD1x2OMO2W0oLVai5zOab2We+zBvJ+wS4DfoXLoz0Bkqr0Qn\n+T4EK8PfI9a+49DR2P9pZTcAnQriGHT2gtHoFCl9ZQ6EHLUpEZmLjor/IjoP9P3AfVaalqIw0oRG\ngL9bGcR2oLOr/QCdGP3+TPIepdSj6Ax+5/fa12DI5ha0gLwHnXkuk/s3IzzfUkp1W/lifoGeBaE3\nFwBblVJ/VkqllVJrgLuAS60Eb0uBL1m5e9NKqZVWlsDB8GF0StXHrPSsP0c3894xyHKGTF6JrzyE\nAi5WSj0uev7r+4Dj0D6YS62kQhkCgKm9GHKh0ELzNLrWcrDZxOBmj5gOnCR65oEMAau8MeipaDYP\n09ZDZl9QSimr2TUp9y6FZaQJzUGUUk+JyG/Q+YIfQs8xdLXDZhlchFJqh4hsQc/79MmsVdmzR2Q6\nEXLNHrEDPeHc2b1XWDWaHvRkgq/2Wt0NVGRt60c3vfpiN7rjI7OtoCdSHMrMJUNipDWdevMrdALm\nZ9DZ5c8WEX+Wsy3zC2SaTYZcfAo98Vo0a9lgZo/4J3pmhMtFzxARFJETRGS+NYvD/wC/FJGJ1rOZ\nmQHhTSAkIudZvpbvomeg7IvbgfNF5Exr26+iBey5Apx/XozYGg2AUqpVRP4MfAWdIvFn6Kk7UuhZ\n/D6b2RQnuy31r1U1ujoeRN+37I9C/4L2/sQ49AUoWWS5lKObCcFenzL0D2Iy65PI+tullqlEX2UW\nA6XUlt6LrM8X0A7hLeiX+o/0PXtEp5UP+5fWx4eeI+kr1rZfA34EvISe7G0NejrnDhH5HPBfaJ/Q\nTzl0srrsY2wUkcsteyYDq4ELs2brsB2TyrNU0NXZOnS7vMb6VFt/K/rZcyAS6GkyDvT620oRHzQA\nWS4+9PnVos9rVNbfXL/G+dCDPq9O6+8B9BQ5+9SyPud2MhQZIzROoauw9ejk7JlPWREtSKN9CY0H\nP4dOWTtsZLkE0ec1wfrUU9xadBKdzL7J+jSqZSahvRMYoSkmIrVoB+F0tOOu1Hxk+9HOyS0o1TyU\nAmS51KKz809D115K7Rzb0L1B29Qy1eK0MSMFIzR2IwdfvFnoJoNb6ET7F7ag+n8hZbmMQp/fTPSg\nMrfQhT7HzUZ07MUIjR3obslZ6PCGeoetKQSd6F6O19FT0maaRfOsz5h+9nULHcBrwEYnnctexQhN\nIREJAwvQc4MPx4FbqqTbxrLpQ1fQ89goFqB7hbxGHC2qr6llqsNpY7yCEZpCIDIaOApdi/E7bI0t\ntI+mZ+Ni0q3jCSPI5nJ6/ncs6qUqwk7bZhMK3V38qlqm9jhtjNsxQjMcdEDcCcAcPDqor20ssdeO\nRXWMIdTX+r1Bev48lvSzNZ6swWXYCbyglqk2pw1xK0ZohoIemXkM2gfjyUGP8TKS644nvnc6YfIQ\n0Q1hIv8+gUBjWVG76IuJAjYBL6llqttpY9yGEZrBoJ28C9Ei0+cvvAdQW+cQeWMxoVRwcM3AJKTu\nGU3PLWMJp6TkurULRRLtNF5lnMb5Y4QmX7Qf5nR0ZK4n6agltvoU0l21w/O77AsQ+8141CtVnhVj\n0F3jT6plqmiBiW7GCM1A6NCAY4BjKb3BZwUhGSD12rH07JxJmALWRF6ppPvXEyhvC3izeWnxOrDS\n1G76xwhNf4jUoWsxucLvXU/LeKKr3kkwUW6PGMSF1J/q6Xmwlko7yi8ROoGnTO0mN0ZociFyJHAS\nHu2uBti0gMjGowgVshaTi0dq6P7NBMLKu74bBaxH127MS9ULIzS90SkZlgBznTbFLlI+UqveSaxp\nSnG7pN8qJ/q9qQS7/J5uSu0BHjHBm4dihCYbkQrgbLwRNtAn0QoSK88g1V3jjKN2v5/EtVNIbw4N\nKy1EqdMJPGTG3byNEZoMIvVokfHswLN944i+dBqBZJmzoQMJSP92Aj2PjfLutUbnAVqhlqmtThtS\nChihARCZhXb6etYfs3ke3a8fTQW+0hnB/MAoun83ngolpWOTDbyklqnVThvhNEZoROag593xqpOS\n9cfSvW1eafb6rK4gsmwKIQ87iUEP7nvZaSOcxMs3d2BE5qFrMp69Dm8cVboiA3BMhIpv76GH0plK\n1g6OleVyktNGOIlnX7ABEVkAnIZHgyEB3jqC7rcWlq7IZDi5i4qv7cEVSdSHwWJZLkWbsK3UGJlC\no8fInIqHRWbrHLrfONo9ztZ3dVJxTSNeD1Y8UpbLqU4b4QQjT2hEZlPEqUCdYOcMul87jgpcJqTn\ndFD5qWbPi80CWS7HO21EsRlZQiMyAe349Sx7phJZe5JOTuW0LUPhknYqP9rqebE5VpaLZweE9sXI\nERqRGvQ4Gc92YTdNJLr6HcUJKbCTj+yj8pI2z4vNElkuE502oli4+oHMG5Fy4Fy8m0OG7kriq06l\nTPm8cU+XthBe3E1B55kqMfzAe6wZJDyPJx7KftFpHt6Du6Y6GRQpH+kXziCdCnintuYD37/uIVCb\nxMvpF0LAudZ0wJ7G+0IDxwGTnDbCTtaeTDRS7b3aWlWawLW7SInCy9PajkIH8XoabwuNyHjgaKfN\nsJMdM4nsmV76Y2WGyqwYoauaPT/GZqYsl3lOG2En3hUaPbf1mXj4HCMVJNYf5+koaADO3094YcTz\nYvMOWS41ThthF559CYF3AtVOG2Ej6uXTSKY95JfJheWv8YfTpJy2xUaCwBmyXFw5LGEgvCk0Ohrb\n0+MUNh5J5ECdZydvO4zaFGVf3uvpXiiA8ejc1J7De0Kju7Lf6bQZdtJdSfythSNHZDK8o4vK47o8\n34Q6RpZLndNGFBrvCY2eOdJzPTDZrD+BpFfGywyWTzcjojwd6e1Dx+F5Cm89rCJjgSOcNsNO2sfQ\n0zJx5NVmMkxMEDqng4jTdtjMRFkus502opB4S2jgFFwWSDhY1p2AwuPnOBCXt1IW9LZjGOBEWS6e\ncfR7R2hEGgBPx47snUJ0JDmAczEqRfBDbZ53DFcBRzltRKHwhtDoMANPZzBTkN5wrEfuVwF4Xxvl\nVSmSTtthM0fLcvHED4tXHtxZ6KHcnmXbXHqild4fnJcv5YrA0ha8PndSEFjotBGFwCtC45kqZl8k\n/aTfXOTsFCmlyFkdhMfHPR10CbBQlovrJ9xzv9CITAHGOm2GnWyZTzTh8FxMpYgffJ9sIe60HTZT\njgd6Ut0vNB6vzQDsmG1EJhcndBHyeGgCwCK3hya4W2hExgBTnDbDTvaNI9pTQZnTdpQqQfC/u8Pz\nvpoqtB/StbhbaEZAbWbrPE+Pgi0I793v/cBSXP6su1dodBqIGU6bYSfJAKmmSaanaSCmximfHvN8\nrWasm2Og3Cs00AC43hvfHztnElP+EfFrPWwuavf8mBoA14YluFloXHvR82X7bCMy+XLqAUJ+b6f8\nBBc/8+4UGpEQMNlpM+zkwChiXaNMsylfKhT+JZ2eD0uoluUy3mkjhoJbmx6zcKtI5snWeSShNIQm\nrXzpeKo8rZQPhSgAQYlIWgV9cZ/flyqJmtf57cgKzybDPMgcoMlpIwaLm4XG0zRPKk6XtlKiIomq\nxIH46OSBnrGqM14nPckKiadCkkiX+ZLpMn9aBfz0I+xCKh30x1MBXzxd5o+ly/0RVVW2X40q3yc1\n5fsCVWUdARFl+w/DnB5C5WnSMW/n6pkpy+VZtUy5qjfSfUKje5vqnTbDTnrCJGJhewbpRROVyZbI\nlHhLZLLa31PvjyaqggpfGQxd2BR+XzwV9sVTYSJWQEDTIfNMplUoEImNKt+XHFuxW+ordwaqyjoK\nLqR+kCMjxF6p8nTisxAwBmh12pDB4D6h0akgvPyLRcsE4lAYoUmmg6k9nTNjjV3Tae+pD8RTFWUU\n/b77pCdZVd6TrCpv6p7Oay0Q8MUStaGWRH3FTjW55q2yUCBakPM9tpvUK1WFKKmkmYQRGtvx9GRw\nAC0ThpfYKp4qT+3pnBnbdWCO7O+pL1f4KgplW6FIpsuDrZEpwdbIFDa0nqxqytt6JlVvTk2p3lQe\nDnYP+bk8MurtHyGLScCrThsxGIzQlCBt4wZ/X5QS1dg1vWdz+1G099SHKEFxyY3IgdiY0IHYGN5o\nPVFVl7VFG2pfS0+teTPs96UGJRzTYpQF06QT3vbTTJDlIm7y07hLaPQMB2OcNsNOYuUkeyrz95fE\nkqHU1v1H9mzvmB+Mpyq8kCRJOuOjw+ual7Ch5aTklJpN0Vl1r5ZVlnXm1bQKgH9+Dz3rKjztpykD\nxgHNThuSL+4SGpiAx/Pltk4gQR73pStek3i99aREU9f0kMLnySlxU6ossL1jYWB7xwI1OtwYOWLs\nC77R4eYBBeTYblLrXFSfGyKTMEJjG57OOwPQMqH/0a2RRFX8tZZTEo1dDWGQEZI+QqQtOrHi2Z2X\nMDq8N7Jw3PP+2lBrzjFGR0U83WzK4KqavduEptZpA+ymbVzfYQc9yYrEay0nJ/Z0zgyhu6NHJG3R\niRVP73i/GhveHVlY/1ygprz9sGvREKNcFGklnhYcV70LbrsRrrq4Q0BFe/lnlJL0G63Hdz+65SO+\nPZ2zK8DntntmB9IanVzx5PYPBtY0ntadTAcPqQWWKXwTEp5PhjXKTcmw3FOj0TMdeDoBeTRMSvne\nvif7IhOiqxvP8EeT1Z70wQwf8e08ML+ysashcWT9c7EpNW8ddIZPipPc6+30pwGgGjjgtCH54B6h\n0VnG3GTvoOmu1o7geKo89WrTktjerplhPO78LgSJdCi4uvHM4Lb9CyPHTHg8WFnWGZwSR73itGH2\nU4tLhMZN1XDXJv3Jl+5q0s3dU6KPb/2w2ts1swIjMoOivWd8xYrtl/q27T8iMjk+IjITusaV4KYa\ngqcHliskvTJxTvKF3dNqMAIzZNIq4F/XvKSiJb2gg/r7U/iiJRFZbhPVThuQL26q0ZREygQ76GF0\n4iluiL3hPzmAEZmC4OucUc7W3yWJTfdyik/XvBNGaBymmWOiK/hPOpkR7gn2GJEpEKFkzEdyTDnb\n/j3I/nO7B97DlbjmnXBT08k1FzVfNvP+7tf5eDjTZZ0IJNwk/CVNWTppXcugj6bPVxKd283EX3vN\n7+Wad8JND7ZrLmo+vMHl3a+ztDJ7XExa0l56CRzFp3pdywPvqWT3tyIo8ZKT2DUDN90kNK65qAOx\nnqu63+LDh42NMUJTOHyow69l1zsq2b0sghKvJDF3zY+vEZois5YvdG/joj4H4KUl7aVfW0cR8IlS\nhwtK93GV7PxhD71GE7sU17wTbhIat7+EahVf797J2TlH+aoi5NUdSfhVjiiE6JEV7PxxjHS528XG\nNe+Emx5s1z4UCkm/yHcjezit31CCtGdq9KWBX6VzX9CeuWG2/yxGOuzmmCjXPDBuEhpXPhAKUS+w\nvKeZkwaMV/KZCk1BSYmvf59XfEaYbb9MuFhsXGO3m55s16h3Nuv5TKSVY/JKw+RP+115jqWIApX0\nBQYeFZxqrq4SAAAfH0lEQVSYEmLXv8VwUTMkC9c8L24SGteod4adnBnZznl5R1770343PuwlSUp8\n+b+E0SMraP5UxEZz7MI174QRGpvoYEbsVa4ZVN5aIzSFIymDvJbtl1Rw4J1uExtTo7EB18SsxKlK\nvsD3RREc1PUNpNw0ULu0SfoG3QwVGr9STmyqa54zcM9c4256srucNiAfFJJ+ge8n49QOOgt/MFXa\nYzv++Moffx8KhHYBIkj62InH3rawfuEWp+3qi7gvMPhrqcr87LwuxYzPpfBH3BD17Yp3AtxVo3FF\nYNyrXBPtYM6QpvqojJV2Ij2f+OJXLr7y+isXX3ndwvqFd69pXPM+p23KRXdgiD1JqTFl7Lo25pJQ\nBSM0NlDyF3UHZ/c7IG8gKntKW2iyiSVj4aA/WLLi31E2jGvZc0QFzVe5wV9Tste/N6bpVCBi1CbW\nc/WwYk+qYlUlXV1Pq3Tw5rU3f1cpFUykE6OWTFvyS6dtysWBYOXw4sb2n19BzRMxwptKOZ6opN+J\nbNwkNN3osQ4lGXi4li8k0pQPa9qyyp7KkhYan/gSVy6+8nqA15pfm7Fy18ql88bOW+60XX2xv6xq\nmM+JT9j7FcWMzymkjwDN0sA1QuOeppNSKUq0qtjC4mgzJw57bsRQMhQUl8QhLKxfuDWlUlVt0baS\nTLHaESyAaCemhGi/uFSbUAqXJCYHNwmNps1pA3qTxq/W8sWC1UQqY5WJQpVlJ1vbt05QSvnqQnUl\n96uaFF+qs6yyMFOttH4sRLImWZCyCkunWqZc8ayAu5pOAK3ANKeNyOZNPhLpob5gXtzaSG2yK9xV\nkn6BjI/G+iqLJyz+HynBOczay6oTwJB6/g5Dhfw0fSHC5B+U2rvS6rQBg6HULt5AtDhtQDYRxiU2\n8/7CPNAWo7tGy64xuwpZZMG4+rirP+u0DfnQFK4r7CjyrpPDRBZFqVgXHnjjouEqoXFb06nZaQOy\nWcO/JBXBgjpwR3eOLmmHsBtoCo0u9HMt7P2yr8Qy8zU5bcBgcJfQKBWlRBxgjZwUbWNRwX/hqmPV\nZb60rxR9Aq5hb8WYwk+Fm6wvZ9+HowUvd2ikKbHa/UC4rekE0AjUOG3EG3zcLpGWUZFRifaqdlvv\nzd7OvXVPbHtiaSKVqAHUlJopT58186zH7990/0WtkdbFAAFfoOuMhjNumlg9sb092l7xwFsPfCaS\niDSMqxj33MXzL/4LQDQRDd6z8Z5Px5KxcUB6TMWYVy+Ye8HdALFkLHDvxnuXdie6pwV8ge4zGs74\n4+SaybY69CP+sngkELInxWX7JeWMvjOFL+F0rXOfWqZc9WPkv/baa522YXAsX+4HZjppQgvH9Gzl\nkoL6ZrKJB+Lx1ppWW/PBRpPRstHh0W+dNfOse2ePnr1y5a6VV9aU17x+xNgj1p84+cTHF09Y/FRz\nd3P4rfa3jj9i3BGvKpSU+cv2lvvLd8ZSsZr5Y+evB0imk36/z7/vnNnn3Llw3MJnVu1ddV4ileiY\nVD2p5antTy1JppOhy4687Ndd8a6eDS0bzlxYv3CVnee1tWpiz7bqifZcO1Xmw9/dQ/iNwteYBscb\n155+7V6HbRgU7mo6aXbgcMqIjXzM1jiYSe2TbH+Q6yvrD8wdM3cXQFVZVSwcCO/t6OmorS6vPhi9\nnEwny8v8ZV0AFcGK+JH1R272+/yH/JKGg+HEUeOP2gQQ9AdT1eXVO7riXbUATV1Ni+eOmfs8wImT\nT1x1IHZgvt3ntbV6or3PdNv7AyXgq9nu8PEHjfuERqkE4Jia72dWz37m2dr7UBGvKAvHwkVLV7D7\nwO4xkURk2pwxc7YC/PPNf15y4+obf9TY1XjKkmlLHszeVvoZmN3R0xFui7YdNXv07DcA4ql47Zjw\nmDaAgC+Q9vv80fZo+7AHNuYihaR2VYyzd2hAqraMA2c56avpUsuUq3qcwI1Co9nm1IE3cVlRalP1\nB+qL0gbvineVP7718U8vGLfgr1VlVTGA8+ee//elxyz91oSqCc8/uuXRD+VTTjKd9N2/6f6rptZM\nfXxyzeR99lrdN83huljK57f/mW57v5O+TdfVZsC9QrMdB3K8xqlKNnO8bb6ZbCa3Tbb93iRSCf99\nG+/7zMTqiS+cNOWkNb3XLxq/6MWueFdDPmXdu/HeKyrLKhvPmnnW45llZf6y/a2R1tGghSiVToXr\nwnW2DenfWjXRrqIPJT61nOgcp5JObXPouMPCnUKjVDcODFjaykUxRR4JrwvAmK4x4fJEedyu8pVS\n3Lvx3isryyr3vnvmux/LLN++f3t95v/XW15fXFlWufOQ/frQ93+++c+Lk+lk6MK5F/4te/n4qvFr\nN7VtOgXgxd0vHltTXvNGwU/EIo2k3qyZWrwR1W0fdMJPGMdBt8FwEKXckN+nD0QWAu8s4hHVw9yS\niFNbtNkBN0ze0L15wmZbktSsa1o3+/ldz38tFAjtxqodLhi34O4t7VtOjSai40VEhQKhljNnnPm/\nYyvGdgLcuPrGH6ZVOqRQAZ/4Imc0nPGrUCDUc9+b9/243F/eKCJJgOmjpj/+roZ3PWd1b3+yO9E9\n1ere/pNdzaodlfXdD04eeEqbwpFMMfsK8HcVs6t7g1qmnini8QqGm4UmCFwOFKWrsZVF0ZX8sKhD\n0KPBaPLRRY/6+/XAGgB4YPKJPTsrxxelWXuQcf8VYfQ9tjm3++AOtUyVXGBxPriz6QSZ3qe3inW4\nPSwpepdmOBEO1HXXuSYBtVNE/WWJnZXjix+I2nVyMY/W6FaRATcLjWZDsQ7UwnGO9DQ0tDS4tMpZ\nPDbVTInjREK06Lxy0kVLKP9akY5jC+4WGqX2UYTgsgjjElHqHUndMLltcqgsUWabU9jtpJHUmrrZ\nDqXVCPqJHF2M8U4RYGsRjmMb7hYaje1Kv5dTHUswJIhvduNs1yQ4KjZv1UyO9QTKnRvX0nlqMWo0\nG9Uy5fRo5GHhBaHZjM0R3Y2c7KgztqGlIRxMBl0VRFcM0qBeGjPf2bij7mPs7oVMAOttPobtuF9o\ndLfZy3YVnyKY2s8c26rmN3HT0Rdy4e9XsnJ8rm38yu+b0TzDTTMoFoXtVROi3cFwbqHZt6mG+z9/\nFXd8+HruvuLb3Hf1Nex+sT7n9kMhVRckNtnOe7NOLVOlkp5iyLhfaDSbsSmfcAvHxgY7te1geImX\nTpjEpHUP8uCJ/W03q2lW2J/ym1qNhQL14tj5ucewqDQ8ff1nGT3nDT741+/yvlt+yKKP3k1XY+FT\njHQuseu+9ACv2lR2UfGG0OhazUt2FL3XxjGBrbSWt9Ay4xquuW0jG4/vb9tAOuCb1TTL1GostlZN\njHaUVeeuab5+1zzEl+LkLz99cFnD6buZd1Hhh0R0nWTXe7RWLVOe6AjwhtAAKLUdG3qg2pln28jP\nO7hj8VSmvraIRW0hQp2P8mi/idfnNM4JlyfKR7xjOCm+9LP1R/bvm2nfMpnK8cUJQIxNL6PwsXcR\nXN6lnY13hEbzYoHLU1HG2dajsYpVJ57Mya8ALGDBK4/x2An9be9TPt/CnQtHfPNpfe2MaDQQ6l9o\npJhzZwf9JMYV+r684rYsev3hxlSeuVFqLyIbgXmFKC7K2KQiaEuvxk52VjTTPO92bp90O7ejUGJF\nGtzZ336T2yeHt3Rvie6v3F9KGfmLRre/PP7y2PkDn3vtjD20bDiuCCZpYg1Jgi2FelYaAdsCUJ3A\nazUagOfR1c5h08l02yJ07+TO42Yx6/m/8bdv/42/fft2bv9WJZWt93DP7IH2PXrr0T5xPsubIzwz\nflEyLb6Bn9sFH9xIOhVg5a9OPbhs24rJbLx3wOs7JGIFG8GdAp5Sy9wahNg33hMapeLAs4Uo6gAN\ntr3Mr/LqCSdy4iE5YBawYNXTPN1v8wmgOlZdPmfvHNd3eQ6WrVUTurdXTcw/iHHJd35H26YjuOPD\n13PnR5ex/rZLqJ7cYYtxsWmFEoZVapnaX6CySgb3Rm8PhMh7gBnDKWI1X4ns5oxiRufmjUKpp454\nKnag4kBxI5YdIuovS/xlxlm+hK84+YAGTfmmHhq+Mtx7sQ+42+2jgPvCezWat3kGGFZ3cBdTSjY9\ngyBy/Obj/b60z9FE7cVAgXpswrGpkhUZgMSE4fo70+gmk+dEBrwsNHqyuRUMo9sxwviSdpZXxiuD\nC3Yt8HwaiY010yJ7KseVds0tXR0gHR6O6L+klilXTQo3GLwrNJAZW3NYLtx8SBJKJ6gpaaEBmNEy\no3LsgbG25eF1mv3Bytiz9Ue6o4ctNm2o3dFb1TK1tqC2lBgl/yIVgJeBccCUwewUoy7FELP3HeBA\n4Bqu+VqadDBFyj+LWWuv5/q7AX7Gz85YxarTBUnPYMa6H/CDuzL7rWPd6O/xvWtP4qT7vsW3HgHo\nptv/Pb73kT3smSuIOpuz/76Upauzj3fC5hNCTy54MhYpjziULsEeYr5A4p9TTvEPaWaD2IEA91/z\nNVQ6iEr5qZu1ljP1PbCNxNgU4Y2D3Ws/uubtabwvNEopRB4D3g9U57tbirIhN7lqqEnewA2/rKMu\nHiPmu4qrvnEv985OkPC/wRuL/4f/+X6YcGorW6uy9/sdv7t0MpPXZS/7KT89r4qqA3/hL/8GsIMd\nh+XFDaQDvlPePEVWLFiRSvlTpevHGARpSD806cRkdzA8tNpMeU2Sc2/4JeG6OMmYj/uu+gYb751t\nSwjCQQb9u5QAHlHLlOdHe3u76ZRBqRjwCJB31TZNYFjdcXXUxQEiRAIK5aujrvtxHj/tvbz3gTC6\nLT+DGV2Z7W/ipqNrqW0dx7hDstxvYMM7vspXH8h8n8a07r6OVxGvKDth8wlxFJ5wJq4ct7CnsWLM\n8JpMYX0PSEQCoHyER/d57QpGetBC86RaptrtMKXUGBlCA6BUK/AE5PciqmEKTZKkXM7l31vK0p9P\nZerGJSzZ20HH+PWsn3slV/7rUpZ+9WEeng46uPIJnjjn63z9vuwy9rAnDPAjfnTxFVzxnc/z+as3\nszlnrWxc57jwgl0LXD++5s2aKZH1dTOHP6wgnRTuuvx73LP059RM3ci0U+2dqkQNqoHwglqmtthl\nSqkxcoQGQKmtwJPk0ROVYnj5jAIE1K3cet3v+N03d7Frzl3cNVehfBEiFTdz848v47I7/pv/vhrg\nF/ziwiUsedSqBR3sUo8T9/fQUzePeZtv4ZYfTGPa5hu44YP9HXdW86zKWY2z7P3ltpHtleO7V0w4\npjDOX19A8f5br+P8332TA7vm8PpdcwtSbi5U3s/Maq87f3szsoQGQKlNwHMDblYg99VEJkZnMWvd\nRjZOr6Bi/ymcsgrgHM7ZDqhtbKtqpLHhYR7+wIf40A/XsvbMl3jpvb/gF++axrQuP/54xvl7Puev\naqW13whvgAW7F1Q2NDe4Tmx2h8dGHp50QphCJxqvnhhl9Kx1tG6cXtBye5NfjWa9WqZsSWlSynjf\nGdwXSr2GSBmQc7j/cJzB29hWVUZZahKToh10BLex7YjzOO8fIUI9a1gz/328b9MLvFCfJu1voKHr\nRm78eWbfa7n2ghChnq/y1ScBpjDl1Tu5c94H+MDGFayYX0fdnnxsWLRzUWXSn4zsGrOrJEc296Yp\nVBd5YMpJYSVSGJHZv60Kf1mK6klRejqC7N92BHPO+0dBys6FCg70zLyplqkBf+S8yMgUGgClViMS\nAI7pa3V6GJdmO9tH/Yk/fQLwKZQsZOHKS7n0jSjRTd/kmx//GB/7Nx++1Ef4yI0DlfVpPn3XL/nl\nJ+/irg+FCHV+ha/clK8dx2w7JpyWdGTP6D0lLTbN5aOi/5hySnlafIWryezfPopV+h6AEsYtXMmC\nS+2NiFb9OoO3oJvtIxLvxjrli8gi4GR6Vdd3cXpkDV8t6Rc0X9ZPXd+9tX5rEaeLzZ+dFeO6H5p8\nYjiviOxSp+6ubupv7Os6vwY857WI7MEwcms0GZRah0gXcAZZ10NQJRvnNFiO3HlkZSgeirw++fVw\nKU2vu7FmaveTE46uwInJ3+zg8FxbCnhxpDl++8IIDejeKJEocDYQAihjvzcefovZTbMrQolQdE3D\nmjIlyulBfeqV0XMjr4ydV5K1rCHjPyS7Qwo9TqZo0zaXMu6vrhYKpRqBe4FOgBBtnrs2U9qmhE95\n85R4MBl0bCRqUnzpJ8YfHfWcyAAE9mWemTjwgBGZt/HcyzQslNoP3AXsKKfd6V99WxjTNSZ8+mun\ny6juUUWP+u4MhGN3TTstuWnUVE/4vg4j0AbQCtyllqm8egdHCkZoeqNUDKUeLKPrZYXyZK6XUDIU\nWPLGkvIZTTO6KXz2/j7ZXlkfub3h9OD+8mq7Z3Z0ELUZuEctU7bOnOpGTK9TPxwtLR/4CmuqRxPz\n7MvROKoxurphdSAZSNqShD2FpF4cd0RsXd0sb9ZiABL+FC8eFWPH5NuUwpM/TsPFCE0/iHBBOcnx\nX2JtbAl7PfuixP3x5JqGNfGm2qaCnmNz+ajoYxOPC3SWVTo7P7adtNZFePr4ID3lSaW4xWlzShUj\nNP0gwunAXIBT2Bv5HOuCtcQ9+9I0jWqKrpm+xh8PxodVg0uIP/XCuAU9G2obvOfwzZDwJ1k3N8bG\nWZlzbFaKvztqUwljhKYfRDgaODgntp90+lLeir6fzeVhUp4cGpD0JVPrp67v2TlmZ8VQxtzsrBgX\nWTHh6OCAE7y5lbSk2Dyth7XzQySC2R0Gbyrl/QRWQ8UITT+IMAU4r/fyChLJT/B67D3sDAVwfEyK\nLXSVd8XXT12fbBnVkleQY2t5TfSZ+kXSHB5d2rl9h4pCsXt8lFeODBIJ9yWizynF+qLb5RKM0PSD\nCOXAx3OtH0s08WnWJ06kKezzyujWXrRXtsfWTV2X7qjs6DN1w4FAOPZ8/cLUoOZbchuttVFeWuRj\n/6j+UqXeo1Th5373CkZoBkCEy4Ca/raZxf7Y51ifnot3p6ltqmmKbpy0kYzgHAhWxFaPnpN6s2Zq\n4SKuS43Oih5eWajYO36g+5oGblIq/wyOIw0jNAMgwruBmflsO4OO2MVsTb2DvWVe9OGkQT1dKV23\nz1Hp7fOkGp/y3jislKTZW9/DxhlC89h8fzjalOIOW+1yOUZoBkCExcBJg9knSCp9Gnt6zmebzKEj\nhMubVRH8qSeZ3HMXs4KNVOoeqfJYknlbY8zaUUbIAz1xByp7eGtais3TQyQHPVHdRqVGbgqIfDBC\nMwAiTAQuHOr+9UTiF7I1cQa7y0a5qGu8m0BiHWPizzJRnmViKEGuKU+UYlJzD9P2pJnYEiQ0vK7x\nopLwJ9k5McbGGUH2jxqO3U8rxesFs8uDGKEZANFdvFcCw5ozSVDqaFp6TqQ5fST7/FPpLPOXVgiI\n2k1l/CXqk88wyb+RunKGUhOr6YwxbU+SKU0+ag+UIyV0jgpFV0WcltFJ9tQLu8eHSA9hzqjD+T+l\n6Bp4s5GLEZo8EOFMYHYhywySSi2gLX48zemFtPkbOFAWpLg+j24CiU2MSqxkAs8yKbif8sLWuIKJ\nFJOaYkzbqxjbXkYoHqCYzcg0is6qGM2jU+ytF5rHlPca+1II9inFnQUu03MYockDEWYDZ9p5DD9p\nNZ/22FG0pqbQzQQivjFE/bXEgv5hvJwpSO8jlNxLZWon1entVLOVGv8OqoNRBu2LGB7+ZJqargS1\nnSlqDyhquqC6209FtAz/MERWkSZWliQSStNdkaKzEprH+GkeHSRl+zmuUoqXbT6G6zFCkwfWeJor\ncKCpIyg1iniyjp70aHrSo4mpOmIKIIFPkvhI4FPW/xLHRxIfcXy0EvbvoTKgkNJpvvSNoiKSpCqS\nxJ8Cfxp8afCnFb40+NIKf1rwpUGUoqccesp9REM+ouV+esr9qALmGx4cdytFi0PHdg1GaPJEhAuB\niU7bYSgpIkpxq9NGuIFS/6UrJbY5bYCh5NjhtAFuwQhN/rxFntPpGkYMG502wC0YockTpYgCW522\nw1AytJnYpvwxQjM4zKAsQwbzLAwCIzSDQCn2APsH3NDgdRLAm04b4SaM0Awee6dVNbiBzUrh2JQ1\nbsQIzeDZCCYdwAhng9MGuA0jNINEKWLouZQNI5MdStHqtBFuwwjN0FgLpuo8QjHhBkPACM0QUIoe\nMPlhRyBbTW1maBihGTqvoudYNowMFKY2M2SM0AwRy1fzqtN2GIrGZqVod9oIt2KEZnisA7qdNsJg\nO0lMbWZYGKEZBtZYiuectsNgO6uV4oDTRrgZIzTDRCm2YiK7vUwbupfRMAyM0BSGZzGOYS+igKeU\nMlH7w8Vzcw85gVJ0i/AS8E6nbbEP3+9h7C5I+3X6u3c9D395FDw5I3CGDUrR7LQRXsAITeHYAMwC\nJjhtiD0E4tB8vf5/bRVc8v/ggjA8cJ+zdtlGF/Ci00Z4BdN0KhBKoYDHgR6nbbGfxV3wh1tgxelO\nW2ITaeAxEzhZOIzQFBBrbp8n0G17j3P2PlA+XbvxHCtNUqvCYoSmwCjFTmCV03YYhsxmpUx4SaEx\nQmMPq4BdThthLw+NBUnrZpRn2A885bQRXsQIjQ1k+Wu89BJmsbYKPvsxOOMJpy0pIAngEeOXsQcz\nr5ONiFALXASEnLZl+Ph+B2N3e7R7OwU8qBS7nTbEqxihsRkRxgEXAIWd19pQKBS6h2mL04Z4GdN0\nshlrutSH0b+ahtLjaSMy9mOEpghYVfLHMRPQlRovKmWSzRcDIzRFwgq+fIoRMcbGFaxWijVOGzFS\nMD6aIiPCDOBMSsqL2hqAo74GySCk/HDMWnj0br3uo2fAQ6frruyj1sHjd8GjY+Dc5TC6UW8zaws8\n/3/QWAZLroa2cXr7o199u5yS4gWlTER2MTGxTkVGKbaK8CBwNiXjIB6bhFW/hAlxiPhg9jfghtkQ\n88Pzi2Hb96E6dego4Nrmt2OfMvgUfOYh+Oom6PTDgn+B5QthWanMGpEGnjHNpeJjmk4OYPls7gUi\nTtvyNhOsNBcHAjq0YGI33HwafOYBLTIw8OC8+oQWGdD7NOyAHbX22TwoEsDDRmScwQiNQyjFPuBu\ndGKlEiAhUP89mPZzmL8RPrQXmsfDirkw6V9h2lfhv6a/vX3HWKj/rl5+w+zDy9sUhnVHwUdK4cWO\nAPcpxQ6nDRmpGB+Nw4gQAE4F5jpti2ZzGJZ8Cf7lLvjJZVp0nvkr/Gk6fO1q6PgOdPihsRzmReDG\nafDFz8L6a2F6TJcR8cGia+DE9XDb446eDrrHTymiDtsxojE1GodRiqRSrABWUBKT0s2KwrHrYOV0\nGLUf3mcFiF61HUTBa5UwKqVFBmDpDhjdAo+Pf7uMJVfApEaHRSaNTih+vxEZ5zFCUyIoxZs41pRa\nV6WbOgDNQVh7BBy/E05dDY/M18vvrdc9Ugu79fY9opc/NBb2jYdTW/T3sy+GaAhW/K3453GQbuCf\nSrHKijszOIxpOpUYIviBU4AjACnOUW+bDF/+hHYCK4ElK+Guh3XP0ZKPw64p4E/B126Hr78JXz8G\nbrwIfCldy/n0vfD9dfB0LZz2Y93t7U/qsi96HP6rmDNF7ABWWLOJGkoEIzQliggT0L6b0U7b4hK6\ngedNOEFpYoSmhBFBgEXAcZTMmJuSI42eB/0Vk+KhdDFC4wJEqEQ3p2Y6bUuJ0YgegFciQwQMuTBC\n4yKs5tSxwBSnbXGYVnSs0lanDTHkhxEaFyLCeLTgTHXaliLTAqxSiu1OG2IYHEZoXIyVVOtYYBpF\n66FyhCa0wOx02hDD0DBC4wFEqAbmoUcXe2X6kx7gLWCjFa5hcDFGaDyE1Us1GS06DZRUKoq8UOjZ\nIzYC25UyWQm9ghEajyJCObpJNRXtPC7VBOkJdDzSLrS4dDtsj8EGjNCMAKyazli06EwFxuFc+IkC\n2oGd1qdRKZPi1OsYoRmBWGEOdcCYXp+yAh8qiY7d2pf1aTMD60YeRmgMB7EGBlZYn3DW3zB6ZLLw\ndk1IoUflpoAoOudL779dJqjRAEZoDAZDETBpIgwGg+0YoTEYDLZjhMZgMNiOERqDwWA7RmgMBoPt\nGKExGAy2Y4TGYDDYjhEaAyKyTUQiItIpIo0icouI1FjrbhKRtIickLX9bBE5LGzA2jYhIhOKab+h\n9DFCYwA9yvcCpVQ1sBidp/i7WevbgOv72jGDiFQCHwA2AJfbZKfBpRihMRyCUqoJeBhYkFkE/Bk4\nSkRO62fXDwBbgZ8CH7fVSIPrMEJjyCAAIjIFOBd4MWtdBPgh8IN+9v848FfgXmC2iBxrk50GF2KE\nxgBaZP4uIgfQE7Bt4dCmkgL+AEwTkXMP21lkGnA6cLtSqhN4CLjSbqMN7sEIjQG0kFyslKpBC8YZ\nwPGHbKBUHLjO+vSOxL0CWK+UetP6fjvwUREJ2Gm0wT0YoTEcglLqKeA3wE+yFmcSn98E1KL9Mdlc\nCcwRkb0ishf4FTrR1nn2WmtwC0ZoDH3xK+BEETkpe6FSKgksA76JVasRkczEdiege6wWA0cC/4dp\nPhksjNAYDkMp1YruafrXzKKs1bcBe7K+Xwn8XSn1mlKq2fo0ATcA54tIbVGMNpQ0JvGVwWCwHVOj\nMRgMtmOExmAw2I4RGoPBYDtGaAwGg+0YoTEYDLZjhMZgMNiOERqDwWA7RmgMBoPtGKExGAy28/8B\nb/yQeBvH0psAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x2b5617ab5f90>" ] } ], "prompt_number": 65 } ], "metadata": {} } ] }
bsd-3-clause
huseinzol05/Deep-Learning-Tensorflow
deprecated/Deep Convolutional Network/mnist.ipynb
2
6636
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import time\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from tensorflow.examples.tutorials.mnist import input_data\n", "import tensorflow as tf" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extracting /home/huseinzol05/Documents/MNIST/MNIST_data/train-images-idx3-ubyte.gz\n", "Extracting /home/huseinzol05/Documents/MNIST/MNIST_data/train-labels-idx1-ubyte.gz\n", "Extracting /home/huseinzol05/Documents/MNIST/MNIST_data/t10k-images-idx3-ubyte.gz\n", "Extracting /home/huseinzol05/Documents/MNIST/MNIST_data/t10k-labels-idx1-ubyte.gz\n" ] } ], "source": [ "mnist = input_data.read_data_sets('/home/huseinzol05/Documents/MNIST/MNIST_data', one_hot = True)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class Model:\n", " \n", " def __init__(self, learning_rate, y_shape):\n", " self.X = tf.placeholder(tf.float32, (None, 28, 28, 1))\n", " self.Y = tf.placeholder(tf.float32, (None, y_shape))\n", " \n", " def convolutionize(x, conv_w, h = 1):\n", " return tf.nn.conv2d(input = x, filter = conv_w, strides = [1, h, h, 1], padding = 'SAME')\n", "\n", " def pooling(wx):\n", " return tf.nn.max_pool(wx, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME')\n", " \n", " w1 = tf.Variable(tf.random_normal([3, 3, 1, 16], stddev = 0.5))\n", " b1 = tf.Variable(tf.zeros(shape = [16]))\n", " w2 = tf.Variable(tf.random_normal([3, 3, 16, 8], stddev = 0.5))\n", " b2 = tf.Variable(tf.zeros(shape = [8]))\n", " w3 = tf.Variable(tf.random_normal([3, 3, 8, 8], stddev = 0.5))\n", " b3 = tf.Variable(tf.zeros(shape = [8]))\n", " w4 = tf.Variable(tf.random_normal([128, y_shape], stddev = 0.5))\n", " b4 = tf.Variable(tf.zeros(shape = [y_shape]))\n", "\n", " conv1 = pooling(tf.nn.sigmoid(convolutionize(self.X, w1) + b1))\n", " conv2 = pooling(tf.nn.sigmoid(convolutionize(conv1, w2) + b2))\n", " conv3 = pooling(tf.nn.sigmoid(convolutionize(conv2, w3) + b3))\n", " conv3 = tf.reshape(conv3, [-1, 128])\n", " self.logits = tf.matmul(conv3, w4) + b4\n", " \n", " self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = self.logits, labels = self.Y))\n", " self.optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(self.cost)\n", " \n", " self.correct_prediction = tf.equal(tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))\n", " self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, \"float\"))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "learning_rate = 0.01\n", "sess = tf.InteractiveSession()\n", "model = Model(learning_rate, mnist.train.labels.shape[1])\n", "sess.run(tf.global_variables_initializer())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch: 1, loss: 0.27670943084, accuracy: 0.920928030303, s / epoch: 27.144755125\n", "epoch: 2, loss: 0.188248241533, accuracy: 0.946896853147, s / epoch: 27.0147771835\n", "epoch: 3, loss: 0.152987092488, accuracy: 0.95541958042, s / epoch: 26.8241751194\n", "epoch: 4, loss: 0.129784707049, accuracy: 0.9622122669, s / epoch: 26.8857750893\n", "epoch: 5, loss: 0.114598895856, accuracy: 0.967202068765, s / epoch: 27.4256939888\n", "epoch: 6, loss: 0.101240242707, accuracy: 0.970880681818, s / epoch: 28.2523770332\n", "epoch: 7, loss: 0.0919746177223, accuracy: 0.973594114219, s / epoch: 28.2267827988\n", "epoch: 8, loss: 0.085458196739, accuracy: 0.975979749417, s / epoch: 28.3221931458\n", "epoch: 9, loss: 0.0804469554527, accuracy: 0.977236305361, s / epoch: 28.1964430809\n", "epoch: 10, loss: 0.0763231400005, accuracy: 0.978511072261, s / epoch: 28.5655319691\n" ] } ], "source": [ "EPOCH, LOSS, ACC = [], [], []\n", "BATCH_SIZE = 128\n", "\n", "for i in xrange(10):\n", " last = time.time()\n", " EPOCH.append(i)\n", " TOTAL_LOSS, ACCURACY = 0, 0\n", " for n in xrange(0, (mnist.train.images.shape[0] // BATCH_SIZE) * BATCH_SIZE, BATCH_SIZE):\n", " batch_x = mnist.train.images[n: n + BATCH_SIZE, :].reshape((-1, 28, 28, 1))\n", " cost, _ = sess.run([model.cost, model.optimizer], feed_dict = {model.X : batch_x, model.Y : mnist.train.labels[n: n + BATCH_SIZE, :]})\n", " ACCURACY += sess.run(model.accuracy, feed_dict = {model.X : batch_x, model.Y : mnist.train.labels[n: n + BATCH_SIZE, :]})\n", " TOTAL_LOSS += cost\n", " \n", " TOTAL_LOSS /= (mnist.train.images.shape[0] // BATCH_SIZE)\n", " ACCURACY /= (mnist.train.images.shape[0] // BATCH_SIZE)\n", " LOSS.append(TOTAL_LOSS); ACC.append(ACCURACY)\n", " print 'epoch: ' + str(i + 1) + ', loss: ' + str(TOTAL_LOSS) + ', accuracy: ' + str(ACCURACY) + ', s / epoch: ' + str(time.time() - last)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "testing accuracy: 0.9762\n" ] } ], "source": [ "from sklearn import metrics\n", "testing_acc, logits = sess.run([model.accuracy, tf.cast(tf.argmax(model.logits, 1), tf.int32)], feed_dict = {model.X : mnist.test.images.reshape((-1, 28, 28, 1)), model.Y : mnist.test.labels})\n", "print 'testing accuracy: ' + str(testing_acc)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ibm-cds-labs/pixiedust
notebook/PixieDust 5 - Stash to Cloudant.ipynb
1
3447
{"nbformat": 4, "nbformat_minor": 0, "cells": [{"source": "# Stashing Your Data\n\nWith PixieDust, you also have the option to export the data from your Notebook to external sources.\nThe output of the **`display`** API includes a toolbar which contains the **Download** button.\n\n<img style=\"margin:10px 0\" src=\"https://pixiedust.github.io/pixiedust/_images/downloadfile.png\">\n\n", "cell_type": "markdown", "metadata": {}}, {"source": "***\n### Stash to Cloudant\n\nOne export option is to save the data directly into a [Cloudant](https://cloudant.com/) or [CouchDB](https://couchdb.apache.org/) database.\n\n\n#### Prerequisites\n\nCollect your database connection information: the database host, user name, and password. \n \n> If your Cloudant instance was provisioned in [Bluemix](https://console.ng.bluemix.net/catalog/services/cloudant-nosql-db/) you can find the connectivity information in the Service Credentials tab.\n\n\n#### Steps \n\n* From the toolbar in the **`display`** output, click the **Download** button \n\n* Choose **Stash to Cloudant** from the dropdown menu \n \n> If you get an error that a library is missing, you may need to [install the cloudant-spark](https://github.com/ibm-watson-data-lab/pixiedust/blob/plotting-tools/docsrc/source/install.rst#stash-to-cloudant) library.\n\n* Click the dropdown to see the list of available connections \n\n* Select an existing connection or add a new connection \n\n * Click the **`+`** plus button to add a new connection\n * Enter your Cloudant database credentials in JSON format \n \n > If you are stashing to CouchDB be sure include the protocol. See the [sample credentials format](#Sample-Credentials-Format) below.\n\n * Click **OK**\n * Select the new connection\n \n* Click **Submit**\n\n\n#### Sample Credentials Format \n\n* **CouchDB**\n```\n{\n \"name\": \"local-couchdb-connection\",\n \"credentials\": {\n \"username\": \"couchdbuser\",\n \"password\": \"password\",\n \"protocol\": \"http\",\n \"host\": \"127.0.0.1:5984\",\n \"port\": 5984,\n \"url\": \"http://couchdbuser:[email protected]:5984\"\n }\n}\n```\n\n* **Cloudant**\n```\n{\n \"name\": \"remote-cloudant-connection\",\n \"credentials\": {\n \"username\": \"username-bluemix\",\n \"password\": \"password\",\n \"host\": \"host-bluemix.cloudant.com\",\n \"port\": 443,\n \"url\": \"https://username-bluemix:[email protected]\"\n }\n}\n```\n", "cell_type": "markdown", "metadata": {}}, {"source": "***\n### Download as File\n\nAlternatively, you may choose to save the data set to a various file formats (e.g., CSV, JSON, XML, etc.)\n\n#### Steps \n\n* From the toolbar in the **`display`** output, click the **Download** button\n* Choose **Download as File**\n* Choose the desired format\n* Specify the number of records to download\n<img style=\"margin:10px 0\" src=\"https://pixiedust.github.io/pixiedust/_images/save_as.png\">\n* Click **OK**\n", "cell_type": "markdown", "metadata": {"collapsed": true}}], "metadata": {"language_info": {"nbconvert_exporter": "python", "file_extension": ".py", "codemirror_mode": {"name": "ipython", "version": 2}, "pygments_lexer": "ipython2", "version": "2.7.11", "mimetype": "text/x-python", "name": "python"}, "kernelspec": {"language": "python", "display_name": "Python 2 with Spark 1.6", "name": "python2"}}}
apache-2.0
JaeGyu/PythonEx_1
머신러닝 딥러닝 실전개발 입문 책 연습/TensorflowEx1.ipynb
1
30914
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.2.0\n" ] } ], "source": [ "import tensorflow as tf\n", "print(tf.__version__)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "hello = tf.constant(\"Hello\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor(\"Const:0\", shape=(), dtype=string)\n" ] } ], "source": [ "print(hello)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "파이썬3 버전은 문자열(str) unicode가 기본이므로 str에서 encoding처리해 줘야 bytes 타입을 uncode type으로 변환함\n", "안해줄 경우 b'Hello'이렇게 나옴" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hello\n" ] } ], "source": [ "sess = tf.Session()\n", "print(str(sess.run(hello),encoding = \"utf-8\"))\n", "# print(sess.run(hello))\n", "sess.close()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor(\"Const_1:0\", shape=(), dtype=float32)\n", "Tensor(\"Const_2:0\", shape=(), dtype=float32)\n" ] } ], "source": [ "a = tf.constant(1234, dtype=tf.float32)\n", "b = tf.constant(5000, dtype=tf.float32)\n", "print(a)\n", "print(b)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor(\"add:0\", shape=(), dtype=float32)\n" ] } ], "source": [ "add_op = a + b\n", "print(add_op)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6234.0\n" ] } ], "source": [ "with tf.Session() as sess:\n", " print(sess.run(add_op))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6234.0\n" ] } ], "source": [ "add_op2 = tf.add(a,b)\n", "with tf.Session() as sess:\n", " print(sess.run(add_op2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 마크다운으로 메모 작성하기...!\n", "마크 다운으로 메모를 작성합니다.\n", "\n", "## 이번 절의 목표\n", "\n", "- jupyter notebook\n", "- 시각적으로 기계 학습 살펴보기" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADMdJREFUeJzt3X+oX/ddx/HnK0tb1C2FrlA1WSK2a0PLsiqaTRz2bv5I\nOpCICDaVDSuOIIvuPyuiJIWB+oeiM2obidMpI4UN1si2rgMbXGEtUfvLNbHpNrIk6ypzrdKtgxjf\n/nG/W7+5uTf33O/9Jvfm3ecDDvue7/dzz/1w+OSZk3N77lJVSJJ6WrPSE5AkXTxGXpIaM/KS1JiR\nl6TGjLwkNWbkJamxRSOf5ECSF5I8dYExH0pyPMkTSW6d7hQlSZMaciX/YWDbQh8muR24vqreDOwC\n7p3S3CRJy7Ro5KvqEeDFCwzZAXxkNPYx4Ook101nepKk5ZjGPfn1wMmx/dOj9yRJK8wfvEpSY2un\ncIzTwJvG9jeM3jtPEn9RjiRNoKoyydcNvZLPaJvPIeC9AEneDrxUVS8sfKha0W3durfw5JNPUlWX\n/bZnz54Vn0OnbTWsT2DFz8M0tk5rc7Wsi0kteiWf5KPADPDGJF8B9gBXAlVV+6vqU0neneQ54JvA\nXcuakSRpahaNfFXdOWDM7ulMR5I0Tf7g9TI2MzOz0lOQ5uXaXD2M/GXMP0harVybq4eRl6TGjLwk\nNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6S\nGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9J\njRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1NijySbYnOZbk2SR3z/P5uiSHkjyR5Okkvzr1mUqS\nlmzRyCdZA+wDtgG3ADuTbJ4z7P3AF6rqVuCdwB8nWTvtyUqSlmbIlfxW4HhVnaiqM8BBYMecMQW8\nYfT6DcB/VdX/Tm+akqRJDIn8euDk2P6p0Xvj9gE3J/kq8CTwgelMT5K0HNO6pbINeLyq3pXkeuCz\nSbZU1cvnD9079npmtEmSXnV4tC3fkMifBjaO7W8YvTfuLuAPAKrqi0m+DGwG/uX8w+2dYJqS9Foy\nw7kXwPdMfKQht2uOADck2ZTkSuAO4NCcMSeAnwFIch1wI/CliWclSZqKRa/kq+pskt3AQ8z+pXCg\nqo4m2TX7ce0HPgj8bZKnRl/221X1jYs2a0nSIIPuyVfVg8BNc967b+z188zel5ckrSI+8SpJjRl5\nSWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8\nJDVm5CWpMSMvSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Ze\nkhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1JjgyKfZHuSY0meTXL3AmNmkjye5N+TPDzd\naUqSJrF2sQFJ1gD7gJ8GvgocSfJAVR0bG3M18BfAz1XV6STXXqwJS5KGG3IlvxU4XlUnquoMcBDY\nMWfMncDHq+o0QFV9fbrTlCRNYkjk1wMnx/ZPjd4bdyNwTZKHkxxJ8p5pTVCSNLlFb9cs4Tg/CrwL\n+D7g80k+X1XPTen4kqQJDIn8aWDj2P6G0XvjTgFfr6pvA99O8s/AW4F5Ir937PXMaJMkverwaFu+\nIZE/AtyQZBPwPHAHsHPOmAeAP0/yOuAq4G3An8x/uL0TTlWSXitmOPcC+J6Jj7Ro5KvqbJLdwEPM\n3sM/UFVHk+ya/bj2V9WxJJ8BngLOAvur6pmJZyVJmopU1aX7ZknBpft+81m3bguf+9w/sGXLlhWd\nh1afJKz0+oRwKf9ManGraF1kkq/0iVdJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0Z\neUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaM\nvCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNG\nXpIaM/KS1NigyCfZnuRYkmeT3H2BcT+e5EySX5zeFCVJk1o08knWAPuAbcAtwM4kmxcY94fAZ6Y9\nSUnSZIZcyW8FjlfViao6AxwEdswz7jeBjwH/OcX5SZKWYUjk1wMnx/ZPjd77riQ/CPxCVf0VkOlN\nT5K0HNP6weufAuP36g29JK0CaweMOQ1sHNvfMHpv3I8BB5MEuBa4PcmZqjp0/uH2jr2eGW2SpFcd\nHm3LNyTyR4AbkmwCngfuAHaOD6iqH/7O6yQfBv5x/sDDuZGXJJ1vhnMvgO+Z+EiLRr6qzibZDTzE\n7O2dA1V1NMmu2Y9r/9wvmXg2kqSpGnIlT1U9CNw05737Fhj7a1OYlyRpCnziVZIaM/KS1JiRl6TG\njLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1Jj\nRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakx\nIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1NijySbYnOZbk2SR3z/P5nUmeHG2PJHnL9Kcq\nSVqqRSOfZA2wD9gG3ALsTLJ5zrAvAT9VVW8FPgj89bQnKklauiFX8luB41V1oqrOAAeBHeMDqurR\nqvrv0e6jwPrpTlOSNIkhkV8PnBzbP8WFI/7rwKeXMylJ0nSsnebBkrwTuAt4x8Kj9o69nhltkqRX\nHR5tyzck8qeBjWP7G0bvnSPJFmA/sL2qXlz4cHuXNEFJeu2Z4dwL4HsmPtKQ2zVHgBuSbEpyJXAH\ncGh8QJKNwMeB91TVFyeejSRpqha9kq+qs0l2Aw8x+5fCgao6mmTX7Me1H/h94BrgL5MEOFNVWy/m\nxCVJixt0T76qHgRumvPefWOv3we8b7pTkyQtl0+8SlJjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMv\nSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGX\npMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhL\nUmNGXpIaM/KS1NigyCfZnuRYkmeT3L3AmA8lOZ7kiSS3TneakqRJLBr5JGuAfcA24BZgZ5LNc8bc\nDlxfVW8GdgH3XoS5ao7Dhw+v9BSkebk2V48hV/JbgeNVdaKqzgAHgR1zxuwAPgJQVY8BVye5bqoz\n1Xn8g6TVyrW5egyJ/Hrg5Nj+qdF7Fxpzep4xkqRLbO2l/obr1v38pf6W53jllS9zxRVXrOgcJOlS\nSVVdeEDydmBvVW0f7f8OUFX1R2Nj7gUerqr7R/vHgNuq6oU5x7rwN5MkzauqMsnXDbmSPwLckGQT\n8DxwB7BzzphDwPuB+0d/Kbw0N/DLmaQkaTKLRr6qzibZDTzE7D38A1V1NMmu2Y9rf1V9Ksm7kzwH\nfBO46+JOW5I0xKK3ayRJl6+pP/Ga5ECSF5I8dYExPjg10GLnM8ltSV5K8m+j7fcu9RwvF0k2JPmn\nJF9I8nSS31pgnOtzgCHn0/U5XJKrkjyW5PHR+dyzwLilrc+qmuoGvAO4FXhqgc9vBz45ev024NFp\nz6HTNuB83gYcWul5Xg4b8P3AraPXrwf+A9g8Z4zrc7rn0/W5tHP6vaP/fR3wKLB1zudLXp9Tv5Kv\nqkeAFy8wxAenlmDA+QTwB9oDVNXXquqJ0euXgaOc/zyH63OggecTXJ+DVdW3Ri+vYvZnpnPvpy95\nfa7ELyjzwanp+4nRP90+meTmlZ7M5SDJDzH7L6TH5nzk+pzABc4nuD4HS7ImyePA14DPVtWROUOW\nvD4v+cNQmrp/BTZW1bdGv0PoE8CNKzynVS3J64GPAR8YXYFqGRY5n67PJaiq/wN+JMk64BNJbq6q\nZ5ZzzJW4kj8NvGlsf8PoPU2gql7+zj/xqurTwBVJrlnhaa1aSdYyG6S/r6oH5hni+lyCxc6n63My\nVfU/wMPA9jkfLXl9XqzIh4Xvwx0C3gvffZp23gendI4Fz+f4/bgkW5n9z2K/cakmdhn6G+CZqvqz\nBT53fS7NBc+n63O4JNcmuXr0+nuAnwWOzRm25PU59ds1ST4KzABvTPIVYA9wJT44NZHFzifwS0l+\nAzgDvAL88krNdbVL8pPArwBPj+57FvC7wCZcn0s25Hzi+lyKHwD+bvTr3dcA94/W47IePPVhKElq\nzP/7P0lqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9Jjf0/A5tH6SPlZK4AAAAASUVORK5C\nYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11aec62e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "plt.hist([1,2,3])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x = np.arange(-20,20,0.1)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "y = np.sin(x)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x11af5d828>]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEACAYAAABbMHZzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfWlwHdd15ncAEiQBcAEXcF9FUiIpWdRqyXIkxJZtyWWL\ncioVyZOKI8cVq8pRxpWZmrFTSZWlqamK42yTVOzEM+OklKnITmQ7liLbkqxI0GJtlLhJFBdwFQmC\nAEgA3LEQuPPjvBYaj+8B3X1v9z338n5VLL7Xr9F9Tt97v/Pdc5cmpRQCAgICAi4v1Ng2ICAgICCg\neATyDwgICLgMEcg/ICAg4DJEIP+AgICAyxCB/AMCAgIuQwTyDwgICLgMYYT8ieh7RNRJRDvGOedv\niKiNiLYR0UYT9w0ICAgIyAZTyv8fAXyq2o9EdDeAK5RSawA8CODvDd03ICAgICADjJC/UuoVAL3j\nnLIJwD+Vzn0DwEwimm/i3gEBAQEB6VFUzn8xgCOx7+2lYwEBAQEBFhAGfAMCAgIuQ0wq6D7tAJbG\nvi8pHbsERBQ2GwoICAhICaUUpTnfpPKn0r9KeBLAFwCAiG4B0KeU6qx2IaWUsX+bNin83d/x53vv\nVfj2t/Wv+Y1vfMOojWn+7d+vMGeOQl+fwoEDCrNn82dpdqb5d9tt38Dv/z5//vrXFX7v9+zbpPM8\nBwcV5s1TeO89hf5+hfnz+bM0O9P8e/xxhTvuGP3c0iLTzjT/7rxT4bHHLv0szc4k/7LA1FTPxwC8\nCmAtEb1PRF8kogeJ6MslMv8ZgINEtA/AdwF8xcR9J0J3N9DaCnzhC/z9gQeAxx8v4s754fHHgfvu\nA2bOBFauBD78YeDpp21blR1KATt3Ar/zO/z9K18Bvv994OJFu3bp4PnngVWrgHXrgClTgC99Cfje\n92xbpYdHHwW++EX+fM89XGb799u1SQeHDgHbtwO/9mv8/QtfAB57zKpJhcPUbJ//pJRapJSaopRa\nppT6R6XUd5VS/zt2zkNKqdVKqWuVUltM3Hci/OIXQEsLUF/P3z/5SWDrVqCzap9DPp56CvjsZ0e/\n33sv8MQT9uzRxfbt/P+11/L/S5fyvzfesGeTLn74Qw7QEe65B3jmGXv26OL8eeCFF0aJsq4O2LQJ\n+NnP7Nqlg6efBu6+m4MzAHzucywUz5yxalah8HrA9+mngbvuGv0+bRpw++3Aiy/qXbelpUXvAhnR\n28tkGb/9Zz/Lfo6MXHq+LTvT4Jln2E6KJQw//Wngpz+1Z1M1JH2eL7wAfOITo99vvBFobweOHcvH\nrnKYLvfXXuPgPH366LFf/VXu4ejAZv187jngzjtHvzc2AtdfD7z66qXnutCOssBr8n/++bEFDAAf\n/Sjwy1/qXddWZXj9deCmm4CpU0ePLVwINDUBe/Zcer4Llfa114D7728Zc+zjHwdeftmOPeMhyfPs\n6OAgvX796LHaWuBjH9Mny6QwXe6trWMFB8Dk/+KLwPBw9uvaqp8jI1wWH//42OO33w689NKl57vQ\njrLAW/Lv6AD6+4Errhh7/LbbgFdesWOTLl5/nXP85bj1ViZR16AUK62PfGTs8Rtv5PSci3n/l1/m\nOlZT1rJuvRV48007NunipZeAO+4Ye2zhQmDuXOC99+zYpIO9e4FZs4BFi8Yev+MO/ayAS/CW/Ddv\nZhKhsvlHN94I7N7NeUzX8MYbwC23XHr8llvcJP/9+znnunTp2OMzZ/Kxd9+1Y5cO3niDib4cN9wA\nvPVW8fboYmQE2LaN2005briBg7RrePtttr0cN93Evur0ZlyCt+T/1ltcmOWYMgVYu5ZnK7gEpTig\n3Xzzpb/dfLObxLJ1a2VSAbiH4+Kg7/btwMYK2xZefz3/5lpv5sABVsmzZ1/62/XXA1sKmbphFlu2\nsO3lmDkTaG4G9u0r3iYb8Jb8t2ypHN0B4EMfAnZU3X9UJo4dAyZNAhYsuPS3DRs45+8asezYAVxz\nTeXfNm50r4yUYoKPZi7FMWMG92ZcS5Ns3Vo5mAHAddf5pfwB9nXbtmLtsQVvyX/nTuDqqyv/5iL5\nv/tudX8aGjh/6Zpieeed6uR/9dXu9c46Ovj/hQsr/37NNe75tG0bk3wlROSfcY2RFSjFbb9aQAvk\n7zjOneO5/CtXVv792mv9In+Af3MtRz4e+W/YwP64RCzbt7OwKB9nirB+PbBrV7E26WLnzuplNGcO\nT58uagqrCXR1cfnMm1f5dxeFYVZ4Sf67d3Nev7a28u8RsbiEnTvZ7mq45homU1dw7hwr5dWrK/++\nYAEPNnZ1FWuXDnbvHjvFsxzr1rmX9tmzB7jqquq/r1vHfruCXbvY5moB+qqrKk+b9hFekv9ERLlg\nATAwwPOxXcFEPq1f71YjbGvjabiTqmwtSMT+upQm2bMHuPLK6r+vX+8W+Q8NAQcPVg/QAJOlS72Z\niPyrYdUq4OhR5gdXcPhwtr/zkvx37x5frRBxz6CtrTibdNHWxjZXw5o1bvmzdy/bPB6uuorPcwUT\nkf/atUymQ0PF2aSDAweAJUtGt0CoBBeV/3i9s7o6YPlyd/YtGh4enxfGg5fkf+AAR/DxsHatO8Ry\n8iQX8ty51c9ZvZrJ35Uc+UTBDGCfXBrE3rt3fJ+mTuXB4EOHCjNJCxOJKMA95T9RgAb4d1dSP+3t\n4/PCePCS/A8erD7YG2HtWncKeN8+VsnV8pQAz8WeOhU4frw4u3SQRPmvXu2OAjtzhtOI5QvWynHF\nFe74lCRAr1njjj8AB96JuMEl8k/CddVw2ZL/mjXuKP+2tvHzrhFcSv1MpJIBt5T//v1M7OXbOpTD\nJfI/dAhYsWL8c5Yu5YH7wcEiLNLDyAjnxyfyySXREcg/hrNn+V+lxVBxrFzpTvc7Uv4TwSXy37dv\n4oAWEWWlHUul4fBhzhVPBN/If/JkYPHi7IOOReL4ce4hT5s2/nkrVzKpuoBA/jEcPMiNcLwUCcDn\nuFBhgVFVORFWrnTDp6QBurGRV8a6MI/cR/JPopIB9unAgdzN0UaSYAbweKEL/gCB/Mcg6cNYuJBz\ntP39+dukiyR5SgBYtgx4//3czdFGRCoTBWjAnYCWhvxdSGUpxfUuiU+ukGVSbli2jAdSXdguJZB/\nDEkfRk0Nd1ePHMnfJl0kbYSukH9SBQZwTtmFMkpK/itW8LnSZ2X19PAajJkzJz531So3ejNJ611d\nHTB/vhv1LpB/DAcPTjzNM4ILqZ/BQV7lumTJxOf6SP6u+JSU/GfOZOHR15e/TTpI6g/AZenC+Fma\nerdqlfy8/8AAv6c8CTdUgpfknzQSukAsR49ybrzaStg4li7l86UPkF7Oyh9ww6e0ZdTenqc1ZpCG\nG1askE/+hw/zs6+2jc1EuKzJ3wXln3TQDeBZDDNmyN8Px7cAff48cPo0pwqSIArSkpGm3i1ZIj+Y\nAekC2pIl8gOaTsoH8Iz8lfKP/NNUWIB9kk6WR45MvBgqggsqOfJnojn+EVzwKek4E8CTJ7q6ZA+Q\nDg9zwF22LNn5LpD/gQOB/D/AyZOcHpk1K9n5LqjKNEQJuOFTezsPtieBC0SZJuUDuOFTGtExeTJv\nkSx5dfmxY7wF9dSpyc5fskR+7ywo/xjSqBXADeWfhigB+eR/8SKrxGovPCnHvHm8dYLkdy77SP5p\nfZKe+knbg3aB/NOWUTm8Iv9jx9KNfLswQOob+Xd2sgKbPDnZ+TU18huib0QJ+EeWaYXh4sWy/QHS\n8105vCP/RYuSnz9tGqeIJHdXfSP/tP4A8n06fDh5LhmQP+B76hTnyJuakv+N9N5MWqKcO5dfOCS5\nx5mW78rhFfm3t6d/GNJTP2kLWDpRZiF/6cSSJe1z9KjchV5HjzJRJlmBHUG68k/bjoi4nkod9FUq\nkP8YHDuWTVVKJf/BQd6Cork5+d/4SP7SfTp6NN2gfEMDDzyePJmfTTro6EhPKr6RPyB7xk9vL9eh\n+vrs1/CO/NMW8OLFcjcO6+jgueNpFnHMm8dzzi9cyM8uHfim/JXKRpaSfTp2LPmAfATp4xhZyV9q\nQNNV/UAgfyxcyI1XIrL4E+1ZJLXSZlX+Uomlr4/3gkmrwCSTf9ZgJrXOAdkCmvR2FMg/hiwPRDL5\nZyFKgLeDkDqIffSoX8q/oyM9qQCyyTILUS5cyDO5JC70inpnWXozkssokH8JAwOc7pg3L93f+Uj+\nCxfKJf8sPkkuo6zkLzlNkkX519XxFF6J9a63l2f2pe2dSSf/LNwQhzfk39HBijfpEvsIkokla3SX\n6pNS2ci/qYmn3El890JW8l+8WGYZAdmUPyC3N5O1HUkm/5D2icE3ogT00j4SfTp9mqfQzZiR7u+I\neOC7szMfu3SQlfwlp+ayKH9A7tRIH8k/pH1iyNoNmjOHVaXE2TG+pX0if9LMH48gNUhnJUqp5B/N\nH88a0CQG6KxEOX8+v9RG4svpQ9onhqzdoEhVSmyIWX2SSpRZgxkglyx1iFKiP6dOcf6+oSH930pt\nR1nJv7aWxWF3t3mbdBGUfww6D0MiWUYKzKe0j4/knzXtM28eq8rhYfM26SBrMAPklpEON0j0aXiY\nN0dcsEDvOoH8IZP8s+bHAblpn+PHs1dYiWUEZCf/2lpg9mx5qlKXKKWmfbIGNIljTV1dPAki6eaI\n1eAV+WdVlRKJJSupAKOqUtqc687O5G+7KodEBQbolZPENIlv/gD+KX8T+X7AM/LPWmklkr8OUdbW\n8q6E0hSLb+R/9ix3wbP0zgCZPvlGlICeTxKVvw7XxeEN+fuWUtAhSkBm6uf4cT3yl1ZGkUrOMnsJ\nkEmWusq/s1PWbqUjI/yMdcYxpJG/DtfF4QX5Dw6yCkuz/3gcPpK/RLLU8UliMNMhSkAm+euo5Pp6\nYMoUnjEkBT09QGMj25UFElNZXV163BDBC/Lv6uI8d9rVvRF8JH+pPmVVLBJVpe50O4nkrxvQpJGl\nLlFKTPt0dqbb5r0avCB/X4nSp7TP0BArwjlzsv19tHd5T49Zu3Tgo/LXJUtpaRJdovSxjCJ4Qf5d\nXXoF3Nwsb3aMrk/S0j7d3Uz8ad5NUA5pAc1Eak6SP4B/ZBmUf3V4Qf66jXDSJJ5zfeKEOZt04Vtv\nRtcfwD9ikebPwABvdZJ17AyQl/bRJcrZs3k8cWDAnE26CMo/BhMPo7mZryMFvqlKU+QvKaCZ6J1J\nKqPubh47yzp7CZCX9tEto5oafibSuEGM8ieiu4hoNxHtJaKvVfj9DiLqI6ItpX9/bOK+EUw8DEnk\nr5Q+WUryB/BX+evUu1mzeENBKZsK6voDyCwj3XonKfVz8aLe2Fkck3QvQEQ1AP4WwMcBHAOwmYie\nUErtLjv1JaXUPbr3q4SuLuDaa/WuISm6nz3L6quxMfs1mptlbR1ggvwlNUJAnyyJRpXyihXGzMoM\nE+TvW9oHkNWb6e7mVJTO2FkEE8r/ZgBtSqnDSqkhAD8AsKnCeRqdyfFhSvlLIUsTjXDGDM5TSlGV\nJshfUhkpZU4pS0llmfJHClEC/gU0U/l+wAz5LwYQfyHd0dKxctxKRNuI6KdEtN7AfT+AKWKRovxN\n+EPEvRkpZGnCJ0m9s3Pn+Bln2fo4DkkBLaR9KkNSQDOV7wcMpH0S4m0Ay5RS54nobgA/AbC22skP\nP/zwB59bWlrQ0tIy7sVNDfhu3qx3DVMwQZTAKLEsW6Z/LV34pvxNECUgK6CZFFFK6Q0cm4IJspw/\nHzhwwIw9uoi4rrW1Fa2trVrXMkH+7QDi9LKkdOwDKKXOxj7/nIi+Q0SzlVIVl+zEyX8ijIzwFM20\nL24vh2/KH/CPWCT5Y5L8JQW0DRv0rlFXx4vx+vr0poyawLlzPEA6fbredebPB157zYxNuoiCWbko\nfuSRR1Jfy0TaZzOA1US0nIjqANwP4Mn4CUQ0P/b5ZgBUjfjToqeH89u6e1tLIhbTyl8CTCp/CVs8\nmCJ/SWXkW0Dr7mZ/dHsgPgpDwAD5K6WGATwE4FkAOwH8QCm1i4geJKIvl077dSJ6l4i2AvhfAO7T\nvW8EUzkwaY3QJ+U/PMxBWrd3FuXXz53Tt0kXPqZ9TPokYcGkyR60BH8AswO+RnL+SqmnAVxZduy7\nsc/fBvBtE/cqh6mHIS2633GH/nWk+HTyJM9pn2SgtkWqUmcarAn4ppIB/3wy5c/cuTL8AcwO+Dq/\nwtdUdJc0NdK3tM+JE9yATEBKQPMt7RNNXdXtnQFyyNIk+Z88KSfdKCbtYxumIiGRnIYYLbPXhZSU\ngkny901VSvHn9Gne837aNP1rSUmTmBJRdXWccuzr07+WLoLyj8FUIwTkNEQTs5cAOSrZR+UfDSbq\nIgrQtlWlyYFEKe3IJDdI6M0oZa7eAR6Q/4kT5h6GBGIZHjY3TU5KT+bkyaD8q2HaNFaWZ87oX0sH\nvhElYF4Y2u7NnDnDdWXqVDPX84L8fVKVfX08/mBqcFSCqjxxwsxGVICMMgLM5ccBGQHNxx60yTKS\nENBMch3gCfn7RCwmC1jK1Ejfcv7RwkKTPtmud76pZMBc+hSQ4VMg/zL4pvxN+iNlfx/fyL+3l1eN\n1tWZuZ4En7q7/SojwL96F8i/DL4V8MmT5noygH8BTYI/JtMJgIyxGZMqWUKKRCmz9W7u3KD8RWFk\nhFeOmkz72N69z3QBSyBLkwFNQoA2SZSAjLSPyTJqbOSJC+fPm7leFpw7x2/hqq83cz0p9S6Qfwmn\nTnFeW3dfnwjRYg6bMF3AvlVaCYPYoYzGR5RutKmUTc4wA2T0ZgL5x2D6YfjYtZOgKk0PYtfW8tvO\nbCGP3plvxGKbLPNoR75xQyD/GCSQv+mcv+3ezNAQd8FnzjR3TdsBzXQZSVD+vvnkWzADAvmPgemH\nMWMG0N8PDA6au2Za+BbQenp4wVqNwZrmG7HYDmaAf0rZN3+AQP5jYPphELH6samUTfvkmz+A/d5M\nHjOybAazgQH+p/vSkzgkBGiTZTR9OovC/n5z10yLQP4x5EUsvg1U+aTAAP8Cmu0yioKZydcu2k6T\n5CEMffMpkH8Z5syxT5Y+5fx9DNCmyyiajmhramQeZWQ7TeKbT9G09tmzzV0zkH8ZbBKLyU3dIvgW\nzAD75G+6dwbY9SkvovRJJQN2lX9fH6eeTE1rBxwnf98aYW8vz4oxsalbhKYmXg8xPGzummmQRxn5\nlvYB7PpkegwDsE/+edQ7m8o/jzrnNPn7pvzzaISTJvEspt5es9dNCt/K6OJFfvHJrFlmr+ub8vct\nPw7YDWiB/MvgG7Hk4Q/gn082VXJvLxN/ba3Z69r0ybf8OBC4IQkC+ZfB5gBpIP9ksO2P6d4Z4F+P\nM0o3Xrxo9rpJEG3q5lMqKw9/nCX/4WGuXCYHRwH7xJIH+fuWT7YZoPPIJQP+1bvaWm6bNsrpzBl+\nH7GpN15FsJnKCso/hmhwNI/ut08KDPCPWKIysrG5W17K37e0D2Av9ZNXGYUBXyHwsfsd0j7JEKm6\n06fNXjcJfFT+eYkOW2mSPNuRLeWfR71zmvx9a4S+pX0GB3nhkslN3SLY8sm3MgLyVf42yDKvAB2U\nvxDkVWEbG3knygsXzF97IvgW0E6e5BWJJrcNiGDTp9DjTAZbSjnPAN3by6tti0Yg/xjyKuBoDw8b\nKiwvYrGlKvNSYIC9MvJN+eexqVsE39I+kybxc+rpMX/tiRDIP4a8Chjwj1hsqco8y8jWwLxvY015\nbOoWwbd2BNgdxA7kX0Le5O9LAQP++QPY7Z3l4VNDA8+JLzrd6GMZ5e1T0b2ZixfzmdYeyL8CbKjK\n4WGevWK6gAG7g6N5qGTArvL3Kd2YV6oR8K+MADtllNeq8kD+FWBDKff28h48pgsY4EHXvr7iN3fL\nO+fv04AvYCdI+9aOAP98ysufQP4V4FMBA/Y2d/NNgeWx5XYcvtU7m+SfV4D2qYwC+VeATwUcwTdV\naSOlEPXOTG65HYeNMsqzJ+PbuAxgx6dA/mXwjfzzbISAvYDmE7HkSSqAf6KjoaH4NTNK+TeOEcg/\nhqEh4Ny5fFaOAn5F9wi+kaWtRphngPatd2ZjEPvUKX4tZl1dPtf3KUA7Sf7RuyxrcrLepwKO4JNi\nAUaJssjN3XxU/r71OIsQUb60IyfJPxBlevhUaQFg2jR+n+nZs/lcvxLCuEx6FK38QztKjkD+FeCj\nAiuaWAYGONc7Y0Z+9yg6SOed9vGJWCLYKCOfghkQyH8M8i7g+npOJ5w/n989yuFbQMtz24AIRTfE\nvNM+vs32AfxL+8yaxYsxi3xDWSD/GPIu4GigyqdKa4P88/QHCMpfFwMDQH9/vr0z3+pdTQ2v8yhy\nc7dA/jHkTZSAf+RftKosqoyC8s8OH3tngRuSw1nyz1OBAXaIxSdV6WsjzLOMZsxgJT44mN894si7\nzgH+9c6AYutdni9Ecpb8fUop5LVrXxw2FFgRxOKTqiTiKcxF+eRrgPapx5nnC5EC+VdBkZU2r137\n4pg9m+9T1OZuReT8fcsnA8X65Fs7AvwThnn6E8i/CopUlUWQSvQWor6+fO8TwbdGODLCwXP27Hzv\nUyRZFpH2CTl/PQTyL4Nveb0i/AGKDWi+db/7+jh45rWpWwTfysi3ef6AP9zgLPnPm5fvPXyJ7nH4\nUmkj+OYP4F+9a2jgVGMRa2ZGRjhI+9Q7y5PrjJA/Ed1FRLuJaC8Rfa3KOX9DRG1EtI2INma9V54v\nnI7DNwUG+EcsPpZR0enGvANakZu79fUBjY35986KHvAVq/yJqAbA3wL4FIANAD5PRFeVnXM3gCuU\nUmsAPAjg77Per4i5yYB/uVfAv3GMKKVQxOZuRfgD+BeggeLIssgA7UMZmVD+NwNoU0odVkoNAfgB\ngE1l52wC8E8AoJR6A8BMIpqf5WZFEaWvjdAnn+rrecVlESmFMC6THUWRpY/tSLTyB7AYwJHY96Ol\nY+Od017hnETwsfvtmwLr7y8mNQcU1xB9VP6+CSnf/AHy5Yacs2PZ8PDDD3/wuaWlBS0tLR98L6qA\n45u71dfne68iA9r+/fnfp6jUHDCqKpcvz/c+QflnR1FkWZQ/M2fyy6SGhnhb8TxRje9aW1vR2tqq\ndW0T5N8OYFns+5LSsfJzlk5wzgeIk385iirg+OZuy5ZNfL4OfFMsRalkoNh88qpV+d+nqDIaHMx/\nU7cIRZVRUfWupoZnFPX0APMzJa+ToxrflYviRx55JPW1TaR9NgNYTUTLiagOwP0Aniw750kAXwAA\nIroFQJ9SqjPLzYoif6A4FRZyr9nhW0qhqDqX57YB5Siy3hVRRkBxPonO+SulhgE8BOBZADsB/EAp\ntYuIHiSiL5fO+RmAg0S0D8B3AXwl6/2KaoSAf93VIlVykY3QpwAdTynkCR8DtG8+DQ7m+65yIzl/\npdTTAK4sO/bdsu8PmbjXiRPAddeZuNLEKCK6X7wInDnDe/vkjdAIs6PIlEK0X3yeKQVfy8gnYdjT\nw/7k9a5y51b4Fl3AeavK3l6O7Hlu6hYh2txtZCTf+/ia8/eJWHxrR4B/AS3vOucc+ftYwEX5M3ly\nMZu7+VZG0aZuPuWTix4786l3BhSTbsy7jJwj/yIVi2+NEPBDscRRhD+nTvF037yn9UUoQin7FqAB\n/+pd3lznHPkXXWnzboRFqhXAv96Mb/4AfhBLHPE1M3mhqC23I/hQ75wi/6Gh/F5pVgm+qWTAv95M\nEf4UHaCLSikUVe/ia2bywqlTvINokb0z1wO0U+Rf5NxkwD+iBIqrtEWTf56buxUdoIsSHXlvix5H\n3gHNx3YUlH8MRXZVAf9yr4AflTaO+nqeKXXuXH73CKk5feTtk4+9s6D8Y/CtwgL+BbQLF3hxSmNj\nfvcoR97lZEP5h7GmdPC1dxaUfwlFk399PQ8k5TlQ5VtAi0ilqNQcUAyxFK0qfRtr8q2MZs5kXhgc\nzO8eQfnHULRKLuItRL6Sf5EowiefiHJgoLhN3SLknSaxwQ2uj2M4Rf5FEyWQvwrzTVXaKCPfVGVR\nwSz0zvTgupByivyLju5A/srfN1VZdDoBKKaMik4p5Lm5WyBKM8hT+Q8N5b/nl1Pk71ulvXgROH26\nmE3dIgQFlh5FB7T45m55wMfUnC3RkZdPPT1cB/La1A1wjPxtKP880yRRARexqVuEpiZeEDM8nM/1\nfSV/n3yyQZSu58crIc8yKoLrnCJ/WwWcV6W1ocAmTeK0Qm9vPte31f3OqxEqNbq1bpHIs975RpSA\nvZRwngE67zJyivx9LOCi/QH88ylPf06dAqZNA+rq8rl+NeQZ0GySf14rsX0LaEH5l8G32T42/AHc\nVyzlcL0RVoJvZVRfz7OL8lgzE/XOitrULUKeqayg/GMo8o1XcfjW/Qb8C2i+ESXgb73Lw6doy+2i\ne2euiw5nyL+I0e9KyLuAfSMWm1Pu8kgpdHcXuwFahDwDtM16l4dPoQedDc6Qv68q2beUQnd38T5N\nmQJMncrTZk3DV2Lxqd75mJoLyj8GmwXsW/c7r0p7/jzvhVTkpm4R8vLJlvJ3XVVWQlD+yRGUfwy2\nCrihgefE5zFQ5VuljYiyyG0DIuQVpH3LjwP++WRLGE6fzvskDQyYv3YRqTlnyN9WAee5gZNvqrK7\n2w6pAEH5J0V/P28d4FPvzFYwy5MbikjNOUP+tgoYyE9V+jaYeOKEHX8A/4glz/x40VtuR/CtjAC3\nfXKG/G0pfyA/srSllH0LZkC+ZWTDp7w2d7M12Av4N+AL5ONTtOdXU5PZ65bDGfL3Lbr39/OLIIrc\nUz2Cy2qlGnzzKa/N3WyWUZ4pEp/qXW8vB/+89/xyhvxtR3fTlTaqsDa637NmsbK4eNHsdW0qf99y\n/kA+PvlGlID9rIBpbijKH2fI37ZiMV1pbZJKbW0+qtI3ohwaAs6eLX5VeYQ8RYcN+NY7A9wO0E6R\nv095PZszYwC3K20l5OXPnDnFryqPkIfosLW6Fxj1x/RKbN/qXVD+ZbBZafNQYDZVMpBfQPNJ+dsk\nFcA/n+rruddpcs2MrS23I7hcRk6Q//Awb96U9+h3NeShwGxOiwTyyVX6NtXTxwBtswcNmG9Lp0/z\n1h5Fb+qzSRf5AAAXuklEQVQWISj/nFHU6Hc1BGJJBpuprNmzuZ6MjJi7pm3ln1eA9qk3Y3OwF3C7\njJwgfwkVNqR9xsfFi9w7K3pP9QiTJ/Oq1VOnzF3TtzICZLQlkz755g8QlP8Y+NZVBfwb8O3p4Vkx\ntnpnQCCWJJDgk0khJcEfV8vICfK3rcAaG1nZXrhg7pq2fTJdaW37A/jnU16q0nYqy6e0T2MjTwk2\nyQ1dXcXUO2fIv7nZ3v3z2MDJ9oCvb0QJmCcW26py3jx+rqZw/jxPnqivN3fNtMij3tksIyLzvZmi\n+M4J8i8qEo4H38gyj2BmsxEC/pXRvHlc900hUsk2VpVHyKOMbApDwHxbKqreOUH+EgrYZKUdHgb6\n+uwNjgL+ESXgX85/+nRON5qaFy+lHZkkSt+E4cAAp5CKWFXuDPnbLmCT0f3kST8HR22XkW8Bjchs\n6qeryz75m07NSQlopnyK0lhF9M6cIH8p0d1UI7RNKoD5LYNt514Bs41QKfvKH2Bi86nemQ7QUrjB\nJPkX5Y8T5C8huptshBJUck0Np51M9WZ8I5bTp0dfDG8Tvil/H3P+Jn0qsoycIX/bxNLcbG7wTYI/\ngNnejISAZrIRSvAHMFvvJJB/lD41tbmbBOVvMiUclH8MSslIKZgmf9v+AP75lEfu1TZMK3/bRDlt\nGo91nTunf60LF+y9ECmOkPbJCX19QEMDd8FtwkflP3++Xz6ZJEopyt/kdE8JKRLAHFlGdc7m1FUg\npH1ygwS1AvhJ/qZ8kjI42tQEnDnDalAXEvwBzI41SUj7AGbJ3yd/gKD8x0BKAZskfymq0pRPZ87w\nxmrTpulfSwc1NebUv5QAbVL5SxFSpub6S/InkH8OkNIIm5r4lX4mVKUUn0yRv5RgBpj1yTflL0VI\nzZ1rpoyk+GNywNeZtA8RNRHRs0S0h4ieIaKZVc47RETbiWgrEb2Z5h5SontNjbnZMVIGE5ubgc5O\n/etICWYAj2P45JOpnsy5c5yea2jQv5YuTI01SeGGhgZetW9iJbZLyv/rAJ5TSl0J4HkAf1jlvBEA\nLUqp65RSN6e5gZToDphTlVKIxVQjlBLMALNlJMEnU2mfiChtD44CZkWHBG4gMtdDK9InXfLfBODR\n0udHAdxb5TzKei8p0R0wQyzR4KgEn3xN+5gglq4uDo620djIbyfTnRophSgBc70zSdwwfz5w/Lje\nNaJ9fWZWzJ+Yhy75NyulOgFAKXUcQLXqpQD8gog2E9HvprmBpEprgiyjd47anroKmCN/aY3QhE/H\nj8sgf1P7+0iZ6QOYTc355FOR+/oAwKSJTiCiXwCINwMCk/kfVzi92rq925RSHUQ0DxwEdimlXql2\nz4cffviDz3v3tmDevJaJzCwEJshSSjoBYFU5PMyqUicX3NkJLFxozi4dNDcD776rdw2l2CcJ5A+M\nphRWrMh+DR/JX5roMEH+ScuotbUVra2tWvebkPyVUp+o9hsRdRLRfKVUJxEtAFCRGpVSHaX/u4no\n3wDcDCAR+f/4x3IK2AT5S2qEUa6yqwtYuTL7dY4fBzZuNGeXDkwo/9Ongbo6uy89icNE3l/KOBMQ\nlH81pAlmLS0taGlp+eD7I488kvp+ummfJwE8UPr82wCeKD+BiOqJqLH0uQHAJwEk1mbSKq1uIzx+\nXI5KBsz41NkJLFhgxh5dmAjQUlI+EXxL+0Q9mZERvev4qPyL9EeX/P8UwCeIaA+AjwP4JgAQ0UIi\neqp0znwArxDRVgCvA/h3pdSzSS4+PMyDiZIqrQlikUKUgH9kaWLAV1LKBzCnKqW0o7o6flFNT0/2\na5w7x8GjsdGcXTpYsEB/wLdoYThh2mc8KKV6ANxZ4XgHgM+UPh8EkCkpcOIEL66aPFnHSnMI5F8Z\n0pR/dzfn7bMOnEnyB2Bb2tv1riFJJQOjPc6s419RMJMwdRUwE6CL5gbRK3x9JEpJKhnQ92loiDff\nmzPHnE06mDKFc/W9vdmvIa2MFiwAOjr0riEpfQrok2VHh7z0aSB/g5BG/tHAm85e5NJ80k2TROrN\n5ispy6E7jiEt7WMipeAbWUprR4H8DaOjQ1YBNzQwyZ05k/0a0lIKJohSkj+AfkCT5tPChXrkL23s\nDPBP+Tc18fYO/f3Zr1E034kmf2nRHfBPseimfaSlSAD/fNJN+3R1yRo7A/xrR0RmfCoyoAXyT4mF\nC7M3RKXkEYuuSpZYRr6lfZqaeNn/hQvZ/l6aSgb8U/6Ank8DA5xRmD3brE3jQTz5SyvgRYuAY8ey\n/W1fH2/tYHvf+zh0ghkgjygB/9I+RGxPVp8ktiPflD+g51M0e6mmQEYWT/7SCliHLCX6M3cur2gd\nGMj29xJ90smRS9vaIYJO6sc3lQz455ONdhTIPyV8I/+aGr3ZJNJUMqDXOzt1ihchSeqdAXplJJEo\nfU03BvI3BIkFrEMsEv0B9H2SppJ1/JGo+gG93oxE8o+IMsu06eFhOVtux6EToAP5xxANcM2aZduS\nsdBR/hJVMsA++RTQFi3KviJWoj+AftpHmk/TpvG/LIvxTp7kPe/r6szbpQNd5V90gBZL/lEjlLJ8\nO4JvaR/AP6Xc3Mz7xgwNpf9bif4A/qV9AGDx4mxBWqo/umUUlH8JkolSh/wlEktWn/r7eYOtpibz\nNumgtpYDQJaGKJVYdNI+Emf7ANnJXyo3ZPUHCGmfMZBawDpzrqX6lDXtE6nkIqenJUXW3szRo8CS\nJebt0UXWtE+0tsQn8pcaoCN/soxjBPKPQWqFjeZcZ2mIkpV/FqJsb5dJlICeT4sXm7dHF1lTCn19\nsl5ME4dvyr++nscxTp5M/7eB/GOQWsBA9jSJVGLJ6s+RI/6Rv2Tl39mZ/gUoEgd7I/im/AGuO2l9\ninpngfxLOHZMbqXNkibp7+fFVJI214qQNe0jlSgB/8h/yhR+cUlaVSmZKH1T/kA2n06dAiZN0nuP\ndhaIJf8jR4ClS21bURlZZvwcPcqEJDE/PmcO7yuSdkdCqUQJcCNMS/5K8d9I7J0B2XySmj4Fsk/J\nlRzQlizhdpEGtrhOIBUxjhwBli2zbUVlZEmTSA5mNTXZZpNIJv8sxHLiBKsvaat7IyxdCrz/frq/\nkUyUWZW/5LaUxSdbXCeS/JXiSi61gLMqf6n+ANnSJNLJP60/UsdkIixbxkSRBpLLqLmZB6TT7Cs1\nPCx7okEW8rfFdSLJ/9Qp/n/mTLt2VEOWHLnkwVEgm0+SicW3YAZkU/6HD8vtQdfW8uy3NEKqs5O3\nPZ4yJT+7dBDSPpqIHoa01b0Rli7NpsCkK/80jfDiRW6IUlMKc+bwArQ06zFcIP+09e799+WSP5Be\nKfvmDxDIfwwk5/QAYPlyVlRpFnNI92nJknTE0tnJBCttf5UIROnTcz6mfd5/n+urVGQhf+ntKJC/\nBqQTZWMjDwp2dyf/G+lpnxUrOKAlhfSeDMDEkqYL7oLyT5P2OX+eZ3HNm5efTbpIS/6SJ4IAnJK6\ncIGffVIE8o9BOvkD/pHl8uXAoUPJz5dOlACXURqfJA8kAmxbRwcPeiZBpJIlTi+OkHb6qvS0D1G6\nmWYjI/bakshqIT26A6OpnyQ4fx44e5bfmiUVaYnSFfI/eDD5+UePyk77TJnCe0slnZIrPeUDpO+d\nSSd/IN2gb3c3MH26ne03RJK/9LwekI78o1yyZAU2fz6vQE7aXXWB/Feu9Ev5A+ny/i4QZdpxDBey\nAmlSWTb9EUlHLhRwGqXsgj81NdwQkwY0V8g/qfI/fZpnMEmdXhwhzYwfydM8I6TtcboS0JKOzQTy\nL4P0/DiQTvm7QJRA+oAmOUUCpEv7HDrE50udXhwhzaCvC0S5aBGnPpIs9LpwQe7+WHGkqXeB/MvQ\n0CBzC9o40pC/C8ofSEf+hw6xspaMZct4gDTJG70OHpTvD5A+7SM95z9pEouIJD5FgkNy+hRIl24M\n5F8GF4gyDfkfPMjEKh1Jyb+/n/fBka78J0/muf5JiMUV8vdN+QPJ650LE0GAdMrf5vimSPJ3gSib\nmniaVl/fxOceOACsWpW/TbpI2ggPHeJGWFubs0EGkLQhukL+SfPJ0RRCF4RU0nrnSjBbvpwDVZIp\nuTaFoUjyX73atgUTgyi5+t+/H7jiivxt0kXSRuhKMAOSd8FdIf/Vq4F9+yZeXX78OAuUqVOLsUsH\naQK0C8Jw6lRe/Z5k/cL+/fb4LpC/BpKQ/8AAN0QXFIuv5O+T8p89m4VHT8/45x044AZRAiyM9u2b\n+Ly2NmDNmvztMYGVK7kMxkNvLzA4aG8Ftkjyd0ElA8nI8tAh7npPmlSAQZpIOtffFaIEkqnKkRF3\nAhrRqPofD21twNq1xdiki7Vr2d6JsG+fO8JwzZqJfYpUv60ZZiLJ36UC3rt3/HNcIRVgdK7/RGTZ\n1uZOgE6S9mlvB2bM4H8uIAn5793rDvlHRDleKkspt5T/2rUTc8O+fXbbkUjyd2GQCgCuvBLYvXv8\nc/budafCAuzTnj3jn7N7N7BuXTH26GLVKlZY42HPHvbbFSQlf1fq3axZnCfv7Kx+zsmTrJBnzy7O\nLh0kIX+b+X5AKPm7kCIBgKuumpgod+1yhygB9mm8gDY4yLMuXFH+ixfzvv7jzcpykfwnIhaX0j7A\nxGmStja7KZK0uPLKicto9267AVok+buCZctYkZw7V/0c18h/3brxyX//fvZb6j7+5SDigLZrV/Vz\nXEqRAMD69cDOndV/HxlxKz8O8PMfr9651o5Wr+aU73jTPd97D9iwoTibyhHIXwM1NROrMNcq7UTK\nf/dut1QywGT53nvVf3dN+a9bx3WuGrEcPMg7yE6fXqxdOrj66vED2rvv8jmuYNo0YMGC6inHkRFu\nS+vXF2tXHIH8NbFhA1fMSjhxgqd6Sn3VYSVE5F9t8O299/gclzAR+e/YAVxzTXH26KKxkWdmVZtK\nuGMH8KEPFWuTLq6+Gnjnneq/79zpFvkDXAbVfDp8mMcvbE4yCOSviWuvBbZvr/zbzp0cHFzJUwK8\nMGjmzOozfrZtAzZuLNYmXYyXJunu5g3DXFiHEceGDdV9eucdt4IZwPZWE1GAe8ofYPLfsaPybzt3\n2lX9QCB/bWzcyIRYCW+/DVx/fbH2mMB11wFbt1b+betW/t0lRP5U6s1s386N1KUADTBZViMWF8l/\n0SLegK+r69Lfenr4dZSuzAKMcO211cto2zb7vbNA/pqIyL8Ssbz9NnDDDcXbpIvrrwe2bLn0+KlT\nvEumS/lxgGf8EFV+u1JE/q7hxhuBzZsr/+aiT0RMlpXq3VtvcZ10LUB/6EPVswKbNwM33VSsPeUI\n5K+JBQt498hKm235Rv7bt7OidGFDtziImCzfeuvS3zZvdrN3dvPNwJtvXio6Tpzg+fIuTTKIcMst\nwOuvX3r8jTeAD3+4eHt0sXo191oq9WYC+XuC224DXn557LG+PlaaLjbCm27iBlc+m+SXvwRuvdWO\nTbqopJSV4nL7lV+xY5MOlizh2WblouO115goXQvQANet11679Pjrr3NgcA21tezTq6+OPd7ezutl\nbO+9FMjfAG6/HXjppbHHWluBj3yEewWuYeFCnk1S3mV94QWgpcWKSdq4/Xa2P45Dh3jKnSsL1uIg\nYkJ85ZWxx199leudi7jllktFx8iIu8ofYGFYXkYvvcTHbaextMifiH6diN4lomEiqtp5JqK7iGg3\nEe0loq/p3FMi7rgDePHFsceeew6480479pjAxz4GPP/86PfBQVZlt99uzyYd3HYbzxjp7R099uKL\nrPptN8KsuOsu4Oc/H3vsuee4PrqI5mYe1H3jjdFjb77JqdVFi+zZpYNKouPpp7nsbENX+b8D4HMA\nXqx2AhHVAPhbAJ8CsAHA54nIsZniY9Ha2jrm+zXX8CrfaOqdUsAzz9gn/3I70+DOO4Gf/nT0+wsv\n8NS0piZ9u8qhY2dSTJkCfPSjwH/8x+ixH/0IuOee5Ncows40uPtuJpJIKb//Pk/RHRlptWpXUlR6\nnps2AU88Mfr9qaeAz3ymOJsqQafcP/IRLpdoc8GREeaGT33KiGla0CJ/pdQepVQbgPG0080A2pRS\nh5VSQwB+AGCTzn1to7wy1NQAn/888M//zN9ffpnTPbanROpU2k9/mqcMRvP9H30U+K3fMmNXOYoi\n1fvuA/7hH/hzTw93v10m/2XLOG/8zDP8/Yc/ZKJ8+eVWm2YlRqXnee+9HJSHh/nfv/4rBwSb0Cn3\nSZOAz30OePxx/v7MM9yLkbDTbxE5/8UA4m9RPVo65hUeeICJpbMT+LM/A778ZXfTCQAr5d/8TeBb\n3+LtD55+Grj/fttW6eG++3jGz/btwDe/yY3SlW2cq+EP/gD4kz/hefB/8RfAQw/ZtkgPN9zA402P\nPcbEP3eum4O9cTz4IPBXf8Upx299C/jqV21bxJhw/0wi+gWA+fFDABSAP1JK/XtehrmGDRuAL36R\nZ/dceSUXuOt4+GGeJfMv/8IEM3eubYv0MG0a8Nd/zYPWU6ZUn4PtEu67D/je9zhX/hu/weX11FO2\nrcoOIuDP/xz47Gf5849/7LaIAjig3Xsvq/2NG+WIKFITvQw0yUWIXgDwX5VSl8wOJ6JbADyslLqr\n9P3rAJRS6k+rXEvfoICAgIDLDEqpVGHS5M751W68GcBqIloOoAPA/QA+X+0iaR0ICAgICEgP3ame\n9xLREQC3AHiKiH5eOr6QiJ4CAKXUMICHADwLYCeAHyilxtldPSAgICAgbxhJ+wQEBAQEuAURK3yJ\n6FtEtIuIthHRj4hoRuy3PySittLvn7RsZ8VFbUS0nIjOE9GW0r/vSLSz9JuY5xkHEX2DiI7GnqGA\nZTAMVxYpEtEhItpORFuJ6E3b9kQgou8RUScR7YgdayKiZ4loDxE9Q0QzbdpYsqmSneLqJREtIaLn\niWgnEb1DRP+5dDzdM1VKWf8H4E4ANaXP3wTwJ6XP6wFsBY9NrACwD6XeiiU7rwSwBsDzAK6PHV8O\nYIft55jAznWSnmeZzd8A8F9s21HBrprSc1oOYDKAbQCusm1XFVsPAGiybUcFuz4KYGO8jQD4UwD/\nvfT5awC+KdROcfUSwAIAG0ufGwHsAXBV2mcqQvkrpZ5TSo2Uvr4OYEnp8z3gMYKLSqlDANrAi8as\nQI2/qE3MQPU4dm6CoOdZAWKeYQwuLVIkCOnNx6GUegVAb9nhTQAeLX1+FMC9hRpVAVXsBITVS6XU\ncaXUttLnswB2gTkz1TMVV1EA/A6An5U+ly8Qa4fcBWIrSt3CF4joo7aNqQLpz/OhUurv/0pIA5Tg\n0iJFBeAXRLSZiH7XtjEToFkp1QkwmQFotmzPeJBYLwEARLQC3Ft5HcD8NM/U5FTPcZFksRgR/RGA\nIaXU94uyqxwZF7UdA7BMKdVbyrH/hIjWl6KyJDutYjybAXwHwP9QSiki+p8A/hLAl4q30mncppTq\nIKJ54CCwq6RmXYDUmSdi6yURNQL4IYCvKqXOVlgjNe4zLYz8lVKfGO93InoAwKcBfCx2uB1A/OVt\nS0rHcsNEdlb5myGUuotKqS1EtB/AWgAVXoliBlnshIXnGUcKm/8PACkBrB1A/A2/hT6zNFBKdZT+\n7yaifwOnrKSSfycRzVdKdRLRAgAVXnliH0qp7thXMfWSiCaBif//KaWirfBSPVMRaZ/SCPp/A3CP\nUmog9tOTAO4nojoiWglgNQApsxg+yAMS0dzS7qUgolVgOw/YMqwM8Xyl2OdZqqwRfg3AOK/zLhQf\nLFIkojrwIsUnLdt0CYiovqQEQUQNAD4JOc8Q4HpYXhcfKH3+bQBPlP+BJYyxU3C9/AcA7yml/jp2\nLN0ztT1yXRqZbgNwGKyUtwD4Tuy3PwTPttgF4JOW7bwXnP+9AF6t/PPS8ahSbAHwFoBPS7RT2vMs\ns/mfAOwAz6b5CTh/ad2ukm13gWdUtAH4um17qti4svTstoK3WhdjJ4DHwKnRAQDvA/gigCYAz5We\n67MAZgm1U1y9BHAbgOFYeW8p1dHZaZ5pWOQVEBAQcBlCRNonICAgIKBYBPIPCAgIuAwRyD8gICDg\nMkQg/4CAgIDLEIH8AwICAi5DBPIPCAgIuAwRyD8gICDgMkQg/4CAgIDLEP8fLykSRl92GC4AAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11af01b70>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(x,y)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "a = tf.constant(100)\n", "b = tf.constant(50)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "add_op = a + b" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "v = tf.Variable(0)\n", "let_op = tf.assign(v, add_op)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "150\n" ] } ], "source": [ "with tf.Session() as sess:\n", " sess.run(tf.global_variables_initializer())\n", " _, v_val = sess.run([let_op,v])\n", " print(v_val)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
zunio/python-recipes
90-NLP/Tokenization.ipynb
1
10728
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Turn a string or document into **token**.\n", "There are different theories and rules.\n", "We want to perform tokenization in order to:\n", "- easier to map part of speech\n", "- matching common words\n", "- removing unwanted tokens\n", "\n", "Usually we use nltk library with method:\n", "- word_tokenie (word)\n", "- sent_tokenize (sentence)\n", "- regexp_tokenize (custom regexp pattern)\n", "- TweetTokenizer (split hashtags, ecc)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "scene_one='''SCENE 1: [wind] [clop clop clop] \\nKING ARTHUR: Whoa there! [clop clop clop] \\nSOLDIER #1: Halt! Who goes there?\\nARTHUR: It is I, Arthur, son of Uther Pendragon, from the castle of Camelot. King of the Britons, defeator of the Saxons, sovereign of all England!\\nSOLDIER #1: Pull the other one!\\nARTHUR: I am, ... and this is my trusty servant Patsy. We have ridden the length and breadth of the land in search of knights who will join me in my court at Camelot. I must speak with your lord and master.\\nSOLDIER #1: What? Ridden on a horse?\\nARTHUR: Yes!\\nSOLDIER #1: You're using coconuts!\\nARTHUR: What?\\nSOLDIER #1: You've got two empty halves of coconut and you're bangin' 'em together.\\nARTHUR: So? We have ridden since the snows of winter covered this land, through the kingdom of Mercea, through--\\nSOLDIER #1: Where'd you get the coconuts?\\nARTHUR: We found them.\\nSOLDIER #1: Found them? In Mercea? The coconut's tropical!\\nARTHUR: What do you mean?\\nSOLDIER #1: Well, this is a temperate zone.\\nARTHUR: The swallow may fly south with the sun or the house martin or the plover may seek warmer climes in winter, yet these are not strangers to our land?\\nSOLDIER #1: Are you suggesting coconuts migrate?\\nARTHUR: Not at all. They could be carried.\\nSOLDIER #1: What? A swallow carrying a coconut?\\nARTHUR: It could grip it by the husk!\\nSOLDIER #1: It's not a question of where he grips it! It's a simple question of weight ratios! A five ounce bird could not carry a one pound coconut.\\nARTHUR: Well, it doesn't matter. Will you go and tell your master that Arthur from the Court of Camelot is here.\\nSOLDIER #1: Listen. In order to maintain air-speed velocity, a swallow needs to beat its wings forty-three times every second, right?\\nARTHUR: Please!\\nSOLDIER #1: Am I right?\\nARTHUR: I'm not interested!\\nSOLDIER #2: It could be carried by an African swallow!\\nSOLDIER #1: Oh, yeah, an African swallow maybe, but not a European swallow. That's my point.\\nSOLDIER #2: Oh, yeah, I agree with that.\\nARTHUR: Will you ask your master if he wants to join my court at Camelot?!\\nSOLDIER #1: But then of course a-- African swallows are non-migratory.\\nSOLDIER #2: Oh, yeah...\\nSOLDIER #1: So they couldn't bring a coconut back anyway... [clop clop clop] \\nSOLDIER #2: Wait a minute! Supposing two swallows carried it together?\\nSOLDIER #1: No, they'd have to have it on a line.\\nSOLDIER #2: Well, simple! They'd just use a strand of creeper!\\nSOLDIER #1: What, held under the dorsal guiding feathers?\n", "\\nSOLDIER #2: Well, why not?\\n'''" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\"SCENE 1: [wind] [clop clop clop] \\nKING ARTHUR: Whoa there! [clop clop clop] \\nSOLDIER #1: Halt! Who goes there?\\nARTHUR: It is I, Arthur, son of Uther Pendragon, from the castle of Camelot. King of the Britons, defeator of the Saxons, sovereign of all England!\\nSOLDIER #1: Pull the other one!\\nARTHUR: I am, ... and this is my trusty servant Patsy. We have ridden the length and breadth of the land in search of knights who will join me in my court at Camelot. I must speak with your lord and master.\\nSOLDIER #1: What? Ridden on a horse?\\nARTHUR: Yes!\\nSOLDIER #1: You're using coconuts!\\nARTHUR: What?\\nSOLDIER #1: You've got two empty halves of coconut and you're bangin' 'em together.\\nARTHUR: So? We have ridden since the snows of winter covered this land, through the kingdom of Mercea, through--\\nSOLDIER #1: Where'd you get the coconuts?\\nARTHUR: We found them.\\nSOLDIER #1: Found them? In Mercea? The coconut's tropical!\\nARTHUR: What do you mean?\\nSOLDIER #1: Well, this is a temperate zone.\\nARTHUR: The swallow may fly south with the sun or the house martin or the plover may seek warmer climes in winter, yet these are not strangers to our land?\\nSOLDIER #1: Are you suggesting coconuts migrate?\\nARTHUR: Not at all. They could be carried.\\nSOLDIER #1: What? A swallow carrying a coconut?\\nARTHUR: It could grip it by the husk!\\nSOLDIER #1: It's not a question of where he grips it! It's a simple question of weight ratios! A five ounce bird could not carry a one pound coconut.\\nARTHUR: Well, it doesn't matter. Will you go and tell your master that Arthur from the Court of Camelot is here.\\nSOLDIER #1: Listen. In order to maintain air-speed velocity, a swallow needs to beat its wings forty-three times every second, right?\\nARTHUR: Please!\\nSOLDIER #1: Am I right?\\nARTHUR: I'm not interested!\\nSOLDIER #2: It could be carried by an African swallow!\\nSOLDIER #1: Oh, yeah, an African swallow maybe, but not a European swallow. That's my point.\\nSOLDIER #2: Oh, yeah, I agree with that.\\nARTHUR: Will you ask your master if he wants to join my court at Camelot?!\\nSOLDIER #1: But then of course a-- African swallows are non-migratory.\\nSOLDIER #2: Oh, yeah...\\nSOLDIER #1: So they couldn't bring a coconut back anyway... [clop clop clop] \\nSOLDIER #2: Wait a minute! Supposing two swallows carried it together?\\nSOLDIER #1: No, they'd have to have it on a line.\\nSOLDIER #2: Well, simple! They'd just use a strand of creeper!\\nSOLDIER #1: What, held under the dorsal guiding feathers?\\n\\nSOLDIER #2: Well, why not?\\n\"" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "scene_one" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "showing info https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import nltk\n", "#nltk.download()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['SCENE 1: [wind] [clop clop clop] \\nKING ARTHUR: Whoa there!',\n", " '[clop clop clop] \\nSOLDIER #1: Halt!',\n", " 'Who goes there?',\n", " 'ARTHUR: It is I, Arthur, son of Uther Pendragon, from the castle of Camelot.',\n", " 'King of the Britons, defeator of the Saxons, sovereign of all England!']" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from nltk.tokenize import word_tokenize,sent_tokenize\n", "sentences = sent_tokenize(scene_one)\n", "sentences[:5]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['ARTHUR',\n", " ':',\n", " 'It',\n", " 'is',\n", " 'I',\n", " ',',\n", " 'Arthur',\n", " ',',\n", " 'son',\n", " 'of',\n", " 'Uther',\n", " 'Pendragon',\n", " ',',\n", " 'from',\n", " 'the',\n", " 'castle',\n", " 'of',\n", " 'Camelot',\n", " '.']" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tokenized_sent = word_tokenize(sentences[3])\n", "tokenized_sent" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Unique token\n", "unique_tokens = set(word_tokenize(scene_one))\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tweets=['This is the best #nlp exercise ive found online! #python',\n", " '#NLP is super fun! <3 #learning',\n", " 'Thanks @datacamp :) #nlp #python']" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['#nlp', '#python']" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from nltk.tokenize import regexp_tokenize\n", "from nltk.tokenize import TweetTokenizer\n", "pattern1 = r\"#\\w+\"\n", "regexp_tokenize(tweets[0],pattern1)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['@datacamp', '#nlp', '#python']" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pattern2 = r\"([#|@]\\w+)\"\n", "regexp_tokenize(tweets[-1],pattern2)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[['This', 'is', 'the', 'best', '#nlp', 'exercise', 'ive', 'found', 'online', '!', '#python'], ['#NLP', 'is', 'super', 'fun', '!', '<3', '#learning'], ['Thanks', '@datacamp', ':)', '#nlp', '#python']]\n" ] } ], "source": [ "# Use the TweetTokenizer to tokenize all tweets into one list\n", "tknzr = TweetTokenizer()\n", "all_tokens = [tknzr.tokenize(t) for t in tweets]\n", "print(all_tokens)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
Jigsaw-Code/net-analysis
netanalysis/dns/analysis/DomainAnalysis.ipynb
1
1466846
null
apache-2.0
BadWizard/coalexploration
develop/2016-04-05-BadWizard-coal-predict.ipynb
1
226099
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Make prediction about coal prediction" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np\n", "import seaborn as sns\n", "sns.set();" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Year</th>\n", " <th>Mine_Name</th>\n", " <th>Mine_State</th>\n", " <th>Mine_County</th>\n", " <th>Mine_Status</th>\n", " <th>Mine_Type</th>\n", " <th>Company_Type</th>\n", " <th>Operation_Type</th>\n", " <th>Operating_Company</th>\n", " <th>Operating_Company_Address</th>\n", " <th>Union_Code</th>\n", " <th>Coal_Supply_Region</th>\n", " <th>Production_(short_tons)</th>\n", " <th>Average_Employees</th>\n", " <th>Labor_Hours</th>\n", " <th>log_production</th>\n", " </tr>\n", " <tr>\n", " <th>MSHA ID</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>103381</th>\n", " <td>2013</td>\n", " <td>Tacoa Highwall Miner</td>\n", " <td>Alabama</td>\n", " <td>Bibb</td>\n", " <td>Active, men working, not producing</td>\n", " <td>Surface</td>\n", " <td>Independent Producer Operator</td>\n", " <td>Mine only</td>\n", " <td>Jesse Creek Mining, Llc</td>\n", " <td>1615 Kent Dairy Rd, Alabaster, AL 35007</td>\n", " <td></td>\n", " <td>Appalachia Southern</td>\n", " <td>56004</td>\n", " <td>10</td>\n", " <td>22392</td>\n", " <td>10.933178</td>\n", " </tr>\n", " <tr>\n", " <th>103404</th>\n", " <td>2013</td>\n", " <td>Reid School Mine</td>\n", " <td>Alabama</td>\n", " <td>Blount</td>\n", " <td>Permanently abandoned</td>\n", " <td>Surface</td>\n", " <td>Independent Producer Operator</td>\n", " <td>Mine only</td>\n", " <td>Taft Coal Sales &amp; Associates,</td>\n", " <td>3000 Riverchase Galleria Ste 1, Birmingham, AL...</td>\n", " <td>UNIT</td>\n", " <td>Appalachia Southern</td>\n", " <td>28807</td>\n", " <td>18</td>\n", " <td>28447</td>\n", " <td>10.268374</td>\n", " </tr>\n", " <tr>\n", " <th>100759</th>\n", " <td>2013</td>\n", " <td>North River #1 Underground Min</td>\n", " <td>Alabama</td>\n", " <td>Fayette</td>\n", " <td>Active, men working, not producing</td>\n", " <td>Underground</td>\n", " <td>Independent Producer Operator</td>\n", " <td>Mine and Preparation Plant</td>\n", " <td>Jim Walter Resources Inc</td>\n", " <td>3114 County Rd 63 S, Berry, AL 35546</td>\n", " <td>UNIT</td>\n", " <td>Appalachia Southern</td>\n", " <td>1440115</td>\n", " <td>183</td>\n", " <td>474784</td>\n", " <td>14.180234</td>\n", " </tr>\n", " <tr>\n", " <th>103246</th>\n", " <td>2013</td>\n", " <td>Bear Creek</td>\n", " <td>Alabama</td>\n", " <td>Franklin</td>\n", " <td>Active</td>\n", " <td>Surface</td>\n", " <td>Independent Producer Operator</td>\n", " <td>Mine only</td>\n", " <td>Birmingham Coal &amp; Coke Co., In</td>\n", " <td>912 Edenton Street, Birmingham, AL 35242</td>\n", " <td></td>\n", " <td>Appalachia Southern</td>\n", " <td>87587</td>\n", " <td>13</td>\n", " <td>29193</td>\n", " <td>11.380388</td>\n", " </tr>\n", " <tr>\n", " <th>103451</th>\n", " <td>2013</td>\n", " <td>Knight Mine</td>\n", " <td>Alabama</td>\n", " <td>Franklin</td>\n", " <td>Active</td>\n", " <td>Surface</td>\n", " <td>Independent Producer Operator</td>\n", " <td>Mine only</td>\n", " <td>Birmingham Coal &amp; Coke Co., In</td>\n", " <td>P.O. Box 354, Lynn, AL 35242</td>\n", " <td></td>\n", " <td>Appalachia Southern</td>\n", " <td>147499</td>\n", " <td>27</td>\n", " <td>46393</td>\n", " <td>11.901577</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Year Mine_Name Mine_State Mine_County \\\n", "MSHA ID \n", "103381 2013 Tacoa Highwall Miner Alabama Bibb \n", "103404 2013 Reid School Mine Alabama Blount \n", "100759 2013 North River #1 Underground Min Alabama Fayette \n", "103246 2013 Bear Creek Alabama Franklin \n", "103451 2013 Knight Mine Alabama Franklin \n", "\n", " Mine_Status Mine_Type \\\n", "MSHA ID \n", "103381 Active, men working, not producing Surface \n", "103404 Permanently abandoned Surface \n", "100759 Active, men working, not producing Underground \n", "103246 Active Surface \n", "103451 Active Surface \n", "\n", " Company_Type Operation_Type \\\n", "MSHA ID \n", "103381 Independent Producer Operator Mine only \n", "103404 Independent Producer Operator Mine only \n", "100759 Independent Producer Operator Mine and Preparation Plant \n", "103246 Independent Producer Operator Mine only \n", "103451 Independent Producer Operator Mine only \n", "\n", " Operating_Company \\\n", "MSHA ID \n", "103381 Jesse Creek Mining, Llc \n", "103404 Taft Coal Sales & Associates, \n", "100759 Jim Walter Resources Inc \n", "103246 Birmingham Coal & Coke Co., In \n", "103451 Birmingham Coal & Coke Co., In \n", "\n", " Operating_Company_Address Union_Code \\\n", "MSHA ID \n", "103381 1615 Kent Dairy Rd, Alabaster, AL 35007 \n", "103404 3000 Riverchase Galleria Ste 1, Birmingham, AL... UNIT \n", "100759 3114 County Rd 63 S, Berry, AL 35546 UNIT \n", "103246 912 Edenton Street, Birmingham, AL 35242 \n", "103451 P.O. Box 354, Lynn, AL 35242 \n", "\n", " Coal_Supply_Region Production_(short_tons) Average_Employees \\\n", "MSHA ID \n", "103381 Appalachia Southern 56004 10 \n", "103404 Appalachia Southern 28807 18 \n", "100759 Appalachia Southern 1440115 183 \n", "103246 Appalachia Southern 87587 13 \n", "103451 Appalachia Southern 147499 27 \n", "\n", " Labor_Hours log_production \n", "MSHA ID \n", "103381 22392 10.933178 \n", "103404 28447 10.268374 \n", "100759 474784 14.180234 \n", "103246 29193 11.380388 \n", "103451 46393 11.901577 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv('../data/cleaned_coalpublic2013.csv',header=0,index_col='MSHA ID')\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(1061, 16)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Year\n", "Mine_Name\n", "Mine_State\n", "Mine_County\n", "Mine_Status\n", "Mine_Type\n", "Company_Type\n", "Operation_Type\n", "Operating_Company\n", "Operating_Company_Address\n", "Union_Code\n", "Coal_Supply_Region\n", "Production_(short_tons)\n", "Average_Employees\n", "Labor_Hours\n", "log_production\n" ] } ], "source": [ "for column in df.columns:\n", " print(column)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x1199add30>" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFVCAYAAAAg8ayaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGkdJREFUeJzt3XtM1ff9x/HXgQPWwzlcdLiLXTwt0hUraTMoIyES1+iC\nc3HrlE4QrCu7UGtCS9N5Q9F6bZ1l3a+Y6Ei2eLRektZIly5LSGPdrL/ouk0nWvZLKWV1zooQPec4\nuZ3z+8P0TLTjcjz4/ZzD8/FXOXw5vN+Rb5/ncDjn2ILBYFAAAMBIcVYPAAAA/jtCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwexDHRAIBFRTU6OPPvpIcXFxWr9+vRITE7VixQrFxcUpMzNTtbW1kqSD\nBw/qwIEDSkhIUGVlpWbOnDna8wMAENOGDPU777wjm82mffv26cSJE3rllVcUDAZVXV2t3Nxc1dbW\nqqmpSY888og8Ho8OHTqk69evq6SkRAUFBUpISLgbewAAEJOGDPWsWbP02GOPSZL++c9/KiUlRe+9\n955yc3MlSYWFhTp27Jji4uKUk5Mju90up9Mpt9utlpYWTZ8+fXQ3AAAghg3rMeq4uDitWLFCGzdu\n1He+8x3d/GJmSUlJ8vl88vv9crlcocsdDoe8Xm/kJwYAYAwZ8h71Z7Zu3arLly9rwYIF6u7uDl3u\n9/uVnJwsp9Mpn8932+WDCQaDstlsYYwNAMDYMGSoDx8+rIsXL+onP/mJxo0bp7i4OE2fPl0nTpxQ\nXl6ejh49qvz8fGVnZ6uurk49PT3q7u5Wa2urMjMzB71um82mS5ei/153eror6veIhR2k2NgjFnaQ\n2MMksbCDFBt7pKe7hj7oFkOG+lvf+pZWrlypsrIy9fX1qaamRvfff79qamrU29urjIwMFRUVyWaz\nqby8XKWlpaE/NktMTAxrEQAAcIPN6nfPivZbR1Ls3MqL9h2k2NgjFnaQ2MMksbCDFBt7hHOPmhc8\nAQDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxG\nqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACD2a0eAMDo6u/vV1tb613/vl1dTnV2\n+gY9xu2+X/Hx8XdpIiA6EWogxrW1tapqW6McKZOsHmWAa1c+1asvzFNGRqbVowBGI9TAGOBImSRn\n2mSrxwAQBh6jBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQa\nAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBih\nBgDAYIQaAACD2Qf7ZF9fn1atWqXz58+rt7dXlZWV+vKXv6yf/vSncrvdkqSSkhLNmTNHBw8e1IED\nB5SQkKDKykrNnDnzLowPAEBsGzTUjY2NSktL08svv6wrV67oe9/7np555hk99dRTWrJkSei4jo4O\neTweHTp0SNevX1dJSYkKCgqUkJAw2vMDABDTBg31nDlzVFRUJEkKBAKy2+1qbm5Wa2urmpqa5Ha7\ntXLlSp0+fVo5OTmy2+1yOp1yu91qaWnR9OnT78oSAADEqkFDPX78eEmSz+dTVVWVnn32WfX09Ki4\nuFjTpk3Tzp079dprrykrK0sulyv0dQ6HQ16vd3QnBwBgDBg01JJ04cIFLVu2TGVlZZo7d668Xm8o\nyrNmzdLGjRuVl5cnn88X+hq/36/k5ORhDZCe7hr6oCgQC3vEwg5SbOwRyR26upwRu65ImzDBGRX/\nXtEw41BiYQcpdvYYiUFD3dHRoYqKCq1du1b5+fmSpIqKCq1Zs0bZ2dk6fvy4HnroIWVnZ6uurk49\nPT3q7u5Wa2urMjMzhzXApUvRf887Pd0V9XvEwg5SbOwR6R06O31DH2SRzk6f8f9e/EyZIxb2COeG\nxqCh3rlzp65evaodO3aovr5eNptNK1eu1ObNm5WQkKD09HS9+OKLSkpKUnl5uUpLSxUMBlVdXa3E\nxMSwFwEQ+4KBgNrbP7Z6jM/ldt+v+Ph4q8cAJEm2YDAYtHKAaL91JMXOrbxo30GKjT0ivcOHH/6f\nVu76XznTJkfsOiPh07Y/S7LJkTLJ6lEGuHblU736wjxlZNz4rSA/U+aIhT0ifo8aAEaTI2WScTcg\nANPwymQAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBC\nDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiM\nUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGs1s9ABAr+vv71dbWesfX09XlVGenLwIT3dDe/nHErgvA3Ueo\ngQhpa2tV1bZGOVImWT3KAJc/OaeJ92ZZPQaAMBFqIIIcKZPkTJts9RgDXLty0eoRANwBHqMGAMBg\nhBoAAIMRagAADDboY9R9fX1atWqVzp8/r97eXlVWVmrq1KlasWKF4uLilJmZqdraWknSwYMHdeDA\nASUkJKiyslIzZ868G/MDABDTBg11Y2Oj0tLS9PLLL+vq1av67ne/qwcffFDV1dXKzc1VbW2tmpqa\n9Mgjj8jj8ejQoUO6fv26SkpKVFBQoISEhLu1BwAAMWnQUM+ZM0dFRUWSbjxHND4+XmfPnlVubq4k\nqbCwUMeOHVNcXJxycnJkt9vldDrldrvV0tKi6dOnj/4GAADEsEEfox4/frwcDod8Pp+qqqr03HPP\nKRgMhj6flJQkn88nv98vl8sVutzhcMjr9Y7e1AAAjBFDPo/6woULWrZsmcrKyjR37lxt27Yt9Dm/\n36/k5GQ5nU75fL7bLh+O9HTX0AdFgVjYIxZ2kKzbo6vLacn3ReRNmOAc8HMUC+dGLOwgxc4eIzFo\nqDs6OlRRUaG1a9cqPz9fkpSVlaWTJ0/q0Ucf1dGjR5Wfn6/s7GzV1dWpp6dH3d3dam1tVWZm5rAG\nuHQp+u95p6e7on6PWNhBsnaPSL7sJ6zV2ekL/RzFwrkRCztIsbFHODc0Bg31zp07dfXqVe3YsUP1\n9fWy2WxavXq1Nm7cqN7eXmVkZKioqEg2m03l5eUqLS1VMBhUdXW1EhMTw14EAADcMGioV69erdWr\nV992ucfjue2y4uJiFRcXR24yAADAC54AAGAyQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAA\nBiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0A\ngMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFAD\nAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPU\nAAAYjFADAGAwQg0AgMEINQAABiPUAAAYbFihPnXqlMrLyyVJ586dU2FhoRYvXqzFixfrd7/7nSTp\n4MGDmj9/vhYuXKgjR46M2sAAAIwl9qEOaGho0OHDh5WUlCRJOnPmjJ566iktWbIkdExHR4c8Ho8O\nHTqk69evq6SkRAUFBUpISBi1wQEAGAuGvEc9ZcoU1dfXhz5ubm7WkSNHVFZWppqaGvn9fp0+fVo5\nOTmy2+1yOp1yu91qaWkZ1cEBABgLhrxHPXv2bJ0/fz708cMPP6wnnnhC06ZN086dO/Xaa68pKytL\nLpcrdIzD4ZDX6x3WAOnprqEPigKxsEcs7CBZt0dXl9OS74vImzDBOeDnKBbOjVjYQYqdPUZiyFDf\natasWaEoz5o1Sxs3blReXp58Pl/oGL/fr+Tk5GFd36VLwwu6ydLTXVG/RyzsIFm7R2enb+iDEBU6\nO32hn6NYODdiYQcpNvYI54bGiP/qu6KiQn/7298kScePH9dDDz2k7Oxsvf/+++rp6ZHX61Vra6sy\nMzNHPAwAABhoxPeo161bpw0bNighIUHp6el68cUXlZSUpPLycpWWlioYDKq6ulqJiYmjMS8AAGPK\nsEI9efJk7d+/X5I0bdo07du377ZjiouLVVxcHNnpAAAY43jBEwAADEaoAQAwGKEGAMBghBoAAIMR\nagAADDbip2cBVuvv71dbW+vnfq6ry2nZC4+0t39syfcFENsINaJOW1urqrY1ypEyyepRBrj8yTlN\nvDfL6jEAxBhCjajkSJkkZ9pkq8cY4NqVi1aPACAG8Rg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYLBhhfrUqVMqLy+XJLW3\nt6u0tFRlZWVav3596JiDBw9q/vz5WrhwoY4cOTIqwwIAMNYMGeqGhgbV1NSot7dXkrRlyxZVV1dr\nz549CgQCampqUkdHhzwejw4cOKCGhgZt3749dDwAAAjfkKGeMmWK6uvrQx83NzcrNzdXklRYWKj3\n3ntPp0+fVk5Ojux2u5xOp9xut1paWkZvagAAxoghQz179mzFx8eHPg4Gg6H/TkpKks/nk9/vl8vl\nCl3ucDjk9XojPCoAAGOPfaRfEBf3n7b7/X4lJyfL6XTK5/PddvlwpKe7hj4oCsTCHtGyQ1eX0+oR\nEOMmTHAOOB+i5dwYTCzsIMXOHiMx4lBPmzZNJ0+e1KOPPqqjR48qPz9f2dnZqqurU09Pj7q7u9Xa\n2qrMzMxhXd+lS9F/zzs93RX1e0TTDp2dvqEPAu5AZ6cvdD5E07nx38TCDlJs7BHODY0Rh3r58uVa\ns2aNent7lZGRoaKiItlsNpWXl6u0tFTBYFDV1dVKTEwc8TAAAGCgYYV68uTJ2r9/vyTJ7XbL4/Hc\ndkxxcbGKi4sjOx0AAGMcL3gCAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBg\nsBG/MhkAxLJgIKD29o9DH3d1OY162Vq3+/4Bb5SE2EeoAeAm//Ze0vYDHXKkXLB6lNtcu/KpXn1h\nnjIyhvdeCogNhBoAbuFImSRn2mSrxwAk8Rg1AABGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiM\nUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwezhfuH3v/99OZ1OSdK9996ryspKrVixQnFxccrMzFRtbW3E\nhgQAYKwKK9Q9PT2SpN27d4cue/rpp1VdXa3c3FzV1taqqalJs2bNisyUAACMUWH96vuDDz7QtWvX\nVFFRoSVLlujUqVM6e/ascnNzJUmFhYU6fvx4RAcFAGAsCuse9T333KOKigoVFxerra1NP/7xjxUM\nBkOfT0pKktfrjdiQAACMVWGF2u12a8qUKaH/Tk1N1dmzZ0Of9/v9Sk5OHtZ1pae7whnBOLGwR7Ts\n0NXltHoEwDITJjjDOlej5fweSqzsMRJhhfqNN97Q3//+d9XW1urixYvy+XwqKCjQiRMnlJeXp6NH\njyo/P39Y13XpUvTf805Pd0X9HtG0Q2enz+oRAMt0dvpGfK5G0/k9mFjYI5wbGmGFesGCBVq5cqVK\nS0sVFxenrVu3KjU1VTU1Nert7VVGRoaKiorCuWoYpL+/X21trVaPcZv29o+tHgEA7pqwQp2QkKCf\n//znt13u8XjueCCYo62tVVXbGuVImWT1KANc/uScJt6bZfUYAHBXhP08aowNjpRJcqZNtnqMAa5d\nuWj1CABw1/DKZAAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBeB41AESJYCAQ1ivz\ndXU5R/2ld93u+xUfHz+q32OsItQAECX+7b2k7Qc65Ei5YPUoA1y78qlefWGeMjIyrR4lJhFqAIgi\nJr5aIEYXj1EDAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0A\ngMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFAD\nAGAwQg0AgMEINQAABiPUAAAYjFADAGAwu9UDjHX9/f1qa2u1egx1dTnV2ekbcFl7+8cWTQMA+Ayh\ntlhbW6uqtjXKkTLJ6lFuc/mTc5p4b5bVYwDAmEaoDeBImSRn2mSrx7jNtSsXrR4BAMY8HqMGAMBg\nhBoAAIMRagAADMZj1ACAOxIMBO7Ks0Q+79kpQ3G771d8fPwoTXR3RDTUwWBQ69atU0tLixITE7Vp\n0yZ99atfjeS3uCO7972h7t7+iF+vw5Goa9d6wvrajkv/kpQW2YEA4C76t/eSth/okCPlgtWjDHDt\nyqd69YV5ysjItHqUOxLRUDc1Namnp0f79+/XqVOntGXLFu3YsSOS3+KOHD39TwVSHrJ6jAF8Xd1W\njwAAd8zUZ6/Egog+Rv3+++9rxowZkqSHH35YZ86cieTVAwAw5kT0HrXP55PL5frPldvtCgQCiosz\n42/Wer0XZOsLRPx64+1x6g/zegNXOnQ9LjXCE0XGv72dkmxWj3Eb5hoZ5hoZU+eSzJ3N1LmuXfnU\n6hEiIqKhdjqd8vv9oY+HE+n0dNegn4+ktw/8z137XgAAREJE7+p+/etf17vvvitJ+utf/6oHHngg\nklcPAMCYYwsGg8FIXdnNf/UtSVu2bNF9990XqasHAGDMiWioAQBAZJnxV14AAOBzEWoAAAxGqAEA\nMBihBgDAYJaEuq+vTz/72c+0aNEiPfHEE3rnnXesGCMiLl++rJkzZ+qjjz6yepSw7dq1SwsXLtT8\n+fP1xhtvWD3OiPX19en555/XwoULVVZWFpX/FqdOnVJ5ebkkqb29XaWlpSorK9P69estnmxkbt7j\n3LlzWrRokRYvXqwf/ehH6uzstHi64bl5h8+89dZbWrhwoUUThefmPTo7O7V06VKVl5ertLRU//jH\nPyyebnhu/Xn6wQ9+oEWLFmn16tUWTzY8n9e6cM5vS0Ld2NiotLQ07d27V7/61a+0YcMGK8a4Y319\nfaqtrdU999xj9ShhO3HihP7yl79o//798ng8unDBrBfVH453331XgUBA+/fv19KlS1VXV2f1SCPS\n0NCgmpoa9fb2SrrxtMbq6mrt2bNHgUBATU1NFk84PLfusXnzZq1du1a7d+/W7NmztWvXLosnHNqt\nO0jS2bNno+4G7K17bNu2TfPmzZPH41FVVZVaW1stnnBot+5QX1+vZcuWae/everu7taRI0esHXAY\nbm5dQ0ODNmzYENb5bUmo58yZo6qqKkk3Xr3Mbo/Od9t86aWXVFJSokmTJlk9Stj++Mc/6oEHHtDS\npUv19NNP65vf/KbVI42Y2+1Wf3+/gsGgvF6vEhISrB5pRKZMmaL6+vrQx83NzcrNzZUkFRYW6vjx\n41aNNiK37lFXV6evfe1rkm7cqB03bpxVow3brTt0dXXpF7/4RdTcg/vMrXv8+c9/1r/+9S/98Ic/\n1G9/+1t94xvfsHC64bl1h6ysLHV1dSkYDMrv90dFN25uXX9/v+Lj43X27NkRn9+WhHr8+PFyOBzy\n+XyqqqrSc889Z8UYd+TNN9/UxIkTVVBQoGh+KnpXV5fOnDmjX/7yl1q3bp2ef/55q0casaSkJH3y\nyScqKirS2rVrb/u1pelmz5494P1yb/55SkpKktfrtWKsEbt1jy984QuSbkTi9ddf15IlSyyabPhu\n3iEQCKimpkYrVqzQ+PHjo+o8v/Xf4vz580pNTdWvf/1rfelLX4qK327cuoPb7damTZs0d+5cdXZ2\nKi8vz8LphufzWhfO+W3ZH5NduHBBTz75pB5//HF9+9vftmqMsL355ps6duyYysvL9cEHH2j58uW6\nfPmy1WONWGpqqmbMmCG73a777rtP48aNi5rHEj/zm9/8RjNmzNDvf/97NTY2avny5erpCe/9wU1w\n8+vj+/1+JScnWzjNnXn77be1fv167dq1S2lp0fW+683NzWpvbw/dgP3www+1ZcsWq8cKS2pqaui3\nZY899piam5stnmjkNm3apNdff11vv/225s2bp61bt1o90rDc3Lq5c+eGdX5bEuqOjg5VVFTohRde\n0OOPP27FCHdsz5498ng88ng8evDBB/XSSy9p4sSJVo81Yjk5OfrDH/4gSbp48aKuX78edf9DTUlJ\nkdPplCS5XC719fUpEIj8u6TdLdOmTdPJkyclSUePHlVOTo7FE4Xn8OHD2rt3rzwejyZPjq73KQ4G\ng8rOztZbb72l3bt365VXXtHUqVO1cuVKq0cLS05OTuh9GE6ePKmpU6daPNHIpaamhs7zL37xi7p6\n9arFEw3t81qXlZU14vPbkl/y79y5U1evXtWOHTtUX18vm82mhoYGJSYmWjHOHbPZzHt7t+GaOXOm\n/vSnP2nBggUKBoOqra2Nun2efPJJrVq1SosWLQr9BXg0/4Hf8uXLtWbNGvX29iojI0NFRUVWjzRi\ngUBAmzdv1le+8hU988wzstlsysvL07Jly6webVii7RwYyvLly1VTU6N9+/bJ5XJp+/btVo80Yhs2\nbNCzzz4ru92uxMTEqPgj5M9r3erVq7Vx48YRnd+81jcAAAbjBU8AADAYoQYAwGCEGgAAgxFqAAAM\nRqgBADAYoQYAwGCEGgAAg/0/VnB2M24Kw2EAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x115a4d0b8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.log_production.hist()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(['Active, men working, not producing', 'Permanently abandoned',\n", " 'Active', 'Temporarily closed', 'New, under construction'], dtype=object)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Mine_Status'].unique()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>log_production</th>\n", " </tr>\n", " <tr>\n", " <th>Mine_Status</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Active</th>\n", " <td>11.977453</td>\n", " </tr>\n", " <tr>\n", " <th>Active, men working, not producing</th>\n", " <td>10.499962</td>\n", " </tr>\n", " <tr>\n", " <th>New, under construction</th>\n", " <td>3.951244</td>\n", " </tr>\n", " <tr>\n", " <th>Permanently abandoned</th>\n", " <td>9.896046</td>\n", " </tr>\n", " <tr>\n", " <th>Temporarily closed</th>\n", " <td>9.162933</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " log_production\n", "Mine_Status \n", "Active 11.977453\n", "Active, men working, not producing 10.499962\n", "New, under construction 3.951244\n", "Permanently abandoned 9.896046\n", "Temporarily closed 9.162933" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[['Mine_Status','log_production']].groupby('Mine_Status').mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Predict the Production of coal mines" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Year\n", "Mine_Name\n", "Mine_State\n", "Mine_County\n", "Mine_Status\n", "Mine_Type\n", "Company_Type\n", "Operation_Type\n", "Operating_Company\n", "Operating_Company_Address\n", "Union_Code\n", "Coal_Supply_Region\n", "Production_(short_tons)\n", "Average_Employees\n", "Labor_Hours\n", "log_production\n" ] } ], "source": [ "for column in df.columns:\n", " print(column)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([2013])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.Year.unique()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([' ', 'UNIT', 'United Mine Workers of America', 'INTE',\n", " 'International Union of Operation Engineers',\n", " 'Scotia Employees Association', 'Western Energy Workers'], dtype=object)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.Union_Code.unique()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": true }, "outputs": [], "source": [ "features = ['Average_Employees',\n", " 'Labor_Hours',\n", " ]\n", "\n", "categoricals = ['Mine_State',\n", " 'Mine_County',\n", " 'Mine_Status',\n", " 'Mine_Type',\n", " 'Company_Type',\n", " 'Operation_Type',\n", " 'Union_Code',\n", " 'Coal_Supply_Region',\n", " ]\n", "\n", "target = 'log_production'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## first, look at the interplay between each possible predictor and the target variable" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Index(['Year', 'Mine_Name', 'Mine_State', 'Mine_County', 'Mine_Status',\n", " 'Mine_Type', 'Company_Type', 'Operation_Type', 'Operating_Company',\n", " 'Operating_Company_Address',\n", " ...\n", " 'Union_Code_United Mine Workers of America',\n", " 'Union_Code_Western Energy Workers',\n", " 'Coal_Supply_Region_Appalachia Central',\n", " 'Coal_Supply_Region_Appalachia Northern',\n", " 'Coal_Supply_Region_Appalachia Southern',\n", " 'Coal_Supply_Region_Illinois Basin', 'Coal_Supply_Region_Interior',\n", " 'Coal_Supply_Region_Powder River Basin',\n", " 'Coal_Supply_Region_Uinta Region', 'Coal_Supply_Region_Western'],\n", " dtype='object', length=989)" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.columns" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9YAAAIkCAYAAAD7xLMUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4XPWh5vHvOdNHvdiW3GRb7r0XbFMMBDA13BRuynNv\nNgmEhWxIvAkl2exNgOcSSKEFktyFkOtlyQ0dEkwSgm3ANmAM7k2WLclqVpdmNH3m7B8jjS1LckG2\nJdvv53nmkefU3xmNxvOeXzMsy7IQERERERERkU/F7O8CiIiIiIiIiJzNFKxFRERERERE+kDBWkRE\nRERERKQPFKxFRERERERE+kDBWkRERERERKQPFKxFRERERERE+sDe3wUQEYlG47S0BPq7GCI9ys72\nAug9KgOW3qMy0Ok9KgNddrYXh8PWp2OoxlpERERERESkDxSsRURERERERPpAwVpERERERESkDxSs\nRURERERERPpAwVpERERERESkDxSsRURERERERPpAwVpERERERESkDxSsRURERERERPpAwVpERERE\nRESkDxSsRURERERERPpAwVpERERERESkDxSsRURERERERPpAwVpERERERESkDxSsRURERERERPpA\nwVpERERERESkD+z9XQARERERGbgsyyIejxOLxUgk4iQSidTDsrpvb5oGhmFgmiaGYWAYJjabiWma\nmKYttVxE5FyiYC0iIiJyjkokEvj9fny+Nvx+Hz5fW8e/2wkG22lpaSEWi+Lz+QiHQ4TDYWKxGOFw\nmEgkTCwWJxaLnpay2e2OjsBtwzQN7HYHADabDYfD0bGVgdPpTG3n8Xiw2+3Y7Q4cDjsOhxOn04XL\n5cLpdOJyufB600hLSyMtLZ20tDQyMrLIyMjANNVQU0ROHwVrERERkbNUKBSivLye+vo6yssrqa+v\np6mpkZaWZurr6/D7fcTj8f4uZo9isSix2Jk5l2EY5ObmkZ2dQ25uHkOGFDB06DAKC4dSUFCIy+U+\nMwURkXOWgrWIiIjIAGZZFo2NDVRVVVJTU82hQzXU1iYfra0tp/6Ehi35SETA5oZ46PAqZwZWxJd8\nYvNAPHh4nSsbK3xEeezpEPP3fhp7GpgmViIKsRCYdkh0Jm0TSJyyS+p8DRsbGygtLem2Pj9/EGPH\njqe4eBzFxWMZPnwkdru+JovIidMnhoiIiMgAEYlEOHiwgoqKA5SXl1FVVUlVVSWhUPD4O/fEdGE6\nvSRCzV0W27PHEWtJBkx7znhizXtT67xFlwIQKPsb7sEzCdW8n1rnypuSem7PGEqspfTwutyJXbZ1\nZo8i0rC916J5hi/G5sklHmxKnmvI3NT+7sL5XY7VyT3iYmyuTKJtFUTqNifPWzAPrDjhQx+f2GvS\ng4aGehoa6nn//XXJsjtdjB07jsmTpzF//kLy8wd96mOLyPlBwVpERESkH8TjcaqqDrJjxzb27dtL\nTU0NdXW1JBInWFNr2DFdmRg2J/H2WgDsmaOItZWlNnHmjsOePpRA2d+67Gr35KWCtWlznpLrORNM\nmxPT4cW0HW66bXPnnPD+nqJlGKaTmL+GSP2WzgN0qZUHiETC7Ny5nZ07t/PCC89RWDiMmTNns2jR\nYoYPH3lKrkVEzi0K1iIiIiJnQCAQYN++vZSU7KakZC8HDuwnGo2c+AGOalrtKboEuycvWePbEaxN\nZ/qpLvY5xTDs2NzZYCWI1CeXOXPGEmnYjiNvMtHGnZ1bAoeHPK+pqaKmpopVq15n+PARLFq0hAUL\nLiA3N++MX4OIDEwK1iIiIiKnQXu7nw0b3qOy8iBlZfs5eLACq6f5qY5g2NMwXRnE22uxZ40i1lqW\nWmdzZxP3Hw7WBpqy6lSyOTPpHP/clj6MuL+yx+0qKw/y/PPP8cILf2Tq1OksWrSE+fMXadRxkfOc\ngrWIiIjIKRAOhykp2c3OndvZtWsn5eUHjruP6c7p0v/ZM3wxAIH2WkyHap8HCvfwi4g270k1uYfk\ngGjbtm1h27YtvPDCc1x22VUsWXIR6en6vYmcjxSsRURERD4Fy7I4eLCcHTu2sX37Vvbu3UM83vv8\nUaYzE5t3EDbvIDAdhCrfxZkzocdBumRgMe0ubJ78LsEabEByKrOmpib+9Kdnefnl57nggiVce+1n\n1Uxc5DyjYC0iIiJygvx+Pzt3bmPbti1s3771hKe7co+4GEd6Qep5PNh0uoooZ4g9uwjTkU6kfmtq\nWTQaYe3at3n33TUsWrSEq666lqFDh/VjKUXkTFGwFhEREelFIpHg4MFytm7dzCeffER5edlx+0n3\n5GwaeVtOlIE9rSAVrA1HOlY02Qc+kUiwbt07rFv3DlOmTOWaa25gwoTJ/VlYETnNFKxFREREjtDe\n7uejjz5k167t7N69i7a21p43NExMVw6JUOOZLaAMSLa0IcRaOgeXM4HktGk7dmxnx47tTJ06nS98\n4UuarkvkHKVgLSIiIue1RCJBZWUF27ZtYevWzezbt7f3WmnTAYkojtwJuAZNIxFu6zZHtIirYDbh\n2o+6LNu+fSvbt29l7tz5XH/95xg2bHg/lU5ETgcFaxERETnvtLW1sXPntlTY6bVWGgNb2hBMVzbR\npt04cycQadiOzZWDYeprlPTMMHp/b3z00Yds2rSRefMWcv31N1JYqD7YIucC/Y8gIiIi57zOqbA2\nb97Evn37qKgoO6H9PEXLsHsHEQ82EW3afXoLKee+jhYPlmXx4Ycb2LjxfRYuXMx1193IkCEFx99f\nRAYsBWsRERE554RCIUpLS9i6dTPl5QfYv38fsVjvU2F1cg6aQaR+S+q5YdhOZzHlPOMZvpR4sIFI\n425IRLAsiw0b3uODD9azaNESrrnmBgVskbOUgrWIiIic1SzLorGxgdLSEkpL97F3724qKytIJBK9\n7tM5grMjd2KXmmjT7jkTRZbzlGHaceVPxpkzlkjTXiJNeyARTY0ivmHDewrYImcpBWsRERE5a1iW\nRXNzE+XlZZSXH6CioowDB/Yfdz5pw+7BdOcQ91fjHn4Rpt1FoOxv2FzZRM9Q2UU6GTYnrkFTceaO\nJ9K0h0jT3i4Be/36d5k/fxHLl1/HiBEaRVzkbKBgLSIiIgNSe7ufmppqKisPUlVVSXn5AWpra/D7\nfcff2e7G5s7tCNJLsKcPIxFqJuCvxrS7Tn/hRU5AMmBP6wjYe1MB27IsPvhgPR98sJ7p02eyfPl1\njB8/sb+LKyLHoGAtIiIi/SYcDlNfX0ddXS11dYeora2htraGmppqfL62EzuIYcfmycXmyQObi0jd\nZrzDLwToCNJeDMM4jVch0jeGzdURsCd01GCXQCICwNatm9m6dTNjxozlssuuYO7cBdjt+govMtDo\nr1JEREROG8uyaG1toaGhnvr6Ourr66iurqSlpYVDh2qP24S7OxsQx55ZhD29ENOdg+nMwDBMAOLB\nJiKn/CpEzozDNdgTibaUEm7cBfEwAPv37+N3v9vHf/3Xs1xyyWVcdNGlZGVl9XOJRaSTgrWIiIj0\nSSDQ3hGa62loOPyzM0yfyGjc3dicmM5MTGcGNlcWGDbChzbhKpxLuOYDnLkTsHlyT/3FiAwAhs2B\nM28ipiefYPlbGPY0rFg7AK2tLbzyygu8/vrLzJw5m1mz5rFgwSJsNo1gL9KfFKxFRETkmGKxGI2N\nDaka5/r6uo4AnXwEAoFPf3C7F2IBbOlDifurcRXMw54xvFs/6HiwCQADNemW80dnSwz38AsgHiXS\nvJe4vxqAeDzOpk0b2bRpI3/840qWLLmIRYuWMHz4CHV9EOkHCtYiIiLnOcuyaGtrS9U2HxmcDx2q\npaWlGcuyPsWRDSC5n+nKJhFuwZ49lljLPlwFcwjXbsI9aDqhmvdxZIwk7q/G5s7R4GIiRzEwsKUX\nYE8vIBHxEWneR6y1DKujmbjf7+PNN//Mm2/+mcGDhzB37gLmzp1PUdFohWyRM2RABesbbriB3bt3\n8/zzzzNt2rQT3i8SifDQQw+xcOFCLr30UgCWLVvGsmXL+NGPfnS6iivASy+9xD333MP7779PdnZ2\nt/Uvv/wy99xzDxs2bOhx/UDX03trIJg4cSJ33nknX/va107J8R5//HGefvppPv7441NyPBEZWCzL\nwudro7GxkcbGeiorD+L3+2hoaOhost1AJBL+dAe3uSAexpZeiM2di+lIw3CmYzrSSMSCBMveAsCe\nMZxIuAW7J59Yyz4Mw3EKr1Dk/GE6M3APmYU1eDqRxr1E6rd0WV9Xd4g33niNN954jby8fMaPn8is\nWXOZPHkKXm9aP5Va5Nw3YIJ1SUkJe/bsYdy4cScdrOvr61m5ciXz5s1LLXviiSfIzMw8HUWVIxiG\nccw7oRdffDH/9V//ddb+Lnp6b52LPv/5z3PxxRf3dzFE5FOwLAu/30dzczPNzU00NzfR1NSY+tn5\niEY//WzNhiMdmysrFZhNR3rHv70kwm0Eyv6GK39atz7PVuxThnUROS7DsGFPG0KkHtzDL8KKtBHz\nHSQebEht09jYwIYN77Fhw3sYhsGYMWOZOHESY8dOoLh4HOnp6f14BSLnlgETrF9++WUmTZrE9ddf\nz6OPPso999yD2+0+oX17ap42caLm+hsIcnJyyMnJ6e9ifGqfrunj2WfIkCEMGTKkv4shIkeIxWL4\nfG20tbXS2tpKa2tLx6OV1tZmWlpaaGlppqWl+dMNDpZigN0FsRA2zyDiwXqc+dOSTU7jUUIH1+AZ\ndoEGChMZwEy7C1vGBJx5E0hEg8R8lcmQHahLbWNZFqWlJZSWlqSWFRYOpbh4HCNGFDFyZBEjRhTh\n9Xr74xJEznoDIlgnEgn+/Oc/89nPfparrrqKn/3sZ7zxxhvceOONqW2qq6v52c9+xvvvvw/AggUL\nuPvuu0kkElx22WUYhsH/+B//g/nz5/Of//mfqabg//N//k8WLVrErbfeys0335w6XklJCddeey3P\nPPMMCxcupKmpiQceeIC1a9cSiURYuHAhP/zhDxk+fPgJX8fdd99Ne3s7M2fO5A9/+ANtbW1ceOGF\n3H///TzzzDM899xzxONxrrnmmi5N1I937scff5zVq1fz3/7bf+PRRx+lpqaG8ePH88Mf/pBZs2Z1\nK4dlWSxcuJCvfvWr3H777QDs3r2bG264gdtuu41vf/vbAGzfvp3Pfe5z/OUvf6G4uJiNGzfyyCOP\nsGvXLtxuN1deeSUrVqxIfcB+9atfZfTo0VRVVfHRRx/x+c9/nilTpnQ5d3l5OV/60peYPHkyTz75\nJK+99lqXpuLLli3jS1/6EpWVlaxatYpYLMbll1/Oj3/849R5IpEIDz74IG+88QaRSIQrr7ySvLw8\nXn/9dd5+++0T+l1UVVVx6aWX8uSTT/Lss8/y0UcfkZmZyZe+9CW+9a1vpbZrbm7mF7/4Be+++y6t\nra3MmDGD73//+0ydOpWqqqoe31tHe/nll/npT3/Ko48+yn333UddXR1Tp07lhz/8YeoGT+fvcO7c\nubzwwgsUFRXx0ksvEQgEeOyxx/jb3/5GQ0MD48eP54477mDx4sWp45eVlXHvvffy8ccfM3jwYP7X\n//pfXc7fU3N8n8/HvHnzeOCBB7jhhhtS74Gf//znfPLJJ7jdbi666CLuuusuMjMzeeyxx3j66af5\n5JNPgOSNqX//93/n3XffZc2aNTidTq677jruuusuTDM5kEprayv33Xcfa9euxTRNPve5z9HY2Ehl\nZSUrV648od+TyPkkHo/T3u7H5/Ph9/vw+Xz4fG0dTbQbCIVC+HxtNDU10d7up73df2pObJgYjrTk\nXM4OLxgmsZZSXAVzsacVYDi8JEItBMr+hiO7mHiwHnt6YTJIdwwYJiJnD9PhwZk7DmfuOGLtdQQr\n3saeMZx4qAUr2vVzpaammpqa6i7L8vMHMXToMAoKCikoGMqQIQUUFBSSlZWd+g4gIt0NiGC9bt06\n6uvrue666xg8eDCLFi3i+eefTwVrv9/PP//zP5OWlsa//du/4fF4+PnPf87NN9/MSy+9xOOPP87t\nt9/OihUrWLZsWZdju91uli1bxptvvtklWL/xxhsMHjyYhQsXEg6H+epXv0okEuHHP/4xLpeL3/72\nt3zlK1/h9ddfJyMj46Sv5b777qOyspJ7772X3bt3M2rUKB588EE+/PBDfvvb3zJ79myWL19+wucu\nKyvj0Ucf5Tvf+Q5paWn8/Oc/54477mD16tXdPuQMw2Dx4sV88MEHqWD9wQcfALBp06YuZR02bBjF\nxcWsXbuWW2+9lauuuopbbrmF6upqfvnLX7J3794uIemll17iS1/6El//+tfJzMykpOTwXc/6+nq+\n/vWvU1xczK9//WvsdnuPTcV/+9vfcuGFF/KrX/2K/fv388ADDzBo0CBWrFgBJG9QrF27lhUrVjB0\n6FCeeuopXnvtNQYNGnTCv4dO99xzD1/+8pf55je/yapVq3j44YeZMmUKS5cuJRAIcNNNNxGPx/n+\n979Peno6v//97/nKV77C888/z6hRo4753jpSNBrlzjvv5LbbbmPYsGH8+te/5l/+5V9YtWoVubnJ\nWp49e/aQkZHBr3/9a8LhMJZl8fWvf52ysjK+973vUVBQwAsvvMDNN9/M7373OxYvXozf7+crX/kK\ngwcP5pe//CVNTU3cddddXV7T4zXHh+SNqS9/+cuMHz+ehx56iHA4zAMPPMCKFSv4j//4jx6P8e//\n/u9cd911PPHEE3z00Uc8/vjjjBkzhptuugmAW265haqqKn70ox/h9Xp55JFHKC8vZ+bMmSf9exI5\nWyQSCUKhEKFQkEAgQCDQTiAQIBgM0N7eTiDQjt/v7wjG7bS3JwN05/NTznRg2j0YdjeG3YPp8GLY\nvRgOTypIGzZXl7/veLCJWEtpsj+0U81ARc5lhpn8qu/Mm4zNk0si2k48UE/MV0XMd7DHfRoa6mlo\nqGfr1s1dlttsNnJz88jLyycvL5+cnFyysrLJzs4mKyubzMwsMjIycLs9GjBNzksDIli/8sorTJo0\nieLiYgCuv/567rzzTkpLSykuLubFF1+ksbGR5557jqFDhwJQUFDA7bffTkVFBZMmTQKgqKgodYwj\nXXvttdx6660cPHiQESNGAPDXv/6V5cuXA8kax/Lycv785z8zatQoABYtWsQll1zCypUr+e///b+f\n8LUEg0Eef/xx8vLyAHj11VcpLS3llVdewePxsHjxYl599VW2bNnC8uXLT/jcgUCAX/ziF0ydOhVI\n1nzcdttt7N69m8mTJ3crx4UXXsiPf/xjIpEITqeTDz/8kMmTJ7Nlyxbi8Tg2m4333nuPiy66CIBH\nHnmEGTNm8Itf/CJ1jGHDhvGNb3yDNWvWpPrfpqWlcc8996S26QzWPp+P22+/nby8PH7zm9/gdDp7\nfY0KCgpS57ngggv44IMPUkH6wIED/OUvf+lS07pgwYJPPXDY8uXLUzcX5s+fz5tvvsnatWtZunQp\nL774IpWVlbz++uuMGTMGgMWLF3PFFVfw2GOP8eijjx73vdUpFotxxx138IUvfAGA6dOnc+mll/Lc\nc89x2223Acnf2V133ZWqxX777bf55JNPePrpp7ngggsAWLp0KTfddBO//OUvWbx4MS+99BItLS28\n9NJLDB48GIDMzMxUq4MT9cwzz2C323nqqadSLQNcLhcPPvggra2tPe4ze/bsVMuKhQsX8vbbb7N2\n7Vpuuukm1q1bx+bNm/m///f/Mnfu3NQ1X3bZZSdVLjlzLMvCsiwSicQRjziJRIJ4/PDzeDyOZXUu\ni3dbd/S+hx/JY1tWouPn4fN1dqlIJBKpsnSUqpfSJr+QdX4xO/LGz7FuKnWe88h/d7/mZNljsRix\nWIx4PE48HiMSiRCNRjseESKRCOFwmHA4TCwWIRQKEQgECIfPUJ9hmwvT4QVsJEIN2LNGYXPnYHSE\naNPmxnB4MEwNACYiJ850pGFmpWE6M4n5DuIZuQwMg0SomUSohXi4hUS4BaxEt33j8Xhqir1jsdls\npKdnkJ6egdfrxev1kpWVidfrxWZz4HK5cblcqZ9Opwun04nD4ej46cRut3c8HNjtNmw2OzabDZvN\nplpzGbD6PVi3t7fz9ttvc8stt+Dz+YBkkHK73bzwwgvceeedbN68mXHjxqVCNSSbqr71VnKk0aqq\nqmOeY8mSJWRlZfHmm2/yzW9+k927d7N//35+9rOfAfDhhx9SVFTEiBEjiMfjQDJ0zJkzhw0bNpxU\nsC4oKEiFaoC8vDwSiQQejye1LDs7m7a2tpM6t81mS4XqzvNYltXr3KFLliwhGo2yadMmFi5cyEcf\nfcT//t//mxUrVrBjxw7GjRvH5s2b+cY3vkEgEGDXrl3ceeedPb5uH374YSpYFxUVdTuXZVl85zvf\nYe/evTz77LPH7Zszffr0Ls+HDBnC7t27Adi4cSOGYXQJaJ3Nljtr3U/GkecyDIPBgwcTDAYB+Oij\njxg7dmwqVAM4HA4uv/xyXnvttZM6j2EYqRs1ALm5ucycObNLCwEgdfOk8/zp6empUN1p+fLlPPDA\nAwQCAT755BPGjx+fCtUAl156KTab7aTKt3nzZubNm9fld9PZXaI3Pf2eOl+7Dz/8kKysrFSoBhg8\neDCzZs06b/ql97doNMrvfvc4mzZt7O+iyPEYtmStsc2FYXd2/NuNYU8us+JRIvVbcA9bjGFzEqxY\njXfERdg8ucSDTQTK/oYzZ7z6OIvIKWeY9uRni/dwq0DLSmBFAyQivo5HG4mIP7ks2g5W/JjHjMfj\nqTEhThev18utt36HKVNOfLBjkdOt34P1m2++STAY5JFHHuHhhx9OLTcMg1dffZXvfe97tLa2pprT\nfhp2u50rrrgiFaxXrVpFUVFRauTxlpYWSktLu/UXNgyjSxA6EWlp3acxONYgbCd67qNrgDvv1vUW\nYvLz85k0aRLvv/8+OTk5BAIBli1bRlFREZs2baKpqQnTNFmwYAGtra1YlkV+fn634+Tm5uL3+7s8\n70l7eztFRUX86le/Om7/2iNvMnReS2dNVktLC3a7vdsolT2V7UQc61xtbW09HjcvL6/LNZ8Il8vV\nrcy5ubkcOHCgS1mOfC+0tbV1uQnTKT8/H8uyaG9vp62trdvgb6ZpnvSAcK2trSc9oN+xXrvm5uYe\np0/Lz8+nvr7+pM4jn86ePTsVqgcIw5GWnGLKkYbpTMd0ZiRHzba7MWzOVFPM3sSDTUTqkzVJIiL9\nzTDM5Kj/znSgsMs6y7Kw4mES4VYSoWbioeZkbXek7YyWMRAIsGbNWwrWMqD0e7B+9dVXmT59Oj/4\nwQ+6hMSSkhLuvfde3nrrLdLT06msrOy27zvvvNOlFvdYrrnmGv70pz9RVVXVpRk4QHp6OpMmTeL+\n++/vFlSP1aT5VDid5166dCkffPAB+fn5TJkyBbfbzfz589m4cSPV1dXMnTsXt9tNIpHAMAwaGhq6\nHaOhoeG4Ic4wDJ588kmqq6v5xje+wcsvv8xnP/vZT1XmwYMHE4vF8Pv9XYJqU9OpH0AnKyurS/Dt\n1NDQcNJzbnc2GXW5XKlljY2NPQbnI8/f2NjYbXldXV1qfXZ2Nvv37++2TWeLBzjcNLYz9ALdWjKk\np6fT3NzcZVkkEuH999/vcQC84xkyZEi348Hp+T1Jz4qLxzFs2AiqqnruIydnjhVtJx7tof+0YUsG\n687aapszVUudrL1OBu/OKaksEhioiaOI9L9krXX7EbXWfhLR9sO11olPP33fqTJ79rk9Faqcffo1\nWNfU1LBx40Z+9KMfdWlSCjBnzhyeeOIJXnjhBZYuXcrbb79NTU0NhYXJO2elpaXcfPPNPP30012a\n8vZm3rx5FBQU8H/+z/+hvLyca665psu5NmzYwNChQ7sEqhUrVjBhwgTGjRt3iq64u9N57qVLl/LU\nU0+RkZGRen3nzp3L/fffT3l5OV/84heBZHOaSZMm8eabb/Kv//qvqf3fffddfD4fs2fPPu65cnNz\nGTNmDJdffjkPPfQQy5YtIysr66TLPHv2bAzD4B//+AfXX389kAyA7777Lnb7qX27zpkzh7///e/s\n378/9R6KRCK89dZbzJkzB+CkmlyvXr2aK6+8EkiG6s2bNx+zL/ScOXN4+umnWbduXZdRwFetWsXU\nqVNxOp0sWLCAv/71r1RUVDBy5EgA1q9fTyQSSW3feQOirq4u1aKgs0l9p1mzZvH6668TDAZTNdEb\nNmzglltu4a9//esJX2OnuXPn8vjjj/PRRx+l3ltNTU1s3rz5pOagl0/P4/Hy058+QCgUxLI6vgQd\n0ac5kbBS/Z2P7Pvc2Wf68POj+0rHuyw/Vh/ro491+FxWl5/Q2brG6iirRSQSTt08tCzoOs7NkX2r\nk8+7963uuu1hh8/RW7/yeDxBPH64j3UsFj2qf3XyZ/KGWajL39tJseJYsSBWLHhCmwfL3oKOPtOh\n2o2YzoxUN/SYvworHkr1sU4OSKYQLiJ9l4iFOmqfW0iEk32tE1F/j/2sT4bdbsfrTcPj8ZKRkU5a\nmhe73YXbfbw+1o6OvtXJftY2W+dPGzabic1mJy0tjbQ0Db4oA0u/ButXXnkF0zS54ooruq0zTZPl\ny5fz7LPPcu+99/LMM89w88038+1vfxvTNHnkkUeYOXMmCxcuTNXOrV+/npEjR/ba5PWqq67iD3/4\nAxMmTOgyENU//dM/sXLlSr72ta9x8803k52dzR//+EfeeuutLuFu165dFBQUnNL5fo917s7Buz6t\nWbNm4fF4eO+99/jKV74CJG8wtLa20tbWlhq4DODb3/42t912G9/97ne58cYbqa6u5le/+hWzZ8/m\nwgsvPOFz3n333SxfvpwHH3yQ+++//6TLPHLkSK699lruu+8+AoEAQ4cOZeXKlTQ0NHTpY3/w4EGa\nmpqYMWPGSZ+j04033sgf/vAHbr75Zr7zne+Qnp7OM888Q2NjY2pKrs7Qerz3lmVZ/PSnP8Xv95OT\nk8MTTzxBTk5O6uZFTy6++GKmT5/O97//fe644w4KCwt58cUX2bZtG08++SQAN9xwA0899RTf+ta3\nuOOOOwh+YXweAAAgAElEQVQGgzz88MM4HIcHLFqwYAFOp5P777+fW2+9laqqKp588skuLR7+9V//\nlVdffZVvfvObfP3rX6e9vZ1f/OIXXHHFFT32mz+eBQsWMGfOHFasWJGaku03v/kNkUhEg4qcQYZh\n4PFovtHTLTPTTTgc5tChJoLBIKFQkGAw+QgE2gkGAwQCh0cF75wq68jRwU947IGOWqBER/PKTpGG\nHUdtaCRrv+2e5GjgnT+PHhXcpsHNROQwy0qQCDUTbasAIHBwLcRPfFBGwzDIzs455qjgnQOXuVyH\nZyTIzk7+X9XS0vPYQCLngn4N1q+99hqzZ8/utf/stddey8qVK3nxxRd59tlneeCBB7j77rtxOp1c\ndNFF/OAHP8A0TdLT07n55ptZuXIln3zyCa+++mqPw/xfe+21/P73v+9SWw3J8PTss8/y4IMP8m//\n9m9EIhHGjx/PE088kQqV9fX1fPGLX+T2229PjTLdk57Oe/SyI0eyPda5ly5delLHPZrNZmPRokW8\n/fbbqRrYwsJChg0bht1u7xKoLrnkEn7961/z+OOPc9ttt5GVlcW1117Ld7/73W41RccydOhQbrnl\nFh577LEu85Cf6P5Aakq1hx9+mHg8ztVXX80VV1xBaWlpapsnnniCV155hV27dvV6nN5es87laWlp\nqdf+3nvvJRaLMWvWLJ599tlUgO7pvdXbue666y4effRRmpqauOCCC3jssce6NGc/ujymafLUU0/x\n0EMP8fDDDxMMBpk4cSL/8R//karBdjqd/Od//if33Xcfd999N5mZmdxxxx089NBDqeNkZGTwyCOP\n8POf/5xvfetbjB07loceeqjL+3T48OGsXLmShx56iO9973tkZGRw5ZVX8t3vfrfX6znee65z3u6f\n/OQnOBwObrrpJtxu93EHrxM525imicfjITs7h+zskxvfAJLdNAKB9iPmr27D7/en5rD2+Xw0NTUS\nDAbw+Xy0trZ06drRMwsrFsKKhYBmeh1KyHQkw/aR81h3jtIeC2NalqbFETmHWR3NXqJt5YTrtxEP\n1HUdfKyHUG2aJoMGDaagoJAhQwo7fhaQl5dPbm7eKW9BKHKuMCwN4XvCXnzxRZqamvjmN7/Z30U5\nZzU3N7Nu3TqWLVvWJaDddNNNDB48mEcffTS17Morr+TNN9/sj2J28fLLL3PPPfewYcOGk+6bfbaq\nrKxk27ZtXHHFFaka6kQiwbJly7jqqqu6jTB/PNFoXHexZcA60zUthwcvbE09WltbU6Pstra20tLS\nTGtrCz5fHwcMMkwMRxqG6SQRasSWPoK4/yDuwoXYMwqJR/wEy/6Od9Rneh2VvHPk8p626VwH4Myf\nSqRhO+7ChYRq3u/1Z2/n6jzWiW7nHfUZgC5l62ld5/E6Hf386H2PvA5H9qgu13gsR5f36Os5crvO\nsnWeq5MtfThxf2W3Y/b0Ondy5k/Fnj60WxmPPO/R+5zo62PPLibWUtrjup6O29tr0tNrcfSxjt4n\n2lKWWn9keY/nWK/Zkefs6bWO+au7XI89uxhndnHqOEe+Hscr/4k61t9Xb+stK0G8/RAxXyVRXxXE\nQ70e3+FwUFQ0mqKiUYwYUcTIkUUMGzYch+PUjjGkGmsZ6LKzvTgcJzfrztF0y+kEBQIBnnvuOX7y\nk5/0d1HOaW63m5/85Ce8+eab3HTTTdhsNlatWsXWrVv5/e9/n9rutddeY+zYsf1Y0vObZVn84Ac/\nYP369Vx99dVEIhFeeOEFmpub+fznP9/fxRM5qxmGQXp6Ounp6QwdOuyY28ZiMVpbW2hubqKlpZmm\npiaam5tobm6kqamJpqZGmpubem+KbiWwIr7UjOJxf3IwvFDN+1ADGMmvCeG6zZjuXExnGqYjOVqw\n4fBiGH37EiIip4ZFgpivmqjvIDFfFSR6HhsiPT2DCRMmMW7ceIqLx1NUNEo10CKniP6STpDX6+W+\n++476SmL5OR4PB6efvppHn74YVasWEEkEmHChAn85je/YcGCBantpk+f3mPffDkzRowYwZNPPskT\nTzyRanI+bdo0Vq5ceUKDCYrIqWG328nLyycvr/cpCePxOC0tzTQ2NtDU1EhDQz01NdW0tbXS0NBA\nY2M9sVis552t5PJ4oC7ZhPQoht2LYU/WbEVaSrFH2jqmH0tONyYip1ci4gMgWLG2x5G6bTYbo0cX\nM2PGLKZOnc6IEUUaC0XkNFGwPgkK1WfGtGnTeOqpp465zcnOL346ffazn/3U04udzZYsWcKSJUv6\nuxgichw2m+2Y4TuRSNDa2kJ9fR0NDfU0NNRTX1+XejQ39z6NnhULYMWSTTtjLaVdmgUnpxs7HK7j\ngeSUjomo/xRclcj5y0pEibaWE23ZTyLU8fd5RKh2Op1MmzaDOXMWMGPGTA1yKXKGKFiLiIicx0zT\nJCcnl5ycXMaP734DORqN0NDQcETYPkR9fTKA19UdIhzupf+mFceKHZ7fOx6oBUj1UQ3Vbkw+by4B\nIBasByARj2hQNZEeJCI+Is37iLbs71Y7bZomM2bMZtGixUybNgOXSy1GRM40BWsRERHplcPhpLBw\nKIWFQ7utsywLv9+Xqu1OBu66VK13Y2MD8XgvY5Z3jEycCDUCpGq7QwfXJEczd2ZiujIwnZnYXFmp\n0Y1Fzied7/vQoY9JBBu6rR82bARz587nkksuIzMz60wXT0SOoGAtIiIin4phGGRkZJKRkcmYMd0H\nlEwkErS0NKdquzsDd21tNU1NTbS2tvR84ESURKgxFbqPFKpP1nhHfQcBC9OVhWHq64ycWyzLIu6v\nJlS/DaBLqLbZbMyfv4hlyz7DmDHFat0hMkDofyIRERE5LUzTJDc3j9zcPCZMmNRtfTgcor6+jkOH\nDlFXV0tl5UGamhqpra3pPXTHkn20o427iDbuAgxMVyY2Tx42Tz4oZMtZzLISxNoqiDTuIhFu7bIu\nMzOLSy65jIsvvpSsrPNjek+Rs4n+9xEREZF+4XK5GT58JMOHj+y2LhAIUFtbTXV1FdXVlVRWVnLw\nYHkPgdsiEW4lEW5N9j3tEKr9GNOd3bnF6bwMkT7rDNThhh1YHSN9dxoypJDly69l4cLFOByOfiqh\niByPgrWIiIgMOF6vlzFjxnZrYt7e7qeiopzy8jIqKg5QXl5GbW1Nt7m6E6EGEqFk89lg2dvYvIMw\nnBlAMmgbaMoh6X/HCtRFRaO5+urrmT17rqbIEjkLKFiLiIjIWSMtLZ1Jk6YwadKU1LJAIMCBA6WU\nlpawf/8+9u3bSyAQOGKvBPHAIQgcAiBYvgabOye5Jt7LqOYip9GxAnVx8Tiuv/5GpkyZrv7TImcR\nBWsRERE5q3m9XqZMmcaUKdOA5KBp1dVV7Nmzix07trF//z7a2o7or2rFiHdM7xWp29zlWJbVyyjm\nIqeAhUW07SCR+m0kIm1d1hUXj+OGGz7H5MlTFahFzkIK1iIiInJOMU2T4cNHMHz4CC699DNYlkVN\nTTW7dm1ny5ZPKC0tIRgM9rhvuGN+7U6a5ktOpVDVBqyov8uy4uKxXH/955gyZZoCtchZTMFaRERE\nzmmGYTB06DCGDh3GpZdeQTwep6xsP9u3b2X79q3s37+vWx/tTsHKd3FkjMB0pp/hUsu56MhQPWrU\nGG644XNMmzZDgVrkHKBgLSIiIucVm81GcfG4jr6s/4Tf72fXru1s3bqZ7du3dh15PBYi2lySehpp\nKQPUN1uO7Vgj0Y8YUcQNN/wTM2fOUaAWOYcoWIuIiMh5LT09nXnzFjJv3kISiQQHD1awceP77Nq1\nnbKyA11rszvm0Y7UbSbavC81CJrIkcL1W7stKywcyo03fpFZs+ZolG+Rc5CCtYiIiEgH0zQpKhpF\nUdEoAPx+Pzt3bmPr1s1s2fIJ7e2Hm/JaUT+xo/rLyvkrEera0qHTkCGFXH31dVxwwVIFapFzmIK1\niIiISC/S09OZP38R8+cvIpFIUF5exvbtW9i2bQulpSW99s0+mgZBOzcdObJ3ItTYZd3YseNZvvw6\npk+fqUAtch5QsBYRERE5AaZpMnr0GEaPHsO1136W9nY/O3ZsT9Vot7Q097pvsGI1du8QbN5B2LyD\nFLTPATFfJbGW0m7LJ0+eynXX3cj48RP7oVQi0l8UrEVEREQ+hbS0dObPX8j8+QuxLIvS0n3s2bOT\nPXt2sW/fXkKhIwY4S8SI+auI+as6FiRrMKO+8jNfcDlpFgkS4a7zThMPp/7pcDhZvHgpy5ZdzvDh\nI89w6URkIFCwFhEREekjwzAYO3YcY8eO4+qrryeRSFBRUcYHH6ynoqKcAwf2EwodOXd2ctTouL+m\ny3HChz7BcGUmt4jHzlTx5TiCFWsg0f33MWRIARdcsJRLL/0MXm/amS+YiAwYCtYiIiIip5hpmowa\nNYZRo8YApEYb37t3NyUluykp2dt1Wq8O8WA9BOsBiDXv7rIuoYHSTqtEIpr6dzxw6KiVh0O1w+Fg\n0aIlLFy4mPHjJ6r/tIgACtYiIiIip92Ro41ffvmVWJZFU1Mj+/fvY9euHezfv4+ammqi0Wivx7DC\nXYN4sPoDbO5sMG2pZYl45LRdw7nCSsRJRHyp59G2gwBEDm06vFGi6+/B6XQxdep0iopGceWVV+Nw\nOM9IWUXk7KFgLSIiInKGGYZBXl4+eXn5zJu3EEjWatfUVFNRUUZJyW5qamo4eLCcQCDQ4zGsSCux\nSGuXZbHmvV2eR1rLuk4D1SERbT98nL5eTD9LxCNgnViz+cDBNXDUzQfrqNew06BBg5k8eSpz5y5g\n/PgJCtMickyGdaLzRIiInCbRaJyWlp6/OIr0t+xsL4Deo9IvLMuira2VysqDVFUdpLa2JvU41ijk\nfWE4MzBMG4lQC6Yrm8QRNeU2z2DiwbqO7bK6hFJbWgHx9trUc9OdSyLU1Ot5bJ5BYHNgxSIkQg0Y\nznSsSEdzd7sHYsHuOxl2wAIr3reLPEqyRcFoiovHUVw8luLiceTnDzql5zif6XNUBrrsbC8Oh+34\nGx6DgrWI9DsFaxnI9IVQBqpgMEhd3SGCwTbq6g5RWlpGW1sLtbW1+HytvdZ0n8/S09PJycmjoKCQ\n3Nw8Ro0aTWHhMAoLC1UjfRrpc1QGulMRrNUUXEREROQs5PF4KCoa1WtoiUajtLa20NLSTFtbKz6f\nD5+vDZ/Ph9/vIxgM0tbWSiQSob3dTyQSJhwOE4sNjNHITdPENG3Y7XZstuS/XS4Xdrsdu91OPJ7A\n4/Hg9XpxuVw4nS5cLhdpaWl4vWmkpaXj9aaRmZlJdnYOOTk5Cs8ictooWIuIiIicgxwOB/n5g066\nSXMikSAcDhOJRIjHY0SjUWKxGLFYjEQiTiKRSD16avhoGAaGYWCaJoZhYpoGpmlLheNkYDax2+2p\n8Gyzmdhs9i7bGIZxql4KEZHTTsFaRERERFJM08Tj8eDxePq7KCIiZw1NvCciIiIiIiLSBwrWIiIi\nIiIiIn2gYC0iIiIiIiLSBwrWIiIiIiIiIn2gYC0iIiIiIiLSBwrWIiIiIiIiIn2gYC0iIiIiIiLS\nBwrWIiIiIiIiIn2gYC0iIiIiIiLSBwrWIiIiIiIiIn2gYC0iIiIiIiLSBwrWIiIiIiIiIn2gYC0i\nIiIiIiLSBwrWIiIiIiIiIn2gYC0iIiIiIiLSBwrWIiIiIiIiIn2gYC0iIiIiIiLSBwrWIiIiIiIi\nIn2gYC0iIiIiIiLSBwrWIiIiIiIiIn2gYC0iIiIiIiLSBwrWIiIiIiIiIn2gYC0iIiIiIiLSB/b+\nLoCIiIiI9J3f76e+vo76+kO0tDQTCAQIBAKEQiFM08A0TWw2O263m+zsbLKyssnOzqGgYCjp6en9\nXXwRkbOagrWIiIjIWcbna6OkZA8HDuynqqqckpIS2tvbP/XxsrKyGTZsOEVFoxk3bgLjxo0nLU1h\nW0TkRBmWZVn9XQgROb9Fo3FaWgL9XQyRHmVnewH0HpV+FY/H2bt3N9u3b2Xnzm2Ul5ed9nMOHz6S\nadNmMGPGLIqLx2Gz2U77OeXcpM9RGeiys704HH37jFOwFpF+p2AtA5m+EEp/icVi7NixjU2bNrJ5\n80f4/f7j7uMo8IBhEK1Jvl/d47NxDUsjdKCVcJkfZ1E6rqFpRJvChPa04Cj0YoXjxNsiWLHevxKm\npaUxc+YcFixYxKRJUxWy5aToc1QGulMRrNUUXERERGSAsCyL0tISNmxYx8aNG44bpj2Tc7BlOvG/\nfwgA76Rc4r5IKljbMx3Yc1yYtcmvfDavHWdhGqbbTmhPC96JOdhzXFiWRaQ2gH9D8jhmmp1Eeyx1\nnvb2dtate4d1694hPT2DefMWsmTJRYwaNRrDME7HSyEiclZRsBYRERHpZ62tLaxf/y5r1vyD+vq6\n7huYBvZcF7GGEK6xWYT3tQLgHOI9Jec3DAOb+/DXwoz5QzDdNoL72wjtaUnOI5NIrvP7faxe/XdW\nr/47w4ePYMmSi7nggiWkp2eckrKIiJyNFKxFRERE+kEikWDHjm2sXfs2W7Z8TDwe73E7z5QcPMVZ\nxH1RWldXYTrOTA2x6bHjGppGaE8LmUsKSQTjBEtbiDdFUttUVh7kj39cyQsv/JH58xdyySWXMWbM\nWNVii8h5R8FaRERE5AxqbW3lvffWsHbt2zQ01Pe6nXdmHoHNjTgHezHs5hksYXeGzcQ1wgOWhb+p\ne5ljsSjr17/L+vXvMnLkKC677AoWLFiEw+Hsh9KKiJx5CtYiIiIip5llWezevZM1a/7Bxx9v7F47\n7TRwDkkjcvBwn2qzn8P0ifBMyiYRThCp8KUGP6uoKOPpp3/Ln/70/7j44ku55JLLyMnJ7eeSioic\nXgrWIiIiIqdJW1sb69e/w9q1qzl0qKbbelu2k3hLhMwLCjEMo0uwPhvY0hx4J2VgTcmlbeMhYrXB\n1Dq/38ef//wKq1a9zty5C7j88isZM2ZsP5ZWROT0UbAWEREROYUSiQQ7d27n3XfX9Fg7bThNXCMz\ncI/OwIpZtK6uOuv7JBsOE0eOi1htEGdROlYwTrQuGbLj8TgffLCeDz5YT3HxWC6//Cpmz56H3a6v\noSJy7tAnmoiIiMgpcOhQDevWvcu6de/Q3NzUbb0914V7TCbOYWkYtmQz71hz+EwX87Szee04x2TR\nWleFc2Q60ZoAVjQ5pHhp6T5KSx8jJyeXZcsu58ILLyEjI7OfSywi0ncK1iIiIiKfUktLMx9++D7r\n179DRUV5j9s4R6bjGZ+NPfP8G8jLU5xF+sx8whV+QqWtxH1RAJqbm3jxxf/i1VdfYuHCxVx22WcY\nOXJU/xZWRKQPFKxFRERETkJjYwMff7yRTZs2UlKyB8uyum3jGOzBnu8muLMZT3HWeRmqOxl2E/eY\nTFyjM4jWBQntayV6KNlMPBaL8t57a3jvvTWMHTueZcs+w9y589VMXETOOvrUEhERETmGRCLBgQOl\nbNnyCVu3bqaioqzXbR1DvaRNz8fmtRNrDhPc2XzmCjrAGYaBc4gX5xAvcV+EUGkboQofdIwmvm/f\nXvbt28sf/5jFhRdewoUXXkJ+/qB+LrWIyIlRsBYRERE5gmVZ1NRUs3v3Tnbt2sHu3Ttpb+95tG7T\na8ee7yZSkVzvGpqGzauvV8djy3CSNjMfz5RcwuU+QvvbSPiTzcTb2lr5859f4S9/eZWpU6dz0UXL\nmD59lmqxRWRA0yeUiIiInNeCwSAVFWXs37+PkpJkranf7+t1e1umA2dhGs5hadiyktNldQZrOTmm\nw8QzNgt3cWaymfj+NqI1ASB5g2Pbti1s27aFrKxsLrhgKUuXXkxBQWE/l1pEpDsFaxERETlvtLa2\nUllZQUnJHurr6ygt3UddXe2xd7IBcXCPz8Y9JgOb13FGyno+6dJMPBAjXNZGqMyHFUpOVdba2sKq\nVa+zatXrjB07nsWLL2TevAV4vWn9XHIRkSQFaxERETmnWJZFc3MTNTXV1NZWU11dRXV1FVVVlces\nie5k2A3suW7s+W4cgz0AtK2pxjUsTaH6DLB57Xgn5+KZmENgWyOh0rYu6zv7Yj/77B+YOnU6F154\nMVOnzlBTcRHpV/oEEhERkbNSMBjk0KEaamtrqa2tpra2hoqKcpqbGwmHT25+aEeBB+cQL/Y8N7Ys\nJ4ZhpNadi3NNnw0M08Ce4wLAPTaL0L7WLutjsSibN29i8+ZNpKWlM2/eAhYsuIBx4yZgmmZ/FFlE\nzmMK1iIiIjJgWZZFW1srVVWV1NRUUVNTnXq0tJzciNuG08T02om3RABwT8wmtLsFAO+k3FSIk4HH\ncBy+0ZE2O59Yc5jwQX9qRPH2dj9r1vyDNWv+QU5OLnPnLmD+/IWMGTO2y00SEZHTRcFaREREBoRg\nMEhlZQWVlQc7HhVUV1fS3t5+cgdymDhyXNgyHNgynKmfhssk3hKhdXUVAPZ0Nes+G9mzXLhHZeIa\nmUHb2mrs+W5ijSHomE68ubmJv/99FX//+ypyc/OYM2c+c+fOp7h4nGqyReS0UbAWERGRM6693U9Z\n2QH27NlFbW0NBw+WU1d3CMuyTmh/w25gZjixpTuSwTndQdwfIbizhfQZebhGZpzmK5D+ZpjJmui0\naXkkonF879Viz3ERawmnQnZTU2MqZGdkZDJ37nxmz57HhAmT1CdbRE4pfaKIiIjIaRWLxTh4sJzS\n0n3s35981NUdOqF9DZeZrHXOdGI/ogbacNu6NfENVxx/YDI5N5kOGwBpM/MxvXYiVe1EqtuJ1gdT\nIdvna2P16rdYvfotvF4vM2bMZtasuUydOh23292PpReRc4GCtYiIiJxSgUB7x3zQeygp2cuBA6VE\no9Fj72SALdOJYTeINSYHC/POyMNTnHUGSiznEtNlwz0mE/eYTBLhOJHqdsLlPmJNhwehCwQCbNjw\nHhs2vIfd7mD8+AnMnbuAGTNmkZOT24+lF5GzlYK1iIiI9ElbWxt79+5mz55d7N27m8rKimM36TbA\nluXE9NqJVgdInzsI5/B0DNMgXOHD31gPgOlQf1jpG9Nlwz06E3u2i9bVVXgmZRNvjRA5FIR48j0a\ni0XZuXM7O3duB6CoaBQzZsxm5szZjBw5Sv2yReSEKFiLiIjISfH7/ezZs4vdu3ewbduW4zbrNt02\n7Hlu7Lmu5PzQ2U4Mm0msOUxrdSA5sJipkZvl9HMWpGGflIsVTxCtCxKpDhCubodoIrVNeXkZ5eVl\nvPbaS2RkZDJjxmxmzJjJ5MnT8Hg8/Vh6ERnIFKxFRETkmEKhEHv37mbXrh3s2rWDioqyY25vy3Rg\nz3PjyPdgz3Nheuya8kgGFMNm4ixMw1mYhmt0Bm1rqnGOTCfeHCbuO9xtwedr47331vDee2uw2WyM\nHz+RadNmMG3aTIYOHab3tYikKFiLiIhIF9FolNLSklSQPnCglHg83uv2hseGa2gajkEe7HluTJft\nDJZWpG86w7GnOAt7jot4e5TQ/jZCJa1dtovH46m/iT/96f+Rm5vH1KnTmTp1BpMnT8HrTeuP4ovI\nAKFgLSIicp6Lx+OUlR1g9+5kaCgp2XPcwcacw9Iw3DbCpW2kTcnV9FZyzrClOXANT08Fa+/UXOL+\nKNHaAInQ4RtMTU2NvPPOat55ZzWmaTJmzFgmT57K1KnTGTVqjKbzEjnP6C9eRETkPBOPx6moKGfP\nnp3s3r2TvXv3EAoFe93e9NpxDPLgGOzBcJr41tXiGZ9N3Bch3OteIucGxyAPnvHZWJZFvC1CtDZI\n5FCAWGMoNZVXIpFg37697Nu3l9deewm328PEiZOYNGkqkydPVbNxkfOAgrWIiMg5LhqNUl5+IDVy\nd0nJ3mMGacNlwzHIjWOwB8cgD7Y0R2pdrFlRWs5PhmFgz3Jhz3LhmZBNIpogVp8M2dG6IIn2WGrb\nUCjI5s0fs3nzxwBkZmYyYcJkJk6czIQJkygsHKqgLXKOUbAWERE5x/h8bZSWllBaWnJi80jbDYhZ\nuMdl4SrKwJbh0Jd+keMwHSbOoWk4hyb7Vsf9UaJ1QaJ1AaL1IawjRhpva2tj48b32bjxfQAyMjIZ\nPbqYKVOmMW7ceEaMKMJm09gEImczBeuzwFe/+lU2btzYZZnb7aaoqIgvfOELfPnLX+6nkg0szz//\nPFVVVdxxxx0A3HXXXezYsYPXX3/9tJ3zscce4+mnn+aTTz45becYyOc/2sSJE7nzzjv52te+1t9F\nETlvRCIRDh4sZ//+Ug4cSD4OHao95j6G00yO2j3IgyPfjZWwaFtTjWt4OvZM5xkquci5xZbuwJbu\nwD0mM9lsvCWSDNr1QaINQTics/H52ti69RO2bk3+/+1yuRgzZizFxeMoLh7HmDHFZGRk9tOViMin\noWB9lpgzZw533nln6nl7ezsvv/wy9957L4DCNfDkk0+ybNmy1PMzUdtiGEa/1ur09/lF5Mxqb/dT\nWXmQiopySkv3Ul1dRXV1FYlE4pj7mW4b9nw3jjw39nwPtsyuNdJq3i1yahmGgT3HhT0n2Ww82hRK\n3rwanUGiPdYtaIfD4dSI450GDRrM6NFjGDWqmFGjRjNyZJFGHhcZwBSszxIZGRlMnz69y7KFCxey\nbds2nn32WQVrEZFzSHu7n9raGqqrq6ipqaKqqpLq6ioaGxuOv7MBtixnMkTnuv8/e3ceHlV9L378\nPftMMkkme0KAEAiQAEGQIFBWQSpyRbS1j9baavurqBW7oFfr0tpWrVqpt/ZyfVqtFOG6taJoqeJV\nEaSyqYBU1pCQfc9kMpl9O78/JhkyJEACCUng83qeeWbmnO855zOHyXA+57uhTTKgjpF5pIXoT+1/\nf8YR8WgTDZFE25gbT8gVwN/kRfFGT2nX0FBPQ0M9u3fvjCxLSUklO3sEWVnDGDp0GFlZw0hLS5dm\n5EIMAJJYD2IqlYq8vDw+/vjjyDK3283KlSvZtGkTDoeDiRMn8uCDD5Kfnw/AW2+9xVNPPcVtt93G\n8xtvJKcAACAASURBVM8/T0xMDO+++y6TJ0/m8ccfZ+vWrWzbtg2z2cyPfvQj5s+fzy9/+Ut2795N\nWloaDz30EHPmzIkc76WXXuKNN96grKwMrVbLpEmT+PnPf86YMWOAcDP28ePHYzAYWL9+PQ6Hg5kz\nZ/KrX/2K1NTUyH42btzIn//8Z0pLS8nIyOCWW27h5ptvjqzPy8vjiSeeYNu2bWzZsgW9Xs8111zD\nz3/+c9RqNfPnz6empob//d//5eWXX+bQoUNR5+qpp57izTff5NNPP42a/uIHP/gBZrOZP/7xj12e\n423btvH8889z4MABAoEAI0eO5K677mLhwoVR5d5++22effZZrFYr06dP58EHH2T48OGR9e+88w5r\n167l2LFjkc9z7733UlhYCMADDzyA0+mksLCQNWvW0NTUxCWXXMIjjzzCqFGjIvt58cUXefnll2lu\nbmbhwoWkpaV1ivlvf/sb69ato7y8nIyMDG666SZuueWWbp9LCI8YvGrVKjZs2EBTUxOjR4/m3nvv\nZcaMGZH9lJaW8uijj7Jnzx7S0tL4xS9+0eU5FEJ0FgqFsNmaaWpqpLGxgYaGeurr66ivr6OurpbW\nVnu396WJ06GxGCK1Y1qLHpVG3YfRCyHOVXuibRgWhzbRgKIohFwBAk0eAlYvfquXYIs3Mup4u8bG\nBhobG/jiixNdBLVaLenpGWRmDiEjYwjp6RmkpaWTlpZBfHy83FQT4jyRxHqQKysrY+jQoZH3d9xx\nB0VFRaxYsYLU1FTWrVvHd7/7Xd566y2GDRsGQGtrKxs3buSZZ57B6XRiMpkAePLJJ/n2t7/Nd77z\nHV5++WUeffRR1q1bx7XXXsutt97KM888w3/+53/yySefYDAYePHFF3n22We57777yMvLo7Kykmee\neYYHHniA9evXR2Jav349BQUF/Pa3v8VqtfLYY4/xxBNP8MwzzwDhZP+BBx7g5ptv5oEHHmDfvn08\n8cQT+Hw+fvCDH0T288QTT3DNNdfw3HPP8fnnn7Nq1SpGjhzJjTfeyP/8z/9w2223UVhYGLVNu6VL\nl7JmzRr+9a9/MW/ePAAaGxvZtWsXq1at6vLc7t+/n9tvv52bbrqJ5cuX43Q6eeGFF7j33nvZsmUL\niYmJwImbGffeey8xMTGsXLmSW2+9lXfffRej0cimTZu4//77Wb58Offffz+NjY2sWrWKn/3sZ3z8\n8ceRRH/Hjh1UVlby8MMPEwwGeeyxx3jwwQd5/fXXgXBS/cwzz3DnnXcyadIk3nzzTdasWYNef6I/\n5O9//3tWr17N7bffTmFhIbt27eKpp57CZrPxk5/8pFvnEuDhhx9m06ZN/OQnPyE3N5d33nmH2267\njf/93/9l0qRJOBwObr75ZtLS0njmmWewWq38/Oc/l/+8xUUvEAjQ2tpKa6ud1lY7dnsLLS02bDYb\nNpuV5uZmmputNDdbCQaDZ95hRxoV2ng9mgQ9Kp0aT1EL8bMz0aWa+ubDCCHOG5VKhSZWF55Du21O\neCWoEGzxEmj2EmjxEbB5Cdp9UU3IIfy7U1VVSVVVZaf96vV6kpNTSE5OJSkpicTE8MNiSSQhwUJ8\nfALx8fFS4y1EL5DEehBpvwhTFIWGhgZeeeUVDh06xIMPPgiEa1d37drFmjVrmD59OgCzZ89m8eLF\n/OlPf+Lxxx8HwjUly5cvZ+bMmVH7v/TSS1mxYgUAaWlp/N///R+XXnopy5YtA2DFihX84Ac/4Pjx\n4+Tl5VFbW8vy5csjNcuFhYXYbDaeeuop3G53JGHXaDT8+c9/RqcLT9dy+PBh/v73v0c+y3/913+x\ndOlSHn74YQC+9rWvAfDcc89x0003YTQaI/G1l5k+fTqbN29m69at3HjjjeTn56PX60lJSenUZB7C\ntbRjx47lH//4RySx3rhxI/Hx8VE18B0dO3aMK6+8MnJMgMzMTK677jr279/P3LlzI8tXrlzJtGnT\nAMjJyWHJkiVs3LiR66+/nvLycm6++WbuuuuuSHmdTsfdd99NaWkpubm5ALhcLl544QWSk5MBqK2t\n5be//S0tLS3Ex8fzl7/8hRtuuIHly5cDMGvWLJYuXUpFRQUANpuNNWvW8MMf/pAf//jHkXOpKAov\nvvgit9xyCxaL5Yznsri4mLfeeovHH3+cb37zm5Fj1dfX84c//IE1a9bw5ptvYrPZePPNNyO15vHx\n8dx9991dnkshBiKv14vX6yUYDOD3+wkEws9+vw+/34/P58Pn86LRKHi9Xpqb7Xg8HjweN263G5fL\nhdvtwuVy4nSGH6ebwqq7VHp1eBCkOB0asx5NvA5NvD6qOXeg2YunqAWVVmqmhbhQqTSqtu4cxsgy\nJaQQbPUTtPsI2n0E7D6CrX5Cjq5H/ff5fNTUVFNTU33q46hUxMTEYDbHYTabiY2NIyYmpu0Ri9Fo\nxGAwYjSGH3q9IZKwp6SknnK/QlxsJLEeJLZs2cL48eOjlplMJm699dZI/+rdu3djMpkoLCyMSsJn\nzZrF5s2bo7YdMWJEp2MUFBREXqekpABEHTMxMRFFUWhtbQXgoYceAsBqtVJSUsLx48cjzdJ9Pl8k\nsc7Ly4sk1QAZGRm43eGLz5KSEurr65k7d25U7c3s2bP54x//yP79+7nssssAOiXM6enpkf10x7XX\nXsuzzz6Lx+PBaDTyj3/8g8WLF5/yLu03vvENvvGNb+B2uykuLqa0tJSdO3eiUqnw+XyRcnFxcZGk\nGiA3N5dhw4bxxRdfcP3110duTLS2tkbOU/u/R8f9DBkyJJJUt58nCNeINzY20tzczOzZs6NiXLhw\nIatXrwZg3759BAIBFi1aFFVm8eLFPP/883z55ZeRmwGnO5e7d+9GpVIxZ86cqO/RnDlz+K//+i8C\ngQB79+5lzJgxUU3RFyxYIHe8xaDxz3++zfr1r/fPwbUqNCYt6pjwQxOjRd1WU6WO1aLWy9+REKJr\nKrUKbYIebUL06P1KUCHoDCfYQYe/7XWAoMtPyBXo1KQ8altFidwcrKvrWTzf+97/Y968BWfxSYS4\n8EhiPUgUFhby4IMPoihK5M7isGHDohIZm82G2+1mwoQJUduqVKqoxBaISuDaxcZ2HmmyPTnuSnFx\nMb/4xS/Ys2cPJpOJvLy8yD4U5cQveHuNc8d42te3tLQAcM8990RqyzuWa2hoOGUsarX6jCPhdrRk\nyRJWrlzJ5s2byc/P58CBAzzyyCOnLO92u/nFL37Bpk2bgHBNdHtf9Y6fr6tzmZSUhMPhAMJNzh98\n8EG2bduGXq8nNzeXrKysTvvp6jxBuIWB3W5HpVJFmp+369hP3W63dxlP+02S9njg9OeypaUFRVE6\nJfHt5Zqbm7Hb7Z1iUavVnZYJMVBt3vxBnx9DpVOjabsA1ljCfZ/VMTrUOqllFkL0LlVbVxG6mC5P\nURRCnmC4hrvZS8Aabl5+8mBpZ2Pv3s8lsRaijSTWg4TZbGbcuHFnLJOSksLzzz8flbD1BUVRuPPO\nO0lKSuKf//xnZICtV155hU8//bTb+4mLC/cjeuSRR6JqzNt17D9+rpKTk5k5cyabNm2ioqKC7Ozs\nLpuNt/vNb37Djh07eOGFFygsLESn01FcXMw777wTVa49oe2osbExMoDbihUrqK+v529/+xvjx49H\nrVazdetWPvig+xf2FosFRVFoamqKWm6z2SKvExISAGhqaoqqSW5sDI8i3N2kNy4uDrVazWuvvdZl\nDbTFYsFisVBSUtJpXVfnQoiBqKDgEj755OMzFzwHij9EoNFDoNETWaYyalAbtWhiNG011rq2Gmst\nmlidNO0WQpw1JagQcrXXWAfCtdeuAKG2Wmsl0PvXhjk5o85cSIiLhCTWF5ApU6bw0ksvYTKZyMnJ\niSz/7W9/i0ql6tSU/FxYrVbKy8u54447okat/uSTTwC6ndiPHDkSi8VCTU1NZOAsCPcXX7t2LY88\n8kgkYTyT7jRDXrp0KQ899BCVlZUsXbr0tGW//PJLZs+eHTUS9ieffBJV4w7hc3Ho0KFIbfaBAweo\nrKyM9HP/8ssv+eEPfxh142Dbtm1A989TTk4OaWlpfPDBByxYcOLO8JYtWyKvJ06ciEajYdOmTZFY\nAP75z3+i1WpPexOhoylTpqAoCg6HI9LfHeD555+nqKiIp59+mmnTpvH+++9TXl4eGf18+/btUU3b\nhRjIbrnlh1xxxZW4XC4CgQCBgB+/v+s+1ipVCI/Hg93uwOv14Ha72x4uXK5wH2u/v+v+jSdTPEGC\nniBBW9frVQYNGrM23Lc6Thfuax2vRx0r02UJIcKUoEKwtUMfa3s4mQ45/adt8t0d7f2qY2NjiYmJ\nxWSKwWQyRfpXGwzRfazHj+9cKSLExUoS6wvI/PnzmTBhArfddhvLly8nMzOTTZs28dprr/Gb3/ym\nV4+VnJzMkCFDeOmll0hKSkKj0bBhwwa2bt0KgMfjOcMewjQaDXfffTdPPvkkEB5Iq3108ZycnB7V\nWMfFxfHVV1/x2WefMXXq1C7LXHHFFTzyyCMcOnTolFNstSsoKGDz5s1s2LCBzMxMduzYEenP3LFv\nt06nY8WKFdxzzz34fD5WrlzJuHHj+PrXvx7Zz1tvvcWYMWOIj4/ngw8+4LXXXgPOfJ46Jt4//vGP\n+eUvf0lSUhIzZ87kvffe4+DBg5EbComJiXz3u9/lxRdfRK1WM3XqVHbv3s3q1asj04p1R15eHgsX\nLuTee+9l+fLljBo1il27dvGnP/2J2267DQj3V3/xxRe54447+OlPf4rb7eYPf/hDpy4HQgxUKpWK\noUOHn7kgYLHEAGCzuU5ZxufztfVRbI2MCm63nxgVvKXFFhkR3OFoPeV+FG+QgDdIoMkbvUKtQhOn\nCzcrT5DptIS4WIT8IYI2LwGbl4DNR7DFS7C1Zwm0SqUiKSmZpKTkDqOCW0hISCQhIYH4+ATi4uKI\njTXLWClCnANJrAeJ7tRUqNVqVq9ezdNPP83KlStxOBxkZ2fzxBNPcO21155x/ycfo6tjdly2atUq\nHn30UX72s59hNpu55JJLWLNmDbfeeit79+4lMzOzW7F/5zvfwWQy8de//pW//vWvWCwWFi9ezE9/\n+tPTxneyO+64g1/96lcsW7Ys0i/65G30ej3Tpk2jubn5jEn7/fffj9fr5YknngDCteurVq3iiSee\nYN++fZFzOnToUG699VZ+/etf43Q6ufzyy3nooYci02g98cQT/PrXv+bBBx/EYDCQl5fH2rVrWbZs\nGXv37o3MZX2m83399dcD8MILL/DKK68wY8YM7rzzTp5//vmomJOTk3n99dd58cUXycrKikxldqZz\n2XHZ73//e/74xz/ywgsv0NTUxJAhQ/jP//xPvv/970fO49q1a3nsscd44IEHiI+P56c//SlPP/30\nac+pEBcqvV6PXq/vVpcLv9+H1WqlsbGh0zzWDQ11UeMhRIQUgi0+gi3RrULs22vRJRui5rGWwc+E\nGJyUtr/zgNUTnsfa1pZEd0N4LutMMjIySEvLID09g9TUNFJT07BYEiPXJEKIvqNS+rozrhADiNfr\nZc6cOdx3332RqaRE//P7g6etDRSiP3Wnxro3ORwOamurqa2toaammurq8Py0jY0NZ94YUJt1aBMN\n6JIMaJONaOL1qNSnvzEZaPbS8nEVCZdnoU00dLtssNWH4/MGzIWpkbl3e6Kr43rLW3F8Hv6sPd1v\n+7an2679mO37bz/W6T77mc7PyftsP3Z3zmvHMkBkPx3ja9++vawp34L7kC0Sd8ftOv67dIzHdciK\n+5ANU76FmPykLmPr+DlOPmb7+47/Pid/3o7H0GfEdvs7dTrtxzv5M58cW/s5ONO/UVfru3suzsXJ\nx2h/HzMxGcUbxN/kIdDsheDpL8tVKhUZGUMYNmwYWVnDGDp0GEOGDCUlJXVA1zaf799RIXrKYolB\npzu3vyG5fSUuCna7nbVr17Jr1y50Oh1XX311f4ckhBBdMpvN5OaOITd3TNRyj8dDVVUFFRXlVFSU\ncfx4MVVVlZ36d4ccfnwOP76KtppvrQpdkhFtshFdshFtkkEGSROin/gaXHjLW/HVhRNM1/6mU5ZV\nq9VkZQ1jxIgcRozIYfjwHIYOHYbBcG5JvhCib0hiLS4KBoOBV155BaPRyMqVK+U/JSHEoGM0Ghk1\najSjRo2OLAsGg9TUVHP8eDGlpSWUlBRTWVkemYMegICCv96Nv96NG0BFuNl4igldajjZFkL0vpA/\nRKDBjb/Bja82nEi7v2o+ZXmLJTHyNz5qVC7Dh4+Q6xUhBhFJrMVFwWAwsH379v4OQwghepVGo2Ho\n0HBz0Nmz5wHhgdTKyo5z7NhRiouPUVR0hNbWDlPhKYTnsbV68RwFVKCJCw88GGj2oonXyeBoQpwF\nJaQQaPJEbmQFmr2nLZ+RkUle3jhGjx7L6NFjSU5OkdH/hRjEJLEWQgghLiB6vT5yoQ7h2QXq6mop\nKjrC0aOHOXLkUHR/bQWC9nBzcue+Rpz7G9EmGdGlmtClmdAmGs7YR1uIi5GiKOGuF3XhRNrf4D5t\nH+nMzCzGjy9g7Nh8xowZS1xc/HmMVgjR1ySxFkIIIS5g4cGOMsnIyIzUalutTRw5cojDhw9y+PBB\nGhrqT2wQgkCjh0CjB/eh5nAf7WQjujQTulQTMuapuJgpgRD+enc4ma5zEXIFTlk2PT2DceMmkJ8/\nnrFj8yWRFuICJ4m1EEIIcZFJSkpmxoxZzJgxC4CmpkYOHz7IoUMHOHToAM3N1hOFAwr+Ojf+Onf4\nvTZce+2tdKDSS5NxceELuvz4G8N/A/5GN4S6Lmc2mxk3bgLjxhUwbtwEUlJSz2+gQoh+JYm1EEII\ncZFLTk5h5sw5zJw5J9J0vD3JPnz4QPTc2oFwjbWnqCWyyF3cghJQ0KUaUZt10k9UDGpKSMHf7Im8\nd+yq77KcWq0mN3cM48dPZMKEiWRnj0CtlptNQlysJLEWQgghRETHpuOXX34FoVCIysoKDh36ikOH\nDnLkyCG8Xk/UNsFmH87mxvD2Bg26lLbpvVK6N4+2EAOBt8aJ+4gNf70LJdB1lweLJZGCgksoKJjE\nuHETiImJOc9RCiEGKkmshRBCCHFKarWa4cOzGT48myuv/A8CgQClpSWRpuNFRUcIBE70M1W8QXxV\nTnxVzvACrQpdohFtsgFtUngebbVe00+fRogTgg4/vmon3rY53z2HbV2Wy80dw8SJk5g4cTLDhg2X\nFhlCiC5JYi2EEEKIbtNqteTmjiE3dwxXX30tgUCA48eLOXz4EEeOHKS4uAivt8M0QwEFf9tcvu3U\nZh3aRANqQzjBVoKn6LQqRC8LtvrwVTvx1Tgjo+GfzGSKoaBgIpdccikFBZdgNsed5yiFEIORJNZC\nCCGEOGtarTYyvdeSJeFEu7y8lKNHj3Ds2FGOHTuC3W6P2ibk8ONznEhq7J/UoInToUnQR5WTEcjF\nuVIUhUCTF09JeEwAx+cNXZZLSkpmypTLmDTpUkaPHotWK5fIQoiekV8NIYQQQvQarVbLyJG5jByZ\nC/wHiqJQX1/HsWNHKSkppqTkGJWV5QSDwajtgq1+gq3RNYjOLxvxljnCSXe8Hm2cHk2cDpVRI81x\nxSmFk2kPvkon3moniifYZbkRI0YyefIUJk+eQlbWMPlOCSHOiSTWQgghhOgzKpWK9PQM0tMzmDlz\nDgA+n4+KijJKS0soKjpCdXUV1dVVhEInNQkPnJhTO2qfWhWaOD3qOB0asy6ceJv1KCGp4b5Ytbdu\ncBfZ8Dd6TplM5+WNY8qUqUyeXEhSUvL5DFEIcYGTxFoIIYQQ55Ver2fUqNGMGjWaBQuuBMDv91FZ\nWUlFRRmVleVUVlZQWVmBw9HaaXsloBBo9kKzt9M6APcRG4FmL5q2Gm6NWWq5L2SekhZ8bfOs+yqd\nUes0Gg35+RMoLLyMSZOmEB8f3x8hCiEuApJYCyGEEKLf6XR6cnJGkpMzMmq53d5CdXUVVVWVVFdX\nUVtbTU1NNTZb8yn31VWzcpVOjSZeh6rDiOShgAyaNhiFfEHcx1oi/aa9ZY6o9Wq1mnHjCrjssulM\nnjyF2Fhzf4QphLjISGIthBBCiAErPj6B+PgE8vLGRS13u13U1tZSW1tNbW0NtbU11NXVUF1dTSDQ\nebRnxR8i0BRdw+3a1xR57S1vRQmE0CYaUGnVffNhxFnrOI5d66e1ndarVCpGjsxl5sw5TJkylbg4\nqZkWQpxfklgLIYQQYtAxmWK6rOEOhULYbM3U1FS3Paqoqammurqy0+jkHXmK7XiK7aACTYIeXbIR\nbYoRXaqprz+KOI2gJzxHuqeo6zmmMzOzmDVrDtOmfU36TAsh+pUk1kIIIYS4YKjVapKSkklKSmb8\n+IKoda2tdqqrq6ioKKe4uIja2prOI5QrELT5CNp8UBxOxNXm8OVSoNmLJkGPSi19tfuSElTwVTvx\nHLefGLiuwz9RfHw806fP5Gtfm8Pw4dn9E6QQQpxEEmshhBBCXBTi4uIZOzaesWPzueKK8KBpgUCA\nqqoKjh8voaTkGEVFR6mrq4naLuQI15o69zXi+qoJXXoM+swYdJmxqHXSbLy3BJ1+PMfteEtbUXzR\n/d/VajUTJ05m9ux5FBRcIvNMCyEGHPlVEkIIIcRFS6vVkp2dQ3Z2DvPmLQDAbrdTVHSEw4cPcvjw\nAaqqKiPllYCCr8qJr8oJqgZ0aSY0iYb+Cn/QUxQFf70bT7Edf62r0/qUlFTmzl3AzJmzsVgS+yFC\nIYToHkmshRBCCCE6iI+PZ8qUqUyZMhUAm62Zr77az/79ezlw4N+43eGpnVDAX+fG3zbVE4C/2Yt+\nqFmai5+B4g/hLW/FXWwn5IgebE6tVjN58hTmzl3AuHETUKulVYAQYuCTxFoIIYQQ4jQslkRmzZrL\nrFlzCQQCHDlyiC++2M2ePZ9jt7dElfUW2/FVODAMM6OVmuxOgk4/nmI73lI7SkCJWhcfn8DcufOZ\nO3e+DEQmhBh0JLEWQgghhOgmrVbL+PEFjB9fwM03f5+ioiPs2rWd3bt34nI5AVB8ofAI4228VU7U\nZt1F2x9bURQCjR7cx1rw13Ru7j1q1GgWLLiSwsLLpO+0EGLQkl8vIYQQQoizoFarGTs2n7Fj87np\nplv46qsv+fTTbezb90XUSOOeozY8xS0Yhpoxjoy/qGqyvTVO/HsaCLb4opZrtVqmTp3OFVcs6jRl\nmhBCDEaSWAshhBBCnCOtVsukSVOYNGkKra12du7czrZtH1NZWREuEFTwlrXiLWtFY9FjzInHMMzc\nv0H3kZBfwVMarrH3HI6efzo+Pp55867g8suvICHB0h/hCSFEn5DEWgghhBCiF8XFxbNw4SKuuOJK\njh8vZuvWzezatQOfzwuE58l27m3E9e8mtOkx/Rxt71AUhaAzPC2Z91hLp/XDh49g4cJFXHbZDHQ6\n3fkOTwgh+pwk1kIIIYQQfUClUjFyZC4jR+Zy4403s3Pnp3z88YeRWmwloOCvCvfLdnxRj25IbH+G\ne1ZCgRDu4ha8JXaCrdGje6tUKi69tJCFC69i9OixqFQyUroQ4sIlibUQQgghRB8zmWK4/PKFzJt3\nBcXFRWzZ8hG7d+8kEAgno0G7n6A9utm0oihd7WpAce1r6rQsNtbMnDmXM3/+QpKTU/ohKiGEOP8k\nsRZCCCGEOE9UKhW5uWPIzR3DjTd+l+3bt7F58/9RX1/Xqazz31YAgg4/Gov+fIcaRVEUAjYvnkrH\nKcvk5Izi8suv4LLLZqDX92+8QghxvkliLYQQQgjRD8xmM1//+lUsXLiI4uIiPvnkY3bt2oHf3zaC\nti8EgOOzetSHdGiTwqOJn6+KbCUUTqYBHLvrCbkCncro9XpmzJjF3LnzGTFCRvcWQly8JLEWQggh\nhOhHHWuxv/3t7/LFF5+xY8e/OHz4YKQ5eMjhx+cINxv3HD3RZDzY6kNt7p3BwDo2PXd+1USwxYfS\nltyfnFTn5o5h0qQpLFjwdQyGi2f6MCGEOBVJrIUQQgghBgiTKYZZs+Yya9ZcrNYmdu/eyZ49n3Hs\n2NEThUInXjo+b4AOY4J5y1pROJEgh/whlGAIpW0bJagQdPgjNdHeilY8JS0E7X4Cdm9ku0CDp1Ns\nI0fmMm3aDAoLp5OYmNg7H1gIIS4QKmUwjIwhhLig+f1BbDZXf4chRJcslvB0SPIdFf2pubmZffs+\n56uv9nP48EHcbnefH1OvNzB+/AQuueRSCgomSTItzpr8joqBzmKJQafTnNM+JLEWQvQ7SazFQCYX\nhGKgCQaDHD9ezJEjhyktLaasrJTGxoZz3m9iYhJZWUMZN24Co0fnkZ09Aq1WGjeKcye/o2Kg643E\nWn4thRBCCCEGEY1GE+mTDeELwpaWFoqKjtPQUE99fR3NzVbcbjdutwu3241KpUKj0aDRaDAaTSQk\nWLBYLFgsiWRmDmHIkKHExMT08ycTQojBSxJrIYQQQohBLiEhISrZFkIIcX6p+zsAIYQQQgghhBBi\nMJPEWgghhBBCCCGEOAeSWAshhBBCCCGEEOdAEmshhBBCCCGEEOIcSGIthBBCCCGEEEKcA0mshRBC\nCCGEEEKIcyCJtRBCCCGEEEIIcQ4ksRZCCCGEEEIIIc6BJNZCCCGEEEIIIcQ5kMRaCCGEEEIIIYQ4\nB72SWJeVlVFZWdkbuxJCCCGEEEIIIQaVHiXWiqLwwgsv8Itf/AKAUCjEHXfcwaJFi1i4cCHLli3D\n5XL1SaBCCCGEEEIIIcRA1KPE+i9/+Qu///3vqa+vB+C9995jy5YtLFq0iLvuuovdu3ezatWqPglU\nCCGEEEIIIYQYiLQ9Kfzmm2+yaNEi/vCHPwCwceNGTCYTTz75JAaDAbfbzXvvvcd9993XJ8EKIYQQ\nQgghhBADTY9qrKuqqpg1axYAPp+PnTt3MmPGDAwGAwA5OTk0Njb2fpRCCCGEEEIIIcQA1aPEZdQ8\nOwAAIABJREFU2mKxYLVaAdi2bRtut5t58+ZF1hcVFZGamtqrAQohhBBCCCGEEANZj5qCT5s2jZde\negm9Xs+rr76K0Wjk61//Ona7nTfffJPXXnuNG264oa9iFUIIIYQQQgghBpwe1Vg//PDDjB49mief\nfJKGhgZ+85vfYLFYKCoq4sknn+TSSy/l7rvv7qtYhRBCCCGEEEKIAUelKIrS042sVitmsxm9Xg+A\n2+2mtLSU/Pz8Xg9QCHHh8/uD2GwyVZ8YmCyWGAD5jooBS76jYqCT76gY6CyWGHQ6zTnto0dNwdsl\nJSVFvTeZTJJUCyGEEEIIIYS4KPUosV68eHG3yr377rtnFYwQQgghhBDnWygUwul0EAgEIo9gMPxs\nMBixWCwYjSZUKlV/hyqEGKB6lFgnJyd3WhYKhWhqaqKsrIzhw4dHpuMSQgghhBBioAgGg9TW1lBR\nUU59fS1NTY1UVlbQ1NSI3d5yxu01Gi3JyckkJFhISkpmxIgcRo0aTXZ2Djqd7jx8AiHEQNajxHrd\nunWnXHf48GF+8IMfUFhYeM5BCSGEEEIIcbYCgQAVFeWUlhZTXl7W9iglGAye9T6DwQD19XXU19cB\nsGvXdgC0Wi3Z2eEke9y4CYwbNwGt9qx6WwohBrGzGrzsVJ577jneffddNm7c2Fu7FEJcBGTwMjGQ\nyaA7YqCT7yhYrU2UlByjuPgYxcVFHDt2tN9i0Wq1TJw4mXnz5pOXN16SbOQ7Kga+fhu87FQSEhIo\nLy/vzV0KIYQQQggR4ff7KS8vpbi4iEOHDnLkyCE8Hnd/hxURCATYs+cz9uz5jNhYM1OmTGXOnMsZ\nOTK3v0MTQvShXkusjx49ytq1a8nOzu6tXQohhBBCiIuYoijU19dSUlLMv/71CS6Xk4qKMkKhUH+H\n1i1Op4NPPvmYTz75mCFDhrJo0X9w2WUzIlPWCiEuHD1qCj5x4sQuR0MMBAKRH7hnnnmGq666qvci\nFEJc8KQpuBjIpAmjGOgulO+ooig0Njawb9/nfPXVAaqrK3A4WvF6vf0dWq+KjTUze/Y85s9fSEpK\nan+Hc15cKN9RceE6703BFy9e3GVirVarSUlJYfHixYwdO/acAhJCCCGEEBe2YDBIcXERO3d+SiDg\n5+jRI7S02C64JLorTqeDTZs2smnTRvLyxnPDDTeRnZ3T32EJIc5Rrw5eBuHaaxmkQQjRE1JjLQYy\nqWkRA91A/466XE6OHDlESUkxNTXVVFVVUldX099hDSjjxk1g0aKrGT++4IKcK3ugf0eFOO811gsW\nLOChhx5i/vz5Xa7fuHEjjz76KLt27TqnoIQQQgghxODS3pR769bNNDbWU1tbQ0tLCy0ttv4ObcA7\nePArDh78itTUNGbMmMm8eVdgsST2d1hCiB44bWJdX1/P559/HnlfVVXF9u3b8Xg8ncoqisKGDRvw\n+/29H6UQQgghhBgwAoEAW7Z8SF1dHTZbM2VlpTgc9i6vEUX3NTTU8847b/HOO29xzTXXcdVV12Aw\nGPo7LCFEN5y2KbjP52PJkiWUlZWFC6tUnKnl+E033cQvf/nL3o1SCHFBk6bgYiCTJoxioOvr72gg\nEKCqqpLjx4spKztOWVkppaXHgV7tTSi6YDabWbDgSubPX0hcXHx/h3PW5HdUDHS90RT8jH2sq6ur\nqaysRFEUbrnlFm6//XZmzpzZqZxarSYpKYmRI0eeU0BCiIuPJNZiIJMLQjHQ9eZ3NBQKUVtbQ0nJ\nMY4fL6G0tISKinICAWmR2J/UajWTJxeydOk3GDp0eH+H02PyOyoGuvOSWHf01ltvUVhYyLBhw87p\noEII0ZEk1mIgkwtCMdCdy3e0tdVOcfExSkraH8V4PO7eDlH0ovz88VxxxSIuuWQyarW6v8PpFvkd\nFQPdeU+s23k8HlwuV1Sz8EAggNPpZPfu3dx4443nFJQQ4uIiibUYyOSCUAx03f2OhkIhqqurOHbs\nKMXFRRw+fJCmpsbzEaLoA/HxCUydOp1LL51Cfv6E/g7ntOR3VAx05z2xrqurY8WKFezZs+e05Q4d\nOnROQQkhLi6SWIuBTC4IxUB3qu+o1+uhpKSYr77aT1HRUSoqyvB6uze4mBkVDhQyNBpqg8Fej1n0\nruzsHK666momT56CTqfv73A6kd9RMdCd9+m2fve737F3714WL16MTqdjw4YN3H777TQ3N/PBBx/g\ndrtZs2bNOQUkhBBCCCF6pn2qq88/38WxY8eoqCiloaH+rPcXr9HgCAZQc+HNqXwhKis7zp/+9N9o\ntVomTpzMrFlzSUxMJDs7p79DE+Ki0aPEeseOHVx33XU8/vjjtLa28vbbbzNr1iymTp3KXXfdxTe/\n+U3ef/99Jk2a1FfxCiGEEEJc9Orr62lubuLQoa84cuQQlZUVOJ3O/g5L9LNAIMCePZ+xZ89nAIwe\nPYa5cxcwceIkzOa4fo5OiAtbjxJru90eSZrj4uLIzMxk//79TJ06lfT0dL71rW/x3nvvcf/99/dJ\nsEIIIYQQFxun00FlZQWVleWUlh6nqOgI9fV1/R2WGASKio5SVHQUgMzMIYwcOZqCgomMHp1HYmJi\nP0cnxIWlR4m1xWKJuhuak5NDUVFR5P2QIUOoq5MfeiGEEEKInlAUBYejlbq6WurqaqmpqY4k01Zr\nU3+HJwYZA+A9aVlNTTU1NdV8+ulWAJKTU8jKGkpGxhBGjhxFVtYw0tMz0Gp7lB4IIdr06C9n2rRp\nvP7661x55ZVkZmYybtw43n77bRwOB2azmc8++4yEhIS+ilUIIYQQYlBSFAWXy4nVaqWpqZHq6ipq\na2twuZzU1dVitTbidvdsmqsElZoWJdRHEYvBLE6twRs6/aBzTU2NNDU1sn//vsgytVpNcnIKFksi\niYmJpKdnkpSUTGJiEvHx8cTFxWM2x2EwGPr6Iwgx6PRoVPDjx49zww034HK52LZtGx6Ph0WLFhEX\nF0daWhqHDh3illtu4ec//3lfxiyEuMDIqOBiIJPRbMXpKIqC0+mkpcWGzdYcebbZTrxvbGygtdVO\nIBA46+OkqDU0npQo5Wh1HA/4z/UjdGmIRkt1MBB5FoNLV9+X3qTT6dDp9JjNZmJjzcTEmEhJSSM2\n1kxsbCxmcxxxcfHExYWfs7LSiImJoaVF5kgXA9N5HxU8JyeHf/7zn2zYsCHSL+P5559n1apVtLS0\n8P/+3//jxz/+8TkFJIQQQggxUAQCARobG6ivr6OpqQGr1YrV2kR5eSlut5vmZis9qKPolqFaLZUn\nJeE5ej2NHklKRN/I1Gip6cENFL/fj9/vx+VyAt3rBqrT6TCZYkhJSSUlJRWLJZGkpCRSU9NITU0j\nJSUNo9F4lp9AiP7Xoxrr6upqkpKSTvmlt9vtHD16lMLCwl4LUAhx4ZMaazGQSY31hU9RFJqbrRw7\nVoTN1kxNTRXV1VXU19fR0mI77/FMNZr47KQkuqtlUmMtTqWnNdZdfb/ajdbpKfL7Iu/jVWrsfdQF\nwWw2tyXeaSQmJpKXN47MzCxSU9PQaM6tNlGI0znvNdYLFizg6aef5uqrr+5y/fvvv89vf/tb9u7d\ne05BCSGEEEL0BZfLSUVFOV99tZ+ammqam61UVVXi85081FPPJanVWEPS51lcWIaflFhPNcXwkcvR\nrW17muA7HA4cDgelpccB+OCDTQBotVpSUtKIj48nJ2ck48cXMHTocBISLKhUMte6GBhOm1hXVlby\nl7/8JfJeURTWr1/P559/3qlsKBRi586dxMTE9H6UQgghhBA9ZLM1s2fPF5SWlmCzWampqaapqbHP\njpeh1WHthQRdiAtFd7swJKk1WE+TgAcCAWprq6mtrebo0cO8//67AMTGmhkxIoeMjCGMGTOW7Owc\nUlPTJNkW/eK0ifXQoUMpLy9n+/btAKhUKnbs2MGOHTs6lVWr1SQlJXHPPff0TaRCCCGEEF1ob8q9\nd+/nNDQ0UFtbw/HjxbS22nu8r8lGI/EqLVvd3auRE0Kcu1F6PdbTJOAmoKu1TqeDAwf+zYED/+aj\nj94PlzXFkJqayrhxBSQkJDBp0hTS0tIl2RZ97oxNwVevXh15nZeXx9NPP82SJUv6NCghhBBCiK6E\nQiEaGxsoLy+jvLyUsrLjHD9ejMNxdonwWJ2eIx2auY7SyeBJQgw0X4sxd7v5udvtavt9KAPg9ddf\nxmg0MmxYNnFxcRQUTCIvL5/U1HTUanVfhi0uMj3qY/3RRx+RlJTUV7EIIc7Ctddey+HDh/n73/9O\nQUFBt7fz+Xw8/fTTTJ8+nQULFgAwf/585s+fz8MPP9xX4QohRLfV1tZgt7dQUnKMpqZGysvLKCsr\nPev+0CO0OkpPGuxLI7VYQgxqM4wx7PCEB5dM12hpDAY4uVG5x+OhqOgIAHv2hLu0GgwGcnJGkZGR\nyahRoxk+fASZmUPQanuUHgkR0a1vjsPh4MiRI0yZMiWyzOfz8frrr/PFF19gMpm4/PLL+frXv95n\ngQohOisqKuLIkSOMHj26x4l1Q0MD69atY+rUqZFlzz33HPHx8X0RqhBCdCkYDNLU1MjBgwewWhvw\neDzU1FRTVlaKw9Ha7f2YVSocbROdTDea2NlFs1JJoYW48MR0qHWeHWOm1Oflc6+bNLWG+lCQWFQ4\n6TwJktfr5fDhgxw+fJAtWz4CwoOkpadnMmJEDkOHDiMrayhZWcOwWBKlKbk4ozMm1q+++iorV67E\n4/Fw4MABIJxUf+973+PLL79Eo9EQFxfHhg0buPLKK/nDH/7Q50ELIcLeeust8vPzWbp0KX/84x95\n8MEHuz0HZFcz7eXl5fV2iEKIi5iiKDidTuz2Fpqbw/M/W61NNDU1UV9fi83WTFNTI8Fg90cNBkhW\naxiu15Oi0aIG3ne2km8wRqYLilXLtDxCXKza899YtRpCQbL1eg6e1MrlVFOGBQIBqqoqqKqqiFpu\nMsWQlTWUlJRU0tLSGD58BOnpmaSlpaPT6frss4jB5bSJ9fbt2/n1r39NQUEBN9xwA4qioFKpWL16\nNfv27WPUqFGsWbOG1NRUPvroI37yk5/w+uuvc8MNN5yv+IW4aIVCITZu3Mh1113HVVddxVNPPcW7\n777LN77xjUiZ6upqnnrqKXbu3AnAtGnTeOCBBwiFQlxxxRWoVCp+/OMfc9lll7F27dpIU/B7772X\nGTNmcOedd7Js2bLI/oqKiliyZAlr1qxh+vTpWK1WnnzySbZu3YrP52P69Ok89NBDDB069LyfDyFE\n3wmFQng8btxuN263q+3Zjcvlwul04HSGp8hpaKhHUUK0tLRgt7fQ2monEDi7OZC1QADI1GipCQaY\nZYoF4F9uJ5OMJsYYwjcRG85y/0KIi9dYg4HPPG4uMRj50uthvN6IWwlRF/Dj7KLiwe12cezYUY4d\nOxq1XKVSkZSUTGpqGsnJKZFHSkoqSUlJWCyJGAwybsPF4rSJ9dq1axkzZgyvv/56VOf+v//976hU\nKn72s5+RmpoKhOe4Xrx4MW+88YYk1kKcB59++ikNDQ1cc801pKWlMWPGDP7+979HEmuHw8G3v/1t\nYmNj+dWvfoXJZGLlypUsW7aMN998k1WrVrF8+XLuuece5s+fH7Vvo9HI/Pnz2bRpU1Ri/e6775KW\nlsb06dPxer1897vfxefz8ctf/hKDwcCf//xnbr75Zv7xj38QFxd3Xs+HEBc7RVEIBPx4vV48Hg9e\nrxefz4vX2/HhiSS8BoMxUubk8k6ns21fHtxuN36//8wBnAU1kKDWoFFBY1ut9SSDkQKjCVcwxHpH\nC+MMRmpcDjK0OpqDkkQLIXqPvq16O99gJFWrpSEQ4I1WG/NizCiANRjAGgxiDQZwd5FwK4pCU1Pj\naafxMxpNWCwWLJZE4uMTiIuLJy4ujri4OMzm8CMmJpaYmBhMphhMJhMajbS6GYxOm1jv37+fW2+9\nNSqpLi4upqqqCpPJxJw5c6LKT5kyhQ8//LBvIhVCRNmwYQP5+fmMGjUKgKVLl3L//fdTXFzMqFGj\nWL9+PU1NTbz66qsMGTIEgIyMDJYvX055eTn5+fkAZGdnR/bR0ZIlS7jzzjupqKhg2LBhALz//vss\nXrwYCDdDLysrY+PGjYwYMQKAGTNmcPnll7Nu3Tp+9KMf9fUpEOKsKIpyhkeI8PWTQiikoNEECIUU\nWlpckWXhMuHyoVD061Ao2PYc/QgGgwSDQUKhYOR1IBDA7/dHXgcCfvz+AH6/r+11+OHz+To8vPj9\n4dcnkuHw8q66ePQXg0qFHhWtSog0jYb6YJCJBiOZWh1+RWGzy8F15gTSdDqOej2REX+TNVrMag3u\n0MD5LEKIi0uKRkvqSYOYVfh9bHSEp/BrHwgxQa3GGQpxult+Ho+b2lo3tbU13T6+wWDAZIpBp9Nh\nMsVgNBoxGAwYDAZARWxsLDqdDp1O3/asQ6PRotFo0Gq1aLXh12q1Bo1GjVqtQa1Wt71Wo1K1P6s6\nPYC2ZxVqdfhZpTqxLFyk47r2B6hUJ/YZvf8Tx1OrVR1en4ilY/nB6rSJdWtra6dRwNvnsC4sLESv\n10eta7+wEEL0LafTyebNm7n99ttpbQ0P7jNt2jSMRiNvvPEG999/P/v27WP06NGRpBrCfajbb35V\nVVWd9hizZs0iISGBTZs2cdttt3H48GFKSkp46qmnANi9ezfZ2dkMGzYs0j/SYDAwZcoUduzYIYm1\n6NL27dtYvfrPhEKd+7aJgUULaFHhaRv0J0WjJU6tRqdSoe/wMKrUGFQqGgIB9njdzDTFMN5gQtO2\n7I1WGwUGEx+5HIzRn6gVAgb1BZQQ4uJiVJ2oaBylN1Aa8LMwNp4UjQaPolDu97G57QZhrk6PSwlR\nHQgQo1LhURR68r9eeysjce7y88dzyy0/JC0tvc+PddrEOjU1lerq6qhlW7ZsQaVSMXfu3E7l//3v\nf5Oe3vdBC3Gx27RpE263m2effTZqwECVSsXbb7/NihUraGlpOafp8bRaLVdeeWUksX7vvffIzs6O\njDxus9koLi5m/PjxUdupVKpIDbYQHSmKwt/+9ook1eeZlnDtsVNRSNFoIk2ux+j0ZOsNmFQqjGo1\nelRoVSpswSAbHC1cG2cB4I1WGwDzYsydanA6CrTdWDeq1DKFlRDioqFSqTCpVCRpTvw+TjLGAOHf\nz8XmBFI0GryKgksJ0RIMYgsFaQ4GsQWDNIeC+KRiss8cOnSATz/9hOuu+1afH+u0ifXs2bNZv349\n3/nOd0hOTubAgQNs374drVbLokWLosoePXqUjRs3cv311/dpwEIIePvtt5k4cSL33XdfVCuRoqIi\nHn30UT788EPMZjOVlZWdtv3kk0+YMGFCt45z9dVX87e//Y2qqqqoZuAAZrOZ/Px8Hn/88U4tVU5u\nzSIEhC8+5s1bwDvvvNnfoVxUApxIehs7jL591O/jqN8Xea8FdCoV7XUyHztb0XZIkPd6XCRoNJGa\nap1KhaGtttqoUuOVC0MhxEUs0OE3sNjviXRn+ZfbQUBRcIVCuBWli4m/RF9KSLAwadKUMxfsBadN\nrO+66y4+/PBDrrrqKkaPHs3BgwcJhUL86Ec/IiUlBYDDhw+zadMmXn31VfR6fdRAR0KI3ldTU8Nn\nn33Gww8/TGFhYdS6KVOm8Nxzz/HGG28we/ZsNm/eTE1NDZmZmUB4jIRly5axevVqRo4cecZjTZ06\nlYyMDP7yl79QVlbG1VdfHXWsHTt2MGTIECwWS2T5Pffcw9ixYxk9enQvfWJxIbn22uu55poTI9d3\n7EJ04gaNgqK0v29/Hd3vueNzx/7NHffZ3vf55G1O7lMd3W86fKyO+4mN1aMoCq2tnqh+2Cf2FWo7\nnnLK/tXtfaxDoSAulxOtVtehX3X4EQyG+1u397v2+31Rz16vr61vtRefz4/P17vNBDsm4ABNoegp\nsIr9PujGGGZbXA4+97gwqdW0D79T4gsn8LUBP1pV9HGEEGKwqQmEfwx3up34FIXWUDBqcLO9Hk/k\nde05zlyg1WoxGIwYjUb0egMajRqj0XRSH2stWq0u0se6vb91uJ+1OvJ8cv9qtVrV1i86un80nOiq\n0z7W1snrTryP7l8d3ueJ/XbVp7urPtbt76PXqTr1vw7H0/k4Hft9d+z/3b79+XDaxDotLY3169fz\nP//zP+zbt48xY8Zw3XXXceONN0bK/OMf/+DFF19k9OjRPPXUU9IUXIg+tmHDBtRqNVdeeWWndWq1\nmsWLF/Pyyy/z6KOPsmbNGpYtW8bdd9+NWq3m2WefZdKkSUyfPh2XywWEp9UbPnz4Keewvuqqq3jp\npZcYO3Zs1CBn3/zmN1m3bh3f//73WbZsGRaLhddee40PP/yQpUuX9s2HFxeE8/UfXG+xWMJN+mw2\nVz9HEk1RlMhgZu398cJJtw+vNzzKt81mQ61W4/N5sdvDg+60ttpxOp1otZqo0cI7vna73WcdVxBo\nCYVo6dDk/3ggnFj/y+2EDrv+0GknSaMl2OGC1CvjtQgh+plPCVET8NPcNiK4NRikMXDizmL7vNiV\nge7PmBAXF09CQnhUcLM5elTw2NhYTKaYqJHBTSYTBoMR7Wm64IiB5Yz/UhkZGTz66KOnXH/jjTdy\nzTXXMHbs2F4NTAjRtXfeeYdLL7000mrkZEuWLGHdunWsX7+el19+mSeffJIHHngAvV7P3Llzue++\n+1Cr1ZjNZpYtW8a6devYu3cvb7/9dpcDCS1ZsoS//vWvUbXVEG4K/vLLL/O73/2OX/3qV/h8PsaM\nGcNzzz3XacYAIUTvU6lUkVFie3t2O0VR8Pv9bdNwefB4PLjdLjweNy6Xu21OaxculxOns/3hoLnZ\nis/nw25v6dYUXbZQCFvIF7XsX24nu90uzG03YMramqu7lSCSbwshelP7b0ql38dxv5fqtkT5nbbR\nv7srLi6+bf7qFJKTU0lJSSExMTyPdfs0W5IgX/jO+V+4fRqerrzzzjvcf//9HDp06FwPI4Ro8957\n7512fUFBQdTf3H//93+fsuyKFStYsWJF5P1HH33UqUx+fv4p/4bT09P5/e9/f6aQhRCDjEqlQq/X\nt42XEN/j7RVFweNxY7e30NLSgt3eQnOzlaamJqzW8KOhoZ7W1q4vXn0oWNuaoh9rS6z/6WiNXLQc\nbastStFqCUm2LYToofK2G397vOEmNDs9Z26RZDLFkJ6eTmpqGkOHZpORkUF6egZpaRkYjcY+jVcM\nDnLrRAghhBC9SqVStTVnjCE9PfOU5fx+H/X19dTX13H06BGs1gYcDgc1NdXYbM2dyrf3VKwI+Klo\nq1lq78dd2mEgtqDk2kJc9PxtN91qu2iuXRcM/5p0NUeFVqtl2LDhZGUNJysri6ysYWRlDcViSZQp\nAsVpSWIthBBCiH6h0+nJyhpKVtZQJk+OHrXV6XRQVHQEm83G8eMlNDTUUVFRhtPpjCrXPsRaQ4cR\nz7e6HX0duhBigAh1uJH2pccVGVissi15tp5mikezOY6srKGMHJnLsGHZDB+eTXp6BhqN5pTbCHEq\nklgLIYQQYsCJjTVHpkiZN28BEG5ibrU2UV5eRkVFGWVlpZSVHcdqbYra9lQV1j0ZaEgIMTh0vJFW\n5PedspzZHEdycgpjx+YzZsxYRowYSWJiktRCi14jibUQQgghBgWVSkVycgrJySlRNdx2u53y8uPs\n37+P+vo6qqoqaWpq7LR9V2n1kZOmLWsMBogbZCPXC3Gh+9J76pkKuqqPjomJITd3DElJyRQUXMKI\nESOlKbfoc5JYCyGEEGJQi4+PZ8KES5gw4ZLIMofDQVnZcb766kvKykppbGygsbGh07bBk95vcUkz\nciHOt+ozzCLQGDz5L/WExMQksrKyGDlyNCNG5JCdnSNJtOgXklgLIYQQ4oJjNpsZP76A8eMLIsvc\nbjdVVRVUVJRx+PBBampqaGiow+v1nmZP3dd8mot/IS5Gdd3sflEVDJyxjFqtJjExiWHDhjN2bD5D\nhw5n2LDhxMcnnGuYQvQKSayFEEIIcVEwmUzk5o4hN3cMl1++EIBQKERzs5WamipKSoqxWpuorq6i\ntrYGh6O1R/uv6UZyIMRg03TS9/qg19PtbcsDPf+b0OsNpKWlkZSUQm7uaDIzsxgyZAipqekyF7QY\n0OTbKYQQQoiLllqtjvTb7tiUHMDj8VBaWkJR0VFsNit+v5/GxgYcjlYaGxvxeE7d7/Nc2KTmW5xn\n1sCpv3P7Tkqkz/UGkskUg8ViITbWTHJyCnFxcYwaNZrU1DRSU9Mwm+OkGbcYlPo8sVYUmUxSCCGE\nEIOP0WgkL28ceXnjulzv9/uwWq20tNiw2Wy0tDRTUVFBa6sdt9uF3d5CS4sNt7tnCXhXIxvXyIjm\nog8VB049mvaZxMaaMRiMmM2x6PX6SGKcmprGkCFDiYuLJyMjhcTERNRqI3q9vhcjF2LgOOvE+tix\nY9TU1DBhwgSMRiMqlQqj0RhVZubMmaxdu/acgxRCCCGEGGh0Oj3p6Rmkp2ectpzP58Nma8Zma8Zq\ntWK1NlJTU0NjYx12u53Gxgb8Zxi8qbKLJrW2kNRsi75hNseRlJREamoaiYnJJCUlERcX3/aIw2wO\nP9pzgDOxWGIAsNlcfR26EP2mx4n11q1beeyxx6isrARg9erV+Hw+7r33Xn7605/yne98J1I2OTmZ\n5OTk3otWCCGEEGKQ0ev1pKWlk5aW3uV6RVGw2WzU19dy+PBBvF4vlZVlVFdXd5qju6PmUFcTDQkB\n3m7edElLSyMjYwjZ2TlkZQ0jK2soaWnp6HS6Po5QiAtPjxLrHTt28KMf/YiCggK+9a1v8cwzzwAw\nZMgQhg8fzmOPPYbFYuE//uM/+iRYIYQQQogLjUqlIjExkcTERMaOzY9a53K5+PLLPXg8boqLj1FR\nUU5lZbl0tROn1dWwe1qtluzsHPLzxzN2bD4jR+ZiMpnOe2xCXKhUSg9+mb/97W8TDAbGdCWmAAAg\nAElEQVR59dVXsdvtzJgxg7/+9a/MmDGDQCDA9773PbxeL+vXr+/LmIUQFxi/PyjNw8SAJU0YxUDz\n/9m78/io6nv/469Zs++BJJCQkARICHuAQGRRwKVXW6laWq9Q29rrva3trdWf27XXVq29Va9atdRW\nW2+vVlurt1rXVmRTlL2o7IaEJASyTmYmM5PMJLP8/pgwEEMQDCQB3s/HYx6TOed7znxmOAnznnO+\n329XVxd79+6mqamRTz7Zzb59n9Da2npKn2OEycyhgD9yL2emlJRUZs06j8mTpzJ6dMGgnYnW31EZ\n6pKTY7FYTP3ax0mdsd69ezc33XQTJlPvJzWbzXzxi1/kgQce6FdBIiIiItI3i8XChAmTAFiw4EKS\nk2NxuVxs2/Yx27ZtZf/+Kg4ePEBAo4ufk7KzR1FWVk52djaTJ08b7HJEzhknFayjoqLw+Xx9rrfZ\nbBrpT0RERGSAJSQkMGnSVCZNmgpAIBCgrq6WiopP2L17B/v2VeBytZ3w/jq6+2/rgvMzQ3x8Ahdc\nsIjzzpvXZ19+ETm9TipYl5eX86c//YklS5b0WlddXc2zzz7LrFmzTllxIiIiInLyTCYTubmjyc0d\nzaJFFwPQ2mqjomIvlZUV7NtXQU3N/j77attD4WDdoMvAhyyDwUhJyUSmT5/JnDnzMRqNg12SyDnt\npPpY19XVsWTJEoxGI2VlZbz55ptcdtllBINB3nnnHaKionjhhRcYPXr06axZRM4y6mMtQ5n6BspQ\n93mPUZ/PR3V1FZWVFVRW7qOiYi9u97GGvZKhJCUllQULLmTevAtISEgc7HJOiP6OylB3KvpYn1Sw\nBmhoaOChhx5i9erVuN1uAKKjo5kzZw4333yzQrWInDQFaxnK9IFQhrpTdYyGQiEOHKjho4/+QUdH\nBzt2bKe5uQmfz3sqypR+yskZxaWXXs60aTMwm096xtxBpb+jMtQNSrA+LBQKYbfbCQQCpKamHnNA\nMxGRE6FgLUOZPhDKUHc6j9FgMEhDQz1r167C5WqjsbGe6uq+LyGXU8tgMFBaOpNLLrmU/PzCwS7n\nc9PfURnqBi1YBwIB2traCHYPbPFpaWlp/SpKRM4tCtYylOkDoQx1A32MBoNBGhvreffdNTQ3N9DS\nYqO+/hBdXZ0D8vznirKy2Sxe/BUyMjIHu5R+099RGeoGfLoth8PBvffey4oVK+jq6uqz3e7du/tV\nlIiIiIgMTUajkayskXz1q9dEloWvZGyltraGjRvX09zcSFNTo/psn6SoqCimTp3BpZd+iZEjswe7\nHBE5CScVrH/+85/zxhtvMHfuXIqLizW1loiIiIhgMBhITU0jNTWNKVOOzJ3c0dHBwYMHqKjYS3V1\nFQ0N9Rw6dIiARhvvITU1jYsu+gJz515ATEzMYJcjIp/DSQXrlStX8tWvfpW77777dNUjIiIiImeJ\nmJgYCgvHUlg4NrIsGAzS1NTI3r272bZtKx0d7dTWVuPz+Qax0sGRnj6ML3/5K8yYMeuMG5BMRHo6\nqd/gYDBISUnJ6apFRERERM5yRqORzMwsMjOzmD9/QWS53W6npmY/O3Z8xL59e2loaKCz8+zrt20w\nGJg4cTILF17MhAmTMBgMg12SiJwCJxWsy8vLeffdd1myZMnpqkdEREREzkEpKSmkpKT0uJTcbrez\nf/8+9u+vZOvWLdjtrWf09F8zZpRx5ZVfY/jwjMEuRUROsZMaFbyiooLrr7+eWbNmceGFF5KamorR\naOzVbtKkSae0SBE5u2lUcBnKNJqtDHXn0jEaDAaprz9EZWUFlZUVfPLJHhobGwa7rOMaNmw4c+bM\nZ9KkKeTmjh7scgbFuXSMyplpwKfbKioqOrLhMS5bCYVCGAwGjQouIidFwVqGMn0glKHuXD9G29s9\nVFXto7IyfKuqqqC9fXDfi+zsUZx33lymTy8jLS19UGsZCs71Y1SGvgGfbutnP/uZ+oGIiIiIyJAR\nGxvHhAmTmTBhMnB4nu0Gqqr2UVVVyYEDNRw4UHtaLyGPiYmloKCQ8eMnMH16Genpw07bc4nI0HRS\nZ6xFRE4HnbGWoUxnWmSo0zH62YLBIM3NjdTW1lBbW0NzcyM2WwsNDQ14PO6T2ld0dDRWaxSFhWPp\n6upiyZJ/JitrxDG7R0qYjlEZ6k77Ges333yTqVOnkpWVFXl8Iv7pn/6pX0WJiIiIiJwqRqORjIws\nMjKymDFjVo91XV2d2Gw2nE4HXV1d+P1+AgE/fn/4Fh0dTVJSMsnJKSQlJWGxWAfpVYjIUHbcM9ZF\nRUU8+OCDfPGLX4w8NhgMHO8kt/pYi8jJ0hlrGcp0pkWGOh2jMtTpGJWh7rSfsX7mmWcoKCjo8VhE\nREREREREjjhusDYYDFRVVVFVVRV5LCIiIiIiIiJHHDdYL1u2rEeYPjydVl803ZaIiIiIiIicaz5z\nuq1QKERqaioXXHABZWVlmM0nNUOXiIiIiIiIyFntuIOX1dbWsnLlSlauXMm2bduIi4tj3rx5LFq0\niHnz5hEbGzuQtYrIWUqDl8lQpkF3ZKjTMSpDnY5RGepOxeBlJzyPtd1uZ9WqVaxatYr333+fYDDI\nrFmzuPDCC1mwYAFpaWn9KkREzl0K1jKU6QOhDHU6RmWo0zEqQ92ABuujeb1e1q1bx6pVq1izZg0O\nh4NJkyaxaNEiFi1aRF5eXr+KEpFzi4K1DGX6QChDnY5RGep0jMpQN2jB+mihUIh//OMf/OpXv+KD\nDz7AYDCwa9eufhUlIucWBWsZyvSBUIY6HaMy1OkYlaHutM9jfTw+n4/333+f1atXs3btWpqamoiN\njWXu3Ln9KkhERERERETkTHJSwbqpqYk1a9awatUqNmzYgNfrJTMzk4ULF7JgwQLKysqwWq2nq1YR\nERERERGRIeczg/WuXbtYtWoVq1evZteuXYRCIYqLi7nuuutYuHAh48ePH4g6RURERERERIak4wbr\n+fPn09TUhMViYebMmfznf/4nCxcuJCMjY6DqExERERERERnSjjt4WVFREQDDhw8nPj7+xHZoMPDG\nG2+cmupE5JygwctkKNOgOzLU6RiVoU7HqAx1p33wshkzZvRr5yIiIiIiIiJnu+MG62effXag6hAR\nERERERE5IxkHuwARERERERGRM5mCtYiIiIiIiEg/KFiLiIiIiIiI9IOCtYiIiIiIiEg/KFiLiIiI\niIiI9IOCtYiIiIiIiEg/KFiLiIiIiIiI9MNx57EWERERkTCv14vN1oLdbsPr9eL1evH5vPh8PgDM\nZjMmkwmTyUx0dDTx8QkkJCSSkBC+t1gsg/wKRETkdFGwFhERETlKR0c7tbU11NTsZ9++CpqaGmlp\naaa93dOv/cbFxZOZmUV6+jDS09PJzBxBZuYIsrJGEBsbe4qqFxGRwaBgLSIiIuc0n8/HJ5/sYefO\nj9m5czsHD9adlufxeNxUVlZQWVnRa11SUjLZ2TlkZ48iJ2cU2dmjGDFiJGazPqqJiJwJ9NdaRERE\nzjlut4utWzezZctGdu/eSTAY/MxtYqKTMRnMuDtaAEiOH0F8bBp1TdtJTRpFq7OWhNjhuNqbSIrP\nwumuJzkhm0CgE1d703H37XQ6cDod7Ny5PbLMZDIxcmQOo0blkZsbvuXk5BIVFdW/Fy8iIqecgrWI\niIicE3w+L1u3bmbTpvXs3LmdQCBwzHZmUzT+gJf4mGG4O5rJz55NVd16CrPPo8PrZF/dOgDiY4eT\nkjiSuqbtxEal0kotMVHJuNqbSIjNwOmuJydjMgDb970BwMhhEzjYvAOAtKQ8jEYTHT4nHV4ngWBX\njzoCgQC1tdXU1lazbt2R5SNHZpObO5rc3NHk5Y1m4sRioqOjT/XbJSIiJ0HBWkRERM5qtbU1rF27\nivXr38Pr9fbZLidjChlpY2hoqaCu6UNio1NwdzRjxHTKajEYjnz0SknIZlhqPgChUIjOLg8erx1H\n20EaWz/Bao6l09/eax8HD9Zx8GAdH3zwHgBGo5Hs7GxycvLIywsHbp3ZFhEZWArWIiIictbx+/1s\n3ryBlSvfpqpqX6/1FnMMaUm5mE0W6prCl18nJ4zEYo4Z6FIBMBgMRFnjibLGYzXH0tj6CePyLiA6\nKoF2rx1PRysO1yEcroO9tg0Gg9TW1lJbW8v7778LhMP2iBEjGTkym7Fji8jLKyA7O0cjk4uInCYK\n1iIiInLWaG/3sHbtKt555+/Y7a291ifHj2TE8BIS44ZjMBhpbq0ahCpPnNlkJTEug8S4DBJih+Nw\nHSQ/exZVdRsASIzLoM3T2Gu7YDBIXd0B6uoOsHHjeiActkeNymPkyGzGjStm9OgCsrJGYDQaB/Q1\niYicjRSsRURE5Ixnt9v5+99fZ+3a1fh8PS/3tlpiSUvKpb5lNzmZU4iPTRukKk8N41Ef34anjOkR\nrLPSx9Pl9+LpsNHhc/bYLhgMUl1dRXV1VeTMttUaRX5+AQUFheTnh29JSckD80JERM4iCtYiIiJy\nxmppaebNN19l3bq1+P3+Y7bJyZhKbHQy9S27B7i6gZeePDryxYHT3cCuqrcBiI9Jj4xmfrTOTh97\n9uxiz55dkWWpqWmMG1dMYeEYCgrGkp2do7PaIiKfQcFaREREzjiVlRWsWbOSDz54j1AodNQaAxAi\nJ3MqBxq2dS8xDEqNg81kPNKfOjOtiH1168gbMZPqQ5sAiLYm4O109dqutdXG+vXrWL8+PBR5TEwM\nY8aMY8yYIsaNKyIvL1/za4uIfIr+KoqIiMgZo6GhnhdffJ5t27b2WG7ASGb6OJLiR7CneiVR5rhB\nqnBoMxutkZ/Tkwuoa/qQ3Kzp1NRvITk+C4e7vtc2HR0dfPzxh3z88YfhfZjNjBtXTFHReIqKxpOX\nl4/JdOpGThcRORMpWIuIiMiQ19BQz2uvvcyGDe9/6gx1WNHoBSQnjMDdbhuE6s5sFlN4Duz05IJI\nsM7PnoXf34nL00RbexOBQGekvd/vZ+fO7ezcGR5NPTo6hsLCMUyePI0JEyYyfHgmBsO5eZWAiJy7\nFKxFRERkyDpeoE5JyMbuqgPAbNKczadSXHRapK92KBSi3evA5Wmk2V6Ju6Pnlxdebwc7dnzMjh0f\nA5CSksrkyVOZNGkKxcUlREVFD3j9IiIDTcFaREREhpz6+kO8/vorfZ6hBkhLyosEazl9DAYDcTEp\nxMWkYDJa2Ve3joy0cTTa9pIYl4m7o4Vg8MjAcXZ7K2vWrGTNmpWYzWYKCsYwfvxEZs8+j/T0YYP4\nSkRETh8FaxERERky6uoO8PrrL7N588YegdpktJCWnEdTa8UgVieHWUwxAORmlRIiyI59b5GROhZX\nezPtXnuknd/vZ+/e3ezdu5uXX/4z2dmjmDJlGtOmTSc3d7QuGReRs4aCtYiIiAy66uoqXn/9r/zj\nH5t7rctMKyIncwpen0vBeggyEJ6Ka3jqGIanjmH7vjcYlTmNDl8b9rYD+AO+SNu6ulrq6mp5/fVX\nSEtLp7R0BqWlMykoGKMpvUTkjKZgLSIiIoMiFAqxc+fHvPXW6+zevbPHOrPJSlpSHo2tnzAspQCz\nydrHXmQoSorPYuTwCbjaW9ix702g9/ReNlsLb7/9Fm+//RZJSclMmjSVOXPmKWSLyBlJwVpEREQG\nVFdXF5s3b+Bvf3uDurraHuss5miy0seTmTaODl8bja2fDFKVciocPYf4mFHzsJijqG/ZQ33Lrh7t\nnE4H7723mvfeW01KSiozZpRRVlZOXl6+LhcXkTOCgrWIiIgMCLu9ldWr3+Hdd1fR1tbWa31W+nhy\nMqdgMurjydkqyhpPevJo6lt2UTx6Eb4uD63OWhyug5E2dntr5Ez28OEZzJp1HmVl5WRljRjEykVE\njk//c4mIiMhpEwwG2bJlE1u2bGTbti0EAoEe62OsSaSnjuZAw4ekJ49WqD6HmE1RJCeMICN1DA5X\nPbv3ryAmOpkOryPSpqmpkVdf/QuvvvoXcnNHU14+h7KychITkwaxchGR3vS/l4iIiJxyTU2NrFu3\nlnffXU1bm/NTaw0kxA3H5WmkYNR5GDBwgA8HpU4ZGg73oR+ZPoF9desYMWwCducBOjqPHDs1Nfup\nqdnPCy88R0nJRMrL51JYOJa0tPTBKltEJELBWkRERE4Jm62FzZs3smXLRqqq9vVabzZZGZ46hsy0\ncXT5fWzf90aPPrgih6Ul5RIblcy+unUkxWfidDdE1gWDQbZv/4jt2z8CYPr0MhYtupjCwrEa9ExE\nBo2CtYiIiHwuoVCIAwdq2b79Iz78cAuVlb3D9GE5mVMYkV6C0WgCoMvv67OtyNESYsPBujBnDp6O\nVloc++nyd0TWb9kS/jInPX0YpaUzOf/8hWRkZA5ixSJyLlKwFhERkRPmcNj55JM97Ny5ne3bP8Lh\nsB+zXUxUEunJo4mLSWFP9WqS40dGQrXI5xETlcSwlHxys6bhdDdQ37wLh/tQZH1LSzN///sb/P3v\nb1BYOJby8rnMmFFGXFz8IFYtIucKBWsRERE5pmAwSH39Iaqrq6io2MvevbtpbGzos31MVBJpSbmk\nJecSE5WMwWDA3W4bwIrlXGAwGElOGIHZFIVj3yGyh0+izdNIm6cx0mbfvk/Yt+8Tnn/+f5k8eRrl\n5XOYOHEKZrM++orI6aG/LiIiIkJXVyeHDh2irq6WuroDVFdXUV29H5/Pe9zt4mOHkZaUS0rCSKKj\nEjXnsAy4lMQccjKnYG87wJ7q1VhM0XQFwset3+9n69ZNbN26ifj4eKZPL2PWrPPUH1tETjkFaxER\nkXNEKBTC5WqjqamR+vpDNDTU09BwiPr6QzQ2NhAKhT5jDwbiYlJJjMvAaomlpn4Lo0fMJD42bUDq\nFzkeizkWgFFZpVTWvU9q0ija3A34A50AuN1u1qxZyZo1K0lNTaOsrJyZM2cxalSevhASkX5TsBYR\nETmLdHZ2YrM109zczMGDB3C5XDQ3N9HQcAibzYbX2/HZO+lmMUcTH5NOXGwa8bHpJMQOi0yLpEu8\nZag6PNL8yGETGZMzF4frIM32KuyuOkKhIACtrTbeeus13nrrNYYPz2D69DJmzChTyBaRz03BWkRE\n5AzS3u7BZrNhszV337dgs7XQ2NiAw9FKW1vbSe/TgIHoqCRio5OJjUkhNjqZuOhUrJZYhQw5oxmN\nJlKTRpGaNAp/oJNWZy0tjv3d03eFr9BoamrkzTdf5c03XyU9fRhTp05n6tRSxowZh8mkAfdE5MQo\nWIuIiAwRfr8fu72V1lZb5GaztXTf22htbaGj48TPOH+a2RxNbFQyJpMZe1sduVnTSUnMJsoaj9Gg\n/qZydgvPo17I8NRCOrvasTlrsDlqcLU3Rdq0tDSzYsVbrFjxFnFx8RQXlzBt2nRKSiaSkJA4iNWL\nyFCnYC39cscdd/Dyyy/3ud5gMHDDDTfwve99bwCrGny/+MUveP7559m0aROBQICSkhL+4z/+g69/\n/eun5fnmz5/PJZdcwh133HFa9n+i1q9fzze/+U1eeeUVioqKBrUWkaEkFArR0dGOw+HAbm/F4bDT\n2FhPe3s7drud1lYbdnsrbW3Ofj2PyWghOioRk8lCmzs8ende1gysllg+qV1Lcd5C4mPTcLfbsLfV\nkRiXQUyUwoKce6yWWLLSi8lKL8bX1U6rswabswaXp5nDZ7I9HndkjmyDwUBeXj4TJkyiuLiEgoJC\nLBbr4L4IERlSFKylX7773e9y9dVXRx7fcsstjB49mu9+97uRZRkZGYNR2qC6+uqrufDCCwe7jEGh\ny0blXBEMBmlv99DW1obL1YbL5cLlcuJ0Omlrc9LW1obT6Yjcurq6+vmMBqyWWKIscURZ47rv47Fa\n4wgEuqiofZfx+RdFgvP2fW8AkBA3vP8vVuQsFnVUyO7ye7G31dHadgBH20FChPtkh0Ih9u+vZP/+\nSl577WXMZguFhWMYN66YwsKx5OcXEBMTO8ivREQGk4K19EtOTg45OTmRxzExMaSkpDBp0qRBrGrw\nZWRknJNfKIiciYLBIB0d7Xg8HtrbPXg8nqN+duP3+3C5XNjtDtxuN263C5fLhcfjPoFRtE+c2RRN\nlDU2Ep6tlnB4tlpjibLEY7XEYOjjcm0NJCZyaljM0ZHLxds8Teys/BtpyXl4Olrx+o6MX+D3d7Fn\nzy727NkFhL9UHjFiJAUFY8jNHc2oUblkZ+cQFRU9WC9FRAaYgrUMGL/fz+OPP85f//pXWltbGTdu\nHLfccgszZ84EjlxG/Oyzz/LAAw+wd+9ecnNzueeee/D7/fz0pz+ltraWCRMm8LOf/YycnJzIZdb3\n3HMP77zzDps2bWLYsGF861vf6nEm3ePx8Pjjj7NixQpaWlooKirixhtvZPbs2T2e+5577uGxxx4j\nEAjwyiuvkJqayvLly3nrrbc4dOgQMTExzJo1izvvvDMSnOfPn8/ixYv54IMPqKio4Ic//CF2u53n\nnnuOzZs393oP5s6dy5e+9KUel20fOnSIhQsX8uSTTzJ37txjvn/PP/88zz33HHV1dYwcOZLrrruO\nK6+88phtW1tb+e///m/WrVtHW1sbU6dO5ZZbbmH8+PGRNk8++SQvvvgiDQ0NZGVlceWVV/Kv//qv\nkfUtLS38/Oc/591336Wrq4vy8nLuvPNORowYEWmzevVqfvGLX1BdXc2ECRP48pe/fELHgsipEgqF\n8Pl8eL0ddHR0RO47Otppb2+P/Hz4cfjmiQRpj8eN1+s9pQH504xGM1ZzDBZLLFZzNFZLLCFCNLTs\nIX/kLJLis7BaYjEaNUiSyFBiNIR/J0eklxAfm4a304XT3UCbu5E2TwOdXe2RtqFQiIMH6zh4sA5Y\nDYTD9vDhmWRn55CVNSJyy8wcQXS0ArfI2UbBWgbMHXfcwcqVK7nxxhsZPXo0r7zyCtdddx3PPfdc\njzPct956KzfccAOZmZncd999/OAHPyAmJobvfe97xMTE8B//8R/cd999/PrXv45s8+CDD7JgwQJ+\n+ctf8u6773L33XcTHR3Nl7/8ZYLBIN/61reoq6vjhz/8IRkZGbz44ot8+9vf5ne/+x2zZs2K7Od3\nv/sd9913H21tbWRkZHDXXXexYsUKbrvtNrKzs9m7dy8PP/ww999/Pw8//HBku6effpof/OAH3HDD\nDeTn5/OXv/zlmJdEm81mLr30Ut56660ewfq1114jPT2dOXPmHPO9e+qpp3jkkUe47rrrKC8vZ8OG\nDdx5553Ex8dz8cUX92jrdrv56le/isFg4PbbbycmJoann36aa665hpdeeomCggL+8pe/sHz5cu68\n807y8/PZsmULjz76KOnp6Vx55ZV0dHSwdOlSgsEgP/nJT7BarfzqV79i6dKlvPrqq8THx7N161a+\n973vcemll3LrrbeyZcsW7rnnnpM/MGTICwaDBINBAoEAwWCAQCBIMBjotTz8c7B7+ZF2gcDhm59A\nINze7/cTCPjx+8O3rq4u/P4uuroO3zrp7Ozsvu/C5/Pi8/no7PR1B2kvXq+Xzk7faQ3Fx2IwGLGY\nozGborCYozCborGYwzezOQqLOQarORqLOQaLORqTydJrH+52Gw0te4iLSSM6KmFA6xeRzyfamkB0\nagIZqWMIhUJ4O124PE242ptxtzfT7nX0aB8KhWhsrKexsb7XvuLjExg2bBjp6cNJTx9GcnIKKSmp\nJCcnk5KSSmJiovpwi5xhFKxlQFRUVPDaa6/x85//nMWLFwMwd+5cli1bxqOPPsrvfve7SNtrr72W\nq666CoClS5fy05/+lIceeoh/+qd/AuDjjz/mxRdf7LH/cePGcf/99wMwZ84cDh06xK9//Wu+/OUv\ns3LlSj7++GN+//vfU1ZWFnnuq666ikceeYQXXnghsp+vf/3rzJ8/P/LY6XRy++23c/nllwMwffp0\nKisrefvtt3s8/9ixY/n2t799Qu/F4sWLee6559iwYUMk1L/++utcdtllxwzjgUCAp556iiVLlnDz\nzTcDMHv2bOrq6tiyZUuvYP3SSy9RX1/Pm2++yahRowA477zzuOiii1i+fDkPP/ww//jHPxg1ahRL\nliyJvC6LxUJ6ejoAf/nLX6irq+Ott96KXOo/a9Yszj//fJ5//nmuv/56nnrqKQoKCnjggQciz+Fw\nOPjTn/50Qu/DuSwUCnWH0aPDas8A6vcf/bO/O4x2dQfRQCSEHg6mh9cdWXbkcSDgp6vLf9T2R25H\nh9ujA+/R9Qx0cB0oRoOZYMhPtDUBqyUWk8mK2RSF2WQlGArQaNtLTuZUEmLSMZu715mjMBrMGktA\n5BxnMBiIiUokJiqR4amFAAQCXbg7bHg6Wmn3tuLpsNPhdRCi999Qt9uF2+1i//6qPp8jKiqahIQE\nEhISiYuLJzY2tvsWR0xMDFFR0URHh29WaxRWqxWLxYrVasVqtWA2WzCbzZjN5shyETl9FKxlQGza\ntAmDwcC8efMIBAJAOFzMnTuX5cuXEwyGBwcxGAxMnDgxst3hoFdSUhJZlpycjMvl6rH/L3zhCz0e\nL1y4kJUrV2Kz2diyZQuJiYmRUH3YpZdeyoMPPkhnZ2dk2ejRo3u0efTRRwFobGxk//79VFZWsm3b\ntl6DEH16u+OZMGECBQUFvPHGG8yaNYvdu3ezb98+HnzwwWO2r6yspK2tjQsuuKDH8oceeuiY7bds\n2cLYsWMjoRrAarWyaNEi/va3vwHhIP3SSy9x1VVXcfHFF3PBBRdw3XXXRdpv3LiR/Px8RowYEfn3\nio6OZtq0aaxfv57rr7+ebdu28ZWvfKXHc1900UUK1p9SWVnBE088Rmur+sCeKkajGZPRjNFowWQ0\nYzJZMBm7b6Yj92aTFZPRitlk6Q7N3fdGKyaTBU+Hne373mDMqHnEx6b1eA53u41G216S40f0Wici\nciwmk4Wk+EyS4jMjy4LBAN5OFx0+Jx1eJx0+J95OF75ON11+73H3F75Sx0tLSxMwUz0AACAASURB\nVPMpqW/Rokv4538+PbOTiIiCtQwQu91OKBSivLy8x3KDwYDBYMDhOHL5VFxcXK/tP6sv0vDhPUe9\nTU1NBcDhcNDW1hYJ6EdLS0sjFArhdrsjtRze7rAtW7Zw9913U1FRQWJiIuPHjyc6OrrXGby0tJP7\n4H355Zfz29/+lh//+Me8+uqrFBYW9jk9ldPpPGZtfXE6nX2+Xo/HA4TPmgeDQf74xz/yyCOP8NBD\nD1FUVMR//dd/UVxcjMPh4JNPPunxhQaE36PCwvA38y6Xi5SUlB7rhw0bdkI1nkvWrl11DodqA0aD\nEaPRhNFoxmjovjeaMBktkYDcMwhbjpw5Nkd1B2hz5N5oMOlssYicMYxGE7HRycRGJ0NSz3WBoB+v\nz4W7vQV3Rwuedhseb+tpq2XVqrdZsuSfMZv18V/kdNBvlgyIhIQEzGYzf/zjHzEae49qm5SUdIyt\nTtzRwRzAZgsHmdTUVJKSkmhpaem1TXNzMwaDgeTk5GPu0+l08p3vfIfZs2fzxBNPkJ2dDcDPf/5z\nKisr+1Xvl770JX7xi1/wwQcf8M477/C1r32tz7YJCQmEQiFaW3v+Z7t//36cTidTpkzpsTw5OZmD\nBw/22k9LS0uP13rFFVdwxRVX0NrayqpVq3j88ce57bbbePXVV0lISKCkpIR7772315cIUVFRQPjf\n7PD7fNin/x0EJk+exrp1awe7jEESIhgKEAwEIND52c2PwYChO4z3DNhHAvnRZ66tmHucte4+S919\nhtpssvY5qraIyOkSCgXxdrojZ60Pn7H2dbrxdXkIhYIDUkdxcYlCtchppN8uGRClpaUEAgHa29t7\nXJL9xBNPUF1dHekf/XmtXr26x2XJK1asYMyYMaSkpFBaWsr//u//9ujTDPDWW28xadKkYwZ9CF+C\n7XK5+PrXvx4J1YFAgPfff7/ffU4zMjIoKyvjySef5NChQ1x22WV9ti0oKCAhIYE1a9b06P/98MMP\n43A4ePbZZ3u0Ly0tZfXq1dTU1JCbmwtAZ2cnK1eupLS0FAgPJOfz+Xj44YdJTU3lqquu4uDBg/zh\nD3+I7OM3v/kN2dnZJCYmRvZ90003UVJSQmFhIWVlZaxatYpbbrklcgZxzZo1/XpfzkalpTP45S+f\nwuVydQ/wFerutxyM9GEOBoORPs49B/rqPchXuO91777UffWvDv8c+FT/6q4e/aqHshAhAsEuAsH+\nzgEdZjSaw2fGTVYMhI/bAw0fEh2VgNlkxWwO97H2+30A+DrdRFnjFMpF5IR0+b20d9jxdPex9njD\n03T1JzybzRbi4+Mj/atjY2OJjo6J9K+OioomKirqqP7V4b7WR/pXW7Bao8jNzTt1L1REelGwlgEx\nYcIEFixYwM033xwZOXv9+vU8+eSTfOc734m0+7yBde3atdx3332cf/75rFq1irVr1/L4448DsGDB\nAkpKSrj55pu58cYbycjI4KWXXmL37t08+eSTfT53QUEBMTEx/PKXv+T666+nvb2d559/nsrKSkym\n/k+Ls3jxYm699VbKy8uPO+e1xWLh+uuv59FHHyUxMZFZs2axYcMGVq5c2WNk9MOuuuoqnnnmGf7l\nX/6Ff//3fyc2Npb/+Z//weFw8G//9m8AzJgxgx/96Efk5uYye/ZsDh48yJ///GcuuugiAJYsWcIf\n/vAHvvGNb3D99deTmJjIn/70J1atWhUZWO473/kOS5Ys4YYbbuDqq69m165d6l/dh/AHod5dHIaC\nwwOpHQ7ch4P90UH/04OsHX4cCgXx+w9/SXBkNPAj7cOPjwzEFuh+3PNLg6O/EDg8KvjRI4J3dvro\n7OzE5/Ph8/Vvaqxg0E9n0A9HTZPjcB8E97Hbf1J75GoDk9HSHbyPHg08CrM5Gkv3z4dHAu9rNHAR\nOXuEQkE8Ha242ltwtzfjam/B1+n67A27hQcNHUZa2jBSUg6PCp5CcnIyiYlJJCQkkpCQSFRUlLrA\niJwBFKzllDrcZ/pYHnnkER599FF+85vfYLfbGTFiBLfddhvXXnttj+0/j29/+9vs2LGDF198kVGj\nRvHYY4+xcOFCAEwmE08//TT//d//zSOPPEJHRwfFxcX89re/jcxjfaznTkpK4vHHH+fBBx/ku9/9\nLikpKZSVlfHII49w4403snPnTkpKSo77mo/3vsybNw8IXxb+Wf7lX/6F2NhYnnnmGX7/+9+Tl5fH\no48+GtnH0fuPj4/n+eef5/777+eee+4hEAgwdepUnn/+ecaMGQOELwP3eDz88Y9/5OmnnyYxMZFL\nL700Mur44X088MAD/PjHP6arq4uxY8fyxBNPRPrJjxs3jt/97nc88MADfP/73yc/P5+77rqL2267\n7TNfjwwdBoMhclYDhv68qqFQCL+/KzLdls/n7f758PzV4bms+5rDOvyzh/b29sigiScqEOwi0NmF\nr68U/ilGgxmLJbp7DuuYo+ayjiEQ9Ef2GQqF9KFZ5AxwOEg73Q20eRpp8zQS7P5d7kt4LusMsrJG\nds9hnUVmZhbDhg0nMTGpz6vmROTMo2Atp9TLL7/c5zqr1cott9zCLbfccsz1s2fPZvfu3T2WXXzx\nxb2Wfetb3+Jb3/pWj2VpaWk9puz6tMTERO65554+51k+1nNDeOquY80tfXTbY13+fOONN3LjjTcC\n4WB/rH2/9957xMbG9pouqy/XXHMN11xzzTHXfbqGzMxMHnnkkePub9myZSxbtqzP9ZmZmT3m6j6W\n6dOn8+c//7nHshP5okDk8zIYDFgs4cscExISP3uDPoRCIXw+X3fI9uDxHLn3eNx4PB7s9tbus+cd\nuFwunM42PB43HR0dJ/QcwZA/0o+yL7uq3sZoNGO1xBJlicVqiev+OQ6rNY4oS/ims98ig8feVsuh\n5h043PUEjjNehMlkYtSoXPLy8snJyWXUqFxGjsyJjE0iImc3BWuRAfb++++zadMm/vznP7NkyRJi\nYmIGuySRc47BYIj0T0xNPf6o/snJsQA4HOHLx/1+f2QOWpfLhcvV1n1z0dbmpK2trfveidPpwOfz\nHXf/waAfr68Nr6+tzzYmkzUSsiOB2xpHlCWeKGvcMefJFZGTFwqF8HS00tp2AJtjPwB1TduP2TY+\nPp5x44opLBxLQcEYRo3K01zRIucwBWs5453IpdhDSXNzM8888wwzZszg+9///mCXIyInyWw2d/eD\nTPnsxoDX68XptON0OnE47Dgcdux2O01NjXg8buz2Vuz2Vvz+vi8pDQQ6aQ900u6199Ei/Dew6uAG\nYqNTMB410FqX34vZrDNmIn0JhYK0eZqwOWuwtx2g86gxGI4WFRXN+PElFBWVUFw8nhEjsnUpt4hE\nKFjLGa2vy6yHssWLF7N48eLBLkNEBkj4zHgWGRlZfbYJBoO43S5aW23Y7a3YbDZaW8M3m62F1lYb\nDof9OAO3hZd7Omx4OnpOg7eneiWHg/f+Q5uIj0mLjHDe6W8nFEo9o76cFDkVjg7Trc4auvzeY7bL\nyhrJlCnTmDRpCgUFYzRdlYj0SX8dREREBpnRaCQxMYnExCTy8vKP2cbv9+Nw2CNBu6WlhdbWFmy2\n8K25uek4Z73Dwdvd3oy7vTmydG/1aowGE9FRicREJxEXnUJsdAqx0clYLXEK3HJWOXyZd4tjPy2O\n/XT5e4+XYDQaGTeumClTSpk6tZT09GGDUKmInIkUrEVERM4AZrOZ9PRhfX7QD4VCuFxttLQ009LS\ngs3WzMGDdbS1OWlubqK5uemYI6EHQwHavXbavXZsVEeWm0xW4mPSiI9NJy4mjYTYdKyW2NP18kRO\nG6/PRbOjihb7frydvccyMJlMlJRMZPr0MqZMKSU+Pn4QqhSRM52CtYiIyFnAYDBEznrn5xf2Wh8I\nBGhttdHU1EhTUyMNDfU0NByivv4QNltLr8vMA4FOnO56nO76yLJoawIJcRkkxWdgNmmQJhnabM4a\nqg9twnXUVRqHGY1Gxo+fwMyZs5k6tZS4OIVpEekfBWsREZFzgMlkYtiw4QwbNpySkok91nV2dlJf\nf5C6ugPdt1qqq6vweDw92nk7XXg7XTTb90WW1bfsYnhKIQlxwzEaTQPyWkSOJUT4iox6W3jslUPN\nO3q1KSwcS1lZOTNmlJGYmDSg9YnI2U3BWkRE5BxntVrJzR1Nbu7oyLJQKERzcxP791eyf38VFRV7\nqanZ3+ty8sP9VY1GMykJI0lLziM5YSQmoz5iyMDo8DpptlfSbK8E6DWAX0ZGJrNnz2H27DkMGzZ8\nMEoUkXOA/tcTERGRXgwGA8OHZzB8eAZlZeVAeOqwysoK9u7dzc6d29m/vzLSPhj0Y3PWYHPWdIfs\nbNKTR2OxRA/WS5CzWGdXeyRI76tb12t9bGwcZWXllJfPJT+/QAPxichpp2AtIiIiJyQ6OpqSkomU\nlEzkiiuW0NbWxs6dH/Pxxx/y8ccf0tERnv83HLKrsTmrI32xvZ0u4mPTBrN8OcMFg/7uM9NVON0N\nHB7t/jCTyURx8QTmz1/A5MlTNTWWiAwo/cURERGRzyUxMTFyiW1XVxe7du1g8+YNbNu2hY6O8FRG\n/kAnABW171LfsovMtCLSknIHs2w5w3g7nQDsqnqHEIFe67Ozc5g/fwEzZ84mISFxoMsTEQEUrEVE\nROQUsFgsTJ48lcmTp9LV1cX27R+ybt27fPTRPyIjjrvbW9jXvo6a+i2kJGQPcsUylHm8rbQ6DwDh\nfvxAj1CdmprGrFnnMXnyVMaMGTcoNYqIHE3BWkRERE4pi8XCtGkzmDZtBk6ng9Wr32HTpvU0NISn\n7urye2nqHln8QONHDEsZfbzdyTkg1H1Zd4ujCoCquvW92sTExFBaWkZ5+RzGji3CaDQOaI0iIsej\nYC0iIiKnTVJSMosXX8Xll1/Jrl07WLny7R5nsR2uOhyuOgDcHTbiYlI10NQ5IkQIV3sLrc4amu3h\nQO1wH+rRxmw2M3HiFMrKypkyZRpWq+ZPF5GhScFaRERETjuDwRAZ+Ky5uYnVq1ewZs1KvF5vpM3+\ngxtosVcyMmMSyfEjBrFaOV1CoWBkOqw91avw+73HbFdcXEJZWTmlpTOIi4sfyBJFRD4XBWsREREZ\nUMOGDWfJkmu47LIvs3btSv72tzdwudoAcLU3s2f/SuJi0khPyhvcQuWUOtD4Ie72FvwBH0CPUG0w\nGMjPL6S8fA7Tps0kKSlpsMoUEflcFKxFRERkUMTGxvKFL3yRRYsuYc2ad1i1agWNjQ0AeDpskTOb\nTncDcTGpg1mqnCRflwdXcyMtjurIMofrYI82RqORceOKKS2dybRp00lOThngKkVETh0FaxERERlU\nFouFCy/8AgsXXsymTRt4/fWXOXToSAirbdhKi6OK9OT8QaxSPkubuwFXRwsAn9SsOWYbq9XK+PET\nmTq1lClTpml6LBE5ayhYi4iIyJBgNBqZNaucmTNn8Y9/bOG1117mwIEaANq9dmobtg5yhXJEeOqr\nxtZPcLc3A1DTx79PQkIi48dPoKxsNsXFE4iKihqwKkVEBoqCtYiIiAwpRqOR6dPDlwdv27aVV1/9\nSyRgH83dfXZUTr9gMIC7o4VWV3hu6bqm7QA0tVYcs31h4VgmTpzCpElTyMkZpamxROSsp2AtIiIi\nQ5LRaKS0dAZTp5by4Ydb+etfewbsBtueyM8hgoNR4lkrEOzC7jqIy9NEm6cJd3szoVDf73FqahoT\nJ06mpGQSxcXjNZK3iJxzFKxFRERkSDMajUybNoMpU8IB+//+7wXq63vOd/xJzXvkZEwiJlqjSZ+s\nEOE5xds8DZFlu6rePu42iYlJFBeXUFQ0nuLiEoYPzzitNYqIDHUK1iIiInJGOBywp06dzvr17/H2\n23+jtrYagM4uN5V1H2AxRwMQDPkHsdIzg8Md/nKiqm4DAE32fX22TUlJZezYoshtxIiRGAyGAalT\nRORMoGAtIiIiZxSDwUB5+Txmz57L9u0f8tprr1BZGe7r29U9N/L+g5sHs8Qh53Df6P31myLL3O1N\nAIS6ByI7Wnb2KAoLx1BQMIaxY4tITx+mIC0ichwK1iIiInJGMhgMTJo0lYkTp7Bnzy5ef/0Vdu/e\nCfQMiw223QxLLRysMgeUu8OG012Pp8NGm6cpsrzVGe6bHgh09tomPj6B/PxCCgoKyc8vJD+/gJiY\n2AGrWUTkbKBgLSIiImc0g8FAcXEJxcUl1NRU8/e/v8GmTesJBsODbbk7bLgP2gBodlQSZY3FYo4Z\nzJJPGbu7rsfj/Qc3HLe91Wpl5MhsxowZR15eAaNH5zN8eIbORouI9JOCtYiIiJw1cnPzuP76G7jq\nqq/x5puvsn79Ojo6OiLrG1r20NCyl6T4TNKS8yLheyjzBzrxdLTS2lYLQPVR80XbHNV9bmcymcjK\nGklh4Rjy8vIZPbqAESNGYjKZTnfJIiLnHAVrEREROeukpqaxdOk3WbLkGrZs2cjatauoqNjbvTaE\n012P013fYxtvZxtxMakDX2y3UChEZ5eHNk8jADUNW/F1uvF1unu08/s7em1rNBrJyhpJQUEheXn5\n5OWNZuTIHCwWy4DULiJyrlOwFhERkbOW1WqlvHwu5eVzOXiwjnXr1rJp03rs9tZebStq36PavAWz\nKQqATn/7aa3N422lq9lLh89Jh9dJu9dOINgVWd/mbjjmdiaTiZEjsxk1ajSjR49mwoTx5Obm0t6u\nkdBFRAaLgrWIiIicE0aOzOarX72Gr3zlaiorK9i0aT2bN2+krc0ZadPl76Cr+4ywwxXuv1xdvwWA\nuqaPMRiMkbbeThcdXkd4u0BHZPvwuvA+mx1VBAJHwnJ9y86jft71mTWbzRays3PIzc1j1Kg88vJG\nk52dg8VijbRJTg4PNKZgLSIyeAyhUCg02EWIyLmtqyuAw3F6zwyJfF6HQ4uO0bNTMBikrq6WnTu3\ns2PHx1RU7MXvH5yAmpSUTHZ2Djk5o8jOHkVOTi5ZWSMwm49/HkTHqAx1OkZlqEtOjsVi6d/4EwrW\nIjLoFKxlKNMHwnOLz+fjwIEaamr2U129n6qqSpqaGggEes/1/HlYrVEMGzaMtLRhZGZmkZU1InJL\nSEj8XPvUMSpDnY5RGepORbDWpeAiIiIi3aKioigsHEth4djIsmAwiNPpwGZroaWlBbvdhtfrxefz\n4vV66ez0AWAymTGZTJjNZqKioklISCAhIZH4+AQSE5NIT08nPj5BU1uJiJyFFKxFREREjsNoNJKS\nkkpKSmqPwC0iInKY8bObiIiIiIiIiEhfFKxFRERERERE+kHBWkRERERERKQfFKxFRERERERE+kHB\nWkRERERERKQfFKxFRERERERE+kHBWkRERERERKQfFKxFRERERERE+kHBWkRERERERKQfFKxFRERE\nRERE+kHBWkRERERERKQfFKxFRERERERE+kHBWkRERERERKQfFKxFRERERERE+kHBWkRERERERKQf\nFKxFRERERERE+kHBWkRERERERKQfFKxFRGTI2bRpPXfffSebNq0f7FJEREREPpOCtYiIDDkvv/wS\nNTX7efnllwa7FBEREZHPpGAtIiJDjtfb0eNeREREZChTsBYRERERERHpBwVrERERERERkX5QsBYR\nERERERHpBwVrERERERERkX5QsBYRERERERHpBwVrERERERERkX5QsBYRERERERHpBwVrERERERER\nkX5QsBYRERERERHpBwVrERERERERkX5QsBYRERERERHpBwVrERERERERkX5QsBYRERERERHpBwVr\nERERERERkX5QsBYRERERERHpBwVrERERERERkX5QsBYRERERERHpBwVrERERERERkX5QsBYRERER\nERHpBwVrERERERERkX5QsBYRERERERHpBwVrERERERERkX5QsBYRERERERHpBwVrERERERERkX5Q\nsBYRERERERHpBwVrERERERERkX5QsBYRERERERHpBwVrERERERERkX5QsBYRERERERHpBwVrERER\nERERkX5QsBYRERERERHpBwXrM8yyZcuYPHkytbW1vdbt2bOHoqIiNm/ePAiVnX4HDx6kqKiIt99+\ne7BLOW1WrlzJXXfdNSDPtXz5cp5//vnI42XLlvFv//ZvA/LcIiIiIiJnEwXrM1BnZyf/+Z//ecx1\nBoNhgKuRU+n3v/89TU1NA/Jcjz/+OD6fL/L4Jz/5CbfffvuAPLeIiIiIyNlEwfoMlJCQwKZNm3jp\npZd6rQuFQoNQkZwNCgoKyMvLG+wyRERERETOOArWZ6Bp06Zx/vnn8+CDD2Kz2Y7btrW1lVtvvZWy\nsjKmTp3Kd77zHerq6gB45513KCoq4tChQ5H29913H0VFRZE2APfeey9f+cpXTqi2vi7XXrx4MXfc\ncQcAGzdupKioiC1btnD11VczadIkFi1axIsvvthjm48++oirr76aKVOm8KUvfYldu3b1er7a2lq+\n+93vMm3aNGbMmMGtt96K3W6PrL/jjju44YYbuPnmm5k6dSo33HBDn7W//fbbXHnllUyZMoWFCxfy\nm9/8psf6FStWcNVVVzF16lTOP/98Hn30UQKBQGT9ggUL+O1vf8tPfvITysrKKC0t5fbbb6e9vb3H\na1q6dCnTpk2jrKyMH/zgB5H3f9myZWzevJk1a9ZQXFzMoUOH+OUvf8mVV17Jf/3Xf1FaWsoVV1xx\nQu8xgNPp5M477+S8886jtLSU6667joqKCgCKioowGAzcf//9LFy4MPL8R18Kbrfb+dGPfsT8+fOZ\nMmUK1157LTt27Iisf/nll5k1axbr169n8eLFTJw4kUsvvZRVq1b1+R6LiIiIiJyNFKzPUD/+8Y/p\n6uri3nvv7bONz+dj2bJlbNu2jbvuuosHH3yQlpYWli5disvlYvbs2ZjNZjZs2BDZZvPmzRgMBrZu\n3RpZtm7dOubPn3/Kaj98ufrNN9/MJZdcwlNPPcX48eO56667qKysBMIB/Rvf+AaxsbE89thjXHnl\nldx+++09LnW32WxcffXVNDQ08OCDD3L33Xfz4Ycfct111+H3+yPt1q5dC8ATTzzBtddee8ya/v73\nv/Pv//7vFBUVsXz5cr7+9a/z+OOP89RTTwHwwgsv8P3vf58pU6awfPlyli1bxtNPP90jyAL85je/\nweVy8cgjj/DDH/6Q119/nSeeeAIAt9vN9ddfT2ZmJr/+9a/56U9/yq5du7jpppuA8KXY48ePp7S0\nlBdeeIH09HQA9u7dy969e1m+fDk/+MEPTug9DgQCfOMb3+C9997j//2//8djjz2G1+vlm9/8Ji6X\nixdeeIFQKMSyZctYvnx5r+3b29v52te+xoYNG7jlllv4xS9+AcDSpUsj4RzA4/Fw5513snTpUp58\n8klSUlK46aabaGtrO6E6RURERETOBubBLkA+n8zMTH74wx/ys5/9jNWrV3PBBRf0avPyyy9TU1PD\n66+/HrnEd/bs2VxwwQU8++yzkTO9Gzdu5IorrsDpdLJ3716Ki4vZunUrl19+OXV1ddTU1DBv3rxT\n/hquvfbaSNAdP348K1as4L333qOgoIBnnnmGqKgonnjiCaxWK/PmzSMUCnH//fdHtv/9739PV1cX\n//M//0NSUhIAkydP5qKLLuKNN97g8ssvB8Ih8+677yY+Pr7PWn79619TXl7OfffdB8B5552HzWZj\n27ZtBINBHn30US677DJ+9KMfAVBeXk58fDw/+clP+Pa3v83YsWOB8L/LQw89FGmzceNG1q5dy803\n30xlZSVOpzMyAB1ASkpK5IuNgoIC4uLiiIuLY9KkSZHaAoEAt99+O0VFRUD4S4fPsnr1avbs2cNz\nzz3HtGnTACguLmbJkiXs2LGD2bNnAzBixIjIfo/2f//3f9TV1fHaa6+Rn58feU8uvvhiHn/8cR57\n7DEA/H4/t912GxdffDEAqampXH755WzcuJELL7zwM+sUERERETkb6Iz1GWzp0qVMnDiRe+65B4/H\n02v9pk2byM3NJScnh0AgQCAQICoqitLSUtavXw/A3Llz2bhxIxA+W52Zmclll10WOWP9/vvvk5aW\n1iPonQoGg6HHPhMSEoiNjY1cNr1t2zZmzpyJ1WqNtLnooot69CHftGkTU6ZMIT4+PvL6MjIyKCgo\n6HEWPjU19bih2ufzsXv3bs4///wey2+66SZ+9atfUVVVRWtrK5dcckmP9ZdeeimhUKjHKOyffp8y\nMjLo6OgAoLCwkKSkJP71X/+Ve++9l3fffZdJkybxve9977PerpPu+/zhhx+SkJAQCdUQfh/eeeed\nSKg+ni1btlBYWBgJ1QAWi4ULL7yw16jzh78kgPAXC0CPy99FRERERM52CtZnMIPBwE9/+lOam5t5\n+OGHe613OBxUVlZSUlISuU2YMIE1a9bQ0tICwLx582hsbKSmpoZNmzZRWlrKtGnTqKqqwuFw8P77\n7zNnzpzTUn9MTEyPx0ajkWAwCIT7BycnJ/dYf/jS6KNf33vvvdfr9VVUVNDc3Bxpl5qaetw6HA4H\n/P/27jy65jv/4/jrShpEJAjGnmiK2BIhBGPvtPappZkmRFGJ0UhRxlJUjX0ZKU2lQzWJiL1GUUvH\nvidoDz01lrGNqKXWEMJVub8/nNzmukT4/pqrzfNxjiP5fLf393u+53Pyup/v93MleXp6PnZ5Wlqa\nTCaT3XI3Nze5uLjYfKiR0zkVKVJEixYtUuPGjfXVV1/pr3/9q5o0aaJ58+blWF/hwoVVqFChHNd5\nXM1PO++c3Lx50+56Sw+vUXp6uk1b9toKFHjYpTCJHgAAAPITHgX/jatatar69Omjzz//XD4+PjbL\n3NzcVL16dU2cONEu6GSNBFerVk2lS5dWcnKyDhw4oLfeeku1atVSoUKFlJKSopSUlGf6XuWsd6Cz\nwmSWZx3BLF68uK5du2bTlhWAs7i5ualZs2YaOHCg3fkVKVIk18fKGs1+L/m+dwAAFwNJREFU9HhZ\nHziUKFFCFovFbqK4W7duyWw2q3jx4rk+lo+Pj6Kjo/Xzzz/rwIEDSkxM1IwZM9SgQYNcPxWQm2vs\n5uZmM4lblpSUFFWsWFHlypXL8RgeHh46ffq0XfuVK1fsPvAAAAAA8jtGrH8H+vfvr4oVKyo6Otpm\ncq969erp3LlzKleunM2oblxcnLZu3Wpdr0mTJtqyZYuOHz+uwMBAOTs7q06dOoqPj1d6evozjVhn\nhdTs38V86dIlm1nGcyMoKEgpKSk2o6Pbt2+3O79Tp06pSpUq1nOrUqWKYmJibCZfe5oiRYqoatWq\n2rZtm017YmKihg4dKh8fHxUvXlzr16+3Wb527VqZTCabx61zsnPnTjVu3FjXr1+Xs7OzGjZsqNGj\nR8tisejChQuSJCcnp6fuJzfXuG7durp586YOHjxobUtLS1NERIR2794t6ZfR5cepV6+eTpw4oVOn\nTlnbzGazNm3apHr16uXqfAEAAID8gmD9O+Di4qJx48bZPaLbtWtXeXh4qHfv3lq/fr327t2rgQMH\nasOGDTYTVjVt2lTbt2+Xu7u7ddQ7MDBQBw8elJ+fn3ViMElKTU3VoUOHnliLu7u7/P39FRcXp3//\n+9/atGmT+vXrZ7MP6emPCvfs2VPOzs4KDw/Xtm3btHjxYs2aNctmnd69e+vmzZsKDw/X5s2btX37\ndkVERCglJUU1a9bM+aI9on///tqzZ4/GjBmjPXv2KD4+XklJSerbt69MJpOioqK0bt06jRs3Trt3\n79YXX3yhqVOnqm3btnZPCjxJ1oh0VFSUtm3bpl27dumjjz6Sh4eHgoKCJD28fqdOndK+fft07969\nx+4nN9e4ZcuWql69ut5//32tWrVK27dvV1RUlMqUKaO2bdtKevhe+7fffqvvv//e7hhdunRR2bJl\n1bdvX61Zs0Zbt25VRESErl69avOVXAAAAAAI1r9J2UdtswQFBalr1642bW5ublq4cKFefvlljR07\nVpGRkbp48aJiY2NtZvn+4x//KGdnZwUGBlrbGjRoIJPJZDehV2xsrEJCQnKsb8qUKfLy8tLQoUM1\nefJkhYaGqkGDBk89B5PJZG0vUaKEkpKS5Orqqvfff1/z58/XuHHjbNYvW7asFi1apMKFC2vYsGEa\nMmSIpIezhWf/4OBxx3pU69atNXPmTB06dEj9+vXTkiVLNHz4cHXv3l2S1L17d02cOFH79u3Tu+++\nq0WLFqlPnz6aPn16ro/j4eGhefPmqVChQho+fLjee+8966zmWY9X9+rVS2azWRERETpy5MgT9/W0\na+zs7Ky4uDg1bNhQkyZN0tChQ+Xu7q64uDjriPeAAQOUkpKiiIgI62PlWedQpEgRLVy4UP7+/ho/\nfryGDBkiZ2dnLVy48LGziGeXm+sNAAAA/J6YLMwyhGfUpk0bbdiwwdFl4Hfk/v0HunGDmcTxi/ff\nj1Ra2g15eBTTxx/HOrSWYsVcJYl7FC8s7lG86LhH8aIrVsxVL7309Fcyc8KINZ7J6tWr9corrzi6\nDAAAAAB4YTArOJ6Jn5+fWrdu7egyAAAAAOCFQbDGM/H29nZ0CQAAAADwQuFRcAAAAAAADCBYAwAA\nAABgAMEaAAAAAAADCNYAAAAAABhAsAYAAAAAwACCNQAAAAAABhCsAQAAAAAwgGANAAAAAIABBGsA\nAAAAAAwgWAMAAAAAYADBGgAAAAAAAwjWAAAAAAAYQLAGAAAAAMAAgjUAAAAAAAYQrAEAAAAAMIBg\nDQAAAACAAQRrAAAAAAAMIFgDAAAAAGAAwRoAAAAAAAMI1gAAAAAAGECwBgAAAADAAII1AAAAAAAG\nEKwBAAAAADCAYA0AAAAAgAEEawAAAAAADCBYAwAAAABgAMEaAAAAAAADCNYAAAAAABhAsAYAAAAA\nwACCNQDghVOoUGGb/wEAAF5kBGsAwAunc+c35e39sjp3DnZ0KQAAAE/l7OgCAAB4VIMGjdSgQSNH\nlwEAAJArjFgDAAAAAGAAwRoAAAAAAAMI1gAAAAAAGECwBgAAAADAAII1AAAAAAAGEKwBAAAAADCA\nYA0AAAAAgAEmi8VicXQRAAAAAAD8VjFiDQAAAACAAQRrAAAAAAAMIFgDAAAAAGAAwRoAAAAAAAMI\n1gAAAAAAGECwBgAAAADAAII1AAAAAAAGEKwBAAAAADCAYA0AAAAAgAEEawAAAAAADCBYA3CYZcuW\nqXXr1vL391dISIgOHjzo6JIAqxs3bsjX19fu38CBAx1dGqDNmzerbt26du2fffaZWrZsqTp16uid\nd97RqVOnHFAd8Ph79PDhw3Z9avXq1TVt2jQHVYn8JjMzU/Hx8WrXrp0CAgLUvn17LVy40Gad5+1H\nnX+NggHgaVauXKmxY8cqKipKtWrVUlJSksLDw7Vq1SqVL1/e0eUBOnr0qEwmk+Li4lSkSBFre7Fi\nxRxYFSB99913GjZsmF37p59+qnnz5mno0KEqV66cYmNj1bt3b61du1Zubm4OqBT51ZPu0aNHj8rV\n1VUJCQk27aVLl86jypDfzZ49W/PmzVP//v3l5+enAwcOaNKkSbp796769OljqB8lWANwiJiYGIWE\nhCgyMlKS1LhxY7Vp00YJCQkaNWqUg6sDpGPHjsnT01ONGjVydCmAJMlsNmv+/Pn65JNP5Orqqvv3\n71uX3b59W3FxcXrvvffUvXt3SVK9evXUsmVLffnll+rVq5eDqkZ+ktM9Kj3sV6tWrSo/Pz8HVYj8\nLDMzUwkJCQoPD1ffvn0lSQ0bNtS1a9cUFxenkJAQQ/0oj4IDyHP/+9//dP78ebVs2dLa5uzsrBYt\nWmjnzp0OrAz4xbFjx1StWjVHlwFY7dixQ/PmzdOIESMUFhZms+zQoUPKyMiw6Vfd3d1Vv359+lXk\nmZzuUemXYA04Qnp6ujp37qzXXnvNpr1y5cq6du2akpOTDfWjBGsAee7MmTMymUzy8vKyaa9QoYJS\nU1NlsVgcVBnwi2PHjikjI0MhISHy8/NT8+bN9cUXXzi6LORjfn5+2rx5s7p37y6TyWSz7PTp05Kk\nSpUq2bRXrFhRZ86cyasSkc/ldI9K0vHjx3XhwgV16tRJtWrV0uuvv66vvvrKAZUiP3J3d9fo0aPl\n6+tr075lyxaVKVNGFy9elPT8/SiPggPIc+np6ZJk895q1u+ZmZm6c+eO3TIgL2VmZurkyZNydXXV\n8OHDVa5cOW3btk0zZszQvXv3rK8wAHkpp/dQb9++LRcXFzk72/5pV6RIEWufC/zacrpHf/rpJ12/\nfl1nz57VkCFDVLRoUa1du1YjRoyQyWTSG2+8kYeVAg8tX75cycnJGj16tOF+lGANIM9ljUg/7tNs\nSSpQgIdp4Hhz5sxRuXLlVLFiRUlS/fr1dfv2bX3++ecKDw+Xi4uLgysEfmGxWOhT8ULz8PBQXFyc\nqlatqpIlS0qSGjVqpEuXLmn27NkEa+S51atXa+zYsWrTpo26d++uOXPmGOpH6WkB5LmiRYtKejjC\nkt3t27fl5OSkwoULO6IswKpAgQIKCgqyhuosTZs21d27d3X27FkHVQY8npubm8xmsx48eGDTfvv2\nbWufCzhSwYIF1bhxY2uoztK0aVOlpqYqIyPDQZUhP4qPj9fw4cPVqlUrTZ8+XZLxfpRgDSDPeXl5\nyWKxKDU11ab93Llz8vb2dkxRQDY//fSTli1bpuvXr9u037t3T5JUvHhxR5QFPJG3t7csFovOnTtn\n056amqrKlSs7qCrgF2fOnNHixYvtZgq/e/euChUqxIfqyDPR0dGaOnWqOnXqpFmzZlkf/TbajxKs\nAeQ5b29vlS1bVps2bbK23b9/X9u2beOrjfBCMJvNGjNmjFavXm3TvmHDBnl7e8vT09NBlQGPFxAQ\nIBcXF5t+NS0tTfv376dfxQvh0qVL+vvf/67t27fbtG/cuFGBgYEOqgr5zfz58zV37lz16tVLkydP\ntnnE22g/yjvWABwiIiJCEyZMUNGiRVW3bl0lJSXpxo0b6tmzp6NLA1ShQgW1b99es2bNkslkko+P\nj9avX69NmzYpNjbW0eUBdlxdXRUWFma9Z728vPTPf/5T7u7uevPNNx1dHqD69esrMDBQY8eOVVpa\nmkqVKqWlS5fq+PHjWrJkiaPLQz5w+fJlzZgxQ9WqVVPbtm116NAhm+W1atUy1I8SrAE4RLdu3WQ2\nm5WYmKjExET5+voqLi5OFSpUcHRpgCRp8uTJmj17thITE3X58mX5+PgoJiZGLVq0cHRpgCT7CSAH\nDx4sJycnxcXF6c6dO6pbt66mTZsmNzc3B1WI/C77PVqgQAHFxsYqOjpaMTExunHjhmrUqKH4+HhV\nr17dgVUiv9i1a5fu37+v48ePKyQkxG753r17DfWjJgtfGAsAAAAAwHPjHWsAAAAAAAwgWAMAAAAA\nYADBGgAAAAAAAwjWAAAAAAAYQLAGAAAAAMAAgjUAAAAAAAYQrAEAAAAAMIBgDQAAftdatWqliIgI\nR5fhML/2+aemplp/3rdvn3x9fbVu3bpf7XgA8CIiWAMAAOC5fPjhhxo/frz1dx8fH02fPl0BAQEO\nrAoA8h7BGgAAAM9l9+7dslgs1t89PT3VsWNHlS1b1oFVAUDeI1gDAAAAAGAAwRoAAOQre/fuVVhY\nmOrUqaPAwED169dPx48ft1tv+fLlateunfz9/dWlSxclJyfr9ddf1wcffPBMx8t673jPnj0aNGiQ\nAgIC1KRJE02ePFn37t2zrhcTE6P69evr66+/VsOGDdWgQQNt3bpV0sP3mAcNGqSgoCD5+/srODhY\nmzZtsjvWjh079Oabb6pOnTrq0KGD9u7da7fOk9659vX11dixY23atmzZotDQUAUEBKhZs2YaM2aM\n0tLSrOtfuHBBO3fuVPXq1bV///7HvmOdkZGhqVOnqkWLFqpdu7Zat26tuXPnKjMz0+7cT5w4od69\neysgIECNGzfWhAkTZDabn+l6A4AjEKwBAEC+sXHjRvXp00c3b97UoEGDFB4ersOHD+utt97S0aNH\nreslJCToww8/VPny5TV8+HBVqVJFffv21ZUrV5772KNGjdLZs2c1ePBgvfrqq0pMTNSAAQOsy00m\nkzIyMjRlyhT169fPGmhTU1MVHBys5ORk9ejRQ0OGDJEkRUVFafny5dbtd+3apXfffVcWi0V/+9vf\n1KRJE0VGRurq1avPVe+qVavUv39/PXjwQIMHD1ZwcLDWrFmjyMhISdL06dNVrFgx+fr6avr06fLx\n8bGeRxaz2axevXppwYIFatWqlUaOHClfX19FR0dr+PDhNud+79499erVS2XKlNHIkSNVv359JSUl\n6dNPP32u+gEgLzk7ugAAAIC88ODBA40bN05eXl768ssv5eLiIknq1KmT2rZtqwkTJigpKUnp6emK\niYlR8+bNNWfOHElSt27d5Onpqbi4uOc+fqFChbR48WIVLFhQklSyZEnFxsYqOTlZDRs2tNYYGRmp\nbt26Wbf76KOPlJ6erjVr1qhy5crWekJCQjRlyhS1bdtWbm5uio6OVoUKFbR48WLrudWoUUPDhg17\n5lozMzM1bdo0+fv7KykpSc7OD/9kLFeunEaPHq39+/erY8eO+vjjj1WqVCl16NDBum32d66XL1+u\n77//XhMmTFDXrl0lSaGhoZowYYIWLlyorl27Ws/dbDYrJCREUVFRkqTg4GC1b99e69ev1+DBg5/5\nHAAgLzFiDQAA8oXDhw/r8uXLCgsLswZPSSpTpozeeOMNfffdd0pLS1NycrLu3Lmjt99+22b78PBw\nQ8cPCwuzhmpJ6tmzpywWi7Zv326zXr169aw/Z2ZmaseOHXr11VetoVqSnJ2d9c477+jOnTtKTk7W\ntWvX9J///Ed//vOfbc6tY8eO8vDweOZaf/jhB129elV/+ctfrKE6a3//+te/5O/vn6v9bNu2TSVK\nlFCXLl1s2rNG1jdv3mxtM5lMeu2112zW8/X1NfSUAADkFUasAQBAvnDu3DlJkre3t90yHx8fWSwW\nXbhwQWfPnpUkVapUyWadEiVKyN3d/bmP//LLL9v87u7uLg8PD/344492x8ly/fp1ZWRk5Fjz+fPn\n9Yc//EGSVKFCBZt1TCaTvLy8nrnW8+fPy2Qy2V0DFxcXVa9ePdf7+fHHH1WxYkWbx8Olh7OHe3h4\n6MKFCzbt2c8963jZ38UGgBcVI9YAACDfe/DggSTppZde0s8//2z9+VHZR4Ofhclkeuz+MjMz5eTk\nZNNWoMAvf55lf6z6cds+WufjJvrKTTB9dJ3/rzCbU/0PHjywuybZzx0AfkvovQAAQL5Qvnx5SdLp\n06ftlp06dUomk0mlS5dWxYoVJUlnzpyxWSc9PV3Xrl17rmNbLBalpqbatF2/fl23bt2yGxXOrkSJ\nEipcuPATa5YePspevnx5mUwmu5ol2Y2IOzk52QXwRyc4K1OmjCwWi3WUP4vZbNagQYO0c+fOJ9ac\nXfny5ZWammoXsK9cuaL09HSVKVMmV/sBgBcdwRoAAOQLNWvWVMmSJZWUlKS7d+9a2y9evKg1a9ao\nbt26Klq0qJo0aaKCBQtqyZIlNtsvWrTI0Eju0qVLbbZPSEiQyWTSn/70pyduU6BAATVt2lRbtmyx\nBmlJun//vuLj41W4cGEFBQWpRIkSCggI0MqVK3Xr1i3reuvXr9f169dt9lmyZEmdPHnSOkqftV52\ntWvXVvHixbVixQqbmjds2KANGzZY37t2cnLK8Zq0bNlSV69e1YoVK2za58yZI5PJpObNmz9xWwD4\nLeEdawAAkC84Oztr1KhRGjJkiIKDg9W1a1dlZGRo0aJFkqSRI0dKkooWLar+/ftrxowZ6tu3r1q0\naKEjR45ozZo1MplMdu8L59aRI0fUs2dPtWnTRj/88INWrlypzp07q3bt2jluN2TIEKWkpCg0NFRh\nYWHy8PDQ6tWrdfjwYY0ZM0aurq6SpBEjRqhHjx4KDg5WSEiIrl69qqSkJLvJyzp06KAJEyaob9++\natOmjY4dO6a1a9fK09PTus5LL72kYcOGaeTIkerRo4fatWunS5cuacGCBWrWrJkaNWok6eGI+uHD\nh7V06VI1a9bMrvbg4GCtWLFCY8eO1eHDh1W1alUlJyfrm2++Ubt27awzggPAbx0j1gAA4Hctexhu\n27at5s6dq6JFi2rWrFlKSEhQQECAli1bpho1ali3iYiI0KhRo3TmzBlNmTJFR44c0dy5c2WxWB77\nrnRufPDBB/Lw8NA//vEP7du3T4MHD9akSZOeup2Xl5eWLl2qoKAgJSUlaebMmXJxcVFsbKxCQ0Ot\n6/n5+SkxMVGlSpXSrFmz9M0332j8+PF65ZVXbD4MCA0NVWRkpE6ePKmJEyfq+PHjio+Pt5s4rHPn\nzvrkk0909+5dTZs2TV9//bVCQ0M1c+ZM6zqRkZFydXXVpEmT9O2331qvdxYXFxclJiaqW7du2rJl\ni6ZMmaITJ05oxIgRmjFjRq6u2/N+kAEAeclkyWlWCQAAgHzGbDbLbDbLzc3Npv3GjRtq2LChIiMj\nNWDAgFzvb9++fXr77bcVHR2tdu3a/X+XCwB4ATBiDQAAkM3ly5cVGBioBQsW2LSvX79eJpNJNWvW\ndFBlAIAXFe9YAwAAZFO+fHkFBgZq5syZunz5sipVqqT//ve/WrJkierWratWrVrp2LFjOnbs2FP3\nVbJkSetEXwCA3y96egAAgEd89tlnio2N1bp163T58mWVLFlSYWFhioqKkslk0saNGzV79uyn7qd+\n/frWbQAAv1+8Yw0AAAAAgAG8Yw0AAAAAgAEEawAAAAAADCBYAwAAAABgAMEaAAAAAAADCNYAAAAA\nABhAsAYAAAAAwID/A3ksm6+t3lPDAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10a266940>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.subplots(figsize = (14,8))\n", "sns.set_context('poster')\n", "sns.violinplot(y='Mine_Status',x='log_production', data=df,\n", " split=True, inner = 'stick',)\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9YAAAIkCAYAAAD7xLMUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VPXd///X7EsmKwkQdkhAIGyyiCDigtqCV+v9a+t9\nW/cqLtxoi7Wtt9Svrbe2tbXuWK3WjapVKmpte6vghoACoiyKgbCFJQtkm2yT2c/vjyEDIQGSTEIC\nPB/XNdfMnPU9ZyaTeZ3POZ9jMgzDEAAAAAAAaBdzVxcAAAAAAMCJjGANAAAAAEACCNYAAAAAACSA\nYA0AAAAAQAII1gAAAAAAJIBgDQAAAABAAqxdXQCAE0coFJHX6+vqMk4YaWluSWKbtRHbrX3Ybm3H\nNmsftlv7sN3ajm3WPmy39klLc8tms7R7flqsAQAAAABIAMEaAAAAAIAEEKwBAAAAAEgAwRoAAAAA\ngAQQrAEAAAAASADBGgAAAACABBCsAQAAAABIAMEaAAAAAIAEEKwBAAAAAEgAwRoAAAAAgAQQrAEA\nAAAASADBGgAAAACABBCsAQAAAABIAMEaAAAAAIAEEKwBAAAAAEgAwRoAAAAAgAQQrAEAAAAASADB\nGgAAAACABBCsAQAAAABIAMEaAAAAAIAEEKwBAAAAAEgAwRoAAAAAgAQQrAEAAAAASADBGgAAAACA\nBBCsAQAAAABIAMEaAAAAAIAEEKwBAAAAAEgAwRoAAAAAgAQQrAEAAAAASADBGgAAAACABBCsAQAA\nAABIAMEaAAAAAIAEEKwBAAAAAEgAwRoAAAAAgAQQrAEAAAAASADBGgAAAACABBCsAQAAAABIAMEa\nAAAAAIAEEKwBAAAAAEgAwRoAAAAAgAQQrAEAAAAASADBGgAAAACABBCsAQAAAABIAMEaAAAAAIAE\nEKwBAAAAAEgAwRoAAAAAgAQQrAEAAAAASADBGgAAAACABBCsAQAAAABIAMEaAAAAAIAEWLu6AAAA\ngO7CMAwFAgE1NPjk8/nU0OCT3+9XNBpRNBpVJBKNP45Go7JarbLZbLJabU3unU6n3O4kud1umc20\nYwDAyY5gDQAATnqBgF+VlRWqrKyU11ul6mqv/P56bdu2TTU1Naqrq1UgEFQg4O/wddvtDrlcLoXD\nIfXu3UcOh0NpaelKT89QcnKyPJ5kJSenKDm58T5Fdru9w+sAAHQegjUAADihhcNhVVVVHgjOsVtF\nRbkqK2PDqqoqVF9f32X1BYMBBYMBSdL27VtbNY/dbpfValV6eoYkkzIzs9SzZy95PB55PMlKSvIo\nKSlJbndS/J7WcQDoOgRrAADQLRmGofr6Onm9VfJ6vaqqirU2V1VVau/e3fJ6vfL7/aqrq+3qUo/A\nIinSrjmDwaCCwaB8Pp8kqahoT6vmczqdstnscjicSklJkcvlktPpktPplMPhkMMRu7fbHQfu7bLb\n7bLZ7LLZbAce22Sz2Q85zN164BB3qywWfjoCQEv4dgQAAMed3+9vEpTXr/9SFotFDQ0+7dtXqmAw\nKK+3SoZhdHWp7WZypMgIVB3Xdfr9fvn9ftXW1qi8fH+nrScWuu0ym83x1nXDaAz2Vnk8ybLbY8Hd\n6XTJ7XbL7XbL5XLHW9dTUlKUlhY7HN5kMnVarQBwPBCsAQBAhzMMQ1VVlSouLlJZ2X6Vl5eprGy/\ndu7crvr6Ovn9HX8uc4tsHilUd3zWdQoJh8MKh8OSpESPsrdYLPFzztPS0pWV1VN9+vRVdnYfZWf3\nlcvl6oCKAaBzEawBAEBCqqurtWvXThUX71VxcZF2796l4uIihcOhjl2R1SOF2xqSaQnt7iKRiCoq\nylVRUd7ieI8nWenp6Ro6dJhMJosGDx6iqVPPPs5VAsDREawBAECrNTQ0aNeundq5c7t27tyurVsL\nVF3tPS7rNtvcirY5WONEV1dXq7q6Wu3Zszs+7JVXXtTYseOVmztUQ4cOV9++/TicHECXIlgDAIAj\nqqur07JlH6i8vEzbtm1tdSdaQGfy+Xz67LMV+uyzFZIktztJubnDdPbZ52jkyFFyudxdXCGAUw3B\nGgAAxPn9fm3evEn5+d9oy5ZvtHv3rq4uCTgmn69eGzeu08aN62SxWDR06GkaPXqsJkw4Qz179urq\n8gCcAgjWAACcwqLRqPbs2a2vv96oL79co8LCnSd0T9xAJBLR5s3faPPmb/T3v/9N2dl9NHXq2Zo4\ncbJ69erd1eUBOEkRrAEAOMVs2LBOmzd/o4qKcm3evEl1dZy3jJNXSUmxFi9+TYsXv6b+/Qdq4sTJ\nmjx5Ci3ZADoUwRoAgJNcrFV6lzZuXK8VK5aprKzzrm8MdGd79uzSnj279OabizRkSK769u2v733v\nUqWmpnV1aQBOcARrAABOQnV1tVq7do2+/HKNdu7cofpELzYMnGR27NimHTu2afnyj5SXN1qTJ0/V\n+PGT5HbT8RmAtiNYAwBwEohEItq+fbs++2y1vv56g7Zv39bVJQHdk9kuRYNNBm3a9JU2bfpKCxc+\np5Ej8zRt2rkaO3acbDZ7FxUJ4ERDsAYA4ARkGIZKS0v0zTdf64svPteuXTvU0NBw1HlM9lQZwerj\nVCHQTVkcsWBtcUoRf5NR4XBIGzeu18aN6+VyuTR+/CRNnjxVI0bkyWKxdFHBAE4EBGsAAE4AhmFo\nx47tKi7eq02bNmrr1gJVVVUeeQaLXYo0bZUz25MVIVgDMSZzCwPNkqKSpIaGBq1c+YlWrvxESUlJ\nmjDhDE2cOFnDh4+U1cpPaABN8a0AAEA3FIlEVFS0V1u3blZBwRbl529SXV3tUecxO9IUDXglSfb0\nYQqWf308SgVOGrbMEQqVbzrw7GDIrq+v1yeffKRPPvlISUkenX76RE2aNFkjRuQRsgFIIlgDANDl\nDMNQRUW5duzYrp07t2vr1i3atatQkUi4TcuxZwyXv2RVJ1UJnPxMMsUfO3pPUKD082bT1NfXacWK\nj7VixcdyOBwaPjxPo0aN0eTJU+TxJB/PcgF0IwRrAACOo3A4rJKSYu3Zs0vbt29VUdFe7d27Rz5f\n63rttnj6KlJXJFuPkQpVfNPJ1QKnLpOp6TnV9szRigaqFK4tVmNLdiAQ0IYNX2rDhi/18ssvaOjQ\n0zRu3HiNHj1Wffv2l8lkarZcACcngjUAAJ0gGAyqtLRE+flfq6xsv6qqqrRvX6lKS4sVjUbbtKzG\nMC1JtuT+itQVydTi+aEAOovVky1LVp7Cvv1q2PVhi9Ns3bpFW7du0d///jelpKRq5Mg8jRgxSiNH\njlJa2oDjXDGA44lgDQBAOxiGofr6epWV7Y/fCgt3yOeLDauoKJdhGK1foNUthX0tjjJZnR1UNYBE\nmUyt+/lcU1OtVas+1apVn0qSsrP7aNiwocrJGa6hQ4epZ8/etGgDJxGCNQAAh4lGo6qrq5XX65XX\nWyWvt0qVlRWqrKxUVVXFgccVCgQC7Vq+2ZmuqL+qyTB72hA6GwNOKiZJB3eulZQUq6SkWMuWLZMk\nJSenKDd3qHJzh2nIkFz17z9Qbre7i2oFkKguDdaPP/64nnvuOa1bt65bLOd4KSoq0owZM/TYY4/p\noosu6rDlbtu2Tffee69efPHFI06zYMECLViwoMkwm82mXr16acaMGZo3b55cLleH1dToRHiPIpGI\nXn31Vf3jH//Qtm3bZLVaNWTIEP3gBz/Q97///W61V3nfvn365S9/qT/+8Y9KS0vr6nKAE4JhGGpo\n8KmmpkY1NdWqrvYeuK9WeXmZ/P4GVVZWqLa2VjU11YpEIu1fmckisz1FMpkV9Vc0G21PP41OxoCT\nnKP3JAVK1xxxfG1tjdat+0Lr1n0RH5aV1VMDBgzSgAGDNHDgQPXvP1Bpaend6jcIgJZ1abA2mUwd\n8kXRUcs50b377rv66quvjjmdy+VqEr6DwaC++OILPfrooyotLdWjjz7a4bV19/coEAjohhtu0MaN\nG3XFFVdo3rx5ikQiWrFihe655x4tWbJECxYskN1u7+pSJUmffvqpVq5c2dVlAF0uEPDHg/DB+xrV\n1taqtLREkUhYNTU1qqgol89X37ZDs4/KJJktUjTWa7c1LUeSFPZul73XBNnTc2UymRTyFspf0jxY\nAzj5Hd4PgqP3RAVK18qaNkTRQLWiDc2/GxpPK/nii4OB3OFwKju7j7Kz+6h379h9r169lZmZKZeL\nFm6gu+BQ8JNIa38wmkwmjRkzpsmwiRMnau/evVq8eLHKy8uVmZnZGSV2W/fff782bNigv/71r022\nzdlnn61zzjlHs2fP1sMPP6w77rijC6s8qPG97riQAHS9aDSq+vo61ddXqaamRqWlZaqtrVVtba0q\nK8sVDAbjAbq62qv6+joFg8GOL8RklcnqlBGqkyRZPNmyJvWWyeqWomH5S1bLNegCRepK4odu29Ny\nFA3UKOzdLrPZ1q13JALoGo3nZtvTciVJvsIl8XGHXoP+cIGAX4WFO1RYuKPZuKSkJPXokaXMzCz1\n6JGppKQk9erVW2lp6UpJSVVaWpqcThffScBx0K2C9Z133qn6+npNnDhRL7zwgioqKjR27Fj96le/\nUk5OTny6Z599Vi+//LKqqqp04YUXqmfPns2W9a9//Ut//vOfVVhYqN69e+uaa67RlVdeGR8/fPhw\n/frXv9bHH3+sVatWqUePHrruuut0xRVXxKeJRCJasGCB3nrrLVVUVGjo0KH62c9+pilTpkiS1qxZ\no6uvvlovvfSSHnzwQW3atEk9e/bUTTfdpEsvvTS+nA0bNuj+++9Xfn6+BgwYoFtvvbVZvbt379b9\n99+vVatWyWKx6LzzztOdd96p9PT0o26bX//61xoyZIgWLFigJ554QpI0YsQI/e53v9N//Md/tGn7\njxw5Uq+//rqKi4uVmZmp4cOH67bbbtM///lPFRUV6be//a1mzpypzz//XI8++qjy8/PldDr17W9/\nW7fffnuT84KO9R6df/75Ov/883XXXXfFh/3mN7/RBx98oA8/jPW0GY1G9fTTT2vx4sUqKyvToEGD\ndMstt+iCCy6Iz7Nw4UK9/PLLKi4u1sCBA/Xf//3fmjVrlqSDh9zPnz9fL7zwgmpra/XnP/9Z48eP\nb1JLZWWl/v73v+vyyy9vtsNBkqZOnapLLrlEr7zyiubOnSuPx6OrrrpKubm5cjgcWrx4saxWq2bN\nmqU77rijSat2az6HLW3jt99+WwsXLtS2bdvi0/3sZz/TxIkT9eabb2r+/PkymUyaOnWq5s6dq1tu\nuUU+n0+PP/64lixZovLycg0bNkzz5s3TWWedJeng5/Wee+7R448/rnA4rMWLF6tv375t+pwARxKJ\nROT3N6ihoUF+vz/+uKGhQT5fvRoafPL56lVVVaVwOCyfz6f6+lrV19ertrZGDQ0NnV6jyZ4siyNN\nJqtT0VCDInV7ZU0eoHDtbtl7jlNw/3q5B54v6eCPXlvyQNnSBsVeY0NlbDniRyqAjmNN7qdgwCtH\n9hmyONMVrt2rYPkmmZ0ZMsJ+GUfo2LC+vl719fXavbvwiMu22exKTU2Vy+VWSkqKPJ5kJSUlyeNJ\nltudJJfLJZfLLafTKZfLJafTJZfLJbvdIYfDIavVSjAHWqFbBWtJ+uyzz7R3717dddddikQiuu++\n+zR//ny99tprkmKB7aGHHtKcOXM0btw4vfHGG3rhhReahJk333xTd955p6688krdeeedWr9+vX73\nu98pGAzquuuui0/34IMP6txzz9WCBQu0cuVK3XvvvbLb7fFQfNddd+ndd9/VT37yE+Xm5urtt9/W\nDTfcoJdeeknjxo2LL+f222/Xddddp3nz5unll1/W3XffrfHjxysnJ0dFRUW69tprNX78eD322GPa\nuXOn/ud//qfJF1RFRYV++MMfqlevXnrggQcUCAT0yCOP6Prrr9eiRYtktVqPuG3uvPNOvfbaa7r0\n0ktVWlqqf//733rxxRfVv3//Nm/7wsJCSVK/fv3iw5566inNnz9fqampmjhxopYtW6Y5c+Zo5syZ\nuummm1RcXKyHHnpIBQUF+utf/9rq96glhx8u/tvf/laLFi3S3LlzNXbsWL3zzjv6yU9+or/+9a8a\nP368FixYoKeeeko33XSTJkyYoGXLlun222+XxWLRt771rfhynnzySd19990KBoMaPXp0s/WuWbNG\nkUhEZ5999hFru+iii/TWW2/ps88+04UXXihJ+uc//6lBgwbpD3/4g4qLi/XHP/5RNTU1euCBByS1\n/nN4+DZ+9913dccdd+iWW27RHXfcofLyci1YsEC33XabPvroI51zzjmaM2eOnnrqKT377LPKycmR\nYRi6/vrrVVhYqJ/+9Kfq3bu3Xn/9dd144416+umn4+Fakv7yl7/ovvvuU01NDaH6ODIMo8mRBke/\nRWUYhqLRg8+j0Wh8fOxxbFg0ahy4P3hrHBeJRA4bF1EkcqRbWKFQWJFIWOFw4y2kUCikYDCoUCjU\n5HkgEFAgEFAwGLsFAgGFw+Hju1GtbpltbpktDklS+MDlqKxpuTJZrApVbJa953gZ0YBC5ZskSY4e\nefGQHPIWKlK3V2ZHilQrmS30vA2ga5lklsWZLhmGguWb5Ow9URZXhoxoSNFAraLBGoXr9ylcvVMm\nR5oUCcgIH32nZCgUVHl5WbtrMpvNcjgc8aBts9lls9lks9lkNpsP9M1jksvlks1mk9VqldVqk80W\nu4/dLAfurU1uFotVVqvlwH3jsNhzi8WiYNAji8Wq+vrgIcPNslis3f40Q5x6ul2w9vl8euaZZ9Sj\nRw9JUmlpqX7729+qurpaKSkp+stf/qL/+q//0i233CJJmjZtmi655BLt2bNHUuwH68MPP6xLLrkk\n3ho6depUSdKf/vQnXX755XI6Yz+ecnJy4iFo2rRpKi4u1tNPP61LL71U27dv15tvvqnf/OY3+v73\nvx+fZv/+/XrkkUf0wgsvxGu+5pprdM0110iKtfouXbpUy5cvV05OjhYuXCiHw6Enn3xSdrtd06dP\nl2EY+v3vfx+f/4UXXlAoFNLzzz+v1NRUSdLYsWN10UUX6d///rcuueSSY26bXr16qXfv3i0e5t2S\nQzvlqa6u1vLly7Vo0SJdcMEFysjIiI8766yzmrS+P/rooxo7dqwefPDB+LC+fftq9uzZ+vjjj3XO\nOecc8z1qjerqav3tb3/TrbfeqptuukmSdOaZZ6qwsFBr167V0KFD9cwzz+jGG2+MHwEwdepU1dXV\n6cEHH2wSrL/73e9q5syZR1xXUVFR/HUcSb9+/WQYRnxaKdai/uyzz8bfM0m67777dNtttyk7O7vV\nn8PDt/Hu3bt15ZVXau7cufFhNptNt956qwoLC5Wbm6sBA2LXwhw5cqTS0tL04Ycfat26dXruuefi\n6zn77LN12WWX6aGHHmoSrK+66iqde+65R3ytx7JrV6EWLXpZBQWbO/1Q9Mblt+cfp8lkkmEY8Xk7\nqtZDl9ma6Q4N1DgCk0UyIjLZk2W2uWWyOA7c7DJZHDKiYQXLNsrZ50xZ3L0UDderofB9uftNk8UV\n+76KNFQeDNau2KksIUlmi13RaCccLg4Ax5HJbJPFlSGLK0Nme4rC1Tvlyj7jQOiOyAj7FK4vVaD0\nC1nTcqVIUOHa3TLZPAdOazFLirZr3dFoNH70UXdjNsfOYz/890JL//8P/d/dOL7x//Th83a0o/1u\nOHR9h9aSnJyiyy+/WhMmnBF/nejeut271KdPn3hwlKTevXtLkhoaGrRjxw5VVVU1a1lsbEGUpJ07\nd2r//v0655xzmrTGnH322aqrq9PGjRvj01588cVNljNjxgzt3btX+/bt05o1a2QymTR9+vT4MsLh\nsKZPn64vvvgi3jJzeJBNTk6W2+2Wzxc7ZGfdunU644wzmrTWXnTRRU3+iNasWaNx48bJ4/HE19Wr\nVy/l5ORo1aqDvcYebdu0hc/nU15eXvw2depUzZ8/X1OmTNE999zTZNpBgwY1mS8/P79JaJViwTk1\nNVVr1qxp1XvUGuvXr1c0Gm0WAF988UXdeOONWr9+vYLBYIvv8+7du5sE4ENfQ0sa34vGIwNaYrFY\nmg2bOnVqk1B9wQUXyDAMffHFF236HB5e34033qhf/vKXqq2t1YYNG/TWW2/p7bfflqQjnk+6du1a\neTyeeKhuNGvWLOXn58c/jy2try38fr9+//t7lZ+/qYXW0I6/HdpC29ZbY32N274ja2rLdKdEqDbb\nYqHYmSGzMz0+2JrcX/YeI2TPGi1bj+GSJFtG7N7Z9ywlDb1EnuGXyj1whiTJ1WeK3APOk6vvVDl7\nT5Aja7TsGcNkTYp915ntKTLbXDJ1v39dANBlTGaLzPZkWZyx34j2tCGyH/jOdWSOkiQ5s8+I3fc/\nV+4hs+QaOEOufmfLmT1Zjl7jY2FcktXTT9aUgbJ4+sji7iWzq4fMjlSZLE6pG54Cc6TfC4c/Pvx/\nd+PzQ38fdPTvhcN/kxzpdqTfPdXVXj355GP6+usNXb2Z0UrdrsW6sRWvUeMenmg0qpqaGplMpvh5\nx42ysrLij73eWMcPt99+u3760582W1ZZ2cFDYQ7voKuxpba6Onb5FcMwmgXExr1bVVUHrz96+OWp\nzGazotFofFnDhw9vMv7w9Xq9Xm3cuFF5eXnN1nXouclH2zZt4XK59PLLL8f31jkcDmVnZ7d47cRD\ng3xtba0Mw2ixY7OMjAzV1dWppqZGko76HrVG43IOXf+hvF6vDMPQZZdd1iy4mM1mlZWVxdd5pGU0\namypLi4ujrcEH64xqPfp0yc+7PDX1Piaq6ur2/Q5PLy+8vJyzZ8/X8uXL5fdbldubm68xiOFtJqa\nmhZfZ2ZmpgzDUH19fXzdx9oeR2O1WuVyueT3d7+91uhC0ZCMYEiGySwd0gtuNFgrIxqWyWKTDnxP\nRYP18XEms1Umi0PRA+cOGjoFdkIAQBeIRvySJCNYq2g0KCMckBENyogED3yHx76bI6E6mWTIiIQk\nIyIjGpaMBC49iIQlJSV3dQlopW4XrI8mLS1NhmGooqLp5QkaQ4wUazGWpF/96lctnk976PnDh84n\nKb7cjIwMJScny2w269VXX22xtTI9PV07d+48Zs3p6emqrKw8Yr2S5PF4NH36dP3kJz9pFpySkpKO\nuY62MplMGjlyZJvnS05OlslkUnl5ebNx5eXlSk9Pj19T+WjvUWMNh+8QOLRVtfF9rKysbBJgN2+O\nHX7cOP6JJ55Qr169mtUzePDgJjs/juass86S1WrV+++/rzPPPLPFaZYuXSq73d6kRfjw19T4Pjd+\nfqTWfQ4P99Of/lT79+/XokWLlJeXJ7PZrGXLlmnp0qVHnCc1NbXZNpek/fv3x8d3BKvVqnvv/b3e\nf/+9A5+Dpp/XIx0m3d7hRzu0q7nmw0OhgKxWW5O9wLHzjxvPY1aT85mlpq3MjZ/RQ89/DoVC8e+E\n2HTGgeU0fRyJhGWz2SQZCoej8fXFpmn97WDth+5lP/i88dYtGNHY7YBowCsd1sttpC52SkiwbKMO\n11C4tNlh4CarQ8aBZYbrimVE/DLCsSM3DH7sATiFGTIUDQdkhOoVDdUr4ovttA+UbZRxIEj7Sz6X\nJAX3r4+N2/dFywtrXGbA2y12cZrNZlksFtlsNlksFpnNlgPnWMceW62HDjPHH5vNscexe7MsFrNM\nJvMh42I7f8PhkGw2u2K/HQ59xYc/76jfNo3LbWn6aIuHrVutVl144UxlZ/dpNg+6pxMqWA8ePFg9\ne/bU0qVLNWPGjPjwjz/+OP54yJAhSktLU0lJiS677LL48OXLl2vhwoX61a9+FQ8ZH3/8sX74wx/G\np3n//fc1ZMgQZWZmasKECTIMQ3V1dU3C1NNPP62CggL98Y9/bFXNkydP1iuvvKK6ujp5PB5J0rJl\ny5r8wU2YMEEfffSRhg4deuCHeOyQ3x//+Me68MILW33obmeff+F2uzVixAi9++67uvbaa+PDly9f\nrtraWo0fP75V75EU25nQGPqk2BfJunXr4s/HjBkji8Wijz/+WKeddlp8+P/7f/9PAwcO1Pz582W1\nWlVRUaHzzz8/Pv6NN97Q0qVLW/3+SFJKSoquvPJKvfTSS/r2t7+tiRMnNhn/+eef64033tAVV1wR\nfw8lafXq1QoEAnI4Yh0nLV26VBaLRWeccUZ8J0NrPoeH27Bhg2bPnt0kkC9fvjy+naTm7/WECRP0\n3HPPaeXKlU3Op37nnXc0atSoDr3+ttudpO9+93sdtryTWVpa7CgQr7fl3lw70uEdl8UOPTvYadnB\nYWFFIo2Hv0UUDkcODIvEOy1r7MAsFAoduAXjnZaFwyEFAsF4h2XBYONjvwKBgPx+v3w+X7uPajAi\nARmRQIvjGi9t1ahh1weSySKT1Rk7T/uAUO0umUyx79JIwCsjGmpXLQDQHRiRoKKBGkWDsVvEF9uR\n3lD4oaTmOxgj9aWHPmvz+iwWi5xOZ7yzstjNKbvdLrvdIbv9YOdlkiG326NoNCqPJ/mQDsusTToy\na6nTssbxjZ2SHXxsif/OOZ7/R4FEnRDB+tBW3B//+Me6++67lZGRobPOOkvvvPOOvvnmm3gLksVi\n0a233qr7779fUqzDq7179+qhhx7S4MGDm7QULl++XPfee6/OP/98ffTRR/rggw/06KOPSopd3ujC\nCy/Uz372M91yyy3KycnR6tWr9dRTT+mGG25osbaWXHPNNVq0aJFmz56tm2++WSUlJfHLYjX60Y9+\npH/84x+aPXu2rr76almtVj333HPauHGj5s2b1+ptk5KSIr/frw8++EBjxoxp8+HXrXHrrbdq7ty5\nuu222/S9731PxcXFevjhhzV+/HhNnz5d0rHfI0maPn26nn/+eb300kvKycnRa6+9poqKingLfUZG\nhi677DI9+eSTslgsysvL0zvvvKMtW7bonnvuUUZGhq666irdf//98nq9GjNmjPLz8/XII4/oggsu\nUFJSUrMW5aOZN2+eduzYodmzZ+vyyy+PnwKwfPlyvfzyyzrzzDN1++23N5nH6/Xq5ptv1rXXXqtd\nu3bp4YfBzpAdAAAgAElEQVQf1uWXXx4/VL61n8PDjR49Wm+++aaGDRumlJQULV26VK+++qqk2DnO\nUuy9lqQlS5borLPO0rnnnqsxY8bo5z//uebNm6fs7GwtXrxYX331lZ588sn4sk+J831PUYfuie8O\nDMNQMBg45HJbPjU01Mvn86miolzRqCGfr/7Adavr5PV6FQj4VVcXex4KtTIMGxEZofomgyJ1JfHH\nocrNTcb5Sz5XsGKTTBZnvMU7XB/byRfxx446iYYbZLI62vvSAaDdoqF6hbw7Fa6PfY/5dn8kHXHn\n4NFDs8ViVXp6ujwej9LTM2S3O5SeniGPx6OkJI88Ho/c7iS53W45nQcvs2Wz2ehtG2iHbhesW/pD\nPnTYD37wA0nSM888o1deeUVTpkzRnDlz9PTTT8enueKKK+RyufT888/r+eefV1pammbNmtUspM6e\nPVv5+fmaO3eu+vfvr0ceeaRJJ1sPPvigHnvsMT3zzDOqqKhQnz599POf/1w/+tGPjllv4/CMjAy9\n9NJL+s1vfqPbbrtNvXr10v/+7/826fE5Oztbr7zyih544AH94he/kMlkUl5enl544YUm52cfa9vM\nmjVL//jHPzRv3jzNmzdP119/fQtbuPU9LLd0GYPzzjtPTzzxhBYsWKC5c+cqNTVV3/nOd3TbbbfF\np23Ne3TzzTervLxcjzzyiCwWiy655BLdfPPN8Ut2SdIvf/lLpaen65VXXlFVVZWGDh2qv/zlL/HD\n2O+44w5lZmZq0aJFevzxx5WVlaVrr722ybZt7Wt1OBx66qmntHjxYr3++ut6/fXXJUm5ubm6++67\n4z3DH2ratGkaPHiwbrvtNiUnJ+uGG27QnDlz4uNb8zlsaRv/7ne/0z333KP58+fL4XBo+PDhWrhw\noW688UatW7dOEydO1JQpUzRt2jTdd999+s///E/dddddevbZZ/XAAw/okUceUUNDg4YPH65nnnmm\nSQs2/yhxvMT6b3DK4XAqLS392DMcIjXVJb/fr6Ki/aqtrVVtbY3KyvYrHA7Fn1dVVaqhwafa2lrV\n1NS0oYU8omiwVlJtfEi0IRasQ1UFkiT/3uVN5ghUbFbEt08mm/vgaQKhOg5FB9Buh/cpEazaFrsv\n/6rphEcI1bE+UzKVmZnV5L5Hj0ylpqYpLS1NLpeb//vAcWQyTtEmrOHDh+uOO+5oEpKB1rrqqquU\nlJSkp556qqtLOa5CoQiHY7UBh7C1T3u2WygUjIfumpoa1dbWaM+e3TKbzaqpqVZJSbH8fr8CAb+q\nq6sVDnfs4eEWd0/JZFGkvkS2jOGyp+fIZEtSuHq3/CWrmk3vzD6z2XB75qhmh7s3sqblKOzd3mTe\nlqY/dLktjbd4+ilSt7fdr7OrmV094ztCWs2WLIVqjz1dJzA50mUEWtffB46jxs+E1S2Fm37PHPp3\nc/jfqXvQRbK4MhRpqJSvcMkxV3P4/PYeeQpWbJLFlaVIoFpqxaUAk5I8ys7uE7/17h27z8zMarEP\noJMN/0fbh+3WPmlpbtls7f+76nYt1gAAtJXNZldGRg9lZBy713vDMNTQ0KCamur4bd++fQoGAyor\n2y+fz6fq6ipVVlaqtramVeuP+A6GvVDl5gOHoJslS8f1bwDgxBI97DSVYMUmSVKkoaylyZWWlq4h\nQ3I1YMBADRgwSAMHDlJaWjqtzsAJ4pQN1i0dggu0BZ8f4MRkMpnkdrvldrvVu3f2UaeNRCKqqamR\n11upyspKVVZWqKqqQpWVFaqsrFRJSbHq6+uOMHdUOtAz7+H8+9c1G3ZKHj4GnMSaHdZ9CIfDoSFD\ncjV06GnKzR2qQYNymnSQCuDEc8oG6/z8/K4uASewQ88FB3DyslgsSk9PV3p6ugYPzmlxmlAoqPLy\ncpWV7de2bQUKBoPav3+fSkuLtW9facudBrbQ83mo/JuOLh9AN+F2J2ns2LEaMmSIcnNHql+//qfE\nodzAqeSUDdYAAHQEm80eP/9xzJhxTcaFw2Ft2vSVysv3q6amWqWlJSouLlJpaYkikcM7Pzvy9cij\ngepOqBxAWxmGoWjg2KeIWK1WnXbaCI0cOUojR45S//4DlZERa5HmvFfg5ESwBgCgk1itVo0de3qz\n4eFwWCUlxSoo2Kzi4r0qLNyp0tISNTS0/IM72lAefxw8cAmxaLh91woH0D7BqgJFfOUyQi2f/pGW\nlq7x4ydq3LjxOu20EbLZ6GMBOJUQrAEAOM6sVqv69x+g/v0HxIdFo1Ht21eqnTu3a8uWfG3dWqCy\nsn3NWrajAa8kxXsJB9A5Du98LFxd2Gyafv0GaMyYcRo1aoxOO20E/a8ApzCCNQAA3YDZbI4fUj51\n6tmSYudv79y5QwUFm1VQsFlbtxYoEGi5QzRJ8u//Mv6Y62wDbReNHLwEVkudj5lMJg0depomTDhD\nEyeeofT0jONZHoBujGANAEA3ZbPZNWzYcA0bNlxSrJfyPXt2qaBgs775ZpO2bPlGgcAhHaEdEgpC\nFXTSCbRVuKqgxeFDhuRqypSzNH78GUpPTz/OVQE4ERCsAQA4QVgsFg0aNESDBg3RRRfNUjgc1o4d\n27R69afas2eXduzYrmj0yJ2gRfwVx7FaoJuLho86evDgIZo8eaomTZpCmAZwTARrAABOUFarNd6i\nnZbmls/n06pVn+vrrzdq/fov5fVWNZ2BDs8AKXSgk8BosNmo3r2zdfrpEzV9+rnq1evo17kHgEMR\nrAEAOEm43W6NHz9J48dP0lVXXadt2wq0evWnKizcqV27drZwiS/gVNT078DpdOrcc2do8uSpGjBg\nEB2QAWgXgjUAACehxk6Whg49TZLk9/u1efMmLVnyjjZv/qaLqwO6lt1u15Qp05SZmaWZM78js9nc\n1SUBOMERrAEAOAU4nU6NGzdB48ZN0Natm7V7927V1tZo8+ZvtH37VlqzcdJzudw6/fQJmjhxskaN\nGiOrlZ/BADoO3ygAAJxihg4drqFDh8efBwIBbdmSr1WrPtW2bVtUXl7WhdUBHcflcmnEiDxNn36e\nRo4cTZgG0Gn4dgEA4BTncDg0Zsw4jRkzTpJUUVGu/PxN2rIlX+vXf6n6+rourhBovV69sjV69FiN\nGTNOw4ePJEwDOC74pgEAAE306JGpadPO0bRp50iSPv98tbzeKm3fXqAdO7bToo1uxWw2q3//gRo2\n7DTNmPEt9ezZq6tLAnAKIlgDAICjmjRpsiTpwgu/LUmqq6tVYeEO7dy5Q/n5X2v37l3y+XxdWSJO\nIbHDu0cpN3eocnOHaeDAwbLZbF1dFoBTHMEaAAC0iceTrFGjxmrUqLH6znf+PxmGIa/Xq+LivSou\n3qudO3eosHCHKirKFQqFOmy90WB1hy0LJ4asrJ7q06evsrP7qn//AcrJGaqsrJ5cEgtAt0OwBgAA\nCTGZTEpPT1d6erry8kbHhxuGoZqaGpWV7VN5eZnKysr09dcb5fPVy+utks/nk2FEW7+iSKDtxRn0\ndt6dud1J6tEjUz16ZCo9PV1paRnKyspSnz591bt3H9nt9q4uEQBahWANAAA6hclkUmpqqlJTU5Wb\nO0yS9J3v/Ed8vGEYqq+vU1VVlaqqKuX1xu6rq73yer3yeqtUVrY/sc7Twhyi3l5Wq01Wq0VmsyXe\nQuxyuWSxWGSxWORwOGSxWOV0OmWxWBQOh+VyuWW12pSRkSG73S673S6n0yW3O0lut1sul1tud+zm\n8STLYrF08asEgI5BsAYAAF3CZDLJ40mWx5Os/v0HHHG6aDSq2tqaePCuqqrStm0F8nqrFI1G5fVW\nqaKiQuFwxx123hGMQNVxWY/NZpPT6ZLL5VJSkkc2m012u0M9evSQy+WS0+mS0+mUw+GUw+GQw+GQ\n3X7wvjEAW6022e122Wy2owbetDS3JMnrZacFADQiWAMAgG7NbDYrNTVNqalpGjhwsCTpvPMuaDKN\nYRhqaPCpsrJClZUVqqioiD+uqqrU/v37VFlZ0RXlt4nT6VRqapqSk1OUnBzb6ZCcnCKPx3NgJ0Ts\nPinJo6SkJLndSVxOCgC6Ab6JAQDACc9kMh043DhJ/fq13PptGIZqa2tUVVWlmppqhUI+ffXVV6qq\nqlZtbbWCwaAaGhrk9/sVDAYUiURkGEa76rFYrEpJSZHFYlFaWvqB2lzxFvrk5GQlJTXee5SSkiKP\nJ5mQDAAnKL69AQDAKcFkMiklJVUpKamSYoc0n3/+jCMe0mwYhoLBoPx+v6LRiKLRqCKR2H3jzWq1\nymazyWq1yWazHjiM2iqz2Xw8XxoAoIsRrAEAAFpgMpni5yQDAHA07E4FAAAAACABBGsAAAAAABJA\nsAYAAAAAIAEEawAAAAAAEkCwBgAAAAAgAQRrAAAAAAASQLAGAAAAACABBGsAAAAAABJAsAYAAAAA\nIAEEawAAAAAAEkCwBgAAAAAgAQRrAAAAAAASQLAGAAAAACABBGsAAAAAABJAsAYAAAAAIAEEawAA\nAAAAEkCwBgAAAAAgAQRrAAAAAAASQLAGAAAAACABBGsAAAAAABJAsAYAAAAAIAEEawAAAAAAEkCw\nBgAAAAAgAQRrAAAAAAASQLAGAAAAACABBGsAAAAAABJAsAYAAAAAIAEEawAAAAAAEkCwBgAAAAAg\nAQRrAAAAAAASQLAGAAAAACABBGsAAAAAABJAsAYAAAAAIAEEawAAAAAAEkCwBgAAAAAgAQRrAAAA\nAAASQLAGAAAAACABBGsAAAAAABJAsAYAAAAAIAEEawAAAAAAEkCwBgAAAAAgAQRrAAAAAAASQLAG\nAAAAACABBGsAAAAAABJAsAYAAAAAIAEEawAAAAAAEkCwBgAAAAAgAQRrAAAAAAASQLAGAAAAACAB\nBGsAAAAAABJAsAYAAAAAIAEEawAAAAAAEkCwBgAAAAAgAQRrAAAAAAASQLAGAAAAACABBGsAAAAA\nABJAsAYAAAAAIAEEawAAAAAAEkCwBgAAAAAgAQRrAAAAAAASQLAGAAAAACABBGsAAAAAABJAsAYA\nAAAAIAEEawAAAAAAEkCwBgAAAAAgAQRrAAAAAAASQLAGAAAAACABBGsAAAAAABJAsAYAAAAAIAEE\nawAAAAAAEkCwBgAAAAAgAda2zmAYhv75z39q2bJlKikp0Z133imXy6UPP/xQl19+uTweT2fUCQAA\nAABAt9SmYN3Q0KCbbrpJa9askcfjUX19verq6rR371499NBDeuutt/Tiiy8qKyurs+oFAAAAAKBb\nadOh4I899pi+/PJL/elPf9KSJUtkGIYkaebMmXr44YdVUlKixx57rFMKBQAAAACgO2pTi/X//d//\n6fLLL9f555+vqqqqJuNmzpypTZs26V//+leHFggAAAAAQHfWphbryspK5eTkHHF83759VVlZmXBR\nAAAAAACcKNoUrAcOHKj169cfcfyyZcvUv3//hIsCAAAAAOBE0aZg/cMf/lBvvfWWnnnmGZWVlcWH\n79mzR3fffbeWLVumSy+9tMOLBAAAAACgu2rTOdZXXHGFioqK9NBDD+mhhx6SJM2ePVvRaFSGYegH\nP/iBrr322s6oEwAAAACAbqnN17H+xS9+oe9///v64IMPtHfvXkUiEWVnZ+u8885TXl5eZ9QIAAAA\nAEC31eZgLUk5OTnKyclRIBCQ2WyWzWbr6LoAAAAAADghtDlY79mzR08++aSWLVsW7wG8d+/euuCC\nCzRnzhxlZGR0eJEAAAAAAHRXbQrWW7Zs0VVXXaX6+npNmzZNAwYMUDQa1a5du/Tyyy9ryZIlevXV\nV5Wdnd1Z9QIAAAAA0K20KVj/4Q9/kN1u19/+9rdm17MuKCjQNddcowceeCDesRkAAAAAACe7Nl1u\na926dbr22mubhWpJGjZsmK6++mqtWLGiw4oDAAAAAKC7a1OwTk5Olt/vP+J4i8Uiu92ecFEAAAAA\nAJwo2hSsr7vuOj3//PP6/PPPm43btm2bXnzxRV1//fUdVhwAAAAAAN1dm86xLioqUkpKiq6++mqN\nHj1aOTk5stls2rNnj9asWSOr1arVq1dr9erV8XlMJpOefPLJDi8cAAAAAIDuoE3B+r333pMk9ezZ\nU/v27dO+ffvi4zIzMyVJ+fn5TeYxmUyJ1ggAAAAAQLfVpmC9bNmyzqoDAAAAAIATUpvOsf71r3+t\ntWvXdlYtAAAAOMUZhqFIJKJwOKxQKKhQKNTVJQHAMbWpxfqdd97Ra6+9pqysLM2cOVOzZs3S2LFj\nO6s2AAAAnKRqa2u0ZctmFRfv1b59pSopKdL+/fvl89U3m9bhcCozM0s9e/ZSZmaW+vXrr9NOG6Gs\nrJ6cdgigW2hTsF65cqVWrlypd955R2+++aYWLlyoPn36aNasWZo5c6ZGjhzZWXUCAADgBBYOh7V5\n8yZt2vS1vv56g4qK9rZ63kDAr6KiPSoq2tNkeFpauoYNG64RI/I0fvxEJSendHTZANAqJsMwjPbM\nGAqFtGLFCr377rv65JNP5PV6NXDgQF188cWaNWuWcnJyOrpWAF0sFIrI6/V1dRknjLQ0tySxzdqI\n7dY+bLe2Y5u1T1u2m2EY2rFjmz79dIVWr14pn6/ztrXJZNLIkaN0xhlTNH78RCUleTptXe3B563t\n2Gbtw3Zrn7Q0t2w2S7vnb3ewPlRBQYH+9Kc/6d13340t1GTSqFGjNHv2bH3rW99KdPEAugmCddvw\nj6192G7tw3ZrO7ZZ+7Rmu9XV1Wrp0ne0bNlHqqmpPl6lxVksFo0Zc7qmTZuuceMmdIvDxfm8tR3b\nrH3Ybu2TaLBu06Hgh9q4caPee+89vffeeyoqKpLD4dDMmTN18cUXy2QyadGiRZo3b55uuukmzZs3\nr90FAgAA4MSwd+8evf/+u/rssxVH7HTMlu1SqKShU+uIRCJat26t1q1bq549e+mCC76ts846Wy6X\nu1PXC+DU1aYW6/Xr18fDdElJiSwWi6ZNm6aLL75YM2bMkNvd9Mvq8ssvV0FBAT2JAycJWqzbhj3G\n7cN2ax+2W9uxzdrn8O1mGIZWrPhYK1cuV0HB5pZnspmkUOwnp2tEmhryvZ1bpEnSYb9w7XaHpk6d\nplmzvqvMzKzOXX8L+Ly1Hdusfdhu7XNcW6wvu+wymc1mTZo0SXPmzNFFF12k1NTUI04/YMAAORyO\ndhcHAACA7ikajWrdui+0ePGrKi0tOeq0JqtZRihynCqT7AM8Cu6qazIsGAzo448/0LJlH2rSpMn6\n1rcu1uDB9AkEoGO0KVjfeeedmjlzpnr27Nmq6e+///52FQUAAIDuKRKJ6MUXX9CaNZ9r//7SZuPt\n/ZIU3Nv8klnH06GnVLtGpCm0v0HhioCkWAv7mjWrtGbNKg0aNFjf/e73NWbMOJnN5i6qFsDJ4KjB\n+uqrr9acOXM0ZcoUSdI111xzXIoCAABA9xIKhbRy5SdavPhV1dcfOTjbe7u7PFgfypJkk2WwTXUV\nZc3GFRbu1GOP/VHZ2X317W9frDPPnCqbzd4FVQI40R01WK9Zs0aXXnrp8aoFAAAA3Yzf79cnn3yo\nd975l6qrDzs32mqSwglfYOa4s2Q4FKkMxJ+XlBTp+eef1qJFr2jGjIt03nkXKDU1rQsrBHCiaXev\n4AAAADh51dTU6IMP3tOHHy45Ygu1NcupcCf38N0ZrCm2JsG6UX19nd5++w39+9//0OTJU3XeeRdo\nyJDcbnG5LgDdG8EaAAAAcVu3btEnn3ykNWs+a/GSWZYeDkUOnK98ssbNSCSiTz9drk8/Xa7s7D46\n77wLNWXKWUpK8nR1aQC6qWMG66VLl2rXrl2tXqDJZNLcuXMTKgoAAADHTzQa1VdfbdD//d8/tHVr\nQbPx1h6OeOdfZrtZx69/7+PP2tulcOnBVviSkmK98sqLeu21lzR+/CSNHj1WkydP4VxsAE0cM1gv\nWbJES5YsafUCCdYAAAAnhqqqKn344Xv67LOVqqysOOJ0zsEpLXb+dTJy9vOorrRB9oFNL9kViUT0\n+eer9Pnnq/TSSy9owoRJGj9+kkaMyJPb7e7CilsWiURUU1Oj6uoq1dbWyu9vkN/vVyAQUCAQ20li\nsZhlNptlNlvkdDqVnJyi5ORkJSenKDU1TXY7Ow+A1jpmsJ4/f75mzJhxPGoBAABAJwuFQtq4cb1W\nrPhYGzas6+pyui17lqvZtbAbBYMBffbZCn322QqZTCYNGZKrvLzRGjEiTwMGDJLL5er0+sLhsCoq\nylRWtv/ArUw7d26X1+tVfX2d6uvrZBiJdSyXlpau7Ow+6t07W716ZWvQoMEaOHCQHA5nB70K4ORx\nzGCdnp6uvn37Ho9aAAAA0AnC4bDy8zdpzZrP9MUXn8vvb97hmNljlWNQshq+ruqCCk8Mhx8mLsWu\ni719+1Zt375Vb7/9hiSpZ8+eGjIkV/37D1RWVk/16JGpwYP7KzU1tVXriUajqqurU21tjWpqqlVR\nUa6SkmJVVlaosrJCVVWVqqgoTzg4H4vXWyWvt0r5+ZuaDO/Xb4CGDMnR0KGnacSIPGVk9OjUOoAT\nAZ2XAQAAnIT8fr82bdqoTz9dri1b8uXz+ZpPZJEaT5h2D0+XJdmuBhGsj8TitCh84LFrVIbClX6F\niptv1/3792v//v1aterTJsOtVqscDqdcLpesVqtcrtgh5OFw+MAtJJ+v/qjXCW81m0kKGQfvJZlT\nbIrWxDqks/V1K1TUwmeiFfbu3a29e3frk08+kiT16pWtkSPzlJc3Wnl5o2nRximJYA0AAHASMAxD\npaXFWrlyuXbvLlR+/iZFIkfvZsw5NE3+zd6jToOW2bNcsme5VN1CsD6SWHiOHaadELNksltk+GPv\nr72/R8E9TZfp6JukQGGdLElWRbyxMG1JssaDtTXF3qZg3dI6Gu3bV6J9+0r00Ufvy2KxKi9vlMaN\nm6CxY09XenpGe14hcMI5arBeuHChcnJy2r3wLVu2aOnSpbrlllvavQwAAAC0rLq6Wlu2fKNNm77S\npk1fHbUDMklyDElWYEdt/DmXZ+5clkyHIuXNr5d96JECcWaTZDKaDLek2xWpCsra06nwfn98eMr0\nPorWhVS3NtahnL2X64iht6Mcvo4jBe1IJKyNG9dr48b1kqTBg4do3LgJmjbtHEI2TmpHDdZnnHFG\nQgvfsmWLnnjiCYI1AABAB6irq1NBQb7y87/R5s2bVFS096jTW9LsiniD8ee2DGeTYI3OZfXYWgzW\nntOzVLe2TCnn9pE1zSGZYlfWCVcFVP1RUXw6V06q6taWydajabA2dYM9IhbPwRjhHtdDvvUt79TZ\nuXOHdu7coTff/Ltyc4dp8uSpmjTpTKWkpByvUoHjgkPBAQAAuimfz6eCgnxt3vyNNm/+Rrt37zr6\nDE6z5I/KMcijQGGd7NluNRwSrNG9mEwmmcxdH5ITZbaaWzXdtm0F2ratQK+++lfl5Y3RmWeepdNP\nnyCHw9HJFQKdj2ANAADQTYRCQW3btlXffPO1vv56o3bt2nnU6c0eq6J1Ydn7eRTcWydHb7cChXUy\nu/iJh27GbpaCUUmxa2xv3LhOGzeuk93u0OmnT9C5587Q0KGnyWxuXUgHuhu+dQEAALqIYRgqLi7S\npk0b9fXXG1vV4ZgkuUalyzkwRVFfWNUfFcmSzE86dG9JozNkTXEosKdWgT31MgKxz3kwGNDq1Z9q\n9epPlZmZpQkTztCkSWdqyJD29/MEdAW+hQEAAI4jv9+v/PxN+vDDJSouLlJVVeUx53HlpcsIRuXf\nWi1Jsme5ZXZYFPWFjzEn0D2YTCZZ0x2ypjvkHtVDobIG+fKrFKk8eA56eXmZ3nvv33rvvX9r0KAh\nuvjiizV16tQurBpoPYI1AABAJ6uoKNf69V9q/fovtGVLvsLhowfiw3uTtvd0K1jaAdc2BroBk9kk\ney+3jEBEdZVlLU5TWLhDTzzxuJ555s8aM+Z0nXfeBTrttBEcKo5ui2ANAADQwQzD0J49u/Tll2u1\nfv2X2r27sE3zH6k3aeBk5shJUWB7TZNhwWBQa9eu1tq1q9WjR6amTJmmqVPPVu/e2V1UJdAygjUA\nAEAHiEaj2rp1i778cq3WrVur8vKWW+JMDotMNpOidWFZe7sULm04zpUC3ZPZfvTW6IqKcv3rX2/p\nX/96S4MH52jq1GmaNGkKl+5Ct0Cwxv/P3n1HR1Xnbxx/T80kmSSQBAipdAOI9KZIcUURREFZsa5l\n1+5RsQOuru5iA0QUEGVZRfzZuyLqgiAsvdcgvQVISCVlkqm/P0KGhCRATEISeF7n5GTmzr13PjOB\n5D7zbSIiIvIHuVxOtmzZzIoVS9m8eQN5eRV31w5oHoItIQRTwwDy1h2lMDeXOrAcsUi9tGfPLvbs\n2cUnn3xI+/Yd6NChExdf3IfAwKDaLk3OU5UK1ikpKTRp0uSM94+MjKRbt26VLkpERESkrsrPz2Pj\nxg2sW7eaDRvW4XSW32XbHGnDGh2MMchM7vIUbM1CMTfUer0if1Rghwh8eU4Kduf4txUt3bWejRvX\n88knH9KpU2e6d+9Nhw4dCQwMrMVq5XxTqWDdv39/unbtyuDBg7nyyiuJiIg45f4XX3yxZvITERGR\nei89PY0NG9axbt1qtm3bWuGSWMXrSgd1iiCwRRgA7kyNlRapDqYAI6bIUAp252Dv1gh3VmGppbs8\nHjdr1qxizZpVmM0WLrywA507d6Nz567Y7SG1XL2c6yoVrJ955hnmzp3LP//5T8aNG0ePHj0YPHgw\nV1xxBWFhYTVVo4iIiMhZ5fV62bNnF+vXr2XDhnUcPLi/wn1NDa14Mp0ABMTZcSRlYTRr5mKRmmQK\nsRIQH0JQhwgK9+SQtz4NzAZw+wBwu13HZ+Jfy3vvQatWbbjggkS6d+9NXFw8Bo3DkGpWqWB9++23\nc/vtt3PkyBHmzp3LTz/9xHPPPccLL7zAxRdfzODBg7n88sux2+01Va+IiIhIjcjMzGDz5o1s3ryR\nrbzTSVwAACAASURBVFs3k5eXW/6OFgMBcSGYQizkb0gnsGUYuavLn6hMRGpW8frYAKF9muJzenEm\n5+E8nIfP6fXvt3Pndnbu3M6cOd/RoEFD2rW7kLZt29O2bXvCw0/dC1fkTPyhycuioqK48847ufPO\nOzl8+DALFixgwYIFjB49mueff55+/foxfPhw+vfvr0+DasiiRYv44IMP2LRpE4WFhcTGxjJo0CBu\nv/12QkLqTlcXp9PJ+PHj6dWrF3/6058AuOyyy7jssst49tlna/z5ly1bxr///W82bdpEQUEBMTEx\nXHHFFdxzzz0EBwef8Xneeust/vOf/7Bu3bo/XMvo0aPZvHkz33//fYX7lHxvVq5cyV/+8he+/PJL\n2rdv/4efV0REypednc2WLZtZs2Y927Zt5fDh5FPub44MwJ1WSPBFEdgSQtXFW6SOMRgMWKKCsEYF\n4fNG4k4voGDPMZwHS08qmJWVydKli1m6dDEAjRs3oU2bRGJiYmnf/iKio2O0XrZUWpVmBc/Ozmbp\n0qUsW7aMtWvX4vP5aNWqFYcOHeL++++nVatWTJo0idatW1dXvQJMnDiRGTNmMHjwYMaNG0dISAib\nNm3i/fff5/vvv+ff//43cXFxtV0mAEePHmX27Nl0797dv23atGlnZVmE3377jfvvv58RI0bwl7/8\nBZvNRlJSEtOnT2fFihV8/PHHZ/zBj8FgqPKHRA888AAOx5kvqdKuXTs+++wzWrZsWaXnFRGRonWl\nU1KO+Futdu3aQXLywYoPMBmwNArEGhWEIdBM7rIjWBoF4k4rVKOBSD1gMBb9HzaYjTgP5hF4YUMc\nmzMxNwjAnV0IvhP7pqamkJqacvze/xEYGESzZs1JSGhGo0ZNuOCCtkRFNVXYllOqdLDOzMxk3rx5\n/PTTT6xYsQK3202LFi246667uPrqq0lISABg69at3HXXXTz55JN888031V74+Wru3LnMmDGDsWPH\nctttt/m39+zZk6uvvpqRI0fyxBNP8Mknn9SJP/w+n6/MtsTExLPy3DNnzqRPnz68+OKL/m09e/ak\nefPm3HfffSxevJi+ffuelVqASn/YYbfbueiii2qoGhGRc5fX6yU9PY19+/awd++e4993n3IpLDgx\n8Vhwp0gCmoVgMBb9HVXLtEj9Z7IVxZ7gzpGYQiy4MgpwpxbgSnMU/R8vccnqcOSTlLSFpKQt/m0W\ni4WoqGiaNi3+iqFJkyY0atSYoKAz7wUp565KBes77riD1atX43a7iY6O5s4772TIkCHlBqV27drR\nq1cvlixZUm3FCrzzzjtccMEFpUJ1saioKB599FHGjBnDkiVL6NOnD1OmTOHnn3/mr3/9K5MnTyY7\nO5sePXrw97//nZiYGP+xmzdvZvz48WzYsIHAwECGDBnCE088gc1mA+C2226jefPmJCcns3r1av78\n5z/z7LPPsnHjRqZMmcK6detwOBzExsZy5513MnLkSJKTk7n88ssxGAw8/PDD9OjRgw8++KBUd+ev\nvvqK1157jUmTJvHqq6+ya9cu4uPjefzxx7nsssv89S1fvpyJEyeyfft24uPjefrpp7n33nsZN24c\nw4YNK/e9ysjIICoqqsz2Sy65hFGjRvkf++qrrxgzZgzLly+nQYMGAOTk5NC9e3deeeWVUuf/9ttv\nmTx5MhkZGfTq1YsxY8YQHx8PgMPh4F//+he//fYbOTk5tGzZkvvvv5+BAwcCRZP/bdmyxd8VPC0t\njRdffJGlS5cSHBzMqFGjStVZXlfwWbNm8cUXX7Bv3z7MZjOdOnXimWeeoU2bNuX+nIYPH868efMY\nNGhQqa73KSkpDBgwgGnTptG/f/9y3z8RkbrO7XaTlnaUlJQjHDlyiOTkgyQnH+TQoWQKCwtOe7wp\nzIol0oalUSDmSBvePDfZC5IxNwzwh2oROfcYzEasjYOwNi5a89rn9lK4P7doAjQoNQlaMZfLxYED\n+zhwYF+Z8wUHBxMZ2ZjIyEgaNgw//hVBw4YNCQ0NIywsjMDAoDrR6CU1p1LBeufOndx4440MGTKE\nzp07n3b/YcOGMXLkyD9cnJSWkZHBtm3buPvuuyvcZ+DAgYwZM4aFCxfSp08fAJKTk5kwYQJPPPEE\nQUFBTJgwgTvvvJM5c+ZgsVjYuXMnt912G126dGHy5Mmkp6czYcIEDh48yPTp0/3n/uqrr7jlllv4\n61//SmhoKIcPH+b2229nwIABvPnmm7jdbj766CP+8Y9/0KVLF5o1a8aUKVN46KGHygTlYgaDgby8\nPMaOHcsDDzxATEwMU6dO5bHHHmPRokWEhoby+++/c88999CnTx8efvhhduzYwaOPPorX6y1zvpIu\nvfRS3nvvPe677z6uueYaevToQWRkJGazmXvuuadUDWfyi87hcJR5H++44w5+/PFHbDYb//rXv1i5\nciXPPfccDRo04PPPP+fRRx/l+++/p0WLFqWew+v1ctddd5Gfn8+//vUvvF4vEydOJDU1tcz7U2zm\nzJlMnjyZp556isTERA4ePMjrr7/O6NGj+fLLL0v9nG6++Wb/zykgIIA5c+YwduxY//m+//57GjZs\neFZb7EVEKsPr9ZKbm8uxY1lkZ2eTkZFORkY66enpZGSkcfRoKmlpR8vtGXUqAc1CsMYEYw63YbSU\n7tbpzXNX50sQkXrCYDaWWmM+tE9TjDYTzoN55G/OKPrgLd+NN7/83xF5eXnk5RX1jqmI2WwmJCQU\nuz0Eu91OcLAdq9VKWFgDgoKCCQoKJDAwCJvNRkCADZvNhtUaQEBAABaLFavVgsVixWyu0kheqUGV\n+sksWrSoUmML1BJWvZKTiyZVKdnSfDK73U5YWBiHDh3yb3M4HLz11ltccsklADRv3pxrrrmGOXPm\nMGzYMKZNm0ajRo149913MZlMACQkJHDLLbewevVqunXrBhR9Gjd69Gj/eRctWkSXLl2YMGGC/99F\nx44d6dGjBytXrqR169a0bdvWf76Kxgq73W6efvpprrzySgDCw8O59tprWbFiBQMHDuTdd9+ladOm\nTJkyBaPRyKWXXorBYOC111475fs1atQojh07xjfffMPChQsBaNGiBVdeeSV33nnnHxrnPWHCBHr2\n7Ol/H4cOHcoPP/zAiBEjWLt2LRdffDFXXHEFAF26dCEyMrLctU4XLFjAjh07+PTTT/3dvZs1a8Z1\n111X4XMfOXKEhx56iFtvvRWAbt26kZWVxauvvorD4SAwMBAo+jmNGTPGf5zZbGbWrFksXbrU/2/g\nhx9+YMiQIRorJCLVxuv14vG4cbs9uN0uXC4Xbrcbl8uF0+nE6SyksLAAp9NJQUEBDoeDggIHDoeD\n/Pw88vJyycvLIzc3h5ycHHJyjp32A9SKGANNmEKsmBoEYG5gBaOB3OVF4ydtzUNLXUCLiJzMYDBg\nCrJgaXT82qpDBOaGAfjcXjy5Ljw5Ljw5Tjz5brx5Ljx5bnwF5a9tX8ztdpOZmUFmZkaVa7NYLJhM\nZszmoi+TyYTJZMJoNGEyGbFYzBiNRrxeH0ajEYOh6Hqv+LqvuFGpuMGl5P2iLyNGowG3243VGoDB\nUHTbZrNhNBr9X6Wft+SXGbPZVKbGou9Fj524XfqxE7dN5Z6/6PXUzZb/SgVro9FITk4Ov/76K+np\n6eUGBoPBwN/+9rdqK1BOKP5Uvjj8VuTkT7JCQkL8gQqgdevWxMXFsWbNGoYNG8bKlSu5/PLLAfw/\n044dO2K321m+fLk/WBePny/Wt29f+vbti9PpZPfu3ezbt48NGzZgMBhwuVyVem0dO3b03y7uop2f\nnw/AqlWruOqqq0qFwEGDBvHqq6+e8pxWq5Vx48bx8MMPs2DBApYuXcqKFSuYPn06X375JR9//PEp\nP6Q4WUhIiD9UA7Rq1cr/Po4YMYJu3brx2WefkZqayoABA+jfvz9PP/10uedat24doaGhpcZQt2vX\n7pT1jB07FijqubB792727NnDggULgKLZ14uD9ck/p8TERNq0acMPP/zAJZdcwo4dO9i2bRvjxo07\n49cuIlKe99+fwaJFC2rnyY0GTHYzxmALJvvxr1ArphALRmvpv5MaIy0i1cFgNmJuEIC5QdkP53we\nL16HB6/DfeKrwIP7mBP30QKMQWZ8bm+pJcD+CJ/Ph9PpBJxVOs+57IYbbmbQoKvP+vNWKlivWLGC\n++67j4KCggq7XilY15zi0HX48OEK93E4HGRmZhIdHe3f1qhRozL7hYeHk52dDUBWVhaffvopn3zy\nSal9DAYDR48eLXVMSV6vl5dffpnPPvsMt9tNXFycf/bvynbNKx7LDSc+TSs+R2ZmZpnnjog48/UG\nmzRpwo033siNN96I1+vl22+/5bnnnmPKlCm8/PLLZ3ye8p4zPDyc3NyidU7//ve/06RJE7799lsW\nLlyIwWCgb9++vPLKK/6x28WOHTtGw4YNy5yvvJ9VsV27dvH3v/+dtWvXEhgYSGJion/JsJLv98nv\nFcDw4cOZNm0aL7zwAt999x0tWrTQEl4iUiUZGelnLVQbrEXdNM0RNiwRNkwhFgwBpjrbaiEi5x+D\nyYjJbsRkt5Ta7s4sJHtBMiE9mxS1evt8+JxeXGkOclekYktsgAGKgni+B2+BG2+hp8oB/Hz29def\nM3DgVadtjKxulQrWEyZMICgoiHHjxtG2bVusVmtN1SXliIiIoEOHDsybN4+HH3643H1+/fVXvF4v\n/fr182/Lysoqs196erp/0jm73c7ll1/OzTffXCYQlxf+ik2bNo0vvviC8ePH07dvX2w2GwUFBXz+\n+ed/5OVVqEmTJmRklO42k5mZecpjNmzYwAMPPMDbb79dqlXYaDQyfPhw5s+fz65du4AT45hLdjks\nbi0v6dixY2W2paWl+ScOs1qtPPTQQzz00EPs3buXn3/+malTpzJ58mSef/75Usc1aNCgzGs61evy\n+Xzcf//9hIeHM2fOHH+3+o8++uiMJggcOnQoEydOZMmSJfzyyy9cf/31pz1GRORUGjYMp1WrNuzc\nub3Gn8vn9OJKceBKceCgKGgbg8xFrdTBFozFLdbltFaLiJwtxaH5RKu1B3dWUY+ZvE3p4AOf04PX\n6cVXWNRLtGBb2et0qZrevfuc9VANlQzWv//+O6NGjWLw4ME1VY+cxgMPPMADDzzAu+++W2oCLiha\nM3rixIm0b9++VNfvjIwMNm3aRIcOHQDYtm0bBw4coFevXgB07dqV3bt3065dO/8xaWlpPPnkk9xx\nxx2lWr9L2rBhAxdeeKF/TDEUjbuGM++2fia6devGwoULS43vnjdv3ilbKpo1a0ZeXh6zZ89m/Pjx\npR7zeDwcOHDA/37Y7XYAUlNT/a29q1atKnP+jIwMkpKS/OPGt2zZwsGDB+nVqxder5drr72WESNG\ncPvtt9OsWTPuvfdelixZUm4Pg549ezJjxgxWrFjh716+e/duDhw4UO7rycjIYP/+/dx3332lxqqf\n/H5XJDIykt69ezNz5kwOHDjA0KFDT7m/iMjpGAwGRo9+nqNHU3G73Xg8nuNjrItuu1xOXK6iMdYu\nl5PCwqIx1oWFhTidhTgcDv846/z8fHJzc45PAJR72rHVPqcXj9OJJ6tsV0ijzVTUJTzUirlB0Tjr\nyvaiEhGpiM9zYpy1N8+NJ8+FN//4d4cbKvj15U47/UoF1cFgMPjHIoPh+Jhk/GOniy5vDWXGWRf3\nGC353efzYTKZMRoNeL1eLBZruWOsi5/vxNjok8dUlz/O+kzHWJccZ130vEaMRlOpWorHXpvNFoKC\ngs7Ke32ySgXryMjImqpDztCAAQN48MEHmTRpElu3bmXo0KGEhoayZcsW/vOf/2Cz2Xj99dfLTEo1\natQoHnvsMQDeeOMN2rVr5w/EDzzwADfddBOPPPII119/PYWFhUybNo2UlBR/iCxPhw4dmDFjBv/3\nf/9HmzZt2LhxI9OmTcNoNOJwOIAToXXp0qXEx8f/oTWs7777boYPH85DDz3EyJEj2bNnD2+++SZA\nheE6LCyMUaNG8corr5CRkcF1111HkyZNSE1N5dNPPyUlJYUpU6YARSG3eDz2/fffT3JyMm+//XaZ\nHhkWi4XHHnuMxx9/HKfTyYQJE/zvo9Fo5KKLLmLatGkEBATQokUL1q9fz9q1a0uto13skksuoVu3\nbjzxxBM88cQTBAYGMnny5DLPWXwxGBERQXR0NLNmzSI8PByTycQ333zDb7/9BkBBwel/WQ8fPpzH\nHnuMHj160LRp09PuLyJyOgaDgcaNm1TrOb1eLw5HPseOZZOdnc2xY9lkZWWRmZlBenra8ZnB08jO\nLr+Vx1vgwVvgwJXqOLGxxJ9E59F8jDYTxkDNrCsiFfP5fHgcRbOAF+zKxuv04slxVnn1AJPJRHCw\nHbvdTkCAjdDQUIKCggkMLJ4VPBCbLYCAABsBAQFYrQFYrVYsFov/u9lsKTP5V3HoNBqNNGhQFCyz\nssr2wJSaU6m/KiNHjuSjjz7i+uuv/0MzKkv1eOihh+jWrRuzZs3i+eefJy8vj9jYWEaOHMntt9/u\nD7PFAgMDeeihh3jppZdwOp1cdtlljB492h++27dvz6xZs5g0aRKPPPIIVquVrl27MmHCBBo3buw/\nz8kh9p577iEtLY2pU6dSWFhIQkICzz33HN9//z3r168HioL1Pffcw+zZs1m3bh3ffvvtGY2JK7lP\ny5YtmT59OuPHj+fBBx8kISGBMWPGMGbMGP8Y4/IUtxx/+OGHjBs3zj+uuU+fPrz00kv+MeshISFM\nnjyZCRMmcN9999GqVSvGjx/PQw89VOp8sbGx3HHHHbzwwgvk5eUxYMAAxo4d658s7u9//ztBQUG8\n8847pKenEx0dzTPPPFNqpu+Sr+vtt9/mpZde4qWXXsJsNnPXXXfx3//+t8L3YcqUKfzzn/9k1KhR\n2O12OnbsyPvvv88dd9zBunXr/GG5ovf30ksvBeDaa6+t+I0XEallRqOR4OCipWiaNq14QsfCwkKO\nHk0hJSWF1NQjHD58qOI1rEu0IDk2Z+LYnIkxyFw0Zvv4OtbGYAVtkfOZ13liUubcdUfx5rrwHV/L\nunB/7mmPt1gsREQUrWMdHh5Bw4bhNGhwYh3r0NAwQkNDsdkCNT/EOapSf0UCAgJwu90MHDiQHj16\n0LBhwzItowaDocx4Uql+vXr18nflPhPDhg1j2LBhFT7euXNnPvjggwofnz17dpltNpuNF198sUyL\n7MnB7bHHHvO3lgPMnz/ff3v48OEMHz681P4hISEkJSX57y9btgy73c7XX3/t3/a///0Pg8FAfHx8\nhTUD9OvXr9R484r079+/zPJwy5Yt898uHjsNcMMNN5R7DpvNxtixY/2zd5/s5InS7HY7L730Uqlt\nf/3rX/23e/ToUep9aNeuHR9//HGZ85bcp7yfU7HFixcTGBjIoEGDKtxHRKS+CAgIIDY2ntjY0n8H\nvF4vGRnpHDy4n3379rJv3x727t1DVlbpOSy8+W6c+bk4DxRdMBsDTRjDinoNlbzAFpFzk9fhxnXU\ngetoAa40R6mW6PKGmQCYzRaioqKIioomOjqGxo2b0KhRYxo1akxYWAMF5vNcpYL1K6+84r99csta\nMQVrqW7r169n5syZPP300zRv3pyDBw/y1ltv0b17d//EYVKxZcuWsWLFCj777DOuv/76U7byi4jU\nd0ajkcjIRkRGNqJTp67+7VlZmezatZNdu7azc+cO9u7djdt94kK6aJmcou7jOUuOYAqzYmkShDUq\nEIy6WBap73zeotZnx44sPNlOPDmnXho2LKwB8fEJNGnSlDZtLiAuLp5GjZqUaVQUKVapYL1t27aa\nqkNqUH3/9Ozee+/F5XIxY8YMUlJSCAsL44orrmDUqFG1XVq9kJaWxqxZs+jSpQuPPvpobZcjIlIr\nGjRoSNeu3enatWhZSJfLSWrqQTZt2sT69RvYvXtnqaDtyXbiyXZSsD0LzEV/R93HtG6sSH3iLXBT\neCgPgLx1aQA4D+aV2c9kMhEf34y4uATatWtPq1ZtCA8/86VdRaCSwVrqn5JdmOsro9HIww8/XOES\nY3JqQ4cO1SzgIiInsVistG9/Ie3bX8igQdfidDrZvn0bmzdvZMuWjSQnHzyx8/Fxlq7koomAHL9n\n4XN5MQRZyju1iNQiT74LZ3IezkP5uNNLzLdQYnGAouGEzWjbtj1t27andesLsNlsZ79YOadUOlgv\nW7aMJUuWkJ+fX2o5DI/HQ15eHqtXr/YvASQiIiJSH1itVi688CIuvPAiADIy0tm8eSMbNqxl8+ZN\nuFwnWqs9OS7yNqT77xe3iIlI7fAeXxM6d00qnmPld/EODraTmNiWrl170L59B0JCNBGzVK9KBeuv\nvvqKsWPH+pcAMhgMpdaGtFqtZSaAEhEREalvwsMj6Nt3AH37DsDlcrJ27Rq2b9/G6tUryMk5Vmpf\n16ETS9o4jy/zpbWzRWqW1+WhYM8xCg/k+teIPjlUN2rUmC5dutOlSzdatmyt8dFSoyoVrN9//33i\n4+N55513KCgoYNiwYSxcuBCz2czs2bOZMWMGN910U03VKiIiInLWWSxWevbsTc+evbn11jvYu3cP\n69atZu3aVRw6lFxqX096IQB5G9NxZzqxRgdhMOtiXqQ6+Hw+XEdPTDJIOZ9fRUU1pXv3XnTt2oO4\nuPh6P9eQ1B+VCtb79u3j4YcfplmzZgAEBQWxatUqhg4dyqhRo9i+fTvTp0+nd+/eNVGriIiISK0y\nGAw0b96C5s1bcN11N3DkyGHWrl3FqlUr2Ldvz4kdXT4Kdx+jcPcx/+RnzpR8jMFmjFZTLVUvUr/l\nrU+D4tXwSoTqiIhIOnbsQt++/YmLS1CYllpRqWBtNBoJCwvz32/WrBlJSUn+iZH69evHW2+9Vb0V\nioiIiNRRUVFNGTz4GgYPvobMzAzWr1/D2rWr2bZtKx7P8QRwfPIzx9ZMHEmZmCNt+NxF89Sow7hI\nJZRYYj4wMJCePS+md+8+tGrVRmFaal2lgnXz5s3ZvHkzI0aMAKBly5Zs2bLF/7jD4cBxfA1IERER\nkfNJw4bhDBgwkAEDBpKXl8vGjetZu3Y1mzdvpLDw+OzEPnAfPTFTsTtF100ixU43NYHJZOKiizrT\nuXNXeva8GItFM/NL3VGpYD18+HBeeuklvF4vo0ePZsCAATz++OPMmDGDFi1aMGvWLNq0aVNTtYqI\niIjUC8HBdnr37kPv3n1wuVxs27aV9evXsH79WjIzM07s6C3/eE+hp/wHRM5hBduzyt0eGxtH376X\n0bNnb83mLXVWpYL1bbfdRmpqKh999BHPPvssV111FV9//TUTJ04EIDg4mAkTJtRIoSIiIiL1kcVi\noUOHjnTo0JFbb72TAwf2s2nTepYsWURKypFyZxB3Hy7dku3JdZ22NU+kPvHku3Eezi+9scQHTXa7\nncsu+xMDBgwgLKzx2S1O5A+o9DrWjz/+OI888ghmc9GhM2bMYNWqVWRlZdGlSxciIiKqvUgRERGR\nc4HBYCA+PoH4+ASGDLmW3Nxctm7dzJYtG9m8eWPp1uwSclelQok5zzz5LkwNrGepapHq4XV6cCbn\nlVoiqySz2Uy7dh3o0aM3PXr0IjKyqHU6Kyu/zL4idU2lgzUU/aPfvn07ycnJmEwm4uPj6d69e3XX\nJiIiInJOs9vt9OjRix49euHz+Th8+BBbtmxi27YtJCVtpaCgRMt1id7huStSMdhMmMKKwrXXWUGf\ncpE6wrEzm9y1R8sd/pCQ0JxLL+1Pjx69sdvtZ784kWpQ6WD9448/MmHCBA4fPgwUrSdnMBho1aoV\nY8aM0VJbIiIiIn+AwWAgOjqG6OgYBg4chMfjYd++PSQlbWXbti3s2LEdp7PQv7+vwIP7ePAu3HUM\nANfxVkCfhmhLHePJcpa6HxnZiF69LqF370to2jSmlqoSqT6VCtY///wzjz/+OM2aNePpp58mISHh\n+C/9fXz66afcfffdvP/++3Tr1q2m6hURERE5L5hMJlq0aEWLFq0YMuQa3G43e/bsYtu2rWzbtpUd\nO7bjdrtKHePNdQMnJoFypReWOa9IdStvnoDy2O12unfvRe/efWjZsrWWyJJzSqWC9bRp0+jQoQMf\nfvghVmvpcT233HILN910E2+88QYffvhhtRYpIiIicr4zm820bn0BrVtfwNChw3G5nOzatZN169aw\ne/cOdu3aWeYYd+pJk6Dlu89WuQJ4K5jdPT8pE4Bjy1MwmAwYjIDRAN7SAbXwUB4Anty693PzuU7U\nmrcxvcL9goOD6dChE5dc0pfExHaYTKYK9xWpzyoVrPfu3cuTTz5ZJlQD2Gw2rrvuOl5//fVqK05E\nREREymexWElMbEdiYjsA8vJySUraysqVy9i1a0e5E6E5tmae7TLPa67D5a9T7s0rCso+h5tTtfW6\nDhVN2uU8kFtqe87qVAzmE6297mOley7UhJOfo2Bn9ok7rtKvIiIikk6dutKpUxcuuKCtf9JjkXNZ\npf6VJyQkkJSUVOHjBw4cICoqqspFiYiIiEjlBAfb6datB9269cDn83HgwD7Wr1/LypXLOXToYLnH\nFOzPOctVnjs8Djfu9LIzW1dGQEAAAG63G4/nzAfGe3NOCrnlrP/sPN5bwVNw4rwlJ7mrqDW9IhWt\nMQ1gNBpp1aoN7dtfROfOXYiJiVM3bznvVCpYjx07lvvuu4/GjRvz17/+1T9rn8vl4rPPPuPzzz/n\n7bffrpFCRUREROTMFC3r1Yz4+GZcc811ZGSks2rVclauXMaePbv9+/nyToSrgn052JqH1ka59Ya3\n5Mzsy1Mq3M9gMNC4cRQtW7bCZrPRpElTEhNbERERidttJCAgAKvVWip8er1ePB43DoeDnJwccnKO\nkZNzjOzsbDIy0jhy5AiZmRmkp6eRm3v6D0R8+ceLLTgRpj0lxtwX7v7jH6oYjSaaN29OQkJzYpna\nyQAAIABJREFU2rRJpGPHzgQE2P7w+UTOBZUK1v/6178ICAhg+vTpvPvuu0RGRmKxWEhJScHtLurS\ncu+995Y6xmAwsH79+uqrWEREREQqJTw8giuvHMKVVw4hNTWFFSuW8r///cbRo6n+fdxHC8g9WrUW\n2HOd66Qu2cWCgoJo1+5CEhPb07x5C2Jj47BYSg+dbNAgCKh4TWaj0YjRaMVisRIaGnbKOgoLCzh6\nNJXU1BRSU1NJS0slLe0oBw8eJDs7s1Kt36cTFtaAJk2iiIpqSkJCc1q0aElMTJy6d4ucpFL/I9q3\nb69uHSIiIiL1WOPGTRg6dDhDhlzL778n8euvv7Bu3Vq8Xq3RVZI799TjluPjm9GlSzcuvPAimjVr\ngdFoPEuVQUCAjdjYeGJj48s85vP5yMvLJSsri+zsLLKyMsnJOUZBQQGFhYUkJ+/HaDQTHByMx+Mm\nIMCG0WgkMDCQkJBQ7PYQQkJCadCgKFAHBgadtdclUp9VKli/8sorNVWHiIiIiJxFRqORtm3b07Zt\ne3Jzc1m8eAH//e9PZGWVneCs8Ej5raznImda0djkgm1lxxTHxMTSsWMX+vTpR1RU07Nd2hkxGAzY\n7SHY7SHExsbVdjki540/1IfD5XKRnp6O1+st9/Ho6OgqFSUiIiIiZ4/dbueqq4ZyxRWDWbZsMQsX\n/sru3SeW73IdzPPf9p3jDdvOvWW7e/fs2ZtBg64mIaF5LVQkIvVBpYL1gQMHGDNmDGvWrDnlQvCn\nmjlcREREROomk8lEnz796dOnP7t372Tu3O9Zu3Z1qeu+k9fGPlclJDSjd+8+dO7cjUaNGtd2OSJS\nx1UqWD/33HOsX7+e6667jtjY2LM6lkREREREzp4WLVrx4IOjOHz4ED/99ANLliwq01vRneWspeqq\npuQSVCfr2rUHAwcOonXrCzS3kIicsUoF6w0bNnDffffx4IMP1lQ9IiIiIlKHNG0azZ133sO1117P\nTz/9wK+//tcfsH2O+tkv3H2kdKt7QICNfv0GcPnlg4iMbFRLVYlIfVapYB0ZGUlwcHBN1SIiIiIi\ndVR4eAQ333w7N998E++8M51169bhdBaW2a+utWJ73V7caeUvIxYcbOeqq66mf/8/ERSka1wR+eMq\nFazvvvtupk2bRr9+/WjeXJM3iIiIiJxvGjRowNNPP0Nyciq//vpf5s79gYKCEy3ABTuza7G6svI3\npMNJUwPFxMRx5ZWD6dXrEq3HLCLVolK/Sa677jp++uknhg4dSkJCAuHh4WXGnhgMBmbNmlWtRYqI\niIhI3RIcbGfo0OFcccVVfP/9NyxdurjcpboAfN6KJ72tCYXJJ2YxLxmqExPbMXjwNbRv30Hjp0Wk\nWlUqWI8fP54lS5Zgs9lwuVykpaXVVF0iIiIiUg8EBNgYMeJGhg0bwdq1q5g372d27txeeqfCE5Oe\neR3umi/KdSJNW61WLr74Ui67bCCxsfE1/9wicl6qVLD++uuv6d+/P5MmTSIwMLCmahIRERGResZs\nNtOjR2969OjNnj27mDv3B1avXsnJ/bALy1knuiY0bRpNnz796N//TwQGBp2V5xSR81elgrXH4+Gy\nyy5TqBYRERGRCjVv3pIHHniE/Pw8Vq9eyfLlS9i2bWuNP2/DhuF0796LHj160bx5S3X3FpGzplLB\nesCAASxYsIAbbrihpuoRERERkXNEUFAwffsOoG/fAaSnp7Fq1Qq2bt3M778n4XJVz+zhsbFxJCa2\np3v3nrRs2Rqj0Vgt5xURqYxKBesbbriBJ554gjvuuIP+/fsTERGByWQqs9/gwYOrrUARERERqf8i\nIiIZNGgIgwYNwe12s3v3TrZt20py8kFSU4+QknKEgoLyl8UCMJnMREZGEhERSVxcAm3aJNK69QXY\n7faz+CpERMpXqWB92223AZCSksLy5cvL3cdgMChYi4iIiEiFzGYzbdok0qZNon+bz+cjJyeHY8ey\n8Xq9+Hw+fL6iSc8aNgwnJCRUrdEiUmdVKlh/8MEHNVWHiIiIiJzHDAYDoaGhhIaG1nYpIiKVVqlg\n3aNHj5qqQ0RERERERKReqlSwBsjLy2PmzJnMnz+fw4cPY7FYaNKkCf379+euu+7SOBcRERERERE5\nr1RqoEpWVhY33HAD06ZNw+Vy0bNnTzp27IjD4WDatGmMGDGCY8eO1VStIiIiIiIiInVOpVqsJ02a\nxL59+3jrrbcYOHBgqcfmzZvHqFGjePPNN3n22WertUgRERERERGRuqpSLdbz58/n1ltvLROqAS6/\n/HJuvvlm5s2bV23FiYiIiIiIiNR1lQrW2dnZxMfHV/h4QkICGRkZVS5KREREREREpL6oVLBOSEhg\n0aJFFT7+22+/ERcXV+WiREREREREROqLSgXrW265hYULF/L000+zc+dOnE4nTqeT7du389RTT7Fo\n0SJGjhxZU7WKiIiIiIiI1DmVmrzspptuYs+ePcyePZvvvvsOg8EAgM/nw+fzccstt/CXv/ylRgoV\nERERERERqYsqvY71mDFjuOGGG1iwYAHJycl4vV5iY2Pp378/bdq0qYkaRUREREREROqsM+oKvnr1\nap566in//VatWnH33Xfzj3/8A6PRyJIlS0hPT6+xIkVERERERETqqtMG6xkzZnDrrbcyZ84c9uzZ\nU+Zxh8PB6tWrueuuu5gyZUqNFCkiIiIiIiJSV50yWM+bN4+JEyfSr18/fvnlF5o3b15mn1dffZX5\n8+fTvXt3pk6dyuLFi2usWBEREREREZG65pTBetasWSQmJjJ9+nRiYmIq3C8qKooZM2YQGxvL+++/\nX901ioiIiIiIiNRZpwzWW7duZejQof7Zv08lICCAa6+9lg0bNlRbcSIiIiIiIiJ13SmDtc/nIzg4\n+IxP1qhRIzweT5WLEhEREREREakvThms4+LiSEpKOuOTJSUlER0dXeWiREREREREROqLUwbrwYMH\n8+2337J3797Tnmjv3r18++239OnTp7pqExEREREREanzThmsb775ZiIiIrj11lv58ccf8fl8Zfbx\ner38+OOP3H777VitVu68884aK1ZERERERESkrjGf6sGQkBCmT5/Ogw8+yOOPP87zzz9P+/btiYiI\nwOv1kp6ezpYtW8jPzycqKoqZM2cSFRV1tmoXERERERERqXWnDNYArVu35rvvvuPDDz9k7ty5rF69\nGrfbDYDFYqFTp05cccUVjBw5EqvVWuMFi4iIiIiIiNQlpw3WADabjb/97W/87W9/w+fzkZmZiclk\nIiwsrKbrExEREREREanTzihYl2QwGAgPD6+JWkRERERERETqnVNOXiYiIiIiIiIip6ZgLSIiIiIi\nIlIFCtYiIiIiIiIiVaBgLSIiIiIiIlIFCtYiIiIiIiIiVaBgLSIiIiIiIlIFCtYiIiIiIiIiVaBg\nLSIiIiIiIlIFCtYiIiIiIiIiVaBgLSIiIiIiIlIFCtYiIiIiIiIiVaBgLSIiIiIiIlIFCtYiIiIi\nIiIiVaBgLSIiIiIiIlIFCtYiIiIiIiIiVaBgLSIiIiIiIlIFCtYiIiIiIiIiVaBgLSIiIiIiIlIF\nCtYiIiIiIiIiVaBgLSIiIiIiIlIFCtYiIiIiIiIiVaBgLSIiIiIiIlIFCtYiIiIiIiIiVaBgLSIi\nIiIiIlIFCtYiIiIiIiIiVaBgLSIiIiIiIlIFCtYiIiIiIiIiVaBgLSIiIiIiIlIFCtYiIiIiIiIi\nVaBgLSIiIiIiIlIFCtYiIiIiIiIiVWCu7QJEREREpPp5vV727NnNvn172L9/L1lZmTgcDpxOJ4GB\ngQQH2wkPjyA2No64uHji4hIwmUy1XbaISL2kYC0iIiJyDtm3bw//+98iVq1azrFj2Wd8XGBgEImJ\nbbnoos506dKNkJDQGqxSROTcomAtIiIicg7Yu3c333zzJRs3rvtDxzsc+axbt4Z169Ywe/Z/aNeu\nA337DqBTpy6YzbpkFBE5Ff2WFBEREanHHI58Zs9+j+XLl5TabgB8Je4PsYfQ1GxlV2EhCxy59LIF\n4fB52VBYQKTJxDGvF6ev6Aiv18vmzRvYvHkDYWEN6N//T1x22UC1YouIVEDBWkRERKSeSkrawrvv\nTiU7O6vU9o4BNuItVr7PPebfFmgwYTEYMBqK7gcbjQQfn8e2Y0AgrawBpHjc7HIWstvpJM/nBSA7\nO4tvv/2SuXO/59JLB3DTTSMJDw8/Oy9QRKSeULAWERERqWd8Ph///e9PfPLJ7FLbY81mDrrdtLba\nKn1Oo8FAU7OFpmYLFwf6OOB2saWwgH0uJwBOp5P5839m0aJfueqqwVx++WDs9pBqeT0iIvWdgrWI\niIhIPeJ2u5k9+z8sXrywzGNNzRYOut1Vfg6jwUCCxUqCxUq2x8Oqgjx2OIsCtsvl4rvvvmX+/Hlc\nc831DBhwucZgi8h5T+tYi4iIiNQTLpeLadPeKBWq48yWGn3OMJOJjgFBQFGLeLG8vDw+/vgD/vGP\n0ezcub1GaxARqesUrEVERETqAZfLydSpk1i/fm2p7W2sAWethgvK6WJ+6FAyL7/8Ah9++B4Oh+Os\n1SIiUpcoWIuIiIjUcW63mylTJrFx43qgblzAdbUF+m/7fD5+/fW//OMfo9m1a0ctViUiUjvqwu9l\nEREREamAz+fjvffeZdOmDQCYgEsCg2u3KKCB0QRAa6vVv+3o0VRefvkFvvvuK7xeb22VJiJy1ilY\ni4iIiNRhX3zxCcuW/c9//+LAYJrU8Ljqyog3FwXr4qDt9Xr55psvePPNCeTl5dZmaSIiZ42CtYiI\niEgd9dtvvzJ37velttWlUF3SgCA7rSwnWq83blzPiy8+y8GDB2qxKhGRs0PBWkRERKQO2r59Gx9+\n+J7//kUBlV+b+mwyHV+iC4q6q0Nx1/B/sHnzxtorTETkLFCwFhEREalj0tPTmDr1DTweDwDtrDba\nlDMjd13VwxZEhKkoXjscDt544zUWLVpQy1WJiNQcBWsRERGROsTlcjFlyiRyco4BEG020yeo9icr\nq4wgo5FhIWHEH++27vV6ef/9GWW6tYuInCsUrEVERETqkE8+mc2+fXv893vZgjEZDLVY0R9jNRi5\nyh5aatz1559/zJdfforP56vFykREqp+CtYiIiEgdsXz5EhYsmFdqm7EehupiRoOBjgGBpbbNmfMt\nn332kcK1iJxTFKxFRERE6oDDh5OZNevftV1GtTMc/2Cg5ORrP/88h88//1jhWkTOGQrWIiIiIrXM\n5XIyffoUCgsLAYgymWu5ourXxmqjU4lw/dNPP/DVV5/VYkUiItVHwVpERESkln322cccOLDPfz+x\nHs0AXhmtTnpdc+Z8qwnNROScoGAtIiIiUovWrVvD/Pk/A1A8mtpUf4dVn5GTJzT77bdfa7EaEZGq\nU7AWERERqSWZmZm89947/vslxyGfyxJKBGuADz6YyZo1K2upGhGRqlOwFhEREakFXq+XmTPfJjc3\nF4B4s4VWloBarursijMXjSX3+Xy8885Utm/fVssViYj8MQrWIiIiIrXgl19+ZOvWzQAEGgwMCA7x\nz6B9vmhtOdFC73a7ePPNCSQnH6zFikRE/hgFaxEREZGzbN++vXz55af++5cFhxBkPP8uy4o/R4g8\nPgt6fn4+b7zxGllZmbVYlYhI5Z1/v8FFREREalFhYSHvvjsFj8cDQIcAG/EnjTk+33QsMbY8PT2N\nN94YT0FBQS1WJCJSOQrWIiIiImfRp59+yOHDhwAIN5noFRhcyxXVHbbj86Lv37+Xt9+e7P/wQUSk\nrlOwFhERETlL1q1bw8KF8wEwAZcHh2A+z8ZVn0qfoGDMx29v2rSB//u/9/H5fLVYkYjImVGwFhER\nETkLMjMzmDnzbf/93oHBRJjMpzji/NPAZC7Vgr9w4Xx++umHWqxIROTMKFiLiIiI1DCv18u///02\n+fn5AESZzFx4nqxZXVlRZkup+59//jErVy6rpWpERM6MgrWIiIhIDZs79weSkrb473cLDDrvltaq\nrBYlJnT797/f5vffk2qxGhGRU1OwFhEREalBO3du5+uvPyu1zWbQJdjpNDOfCNZut5u33pqoNa5F\npM7Sb3URERGRGpKbm8v06W/h9XoBaGMJqOWK6o/iBv1GJda4njTpVTIy0muxKhGR8ilYi4iIiNQA\nn8/Hf/7zjj8INjGZaa9x1ZXWOzCIcJMJgIyMdF5//RVyc3NruSoRkdIUrEVERERqwM8//8j69WsA\nsBoMXB4cgknjqivNajAyxB6K3Vh02XroUDKTJ79GYWFBLVcmInKCgrWIiIhINfv99yS++OJj//0B\nQXZCj7e6SuXZjSautodiO/7BxK5dO3nzzYk4nc5arkxEpIiCtYiIiEg1ysrKLDWuumNAIC2sGltd\nVQ1NZobYQ7FQFK6TkrYwZcokXC5XLVcmIqJgLSIiIlJt3G4306ZNJjs7C4CmZjO9AoNquapzR2Oz\nhcH2UMzH72/evIGpU9/A5VLLtYjULgVrERERkWrg8/mYPfs/7Ny5HYAgg4GBwaEYNa66WkVbLFxl\nD6W4Y/3Gjet4443xGnMtIrVKwVpERESkGsyf/wuLFy8Eii6wrrSHEmzUpVZNiLVYuapEy3VS0hYm\nTtRs4SJSe/TbXkRERKSKNm3awMcff+C/3y/ITpTZUosVnfviLFaG2MP8Y6537tzOuHHPk5JypJYr\nE5HzkYK1iIiISBXs37+XqVMn4fP5AOgQYCNR61WfFdEWC9eEnJgtPCXlMOPGPc/vvyfVcmUicr5R\nsBYRERH5gzIy0nnjjfH+ZZ+izGYuDgyu5arOL43NFq4LaUCYsWjUdW5uDuPHj+PHH7/zz8wuIlLT\nFKxFRERE/oCcnGNMnPgKWVmZ/m29bMGarKwWhJlMXBcSRrS5aNS11+vliy8+YfLk8WRmZtRydSJy\nPlCwFhEREakkhyOf119/lcOHk4GiGcABzArVtcZmNDLUHkbngED/tk2bNvDss0+xePFCf1d9EZGa\noGAtIiIiUgmFhQVMnjyBffv2ABBoMHBpkL2WqxIAo8FAr6BgrgoO8Y+7djjyee+9d3nppef9S6GJ\niFQ3BWsRERGRM+RwOJg06TW2b98GgAW42h5GiNF06gPlrGpmDeDG0Ia0tFj923bt2slLL/2Dt96a\nyK5dO2qxOhE5F5lPv4uIiIiIOBz5TJr0WqlWz0uC7ESazRx1u2uxMilPoNHIFfZQ9jgLWebII/v4\nRGbr1q1h3bo1tGmTSL9+l9G1aw+sVutpziYicmoK1iIiIiKnkZ2dxaRJr7F//16g6ALKDUSadClV\n1zW3BhBvsbKlsIC1Bfk4jo+13r59G9u3b+PDD9+nS5dudOnSnfbtOyhki8gfor8GIiIiIqeQknKE\n119/haNHUwGwGgxcEhjMgvzcWq5MzpTJYOAiWyDtAmz87ixgfYGDY8dbsB2OfJYsWcSSJYswm820\naZNI27YX0qbNBTRr1hyLRUFbRE5PwVpERESkAtu2bWXatDfIzS0K0UEGI1eHhOLVBNP1ktlgoH1A\nIO2sNpLdLpIKC9nrKqS4I7/b7Wbr1s1s3boZAJPJRFxcAs2aNSc+vhlxcQnExsYSEGCrvRchInWS\ngrWIiIhIORYsmMdHH83C4/EAEGY0cbU9lFCTSWOq6zmDwUCsxUqsxYrLZ+eAy0lSYQH73a5S+3k8\nHvbu3c3evbtLHduoUWNiYmKJjo4lJiaOmJhYoqKaYrFYzvZLEZE6QsFaREREpISCggJmz/4Py5b9\nz78t2mzhyuAQbEYtqHKusRgMtLAGEGI0sT8nC4BOATbyfD5S3C5/l/FiPp+P1NQUUlNTWLdujX+7\n0WikSZMof+COjS0K3I0bR2EyadZ4kXOdgrWIiIjIcfv372X69Lc4cuSwf9uFATYuDgzGdHxdZDn3\ntbLaaGQuukwu9Ho56nGT5nGT7vGQ4XGT6fHgOekYr9fL4cOHOHz4ELDSv91sthAdHU3z5kVdySMj\nmxATE0d4eAQG/ZsSOWcoWIuIiMh5z+12M2fOt/zwwzf+rt9m4NIgO4kaT3teCzAaiTUWdRsv5vX5\nyPZ6yPB4OOBykeQsIMRgJM/nxXvS8W63i/3797F//75S2wMDA4mJiSM6OsbfnTwmJpbQ0DAFbpF6\nSMFaREREzmvFSy4dPLjfvy3caOIKewgNtZyWlMNoMNDQZKahyUyo0USSs4Ar7aGEm0xkHQ/cGR63\n//vJ3ckBHA4HO3duL7UuOkBwsP14d/KY42O4i24rcIvUbfprISIiIuelo0eP8n//9yGLFv3m32YA\nOgYE0j0wCLNCjFSSyWAgwmQmwmQGAvzbXT5fqaBd9N1Dvq9s4M7Ly/WvsV1ScHAw0dGlA3dMTByh\noaEK3CJ1gIK1iIiInFeys7OZM+cbFi6cj7vE7N7hRhP9g+00MWtmZ6leFoOBJmZLmX9bBV4vu51O\nfnPk0sJipcDnJcPjocBXdj23vLw8duz4nR07fi+13W63ExMTd3yytBPfAwMDa/Q1iUhpCtZyzps3\nbx4ff/wxSUlJFBQUkJCQwIgRIxg5ciRmc/X9F0hJSWHs2LFMmDCBBg0aVNt5y7Nz507++c9/MmvW\nrBp9HhGRc8nhw4f45ZcfWbJkMe4SyypZDQa624K4MMCGUS1/chbZjEb/JGldbEH+2w6v1z9JWubx\nruWZHjeOcgJ3bm4uv/+exO+/J5XaHhERSbNmzYmLSyAuLoH4+ARNmCZSgxSs5Zz2wgsv8OmnnzJ8\n+HBuvvlmgoKCWLVqFa+99horVqxg8uTJ1fYHZunSpSxZsqRaznU6P/30E5s2bTorzyUiUp85nU7W\nrl3N4sULSEraUuoxE9A+wEYXWxCBWkZL6pBAo5EYo5WYkzpPOLxeMj0eMrxuf9iuqIU7PT2N9PQ0\n1qxZ5d8WHGwnPv5E0I6Pb0ZUVNNqbWgQOV/pf5Gcs7755hs+/vhj/vnPf/LnP//Zv7137960atWK\nxx9/nO+//55rrrmmWp7Pd/yPmq+cP27V7Ww8h4hIfeVw5LN162ZWr17J+vVrKSwsKPW4GWgbYKOT\nLRC7UesLS/0RaDQSaDQSzYnE7fP5cPh8pHvcpB8P2iluF1nlTJiWl5dLUtKWUh8ymc0WYmJij7ds\nxxMXF09sbBx2e8hZeU0i5woFazlnzZw5k8TExFKhutjgwYPZvHkzDRs2BCA5OZnXXnuNVatWUVBQ\nQK9evXj66adJSEgAYMqUKSxYsIC77rqLN998k8OHD9OmTRvGjh1L586d+frrrxkzZgwGg4GLL76Y\nBx98kOHDh/OnP/2JMWPG8P7775OTk8M777xDly5dmDVrFl988QX79u3DbDbTqVMnnnnmGdq0aeOv\n8ZdffuGdd95h165dREREcMMNN3DvvfcyZcoUpk6dCkDbtm15+eWXGTZsGJmZmUycOJHFixeTnZ1N\nx44defLJJ7nwwgsB+Prrr3n11Ve5++67effddwkKCmLu3LnYbFpGRkTqt/z8fHbv3snOndvZtm0r\nu3bt8C+ZVVKI0Uhbq432ATZsaqGWc4TBYCDIYCDIaCXu+JJgR91uvsjJ4vJgO14fpHs8pB1fi7vw\npA/n3W4X+/btYd++PaW2h4U18E+UFh0dTVRUNE2aRNGwYbi6k4uUQ8FazklHjx5lx44d3HvvvRXu\n89RTTwFFY6NHjBhB06ZNefHFF/F6vUyZMoWbb76Zb775hkaNGgGwd+9e3nzzTR555BGCg4OZMGEC\njz76KAsWLKBfv37cf//9TJ8+nZkzZ9KyZUv/hDhvv/02zz33HE6nkw4dOjBz5kwmT57MU089RWJi\nIgcPHuT1119n9OjRfPnllwD8/PPPPPLII1x//fU89thj7Ny5k/Hjx2M0Gvnzn//MkSNHmDNnDrNm\nzSIuLo78/HxuvPFGPB4PTz75JHa7nffee49bb72Vzz//nNatWwOQk5PDDz/8wOuvv05eXp5CtYjU\nG16vl+zsLNLT00hNTeHIkcMcPpzM/v37OHo0tcLjLBhoZrVygTWAWLNFgUDOKw2MZv+4bShq3c77\n//buPCyqsn8D+D0MDIvDDrIvigsigiiumSLlgmmpiYFiaiopkhFZ4pLLq6Xpz33HXhc0rczXXLLN\nLS2hTDPTXHIpV0xZlAFmhpk5vz+AkYlFdNQzwP25rq6YZ86Z+c65kHPuec7zPIIOdzQa3CkTtvMq\n6N2+ezcXd+/mlhtCIZPJ4OLiClfX+nB2doGzswscHZ3h6OgIBwdH2NnZwcrKmv/WqM5hsKZaKTMz\nEwDg6en5wG3XrVsHtVqNdevWwd7eHgDQpk0bPP/881i7di0mTJgAoLhHZP78+foeYK1Wi7Fjx+Ls\n2bMICgqCr68vACAoKAgODg64fv06AODFF19EVFSUQW2JiYmIi4sDAISHhyM3NxcffvghCgsLYW1t\njVWrVqFjx454//33AQDPPPMMsrKy8Ouvv2LUqFFwd3eHRCJBSEgIAGDjxo24du0adu3ahYYNG+r3\n6dGjB5YuXYolS5YAKL4wTUxMxDPPPGPE0SUierquXr2CxYvnITs7q1rb25qZwcdcBl8LC/hYyLhs\nFlEJiUQCuUQKuUwK/zLtqpLZyLM0GmSVWRJMjfJDz9RqNW7cuI4bN65X+j4WFhaQy20hl9uiXr16\nsLa2gbOzC3r2fAFOTs6P/4MRmQAGa6qVpNLiMXO6Cr6B/bdffvkF7dq104dqAHB0dESHDh1w9Oj9\nCT+kUqk+VAOAu7s7BEFAQUFBla/v7+9v8Hjy5MkAgOzsbFy6dAmXL1/GgQMHABSfrMzMzHDmzBlM\nmjTJYL/k5OQqP0OjRo30oRooPql169YNO3furLIeIiJT99NPRyoN1WYAnKRSuErN4W5uAQ9zC9iZ\nmbG3jOghWErM4GFuBg9zw7Hb+ULxZGk5Wi3u6rTI1WpxT6dFnk5XQeS+r6ioCDk52ci+ge5aAAAg\nAElEQVTJyTZoz8u7h9dfT3xCn4JIXAzWVCt5eHgAAG7evFnpNrdv34azszPu3buHoKCgcs87Ozvj\nwoUL+scymczgebOS8XkPmkjM2dnwm9mLFy/ivffew/Hjx2FtbY3AwEDUq1dP/1q5ubkV7leVe/fu\nwcXFpcL3VigUVdZDRGTqyi6NVZaLVIoGFpaob24OF6k5bDhumuix0fdum0nhYwGoBV1JsC7+/01N\nEW5qilB+NoPK/TtoE9UmDNZUKzk6OiIoKAg//PBDpT29w4YNg6urKxwcHHDnzp1yz9+5c+exr0ct\nCALGjBkDJycnfPnllwgICAAAbN68Wb9Ul1wuB1Dco13WrVu38PfffyM8PLzc69rb2+Py5cvl2p/E\nZyAietpcXd0qbC8eI3r/riF7s+IeNy/z4lvAuYQW0cNT6nT62cVzdMW91blaDQoew4ok7dp1fAwV\nEpkmBmuqtV599VVMnDgRn3/+OQYMGGDw3I4dO3Dp0iWMGDEC58+fx9atW5Gbm6sPodnZ2UhPT0ds\nbGy138+sGhdw2dnZuHLlCkaPHq0P1QBw6NAhAMXBu169emjSpAkOHjyIIUOG6LdJS0vD7t278f33\n35d7r9atW+O7777DpUuX9LeDq9Vq7N27F61bt672ZyAiMkWdO3eFRCLBpUsX9JOXVdTzdVenw121\nCmfVKgBAfak5AmQyNLSwhJ2Uy2oRlaUTBNzVaXGnZGz1HW3x+OoC4cHD6MoyNzeHg4MjHB2dYG/v\nAHt7e9jZ2ZeMsZbDxqYebGzqwcmp+Hmi2orBmmqtvn374vvvv8e0adNw8uRJPPfcc5BIJDh8+DC2\nbNmCXr16oX///sjMzMT27dsxfPhwjBkzBoIgYNWqVZDJZHj11Ver/X52dnYAipfJqmxyMGdnZ3h6\nemLDhg1wcnKCVCrFF198ge+//x4AoFQWr7U6duxYJCUlYerUqejZsyfOnTuHTZs26Wcyt7Ozg1Kp\nxL59+xASEoL+/ftjw4YNiI+Px5tvvgm5XI7169cjKysLo0ePNuYwEhGJzsLCApGR3RAZ2U3fplIp\ncfPmDVy9egV//30Zly5dxJUrfxnMrfGPVoN/CjVILyyAp7k5msms0FBmycnMqM4pEgRkl8wAfkdT\nPBt4tlYDTTX3t7GxgYeHJ9zcPODm5g5X1/r6WcHt7Oyr1blAVNsxWFOttnDhQnz22Wf43//+h2+/\n/RYajQb+/v6YNm0aXn75ZQDFk5Bt3rwZ8+bNQ0pKCszNzdG+fXssWrQIbm73bz+saCKcsm0dOnRA\np06dMGvWLAwcOBDDhw+vcJ9ly5Zh5syZeOuttyCXyxEaGor169dj2LBh+PXXX+Hh4YEePXpg0aJF\nWLFiBb744gt4eHhgwoQJGDRoEIDidbh37NiBpKQkJCUlYcSIEfj4448xd+5czJw5ExqNBmFhYfj4\n448RGBj4uA8rEZHoLC2t4O/fEP7+DfHssxEAir+cvHDhHE6dOomTJ08gM/P+PBs3NBrc0CjwY2E+\nmltaIdjSmmOyqdYpnXDsZsm8BBmFCuTrBOTqtFVONlbK0tIK3t4+8PHxhZeXd8ka1t6ws7PjhIBE\nD8BgTbXewIEDMXDgwCq3CQgIwKpVqyp9PjExEYmJhrNYBgYG4syZM/rHVlZWWLNmjcE2ZZ8vFRQU\nhC1btpRr//e2PXr0QI8ePSqsx8nJCVu3bjVoc3Nzw/z58yv9DP369UO/fv0qfZ6IqKazsrJCcHAo\ngoNDERMzBNevX8PRoxlIT/9Bv9a1UhBwTFmIE8pCNLe0QisrG47FphpJpdMhu2QMdFZJD3SWVgtV\nmbHQ1zSV90k7OTnD19cPvr7+8PHxg4+PL1xcXNn7TPSIGKyJiIioVvLy8oaX1wC8+GJ/nD37Bw4c\n2Ivjx49CEARoAZxUKfGHSomWVtZoaWUDC/bIkQlS6XTI0WmLJxPTapCjLf45v5pjoc3MzODh4QUf\nH199kPb19YNcbvuEKyeqWxisiYiIqFYzMzNDUFAwgoKC8c8/t/DNN3tw+PABaDTFY0x/URbinFqF\njtb10MBCxlteSRTqklu4i4OzRr9+dHUDNFC8soi3ty+8vX3h6uqKJk0C4enpBQsL2YN3JiKjMFgT\nERFRnVG/vhuGDBmOXr364Ouvd+LAgf3Q6XTI0+nwTX4eGljI0NlGzvHX9MQUCQJySpazytZqkFly\nu/ZOxb1qv4aVlTU8Pb1K7srwhpeXD7y9fWBnZ88vhohEwmBNREREdY6zswvGjk3ECy/0xqpVq3D+\n/FkAwOUiNW7cy0EXGzkCZJYiV0k1mbZkOats/Rjo4iB9T1f9HmgrK2t4eXnBw8NbH6Q9Pb3g5OTM\nAE1kYhisiYiIqM7y9/fHhAnvIT39B2zZkob8/HyoBAHf5uchqKgIz9jU4/JcVCVdyWRh14vUuFKk\nRrZWg2ydFrlaLaoboWUyS3h7+8DT0xteXl76GbkdHZ0YoIlqCAZrIiIiqtMkEgk6dnwWzZu3QFra\nf/Hrr8cAAH+olbilLULPenawk0pFrpLEVrqUVVZJz3N2mf8DQLqy4IGvYW5uDk9PL3h6esPb2wde\nXj7w8vKGs7MLAzRRDcdgTURERATA3t4BiYnJOHhwL7Zs2QSNpghZWi0+z8tFj3q28OIEUHWGIAjI\n02pxS6vBPxoNbms1yNJqDJayqopEIkH9+m4G4blZsybw8PBAXp7qCVdPRGJgsCYiIiIqIZFI0LVr\nNwQENMaKFYvxzz+3oBIE7FLcQ2cbOYIsrcQukZ6QfEGr//lLxT0oUb0Q7eLiCjc3N/j5NdTfwu3p\n6VluJm4HB5vHWi8RmRYGayIiIqJ/8fX1x5QpM7Fy5WKcOXMaAoDvCxQo0OnQ2spa7PLoMbmn1eJP\ntQqXilS4o70frCsK1XK5LXx8fEuWsyqehdvDwwtWVvyyhYgYrImIiIgqJJfLkZycgi1b0rB//3cA\ngKPKAuTrdGjGGcNrLJ0g4FKRGn+olLiuKapwGwsLCzRs2AgBAY3RsGEA/P0bciIxIqoSgzURERFR\nJaRSKQYPHgZHRyds2/YpgOJJzfJ12gfsSaZGIwg4q1LihKoQeRUseeXl5YNmzZqjVatwBAQ0hoWF\nhQhVElFNxWBNREREVAWJRIIXXngJdnb2WL9+DQRBwN8lPZ26ak5mReIRBAF/FqnwU2EBFP8K1C4u\nrujUqQvatesANzcPkSokotqAwZqIiIioGp59NgIWFjKsWbMcQkmg/lVViB7mvJwyVdlaDQ7mK3BL\nqzFob9asOaKieiMoqAXMzMxEqo6IahOeCYiIiIiqqX37jjAzM0Nq6jLodDpcLlLjx8J8NLHgmGtT\nohME/KosxC/KApTtow4MDMKAATFo2LCRaLURUe3EYE1ERET0ENq2bQ+dTqfvuf5dpYSGd4SbDIVO\ni735ebipud9L7epaH7GxQxAa2ooTkBHRE8FgTURERPSQ2rfvCKWyEGlp/wUAnFErRa6IAOBakRrf\n5edBWXKrvkQiwfPP90T//tGw5BrkRPQEMVgTERERPYKIiOeQn5+Pbds+0bdlaorgyjHXovhDpcSh\nAoV+BWp7eweMHv0GmjZtJmpdRFQ38C8/ERER0SPq1asPsrPv4MCBvQCAjMJ8eJpbwJnh+qkRBAEZ\nhQU4oSrUtzVr1hzx8Ymwt7cXsTIiqks4DSIRERHRI5JIJBg0aCiaNg0CAGgAfJV/D4UVrJNMj59O\nEHCgQGEQqiMjuyE5OYWhmoieKgZrIiIiIiNIpVK8+eZ4eHp6AwDydDp8m38PWq5x/URpBQHf5efh\nnFoFoPhLjpiYIRg8eBikUqnI1RFRXcNgTURERGQkKysrJCW9A1tbOwDADY0GPxbmi1xV7aUVBHyT\nn4dLRWoAxV9uxMePRffuUZz1m4hEwWBNRERE9Bi4uLhi7NgkfW/paZUS51ScLfxx0wkC9ubn4e+S\nUG1ubo6EhCS0a9dR5MqIqC5jsCYiIiJ6TJo0CcSgQUP1jw8VKJBVZj1lMo5OELC/QKHvqTY3N8e4\ncW8jLKy1yJURUV3HYE1ERET0GEVEPIeOHZ8FUDyZ2df596ASOJmZsQRBwOGCfPxZMqZaKpUiISEJ\nwcGhIldGRMRgTURERPRYSSQSDBnyGry9fQEA93Q6HMxXQOBkZkb5RVmAP9TFt9ZLJBK8/vobaNmy\nlchVEREVY7AmIiIieswsLS0xdmwSrKysAQCXitT6UEgP75SyEL8o7y+pNWzYKISHtxWxIiIiQwzW\nRERERE+Am5s7hg0bpX/8Y0E+crUcb/2wrhepcbjMDOsDBsTg2WcjxCuIiKgCDNZERERET0jbtu0R\nEfEcAEALIKOwQNyCaqCflPePWbduUYiK6iNiNUREFWOwJiIiInqCYmKGwNvbBwCg4CRm1VZUMia9\n9IiFh7fFK68M5jrVRGSSGKyJiIiIniCZTIbXX38DMplM33atZLkoqtzxMj3VjRs3xahRCTAz46Ur\nEZkm/nUiIiIiesK8vLwREzNE//iYsgB5Oq2IFZkuTUlPtaLk/25uHnjjjWRYWMiq2o2ISFQM1kRE\nRERPQZcukWjdug0AoAjAvvw86LgElwFBEPBrmZ5qW1s7vPXWu5DLbUWsiojowRisiYiIiJ4CiUSC\noUNHwdHRCQBwU6PBr2WWkCLgd5USf2uKAAAWFhYYN+5t1K/vJnJVREQPxmBNRERE9JTI5XKMHDlG\nPwHXL8oC3CoJkgScL1IBKP4SIj4+EQEBjUWuiIioehisiYiIiJ6iZs2ao0ePFwAUz3i9Nz8P6jo+\nW3i2xnB975iYOP1t80RENQGDNREREdFT1r//QPj5+QMA7ul0+KEgX9yCRPabWqn/+fnne6JbtygR\nqyEiengM1kRERERPmbm5OeLjEyGTWQIAzqlVuKBWiVzV06comRn9/lrV7RATEydeQUREj4jBmoiI\niEgEHh6eiI29vwTX9wUK5NexJbhOlJm8rWnTZhg1agzXqiaiGol/uYiIiIhE0rlzV/1YYrUg4OfC\nggfsUTuoSpYZK+2j9/b25VrVRFSjMVgTERERiaR0CS4nJ2cAQFYd6bH+tcwXCPXru+Htt1NgY1NP\nxIqIiIzDYE1EREQkIrlcjvj4sfoluADgrrZ2Bmxlyezn+SjusXZ0dML48ZNgb+8gZllEREZjsCYi\nIiISWZMmgXjppZf1j39XFVaxdc2kFHQ4XKDQP7a3d8D48ZPg4uIqYlVERI8HgzURERGRCejduy+a\nNWsO4P7Y49rkYL4Cd3XFPdZyuRzvvDMZHh6eIldFRPR4MFgTERERmQAzMzPExyfWutui80rGjStK\nbgO3tbXDhAlT4enpJWZZRESPFYM1ERERkYmwt7fH6NFvGIy3vqEpErEi49zUFOFAfp7+sbOzCyZN\nmg4vL28RqyIievwYrImIiIhMSNOmzRAdPUj/+KfCfNzWaESs6NH8qVZhZ95dqEsee3h4YuLEaXBz\ncxe1LiKiJ4HBmoiIiMjE9OjRCx06dAIAaAF8pbiHQqHmzBT+p1qFvfl50JU8btIkEBMnTtcvK0ZE\nVNuYi10AERERERkqXt96JG7evIG//rqEfEGHHwryxS7rgVRC8TJaV8rcvt6hQycMGzYKFhYWYpVF\nRPTEsceaiIiIyATJZDK88UYyHB2dAEA/o7a2JLyamhtFRfip8H74l0gkGDhwEEaOHMNQTUS1HoM1\nERERkYlydHRCcnIKbGxs9G1HlQUmGa6PKPNR2k9ta2uH8eMnoWfP3gYTsRER1VYM1kREREQmzMvL\nG+PGjYe5eXGv7zVNETKUpnNb+I//ukU9ODgEM2bM1q/JTURUFzBYExEREZm4Jk0CkZDwJszNi6fH\nuWkCs4T/piwEAChR3HtuYWGB2NghSEp6Fw4OjmKWRkT01DFYExEREdUALVu2QmJisr7nulShoKtk\nj8dPVeYW9Du6+7OUN2vWHP/5z4fo1i0KZma8vCSiuod/+YiIiIhqiJCQlnjzzfGwtLTUtx0tLHji\n71sa3o8UGt72bW/vgBEjRmP8+Elcn5qI6jQut0VERERUgzRv3gKTJs3AwoUfIjc3B0VlntM95jnN\nsrQa/K4sxFm1qvj1S9otLCzQrVsUXnjhJVhbWz/eNyUiqoEYrImIiIhqGB8fX0yf/gGWLJmPS5cu\n6NtPqorHPWsFAdJHnI1bpdPhUpEaZ1RK3NIajuWWSqXo3LkLBg+Og5mZ1aN/ACKiWobBmoiIiKgG\nsrOzx6RJ0/Htt3uwbdtn0Go1+t7rrxX34CuTVfu1FDotTioLcbVIjWuaIvx71LalpSU6d45E9+5R\nCAjwBQDk5j75W9CJiGoKBmsiIiKiGsrMzAw9e/ZGSEgYPvlkI06dOgkAKISAcyW3b5f6VVkAO6kU\nuZriScdOq5RQ6Yoj9E8lM3z/m7u7B7p0icQzz3SBXC5/gp+EiKhmY7AmIiIiquE8Pb2QnJyCCxfO\nY+fO7Th9+iQEwXDA9cUiNcoOyM7UVrxkl52dPcLD26Jt2w5o3LgpJI94SzkRUV3CYE1ERERUSzRq\n1ATJyROQk5ODo0cz8Ntvx/H335dRUFD5bdv29g7w8fFF06ZBCApqDj+/Blwyi4joITFYExEREdUy\njo6O6N49Ct27R0EQBGRl3UFubg4KCwuhVqtgbW2DevXqwcnJGba2dmKXS0RU4zFYExEREdViEokE\nLi6ucHFxFbsUIqJai/f5EBERERERERmBwZqIiIiIiIjICAzWREREREREREZgsCYiIiIiIiIyAoM1\nERERERERkREYrImIiIiIiIiMwGBNREREREREZAQGayIiIiIiIiIjMFgTERERERERGYHBmoiIiIiI\niMgIDNZERERERERERmCwJiIiIiIiIjICgzURERERERGRESSCIAhiF0FERERERERUU7HHmoiIiIiI\niMgIDNZERERERERERmCwJiIiIiIiIjICgzURERERERGRERisiYiIiIiIiIzAYE1ERERERERkBAZr\nIiIiIiIiIiMwWBMREREREREZgcGaiIiIiIiIyAgM1kRERERERERGYLAmoirpdDqsW7cOvXr1QlhY\nGF544QV8/PHHYpdVY6jVakRFRWHixIlil1IjpKenY+DAgQgNDUVkZCSWLl0KQRDELsuk6XQ6rFmz\nBt27d0dYWBgGDhyIjIwMscsyWfv27UOrVq3Kta9cuRJdu3ZFy5Yt8dprr+HSpUsiVGe6KjpuKpUK\nCxcu1P/u9evXD3v27BGpQtNT2e9aqZycHHTs2BHLli17ilWZvsqO25dffok+ffogJCQEPXr0wKZN\nm0SoznRV9m903rx5iIyMRHh4OIYOHYozZ86IVKFpqM517aOeDxisiahKy5cvx6JFi9C3b1+sXLkS\nUVFR+OCDD/Df//5X7NJqhGXLluHy5ctil1EjHDt2DKNGjUKjRo2QmpqKuLg4rFmzBitWrBC7NJP2\n0UcfYdGiRRgwYABWrFgBHx8fjBw5EmfPnhW7NJNz/PhxvPvuu+Xaly1bhtWrV2PkyJFYuHAh8vLy\nMHz4cCgUChGqND2VHbdp06Zhy5YtGDZsGFasWIHw8HAkJyfj66+/FqFK01LZMStr1qxZyMnJeUoV\n1QyVHbc9e/Zg/PjxiIiIwJo1axAVFYVZs2bhiy++EKFK01PZcXv//fexZcsWjBo1CosXL4ZUKsXQ\noUNx69YtEao0DQ+6rjXqfCAQEVVCq9UKrVq1EpYsWWLQPmPGDKFjx44iVVVznD59WmjZsqXQoUMH\nISUlRexyTN6gQYOE0aNHG7TNnz9fGDJkiEgV1QxRUVEGv19arVaIiIgQZs6cKWJVpkWlUgmpqalC\ncHCw0LZtWyEsLEz/nEKhEMLCwoSPPvpI33b37l2hVatWwrp160So1nRUddyysrKEpk2bCtu2bTPY\nJz4+XoiOjn7apZqMqo5ZWfv27RPatWsnhIaGCkuXLn3KVZqeBx23iv6mjR8/XnjnnXeeZpkmp6rj\nptPphJYtWxr8fikUCqFFixbC2rVrxShXdA+6rjX2fMAeayKqlEKhQL9+/dCtWzeD9gYNGiA7OxtK\npVKkykyfVqvF5MmTMXLkSNSvX1/sckxednY2jh8/jldeecWgPTk5GWlpaSJVVTOo1WrUq1dP/9jM\nzAxyuRy5ubkiVmVaDh06hI8++ggpKSmIi4szeO63335DYWEhunbtqm+zs7NDmzZtcPjw4addqkmp\n6rjl5+cjNjYWzzzzjEF7gwYNcO3atadZpkmp6piVUigUmDFjBlJSUmBhYfGUKzRNVR23U6dOITMz\ns9z5Yd68eZg7d+7TLNPkVHXcdDodioqKDM4PNjY2kMlkdfb88KDr2oyMDKPOBwzWRFQpOzs7TJky\nBYGBgQbt+/fvh7u7O6ysrESqzPSlpqZCo9Hg9ddfF7uUGuH8+fMAAEtLS4wePRohISH6sYcCx1hX\nafDgwdixYwfS09OhUCiwYcMGXLx4Eb179xa7NJMREhKCffv2YfDgwZBIJAbPlQ7V8PX1NWj38fHB\nX3/99bRKNElVHTcfHx9MmzYNbm5u+jadTodDhw6hYcOGT7tUk1HVMSs1Z84cNG7cGH379n3K1Zmu\nqo7buXPnAABFRUUYMmQIgoODERERgS1btohRqkmp6rhJpVLExMRg48aN+P3333Hv3j3MnTsXKpUK\nPXv2FKlicT3oujYzMxPAo58PzB9bpURUJ2zduhXp6el47733xC7FZF28eBGrV69GWloazM35Z7Y6\nsrOzIQgCUlJS0Lt3b7z22mv4+eefsXLlSlhZWWHkyJFil2iyYmNjkZGRgeHDhwMAJBIJkpKSEBER\nIW5hJqSqu0by8/Mhk8nK/VutV69enR9j/bB32yxevBiXL1/GhAkTnlBFpu9Bxyw9PR179uzB7t27\nn1JFNUNVxy07OxtmZmZISEjAoEGDkJiYiL1792LGjBlwcHBAVFTUU6zUtDzo923s2LE4ceIEoqOj\nARSH7dmzZ6NZs2ZPo7waYevWrcjIyMCUKVOMPh/wio+Iqm3nzp2YPn06oqKiMHjwYLHLMUmCIGDK\nlCmIjo5GSEiI2OXUGBqNBgDw7LPP4p133gEAtG3bFjk5OVi5ciVGjBhRae9PXVc6Y+mMGTPQsGFD\nHDlyBEuXLoWtrS0GDRokdnkmTxCESn+3zMx4Y191paamYvXq1RgxYgS6dOkidjkmSalUYurUqRg3\nbhw8PT3FLqfG0Gg00Gq1eOWVVxAfHw8AaNeuHa5evYrly5fX6WBdFaVSiZiYGBQVFWHevHmoX78+\nvv32W0yaNAlyuRyRkZFilyi60uvanj17YvDgwVi9erVR5wMGayKqlnXr1mHu3Ll4/vnnMW/ePLHL\nMVlpaWnIzMzEmjVroNVqDW5j1mq1kEqlIlZnumxsbAAAnTp1Mmjv2LEjNm/ejGvXrsHHx0eM0kza\nsWPHcPz4cSxZsgTdu3cHALRp0wYajQbz5s1Dv379YG1tLXKVpk0ul0OtVpf795mfnw9bW1sRK6s5\nZs+ejQ0bNiAuLk7/xRiVt2DBAv0XXmXPD4Ig8PxQBRsbG0gkkgrPD3PnzoVGo+HdYRX45ptvcOXK\nFXz++edo3rw5gOIvJHJycjBr1qw6H6wruq419nzAr2KJ6IEWLFiADz/8EH379sXixYt5AqvC3r17\nkZmZifDwcDRv3hzBwcE4d+4ctm/fjuDgYNy4cUPsEk2Sn58fgOIxdGWV9mSzt7pimZmZkEgkCA0N\nNWhv3bo1lEolrl+/LlJlNYe/vz8EQSg34dbVq1fRoEEDkaqqGQRBwDvvvIO0tDSMGTMGU6ZMEbsk\nk7Z3716cOXMGISEh+vODQqHA8uXLERwcLHZ5Jquq84MgCLyzpBK3bt2CVCrVh+pSrVu3xs2bN1FY\nWChSZeKr7LrW2PMBfxOJqEobNmxAamoqhg0bhtmzZ/ME9gAzZ87E559/jm3btun/8/PzQ9euXbFt\n2zbOEF6JRo0awc3Nrdz6twcPHkT9+vXh7e0tUmWmrfQi4NixYwbtJ06cgFQqhbu7u0iV1RxhYWGQ\nyWTYu3evvu3u3bs4evQoOnToIGJlpm/27NnYvXs3UlJS8Oabb4pdjslbvXp1ufODtbU1Bg4ciG3b\ntoldnskKDw+HTCYrd344cOAAWrRoweuSSvj7+0Or1eLkyZMG7SdOnICTk1OdvZupqutaY88H7HYi\nokrdvn0b8+fPR9OmTREVFYXffvvN4Hme0Mrz9/cv12ZlZQUHBwcEBQU9/YJqCIlEgrfeegsTJ07E\n9OnT0aNHDxw5cgQ7duzAjBkzxC7PZDVv3hwRERGYMWMGcnNzERAQgJ9++gkfffQRhg4dCrlcLnaJ\nJs/GxgZxcXFYvHgxJBIJ/Pz8sGrVKtjZ2WHAgAFil2eyTp8+jY0bN6Jjx45o2bKlwfnBzMwMLVq0\nELE609S4ceNybVKpFPXr1+f5oQpyuRyvv/46li9fjnr16qFt27b48ssvcezYMaSmpopdnsmKjIxE\nYGAgkpKSMG7cOLi5uWHfvn3YvXt3nZ2A9kHXtcHBwUadDxisiahSP/zwA4qKinD+/HnExMSUez49\nPR0ODg4iVFazSCQS3spcDX379oVMJsOqVauwfft2uLu7Y8aMGfrZTKliS5YswcKFC7F69WrcvXsX\nfn5+mDp1KgYOHCh2aSbr3/8ek5OTIZVKsXbtWhQUFKBVq1aYO3cuv5iowoEDBwAAR44cwZEjRwye\ns7a2xvHjx8Uoy+Q86G8/zw8V+/cxSUhIgJ2dHTZu3Ii1a9fC398fS5cuLTfuuq4re9zMzc2xfv16\n/XrfSqUSAQEBWLJkSbl1nOuK6lzXGnM+kAhcIJSIiIiIiIjokfEeTiIiIiIiIiIjMFgTERERERER\nGYHBmoiIiIiIiMgIDNZERERERERERmCwJiIiIiIiIjICgzURERERERGRERisiRghuTgAAAn4SURB\nVIiIiIiIiIzAYE1EREQ1TmRkJEaNGiV2GaJ50p//6tWr+p9//vlnBAYGYs+ePU/s/YiIajoGayIi\nIiLSe++99zBz5kz944CAAMybNw9hYWEiVkVEZNoYrImIiIhI78cff4QgCPrHzs7O6NOnDzw8PESs\niojItDFYExERERERERmBwZqIiIhqvPT0dMTFxaFly5YIDw/H6NGjcf78+XLbbd26Fb169UJoaCj6\n9++PjIwMdO/eHRMnTnyo9ysdd3zkyBEkJSUhLCwMnTp1wuzZs6FSqfTbLV26FG3atMHu3bvRvn17\ntG3bFgcOHABQPI45KSkJ7dq1Q2hoKKKjo7F3795y73Xo0CEMGDAALVu2RO/evZGenl5um8rGXAcG\nBmL69OkGbfv370dsbCzCwsLQuXNnTJ06FXfv3tVvf/PmTRw+fBjNmjXD0aNHKxxjXVhYiA8//BAR\nERFo0aIFevTogdTUVOh0unKf/cKFCxg+fDjCwsLQsWNHzJo1C2q1+qGONxGRqWOwJiIiohrtu+++\nw4gRI3Dv3j0kJSVh5MiROH36NF555RWcPXtWv9369evx3nvvwcvLCxMmTEDjxo0RHx+PO3fuPPJ7\nT548GVeuXEFycjKee+45pKWlYdy4cfrnJRIJCgsLMWfOHIwePVofaK9evYro6GhkZGRgyJAhePvt\ntwEAiYmJ2Lp1q37/H374AWPGjIEgCBg/fjw6deqEhIQEZGVlPVK9O3bswNixY6HVapGcnIzo6Gjs\n2rULCQkJAIB58+bBwcEBgYGBmDdvHgICAvSfo5RarcawYcOwceNGREZGYtKkSQgMDMSCBQswYcIE\ng8+uUqkwbNgwuLu7Y9KkSWjTpg02bdqEZcuWPVL9RESmylzsAoiIiIgelVarxX/+8x/4+fnh888/\nh0wmAwD07dsXUVFRmDVrFjZt2gSFQoGlS5eiS5cuWL16NQBg0KBBcHZ2xtq1ax/5/a2srLBlyxZY\nWloCAFxcXLBixQpkZGSgffv2+hoTEhIwaNAg/X7Tpk2DQqHArl270KBBA309MTExmDNnDqKioiCX\ny7FgwQJ4e3tjy5Yt+s8WFBSEd99996Fr1el0mDt3LkJDQ7Fp0yaYmxdfBnp6emLKlCk4evQo+vTp\ng4ULF8LV1RW9e/fW71t2zPXWrVtx8uRJzJo1Cy+//DIAIDY2FrNmzcLHH3+Ml19+Wf/Z1Wo1YmJi\nkJiYCACIjo7GCy+8gK+++grJyckP/RmIiEwVe6yJiIioxjp9+jRu376NuLg4ffAEAHd3d7z00ks4\nfvw47t69i4yMDBQUFODVV1812H/kyJFGvX9cXJw+VAPA0KFDIQgCvv/+e4PtWrdurf9Zp9Ph0KFD\neO655/ShGgDMzc3x2muvoaCgABkZGcjOzsYff/yBF1980eCz9enTB/b29g9d66lTp5CVlYWBAwfq\nQ3Xp6/3vf/9DaGhotV7n4MGDcHJyQv/+/Q3aS3vW9+3bp2+TSCTo1q2bwXaBgYFG3SVARGSK2GNN\nRERENda1a9cAAP7+/uWeCwgIgCAIuHnzJq5cuQIA8PX1NdjGyckJdnZ2j/z+DRs2NHhsZ2cHe3t7\nXL9+vdz7lMrJyUFhYWGVNd+4cQNubm4AAG9vb4NtJBIJ/Pz8HrrWGzduQCKRlDsGMpkMzZo1q/br\nXL9+HT4+Pga3hwPFs4fb29vj5s2bBu1lP3vp+5Udi01EVBuwx5qIiIhqJa1WCwCwsLCARqPR//xv\nZXuDH4ZEIqnw9XQ6HaRSqUGbmdn9S66yt1VXtO+/66xooq/qBNN/b/O4wmxV9Wu12nLHpOxnJyKq\nrfiXjoiIiGosLy8vAMDly5fLPXfp0iVIJBLUr18fPj4+AIC//vrLYBuFQoHs7OxHem9BEHD16lWD\ntpycHOTl5ZXrFS7LyckJ1tbWldYMFN/K7uXlBYlEUq5mAOV6xKVSabkA/u8Jztzd3SEIgr6Xv5Ra\nrUZSUhIOHz5cac1leXl54erVq+UC9p07d6BQKODu7l6t1yEiqk0YrImIiKjGat68OVxcXLBp0yYo\nlUp9e2ZmJnbt2oVWrVrB1tYWnTp1gqWlJT755BOD/Tdv3mxUT+6nn35qsP/69eshkUjw/PPPV7qP\nmZkZnn32Wezfv18fpAGgqKgI69atg7W1Ndq1awcnJyeEhYVh+/btyMvL02/31VdfIScnx+A1XVxc\ncPHiRX0vfel2ZbVo0QKOjo7Ytm2bQc1ff/01vv76a/24a6lUWuUx6dq1K7KysrBt2zaD9tWrV0Mi\nkaBLly6V7ktEVFtxjDURERHVWObm5pg8eTLefvttREdH4+WXX0ZhYSE2b94MAJg0aRIAwNbWFmPH\njsX8+fMRHx+PiIgInDlzBrt27YJEIik3Xri6zpw5g6FDh6Jnz544deoUtm/fjn79+qFFixZV7vf2\n22/jp59+QmxsLOLi4mBvb4+dO3fi9OnTmDp1KmxsbAAAKSkpGDJkCKKjoxETE4OsrCxs2rSp3ORl\nvXv3xqxZsxAfH4+ePXvi3Llz+PLLL+Hs7KzfxsLCAu+++y4mTZqEIUOGoFevXrh16xY2btyIzp07\no0OHDgCKe9RPnz6NTz/9FJ07dy5Xe3R0NLZt24bp06fj9OnTaNKkCTIyMvDNN9+gV69e+hnBiYjq\nEvZYExERUY1TNgxHRUUhNTUVtra2WLx4MdavX4+wsDB89tlnCAoK0u8zatQoTJ48GX/99RfmzJmD\nM2fOIDU1FYIgVDhWujomTpwIe3t7/N///R9+/vlnJCcn44MPPnjgfn5+fvj000/Rrl07bNq0CYsW\nLYJMJsOKFSsQGxur3y4kJARpaWlwdXXF4sWL8c0332DmzJlo1KiRwZcBsbGxSEhIwMWLF/H+++/j\n/PnzWLduXbmJw/r164clS5ZAqVRi7ty52L17N2JjY7Fo0SL9NgkJCbCxscEHH3yAY8eO6Y93KZlM\nhrS0NAwaNAj79+/HnDlzcOHCBaSkpGD+/PnVOm6P+kUGEZGpkghVzUBBREREVAuo1Wqo1WrI5XKD\n9tzcXLRv3x4JCQkYN25ctV/v559/xquvvooFCxagV69ej7tcIiKqYdhjTURERLXe7du3ER4ejo0b\nNxq0f/XVV5BIJGjevLlIlRERUW3AMdZERERU63l5eSE8PByLFi3C7du34evriz///BOffPIJWrVq\nhcjISJw7dw7nzp174Gu5uLjoJ/oiIiICGKyJiIiojli5ciVWrFiBPXv24Pbt23BxcUFcXBwSExMh\nkUjw3XffYfny5Q98nTZt2uj3ISIiAjjGmoiIiIiIiMgoHGNNREREREREZAQGayIiIiIiIiIjMFgT\nERERERERGYHBmoiIiIiIiMgIDNZERERERERERmCwJiIiIiIiIjLC/wMTxO7SZvZeGAAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x115b974e0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.subplots(figsize = (14,8))\n", "sns.set_context('poster')\n", "sns.violinplot(y='Company_Type',x='log_production', data=df,\n", " split=True, inner = 'stick',)\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(['Independent Producer Operator', 'Operating Subsidiary',\n", " 'Contractor'], dtype=object)" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.Company_Type.unique()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## create dummies\n", "+ the function creates 3 new colunmns for each category" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Contractor</th>\n", " <th>Independent Producer Operator</th>\n", " <th>Operating Subsidiary</th>\n", " </tr>\n", " <tr>\n", " <th>MSHA ID</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1517941</th>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>1512753</th>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>1519318</th>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>3602733</th>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>4103428</th>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Contractor Independent Producer Operator Operating Subsidiary\n", "MSHA ID \n", "1517941 0.0 0.0 1.0\n", "1512753 0.0 0.0 1.0\n", "1519318 0.0 0.0 1.0\n", "3602733 0.0 1.0 0.0\n", "4103428 0.0 0.0 1.0" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.get_dummies(df['Company_Type']).sample(50).head()" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mine_State 29\n", "Mine_County 164\n", "Mine_Status 5\n", "Mine_Type 3\n", "Company_Type 3\n", "Operation_Type 2\n", "Union_Code 7\n", "Coal_Supply_Region 8\n" ] } ], "source": [ "# turn eqch categorical variable into a dummy variable\n", "\n", "dummy_categoricals = []\n", "for categorical in categoricals:\n", " print(categorical,len(df[categorical].unique())) \n", " drop_var = sorted(df[categorical].unique())[-1]\n", " temp_df = pd.get_dummies(df[categorical],prefix=categorical)\n", " df = pd.concat([df,temp_df],axis = 1)\n", " temp_df.drop('_'.join([categorical, str(drop_var)]), axis = 1, inplace = True)\n", " dummy_categoricals +=temp_df.columns.tolist()" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['Mine_State_Alabama',\n", " 'Mine_State_Alaska',\n", " 'Mine_State_Arizona',\n", " 'Mine_State_Arkansas',\n", " 'Mine_State_Colorado',\n", " 'Mine_State_Illinois',\n", " 'Mine_State_Indiana',\n", " 'Mine_State_Kansas',\n", " 'Mine_State_Kentucky (East)',\n", " 'Mine_State_Kentucky (West)']" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dummy_categoricals[:10]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Build our model" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.cross_validation import train_test_split\n", "from sklearn.ensemble import RandomForestRegressor" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "213" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(dummy_categoricals)" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(1061, 1210)" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(319, 1210)" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test.shape" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": true }, "outputs": [], "source": [ "train, test = train_test_split(df, test_size = 0.3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": true }, "outputs": [], "source": [ "rf = RandomForestRegressor(n_estimators=100, oob_score=True)" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,\n", " max_features='auto', max_leaf_nodes=None, min_samples_leaf=1,\n", " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", " n_estimators=100, n_jobs=1, oob_score=True, random_state=None,\n", " verbose=0, warm_start=False)" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rf.fit(train[features + dummy_categoricals], train[target])" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAIkCAYAAADBMVtOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Wl8lNW9B/DfM/uafbIvLBIWMYpAFZEii0WhrWvrBhW8\nWL1a772t1drPpy96t3pbW20r1pZaUVHr2t5q9aoYsAKKCyBBDET27NtkmX15nnNfDDNk8kxgApNk\nkvy+L1rn2ebEQeaXc/7nHEkIIUBEREQ0wjQj3QAiIiIigKGEiIiI0gRDCREREaUFhhIiIiJKCwwl\nRERElBYYSoiIiCgt6Ea6AcMpFJLR3e0d6WbQIGRlWQCAn9sow89tdOLnNjqNxs/N4bAnPM6eEiIi\nIkoLDCVERESUFhhKiIiIKC0wlBAREVFaYCghIiKitMBQQkRERGmBoYSIiIjSAkMJERERpQWGEiIi\nIkoLDCVERESUFhhKiIiIKC0wlBAREVFaYCghIiKitMBQQkRERGmBoYSIiIjSAkMJERERpQWGEiIi\nIkoLDCVERESUFhhKiIiIKC0wlBAREVFaYCghIiKitMBQQkRERGmBoYSIiIjSAkMJERERpQWGEiIi\nIkoLDCVERESUFhhKiIiIKC0wlBAREVFaYCghIiKitMBQQkRERGmBoYSIiIjSAkMJERERpQWGEiIi\nIkoLDCVERESUFhhKiIiIKC0wlBAREVFaGPFQoigKNmzYgOXLl2PWrFlYsWIFnnvuubhrHn/8cSxa\ntAgXXHABbrvtNhw+fHiEWktERERDZcRDyWOPPYZf//rXuPrqq/H444/jyiuvxM9+9jP86U9/AgCs\nW7cOf/jDH7B27Vo88sgjcLlcWLNmDdxu9wi3nIiIiFJJN5JvrigKnnrqKaxduxbf/e53AQAXX3wx\nnE4nnnzySdx444148skncc899+CWW24BAMyePRuLFi3CK6+8gtWrV49g64mIiCiVRrSnxO1245pr\nrsHll18ed3zixIlwOp3YsWMHfD4fFi1aFDuXkZGBuXPnYuvWrcPdXCIiIhpCI9pTkpGRgZ/85Ceq\n45s3b0ZhYSFaWloAAOXl5XHny8rKsHnz5mFpIxEREQ2PEa8p6e/ll1/Gjh07sHbtWng8HhgMBuh0\n8dnJarWypoSIiGiMGdGekv5ee+01/PSnP8UVV1yBW265BX/4wx8gSVLCazWawecpnU6DrCzL2TaT\nhpFOF/mc+bmNLvzcRid+bqPTWPrc0qanZMOGDfjRj36ExYsX46GHHgIA2Gw2BINByLIcd63H44Hd\nbh+JZhIREdEQSYuekocffhjr16/HNddcg//+7/+O9YJMmDABQgg0NDSgoqIidn19fT0mTpw46PcJ\nhxV0d3tT1m4aetHkz89tdOHnNjrxcxudRuPn5nAk7lgY8Z6Sp59+GuvXr8fq1avx4IMPxg3LzJo1\nCwaDAe+++27sWE9PDz755BPMmzdvJJpLREREQ2REe0ra29vxq1/9ClOnTsWVV16JPXv2xJ2fOXMm\nVq5cid/85jeQJAkVFRX4/e9/j4yMDFx//fUj1GoiIiIaCiMaSrZt24ZQKIS6ujrceOONqvMffvgh\nfvCDH0Cr1eLJJ5+E1+vFhRdeiF/84hew2Wwj0GIiIiIaKpIQQox0I4ZLKCSPqjE3Gp1jpcTPbbTi\n5zY6jcbPLW1rSoiIiIgAhhIiIiJKEwwlRERElBYYSoiIiCgtMJQQERFRWmAoISIiorTAUEJERERp\ngaGEiIiI0gJDCREREaUFhhIiIiJKCwwlRERElBYYSoiIiCgtMJQQERFRWmAoISIiorTAUEJERERp\nQTfSDSAiIqIzJ8syFEUZ6WakBHtKiIiIRqlQKIRDxxrR0+se6aakBEMJERHRKOTz+XC8qR0mc8ZI\nNyVlOHxDREQ0yrhcbrR3uWG1Z0GSJABipJuUEgwlREREo0hXdzd63CFYbGOnhySKoYSIiGiUaG3r\ngD8MmCzWkW7KkGAoISIiSnNCCDS1tEGRDDCajCPdnCHDQlciIqI0pigK6ptaILRm6A3GfucEjrW4\n4AuER6h1qcWeEiIiojQVDodR39wGozkDGk18P0JThwfPv1sHZ28Aep0GD9xyISYWje46E/aUEBER\npSG/34/jTW0wWTJVgeTzw534w2v74OwNAABCYQXvflo/Es1MKfaUEBERpRm324M2Zy8stqy440II\nbN7ViOqdDap7Mq2jv9aEoYSIiCiNdPf0oKvXD4stM+54MCzjlfcO4fPDTtU9FYU2fGP+hGFq4dBh\nKCEiIkoT7R2d8AQFzFZ73PFudwDPvlOHpg6P6p4LKx24bflkmI2j/yt99P8EREREo5wQAi2t7QhB\nB5PJHHfueKsLz75TB7cvpLrv8jllWDG/AgY9V3QlIiKis6QoChqb2wCdGQa9Pu7crrp2/PX9w5CV\n+NBh0Gnw7cXnYMaEHC4zT0RERGcvHA6jobkNepMdWq02dlxRBN7++Di21jSr7smyGbBq2VQU5Y69\nVV0ZSoiIiEZAIBBAY2snzNbME70dEf5gGC9WH8SB+m7VPRMK7bj58krYzHrVubGAoYSIiGiYuT0e\ntHWqp/x29vjxzNsH0N7tU90zZ1o+vjl/AnTasbvEGEMJERHRMBpoyu+hxh48/24dfAE57rgkASvm\nVWDeuYVxPSpRoWAQdpNhSNs8XBhKiIiIhkmiKb9CCOz4ohVvfHAU/epZYTJocdPSKZhSmoVEfB4X\nHCXZyMrKRHe3dyibPiwYSoiIiIaYEAKtbR0ICm3clF9ZUfD69qP4uLZNdU9epgnfWTYVeVlm1TlF\nUeD39qLQkY3cnMSBZTRiKCEiIhpCcVN+DScLVD3+EJ7f9CWONPeq7plSmokbl0xJuCBaOBiEIvtQ\nUVIQN2NnLGAoISIiGgRFCGyvaUZDuwelDivmVxVBk6DWAzixy29TKwzmjLgA0eL0YuPbB9DlCqju\nufS8Iiy7qBxajfqZfp8XZj1QUFiUuh8ojTCUEBERDcL2mmZs3t0IAKhriEzbXXB+seq6k1N+s+IK\nVGuPOvHiloMIhpS467UaCVcvmIjZU/NVzxJCwOfphSPbBrvdrjo/VjCUEBERDUJDu+eUr4HEu/wK\nIfCPz5qw6ZN61fqrVrMeKy+vREWhOnDIsoyg34XSwjwYDGNjls1AGEqIiIgGodRhjfWQRF/3lWjK\nbyis4C/vH8Keg52q5xXlWrBq2VRk2Yyqc8GgH1oRQkVJITSasbs+SRRDCRER0SDMr4rUc/StKYlq\n7+iEJ6DETfnt9QTx7DsHEvaonDsxB9+6bDIMenXBqs/jQqbNgJzsgiH4KdITQwkREdEgaCRJVUMS\nt8uv+WTPSUO7G8++fQC9XvUOv4svLMHi2aWqItlI/UgPCh3ZsJjV04HHMoYSIiKiszDQLr97Dnbg\n1X8cQliOryDRazW4ftFknDcpV/WsUCgEEfaOyem+yWAoISIiOkOJpvwqQuDdT+rx3mdNquszrQas\nXDYVJXnqHX79Pg9MegkFxYmXkx8PGEqIiIjOQCAQQGNLB8y2k1N+A0EZL205iNpjXarry/JtWPm1\nStgt6hk0Xncv8rItyLBnDHm70xlDCRER0SB5vF60dvTAYs+OHXP2+rHx7QNo7VLv8DtrSh6uXjAJ\nel38DBpZlhHwuVBSkAujUT37ZrxhKCEiIhqEXlcvOnt8cVN+Dzf14vlNdfAGwnHXSgCuuLgcl55X\npBqSCQUDkJQAJpSOj+m+yWAoISIiSlKnswsunwyz5eSU309qW/G3bUehiPiCVqNeixuXnIOp5dn9\nHwO/1wObWYu83MIhb/NowlBCRESUhJa2DgRkCSazBQAgKwJvfHgUO/a1qq7NyTBi1bKpKMi2xB0X\nQsDr7kFBbiZsNnWx63jHUEJERHQKQgg0tbRBSEYYjZEiVa8/jD9X1+FQo3qH30nFGbh56RRYTPq4\n4+FwGOGAG+XFDuj1etV9xFBCREQ0IFmW0dDcBq3BCp0u8pXZ1u3DxrcOoLPXr7r+4hkFWHFJBbT9\nakQCAR/0UhgVperaEjqJoYSIiCiBUCiEhuZ2GC0ZsULUA8e78EL1QQRCcty1GknCN+ZPwEUz1EvC\nj8fl4s8UQwkREVE/fr8fja1OWGyZkCQJQghs29uMtz46jn71rDAbdbj58imYXJwZd1xRFPi9veNy\nufgzxVBCRETUh8vlRnuXG1Z7FgAgLCv4361HsKuuXXVtfrYZ31k2FTkZprjj4WAQiuwbt8vFnymG\nEiIiohO6urvR7Q7CYousrOryBvHcpjocb3Wrrp1Wno1vL54MkyH+q9Tv88KsBwoKi1T30KkxlBAR\nEQFo7+iEJ6DAbLEBAJo6PNj49gH0eIKqaxdeUIzL55RBozlZtBrZ3bcXjmwb7Ha76h46PYYSIiIa\n14QQaG5tgwwDTCdqPz4/3ImX3zuEUFiJu1anlXDtVyfjgil5ccdlWUbQ70JpYR4MBvXeNpQchhIi\nIhq3FEVBY3MroLNAr9dDEQJbdjWiemeD6lq7RY+VX5uKsnxb3PHodN8JnO571hhKiIhoTFKEwPaa\nZjS0e1DqsGJ+VRE0fUJDOBxGfVMrDOYMaLVaBEMyXnnvED4/4lQ9q8RhxcqvTUWmNb4XhNN9U4uh\nhIiIxqTtNc3YvLsRAFDX0A0AWHB+MQAgEAigsbUTZmsWJElCtzuAjW8fQHOnV/Wcqsm5uG7h5Lgd\nfjndd2gwlBAR0ZjU0O5J+Nrj9aK1owcWW2TK77EWF57dVAePL6R6xtfmlmHhBcVxwzLhYBCC032H\nBEMJERGNSaUOa6yHJPq6p7cHzh4/LLbIQme76trx1/cPQ1biV0Qz6DT49uJzMGNCTtxxv88Lq1GC\ng9N9hwRDCRERjUnzqyLBIVpTMq3UhC5XCGarHYoi8NbHx7Gtpll1X5bNgFXLpqIo9+Quvien+9ph\nt9tU91BqMJQQEdGYpJGkWA1JS1sHvEEBk9kCfzCMF6q/RF19j+qeCYV23Hx5JWzmk7v4Rnf3LSvi\n7r5DjaGEiIjGLCFEZMqvxgSj0YCOHh82vn0A7d3qHX7nTMvHN+dPgE57sqDV7/fCpBUo4XTfYcFQ\nQkREY5KiKGhoboVGb4VOp8PBhh78uboOvkD/HX6B5fMmYN65BXHBw+vpRbbdhOysrOFu+rjFUEJE\nRGntdOuNJBIOh1Hf3AajOQOSJOGDz1vw5odH0a+eFSaDFjctnYIppSeDh6Io8Ht6UFyQC5MpfqM9\nGloMJURElNZOtd5IIn6/H01tTpitmZAVgde3HcEn+9tU1+VlmvCdZVORl3VynZHIdF8/KkoLOd13\nBDCUEBFRWhtovZFE3G4P2py9sNiy4PGH8NymOhxtdqmuqyzLxA2Lp8BsPPk16PN6YDNp4CgsTF3j\naVAYSoiIKK0lWm8kke6eHnS7ArDYMtHi9GLj2wfQ5Qqorrv0vCJccVF5bIdfIQS87h7k52Rwuu8I\nYyghIqK01n+9kejrvto7OuEJKDBZbKg96sSLWw4iGIrf4VerkXD1gomYPTU/diw63be8mNN90wFD\nCRERpbW+6430J4RAS2s7QtDBaLLgvd2N2PRJPfrVs8Jq1mPl5ZWoKLTHjvn9Xhg1Cqf7phGGEiIi\nGpUURUFjcxugM0OStHhpy0HsOdipuq4o14JVy6Yiy2aMHeN03/TEUEJERKNOOBxGfVMrDOYMePwy\nnn1nX8IC2HMn5uBbl02GQR+ZScPpvumNoYSIiEaVQCCAxpYOmG1ZaGz34Nl3DqDXq97hd/GFJVg8\nuzS2pkkoGADkAKf7pjGGEiIiGjViU37t2dhzsAOv/uMQwnJ8BYleq8H1iybjvEm5sWN+rwdWTvdN\newwlREQ0KnT39KCr1w+TNQPvfHwc733WpLom0xrZ4bc4LzJtOLq7b35OBmy2xFOJKX0wlBARUdrr\n6HTCHVCg0Vvw3Dt1qD3WpbqmvMCGWy6vhN1iABCpO5GDHpQXO6DT8etuNOCnREREaUsIgda2DgSF\nFt6gBhvf/hytXT7VdRdW5uHqBZNiO/wG/F4YtQIlJYWc7juKMJQQEVFaik75lXRmNHT48PymOngD\n4bhrJABXXFyOS887udaI19OLnAwzsjIzR6DVdDYYSoiIKO2Ew2E0NLdBb7JjZ10HXtt2FIqIL2g1\n6rW4cck5mFqeDeDEdF9vL4rzczjdd5RiKCEiorQSnfJrsGTizR3H8eG+FtU1ORlGfGfZNORnR3b4\njU73nVBaCI1GM9xNphRhKCEiorTh8XrR2tED6O145q0DONjYo7pmckkGblpSCYsp8hXm93pgM2uR\nx+m+ox5DCRERpYWe3h44e/xwhw3Y+PfP0dnrV11z8YwCrLikAlqNhtN9xyCGEiIiGnEdnU64/QqO\nd4bxQvV+BEJy3HmNJOEb8yfgohkFADjdd6ziJ0lERCOqpbUdAUWDT77sxlsfHUe/elZYjDrcfHkl\nJhVnAOB037GMoYSIiIaVIgS21zTjeKsLFq0f508txZsfN2FXXbvq2oJsM1Ytm4qcjMhsGq+7F7lZ\nZmRmcLrvWMRQQkREw2p7TTPe3XkcXnc3NAY7th/YD2dvQHXdtPJs3LD4HBgNWsiyjIDPxem+YxxD\nCRERDasjTV3wunogGTLg7A1AVoTqmoUXFOPyuWXQSBJCwQAkhdN9xwOGEiIiGjYerxdmbRiKzobu\nHj/6xxGdVsK1CyfjgnPyAAA+rxt2sw55uZzuOx4wlBARjTPRmo6Gdg9KHVbMryqC5kTBqKIIbN3T\nlPBcss8YSHdvDzZ9dAx76/3ocqmHa/Q6DebPLETV5FwIIeB196DQkQWrxZKaH5zSHkMJEdE4s72m\nGZt3NwIA6hq6AQALzi8GAGzZWR93rq6+GxaTXhU8os9we0PY8UUL6uq7sWbF9AEDzFvb9mPH/na0\ndssIyerhGr1Ogxy7EXUNPciwaDFrkg0VJfmc7jvOcHCOiGicaWj3qF4rQqD6k+N484OjcHtDEELA\n7Q2h5nAn6hq6sXl3I7bXNMfd4/aG4PIGEQjKqDncGXe+r7//Yx+21LShyRlOGEjyMk3IyzRBq9Ug\nFPShtb0L5SWFDCTjED9xIqJR7EyGUUod1lgPCQCUOKzY8EYtPj/ihCIEAsHIwmXBsAyDThu7rm+Y\nKXVYseOLk3vSGHTauPOKENi2pwn7vqxHvTOMLreMBPWs+NrcMlhNOnxU24ag3wW9To8Z55Ry/ZFx\niqGEiGgUO9VQzEDmVxUBQCzICCFQc7gTwZACgchQitWkw7T8LNS3u2P3lTqscc+oq+9GzeFOGHRa\nWM06lORZYvUobq8fdUea4Akb4A+p04hOK+GGxefg3Im5CIXDCHh74A3bMLE4O9Y+Gn8GFUqEENi5\ncyc6Ozshy3LCa5YvX56ShhER0eklGoo5HY0kxQWXP7/7JQw6LYIhBRIAjUbCktmlmF9VFOuFKcmz\nQJy4Ntojs2bF9LheGgFg8+5G9PR60dnVBZ3JDtF/eVYAWTYjvnPFVBTmWBAM+qEVIVy7pIrTfSn5\nULJ//37ceeedaG1tTfiHDAAkSTqrUFJdXY377rsPu3btih3bt28frrvuOtX7rFmzBvfff/8ZvxcR\n0VjQfyimb2/GYJ5xoL4LGo2EYEjGzIk5sWGgaHjZuqcprkdGAJCAuGGjF6sPorvHja6eXmiNdgih\nHoKZUGTHzUsrYTPr4fe6kWHVIye74Ix+dhp7kg4lDz74IHp6evCDH/wA06dPh8FgSGlDdu3alTBk\n7N+/HxaLBU899VTc8fz8/JS+PxHRaNR/KOZMhj6i97T3BlBRaMesc3JVdSn9e2A+rm2Fxx8GcHLY\nKMcKeHx+aAz2hO8zodCO25ZPh1YjwePq5nRfUkk6lHz22We48847cfvtt6e0AcFgEE8//TR++9vf\nwmKxIBQKxZ0/cOAAKisrUVVVldL3JSIaC/oPxZzNM7KyIgGhu9uruqZ/j0x/B460YEJxFoTGhEQV\nraUOK25bMQ1CkREMeDndlxJK+k+E3W6H3Z44/Z6N999/H0888QQeeOABOJ1ObNiwIe58NJQQEdHQ\nG2jxtETFsVs+awIAeNw96DFm4YUtR1V5RJKAHLsJigA+3luPS2bmo4C7+9IAkg4lX//61/GXv/wF\nN954Y0rTbVVVFaqrq2Gz2bBu3TrV+bq6OhgMBlx99dU4ePAgiouLcdddd+Hqq69OWRuIiCii/+Jp\nQGQ2T/8eGeVEbeHeL+sBxY59x3pVzzIbtbBbDNBpNQj6Xej2GFGYnzcMPwWNVkmni6qqKrz99ttY\nsWIFFi1ahJycHFXSlSQJa9euHVQDTlUb0tbWhq6uLhw/fhz33nsv7HY73njjDTzwwAOQJAlXXXXV\noN6LiGg867umSUmeBZAkNParRTnW4oq7Z6DZPEJR4LAp6PRocKzNrTpfkG3G3OkF+HR/CwKebpgs\nNkwpZy0gnZokBppK08+0adNO/zBJQm1t7Rk3Zt26dXjyySdjs28CgQB27tyJyspK5OWdTNe33347\njh07hnfeeWdQzxdCIBxWzrh9NPx0usgUQX5uows/t/RU/clxvLXjGACg1xMEAGRYI5MWrri4Asvm\nTcCmj4/jze1HIAC4PEEU5Vmx4PxiLJpdBo0m8otoKBTCjpqjePrto3D2qvewsZv1yLQZMO/cPGiU\nIFwhAyYWZ8Y9g1JnNP73ptdrEx5Puqekuro6ZY1JltFoxCWXXKI6vmDBAmzbtg0+nw9ms3nY20VE\nNBr17QUJhuSE55bMKYMiK9i2pwkuTxBubzAWZJbMLYfP58PbHx7Ci1vqEej3DEkCsm1GWM16BP0e\ndDjduOfmeUP8U9FYknQoKSkpiXvtdruh1+thNBpT3qioo0eP4sMPP8T1118PvV4fO+73+2EymQYd\nSMJhJWFVOaWvU80GoPTFzy09OTKM2CtHfpvWaU/8dn3itSPDGPtNe/aUPNQd60K3OwBZEQAE6o51\nYUqBEX/bfgzv7WlD/y52q1mPOZUO1DV0w+PuhslkxoQSB/8MDIPR+N+bw5F44sygKlZbW1vx8MMP\nY8uWLXC5Iqk6IyMDl112Gf7t3/4NRUWpXRq4tbUV//7v/w6Hw4GlS5fGjm/atAlz5sxJ6XsREY1l\nihAQQsBqivy1f9kFxZAS1JRE9Z8CbNOH8cSbdfj8aI/q2UW5FqxaNhVmgwS7IQCfnIXyggwuF0+D\nlnQoaWpqwre//W04nU7Mnz8fkydPhizLOHLkCF5//XVs27YNr776KgoLC1PWuLlz52LOnDn46U9/\nip6eHjgcDrz44ouoq6vDCy+8kLL3ISIa67bXNMem8AKnX9+k7xRgrfDio7puNHX6VNfNnJiD6y+b\nDCXsh0kj4ZrFVZzuS2cs6VDyq1/9Cj6fDy+99BJmzpwZd27fvn249dZb8Zvf/AYPPvjgWTWo7x9m\njUaD3/3ud3j44Yfx6KOPoru7GzNmzMCGDRswffr0s3ofIqLxZLB75GgkCZdWFeHjz4/h+S29cHlD\nqmsWX1iCxbNL4ff0Ii/bigx7RkrbTONP0qFk27ZtWLVqlSqQAMC5556LlStX4pVXXjmrxnzve9/D\n9773vbhjGRkZ+OlPf3pWzyUiGu8Gu0eOoih484M6vPZhM8JyfAWJXqvB9YsmY0ZFFgKeHpQU5A5p\nfSGNH0mHEp/PFzctt7/c3NxYnQkREaVG37VF+q6wOliD2SMnGAph41tfYPu+TtW5TKsBq5ZNhSND\nBxHyoKK0kLv7UsokHUqmTJmCt956C7fccotqvFBRFPzf//0fJk+enPIGEhGNV4oQ2PBGLWoOd8Kg\n0+JAfRcAnNFeN4lqSPoHnhULJqPH5cGvXtiNLxvVC6KVF9hwy+WV0CEIs14gLzd1NYREwCBCydq1\na/H9738fq1evxm233YaKigoAwJEjR7Bhwwbs3r0bDz300JA1lIhovNle04yaw50IBGUEgpE1QU5X\nCzLY5/ddUt7l9WLb3ja0OP2qay+szMNVl05EyO+GIzcDNuuph3+IzkTSoeTKK69EW1sbHnnkEdx5\n552x40IIGAwG/PCHP8TXv/71IWkkEdF41NDugUGnjQWSYFg+bS3IYJ8f1dbRhVdbXei/xrckAVd8\npRwXz3BACbpRXuzg7r40ZAb1J+vWW2/FVVddhQ8++ACNjY0QQqC0tBTz5s1Ddnb2ULWRiGhcKnVY\nUVffBX8wjFBYQUG2GfPOS92QSUmeBbvq2tHZ3Qsh6dG/VMWo1+LGJedgQr4RegS5uy8NuUHH3ays\nLCxfvnwo2kJERH3MrypCXX03nK4A7BYDgmEFH+5tOaOakkRkRaDH5QY0BvSPGjkZRnxn2TTYDCFk\nWHTIzspKyXsSncqAoeT222/H2rVrcdFFF8Ven44kSVi/fn3qWkdENI5pJAkWkx45GabYsVTVlPS4\n/Xhpcx3CQv014Mgy4/avT4dG9qDYkQuTyZTgCUSpN2AoOXToENxud9xrIiIaXqdbXyTZKcN9rzMb\nJLy7swGBsPr9KsuycMNlE6CDH8WlhdBqE+/mSjQUBgwlmzdvPuVrIiIaeqdbX6T/DBog8ZTh6HVu\njw9OVwhCNWAD3LB0CmZPyYQIheDI43RfGn5Jr3jz4x//GHv27Bnw/I4dO+Jm5RAR0dmLri9y09Ip\nWHB+saoXJNnl4+vb3Ojq8aAzQSDRSMCC8wpx4Tk25OfY4MjLTe0PQZSkAXtKAoFA3PDNX//6V1RV\nVaG0tFR1raIoqK6uxgcffDA0rSQiooSSWT4+FFZwsMGJXp8C9AskFqMOl8zMx8VT7ZhQkg+9Xg9n\nlyclq8gSDZYkRP9Z6RHt7e248sor4fEkV1QlhMBFF12Ep59+OqUNTKVQSEZ3t3ekm0GDkJVlAQB+\nbqMMP7fh07dWpMRhBYRAY4c3FiZc3hB+/dJuHGtV/10+vSIbV80vgc0gUFSQj+zsSKB5/R8HY0NC\nALB4VknKZvxQ6o3G/94cDnvC4wP2lDgcDvzqV7/C3r17IYTAY489hssvvxxTp05VXavRaJCTk8Op\nwkRESUqz12TKAAAgAElEQVTVnjZ9l4/fuqcJmz9rAhCpL+no8eH9PU3o8ah3+F14QTEunZGJnAyD\narrvYHcUJkqVU65TsnDhQixcuBAA0NTUhBtvvBHnn3/+sDSMiGgsS7ZAdTD6hge3N4C/f3AMibrC\ns6x6WLR+FDsqYDabVecHu6MwUaokXej64IMPwmg04sc//jGcTmfs+COPPIL77rsPx44dG5IGEhGN\nRUPRG1HqsEIIga5eHzp7g6pAotFIyLHpoBM+BIUpYSABIjN+Fs8qQWVpFhbPKjnljsJEqZR0KNm5\ncyduvPFGVFdXo6urK3bcbrdj+/btuPbaa3HgwIEhaSQR0VjTv/ch2d4IRQhs3dOEP7/7JbbuaYLS\npyxwzrR8CEVBr1e9AIlRr0GWGdBKQVgzslFekDHge5xuxg/RUBmw0LW/VatWwe1246mnnkJmZmbc\nuZ6eHqxatQoFBQX44x//OCQNTQUWuo4+o7GAi/i5JWMwNSV9r/X6Q2joONmrEi1C7ezx49cvf4bG\nDvW/c7NRiwUzspBlN6PLKw34fvzcRqfR+LkNutC1vy+++AI//OEPVYEEADIzM3HDDTfgN7/5zZm3\nkIhoHOlboHo6fetPnL1+GHRa2Cx6AJFhny8buvHoqzVw+9Q9JGX5VswsNeDrX50KM5eLpzSXdCgx\nmUxob28f8Hx3dzd3jyQiGgJ9600URcDlDQIAbBY9fIEQfvH8bshKfKe3Qa/BdQsqML3UjOLCfGg0\nSY/WE42YpP+Uzp8/H8888wz279+vOnfo0CE888wzmD9/fkobR0REJ+tN3N4QgiEZep0GgVAYwZCM\nbXtbVIEk227E6q9NwqzJmSgtLmQgoVEj6Z6SH/zgB/jggw9w3XXXYdasWaioqAAA1NfXY9euXcjK\nysK99947ZA0lIhqvorNfqnc2AIjUiHT0+NHcqa4hmFBoxzWXFGJicQ5sNk7lpdEl6VBSWFiI119/\nHevXr8f777+Pffv2QZZlFBUV4aabbsIdd9yBvLy8oWwrEdG41Lf+5O1P6tHi9CIsq+cozK7Mw5Wz\n81Bekg+dLum/3onSRtKzb8YCzr4ZfUZjVTnxcxsqnx/pxLpX9yIYVuKOayRg2dxiXDojB4UFjjOu\n7+PnNjqNxs/trGffEBHR2YtO761vd8PnD8Ns1KEs33bKKcFCCFTvbMAL1V+iX/kIzEYtrplfgjlT\nHchKMDuSaDRJOpRUVVUllb737NlzVg0iIhrLotN73d4QXN4g7BYDvmzsARC/zHw0vBxvdaO+3YW6\n+h7Vs2xmPVYtLsF5U4ph4nRfGgOSDiXLly9XhRJZltHZ2Yldu3ahoKAA3/72t1PeQCKisSAaMqp3\nNsDjDyMYlgHgxP/rVcvMb69pxqad9Wjv8iMQklXPM+gkGOCDJ6RnIKExI+lQ8j//8z8DnmttbcXN\nN98Mo9GYkkYREY010R4Sjz8MlzcIvS4yTdeg0wJQLzNfe6wLzR1e1XRfADAbAKtBhtWWjWanP+5c\nqnYfJhoJKakpKSgowM0334ynnnoKt9xySyoeSUQ0JvTvIbGYtAAMsJh0KM+3xWpK5p1XiK17mtDQ\n7oGsKPj0QJsqkGgkYGaFDe3dPhhMkULB/mFmKHYfJhouKSt01Wq1aGtrS9XjiIhGtWgY+ai2Fa1O\nHwCcWInVAJtFH9uzJmrrniZU72pAryeIbndQ9TyNBJxTaMAdV1fh0wPOuJ6QvoZi92Gi4ZJ0KOns\n7Ex4PBgMYv/+/fjTn/6EysrKlDWMiGg06h9GgmEZgaAMu0UPu8UAq0mHxbNKYmEiev2mT+vR1uVT\nTfcFAJ1Wgl0fwryqSphNplP2fJQ6rLEekuhrotEi6VAyf/78AWffCCFgMBjw0EMPpaxhRESjUXT4\nxNnrRyAYWRJeVgRc3hDsFgMWzy6NCxXba5rxzqf1aOlMXD9SlG1EaZ4BM88pUfWKJBK9ZqCeFKJ0\nlnQoufvuuxOGEo1GA4fDgSVLliAnJyeljSMiGk6pKBKNDpcYdFoEgjLCcqTnQ6M58Zx+61XuO+Ic\nOJBk6XD/TVXIzEi80FQig9l9mCjdJB1K7rnnnqFsBxHRiBtMkehAASY6fGKz6AFEepIjv9AJBMMy\nPt7fhkvPL4ZGkvDhvhbsrGtPGEhshjAWz544qEBCNNoNGEoGqiE5ndzc3DNuDBHRSBqoSDRRAOkf\nYOrqu2Ex6VGSZ8GiWSVoPHGtEAKvf3AMLm8IANDS6cWTf/8CTZ1eHG1xqdpgMmgxqUCPuTPKseCC\nklO2l9N/aawZMJScqobkVGpra8+qQUREI2WgItFEPSh9A4zbG0LN4U7kZJhQ19CNxbNKcNPSKQAi\nweHj/W0IhmUoioDbF8SOL1pVy8UDQGmeGWuWTcLEsoKk2svpvzTWDBhK+teQKIqCjRs3wmg0Yvny\n5Zg4cSIURUFDQwNee+01CCFw1113DUujiYiGwkBFool6UPoGmGBYji2C1v96jSThoukFaHX60OsJ\nIJRgd18AKMk14vvfmonszOSHazj9l8aaAUNJ/xqShx9+GDk5OXjxxReRlZUVd+7uu+/GTTfdhLq6\nuqFpJRHRMBioSDRRD0rfwOL1h1Df7o6dL3FYYwuhlTqsmHdeITbvaoCz1696NgCYdTJsZj3e+qQF\npQ5X0sMwnP5LY03Sha4vvvgi/vmf/1kVSADAZrPhW9/6Fh599FH8x3/8R0obSEQ00hL1oPQNMP1r\nO4QQ2PxZE4DIsMr+41043uaGuo9EwCAFoUhmNHT44Qt1DWoYhtN/aawZ1IquLpe6KCuqubkZer3+\nrBtERJRuNJIUK25taPdge01zLJhEA0l9uxs+fxj1bW40dXogTkz97XIFcCxBQWu2TY/CDB0aug0I\nhRWEwgo8vjBsFvXmfKdqF2tIaCxJOpQsWLAAGzZswJw5czBv3ry4c6+//jqeffZZXHfddSlvIBFR\nOhioqDR63O0NxTbakxUBjQTIAggE1Tv8Tiy04o5vTkf1rlZ4le7YvdEdgzkMQ+NV0qHkRz/6Efbu\n3YvbbrsNxcXFKCsrQyAQQH19PTo6OjBz5kz88Ic/HMq2EhGdkVQuigZE1h75qLYVDe0eNHa4IYRA\nIBRGKKwkXCa+r69MzcaaFTNhNOhR6nCjrqEbVrMO/mAYep0GpXmRGhSi8SjpUOJwOPDaa6/h5Zdf\nxtatW9HYGPmNYebMmViyZAmuvfZaaLXa0zyFiGj4pWLqbKnDigP1XfD4wnD7Q2jp9OJ4qwuhsAJJ\nkhCWlQQ1IydpJOAb84rwzQXTYjMbozUgH9W2nhy66fDgw70tHJahcWlQNSVGoxErV67EypUrh6o9\nREQpE+0hqd7ZAI8/HFtl9Uymzs6vKkJdfTdqDndCkQXCcqQO5FRBJEqnkTD/3Bx8o08gAU7WhDS0\ne+Dxh2PHObWXxqtBhRJFUfDXv/4V1dXVscLWwsJCLFy4ENdccw00Gs1QtZOIaNCiPSQefxgubxAA\nYLMkV7PRf8hn3nmF6HIHYueTCSMAoCgyBBR8fsyDbXua8NUEq7T2n9rbf0oxV2ql8SLpUOL3+3H7\n7bfjk08+gc1mQ3l5OQKBALZv345Nmzbh1VdfxVNPPQWDwTCU7SUiSlq0x8FqjvxVZzXpsHjWwLvt\nxmbStLlxtKUXrV0+GHRaHKjvQl19N461uOALyhCJlmNNQA6HoNFoIDQGuLzB2L43/etb+k/t7T+l\nGOBKrTQ+JB1K1q1bh08//RQPPPAAbrnlltj031AohOeeew4///nP8fjjj+Nf//Vfh6yxRDS+DbZg\nNdoDIUkSbBY9Fs8qUX25932m1x/C8TYXnL0BeP1hQAIkKQx/MAy3NwRfIAyBSC+JJKk2/I0jhwLQ\n6g0AJERb2OUK4OEXP0Or0werWRcXOPq268/vfhn3LA7n0HiRdCh58803cf3112P16tVxx/V6PVav\nXo2DBw/i73//O0MJEaVU/9DQ0BH5gk6mByGZxcX6FsE6e/1QFBELHxCRmTa+QBiyIuL2qxkolAgh\nIIcDMBhMMOi1UBQBoyHy/4GQjPo2d2yacHRNkv5hqyTPwpVaaVxKOpS0tbVhxowZA54/99xz8dpr\nr6WkUUREUf1Dg0GnTbpgNZnFxfo+w6DTotcbjBSj9kkckiSp1htREsz8FUKBIoeh05ug1UgoyLHA\natKhJM+Gxg433L4QPL4wAkE5bk2S/rODFs0qweJZJVyplcadpCtTi4uLsXv37gHP79y5EwUFye1s\nSUSUrP6hIfJlHpFswerWPU3487tfYuueJij9ujf6PsNm0aOiwAazUQuDThMbdpEVcdrCVkUOQwgB\nrc4ACYBBH1ki4aLpBbhp6RRcNL0gNoxktxhQlm+L1bf0D1eN7R4sOL8YNy2dggXnF7PIlcaNpHtK\nrrnmGvz2t79FaWkpbrvtNthsNgCA2+3Gn/70J7zxxhu4++67h6yhRDQ+9Z2ZYjXrMM2RBYtJn3QP\nQt9eiF117fiothUXTS+I1aP0H+KZd14hPtzbgh1ftOBQY+9pF0MDThS0anWQJAkWoxbFeVZUFNpR\nnm+PPX+g/XP6/4zR10TjUdKh5Lvf/S727duH3/3ud/j973+P3NxcAEBnZycURcFll12GO++8c8ga\nSkTj06m+zJMR7YXou5R7dE2QaC9E/yGe6NohDe2eU4YSIQSEHITRYESG1YjpFdm4dfk06BIsj3Cq\noSRurEcUkXQo0Wq1WLduHf7xj39gy5YtaGxshBACJSUlWLRoES677LIhbCYRjVdnu+lctBciOuxj\n0EWGVerb3adcC6TUYT1xbSjhc4UQkJQw8nIycWGlAzctnXLGbeTGekQRSYeS++67D8uWLcPSpUux\ncOHCoWwTEVHK9F3KPToVFwB8/jCqdzXA4wtjxxctqKvvxpoV0wFEhnyOtblg1CcuuxOKAgkyDEYj\ngmGZwy1EKZJ0KHn77bdxwQUXDGVbiIhSLtoLMb+qKG7abX2bGx7fyZVe9xzqwIY3atHlDqC50wtf\nIAx/gh1+FTkMSZIgafXQaCRUTcqFEAJ/fvfLhD0uqdgMkGi8SDqUTJ06Ffv27RvKthARDZn+QyRb\n9zTho9rW2GshENnXRhFx+9D0JYkTBa2QoJEkTCzKwJTSTGw5xeqrqdgMkGi8SDqUXHXVVXj44Ydx\n8OBBXHjhhcjJyYnbWAqIzOVfu3ZtyhtJRJRqfTfYM+i0CITCCIVk+EOJClsFNCIMrU6PsBxZ0VUR\nAqGwHFvMLar/9N7TvSaik5IOJf/1X/8FAKipqUFNTU3CaxhKiGi00EgS1qyYHtvr5rOD7ejwqXtI\nhBCQRBg6gxF6nQRAQUiOrFpS3+ZBQbYFQgh4fGEEwzK8/hAUITjdl+gMJB1Kqqurh7IdRETDpm+d\nR1GuBcGwjI6egOo6nUZAKAJavREAkGE1ossVQFiOdJeEZQVOlx9lDlusx6Whw4PtNc2xIRpO9yVK\nXtKhpKQkfrttj8cDnU4Ho9GY8kYREaVS/2JTIQQ2726EyxNCrzcIOcGuv/mZeiyeXY5NnzYiGJZh\n0GnxtblleOeTerQ6vZAkCRop0kNsMemRk2GK3dt3iIbTfYmSl3QoAYDjx4/jsccew3vvvYfe3l4A\nQF5eHi6//HLcfffdsQXViIhGkiqEANjSp9jUatKhxx1EjyeY8P48uxbnTc6HyaDDN+ZPQGOfXg5J\nkvD69qOxoPKV6QWQAA7REKVA0qFk//79WLVqFXw+H7761a+ioqICsizj+PHjePHFF7Fp0ya88MIL\nqh4VIqKo4Zoeu62mOS44FOSY4867vIkDiVYj4cLJmWhzyfjsYCc+3t+Gqkm5WLNieqydl1YVQULi\n4RgO0RCdnaRDyS9+8QuYTCa8/PLLmDBhQty5Q4cOYdWqVfjlL3+JRx55JNVtJKIx4mynxyYbaj6u\nbY2tPxIIyjDoNTDotRBCoNcTRLc7USAB7rl2OvYddeFwa3vs/prDnXE1IgMNx3CIhujsJb1L8Gef\nfYZbb71VFUgAYPLkyfjOd76D7du3p7JtRDTGnO302GioqWvoxubdjdhe05zUfVk2A75aVYRgSEkY\nSCQomFOZi6pzClHqsMbtRGzQaTmNl2iYJB1KMjIy4PV6BzwvSRIMBkNKGkVEY1P/WovB1l4kG2q+\nMi0fdosBRoMWdosBMyfmYGtNM1qc6r/DhBxCptWAGRMdACKzZaom5cbutZp1rBEhGiZJD9+sXbsW\nDz/8MObOnYt58+bFnTtw4ACefvpp3HHHHSlvIBGNHWc7PTbZNT8uPb8YkiShvt2NNqcXf9t+FMEE\ni6LppRAMVhOKHfa4tkwpy0KXOzJF+CvT8lkjQjRMkg4lR44cQWZmJm677TZMnz4dkydPhl6vR319\nPXbu3Am9Xo9t27Zh27ZtsXskScL69euHpOFENPokqscYTPHr/KoiCERqRoDIwmZ9Fyrr/z5PvVmL\nmsNO1XO0Ggk2o0BWZg4A4KLpBbFnbK9pjs3UEULgy4YeNHZ4T9s27nFDdPaSDiVbtmyBJEkoKipC\nd3c3du7cGTtXWFgIIFLwSkQ0GKcqfk30RS8Bsb1ptnzWBClR0FEEXn3/EN5PUHMiQaAwS4eKolxY\nzHqUOWyqGTRRHl8YNYc7kZNhOm1hLve4ITp7SYeSzZs3D+rBPp8PXV1dg24QEY0vp6oTSfRF3//6\nj2pb40JLIChj/Wv7sOdQp+q9FDkMQEF7rxb+cA++OX+CKjj0HSKKTikeqK3J/hxElJxBLZ42GJs2\nbcKPfvQj1NbWDtVbENEY0DcECCHg9Yfw53e/RKnDivo2NwDA7Q0hGJbxUW0rvjK9IHa92xuC2xuC\nxx9GXUM3XN4gPtzXisYOdSCQw0FIGi30usgq1MGwnDA49K178fpDcRvunarglXvcEJ29IQslRESn\nowgBAcBqivxVlG0zxkJAXUM3SvOscHtDsTVDWp0+QAgsnlWChnYPGjvccPtCAAB/IIy/bTuKkNy/\noFVADvqh0Ruh0ZyccGjQaRMGh751L4mGjwb8OYSI/RxfmV7A4liiM8BQQkQppygCW3bWo+5Y1ymL\nPvsWlSbS5QpACAGNRoLVpIfVrENjhxc3LZ0CANi6pwmbdzeio9sXqzPpy6jXoChLgx6/EcGQAqNe\nA29ARrbdiGVzy04bHJLdt2Z7TTO2fNYUey2duJeIBoehhIhSbsvOery14xjCsnLKos9T1V1Eh2YA\nIBRW4PFH/rk4z4Kte5oiO/zmmBEIygkDSbbdgNuumASnG6je2QCPFIbNoofdClSWZuGrF5x6S4zB\nzKZhPQlRajCUEFHKHWtxxb0e6Eu6fx3GV6blQ5KkuKGZ6PCMcmIn34MNPWjo8EBWBLbWNMEflFXP\n1WsFFp6bix213dhZ146wrJy4X8BmMSRV7zGY2TSsJyFKDYYSIkq5ikI7ao+eXB9koC/pRIupRXsj\nokMzoXCkRkSjiRw/3uaGrCho6/IhLAvVM7UIIy/DjLoWPw439SIQDS0SIAAsnlWiGrZJ1CsymN6P\ns10UjogiGEqIKOUWzS4DgLiakkROVbMRveetj4/D6w9DUQRc3iAMegktTh+EOo9AjyAKHJnQatV/\ntUkACnMsCd8vUa/IYHo/kq09IaJTYyghopTTaCQsmVuO2VPyzvwZJ77o69vcCIY6EAiFoShAc6dP\nda1Bp8GEPB1ycxywWowozbPiy4YeAIB0oodEo5GQbTMmXAE2Ua/IDUvOAQDUt7vh84dR3+bG1j1N\nA9aWcEVXorOX9IZ8REQjoSzfBqtZByEAb0Bd0GrSa2DVBeEXBjQ5/Shz2GL73lhNemg0ErQaCRkW\nA+rb3Ql3Fk60UWA0FJU5bGjo8ODLxp5T7kx8pjsYE9FJQ9ZTIk7M2yeisWGkegJmTMzGK+8dSjjD\nxqADLPoQ7BnZEELA7Q2hemcDbBY9JEmCzaJHMBypKbFbI7uYn27BtP7DTcnWlnAGDtHZG7JQ8rWv\nfQ1z5swZqscT0TAbib1djrb04n+e3YVgWL3Dr0UP2M3AOeUlaOjwwOMLxxZZiwYYm0Uft0w8kLg2\n5FQ1IcnWlnAGDtHZSzqUTJs2DdJpfivS6/XIzc3FzJkzcffdd2PatGln3UAiSg/D3RPwyf42rH9t\nH2QlvsdVAlA10Y5MqxGTyvIghECXOwCXNwi7RQ+bRQ8hBGxmPUrybChxWAEh4nb6HYxkZ9ZwBg7R\n2Us6lHzve9/Dxo0b4XK5cOmll2LixIkwGo04evQotm7dCiEEli5dCrfbje3bt2Pr1q14/vnnMWPG\njKFsPxENk+HqCVCEwN+2HsHrHxxNcFbAYZPw3avOw6cHnPiothWtTl9kuAYnf2mSJAkXTS9Q7x58\nBkNQycysYZErUWokHUpkWYYkSfjf//1fVFZWxp2rr6/HTTfdhEmTJuGuu+6C0+nEzTffjEcffRSP\nP/54yhtNRMNvOHoCAkEZT/z9C+ysa1edE0JADrhgLSjCur9+gbYuPwKhMIKhyNCO1ayL9Y4M1L6+\nQ1C76trxUW0rLjqxT83ZhIiRGNoiGouSDiUvv/wybr31VlUgAYCysjKsWrUKzz77LO666y7k5OTg\nW9/6FtavX5/SxhLR8BrOHoCOHh8efbUG9W3qYSEJCkJ+F6z2TDR2+qDR+KEoAnpdZAJhMCzDJulP\n2zvS2OGGECJWfxIMn1yi/mxCBItciVIj6VDi8/lgMBgGPK/RaOB2u2Ov7XY7wmF1tTwRjR5D1QPQ\nP+zk55jx2F/2wu1LPMMm6PfCYstCWAEkiNjqrhqNBLvFgPxsE3LsJtS3q9cS6fszRPfSic7IiRbB\nnm2IYJErUWokHUpmzZqFZ555BsuXL0dRUXy3aFtbG5577jmcd955sWPvvfceJk6cmLqWEtGwG6oe\ngP7DKE6XX7VCq04rYUK+GeFwAK5AHlzeICQhIABYTTr4gzL0Wg2mlmVCSBJqDnfCoNOirj4+PPVt\ns82ih9UU+Wuv1emD1Rz557MNESxyJUqNpEPJ/fffj5UrV+KKK67A0qVLUV5eDr1ej2PHjmHz5s1Q\nFAUPPPAAAODaa69FbW0tfvnLXw5Zw4lo6A1VD0BDuycya8YVgOtE70VfFqMOK5eWY8aEHOw57Eb1\nrgb4g2GIkIxsuxG5GSa0dfthNetwoL4HHn8IiiJi+9z0DSIleRbsqmtHMCzDoNNi0QXFuPT8YtWw\n1NngMvNEqZF0KKmsrMRf/vIXPProo3jvvffQ0xNZwtlisWDRokX4l3/5F1RUVMDpdMJqteI///M/\nsWLFiiFrOBENvaHqAXBkmbC1xgt/UL3+iEGnwTmFepw3OR9msxlCuBAKK5AVgQyrESajDpImsjAa\ncHIoJsrjD6Gx4+QwDvrXwEgSQwRRmhrU4mmlpaX4+c9/DgDo6uqCLMvIycmBRnNytfqcnBxs3Lgx\nta0kohFxNl/eiiKwdU+Tqki2xenFuzvrBwwkNl0A551TAavFgvf3NOH1D46h1xuEcmK9kv7rJRl0\nWhh0GgASPP4QtBoJbl8oNjzU2O45EWD0sddElJ4GvaLr8ePHsXnzZjQ3N0Ov16OwsBALFy5EWVnZ\nULSPiEapLTvrVUWyORkm/O6ve+ELyqrrNZKAFPZgxaKZWHhhOQDg49pWuE4EEkUR8PhDsFn0+Mr0\nAkiI9OCU5FkASULjidk1bl8oFlyigYhFqESjw6BCySOPPIInnngCshz/F8rPfvYz/NM//RPuvffe\nlDaOiEavYy2u2D8LIbD982YcbOiBkmBLLA1khP0eZOXmQafTq6Yda6TI/1hMOiyeVZJwarIiBDa8\nUYv6NjcMOi2sZl3ckBOLUInS36DWKfnDH/6AJUuW4I477sCkSZOgKAoOHz6MP/7xj3jiiScwadIk\nXHPNNUPZXiIaJSoK7dh7qANCCHT2+ODxq3tHdFoJihyCEvIjL88Bu9UQV6T6lWn5aHX6YkWq37ik\nYsDhpO01zWjo8MCg0yIYljHNkRULL6wfIRodkg4lGzduxCWXXILHHnss7vgFF1yAxx57DGvWrMHG\njRsZSohS5EwWLkun5c4XzS6Ds8uLN3YcHTCQSEoQGiUMS0ZWbBffvsMrl55fDEmSkurliIaZaP2I\nxaTucSGi9JZ0KDl69ChuuOGGAc8vXboUDz30UEoaRURntnBZOi13frzVhf/7+Bh6veoF0fKzzGjr\n6AQkCQajFRajDkIRKMu3Yd55hbHrBtPLwdoRotEv6VBit9vR3Nw84PmmpiZYLJaUNIqIzmzhsnRZ\n7nzH50349YufxfalidJIwLULJ+PQ8Sb4/RYIjR6KIuALyjAZddh/vBu/fmnPGe1Hw9oRotEv6VBy\n2WWX4bnnnsOll16Kiy++OO7chx9+iOeffx5XXnllyhtINF6dyW/+qewtOJOhICEE/rb1EF774Ljq\nnEaSMGNCFqYV6WDUFsLp7QAAOHv9MOi0p92P5nTtifaqRK97sfrgiA9hEdHgJB1K7r33Xnz88cdY\ns2YNZsyYgQkTJgAAjhw5gtraWhQVFeH73//+ULWTaNw5k9/8T3fPYILGYIeCAiEZ61/bi91fOlXn\n9FoNsmx6VORKKC8pwIRyLQwGIxraPfD6Q6hvd6PLFQAw8H40ybYnep0QIqU7ARPR0Es6lOTk5ODl\nl1/G+vXr8d577+Hdd9+FEAIlJSVYvXo1vvvd7yI7O3so20o0rpzJrJHT3TOYoDGYoSBnrx+PvLgb\njZ0+1bmSPCuKckwoygS+cdlM6LTauPeNBqWPalvR6vTFVmrt38tT3+6G2xuKzcSpb3cjkWg7U70T\nMBENvUGtU5KVlYX7778f999//5A0prq6Gvfddx927doVd/zxxx/HSy+9hK6uLlx44YX4yU9+gkmT\nJg1JG4jGssEEjWSHgg42dOG3rybe4dek10InhVGSrcXXF86Ats/qz1HRIDW/quiU+9H4/JGQAQCB\noFgR2qUAACAASURBVAyfP/Eu5NF2p3onYCIaegOGks7OzjN6YG5u7hndt2vXroRhZ926dXjiiSdw\n3333obi4GL/73e+wZs0avPHGG7DZbGf0XkTj1WBqTpIZPvrH7uN4dtMhyP1WRJMAWEw6eD0eNHcI\nQGtAzt6WU/ZUnK6Xx2zUwW4xxHpKzMbEf31F23m6nhciSj8DhpL58+er9phIRm1t7aCuDwaDePrp\np/Hb3/4WFosFodDJHUM9Hg+efPJJ3HPPPbjlllsAALNnz8aiRYvwyiuvYPXq1YNuH9FYlGytyGDq\nVE4VEhRF4Ll3vsCWz1pV58xGLTIsBvT09EJAgd2eHXvPM2l79HxTZ+T+nAwTAKAsP/EvJcn2vBBR\n+hkwlNx9991nFEoG6/3338cTTzyBBx54AE6nExs2bIid27NnD3w+HxYtWhQ7lpGRgblz52Lr1q0M\nJWNU3y+pyopsLJrNfZVOJ9lakVSsbur1h7Du1c+wv96lOldeYMPNSytRd7QJ+45JaOiI1HS4vYjs\nUXMGbe9buOoPhiEgML08O249k0S4kivR6DNgKLnnnnuGpQFVVVWorq6GzWbDunXr4s4dOXIEAFBe\nXh53vKysDJs3bx6W9tHw6/sldbi5FwAwe0reSDYp7Z2uVuRsVnrte6/NpMG2vc1o7wmqrptd6cA3\nL52AoLcXudkZMLaEAPS5boD3O13b+xauhsIKNBoJDR0efHia4SAiGn0GvUtwquXn5w94zuPxwGAw\nQKeLb6bVaoXbnbjynka//l9Kx1pcDCWncbpakbNZ6TV6r8vtQZdbhkB8uJAk4MqLKjDv3HwEfS7U\nO2Vs39eOjm4fQmEFdosBNosejQMM35yu7SxcJRo/RjyUnIoQYsAhJE2CKv7T0ek0yMriqrPprrIi\nO9ZDIknAxJJMfm6nsWLBZFgsBhxrcaGi0I5Fs8ug0Zz8b6e9NwCdVhP3Otl/p+29AfT0utHtFUC/\nQGI2arFmxQxUlmVCCXkwbdJE7H5zPyQJMBq08AdlhGUFOq0GlRXZCd/zdG2Pnt+2pwlNHR7YLXpI\nkjTg8+jM6XSRPyP89zq6jKXPLa1Dic1mQzAYhCzL0J5Y2wCI9KDY7fYRbBkNpWgNybEWFyaWZGLJ\nnDIoifa7pxiNRsKSueUDnq8otOP/27vv6KjK/H/g7zszmUxLJb2QQCAJUhNBiog0QbEgCgISxFUs\nX9az6+Ku2Jf9rbu21SOirB0WsIKLDRWlLYgiVpCWUAQS0numt/v7I2bM5M4kk5AwJe/XOZ5jbptn\ncpnkned+nuc5cqrW7WtfWG12HDlZ8WsgcRcfo8YdM4cgNjIMMqcZ6enNi+c1v1YNRFGETAAitEpM\nG53htTaoo7a37J90YTp2fF/sFl6IKLQEdCjJzMyEKIooKSlBRkaGa3txcTH69evX6evZ7U7U1xu7\ns4nUQy4cGIcLB8YhOloDp1PkfTtHeQP6wGi0umpK8gb06fB7Wl3XhFXvH8KpCulxA1KjMH/qQMhE\nK8x6C5IS4tDQYHK91uFTtfjhaOWvK/UCB4oqcfxM3TlP+97y7wIAGhulE7XRuWn5S5uft+ASjPct\nPt7zH0YBHUry8vKgVCqxdetW3HrrrQCAhoYGfPvtt+etEJcoFHR2JMrRX8rxyuZjqNPbJPvGDUnC\nFWMyYDUbEaFVILbNTM4yQYBWFYa4aDXsDif0RhsOnKxBbKTK7ysXE1Fg8xpKDhw40KULDhs2rMuN\naUuj0aCgoAArVqxo7hbOyMCLL76IyMhIzJ49u9teh6g38jQiRwCw6/uTeOt/xZIVfuUyAddcnIlR\ngxJhNDQiLlqDyIhIj9du/bioZbKzFixQJSJvvIaSG2644bxMntZW29dcunQp5HI5Xn/9dRiNRuTn\n5+PJJ5/kbK5ErXgb8tveUOC2I3LsdhvKqpuw7cdKtK0gUYbJkJ0WDUEQoG+sQ3JCDLQa70V1l+al\n4fCpWpworkdijBo2+28BhzOrEpE3giiKHisIN23a5Pa11WrFv/71LyQlJWH27Nno168fRFFEcXEx\nNmzYgKqqKjz00EOYMWPGeWl4V9hsjqB65kbB+azUH3bvL3UFDACYnJeKS4aneN0OAG9tPeZ6nGIx\nG2G1A7V6h+TakVolVEo55DIBVmMDLh+XjSmj2q/p+v5YNT7bexp2hxOiKCI9XgeNKuyca0qoZ/Hz\nFpyC8b51uqZk1qxZbl8/9NBD6Nu3L9566y0olUq3ffPmzcNNN92ELVu2BHQoIQpV3iYca29ispb5\nP/RNjWgwCbC7P60BAAzKiEGkJgynKxphNTVCo4tCZYP7QnieemNOl/8226sgCNCowjB/6sBzfZtE\nFOJ8nuzjk08+wbXXXisJJACgUChw5ZVXYteuXd3aOCLyjacJx9rbDgBjBiegb4yAei+BZOKIFCyY\nlo3EmHDYzXqIMi3qDTYYzTY4W3WwtjwGKiqpx/Yfz2LPgTLJkOOW13WKInbvL8VbW49h9/5St+sQ\nEfk8+kaj0aC0tNTr/sLCQkRGei56I6Ke0dJLUVylR1qcFupwBdITdK7F57wtwGcymbDtu1P4qrAJ\njjaBRCYTMGdiFoYPiIPVasZF2VGobkjFz7/UQqmQo7hKjz0HylyPgTz1xtx2bX9XTUl6gg6jhyRi\n9/5S18q9WrWCI3GISMLnUHLZZZdh3bp1yMrKwsyZMxEW1rwcuNFoxNq1a7Fx40bcdtttPdZQIpL6\n8kAZPtpzyjXC5eqLM91+yXsaClxTV4cPvyrB7p+rJNcTAAzOjMXwAXEwm4zQqWSI65MArbrBtTov\n4PkxENA8C7PRbMM/1uxDabUB6nA5SqoNWPdpIUqqDahtNMNiba5b0WnCOBKHiNz4HEr+/Oc/o6io\nCA899BD+3//7f0hMTITFYkFNTQ0cDgemTp3KuUOIzrN9RyrQZGxe9M5idWDfkQpM8NLzIIoiTpeU\nY8PuUhw50yDZLwDQqRUIkwv477ZD6J8ShWnjmutA2lufpnVvjNFsQ0m1AfVNFpitDjidYdBpwlBc\nqYcgE6BUyGGxOn5dxyaMI3GIyI3PoUSr1eKNN97Ajh07sGvXLtejnLS0NEydOhVjx47tsUYS0bmx\nWCw4fLIc7+4uRUWtdCZUnToM8TEqxGjDcbq0AkplOH6psuFgsQGjByVi7NAkANLHQIB7b8xbW48B\nAJRhzevetISP9AQdSqoN0Gmae1gTYtSIjQhHcZUeu/eXckQOEQHowoyukyZNwqRJk3qiLUTUSRfl\nJqCi1uR6fHNRrnTV7camRvxYVIWNu8/CYHYfOSMAmHZRuqt35b9bf4ZKpYHZJqDJaIXV7nCd40vt\nR0uPSoS2uSA+PlrlCjVf/1zuCjWiKGLHT81/2BwrafD5+kQU2joVSgwGA1avXo2dO3eivLwczz77\nLJRKJd59913ceeedSEtL66l2EpEH44c3L4LXugfDVfxaqUeE0gqbGIZP95XC0WZRQ2WYDHMnDUBO\nRgy+PVKB4rMVCFNpoTBZYDWZm4/5dSbWjmo/Wr9mWpwW0VFqZCZFIG9AH1cPSOvQ0dKj0oK1JUQE\ndCKU1NbW4sYbb0RxcTEGDhyImpoa2Gw26PV6vPfee9ixYwfWr1/fpYXyiKhrPBWy7t5fiq3fnYFB\n3wizMxxGi3RCtNiIcCycnoPEWA2+OVSKL388Ca0uCjCakR6vg1alcI2SAdqfhdUpili9+QgOnKyB\nUiGHVq3AiJwETBnV1+tkTu3VqBBR7+VzKPnXv/6F6upq/Pe//0V8fDzGjRsHAJg4cSI2bNiA2267\nDc8++yxWrFjRY40lombtTR9/vKQKVdW1sEIFpygNJP2SI3BBZiy+PVqJPhEKlFfVQhsR7VriQaMK\nw++uHCS5vjd7DpThwMkaWKwO18ia1pOneeJtqDIR9W4+h5IdO3agoKAAOTk5qKurc9s3ZMgQFBQU\n4K233ur2BhKRVNt1a4DmxyPVNbUor9LDLKo8nnfRoASk9NFi39FK2K1mHBNtyM5IgaB3H+LbmVWF\nS6oMrlE1QPMCfK0nT/MWoFhDQkRt+RxKjEYjEhMTve6PioqCXq/vlkYR9RZdWUgPkNZgnKlowtmy\nChSeNeFkpVXyOjIBuGpcJsYMTsLHX52C1WKEXBCh1kZBHa7A5LzULvdatH4UY7U7MKx/H0y6MN21\n31uAIiJqy+dQMmDAAOzevRvz58+X7HM6nfjkk0+QlZXVrY0jCnXefmF39Iu8dRCw26xQwoivj8rw\n6b5itJ25PUwhQ8G0bDTorfj4q1NoqK9HmFwGpap5Ea/0BJ3HkNBRMGrh6VGMTOY9QLGolYi88TmU\n3H777fjjH/+Ihx9+2DUkuKqqCnv27MFrr72GH3/8EU888USPNZQoFHVlIT3gtyBw7EwldOFKVBpk\n+L6wWHL9CE0YFl91AU6XN2Hv4QpYjI1Qhoejf1q826q9nvjaw9HRoxgWtRKRr3wOJdOnT8fy5cvx\n5JNPYuPGjQCAZcuWNV9EocCf/vQnXHPNNT3TSqIQ5e0Xdke/yAUAA5OViNUmYuOXJR4LS3PSozF3\nygColArsPVQOi6EeKo0OijClT6v2egtGvvagtGBRKxH5qlPzlMybNw9XXXUVvvrqK5w5cwZOpxPJ\nycm4+OKLERsb21NtJApZ3n5ht/eL3OFwoKSsEhWNItZuOQ6jxS657iXDkjH9or6QyQQ4HA7EqKzQ\n6KIgkzfPO+JLb4W3YNRRD4pTFLHt2zM4Xd6E+MhwXDwsmTUkROQTn0PJ888/j2nTpiE7OxvTpk2T\n7D9w4AA2bdqEv/71r93aQKJQ5u3Rh7ftBqMR5VX1+KXKgXe2H5dMiCaXCZg1oT/ys+MBADabDbCb\ncO3kYUg8WOEKOWOHJmH3/lKUVBmQGqcBBAFn2/R8eAtGHT1a2nOgDLsOlAEAfv51CWKGEiLyRadC\nSWZmJrKzsz3u37NnDzZu3MhQQtRDauvqUN9kwTfH9Nj6XYlkf5hChluvHIS+ic3Dca1WM8JgR1JK\nIoQ2IWf3/lJXb8cPRc2rBes0YW49H96CUUePlljYSkRd5TWUFBcX47rrroPV+tvwwvvvvx8PPvig\n5Fin0wm73Y5Bgwb1TCuJeqGW2o0zFU3QKiwYPDAZm7+pwIETNZJjw+QyTMlPcwUSs8kAbbgM8XHS\ntXAA96DQvGgeAIRJ9nniqQeldZ2J0WyDiOa6F4CFrUTkO6+hJD09HcuWLcP3338PURTx/vvvY/jw\n4UhPT5ccK5PJEBsbi7lz5/ZoY4l6kz0HyvD5t6dgNjZBptRh1+FG1Oulc5D0iVTh4qFJuOiC5nmE\nTIYmxESqEB0V5fXarXs7Wta3ab2vha8Tn7XueRFFEVlp0dCqwlw1JUREvmj38c3s2bMxe/ZsAMDZ\ns2exZMkSjB079rw0jKi3O36mCmaTAVDoUNNghbPtBCQAplyYhsn5qa4p4o36BiTERkKna793onVv\nh6eakpYw8s2RCtcaOO0NC27duyIIArSqMNxy9WCva98QEXnic03JunXrUFFRgeeffx6LFi1CRERz\nN/F//vMf1NXVYdGiRYiJiemxhhL1JlXVNYjShsEhaFDfaJHsD1PIMGdiFob07wOguXfCZGhASkIs\nVCrPU8y31tHcIi09H7WNZtf08TpNmNdHO23rTFpPM09E5CufQ8mxY8ewaNEiNDQ0YOrUqcjNzQUA\nVFZWYu3atXj//fexfv16pKWl9VhjiUKdw+FAaXklREGFBouAer00kETrlCiYloOUOK3rHKu5CX1T\nEqBQSD/SnZ1XBPit56NlTZvmupMwr/UhbetMWk8zT0TkK0EUPfQJe3DHHXfg+PHjeP3115GRkeG2\nr7i4GIsWLcLQoUMDepVgm83B7uQgEx3dPBV6b7hvZrMZpRU1QJgOG3eewNEz9ZJjMhIjsGBaNnTq\n5qLU5iG/RqQmJ0Imk3m8but6DwCYnJfa4RDd1ufojTYkxqoxelCiT4EG6F33LZTwvgWnYLxv8fGe\ne1N97in56aefcNddd0kCCdBcFLtw4UK88sorXW8hUS9W39CA2kYTzKIaaz86jMo6k+SYC3PiMXN8\nPyjkzeHDbDbhp6OlMDrCkV4teg0MXRmi63E9Gx/CCBHRuejUjK4mk/QHZQu73Q6LRdrVTETeiaKI\nispqWBwCyhpEvPnFQZjazNAqCMCMMRkYNyTpt4JWowEf7z6OE1V2KBXydotQu7L2TEc1J0REPcHn\nUDJy5EisW7cOM2fORGJiotu+2tpavPXWW7jwwgu7vYFEoaJtbcfoC+JRVlENWZgGP5yowcdfnZKs\n8KtSyjFvykAMSIvC94VVKK81IkbthCY8DMcrbTBZHDCINpitChRX6j2+LteeIaJg4XMo+dOf/oQb\nbrgBV111FSZPnux6jFNcXIzt27fDbrfjnnvu6bGGEp0PnS0K7czxrdeMOXSyHBUVlRiTl4XNX5/B\nN4crJMf3iVLhpuk5iI9W47ujlc2r/JoaoVSGIyYqAqIIOH+dZt5kdUh6WFr4s9ejK0W2RNR7+RxK\nBgwYgI0bN+LZZ5/F559/7nqUo1KpMG7cOCxduhQDBgzosYYSnQ8dLTZ3Lse31HKYjU1wOoEqowJr\nPi3EydJGybFRWiWWXDsE6vDmj2hZjQFmYwPUag0UYeEAAJlMgEwmQASgVsqhVnXqaex50dnvJxH1\nbp36Kda/f38899xzEEURdXV1cDqdiImJgVwu7/hkoiDQ2aLQzhyfGqfBj0dOQaZQAQoFDp+qhcEs\n7d3QqhSYlJ/qCiQOhwOxKhu02kjXKr8XDUpEjC4cB07WQKmQQ6cJQ3q8zqf3eD5xHRwi6owu/Wkl\nCAJiY2O7uy1EftfZolBfj7fZbEiLBcaP6I+jJQ04XtIAu8O9gEQQgP7JkRg+IA75Oa1X+TVi5uSh\nSGi1yu/Fw5Ixfliy5NFIi0B5bNKVIlsi6r28hpLhw4fjsccew4wZMwAAw4YNc1X+eyMIAn766afu\nbSHRedTZolBfjm9q0qOqrgkqTRTMdhMKT9ej7eRAMgEYPzQZl4/5bci9L0N+vT0KCZTHJiyyJaLO\n8BpKZsyYgdTUVLevOwolRMHO16LQtj0Rc6cM8NgTUVFZDZMNCFNF4L3/ncSPx6olxwgCoFWFweZw\nuraZTQb8fLwS+8+YAZhRVFKPouJ6aFRhPvV8BMpjEw4tJqLO8BpKHnvsMbevH3/88R5vDFGw6Kgn\nomW6eEGuhlUE3vj4sMchuwIAuQCYrXbXGjNmox5ROiX0NiWA5hkaDSY7DpysQWykyqeeDz42IaJg\nFHjl+kRBoL2eCKPJhPKqOqg0kSirMWLd50VoNFgl10iN10JvsMLuFBEmlyE8XO62ym9avBGFxXUw\nmOxoNFqhVMg8vp4nfGxCRMHIayjxpYbEk/37959Tg4iCgbeeiNq6OjTordDoonHgRA3e23nC7bEM\nACjkAq6/NAs2uxN7f52fRBRFxCjtSEmIca3ye/GwZBQV1/86wkYGm90JvdEGncb7wngt+NiEiIJR\nuzUlbUPJ1q1bYbVaMX78ePTr1w9OpxMlJSXYuXMndDod5syZ0+MNJvI3pyhCFEVof50X5KJBiRg3\nNAml5RWwiQqEqbVY+9lRjwvqRWqVKJiWjbR4HZy/Tt9aWq1HH7UdV0+8AMqwMNexMkGARhWG2EgV\nRFGEwWSHVqXA5LzULvV8BMqIHCIib7yGkrY1JP/5z3+wa9cuvPfee+jbt6/bvrKyMtx4443wccFh\noqC250AZdvxU6vraYbeh+Gw5FOE6QBTw4qaDKK2RrtaZFq9FwfQcRGqUAJpDx4gBsRieEe51ld+W\nHhlBEKDThPm0wm977Q6EETlERN54Xuvcg1dffRWLFi2SBBIASE5OxoIFC7Bhw4ZubRwFPqcoYvf+\nUry19Rh27y91/fUfylrXc1gtJhw+UYZwTRSaTA68/OEhj4FkxIA43Hb1YFcgAQCb1QKZ04S0lCSP\ngQRofoQzOS8V2WnRXe4h8dRuT18TEfmbz4WuJpOp3RoTs9kMp9PpdT+Fpt7413dL74XZ2ASHKCAj\nLQmnK5rwxudFHmdoHdwvFnMmZbl9fixmI1QKIDEhUXJ8a95qQzrzKKbl2LPVeldNSsv7ICIKJJ1a\nJXjNmjWYMmUK+vfv77bvhx9+wJo1a3DppZd2ewMpMHj7JRhMf313V03F2CGJqK6uQkVjLNISo+EU\nRbz28RE4nO69RDKZgNGDEnDluEy3QGIy6hGtUyImOrrL76UzYbDl2JbHq1qVAqMHJXJEDhEFHJ9D\nybJlyzB//nxcc801yM/PR3p6OiwWC06fPo2DBw8iOTkZy5Yt68m2kh95+yUYTPNhdEevjsViwdmK\nGlw0rD8gyPDZ3tPYc7BcclxsRDgWTs9BYqzGbbtR34j4GB0iIs5tnZrOhMGWfS11KalxupDvzSKi\n4ORzKOnXrx8+/vhjvPbaa9i9ezd+/vlnAEBaWhruuOMOLF68GDpd4C0IRt3D2y/BYJoP41x7dRqb\nGlFdZ4RGFw2TxY63tx3FsZIGyXH9kiNx42UDoVX9NpJGFEWYDI1Iio+GRq3u2htopTNhMJiCIxH1\nbp2aPC0uLg7Lli1jj0gv5O0XWzDNh9HVX86iKKKyqgYmmwiNLhLV9Sas3VKI6gaz5NjRFyTiqnEZ\nkLcqXHU6nTAbG5GeHI+wVkN+z0VnwmAwBUci6t06PaPrvn37sHPnTlRUVOCOO+6AWq3Gjz/+iCuu\nuKLbfuBS4AmFX2xdeQ8OhwNnyyshU2igUofhWEk93tp6DOZfp4RvIROAq8ZlYszgJMn5NnMTMlIT\nIZfLu+29dCYMBlNwJKLezedQ4nA4cO+99+KTTz5xbZs9ezbq6upw77334u2338ZLL72EiIiIHmko\n+Vco/GLr7HtoPV28IAjY83MZPtl7Gm1HPavD5bhxajayUqPcttutVsBpRkZacq9YzLJ1IXF2Rgwm\nXZju7yYRUZDxeZ6SF198EZ988gkefvhhfPHFF65K/qlTp+K+++7DgQMH8MILL/RYQ4nOp9q6OlRU\nN0Kji4ZTBDbtOonNX0sDSXy0GkuuHSoJJBaLCQrBhrSUpF4RSIDfComLSurx2d7T2PF9sb+bRERB\nxudQsmnTJsyePRs33ngjtNrfnsUrlUrcfPPNmDt3Lr744oseaSTR+SKKIkrLK9BkdkKtjYDeZMNr\nm4/gu8IqybE56dH4v2sHo0+Uym272WSEVikgKTH+fDU7ILQtHD5d3uSnlhBRsPI5lFRUVGDIkCFe\n92dnZ6OqSvqDmyhY2Gw2nCopg1OmRni4GmU1Bqza9LPHX66XDEvGwuk5UCndn4AaDY2IjVQirk/s\n+Wp2wGhbOJyRxEe5RNQ5PteUJCcno6ioyOv+b7/9FklJSV73EwWypiY9quqaoNZGQRAEHPqlFht2\nHIfV7j5LsVwmYNaE/sjPlvaCGPUN3TbkNxi1LiRuqSlpbDT5uVVEFEx8DiWzZs3CCy+8gBEjRmDs\n2LEAmidjslgsePXVV7F582YsWbKkxxpK1BUdzeL623BfQKOLgiiK2P5DCbZ+VyK5lk4dhoJp2eib\n6N4DIIoiTPp6pCXHQ6lUSs7rLVoXEkdHazo4mohIyudQcvvtt+P48eP4y1/+AoWi+bSlS5eisbER\ndrsdEyZMwJ133tljDSXqivZmcbXb7SitqIJMroZKrYTV7sB7O0/i55M1kuukxGlRMC0b0bpwt+2u\nIb9pSd065JeIqDfyOZTI5XI8/fTTmD17NrZu3Yri4mI4HA6kpKRg4sSJmDJlSk+2k6hLvM3iajAa\nUV5VD42u+XFNg96C9Z8X4Wy1dJbXof1jcf3ELCgV7qHDbrdDtBnQN9X7Kr9EROQ7n0PJX/7yF0yf\nPh1Tp051Pb4hCnSeZnGtrqlFk8kObUTzgnhnfl3ht8lkk5w/5cI0TM5PlQzrtVktkIlWpPaiIb9E\nRD3N51CyZcsWjBgxoifbQtTtWhdfpvRRo2+cAJNNgFrTvE7Tj0VV2LT7JOwO9wlIwhQyzJk0AEP6\nSUfRWMxGqBRAYkJiz78BIqJexOdQkpOTg0OHDvVkW4i6XUvxpdlsRmlFDcLCIyCTyeB0ivj82zPY\ntb9Mck60TomCaTlIiZOujWM2GhCpVSA2JuZ8NJ+IqFfxOZTMnDkTzzzzDI4fP478/HzExsZKuq0F\nQcDixYu7vZFE56Kuvh51TWZoIpqDhNlqxzvbj6PwTL3k2IykCCy4LBs6tXQdJ6OhEfHRWi6lQETU\nQwRRbDtxtme5ubkdX0wQcOTIkXNuVE+x2Ryorzf6uxkBoaOhsoGiZWhpV+6bKIooq6iETVQgPLx5\n7pDaRjPWbilEZZ10/owLc+Ixc3w/KOTSotXePgdJZ53LfSP/4X0LTsF43+LjPf9x53NPybZt27qt\nMeR/7Q2VDQUWiwWllTUIC9ch/Nch7CdKG/DmF8dgstjdjhUEYMaYDIwbIi1aFUURJkMD0pLievUc\nJERE54PPoSQ1NbUn20HnmbehsqGgsakR1XUG1+ysALD3cDk+3nMazjYdgyqlHPOmDER2erTkOq45\nSFITOQcJEdF50G4o+eGHH7Bq1Sr89NNPcDgcuOCCC3DLLbdwTpIQ4GmobLATRREVVTUw20RodM2r\n9jqcTnz81Wl8c7hCcnyfKBVump6D+GjpIxm7zQbRbuIcJERE55HXULJv3z7ccsstcDgcGDhwIORy\nOQ4ePIi77roLf/3rXzFv3rzz2U7qZq2HyrbUlAQzu92Os+VVkIVpoPq1SNVotuHNrcdwsrRRcvyA\n1CjMnzoQ6nDpR8BqNUMpOJCYktjhHCTBUptDRBQMvIaSf//730hISMArr7yCrKwsAEBlZSXuvPNO\nrFixAnPnzuWkUUGs9TolwU5vMKCiusE1OysAVNQZse6zQtQ2WSTHjxuShCvGZEAuk/77NZuNBzkp\n+gAAIABJREFU0IXLENdHuuCeJ91dm8OQQ0S9mdd+6UOHDqGgoMAVSAAgISEBS5cuRX19PU6ePHle\nGkjUnuqaWlTVGaCNiHYFkqOn6/Di+4ckgUQuE3DdhP64alymx0BiMjQhWhuGuD7SCdO86e7anJaQ\nU1RSj+0/nsWeA9J5VIiIQpXXnhKDwYDYWOkP5wEDBkAURdTV1fVow4ja43Q6UVpeCVEW7pqdVRRF\n7N5fhi37zqDtOHeNSoEFl2WjX3Kkx+sZ9Q1IiI2ETte52prurs0J5QJkIqKOeA0lDofD44iD8PDm\nVVJtNuk6IUTng8ViwdmKGoSrI6D49d+oze7E+7tP4sdj1ZLjk2I1WDg9GzERKsk+URRh1DcgNTEW\nKpV0f0fOpTbH06OaUCxAJiLylc9DgokCQUNjA2rqTdDofhvC22i04o3Pi1BcqZccf0FmDOZMGoDw\nMGnAdjqdsJgakZGaAIWiax+Fc6nN8VSPEmoFyEREndHuT+L2CllZ5ErnkyiKqKishtkOaHS/PYI5\nW6XHus+L0GiwSs6ZlJeKKSPTPBaK2u12OG0GZPhxyK+nRzWhVIBMRNRZXqeZz83N9Ro8RFH0uE8Q\nBBw+fLh7W9iNOM188ImO1sBut+PQ0dOQhWkQFvbbmjQHTlTjvZ0nYXM43c5RyAVcf2kWhg+I83hN\nm9UCmWhFSlKCX8P17v2lrp4SAJiclxoygSQYp70m3rdgFYz3rdPTzM+aNavHGkPkK73egLKqOijV\nka4A4RRFbPu+BDt+OCs5PlIThoLpOUiL13m8nsVshEoBJCYk9mi7fcFHNURE7nxekC8UsKckuFTX\n1AIKBTQaHRqbzAAAi82BDTuO4/Ap6eivtHgtCqblIFLreY0as9GASK0CsTExPreB84Z0TTD+5Ua8\nb8EqGO/bOS/IR3S+tB7u2yfytx6PuiYL1m0pRHmt9IM3YkAcZk3ojzCF5/oQo6ERcdEaREZ4HhLs\nTagvXEhEFEgYSiigmM1mlFbWQqWJdCtAPVXeiDc+L4LB3GaFXwDTL+qLS4Yne6wPaV7ltxFJ8dHQ\nqKVr3HSE84YQEZ0/DCUUMOobGlDb4D7cFwC+/rkMb28tgsPp/qQxPEyOuZMHIDfD8+MYp9MJs7ER\naUlxUCo9P9LpCOcNISI6fxhKyO9ahvtaHILbcF+HU8TGHcew00NBa2xEOBZOz0FirMbjNR0OB2zm\nJmSkJnqcBNBXLEYlIjp/GErIr1pW95UrtQhX/fbP0WSx4+1tx3CspEFyTr/kSCy4bCA0qjDJPgCw\nW62A04yMNM+PdDqD84YQEZ0/DCXkN3q9AZW1jVBrI93CQ3W9CWu3FKK6wSw556JBCbj64kzIvUx4\nZrGYEC5zIiklqcfaTUREPYOhhPyiuqYWTSY7NLoot+3HSurx1tZjMFsdbttlAnDVuEyMGew9bJhN\nRuhUMsT1ie+RNhMRUc9iKKHzytPqvkBzXclXB8vxyd7TaDtzjkalwPwpA5GVGgVvujrkl4iIAgdD\nCZ03nlb3BQC7w4kPvvwF3xdWSc5JitXgjllDES73XhtiaKpHUnw0tBrPRa9ERBQcGErovPC0ui8A\n6E02vPF5EU5XNEnOyekbjcXXDIE6XOGa0bU1URRh0tcjLSkO4eHhPdZ2IiI6PxhKqEd5W90XAMpq\nDFi3pRD1eukKvxOGJ2PaqL5Qh3v+J+pwOGC36JGRlnROQ36JiChwMJRQj2kZ7isL00Cldh++e+iX\nWry74zhsdvcVfuUyAddN6I+8bO/FqnarFaLDjPSURLdZX4mIKLgxlFCP0BsMqKyRDvcVRRE7fjyL\nrd+VSM7RqcNQMC0bfRM9L9QEAFarGUrBgaRUDvklIgo1DCXU7bwN97XaHXhv5wn8fLJWck5KnBYF\n07IRrfNeG8Ihv0REoY2hhLqN0+nE2bJKQO4+3BcAGvQWrP+8CGerpQvaDe0fi+snZkGp8F4bYjI0\nITZKhahI78OCiYgouDGUULfwtrovABRXNmH9liI0mWyS86ZcmIbJ+antTgdvMDQgoU8Eh/wSEYU4\nhhI6Z3X19ahrMkuG+wLAj0VV2LT7JOwO9xnRwhQyzJk0AEP6xXq9riiK0DfVISM1ASaTw+txREQU\nGhhKqMtcw30dAjRa9+G+TqeIz789g137yyTnReuUWDg9B8l9tF6v3bLK75BBmVAoFDCZjN3efiIi\nCiwMJdQlNpsNZ8uroAjXQaVy/2dkttrxzvbjKDxTLzkvIykCCy7Lhk7teYXflmvDbkLf1CQoFPwn\nSkTUW/AnPnWaXm9ARU0DNLooSS1ITaMZ67YUorLOJDnvwpx4zBzfDwq597lFWob8JqYktltnQkRE\noYehhDqlqroGerMT2ghp/ciJ0ga8+cUxmCx2t+2CAMwYk4FxQ5LaDRpmkwHacBni4zjkl4ioN2Io\nIZ+4D/dVS/bvPVyOj/echrPNEr8qpRzzpgxEdro0xLRmMjQhJlKF6CgO+SUi6q0YSqhDZrMZpRU1\nUGmjJMN9HU4nPv7qNL45XCE5Ly5KhYXTcxAfLQ0xrRn1DUiIjYRO573wlYiIQh9DCbWrvqEBtY0m\naCJiJPuMZhve3HoMJ0sbJfsGpkVh3pSBXhfUA35d5dfQgJSEWKhUqm5tNxERBR+GEvKoZbivxcNw\nXwCoqDVi3ZZC1DZZJPsuHpKEy8dkQC7zXj/icDhgNTehb0oCR9gQEREAhhLyoGV1X7lSi3CV9J/I\n0dN1eGf7cVhs7hOayWUCrhnfD6NyE9q9fvOQXyMyUpO4yi8REbkERSipr6/HmDFjJNunT5+OFStW\n+KFFoUuvN6CyVrq6L9Dce7J7fxm27DsDsc15WpUCC6ZlIzNJ2qvSms1qgRxWJKe0PxKHiIh6n6AI\nJUePHoUgCHj99deh1f5WDBkd3f6IDuocb6v7AoDN7sSmXSfx0/Fqyb6kWA0WTs9GTET7dSG/DflN\n7LY2ExFR6AiKUFJYWIg+ffpg7Nix/m5KSHI6nSgtr4Qok67uCwCNRive+LwIxZV6yb4LMmMwZ9IA\nhId5X+EXAMxGPaJ0SsQwSBIRkRdBE0pycnL83YyQZLFYcLaiBuHqCCjk0mBxtkqPdZ8XodFgleyb\nlJ+KKRemQdbBYxiToRHxMREc8ktERO0KmlASHh6OefPm4fDhw4iJicFNN92EW2+91d9NC2oNjQ2o\nqTd5XN0XAA6cqMZ7O0/C5nC6bVfIBcyemIVhWXHtXl8URRj1DUhN5JBfIiLqWMCHEqfTiRMnTkCj\n0WDZsmVISUnBzp078fTTT8NisWDJkiX+bmLQca3uawc0OmlhqlMUse27Euz48axkX6RWiYXTspEa\nL33M43YNpxMWUyMyUjnkl4iIfCOIoth2IEVAcTqd+Pbbb5GSkoL09HTX9uXLl+ODDz7AN998A6VS\n6dO1RFGE3e7s+MAQZrfbUVxaAZlCg7Aw6Uq9Fqsdaz89iv0eClozkyNw2zVDEKUL7/A1nDYD+qYl\nn/OQX4VC9us1e/d9Cza8b8GJ9y04BeN9C/NShxjwk0TIZDKMHj3aLZAAwCWXXAKz2YwzZ874qWXB\nx2Aw4pficihVkR4DSU2DCc+8/aPHQHLRBYn44w0jOgwkFqsFMqcZGekpnIOEiIg6JeD71SsrK7Fz\n505cdtlliIn5bapzi6V5JtHW2zpitztRX2/s9jYGg+qaWuhNdqg0OjTppbOw/lLWiDe+KILR3GaF\nXwDTL+qLS4Ynw2SywQSb19ewmI1QKYCYhDg0NJi6pd3R0RoA6LX3LVjxvgUn3rfgFIz3LT4+wuP2\ngA8lVqsVjzzyCEwmExYtWuTa/tlnnyEzMxN9+vTxY+sCX8twX6eghMrDcF8A+O5oJT748hc4nO5P\n8sLD5Jg7eQByMzoOfmajAVG6MA75JSKiLgv4UJKWloYrr7wSK1asgCAIyMrKwqeffoqtW7di1apV\n/m5eQLNYLCitqIFSHQGlh+G+DqeIT/eexlcHyyX7YiPCsXB6DhJjNR2+jlHfiPgYHSIi2i9+JSIi\nak/AhxIAeOyxx/DCCy9g7dq1qKqqQlZWFlauXImJEyf6u2kBq7GpETX1Rqi9DPc1Wex4e9sxHCtp\nkOzrlxyJBZcNhEYlrTtprXmV30YkxUdDo1Z3S7uJiKj3CvjRN93JZnME1TO3rhBFEZVVNTDZRKjU\nnicrq643Ye2WQlQ3mCX7Rl+QiKvGZUDeQZGq0+mE2diI9OR4j0Wz3SUYn5US71uw4n0LTsF434K2\npoR853A4cLa8EjKFBiq156BQVFyPt7cdg9nqvsKvTACuujgTYy5I8ul17BY9MlITIffwWIiIiKgr\nGEpChNFkQnlVHdTaKI+r74qiiK8OluOTvafRtm9MHa7AjVMHIitVuhBfW3arFXCa0TeVq/wSEVH3\nYigJAbV1dWjQW71OF293OPHBl7/g+8Iqyb6EGDUWTs9Bn8iOp4G3WEwIlzmRlNJxbwoREVFnMZQE\nMafTibKKKjiEMKi1np/P6U02vPF5EU5XNEn25faNxg2TB0Cl7PifgdlkhE4lQ1yf+HNuNxERkScM\nJUHKarXibEU1lCrPw30BoKzGgHVbClGvl67wO2F4CqaNSodM1vEjGJOhCbFRKkRFdvx4h4iIqKsY\nSoJQU5MeVXVNXutHAODgL7XYsOM4bHbpCr+zJvRH3kDfejyM+gYkxkVBq+l4vhIiIqJzwVASZCoq\nq2GyARqd514LURSx48ez2PpdiWRfhDoMBdOzkZ7g+VFP2+uYDA1ITeyD8PD217shIiLqDgwlQcLh\ncKC0vBKCXA2V2vOqyFa7Axt3nsDBk7WSfalxWhRMy+5wQb2W17KZm9A3JQEKBf+JEBHR+cHfOEGg\nZbivShPpdeXder0F67cUorRGOnnOsKw+uO7S/lAqOp5TxGazAXYj+qYmcZVfIiI6rxhKAlxdfT3q\n9Ravw30B4ExFE9Z/XgS9SbqC79SRaZiUl+rTnCI2qwVyWJGcwjlIiIjo/GMoCWDVNbUwWEWoNd5r\nQH4oqsKmXSclK/wqFTLMmTQAg/vF+vRaZpMB2nAZ4uMSz6nNREREXcVQEsCsNgfCwz2vX+N0itiy\n7wx2HyiT7IvWKbFweg6S+3g+ty2TUY9onRIx0d57Y4iIiHoaQ0kQMlvteGf7cRSeqZfsy0iKwILL\nsqHzsvZNW0Z9I+JjdIiI0HV3M4mIiDqFoSTI1DSasW5LISrrTJJ9I3Picc34flDIOy5QFUURRn0D\nUhNjoVJ1PMU8ERFRT2MoCSInzjbgza1FMFncV/gVBGDGmAyMG+JbgarT6YTF2Ii+KfEIC/OtR4WI\niKinMZQEAVEUsfdwBTZ/dQpt6lmhUsoxb8pAZKf7Vg9it9vhtBmQkcYhv0REFFgYSgKcw+nER3tO\nYd+RSsm+uCgVFk7PQXy02qdr2awWyEQr0jnkl4iIAhBDSQAzmO14+39H8EuZdIXfgWlRmDdlINTh\nvt1Ci9kIlQJITOCQXyIiCkwMJQHqbJUeL358HHV66YRoFw9JwuVjMiD3YYVfgEN+iYgoODCUBKDj\nJQ14+t2fYLG6F7TKZQJmju+HkbkJPl+LQ36JiChYMJQEoLVbjkoCiValwIJp2chMivTpGi1DflMS\nYqBW+1ZzQkRE5E8MJQGo7ZDfpFgNFk7PQUxExyv8AhzyS0REwYljQgPQ9Zf2h1wmQEDzCr93zBzs\ncyCx2+2wmZvQNzWRgYSIiIIKe0oC0JjBSRgxMA6nSioR3YniVLvVCkG0oG8qh/wSEVHwYSgJUCql\nApEa33s6OOSXiIiCHUNJCDAbDYjUKhAbE+PvphAREXUZQ0mQax7yq0VERIS/m0JERHROGEqCVMuQ\n3+SEGGg45JeIiEIAQ0kQcjqdMHPILxERhRiGkiBjt9tht+iRkZoIuVzu7+YQERF1G4aSIGK3WgGn\nGRlpyRzyS0REIYehJEhYLCaEy0UkJSX5uylEREQ9gqEkCJiMBkRxyC8REYU4hpIAZzQ0Ii5ag8gI\n3xbiIyIiClYMJQFMLhOQFBfFIb9ERNQrMJQEsMSEOH83gYiI6LzhKsFEREQUEBhKiIiIKCAwlBAR\nEVFAYCghIiKigMBQQkRERAGBoYSIiIgCAkMJERERBQSGEiIiIgoIDCVEREQUEBhKiIiIKCAwlBAR\nEVFAYCghIiKigMBQQkRERAGBoYSIiIgCAkMJERERBQSGEiIiIgoIDCVEREQUEBhKiIiIKCAwlBAR\nEVFAYCghIiKigMBQQkRERAGBoYSIiIgCAkMJERERBQSGEiIiIgoIDCVEREQUEBhKiIiIKCAwlBAR\nEVFAYCghIiKigMBQQkRERAGBoYSIiIgCAkMJERERBQSGEiIiIgoIDCVEREQUEBhKiIiIKCAwlBAR\nEVFAYCghIiKigMBQQkRERAGBoYSIiIgCAkMJERERBQSGEiIiIgoIDCVEREQUEBhKiIiIKCAwlBAR\nEVFAYCghIiKigMBQQkRERAGBoYSIiIgCAkMJERERBQSGEiIiIgoIDCVEREQUEBhKiIiIKCAwlBAR\nEVFAYCghIiKigMBQQkRERAGBoYSIiIgCAkMJERERBQSGEiIiIgoIDCVEREQUEBhKiIiIKCAwlBAR\nEVFAYCghIiKigMBQQkRERAGBoYSIiIgCQtCEknfffRfTp0/H8OHDMW/ePPz000/+bhIRERF1o6AI\nJZs2bcLy5csxc+ZMrFy5EpGRkVi8eDHOnj3r76YRERFRNwmKULJy5UrMmzcPS5YswYQJE7Bq1SpE\nR0djzZo1/m4aERERdZOADyWnT59GaWkpJk2a5NqmUCgwceJE7N69248tIyIiou4U8KHk1KlTEAQB\nGRkZbtvT0tJQXFwMURT91DIiIiLqTgEfSvR6PQBAq9W6bddqtXA6nTAajf5oFhEREXUzhb8b0JGW\nnhBBEDzul8l8z1UKhQzR0ZpuaRedHwpF8/3lfQsuvG/BifctOIXSfQv4UBIREQEAMBgMiI2NdW03\nGAyQy+VQq9U+X0sQBISFybu9jdTzeN+CE+9bcOJ9C06hcN8C/vFNRkYGRFFEcXGx2/aSkhJkZmb6\np1FERETU7QI+lGRmZiI5ORlbt251bbPZbNi5cyfGjh3rx5YRERFRdwr4xzcAcNttt+HRRx9FREQE\n8vPzsX79etTX12PRokX+bhoRERF1E0EMkjG1a9aswdq1a1FXV4fc3Fzcf//9GDZsmL+bRURERN0k\naEIJERERhbaArykhIiKi3oGhhIiIiAICQwkREREFBIYSIiIiCggMJURERBQQekUoeffddzF9+nQM\nHz4c8+bNw08//eTvJlEH6uvrkZubK/nvj3/8o7+bRl5s27YN+fn5ku3//ve/MWnSJIwYMQK33HIL\nTp486YfWkTee7tuhQ4ckn71BgwbhySef9FMryel0YvXq1ZgxYwby8vJw5ZVX4o033nA7JhQ+a0Ex\nedq52LRpE5YvX4677roLQ4YMwfr167F48WJ88MEHSE1N9XfzyIujR49CEAS8/vrrbitER0dH+7FV\n5M0PP/yAe++9V7L9+eefx6uvvoq//OUvSElJwapVq/C73/0Omzdvhk6n80NLqTVv9+3o0aPQaDRY\ns2aN2/aEhITz1DJq64UXXsCrr76K3//+9xg2bBi+++47/POf/4TZbMatt94aOp81McRNmjRJ/Nvf\n/ub62maziVOmTBEfffRRP7aKOrJmzRrx4osv9nczqAMWi0V8+eWXxSFDhogXXXSRmJeX59qn1+vF\nvLw88dVXX3Vta2hoEPPz88XVq1f7obXUor37Joqi+I9//EOcO3eun1pHbTkcDjE/P1987rnn3Lb/\n7W9/E8eNGxdSn7WQfnxz+vRplJaWYtKkSa5tCoUCEydOxO7du/3YMupIYWEhcnJy/N0M6sCuXbvw\n6quv4r777kNBQYHbvv3798NkMrl9/iIjIzFq1Ch+/vysvfsGNH/+srOz/dAy8kSv12PWrFm47LLL\n3Lb369cPtbW12Lt3b8h81kI6lJw6dQqCICAjI8Nte1paGoqLiyFyMtuAVVhYCJPJhHnz5mHYsGG4\n9NJL8dprr/m7WdTGsGHDsG3bNixYsACCILjt++WXXwAAffv2dduenp6OU6dOna8mkgft3TcAKCoq\nQllZGa699loMGTIE06ZNw/vvv++HlhLQHDAeeugh5Obmum3fvn07kpKSUF5eDiA0PmshXVOi1+sB\nwK0moeVrp9MJo9Eo2Uf+53Q6ceLECWg0GixbtgwpKSnYuXMnnn76aVgsFixZssTfTaRftVdjYDAY\noFQqoVC4/5jRarWuzyb5R3v3rbKyEnV1dThz5gzuueceREREYPPmzbjvvvsgCAJmzpx5HltK3mzY\nsAF79+7FQw89FFKftZAOJS09IZ7+EgAAmSykO4qC2ksvvYSUlBSkp6cDAEaNGgWDwYBXXnkFixcv\nhlKp9HMLqSOiKPKzF4SioqLw+uuvIzs7G3FxcQCAsWPHoqKiAi+88AJDSQD48MMPsXz5clx++eVY\nsGABXnrppZD5rAVXazspIiICQPNfbK0ZDAbI5XKo1Wp/NIs6IJPJMHr0aFcgaXHJJZfAbDbjzJkz\nfmoZdYZOp4PVaoXD4XDbbjAYXJ9NCjzh4eEYN26cK5C0uOSSS1BcXAyTyeSnlhEArF69GsuWLcPk\nyZPx1FNPAQitz1pIh5KMjAyIooji4mK37SUlJcjMzPRPo6hDlZWVePfdd1FXV+e23WKxAABiYmL8\n0SzqpMzMTIiiiJKSErftxcXF6Nevn59aRR05deoU3nrrLdhsNrftZrMZKpWKf8z50TPPPIMnnngC\n1157LVasWOF6XBNKn7WQDiWZmZlITk7G1q1bXdtsNht27tyJsWPH+rFl1B6r1YpHHnkEH374odv2\nzz77DJmZmejTp4+fWkadkZeXB6VS6fb5a2howLfffsvPXwCrqKjA3/72N/zvf/9z2/7FF19g5MiR\nfmoV/ec//8HLL7+Mm2++GY899pjbY5lQ+qyFdE0JANx222149NFHERERgfz8fKxfvx719fVYtGiR\nv5tGXqSlpeHKK6/EihUrIAgCsrKy8Omnn2Lr1q1YtWqVv5tHPtJoNCgoKHDdx4yMDLz44ouIjIzE\n7Nmz/d088mLUqFEYOXIkli9fjoaGBsTHx+Odd95BUVER3n77bX83r1eqqqrC008/jZycHFxxxRXY\nv3+/2/4hQ4aEzGct5EPJjTfeCKvVirVr12Lt2rXIzc3F66+/jrS0NH83jdrx2GOP4YUXXsDatWtR\nVVWFrKwsrFy5EhMnTvR306gdbYvtli5dCrlcjtdffx1GoxH5+fl48skng2uGyV6g9X2TyWRYtWoV\nnnnmGaxcuRL19fW44IILsHr1agwaNMiPrey9vvzyS9hsNhQVFWHevHmS/V9//XXIfNYEkZN1EBER\nUQAI6ZoSIiIiCh4MJURERBQQGEqIiIgoIDCUEBERUUBgKCEiIqKAwFBCREREAYGhhIiIiAICQwlR\nCJk8eTJuu+02fzfDb3r6/bdeR2vfvn3Izc3FJ5980mOvR9TbMJQQEfng4Ycfxt///nfX11lZWXjq\nqaeQl5fnx1YRhRaGEiIiH+zZswetJ8Du06cPrr76aiQnJ/uxVUShhaGEiIiIAgJDCVEI+/rrr1FQ\nUIARI0Zg5MiRuPPOO1FUVCQ5bsOGDZgxYwaGDx+O6667Dnv37sW0adNw//33d+r1WuosvvrqK9x9\n993Iy8vD+PHj8dhjj8FisbiOW7lyJUaNGoWPP/4YY8aMwUUXXYQdO3YAaK7buPvuuzF69GgMHz4c\nc+bMcVuSvcWuXbswe/ZsjBgxAldddRW+/vpryTHeakxyc3OxfPlyt23bt2/H/PnzkZeXhwkTJuCR\nRx5BQ0OD6/iysjLs3r0bgwYNwrfffuuxpsRkMuGJJ57AxIkTMXToUEyfPh0vv/wynE6n5L0fP34c\nv/vd75CXl4dx48bh0UcfhdVq7dT3myjUMJQQhagvvvgCt956KxobG3H33Xdj8eLFOHToEObOnYuj\nR4+6jluzZg0efvhhpKamYtmyZRg4cCBuv/12VFdXd/m1H3zwQZw5cwZLly7FlClTsHbtWvzhD39w\n7RcEASaTCY8//jjuvPNOVxgoLi7GnDlzsHfvXixcuBD33HMPAOCuu+7Chg0bXOd/+eWX+L//+z+I\noog///nPGD9+PJYsWYKampoutfeDDz7A73//ezgcDixduhRz5szBRx99hCVLlgAAnnrqKURHRyM3\nNxdPPfUUsrKyXO+jhdVqxc0334x169Zh8uTJeOCBB5Cbm4tnnnkGy5Ytc3vvFosFN998M5KSkvDA\nAw9g1KhRWL9+PZ5//vkutZ8oZIhEFDImTZokLl68WLTb7eL48ePFyy+/XLRYLK79ZWVl4ogRI8QF\nCxaIoiiKTU1NYn5+vnj77be7XeeJJ54Qc3JyxPvuu69Tr//NN9+IOTk54uWXXy6azWbX9ueee07M\nzc0Vv/76a1EURXHlypVibm6u+MYbb7id/4c//EEcPHiwePLkSdc2m80mXn/99WJ+fr7Y1NQkiqIo\nzpo1S5w2bZrbe/vggw/EnJwccfHixZLvR1s5OTniX//6V1EURdHhcIjjxo0T586dK9psNtcxGzdu\nFHNzc8V9+/Z5vFbLe928ebMoiqK4fv16MTc3V9y4caPba/3973+XvPecnBxx5cqVbsfNmDFDnDp1\nqsfvK1FvwZ4SohB06NAhVFVVoaCgAEql0rU9KSkJM2fOxA8//ICGhgbs3bsXRqMRN910k9v5ixcv\nPqfXLygoQHh4uOvrRYsWQRRF/O9//3M77sILL3T9v9PpxK5duzBlyhT069fPtV2hUOCWW26B0WjE\n3r17UVtbi8OHD+Oaa65xe29XX301oqKiOt3WgwcPoqamBjfccAMUCoXb9f773/9i+PBDI0LRAAAF\ng0lEQVThPl1n586diI2NxXXXXee2vaVHZ9u2ba5tgiDgsssuczsuNzf3nHqniEKBouNDiCjYlJSU\nAAAyMzMl+7KysiCKIsrKynDmzBkAQN++fd2OiY2NRWRkZJdfv3///m5fR0ZGIioqCmfPnpW8Tou6\nujqYTKZ221xaWorExEQAQFpamtsxgiAgIyOj020tLS2FIAiS74FSqcSgQYN8vs7Zs2eRnp7u9kgH\naB6lExUVhbKyMrftrd97y+u1rj0h6o3YU0LUyzgcDgBAWFgY7Ha76//bat0L0RmCIHi8ntPphFwu\nd9smk/32I0hsNdzW07lt2+mpKNSXX+ptj+muINBe+x0Oh+R70vq9E1EzfiqIQlBqaioA4JdffpHs\nO3nyJARBQEJCAtLT0wEAp06dcjtGr9ejtra2S68tiqLbzKdAcy9IU1OTpDeitdjYWKjVaq9tBpof\nP6WmpkIQBEmbAUh6YuRyuSS8tC2GTUpKgiiKrt6lFlarFXfffTd2797ttc2tpaamori4WBJOqqur\nodfrkZSU5NN1iHozhhKiEDR48GDExcVh/fr1MJvNru3l5eX46KOPkJ+fj4iICIwfPx7h4eF4++23\n3c5/8803z6kH4Z133nE7f82aNRAEAVOnTvV6jkwmwyWXXILt27e7QggA2Gw2rF69Gmq1GqNHj0Zs\nbCzy8vKwadMmNDU1uY779NNPUVdX53bNuLg4nDhxwtU71HJca0OHDkVMTAzee+89tzZ/9tln+Oyz\nz1x1JnK5vN3vyaRJk1BTU4P33nvPbftLL70EQRBw6aWXej2XiJqxpoQoBCkUCjz44IO45557MGfO\nHFx//fUwmUx48803AQAPPPAAACAiIgK///3v8fTTT+P222/HxIkTceTIEXz00UcQBEFSH+GrI0eO\nYNGiRbj88stx8OBBbNq0CbNmzcLQoUPbPe+ee+7BN998g/nz56OgoABRUVH48MMPcejQITzyyCPQ\naDQAgPvuuw8LFy7EnDlzMG/ePNTU1GD9+vWSQterrroKjz76KG6//XZcfvnlKCwsxObNm9GnTx/X\nMWFhYbj33nvxwAMPYOHChZgxYwYqKiqwbt06TJgwAWPHjgXQ3JNz6NAhvPPOO5gwYYKk7XPmzMF7\n772H5cuX49ChQ8jOzsbevXuxZcsWzJgxA2PGjOnS95KoN2FPCVEIaR0krrjiCrz88suIiIjAihUr\nsGbNGuTl5eHdd9/FBRdc4Drntttuw4MPPohTp07h8ccfx5EjR/Dyyy9DFEWPtSG+uP/++xEVFYV/\n/etf2LdvH5YuXYp//vOfHZ6XkZGBd955B6NHj8b69evx7LPPQqlUYtWqVZg/f77ruGHDhmHt2rWI\nj4/HihUrsGXLFvz973/HgAED3ILU/PnzsWTJEpw4cQL/+Mc/UFRUhNWrV0uKTGfNmoXnnnsOZrMZ\nTz75JD7++GPMnz8fzz77rOuYJUuWQKPR4J///Ce+//571/e7hVKpxNq1a3HjjTdi+/btePzxx3H8\n+HHcd999ePrpp336vnU1BBKFCkFsrzqLiEKa1WqF1WqFTqdz215fX48xY8ZgyZIlbpOedWTfvn24\n6aab8Mwzz2DGjBnd3VwiCnHsKSHqxaqqqjBy5EisW7fObfunn34KQRAwePBgP7WMiHoj1pQQ9WKp\nqakYOXIknn32WVRVVaFv3744duwY3n77beTn52Py5MkoLCxEYWFhh9eKi4tzm3yMiKiz+BOEqJf7\n97//jVWrVuGTTz5BVVUV4uLiUFBQgLvuuguCIOCLL77ACy+80OF1Ro0a5TqHiKgrWFNCREREAYE1\nJURERBQQGEqIiIgoIDCUEBERUUBgKCEiIqKAwFBCREREAYGhhIiIiALC/wcI1cbB9oRw1wAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1193af128>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.subplots(figsize = (8,8))\n", "sns.regplot(test[target],rf.predict(test[features + dummy_categoricals]))\n", "plt.ylabel('Predicted log_production')\n", "plt.xlim(0, 22)\n", "plt.ylim(0, 22)\n", "plt.tight_layout()\n" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.metrics import explained_variance_score, r2_score, mean_squared_error" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.87932195036446992" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predicted = rf.predict(test[features + dummy_categoricals])\n", "r2_score(test[target], predicted)" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.88083361311273922" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "explained_variance_score(test[target], predicted)" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.6987063758707428" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean_squared_error(test[target], predicted)" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>importance</th>\n", " <th>name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.863181</td>\n", " <td>Labor_Hours</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.030674</td>\n", " <td>Average_Employees</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.007066</td>\n", " <td>Coal_Supply_Region_Powder River Basin</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.005829</td>\n", " <td>Coal_Supply_Region_Powder River Basin</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.003798</td>\n", " <td>Mine_Type_Surface</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>0.003375</td>\n", " <td>Mine_Type_Surface</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>0.001956</td>\n", " <td>Mine_County_Boone</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>0.001802</td>\n", " <td>Mine_State_West Virginia (Southern)</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>0.001784</td>\n", " <td>Mine_State_West Virginia (Southern)</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>0.001746</td>\n", " <td>Mine_Status_Active</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>0.001709</td>\n", " <td>Mine_Status_Active</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>0.001623</td>\n", " <td>Coal_Supply_Region_Appalachia Central</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>0.001491</td>\n", " <td>Mine_County_Boone</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>0.001464</td>\n", " <td>Coal_Supply_Region_Appalachia Central</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>0.001442</td>\n", " <td>Coal_Supply_Region_Illinois Basin</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>0.001388</td>\n", " <td>Coal_Supply_Region_Illinois Basin</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>0.001369</td>\n", " <td>Mine_State_Refuse Recovery</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>0.001316</td>\n", " <td>Mine_County_Buchanan</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>0.001271</td>\n", " <td>Mine_County_Buchanan</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>0.001258</td>\n", " <td>Company_Type_Independent Producer Operator</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " importance name\n", "0 0.863181 Labor_Hours\n", "1 0.030674 Average_Employees\n", "2 0.007066 Coal_Supply_Region_Powder River Basin\n", "3 0.005829 Coal_Supply_Region_Powder River Basin\n", "4 0.003798 Mine_Type_Surface\n", "5 0.003375 Mine_Type_Surface\n", "6 0.001956 Mine_County_Boone\n", "7 0.001802 Mine_State_West Virginia (Southern)\n", "8 0.001784 Mine_State_West Virginia (Southern)\n", "9 0.001746 Mine_Status_Active\n", "10 0.001709 Mine_Status_Active\n", "11 0.001623 Coal_Supply_Region_Appalachia Central\n", "12 0.001491 Mine_County_Boone\n", "13 0.001464 Coal_Supply_Region_Appalachia Central\n", "14 0.001442 Coal_Supply_Region_Illinois Basin\n", "15 0.001388 Coal_Supply_Region_Illinois Basin\n", "16 0.001369 Mine_State_Refuse Recovery\n", "17 0.001316 Mine_County_Buchanan\n", "18 0.001271 Mine_County_Buchanan\n", "19 0.001258 Company_Type_Independent Producer Operator" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# find out the relative importance of each feature\n", "\n", "rf_importances = pd.DataFrame({'name':train[features + dummy_categoricals].columns,\n", " 'importance':rf.feature_importances_\n", " }).sort_values(by='importance', \n", " ascending = False).reset_index(drop=True)\n", "rf_importances[:20]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.4" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
mne-tools/mne-tools.github.io
0.23/_downloads/b7659d33d6ffe8531d004e9d6051f16f/forward_sensitivity_maps.ipynb
2
5873
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n\n# Display sensitivity maps for EEG and MEG sensors\n\nSensitivity maps can be produced from forward operators that\nindicate how well different sensor types will be able to detect\nneural currents from different regions of the brain.\n\nTo get started with forward modeling see `tut-forward`.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Author: Eric Larson <[email protected]>\n#\n# License: BSD (3-clause)\n\nimport numpy as np\nimport mne\nfrom mne.datasets import sample\nfrom mne.source_space import compute_distance_to_sensors\nfrom mne.source_estimate import SourceEstimate\nimport matplotlib.pyplot as plt\n\nprint(__doc__)\n\ndata_path = sample.data_path()\n\nfwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'\n\nsubjects_dir = data_path + '/subjects'\n\n# Read the forward solutions with surface orientation\nfwd = mne.read_forward_solution(fwd_fname)\nmne.convert_forward_solution(fwd, surf_ori=True, copy=False)\nleadfield = fwd['sol']['data']\nprint(\"Leadfield size : %d x %d\" % leadfield.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute sensitivity maps\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "grad_map = mne.sensitivity_map(fwd, ch_type='grad', mode='fixed')\nmag_map = mne.sensitivity_map(fwd, ch_type='mag', mode='fixed')\neeg_map = mne.sensitivity_map(fwd, ch_type='eeg', mode='fixed')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Show gain matrix a.k.a. leadfield matrix with sensitivity map\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "picks_meg = mne.pick_types(fwd['info'], meg=True, eeg=False)\npicks_eeg = mne.pick_types(fwd['info'], meg=False, eeg=True)\n\nfig, axes = plt.subplots(2, 1, figsize=(10, 8), sharex=True)\nfig.suptitle('Lead field matrix (500 dipoles only)', fontsize=14)\nfor ax, picks, ch_type in zip(axes, [picks_meg, picks_eeg], ['meg', 'eeg']):\n im = ax.imshow(leadfield[picks, :500], origin='lower', aspect='auto',\n cmap='RdBu_r')\n ax.set_title(ch_type.upper())\n ax.set_xlabel('sources')\n ax.set_ylabel('sensors')\n fig.colorbar(im, ax=ax)\n\nfig_2, ax = plt.subplots()\nax.hist([grad_map.data.ravel(), mag_map.data.ravel(), eeg_map.data.ravel()],\n bins=20, label=['Gradiometers', 'Magnetometers', 'EEG'],\n color=['c', 'b', 'k'])\nfig_2.legend()\nax.set(title='Normal orientation sensitivity',\n xlabel='sensitivity', ylabel='count')\n\nbrain_sens = grad_map.plot(\n subjects_dir=subjects_dir, clim=dict(lims=[0, 50, 100]), figure=1)\nbrain_sens.add_text(0.1, 0.9, 'Gradiometer sensitivity', 'title', font_size=16)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compare sensitivity map with distribution of source depths\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# source space with vertices\nsrc = fwd['src']\n\n# Compute minimum Euclidean distances between vertices and MEG sensors\ndepths = compute_distance_to_sensors(src=src, info=fwd['info'],\n picks=picks_meg).min(axis=1)\nmaxdep = depths.max() # for scaling\n\nvertices = [src[0]['vertno'], src[1]['vertno']]\n\ndepths_map = SourceEstimate(data=depths, vertices=vertices, tmin=0.,\n tstep=1.)\n\nbrain_dep = depths_map.plot(\n subject='sample', subjects_dir=subjects_dir,\n clim=dict(kind='value', lims=[0, maxdep / 2., maxdep]), figure=2)\nbrain_dep.add_text(0.1, 0.9, 'Source depth (m)', 'title', font_size=16)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sensitivity is likely to co-vary with the distance between sources to\nsensors. To determine the strength of this relationship, we can compute the\ncorrelation between source depth and sensitivity values.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "corr = np.corrcoef(depths, grad_map.data[:, 0])[0, 1]\nprint('Correlation between source depth and gradiomter sensitivity values: %f.'\n % corr)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Gradiometer sensitiviy is highest close to the sensors, and decreases rapidly\nwith inreasing source depth. This is confirmed by the high negative\ncorrelation between the two.\n\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
taneaki/Interpolations.jl
lin_interp_demo.ipynb
1
2369966
null
bsd-3-clause
DTUWindEnergy/Python4WindEnergy
lesson 3/results/GFPE.ipynb
1
234899
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "import scipy as sp\n", "import sympy\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "# activate pop up plots\n", "#%matplotlib qt\n", "# or change to inline plots\n", "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "# some sample data\n", "x = np.arange(0,10,0.1)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "page_width_cm = 13\n", "dpi = 200\n", "inch = 2.54 # inch in cm\n", "# setting global plot configuration using the RC configuration style\n", "plt.rc('font', family='serif')\n", "plt.rc('xtick', labelsize=12) # tick labels\n", "plt.rc('ytick', labelsize=20) # tick labels\n", "plt.rc('axes', labelsize=20) # axes labels\n", "# If you don\u2019t need LaTeX, don\u2019t use it. It is slower to plot, and text\n", "# looks just fine without. If you need it, e.g. for symbols, then use it.\n", "#plt.rc('text', usetex=True) #<- P-E: Doesn't work on my Mac" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "# create a figure instance, note that figure size is given in inches!\n", "fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8,6))\n", "# set the big title (note aligment relative to figure)\n", "fig.suptitle(\"suptitle 16, figure alignment\", fontsize=16)\n", "\n", "# actual plotting\n", "ax.plot(x, x**2, label=\"label 12\")\n", "\n", "\n", "\n", "# set axes title (note aligment relative to axes)\n", "ax.set_title(\"title 14, axes alignment\", fontsize=14)\n", "\n", "# axes labels\n", "ax.set_xlabel('xlabel 12')\n", "ax.set_ylabel(r'$y_{\\alpha}$ 12', fontsize=8)\n", "\n", "# legend\n", "ax.legend(fontsize=12, loc=\"best\")\n", "\n", "##############################################################\n", "\n", "##Ploting Grid\n", "plt.grid()\n", "#Changing Legend\n", "ax.legend(loc=4)\n", "\n", "ax.plot(x, x**2,color=\"purple\", lw=1, ls='-', marker='s',markevery=5, markersize=8,markerfacecolor=\"yellow\", markeredgewidth=2, markeredgecolor=\"blue\", label=\"label 12\")\n", "\n", "#Subplot\n", "#SubPlot\n", "fig, ax1 = plt.subplots(nrows=1, ncols=1, figsize=(8,6))\n", "ax1.plot(x, x**3, label=\"label 12\")\n", "ax1.set_title(\"Sub-plotting\", fontsize=14)\n", "\n", "\n", "\n", "\n", "# saving the figure in different formats\n", "fig.savefig('figure-%03i.png' % dpi, dpi=dpi)\n", "fig.savefig('figure.svg')\n", "fig.savefig('figure.eps')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAGoCAYAAAAn/c0tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVGX7B/DvQUBAVDAUEBfcFURBTXEFXHIB1wxNTXEt\nW8xMK3dwzSxzqTc1U9BcS7PccwFTf7iWiCspopigiKCJKOA8vz94mddxhtU5M4eZ7+e65ro85zxz\nzv3cHJjb8zxzjiSEECAiIiLSwcLYARAREZFysVAgIiKifLFQICIionyxUCAiIqJ8sVAgIiKifLFQ\nICIionyxUCB6SStWrICnpycsLCwQERGh133HxcXh1VdfRa1atfS638KEhYWhYcOGaNKkCby9vfHX\nX38Z9PjGIOfPkag0Y6FAZu3s2bMIDQ3FgwcPNNZnZGSgZs2aWLp0qcb68PBwrQ+Rt99+G7t37wYA\nSJKkt9iWL1+O7t27486dO4Xud+vWrejQoQNatGiBOnXq4NVXX8WPP/5YouNu3boVs2bNws6dO3Hu\n3Dm0adMGly5d0pkPU5Lfz/HmzZtwcnLC9u3bjRWawT148AChoaGIiYkxdiikACwUyKydPXsWs2bN\n0ioUrKys4O7uDicnJ4314eHhCA8P19qPvu9bduPGDezZswcnT55E7dq1C2z79ddfY/r06Vi3bh1O\nnz6NK1euoH79+jh06FCJjn3kyBE4Ozujbt26AIClS5eif//+OvNhanT9HG1sbFCrVi1UrFjRCBEZ\nR1paGmbNmsVCgQAAlsYOgEgJXvyAsLa2xuHDh40UDVC9enX8+uuvhbZLSEjA5MmTsWvXLtSsWRMA\nYGlpiS+//BK3b98u0bHT09NRtmxZ9bKlZe6fCWPmw5iqVKmCU6dOGTsMo+CNewngFQVSkEuXLqFH\njx7w8fGBj48P/P398cMPPwDI/V+uj48PLCwsEBYWBiD3A83b2xtly5bF8OHD1fsJDAyEi4sLLCws\ncOjQIbRv3x716tVD3bp1sW7dOnW7qVOnYubMmQCgPm5wcDDu378Pb29v2NvbIyAgAADw7NkzeHt7\n48yZMzh9+rQ6xsIu78fGxqJ79+6oXbs2ateujV69euHvv/8uNBcWFkX71Vy3bh0sLS3RsWNHjfWu\nrq5o3rx5kfbxPG9vb+zYsQO3b99W9/HPP//UykeeuLg4dOrUCVWqVEHLli0xffp0DBs2DNbW1mjW\nrBnOnDmDIUOGqH8eeRYsWIAaNWrAwsICN2/eBACcOXMGPj4+6p/nokWL0LZtW1SoUAE+Pj7q965c\nuRKenp5o2LAh6tati6lTpyInJ6fAfj19+hSfffYZWrRogebNm6Np06YYO3as1pWkF8XGxsLHxwfW\n1tYa5xgAnDhxAi1btkTVqlXRqlUrLFu2DP7+/rC3t0ezZs2QlJSEUaNGqft56NAh9O7dG/Xr10eT\nJk1w5MgR9b527NihPr9nzJiBTz/9FM2aNUPVqlUxd+5cZGdnY9KkSWjWrBnc3d3xn//8R2esBZ1r\nM2fORL169WBhYYGff/4Zb775Jjw9PVG/fn1s27ZN3W779u0IDAwEAMyYMUN9HhSWKzJhgkgh6tSp\nI+bOnate/vbbb4W7u7tGG0mSRFhYmMY6d3d3MXz4cI11oaGhQpIk0adPH/HkyRMhhBBr1qwRkiSJ\n/fv3q9uFh4cLSZLEjRs3tOLx9/cXAQEBha4TQojr168LSZJERESEet3ff/8tKlSoIN5//331ug8+\n+EA4OzuLe/fu5ZuHF/n5+YlatWrp3NatWzfRoEEDsXPnTuHv7y8aNWokWrduLX744Yci7/9FISEh\nOo/3Yt+fPHkiatasKbp27SqysrKEEEKsWLFClCtXTuv9oaGhwsLCQmNdfrl3d3cXLi4uYv369UII\nIf7880/h4+MjhBBiwYIFomzZsuLYsWNCCCGSkpJEvXr1xIgRIwrsU1JSknB2dha3bt1Sxx4cHCx6\n9eql0U7XzzEvpufPsTt37ogKFSpoHHfy5MmiXLlyWudHXj+Dg4PV5+LgwYNFjRo1RE5OjkZbSZJE\n7dq1xblz54QQQqxcuVJIkiQCAwPV67777jthYWEh4uLi1O8r6rkWFRUlJEkS/v7+4v79+0IIIaZM\nmSLs7e1FWlqaul1CQoLOPJB54hUFUoR79+4hPj5eY3b/qFGjMHLkyBLtT/z3kulnn32mvoweEhIC\nDw8P9RWJ59sVtI/C1uUnNDQUKpUK8+fPV6+bM2cOHjx4gG+++abI+ylIYmIiEhMTERoaivXr1+Pi\nxYuYOHEi3n77bcybN69E+xRCFKnvERERuHnzJmbPng0rKysAwJgxY+Dm5lakfeaXSyEEnJycMGjQ\nIACAj48Ptm7digcPHiAsLAzBwcFo06YNAMDFxQUff/wxwsPDkZCQkG+fKleujOjoaHVseVctduzY\ngZSUlHzfl5/FixcjIyMDc+fOVa+bMWMGypQpo7M/ADB48GD1udinTx8kJibi+vXrWu19fHzg5eUF\nAHj99dcB5M6TyFvXv39/CCHwxx9/qN9T1HMtL5a+ffvC0dFR/e+MjAycPn1aqx0RwKEHUggnJyd4\nenri7bffxqeffoqYmBhYW1tj2rRpL7VfT09PjeVmzZrh5MmTL7XPojpw4AAaN24Me3t79boKFSrA\nzc0NUVFRejnGkydPkJmZiblz56Jq1aoAgH79+qF3796YN28eMjMz9XIcXaKjoyFJEpo1a6ax3sPD\n46X33ahRI43lWrVqITo6GpmZmeoiIY+npyeEEAXOoShTpgwuX76Mrl27wsvLCz4+Pvjggw8AAPHx\n8cWOLzo6Gq6urnBxcVGvs7GxQZ06dfJ9T/369dX/rlSpEgDgzp07Wu3yJpECUH+YP7/ulVdeAQAk\nJyer1xX3XCtqLEQAJzOSgkRFReHzzz9HeHg4Fi5ciEaNGmH+/Pno1atXiff5/B9OIPcPb3Z2NlJS\nUlC5cuWXDblA9+7dw5MnTzTG1wEgKysLz54908sxypcvD0mS4O3trbHe29sb27Ztw6VLl7Q+yPUl\nOTkZdnZ2Wv+Lrlix4kv9j1SSJK2fG5CbTwD44osvsGLFCvX6nJwcuLi44NGjR/nuc8+ePQgKCsLX\nX3+NcePGAcidnBkQEICnT58WO8bk5GQ4ODhora9QoUK+77Gzs1P/O2++hq7z4Pl2eV/T1LXu+fcW\n91wraixEAAsFUpBXXnkFCxcuxOeff45du3Zh2rRpeP3113H+/Hk0aNAAQO4ftRc/hAr6gHj06JHG\nh879+/dhbW0te5EA5F7u9vT0xIEDB2Q7RsOGDRETEwOVSqWxPu/D+8X1+uTq6oqMjAzk5OSovxkB\n5E4yffG+D7ouyWdkZBTreHlfzZw1axaGDBlSrPeuW7cO5cuXVxcJwMtdXnd1dcWVK1e01qenp6v/\nh25IhjjXyHxx6IEU4e7du/jwww8B5H6o9OrVCxEREXj27BkuXbqkblelShXcv39fvZyamqqx/KLz\n589rLJ85cwYtW7ZUL+eNred9aOzbtw9paWn57s/Kykrd9t69ezh48GC+bbt06YILFy5ozchft26d\n3uYo5F1tOXfunMb68+fPw87OTmvopaiKcuOovCGAM2fOaKy/ePGiVtsqVaoAyP0gzaPrg7Ygbdu2\nRbly5XD27FmtbSNGjNB53DxPnz7V6tPzl+6Lq02bNrhz5w6SkpLU6zIzM0s0jKEP+j7XXvy9OHPm\nTJG+rUOmiYUCKcLjx4+xYsUKnDhxQr3uyJEjsLe31/hg9/Pzw/79+9X/G/36669Rvnz5fP93+O23\n3+LJkycAgDVr1uDy5cvqr0QCUE+eTExMxL///ot+/fppXKF4cb+1a9fGrVu3AAC//PKL1oTB59uH\nhobi6dOnGsc7f/48pkyZotGnosivfwMGDMCrr76KsLAwPHz4EABw9OhRbN26FVOnToWtra26rZub\nG8aPH/9Sx3t+/bBhw1CrVi3MnDkTWVlZAHJvg6zra3R+fn6QJEn9Nbz4+Hj1DaF0TXLUdfzy5csj\nLCwMq1atUs8zEUJg4cKFiImJ0ZrX8LygoCA8ePBA/XXbf//9F4sXL863r4XF9NFHH6F8+fKYOnWq\nev2cOXM07j9R2D71ua6451ph+3N2doatrS0SExMBAB9++KHG7yaZGXm+TEFUPJmZmWLmzJnCx8dH\n+Pj4CC8vLxEQECCOHj2q0S4xMVF07txZVKtWTXTs2FHs3btXuLu7i0qVKolXX31V3W7mzJlCkiRx\n6tQp4e/vL+rWrSvq1q0r1q1bp3XsUaNGCXd3d+Hh4SFmzZolUlNTRdOmTYW9vb2wt7cXPj4+4u7d\nu0IIIeLi4kSLFi1Eo0aNRLNmzcSJEyfE8uXLhYeHh7CwsBA1atQQY8eOVe/74sWLomfPnqJ69eqi\nefPmwt/fXxw6dKhIOenZs6dwd3cXNjY2wsrKSri7u4uWLVtqtbt//74YPXq0qFGjhmjQoIFo0qSJ\nWLVqlUabR48eCWtr60K/Ntm0aVNRqVIlUbZsWeHt7S0mTJhQYD6uXr0qOnfuLJycnESrVq3EF198\nke/XK5cuXSpq1qwpmjZtKsaMGSP+85//CEmShIeHh/jhhx/EtWvXRNOmTUXZsmVFpUqVhLe3tzhx\n4oTWftasWSO8vLxE/fr1hbe3txg1apRISUkpNJ9z5swRNWrUEF5eXqJr167qc6RevXpi6dKlOn+O\nsbGxGjE9f46dOnVKtGrVSri6uorWrVuLiIgI4e/vLzp27KhuM3HiRFGjRg1hYWEhPD09xb59+8Ta\ntWtF3bp1hYWFhfrYR44cEd7e3sLCwkK4urqK999/X33s/Na5uLiIIUOGqI9V2Ln29ddfaxx3zZo1\n4sCBAxp9njx5srr9ihUrRM2aNUXjxo1Fv379xNOnTwvNMZkmSQh+D4ZMT2hoKGbNmiXrGH1p8u23\n32L+/Pm4fPmyzomC+tSrVy+kpKQgOjpa1uMoUZMmTeDp6YmNGzcaOxQiveHQA5GJu3v3Lr788kts\n27ZN70XC4MGDNZaFELh48WKJ50aUFo8ePcLbb7+tse7x48e4fv26yfedzA8LBSITV6VKFVy5cqXY\n8yKKYvfu3di0aZN6+ZtvvsGtW7fw6aef6v1YSpKTk4M1a9bg6NGjAHILpBkzZsDa2hrvvfeekaMj\n0i8WCmRyevTogRUrVkCSJPj4+OD33383dkhGZ21tLct+P/roIyxYsABNmzaFu7s7Nm/ejD179qBe\nvXqyHE8pypUrh/fffx/vvPMOfHx8UKNGDcTGxuLgwYPqmyQRmQrOUSAiIqJ88YoCERER5YuFAlER\nRUVFISIiQmt9s2bN8Msvv6iXz549iyVLlmi0GT58OFxdXbUeVVwSKpUKixYtgp2dncaDgXT55ptv\nYGFhUWi70u7hw4fw9/eHra2txs/o66+/Rt++fY0Ymf7pOr+I5MRCgaiIoqKiEB4errW+YcOG6gf1\nALl/yPNu5pNnzZo16NatW5HueFiQtLQ0vPbaa7hy5Yr6RlL5uX37NhYuXPjSxywNKlSogKioKLi4\nuGj019XVtcAHNZVGus4vIjmxUCB6SRs2bECHDh0KbSfyueNgcTx+/BhffPEFpkyZUmjbDz74QOPO\ngeZo4MCB+PLLL40dBlGpxkKBqAgWLlyIiIgInD17FgEBAQgICEBCQgIGDx6sMaSwbt06LFiwAMnJ\nyep2Bd36dv369WjevDn8/PzQtm1b/PTTTwXG4ebmhmbNmhX64b9jxw6ULVsWXbt2LX5n/2v58uXw\n9fVFx44d0bJlS43bVS9ZsgRubm6wtbVFWFgY7ty5Ax8fH1StWhVhYWHqdosWLYKPjw/8/f3h5+eH\nyMhI9bbU1FT0798fbdu2RUBAAIKCggp8BHhUVJQ6p23atMHw4cN13i46z48//ghvb2/10xHz/Pbb\nb2jQoAF8fX3Rt29fzJw5EzY2NujYsSMePnyI7t27w9HREZ9++ineffddtGvXDk2bNsVff/2l3sfz\nbcaOHQtfX1/4+PggNjYW33//Pbp164Z69eph3bp1Gse+e/eu+rbbfn5+eOutt5CamgoA+OOPP+Dr\n6wsLCwts2bIF/fr1g4eHBwYNGqS+RfaPP/6odX4dP368oB8j0csz1i0hiUqb0NBQERAQoLU+JCRE\nDB8+XL0cHh4u3N3ddbYLCQlRL+/fv19UqlRJJCYmCiGEuHHjhqhYsWKRbvF8/fp1IUmSOHz4sNa2\nR48eiSZNmojk5OQC2xWmTZs24ty5c0IIITIyMkTTpk3F2rVr1dtPnjwpLC0txd69e4UQQgwdOlQc\nP35cvX3VqlWiXr16Ij09XQghxOnTp4WNjY2Ii4sTQggxduxYMWzYMHX7GTNmiNDQ0Hzj+eyzz8Sy\nZcvUy6NHjxYjRozQaOPu7i4iIiLUy1FRUUKSJPVyQkKCKFu2rNi2bZsQQoh79+6J2rVra91y2t/f\nX9SuXVt9q+oJEyYIPz8/rTZ169YV9+7dE0IIMXjwYFGnTh2xfv16IYQQe/fuFeXLlxcZGRnq97Rr\n105MmjRJvTx+/HjRoUMHjfgkSRLvvfeeECL31ubVqlUTa9asUbfJ7/wikguvKBAVkchn6ODF9bra\n6DJnzhwMGDAA1apVAwDUqFEDXbp0eeknS06fPh1jx46Fs7PzS+1n8+bN8PLyAgDY2dmhe/fu2LNn\nj3r7q6++ivHjx2PMmDHYvHkznJyc0KpVK/X22bNnY9SoUahYsSIAoHnz5vDy8sLy5csB5M6hSEpK\nwtOnTwHkPniooMdHf/TRRxgzZox6+fXXX9eIR5cXfxYrVqyAs7OzeoLjK6+8gsGDB+v8mXXs2FH9\nOHI/Pz+dT60MCAhQz09p06YN/vnnHwwcOBAA0K5dOzx69AhXr14FkHtF5NixY/j444/V7x81ahSO\nHDmC2NhYjXjffPNNAICNjQ1atmypceyinl9E+mJZeBP9SElJwXvvvYeff/4Za9aswbBhw/JtGxcX\nh6lTpyIqKgqZmZlo3LgxJkyYgODg4Hzfs3fvXsyfPx9//fUXLC0t0bZtW4SFhaFZs2ZydIdIraST\nBWNjY5GYmIiAgAD1utTUVNSoUaPEsfz55584efIkvvrqK431JflwuXHjBt577z2kpqbCysoKCQkJ\nqF27tkab2bNnY/v27fjoo49w7do19fp///0XN2/eREREhMaHeUZGhvrJn5999hn69OmDmjVrIjg4\nGMOHD4ePj0++8Tx58gTvvvsuLl26BGtra6Snp+POnTvF6tOlS5fUTwzNU716dZ1tq1atqv53+fLl\n1U/nfJ6rq6v633Z2dqhcubJ6qKNcuXIAoB4eiY2NhSRJ6kICAJ49ewZ3d3fcuXNHXZQV9dhEhmKQ\nQmHLli344IMPkJ2dDaDgP6wxMTFo3749WrRogRMnTqBKlSr4+uuvMXDgQFy7dg2TJ0/Wes/q1asx\natQojBs3Dr/++isyMjIwbtw4tGnTBvv27YOfn59sfSMqKUmSMGjQIMyePVtv+9y9ezcyMzPRsWNH\nAFB/M2L8+PFwcHDAihUrUL9+/UL3c+PGDXTp0gWhoaH45JNPAABhYWGIiorSaGdjYwMPDw/s2bMH\nZ86cQbt27TS2T5gwASNHjtR5DF9fXyQkJGDbtm1YvXo1mjdvjmXLluV7C+Tu3bujfv36iIqKgpWV\nFQ4fPqxRZBXVi0VTfn+PypQpU6w2upZ1HW///v2wtCz4T++L++FVBDIm2Ycevv32W3z88ceIiIhA\n7969C2yrUqkwdOhQALnFRe3atWFvb4/p06cjKCgI06dPx4ULFzTec+vWLbz33nto1aoVFi9eDAcH\nB7i5uWHdunVwdHTE0KFD1ROBiF7G85Pinj17hpycHPXy8x8kz7dTqVQa59/z7by8vHD58mWNYxw9\nevSlviM/bdo0nDlzBpGRkYiMjFQ/h2HJkiWIjIwsUpEAAKdPn8aTJ08wYMAA9bq8IYLnbdq0CU2a\nNMHo0aMxcuRIdWFSvnx51KxZU6t/v/zyCzZs2KD+t7W1NQYNGoQDBw5g4sSJWLFihc54UlNTcenS\nJfTp0wdWVlb5xlMYDw8PXL9+XWPdzZs3i72fkvDy8oIQAleuXNFYP27cOCQlJeX7PkmSinx+EclB\n9kKhWbNmuHDhArp161ZoVXzo0CHExsYiKCgITk5OGttGjBgBlUql9Ud0+fLlePr0qdaNbOzs7DBg\nwAAkJibi559/1k9nyKw5Ozvj/v37AIAvv/wSK1euBKA9R6FKlSpIT08HAPz000+YNm2aznbTp0/H\nrl271LPpMzMzMXXqVDRs2LDIMRX2O5W3/cV233//PRwcHPJ9X6NGjSBJEg4cOAAg98rE3r17Ndrc\nu3cPK1aswIwZM/D5558jMzMTM2fO1OjfunXrcOPGDQDA/fv3MWPGDDRp0gQAsHTpUvX+ASArKwsN\nGjTQGU+lSpXg7OyMgwcPqtdt375dZ38Lysnbb7+Nu3fvYuvWrQByC5CtW7dqXTEobD9FbZPXDgD8\n/f3Rvn17zJ07V71ux44dOHPmjMYQxvPv0XWc/M4vItnIPl3yOcOGDROSJGnMSn7e+PHjhSRJYunS\npVrbkpOThSRJws3NTWO9t7e3kCRJPTv7eRs3bhSSJIlBgwbppwNk1u7duydat24t/Pz8ROfOnUVq\naqoYNGiQcHFxEa6urmL06NFCCCGysrJEt27d1G2vXr0qQkJCtNoJkXuONmnSRLRu3Vq0a9cu39+N\n5wUGBgofHx9hYWEhPDw8ROvWrUVWVpZWu3fffVejXe/evdXbJkyYILp06VLgcVasWCFq1aol2rdv\nL9544w3Rv39/4eDgIN58803x888/iwYNGoi6deuKw4cPi71794oaNWoIS0tL0bVrV/U+Fi9eLDw8\nPES7du2En5+f2L17t3rbhg0bRPv27UXHjh1FmzZtRP/+/UVycnK+8Rw9elT4+PiIJk2aiD59+ohx\n48YJSZJEQECAuHHjhvDz8xO2traiUaNG4ptvvhHr1q0T3t7ewsLCQgQEBIirV68KIYT47bffRIMG\nDYSvr68YOHCgmDdvnqhXr576OHn9rFWrlli0aJE4fPiwxn6Sk5O12mzYsEE0bNhQ2Nraiq5du4r7\n9+8LPz8/YWFhIXx8fMSuXbuEEEKkpKSIN998UzRq1Eh07NhRBAcHi6SkJCGEEGfOnBG+vr7CwsJC\ntG7dWly8eFF89tln6vPmo48+EkLoPr+I5GTQh0KFhIRg7dq1CA8PVw8xPK9z5844dOgQfv31V/Ts\n2VNru62tLbKyspCSkoJKlSrh2bNnsLOzQ05ODtLT01G+fHmN9sePH0ebNm3g5eWFmJgY2fpFVJok\nJCSgVatW2L59O1q3bm3scAwuNTVV406a8+bNw+HDh7Fv3z4jRkWkXIr6emRycjIA5PuY1ryvWd29\nexdA7u1ss7OzIUmSVpEAQH1ptbgzo4lM2bVr17Bp0yazLBIePXqEtm3bIjMzEwCQnp6ODRs2FPi1\nTCJzZ7CvRxZF3i9v3mSlF1lbWwPIvY1tSdoTEdCpUydjh2A0NjY2aNeuHdq1a4cKFSogMzMTo0eP\nxltvvWXs0IgUS1GFgq2tLQCov0b5orzZvXZ2diVqT0TmzdLSEqtWrTJ2GESliqIKBRcXF1y8eBFp\naWk6t+fduCTvjnOOjo6wsrJCTk4O/v33X63hh7yZwfndoc7NzQ23b9/WV/hERESKVqdOHfXdQotK\nUXMU8r429eL3nIHc+QtPnz6Fq6ureg5DmTJl4OHhASEE4uPjtd6TkJAAABp3PHve7du31V894kue\n18yZM40eg6m/mGPm2VRezLH8r+fvoFpUiioUevToAQCIjo7W2pa3Lq9NnsDAQADQ+QS1/N5DhpNX\nrJF8mGPDYJ7lxxwrk6IKhU6dOsHLyws7d+5ESkqKxrbVq1ejTJkyGDdunMb6d955BzY2NlizZo3G\n+oyMDGzZsgXVq1dH//79ZY+diIjIFMleKAghkJ6ejvT0dPXkwoyMDKSnp2s96ESSJERERECSJAQH\nByM+Ph4PHz7E7NmzsWvXLoSGhqJx48Ya76lWrRqWLl2KkydP4sMPP0RaWhr++ecfvPXWW0hLS0N4\neLj62w9keCEhIcYOweQxx4bBPMuPOVYm2W+49OIT5yRJQt4h3d3ddc4tuHLlCqZNm4bIyEiNp0c+\nf9/5F+3duxfz5s3TeHrkrFmzCnx65POxEBERmRKVSsDCQvP25CX53DPonRmVhoWC/KKiouDv72/s\nMEwac2wYzLP8mGP9yXiYg6nV12HUrr5o3O5/z3UpyeeeouYoEBER0cv7vGsUpHJ28GhT8aX3xSsK\n5tt9IiIyQXtX3ULk25sw9txYuHuW09jGKwpERERm7MG9bOx/dzvqj++hVSSUFAsFklVUVJSxQzB5\nzLFhMM/yY45f3uevHQSqumLkVx562ycLBSIiIhPw27IbeBZzER8f1O9NBjlHwXy7T0REJuJ+chbm\nVV8O78ndMGRW/Xzb8euRxcRCgYiITMEnHjuhyn6GL//uXWA7TmYkxeGYo/yYY8NgnuXHHJfMpjlX\nIeKu4pODXWXZPwsFIiKiUirpeibOzPwNrRf0RpUaNrIcg0MP5tt9IiIq5T523warirb4PKZ7kdpz\n6IGIiMhM/PDxReD2bUw+2FnW47BQIFlxzFF+zLFhMM/yY46LLv7cI8Qt3o0u/+mDik5Wsh6LhQIR\nEVEpolIJLHttB8r6+qDbqGqyH49zFMy3+0REVAotDfkT17ecwry7o2BrX6ZY7+UcBSIiIhMWE5WG\n22sPov/6vsUuEkqKhQLJimOO8mOODYN5lh9zXLDsLBXW9N6OioFt0bZvFYMdl4UCERFRKbCwbzQg\nSZi41degx+UcBfPtPhERlRJHfr6DXcFrMeSP0WjczqHE++EcBSIiIhOT8TAH2976BW4hnV+qSCgp\nFgokK445yo85NgzmWX7MsW7zu0QCDg54b5W3UY7PQoGIiEihflt2A1mnz+GjQz1hYSEZJQbOUTDf\n7hMRkQKinGvEAAAgAElEQVRIRfz818fHFecoEBERkV6xUCBZccxRfsyxYTDP8jP3HAsh6XwZGwsF\nIiIiyhfnKJhv94mISAHy5ijkd/VAksR/t+vjWJyjQERERHrEQoFkZe5jjobAHBsG8yw/5liZWCgQ\nERFRvjhHwXy7T0RECsD7KBAREVGpxUKBZMUxR/kxx4bBPMvPHHN8+1omJpb5GpvmXIUQKPBlLCwU\niIiIjEClEvjSbwcsGzfEgKl1jR1OvjhHwXy7T0RERrR0+F9I2HQcs5JGw97B0iDH5BwFIiKiUuDM\n/lTcjtiP1ze8brAioaRYKJCszHHM0dCYY8NgnuVnLjl+8vgZfuy7Da/080PbvlWMHU6hWCgQEREZ\n0LwuUYBdOXy8paWxQykSzlEw3+4TEZGB/bbsBo6O/xljY95Grcb2Bj8+5ygQEREpVNL1TBz56Bd4\nz+hllCKhpFgokKzMZczRmJhjw2Ce5WfKOVapBBa23wHLxg0waGY9Y4dTLMqeaklERGQClg3/CyL1\nPqae72fsUIqNcxTMt/tERGQAJ3ffw7agNeizPQS+vSobNRbOUSAiIlKQjIc52Nh/K5zfDDB6kVBS\nLBRIVqY85qgUzLFhMM/yM8Uczw04CMnRER+ua27sUEqMhQIREZEMNs25iuyYi5j4R09YWBTxWdIK\nxDkK5tt9IiKSybWz/2JF85Vou+h19P7Q3djhqJXkc4+Fgvl2n4iIZPAsR+Bj5x/h0LgaQg8HGDsc\nDZzMSIpjimOOSsMcGwbzLD9TyfHnPY8BOTmYss/P2KHoBQsFIiIiPdn3wy083HccY/b2g7WNaXzE\ncujBfLtPRER6dPfmE3xRZyU8P+qC4V80MnY4OnGOQjGxUCAiIn1QqQQm1doGS/uyWHAhyNjh5Muk\n5igcOHAAPXr0QM2aNWFnZ4c6deogODgYp0+f1tk+Li4Ob7zxBipXrgx7e3v4+vpiy5YtBo6aXmQq\nY45KxhwbBvMsv9Kc429G/AVx9y6mHulq7FD0TpGFwldffYXXXnsNWVlZ2LNnD+7fv49NmzYhLi4O\nvr6+2Lp1q0b7mJgYtGjRAqmpqThx4gSSk5MRGBiIgQMHYv78+UbqBRERmQpJKvj1YUQzfP1kLCpU\nsjJ2qHqnuKGHrKwsODk54fHjx0hOToaTk5N62+nTp9GyZUs0aNAAly5dAgCoVCr4+Pjg+vXriI+P\n12jfq1cv7N69GzExMfD09NQ6FoceiIioKKQi3i9J6R8pJjH0kJaWhkePHsHJyUnjQx8APDw8AACJ\niYnqdYcOHUJsbCyCgoK02o8YMQIqlQpLliyRP3AiIjJ5Qkg6X6ZMcYWCs7MzqlatipSUFKSkpGhs\nu3DhAgDAx8dHvW7Xrl0AgNatW2vtK2/d7t275QqXClGaxxxLC+bYMJhn+THHyqS4QgEAwsPD4eDg\ngIEDB+LChQvIzMzEyZMnMWrUKNSoUQPfffedum1sbCwAwN3dXWs/zs7OKFu2LJKSkpCWlmao8ImI\niEyGIguFzp07Izo6GgDg5eWFcuXKwdfXFw0bNsTx48fRuHFjddvk5GQAgKOjo859VaxYEQBw584d\nmaMmXfz9/Y0dgsljjg2DeZYfc6xMiiwUfv75ZzRv3hyWlpY4d+4cHj16hKNHj+Ly5cto3ry5uogA\ngMzMTACAlZXumabW1tYAgMePH8sfOBERkYlRXKFw/fp1vPXWW6hYsSJ+/fVXNG7cGHZ2dmjTpg1+\n++03pKamIjg4WP3Bb2trCwDIzs7Wub+srCwAgJ2dnWE6QBo45ig/5tgwmGf5McfKZGnsAF60efNm\nPH36FD179oSNjY3Gtpo1a6JVq1Y4cuQIDhw4gF69esHFxQUXL17Mdw7CgwcPAOTOV9AlJCREPb/B\nwcEB3t7e6stfeSctl0u+fPbsWUXFY4rLeZQSj6kunz17VlHxmOKykv9eALnLkiQ0lgF/ncvGjvf5\nvw9RUVFISEhAiQmFefvtt4UkSSIsLEzn9gEDBghJksSSJUuEEEKMHz9eY/l5SUlJQpIk4ebmpnNf\nCuw+EREpUO4dEgp/KV1JPvcUN/SQdy+E27dv69yetz6vXWBgIABozFvIk7euR48eeo+TiIjMx5QW\nv2N8lQ3IyRYFlgqmSHGFQlBQ7sM0du7ciSdPnmhsu3HjBk6cOAEbGxt07twZANCpUyd4eXlh586d\nWvddWL16NcqUKYNx48YZJnjS8uLlcdI/5tgwmGf5KTXH66ZfQdZfF/Dx0T4oY2naN1fSRXGFgq+v\nL8aOHYvbt2+jb9++OH/+PDIyMhAdHY0+ffogJycHCxYsQJUqVQDk3o4yIiICkiQhODgY8fHxePjw\nIWbPno1du3YhNDRU4+uURERERXXhWDrOz92BgG/7o1o985wUr7hnPeTZsGEDvv/+e5w9exaPHj2C\no6MjfH198eGHH6JTp05a7a9cuYJp06YhMjISmZmZaNy4MSZMmIABAwbkeww+64GIiPKT+egZpris\nQRV/D0ze2cbY4ehFST73FFsoGAILBSIiys+U5vuQ+c99fHV7ICwsTGPIwSQeCkWmRaljjqaEOTYM\n5ll+SspxxOTLyIq5hEnH+phMkVBSLBSIiIieExOVhosLdqDLiv6oWsfW2OEYHYcezLf7RET0gkfp\nOZhedTVcuzXBJ9t8jR2O3nGOQjGxUCAioud96rkT2Q8e48ubb5jkkAPnKJDiKGnM0VQxx4bBPMvP\n2Dle/l4scv6+jsnHe5tkkVBSLBSIiMjsHf8tBQnf7UWfDcGoXK2sscNRFA49mG/3iYgIwP3kLMyp\n+T3cB7XBuDU+xg5HVpyjUEwsFIiIzJtKJTCp9i+QrMrgy797Gzsc2XGOAimOsccczQFzbBjMs/yM\nkeOvB52G6s5dTI/mwwPzw0KBiIjM0u9r/sHdLVEYujMYFZ2sjB2OYnHowXy7T0RkthKvPMYSz5Xw\nmtQNw+Y3NHY4BsM5CsXEQoGIyPxkZ6nwSdUNsKvtjLknuxg7HIPiHAVSHI7ryo85NgzmWX6GyvG8\nrn9A5ORg5h/aTyImbSwUiIjIbGyacxUZf/yJD6Jeh7UNPwKLgkMP5tt9IiKTIxXxhorm+qefQw9E\nRESkVywUSFYc15Ufc2wYzLP89JljISSdLyo+FgpERESUL85RMN/uExGZnLw5CvldPZAk8d/thopI\nWThHgYiIiPSKhQLJiuO68mOODYN5lh9zrEwsFIiIiChfnKNgvt0nIjI5vI9CwThHgYiIiPSKhQLJ\nimOO8mOODYN5lt/L5vjuzSeYYPUNlo08CyFQ4IuKjoUCERGVes9yBOa/+gusGtbG+6u8jR2OSeEc\nBfPtPhGRyQj1i0T62QR8njQUNnZljB2OYnGOAhERmZ21Uy4j49hZfHjsDRYJMmChQLLiuK78mGPD\nYJ7lV5Icn9x9Dxc+34Eu3wejVmN7/QdFLBSIiKh0Srn1FJv7boLbsM54bbibscMxWZyjYL7dJyIq\ntZ7lCEystgnWThWw4HygscMpNThHgYiIzMKsgEiIzCcIPd7N2KGYPBYKJCuO68qPOTYM5ll+Rc3x\n6kkX8Tj6HMb/XzBs7Tl5UW4sFIiIqNQ4uvUO4r7ahW7hwXD3LGfscMwC5yiYb/eJiEqV29cysajh\n96g7JgDvfOtl7HBKpZJ87rFQMN/uExGVGllPVPjEbT3K1XLG3NOvGTucUouTGUlxOK4rP+bYMJhn\n+RWU45mtf4ckSZh5tLPhAiIALBSIiEjhlg7/C1kX/sYnp16HtQ0/tgyNQw/m230iIsXbvSIRh8du\nwus7h6NlDydjh1PqceiBiIhMxqUTDxD17k9oOrMPiwQjYqFAsuK4rvyYY8NgnuX3fI4f3MvGyoDN\nqNi1FQbNrGe8oIiFAhERKYtKJRDW7FdYODth8s42xg7H7HGOgvl2n4jIaCSpaO34J1q/OEeBiIiI\n9IqFAsmK47ryY44Ng3mWhxCS+hUZ+b9/k3KwUCAiIqJ8cY6C+XafiMho8uYo5Hf1QJLEf7cbKiLz\nwDkKREREpFcsFEhWHNeVH3NsGMyz/JhiZWKhQERERPniHAXz7T4RkdHwPgrGYXJzFA4cOIBevXrB\nxcUFNjY2qFGjBoKCgrBp0yattnFxcXjjjTdQuXJl2Nvbw9fXF1u2bDFC1EREVJC40w+NHQIVg2IL\nhdDQUPTr1w89e/bEpUuXkJaWhm+//RZHjx5FRESERtuYmBi0aNECqampOHHiBJKTkxEYGIiBAwdi\n/vz5RuoBARzXNQTm2DCYZ/24n5yF7zpsxOyuRyEENF6RkVFa68j4LI0dgC7bt2/HrFmzsGXLFvTv\n31+9vmfPnpgxYwauXLmiXqdSqTB06FAAwJYtW+DklPuEsenTp+PUqVOYPn06evXqBU9PT8N2goiI\nNGRnqTDbZxssq7lgyu62xg6HikiRcxQ8PDyQlZWFq1evFtr2wIEDeO211zBw4EBs2LBBY9v27dvR\nr18/jBo1CitXrtR6L+coEBEZztRXf0fG1STMTxwCW/syxg7HLJnEHIWzZ8/i8uXLaN++fZHa79q1\nCwDQunVrrW1563bv3q2/AImIqNgWDzmDJzFX8MnpYBYJpYziCoXjx48DAKpXr47NmzejZcuWKFeu\nHBwcHPDaa69pjRPGxsYCANzd3bX25ezsjLJlyyIpKQlpaWlyh046cFxXfsyxYTDPJffzF/FI2hCJ\nQbsGoWod23zbMcfKpLhC4dq1awCA9evXY+LEiZg3bx7u3buHo0eP4sGDB+jcubPGtx6Sk5MBAI6O\njjr3V7FiRQDAnTt3ZI6ciIhe9H+/3sWpz7ai9aL+aN7lFWOHQyWguELh4cPcr81cv34dq1evRufO\nnWFra4vGjRtj48aNAIB3330XGRkZAIDMzEwAgJWVlc79WVtbAwAeP34sd+ikg7+/v7FDMHnMsWEw\nz8V3/fwjbOu/ETVGvYY+490Lbc8cK5PiCoU8jo6O6NKli8a62rVro1WrVkhPT8f+/fsBALa2uZex\nsrOzde4nKysLAGBnZydjtERE9LwH97Kx1HcT7Ns0wXsrmxo7HHoJivt6ZN4QQvXq1XVur1mzJqKj\no9XfiHBxccHFixfznYPw4MEDALnzFXQJCQlRz29wcHCAt7e3uqrNGy/jcsmXz549i/HjxysmHlNc\nzlunlHhMdXnx4sX8+1DE5Wc5AqMazoFU3hJfRY4s8vv590Kevw9RUVFISEhAiQmFiYiIEJIkCQ8P\nD53b33zzTSFJkvjyyy+FEEKMHz9eSJIklixZotU2KSlJSJIk3NzcdO5Lgd03OZGRkcYOweQxx4bB\nPBfdlFd/Fx9WWC0ePcgu1vuYY/mV5HNPcUMPnTp1AgDcunULKpVKa/uNGzcAAA0bNgQABAYGAgCi\no6O12uat69GjhyyxUuHyqluSD3NsGMxz0SwadBpPzl7GxNMDUK5C8S5aM8fKpLhCwc3NDX379sW/\n//6L3377TWNbfHw8jh8/Djc3N/X8hU6dOsHLyws7d+5ESkqKRvvVq1ejTJkyGDdunMHiJyIyV+tD\n45C8+TDe2jsY1epxXpipUFyhAADLli1D9erVMW7cOBw+fBhZWVm4cOECBg0aBFtbW6xdu1b9bQZJ\nkhAREQFJkhAcHIz4+Hg8fPgQs2fPxq5duxAaGorGjRsbuUfm6/lxMpIHc2wYzHPBDv54G7GzfkXH\nFQPg3bFSifbBHCuTIguFqlWr4vTp0wgKCsJbb72F8uXLo3Pnzqhbty5OnTqFgIAAjfbe3t44deoU\nnJyc0LJlS7i6umLnzp3YuHEjpk6daqReEBGZhwvH0rFv2CY0nBSEbqOqGTsc0jNFPuvBUPisByKi\nl3PnxhMsaLAazt2b4dNffI0dDhWiJJ97LBTMt/tERIWSpKK145/S0sEkHgpFpoVjjvJjjg2DeZYf\nc6xMirvhEhERKY8Qui8tSBIvJZg6Dj2Yb/eJiAqVN/RQWKHAP6WlA4ceiIiISK9YKJCsOOYoP+bY\nMJhn+THHysRCgYiIiPLFOQrm230iokJxjoJpKcnnHr/1QEREheK3G8wXhx5IVhxzlB9zbBjmmOeM\nhzkGPZ455rg0YKFARERanuUITG+8HR+5bUHWUxWEQIEvMl2co2C+3Sci0kmlEpjivQdPbt7FnIQh\nsHfgKLWp4H0UiIjopc3tegRP/76JKecGskggFgokL445yo85NgxzyfOSYX/iQdRfeD96MKrUsDHo\nsc0lx6UNCwUiIgIAREy+jH9+jMSbu4egjnd5Y4dDCsE5CubbfSIitV+XJOD/PvoJXcIHo/PQqsYO\nh2TCOQpERFRsURuT8H8f/YSWC15nkUBaWCiQrDjmKD/m2DBMNc9n9qdi95ANaPBxIF6fVNuosZhq\njku7QguF7OxsXLt2DQCQkpKCX3/9VfagiIhIfn//+S829vgRVQf7Y8RCD2OHQwpV6ByFMWPGID09\nHfXq1cPkyZMxatQobNq0yVDxyYpzFIjIXCVdz8TCRuFw7NAY039vb+xwyEBkedZDq1atMHLkSMTF\nxWHTpk1wdHQscYBERGR8aXezsKDJBth51sbUve2MHQ4pXKFDD9evX4dKpUL9+vXh6emJY8eOGSIu\nMhEcc5Qfc2wYppLnjIc5CPPYAksXJ8w+8RosLHQ/FdIYTCXHpqbQQqFdu3ZISkoCALRu3RoLFiyQ\nPSgiItK/7CwVpnv8AsnaCvNie6KMpXKKBFIu3kfBfLtPRGZEpRL4tNEOZKekY078IN6a2UwZ5D4K\n4eHhxX0LEREZkUolML3VfuT8cxczLvL5DVQ8BV5RqFmzJuzs7DTWPXz4EP/884/sgRkCryjILyoq\nCv7+/sYOw6Qxx4ah5DxLRRxBSIx7jGr17ApvaCRKzrGp0Pu3HsLCwtChQwfUrv2/m3Bs3LixZNER\nEZFRKblIIOUqdI5CTk4OLC1N8zIVrygQkSnIu6IghO5LC5Ik/rvdUBGRUskyR8FUiwQiIiIqHJ/1\nQLLi96LlxxwbBvMsP+ZYmVgoEBERUb6KfR+FW7duwdHREdnZ2XBwcJArLoPgHAUiMgWco0BFJcuz\nHl4UExODqKgoVKlSBZMmTSru24mIiKgUKfbQQ4UKFbBw4UJ07txZjnjIxHDMUX7MsWGUhjxLktD5\nKi1KQ47NUZGuKEybNg1paWmoUqUKHB0d8ccff6Bu3brw8fGROz4iIirAiZ0pACobOwwyYcWao5Cc\nnIxFixZBCAE/Pz8EBQXJGZvsOEeBiEqzM/tTsalbBGqN7oR3lzc1djhUCsg2R2HGjBlIS0uDi4sL\nbG1tERYWhp9++qlEQRIR0cuLiUrDpu5rUf0tfxYJJKsiFQp9+/aFq6srbGxs1M9+yMzMlDUwMg28\nd7v8mGPDUFKeLxxLx7oua+H6RjuMC29m7HD0Rkk5pv8pUqGgay7C0KFD9R4MEREVLO70Q6z2Xwvn\nnq3w8cZXjR0OmYFi30fBlHCOAhGVJn//+S+W+4ajUudmmLq7rbHDoVJIlmc9EBGR8V07+y+Wt46A\nY4A3iwQyKBYKJCt+L1p+zLFhGDPP188/wret1qJi+yaYtq+90eKQG89lZWKhQESkYAkXMrCsxVpU\nbOOJGQc6GDscMkOco2C+3ScihUu4kIGlzdeifMuGCPsjwNjhkAngHAUiIhORWyREoHzLhpgZ5W/s\ncMiMsVAgWXHMUX7MsWEYMs95RUKFVo0wM8ofFha6nwppanguK1Oxnx5JRETyURcJvh4I5ZUEUgDO\nUTDf7hORgUlFvDAw0y+KRQLJoiSfeywUzLf7RGRgRS0U+GeJ5MLJjKQ4HHOUH3NsGPrMsxCSzpe5\n47msTCwUiIiIKF+lolDYsWMHLCwsYGGRf7hxcXF44403ULlyZdjb28PX1xdbtmwxYJSkC58EJz/m\n2DCYZ/kxx8qk+ELh4cOHePfddwHkjq3oEhMTgxYtWiA1NRUnTpxAcnIyAgMDMXDgQMyfP9+Q4RIR\nEZkUxRcKn332GapXr57vdpVKpX7k9ZYtW1C7dm3Y29tj+vTpCAoKwvTp03HhwgVDhUsv4Jij/Jhj\nw2Ce5cccK5OiC4Vjx45hzZo1WLVqVb5tDh06hNjYWAQFBcHJyUlj24gRI6BSqbBkyRK5QyUiIjJJ\nir3hUlZWFkaPHo1PPvkEHh4e+bbbtWsXAKB169Za2/LW7d69W54gqVAcc5Qfc2wY+syzJPH7j7rw\nXFYmxV5RmDNnDgBg2rRpBbaLjY0FALi7u2ttc3Z2RtmyZZGUlIS0tDS9x0hEVFR7V90ydghEJaLI\nQuHChQtYuHAhvv/+e1hZWRXYNjk5GQDg6Oioc3vFihUBAHfu3NFvkFQkHHOUH3NsGC+T5+2LExA5\nZiPWh/4NIVDoy1zxXFYmxQ09qFQqjB49GsOHD0fbtm0LbZ+ZmQkA+RYU1tbWAIDHjx/rL0gioiLa\nEPY3YsK2w/fL/ug7oZaxwyEqNsUVCt9++y0SExOxb9++IrW3tbUFAGRnZ+vcnpWVBQCws7PTT4BU\nLBxzlB9zbBglyfPqSRdx5avdCFj5JrqNqqb/oEwMz2VlUlShkJiYiClTpmDdunUoX758kd7j4uKC\nixcv5jsH4cGDBwBy5yvoEhISop7f4ODgAG9vb/XJmncZjMtc5jKXi7s8vtcqJO88g3fWz4D/m65G\nj4fL5rmc9++EhASUmFCQNWvWCEmSivQKCAgQQggxfvx4IUmSWLJkidb+kpKShCRJws3NTefxFNZ9\nkxQZGWnsEEwec2wYxcnzF/1PiIllFonjO+7KF5AJ4rksv5J87ilqMmNISAhUKpXOF5B7Z8a85UOH\nDgEAAgMDAQDR0dFa+8tb16NHDwP1gIjMmUolMLvLH0jefhzDooajVVBlY4dE9NJKzWOmLSwsIEkS\nnj17prFeCAFvb2/Ex8cjPj4elSv/7xezZ8+e2Lt3L/766y80btxYa598zDQR6YtKJTC91X5kxl7D\ne8eHoI530YZPiQzJ5B4znZ2djfT0dKSnp6vXPXjwAOnp6eqCQZIkREREQJIkBAcHIz4+Hg8fPsTs\n2bOxa9cuhIaG6iwSiIj0JTtLhc88d+LxpZuYeCGERQKZFEUXCuvXr0elSpVQqVIl9QOhHB0d8cor\nr+DYsWPqdt7e3jh16hScnJzQsmVLuLq6YufOndi4cSOmTp1qrPAJ/F60ITDHhpFfnjMe5uDT2luR\ndScN068ORdU6toYNzITwXFYmRX3r4UUhISEICQkpUtsGDRrgp59+kjcgIqLn3E/OwizPzbCwLYu5\nCYNQroKi/6QSlUipmaMgB85RIKKSSrzyGIuab4BVdWfMjQmElbWiL9ASATDBOQpERMYgSYW/ajS0\ng72XOz6/EMQigUwaz26SFccc5cccG0qU1prZ0Z1hYSEZPhQTxXNZmVgoEBHlQwhJ/YqMDFD/m8ic\ncI6C+XafiPLx3y9Z5VsUSJL473ZDRUSkH5yjQERERHrFQoFkxTFH+THHhsE0y4/nsjKxUCAiIqJ8\ncY6C+XafiPLBOQpkqkryucfbiBERPSfpeiaA3Nsw5xUEROaMQw8kK445yo851p8Lx9KxsOHqfLZG\nGTIUs8RzWZlYKBARATi0PgnhHVbDJbA5hIDWKzJSex2ROeAcBfPtPhH918ZZf+Ns6HY0+DgQIxZ6\nGDscItlwjgIRUTEtGfYnbv94CH7fDUSPt6sbOxwixeHQA8mKY47yY45L5lmOwPQ2B3Fzw1G8sXt4\noUUC8yw/5liZeEWBiMzOo/QczGiyHar0h/j4/ChUb2Bn7JCIFItzFMy3+0RmKfHKY3z16iZYOFTA\nrHN9YO/A/y+R+eCzHoiICnB6XyoWe/2A8o1rYmH86ywSiIqAhQLJimOO8mOOi+aXRdfxU/c1qPFm\nW8z+v04oY1m8x0Uzz/JjjpWJ5TQRmbylw//CPxEH0Wrh6+j3cS1jh0NUqnCOgvl2n8jkPcsRmNn2\nADL/uoyBv76JV7s7GTskIqPifRSIyGxIRRo5kPBhxX8w8cJIVKvHbzYQlQTnKJCsOOYoP+a4YHNv\nDtFLkcA8y485ViZeUSCiUq2wR0GXq8A/c0Qvg3MUzLf7RKVa3tBDYYUCf8WJ/of3USAiIiK9YqFA\nsuKYo/yYY8NgnuXHHCsTCwUiIiLKF+comG/3iUo1zlEgKj7OUSAik6dSCcwLPKZeliSh80VE+sFC\ngWTFMUf5mVOO0+5mYVKtbUiJumDwY5tTno2FOVYmFgpEVCqc+yMNs2quhmRZBmGJwyEEivQiopfD\nOQrm232iUuPnL+JxavI2vNK7HSb+3AoWFsV78iMR5eKzHojIpKhUAvN6HMPD/SfQ5qv+6DPe3dgh\nEZkdDj2QrDjmKD9TzXHKraeYWP0npB69jJHHRxu9SDDVPCsJc6xMvKJARIpzcvc9bOq7GZZ1amLm\npX58XgOREXGOgvl2n0iRVn10AVeX7EbVYZ0xbo2PscMhMimco0BEpdaTx88Q1m4/smOvoMe6Ieg4\n2NXYIREROEeBZMYxR/kpPceSVLTXZy4RePLPfXwcN0aRRYLS82wKmGNl4hUFIlKEV3zrYcrudihj\nya8+EikJ5yiYb/eJDILPZCBSDj7rgYiIiPSKhQLJimOO8mOODYN5lh9zrEwsFIiIiChfnKNgvt0n\nMgjOUSBSDs5RICIiIr1ioUCy4pij/JSa4yePn2FG24PqZUkSOl+lhVLzbEqYY2XifRSISO/O/ZGG\nNYHbABsbY4dCRC+JcxTMt/tEsvj+w/O4umwPHHu2w6StvryBEpGC8FkPRGQ095OzML/DHqgSbqLH\n2sHoNKSqsUMiIj3gHAWSFccc5aeEHO+P+Adza6wAAExJGGOSRYIS8mzqmGNlUmShsGPHDgwcOBA1\na9ZE2bJl4ejoCD8/P/z444/5vicuLg5vvPEGKleuDHt7e/j6+mLLli0GjJrI/GRnqTCn6xEcGL4R\nHgzmCm4AAB82SURBVO93xMK43nilalljh0VEeqS4QmHOnDno3bs30tLS8Ntvv+HBgweIjo6Go6Mj\nhg4dipEjR2q9JyYmBi1atEBqaipOnDiB5ORkBAYGYuDAgZg/f74RekF5/P39jR2CyTNWji8cS8ek\nKmtx72Q8QqJHY+QiT6PEYSg8l+XHHCuT4iYzTps2DatXr8bVq1dhZ2enXp+dnY1GjRohPj4eBw8e\nREBAAABApVLBx8cH169fR3x8PJycnNTv6dWrF3bv3o2YmBh4emr/EeNkRqLiU6kEvnvnHBJX/Y7y\nXVvjk1/bwMpacf/nICIdTOKGS9WqVcOwYcM0igQAsLKyQpcuXQAABw/+77vZhw4dQmxsLIKCgjSK\nBAAYMWIEVCoVlixZIn/gpBPHHOWnrxxLUtFeE2v8jGtrj6HHprcwdU87sykSeC7LjzlWJsV96+Gd\nd97Jd5u9vT0AaFRDu3btAgC0bt1aq33eut27d+szRCKzZuNSAVPO94W9g+L+fBCRDErVfwXi4uIA\nAB06dFCvi42NBQC4u7trtXd2dkbZsmWRlJSEtLQ0g8RImjjmKD9951gISecrz7zTXc2ySOC5LD/m\nWJlKTaFw//597Nu3D82aNUPXrl3V65OTkwEAjo6OOt9XsWJFAMCdO3fkD5KIiMjElJpC4ZNPPkGZ\nMmWwdu1ajfWZmZkAcucw6GJtbQ0AePz4sbwBkk4cc5Qfc2wYzLP8mGNlKhXXD9evX4+IiAj89NNP\n8PDw0Nhma2sLIPdbEbpkZWUBgNbkSCIiIiqc4guF/fv3Y/To0fj+++/Rp08fre0uLi64ePFivnMQ\nHjx4ACB3voIuISEh6vkNDg4O8Pb2Vo+T5VW3XH655TxKiYfLupeBKDwv78f3v2HjvO3KiNfw+cld\np5R4THU5j1LiKe3Lef9OSEhASSnuPgrPO3DgAPr27Ytly5YhJCREZ5sJEyZg8eLFWLx4McaNG6ex\nLTk5GVWrVkXVqlVx69YtrffyPgpEufauuoXuo6sBgMbExeflPRKavzJEpZdJ3Echz8GDB9G3b18s\nXbpUo0i4ePGixq2Ze/ToAQCIjo7W2kfeurw2ZHgv/i+B9O9lcpx2NwuTm+3Fobc3q9dJktD5Mnc8\nl+XHHCuTIguFQ4cOoU+fPliyZAmGDx+use3kyZP47rvv1MudOnWCl5cXdu7ciZSUFI22q1evRpky\nZbSuNBAR8Mui65jrthxZaY/xwcWxxg6HiBRKcUMPkZGRCAwMhIODA/z8/LQukVy/fh12dnaIjIxU\nrzt79iw6dOiA5s2b44cffoCTkxOWLFmCmTNnYvbs2Zg6darOY3HogczRnRtP8FW3/RB/X4X3tEAM\nDq1v7JCIyEBK8rmnuMmMa9euxdOnT3Hnzh1s3rwZkvS/8VIhBCRJgp+fn8Z7vL29cerUKUybNg0t\nW7ZEZmYmGjdujI0bN2LAgAGG7gKRIqlUAuGfXsLlRXuBBvUxKX4sqtSwMXZYRKRwiruiYEi8oiC/\n52eJkzyKkuO40w/xXc/dkO6nIuCrIPR8v6ZhgjMhPJflxxzLzySuKBCR/mRnqbBkyGnc+/kwKrZv\ngUk7+qNcBf7aE1HR8YqC+XafSiFJ9zcXtQgBHN6cjO0jd0CUsUTw2kC06V1F3uCISPF4RYGIAABT\nWuzDsz9jUWtoR7y3ygdlLItYYRARvUCRX48k08HvRcvj+ac6RkZqP+ExKy0T710Yi3HhzVgk6AnP\nZfkxx8rEKwpEJujLa9q3OyciKgnOUTDf7lMplDdHgbdZJqKSMKlbOBMREZHxsVAgWXHMUX5MsWHw\nXJYfc6xMLBSISonU20+NHQIRmSHOUTDf7lMp8SxHYPnYGNxYfQgLVROK9B6e1kSkC+coEJmYPSsT\nMdFhFa5uPI1OK4ONHQ4RmSEWCiQrjjmWzIVj6fjYfSsix/6EekNa4sv0keg6shqEgNYrMjJKax3p\nH89l+THHysT7KBApSMqtp1gafBTZx8+gfIeWGHe8Jyq5WBs7LCIyY5yjYL7dJwXJeqLCtyP/RNKm\nw1DVqoMxmzqifosKxg6LiEwMn/VApBBFfXjTs2cCP067grNfHYTKzh49I95EpyFV5Q2OiKgYOEeB\nZMUxx4JNcAzH2UWH0GLKa1iUOrRERQJzbBjMs/yYY2XiFQUiGRV2q+XafZti7EpvWFmzZiciZeIc\nBfPtPsmIz2QgIiXifRSIiIhIr1gokKw45ig/5tgwmGf5McfKxEKBSM/4TAYiMiWco2C+3Sc9u5+c\nhf+EnMS/v0fjCzEJAOcoEJGycI4CkRHcT87C3O5HsaDqUqRduoN+v4Wot0mS0PkiIiotWCiQrEx5\nzPHuzSeY3eUPLKi6BKkXktH7l6H46sbraBVU2aBxmHKOlYR5lh9zrEy8jwJRMd2+lomVI47jyZFT\nyHavh+DfQrSKAw4pEJGp4BwF8+0+oei3WhYCuHb2X6wecxzPTv+FZ3UbYNB37eHTqZK8ARIR6RGf\n9UAkk08a7UCZKxchvJrgrSNj4NnWwdghEREZBOcokKxKy5ijEJLOVx5bp3IYe+F9fB7TXXFFQmnJ\ncWnHPMuPOVYmXlEgKoL/b+/eo5q68j2Af094IyCEEuQhD4Hio7WgAiMySBSvWr04WqmIiNCXDlNH\npd7LtLWColXb3k65VEcdWoEqLW3XUKVV0SqPeunyWVHqA2iJVStQeSPPkH3/oGSMIUgkIXjy+6yV\nJeyzz84vW01+2WefvTd9N0PXIRBCiE7QHAX9ffkEtCcDIUS/0DoKhBBCCNEoShSIVg3Xa44nD9zB\neq+Dug5DI4ZrH/MN9fPgCYVCcBxHjyF4CIWauyOL5igQvdHe2o1PXr+KH/edgVFrI6xD/YAKXUdF\niP6or6+ny71DhBvovd8DaYvmKOjty9cb5ReakfXaedwruoBOSyEmvuyPqOSxMDYVqLWOAiFkcOg9\nd+io6mtaR4Hw0qN8mMtkDF/9XYJTfz8Lk18rIRv/FMI+X4ag5+y1EyQhhPAUjSjo78sfEgUFBQgJ\nCRlUG+okCpIf7yHrvy+i9vgFMIEhnBZOQcz/TISto8mgYhjONNHH5OGonweP3nOHDo0oEL30sFsY\n412+hMmtnyD1HItZuxbiP15wgkCguet0hBCij+iuB6JVQ/kNzCnQFWsr1+DdsgWY85Kz3iQJ9C13\naFA/89vmzZvh4OCATZs2abTug+Li4mBjY4OMjAyVdRhjeO+992BiojwSmpubi9mzZ2PmzJmYPHky\nUlNT1Y5BXTSiQHjjtc/8dB0CIeQxtXHjRlRWVg7obgF16j5o165duHr1ar/nxsbGwtHREV1dXUrH\n4uPj8cUXX8DHxwfV1dWYMGECXF1dERYWpnYsA0UjCkSr6N5z7aM+HhrUz/pBnev32ppvkZycjJUr\nV/Z57NVXX4WPjw8AwN7eHmKxGMeOHdNKHL0oUSDDkkzGUJhdhTf9tPsfgBBCVImLi0NoaCjEYjEi\nIyPR3NyscLympgbh4eEICAjA/PnzUVtbKz+Wl5eHwMBAhISEICwsDHfu3Bnw844ePVplErJmzRqF\n39va2iASidR4VeqjRIFoDMcpP8TiEKWy/pw/XovNoUVYb7YLuVHZMDChq2MPQ9fOhwb1s/4ZN24c\nvv32W+Tn5+PJJ5/Eu+++Kz/GGMPJkyeRnp6O06dPw8nJCX/9618BAJWVlQgPD0dGRgYKCgowZ84c\nREdHazy+pqYmnDt3DrGxsRpv+370Lkx0rqSgHrnbf0Rt0Y8w6miBYMI4zEoNw+zfJyQm/55c9N7d\nQAjhL00sKKipKwImJiYIDg6GQCBAdXU1xowZIz/GcRzmzJmDESNGAACioqIQGhqKTz75BFlZWZgy\nZQq8vLwAAEuXLsWrr76K6upq2Ntrbi2XhIQEJCYmYvTo0Rprsy+UKBCNu/82xoICoPeL2P0f9GeP\n3MXRv19F3f9dhXFbEzB+HKa/PRvz4lxgZEwDXeqg+/uHBvXz0BguyywUFBRg/fr1KC0thYuLCzIy\nMpCenq5Qx9raWv6zra0turq6cPfuXdy6dQtXrlyBWCyWH3dzc9NoorB3716YmJjgz3/+s0ba6w8l\nCmTIxZvugmFXOwQTxiI4eRbmxbnC2FR1cjBc3jgIIfzXezfCmTNn4O3tDRcXFwBAZ2enUt26ujr5\nz3fv3oWRkRHs7Ozg4uKCKVOm4Ouvv5Yfb2hogJWVlUZizMnJQWFhIQ4cOAAAqKiogKenp0ba7gt9\ndSNa1dcXsFn/+5/Y1rEO2y89i4Xx7v0mCeTh6Fvu0KB+5j/GmHwSoZeXFyoqKuTJQF5enlLdw4cP\no6WlBQCQmZmJ8PBwcByHiIgInD59Gr/88guAnkmPISEh8rbvfx51FRUVITU1FampqWhpaUFLSwu2\nbNnySG0NFI0okCE39xXtXk8jhBB1bd68GXl5eTAzM4OLiwtiYmJw+PBhBAQEYOLEibCwsMDJkyeR\nkJAACwsL5OXlYf78+Vi2bBnu3LkDkUiEzMxMAIC7uzuysrIQGRkJIyMjCAQC7N27FwYGBoiLi0NJ\nSQl27NgBkUiEuXPnKsWSmpqKo0ePguM4hIeHY+HChYiMjAQAREZG4s6dO3jiiSfk9bWdxNJeD3r4\n8jW5Y2JbSzeOfXQT57J/wpbvZ/5+Xv9zFPSwy7WKrp0PDernwdPX91xdoL0eiM7IZAxnD99FUUYl\nfj31M8yqJGgzt4Wlr4euQyOEEKIFNKKghy+/d0ThYZss9XZN6akGFGZIUHmyEgJJJRgnAMa4w3P2\nGDz7qgdGe5srtPswetjlhBDo73uuLtCIAhkS6z2+Am5IYCCTosvJFaOD3RGydzqeEdvozYZLhBCi\n73g13bypqQnr1q2Dq6srzMzM4O3tja1bt0Iqleo6NLX1tcphXw9tcgxwxvOHorBN+hrevxmOdQem\nwHemUGWSwJjyIz+/QKmMaBbtQTA0qJ+JvuLNiEJTUxOmTZuGxsZGfPbZZ5g8eTKOHDmC6OhoFBcX\nIzc3FwIBr/IitclkDJeLGgDYDKh+fNYU7QZECCFk2OPNHIXVq1dj586dOHz4MObMmSMvf//997F+\n/Xrs3LlTaQWr4Xy9TN15BA/qljJcLqrHhSNVqPy/O2i+/itM6++gW2CE97rXDaptQgh5FMP5PZdv\nNDlHgReJQnNzM0QiEWxtbXHr1i2FY3V1dbCzs4OHhwfKysoUjmniH622JvCpkyj8dqsD5w7X4Pqp\nGlRdrEb7jWqYN1Why8AU0idGwXqcAzynO2LqIkeMmWgx6CSEEEIehVAoRH19va7D0As2NjYKK0f2\n0tvJjCdPnkRHRwcCAgKUjgmFQnh5eaGsrAzl5eXyTTp6PfhB/7h9OP6X4Qcw7m5Fq7kdDBxFsB1r\nB/8V4+AfZg9nL/N+zx2KTZbo3nPtoz4eGtTPg9fXB9f9qI+HJ14kCpcvXwbQs+lGX9zc3FBWVobS\n0lKlREFTHvbtfCC6OmWo+KEZ5WcaALgO6Jxlx6LxdLANDAyH510IFy9epP/4WkZ9PDSon7WP+nh4\n4kWiUFVVBaBnqKUvvTt8VVdXKx3r/YDX9rfrznYZJKUt+OVKC+6UN+O3n5rRcKMRrVVNkNY1waCl\nEebSJnQIzNE5whrACwNq12eGUO1YhnLUpKGhYeieTE9RHw8N6mftoz4enniRKLS1tQEAjIyM+jxu\nbGwMAGhtbR38c7V04+7tDtRXd6ChqgPAqAGdt8VsK9oF5ugysQAsLGFkawkLRyu4id3h4G0F14kj\nMTZgJCyse/5KUobnAAEhhBA9w4tEwczMDADQ1dXV5/He7UHNzfu/Zg8Aa60+BifrBmQycLJuCLq7\nYCDrgoFMCkP0tN/JmUBqYAKZoTGAge0F/lbHmzAyVv/2zKGYR6BNEolE1yHwHvXx0KB+1j7q4+GJ\nF4nCqFE93+pVzabtHc6yt7dXKPfwuH8yY88PKc0DeEIGQPr7A3E9Z6scAeg5YGwygHYfgbYXXdKE\njIwMXYfAe9THQ4P6Wfuoj7XLw0P9fXl4kShMnDgRAFBZWdnncYlEAo7j8PTTTyuUV1Q83t/WCSGE\nEG3jxToKLS0tsLOz63MdhdraWtjZ2cHT01NpHQVCCCGE9I8XaxpbWFjgxRdfxK+//oojR44oHEtP\nTwcArF27VgeREUIIIY83XowoAD17PQQGBsr3epg0aRKOHj2KFStWYNq0afjmm2/0fq8HQgghRF28\n+eS0srJCcXExFi9ejKVLl8LGxgYJCQlISEhQ2hCqvb0dMTExmDp1Kvz8/HD8+HEdRs4/UqkUH3zw\nAcRiMUJCQhAYGIiTJ0/qOizeKi8vh5GREYqKinQdCi+lpaUhMDAQwcHB8PHxoX7WgqtXr0IsFuOP\nf/wjfH19sWXLFl2HxAvnz5+Hp6en0gTRixcvYurUqQgKCkJYWNhDV8wE00MJCQksJiaGMcZYWVkZ\nEwqFrLq6WsdR8UdlZSVzd3dnTU1NjDHGjh8/ziwsLNjt27d1HBk/RUREsBEjRrDCwkJdh8I7n3/+\nOZs/fz6TSqWMMcYyMjJYdna2jqPiHz8/P7ZhwwbGGGO1tbVMKBSy3NxcHUf1eDt48CBbsmQJmzRp\nEsvIyJCXd3R0MBcXF1ZQUMAYYywxMZGFh4f32xZvRhQGSiaT4aOPPsKLL74IAPDy8oKvry/279+v\n48j4w8rKCsnJybC0tAQAhIaGwtTUFN9//72OI+Ofs2fPwtLSEnZ2droOhZc2b96MN954AwYGBgCA\n6OhoPP/88zqOin+uXLmCqVOnAvj3/jxXrlzRcVSPN19fX3z22WewsrJSKD9y5AgMDQ0xffp0AMBL\nL72Ef/3rX6itrVXZlt4lCj///DNqa2sxduxYedn48eNx7tw5HUbFL0KhEMuWLZP/zhhDZ2cnfZhp\nQVJSEhITE3UdBi/V1NTgxx9/RFlZGWbOnIng4GDs3r1b12Hx0rx583Do0CEAwE8//YTy8nKEhobq\nOKrH2+jRo/ssP3v2LMaNGyf/3dnZGebm5rhw4YLKtnixjoI6evd7GDlypLxs5MiRlL1qUWFhIdzc\n3BAcHKzrUHjlyJEjeOqpp+Dk5KTrUHipd5XA7Oxs5OXlob6+Hv7+/rCxscGSJUt0GxzPpKWlYcGC\nBfD09ERjYyM+/PBDTJo0Sddh8VJ1dbXSKIO1tTVqampUnqN3Iwq9uAeWNGT8uPlj2Glvb8ebb74p\nv02VaIZMJsM777yD119/Xdeh8FZHRwcAYOXKlTA0NISdnR2ioqLw8ccf6zgy/lm0aBECAwNRUVGB\nH374AX/7299oArSWcByn9PkH9P8ZqHeJgkgkAqC4S1lDQ4PS8s5k8BhjeOWVVxAfHw9fX19dh8Mr\nWVlZmD17tnxnVICSXU3r3Y32/vcGBwcHpUXdyOBcvXoVJ06ckK914+zsjAULFuAf//iHjiPjJ5FI\npLRLZ0NDg/yzsS96lyh4eHhAKBTi2rVr8rIrV67Az89Ph1Hx02uvvYY//OEPeO6559DZ2YmbN2/q\nOiTeOHXqFL7++muIxWKIxWJUVVVh7dq1WLhwoa5D4w0vLy+Ym5srDMnevXuXLvVoWO+mfffv/mto\naCgvJ5rl5+eH69evy3+/efMmWltbMXnyZJXn6F2iIBAI8PLLL8uHD8vLy1FSUqIw+Y4M3o4dO9Dd\n3Y0VK1agpaUFFRUVNGSrQbt378apU6eQn5+P/Px8jBo1CikpKcjJydF1aLxhYmKC6Oho+T3obW1t\n+OKLL7BixQodR8YvY8eOhZOTE7KysgAAzc3NyM3NpcmMGsIYUxhtnDt3LqRSqXw9kI8//hjPPfcc\nbG1tVbbBm5UZ1dHR0YFVq1bh2rVrkEql2LZtG/2j1KCysjKFu0p6JSUlYePGjTqIiL9KSkqQnJyM\nvLw8TJ48GQsXLsSaNWt0HRZvtLa2YtWqVbh8+TLMzMywaNEirF+/Xtdh8c758+cRHx8PxhhaWlow\ne/ZsbN26lVbTHYTS0lJs2rRJPpncx8cHe/fuBdCz4FJcXBwMDAwgFAqRnp4uv9TWF71MFAghhBAy\nMJSuEUIIIUQlShQIIYQQohIlCoQQQghRiRIFQgghhKhEiQIhhBBCVKJEgRBCCCEqUaJACCGEEJUo\nUSBET0gkEggEAvmjd8XBRxETEyNvx93dXYNR/pubm5v8OWJjY9U+nzGGXbt2wcLCAmKxuN+6BQUF\niI2NhaenJ0xNTWFlZYWAgACkpqaiu7v7UV8CIbxAiQIhesLNzQ0ymQz79u0DoLyDqjrS09Mhk8ng\n6uo6qHb6I5FIUFlZCUD9WCsrKzFjxgxs2LABra2t/Z6/f/9+zJgxA6WlpcjMzERdXR1KSkrg4+OD\nNWvW4Nlnn6Vkgeg1ShQI0TOaXIxV2wu7Pkr7NTU18PX1RUBAAD799NOH1m9vb4exsTEOHjyIwMBA\nmJubw93dHXv27EFQUBCOHz+OzMzMRwmfEF6gRIEQwitGRkY4duwYtm/fDhMTk4fWF4lEiIiIgKOj\no9KxefPmAQBOnDih8TgJeVxQokDIYywkJERh3sGYMWMA9FwauL/8hRdeeGhbN2/eRFJSEvz8/GBr\nawszMzNMmDAB27Ztg1Qq7ffc6upqLF++HCKRCObm5ggICMA333zTZ926ujrEx8djzJgxMDU1hYOD\nA6KiolBRUaF+B/TBxsYG/v7+A64fFhaG9PT0Po9ZWFgA0P7ICSHDGSUKhDzGCgoKcObMGRgYGMDJ\nyQkXL14E0DPZMCcnBx4eHrh3796AtvjOzs7G9u3b8Ze//AUSiQRVVVXYtGkT3nvvPURGRqo8r62t\nDUuWLMGyZctw+/ZtXLp0CZaWlggLC1Ma+q+qqkJAQAAOHDiAPXv2oLm5Gd9++y0qKirg7++P0tLS\nwXWIhpWVlQEAgoODdRwJITrECCGPvQ0bNjCO41hUVBRjjLHffvuNOTo6su+++06p7r59+xjHcSwj\nI0OhPDMzkyUmJirVT0lJYRzHsfPnzysdc3V1ZRzHsfT0dIXyuro6ZmVlxaytrVlzc7O8fNGiRYzj\nOLZv3z6F+hUVFUwgELBp06YplFdWVjKO41hsbGy/r1+V/Px8xnEcE4vFap/b2dnJHB0dmbOzM2tr\na3uk5yeED2hEgRAeSExMxDPPPIMDBw7gq6++QlxcHJ5//nkEBQUNuI3ly5cjKSlJqfypp54CABQX\nF/d5HsdxWLJkiUKZjY0NZs2ahcbGRhw8eBBAz2hCTk4OTE1NERUVpVDfw8MDU6ZMQXFxscYuQQzW\njh07UFVVhX379sHU1FTX4RCiM5QoEMIDhoaGyMzMhLGxMaKionDp0iVs27ZNrTZkMhn279+PoKAg\njBo1Sj6/ITQ0FABQX1/f53m2trZ9fpA++eSTAICSkhIAwLlz5wAA48ePh6GhoVJ9Z2dnhXq6VFBQ\ngC1btuCDDz6Qv35C9BUlCoTwxNNPP41169ahtbUVY8eOVftb8KpVqxAdHQ1vb2+cPn0aMpkMMpkM\n+fn5AFRP6Oud8PegESNGAAAaGxsV/rxw4YLCRMveR05ODjiOQ01NjVpxa1pJSQkWLVqEN954A6tX\nr9ZpLIQMB8ppPSHksdTR0YHc3FyIRCIcOnQIn376KZYuXTqgc2/fvo20tDTY29tj7969MDAwkB9T\nlSD0amlp6bP83r17AICRI0cCAKytrQEAQUFBKCoqGlBcQ+3SpUuYOXMm1q5di40bN+o6HEKGBRpR\nIIQn3nrrLbi7u6OwsBCmpqZYvXo1qqurB3TujRs3APSs3nh/kgD03NXQn9raWrS2tiqVX7t2DQDg\n6+sLAPD39wfHcZBIJH22c+/ePRw9ehR1dXUDilnTLl26hNDQUKxevVohSbh16xbS0tJ0EhMhwwEl\nCoTwQHFxMdLT05GWlgZvb2+8/fbbqKurw8qVKwd0vouLCwCgvLwc7e3tCsdOnTrV77mMMWRnZyuU\n1dXV4fjx4xAKhViwYAEAwM7ODosXL8atW7f6XMBo9+7diIiIULhkoq3loR90+fJlzJw5E3FxcUhM\nTFQ4VlFRga1btw5JHIQMR3TpgZDHXGtrK2JiYpCSkgJ7e3sAwJo1a5CTk4NDhw7hk08+wfLly5XO\nu/+SgrOzMxYvXowvv/wS0dHReOeddyAUCpGTk4OUlBSl+vezsbFBSkoKHBwcIBaLcfPmTaxatQpt\nbW346KOPYG5uLq/74YcfoqSkBMuXL8fOnTsREhICqVSK7OxsbNiwAXv27FGo3/ucD7v88aCWlhZI\npVL5ZZGuri40NjaCMQZLS0uFUZPS0lLMmDEDnZ2duH79OiIiIhTa0vWcCUJ0Tnd3ZhJCBmvFihWM\n4zgmEAgU1kaYPn26QrlAIGASiYRxHKdUfuPGDcYYY+3t7Sw5OZl5e3szU1NTJhKJ2NKlS9k///lP\nhfMkEonC87q7u7Py8nL2pz/9iQmFQmZqasoCAgLY4cOH+4y5oaGBJSQkME9PT2ZiYsIcHBzY3Llz\n2YkTJxTq9a7R0BtrX2s/qNL7+nvPv//1FhYWKtRNSkpS6pP7HxzHMXd3d3X/agjhDY4xWpuUEEII\nIX2jOQqEEEIIUYkSBUIIIYSoRIkCIYQQQlSiRIEQQgghKlGiQAghhBCVKFEghBBCiEqUKBBCCCFE\nJUoUCCGEEKISJQqEEEIIUen/AQm564dFOwM7AAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x76f1150>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAF+CAYAAAD5ptKRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlXX+//HnQcElXGDE3HfLBRU0FbEU08ZS0dTc6uta\nts2vNNumsqLVypkmLUvLMalxnRbNPU2xzD2VUFRUMJdEDUFUEBDu3x/3cPIIIuKB+5zD63Fd9wXc\n23kfZuy8+NyfxWYYhoGIiIgI4GV1ASIiIuI6FAxERETETsFARERE7BQMRERExE7BQEREROwUDERE\nRMROwUDEDWVnZ/P222/TsWNHunXrxh133EHXrl2JiIgo1PWpqamEhYVRoUIFIiMjnVrbjz/+SEhI\nCF5eXhw5cqTQ1x0+fDjf+hctWsTixYsd9l28eJG6devyyy+/3Gi5InIFBQMRN/Tmm2+ycOFC1q5d\ny7p16/jpp594+OGHeeuttwp1feXKlYmKiqJGjRrYbDan1talSxcWLFhw3dcdPnyY119/Pc/+RYsW\nsWjRIod9Pj4+NG/enMqVKxe5ThHJn4KBiBtavHgxd999NzfddJN93wMPPEDHjh0trOpPxT1vmpeX\nF99//z1NmzYt1tcRKY0UDETcULly5YiKiiIjI8Nh/4YNG/j9998JCwvDy8uLH3/8EYApU6bQoEED\nunXrludeiYmJDBs2jE6dOtGsWTOWLl161de9/DHBzJkz6dmzJ61bt+b2228nLi6uwJpPnjzJ0KFD\nCQoKIigoiKFDh3Lq1CkA1qxZw1NPPQVAt27d6NatG4sWLeKZZ55h1apVrFy5km7dunHnnXdy8eJF\nunfvjp+fH6+99hoACxYsICgoCC8vL5YtW0a/fv245ZZbePLJJx1qOH/+PPfffz+NGjXirrvu4v33\n36dBgwY0b96cDz/88Bq/dZFSwhARtzNr1izDZrMZDRo0MN58801j3759ec6x2WzG+vXr7T9HREQY\nYWFhDufUr1/faNmypZGUlGQYhmEsWLDAKFeunHHkyJGrvvbhw4cNm81mDBw40MjJyTEMwzAee+wx\no2XLlvafExISDJvNZvz222/260JDQ40HH3zQ/vOYMWOM22+/3f5zVFSUYbPZ8rzeqFGjjNGjR+fZ\nHxYWZrz22mt5rp88ebJhGIZx6tQpo3z58sa6devs5zzyyCNGx44djYsXLxqGYRiTJ082ypYta0RG\nRl71/YqUNmoxEHFDo0ePZvHixdSuXZuXX36Z5s2b06lTJzZs2HDVa4x8mvdtNhsDBw7E398fgMGD\nBxMQEMD06dOveZ+//e1v9v4JTz31FLGxsaxZsybfa9atW8emTZt4/vnn7fuee+45fv75Z9avX3/V\n+nL3X+1YfnUNGzYMgICAAFq0aMGuXbsAs7Vg9uzZPPLII5QrVw6AJ554wul9LETcnYKBiJsKDw9n\nw4YNHDlyhMmTJ3Ps2DG6d+/OgQMHrus+9evXd/i5YcOG7Nu3D4ChQ4fam/bffffdq17XsGFDbDab\n/bor7d69G5vNRuPGje37GjVqhM1mY/fu3QXWd70f3LVq1bJ/X6lSJc6dOwfAoUOHyMzMpGHDhvbj\n5cqVo3r16td1fxFPV6hgcPr0aQYPHoyXl9c1hzbFxcUxaNAgAgIC8PX1JSQkhIULFxZ4zcqVK+na\ntSuVK1fG39+f8PBwduzYcdXzc3JymDp1KoGBgVSsWJHatWvz8MMPc/r06cK8HRG3d/LkSfv3derU\n4emnn2br1q0ArFixIt9rsrOzC3Xvy/86nz9/PuvWrWPdunUOf+27ssuDhM1mu2Zrg1oMRBxdMxgs\nXLiQwMBAexNhQf+IoqOjue2220hKSmLLli0kJibSu3dvhg4dyqRJk/K9ZtasWfTq1Yvg4GCOHDlC\nTEwMPj4+hIaG2psYrzR69GieffZZnn32Wc6cOcOyZcvYsGED7du3d/gPpoinGjJkSJ7/r9esWRNf\nX198fX0Bx7+WAY4fP57vv9/ffvvN/r1hGCQkJNC8efNr1nD5dfHx8RiGcdXrAgMDMQyDgwcP5rmm\nVatWgDnS4HK5HSsv35+VlVXogHOlxo0b4+3tzaFDhxxeQ//NEHFUYDCYNm0aTz/9NJGRkfTr16/A\nG+Xk5DBixAjADBONGjXC19eXl19+mT59+vDyyy+zZ88eh2uOHTvG3/72Nzp27MgHH3xA1apVqV27\nNl9++SV+fn6MGDGCzMxMh2u+/vprvvzyS5566ilGjhxJ+fLlCQoK4j//+Q9HjhzJ0wtZxBPZbDbe\neusthw/J2bNnYxgGPXv2BCAoKIiff/4ZMFsY1q1bl+evZ8MwmD9/PmfOnAHMf7tJSUk8+uij16xh\n1qxZ5OTkAPCvf/2LFi1a0KNHjzz3B3OkQWhoKJMnT7Yfmzx5Mp07d6ZLly4A9ib95ORktmzZwvDh\nw+37c+t78skn+f777+33vlZrwOXn+Pr6MmbMGD799FMuXrwIwMcff0zZsmWv+V5FSpWCeiZu3LjR\nOHv2rGEYhjFy5EjDZrNdtffu6tWrDZvNZgwbNizPsW+//daw2WzG2LFjHfa/9NJLhs1mM2bMmJHn\nmnHjxhk2m82YM2eOw/7OnTsbXl5exv79+/Nc07p1a8PLy8s4duxYQW9LxO199913xn333Wd06NDB\nCAsLMzp16mT06tXL2LZtm/2c7du3G61atTI6d+5sPPzww8azzz5rVK1a1QgPDzfOnj1rdO3a1ahQ\noYLx+uuvG/379zc6duxo3HrrrcaSJUsKfO3cEQcLFiwwevfubQQGBhqdO3e2/5tcv369ERISYnh5\neRmdOnUyNmzYYBiGYZw8edIYMmSI0aZNG6NNmzbGkCFDjFOnTjnce+TIkUa7du2M22+/3di8ebNh\nGIYRFxdntGnTxrjzzjuNfv36GZmZmcadd95pVK1a1WjYsKExceJEY9myZUZQUJDh5eVldOvWzThz\n5owxatQo+znvvvuuYRiGcf78eeP+++83GjZsaPTs2dOYOXOmUb9+fWPu3LlO+99GxN0VerjitYLB\n+PHjDZvNZkydOjXPscTERMNmsxm1a9d22B8UFGTYbDbj119/zXPNvHnzDJvNZtx///32fWfOnDFs\nNpvh7++fbw2PPPKIYbPZjE8//bSwb0tErlN+QxHdRXJysnHp0iX7z9nZ2UaFChWMjRs3WliViGtx\n2qiEmJgYABo0aJDn2M0330y5cuU4ceKEvUkwOzub2NhYbDZbvtfk7ru8x3Luo4j8zr/aNSJSPIxi\nnt2wOLz11lsOHahnzpxJ/fr1ad++vYVVibgWpwWDxMREAPz8/PI9XqVKFQD7TGfJyclkZWVhs9mo\nVKlSnvOrVq0KOPa+vtZr5HeNiDjPjz/+yLBhw7DZbAwbNszeh8Fd9OjRg1mzZhEWFsYdd9zB0qVL\nWbp0qfoZiFzGaf8a0tPTAfD29s73uI+PDwBpaWlFOr+o14iI83Tp0oVNmzZZXUaR9ezZ0945U0Ty\n57QWgwoVKgDmcKL85I4uqFixYpHOL+o1IiIiUnhOazGoUaMGsbGxJCcn53v87NmzgNnfAMzHAd7e\n3ly6dIlz587leZyQkpLicD6Y47SBq75GftfkatKkicP4ZREREU/XuHFjh/lDCsNpLQatW7cGICEh\nIc+xxMREMjIyqFmzpr1/QJkyZWjRogWGYRAfH5/nmsOHDwPYJz8BaNmypcOxwlyT69ChQ/YxzdqK\nb3v11Vctr8HTN/2O9Tv2lE2/5+LfivIHsdOCQa9evQDyff6Yuy/3nFy9e/cGYPPmzYW6pmrVqoSG\nhpKcnMz+/fvzvcbLy4t77rmniO9CRESkdHNaMOjevTutWrVi6dKledYsmDVrFmXKlMkzK+Gjjz5K\n+fLl+fzzzx32X7hwgYULF1K3bl3uu+8+h2Pjx4+33/Nyv/zyCzExMQwYMIDatWs7622JiIiUKgUG\nA8MwSElJISUlxd6x78KFC6SkpJCamupwrs1mIzIyEpvNxuDBg4mPjyc1NZU33niDZcuWERERQWBg\noMM1derUYerUqWzdupVx48aRnJzM8ePHGT58OMnJycyePds+0iDXfffdxwMPPMAHH3zA7NmzSUtL\nY+fOnfzf//0fdevWZerUqc74vUgRhYWFWV2Cx9PvuPjpd1wy9Ht2TTbDMK46S8nhw4dp1KjRnydf\ntlJZgwYN8u0bsH//fiZOnMi6detIT08nMDCQCRMmMGTIkKsWsXLlSt5++2127txJ2bJl6dy5M6+/\n/jpt27bN93zDMPjwww/59NNPOXToEH5+fvTp04e33nqLgICA/N9oIVZZExER8SRF+ewrMBh4EgUD\nEREpbYry2ee0PgYiIiLi/hQMRERExE7BQERExM2lpsIrr4AznpgrGIiIiLi5Tz+FgwfBZrvxe6nz\noYiIiBvLzITGjeG77yA42PGYOh+KiIiUMvPnQ7NmeUNBUWkRchERETdlGDB5Mvzzn867p1oMRERE\n3NTKlVCmDNx1l/PuqWAgIiLipiZPhmeecU6nw1wKBiIiIm5o+3ZzJEIBKw4UiYKBiIiIG5o8GZ56\nCry9nXtfDVcUERFxM/Hx0KEDJCRApUpXP0/DFUVEREqBf/0Lxo4tOBQUlVoMRERE3Mjp03DrrRAb\nCzVqFHyuWgxEREQ83IcfwuDB1w4FRaUWAxERETdx7hw0agSbNkGTJtc+Xy0GIiIiHuyzz+DOOwsX\nCopKLQYiIiJuIHexpMWLoW3bwl2jFgMREREPNWcOtGhR+FBQVGoxEBERcXE5OWYo+Phj81FCYanF\nQERExAN99x1UrgzduhX/aykYiIiIuDDDgEmT4O9/d+5iSVejYCAiIuLCoqIgJQX69SuZ11MwEBER\ncWFvvw0vvABlypTM6ykYiIiIuKitWyEuDh54oOReU8FARETERb39Njz7rPOXVi6IhiuKiIi4oN27\noUcPc2nlChWKdg8NVxQREfEQ77wD48cXPRQUlVoMREREXEx8PHToAIcOQZUqRb+PWgxEREQ8wHvv\nwWOP3VgoKCq1GIiIiLiQ48ehVStzNEK1ajd2L7UYiIiIuLn334cRI248FBSVWgxERERcxOnTcOut\nEBMDtWvf+P3UYiAiIuLG3n8fhgxxTigoKrUYiIiIuIAzZ6BpU9ixA+rXd8491WIgIiLipqZOhXvv\ndV4oKCq1GIiIiFgsNRUaN4ZNm6BJE+fdVy0GIiIibuijj6BnT+eGgqJSi4GIiIiFzp+HRo0gKgpa\ntHDuvdViICIi4mZmzICuXZ0fCopKLQYiIiIWSU83+xasWAFt2jj//moxEBERcSOffmoullQcoaCo\n1GIgIiJigdzWgmXLIDi4eF5DLQYiIiJu4rPPoH374gsFRaUWAxERkRJ28aLZWrBkCbRtW3yvoxYD\nERERN/DZZ9CuXfGGgqJSi4GIiEgJunjRnMho8WIzHBQntRiIiIi4uJkzzX4FxR0KikotBiIiIiUk\nI8NsLfj2W7jttuJ/PbUYiIiIuLCZM805C0oiFBSVWgxERERKQEn2LcjlMi0Ga9asoVevXtSvX5+K\nFSvSuHFjBg8ezPbt2/M9Py4ujkGDBhEQEICvry8hISEsXLiwwNdYuXIlXbt2pXLlyvj7+xMeHs6O\nHTuK4+2IiIjcsBkzzJYCV+1bkMvpweCf//wnf/3rX8nMzGTFihWcOXOG+fPnExcXR0hICF9//bXD\n+dHR0dx2220kJSWxZcsWEhMT6d27N0OHDmXSpEn5vsasWbPo1asXwcHBHDlyhJiYGHx8fAgNDWX9\n+vXOfksiIiI3JC0N3nkHIiKsruTanPooITMzk2rVqpGWlkZiYiLVqlWzH9u+fTsdOnTg1ltvZe/e\nvQDk5OQQHBxMQkIC8fHxDuf37duX5cuXEx0dTcuWLe37jx07RtOmTQkKCmLTpk32/WlpaTRu3Bgf\nHx8OHDiAj4+P4xvVowQREbHIP/8JmzbBV1+V7Ota/ighOTmZ8+fPU61aNYcPeYAW/1tP8ujRo/Z9\na9euJSYmhj59+uQ5f8yYMeTk5DBlyhSH/dOnTycjI4PRo0c77K9YsSJDhgzh6NGjfFXSv3kREZGr\nOH8eJk92j9YCcHIwuPnmm6lVqxanT5/m9OnTDsf27NkDQPBlk0IvW7YMgE6dOuW5V+6+5cuXO+wv\n6JqQkBCHc0RERKw2bRqEhUFgoNWVFI7T+xjMnj2bqlWrMnToUPbs2UN6ejpbt27loYceol69enzy\nySf2c2NiYgBo0KBBnvvcfPPNlCtXjhMnTnDmzBkAsrOziY2NxWaz5XtN7r7du3c7+22JiIhct9RU\n8zHCq69aXUnhOT0Y9OjRw/7sv1WrVtx0002EhITQrFkzNm/eTOBlkSkxMREAPz+/fO9VpUoVAE6d\nOgWYjyqysrKw2WxUqlQpz/lVq1YF4OTJk857QyIiIkU0dSr89a/QvLnVlRSe04PBV199Rbt27Shb\ntiy//vor58+fZ8OGDezbt4927do5dBhMT08HwNvbO9975XYgTEtLK9L5IiIiVklJgSlT4JVXrK7k\n+jg1GCQkJDB8+HCqVKnC4sWLCQwMpGLFioSGhvLdd9+RlJTE4MGD7R/cFSpUACArKyvf+2VmZgJm\nx8KinC8iImKVf/wDwsPhllusruT6lHXmzRYsWEBGRgbh4eGUL1/e4Vj9+vXp2LEjP/30E2vWrKFv\n377UqFGD2NhYkpOT873f2bNnAbO/AZiPHLy9vbl06RLnzp3L8zghJSXF4fwrRVzWJTQsLIywsLCi\nvE0REZECnToFn3wCv/xSsq8bFRVFVFTUDd3DqcHg8OHDANSsWTPf47n7c89r1aoVa9euJSEhIc+5\niYmJZGRkUKtWLXsfhDJlytCiRQuio6OJj4+nTZs2+b5+q1at8n39CHcZKyIiIm7tnXdg2DDIp598\nsbryj97XXnvtuu/h1EcJuXMR/P777/kez92fe17v3r0BHPod5Mrd16tXL4f9udds3ry50NeIiIiU\nlGPHYPZseOklqyspGqfOfLh582ZCQ0OpVasWBw8edHic8Ntvv3HLLbdQpkwZDh8+TPXq1TEMg6Cg\nIOLj44mPjycgIMB+fnh4OCtXrmTnzp0OIxmOHTvGLbfcQuvWrR3CwYULF2jSpIlmPhQREUs9+ihU\nrgzvvWd1JS4w82FISAiPPfYYv//+O/3792f37t1cuHCBTZs2ce+993Lp0iXeffddqlevbi84MjIS\nm83G4MGDiY+PJzU1lTfeeINly5YRERHhEAoA6tSpw9SpU9m6dSvjxo0jOTmZ48ePM3z4cJKTk5k9\ne3aeUCAiIlIS4uPhv/+F55+3upKiK5Zll+fOnctnn33Grl27OH/+PH5+foSEhDBu3Di6d++e5/z9\n+/czceJE1q1bR3p6OoGBgUyYMIEhQ4Zc9TVWrlzJ22+/zc6dOylbtiydO3fm9ddfp23btvmerxYD\nEREpbiNGQKNGrjP9cVE++4olGLgiBQMRESlOsbHm1McHD5qPElyB5Y8SRERESquXX4ZnnnGdUFBU\najEQERG5QVu3woABcOAA/G8uPpegFgMREZESZhjw97+bCyW5UigoKgUDERGRG7BmDRw/DqNHW12J\ncygYiIiIFJFhwAsvwJtvQlmnziVsHQUDERGRIvr6a/PrwIHW1uFM6nwoIiJSBJcuQcuW8NFHcNdd\nVleTP3U+FBERKSGzZ0OdOtCjh9WVOJdaDERERK5Tejrccgt89RV07Gh1NVenFgMREZESMGWKGQhc\nORQUlVoMRERErkNSEjRrBj//bLYauDKtlVAABQMREXGGCRPg4kX4+GOrK7k2BYMCKBiIiMiNOnwY\n2rUzF0y6+Warq7k29TEQEREpRi+/DE884R6hoKjUYiAiIlIIu3bBPfdAXBxUqmR1NYWjFgMREZFi\n8vzzZouBu4SColIwEBERuYY1ayA+HsaOtbqS4qdgICIiUoDsbHj6aXjnHfD2trqa4qdgICIiUoAv\nvwRfXxgwwOpKSoY6H4qIiFxFWtqfUx+HhFhdzfVT50MREREnev99uP129wwFRaUWAxERkXwkJkJg\nIGzbBg0bWl1N0WjmwwIoGIiIyPV45BFzaOI//mF1JUVXlM++ssVUi4iIiNvaswe+/Rb277e6kpKn\nPgYiIiJXePZZePFF8POzupKSpxYDERGRy6xaBQcOwKJFVldiDbUYiIiI/M+lS+ayypMng4+P1dVY\nQ8FARETkfz77zFw5sV8/qyuxjkYliIiIACkp0KwZrFwJQUFWV+McGq5YAAUDEREpyDPPmOFg5kyr\nK3EeBYMCKBiIiMjVHDxozm64ezfUqGF1Nc6jKZFFRESK4LnnzBUUPSkUFJWGK4qISKkWFQU7dsDc\nuVZX4hrUYiAiIqXWpUswbpw57XH58lZX4xoUDEREpNT67DNzdsOBA62uxHWo86GIiJRKZ85A8+bw\n/ffQpo3V1RQPjUoogIKBiIhc7sknISsLPvnE6kqKj1ZXFBERKYTdu2HePNi71+pKXI/6GIiISKli\nGDB+PLz8MlSrZnU1rkfBQERESpXFi+HECXjsMasrcU16lCAiIqVGerq5euKMGeDtbXU1rkktBiIi\nUmpMngzBwXDXXVZX4ro0KkFEREqFw4ehXTtzlsP69a2upmRorQQREZGrmDABnnqq9ISColIfAxER\n8XirVkF0tNZDKAy1GIiIiEfLzDQnM5oyReshFIaCgYiIeLQPPoCmTaFPH6srcQ/qfCgiIh7r+HFz\nHYTNm6FJE6urKXnqfCgiInKZCRPMiYxKYygoKnU+FBERj/T997BtG8yebXUl7kUtBiIi4nEyMuD/\n/T+YOhUqVLC6GvdSbMFgzZo19O3blxo1alC+fHnq1atHnz59mD9/fp5z4+LiGDRoEAEBAfj6+hIS\nEsLChQsLvP/KlSvp2rUrlStXxt/fn/DwcHbs2FFcb0dERNzI5MnQooU6HBZFsQSDiIgIBgwYQHh4\nOHv37iU5OZlp06axYcMGIiMjHc6Njo7mtttuIykpiS1btpCYmEjv3r0ZOnQokyZNyvf+s2bNolev\nXgQHB3PkyBFiYmLw8fEhNDSU9evXF8dbEhERN5GQYI5EmDLF6krck9NHJSxatIgBAwawcOFC7rvv\nPodj77//Pvv372fGjBkA5OTkEBwcTEJCAvHx8VS7bP3Lvn37snz5cqKjo2nZsqV9/7Fjx2jatClB\nQUFs2rTJvj8tLY3GjRvj4+PDgQMH8PHxcXyjGpUgIuLxDAPCw6FzZ3jhBaursZ5LjEp48cUXadSo\nUZ5QADBhwgR7KABYu3YtMTEx9OnTxyEUAIwZM4acnBymXBH5pk+fTkZGBqNHj3bYX7FiRYYMGcLR\no0f56quvnPiORETEXXz3HRw6BE8/bXUl7supwWDXrl3s27ePO+64o1DnL1u2DIBOnTrlOZa7b/ny\n5YW+JiQkxOEcEREpPc6fN2c4nDYNrmg0luvg1GCwefNmAOrWrcuCBQvo0KEDN910E1WrVuWvf/0r\nUVFRDufHxMQA0KBBgzz3uvnmmylXrhwnTpzgzJkzAGRnZxMbG4vNZsv3mtx9u3fvdtp7EhER9xAR\nAV27wp13Wl2Je3NqMDh06BAAc+bM4ZlnnuHtt9/mjz/+YMOGDZw9e5YePXo4jEpITEwEwM/PL9/7\nValSBYBTp04BkJycTFZWFjabjUqVKuU5v2rVqgCcPHnSeW9KRERc3q5d8OWX8M9/Wl2J+3NqMEhN\nTQUgISGBWbNm0aNHDypUqEBgYCDz5s0D4PHHH+fChQsApKenA+Dt7Z3v/XI7EKalpRXpfBER8XzZ\n2fDII/D22xAQYHU17q9Yhiv6+flx1113Oexr1KgRHTt2JCUlhdWrVwNQ4X+zTmRlZeV7n8zMTMDs\nWFiU80VExPPNmGH2KbiiT7oUkVOnRM59JFC3bt18j9evX59NmzZx8OBBAGrUqEFsbCzJycn5nn/2\n7FnA7G+Qe39vb28uXbrEuXPn8jxOSElJcTj/ShEREfbvw8LCCAsLK9wbExERl3TiBLz6KqxfD16a\ny5eoqKg8/fmul1ODQYsWLYCr/0Wfy2azAdCqVSvWrl1LQkJCnnMSExPJyMigVq1a9sBRpkwZWrRo\nQXR0NPHx8bRp08bhmsOHD9vvm5/Lg4GIiLi/8ePh4YfNWQ4l7x+9r7322nXfw6n5qnv37oA5CVFO\nTk6e47/99hsAzZo1A6B3794ADhMV5crd16tXL4f9udfkjoAozDUiIuJ5li+H7dth4kSrK/EsTp/5\ncODAgXz77bd888033Hvvvfb98fHxNG3alFq1anHo0CF8fHwwDIOgoCDi4+OJj48n4LJeI+Hh4axc\nuZKdO3cSGBho33/s2DFuueUWWrdu7RAOLly4QJMmTTTzoYhIKXD+PLRsCf/+N/ToYXU1rsslZj78\n8MMPqVu3Lk8++STr168nMzOTPXv2cP/991OhQgW++OIL+4e2zWYjMjISm83G4MGDiY+PJzU1lTfe\neINly5YRERHhEAoA6tSpw9SpU9m6dSvjxo0jOTmZ48ePM3z4cJKTk5k9e3aeUCAiIp5l4kTo1k2h\noDg4PRjUqlWL7du306dPH4YPH06lSpXo0aMHTZo0Ydu2bXTr1s3h/KCgILZt20a1atXo0KEDNWvW\nZOnSpcybN4+XXnop39d46KGHWL58OTt37qRevXoEBgaSmZnJxo0b89xfREQ8y9atsGCB5iwoLk5/\nlOCq9ChBRMT9ZWVBu3bw97/D/fdbXY3rc4lHCSIiIsVl8mSoUweGDbO6Es+lFgMREXELcXEQGgq/\n/AL161tdjXtQi4GIiHiknBwYO9bsdKhQULwUDERExOXNmAGZmfDEE1ZX4vn0KEFERFzakSNmh8Mf\nf4Tmza2uxr3oUYKIiHgUwzBXThw/XqGgpCgYiIiIy/ryS0hMhOees7qS0kOPEkRExCUlJkLr1rBq\nFQQHW12NeyrKZ5+CgYiIuKSBA6FZM3jrLasrcV9F+exz6rLLIiIizrBwIezdC3PmWF1J6aMWAxER\ncSknT0LHWzZIAAAgAElEQVSbNvDdd9Chg9XVuDc9SiiAgoGIiOszDLjvPrjlFpg0yepq3J8eJYiI\niFtbsAD27YO5c62upPRSi4GIiLiExETzEcLSpdC+vdXVeAY9SiiAgoGIiOsyDBgwwJzE6O23ra7G\nc+hRgoiIuKV58+DAAZg/3+pKRC0GIiJiqePHzQmMVqww10QQ59FaCSIi4lYMAx58EP7f/1MocBUK\nBiIiYpkZMyApCV54wepKJJceJYiIiCUOHoSQEPjpJ62cWFz0KEFERNxCdjaMHAkvv6xQ4GoUDERE\npMT94x9Qrhw88YTVlciV9ChBRERKVHQ09OgB27dD/fpWV+PZ9ChBRERcWno6PPAAvP++QoGrUouB\niIiUmPHj4cQJcyIjm83qajyfZj4UERGX9f338M035qMEhQLXpWAgIiLFLikJxoyBL74APz+rq5GC\n6FGCiIgUK8OA++6Dhg3N0QhScvQoQUREXM7s2eYCSXPnWl2JFIZaDEREpNjExUHnzrBuHQQGWl1N\n6aPhiiIi4jIyM+H+++G11xQK3IlaDEREpFg8+6zZYrBokUYhWEV9DERExCWsXg3z5sGuXQoF7kbB\nQEREnOr0aRg1yhyaWK2a1dXI9dKjBBERcRrDgPBws0/BO+9YXY2o86GIiFjqX/8yWwxef93qSqSo\n1GIgIiJOsW0b9O4NW7aYkxmJ9dRiICIiljh7FoYMgU8+UShwd2oxEBGRG2IYZigICIBp06yuRi6n\n4YoiIlLiPv3UnK/giy+srkScQS0GIiJSZL/+Ct27w4YNcOutVlcjV1IfAxERKTGpqTBokDkSQaHA\nc6jFQERErpthwNChULUqzJhhdTVyNepjICIiJeLjj81+BZs2WV2JOJtaDERE5LrkzlewcSM0aWJ1\nNVIQ9TEQEZFilZwMgweb8xUoFHgmtRiIiEih5OTAvfdCo0bwwQdWVyOFoT4GIiJSbN55B/74A776\nyupKpDgpGIiIyDWtXg0ffWT2L/DxsboaKU4KBiIiUqAjR2D4cJg/H2rXtroaKW7qfCgiIleVkQH3\n3QfPPANhYVZXIyWh2IPBkiVL8PLywsvr6i8VFxfHoEGDCAgIwNfXl5CQEBYuXFjgfVeuXEnXrl2p\nXLky/v7+hIeHs2PHDmeXLyJSqo0bB/XqwdNPW12JlJRiDQapqak8/vjjgNkzMj/R0dHcdtttJCUl\nsWXLFhITE+nduzdDhw5l0qRJ+V4za9YsevXqRXBwMEeOHCEmJgYfHx9CQ0NZv359sb0fEZHS5PPP\nISoKZs2Cq/wnXDxQsQ5XfPzxx9m1axebN2/GZrORnZ3tcDwnJ4fg4GASEhKIj4+nWrVq9mN9+/Zl\n+fLlREdH07JlS/v+Y8eO0bRpU4KCgth02ZRbaWlpNG7cGB8fHw4cOIDPFb1jNFxRRKTwtm6FPn3g\nxx+hWTOrq5GicqkJjn7++Wc+//xzZs6cedVz1q5dS0xMDH369HEIBQBjxowhJyeHKVOmOOyfPn06\nGRkZjB492mF/xYoVGTJkCEePHuUrjaURESmyxEQYOBBmzlQoKI2KJRhkZmYyduxYnnvuOVq0aHHV\n85YtWwZAp06d8hzL3bd8+fJCXxMSEuJwjoiIXJ/MTHPFxAcfhL59ra5GrFAsweDNN98EYOLEiQWe\nFxMTA0CDBg3yHLv55pspV64cJ06c4MyZMwBkZ2cTGxuLzWbL95rcfbt37y568SIipdhTT4GfH7zy\nitWViFWcPo/Bnj17mDx5MmvWrMHb27vAcxMTEwHw8/PL93iVKlU4ffo0p06dwt/fn+TkZLKysvDy\n8qJSpUp5zq9atSoAJ0+evMF3ISJS+syaBT/8AFu2QAEDycTDOTUY5OTkMHbsWEaPHk3nzp2veX56\nejrAVQNEbgfCtLS0Ip0vIiKFs3Ej/P3vZmfDKlWsrkas5NRgMG3aNI4ePcqqVasKdX6FChUAyMrK\nyvd4ZmYmYHYsLMr5IiJybUeOmJMYzZ6tzobixGBw9OhRXnzxRb788st8m/nzU6NGDWJjY0lOTs73\n+NmzZwGzvwGYjxy8vb25dOkS586dy/M6KSkpDudfKSIiwv59WFgYYZrGS0RKuQsXzBUTJ0yAXr2s\nrkZuVFRUFFFRUTd0D6cFgx9++IELFy4wYMCAfI8bhmGf/TAsLIy1a9fSqlUr1q5dS0JCQp7zExMT\nycjIoFatWvY+CGXKlKFFixZER0cTHx9PmzZtHK45fPgwAK1atcq3hsuDgYhIaWcYMHo0BAZqZkNP\nceUfva+99tp138Np3UtGjRpFTk5OvhuYkyzk/rx27VoAevfuDeAwUVGu3H29roiwudds3ry50NeI\niEheb75pPkb49FPNbCh/KtaZD3N5eXnlO/OhYRgEBQURHx9PfHw8AQEB9mPh4eGsXLmSnTt3EhgY\naN9/7NgxbrnlFlq3bu0QDi5cuECTJk0086GISCF8/TWMH2/OcFizptXVSHFxqZkPs7KySElJsT/3\nB7PPQEpKij0g2Gw2IiMjsdlsDB48mPj4eFJTU3njjTdYtmwZERERDqEAoE6dOkydOpWtW7cybtw4\nkpOTOX78OMOHDyc5OZnZs2fnCQUiIvKn7dvh0Udh8WKFAsmr2ILBnDlz8Pf3x9/f376Akp+fH3/5\ny1/4+eef7ecFBQWxbds2qlWrRocOHahZsyZLly5l3rx5vPTSS/ne+6GHHmL58uXs3LmTevXqERgY\nSGZmJhs3bqRbt27F9ZZERNze0aNmZ8PPPoO2ba2uRlxRiTxKcAV6lCAipd3583D77fDAA/Dss1ZX\nIyWhKJ99CgYiIqVAdjb07w/Vq5utBepsWDoU5bPP6VMii4iI63nuObPF4KuvFAqkYAoGIiIebto0\nWLbMnPZYfbPlWhQMREQ82JIl8NZbsGED+PtbXY24AwUDEREPtX07jBljthY0amR1NeIutLCmiIgH\n+u036NfP7GjYoYPV1Yg7UTAQEfEwycnmgkjPPWfOWSByPTRcUUTEg1y8CD17mpMX/etfVlcjVtM8\nBgVQMBART5edDUOGQJkyMG8eeKlNuNTTPAYiIqWUYZiLIiUlwcqVCgVSdAoGIiIe4N13Yf16+Okn\nKFfO6mrEnSkYiIi4uS++gOnT4eefoUoVq6sRd6dgICLixpYuNUcfrFsHtWtbXY14AgUDERE39dNP\n5gRGS5ZA8+ZWVyOeQt1TRETcUHQ0DBwIc+ZAx45WVyOeRMFARMTNHDpkTmD00Udw111WVyOeRsFA\nRMSN/P47/PWv8PLLMHiw1dWIJ1IwEBFxE3/8YbYQPPggPPqo1dWIp9LMhyIibuDsWeje3QwGkyZZ\nXY24C02JXAAFAxFxVxcuwN13Q5s28OGHYLNZXZG4CwWDAigYiIg7ysiAvn2hRg34/HNNdSzXR8Gg\nAAoGIuJusrLMDoZeXrBgAZTVzDNynbSIkoiIh7h0CR54wPz69dcKBVJy9H81EREXk50NI0dCaios\nWgQ+PlZXJKWJgoGIiAvJyYGHHoLERHMdhPLlra5IShsFAxERF5GTA489Zs5suGIFVKhgdUVSGikY\niIi4gNxQsHs3rFwJN91kdUVSWikYiIhYLCfHnMkwNtYMBZUqWV2RlGYKBiIiFsrJgYcfhv37zccH\nCgViNQUDERGL5OTA2LFw4IAZCnx9ra5IRMFARMQS2dnmYkgJCbB8uUKBuA4FAxGREpaVBcOHm6sl\nLl+ujobiWhQMRERKUEYGDB0KmZmap0Bck5bjEBEpIenp0L+/uTrit98qFIhrUjAQESkB589DeDhU\nqWIuiKRpjsVVKRiIiBSzM2fgrrugQQP4z3/A29vqikSuTsFARKQYJSZCWBh07gyffQZlylhdkUjB\nFAxERIrJ4cNwxx0wZAhMnmz2LRBxdQoGIiLFYO9e6NIFxo2Dl15SKBD3oeGKIiJOtmmTOfpg8mRz\nvgIRd6JgICLiRMuWwahR8MUXcM89Vlcjcv30KEFExEkiI81pjpcsUSgQ96UWAxGRG2QY5mODjz+G\ndeugeXOrKxIpOgUDEZEbkJ1tdjBcvx42bIA6dayuSOTGKBiIiBRRWhrcfz+cO2eGgipVrK5I5Map\nj4GISBGcPg133gmVKsGKFQoF4jkUDERErtOBAxAaCt27m6MPtO6BeBIFAxGR67B+Pdx+Ozz7LLz1\nliYuEs+jPgYiIoUUGWkGgjlzzEWRRDyRgoGIyDXk5MArr8DcuRAVBS1aWF2RSPFRMBARKUBamjmT\n4bFjsHkzVK9udUUixcvpfQyWLFnC0KFDqV+/PuXKlcPPz4+uXbvyn//856rXxMXFMWjQIAICAvD1\n9SUkJISFCxcW+DorV66ka9euVK5cGX9/f8LDw9mxY4ez346IlGJHj5qrI5YrB2vXKhRI6eDUYPDm\nm2/Sr18/kpOT+e677zh79iybNm3Cz8+PESNG8OCDD+a5Jjo6mttuu42kpCS2bNlCYmIivXv3ZujQ\noUyaNCnf15k1axa9evUiODiYI0eOEBMTg4+PD6Ghoaxfv96Zb0lESqlNmyAkxFwy+YsvoHx5qysS\nKRk2wzAMZ91s4sSJzJo1i4MHD1KxYkX7/qysLJo3b058fDw//PAD3bp1AyAnJ4fg4GASEhKIj4+n\nWrVq9mv69u3L8uXLiY6OpmXLlvb9x44do2nTpgQFBbFp0yb7/rS0NBo3boyPjw8HDhzA54rxQzab\nDSe+VRHxYLmdDD//HHr3troakaIrymefU1sM6tSpw8iRIx1CAYC3tzd3/a8L7w8//GDfv3btWmJi\nYujTp49DKAAYM2YMOTk5TJkyxWH/9OnTycjIYPTo0Q77K1asyJAhQzh69ChfffWVM9+WiJQSly7B\nhAnwxhtmJ0OFAimNnBoMHn300as2//v6+gI4JJdly5YB0KlTpzzn5+5bvny5w/6CrgkJCXE4R0Sk\nsE6fNocgxsbC1q0aeSClV4lNcBQXFwdAly5d7PtiYmIAaNCgQZ7zb775ZsqVK8eJEyc4c+YMANnZ\n2cTGxmKz2fK9Jnff7t27nVu8iHi0X36B224zZzNctgz8/a2uSMQ6JRIMzpw5w6pVq2jbti09e/a0\n709MTATAz88v3+uq/G/y8VOnTgGQnJxMVlYWNpuNSpUq5Tm/atWqAJw8edKp9YuI54qMhLvvhvff\nN2cyLFPG6opErFUi8xg899xzlClThi+++MJhf3p6OmD2QchPbgfCtLS0Ip0vInI1Fy/+uVxyVBRc\n1sdZpFQr9haDOXPmEBkZyZw5c2hxxUO7ChUqAOaohfxkZmYC2DszXu/5IiL5SUiAzp0hORm2bVMo\nELlcsbYYrF69mrFjx/LZZ59x77335jleo0YNYmNjSU5Ozvf6s2fPAmZ/AzAfOXh7e3Pp0iXOnTuX\n53FCSkqKw/lXioiIsH8fFhZGWFjY9b4lEXFzS5fCgw/Ciy/Ck09qESTxLFFRUURFRd3QPYotGKxZ\ns4YBAwbw8ccfM2rUqHzPad26NWvXriUhISHPscTERDIyMqhVq5a9D0KZMmVo0aIF0dHRxMfH06ZN\nG4drDh8+DECrVq3yfb3Lg4GIlC5ZWfDyy+YCSN9+a3Y0FPE0V/7R+9prr133PYrlUcIPP/xA//79\nmTp1qkMoiI2NdZjquFevXgAOExXlyt2Xe06u3v8bWLx58+ZCXyMipduRI9C1K/z6K+zYoVAgUiDD\nyX744QfD19fX+Pe//53n2Oeff26EhYXZf87JyTFat25t+Pr6GqdOnXI4t0+fPkbZsmWNmJgYh/1H\njx41KlSoYHTs2NFh//nz540aNWoY9erVMzIyMvK8djG8VRFxA4sXG0b16obx3nuGkZ1tdTUiJaso\nn31OfZSwbt06+vTpQ9WqVVm9ejXff/+9w/GEhASHjoE2m43IyEi6dOnC4MGD+fe//021atWYMmUK\ny5Yt44033iAwMNDhHnXq1GHq1Kk8/PDDjBs3joiICNLS0njiiSdITk5mxYoVeaZDFpHSJyMDnn8e\nFi0yt3zmRBORfDg1GHzxxRdkZGRw8uRJFixYgO2yXj2GYWCz2ejatavDNUFBQWzbto2JEyfSoUMH\n0tPTCQwMZN68eQwZMiTf13nooYeoU6cOb7/9NvXq1aNs2bJ07tyZjRs30rZtW2e+JRFxQ7GxcP/9\n0Lix+ehAExaJFJ5TF1FyZVpEScTzGQbMmAETJ8I775ijDzTqQEqzonz2lcgERyIixe30aRg7Fn77\nDTZsgGbNrK5IxD2V2FoJIiLFZelSaNMGmjSBzZsVCkRuhFoMRMRtnT8PTz8Nq1bBvHnmkEQRuTFq\nMRARt7RxIwQFQWamOT+BQoGIc6jFQETcSnr6nzMYTpsGAwZYXZGIZ1GLgYi4jU2bIDgYjh41WwkU\nCkScTy0GIuLy0tPhlVfgyy/ho4/gvvusrkjEc6nFQERcWlQUtG5trnfw668KBSLFTS0GIuKSUlLg\nuedgxQqzL0HfvlZXJFI6qMVARFyKYcA330BgIJQpA7t3KxSIlCS1GIiIyzh8GJ54Ag4dgrlzoUsX\nqysSKX3UYiAilsvKgvfeg9tug5AQ2LVLoUDEKmoxEBFL/fgj/O1vUKsWbNlirogoItZRMBARS5w4\nAc8+C+vXwz//CYMGaSVEEVegRwkiUqKysuD996FVK6hbF/buhcGDFQpEXIVaDESkxKxYARMmQL16\n8PPPcOutVlckIldSMBCRYrdvnxkIDh40Wwt691YLgYir0qMEESk2SUkwfjzccQf06GHOSdCnj0KB\niCtTMBARp7t4ESZPhmbNzGWRY2PNFgMfH6srE5Fr0aMEEXGanByYPx9efBGCguCnn8xwICLuQ8FA\nRG6YYcCqVWYg8PaGL77QBEUi7krBQERuyMaN8MILcOoUvPUW9O+vPgQi7kx9DESkSHbuhPBwGDoU\nRo2CmBgYMEChQMTdKRiIyHXJDQC9e5sjDeLiYPRoKKv2RxGPoGAgIoWyezcMGQJ33QW3327OSTBu\nHJQvb3VlIuJMCgYiUqAdO8wWgh49oF07c0nkCROgYkWrKxOR4qBgICL52rTJfFzQty907Qrx8fDc\nc3DTTVZXJiLFSU8FRcTOMMz1DN55B44eNYPA11/rcYFIaaJgICJkZcGCBfDee+aoguefN1c8VIdC\nkdJH/+xFSrGUFPjsM5g6FZo0MYNBz54acihSmikYiJRChw6ZYeDLL81+BIsXQ9u2VlclIq5AnQ9F\nSomcHPj+e3NSopAQqFDBnJPgyy8VCkTkT2oxEPFwqanm2gUffQTlysETT5j9CTTcUETyo2Ag4qF2\n7IDp0+G//zXnIJgxw1zYSP0HRKQgCgYiHuT8ebM1YMYMOHkSHn4YYmOhZk2rKxMRd2EzDMOwuoiS\nYLPZKCVvVUoZw4DNm2HmTPjmG3MyoocegnvugTJlrK5ORKxUlM8+tRiIuKnjx2HOHJg9G7Kz4cEH\nYe9eqFHD6spExJ0pGIi4kQsXYNEiiIyE7dth4ED49FPo3Fl9B0TEORQMRFxcVhasXg1z58LSpdCp\nE4wZY849UKGC1dWJiKdRHwMRF5SdDT/9ZHYk/OoruOUWGDYMBg2Cm2+2ujoRcRfqYyDixnLDwMKF\nZifCWrXMILB1KzRsaHV1IlJaKBiIWOjiRfjhB/j2W/juO6hd21y8aMMGc+0CEZGSpkcJIiUsKclc\n2njJEli1Clq1gv794d57oVEjq6sTEU9SlM8+BQORYmYY5iRDy5ebYSA6Grp1gz59zHUL1GdARIqL\ngkEBFAykJKWmmo8IVq40Wwe8vMwJh8LDzVCg0QQiUhIUDAqgYCDFKSvL7CS4Zo05tDA6GkJD4e67\nzUBw662aZ0BESp6CQQEUDMSZsrNh1y6IioJ168zOgg0bwl13mQsW3X67Vi8UEespGBRAwUBuRGam\nuVrhTz/9udWsCWFh5qOBsDAICLC6ShERRwoGBVAwkOuRlGQuTLRpE2zcCNu2QePGcMcd5tali9Yk\nEBHXp2BQAAUDuZqMDPj1V7OPwLZtZhg4cQI6dDCnH+7UyewvULWq1ZWKiFyfUhUMUlNTefXVV/nm\nm284deoU9erVY8SIETz//POULZt33iYFAwEzBOzZYz4W+OUXc9uzx5xMqH17cwsJgcBALVksIu6v\n1ASD1NRUOnfuzNmzZ5k/fz7t2rVjxYoVjBgxgjvuuIMlS5bg5eXlcI2CQenzxx/m6IBffzW/RkfD\n/v3mI4G2bc2tXTsIDoabbrK6WhER5ys1weCJJ55g2rRpLF++nLvvvtu+//333+eZZ55h2rRpPPbY\nYw7XKBh4rjNnYO9ecxKh3bvNFoDdu83phlu3hjZtzK11a7MlQKMFRKS0KBXB4Ny5c1SvXp2//OUv\nHDt2zOHYmTNnCAgIoHHjxsTFxTkcUzBwb5mZEB8PBw5AXJy57dtnBoKLF6F5c3Nr1QpatjQDQO3a\nmjtAREq3UrG64tq1a8nIyKBjx455jvn7+9O0aVPi4uI4cOAATZs2taBCKQrDMEcCHD5sbocOmUEg\n9+vvv0PdutC0qbkEcevW5mJDzZubwwYVAEREnMPtgkFMTAwADRo0yPd4gwYNiIuLY/fu3QoGLuTc\nOfPD/fhxOHrUcfvtN3Pz8YEGDaB+fbMfQJs2MGCA+X39+uDtbfW7EBHxfG4XDBITEwHw8/PL93jV\n/40pO3nyZInVVFplZMDp03DqlLmdPg0//xzFTTeFceIEJCaaw/6OHzdnCqxdG2rVMv/yr1sXgoLM\ntQPq1TMDQeXKVr8j9xAVFUVYWJjVZXg0/Y5Lhn7PrsntgkF6ejoA3lf589HHxweAtLS0EqvJneXk\nwPnzcPYspKQ4bsnJZse+3C0pydz++MPc0tPN2f6qVze3gABISIhiwIAw2rY1JwCqWdMMBJUrq7nf\nWfQf0+Kn33HJ0O/ZNbldMKjwv2XpsrKy8j2emZkJQEU37nqek2MuypOVZf5VnplpbhkZ5nbx4p9f\n09PzbmlpcOHCn18vXDA//HO3c+fM1f/OnTOPVawIVaqYE/hcvvn5gb8/NGpkDuurVs3c/vIX82uV\nKnk/7CMi4JlnLPm1iYiIE7hdMKjxv3lok5OT8z2ekpICwM35LHIfHv7n9/l10szdl9/XK783DPMD\n/PLvc3/OyTGbznO/Xm27dMn88M/9mrvl5JjP0729oVw5c/PxMbfy5c2fL/9asaK5jG/udtNN4Otr\n/hVfsaL5fe5WqZJ5vHJlc/P1NZcEFhERAcBwM4sXLzZsNpvRv3//fI/feuuthpeXl3HgwAGH/Y0b\nNzYAbdq0adOmrdRsjRs3vu7PWbebx+D8+fMEBATkO49BUlISAQEBNGnSJM88BiIiInJtbteI7Ovr\ny4MPPsjvv//OihUrHI7Nnj0bgPHjx1tQmYiIiPtzuxYDMNdKCA0Nta+V0LZtW1auXMnIkSPp3Lkz\ny5Yty7NWgoiIiFybW356Vq5cmY0bN3LfffcxbNgw/Pz8eP7553n++efzLKB08eJFRo0aRadOnWjf\nvj2rV6+2sHLPdOnSJT744AO6detGWFgYoaGhrF271uqyPNaBAwfw9vbmxx9/tLoUjzRz5kxCQ0Pp\n0qULQUFB+j0Xg71799KtWzfuuOMOgoODefPNN60uye398ssvNGnShMjISIf9u3btolOnTtx+++30\n7duXM2fOXPtm190rwc08//zzxqhRowzDMIy4uDjD39/fOHnypMVVeZaEhASjYcOGRmpqqmEYhrF6\n9WrD19fXOH78uMWVeaahQ4caN910k7F+/XqrS/E4CxcuNPr06WNcunTJMAzDiIyMNBYsWGBxVZ6n\nffv2xsSJEw3DMIykpCTD39/fWLJkicVVua/FixcbQ4YMMdq2bWtERkba92dkZBj16tUzoqKiDMMw\njFdffdUYNGjQNe/nli0GhZWTk8O///1vHnzwQQCaNm1KcHAw//nPfyyuzLNUrlyZN954g0qVKgHQ\no0cPypcvz6ZNmyyuzPNs27aNSpUqERAQYHUpHun111/nxRdfpEyZMgCMGDGCwYMHW1yV54mNjaVT\np07An2vcxMbGWlyV+woODmb+/PlUvmL62BUrVlC2bFm6du0KwEMPPcQ333xDUlJSgffz6GAQHx9P\nUlISzZo1s+9r0aIF27dvt7Aqz+Pv788DDzxg/9kwDDIzM/XhVQwiIiJ49dVXrS7DI506dYo9e/YQ\nFxdH9+7d6dKlC9OnT7e6LI/Uu3dvvvvuOwAOHTrEgQMH6NGjh8VVua+6devmu3/btm00b97c/nOd\nOnWoWLEiO3bsKPB+bjfB0fXIXS+hSpUq9n1VqlRRMi1m69evp0GDBnTp0sXqUjzKihUrCAwMpHbt\n2laX4pEOHz4MwIIFC1i1ahXJycl06NABPz8/hgwZYm1xHmbmzJn069ePJk2acPbsWT766CPatm1r\ndVke5+TJk3laEapWrcqpU6cKvM6jWwxy2a6Yt9dwv4EYbuPixYu89NJL9qGj4hw5OTm89957vPDC\nC1aX4rEyMjIAeOSRRyhbtiwBAQH83//9H7NmzbK4Ms8zYMAAQkNDOXjwIDt37uTvf/+7OiwXA5vN\nlufzD679GejRwaB69erAn9Mk536f33TJcuMMw+Dhhx9mwoQJBAcHW12OR5k7dy49e/a0rx4KCrjO\nlrti6+X/fahZs2aeidTkxuzdu5cffvjBPt9MnTp16NevH5988onFlXme6tWrO3z+gfkZmPvZeDUe\nHQwaN26Mv78/+/bts++LjY2lffv2FlbluZ5++mlCQkIYOHAgmZmZHD161OqSPMaGDRtYunQp3bp1\no1u3biQmJjJ+/Hj69+9vdWkeo2nTplSsWNGhmfWPP/7Qoxsny13o7vIVcsuWLWvfL87Tvn179u/f\nb//56NGjpKWl0a5duwKv8+hg4OXlxdixY+1NgQcOHCA6Otqho5w4x7vvvkt2djYjR47k/PnzHDx4\nUJFKjZcAAAFXSURBVE2wTjR9+nQ2bNjAunXrWLduHTVq1GDKlCl8++23VpfmMcqVK8eIESPs48DT\n09P573//y8iRIy2uzLM0a9aM2rVrM3fuXADOnTvHkiVL1PnQCQzDcGhJvOeee7h06ZJ9Lo5Zs2Yx\ncOBA/vKXvxR4H7ec+fB6ZGRk8Oijj7Jv3z4uXbrEpEmT9H9AJ4uLi3MY+ZErIiKCV155xYKKPFd0\ndDRvvPEGq1atol27dvTv359x48ZZXZbHSEtL49FHHyUmJoYKFSowYMAAntE64k73yy+/MGHCBAzD\n4Pz58/Ts2ZO33npLM9YW0e7du3nttdfsHb+DgoL49NNPAXOCo8cff5wyZcrg7+/P7Nmz7Y/Nrsbj\ng4GIiIgUnuKZiIiI2CkYiIiIiJ2CgYiIiNgpGIiIiIidgoGIiIjYKRiIiIiInYKBiIiI2CkYiIiI\niJ2CgYiIiNj9f6xZUU6pD0hbAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7786f50>" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "### Countour Plotting\n", "\n", "import math\n", "from pylab import *\n", "\n", "alpha = 0.7\n", "phi_ext = 2 * math.pi * 0.5\n", "\n", "def flux_qubit_potential(phi_m, phi_p):\n", " return 2 + alpha - 2 * np.cos(phi_p)*np.cos(phi_m) - alpha * np.cos(phi_ext - 2*phi_p)\n", "\n", "phi_m = np.linspace(0, 2*math.pi, 100)\n", "phi_p = np.linspace(0, 2*math.pi, 100)\n", "X,Y = np.meshgrid(phi_p, phi_m)\n", "Z = flux_qubit_potential(X, Y).T\n", "\n", "\n", "fig, ax = plt.subplots()\n", "\n", "cnt = contour(Z, cmap=cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1])\n", "\n", "\n", "\n", "# Second Axis\n", "ax2 = ax.twinx()\n", "\n", "ax2.set_ylabel(r\"Temperature ($^\\circ$C)\")\n", "ax2.set_ylim(0, 35)\n", "\n", "\n", "\n", "#Add Line\n", "axvline(x=0.5, ymin=0, ymax=1)\n", "axhline(y=25,xmin=0,xmax=1)\n", "\n", "\n", "#autoformat dates for nice printing on the x-axis using fig.autofmt_xdate()\n", "fig.autofmt_xdate(bottom=0.2, rotation=30, ha='right')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAD5CAYAAABLcBB9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXecVNXd/9/3Tu+zvbDALktn6U1FEDsiCmqCmhh7HhMf\nW9S05/GJJvHJL/Ex0SQGNTFGMUZFDRHFhmKlN6kCC7tL215mp7d7z++PYTeUBe7MFmCZ9+s1L3Tv\nPeeemblzv+d8z/f7+UpCCEGaNGnSpEnTS5BP9gDSpEmTJk2ariRt2NKkSZMmTa8ibdjSpEmTJk2v\nIm3Y0qRJkyZNryJt2NKkSZMmTa8ibdjSpEmTJk2vIinD1tDQwNy5c5FlmRdffDGlC0ajUX7+858z\nePBgLBYLxcXF/PCHPyQQCKTUX5o0adKk0YYQgiVLlnD33Xczbtw4srKycLlclJWV8aMf/Yiampqj\n2hQXFyPLcoevQYMGnYR3cWL0Wk9csGABd999N7FYDABJkpK+WCwWY+bMmaxdu5aXX36Ziy66iFWr\nVnHdddexdOlSvvjiC6xWa9L9pkmTJk2aE9PU1MSll17KkCFDmDdvHpMnTyYUCrFw4ULuuusu5s+f\nz7p16+jTp097G0mSKC0txWAwHNVf//79e3L42hEaeOqpp0RRUZF47733xM033ywkSRIvvviilqaH\n8fjjjwtJksTTTz992N/ffPNNIUmS+NGPfpR0n2nSpEmTRhsNDQ1CkiSxcuXKo47de++9QpIk8fDD\nDx/29+LiYrFnz54eGmHXoMkVOW7cOLZu3cqMGTMQKQqVCCF48sknMRqNfOc73zns2OzZs8nIyODp\np58mEomk1H+aNGnSpDk+brebTz/9lEmTJh11bODAgQC0trb29LC6HE2G7eyzz8bpdHbqQps2beLA\ngQOMGDECm8122DGdTsfEiRPx+/18/vnnnbpOmjRp0qTpGL1ez7Rp0zrcSlq5ciUAF1544VHHUl3Q\nnCx6LCpy8+bNQGIjsiPa/r5ly5YeGlGaNGnSnNmEw2F27NjBj370IxYsWMAjjzzCrFmzjjrv2Wef\nZezYsTgcDpxOJ2effTbPPPPMKWvwesyw1dbWApCRkdHhcbfbDUBdXV1PDSlNmjRpzljef/99rFYr\nw4YN4x//+Afz58/nf/7nfzo8d+XKlfzlL3+hubmZ7du3M3XqVO68807mzJmDqqo9PPIT02OGLRQK\nAXQYWQNgNBoBCAaDPTWkNGnSpDljmTFjBqqqUlFRwX333cdtt93GjBkzaG5uPuy8v/3tb3z44YdM\nmDABg8FAYWEhjz32GLNnz+btt9/mqaeeOknv4Nj0mGGzWCwA7ekCRxKNRgHS4f5p0qRJ04MUFxfz\n4IMP8pvf/IYlS5Zw7733HnZ8+vTp6PVHZ4b9x3/8BwDz58/vkXEmg+Y8ts6Sn58PQEtLS4fHPR4P\nAHl5eUcdGzhwILt37+6+waVJkzICSD6nM02anqC0tJRdu3ZpOve2227jnnvu4ZVXXuHZZ5894SJj\nwIABAOzYsaPT4+xqemzFNmrUKAAqKys7PF5VVQXAyJEjjzq2e/duhBDplxA8/PDDms77fPplhGrr\nUrqGb+nrBDcu03y+0rAHxduo6dy61iC+cFTTuR+X17NmX0tSn8WNzyxnQ1Vzj30fQI9cJxSNM/F/\n3kvqs9jbEuTl9fs09R+NK+xt8mk6Vw0HiB/Yrnns0ZoqWl59MuX3/tnUSwg3aLu/jvVZnKmvZBYE\nFouF7OxshBBUVFSc8HwhTs3AEehhw9anTx+2bduG3+8/7Fg8HmfNmjU4HA6mTZvWU0Pq1QhFQZJT\n/HolGYSS5PnaNpAlCbT+Hgw6mZiS3Ma002zAE4wm1eZ0wBuM4bR0vD99LGKKikGn7R4QQmhXExJJ\nrlJVNfHFp4osI5Qk7sc0x+TRRx/lmmuu6fBYNBpt319rS+96/PHHufnmmzs8v81oDhkypOsH2km6\n3LB5vV5mzZrFzTfffFS0zL333ks0GuWll1467O9vvfUWLS0t3HHHHe1BJGk6h4grSB34xTUh6yAZ\ngyJJmg2bLEmoGi2bxaAjGEvugVaYYaHGE0qqzelAtSdEYYYlqTbBmILVoNN0rioEsmbDpkISkyah\nKqBLfddD0unShq2LiMfjfPHFFx0mYf/jH/9AVVWGDx9Ov379APD7/XzwwQdHLUYAnn76aQBuuOGG\n7h10Cmi6O4UQeDwePB5Pe5BHIBDA4/Hg9XoPO/fDDz/k3XffZf78+Xz11VeHHbvvvvuYPn06P/3p\nT3nnnXcIhUJ89tln3HXXXYwZM4ZHHnmka95VL2b69OmazlNjMWRDag8TSadHKB0H+XSIrEvMyrWc\nKkmoqjbDZjfq8Efixzze0WfRP9tGZX3vE9SuqPfTL8t2zOMdfRb+aBybUZthU1SBxsUdqEpila4V\nJY4kaxtHR8gGA2pU+ypc62/kTESWZRobG5k1axZffvklPp+Pmpoann76ae655x7sdjt//vOfDzu/\nrq6Oq666inXr1hEKhThw4AAPPPAA7777LjNmzODuu+8+ie/oGAgNVFZWCkmS2l+yLLf/d0lJyWHn\nVldXi9LSUjF58mQRDoeP6isSiYiHH35YlJaWCpPJJPr16ycefPBB4ff7j3l9jcNMcwgfjZoslGgs\npbaBVR8K//J3NZ+vtNYLpXGvpnNbQxFR7w1pOrfGGxIvrE1Oo25DVbO4/qkvk2rTGXrq1vzFPzeL\nV5ZXJdXmve214qsDHk3ntgYjosGn7XtRvI1CadD+vYR3bRKtbz+v+fwjWT77WuHbUZ5y+zOZI5+d\noVBIvPbaa+Kqq64Sffv2FUajUVgsFjF48GBx5513isrKymOe36dPH2EwGITT6RTnnHOOmDdvnlBV\ntQffjXY0TemLi4s1J+EVFBQcNwrHaDTyyCOPpFdn3Ygai4MASZ/aLFnSG1HDSeQT6vSI8LFXVoei\nl2UCqrZzMywGWoKxpNxkQwud7G0K4AvFcCS5J3Uqs66qmW9M6ptUm6ZgjOF5Dk3nxlWBTtboilTi\nIGv3BohYFOkY+ata0JlMKKHe514+GZjNZubOncvcuXO75fxThXSh0V6IEgigs1lTKi0EIBlNiGhY\n+/k6Q+JhpwGDTiaucf/OpNdhM+ppCWp3i5oNOsYVZ7KsvEFzm1OdPY0BgpE4Qwu167WqQtDgj5Br\nN2k6P5lAE5QY6LUbKhENIxnNms8/Er3dRjwt3JAmCdKGrRcS9/vR2469H3MiJJMFEdFu2NAZIK5t\nD0QvSyiq0BxAku8wUe1LYizA9GF5LNlcm1SbU5klm2uYPiwvqYlKYyCK3aTHrHHVnlQEpRJLTGY0\nIiKhThk2nd1G3Ht08EKaNMcibdh6IbFWLwa3K+X2ktmCCCcRgKE3ghJHaIiMlCQJg04mGte2auvr\ntrA3ySjHS0bms7qiiSb/6V8CSVUF/1q3n9nji5Jqt88Toq9bWxSlKgRxRcWodcUWiyS+c42IcBDJ\nnPpEy+ByET8iSC1NmuORNmy9kFiLB4Mr9TJDstmGmoRhkyQp4ZqKaVu1GfU6onFt4dvFGVaqmoOa\nV3gAdrOBS0cW8PKyKs1tTlU+3lqLy2pkeJ/kvs+K5iDFGdrk6aLxxGpNy4pQCJFYnRu0uTgB1HAA\n2Zy6VJ7B5SJ6UJkoTRotpA1bLyTS1IwxKzPl9rLVgRpM0vVjMENMm8vQbNAR1pif5rYYsBl1HGhN\nzh15+/RS/rlmH/Xe5NqdSsQUlaeW7OSuiwcl5YYMxRSqvSFKMrUZk3BMwawx3414FGRdUuH7atCP\nbNUWxNIRxqwMoo3NJz4xTZqDpA1bLyTa2IQxOyvl9pLFhogEk0qKlYwWRFSby7DNsAmNq7ChOXa+\nrvdpHgtAvtvCVRP78vv3Tz0dO628tnIPBW4LZw3MTqrdzgY//TOsml2L4Vhcu2GLhROTmCRQA15k\nW+qGzZSdTbSpKeX2aU5NGhsb2bRpEytWrGDNmjXs3LmzPU+6s6QNWy8kXFuHOf9oMWmtSLIO2WJH\nDWrf10jGsCXcXhDVGB05It/Jjga/5vPb+I/zS/lqbwvLdp5+EZIHmoP89dPd/PTKEUlHt26q9TIq\nX5vrUhWCcFzBrDGZX0SCSKbk3IqqvxXZ7k6qzaGY8nMJ16TrNJ7uqKrKokWLmDt3Ljk5OeTl5TFm\nzBimTJnC5MmTGTp0KFarlTFjxvBf//Vfx9QV1kLasPVCwjW1mAvyO9WHbHej+pLY1zBZIRLUvAqz\nGvUEo9pSBBwmPUUuC9vqklu1WYx6/mdOGY/+awstgdNHPzKuqPzszU3cNHUA/bOTC7qo8YYJRhWK\nk3BDGnU6zTlsIhJEMmqX9hKxKCIWQbKkHjxiLiwgXNN7olzPRDZs2MD48eOZM2cOb7zxBtFolEGD\nBjFx4kTOPfdczj77bMaMGUNhYSFbtmzh17/+NUOGDOGBBx44Zqmz45E2bL2Q0L79WPomF0V3JDpX\nFopX+76GpDcmNCPj2iIRrSY9wePIZR3JxCI3a/Z5kgoiAThrYDaXjirgvxZ8lbSg8sniDx/uxKCT\n+c65JUm3Xb2vhQlFbs0J7YFIDJtJ42pNCIgEwGzXPB7F24zOmYGUjATXEZjzcom1eFDCp+9+6ZnM\n0qVLmTp1Kqqq8sILL7B3715aW1vZvn07q1at4vPPP2fZsmWsX7+evXv3EggEWLFiBXfffTfPPPMM\nM2bMSNq4pQ1bL0MoCqH9Bzpt2GRXFoqnMak2ktmOCGsLOjHrdShCaI6O7OMyYzXq2F6ffD7TXRcP\nxqiTefjNTSgadSpPFi9+UcEX2+v5zXVjtCuBHKQxEGF/a5iRBdrdkMFoHJtRo4pINAR6A1ISgsZK\nayOyM/X9XkiIIJv7FBDat79T/aTpeWpqarj22mv5zW9+w8aNG7nxxhspKjr+s8lkMjF58mR++9vf\nUlFRQSAQOKr46YlIG7ZeRmj/AYxZWehtnatErsvIRWmpT66RxYEIaXMXSpKE3WTAF9Y2E5Mkiakl\nmXxZ1UQ8SeOk18n85vqxNPmjp7Rxe+nLSt5cvY9nb52Ey5p8lYvPK5uY1NetOWgkGIlj0uvQa03M\nDnmRLMmlHSgt9egycpNq0xG20gH4d524RliaU4vNmzfzpz/9if/8z/9MqX1eXh4ffvghbrebUBKy\namnD1svw7diFfVBpp/vRZ+ahNCe3YS9ZHBDyaUrUBnCYDfgjcc3uxX5uK9lWI2v3dVyF/XiYDTqe\nvGE89d4w/7VgI6HoqVMGRVUFzy4tZ8GqPfz5tknkupJX6ahsDtAYiDK2j/bEfG84hsOchIJIyJv4\njpNAaa5Hn9l5w2YfPBD/Tm2VoNOcOlxyySWd1pl0Op386le/wmLRvrebNmy9DO+WrTjLhne6H11m\nHoqnIbmQf50BjBYIaXMXGnQyZoMOv8ZVG8CFg3JYu99DUwrFRC1GHX+8cQJ6WeLGZ5ZT2XDyZZo8\nwSj3vrSO5eWNPP/ds8jXqBZyKNG4yoc7G7h4UC56jXXSwjEFRVWxanRDingsoTiSxP4agNJUgy6r\nMKk2HeEqG453y7ZO95PmzCD16n89zKb7f4qs1yGbTOhsNvQOO3q7HVNWJsbsTIzZWZjz89Dbk/vh\n9TZaN26m5Lu3dLofSW9A58hAaalHn12gvZ3VhQh6kKzaXFYui4EGXxiH2aAprN1lNnBOcSbvba/j\n+jFFSe9DmQw6Hv3mKBau3c+tf17JnRcN5huT+qYsGN0Zlpc38IuFW7h0ZAF3XTJYuwjxEXxS0Ug/\nt0VzQjZAayiK02LU/L5F0INkcSYVBCJUhXhzPbqs1FNP2nCWDce7eWuiMrwu9dpupztKOEy4to5o\nYxPRpmYijU3EvT7ifj+KP4ASCiEUBTUeJ+/Si49qL4Tgo48+YtGiRSxbtow9e/YQj8fp27cvM2fO\n5Ac/+AEFBUf/3nfu3Ml///d/8+mnnxIKhSgrK+P+++/XvBq77bbbaGlJeFquuOIKbrnl6GdUY2Mj\nl112Gb/85S+ZMWNGkp/M4Zw2hi334vMTX1goTDwQJB4IEK6uxrt568EvuJFITR2y0Yi5TwGWvkXY\nBhRjKy3BXjoAa0lxyoU3TxeUUBjf1u24xo7ukv70uUXEG/YnZ9hsGajV2xGqiqRh9WA26NHrZPyR\nuGa32NhCFxXNQZZVNTFtQHLJy5DYr7t6Yl/G9M/g4Tc38faGA9w3YwjjilNXa0mGqgY/Ty3ZybYD\nXh65emTSCdiHsr3ex96WEDeO117SJhJXiMQVchzaXZ7C34LsTi6FRGmuR+dwIXdCALkNY1Ymptwc\nvNu24xo5otP9ncoIVSW0bz/+3ZUEdlcQqKgitHcfof3VxL0+THm5mHKyMWZlYszKxOByJvbV+/dD\nZzEj6fVIOj32gQOO6rupqYlLL72UIUOGMG/ePCZPnkwoFGLhwoXcddddzJ8/n3Xr1tGnT5/2Nhs3\nbmTq1KlMmDCBVatWkZubyxNPPMF1113H7t27+elPf3rc97N+/Xr+9re/ATBlyhQKCztewRuNRioq\nKpg1axZPP/003/3ud1P+DCWhNfHoJCJJkqb8KCEEsRYPoQPVhPbsI1BRSaCiCv/uCsLVNViL++MY\nMgjH8KG4Ro7APnQwOpN2zbtTncYvllP1578x4aW/dEl/ofWfobQ2Yj//mqTaKbW7kewZyHZthiIc\ni1PvC1OUYdMcph6MKry4bi8XD8plYJK5XoeiqoL3NlXzpyXllOTYuG16KWP7Z2heyUgSaP0FVdT7\nmf9FBZ9tr+fGqSVcf3axdsWPDmgKRnn1qwNcM7KAfI1GSghBnTeExajHZdEWoCKiYdS6XchFySWL\nh7euIra/HMelN2huczx2/L/HMWZmUnLHrV3S36mAGo8T2F2Jd8s2vFu/xr+jHH/5bgwuJ7aBA7CX\nlmArLcHarx/mokJMOdmaJoxtHPnsbGxsJDc3lxUrVjB58uTDzr3vvvv4wx/+wM9+9rP2epmqqjJ2\n7FgqKyupqKggO/vfk7Arr7ySd999l40bNzJixLEnG7/4xS/49a9/zYsvvsg3v/nN4443EAjw0EMP\n8Yc//IHVq1czfvx4ze/1UHrVEkaSJIyZGRgzM46a1SmhMP7y3fh37MT79Q5q3lpMoKISW+kA3GNH\n4x4/Fve40Zg6IUV1smn46BNyLpjWZf3pC4oJb1+bdDvZkYXqrQeNhs1s0GPS62gNRcmwaptoWI06\nZo8o4J9bqrnGWEiBM7VVgSxLXD6mDxeX5bNo/QF+uXALihDMGtOHy8cU0icJ915HeIJRPthUwzsb\nDlDrCXP1xL68df95ODtZBNUfifPm5mrOG5Cl2ahBQkcyrgqcyQSN+BqR7FlJu2tjNVXoC5LPxTsW\nOeefR/nv/nhaG7a430/rV5tpWfcVng1f4du6HVNeDs6RI3COGEb+ZRdjHzyoUyLmx8PtdvPpp58y\nadKko44NHDgQgNbW1va/LV26lM2bN3PdddcdZtQAbr31Vt555x1+//vf8+c///mY1/ziiy+46667\nTmjUAGw2G0888QS1tbX88Y9/5IUXXtD4zg6nVxm246GzmHGNGoFr1AjaFtlKOOG686z/iuqFi/j6\n4UcxZmeRMX4sGRPGkTFpPKbcnJM6bq2o0Rj1Sz9j0it/67I+9bl9UFubUMPB5NTZrS5oPpCU/FKW\nzcQBTxC7yaB5r6nQaWbG4DwWbq1h7qg+ZNuSD5Fvw6jX8Y1J/bhmYl+27m/lnQ0HuOHp5bisRsb0\nczOqXwaD8x3kucxk2U3IR+ztCSFoDcWo84SpaPCzca+HTXtb2NMYYOrQXL534SAml2ZpDq0/HqGY\nwhubqxmZ76RMo3QWJPLWmvxhsuxm7XtrqoIItCAXDkl6nLEDFVjGTE263bFwTxhLuKaW4N79WPt1\nLk+zp4j7/LSsXU/L2vV41qwnUFGFY8RQ3OPGUnzbTbhGj8TgTF1HM1n0ej3TpnU8+V25ciUAF154\nYfvfFi9eDMDZZ5991Pltf3v33XePe82tW7fyxBNPJDXOH/zgB1x77bVJtTmUM8awdYTObMY9fgzu\n8WMoJpHc7Nu5C8+addR9+DHb//f/MOVkkXnWJDLPmkjGpPGnbHBK/cefYBtQjKWoz4lP1oik06Mv\nKCa2fxemgaO0t5MkJGcOamsdulxtM3a9TsZtNdLoC5Pvsmh+8A7MthFRsnl90wHmju5DVgr5X4ci\nSRJlfd2U9XXzw1nD2VXnY9NeD+urmnlj9V5qW8P4wzEy7aaDbtPpXPZ/n+AJxDDoJPJcZvpl2Rjd\nz82MUcMZVujE1Al345GEYwoLNlVTnGHlrH4ZSbVtCUQwGXSaIyEBhLcxETSSRP01AKW1CRENo8vq\nnLTboch6PQWzLuPA6wsZ9MDdXdZvV6JGY3i+2kTzitU0r1xNYFcFrtFluCeMY9CPf4Br5AhkY+fu\n0a4kHA6zZ88e/vrXv7JgwQIeeeQRZs2a1X588+bNABQXFx/VNi8vD5PJRE1NDS0tLWRkdHw/NjU1\nUVKS3Mp92LBhVFdXJ9XmUHrVHltXIxQF39c72m/S1k1bcQwdTObZk8iachbOsuGnRISWEg6z6ppv\nM/jH95M9bUqX9h1a/xnxlnocF57YjXAoQlVQ93+NnD9Qc/VkIQQ1rUFsJoPm/Z82ttR6+byyiTkj\nCihM0S2plUhMoTkQRQhBn0wrB5qDuKxGzdJUqeKLxPnnlmr6uiycX5qdXCmbaJwGf5g+bpt2Xcj2\n77A0KX1IgNDmFcSrd3fZ/lob4epaVn3jBia98RKWQu1BTd2FEILA7kqal6+kacVqPOu+wlbSn8xz\nJpN51iRcY0ae1H384z0733//fWbOnAlAYWEhjz/+ONdee+1h91VZWRnbtm3j888/59xzzz2qj/z8\nfBoaGti6dStDhw7t8DqZmZns2bMHh0P7ytTr9VJUVIQ3xQKzZ/SK7URIOh3OsuE4y4ZT/N2bUUJh\nPOs20LR8Jdse/l+i9Y1knDWRrHMmkzXlrE4LD6fK7j8+g33IYLKmntPlfRsHDCf4xicI9ZrkNq1l\nHZIrF9VTo3nVJkkSOQ4L1Z4gZr0uqZVOWb4Ts17HP7dUc+HAHIbldp97x2TQUXBIvlmhxoKenaHa\nG+atrTWML3IzscidlFFTVJUGf5hsuzmp9AjhbUCy2JM2agDRii2Yh01Iut2JMBfm0//W77DtoV8w\n7rk/JXVPdhUxTyvNK1fTtHwVTctWIEkymedMpnDOLEb8v0cwulOvZNCTzJgxA1VVqaqq4o033uC2\n227jb3/7G6+88gqZmYn98Ta1D4Oh4z1Z48HVZzAYPOZ1Bg4cyJo1a7jgggs0j23NmjXte36pkDZs\nSaCzmMk692yyzk34liP1DTQtW0nTspXseuIpjJmZZE45i6xzJuMeP7bTslZaaPxiGbWLP+Csha90\nSy6Wzp2DbLETr6nC0Ofo8OHjITmyEd4GRNiPpDGx16CTybabqPeFKHRb0SXx4BqYbWOuuQ8Lt9TQ\n4I9wbkmW5ijLUxUhBFvrfHxa0ciMwXlJR4AKIaj3hbGbDMm5IJUYwtuAXDA42SGjhoPEqysxzPhO\n0m210P+WG2hY+hlVf32xS3I2T4Qai+PdtIWmFatoWraSwO5K3OPHkDXlLPrfcgPW4v4nJQ+yqygu\nLubBBx/EbDZzzz33cO+99/LSSy8BtKt9HEuEuK1+mtV67GfdZZddxi9+8QumT5+OrOH3rKoqv/zl\nL7nyyiuTfSvtpF2RXYRQVXzbttP45QqaV67Gt+VrHCOGkjl5IhmTJ+AaWYZs7Fwk3JF41m9k4z0P\nMvqp3+Ieo30PLFmCaz9G9TZjvyA5dySA6m9BeOuRCwYn9eNvCUQIxeLku6xJG6dgVGHx9loicZXL\nhuSR1YmgkhORTLh/sgSjCkvK62kKRrlyeD7ZtuRcWkIIGv0RVKGS69C+bwmgNuwBnR45M/k929Dm\nFcT27cQ586ak22olXFvH2hv/g5I7bqXPNbO7tG+hqvh3lNO8eh0tq9bQsm4D1n59yZw8kaxzz8I9\nbswptU92KJ9++imffvpp+////Oc/1/zsDIVC2Gw2ZFnG5/NhsVi46KKLWLp0KW+99RZXXHHFUW0s\nFgvRaJTGxsZj7rE1NjYycOBAzj33XJ555pnjiiDv3buX73//+6xatYqdO3e2rxyTJW3YugklGKJl\n3XpaVq2lefU6gpV7cI0ZiWvMKNxjRuEaVYbekVogSrSpmT0vvkz1m29R9ptftq8guwvF58Hzym/J\nvOV/kAzJ/aCFEKh1u5GsLmSn9ghTIQQNvjACyHVoj+I7tP3GGi9fVjUxocjNxKKMpFVKtNAdhk0I\nwfYGP5/sbmR4roNzSzI1S2UdiicYIRCJU+BObnIgwn7Uhj3IfYYiycnvIXsW/AHrxIswlnRe2u14\nBKr2sP62/yRj4jhK7rgVW0lxSv0okQi+rdtp3bgJz1eb8KzdgMHtImPSBDInTyBj8kSMGaeHe/FI\nkn125ubm0tTUxMaNG9vVRZ588kmefPJJ7rnnnsPOra2tpbCwkMLCQvbvP37lhcWLFzN79mxkWea8\n885j4sSJFBUVYbFYCIVC7N+/v72EjU6nY9GiRVxyySUpvWdIG7YeI9bqxbNuA60bN+P5alN7/opj\n6GDsQwdjLx2ApagP5sL8oyIvhaoSrqklsKuCpuWrqFn0LvkzL6H49pt6bF+vddFzmEpHYh4x+cQn\nH4GIhVFryhOrNoP2VYd6MJlYLyfck6m4e1rDMZaUN9AainFuSRaDs21d6jbqasNW7Q3zWUUj4bjK\npYNzUw6E8YaitIaiFLisSaUYCFVBrd6BnNkHyapdULmNeEM13refI+Pm/07JKCZ9Pb+fvX9/jX0v\nv0bm5AnkXnIR9tISLP36HqU0pITDhGtqCR+oIVBRiW9HOb7tOwnu2YutpDgx6Rw9EveEsZ2qQH8q\nceSz89FHH2XDhg28+eabR50bjUaxWq0IIaisrKRfv3589NFHXHLJJVx77bW88sorh52/cOFCrrnm\nGm6//fb1tavQAAAgAElEQVTj5rG1sXTpUm688cbjRjv279+fv//970yZ0rkgOE2Gzev18vDDD/PP\nf/6T+vp6+vXrx4033siPf/xj9Hrtfvs1a9bw2GOPsX79empqasjJyWmfFRyaO3HUIHuBYTsSNRYn\nWFWFb/tOfNt3EthdSbi6hlB1DbJej2wyIel1yHo90aYW9E4HttIBOMuG0/f6b/R4fl20chvBVR/g\nuva+lAyD6m1I5EPlD0rOJSYEta0hDDqJ7CTyrw5FCEFVS5DPKprQyxJTijMpzrB2iYHrKsNW54uw\nfE8zdf4I5/TPpCzfkfL+YGsoijcUJd9lTVp/Um3aB6qKnNM/pWv7l76ObHdjnXS0TmF3Eg8EOfD6\nQlrWriewq4JIfQPGrEyEqiIUBRGNoYRCmPLzsPQpwNq/X2JSOWQw9kGl6CzdG0l7sjjy2fnII48w\nb948ysvLcbkOn7i88MIL3HrrrYwYMaI9zF8IwZgxY6ioqKCiooKcnH8/d6644gref/99NmzYQFlZ\nmabxRCIRXn31VT744AN27NiB1+vF5XIxZMgQLrvsMq699tpjBqokhTgBra2toqysTPTt21csW7ZM\nhMNhsXDhQuFwOMTMmTOFoign6kIIIcSCBQuELMtizJgxYvXq1SIcDoutW7eKCy64QEiSJJ544olj\ntgWE562/iNa3/ypa35svfB+/Lvxfvi0Cqz8Soa2rRKTqaxFrqBZKOKRpLKcyqqqKaItHhOsbROhA\njQjs2Seird6TPSyhqoponv//RGRveYrtVRGv2SWUpgNJt1VUVdR4AqK2NSgUVU3p+m1j2FbnFc+v\n2SOeW10l1u5rEeFYPOX+hBDixL+gYxNXEuN5ef0+MW95hVizr0VE49p+Tx2hqqpo8ofFvmZ/Sv0o\n/mYR37dVqEpqn4nibxWNz/y3UAK+lNp3JfFgSAT27hOhAzUiXFcvIk3NQtX4rDqVUWNREWuuE5G9\n5SL09VoRWLdU+JctFr6lbwjv+38XrW8/Lzxv/UV4/vmMCG1bI458xP/85z8XkiSJc889V3zxxRfC\n6/WK6upqMW/ePOFwOITD4RDLly8/rM2GDRuEw+EQ06dPF7t37xatra3iF7/4hZAkSTz66KM9+fY1\nc8IV2913382f/vQn3n333cMUl3/3u9/x4IMP8qc//Ynvf//7JzSgQ4cOpby8nDVr1jBu3Lj2vzc0\nNJCXl4fD4aC5uRldB3lhkiQRqdiaUEGIxxCRMCIaQoSDqEEfasCLGvCieFuQDEZ0rix07hx0Wfno\nswrQZRcg25yndeTSqUB422oiO9bjuup7KbUXSvzfbi5bcnsWQgga/GHiiiDPaU4qWrKjvva3hvmq\nupXKliClWTYGZdsoyUh+hZPsik0Vgv2eEOVNAXY0+MmyGhlT6GJglvb8so4QQtDoDxNTVPKclqQ/\nHxENo9buQs4boFkt5kgCX76NiMewT786pfZp/o0aDqI01hBvqkFpqkVpqUdpbUIN+ZHtbmS7C9nm\nQLY6kc1WJJMFyWhGMpoSLmBZRufKRp+Rc9iKLRwOs2jRIl599VXWrl1LXV0dOp2Ovn37ctFFF/HD\nH/6ww2TsHTt28NBDD/HJJ58cpu7fGXWQ7uS4hs3n85Gbm0tWVtZRm4PNzc3k5ORQWlrKzp07T3ih\ntuiZQCCA2Xz4sr9tw7Kuru4oPTJITgRZBH0onkaUlnrizbWJm6OxBmQZQ14/9Pn9MBSUoM/vh6Tv\n2ijF3o5QFFpefgz7eVdj7J+8xBKAiARR63Yj55Um/QAVQtASjOKPxMhzWLpE0cMfjbOzwU95Y4Ba\nX4S+LjN9XBaKXGbyHGb0JzA2JzJsqhA0BqIcaA1zwBuiqjmI02xgULaNITl2MjuplAIQV1TqfIm9\nyByHOWkXplBiqDXlSO58zcLVR6L4WvC88jvc1z+AznF6BlqcLISqojRWE6uuIF67l1jtXkTIn5iY\nZxegyypAl5GLzp2NbHd3SgT5TOG4G2RLly4lEokcpQINiWzyQYMGsXPnTsrLyxk0aNBxLzRu3DhW\nrFjBli1bmDDh34mbdXV1NDY2UlRU1KFRSwZJkpBsTmSb87CcKyEEqq8lcdPU7SWw7B3izbUYcvti\nKBqIof9Q9HlFSdWaOhORdDps51xO4Mu3MfQdmFJwgGSyImf1Ra2vRC4YlJRUkyRJZNpMmPQytd4Q\nGVaj5jpux8Ju1DOuj5txfdyEYgp7WoIc8Ib5aFcjLcEobouBTKuRTIsBh1mPRa/DYtBh0sskLmui\nwR8hoqiEYyqhuII/Eqc5FKMlGKUpGMVm1NPHZaa/28q0kqykBIhPRDAap9EXxmkx4rIk/1kIVUWt\nr0Syaa/G0OE4lr+HeeQ5aaOmASEESks9sT07iO0vJ1ZdiWxNPLMM/QZjmXgRuozck5J83ls4rmE7\nnk5Y29937tzJli1bTmjY5s2bxxVXXMHtt9/OX/7yF8rKyqioqODuu+8mKyuLF198MbV3oAFJktA5\nM9E5MzENHgOAGgkTr6kkuq8c/5JXUUN+jP2HYBxQhrH/UCRj7yln05UYS0cS3ryc0FefYx13fkp9\nSDY3khJLuL7yByW9craZDBj1Ouq9IYLRONl2c5eIC1sMOobmOhh6ULUkqqgHjVOMllCUGm+EUEwh\nFFOIKCoIgH6883UdRr2MRZ+oCG436ujnsjCmwEmm1YilC7Ui21BVQXMwQjAaJ8dhxpJE8nUb7UZN\nb0JKstbaoUT3lRM7sBv3+T9MuY/ejlAUYgd2Ed29heie7aAoGIqHYhoyDvuFc5GtPSeEfCZw3F9D\nbW0twDET79wHpWPq6upOeKHRo0ezatUq7rnnnsNWgBdccAHLly8/oWHsamSTGWPxMIzFw2DqlSje\nZqJ7thPeuhL/xwswFA3ENGg0xgFlSedu9WYkScJ+/jfwLPg9ptJR6FyplfmRnTmoqpKo85U3MGnj\nZtDJFLqteEJRDniCXbJ6OxKjTibPkXBJHotbgVsm9uuya2ohGI3T5A9jNuiS0n48FKGqqA1VCemz\n7H4pf24iFsX/yRvYpl/dJQVFexNCVYjtKydS/hXRiq3oXNkYS8twzroVXVb+GbXn7/P5AJLSi+wM\nxzVsXaET1sZnn33GtddeS1FREStWrGDkyJGUl5dz3333MXHiRObPn98pCZXOonNmYhl5DpaR56CG\ng0QrthDevg7/J29iHFCGaeg4DEWD0u4BQOfOxjrhInwf/gPXNXemnK8ku/NRAbW2PLHnlkSOGySM\nbIbVhM2op9EfwReJkWUzYe6lldJjikpzIEI0rpBlNyclkXUoQlUSKzVZj5TTOTmowJdvY8jri2lA\n765qrRUhBErDAcLb1xHZuQGdIwPT4DFYJ1+KzpFcNYbeQDQa5Sc/+QmFhYUoikJDQwO/+tWv2m1H\nd3HcX0ZX6IRBonDd3LlzCQQCvPPOO+TnJ9weo0ePZtGiRZSWlvLtb3+b7du3H1aS/FDaKroCTJ8+\nnenTpx/3mp1BNlsxD5+Eefgk1ICXSPlXBJYtRoSDmEdMxjR8Ejp78smrvQnz2KlE93xNcPUSbGfN\nOHGDYyC781FlXcItmVuSUkSeUa+jwGUhEElU4jbpdWRYjRj1J7/yQlcQV1U8wSiBSByXxZBSgEgb\nIh5LGDWjBSmrqFNGLbJ7M9Gqr3F/64GU++gtqNEwkR3rCW9egYiEMA2bgPua/0SXcXrUc+wunnji\nCe644w6GDEkEm5WXl/PYY4/x0EMPdet1j2vY2gxQS0tLh8c9Hg+QqMtzPN577z0aGhq49NJL2/ts\nw+FwMHPmTObPn88bb7zBvffe22Efhxq2nkS2ObGMmYZlzDTi9fsJb12J5+X/w9B3MJax09Dnn94C\nqKkiSTKOS76F57Xfo88uTKpe25HIzhyEzpCIlszqm3QqQGI8EnazAatJjy8Uo6Y1hNmgw2UxYu6G\nPa6eIKaotIaiBCIx7CYDRRnJiUIfiYgEE0bNkYXkyuvUfRtvqsH/8es4r7gN2ZS8+n9vQfE0EPrq\nCyI71mMoGoRtyiwM/QalA9EO0tLS0m7UAAYNGkR9fX23X/e4hm3UqMTDqrKyssPjVVVVSJLEyJEj\nj3uRqqoqAAoKOq6f1Gbs9uzZc9x+Tjb63CLsud/AOmUWkW1r8H34D2SzDcvY8zAOHHXGuSllmxPn\nrFto/def0Tkz0Of2TbkvyeZG1hsTD95oCMmd2h6ELEm4rEYcFgO+cIwGXwidLOG0GLEa9ae82r8Q\ngnBMwRuOEY4pOM0G+mTYUtKKPBTV34Jo3p/yxOGwvoI+vG8/j23abAwFqSmUnO7EDuwmuO5T4nV7\nMZedhfvbPzzjvTgdYTQaqa+vJzc3F4D6+nrsPVCs+biG7YILLsBkMrF69eqjjjU1NbFz504GDhx4\nwro5bWH8NTU1HR5v0w47Xri/6m9OzIIkGWQd6HQg60HW9fiKSTaasYyZinnUFKKV2witW0pw5ftY\nJl6IafC4U6L4aE+hzy3CfuE3aV301067XiSTFblgMGpDFaJuN3J2v6QrN7chSxIuixGn2UAwGscb\njtHkD2MzGbCbDAfD9U8dIxc9mCbgj8TQSRIOc+dcjm0IVUE0VyPCvpRyB49EjYRo/defMQ2dgHno\n+E71dbohhCC2dyfBNR+hBlqxjj8f58wbT2o+rFAVUOKgKqDGQVUTeWtCTamOXlfzwAMP8JOf/ITz\nzjsPSKSQPfbYY91+3RMqj9x1113MmzePxYsXc9lll7X//be//S0//OEPeeqpp7jzzjuBhKbkt771\nLbKzs3n++efba+/s27ePgQMHYjAY2LVr12HuSJ/Px4ABA2hubmb9+vWMHj366EFKEkp9FUKoIFRQ\nlH9/kUIFnRH0xkTwgcGc+NdoQdL1TBCBEILY/l2EVi9B8bVgnXQxpqETzqgVXHjrKoKrl+C65k50\nztTzoeBgon1rHcLbiJxV1OkVRhtxRcUfieGPxFGFwGrUYzXqMRt0KRuQVLUihRBE4grBqEIwmhiP\nzajHYTZ02d6giARRG/YgmayJ/bROihKLaITWRc+hzy7Adt5Vp9TEoLuJ7t1BcMX7iGjk4AR2TI+I\nPMNB4xUNI2JhiIURsQjEo4kXgC4xwU9M9NsmbFLCC2JznxIJ2lu3bkUIoVlTsrOc0LB5vV7OOecc\nWltbefXVVxk3bhzvv/8+N910E1OmTGHx4sXtBuyNN95g7ty5AKxdu/Yw6az/+7//48c//jETJkzg\nqaeeYsSIEezatYv777+fTz75hPvvv5/HH3+840EeJ3teqArEYxCPHvziI4l/oyHQ6RMzVKM1UejS\nmFxNqlSIHaggsOJdRDiEbcrlGIqHnTEPgNDGLwmt+wTnnP9An9l5dXQRDqA27k0EOmT26dKZcUxR\nCUbiBGNxIjEFg17GrNdhNugw6nXoZUnT96bFsAkhUFRBVFGJxBTCcYVIXMEgy+3G1diFK0ihqojW\nWoSvGSmzD7K989F4ajiId9Fz6DLzsF/4zTNmDylev5/AssUovmZsZ12GcdCobn/vIhZBhP0QCSAi\nwYQBM5iQDOZ/T9z1icn8iTxWZ6rySFLq/m+++Wa7uv9NN910lLp/TU0NU6dOJTs7m88++wyT6fDw\n7ffff58//vGPrF69Go/Hg8PhYNy4cdxxxx1885vHLmKZypcjhEgYuUgAIsHEjaLGkcwOsDiQrK5u\nW9EJIRJq+MsXI1ns2M+bgz67sFuudaoR/noNgWWLcV5xG4a81Pfc2jjsIe3OTwQ+dPFEQT24eorE\nEgYnGldRVIFBL2OQZXQ6Cb0so5MlZKntlWhrMuiIxBRUkeinzYjFVUFcVYkrgpiiICFh0MuYDhpP\nk17XLfXhRLAVtflAYpWW0TWTAcXfivetv2DoOwjb1CvPiImaGvASWPYO0b07sU66BPOIyd22xSBU\nFUJeRMibeE4JNfGcMlmRTDYwmlM2pmnDdgrTVV+OiEcRIR8i5IWQL7GCs7kTL13X+8mFqhDesorg\nqg8wDR2PdfIlZ0QSa2T3FvwfL8A+/SpMg8d2SZ8iGkJt2g+qgpxZCGZHtz5g1YMrrIRxUomrAlUV\nqKLtlTivb6aNfc0BJIl2o6eTEy+9LKPXSRh1cqeiGbUgoiHUlmqIRZGz+iBZnF3Sb6x2D77FL2Ie\nPQXL+At6vVETqkJ40zKCqz/CPGIylokXdstvVqgKItiKCHgg7E8YMasr4VkypFaeqSPShu0Upju+\nHKGqEPYhAh5EsBXM9oRWntXZ5a4GNegjsGwxsX07sU2/GtOAnvEzn0ziDdV4F/8N06AxWM+e0SX7\nEUIICLaittSA3oCcUZCY0Z5EuqOCdjKIWAThqUWEfEjuvIMr2q65f8NfryXwxSLsF809M+7Z+v34\nPl6AbLJgm351l7jTD0UIAWE/wt/c/syRbG4ki7PbvEdpw3YK091fTvvsyd8MsTCSPQvJkd3l0U6x\n/bvxffQahqIB2KbOQTb17tWbGvTj++DvCEXBcem3u0wgVwiB8DchPHVgMCO7chMPiZOwmjhZhk1E\nQ4jWekTIm7hXXbldFswgohH8n/2TeO0eHDNvQp/VcZpOb0GoCqF1nxD66gts516Baej4Lr2XhKog\n/C0IXwMgIdkzkewZ3eIlOpKOnp1vv/02L7/8MitWrKC2thar1cqoUaP47ne/yw033HBUH8XFxezd\nu7fD/ktLSykvLz/m9ZcvX44QolMVsePxOM899xw33XRTu2jIiUgbtiMQ0RDC14gIeBIzKVceUhe6\nItRomMAXbxPbtxPHJd/CUFjSZX2fighVJbRuKaGNX2I//xuYSrtu5i+EmnhgeOtBkpGcuUg2V48G\nNvSkYWub8aveeoiGkBw5iRVaF8724/X78X3wd/T5xdinX5W0zNnphtLahO+Dl5EMRuwXXdulslci\nHkN46xMTZrMd2ZkDJluPTsCOfHY++uij/OxnP+Piiy/mscceY8iQIVRVVfGTn/yERYsWccstt/DX\nv/71sD5KSkrQ6/UdSiv279+f995775jXLy8vZ9KkSbz88svMnDkz6fFHIhGuu+46dDodb7zxhuZ2\nacN2DIQSR/iaEN4GJLM94ebpwryQSMVW/B8vwDrhAsxjpvX6vYtYdSW+D1/BUNAf27TZyJauS9IU\nQkDIi+ptgGg4MRt2ZCWiyLqZnjBsIh5LuK/8TQcNeA6SLaNL00lEPE5wzRLCW1Zim3rlGZGjFq3c\nhu+j1w7+Bqd22YRIxGOJdJVAS+J7cuWmnI/ZWY58dj700EM8//zz7Nq16zApxFgsxrBhw6ioqODj\njz/m/PP/XbmjpKSEzz77jH79UhP7fuWVV7jxxhu5/PLLeeCBB5gyZUp7JP2xaGho4LXXXuM3v/kN\nbrebL7/8EpdLewJ871SL7QIknR7JnYdwZiN8Tai1u5EsDqSMgi65SU0DRqDPvhfv4heJ1e7BcdG1\nvXp2bCgsIePbDxBY+QEtLz+ObeqVmAaP7RKDLkkSWF3orK7EnpOvCbVmVyK3sS046CQ9WFJFKPFE\nlFygBcKBRE5STv9E6koXT4Ji1ZX4P16ALiMX9/X393oFDSFUgqs+JLJ1Nc7Lb+4yr4lQlYRB8zUh\n2TORC4eecsWMi4qKuOmmm47S9zUYDFx88cU8++yzRxm2znL99dfjcrm4/fbbOe+887BYLAwePJjC\nwkLcbjdGoxFFUQiHwzQ0NFBZWdnu+pwzZw7PP/98UkYNTiPDVucNtUee6Q6JPDPoZPQ6udukkiRZ\nh+TKRTiyEK31qNU7EjNmZ+cLAeqcmbi/eRf+T96g9c15Cd09W9dEs52KSAYT9qlXYho0Gv/S1wlv\nWYl92mz0OR0LX6d6DSmzEJFR0B4cpFbvSOQBWZyJaMEeyGdMBRGLJIxZ0AuRwMHggkyknOJuSQZW\n/K0Ely0mtn8XtmmzE7Jwp+Dn0pWIeAzfh6+gBlpxX/+DLqmDltjzbUZ4apDMDuTCId0+kRJCEFMO\nppSoKqqaSDNJpJwkSgXaOqj+8L3vfe+YfbZJXXXkHeusx2zmzJns2LGD5557jr///e9s2LCBjRs3\ndniu0+lk7ty53HnnnUybNi2l6502rkhfOJr4wg7mCSkH/40piXBsWU6EVZv0iRwhk6F7QqxFLJII\nq46GEqoYXRBWLYQgtHoJ4a/X4Lzy9i6PxjoVEaqSUCtZ+QHGAWXYzp7RbcUWhVAhHPi30VCVRFi1\n2XYwTyh1Q9cZ5RHi0X8n4rblL7UZX4uj25QtRCxCaMPnhL76HHPZ2VgmXHBGpKGo4SDed55Htjlx\nXHx9l6ym2tNQhEg8DzopWdYRqnowzzKuEImrROMKiiraJ/a6gzmWbXmWkgQSiaoXRr1Os1GaPXs2\nb7/9Nu+99x6XXnpp+99LSkq4/vrree+999i1axeSJDFixAhuuukm7rjjjpR+Ox6Ph+3bt1NdXU0w\nGESv1+NyuSgtLaW0tBRdJ3MGTxvDdrxhCpFIiI0e/OITSbYKelnGYtRhMSRkk7o00inoRW3al3BP\nZvbpkodQ4kH/Ps6rvndGGDdIaA8GVy8h8vUazCPOwjJuOrKle0P4RVviftif+DceS+QOGS2JZFiD\nCfQJdYcT3TMnMmxCCFDalHEiCUmkSBBi4cR+mdkGJnvi3y7MX+pwLPEY4a0rCa1dir6gBNuUy1Mu\nFHu6oYaDtC58FkOfkoNJ5p2b9CZk3+oR3nokd0GXCgcIIYjGVYKxOKGoQlRRMOp0mA4m+Bv1Mgad\nNqUarfEJzc3NFBYWUlZWxtq1aw87VlJSQklJCY899hijR4+moaGBJ598kscff5wrrriChQsXnnDP\nrKfpFYatIxJafCqhWJxQNE5MUbEa9dhMBixdZOTaBWZDXuSc/olVQCcJf72W4PLFOK/+PvqM3E73\nd7qg+FoIrfmIyK5NmEdNwTJmGrK562e/HZHQ4gshoqGEJl88ArFIQlxWpz/4MiQmL7LuoBB34oes\ny8hHaalNaJaqCS3ThDBtLNFeiSXa6E0HtUxNSEZrz2qZxuOEv15NaM1H6LL7YDvrUvS5RT1y7VMB\nNRLCu/BZ9IUlXaKcImIR1IY9IMudEuo+rM+DxswfiRGIxpElCYtBh6XTWqbanp233347r7zyCmvW\nrGH48OGHHfv0008599xzD1OZArjqqqt46623ePLJJ7nnnntSGl930WsN25HEFZVANE4gEiOuChwm\nAw6zAb2u8zMNEWxFbdyXiH5y5nT6h9MuKPzNu3v9Rv6RKK1NBNcsIbp7C6ZhE7GMnXbSKg8Lof7b\nOClxhBI/zIAB6DILUJpr/m3sJDlhAHWGdqPYU2K5R6JGQoQ3ryC88Qt02YVYJ1+CIf/MKjMj4nFa\n//Vslwk3t//W3XmJ/MFO9qeqAn8khjccQwiB3WTAZtJrXpGdCC3Pzpdffpmbb76Z119/nTlz5mju\n+7333uPyyy9n3LhxR63yTjaniWE72SNIkyZNmtOBTw++2vj5cQ3bkiVLmD17NvPmzePmm29O6ko7\nduxg2LBh2Gw2fD5fCmPtPk6TqMjuyWNThcAXjtEaimLUyWRYTZg6UW1ZCBXRdAARCSDnDeiUi0II\ngf/jBYhoBMdl3+n10WrHQg0HCW9dSXjTcmSrHfPIczANGn3KpEacbEmtNoSqENuzg9Dm5cRr92Ae\nNhHz6HM7XULodCa49mOiFVtxXf39TgWKCFVFbagCoSLnFHfKhRxTVDzBKMFoHIfZgNNi6HQR2cOZ\nfvCVQJJ+fswzP/roI66++uqUjBp0PlKyOzlNVmzdLKl10MB5QlFMeh2ZNhOGFF2UQoiE2oC3MWHc\nOpHULeIxPK8/hXnYBCxjpqbcT29AqCqxPdsTD+6aKowDR2MePhF9fv+TavRPtmFTWhoIb1tNZPta\nZLsb88izE/mBp1j+VE8T278b7/sv4b72vk5JuQklhlpXmUgjye6bctCJogo8wQj+SByn2YDTYuyW\n6g5Hcqxn58cff8ycOXP4wx/+wC233NL+923btrFly5b28mOPP/44W7Zs4YUXXjiqj8WLF3PFFVec\nkq7I02TF1r1IkoTTYsRuNuANRan2BHGaDbisxqQ3bSVJQnLloeqMqLW7kfNKUhbqlfQGnDNvxPPa\n7zH0HdjrNfuOhyTLGEuGYywZjuJvJbJ9Lf4lryKEimnQGEyDx6LLyj8jVraKr4VI+UaiO79C8Xsw\nDxmHc84d6LPyT9z4DECNhPB9+DKOi67rnFGLRxPCDDZ3omRSCveWEIk9tJZAFKtJT1GGtdsrPZyI\npUuXMmfOHH7/+98fZtQAVq9ezYsvvthu2Px+Px988AF+v789z62Np59+GqBDfcmTTdqwHYIsSbit\nJuwmA82BCAdaAuQ4zJgNyX9Msj0DIcuodZWdMm46Vxa2KZfj+/AV3HPv7baaUKcTOrsL64QLsYy/\nAKVhP5GdX+Fd9BySwYRxwAiMA0agz+vXayqYCyFQmuuIVm4lWrEVxdOAcUAZ1nNmYigqPWnBKacq\ngc//hbFkBMbioSn3IeKxhFGzZyK7U0u9iSkqDb4wIMhzWTB1UWX0zvDJJ58wa9Ys3G43S5Ys4cMP\nPzzseGVl5WGqJLIsU1dXx1VXXcWvf/1rhg8fTnNzM7/73e949913mTFjBnfffXdPv40Tctq4Ihdt\nrUEvS5j0Mk6zAYdJj8usJ8tqTNlteCICkRhNgQh2k4EM64lzmjqiLYpKzh+YspiyEKK90KN1fNdJ\n3fQmhFCJ1+5rf/irIT/GfoMx9BuMoe/gbosu7S5XpBoJEdu/i9jenUT37gAljnFAGcaS4RiKBvZY\nqsDpRnRfOf6PF5DxrQeRjKntwwoljlq7C8mWkZJRS6zS4jQHIritRpxmQ7d4EhRV0ByK0hqK443E\n8EXihGIKcTWhSjIkx86IfOdhrshbbrmF+fPnt4/z0HG1/f95553H0qVLAQiHwyxatIhXX32V1atX\nU6/O23oAACAASURBVF9fj8VioaysjBtuuIHvfe97Kb+3HTt28NJLL7F27Vrq6+tZv349mzdvZuPG\njVx//fWdStI+bQzbtjovcUUQiiv4InG84Tit4RgtoRgus4Fcu5Eil4XiDCtuS9ftLyhqYtalCkGO\nw5KSEVX9zYiWGuSCQSkHlCgtDXhe/wMZN/yo2xQ6ehNKaxPRvTuJ7d1JbH85stWOvqAEQ0Ex+oJi\ndBk5XSJ62xWGTQiB6vcQr9lDrKaKeE0lSksD+oL+GPoOxthvCLrsgjPCzdoZhKrgeeUJrJMvwTRw\nVIp9qKh1uw9WIC9M+jNXVUGjP0xUUcl1mDF24SotEI2zpyXEvtYQ9f4ITYEodpOeDEtiou806bEa\ndehlGYNOIstqJMtmOiWDPP73f/+XRx55BEVRgMQzXlEUVq5cyfTp0zn//PP517/+hcmU2uTktDFs\nxxqmogoaA1Hq/BH2t4aoagli0MmUZloZnucgz27qfO6KEHhDMVrDUXIdFswpRE6qrXUIf0vCuKXo\nOvJ//hYoceznX5NS+zMVoaooTTXEqiuJ11QRq92DCAXQ5fRBn1uEPisfXWYuuoy8pJPCkzVsIhpB\n8TQQb6lHaaolXr+feMMBAAz5/RLGt7AYfW7fMz4AJFnCW1cR/notrmvuTHk/TDTsAQmk7OSDkuKK\nSq03hEmvI8tu6hL9Wk8oxrZ6H7saA3hCMfq6LfTPsJBnN5FjN2E8wUT7VCw0umDBAq677jqmTp3K\nddddR1FREbNnz0ZVE7mhBw4c4LLLLuPmm2/m/vvvT+kap71hOxIhBA2BKDsb/Wyr86GXJUbkORmZ\n78Rq7NzsKRj9/+ydd3gd1bmv35ndm7TVm4tsuTfZxsYNO4bQE4JJiDEl4ISWUBLKDeUSYsrhhCQQ\nDrkBAgSMIRAHCOEEbIdmjAEX2ca9SbblJqtLu/eZdf/YliLbsjSzJbmA3ufR80h7Zq1Zkmbmt9a3\nvpKg3h8hy5nch9ODEALRsB+EQMpJzZNPDQVo/utvcc+58xvtxt0dqJHQYVE5iNJYi9Jch9JUCwYD\nsisTg8uN7HIj211IVjuy1YFksSGZTMlVt8GIJMkYM3OIN9UlA7jjcUQihohFEOEgaiSEGg6gBjyo\nfg+qvxk1GsbgzsaQkRRSY24Rxty+yI603hVZFxBKguZXH8d1wdUpZ+tXvbWIoAc5f7Du/dloXKHW\nHybd1nXTY1xR2V7nZ0uNn+ZwnKE5TobmOClMs+r2pDwVhe2ss87i7LPP5tFHH239TJblVmED+Oyz\nz/jFL37Bhg0bUrrG107Y2iKEoMoXYUuNn4qGACPyXEzs4ybNmvpMOJZQqPElb+B0mz6zolBV1JqK\n5IZ0Wk5K1w+uWIyIhk+pVZtQlK+FU4sQAhEOoPib/yNE4SBqOIgIB5KClTgsXok4AFnX3U/jgt8k\nyxwZzUhGE5LZgmRzJMXQ5sDgdCO7MpJC6Uj/Wji1CEUBuXuyY3QHkS2riO7aRPqsm1JqLyIB1Lq9\nyIVDdG8XtEx4c5xW7JbU9z4jCYUNVV7WVXkpSLMwJj+dAZn2LoUFnIrClpaWxt69e8nM/M/k/Ghh\nC4VCFBQU4PV6U7rG11rY2hKIJlh70MPmGh9DcpycVZzZblkHLSQUlWpviDSrmXS7TnGLR1Gryw87\nk+iPcVNDfppf+y0Z197XrcU6tRBtaKTxi5U0frEC/45yEj4/iUAQNRZDtlowpadjcqdjLcjHMbAY\nx4BiHCUDcQ0bjGw+veqhaeVkx7H1FEJRCFbuJVC+m2DlXkJ7KgkfPETc4yHm8aIEQ0gGA0aXE6PT\nib24H1nTp5I9fRr2fic2D6UQKp6/PoFj5vcx9x2kv72SQD20M5md367PyahF1PLSUvOehuQKbe1B\nD2sPehiY5WBSXzfZju5JQHAqCpvL5eLgwYNH1Fg7Wtj27NlDaWlpyhlNvjHC1kI4rrBqfzNba31M\n6ZfJuKL0lGzhLeKWbjOTpnPlpvobEf4G5IIhKc14/R//HYM7G/uEb+tumwqxZg87HnmcplVlZE6a\nSNb0qaSXjsKUno7R6US2WlBCIeIeL/FmD+FDNYQq9yZfjDt3Edq/H2fJQNJGj8Q9rhT3xPFY874e\nCZ6/LsIW9/rwfLUBz7oNeLdsxb9tJ+bMDFzDh+IY0B/7wGLsfftgcrsxZbgxOh2IRIKEP0Dc7yew\ncxeNX6ygYfmX2PoUMuKRB3GUdE8Bz86I7dtJ8Mv3cV95V2om/paExll9dbULxxLU+SPkpaW27y6E\noKIxyKe7GihIszJjQFa3Or7BqSlskydP5rzzzuvQFHnffffx5Zdf8vnnn6d0jW+csLXQGIrxcUU9\n4bjCxcPyyHXqnyHFD4tbpt2CU4d5UwiBWrsHyeZETtfvThyv3of/ozfI+NF9PW4Kal63ni33/Ir8\niy5g4K03YbDpD1lQQmH823fi3bwVz/oNeNaux+hy4p4wnszJE8mcNBFLTnYPjL7nOV2FLREI0Lzm\nK5pWraG5bB3hqkOkl47CPa6U9DGjcI0ajtmtP7hZKApV//hfdv/xOQb/n19QOOu7PTD6I/EteRVT\nUQm2MdN0txVhP2rDfuSiYbqcuqIJhRpvmFyXFVsKlp9ALMGHO+vwROKcOyiHfhk9U8niVBS2V199\nlblz5zJjxgxuuOEGSktLKS0tZdeuXVRWVvLKK6/wxhtv8PrrrzNnzpyUrvGNFTZICsyWWj+f7Wlg\nWv8sxhbq38CPJRSqvWHds7ZWk2QK1XaFEHj++nuc5/4QU0HPzYprP/iYnY/9nhGPPkj2t87qtn6F\nqhLcU0lz2brki3XNOizZ2WROnUTWtMlkTBiPwZ56KrITyekibGo8gW/TFhpXrKJxxWqCFbtJLx1F\nxuGJhWv4MOQUTWntESjfxaa77iPvgnMpuf34VZu7ihoN0zz/v8iY+4Buj1YhVNSqnciZhbpMkAlF\n5ZA3RJbDgkOnExlAZVOIJTtrGZ2fxtT+mT2aWutUFDaA2267jWeffRb4zxjbjvWOO+7gD3/4Q8r9\naxI2n8/HvHnzeOedd6irq6Nfv35ce+213HvvvcfU6OmMdevW8cQTT/D555/T0NBAVlYWw4cP57LL\nLuPWW29tf5A9/M9pDsX43201ZNrNXDgkF7NR3+Z+KJagIRChMN2uqwyO2lwNiRhyjv5SIqHVH6BG\nIzhnXKq7rRa8m7ay8ba7GPfC/8M1bEiPXKMFoSj4t++kccVqGleswr91B2mjR5A1dTKZ0ybjGqrf\nS+1EcSoLW2j/QZoOC1nzmnXY+hSRNXUSmVMmkT5uDIYUY4S0EmtqZt3cm+l37VUUXa69HIoeItvX\nEtu1ibRLfqK7reqtQ0T8GPJKNLcRQlDtDWE3G3Hb9f39VCFYsbeJzTU+vjM8j37unq83eKoKG8B7\n773Hc889R1lZGV6vF7fbzeTJk7nlllu46KKLutR3p8Lm8/mYNm0aXq+XhQsXcsYZZ7BkyRKuvfZa\npk+fznvvvae5eupLL73EbbfdxkMPPcTcuXNxu92sXr2aa665BofDwfbt29sf5An45yRUlY8rGqgN\nRLh8dKFux5LmUJRwTKEg3aZ51SdUBbVqO3LuQN0l5RONNfj+90UyfvyrbjdHClWlbPa19Jt7NQXf\n7doNlgqJYDBpJluxmsYvV5LwB8icciZZ06aQOXUSluxTp+rzqSRsiWCQptVrafpiJY0rVqFEomRN\nnZScIEw5E3PWiQ8RCVTsYt2Pf8aU999KybTZGb73X8ZcMgbr8Am62glVQT24LenaryMjUGMgQkIV\n5Lr0VTtPqCrvb68lEle4ZER+yo5rejkVhe3HP/4xkiQxadIkbr755p65iOiE2267TUiSJJYsWXLE\n508++aSQJEk8++yznXUhhBBi7dq1QpZl8fvf//6YYwsXLhTf+c53jttWwzC7BVVVxReVjeKFVXtF\ncyimu+0hT1A0ByO62ineOpGo2a2rTcv1Guf/l4jXV+lu2xk1Sz4Uq3/4I6Gqarf3nQqhqkPiwN//\nITb8/Jfi00kzxcrLrhQ7f/eUqF/+pUgEQyd1bCfo1mwXJRYXzes2iN3PvCDWXHODWHrGdLHuJz8T\nlS+9Kvw7K06Z/9+2eY+J8if/2O39qvG4aHju/wol5NfdVmmuFkrdXl1tgtG42NfoFwlF3981GlfE\nwg0HxbtbDom4zrapoiiqiCWUE/bu1IMkSWLkyJHi9ddf77lrCHF8Off7/eTm5pKVlcXBgwePONbU\n1EROTg4lJSWUl5d3KqAXX3xxq/lRb5oUSZKY8tAHOC1GctKsDMpzMijPxdCCNEr7ubtUQ609vqry\nUHbAwxVjCsnQ4c6fUFSqPCHydSQ8FaqaXLWlUOImsOwd5MMJgbsLIQSrZs1hyC/vIOusKd3Wb3eh\nJhL4t26ncWUZTStX49+2E9ewIYf3iiaQNnpkj5vY2nIiV2xCUfCX76J59RqaVq3Bs34j9r59yJx8\nJplTzsQ9fmxKzj09TaSmllWXXcW0Je9gcndfzs7Y/nJCq/6Ne/bPdbVrXa0VDNFc109RBVWeZFJ0\nm469yGhC4a1Nh8hxWjhvcE63ZCNpO6btVV62HfKyqybArlo/1Z4wgUiCUCzBT789mJvOGXzKrdgs\nFgt79uyhqKiox67R4X9o6dKlRKNRJk2adMyxzMxMBg8eTHl5ORUVFQwePPi4/TQ0NPDhhx8yffr0\nlHN/fXTfOQQicWq8EXbV+KmoDfDRlhr21PmZMCCL6UNz+PaofNw648raY3yRG4Ms8dbmQ1w1tg9O\njUGXRoNMpsNMYyBCQbpdk6lCkmUkVzbCW4ekc6/N1G8IkY1fQDcKm/erjQhVJXPa5G7rszuRjUbS\nS0eTXjqagT+9HiUcwfPVBppWraHid/9DcM9eXCOG4T5jHO5xY0gbM7JHTGAnAiUUxrd1G94Nm2le\ntx7vhk2Yc7LJnHgGhd+/lJGPP3xa/G7W/DyyzppC9XuL6fejK7ut3/iBckz9hupuJwJNYHXqKlbb\nHIpiNxt1iVpCVfnnlmpyD4tad2wZROIKy3fUsXxHHV+W15PltDC6r5vB+S7OHZVPn0wbLqsJu8WI\nQZZILVy9ZykpKdG0ffXqq69y7bXXpnSNDv9LmzdvBqC4uLjd48XFxZSXl7Nly5YOhW3t2rWoqkq/\nfv345JNPePTRR1m3bh0ApaWl3HnnnfzgBx1n0nBYjDgsRvLSbZT2y2j93BOKsaK8ns921PP0Bzs5\nd1Q+10wbwMDcrgUvlxakE44p/GNLNVeNLdKc/NhpMeGPJAhE47is2kRWcmWhVm1HKHEkg3YvK1NR\nCf4PXkckEkg6nXiOR9U7/0vRD2adMhklOsNgs5I1bTJZh4U4EQwmhWDteva98ld8W7Zjyckifcxo\n0kaNIG3UcJxDB2OwnlorGzWRILi7Et/W7fi3bMO7eSvByr04Bw8ifcwoin5wKSMfm3dS9sm6g6If\nXkb5b57oXmE7uAvHWZfoaiOEQPjqkbO1TyKjCYVQLEGRW3vpKSEE/95Zh81k4NxuELUGf5S/r9rH\nP9YcYGiBi7OH53HLuUMozDg9vIfb8tOf/pSnn36axx9/vMPz5s6d2zPCVlNTA0BGRka7x92HZ4u1\ntbUdXmT37t0ALF++nPfff58XXniBCy64gPr6em677TZ++MMf8vjjj3PPPffo/gXcdjMXjy3i4rFF\nNAWjvLVqPzf+ZTWl/TL4xYVD6Z+dWh00gEn9MmgMxfmgvI7vDMvTtgKTJLIcFmr9YRwWkybTg2Qw\nItnTEYFmpHTtgcuyxYYhPZtEQxWmfP2elUejxhM0fPo5Jbf10IbuCcDocBwhdEJRCOzag3fjZvzb\ndnDo3fcI7q7EWpiPc1AJjsElOAYUY+/XB1u/vpjSerZyghKOED5wkND+A4T27iewazeBit2E9u7D\nWpBP2sjhpI0aQf4lF+EaMeyEmlV7kowJ44g1NRPadwB7f32B0O0h4jESjbUY8/rpaxgJgCSDRmct\nIURr+Rk9bvlrDnpoCsW5cmxRl8yPnlCMP39cweKNh7hwTCHzb5rcpXcaJL0RX3/9dVauXElNTQ12\nu50xY8Zw4403HrdoaHl5OQ888ADLli0jHA4zatQo7rrrrtaCpHoYM2YMixYt4vzzz2f27Nn07dsX\nm+1Ige6q+bRDYQuHwwCYTO2vIsyH0ySFQqEOL+Lz+QDYt28fzz//fOvqzOl0snDhQvr06cMDDzzA\nFVdcQf/+qb+gMx0Wbv72YK6bMZCFK/cx9/mVzJ7Un+tnDkypfIQkSZw/JIe/bahiXZWXCX20mX0s\nJgNWowFfOKbZJVhyZqE27Eek6ZvdmQr6k6je1y3C5vlqA7Y+hVgLvj6VmCWDAdfQwbiG/seioMZi\nh0VlD4GKXdR9tDQpNvsOIBmNWPPzsBbkYcnPw5yZgSnDjTk9HWOaC9lqxWC1IJvNh0MQBuHfWYEa\ni6FGoyjhCEowSNzjJdbsId7sIVJbS7S6lkhNLYlAEFtRIbZ+fbD370vmpAn0vfoKHAMHYHT0vPv3\nyUKSZXLO+Rb1n35G/7ldr7icqDuIMStfdwUEEWhCcmVpfsbCcQVFFbh0xKvt94RYe9DDNeP6pFwr\nUgjBv76q4o8f7OS8Ufm8e9cMMrshzdZ//dd/8etf/5rzzjuPf/3rXwwdOpS9e/dy3333ce211/Lp\np5/y0ksvHdFm48aNTJ8+nQkTJrB69Wpyc3N56qmnmDNnDrt37+b+++/XNYZzzjmn9fuPP/74uOd1\nZZXbobC1qGg8Hm/3eCwWAzii4mpHSJLEFVdcccRnLpeLSy65hDfeeIN33nmHO++8U1NfHWE1GZg7\nYyAXlxbym/e2MudPX/L4nLEMyU/T3ZfJIPO9Efn8df0B+mfYyNF4c7ntZqq9YdJsZm0zNosdEBAL\na55NAhhz+hA/tEfz+R3RXLaWzKnH7qd+3ZDNZpxDBuEcMgg4v/VzIQRxj5dITS3R6hoi1bXEPB5C\nlfvwejwk/AGUaBQ1HEGJRg+3WsiWex9ENpsxHBY9g92OKcONye3G1qcQ9xnjsBbkYc3Pw5yddcrG\n5PU0mVMmceif/+o+YcvVl5NSqAoi5EXO1Oa0IITAE0qu1rS+ZKMJhcU76rhoaG7KydYbA1F+9dZG\nvKE4z8ydwLDC7nO4iUQi5Ofn889//rP1vT1s2DDeeusthg8fzvz587nmmms4++xkQWNVVVvNgW++\n+SbZ2ckMQQ8++CBr1qzhwQcf5Hvf+x4jR47UNY558+Z1uip75JFH9P56rXQobPn5yZl7c3Nzu8c9\nHg8AeXkdp4VqyeLscrlISztWXPr1S5oTWkyW7fHQQw+1fj9z5kxmzpzZ4TUBctOt/OHq8SzeeIib\nXyrjwVmjOGek/tWI22ZienEWH+ys4+pxfTTd5GajAavJgD8S11QFQJIkJIcbEfLoimkz5hYR3pha\nPrWj8W3eSp85l3dLX6cjkiRhznBjznDDcI1OCRJMeXdhzw7sa0J66Sh2PPKbYyo3p0KioUp/1p2w\nHywOzdXHI4nkak1PzNlnexoZkGlnQGZq5sKdh3zc8dd1XDK+iJvOHqQr4YMW+vTpw3XXXXfMYsRk\nMnHeeefx/PPP88knn7QK29KlS9m8eTNz5sxpFbUWfvKTn/D+++/z9NNP88ILL+gax7x58zo9p8eE\nbcyYZBXaysrKdo/v3bsXSZIYPXp0hxcZPnw4cPyVXwsd3exthU0PkiTxnbFFDMhxcsdr66j1Rbhy\nSrHufsYUpLGl1s/mGj9jCrSt/NJtZur9Yc31mSR7OmrDAcgo1DwuQ2Y+iqehW0rH+HdW4Bqm38us\nl160YMnNASGINTR2OTeo0liDddRUXW1EyKsrdZYvnJyUahXhGn+EXY1BfjJR577fYVZU1POrtzZx\n/yUjOG90QUp9dMZPf3r89GZOZ9Lhru1KatGiRQBMmXJs6E/LZ4sXL9Y1hhUrVmg6b8+e1C1RHU4H\nzjnnHCwWC2VlZccca2xspLy8nJKSEgYN6rhUxKRJk3A6nUQiEerq6o45vm/fPiC5JO4pRhSl88rN\nk3lr9X6eX1qhu70kSZw7KJvPKxuJJdTOGwAWo4wsSYTjiraLmO2HC1ZGOz+3ZVxGE7IzHcXboLlN\ne8Q8HpRIBEuB/qTMvfSiBUmScA4eRKB8V5f6EUKQaK7DkKnd0UoIgQj7kOzaJqUJVSUST2guKCyE\n4JNdDUwvzsKawn7+p9tq+fXbm3jyqnE9Jmqd0RKPPGPGjNbPOvKMz8vLw2KxUF1dfVyrXntMnqwt\nlKg9655WOhQ2p9PJ9ddfz6FDh1iyZMkRx1555RUgmayyBZ/Px3e/+13mzp17RAkCi8XCjTfeiBCC\nN95444h+/H4/77//Pna7nR/+8Icp/yJaKMyw85cbJvHeV1W8t75Kd/s8l5X+GTbWVXk0nS9JEk6r\niUC045Vq2/MlmwsRCegal8Gdg+pt1NXmaEKV+3AUp1bZu5detGIf0J/Q3v1d6kMN+pBMFmSLDlf3\nWBhko+aE48FoArvZiKzRE7KyKUQsoTIyX79X7ZYDHh7552b+eO0ExhWfnHCOpqYmPvjgA8aPH88F\nF1zQ+nlnnvEtNdU684xPhZyc1IoxQyemSID//u//ZtmyZdx0000sXLiQ8ePH8+9//5uHH36YCy64\n4Iil7Ycffti6LP35z3/O+PHjW489/PDDfPrppzz88MMMGDCACy64gOrqam6//XbC4TCvvPIKubk9\nX6Mr02nh6WvP4Ka/lNE3087Y/u3/w47HtP6ZvL7hIOOL3Fg0JEt2Wox4QlFUIbQ5kVidSZdkl/Z8\niAZ3Noqnayu20P6D3eKG3UsvHWHv35fQ/i4Km7cBQ7q+fKEiEkDSUZg3EIlr9kIUQvDlviamFmfq\ndu2v80W46/WvmPf90Ywo6j4nEb3cc889GAwGXn311SM+7y7P+LYsWLCg0wm0EKJLLv+dCltaWhor\nVqxg3rx5XHnlla3Z/e+9917uvffeIyLIp02bxsCBA8nOzj7GS8bpdLJ8+XIee+wx7r77bmbPno3L\n5eKss85i+fLlmpen3UFJrot53x/N/W9uYOGt03RVwc6wm+nvtrO5xqfJ/d8gy5iNBsKxhKYSF5LF\ngerVN/sxuDJR/NpNAe0RqTqEtQdT3PTSC4CtqBDPug1d6kPxNWNI0zchFdGg5v21uKKSUIXmMlQH\nvRGiCZUhOuPLFFXwwJsb+cGZfZk5/ORtAbz++ussWLCAt956ixEjRhxxrLs94yGZBLmn0eTuk5aW\nxlNPPcVTTz3V4XkFBQXs2nV8+7nT6eQ3v/kNv/nNb/SNsgeYMSyXNXsaeeTdLTx51fjOG7RhXFE6\n/95ZxxlF6ZpMd3azkZBGYcNkAVXRlYVEdrmJV7fv4KOVSE0taaNGdH5iL710AWtBPpHqmi71oQY8\nyE59wkY0hKTRKSscS2A3GzSb5Tcc8jJe47ugLa8s34MsSdwws2MfBT0sW7aMZcuWaT7/o48+4sYb\nb+TFF19k1qxjSwvl5+ezbdu24+6heb1eoHPP+KOZP3/+MSuyUChEVVUV7777Ln379uXKK1PPUnNi\naiecotx+/hB+8PTnrN7dwKQS7V5aRWnJdEzV/iiFaZ2nZrKbjXjDMU1uzpIkgdmW3BPQWCZedqah\nBn2azj0e0bp6rHk9bwru5ZuNJS+XaF19l/pQA14MmdpfpEKJg1BB4/5aOK7g0JgfNppQ2dMU4tzB\n+vaD6rwRXvuikjdundathUaPDoV6+OGHj3vuxx9/zPe//32effZZ5s6d2+45Y8aMYenSpe16xtfU\n1BCNRiksLDzuHlx72O12rrvuuuMef+yxx7j99ttTzisMnTiPfN0xGw38/Pyh/M+SnbrsuZIkMSLX\nxfY6v6bzjYdv3ISq7RqS2YaIhTWPR7Z3XdhiDY2nbR7CXk4fTBlu4l4vaiKRch9qyI9s1+GkEYuA\nSVv9NCEEkXgCm0YzZEVDgL5uq+bzW3jukwoum9j3pOV6/OSTT7jsssv44x//eISobdu2jTfffLP1\n54svvhiAlStXHtNHy2ct52glEOjcOe7+++/n0Ucf1dVvW77RwgZw7qh8FFWwcpc+54vB2Q52NwY1\nCaIkSViNBiJa3f5N1uTDqBHZ5kQN6/OkPJpYczPmzF5h66VnkY1GjE4nCW/qE7GksGl3BBHxiOZi\nonFFRZYkDBqzw+xuDDIkW1/C9VpvmKXbapk7XWeAeTexdOlSZs2axdNPP33MfldZWRnPPfdc68/f\n/va3GT16NO+//z719UeutF9++WUMBgM//7m+skFaMBgMHW5rdcY32hQJSdG5dvoAFnxeyVQd5oRs\nhxlVQFM4TpYG5xOLyUA0oeBCgwOJyYIa0OG+bzKDEIh4VFcpjrbEPd5urZXVSy/Hw5ThJu7xpmwh\nEJEgklWHo0Y8mpwsaiCaUDXXd1RUwb7msG4z5MKV+/jO2EJdTmvdxaeffsp3v/td3G43H330ER9+\n+OERxysrK49wBJEkiQULFjBjxgxmz57NSy+9RHZ2Nk8//TSLFi3i0UcfZdSoUd06xqamJn75y19S\nWKg9UcXRfOOFDeD80fk8uXg7h5rDmk0DkiTRz23joCesSdjMBplgVKP5xWiGeEzbuYfHIlvtqNEI\nhhSETY3FEAkF+RQsUtnL1w+jy0Xcr82M3x5qJIxs1e6FJxIxZJs202UsoWDWmMGnPhjFZTXqSrmV\nUFTeX3+IF284U3Ob7uTVV18lGo1SW1vL3//+9yPMsy0+AN/61reOaDN27FjWrFnDr371K84888zW\n7P5/+9vfjsn9q4UBAwYc1ywcDAZbV4ZPPvmk7r5b6BU2kntt547KZ8mmQ1z/rRLN7YrSrBz0RSjV\nkKTUbJSJKxpNkQZT0jNSVTUnzJXMNkQ0DE79q66EP4DR6egNzu7lhGB0Okn4Uzedi2gYSU9wE5Nx\nVQAAIABJREFUdiKm2XEkpqikaxSqKm+k1ZFMK2v2NJKXbqU4p2v1IlNl/vz5zJ8/X3e7oUOH8tZb\nb3XLGPbt20f//v2P2caRJImsrCwmT57MNddc06WEHb3CdpizR+Tx4qe7dQlbnsvC+kNeTefKkoQg\nab7ozAtKkiQwGEGJg6yx7I3ZgohpT8XVlkQohMHRtRpPvfSiFYPdhhLS7hzVFqEkAKGvXI0ST04W\nNZBQVM2lZuoCUQrT9Qnb5zvrOXtkb9q64+Uf7i6+8c4jLYzrn0l5tU+7uRDIsptpDsdRNTqQGGWZ\nhKotzyQGI6jaxyKZzLpyTLZFDUcw9JohezlBGO12lHCKwhaPaU6LBYcT+qoKyJ2bF4UQJDRMPFto\nCMXI1rlPtnp3I5N1hBZ9HdGS2b+r9ArbYWxmAyV5TnZWa/fWMhlkrEaZgEYxNMgSikaXf2QjaDVd\nAhhNiIS2nJRHo0SiX5tKzb2c+sgWM2o0tUmYSMSRTDrERE2ArC3YuiXtnda0WN5wHLfGWFOAUDTB\noeYQQwt6tkr7qU57CZXbcvnll/OTn/ykNU9lKvQKWxsG5rrYU6fP9u+yGPH1gLBJsgEhtAubZDCB\nklpskBqPIZlPvIdWL99MZLMZNabdOeoIlETSmqEVVdW0WgNt2wQtxBWVmCKw64hfq6wP0C/L0e01\n1k43OkupNXXqVNatW8dNN92U8jW+2X/hoyhIt1Lr1R4/BmA3GzSXpZElSXsguCQlH0qNSAYDQtWx\nwmuDiCeQjb3brb2cGCSjAZFigLZQEvrqDgoVJG2vOVWA1iQg4biCzSTrcriq9UYocJ+cgOzTibvu\nuotPPvmE5cuXp9xHr7C1IcNhpjmobyZpMRiIaqzPJkto2o8Dkg+jnuzWspzcS0gBoapI3/BZZC8n\nDslgRCRSu1f1CNV/ztcmPnoqe8cUVVN1j7Y0B2NkOHotI50Ri8VYvXr1cSsKaKH3bdYGq1m7SLVg\nkCXtYoUOd3pJAnQImyTpE8K2CJEUxl56OQFIsoTQc2+3RaBZqPSeL9D+hCoqunM8RhMqVnPXqtyf\njjz88MPIsozBYMBweLXd8n17X1arlUsuueSIunB66bU/dZnUawZ1K6fIMHrppTO6Umerl9OP/v37\nH1GVe/ny5UyfPr3dcyVJIiMjg4kTJ3L77benfM1eYWtDOKZgNelbuehxD06qj8b+hZ754+Hz9Zho\n2qJzP6+XXrqEKpBSvlfRZ5nQcb4eG4kuD+fDWE0GwrEUTbCnMXPnzj0i0bIsy7pK66RCr/2pDanY\nwGMJFYvGzWw9m9N69gaApAdliuZESZYRSq+w9XJiEKqS+p6uJOubhOnYq5Z0OHdZjLLubYtU9vC/\njrz88ss9fo1eYWvDoeYw+en6vJZCh72jtNASJ6MFIVR9QqWoSBrdmo9GNplQj1Mht5deuhuRUJBS\n9MKVDEZ93r+SnJwkakCPc5fNJBOOK7rMqvnpVqqbUwtM/zpxvNpvR/Pqq6+mfI1eYWvD7roAA3P1\n5XDzRROkWbV57yiqQNa6ZFP1CZVQ4vrSDLVBMvcKWy8nDjUWQ041IYDBqC9eUzZo9hbWY140yjIW\no4Gg1lJUQHGOkwNNQeK91hFNaBXA9ujdYztMKJqgsj6gKytATFGJJlQcGj2dFFW0Fh3tFDWRzD6i\nlUQcUpwFG6wW1Ii++L1eekkVJRpFTjEhgGQ0IXRUvmgRNi2u/Mk4U+2WlXSrEU84jlNj0mSb2UDf\nLAfbq7yM6ae94nRPUF9fz6233srbb7/N/Pnzj1vRuri4mP3797d7rKSkhIqKipSu7/f7efHFF1mx\nYgXNzc3HrHy76mDUK2yHWVfZxMiidGw6SlA0BmNk2s2aHgIhBAlFxajVvKgzw4KIx1KuxSZbrSjh\nXmHr5cSghMIYbKkFKksmMyIR0xxzJknSYXFLdJoIWZIkDLJEQhGYjZ33ne2wUB+M0UfH9sWkkixW\n7Wo8qcL25ptvcvvttxM/bKXp6O8oSRIlJSXtxpT1798/pevX19czdepUdu/enVJ7LfSaIg/zybZa\npg/VVzCwxh8l16lt5qmoyQdRiylSCKFf2GKpFxk1OhwowVBKbXvpRS9KKITRob2eWlskgzG5b6bH\nHGkwJS0aGjAZZBIaTYW5TjO1fn05L781LJdPtqaeA7GrPPPMM9x9990sWLCASy+9VFObTz75hG3b\nth3ztWTJkpTG8Otf/xqn08mGDRtIHM5Ao6oqqqoSDAb54IMPGDhw4DFFUPXQK2xAJK7w6bZaLizV\nV7G1yhemKE3bbC2uqJi1ZipQ4mAw6HKJFjGdNaraYHQ6SQQDvfFFvZwQEv4ARlfq9cgky+Hag1ox\nmpPPlAZMBpmYxuTjRWk2qnz6nEHGF2fiC8epqEm90GpXGD9+PFu3buXCCy88ac/74sWLeeaZZxgz\nZgzyURYsm83Geeedx0svvcTjjz+e8jV6hQ1YvOEQY/q6ydVRNFAIwX5PmL5u7SXnzVpdnBMxMGpf\nfQkhUCMhXVWF2yKbTUgmU8o1snrpRQ8Jnx+jK/UM97LFhhoJaj5fMmov6WQ2GohpdOPPcZoJxRT8\nOkpdybLE98b34c3V+zS36U6mTJlCWlqarjbdLYA1NTWMHz++9WeDwdBqFm1h4sSJrFmzJuVrfOOF\nTVUFr31RyXXTB+hqVxeIYTbIZNi0mSKjCQWLUZuTiYhHdJkVRTwKspyyVySAKT2duFdb0dReeukK\ncY8Xk1t/pfcWJJsTEdZhOjdZQKOwJePTtCc1L86wU9mkXWQBZk/uxwebqmkMpFa650Tz/PPPM27c\nOFwuF2lpaUyZMoU///nPKQtednY2Ho+n9eeioiK2bNlyxDlbt27tkqBqEjafz8edd95J//79sdls\nDB06lMcee6zVPpoK69evx2QyIcvycb1uTgSLNh4izW7ijAGZutqVNwQYlKWt6rQQgmhcwaK1xEUs\nAiYdq8dQANnWtVLz5swMYo1NXeqjl146Q40nSAQDmNL1rRraItscqGHt5aUkkxUR1+YcZTLIqIcd\nvbQwKNtBeb0+YctyWri4tJCXP+s554nuZNWqVbz44os0NTWxY8cOpk+fzi233MKsWbNQU8hYNGzY\nMH7/+9+3/jxmzBhuvfVWtmzZQjQapaysjBtuuIFhw4alPOZOhc3n8zFt2jT+8Y9/8Le//Q2Px8Nv\nf/tbfvvb33LppZem9IspisL111+Poii6yj50N+GYwjMflXPnhcN0jUMIwfY6P8NztZlT4oqKJKG5\n5LyIhZHM2vfL1JAP2d614oWWnGxiDY1d6qOXXjoj1tSEye3WV3rmKGRHGmpQe0FgzDaIhTWtACRJ\nwmoyai5FVZLl4JAvQjCmb5J/0zmDWLzhEPsa9IniiWb+/Pl8+OGHTJgwAZPJRGFhIb/73e+49NJL\nee+99/jTn/6ku8/LL7+cp556iu9+97sA3HPPPaxatYrS0lLsdjuTJ09m8+bN3H333SmPu9M37QMP\nPMDWrVt54YUXmDp1KhaLhVmzZvHQQw+xZMkSnn/+ed0XffLJJ/F4POTl5Z1Uh4UnF29nwoBMxvbX\n53q73xPGJMuaPSKTtZu0eTgKISAWTj6MGlEDPmRH6qYdSApbtK6+S3300ktnROvqseTq8z4+GtmR\njhrUbjaXDMaky39Cm+nPZjIQjmsTKrNBZlC2g621+pxBMp0Wbjx7EA++vemUDtieOXMmxnbiY1uK\ngKaSHWTu3LmUlZW1rtrOOussXnvtNUpKSjAYDJSUlPCnP/2JK664IuVxdyhsfr+fv/zlLxQWFnLh\nhRceMzhJknjqqad0XXD37t08/PDDvPDCC1gslpO2Yvv3pkOU7Wnk/u+N1N32qyovY4vSNY89GE1g\nt2h03Y9HwGBMPowaUQLNyGldi4uxFOQTqT55bsi9fDOIHKrBWpjfpT5klxvF36yrjWRxIKLa9uXs\nZiPhWELzpHtsYTobDnl1lK9KMmdyf9JtJp75qFxXu45YtmwZDz30UOtXTzFw4EAAdu7cqbutzWZj\nwoQJDB8+vPWzq6++mvLycmKxGBUVFdxyyy1dGl+Hb8+lS5cSjUaZNGnSMccyMzMZPHgw5eXlVFRU\nMHjwYE0XvPnmm7n88ss599xzUxtxN7Ctystv39vGs3Mn4tAqOIepD0Y55IvwneF5ms5PqCpxRcGq\ncX9NRINIFm17dy2ovmYM7q7Ngm1FBTR89mWX+uill84IVx3CWlDQpT4MaRmoXp37wVYHRALg7Hwv\n3WiQMRmSuSDtGhI2FKZZcZqNbK8LMDJP+5aALEs8cvkYrn52BUML0rhIZ7hRe8ycOZOZM2e2/vzw\nww93uc/26Iql7cc//jGSJDFp0iRuvvnmbhzVf+hwxbZ582YgmValPVo+P9qj5Xi8/PLLbNq0Sfcq\nrzup9oS586/reHDWKIYX6Tfffbm3iYl93Zpd94PRBHazUXPyY8IBsOnbL1M8DRjc2braHI29X19C\n+w90qY9eeumM8L792Pv37VIfhvRsFK++/WDJ6kREtDucOC0mAlHt+VOnFWeyYl+T7lVbhsPMH689\ng98v2s5Xe08t560nnnjiuPkaW7KGDB06VHe/CxYsoKysDFcXQj46o8O3c01N0jSVkdG+mcvtdgNQ\nW1vb6YVqa2v55S9/yf/8z/+QmanPA7G72F3n5/oXV3Pd9IGcM1K/OaTKG6baF2FcoTZBFELgj8Rx\nakySLIRARPxIVn0ejoqnHkN6F4WtuD+hyn2I3rpsvfQgwcp9OAakloqpBcnuAiWBGtHj8m8FVdUc\nz+awJM2RWpMi98+wk2YxsuGQ/pCZQXku/nt2KXe//hVf7Dx19rkDgQAffPABgcCxE4LnnnsOgGuu\nuUZ3vyaTiQ8++ICrrrqqy2M8Hh0KWzgcbh1Ie5gPJzINhTq/wX7+858zadKkHv1lOmJdZRM3/aWM\nn507mKumFuturwrBx7samFmSrdm7MXLYs8qqMX6NaBCMZiSj9gSxIh5FDfmR07s2WTClp2F0OYkc\nqu5SP730cjyEEAQqduEcPKhL/UiShCEzD6Wp8wl12zaSPQ0R1uZNaZBlbGYjgYj2Vds5g7JZua+Z\nUArFRCcPyuapa87goXc28c6anrOcCCHweDx4PB5isWQy6WAwiMfjwec78m8jyzK1tbVcdtllrFu3\njnA4TFVVFXfffTeLFy/mwgsvTKnKdUlJyTEZR9qjx8rW2A4nKj06KryFlj+M3d5xxov33nuPxYsX\n8+c//zmVMXYJIQR/W7mXX/5tPf99RSmXjCtKqZ+vqrxYDBLDcrSvprzhGGlWk2YnExHyItn0xfck\nGmsxuHNSrsXWFufQwfh3dN9Gdi+9tCVaXYtsNmPO6rrFxpCVT6JR3yRMsqcjQtpXVOlWM75ITPN+\nUo7DwvBcJ0t3p7bqGts/g5dunMwrn+/h8fe2EdVREkcr+/btIzMzk8zMTBYuXIgkSdx6661kZmYy\nduzYI8695557WLhwIS6Xi0svvZT09HRGjBjBqlWreOaZZ1i0aBGGFMI2fvrTn/L00093el6Pla3J\nz0+a65qb2/dAaokez8s7viOF3+/nlltu4dFHH6Vfv37tnqPlxmnr4XP0Bunx2NcQ5L/e3UI4prDg\n5sn01RhQfTQNwRir9jVx9fg+mkUqmlCIKSq5esyQQQ9y3kBdY0vUV2HMSU2sjyZ99Ei8G7eQe+7Z\n3dLf6YYaixGprjn8VUukto54czPxZg+xZi9KMIgSjqBEIqixFpPWIj7/9neQTSZkqxWD1YrBbsOc\n4cbkdmPKcGPJzcFakI+1IA9bYSEGe2o5PU93PBs3kTZavxdyexhzClHqq/Q1srqgYT8ioa12ocVk\nwGiQCUQTuDQ+x2cNyGLB2gPsrA8wVMckuIX+2Q5e/9lUHn13C1f86Ut+NWskEwZk6e7neBQXF2uO\nPbZarcyePZvZs2d32/UhGZC9aNEizj//fGbPnk3fvn1bF1EtdDUMTBId9PCvf/2LWbNmMWvWLN55\n551jjg8bNoyKigp27tzJoEHtmxeWLVvGOeeco2kwxcXF7Nmz59hB6ijZDuAPx5m/fA//XHuAG2aW\nMGdKMQatddCOIpZQ+ev6g0zo42ZMgfbVVK0vjNVkIF1jyi0R9qM2VWEo0hdt7//kTYzZBdhKp+tq\n1x6edRvY8djvmPzOG13u61Qm7vES2LWbQMVughW7Ce3bT2j/QaL1DVjzcrAU5GPNz8Oan4c5MwNT\nhhuTOx2j04nBZkO2WjCYLSCBrTCfcFUNajyOGo2iRCIkAkHiHu9hQWwmWltHpKa2VTSNTie2vn2w\n9++Lc3AJzkElOIcMwpyTfVITFvQ0W3/1CK6hg+n3oyu73Fe8upLAsnfJuPJOXe3Uhv1gsiKn52o6\nPxxP0OCP0CfDofl/c8gX4Z9bqrlqbBEZ9tTqzgF8uq2W376/jfHFGdx23lAKM/RPiPS+O08EWsyQ\nkBy7ojEh9dF0uGI755xzsFgslJWVHXOssbGR8vJyBg0adFxRg+Tq6ngzhOLiYg4cOEBlZeVxV3N6\nqGoK8fqKvSzacIizh+fy99vP0pXY+GiEECzaUUtRulWXqEXiCWIJhRyXjrRYgUYkl/6ZWaJ6H7bR\nU3S3a4/0saOJ1jcQPliFrU/3rAJPNko4gm/LVrybtuLbuh3/1m3EmjxJQRlcgmPQQHK+PRNb3z5Y\nC/KRNQbSt0VPXJZQVaJ19YQPHCRYuY/g7j00fPYlgYpdSLJM2qgRuEYOJ330SNLHjOpSTsVTCTWR\noGHZ5wz82Q3d0p8xpw9Kcx0irq9ck+TMRG04gEjL0SRUNpMRk0HGF4lrnqQWplmZVpzJP7dWc/W4\nvli0VvU4irNH5DGpJIv5y/dw1TNfMnlwNj+aNoCRfU7/e2LevHmdCu4jjzyScv8dPsVOp5Prr7+e\nZ599liVLlnDRRRe1HnvllVcAuOOOO1o/8/l8XHXVVWRnZ/Pyyy9rVuauUNUU4vOd9SzfUce2Ki+X\nTejDm7dPI09H8b/jsbyykVBc4ZIROl5cQtAYiJJht2h28RdKHBH2I2f20TU+NRJC9TdjyOp6/AuA\nZDCQ++2Z1Cz5kAE3/rhb+jzRROvqaV63Hs/a9Xg3biZYuRfn4EGkl44m55wZlNx+M/b+/ZBOwL3Z\nHpIst64GMyae0fq5EIJoTS2+rdvxbdnG/gWv4928DUtOFumlo3GfMY6MCeOw9et7Wq7qmlevxVpY\ngK2om+5VowljdgHxmv2Y+2qLoQXA4gBJSsa0aQyryXRYqPaGcVqMGDTeN2ML06kLRHlvWw2XjSpI\n2WJktxi59bwhXDd9AP9ce5D/87evyHJYmDk8l+lDcxlS4Dot74d58+Z1ek5XhK1DUyQkxWrq1Kl4\nvV4WLlzI+PHj+fe//811113HtGnTWLRoUauAvf3226322LVr1x5RmqAFRVHw+5PpZ8aMGcPBgwfZ\nuHEjffv2xeFwtOuBKUkSh5pDBCIJarxhdtX62VUTYPshL95QnLOG5iS/huToqoDdEWsONLOp2sdV\n4/pg05q8mKTDSCiWID/NpvmGU5urQUkgZ+uL74nu2kRk62rSL71RV7uO8G7aypZ7HmDq4ndO2stf\nD7HGJprK1tK8ag1NZetIeH2kjy8l44yxpI8rxTV8KAZLagVYtSBJ0FOWHqEoBHbtwbthE55162le\ntx6RUMiYeAaZkyaQMXki9r76JkMni0133EvmlDPpc8UPuq3P4MolIASOqRfraqf6GxAhHwYd+9mN\ngQiqEOS4dKS6E4J/bqnGYpS5eFie9ljWDkgoKmsrm/h8Zx2f76gnmlAY1dfN4DwXg/Jc9M2047Qa\ncViNOC1GTEbDKWeKXLVqFZMnT+70vL179x43hrozOhU2SIrbvHnz+Mc//kFdXR39+vXjuuuu4957\n7z0ij1h1dTXTp08nOzubzz77DEs7L5S2e24tL/6WIbzyyitce+21xw5Skrjgt0txWozkpFkYdPif\nOCTfxdCCNE1VqbUihGDV/ma21PiZM7YIl47MJHFF5ZAnREG6DbPWEjWqgnpwO3L+ICSzPrNpYOnb\nyO5s7ONn6mrX4XiEoGz2tQz42Q3knvOtbuu3u0gEQ3jWradpZRlNq8qIVNfgPmMcmZMnkjlpIo5B\nA0+oIPeksB2NEIJI1SGaytbRvKqMptVrkc1mMqecSebkM8mcNKFbPA67m9CBg6y5Yi7TPnwXo7Nr\nVSjaEju4i9AX7+Oec0fnJ7dBqCrqwW3I+SWak42rQlDVHCTLadWUjaSFuKLyzpZq7CYDFw/LS3nl\n1h5CCPY3hth+yMvu2gAVNX4OecIEIgkCkTjXTBvAzd8efMoJ24lAk7CdbE7UBqgQgk93N7DPE+aH\nowtx6hA1IQTV3hAOi0mzLR5A9dZCNIycW6x7rM3zHyVt1s0YM7Wl99JK/afL2fX0s0x+542TvmoT\nQhDYUU7jl6to/GIlvq3bSRs5PPkyn3ImrhHDkNtJ0nqiOJHCdjRCCIK7K2lavYamlWV41n6FrW8f\nsqZNJuusKaSXjklpz7C72Xr/Q1j7FFJy603d2q9QFJr+Mo+MH92ru7pFKs9dOJ6g3h+hyG3XbJKE\nZFq997bVklBVLh1ZoL3gcDdwKjqPtLBz505ee+011q5dS11dHV999RWbN29m48aNXHnllSmFErTQ\nK2yHiSZU/r2zlmBM4fujCjTndmyhKRglllDI02GCFEoCtWqHrpljC4n6KnyLFpBx3f3dbmMXQrD2\nmuspnHUJRT+8rFv71kK0voHGFatpWrGKppVlGBwOss6aQvZZU8iYeMYp5S5/MoXtaNR4Au+mzTR+\nsZLGL1cR2refjIlnkDVlEpnTJiX3Fk/wfox381Y23noXUxf/o1tXay34Fi/A3H8Y1pHH5rPtiFZL\nSd5AJIv2yvOpPOeQXPF9UF5HfSDGpSPzSdcYPtBVTlVhe+yxx3jooYdavR5bPCBXrVrFzJkzOfvs\ns3n33XfbtfppoVfYgNpAlH9tq6Gf28a3B2Vj1LlKCUTjNAejFLodukwNalMVqKruvTWA4IrFoCo4\nzrpEd1st+HdW8NX1t1D6/57APa60R67RghKO4Fm/kaYVq2j8chWRmloyJ00kc+oksqZOOqU9NE8l\nYTuaWFMzTavW0LhiFU0rViMZjWRNnUTm1MlknnlGj3tcRqprWPfjn1Ly81vIv/j8HrlGtHw9ke1r\nU9pnVn0NiGBzchtA62RUCGp8YSxGA5kOfS9dIQRrD3ooO+DhgiG5DMpOLa5WD6eisL355pvMmTOH\n6dOnM2fOHPr06XNEbc+qqiouuugi5s6dy1133ZXSNb7RwqYKwVdVXlbtb+KckhxG6MjM3UI0rlDj\nC5OfbsOiNXUWIGIR1JoK5KJhSAZ9szchBM2v/gbXhT/ClNe1hLId0fD5CrbeP4+h991N/ncv7LyB\nRtRYDN+W7TSVraVpVRn+LdtxDh2cNKFNm4xr5PCTal7Uw6ksbG1pMVs2frmKphWr8KzfhL1/XzIn\nTSRj0gTc48Z064rKs2ETW375K/pePZv+c/XnE9SKiEVpevkRMq69H9mub/xCCNRDO5HcecgO7WWf\nFDW5l+62WzQHbrelyhvm/e21lGQ5mDEwq0dNk6eisJ111lmcffbZPProo62fybJ8RFjYZ599xi9+\n8Qs2bNiQ0jW+scJW7Yvw8a56jLLEhUPzyLDpv0FjCYUab5gsp1VX+RshBGrNLiSHGzlNf7mZeNVu\nAp++g/vq/9PjpiX/9p1svvv/4p4wjkF33Yb5cOJrPUTrG/Bt2YZ301Y86zfg37Id+8BiMiaMI3Py\nmbjPGIfRod0cdCpxugjb0aixOL7NW5P7c6vX4N+6A/vAYtzjx5I+ZhRpo0dg61Ok+/5SIhEO/PXv\n7H/1DYY/9H/JOQEOSP4P38CY0wfbuBm624pIALV+L3LhMF01EFue/WyXPmeSFiIJhU92NXDQE+bs\nQdkMztIeAK6HU1HY0tLS2Lt37xHJ8I8WtlAoREFBAV6v/qTS8A0UNn80wRd7G6lsCjFjQBYj81KL\nA4krKtXeEBkpzNpUX/1hE8jglK7t/+D15IM8/sR4LSaCQSp+9z/U/Psj0kYOJ3v6VFwjhmPOysTo\ncmK020n4A8S8XuIeD5GqaoKVewlV7iNQvotEMETaqBGkjRqBe3xpt68OTianq7AdTcsq2rNuPd4t\nW/Ft2YYaieIaNgT7gGIcA4qx9SvC5HZjznBjTEtDjUZJBAIk/AECOyto+HwFzWVrSR9XyvAH7+ty\nQVGtxA/uJvDpP3Bf88uUnie18SCoCnKOvqoDkbhCrS9MrsuacpjRfk+IjysacFoMzByYTa6ze0NT\nTkVhc7lcHDx4kPT0/5jCjxa2PXv2UFpa2hoappdvjLA1h2KUHfBQ3hBgTEEak/tl6DIdtiWWUKnx\nhXDbzaRZ9aXMEbEwas0u5IIhujImtKD4PXjeeIKMuQ8gW06sE0UiGKJ59RoavlhJsGI3MY+HhD+A\nEgxhdDkxudMxudOxFuTjGFCMfWAxzpIBp21QsRa+LsLWHpHaOoIVuwlW7iVYuY/wgSriHk8yXZjX\nh8Fqweh0YnQ6sPXvR/aMqWRNm4I5s2vV3PUihMDztz/gmHox5uLhnTc4ur2qoB4qR3LnIzv1jT0S\nT1Dri5CT4soNQFEFG6u9rNrfTL7TwqR+GRR1Q4IJODWFbfLkyZx33nkdmiLvu+8+vvzySz7//POU\nrvG1FjZFFVQ2hdhS6+OgN8zYwnTGF7mx6/R4bEskrlDnC5Ph0L9SE6qCWl2BlJaDnEL6LIDA8v8F\nwDnj0pTa93J8RCKB4mtE9XtQ/c0oAQ8iHEANBxHhIGosAokYIh5HKAkAsm96mIYX5iWrK5hMSEYz\nktmCbHUg2RzINieyMx2DKwPZ5caQloVk7rmA8W8qkR3rkskKvv+zlCZRIhpCrd2d0oT0CqbEAAAg\nAElEQVSzRdyyHBbNtRfbI66obKn1s+ZAM06zkTEFaQzJdmJOMSUXnJrC9uqrrzJ37lxmzJjBDTfc\nQGlpKaWlpezatYvKykpeeeUV3njjDV5//XXmzJmT0jW+dsKmqIIqX5iKhiA76gK4bSZG5rkYkevq\n0g0CSe/HxkA0pdmZEAK1fi+SbEDKSm0FowS8eF7/PRnX3IPs0Ffeppf/IIRA9TaSqDtIov4gicZa\nlOY61IAnKUJpmcguN7LTjWx3/UekLNbD9fJMrdnhDQ4XStCfFLpEApGIIaIR1EgQEQmihgKoAS+K\nvzkplr4mZKsdQ0Yuhsx8jDmFGHP7YsjM7ZbSQ99UhKrQ/Nff4Zz5A8z9hqTUh+prQPgbkAsG6/5f\nxBJJs6TTYsJtN3fJQqEKQUVDkK21Pg56IgzMsjM0x0l/t133O+x47876+npuvfVW3n77bebPn891\n11133D7Ky8t54IEHWLZsGeFwmFGjRnHXXXd1Kev/bbfdxrPPPnvEGNuO9Y477uAPf/hDyv2fHq5n\nHRCJK9QGotQFohzwhDngjZBpNzEw08FV44rI0BEsfTyEEDSHYgSjcV1ZRY7ow1MDShwpp3/KN314\nzUdYRpzZK2o6EfEY8Zr9JKoriVfvJVGzD8lkxpjbB2NOEdaRZyaFJj1LlwNBC3qCg4WqJgWuuY5E\nYw3x/eWE1y5FCXgx5hZhKijGWDAAU+EAZOvp6VBzMpBkA45JFxBauQRT30FIkv5JrOTKglgItX4f\ncu4AXc+p2Wig0G2n1hcm5lfJcVpTzogkSxJDc5wMzXESiinsqPezvsrLoh215Dkt9HfbyXNZyHNa\ncJgNut8nb775Jrfffntrnc2O2m/cuJHp06czYcIEVq9eTW5uLk899RRz5sxh9+7d3H///Sn9jn/6\n05+44IILeO655ygrK8Pr9eJ2u5k8eTK33HLLEXmJU+G0WbF9VeUhoaiE4yr+aAJ/NI43kiCcUMh1\nWMh1WuiTbqVfhr1LpsajiSsq9f4IkgS5LquujAMtqL4GhK8+ORNM4cUJkGioxvvPPyezLPS+8DpE\nCIFSX0Vs/07i+8uJ1+7HmFWQFI3CAZgKinVnqjge3bXHpkYjJGr3ET+0l0R1JYma/RgycjH1G5L8\nKhiA1IVMDN8EhFDxvvlHrKXTsQ47o/MG7fYhUGv3JFflKVhWVCFoCkYJxxLkuGy6Ez10RExROegJ\nc8Abbp3MS0i4bSZcFiMuixG7yYDJIGGS5aT4uaxHrNieeeYZHn/8cV588UX+/ve/s2DBguOmMlRV\nlXHjxlFZWcmePXvIzs5uPfa9732PxYsXs3HjRkaO7J4ae93JabNiqw9EMcoSVpOB/hk2XBYXaVYT\nbquxRxwThBAEogmaglHcNjNpNu2VsNuiBpoR3tpkEGiKoiaESmDZO9jPPK9X1I6DUBLED+wiVrmV\nWOVWMJgwFw/DOnYGrqKSpBnxFEa2WDH3G4q531Agud+XqNlH7EA5oS/eR/E2YC4ehnnASEz9h5/y\nv8/JQJJkHDMuxb/4NcwDRqTkXCVJEnJuMWrNLmiuhowCXc+9LElkO60Eo3FqfeHkO6qLpskWzAaZ\ngVkOBh4umCyEIBBT8Ebi+CIJ/NEEobhCIipIKGq75XLGjx/P1q1bSUtLY+HChR1eb+nSpWzevJk5\nc+YcIWoAP/nJT3j//fd5+umneeGFF1L6fdasWcNrr73Ghg0b8Hq9pKenM27cOK677rp2E+jr4bQR\ntvOHaCsM2B3EEgqNwSiqKnQHXrdFDTQjmquQ80pS8oBsIbLxSxAq1tFTU+7j64hQFeIHdxOt2EBs\n92YM7hzMJaNIm3Uzhozc09oTUzIaMfUpwdSnBKZchBLwEqvcRmT7WgJL38bUdzCWIeMwFw9HMnXd\n3P51wVQwAPPAkQSXv4vrvNQKmkqyATmvJCluoFvcABwWExajgYZAhCpPiCyHpdsqj7SOU5JaV2po\nTCIzZYr22o2LFi06bpuWzxYvXqy5v7bccccd/PGPfzzm8y+++IJnnnmGO+64gyeeeCKlvuE0ErYT\ngaoKPOEo/kjisCt/aqs0OGx+9NYmRU1nHsi2JBprCJV9hHv27Sc9IfGpQqKpluj2NUR3rEN2pGEe\nMg73lXdhcJ1YN/MTicGZjm30FGyjp6BGQsR2byayZRX/v73zjrOiuvv/e+b2snd7haUXBaQICIgS\nULEX1KhoImI0iQlINOVJ8miCNU98fj5GjSUaNNbEWIgRI1aqCCIdROrSlmWX7beXmTm/P2Z3EViW\nuXfvVu779eIF3Jk5c+65M+d7yvf7+foXvYW1/xnYh5yFubBPlzbmycJ1zuXU/v3/iOzahG3A8ITK\nkExm5IIBaBW7oUaDrPiD1c0mmXyPg2BUodIfxm42kemyYWlHEeTWsHnzZoBmU8fk5+djs9k4dOgQ\ntbW1ZGYaf/cef/xxnnzyScaMGcP111/PoEGDcLlcBAIBtm3bxptvvsljjz1Gr169mDNnTkJ1Txk2\ndIPmDUepD8VwWs30yHTGrRfZiBACUXcIEajXlx9bMVMT0Qi+D17Bdc7lmDLiVyjpTgglRmTnRsKb\nv0Dz1WI7bTSeq+9IemaDroBsd2IfOg770HFoAS/hbWvxf/YmCIF92ARsQ8ae0kvWksVG2sXfx/ve\nC5hzijBl5Jz8oubKaTRuh/cgDu9Bzu0T9+BSkiRcNgsOq5n6YJSyugDuhgwg5k5u4MrLywFOaLTS\n09OprKykoqIiLsP27LPPMnv27GZnbFdeeSW/+tWvmDNnDk8//XTKsCWCqml4wzG8oRgOqylhj8dG\nhKYiqg4g1FirHEVA31fzffZPzIW9sA85K+Fyujqqv57wphWEv/4Sc24RjtHnYe17eso1vgHZ5cE5\negqOMyejlO8lvOkLgi9/grX/GThGTcKcXdjRVewQLPm9cJ41Fe8HL5P+3VnIceY6bERfluyHqDqg\nCyvk9UEyx7/0K0sSmS4bHoeFulCUg3WBphRXnXUGFwqFAJpN/gxgtertEAwG4yp33759/O53vzvh\ncUmSmDt3Ln/961/jKvfbnHKGTQhBRFHxhmOEogpOq6XVBg0aRI0r9yLZnMg5/Vu9bBj84gM0fz3p\nV9/RqnK6KkpNBaF1i4nu3oLttNFkfHc2psxTe9baEpIkYSnsi6WwL1rQR3jLKur/9RzmvJ44R0/B\nXNTvlFumtA+fiFJ1CN/CV/Fc/oOEvUolSYacXuA9jHZoB3JObyRHYl61Jlkm22Unw2GlPhSjrC6I\n1SzjsVtwWtvGES5RHA59C6UxLOBYotEoAE5nfKsDubm5TWWfCLvdTmFh4oOyU8KwCSGIqRqBiEIg\nqitGpNktZLvsScloq/lrEDUHkTKLkNxZrX44Q+uXES3ZQvp372wKBD5VUCrLCH75EbFDe3GMOEdX\nbXe0fXqPYxFCgKaCGgO1QWlEVUBooGn63wD01LUGJQlkE0gyyCZ9tm6yQMPf7dlhyc40nGdNxXHm\nZCLb1uL77E1kuwvnWRdi6T24U3WebYkkSbinXIP3/b/h/+xN3FNvSCi+rbEsKT0fYXWiVe1DSstB\nSs9PuC1NskyWy0am00ogolAf0sUfXDYzLpsZmzn++DSAJUuWsGTJkoTqdCwFBQVs3bqV2traZo83\nChTn58e3HXDVVVfx8ssvM2vWrBOe89JLL/H97x+dFaJfv36UlJQYuke3NWyaEIRjKqGoQiimogmB\ny2omx23HZpaT8nILVUFUlyJiId1JJI6EhScitHE5oY3LSb/mJx3SoXcUSnU5wS8/JlZWgnP0FNIu\n+l67ePsJIXTjFQ0hoiGIhhFKBGIR3ViZLLphMpl1w9X051sDDotND2bTVNBiEAujqYperhIDoYLZ\npquWWO1gdegORWZbmxoZyWzBPmw8tiFnEd21kcDyfyN95cQ5/mKsxQPb7L6dCUk24bnkZurfewH/\nZ2/hPv+6hI0bgORIQy4cjFa1DxH0Iuf00n/TRMuTJNx2C267hZiq4Y/EqPJH0ITAYTHhsJpxWEyG\n42cnT57M5MmTm/5///33J1y34cOHs2jRIvbs2XPcsfLyciKRCEVFRXHtrwH86Ec/4qabbmLNmjXc\ncMMN9OrVC7fbjd/vZ9++fbzxxhuUl5fz9NNPs3//fkB/T/fu3Wv4Ht3CsGkNM7KoohFRVCKKSkzV\nsJlNOCwmct12rEkyZtDgIBKoQ9QeRHJl6g93EjwWQ+uWEtr0OenX/ASTJ+vkF3QDVH89wZULie79\nBseZ3yFt6g2tcrg5GUII3YhFAoiwH8IB/UCjsXGmI1sajJDBPdKTpR4SmgpKFGIRRCzc8Owc0meA\nNheS3YVkd4PN2apO90RIsqyHBgwYQWTHevyL3sbkycR17lWYc7r/HpxksZF+xW3UvzcP/6dv4j7v\nulYFu0tmC3J+f4SvGq18J5InDym99eElFpNMptNGptNGTNUIRRUCEYVqfxiTLGMzy9jMJqxmExaT\nnJTVppa49NJLefzxx1m5cuVxThwrV65sOideRo4cCcDWrVt5+eWXT3jeoEFHS6PF075dRnmkPhhB\noBsxTROomkDRBIqmoWkCs0nG2vDD28wyVrMJuS0Ct6MhPfO1qiBnFyPZWz+rEkIjsHwBsX3b8Vx1\n+ylh1IQSI7R+GaH1S7APHYdjzPltlq1AaCoi5IWgFxHy6UuFdjfYXUg2l27EEnxWWqM8IlQFwv4j\nRjYWAUcaksOj/2mjZWihqoS3rCS4+hNsA87AOf5iZEf3SCPUEiIawbvwFQDSLrk5YYeSo8qMRdBq\nSkGJIWf1SHjvrcV7CEFU1Qft0ZhGRNUH7hI0GDjdyJkkCVmWkND7TKtZxm4xn1Bnd+bMmbzyyisn\nVB4RQjBy5EhKSkooKSkhN/fIAO6KK67gww8/ZP369QwbNiyu7yPLMrfcckvc4syvvPLKURkAWqLL\nGLZKbwhJ0v9tkqWmH7Jx5NLW+wZCjSHqKhCBOqSMfH2NPQn31CJh/J++gRYO4rls5inhph3dvx3/\n4ncwZxfgOufKhN2xW0JoKiLoRQRqIezXjVijwUjijDCZaWuEGtMNb6jBAFvsSK5MJFdGqzxsT4QW\nDhL88iMiOzbgmnAJtqHjuv3+m9BU/Ivno1Tsx3P5rUkZRAohIFiPVlsGFjtyZlGrlieN3rNxpUpt\nGOirmv6ZaDjutJpx261HGRAhRNPe2E9/+lPeeOMNnn76aW688UZkWcbjOVqHdsOGDUyaNInRo0fz\nwgsvkJOTwxNPPMHcuXN58MEHueeee+Ku+7Epatriui5j2DqqmkJVEN7DCF+13slkFCStk1Gqy/F9\n8BKWHv1xTboaydwtVoZPiBYOElj+HrHSXbinXJtQ7qyTISJBhK8aEawDq1M3Cs70NjEM0Hb52ITQ\nIORDBGoRQS840vRUR/bEEuO2hFJVhv+zN5EsNtznXdcmA43OhBCC8PplBNcuIm3qjVj7nJakcjVE\ngzCD5PDofUUbLqsb4di+c+/evfTr16/Z43369GnWOWP79u3ce++9LF68+Ch1/xtuuCGhOr300kvM\nnDmzTa9LGbYTIJQYwluJ8FfrnWN6fkLxK82WLQSRbWsJLH8P1zmXnxJxatG92/B/9k+s/c/Aefal\nSVkGakQITd+38laCqiClZSO5s9vFo7Q9Eo0KTdUNnK8aNFX/fmk5SY3lE5pGeMNygms+xTnuIuzD\nJ3b72Vvs4G58H76Gbeg4nGOnJk1kWqgKwqcLn0sOj77/1gr1odbQGfOxGeWVV15pdonUCCnD9i2E\nEBAJ6KOusE+foaXnJc2gAWghP/7F76DWVJB20fcw5/ZIWtmdEaEqBFcuJLJjPe4Lb8Lac0DyytZU\nfXbmrQSLDdmTp+9RtWOH3N4ZtEUkqA+4Ql49tMSTm9TnU62txPvha5jSMnBfcEO3XxrXAl58n/wD\nEQnhvvAmzJnJ06QVmqr/Vr4qfYkyLQec6e38fHZdw5bokiXEYdi8Xi9z585l/vz5HD58mF69ejFj\nxgx+/etfYza4hLZkyRJefvllli9fTmlpKVarldNPP53vf//7/PSnP8V0ghFTW/84Qo3pI35/jT4i\n9uTqnUaS1S0iJVsILH4H66BRuCZc0u1j1FRfLb4PXkFyuEibOj1pDgpC0xC+SkR9JZLdrQ8+khBq\nkQjtbdgaEbGI3mkGahuWyPORTMl5noSiEPjiP0R3bybtkpuxFPROSrmdFSEE4c1fEFz1Ic6xU7GP\nOCepuqz6ikI9wlcJSkzvW9xZ7bJM2VkN29q1a3n99dfZuXMnwWDwuDoKIVi6dGnChg1hgPr6ejFs\n2DBRXFwsVqxYIcLhsPjXv/4l0tLSxKWXXipUVT1pGa+++qqQJEmMGTNGrFixQgQCAVFSUiJ+9KMf\nCUmSxIUXXigURWn2WoPVjAtNiQnVVy2U8t1C2btRqIf3Ci3oFZqmJf1eSn21qF/wgqh++Q8icmBn\n0svvjETLSkT1vPtEYM1nSWtTTdOE6q0Syv4tQqkoEVoklJRyW0MbPJpxoSlRoVYdEMq+TUKtKROa\n2vw7lAjhXZtF1fO/F6GtXyWtzM6MUnNY1L71lKj9x2MiWr6vTe6hhQMNv9dmoZTtEGr9YaHFIm1y\nLyHapu9sLa+99pqQZVlIktTiH1mWE76HoRnbnXfeydNPP80HH3zAxRdf3PT5Y489xi9/+Uuefvpp\nfvKTn7RYxrx585g9ezYlJSUUFRUddWzSpEl8/vnnvPDCC9x6663HXZuMUYcQAmJhRMinu35Hgvqy\nlTNd/9MG2oPfdml3jJyE48wp3d5BBCD8zRoCny8gber0pDmIiHBAd6uWZOSsIt1Nv40QQvcwi6oa\niqo1hZU0eZ0JgdbwOPbOdrOv2o+ErgcoN3jrmmQJs0nGLEtYTHryx7ZcghKxiC6+HQ4gZRUhOTOS\ncj+luhzvghexDRyO8+zLuv2+m2jc/17xPrb+w9osFEIIoXu/BusRwXo95MTh0cMFbK6ktXNnnLEN\nHDiQ/v378/DDDzNw4MDjPDEbadOlSJ/PR15eHtnZ2ZSWlh51rKamhtzcXPr378+OHTtavNF7773H\n/Pnzeemll4479sgjj/Db3/6Wm266iddee+34Sibw4whNawrEJRLU44RkGcmRhmRPA4enzdLACE0j\nsn0dwVUfYs7tgeucK7q9p1kjoQ3LCK1biueqH2LOLmh1eUJVELWHEKF6pMweuiNPkjtXVROEYwph\nRSUS04ipKhISFrPcFE5ibogVkiUJWaIpRtJilokpmh5j2WD4VKEnelQ13R270SXb0hBnaTebsFtM\nbaLuLsJ+XeLLZEHO7pmU5S4tFMC74AVMWXm4z7v+lEif1BQKsX0djlHfwTFyUpsp4YjGvf2gFxH2\n6fGMdjeSzakP4KyOhL16O6Nhczgc7N69+7gJzrHMnDmzWXthhJO21qJFi4hEIowbN+64Y1lZWQwc\nOJAdO3awc+dOBg48sUzPlVdeyZVXXtnsMbdbHxHFbbwa5ZCUKELRpYwa1R1QInockM0JTo8+yk/i\nJvuJ6hPds5XgyoVIVhtpF30PS1HfNr1nZyK4+hPC29aQ/t1ZyYkPCnnRqg4gOT3IRaclzWVfCEFE\n0QhGFUJRhZimYTebsFlMZDqtWM2yYQkj4IiBamHSr2lHgmwDUYXqQARZAofVjLNBNikZBluyu5GL\nBiMaBHuljELdi7IVZcsOF+lX/xjv+y/h+/A10i7+XrfPriDbnbi/czWOEecSWPkBta/8EcdZU7EP\nGZv00BFJknRDZm/oB78VuK/VlUM0pGuOWuxIFjtYbHpfZraC2dImajVtybGKIieiNXJgJ/2FWko2\n1/j5jh072LJlS4uGrSUaZ3uTJk064Tlqxe4GPT6tQZNP0f82WfQf12TVNfuc6cjWfF2Hr51GlkJo\nRHdtJvjVp4DQtfj6De32yzbfJrR+GZFta8m4dhayq/mlBaMIoemztECdLleWJDWHqKLij8TwRxRk\nScJpNZOdRO3QlpBlCbusz9TSHUeEuYNRhbpghEpVawiotWBPUAC3kSbBXke6rmkYatA0bEWHLFls\neK64De9/GgSFL0hcULgrYcrIwXPJDGIV+wmu/JDQV5/iGD0F+9Bxbeb8JZnM4MpAcmUADQN4JaLr\nmMbCEPajKdEjWqSSpBu+Rh1TSQIkJHfnTLz7+9//nnvvvZd58+Yht9BH9+vXD1VVE7rHSZ/0kyWb\ny8jQG7+ioiKhCsRiMd5++2169OjBLbfccsLz5LRc/QeTZDCZQNZ/yI40HkJRiOxYR2jdEiSLVTdo\nfYecUgYN9D210PqlpF83u/VGLRZBq9wLZity0eBWj441IfBHYvjCMVRN4LZZKPC0Pk1Ra9Elj3Td\nvwynDUXTCIQVqv0RhBCk2S2k2S1xzRyPu4fVjlw4EFFbjla2HTm3d9OsIKHyzGY8l95C/bvPEVi+\nAPekqxIuq6thye9F+rQfESvfT+irTwl+9SmOkZOwDxvf5iERkiSBxa7P2I45JprEtxsH+1qDm67Q\nhbc7Iddeey21tbUUFxdz4YUXUlhYiN1+dFyraNjLTpST9hptlWyukUceeYTy8nI++uij477ct5Gc\nreswk4kW9BHe/AWhzSsx5xThOvcqLL0GnXIGDSB2sITA5wt04ea01o0QRdiPdnhvUiTLGpPI+kIx\nrGZdXDZZy31tgVmWSXda8TgsRFUNbyhGaW3rk1FKkoyUVYSwu/W2zSzUFUwSRLJY8VxxG/Vv/ZnQ\nplwcw89OuKyuiKWgF5YrfoBSWUZo3RJqX/4DtkGjsI88N6kxcEaRGmdrJjPQOQ3ZsSxfvpw5c+YQ\nDodbFEFuzbt6UsPWVsnmQI9re+ihh3j88ce54IIL4r6+PRFCI1a6m/CWVcT2b8c6YATpV9+RFAeJ\nrorqrcG78BXSLryp1e2g+aoRtYf0WUUrlh41TVAXiuILR3FaLRQkIYlseyJJEjazidw0E4pmxduQ\njNJpNZHptCXscCI5PciFA9Aq9qDFwnruwAQ7DtnuxHPFbdS99WdMmbmnTAqcb2POLSLtopvQAl5C\nm1ZQ//bTmLMLsA8bj7XfGaeE93Oi/PrXv6agoIA777yTAQMGkJbW/Pt+3nnnJXyPk7Z+QYHeYZ0o\n2VxdXR0Qf7K5jRs3cs011/Df//3f3HnnnSc9/7777mv697E5h9oSta6S8LZ1RLatRbJasQ8dj/u8\n77aZEn1XQWgqvo9exzHqO1h7D068HCEQ9RUIfw1y4QB9czzBcrzhGHXBKE6riR4ZrjbxOmxPzA3J\nKNMdVryhKAfrAqTZrWQ4rMgJpCyRLPrSpFa5Fyr3QW6vhPfJTBk5pF10E/6P/07Gjb9Adnb/7ADN\nIbs8uCZcgnPsVKIlmwlvWYV/6bvYBo7AdtoYzPnFnXaVoKPYtGkTK1asYMSIES2e15LPxck4qbv/\ne++9x7Rp05g2bRrz588/7vhpp53Gzp072b59OwMGGJNL2rRpE+eddx5z5szh97///ckr2c4uq6q3\nhujuLUR2rEf11WIbNBLb4NGY83qmHtIGGpOCeqb9KOHOUQiBqC1DhHx6otYEN+PDMZUqfxiTLJHt\nsrXrDK09lUcUVaM2GCEUU8ly2XBZzQk9j0LTdOOGQM7t2yonq8DnC1DrKkm77NbUu9GAWl9NZPs6\nwtvWAGAbNArbgOGYsgvbvY06o7t/79692bRpE+np6W12j5MaNr/fT25ubrNxbNXV1eTm5jJgwICT\nxrE1smnTJi644AJmzZrF3Llzmz4vLS3lww8/5Pbbbz++km0tqSUEalUZ0b3fEN29BdVbjbXfMGwD\nRmDpNbDbuzbHi1JdTv07z5Bx0y8wuRN7OHWjdggRbjBqCTiJaEJQG4gQiChkuRPv6FtDR0hqNRpy\ni0km223DnIBhEkIgqvYhNBU5r2/igxNVoe6NP+EcewG2QaMSKqO7IoRAqThAZOcGors2gWzCNuAM\nrH1Ox1zQJ2miyy3RGQ3bo48+is1mO+lKXb9+/ZrNNmCEk/Ymbreb2267jWeeeYaFCxdyySWXNB1r\nDJ676667mj7zer3cdNNN5OTk8OKLLx7lzrl582bOP//844wawK5du3j44YebNWxtgeqvJ1a6i1jp\nTmL7toPZirXPaTgnXoqlR/+UMTsBQmj4F72Fc/zFCRs1QF9+DHmRCwYkZNQiikqlL4zVLNMj09kq\n78ET4Y8oVAejVAej1IZi+CIKoZhKOKYRUbWGDqMvz67cg9UkY7eYcFhkXFYzWQ4LWU4r2U4r6fbk\nGly7xUSPDCe1wShltUFy3HactvjaUJIkyOmNqNyLVrkPObdPQnWUTGbc512H74OXsfQa3O1Fk+NB\nkiTd2aSgF+KcK1ArS4ns3oJ/2Xto3mosPQdi6TUQS88BmDJy221Q1phg9ESUlpaeNHi6NYwZM4b/\n/d//Zfny5Vx22WUn9Ircu3dvwvcwJKnl9Xo5++yzqa+v54033uDMM8/kww8/5JZbbmHixIn85z//\naTJgb7/9Ntdffz0Aa9as4cwzzwRgy5YtTJkyhWg0yqWXXnrcKOLw4cPs2bOHPXv2HF/JVo46hKai\nVpcTK9+PUrGfWFkJIhzE0qM/lp4DsPY+7ZRRBmkt4W1rCW9cTvr1cxIe5Wv+GkRdOXLhwISEe33h\nGDWBCNkuG2578mKJvOEYJTVBDtaHOegNEVE0cl1WMp1WshwWPHYLDrNuwOwNsW8eu5n6UIyoKgjH\nVEKKii+iUBuKUROMUR2MomqCIo+dnul2emc6yXUlnrH7WMIxlcO+EG6bhUxn/OUKoaFVlOj7b9k9\nE66Hf9FbYLHhPrd5EYYUR6MFvET3byd2YBex0l0gNMxFfbHk98Zc0Atzbo+kKJ0013feeuutfPTR\nR02hWseydOnSo7JlJ5uWYte+jSRJCcexxa3u/8477zSp+99yyy3HqfsfOnSIc7fe76AAACAASURB\nVM89l5ycHJYuXYrNprug3n///dx///1NDX3sCyiEOGGiO6OGTSgx1Ppq1Poq1LpK1KpylOpDqLWV\nmNIyMRcUY87vjaWwD6acglMiwDSZCCVG7auPkHbhTVh69Dv5Bc2V0eDSLxcMiDvLsBCC6kCEcEwh\nLy053o61wSjbKv3srArgjcTom+WiON1Oj3QHWQ7LSQ2FkaVIbzjGQW+Y0vowe2oCAAzMcTM4101h\nmq3VRk7VNA77wgDkpTkwxelYIlQFrXwnUloOsiexDk0LeKl9/f+RccNdmNITDyc4FRFCoHlriJXt\nQSnfh1JxAKWmHFNaJqbsQsw5hZgy8zClZyOn5yDbjL83JzJsU6ZMSTjXWWuRZZm5c+eetE9/4IEH\n2j5tTUciSRKhrV+BpuoJQKNhRCSEFgmhBXxoAS9aoB4RCWHyZCKn52DKyMGcVYAppxBTVn5SE1ue\nqoQ2fUF071bSr0xsuVgoUbRDO5Bz4nfp14TgsFePqcxLcyTkFfjtsnZXB1hfVk+lP8ppeW4G5rjo\nme5o0oA0Srx7bEIIDgei7Kzy881hP1aTxKiidE7PS0s4Vq2x3JqA7lhS4HHE7REqYhG0QzuR8/ok\nHMQdWPUhWsBL2vnXJ3R9iiMIRUGtO4xSdQi1+hBqXVXDgL0ayWxGdqUjuzzILg+S3YlstSPZ7Lo2\nqGxCkmVMOUVYcgqbNWyTJ09uURCjLTEqbtwaEeQuE2wR279d/8HMFiSbA8nuwpyeg+xMQ3Z7kJ0N\nP3IXF2jVolHCFYfRIhGEoiIUBUtmBvbCgg79bkJTCa1bTNpFNyV2vRBolfv0wOs4jZqqCSq8QSwm\nmRy3PeEZjqoJNpd7+XJ/LW6bmZFF6Qwe5sbcCiMZL5Ikke+2ke+2MbF3Fntrg2wo87KspJqRRemM\nKc7AnsBMVJIkst126oJRDtUHyfc4sZqNPy+SxYacU6zvtyWo+OIYcS61r/wP6riLWrX/2lqEEESr\nqokcrkSSZSSzCcliwZabg9nVdlkhkolkNmPOKcKcc/RelxACEfI3DOYb/kSCiEgYra4KoURB1RCa\niq2Trkh98cUXhs5L1HEEutCMrQtUMy4Uvx/fth34tu/Ev20Hgd17CJUdIlZXjy03B5PdjmQ2I5lN\nRKtrULw+XP364DljKMU3T8fVp32TP0Z2bya0bgkZ15085rA5tLqKIx6QcRgmVROU1wexW0xkuRJb\nthNCsK3Sz/I91WQ6LEzsk02RJzkz+GR5RdaFYqzcX0NJdZCxxRmc2SM9IW9H0Pcga4ORhKTDtJqD\nCCWasDOJf+m/kKx2XBMuOfnJSSRaU8uB196gds16Arv0DtFeVKAnpVUUtGiMSGUlJpsde49CnL17\nkXbaIP3P6YOxZrdetLszcqKlSCEE+/fvZ/PmzQQCAfr06cO0adP4r//6rxPuvXUlUoatnQiVHaL2\nq3XUb9hE/YZNhA4cxD1oAO6Gl8vdvx/2HoXYcnOadQOOeX0EdpdQ/cWXlP7jLbImjKPfT27H1a9P\nu9S//l/PYTt9DPbTRsd9rYiG0Mp36TOBODIsaEI3ajZz4katKhDhox2VaELwnb7Z9MpMrtdest39\nqwJRlu+ppjIQYerAPPpmJVbfRuNWmO6Ma4lTaJqeFSA9HzkBEV2lupz6f/2FrFvvTboKfnNEq2vY\n+8LLlP3rffIvmUr+hefjGtAPa3ZWs/v4sZpaQgcPEdizF/+2Hfrgctt2LJ400kcOJ33kcDLHjMI1\nIL4BWGflRIZt6dKlPP7440ydOpVYLMY777zDnXfeSUFBAZ9//nmTMEdbsn37dl599VXWrFnD4cOH\nWbduHZs3b2bjxo3ceOONmFoRDpEybG1EpKqa2i/XUPPlV9SuXoMSCJJ11mjSR40gfcQZpA0ehGxN\nzKNP8fsp/cfb7Hv5dU773W/Iv+j8JNf+aNT6aur++QRZP/h93FJBQgi0QzuR0rLj0igUQlDhDWGS\npYSWHzUhWH2gljWldZzTJ5sRhZ426ajaKo5tT02Aj3dU0jvTyZT+OdjiWFZsxBuK4g3HKEx3xuVQ\nIiJBtIoS5B6JpQqqe/tpHCPPxTZgeNzXxoNv2w7W/+hO8i+eSu/bZmDPT0yrUWgawT37qGsYdNZ+\ntRY1GCJz7JlkjhtL1oSzcBYn7jHakTTXd27atIn8/Pzj1KKeeOIJ7r777hOKcSSThx9+mPvuu6/J\n67HRA3LVqlVMnjyZKVOm8O677zY5H8ZLyrAlCTUSoW7tBqpXrKTmi9WEDx0ic+xoMseNIWvcmDYZ\nAfq+2c66H93JsEceJPvs4/PlJYvglx+jhfy4J18T97Warxrhr0YuGBjX96/2h4mqGgUeR9zt5g3H\neG9rOVaTzMWD8/AkMSTgWNoyQDuiaCwpqWJvTZArhhQktHyaaDtq1QcAKaEQgPDW1UR3b8FzxQ/i\nvtYowX0HWHPLjxj821+Qf1HydWZDZYf0gemq1dSs+gqT3UbW+LPImjiBrPFjsXiSk0qprYmn7wwG\ng7jdbkwmE1VVVW2mDPLmm28yffp0zj33XKZPn07Pnj256qqrmhxFDh48yCWXXMLMmTP5+c9/ntA9\nUoYtQYQQBHbvoXrFKmpWrKRu/Sbcg/qTPXECWWePwzNsCHI7CKHWrlnHprt/w/h3XseW1zaxJ7Wv\nPoJ76nQsBfHt6wlNRTv4DXJePz3hq0F84Rj1oWjcMw2Ag/Uh/r21nNE9MjirOPnZto+lPZRHdlb5\n+XhHJZP7ZzM0P74sF40zX12lxLhhFKqCdnAbckF/JGt8uqhaNEztCw+Qeeu9bRKwrUVjrL7hFnp8\ndxrF32t7D0z9XS+h5osvqf786Hc9e+J4PMOGtIuKiBGWLFnCkiVLmv5///33x9V3FhYWcvjwYVav\nXs3o0fFvOxjhnHPOYcqUKTz44INNnx3rAbl06VJ+9rOfsWHDhoTukTJscRCtqaVm1VfUrPyS6i9W\nIckmsieOJ3vieDLHddwobvdTz+H9+htGPvOnpHfkSk0F3nefI/PW38W/HFhXDrEwcm4fw9dEFZVD\n9SEKE1Dl/7rCy5Ld1VwyOI9+2e3j/dZeklpVgQjztxzitNw0zu17/P5RS6iaoKwuoOtL2ozPXrX6\nw4iwH1N+/DGL3gUvYB04MqE92ZOx+8ln8W3bwYinH+uQfbDG1ZmaL1ZRvWIV4fLDZI3XlyyzJ47H\n0aPtVDviJd6+s6CggMrKyjY1bB6Ph71795KVdcRh51jDFgwGKSwspL6+PqF7pAxbC6jhMHXrNurL\nEStXE9x/gMwxZ5J19jiyzx6Hs0/vTrHBrI9gZ9D3Jz8k/8LEUz00R3DNIjRfLe4p18Z1ndBUtNKt\nyIWD9NgaI9cIQVldkDSHBY89PtWFdQfr+OpAHdeeUUiOq+3yUmmaoCYQpdofAQGn9fCw7aAXj9NC\nblriaWWMEIypvLvlEFlOCxcNyovr2QvHVCq8IXpkOg17WwpNa5hx941rxg0Q/vpLovu247k0uUHA\nwX0H+OqmWxn/7hvYcjuHWlDkcCXVX3xJzcovqVm5GpPLRfaEs8iacBaZZ43Bkt5xuSSP7Tu/+OIL\nZs6c2ay2r9/vx+PxtPlSZFpaGqWlpUeVf6xhKykpYcSIEfh8voTu0WXi2NoDNRymfsNmateso3bN\nOnxfb8M9eCBZ48cy6Dc/J334GciWztdkstVCv9k/Zt8LryTdsMUO7MA+4ty4rxPeKiSHx7BRA6gL\nRTHJEmlxzCoA1h+sZ01pHdNH9iA9iftpoajK16V1bNxfx8b9tZQc9nPYG8ZlM5OTZmsI5j6H372z\nibpAlNpglCyXlV7ZLob3ymBEr0xG9Mog3dl6aSQAp8XEd4cX8c7mMj7eUcmFg4zrC9otJtLsFqr9\nEfLSjDnjSLKM5MlFq6/AlNc3rrpaeg0msOJ9hKYlNf5y/6v/oOf073YaowZgy8ulaNrlFE27HKFp\n+HfsombVag6+/S5f3/MAzj69yBwziswxZ5IxelSHGrpoNMquXbtYs2YNY8aMOerYX/7yFwAuu+yy\nNlXeHzp0KI8++uhRS5HH8vzzzzNy5MiE73FKz9iiNbXUb9pC3doN1K1bj2/7TtIGDSRjzCgyx55J\nxqgRmN1dI8+Upih8fsEVjH7pL0mLcROKQvVff0fWbXPjUm4RQtNna/nG92diqkZZXZAeGc64Zj1b\nK3ws21PN9BE9yHC03qipmuDL3VW8v/4gy7dV0jfP1WCgMhlYkEZ+uh275cgS6beXImOqRqU3wp5K\nPxv317JxXx1fH6xjRK9MLh/Vg8mn5+Owtn4vJqpqvLWpjB4eO5P7G+/ghRAcrAuS6bQaXpJMZObd\nSO2rj5B20U2Y84rjuu5EaNEYyydfwri3X8Ne1DUS/GrRKN7NW5sGy/UbNuPoWUTGmSPJOHMk6aOG\n6+ILbbTyc2zfuWzZMiZPnky/fv148sknmThxIqBr/M6ZM4e8vDxWrFjRpiLIr7zyCjNnzmTSpEnc\nfvvtjBgxghEjRrBr1y727NnDSy+9xN///ndef/11pk+fntA9ThnDFqmswrdtB/4du/Bt/Yb6zVtR\nvF48w4YceciGD8Pk7LoJRLc9+Ai2gjz6/vDWpJQXKyshsOzfZEy/O67rtEAtwleNqcBYfj6gKQg7\nw2m889xXG+T9byq4YURRq5cfAxGFf67axxsr95HrsXPFqB5cNLyQTFfLs62T7bGFoipLvqng/fUH\n2XygjstH9WDmuf3IS29dgHgopvL3DaWMLExndE/jAbWhqEKVP0yPTJdh+TCt5iAgIWfF19n5PnsL\nc3YBjpHxz/ibo/rzlZQ881fG/v3FpJTXEWgxBd8326lbt566tRuo37gZIQTpZwwlbejppA0eiHvw\nQBw9eyTF2DXXdy5dupTXX3+dJUuWcODAASRJol+/flx55ZXtFqA9e/ZsnnnmmaPq+O263nXXXTz2\n2GMJl9+tDJsWjRIqO0T44CGC+w8Q2L2HQMkeArtKEIqKu+GhSTt9MOnDh+Ls3avLS3B9m5pVq9n1\nxLOc9Y+/JaW84NpFaH4v7u9Mi+s6tXyXHrfmMhbg29jZ9sx0GX6ZfRGFV9Ye4PLT8+ndiqDrmKLx\n9lf7eWHJbsb0y+a27/RnYIFxJ6B4nEcO14d5dcUeFqw7yNVji7l1Uj88rZhl1odjvLaulKuGFNAz\nw/iArMIbwmaWDQ8imnQki4fGt6/3zRqie7/Bc8nNhq9piW0P/BF7jyL63NYx4r1tgRCCSHkF9Zu3\n4tv6jT7w3rYDNRjE1b8vrv79cPXri7N3MY6eRdiLijC7jD/vncXxrjkWLFjAs88+y+rVq6mvrycj\nI4Px48fz05/+9Kj0aInQZQzbgTfeRigqaiSC6vejBAIoXj/R6moi1TVEq6qJ1XuxF+Th6FGEo7gn\nrn59Gh6MPtgK8juFo0dbokYiLDvnQs5d9B/Maa1fQvV+8ArWfkPj8mwTShStbHtDJ3jyQYMQgkP1\nQTx2q+EUNJoQ/HPjQfpkOpnQO3EppC0H6vj9O5sozHAw56LBDC6Mf+8jEa/Iw/Vh/rJoJ8u2HebX\nVwxh6rDCuO/bSEl1gI93VnLL6GIcFmPLnI2ep8WZLsNi0uqhncjpeUhO43svSk0F3gUvkHXLfxu+\npiW+uOxaznj0D6SdPjgp5XVmorV1BHaX6IPz3XsIHiglXFpGqKwMk82ONTcba3YW1uxsLOkezG4X\nZpcL2elANpuRTCbShp5O+pDTOtywLV26tKnvHTRoULuomnQ+T4gT4Ptmu65qbbNidrtx9OyB2e3G\nmqP/uNbsLGw52Z0mnqQjMNlseM4YQt26DeR855xWl6dUluIcd2Fc14hALZIzw3BKoHBMRRPgiiNR\n5lcH6pAliXG94pd8At2z8eXPS3jt87381+VDuGh44oYlEfLS7fz+6jPYtL+W3729iRU7qvj15UMS\n2n/rl+1icF2IT3ZWcuUQYx2G1WzCYTXhDUcNz9okdybCXxuXYTNl5CKCfrRICNnWuiX+SGUVsdp6\n3IMHtqqcroI1MwPrmDPJHHPmUZ83yoJFq2uIVFUTra5G8eoD/ZjPh3q4EqEoTeLpnYEpU6Y0/Xve\nvHn84AdtF7jfSJcxbKffl5xRX3cnfcQZ1G/+utWGTcQiaAEvpsz4gr5FoB4507ihqA9FSXcYT5BZ\nE4zy1YFabh5dHHeKGdD30v77nxuoC8V47adnUxjHEl6yGd4rk7/PmshD725hxl++4E/fH03PBLQh\nz+mTxctrD7Czys/AHGMz9XSHlQpvyHDbS850tJqyuLwcJVnGlJWPWl2OXBSfV+Wx1G/+Gs8ZQ7rV\n1kEiSJLUMFPLwj3I+B52R5No+plEObWfkm6IZ9gQvF9/0+pylJoKPV29bHwWIZQYKBEwmM8rqqhE\nFQ23wdmaEIJPdlYyvndWQm79vnCMO15cTa7Hzrzbx3WoUWvEZTPzh+tHcM3YYm776yr2VQXiLsNi\nkrloUB6f7qwkqhrrQGxmExaTTCCqGDpfMlnA6oBwfHFFpuwClOpDcV3THL4tW/EMG9LqclKcGqQM\nWzfDPWgA/h27Wl2OWnMYc3b+yU/8FiLkRbKnGZ59+SMx3PaTZ6luZE9NEH9U4cwe8cfY+MMxZr20\nhqE9M7jnqqGtSuqZbCRJ4sYJfbjj/IH8+MXV7K+O37gVZzjome5gbWmd4WvS7BZ84Zjxejo9iFCc\nhi0rH7X2cFzXNId/527cg06NZcgUOq1Zsuw8b3eKpODoUUSsvh7F729VOWrtYUwZcaqlh31gMImo\nEAJ/WCHN4MxLCMHne2s4t0923EuQUUXlrtfWMbgwjV9ffnqndSK6ekwxP5zcnzte/IpKbzju68/p\nm8Xa0joiimrofJfVTFTRiBmc5Un2tLgNmzkzD7UmCYZtVwmu/q1bzkzRtXjppZcSvrbL7LGlMIYk\nyziLexI8cBBPK7zH1PpqrP2GGj5fCIEIB5AzjO2vhWMqJpNkeOa0ry6EogkG5sSvAfn//vMNHruF\n314Rn7t6R3DtWb2o8kX45T/WM+/2cXHNLDMdVvpkOdlQ5jXkWCNJEi6bmUAkZsyJxOoATUEoMSSz\nsQGJnJ6N6q02dO6J0GIK4UPlOHt1zdQxKeC88+JTRGqtJ2fKsHVDHMU9Ce0vbZVh07w1mDxxuNIr\nUUCAwUSigaiCyxqfJ+TYBNT6F2+tYNWuKv4+a6Jh1/aO5odTBrC5tJ6/Lt7FTy8YFNe1ZxVn8s7m\nMsb0zDCUGcFlNVMbjBgybJIkgc0FkQCYjXncmTxZaN5ahNAMe8oeS7i8HGt2FrI1OdJkKdqfb2cc\nMEprBqEpw9YNsRfmEz5U3qoyNH8dsjsOd+FoCKxOQw+jEIJQVCHfY8x5oz4co8IXZtrQ+OJffKEY\nf1zwNQ9fP8LwkmdnQJYlfj9tGDc89TlThxXGFTCe57aRbrdQUhMw5CFpt5iIqhqqpmEy4HEo2ZyI\naBDJZezZkMwWJJsDEfQjuRLTSAwfqsBR1L4hGSmSy+LFiw3PwhqDyuOd5X2blGHrhtgL8olUJL6v\nIVQVLeRHdhnvUEUkaFgBXtEEAgwvs20p93J6flrcDh/PfraTcwblMaav8czdnYW8dDuzpg7iD+99\nzYs/HBfX6HV4oYfN5V5Dhk2SJBwWM6GYittmwLBZHWjeSsN1AZDd6aj+euQEDVukogJbgtmxU3QO\nvvOd77Tr/VLOI90Qa042karE9zW0kB/J7orP1T8WRrIY0z8MxxTsFpPhznp7ZYDTcuNTUjlQHWDh\nxjJmXdh1PemuHlOMPxxj6bb4BikDc1wcqAsZdiKxW0yEY8bOxeqAWHyOLbLLgwgmln4EIFpV3anU\n/FO0DyUlJQlfmzJs3RBrdjbR6sQNmwj6kB1xSnLFwmAwA0A4pmI3mES0JhgloqgUeeITDf7r4t1M\nH9+brDbMzdbWmGSJOy8czNOf7IhrM91mNlGc7mB3ddDQ+XaziYhRw2aygKYhVGPxbwCy040W8Bo+\n/1ii1bVYsxJTmUnRdenTp0/C16YMWzfEkpFOrD7xjkQLB5Edxr0PhRCgxAw7jkQVDZtBw7a3Nkjf\nLGN7d414QzEWf1PBDROSk76nIzl3cC6KKti433h8GkCfLCf76owZNotZJqZqaAaMpyRJYLE1OAsZ\nQ7a70MLG6tIcsfr6TiMPlSIxHnjgAR544AE2bNjQLvczZNi8Xi933303vXv3xuFwMHjwYB5++GEU\nxfioDfQkd/fffz+DBg3C4XDQp08ffvWrXxEIxB+QmuLEWNI9xOoSS6kOIMLG98sAvZMzmQ2LHsdU\nDYvZ2JjqQF2I4jgVQj7cVMbEQblkJCnBZ0ciSRLTxvTk32tL47quV4aTA3UhQ+fKkoTZJBuOZ8Ns\njcuwSTYnItIaw+bt0OSc3ZFk9elGmDRpEosXL2bx4sWUlZUlvfzmOKnziNfrZeLEidTX1/PGG28w\nevRoFi5cyIwZM/jiiy9YsGABsgFvqlgsxqWXXsqaNWt4/fXXueCCC/jyyy+ZPn06ixYtYvny5Tid\niacfSXEEs9uN2orBgoiGkWxxLP2pxmdrMVVgkiXDQdYV/gjnxun8sWTrYa4Zm5zklp2BC4YWMOMv\nK9E0YThkIdtpIRRTCcVUQ6r/1gbDZmQmLZksCCWK0Tm0ZLOj+WsNnn08it+PyR1//GKK5klWn26U\nRFz9W8tJa3/PPffw9ddf8/zzz3P22Wdjs9mYNm0a9913HwsXLuS5554zdKMnn3ySRYsW8cc//pHL\nLrsMm83GpEmTeOqpp1i/fj33339/q79MCh2Ty4kSCCYc5CiiEaR4MmYrMV1L0ACKphn2bgzHVIIx\nlcw4cpaFogob99cyYWD3cTbokeUk02Vl60Hjs3BJkshz2zjsjxg6P74Zm0UfzBiti9WOiMSvpNKI\nGghidqUMW7JIVp/emWmxh/H5fMybN4+ioiIuvvjio47NnDkTSZL405/+dNKbCCF4/PHHsVqt3Hzz\n0UkHr7rqKjIzM3n22WeJRIy9hClaRjabkWQJEUtsWUHEIkiWOJbxNAVMxiJHFFXDbHA0WBuKkRWH\n8j/AN2Ve+uW540qD0xUY1SeTjfvjm/VkOa3UhIwZILMsoWoGB0KyGTSDziaAZLEi4li6PBY1HMZk\nb13G8RQ6yerTOzst9jCLFi0iEokwbty4445lZWUxcOBAdu3axc6dO1u8yaZNmzh48CBDhw7FdczI\ny2QyMXbsWPx+P8uWLUvgK6RoDtlmR0twoCCUqGHJJEDv5AyGBqiaMKSIAVAXjpERZ4bpr0vrGdqz\n+zkaDOuZwddxzNgAMuwW6gwaNpMsoxjVjJRNcXlFSmYLImZ8hncsWiSKbOv6+6WdgWT16Z2dFg3b\n5s2bgRO7XTZ+vmXLlhZvkqxyUhhfr5bNZrQEN4KFqhpeWgTiMmyaML5PFIiquFtIvtlcW+yvDtA3\nt/stW/XJdbG/6sQOGM21hctqMpyWxiRjyCsS0H9rEUd+LZMZEccM71i0WAzJYvx57Ig9na7CqdIX\nt2jYyst1WabMzOZjSDIy9JFxRUVFizdJVjkpjL+0ktmESNTDSVP1ns4oQgODy4WaEIYdR4LRlh0f\nmmuLstpQp8izlmyKMhyUteDl2FxbOC0mggbj02RJwuhKJJIMcSSOlEwmiGOGdyxCUZDNxpeWU4bt\nxJwqfXGLvVcopL9IlhOMlqwNoqTBYMuuvMkqJ4VxJJMJkWjWWqGBZFx1BCH0zs7oqQa3zGJxOJo0\n4gsreOJcvuwKeBzx5U4DXbJMUePT5zN4MhCHY5Ik6z98oggBp3jm7GRxqvTFLT4tDoc+8o2dYH08\nGtU3hE/mpp+sclIYx3PGUH2knACyJysunUjMNiSDziNmk4zJoGXz2Mx44nQC6ZvrItPV/fZjrGaZ\nM3pmGHfwABwWmWyDbSFJYDUYNI9sMiyfBrpXpCk7PgHrb+MZNgQ5jqXIFCfmVOmLW+w1Cgr0h7G2\ntnlvrLo6XQ0hP7/lTMutLad///6dPo9We2I4NOLPj7ZtRToBzbXFA+1ch/Z8NP/24xMf6/whM9MT\nv/TZx+M6vfO3RfvQv3//o/6frD69s9OiYRs+fDgAe/bsafb43r17kSSJM844o8WbGCkHOGE5u3bt\narH8FClSpEhxcpLVp3d2JNHCwrrf7yc3N5fs7GxKS4+W9KmuriY3N5cBAwawY8eOk96ouLiYyspK\nqqqqcLuPCOwqikJ+fj6KolBZWdm0xpsiRYoUKZJLMvv0zkyLe2xut5vbbruNsrIyFi5ceNSxl156\nCYC77rqr6TOv18vll1/OzJkz0Y5xXPjZz35GNBrl1VdfPerzf//739TW1vLjH/84ZdRSpEiRog2J\nt0/vsoiTUF9fL4YOHSp69uwpPv/8cxEMBsX8+fNFWlqauPjii4Wqqk3nvvXWW0KSJCFJkli7du1R\n5cRiMTFlyhSRnp4uFixYIILBoFiyZIkoKCgQo0aNEoFA4GRVSZEiRYoUx6BpWlznx9Ond1VOatiE\n0BvirrvuEsXFxcJms4mBAweKhx56SMRisaPOKysrE/379xfjxo0T4XD4uHIikYiYO3eu6N+/v7DZ\nbKK4uFjMnj1b+P3+5HybLkwwGBQ+n6+jq9Ep8Pl8Ys+ePUIIIRRF6djKdDA1NTXi8ccfF5988okQ\nIv5OrDvh9XrFtm3bmvqdU7kt/va3v4l58+aJ0tLShK432qd3VVrcY2tL/vCHP/DRRx+RkZHBxRdf\nzPTp08nMzEQIccp5QD755JO89dZbpKWlcckllzBjxgzS09M7ulodQnl5OZdddhmjR4/mueeea4qv\nOtWeCYCnnnqK119/nSFDhhAKhXjuuedIS4sjDKMb8eijjzJ//nysVit5eXk8/vjjFBUVdXS12p3y\n8nKmT59O7969CYVCTds/s2fPRtO0pKryd2U6pBU+/fRT1q1bxwcffMBVP8DmrQAACV5JREFUV13F\nggULuP322wFOqQ7M6/Vy8803s3XrVv71r38xYcIE3nzzTR577LGOrlqHUVBQQDgcZsuWLcyfPx8g\n4SwFXZmKigrWrFnDa6+9xgsvvMArr7xCWlracXvXpwL/8z//w8qVK/n000+59957qaqq4pFHHuno\nanUIX331FT179uTll1/mxRdf5LrrruNXv/oVGzZsSBm1b9EhLbF06VIsFgsul4vvf//73H///bz/\n/vv87W9/64jqdBi7d+9GVVUee+wxcnJy+PnPf84FF1zA/v37T9nkqxUVFfTs2ZPzzz+fBQsWUF1d\njSzLp1yH/p///IdoNEr//v35+uuveeKJJ1i2bFlTosZTwdg3fsfNmzfTp08fnE4n5513HoMHDyYr\nK6uDa9e+NLaFoijs2LEDn8+H2+3m5ptv5sorr+QHP/gBqpq4Hmd3o0MMW3FxMSaTifLycqxWK2PH\njuV3v/sdv/nNb6ivTzzzc1cjPz8fTdOaZqkul4u+ffuyf//+47IgnCrk5+czaNAgsrOzCYVC/OMf\n/wA4ZUajjR1Yz549cTgc/OUvf+FnP/sZpaWl3HfffVx66aV4vd5TYmVDkiTC4TBZWVl8/fXXbN26\nFVmWOXjwIOnp6WzcuLGjq9huNP7eiqKQl5fH2rVrAV0C69FHH2XHjh289tprAKfcILA52rW3aHxp\nXS4Xe/fuZcOGDU3H7r77bmw2G0888QTQ/X8cVVUpKiriD3/4AzabrSkl+9ixY+nTpw/RaPSUGJUf\ny8GDB5FlmZ/85CcMGTKEJUuWUFlZCXR9/TojNHZgoVCIw4cP8+mnn/L888/zpz/9ibfeeotoNMqd\nd97ZwbVsHzRNw263c/PNN5Ofn8+vfvUrsrKyyM/PZ/fu3Vx77bU8+OCDQPeawVZVVR33WeP3mzRp\nEmVlZSxfvhyfzwfoE4XZs2fz0EMPAafOILBF2sIjZdGiReLCCy8Ud999t3j33XebPv+2N9NZZ50l\nZs2aJQ4dOtR0/JlnnhEDBw4UkUikLarVIZyoLY719mv08Hr77bfFz372MyGEEJWVld3C9baRE7XF\nsd/x6quvFjt37hTbtm0Tt912m/je974nrr/+erFmzZpu0x4ney40TRMXXHCBkCSpySNSCCGWLVsm\nJEkSBw4caPc6txVG35F58+aJ++67Twiht8+bb74pJEk6qg/p6sydO1dcccUVYuvWrUKIoz0/G9vj\nwQcfFCNGjBCfffZZ07ENGzaIs846S3z55ZftW+FOStJN+8KFC7n//vv59a9/zaBBg/jlL3/JI488\nQjgcxmw2E41GkSSJn//853z88cd88sknTaORQYMG0bdvXw4ePJjsanUILbWFyWQ6albaOFL3er2M\nHz8e0DeKH31U13sUXXxE2lJbNO6hCSGora1l8ODBDBgwAKfTydatW1m2bBmTJ09m9OjR3WI0erLn\novEdmTNnDpmZmSxatKipfSZMmMDo0aO7TVJeI++IEAJFUVi1ahU+nw9VVYnFYkydOpWBAwfy3nvv\ndfTXSAqN+2eVlZWsWLGCcDh8VNaFxj7innvuIS0tjb///e9s3boVgPT09CaP0RRguu++++5LZoHL\nly9H0zRmzZrFmDFj0DSNDz/8kEAg0JS1VZZlhg0bxvr169mwYQMWi6XJpXnRokXccccd3aIDO1lb\niGbc2F9//XWuuOIK7HY79957L/Pnz+e2227Dbjeupt4ZMdIWsizjcDh46qmnmD9/Pu+88w7XXHMN\nGRkZLFy4kAULFnDRRRc1KZR3VYy+I4MHD+abb75h/fr12O12hg8fTlVVFUuXLmX27NndwvXf6HMh\nyzJvvvkmXq+XwYMHU1RURE1NDZ9++imzZs0iJyeno79Kq1m3bh1Op5O8vDwWL17M6aefTo8ePZr6\nCEmSiMVimEwmevfuzfLly3n//ff57ne/y9KlS9m+fTvXXXddl1fmTwZJtx5btmxpWvsFmDFjBqNG\njeKNN95g9+7dmEwmwuEwAHPnzmX06NHMmjWLBx98kFtuuYUpU6YAXX+GAidvC1mWm/bWACKRCFu2\nbOHFF18kNzeXYDDI2rVru0VMm5G2aEyZcf7559O/f39ee+01pk2bxpo1a5gwYQJ/+9vfuoU3XDzv\nyH333cfZZ5/NHXfcwW9/+1uuueYahg0bRnZ29inzjjS2xS9+8QtKSkqYM2cOjz32GN/73vcYM2bM\nCbNBdzVGjBjBbbfdxr333ksoFOKjjz5qUuFv/K0b86idf/75/N///R+FhYXMmDGDp556igcffLBb\nGPikkOy1zaVLlwqLxSLKysqO+uyiiy4S9957b9NnoVCo6d/Lly8X8+bNE6tWrUp2dToUo23RqNKy\nbds2YTabxciRI49aP+8OGG2LaDR6lPrB5s2bxcaNG9u1rm1NvO+Ipmli0aJF4plnnjll35FgMCiE\nEGL16tXiqaeeEnPmzBGrV69u9/q2NY17aq+++qo477zzxMcff3zUcZ/PJxYuXHjU+dXV1e1ax65A\n0g2bqqpi9OjRYsaMGU2fxWIx8ctf/lLcdNNNoqKiQrz//vti+vTpyb51p8NoW9xwww1CCCHq6uqO\n2jzvThhpiwULFjQ9F5qmdRtHkWNJvSNHMNoW119/fQfWsmO4/vrrxZw5c5rk5YQQYtOmTUKSJPHV\nV191XMW6AG3iFfnuu+8KSZKOGl3Onz9fDBo0SAghxJ49e0RhYaHYvHlzW9y+U2G0LbrbrKQ5Us/F\nEVJtcYRUWxxN46xt6dKlYuLEiWLBggVCiCOz1j//+c+isrKyw+rXFWgTw6YoipgxY4YYMmRIkyuu\npmninHPOEeXl5UIIXdD0VCDVFkdItcURUm1xhFRbnJh77rlHTJ06VUybNk08//zzHV2dLkObiiBP\nmDCBHj16cN555/HJJ59QXFzME088cUqoJhxLqi2OkGqLI6Ta4giptjie2bNns3DhQh566CFuvPHG\njq5Ol6FNDdv+/fvZtGkT7733Hueeey4333xzW92q05NqiyOk2uIIqbY4QqotjqaiooLFixdzzTXX\npJIwx0mHpa1JkSJFihQp2oKuHwWdIkWKFClSfIuUYUuRIkWKFN2KlGFLkSJFihTdipRhS5EiRYoU\n3YqUYUuRIkWKFN2KlGFLkSJFihTdipRhS5EiRYoU3YqUYUuRIkWKFN2KlGFLkSJFihTdiv8PBtOH\nCPQAzG8AAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x64b3b10>" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Advanced exercises" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "We are going to play a bit with regression\n", "-Create a vector x of equally spaced number between x\u2208[0,5\u03c0] of 1000 points (keyword: linspace)\n", "\n", "-create a vector y, so that y=sin(x) with some random noise\n", "\n", "-plot it\n", "\n", "-Try to do a polynomial fit on y(x) using numpy.polyfit, with different polynomial degree" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "x= np.linspace(0, 5*math.pi, 1000)\n", "\n", "Y= np.sin(x)\n", "noise = np.random.normal(-0.1,0.1,1000)\n", "\n", "y=Y+noise\n", "\n", "fig, ax1 = plt.subplots(nrows=1, ncols=1, figsize=(8,6))\n", "fig.suptitle(\"Sin + Noise\", fontsize=16)\n", "ax1.plot(x, y,color=\"black\",lw=2, ls='*', marker='.', label=\"Sin(x) + Noise\")\n", "\n", "\n", "\n", "plt.plot(x,Y,color=\"red\", linewidth=2.00,label=\"Sin(x)\")\n", "\n", "for i in [2,4,6,8,10]:\n", " p = np.poly1d(np.polyfit(x,y,i))\n", " plt.plot(x,p(x), linewidth=2.00,label=\"Fit order: \"+str(i))\n", " \n", "\n", "ax1.legend(fontsize=12, loc=\"best\")\n", "\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 16, "text": [ "<matplotlib.legend.Legend at 0x83f1c30>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGQCAYAAADRHXheAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VMX6wPHv7qZuQhoJJQQIXTqBAFIUiAiCVCXYAa8m\n4FVU7hVsvyuggg0LIqIICiKhK0iHwBKKdEIJLUDoEEIgPYGUfX9/nN0lFVLozOd58mxy2s7Zncx5\nz8ycGZ2ICIqiKIqiPND0dzoBiqIoiqLceSogUBRFURRFBQSKoiiKoqiAQFEURVEUVECgKIqiKAoq\nIFAURVEUBRUQKIqiKIqCCggU5a6wa9cunn76aQICAggICKBRo0YEBQUxcuRILly4YNvuzz//pEKF\nCpw9e/YOprZwjz76KNWrV0ev1/Pdd98VWP/dd98REBCAXq8nICCAL7/8skTH/+6776hRowZXrly5\nWUlWFCUXFRAoyh22Z88e2rZtS1BQEJGRkURGRrJ371569uzJJ598wv79+23buru74+/vj6Oj4y1L\nz7p169DrS140rF+/no8//hiA9957j8jIyDzr3377bduyyMhIRowYUaLjly9fnurVq2MwGEqcNkVR\nbkwFBIpyh82YMQNXV1def/112zK9Xs+wYcNo0qRJnm0fe+wxtm3bhre39+1OZrF17NgRo9HIc889\nR1pa2k077ksvvcS6deuwt7e/acdUFOUaFRAoyh2WlZVFamoqly9fLrAuPDycdu3aATBt2jQaNGiA\nXq9n+vTpAOzYsYOAgAAcHR15+eWXGTduHG3btqVKlSoMGTKErKys23ouANWrV2fq1KlER0fzxhtv\nFGufqKgoevToQY0aNahZsyZdu3bNU8MwduxYateujV6vJyIiwrb84MGDdO/e3dbU0rFjR6ZOnZrn\n2Pv27aNbt27UrFmTmjVr0qtXL44cOXJzTlZR7iMqIFCUOywoKIjMzEyCgoJYtGhRnou4t7e3rXlg\n0KBBLF++HACdTgdAYGAgkZGR+Pr6snLlSho0aMA///xDeHg4U6dOZdq0abf1XKxTo/Tt25ehQ4cy\nffp0Zs2add19jh49Srt27WjQoAHHjx8nJiaGtm3b8uijjxIVFQXABx98YLvQW88doGfPnrRv397W\n1NK/f38+/fTTPMdu3749tWvXJiYmhpiYGPz9/XnkkUe4dOnSzT59RbmnqYBAUe6w3r1789FHH3Hw\n4EH69u2Lj48P/fr1Y8GCBQXu8Iuai0xEqFSpEt27dwegfv36PPTQQ6xbt+5WJz+P3BfrcePG0bx5\nc4YMGUJMTEyR+4waNQq9Xs8nn3xiW/bhhx/i4uLChx9+aFuW/9zj4+OJiYmhRo0atmWvvvoqr7zy\nSp5jm81mPvvsM9uyTz/9lKSkJH744YfSnaSi3KdUQKAod4FRo0Zx5swZvvnmG1q0aMGiRYsIDg6m\nRYsWnD59uljHqFu3bp6/PT09iYuLu+F+I0eOtFW5BwQEEBISApBnWUBAAEuWLCnROdnb2zN37lx0\nOh3PPfcc2dnZhW4XHh5Ow4YN83SUtLOzo1mzZoSHhxd5fG9vbxo2bMjgwYN599132bNnDw4ODvzf\n//1fnmM3atQIV1dX2zI3NzeqVKly24MlRbnbqYBAUe4SPj4+vP3226xZs4YzZ87w+uuvExUVxfvv\nv3/DfXU6HUajMc8yvV5PTk7ODfcdPXq0rco9MjKSKVOmAORZFhkZSY8ePUp8TjVr1uSXX35h+/bt\nee72c4uPj8fT07PAci8vLzIyMsjIyCjy+OvWrWPw4MFMmzaNgIAAGjZsyN9//53n2AcPHiwQ3GRm\nZhbrs1GUB4kKCBTlDtu5cycHDx7Ms6xixYpMmDCBunXrsnv37tuanqKaJUq7b3BwMIMHD2bcuHGs\nWrWqwHofH59CO1RevnwZo9GIs7Nzke9Xvnx5vvrqK86dO8fChQsxGAw8/fTTREdH245t7WeR++fU\nqVOsX7++1OepKPcjFRAoyh22ePFifv/99yLX382PGOaXuw9Bbt999x2NGzdmwIABBbbp3LkzUVFR\neWoCsrOz2b17N507dy7yveLi4njrrbcAMBgM9OrVi+nTp5OTk8OBAwcAePzxx9m/f3+B5ooZM2ao\nPgSKko8KCBTlDtPpdEyaNCnPHWt2djbjxo0jOjo6z/gEVvnvxEWk0Lvzstztl0ZR7+fo6MjcuXNJ\nT08vsG7kyJHodDr+97//2ZaNHTuWtLQ0xowZU+R7pKen8/PPP7N161bbug0bNuDq6kqrVq0ArW/G\n1atXGTlypG2bqKgoPvjgA9s2iqJYiKIod9Thw4flww8/lIcffliaNm0qjRs3lmrVqklQUJAsWrTI\ntt1vv/0mDRo0EL1eL9WqVZPXXntNjh07Jk2bNhVHR0fx8vKSp556SkRE2rRpI66uruLq6ioBAQGS\nmZlZ7PSYTCbR6/UlPo/27dtLtWrVxMvLS5o1ayaHDx8usM3MmTMLPXZUVJQ8+eSTUr16dfH395cu\nXbrIrl27bOvHjBkjtWvXFr1eL7Vr15ZPPvlEMjIyZOTIkRIQECABAQHSuHFj6dSpk2zcuDHPsQ8c\nOCA9e/aUqlWrSosWLaRjx46ydu3aEp+fotzvdCK3+RZCURRFUZS7jmoyUBRFURRFBQSKoiiKoqiA\nQFEURVEUVECgKIqiKAoqIFAURVEUBRUQKIqiKIqCCggURVEURUEFBIqiKIqioAICRVEURVFQAYGi\nKIqiKKiAQFEURVEUbnNAcPHiRfr3749er2f69Okl3n/UqFHo9foifzZt2nQLUq0oiqIo9z+72/VG\nc+fOZejQoWRlZQFFz5t+I+XLl8fHx6fQdS4uLqVOn6IoiqI8yG5LQDBx4kQ+//xzpk+fzpw5c0pV\nOwBaEDF06FA++uijm5xCRVEURXmw3ZYmg+bNm7N//36eeOIJyjrbspqtWVEURVFuvttSQ9CmTZvb\n8TaKoiiKopTSPfeUwe7du+nZsyeVK1fGycmJWrVqMXToUM6dO3enk6YoiqIo96x7LiDYuHEj/fv3\n5/DhwyQkJDBu3Djmzp1Ls2bNOHDgwJ1OnqIoiqLck27bUwY3w/PPP8/AgQPx9/e3Levbty96vZ6+\nffvy0ksvsXPnzjuXQEVRFEW5R91TNQR16tTJEwxY9e7dmwoVKrB7926ioqJuf8IURVEU5R53T9UQ\nXE+NGjWIi4vj8OHDNGrUyLa8du3aHDt27A6mTFEURVFur1q1anH06NES7XNP1RBcT1GPIx47dgwR\nuW9/Ro4cecfToM5Pnd+DeH7387mp87v3f0pzI3zPBASnT5+mUqVKJCcnF1gnIsTExKDT6ahXr94d\nSJ2iKIqi3NvuuoAgOTmZHj16MGjQIMxms215Tk4OcXFxrFq1qsA+CxYsID4+niZNmuRpLlAURVEU\npXhuSx8CESEpKQmAzMxMANLS0khMTESv1+Pm5mbbdtWqVSxbtgyAN998k+bNmwPX5j54/fXXycrK\n4vHHH8fZ2ZkVK1bw2muv4eXlxe+//347Tueu0rFjxzudhFtKnd+97X4+v/v53ECd34NIJyK3fCzg\nEydOULNmzWtvqtNhfVt/f39iYmJs686fP88jjzyCt7c3ERERODo62tbt2LGDmTNnsnr1ao4fP05O\nTg5Vq1bliSee4L333qNKlSoF3jv3eymKoijKg6A0177bEhDcSSogUBRFUR40pbn23XV9CBRFURRF\nuf1UQKAoiqIoigoIFEVRFEVRAYGiKIqiKKiAQFEURVEUVECgKIqiKAoqIFAURVEUBRUQKIqiKIqC\nCggURVEURUEFBIqiKIqioAICRVEURVFQAYGiKIqiKKiAQFEURVEUVECgKIqiKAoqIFAURVEUBRUQ\nKIqiKIqCCggURVEURUEFBIqiKIqioAICRVEURVFQAYGiKIqiKKiAQFEURVEUVECgKIqiKAoqIFAU\nRVEUBRUQKIqiKIqCCggURVEURUEFBIqiKIqioAICRVEURVFQAYGiKIqiKIDdnU7AfSkrC+bMgTVr\ntN9bt4YBA8Dd/U6nTFEURSkrEe1Vp7uz6bjJdCLWM7s/6XQ6buspHj0KffrA/v15l3t5wa+/Qu/e\nty8tiqIoys0hAgsXwjffwLZtYGcHHTvCRx9pN313mdJc+1RAcDPFxECbNhAXB7VqwdChYDTCjBmw\nYYMWTf72GwwceHvSoyiKopRdVhYMHqyV3/kZDDBhArz22u1P13WU5tqn+hDcLFeuaHf/cXEQFAS7\nd8Nbb0FICEREwCefaBHmyy/D4sV3OrWKoihKceTkQL9+WjBgNGoX/6QkiI2FYcO09f/+N/zxx51O\naZmpGoKb5YMP4LPPoG5drTqpsP4Co0bB6NHg6akFDNWq3fp0KYqiKKX3zjvw9ddas++KFdCyZd71\n332nBQZGI+zaBfXq3Zl05qOaDApxWwKCU6egTh3IzIR//tGaDQpjNkPPnrBsmVaLEB5+33VKURRF\nuW8sXQo9emj9BcLDoUOHgtuIwEsvwcyZd1W5rpoM7pRPPtGCgWefLToYANDrYfp0KF8e1q6F2bNv\nXxoVRVGU4ktK0voNAIwdW3gwANrFf/x4rQZh7Vr4++/bl8abTNUQlNXJk1oHQoADB7Qmgxv59Vd4\n5RWoVEl7KsHF5dalT1EURSm5YcO05oBWrbSaX4Ph+tuPHw9vv61tv2XLHa8lUDUEd8LkyVqnkv79\nixcMAAwapLVDxcZqHVQURVGUu8exYzBxonZRnzz5xsEAaB3Ivb21PmQm061P4y2gAoKyyMyEKVO0\n3//97+Lvp9fDmDHa719+CYmJNz9tiqIoSul8+KH2qOHAgdC0afH2MRq1J8sAvv321qXtFlJNBmUx\ndy488ww0agR795asikgEOnXSHkn87DN47z3bqtDQUKKjozEajYSFheHh4XELEq8oiqIUcPgw1K8P\n9vZaTYGfX/H3vXgRfH218v3MGa1Z+A5RTQa326xZ2uurr5a8vUing/ff136fMEGrbbCIjo4mIiKC\n5cuXExoaepMSqyi3R2hoKB07dqR79+4kqtov5S5WaF796ivtgj5oUMmCAQAfH+2phJwcbUC6e8xt\nCwguXrxI//790ev1TJ8+vVTHyMzMZPTo0dStWxdnZ2f8/f0ZPnw4aWlpNzm1xZCcDMuXaxf24ODS\nHaNLF2jYEM6d49cuXWwZ097eHoDAwEAmT558ExOtKDdf/kI1d0DbvHlzFRwod60CN19nzsDvv2vN\nusOHl+6gL7+svU6bdm3Og3uF3AZz5syRChUqiKenp+h0Opk+fXqJj5GZmSmPPfaYuLu7y5IlS+TK\nlSsSEREhlStXlubNm0taWlqh+92yU/zjDxEQeeSRsh1n6lQRkCMuLgIIIL1795bg4GBJSEi4OWlV\nlFuoQ4cOtrwbHBws3bp1E0ACAwOlXbt2edYpyt0kd15NSEgQGT5cK9f79y/9QTMzRcqX145z4MDN\nS2wJlebad8sDgh9++EH8/Pxk+fLlMmjQoFIHBOPGjROdTieTJk3Ks3zBggWi0+lkxIgRhe53ywKC\nPn20L3zChGJtHhISIh06dJBu3brlvdBfuSJSsaIISNvcGVNR7gEhISHi6ekpgAQEBEhCQoIkJCTY\nAtoCBa6i3EVy51XJyLh2Id+ypWwHHjRIO87YsTcnoaVwVwYE//zzjyQlJYmIyMCBA0sVEJjNZvHz\n8xNHR0dJTU3Nsy47O1u8vLykXLlycuXKlQL73pKA4OpVERcX7Qs/fbpYu+S/i8rjvfdEQEzVq6tC\nU7mn5M7XvXv3LrA+d4FbZFCsKHeDGTO0Mj0gQMRsLtuxFi7UjtWq1c1JWymU5tp3y/sQtGnTBjc3\ntzIdY+/evZw9e5aGDRvikm8QH4PBQMuWLUlNTWX9+vVlep9i27QJ0tK0pwuK2enEaDQCRfQLeOUV\nADrGxeFxFwx5qSjFZc3Xrq6upKWlFegn4OHhwdy5c/Hw8FCdZZW726RJAHyVlkb3J58sW5+Xxx8H\nZ2dtTIKzZ29SAm+9e+Ipg3379gHg7+9f6Hrr8qioqNuToBUrtNcnnij2LmFhYQQHB7N69eqCjxHW\nrq09gpiRAWFhNzGhinJr+fj4YGdnR2pqKuHh4de90F83KFaU2yh3R9iBAwfycmAg/PMPqQYDo6Kj\nyx60Go1aUADXrhf3gHsiIIiNjQXA09Oz0PXWC+yFCxduT4JKERDkvlMqVEiI9jp1apHHUI9zKXeT\n0NBQFi1aRHZ2NqD9f17vQn/doFhRbqPctVXLli2j4c6dAMx3cCCdmxS0WgOCNWvKdpzbyO5OJ6A4\nMjIyAGyP4+Xn4OAAQHp6+q1PzIUL2iBERiO0b3/zjtujB0d8fVnj68tX//kPWa6upO/cSb2UFNxd\nXQkLC7NlYtAK47lz596891eUIuQfKGvEiBFER0ezd+9ekpKSAPC3s2PTnDl4JCZqU38X0vRlDYoV\n5U7LXVvl5+LCAEu52nXaNILnz2fy5MllD1o7d9Ze16zRHj+8B5qD74mAwNnZGYCsrKxC12daBvWx\nfsm31IYN2mvbtuDoWLZjicDSpSRNncqHNWrw8/TpZNvl+kqCgtgSG4t5/HhCQ0NVlatyR+QPROPi\n4oiIiKA+8CnQX6fDOztbG1cDwMMD+vSBN96AFi3uWLoVpShhkyaxvEcPHj1yhCqWoBag8gsvMPfR\nR2HlSujXr3hzGBSlXj1t1MJz5yAqCho3vgkpv7XuiYCgkmX4x4SEhELXW6vPK1asWOj6UaNG2X7v\n2LEjHTt2LH1irB0XH3mk9McAOHIEQkI4euQIPceO5VD16uhzcnhq/XpaHD5MsosLf7VvT3S1avDZ\nZ1T08eFnX18GDx58c6JXRSmm/IHooGee4Xvg34ABQASzlxf6SpUgPh7i4rRBWaZN08aCHz9eqzVQ\nlDtNBJkxg0M//siR5s3Z+NhjeCUl8VhkJM0PHMA1Kwv92rWwdi3R5cpReelSypW2rNfp4LHHtBEL\nw8NveUCwbt061q1bV7aD3IKnHYpU2scO9+zZIzqdTgICAgpd37VrV9HpdLJ69eoC6wA5nnC8NMkt\nXLNm2uMkJlPpj7FokYibm5ysUEGqzJ8vmEzS6J9/ZNPp05Lg6CgC8nPz5pIcFCTjgoPFftUqwWSS\nwVFRYi7r4zCKUkJ5ntU+cUKyGzQQAckCmQTSGCS4X79rOxw+LCsbN5arOp0IyAVXVxkUGKgeN1Tu\nqCH/+pf8GBgo7cePF0ymAj+NIyKkfb9+8hrIaa3+Vq7o9SKW61WpHpudNk27XvTqdQvPrHClubzf\nEwGBiNjGIUhJScmzPCsrS7y8vMTNzU2uXr1aYD9APlr7UanTnEdioohOJ2JvL5KeXrpjzJolYjBI\nsrOzNFiwQDCZ5JFduyQ5K0tb/+abWgYaNkz7e8ECWR4UJM7Llwsmk3xx6NDNORdFKanoaJGqVbX8\nWbeuvG4ZhdA66JC1wPTz8xM3NzepDbLTUrBeAmmpRitU7pT0dPm4Z09bOeqwaJHwxhvS58035b9D\nhojvwoWCySS68HDhiSfEBWSyJe8KiHzzzfXHkinKkSPa/j4+ZR/bwMJsNsvJxJM33O6eDwiSkpLk\nySeflIEDB0pOTk6edV999ZXodDr58ccf8yyfP3++6HQ6GT58eKHHBKTqN1UlOye77CewbJn25bZp\nU7r9580T0etFQNp//LFgMslDmzdLQmbmtW22bNHeo3JlkWxLmg8dkgVPPaVl2LVrZe2FC2U/F0Up\niZMntTwJIm3biiQm5q05kLyDFFl/jHq9LLQUqpd1Oknatu0On4jywMnOlhnvvSe6NWsEk0m8RowQ\njEbx9PSUzG7dREDSf/hBXj98+FqNwZNPSrNmzSTtiy9sQcF3jRoVOurmdWsOzGYtGAAtOLgJtp/d\nLoxCnp3/7HW3uysDArPZbBvO9LnnnrNd1BMSEmwjGFrNmzdPdDqd6HQ62blzZ551WVlZ0qlTJ3F3\nd5fFixdLenq6rFu3TipVqiQBAQHXncuAUcjKoyvLfjL/+5/2xb7zTsn33blTxNlZBOT1p5/WMt3y\n5eJYt660a9fuWmYym0X8/bX32bjx2v4nTsj/hg4VTCap+vffkmgJItTob8otl5oqJy1Duu719JSE\nIkbntA5T7ObmJoB4enpKhw4dxA5kmb29lqdr1BBRAa1yG60bPVoM4eGCyST+ISG2vHkyKkrE0kQr\nZ8+KiMjXp05pN15r1siiU6e0A0yaJAJitrOTjx99tEA5e8Oag969tfcoRc14YQYvHiyMQoatGHbd\n7e7KgOD48eO2i7xOpxO9Xm/7vUaNGnm2PXfunNSqVUtat25d6DDEV69elZEjR0qtWrXE0dFRqlWr\nJu+8806B4YxzswYE/eeVYbIKqyee0L7YuXNLtl9cnK2qNTk0VBz//lsLCPr0yXM3FRwcLCEhITKn\nShURkIw33shzmMzISAmcPFkwmaTdRx9Jt27d1OQxyq1lNmsTvYBEg3iCeHt7FxqAWmsMTpw4Yas5\nsC579bnn5GC5ciIg+ypXlo6PPqqCWOWWOzdnjlSwNM2+YzLlrdWaPftajZdFSEiIVLXU3pZfv17O\nWa9DI0Zo23p4iFgDBYsbztdhrWUYPLjM55N6NVXKjS0njEKiLkRdd9u7MiC40wDRjdKJwycOEp8W\nX/oDmc3XJr44frxYu9SrV0/c3dxksYODtt/DD8sIS7WU7qefBL1e9Hq9AOLi4iK+vr7i5uYm7S1V\nVOddXAq0O0UtXCiG8HDRh4dL3Vq1pFKlSmryGOXWsXSKSjMYpB6Iq6troQFoUTVV1uWenp5SCSTO\nkreHqyBWudWOHZM+Y8cKJpMELVkiWbmaoUNCQmStpSo//dNPbcs7dOgg6PXCl18KJpP03rtX68id\nkyPSo4dWjnfocK05V6RA01kBGzZo+zVqVOZT+i3yN2EU0mbKjZutVUBQCECe+OMJYRTy3ebvSn+g\nmBjtS/X2LnbnEHd3d3nBUgAm63Ry9uhRMaxerdUOPPRQgfZW648eJM7SQ1v27JGQkBCpVKmSODg4\niIeHh3R+803BZJLW48fL8UOH1FTJyq1x/LiI5a7+53btxMfHR8qXL19oAFpUtWn+fgVPOzmJgGSC\nPFKunMq3yq2RkyMLQkIEk0nKrVwpZzIy8qx+vH17SbGUza91725bbr3bb/LYY1IuIkIwmWSutYkr\nLs42M618/nnx05KRIWIwaP3HrlObXRztprYTRiFTd0294balCQjuiaGLy+qVAG3yoKmRU9E+p1LY\nvl17bdmy2CNO+RoMTLD8PrFuXUZnZJBjZ6eNZXDoUIHtrZNAuXt64vTMM9rCv/4iOjqa2NhYMjMz\nSUxMZMPUqbgnJ7O1SRMmvPUWqamppTsnRSmKCAwZAikp8NRThBkMXLx4kUuXLmE0GnF0dOT555+3\njQFS1KBZ1uXNmjWjevXqrHFy4gfAHlhdsyYe5crd7jNTHgDJU6fyhmWgrM9r1KCKk1Oe9Y+kp+MK\nHDAaGTtzpm25dXjtiPnz+bJWLQCGHzvGlZwc8PFhfEAAAFc/+IDk3buLlxgnJ2jYEMxm2LOn1Od0\n8OJBNp3ehKuDK/0b9i/1ca7ngQgIetXrhbfRm31x+9h5fmfpDpI7ICimbUFBeALLgPcvX2bKhQta\nQTttGp6enrRr1w6ARo0a0ad3H3at3MUbQW8wqM0gvth9HICT48ezd+/ePMe1A7wsQ8BufvJJjixf\nzssvv1y681KUwixcqI3W5uEBkyZhtMwyGhgYSEBAAJs2bcozAYyPjw/e3t6cO3eOHj162ObbsBaw\nJpMJf39/EhMT+QC45OSE45498Msvd/AklfvS+fN8s3Mn5729aZ2VxZDatQts8m6dOgDUeOedPIO8\n5Z5zJsTXl8YuLpy8epXxlhkL/8rIYAbgaDZztFs3rTwvDuuInbt2lfq0pkZq89w83+h5XB1cS32c\n63kgAgIHgwMvNn4RgKm7ip486Losk18QGFi87bduxXX+fLJ0Ot4EKgwditlgoK+nJ8GBgcTExLBk\nyRIG9BzAnMfn8O7edznd5jRPr32aXst60fnQ52xlCoaEjvgkaHM52NnZUaFCBQIDAzn+55+4JCWx\nuXFjBrRoUfqaD+WBVuiEWenpMGyY9vunn0KFCnkmJrLWZD3c/GG+6PYFBwce5PG/Huez+M8Ydm4Y\n9TbV4/Dyw4SGhuYpYK21BfUCA3H66Sft+O+9B5cu3e7TVu5jFz/5hK979QLgq8BA9PlrdHNycFi9\nGoDPDh4sdMK40NBQ/Hx9OT5iBACfnzxJSnY2RqOR4UCKwUDz2Fj4++/iJap5c+11Z+luSDNzMpm+\nZzoArzZ/tVTHKA6d3OdXEp1Oh4gQFRdF40mNcXN04/x/z2O0L8G8ByLg46MVXKdOQdWqN9w+plIl\nasbFMcvfn5mtWrH+9ddJMZuJbNGCZuXKITnCmQlnOP7hcczpZgDsPO1wruXM0cNH8UjxwBFtroQ0\nYvnK6Scirmjjyffu3RsHBweiatbk4BNP8NjOnSysVw/XHj1K9RkpD66OHTva5ikIDg7WJh8aOxY+\n/JAjrq4Ma9+eP2bNynMXlXA5ge8f/57Hzj5G9oXsIo99tvJZ/qryF+k+6YRZpvUODQ3Vht52d4eu\nXWH1ahg2jNDU1DwTKKmhuZVS2b+f/0yaxLf9+tHN0ZFlbdoU3GbTJmjfnvPlytNJypOSmspFLuJX\nw49q1aphNBpJTk5m06ZN2vbjx0OTJnxRsyahbm6EhoYyLTAQ47vvavMVREWB3Q1mAdi8WZv/pkmT\nUjUbzD8wn+B5wTSp2ITdg3ejK0aztfXaVyIl7nVwj8l9iq1+aSWMQqbvLuHzoGfPXnvkpDgdChct\nEgGJBXEBafbJJ4LJJB127ZKQkBB5vN3jMsVnipgwiQmT7O2xVxLWJ4g5Wzt2QkKCPPPUM3IqZIZs\nZ7JtuwEMkMAW1zpznbh4URyWLRNMJlncuLEkXLpUsvNSHngFHplKSNDyOUinfJ0EQ0JCpHub7jLN\na5otT27S8jAjAAAgAElEQVQP2C6nvj4lp5ecltc6vyb7f94vE2pNkIhyEWLCJKtYJb3pLcH9Cnma\nIDJS+79ycJBnWrdWj88qZRb3zDPitGKFYDLJruTkAuuzM7Ll7BM/yE4myFpW2/JxOOEyvdx06UMf\nccDB9vQWILWefVYwmaTixo2Sbn26IDNTpHZtLf9OnnzjhKWmap0KDYZSjXLbdUZXYRTy/Zbvi71P\naS7vD0STgVVI8xAAftrxU8l23LdPe23c+MYdCs1mTlva88cCdZo3JykoCIC3/Pw4G3WWZzY9Q62L\ntbjicIVGixrReHFjRswYQafHOtG9e3cAZi+YTdVPu9CcIdQw/AZ6eJmX+a3Zb7i7uxMaGsrAfv2w\nX7sWgEVdujBV1RAoJZS7KWDEiBHMaNoUEhOJ9PTERN5Ogpd2X+LFzS9S/XJ1EkjgK5eveN/rfcr9\nqxx+T/rx4+ofaRDagL1Be/m88eescVyDPfa8zdt85PERYs53t9KsGbzwAmRmEnr6NKBm8lTKYONG\nfnR05IqjIz1cXAjI12H18srLbG+4negVDUmmEaAnllji9HEY9AaqpVTjLd5irv1c1oxaQ+/evenT\npw/bf/wR70uXuJCVReBHH2lNC/b2WnMawKhRWjPb9bi4wEMPQU7OtetJMZ1MPMmqY6twNDjyQpMX\nSrRvST1QAcFzjZ7D3dGdzWc2sye2BNU21k59TZrceNsFC6h6+TJngJ8Bp0ce4XhmJv5OTqwaPpp+\n2/pRi1rEOcYRsDkA717ewLUpZq0dtUJDQ+nYvz977Q1Uz/mdZfajyNZnEz81nph3Y1i8eDERERGk\nzZoFwIwuXXjBOsimohRT7jb+uKgo+p46BcAnjo54e3vbqu4zjmfw4s4XqUxlDnKQV3iFZWnLCF8T\nbutYaO2PMH/+fJb/s5xPr37KRK+J6Bx0xE+JJ/q1aFsVpnXbl8+cQezs6BQbyxvdurF69WrVXKCU\nSsbo0fzQty8AcVOm2PoEhIaEMtR1KHuf2MuVmCsYOcFDTt/Q5Fh9/gz+ky6XutA+qT3Vf6nORY+L\nuGe5Ezckji8qfEFFr4r07duXjKla37MD9erxUP362rGDg7W+AefOwZQpN05g06baa1RUic7rl12/\nIAhPN3gaL2evEu1bUg9UQODi4MKApgMAmLRjUvF3LGZAMDgkhOODBgEwBmgcGEgly98hXpV4+K+W\n1MipwSlO8Venv6jYvKKtYNy/fz9w7Q7JGiD8lZUFQI2rEXxg/oAcXQ6nvzpNm2RL29jZszjv2sVV\nBwdmVK8OS5cW/7wUJZeu+/bhCqyws+Nc9erEx8cTHh7OWwPeYm+XvXiaPdnNboYxjAS0qcgDAgJw\ndna2BQIRERG2acoDAwP55dgvNF7aGL2znvOTz3PqMy3gsObvaRERrPPzQ2c2M8HPTwUDSuls2cLv\nzs7Ee3igP3SIbZMnazdWIaGU/708T6c9TQ45RDGVQF7lkOtmXnrjFdtU8naudtR4tQb9LvWjzg91\ntPz6y3la/dmKrRFbSVu5Ei5ehGrVuODrqx17yBA+vHoVAPOXX0Jm5vXT2KiR9lqCgOBq9lV+2aU9\nifPvwH+X6qMpkRI3Mtxj8p/i/rj9wijEZYyLJF1JKmKvfJo21e69//nnupt90LChCMgJkBpVqkjM\nxYvisG6d6Ewm2Tn4gJgwyVzmSufGnQudEMbPz8+23Nq228HFxXbMcq6uMjpwtK1tti51JSAgQGae\nOCGYTFJv+nQxt25902bVUh4giYmSajCIgLQAcXBwEEBatmgp2x/ZLiZMMttttrjgIs2aNZPu3btL\nnz59JCEhocDgQ82aNbOts4r7M05MOq299rUGr4m3t7et70LStm22WUSHP/+8mptDKTFz797SaOpU\nbdC3oCBxdXWVzp07y6e+n4oJk6xghbSmtWy0DLQ14AajbZ5dc1Y2VtwoJkzyFV+Jl6uXGIcM0WZK\n/OILadeunXh6eooOJMoywJH8+uv1E7lwobZdly7FPq+wvWHCKKTJpCbaiIklUJrL+wMXEIiIdPit\ngzAKmbht4o0PkJmpTXcMIoV0Usltq2WI4vecnOTEiRPyw5kzgskk/f/9l5gwyWrdahncYXCegq6o\ncbBt48LHxEisZdTChpZx5N/iLTFhkj/s/pBL5y5JVk6OVNq4UTCZZGOjRiKrV4uImvhIKYEvvxQB\nWZPrwu7n5ycH3tEC2Y0VNkrcgbhCR8W05uHCAoHcTn19SkyYZDGLpSIVxdfX99q2lvkS5lSpojoX\nKiUTFSWb69cXTCbxjoiQ8pYOgb3oZbt5aqFrIdW9vcXs4CA5ID7FGG0z7VCa/G3/t5gwycd8LF2f\nfU6bHnnNGqFCBdu2/6tRQ7s+1KuXZ0jjAo4e1bbz9S32qbX/tb0wCvlp+08l/lhUQFCIwj6U2ftm\nC6OQRj82unHUtW/ftVnarmfrVhGQBBBXS4YK3LFDKs4yyTL7VWLCJD3oUaCQu+E42CKyyjLZ0fdV\nqkjnzp3FHnuZ7TRbTJjkyNvalJrvHj0qmEzy8ogRIt26iUgxZuFSFBGRq1dFLHnseU9PAW3Ogpdb\nvKzd1etNcnnN5SJ3L04eFtFmPv3c/nMxYZIJTJA+PfvYgtbX27XTJvQyGMSjkMJaUYo0YID8a/hw\nwWSSGl98IZ07d5YGNJBwwsWESbrSVQDpabmT31eunFSqVElOnDhhO0RISIh4WvJ+QECADBgwQDp0\n6CABHgGyiEViwiQH3j0g/aOitFqIl14Sg8EgdnZ2EvTII5JjmbxO5s8vOp05ObYZb+Vy0f9PVnti\n9wijELfP3CTlakqJP5bSBAQPVB8Cq771+1LRpSJRcVFsOr3p+htbe4QW0n8g96AumZ9/DmgdCR8K\nDOTt8ePZkZzCe1+Dc5Y961lPbIvYAj2oc3fqKkpbS2/W16pVY968efjV8GNB3QWYdWbOfHeGF5q/\nwLRnnwVgTseOpKxbB5ZnukH13FZuYPZsOHuW40YjF5s3p3z58mSmZtJpp/bgYfUPquMZ5AnkzfMn\n4+P5PTaWERcucOmDD+h5/DhPR0Ux+sQJdqakFHgGWqfTsanNJi5ykUY04otWX9j6EkzctIk9FSvi\nlJPDd02bqs6FSrG88+KLXFqwgNmdOgFw/Icf8HDwYKzLWAwYmMMcNrttBuAlHx8A5qWkEBsby/Dh\nw23HiY6OtvV9qVatGidPniQiIoLIxEh+8v4Js87MhS8u4DT8LwD03bqRk5NDdnY2azdsYKo1r37/\nfdGJ1euhQQPtd0ufsev5cfuPAAxsOvCWjUyY3wMZEDgYHGzzG9zwEURrBxBrh5BcrIXZgeXLsfvr\nL8TOjuNPPsnq1atZnJHBk0uh2Q5It0/n8BOHWR1eukLOpW9fMBiw274dD4OBatWqMW/vPGbLbADa\nR7YnbsdO2LePdGdn/m7Xjqtff53nkTJVuCqFEoFvvwXg4/R0Vq9Zg729PQMYQFWq4ljPkS/OfWEL\nAg4cOEDE7t0sr1WLmrt3M/DQIX45f561iYlsTEriz/h4Rp04QeDOnbTetYsV+UYh/H3R72xtvxWA\nU6NPcW73OUDrnGiyFJZdoqN5e+jQQkeQUxSr0NBQPOfPZ35QEOnOzrB7N4EVK/K/8v/DPc0d58bO\nJDyVwN69ewkODuYpy2OIKyl6zo3AwECmTZuW5++wI2Gs8V8DQN/ljah8Jh1z5cp5rglrq1YFV1dt\nnprrPVZYzI6FSVeS+GPvHwC8FvhaiT6XsnggAwKA0Bah6NAx78A8LqZdLHrDw4e114ceKrDKmmlG\nVqqEHtD1789PS5bg7u7O0qMXCLEM0/511tdklctixIgRpSvk3N2hVSvIzoZ162zvuz9gPymOKdSn\nPn2c+oBlTILZnTph/vVXPPT6G9Y+KA+4rVth926S7O2ZhVYArp+5nmd1z4IOGvzWgEPHDtkeiY3y\n8YHp0+HppzHb2eF18iSf+vqyokkT1jVrRlj9+rzm60t5Ozu2p6TQbd8++u/fT1K2NqKhh4cH4zaM\nwyfYB7tsOwYmDQTg1KlTfBoZyXGgckYGCWFheR7DVZT8jh06xMCrV5liGbulRWwsf436i8szLqNz\n1NFoViPcyrsxcOBAXOPiMMTEYHZ3x//pp23jbljL40mTJuW5ecp/MxVZL5Id7MADD76e4gECTr17\nA9rEXZNmzoSBWl5m4sSiE92wofZ6gxqCGXtnkJaVRif/TtT3qV/mz6rYStzIcI+53in2COshjELG\nrB9T9AEaNdLafLZtK7AqISFB6vr7S7yl02HysmUSEhIizZ99Vob21XpUf8u3ttEFc7fp16hR47rz\nxxfoCPjRR1o63ngjT5vtsZ+PiQmTLLJfJK4+fkJ4uNitWiWXypUTGT++VJ+Z8mAICQmR5ZbpXBMH\nD7blqb0994oJk/xS7xdxdnbW8qxeLz4ffqi1n5pM4v7LL0LNmkX2T0nLzpavTp4UF8sUsnW2bJH9\nuaZ+ffP5N2UpS8WESdo6tbX9X/zX0s67wvK3p6en6kugFOrTZs3ksJ+fNsXxunWSmpEp2xptExMm\nOT7quIhc60c12PokQL9+tv1vVB5bp5339PSUDh06yItdX5QVDivEhEkef98k5SIi5Klnn5WEhAQJ\nCQmRlwIDRUDMRqM24mdhli3T0tGxY5HnZTabpf4P9YVRyLz980r9+ZTm8v7A1hAAvNnqTQAmbp9I\nVk5WwQ1ycuDIEe33evUKrPbw8ODRxETKZ2URBQz4+Weio6O5nFmF3ovArBMOP36tqSB3NZSvr2+h\nd0C5Byhq3ry5LYJNsY7JbYlYrXf+NUJqcLbcWdyy3HjyYjscDxwg296eBY8+Cj/9pAYqUop0fv9+\nOly4AMD/nTrF3LlzkZ3CpcWXMLgaWOi1kIyMDK3t8/33udi5Mwbg+9q1afPnnxATU2T/FKPBwDvV\nqrGnZUuauLhwJCODRyIjiUxJAWDP2T3MRJt29pXsV9Cho1mzZlzo3p0rej1dgUA3NyIjI1UNl1Ko\nEa6uzLKMAvtUhQok/HyBtKg0nGo68cXJL/KM79LDwQGA8YcOFTpld2HlsXXa+YSEBCIiIrjqdpVl\nNZYBMOSHbMzJZgZMmICHhwfR0dHM2LGDcECXnk7Gjz8WnmhrDcF1mgzWHl/LwfiD+JbzpXe93mX6\njErqgQ4IOtfsTAOfBpxLOcf8A/MLbnDqFFy9CpUqgWWGt/xeSE0FtM6EAjgbjfz7SGcMZsh+yZ1J\nqybZCjTrFLEeHh44OzsD19qyChugKE8mnTIFypXTmjAsw7yCpaNWPa1j5Et2L9E2VitwZ3TuDAcP\nwpYtN+OjUu5DPS9fxhnY7ObGJ2FhiAjH3j0GQLX3q2H2MGtDdY8YAZ0746LTsappU4b6+TGrmP1T\najk7s7l5c6qdOcPl7Gxab9zIhnPnMBqNLGABifaJ1Myuyfut38dkMjFj6VJ0zz0HwIZ//Yvq1avf\njo9CudccPozdxo3M6twZgOecvTnx8QkAan9Xm4MxB4mIiCA+Pp7qVarQMScHgG+jomwX/MJm8Mwd\n4FoDBtD6uEyePJkjNY6whz14pdjxylSYFxeXZ1trY0H8F18UfjNm7WsQH1/kLJ/fbtH69AxpMQR7\ng30pP6DSeaADAp1Ox1ut3wK0L0Hyf4HX6T8AwJEjdMzOJh1Y4uFBfHw8btn1abnPiXQjPDoub0fE\nkydP2kZ/i46OxsfHx1aYWmsG4uPj8fPzK5BJJ02ZApaetFim7rQas2oM57zP4ZLtQtu52ZCZycYm\nTThXvjxMnVr4FLfKg02EVyyFZJOJE/Hw8ODS0kuk7kzFvqI9fm/7ERYWRs2xY6FrV+yysqgzdSrj\nXniBxMTEYj0dY2U0GKj+22+wcSNZzs502rKFiyJ4VvKk9hhtrvqe8T1xc9Xyu+OQIQA4zZmj9ZtR\nFAtrWTa3e3d2167N4apV8bG35/DTs8m+nM1pz9MY2hs4dkwLbN3d3dkyfjyuOTkcBnxyXfBz5+HC\nOmCHhYXZ5jNYu3YtI0aMIDklmZnlZ4IBev0N+/+J519DhpCcnIyDgwNLgEt2dlRNToZt2wqegE4H\ndepov1trn3M5HH+YpUeW4mTnxGstb19nQqsHOiAAeLHJi3g5e7H93Ha2nMl3N20NCAppLgDg118B\n2OrvT5WGDdm0aRNt9rUCYEWbszw1sE+eC3DuKqqqVaty8eJFwsO1seBzr9u3b1/hmbRLF+1Aq1bl\nSYanpyfd5nQDoO3JQBw27UD0eha1awezZ3P6wAHVQUsBrhWo/2nbFsORI1CpEi7PPouIcHL0SQCq\njaiGwWhg2dWrxDz8MAagwaxZ7J4xo9R5yNXRET7+GNeYGHK8vNjRuzexly/zybZPcK7tzJVjV7g4\n19K5t107qFsXzp+HFStu4tkr97ro6Gg2RETQLiaGsMceA+BFgxf19tQF4MuELxk8eLCtZikpKYkN\nH30EQEzt2kXWaBUW4Hp4eLBw4UL++usvW7PApk2b2H5pO7tr7cZghgETzWwzC5s2bSIzM5NKfn64\nWAJa6/WhgOsEBOO3jgfgpSYv4W30LvkHVEYPfEBgtDcS2lwr4Kxfhs31AoKcHPhDeyxke6NGHDhw\ngOY0p1lsRVJc4deLPxYoPK9XRVVYhFogkz7+uPa6Zg2YzXmS8+6sdzlb7izGLCMhW7Xt/+rZE9LS\n6JqUlOe9lAeXtSaqjrUp6cUXwc6Oy8svk7IjBfsK9vgO8eVAWhqvWPL/+Dp1qBIbC5Q+D4WFhRHc\npw+7e/XCOTERHnoIp//8h7Pnz/Kn058AnBxzUpsRUaeDf/1L27GoQlV5IBmNRh4HKut0toDAbcha\nHHMc2cIWnAKdmDx5cp7yta+LCwDdvv22VP1R8jfnent7s8RzCWlOWQTshqr2bW3vtW/fPpxes9zZ\nz5pV+CyIdbXghejoPIsvZ1xm2u5pALz98NslTudNUeoujPeI4pzi6aTTYhhtEMNog5xKPHVtRVCQ\n1iN06dKCO4WH20Yw7PjoowLIBPufxIRJBgxcLRgM1x1trbiju+VhNotUq6a9786deVZ16NBBOtFJ\nTJjkz3ILxS7cJHZr10qCi4tE+/iIt7e3dO7cWfXYfsB169ZNHECSLPMWyN69YjabZUfrHWLCJKfG\nnZIrOTnSdNs2wWSSgQcOiNlsLl1+LcL6s2dFHx6uPbHQrp3YYSfz9PO03uEzjmsbnT+vzR1vZycS\nG1vm91TuDwkJCbLJz0+2WIYqNv46RxazWEyY5I2gN2z505pfE48fF9HrteHnU7TR/ko6pHv++Wba\ntWsngDzjFiImTDK1tkn8a9eVdu3aXTtm69ba/9eMGQUPOH26tu6ZZ/IsHrt+rDAK6Tqja5k/JxH1\nlEGp+bn5EdwwmBzJYeL2XM+QXq+G4PffAVjs6cmefftoTGMaZdUjyQ2uhJQn+KmnrtvhKvfdf7Hb\n+HW6a7UE+foRGI1GIoggTh+HZ4o7nf++SLZOx8I2bahz8SLlLH0XVJPBgy0sLIyxbdrglpMDzZpB\n48Yk/5NMytYU7Lzs8B3iy/+OH2dPWhq1nJyYUKcOOp2uRH0G8sufvx/x9eVr613S8OE4VKnITLP2\nxMG2N7dpfXkqVYInn9T6EISF3cyPQLmHeYjQNi6Ohe3bA/Dk1FhccSW2Yiz7cvbx/PPP5+nj4r5j\nh1ab2rat1pmPglPN30j+5lxr7cPJ2vuIL59DzaPQwKkbmzZtunbMl1/Wdi6shsua93M1GWTmZPLD\n9h8AGPbwsFJ9NjfFTQlF7mLFPcXNpzcLoxDPzz0l9WqqFk2CiINDwQkrUlNFLLMQPt+ypQAyhjFi\nwiSDBphkxvnzJUpjieYcmDNHS1dQUJ7F1oj4vzX+KyZMMr78TMFkklYjR4qAfKjGh1esevXS8tA3\n34iIyL6n94kJkxz74JjsSk4WvckkepNJNicmlvotct+FWe+ocufvHLNZOu3YIZhMUmnCBHHAQRbb\naXd6CesteXTePC2dLVuW+ZSV+8TEiSIgNf/4Q+xWmWSuw0IxYZLOrp1teczBweHaPAX//reWhz7+\n2HaI/BPK3ajGIH/tWO6/X+rxo5gwye+ei0WP/loZm5go4uiozeJ55kzeA8bHa2lydbXNTPvHnj+E\nUUiDiQ1KPKthUUpzeVcBQS6tf2ktjEJ+2PqDyK5d2pfWoEHBDWfM0Na1aSPdunUTf/y1KTYdTOL5\nl0niMzML7HK9TFfYjIdFbh8fr2UyBweR9PQC71PLt5atCs3/V5MYli6VDHt7Oe3qKgnFmFBDuc/F\nxWnV8AaD/OeFF6R3q96yhjWyzn6dpJ/JkArz5gkmk7i++27eKtBisuZb60QxgFSyzD6XPyA9lp4u\nzpaBi9r/97/ybeNvxYRJJlWapG2Xni5ima5WoqNvxaeh3GseflgOVa0qmEzS9a1lYsIkv/Kr6NDl\nmYLbz89P294yJb1s2GA7RP4LfFkmgXvkpUEys7I2CF2wd3+pWLGieHp6SufOneVqz57ae3/9dcEd\nPT21defPi9lslhY/txBGIb/s/KXUH01+pQkIVJNBLu+0fQeAcZvHkXPE0uGjdu2CG1qaCxgwgLCw\nMEb4jwBgeTcg5TSGtLQ8m4eGhjJ37twiq6kK61BYZLVW+fLQtClkZsLmzQWSVqlGJcIJB6D3zGRy\njEYWtWqFX2oqHidPlvQjUe43s2dDdjZ7fX2ZumQJvtt80aNnvWE9P2WcIc7bGy5eJPX77/NWgRaT\nNd9aJ4oJDAxky5YthY5ZUNPZmdH+/gCc69eP1W7ryCabOrF1+M+L/wFnZ+jb91q6lQfbiROwZQuL\nOnYEgadma4PJzWEOTZs1xd5ee2bfaDTSvn17+rRtC/v3I05O0LKl7TD5m79KMwmctRnM4fwZ5j11\nBYDuqX2IuxBHQkIC4eHhDFm3DoBsS+fzPHJ1LFx/cj07z+/E2+jNC41fKOGHcnOpgCCXvg/1pY5X\nHU4knmDf5kXawpo1824UG6v18ndwgP79cc5wpsHZBph1wrxgSFi2rEABGh0dTZKlp7+np2exZjws\nKpOGhoYy96L2eNaV5csLnIObmxuLWQzA4xuccMqAHyz/DCsHDlTjETzoZs0C4MfkZK4mXaU72jjw\nf+j/5N2jR7VtJk7EzVK4lvSpAmu+bdasGX369GH16tVUr169yP4Hw/z8aGA0EnPlCjFBTYggAgMG\n3qmrBec8/7z2OnOmGnXzQTd3LgALu3en/kGoe8ENvacez6c8MZlMHDlyBD8/Pw4cOMD58+exs9ww\nRbm5gaNjkYe90SRwhfXxsga+a8LDOVjzKHE+4H+lMm3RnjhwcXFhVkoKyYBdZGTBRwxzPXr42cbP\nABjaaijO9s5l+YTKTAUEuRj0BlstwZGdlmf98wcECxZonVS6dgUvL87/ch7JEja1yeFcFWiYnFyg\nALUWkp6ensUeirWoTBodHc2Ms2cBOPHbb4Xul+ydTBRRuGQ6ELQWdrdvjwABhw+zvpBhkVVw8IA4\ndUqrVXJ2ZolORxBBuOJKFFEkDe9NlpMTHVxd6Vehgm2GuJLOlGnNtyaTyfb89vXY6fV8VasWAEfa\ntMFURRvM5fLvl8nJyIHHHgMfH62D7+7dpT935d43Zw7nvbzYUrEiff/WFlV5pQqzFszCw8OD6tWr\nc/r0acaMGcPevXvpYNmt9quvXvewN+owW1htrbVM9/b2xrBvJ7O12ecZZBhE927dadOmDVeA9eXL\nayssgbiNpYbgwq4NrDy2Ehd7F95o9UYJPoxbQwUE+QxoOoCKLhVxO2cZVjJ/QGCJUsccOUKPJ3pw\n9ift4vzX03a4JCWx4Y8/CmQsayEZExNT7KFYi8qkRqOR9UAOUC8pCfI1T3h4eNCyZUuWsASAngtz\nSC1fnkNt2lDh6lUe4fpzKSj3sfmW4bl79KB+YCA96AHAxmp7iWvXDoDEL78kLTUVd3d3PDw86NOn\nT4mCxtI8jdDNywvPY8fIcXZmU5+6xHnGkX0pm/g/48HODvr31zbMX6gqD47oaNi1i8VBQbim6Oi4\nTltceXDlQjaNJiEhgY6Wv527di3TWxdWW2st0+vVq8eBmTNZ2imdRHeonVObme/NZN68eQQHB9Px\np58AiP3mGzp26HDtf8lSQ3Byh9a8O7jFYLycvcqUzptBBQT5ONk58fbDb1MzwbKgRo1rK8+fhw0b\nuAp8eegQKStTyDqfRVoteyIDoPqFC/Tt27dAAVqWR7byCwsLo2twMNK8ObrsbNi4sdBt9pXfRwop\nPHTUQI0YWG6ZmvPDmjWLHLtbuc9Zgln692f6R9OpT30M7gb++XcDxN4e1qxhz7x5LF++nDp16jB/\n/vzbEjTqdDoaRkRATg66vn3wf78JAOennAfgc8vcHRcnTCDx8uVblg7lLjZnDgB/9+pF15VgfxU8\nu3hirG0ssKnRaKQ80Bi0/gOtWpXpra83aJybmxtkZWE8c4y/e2nbn/n2DCNGjCAuLo7npkzBXL48\nlZKSSFq//tr/kqVvmuPJs9jr7RnW5g4+apiLCggKMSQghOpakz+7HHMVQH/+CSKssbcnGeiNNhOV\n6SkD6EC3c+ctL0CtGdHOMqkHJlOh2zRt1RQT2rouq2C5ZZatLmlpeJQrd8N2M+U+c+IEbN0KRiN0\n707qbG1SLofnynO6ZRPIzsbVEjC4uroSHx+fp2NgaYLGksyhsfj776l29ChiMDA9SNAb9SSuSyT9\naDorEhM5CfhcucJXwcElTodyH5gzhyv29qyt4kcPrfKTqfFTC81XYWFhvGeZHVb38MPg5FSmt77e\nDZ21HB3TvTsL+0C2PVxceJH1s9YTERHBkpUrWW3Z7xly/S9ZbjT9E2FAk5fwc/MrUxpvFhUQFMLj\nUhoOOXDOFT7blWs4Y0uBubduXapRjeY0R2fU8cujVzAAlS1Tyd6Wu27rREeFBASgZdTsTtrEMJ3X\nwNpORDUAACAASURBVMbMbFIfegguXIB//rmptRbK3ct6UZ7yxBPagp49yRFHLvyh5dWZT2SDXk/N\nQ4eIWrWK4OBgHn74YSBvx8DS5JMbDQCTO2AAWPXSS+jMZiYlnmNXhYMAxP4ai9HFhT8t+/yvQYMS\np0O5txQIJKOiYP9+1rdvT7VoHdVPwWUu8+OuH6lfv36BoMDDw4N3AgO1Pzp2vKVptZajwVWrkugF\na4NAh47HU7UB5Dw9PWn3rTZ74UBXV1avWoWHhwfn7K+Q4gDuV+HdBndPk+0DERAUp3Ny7kyYuncv\nAMe9dCw4sIDoS9EMf/FFzOvXk6nX8/zs2fy39n8BuNrPg2RXcDl9GtLSylSAlkj79lr76o4dYHmC\nITcPDw/GrxmPUy0nvOOh4S4wWceHX7Dg1qZNuWtYL8pNrKNu9u/PxT8vkpOcg0MrV350v4wBWPPK\nK7anAaztn8XtGFiUGz3OlT9g+Prtt7Fbvx4xGJjaSnuSJnZaLDN/n0mCpWB3WrZMPW1wnysQSFrK\nqxXBwXSx9PVewxpyyCE2NjZPsGktx2OmTdMW5AoIbuWsrz4ODgSWK8fcftrf3eiGh70HdevW5dmJ\nEzF7eVE5NRUPS4fw77aO57jl36pOSsmnOM7IuFkpz+uBCAjefrvAXEAF5M6EM0aPBkBfsxaCMGbD\nGKps3YoeWG4283DHLtQ8pnU2/NRLa8NPNpkIDw9nz549eTpi3bJM6OqqtY2ZzUzo37/Q99DpdMxL\nnAdozQYLGjfWVliaPpT7n9FopDrQChAXF+jWjQsztNqBjd315AAvVqyIv/O1x51uVu3RjZql8gcM\n0dHRZP36K5jNRL3SGkNtBzLPZ/Jux3fZ5eSEuUIFiImBPXvKlC7l7lYgkFy4EIBVNevx2BptG5Od\nKe82FtHR0eyLiKBmSgqZej20bm0rg291n5iuXl4cqw2H66ZhxEgvQy+2bt3K0pUrMbm7axv9+SeX\nMy4zacckTlj/JY4fL9H7REdDgwbXhsO5mR6IgOD77+GFF+Dq1aK3yZ0JX+6gPbDyUMtu2OntmPn/\n7J13eBTV+sc/s5tNL5uEFEoSIEDoJBCkG7ogICCgSLNHUbyiXtGLDRVUFL22nwX1iqgBpCig1MCS\nAAEJJXQINZQAISG97+75/XFmQyCFQCqyn+fJw4admT2TPTPznrd8332/EmiSK5ZlGg1BKUE4C2fi\niWdzB9lJi507S83ev1nd7JtCDRt4l9Pe+M8CGXDrtRmWXspENGwIZ89CbGzVjsVKnSQiIoIZHToA\noAwZQn6qhtQNqSi2CrM7ZaAAOd9/Xy1G640Mi+sNBkdHRzh7Fl1MDNjqODhCGim+B335a80aNqha\n9CxbVurxrPwzuGZepKVBXBynmzZFH6vBLQNOcorDxsM0atSI9evXM23atKL5q9Pp6KUe54SXF70H\nDSoyBCqbE3Mj7nF3B2DRCBMA/fP6o6AQGhpKlw8+AODsZ58R8kwIWQVZGP3VvIHTpyv8GbGxsjv4\n6dPw3Xc3XujeLHeEQeDiIoXOhg6FzMzStyk+Ce0vyOxm9zadmNR+EiZhYlmHDIyKwiZnZwYh47Fr\nnDZD48Y4KQqjWrcuNXv/VlSwKoxqEHTKyCjzM67YXWE/+3HIgy7HvDg2aZJ8wxo2uCPQ6/U8ot6o\nGDGCpAVJYIYLve254gyjvbxIqoFk2LLGVtxgsFyDa9XQ1py75MXane70COlBtzlz5I7WufuP5pp5\noXoH1kyaxAC1n9t61hESEsL+/fvR6/XXLLqcnJx4Ui3p+9ve/hpDoLI5MTeiq6srblotUQNduaxJ\nwQ8/pvSYwvr163EePhxcXHDKvcLZ+mcAuJimJjtW0EOwfr285Scnw+DBsGYNaKr4CX5HGASbNoG3\nN0RGypCSmvt3DddMwpMn5X82bcr0XtPRouHn9oKEe7vSqX0/QgnFqBhJfkKGDXq7u7Nk4UL0en3R\nTa1169aMGDGCwsLC6puE3buDrS2BmZk8Mnz4NZ9hcZO1adOG3a675Tg3wYaBA+W+S5dawwZ3Aikp\nEB2NSVEY+n//R8zbMQB8c5f0BDxlWZlT+yWolmuwT4MGhLm5ccLLTHqoLfbYMz98Ps5Dh4K7Oxw6\nBEeO1No4rdQgqkGwsXUXum0DM4JIIvH39y9VenjevHkMUX8/4uMDXDUEKpsTcyNsNBr6ubtj1sLu\nu6Ux+1T9p+Tn2dnB0KF83A2EHbgmufLw1Blyxwp4CBYskM0/s7NhwgRYvhycnKr+HO4Ig6BjR4iJ\ngcBA2L1bulwsz/xSsbzZpAmBHoFMSPXDpIH3egje7/s+WrSc8zvH0aZShapnKfHXhIQEoqKiiIyM\nRKfTVc8kdHCAbt1QhODHhx8uoWgYFRVFVFQU4m6BUOCuHRBl5y6toxMnYP/+qh+TlTrF/0aNArOZ\nzVotB7eexyfTh0zbPGJ62cHBg3z7wgt1sgTVboWUopsfKhNmM//IBJ0O7lOLva1egn88L06ciCkq\nimydDvN2e2wLYZduH41DG+Pm5lYUJvj666+vzl+zGfbtA1tbXv3jjypJjr0ZLv/1FwB/DDKDFpL/\nSOZfE/5F7969ee34fj7vIrdbMmUJTmop+I08BJ9/LhW8CwvhxRfhp5/kpVAd3BEGAUhjYOtWaRyc\nOCEX13v2lLJhbi4kJcm/eIMGkJ/Pa0svozHD/IKdXF4gcwm2usaQ1EjGgAwWV2YxamzVVUb5YfHP\n//TnT7Hv5oJtIeSuScc0bJjcaOXK6huXlTpB4MGDACw2GhmALIXacreg0Baa7tnD3Llz62QJat6m\nTXDmDJGDHDBpzKSsS2FI9yG8YzFiVYPByj8X79hYtMCXbdrQXb297XSIYcmSJUULrtWrV/Pyyy9f\nnb+bN0vPZ5cu6OvXr/F5XRAjPXBH2vpwwvcUwigoWF5AVFQUH7keIMsOBh2DAW5tQG3sxenTpXpr\nzWb4z3/g+efl7x9+CB9/XPVhguLcMQYBgI+PDB/06yfDBmFhsHHjdRupqmj4+cm//MaNND+Xw/hz\n7jQ/2xzjMSM6Hx3xHfLBwwNdejoL1YSR4tTYqstiEBQ7kfDwcDIyMvD19WXJkiXo9Xr8xkr3WecN\nZuKGS0Elq0HwDycvj7vU+OmJVm0Y5iANwVX3OeCQlcX2jz6qU0ZAcZwcHGDZMjLcYFf7PDRCg/02\nez7YvVtmj+/YIRuNWfnHEqbO3eiug+iwFwo1ZlZlrOLll18ue8EVFSX/rWb9gbLwKCyUD3gnJxp+\nIBsd9c3pi8ZBQ6EqmDhjE7BqFej18icnB9SGdRYKCmDSJPjgA9Bq4ccf4eWXq3/8NWIQZGRk8MIL\nLxAQEICDgwNBQUHMmjULo9FY4WPMmDEDjUZT5s/WrVsrdBwXF/jrL3jwQZlgOHhwkSqm5IxM+MDP\nT/6rrkRebzSOgftl/N1htAP3vPkaAKMaN8bdkrRVjBpbdXXpIpW4Dh6U2SbIcMHWrVu5ePEiL6uz\nyGuUF2ZFcNcOeGrLboSdHezYwUsTJlibHP1T2bABB5OJk3o9P3y6FpdcFzJ8NRxsA6+3a4dXKfO2\npimrLDciIgKP3bshN5c1w+TNvz/9aRMaitKvn9xo1araGLKVmiA7m65qsnRjl3vRmmGX6zFahrZk\n7ty5ZS+41JbDhIWVPGYNEBERQXNVF2ZzVxvsm9jjbfamU1AnsIOBNq3och74U5VbtEjjFwsbpKfL\n59Kvv8o8gT//hEceqZnxV7tBkJGRQY8ePVi6dCkLFiwgLS2N2bNnM3v2bIYPH475JuomPD09admy\nZak/TjeRYWFnBxER8K9/SUts7FjpjhGCqx4Cf3/ps1ENgmZDHuWeo7JJxs+Nf2ZLnuyBHffDD7X7\nMLWzA1VZjs2bgdLDFc/NeI5D7uexLQT92UbscXcHIfCOjbU2Ofqnsly28G76wgvkrpFKJmt7mtEI\nE39NnlwnjMCyynL1ej1d2raF9euJ6Q55tiZa0Yo/v/8T3f33y42sHq5/BKUahWvXouTlkR4WRtON\nsowvM+hikQFQ6oJLLVFEpwNVurim0ev1fDFxIgBr0lLxfdQXgEGFsjLt3Xs/lBuuXw95edeGDZCP\nn549pcPX1xeio8EiMlojiGpmypQpQlEUsXr16mv+/+OPPxaKooivvvqqQseZMWOGePvtt2/688s7\nRbNZiA8/FEKaAkI8/bQQxjdnyF+mTxdixw75ulEjkbI2WRgwiJ89fxbM0An7TQaBwSDw8BCAGDNm\nzE2Prcp46y05zqlThRBCpKamijFjxojU1NSiTcLCwsRIh/HCgEG82y1SXPn4YyFAbPHxEYAIDQ29\nZnsrtzkmkxC+vkKAeKxjqFhuv1wYMIjWXxqE96efCqD2560QYvDgwWXOv9TUVKHv1ElgMIg3e64T\nBgzizZZvirT9++V8d3ISIje3lkZupaoICwsrOR8fe0wIECs+misiNQYRqTWIZyc+K8LCwsTgwYNL\nv1etWCHnRc+eNXsC15FjNAr7qCiBwSDOHcsQG5WNYq12rRj13Si5QUiIHOeqVUK8+KJ8/f77Yu9e\nIRo2lL+2bCnEqVOVG8etPN6r1UOQmZnJ999/T4MGDRh0nZnzyCOPoCgK/1V1niuCqOIyOUWRcZlF\ni+RC+5tvYMP/1JCBv3/RCov77iNpkYzxZAzMALfW5AlwvnwZrlyp9XIt7r5b/qvGz0qznh0dHYnO\nXQNA511a9vaV+vHds7IYd//9dSrD3EoVoMbYzygK23Zn45rnSrKnmcOtoImaaFjr85byc230ej3d\nvL3hwAGi+sm0aq8jXjz5zjsQHCxrsCwuYiu3LSU8mmZzUThoXawdWjPsbXiJn5f/XL43s5bDBRYc\ntFrCVGXCRZrT7GmyB1uTLW1+bkPv3r2JUEMh/PmnfM4A57adpVcvOH8eevWSCfAW50FNUq0GwcaN\nG8nPz6dLly4l3vPw8KB58+YcP36cY8eOVecwbsgDD8CGDeDpCZyTIYMUR78il6R58HDZmx1Yd2od\nir4zAAP83etGuVbXrtJNFhdXal8DkDfevmP6ktLOBrsC2LvDBMHBKNnZ/Prkk1Zj4J+GWv60XAjC\nkDfITb01NHdyYPXs2ddoZdRm6KAiaoadL13i7y6QrzPTlrZ8+daXYK2U+cdQwiiMi5MJo40a0fiI\nTIbeYN5IhvogdXd3L92QreWEwuLc4+EBwGvRv7O6w2oAGm5tSFRUFP89cUJu9OefoFaq7Vl5lowM\n+Sxatw7U3WucajUI9qslQo3LMHUs/3/gwIEKHS8uLo5hw4ZRv3597O3tCQwM5LnnniMxMbHSY+3R\nA7Ztg0Cd9BA8+FIDDuwzgZMT7322FWOakZPKSZZvX46wCQHg2OmFLFq0qPYfpo6O0LmzjHxs2VLq\nJpYbr/NQOdMKV6VJ6Uaw3lT/YYSHh3P0008BWAX00chKlKgwSP3lF5o0aYLBYODo0aN1Pn9Er9cT\nPWMG9s5a/u4qb1cvdXmJ17dvB+Dct9/Ss0ePOpEPYeXWKGEUqt6B8/c+SPABO0waQVyW9G66u7uz\nZ8+ekvfc9HRZR25jU2v5A8UZqD7R8xq0ZXOLzWSTTQuT7JJrDg7G7O2NOHOGHxdJ70hDcY6XXpIC\nRJXs1lwpqtUguKiWBZWWhQ8UfamXSpMOLIUtW7bwwAMPcPToUVJTU5kzZw6//fYbwcHBHDp0qNLj\nbd5M0FQnPQQ7LjelB1vZ0G4qbvvqARApImVTofpBYC7kQPyvrD2xttKfWyWobrIFTz9d7s0x+IGG\nAARGFfDMZrUyY+VKq2rhP4jLBw4QlJVFLmD06oW32ZvkenC0LeStWEF6ejrJycnExcUBdSN0UBqW\nZLP7hw1jtLs7m1WR+tDsUN5bv56LQCOTiYyYmDpt1Fi5SVSDYIfrALRmONwyn5i4aMaMGcPJkycJ\nCAi4ZvPw8HBe7dkTzGaMHTtWj4TfTdLa0RFNbgrYemC61BgDUkhhEIPwCwigcPAIHmEe0xcHA9DK\n6Sxz5lSvxkBFqNaPz1V7NOrKkFWytbUFICcn54bHGjduHLGxsUycOBFXV1ccHBwYOXIkc+fOJTk5\nmYlqZmeluHIFJScH4erKwIYHycCN4X+/SYtk2YPdgEHGLrVaApRsMOcxfcN0zKKKO0zcCmoeQZNz\n58q9OXp3cOWilxH3NIXoy/VItbeXqa1qy2crtzfh4eHUV7sB7nJ15bOHvgEguhfc51UPO/Vac3R0\nZMeOHXUj5FUGxSsQTn39Ndu6QaGNoB3t0OPOX+p2Q6m7Ro2VmyQ5GbZvB1tbTm4qAOCQ31nc3NzK\nDC3Fx8fjqXqZV1ri87WM4bQBc9oOAKZMmUesh2wmd6/uXubMnseA2FnM52GyFBfMWhscspNl1UEt\nU60GgYMq6VtYWFjq+wUF8gu3JJWUR/PmzUsNPQwfPhxvb2/i4uIqHHooE1WDIFGr5X8X7ubffESw\nSMfOrCVek8NFLmHXowcAkwLa0tClIXsu7uHXfb9W7nOrgh49MAGhQK+QkBI3R8tqa8iQIextngTA\nQLchOI5WG3ivWVOz47VS5YSHh/Pbb79xt/rQ/9No5PAPhwHY3AueqF+fnTt30qhRIw4dOkT79u3r\nnEJhcYonmy2eOZNG7jp2hipo0NCTnqzWagF42NOzzho1ViqG5f70Yb9+IATmXn1oeUh2t/zj6Lxy\nvT+Ojo70Vl8PmDWr+gd7A8zCzKuRr0KqNALmxR3ENsSWVKdU3ArdeKmPic2H6tGA80SJMDQN6ssd\nz52rxVFLqtUg8PWVNZiWblPXY3Fr+6hNKG6VJk2aIITg6NGjpb4/Y8aMop9N5WUlqxoE6UYjrmYj\njzKN4R7bANhkbkODBttpMEyq/N3r6cWsvnLyvbrhVbILsit1DpXGxQUREoINsOqNN0rcHIuvts74\nyl4NIacb8InFiLIaBLc98fHxZKWno7avYnOOJ57ZnmS4wLHmubw/ZgyTJ09m//79JdyulcJkggsX\nICFBpkmrhn5lKZ5s5u7uzpP+/kSrBTV9bPrwyd69YGND8ytX6BoUhIeHBwMGDLDmEtyGWO5PDVVP\n5ZHWD+GUo3DK30RBznESExPLDIVGfPMNnQBhY4OzpXlbLRKxP4LYxFh8Cs6DMJPm50fkls3sqSe9\nF60vJNGxI+y4+2U6slv2pIFKGwSbNm265ll3K1SrQdC+fXsATpXRvOH06dMoikK7du0q9Tk3Kkcs\n/kfqXV4GquohsFN/3ePdgK4mmf+wTetIoqk9pwrzcdVoCXVxYWKHiXSq34nEzEQ+ivmoUudQFdj0\n7QuA865dJd4rvtp67/+eJsNF4HdBxy+HMjGDrHMpqze0ldsCR0dHugAewHGNhkbI5KrtXUG/P45o\ng4HVq1fTqlWryj0009Nh/nwpn9aihcyCatBA1kk1aiRreAMCYNQo+OoraSTcBJbVYrt27UhMTGTc\nuHGkpaUx3tubHd3ArAhCNB1p4B8EPXqgEYK2SUmkpqYSGRlpzSW4DXF0dEQDDFZ/P3RRdpLd3zaD\nls2bs3Xr1jJDofoDB9AASmiozPGqRbIKsngl8hU5ru0KyrHjYGuLLvRNfjorvbF9bJLZtNZEw+Gh\ncieLAW0RxbtFevfuXbcNgr59+2JnZ8eOHTtKvJeSkkJ8fDyBgYE0a9as3OOcPXsWX1/forKT4ggh\nOHnyJIqiEBQUVLkBq19IE9Vi6/PMt5jSTSQ5JnHa1BM6Sfdr/nZ3du7QoFE0/PceqaPw4dYPOZdR\nyy4fS/1tdHSJtyIiImjSpAl2dnZMfmwSu9vLeFWf1k9g7txZttIyGMqUkrVS94mIiODFVq0A+Mts\npgc9AYjpDgHx8UXbXbx48dYemnv3wvjxslvmww/LtmvHjoHRCF5esqba11dmRp05A8uWwbPPSiNh\n6FCpzlaB5FXLavHcuXPXPAh87ezoHujJodYKFAhS16UWybhZVE5CSgmXWan7REREcI+bGx5APGBc\nLz2u55tcLEoYL/O7rUPlhrO3zCYxMxGXDBeO/nYUsUOGDQo7PMAZsxPpvi7YGk3kbkopmrv5qmdg\n3syZtX7PrVaDwNnZmccff5zExERWr159zXvz5s0DYOrUqUX/l5GRwdChQ3nkkUeukTQ2mUwkJSWx\nbt26Ep+xdOlSkpOTad++PW3btq3cgFUPgSYpCZycyEoMBOB4/eNAPPp+spNVfow7vXtL+eNeAb0Y\n3Xo0ucZcpm+YXrnPryw9e0q1pb//ll0bi6HX6/H39y+6wR5tIitAetvdjY2l/HDNmjKlZK3UffR6\nPaPUmiUDbrRV2lBoAxl3O/DnJ58UhfBuOgHv+HHZdjg4WE76wkLZVOvTT2HXrqsdQhMSZOigoAAO\nHYIffoARI6TH4K+/YOBA2WZULRksC4s3y9XVtcR4H/bxIUb2jCF5ZTLcI+XER9jbM2L4cDZu3GjN\nJbgN0ev1TKonq7kMNMY3zZ5UPayO/rYo5Ozv749ery+5aKkjgkQJaQnM2SY737Y52waEM9o9o+Sb\noVf48sscTgRI4+WPKX+QVr8+NGqEndrTJyc+vvbvuZUTR7wx6enpok2bNqJRo0Ziy5YtIicnRyxb\ntky4uLiIQYMGCZPJVLTt4sWLhaIoQlEUsWvXrqL/P336tFAURXh7e4uIiAhx+fJlkZWVJZYsWSLq\n1asnPD09xb59+0r9/Js6xZ49i3SMN3vUEyvtVgoDBnF+03kxeswY4RkdLTAYxEMvZxfJHU+fLsSx\n5BPC9l1bwQzEjnM7bvlvVSV06CAHtmlTibeKy8RG7DkhIjUGsd7GIAo3bJP7NGkiBg8aZJUyvl25\ncEEIEGYHB/FWp+nCgEF8GGoQ750+LYQQYtKkSaJevXqif//+Fftu8/OFePNNIWxt5fxwdBTi+eeF\nUI9XYZKShJg5Uwgfn6s64Y88IkRaWqmbW6S3T58+XUKCO8doFK3nRwkDBhFVb7MwFxivHvfAgZsb\nl5U6RWH79kKAeM35KWHAIKb1WyfQaAQgtFqtaNCggejRo4dwd3cvkjqeOGKEEFqt/MnIqNXxP7D4\nAcEMxENLHhK7dqULV9czAhuT4C8pY3w2N1cM7TpUbGCDWMtaMX74eCEef7zomohyc6vSe+6tPN6r\n3SAQQhoFU6dOFX5+fsLOzk40b95czJw5UxQWFl6zXWJioggMDBRdunQReXl517wXGxsrpk6dKtq0\naSMcHR2FnZ2daNasmZgyZYo4d+5cmZ99U3+UJk2KvpzXaCUMGMRyx+XCbDaL3RkZAoNB+MfECLPZ\nLL78Us5BEGLkSCFe+GuaYAaixw89hNlsvqm/T5Xy3HNyUKX0fSje4yC5oEB82dog9eEHzBBpNjZC\ngDhnMJS4CVu5PfhfWJgQIP728hJ/D90lDBjE8OcNYuzzz4uwsLBrbqQ37GFw/LgQnTtf+wC/eLFy\nA8zIkBa0nZ08ZkCAENHRN32YSQcPil8ayLn7n2H/EWtUgyBn5szKjc9KjfPkk0+KsLAw8VDfvtKY\ntbcX33gsEAYMImzi3CJjwDJvi/+EhoaKzMWL5Vzq0qVWzyP6dLRgBsJhpoP4efkZodfLYbVuLUTf\nbfsEBoP4X2KiGDx4sPiYj4UBgzj+5XEhLOMHUdiuXdHfo8x+DTdBnTUIapMK/1HM5qs3KhAvI63U\nmfVnisGDB4sZR44IDAbR4vvvi76wZcsyhZub+sWHpAvPD7wFMxDz4+ZX70mVx5IlckD9+pX6dvEJ\n99ITm+U5tvhKRKjn/UNwcA0P2EpVsdHLSwgQU9CJNbr1woBBDF2185rmMRXy/qxcKYSLy9WHdlRU\n1Q70yBEhOnWSx9dqhfjyy5vafXVysnh2lDQI3vF7Vzykzt04H5+qHaeVascyN8ep3+F2t8Zig7JR\nrNUZxBvb4sSYMWNE//79BSBcXV0FIIKDg8WIESPkHH7lFTmPpk2rtXMwmowi5JsQwQzEgFlvCY1G\nDmn4cGkDf3H2rMBgEGMPHhSpqanizU5vCgMG8b3792JM//7CrChyBw+P0hs93SJWg6AUKvxHSUkp\nMgYOgpjHPGHAIDrQQQDC9rPPBAaDaPXss9d8YUeOCBEUpHpUu88TzEB4f+QtUnNraYV96ZIcjIOD\ndPleR/EJ1+Hh94QBg1jovFJMUs+9YMCAWhi0lUpjNIoMnU4IEM8HPCAMGMS3zQ1i7vnzolGjRgIQ\nLi4u4t577y3fGPjsM1F0Rxs1Sojq8hQVFMibuMUDMXmyENd5DMvc1WQSYZ/KsMFCt2WiHggTCLOd\nnRDZ2dUzXivVgiWMudLTUwgQnzBAGDCI2Z0N4u/0dCFE+SEk0bXr1c6BtcTn2z8XzEA4vuYn0Mlw\n8ptvyoajQghxNDtbYDAIz82bhdFsFgUpBSJSiRSRRAp33MURD4+i62D4wIFVFrK9FYOgloUS6xDF\n+iEYqE8AAWSTzQEOgE5HgVrBUP/CBeBqolNQkMzhGzYMcmImQUIvkrKTeG3j67VyGnh7Q6tWMtGr\nnPJDgH2n1pGqB58sZw4gu27ptm6tE4pZVm6S3btxKSzkopMT4/u8BkBMNzOLpkyhYUMpV52ZmYmT\nk1OpSXfhTz5JhL8/PP+87DY3YwYsXgzVlaCn08Hs2fDLLzLp8Ouv4aGHKqRhoNNoaN3fhywn8El3\nZ/jgxzGHhKDk51/NOLdyWxAREcGY0aO5V1WtLbCVwm9xXRRC1BJCS6+DgICAa4W0srIgNlZWtaiC\ncTVNYmYi0zfI6y1nyRc42TqydCm8/fZVGeLmDg40trcnxWhkT2YmOg8dp7xOoUXLRP+J+BdLJJz/\n3nu1qh5qNQgsFDMIHJuOA2AHOzBhgnbtwM6Odg4OLP3hhxJfmJsb/PEHvPWWAn99BWYtX+34ii0n\nSj6QawRLtm0pN8eIiIiibPP2WoVY2biRu/3GYGrbFnJyymyQZKUOs349AEcb+XFmqSxj2uZymCum\nmwAAIABJREFUkA2//05CQgJQTnWBEPRbs4ZxZ89SCHxx113w1luyYqW6GT8eNm6UF9GSJTByZIkK\nGaBEZvnYhj78rTZRrX+qPkZVg4O1daS3iJUKMW3aNBxPn0Zz4QKF9bxpo1UbE/V1QXcjYf+YGCmK\n1akTqBUpNc3EX14kqzATjtxHk4LhbNsG999/7TaKojBQ7eezTq2Y6Pu2nK8TAybiMGJE0bauGRm1\nqh5qNQgsHD8u/1UUOjaRBsF2tuPh4YF9L9lVpY+LS5ntWjUauaha/l1bdLungiIY+Plkjh031eRZ\nSNS+BqUZBHq9nsOHDzNmzBg6+PkR10pqO9zrdz/aIUPkRlbVwtuPyEgAthsb4JnpyBV3OHZ8Fc7O\nzgQFBTFixIiyVx3TpvHguXMUAP8JDGRiTT9Uu3eXRoGnp2xsM3as1DYoxvXlsD3d3IgNlhLN+rMN\nmbV7t9zQOndvK+Lj49Hv3AlAjE1LnHNtuegDxxI231gPxVJuWAv6A0LAvz5by8akRVDgSLf0z4mN\nlWvH0rB0P1x75QoAfmP9UHQKWVuzKAhoD6qHBMs8riWsBoGFrbLzn7FBIGmbM0EBn/t8aNWqFXmq\nvkHcd9/d8DD33Qfb3nsLm5yG5HrEEvzY95Qin1C9WAyCrVtL3FjDw8MZMWIEWVlZnDhxgq2F2zAr\noPydh/FuWdNtXWXdZuTkyO9aUcizk9/9zk5m9IcPkZWVRVRUFDqdrnRj4OOPYc4chE7Hf3v04PWd\nO2tnddKxo7zBu7vDihUQHn6NiFFxpc25c+eiURTOuRzBrED7vBZM/SFCrhKPHoXTp4v2swpt1W0c\nHR2LpLYb3DUFgJ2hULh71431UGpJfyAnB8Y/kssXJ58FoIfxLaJXBODpWfY+/fR6NEBMRgaZRiM6\nvQ73fu5ghv8+8Dln1L4cBQZDDZxB2VgNAguqhnaa772IAoFrF1fmL5+PXf360KwZmoICFr3xRoUO\n1amdCz+Mkf3oc7q/yqDRF3n/fRmarREaNoTAQClFrLa4tVB8pXXixAkyju3kaBDYmDSk5bWUutoH\nDkAFW1JbqX0+GzUKCgqId3Wlg0t/ALJ7O9K1TRugnFDBggXw738DoPz0E69s2VK7oj5t20oBI0dH\n+PFHePVVQD7UMzIy8PX1ZcmSJUVj/Dx8LEdags6kwXzABvr1k8dRvSVQ0rNgpW4R8eOP9FUfhqkX\n/QDY0wV8VNd6mXM3O/tq/kDPnjU23mPHoGtXWHD2ffA4QSPbNhjeewEbm/L30+t0dHF1xSgEm1TD\n1Gu0FwCeBzzZrobJUsvrtVMDWA0CC2q/hRRFxrA8hkgXzwOzZwPgevo0j02YUOFVxsROoxjUbDA4\npCHufYbp0wXDh4PqMap+ypAxLr7S2r59O/f6+RXFYlMiM0ENj7BxYw0N1Epl8VUbVC1Lz8dpVwEm\nDXQc0eia5kAlHvTR0VJ+GGDOHJnQVxfo1k3mEtjYwIcfwv/+R3x8PFu3buXixYu8/PLLgDQS3h43\njl0dZALs4RUXob80htiwoehw13sWrNQt9IcOYW8yYWzdmezdeZg0YBPmyqKffy4/uS4mRno/Q0Jk\n/kkNsHw5hIbC/qR90PMDABaM/wadVleh/fNVL/T977+Pm5sbPab1AC00SWvCDmQCpXd+fgmvbk1i\nNQhASq5mZyOAlNMy4c5ziPT/bM3PByBt/fqbWmUoisK3Q7/B2dYZWv2OU+cl/PmnzH9RQ2bVSxl5\nBMUfEgEBAfz5ww8kdJPmbVLklas31WKrLCt1m87p6QBkNR2DzqhwtCXc18KnzHwXzp6F0aOlBPHz\nz8NLL9XCqMth8GD45hv5evJkOqrXYGhoKA4ODvTu3ZslS5YQHRXFtkJ5k81am4qwJBZu2FDkjivX\nKLJS+6jJsKmBY1CMcLANHDGsZNy4ccydO7fs76wG+xcYjdJZNWIEZGQVon/4UdAWMjl0Mj39K+6d\nMP/9tzxecDAZGRmcunKK3ebdaIWWps2lca4YjRAbW2uhLqtBAEUPvyyaUZAMtg1scQ52RgjBOsuS\nfufOm15l+Lv589EA2QXRftQUQrqncPq0rJD5+usK9Xm5dSwegs2br4lVXP+QUBSF8zYnyHYE07E8\nUprcJTeMjKzmAVqpEi5domlmJvlaLcGdZUzzSpgD7royVi15ebIL4eXL0vibM6cGB3sTPP44TJkC\nBQXMOXWK8KFDWb9+PQkJCURFRRXp2wslnnRXcDxr4qU355JkZweXL5MRI/uOlGkUWakbqAbBFVNH\nAGI7w5kVK268+KqhhMJLl2QLjtmzQauFQe9+SJrjbgLcApjdf/ZNHcsnNVWWSvr5ySZgQJSQho0m\nofHVDTdsqLVQl9UggKuTElmD5zHIA0VR2J+dzaXCQurrdIzu3PmWVhnhncIJCwgjJS+Jli9M5dln\nZan1M8/AhAlyflQLAQFy4qWmypyAcjDHHyIuWL7+bHakzPY+cwZOnKimwVmpMlT3uG2//thEy5V0\n02FeZW//3HMy9tq4MSxcyA2Dn7XJJ59A795oLl3i2ytX0Ds7F4UAPDw88PT0pGF6Kgc6y/JI03EP\nVqnehN+nTKm1YVupICkpsGsXQmdLykHZYXZnRxMcOlT+4isnB3bskGWx1Zg/EBMjc10NBvDxge+W\nH2CD6W0Avr/ve1zsXG7qeAt//ZWGltyszp1xdnZmM5sxY6ZpQXuMyL8BkZG1FuqyGgRm81W3lU1X\nADwGyvwBi3fgHk9PFt/iKkOjaPj+vu9xsHFgwcFfuPf5VUREgJOTbBx3112yMVyVoyjl6hEUd0l5\nJiayq5P8/1GNR4PF9WoNG9R91Ll7seNw9BfMpLnBPX0blb7tggXw/fdgby9bE5eXFl0X0OmkOFLD\nhvLuPGNGUQigVatWpKSksGH9eo7Ul23Lm2W3wTJjx3l71964rVSMDRtACHI7DqcgoYA0N3Dt5MyY\nYcPKX3xt2ybDXSEh1SKcZTbL9JWwMClP06MH7Nhp5KvERyk0FxLeMZz+Tfvf9HH1ej1vDh4MQMPh\nwzlw4AB2vnbsZz+22JJio+ZvxcQQ8f33tRLqshoE+/bBlSuYsCPN2AqBYPJ3k0lLSysSkbCIStwq\nzTya8W6fdwEIXxnOPSOuEBsrBQUPH4bOneHXXyt9JiUpxyAo7pLyycoirkMhABnRWYh+V/MIrGVb\ndZPw8HB6h4Vx4eefAfhS9Q6c7aHD08625A4JCTB5snz96afyZno7UK+evDg0GnjvPfS7d6PX6zmk\nWtEhISHc/7zshxyU4I7rYCnyoouJqZDqoZVaRK3HvuJ9LwC7OsHdXvVuHOKpxnLDy5dhyBB45RWZ\nO/Dii9JDEHF6DjsTd+Ln6sdHAz+65eMPUJ8ll/38mPjoo7Rt25b0tjIH6JxZLkgpLER/4ECthLqs\nBoG6wkqnPaDjGMdYtmEZj0+eTLT6AOxfSYMAYGrXqXRr1I3zmeeZ/NdkWrYU7NghhdpycmT44LHH\nZDVNlVG80uC6fIDiLqn5P/5Ik471uFwPTEmFZPuplqrBwPGjR61lW3WQ+Ph4LkZHU99k4hLgflFK\nTzv2dS65sckEEydCejoMHy5r/G8nwsLg9dflHJ4wgUsHDhTlEPj7+zO0Y2OONTNjmw+5+S0wBQXJ\nC0lN4rJSR1E9kFdSmwEyf6BHRRQHqymhMCoKgoOltpWHB6xcKWU6DiTv4U3Dm4AMFbja3boqYhMH\nB1o6OlJga8vmtDQiIyNZenEpAJnmUMzIEsza8s5aDQLLpET6zGOJpV69emy8coV8IXC5cAFdTk6l\nP0ar0fLzyJ9x0jnx28Hf+HX/rzg7w88/y4Rqe3tZet2pUwnpgFunWTOoX1+avYcPX/PW9dnXqVu2\nsFvm9ZC4RytjzFeu0FYtgbGWbdUtHB0dGaC+Xm3jQvsz7pgVWL3rm5Ibz54tk0t9fWXIoCYkiaua\nN96QJbEXLvCiKjwUGhrKvHnz0Gk0HGx8GQDH84348awMIRQvP7RSxzh1ChISMOvrkR4nFyu7OkE3\ntYSwTM9kTo409BTlaol0JTGZ4J13ZKQ0MVGmJcTFwdChkFOYw7hl4yg0F/JM6DMMDBx44wPegOGW\nUF136dnal7yPc9pzgAvpSKnDo199VSte2TvbIMjLK6rTTyUUgONuxzEajaS1agVA5vr1VbYyDvQI\n5PPBnwPw7KpnSUhLQFHgqadknlfr1lJorUsX+OKLKkjyLyeP4Prsa2NcXFEewepZq/lLbXD0dq9e\n1rKtOkhERAQP168PwJ7WY7E1KsQH5LEtagU9e/a8ejOJi5N9CQB++km64G9HbGzk+J2cCLtwgTnd\nul0zJ8+7HgHgrvQWrFQNeKNVxrjuoiryZbYbgynLxBk/cPOzx0eV8C0zy377dhkK6tBBqlpWkgsX\nYMAAeYkIAa+9JofmJzWSeGntSxxJPkJrr9bMGVg1FTn3qdegVjVoQkNDafOkFBFLoTuFQPPsbP6u\nBa/snW0QxMRAXh4F7k3JJhCzks/W9K3yRtpNChS1SEmp0pXxo8GPMrLlSDLyM5j0xyRMZtnroG1b\naRQ89ZSc7//6l6x7TUmp5AdWNLHw0iV2B8vyxJb5rfj1YjIAZ+bNs5Zt1UH0Tk6EqiUqDi59ANjp\ncpTExES2bt3K6tWrefqJJ2T5ntEoS/gGVn51U6s0aSK9HcBLJ06gV71X4eHhJF6OIttBEHDRjgP1\n2mICmYmemVl747VSNqpBkOoi9VJ2d4TuxQSGysyyr8Jwwdq10q4wGGST2LVrYebMq4U3y48s55td\n32CrtSXi/ggcdA6V/kyALq6ueOt0mHx8GPjUU6xfv56mE5oCkEx3LqCgAZ5o2rTGvbJ3tkGg5g+c\nyJKtjROVAxRSKGV/fXzQpKaybd68Kn0YKorC3GFz8XX2JTohmo9iriaoODrK8IGl6+yKFXLCVkrN\nsrhBcJ3LobgV7mZjg1FzhdMBYGe25TytAWifnm5th1wXiY2FzEyOaLW0OCvLDHemrMNVjcGGhoby\nY/v2slmKvz+8/35tjrbqmDxZzumkJGk1I+dxzGYDuwOkEdvSbwS7NRpshCBr1araHK2V0hDiqkGQ\nJCtidneE7sXyB8oUlKqChMK8PJg6FQYNktHUvn1h717pKbBwIfMCj694HIAP+n1AB98Ot/x516NV\nFIaqYYO7//Mf9Ho9rl1dsXE2kkdDXJr2BuCdsDBrUmGNosYY0wvbA7DfrCYhqd6BpklJ3D9yZJXH\ncuo51mPe8HkAvL7xdbae2XrN+6NHS09v9+5w/rycsG++eYuKli1bSvP34kUpxF2M4lb4vHnzGNe+\nfVHYYGirCZjatEHJy5OeFCt1C/WGOj+wM03P2JBrJwjs5MC+ffsYM2YMG779FgeLEfDtt+BcSrLh\n7YhGAz/8IK3nBQtgxYqieXyqnmzz3JmOrFXFuDZVsP+IlZrj9bFj4fx5Um2cydhnwqxAXPC1HoJS\nBaXy8q7mD1iUWG+S/ftlVddnn0lPwKxZsthB1QkCwGQ2MfH3iaTkpjAwcCDPd33+Vk+1TIarYYPl\nycmEh4fTp18fztjJ5LET52SCsE0pXt3q5s41CDIyYNcuClEoVBMKd7CL4OBg3NU2wHa7d1dbhv09\nze7h393+jUmYeHDJg1zOvnzN+wEBclH/2mvy93fflcku1z3Tb0zxi6ccGWO9Xk8PN7cig6Cfvh/a\ne9Tuh9bkrLqHahCca3gfAEf9U8k15uDm5sZvixbh+u9/yxvoxIlyKfRPIjAQ3ntPvv7Xv2io1+Pl\n5UWaTjYoCz6pZ52DEwCDy1JstFJr6PfsASDKGIQoEBxvBoq7ljZOTuWXOW/fDvn50L69LAO4Ccxm\nWW3bubPUaWveXK5zpk+XCoTFmbFpBhtObcDL0Yt5w+ehUar+Mdnf3R17jYbYzEz2X7hAVFQUq1JW\nAJBfEEo6oD15UgrE1SB3rEHwxQMPgNnMIecgTHihIw3/4e1ZtG4dqb6+2Gs0NLxwAai+DPv3+r1H\nd7/unM88z8TfJ2IW17ZDtLGRMa0NG6BRI2kcBwfLBd9NJRxa4m3XxR6ut8J7uLqytwOYtJCxIwNj\nd2tfgzpJfn5Ru+7GQpaGxGRFXzVcf/lFGgxeXvDf/9bmSKuPZ5+VWgoJCYRt2cLly5f53fAzyZ5G\n9OkKvg/8B+HggPbQIWvnzjqGJfclx7U3IMMFXV1d0SpK+ZK9lgXNTYYLEhOlTfzCC/LSefJJGUnr\n3LnktquOrWLm5ploFA0LRy+kvkv9mz29CuGo1TJINWrSg6VMbErbPBQKKKQ1W7RqJUINL8buWIPA\n++BBAHZlyWQON80Bfvp9GdGFUqCnn17PovnzqzXDXqfVsWj0IjwdPFl7Yi3vbX6v1O369JH6SePG\nyaqbp5+WJTEXL1bwg8rJIyhOgL09endbDrcETMgSGBsb2Y3JKkpUd/j7b8jL43DffrQ7YAfArot/\nScN1zhxQOwLy0Ud1X43wVrGxga++AuDBc+doiTTcC8OknGxovXtQLLK21s6ddQKLmFY7NVO6WcNh\nwLUJheVK9t5C/4I//pAOhfXr5aWwbBnMnVt6BO102mkmLJsAwLt93qVvk74VP7lbYKyqpuk0bBhj\nxoxhQfRa3NgDaIg3yaq3ml6M3bEGQSt11aBopY9cZ3OQ3n368OratQCM9PKqkcYojVwb8cv9v6Cg\n8Namt9h4qvSbl7u7FGxbsEAmHK5aJSsTfv+9Ah/SurW8Gs6fh5Mny9xMURR6uLmxV82feXf8HPY7\nO0t/23VtlK3UImq4YF23B/FKhhwPhU6jQqTh+tlnckXcvbsMF/yT6doVnnwSnRAs9vJi/bp1BA2V\nKzrb6GxMpbRDtlJ7WMS0PAsKSLb1JOeowGgD+9tdTSgsM5kwL09KFkOF9AcyMuCJJ2DkSFmpNXCg\nXFSNHFn69vnGfMYsHkNqXipDWwzl1Z6vVvZ0b8hQT0+cNBp25uQw+6ef0Lu742AjW+F6OveTG23c\nWGIRJ4RAVFPjuTvTIEhNpW1hIfmAh0nWf+bbHCQqLo4Uf38Uk4mRNVivPajZIF7r9RpmYWbskrEk\npCWUue3YsTIGNmCAnOj33y8VDjMyyvkAjabMPILr6eHmxh5V1bZlfkt+t3gG1IeQlTqAulI6mCCr\nCw57nWHud3PRnz8vs6UUBb78Un7v/3Tefx88PWl7+TL6NWtoM9gHgJb7BDFd1Tlvnbt1AkdHR/qo\nrwtDHgEzHGoN+Q6yFA/K6U65Y4f097drd0MtjQ0b5GY//AB2djJqtno1NGhQ+vZCCJ5b/Rw7E3fS\nRN+E+SPmV0vewPU4abVFmgQLk5IAaNBM9s9pooQifBtIN/B1zW72ZmXhGxPDi8ePV/mY7oA7RilE\nR6MBtlMfN3ywIZ1spyT50NRq6e/ujkcNJyPN6D2DAU0HcDnnMsMXDie7oGwN44YNpbzm559fVTi0\n1NOWSTl6BBbCw8OZP20aB9tAoVbQnOYkNZHKWce/+87az6AuoK6Ukt3cCDgh3azrT/xG+JNPyjI8\nk0nGlG6XXgWVxdMTPvhAvn71VezczKS31GGfDzGnncHVVXrFajg5y0pJIiIimNRIlhnuOiMfhLs6\ngv7KFYL8/PDw8GDAgAGl32MqEC7IypJdZPv3l193aKjMFZg6tXzb+MsdX/Ld7u+wt7FnyQNLcHeo\nvOBRRXlIDRtEJCUhhMClsS32nMeUqZDRbozc6Lrcr8jUVJIKC0m7pbKz8rkzDQL1yZneQHae0rOP\njvcOwuvBBwGYUJYpWY1oNVoWjV5EM49m7L20l4f/eLhEkmFxNBrZyXb3bil3fPq0LE985pkytFhu\nYBCEh4fz22+/sXvRIvLI5UgrBS1aCm07kQ80qyXlLCvXsW0b5OezZuRogvdKCWJj61x+vO8+6V70\n8JAlKXcAloz0oUuXYmrbVj4FPv0U175ydZm6Me2qZ6xSYh5WqgK9mxttkqVWRPalhoDMH8jduZOL\nFy+SmppKpNpQrQQ3SCiMjpaLoq+/lk0y331XXiqtW5c/prXH1zJ17VQA/nff/+hYv+Otndwt8sfr\nr2OTk8OB7GyCx45l/f79eLADgFT7qz1lihOp9vGoih4713NHGwTN28kYqxt7SQkMJLlhQ2wVpahG\ntKZxd3Bn5UMrcbVzZenhpcyMnnnDfVq1khP/3XflhfD119JdViIXpV07mXyQkCB/rmPlypWkp6eD\n2YzN8ePEycRXtEcdUCN3PBYYaO1nUNuoc3en30CccuBSvRyWRC7AyWIEvPPOPzeR8DosGel/rVnD\nLEsZ2nvvse2I7AAZ8LeRA5YVpTVsUPscPIhrXh4JeOBj9iPX1sSRlqAp1mclJCSk5D0mP/+qFsp1\n+gM5ObJ6oHdv6Qjq0EFqdr3++lXFwbI4knyEB5c8iFmYeePuN3io3UNVcJI3x4kjRzD++ScA+/z8\n2HP+fJFBsHWdfPAnL1tGwqlThIeHc3e/fkSq+W99qyG37Y4zCF6YNAn27aNAoyH1kAwL6NnLvBYt\nEMhED7cbzaRqpGW9liwctbAoyXDpoaU33EenkxfArl3QsaN83g8YIJvaFeUWaLVXk3FK8RLk5+cX\nvQ7IyioyCIIJ5pDq1prZr59Vwri2MRgwajTkqfkDTUc3Rr9okRSoaNHi9utkWAmKZ6T/a/lyGDYM\nsrJoe3ARhRozQUdh2nn1ArB6CGofizGLXIXvbWvGqIOcv/+mQYMGjBgxgo0bN5aeP5CXB23ayFJa\nlZgYGRn79FPpMX3jDblphwqICqbkpDA0Yijp+emMajWKGb1nVNVZ3hSOjo6gGgT064e5WTP0xKFo\nzPjmNyEBF+oJwf1BQRw6dIjNaWmYbG1xTUnB186uysdzxxkEzrt2AbDFXI+Cs4WgZOPIKb5XvQJP\n1q+eutObYXDzwXw44EMAJvw+gW1nt91gD0m7dlK7Y9YssLWF776TlQhq4cTV+FspBkGnTrLaIiQk\nhPfGj1fzCMw0oxlRedJwsrMqFtYuaqe3be3a0Wa3DBc0udsZ3n5bvv/BB9I6vEMokZH+0UdgY8OQ\nS6c57noWjQCR15pMGxsZU1O7JFqpfkoTGNr9yScAZOnuAmDPXTq4coVgX18OHjzI77//XvqC47r8\ngcxM2ZqjZ0+Ij5dhge3bpXNM7Y1ULnnGPO7/7X5OpJ4gxDeEn0b8VCNJhKURERHBmK5ducveHhwc\nUGbNwoY83LwuoEVLrCqa172wkBMnThSFTMJvFAu5Re4Ig+DvYin4nbNlst4xtdxQEXEYOnbglFaL\nv50dA25SAau6eKnbSzwR8gR5xjyGLRjG0eSjFdpPp5PqWxbhjbNnpSjHY49BerAafytltbR48WLG\njBnDxo0b6V+/Pvn2cKgVaNBwMSOAXJDlDZcvl9jXSg0REwOFhay5ZyStD4FZC/rY7yE5meM+PvT+\n9NM7KvGzREZ6UBAbgoLQAk3zpXBTy7NeLLe3l+9bwwY1RgmBIbOZwHPnAHAolA+zuGBwOHkSJ0dH\nxo0bV/a8tdyv+vThr7+kAfB//yedntOnS89oaGjFxmUymxi/bDzRCdE0dGnIiodW4GTrVMmzvXUs\nc/j1Zs0A+MLLi3ydDg9nGUbJULoAcL9ez5Zt27BTS2knWNoxVjF3hEGwWC3pABjiIDtW2bnLWJSH\n9hD/HSOzOe0iI8lMT6/5AZaCoih8PfRrhjQfQkpuCoN+HcTFrIoqEUnvWkyMbA5nZycrEVqODabA\nQc26Vi9OC3q9Hr1ez4gRI5gwfDjNdDr2hsjp0ZZginwDtaCvbUVFfaCd0nVGawalvQ6br2VzrE8a\nNCAqOrpaZLZvJz5zcyMN6Jq7BYBOezSss0hwWw2CGqOEwND+/bgZjZygHt40pMBZ4XgzqH/lSlF3\nzlLnbbH8gfBf7mboUHnrCg2VemmzZslKq4oghODZVc+y7PAy9PZ61kxYQyPXRlV1ypViiKcn7mlp\nnFcU5g8cSEGSDCP42HRHAGGKwn5HR/IdHWnh4EB7p+oxYu4Ig+C3y5d5MjycEd27oz1yBOHgQEtP\nuVou8M9gVdeukJvLsTlz6tTN1EZjw6LRi+jcoDOn005z76/3kplf8XauNjYwbZpslHT33XDxspb1\nuVK9LWlxyQd7cav+/Nq1RXoEwQSzQ73Af3rkEXr27HlHrUTrDAYDZ7y98Twsv4sGRqlYyAMPcFrt\nzlJdMtu3C0Y3Nz4EXDhKgS6fRufBYfQU+eamTTep+W3lVikRzlGNsbOecoUb317BrAVvdbFW1rwV\n2+UcP6Rty3d/eOHgAB9/LEMEFckVKM47Ue/w7a5vsbexZ8XYFbT1blu5k6xCNIqCr5oJ/vpjj2EW\nJ0kmGadCV87btUSTmsoX8fEATG7QAEVRqmcc1XLUOsbZ/Hz+NpmwVZWu9jp5kxefj2Kr8PFYtczk\nr78IbdGizt1MnWyd+HPcnzTzaMaei3sYuWgkuYW5N3WMli3l9fj997DDQRpCf74cxYcfgqrUDFy1\n6gFyY2M51BqMOmhGMy4FSD2CztnZ5Vv0VqqHrCxM27ezsksXgmVTNLz2z5dW33vvla3wdocRERHB\nIm9vLmPGSScFXdL2aTHXqyfjZ+UodVqpOkqEc1SDoH6bcQBsaWfGVlH4/cMPy5y3J0/Cz4/L/SJN\nfRgwQEYtX3yxZEOiG/F17NfMiJohexSMWkivgBurHdY0ASdPwt69JHl48PGTTxCHbAJlajOeyI4d\n2Wg04qzV8kjx1oxVzB1hEAAk9upVpJLlM+B5EHDJI5kFA/tgV1DAwIyMOnsz9XbyZs34Nfg4+bDh\n1AZGLx5Ngangpo6h0cDjj8O/lkqDoIcpildeka63HbLKhYiICHzVydZWUSiwg/i2CgoKil1nsoHW\ngA/WlWiNs2ULWiFY3q4ngSfBqDGi55D8UgMDa0Rm+3ZAr9ez6+hRVgUH458j8wgCd5qWPvpbAAAg\nAElEQVSIGzVKbmANG9Q8JlNRqDHtrKyd39sBOrm44OvhUWLe5uXJMuo2bcDvxCYA2k3pzdq10LTp\nzX/8D7t/4JlVzwDw9ZCvGd5yeOXOp5pYEBHBwMOHsTEamXvffWQOkXo4yXTk6RdfBOA1f3/01Zg4\nfEcYBM5aLSmNG+PZvTsAeQ4yA2V7iCzbGPvbb7jl5dXpm2mgRyCRkyLxdPBk1bFVjF0ylkJT4Y13\nvA7P/h3ByYkg4rnL7wL79klJ+OeeA9Bz+PBhxowZQ/Svv+JhY8OO9tLF+niXpzjuI2VhX+natc4a\nT/9YDAZybW0xIetBXTWH0NhpZL2plWvQ6/U8un077j6yW2lwHLxoNAGw7PnnrSGvmiYuDtLTyfcL\nIfeUEaOTQnwLKZN+PevWyWZEb74JIi+PHhrp1e0zI4xb8ZL/FPcTT658EoBPBn5CeKe669XU6/Ws\n/eYbvli8GIBFE6Ss/sV4R075NiTkxAmmVrNo3h1hELyiZmS+MmUK5/z9STsjW13t6uJMizNnGLdy\n5W2x2m3r3Zb1E9ejt9fz+5HfmfTHJExm080dRKeDHj0AiJ4ZzSuvSO/Bl19CUBD88YeehQt/w93d\nne5ubkV6BLnbcunw/PMAvNChg9UYqGkMBjYFB9PuoKyr8jbG8oevL2mltW2zQvhzz/F/rimYbbLx\nvgznG8het11ycqwhrxpm8bPPAhCdHQjA6Q5azNqrDY1A9l174AG45x4pqdGqFWz/73ZszfnSQrgF\nsa1f9v3Co8sfRSCY3X82L3R7oWpOqJp5+tgx/u/TT7niI0isD05ZMGTLBf585RXs9++v1s++IwyC\naf7+dCoo4HT9+rT69jsSt8tKgrMtTfz2zjuEDRhw2zzgQuqHsHbCWlxsXVh4YCGPLH8Eo/kmNa3V\nWla77VF88IEsUezZE5KS4NFH5ev775/JwUWLONQaTLaQvS+bAkvZotXtWrNkZMCuXazs1q0of8CB\nOJ5OSOCRRx6p1aHVVeLj43nt2FF0QsZhW2Y2I97FhYZAc6BevXokJiZaPQU1QKNjxwA4fkUuzLa2\nlYuYbq6uFBbCJ5/IPKfFi8HRUVZGxcVBcNomeYA+fUo7bLlE7I/g4T8eRiCY1XcW03pMq5JzqQli\nExJ4ZvlyXnnjDZx6SYP/iz8TaZCSUu0CW3eEQWCr0bBuxQoGxMZS74ItTllwxUdhyaWDdDhxAruG\nDWt7iDfFXQ3vYtX4VTjpnPhl3y88uORB8o35N97RwnUCRe3bSy3wX34BX18phfz779M59WczCm3h\nUHOZr5Ce0QScnKQaSGJiFZ+VlTLZvBlhNhPVqgeNEwAln584wiWotmzj2x1HR0dMwGZFWlDB+zT8\noIYM/92xI0FBQVZPQU1gNNJBLeX2tpOCRDvaCxxSU9m5vpBOneCll2RjopEj4fBhWRlla8vVhUc5\nDY1K4+vYr5mwbAJmYWZG2Aym95pehSdU/SSoqrFZW7eyI0H2t0/Pl9oNez/7rITgU1VyRxgEAB5r\n17Ju2jT+OCZliVuE1aOjRbmsmBzm7UJP/55ETopEb69n2eFlDF84nJzCnIrtHBoKDg6yraZa9qMo\nMH48HD0qL1BFMcORiWCCnZ2lmzotJuuq/LFVCrbmMBg44u+Pz3k5T13Yz2yMhISE8OOPP9by4Oom\nlqqL/aEyHT1kDyTeJ5PJgtPTOaS2lHVyciI1NdXqJagudu3C0WTijGMjPPN9ybcxcjQIcmMdGDbM\nmf37wcHhAgsXZrFsGfj7q/vl5sraQkUp0b+gLIQQvL/5fZ5Z9QwCwQf9PuCt3m9V37lVE9lqtVew\nry9T58nGS0mHbTBjQ5MzZ9hSXPCpirkzDIJz5+D4cXBxwS5RKhG6dXO9qrpXS82MKkvXRl0xPGzA\ny9GLtSfWMvjXwWTkZ9x4R1tbUFdLREdf85arK8yZAzExOXi5HoZjLuxV633Pr0q/6r6zhg1qDoOB\ntZ07F4UL9L1ccGvSBMcbKbzdwViqLr5a9Q15dtl4pMJBcyPMikKzM2dIVTvGZWdnl91hz0rlURcO\n9t2eAuBQYwWTDXCwHZANvEFublOWLn3s2v22bYOCAik2UAH1WCEEr0S+wvSN01FQ+GbIN7zS85Uq\nPZWaYswUqZsxtl8/vFp64djSERujjiO0xBUIpvqqvO4Mg8Dy8Lr7bjL+zgLg1fmvsnPNGvn/t6GH\nwEKwbzDRj0oZzuiEaMLmhXE+4/yNd7xBO+SuXV25dKktg/1dOdwKCjVgPp5Fu/c7c5xAzv/yizX+\nWhOkpsKePawpZhA4vNAbf39/q8u7HCxa+uPHj8f3XpmZHXDMhd3BwXgUFtIScFWT2qwltNWIwYAZ\nhb8vyvvNro5qQ56DW3B2DgVmEhratuTf/7r+BeVRYCrg0eWP8lHMR9hobIgYFcFToU9V2SnUNI6N\nGwNgpxqterWd92GkUtxzbdpUW5VXjRgEGRkZvPDCCwQEBODg4EBQUBCzZs3CaLy5ZLiCggLefvtt\nWrRogYODA40bN+bll18mW+1PUCbq5Crs0p+cIzkYFSO/7fkN1N7ct7NBALJD4uZHN9PcozlxF+Po\n+kNX9l3aV/5ONzAIQHrrHg51k3oEASb+n73zDovqWBv4b3dZFpYuqCAqarCiIPYWQNNsaRqiaUo0\nQb1pxkSTm9x80TTjjSW5KcYUo7EkotEYg4qiixUN9oKKDaygIL2zO98fs7uAFBuIwP6e5zzn7Cmz\nc86enXnnnbcoAfs0XzoQy+y8Tzi4LtrSGVU3W7eSq1ZzuFlnmp+HInJ4c/H/lQ0Na6EUJaNurjr3\nJyDdD9d1kYHIJnXpwqFDhyzBnKqTwkKitxTQi12kHJWCwMF+RdgKJU91XcmRI+srfv4l8hdUxrXc\nazy86GEWHlyIVq1l9cjVjOw4shpu5i5izC5rms51GSBjN2gc5NTJaC+vantfq10gyMjIoG/fvvzx\nxx/89ttvpKWlMWPGDGbMmMHjjz+OwWC4qXIKCwsZPHgwc+bMYc6cOaSlpfHrr7+yZMkSAgICyMmp\nZP7cqCF49Ys1AJxSnaKIIjyNqbFGvvZarR/ttnRpSfTYaPo178eFjAv0m9+PiFMRFV/Qs6cMAn74\ncKUJi0yuQYd6yHgEvmyjCCtm8xapyjN067agVLRDC1VMVBTbfH3pYGxQzzqcxcbOhoyMDNzd3Vmx\nYoWlMyuHkgLTv36QQWk6H4D1vtKPtt2lSzg5OVmCOVUTJ09C8CPp9MnbTBydaUEO+Uo9J9qCOHqI\nq0lJTJgwgR9++KHs88/JKbYfuL/iiIInU07S66debEnYQhOHJmx7cRuDWw+u5ju7C5gGqMnJhIaG\nEjIrBACHQm8MqGDbNrjFwfRNI6qZV199VSgUCrFu3bpS+2fNmiUUCoX47rvvbqqcmTNnCoVCIebO\nnVtq/x9//CEUCoWYMmVKudcho5eLDCsr8TzPCR068SqviqZNmwqDra0QIOxAACI4OPj2bvIeIrcw\nV4xcMVIwFaGaphLf/fOdMBgM5Z/84INCgBDLllVaZtOdO0X3GTqhQye+4RvxptvDIojNwvhoRdu2\nQvz5pxAVfY2FO8DPT0yaMEG8PVg+//92/a9wcnIS1KF3tjpITU0VwcHBIjU1VRgMBrG96Q6hQye8\nf4gUyY6OIglE8FNP1XQ16xyJiUL8619CWFnJtsGGHPGu7QKhQydmef4u0OmE7YQJlb+/kZHy4i5d\nKvyezWc2iwYzGgimIvzm+onz6eer8a7uMmlp8v7t7UVgYKAAxEIWCh06keop2+zx/v5i0KBBIjU1\ntcJibqd7r1aBICMjQ9jY2AhPT88yx1JSUoRSqRStW7e+YTkGg0E0bdpUaDQakZWVVepYUVGRaNCg\ngXBwcBB5eXllrjUJBDsbNRLTmCZ06MRQ66FiaP/+QoDIUyoFILp161bpw61N6A168e7GdwVTEUxF\nvPjniyK3MLfsiZ99Jl+8ceMqLe/pI0eE9m+d2KzUiUhFpEhdqxMGEH82ell4ewuzYNC7txBbtlTT\nTdVHkpOFANHhl1/E4iZSIBjZZaS5MXVxcakz72x1E/tCrNChE8Nf0YmlAwYIASJ9x46arladITNT\niKlThbC3l22BUinE2Cbh4gJNxNEHVgsdOjFqyDKBTif8X3658jb3/fdlIZMmlTlkMBjEjO0zhHKa\nUjAVMWTJEJGRl3EX7vAuYjAIoVYLAeKxhx8WgJjMZKFDJyIbjBMCxJSbGBDcjkBQrVMGmzdvJj8/\nn549e5Y51qBBA1q3bs2pU6c4aQxcURGHDh3i4sWL+Pj4YHdd2keVSkX37t3Jyspi63UW8yXpPHEi\nnW2luvBQwSEOG6cR1O7utGzZEo1GU2cstpUKJdMfnM7iJxdja2XLLwd+od/8fpxLP1f6xAcekOtN\nmyotr6+TEzl2kNLeCpVQIVQdUTg78/iVHzkaHs+XX0pHjehoaZowaBDs319NN1dPCA0N5YOAAM43\nbEiybQs8L4HK2YqMRtKLxMXFhf3791vU3TdBaGgo8/6ZB0j3w3XG9shxz56arFadoLAQvvsO7rsP\npk6V8QQefRQO7Sngp2vD8eQS2ZekCvzgAFcUwKrp0yu33ajAoDAjP4Onlj/FO5HvYBAG3uv3HqtH\nrsZB41Cdt3j3USjMnm+/zp6Nu7s7h5ERCl29hgLQn+qxH6pWgeCwMcxiC6PV5PWY9h85cqTay1H1\nGohjriMFqgIucIHA9u0BOJWRQVpaWp202H7O9zmix0bT0rkley/vpesPXUvbFXTpIv0MT52Cc+cq\nLMdkR3Cgk7QjSNuRafYNtt6h4403ZGayadPAwQHWr5dFjxwp5xIt3DpxcXG0jo1lQ/fu+BuFK+cA\nJ5b8toTg4GDOnDmDl5dXzVaylhAXF8fvJ34HwO8gRHTriUGhgCVLarhmtRe9HpYulQmIXnlF2r/1\n7CltlP/6C3wyd0FeHoXtepB9LB80CmI7quhoZ4eXq2vFthvZ2TLbmlJZyn7gYOJBuv/YnZXHVuKk\ncWL1yNV8+sCnqJS3mPawtmAUCJwKCzl27Bieg2TwvOxzTgjgfsC1ROjnqqJaBYLExERAjmbKw/RC\nJCUlVW85rq5k5siwmS49XBgePJxvp00D4GxWltknuS5abPu5+7EndA+P3PcIyTnJDFwykLci3pKR\nDa2siqXwzZsrLsPeHlulkigfGXI0fWuJeARGad7BQSYkOXNGpifVaGDZMhmTfPx4Gavcws2j1Wp5\nFErHHwhytmQ1vA20Wi1JJJGoSMQ+G5yvOrG/dWvYu1f2bBZuGoMBwsKgUycZyOzkSWjdGlaskBrC\nxYulu+fisWMBSGv1JAAZ/hoKrUvnLyiX7dul2sHfH5ydMQgDM3fOpMdPPYhLicO3sS97QvfwWNvH\nqvtWaxZTbJzkZJydnfkx/EfUjdUUpug5rfHGDkjfvLnKB7DVKhDk5uYCoK4gXaO10cq/Ug+Bqign\nMJDMfTL+gEsvF8LCwrA3lnkV6Ny5M0888USddT9qYNuA8GfD+XTAp6gUKmbvmk2vn3txPPk4DBgg\nT6pk2kCtVNLDwYHDneTnjF0ZGPqUyGsghPlcNzeYNUs2FGPHykPz5kmV4quvyhhRFm7M71Om4KBU\nsrFL12KBoH/dezerE1MsgsLCQlxdXdkn9gFGb4Pu3aUw8OOPNVzL2oEQsGoVdO4MI0bIEMMtWsDP\nP8PRozB8uNR0m9w9PU+dAiBNIadpY/1kiO3yMhyWIjJSrh98kPPp53nw1weZvHEyBfoCJnSbQPTY\naLwbeFfXbd47GD0Nfpw+naCgIIYMGYK2p/ScOa2VU17Pe3rWrikDW1tbQLoMlkdBgYyRb3IRqq5y\npubmMmPJDBawgENao3++0dXOpXVrdDodq1atqpPCgAmVUsV797/HjjE7aOXSigOJB+gyrwtLGkrt\nC5s3l+rYr6ePkxMZTpDZRo0hz0BI6CxSlUo4f54xQUFlbC+aNYOffpKNRXCwDDr27bdSMPjXv+D8\n+eq829pNaGgox4YNI6ZdO2yzHHBPAqsGVtj7WjIb3gqmzikyMhK1Ws1+5NyL/35Y2U2mQGf27Bqs\n4b2PEPD339C1KwwbJr2UmzWTQv6JEzBmjEygakKr1aIB+igUCIWC9HOyTY3oINvoPjcSCIwDkw0t\nDPh+74suXkZiXfPMGr4b8h1adeV9RZ3BqCHIOXfOHE8jPCEcAM8OIwAIbdOmVJ8VFRXF1KlTzcvt\nUK0Cgbu7O4BZJX89pk6kcePG1VrO1G++4YWsFwghhIEvDJQ7jQLBkJCQOi0IXE/Ppj3ZP24/z/s+\nT25RLs/Hfc41R7VMVnTiRIXXmVR9x4ySvv6gQGeMIaHcurVC1VW7dlLFePiwHFkUFsLcuVIwGD8e\nEhKq+AZrOaGhoUT+/jtdUlOJKGk/EOiMQmlJZHQrlIxFsGvXLhJc5Mvme0hwuF1HMm1tpSpr9+6a\nrOY9icEAf/4p7QIefVQaCXt4yDTpJ09CaKgxAdF1LF26lH8HBqIRgqIOPck6kodepSe6jR7r7Gwa\n5OVV/KXJybB/PwVqJY9f+IK0vDSGtB7C4QmHGdpmaPXd7L2IUSBwM3904xByMJt5wQU++wz155+X\nuiQoKOjeFgh8fX0BOHv2bLnH4+PjUSgUdOrU6Y7LASosJ9/Wk4KLBagcVNi2ltoGczCeWh6l8HZw\n1Diy6MlFrHx6Je4O7kQ0l5qXiB/eoVBfvhaml1EgiGgtp2V88SXaxgaA4Q0a3FB15eMDv/8OR47A\nM8/IuBrz5sn5x9BQqOCnrXfExcXxQmYmakrbD/x6+NdaHzzrbmNKcLRx40a8vLzw7uXNOc6hzVXg\nfcYKnb8MBct1DWt9pqhIZj3t1ElmH4yJkYHz5syB06elAaFGU/H1zs7OfGg0OE5v9QQIONM4lXwb\nKNi3j3Hjyg8pXKgvZM3cNwHY2tSA1rEBC59YyJpn1tDYvvIBY53EKBA8FRhIcHAwbdu25Y+Df5BL\nLvkJRQzftIe0Nm2q/GurVSAYMGAAGo2Gf/75p8yxlJQU4uLiuO+++/D2rnxOyNfXF09PT2JjY8nK\nyip1rKioiJiYGBwcHAioICtW5t5MAA7lH8LVzRVPT0+2r5JpJbON0xH1kSfbP0nsv2LJC+wLQNb6\nv/D73o+NpzeWOi80NJSnHn4Y5YULHPSX2SI70pEUHymoPaLR4HwjVaCRDh2kdXJsrDRKMk3jentL\nQeHAgSq8wVqIi0bDG8A1Bwf+adsOf+PzWH5qeZ3zgqlurjfAXLp0KZmtZFvgvx9WmdyhV6+G48dr\nqpr3BHl5UkBv0wZeeEH+P5s1g//9TwrrEyfKBKk3hdGlO01ltB/wkVH1mqanlztwiDgVgd/3flxa\nvRiAlD5+HHvlGKP8RtXf9N7GgaomI4OwsDAcHR0xYOC08jQAFzddpHXr1lU+SKhWgcDe3p6xY8dy\n6dIl1q1bV+rYggULAJg4caJ5X0ZGBkOHDiUkJKRMSOM33niDgoICFi1aVGr/6tWrSU1NZdy4cWbj\nwutZMlW6Fx0tOEpqaiqXLl1CaZx++Hz+/Du6x9qOi60LL076FYAHEpQcv3KMhxc/zJPLnuRM6hmg\neC7WcPgwKW5w0T4dO+zYsTeNDGtrlJcv37J/Ybt2ciQSGwujR0svo99/l8bFjzxyQ5OGOsuSBx+k\nARDZtStNLqtwS4Zs62ziiUepVLJ582YSLPMst4WzszPB04MBKRBsNeXzEAK++KIGa1ZzZGZKI+BW\nreQU3tmzUiiYP196I7/2GtzAxKs0OTlyCkapJP2c9AqL6Sbb5S9ffrnU9GxcShxDlw5l4JKBHEs+\nxqB4OdgY8caPNLJrVGX3WCsp4WUQGhpKRkYGtra2nLSS7ayv2pfk5OSqHyTcSUClmyE9PV34+PiI\npk2biu3bt4ucnByxcuVK4eDgIAYOHCj0er353OXLlwuFQiEUCoXYu3dvqXIKCwtF//79hZOTk1iz\nZo3IyckRUVFRwt3dXfj7+4vs7Oxyvx8Qn1h9InToxMPIqE8ODg4izhheL/2ff6r1/msNLVoIAWLB\nz68L+8/sBVMRmo81YtL6SeKBRx8QgGg2bpxApxP/13ul0KETk5pOEru9vIQA8T8fnzuKmnfunBBv\nvimEnV1x5MNu3YQICxOiqKjqbvOeprBQiJYthQAxZvJk8eibMjrh/if2CysrK3OEwqZNm9Z0TWst\n+Un5QodOrNfohDpCJ041aSJfNrVaiPN1KPztDUhIEOLtt4VwdCz+v3XuXAX/tw0bhABR2LmP2KTY\nJCKJFLZrNgkiIsSwkSOFEEKcTz8vxq0ZJ6w+shJMRTh85iDmLXtHVsLZuR794Sth/375PDp1Mocv\nBkQAAUKHTsyxnnPDCLu3071Xe3IjR0dHdu7cyVNPPcUzzzyDi4sL77zzDu+88w5r1qxBqSyuQt++\nfWnVqhU9evTAx8enVDlWVlasX7+eiRMnMnHiRFxcXBg1ahTPP/8827Ztq9RToXlRcwDiVfEMHjyY\nw4cP08RoGut4333VcNe1EKP74ehrzTjx6gme932efH0+s3fNZqv/VmwH2+KemQLAnu5yEnFE+xHs\nMD7HhkeP3pGk2qyZNPg+dw4+/lhqzPbsgaefhrZt4auvICPjDu/xXuePP+DsWYRaXcp+oOHDDc0j\nK61Wy/bt22uwkrUPk/vh4MGDybHOQeujRZMP7Y5LOw2srKS165w5NV3VaicmRk7NtWoFM2fK/9T9\n90N4OOzbJz2CVHcS68c4XZDh/RhKoSTO7iK59kpUZ84wfeY0Jq6fiPf/vJm3dx4GYWCs/1hOvnaS\n0HRjOzxgwB1WoI5QQkNg6tscHR2JJRaALjZdCH6qGjJ13qkgc68DiE1sEhvZKAbcP0BKUwUFxQG3\nS2go6jVLlshnMnCgede+S/vEoMWDzDkRmKIQrFsj3JfKkes663UiqJG7ECASFQoRf/ZslVUnJ0eI\n774TolWr4hGMg4MQr78uRFxclX3NvYPBIETXrkKAONyihWCzTqxqIJ9z1rEsER8fL5o2bSri4+Nr\nuqa1jpIjrODgYBH3apyMrR+iE4/Nnl38gtnbC5GSUtPVrXKKioRYuVKIfv2Kb1WlEuLZZ4WIiani\nL+vVSwgQp5/eIHToxDifrwU6nejw99fC9hNbc1vy9PKnReyV2OLrRoyQFfv22yquUC0lN9esuUq9\ndk0EBweL+Ph4ERwcLLZ7bBc6dCL7ePlacRO3071Xu4bgXkCJkgQS2LzNGNnp2jV5oEEDOXltoThA\n0datMmgA4O/hz9rn1tIztickAFoB2UdIdIdkx0xsCmxIznLlMtBYCL4cP77KqmNrCxMmQFwcrFwp\ncyRkZkojp7ZtYehQ2LixDtkZ6HQycp6jIxHdu+OVAM7XwNrdGm1bLV5eXpw/f94Srvg2KOl++MMP\nP5gDPPkdhM0dO1KoUsmJ86wsGZi/jpCcDP/9r/TkGTZMBgF0coIpU6StwJIlYArHUBW89uKL6Hft\nQq9QkHJW5hc4NkSuY+PDyC3K5bG2j3Fg3AGWPbWM9g1l+HgMhuLAaA8+WHUVqs3Y2IC9PRQW4qxU\nEhYWhpeXF2FhYTj1kgbcGburXmVab3rD05wuDk1sEghcXWu2UvcS7u7SBcBkFFSC9fPW81TWU6wZ\nvoZWylxQwAEfaZR5X1tvvmshh1+fVsOfWaWS7k9RUdIXeswY6f8cHg4PPyzdGb/5Bmq9N95//yvX\n3t6l4w/0d66/ltZVREn3Q2dnZ5wDpUDQ6SjkCzXRPj5gUrt+/bU0ua+lCAG7dsGoUdC0Kbzzjuz8\nW7WSwvSFCzBjhpyiq2ps9+4lTw3TfNWk7cvEgIF9vaTq++lmHTky4QirR67Gz92v9IWHDknppVkz\nKb1YkJSYNiiJY0/pAm4RCO6Aqw5XWbFihZxvSZFz4TRoULOVutcwdegbS7sdOjs7szxsOUM7DuWn\nIOkVcsRX+iD5FvjySQh0eAV+PLWY1Nzyg0dVBZ07y1Cp58/DJ59AkyYyhOprr8ntMWOkLFPrtAYH\nD0JEBGi15GRmstXPzxKuuAoxuR9OmTKFoKAgHn/hca65XENdAB1ijXYER4/KF+zKFb7w86t1MR9y\ncmRk0K5doXdvWLRIKvqGDJHCc1yc/J/YV0OwSyEE+y7v46BPPE3egr/826PWq4n3vEyWix3Nra1Y\n9th3+DTyKb+AEuGKsQi/xZgEAlPMHCOOvaRAUHC5oMq/st4IBAcyDzB58mT5wSQQWDQEpXnkEbmO\niKjwlO4ODqiAAz3ls/M75UdjtSvHG8JEj4O4z3Jn2LJh/BH7B3lF1TPSatgQ3n8f4uNlAqUBAyA3\nF375BXr1ku36d99Benq1fH3VM3OmXI8YwRYXFwqsrOl2UO6yCARVh8l9dt26dUTnRgPS/fDvnj1l\nlr0nZSKeoXFxrK8FMR+EkLNMr7wiBeKXX5ZaNFdXOS1w+rQMOzx4cPXY6R1PPs7UqKm0/7Y9XX/o\nyoZ2mWTYwKALMvGZ/UPtAAhwuUE7a5ouMKVjtyAxBc27XkPQ25G+KX3puLJjlX+lVZWXeI9i72df\nHBTDMmVQPoGBUh8fEyOFpnKej72VFX729uxrkUW2bT6uua7EDTtN5NiWfH9fKpH3FbLq+CpWHV+F\no8aRYe2H8WS7J3mw1YNVHodcrZZeCE8/LcMg/PijFAoOHZKN5OTJMgXz6NHQr989ai6SkAC//SZb\nbB8fIrRaWp4Fu3TItstm8NjBaO20LF26tF6F2K4OStoS5BTkwCHw32dgYYg3V52caKhScdXGhvZ5\nebzu7c3UezTzaXKynP+fP1++6yZ69ZJ5QoKD5RR0VWMQBvZc2kN4XDirT6zmYNJB8zHrAjWh+wt5\ncS/8kyEDzf2Yvwdoy8pp00hMSWH58uVl3+H8fGm3BBaB4HoqmDJQWitRNqiexpfyZiIAACAASURB\nVOxebCKrnBxNDquiSiQvskwZlI+dnew5hag0+2EfJydQQF6gDDySvTOHYS0Hs2ERXHD+iNkPz6Zb\nk25k5Gew4MACHv/9cVz/68rQpUOZt2ce59LPVXnVW7eW0/AXLsgAR/37SzXq/PlSzvH2hg8/lKOm\ne4ovv5ThGkeMgCNHSrkbnrI/xZatWywRCquIkrYE01ZPQyDwOa7EOl/Bxm7dYOtW7N9/H4Av3N3v\nKQFMr4d162Rn36SJjBx46JCU2d94Q0b4jI6WUQarUhhIzEpk2ZFlhPwZgscsD3r+1JOPtn7EwaSD\nOGmcGNN5DBue38A7Gzrx9TpQZjnRqkDaAewNkO1DTkwMkZGR5b/DO3bIP2rHjtKOyUIxFQgE1Um9\nEAiS7JNK77BoCCrm4YflupJpA1Oio4MycjFpW9NkDww02bKPN3u/SczLMZx49QQf9/+YHp49yCvK\nI/xkOOPDx+P1pRf3/e8+XvrrJZYcWsLFjItVVn2NRvatmzfLXE3vvSdtlc6ehY8+koJBv35Sm1Dj\nU8TXrhWn3508mYRDhzju5UU3o0BwsZF8LmZjWAt3RMlQxm4t3HDo4oCqCHyOGu0Itm/Hdvx4cHRE\nvX27DIRRgwghlXVvvikNBAcPhhUrpHAwaBAsXw4XL0qZ0s/vxuXd+PsEZ1PPsvjQYkLXhNLum3Z4\nzPJg5B8jWXhwIVeyr9DCuQWvdH+Ftc+uJentJH5+/Gceuu8h3uvRCwDPJyZjbbAmQXWB1HaNpOdG\nfDz+/v7lv8OmdmbgwDu/gbpGBTYE1Um9mDLYnbKbdaHrCAsLkzssGoKKeeQRePdd+UcVolwjH1MK\n0/B2+QwA0remw/9JgYAtW6QbkVJJG9c2/CfgP/wn4D9czrxM+Mlw1sStISo+ijOpZziTeoaf9/8M\nQHOn5nRv0p0enj3o3qQ7XZt0xVHjeEe30qYNfPqpDHQUFQULF8rYPzt2yOW116TR1dNPSzdGO7s7\n+rpb5/vv5dz1Qw+BszMRTZqgMECnfXpAxWHVYdzd3fH29uaJJ55Aq62+qQODMJBflE9eUZ55ydfL\nz/lF+RiEAb3QozfoS60NwlBqn0EYUCgUqBQqlAqleVEpiz+XPGaltEJjpUGj0pRa21jZoFFpsFZZ\nV5uXhXN/Z7L2ZeG/H8KDeyE+/xzFiRMy29bMmTKm72+/Vct3V8aJEzLfx9KlMnywCW9vePHFYg+C\nO6HIUMTZ1LPsT9zP3kt72Ze4j32X93Et91qp8+zUdvRp1ocHWz3I0DZDae/Wvtzfw2bnTgBy7XoD\nkNhJWvY2TEmh72OP8csvv5T/3q5fL9cWgaAspgHrtWuVn1eFKIwBDOosCoWC0JahzNg3o/iFDA6W\novayZbI3sFCMwSB1kklJ0vK6Q4cypwghaBodTWJuAZuHqxDpemb3mMVPhyJplJcn9ZeVDFn0Bj37\nE/ejO6sjKiGKbQnbyCzILHNeC+cWtHdrT4eGHcyLdwNvXG1db7uTyMqSQsGvv0rXf9Pbr9VKoWDE\nCDn6qvacV/n54OUln/OGDXDhAsPPn+eQRwA/hkIiiTzDM4BMfZqcnAwKeOLpJ/j2x2/JKsgiMz+T\nrIIsuV1QYrui/cZtUydfsvMvNJSf5fJewFplXUpQsFPbYWdtV+7a3tq+wuOmY/bW9thZ26HfpOf0\nk6eJbVvEK99bcXDsWHzHjJE9bqtW8uU4dQpatKj2e4yPl+/l0qUyYqCJxo2lHcyzz0L37rdmhJ9f\nlM+FjAuczzhPfFo8J5JPcCJFLqeunaJAX9ZK3dXWlZ5NexLoFUigVyBdPLqgVqkr/6KUFDma1Wg4\nFLSLaxFp7JnpwuSuqUxr0YL/q+j5XboEnp7yz3ftWuVpFOsjy5fL/mnYMPly3CIKhYJb7d7rhYbg\nU92npaVTi4agYpRKOWJdvFhqCcoRCBQKBX2cnFhRcJWs7jbYRWaT808u68hjNMiethKBQKVU0a1J\nN7o16cbkvpPRG/QcTz5OzKUY/rn4DzGXYjiYeJD4tHji0+JZd6p0YiytWouXkxctnFvg5eRFc6fm\nNLZvTENtQxraNaSRXSMaahtib21fRnCwt5dGhqNHS3sDk1y4axeEhcnF3h4ee0zKjQ89dPuaAyEE\nBfoCMgsyyczPJCM/w7zt+vtqeiQlcdXbg7nqnaQeXsGaR6bz+F/y2gOtD8AAUNoqSVGngBqwhj/5\nkz9n/3l7FboBNlY25pG5advGyga1So2V0so8ulcpVeb19fuUCiUCgUEYzItJc2DSMpQ8VqgvJF+f\nT35RfrnrAn2BeSlPaLwTtHla/lL8RZtTSmxyIXBSd5okTMdu/Wo+7e7KQ9FJrH31EVaG3l9GmLjR\nZxsrG9RK+dwqEl6PHZNBt1auLC0EODrC8OFSCAgMFAhlIdkF2VzKzCG7MJucwhyyCrK4lnuNlJwU\nknOSScmV6+ScZLMQcCX7SqX37+ngiZ+7H13cu9C1SVe6eHShmWOzWxe2t2wBQPTqQ3q0/I3Wt5PC\nRt/KsqCapgsGDLAIA+Vh6p/uooagXggEbl5upXdY3A4r55FHigWCN98s95Q+jo6suHqVE34KukSC\nL77Etzgthzo6nbR6uklUShU+jXzwaeRDSOcQQOZHP516mtirscRejeVY8jFir8ZyJvUMGfkZHEs+\nxrHkY5WWq1FpcNQ4Ym9tX2axVdtipbTCqqUVvu9Z4Z2t4uxpK07FWZF0WcXSZANL5+lRzdfTtHkR\nzb30NG2uR60pQm/Qk6/PJ7cwl9yiXHILc8kpzDFvl9wnKEdCF3DEGBBvUqfLLN4yFZp1BI09nffk\nAFr2++wHDzBQOuunqdNx0DjItbVD8We1fbnHSu6zt7bH1srWPNo2d/pK9T0ZAMkkVJmEhNwi+Vyz\nC7LJKsgiuzCb7ILsMmvzsRL7swqySm9bZxPXJI72F9vT6TDEtO5OWvIyuBTDZF84EA33b4zj2Y5x\npN+BxkilUKFWqeUzFlYUFagpyFVTVGAFCAg0oBigR2NjwFpjwEqtZxUGVsToydmZg17ob/t7mzg0\noZlTM5o7NadNgza0c2tHW7e2tHFtg711FQUl2LwZgKwOQ9Fv0aNpaUOUXTZKoIeDQ8XXWaYLKsfU\nP5n6q7tAvRAIylAydLGFsjz0kFxv2SKjtpVjtmyyI4hsX0gX4H6H+xmwOkRqBrZskZZPd+D8rFap\naefWjnZu7RjWflipY2l5aSSkJZCQnkBCWgLn0s9xNecqV7KvcDXnKlezr3I15yo5hTnyc84tGOW0\nMi5G9MiozQk5wPHbuA+lGgeNAw7WDjhqHHHQOND/WB4+V/eR2kBLoxfH8J8Cwc5DOUTpofNhqZ59\nbcJrfNrxUya9Ooltkdvw7+BP5LpIGrjUr3dWoVBI2wIrDVTDIPJo0lGufnUV//1wwN+XHT/Z8FWH\n+3h65mdcPfQBDaMPEZEzjOgn7jcLFCZho6RAUnJfVkEW+UX5FBoKKTIUSfuKIj15GONyKACtcTEi\ngDwgT4986UpgpbTCTm2HVq3Fztq4VtvRwLYBrlpX3Gzd5Frrhqutq1kI8LD3QKW8C4mCjAmN0tXd\nAAP5vWzRk4e/vT0OVhV0MUVFxQHQLAJB+Vg0BHcJi4agcho3ltF9DhyAbduKBYQS+Nvbo1Eo2OCV\nzztaJS6ZLti6t4OWLaVJ/8GD0KVLtVTP2cYZZ3fnsiFQryOnMMc8n16ysc4qyCKnMEc21gY9RYYi\nc8Nt2japwrOzrIg9ouLwQRXHY60oKlSBQQV6axq6aOne2ZY+3W3p11NLY1dbbK1ssVXbolVrsbWy\nLb9BNkaEdHnnQ2Y9OgV++oke7oV4nwK7XDUXucjqn1YTFhbGX/P/IjQ0VMbgv4fc4OoKHoM8uPrV\nVfoeUvKDWs1VTz9abdjN4o8X89j/zYBBg+j5xy56zvxNxui4AULA8eOwdq1ctm4TFOmLQFkEqkLc\nPQsZNKSQgYOL8O9WiNqq2ACzPMNLrVp74zn8miQxEWJjQaslLcEZuMYpf/nOm7yRyiUmBlJTpaWk\nJeNs+VgEgrtAbq5c1OoaMCuvRTz8sBQIIiLKFQislUq6OzqyPT2dou5aVFuySNuaRqOgICkQ6HTV\nJhDcLFq1Fq1aS2Ma31lBxtvPypL2f3/9JcPBXj0Ka7fDWqTpRc+e8rE98og0AFOV59S7f7+M8WBv\nL63ZgeSdO9nz/POM+F16F8SqY1GpVAQFBVWrZ4EFcOzriMJKQbPjBrTZ0v3whdhYJv3wg8wE1LEj\nHDkig1uMGlVuGZcuydd982b50yYkFB9TKhX07a1m8GA1gwfb4udXt6Lz/vjcc7wM7LHVkrtNhgbV\ntZcGqpXaD1imC26MnZ3sp4x9VugbbxAXF1etbUK9iENQipIxCOrSP7OqMYUxNv1xy6GvcQRw1jgi\nWPXhKj6NliFhCzdsqN761QD29tLgd8EC6RywZ490awwMlAJBdDRMmwZ9+kjhftAg+Pxz2LnTnEBS\nurIBvPSSTKgjBJHp6Qilkq47sgH4p/AfIiMjzWF2LUGJqg8reyscujugMIDvISkQdC0owNnGRrYP\nb70lT5w50+ySkpwsjVH/9S9o314ayj//vAyClZAgDe5feEF6LF69KrMMvveeVLrVlSYnNDSUoKAg\nrLdvB2Bdih36a3qsPKxY65QFWASCO0ahKOV6WDL0dnW1CfVbILBQMf36yR7w6NHSQ54SmOwItnWU\nk57OCc7MPS4n2vM2bmTowIG1KkHMraBUykQy770nYxxcuwarV8uQyd7eMlXz+vXw739D376y7x/Z\n9zz635YhlCqyX3pDFnTyJBHe3ij10D5O2mrEqmMpKioCqDigi4U7JjQ0FA8PD+bvnw9Aj4Nwonlz\nzjk7S+kOECOfoaihOxw+zJwhkXTsKEPMBwfD3LlyesDOTgp/X3whhcSkJOnWOnJk3TVTMnVOfY2S\n7lVklLJthftI0+vRZGbikJtb/sXJyXLKwNoagoLuUo1rKSWmDa5P410d1D+BwOJyeHNYWxdHLQwP\nL/eU3kYNwXKPNAqVRTTObkwmjpxSKHAQgisREbRu3brWZY67HRwcpKviN9/IvAoXLkif8nHjoF07\nqfXruvN/qAxFLDM8haNvC/z84KUxRfzZLZA2cWBXZM1FLuLh62F+Xs2bN7dMF1QTcXFxJCYmEp0n\nO//Ou/IB+Lrbswx6eDMNG0bj5qnmg6uvA9Bh3UyOHpUecgMGyIBXO3bIqfC1a+Htt6WQeE/mzKhi\ntFotzQBvIEOhwBlpz7PbQ7o65u/ZQ4cOHcr/32/cKLUt999vmba9ESUEguvTeFcLoo5T5hb/+EMI\nEOKJJ2qmQrWJ+fPlsxo0qMJTWu/aJdDpxBzb74UOnQi0ChQLNRohQPzH2logDahFcHDwXaz4vceV\nU+miwNZRCBDPto0RKpV8tLTMFOh0YuRzW4UOnXgLndBq5woYJTp0eFYkJqbWdNXrLAMGjBDwkNDw\nb7GBzWITOmH/l04w9bD8bYxL24YpIkdlJwSI/QsPitzcmq65EC4uLub/lmWp34uLi0u57wjcevde\nD2TZ67BoCG6ewYPlevNmGWK3HMx5DbzkSMCnyIf1+XKkNdQo/Vti8UPD1T+hzs2AwECWHO9GRgZs\n3yYY2u93APzlIJX9tCcnZzywkNjYJbi7O+DgEE9wcAEzZsgEN2fOSK9OCzdHWpqcAZg/X47iBw+W\n+S02b/4d2EA+nxGLM0rA7yCouibzsvJbvJu/x4EDGRxLaoDtK2MB6LxpVrVkErxVUlNTEUJYFstC\nampqlb1X9c/LwOJyePM0bizN5WNipFDw6KNlTunj5MTCpCQuDfaE4+CHHx8aj/lmZDBy+HDm/vRT\n/VZ7FxbKDDRgNlLTaqFvg2Pk+aahKoJuiTIAUbb3N7RWeOPj8wwREYnk5jYlK6sFK1ZIQzYT1tbS\nVqFNG2jbtnjdsqVMGlcf1NYlycyUzi1nzhQvJ05Ij7hLl8q/xs4OVKpDZGREcQADfnSm+648dvSz\nIaT9XGZ/8gn2fkbXuYkT5XzQ0qXSkvROkwlYsHAPUv8EAktQoltj6FApEPz9d/kCgVFDcGZoKxRf\nF+Jd6E0mdsQpc2mj1/PbW29Ji7r6zIoVcP687LGHDDHvzt68ma2+vrQ7LlDmQLJtMrtPfQJA587h\nBAVlsW5dFO3bBzN+/FxOndJy5AjExcksd7GxcrketVqOgL28oHlzuXh5yT6scWO5uLnJ82oD2dmy\nU798Wa5N2xcuyI7/7NnKE8LZ2EhvgPbtZSRu0+LtDY8++i7r1q1jP36M5ksCTtrxJXoiunenz549\n8MQTspCWLeGpp2Rs66+/hhkz7s7NW7BwF6l/AoFFQ3BrDBkCH34oDQuFMPtNhYaGEhcXh61Wi8O7\n73LKUICmmwN50Zl0ohObDLtoA9IEv3fvmryDmkUI6bIGMGlSqaH7lpMnKejYkSF7iwArzrudh/Ol\np1hkUKKvcHbWlio2K0saL544IZe4OLlOSJBG3KZRcmW4ukKjRlJAaNRIym1OTjKWvmlt2razk8Z0\n1tZl16Z4PQaDXIQo3jYYpIIkJ0cuubml19nZ0igvNVXK6qbF9DkpCTIybvyYNRrZZ7dqJZeWLaF1\na/DxkcJQRUEzly5dSkhICFYGK4rCi3CJA8d06X741L//zTv79hX7fL/1lhQIvv8e3n9fPhwLFuoQ\n9U8gsGgIbg1/f/DwkEPSgwelMzXFbkcAjUeOJLN5c651t0YbLacNzrW6InsknU763tVXtmyRmWsa\nNpTO6SaKiogwhnXtcdwGKOKJqU8QvT66VFRCc8ru67C3lz+Nv3/ZYzk5cO6cXBISitcXL8KVK7KT\nTU6WsnFKikyycy+j0cgEnB4ecl1y29T5e3jc3jSJs7Mzf/4pk0X94vILLdNa0nlvEdsD29JICLYa\nfb7DwsKgRw8ICICtW+HHH4tjFFiwUEeofwKBRUNwayiVUkvw009y2sAoEJh8Yt3c3LA+eRKaNyfG\np4hAoH+D/gxc/5ac2N6+XUbluYmwr3USk3bg1VdL51Tes4cIPz+sCsH1kLQf8BziSdiY8gWAW0Gr\nla6O7dpVfI5eL4WCK1eKhYT0dDkav36dkSE1EgUFcsnPL7utUMhXxbQ2LQqFnJrQauVia1t228VF\nyuempeTnhg3l57sR0OdCwwu0TGtJj+1ZbB3gzJauXRl78SLTShrETpkiBYI5c+C11+rve22hbiLq\nOGVu0cdHCBDi4MGaqVBtZNUq+cx69TLvSk1NFcHBwaJv376CLl0EOp1w+N+PYpNik9CpdKIwo1CI\njh3ldVFRNVj5GiQ2Vt6/jY0QV66UOhT/xRcCnU50nbFW6NCJ7a2311AlLQghxMsvvywCXAKEDp1Y\n7LZGoNOJF6dMEbn/+pd4+eWXRWBgoBg0aJBITUkpbkMWLKix+t7LTXd8fLx47LHHREBAgHjggQdE\nUFCQ+Pbbb83Hx48fL3799ddbKjM6Olr8/PPPlZ6Tk5Mj3nnnHZGfn39b9a6M0NBQ0bhxY9GrVy9h\nMBjM++fNmyfatWsn2rVrJ77//vsblrNkyRLx0ksvVWndKnoXbucduXffqiqizENxd5d/5gsXaqZC\ntZHMTCGsrYVQKMp0bIMGDRJotYLISMHGjeI7xVyhQydS1qcIMXGiECB+bd5cNqap9cyn/qWX5Ls2\nfnyZQ/MmTRLodGLCgF+EDp14T/teDVTQghBSGHBychJWWIm1SAHN5Q+d8Fi+XBg6dRKBgYFmn+/g\n4GAhfvlF/q4+PkKU6BzuJveyQBAUFCTmzp1r/hwVFSU6depk/pydnS2Kiopuurzjx4+Lvn37iry8\nvBue+/vvv1d5h2siJCREWFlZiVmzZpXav2DBArFw4cKbKkOv14vs7OwqrVdVCgT1yzlJCEscgtvB\n3h7695fP7++/Sx1aunQpwUOGYJ+cDFZWnG8jw5WmbUkzJ0Vqfe5c/YvJb4pfq1DAm2+WPpaTQ4SL\nCwBtDsm/YE7bnLtdQwtG4uLiSE9Pp4gijnAEgMAjSi67uXEoJwdPo0Wi2djz2WelAcPRozIwhIVS\nxMTEEFQiJHFgYCDPP/+8+bNWq0V1C6nRJ02axBtvvIFGc+P81yNGjGDnzp3ExMTcVNlBQUFmW6ib\nYfLkyXzwwQecPn261H7Z/94YpVJpnm69F6lfAkF2tjR5trUtPZ9r4caY3K9WrSq129nZmbCwMEb4\n+ADg/uYAwCgQBARQqFDQHejfuXP9Ck707bdycv2xx6QtRQmKtm9nU+fOqAugfbI7AO+HvV8TtbRA\nsT2Mk5MTuUaBdmCs7HzW9ehBm/PncXd3Z8WKFdLY09q6WMj74osaqXNlmBIP3UnI8Dspw8vLixkz\nZpCTUyzkTpkyBYBFixbRokULXnzxRQA++ugjPDw8eO211xg1ahSdOnUiJCTEfF1aWhqRkZEEBASY\nr/fw8MDd3Z0dO3bw0Ucf4erqyuTJk83XBAQEsGzZspuqq0KhQHELBirjxo2jX79+jB07tsJzkpKS\nGD58OIGBgfTu3Ztff/0VgMOHD9O5c2datmxpPnfatGn06dOHAQMGMHLkSBITEwHIyspizJgx3H//\n/fTt25d58+bddB3viDvUVtzzlLrF+Hip6mvatOYqVFu5dElOGWg0cgrhOhYnJgp0OjF8xwGhU+pE\nlDpKFGUXicI+fYQAkbVoUQ1UuobIzhbC1VW+a9u2lTm8/bPPBDqdGDQ9XOjQiej20RUWVWr+ur5N\nudwlTPYwqampIm1nmtChExu9dwh0OhE4Z46YX3K6wER6uhCOMhS12L37rte5sqa7zBTHbXAnZWza\ntEm4uroKZ2dn8eKLL4otW7aUOj516lQREhJi/hwSEiK6dOkiCgoKRF5ennB1dRXR0fI/sXXrVmFr\na1vq+ujoaNGgQQNx4cIFsWrVKjFv3rxSx7/44gvRv3//m6prUFCQiLpJG6eQkBARHx8vzp8/L5yc\nnMx2EQsWLBALStiTPPDAA2LatGlCCCGSk5OFh4eH2GZsB6KiokSLFi2EEEIcPXpUdOjQwXzdm2++\naX5WL730kvkZZWZmilatWont28u3M6roXbid7r1+aQgsLoe3j4eHjCeQn1+umtQUoCjKkIl9Z3tE\noSAjOgOrQYMAsNu5865Wt0aZP19OTfXoIVMdXkdEZiYAQ4/JGLiuD1bs8XI3Up7Wd5ydnXF2duaJ\nJ57guWnPobRTYnWqgEbJsKNjR3pqtXTr2rW0hsvREcaPl9v3mJagKrLi3UkZAwYM4Ny5c8ycOZP4\n+Hj69+/PeNOzonz1ev/+/VGr1Wg0Glq3bk18fDwgR9sODg6lzu3VqxejR49m1KhRLF++vMz/wsHB\ngaSkpArr179/f/Ny4MABJk6caP68cOHCSu9NoVDQtGlTZs+ezbvvvsu5c+dKHb948SKbN29mzJgx\nALi6ujJ06FB++eWXMvfu4OBAYmIiK1eupLCwkBkzZtC3b18MBgOLFy82a1Hs7e0ZOnQoixYtqrRu\nVUH9EghMMZ+N87cWbpFhw+R65coyh1rY2OBubU1KURGij8xhkLYlDR58UJ4QGXm3almzFBYWuxq+\n805Zf7mUFCKaNQOg7Un5nCYtmkSDBg146KGHyqhn70bKUwvFgld4RDhnHc4CMPyELUVWVpzo0oVN\n331XNvz2G29In8qVK+HUqRqodflURVa8Oy1Dq9UyduxYNm/ejE6n46effjJ38uVRstO3sbGhwJhW\nWQhRrkr/448/Zs+ePfTp06fMMYVCgcFgqPC7dDqdeencuTNfffWV+fPo0aMrvS9Th25S57/88sul\njl+4cAGAhg0bmve5ubmZ95ekWbNmhIeHs2jRIpo3b86///1vCgoKuHr1Kvn5+UyZMsUsqGzdutX8\nTKqT+iUQmBrb+h5K93Z58km5Dg+XmoISKBQKs5bgrL80GErbkgbduslQdydPyug4dZ2wMHmfbdsW\n212UICUqipi2bbHLLsKwW2oKtqZtJTU1lcjIyFLzp1A1jbuFG1NS8Oo1vhcAAUfke7y+Rw8c//mn\n7EVNmsDzz8twjLNn37W63giTXc+dvC93UsaECRNKfQ4ICMDV1ZX09HSAcjv4iubxGzVqRKZRo1aS\nsLAwQkJCmDp1ahltQGZmJo0bN77p+pansaiIkvX88ccfiYmJMY/+QXbyAFeuXDHvu3r1qnl/SXJz\nc+nQoQOrVq3iwIEDREdHM2PGDBo1aoRGo+Hbb781CyoxMTF8acqHUo3UL4HAoiG4M1q1Aj8/mUlm\n06Yyh/s4OQGwtYNMxZexOwN9kUJ6KIDMg16XEaI4xv3kyeWGzos8fhyhVPLghouoDVbEEUcGxbF5\nr28Yq6Jxt3BjSgpevxyQDbw6XGZFWt+9Ozs//rh847q335brX36pPKFCPWLTpk2lrPy3bNmCSqWi\nnTFS1vUdsDBm7Svvs4+PDwUFBaSYvMOAS5cusWXLFr766iuefvrpUtMRAPHx8fj5+d10fW/FqLBk\nPZs0acKXX37J1q1bzWU0adKEhx56iAULFgCQkpLC2rVrzer/kuzevZsPP5Sp4Bo3bkzbtm0xGAwo\nFApGjRplNkYEqREp+bm6qF8CgUVDcOdUMm1gtiNQZmLXyQ6RL8jcnWl2P6zz0wbr1sHhw8Ujx3KI\nMDYoXXZLoelCwwtm9aK/v3+p0YaFu0dJweufa/+QRRaumY54nErnnLs7Kltbxr/0UtkLO3SQCcDy\n8mQ2RAtMmTKFyZMnM2DAAAIDA5k2bRp//vknGo2GRYsWsXDhQiIiIvjss8+YM2cOERERLFy4kD//\n/JOPP/6YgwcPMmPGDKKionBzcyMwMJDt27cDsHHjRgIDAzlw4AAA58+fZ/Xq1fTr18/8/du3byc4\nOLhK72ncuHGsX7+eZ555ppSwM2rUKB69Lunb4sWLOXToEIGBgQwdOpTPbl9ngAAAIABJREFUP/+c\nvn37cvjwYd58802SkpIYMWIE7du3JzExkQEDBtCvXz8yMjJ42yhgzp49m5ycHPr27UtQUBCZmZm8\n8sorVXpP5XLLZoi1jFK3+J//SKtgowWohdvg8GH5DN3chCgsLHUoT68X1lFRAp1OHP7XcaFDJ85O\nOytEXFzxNXp9zdT7bnD//fI+Z84s97DhzBnRJCxMoNMJne9OoUMnElYklLJyt1DzDBo0SHzKp0KH\nTgQ/t1Cg04lZwcEiIyKi/Au2bpW/e4MGQmRl3ZU61oOm28z+/ftF//79byqYUXh4uBgxYsRdqNW9\nQ0Xvwu28I/VLQ2CaMrBoCG4fHx+ZNzY5WeYpKIFGqaSb0TjopytyeiDqf1GkubnJHLzJyTJBUl1k\n507Ytk2+WxV4AxzZvp1LDRvS7FwqhkO5FFGEvoPeMi1wj7F06VKEn9TkPJ/XHpDxCBx27y7/gn79\noGdP6cVk0fBUOZ07d2bKlCn8/PPPlZ6Xl5dHeHj4Dc+zUDH1SyAwTRlYbAhuH4UChg+X2+UE/+hr\ntCOIbCkNgdxT3Bn/8oTiaYO6akdgsh145RW4zk3KxFqjpXG/VWdRouQIRwh4OOBu1dDCTeLs7Mzr\nv7wOgH7tJRQGA1t9fcmOiir/AoVCJj0C6WFSWHh3KlqPGDhw4A3dbm1sbPj222+xs7O7S7Wqe9Qv\ngcCiIagaRo6U6+XLyzR+gcZne9G3GfHEY4MNM8fMLHY/rIsCQWws/PUX2NjA66+Xf45ez1qjjYXX\n7iIA9iv2m+dGLdxb2PvZk2uVi0uuE012nKHA2pqovDyZ9rE8Hn9cppdMSIAlS+5uZS1YqCLql0Bg\n0RBUDX5+svFLSSljKLj8//4PDAbSPTxIvU9azxfFFMEDDwBQsGkTTzzyyG2HVL0n+e9/5XrMGGjU\nqNxT0v75hx3t2qHS62mf2ASA1xe+jpeX192qpYVbYNz4cRxSHALg/ug8ANZ16yZTH5eHSgXvvSe3\nP/tM5pe2YKGWUe0CQVxcHMHBwTRs2BB7e3t69epFWNit53wPCgpCqVSWu6jV6psrxKIhqBoUCpng\nBeC330odij96FOLiECoVxzvIhjRqThSDR48mzs4OayHI2rCB0NDQKom5XuOcPy9HhCpVsQtaOWzc\ntw+9SsXA49doLpqidFDi/4x/3XgGdZC4uDh2Fe4CoHecnAJa36MHRERUfNEzz0DLljLmxooVd6Oa\nFixUKdUqEBw8eJBu3bqRkpLC7t27SUxMZMiQIYwcOZLp06ffUlkKhYLmzZvTrl27Mkv79u1vrhCL\n22HV8cwzcr1qFeTmmju2o0ePmg0HG7w3BIHAM90T3TodG4yXjm7cmB9++KFuhOWdOROKiuDpp2Vn\nUAHLjD7qbddcBMAl0AWllbJuPIM6iFarZS97AfBPa4Vddi6nPT3ZtnZtxYKblRX8+99y+5NPZMAi\nCxZqEdUmEBgMBkaNGgXIqFKtWrXC3t6eDz74gKFDh/LBBx/IzuMW+PXXX4mNjS2zHDp06OYKsEwZ\nVB3e3jIKYVYWhIebO7bk5GRcjcZz26zzSXJMQo2aYa2H8dSPPwLwrIsLzs7OtT8s7+XLYKq3qSMo\nB0NyMtt9fQGw2y4zwNn0lXkMav0zqKMsXbqUXk/1Qu2pRp+ix2eLfKcPdOrEBybtWHmMGgWennDk\nCKxZc5dqa8FC1VBtAsHmzZs5fPgwQ4cOxc3NrdSxMWPGYDAY+Oqrr6rr68uSnw+5uVKKv4fzUdcq\nTFqC334r1bHt/eUXlMA/mZm0H90RgPcHv4/78OFgb4/q+HE4d672h+WdOVMGpBk2DDp1qvC0/Vu2\nkNSgAY0Sk/DNlqmQZ+lmAZbQxPcqzs7OhC0Pw/URmXjKZ4OMlLe+Rw+8YmMrnuLRaIo9Dj75REav\ntGChllBtAkF4eDgAvXv3LnPMtG/t2rW3VKa4kz9XSe3ALYSqtFAJI0bIZxkeztK5c80dm5ebGw1S\nUigUgtei5gCQuTVT5pE3eRusW1e7/e+vXIG5c+X2Bx8AFeeQX2vMiOYfcQw33MiwymD673LKrFY/\ng3qAy0NSm9jrgoyNv9nfnxaJiZVP8bz0kjQu3bMHNmwo/5w6SkJCAo8//jiBgYE8+OCD9O/fn+++\n+858fMKECbectW/Xrl3Mnz+/0nNyc3N5991370oCoLpMtQkEhw8fBqBFixZljjVu3BiNRsPly5dJ\nNRn63QR//PEHvXv3xsXFBXt7e/z9/fn888/Jvy7RTrlYDAqrHk9PCAiA/HycdbpSHZvNiRMAxPip\nKKSQ7P3ZFKYWwuDB8tpyUijXKmbNkhqnxx6Dzp2BClIVC8Fae3sAmm6RLmuX3C/hYpm2qhW4PCB/\np1apzbA7eJw8jQaFvz99unSpeIpHq4W33pLbn356l2p6bxASEsKgQYPYsmULkZGRTJ06le+//958\nfNasWTxb2ZTLdZw4cYK3336b5557rtLzbG1t8ff3vzvhfesw1SYQJCYmAlTY8DkZA9hUlrf6erZt\n28b06dNJTEwkISGB5557jg8++ICAgACys7Mrv9hiP1A9mP6oxmQeJhpdvgxAXveOxBKLEiXpW9Nh\n0CAAcv7+m8cGDqydlvXJyfDtt3LbqB2A8u0Bkg8eZPd996EuLKRlglQ/P/TuQ3e3vhZuG+uG1tj7\n22NlsGKgHOOwsXdvIt5/v3KtzoQJsq3Ztq1iV8U6SExMDEFBQebPgYGBPF8ir4dWq0WlUt10eZMm\nTeKNN95Ao9Hc8NwRI0awc+fOUrkGLNwa1SYQ5ObmAlToEmhtbQ1ATk7OTZU3ffp0tm7dSlBQEBqN\nBldXV95++21effVVYmJi+KBEw1wuFg1B9TBiBNjawpYtcPo0IFXn6mPHpJV1+/ZcbiJTgaZuToWm\nTTljZ4dWrycrIqJ2WtbPmQPZ2VK46dbNvLs8e4CIvXsRSiUBl5LopuwCgOejnjVSbQu3xz96mfrY\n1xhQ6u/evYn+8MPK3UUdHGDiRLk9depdqqkRhaLqllvEy8uLGTNmlGrXpxhtKhYtWkSLFi3Mmf8+\n+ugjPDw8eO211xg1ahSdOnUqlf47LS2NyMhIAgICzNd7eHjg7u7Ojh07+Oijj3B1dWXy5MnmawIC\nAlhWTgRVCzdHpQJBixYtKvT9L2954YUXzNfa2toCUFhBGE/TXI/2Jg38evXqhUM5IWFNHcrixYsr\nL8Diclg9ODrCU0/JbaOWIC4ujt2bNsGpU6BWczVIRug7MP8AaWlp7DUG7xljdD+sVVy7Bl9/Lbev\nE0LLswdYa2wYg6+6oCnSYNvaFpvmNnetuhbunD3sAcDjiAZNSgoXGzakQIgbu4u+/rpsb3Q62Lz5\nLta45vj6669Zs2YNnp6ejBkzhq0ltCMvvPBCqTTA//d//8fAgQPZuXMnP//8M3v27OHvv/9m1y4Z\n/+Hw4cOoVCoaN25svn7VqlUUFhbSokULfH19mT59Ol988YW5zPvuu499+/bdpbute1hVdjAkJIRr\n167ddGE9evQwb7u7uxMbG1uhjUB6ejqA+ce+XVoafb9TUlJISUnB1dW1zDlTp04FoxopKDeXoDv6\nRgtlGDMGFi2ChQth6lSzkNc4MZGkNm3QtconmDwaZjXkjVFv8O3//gePPsozLi6oapuANns2ZBpT\nOpdjMFsSfUYGEc2bA9A1qTlZpJjnpC3c+4SGhhIXF0fcxThGMILWtEYbGUH+iEfY16ULLY4exa0y\nd1FnZ5g8Gd5/H/7zH9ix4+4YNNegZ8OAAQM4d+4cv/32G0uWLKF///68/PLLZjuC8gzD+/fvb9Yk\nt27dmvj4eHr16kVSUlKZQWCvXr0YPXo0o0aNwt3dnSXXhYl2cHC4pWnoukRUVBRRFeXbuFnuLPFi\nxbz55ptCoVCIr776qsyxy5cvC4VCITw9Pe/4e3JycoRCoRBKpVIkJyeXOW6+xU8/lSlK33nnjr/T\nwnXo9UK0bCmfb0SEOZ3vkvh4gU4nXH79VfyX/wodOnHmpzNCFBQI4eAgz4+Pr+na3zxJSULY2cl6\n79hxw9Mnjxol0OlEs99+E7t77hY6dGKczzgxaNAgS6rjWoC7u7sABCC+0nwldOjEAO9xAp1OdP/u\nO/FDly43/h0zM4Vo2FC+M+HhVVa3amy6q5QtW7YIlUolzp49K4QQ4sMPPxQhISHm4yEhIWLq1Knm\nz0FBQWLhwoVCCCHCwsJE48aNy5SZlZUlHB0dxTfffFPm2Lx580S7du2q+C7ubSp6F27nHak2G4LB\nRmvy6OjoMsdM+0zn3Ihly5bxgDEW/vWcOXMGAFdX13K1A2YsRoXVh1IJJlXg/Plm1fmgJk1QAFnN\nm1PgJ6O2FewqALW6lPthrWH6dGk7MHQo9Olzw9PPGQ1nm0XtIeufLPQKPYuOLrJEJawllPReSveW\nGs3hen9sDAZi2rfn0datb+wuam9fHLTqP/+p83EJJkyYUOpzQEAArq6uZo2wohwNSXn7ABo1akRm\nZmaZ/WFhYYSEhDB16tQy2oDMzMw71jrXZ6pNIHjggQfo1KkTf//9N1eNYVtNzJ8/H5VKxevXZYY7\nePAgffr04csvvyy1Pzc3l507d3Lx4sUy3zPX6At+Q1cWi1Fh9TJ6tFSHrlolkx4BLmo13RwcKBSC\nrv/P3pmHVVWtDfx3DqMIyOAAzlwnNFMwKdD0gIhFalqKXrWLUInd6lLdrtM1y8wpKxss+2y44hBp\n1tVMsQQ94FA55NTNjDKRkFBREEWQ6f3+2JwjowoCgqzf85xHzt5rrb32Psu137Xe6TXt9zm6Wgvq\nctlkidxQBII//gCTP/Urr1y/fGEhPxa7I/Y6bIFe9KQ6pXKZyyoqYQPhrrvuAsDb25vH338cAK+8\nOwksTq+7+coVLTDV9XjiCWjdGg4ehP/+t9b6Wx/Ytm1bKSv/hIQELCws8PT0BMqrDESk1LGS3++4\n4w7y8vI4VzyfAKSmppKQkMDbb7/NmDFjeOKJJ0q1l5SURO/evWv8vhoNN7FTcV0OHjwoDg4O4u/v\nL8ePH5cLFy7InDlzRKfTydy5c8uVf+qpp0Sn04mDg0Op4ytWrBCdTid9+vSRHTt2yKVLl+TMmTOy\ncOFCsbCwkD59+sjFixcr7IP5FkeP1rbt1q6t8ftUFHP//dozXrTIfGjG8eOC0Sj/PJYoMZYxYsQo\n7rjL5KFDtbJ2diI5Obew0zfIpElaf8eOvaHiJ3bvFoxGsd+0SV51e02MGOXQlEMSEhKi1AUNBJPq\nKyMjQ4oKi2RXy11ixCj/if9dMBpl5Jw5Ips3y6RJk8RgMFxbFbR0qTZ+evQQKSi46b7V8tRdbT78\n8EMxGAwSEBAgAwcOlICAANmzZ4+IiKxcuVI6duwo7u7uMm/ePFm8eLG4ubmJh4eHrF+/XubMmSNO\nTk7SvXt3MRqNIiISGBgoGzZsEBGRrVu3SufOnaV3794iIjJ8+HDR6XTSv39/8/W9vLxk586ddXvT\nt5jKxkJ1xkitj6pjx47J6NGjxdXVVezs7OTuu++WNWvWVFh269at4uzsLE899VSp4/n5+bJp0yaZ\nMGGCdOzYUaytraVp06bSp08fWbBggeRc44VifiiBgWYdt6KW+Oor7Rl37Gie9LafPy8YjdJr7155\n3+19MWKUf7T/hzZxentr5TdtEhG5sYn1VpCYKGJhIaLXixw7dkNV3nn/fcFoFL8FC2UNa8SIUQyt\nDfXz/hQ3xE/jfxIjRvnnHS8KRqM0jYmRnL//XQwGg9nWICQkpOLKV66IdOigjfdVq266L/VVIKhp\nDh48KAEBAVJwA0LU5s2bZewNCuy3Ew1KILjVmB/KXXdp/xn37r21HbqdKSi4alz41VciIpJbWChN\nEhIEo1EOvHFMjBjlPZf3JDg4WC5Pn66VjYgQEbmxifVWMH681s9HH73hKoOLBYKwkH+JEaN8ZfmV\n3Nvv3vp5f4obInV5qhgxyjzmSZNlywSjUbbcd588cP/9Akjfvn2vLegtX66Now4dbnpXrLEIBCIi\nW7ZskWXLll2zTE5Ojjz55JNy6dKlOupV/aEmBYJaTX9cr1BxCGofCwt48knt73ffBcBGr2dgsXHd\ny39uBKDD+Q5s3bKVF3/Q0suycSOTJ00yZ6309vauPzr2/fshOlrLw/DiizdU5cKJE8R37oxFYSHP\n9ggDoN1D7XBoprlQKRuChsnC2IUAeOON669JAGzq1o01U6aYA1JNnTq18oBFf/sb9OoFJ09CXSZ2\na+Dcf//91zXCtbW15b333qNpsX2Hono0HoFAGRXWDY8+Cra28M03kJgIwOBiz449rS05yUma0pR7\n7O9h5tq1nLO3h7Q0fl+71hyzon379vUj2Y/I1Zj0kZHQocMNVft61y4KLC25Ny0Nvtei27V6sFWp\nSIbXfHEo6iWHTx3mV36lCU0YfFTzm//Kzw/77dvNAakqzGdhwsJCy5AJMH8+lDG2VihuNY1DIBBR\nOwR1hYvL1fwGxVb5QS4uAJxu1459aBbI74a9i5OzMwmOWhTDgGL3or59+xJVJi/CLePLL7U49K6u\nWnCZGyAiIoLlJ04AEFxkyYUEzd3qsaWPMX78eJo0acLIkSP5/PPPrx/pTlGvsLOzYw97ALjrREvs\nsrJIdnPj0J49pcrANXaBgoLg/vshK6vuQxorFNehcQgEFy9qcfWbNtV84BW1y9NPa/9+/DFkZHBn\n06ZYZWcjzZuzv3kSAEV7tLgE+9tocf3H2toycuTIUnkAbil5eVqUOdAm7hvs08ljx9jj7Q3A6RWH\nKMotItU+lZjvYtiyZQsxMTEkJCSYd0OU+qBhEBERQVZWFr+5/AaAW1IrcnbuBGCTuzsUC4EV5bMo\nx+uva7E7li2Dn3+uk/4rFDdC4xAIVFCiusXLS1sJXboES5ei1+lonpwMwLmQruisdVzcf5G89Dym\nbt5MtpUVnXJzWf/aa+ZJNCIi4tZuqb//vpaLoVs3mDz5hqu1b9WKTAcHPJKTeaybluXtZMuTgPby\n9yqOTeDl5VW/BCDFNUlMTGT37t3sPL+TbH02zXOa4x57FID/DhgAGzX7mIryWZTjjjvg8cehsBCK\nE/8oFPWBxiEQKPuBumfaNO3ft9/mqUcfJTshAYA/PNz5rclvIHDqy1M4tWhBU1NypC+/NFe/pi62\ntjl7Fl5+Wfv7tdeqtKvUpDiCYc/ffuNolPbCeGj+Q+ZV47p16wgJCcFoNLJ+/XolDDQQTKqAPn37\ncNxFy+p5z492WF2+zKEuXdiwdGnVhNc5c7Qohps2NZzgXIrbnsYhEKgdgrpn0CC46y44e5ZOu3aR\nZTQCcKV7d2KztgHw9dyvtbIjRmj/Fq+y4AZ0sbXJ9OmaEBkUpIUpvkHk8mU2u7kBYLU/lRaXW3CJ\nS8xeN9u8aryhFaSi3lFSFfBt4bcA+Bb5QHEY9l979+b7qgivrVrBSy9pfz/9NBSni2/oxMXF4eXl\nhV6vx9/fn4CAgFIf0FLZz507t876lJqaiq+vL3p97b7uoqKiCAwMZNCgQfj4+DTMNMw36wNZ3wFE\nNmzQ/H+HD7/V3WlcfPaZCMifTZqIJQhRUYLRKJ263C9GjLLLfZdMenySBPfvL3k6nRTp9VoCISkd\nJa5O2bVLGyvW1iK//FKlqgc3bhSMRmm5caP8u8dMMWKUN53flNDQUBWQ6DZiiM8QMWKUb/hGbO4d\nLBiN0v+dd+Tljh2r9vvm5YnccYc23l56qUp9qM9Td3x8vOh0OiksLCx13N/fX0RErly5Irm5uebj\nBoNBoqKiarVPSUlJotPpavUazZo1k5SUFBER+emnn6RJkyZy4MCBWr2miIpDUHWUyuDW8PDD0K0b\nbjk5vN27N53T0wGwnBzE5SaXyf8zn72f7WXL7t18I4KuqMgc6/2WrKQLCq7GUZg6Fbp2rVL1L45r\nW8kPZWfzcKuHAHhw/oOcPHlSeRTcRlg0t+BnfsYaayLwwqaoiG/vuIOw3r2rNl6trK7mx1i4EH79\ntXY6XMdIJQmcFi1aBIC1tTU2Njbm45UlN6qLPtUkL7/8Mm2KjaR79OjBHXfcwbZt22r9ujVJ4xAI\nijNtKYGgjrGwMOvinzx3jmWPaEZ2VgMHkOioxSjomqW9dPd17KjVWbeuzrtp5t134cgR8PCAf/+7\nanXz8viiONtmzq4fyIzPRBAWGhfWz4BLimoTHR3NpR6XAHi61ySGNGuG6PXE6HRw/nzVGhs4EEJD\n4coV+Mc/bqtsiKaXcFJSEuHh4fj4+BAbG4unp6dZfTBjxgwOHTrEwoULCQgIICYmpsK2Vq5ciZ+f\nHwaDgVGjRnHmzBkA5syZg7u7O5GRkUyYMAFPT0/CizOvzp8/n549exIcHMzGEupIgPz8fKZMmUL/\n/v0ZMGAAc+bMMR/39/dHr9ezdOlShg0bhqOjIwnFNlDX4plnnin1PTc3l5YtW1bhidUDbmqvogEA\niLz8srYtN3Pmre5O46OwUKRXLxGQK++8I/Y7dghGozzl+28xYpQP7D+QkSNHSmZSkoiVlZYvIC2t\n7vt58qSIvX2psMtV4eg33whGozhv2iQRPf8uRoyyhCXSvHlzc7jiESNG1ELHFbeCC3suiBGjfNfx\nO1l+6pRgNErQokWyoFu3qquG0tJEnJyqlOfgWlO3JlXUzKc6GI1G0el0YjAYxN/fX3x9fSUsLMx8\nPioqyqw+ENFUCStWrKi0vR07dkjLli0lPT1dRETmzp0rgYGB5vNhYWHSq1cvycnJkQsXLsjcuXNl\n8+bN4u7ubv4dpk6dWkplYGqjqKhI8vPzpV+/frJ69WrzeZ1OJ6+88oqIiKxZs0YOHDggn3/+uXh5\ned3QMzh+/Li4u7vXSSjlysZCdV7vjWOHICtL+7c4hK6iDtHrzemCrefNI8hBC9+7wyufQgrpktuF\nz5Z/RrMOHeC++7R4EXWdIlZEcwO7dElTc1TBkNDEF8X+5COysrgjQ0v1mtwm2exmWK8CLiluGoe+\nDli1sCI3KZegs02xEMHo7Y3HqVNVVw21agVvvKH9HRkJf/5ZO52uY7Zv347RaGTNmjWljksVd0FW\nrlzJ8OHDcS3egQsLC2P79u2kpKSYywwePBhbW1scHR2ZOXMm69atY+jQoWYVztixY0u1GRUVRWho\nKDqdDktLS0aPHs2qVatKlRlRbOw8duxYvL29ad68Od27d79uf0WEZ599lg8//LDBhVJuHAKBSWVQ\nHBVPUccMHw733AOnTzN0924AfmzbjCMcgQJ4fsDzmrvWmDFa+bpWG3z4IcTGahEJTTrdqpCXxxfF\ngs6ozl3ok9cHgOc+e87sZqjiDdxe6PQ6XIK1CJxLH1qEa1ISBZaWXPbzI8DLq+qqofBwCA7W7J0m\nT74p1UFN7hHUBB06dGD58uXVrn/q1ClatGhh/m76u6RA4Fhmbk9LS6N58+bm7y7F0VJNpKSksHjx\nYrP3Q3R0NEVFRaXKNCuzgDQYDERHR1+3vzNnzmTQoEEMHTr0umXrG41DIFA7BLcWnQ7eeguAYJO7\nUZ8+fKffC4D9/+xxc3OjQ2QkeTodkpAAaWl107eTJ6/mK3jvPW21doOYgidFDh/Oob/8BYecHHwL\nOlNwtgCbDja4+bkpN8PbmOYjtBeO+wl3zhTrqL8cOJBxdnaMHDmyanEJdDpNMG3WDL76CsqsVm8n\nqmpE2K5dO7PNAMDZ4hwQbdu2rbRNd3f3UnXOnTtX6nz79u2ZNWsWRqMRo9HI3r17a8RN8J133qGw\nsJBnn30WgN9+++2m26xLGodAYNohUALBrcPXF/72N1qnpdH79Glo0oTvemiTpS++5F/JJzkzk6+L\nvQ0ur15d+30qKICJEzVVwejRV3cobhBT8KSzxauPYdnZXIzRPFpch7nWifW04tbhcp8L+fp8etCD\ne88WoRPh67vvplNSUvW8Stq0uZoF8emntUiZDZjKVANljzs4OJCTk0NycjLz5s0rVz4sLIyYmBjz\nS33FihUEBgaaBQIRKdfmmDFjiImJ4XyxkWfZlX1YWBiffPKJeVcgKiqq3LXLthkfH8+4ceMqvd81\na9awY8cOZs2axaVLl7h06VKF91OfaVwCgVIZ3FoWLoSmTRkaGwuA9aNDyGiagSOO9KAHAJ8VF01e\nuLD2+/PKK5CQAG5u2u5AFV/gdnZ2NAV+GzgQgFGenhx8/yAAb+95W2UxvM2xaGqB6xBX9Oi5v/Bu\nXE6c4Iq1Nck9e9KSagbVCg2FkBAt/8rYsZr3QQMiLi6O5557Dp1OR2BgIHFxceXOv/rqqxw+fNhs\nlf/oo4/y8ccf88QTT+Dr61uuTT8/P15//XWGDRuGwWDgwIED5hf84sWL+eabb1ixYgXTp08317n/\n/vuJjIxkwIABDBkyxKxmGDRokNnDoFu3bvTv359BgwYRHx9vDpY0ZMgQdDod48aNw1gcUA0gPT2d\nX375pcL7zs7OJiwsjPXr1+Po6Gj+NLRFgU6qauHRwNDpdEiPHnD0KPz4I/Tseau71Lh5/XV2r1jB\nvUuW0MXGhph1LUh5M4V9nffxetbrZJ85w1m9niZFRdoKqVOn2unHtm1aJELT38VuUFUhMzOTN//6\nV+ZMn06TvDxSOvXnSOd95JDDCEbQ1qMt7du3x87OjujoaKU2uA358+M/+eXxX/jV5Vci+n8F//wn\nwd9/z6hPPmHUzp3V+80vXIA+feD33zVXxHfeKVdEp9PViW+9ov5T2ViozhhpXDsESmVw63nuOXzt\n7XG5cIFfr1xh1v4lAHQ+25kuXbrg4OZG4ciRWtnaUhv8+aeWolkEXnyxWsIAaMGT7IpzFzyYk0P2\nRm17cg976N23N61bt1YBiW5zXIe7gg48MjywS9iHrrCQ2L596X3hQvUFwGbNYO1aLXDRkiXa3wpF\nHdC4BAKlMrj1WFhg8fHHDC/OIX+ozTkucQnnC878vvt30tLSeLOXVC5XAAAgAElEQVQ4oiErV4JI\nzWY+zMmBkSPh9Gnw94dZs6rfVno60cWRycb17En6f7V+H3I4hJOTE02aNAFUiuPbGeuW1jTr3wxL\nsWSIzhf276fA0pIDvXszecCA6o/Xvn1h8WLt77Aw2LevxvqsUFRG4xAILmlRxSh2DVPcYnr04KHi\nyIRNBvbnj2Za1EI//GjevDmxBQWk29hoW6bffltzmQ9FNPeuvXuhY0dt5WVhUe3mftqwgSOdOuGU\nm8ugJm24sPsCBboCtl7cSlxcHE2bNlUuh7cpJYXUpvdpvuYvDX6JvsVzzaeDBtFx166bG69PPQWT\nJkFuLjz4IPzxR010XaGolMYhEIAmDNRytivFjTMkPBy7vDwOdu/OvW2TAXi4xcN069aNnd9+y8fF\nxlRXPvywZjIfisCMGZoQ4OCguXbdZFjRT0+cAMBtxw5C248DgUOWh8ghxxyISLkc3p6UFFJDl4UC\nkPZlGp89GYlFQQEJvXsT7ObGB//3f9W/iE6nhdP299fccO+7T0vNrVDUEo3nDansB+oVTaysCC4O\nHLLDIw2dvpA259rQykaLA2Dyws5duZL333zz5lfa8+bBq69qOwJr1ty0cakcOMCnPTTPiONff02/\nQs2WYFv+Ntq2bat2BW5zSgqplh0sOcEJbAtsWTJ2Ife7uCB6PQn9++N06NDNXcjaGr74QhuvP/8M\nQ4ZcTdamUNQwSiBQ3DIeKta/fx7UD+eifVAEix5chJubGz8BPwDNRNgwcWL1V9oimiAwa5a24lq9\nGh544Kb7vnfDBn5v0wbnjAxsDh3HG28KKeTSnZf48ccfzX2tUfsHRb0hOjraLKQ6Ojqyk50ATPSY\nyN+K/eM/HTRICzZ0s7i4aJE0u3aFQ4dg8OCbb1OhqIDGIxAog8J6x1AXF6x0OnbceSdNmuwH4NKS\nw/x89Chubm58VFzuKUvL6l2gqAieew5M/skffwx//evNdzwnh+jLlwEY7+LCU95/xxJLUpun8tWO\nr0oJLjVm/6CoV5SMQBkdHY31EGsAsjZlMdTRGXudjj09evDLnj01s83v5gZxcZob7oEDN9+eQlEB\njUcgUDsE9Q4nKysGOTlRpNOx+/0JQCGZxx1pOmM+P//4I5dHjkSaNsVy925tu7QqXLigRR98+23N\nfevTTzWDwhqgcP161ha7G0709mZCmwkABLwUUG4Xo0bsHxT1GicnJ/7vm//DrocdBecLuGLMYkxx\nCOwVgYFQU0mt2rWDb7/VPBAUilpACQSKW8rDxRHE1nl3wunOQgRLzi37Eae//pUVy5ahm6C9bKnK\ny/S777TALuvXaztDX39dMzsDaCqAZR9+yGkXFzrl5tI735Yzm89QRBEDXhhAUFBQKdVAya1lZVNw\ne9Pyr5qR6pm1ZwhzcwNg5ZAhFH74Yc1lCmrZEkpEz6tvxMXF4eXlhV6vx9/f35w8yPQBWLBggTkq\nYF2QmpqKr68v+joyKs/IyMDZ2ZkVK1bUyfVqksYjECiVQb3koebNsQC2ZmRgF6GlDT5rPRi2bSOr\nTRuit23TCkZFaTEErsWpU5qbVr9+msuitzfs3w+DBtVYf4t++AGjwQDAxU2bmN5vOhZFFhzgAEkX\nkoiLi6N79+5moUAlN2o8tByrCQTpG9LpZ+vAX2xtOdWiBduaNavZl7i9fc21VcMMHjyYt4vzMZjS\nH5s+Jp5//nmmTJli/u7v71+rL8/WrVvXSOKiG2X+/PmISIMLWwyNSSBQOwT1khbW1gxxcaFAhPj+\nAjo4r/Nhj1NrHAsKGH/8OPl6PWRmVhjCldxciInRYsB7eMBHH2kqghkztJ2CLl1qtL/3ZWfzZf/+\n6AoLyf36a9omagZk29luLpOWlqbsBRohdl3tsPeyp/BCIXNHzKUoJgaAqPvv1yIOluB2NjatLFzu\nokWLALC2tsbGxsZ8vC5enHUV5vmPP/7g2LFjeHt7N8jQ0o1HIFA7BPWW8cXxAFZxnmYDmiFXhHXt\nxjEOSLaxwcqUp3z6dG3L9O67wc8PPD211dLQoVq62MJCLTHMkSMwfz6UmHRqhPR0Unv3Jt/KCtv9\n+7E8noEXXhToCrANsqVl8X0oe4HGS4uxmgrM+ZAzScVjYP2995IRG8tjBoP55d8YjE1NL8SkpCTC\nw8Px8fEhNjYWT09Ps/pgxowZHDp0iIULFxIQEEBMsRBVlpUrV+Ln54fBYGDUqFHm1MZz5szB3d2d\nyMhIJkyYgKenJ+HFtkLz58+nZ8+eBAcHs7E4PbUJU4Kj/v37M2DAAObMmWM+7u/vj16vZ+nSpQwb\nNgxHR0cSEhJu6J5nz57N7NmzgboRdGqaappvN0DUDkG9JW7OHPQPPcSuCxfIH+4OOy4wrsU4Xg1J\nxvH997XkQxMnarsBZ8+WttrW68HLCx56SMtPUFvJkAA++ojlxQmRcrZsYVKbR9Cf0uMU7MR/N/+X\nzMxMIiIi+OCDD5g6dSqJiYkqsdFtTERERLnf+K1DbzGCEXQ90xVbLmD1669c7NKFzwYNwvurr+jS\npQs+Pj5YWVkBtSM86l6uuReRvFT9VW5gYCA6nY7c3Fw8PTV1YFBQEDNmzCCq2NBywYIFfP/994SH\nhxMaGlphOzt37mTKlCkcPXoUV1dX5s2bx/jx44mLi+PFF1/kxIkTJCQksGfPHvLy8liyZAkxMTG8\n++67HD16FCcnJ6ZNm1aqzUWLFnHw4EF27dpFYWEhBoOBTp06MWHCBOLj49Hr9Zw/f55Nmzaxdu1a\nHB0d+eKLL5g7dy4HDx6ssJ8//fQTOTk53HXXXdV+ZreaxrNDoASCekvS0aMU7dgBQOSFjeisdFyM\nv8iqd1bh5OoKY8bASy8BcNjRkX5AP+BfQUGQnQ0HD2pJimpTGMjN5eCXX3K4c2eci4p42M2NCe6a\nwWPbUE1tUNJeoDGsABs7Ff3GB9MO8j/+hy22POj8IK8HBgKwbNgwwoDC9HS2bNnSKMJam2wI1qxZ\nU+p4VbfSV65cyfDhw3F1dQUgLCyM7du3k5KSYi4zePBgbG1tcXR0ZObMmaxbt46hQ4ean+3YsWNL\ntRkVFUVoaCg6nQ5LS0tGjx7NqlWrSpUZMWKEua63tzfNmzene/fulfbzxRdfNO80NFQazw6BUhnU\nW+zs7LRdgMBAfvHuxM+OP+N5zpOTy0/SdUZXrdDkyTB3Lr2zsrgMWPXtywuffUZEZGSNrsQrWvUB\nEBXFf3x8AHikXTtenb+cPZ32oG+q1zLeVXRPKPXB7UxFv7GdnR1b2UpPejLCZgT/FxGB1T//ycGu\nXfmpe3cm//wzccVhrWtLELiZVX1t0KFDB5YvX17t+qdOnaJ3797m7y2KPZNSUlJoWxwEyrHM/J6W\nloaXl5f5u4uLS6nzKSkpLF682NyvS5cu4ezsXKpMszKLSIPBgKHYoLgsu3btokWLFnTu3Nl8TNkQ\n1GfUDkG9JTo6mlHt2+NkYUGmiwufWmieBYdeKxH21dkZHnsMgFeaNsXGxobx48dz9OjRGl2JV7Tq\n+/vjj/Pzv/7FyiFDAAhp2pS0FWkAtHioBRZ2pRMkRUREkJWVhZubG59//vltuwJs7ERHR+Ph4WEe\ni5mZmURHR+M4wpECfQFuaW78su1H8r/8EoClI0Yw3caG2PXrqz0mTMaIDZmq6tbbtWtnthkAOFus\nMjQJAxW16e7uXqrOuXPnSp1v3749s2bNMntA7N2796Y8EeLj4zl06JDZvdJkFzFo0CByc3Or3W5d\nowQCxS3HycmJz9esYWyxUd53I93IscihZUZLso9lXy34z3+ClRVDs7PJ3L2bLVu28OuvvwI1txKv\naNXXbtcudgwaRJa9Pfzvf7z7zHOkLdcEArdH3cq1kZiYyO7du0lLSyvlXqW4vXBycqJ9+/bsLh6L\nERERODk5sXrDao65HkOPniCCtERaRUWsCQigwMYGp08+KdfWjXodmATWhkBlK+Syxx0cHMjJySE5\nOZl58+aVKx8WFkZMTIz5pb5ixQoCAwPNAoGIlGtzzJgxxMTEcP78eUAT3sq2+cknn1BUbLAcFRVV\n7tpl24yPj2fcuHEV3tMLL7zA999/bxYwvLy8mDFjBtu3b8fW1rbCOvUSuc1BCwkikph4q7uiuA77\nLlwQjEax3rJFDkw4JEaM8vsLv5cu9NRTIiCfgwDywAMPSEhIiGRkZNRIHzIyMkq3l58vJ5s2lV4f\nfSQYjdLhscck+b/JYsQo33l8J0WFRTJp0iQxGAwSHBwsGRkZEhwcLID07du3xvqlqJ9U9ls/2fdJ\nMWKUVawSQCxef10wGuX1kBC5YGUlGSdPlmrHYDAIxWM6JCTkuterr1N3bGyseHl5iV6vF4PBILGx\nseXOe3p6irOzs0RGRoqIyPr168XHx0eCg4MlLi6uwnZXr14tvr6+MnDgQBk1apScOXNGRETeeOMN\ncXNzEw8PD5k2bVqpOvPnz5cePXpIUFCQLFiwQHQ6nQQEBEheXp7k5+fL9OnTxdfXVwICAiQ0NFRy\ncnJERCQoKEj0er34+fnJ9u3bze2tW7dOvL29r3n/qampMmrUKGnRooX4+PjIv//976o9wGpQ2Vio\nzhipn6OqBjELBKdP3+quKK5DUVGReO3bJxiN8vnnx8WIUdbbrJfg+4OvTranTkmuXi8CMq5r19p/\n4X7wgezs2VMwGsVm0yZJO3dOfvrrT2LEKCdePiEi5SfzckKF4ralst/6fPp52WS7SYwYpSc9hX79\nBKNR2qxeLYU6nUT37Fmq/I0Kkabr1VeBQFH31KRA0HhUBsqosN6j0+mY5O4OwKTMBM7oz+B0xYmz\nX5+9ah/QujXy5JMArGjXrnb189nZ8OKLvDdyJACtfviBgXf6cWrtKQTBbqSmXiirZlDRCRsPpt96\n6tSppbb8nV2d8YzUXO2CCeau/HxsL1zgVJs2xNxzD39NTi7lPnujIa5N11MoaoPGIRBYW0ND0uM0\nYia0aoU+P5+MTh5sbBoPwEOWD/Haa6+Zy9i++CI4OGC1bRts2lRrffnSYOCPwkI+NxigqIjkd9+l\nR2oPrMSK/eyn9329zYZkt7sLmeLaVGSM6v6oJtwGWQTh3ak3bt9+C8Crkyejy8qCF14w11dCpKI+\n0DgEAmVQ2GBoZmmJ+7FjAMSNakohhdxdcDeD+wy+anDVogW8/LJW4dlntYBFxdRYSNjjx7n/4EHe\nGj2aAktLbL/7Ds6e5WH9wwBsZrM5RLGazBUVuiB2s8N5sDNWhVa47HMh6d134dIldnXsyN477oAP\nP9RiaCgU9YTGIRAodUGDYuWoUQCcGxvIt/o9WGKJz3kftmzZQpcuXbSX/SOPQI8ecPw4vPqquW6N\nBAQSgSef5LKdHUuHDQPg85AQnh34LO2K2pFOOrvYhaOjY6mdC0XjpbJdotZPtgbgnrR70F3OwW3f\nPgBemzFDG2eTJ0NBwS3ps0JRljoRCA4dOmROiZmcnFztdv78808effRR3N3dsbOzo3fv3rz//vvX\nr6h2CBoUg1q35t5mzSiwteXn8ZowN5ShWFlYkV4c6S1s0iR47z2twty55pVWjQQE+uQT2LqV98eM\nIdfODn97e4Z27cpjLlochEPtD1FIIVlZWcqtUAFUvuXvOtwVm7Y2uGS78OzAZ9n+9NNY6XT8t00b\nfuvTB/bt44OuXW/LJEeKhketCgT5+fnMnj0bg8FAYmLiTSV7SElJoW/fvuzfv5+tW7dy7tw5nn76\naZ555hkmT5587cpKIGhw/LPYxzhmVAcybDJoQxsMNlejhOl0OvD3h6ef1lZYf/sb5ObevD7/+HF4\n8klyrax4p9jn+N9/+Qu5ybmkb0xHZ6Xjl86/ACoKoeL66C31uE/WbAkedXmU7i1a8EirVhQB84qz\n/008cYIUFeJaUR+4WZeHazF69Gjp16+fJCYmSocOHUSv18vJMv63N8qwYcPEwsJCfvrpp1LH//GP\nf4hOp5OYmJgK6wEiI0ZU65qKW0dBUZH85bvvBKNRQjymihGjvKl7UwDp1avXVdes7GyRrl0119Lw\ncJGioupfNDdXxMdHBOTNV14RjEbx3rdPioqK5Ph0zQ3yp3E/KbdCRZXI/TNX4q3jxagzSvYv2fLb\n5ctiYTSK3miUD4rHW7KNjWSeOHHDbdby1K1oQFQ2FqozRmp1h+Dxxx9n9+7ddLnJnPS//vormzdv\n5u6776ZHjx6lzj366KMAvPnmm5U3oHYIGhwWOh3PmHYJnvIgm2y8xIsudMHDw+Pq6t/Ojrl33EGu\nXg/Ll3O5hD1BVZg8aRLb2rWDffvI6tSJBcXhYed07EhhViGnlp4CoE1kG5ycnHBycmLkyJFqq1dx\nXWzcbHALdQOBP177g05NmhDu7k4RsPX99/ndyYl2V67Q7O9/V/YEiltKrQoE9913X420Y8qR7efn\nV+7cnXfeSZMmTUhISCAnJ6fiBpRRYYPkUTc3XC0syL7Lk82tfgBgvPV4c+pUE3HnzzOxOASp7YwZ\nUCZr2XURYdDXXxN49ixZwLAJEzhTUIBDSgrvhYZyfPFxCrMKcfJ3opmvJlyWNF40GzoqwUBBeU+X\niIgI/n343whC2so0rvx5hRc6dMBKp+OLixfJ2bMHXF3h66811VcJoaDGvGbqiLi4OLO9mL+/vzm2\nv+kDWsrjuXPn1lmfUlNT8fX1Ra+vfZO5jRs3MmDAAAwGA3feeSfr1q2r9WvWKDe7XXGj3IzK4LHH\nHhOdTifvvPNOhee7desmer1efvjhh3LnAJGZM6t8TUX9YNHJk4LRKK1e+UDiiBOjpVGeGfeMOVRw\naGioODs7CyBL3N011YFOJ7Js2Y1dID9f5MknRUDyQB7r1UucduwQjEahTx+xxlo26DeIEaP8ve/f\nzWoCU2Q5e3v7Gwo5q2g8lI1cafr+Mi+LEaO80u4VCQ4Olsd+/FEwGuWBw4dFvvtOxMFBG79jx4pc\nvlxhWybqcOquMvHx8aLT6aSwsLDUcX9/fxERuXLliuTm5pqPGwwGiYqKqtU+JSUliU6nq9VrfPvt\nt+Lr6ysXL14UEZG4uDhZvHhxrV5TpAGpDGqKtDQtkUzZ9JQmnJycEJFS2a1KoVQGDZYn27ShuaUl\np+/tQv5wRyiANgltzKvzTz/9lIyMDADi7r4b5s+/6s71+ONQfK5Cfv8dBg2CpUsRGxve6tePJtHR\nZBYW4pKcDAcOENI0hGZFzUgkkff3v282/DIZL/r6+gLKwFBxlbKeLqbvhzy17J3ef3ize8tuTi1Y\ngKOFBTHnz7O5SxfYsgXs7WHtWrj3XvjxxwaZRlsqSWq0qNiI0traGhsbG/PxmzE2v9k+1STz588n\nMjISe3t7AAIDA3nuuedq/bo1SYMQCEyqACsrqwrPW1tbA3D58uWKG1AqgwbLc3//O46bNwOwcFwe\n6KDPn31oRStA82QBbcKMioqCGTPg44+1yJQffwxdusCsWcx9+GGCBwwgJCiIi5s3wxNPQPfusHMn\nuLuji43lwdhY/i89HURot2kT7Vq1Y3T+aAA+4ROcnZ3Nk7LJzWzdunUqSqGiFGU9XUzf//Pdfzho\neZCmNGU847HJzualjh0BeO6337ji5we7doGHBxw4AN7ebHBwYM7AgcR99hlO1tbwv//BwoW39gZv\nENNLOCkpifDwcHx8fIiNjcXT09OsPpgxY4Y5VXBAQIBZPVyWlStX4ufnh8FgYNSoUebF35w5c3B3\ndycyMpIJEybg6elJeHg4oL2ge/bsSXBwMBs3bizVXn5+PlOmTKF///4MGDCAOXPmmI/7+/uj1+tZ\nunQpw4YNw9HR8boZJkWE+Ph4zp8/z3333ceAAQOYN29enQgiNcq1tg86dOggOp3uhj+PPPLINduq\nrspg6NChotPpZNWqVRWev+eee0Sn08mWLVvKnUMlNmrQGAwGwcpKWL1aMBpl/UP7xIhRZjWZJYB4\neXnJyJEjzVv5psyDT9x7r+T366dtwVb20elE/vY3kdOnpaioSIIPHxaMRnF7/XVti5YQMWKUj/hI\nXJxcJCkp6RY/DUVD55G7HxEjRtmq2yqnfzwteYWF0n3PHsFolAWm8ZWZKfL00yLFSbwq+lxz6r7W\nmK/qpxoYjUbR6XRiMBjE399ffH19JSwszHw+KirKrD4Q0VQJK1asqLS9HTt2SMuWLSU9PV1ERObO\nnSuBgYHm82FhYdKrVy/JycmRCxcuyNy5c2Xz5s3i7u5unhemTp1aSmVgaqOoqEjy8/OlX79+snr1\navN5nU4nr7zyioiIrFmzRg4cOCCff/65eHl5VdjH06dPi06nkz59+khWVpZkZ2dL3759ZeHChVV5\ndNWisrFwndd7hVheS1gICwsz55O+Ee6+++6bEE0qx81NyzmfUcn2r8nYplWrVhWen710qflvf39/\n/IstyBX1Hzs7O8jPp1NsLMfDwpgZksN7G2FQ3iBSg1N5Pfr1Uitzk7FfAnBu9Gg+MxphxQpOffYZ\nLpcvg16P1R13YDlkCC8lJZGQnIxdWBgPv/ceW86fp5mFBT2++46LNGWixUQohJ/v/ZnjXx1XOwCK\nm2bJN0tY12sdXf7owvk3z9Py45a83bkzQ44cYXZSEiOaN6d7s2awZAk8/zx88AHExsIvv1CQnc0Z\na2uOubhAauqtvpXrsn37dvR6PSdPnmT27Nnm41LFVfPKlSsZPnw4rq6ugPZemjVrFikpKbQt9kQa\nPHgwtra22NraMnPmTMLDwxk6dKj5/+zYsWNLRRWNiopi1qxZ6HQ6LC0tGT16NKtWrWLChAnmMiNG\njDDXBcjKyqJ79+4V9vHKlSsAhIaG4uDgAMATTzzBokWLmDZtWpXut7rEx8cTHx9/U21cUyAo+SPe\nSnr16gXAiRMnyp0rLCzkjz/+wNLSstIfq77ch6LqREdHExERga0I537/naN/+Qs/D7Om+5d5PGv7\nbLmXdEmdaxM7O/xnz8bOzo73jx5l4pQpfPDBBzwzdSqJ+/dz5MgRTch0dubr//0PHByY07o1oR99\nxIK4BTS90JQ/nP9g5saZODk5ERERQWJiInZ2dkRHRysBQXFDlB03E7ZPYF/3faRFpdH2mbYE9XIh\n3M2N5WlpTDx2jG+9vbHU66FjR80mZv58AAb7+2tb19cTBurZNnWHDh1Yvnx5teufOnWK3r17m7+3\naNECoJRA4FhGLZyWloaXl5f5u4uLS6nzKSkpLF682NyvS5culbNRa1bG9sxgMGAwGKgI01xQclHq\n7u5OSkrK9W+whii72H3ZlO+lCjQIG4IHHngAgO+++67cuSNHjpCTk4O/vz+2KqPhbYdJV5988iSZ\ns2ZBTg4vTshD7PSkr0/nfGzpHayS+tuTJ0+ajQ+nTJliDi1r2kUw7zg9/zzi4AD79rFzxgysUq0Y\nkjWEIoqYnzHfHAmzRvIkKBodZcfNs4ue5fuW30MRbB68mQBDAH9Mn04bKyv2XbyIz9Kl5VwNIyIi\nzPOfaQXaUKmqEWG7du1KGYyfLU4bbRIGKmrT3d29VJ1z586VOt++fXtmzZqF0WjEaDSyd+9e1q5d\nW6V+lcTBwYFOnTqVumZ6ejpt2rSpdpu3gnolEBw+fJh+/frx1ltvlTreuXNnHnjgAfbu3cvRo0dL\nnfvPf/4DwLPPPltn/VTUPXZ2dpCaSrtvviG9BSwfq23RGR8ycv7MVaGgZEz5yiy0Tce9vLywe/RR\n6N8fLl2i2Ycf8sGyZSQ+mYiFWLCJTdj3tb+ava4BWnwrbh2mGAI//fQTcHXcJCYm8krqK5zjHK3O\ntqLpjqbEffklhXPnQlERh3r2JKGoiC1bttC9e3cyMzNJTEwkLy8PgIsXL97K27phKlMNlD3u4OBA\nTk4OycnJzJs3r1z5sLAwYmJizC/1FStWEBgYaBYIRKRcm2PGjCEmJsas8o6Oji7X5ieffEJRcfyS\nqKioctcu22Z8fDzjisOZV8SkSZOIjo4mPz+fwsJCVq9ezcSJEystXy+pvinD9cnLy5OMjAzJyMiQ\ndu3aiU6nkyNHjkhGRoZcLvazLclTTz0lOp1OHBwcyp1LTk6W1q1by5133ilHjhyR7OxsWbZsmVhZ\nWcnjjz9eaR9q+RYVdYQpXPC58+dl8KFDYvWNUVa0/FqMGOV1z9evWaesweHgwYNl5MiRsiE5Wdi2\nTTAapWlQkCQlJcmpZafEiFF2Nt8pd7S/Q/r372+Od9C/f39xc3NTxoWKG6JkDIG2bduWi2Fxv839\nYsQoG9koHnYe4uTkJISEaDEwNm8WunYVQDw8PMyxNgDx9vaut/NabGyseHl5iV6vF4PBILGxseXO\ne3p6irOzs0RGRoqIyPr168XHx0eCg4MlLi6uwnZXr14tvr6+MnDgQBk1apScOXNGRETeeOMNcXNz\nEw8PD5k2bVqpOvPnz5cePXpIUFCQLFiwQHQ6nQQEBEheXp7k5+fL9OnTxdfXVwICAiQ0NFRycnJE\nRCQoKEj0er34+fnJ9u3bze2tW7dOvL29K733wsJCee6556RXr17Sr18/mTp1qhQUFFT9IVaRysZC\ndcZIrY6q5cuXmz0Q9Hq96PV68/fw8PBy5bdu3SrOzs7y1FNPVdheamqqhIeHS6tWrcTW1lbuvPNO\nee+9967Zh/r6H0dRfc5euSJNNmyQnu8YZRvbJY5tcuyLY9et5+bmZp5UDZMni31xACLP11+XjIwM\nufTzJUlokiBGjJL2aVqpCd3KykoFIFJUCdOLv2/fvqXyXmRkZEjz5s0FkLnMFSNGeZu3RY9eALF4\n8UVNKNiwQZr07KkJCsVjr3Xr1pKRkaHmNYWZmhQIdMUVb1t0Ol3D8wVVXJeE1FT8Dx9m0qomjP8U\nzlic4aHTD2HlWnGsCtAMizIyMqBbN3SvvYY4ODC+ZUtWde+O5BZxsP9BLh28RKu/taL7yu488MAD\nbNmypVQbffv2VTEHFDeEKWzxBx98UG68mMbWwN4DefbHZ0jGhzYAABxrSURBVHEucmad9To+bfop\nGRcvwuzZmirrwgV46SU4fBh7e3t8fX1Zt24dzs7Oal5TAJW/46rz7lMCgaLB4mQwcPn56SyZ0oRu\niWBvcKTPVi/01hWbxgQFBRFXVARTpoCtLa1PnCBp4kQs0bGq8yran2hPZpNMBhwbgGt7VzIzM+ne\nvbvZYrljx44sX75ceRwobpqSwkLkvZFM/GkiFliwzHEZa7LW0Oeee0h+9FHSu3aFwkKafPEFOR99\nBPn5eHh4cOLECTWvKQAlEFQJJRDcvpw8eRKfxx/HYfILvPqE0PwcHPE6wxdOy2jaxKbUi/rn7Gym\nJiay6cIFAFz37uXo44/TwtmZZb2W4fk/Ty5xiad5mrtD7uazzz4DSk/cU6dONQsBWVlZ7N69G4CQ\nkBBzeYXiepQVJsePH4/VFiue4zmwgC33bGHG5hkUitA/KopfvL21imfO0OaHH2j+++8c/vxzNa8p\nACUQVAklENz+/J6Tw5TPfuTxJy7TJBe297vCq/fuxqOVE4OHDWPvxYvsK7bMbqrX0237duKeeYZm\n9s349R+/8ueyPymggGlM44TzCX7//fcKV/z+Jj9wtGBZaWlpSoWgqDIlx1Hz5s3x8vLC3t6eeR3n\nceatM2ABXd/rinuEOzqdjoTMTJ44doxjublXGwkIUPOaAqhZgaBeuR0qFNXhL02a4Pztxyx5cBeX\nbYsY9K0NS9YPIr9ZH95LTdWEgdxc2vzwA3s8Pflh9mxs0m045H+IP5f9Sb4+n1nM4oTzCe677z5G\njhxJu3btuPfee0v5gpd0O/z+++9VDgNFtTCNI0tLS9LT04mLiwOg++LudHihAxRC4hOJrOy0khG+\nI3h1/Hh2d+vGpjvvZGKrVnQtkRhIoahJ1A6B4rbAtOrqRCdesVqIe35zCnVFGNv9xjab3fx+cjuS\nd4W/DfgbPU73oOOvHbEQC6xaW9HxPx157uPn+OCDDxg5cmS5RCYmlcC1jMQUihvFNI5iY2PNwuaI\nESPYsGEDAGmr0kj8eyJF2UXkkcd3fIfOW8fkqZPJ+zOPjLgMesf0VvOaAlAqgyqhBILGgclqu2/f\nvjSzaEaPPT0YwQgssKiwfBFFbGELpx88zcovV5Zrx9HRkaysLKUSUNQaQUFBxMXF4eXlhdFoLDXG\nck7kENU/im5/dkNfwUZuAEploNBQAkEVUALB7UVl1v0lV+/jx49ny5YtdHXsythmY3H9w5W2urZY\nWVpxMv8kRzjC13xNbvNcunXrhqOjo7ktUzuvvfYaU4pzHyhhQFEbXG/HKTMzk+ceeY5/D/w3Rb8W\nUXChAEtnSxx8HGgzqY2a1xSAEgiqhBIIbi9KGmSVte43CQtWVlbY29ubE5eUFRRMLoRnz55VngKK\nOqUq7qrXKltf57W4uDj+9a9/ceTIEQYOHFgux4DRaGTBggUUFhbywgsv1EmfUlNTefjhh9m7d685\nVHFtXeeJJ54gPT2dK1eumMPwW1hUvEtZU9SkQHDbh7tqBLfYqKgo+pspJHHJ8K4lowmWDVlcNoRs\n2UhyCkVtUTL65fUiXl6rbH2e1+Lj40Wn00lhYWGp4/7+/iIicuXKFcnNzTUfNxgMEhUVVat9SkpK\nEp1OV6vXCAkJkUceeURERHJzc6Vr166yZMmSWr2mSM1GKlReBooGRclshqYVU9nshWWTD5nOx8XF\nYWVlZa5XUVsKRW1yowmyIiIiOHLkCADe3t4NKpmWVLIqXbRoEQDW1tbYlPCUqGr2w5rsU01y9OhR\n/Pz8ALCxscHLy6tcMr76jhIIFA2KktkMTZTMXjhy5MhyL/jKJuGK2lIoapMbFUITExPNAm779u0b\n5Bg1vYSTkpIIDw/Hx8eH2NhYPD09CQgIAGDGjBkcOnSIhQsXEhAQQExMTIVtrVy5Ej8/PwwGA6NG\njTKnGZ4zZw7u7u5ERkYyYcIEPD09CQ8PB2D+/Pn07NmT4OBgNm7cWKq9/Px8pkyZQv/+/RkwYABz\n5swxH/f390ev17N06VKGDRuGo6NjOc+jihg6dCgxMTEUFhZy7tw59uzZw/3331+9h3eLsLzVHVAo\nbpbo6Ohyxlkl9a/vv/8+AQEB2NjYcOedd9KhQ4dShoQKRV1hEkLLUtZeoKQQGxUVVaVr6OLja6Cn\nGuLvX+26gYGB6HQ6cnNz8fT0BDTPihkzZpjvacGCBXz//feEh4cTGhpaYTs7d+5kypQpHD16FFdX\nV+bNm8f48eOJi4vjxRdf5MSJEyQkJLBnzx7y8vJYsmQJMTExvPvuuxw9ehQnJyemTZtWqs1FixZx\n8OBBdu3aRWFhIQaDgU6dOjFhwgTi4+PR6/WcP3+eTZs2sXbtWhwdHfniiy+YO3cuBw8erLCfCxYs\nYNy4cXh4eHD58mVmzJjBgw8+WO3ndytQAoGiwVPRJGtSE4A2qRYWFnLixAkAUlJSAG0SVoaEiluJ\nSRA4cuSIeUcgIiKiQiG3obF9+3b0ej0nT55k9uzZ5uNV3b5fuXIlw4cPx9XVFYCwsDBmzZpFSkoK\nbdu2BWDw4MHY2tpia2vLzJkzCQ8PZ+jQoeZnN3bsWF577TVzm1FRUcyaNQudToelpSWjR49m1apV\nTJgwwVxmxIgR5roAWVlZdO/evdJ+Tp48GVtbW5KTk8nMzGTgwIG0aNGiUkGnPqIEAsVtQWUrLHt7\ne9LT083lSsYXaEh6WUXDpjKPgZKCK2ihjFNTUxk/fny1d7BuZlVfG3To0MHs8VMdTp06Re/evc3f\nW7RoAVBKIHB0dCxVx5SQzISLi0up8ykpKSxevNjcr0uXLuHs7FyqTLNmzUp9NxgMGAyGCvuYnZ3N\nf/7zH/bs2QNoi5SwsDCWLFmiBAKFoq4pObG2bt2aXr164ebmRrdu3UhISDC7Gr711ltMmTKFJk2a\nMHLkyFITtMpgqKgtSo7PkjtTJe1fyrrC3q47WFU1ImzXrp3ZZgDg7NmzAGZhoKI23d3dS9U5d+5c\nqfPt27dn1qxZjBo1CtB2LUxRI6tDQUEBIoKV1dX065aWlly5cqXabd4KlFGh4rbANLEC5OTksGfP\nHtLS0vjxxx9xc3Njw4YNrF+/ng4dOvDZZ59x8uRJEhIS2LJlC927dyczM9M8aW/ZsoWIiIhbeDeK\n243KDFtNRoZGo5H169ebV7qV7WBFRETgX892ACqjMtVA2eMODg7k5OSQnJzMvHnzypUPCwsjJibG\n/FJfsWIFgYGBZoFARMq1OWbMGGJiYjh//jygPeeybX7yySfmuARRUVHlrl22zfj4eMaNG1fhPTVr\n1oy+ffuar5OXl8e6desICgqqsHy9pVqOjw2IRnCLChHJyMgQNzc3AcTR0VEAsbe3r9SP2xSDoOR5\nFZdAUVtkZGRISEjIdcfV9cqVjE1QH4mNjRUvLy/R6/ViMBgkNja23HlPT09xdnaWyMhIERFZv369\n+Pj4SHBwsMTFxVXY7urVq8XX11cGDhwoo0aNkjNnzoiIyBtvvCFubm7i4eEh06ZNK1Vn/vz50qNH\nDwkKCpIFCxaITqeTgIAAycvLk/z8fJk+fbr4+vpKQECAhIaGSk5OjoiIBAUFiV6vFz8/P9m+fbu5\nvXXr1om3t3el9/7bb79JcHCw9OvXT/r27SsRERGSnZ1d9YdYRSobC9UZIypSoaJBU9abYMqUKeaw\nwxkZGcTFxVWYj2DixIl8+umn5Ofn07RpU/z8/Pjoo49UuGJFvcaUawPqxrdeUf9RoYurgBIIbm+u\nFcr4WrHiS9Yz4eHhQfv27ZUNgaLeYhrT69atU/OaAqhZgUAZFSoaNNeK/FaZz3fJeiavg+bNm3Pu\n3Dmza2KXLl3w8fFRgoGiXmEa03UR3U/R+FBGhYoGTXXDD5vqHTlyhJCQELp160ZWVhYAFhYWpKen\nK+NChULRqFAqA4WCq7pZZ2dnevXqRUJCQoW2BwpFfUDNawoTyoagCqj/OIoboaS9AdDgo8QpGh5V\niYOh5jWFCSUQVAH1H0ehUDQErmUgWxY1rylM1KRAoGwIFAqFoh5wo6mRFYraQnkZKBQKRT2gRYsW\nNG/evFJVQUmVgkJRG6gdAoVCoagHnDx5kvT0dOLi4ir0bikZWru+EhcXh5eXF3q9Hn9/fwICAkp9\nQEsTPHfu3DrrU2pqKr6+vuj1tf+6O378OH379uXll18udy4pKYmAgAAGDhxIQEAASUlJtd6fqqIE\nAoVCoagHXE9lUPJ8fWXw4MG8/fbbgJb+2Gg0mj8mnn/+eaZMmWL+7u/vz4oVK2qtT61bt2bt2rW1\n1r6JPXv2EBkZiaura4VxIsaNG0dYWBg7duxg4sSJ5rTK9QklECgUCkU9oLKYGqaERvn5+YwcOZLY\n2Nhb2MvrU5kh26JFiwCwtrbGxsbGfLwugizVhQFmu3bt+Oqrr2jdunW56x0+fJjDhw8zYcIEAMaP\nH8+PP/7IgQMHar1fVUEJBAqFQlEPMEUhLGtDYFIVxMXFYWVl1WBcYU0vxaSkJMLDw/Hx8SE2NhZP\nT0+z+mDGjBkcOnSIhQsXEhAQQExMTIVtrVy5Ej8/PwwGA6NGjTKnNp4zZw7u7u5ERkYyYcIEPD09\nCQ8PB2D+/Pn07NmT4OBgNm7cWKq9/Px8pkyZQv/+/RkwYABz5swxH/f390ev17N06VKGDRuGo6Nj\nuTDnFdG6detK1RL79u3Dw8MDS0vNbM/a2prOnTuzf//+67ZblyijQoVCoainREREcOTIEQC8vb1v\nyPsgXhdfY9f3F/9q1w0MDESn05Gbm4unpycAQUFBzJgxg6ioKECzJ/j+++8JDw8nNDS0wnZ27tzJ\nlClTOHr0KK6ursybN4/x48cTFxfHiy++yIkTJ0hISGDPnj3k5eWxZMkSYmJiePfddzl69ChOTk5M\nmzatVJuLFi3i4MGD7Nq1i8LCQgwGA506dWLChAnEx8ej1+s5f/48mzZtYu3atTg6OvLFF18wd+5c\nDh48WOVncfr0aZo1a1bqmJOTE2fPnq1yW7WJ2iFQKBSKekpiYiIZGRkAtG/fvsHsDsBVG4I1a9aU\nOl7V7fuVK1cyfPhwXF1dAQgLC2P79u2kpKSYywwePBhbW1scHR2ZOXMm69atY+jQoebnVVZfHxUV\nRWhoKDqdDktLS0aPHs2qVatKlRkxYoS5rre3N82bN6d79+5V6ntJKlKN1LdYEmqHQKFQKOoRJd0L\nraysAM2Q0LSqvh43s6qvDTp06MDy5curXf/UqVP07t3b/L1FixYApKSk0LZtW0BLUlaStLQ0vLy8\nzN9dXFxKnU9JSWHx4sXmfl26dAlnZ+dSZcqu6A0GAwaDoVr30LJlSzIzM0sdy8zMpGXLltVqr7ZQ\nAoFCoVDUI0w2A6CtUkNCQkqF0W7oCbeqakTYrl07s80AYN5mNwkDFbXp7u5eqs65c+dKnW/fvj2z\nZs1i1KhRgLZSL/vCvhnK9sfHx4cTJ05QUFCApaUleXl5HD9+HB8fnxq7Zk2gVAYKhUJRjyjpXhgV\nFVXO0DAxMfFWda1KVLYdXva4g4MDOTk5JCcnM2/evHLlw8LCiImJMb/UV6xYQWBgoFkgEJFybY4Z\nM4aYmBjOnz8PaB4cZdv85JNPKCoqAjQVQtlrl20zPj6ecePGXfOeK+uPl5cXvXv3Nvfj008/pWfP\nnnh7e1+3vTpFbnMawS0qFIrbiIyMDAkJCZGMjIwKzwcHB9fbeS02Nla8vLxEr9eLwWCQ2NjYcuc9\nPT3F2dlZIiMjRURk/fr14uPjI8HBwRIXF1dhu6tXrxZfX18ZOHCgjBo1Ss6cOSMiIm+88Ya4ubmJ\nh4eHTJs2rVSd+fPnS48ePSQoKEgWLFggOp1OAgICJC8vT/Lz82X69Oni6+srAQEBEhoaKjk5OSIi\nEhQUJHq9Xvz8/GT79u3m9tatWyfe3t6V3ntaWpqMHj1aOnbsKD169JCQkBDJz883n09KSpJBgwbJ\ngAEDJCAgQJKSkqrwZCunsrFQnTGikhspFApFAyIzMxNnZ2c1rykAle2wSiiBQKFQ3G6oeU1hQmU7\nVCgUCoVCUaMogUChUCgUCkXdCASHDh0yZ8BKTk6uVhumcJIVfUy+ugqFQqFQKKpHrcYhyM/PZ968\nebz55pvk5+ffVBILnU5H+/btK8wFbooPrVAoFAqFonrU6pt0/PjxpKamsn//foKC/r+9e49p6nzj\nAP4t1mFYUTiIc+gMBEi8LNHqaihgocFfjDeI1qlRwMZ73P5wc8vUzZWhiUP/kCVLJJkaMd5wMOMw\nMQthKN4WQcUYAbkIpBKBwVInzILA8/uD0KxC66ynvvb4fBL+6FvO6fehzcvD4Zz3/A9Wq/WV9nfs\n2DEYDAaZ0jHGGGNskFcbgvXr12PevHnefAnGGHvrBAcHv5bbBrM33/NLLr8KrzYEcjcDfJkNY4zB\nsQIfY3LyqasMCgoKoNfrERwcDI1GA61Wi++//x7d3d2iowlz8eJF0RG8iuvzbUquT8m1AVzf28in\nGoLLly9j7969aGlpQVNTE1avXo1du3bBYDCgq6tLdDwhlP6h5vp8m5LrU3JtANf3NvKZhmDv3r0o\nLS1FYmIi/P39ERISgi+++AKffvopysrKsGvXLtERGWOMMZ/ltiEIDw93ee3/cF9paWleCxoTE4PA\nwMAh44O3Aj1+/LjXXpsxxhhTOrf3MsjIyHipk1dmz56N1NTUYZ8LDw+H1WpFQ0MDJk2a9PJJXbDb\n7QgICIBKpUJbWxtCQkKcno+KikJ9fb1sr8cYY4y96SIjI1FXV/dS27i9yiAjI+NV8rwWL7ry4GV/\nIIwxxtjbyCfOIcjLy0NSUtKwzz148AAAEBISMuToAGOMMcb+mzeqIbhz5w5iY2ORnZ3tNP706VNc\nu3YNzc3NQ7Y5ePAggIFVERljjDHmGa82BM+ePYPNZoPNZkN/fz+ICI8fP4bNZsPTp0+HfP9PP/2E\nP/74A99++61zSD8/dHd3Izk5GZcvX0ZXVxf+/PNPZGVlIScnB1qtFnv27PFmKYwxxpiiebUhOHHi\nBCRJgiRJaG5uhkqlwvTp0yFJEj755JMh35+SkoKgoCCkp6c7ja9atQqFhYWYMmUK0tPTIUkSIiIi\ncObMGezZswdXr16FRqNx2sZut8NsNkOv10On06GoqMibpb5Wvb29yM7OhtFoRGJiImJjY/H777+L\njuUVtbW1GDlyJEpLS0VHkd2hQ4cQGxsLg8GAGTNmKKrGqqoqGI1GzJkzRxEN+82bNxEVFYXc3Fyn\n8YqKCuj1esTHxyM5OdlnVxAcrr7GxkasXbsWSUlJ0Ov1WLVqFdrb2wWm9Iyr926QxWJBRETEa04l\nH1f1PX78GOvWrUNcXBy0Wi3mz5+Pvr4+9zsjhfrqq6/IbDYTEVFNTQ1JkkStra2CU8mjoaGBIiIi\n6O+//yYioqKiItJoNNTc3Cw4mfxWrlxJ7777Ll26dEl0FFmdOXOGFi1aRL29vURElJubS3l5eYJT\nyUen09E333xDREQdHR0kSRIVFhYKTuWZc+fO0YoVK2jmzJmUm5vrGO/u7qZJkybRxYsXiYjIYrHQ\nxx9/LCqmx1zVZ7FYaNu2bY7HqamptGTJEhERPeaqtkEtLS0UFhZGERERAtK9Onf1LViwgE6dOkVE\nRP39/WQymejZs2du9/dGnUMgl/7+fhw+fBjr1q0DAERHR0Or1SpmrYLRo0dj9+7djnUZ5s6di1Gj\nRuH69euCk8mrrKwMgYGBCA0NFR1FdpmZmdi5cydGjBgBAEhPT8fy5csFp5JPZWUl9Ho9AECSJERH\nR6OyslJwKs9otVqcPn0ao0ePdhq/cOEC1Go1EhISAAzczO2XX35BR0eHiJgec1XfrFmznI7krlix\nwueOtLqqbdDu3buxZcsWn71Pjqv6bt68idraWqxcuRIAoFKpkJ+fD7Xa/e2LFNkQPHjwAB0dHZg8\nebJjbOrUqSgvLxeYSj6SJGH16tWOx0SEnp4exf3izMjIgMViER1Ddm1tbbh37x5qamqQlJQEg8GA\nnJwc0bFktXDhQvz6668AgPr6etTW1mLu3LmCU3nmgw8+GHa8rKwMU6ZMcTyeOHEiAgICcOvWrdcV\nTRau6lu8eLHToXS73e5zc4yr2oCBS9IfPXqE+Pj415hIXq7qKy4uRmRkJL788kvExcVh8eLFuHfv\n3gv3p8iGoLW1FQAwZswYx9iYMWPQ1tYmKpJXXbp0CeHh4TAYDKKjyObChQv48MMPMWHCBNFRZNfY\n2Ahg4HLa3377DQUFBcjKykJeXp7YYDI6dOgQampqEBUVhZiYGPz444+YOXOm6Fiyam1tHfKXWVBQ\nkGLnmfPnzw977pevslgsyMzM9NmjA+40NjaiuLgY06ZNw9WrV5GWlgaj0YjOzk632ymyIRj0/P3C\nlfjG2+12fP311zh69KjoKLLp7+/Hvn37sGPHDtFRvGLw7pybNm2CWq1GaGgoUlNTceTIEcHJ5LN0\n6VLExsairq4Ot2/fxvbt2xV34qtKpRoyxwDKnGeuXbuGhoYGbN26VXQUWZSXl+Odd97BtGnTREfx\niu7ubgQGBsJsNgMAli9fDn9/fxQWFrrdTpENwbhx4wAANpvNMWaz2fDee++JiuQVRISNGzfi888/\nh1arFR1HNidPnsS8efMQFBTkGFPSJBscHAwATp/H999/Hw8fPhQVSVZVVVUoLi52/PKYOHEiUlJS\nHGuGKMW4ceOc5hhgYJ4ZnH+UoqmpCTt27EB+fr7jnBdfZ7FYfGIlXk8FBwdj7NixTmNhYWHDruXz\nb4psCCIjIyFJEqqrqx1jlZWV0Ol0AlPJb9u2bYiJiYHJZEJPTw+sVqvoSLK4cuUKzp8/D6PRCKPR\niJaWFmzduhVLliwRHU0W0dHRCAgIcDq03N7erph/j/T09AAARo4c6RhTq9WOcaXQ6XS4f/++47HV\nasU///yDWbNmCUwlr/b2dqSnpyM3NxehoaGwWq0+/z4+efIE9fX1MJvNMBqN+Oyzz9DS0gKj0aiY\nc3m0Wu2QS0Tb29sRFhbmdjtFNgR+fn7YsGGD4xBsbW0t7ty543Qinq/LyspCX18f1qxZg87OTtTV\n1SnmkHNOTg6uXLmCkpISlJSUYPz48fjhhx9w9uxZ0dFk4e/v75hkgYGVOH/++WesWbNGcDJ5TJ48\nGRMmTMDJkycBDEzAhYWFPntS4SAicjpSNX/+fPT29jrWjzhy5AhMJpPPLqH+fH2dnZ0wmUzIzMzE\n2LFj0dnZiYMHD+LRo0cCU3rm37UFBgaiurraMb8cOHAA48ePR0lJCTZv3iw4qWeef+9SUlKgVqtx\n7tw5AEBpaSmePHmCRYsWvXBHimS328lsNlNMTAx99NFHVFRUJDqSbO7fv08qlWrI13fffSc6mqwq\nKirIZDKRRqOhhIQEys7OFh1JNl1dXZSWlkYzZswgvV5P+/fvFx1JVuXl5WQwGGjOnDmk1Wpp+/bt\n1NfXJzqWR+7evUvLli2j0NBQ0ul0tGHDBsdzt2/fJr1eT/Hx8ZScnEx//fWXwKSeeb6+jRs3EhHR\nzp07h8wxfn5+1NTUJDjxf+eqtkEHDhyghIQE0mg0tGzZMqqoqBCU1DPuPps3btyg2bNnU1xcHCUm\nJlJ5efkL9+f29seMMcYYezso8l8GjDHGGHs53BAwxhhjjBsCxhhjjHFDwBhjjDFwQ8AYY4wxcEPA\nGGOMMXBDwBhjjDFwQ8AYY4wxAP8HJVr1pkM+uzkAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x80ef230>" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 } ], "metadata": {} } ] }
apache-2.0
GoogleCloudPlatform/vertex-ai-samples
notebooks/community/migration/UJ8 legacy AutoML Natural Language Text Sentiment Analysis.ipynb
1
46495
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "Xo4cz5r0c4yy" }, "outputs": [], "source": [ "# Copyright 2021 Google LLC\n", "#\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "text_title:migration,automl,icn" }, "source": [ "# AutoML text sentiment analysis\n" ] }, { "cell_type": "markdown", "metadata": { "id": "JE-aKjayJjkF" }, "source": [ "## Installation\n", "\n", "Install the latest version of AutoML SDK." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "7dxB6-B0JjkG" }, "outputs": [], "source": [ "! pip3 install google-cloud-automl" ] }, { "cell_type": "markdown", "metadata": { "id": "Iddo-8HmJjkH" }, "source": [ "Install the Google *cloud-storage* library as well." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "xHvi6EFSJjkH" }, "outputs": [], "source": [ "! pip3 install google-cloud-storage" ] }, { "cell_type": "markdown", "metadata": { "id": "ktRTgB8DJjkI" }, "source": [ "### Restart the Kernel\n", "\n", "Once you've installed the AutoML SDK and Google *cloud-storage*, you need to restart the notebook kernel so it can find the packages." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "x1g4mBdlJjkI" }, "outputs": [], "source": [ "import os\n", "\n", "if not os.getenv(\"AUTORUN\"):\n", " # Automatically restart kernel after installs\n", " import IPython\n", "\n", " app = IPython.Application.instance()\n", " app.kernel.do_shutdown(True)" ] }, { "cell_type": "markdown", "metadata": { "id": "AGX8yszodHx_" }, "source": [ "## Before you begin\r\n", "\r\n", "### GPU run-time\r\n", "\r\n", "*Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select* **Runtime > Change Runtime Type > GPU**\r\n", "\r\n", "### Set up your GCP project\r\n", "\r\n", "**The following steps are required, regardless of your notebook environment.**\r\n", "\r\n", "1. [Select or create a GCP project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.\r\n", "\r\n", "2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)\r\n", "\r\n", "3. [Enable the AutoML APIs and Compute Engine APIs.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component)\r\n", "\r\n", "4. [Google Cloud SDK](https://cloud.google.com/sdk) is already installed in AutoML Notebooks.\r\n", "\r\n", "5. Enter your project ID in the cell below. Then run the cell to make sure the\r\n", "Cloud SDK uses the right project for all the commands in this notebook.\r\n", "\r\n", "**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands.\r\n", "\r\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_project_id" }, "outputs": [], "source": [ "PROJECT_ID = \"[your-project-id]\" # @param {type:\"string\"}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "autoset_project_id" }, "outputs": [], "source": [ "if PROJECT_ID == \"\" or PROJECT_ID is None or PROJECT_ID == \"[your-project-id]\":\n", " # Get your GCP project id from gcloud\n", " shell_output = !gcloud config list --format 'value(core.project)' 2>/dev/null\n", " PROJECT_ID = shell_output[0]\n", " print(\"Project ID:\", PROJECT_ID)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_gcloud_project_id" }, "outputs": [], "source": [ "! gcloud config set project $PROJECT_ID" ] }, { "cell_type": "markdown", "metadata": { "id": "jT0fijejJjkK" }, "source": [ "#### Region\n", "\n", "You can also change the `REGION` variable, which is used for operations\n", "throughout the rest of this notebook. Below are regions supported for AutoML. We recommend when possible, to choose the region closest to you.\n", "\n", "- Americas: `us-central1`\n", "- Europe: `europe-west4`\n", "- Asia Pacific: `asia-east1`\n", "\n", "You cannot use a Multi-Regional Storage bucket for training with AutoML. Not all regions provide support for all AutoML services. For the latest support per region, see [Region support for AutoML services]()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "CTBlncfrJjkK" }, "outputs": [], "source": [ "REGION = \"us-central1\" # @param {type: \"string\"}" ] }, { "cell_type": "markdown", "metadata": { "id": "J_croPBoJjkK" }, "source": [ "#### Timestamp\n", "\n", "If you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append onto the name of resources which will be created in this tutorial." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "KKxStk5bJjkL" }, "outputs": [], "source": [ "from datetime import datetime\n", "\n", "TIMESTAMP = datetime.now().strftime(\"%Y%m%d%H%M%S\")" ] }, { "cell_type": "markdown", "metadata": { "id": "c3yKEDsvdpFf" }, "source": [ "### Authenticate your GCP account\r\n", "\r\n", "**If you are using AutoML Notebooks**, your environment is already\r\n", "authenticated. Skip this step.\r\n", "\r\n", "*Note: If you are on an AutoML notebook and run the cell, the cell knows to skip executing the authentication steps.*" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "chybg3Ap_i_2" }, "outputs": [], "source": [ "import os\n", "import sys\n", "\n", "# If you are running this notebook in Colab, run this cell and follow the\n", "# instructions to authenticate your Google Cloud account. This provides access\n", "# to your Cloud Storage bucket and lets you submit training jobs and prediction\n", "# requests.\n", "\n", "# If on Vertex, then don't execute this code\n", "if not os.path.exists(\"/opt/deeplearning/metadata/env_version\"):\n", " if \"google.colab\" in sys.modules:\n", " from google.colab import auth as google_auth\n", "\n", " google_auth.authenticate_user()\n", "\n", " # If you are running this tutorial in a notebook locally, replace the string\n", " # below with the path to your service account key and run this cell to\n", " # authenticate your Google Cloud account.\n", " else:\n", " %env GOOGLE_APPLICATION_CREDENTIALS your_path_to_credentials.json\n", "\n", " # Log in to your account on Google Cloud\n", " ! gcloud auth login" ] }, { "cell_type": "markdown", "metadata": { "id": "MDUAZaN3JjkL" }, "source": [ "### Create a Cloud Storage bucket\n", "\n", "**The following steps are required, regardless of your notebook environment.**\n", "\n", "This tutorial is designed to use training data that is in a public Cloud Storage bucket and a local Cloud Storage bucket for your batch predictions. You may alternatively use your own training data that you have stored in a local Cloud Storage bucket.\n", "\n", "Set the name of your Cloud Storage bucket below. It must be unique across all Cloud Storage buckets.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bucket" }, "outputs": [], "source": [ "BUCKET_NAME = \"[your-bucket-name]\" # @param {type:\"string\"}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "autoset_bucket" }, "outputs": [], "source": [ "if BUCKET_NAME == \"\" or BUCKET_NAME is None or BUCKET_NAME == \"[your-bucket-name]\":\n", " BUCKET_NAME = PROJECT_ID + \"aip-\" + TIMESTAMP" ] }, { "cell_type": "markdown", "metadata": { "id": "yU6VuylGJjkM" }, "source": [ "**Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "QVRixM4oJjkM" }, "outputs": [], "source": [ "! gsutil mb -l $REGION gs://$BUCKET_NAME" ] }, { "cell_type": "markdown", "metadata": { "id": "Mi-Pdh6QJjkN" }, "source": [ "Finally, validate access to your Cloud Storage bucket by examining its contents:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "aqDptKpYJjkN" }, "outputs": [], "source": [ "! gsutil ls -al gs://$BUCKET_NAME" ] }, { "cell_type": "markdown", "metadata": { "id": "fR9geV9pJjkO" }, "source": [ "### Set up variables\n", "\n", "Next, set up some variables used throughout the tutorial.\n", "### Import libraries and define constants" ] }, { "cell_type": "markdown", "metadata": { "id": "hIHTX-pkJjkO" }, "source": [ "#### Import AutoML SDK\n", "\n", "Import the AutoM SDK into our Python environment." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "qrSkIKVgJjkO" }, "outputs": [], "source": [ "import json\n", "import os\n", "import sys\n", "import time\n", "\n", "from google.cloud import automl\n", "from google.protobuf.json_format import MessageToJson\n", "from google.protobuf.struct_pb2 import Value" ] }, { "cell_type": "markdown", "metadata": { "id": "lbv411XjJjkP" }, "source": [ "#### AutoML constants\n", "\n", "Setup up the following constants for AutoML:\n", "\n", "- `PARENT`: The AutoM location root path for dataset, model and endpoint resources." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Gx8Eos8PJjkP" }, "outputs": [], "source": [ "# AutoM location root path for your dataset, model and endpoint resources\n", "PARENT = \"projects/\" + PROJECT_ID + \"/locations/\" + REGION" ] }, { "cell_type": "markdown", "metadata": { "id": "hBaOc_HRc4zC" }, "source": [ "## Clients\n", "\n", "The AutoML SDK works as a client/server model. On your side (the Python script) you will create a client that sends requests and receives responses from the server (AutoML).\n", "\n", "You will use several clients in this tutorial, so set them all up upfront." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "5t0zkxqPc4zC" }, "outputs": [], "source": [ "def automl_client():\n", " return automl.AutoMlClient()\n", "\n", "\n", "def perdictions_client():\n", " return automl.PredictionServiceClient()\n", "\n", "\n", "def operations_client():\n", " return automl.AutoMlClient()._transport.operations_client\n", "\n", "\n", "clients = {}\n", "clients[\"automl\"] = automl_client()\n", "clients[\"predictions\"] = perdictions_client()\n", "clients[\"operations\"] = operations_client()\n", "\n", "for client in clients.items():\n", " print(client)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "import_file:flowers,csv,icn" }, "outputs": [], "source": [ "import tensorflow as tf\n", "\n", "IMPORT_FILE = \"gs://cloud-samples-data/language/claritin.csv\"\n", "with tf.io.gfile.GFile(IMPORT_FILE, \"r\") as f:\n", " content = f.readlines()\n", "\n", "IMPORT_FILE = \"gs://\" + BUCKET_NAME + \"/claritin.csv\"\n", "with tf.io.gfile.GFile(IMPORT_FILE, \"w\") as f:\n", " for line in content:\n", " f.write(\",\".join(line.split(\",\")[0:-1]) + \"\\n\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ed725169cbfa" }, "outputs": [], "source": [ "! gsutil cat $IMPORT_FILE | head -n 10" ] }, { "cell_type": "markdown", "metadata": { "id": "d3a0464dd6f3" }, "source": [ "*Example output*:\n", "```\n", "@freewrytin God is way too good for Claritin,2\n", "I need Claritin. So bad. When did I become cursed with allergies?,3\n", "Thank god for Claritin.,4\n", "\"And what's worse is that I reached my 3-day limit on the nose spray yesterday, which means I have to rely on Claritin.\",2\n", "Time to take some Claritin or Allegra or something. I need my voice,3\n", "Oh my RT @imsydneycharles: I just want it to be on record somewhere that I took Claritin and Benadryl together...just in case I pass out,2\n", "Bouta take a Claritin _‰Ûª‰Û_‰Ûª_‰ÛªÌâ FML !!,3\n", "Commander Loratadine Generic A Sarcelles: Commander Loratadine Generic A Sarcelles Claritin =‰Ûª_‰Ûª__ http://t.co/mOleL8AM,2\n", "\"Zyrtec, Claritin, Suddafed, Nasal Spray.. I feel like a drug addict taking these Allergy medicine. Please Allergy season.. DISAPPEAR!!\",1\n", "\"‰Ûª_‰Ûª_‰ÛªÕ@SheLovesThatD: If she has allergies, give her the Claritin D.‰Ûª_‰Ûª_Ì_å @Sweeno_thakid41 @B_Original16 @luke_CYwalker14\",3\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "text_create_dataset:migration" }, "source": [ "## Create a dataset" ] }, { "cell_type": "markdown", "metadata": { "id": "text_datasets_create:migration,old" }, "source": [ "### [projects.locations.datasets.create](https://cloud.google.com/automl/docs/reference/rest/v1beta1/projects.locations.datasets/create)" ] }, { "cell_type": "markdown", "metadata": { "id": "ozaMOwdNJjkT" }, "source": [ "#### Request" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "OMZr1t8mc4zF" }, "outputs": [], "source": [ "dataset = {\n", " \"display_name\": \"claritin_\" + TIMESTAMP,\n", " \"text_sentiment_dataset_metadata\": {\"sentiment_max\": 4},\n", "}\n", "\n", "\n", "print(\n", " MessageToJson(\n", " automl.CreateDatasetRequest(parent=PARENT, dataset=dataset).__dict__[\"_pb\"]\n", " )\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "f1354773b89e" }, "source": [ "*Example output*:\n", "```\n", "{\n", " \"parent\": \"projects/migration-ucaip-training/locations/us-central1\",\n", " \"dataset\": {\n", " \"displayName\": \"claritin_20210304132912\",\n", " \"textSentimentDatasetMetadata\": {\n", " \"sentimentMax\": 4\n", " }\n", " }\n", "}\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "vHkuSZxkJjkT" }, "source": [ "#### Call" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ifCavN75c4zG" }, "outputs": [], "source": [ "request = clients[\"automl\"].create_dataset(parent=PARENT, dataset=dataset)" ] }, { "cell_type": "markdown", "metadata": { "id": "FLqkZMD2JjkT" }, "source": [ "#### Response" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "87xXwkaVc4zG" }, "outputs": [], "source": [ "result = request.result()\n", "\n", "print(MessageToJson(result.__dict__[\"_pb\"]))" ] }, { "cell_type": "markdown", "metadata": { "id": "f9c171ffceee" }, "source": [ "*Example output*:\n", "```\n", "{\n", " \"name\": \"projects/116273516712/locations/us-central1/datasets/TST1994716952680988672\"\n", "}\n", "```\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "86e845326428" }, "outputs": [], "source": [ "# The full unique ID for the dataset\n", "dataset_id = result.name\n", "# The short numeric ID for the dataset\n", "dataset_short_id = dataset_id.split(\"/\")[-1]\n", "\n", "print(dataset_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "text_datasets_importdata:migration,old" }, "source": [ "### [projects.locations.datasets.importData](https://cloud.google.com/automl/docs/reference/rest/v1beta1/projects.locations.datasets/importData)" ] }, { "cell_type": "markdown", "metadata": { "id": "y3T7l1xAc4zH" }, "source": [ "#### Request" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jjOtdiJBc4zH" }, "outputs": [], "source": [ "input_config = {\"gcs_source\": {\"input_uris\": [IMPORT_FILE]}}\n", "\n", "print(\n", " MessageToJson(\n", " automl.ImportDataRequest(name=dataset_id, input_config=input_config).__dict__[\n", " \"_pb\"\n", " ]\n", " )\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "c0fd2b918d71" }, "source": [ "*Example output*:\n", "```\n", "{\n", " \"name\": \"projects/116273516712/locations/us-central1/datasets/TST1994716952680988672\",\n", " \"inputConfig\": {\n", " \"gcsSource\": {\n", " \"inputUris\": [\n", " \"gs://migration-ucaip-trainingaip-20210304132912/claritin.csv\"\n", " ]\n", " }\n", " }\n", "}\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "7QSqElzPc4zH" }, "source": [ "#### Call" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "FWm339Twc4zI" }, "outputs": [], "source": [ "request = clients[\"automl\"].import_data(name=dataset_id, input_config=input_config)" ] }, { "cell_type": "markdown", "metadata": { "id": "AQVw0rQsc4zI" }, "source": [ "#### Response" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Fur_ANcMc4zI" }, "outputs": [], "source": [ "result = request.result()\n", "\n", "print(MessageToJson(result))" ] }, { "cell_type": "markdown", "metadata": { "id": "NT2ras8rhC_D" }, "source": [ "*Example output*:\r\n", "```\r\n", "{}\r\n", "```" ] }, { "cell_type": "markdown", "metadata": { "id": "text_create_and_deploy_model:migration" }, "source": [ "## Train a model" ] }, { "cell_type": "markdown", "metadata": { "id": "text_models_create:migration,old" }, "source": [ "### [projects.locations.models.create](https://cloud.google.com/automl/docs/reference/rest/v1beta1/projects.locations.models/create)" ] }, { "cell_type": "markdown", "metadata": { "id": "bfPBtMYZc4zJ" }, "source": [ "#### Request" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "LbWL7tq2c4zJ" }, "outputs": [], "source": [ "model = {\n", " \"display_name\": \"claritin_\" + TIMESTAMP,\n", " \"dataset_id\": dataset_short_id,\n", " \"text_sentiment_model_metadata\": {},\n", "}\n", "\n", "print(\n", " MessageToJson(automl.CreateModelRequest(parent=PARENT, model=model).__dict__[\"_pb\"])\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "e080c4730d86" }, "source": [ "*Example output*:\n", "```\n", "{\n", " \"parent\": \"projects/migration-ucaip-training/locations/us-central1\",\n", " \"model\": {\n", " \"displayName\": \"claritin_20210304132912\",\n", " \"datasetId\": \"TST1994716952680988672\",\n", " \"textSentimentModelMetadata\": {}\n", " }\n", "}\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "duJfz52Rc4zJ" }, "source": [ "#### Call" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "kHS2pwcec4zK" }, "outputs": [], "source": [ "request = clients[\"automl\"].create_model(parent=PARENT, model=model)" ] }, { "cell_type": "markdown", "metadata": { "id": "vmkA2d5-c4zK" }, "source": [ "#### Response" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "o8P7a8nQc4zK" }, "outputs": [], "source": [ "result = request.result()\n", "\n", "print(MessageToJson(result.__dict__[\"_pb\"]))" ] }, { "cell_type": "markdown", "metadata": { "id": "498f8fd21640" }, "source": [ "*Example output*:\n", "```\n", "{\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272\"\n", "}\n", "```\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "865fcdfa7262" }, "outputs": [], "source": [ "# The full unique ID for the training pipeline\n", "model_id = result.name\n", "# The short numeric ID for the training pipeline\n", "model_short_id = model_id.split(\"/\")[-1]\n", "\n", "print(model_short_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "text_evaluate_the_model:migration" }, "source": [ "## Evaluate the model" ] }, { "cell_type": "markdown", "metadata": { "id": "yfufMwAEJjkX" }, "source": [ "### [projects.locations.models.modelEvaluations.list](https://cloud.google.com/automl/docs/reference/rest/v1beta1/projects.locations.models.modelEvaluations/list)" ] }, { "cell_type": "markdown", "metadata": { "id": "ro1Hr7Hbc4zL" }, "source": [ "#### Call" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "hBEu4Ghoc4zL" }, "outputs": [], "source": [ "request = clients[\"automl\"].list_model_evaluations(parent=model_id, filter=\"\")" ] }, { "cell_type": "markdown", "metadata": { "id": "X9XycwTYc4zM" }, "source": [ "#### Response" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ZbX6Z00uc4zM" }, "outputs": [], "source": [ "model_evaluations = [json.loads(MessageToJson(me.__dict__[\"_pb\"])) for me in request]\n", "# The evaluation slice\n", "evaluation_slice = request.model_evaluation[0].name\n", "\n", "print(json.dumps(model_evaluations, indent=2))" ] }, { "cell_type": "markdown", "metadata": { "id": "6835b78da85b" }, "source": [ "*Example output*:\n", "```\n", "[\n", " {\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272/modelEvaluations/54870628009945864\",\n", " \"annotationSpecId\": \"8301667931964571648\",\n", " \"createTime\": \"2021-03-04T17:15:51.851420Z\",\n", " \"textSentimentEvaluationMetrics\": {\n", " \"precision\": 0.33333334,\n", " \"recall\": 0.16666667,\n", " \"f1Score\": 0.22222222\n", " },\n", " \"displayName\": \"4\"\n", " },\n", " {\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272/modelEvaluations/1597159550285093673\",\n", " \"annotationSpecId\": \"1384138904323489792\",\n", " \"createTime\": \"2021-03-04T17:15:51.851420Z\",\n", " \"textSentimentEvaluationMetrics\": {\n", " \"precision\": 0.5,\n", " \"recall\": 0.296875,\n", " \"f1Score\": 0.37254903\n", " },\n", " \"displayName\": \"1\"\n", " },\n", " {\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272/modelEvaluations/3521790980763365687\",\n", " \"createTime\": \"2021-03-04T17:15:51.851420Z\",\n", " \"evaluatedExampleCount\": 452,\n", " \"textSentimentEvaluationMetrics\": {\n", " \"precision\": 0.6238938,\n", " \"recall\": 0.6238938,\n", " \"f1Score\": 0.6238938,\n", " \"meanAbsoluteError\": 0.47566372,\n", " \"meanSquaredError\": 0.69690263,\n", " \"linearKappa\": 0.41007927,\n", " \"quadraticKappa\": 0.45938763,\n", " \"confusionMatrix\": {\n", " \"annotationSpecId\": [\n", " \"7148746427357724672\",\n", " \"1384138904323489792\",\n", " \"5995824922750877696\",\n", " \"3689981913537183744\",\n", " \"8301667931964571648\"\n", " ],\n", " \"row\": [\n", " {\n", " \"exampleCount\": [\n", " 2,\n", " 4,\n", " 1,\n", " 1,\n", " 1\n", " ]\n", " },\n", " {\n", " \"exampleCount\": [\n", " 3,\n", " 19,\n", " 14,\n", " 28,\n", " 0\n", " ]\n", " },\n", " {\n", " \"exampleCount\": [\n", " 0,\n", " 7,\n", " 67,\n", " 63,\n", " 1\n", " ]\n", " },\n", " {\n", " \"exampleCount\": [\n", " 1,\n", " 8,\n", " 19,\n", " 191,\n", " 4\n", " ]\n", " },\n", " {\n", " \"exampleCount\": [\n", " 0,\n", " 0,\n", " 0,\n", " 15,\n", " 3\n", " ]\n", " }\n", " ],\n", " \"displayName\": [\n", " \"0\",\n", " \"1\",\n", " \"2\",\n", " \"3\",\n", " \"4\"\n", " ]\n", " }\n", " }\n", " },\n", " {\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272/modelEvaluations/3727703410992997127\",\n", " \"annotationSpecId\": \"3689981913537183744\",\n", " \"createTime\": \"2021-03-04T17:15:51.851420Z\",\n", " \"textSentimentEvaluationMetrics\": {\n", " \"precision\": 0.6409396,\n", " \"recall\": 0.85650223,\n", " \"f1Score\": 0.7332054\n", " },\n", " \"displayName\": \"3\"\n", " },\n", " {\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272/modelEvaluations/4692810493650008310\",\n", " \"annotationSpecId\": \"7148746427357724672\",\n", " \"createTime\": \"2021-03-04T17:15:51.851420Z\",\n", " \"textSentimentEvaluationMetrics\": {\n", " \"precision\": 0.33333334,\n", " \"recall\": 0.22222222,\n", " \"f1Score\": 0.26666668\n", " },\n", " \"displayName\": \"0\"\n", " },\n", " {\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272/modelEvaluations/8390011688796741170\",\n", " \"annotationSpecId\": \"5995824922750877696\",\n", " \"createTime\": \"2021-03-04T17:15:51.851420Z\",\n", " \"textSentimentEvaluationMetrics\": {\n", " \"precision\": 0.6633663,\n", " \"recall\": 0.48550725,\n", " \"f1Score\": 0.5606694\n", " },\n", " \"displayName\": \"2\"\n", " }\n", "]\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "i6T0bzuNJjkY" }, "source": [ "### [projects.locations.models.modelEvaluations.get](https://cloud.google.com/automl/docs/reference/rest/v1beta1/projects.locations.models.modelEvaluations/get)" ] }, { "cell_type": "markdown", "metadata": { "id": "cu1lRCSOc4zM" }, "source": [ "#### Call" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "XIIHbDYWc4zM" }, "outputs": [], "source": [ "request = clients[\"automl\"].get_model_evaluation(name=evaluation_slice)" ] }, { "cell_type": "markdown", "metadata": { "id": "aMgYNNWgc4zN" }, "source": [ "#### Response" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "hSWpi4v1c4zN" }, "outputs": [], "source": [ "print(MessageToJson(request.__dict__[\"_pb\"]))" ] }, { "cell_type": "markdown", "metadata": { "id": "b11081c8c71e" }, "source": [ "*Example output*:\n", "```\n", "{\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272/modelEvaluations/54870628009945864\",\n", " \"annotationSpecId\": \"8301667931964571648\",\n", " \"createTime\": \"2021-03-04T17:15:51.851420Z\",\n", " \"textSentimentEvaluationMetrics\": {\n", " \"precision\": 0.33333334,\n", " \"recall\": 0.16666667,\n", " \"f1Score\": 0.22222222\n", " },\n", " \"displayName\": \"4\"\n", "}\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "iRUvxxAKc4zN" }, "source": [ "## Make batch predictions" ] }, { "cell_type": "markdown", "metadata": { "id": "caA77NMbc4zN" }, "source": [ "### Make the batch input file\r\n", "\r\n", "To request a batch of predictions from AutoML Video, create a CSV file that lists the Cloud Storage paths to the videos that you want to annotate. You can also specify a start and end time to tell AutoML Video to only annotate a segment (segment-level) of the video. The start time must be zero or greater and must be before the end time. The end time must be greater than the start time and less than or equal to the duration of the video. You can also use inf to indicate the end of a video." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "5beaf1d4077c" }, "outputs": [], "source": [ "import tensorflow as tf\n", "\n", "gcs_input_uri = \"gs://\" + BUCKET_NAME + \"/test.csv\"\n", "with tf.io.gfile.GFile(gcs_input_uri, \"w\") as f:\n", " item_1 = \"gs://cloud-samples-data/language/sentiment-positive.txt\"\n", " ! gsutil cp $item_1 gs://$BUCKET_NAME\n", " f.write(\"gs://\" + BUCKET_NAME + \"/sentiment-positive.txt\" + \"\\n\")\n", "\n", " item_2 = \"gs://cloud-samples-data/language/sentiment-negative.txt\"\n", " ! gsutil cp $item_2 gs://$BUCKET_NAME\n", " f.write(\"gs://\" + BUCKET_NAME + \"/sentiment-negative.txt\")\n", "\n", "! gsutil cat $gcs_input_uri" ] }, { "cell_type": "markdown", "metadata": { "id": "031c110f4c79" }, "source": [ "*Example output*:\n", "```\n", "gs://migration-ucaip-trainingaip-20210304132912/sentiment-positive.txt\n", "gs://migration-ucaip-trainingaip-20210304132912/sentiment-negative.txt\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "text_models_batchpredict:migration,old" }, "source": [ "### [projects.locations.models.batchPredict](https://cloud.google.com/automl/docs/reference/rest/v1beta1/projects.locations.models/batchPredict)" ] }, { "cell_type": "markdown", "metadata": { "id": "UNxo4fR5c4zO" }, "source": [ "#### Request" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Vu-8O5Y2c4zO" }, "outputs": [], "source": [ "input_config = {\"gcs_source\": {\"input_uris\": [gcs_input_uri]}}\n", "\n", "output_config = {\n", " \"gcs_destination\": {\"output_uri_prefix\": \"gs://\" + f\"{BUCKET_NAME}/batch_output/\"}\n", "}\n", "\n", "print(\n", " MessageToJson(\n", " automl.BatchPredictRequest(\n", " name=model_id, input_config=input_config, output_config=output_config\n", " ).__dict__[\"_pb\"]\n", " )\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "9defd1c4d1a0" }, "source": [ "*Example output*:\n", "```\n", "{\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272\",\n", " \"inputConfig\": {\n", " \"gcsSource\": {\n", " \"inputUris\": [\n", " \"gs://migration-ucaip-trainingaip-20210304132912/test.csv\"\n", " ]\n", " }\n", " },\n", " \"outputConfig\": {\n", " \"gcsDestination\": {\n", " \"outputUriPrefix\": \"gs://migration-ucaip-trainingaip-20210304132912/batch_output/\"\n", " }\n", " }\n", "}\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "kc_59mp8c4zP" }, "source": [ "#### Call" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "TSk7yRiqc4zP" }, "outputs": [], "source": [ "request = clients[\"predictions\"].batch_predict(\n", " name=model_id, input_config=input_config, output_config=output_config\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "mcqKVj2Xc4zP" }, "source": [ "#### Response" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bSTEmLgGc4zP" }, "outputs": [], "source": [ "result = request.result()\n", "\n", "print(MessageToJson(result.__dict__[\"_pb\"]))" ] }, { "cell_type": "markdown", "metadata": { "id": "c4CvqTBhtMNi" }, "source": [ "*Example output*:\r\n", "```\r\n", "{}\r\n", "```" ] }, { "cell_type": "markdown", "metadata": { "id": "FQjooSKyc4zQ" }, "source": [ "## Make online predictions\n" ] }, { "cell_type": "markdown", "metadata": { "id": "nrRQoOCVc4zQ" }, "source": [ "#### Prepare data item for online prediction\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "mMdW9VbJc4zQ" }, "outputs": [], "source": [ "test_data = ! gsutil cat $IMPORT_FILE | head -n1\n", "\n", "test_item = str(test_data[0]).split(\",\")[0]\n", "test_label = str(test_data[0]).split(\",\")[1]\n", "\n", "print((test_item, test_label))" ] }, { "cell_type": "markdown", "metadata": { "id": "8981b397c864" }, "source": [ "*Example output*:\n", "```\n", "('@freewrytin God is way too good for Claritin', '2')\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "text_models_deploy:migration,old" }, "source": [ "### [projects.locations.models.deploy](https://cloud.google.com/automl/docs/reference/rest/v1beta1/projects.locations.models/deploy)" ] }, { "cell_type": "markdown", "metadata": { "id": "h0AxsMSjc4zQ" }, "source": [ "#### Call" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "_Uxf6m8Cc4zR" }, "outputs": [], "source": [ "request = clients[\"automl\"].deploy_model(name=model_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "Rj8jg_GVc4zR" }, "source": [ "#### Response" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "q7rox1YCc4zR" }, "outputs": [], "source": [ "result = request.result()\n", "\n", "print(MessageToJson(result))" ] }, { "cell_type": "markdown", "metadata": { "id": "s1ikNfXniG-3" }, "source": [ "*Example output*:\r\n", "```\r\n", "{}\r\n", "```" ] }, { "cell_type": "markdown", "metadata": { "id": "text_models_predict:migration,old" }, "source": [ "### [projects.locations.models.predict](https://cloud.google.com/automl/docs/reference/rest/v1beta1/projects.locations.models/predict)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "g688Vva3c4zS" }, "outputs": [], "source": [ "payload = {\"text_snippet\": {\"content\": test_item, \"mime_type\": \"text/plain\"}}\n", "\n", "prediction_request = automl.PredictRequest(\n", " name=model_id,\n", " payload=payload,\n", ")\n", "\n", "print(MessageToJson(prediction_request.__dict__[\"_pb\"]))" ] }, { "cell_type": "markdown", "metadata": { "id": "cd025e2420db" }, "source": [ "*Example output*:\n", "```\n", "{\n", " \"name\": \"projects/116273516712/locations/us-central1/models/TST4078882474816438272\",\n", " \"payload\": {\n", " \"textSnippet\": {\n", " \"content\": \"@freewrytin God is way too good for Claritin\",\n", " \"mimeType\": \"text/plain\"\n", " }\n", " }\n", "}\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "kgznWoQcc4zS" }, "source": [ "#### Call" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "GUOkxQwic4zS" }, "outputs": [], "source": [ "request = clients[\"predictions\"].predict(request=prediction_request)" ] }, { "cell_type": "markdown", "metadata": { "id": "9MfWbNzhc4zS" }, "source": [ "#### Response" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "xZZliEjoc4zS" }, "outputs": [], "source": [ "print(MessageToJson(request.__dict__[\"_pb\"]))" ] }, { "cell_type": "markdown", "metadata": { "id": "dc047af97666" }, "source": [ "*Example output*:\n", "```\n", "{\n", " \"payload\": [\n", " {\n", " \"textSentiment\": {\n", " \"sentiment\": 3\n", " }\n", " }\n", " ],\n", " \"metadata\": {\n", " \"sentiment_score\": \"0.30955505\"\n", " }\n", "}\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "id": "bQ-VVaSxJjkd" }, "source": [ "# Cleaning up\r\n", "\r\n", "To clean up all GCP resources used in this project, you can [delete the GCP\r\n", "project](https://cloud.google.com/resource-manager/docs/creating-managing-projects#shutting_down_projects) you used for the tutorial.\r\n", "\r\n", "Otherwise, you can delete the individual resources you created in this tutorial." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "oNJs94pKc4zT" }, "outputs": [], "source": [ "delete_dataset = True\n", "delete_model = True\n", "delete_bucket = True\n", "\n", "# Delete the dataset using the AutoML fully qualified identifier for the dataset\n", "try:\n", " if delete_dataset:\n", " clients[\"automl\"].delete_dataset(name=dataset_id)\n", "except Exception as e:\n", " print(e)\n", "\n", "# Delete the model using the AutoML fully qualified identifier for the model\n", "try:\n", " if delete_model:\n", " clients[\"automl\"].delete_model(name=model_id)\n", "except Exception as e:\n", " print(e)\n", "\n", "if delete_bucket and \"BUCKET_NAME\" in globals():\n", " ! gsutil rm -r gs://$BUCKET_NAME" ] } ], "metadata": { "colab": { "name": "UJ8 legacy AutoML Natural Language - Text Sentiment Analysis.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
pcmagic/stokes_flow
head_Force/loop_table/generate_bash.ipynb
1
60058
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import os\n", "from codeStore import support_fun as spf\n", "import importlib\n" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ecoB05_all_psi0.00\n", "ecoB05_all_psi0.42\n", "ecoB05_all_psi0.84\n", "ecoB05_all_psi1.26\n", "ecoB05_all_psi1.68\n", "ecoB05_all_psi2.09\n", "ecoB05_all_psi2.51\n", "ecoB05_all_psi2.93\n", "ecoB05_all_psi3.35\n", "ecoB05_all_psi3.77\n", "ecoB05_all_psi4.19\n", "ecoB05_all_psi4.61\n", "ecoB05_all_psi5.03\n", "ecoB05_all_psi5.45\n", "ecoB05_all_psi5.86\n", "n_pbs = 15\n" ] } ], "source": [ "# case loop_table, each psi store in a independent folder. \n", "n_tail = 1\n", "ph = 2/3\n", "ecoli_name = 'ecoB03'\n", "\n", "# sm = 'pf'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 0\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 1\n", "# ch = 3\n", "# nth = 15\n", "# rh1 = 0.3\n", "# rh2 = 0.1\n", "# job_dir = 'planeShearRatex_1a'\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head_newturb\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 10, endpoint=False)\n", "# n_norm_theta = 25\n", "# n_norm_phi = 25\n", "\n", "# sm = 'pf'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 0\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 1\n", "# ch = 0.1\n", "# nth = 30\n", "# rh1 = 0.03\n", "# rh2 = 0.01\n", "# ph = 0.2\n", "# n_tail = 4\n", "# ecoli_name = 'ecoB003'\n", "# job_dir = 'planeShearRatex_1b'\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 10, endpoint=False)\n", "# n_norm_theta = 25\n", "# n_norm_phi = 25\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoB01_all'\n", "# job_dir = 'planeShearRatex_1c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 1\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head_newturb\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 25\n", "# n_norm_phi = 50\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoB01_all'\n", "# job_dir = 'planeShearRatex_2c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.5\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head_newturb\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 25\n", "# n_norm_phi = 50\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoB01_all'\n", "# job_dir = 'planeShearRatex_4c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.25\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head_newturb\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 25\n", "# n_norm_phi = 50\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoB01_all'\n", "# job_dir = 'planeShearRatex_0.5c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 2\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head_newturb\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 25\n", "# n_norm_phi = 50\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoB01_all'\n", "# job_dir = 'planeShearRatex_0.25c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 4\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head_newturb\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 25\n", "# n_norm_phi = 50\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoB01_all'\n", "# job_dir = 'planeShearRatex_1c_passive'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head_newturb\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 25\n", "# n_norm_phi = 50\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoB01_all'\n", "# job_dir = 'planeShearRatex_1d'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 1\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 64\n", "# n_norm_phi = 128\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoB01_all'\n", "# job_dir = 'planeShearRatex_1d_passive'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 64\n", "# n_norm_phi = 128\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoB01_all'\n", "# job_dir = 'planeShearRatex_-1c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = -1\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "sm = 'pf'\n", "ecoli_name = 'ecoB05_all'\n", "job_dir = 'ecoB05_tau1c'\n", "ksp_max_it = 300\n", "main_fun_noIter = 1\n", "planeShearRatex = 1\n", "ecoli_velocity = 4.019587915525599\n", "ch = 3\n", "nth = 20\n", "rh1 = 0.5\n", "rh2 = 0.15\n", "ph = 10/3\n", "n_tail = 1\n", "importlib.reload(spf)\n", "write_pbs_head = spf.write_pbs_head_newturb\n", "norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "n_norm_theta = 32\n", "n_norm_phi = 64\n", "\n", "sm = 'pf'\n", "ecoli_name = 'ecoB05_all'\n", "job_dir = 'ecoB05_tau1c_passive'\n", "ksp_max_it = 300\n", "main_fun_noIter = 1\n", "planeShearRatex = 1\n", "ecoli_velocity = 0\n", "ch = 3\n", "nth = 20\n", "rh1 = 0.5\n", "rh2 = 0.15\n", "ph = 10/3\n", "n_tail = 1\n", "importlib.reload(spf)\n", "write_pbs_head = spf.write_pbs_head_newturb\n", "norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "n_norm_theta = 32\n", "n_norm_phi = 64\n", "\n", "PWD = os.getcwd()\n", "if not os.path.exists(job_dir):\n", " os.makedirs(job_dir)\n", "\n", "t_name = os.path.join(job_dir, 'run.sh')\n", "n_pbs = 0\n", "with open(t_name, 'w') as frun:\n", " # create .pbs file\n", " frun.write('t_dir=$PWD \\n')\n", " for norm_psi in norm_psi_list:\n", " job_name = '%s_psi%4.2f' % (ecoli_name, norm_psi)\n", " print(job_name)\n", " t_path = os.path.join(job_dir, job_name)\n", " if not os.path.exists(t_path):\n", " os.makedirs(t_path)\n", " t_name = os.path.join(t_path, '%s.pbs' % job_name)\n", " with open(t_name, 'w') as fpbs:\n", " write_pbs_head(fpbs, job_name) \n", " fpbs.write('mpirun -n 24 python ')\n", " fpbs.write(' ../../../loop_table_ecoli.py ')\n", " fpbs.write(' -f %s ' % job_name)\n", " fpbs.write(' -pickProblem %d ' % 0)\n", " fpbs.write(' -save_singleEcoli_vtk %d ' % 0)\n", " fpbs.write(' -rh1 %f ' % rh1)\n", " fpbs.write(' -rh2 %f ' % rh2)\n", " fpbs.write(' -ch %f ' % ch)\n", " fpbs.write(' -nth %d ' % nth)\n", " fpbs.write(' -eh %f ' % -1)\n", " fpbs.write(' -ph %f ' % ph)\n", " fpbs.write(' -hfct %f ' % 1)\n", " fpbs.write(' -n_tail %d ' % n_tail)\n", " fpbs.write(' -with_cover %d ' % 2)\n", " fpbs.write(' -left_hand %d ' % 0)\n", " fpbs.write(' -rs1 %f ' % 1.5)\n", " fpbs.write(' -rs2 %f ' % 0.5)\n", " fpbs.write(' -ds %f ' % 0.07)\n", " fpbs.write(' -es %f ' % -1)\n", " fpbs.write(' -with_T_geo %d ' % 0)\n", " fpbs.write(' -dist_hs %f ' % 0.5)\n", " fpbs.write(' -ksp_max_it %d ' % ksp_max_it)\n", " fpbs.write(' -plot_geo %d ' % 0)\n", " fpbs.write(' -rel_wsz %f ' % 0)\n", " fpbs.write(' -rel_whz %f ' % 100)\n", " fpbs.write(' -ffweight %f ' % 2)\n", " fpbs.write(' -sm %s ' % sm)\n", " fpbs.write(' -zoom_factor %f ' % 1)\n", " fpbs.write(' -planeShearRatex %f ' % planeShearRatex)\n", " fpbs.write(' -ecoli_velocity %f ' % ecoli_velocity)\n", " fpbs.write(' -n_norm_theta %d ' % n_norm_theta)\n", " fpbs.write(' -n_norm_phi %d ' % n_norm_phi)\n", " fpbs.write(' -norm_psi %f ' % norm_psi)\n", " fpbs.write(' -main_fun_noIter %d ' % main_fun_noIter)\n", " fpbs.write(' > %s.txt \\n\\n' % job_name)\n", " # write to .sh file\n", " frun.write('cd $t_dir/%s\\n' % job_name)\n", " frun.write('qsub %s.pbs\\n\\n' % job_name)\n", " n_pbs = n_pbs + 1\n", " frun.write('\\n')\n", " print('n_pbs = ', n_pbs)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ecoC01B05_all_psi0.00\n", "ecoC01B05_all_psi0.42\n", "ecoC01B05_all_psi0.84\n", "ecoC01B05_all_psi1.26\n", "ecoC01B05_all_psi1.68\n", "ecoC01B05_all_psi2.09\n", "ecoC01B05_all_psi2.51\n", "ecoC01B05_all_psi2.93\n", "ecoC01B05_all_psi3.35\n", "ecoC01B05_all_psi3.77\n", "ecoC01B05_all_psi4.19\n", "ecoC01B05_all_psi4.61\n", "ecoC01B05_all_psi5.03\n", "ecoC01B05_all_psi5.45\n", "ecoC01B05_all_psi5.86\n", "n_pbs = 15\n" ] } ], "source": [ "rs1 = 1.5\n", "rs2 = rs1 / 3\n", "ds = 0.07\n", " \n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01_all'\n", "# job_dir = 'ecoC01_tau1c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 1.6328647412856554\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01_all'\n", "# job_dir = 'ecoC01_tau1c_passive'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC05_all'\n", "# job_dir = 'ecoC05_tau1c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 1.524781932318225\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 1.5\n", "# rh12 = 0.5\n", "# rh2 = 0.15\n", "# ph = 10/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC05_all'\n", "# job_dir = 'ecoC05_tau1c_passive'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 1.5\n", "# rh12 = 0.5\n", "# rh2 = 0.15\n", "# ph = 10/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_tau1c_passive'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "sm = 'pf'\n", "ecoli_name = 'ecoC01B05_all'\n", "job_dir = 'ecoC01B05_tau1c'\n", "ksp_max_it = 300\n", "main_fun_noIter = 1\n", "planeShearRatex = 1\n", "ecoli_velocity = 1.6328647413699688\n", "ch = 3\n", "nth = 20\n", "rh11 = 0.3\n", "rh12 = 0.1\n", "rh2 = 0.03\n", "ph = 2/3\n", "n_tail = 1\n", "rs1 = 1.5 / 3\n", "rs2 = rs1 / 3\n", "ds = 0.07 / 3\n", "importlib.reload(spf)\n", "write_pbs_head = spf.write_pbs_head\n", "norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "n_norm_theta = 32\n", "n_norm_phi = 64\n", "\n", "PWD = os.getcwd()\n", "if not os.path.exists(job_dir):\n", " os.makedirs(job_dir)\n", "\n", "t_name = os.path.join(job_dir, 'run.sh')\n", "n_pbs = 0\n", "with open(t_name, 'w') as frun:\n", " # create .pbs file\n", " frun.write('t_dir=$PWD \\n')\n", " for norm_psi in norm_psi_list:\n", " job_name = '%s_psi%4.2f' % (ecoli_name, norm_psi)\n", " print(job_name)\n", " t_path = os.path.join(job_dir, job_name)\n", " if not os.path.exists(t_path):\n", " os.makedirs(t_path)\n", " t_name = os.path.join(t_path, '%s.pbs' % job_name)\n", " with open(t_name, 'w') as fpbs:\n", " write_pbs_head(fpbs, job_name) \n", " fpbs.write('mpirun -n 24 python ')\n", " fpbs.write(' ../../../loop_table_ecoli.py ')\n", " fpbs.write(' -f %s ' % job_name)\n", " fpbs.write(' -pickProblem %d ' % 0)\n", " fpbs.write(' -save_singleEcoli_vtk %d ' % 0)\n", " fpbs.write(' -rh11 %f ' % rh11)\n", " fpbs.write(' -rh12 %f ' % rh12)\n", " fpbs.write(' -rh2 %f ' % rh2)\n", " fpbs.write(' -ch %f ' % ch)\n", " fpbs.write(' -nth %d ' % nth)\n", " fpbs.write(' -eh %f ' % -1)\n", " fpbs.write(' -ph %f ' % ph)\n", " fpbs.write(' -hfct %f ' % 1)\n", " fpbs.write(' -n_tail %d ' % n_tail)\n", " fpbs.write(' -with_cover %d ' % 2)\n", " fpbs.write(' -left_hand %d ' % 0)\n", " fpbs.write(' -rs1 %f ' % rs1)\n", " fpbs.write(' -rs2 %f ' % rs2)\n", " fpbs.write(' -ds %f ' % ds)\n", " fpbs.write(' -es %f ' % -1)\n", " fpbs.write(' -with_T_geo %d ' % 0)\n", " fpbs.write(' -dist_hs %f ' % 0.5)\n", " fpbs.write(' -ksp_max_it %d ' % ksp_max_it)\n", " fpbs.write(' -plot_geo %d ' % 0)\n", " fpbs.write(' -rel_wsz %f ' % 0)\n", " fpbs.write(' -rel_whz %f ' % 100)\n", " fpbs.write(' -ffweight %f ' % 2)\n", " fpbs.write(' -sm %s ' % sm)\n", " fpbs.write(' -zoom_factor %f ' % 1)\n", " fpbs.write(' -planeShearRatex %f ' % planeShearRatex)\n", " fpbs.write(' -ecoli_velocity %f ' % ecoli_velocity)\n", " fpbs.write(' -n_norm_theta %d ' % n_norm_theta)\n", " fpbs.write(' -n_norm_phi %d ' % n_norm_phi)\n", " fpbs.write(' -norm_psi %f ' % norm_psi)\n", " fpbs.write(' -main_fun_noIter %d ' % main_fun_noIter)\n", " fpbs.write(' > %s.txt \\n\\n' % job_name)\n", " # write to .sh file\n", " frun.write('cd $t_dir/%s\\n' % job_name)\n", " frun.write('qsub %s.pbs\\n\\n' % job_name)\n", " n_pbs = n_pbs + 1\n", " frun.write('\\n')\n", " print('n_pbs =', n_pbs)\n", " " ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.2864874730906016" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1 / 676.00372212 * 193.66659815" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.0000000000099165" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1.524781932318225 / 1.5247819323031044" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n_pbs = 100\n" ] } ], "source": [ "# case loop_table, each (psi1 and psi2) store in a independent folder. \n", "# swimmer with two tails in the ends. one is left hand and one is right hand. \n", "importlib.reload(spf)\n", "\n", "sm = 'pf'\n", "ecoli_name = 'ecoD01_all'\n", "job_dir = 'dualTail_1c'\n", "ksp_max_it = 300\n", "main_fun_noIter = 1\n", "planeShearRatex = 1\n", "ch = 3\n", "nth = 20\n", "rh1 = 0.1\n", "rh2 = 0.03\n", "ph = 2/3\n", "n_tail = 1\n", "rel_tail1 = 193.66659814\n", "rel_tail2 = 0\n", "write_pbs_head = spf.write_pbs_head_newturb\n", "norm_psi1_list = np.linspace(0, 2 * np.pi, 10, endpoint=False)\n", "norm_psi2_list = np.linspace(0, 2 * np.pi, 10, endpoint=False)\n", "n_norm_theta = 24\n", "n_norm_phi = 48\n", "\n", "PWD = os.getcwd()\n", "if not os.path.exists(job_dir):\n", " os.makedirs(job_dir)\n", "\n", "n_pbs = 0\n", "for norm_psi1 in norm_psi1_list: \n", " t_name = os.path.join(job_dir, 'run_psi1-%4.2f.sh' % norm_psi1)\n", " with open(t_name, 'w') as frun:\n", " # create .pbs file\n", " frun.write('t_dir=$PWD \\n')\n", " for norm_psi2 in norm_psi2_list:\n", " job_name = '%s_psi1-%4.2f_psi2-%4.2f' % (ecoli_name, norm_psi1, norm_psi2)\n", "# print(norm_psi1, norm_psi2, job_name)\n", " t_path = os.path.join(job_dir, job_name)\n", " if not os.path.exists(t_path):\n", " os.makedirs(t_path)\n", " t_name = os.path.join(t_path, '%s.pbs' % job_name)\n", " with open(t_name, 'w') as fpbs:\n", " write_pbs_head(fpbs, job_name) \n", " fpbs.write('mpirun -n 24 python ')\n", " fpbs.write(' ../../../loop_table_dualTail_ecoli.py ')\n", " fpbs.write(' -f %s ' % job_name)\n", " fpbs.write(' -pickProblem %d ' % 0)\n", " fpbs.write(' -save_singleEcoli_vtk %d ' % 0)\n", " fpbs.write(' -rh1 %f ' % rh1)\n", " fpbs.write(' -rh2 %f ' % rh2)\n", " fpbs.write(' -ch %f ' % ch)\n", " fpbs.write(' -nth %d ' % nth)\n", " fpbs.write(' -eh %f ' % -1)\n", " fpbs.write(' -ph %f ' % ph)\n", " fpbs.write(' -hfct %f ' % 1)\n", " fpbs.write(' -n_tail %d ' % n_tail)\n", " fpbs.write(' -with_cover %d ' % 2)\n", " fpbs.write(' -left_hand %d ' % 0)\n", " fpbs.write(' -rs1 %f ' % 1.5)\n", " fpbs.write(' -rs2 %f ' % 0.5)\n", " fpbs.write(' -ds %f ' % 0.07)\n", " fpbs.write(' -es %f ' % -1)\n", " fpbs.write(' -with_T_geo %d ' % 0)\n", " fpbs.write(' -dist_hs %f ' % 0.5)\n", " fpbs.write(' -ksp_max_it %d ' % ksp_max_it)\n", " fpbs.write(' -plot_geo %d ' % 0)\n", " fpbs.write(' -rel_wsz %f ' % 0)\n", " fpbs.write(' -ffweight %f ' % 2)\n", " fpbs.write(' -sm %s ' % sm)\n", " fpbs.write(' -zoom_factor %f ' % 1)\n", " fpbs.write(' -planeShearRatex %f ' % planeShearRatex)\n", " fpbs.write(' -n_norm_theta %d ' % n_norm_theta)\n", " fpbs.write(' -n_norm_phi %d ' % n_norm_phi)\n", " fpbs.write(' -norm_psi1 %f ' % norm_psi1)\n", " fpbs.write(' -norm_psi2 %f ' % norm_psi2)\n", " fpbs.write(' -rel_tail1 %f ' % rel_tail1)\n", " fpbs.write(' -rel_tail2 %f ' % rel_tail2)\n", " fpbs.write(' -main_fun_noIter %d ' % main_fun_noIter)\n", " fpbs.write(' > %s.txt \\n\\n' % job_name)\n", " # write to .sh file\n", " frun.write('cd $t_dir/%s\\n' % job_name)\n", " frun.write('qsub %s.pbs\\n\\n' % job_name)\n", " n_pbs = n_pbs + 1\n", " frun.write('\\n')\n", "print('n_pbs = ', n_pbs)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hlxB01_psi0.00\n", "hlxB01_psi0.42\n", "hlxB01_psi0.84\n", "hlxB01_psi1.26\n", "hlxB01_psi1.68\n", "hlxB01_psi2.09\n", "hlxB01_psi2.51\n", "hlxB01_psi2.93\n", "hlxB01_psi3.35\n", "hlxB01_psi3.77\n", "hlxB01_psi4.19\n", "hlxB01_psi4.61\n", "hlxB01_psi5.03\n", "hlxB01_psi5.45\n", "hlxB01_psi5.86\n", "n_pbs = 15\n" ] } ], "source": [ "# case loop_table for helix only, each psi store in a independent folder. \n", "n_tail = 1\n", "ph = 2/3\n", "ecoli_name = 'hlxB03'\n", "main_fun_noIter = 0\n", "\n", "# sm = 'pf'\n", "# ksp_max_it = 300\n", "# planeShearRatex = 1\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.3\n", "# rh2 = 0.1\n", "# ph = 0.666667\n", "# n_tail = 1\n", "# job_dir = ecoli_name + '_tau1a'\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head_newturb\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 10, endpoint=False)\n", "# n_norm_theta = 25\n", "# n_norm_phi = 25\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'hlxB01'\n", "# job_dir = ecoli_name + '_tau1a'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 0\n", "# planeShearRatex = 1\n", "# ch = 3\n", "# nth = 20\n", "# rh1 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# importlib.reload(spf)\n", "# write_pbs_head = spf.write_pbs_head_newturb\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 64\n", "# n_norm_phi = 64\n", "# main_fun_noIter = 1\n", "\n", "PWD = os.getcwd()\n", "if not os.path.exists(job_dir):\n", " os.makedirs(job_dir)\n", "\n", "t_name = os.path.join(job_dir, 'run.sh')\n", "n_pbs = 0\n", "with open(t_name, 'w') as frun:\n", " # create .pbs file\n", " frun.write('t_dir=$PWD \\n')\n", " for norm_psi in norm_psi_list:\n", " job_name = '%s_psi%4.2f' % (ecoli_name, norm_psi)\n", " print(job_name)\n", " t_path = os.path.join(job_dir, job_name)\n", " if not os.path.exists(t_path):\n", " os.makedirs(t_path)\n", " t_name = os.path.join(t_path, '%s.pbs' % job_name)\n", " with open(t_name, 'w') as fpbs:\n", " write_pbs_head(fpbs, job_name) \n", " fpbs.write('mpirun -n 24 python ')\n", " fpbs.write(' ../../../loop_table_helix.py ')\n", " fpbs.write(' -f %s ' % job_name)\n", " fpbs.write(' -pickProblem %d ' % 0)\n", " fpbs.write(' -save_singleEcoli_vtk %d ' % 0)\n", " fpbs.write(' -rh1 %f ' % rh1)\n", " fpbs.write(' -rh2 %f ' % rh2)\n", " fpbs.write(' -ch %f ' % ch)\n", " fpbs.write(' -nth %d ' % nth)\n", " fpbs.write(' -eh %f ' % -1)\n", " fpbs.write(' -ph %f ' % ph)\n", " fpbs.write(' -hfct %f ' % 1)\n", " fpbs.write(' -n_tail %d ' % n_tail)\n", " fpbs.write(' -with_cover %d ' % 2)\n", " fpbs.write(' -left_hand %d ' % 0)\n", " fpbs.write(' -rs1 %f ' % 1.5)\n", " fpbs.write(' -rs2 %f ' % 0.5)\n", " fpbs.write(' -ds %f ' % 0.07)\n", " fpbs.write(' -es %f ' % -1)\n", " fpbs.write(' -with_T_geo %d ' % 0)\n", " fpbs.write(' -dist_hs %f ' % 0.5)\n", " fpbs.write(' -ksp_max_it %d ' % ksp_max_it)\n", " fpbs.write(' -plot_geo %d ' % 0)\n", " fpbs.write(' -rel_wsz %f ' % 0)\n", " fpbs.write(' -rel_whz %f ' % 100)\n", " fpbs.write(' -ffweight %f ' % 2)\n", " fpbs.write(' -sm %s ' % sm)\n", " fpbs.write(' -zoom_factor %f ' % 1)\n", " fpbs.write(' -planeShearRatex %f ' % planeShearRatex)\n", " fpbs.write(' -main_fun_noIter %d ' % main_fun_noIter)\n", " fpbs.write(' -n_norm_theta %d ' % n_norm_theta)\n", " fpbs.write(' -n_norm_phi %d ' % n_norm_phi)\n", " fpbs.write(' -norm_psi %f ' % norm_psi)\n", " fpbs.write(' > %s.txt \\n\\n' % job_name)\n", " # write to .sh file\n", " frun.write('cd $t_dir/%s\\n' % job_name)\n", " frun.write('qsub %s.pbs\\n\\n' % job_name)\n", " n_pbs = n_pbs + 1\n", " frun.write('\\n')\n", " print('n_pbs = ', n_pbs)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hlxC01_psi0.00\n", "hlxC01_psi0.42\n", "hlxC01_psi0.84\n", "hlxC01_psi1.26\n", "hlxC01_psi1.68\n", "hlxC01_psi2.09\n", "hlxC01_psi2.51\n", "hlxC01_psi2.93\n", "hlxC01_psi3.35\n", "hlxC01_psi3.77\n", "hlxC01_psi4.19\n", "hlxC01_psi4.61\n", "hlxC01_psi5.03\n", "hlxC01_psi5.45\n", "hlxC01_psi5.86\n", "n_pbs = 15\n" ] } ], "source": [ "sm = 'pf'\n", "ecoli_name = 'hlxC01'\n", "job_dir = ecoli_name + '_tau1a'\n", "ksp_max_it = 300\n", "main_fun_noIter = 1\n", "planeShearRatex = 1\n", "ch = 3\n", "nth = 20\n", "rh11 = 0.3\n", "rh12 = 0.1\n", "rh2 = 0.03\n", "ph = 2/3\n", "n_tail = 1\n", "importlib.reload(spf)\n", "write_pbs_head = spf.write_pbs_head\n", "norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "n_norm_theta = 32\n", "n_norm_phi = 32\n", "main_fun_noIter = 1\n", "\n", "PWD = os.getcwd()\n", "if not os.path.exists(job_dir):\n", " os.makedirs(job_dir)\n", "\n", "t_name = os.path.join(job_dir, 'run.sh')\n", "n_pbs = 0\n", "with open(t_name, 'w') as frun:\n", " # create .pbs file\n", " frun.write('t_dir=$PWD \\n')\n", " for norm_psi in norm_psi_list:\n", " job_name = '%s_psi%4.2f' % (ecoli_name, norm_psi)\n", " print(job_name)\n", " t_path = os.path.join(job_dir, job_name)\n", " if not os.path.exists(t_path):\n", " os.makedirs(t_path)\n", " t_name = os.path.join(t_path, '%s.pbs' % job_name)\n", " with open(t_name, 'w') as fpbs:\n", " write_pbs_head(fpbs, job_name) \n", " fpbs.write('mpirun -n 24 python ')\n", " fpbs.write(' ../../../loop_table_FatHelix.py ')\n", " fpbs.write(' -f %s ' % job_name)\n", " fpbs.write(' -pickProblem %d ' % 0)\n", " fpbs.write(' -save_singleEcoli_vtk %d ' % 0)\n", " fpbs.write(' -rh11 %f ' % rh11)\n", " fpbs.write(' -rh12 %f ' % rh12)\n", " fpbs.write(' -rh2 %f ' % rh2)\n", " fpbs.write(' -ch %f ' % ch)\n", " fpbs.write(' -nth %d ' % nth)\n", " fpbs.write(' -eh %f ' % -1)\n", " fpbs.write(' -ph %f ' % ph)\n", " fpbs.write(' -hfct %f ' % 1)\n", " fpbs.write(' -n_tail %d ' % n_tail)\n", " fpbs.write(' -with_cover %d ' % 2)\n", " fpbs.write(' -left_hand %d ' % 0)\n", " fpbs.write(' -rs1 %f ' % 1.5)\n", " fpbs.write(' -rs2 %f ' % 0.5)\n", " fpbs.write(' -ds %f ' % 0.07)\n", " fpbs.write(' -es %f ' % -1)\n", " fpbs.write(' -with_T_geo %d ' % 0)\n", " fpbs.write(' -dist_hs %f ' % 0.5)\n", " fpbs.write(' -ksp_max_it %d ' % ksp_max_it)\n", " fpbs.write(' -plot_geo %d ' % 0)\n", " fpbs.write(' -rel_wsz %f ' % 0)\n", " fpbs.write(' -rel_whz %f ' % 100)\n", " fpbs.write(' -ffweight %f ' % 2)\n", " fpbs.write(' -sm %s ' % sm)\n", " fpbs.write(' -zoom_factor %f ' % 1)\n", " fpbs.write(' -planeShearRatex %f ' % planeShearRatex)\n", " fpbs.write(' -main_fun_noIter %d ' % main_fun_noIter)\n", " fpbs.write(' -n_norm_theta %d ' % n_norm_theta)\n", " fpbs.write(' -n_norm_phi %d ' % n_norm_phi)\n", " fpbs.write(' -norm_psi %f ' % norm_psi)\n", " fpbs.write(' > %s.txt \\n\\n' % job_name)\n", " # write to .sh file\n", " frun.write('cd $t_dir/%s\\n' % job_name)\n", " frun.write('qsub %s.pbs\\n\\n' % job_name)\n", " n_pbs = n_pbs + 1\n", " frun.write('\\n')\n", " print('n_pbs = ', n_pbs)\n", " " ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ecoC01B03_T1/ecoC01B03_all_psi0.00/ecoC01B03_all_psi0.00.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi0.42/ecoC01B03_all_psi0.42.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi0.84/ecoC01B03_all_psi0.84.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi1.26/ecoC01B03_all_psi1.26.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi1.68/ecoC01B03_all_psi1.68.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi2.09/ecoC01B03_all_psi2.09.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi2.51/ecoC01B03_all_psi2.51.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi2.93/ecoC01B03_all_psi2.93.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi3.35/ecoC01B03_all_psi3.35.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi3.77/ecoC01B03_all_psi3.77.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi4.19/ecoC01B03_all_psi4.19.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi4.61/ecoC01B03_all_psi4.61.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi5.03/ecoC01B03_all_psi5.03.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi5.45/ecoC01B03_all_psi5.45.sh\n", "ecoC01B03_T1/ecoC01B03_all_psi5.86/ecoC01B03_all_psi5.86.sh\n", "ncase = 15\n", "write parallel pbs file to ecoC01B03_T1/main_run.pbs\n", "write myscript csh file to ecoC01B03_T1/myscript.csh\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "importlib.reload(spf)\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B03_all'\n", "# job_dir = 'ecoC01B03_tau1c_passive'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 5\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 5\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B03_all'\n", "# job_dir = 'ecoC01B03_tau1c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.2864874730919643\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 5\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 5\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "sm = 'pf'\n", "ecoli_name = 'ecoC01B03_all'\n", "job_dir = 'ecoC01B03_T1'\n", "ksp_max_it = 300\n", "main_fun_noIter = 1\n", "planeShearRatex = 1\n", "ecoli_velocity = 0.0014792842385756373\n", "ch = 3\n", "nth = 20\n", "rh11 = 0.3\n", "rh12 = 0.1\n", "rh2 = 0.03\n", "ph = 2/3\n", "n_tail = 1\n", "rs1 = 1.5 / 5\n", "rs2 = rs1 / 3\n", "ds = 0.07 / 5\n", "write_pbs_head = spf.write_pbs_head\n", "norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "n_norm_theta = 32\n", "n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B01_all'\n", "# job_dir = 'ecoC01B01_tau1c_passive'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 15\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 15\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B01_all'\n", "# job_dir = 'ecoC01B01_tau1c'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.019882410135194976\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 15\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 15\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B01_all'\n", "# job_dir = 'ecoC01B01_T1'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.00010266520127114365\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 15\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 15\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B01_all'\n", "# job_dir = 'ecoC01B01_T0.1'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.000010266520127114365\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 15\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 15\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B01_all'\n", "# job_dir = 'ecoC01B01_T0.01'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.0000010266520127114365\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 15\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 15\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T193'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.8960497908782866\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T100'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.46267647567407155\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T50'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.23133823783703578\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T20'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.09253529513481432\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T10'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.04626764756740716\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T1'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.004626764756740716\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T2'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.009253529513481431\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T0.5'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.0023133823783703577\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T0.1'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.00046267647567407156\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T0.01'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.000046267647567407156\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T0.001'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.0000046267647567407156\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T0.25'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.001156691189185179\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B05_all'\n", "# job_dir = 'ecoC01B05_T0.75'\n", "# ksp_max_it = 300\n", "# main_fun_noIter = 1\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.003470073567555537\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# rs1 = 1.5 / 3\n", "# rs2 = rs1 / 3\n", "# ds = 0.07 / 3\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "\n", "PWD = os.getcwd()\n", "if not os.path.exists(job_dir):\n", " os.makedirs(job_dir)\n", "n_case = 0\n", "job_name_list = []\n", "for norm_psi in norm_psi_list:\n", " job_name = '%s_psi%4.2f' % (ecoli_name, norm_psi)\n", " job_name_list.append(job_name)\n", " t_path = os.path.join(job_dir, job_name)\n", " if not os.path.exists(t_path):\n", " os.makedirs(t_path)\n", " t_name = os.path.join(t_path, '%s.sh' % job_name)\n", " print(t_name)\n", " with open(t_name, 'w') as fsh:\n", " fsh.write('mpirun -n 24 python ')\n", " fsh.write(' ../../../loop_table_ecoli.py ')\n", " fsh.write(' -f %s ' % job_name)\n", " fsh.write(' -pickProblem %d ' % 0)\n", " fsh.write(' -save_singleEcoli_vtk %d ' % 0)\n", " fsh.write(' -rh11 %f ' % rh11)\n", " fsh.write(' -rh12 %f ' % rh12)\n", " fsh.write(' -rh2 %f ' % rh2)\n", " fsh.write(' -ch %f ' % ch)\n", " fsh.write(' -nth %d ' % nth)\n", " fsh.write(' -eh %f ' % -1)\n", " fsh.write(' -ph %f ' % ph)\n", " fsh.write(' -hfct %f ' % 1)\n", " fsh.write(' -n_tail %d ' % n_tail)\n", " fsh.write(' -with_cover %d ' % 2)\n", " fsh.write(' -left_hand %d ' % 0)\n", " fsh.write(' -rs1 %f ' % rs1)\n", " fsh.write(' -rs2 %f ' % rs2)\n", " fsh.write(' -ds %f ' % ds)\n", " fsh.write(' -es %f ' % -1)\n", " fsh.write(' -with_T_geo %d ' % 0)\n", " fsh.write(' -dist_hs %f ' % 0.5)\n", " fsh.write(' -ksp_max_it %d ' % ksp_max_it)\n", " fsh.write(' -plot_geo %d ' % 0)\n", " fsh.write(' -rel_wsz %f ' % 0)\n", " fsh.write(' -rel_whz %f ' % 100)\n", " fsh.write(' -ffweight %f ' % 2)\n", " fsh.write(' -sm %s ' % sm)\n", " fsh.write(' -zoom_factor %f ' % 1)\n", " fsh.write(' -planeShearRatex %f ' % planeShearRatex)\n", " fsh.write(' -ecoli_velocity %e ' % ecoli_velocity)\n", " fsh.write(' -n_norm_theta %d ' % n_norm_theta)\n", " fsh.write(' -n_norm_phi %d ' % n_norm_phi)\n", " fsh.write(' -norm_psi %f ' % norm_psi)\n", " fsh.write(' -main_fun_noIter %d ' % main_fun_noIter)\n", " fsh.write(' > %s.txt \\n\\n' % job_name)\n", " n_case = n_case + 1\n", "spf.write_main_run(write_pbs_head, job_dir, n_case)\n", "spf.write_myscript(job_name_list, job_dir)\n" ] }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.00046267647567407156" ] }, "execution_count": 121, "metadata": {}, "output_type": "execute_result" } ], "source": [ "0.8960497908782866 / 193.66659815 * 0.1" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ecoC01B00_T10/ecoC01B00_all_psi0.00/ecoC01B00_all_psi0.00.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi0.42/ecoC01B00_all_psi0.42.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi0.84/ecoC01B00_all_psi0.84.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi1.26/ecoC01B00_all_psi1.26.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi1.68/ecoC01B00_all_psi1.68.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi2.09/ecoC01B00_all_psi2.09.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi2.51/ecoC01B00_all_psi2.51.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi2.93/ecoC01B00_all_psi2.93.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi3.35/ecoC01B00_all_psi3.35.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi3.77/ecoC01B00_all_psi3.77.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi4.19/ecoC01B00_all_psi4.19.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi4.61/ecoC01B00_all_psi4.61.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi5.03/ecoC01B00_all_psi5.03.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi5.45/ecoC01B00_all_psi5.45.sh\n", "ecoC01B00_T10/ecoC01B00_all_psi5.86/ecoC01B00_all_psi5.86.sh\n", "ncase = 15\n", "write parallel pbs file to ecoC01B00_T10/main_run.pbs\n", "write myscript csh file to ecoC01B00_T10/myscript.csh\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# active helix with rotlet\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B00_all'\n", "# job_dir = 'ecoC01B00_T1'\n", "# ksp_max_it = 300\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.03131296037255681\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B00_all'\n", "# job_dir = 'ecoC01B00_T0.1'\n", "# ksp_max_it = 300\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.003131296037255681\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B00_all'\n", "# job_dir = 'ecoC01B00_T0.01'\n", "# ksp_max_it = 300\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.0003131296037255681\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B00_all'\n", "# job_dir = 'ecoC01B00_T0.001'\n", "# ksp_max_it = 300\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.00003131296037255681\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "sm = 'pf'\n", "ecoli_name = 'ecoC01B00_all'\n", "job_dir = 'ecoC01B00_T10'\n", "ksp_max_it = 300\n", "planeShearRatex = 1\n", "ecoli_velocity = 0.03131296037255681 * 10\n", "ch = 3\n", "nth = 20\n", "rh11 = 0.3\n", "rh12 = 0.1\n", "rh2 = 0.03\n", "ph = 2/3\n", "n_tail = 1\n", "write_pbs_head = spf.write_pbs_head\n", "norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "n_norm_theta = 32\n", "n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B00_all'\n", "# job_dir = 'ecoC01B00_T2'\n", "# ksp_max_it = 300\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.03131296037255681 * 2\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "# sm = 'pf'\n", "# ecoli_name = 'ecoC01B00_all'\n", "# job_dir = 'ecoC01B00_T0.5'\n", "# ksp_max_it = 300\n", "# planeShearRatex = 1\n", "# ecoli_velocity = 0.03131296037255681 * 0.5\n", "# ch = 3\n", "# nth = 20\n", "# rh11 = 0.3\n", "# rh12 = 0.1\n", "# rh2 = 0.03\n", "# ph = 2/3\n", "# n_tail = 1\n", "# write_pbs_head = spf.write_pbs_head\n", "# norm_psi_list = np.linspace(0, 2 * np.pi, 15, endpoint=False)\n", "# n_norm_theta = 32\n", "# n_norm_phi = 64\n", "\n", "PWD = os.getcwd()\n", "if not os.path.exists(job_dir):\n", " os.makedirs(job_dir)\n", "n_case = 0\n", "job_name_list = []\n", "for norm_psi in norm_psi_list:\n", " job_name = '%s_psi%4.2f' % (ecoli_name, norm_psi)\n", " job_name_list.append(job_name)\n", " t_path = os.path.join(job_dir, job_name)\n", " if not os.path.exists(t_path):\n", " os.makedirs(t_path)\n", " t_name = os.path.join(t_path, '%s.sh' % job_name)\n", " print(t_name)\n", " with open(t_name, 'w') as fsh:\n", " fsh.write('mpirun -n 24 python ')\n", " fsh.write(' ../../../loop_table_ecoli.py ')\n", " fsh.write(' -f %s ' % job_name)\n", " fsh.write(' -pickProblem %d ' % 0)\n", " fsh.write(' -save_singleEcoli_vtk %d ' % 0)\n", " fsh.write(' -rh11 %f ' % rh11)\n", " fsh.write(' -rh12 %f ' % rh12)\n", " fsh.write(' -rh2 %f ' % rh2)\n", " fsh.write(' -ch %f ' % ch)\n", " fsh.write(' -nth %d ' % nth)\n", " fsh.write(' -eh %f ' % -1)\n", " fsh.write(' -ph %f ' % ph)\n", " fsh.write(' -hfct %f ' % 1)\n", " fsh.write(' -n_tail %d ' % n_tail)\n", " fsh.write(' -with_cover %d ' % 2)\n", " fsh.write(' -left_hand %d ' % 0)\n", " fsh.write(' -with_T_geo %d ' % 0)\n", " fsh.write(' -dist_hs %f ' % 0.5)\n", " fsh.write(' -ksp_max_it %d ' % ksp_max_it)\n", " fsh.write(' -plot_geo %d ' % 0)\n", " fsh.write(' -ffweight %f ' % 2)\n", " fsh.write(' -sm %s ' % sm)\n", " fsh.write(' -zoom_factor %f ' % 1)\n", " fsh.write(' -planeShearRatex %f ' % planeShearRatex)\n", " fsh.write(' -ecoli_velocity %f ' % ecoli_velocity)\n", " fsh.write(' -n_norm_theta %d ' % n_norm_theta)\n", " fsh.write(' -n_norm_phi %d ' % n_norm_phi)\n", " fsh.write(' -norm_psi %f ' % norm_psi)\n", " fsh.write(' -main_fun_rotlets %d ' % 1)\n", " fsh.write(' > %s.txt \\n\\n' % job_name)\n", " n_case = n_case + 1\n", "spf.write_main_run(write_pbs_head, job_dir, n_case)\n", "spf.write_myscript(job_name_list, job_dir)\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.03131296037255681" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "0.00288416382071854 / 0.09210767 * 1" ] } ], "metadata": { "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.6" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ComputationalModeling/spring-2017-danielak
past-semesters/spring_2016/day-by-day/day04-flint-water-data-analysis/day04-in-class-activity-SOLUTIONS.ipynb
1
106697
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Get the Lead Out: Understanding The Water Crisis in Flint, MI" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Student Names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Type the names of everybody in your group here!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Learning Goals (Why are we asking you to do this?)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, because data analysis is something that can and should be used for (among other things): \n", "\n", "- [improving local government][4] \n", "- [improving the Federal government][5], and\n", "- [serving humanity][3]\n", "\n", "Second, because data visualization is one of the most important parts of modeling and understanding a system. How we represent data affects everything from to [understanding poverty in the developing world][2] to [grappling with the global spread of lethal diseases][1]. We want you to be able to find things out about the models you create and use visual information to make convincing arguments. So, in this tutorial we'll learn some of the nuts and bolts of using Python to create data visualizations. When you're done, you'll be able to use the industry-standard `matplotlib` plotting package to:\n", "\n", "- **Create** plots from data (Use code to make pictures!)\n", "- **Modify** plots using color, size, and shape to help pull out patterns in data\n", "- **Combine** different sets of data into the same plot\n", "- **Communicate** plots by supplying axis titles, legends, and annotations\n", "\n", "[1]: http://www.ted.com/talks/hans_rosling_the_truth_about_hiv\n", "[2]: http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen\n", "[3]: http://www.datakind.org\n", "[4]: http://www.codeforamerica.org\n", "[5]: https://www.whitehouse.gov/digital/united-states-digital-service" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## In-Class Activity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll be looking at the recently released [Flint Water Quality dataset](http://flintwaterstudy.org/2015/12/complete-dataset-lead-results-in-tap-water-for-271-flint-samples/). This is a dataset of nearly 300 tests run by volunteers at Virginia Tech on water samples obtained from Flint residents. The water testing method involves collecting three different bottles worth of water at timed intervals; our analysis will focus on just the first collection at each testing site. \n", "\n", "You'll be considering the following questions in the context of U.S. Environmental Protection Agency (EPA) guidelines about lead contaminants, which state:\n", "\n", "> Lead and copper are regulated by a treatment technique that requires systems to control the corrosiveness of their water. If more than 10% of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L. \n", ">\n", "> Source: (http://www.epa.gov/your-drinking-water/table-regulated-drinking-water-contaminants#seven). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For simplicity, the data we'll consider will be stored in two 1-dimensional numpy arrays. The code below loads the data, then creates those two numpy arrays for you to reference in your code." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Loading the data\n", "\n", "%matplotlib inline\n", "from IPython.display import set_matplotlib_formats\n", "set_matplotlib_formats('pdf', 'svg')\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas\n", "\n", "flint_data = pandas.read_json(\"\"\"[{\"SampleID\":1,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":0.344,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.226,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.145},{\"SampleID\":2,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":8.133,\"Pb Bottle 2 (ppb) - 45 secs flushing\":10.77,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.761},{\"SampleID\":4,\"Zip Code\":48504,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":1.111,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.11,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.123},{\"SampleID\":5,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":8.007,\"Pb Bottle 2 (ppb) - 45 secs flushing\":7.446,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.384},{\"SampleID\":6,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":1.951,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.048,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.035},{\"SampleID\":7,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":7.2,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.4,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.2},{\"SampleID\":8,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":40.63,\"Pb Bottle 2 (ppb) - 45 secs flushing\":9.726,\"Pb Bottle 3 (ppb) - 2 mins flushing\":6.132},{\"SampleID\":9,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":1.1,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.5,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.1},{\"SampleID\":12,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":10.6,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.038,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.294},{\"SampleID\":13,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":6.2,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.2,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.3},{\"SampleID\":15,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":4.358,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.822,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.147},{\"SampleID\":16,\"Zip Code\":48505,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":24.37,\"Pb Bottle 2 (ppb) - 45 secs flushing\":8.796,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.347},{\"SampleID\":17,\"Zip Code\":48505,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":6.609,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.752,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.433},{\"SampleID\":18,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":4.062,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.099,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.085},{\"SampleID\":19,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":2.484,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.72,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.565},{\"SampleID\":20,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":0.438,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.046,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.511},{\"SampleID\":21,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":1.29,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.243,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.225},{\"SampleID\":22,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":0.548,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.622,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.361},{\"SampleID\":23,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":3.131,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.674,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.683},{\"SampleID\":24,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":120,\"Pb Bottle 2 (ppb) - 45 secs flushing\":239.7,\"Pb Bottle 3 (ppb) - 2 mins flushing\":29.71},{\"SampleID\":25,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":2.911,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.406,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.237},{\"SampleID\":26,\"Zip Code\":48505,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":16.52,\"Pb Bottle 2 (ppb) - 45 secs flushing\":10.26,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.762},{\"SampleID\":27,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":1.984,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.13,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.712},{\"SampleID\":28,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":5.367,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.474,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.616},{\"SampleID\":29,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":5.5,\"Pb Bottle 2 (ppb) - 45 secs flushing\":8.4,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.4},{\"SampleID\":30,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":0.639,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.223,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.194},{\"SampleID\":31,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":6.087,\"Pb Bottle 2 (ppb) - 45 secs flushing\":28.87,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.13,\"Notes\":\"*house sampled twice\"},{\"SampleID\":31,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":10.32,\"Pb Bottle 2 (ppb) - 45 secs flushing\":13.47,\"Pb Bottle 3 (ppb) - 2 mins flushing\":18.19,\"Notes\":\"*house sampled twice\"},{\"SampleID\":33,\"Zip Code\":48503,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":66.88,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.662,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.082},{\"SampleID\":34,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":20.41,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.543,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.344},{\"SampleID\":35,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":109.6,\"Pb Bottle 2 (ppb) - 45 secs flushing\":80.47,\"Pb Bottle 3 (ppb) - 2 mins flushing\":94.52},{\"SampleID\":36,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":5.06,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.406,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.088},{\"SampleID\":37,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":2.774,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.21,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.264},{\"SampleID\":38,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":4.453,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.679,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.523},{\"SampleID\":39,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":0.4,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.3,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.7},{\"SampleID\":40,\"Zip Code\":48529,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":0.974,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.142,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.118},{\"SampleID\":41,\"Zip Code\":48505,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":3.228,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.534,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.222},{\"SampleID\":42,\"Zip Code\":48505,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":12.55,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.132,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.12},{\"SampleID\":43,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":0.501,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.156,\"Pb Bottle 3 (ppb) - 2 mins flushing\":15.14},{\"SampleID\":44,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":2.448,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.373,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.288},{\"SampleID\":45,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":5.508,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.157,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.621},{\"SampleID\":46,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":1.293,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.441,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.281},{\"SampleID\":47,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":4.699,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.395,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.329},{\"SampleID\":48,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":6.093,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.682,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.458},{\"SampleID\":49,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":0.8,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.8,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.5},{\"SampleID\":50,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":1.626,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.332,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.327},{\"SampleID\":51,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":2.576,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.852,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.48},{\"SampleID\":52,\"Zip Code\":48504,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":2.362,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.467,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.339},{\"SampleID\":53,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":1.585,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.494,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.232},{\"SampleID\":54,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":3.058,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.808,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.169},{\"SampleID\":55,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":2.423,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.393,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.373},{\"SampleID\":56,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":30.91,\"Pb Bottle 2 (ppb) - 45 secs flushing\":42.58,\"Pb Bottle 3 (ppb) - 2 mins flushing\":44.6},{\"SampleID\":57,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":4.47,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.649,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1},{\"SampleID\":58,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":2.172,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.76,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.44},{\"SampleID\":59,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":1.8,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.5,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.2},{\"SampleID\":63,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":0.965,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.166,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.319},{\"SampleID\":65,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":7.636,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.206,\"Pb Bottle 3 (ppb) - 2 mins flushing\":9.239},{\"SampleID\":66,\"Zip Code\":48506,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":3.158,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.948,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.802},{\"SampleID\":67,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":105.3,\"Pb Bottle 2 (ppb) - 45 secs flushing\":12.84,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.534},{\"SampleID\":68,\"Zip Code\":48506,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":4.476,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.355,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.334},{\"SampleID\":69,\"Zip Code\":48504,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":2.828,\"Pb Bottle 2 (ppb) - 45 secs flushing\":6.694,\"Pb Bottle 3 (ppb) - 2 mins flushing\":20.99},{\"SampleID\":71,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":2.481,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.86,\"Pb Bottle 3 (ppb) - 2 mins flushing\":24.64},{\"SampleID\":72,\"Zip Code\":48507,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":11.52,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.288,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.215},{\"SampleID\":73,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":3.784,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.292,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.258},{\"SampleID\":74,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":1.344,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.729,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.226},{\"SampleID\":75,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":11.93,\"Pb Bottle 2 (ppb) - 45 secs flushing\":9.645,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.514},{\"SampleID\":76,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":10.96,\"Pb Bottle 2 (ppb) - 45 secs flushing\":7.744,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.16},{\"SampleID\":77,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":3.341,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.555,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.917},{\"SampleID\":78,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":1.229,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.192,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.218},{\"SampleID\":79,\"Zip Code\":48503,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":6.3,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.1,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.3,\"Notes\":\"*house sampled twice\"},{\"SampleID\":79,\"Zip Code\":48503,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":5.153,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.385,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.322,\"Notes\":\"*house sampled twice\"},{\"SampleID\":80,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":6.054,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.927,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.676},{\"SampleID\":82,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":31.14,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.73,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.188},{\"SampleID\":83,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":102.7,\"Pb Bottle 2 (ppb) - 45 secs flushing\":9.894,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.133},{\"SampleID\":84,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":1.38,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.734,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.524},{\"SampleID\":85,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":1.132,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.17,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.465},{\"SampleID\":87,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":3.232,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.989,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.927},{\"SampleID\":88,\"Zip Code\":48532,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":0.507,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.315,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.231},{\"SampleID\":90,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":8.561,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.141,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.724},{\"SampleID\":91,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":9.997,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.983,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.611},{\"SampleID\":92,\"Zip Code\":48504,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":4.152,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.758,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.433},{\"SampleID\":93,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":75.82,\"Pb Bottle 2 (ppb) - 45 secs flushing\":11.65,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.942},{\"SampleID\":95,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":138.8,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.745,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.797},{\"SampleID\":96,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":0.8,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.2,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.2},{\"SampleID\":97,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":7.244,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1051,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.328},{\"SampleID\":98,\"Zip Code\":48506,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":1.621,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.3,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.238},{\"SampleID\":99,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":1.032,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.363,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.216},{\"SampleID\":100,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":0.866,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.292,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.269},{\"SampleID\":101,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":2.525,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.59,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.438},{\"SampleID\":102,\"Zip Code\":48505,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":9.408,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.444,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.935},{\"SampleID\":103,\"Zip Code\":48505,\"Ward\":0,\"Pb Bottle 1 (ppb) - First Draw\":0.739,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.883,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.953},{\"SampleID\":104,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":0.9,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.2,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.1},{\"SampleID\":105,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":1.403,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.142,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.121},{\"SampleID\":106,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":5.655,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.882,\"Pb Bottle 3 (ppb) - 2 mins flushing\":10.66},{\"SampleID\":107,\"Zip Code\":48505,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":31.06,\"Pb Bottle 2 (ppb) - 45 secs flushing\":8.578,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.176},{\"SampleID\":108,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":1.469,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.291,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.25},{\"SampleID\":109,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":23.85,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.301,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.62},{\"SampleID\":110,\"Zip Code\":48505,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":9.766,\"Pb Bottle 2 (ppb) - 45 secs flushing\":11.13,\"Pb Bottle 3 (ppb) - 2 mins flushing\":7.144},{\"SampleID\":111,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":4.69,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.953,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.929},{\"SampleID\":112,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":4.066,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.894,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.76},{\"SampleID\":113,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":0.846,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.455,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.366},{\"SampleID\":114,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":2.054,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.978,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.355},{\"SampleID\":115,\"Zip Code\":48506,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":3.744,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.592,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.476},{\"SampleID\":116,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":12.9,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.202,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.667},{\"SampleID\":117,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":0.543,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.183,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.162},{\"SampleID\":118,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":6.877,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.984,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.201},{\"SampleID\":119,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":0.552,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.19,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.205},{\"SampleID\":121,\"Zip Code\":48506,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":59,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.9,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.5},{\"SampleID\":122,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":0.349,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.13,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.131},{\"SampleID\":123,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":4.764,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.388,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.06},{\"SampleID\":124,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":0.832,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.284,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.214},{\"SampleID\":125,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":1.224,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.568,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.465},{\"SampleID\":126,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":15.9,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.7,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.2},{\"SampleID\":127,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":5.667,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.405,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.896},{\"SampleID\":128,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":3.564,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.767,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.127},{\"SampleID\":129,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":0.475,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.2,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.268},{\"SampleID\":130,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":5.3,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.5,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.2},{\"SampleID\":131,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":1.166,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.736,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.269},{\"SampleID\":132,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":0.684,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.306,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.094},{\"SampleID\":133,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":6.347,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.724,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.678},{\"SampleID\":134,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":10.56,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.672,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.813},{\"SampleID\":135,\"Zip Code\":48502,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":2.273,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.808,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.048},{\"SampleID\":136,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":1.571,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.265,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.316},{\"SampleID\":137,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":5.402,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.196,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.945},{\"SampleID\":138,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":43.19,\"Pb Bottle 2 (ppb) - 45 secs flushing\":7.688,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.39},{\"SampleID\":139,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":1.492,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.409,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.378},{\"SampleID\":140,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":66.24,\"Pb Bottle 2 (ppb) - 45 secs flushing\":17.75,\"Pb Bottle 3 (ppb) - 2 mins flushing\":8.815},{\"SampleID\":141,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":1.799,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.032,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.031},{\"SampleID\":142,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":1.861,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.355,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.64},{\"SampleID\":143,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":2.672,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.001,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.094},{\"SampleID\":144,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":3.741,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.211,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.258},{\"SampleID\":145,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":1.934,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.374,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.424},{\"SampleID\":146,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":27.05,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.902,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.61},{\"SampleID\":147,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":1.174,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.291,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.055},{\"SampleID\":148,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":2.325,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.099,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.466},{\"SampleID\":149,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":1.966,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.253,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.201},{\"SampleID\":150,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":1.959,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.438,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.448},{\"SampleID\":151,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":0.823,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.881,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.412},{\"SampleID\":152,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":11.2,\"Pb Bottle 2 (ppb) - 45 secs flushing\":7.553,\"Pb Bottle 3 (ppb) - 2 mins flushing\":12.21},{\"SampleID\":153,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":5.668,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.341,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.268},{\"SampleID\":154,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":6.261,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.316,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.5},{\"SampleID\":155,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":4.797,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.594,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.264},{\"SampleID\":156,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":0.64,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.905,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.151},{\"SampleID\":158,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":8.713,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.799,\"Pb Bottle 3 (ppb) - 2 mins flushing\":50.97},{\"SampleID\":159,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":2.544,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.099,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.498},{\"SampleID\":161,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":0.41,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.096,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.116},{\"SampleID\":162,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":32.85,\"Pb Bottle 2 (ppb) - 45 secs flushing\":35.76,\"Pb Bottle 3 (ppb) - 2 mins flushing\":9.103},{\"SampleID\":163,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":12.87,\"Pb Bottle 2 (ppb) - 45 secs flushing\":14.87,\"Pb Bottle 3 (ppb) - 2 mins flushing\":6.326},{\"SampleID\":164,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":38.02,\"Pb Bottle 2 (ppb) - 45 secs flushing\":38.7,\"Pb Bottle 3 (ppb) - 2 mins flushing\":38.94},{\"SampleID\":165,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":2.435,\"Pb Bottle 2 (ppb) - 45 secs flushing\":8.183,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.296},{\"SampleID\":166,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":2.997,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.867,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.512},{\"SampleID\":167,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":11,\"Pb Bottle 2 (ppb) - 45 secs flushing\":10.53,\"Pb Bottle 3 (ppb) - 2 mins flushing\":8.688},{\"SampleID\":168,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":6.219,\"Pb Bottle 2 (ppb) - 45 secs flushing\":12.33,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.202},{\"SampleID\":169,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":8.8,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.1,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.5},{\"SampleID\":170,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":8.071,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.947,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.839},{\"SampleID\":171,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":3.262,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.453,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.252},{\"SampleID\":172,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":2.267,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.541,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.391},{\"SampleID\":173,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":0.922,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.878,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.491},{\"SampleID\":174,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":27.02,\"Pb Bottle 2 (ppb) - 45 secs flushing\":31.25,\"Pb Bottle 3 (ppb) - 2 mins flushing\":11.37},{\"SampleID\":176,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":0.906,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.961,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.052},{\"SampleID\":177,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":2.85,\"Pb Bottle 2 (ppb) - 45 secs flushing\":6.862,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.951},{\"SampleID\":178,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":1.852,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.472,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.422},{\"SampleID\":179,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":5.35,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.328,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.595},{\"SampleID\":180,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":25.21,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.337,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.019},{\"SampleID\":182,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":15.55,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.962,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.861},{\"SampleID\":183,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":0.793,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.533,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.391},{\"SampleID\":184,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":5.068,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.683,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.489},{\"SampleID\":185,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":26.64,\"Pb Bottle 2 (ppb) - 45 secs flushing\":8.878,\"Pb Bottle 3 (ppb) - 2 mins flushing\":6.619},{\"SampleID\":186,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":1.867,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.165,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.175},{\"SampleID\":189,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":19.16,\"Pb Bottle 2 (ppb) - 45 secs flushing\":12.54,\"Pb Bottle 3 (ppb) - 2 mins flushing\":7.719},{\"SampleID\":191,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":28.7,\"Pb Bottle 2 (ppb) - 45 secs flushing\":12.7,\"Pb Bottle 3 (ppb) - 2 mins flushing\":8.6},{\"SampleID\":192,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":20.22,\"Pb Bottle 2 (ppb) - 45 secs flushing\":8.908,\"Pb Bottle 3 (ppb) - 2 mins flushing\":6.677},{\"SampleID\":193,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":2.9,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.6,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.7},{\"SampleID\":194,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":18.86,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.051,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.548},{\"SampleID\":195,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":2.816,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.324,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.362},{\"SampleID\":196,\"Zip Code\":48506,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":118.4,\"Pb Bottle 2 (ppb) - 45 secs flushing\":40.78,\"Pb Bottle 3 (ppb) - 2 mins flushing\":39.99},{\"SampleID\":197,\"Zip Code\":48506,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":27.45,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.939,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.533},{\"SampleID\":198,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":1.2,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.1,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.1},{\"SampleID\":200,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":4.681,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.755,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.456},{\"SampleID\":201,\"Zip Code\":48506,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":11.57,\"Pb Bottle 2 (ppb) - 45 secs flushing\":6.08,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.782},{\"SampleID\":202,\"Zip Code\":48532,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":6.557,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.289,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.371},{\"SampleID\":203,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":3.4,\"Pb Bottle 2 (ppb) - 45 secs flushing\":9.6,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.7},{\"SampleID\":204,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":0.7,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.2,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.2},{\"SampleID\":205,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":158,\"Pb Bottle 2 (ppb) - 45 secs flushing\":90.83,\"Pb Bottle 3 (ppb) - 2 mins flushing\":91.69},{\"SampleID\":206,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":0.977,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.47,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.381},{\"SampleID\":207,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":8.471,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.692,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.48},{\"SampleID\":208,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":11.47,\"Pb Bottle 2 (ppb) - 45 secs flushing\":23.15,\"Pb Bottle 3 (ppb) - 2 mins flushing\":7.129},{\"SampleID\":209,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":5.228,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.477,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.014},{\"SampleID\":210,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":0.956,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.196,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.157},{\"SampleID\":211,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":1.671,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.405,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.721},{\"SampleID\":212,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":1.152,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.708,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.282},{\"SampleID\":213,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":0.5,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.1,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.1},{\"SampleID\":214,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":10.74,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.331,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.628},{\"SampleID\":215,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":3.9,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.4,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.2},{\"SampleID\":216,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":2.149,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.368,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.333},{\"SampleID\":217,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":1.1,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.4,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.2},{\"SampleID\":218,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":7.087,\"Pb Bottle 2 (ppb) - 45 secs flushing\":9.467,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.28},{\"SampleID\":219,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":1.329,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.609,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.527},{\"SampleID\":220,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":6.2,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.7,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.6},{\"SampleID\":221,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":0.8,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.26,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.255},{\"SampleID\":222,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":9.3,\"Pb Bottle 2 (ppb) - 45 secs flushing\":9.7,\"Pb Bottle 3 (ppb) - 2 mins flushing\":5},{\"SampleID\":223,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":2.1,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.2,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.5},{\"SampleID\":224,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":4.563,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.106,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.997},{\"SampleID\":225,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":4.808,\"Pb Bottle 2 (ppb) - 45 secs flushing\":6.196,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.523},{\"SampleID\":226,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":0.753,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.526,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.549},{\"SampleID\":227,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":1.862,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.213,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.898},{\"SampleID\":228,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":1.183,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.366,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.201},{\"SampleID\":229,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":8.2,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.2,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.6},{\"SampleID\":230,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":3.679,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.498,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.288},{\"SampleID\":231,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":2.37,\"Pb Bottle 2 (ppb) - 45 secs flushing\":7.333,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.797},{\"SampleID\":234,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":0.828,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.318,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.233},{\"SampleID\":235,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":0.719,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.254,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.058},{\"SampleID\":236,\"Zip Code\":48504,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":2.822,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.221,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.258},{\"SampleID\":237,\"Zip Code\":48504,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":2.867,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.723,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.744},{\"SampleID\":238,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":2.332,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.588,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.221},{\"SampleID\":240,\"Zip Code\":48503,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":4.401,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.111,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.572},{\"SampleID\":241,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":2.708,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.238,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.809},{\"SampleID\":242,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":34.13,\"Pb Bottle 2 (ppb) - 45 secs flushing\":6.002,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.71},{\"SampleID\":243,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":5.218,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.614,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.831},{\"SampleID\":244,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":15.73,\"Pb Bottle 2 (ppb) - 45 secs flushing\":13.95,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.584},{\"SampleID\":245,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":3.045,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.744,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.299},{\"SampleID\":246,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":1.1,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.5,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.3},{\"SampleID\":247,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":1.386,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.288,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.432},{\"SampleID\":248,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":0.915,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.354,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.306},{\"SampleID\":249,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":2.145,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.345,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.738},{\"SampleID\":250,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":4.056,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.547,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.378},{\"SampleID\":251,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":1.668,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.508,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.72},{\"SampleID\":252,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":7.575,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.362,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.094},{\"SampleID\":253,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":5.59,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.306,\"Pb Bottle 3 (ppb) - 2 mins flushing\":2.019},{\"SampleID\":254,\"Zip Code\":48503,\"Ward\":5,\"Pb Bottle 1 (ppb) - First Draw\":0.708,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.326,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.303},{\"SampleID\":255,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":1.701,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.397,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.287},{\"SampleID\":256,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":1.467,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.149,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.137},{\"SampleID\":258,\"Zip Code\":48504,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":2.582,\"Pb Bottle 2 (ppb) - 45 secs flushing\":259.8,\"Pb Bottle 3 (ppb) - 2 mins flushing\":61.96},{\"SampleID\":259,\"Zip Code\":48505,\"Ward\":2,\"Pb Bottle 1 (ppb) - First Draw\":22.08,\"Pb Bottle 2 (ppb) - 45 secs flushing\":15.86,\"Pb Bottle 3 (ppb) - 2 mins flushing\":9.262},{\"SampleID\":260,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":16.51,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.024,\"Pb Bottle 3 (ppb) - 2 mins flushing\":7.068},{\"SampleID\":262,\"Zip Code\":48507,\"Ward\":8,\"Pb Bottle 1 (ppb) - First Draw\":56.26,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.692,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.243},{\"SampleID\":263,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":2.433,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.334,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.376},{\"SampleID\":264,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":0.5,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.2,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.5},{\"SampleID\":265,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":29.13,\"Pb Bottle 2 (ppb) - 45 secs flushing\":11.57,\"Pb Bottle 3 (ppb) - 2 mins flushing\":6.388},{\"SampleID\":266,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":12.3,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.5,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.4},{\"SampleID\":267,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":3.445,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.29,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.167},{\"SampleID\":268,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":16.49,\"Pb Bottle 2 (ppb) - 45 secs flushing\":12.83,\"Pb Bottle 3 (ppb) - 2 mins flushing\":9.018},{\"SampleID\":269,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":3.365,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.45,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.675},{\"SampleID\":270,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":1.154,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.176,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.12},{\"SampleID\":271,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":13.53,\"Pb Bottle 2 (ppb) - 45 secs flushing\":21.91,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.675},{\"SampleID\":272,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":2.229,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.573,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.84},{\"SampleID\":273,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":28.91,\"Pb Bottle 2 (ppb) - 45 secs flushing\":5.471,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.056},{\"SampleID\":274,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":6.601,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.929,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.417},{\"SampleID\":275,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":0.948,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.27,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.207},{\"SampleID\":276,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":3.484,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.434,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.306},{\"SampleID\":278,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":1.888,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.359,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.322},{\"SampleID\":279,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":13.95,\"Pb Bottle 2 (ppb) - 45 secs flushing\":12.2,\"Pb Bottle 3 (ppb) - 2 mins flushing\":8.251},{\"SampleID\":280,\"Zip Code\":48504,\"Ward\":6,\"Pb Bottle 1 (ppb) - First Draw\":6.27,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.036,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.182},{\"SampleID\":281,\"Zip Code\":48506,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":19.12,\"Pb Bottle 2 (ppb) - 45 secs flushing\":22.02,\"Pb Bottle 3 (ppb) - 2 mins flushing\":7.968},{\"SampleID\":282,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":1.633,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.465,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.238},{\"SampleID\":283,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":1.114,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.605,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.255},{\"SampleID\":284,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":3.9,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.558,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.504},{\"SampleID\":285,\"Zip Code\":48504,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":3.521,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.45,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.321},{\"SampleID\":286,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":3.832,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.794,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.339},{\"SampleID\":287,\"Zip Code\":48505,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":3.243,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.738,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.27},{\"SampleID\":289,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":0.99,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.25,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.263},{\"SampleID\":290,\"Zip Code\":48507,\"Ward\":9,\"Pb Bottle 1 (ppb) - First Draw\":1.203,\"Pb Bottle 2 (ppb) - 45 secs flushing\":19.26,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.626},{\"SampleID\":291,\"Zip Code\":48506,\"Ward\":3,\"Pb Bottle 1 (ppb) - First Draw\":2.261,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.102,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.407},{\"SampleID\":292,\"Zip Code\":48503,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":16.99,\"Pb Bottle 2 (ppb) - 45 secs flushing\":6.32,\"Pb Bottle 3 (ppb) - 2 mins flushing\":3.585},{\"SampleID\":293,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":3.322,\"Pb Bottle 2 (ppb) - 45 secs flushing\":2.559,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.512},{\"SampleID\":294,\"Zip Code\":48506,\"Ward\":4,\"Pb Bottle 1 (ppb) - First Draw\":14.33,\"Pb Bottle 2 (ppb) - 45 secs flushing\":1.284,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.323},{\"SampleID\":295,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":18.11,\"Pb Bottle 2 (ppb) - 45 secs flushing\":20.21,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.263},{\"SampleID\":296,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":12.81,\"Pb Bottle 2 (ppb) - 45 secs flushing\":7.874,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.78},{\"SampleID\":298,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":1.083,\"Pb Bottle 2 (ppb) - 45 secs flushing\":0.322,\"Pb Bottle 3 (ppb) - 2 mins flushing\":0.26},{\"SampleID\":299,\"Zip Code\":48503,\"Ward\":7,\"Pb Bottle 1 (ppb) - First Draw\":29.59,\"Pb Bottle 2 (ppb) - 45 secs flushing\":3.258,\"Pb Bottle 3 (ppb) - 2 mins flushing\":1.843},{\"SampleID\":300,\"Zip Code\":48505,\"Ward\":1,\"Pb Bottle 1 (ppb) - First Draw\":4.287,\"Pb Bottle 2 (ppb) - 45 secs flushing\":4.345,\"Pb Bottle 3 (ppb) - 2 mins flushing\":4.905}]\"\"\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Notes</th>\n", " <th>Pb Bottle 1 (ppb) - First Draw</th>\n", " <th>Pb Bottle 2 (ppb) - 45 secs flushing</th>\n", " <th>Pb Bottle 3 (ppb) - 2 mins flushing</th>\n", " <th>SampleID</th>\n", " <th>Ward</th>\n", " <th>Zip Code</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>266</th>\n", " <td>NaN</td>\n", " <td>18.110</td>\n", " <td>20.210</td>\n", " <td>4.263</td>\n", " <td>295</td>\n", " <td>7</td>\n", " <td>48503</td>\n", " </tr>\n", " <tr>\n", " <th>267</th>\n", " <td>NaN</td>\n", " <td>12.810</td>\n", " <td>7.874</td>\n", " <td>1.780</td>\n", " <td>296</td>\n", " <td>7</td>\n", " <td>48503</td>\n", " </tr>\n", " <tr>\n", " <th>268</th>\n", " <td>NaN</td>\n", " <td>1.083</td>\n", " <td>0.322</td>\n", " <td>0.260</td>\n", " <td>298</td>\n", " <td>7</td>\n", " <td>48503</td>\n", " </tr>\n", " <tr>\n", " <th>269</th>\n", " <td>NaN</td>\n", " <td>29.590</td>\n", " <td>3.258</td>\n", " <td>1.843</td>\n", " <td>299</td>\n", " <td>7</td>\n", " <td>48503</td>\n", " </tr>\n", " <tr>\n", " <th>270</th>\n", " <td>NaN</td>\n", " <td>4.287</td>\n", " <td>4.345</td>\n", " <td>4.905</td>\n", " <td>300</td>\n", " <td>1</td>\n", " <td>48505</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Notes Pb Bottle 1 (ppb) - First Draw \\\n", "266 NaN 18.110 \n", "267 NaN 12.810 \n", "268 NaN 1.083 \n", "269 NaN 29.590 \n", "270 NaN 4.287 \n", "\n", " Pb Bottle 2 (ppb) - 45 secs flushing \\\n", "266 20.210 \n", "267 7.874 \n", "268 0.322 \n", "269 3.258 \n", "270 4.345 \n", "\n", " Pb Bottle 3 (ppb) - 2 mins flushing SampleID Ward Zip Code \n", "266 4.263 295 7 48503 \n", "267 1.780 296 7 48503 \n", "268 0.260 298 7 48503 \n", "269 1.843 299 7 48503 \n", "270 4.905 300 1 48505 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Creating Numpy Arrays from the Data\n", "\n", "## lead_levels are in \n", "lead_levels_first_draw = np.array(flint_data[\"Pb Bottle 1 (ppb) - First Draw\"])\n", "\n", "## zip_code data are in\n", "zip_code = np.array(flint_data[\"Zip Code\"])\n", "\n", "## For reference, the full dataset looks like this\n", "flint_data.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data Cleaning\n", "\n", "The sample readings are in ppb (parts per billion). But, the U.S. Environmental Protection Agency's guidelines are expressed in mg/L, or milligrams per liter. What will we need to do in order to compare the data collected to the EPA's guideline threshold?" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.000344, 0.008133, 0.001111, 0.008007])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Write any python you need to here\n", "conversion_factor = 1 / 1000\n", "# print(conversion_factor)\n", "\n", "converted_lead_levels = conversion_factor * lead_levels_first_draw\n", "converted_lead_levels[0:4] # checking the data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$ x \\text{ ppb} \\times \\frac{1 \\text{ ppm}}{1000 \\text{ ppb}} \\times \\frac{1 \\text{ mg/L}}{1 \\text{ ppm}} $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Getting a Sense of the Data\n", "\n", "What's the mean value of all the lead readings?" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.010645992619926199" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Write any python you need to here\n", "\n", "converted_lead_levels.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "// write any markdown here - explain what you did in the cells above!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Do you think the mean value is representative of how good (or bad) the overall lead levels in Flint water? If so, why; if not, why not? **Really take some time to think this one through.** Try to justify your group's opinions by using plots, calculations, or anything else you feel appropriately supports your point." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "45" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+\nCmVuZG9iago4IDAgb2JqCjw8IC9YT2JqZWN0IDcgMCBSIC9QYXR0ZXJuIDUgMCBSIC9TaGFkaW5n\nIDYgMCBSIC9FeHRHU3RhdGUgNCAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0lt\nYWdlQyAvSW1hZ2VJIF0gL0ZvbnQgMyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9NZWRpYUJv\neCBbIDAgMCA0ODguNjU5Mzc1IDM0Mi4wMTA5Mzc1IF0gL1Jlc291cmNlcyA4IDAgUgovQ29udGVu\ndHMgOSAwIFIgL0dyb3VwIDw8IC9TIC9UcmFuc3BhcmVuY3kgL1R5cGUgL0dyb3VwIC9DUyAvRGV2\naWNlUkdCID4+Ci9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL0Fubm90cyBbIF0gPj4KZW5kb2Jq\nCjkgMCBvYmoKPDwgL0xlbmd0aCAxMSAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFt\nCniczZnLbtswEEX3/Aou282YwzeXMdoa6C6tgX5AmrQ1EgNJgPb3O5KtB1+KrVaAFg7MG2mG94ga\njmTkB7a5Qf7jldMfLviBPn/o+64ZM0GjJ6a9B2uCcoaGj+Oh0hIECvpOuoiHPxl7YAICOqudMN7z\ndKCDwGCF8/ylSb3LDugHLDmaMWlAScOlAqWFpW80TYfgIu2x15QSIDvxfG6ktbN95llYrS1oroSF\nwF/u+Td+5JsbeeL1mT4H+px4bT7c//51d/9lt+V3r6X5ldKyr+yWP3chBaChq9BFbYe7szoRcWyY\nbQt5Krm37JSXbfd88wk5Cr5/YGjAhPaQAOh1c5n339k7AUK85/sD/7hvp/xfSDEi5REw8XWW5pKq\nR0xI5XkqucukaG2pMim5CClUdEZirNPmspqKmdAqpKrlr6ws6QDLwPQywIJMKsJTr80GNhEzBZan\nquWvAPMSQhmYXQSY1B5MWmTO2uy6NREzrVx5qlr+MjCpPLgyML8IMCV0VpU7bS6wqZgJsEKqWv4K\nsKAr1R6XqfbKiqw4d9psYBMxU2B5qlr+MjBlRKXo4zJFX9N+nBboTpsLbCpmAqyQqpa/DIz+XSn6\nuEzRz9vAp3IbeA2wiZgpsDxVLX8FmMVK0ceFiv5lrfQSreoVXMsNBbjmACnAGW19R2pJTF7T7JKp\nDtocTOOImRRhejP3NCbqJlANmMySmJBOR5HMdSTOARXFzLUI1QX5K009SDpOgcGB1EJ7YRdIONA+\nXf2DOOvWG8fMtfjmezt/HZWkZsOHEapFV5W0HrxNpzqIs1CNY+ZajOrt/BOorAXpBlRy0VV1wf5z\nNapLXin88/7XoFL0pGhHFV3OXVWULnihgkTjaKBPr5OkMkyA7V4o6fb9E6jGduu5cg5PzmGMrrwT\nIXkYFB60USLewQY1YtAFSN9FbVdmtGSKrNKjGR1lY6ediBLBaJ/6j+Q1Ws1NkVPvIGiByUXtVWXA\nok0AjMU1Gi14otu6ufW8cpHRXmyelKxP3Y/VFRotWCKfljY4mTaagzq+eH2AlV/RkqfmfYADdMJH\nRotimckKjRZmTz5pNoFat3j2gzpepX2AlS/dkidy6i1tjy7ERjtRO+rIZOp+rK7RaG6J2gZJsxGo\nk990enV8O/YBVn6PljyRU+oNM59nbWyo7L23ebYg2wbxgp+kis/ax4t/vDpe8bLleEVjemS37C8r\nJ9pLCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKOTE0CmVuZG9iagoxNiAwIG9iago8PCAvTGVu\nZ3RoIDQyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0BBKGQNLQwEAh\nxZALzM/lggrkcBmisEA0lEoDAH7MDBIKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvTGVu\nZ3RoIDI3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UUtuBTEI288pfIFK/EnO\nM1V3vf+2JumTZgQJ2BgnsyAIw5cqUhZaN7714Y2n43eS8GaJX6IWMhvvs5jLhhJVwRg89xS0N5qd\nZn64rPPE93G9Nx7NqPAu1E5WQoLoTRkLRfpgRzFnpQq5WVlUV4HYhjRjJYXClhzNwVkTR/FUFqyI\nIc5E2WXUtw9bYpPeN5IoqnQZYa3gutbHhBE88X1MbqbJ37mrURXvyaKmY5rpDP+fq/7xbDLzPK4o\n99Ee9DqUAi5qzoXljKqjQE/isaY6xtz2MWYIgqchnHiHTRbUPR0ZF5NrMENSVnDljCgOuZHD3e8N\nTSnjo/HB8jyA0vA8W9LUFnxWeZ+fP/SWZUsKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAv\nTGVuZ3RoIDI2NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UUlywzAMu/sVeIK4\ni+9Jp6fk/9eCzHTGMmhzA6CIxIE2X3EMJY0feSa8js8GB+/HzgLrVGAGl3lS8HrC0GxUiDr6Qjjx\n9cyH3IKkQZVHeDKY0eYEvTA3WBFrZk2Psdtjhiv83sVQZWYjzrVuxCWWc/mZHm+kOUwK6QmtL3KP\nxffPIVFSlkrkucMtKPaSsBXC64tn9zDgqveIimpMC6UL6WWuLJIoDlSR9UqniDhEaiPnoCRNd+Ia\n5FyVtGBWBCcu6pCfyGmHd8JplNNzt1gizJxaO8YkV4r2uyb1irVwbg+MnbomqdF81uqh9ayV25Q2\nGaFdo0GSog/1hM71vv7v+f38/gErHWDYCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xl\nbmd0aCAyNDYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVE7bsUwDNt9Cl6ggPW1\nfZ4UnV7vv5ZMAnRIxNgSSTFVjYl0fJmhrLFm49sGT2xv/A6LhJ3CZ1hOWOlpGDttG07iGs6RZfBo\n9IQTslwjLAQiD1Yj1oHNzfPkW1zpQQ6/q0fpRmgX1BGeiM3xCnGV84uPFeIsisy7UpxO7xM6ikN3\nJ6ilG1NP071m89EMl4NaiNhayZ+FPyNJ/o/aXbekfVFtZEwin4bUltnIVXDKqcpi3Ujmk6az2GkK\nIplSdN/xxhuzp9YSssV+KhmVspjVnQSzM7okh36MMlV9shYyKnDGOCMirsp8UywL77+7xs8fHkpY\n9gplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9MZW5ndGggMTE0IC9GaWx0ZXIgL0ZsYXRl\nRGVjb2RlID4+CnN0cmVhbQp4nDVOyw1DMQy6ZwpG8N/xPK/qKd3/WsdqLwZhQLgHCEzVV1ORXHjx\nupTwWbK98Qx6DAuFG0G0lTYLMawKz+JIWBZYAxY2peZ2P81cq9Psu3tkUl63ZSNE2yNpCHcoEWIn\nlGPGPOs/6/xWnfX+Ai2WIl4KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDkw\nIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2NQRLAIAgD776CJxgoUv7T6cn+/1qR\ncfRCdhIgqo0qQcbQepOh0YMiHMY3FQbqBQew8gARn+u9XMBBmcazTXka6aYaP2ZPamxno5oOz30V\n8ap8fzHZISkKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvTGVuZ3RoIDQxNiAvRmlsdGVy\nIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E/OM1V3vf+2NjOv0suDCQRs\nQ2bJklD5UpVUk9Yj33ppt/je8ntpIL5UVF3ClpyUiJT7QkbUEfzijEkPXNPZJbul7IhaShXTtVwa\ndQx12MQ6x96Xe4/Hfr3QzQpvWCvwX7YltqNoPNaNEXhxEOkYFJH9wgo/gzOIF/38ZYKI8Qv5GeKp\neIvIIEh0NSCmABbnsYvV6GmwF5gbWjCJtZYLEEeNcNaPvS++oqexEVd8TXrZvOZ90NhqFoGTYIRm\niKKGG1lDTc8UdQfcEv0noEmRm0OhBwjaIAohldWTj03RwEkDNwbLMRklc8Ci574nw2u9b3zbVPED\nMJTsfGQeD0Pwje04iKBvQdhnaOV4s3ADGSgBLRCg89wACTOIrZR9iDbxNeir5cMHEX80+R1P0U2d\ncRyMQ2extLiEC5w3xbQFyTg8mxWDkkvAiHxhSPfQcQjcPgR0rZncxlY+omi9Iq3ZNnoAzgzbeMqz\nKLwnZcN8FCfZJMaiOYWEp9hFZmjrSAK4mLQNEVDD2nwo3tfPH4ihpDYKZW5kc3RyZWFtCmVuZG9i\nagoyMyAwIG9iago8PCAvTGVuZ3RoIDM1MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0K\neJw9UjtyRDEI698puEBmzB/Os5lU2fu3EThJJQYjQMLuQYe06IOZnA8lN33yY13kxvR+DElXo+/H\njpBHkTZKW0kzKU7T61FXCkVGgBYk1YuvR4JvRgMVRcJOgarXwzVsJY4gT6DPHJ8XTLMOYnEy7DCo\nMXMYnewgk0ImRgK+2Zk5mG7QIgFO4KV7cXbLjewADTwbBdPNsKWCM7L1nEVRwctEs58jy4aOhZng\ngzN6igyLat9d1oBIOAj9vUZKxSL2YtmIfRRuk1USI0toHeEBXekILMfLawkbwhnLXuChMddeSNoW\nR969mXZSjh0wIpJ3VRxhlmxIg51/Jx2De4W+b4SzjkjeI9TGqElI54QNRSCPjpI1GgdMEkdz2FU+\ngDWEJ5iPkLCmQD7Txg7uCIoJMnlRZJ2cKOeeQcqXo3YvZvhbMEfGGcyqixhuv5lTW8H/HHbZLiso\ni/4kvp6vH1MwiTEKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvRm9udEJCb3ggWyAtNjY1\nIC0zMjUgMjAwMCAxMDA2IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUiAvV2lkdGhzIDEyIDAgUgov\nTmFtZSAvQXJpYWxNVCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0FyaWFsTVQgL0xhc3RDaGFyIDI1\nNQovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvRmlyc3RDaGFyIDAgL0NoYXJQ\ncm9jcyAxNSAwIFIKL1N1YnR5cGUgL1R5cGUzCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcK\nL0RpZmZlcmVuY2VzIFsgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gNTIgL2ZvdXIgL2Zp\ndmUgL3NpeCA1NiAvZWlnaHQgXQo+Pgo+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0l0YWxpY0FuZ2xl\nIDAgL0ZvbnRCQm94IFsgLTY2NSAtMzI1IDIwMDAgMTAwNiBdIC9DYXBIZWlnaHQgNzE2Ci9NYXhX\naWR0aCAxMDE1IC9GbGFncyAzMiAvQXNjZW50IDkwNiAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0Rl\nc2NlbnQgLTIxMgovU3RlbVYgMCAvRm9udE5hbWUgL0FyaWFsTVQgL1hIZWlnaHQgNTE5ID4+CmVu\nZG9iagoxMiAwIG9iagpbIDc1MCA3NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3\nNTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3NTAgNzUwCjc1MCA3NTAgNzUwIDc1MCA3NTAgNzUwIDc1\nMCA3NTAgNzUwIDc1MCA3NTAgNzUwIDc1MCA3NTAgMjc4IDI3OCAzNTUgNTU2IDU1Ngo4ODkgNjY3\nIDE5MSAzMzMgMzMzIDM4OSA1ODQgMjc4IDMzMyAyNzggMjc4IDU1NiA1NTYgNTU2IDU1NiA1NTYg\nNTU2IDU1NiA1NTYKNTU2IDU1NiAyNzggMjc4IDU4NCA1ODQgNTg0IDU1NiAxMDE1IDY2NyA2Njcg\nNzIyIDcyMiA2NjcgNjExIDc3OCA3MjIgMjc4CjUwMCA2NjcgNTU2IDgzMyA3MjIgNzc4IDY2NyA3\nNzggNzIyIDY2NyA2MTEgNzIyIDY2NyA5NDQgNjY3IDY2NyA2MTEgMjc4IDI3OAoyNzggNDY5IDU1\nNiAzMzMgNTU2IDU1NiA1MDAgNTU2IDU1NiAyNzggNTU2IDU1NiAyMjIgMjIyIDUwMCAyMjIgODMz\nIDU1NiA1NTYKNTU2IDU1NiAzMzMgNTAwIDI3OCA1NTYgNTAwIDcyMiA1MDAgNTAwIDUwMCAzMzQg\nMjYwIDMzNCA1ODQgNzUwIDU1NiA3NTAgMjIyCjU1NiAzMzMgMTAwMCA1NTYgNTU2IDMzMyAxMDAw\nIDY2NyAzMzMgMTAwMCA3NTAgNjExIDc1MCA3NTAgMjIyIDIyMiAzMzMgMzMzCjM1MCA1NTYgMTAw\nMCAzMzMgMTAwMCA1MDAgMzMzIDk0NCA3NTAgNTAwIDY2NyAyNzggMzMzIDU1NiA1NTYgNTU2IDU1\nNiAyNjAKNTU2IDMzMyA3MzcgMzcwIDU1NiA1ODQgMzMzIDczNyA1NTIgNDAwIDU0OSAzMzMgMzMz\nIDMzMyA1NzYgNTM3IDMzMyAzMzMgMzMzCjM2NSA1NTYgODM0IDgzNCA4MzQgNjExIDY2NyA2Njcg\nNjY3IDY2NyA2NjcgNjY3IDEwMDAgNzIyIDY2NyA2NjcgNjY3IDY2NwoyNzggMjc4IDI3OCAyNzgg\nNzIyIDcyMiA3NzggNzc4IDc3OCA3NzggNzc4IDU4NCA3NzggNzIyIDcyMiA3MjIgNzIyIDY2NyA2\nNjcKNjExIDU1NiA1NTYgNTU2IDU1NiA1NTYgNTU2IDg4OSA1MDAgNTU2IDU1NiA1NTYgNTU2IDI3\nOCAyNzggMjc4IDI3OCA1NTYgNTU2CjU1NiA1NTYgNTU2IDU1NiA1NTYgNTQ5IDYxMSA1NTYgNTU2\nIDU1NiA1NTYgNTAwIDU1NiA1MDAgXQplbmRvYmoKMTUgMCBvYmoKPDwgL3BlcmlvZCAxNiAwIFIg\nL3plcm8gMTcgMCBSIC90d28gMTggMCBSIC9maXZlIDE5IDAgUiAvb25lIDIwIDAgUgovZm91ciAy\nMSAwIFIgL2VpZ2h0IDIyIDAgUiAvc2l4IDIzIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEg\nMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAx\nIC9DQSAxID4+Ci9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxIC9DQSAwID4+ID4+CmVuZG9i\nago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+\nCmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDEwIDAgUiBdIC9Db3VudCAx\nID4+CmVuZG9iagoyNCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMTYwNjAxMjM0MjM3LTA0\nJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMS41LjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykK\nL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kKSA+PgplbmRvYmoKeHJlZgowIDI1CjAw\nMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA1NzA4IDAwMDAwIG4g\nCjAwMDAwMDU1MTQgMDAwMDAgbiAKMDAwMDAwNTU0NiAwMDAwMCBuIAowMDAwMDA1NjQ1IDAwMDAw\nIG4gCjAwMDAwMDU2NjYgMDAwMDAgbiAKMDAwMDAwNTY4NyAwMDAwMCBuIAowMDAwMDAwMDY1IDAw\nMDAwIG4gCjAwMDAwMDA0MDAgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxMzg5\nIDAwMDAwIG4gCjAwMDAwMDQzMzcgMDAwMDAgbiAKMDAwMDAwNDEzNyAwMDAwMCBuIAowMDAwMDAz\nNzkxIDAwMDAwIG4gCjAwMDAwMDUzODggMDAwMDAgbiAKMDAwMDAwMTQwOSAwMDAwMCBuIAowMDAw\nMDAxNTIzIDAwMDAwIG4gCjAwMDAwMDE4NjggMDAwMDAgbiAKMDAwMDAwMjIwOCAwMDAwMCBuIAow\nMDAwMDAyNTI3IDAwMDAwIG4gCjAwMDAwMDI3MTQgMDAwMDAgbiAKMDAwMDAwMjg3NiAwMDAwMCBu\nIAowMDAwMDAzMzY1IDAwMDAwIG4gCjAwMDAwMDU3NjggMDAwMDAgbiAKdHJhaWxlcgo8PCAvUm9v\ndCAxIDAgUiAvSW5mbyAyNCAwIFIgL1NpemUgMjUgPj4Kc3RhcnR4cmVmCjU5MTYKJSVFT0YK\n", "image/svg+xml": [ "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<!-- Created with matplotlib (http://matplotlib.org/) -->\n", "<svg height=\"342pt\" version=\"1.1\" viewBox=\"0 0 488 342\" width=\"488pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", " <defs>\n", " <style type=\"text/css\">\n", "*{stroke-linecap:butt;stroke-linejoin:round;stroke-miterlimit:100000;}\n", " </style>\n", " </defs>\n", " <g id=\"figure_1\">\n", " <g id=\"patch_1\">\n", " <path d=\"M 0 342.017969 \n", "L 488.652344 342.017969 \n", "L 488.652344 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill:#ffffff;\"/>\n", " </g>\n", " <g id=\"axes_1\">\n", " <g id=\"patch_2\">\n", " <path d=\"M 25.321875 318.672656 \n", "L 471.721875 318.672656 \n", "L 471.721875 11.772656 \n", "L 25.321875 11.772656 \n", "z\n", "\" style=\"fill:#eaeaf2;\"/>\n", " </g>\n", " <g id=\"matplotlib.axis_1\">\n", " <g id=\"xtick_1\">\n", " <g id=\"line2d_1\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 25.321875 318.672656 \n", "L 25.321875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_2\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L 0 0 \n", "\" id=\"mb51e4ad12f\" style=\"stroke:#262626;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"25.321875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_3\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"25.321875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_1\">\n", " <!-- 0.00 -->\n", " <defs>\n", " <path d=\"M 9.078125 0 \n", "L 9.078125 10.015625 \n", "L 19.09375 10.015625 \n", "L 19.09375 0 \n", "z\n", "\" id=\"ArialMT-2e\"/>\n", " <path d=\"M 4.15625 35.296875 \n", "Q 4.15625 48 6.765625 55.734375 \n", "Q 9.375 63.484375 14.515625 67.671875 \n", "Q 19.671875 71.875 27.484375 71.875 \n", "Q 33.25 71.875 37.59375 69.546875 \n", "Q 41.9375 67.234375 44.765625 62.859375 \n", "Q 47.609375 58.5 49.21875 52.21875 \n", "Q 50.828125 45.953125 50.828125 35.296875 \n", "Q 50.828125 22.703125 48.234375 14.96875 \n", "Q 45.65625 7.234375 40.5 3 \n", "Q 35.359375 -1.21875 27.484375 -1.21875 \n", "Q 17.140625 -1.21875 11.234375 6.203125 \n", "Q 4.15625 15.140625 4.15625 35.296875 \n", "M 13.1875 35.296875 \n", "Q 13.1875 17.671875 17.3125 11.828125 \n", "Q 21.4375 6 27.484375 6 \n", "Q 33.546875 6 37.671875 11.859375 \n", "Q 41.796875 17.71875 41.796875 35.296875 \n", "Q 41.796875 52.984375 37.671875 58.78125 \n", "Q 33.546875 64.59375 27.390625 64.59375 \n", "Q 21.34375 64.59375 17.71875 59.46875 \n", "Q 13.1875 52.9375 13.1875 35.296875 \n", "\" id=\"ArialMT-30\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(15.59140625 332.83046875)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_2\">\n", " <g id=\"line2d_4\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 81.121875 318.672656 \n", "L 81.121875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_5\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"81.121875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_6\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"81.121875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_2\">\n", " <!-- 0.02 -->\n", " <defs>\n", " <path d=\"M 50.34375 8.453125 \n", "L 50.34375 0 \n", "L 3.03125 0 \n", "Q 2.9375 3.171875 4.046875 6.109375 \n", "Q 5.859375 10.9375 9.828125 15.625 \n", "Q 13.8125 20.3125 21.34375 26.46875 \n", "Q 33.015625 36.03125 37.109375 41.625 \n", "Q 41.21875 47.21875 41.21875 52.203125 \n", "Q 41.21875 57.421875 37.46875 61 \n", "Q 33.734375 64.59375 27.734375 64.59375 \n", "Q 21.390625 64.59375 17.578125 60.78125 \n", "Q 13.765625 56.984375 13.71875 50.25 \n", "L 4.6875 51.171875 \n", "Q 5.609375 61.28125 11.65625 66.578125 \n", "Q 17.71875 71.875 27.9375 71.875 \n", "Q 38.234375 71.875 44.234375 66.15625 \n", "Q 50.25 60.453125 50.25 52 \n", "Q 50.25 47.703125 48.484375 43.546875 \n", "Q 46.734375 39.40625 42.65625 34.8125 \n", "Q 38.578125 30.21875 29.109375 22.21875 \n", "Q 21.1875 15.578125 18.9375 13.203125 \n", "Q 16.703125 10.84375 15.234375 8.453125 \n", "z\n", "\" id=\"ArialMT-32\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(71.39140625 332.83046875)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_3\">\n", " <g id=\"line2d_7\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 136.921875 318.672656 \n", "L 136.921875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_8\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"136.921875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_9\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"136.921875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_3\">\n", " <!-- 0.04 -->\n", " <defs>\n", " <path d=\"M 32.328125 0 \n", "L 32.328125 17.140625 \n", "L 1.265625 17.140625 \n", "L 1.265625 25.203125 \n", "L 33.9375 71.578125 \n", "L 41.109375 71.578125 \n", "L 41.109375 25.203125 \n", "L 50.78125 25.203125 \n", "L 50.78125 17.140625 \n", "L 41.109375 17.140625 \n", "L 41.109375 0 \n", "z\n", "M 32.328125 25.203125 \n", "L 32.328125 57.46875 \n", "L 9.90625 25.203125 \n", "z\n", "\" id=\"ArialMT-34\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(127.19140625 332.83046875)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_4\">\n", " <g id=\"line2d_10\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 192.721875 318.672656 \n", "L 192.721875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_11\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"192.721875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_12\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"192.721875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_4\">\n", " <!-- 0.06 -->\n", " <defs>\n", " <path d=\"M 49.75 54.046875 \n", "L 41.015625 53.375 \n", "Q 39.84375 58.546875 37.703125 60.890625 \n", "Q 34.125 64.65625 28.90625 64.65625 \n", "Q 24.703125 64.65625 21.53125 62.3125 \n", "Q 17.390625 59.28125 14.984375 53.46875 \n", "Q 12.59375 47.65625 12.5 36.921875 \n", "Q 15.671875 41.75 20.265625 44.09375 \n", "Q 24.859375 46.4375 29.890625 46.4375 \n", "Q 38.671875 46.4375 44.84375 39.96875 \n", "Q 51.03125 33.5 51.03125 23.25 \n", "Q 51.03125 16.5 48.125 10.71875 \n", "Q 45.21875 4.9375 40.140625 1.859375 \n", "Q 35.0625 -1.21875 28.609375 -1.21875 \n", "Q 17.625 -1.21875 10.6875 6.859375 \n", "Q 3.765625 14.9375 3.765625 33.5 \n", "Q 3.765625 54.25 11.421875 63.671875 \n", "Q 18.109375 71.875 29.4375 71.875 \n", "Q 37.890625 71.875 43.28125 67.140625 \n", "Q 48.6875 62.40625 49.75 54.046875 \n", "M 13.875 23.1875 \n", "Q 13.875 18.65625 15.796875 14.5 \n", "Q 17.71875 10.359375 21.1875 8.171875 \n", "Q 24.65625 6 28.46875 6 \n", "Q 34.03125 6 38.03125 10.484375 \n", "Q 42.046875 14.984375 42.046875 22.703125 \n", "Q 42.046875 30.125 38.078125 34.390625 \n", "Q 34.125 38.671875 28.125 38.671875 \n", "Q 22.171875 38.671875 18.015625 34.390625 \n", "Q 13.875 30.125 13.875 23.1875 \n", "\" id=\"ArialMT-36\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(182.99140625 332.83046875)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-36\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_5\">\n", " <g id=\"line2d_13\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 248.521875 318.672656 \n", "L 248.521875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_14\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"248.521875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_15\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"248.521875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_5\">\n", " <!-- 0.08 -->\n", " <defs>\n", " <path d=\"M 17.671875 38.8125 \n", "Q 12.203125 40.828125 9.5625 44.53125 \n", "Q 6.9375 48.25 6.9375 53.421875 \n", "Q 6.9375 61.234375 12.546875 66.546875 \n", "Q 18.171875 71.875 27.484375 71.875 \n", "Q 36.859375 71.875 42.578125 66.421875 \n", "Q 48.296875 60.984375 48.296875 53.171875 \n", "Q 48.296875 48.1875 45.671875 44.5 \n", "Q 43.0625 40.828125 37.75 38.8125 \n", "Q 44.34375 36.671875 47.78125 31.875 \n", "Q 51.21875 27.09375 51.21875 20.453125 \n", "Q 51.21875 11.28125 44.71875 5.03125 \n", "Q 38.234375 -1.21875 27.640625 -1.21875 \n", "Q 17.046875 -1.21875 10.546875 5.046875 \n", "Q 4.046875 11.328125 4.046875 20.703125 \n", "Q 4.046875 27.6875 7.59375 32.390625 \n", "Q 11.140625 37.109375 17.671875 38.8125 \n", "M 15.921875 53.71875 \n", "Q 15.921875 48.640625 19.1875 45.40625 \n", "Q 22.46875 42.1875 27.6875 42.1875 \n", "Q 32.765625 42.1875 36.015625 45.375 \n", "Q 39.265625 48.578125 39.265625 53.21875 \n", "Q 39.265625 58.0625 35.90625 61.359375 \n", "Q 32.5625 64.65625 27.59375 64.65625 \n", "Q 22.5625 64.65625 19.234375 61.421875 \n", "Q 15.921875 58.203125 15.921875 53.71875 \n", "M 13.09375 20.65625 \n", "Q 13.09375 16.890625 14.875 13.375 \n", "Q 16.65625 9.859375 20.171875 7.921875 \n", "Q 23.6875 6 27.734375 6 \n", "Q 34.03125 6 38.125 10.046875 \n", "Q 42.234375 14.109375 42.234375 20.359375 \n", "Q 42.234375 26.703125 38.015625 30.859375 \n", "Q 33.796875 35.015625 27.4375 35.015625 \n", "Q 21.234375 35.015625 17.15625 30.90625 \n", "Q 13.09375 26.8125 13.09375 20.65625 \n", "\" id=\"ArialMT-38\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(238.79140625 332.83046875)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-38\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_6\">\n", " <g id=\"line2d_16\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 304.321875 318.672656 \n", "L 304.321875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_17\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"304.321875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_18\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"304.321875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_6\">\n", " <!-- 0.10 -->\n", " <defs>\n", " <path d=\"M 37.25 0 \n", "L 28.46875 0 \n", "L 28.46875 56 \n", "Q 25.296875 52.984375 20.140625 49.953125 \n", "Q 14.984375 46.921875 10.890625 45.40625 \n", "L 10.890625 53.90625 \n", "Q 18.265625 57.375 23.78125 62.296875 \n", "Q 29.296875 67.234375 31.59375 71.875 \n", "L 37.25 71.875 \n", "z\n", "\" id=\"ArialMT-31\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(294.59140625 332.83046875)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_7\">\n", " <g id=\"line2d_19\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 360.121875 318.672656 \n", "L 360.121875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_20\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"360.121875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_21\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"360.121875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_7\">\n", " <!-- 0.12 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(350.39140625 332.83046875)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_8\">\n", " <g id=\"line2d_22\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 415.921875 318.672656 \n", "L 415.921875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_23\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"415.921875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_24\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"415.921875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_8\">\n", " <!-- 0.14 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(406.19140625 332.83046875)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_9\">\n", " <g id=\"line2d_25\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 471.721875 318.672656 \n", "L 471.721875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_26\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"471.721875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_27\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"471.721875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_9\">\n", " <!-- 0.16 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(461.99140625 332.83046875)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-2e\"/>\n", " <use x=\"83.3984375\" xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"139.013671875\" xlink:href=\"#ArialMT-36\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"matplotlib.axis_2\">\n", " <g id=\"ytick_1\">\n", " <g id=\"line2d_28\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 25.321875 318.672656 \n", "L 471.721875 318.672656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_29\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"25.321875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_30\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"471.721875\" xlink:href=\"#mb51e4ad12f\" y=\"318.67265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_10\">\n", " <!-- 0 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(12.7609375 321.2578125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_2\">\n", " <g id=\"line2d_31\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 25.321875 257.292656 \n", "L 471.721875 257.292656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_32\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"25.321875\" xlink:href=\"#mb51e4ad12f\" y=\"257.29265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_33\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"471.721875\" xlink:href=\"#mb51e4ad12f\" y=\"257.29265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_11\">\n", " <!-- 5 -->\n", " <defs>\n", " <path d=\"M 4.15625 18.75 \n", "L 13.375 19.53125 \n", "Q 14.40625 12.796875 18.140625 9.390625 \n", "Q 21.875 6 27.15625 6 \n", "Q 33.5 6 37.890625 10.78125 \n", "Q 42.28125 15.578125 42.28125 23.484375 \n", "Q 42.28125 31 38.0625 35.34375 \n", "Q 33.84375 39.703125 27 39.703125 \n", "Q 22.75 39.703125 19.328125 37.765625 \n", "Q 15.921875 35.84375 13.96875 32.765625 \n", "L 5.71875 33.84375 \n", "L 12.640625 70.609375 \n", "L 48.25 70.609375 \n", "L 48.25 62.203125 \n", "L 19.671875 62.203125 \n", "L 15.828125 42.96875 \n", "Q 22.265625 47.46875 29.34375 47.46875 \n", "Q 38.71875 47.46875 45.15625 40.96875 \n", "Q 51.609375 34.46875 51.609375 24.265625 \n", "Q 51.609375 14.546875 45.953125 7.46875 \n", "Q 39.0625 -1.21875 27.15625 -1.21875 \n", "Q 17.390625 -1.21875 11.203125 4.25 \n", "Q 5.03125 9.71875 4.15625 18.75 \n", "\" id=\"ArialMT-35\"/>\n", " </defs>\n", " <g style=\"fill:#262626;\" transform=\"translate(12.7609375 259.8778125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_3\">\n", " <g id=\"line2d_34\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 25.321875 195.912656 \n", "L 471.721875 195.912656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_35\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"25.321875\" xlink:href=\"#mb51e4ad12f\" y=\"195.91265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_36\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"471.721875\" xlink:href=\"#mb51e4ad12f\" y=\"195.91265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_12\">\n", " <!-- 10 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 198.4978125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_4\">\n", " <g id=\"line2d_37\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 25.321875 134.532656 \n", "L 471.721875 134.532656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_38\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"25.321875\" xlink:href=\"#mb51e4ad12f\" y=\"134.53265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_39\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"471.721875\" xlink:href=\"#mb51e4ad12f\" y=\"134.53265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_13\">\n", " <!-- 15 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 137.1178125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-31\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_5\">\n", " <g id=\"line2d_40\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 25.321875 73.152656 \n", "L 471.721875 73.152656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_41\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"25.321875\" xlink:href=\"#mb51e4ad12f\" y=\"73.15265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_42\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"471.721875\" xlink:href=\"#mb51e4ad12f\" y=\"73.15265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_14\">\n", " <!-- 20 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 75.7378125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_6\">\n", " <g id=\"line2d_43\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 25.321875 11.772656 \n", "L 471.721875 11.772656 \n", "\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n", " </g>\n", " <g id=\"line2d_44\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"25.321875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_45\">\n", " <g>\n", " <use style=\"fill:#262626;stroke:#262626;\" x=\"471.721875\" xlink:href=\"#mb51e4ad12f\" y=\"11.77265625\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_15\">\n", " <!-- 25 -->\n", " <g style=\"fill:#262626;\" transform=\"translate(7.2 14.3578125)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#ArialMT-32\"/>\n", " <use x=\"55.615234375\" xlink:href=\"#ArialMT-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"patch_3\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 68.706375 318.672656 \n", "L 108.449925 318.672656 \n", "L 108.449925 11.772656 \n", "L 68.706375 11.772656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_4\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 108.449925 318.672656 \n", "L 148.193475 318.672656 \n", "L 148.193475 220.464656 \n", "L 108.449925 220.464656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_5\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 148.193475 318.672656 \n", "L 187.937025 318.672656 \n", "L 187.937025 306.396656 \n", "L 148.193475 306.396656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_6\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 187.937025 318.672656 \n", "L 227.680575 318.672656 \n", "L 227.680575 281.844656 \n", "L 187.937025 281.844656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_7\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 227.680575 318.672656 \n", "L 267.424125 318.672656 \n", "L 267.424125 306.396656 \n", "L 227.680575 306.396656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_8\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 267.424125 318.672656 \n", "L 307.167675 318.672656 \n", "L 307.167675 318.672656 \n", "L 267.424125 318.672656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_9\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 307.167675 318.672656 \n", "L 346.911225 318.672656 \n", "L 346.911225 281.844656 \n", "L 307.167675 281.844656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_10\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 346.911225 318.672656 \n", "L 386.654775 318.672656 \n", "L 386.654775 294.120656 \n", "L 346.911225 294.120656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_11\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 386.654775 318.672656 \n", "L 426.398325 318.672656 \n", "L 426.398325 306.396656 \n", "L 386.654775 306.396656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_12\">\n", " <path clip-path=\"url(#p51e0d14344)\" d=\"M 426.398325 318.672656 \n", "L 466.141875 318.672656 \n", "L 466.141875 306.396656 \n", "L 426.398325 306.396656 \n", "z\n", "\" style=\"fill:#4c72b0;stroke:#000000;stroke-linejoin:miter;stroke-width:0.3;\"/>\n", " </g>\n", " <g id=\"patch_13\">\n", " <path d=\"M 25.321875 318.672656 \n", "L 471.721875 318.672656 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_14\">\n", " <path d=\"M 25.321875 318.672656 \n", "L 25.321875 11.772656 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_15\">\n", " <path d=\"M 471.721875 318.672656 \n", "L 471.721875 11.772656 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"patch_16\">\n", " <path d=\"M 25.321875 11.772656 \n", "L 471.721875 11.772656 \n", "\" style=\"fill:none;\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <defs>\n", " <clipPath id=\"p51e0d14344\">\n", " <rect height=\"306.9\" width=\"446.4\" x=\"25.321875\" y=\"11.77265625\"/>\n", " </clipPath>\n", " </defs>\n", "</svg>\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x1137c2438>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Write any python you need to here\n", "\n", "import pandas as pd\n", "import seaborn as sns\n", "\n", "\n", "\n", "converted_lead_levels = pd.Series(converted_lead_levels)\n", "epa_action_threshold = 0.015\n", "critical_lead_levels = pd.Series(\n", " converted_lead_levels[converted_lead_levels > epa_action_threshold])\n", "\n", "critical_lead_levels.hist()\n", "critical_lead_levels.count()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "// write any markdown here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How does the mean value for all the readings compare to the EPA's \"action level\"? What about the range of values from the readings? As a reminder, here's what the EPA guidelines say:\n", "\n", "> Lead and copper are regulated by a treatment technique that requires systems to control the corrosiveness of their water. If more than 10% of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L. \n", ">\n", "> Source: (http://www.epa.gov/your-drinking-water/table-regulated-drinking-water-contaminants#seven). " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Write any python you need to here\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "// write any markdown here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Is comparing the mean to the action level enough to tell us whether Flint had a definite problem with its drinking water? If so, why? If not, why not? Take some time to think this through." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Write any python you need to here\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "// write any markdown here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "# Homework - Informing Government\n", "\n", "As part of this week's homework, **You're going to create a letter to [send to the Governor's office](http://michigan.gov/snyder/0,4668,7-277--267869--,00.html)** based on your data anlysis here. You will consider this core question: **Did water lead levels exceed the EPA's action limits? And if they did, how can we understand how badly it exceeded the limits?**\n", "\n", "So that you're prepared to work on the homework, **make sure to have the person who creates this notebook email it to everybdoy in the group!**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Feedback (required!)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## How far did you get on this in class?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "// Write your answer here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What questions do you (or does your group) have after this assignment?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "// Write your answer here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## How to submit this assignment\n", "\n", "Log into the course Desire2Learn website (d2l.msu.edu) and go to the \"In-class assignments\" folder. There will be a dropbox labeled \"Day 4\". Upload this notebook there (but not pictures of drawings, etc.). You only have to upload one notebook per group - just make sure that everybody's name is at the top of the notebook!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Want to learn more?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- [Two][1] [talks][2] by Hans Rosling on visualizing public health data\n", "- [DataKind][3]: data analysis for humanity\n", "- [Code For America][4]\n", "- [The U.S. Digital Service][5]\n", "\n", "[1]: http://www.ted.com/talks/hans_rosling_the_truth_about_hiv\n", "[2]: http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen\n", "[3]: http://www.datakind.org\n", "[4]: http://www.codeforamerica.org\n", "[5]: https://www.whitehouse.gov/digital/united-states-digital-service" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" }, "toc": { "toc_cell": false, "toc_number_sections": true, "toc_threshold": 4, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 0 }
agpl-3.0
mjones01/NEON-Data-Skills
code/Python/remote-sensing/hyperspectral-data/Plot_Spectral_Signature_Flightlines_py.ipynb
1
1372019
null
agpl-3.0
fermiPy/fermipy-extra
notebooks/gtools_customize.ipynb
1
375274
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Configuring the model, running g-tools and output files and infos" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial shows how to configure the model and how to run Fermipy-LAT g-tools with Fermipy.\n", "Many parts of this tutorial are taken directly from the documentation page of Fermipy: [fermipy.readthedocs](http://fermipy.readthedocs.io/en/latest/). \n", "I suggest to visit it to find further informations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Configuring the model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The model can be configured with a configuration file or directly running Fermipy with your script." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The configuration file defines the data selection and analysis parameters. The configuration file has a hierarchical structure that groups parameters into dictionaries that are keyed to a section name (data, binning, etc.). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When creating a class instance, the configuration is initialized by passing either a configuration dictionary or configuration file path to the class constructor. \n", "Keyword arguments can be passed to the constructor to override configuration parameters in the input dictionary. \n", "In the following example the config dictionary defines values for the parameters emin and emax. By passing a dictionary for the selection keyword argument, the value of emax in the keyword argument (10000) overrides the value of emax in the input dictionary." ] }, { "cell_type": "raw", "metadata": {}, "source": [ "# config = {\n", "'selection' : { 'emin' : 100,\n", " 'emax' : 1000 }\n", "}\n", "\n", "gta = GTAnalysis(config,selection={'emax' : 10000})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The configuration file can be created also with a yaml file.\n", "Below I report a sample of configuration applied for an analysis of the SMC:" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "data:\n", " evfile : 'ft1.fits'\n", " scfile : '/u/gl/mdimauro/kipac/workdir/files/SC/P8_104months_ft2.fits'\n", " ltcube : '/u/gl/mdimauro/dmcat/workdir/mattia/LogNLogS_Ebins/files_bins/bin13/P8_SOURCE_zmax105_1_3_ltcube.fits'\n", "\n", "binning:\n", " roiwidth : 12.0\n", " binsz : 0.08\n", " binsperdec : 8\n", " coordsys : 'GAL'\n", "\n", "selection :\n", " emin : 1000\n", " emax : 500000\n", " tmin : 239557417\n", " tmax : 512994417\n", " zmax : 105\n", " evclass : 128\n", " evtype : 3\n", " glon: 302.25\n", " glat : -44.37\n", " \n", "gtlike:\n", " edisp : True\n", " irfs : 'P8R2_SOURCE_V6'\n", " edisp_disable : ['isodiff','galdiff']\n", "\n", "model:\n", " src_roiwidth : 12.0\n", " galdiff : '$FERMI_DIFFUSE_DIR/gll_iem_v06.fits'\n", " isodiff : '$FERMI_DIFFUSE_DIR/iso_P8R2_SOURCE_V6_v06.txt' \n", " catalogs: gll_psc_v16.fit\n", "\n", "fileio:\n", " usescratch: False" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The configuration file has the same structure as the configuration dictionary such that one can read/write configurations using the load/dump methods of the yaml module:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "DATA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data section defines the input data files for the analysis (FT1, FT2, and livetime cube). \n", "evfile and scfile can either be individual files or group of files. The optional ltcube option can be used to choose a pre-generated livetime cube. \n", "If ltcube is null a livetime cube will be generated at runtime with gtltcube." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below an example of the data part:" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "data :\n", " evfile : ft1.lst\n", " scfile : ft2.fits\n", " ltcube : null" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The options for the data component are the following:\n", "* cacheft1: Cache FT1 files when performing binned analysis. If false then only the counts cube is retained.\n", "* evfile: Path to FT1 file or list of FT1 files.\n", "* ltcube: Path to livetime cube. If none a livetime cube will be generated with gtmktime.\n", "* scfile: Path to FT2 (spacecraft) file." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "BINNING" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Options in the binning section control the spatial and spectral binning of the data. " ] }, { "cell_type": "raw", "metadata": {}, "source": [ "binning:\n", "\n", " # Binning\n", " roiwidth : 10.0\n", " npix : null\n", " binsz : 0.1 # spatial bin size in deg\n", " binsperdec : 8 # nb energy bins per decade\n", " projtype : WCS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The roiwidth is the ROI width, npix specifies the number of pixels, binsz indicates the pixel size, binsperdec is the number of energy bins per decade and projtype is the type of projection and can be WCS and HEALPIX." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Other options are: \n", "* coordsys: for the coordinate system Galactic or Celestial (CEL or GAL), \n", "* hpx_order: is the healpix order, hpx_ordering_scheme is the HEALPix Ordering Scheme, \n", "* proj: is the Spatial projection for WCS mode, Width of the ROI in degrees. \n", "* roiwidth: is the number of pixels in each spatial dimension will be set from roiwidth / binsz (rounded up)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "COMPONENTS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The components section can be used to define analysis configurations for independent subselections of the data. Each subselection will have its own binned likelihood instance that is combined in a global likelihood function for the ROI (implemented with the SummedLikelihood class in pyLikelihood). The components section is optional and when set to null (the default) only a single likelihood component will be created with the parameters of the root analysis configuration.\n", "\n", "The component section is defined as a list of dictionaries where each element sets analysis parameters for a different subcomponent of the analysis. The component configurations follow the same structure and accept the same parameters as the root analysis configuration. Parameters not defined in a given element will default to the values set in the root analysis configuration.\n", "\n", "The following example illustrates how to define a Front/Back analysis with two components. Files associated to each component will be given a suffix according to their order in the list (e.g. file_00.fits, file_01.fits, etc.)." ] }, { "cell_type": "raw", "metadata": {}, "source": [ "# Component section for Front/Back analysis\n", " - { selection : { evtype : 1 } } # Front\n", " - { selection : { evtype : 2 } } # Back" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following example illustrates how to define an analysis divided in four components. Each of them has a different zmax and uses a different evtype and isotropic template." ] }, { "cell_type": "raw", "metadata": {}, "source": [ "components:\n", " - model: {isodiff: $FERMI_DIFFUSE_DIR/iso_P8R2_SOURCE_V6_PSF0_v06.txt}\n", " selection: {evtype: 4, zmax: 80}\n", " data: {ltcube: ltcube_00.fits}\n", " - model: {isodiff: $FERMI_DIFFUSE_DIR/iso_P8R2_SOURCE_V6_PSF1_v06.txt}\n", " selection: {evtype: 8, zmax: 85}\n", " data: {ltcube: ltcube_01.fits}\n", " - model: {isodiff: $FERMI_DIFFUSE_DIR/iso_P8R2_SOURCE_V6_PSF2_v06.txt}\n", " selection: {evtype: 16, zmax: 95}\n", " data: {ltcube: ltcube_02.fits}\n", " - model: {isodiff: $FERMI_DIFFUSE_DIR/iso_P8R2_SOURCE_V6_PSF3_v06.txt}\n", " selection: {evtype: 32, zmax: 100}\n", " data: {ltcube: ltcube_03.fits}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "EXTENSION" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The options in extension control the default behavior of the extension method. For more information about using this method see the Extension Fitting page. The main options are the following:\n", "* fit_ebin: Perform a fit for the angular extension in each analysis energy bin.\n", "* fit_position: Perform a simultaneous fit to the source position and extension.\n", "* fix_shape: Fix spectral shape parameters of the source of interest. If True then only the normalization parameter will be fit.\n", "* free_background: Leave background parameters free when performing the fit. If True then any parameters that are currently free in the model will be fit simultaneously with the source of interest.\n", "* free_radius: Free normalizations of background sources within this angular distance in degrees from the source of interest. If None then no sources will be freed.\n", "* sqrt_ts_threshold: Threshold on sqrt(TS_ext) that will be applied when update is True. If None then nothreshold is applied.\n", "* width: Sequence of values in degrees for the likelihood scan over spatial extension (68% containment radius). If this argument is None then the scan points will be determined from width_min/width_max/width_nstep.\n", "* width_max: Maximum value in degrees for the likelihood scan over spatial extent.\n", "* width_min: Minimum value in degrees for the likelihood scan over spatial extent.\n", "* width_nstep: Number of scan points between width_min and width_max. Scan points will be spaced evenly on a logarithmic scale between width_min and width_max." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is a notebook dedicated to this analysis." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "FILEIO" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The fileio section collects options related to file bookkeeping. The outdir option sets the root directory of the analysis instance where all output files will be written. If outdir is null then the output directory will be automatically set to the directory in which the configuration file is located. Enabling the usescratch option will stage all output data files to a temporary scratch directory created under scratchdir." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sample fileio Configuration" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "fileio:\n", " outdir : null\n", " logfile : null\n", " usescratch : False\n", " scratchdir : '/scratch'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The options for the fileio are the following:\n", "* logfile: Path to log file. If None then log will be written to fermipy.log.\n", "* outdir: Path of the output directory. If none this will default to the directory containing the configuration file.\n", "* outdir_regex: Stage files to the output directory that match at least one of the regular expressions in this list. This option only takes effect when usescratch is True.\n", "* savefits: Save intermediate FITS files.\n", "* scratchdir: Path to the scratch directory. If usescratch is True then a temporary working directory will be created under this directory.\n", "* usescratch: Run analysis in a temporary working directory under scratchdir.\n", "* workdir: Path to the working directory.\n", "* workdir_regex: Stage files to the working directory that match at least one of the regular expressions in this list. This option only takes effect when usescratch is True." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "GTLIKE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Options in the gtlike section control the setup of the likelihood analysis include the IRF name (irfs)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A subsample of options for the gtlike section is listed below:\n", "* edisp: Enable the correction for energy dispersion.\n", "* edisp_disable: Provide a list of sources for which the edisp correction should be disabled.\n", "* use_external_srcmap: Use an external precomputed source map file.\n", "* use_scaled_srcmap: Generate source map by scaling an external srcmap file.\n", "* wmap: Likelihood weights map." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Likelihood wights map is created and used in order to account for example for the uncertainty in the interstellar emission." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "MODEL" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The model section collects options that control the inclusion of point-source and diffuse components in the model. galdiff and isodiff set the templates for the Galactic IEM and isotropic diffuse respectively. catalogs defines a list of catalogs that will be merged to form a master analysis catalog from which sources will be drawn. Valid entries in this list can be FITS files or XML model files. sources can be used to insert additional point-source or extended components beyond those defined in the master catalog. src_radius and src_roiwidth set the maximum distance from the ROI center at which sources in the master catalog will be included in the ROI model." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sample for the Model section:" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "model :\n", "\n", " # Diffuse components\n", " galdiff : '$FERMI_DIR/refdata/fermi/galdiffuse/gll_iem_v06.fits'\n", " isodiff : '$FERMI_DIR/refdata/fermi/galdiffuse/iso_P8R2_SOURCE_V6_v06.txt'\n", "\n", " # List of catalogs to be used in the model.\n", " catalogs :\n", " - '3FGL'\n", " - 'extra_sources.xml'\n", "\n", " sources :\n", " - { 'name' : 'SourceA', 'ra' : 60.0, 'dec' : 30.0, 'SpectrumType' : PowerLaw }\n", " - { 'name' : 'SourceB', 'ra' : 58.0, 'dec' : 35.0, 'SpectrumType' : PowerLaw }\n", "\n", " # Include catalog sources within this distance from the ROI center\n", " src_radius : null\n", "\n", " # Include catalog sources within a box of width roisrc.\n", " src_roiwidth : 15.0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the sample above the official IEM and isotropic template are used together with the 3FGL catalog given with a fits file and by an additional catalog given with an xml file following the notation of the Fermi Science Tools [fermi.fssc.spectralmodel](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/xml_model_defs.html#xmlModelDefinitions).\n", "Then two sources named as SourceA and SourceB are added." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To define two or more galactic diffuse components you can optionally define the galdiff and isodiff parameters as lists. A separate component will be generated for each element in the list with the name galdiffXX or isodiffXX where XX is an integer position in the list." ] }, { "cell_type": "raw", "metadata": {}, "source": [ "model:\n", " galdiff :\n", " - '$FERMI_DIFFUSE_DIR/diffuse_component0.fits'\n", " - '$FERMI_DIFFUSE_DIR/diffuse_component1.fits'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To explicitly set the name of a component you can define any element as a dictionary containing name and file fields:" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "model:\n", " galdiff :\n", " - { 'name' : 'component0', 'file' : '$FERMI_DIFFUSE_DIR/diffuse_component0.fits' }\n", " - { 'name' : 'component1', 'file' : '$FERMI_DIFFUSE_DIR/diffuse_component1.fits' }" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The list of sources for inclusion in the ROI model is set by defining a list of catalogs with the catalogs parameter. Catalog files can be in either XML or FITS format. Sources from the catalogs in this list that satisfy either the src_roiwidth or src_radius selections are added to the ROI model. If a source is defined in multiple catalogs the source definition from the last file in the catalogs list takes precedence." ] }, { "cell_type": "raw", "metadata": {}, "source": [ "model:\n", "\n", " src_radius: 5.0\n", " src_roiwidth: 10.0\n", " catalogs :\n", " - 'gll_psc_v16.fit'\n", " - 'extra_sources.xml'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fermipy supports four spatial models which are defined with the SpatialModel property:\n", "\n", "* PointSource : A point source (SkyDirFunction).\n", "* RadialGaussian : A symmetric 2D Gaussian with width parameter ‘Sigma’.\n", "* RadialDisk : A symmetric 2D Disk with radius ‘Radius’.\n", "* SpatialMap : An arbitrary 2D shape with morphology defined by a FITS template.\n", "\n", "The spatial extension of RadialDisk and RadialGaussian can be controlled with the SpatialWidth parameter which sets the 68% containment radius in degrees. Note for ST releases prior to 11-01-01, RadialDisk and RadialGaussian sources will be represented with the SpatialMap type." ] }, { "cell_type": "raw", "metadata": {}, "source": [ "model:\n", " sources :\n", " - { name: 'PointSource', glon : 120.0, glat : 0.0,\n", " SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000, Prefactor : !!float 1e-11,\n", " SpatialModel: 'PointSource' }\n", " - { name: 'DiskSource', glon : 120.0, glat : 0.0,\n", " SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000, Prefactor : !!float 1e-11,\n", " SpatialModel: 'RadialDisk', SpatialWidth: 1.0 }\n", " - { name: 'GaussSource', glon : 120.0, glat : 0.0,\n", " SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000, Prefactor : !!float 1e-11,\n", " SpatialModel: 'RadialGaussian', SpatialWidth: 1.0 }\n", " - { name: 'MapSource', glon : 120.0, glat : 0.0,\n", " SpectrumType : 'PowerLaw', Index : 2.0, Scale : 1000, Prefactor : !!float 1e-11,\n", " SpatialModel: 'SpatialMap', Spatial_Filename : 'template.fits' }" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OPTIMIZER" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This section provides informations for the setup used for the optimization. The list of options are the following:\n", "* init_lambda: Initial value of damping parameter for step size calculation when using the NEWTON fitter. A value of zero disables damping.\n", "* max_iter: Maximum number of iterations for the Newtons method fitter.\n", "* min_fit_quality: Set the minimum fit quality.\n", "* optimizer: Set the optimization algorithm to use when maximizing the likelihood function.\n", "* retries: Set the number of times to retry the fit when the fit quality is less than min_fit_quality.\n", "* tol: Set the optimizer tolerance.\n", "* verbosity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "PLOTTING" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This section selects the options to be used to make the plots:\n", "* cmap: Set the colormap for 2D plots. Default magma\n", "* cmap_resid: Set the colormap for 2D residual plots.\n", "* figsize: Set the default figure size.\n", "* format: format of images\n", "* interactive: Enable interactive mode. If True then plots will be drawn after each plotting command.\n", "* label_ts_threshold: TS threshold for labeling sources in sky maps. If None then no sources will be labeled." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "SELECTION" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The selection section collects parameters related to the data selection and target definition. The majority of the parameters in this section are arguments to gtselect and gtmktime. The ROI center can be set with the target parameter by providing the name of a source defined in one of the input catalogs (defined in the model section). Alternatively the ROI center can be defined by giving explicit sky coordinates with ra and dec or glon and glat." ] }, { "cell_type": "raw", "metadata": {}, "source": [ "selection:\n", "\n", " # gtselect parameters\n", " emin : 100\n", " emax : 100000\n", " zmax : 90\n", " evclass : 128\n", " evtype : 3\n", " tmin : 239557414\n", " tmax : 428903014\n", "\n", " # gtmktime parameters\n", " filter : 'DATA_QUAL>0 && LAT_CONFIG==1'\n", " roicut : 'no'\n", "\n", " # Set the ROI center to the coordinates of this source\n", " target : 'mkn421'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A sample of options for this section are the following:\n", "* emax/emin: Maximum/Minimum Energy (MeV)\n", "* evclass: Event class selection.\n", "* evtype: Event type selection.\n", "* filter: Filter string for gtmktime selection.\n", "* logemax/logemin: Maximum/Minimum Energy (log10(MeV))\n", "* phasemax/phasemin: Maximum/Minimum pulsar phase\n", "* radius: Radius of data selection. If none this will be automatically set from the ROI size.\n", "* target: Choose an object on which to center the ROI. This option takes precendence over ra/dec or glon/glat.\n", "* tmax/tmin: Maximum/Minimum time (MET).\n", "* zmax: Maximum zenith angle." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Running g-tools" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First of all you need to load the configuration file, create the object gta and run the tool gta.setup that implements the ST gtselect, gtmktime, gtbin, gtexpcube, gtsrcmap tools" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the commands below we import the packages needed to run the script." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import os\n", "import numpy as np\n", "from fermipy.gtanalysis import GTAnalysis\n", "from fermipy.plotting import ROIPlotter, SEDPlotter\n", "import matplotlib.pyplot as plt\n", "import matplotlib\n", "from IPython.display import Image" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we untar the file ../data/SMC_data.tar.gz. This will copy the config.yaml and ft1 file in the notebook directory." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "if os.path.isfile('../data/SMC_data.tar.gz'):\n", " !tar xzf ../data/SMC_data.tar.gz\n", "else:\n", " !curl -OL https://raw.githubusercontent.com/fermiPy/fermipy-extras/master/data/SMC_data.tar.gz\n", " !tar xzf SMC_data.tar.gz" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:02:08 INFO GTAnalysis.__init__(): \n", "--------------------------------------------------------------------------------\n", "fermipy version 0.16.0+175.ge34f \n", "ScienceTools version ScienceTools-11-07-00\n", "WARNING: UnitsWarning: 'photon/cm**2/MeV/s' contains multiple slashes, which is discouraged by the FITS standard [astropy.units.format.generic]\n", "WARNING: UnitsWarning: 'photon/cm**2/s' contains multiple slashes, which is discouraged by the FITS standard [astropy.units.format.generic]\n", "WARNING: UnitsWarning: 'erg/cm**2/s' contains multiple slashes, which is discouraged by the FITS standard [astropy.units.format.generic]\n", "2018-03-31 09:02:11 INFO GTAnalysis.setup(): Running setup.\n", "2018-03-31 09:02:11 INFO GTBinnedAnalysis.setup(): Running setup for component 00\n", "2018-03-31 09:02:11 INFO GTBinnedAnalysis._select_data(): Skipping data selection.\n", "2018-03-31 09:02:11 INFO GTBinnedAnalysis.setup(): Using external LT cube.\n", "2018-03-31 09:02:13 INFO GTBinnedAnalysis._create_expcube(): Skipping gtexpcube.\n", "2018-03-31 09:02:13 INFO GTBinnedAnalysis._create_srcmaps(): Skipping gtsrcmaps.\n", "2018-03-31 09:02:13 INFO GTBinnedAnalysis.setup(): Finished setup for component 00\n", "2018-03-31 09:02:13 INFO GTBinnedAnalysis._create_binned_analysis(): Creating BinnedAnalysis for component 00.\n", "WARNING: AstropyDeprecationWarning: \"clobber\" was deprecated in version 2.0 and will be removed in a future version. Use argument \"overwrite\" instead. [astropy.utils.decorators]\n", "2018-03-31 09:02:35 INFO GTAnalysis.setup(): Initializing source properties\n", "2018-03-31 09:03:30 INFO GTAnalysis.setup(): Finished setup.\n" ] } ], "source": [ "gta = GTAnalysis('config.yaml')\n", "matplotlib.interactive(True)\n", "gta.setup()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The setup() method performs the data preparation and response calculations needed for the analysis (selecting the data, creating counts and exposure maps, etc.). Depending on the data selection and binning of the analysis this will often be the slowest step in the analysis sequence. The output of setup() is cached in the analysis working directory so subsequent calls to setup() will run much faster." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The g-tools performed with gta.setup() are the following:\n", "* gtselect: [gtselect_fssc](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtselect.txt)\n", "* gtmktime: [gtmiktime_fssc](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtmktime.txt)\n", "* gtbin: [gtbin_fssc](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtbin.txt)\n", "* gtsrcmaps: [gtsrcmaps_fssc](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtsrcmaps.txt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to have a summary of the source model you can use the command:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:03:55 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.059 1.45e-05 2.22 nan 1434.2 \n", "3FGL J0112.9-7506 2.572 1.172 1.31e-06 2.17 nan 120.0 \n", "3FGL J0023.9-7203 2.662 0.714 9.3e-06 2.65 nan 1675.8 \n", "3FGL J0029.1-7045 3.008 0.506 2.49e-06 2.28 nan 269.9 \n", "3FGL J0021.6-6835 5.122 1.859 5.27e-07 2.65 nan 84.0 \n", "3FGL J2351.9-7601 5.495 1.027 3.74e-06 1.69 nan 117.5 \n", "3FGL J2338.7-7401 5.777 0.677 4.38e-06 1.89 nan 213.2 \n", "3FGL J0146.4-6746 6.423 0.420 1.03e-06 2.39 nan 123.7 \n", "3FGL J2336.5-7620 6.454 0.557 1.66e-06 2.33 nan 186.9 \n", "3FGL J0002.0-6722 7.153 0.483 2.07e-06 1.95 nan 113.2 \n", "isodiff --- 1.000 0.0313 2.12 nan 9076.7 \n", "galdiff --- 1.000 0.126 0.00 nan 17968.1 \n", "\n" ] } ], "source": [ "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The table above contains:\n", "* sourcename as given in the catalog\n", "* offset from the center of the roi. Sources are ranked with respect to this parameter\n", "* normalization of the SED\n", "* energy flux of the source\n", "* index of the SED with a PowerLaw SED\n", "* Test Statistics\n", "* npred is the number of sources associated to the source\n", "* free column that tells if the SED parameter of the sources are free (if the column is filled with an asterix) or fixed without no asterix." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Source dictionary" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First of all, let's make a fit using gta.fit tool.\n", "Source fitting with fermipy is generally performed with the optimize and fit methods. fit is a wrapper on the pyLikelihood fit method and performs a likelihood fit of all free parameters of the model. This method can be used to manually optimize of the model by calling it after freeing one or more source parameters." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0059.0-7242e : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0112.9-7506 : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0023.9-7203 : ['norm', 'alpha', 'beta']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0029.1-7045 : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0021.6-6835 : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J2351.9-7601 : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J2338.7-7401 : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0146.4-6746 : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J2336.5-7620 : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0002.0-6722 : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for isodiff : ['Normalization']\n", "2018-03-31 09:04:41 INFO GTAnalysis.free_source(): Freeing parameters for galdiff : ['Prefactor', 'Index']\n", "2018-03-31 09:04:41 INFO GTAnalysis.fit(): Starting fit.\n", "/u/gl/mdimauro/kipac/software/anaconda/lib/python2.7/site-packages/scipy/interpolate/fitpack2.py:226: UserWarning: \n", "The maximal number of iterations maxit (set to 20 by the program)\n", "allowed for finding a smoothing spline with fp=s has been reached: s\n", "too small.\n", "There is an approximation returned but the corresponding weighted sum\n", "of squared residuals does not satisfy the condition abs(fp-s)/s < tol.\n", " warnings.warn(message)\n", "2018-03-31 09:04:57 INFO GTAnalysis.fit(): Fit returned successfully. Quality: 3 Status: 0\n", "2018-03-31 09:04:57 INFO GTAnalysis.fit(): LogLike: -77883.041 DeltaLogLike: 80.036 \n" ] } ], "source": [ "gta.free_sources()\n", "fitresult=gta.fit()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:04:57 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 *\n", "3FGL J0023.9-7203 2.662 0.590 9.68e-06 2.70 4889.10 1771.0 *\n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 *\n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 *\n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 *\n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 *\n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 *\n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 *\n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 *\n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n" ] } ], "source": [ "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now you see that the ts column is filled and the free column has all asterix because we have freed the sources." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fermipy gives the possibility to access many informations on the sources in the model.\n", "Below a few examples." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "NAME AND CHARACTERISTICS OF THE SOURCE" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3FGL J0059.0-7242e\n", "3FGL J0059.0-7242e\n", "SpatialMap\n", "None\n", "SpatialMap\n", "DiffuseSource\n", "PowerLaw\n", "$FERMIPY_DATA_DIR/catalogs/Extended_archive_v15/Templates/SMC.fits\n", "None\n", "{'3FGL J2336.5-7620': 0.021540975517969452, '3FGL J0029.1-7045': -0.018737972377049942, 'isodiff': -0.011270554190343823, 'galdiff': -0.16130718991869766, '3FGL J2338.7-7401': 0.01187470654461815, '3FGL J0059.0-7242e': 0.9999999999999998, '3FGL J0112.9-7506': -0.010991866042965983, '3FGL J0146.4-6746': 0.01590697189126327, '3FGL J0023.9-7203': -0.02136376358912324, '3FGL J0021.6-6835': 0.01579921758235634, '3FGL J0002.0-6722': 0.011830993863816544, '3FGL J2351.9-7601': 0.00401017952234348}\n", "[4.95790377e+02 3.41435355e+02 2.31934703e+02 1.55836591e+02\n", " 1.03590847e+02 6.85066795e+01 4.54694907e+01 3.03664598e+01\n", " 2.00853639e+01 1.32773079e+01 8.77338782e+00 5.83038311e+00\n", " 3.90279960e+00 2.59778026e+00 1.71628875e+00 1.12902221e+00\n", " 7.43126007e-01 4.87775565e-01 3.21625630e-01 2.11836077e-01\n", " 1.38999521e-01 8.97531536e-02]\n" ] } ], "source": [ "print gta.roi.sources[0]['name'] #name of the source\n", "print gta.roi.sources[0]['Source_Name'] #name of the source\n", "print gta.roi.sources[0]['SpatialModel'] #spatial model\n", "print gta.roi.sources[0]['SpatialWidth'] #spatial size parameter\n", "print gta.roi.sources[0]['SpatialType'] #spatial size parameter\n", "print gta.roi.sources[0]['SourceType'] #Source type\n", "print gta.roi.sources[0]['SpectrumType'] #Spectrum type string\n", "print gta.roi.sources[0]['Spatial_Filename'] #Path to spatial template\n", "print gta.roi.sources[0]['Spectrum_Filename'] #Path to the SED source template\n", "print gta.roi.sources[0]['correlation'] #Dictionary of correlation coefficients.\n", "print gta.roi.sources[0]['model_counts'] #Vector of predicted counts for this source" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "CHARACTERISTICS OF THE POSITION OF THE SOURCE" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "14.75\n", "-72.7\n", "302.14493\n", "-44.4167\n", "nan\n", "nan\n", "nan\n", "nan\n", "nan\n", "nan\n", "nan\n", "nan\n", "nan\n", "nan\n", "-0.07331403829880656\n", "0.04939684436004943\n", "0.0750319866158955\n", "-0.046748398465821905\n", "0.0884039\n" ] } ], "source": [ "print gta.roi.sources[0]['ra'] #ra\n", "print gta.roi.sources[0]['dec'] #dec\n", "print gta.roi.sources[0]['glon'] #glon\n", "print gta.roi.sources[0]['glat'] #glat\n", "print gta.roi.sources[0]['ra_err'] #error for ra\n", "print gta.roi.sources[0]['dec_err'] #error for dec\n", "print gta.roi.sources[0]['glon_err'] #error for glon\n", "print gta.roi.sources[0]['glat_err'] #error for glat\n", "print gta.roi.sources[0]['pos_err'] #error for the position in deg\n", "print gta.roi.sources[0]['pos_r68'] #68% CL error for the position\n", "print gta.roi.sources[0]['pos_r95'] #95% CL error for the position\n", "print gta.roi.sources[0]['pos_r99'] #99% CL error for the position\n", "print gta.roi.sources[0]['pos_err_semimajor'] #1-sigma uncertainty (deg) along major axis of uncertainty ellipse.\n", "print gta.roi.sources[0]['pos_err_semiminor'] #1-sigma uncertainty (deg) along minor axis of uncertainty ellipse.\n", "print gta.roi.sources[0]['offset_ra'] #Right ascension offset from ROI center in local celestial projection (deg).\n", "print gta.roi.sources[0]['offset_dec'] #Declination offset from ROI center in local celestial projection (deg).\n", "print gta.roi.sources[0]['offset_glon'] #Galactic longitude offset from ROI center in local galactic projection (deg).\n", "print gta.roi.sources[0]['offset_glat'] #Galactic latitude offset from ROI center in local galactic projection (deg).\n", "print gta.roi.sources[0]['offset'] #Angular offset from ROI center (deg)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The error for the position is nan because we have not calculated yet the relocalization. \n", "Let's run the localization for a source with gta.localize tool." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:06:10 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 *\n", "3FGL J0023.9-7203 2.662 0.590 9.68e-06 2.70 4889.10 1771.0 *\n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 *\n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 *\n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 *\n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 *\n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 *\n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 *\n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 *\n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n", "2018-03-31 09:06:10 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 *\n", "3FGL J0023.9-7203 2.662 0.590 9.68e-06 2.70 4889.10 1771.0 *\n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 *\n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 *\n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 *\n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 *\n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 *\n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 *\n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 *\n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n", "2018-03-31 09:06:10 INFO GTAnalysis.localize(): Running localization for 3FGL J0023.9-7203\n", "WARNING: AstropyDeprecationWarning: \"clobber\" was deprecated in version 2.0 and will be removed in a future version. Use argument \"overwrite\" instead. [astropy.utils.decorators]\n", "WARNING: AstropyDeprecationWarning: \"clobber\" was deprecated in version 2.0 and will be removed in a future version. Use argument \"overwrite\" instead. [astropy.utils.decorators]\n", "2018-03-31 09:06:28 INFO GTAnalysis._localize(): Localization succeeded.\n", "2018-03-31 09:06:28 INFO GTAnalysis._localize(): Updating source 3FGL J0023.9-7203 to localized position.\n", "2018-03-31 09:06:28 INFO GTAnalysis.delete_source(): Deleting source 3FGL J0023.9-7203\n", "2018-03-31 09:06:28 INFO GTAnalysis.add_source(): Adding source 3FGL J0023.9-7203\n", "2018-03-31 09:06:31 INFO GTAnalysis._localize(): Localization completed with new position:\n", "( ra, dec) = ( 5.9919 +/- 0.0054, -72.0832 +/- 0.0053)\n", "(glon,glat) = ( 305.9080 +/- 0.0054, -44.8859 +/- 0.0053)\n", "offset = 0.0183 r68 = 0.0081 r95 = 0.0131 r99 = 0.0163\n", "2018-03-31 09:06:31 INFO GTAnalysis._localize(): LogLike: -77883.001 DeltaLogLike: 0.040\n", "2018-03-31 09:06:31 INFO GTAnalysis.localize(): Finished localization.\n", "WARNING: AstropyDeprecationWarning: \"clobber\" was deprecated in version 2.0 and will be removed in a future version. Use argument \"overwrite\" instead. [astropy.utils.decorators]\n", "2018-03-31 09:06:35 INFO GTAnalysis.localize(): Execution time: 25.06 s\n", "2018-03-31 09:06:35 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 *\n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4997.47 1770.8 *\n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 *\n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 *\n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 *\n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 *\n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 *\n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 *\n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 *\n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n" ] } ], "source": [ "gta.free_sources(free=True)\n", "gta.print_model()\n", "gta.free_sources(skydir=gta.roi[gta.roi.sources[2].name].skydir,distance=[3.0],free=True)\n", "gta.print_model()\n", "localsmc = gta.localize(gta.roi.sources[2].name, update=True, make_plots=True)\n", "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using the option make_plots=True a few control plots are created like 3fgl_j0023.9-7203_localize_peak.png with the result for the likelihood analysis for the besy fit position and error for the position." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXecFOX9x9/PbLne+x14FAEBAUWaYkFNVIwaxR5FTTS2qKiJvYuJPYklGv0laoyaxK6IxBoxIiBYsAvSr3C97pVt8/tjb3ZnZme2HBDuvOd9r33dzNNndnfms9/v93lGqKqqIpFIJBKJRDKEUHb1ACQSiUQikUj+10gBJJFIJBKJZMghBZBEIpFIJJIhhxRAEolEIpFIhhxSAEkkEolEIhlySAEkkUgkEolkyCEFkEQikUgkkiGHFEASiUQikUiGHFIASSQSiUQiGXJIASSRSCQSiWTIIQWQRCKRSCSSIYcUQBKJRCKRSIYcUgBJJBKJRCIZckgBJJFIJBKJZMghBZBEIpFIJJIhhxRAEolEIpFIhhxSAEkkEolEIhlySAEkkUgkEolkyCEFkEQikUgkkiGHFEASiUQikUiGHFIASSQSiUQiGXJIASSRSCQSiWTIIQWQRCKRSCSSIYcUQBKJRCKRSIYcUgBJJBKJRCIZckgBJJFIJBKJZMghBZBEIpFIJJIhhxRAEolEIpFIhhxSAEkkEolEIhlySAEkkUgkEolkyCEFkEQikUgkkiGHFEASiUQikUiGHFIASSQSiUQiGXJIASSRSCQSiWTIIQWQRCKRSCSSIYcUQBKJRCKRSIYcUgBJJBKJRCIZckgBJJFIJBKJZMghBZBEIpFIJJIhhxRAEolEIpFIhhxSAEkkEolEIhlySAEkkUgkEolkyCEFkEQikUgkkiGHFEASiUQikUiGHFIASSQSiUQiGXJIASSRSCQSiWTIIQWQRCKRSCSSIYcUQBKJRCKRDHKam5s57rjjyMjIoLKykmeeeWZXD2nAIwXQICE9PX1XD2Gn8EM9royMjF09hB3O6aefvquHsFP4Ib5X8MP8bv0Qj2lH8atf/Qq3201dXR1PP/00F1xwAV999dWuHtaARqiqqu7qQUjik56eTldX164exg7nh3pcGRkZeDyeXT2MHcoP8ZhAHtdg4od4TDsCj8dDXl4eX375JWPHjgVg/vz5VFRUcMcdd+zi0Q1cnLt6ABJ7Nn9XF95WVeN+IogYe4nkCIuNuGV1Cea0qH0BqFD3fYN9GXN5u7w4/ccbS6h9NWYZ6zralmoop6oqXZuM75fluRPmPPvfI7HqW2ft4N82qop3S+32NxNr0BZDjn0UIlImybpanqqqeDbV923HbyNqXxWx86321Tj54baTHYtuO6hSu64BM/H6j05Xwzvxy9rn9vfTaDgfQRW/P4DT6ehnaz9M1q5di8PhCIsfgClTprB06dJdOKqBjxRAA5gRe5TG3P+hUDqmeFcPYaeQMfKH936lVJbv6iHsFDJHluzqIewUysf+8L5bLpeTwea4OPzwGTQ1tfW7fne3k7S0tPD+ueeey7nnnhve7+zsJCcnx1AnJyeHjo6Ofvc5FJACaIAzJ+fXAJSPLKBmY1M4XbH4FW22z+jLaNuiz2QR3tfyzenCelsRoTa04DEh+tIQff8Jl1NEaEShOqGAM2FKHzOrkvUrNuvaMf5XBDhM6Vr7DgGKUCNlMfWDamwLNZwfStfnq5Hj60sPtaOGjzXSl2pZRyujALlTR9L26YaoPK186Nyr4TTNkhTZj1zgFazLRJUzW7BE9E1C69sKq/J6UieNoeeLdVHpZguInqCVRUVXPmi2nvTt69O1e11QbyczlVNV3TZaXqQPfVq4bl9e7t6jaPl0I0FDG1q90P+grt+g1g4iXEc1p2lj6ttX9eNB9OWFyvhVc38Y6pj/W+ap6MYFQVVltykVbPysuu/coDsu1dSGqjs32rgiaUHNgmOzHVQjFh4tDX0bujRDvskmFDTtm9MVRVAyPI9/fX69ZbmBTFNTGys/eqTf9WfO+A2rV6+2zc/MzKS9vd2Q1t7eTlZWVr/7HArIIOhBgrfXH962Ej+xSLb8/xJfjz9mvt3IY93IdwZmcRGPQK9vx/S7A91Y2yN+AFSv9THFqhvvfbI7r8me7/7WAQgm8F4lcqGMFs/RItyu3s7AnRr5ffu/+r7sjGuNvk39dXBQoQLBYP9fcRg7dix+v5916yI/UNasWcPEiRN34kENfqQAGiRUjCpMqvxAFj16mqtao9L01h8rdtbFfEe221vbEjN/h8fnbAeJiB8Af11T/EI7ke0Rg/rzbT7ebt171V8Rtb0fHcv4su1s09v348IcOxfdz8C/VigIFIdCWWX+rh5KP1F3qgDKyMhg3rx53HjjjXg8HpYtW8Yrr7zC/Pnz/wfHNniRAmiQYSdsduRFLN4FM9lyscgpzY5yfw1U4g1Nf/N0F+fEKNmPvpM8L+ab/I44r47CvIT7i0UyZftDsuIyJc57FUsUKaL/osmqH/PbpHf7JkroeyRoqW7t9wVe7Igvdx+J/hiLV05BDJofdpbsRAEE8NBDD9Hd3U1xcTGnnnoqDz/8sLQAxUHGAA0Smuvat/vL35+Lmr7KzhAnqZnuHd/oAMCZnmKZviPPYaz4n+gBOXCVFKBkZeDIzsBf14R3cy15Jx+GsygfJSudQGsHTX9+lvyfH0v6fnuBL4Dq91N73f24hpdQcN5JBFraween7bWl9Kz5jsJLTkP1B8Dnp3dDFR1vryRlj5EgBP76JgLN7SiolrFA+rFrsTdCqFExRUJYz87aEShCtX2vdhXaZ0R/zhRhHU9lqAegK5dblk17Q+wp44m0a9+fsI3bSQSBiIoDikUwqNJcP0iDelV23oe4j/z8fF5++eWd2scPDSmABgnd7b22eYkEP9vlJ5IeC6sbejI3eb83kHSfO5N41gOz0DAfq/aLO+gLGPJiCZRYAdDx+tcG4SrJx1lSQPeatWTuN5m8eYfgKMjBkZVJzY1/QvV0U3rT+QQ7PATaPXS+uxLflhqC3b14N9cQaPfgb2wGoPWFt+h480NwORFOJ8GubnxV9XS+uxJ/bQM4nSF3mBD0frcJ4XIiXE6C3T0IoZI+fSLpU8ejFmRT29qCp2obItWNSHGjBoIQDITibrQbQgL3BbsiiqlAxOJh/yE0t5WRnQXtkyL5lp3ZfzLM6arFjlXduGlxTk+8stl52bS3tMdfCsAqUD1enURT+3HPD6oqtRtb+eedH9LZqrvuqSrdnfbXQYkkWaQAGuBoomT4mCKa66J//WyP6ysyoyq2SNJvJ2pFsmrTiqYtsWNldgVaEKsdiRxZT3X8eJl4VhurmBdnfjYpo4chnA48Kz6nZMEp5Bw6g0BbJ94ttVR/vg7v1lqann4df0MLgbZO6OoGVWXrOTdHjqGv7/ZF70X1EWz3EGz3mNI68SxdTaDV+BnseGNZVP3WpxbR8vfX6DnzCPInjqGsfBhKihslLQXhdCJcDvxNbaAouIeXogYCqD4/gZYOAp5uhEMJCSVI8OYcmbllzrQXGXp1qqCm55nyzXVEOFM1pNtsq/p0YV1GlxBLRBnbSryMO91FjjsvwX7U5NYcimpPtS8bqx2ruqpKQX4Bp1wFf7nmP+F0xaGEYiG/j9H4gEVN2JUl+d8hBdAPDNsYoR3o049q2zYuKb41KLs4E0/Tjl/ZVZt9sz0kGqtitg0IoeIuyKa7tdPSbpBojIojJ5OMKbvjb26j+6uNjP7rtbjysuhZX0XnR1/hAZqeWkLjIy+g9nrDffuq6vFVhRb2szoHCR+XqZyzIJtgW3vMae/6usGSfHLdaQghUL0+AhazyHrXb0U4HQiXM+RKA9y7hdZPUnu8BDq6CHR09a0umcigEyynr+J0RATXzulil7CjrauG496OkxCvqhCCFGc6ZSNz+9fBQEUKoAGHFECDhNbGaJEQz/qTjPsr3GYCosHKOhJ7irVxDSA9admp8TtMoB/zGkDmOlZrACXUn+04zK4wk1jIij6uWOdIESo4FBS3A8XlZNSdF+CuKMLzxXpalywHYMuv7wtZdIiIk2Bz9Cy6WP3FEz8x3W8Z6VFlYoohJQHhraqoPn/o1ffZ7N1Yg3A6UdLcYdOGe3hooUK1x0ugu4dAR3fsduOiolmBhMP4Lse8QW+n+vlfiieHUyHoN950Y/Xfn1gru/aSO87o0kIIFCEMcUbBoErbTvix9D9BRQqgAYgUQIOEdtMX30r8JGP9Mbu/LBdWjBEAbXVfS3QWV3iaO6Gl7eOV0/835qlx+4w1HP0iiPHEiVV2zGPVHZeVq0tLc2alkXfI3mRP34PMvXan5qEXaXnjI2ofepHubzdDIPIr3ix+zGyPuEloHSCLC7hWz04IJXNTDYXE9rmz/H4CHZE1X7xV9SgpbkSqGyXFTaCjG1dRLsLtJOjpwd/RjQhEh+Ra3YjNaYmIYf3Y7MtE2tUft11dAah9lXaGMFL6hJ2+H3ssREhSY9puyWNbX7s2qUGV9pYf3nMDJbsOOQ1+kDC8b0l70fdnxixg+mP9sSoXq86OmNFUv6HRdgXondmvFckGQEfl67Z7ttRblnGkucjZbwLDFswjbewwlLQUMiaOoHXpZ3x7xm9peeMjALq+3BB2Cdn1bbcidCjPWDaWaErUJearsn8WXax2kvG+Wr4HAgiqBLt7CbR04G8MPVLA39JBoL0LJS2F1N1CFiLF7URxJfecqKDXenG92x/8PedeeYltvSk/nsXS5f9Nqq9EMYj9vp2DjzuY5as+tK1zxoWn89yrz0bqJvC2JvtVErY7ybdtLQnta7mcDoaPLorT6kBF3enT4CXJIy1Ag4DQYyashQ/EFj+xrD/m8nEXTLNsy0JoicRDs7MKM+luHji/6pINgLaK/wFw5Wfhbw1ZbNzFuQRaOsicNJIxv/s5nm+30rHqWwItHfga29h6x9OGuuZHX1i1H+8Y4tXpz1o8jtwsgm2xpyFbTWMPpe/YWcACUP2BSIxQ3zujpKXgKszpy+vG19yBUK0nWz/90rM88PijpGdnsmXTFo760eHcdNnV5GZv/xpOF117GS8sfhmXy4Xb5WLyhMncfu1tjBm1e7/b/M9LoYBgFbj3oXvZtHUT99/+ABA6v08+9JShvO9/tGpyxHaTvB3LuoZ9OzszlnGnIl1gAxJpARrgaFLCzvSbiOXHLj3WTC0795dd/I+di0jEERTpuWkxcvuH/vED/UV7Bpid5SXWFHdFhARQ/pzJjL/nHPb86+Wkjiih86tNrJl3M99f/hB1/3gXX2NiD0e0fD6Y7fPAoo/D6tji9Wf1cuZkGPbtsLMGJbzAZt/NL31cJXc+85iWGIdQnUCbh+71NfjqW0MnQ1VxZKfjLsxBSXWFSz/w+KPceO/tLLziOt55dhHv/OsVttZUc+w5P8Pr9cbuLsHP1kW/uIDNq9ay5p3VFBYUcsn1lyZQa8fhcFl/82J866Peo7jHuZ1WIPsy0anBoEpn68D5sZQcKkIN9vsl2TlIATRIaKnvNOxbrYpq3k/E+hMpG92GnSXJ7kYWNxBa9xDUSFC0fR19u1ausai2LMaWyENQ4wVF254zXR3ti5Q+sgRHRirpI0soPW4/Gt/8mDUn3Er39zXg9RHs9prGZxQ3sR58aq6jr6cdq2F8Fg9HtRM/iQibHVEnWRF08803xyhjJjKOQHcvvoaQwFR7fSAgtbyQ9FGltHd5+N2Dv+fu627hxwccjNPppLJiOE/8/mG21lTzr0UvWvb3r1efZ9KhMxm1757c88j9ccekbaenpXH8kcfyzbrvAPB6e7n+jhuZfPBUphw8lRvuvJFeb2h9m6aWZub/6gzG7TeeCbMncuyZxxHssxzMPGIm7694n/988B8e/MsDLHrjVcbNHMNhJ/wIgJPOPoF/vPgMAMFgkJeXvMh+R8xg6pzJXH7dJbR3hh6WubV6KyP3quCFV59l9hHT2WfOnvzp/+6zPc+xjjE6rX8/O+y/Y5E/gtaTQQYN0gU24JACaJAwbHToWWB2y8HHEj/mJ79D/4Kf9R8W7QnwUeNI0kRdv77RMv5HnxY1PuLH4/SH/gRCAyhpbkqPnsGUR3/FxN//krTKIpre/pRvL32Yprc+QdXFmJif/m5oJ0nXV7Lix3LsSQgY39Za27xk2on3EUkbN4K0cSPC++njKkkfV5nwvVWYNoK9PnwNbXRtqKWnqomVH6+ip7eXU879Oa7c9PD7k5mRwY8POJj/WMT1fPv9Wn59y7X8+c77+Gbpx7S0tlBTV2vsz4bOLg8vLH6RSeP3BOAPj97Px59/wjvPv8m7L7zFp198xh8fuQ8B/Plvj1BWUsaXSz/n8/c+45pLrkYIo2XmkP0P5qJzLubow49h7cp1vPn821F9Pv/Ksyxd9h7//Mtz/Pf15Xi6urjp9usMZVZ9uop3Xn6fpx75Fw88+ke+3xB6kOausAJp5WKVdTgVykcUJNiaRBIfKYAGOJrgcTodtsInEfFjqGMSP9tj/bESKWHxksCVb2e4wLaHkBVJjTn9XRMbOZMqSS3KIr00j7x992DrE2/z8Ym/o/PrrThzMgz1rCxM8VZ+juX6SlT8WFl9krHcCBF5ObIz45ZPtO1Yn42bbroJVVVRVW2GWWjbWZAT9WGLZQWyIuj10dTSTEFePsGmTpwZaaRVFoXcWgJKioppammJavuVN1/n8DmHMnvaLFLcKVx7yRUoIvbl809PPMLofScwY+7+eLq6uP+2PwDwwmsv8evzL6OooJDC/AJ+feHlPPfaCwC4nE7qG+qpqq3C5XIxc5+Z/Yp7een1F5m5177sNqySjPQMrlpwNYveeBW/PyLGF5x/GampaUwYN5E9xk7gm7Vfk6hcSdYKlMwRxBJCimOQ3rJUQjND+/uS7BRkEPQgwdPeE5Vmbb2xETFaWpyLaULrAFlZL+zcYhjdX2YyCzJo+L4xfqcJIIQx/ifqMRVxXF1mrKw+zqw0hh0znbKjpwGw9o7n6fx8E99e9zdDH67cTHo3W5+XRKw/8Vxf+mMytm0/M8yujXhj03DkZOEXRivQ9gQ22wVGX/2zn9OzdjNp40agqirda7eYKmLQOabduGkFefk0tTTT296Jv6sHZ2YqqJBSkkujp5XCwmgrw7b6OipKy9GmtGekp5Ofa/9wWIBfnXUe11xyZXhf+zTVNdQxvHxYOH1Y2TDq6kMz7C78+QXc89C9nHLuzwA47YTTuPici2L2Y0V9Qx2VlSPC+xVlw/D7/TQ2N4TTigqKw9tpqWl0ddm7l6zOp1WBSLnoGnHbsEC7hgUJieDB+ygMVbqyBiCDVE4PPZpq28Pbdm6weOJHTyzrT7iMjfsr1Ka1ZSmefjLH/5jLW02Jj3aNRdb/0cf/WPani/+J7iMS/xNr9pciVNzZ6aQVZ6G4naRXFvHd755n9c/uof3zTYZ2NQxCpO+yr8Sx5FgRjg2yEDbm/mKJHzurjN7C058JNjuqfswySd82TerIxIy9ppLidvPqW0tCN+W+X9jNm2p54803+fHcI0jfrdBQp6SomOptNeH9ru5umltbws3ruzFs69+jvnGVFJVQVVMVTq+praakODSNPysjk5uvuImV/17Okw8+waN/f5T/roh2ydlZhbTU4qISPN2RGXs1tdU4nU4KC4qiylq2k8B7Gb/I9lmC9CgIRBBatg3ih6HKGKABhxRAgwAFQcWIgpjCJxHxYxf3E0sMJev+CqcneKVr2Nhka7HZFZhnf7my09j9vB8z+7lfUzBrLP7mDr69/QXavtgMWAnDUL2erQ2WM8UMN8Q4gc+x4n7sxJbVfizhkwz+Gvt1gLanXa2eme7vNuFvCq10HSWCzJYvqzYtMgWQk5XN1Rdeym9+exNv/fc9ej3dbK7eyhkLzqO8uJTjZv+Inm2hfh3pblKLsjnuyKN54713WP7xR/i8vdz+wD0E+zk7Z96RP+X3j9xHY3MTTS3N3PvnP3DCUfMAeHPpW2zcshFVVcnMzMShOHA4otc1KioopKpmK8Fg0PLYfzr3WBa/9Rpbqrbg6fJw1wN3cNRhx+B0JmL0jy2u4lUTVonJtGOD4lAo2S221W1Aowb7/5LsFKQLbICjiRFXSvRbZfUrMBnxY+2K6StnY/2xCn4OWWesxmJ0f1lZWVIyUvA0dEbVtcPOhWPl/kpk9lcshCLY968X0PLpBlac9QDebS26dozWFrPYcaSnEGg23rit3FuJiJ+omWIJih874WN7vPGmx6enEGyJLmO37k+yWLnE/E0xlgoQxHCFqWifVKujuuycC8jPzeO6u27Deb+bbbXbOOrQw/nL3feT6k4JL44Y7PGBojDtsAP449338ssrLsbT3cWFZ55LeUlZrOFYHpdA5bLzFtDR2cnB80Kzt44+7CguO28BABs3b+Ta311PU0sTuVk5nHnyGew3fb+oNo867CheXPwikw7Yk+EVw1ny7BuG/JOPPYXu3m5O+sU8er29HLjvHG69ZmHom5vge5PI2k1Rx9yXYHcubOvZYI5LdLnlLUuy4xCquiOXJ5PsSIQQHJ5zFQBj9qpg3WfVtqbvqEBofV4M8WNl/dFusEKIsGCJ3KBDtxW99UcTQHorjn5aut30dwGMnlXJppWbLWd/JeP+6q8A0ru/hFBxZqQw+uT9yBpdzJrr/4krzUmwx2cQTJoAipwb41R6Rajk7D2azs++D++Hz0mMae/bI37iWX36u6iinpQ9x9L75dq45TRB1Pab+YwtH55UH6H6MfKs7t6q5WYfIpJuU86RnoK/q9dY3tyQEnpOW6DHT0pRNt5WD0FfINyYVlxfzbBt6FtYl9ElmLu3b8u+jDPFgb83YN1WAm1A9BPircZmmWZ5HNZvrN3bXVO/hTtOfjW873AqVI4v4eEPLmWw3bamTR7JR4tu6Xf9Gcffz+rVq3fgiCQgLUADHk3wNNa0x7X4hOvo863WAoohfsz9GvITtP6Yxc+uQBM/yVB53HT2OP/HNCz/jnWPvIUiVAI9PlN8R3zrT39dX1HH0A/xsyOEj72VzXjsQdvnf23fzSmW5SHeM7liWhZ0meZyUfumMajBIIGeYCgjGCRzRBG+9m56GjtQ/cm5KBJ5rtiOwOEMCaDo/u2fDWZMFoRW9o5VxibN0hJk3al2JqLaFJHrkKqqqEGVppp2BiUqcjbXAEQKoEFC8fBcWnWuonjCB5K3/ITq6Oob2jJum/sKW2ysbrhYW38UAS1bWqIrYCzTH+uP/hhiWX9c6W6GHzaJra+upruqmQ9/+SjdWxtMFqhod5lmMYoco1Ec9FZHZrb1x/W1veInai2XOFPtEyGwrcGwb1XXLIo0q1iyN/ykRJDpvmrcje0KA/OzwFSsfETh+qpKb1MH3tYuUgqzcKa78XX0IIRADaqGfgzbNscTVd5SONi3Fas/q7pWnScrBhMmCRGk5WCTK4TA4XRQVJEDG/oxll2OKoOZByBSAA0CFARpaW7bx1zYCR+tbrichaVHv693fZnrhPqJb/0JtWdv1TDjcDks3V//C0b8dB8mXvgjGj/eSM3bn9O4ar1OZFn9UjW6voBoYaSdY5fDKHgs3FvbI34Stfr0Zyp8uK5iatftQCgqatD+HbK1HvVDCO0UEWRlBRKWTcTsXw0E6KlrRUXgzEghrTSXnoZ2vG3dCR/fzsZv85BXiGMpS6BkQlYgXWKiIkjL1VAQBHVl3Wmu6AoSST+RAmiAo4kTr+nBhla3EbMYiSd+9MXN4kcvYvpr/YkV+6P9zy3PpnWrtRXI2H7E+hM5PmvrTyKxP6WzRjNy3nSWX/I3OtbVWk6HNFuLDHkWMUGReiopJTn4ahtt4352hvjpr/AxCx07HAX5BLY12Ja3FEZRwiQ5IaQdk7X1JLYIMo0OK6UjAMXlJNAXzxPKipS1s7box+D39NJV00JacTYpBZl0bm4kGFCj6piDobWxb68VCLsyug+PrWBJyAq0Ha4wXaLRwhPL3mMk/AMNgb8n2qU3aJAWoAGHFECDhLpNzba3jESEjz7dKi2UHhE/kbb78hBRQshq3Z9krD/6toTNf8tFF/vRB4BwKow/YzY9jR1see0TGlatRwkaxYid9UfLt5v2HjmO2IJEMZRPTPxYubwSdXdZWrISFDx2fduWtWtXPz6dAAjtJi6EkhVB0TdjFaH1HNcEEscVZiLQ7aVzUyOODDdqQMWdlUrAGyDQ60voOLYHuzE5XdYxQMm2E863GLudCMKcrku0FkJRNaLaDwaCNFQn9gDhAYcKQgqgAYdcB2iAI/pehRU5UXmKEDtE/FjF/WjWmtAYjL8kLVdYFmbhFN/6owhor261OXIj+raMx5uY9adgYgWHP30+hXtX0rh6Q6hsMLR4oNVT383WH6vAZ/2sL3Pgs29bc3g7kRlfO0L86BdDtFr4UCiqpUjR6lm99ATqGxMuq51Dy0SDXklGjNmkm9sQlpu2aaovtnU1ntgWOsUV8IQediscClmVBWSU5+JwRq/jYx63MKRHEqLGksC47MrYnosE2tFbxGKXi5MeczwiZqqiCApKs2x6G+ioIfXY35dkpyAtQIOE9MwUwDrmBqLjepIVP/HifsyuL7tVn/tlmcFaHOndVuY+krUCjTlpBt8+8V+q3vg8LIqsx2F/sTEHPmMqbxZKsYKerdrYXvFj1S9YW2a2d6aWFfo2rdYGMhamX9aghC1B1l0RyxUW7QJKzgqkx9vaha+jh5SCDNKKs2irbsIXDOAN+slypsepnTxWY/J7k3cXWZ+HWL0kPy7zeSeqjDD979tTBKkZ7qT6H1BIC9CAQ1qABjialScYCFpae8yrQwsRuTHq86zSkon70W8bgqyTtP6Yya3ITeAsRIg9y8xo/amYvTtznzkfV0YKq25+0SB+Yj30NJb1J3zMunQr15e7NL9vW4054yue+DFbdbR2hK6cndXHbPGJaa0R8V/OksKY+cb2dL4OO0w/+BO1BiVkCTKPx7Cnk0oChCvW70B74WrZt+5zHgwE6K7voL26mbZAF2S76MVHi69DF/OzfVYgu3TDdkyrS7QVKHZ/wvJcxDo9lnlR7721/UfqYoTtAAAgAElEQVS7/ikidN0KJrnkgEQSCymABgm1G5oMgsfK4mMf2xOdZiV+ovLQLYqIUQiZ97V+4j0PzNrCE9v6oxdT2lj1wc9mUvLSmX3bPKZd/RPW3P8Wfk/sByjqY3+0/1Fl0ARL9PEY2gmfV7MFJ1KGcFvxxY9Wx7yeUKLCx0r0xBMv5nbC7QlrF5pduwmju/MJ1ISE0A4VQdbFo/fjCAlj6yotvk46/F10B3pxopCXmsWoPXYHd/xn5iVK9bZqxswcQyAQbe1xukOut3Ezx7C5anPMsZtFkGW+bs9OBMUSZzGFkIUYAuMPtmAgSL3NshkDHhX5LLABiBRAAxztApBfnB2VZ3WzMVt9zOJHH1hsFj/muB+9+Am3bxI4eneU2TIUK/ZH2+7YFn9hM/O6P/r0iDgKiQ9XipOUjBS66ttZctKfqFu53mTNMVp/7ESP3spjt+aP3SwwRaj4G/pigGxmfCUjfrTzLExl9PlgLXzCeTbCxCxyDILHRLCpOek6sW6KdoUffupJGpoiaw7VNzXy56eejC5uI7QSEUHjD5nNiNlT6erqQvWHYoCeeO4fzD3jJIvyCVqmdFYgBUG2M52AGsSn+lEQ9DR1MmrUKCZP3YsRM8Yy4cC9uPj6y/F0deraMPVt8R3U7w8rq+D7j9aFnxd24i9O4JkXnjGU/W7lOkYMr0zoGOz6syqYSAySVZ5tvjC9dCgIHIpCXtEgjgEKbsdLslOQAmgQIARk5qXZ/sI2W4Xs3GB64WN2e8UKetbqxnN9aeWtgpXtCPgCca0/VudDMd2UnOlu5tx9EpPPnUNndQuf3f8WgR6fRW17VFXloU1vUtPTHCVqwCiKwmPBaJ3Rgp5Vf2CHih8t3dIqlIDwCe/HESxau1YvEfBHpZmxa9vmvhbFw089SXV3J9c/eB8NTQ00NDVw+PxTefn9d1m1cZ1lnWRFkEbA7+ehJx9DmEJ9rItHu8IsP5s6EeQSDvJcmaQ7UugM9NDkbUdVVR5/4FE2r1rL8vc/ZM03n/P7R+6ztXrpRVCiaMW171Y4Pe7Yk9vvrwjS8hM5LP31TnEIMrJTEqg1AJEWoAGJFEADHO0Co+p+Bdi5wuzcYHZWH6uYH6ugZ734CYsV/cVUGON+jOn21h9FQL7p6c52ri+Dpck08yu3Mp+jn/olvo4evnj0vbClR2snEeuPAJ6sep91njqKUyLWNr3rK96Ud70gSC0vSFr8aC87l5fWVjzhYxbJdqLESuTEwlFSFJUWtw0L5RPr5nf83COpr6nl7j/8notvv42pPzmCkmEVvPDCC4wdZv9csWREkLa54OzzuO/xR/D4ei3LfLfhe475xc+onDWJqXPn8OKSRQBsrt7CbjMnhp/EfvENV7D7/nuF65575cU8/ORf8KtBGn3tKAhynOkECcXxuUQo5qggJZu5c+fyfdVGhNPBtvptzL/oLMbtN5GZc2fz9+efDrf5yRefcvjJcxkzaxyTDprCTXfdjAC2Vm+lfFIFgYCfO+6/g5WfrOT6269n7Mwx3HX/XQAMn1zBxi0bAejobOfS6y5hrzmT2O+IGdz/6B8J9t1gn3vlX5xw5rH89ve3MvmACex/5Cze++Bd0zmNPsuxRFCiQshOkJld/YPtGWAGpAAacEgBNMDRRE7t940xY3/MFp94Vh+trqFMguInMraI+DGOOVr8xDzGBMvZUT5rNF89vYKVC19F9foM4id6XNbT3t9q+IL3mr5h4R7zSFEcBteXOc7HPAVeL370Qc9afjjdQvyYY3RiubwSFT4aZtETS6jECm5O9GXuJ/Sz1yRCdHc7qxtfcUEht128gHPP+SWP/uX/uGjBJTz33HMEtjWQ64r96z9ZS9DUPSdzwIxZvPD6q1Hj8HR18dOzT+PEo45lwwef8vg9D3D5rdfxzbrvGDFsN7IyMlnzzZcALP/4IzLSM/hufchCtXz1SmZPm4VTUch0pNLs6+ib/ZWGIPI93LJ5C4sXLWbyxD1JyUrlvCsvpKykjM//8zF//cMj3H7fHby/4r8I4IY7b+SXp5/N9yu+Y8WSDznm8KOjDumaBVczc+pMbrvmNtatXMc1v74m6nzcePv1dHR28MHi5Tz71xd4cdHzPPvyv8L5n335KaNHjObTpV9w3lkXcNUtv4madmcngrZHCOnLmcuGr2d+lfqNgzQGSDIgkQJokJBdkBH7pmMSR7GsPqG0SDlITvzorTEaWr7d9PRwvk7sCMDT2Gnr+opl/VEUwbSLDqbyoDF89+xHrH/xY8vzprf+WI8p1NeI9AJ+u8fx5LnSrF07urgfs/gJl9GJH39ze0Lix5hm7fIyW330eVp5O2uPleCJ9Tkyt6F/BdtaY8f72LYZQwwZN8Ms++ADHn74YW688Ub+9vgT9HZ0hN+HWEHSyVqCrr/41zz61N9oaG6MZAlY8t7b7FYxjPnzTsLpdLLXxEn89LC5vPzmYgBmT5/FslUrqGuoB+Cnhx3JslUr2FS1hXZPJ5P2GA9AmsNNaUo+ua4M0pSQgDvj4rMZNWsCP5l/HPtNm8VFp53L+q/XsfKTVdx5552kpaUxaY89OW3ez3h+0QsAuJwuNm7ZRFNLMxnpGewzZR/bc2BxqAggEAiw6I1FXL3gGjIzMhleMZxfnnEeLy1+IVyuomwYpx5/Gk6HgxOOOYn6hjoamhos3WEiKsVeBJnHk+jYzS6wrPwdv4TA/wZVrgM0AJECaICjfflzCo1ffCs3mCYi4ll9rMSPXoBE2oqIH/14Yk15R1dfmP5bpflizNCyEz+p2Wkc/uDPKN17Nxq/qI5a9FATNom4vmp6mnl863uMzypjRHqBqW/jVHi7GV9a3I9huntPd9+2UfyEz0MC4seQrgmPOMJHPz470RNOSzCQWUPt6THsJ1u/rxUMYsgkhBqaGjns9J8xcfIkLrzwQu69+x7OOOtMrn/gPuqbG3Vld4wI2nPsOKZPmsK9jz6EfmbY1tpqVn/+GcNm7Bl+Pfvay9Q3NAAq+0+fxQerlrNs9Ur2mzaTA6bvy7LVK1i2agX77jMDRVEM3enj6p584K9sXPE1n729krtv/B1pqWlsa9hGXk4u2TnZ5I4sxOF2MKy8gtq6bQD84dZ72LB5AwcccyBHnHIkby19K855Jvx4D43m1ma8Pi/DyoaFz9Gw8mFsq68NlykqiLg509PSAOjq8phPm9WpDO8lYg1KVAwZXPyKICsvLcGaA4xdHAPU29vL2WefTWVlJVlZWey9994sWbJk+49rkCMF0ABHEzjCQvBAtOiBaOFjZfUJ3dgFVrO9rCw/5qDnZOJ+YpE/osDW+mPH/jcdTeuGBt4470l6WjyGPLP4iUWHv5sbvnuOspTIKttm11fUM8D6xFAs8aMIFXdFsaX40bYjaZH2hIhv9dH6sBI+ZmtPrFigqCBlEf/lLCtNyAVmdNHFegd0YqjvrvjCktfDMT9qQxMnHziHKy67nLv/8HtWfvO19iaE3ws7LC1bNiLoqosu5Ynn/klNXV04q6K0nP2nzaT6oy+p/uhLqj76km0ff8sfb/4dELIALf94FR+sWs7+02Yxa5/prPxkNctWrWD/aTON/dl8D/RpZcWltLS1sm3tVnqaPWSU5lBdW01ZSSkAoypH8cjdD/Hl+59z0S8u5JeXn0dXV1dUW0KnLrSn02sU5Objcrqoqq0Kl62uraa0uCz291RYbtqkRQYQ+71PXAjpr3s7bgGBXcAunAXm9/sZPnw4S5cupa2tjYULF3LSSSexadOm7T+uQYwUQIOE6nWNgFHwWIkeO+EjTHX0Lq/QPrr2jeJHa8NK/GjEWvDQzvojovJiu75G/3g8KVmpvH/di6y+9w0IBqOsP2bsrD8B1c/CtS+yX94YjirdK2Ll0coKfRtGS5BZ/ETeA6Mlx0786EWOVlbL09oFe6uPPi8yvsQDoBMRL4m+9Ni1G8vdFiEkhC6YfwYLr72OQF0o5qekLybo/cVL+OlRR+k6o09YJOcSM5TvyysvKeX4I4/i4b8/Hh7LkXMO5fvNG/nHKy/g8/nw+3x8/MUavl2/DgHsPmIEqSkpPLvoJWZPn0l2ZhZFhYUsemsJs6fPMvSn9RUWKX3/A2oAfzBkpakoK2fGXtNY+Mfbad3WxIq3PuCZl/7JqSefggCeX/QCjc1NOBSFnKxQkL7iMF6+BVBYUMSWqs0hwZpiXODR4XBw1OFHc9cDd9Lp6aSqpoq//P1RjvvJPMO4rE+k5WaMtNAbFPs915e0FkT6a50aCFK3sSl2YxJLMjIyuPnmmxkxYgSKonDUUUcxcuRIPv7YOnRgqCAF0ABH+/Jn5abaCh6z6Inn7rISP5ELTXLixyBWdBf5eK4v7X93s9GCEzm+SLtOp2D21Ucw49Ifk56fjtrrC+f31/XlEIJDiybyy8qDDOLHMAZT3I95rZ+wYNFWoNYJnmBbu07oGIWPVj/yHhmtPuYgZ/17GU/4QLToSUbsxCLYFr1mU3/cYPGE0MxRo8l1p4Q/TCUFhRyz/4EEWy3WjAp/hpNzieldcGogwLUXLsDT3R3OzcrM4NW/PMXzSxax+0HTGX3APtx47+14vd5wt7OnzyI/N4/h5RUAzJ42C1VVmTx+T9ux6IfdE/RS29uILxhah+jRux9ka3UVkw7eh7MWnMNVF1/BT447mszSHN794D0OPPZgRk4fw/V33sSf73qItJTUqHbPOe1sFr+1mPH7TeCxZx4znyYWXrOQ9LR0Zh+5L/POPJZjjzyOU447Je5Yhb4R42Z0OYvURISQVTv6a5zDoZCZM0hdYKgDahZYXV0da9euZeLEiTu87cGEUAf1vMIfNkIITi68ASEE4/cbwTcfbrIsF3XjNlgvdOkxrD6h/yIq3Sx+tHJhcaPLsxI4EFsAZRZm0N3ksbf+KHDMo/MJ9Pp579oX8Xf2YPfAU70AcugEjVkAvVa3mglZFYzLLDGIm1hxP3rrj5X4gUi6IlQcuVkE29qjLD9aOf35NFiDTMLHUE4x1tfn6fOt8qzyDcTI6wkE8AeDZBUUoLbHWLgyaOyw5rxzGFcxzL58H/ZXIF17quGfRSPaP/u7rLmfcFmHArpHLOjObmTfov+ocqpVnqkvNZKnAp3+bpp87ZSm5ONWXNHjdChkVYSWimjb0mxs3+acaPvOFCe+Hn9UutV+9LmxRjVlxiwXIzWRu05V/RYePv3f4X2n28HIKeUsfP2Xg246/LQ9hrHqrxf3u/6Inz1EUVEkPuvcc8/l3HPP7VdbPp+PuXPnMnr0aB555JF+j+mHgHwY6gBHmO5idiY7883OSvjo02OJHzvLj1Yunvgxj8NO/CgCCkcVUt3caSl+XOkugt1eVj3wDo1f1oSCoBMQP8b1eYziZ1nzNzxXu5L7C06PKX4M5zZJ8QOQUllC7xft4THYWX4MaRZWH326uX54fCb3lmHsVsImzuMsNHoDAVIcDs5+/33e37aNM486iuItW1iwZ+RXo+E+FDcAOn6fxvuattP3BquRz21UT9q5UmM8FFUY29ceoKq4XQQDvRYPRlXRvj2qrn/dqPpK9ZXTta8vp+8LAUKNPJI105mGEAK/GsCNK3qcgSAdW5txprpClhGHIBhQDWOyOhUqEPQH44xJdyxR58ZaxJj7tXs/rNMjqfbvubG0YWIFofd30LIdsTxFRUWsXr3aNn/OnDksXbrUMm/27Nl88MEHoSEEg8yfPx+3282DDz7Y7/H8UJACaICjXQDqNzQZLgZW5mSz+IglfPRpZpeW1n4s8aMfh1XQc6JxP1YP5gTIGZ7HMf83nzcufiY000uQsPixc32t81Tz4KY3uGP8yRSnZFmKn8i5iY77MbjAYogf0defOdhZfy714sdO+EC01ScR4RMlemymrNuxpqmJh7/5ls+amvjwmKN5/KADCagq60pLWVlTDcAtn3zC5s5ODi0v5+DycsrTbaYnm/uJcw/QxmUphMKZ9jfokMDQ5Ev0QVqJIMNYbUSQPtG2b1P7iYqgDEfIldXu78IlnKQ6TE88V1V83T4Ut4PckYV0VLXg9Xithm1Ic6Y68Xq8O08EgcX5ii5LVJ7+fVGjPouGMejygoEgjVtaLXoZDKig7rwFDd977734I1BVzj77bOrq6nj99ddxuVw7bTyDBRkDNMDRfOepGW7LOA5zQLTQ/enzBdHiRHvKcjzxoy8XFk3hvGjLj534saKntTvK+pM/soBjHz+TT//6AS3rGwzlrT6wicb9uBUnV+1+FGMzS6LET/h8W8T9mON79DE/VuJHERDs7NTtR4sffbwPujGY43jMs8T0eYbYHnP8jaJGXmAsaxBLoVfoQafwuzWfcfp77zExP5c3jjwch0OQ6nKQ4XYyNT2V8ybsgVDgl+PHcUhFOe/U1DD33/8mQJBPmhp5p6aabn/E7RKF0L1iYB0zoqKfMWbbTPi7YC1TotoNBDAHRhs3dVJKRBXTO8riYtWPhks4qfe20B3otRSoQW+AjqoWsirySMtLDzVhMR7Lfi2PK3a5WGXN50PbjFXeOk9g/lCYYxe1l9MhcKfLm3Z/ueCCC/jmm29YtGgRaWmDNZZqxyItQIOE/LIs6m1mQJinhio2Fzuzu0ufr+gvOlqesHaN2c34CgsZYX2xM+crQqWrqTPK9TXr4kP46IF3+X7RGp04Ug0XRb31xw5NeHQFenlp20pOq5jN7hnRj3Mwtmk94yt0PoziJ5xmEj9CqARaOqLEj+UsLxt3l1Wcj9XUcoO1J24MUPRxt3m9PP399zy1dj1v/OQwzp8wjqv3moQzvI6Nrs32tvB4h2Wmc8bY0ZwxdjSqqiKEoLariz999Q1nNb/P9OIi7jv7HCIOKYt3Sp9k5wbpKxPLIqRZU6zatrMG6dtV+56krrfQWFmChElS6Yr1bcd3hZmHqOr+pznclLjzqPO2UOzOI9Xh1rUTGpvP46V1UyPphZnQQsQaY2GZUv32FofosRvPTaKWIHT9R6XHqGOXb/6ciL4jBxCKIK8ow7LWgEdllz7UdPPmzTzyyCOkpKRQWloaTn/kkUc47bTTdtm4djVSAA1wrCwnVmthRLu/rPOsAp3BKH7MLi99uURmfGGRbiV+BFAwspBtLVsQAorHldDV1MnbVzyHUPVB0f1zfQEE1SB3fv8yxSk5OIVJ6GhlbcRP5DjUmOLHanVn9/BifF+3JeXysnN3JSN84okevbXr5U2bWbBsJYdWlPHA/rPISTW5Xkw4yksJrLOYCYZADcLRI4Zz9IjhtHm9fFBbhyIEzb29bOvqJsvlIsvlIsftxvzolL5GQiQthEIfBO2wLIWQqhM3Vu26XajdvX3FExBBlnmJiyA7V5gKpDrclKUU4BQOVBVTO6F6QW+Azpo2FIdCRmk2nbVtBINqlAgK+oPG8cUQNomIIMvzq9W1KBDnLY0vhrTPf1hCC1OtQcYufKZXZWXloAsc/18gXWADHM2d1bC5FSvXltH9heESoc/Tu7GsxE/0w1Gjp7onOt3dLHrsxI8iwOEItVQyqYKjHz2dwnGlO0T8aH3835a3CKJy0YhDcSgirvgxnHuRvPgJT2l3CIP4sXJ5md1XUYsimlxdEEnTu7jMri3NrSUU45ggyH9rt3Hau0vZ7OlkVkkRy+f9hMcPOYDpJYWR41ZsXg7FsG84V7r03FQ3R40cDgIKUlIYk5NNutNJq9eLXw3SE/BT29VFp88XfVE2f4hNRLvGot1i0ZW0vMRcYgm5wyzztG0LwRo1pEgfwlTGrThRhKCut5kOf5epncgxqIEgaiBI7ogCFN2XUivu6FsHyDC+qGM1bscqa3UcUXUt3rtEZIswvTQM17igSktNW5yWBiiaBWgXLYQosWbAC6BDDjkEIQR+i7iCpUuXIoTg+uuvD6f19PQwb948ysrK+O1vfxtOf+KJJ3A4HGRmZoZfWuBYfX09p556KuXl5eTk5DB79mxWrlxpqHvWWWcB0NjYyOzZsykoKCA3N5d9992XZcuWGcb1hz/8gdLSUnJycvjFL35Bb2/kcQ/arK45c+YkFLimffldLiWm4DGLHn2Mj5Xw0VxeseJ9wmUN+fbiB4t0O/Gj0dvRQ8U+u3HUg6fy7g2vUP3h97bnwbzYYTzxIwhSkpLDDWN+itvhSMjyYzXjKxnxQ1//qqfLUBYwLGpoZfUxCx/tnIfr2sT1hPLtRE8o7YuWZg589XUuW/4Rh1aUUZKRSnlWOsOyMqKEjh2qbuXhqD4tXtoYUxwKRWkpjMrOJMWhhC1ANV1dfNnSEhJCqPQGAkSZEJISQoQFhZ0QshRBgeCAE0EAhe5sWn2dtPk8lmIEoHNbO74uLzm75RvGJGL0HS/Ox1w20bigcL+GDYu8BDBf27SX0zngb1k2qANqHSBJiAH9aXr66acthQ+E1jJYsGABM2fONKT//e9/Z9q0aWzatInly5ezfv36cN6+++5LZ2dn+DVnzhwAOjs7mT59Oh9//DHNzc2ceeaZ/OQnP6GzL5BVT2ZmJo899hgNDQ20tLRw1VVXcfTRR4fH+cYbb3DHHXfwzjvvsGnTJjZs2MBNN93U73OgffELynMSEDxamjC4umIJH82qYxXvo4/NSUT8mEWP9t8Kre2uxk4yCjN5++oXqPrvOmO7OuuP+ZzoXVQQLX4+aVvPVx1bOaFsJlmulJjixzgua/Fj6Ccc+GwtfoSAYGtrpKxuRWe082lh9QEMwscghqwCmuOInsbeHu5c8zlrGpspz0znphl7sfrEozln4ljSnU6DFSmRl9rRknj5GKQ4FMoz0hiXm82EvFzSnQ68gQDft7fzdUsrVZ5OYyB1HCEUITFrkHn16HAM0HaKIFM39FcEabgUJ2WpBXT4u/AFA9F1+trr3NZOZ21bpH2hHZfxxtlfEWRXfnuFUCJiyBAE7RTklWYlUEsiSYwBK4Da2tq45ZZbuOuuuyzz7733Xg477DD22GMPQ3ogEAi/gsEggUDAsr6eUaNGcfnll1NWVobD4eDcc8/F6/Xy3XffRZVNTU1l3LhxKIqCqqo4HA5aWlpobg4tUva3v/2Ns88+m4kTJ5KXl8cNN9zAE088kfwJsMAsdsyCJ1nhA5ELm95KZI730dpIVvwQVd642OGIA3Zn6hn7suGtr6lZscFW/CTi+tKzsaueu9e/hktRogSO3XmNZfkBXZpO/ITOXyQ9YsVRcZYWxXR5Rdo0Cp1khI++f4ikN/b28Kv/Lmef51+ltquL3FQ3RWmpHFZZjuIgSqToXWixXkpxSdwykZOqEw8x7nROReBQBKlOBxPzchmVnUWKw4GKSkANsq6tjW1dXXT1WYms2kraGhT+zPadN9104O0RQYnc0BMpp893CQfD0opwKQ56g/qp70YR5O/1485MIXdkIaLvwxn0RVsOtlcEHXrcwSxf9WFSx2InhPTJdh8T87XNMn5ssCBdYAOOASuArr32Wi644AJDxLrG5s2beeyxx7jxxhuj8ubPn8+KFSsYMWIE06ZNY+zYseG8Tz/9lMLCQsaOHcvChQttrUufffYZXq+X3XffHYCzzjorSsRMnjyZ1NRUjjnmGM455xyKi4sB+Oqrr5gyZUq43JQpU6irq6OpKTSDS4t5eO+998IWqFhoIqOlulWXZn1B0F9I9CJJf4PQC59YLi99vE+y4sc8divxM+qQcfzot8fSUduKYhA3yYsfvfWnxdvJLWuf48IRP2JCVoXRzaWV1aftIPETOad97bocti4vK6tPf4WPlqYKlSVbq/iooYHMFCe752Tz6SlHc/9BMxmRm4E5VsgsWuK5s4QCwuVMyOVl5TaJe6frq5vmdFCclkqGKxQHU5qeRhCVLR4PdX2Pqmj19uINRv+wScoaJODZxYuYcsShHHPOmYw/9EA+WPVRuJ3nX3+NveYeStHeE5l65KG8+vYb4Ub+s/wDJhw6m1EHTOP5118N3+Bb29vYf96RdHg6w4dstgI9/dKzHH76PNNQVCb/aBbvLf9veJwGoULoutHka6fZ126opy/j7ewl0OMjtzIf4RA43A7LU62lba3eSsXkCsN1MJ4Ievfl/7DfjP2iylj1M3vuTD5Y8b6xTLzPgClbv68GgrTWxliJfCCjEloHqL8vyU5hQM4CW716NcuWLeO+++6jqqoqKv+SSy5h4cKFZGZmRuVlZGSwePHiqPQDDzyQL7/8ksrKSr766itOPvlknE4n11xzjaFce3s78+fP56abbiInJyeqHY3PP/+cnp4eXnrppfDzgSDkTtPX07Y7OjooKCiIf/AmwgJH1W1j92vJuK+/IVhZfPTt6K0+WjmzwNFvx7P8xBI/pZPKOeTmo1l84dMmcbN94kcAvWovJ5XP4pDC8dslfiLnNHnxA0BPT5TLK9JeXxsWcT6hQub0SJ/h97YvzRsI8MTa73n4y2/Jdru4debepLsdXD51gqENcz1L4vwcUr3d9mWCFm3b3OSi8mx+4CoCst0ust0uytMFoKKqKm1eL1UeD05FoTA1lcKU1PCMqfDXRdU3HvoAaadPBd7+4L9cd/cdPPXHB5kxfTrVW6vD/VZv28YvrryM5x96lB8fMId/L/0Ppy24kG/eXUZxQSFX/u5Wnn/4MQLBAHPPPIXjDj8Sh8PJTX+4k8t/eQHZGZm2M8MwpFufF6EaZ4aFzoWgLKWAbb1NNPnaKHDl9BU3LjTQUdtGVlkOGYVZ9Hb22PYV0IuevvMWa7FEzGmCqBWcrcpZHF4Y1fz5sKhovqYN3plM0pIzEBkQFqCnn346HJg8d+5cLrzwQu677z6czmh9tmjRIjo6Ojj55JOT6mPUqFGMHDkSRVGYNGkSN954I88//7yhTHd3N0cffTSzZs2KEkZWpKamcuqpp3LHHXewZs0aIBQj1K57XpK2nZXVP9+19uunaLdcyx9PZncYGG8Edu4urW2tDUzlYokf/diSsfxoNG9o5GelM60AACAASURBVPWL/kHD17V46pL7RWcOYtXEj6qqvFr3EUXuLH5aune/xU+4HxEtfiJ5scWPUFSCfS7RpMSPaVZXKD3Sp7YvFNjS0cnHjY04HYJvW9p4+OBZLJ13BHOGlca07hhPnOlldb71ddub7QVUgu1Zd0JssYR2/KGHYlZmZbFnXh67ZWaS5nCAgO/aW1nf0U59dzfd/oC9Naivq4X3/5FrL7qEmXvvjVCDDCstoaLP2lxdV0tuVjaHH3QwQgjmzjmEjLR0Nm7ZBICnu4uJY8cxeY8JuFxumlpbWP35p2yu2srxRx4d7kN/eMnEA1143WVcsfA6Tr7gDCqnj+PHpxzFxi2bcPSJoPXrv+eEc05lzH4TmXDgXvzx0fuB0GMOHvjLg4yfMpHhY4Zz2+9/S2t7yHK8tXorZZMqeObFf7DPj6dzwtkncdxZIUvUHvuNZ/cZY1i9ZjWbtm7ixLNPZM8DJjLpwD256OqLaGuPxBfte8RM/ttn1fnDw/dywRXncel1lzB+37EcetzBrPkqtHbXpddeTHVtNb+45OeMnzWGPz/+EGddNJ/HTQ9oPeKEH/Hmu/82fg5sPg9Op0JBuf2PUokkWQaEBei0004LL8bU2tpKfn5+WOBoMTzDhg3jueee45133mH16tVh11hbWxsOh4MvvviCV155JeE+hRCGXxO9vb0ce+yxVFRUJP2AOJ/Px4YNG5gyZQoTJ05kzZo1nHTSSQCsWbOGkpKShK0/6enp6J//lVWYQeGwHIZPLCXg9dO4pZXc0ixSs1II+II0bGompziT9JzQcvq16xrIKcwgMy/0aIK6DY2kZ6eSVZSJIgQNG5txp7nI7QsmbKlqxaEI8ipCF5bWmjYIquQPDwmujvoOfD0+CivzESIUtNzT3kPRqEKEgO7mLrpauigaHdr3tvfQ1dhB/ogCHE6Bt7MXT30HucNySc9NZ68zZrL01tdAVRk2rZLs3fKoWrqWzJJsUjLdqIEAnVuaSS/KJCUrNTSGjQ2kFaST1ndMns0NpGSmklqYGQqkrmrklZZP6JmQR1HlaIJ1bQhFkFYaOiZfXSuKGiC1LB8hVPyNbaheL2nDChCAr7kD1dNFamUxCiqBtk6C7Z2k7FaMokCw00OguY2U4SUIh0Dt7ibY3IKrtDAUP9LbQ7CxCUdRAUqaG/xelMx0gq3tKBmpiKCfwLZ6HHk5KBnpIFSCNTUo2dkoOSErZmBbDSI9HUduaMzB+jpEihslLxcAtakBVQjWKi5e2rSZxZ9/w/njd2fmhAncP2ECamsz+HyIopLQB6ezFbW7C6WkHASone2ono7QPgK12wMdrSjFpaA4UHu6UduaEflFCJcb1duL2tKIyCtEuFNQfV5Iz4COdpTUNAj4CTbWIbJyEekZoKoE62oQWdmIjNBny+lygcsFDkdoTH4fIMDRd9nx+0M3Om0/4A/pBKcuX1VDbQAiEAjNiHGG1itKDwQgEAC3m7HFxXT5fLR3ddPpUEhPTaW1pwfV7ycrLQ2n4gA1iOoPEBQKGfl5uDMz2f/kE9hv333ZrayMc085DbcQTNtnGiefeCIrvv6C6RP25P2PV3HQnIPYe599EH35Gxu3gQrlZWUUFhZy12N/5uF7/4jidKAKEH3HEPSFjsnhdqICOXm5FBUX40hPCb2v/gDBQJBZ+86ioLQYh9tBdk4OW+truP2m2xg5rJIrbrmWF95exNUX/RqPx8OVN1zLpRdczGOHPkaK6mLt2m9xpTpZ9M7rbG2oZvEzL1NQVMTzb7zE06//g4vnX0RaVjoHHXQQbd1tLFv8AU63k86uDs6/8kKefvApXG43DpdCzbZarrzkSqbuNRWf38c9D93DE88+zuUX/BqH28GsfWeRkZWBw+Vg9JjRfPn9F5x9ytn88fb7eeH153jlrRfZZ+o+PHDXn3CkKpx35gVMHLsngUCQGTOm89qbr+FKdRLwBamq28rosaM44rAjECg43Y7QdTmo4vcFyMzOYOy+lfh6/TRtbaVgt1x227MUFoUs/RCyCHWZZicOWKQFaMAxIASQnpycHGpqasL7W7duZcaMGXz88ccUFRWx1157cfXVV4fzFyxYQHl5OTfccEPMdpcsWcLUqVMpKSnh22+/ZeHChZx44olASMCccMIJpKWl8eSTT6Io9j9fV6xYgd/vZ8aMGQQCAe6//37q6urCs9HOOOMMzjrrLE477TTKysq47bbbwlPoE0H/ZRZC4Gny4Gny0NXWTePmFgA6mzyGOp1NHsMP7q4m49ohnsYuGjY0G35UNW8OWSi0ei1VoV+KmuWmrabN4NLy1HUYLEHdTR6DZWdrs8dg+alu7jJYfxraujjmoZ/RurGJjqpWPFUt4fK9LR58LZ0G15evpdNgRQq0deLRub78zR10b2lAESpvNazh+ZoPuW/iGXS2bEYR4BBB/LVNfecxVM9b12Kw/gQaWw2Wnu7WNsN+75eRlY8VAb1fR1Z3FgK8bbp9RcXf0R6O93FPHEdg82ZUndUn2NlGEHT77QS3RSwDansbgfra8JhVINi4DW8gwMbOTsblZnPHfz5gZmkRr+87hSy3i+C6b0Ll+95Itb3vieFKpE8tXwDqBqPFLdhl3Fc97QYbm35fGT2eYM0m23wAtatvPwiBqQci/L4+4RPSNo7dRrGzcAO5gH/DRtSeHtTeXlq9Xqo62kl3OhmVmY0vGKSuvoF33nmHlrp6XnzkL2Tk5XLM6T+jvrqaWy+7AgdBJu42kp/87GR6entxu1w8c99DpARDB/abn5/D+ZcvoLunh99efhWP/O1xst2pNG2r4/zLF+Dz+bjmoss4YPqs8HEH/KEfcm0trTTU1xPs7jW4kFYsX8Fpc+cRHDWO9rZWCtKzGV22G/hVDj/gEK6/61Z+84uLee31xSgqHHvIT6jvbaVb7WbPsRPx9/hYeMdvuf262yjOL4YAzN3/x+wxa0+u/s3V9GzZzNKlS7nrqttJdYfEV0dLB0uXLkX1BwngJ+CFwqwCCvcqQFXB4XAwbeI0fv/n37PgnEsJ+AKsWL6C4w8/noAvwPp16+nu6Gb65BmgwuSxU7j6xqu58dJbwsd03GHHM64y5G6bOGYyZ51/FvPnncnIylE89re/kpdRgOoHlSBe08rVnnYP61dsDu93t3bTWR+Kr/J4jNfAAY+KnM4+ABlwAkgIYQh87ukJ+bFLSkpwOp243W6DOyktLY2MjAzy8/NjtvvOO+9w1lln0dnZSUlJCaeffjrXXnstAB9++CGvvfYaaWlp5ObmhussWbKEAw44wNBOb28vl1xyCRs2bMDlcjFp0iQWL15MeXk5AEcccQRXXnklBx98MN3d3Rx//PHccsst23E+Qv/9vRGfvZ08M8T82MQLWbm79Ol2Lq9YAc/atjEGyBj3c8CVhyMELLvr34ag56DXt91xP52Bbm4ddyJ57rRw2cg5SS7o2crtpQij20tzeYWP0zzTS1FRfV7LQGdtO1RZnxYZr7bf1NPLE2vX8X9fr+WAsmL+cuhsHv/R/kY3itmtZZVukR85Pxbl7PB7Eyqvqrq+9GNVIbhlQ6ScoVIC/duUUc3BJH27eSkp5KWkoKrQGwy5xRp6e9jsDQVTn3HqqZQVFyFSUljw87O5/aEHufXyK3hn2Qdcd/ftvPn3f7L3xD355MsvOOGCc3jl/55g8viJTBk/kTf//k9UBLX1dVx95295758vcdj8k7jrmhspKy7hsPkn8c27y9GWLtWG7nQ48PUJQn0cjd/vw+mKXI6LC4vDx5KemkZnV+gHR/W2GkYMr0QIQbE7j0ZvK/W9LZSk5FNVW8VZC84J/4Dbf//9cSgOaqpqcPUtilheWm4ZE6SlNTY1cv0dN/DRJx/R6ekkGAySk51jGxdUpI0TSEtNo7e3h0DAj8MRfWtJdadw1GFH8dLiF7n0/Mt5dckrPHxvbGu70WWoEvDFn9U7YJEWoAHHgBNAZkaMGBEz8C3RKeb33HMP99xzj2XeQQcdlHBw3UEHHRSO97Hj8ssv5/LLL0+ovXho95GSEfm0b+sIp1vdiMxTRCNiJLo9K+Fj3teLH31+LPETjoMBnWCBzf/5jtV/qkEEgoY2PNUt/RY/1d1NNHjbOLFsZpS46c+Mr/6KH3OwsyJU1MYGQ/xPVKyPIc0sfHooTE/lqhWrcDscPD93DpMK8qLEkuENNaeb8vT9RWGONLVBbW2MXzao2vdj1im6r5xBw9h9FYV1vnbuLIVQX3B0ap8briI9nZLhlZSXlhJARQhBS5eHJm8PATU09X7NN1+z//QZTJs0CRXBtMlTmD55L95dvowpEyYaHk1x1e0LuenS35CWmspXa79l6p6Tcbvd+Pw+GpubKCooNDyiYlhZBVU11ahqECEUhABPVzcNzU3sVj5MN3Q1EuCsO6yK0nJefP2VUJKAIncuvWpIUJWXlnPfrfcyc+p0VATONBf+bh8q0NrTZ/Hte/9C9aOvF7+773aEELz9wlvk5+az5J1/c93vrjOcfqu3JUpQCbB6ZM8Jx5zIpdctYPreM0hLS2WfKdNsWg2hv6Y5XQ4Kh+fBxzGrDExUGQQ9EBkQQdASe8LBrCKyrQ9mtlv/Ry9MIBKXaqxPuI5exOj37cSPuZwmWAzp/8/eeYfZTVyN+x3dstXb1+veMbaxaS6YbkwHB0ILCWBCIJACAfIR0kNPSIGQQgIBEkIKgdAJoZtmjG2KbdywMbi39fbe7r3z+0NX0kga3XvX5cfu993zPHpWd+bMaDTSzrw652gEjDxyLAdfdBjb3t1ArLXTVYeBpHBQkf+cSQ8/zT3t3PTxY9R0N/c5+AEIlZcGvt7upDnwk5CSV7dv5/MvzuOE/7xEPJHggeOP4J7jZnJgRalLX72gvgBnJQhZvV+E96J6ouczeQ3eKC1Lv/qz7sYJvLmdTb1vUwXCusp5kz3B6kG6YUNwybnn8fAjj7CrroZELMZD//wHRx99FB81N3DolCm8/d57LF75ISBZtnolCz54j8n7T7CvNcC8BfPp7OrktOOOBwGjhg3nzcXvsHrdx3R3d1NeUupr4/SDDiY3J5df3/8HOrs6aGtv56a7bueQAw50AZDulAFOnnUCu2pruPdvD9Dd3UVLeysrV66gM9HNWWefxU9/9wu2bN+KQFKzq5YXXnvJ1QWFVUX2j4rScgzDYNPWTfZx2tpaKcgvoHhAMTuqd3DPX+8JbJOufapUlFewZdtmF2dNPWgahhDcductnH36ub64Z2896fKzkpU9kSwA9XGx4Ka1ts0HPLrBwTW3EQw+XohBU96bpsKPtx71ExfWscvHVXLi7WdRs3p74Fo/0YIcn/XHkiD4iSVi/PSTJziybDynVx24V+EH5Rx08GOv4WOv8eOGH+u3kZ/rt/p4XF5CSOIyjjDgp0s/5Kb3lnLeuFEs/sLphMICwxBu8FHhJgPocV2kNKDjrUe75eWmzkdTZ6azlgaG0pZPAUJaXUV+fNVVTDvwQA444Xi++cPvM33yFH5x7XUcUFzGrMMO57tXXsWFV3+LsoMP4Nwrv8Z1V3yDE486xi7f3dPFD3/5M+740Y1YLtc7f3IzV9/4I+ZcegF33XAboZDhAF3yT240h8fvfZC3313EhFmHceBJR7JzVzV//fU9COG3mXjX+hlQUMgTDzzMi2+8wsRjD+WwU4/m7cXvkGdEufyiSzniqCM474oLGDVjf6675XqWLF/iqi86IJe84jwQkJ+XxzWXX80ZF3+e/Y+YyAcffsB13/gfVqxewf6HT2DulRdz2gmnmt0svO3Sw4oqV371W/zuvt9ywJET+dND99r35TmfO5c16z7irDlnoxO1btftm5C01fWz2B9Vsp/C6HMiZP9dWOF/vQghuGbEzQAUDSykeZf/0xw6j4RKtV5rD7gHF91vndVHt58KfvLK8vnCw1/lvT++wSfPfeiCH7ONJgxUHTScuuVbSOf6ClngAdR1t/DUzsV8beRxhI30HzjdW5Yf9TV33eKGqssrMn4c8U/XJU/WH+uzo72N+9es5eFP1rP4nDnkhkPkRQxzEvToat1capp6D3huiHRusZS63vwR+yE3r9Pm6dZq+/SMK5gwYqi+sl7G/EhNWib1+dxiOt1oDtL+Xp8A6ajEEglaYt0URXJoi/UQwiA/7KwcLV1tFK76VXSRAefjOIy9dXmb7NQtNTrWfmNPKzEZpzxSTCQ/Sk97t1MW8wOpeeWFtGxvDGyT+7ie3xqlVJdSl/f4s4/x8BP/5MmHntbWZ8mW6k08efkr9m9hCArK8rn5g+/0u/WApo0dxHu3X7Tb5af/8g3ef//9vdiirEDWAtTnxQKNqrHlQd4L34O4agXwWnO8Fh31t9fSk2o/FfwIAYmObhb/dp4NP65zUoKe27bWp4Uf9Yl+Qf1HFIajfG3k8Ukr2N6DH/u8AuBH/aaX6tbywo8QkKipdll9VHfXUxs3cvjTz9Eei/HinJMoy4+SHw0FW3zwpwW6thRdr9VIZ6XxW4E0N1lykw279HkBdaYUoWwZ6NiqQWUC0gPdYqrEe5Qf0nW8sGFQGs0llLTObGpvojWmfJJCqcv72QwnSwa2XVjH9NXl1XPqFhoda78kUkh5pJi4jNvfD1OtSPGuGC3bGwlFQoTChqtNQd3q+i3c7Qw4rcC8jo4O/vboQ1xwzoWu+nT14skLRwwqRvjdiv1CJNlPYfRByQJQP5FUngfvIOKFlCDwAb/VRyhpQfvp4Ofwq2eTV1bA+pdW2u23j+954yu/ojAt/Fiur/l1H3Hf5tfoiHfbunb9ewF+rHqC4MfJxwYfFX5c7rCy5Eq9AuIkeGrDRk767wusbmzg+GGDWfmlz/OrI6cztrTQFxOUCfg4nS40cTiKfro4nUyI2qqruEQLVIF1pYIbVXoBQ3sCQj49S0JhzwQsXcezZEAkyoiCIra0N+8+BGkOv7chSAjoSvSwo3UX3TLmLpvUyynKpXi4ubaXUApn2qW7A0JvLniDg46dQkV5JZ8/7Sy9ngeGfLdUpvdUn5M9gJ8sAO0z6fNvgf1fF2uOaa0z1wcKGgC8VhahydOl6dxgQftuGHKv8GzBz5TzpjLy6HEsu/8tVx06+BFIcopyM4Kfta3buGfTy9w+4XwqcwrcsOM6Lzf8uPsy2O0FvYcf1QWmWoAwJEZBPgkByxvquei1NxheWMDVB05i/5JiImHDtA7hcY0p0KM0Onlsz4UL0POle8p4dYNEeMuAueChki4TMn1duhs2lftCVdepWf1luZlEgK7wpwkh3S4xu++dj58IYTVP2glCcTsVhiOMKigmbBg4H6xQy5n3nv32llSbIhEIs83S3URz36zPXZf39XOnbqtd/nqgIJxLOByhuqWWqmgZUSPilMVcxyucF6VoSAnN2xrNcpp2pelSV1s93erTnXXkLNa9+4krLd3U7rodEpKOxn6y6GFW+oVkAaiPizV/tDe6FzfUxf54k1LF/Vj73vTewI9dT7KdZaPKOezq2Tz95QeJdfakhR9DAAmvxcYPPwJY376T68acxn6FA33wo1p/dP3nBR2vpIv5gfTw41QmWd/SzLyVq5hYV8PUyjL+PvsYDh1YrriZnKd9b0yP77eGWjMCnwyhRwc6geIJxkxVVqZ6alVPKhMYyhSEdBDkKa97ZV56CvomdQU2APLDYZCwub2FAZEoJZFcX7k+AUHRPNMdhj6ItnV7I0UjyghFQsR74nsVgixdAurx6gTpWbdYQpr3VHtjR4ra+rhkg5n7nGQBqI+LNQBUja2g3fMGhG760UGPmp4KikTAfhD8qG4vA8grzWfhr16iaUNNRvAjgNZNNa42euGnPdbJx23b+VzVoT7rzt6K+8k04Dmd5aemq52rFy3kg9parpx5GPtXVTAgJ+KDH12Qc6/AJxPo8QBPIKz0gn9k3Y6M9YV609gV6BQzgKEMQWi3rUE9PT6ddJYgBAzMzWdDaxMJKSmL5nnKffYQBKYlCKCpp42oESHXiNotkAlJ08Y6JBCKhoh3+yEoqDu96dZlTAVCurqC9Kzf6lgTjhhUjiqDJfQ/kWRdWX1QsgDUx0UdALwDRDorkNfao6sz6BjeeB9zX+/2MoChM0ZRvWQTu5Ztzhh+DCHJKy+kp7HNZ70xhCQhE/z806cZklvKjNJRfQZ+1GDnLhnj8fXrqcrLY/aQwZw5aiR/nXUMhaNGIndszdzqk4mrS+si6wX0pCPmdFJUAp3+NxF9kpD6Y3nTdKYEO6+XJgVBareYJs2GoFDIfDr36LgtG9IHQbmhEGMLi1nf1kReKExeKOIr91lCUEJZPT7HiFDd3UBltIQ8I8flDgvnhCkZVU7DhlofBOmOm6JLM76E3nJBYgjndhKAELobq59IFoD6nGSDoPu4WO6nzqYOe9/rklI3tYy6r+p407wxq944VjvY18rDDT9Dpo3gxF+cTU5Rbq/gxxCQU5KHzvUlpeTeTS8jEFw56vg+Bz89iTi3r1jKQU8/wbObNlGSEyUSNrhwvzHkR0IYRYVJsJF4Fz/0BigHwY8vANplKRLui2GYwKNuvpvDewPZxxEZbUZ+YUZ6rhswlehuXjtPuGdTXbmAdDs7AwgTQiLCXnJ0N8MRaddvSTQUYr8BpeSHwnQlYuiDmRWScFUvXe1U6xXW8Xx1eZvq1C08OkbYsPdzQ1EGRcuo7W6kM9HtKhvvitG2q4XiEWWelaLdbQu6ooHpKS6hWmequt1jkaSruR+7wLLS5yRrAerjYg0MrbVtKQeJoN9Cky7S/NZZfax0a6qwwCanKIcTfnYWb970H7ob21PCT5DoXF8d8W5a4538cNwZhIThgh+UOv9/w8+KhjpqOjs5fuhgIiHBcyefxPjiYvsVd6HCzG5afYLjgpSraed5Z3RPx6pZQVCS6WOQ+uZXkCSU43gmwLRLt1i6mZoUdPpKeqBbTJOmDZBWLEHO4f2WoJAQIGFLewuF4QiDcgvAZ735/28JEiHDpZ8TijAop5ywCCVLCLtsZ0M74ZwwuWUFtNe2urtJ7QtNdwd0qdK3zn6m8e9qmn3bJiSd/TUIOvspjD4pWQtQP5HK0WXaB3jdpj5V6dK9FiRdeZ/Vx4YUB36EgP1OmsSWtz9h6/yPA+HHEq/1RyBp27jLBz+rW7YiSPDDcWcyIJLjgBkOuLjr3Dvwo1vnx9J5Yfsmzpj3IhfOf43tnW2IEHz3oAPZv9QNP9aWqN6W1upjPyEnOzjQ4pPC2mNfRM0F91tm0G+4ywVtsn5nBnqeehVRX3FO6clQz0dXQZC+Jt3O0taX/NttfZw0ALCUw5si3XUndccUFNEa62F7Ryt9yRKk7keNMAaC6q56WuLtrrJt1c101Lb6uljtvzEz9mPzlk0prUFBl8M6h7TXXxF13AqHDUqH9dN1gDCDuHd3y8q+kSwA9XGx55WwETjngH/g0eUFAZKl76RJu5wbPtz7oZBg7ZNLWPCz/6aEn1QLHeYW57vgZ0N7Nbete5ztnQ0+647aJ2raXoMf4Yef6s52hCFZXFvNV8aPZ+mZZ3Px+HEuq44KP2aDJKKw0A07XrjZHfBBAZ8MoGd3QSdwKyjsnX6a6bBXMKQrmJEufhACPvrkE0740oWUHXgQp196GU+/9FKyavMe+POjjzLhuOMomTKZ0y+5hO3V1fah//XsM4w4fAbjjzuaNxcvsg+5ccsWLrvsMrrjMeKKqUNt6k9//2su/c41PtgpmDCC9Zs27lUIinfFtBCEgIpoCfMWvsGU2VPtslKa91fZuIGEoiFdN7L+vXWMHD7SlRYkQ6YMZePmDYH5mQCxa9xKjjn9VqTc/S0r+0SyANTHxfrn7241l+r3TiuaOVALOWoaAfpmunSXwwEedT+nIMoXnvyG+XHFhBXD0zv4MYCcsgIbfuq7W7j548e5ctRJTBgwyAU6qeJ+LNlz+MEFPy9u38yc156nJxHn1qnTOGfUaCJhZbVmC5hsYHHifYziYhfQqOBjww+ZgY82ricT6NFd6BQUnTa+p6A4deyP93jqDeu7Y92SFoZ0RXcThGLxGGdf/jVOP342NcuWcNsPvsfF376Oj9ebk/Wbixbzkzt+xRN/+hO7lixh1PBhXHTtNQDEYjF+/KtfsviZ/3DXDTdyzc032vX+z60386sf/JjRA0owhGBXVxtSAy6uNrmaunctQYbiAvPqi4SkLFpEAklMKitGJxJ01LcxYEhJYDd6M9IhSTpQsvU8QGTd5vall9DT1p2mlj4q1ltg2YUQ+5RkAaiPi/XP31rdEggvOiuQDoZ0ZR39zFxeIgk6M799AruWbaGtunm34ce71s9HrVuYM/AQjquYkDH8qNYfkm1U4cfVlwHw49JJws/yxjq+/f4CHjjyWHIiBr7PWnhcXr5AZ6sPvLE+GqtPOvBxXdy0lp7UoJM6eJk92rRB2N4bOQMgyhiGvAV0epq0tZ9+yvbqXVz71UsJhUIccsABHDFtKv94+ikAnps3j3NPPY3J++9HNBrlR9/6FvPffZdPN2+irrGBIYMGMaRqIMcfeRQbtmwG4IkXn2fooCoOO+SQ5IEkHfEYm9qa7e9WpXKHOSI5de4XuOV3d3DCBWcxeOpEzrzsQmob6m0IWvjBu5x4wecZcdgBTJo9g4ef+jcAXd1d/PiXtzJl9gzGH30wf/znA3R2mkHDC959h8mzp/HbB/7ApGMO4Yrrr+TCb3yZmpoaxs2YyMjp49m5aydLVizluFNmM3BoFVNmH8r3f/ojenoc6KiabFp1BHD1j6/l+z/9IRd+cy7jDhvPaRfMYeOWjQB8/svmh06PP/dExs7Yj2defIbjzprNK2+8bJ9yT08PBxw9mZVrnBXjdZfQHuMSCdrrM3gLMStZyVCyANTHxfrnLx9RGgg7OughID0V+Fi64ACPf18ydPooRs7an0V3vrzH8NO+pQYpJataop8bVQAAIABJREFUNnFs+UQuGDZzt+DHsv44/ea4tCzrT5B43V4guWHZu9w5/XCmVpbjDWYOhB8FamTtDm2sj87d5VxoKy09+NgXxgs9uH/rrTQBm6esb2uqDs7T1Wu1X9vpni0NDKWsI5Wyv0pXkLFpEuox78G1H4Mw8x3LjbQBZtXHH1NZXk59QwNbd+xg3oK3mbTffrS2tXL7H+/mtu98V3nQEIzML8IQgo3tTXZ97qYFxQTBY889zT0/u5MNC5bS3dPD7/7yJwC2bt/GOVdczNcuuoT1C5bx9pMvMWXCAQjgxjtv55NN65n/5IsseXE+9Q31/PKe39j17qqtoaGpkWWvLuKPt/+GR+/9O4MGVrHxvbUsfPsdoqX5hIwQt373Rj5euIoX//Uf5i96mwcfeSjQGvT0889w3Tf/h7ULVjN6+Ch+/rtfIIBnHnoSgHmPv8Kn767jzFPO5LzPncsTzz1pl31t/mtUVVQxZcJk/W3iGatCYYPiwcU6zf4hWQtQn5MsAPVxsf75w9FQIOx4ocarA34dM80d66MaAbwuLwMTMAwBTRtqee26R4m1dvrgRyB7ZfmJ5Ofw0NbX+dvW+UBij+BH/Q3OeWfk+krCT3u8x1zb57gTOWPkCLyWnSCXl3dRQ5GXZ8OPavVx6XitPhAY39Mba096q04KyCFFfk5e6rK6utSbWACFJYhBo+yNcBTCUcTgUfZGYampPHA4YvBoc6scYvZzcTnGkNH2hhGC3DyMoaMxho5GDChJaw2aMHYMA8vLueNP9xHr6WHBkiW8tfhd2js6ATj1uGN57L/Ps/yjNXR0dvLT3/8OIQTtHR0YhsHdt97K+Vddya8fuJ97f3Y7N//mLq6cezEr167hxIu+xJyvXMyqj9ciBIzIH0BFTh7mp1T9Vh/v25FW1tyzz2P86DHk5eVy9ilzWLFmNQCPPvcUsw4/ivNOP5NIJEJ5aSkHTjwAKSV/e/xhbv/ejZSWlDKgoJA5s07iyReeBft/0eAHV11HTjSHvNw855hCMDinnK5ED0PHj2TaQVMxEjB88DC+eullvPPeIn9/JuW0E05l6pRDCEfCnD3nLFatWRXU7Zwz52zmzX+NltYWAB5/7nHO/dw52tvEGaPcW8QTm9RvRO4B/GQBaJ9J9jX4Pi7WPBLr6HbNKaB/uFZ1vHOQmSY1acm/BFt9LL3Rx0+k/qPt1K3Y6gYlBXKsujNxey0PV7Og/mN+P3kuYWPvf929N/CTkAm+vvgtppVX8j9TJuNdtdkHPzhg5ACMuW8Ul5Co3eEDH0dHeNKUjlMuivDoBV1g1yvu3sca743j/e2VIJNLYQk07fKnS5m+TkvaGpFtjZ7yIHdu9LQB2LVVwYPkXnMdsrnOPiwAXR0ktm9wqdnnoAaQJpMikQhPPnAv19xwM7+85z6+cvFczjv9NHKi5irJxx95JDd++xq+8M1v0tTSwjWXXsqAwgKGDR4EwOwjj2T2kUeChOVrPuKDlSv4+fd/wH7HHsPrj/6brTt28PUffp/5jz+FEFAUidIZj7G1vYVQKESspwchnKbFki6mSMQZjqsqKrFekc/Py6Ot3VwGY9uOHYweMTKJUxIwY9Jq6upo7+hg1nmn210wbtxY6urr7HOvKCsjNyfX1U1WtxhCMCinjGWfruDqO+9k2arldHR2EE/EOXjKwXjFutoDKyrt3/m5ebR1tPkGJuvnoIGDmH7IdP77yvOcevwpvPb269z6vVt8dXvLqv8C8c6elPp9WrIg0+ckC0D9QATQsqM50JuQan4TrnTpSvPOrUHwY+nllRVw9A2f49kL77f11blcPaYOfrySkOYr77fsfy5FkTyNhtNuFX6stL0JP0LAzcvfp7WnhysnTHKfTy/hRygdnDH8BIGPouey0ECwnkdH+9s6gb0he1qPWtw7M9tpwqegQoS+TICSgAMnTuD1x/5l/s7J5ahT5zD33LOxDDXfvHgu37x4LgAff7qBn939BybvP95VjURyzU03cdcNN1LXWE88EWfk0KEMqqhkxdo1Lt0cI0RBOEJOWQkbt211NW3j1i2EQiGGVA3SdI677UMHD+aD5R/6tMpLy8jLzWXRs68ypGowEgjl5xBv77LrEMKxQ1nQo3abIQS3/uynTJ5wALf/7HZGlAzh/of/wvNvvEg4GiLWHde0zy+KrcuXfv4Z5/HPJx8mFo8x7cCpDK4anFF9ADKeoG1XS0ZtyEpWMpGsC6yPi/XPXzSkOGPPg2pGtmJ8fG93aeBHdXmZeW6LzqFfO4b1zy+nbVt9r9xe9rko1p8dnfW0xzs435jCyPwyt6XH0hVuF4EDMk779hb8fNhYy6s7tvHQ0bPsoOdAtxfp4SdRvyvFG15WmvDBTyaurt0KgPa9YuOAVsZbS22v9M0bzn/MtDe8V82V5lYIrFZN0ygtX7OGzs4u2js6uO+hv7GjpoZLzj0HAXR2dbFy7VqklGzetp2v//BHfOsrl1BaXOxyr/750Uc5+IADOHjSJMpLSuno7GT1unW8sWgho4eP8DVhUG4Bpx47i7Xr1/PPp5+kp6eH+sZGbrjrV5x18qmEw2FXu3Wn9cU5Z/HGwrd58oX/EI/FqGuoZ/lHqwiFDL583gX84Oe3UFNXiwDqGuqY9/Ybvn6x6q0sr6ShsYHmlmb7eK1trRQVDiAvL5dFaz7gLw//lXhPnFBuxOeu818Nd3pleSWbtm52KZ0y+2RWrF7JA//8M+edcW7gQ51Vhzp+hcOCokEDUpTo29JX1gFat24dubm5XHTRRXu13v4oWQDq42KHX+RHXL+9oRYq9Jh6jrUkCHws2LFgBqx9J97HKhvNjzD8iHEsu/9NH/xg7+vhx+v6au5p5ydrH2Vp8wbCUSMl/HhfdzcU0MFu857BT0usi0PKy3n91NMpzY2mhB/Xm14usMEd7xMJ+60+SWAJeqXdHaTsv9BpA6B9N0V62MmYqg0B4XDmukGSKRB5b2hfWgYg5Cvv/PjHE08xdPpMBh0yg8XLPuSlfz5ETm4OCOjq6mLuNd+meNIUDj/zLGYeegi3XPdtpRpJXUMdd//1r9z87W+DgHA4zG9vuomT517IVTf8mN/c4Lwerx7+gKHDeeaBv/DAIw8z/PCpTPvcSRQXDuB3N/2UVG+GWenDhwzliT/9ld//9X5GzDyQo84+hRVrzbibW677AWNHjuT4L53JsOkTufiqy1m3Yb22bwWw/5hxnH3a5zn05CMYPXMSO3bt5Jbrf8ITzz/NjKNmcvNtN3PiCSciYwm6mzswouFk8cxA6Ppv/g9X/+haxh8+kWdfNGOR8vLyOP3E09i8bTOnn3Caq2y6Sy4ERHL6qdOiD70Gf+WVVzJ9+vS9Wmd/FSFldpWlvipCCH4x4WYABh80lB0fbjPTA/R18T1murJv1x302xvHo6SHDWQ8kRH8WOle+IklYvxw7b+YXDiMr448lrJDx9C09NO08JMu7idkJHYLftY013Pum68w/7TPUZGfY/dFEPyAG36sTlTf8gIQ4ybAxjW4OgLcsT6GcKcFuLp8+RodW1S3hjcvCEx06dE8yMmH3EKI5EIiDqWDYdcGcz8eM7dEzPxAqncYSUjWHHohE0cN1x9TJ+mGIl229GcGVqOmq0o5udDZ6dPVVO1rg+vzGVJNt/aEu66kXnOsm23trYwqKCY3FHY1R1r/vdJbbfI/y5duO7lcxxeRELIn7uu2oPr9etCdiBEVYQgLSsdW0bShlnh3TNHR31OpruQd99zF+o3r+cMvfp9SeWP1JhZe/bL9OxQNUTamgoue/Ab9bdqaNrySxdeeudvlD/vXMt5///09bscjjzzCk08+yaRJk/jkk0/4xz/+scd19mfppzj9f0es4aV5S4M2nken6+gk/6o6KcBHLaPCz8ADBjPxizN4+4anMwp4turRBT2vbdtGZbSIS0cck7HlJ5OgZ+f83PDj6h8P/NR0t3Ph/Ne4+ZCpuwc/hlOvCj8WEEnlAuiCnPca+ARBTxAAGSEoGZTcBiJKBsGAMsgpSG75EOuGrjboaofuTjAMyCmE+FEQCoMRNr+iHopANBfam6C1HlrMTbbWQziS/NJ6MnYk3ZylmnAy/ZS4laZ89EsX/2zrBsUGqXnJ39btI13l3Hqub4gpeU71EoT722EIKApHiecVsKGtiVEFxeQpELSn3w2zxIiEiffENaem1A/aL8lbdUaNMB3xLupbmwlX51A4tITmjXXO2kZKy7xdDf5L3tDUwL+e/Bd33/47/6VTJVnQ5aKIJWjb2axR7gfSB74F1tzczA033MC8efP485///Jm2pa9IFoD6uFiTe9HgIjob2lx5unFDZ+0BP/i409wwY9VjQdG0a09k40srM37byzqOF342dlRzUNEIDi4aRsgw3/jq2lm/V9/40vWdZf3xyo1L3+f80WP5wugxWBNnoNtLhZugYGfF5SWb6hT9NFafdOCjg5reQE9hGQybiBg4GiqGmeDTWg8NO6CpGrl1NbTVm8DT2Qbd7Q60qFJYZpbzihGGghIzv7AMUVCGGDwO0Z1nWo1kAnq6IdYFPV0Q68FvFvFIIMVY+cm/PjBxpnFtFWo5i1JiseA6wfmo6l6GoNJIDgJBe7yHvFDYxWR74+Op3u7SQlAyMxUE5YVyyA/nsnHnFvYr3I/ogFzfV9ld9XnKW13698f/yU9+cSPnzTmHw6fN9OmoYnenemuHDQoqCzXa//ulpqaGadOm2b+vuOIKrrjiil7V8ZOf/ITLLruM4cN7YZX9Xy5ZAOrjYv3/5xREAy08rjS1bFoYCrb6WHnDjhxHfuUAPnl6aUbw41iW3PDzVv0qHtz8BvcfdBkF4ehes/ykivsBB35U649E0pmI8avpMxkQDZE25icIfmxgwQU/dkdY8OMCpQC40eV58tWLFwg9hjDX1hk8HjF8IgybZK7fs3UNsvpTWLcA6rdDXPM6cSqQstK0brQ4tNWZ2w5nyT855UtQv80EpEiO2a7cQvN3vBu6u0zYiiVXGtaxTiZWoRTWIKuKQGuQLnhIQwH7CoJKIlEkguaeLgwhKAxH9xoEyVjMA1WZQxCeOssiAzAQbN20mfJwsRYug6xBVh0Xn3shF597YVpDoKUvcP8rhAxBTn40g9J9VPbAbVdZWZnSBTZr1izefPNNbd6RRx7J3XffzauvvsrSpUt3uw3/GyULQH1crPlGxhNpgccSHfi40/zgo/62QAMgkhvhgztfRCQSNuQ4+unf9hLAmtat3LPxVX458Xwf/OQNKaG72m1V2Jdr/QgBP1+5hLquLu6aOXOvwY93RWejrNJcr8alqwBOKqtPCouPFnwMYbqu9puBGDkFKkdB7WbTsvPGgyaEqNNOqkBlI8V7EQMqoL0xOD+R0NebiEFXzLQwmWdhwlA0D4oqzKSuDhOGerqCLUNBViHdjA0uYgm0BklMl148lpFLzAdBynF3F4KElISEYHN7M8PyihgQ2VsQ5D2+HoKs2lQI0umWRAqRQCQ/ghEJ09XUroVLNUg6lVVI6bpAUcctgUTGE2lK9E2RmIbQfSVvvPFGyvzf/OY3bNy4kREjRgDQ2tpKPB5n9erVLFmyZN81rI9LFoD6iTRvrg98Zc/7ABtsBUoPPlYZA8gfWMTW1z9CJIexdPCjc3sZQvL0zve4fuxpjCsc6Boc7XbZ9Ujf/Lm34efRTet4cvMGXj75tLTwo3aoF358YGSdSCqXl0tPAz6uixEAPmoHhQwYOgGx/xEwbCJsXolc9Trs/MR0N6kdrE47qSBHOaY2PShPSl+95hfGJcJXRprti3WZQBWKQDTfdKEJA7o7TFdcLACGegNC6axBatd4680Egjx6uwtBheEIIwuK2dTWxDBRxIC9YAkyIiHiPXHfeXub7z2GHfuk7wJkPEH+sCK6WzqRiURKb2Uqq5BVn1ckmDFG0hmTAIjFadueAsD7skg+0xigK664gi9+8Yv27zvuuIONGzdyzz33fGZt6guSBaA+LtaUUlBRSEddW+D8453SMgEfNU21+hiAEQ1zykOXMf+6f1H/0Y7dgp+OeAc9Ms4Px51JyFCP6bi+unc1pXR9qWXUgOfdgZ+dna3c8uEHPHPCSVTk56SFH2/AcyD8eIOdBcjmer9bS2f12R3wKSpH7H84jD8culqRa9+BhY+Y4GDpuixFGuBJ9Qq693iWdDQGWHiktr6czkbqWiooH5CngSBF4j3Q0WRuRtgMwi4qNy1KHS1mILZ2dk0BQincYr5i8ZinTEqTyT6DoIJQmNEFxYSFYeKIEHsMQapTqzcQpNbl5cp4V4yelk7yKgpp3+UEJWcCQlaLU4qUtHa30b61yX0bhw3yy/JTl+3L8hkCUH5+Pvn5Tt8VFhaSm5tLZWXlZ9amviBZAOrjYg0qucW5LkBJpWvqqPCg6HjSVKuPVbchYOIXZ9CwdgeNaxz4ccFHGvhJyBg/Xfc0EwcM5ZLhR7mtPJa+AGI9GcX9uM9Ten6nh59uGWNIQQHvzDmDsrxg+LHr3AP4AUDGAwFHa/XJxNVVPgQx9XQYMh4+fR/5yp+gcZu/DvBDjw5AgtxgajGXjtvFZS/QFlDP0G1vsw2ozS3NKO7DJ6EIIpILRgjZ05l0j6XwI6Q6iAz4ISEcjRLr7vaW0NcnA7LT6NpJrjSl36Rbvb6701492mImr73EV71dh6kXzc2hu7MrdbdoM3V2Wo/UbCGnOJ/O+jZfVsqyaSq2zrV9axMb7l/iflgzBDkDctO1LCsZyE033fRZN6FPSBaA+rjY01hCBrq2HF336NJb8LHyIwU5HPCVo5j31b/YZXsDP1JK7tn0KoYwmDvsiED4EUjyhpbTVtu4R3E/9jkGwE9jTyenzXuBB48+hkllJXvX8mMHP9uUaKqUDUS2NzidmqHVR2vxKRuMmHoaDB6PXPEqvP0PJ3A4CHp8flE9pPjWCkolheWuGKB0ZaOym1Gb5/kzvE/C6iycSPj1SgYhJh4LE6fCpuXIpS9CQ7VLz4Yxq66E968CbOricglg+P7ITWvMNKnqWXUn90nyV0Kah0ngyzPThbmfACmFJ9206lh/E1JJS+4npKChtZlzF/2XS0ZN4dJRByGlMJsnzXznLyTw/JbJtdkrS+isbkLilHVOS9jpCenYisx0Jy2Bt1zyXJNlRcggHpN2eTw63kup4qsOvhIeyPM9B/Sz9X9U2ZcxQFnZPUkTDJCVz1qssIumTXX2vtfSY212mmpQoHfwAxDv7ObNq/9B84aaXsMPwI6ueta17eTH+51BxDAC4UcX84NdZ+/jfnTSHY/z5bdf5+Qhw5hUUpq+v3Xwo0oq+EH5HRTvo4Of5EX1wU9pFeL4ryA+921k3Vbkv2+CVa+Z8KNeZMNw4Md3g7gtQ76VoG09I+UmLWpMo+eLA9Iey2OtUtus1mHpNe5ELnwU+e8bkU3ViDOuQxz9JSgosvWc1bWTm7cv1dgsV995rrFQ9ay6cY+URvI1c+U+yVSE4QC6fX97Y86AUQXFPHbEGTy8eTUrm3c5FtMU4nqASD5cWPvW/42rLcl0n6sZ5X8ep5xq8BRIDENwwt++TvHo8mSa3T32/7i6Lphdh3X8NOOZd1xL9MRp2dqQuhP6qlgxQH1gJeisOJK1APUTySvNp6uuVZvnHRhFQJ4XfMw096AGMOL4SWydt9oeCF2DXgD8WFLT3cjwvDLt19110lPXHBj3g3WMPQh6/s2a5ZTkRLnxkEPI6I0vHfwok2A6y48FObK92Z4JeuXyMgTkFCAOPxtGTkGufB3eecR8bdx3QQ1XHU66G3h8EhQE7dHt7I6REwnx4Osruf7vbzL39GOZWJzgvMPHU1YY8PHahAysX+B+BPYN62q2VYf6ZllPB6x4BblmAeLgUxDn/QS54nVYMc98pT4hEYYwLTjCuUbqEYUSGWOntjeZ5ZRzsOsxzJab8THmpZYJzOuakEgDd6xMAqThHMfsD2GnY+sJMCQyrlwrYR7PSJhdMSy/gBeOPoeoEWFVUy0TCivs00pg/RUYUpJQbrEEwnyAsP9fZbIZggQSQwqsSGcr3dQx+8AQ5r79F0hYECQd2E/IBFteXs6UK0/gnesfSaY5/WvYehYEKfeX5+InNLcpJGPrLYgyDPKK+7ELLGsB6nOStQD1cbGegvJLnAA2a/7UWXq8T2FqHa4HbWvzwM/gGaOZfPks0+XWC/gRwPr2HVy98q/UdjfZ8KOKzvqTaO9M6fryltd+AywAfmLEuXLiAfzpyKMIhUWv4Eft7N7CD4ZIrp6c4vte5gk4lgtr22864vyfQE+nafFZ8bIJPzqLj+uCOnX4rC4+K43Qb8l6drW0c9Nj7zDqyvtYtqmGi4+bzNI7vszh4ypYsHYbjR3dfLi5hsvufYmHF3xEdXO7q3xw3W4rkb+dHjAUQt/unnbke08in/klomww4gs3wsQjzbfi0lmD1Gtnpce6sCxEdrpQf2vuA5xmuqDZdpk695h9v2kmea8VSCT3rXs/LxwGEtyw6i1uXfM2ZhC3+lCQ/F+x/8eV+7++CdXKo1qCnP9/6dGxbmnHEqQ+wAhl3xDw6aMLKZs0jIopw+w61HrUy2pZhJzjqWOUf1NvAyHACAtyiwPAOytZ2Q3JAlAfF3vwSAE83oHGCz6gBx91ULLn3/Nm8Mlj7/Yafhp6mrnp4ye4evRJDMwpUtof7PoSSPJGVGQc96PW6Q+MdsPPM1s3MHf+axTlhCmIhjOHH6W+3YYfQJQPUtJQLoozorsm/qJyxGlXIQ45GfnKn5DvPQnxrozBJzX06EFHt727bgcTrv4zOxrbeP3WL3HIuEGEIyFGVBVz/ilH87dr5zBmcCmDygo5ePRAHlu4lonX/Jln3l1HZyzOf5Z8SnNndwbHc0NZ4Adade4xK6+tHvnmX5Hz7keMn4k45wdQOdzVJ/bFdNVrXdOkXvkgbbr1jxUIQVb53kKQoQCPxhWmQpD5nTvBQzNOY1VzDT9a9QaShBaCvJLo6NIAjtsdpoMgFX5UILJuZRWg6I6x9GdPE+/o8oCNG4SsfxV1TNHBUDoo0pxm/xC5+1+C39tfg8+KI1kXWB8X6x++aUOt75/f0IwGqs/c6+rylvH65/PKCxk4fTTv3fykDShqfhD8GEKSZ0T42ojjmFUxwa47o5WeyQx+0rm+VFnSsIvvfbCIJ2ef6O7LTODHnqR2E35ck67S6Wq6XSY5uU85DnHoqcgVr8Err2AvxKLCjHpBlYvoi+Ox9z03h/ZmEUgpmbd8E3f9530unnUAZ88cz9q7L6eyWPO6sXJDVZUU8K3Tp/Kt06cSiydIJCTVTW389r8fcMFvnuPAkZX88JzDOf3QMcSkJKyug2C5hVy/k/mJhH1OUtWz3Aeu9YaSiXWbkS/8BsZMR5x2FXy0APn+80DMeSnPKu965FNcVfZxTDeUbb9MBkabLjLT0aW6w+xadsMdZuoIMCQkTLdVwkim4XaHFUej/H3Gady6ehGtsS6KI3mmOwu9O8wAcodV0lPbjOnKAsfVZe4nMF/XNwAUHfOv2w1m/Z+aJyxcLrHahesIFeYyYMxAWtbvQiKUy2u52uxe8N2KCU1gs6EjuniCtq2aT7H0F8m6wPqcZAGoj4s1WOQW59JVHxAD5HM1qXn+urxgY6l317fwygV/JNHR7dJRzd9CSmcSx3lKHBDJYVbFRLv+jOBHQLypxXO+vYcf1frTEY9x6YI3+f1hRzKlrAzfis4pOzsF/Fh9oMCP1r1l6XQ2O51ugQ4KsBgCCooRJ14OMo589k5orXGB1R6DTxoIqmlq54SbHiWRkHz7jOmcedj+RCJhKksi+v7patN2ZDhspg2vLOHVWy6go6uHBWu2Mag4j/aeGMMvv4cZ4wYz+8ARzDl0LBOHlTuFvTCk3LFWzFBKELJihBIS1r+H3LYGceT5iHN/gHztQajdmqwLd2yQXaeEjhZfDFCmEGS3x9j3EFQQiXD7gUfT0hPjznWLuGrMNCJGOBCCLOOZupbQ7kKQ2XQnRshaVykhzPKVh45iwjdO4LUL/kBCsVg4IKMEMytfP1VjhdTuD1owNTogx5febyRryOlzkgWgfiJ55YU0baj1wY4lvjhYdT8AfMw0U8IRg/3On8G6hxdq4adbdpMnIiCEz0Tuf0vMDz9BEm9uc1l/9OeWGfwkZIKCaIjnTziF4QMK2K2gZy/8KB2aMfwYQHdbavgZOh4x+yvI1W/Ch6849YAbaDzwI3Q6vYCeupYu7n1pKUPKCrlk9hR+f/mJHD1pOCLkBxufxDr0liSP5OVEOOGgUfbvT+75Om+s3MS85Rt5ZcUmJo6o4LoHX2P8kDKOnzyCsYNKEEK4YUixCqUEIa81qKsF+doDpjXo9KuRy16GD+clgYZkPbj/QbrNtWxcEGRqZmwJcr3ivA8hCAQ5IcGmtia+tuQF/njIKeSGIloIijclrT/JoGgLPMwudEMQYAdHO9YiS88q5983mympnv8R+18+m0Ezx7Fz4Tr7NJ2xRCinroch0AORJaGwIK+kny6EKMm6svqgZPJcnJXPUIJeCVWDA33xPVZZa/7F/zqqQPHtC8mw4ycx+OgJbp88JjjEZA//3vY2d298nkUNa1jfthNJ3OWS88KP7zw01h9DSHJHVqV1fXnrUcWCn7hMcNGCeby2Y9uew4/7gL2HH0OYX0H3wo+1HTgbcfxlyLf+DisC4EcN4DXU+BjD0XEFTGj2DasDDOIJ+OZ9r7DfN+9l/a5GDtt/KCJkcMyUkW74SfV6e1FV6nxvu5JbaVEeZ83cn7uvOJmr50xHIjh4zCDeWbONWTc+woW/fQ4Mwbuf7nQCql3nY9atjRPyBUsny6x/D/nMrxCjD0bM+RbkFbqvkwqW5YPtfxrh60fVXanqKPeLYikMgnjnfvXckyJ5T3pigqx7WxcTlBMK8btDZlOVm89lH/zUh+pjAAAgAElEQVSXhNTHBCWshwvl/831cKPE/pi3nOPe9uqBM16o+2ps0MbHFzH6C4f54gxN/YDgZ6sOpd5UW1aysjclawHq42INhi1b6lJaeew0RUd9nlXBx0lzBrlx583gk0cWOgMTDnz8Y+sbRI0wZ1RNZWHDx7xZv4pTKw9iWskYH9io7jJXugZ+difuB6yJwZkopJT8cOm7SGDWkEF43V69hh/V9eWBH1fnB8GP1aneQOdwBHHsRVA6GPnsHdBe7+Rl4u5SAcN7Yb2PzcJASsmbKzexpa6FucdNYcb4IdzwxaMYVFqIy4KkE91juLcPLFGfbHX1ej6SKhDMnTWZubMmI6Wkqd38btnf31rNP99axbDyAZw5fT9u/dJRzrfENHFCtkXIcm3Z8UFJc0x7PfKF3yKmfg7x+euRL90L9TvsU5HmKn/KdZR2+2yrTzLdawkyz9XRti1BaeKBrBIAMq7tebNqy+1k4HpV3pKwYfCLA2exsG4HYcOgO54gbBguS1DuyCriDS12TJBjCUKJ03G7vYSQLkuQ2Ranb4JcYgkp2P7ScuqWbHACrNXPgeC2CLnjhCzRW0jsRRljCdq299N1gCAbA9QHJQtA/UAMIJIbDTTX+eY+DfiY6Vaa2xpUMLiY/MEl7HzzI/t46lsio/MrCRshRucPZGxBJb/45FkWNHxMZU4hYwsqbbCxj9ML+Im3uJfS3524nyc2r2dR7U6eP/FUwoaBOpB6LUhpJQ386AKetfDT1eZ/y+vkr0P9NuR/7gQZc1s4zMa6LlqvwUcxXz369kf86unFtHV288PzjgDD4JITD9acby+eq3s69Omp6tCtC6QAkUBQUmCu7fL7K07irktns2R9NRt3NQFw2b0vsXZbPbMnj+CEA0dy9PihGF7XmF2v1R5DiQ1KIN9/Bhp2mgtKvv4QbF5lAi9JCOpqc85BF/+jgaCU6wSlgiDldjTX/RGBrjA7dicJKl5XWNiAIyuG8FFTLdeveJ0HDj2d8miBCSTgPFwogdEqBJmXzmxhMARZa3m544JU8CG5T3c3ic4eBh01gZ1vr8H6Jpp99ZXbxBv4rAMip43SvqzRvP47ZWVXgu57knWB9XGxLlD+wAFOmnBv4JiY3aZrK89tsrbyrXLtOxp59Qu/Q8YTPvgxhGRMQRUftWxlXu1ynt+1jLZ4F4eVjOHD5k0klMdYq6wXflJJrKHFZf3RSbr1fk4bPpx/zzqB4pwIeyXuR4UftR2Zwo8QiM5W53fJQHPyXbcI+ebfguEnWW+guyvw4lsNT8amGoLNtc3cdMExrPrj15l7/EH6skF1Bm09bZnrpmpvCpdZOBxmxvihfOGoSWAI/nDFidzyxaOIS8ntTy0GQ7BqWx2d3TG7vG8Fba9LzBDw6WLkq/chZs2FA2fb+sIQ0N7i6n/X9XdBp9sdFrRitMsdZrjvub35eryVP6GolBMHjuKS9/+DVMwM8eY2pztwP1Co/2uGdZwAdxiA230lfWOK1UvhnBAH33A24ZyIPR64xhPXMfXjl3cMs7ewIK+skH4pEpNcd3fLyj6RLAD1cVHGY7zjMeAaMMA7qPitPpaOVTZSmMvkq04k3tGthR+AsflVnDrwEGIyQU1XM18beRwRw+CTtmpCwsAb9OyVVK6v3OED07q+UslTm9ezrL6OIfkF5rE88GOezG4EPTuNdyZKFXRQ4EftWKvBJVXm77LBiDnXIpe9CCtf94OA1ehUVh/vBK8BHwyBFHDGbY/xztrtXH/uEcyZsR+Gd6ZR26pLt46t2worg/N0ri/dMYJgSM13Opi8nAjHHzyKn809lhd/ch5G2OAPLy3lmJsfYUtts11eC0HefqzZgHz2DsSEIxDHXmADkigbpD++Cjy+6+6BoAwlUwgydTODoJAB14yfiiEEHzTusP93rCBobTsU6HFO3Q1ByS5QIEcfF+SUhc7tDTSu3MKwk6fY5c3j6UHIqc9z6T1A5Ixz/TOQWILzfbjd2LKybyQLQP1EWrY1BAwIuqcp98CkWn3McdspO3LOwRQMKQ2EH7OuBGMLKulO9FCZU8iw3DLeafiEC4bOdMGPJb2J+zFC/gmkN5+6+Pv6j2mPxcxJw/APjhm9/q6K+vTvhR9FR/u9LzXgOWRAxTDEnGuQ7z8L6xb6J3410Bn08KPW77rIfkB68LUV7GxsY8b4IRrQ0NTRW5AJGe7yPr0U9aWDoaCFGz2QhyH4w+Unct4REzjsxw+z4OPt9rG1AdLe/mxvMF2Q+cWIU74JoTCEDCcwWvjb6V6c0XPOFgRlaAXKVNKBv05+fdBxHFBUZj9EuB8ucFmBrGN4oUf9bT+I4M6zulIHQQCbHlvI8DOn22OPeuo6EAqyDHlvFxlL0FHd1PuOyUpWAqT/OlT/j4g14ITC7hFRb2lR84PigNwusGEnTuHjP78RCD/mvqAr3sOurkbOHzKTsCG4dPhRlEXz/AaQDF1flsRb2x0wEm6Q8p1fEn4s6ZExltTXMrOqkr3u+hL4Ozk5IqeFH0NAQQnihK8iFz4Gm5Y6uuDAj5Jmu7xUPVcZDfjYOgbb61r4wUOv8/JtFxKOhPw61nF1kunF6unsXRk7iEM5ricgWgn0cH4rwc4YIhk9m0yTCUTI4PozZ3DwqIGUDsilJ5EgLAQiGfvjDpC22ms49cW7ka/ejzjuEsTJX0O+Z76FJvCsFWQeEBLm9XHuPCUeKNnmwNfj0wRF761X4w0kE4rKmV+zlWklQ4gYYUQouZAhOPE/ajyQFDYY+df/cX5bMUHmJ9D8QdSAKxao/t11fLB6q32+9likvPKeUP7Pra/Ne+9OZYkl8ywFhML99JndcoFlpU9JP72b/u+INZ8WDirWPhUJZTP1/RYfU0/64CeaH6VgaBl1H3xqpqODH3M/NxThqyNmUZ5TgEBSFnW+yeON+3Halv6tr0RDU8aBz06fmPmrmhoYU1hEcTRqHm8vwI9XvHE/qb5qbsNP1SjEEV9Avv2vtPDjivdx6Xkeg72WEKuuZLm83Aj3XnUaB42p8t8kOjeT7mayOzFg62lPne81t6WzOnl1vH3qtQip7TMEJx4ymknDK7j1yUV8+Y8v0t4Ts8ukjQsSEvnmQxDrRsw4E4yw+/q6YoJ05xTg/srQErSv4oH+tH4Zr9dsNDmv1R20vruWIFPHbwny6kNyHJKSSF6EkefMCB6bcLpV2Ofg+T/3bKGwQX6FEwvZ30TK3d+ysm8kC0D9SIRmA2dgyQR87PkciLV388rnfgk98ZTwY9UdDYXcMQO44cdOV2Ao3Svv0SEV/vPUwI/X9SUMyaHlFfz3pJNt0NkrfaxYf7SfuLBO3NXJiutlQBni5K8jl78MW1c4HWJNvh74Mfc18KP+9bq7PADx6ocbqGlu56yjJmYOGla9vQGY/DJ/WiYApasvVRt9+wEglNT7/lmHIZEcfcO/2FjbbJdJ6RIzBMgE8s2/QiiEOPlyMELu6+JqM5p0BXpFABB5JUMIMnV7D0FnDR3HMzvWIYRE2g8XbrAwm+GGIPOUgiHIekCxgcQeH9zB0VYsULyji/2+fjK55QV2WioQSgVELjhKYSHu65KNAep7kgWgPi7WwNG+o9GV7oUeM80zv2neCFMHmTHnzyS/ssiuzzqe17dv1eE6drIOf5vcMJT2/CIhe3BN9SaYVb8KOk9s+pSORM8+cX354n7wW4PMRGWSjeQiTr0S+eHLULfF6TjNa+6Bwc6ZWH0U/dqmdube+QwNbV1OfhD0ZAImQWADJiDoL0zq8rrjBsGQmufb9+Qn68vPi/K3a+cw99gD+PeitT59lzVIB0HLXwIpESddDmHFEiQ8bVCBxz53DQSlsgJlKLsD9EJITh08mkV122js6SAypMIBF4911Wy6Ji0Agpzu07nK3ZZlQ0gSrR1Uv76CYWdMs9NMXWdTx7AgIFL/BWUsQWeN+9M5WcnKnkgWgPq42E9VMpESerzg4xuUcMOPEQ0z4esnEEt+Mdosp9ahHt+p14If9fjeoGerXCYLHsqOzrSuL2/sjzDMz15c//67PtTywY+dliH8+C+AG4hcHa26TAzEiZfBzk9g1RtmvEwm8OMDAQVWlOMHvRJ/7X0v86VZkzls0nA9QFh1pQIeO91IvSV60utk4moLao/aBl96QL7V90Jw7RnT+e7nD2Peys3c8dz7ySUBTP2UENTVjnztz+b1PO4SQLnmKol4IUg5p15BUIZWoN66wgAGRKI8PHMOheEIIhxSTjlzCAJ6BUFel5hVbusTC6k6booWeACXVQhPvmuMU7f+6g/KvgbfJyULQP1ECoaW2vupoCed1ccavAZOG0Pzuh3Em9uT5dXBzDqOH35Q6lKBRxUd/ARJvLYxMM88Dj7XlxCwpqWBgbm5VOXn+V0HrsakrF6j73d9+VwbyYlRnVTFEeeCETKDng0BHU1u+PHWZU2+Vn3q3zRWH2urbmhlfXUjt11yvDvfqiOVxcVugwZc1PNUt54Wf5q3b1LV6y0T1Ea1Dl07vH3i6bP9Bpfy6DtruOC3z9HW3WPrB0JQRxOQQM77MxSWwrTTbD0bgoKsPta9EiT/nyFICMmEojIW1G5FdnZqrbRa4FHSvO4tu1wABFn5VhlLp3XdDt776h+0wKMDoXRAFIoY5FX14xigrAusz0kWgPq4pJpvvNCj6gM+q4+aVnHYOHbN/yhZj1qnVY8bfiRx4tJZKNE1HygwFOTC0ll/DAGRQWUprT9B8s6uamYOHGif2750fTkdZz3le6wCk4+FYROTVoTk2zyFZeqJm7vp4EcJ8A2c6JN/O2MJBpYNYMFdl5KfH/VDhdq+IOjx6qQDm9wSTcdkUD6T1+IzBSFXWatO67qYdYyoKuatW79EbjTMpX980VWXFoKKKpI6ceRr9yMmHAFjDrGb74IgHQyr91HyXgq8j3ohqe5/rb7hWGK/s/wNtmzdrFhX/fWpQdG+tAwhyBscbZWxyuUNLGLMZSdogccq47X4eIHIC0b9VbJB0H1PsgDUT6S9utkFPDroCQIf3dPa2t+/wKbHF2ds+VnevJXrVz/mGkR1ri/zmArsBLi+rAHUyIn4zjVV4LP199wxo/nuQQfqrT52Pen7NTBwVbXYqPCjljMEDBqDOPRU5Mv3QKzT0YnkuEApI/hxpXkmd0/eNfe8wF1PLXI+ZJpJfE0qi4p93kbwFoqkzvdakdIBkVcv6DysMr60AEgUBnl5Uf7yrdO49+sn09rZzeurt9i6PggKRZzfHS3IV+5DHP0lqBjmbrfnzbCMgqItq89uWIHs7rDTU1uBLIkYBnMGj+Fdo9P+f3P9z6ljggJBvrQMIMjsFndwtFqup6mdEV86ikhB1C7fWxeYLfEE3XWt/vT+IBJzCYPd3bKyTyQLQH1cLNiRlilfEe38pZb1+NHNMpKCERVUHTMR2dXjGoysfPXYlqxs3sb4gir7uDprj3fgzERkd7cDOEEDn30+5uAvpWRZXR3DCvNTWn+sE0/72rud74YdLRypQc/RXMTsr5ivu7fVKR1hQCJmdcruwY9XR8l7fdkGXnzvEy479VC9xUdtRxBoeHWC3GAuievrSFVfKhdYqrfAggLAAyxiQXFBpUV5bKxtZu7vn+f2Z95FJj+Y6oKgRMxdvmErcuFjiJO+Zn9FXusGVYEnU+klBO2uK+zs4eNY1Fprnq+n2bo3w7wQZKf1AoKSp2frGEKSaO+kafkmyg7b38OuvXeBGSSgxz8OZiUruytZAOonMmB4efADtbKB3+rjNVEPOfkgSiYPD4Qf1aJjBT2vbNnGlKIh/vlTgSFfTEEa648QkviuWq3rS2f9seTTtmauWbgQEfSqjDKp2O3RwM/uuL7UiVAc9UXYtgY2e153B2it88OP2ml252UAP1a6YdDRE+Py3/yHP14zh+LCfHedQaAQBB3pLDberaspc11XvSlgyKvjzUtnDUrVd8myk0cNZPHPL+LZ9z/hi799zg9BrXXJ2V4pv3EJrP8AceLlWOCaaTxQSivQPhQVgqaWVnLliEmu/79U8UDO6bjT0kGQd62gZJe4xpza+asoPXiUPj4xQxcYgAiHyBvsxEL2J5FkY4D6omQBqI9LqgdMzxwP6K0+Zj0O7FQdPZFd89d4juN+olPTAEbklTKlaGiyDsf15W9v7xzW4fJeDmiGZGF1NYdXJeN/dNYfRSzrT+b1i9RAZOmMOQQGjkIufsJ/kYQwg2lt/RTuG3U/g4k9NxrmL985k9NnTvDXqep6j+HN85xvyj6yOjmn2NlPN5ungyGvXqr2p1sOIFV6stzQyiLeuOWLfHnWZETIoKm9K5kdcK0AufQ5c6HE6Z9zn0NQPJBXgiBoH1mB3E0UlDa1807ddiVNHw+UKijaORW3yz0oTTf+7HzuXdbd9ayZHxCvaNUX5P7ywlD/E4GUu79lZd9IFoD6iXTWtQSuj+FdRdX7BKbCT+7AInKrimleuclO88KP6t4ykvVfPWY25dF831tfe2L9MYTEyM91ymUQ+wOwcNcujhxUlTpI1Jow1Lams/7oiS45kSmur5wCxJFfQM7/h/lquK2rHDScQ9rPW1gBz1ZZNU+Tvvijrfz7zdUcc9AYTZ0BFpRMXFFqB+k2S0LRzPS9cKQ7XioQ0rm6rON5+0aNk0oDQTk5EU6bNpbt9a1M+PZfeG7pBjM/nGNfY6deAVKa13j/I6BqlHOv+M4twAq0p6L5tl0q8brCukoKuHrJa8SSS2j49DWwERQUbe9r1vzxvgLvizuMJxh00kEUT3QeoFKBkFWvdxOJOLHG/hsDlLUA9T3JAlAfFwtm4q2dvjytWVvd95iVAbprmnjnot8i44lA+PHW9Vz1Cv617V1XvSY/BJjUe7EQoozF0sb+OAcwB+OL9hvHKcOHBcb+CHcn+NxhqY+RYgXopIijzoMNS6Bmg13GBT+GQKiLd6hQ43XtQEbw09Ud49I7nnHcfkGwoEtX87xAkcqi43OXJfxpQXFDQXX3FoS8aRkHSOshCGBIxQCe+M6ZfP2BV7nlqcXIRNzR9a0R1Ipc9Dji2Lnmh1ONAFcYvXSFZWIFUrsxAyuQV4aVVzCiYABv127xucJUi00qV5jZLekhCPClqxCUN7iUqlOneh7Igl/m0PKjlMQ6ujQZ/UOyANT3JAtA/UQKR1a6LD1eU3Mqq49Q0quOm0yis8cTbEhS1x33A+Yg9kHjJkoi+b0KfM7E+iMExKt3KWXSW39ae3qYWFrMkII8UonX9ZWR9SfoqV21/gybAFVjke//x915SmcKQ0BrrTOJWnraSTw9/ADc9vB89h9ewXnHTU498avpurxAK00GYNMZ8CXuTN4ICwKhVMDmTVf7L5VLLBUEJfePmDiM935+EZtqmulsqsEVFO01HW5cAk3ViOlzPOfkBp6MJA0Eeavfk4Bo4jHOGTaOp7Z94qnXDUFqugt29hIECSGpm7+a8qMmBYxR6d9uNQSEIiEKhpRl2NFZyUp6yQJQHxcd8FiiM2zorD5q+qTvnkkoN6LRlf605P7y5m0cVDREqQstDPXW+gMQKi22B+50IgS8uG0rV7+zyPwdZP1ROqVX1h/wA5FrMhSIw85CvvdMclVkZaL1WgTylTVz9hB+EhLWba3jD9d+TrEAecpaaUFQlA56vOKdfQwBOYX69CBw1NWfziqUyqLlTdtDCBpcPoA/f/MUQvnFnP3rZ1m7o0FpZ/L6JHXlgkdg/OFQNRobcn39lYEVKI1orZi7IUJAonoXZ48Yy3cnTLUfLrz/39ZDiTfex+vS9qZnCkFWXsfGncieOPmjBvqs1L5xJACI+rNIyMYA9UHJAlA/ke7GNgCftccS3ZsUah5AXlUxMp6gp67ZTnPNn6rfPint8S6G5BYzLLcEXeCzaunRpaWy/gghCRW6LTmB1h8r/qd6F0cNGph+gjA0b92ksf4ETVD2JLbfNNMevWGJUqeh0TUgkqeHkGTb1Ha6/7p1YglJXXMHj9x4PoPLB/gBwSoTFPzsg40A6MkEaMI5+nRdeR8gpIAhXbuDrEHetN2BIM9+TmEhpx86lmNv/TfPLlmvgUoB3W3mq/GzLk7rCksl/z8Doo3SYooiURJS8mFjjXl8zf+rmR78aryVr6abXZgagrx5S7/yazo2VZtpoAUhfQB0sq5EnFhzW6Zd3bdEgkyI3d6ysm8kC0B9XKyBoqexLRB6dK+QqvlWetGEobSs3a6Ut8r4434saCkM5/DHA88npM5bASs+W4HPvZKE+9X3dPKO8gaY2U6/9cdVjzLBZCRB1h8jjJh+BvK9p5VJ3nAa4SNDpX+0wGOos4aTpv4WBnc+9g7fuvu/7nxdGStNBQMd+LjONRh4pGH4t6D05OaTdDBkidelFWQNCkrrLQR5jyUll82ewn++exbf/vsbbNjV5L/+AJuWQuMOxKGnuNN1CyQGWIH2pXghKJRcJ2tlSy2/WvOeFnq8rjBvPJAXgtR0W18DQVprkCEYcv4xviDpVDDkGt8SklhLx17oqc9GsitB9z3JAlA/kcKRlfa+3myst/qgpDet2Mi6P76QzLfy9HE/lvx72/t82LTVVcauN+BpMlPrjyEk8R07tOfrtf4IAQjJuaNHcWBFqe3+SilBd/fuWH8mHwONO2HHOn8nuHSTB23Z5QcS+/gpQEbRX7ulljv+vYCfX3FS+kldZ2mydDJ4AywtzAB0NejTM6lDd1wdCKn6ql66tCAICkpTj9VWA4ZgxrjBfPTrrzBmUAn/emcNjW1dflfY4ifhgGOhoCjlfRMoYt9ZgbwiE2b07ImDRvBhYw27ulrTusLcae6gaKc73RBknlawRdnKS3T1MPyi48gZVGofI1UsoyqGML8Flj80GwO0J/LII48wceJECgoKGDt2LPPnz/+sm/SZShaA+rjYT0FGZuBjlVHzrbRocQHtW2q18GPre1xj/61eRVQx/6Sz/mT0NpdarrhIG/ysk7iUXH/wFMK+ydVj/TEc95c2+DmwMZau5+k/mos4+GQz9sdr/cE6nsfKk1fk/E4V9wOBk/m37v4vN1x8HKOGlKcvY5WzjxUAPoqkBR5vUHO00J8WFEOUqv5UIJTKGpQqzSqr/g6ysqn6hoCcAXa9OZEwUkre21DNYTc9wqqt6grfAtobYN27iENPtZN93wpLZQXah+J1hcV37EAIyA+HOGXwSJ7Z+qlLP5UrzK2T3PcERVvHTBX743KJJRLUv7OaiqMPcN+2uocozdbf5bOOAXrllVf43ve+x4MPPkhLSwtvvfUWY8aM2St191f533Bf/Z+Qnma36TcIfILgB+DQP1xObllhMs89kLlN0Obf1lgH27sa2b9gYNKCr4/z8YouniBIjAGFaRScIOcbP/iAP320xh/8vI/EmrTEQSfA1tXQsN2j4LkC6uQazfc+Dvv3dWnKJP6n/zmTK8+eqdENgB9vvqWj6AVDSQZQE871p2VYPmMQ0p5PBladIAhy6QZcj9wCV7oIhbhr7ix+fNZhHP/zJ1j06U7XseWyF2HsNCgZ2HuoSUL4vrACeSVU4kD4dyZO5Yujxtv/l94g5yBXmKOTTM8QgqxTVfUAGt5eRekRE+18HQgFjRtCShJt/uVA+ot81jFAN954IzfccAMzZ87EMAyGDh3K0KFD90rd/VWyANRPpLu+NXA11HRxQAA5lUUIIeja1RQIP64BD8mnbbUcMGAw0VDIdSzfvJ/C+pPK/ZXpwoeWLNi5i4PKg03gLuuPMqFkFPysWn9cJxCGiUcjl72kPNGnsP5YJ203SrVCZOaW2birkW/97jlGDy3HUKFK1c8UfhTRx+kEW3DsOlSrmOHZUokGhgJBSNeeIAjSxQWpv9OtsaSLB9K04+JjJvHy98/mwOEVbG9oJW7p9LQjV77mrBBteAKiU1mB9qF4A6JDAwrs/aH5+axraWRLe4ujr/mfTeUKC3ozzCkbHABtjVGNi9fw8U/+lnYhRO+SH0JI8wWOxv4ZBL0n8T97IwYoHo/z/vvvU1NTw7hx4xg2bBhXXXUVHR39N6Zqb0gWgPq4WDBTMLzclxfkElPzLSmeMJSWtdsCXyv1ur4ADi0Zym8mn52s1x/nk6qeTCW2VR8D5JXm7m7WNTUztao8eRw8oNOrw6YWdd2fcVOhfhs07/Lp+Cdu5XdbTeqJOCBNCvjanc8wtLLY3y7dRK9zeQVYfdxtDQAfDeC8umgNXd090FWfXj9okk8HQkHWIN2aP7q+0PZvqjzl2K21HkBy9A4aNZD8vCg3PrWYr9z/ilNm5eswaBwMHKk/3wDZm1+L91qB0snLOzfxz00faa2zXstLyk9hpHkzzE7TxAWJWIyC/YaQO6wi5bo/OglFDHKHlOgz+7zsvvtLSkFNTQ3Tpk2zt/vuu69XR6+urqanp4fHH3+c+fPns2zZMpYuXcptt922j863f0gWgPqJiJD7UulfF9XnGwI6ttez5d8LfPm6G8AalB7bvpSWWKevjK0n9Ov+6IKfg8QYUBCYp7q5Gru7uGLS/uSEQhkN9mlFZ/3RiDjgGOTqtwJH5kDrTzTf/Vuno+4nJ/m/vriUuuYOvnP+Ue583SRu19ELq0866PHIkv/H3nnHR1Hmf/w9syU9IYXQEwHpIKCoiKBYKKeiAioWxIKgcKiIgFgP/VlPPD0V9bCCdwJKUU8pFkBFBA9RQJQaSiAkpPeyuzO/P2bL7OzM7myyCJF8Xq99JTNPndnZeT7Pt/6ezdhZ8zlyrJRJz3zCr3tyAtuH0V9I1ZgRSdErDwYzRtGe/+2qpLIGc/3n2Av57Jf9HKuoUdpIDuSfVyKcc5Vm3OBSoD8SrpyjKkkrjG7XkWWH9yHJPgJjJAVSw0gV5qvvLyEKRYJSBvYgZfAZAXW0c9CVDAWTVv6J0bx5czZv3uz9TJw40a988ODBCIKg+xk4cCAxMUq4kbvvvptWrVqRltn2cpMAACAASURBVJbGtGnTWLFixYm4nJMGp9zTNHjwYKKjo4mPjyc+Pp4uXboAsHbtWnr16kWzZs1ITU1l5MiRHDlyxK/dunXrvMcvvvgiLVu2JCkpidtvv53aWl+I9gMHDnDRRRcRGxtL165d+eqrr7xls2fPZvbs2axbt47Bgwebnrerstor8QnHA8zzAqk6mE/xxl1+5VrVl/+6IJMRk0K0xapr++M3vuAjPUYwUn9ZmiWaUn9lJsTz+Nl9Dfv3XIBp9ZdBe6/0ByCtHcQmQfZ2VR0xtPRHFCA6wb/ccz6I6gtRoLSyhrdmjsRqtQQnP2rJj3pcNwylPtrrNSIUgkidU2L8Y//h7/ePokO7dEYOPY9LJrzCwpVbfJIZo8jSwcYwsBHSu46Q6rBgx8HsgdT1o+I0qsrAOcfG2Lmsd3uW/k8VVXnXBkhuBaltfM9WBNHQuEBivL99XbekFJJsUWwsPKq/gQoiBTKrCgtFgkQBKnYcILFnZkAdo8CHPqGZjFzTeFNhSJJQ708orFu3DlmWdT/r168nOTmZtm3bIgiRfUYbO045AgTw6quvUlFRQUVFBbt2KaSge/furF69mpKSEnJycujUqROTJk3Sbb969WqeffZZvv76aw4cOEBWVhZ/+9vfvOU33HADffv2pbCwkKeeeoprrrmG/Pz8es3VQ3hqC8oDyrTEx1Pf97/v/HkfzSCqeZLui09dV/0COi8lk1h3Akw96Y/RfI8Hbl37Hb+VFHulP0Fj/0QCooDQczDyzvWBN9mNoLY/2mMTqq+f9+Qw9bqB9OnUWp8o+QYOLNOQH/95mCQ+GjKz+vvfyWiVws0jzgFg6PndWP2vKfzfGyvIOlwQvH1A1OnQROi4kCDteHpzEQy+J3cbz/f8+Kj+jDyro4/wCjLyzvUIPS7QGctYCmRWDdZQiEkJ7qn4iNHb517M2WnqOFrGbvG+SzGnCjNDggCqfjtEfPcMb53ADZ0+GZJdEo6iRpwM9QTaAAHcdtttvPLKKxw7dozi4mJeeuklrrjiitAN/8Q4JQmQHlq0aEHr1r50DxaLhb179+rWnT9/PuPHj6dHjx4kJyfz6KOP8t577wGwe/dutmzZwuOPP05MTAyjR4+mV69eLF26tEHzi1HlwNEjPmBMfqJS4rDE2KnN9+Vy0kp/jPrRSn/86hkEPjSK/RNYD1y5uTpXAmr1V63LyReHj5Dp9hgzTXb0nm6vZEjH+FndcVQstO+j7PLx1NFhWnrSH0FU7Eo85eoy7f/uRf2jb37l5qeX4HJJBou3VqphgvxoJS36OgVdwuJySYwY3Isl/5jg2zU6yujTPZNtHz9Kh7ZpvLnke47mG+QHU/etvQ49IqQ7/waSIHV9I1WYqPqutH1r5tmxVTLZxRXklVb5Tu78XvEIi471PVMnaJcdEBdIZyqnxSeyMucgNS5nAPEwsg3S/q91jdeWeeeiOgbfu6Quv4S9j833m5weEfK08XwsFoGoFjq2cY0AMifeDf7RRx/l7LPPpnPnznTr1o2+ffvy8MMPR6TvxopTkgA9+OCDpKWlcf755/uptQ4dOkSzZs2IiYlhzpw5zJw501umVlnt2LGD3r17e8t69+5NXl4ehYWF7Nixgw4dOpCQkOBXvmPHDsCnAtOq1EJBtFuCEh8j8iMgE99FiQAdSvWl58Lq6V/9f7DAh8GgVX8BCDHRIdVfPxUU0KVZEvE2m3HnBjvoAPVXCPjSXpwN2TugRmfHqdeX9tgWrV+mI9EpKK9i6qsreHPmKCwWMbBufclPsPkFUVs5XDIDx73Atj052KJsPiIlKvdfUc+J5BWVc+6Nf2f9L1mBZCvUWFqCoWrvp74LRYKMrlfdNpQqzB7jXzeIFGje2l/59/c7fX3UlishEjr3DxxfD2FKgcJRg2mh3Vx4fl8fHNzJmmOHfOd1NihGUqBg9kDBSJDWQ6zmcAHRLZrpCE2NU2IgCIhWS+D5RoITTYBsNhuvvfYaJSUl5Obm8vLLLxMdHSS0xSmAU44APffcc2RlZXHkyBEmTpzIiBEj2LdPCRCWkZFBSUkJBQUFPPnkk3Tt2lW3j4qKCpKSfDsRz//l5eUBZZ7y8vJAFZYZeEiPVFWnWx7MgNFLaCSZ/K9+VspDjBeO9Ed3vmGqwMRmoXd0+TU1XJbR1isVck/g+Km/ACGzF/KBrb6F2siF3O9Y8C220QmmpT9zFn/PmIvP4LweGcZSDd1F3wT5CVD3GBAflWfYs2+tIqVZHL06a2KEWP0N1h+56zLmPT6Wa6fO4+uNOwP6CYAREdLOQ3tNwUiQERE14xrvKVfba2n70vR//XldWLRpt/88f/sWofsFeKSBQV3i/wi4pUBiTDTqwIgejG53Okuz93pt7/yaajY4Hkmup0xdD4x/e3rl6vZpl/al5fWDvWPoCz016TBkGVeNI/T1N6EJJmE90RP4o3Huued6/7/llltYuHAhK1as4O677/aeT0lJ4ZZbbqF3794cOXIEq9X/NsXHx1NWVuY99vyfkJAQUOYpV0uEwoFgERGsInWlVViibUgOF4JVxGJR3hhSnVOpYxERBf9jARmpzknpz3sps1oQY+wIDhcIINqUF7jgcoGsPnYiAoLN4o7e6kJ2SYhRNkRBicWB5ES0WxVpjexCdroQ7BZlfZNdCC4Xos2CYAFRlpCdTgSbFcHiJlUuB1iVOWK3g8UCVgtY3dIaVx1YBaVPQWZkpw4IVhGsorJjlhxgEcFmVRidy52Z3e4+lpVrVI4FcLlAkJWxRJQFAhnsNvebVwbZhWBzJ/u02aBFB/j234okR5CVJKhWu1995di9EMpOd5JMq2fVAItNuTZvuc0tYUDpTxDBYuHx8X9Bkl0gWNx9iCC5lHYW97PnMQSwuKVggqTMQ7AqREF2KceecllW5i1a/Nt7jnFfk8WGcrOUa9q+O5f5/93CN/OnIYgW93wtSrko+K4BQHIyfFBvNi15jPTkBPYcyqdV8yTi49xeVYILt4gDJMk9R0GRJMmS8kFWvntJVh3b3McuZIuIILvvmeTyfQ+ypFyT5ACrVflfdD9bNqvS3nNsEZVxZQkEJwojASyAs075zuwxyhwddb57KMngcCj1rBYESWJwz0wKq9ayt6ia05sngcsJRYdAckJmLzi0w/09WJQ5OR2A5LsmpxOcLtWxS3k+bVaQUI4dLrBaEQQB2SUj1DmQ7VYE2XPsBNGKjKA8BnVOEKzu+wxynXJPxPR0XEUlUOsEQUQQrSAJXJ7Rgad2/UypRSApKgrqXICIaLUoj0mdBLKAaLMgy4LyzpCVZ0uQQXBJSBKI7mdTckqIkqT8bjxfk8uF1WZFkgVkSUZyuhBtVuXn6ISqvTk0u+AMxBg7SDKy0+U1/JckkBzu95j796UcC8iVKvVjI4PUlNX9pMMpR4C0EAQBWcfKzOl0cuzYMcrKykhJ8Q++16NHD7Zu3cp1110HwNatW2nRogWpqan06NGDrKwsysvLvaRn69at3HjjjabmExsb62epb42Lxp4SR2L3dlTsy6UutxhbUizW+GhkWaYmpxhrYgz2RMXNseZoMZYYO/ZmyiJUk1tChwlDKN9xiKqsXGrzSxEtAvYUZW7O4nJkSSIqLRFRkJVAY3UO7C2aKQSqrBKpuhZ7yxREQUaqrMJVUYW9RbKyq62qxlVeQVR6MlhE5Npa5NJyrGmJCgly1CGVlGFJTsASZQXJhVRUhKVZAmKMHREJOSYaMSkOMTYaQQCp8BhifBxCXCyS7GLq5yt56ZJBWJMSEASQS4oQomwICQnKwlhWAhYRITlJKa8sA0FCSEpRFrrqcgTJCc1SFGJSWwnOWmiWprSvq4G6KkhKU8hHq/aQfxBiEpSFTHIobeKS3IuAE+oqIDpRWciQoLZM8SayuglTXbWSYsEerRCH6hLF3druFjnXllNWIzNz3rf8Y8rlxAo1CtmxxSpzqKtQ/trjAAEcVcpcbW7PHle1QhCi3NF+XTUKwbC7ibZcB65asCUo1yw5lTq2eNwsUzm2xirES3KCq5qMzHYsnns/bTLaKmNao32ExVmt1LfYlQXRUQEWOxmnKbmdPlzwNd/+dIB5T44ns3WqUi5YwKo8m9S51YlWN0FyKteALc537HL6rtFR5SY07mNnLThqlPsqySDVKcd2txeXs84951jATSJrypQUHoJFITg1Jb5rkJxQVar0E5uiXFNVMViiwBqlGG5UFSvXb4sFScZSUcwnD95Am8x2YLNAZYnCHQ9uU4zmjx0Ap6R4D8oyVJVDXR0kpCBIIFeVQ001JKYqx9WVUFmJkJQKsoBcU4NQUQaJqco11NQil5ciJCYrJKfOgVxSghCfhGCzg0PCVVSEGJeIbI8Gl4SroBAhNgExJRlLqxa4cgsR42MRYuOQZIHEvEJWjhxLanorxVX6WDGy1Y6YlKgQoIISEEXE5CSQBZzFZUguCUuK8j07SioQap3Y0pORZAFXWSWuylpsLVOQEXBVVOMsr8beIgUJEam6BmdpJbbmyQgWEammjtqjhcR2bE1MZguk2jrqCsuxpyYiRtmQHE7q8kuxJccjREchS5Ly3ktLJKZ9S1gGcXHKMyPLMlVVjYAUyZGL6NyEyEGQ9Vb/PylKSkrYtGkTF154IVarlcWLFzNx4kS2bNnCjh076NGjB506daKwsJC//vWv7N27ly1btgT0s2rVKm699VbWrFlDq1atGD16NOeccw7PPvssAP3792fgwIE8+eSTrFy5kttuu409e/bQvHnzgL6CQRAEVp87C1GQSe7bgeKfs3TrBZh3aGJ09J03hX3//JSKHYfc/erb/oiq8+pzal2+OvaP2v1dHfvHM4aZ6M/WlmnIx/LRS34qiPBzYQGTv9vAj9eO8DvvtYewoGs7EXb0Z1XwQ+HiW5DzD8Ku7/zVX4K6rcpWxNuHSu0SnwY1xaryQJXMnS99iizDvBkjg9bzfZn+ZUHVXt6Hwby9zPufbuT8vh3p0M7gObUlgqNMvwxlMZr34Xf87ZX/8s5T47hsUE/9iu4knb6GmmNJDqgrqNt4yj3nPO215/WO1XU956ObQUWRr25APdmvvtPp4uvthxjSox2C7C6zxSCMeQL5/VmKFEmSkSW3C4+3Pco5vWPZ8z/utrjL3cey+tgnAEMSfMI03HYm7jKhWSpSQbHiSSQJ7qkoC3GV08mqnINc3fZ0ZElQzrslFN563mPBeyuV/33nlVvkawcgoV+urgOQeuX5FKz8EbnO6SsPkqxPjLYTc1oLesy7T3fTejKjV1I6n54/ut7trz32PzZv3hzBGTUBOLVsgBwOB4888gjNmzcnLS2NV155hY8//pguXbpw5MgRhg8fTkJCAr169UIURZYvX67bz/Dhw5k5cyYXXXQRmZmZZGZm8vjjj3vLFy1axObNm0lOTmbWrFksWbIkbPLjgYeUuOr0dd+hyA+APTUBR5FigxTKfT2Y8bPfOEE2M+HYAVmCpLYA2JCbx/mtWuiSn+Py9AoiZPSEQ9s15w0NFfSPY5L0y91jrP0li5WbdvP8pL8Y1/Pr18DmRV2mLQ+wtzGwzREFtu06zPTnlmALZmRqCxK0EoWw3znmAj6ZO5mUZnE4JQmX3kKlnUMouyAMvMOM7IGCBcvTI5TRSdoHX39O7vqiIHDXu1+zLbvAR4Qd1VCQDW317QbrhTCNoQMu1aov4BdEGZso8ui2TRysLHNfU3APsFAG0brj6NgOqd8bhZ9+70928RlJ60JWVPpNaEKkcEqpwJo3b87//vc/3bK7777bzw4oFKZNm8a0adN0y0477bSwPLzMoDrHPw2B7rpqZJhsEXEU+hth63l+6fWjF/TM10eQxIUa6Y8RjIiUx7vlt5ISLm3XWr9SEOhmfjch/aFFB6gohspi3ZssqBZCv379jnWIh6ZebIyddx8YRVJ8tHE9Pa8vN3wGwgbkR4sgXlIOh4vxDy/g6Wkjadcqxbi+YECgPHBLSM7t3R6A1xeuY/lXv/Cf58fTPCXBf7ETRX9JkCAGSoI09WRR9JcEhYIouG2B3H14jtVlnv+N5uUpk9S/CYEx53Zm0cbd9M7wbWzkg1sRTuuNvH+b4ZQEUf3rkhE8vzZJdpfJ4D6rdzvCgZiagis330uUkAREZCRZwCaKXNm2PcsP72Nql75+6hlBwFtPOZa90hz1/95xBKWuILhNsZC9UiBPfU8dT/+yDC1uuhQx2sbRt1cG2Md47pJaIiQ5XdQVBAm7cJKjyQbo5MMpJQFqzIhO9+XAMeNMot51/Xj1U4pxdASCFBqlvjAzH73kp658X0A9tfrLg9cGnceoDplhTFDwf6rFENGfNRDadVXcms2M49dQM0BNicEAIis27aZ3x5ZccmZH/b5CjKmb1FRnHF87Y/IDsPtAHl07tOT2UQOMpUQAjhCejJq2E64dxFk9Mjnn2mf43/YDoYlikMSkhvOvjxRIi2rj70r/tMD1A7qyeNNuf1XMwW2Q0UsxujbwBvujoMQB0s8S78E1GR1Zmr3X7xoiJQUK9Z4QBKg5mEvs6W0CyvzGV8UBEiwitpT6OZOcDDjRbvBNCEQTAWoksMZGGbqLBiYV9P0fnZZIC3ckX185muPw1F960MYNCQeChvR4sL+8nAW79yKG8HP3U4s1FGntkAsOqRatIJ0aqb/0jt3/b/o9m/FzPqaiui74wm7mYsKx+zGYV0FxBd06tuT9OXcgWCIUY8VNhKx2G89MG8kLs67l469+CZynp64aRiTIDVPkz69/HUIUzCU+yNjq5+GMjDTemzhMsWnxqMGqihWj6vQO4c0xQtDGBJIKdKJ1e+vKnJncnP8MGOp1utBziffWN/hfW9coMKpenzX7cog5vY1fWbB3jSgKWKPthuUnM2QUCVB9P004PmgiQCc5vKTH5apX+9jMdNKH6ufQCqX+MoJePjBfWXhSJkvzNMOyr48cZWOeJoWIeh0TMC89MYu0DMWWQw0j+x89eBbUmMCs1bV1TsbP+ZgX//oX0pLc9jShJBbBDJ+9dULY/RjUdTpdXH7nK/z3m1/1x9bCVo/dtygyakhfnrrvan7+7RCTZv+Haq09WyibIE2dgPhAoaRARsTGa6/VzLzEyTNFQaBPZhqbsvL86x3chnBabwzhMc5XSYUCgiJ6xtAY9oeyAzID9W9XEASiRCtf5h4MkBQZx/dR/+8vBQoIgIg+afLUqztWTMUvgdH2DYmQLCPV8z14wiE3SYBORjQRoEaCqsOFuue1hMU/Vw/YUhOoKygL8Pwyg2D2P8HbRcZDY0NuHue31BhAcxwNoGMSlRgwFQb32oz9j/acqv7qn7Lo1CaVMRf1Cj6PcKU/Zuto5jrnnS9plhjLlRcbLNjqoIYeKUfAuRB2Qap5dMpMp7isigvGzuHA0ULdOoFtQxCTcGAkBQomddKLDO1Gblk117z8GS6VzZB8cBtkarzf1GowU/PUmUc9IKaloU2QqkWN5GT6z+txqK4hmBos2DndOQTbUEkyB5/+j9tOUKethghJThd1ecWmxm1CE8ygiQA1EkSlBu6+zUhr7GmJ1BXqJVL137XV531rJvt7KLgKi3TPy7LMD3n5DGiVrltuCjoqqaAG0Ok60h8z/eoRlhqVsaYo4HJJXDmgKx/9bYyictBzYTdSD9VH+hOC/Ow/XMCL87/izSfHEZAh2ojUOCsDz2nbBJFkxSfEsvCFO7hpxDmMue9NAja2hmqqIKqwUFIg3blopEA1Boa1Rn2ISmqMzq2SaZ0cz7rfj/jKSo4oMYBi4n3P2x8E3QzxQevLtI9PJDM2ge/ylWswqwbTlhtJgfzG05ECtZ06mpiOrQ3beOqKgozFKmBPDu6JeDJDasCnCccHTQSokcCaEON3rEd+tNIfgGMrfyLno2/DGitU9mejunowiv/j9RBzOTX1fc5G664aTofE+LDm7hf/B/wJTyiktYPCQybHCWH/o3ptOV0uLpj2Dj/vOYrVZg3SxiSMPLQM6wcSnNPaNWf9wgfIaJ3q328wKYtZt6Qg/QgWC1NvuZR1C+7H4XDxzvINSH5eVwYkSK/c7Fwg+L32RN02owbT9HN9/86+1BiioLg35R+E9PbhzfM4QCrS31yA/+92VEZHlmfvC6oGMzKGDgYzqjBbahL2VqkBbXT7E0UssY01d1X91V9NKrDjhyYC1Fig9tQIg4hYE2JwVda66wQfwqz9T+C5+htAiy3S/QIgerCtsIjCmtpA6UTQzhr2ohDSMpALsn0LXUjVThCD3tgU7/E/lvxAXLSdPqe3NDEJz4JtRsVlLKEINse5/17DF+t/o9NpLfTbGCFcG6Ag0qCYaDvlVTW8u+x7Rt77L0rKQkTzrY8UKNScPPVU35XRWEb3etwF3blnaB//k8f2I7QIToBM5QYTw0uOqoXsDIyZo+dwcF1GJ54441z/eiZs/AKlPoFxf7yXYkCCnAUl2NL88wEaqcQA/0iKjQhNRtAnJ5oIUCNB5UHFGNgMSVHj9Okjie/Wzu9cuETHrL4/UrY/APN+38X3ucfMVRaDr3mmkdwSio/6nwvHAFoHu7ILeP7D7/nXfVf5yJwJI1vt+aDeT2Fc/G97c3hi7md0aR8m+TGBsopqft+bQ1FJhfdccXk1RSWVFJVUUlFZ41c3v6iCj1+dTPs2qZwz5hmyjxYFzkcQkSTJjyAVllWTk++vtiqtqCY7r9jr0i1JEvtzi8nOK0F233dJkjhwtJi9RwpxOAONaWVZ5tCxUorKq/0LBBFZlikqr6aoQvkUV9QgyzLNYqMoLK9m417fcyMfO0CJPZnDxRXe+ThdEvsKythfXIGk/v0ZGUJH4CuxpLvVxyo7IC0EUSbeZuNoTSX/K8xzT8lYDaaethmE2r/U5RVjjdX37NISIcnhpFZrO9aI0CQBOvlwSgVCbMywJ8fhLNaPwxLwwlK3S03AUaifvqC+9j/B1F7hkiCpRD8Gy4a8Y0zuGRhVV7vWR4T4eBCbBFX68zFty+GpV6t8V+kp8Sx8+Brat0o2qF9PlY6Zcs2cnZLM+Ife4/F7r+K0tmnmx/f0I1XrPyySzISH3mPRii20a9eOo0eP8pdBXYmOsrL8q1+xuN3ra2pqeOLuy/lo1WZ27Munbdu2HDp0iAvO6kBtnZNeo55lzNAz+NfjY71dy7JM/5vmsDu7hNuvOoujx8pY+cMeoqOjSU+08PVrk/i/t7/k3c+2kJiYiFRbwZN3DWfiM0to164dTqcTwVHJ3PuuZOTD/6Zt27bY7Xb279/PiqfHMqxfR3BUkHW0mPPvextLTBIVFRUM7taCRdOvJtquJFYd9dxyvtld4CWxkiRRWlqKKIp06NCBwsJCzmodz+K7hjHz2Xks+t8e4uPjiXJU8vRV53Lze2vIzMxEkiSO5RzhmylXcKZa/RhhCIKskCnBWGiiDk64t7yUhQd2s/D8vwQERfS01wuCqHdO27f3nE6AxPzFa9z1jQMFekiQYBGxJcYGv/AmNCEMNBGgRgABGXtSLPVJ+Sfabbhq6iI+p0hBrqkJOJdbVUVhTS3dkjWu5GrBgECDVV5+sNpAtCpJTM2olrwTMSAQzjqWf/87Pdu34NKwAx42QP0VBGUVNVx0blcmXjfI3DjaMST9dCyIAiu+2c7zzz9PYWEh559/Ps8//zyLl63i559/ZuPGjQCsXr2aGX9fwt///ndmtG/Pjh076N69O2+99RZ5RbtZs2YNQ4dcTHSUjednjMZuEXE4XWzbk8uaNWsYNGgQQ4YM4YMPHqewsJCffvqJdpc/Qe8+fVm2bBn79u2jqKiIiY8+6k15k5iYSGlpKSOnTmXIkCH85S9K6pHu3btz2WWXUf35w9ictdzy/HKmzXqMuLg4mjdvzvvvv8+cT37kkWsHALAlK4+HHnqUhIQEmjdvTlJSEkOGDOGdd94hNzeXXr168eGHH3L6rPfp1vsslixZwsGDB8nOzmbsU09xww030KdPHxITE4mPj+eGqZPZ9cC1YX+Hwb8vJbI0uHOFlRoEeNTB0FYZzPplA7nVlbSICm53FzwatB5J0idhgiBjTUsm4awuFK3apEua/OpbRCzxMYblJzukxqm9+1OjiQCd5AilrgplhHxk0Tc4K2rMr70mAyBGSt1ladkSl0YKlGi3s2TIRagDIPrxjOPiAp8E1caJPn1jm7iRokBebRR3/vMzvv3Hbeb7MciJZVr9FUT6sz+niLgYO0/fPyrYzI3nBmBLUrLQ6+DRu6/kr3/9KwADBw5k1KhRrFq1irq6OiZNmuStN2zYMOLi4pgw/hZ6dW7D7NmKNMeDMzq34UBOIZfc9iIfvnAHqc38vX6mT5/OddddR2lpKT/88AOvvPIK06ZNY/LkyWRlZfHVV18RHx/Pk08+ya2X9+O9zzfz008/AZC7bzvTpn0JwIoVK0hJSaGgrIb0lNP44fcjvHDhhfTv3x+73c66deu45ZorvATojbuG8cmX/+Hr7QcZPW4iR44oXlMP3DuZi7u349ln81iyZAnz589n+vTpjB8/npycHNatW8ecOXNY9ckyFi5cCMCPP/5Ilo5nZqSht7nwQEtKYixWhrfK5NMj+5nQoZe7jo/MhCInegglBQKwxEXT/LrBFK3a5G0Df760EbLMKaXKcrlcPP744zzxxBMneipB0WQD1EhQddCkPYwGR5dtwKW1aagHgsbziDAOVVT4SX/CsYM2Da0LfHySEsW3vn2pIMsyLyzbyH2j+tM1o3nk9HT1tNVxuSRuuv9NXzTmYH3VU6o25vKzSUhI4MMPP+TVV19l7ty5ANjtdhYvXszixYvp3bs3AwYM4KuvvqJ7x1YcKxcZPnw4mZm+VCdWi4XlL9/FtcPOwm6z4HL5e54lJSVRWlrKsAHdKCoqIiUlhfbt25OVlcUtl/fj0KFDtGvXju3/uZ/khBgGDhzIb7/9Rt/OrRl6SG//cwAAIABJREFUTiduvvlmvvzyS/bu3UtBQQEtU+IRRcXOyGazERsbS7t27ejevTt7corodOfrdJr0Bpt25/DKhEvZl1vCqFGjWLp0Kfn/uousF2/nQEEZt956K5999hkArVu3Jicnh+su7k9OTg6tW7emfWoC9913H+vXr+ejjz4yd1M9hs9mDaG1zVsEGt0bxQMSBHikZz/GtVfUzmYCnXoeFXNxg9SXpTKCLirFmpoUUF9vfKnOSe1RY8+2kx0SQr0/jQ1Op5OnnnrqRE8jJJoIUCOBNcGc7lv7hfaedzdRrYNnXI80zKTO8EAuC5S6jP9mPTtL3GQkSC6jesHIJT420ZwECIP2Khw8VkppcRHTrxkQkf4aipcWrCE22s4d1w5sWEcuY4kCQJfTUrnuuut45JFHmDFjBgB1dXWMGTOGMWPGsHXrViorK4mNjSXnWAmxsbEMGjSI225TSckEEEWRe26+mNSURMZMf8tvDI/LfG2dA5vNRm1tLU6nE4vFQnllLTabjZqaGv7vna9Yu7OcWbNmMWnSJN6YMZIuGWm8//77XH311XTu3Jn27dvz+abd/LbnAPeN6s/999/PvHnzuPfee9m3bx+xsbHMfv4VZj//Cs9+vJnlm/YwcOBAtmzZwog+GcRH27h8zsdknHkBXbt25aWXXiItPto7x2qH5J3P2ZnNefHFF7nyyisZOXIk8fHxFFfVNuz7CBNGecE851OjYvg+/ygHKk3+DjQI53fvgau8CtFuRYiyhexPsIhY4hqrG/ypB7kReOw1qcAaCewp8WFLgQRBxpoYi6Da7RtmjK+HhKc+LzwtpIoKv+OS2loOlpfTO7XhpE1ruBzUkDkmEarq9+IHvBKViuo6Mpon8a+/XgJ1OoEDI+Fxpeumrd9veWUNr/z7a9a+PwNRL4N8qH7VkPQJUE2tg+7DHqWoRLne7OxsmjXzt99y7X6LtRt3MuXpT3n11Vf5+OOPOXDkZ5KSkhg+fLi33vdb9mHpOQlRFPjk1cnMmT6aM0Y/4y3fv38/3bp1Y/PObKKjo6msrGTz5s0MGjSI/37/PdOebE92djbx8d147rnnuP7666moqODcCXO9qrbKykrKysqIj4/npuc+pWvXruzcsZWKagfr1q1jwIABREdHU1VVxc033wzA2At7sGDtr9w+5RHmzp3Lk0N78dd315La7VyGDh3KhAkTACioqGHr1q3079+fL378mQdatSIvL4/5xUoE45KSEiRJwmq1IvnZselkhm+g0Yhcrnqe3dngtdCqqTYWHuXHwlxmdfPlDwxmSB0KZlRne6e8iOzQT3Hhl0XeImJtxEbQjYAPRBRhhTA5QWgiQH92yDInQoJq9tm3tG6NSyUF2pifT7/madhEsWGao5CBCjWIjoPaIJGOQ/WPsuO55YVPGNqvI3fefK0+Afoj4LEdkmUS4qLZ8fkTxMVGNbxfWzNw5Qacrq6po7pWYtGiRUiShMvl4sEHHwTgl198arfB53ahc5uveOaZZ3j33XdxOBw4nU5efvllZFmmrq6OxYsXA/D111/z37XbGHflOdhsNurqFEP+Bx98kGeffRaLxcLMmTMZdUlvnnrqKV544QXuuusunnzySZxOJ2PGjMHhcPDmm28CcOONN3L99ddz+eWXY7Va+e6779i+fTu9evXitttuY/LkyUyfPp1zzjmH4uJiZsyYwY//uI1+HRU1UnV1HYk3vcQoSeLXbb9w6f0XMHHeF7w073FkWWbhwoUcOHCABx54gNmzZzNnzhxsNhuPPfYYkiRx9913c/bZZ2O323njjTc4Kz2WtLjoBpOcYJArKpTfkGR+8R3V9nTGbfyCmV3PRvvi8CMjBt5fHoQyhlbbAkl1DqwJUThL9VX19bE/Otkg8+eL57NmzRrDMs/v9WRHEwFqJKjKDszsbEYCU7k3B7kuMCDayYoOCQlMOyNErqzjggZsc91Y8v1Ofs8u4D+zTBgaQ8OlQSEY4kvzv8blkpg+YXjQespc6v9yTk6K46n7RjB96l0cOFzAmT0yee7+y6ipdfLmW3P4u9vbSRAEPnplEnP/vYbHZt3DzqxcenRqzX23DuHAOS2Yec9tlJQpi2BqszimjruEEfe8wwMPPMCPP/7IHaMVleLdkydQXePgsTuHM/3mi1j9w06mPTaDPdn5zLrlEu795wT+vuBdFswr89oQ3TysDxUHNnPtte9ht1m4dfiZHFh4Pw+/9SX7fv6O1++9gnc+/YA5c+ZwUe/TWPnYSPp1ag1udVaUzcrEIWcw/4XZLLz3CiyiyEMjz+WFB6eQV6L4Z9qtIjE2C3+/oiezZ9zLocJyHhram+ceGMXDny7k+eefJynGzh3ndeHlWy+p9/02C0vrVjh1VMwe6El2ujdLJskWxeaiPPqltApJdBT39YbNs+Wtl1H2/XZK1m4xHEsUZHA6cB5r3DZAfyaMHz8+aHlGRsYfNJP6Q5AboKh79tlnmTVrViTn0wQVBEFgzXkzAYhpl0a1CRKkXhJ1DRZRn/PFAdLmBvPPGi17DRc95z0pLrzlAu5UF740F74y41QY1sw2SIcPeyNBlznqaBZtV9pZwS8Rqtrw060+0BqIeoPKWVR5mKyCu67gswHSGkH3uwzBYkX+6TNfuSh6AyF6E6F6yzwXqJwrra6j26Q3WPrwtZzXox0ktoSKY+5xRF99dfRibSRjdRRoFSGRtaorbX11mbt894E8Bt30PD98+CAd2jXXr6dGCAL02vtruH70MJqfMY7Ro0fz6syBLFmxmck3Xxy0HaC/QkpSiGOZPQePMfCWVzjnnHNYvXo125bOoryyljEz3mHM0DP5v79ejtU9b8HT3jOW51hWnderI8kQlw4VuYHntW1k9XlfXdlzLMt8t/MwZ7VLIzYxGWHUw8jvP+CtL7vr+PrA11Z7LHv+x90Wd7n7WFYfu93eZbxqLlkCsVNXnDt3+ZXJkqB4JHnqyYrHlec8QG51NWm2WDxvEyUYn+c2+ALzef56boXvWFuuepZVj4KHELS+5xpqD+ZR+Ml3waVKNgvWlCR6LPpbo7AvUaNbQkve7Ts2dEUDTKlax+bNmyM4oyZAA42gn3766UjNowkhEJWWWK92mROHY9NJpHqyQCr1eV5VOhz0WLKUGp0ovccdDXyfJsZG8emj13Fet7bKiROl/kLx+rrjkQU8Nvlyf/JTT7z2/hoOVbXmidfXATBkyBAuuel5ln5zhB+yjl9clk6Z6Sx5YRx3DGtL3jfP0rV9S87umcmPH8xgy85s/m/eqvA6NCJ/dRX654O1MSCM53VsyZZD+VBdAfYYFBb/B0Jl6CxXBLmuIEiPiuHfB36nxqUvOQ43BIaRpNrrDaZS0wfrW7BYsDZrvMlQ/6yoq6tj3rx5TJ48mXHjxvl9TnY06NfZ2Fj4qYjUC3txbPUWXEXHP+5IfWBp1QpXuTK3zQUF9ExOJtpqocGMJGzUf7wvfs6irMbBNed3852MTa0fCYqAkbQsy9w++nzGXdW/wX0BXHNZPx58+XtefPVNtv+excyZMznzzDNZunQJ5K0FGh5mAVEMlAIBg87qFCDNSUuOZ8Wrk6iudXDwaBG5BWX079EAcXtcanASFAZckszIV1awZfYYMpx1YLOD0yCAZIShVWnpeViaaS8IAp8fPUCKPZbLWrfX7TtScwQo2/ArrvL6hHltPPDkAvszYty4cWzbto0RI0bQokWL0A1OIjSIADmdTt59992gROj2229vyBBNcKM6J3zdtywLfruroHV9PigRgfIiNVFRteD/cOwY57VIj9gcvJBkczYu9fBaKKuqZcKrK3ln6hWavupJZCSpQSRoz8FjHDxaxK0jTbrgm0Crc+8DICmtDR9++CGvv/46kyZNYvToa1i3bh2uvW+H36kB4TELi0UkPjaKTdv2c9NDC3j8zuHcOeq8elpZRC4aSJTNwtVnduTDH/cyXZY5IR4IbogtWyKV6W98BFH2S3mhxai2p7P8yB4vAaoPQtkPeVDx0y5T/clOF478esbqOgkg/8lsgDxYvXo1+/fvD/D8bAxoEAFyOBwsWLDAsFwQhCYCFCEIVnMvaQnN61z2d0eMJNGRZKHBrvBylW/n1zEhgY5JPlWfLDUghqBZ0uMdrH6L1QML1jG0b3su6a1ZKJwal/Fw51MPuFwS4x9ZwDXDz+TSAd1CNzCJ0aNHM2TIEN5//31ef/11HnvsMa+L+Z133qnY0FQeCK/TBpAfNS45pzPfvn0P10x/h9/25/LytJHhd6L9rkIhhOXv9f078eCHG5j+h0sxNWgAkb6s1Wk8/utGyhx1JFgj4EEYBC3HX0FdXjFFn30PBCdOgqWRhq6Tgz4yjRoZGRnU1v6xMa0ihQYRoNjYWNauXRupuTQhCKLTm1FzJFAKFIqEbJs8F2dVbYP3uBKC6WjQ4RAjTzJUWZa5tkOHQCGMJIAlAm+OUAREDlPyIsk4JInKmjpenjg0sLz2j1c5zv1gHaIoMOWmiyLa76szB3LJTU/Qpde5TJo0ieeee47bb7+dmfdN5pl7zofKE6u+6JyZzsb37uXXfbnIskxeUTktk4Pns/JDhNRfHgzu2oanRp+nSMZPYCwU9eYiXCTY7Hxz8TUk2uyGqi+zEp5gEJERomyIOoEQA8azWrCmnLz2jMHwZ1eBXXXVVdx7770BKrCLLzbhJHEC0Ujp9KkDGaFBotO4Lm2xRNtN7z7UP9I/4gdrSVdUXv8rKOAGg7gS9bU90MZY8XrV6KG6HKLNv1yrah0UVdSwYOoImsVHB0o0YkwEcgwmBTHzhcm+9rIss+GXLN584mZfwEO9MeoheVmyYjPpbTvz3nvvct1119GsWTNm3jeZv7/4Gj/8duKMvdWIi4ni3J6Z/LL7CH1ueoGVP+w03zgmObzBQnw3FlHk3A4t2LZte3j9RhjhJEPVQ4zVyvsHfovQbILgxGoKm9BAvPrqq+Tl5fHQQw8xfvx47+eOO+440VMLiQYRoMbg5/9nQXVu/V5m7SddRky7tAjPJoKJ/ayKEPKHY3lkJpgkIA3Vnkg68ujKUogLzElkhMcWreeRD74zrmC084+Q6idwOIFFL9xBp8zI21BNvvlinnxoIhT/wrp160hKSuKZe85n/efzuGqEjvSrPojQfenbpS1Lnr2FCU9/xONvf+FNSxEUgiUiY6ux40gRN9xy2wlVgonNG2aQGiVaeWHXTxyqZ2oMs6jLLcRZGHoM2ekyVe/khODdzNbnczJj//79up+srKwTPbWQaBAB+vXXX3XPFxUVMXfuXM455xzd8ibUA7Js+EPQSmrUr/y6wnLsqfou9CeDSFauUTyINhzLY0C68eItHw/eIMu+uCsVJRBrzojvx905/Oe733j6pguMKzlPoE68PsYGIdqc16GaeLEE1963uW5wOumpiVw1qBWUhJBynADDh4F9OvC/d+9Fco/tddIwIkOuCH9Xkkz/ji2orq5hW3Z+ZPsOB9aGETubKDKidQc+ztkboQnpo3D5t5Ss3WKqbmP2PPYL+RTmJxI4cOAAl112GcnJybRs2ZIpU6bgdDaeILnHAxELUuF0Ovn888+ZP38+K1asoG3btoqBZBMiguhWKdTklhgaMRvZ3dTml2HXxBDS9qFnHhPMfMFoLI9UKJw4IVKRkiMp2R5F/yAESKmMl7JHPMNHZQnEhpYAyS6Ju9/+mn/cejHNk9x5ifRuYI1qpxrKmjtcA2m9+g30HjMFl1vdFa7Bc7hQv/HrKRlqlZbI4xOGUVRawfCpbzPvgVH06RiYHR04LvZagiAw5rprWbThW3qPOCvi/ZuBXBOmcbcORrY9nZlbv+OeTmcG9h+BDZSEQNJFfZEqayj/8fegdQWrBVuaeSntyYYTLcmZPHky6enpHD16lJKSEoYMGcJrr73GPffcE3ZfwdJgqHGy2wA1mAD99NNPzJ8/n4ULF+JyuRg5ciTR0dFs2LCB9FALWhPqhXA8uXI/3YTkttAPaQds0K8sC15SY0SM6uvkZElLw1VWxhvnDzSV+d2PS0iKVKxBOcM8qKsCixWsdpCM47YIgsCyGVfROlhwSUlW7ErKIxAfx69ff5LjcklYzHgHasmREVkK9SVaE0JmhA/oz2g+fxBSEmOZdsMght73NnMm/4Vxw88MnENUoo8EmbWZCrUtF6xMnjSJkvnZ9Zt4BCAXG4fOCOYCr0bfZuks6n9F6IoNQGznDJzF5V4CFDH1ehP8sH//fqZMmUJ0dDQtW7Zk+PDh7Nixo159hUqDAcq78mRXgzVo6ejZsyeDBg0iJyeHf/3rX+Tm5vL2228TE3P8osOeqqg95h//Qm834WfA7P5bsfMwNUcbZgwZCg16YdntLMrax3u799S/j0itp0GkQLIks/3AMe5+92vapCT4QgsY6eYsOnsLP8mGzgKq7ctdRzBYhGe99AkutQhbXS/UAl2fhf042MoEnYthfZMSRvf9vP6S3qx5eQJzl20kv0TH40vvu2ooYhPJaN6MpCgb2UWR9TIzglY7JKY1LAq4JAsIgkCl08F/c/bVYz4m3wtmY5W5XDiLT86ArqGgeIGdWBXYvffey6JFi6iqquLIkSOsXLmS4cNN5AnUgZHdj/qzZ08D3ul/EBpEgKqqqrBYLMTExBAbG4vNFtqVsQn1g1QXKJUwI1JNPq8r3Z682bCtnh2QkSeYXjK/UHZEsiyocg358hBJnv9rHazOySbaYlFyFdXb44uGvymqSiFOxw5IknG6JMbP+4LemSEWFc8cPGkE6mWPY44Q/L4/l/JKRSJT53DicARJIRIOyTCas2wyRUmwt3aoeRiOrdPOkMQFnu/ZoSUb/zWJtKQ4/vbuVxxWB9QzSPkQck7BriU2CarKmP/DLl748hdfHrDjDbVkJ8z3sdH0XLLM7F834IiA5E5vDNN3RQbZ0XhtViT3u7A+n/z8fPr16+f9zJs3L+zxL7zwQnbs2EFiYiJt27alX79+XH311RG/zu3btzNjxoxG4STVIAKUlZXF559/jt1uZ8yYMbRs2ZK7776bmpoav+B7Tag/PO/emLb6nlxaEqSVAtUVlPrZABm+y0O8hfR2c0Y7PC/pMfFmc+UXsDE/j/7NfepSJXmjUD/DZ09CSW9fYSw6JXnQrJW7H1lZ4NwX8eaa7cRH2xh/kclM9dXFQeYo6f9vEnsOHgNJ5pGJw2mWqNgh2W1W3lr6PcWlYbilh+uG7zSx+w6X8AWdg7l7E5AI1aieoAQwtFstnHXn6/x+8JhSUFMSWjoXLmISoaqUMf1O56MtWX+o8a7sSZLqiEwKjvbxSbSNTWBD4RGl/zAlvqE2SXkLVlGw/LuQfQtWC7b0MEMWnESQG/Bp3rw5mzdv9n4mTpzo1/fgwYMRBEH3M3DgQCRJYtiwYYwaNYrKykoKCgooLi7mgQceiMi15efn889//pO+ffty/vnnc+jQIXJzcyPS9/FEg60nLrjgAt5++21yc3N54YUX2LVrF+Xl5QwePJjXXnstEnM85dGQzWNdfhlRzZNMv7TUhCrYmJHyIBNTkumU2AzJYDBFslOPsTwyZ8CTUTvUwiYXHkZIaaNbr0OLJB6++lx/Yq+tp16woxMjI3XRqsEkiWkvLOebzXvo0CaNLb9n8/XG31mzaRcz/rGMg0cKzM0v2Dl1e3UfliCJKM3I6iNh+9NAciIIAnVOF90zm5McF62cjDKRaDhcNh6bBNVl5FdU0yzGfkI2hK78gtCVNNC+JzzHNS4n8RZjiZJe5vdQ8EiUo9ulYzPwVP2zQJYbJgEKhXXr1iHLsu5n/fr1FBUVkZ2dzZQpU4iKiiI1NZXbbruNFStW1PuaHA4HS5cuZcSIEbRv3541a9Ywc+ZMcnNzmT9/fr37/SMRMeV3TEwMY8eOZezYsRw5coQFCxbw6quvMnny5EgNcUqjtqjc++4P8Nhyv0g8BsxqL63a0iqKftjptlz2lCt9eIye9by6gkVzDuYhpjaYNgMxJppPLh7m7s+4nSwDbgNoWXKbDNTDJEWWlKv2jqXuLz8bupyn227YGaeBAK9/8QvjLuhBXKzd/4vQGhCLdu3AgZ5guu537npBvLqqa+q457kldGibhsUiEhdjJzE+httHDiC9PpFyQ3mQeR48wVp/AmKGfBl5f4Wj/gqop/RZUVHNE/PXMPHys3nghguYPe4ivI+p1R7Yp9516pwzkjAKMQnIVaV0adGM925RReb2GnbgC8GgPZbDlFwaQEhOQSopM9zIhLOpWtT/ChKs0QHnIyEsS71qEFW/7acwRL5Dl1PGUXxyBN5sbEhLS6N9+/a8/vrrTJ8+nYqKCubPn0/v3r3r3WfLli3p1q0bt956KwsWLCA52SedayypMY6D9R+0adOG6dOns3LlyuPR/SkJZ4XP+8aICKnhJTCyzM4nFyPiJjxByImRE5CaDBmlxJBlAQk5bE8w2emi1uViyqb1/Ov8gVhDdaB1ha+v+5keCo9As5YgWgF9e5dNe3JYuyObRfeNQPSMq0tuVO3Vc4yAC3vPjq24feR5nNG5jX9fnjmo+9OOZ+gBZmIO9Q3GFK7kybCfwOcuQP2lyRwP8Nn3v3P3i59wQe/2JMVHE2t3v/YUgzT/76o+0GMBCalU7PmFffllnJuZHhFCEy6EaBVhMZCi6kkXtB5iSw/vpl9ySxJtPueWUBJlfZW5alyVpNmakogjSIBD7xwlCammLui4JzP+ON9HfSxbtoypU6fy3HPPYbFYuOiii3jxxRfr3V+vXr3Yvn07mzZtomPHjl41XGPCcQscIkkS33///fHq/pRDXEag8a32nWpkFH36tKuJ69xGt61eGyM1mJEdUDARrSwHN4R25R3DLlg5WFHBN0dz66XuUtRkYTcLhLMWyvIhtW1gmXtn/sb4SzlSVM7jSzb4zuvVrdLZzaoJhC4pMFBZadRgf7tzOJ0z05FlGUmSvB+n02AhN6MKC3beA0c9ovCaJT/hSH/CQGlFDU/NX8NbD4xi/oPX0LyZjhrPyF7LzHfkgSz7109tx4f/XcWzq38Of9LesZTxPM+3x9DfIw0N+dxrjLuNXN+DucTXuJw8seMHLPWMNWFGfWNLScRRqG9fpm4v2qzYW5pIMXOSQnn31e8TCfTp04d169ZRXFxMQUEBH330UYNC1axbt44tW7aQkZHBxIkTadu2LdOmTWPz5s0Rme8fgaZcYCc5QumAg5EgTzt7agJRbZQXh9GPyVPX3xY0eF4wo3l5frRmXn5CkuJ2PiqzPUsP7ne39xlChwOvJ5h6UQh35523H9JP87VVGUIDRNutLLv/Ksqq6ryRhv3gWQSjEvyPjWDGHV6D5MRYom0WBEFAREAURURRxGrRSHqCjROMBBmVWWKDzst0PwF1I2g4jRIfae7SDdz42AckxUez4fW7uOSs043HtMXrnzeamyQHuX+yov5MSOXdL37gtvO6Bp1rJCD7P6K+qRw7FlhX1ic82vae3+7XeYfolphKm5h4dz1jZwhPm3CkPwC581dReyQwYraudOqPF6RFBG7OWu/PyYrMzEweffRR9uzZw+LFi6moqODSSy+le/fuJ3pqptBEgBoJaoorDQlFKBJUm19KVPPA+DYNkcpH6kUkximL6lUZp7GrtCTAW8br0RImZLfExvu/WUPo3CyE9A5B67VoFseLt17ErsOFbN6r8nTwW1SjjfsIRpxCwCgmkP44ochXmB5YFnvgOb124fQbjJj5SczMqb+27c1h4J2vsvirrTxyixKFNqRYXse2xQ8GD6ChWiu1DTs3fUdWfhmXdW93QtRfAEKScWoXs7/flblZjG7bWbcsEpclI1KxZTdSlb/NiC75cUm4Kuqf4b4JxxcDBw5k3rx55Obm8uSTTzJ0aITyBB5HNMgG6LHHHjMsO9VzjEQajlLlh+95MQQaLfubeqijOtceLcYSbfOaz2gNlfWModXt1UbPsiwgCQTYAUmygAjh2wG5F7FWMbF8NewK97z0CIKALCpExmPCfFwMoY/sggGj3fY0RgRGuZN7c0uY9NaXbHz2ZtqmJfjbAekt9KLgby+kZ3ejreepE8zWyV22fU8Or3ywjjceu9E/I7y2b+21GNn+mImKbFrKE4bKL9x+gOoaB9E2kV/35XH7FWczfsTZiHoqYT2CJWtIm0kDaEOktiMjSuKzKZdhtYi+GEDHmwhJgnfDIMsCYmwYEjv0PcBe6H2R14PJqJ7hdPSkxprvxJqcQOd5M/jtmkeDtgOQJQlXRYSjq/+BOEE8+A9HdHQ0N9xwAzfccMOJnkpINEgClJ2dbfg5evQo48aNi9Q8T3nEaQLw6anGjH5ghxat59CCtX7nZB2Vl14/ZtRgoQ0i9e2AAJw5uV6x/I7iYp78JTybCcUeIoJvlspiKC+CFh0CyyTZbzc/ol9H7v7LmVz1zFIq1caZkgQVBf7HwRDm/NUu8eo+Omc25/esXJ54/XPjsY2kT2bIR12Jr25YKq4wbGk8CEP6s+qHnfS84e+s37qfG4f1ZcJV5/rIj16MIG1/VYU6dUzOWeecM6k1X32xij5tU/Xrm/EAi4DeQ3ZJYYeyUKvHvsg9wK+lBURZQu8yzKq//M8L2FITcRb5bMuCqc0VGyCde9oo8OfMBi9JEr/99lvA+QMHDlBVdfJL6xokAXr33XdxOBzeCNDr169HUr04BgwY0LDZNcErgzB6L2jd1dWbfI8Ux5oQQ6sr+nFk0bdqJyrNOOalQN42Oue8c/BEmiZQWuVtLwkISUnIZYoBZKuYWN7cvZN7evQgMcqmSHtMSng8EhxFMuR3E8KGfHArQmZv5FxPFmy3lETnYmdeeTZHSyrZe7SE3h1a+r6AqHhwVvl/IWa9wcKRAqkkOFFWK0v+cQfnjX2B7h1bcd3wfgF1vGODfl9gLBGyxISZCyyInUywukbkR9NfZXUtdzyZ9QnMAAAgAElEQVSxmP/9ns1rM0YxqE+H8PWlkgz2OKjRMcI1KwnyGEC7y1b+sofnFyxlxL1/OaFGK9LRo+5/hLAMoD0k5MXdP/FIN19YCNlvMxR4Tq8Pv3N+zhXK/9aUBBxuAmRsU+j+q1vaOBDpfdrJgl9//ZVLLrmEDz74gCFDhgDw22+/MWzYMF577TVGjBhxgmcYHA2SAL3xxhvcfvvt3uOhQ4cyduxYbrrpJkaOHNlogiE1BjjKqv0ig6qhlQapf2gyAlKtg/YThiK7cx55lgizUiAtFJf3+kmDtBDifQaoyVFRnNe8BasOH/YbS2sHZGqN8+yqlYmZtwOSZMjaCplnhOhfWfAEQeCl2y6mZ0YaX/ysypdkjzVevPW8wcy+HTUeYVq0SE3kk5fvpHeXNuF7nanr6toAhbCVUbeNBPkxqCM7nezNzifGZuWCMzuy7YPpDOvfxbiN1kVeO47aBijAoE5f7Wdo12OL4Z1FS7n1nI765eHAhAeY1wBah8h4HAw8MGsADbCjtIhSRy39U1uZcmYwQij+5yqvpvSHHYYGz35eqC65UavA/owSoDPOOINly5Zx00038emnn7J161YuvfRSnnvuuZOe/EADCdD8+fOZPn269zgqKopDhw6RnZ3N119/zVtvvdXgCTZBQZ0moaIREfL97zvvqnNRk1NMXHufy6OWBCl9+ntzeM75xNv1V4MFgzptxujM9mw3ymKtzhWmXgTqI+XREiJZpd4qUkL+k9xab7KBi58kU1pRw11vfMEH37qzK5shAMHIgHeLraPucsNIFdarU2s6Z6ZzzzMfkZOncvE2IkGhiJDnE2ArIwV+jKA3jpk2Gvy2J4cLJ85l+kufIooik0YPUMX1MUEmje5/MPVXGMbsubFt+fbbb7mub3vfs+Kx/znOIgAtVxNVmwu/ejq/Y+3v94vcA4xs0wlRMK5n5P1lVvoDULHjIAUfB4ZL0c0Z5nLhLD/51SqnGgYNGsRnn33GhAkTGDp0KHPnzuXGG2880dMyhQYRoP379/tFklS7vvXu3ZusrKyGdN8EfNId41xggfV9//vOl+/JIb5Ta8PdnHe9Rb+90UtN90UlC25O4XOHN7IDcmb7vKhkSWBURnue6HO27o42KFS75Yjg4DafFMjj9qzra6ycS0mI4eNZI5n69lds2nkEKvJVbUNIIIykQEYkKJQUxS2ZapmWyKip86iurvGvFy4R8qC2JHgfejDqV9teK+bTISTvfbyRi+6ay43Dz2TZc7fq96O916HuPfh/V3rjB7sOzTORfsZ5fPfyQ8RHG6SN0Nr/RBjqPHrhbgzU0qF7O53JlNP7+soM3itB+/PcegPyI8kCLW64hKSBvfzaGM1btFuxN+JcYH5mX2F+TnZUV1fjcrkQBIGKiorQDU4SNIgAVVRUUFnpC02uDnxYVVXlV9aEhkGwiF4yFLB7w58I6ZGgva98Tt7X2/3K9aRAen3oldUnKKIehAT/wHSCILD0QBbLDx7wiwfkpwIL8UJQxwPyusOr1WBB2ypvHHn/LwiZvUNIE/w7OyOjOW//9S8s27gLbLHhSYG0kpVQ0FOFaUjQg3cMpWNGc+6Y/QGyNtpxsLkZXbMlKvS8zPSjR360bVV1v/5xN0WllVx4Zkd++WA6k0YNCPRyM6MXNSJiNgNvKbMpONzqUFkWWLh+O53lwtBz8bY1MIBWzbW+sSBdOTl47H90Nyo65yVZYFNBLitz9xNtsfpLg4O8JwKlQTrj6bSP7doOwWoxbKMeR5IF5DAipp9MUAsB/2wEaPXq1VxzzTUsXLiQtWvX8tBDD9UrW/2JQIOepp49e/LFF1/olq1atYoePXo0pPsmqKBOhQG+F4IawUiQq7qOpJ4ZAeWSXxtPP/5t1aqxgBemWwpkhvjoveAsSYneqNCe8mirlXf37ApsL+GVDPnbRoQcWjNp2Z8QqdRgXhzdBzHxkKKJCi2r2mr6Axhx9uk8N+4iDhQ7NJ5hJiQRevWCqcJCkCBBhrdm38jgszvpjxfKVkf7BrbG6Nc1qh9QR2e8IOQnv7CMcY/+mwlPLORQTiEd2qbSWp0009OXVvUVTPqjM44fATKh/pL1nhdgQ7GFp55+Gkt1ue8ZaYARtN+zLQW3/9F7lASNCsxDeEKpv9498CtFtTW65d7H0eSmSc9WUF3XmpJIXYF+vrKADZ8kI1U33lQYf0YboF9++YWbb76ZZcuWMWTIELp168a6det45plnWL58+YmeXkg0iABNnTqVyZMn8/HHH3u9vyRJYvny5UyZMoWpU6dGZJKnMjzSneqCcl0vCC0RUkuD/MqibPR8aqzhj0nPIFprC6QdN5gHiJ4azDOOnju8dxxJ4JKWbfi1uJicMAwePe7wAYSovioxWUL+fT1Ct0Gqhd2EREBSxFbLN+3mlpc+Q3K6VAuxjuRH/b/Rwh2MBLlhRIJi7DYmjBzAVxt38cnabYGqJk99M676arIYzhbViPgEIT9VlTX0u2kOLVMT+HXxTPp20RDRcF3wtfdQ20d91F8avLthN7cNHxgYeNF7n8xNub7QSkvFROMM61pjaM8mpKSuhvX5R7iidcewpT++uu7yIKovNdRu8J5yXaNopwtHceNRr2jxZ5QA9enThx9//JFBgwZ5z3Xs2JENGzZw+eWXn8CZmUODCND111/P9OnTGTt2LNHR0bRu3Zro6GjGjRvHtGnTGkUgpMaC2NaK7luGAJUX6OzqNGWO4kpcVbXEtE0NMHbWU4UFswXSF28HJ0VGcObkBZyLsli4OuM0fi4s0FeDGYj0/eajUiPoqsGM3iweY2hJhh3rocOZEKWjItFKgcCvv8mDMjhWUsljH3yr01ZHCmT2LRfEHshQHQYkx8cw8fGF/LLzsK8fIyJkRC7qSszNMVRfesTHfR2/Z+Xy0vtriI2xs/k/03n+nhHExUT56hn1ZUQag9X1/F/piQOk+V4Cvl8d7y+3+ququo7lazdw8xktAsf1m4J6ZTNWfzUwBZry+/BuNILU0WB9/lEuTG9Lki3KXUdf1a3936zqy59Uwe4pL1N7pMBbFkySLNis2NONo1s34cTgtNNOCzjXqlUr7HYTkeNPMBqsUL3//vvJycnhv//9L88//zyffvophw8fZsaMGZGY3ykPb+Rne2DIJi0R0pMGqctKfj1IYs9Md5k+CVLOBY6vbqMuC+USr5UCaY2hiY72uud6yyWBOf36c3m7jIB+A9zh66sG8/YRhBDVlMOh7dD5PM9FoWsMLQUullHR0Sx9YBRrtx2kqLQyuBQomEG0GcPnYCTIfdyvRwavzLqGUfe9SZ4687ZRrhFdDy+DsGFmvcGCSH1qah3Mfn0FF97+T2xum5D0pNiAen79m1V9Bbt3oOTu0o5jdOw5p3kGYjO6smXdl7R0RUb9pYzjI/Kh1F96X6HrqL+DgZH6Sy0Nurx1B17ofVFAHTB+L+hPPVA6pCU/0RnppAw7O2h/fqogQQRrPUK/nwRwf31/ulxghw4dYvny5ezevTugbOHChSdgRuEhIhZliYmJDBs2jJtuuonhw4eTlBSYd6oJ9YckCziqHMaiYZ36emUH3/+Gku0HVWU6bu8mpEBKPeP5hiMFsiQb7egEHvvpJ/aXmhd5+6nBPGiI6kGSkbd/41aDGYxppC6JTqR5UizrnxlLYmwU+44Wa1YQPdIRpipMry06MYLcx9cNPZOZt15KtZ4dhRmRg8ew26zru7rvEHN+bfF3bN+Tw5aFM/jrmEEaIhdEmhMKAepDHQIanRAo/dH2EUL9+fb2ItLyf9cfXy3tOY7Q/u6EGP24TUbGz1kVJbyZtQ27aDEmJCakP0YbIl875W/CWV2I63GawTtNx/ZFlpFqHLrzagw40dngI41Vq1bRs2dPZs+eTZ8+fZg8eTIul8/Z4s477zyBszOHxmlSfwqiOs+nftDzBtOTBqnLAEp3HUVyOP2EHX4kx1PfLbnxlBvFBUJdPwxjaLOodjlZemB/gBrMYwwddIOtWXODqcGCxgQ6th9qq6CtJruxNreTjhQIWUIQBH7cncOFsxaQne+WvISSAulejwEJUpMQDQnSU4ndde1AUpPimPvBN8guzZjeRFIGhCUcBOvHfZ8Liiu4/W//Yf1Pe5l64wUsnXM7bVs0MyY/9SGNejBj+6MjEZR1ziHJ7Cys47FX3sK+/yfjMbX9hlJ/1Vui6ZMMCYnJYW1UPsreQ151lV+5WelPMLsfPfIDENO5LZW7fUFPwYD4eMocThzFOhG7GwH+jBKghx9+mIULF7J161b279/Pnj17uOqqq6irUzZY2sTWJyOaCNBJDs8PILplsu4PIZQRtPq8YLUwYOH9WGIDdbNmVGF6tkDBAiOaUYM5j+Z7jaG1arBRGR1YenB/0B+SVg12PH5z8o5vEHpepFq8/BdQXSlQuS8X2IAubZh65Tlc+X+LqahUZb3WU9GYUt+EUJ2FUImJosA7H//AP95fo7vQ+y5cQ4hqSwLPGX304CGcssz8TzfR65pnSIqLonfn1l639pDkR91/uBIz9Xen7lv1XQUzzPbV8X8G3vu1iJsvuxibq873PEQg+Wk46q9gUgK1+svI+NklSyw7vIfRbTsH/Ka9tzGI9CdgzBDkR5IF/p+98463oygb/3f2nNtb7k1uOoEkQEICASRSgwQJIB0iRQUV9Cc2LK+o76ui8oK+vjZefcUCFooIKCBNRZESegslhIQEkpDebu/3nLO78/tj2+zu7Dnn3tzAje958tncs9N2dmZ35rvPPDNTPWsv+lc7AJQPfHxOTKdJNyUbdpfk7ZU1a9b4hs4TJkzggQceoLa2llNPPXWP2AcMSgC0x0iqyllYLemrIMn+R3W3TYueN7dRN3sv188LO7ShMF1DpWqBhiTp5O3o3j2umTJhsKN/0NcCQREKCju+hYB2TaCEuCEtkC3hjeehfhxM2j8cNp8tkJFy03EyevnZh3PojInc/viKMHTkM4jOp9XIB0GqP/EhsZqKMu655v/xk1uW8NcnVgTh88EQhHe7L1Yi6VqWTSZr8tfHX+P+n36C//nyYupqKjUaqwT4ifoPBX5icfV1FSsHnfGzG8624NaHnubig5rj/n5aCdqjERYVjADsHTv14WQcmFZ1dzKhsobZ9U1uGP3QS3h5Df3QV6ENUb14b1z+K/rXbtO2J9rHUQitLeSeIuo9DfUYjdLY2MimTZv883Q6zW233ca0adNYtGhRaDhstEoJgEa5eA2RNWjG/JJAyI+rce98bSMNB04LoEgDQcUMhXlh9YaVnl9hLZAxtgl1SryqBTKEYMn7zmBiVbWStnItWwRgNJxRG90wmDachXzhPsS7z1ZapTxaIFtCpWIHJ22EhF9/9hT+34kHs7WtJwgHYXDajRCkAsZeExu544eXsH6zov1Q4+la4LK6eNhi4gGZbI7vXPcAiy79GRVpgz/94BLmz5mmB59QuRQBP0mSVJZRt8r6uHv0t3ce0f4Y0w/hpX/czexKRfuTT6JAJPXDX7s+AimQqVSi8bMXxpM59WO586gz82p/dNPe88GPbmaY51bW3ED5pLGhYdiCHb6U2Ll4O7iniNyFYzTKokWLuOGGG0JuQgh+97vfMW/ePAYHh7Bx8jskJQDaQ6RvS0eiYVxUK6RqfdQXyJaC7Q8vp2fNdv/c+YsbNm4PpPoHace1QPlmhA1XpC3oyZlc9vTTSCtoSKMrQ4cz4n0F59EC5RMFikJaoDdfdHaDn36oEjY85iajYAShwksJgWXZnPyt2/jDI8tj/rsMQUl2QQkgdORB+/DZC47lb4+/Rmtbd36g8Dv/oX+mPrtsHYd94Ae8sHIjN111EUKIOPjEykKjGStUBkMdUix0DTdMku0PtuS6F7div/502C9UTgrsDPVT3i5++Ev3Phhjx4azZQcfHsElBD25HN9a/hQpEUCMbrhL/a23AyoOfgAajjmQ5lMP925TWzSqraMtBVbWItOyB9sARe5nKMdolF/84hehvUBV+dWvfsX69evf3gwNQ0oANMrFA5vKCfGZdTo1dRhc4tqgjtc20/LMakgZoTA6TY+N2uDFoccLm2916EJaoNyOdqILI6pfprXpNM+37mRpm6OpiE+DD2uBihIfkIIv78Jf7xL57N2I+WeCFOEWW2fv0dOudL7Sz3hKCG778ll86Tf/5JmVgfq44NBNMRCkxtOF0YCQsG2eeGkt5//7DWRzZgBPuhle2fCCdVpR4rZ39JDNZMlkTf7z06dyzzX/j70nNOjBZ6ThJ9+ssygg9Xfo3aP5jGh/tldP5evfu4aqrSuLh5titT/DGPcIwMh9J2V8lNYPq7xjf9v2FlsGe5GR7iD64RP9nTTrKx/8eLY+Na4BdJwrkzt9kU5R1qjf4HVPkH81DVB5eTnV1QnbyADTpk17G3MzPCkB0B4i6eqKxJkBUa1QPm0QwIHfPI+JJ86LGUsnNXhRe6CoQbQTJgCekRAfrKTB4r2nc9db61G3wUi6TsgYOkELlE8SZ4TZErasgp42mH2Ml8lYJxnTAmng5MC9m7nh86fxb7/+pzMEUKgTzwdBOk1PFILygBDAdz99CvXVlXzuv++MG5zrpr3nOwApJX/421IOOu/7PPLCmyw8dAbnHn8QRnzudRx8koydhwM/heIE4zthOFLylKj9kfD71b2cc8Rc6irSQVid9meYMhTtjw50rJZggcEk7Y+Ugjs3vcG5U/Z3rxnX/gxl6CsGR6H2J4hfvf9UelcHM8DyaTr8dYCMFKJyCPvRlaQkBaQEQKNcvLbUMq14O6wcnkRBKEgngKC2pWtpPnaOf676q5qe6zc8wfqBdj9dfT9QeFp8Pi1QavzYwD9BC7R42nRebnc1QBGeiGmBipAhrQwduWH57N2IQ0+JLJ5nx7VA1WPiGgUv07bk1Pn7suS7F5IzbWfPsOFCkOoWjVcMCNmSVMrglqsvpH8gS1/vQEg7FJLywjNwsjmTUy/7FT+6+WHu/tElnHLkrHAA3XBQNG95hqNCaUTd1LhDGfqqbswfBmLaH/Y9nDvuuY9L5jUX9dyEgEij/RkRUbQ/0dleoVuxg3e2K5dhx2AfxzXvHYGjwkNfxcCPHz8ykWLT9X+jf+02Lfgk74Ml40s37Ckiw4/+UI+S7B4pAdAeIr2bnOX6k14KHQhF3b2GZueTqxl3xH5Q5swsi0KQ4ybI2iYPt6yM2QMlrQ000usAeWnOrB3D3044xW/U88KO+sU8HC2QDorUdYFaN8GmlYh3n5VQEckbpUaBqLI8zf/e9zwX/eAe7OF26knaIE8KgZAbvq6qglu+cxGWLXl+xQbfS4UhIWX4XDnMbI5nXl5LRcrgsvMX8MLNX+IId9Xx5IdWAz5JWp98IFO0xkwmpKOvI+2mp7YEkUIcdjqP/PsFHD1jYhB2F7Q/0Wd0V7U/AMa4cYnaH3DO69MVPLLwAipSKd8tXDT6oa/hwI9XNKmaSnpXbsDKhGcJFZoKb2VMBncMYTuWUSRudf5LrQP0ryAlABrl4jUKFWPrNYbH8X5FfWF02iBbCrKdfbx165OkaitDmiHP30vvvePm8FDr60gpQ/ZAXr50Q2FeGsVqgXI7O/zGOZ8WaFlHO/+78jWww1+lRS+MGC3XJC1QoTi2RD51J+w9Dybt590wMYPo3o4EUFHozZZ8/vT5dPQO8o2bHg38ofjOXXWLxisGhCLprFy7jTP/7besfmtHvDyyegPUp5e9xWEX/Zgf37IEKSWnHzOHMsPIDz1J4JN0P/nu00tDPdfBTzQdVxvHQGcsbtKeXwDMWcivfvJjtq9ZifA0OUmSoP0ZcRmi9sd5xyT/8erj9OTMIQ99qe7Fwo8nje89lGmfOTMUJl/b5sUV6RTphmSbk9EuUg7/KMnukRIA7SFSXu8sa5+kHi4EQijnthS88ZtHyXb0+bMTnLQDf1vC/jUTqUtXsS3T48cvNBQ21JdVmlZerZGX5tiySv739dfI5GzyDXlpF0ZM0AIlre2SpAXyJduPfPwPiGMvSh4Ks61keyAFgspTBnf+xznc8eRKXnxjayRcEZ18MdqgfCCkhrdtjp43ne9+5lTOvPy3dHT3h3shy4z1TDf/5QXO+4+buOJjJ3Lnf38Uoav/JKNqHfgM9d6SyiV0rsaNxAEwzWSwjA59lVXRO/0Ivv7f11BbUabci1ouhbU/+YyfR0L7IyWYrR0h7U8UjF5o38HSju3UpoP78D5OgnQCyNEZPSfBj9o+RTVKtbOm0vfGlsQ2LLHojBSp6qoEz9EuzgfhcI+S7B4pAdAoF7/vsaS2cSgGhCAOQeVNNRx355ecqd3EIchL+9oDP8zEioYYpKjQE5WQ1qeAFig9sdmPo9MCeTK1ppZZ9Q08sn1r5FphLdCQxQckGRROYljFIHrjCtj2BuLws/Wtdo0yBVnteKMwAoyrr+bFay7hsH0nBft0FQtBaphi3b10tDOlbD5++rs589i5PP7yurBfhbNvm5SSPz30Cms2tXL6MXNYcftXOX/RIQghQulooSfp2sO9n6HAj3p9z8+WUDs2FCbftHdxxGLuuO4nvGffiUysqxq69md3iDrzSxFpatYOUzQ9d21+g8VTZgFGbHhMN/QFAfxoDaI1xs5R+AFoePf+dL2yLhRGVzS6ZT92935qJfm/JSUA2kOkZ0OwYJ3uSymqFQp9NHthFAgabO/DzprUz9nLn2qpQpD3O2Nb/Nebf8WStqMZAm1jmQ+ICkmhZfy9r8/F02bwYmuL8yWbMOQVWxixgBYoJorWp5CBtHzqTph2EEx2DX09jU/QI8TtgfxwSgduSxpqKtne1s2cz1zHhu3xIZnQeTF2MvncdRqhCJT88HOnc9axc3jp9Y1BGlKyfksrZ3zpN1z92wfp7Rugqa6SMTUVYeDJBz06jY8ur+r9RstguPCjaN60XwlEOtio9mfqHJi0P/f9+S4uUY27h6L9kbum/Skk6sKHqfETErU/ti15rauVs6fsF7hptD+6Ke1arVAe+AkZOpel2XHPM/Sv267/oIsATyjPmRyZbe2FC2GUSmkIbPRJCYBGuXiNR/mYWv93+OtMD0OqP+APiamNy7bHXmfiew7Qgo/3u9xIs3GgjZe7gjVrvHQ86FElahBdSAtktnX791nIFujimbP4+rx3ha+nDge4WqDoTLF8Utz2GEpBq1qg7ADysVsQx14IKWV6rm1Df1f4GknGt14mbcnExlo+f/p8zrz6T/T0DobD6CBoqNqghFlgkQLxj2w2y4evvI3r7n4GgNxAN+/74m84Zt50Xrzxixyy/5R4WUWBqhD05Mtb1E+jPRsS/ETLxbvOoLMIpFTdo4bPqQrEMR9APv4H7vh/izjtwGnIaDhVdNqfEejIYsNfEduffJ1lYPsDEoN7j1nMhIra2LB2dDkLdehLOxssAj+h6osMiQnDYNMfloSrMgF67MghUwZG/Z5pA+RybckIepRJCYBGuUj3KB8TfvHzwZATr7A2aOtDr5HtGfDT864X/X38uAN4uHVlfPZXRPMTb0QLQ5DZn/Ebv3w2RM51BbetW8uDWzaHtED5bIG8my5oC6RCUFQLFEtcgaBNK2HjCsRxHwniAeQGA80AGgiKdtQuBH3xzHdz+H6T+OqNj+TvzIejDVL9kmBICVteluae73+Ub//6QT79g7tI21leuekLfO0jCylPG/lBR5V80FMs+OQDv2LhxzN6jqaZHQjDTyiPTjhx1HmweSW/vu0uXt7YgqGCvw52EmB6d9v+ONlxoMhs7/S1P1HN7Hdff4a3+roTNT5+OnngR531mWTvo/oBzP3fT1Hnzg6MQk+hTl+kU6RrK5NvfJRL9DUbylGS3SMlANqDRGoOiMNQPhCCoIHpemM7a37/RMg42ruO2hC+p2kOa/t2IqUMYCeWtwCCkqay6qR86vj4fSZogbw83bzmjbi9g0YLpB0KKyRJEKRqgaLhn/oTVFQjDjstCFM3zsvYkCBISPj5J0/m6g8di5Uzw2G8+IW0QfkgohCERMLuN2Us93zvIxx/yAyobKRSNfxNiJPYeheCr2iei71HNVyx8KPmqa45EtYrZ/d8+rtg/HSyj/2RK+9fSn1luRIuTw8V0f7o4GeXRKP98d4bADmQCQX33qVtA/3cuXk1Eytr/NvOC0IJRs9J8KNb/NCWkGqqo3LqOHpWbtaCT+jWlDYtOMLtUklKsqtSAqBRLl772flWq7atTYIhNa4TTq8NmnHhAmZ8aEEiBElgXHkd1x54sZ+GCkHFzAobyrT46FBYVE6dPI0nW7bTlc3GtEAeBBUq0LxaoLxxlQKUinbINJH/+DXse7jTWfph4x15MRBUnjIYV1vFR39yPzc99Io+XDHakXxQkQ9OIkB05IHTOP+EeU7tD+UTNSnNfNePhvHuK+meCpWNVyaxMEE9hAyUo3Y/VWMQR52HfOQG/rZsDTPH1bN/c0MIbJ30ItqfCPwkybC1PwWGvqSE1KSJhKe9O373bHmTkydMp9IoD9+C8g76RaEYPRcLP5571K/pqDl0PPeGv5hhFHx0Wm3/fhBYGYuBbXvmOkCg/4At9hgJufbaa5k/fz4VFRVcfPHFMf+HH36Y2bNnU11dzfHHH8+GDRtG6MqjV0oANMrFa0i8afCQ3PcUAiFdo9S1dieTjp/jAkoQF+W3BDYOtPG7jU/EGkwVggotkKiDIKuzJwRBsfuPaIFq0hUsmjiVF1tbQ/ZB4TiQVwtUCILsIobCohA02IP8+68QR58PjVNgsCfoZBWjaCd/hSEI4OvnHs1Xb3yUp1ZsDPvn0/B48fNCQwEYiYb1jmyv3j3piJbXUDRCuvvQ3XMo7QgUxeImwM+Au76RjNRLqhxx0qeQyx6EnRt4+PXNXHLUrLAqMQo7CTKsoa8hSqA1JQQ80TCreto5Z3JgxK1+jARuyfDjh8uhVFQAACAASURBVMkDP557wJWCbEcvO+5/PgQ+OuiJLvXhpSdSBumaPXMrDLdZGfYxEjJ58mSuuOIKPvaxj8X8WltbWbx4MVdffTXt7e3Mnz+fCy64YGQuPIqlBEDDlIsuuohJkyZRX1/P/vvvz29+8xvfLx9JL1y4kCVLlnDllVdy5ZVXFn29yqa6xIYh+qLkAyHHX7hwAq1L11G711hq9hrrQ5BNAD5eGo3ltdy740W6cxkfdlTJZw+UT3Jd/Zp09AbRnvzi8OM4fqJigKvRAiVCULGSBEHeeZDhoPNr24x88nbEokvDn20eBBUaDot0/nP2GseNnzuN879/N109/clhkwyfk0DIi1PIFigaJzdQVLnlTaMYCCs03KXeZ9QvApEF4ceWkOmLw48EsfBi2Lkelj1Md1+Gn553DB8+XF38UksYRLU/w97yYgjaH53WxO7q8cFG/ej48bxFvLtpMt5Hh87uJx/8OG1DYfjx4kspwBC0PrmS9hfX+OGToCdWnF5RpgxSdXumETQyaALeqVlgixcv5uyzz2bs2LExvz//+c/MnTuX8847j8rKSq688kqWLVvGqlWrRubio1RKADRM+drXvsb69evp7u7mvvvu44orruDFF18ccZL2GwDCjYEn+aa/60Ao7C8wsxav/3YJ5c11jpsHS4QhqCZVxSH103iq4w0/nWLtgfJpgcr3mhi4y6DB1BlEew2+EIIrXn6e7X0DgRao2P3AitUCJVSG1h5IhaC1L8GbzyGOvwSMsngHnQ+CYhVoc8q7pvPo1R+ioaoCaVnJ4fMZPuuAIglK8mlvKscmA04iECSkq32YC2iuovFGAn4A6ifE0hDvPhvSFfQ9/HuuuOc55n33DgYyJikhItdW0orCj0Z2l+Gzk7ai/bEFZndfTBP0i7Uv8WzbFv9d8+Nq3rmhwI/6UaXCj1tENB59AAdcdWEIfPIt6JqnCPdYsXfh2N2yYsUKDj74YP+8pqaGmTNnsmLFirfh6u+clABomDJ37lwqKhx1rBBOp7x27doRJ2nvBeja2BZ2zwNDqr/jHgYhz9+Ls/aPz9Ly4npsI7zOjwpBEjhu7Fze7NseykOSPVDREETcHkiVJIPotkyG+zZtSLB/KNIguhAERYEnVjHhCvC3ynj+L9DbiTjp0yDSw4cg93z/yWN47LWNnPu9P2NZCaCTD4RUMEiCodj9aaBISr17McNgSddKypOaB929hvIYuUfd9ZLgJzqcBbDfUTDtIF647ioOuvI21rV289TlZ1FVlgrnPQo/UZFh7U9e+ClW8hg+q/ADUDZ1knJrgoxl87u3XmVSZV3wjkfsfpzbig+H+WET4Ed1U2d3ebfWdMwcupZvdIslGXrU/EYPM2MzsCNYXuL/krS0tDB//nz/uP7660c0/d7eXhoaGkJuDQ0N9PTot7/5V5ESAO2CfOYzn6G6uprZs2czadIkTj311IIkvWTJEhYuXDjkIbB0ZXnil0GsnyPhi8wPH9YGSQQHf/k09j7zMMefOAQBHNM4m0/vfXJsllgho+h8YnX3xdySDKLVzVDPnjqDuze9FcRJMIjWQVBeKQRBdsQeyC/EMNDI5+6G3nbESZ8KIEiFHR0EqTOPIn+PnjWJjr5BvnbzEj3oqPmBOIQUAg81TBKs5MLDlfnLsAjgSdJK5QOfKExG4S6WVji8Fn4GeoI4E/Zjw7h5bPj995hak+ZXH3wPf7j4BCar68+oz0jovpX0E+AnucyK0P4UgJ9wFcSHvh7duZF9axvZq7o+FCZq9Jy00GH440okwo97O0H7hMHYYw6g9anXteCj5jnZCBowBKI8nacQR6+4Tcmwj+bmZpYuXeofl156aSj9hQsX+h/i0WPBggUF81dbW0t3d3fIrbu7m7q6upEshlEnJQDaBfnFL35BT08PTzzxBIsXL6aiomLESdobA65qrtOOCSfBkB8/2kCh1wZtfWI1M847IugvCKvIbem8TE+1r+ahlhU+BGk/fDX2QElaoFx7YKegGwrTpQ3wnvFTaM0M0JnJhDqFoso0nxaokKgQZEfc1Yrp7UI+ejP0dyFO+qQDQX7YCHRAHKoif8vSKe74ylnc/exq/vjk63oQ0IGC7nrFwJDmnhnsLa61jkpS+rp8JtkzJcGRl36kvGJxiJSxVPz6nYY/M2YK31vazvwjjuTZV1cwsa6KRbNUWzPvHjX3oAMijQxl6Guooq75I6XA6u4N+a/p7eDcKQfEND5OXGLT3VX4UW/Xj5MHftR00rWV7HzkVQa2tPvhbSVtHfTIyAEg0gblY2qKKovRKNF7GspRSJYsWYKUUns8+eSTBePPnTuXZcuW+ed9fX2sXbuWuXPnDuke9zTZM3F6FEkqlWLBggXccsst/PKXvxxxkk7XV1M5poravcfR2Jelf2sH5XWVlNc7mwL2buukrKqcykbnC7VvexfpshRVY2sBGGzpBiGoaq5DIBls6wXLpnq88xWY6exDZnJkugdJ11YyZdFBtLywhtopjQBYvRlyPX1UT2rEEILJOwe4acWDnLPfIkQ6hT2QxezooXJ8PanyFDKTxWzroXxsHanKNJgWuZZOyptqKKuuAMsit7OdsoYa0rUVVO07hd4nXyFdV026rgohJHZLK6mqCtINNSAkdms7RnmK9Jg6hAF2ezvlKcFzn/4KRgro7ERgkhrXhBAge7sgl8VoHgdCQn8vZPoR45udJnuwDznQh9HcDCmByAwg+3sxmsZCOoUwM8i+bhjTiCgvR5o5ZF8Hor4Rysud3qm7DVnXgKioAmzobYPKWqiqRiIQNXXQsQO5fAni3WcgTv408qnboaIaDAF97ZAuh8o6Zz+2wW4kIGqc/bacGVcW1Dj1QK6PsWU1PPKzr9BQXQFpG8zBYB+r3ACYGahudNKzspDtg6oGSKWd80yvc710ubOxaaYHKmohVeZcK9sN5TXOqtbShsFOKKuGdCUgHb++NihzN6Qc6HDSKnM7pcFOMNJQ7jx7ZLoBARXusz/Y46RbWe/69zl5rvLuuR+yg849AGQHHLfqRqcXMDPuPYwBYTj3NNgNlQ0gUmDlnBW4K+tc+ysLetuhsg6ZKgfLPa+ogbJKp9fvaoFJ+yNTFVx240MMbl3HS//1CfaaONF9edvASDlp2kBvB0iBrHanwnd3Otepa0LYEtnTDbks1I9F2CD7epD9/YjG8UgbxEAfsrcX0dQMUsDAALK7B6NhLDKVgoEsVmcXRkMjpMuwMzlkRydG/RhIVyBNC6ulHaO+HllRiTAl5s42jLo6jOoqpC3IbW9F1NSQahqDLCsnt70do7KSL+y7GCkhu6OTdFma1Jh65yOkpROEQWpsg+Pf1oswbcqbGxz/jj7sTI6yCY0gJdmuAcy+DBWTmpASzN4Bct2DVExsRBoCqz9DpqOfygkNkEphDeZ467cPUzVjAkZZGjtrMtjSS3lTLanKMmzTYnBnF+WNtaSqypG2zeD2LsoaqkhXV2AjGNjaQeX4eqr2ia8btqdIEXy8W8U0TUzTxLIsLMticHCQdDpNOp3mnHPO4Stf+Qp33XUXp512GldddRXz5s1j9uzZ72ymd7OUAGiExDRNn5hvuukm332oJF1dXR3aVDLXn8HKmux4aQP9O7oxsybZQROj3RmOsLM5zL4sg53euUUuJRjscbdSyFnOn15nUTTbtBBSku3LYgiwXZuS3EAry699iGxHH9neLF1vtWIIkJaNsGx6s85eZHtZtaxr3cKbb65hSlWj8zVrWliZNlIpAbaNsEzsTA6RAgOJzJnITAYzZSCQYOaQg1msNkG6oRqrd9A57+hCCIkwc9j9g1idPQghwcphGAK7u8/xt02EIWlvb+faN5dx5dxDHfAZGEAIENICYSMHBxGGcy6wsbNbwZAYwgYs5I6tjg7U/QyXLVlAIIWNwELmMsiUcPaLtS1kLoswDDCkE8fKIoWBMARIE3IZp4M0BLJ8BqK3A/o7kQ9ej1h4EeLI85BLbgQ753SaKcPRquDmIWUgs/1uerYDMrlBB5hsGwzYK53CHOjhnB/dwzUXL2T65JwTX7gaKDPjwIGn4rKce3LHZOLnuUGng/fPI/5m1t8wl4apMNjlgg0gLQfCMso9AAz2Bf4AmX7FX8bPzazbO7h57trhPv22Ay2mu0Gs5apGzJZAZWJZkM24n8rePWQCzZppBv7ggF8ugzcEubWtmye2lnHBZ7/KtzesZ2p/tVOX7VscjY5lOWn1ucNkpuW4e+eW5WS7v989t511bvoHHHfTAmkjt29xNCqm5Rizb9vq3L5pI00LeyAL0kBaNjJnYQ/mAq1Q1sLuyyGFQFoCmTOxB3MgHQW+zJrYg1ksUo42JWsh+7OI5mayG7Zj5yzuWr2MdFmaMybNxspZgEGuy51EYFoO6PQMOpofy0La0N+fcYbSTQvbkpiDWSd9y7nPvg073TKWWJaNuanF0UK5ZdC3yUQIwSH/+wlWXPVHBra0I4UBtsTOWVjZnPNsS7CzJlbGRBqGf54bzCFSzj3aGZOBbZ2YA87zXlPjQLeUkv7+Iodm30FxNDnv7CKO3/nOd/jP//xP//yWW27h29/+NldeeSXNzc3cddddXHbZZVx00UUcccQR3H777e9gbt8eKQHQMGTnzp088sgjnH766VRVVfHQQw9x2223ceutt3L00UfvEkmrL7MQAitnY+VszKxFps/pCKyc09EY7vtkYUHW6WwMJLYJZIJ+C8B2QciLY5vhc2lm2fD35aTKBOmyFOZADoEM/PttB0aABfWzeK1lPePH1WII57U2LRtbOOEFEmnlMMB3sywbKUzfH8tE5iDX1ottS8g654aQLvQo4YUEw3L6U8/fkNQh+fObq/jApL2Z3dDgdEaGBAEibTvQAoiUdEAnmwFDIoXDCNLOOH8Np6ykbTvs4B1mzvnq9wohm0UawgEUH5wI3KQdhB3oRZo5x93MIR+6wYGgUy5D/vM6GOgC08kjhjsSraQHOHEtU/EXYFmkDcHxB0zmrP+6k6e+dyF1VRUu9OCWgVLx6liKIZxrqmLYOA9MRLxrWkr47ICTn5hYyee2DWjihD6HrYibMtsNfIgHnPvx8uuFtyLxo0Nenr8y1d3MWfzikeV8528v860rr8J88Hqm9m1WwEn6kOREMINhrtBQo+ImlWvaVjBcZjvPWnjoKxMe+srlwnY/ORf63GEx7FzwWwJWLmz4nLOwpR3Y/ZjOh4nMZEEKbl73MpfvdxTWQNYdApOAFZ6IkM0FxSQFMpcLblO6z7Ey7OX7e7XW78b3OnorR8O7ZpKqLKN3QzCJw695yw4PfSm710vXPyQ5i1TOCdPXF7cdLEl+KWR3umjRon/5ae9RKdkADUOEEPzyl79k6tSpNDY28uUvf5mf/OQnnHXWWT5Jf+Mb36CxsZHnnntul0jaGwOumdgQGxPWmV7YCGUND4JxfO/w2+qwkbSX5oGfPZH9P7xAsdsJ4ntj/BfvdQLHjT3ItwOKanZ1RtFJ9kDZtu7wrLCIPZAnOoNogxRnTpnO3RvfCtksOBGC8xGZFRZkRDszLObW2wlShjph+ejNyDVLEWd+BcburVSia9cSGF0EaQIxmxdb8rn3HcpRsyZz0f/8BelbfuvsgSI2MzG7G81DpMZTj4EuvftwZ4Fp3TT5dQojfn/RtJSyis3Oiqzzc+fStdy/qoUnHnuMyw6oJL19bbjcZTSfBeBHFc/OJ/IsDXXWVzGGz1G7n1A2+gaQUrCqu43WzACHN05NNHoOuWkMnoFwexGx90laBHHq+49i413Pun5q2xVdB4hY+6aGs6WAdJqyxj3XKDef2VyhoyS7R0oaoGFIc3Mzjz32WKL/SJJ0qP12f7ta45AIIi+Kov4x3I5VCKfBMlDTEggktnTSXXffy7z3lx/l9d89jm1aGML7WnQuYkhnSOjWLU9wZOP+7FszHlsKDCHdBk366doSEBJDCmxk4Kb8Lp80jv6OXldb5OTVRpBytU22xN940sm7BBy4Mmw4a+pMvrfyBf9epZMI2MIZyDFcMDGEf9MC4bt7OXbC4thxIBR373/paGQ8jZithnLSD7k1jIf+HnD3DBXe9V/5J7Jrh7PC8LN3wtqlQaXadqB5cXsWr0qD1ZYcf2EIrr3kBJ58YytCug+Ip4VyAoQfGBVGDCPeqvqqwTytbWWjY1ekk2JbaV043bpDnkRnqUV/J2l91BfH9W/tGeBrdzzNyXOncf5HPsYHrjkZ/v5Lx27JVmA1CX7Ua0fdZBiCk+AnSEPR/gxz1pcOftSPCLOtG1vCmt5OPjD1QAxSQXYV+Am5FYAfJ1x8hmjSZqiDLd1s/fvLsYkXbpGFRDf7619JSiAz+qSkARrl4ml0urYF61/ovg6iX086rZCnEfK0QV44VRvUva6F7vVtTDp+jtbf0+pY0ubR1tfwNEDq31D+EzRBnoiylN/wqlLsXmEHjxnH7ce8T+kICHUa+abG66TY9YGUCgoVtt8JipRSwE7n6msL3noVef9PEYedgTjs9HAa6jR5CKcLqNPlywyD4+fsxY2PLOfGR1+LPBB2cCRpWfItMKj79DRSxYUr9Clb6PqF1isKHUEaWvixbWzT4jdLVnDQFbdSW1HBSZd+ldSso+GeH0PLRhCp4uDHv2ZEw5QAPzopesHDAnt9adNW4EdKQWpiM1IKTp6wH5+aMd+9BRGDn9DszCLgJ9Am6+HH09iI8jSrrrkfqz/ruznh45qg8DpE+sPMmgy0hWe27Skid/Eoye6REgDtISJt6YOMekC8T1BfnGJAKIjnNHSv/Pwheje3K42TmwcFgo5tOpDH21dgSVsLQV56SeL5m65dE3iNq34ozIMgCBpsJ5LBS+2t3LD29aIgKFSmnpuNttMqZpFE3crQ0pYwOBjuSEPrBEnHyPbPP4BJ+yEWfcKZbeVXptup+xUlw9eDEDgcOXMi/3HLYzyxYpMeOAoOHxU5dOUZFxc6QhWdkPZQ8xmFEKUMQnDplbULP72DjoH1sk2tPPD1i/jJbffRUFuDvOeH0NPqlGtmIHggioUf/yEJw0/8+Rn+RqdRyaf9icKPLZ2PiydbN/I/bz4T+nhIgp9wlSfDjx8vMowerA0EpFMsuONyysY1+G5BmxSGnijo+OWn3I9/X1YJB0oyclICoFEuXlteN2WM/1s98gERFAYh5xw/nkTQsmwzXRvaqHCn0usgaErVOCZVNLFlsN0PkwRB+eyBMi1d4S/QBAgKyiP825aC2lQ5/7t6GZYt/U5BLb9weRZvDxSKl0cTpIWg7vZwp6h0zH5n3d+NvO+n0N2COOdrMGmWHkySQMj1nz1lLDd/5hQu+J/7eWtnpx4YbBnWrBQEDQ249Hfq3YdrAxTNT17Y8fyCtGPgo1R4V+8AX7zlcd7zX3chpORnX/kkh37uR8jVzyAfvhGyWb8s6WkfOvy4z0B0Pai8dj9KsRcjxQ596TSoAFZfhju3rGJCRV1R8BPATBhufPjwqzKsKfLcnDQcGX/8gfRvamOwpVtr9xMFHh3seOKHK09T0VxffAGOJtG8ZkM5SrJ7pARAo1y8l18SbjSChiMPEKl9n5dGBIR02iCA/c4/gnmfOzHy1eZe0037qlkXMaWyOdIwhv8WgqCyCU0ho2gdBKHG0wyF7VvbxJiyCp5r3eEDj6/9Ia4FGo5RdFAhRUJQ3di4m9JJ+x2pmUM+fRfy0ZsRx16EOPL94ZWjIQAJdVgsAkInHTSN6z5+AmOrK/NATQEACd2j5qgcs2steCEAy3ftyFCXdrjL1fo8tHwDB37jVgZyJv/88jkYh52OOPZC5D9/DcsfDdeZlFA/LnKtIcCPUmbFws9I2v1ENT/qe9K2bSdPtm3kfRP299uGILv54ce/TRVYfA1PeJhM1fB459POPZINdz7rXysKPk45hGEn2r5FX709XeQu/CvJ7pESAI1y8dr1nu3dIdCBwkCk0wpFQUinDbIlrPrj80w+Zj/qpjc76RIAjQcwppRcs+5espYVVl1TPASJ8vKQfxSC8MPntwc6c8q+PNfmrB8zHHugYiDIZwQdBPkw4pyLdFnYTa0Et+MNaTC2rELe8V2oqEUs/jqMn6kHgNADEAahMw6bSf9gln+76RGs6B5ZhUDDKbj8hxEY0cYf1AJxC83g0p1DfvDxAMYFn9c3t9LRM8CUhmr+9KmTue7ySxh30X/C2L2Qd/03bFsTKi+/HA11v7YhwI/y1VDsjK+RNnoOpx28H7YUtDdUcsbE2dSnKyNhioef4BbjM8GiWh//3BC0PLWabY+tioFPPujBT0d/mFmLgfY9c/p7qM0dxlGS3SMlABrl4jUOuYyZV/MT0uJEwhQLQmo6ud4Mr93wJAdftigUx2/QJBgiRWu2mxe71gaNpfJFWAwEWdlczF8dtspnD6Q25p/Z92A+v9+h/lfx2w5BeOFcd28dlxAYEe7ko0NiA73Ih29APnMX4vhLEEdd4NgGDQGEmqorWL6hlX//w+NB2GJa12JaXyuXH278h3aI14q52USHuWQ0jgI+fQMZvnHnMyz83p95ZVMrB+w1kaMv+hxi0SeQL/4N+cAvnGUJVIBShhTJZf36iV0nH/z49as+MzL0/Hov8dth9KzCj5SCmU0T+fqs49wshN+XYuHHOQ8PiQVu6odRcF42ppY3b3wcadkx8HGLI9RO6R4HdT9D/9o27iKOe6bIXThKsnukBECjXLxGYcy0psCNeCMCkT5R8UsCIQj13YrGxYm7+o/P89LPHg43jASNJ8CCprk83r4igJoh3l9mW4effvi+k+2BvMZeFYHBbRve4NmWHXkhqGgpBoL8cDLUSklbQkdrqHMPOlHCnT4EEOS5rX8V+cerAYk471sw78RgLzE/nO3HVUGozDD44+dP476la/nNI8uDsPn2Ayv0yem59bYXhind52qSfywf4Xxq90cL3a9NJmfxrm/dzvrWbl759gUcf8LJiPdfAely5B+vgrUv+nETZ3p1tumvF1VLyHiYxBlf6vMTgZ9iZahGz6qs7+/kRyuW+O99IfgJ3aaMDJVp7H2k4u+k5YhRU8Vxt3+BVENVaKjLLRIt9Hiiwk64HJxDlKepbA7vs1iSkuyKlABolEsIUJIOwodOKwSqW9hGKPiSC/ykdFbL7dnayewPHx02isT76oMjGw9g82AbOdsOQVCxWqC026DptEBJ9kCqXZDasPeZJrduWO12GnEIgiFogVRJgqColkAGbrJmTAA7npsdHiYLf/JGNB2Dfcgnbkfe/SNE8z6Ic78JM94diasAgwIGTdUV3PelM5k0piaiQbHDR9KDleReUV8cABWbniY/BTU+ALbNWzs6+dUjy6lIGfz9S2fyh698hMnnfhFx5PuRS36PfPT3zpYbKvz4L4CaJ6C2Uav58eNF4cfT9CgvV7EzvrywI2n340GL+oFw79bVsLMrBj9BuxKGH9XgOVBWJtv74PuHtUBTTj2Unc++6W6zIULpqY+Bd82QhifP4/OvIMN5df7VymC0SQmA9gCRQF9rb6JqNB8QFQtC3nWCNFwIypjMOP1gpiycrQBK0OjVpKr5wexPYIiUf+2hQFCqqjLspvxOsgfy/kYb/lMnzuCfOzbQb1r4BtBupwIw7KEw3N9uARUzHCbKKmNDJSoIhYbEIp18SBvUtQP5j+uQj9yIOOA9iLP/HSbunwwSbhqzJo7h1Hn78NO/vcS67Z3u/Wum0g9lTaBUxa614AWAJxF6ZHCPmUyO7977Akdc9Se6+7PIumZmnPt5xCmfR25fh7zjO7B5VaisQ/Y+kRdF2hLKovdFOD9yZOBndxg9q52j527acN+2VZx94JEx+PGgJh/8xMOpYQPYkUpYr2j2OfcI3rrj+QhIKVUa0fLEHhEpEg8rZzPQOfr3/UoSndlCsUdJdo+UVoIe5eI1LgM9Wf+3KoYIvx3qitCGCPpfw2tglCQCN+G/ZaEFgYXAsCVLf/JPDr/8ZDY//ga2ZfurQzuLGwt2Ztp5qPUlPrLXImwp/RWjbSFBBqtEq6tFeytBWznLbSz1K0UbBCtDe9DmbvXp/pX+StHjKmo4ZMx4lnW0clTzBB+WhHd9JAx3pWhvf1HNatFOHEloxWjLdDpFNz1HpH8dJ02vgpQ6NIQLQUF9ArBtDfLuH8DMdyGO+QAMdCNXLIH1y4IKd2pOScsgbQjOuuY+nvr2+dRXVfheujZVRFeMjoqVy+9fQELDR352NW5qix8Zurv2n8tYun4nz3/vk0x/34dgygHIVx+GR29xNoJ10wsNd6nXUaDUCyPNnOJPGEA9+FFAVgfA+eAnfGu7Dj/x4lKHhgWtmT4OGTOJ6WMn0bNp7S7BT3Cu/+0WmSNGijd+9xityzaEity7jlKNym/N/cRc3LCWJOduhrqnift4lGSUSQmARrl4jUHjPmPpbYmvghptQFQgCvUtbjBDbXyEu6endCEI58TbasODoE1PrWXOhV00zZlMy/LNbj8eQFB9uo6H217mjAlH0VheMyQI6tvc7vBHAQiSUoS2ykiCoN/OP4XylJs3G4Qh/c7GNtgtEORvd6FAkGzd4WxRYUsFklRkIuJOyM/TzcZAaO1LyHWvwIxDEAceD0csRq58HFY/DRllhowLM59574Gs3NLGB3/+APf92xmkDHfnVw14FPzQ7G4B2wW8aNxi9fSFgAdi0LOlo5cv//EpPn/CPL74gTP48kHHw9Q5yNcehcduc3a0LwZ8IAw/nlvbTr17IfjxrpkEP37ZDE/zkyRJRs+epmdsRS3fm3OKvwGyk/Uw/Ghne0WgSDfLS/1tK/lBCJoO3puND7yiBZ980KN7cnSPiVGepmrCnmsDVOwrUpK3T0pDYKNcFC18WEuvuKuHqjIOuwcfv+pQWHyoTGiv+Y/P3srOVzcHcWTQUFakyjm0fj+e7ng95F7McFj5uHq/MY2uJRKUHwAAIABJREFUEeT9xosn8xtFSykQ0uDbrz1Ntzu7LMkeaKSHw8J2QSDqxsTtgtQKUCoxZiCtGQYKDclYlgNC9/4Y+fdfIRomIM6/ErHgQzBmUii+kPCTDx3LMftOIps1Cc0gi+rYdQ+YelQ5i9BFh63ixsN5Dt21Y0NxTlgzZ/GTf7zCoVf+iX3nzOOQz36f9KKPIzu2I2/7Nrz4AGQG8sNP5MHXDrXVNMSGvELw49dTpJ69SyXBzy5Ody/G7icKP71mjg++cDsZyyaztTWIF4GfoDoKw4/anvjti9+GOL8nn3gQcz9/sv/ORu16UOJ66cbaJuXw8hIeMvOOkpRkZKSkARrl4jUGvW39sS8IQ/Mhr36cq19ahrK5KBDTCNnKeVQbBGDbkgMuOJx0dTkrbnzSCS8DTdAxjQfxXOdKwkNcsqAmKFVTFajbEzZOFQh/KCy6aWpUE5QyBJv6e/jH9vWcu9f+jp8XwNX+7KomyCs+VRPku+FqgiqqnQ7RGxJzxyaD+EPQBkGyRqh1E/LRm6GyDuYuQJz0Gcj2w/pXkG+9Ah1bKTMMvn7aYby5o5OXN7Zw/hH7ExOjwLeQEJCuKu4ztpDRgm4YLQJR/RkTMWV/llubefLpp5lVmUW+dD9y65s49aiU3XC0Pqpmp1zZhkSqYYM03m74CRv6Fwc/NoKHWtbRVFZDmZEi3VRPpq1PCz/RBQ6jxs7+beTT+rjxjbIUcz69iKVX3x3T+KhtkPpURB+jpG1z1HCmaTPYPagNN+pFFn4tSvL2SwmARrl470x/R39MVVyoL9LBUDEglGQbtPm5dZx508d54+6XyHX1hyDooLqZzKvf1/9KLBaCLMvbiT4ZgjweKQaCpITTJ+3LPVvf4P1T90fdOX6kIMirFxWCHDdlF3nLcuMrdkFKwUv0sDNsEOrvhhcfQL74d5g4HTHjXYiTPgW25cDQ+leQWzv4wh+eYHxdNQtnTwmnm89CwTBcTY1VXCteyE5I9+DaEipqaKmZzH/84SG2dQ/ywG3f4LfjpsALv0dm+0Nxw/txFQE+nrvGz68rqYYl0Pq457F1fkYQfnQyVPiRUnD/tpW8f/I8pASjpnrY8BPVAClFFrEXgr3edzDd61toeXF9XvAJVVkEePK1Zf51TYvBnj0TgFxWLskokxIAjXLxGobG6ePoaQ2vgqoxxUhsSIL+tzAIJWmDOte3se6fK5n38WN54ZoHHQDxIcjg5a436DR7OWHcoUVDUN/GlkhYNBAUN4pOgiAhJSc0T+cHq5+jzzSpSacZaQjyiisEQb6Gx0nD3rHdBaYAgoAQCCVpg1DOigWhoAolbF2L3L4Onr4Txk1DzDwUcdxHmXVCObfsdTQf+tI3eOI7lzKzYtCBGp0qMSTuRTq3F4YbP4o+vYGsYxxeVZ52ymrCdMSUA2DqAfzpoaf43KWf58JFR/M/H5iPvPN7sbRi2h7VPx/4eH81frJ1W3jIy3O31bQI4CfkNnz4UaXYGV/54CdnW9SXVXHs2BmOtsaWWvgJblFv7Bwb/vLzqIKT64Zgw1+Xsfmx1f61vLjR6ikEPfmeLCkhXV5G7aQxeUKNbilpgEaflABolIv/zohYF6jtY8Jan2T/fCCUTxu09JdLmHXmwS6oiBAEVaYq+fu2h1nYdAgpw1Pj54egdGMd2Y6+vBDkAUIxECSloDJVxpLjLiRtuPDkQsiIQRD42iAVgiAYEjNq6pE93cGQmI8nCggV0AapZ4VACHQwBOzcgGzdCM/dCw0TOGHvGXzn3z7Ftr0OZ9+TT4W2zbBzPXLneuja4Sx2mFO+slU4qqiD/h6KEuXhs23JI2tb+K+/vkRVbR3HLziKr3z5ckTTZMewevPryGfvZcqyJ3nwU4uYN3UsZDqV+9Joe9RrFAM+Uf+gV4Yqp650Q17B7wLw4y+1UDz8DHW6ez74cWY5pvj+nNN8sOnf0FIU/ESBRyphbMLg4xWnBzMzzj+C9hVbaF2+Be9Jj1R/CHxCI52EpSjlYskGqCQjKCUAGuXiNRj9nQMFgUcNH/VLiqsFoTzaoN7WPl7+3VOM238CHW/u8CHIAmZU70XGyrJhcCf7VE1Q0k+GoLKGan84LAmCpN8HF4YgIR23luwAt258jctnHe4Oj40cBKH4qRDkuLtDYlW17swwFAgCFYSStUFu3hQpCEJQGIY6tkPXDj42DuyND3LjJ6/jwjNOIj11P8R+h0N9M9Q2OVqhnjYHhnrbkb3tzqKC9eOgrhls0zHEtk1nur8wHJunihqorEFU1ATnVXVQOxbz0Se4esEFLJi1F+85/2I+MKeZqfQ59kpuGRy997igPApBj/p7KODjucvATVTV+vATG/Ly8iOjbkQAJyj3dwJ+bFvysVf+xHdnn8qEygZsCeWNdWQ6+kPwU8jYWdUAReEnqskpH1vH3Evfyz8+9Mu84JMEPTrgyQc4piXJ9mUS/Ue7lIbARp+UAGiUi9dG9LT26bq8GNgkQU/EBCUWRwUhS7qdZoI2SKYM3vv99/PSrx7jrQdXuOM/Tv97VOM81vZtZe+qiahrBSVBkFQa3SQIElKxESoAQZZtgGHTkK7i1k0r+OC0uUyuqhlRCHKKJmIc7abna4O8DjUywCVCv/TaIC99Qi4U5R9UqhJHA0O2ZXPrMytZtn4b15x/TDiVyhqoHQt1Y6G+CVE7FhonQ20jjJkIRhpSaTBSzm+kMwV/sA8yfcjBPuhph4FeGOzF6NrBMW0t1FWWI7fArFp4delSph44Tclj5D4KQQ8MD3zcItPNvNPZ+/hZUex9vDIdLfAjJSzr3k5nbpDxFfU+2KTqawrCj6rt8d7DJFufKNDM/eR7WXfvS/Rt79IOc0WqIShLv5jjsJNvJFbmLAY7B5IDjGKRSGRpDGzUSQmARrn4NkB7N2ltgKKvVCENkOfmmqwEBsbK0JghpNsYEtMGGYBtSR755r2c+rMPsm3pegbb+/z4Z09YiGEILFu6w2D5Iah7/c4Q/KgQlPLNj+Izw3QQhJB++LRIc8L46fxl6xo+MeMQ594YGQgSHlzYCgQpNjkCsLZvcYpOgSD3Su56Qm7hGq4WQiVUQwRuXh4jleV14H7KfpqEYc1dWNETr7NOCcFtl5zAMT++h30eruPzxx8UPCz9vQ7MtG708ww42pyBIofAVLEldeVlYEu6BjI0VVcwrak2P/R4ZaH97d2LTA5XQOvjh7ElsmWrdsjLz1Ie+PGzXqTBsxN2ZOBHlfu3r+C0CXPwV1F3UVuFGBgZ+LGlQKQMKsfV8fJPH4zBz1DARwc8SZiQriijemJ9gu/ol3xwV5J3RkrrAI1y8cwVRMrwf+c7JMGhc086V93D6364B7iNr3PsWL6VVfe8wsEfX+CHM6VACoNn2pdz05YHsNzOP5yu0ggDZfU1ymyU8F/LU+9D0CG4Dbz62+s4omsEfXDqQTy0cz2mLZVOJeh8gi/xoKOyZbjTSlonyDa9TlHxM/E7S1FVi7fMjaddCNmN+JoHz83bsiEo9PDeYUplmHaeMJpKDVVwcDRWlXPvJ9/Hls4+pC15as02+gZzgY1M9CivKfwAao5czuLh1zezfHMbG9p62dE1wNyJjaG8uBWX53DLyUzYNiMaLhpGoi1PaQOVtbF6CeouXm+q5mfIU91HctjLdbNsKDfSnDZhrg8/toS+t1r8dytq8xN/z4P3LNAYBfATFKULToZgyRf+QKZ7kNheXgTthV+1iOBIaK+S2iT1KLhcwygW3b0We5Rk98ie+zT9HxHvBRjoycReCqtAn6FrVKJxdY1O4CbC/m48D4Se+/kSnvnJw7F0Dqqfxbr+Ldy1fUmoAQ0a3cCtrLE2pKKXkb9DgSDLNkIQNKduAjfNP5sB02J9X/fIQpDX4akQJIPOkpqGoDNWCli/cGK4445Wkr/goBnuvNUjvJ8WieGix37N9fz3mYeDlFz3xEpmfvtWvvWXF9jW0RtKU9oSWVkbd3OP5ZvbuO7xFXziliWccu1fAz/L5mdLlnPzc6tJCfjxQ6/wwfkzue2FN3lu3Y6ioEcLNMWEs4Ky1IGkXxfV9aG68I2do/Aj4/BjW8qz4PslwI/3jIzQsJdp2/x03ZNsHOziSzPfS1NZXfCuSUHKta8LA4rQvNvK+6UUUTSeF2fsvGmc8OuPFQSfYqBHX51Ce1i2JNOf3aX2tCQlUaUEQKNcvEaha0dPQciJNiiKoiARdHQg5MULgEWvDTJzFrYNZ9xwMWVNtX6cCqOCL0y/kOc7V/JMx2v5IQjCja8GgqI7yA8FggxSPNO+hY+8cC9b+ntHBIJsK/LV70JQaOVoCdLXEqmdZ0Qb5IcJCjek5VArSQs58cqWpp0ATZEHIBLvposW8tjnz6C9d5Af/HMZSGcbCvVTXto2r29r5/fPreYLdzzJ1+99DqTkd0+v4tm3dnDIlLFceephSG/FaVvyxeMO5MYLFzKhppJXNrfx7b8uZcnqLVSmjGSQMaNQlww+wb3aIfCJl0EAPqGFDb168euIuMZOKnUc1foUDT8eLO06/PSbJl9e8VdW9uxgTDoAHT8+kB5Th057E9UAhd+/AH6i8bw24JAvnsQbd75QGHyKgR4N6EQVg95hZS0G2vfMzVBj9z3EoyS7R0o2QKNcLOmYcTTu1RizAfL8o6aExU+FD869dHTG0lEjaVviG0ibOYutL23iuG+ext+/+CdwbX5qUzV8eeZHqE1VkpUW5aRim6iCpGdDm5Ke0C6WaNqCtNtXJq0WrdoEeYbQ3sywheNmsGFaF5e8eD+3Hn424yqqnHtkeDZBQMwuSNqObY9nHG1v30Z4FpgXz6k0IZxOBqIrTAe/nJw457qFFJ1Qau3rW0rVVcSelnCI/cfVc+37jwZgcCDLgmvuZfaEMRw0uYljDuzgrJlj+ORtTzB1TA3zp41jwYyJYEuuOefIeJKWHdyJlGRzFndevIh9m+sJDEyUKOpDl/hbE977K6Pu4fhJM7zsHdsCrY8XTglT0NgZz78A/NiejcyuwY8tBf++8i/Ul1Vx9awzKDNSMfjRDXn513b/ekWgwk/U1scrVq9I9zn1YNJVZaz9y6tKfK9YwzZA6nMXrkLFdkrzyNpxJwBS5WmqJ+yhNkAlkBmVUgKgUS7S/aA1ylKJL1AxU+HzgZIKQrrf4bAiBEFIeP4Xj3HBnz7BvqccyJoHXvMhqCFdj0DygzU3cOr4o3lXw6wYBKWqK9yGWhYNQTbOg1sMBHmt8EenHUpnbpDHWjZxzpT9/c1ThwJBLn8hhDfbS4EgpSAFAllWhZSd4EGQm25sujxOpxOd0zVUEPKuG0gCDNlS88Cg3eC0MpVm1X+cx+2vrGVLVz/7TW4GO8vjnzs9Er+4XmxibTXU4mtt8qZRCHrUMEMAH//c85MgyqrA7owBUhhuVCAKD3k5aRaGHx8odgF+dgz20VRey5dmvpdJFWNAGFgyyJcKP70bvXWAojATaH28YlG1PvhpqEXshG17YwdPfPNux76vAPgUAz062NFBEQDCMb7eU0UmvJMleeekBECjXLwGYqAv64CQJowl/ZnovujAJ2kqfDEg5PWbHrio0+VzOYsHv3Y3FTUVTqMd2kJDcN6kk/nZ+lupNCqZXbe3Cx8OBFWMraNrfZsLN4UhyMuDKYuDIEM4axRJCV+YeRRCSJ5v28IhjeOpTKX8Mi4EQUh3rSTNDDFpueWvFJxRPwa5Y7t29Wj/t7p4ogtSQwYhpYJVuCkGhigiRLlh8JF37edcb+p02Ly6cFqFPnW1wBQFoIT0NOqFIYGP6x/ADVA7Brl9WyhcGG7CWh+ID3k54fLDj/QBaHjws7xrB5evvI/vH3AGc+qmxLQ+zq0Fmh+jqhJJb0wDpA55ecWlXxcorBHab/FhrP3bq+QGcm7R5QcfHfREgWcoGiDLtslmzATf0S0qTJZk9Miei9P/R8SDj/at3djS6fhDJh3u4Rkn6ybUSMJj0N65Z1qi2vwEDZ/+t3fuGSd77jtX7WDbq5vZ74x5WNL1dxvVvaun8PFp7+f6TXczaGXd/DoGzl7apu0ZPFPQJshrmE21A8kzO0xKz4hSYNkGt25aweXLHiJn2wVtgmxbOIauCXZB0jSIGkg74T1Ng0Bair8yU8z/Lb0OVbq2L0HFhmeMBZUfsxOKVFJeOyAz8oCoD0HCIU0bLCVN3WHagR3OkA+09xay/4kYNSfZQ6n2O9EylJbGyFkGv/3tzvLM8tLZ+9hWYfgJ3s2hw8+jrev44op7+Nq+J2rhRzfTq3xcXei9MTX2PpZmqEyFH6/o91o0hwMuOgrbkjEbH7Utsd28q7Y8llJFUbseXVuW9IjkshZ9rb272qSWpCS+lABolIvXIDVOaYiBS54+JARE0f5DjR+Fm2iDpvp5v6NG0n4Y4F0XH82s0+f5jZ3XUB5QO4Nv7vtJyowK+sxBv6Hr2tQRSssDo90FQVLCd+acSLeZ41srHndV+UFnY9kO9Fi2gWUZFDSOdn+HIMgGa2dLqAPVzhSLdtR+5xqAkA9JpgdN8QoPwYBEW6lRWBlSz+Ol0b7TqfykoxjQ0RB8XoPnQtBjqveYDD7YcfDxwto7d4S1PoVmeZnecxE8Bz6AFJjmbtkGtm0MCX5sKXixczM/nns2RzfNTLT3iYGM+r545wr86A2kI1AElI2p5oh/P5Unvn0vuaylBx9vppYKesShpxCHK9UdO4yyNFXjaoffmL7DkmTcXcxRkt0jJQAa5WJLiS0l6cq0/9uWEkvKWAMRAyOSYSjaR+riBw2i+lWogyKn8TSzNn//+j0s+MpJVDfXxSCoJl3NW/1bufKN62nPdjuq7rRiwEkAN0OFIEsWD0FlIsVPDzqVrG3TmTWxfMjJrw3SQlB0lpirCcBIx7RB0oyDkgo3OhAqpmNXoSIRhiKVG9IQeUeSetE7RCq/f4EjCjqJM7yUfBea3h+UbbgsoxofaUXLTglrpJFWZIaX7UGM9xtCWh+v/r1nS9ECFTPTy9NGWj4MxeHHsiW/eutZ1vS18YUZCzmgdnIi/MRBRtC3uT0EPyp0qLBk+XEiUOS+vxPn78Oav7zK9mWb421ARNujVpFWy6OvZiVNkXhIYWCUlw2l+RxVYiOHfZRk90gJgEa5eI1IbtCMfRVYdgBE3pHY5xFulCw7Djc6EFIbO9UvHsdpSHe8vp1lt7/A9ONn+Y2fCkHTqiZzbNNh/HjdH+jJDVA9sSHU8EYhyIw19noI8hryYiGoKlXOd+echMDgr9vWuB3S0CDIimoB3KEybIFobNJ3pDbEhsWGC0KRzj4GQ1HNSrS30agStWDkxa9rSvQreCRpiCKf/NLKp6ny8liEtkcz1BUL75avMWZsqH6iWp8AjgoPedmu1nAoM70s29N8OkBkS0HWsvjmqn/wbOcGGstqQqCTNNMrABnnL+l05CPCeR/8oWYFfELwo7QV6boq1jz4Os/9zz9DbYGpaFR12h512CsJeqKAow6Jaw9bYmatXWxR3zl5pzVA1157LfPnz6eiooKLL7445Pfss89y4okn0tTURHNzM+eddx7btm0bmQuPYikB0CgXrxHZubFD+2EdG1NXYAgiX2tKowTBixUFHaJxNMATdQviCJ7++WO8cvtSaibVayHo5OZjOLBuX+7f+UTQeCoNsAo3XhkUA0F44fy0Cg+H9eRy/OjNZ7hz86pQB1UMBEW1QV6ZSluAMhTgQ5AOhJQw3s3GOmuvEYyCkPKAhNNVKiXU6UfgQn1AvAPCFT9Sh+5annM0Twkqg3z3rV7H7zCSwEfR6Hh14OTDqafgtxsGiA554T2DuzDNPUmkhCtW/YNBy+RnB55Lfbq6IPwEVRe8FxUTGmLwQyycVzUB/HjPW+X4et5/92epHl8XaUOCZ92riigIqY+RWt0hjc4QH71s1qRn5zC2YikJAJMnT+aKK67gYx/7WMyvo6ODSy+9lPXr17Nhwwbq6uq45JJL3oFcvr1SmgU2ysWy3XWAJjXQ0xpfBMwiMgNMBlRrSen7Ge4Pb9KQjTthyA3vNVrRNYGSZpGpe4h5ioTQLDFDcubPP8TLNz/DqnuWKZOnnH27Fk88EVvabN6wBSyLslTKyUtsrSD3pvLMDnPCSZx55nbBdYLUDVTHV9Ry/aFncfGLf6a+rIKTJkx34haYJi8lCHdWmDdVXlrCnQ0msXa0BZ2nMhNMt6mqF8abTRafCeaeK7PGwO3Y/VlfoUfArygR+sQJd7rOrDFiopsSDyA7W5XEhyaJM8Ps6Hk4nFT9bY27BnrC/uHzIJzw3aydrdhWBHz8MCoghbU+XnojMdPLuRVBa6aP+nQ1n97nGCZWNCAobo0f713xIQNi8OOFD8IF7l5ReXlCCN5z9Tms/NNS+nb2hMDHtiVCCD+8WjVq9alQFnWLhs3n5kkqnaKqqSY5wCgWSfxRf7tl8eLFACxdupTNmzeH/E455ZTQ+WWXXcZxxx33tuXtnZKSBmiUi8QBjLKa8sQvo5gWiODQDZcFX2PeF52yxYXy1Rb9HTZ+DvKmDW8L/nL5nSz40olMOHhqTBMkEaSMFA+3Ps+vN92DZduJmqCoYXR4BlpYE2RJI2QY7W+l4acb1wTtXdXILw4+g7bMgNJBJWuCdMbRlmUE4TRDYqqmRx1iUfcUi600HTOAds+tZK2Qqu2IaoakzupUo1ZMstUZ/vCX/jo6K9hwftU86e8jKIfw/eo0Pp5GR5qFbX1iCxtqprjb3jMQGfKyQueF4ccbBlvd08aHX7qdFzq2MKmiaUjw47yL4Zlefds6lOdeDReBIqWt8LS0+51zKKmKNC/++glMKdg8uJNXu1czaGaQQoS2xFEVcF7bErx3YU1PPg1PPgNoCQjDwKjYc22ApJTDPt5uefzxx5k7d+7bft23W0oANMrFgxYzZ2HJ4oyfLaXB101BjRpSJ4GQah+Uz1ZIBSK1MWtZ28YD37iPY79yEqbrFhxOQ3vBoWfRZfby+y0PYNsy73CYZxPk5DMZglTDaA+YLGnkhaAD6sZz7pSDeGD7WpZ3tWghyJshppsq73WUXtpi7LhwB6pOl5dKx6sZFouF03To0eExqW6XodjIqBARA6JEKJIOnETARTSM04NMviMh/VAei8hrKK5/z3nKpUjwsS2BMXacm14APr5Bsx2BmsiQV5K9j20bbpzC8CMlPNu+ic+8eieX7XMsh43ZG3VWVzHwo2p9LD98HH48t/CSE+FlKyTwxl+W8+Dld2BZkhc6l3PLlvtY27+J+3Y+wo7BtkTwiUKP2japZmA62CkER6YtsdzVxfc4yXNvxRwtLS3Mnz/fP66//vrdltVXX32Vq666ih/+8Ie77RqjRUoANMrFewG2r2tXGhKJaYeNn6NgFDJklmEYCs8KKwxCagPlpa3TBkXByJaw9rE3uf2jN2OUpTDK036D60GMIMWnpn2QzYM72TzYrm28g4Y1/NXqffHGOgI/nDIUIF3tkC3IZxOUFik+9fJfWdvb6c7S8cAnPFtnqNogHQipe4qFZosNAYRCWhKNZqgQEMW0KxpASoSkPIcXLyldreYpAcz8mVxSDz1RTZm3lo8PNDqNjweefnkFQJOk9dHN8ipk71NoppcX7/nOjXx39umc0HyA/4x7RvlDgR/v3bGkoHJSoxZ+vPcneBeFX3VGRZoTfnQ+ojxNb0uvc7/AonELOGP8IsaUjeG5rldoy3bFwEc1YtY9Fmr7pAMc1V9tx7z2JJcx6drWPTIN69ssEtiVWWDNzc0sXbrUPy699NJQ+gsXLkQIoT0WLFhQdD7XrFnDKaecwk9/+lOOPfbYES6F0SclG6BRLtL9Wz++lq7IXmDR7S082xlPonY/oNgH4dibGO4FvKmWgd0M/n5f3krTUfsgL5z6WxL3N3MWR33qWMbNHMsDX73bT9cW0LO9m4pUJZdPvwRDwLq+rcyomYwM5Se8f5jn5tkFmUBaYxPk30tk/zDTdvInEQgpwcC3CTpu3Ey+MDPDx1+6n1vmL2ZyVa1rI6W3C/LPba9wnXxbLR1OfgjbBjkRNHuKuQXp2AE54CDcTAnDTVVdddrzV54RiNgPKZ83wg5CqbZDvijp6UTaINvag7zqpMiPc6kLZ8twGPVUCR+17VHd/Di+4XLUX2/nY+3sIMnWRz2XyrkKPk72ixvy8vJhS4FtS27e9BKHjZnGp/c5NgQ5QzF2jsKPmoYlg9Wao4bOTjGqHxnwnm+egW1aDHYN+kXca/aTEils4KC6A/jjtvvYp2oa9ekxzv1EqlCtyqif6obGT5Wos1GWorKhSh/4/7gsWbJkl9PYsGEDixYt4pvf/CYf/vCHdz1Te4CUNECjXLxhr6qGKu1XVfTLKaxyjtv9RDVDUa1QVCPkjYI4wwCEGks/jB1fK0j9a0t44YZnaNxnHPM/dnSoETZzltO5CINea5BfbvwjT7Uvw1lUzbl+IU2QlOpaQIU1QdEZYp6Wx/tSP3PSHD43/UhSpCMdGUonp0yDV4bEbMv92s+ZMW2QZxOk/tZNidcNjeXTCiXbyijuinYoOmSm1RTpjpzppJ905Iur0exoNTySsJYn6X7cww5pvTRr+UTKU13p2df6eM+gbnp7ZMgrqM8gnPfcFGPv47nlbJvvvfkoD+xcRVOR09y959qziVOHeaPwY0tB344uXxsUhR/bHSZW39NDPn4sjTObeeRb9znp2U69HFh3AJ25Hv6281H+0bKEClHOhoEtidoctT0qRvuj+unaKT+cMCirqRj5RvZtktAzPsRjJMQ0TQYHB7EsC8uyGBwcxDSdrUW2bNnCe9/7Xj772f/P3pvHSVKVeb/fyMzK2rL2rau6em92upt9FQRFpUEWFREZQFBBVMR51RFnLtflvd6Zca7rjOMryjiobAICCsjIJiACSiMNdNM00N3V3dVd+75kVWZGnPtHxIk4EXEiM6u7Gap6rvUbAAAgAElEQVSHfOqTn4o4W2yZEd/4Pc8557NcffXV+2aD+4GVAGiemwszpuWASfjPFCISivLBkApCnluqMAipN01dbJDuf2Ymx93X/IojLz2e+qVN7s24trPBbbcyXsXnllzCr3sf5oWxza5bKie8mCH75qiHIAv/FBuWMHwur3wQFHSJnd1+CJXxMr6x6QmGZ2d8EBTlEpNjuAjLIN7WFooN8rnFAq4WHQj5xqPxQUSgvPDnR8fRBPKCUCT0YCQ/scbWyLxCH2FqQEf4YUfnjot0kckHgzx3jpvLyvnPnXQt6sBHwk6stdUHPoUCneV1VVUfdRypQsHOpmXwj689Rnd6jB+vvpCmZE3R8CP/q995+fsIls9lTDfN9/tVXijc3y4GPS/u5P5rbiMjxxwz7Ji72kQtqUSKylgFx9YdzUc6PkSMOFnL9F3m4H1Fdx8KAo/u65Z3UPEouWiem9gL99e+Ggjxm9/8JpWVlfzzP/8zN998M5WVlXzzm98E4MYbb2Tr1q184xvfIJVKuZ//6WaItyLEvGRFmWEYXNzyVQBqW6oZH5hS8sLlVa+GOhmmTDc0ZaWbzFDLGR4Z264vfxl/npdu+NoNpxtAVUMlmbE08UQMTJMlxy2h+7ntxJz24gbsmO7myeHnuGLR+c72hLtPdju2SyxuCN+63YZwyglnu95/u7zwyrl1/cv2cQnA4gdb/sSvd2/k/QsO5IolR9JZVeOUceoYwjkXXl3DEJQffiDZjZsxYkIpA4bjBpNlAaeMt2wX8OrY6bjb8a2rrzAx76esfj/8ZQhZpOsrkB5bcQjWlk0RhfNYhGtM7wrT5/tdYkaojM7N5aunjOcj0+Vy4pCDmN34mpvvusIU8HHXFfCRaUHVB2QZP/wIAcOZGarj5eyemaA1WUs8lsBStjdX+FFfBPCVg9ajl9GzrssHPuBBiASf1sM6WHjCctbd+JT7IiTLWULwxPDT9Mz0c17b2Qxmh/h1732cUH8cR9Ueae+3U1Yuo9SPSotaz/cwipfFSFYl+eoL17G/PbbqE+28s/YTe1x/1/L/Yt26dftwj0oGJQVo3pt8AU41Vfte4IOTn6ouKvvtK6wQ6d/IPFXI7dUlPNeY3a5XJp8apHvTC/6fHklTt7iRy+6+irKaSsb7JxUVx97uospOLus8n4HMCDum+1wlKHjDN30KD4EHQ/jBIXuDFZo/zA18FnE+v+IU7j7+Eqrj5fTNTjOWyfD8SJ9PDQp2l7csg9zwuKIkKC4TZWJVdSRpX68jR6XQursC7jHLNxq0pp5aN+BGilJd1LI+t9PYaKhuvk9e11gx+6EcQ1DpCR57yG0YrKcGNSuuSNMyyI2M+6+B21Zh1ScIP+73R8jAeu97sW1qlMtfuI2nhrvoqGhw4UfG6uSc76f8Xs8FftQgZDedsOqjBhVbGFS31XLm9z/C8NYB32/MU2piHF13NBd2fJCyWDmzZpbzWs/hyNoj/feM0H1FnxalVBcqawkgHqe8pmLvb6olK5ljpSDoeW7yTaemoTL01mMHMgekIKEOhOgpATFHOZBvs3aaGiAtnDTDC3TGe9m2Y3W9MpbAC2b2Nh0ZIK3+H+oapuvprZz7vQv4/f99n/cGqQRHIwy2p/v41e4H+LvlV7CgopGYEE6ePzg6ZxmO8iSKGjAx5kj7MeyHg+EERNtHYnj7ij1oYnMyxTUrTiKGYNNEP1/e8DAtySo+vnQN725dRiJmuAHSpjAwDIE1PeM+qDDt7XuvG8I9sXIQRXvFfoAZMSVw2jLsdeciyCBogeEpN87JdgOnkfW866KqQ24gtWpWtBLkKjHTab1qE7QCZXRthF7oNSpPaHkOao9u3Y3bmpp1wUeW06k+3roHPm47ES4vua31Yz383cb7uHrpybyjcWVRLi+3bQrDjwikAUwNTIRcXhJ8ABIVZZz1bxex/uY/8/qjm53t4W4P7OWKWKUD+4LFlUu0ik/Uui4vmO9ez3CSr3xZPEZZav8FoNKcXvPPSgrQPLecEOSEwMQf5+O+RVnhQbPUF+ugOqQqQ+qbmueL96s9ckwhVXUKqkHBLvNBNSiYJoBHvvUws5OznPbl9/hu4N4bK6yuOYSzW0/ne9t+yXBmIlIJkjfsuc4kr+smny8uSI4X9MCJl3LpoiO5sWs9XVPjjGUyTOWyPjUo3rHAF0MS7DKvxgf5us0L8AffFlaF3FghYYS60wfjhtw21Pghef1MTT3lQ1N7/iDoIoKhLW3cUWDfgt3WfaqQ5jiddnRqj+58+q8FxBYscBWffKqPbhb3Yrq4myLG08Pbuf7A9/H+ttVFwc9cgp2D8CN/q7NTWS38SKU1Z1q8eMtfWPefT/t+qxO5ND2z/SFFBuflSKfuBNd1Ko9OHZKfPKFnvnHN9leEsI8/PHdjsZ+SvTlWUoDmucnvfvdrg9FvEML/Oh9TylnKq77X5d1ZD6hC/lkahBv7Y6shsj1PDYoZdqRRUA0Kqj7o0kzBPf/r16x850rKqpKY2RwiZ/rbMuCkhqOZsWbpmx2ivqwGDCNSCfKUHopWguyyYk7TZ8SI8d62lby3bSUxQ3D37o189/Vn+eiiQ/mbxYfTWlHlUw20XebtDNxbumVgxQLXT5XflHV5RYUSJyRVECPmKRPqa7YR86snhirvKV+QQvdaqZhF5RVlwe3i37fgulC+39q4oDkoPjLdLZNH9ZF1VNVH5hcT72MJgzt2v8hB1a1cueQkH+gUE+8TOm0UBz9yX2qXNDHZPxGCHws48oqT2PrYZjbcs94FEoCB2RH+o/tmjq49gtZkqy9PVXKiFJ98ao8uTbV83x8LmJ3JMtw9Gl1onpvYb/Htf66VFKB5brIXQFV9hTcStHwbcj6m8PcYyAlP3VEVoihVSFWE1F5dsueY+oYmb6DCads3iCLyDdtrQ8YcyK7yvrycxXDXMMd+8mTO+c6HIB7XKkHvajqJZVVLeWLoedJmxonh0StBORl/IeSb8NyVoEI9xGSchkz7YMdh3HzsBxnMzHDe03cymc2SGZnQ9BTzHp6F4oOKUYTcQRUVNUdVcfIpQ5ZOqckZIaVI/Vhj4972NJ+oeoXUneC+RO23Tz1StleM4qPt1u6kZUcmfaDjKjea7u1uTz9XAdLDT86CH2z9I3fseoH6spT7nSkWfixF+ZEjoOt6ekXBT1B9VeHnkA8cyWEXHMX0yLRSxt5O2prl5PoTOLXxVH994VdqBOp9wvutq+l5FaDQPQxtKJk7ILkAYjGSqf23G7zu+Ir9lOzNsRIAzXOTN4i65lQk8FiEwchXJgBDZgCGCoFQ0C2m3rCEk6+Ci+m0qRsbyAx8JkfSPPnvT0A8xtnf/mAkBAkBW6a7+T/b7yBrmd64P277Ee4wgbK8dxDkBUd7LjH7/Bksrmzkawefzu/fcQmV8ST//NxjXPn873h2qAfLQnlwEukWC4KQdI25D1kJSL7u734YyhcArYJFPneZFo4sEBOTed1beV1fOX27BfdJORYfSFn+cxE8N/I6yfPrlpPnWj2/41PuuQ/O46ULdA66vEwR819fYfD9rU/y0vhufrz6o7RX1Ltt7G1PLwn4cjqZKPgRwPTQlOI+s8t0HLOEEz//Lu799G1Mj6bd7b0yuZkH+h6ivbyd4+qPi4QdHfgUAz1R0/NIyNG6vpR2BKWBEEu2760EQPPcosaF0KlBQTAqBoYKgZB6I5RjA+nUoKBSpFOD1BuiXG5a0UwuY3H3tXcRL0uw6ITlPnhxFSvD4KMd55AwEvys+x5MYSlwo4eg4NuxGk8RBUHuW7f7oIm5D50oNch9uxYGFbEkphXjS6efx+ktS7l+w+N87LkHsKygglAYhFTAiVKFCsJQINYnGOcTBBAVRIIwYrR17Bn85NlGOMZH+agqTy6W/5jl8WnVHg8+wvN3GSQ62/1gG4j1KVb1MS2Dsewss5bJBe1H8IPDLqC2rMoDKPD19Jor/OhUH2+OPSMU7zM9lnZ/ozJOL5c1+d2Xfs1w15D7O3hm5Dl+3fNbDk0dGnppkct+ZVgPPvmgx6do5IEc+TGFPhZmf+v+Lk0QfS//7xoHqGRhK8UAzXMznR/8ri2D6ILhZNyKawKvRxLe+DIxEU5DGCDs+BnZo8w/9YVweoQZoR5jXnyMUxcQQo6hI2NrCscFCecGmM2Y3PGZ2zEELD56ET0vdWOaNozJdgwjzhWdF/DI0J/IWhaxeMzZjtMQxU2dIeOChNxvvH1z96/IuCDwesvFhJdWZsT58MLD+fDCQ9k2PYrA4Csv/4EDU41cuOhgasrKnLpyLxyp2+kxZvfysiHWMLxeYaaTjvBiuNwYGLxxhNxeZE6+ofYCU5btsnniepx9k7FFajxOIcvXY0z7HAvEBgllXZbXpYG81l6+Wz6QrsbuqCCrHpul1C0U66O20zMzwec33MNlncfzvlZvTq9iVR9gTvATVH1AARAM6pc1Mzk4hRBQs7iBg85ezbM/esK33VcmXuPJ4We4ctEnaEw2htqRp1im69JC67Ksci2DZb308BchinGyMzlGdu+fc4HB/gtv/5OtpADNc5NvAGVVZZjYvcEKvS3lhBVyjakqkPdW5leFVPdYUBGSYwl5b3jRsUFBl1g+JWhqNO2lWfb/4688mbO/9QGIO2/cwpkSQ0A8VsbaltMYyo7z8MCzvhv+XKbO8B5Igbdvt2x+l5jt9girQdLdkB2fdh6qcZZVNSKEwYULD+Ovo32c9vit3Lj15ZCioLpX/CpGflXItMJ5fvUjkJ6L+VSiqF5hQeXIHJ/M21PMMv2fyPY08UKqwhNUedxxewLH5B5/hJvLctI9V2LMdx7ldcs5LjDvd1C86iPb2Tw5wCfW3845bat4b+uhroo4F5fX3sT7qL9FqUgKp0zd8mYu+M/LmRyYcFWfrMjROzPAyqqVXL34Shd+fL9p5XcaVIGCZaXa43NvBerZdb37lK1C+78bUbFAFiBiBvHy/fedvaQAzT8rAdA8NxnA3Ligxl02FcBxQScARj7pOAKGQnCkgJDqGvNueH63mBokrUKQHQPkuctcmd4KxwBNDEy6y7Kduz9/FxV1lZz1T+dDzHNX5ZR6yVg5Tw6v45HBP/sgSAj/1BmmsrwvIEi6xNQy0v2hxgZlhyf8acLg8NoFfH/1+7jrhA9xSE0zlgXffvU5No0Na0FInVpDBSG3e7YCBjoY8uXrAEeFoggw8kHK6L4Igo6Fthvct6j9NtXjNGMaKAq7uYLBzRJY1ADn7NCECz6q6uNzVzrXPtjLS4LNn4a7+Pzy0/jIwmPctlSX157E+8wFfryXAMP9jaRH0qQ66vjQf1zGU99/lBfveAEBTObS/MfOm3ly+GkMI0Z5rDLk+lK7pecDH+9lqjD0BIEnCDi6wV3VT7wsTmV91Zt5u33TTFACoPlo+y9Ov01MfvlDPwThzU4uzXZvKd3e3cH5hFcy4BKzHDdKTBiee0x4rjHLHnXPmRE97BYLu4ac/XbdXyKvS6xxWTMTQztQd292Jsedn/kVZ1z3HhLV5WQn7Lm41C7uqXiKzyy5lB90/YzqeCUnNqxGusO8bvJyH+1K0s0FYk7d5C3UQRPDLjFTGBgIX3f5ss4FZEe3eG4x2TbQUVFPZ2UdGStHRbyMK9Y9wEE1jVy78hiObmyzz7d0bzkPNcMQ3oCK4B9UEXwuL9dN5mTLOj63mFPTiIVvrsFy0uJtHeRGXwtnFGFR6r/q0tKVk66hYFlZTmjyPddUuBu8CORZAio6F5Ab3eLLl5ADYdXHzcfgvt6NtCRrubTzeIpxeXl1C8GPHnzk8USN7+PBEUyMTJEemub+L9zJzue7EcBwZpT/7L6FFVXLWNtypq8N8IOOuh5ads+NPCavjL0uQtdTdYmFrzORJrMkVJWsZPvKSgrQPDcTW+3Z3TUUeivIYZHDrwaZwtIqRfJtTLrLpJtMqkCqe0xVhNRgafstPKwGWcJWgwoFSOtcYsQM301XLs/O5PjdNx7EMgXHXXmyTwmS7TSU1XP14kuoT9TZXeMJPwzUB4h86KiuhqASZKr5geBnnUssSg0SRsxVg9Qu8+rAeTHK+NSyo3ns1Es4e8EBjGezZEyL3+x6gxnTcttT1Y2ge0zOPu9zkQm/umMp9XzuMuFXW4KqTEg1MmJ539CjPvm2ESqr7qupD3x2e3Ip5yHo5pIqmdsbzFLPk6MOynaMuO+6FFJ97AEz4cbtz3Lj9mdoSqY8lTEP/HiK0Z7Bj/3blIH6YZeXCj9tqxZy0c2fgESCHQ78WAJmzAzH1h3N2pazkBFoOtVHXZf3jijFx3TLh5UenwvLd531alHwo7r3Z2dyjPTurzFA7IX+kyeYrmR7ZSUFaJ6b5dwKjISBiRVSfcBRfjTp4I2hp6pDsg03ANGJBI5h+BQhuYwwiCF8gdLFqkGFlKDp8RlXmZFvgWrAdDZnseTE5Sxc08kDX76H7HTGpwQtKG/FMODB/ic4oHopB6cWa5Sg6ODonKOkCTylp9hBE9Ect1SDcpNpB3Kc6+gESdvXVEkHyowEH+g4BMMQ9M9OcVf3Zv751Wf52NLD+eiiQ6lLJl0lRwgnGFqqQngDK8rAafDUKggrOlbwtUeoilMgy3SCoA2wJqdDik0+i1J9wK/suOXzqEH5lB41X1Vo/Ome4qOqPIB7rWR9GcgepfpYAn7S9Qx/Gt7Kj9dcTGNZygWZYLkol5fbvtynOcb76MAH7OX2oxZzzvcv5LmbniE7m8MS8NrkFl6d2szZrWfRlGyNVH2EewyBZaX9cL73nVPL+K+HkobftJ07NN8dARDfX9/ZS66s+Wj767fpbWPyHaC5sy5S9bFjgGydRzjLqkrkqTtSzfHHDamxQqoipC7LwRWLUYPUAGlf3I/lBVPLNsb6J7VBl3I5k85y6ydvYXJoiot++TGMMifQWJZ12llS2cmNO+6ga7rP92acb6yg8EOm+Lggd2oCJV1Vg2YHJ3wKRLDLvC9dCbhtSab4z2PO4YajzmLzxAgbxoaYzObonp70qROqKiTr++KFfMHThVUfqaBEfUzLnuC1kNojx0pS43VCbZlFxAGpMU9KeXU/gzFRqoIU6nIvPMVHLWNaMTLyWgnDdXdFxfpM5jJM53Kc1baKfz38Ih/8SHWomC7uarBzuPzc4UeqLEZZnPd+81zu/7u72fbUFiwB60Zf4M7euzk0dZivDfkbDf7m1GV1Kpyg4uN1TfeX8b4L/vbkx9dhw/JiDwspQvFkgprm6jfpTvvmmsC7l5digOaPlRSgeW5RMUAW4Rggf5q3bAXzhZInY4IwvFihgCLkixcSdn1hhNUgWzWRN1XhdCsPq0E2eNkPg4ZFDUwMTGHi3OQ0ShBZi/uvv5+Fq9rJzFrUtFSTHppyu+RjwIHVK7ig/Sx+tP0WvrT8EzQn6xyNxj4gOQz9XLrJ65Qguy1b5cmnBpV3tDA5MuWLDbLPs3LOhXCUHGc4AUfViQGH1LTwL4efgWEInh/Zzadf+C/e0byITyxbzZr6FnmJfbFC4FeG1JghVR0Cv0LkpkXE/kiLtbaSHZmILlCERalCwe71qhqkU3rUtvKpPf71YL4NEWXtzWRGJkPp7rIDH0OZKb648V7e37aK8xYc4YLlfIj3sQQ0HdjK4Gv93HTeDWRnc1Q0VvPG1DYeG36CKzovpznZginPiWwrsC7/o7SNkmcvC//5910L5RoGygfz1TKq6dQfd39KLFCyfWglBWiem3wH6N055HsngPAbhS7N04WcwQ2DeYoqZG/Pu2HJmCA1PsjdjvCrQaoSpFODpIwejAuKJ+OhG6juTVQAu17uobyugivu+RSHnrta2V+73SNqD+OShR+gNlHjuTHwbpr7QgnC14b3UAumi0Tcvy6PX1UlXFeLX7mQyzhtH93QwWOnXsKq2lY++9eH6JocJ50znbfooCrkKUPgtRtSh0IKkSaOKPAhnvCWdd/VPHXVetrtBhWhgFKjVbIi1B7v++k/D6E4KgcmKEuE053ljGUPuPn7/s1cuf52Tm5cwblta7zviPv92Hv40Z3PYuFnxbsP5oIbL6VmYQPZ2RxZy8RsEyytXMqnFl1Fc7IlBDuqMhMFP2HXmF7xQa3rtim8e4kI56v7oX7sMuG/zGyWsYFJ/ZdvPzBrL/5K9uZYSQGa5yaBw7SsgBRqAvhUIHtAwjDTqsqQGnuimlRmDMMoqAapvcViCKyAEgS4apAaHxNUgiwE0xMZu4xh75TT6UyrBMUMmB6d4ZaP/YILf3wRTStaeOr7j9r74LRxYPVyJs0pbt5xN1d0foiaRCUxw+6OHAMwhKOczF0Jso8kPBikGzskz7VhkJuaDbTrHAsB1QdH9XGh0+sx5qo5wqA6Xs7lS47gsiWriBsxfr79RW7f+QqfWLaG8zsOoCIR966lhFkRiP0JfjHUXmWOBZUi3/doelZRWbRFCpouhigYDxRSg4S+7J4oPrI9Nc7HdK5V1rJIGDFu3vkCL4338OpkH63JFP+++iJiRowvrHg3xzcs9wEy6GAmAMzMTflR968Y+Dlw7WGc/pUzuetTtzLaPUranOWWXXdwyopTWMpSKuNVIcAJAY9ME9Gqj6r4qNdFLSfL+q6HLw+f6SYIjVJ5LAGmGZE5700gjBLIzDcrAdA8txw5YsRYsKSB3TuHNCWCwGMqI0GHgciDIft/MIA6CEJqoLQKPz5AwAmQdm7QchTpYiBopGfMuxErwdEQDUH9bwzynxf+B6d9/nRi5WWYM1niSmB0dayKBeWt/J/tt/K5ZZdRGStT9iO/Oww3ILq44Gif60txiaX7x92HWqgc4ZGktSBEGFhjRhwh4LLFqzko1czPtq/n3954nkdO+agLQT43mFC6wYuwi0t7S9aAEUBuYGROQdBB0wY+a9P0dUTE8lzAB+xza1qQNrPcvHM9PT1P88y2Vzm9eSVfXHEaFnBK0wo+sfgkFlU2IDA4rekgrctLbj9fvI8fKIqP94HC8COAtsMX8qtP3Ez/a/2MZif4xa5bWFjRwXHJ4+ij3w9RPqiJVn28bQtfnu88BgBJvRayfjjNW4lSvaIskUxQ15qCjdFl5qvJe0rJ5peVAGiemzAsTCxMJ7Q5aBYWsRAExZQlu06UOiRL60BIjQ+SQdIxw3DhR/63oUavBhWCoIaF9UwMTml7iAGoj0cVgqaG0zz49d9RVpHgnO9+iCe+/QhTPaNOvsG5re/htp7f8Ivue7hy8UfABR3cqTMs59gEOAAltzaXuCD/ceGUSy1oZHJk0tczLARCDpxExQfZ1zcKhGIc39jJ8Y2dDGQmKYsl+N+vPEVOWFyxZA3LUrXKd0QxBYhAD0UQgCjHEq0t5Eb3zAWhAx073b+eTw0qBnqCadLFu3tmgrt7NrFpop9XJwb43PKTeV/rQUybWc5fcwqX1RxOR0U9pjD46MKjQ4CTT/Wx16PhR0KObGsuwc6gh5+ymgrO+NrZPPn9P/CHf3nYhZuMlWF1zSpOrD+Jyb4pLfwUo/rsKfjMBXpC1578Zint749WcmXNPysB0Dw3+dbQu3sE0wi7vcAeK8gQMaWOB0X2Qz7m1JOxQzLPH0gdAiEnWDoIQj41SKYratBcIChRkUDGFkUNmKiq3sE5xbIzObpf6OZvbvs4v/n8nfSs73a2EeOi9nMZyAxhWQLLECR8ao2/m7yjX83ZJRbsKu/CTnmZ8wAUTjlDufl787fZ50GBHen+Qrq//G6zkHsMaEmmEAKuXHo0t+x8iQ8/ezfval3Ct1a9y7mMfpgJ3YYDUOQmB+GoLBkJMlGW742+kCKkA55wuqf2CCEQxNgw3sfD/VvYNDHApol+bjzyQyQc5ey8BYdz3QGtLEjWIIhxzbJTSLWtZKJnSwBoDBd8oLDqY9eJhp8wLBWGHx34ADQe0Mo5//oRtvzhNcZ2j2EJ2DLVxfqJlzi39VxOajgZS0DNwnrGB6dC8OODIKFXffIFOKuAFAU+OujxKXuErdBcWTMzWUYGpvKWKVnJ5mIlAJrnJt8aZmZn3WUValwzTB/M6ORlr55X1iKmBSH1BiVDQiyjsBrk6yXmusSEo30Y7s0zEbNv9pmZHKaAOIUhKHhIEmb+8vM/M7RtiPN+8GF+/oEbSA9PY0NGnNbyVp4Y/jP9mUEubD/LV6/YsYJ0EGS341eDLAckYoaBOZOzz6ETexTsKeYrK7yRpO1rElB9ilSFmpLV/O3KE7hq6dFsmhjEEvDt155lVV0r721bStywawSBCPSKj11YnmuBNZuZU+yPDnDcZotwhxUDPX8a2sHTwzvZOD7A9ukRfn/S5YxkZkjGElzUuYaDU620JKsRxPj0spOUh7kHM7mZLDnLDz6y/aixfeyyYQgqFO9DMJ3i4ccSYCRinPXtD/HUvz7Opgc2YAlYP/Yy9w88yIcXXOCDnHh5gpxzAEH4UQGnkOqzJ+BTCHqCsBMV92PXkztrkcnmogvOa7O7oJRsfpkhSlPUzlszDIM19R8H4JiTD2Ldnzb784mH6qhgpEKNVIg8NSjmK2Mo617AtIERXDfUPBsa7HTc/247htNVHhkX5A2aaNeFupYUk4NTTlk77idmGG6+v67/fzyQXl6dJDedYeVpB7Dj6a2IXA4DmLVm+NH2m1hVcxDvbzudmKP0eNsQblCyna7mC1+aPLuyu3rMEG45+zzay+WNKbIjk0494a9nyOsn3Hq6NPdcuutOWfz5ahlfOUPwUN8Wbuxaz0gmzbUrj+XcjgOVOvhMC0CKxetrsMYKj8RbjEqkKxMFPHaewf09r/HSWD8bJ/qpipfx4yPO4/bulxnPzXBoqpWDa1poSFb76ofifwIqjjyuzMiUm7Y3qo9XLww/IVcYc1B+4jEO/cARvHTXeox4jGzGxBKwI72T23vu5JKOv6G1vM3XTsfqhex8cVfRLq+g6hOGHKEFnz2BnucmNf4AACAASURBVCDwRMXHqG1V1VbQurie7z55TUG1aL5ZVaKFg2s/sMf1Y8v/yrp16/bhHpUMSgrQvDdP9dF1hwzH//hLKDDk9EDw4gpkXb17TG0hyi0WdIlZrsumeJdY/YIaJhyZ3t6WfaOMx/RKkOr+AudN11mfncpgGHD4B9ZwyudP54Ev38PIln7KYxVctfgS/q3rZyyu7GB17UEEY4KKUYLsmaodEAq4xGwVxzu+ZEsds8OT/tggHNeh8OYU88cH4U8T4Rgh8BQh6R6zr5tfwQNb1TmjdSXvblnBC2O9jGbTWBbcunMD72tbQUtFpf/r5FyXKIs1NZAb2ftuyPrgV2/DaTPLfT1v8Mr4AK9MDHB8Qyd/u/JENk0M0lKe4jPNyzikpgUh4CMLV/mOfS7gI9MqWuqZGZ7yAYya7y8fVHPCLi+Ihh8VfOxtFYafisZqzv7OBWRncmy8fwOzU1lylkVfZoCO8k6uXnw1VYGeXpaAke5RN00edzCA2k4X6FSfPQUfHfSo1zwIO1EsEyy3vw8KuDcxQKXxat4cKwHQPDfTyGEQY2BgFEvTjdLCIiZivhQJRSamohI5ZRRXmX3DDYOQGjAt3WM6t1jIJeaoRUGXWD4ISlaXO7DhD47GKh6CwIOgGHD3tXdxxIeP5KKfX8Zv//Yudq3rojqe4nNLP04qXknazFIZLysKgsB7cEmXVRD6LMfNpbrEjKryADx5gyfa5y86PkimyWskQSgYB4Q8V3juMfuaBWHI4Mi6DgxDMGPmeG1yhO+/cRvvbVvBJ5cewbLqere8hDOdGZUVeV0VxVhQ2emfneLR/m1sHB/klfEBPrnsKE5rXspzw7s5tLaFtW0HcGCqFUsYfGHlOwLqguFrUwc9gBZ8ZLolIFZVrnV3yTr5xvaR2w+qPv6yhV1e8nh08HPxHVey4Z4X+dO/P4FpCmbMDL/quQsw+GjHR6mIVblxcmq8T82CWsacl4tiXF753F0q+Nj5ChQFwEen9KjgEg5+1n+pguWyGZOJ4bS27Pw3sVcAVLI3x0oANM/NxhGTsfHxSB9yqGeycuNw1QANDKmqkA6EgmoQDuS4PZEEkQHSxUJQLms6N8l9CEEGrL/zBXb8pYvpgQnql7WQnUjDoH0b+s7Wn3Ju2xmsqjnQ2a4HQQjPWy/dePnigtwYn0CAtJmxFFeJBnTUEbYD8UHqRfSBEGHFx7u+ga7vGmUIYZCMlfHVg0/jmuXHc3v3y2yeGKazso4XRns5ur7ddnEqgAUwlp3hwd4tJKqmaOkf4p0tS9gT2zY1ylODO9k4McAr4wN8f/WZzFg5Xhwd4LDaFj7QfggH1TRTZiT5x8Pe6+227wHuhx773MwdfGS6cK6VroeXrCN8eX7Vx96nAOTsRbwPbhmo6WxgdOcI915zB72v9GAJGM9O8svdt9Jc1sw5beeGIUpZT1YnQ6qPdwx6l5e33yJQXi4XBh+d2iM0adJ0CpAOinKmSXp6Nly4ZCXbQysB0Dw3+dawZOUC+vqGNV3ewQ5q9uKBTEOZblMDQ1YgJQqE8rnF3DYKuMQKQVDvtmHlBrtvIWh4+wgxAxYdt4STP/NOHvnfD7Dl0Vf5SPu5/HTnrXxy0Uc4oHoJFpAwvBv7nIKjIeACtB+KU7uGXTVIuscIgI48ByoIBYGnEAi5qpByfZHnzqkeU74EEiDqy6q4etnxAPSkx/jqK3/g+oPfyYmNi5xytuUsi6eHdpGxLNpHMoBhA4Dw9lVnG8b6WTe6m1cmBtg+Ncptx13AxvEhNk8Os6Z2AR/tXEV7RS3JWJz/59AzfHV1Ko+dHoYetfxcwUce5/SuIa3q45y+kAI0l/F93PYoDD/yf7yyjDP+fi1NB7Rw80U/c+HHEpAROQ6uPoR3NLwDgbetUJwPtmJSyOUV7NoeVH1U8PHOnbw28vz7wacQ9OSDITddQ0Vl5QkaO+pgq7bKvDYBkS+wJXvrrARA89zkj8ab/iL8I4q5jiu5HvfKq88o9+GJ05ZXA2wQMkRM2Ua0GiQhyFaERMglViwE1bWlGHeCoHUQhKvA5IcgaSoUyf9/ve15+l/t4+x/Po+DzjyUx/7fB7nU+hC37v4N/9eKz1AWT/jamUtckF0+cLxAsrGWzPCkC0HyQSpnsrcDvZ0u9E6dYLd5d1+UixcCIUM4Pe28h7acNR5sd5bPJRZ4sBgGtFfU8ZsTLnHadfbRsgPYXxzr5+WxAUxhcWRbKytjDXYvMrz5sp4d7mbjeD+vTAxQHovzj4edwR8HdzCYmea4+k6uWHwUCIO1bQfwvtYDfdsPqglu+j4EH5nnbUtVbgzKmmqZGZ4OqT7qclQvL7VtFX7U4ysEP6q1rergrO98mO7nuvjVFb90lZmu6Z38ZWwd57eezymNp/jb8cGNlz64fWSfwY9O9ZkL+ORze+lgx95u/vX9y4TvHl2y+WElAJrnJn80Q0OjmGR9So80E0XxCViUKqDmqSAUDJZ20zVqUKG4oGIgqLK2wrnB6scKgsJd5NV9DcKP/N/9Qjf/ef4NnHLt6Vz2m0/zwBfuYum6Tgwjznh2itqyavcuPZfgaLt8cHwkiNdUKMDjgUlw8ER5rnVqkGzbfz0i0gWu2ypKFQJC7lIJRK5GJez6Mm00O8uu9ASnNC9hfXaMnQP9vKd1pa+Nu3dvoqGsklOblnJYrR2vc9Wy43xlBH5Xlm+f8O+UrgeYlxdOL0bxUdsNxvrEU1Va1Uddjor3ke3vrfJT2VCFiMeY6J3g4a/dx7Y/bXPLvjy+iXv7f8sH2z4IRqCdEKx4Kk2qNcXowJQPbvLF+4RVJAWIFPCx2/HKByFHp/bkA54osAmqQ5lcjvGx6YjS899KCtD8s7ddcPlpp51GRUUFqVSKVCrFQQcdFCpzxRVXYBgGb7zxhpu2dOlSurq6APvHf91119HU1ERTUxNf/vKXfYF/69ev5+ijj6aqqoqjjz6a9evXu3mXX345N910EzfddBOXX355wf2V05YODY067xBZ5NjQ6ked4tQkh+w1llPKy3zLcD7On8BEOCNN5zCxsOetMQ21HSfdqSE/Xqo3uaqF8G6qeJOoyv/2DdW+HZg5y73Z+m/s3iSqppA3bC8tGLcgy6nrwf+ZdI4//MvD/ObaOxndOUJ9SxM74n18e+tPGcmM2w+pPA8q1dXhPhiF4Uu3cD6mcBUGU1ER1OWc5dVVJ1eVKoMQUlkIlNGk+/O8SUPNvBOLGt4xBz4bxvu5bsNDfG3TYyyoSHHugkNYXdPK7vQEk9mM274Q8E+HvpcvH3AK719wMMuqGn156seM2F5on5SPaemPxRQx5bg9CJFQo6Z7x+qpPr5xfUzLBRh5bdRl3/UIfA908OOmy+9oAfg56NzVXHzvp1l80gom+id88LNrppf7+h/gso5LOaD6gEj48fbXg5yKmgr3dyiUdPV3o8KPQP0NKRMbK99rd/Jk+VtGbdu/rqbJiVHlb1j96CZwVidqlp9cxmRqbKbgPbNkJSvW3nYABPDDH/6QyclJJicn2bzZP7bOU089xZYtW/LW/8lPfsK9997Liy++yEsvvcT999/PDTfcAEAmk+G8887jkksuYWRkhI997GOcd955ZDKZPdpXCS/LD2jXwo4HPX4wUvO8P3+eaeQiQci9CRkW/j8PgnJquT2EoF1bhpQbcjQEeTfu/BCkezAE83et72a8b5JFJy7jG4/9f5xz4tn8+/abmcilCz6wghDkgZD/4Te+fTD00I18wAq13bmBkISoYmBIKJDgAUYsBCBCGBxc08b1B53ONctPoDFZjYVB/9YdJGMJchAJTvk++tnnjdA+Re2v//jU6z138DHdc2owuX3QB7Tqss/lFbj+/vJ+CHahvQD8rP3ehznyshO4++pbefnel9z2cpbFrpleFpQv4LNLPkN7RUde+AnBirAnDlVdXuHfi4QSv+rj/g590KSAj/Jb1oGP786kgZ5CoONuK1CurCpB8+K6PbqPvtUmEN6L5x58Svbm2NsSgKIsl8vxuc99jh/+8Id5y/385z/ni1/8Ip2dnSxcuJAvfvGL3HTTTQA8/vjj5HI5/vZv/5by8nKuvfZahBA89thje7RP8ueP4S0XowLp0qNUIZ0i5AMewwqAkFDaVG5kGggyEZhCkBOWFoJqm6sCN2Y9BJlWcRAk32ALQZAANv52A/d8+lb+6Uf/wgcu/CDd6V6KeWsPwk4QggQGyYaUH2DcMv4HrO9hK3AUouJBSKcKFQtDUVBkl4tTGS/nA+2r2Dk9xr+89iQvMM6q2nZS8YpImMn30W1HVXj2BHrmCj46eClrTLnL7vVQzruF/7yqqo8OftzvT8R3SMQNlr3rYCzgzzf8kVs+ciO9G3vd9mbNLLftvov/GngI0xKh2dy13+0A/Aigd8uAD7bC8BNsK1r1UcHH9xvWgY9G7ckHPFEKkFYVQuzRfXQ+mO6eXeynZG+OvS0B6O///u9pbm7m5JNP5vHHH3fTv/e973HqqaeyevXqUJ2uri6WLl0KwMaNG1mzZo2bt2bNGjZu3OjmrV692h0xGWD16tVuvnR9SVdYIRPCQgiLkZExd1kI/e2hEAxFqUIm2RAIFVKDolxiEoJyWJjC8qlBOWFhBhSh6oYqTEsUBUF+CT8agvI+KAJ5PRt6ueXCn3LsyOGsqF7G0VeeQu3SJvchZlrqdsIQFHSJSUUmWV/l7ltYRcinBhmBtvODkLZsHhgyRUwDO2EoUkHkIwuPZFVtB2tXHsWBqTYtyBT66EAnEr7mAD1zB5/wOU/UVvvPP4G2AtdaVX0i4Sfw/ZPfncaD2vjwLZ9k9cXHEqsoo29TL7ms9x2bzE3zH92/AOCj7R/NG/Ojwo9fobJ/HzXNKd9vIwg/6m+loOqjgZ0o8JHtquCzJ8AT/MvlTKYm9tdu8KLIo9Z/9oX98Ic/5JhjjqG8vDxv+MU3vvENDMPgkUce2Sfbnc/2tguC/ta3vsWhhx5KMpnk9ttv55xzzmH9+vUkk0luuOEGnn/++YJtTE5OUlfnSbF1dXVMTk4ihAjlyfyJiYk92l9J//39Q743ATk/l8/U3lBKsjdWjBcsHQ6ADow0LLy0YJC05dt2LNRLLDRzucAfHO3sa0wY7m3BLpN/ElXD2XuT/IHR4HWHh+jAaDfPMhjaMohhgJk1ueAXV/D6Q6+w7v88wczwFJYQvD61jUWVC6hJVLqB0ZbAGQDRPi6vF5kHMcHjtc+vIDifmFyW9eUFCAU7u2P9GMp5djP9Pdlc839Zgt3XLd13Ca/7/LKqRpZVNZKqXcCkyO8ejjJ5jEEThNPV/VHrqWXVMrrgZrW8LOul+5dd+FHa03Vxl20IJV2W0SmHXp4NP21HLuKs713IU997lA33rPcBsGw/Y+U4oGol72g4BcOIFQ8/8muB83IgoLK+0vdiAH748eoIX1v2ORDeMaOOGSScfG/ZGzDUX0a2E0yzAt/HKFUnWC6TyTE2sn9Ohmqf77dWyeno6OD666/n97//Pem0fkDJLVu2cNddd9He3v7fvHdvjb3tAOj44493lz/2sY9x22238bvf/Y7HH3+cr371qyF40VkqlWJ83JsTaXx8nFQqhWEYoTyZX1NTs0f729RSS0NjLSefeiSbX9nGlje6SdVU0dbWDMD2rh7Kk2Us6GgmRozuHX0YhsHCRa0YRozduwbIZS0WL10AwEDvGNNTaZav6ARgeGCC0ZFJVh64CAOD0eFJRgcnWbqig3g8xuRomqG+CRYta6GsLEl6MsPArlE6ljRRUVFOZjpH385RFixsoCpVgTlrsrtriJb2OmpqK7FMwe43hmhsSVHbWE0Mg+7XBqhvqqa+JUVVXSV1rSlStRU0tdWAYTDQNUyyPEHTwloMDIZ2jhIzoGVRvT2+z+5xyJm0LmkAAyb6J8lMZWhb0UQMmBycYnY8TdvKZgxgZjTN9PAUzcuaiMcNZidmmB6YpGFxA2XJONmpDJO9Y9Qvqqfn5V08+He/5oD3Hsqqi4/jhSfWsXVyO69s2sEbdYOsXXoqnckWJrYPUtlYTUVDFQYwsW2A8vpKKhqqiRmQHp2menEzVS0pAKa6h0kk41S21mEA6d5hDMOgekG9PUJz3xgia1LV2YhhCDIDE5jpWVKL7eucHZkgO54mtbTFXh+bJjc6QdXiZmKxGLnJNJnBCSo7G4mVxbGmZ8n0j1Le0Ug8WYY1m2G2d4Rkaz2JqiQim2Nm9xDJ5jrKUhUIy2Jm5wBlDSkStfZ8WjPbe0nUVlPWYB9DZmyKss5Wkk21dv6uIWLJBMkW+zcz2zsMGJQvaLDL949iZU0qFjYhMMgMjmGlM1QsanGPKTM2TeWSNgBy41NkRyap7GzFkMc0NEHFwiaMRJzs9CyZPvuYYskk5kyW2d4RytrqiVcmMTMm6V3DVLbUkaiuwDItpncMkmhIUVZXhQCmugacY7KPcaJriFzWpOGoZQhhMLVrGKMsTnmrfUxTu0cRQKVzTFN9Y+QyJqnOJixgun+CTDpD7eImLAymByeZGUtTt8w+xunxNG2rO0lUJhnY1MvvvvRrBrcM0H5EJ0YiwexUhrGeMWZasmzOvs7JVSfSuqudmvZayiqTZDMmQztGSLXWUF5TjmkKBrYNUdVYTVV9JRbQ8/ogVQ2V1DRVYwlB35YhkqlyFh66AEtA//YR4mVxGtprsQQM7BxFGNDUaR/jYPcY2YxJy9JGAEZ6xpmeyrBghbPeP8X4yBSdB7aCgInhaUYGJ2hf0UwsZjA5NsNw3wRtyxpIlMWZnphlYNcoC5Y0UlaZYHY6Q8/OEVoX1lOZSpKZzdHTNURTey3VtRXkTIvuNwaod+4RADs295FqrKLB+f3seL2flo46lh/azv0/2qNb6dvePvjBDwKwbt06uru7tWWuueYavvWtb/GZz3zmv3PX3jJ720+GunbtWtauXctXv/pVysvLXddVX18fzc3N/OAHP+Diiy/21TnppJO44ooruPLKKwH42c9+xk9+8hOeffZZHnroIT7+8Y+zc+dOt60lS5Zwww03cOaZZxbcn6qqKrfe9PQ0HfWnA3DiyWt45k8vuuV0E6EGu8LLLvOGEQuVcfOUdW855suPKROpGsRRJ1I1RAzvz1DaMNyPoS47k6fGnf+LDm6he/OAu55vAlU5USrYy3ICU8OQ4+rY5WNAPBaePFU3oWo4z34VnjAnaCyr5dnEi7z7qrNY3tfKL266iXQuzbubj3eVluBEqvY5E9Qvb2Fi24Cr6sgJVVH20b423kSpwQlV5bKap26DYJ76XTDUfN/XwldXrR+0YL2KJW3MbO/Tli3GdEqTThkqpPSAX7ksRvEJrluKapRa1sLE1sGQ6iOXpUqj5knVx94vv/Ijt7/0PYdy7KdPIzud4U/ffYSd67YrZTzlZ9PEa9zVdw/nt57LwalDQipPIeVHqj7evtj/q5uqGR+cclUf79g91cdfRyo6xak+QcWnkNojItKDSo9qal6qrpIFixu46am/o6qqyt3m9PT87xpfnqhnYe0797h+4/Jd+2wy1Ouvv57u7u5QCMadd97JzTffzG9+8xuWLl3KjTfeyBlnnKFv5H+Iva0UoNHRUf785z/zzne+k0Qiwa9+9SuefPJJvv/973PRRRdhWd5ttb29nfvuu88X6yPtsssu47vf/S5nnXUWhmHwne98h8997nOA3c0+Ho/zr//6r1x99dX89Kc/BeBd73pXUfuo/pgNw8AS9j6NjU+4yxB+OOlMdUF5jQbylLJRbjH/qML5XGKFxwuS7jBD2PtS15Ripxiwb8wFps1QH2cStSzX9aUMoFjI5ZU3zyBtTnFv73/RkmwkYcTp+8021v7Te2gZWU78qUmEqdTFP1aQ3Y5BsqEasW1AecCHB060z4dhHzcU4Rbzjl91Y4XcY3juNvta+GEo6HaKcoEFXWfx+hRW194AUHFusLlAj1q/GPBR12WsT7K+BotBBRL0Li81T0KG3Y4ffqra65nsGWPxySv503cepuuPbwRgxWtzIDPI3X2/4ZKOi+msWLTP4McSUN1QyejAZNHwE3R5qeAj03XurnzgUyz0REGQGv+SM3Okp+xu8FNT+58rTOxFMPPAwADHHHOMu37VVVdx1VVX7YvdAuywjn/4h3/goYce2mdt7g/2tgKgbDbL9ddfz6uvvko8Hufggw/m3nvv1Y4FBNDc3ExlZWUo/VOf+hRbt25l1apVAHzyk5/kU5/6FADJZJJ7772XT37yk3zlK1/hkEMO4d577yWZTO7RPssfTU9Pv+8HpHtoqVBkqKNBq2XchyW+vFjEslwHvAEBUevqIMhAaOKC3PgcDPfGLcP8DMg7YrQ9mrIHOPJmroUgwgMlzgWCKuMpLu28kF3p3bw4sZFHnv8D6895kd7KIU6Krabj9OXMjqUZ3tTjnEsPgmLutfH21b5e/rieyNggwDfZaQEQku1B4DtRBAwF66tmIAgCi+zJtaemi/eB8Hc5NBCir+y+AR+5HQsVDPyqD0qe3F4++Fn0zoM45tOnMdU/zgPX3M6jX7tPAyv2d9+0BD2zvSwob+fapZ+lIla1T+FHAKmmaiwx4DsONd5Hngs10NlrK7xcjOoTBJ8o6AnHAUUH+sqys7NZRoYmI8vNb7PviHtqLS0teRWg0047jSeeeEKbd/LJJ/PUU0/lbf9rX/sal156KcuWLdvjfdwf7W3vApvPZhgGrbUnAXDMsYex7rmNSl64A5/qFov53F5+dxeE3WNG0O3lW/a7yWLCS5MuMZ07zKvvucDisqzj8mpaUMNo36SThu9/0B0WN4yA28pze6nuMFnO70abmzvMEiZjuVFako38cfgZdqR3cWD1Mo6tX8Xh7z+Kk7/4Hka7Btlwy5/Z8fhmZ3vCHYG5uqWG2cEJn9tLdWeprizPnea5rnRusXzrchveNVfTlWX8FjXzu05hLGuqJTs0Hs6Yg0WpTXOFHrWtIOjItOC6Cj5yG5aAiuYa0oOT2vbyBTuDBxsnfvlM2o9dynM/epytj25WyoXhJydy3NXzW0ayo3y883JkuPlc4cfevtDCjyUEB5ywlFef6VL2MzrYOQg8UarP3oBPIejJ5woDqKxN0tpRz+1/vp797bGVTNSxoPbEPa7funzwTXWBHXHEEXR3d5NI2JrIwMAAdXV1XHfddVx33XX7ZLvz0d5WCtD+aPImUVaeQOD14hLCf/MwjJirEBnEXXdZTEl3y2LPHRYjjhCWU9dy3GDxiGVZR1WC7H1xS2iUoKDJm5x0hVWkyrF6JyKnzYgrTeSbMsNfzsl3lSG96pPPTGHyx+FnGcmOsqxyMR0VCzii9jDKYkle/90Gtj78CivfcwidJ61g++ObaV7VyXjXILmJtA1hVUlnO3LOLw+CpBok3VHu9BpEq0HO4UQqQnKOMfC7uVQlJ2b4Hzly/jHVDLfd8DmJVZYXde6iXWqeBbcLEHw/LqYH2J6oPnJdthOvrsAamAzVj4IfaR0nruDwS0/k4S/dybofP0H6X36PUMerctvw4CdtzvDLXb8iaSS5bOEl5IOfQhYFP9L6tg65+x5Ufuxzse/gp1jwKQZ6opSSmGGQKAvHPpasOMvlcuRyOUzTxDRNZmZmSCQSJBIJHn30UbLZrFv22GOP5bvf/S5r1659C/f4zbcSAM1zE07XyclJ2+etk4oNYn4gUp4t6sMi+OAKxQgZShr6ZXddcYcZxPNAULQrLCagvi3FrjcG0c0dhuHcpAt0j48Zzvg8QVdYBASpM8ZHucLKYknOazub7ekuKmMVtJW3kIjF3O2QtXjgrgcYvGWIExpWs/x9h3HgeUew9cENbLr1WapaUoxvH7LPUQCC7OuSxyWG/aA2JLAEoEeCkAQjrz1pst1ocAjCkLw2OjCRlmyuIb1zoCjAoUBbukdcyOVWAHrsMv60YsBHbU9gUN6Ugq5Bn2qUD37qD2rnxL8/i/K6Stb96HEyUxmfsqKDH2lZy2Rp5RLe2XgqhZQfeTxRrq8o+JFBz+WpJFbv3ik/bpsK/BRSfQqBjx+S9LCjS89ZJun0fjwO0FvcDf6b3/wm3/jGN9z1m2++ma997Wt8/etfp6mpyVc2Ho/T0NBAKpX6797N/1YrucDmsRmGQWPN0QC0tTQzMDAcUc7/VqS6ujwXV9g9ZuhcXnlcYsFeYqo7TLYV5Q4LusJkz7Aj3rGCl/+0zUmzYUC6wYrpGWYAiZjeFRbsGWa3OTdXmL0s3DT7GO22dqZ38UD/H9g108tpTcdx7sHv4YiLTqSyqZqu/3qZmZEpxrYNEhN6l5dsG6XtoEvMvibCtx50gxVKU9t3vxeaN++o3mBy23VHLmfsha2RZXSWL+phLj3AguWjwEdNy6f6qHDTfNQy+p/vCsGPFxQMlS01rDj3SN64/yVi5QmaDu3gjQc3ICxbl42CH7k/u2d6eXToSS5ccEFofJ83A34EcOCJS9n09LY5wU9UvI+q+uwJ+OSDnigIEoEpIBJlcSqryvnD9u/uhy6wWlpqjt3j+u0rxvaZC6xknpUUoP3EFi5uo29gMJQeI+Z7szAML/jZpwy5D1jVPeYFS6uqTLRLzDafMrSXStCubYOOymPH/djuIOehJijYM8xWc5QeYOiVIAkA8qEy155h0sXkuapgUeVCPrPkEnbP9vHnkReYGZzmzm/fTF2imqWLF3PaP36QypYUm277C9vuW092atan9nizytt7prrE1Gumc4tBWBFS00BtWx65d0zBgGRd0LPangVM7xrKCzT5bE96gAXr6SCnWPBR2w728prsHg6Ah5dfs7SZY77wXlrXLGbbwxsRwGjXEMPbhrDjgArDz2tTW7ht9695f+tZkfATPi9zgx/5nfG3PTe3VxB+dC4vHfyEFaHCak8QeoKwo6tfVpGgoTUF27VF57kJ9qYXWMneHCsB0Dw3CTAVFUltRuW/+wAAIABJREFU3E/wRqLr8m435E+TIKRziwVdYlFxQbD3EBQri+GNBG33ELPXw/FAQQiKG+oDJAxBceybeXwf9AwLQpB9beztdJS38cH2M4kh2DrdzQP9T/DeitPYdPFmjjnxOA6/+HhS7XWs+95DpBY2ML1rJDIuyN6e5zKT1yHkFoMQCOG2g889pgKS/8vgHZ+uh1YQikQiEQkyxVixvcDCrrBw+p6Cj7ouXV5GWdzn8kotaWbF+Uey9XcvkR6eZutDr/DYl+8iM5311BoUSFf+B111Q5kRbt99Nx9tv5ClVUt9cBQ8B0EoKgQ/+dsQ9G4bjuztpbq6CsFPvlifKPjRgU8h6CkUBE0MEuWlGKCS7TsrAdA8N3lDmZmd8b1ZOZk+CwKRBBlVFQqCkPqQN4KgIyxtXFAhCAJZJxqCZIB0a2c9PV3D7rr7NmsQgqBgUHVUULSbL2xXlQtJxr6DIA9KFMXJMDi96XhOqF/DyPIs9z36IIvXt3PnXzbQXFZDWUUZZ/zoUgB2PrqJbQ++xNjrvb64IA+yDOcyeduzr6mT7oBQDD30qLCgAlIQhtTgadV0UFTe2kB610i48BwsKn4oCnqCefnAB4qDn6B6VNFax9jOUWoWN3Li188n1dnIlvtfZGYkzdTAJK/99kW3fD74UffRtGDXbA/t5e18fuln3QlN1fPgtlck/ITPmZenU35kwPDews9cVJ9C4KNCz1wCoOX+ZDO5yPz5bAJCL7Ale+utBEDz3KR7a9u2He6yjPnJB0QqDAVBKOga06lBvgBpw0srDoIKz7Gru6mG5gxTICiOVHfyB0W7/2FOQdHqKZwLBMlzpEJQZbyCFXUH07mkBkvAL7rvYyw3yZktJzJ7zvdoPXghS884lOZVnYy+3sehnziVgRe2M7h+O95YnMLZpnxwy4sot+l3i0WBUNA9pj5ywsqQ4vLSgIp0uXhlA9e0wAu8Vy7KHRZdbl+Aj1pXXuemwzs55NKTIR5n4OVuNvziaXb+8TWsrIUc40ctnw9+JIRkLYu7e++nZ7aPqxZ9wgc/QdDJBz+h86NuMw/8SGvsqKOna2TO8LOnLi8vvXjw0QFPlKsonU4z0Le/QsTejQNUsjfHSgA0z02CysKOVgb6B+34HE1vgqjYHx0IeW6wmKvygHzgq93pna7vIhgX5EEQeDexoBJUSAUC2L1j2H5jlbkBCCo2Hgg8UCgUD4TjHnPPMX7I0VkxMUEqBE3sHnXzr136N7wy+Qa/H3iaTZPb+ATnMfhqDwnDwIjbPYGO+tJaKltqeOVnT/L6bc+GtmFPBRvYJsqDXw1gjgCeoPITBA4dEKmW7vGrP4WAp5C7TFe9EPRAfvBR90sHP4maCnt+stZa3v3jyzEzOXY8uomRN/rJTGfY8YdX3XF+ioEfdZsCSJsZfrnrDgA+3vkx4kbcPY65wk8xcT+6OCK1nWDMj32u5g4/OpfXXMAnH/REAU+wXFlFkvrm6v0zBkigvW+X7K21EgDNc5OKTarGniRQJ6OGoEgT7iFByBc0bXhl5DhCQRAoDEFer7PwOEGFIcidDR7vxm+rTvLBlj8eSIKMX63RQ5B6XuQDolhXWPCU5osJUmell+6sw2oO4LCaAzBFDlNYmMIkFi8jZlq89NMn2XDjk9QsrKcsVY4A1t7xWUZe7aH70Vfo//PrmLO5aDUIDwR0MUL2MeWLCdIDkbIJ51oUhpooi2IlfU8wfb4OfNT0KPCpaKtn+XlHseDEldQtb+HJL91O//PbefTqnzPaNUR1Rz3TQ5OKOrJnyo8lDHLCYlFFJ6c3neq4lPWgUxgei4Mf/3nzd3cf2DHiK1Mo4LkY+ClW9dEpPj4w0kBPPoXEMiyMOCQr99dHlvqaV7L5Yvvrt+ltZQKLTDYT+gHpBkVUYUgX+2O5D027nFtGeToGXWLFQJAT9uzub7EQtGBxI707bGUhrnaBRkS7wvDigTyQCbvCAJ+LS1WH9jYeyG4vOiYo1VHPxO4xG9QUiIobCQwDkoY3ppCcPmNi16i8BDz+2V/QefohHHjxCXS+6xCe+/rddJ65huzYFMMbuslNpL1zWQCEotxjStVIV5hatqK9gXTPKHtje+L+KhZ87HYMKttqaT3hABacuJIX/+0RYmVx4pVlvPSjR+l7YQdmxv59jHbZAwVWd9Qz7pz7PVV+5P5WxSs5o/l0vbqjOeZCcT/5gp79bfjhR+0mrkJPvpgfWTYIP/lcXnsDPjrgsSJ6g+Gcg5xZgoiS7TsrAdA8Nwk3W7Z0hUFHA0Sq6ysIQjI/6BYLxQbliQuSEGSvmyEIAs81Voz5xwwpzhVmuHE+hV1hBkFlJgxBPmWI4iFIKilBCJLt2Ns1QhBkl7XTgxAk3V1T/RNs/tVfeP2Ov4BhYAiDytY6lp9/FA2HLGRo/Xae+vwvaTi4HStnMrmtH8vZuWJACKLdYATKuedGGO7xRl7PIhUiXQvBuoXAx64DiepyGg9fRN9ftrJo7RqO+MKZ9D67hd1/fI2ZkSmyk7P89XsPOdv11CHLbVu2G4YflDKWr2wYalR1Jwg36v7mc32p8BM+P3rXlzq5qWpNi+rp2THigx+vrcIBz1HwU0j10bm78oGPDnp0akk6naa/Z/8EIPt+sH/u+/9kKwHQPDf5o2ltbWKgfyiUDh6QRMUA6VxeMs/C8sUGRUGQr4eY8MrK7YYhiKJUoL7uYd8NMzhpqrQ3yxUWrJNvmocoCJKnVIWqid5x91wVC0GyoVDMD/bDatNNf2TTTX8knjCoaLZHaG0+ehnLPnAMlc01jLyyi6ev/TmJ2koQgtzotN41hh6G5HEETZaa6RtzzsPc3GDRuJQfeiAMPhXNNVR1NDD44g6WfehYDrz0FCqaUoxs2s3w5l52PvQyXb97CWGpPeLkfujhZ6p3LBJ+1EEO1f1Q4Ued3V2n9Kht5oOjUB0FuoqBn2DcjwgoPva+Cxd+vO3o4UetY6cXDz+FwCcIPYXcQxYm8fIyahoqoStv0XlqezsOUOGOJSWbu5UAaD+xhvra0BuECz4RypCq+NjlzEg1SHVfBSHITjdRR5NWu8gHFZ9ig6JjxMhlTWd/w6pR1ACJFsIHR3bZsAoUZXvqCtO1aj+I/KqIBa6bxd23IiBI9uBXlSA18FkemZkTpPvsSUlfv+VpXr/lacpqK2k4oA0zZ9H5joNY/b/WkhmdZvz1XjZ870HMdIbGNYtJ946S7h0hOzHjXiPQw5B6jABm1swLM8WaDqCCj7/yljpqlrZg5SwG/rqN1X/3fha++3CMuMHgC9sZfPFW+v+ylYHntzOxYxDLFL6288GPe1zOci5rocKPt0+GTzXR9c4KTrrqpYdBJwp2olxfczGd62tw11ggX/iUJTXuxy0XUH30gxvuO/jRgY8VAQqJeJyq6gpt3v5ge6cAlQDozbASAM1zkz8a0zJ9qo6ap0vzucgUxScvBEUoQfYD2OsdpkJPvqDoQmZh0b6sif5do5EqkC4g2jAkVOw7FShyH0UYjIKApEKQzK9d1MBk77jr3rL3f25KkN2+HoLUEaQBsuNp+p/vAgy2//avbL/vBeqWt1C7vJXZiTSVrbUsOf8YqtrrqVxQz6s/foRtdzzDUf90EbNDU0z3jjD+6m6G1m3FqCjHTGdC56Kqs5GZ/rFQevS5U06yYVBWU0Gyroqy2krGX+8lUV9F++mHkayrIllbRc8TrzCwbhtrH/4HrEyOia4Bep7cxMBft9F1z3Ns/vkfSTsqlMBgcuewp9Rop8nALSvXdW6vVGcjE73jvnoq/OQLekatE4AenQWhSIWf0PmT2y2g/oQUKgd2srOm6/ryu5r98CNBR9WFogKedfCTL9anWPCJgh61DQsLaz92I5VcYPPPSgA0z00qL6+/ttVLywM+Mi0IQirsRPUC8/US87m4TD0ECW/70tS4ICisAklZXe0aHxzwMCogWk6Y6p0XTwUKDpAYNwJtFqkCRbnE5EMIIoKi1X2S0EXxSpALlYJQ7y91LrHgNl3lSAjGtvQztqWfmAET2wZ45gs3u9fEbiTGzgdfoqq9jqr2esSB7Qys28pRX/sQbe84GGs2i5nO8sj7v8XCtUdw0NVnkJucwcqYbPj2faR7R1nz1Q9hZUysXI7+pzbT/cALHPK595Fa1kqyrors1Cx/ufYmDrnmvSw671iy49NkxtKs+8qtxMrLqO5sJDM2w8T2QWaGJsES/P7cb5Ob8ia9tASMvt7nnHc/dMjzLq+Jmh4sW2zMj6XWU8rLdlT4UdWdIMME1Z9Coo6q/kTBT976gfF+FixrZGC3B6yFgp5161Fur7moPlHgo4OefD3B0tMz9OwaiswvWcnmaiUA2g9MYNLUXE9ff7+b5rqmCqlAEnoKqEFBCLKLeukqBMk8NR4oqP5EDZIYD7i6BnvHQ8er6xYvp8nQldWpQOFzSEgF0o0NlE/p0YFRVDzQRP+ke06AwLK9v7JscRAU7RJTXXBqWQB1Sg13n52CMaD3iU2+82QYsO4rtxFLJuxPWRwL6H3qVWZHp5kZnCBWFmd6xyBW1mTb7c8QK4sTS8aZ3jWCBQy+0MXgC9vJjE2TGbHPw8Z/+z0b/+333vVwAOLlb/9OuZbOfwd+fCCpAR8oDD8e1MjtetdA5k0NTij7YLjl8sX9yG0GoaRQjE+U+qODH51FqT+6yUE95So67sdrNxz0nM/tJcuoaflUn3zgEzkZaiA9kSyjpm7/dIEJ3x2xZPPFSgA0z03CTGNTvT9duYkEYUgFoWLUIC0ECULpHgR523S3qz6wie4JJjB9KtDkZFqiFMG5wkJxPrBXKlDMCAOU/1x7cThRFoQgI5Ruw0hmatanLrlA4y7bfjwVZMCDoz2BINzjxlkuAoQcc3uvOe2YsybmrOnORJ+dmGHs9R5mFVgA6HvmtdA56ntqs+bc6k+s7pEwF/Cxy/jzi4EftW52KuO6vWQ5tU7QRaUGPcvtqNCjO558UBRlhVxfuvKqy2u4dyJcBoFufq/QQIku8BTn9grCTzGqT3hAxPyAkEgkSNVU5S0zn63kApt/Voqs2o9MCMv3cdMx3Y9aTrdslw+sOy4xgVfWwkIdXDH447W3Z2llbJlu/1eWDXvNhiC7vcUrW91S4Xa8t1LfTTvwtmu5b8Mi79uzXVd9a1bcAr608AMr6uGmf8s3qF/apOyf+vAt3gWj1kHJDz7gBSoEGC4cBEHCPx9W4KGufHzHJwz3U72oxbc+l4/v/Gi2FdwndX/VY1GPz3/c+nMTBT/q9axd3BQ653JZ3UeBH7zU7QTTgt+bYLlC6k8xkBTs9RW09OSsT/2xAt/gfHE/3vq+gR8L071XBH/v8lfu3zcz8rNfmhAIYe7xp2RvjpUAaJ6bBJjNr74ehpA8MCTz1bK+/xEQFK5n+sraKlD4ZmXn6YEoysIyuxSK/XK875jVssobb6ht5U3ZexjpRzsual8jwEiXr+5rMB5It7y3EKTW99oM58t6odiYIMAFPntr+dqby/5FT5Ph1VXXi4Ef3fWJivtRtx0878WoO245Udx5lWCkU3+0PdICv4n2FU2hl4Vgl3dZLyrux8734CeUFgE/KtQUCz6FIGcmPcvu7kH9ySpZyfbASi6w/cTqG+ro6xvQxvyABy3emEB28LQ2HkiJCwoFRxteDzC7B5O/e7xsW42DCfb6ih4gkVBA9MjghP1WKbxtqRYcHBEjotsxgmJigQAKxQLpAqKjPGO6fAFMDU37ymDgGynaW/YHRattFusOw5dmWz63mL2PnmvM3Uf8Zbxza9uME8+zt6aDhODM8zpVzS6nLzMX+AnWnxqeCoGmXNa5vvz7rVF30ANz0PKpP8WCum6i01AZZH4AhjQgFIz70XV1LwZ+7HS9u6uYHmA6d1gsYVBds3/GAIH+mEr21lpJAZrnJt+SWlubQj8grQKkurwIqzqFlCA1Dewbl85FFtxHVQWai40MT/q2FVSBgqa6wXRdfL3jjVaB9tTyPdSCqkB6NB16YAYfrt5ytDJRjBKkHePGt9/Rik9QcVHLBMtmxqbZE4tqT7f9kGsu4PJSy6ltqGmF4Md/TQxmxtKhevlcX/nUvnzfrrmoP3b54tUf73i838TIwKQ2fy6uL0A7wvO+gB+d2qNzh0lLJsuoravW5s1/E7779Vw/JXtzrARA+5l5ArYehtR1u3zYJZYPgqJgJ+gik64w3eim/hig6FgggGUHtts35Ig5gNQgTTVwM7RN56YvY4HymftA8b11F44FyteWb58FNC5v1pbJFw+klsdXJz8E2XUKQ1AxIBSEIbVs9dLWEMwU8wla1LaiwCd8LP521LRi4ce+znZe/TLlWvn2Ibjf+msdtH2h/hQD6oXUn4nhaZ/6o4sB8h+f3vWllvWnFQ8/QZeYWibqnqaL/9m70ZTfOhMQCTclAHrrrARA89zkD+D117eE8yJASLtcJATZaX7YcW9iSjyQfz8U2JnDj1UNhgZcTApK8f7jE05dXBVIZ/4Hioh8EM3Vgg83NT2YplMOvOPQL+se1DB3CFLbCYKQ7nhUywdDe2r5oEen+nj1AtCiwI/aBswNfgiVDZ9bWUd3zkSoTHHqz1xMp/7kLa+oP5YQLDqwRV8mj/pjp/nVn6igZygefry0MPj4tx0dB5ROz9Lb8/+3d+7BUZXnH/9uLiS7uQFZkxAICe2PEInSCWWachkI1pnSToGCImroJEytXFSqVbDSAFFkBBw7jpOhLW2nWgg6leDlD+UiN4VKLTDghILGAIFAyIWQK7mwm+f3x7Jnz9nznsvuZkmWfT7MTnbf+zkve853n+d53xO6+wDJhZ6vLyY4sAAKEeLibJq/CLy/JFoiyDvN+6/qveDXnrJfdUC0r7Te6NTM0wuGVoxD51ewqk1SWntUbbnLuNs1+Uvem5stLrfKqnPr0P6IMvjajCvMPRb5Z2mMJkSQOl0+Zovwpi5CLlx6W3xzgRkJKbH1RGz10cJb/JhFbnHruj1XemPTmntRmp4YcscVeVt/zOK98suf2B/AN+uPspx6rx8RZsSPuo62dYfQh4hIYEgsh60y/QcLoBBhxIg0xWctISTP934vignSrq+3BF7fLCtfEWbkBmtquOGx+shcY+qxecSQyJzvxtsNZiSKvN1gviAq7RZLnU2e+IvS0lLP+AysQH06VhdRnr8iyJVnbI2R093cqRA1Ri/hMWj0YeTyMop5kur5Yf25eb3DlPVHbC3TPl8K8Wzm/6FMGBlZe1R9CYRQ242binyRC8xX64/8vZb1R/Qd1hM/erFA8h93Q4ZEY9iwRFXboQHHAA1GWAANcoxMoepl8J5y4j2AnKr68r+q914XPtGeFO5YILfY8YWssWmqNCM3mGdsMHSDucYXuBtMbgUycyN8P/IjvHhunfT5hbOleP5sqWps8vf+uMLk9c2KICNrkLuO93EmZNpV5cyiJaxE/XuLH0+6xqaI7nyT4sf7URfDsuyKdkQuLu/x+SKE5H35Imw8/+eMg589fZBk4WxuUG+E6B1P50rTt/744voSBTxriR9fg6BDHRZAgw8WQCHChQs1AJSCSI6eNci7jFY8kLyePCBaq313MLQ33vsCiaxAbiIjIoRteNoKvhvMTDC0Zr8Q3wx//etfg8jjfnC/n/zUDM0YFM8xm7uBa+1/5BmHWDDI2/Tki4WQu24fARRhMXUDNxMIrSV8giV+POUF507jgW9mrD/qOkqxLMIt3Ptr6bvW//tRY+/RtZaqxq5h/dEq40nzT/wojklH+LhFQFdXN+qvheo+QITbEtjPFxMM2KE62KE+wBKB6OhoddbtL4a0P89tkWKxKPfuce/zo6zr2SdI9egMePb8kbcDuC5y7sdkCIfrVVfzsODaZ6i1tUNq1/14DJC4vveeQEbPB4t0751DMP30d7O4b4aqPXPIleb4oAcbN76Cl75ZByLC6/e+cru851buOmIl7j1/zOK9R5B8DIBLOHjvFSTVvf1X3p187yBvbrV3S+34i5bIUgsyeZ458aPfryDt9t+e9m6hFU00LtE49bo3a7nxlPffUuktWCIiLIo8721ARVZWf6w/3ogXSuiLH1V5gdXDYrEgMkpvh69BDImPiRlY2AIUClAfRo0a4RJDomwDa5A8TetLqJ2uHzfk6l97SbwRjfWtqjT5ajAj3L+mhXmydLMraYz70v/l76azsUO3r/6yAina1GpfxxIkb1s5PrWFpqtJ7VIxi5aFydvq4z1GI/GjqOeH5YzINVeieqJ+3Z9FZQxdYD7+3/PV/eWq43nsRWdrtzpfYE1VBUR7bUmhF/jsbf0RCR1fxI+eyycmJhrJ9iRhHsP4AwugUIP6hEJISwSJAqO1XGG671XtOyU3mOZQBW4wbzLGpGjWd/drRgiZdX+52nTfsNSPxvDVDaYliJJGDwMAvDbuZRwtO6woo3DziMZn4M4xEw8kL+eq67s7x1XWIr3iRw3XKGVcV4SWkBSNWQszwePCscneJ2YME4zDeJWclpg0dpkaP/Vds77A/aXF9Wttmvmi4GfRvj+qegbWH099sWtcjpkfbt7ljVafDVZcQp+XwQ822AUWIlyquaxMcF8sLGJXlaKoWbeU3B0mq+N+YrybPvQJH1sh78/lklGbq0l2CYsAEB0debs9aNZx9em6IEfCgj4QIrRWGUH9hHgj+kj2aAzz1XTbi4z2HMcXZYdlj7mwSO4lhavKR9eXN/L6ItcaoHSHeffvynehNQxLVJSmmPFprBrpZi1meq4vX60/gHKutISq6LNWmjvdzOov9xjdwkgeQ2QWLSE0YsxwNDe2C91frjEaiZg+4XtPmtj6Y7TcXZSuJX7kbXX39KKp4YbumAcvxC6wQQhbgAY57l8AfX0aXx6TS+G907RWhXnXUwU/63yJ/XGDdXQq92BxL4fXwn0h19rfRN6O6wZEfv3SNkJ0k5Jbg3o7e6U0eR3xWNXv/VnRZBQU7apvbNnQGuetmz0aOeYxK378cX2ZxbuN3s5eZR8am1e6Pxu5yET9BbIC0SzeruDoIcrft4G4v5Rp5m7kZvcAEl1ThJshkv53fvDjDODFBAMWQCFC1pgM7QuPCRFkuKTcxK8T3VUafn5J6682C9O9TfJa9Al/22qUJfhQWqu+OdHQfq1Nt6eg3wzl7/2ITSGox3izvs3v8Yjac/ftj/gJ1Pojb7Pj9nH5YpkyI4wCxdf4H1cdj6i52S4WrHp7/4jypXTBDxM964+njO/iR0RsbAzuSfXNDcswerAACjE0fcJ+mFf1LETuvjzpIkuR+NEYvpA+Wn9vGdNLeH34Zah3s/LE/KjjgPTa8yYhfahmGTOPxxB91uzfwArkjdbzvsRlPecqLl0dK2Pcl2/CwtfHb/hq/ZH6kfWd6DVXrnHof9ZKMxab5mPVVP2Z2P1ZXrbhaot2vkr0aH822tjQX3wRP546oWoBGviNEMvKyjBp0iTExMSguLhYlX/z5k0sX74cdrsdSUlJmD59er/0O5jhGKAQobb2quKzUVyPKF9rWbx7SbwvmI4DIgCyZdp9ACJl9WJjhxj2RVJv+je7PpBwWbxmeXK1HmFx7W8T6ce91DuOxk10AFv2e8fw3J41qa/bp1Szb1E76ngfZTyQqIwcAhAZY/6Y+uM2ZeT60iqrW06QFuHDcZnBTAyPUXC9GYyEUNroYWhuNL9yT8/1LJXxw/1ltq6R+Onu7UHzdW1RN/gZ2Big9PR0lJSUYM+ePejqUj/+5cknn4TD4cDZs2cxfPhwnDp1agBGeWdhARQidHebiL+4vWeQKlmwD5CwumBPIKNywnwDQSUPku7u7nWZ1gmINBBh7uBnkiSAaGyaWYYEGogstQPgVrdD+qzcl0c8PK3AZbO4RVIwcfY4DAOlfXFHquuaO/l6N329GCktHD0OYbrIzeULvq1KDMA1CxLWH2KNvt2+f233x5PXtUSNt1XD0PKDPvQ5nbh1SzxXgx/yy0rfn8yfPx8AcPz4cdTW1iryvvnmG3z88ceora1FYqLrcSM//OEP7/gY7zTsAgsR/u//xqjSAnE/+fTU9iB9cfvgxJVLDZ5+fLjg6rnGFNv6B1ET6LlAWq8Y/1IN1tC07qVGAdGiMnI6r3pW4JDGywz9NSe+uL+04n8AoE02V76ucjNj6fGlLZL+Bn6Sertuycahbs+sexnwLf6nP5dty13+VmssUtNCNwaIAvgXbP7zn/8gMzMT69atg91ux/3334+Kioqg9zvQsAAa5PgsPnT27jHbvu7ePkZmbB/Hm5quvKAZP2WahO+9US53vvNxAwlp/j200deh9ucN2KhNa2rwHkSptzrNKPg5UOJTE03HKfnTfTBFuB7XLimXjJvdTysY6K1O1bQSDbDLaDDR2NiISZMmSa+tW7f2a/u1tbWorKxEUlISrl69irKyMhQVFeHs2bP92s9gg11gIQBRH65daxDnGcQCBVreF/yJJYqLj1WluWJ5Akdvv6CA2zaIv4mJc8U2yV1eRnVEaLnlAvD0ebWjjgXSItoWE3B/AyUG9BgSZxyHpoeZYxqIw74nPckwBsj4B0dwAqD9oaf3FlpaOgak7/7Bf0F3zz334Pjx45r5BQUFOHz4sDBv6tSpOHLkiG77VqsV0dHRKCkpQVRUFGbMmIGZM2di7969uPfee/0e92CHBVCI0NISWPCfv3E7/myi6Au3bt2Zi6kr+Lp/0BIf8nSnwXFpbYgo5UM/EFrYpok4ILMiTDimOzRXvhJobI73XBk156+ICyTOxwzerVsT1II1WBYeEYEIJZH1p8/pRFen+vEeIUMQ5//QoUMB1Z8wYUL/DCTEYBdYiDBu3NiBHkJQuHyhPqD6g3VZ7I1LobpjrTYdteI9mwLF16Xv/U3r5btvrgDA0Ts4Bau/WK2xGDFSf9uMwUsgEUD9c41zOBzo7u6G0+mE0+lEd3fOGBFXAAAOqElEQVQ3HA5XUPn06dMxevRovPbaa3A4HDh69CgOHTqEn/70p/3S92DFQoP1DsLA0h9LkhiGYe4yQu22NWvWLDQ1Nfld3263Y/fu3QGNobS0FC+//LIibd26dSgtLQUAnDlzBk888QS+/vprZGZmYsOGDZg3b15AfQ52WACFCHFxcejs7BzoYfQ7fFyhw914TMDde1w2mw03b94c6GH0K3fjMTEDB7vAGIZhGIYJO1gAhQh3q6Hubj2uu5G73RzOMEx4wS4whmEYhmHCDrYAMQzDMAwTdrAA8oFFixZhxIgRSExMRHZ2Nv72t79Jefv370dOTg5sNhtmzpyJmpoaKa+4uBhDhgxBfHy89HI6PUtUX375ZaSlpWHBggXo6XE98+vixYuwWCyKOuvXr1eM57PPPsPEiRMRFxeHjIwM/Otf/5LqZmVlSeWam5sxb948xMXFITMzEzt27FC0s2PHDmRmZiIuLg6//OUv0dzsWe6clZWFixcvori4GG+//baiXkFBAWJjY6XxjRs3DoBrT4qIiAjF2N955x1VmwDw5ptv4nvf+x4SExORnp6O5557Tlqa6T6WmTNnwmazIScnB5999pmUV1paitLSUhw6dAgFBQWa89bf6J1Pf89lsNGaKzmLFy+GxWLBd999J6XxXA2euTp48CDuv/9+DB06FMnJyZg3bx6uXLmiqOfeD+a9997DuHHjkJSUhJSUFBQVFaGtrU0qq3de3n77bRQXF6uuI3eCUJwvJnRhAeQDL730Ei5evIi2tjZ8/PHHKCkpwYkTJ9DU1IT58+dj/fr1aG5uxqRJk7Bw4UJF3VWrVqGjo0N6RUa6tuWrqqrCV199hZqaGuTl5WH79u2Kei0tLVKdNWvWSOn/+9//8Pjjj2PDhg1obW3FqVOnNB9e99RTT2HIkCGor69HeXk5li1bhjNnzgBwLX1csmQJtm3bhvr6ethsNixfvtz0OSkrK5PG980330jp6enpiuMtKioS1p89ezZOnjyJtrY2VFZW4vTp03jrrbek/Mceewx5eXm4fv06NmzYgIcffhiNjY2mxxcMtM5noOcy2GjNFQAcOXIE1dXVuvV5ru4corkaP3489uzZg5aWFly9ehVjx47FsmXLhPWnTp2Ko0ePorW1FefPn4fD4UBJSYmUr3dNGEhCdb6Y0IR3gvaB3Nxc6b3FYoHFYkF1dTVOnDiB3NxcLFiwAIDr167dbse5c+eQk5Oj26bT6QQRSZtTyS1Derz66qtYsmQJfvaznwEAkpOTkZycrCrX2dmJiooKVFZWIj4+HtOmTcOcOXOwbds2bNy4EeXl5Zg9ezamT58OAFi/fj3uvfdetLe3IyEhwdRYAuH73/++9J6IEBERIVkgvv32W5w8eRJ79+6F1WrFQw89hDfffBMVFRVYunRp0McmQu98RkREDOi59BeHw4FnnnkG77zzDn7wgx9oluO5GlhSU1MVnyMjIxXWOjkZGRmaZY2uCQPF3TZfTAhAjE8sW7aMrFYrAaC8vDxqb2+nFStW0NKlSxXlcnNzaefOnUREVFRURMOGDaNhw4bRxIkTpXQ3L774Itntdpo7dy7dvHmTiIguXLhAACg9PZ1GjhxJxcXF1NjYKNUZM2YMlZSU0H333UdpaWlUWFhI169fV4335MmTFBsbq0h7/fXX6Re/+AUREc2ZM4c2btyoyI+Li6Pjx48bnosZM2aQ3W6n5ORkmjJlCh08eJCIiA4ePEjR0dGUkpJCWVlZ9Oyzz1JHR4dmO+Xl5ZSQkEAAyG6306lTp4iIaNeuXZSTk6Mo+9RTT9HTTz9tOLZgoXc+AzmXwUZrroiINm/eTCtWrCAiIgBUVVWl2Q7PVfDRm6uamhpKSkoii8VCUVFR9I9//EOznS+++IISExMJANlsNtqzZw8RGV8TBopQnS8mdGEXmI9s2bIF7e3t+OKLLzB//nzExMSgo6MDSUlJinJJSUlob3c9iHDFihWoqqpCQ0MD1q9fj+LiYhw9elQqu3HjRjQ2NuLDDz+E1WoF4Nr587///S9qampw4sQJtLe3o7CwUKpTW1uLbdu2oaKiAlVVVejq6sIzzzyjGq/R2Izy9di0aRPOnz+PK1eu4Mknn8Ts2bNRXV2NnJwcnDp1CnV1dThw4ABOnDiB3/3ud5rtPP7442hra8O3336LpUuXSr90AxlbsNAb02Acrxutubp8+TL+8pe/4JVXXjHVDs9V8NGaKwAYPXo0Wlpa0NTUhFdffVXXwjxt2jS0traitrYWK1eulOJ5Buuxh+p8MaELCyA/iIyMxLRp01BbW4s//elPiI+PVwQYAkBbW5tkmp04cSKSk5MRFRWFn//85ygsLMSuXbt0+4iPj8ekSZMQFRWF1NRUlJWVYe/evVI/VqsVixcvRnZ2NuLj47F69Wp88sknwnb0xmaUr0d+fj4SEhIQExODoqIiTJ06FZ988gnS0tIwfvx4REREYMyYMdi8eTN27txp2N7YsWORm5sr+fYDGVuw0BvTYByvG625evbZZ7F27VrVzcUInqvgoTVXcoYPH46ioiLMnTtXEYguYuTIkZg1axYeffRRAINzroDQnS8mdGEBFAAOhwPV1dXIzc3F6dOnpfTOzk4pXYTFYvF5A0D3c8Hc9SZMmGDqWWHZ2dlwOByoqqqS0k6fPi2NzXvs58+fR09PD7Kzs30an3uMouPy5Xjd59Q9tvPnzyt+5cnHPhDonc/+PJfBxj0n+/fvx8qVK5GWloa0tDQAwOTJk1UrBUXwXN0ZtL4/DocDDQ0NKmEgQj5XRteEgeJumS8mhBhI/1soUV9fT++++y61t7eTw+Gg3bt3k81mow8//JAaGhooMTGRdu7cSV1dXbRq1SrKz8+X6r7//vvU3t5OTqeT9uzZQ/Hx8Qq/vohjx47RuXPnyOl0UlNTEz3yyCNUUFAg5f/973+nrKwsqq6ups7OTlqwYAEtWrRI2NbChQvp0UcfpY6ODjpy5AglJiZSZWUlERFVVlZSQkICff7559TR0UGFhYW0cOFCw/Nx48YN2r17N3V1ddGtW7do+/btZLPZ6Ny5c3Tw4EGqqamhvr4+unTpEhUUFFBxcbGwnb/+9a9UX19PRERnzpyh8ePH03PPPSfl5+fn0/PPP09dXV20a9cuSkpKooaGBsPxBROt8+nvuQw2enNVX19PdXV10gsAffnll1Ismhyeq+CjN1cVFRXSNaGhoYEWLFhAeXl5wna2b98ufQcvXrxI06dPp3nz5kn5eteEgSTU5osJbVgAmaShoYGmT59OSUlJlJCQQPfddx9t3bpVyt+3bx+NGzeOYmNjacaMGXThwgUpb9q0aZSYmEgJCQk0YcIEevfddw3727FjB2VlZZHNZqO0tDT61a9+RXV1dYoya9euJbvdTna7nRYtWkTNzc3Ctq5fv05z584lm81GGRkZVF5ersgvLy+njIwMstlsNGfOHGEwteh8TJo0ieLj4ykpKYny8/Np7969RET0xhtvUHp6OlmtVho1ahQ9/fTT1NbWJmynuLiYUlJSyGazUWZmJr3wwgvU1dUl5V+4cIFmzJhBsbGxlJ2dTfv27TMcW7DRO5/+nMtgozdX3kAnCJrnKvjozdVbb70lXRNSU1Np4cKFdPHiRWE7q1evppEjR5LNZqORI0fSb37zG2pqapLyja4JA0WozRcT2vCjMBiGYRiGCTs4BohhGIZhmLCDBRDDMAzDMGEHCyCGYRiGYcIOFkAMwzAMw4QdLIAYhmEYhgk7WAAxDMMwDBN2sABiGIZhGCbsYAHEMAzDMEzYwQKIYRiGYZiwgwUQw4QR7733HvLz8xEXF4eUlBTk5+djy5YtICIUFxejpKREWI+I8Prrr2Ps2LGwWq0YPXo0fv/736Onp0cqU1xcDIvFgq+++kpK++6770w9tJdhGOZOwwKIYcKEN954A7/97W+xcuVKXLt2DfX19fjzn/+Mo0ePore3V7fuihUrsHXrVvzzn/9Ee3s7Pv30Uxw4cACPPPKIotzw4cM1RRTDMMxgggUQw4QBra2tWLt2LbZs2YKHH34YCQkJsFgsyMvLQ3l5OWJiYjTrVlVVYcuWLSgvL8fkyZMRFRWF3NxcVFRUYPfu3Thw4IBUtqioCF9//TUOHz58Jw6LYRjGb1gAMUwY8OWXX6Knpwdz5871ue7+/fsxatQo/OhHP1KkZ2Rk4Mc//jH27dsnpdlsNqxevRp/+MMfAh4zwzBMMGEBxDBhQFNTE+x2O6KioqS0KVOmYOjQobBarfj88891644YMUKYN2LECDQ1NSnSlixZgkuXLuHTTz/tn8EzDMMEARZADBMGJCcno6mpCQ6HQ0r797//jZaWFiQnJ6Ovr0+zrt1uR11dnTCvrq4OdrtdkRYTE4M1a9ZgzZo1IKL+OQCGYZh+hgUQw4QBkydPRkxMDD766COf6z7wwAO4fPmyYnUXAFy+fBnHjh3DT37yE1WdxYsXo7W1FR988IHfY2YYhgkmLIAYJgwYOnQo1q1bh+XLl2Pnzp3o6OhAX18fTp06hc7OTqmc0+lEd3e39Ort7UV2djaWLl2KwsJCHDt2DE6nE2fOnMFDDz2EBx98EA8++KCqv6ioKJSWlmLTpk138jAZhmFMwwKIYcKEVatW4Y9//CM2b96MlJQUpKamYsmSJdi0aROmTJkCANi4cSOsVqv0euCBBwAAZWVleOKJJ7Bo0SLEx8dj1qxZKCgoQEVFhWZ/jz32mGbsEMMwzEBjIXbSMwzDMAwTZrAFiGEYhmGYsIMFEMMwDMMwYQcLIIZhGIZhwg4WQAzDMAzDhB0sgBiGYRiGCTtYADEMwzAME3awAGIYhmEYJuxgAcQwDMMwTNjBAohhGIZhmLCDBRDDMAzDMGEHCyCGYRiGYcIOFkAMwzAMw4QdLIAYhmEYhgk7WAAxDMMwDBN2sABiGIZhGCbsYAHEMAzDMEzYwQKIYRiGYZiwgwUQwzAMwzBhBwsghmEYhmHCjv8H+bGG74/PSagAAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Image(filename='3fgl_j0023.9-7203_localize_peak.png') " ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5.991891558666937\n", "-72.08324039663697\n", "305.90801515198206\n", "-44.88593302102324\n", "0.005397242484279103\n", "0.005337532530487048\n", "0.005397242484279103\n", "0.005337532530487048\n", "0.005366221368316228\n", "0.008138277648229967\n", "0.013133545877823873\n", "0.016285398847939087\n", "0.005448724558888491\n", "0.005284967419907161\n", "2.609705201380567\n", "0.48092218927044694\n", "-2.5908516158641124\n", "-0.573805547525784\n", "2.6537356812\n" ] } ], "source": [ "print gta.roi.sources[2]['ra'] #ra\n", "print gta.roi.sources[2]['dec'] #dec\n", "print gta.roi.sources[2]['glon'] #glon\n", "print gta.roi.sources[2]['glat'] #glat\n", "print gta.roi.sources[2]['ra_err'] #error for ra\n", "print gta.roi.sources[2]['dec_err'] #error for dec\n", "print gta.roi.sources[2]['glon_err'] #error for glon\n", "print gta.roi.sources[2]['glat_err'] #error for glat\n", "print gta.roi.sources[2]['pos_err'] #error for the position in deg\n", "print gta.roi.sources[2]['pos_r68'] #68% CL error for the position\n", "print gta.roi.sources[2]['pos_r95'] #95% CL error for the position\n", "print gta.roi.sources[2]['pos_r99'] #99% CL error for the position\n", "print gta.roi.sources[2]['pos_err_semimajor'] #1-sigma uncertainty (deg) along major axis of uncertainty ellipse.\n", "print gta.roi.sources[2]['pos_err_semiminor'] #1-sigma uncertainty (deg) along minor axis of uncertainty ellipse.\n", "print gta.roi.sources[2]['offset_ra'] #Right ascension offset from ROI center in local celestial projection (deg).\n", "print gta.roi.sources[2]['offset_dec'] #Declination offset from ROI center in local celestial projection (deg).\n", "print gta.roi.sources[2]['offset_glon'] #Galactic longitude offset from ROI center in local galactic projection (deg).\n", "print gta.roi.sources[2]['offset_glat'] #Galactic latitude offset from ROI center in local galactic projection (deg).\n", "print gta.roi.sources[2]['offset'] #Angular offset from ROI center (deg)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "SED PARAMETERS FLUX AND SCAN OF FLUX" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Prefactor' 'Index' 'Scale' '' '' '' '' '' '' '']\n", "[ 1.51191261e-11 -2.46682153e+00 6.65532043e+02 nan\n", " nan nan nan nan\n", " nan nan]\n", "[1.25024392e-12 6.17596151e-02 nan nan\n", " nan nan nan nan\n", " nan nan]\n", "753.08940408\n", "-77883.0461087\n", "[0.00000000e+00 3.45304615e-09 3.49502174e-09 3.53699734e-09\n", " 3.57897294e-09 3.62094854e-09 3.66292414e-09 3.70489974e-09\n", " 3.74687534e-09 3.78885093e-09 3.83082653e-09 3.87280213e-09\n", " 3.91477773e-09 3.95675333e-09 3.99872893e-09 4.04070453e-09\n", " 4.08268013e-09 4.12465572e-09 4.16663132e-09 4.20860692e-09]\n", "[0. 1.38385295 1.40067521 1.41749748 1.43431974 1.45114201\n", " 1.46796427 1.48478654 1.5016088 1.51843106 1.53525333 1.55207559\n", " 1.56889786 1.58572012 1.60254239 1.61936465 1.63618692 1.65300918\n", " 1.66983145 1.68665371]\n", "1532.23595176\n", "3.77258581354e-09\n", "1.6566462673e-10\n", "4.03860906082e-09\n", "9.1858070747e-13\n" ] } ], "source": [ "print gta.roi.sources[0]['param_names'] #Names of spectral parameters.\n", "print gta.roi.sources[0]['param_values'] #Spectral parameter values.\n", "print gta.roi.sources[0]['param_errors'] #Spectral parameters errors.\n", "print gta.roi.sources[0]['ts'] #Source test statistic.\n", "print gta.roi.sources[0]['loglike'] #Log-likelihood of the model evaluated at the best-fit normalization of the source.\n", "print gta.roi.sources[0]['flux_scan'] #Flux values for scan of source normalization.\n", "print gta.roi.sources[0]['norm_scan'] #Normalization parameters values for scan of source normalization.\n", "print gta.roi.sources[0]['npred'] #Number of predicted counts from this source integrated over the analysis energy range.\n", "print gta.roi.sources[0]['flux'] #Photon flux (cm−2 s−1) integrated over analysis energy range\n", "print gta.roi.sources[0]['flux_err'] #Photon flux uncertainty (cm−2 s−1) integrated over analysis energy range\n", "print gta.roi.sources[0]['flux_ul95'] #95% CL upper limit on the photon Differential photon flux (cm−2 s−1 MeV−1tegrated over analysis energy range\n", "print gta.roi.sources[0]['dnde'] #Differential photon flux (cm−2 s−1 MeV−1) evaluated at the pivot energy." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:09:31 INFO GTBinnedAnalysis.write_xml(): Writing /nfs/slac/kipac/fs1/u/mdimauro/software/fermipy-extra/notebooks/model_test_00.xml...\n", "2018-03-31 09:09:31 INFO GTAnalysis.write_fits(): Writing /nfs/slac/kipac/fs1/u/mdimauro/software/fermipy-extra/notebooks/model_test.fits...\n", "2018-03-31 09:09:32 INFO GTBinnedAnalysis.write_model_map(): Generating model map for component 00.\n", "2018-03-31 09:09:34 INFO GTAnalysis.write_roi(): Writing /nfs/slac/kipac/fs1/u/mdimauro/software/fermipy-extra/notebooks/model_test.npy...\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAF8CAYAAAAAUvhkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXmYXEW5/z/Vy/Ts+5pMmExWwk4IEBDZIoELAiqgAVkEFNGrXkWvIvITBFHxKqJeRFC8iAiyhE1ZxATZA4GEnWSyTpJJMvs+PdNr/f7orp7T1XXODIFkZjLn+zzzJH36VJ33VNXpU+/2fYWUEhcuXLhw4cLF+IRnrAVw4cKFCxcuXNjDfVG7cOHChQsX4xjui9qFCxcuXLgYx3Bf1C5cuHDhwsU4hvuiduHChQsXLsYx3Be1i3EBIYQYaxlcjAx3niYO3Lnae+C+qF2MOZI/KP1jLYeLUcGdp4mDRiHEiWMthIsPD/dF7WLMId1kfhcudgcKgI1jLYSLDw/3Re3ChQsXeyeyga1jLcREhBBiiRBijRBiQAixUQjx8eTxRUKItUKIoBDi30KIuj0iz2RQZoQQe/9NunDhwsUHhJRyQvmxTz75CNnR0bPL7VetWvdPKeUpTucIIU4C/gh8DlgJ1CS/CpGwUHwR+DtwPfBxKeXCXRZolPDt7guMH3iZX/xF229b2QzAiYGjAHgmtCLt+0rqM87VvyuRhQB0id6Mc+fKgwFoEG+lfS7yBgB4qPOnqTaLiq5I61+1UddRfTZ1L0+dU1u8KO2Y6mN5z01p31uhztW/sztuuo8jPEcAsDK+MuNcfVzs7uOoYw6m84VEGzV2q7v/aLwPk1x217FCydkYb8v4DmC6pyL1fzUXdtfR5x8yx0XBaSz1ftU9m9apPuejkU0/Npr1o7dVULIdvv8Sdm43j6GCGgvrnOn3ZHc/qi2kP0f6vcHwnMLwnKnr6GOpj4H1mD53TuOk34fd2jZdU8mkj7X1nlU/+rioz9br6783BwSqAXg31AzAQNULNDQ02K6npu6nM46Pd3R09PDqytt2ub3Pe0L5KE77EXCdlPKV5OftAEKIy4D3pJQPJD9fC7QLIfaVUq7dZaFGAdf07WLMEYvF8HjdpTgRML1+yliL4GKU6OnZdc1z3EIC8fiu/40AIYQXWABUCCE2CCGahBD/K4TIAfYHUjtxKeUACQ17/91zsxa5Jovpe37xl42akNrtKo3KpBnaQdcmTdqOOseqMYPzTl/feeu7aZPmZbdb17VNMO/+TX2MRvswwUnztELdV319PRX9i4lGYrZasVWrUTBpYVaYNDo7TWs00OfBpL0q2FldnNoojeiulh8Dzlq4kuUzpd8Hhtegac70dalreKZr2bUpPGQDzz77LGA/hqY1p1tK9H5N2qt+b/qzZJVZnxt1bbUGTJYZHU7jraBbwvRxt46prsnq967upycWSp2j9zuae1bjpPppEG/h8XhYcOR+rFzxrtEicECgmrtafjThTN8LDpsjX13xu11u7wuctAVotxy6XUp5u/oghJhCQoNeBZwORIBHgWeBaqBNSnml5fyXgD9IKe/cZaFGI/fu7NyFi9Ggv7+f8vjev2HcG7Bjx46xFsHFKFBQkEt/X3Csxdg9GIVm7IB2KeUCh+8Hk//+Vkq5E0AIcRNwNfA8UKidXwj0fRiBRgPX3uhizFFbW0tOXtZYi+FiFOjr2+2/SS4+Avj8Xtpau8ZajAkHKWUX0ETCyK7jPSBlvhNC5AEzk8d3KyaN6bu2eHHqs8nMbGcy+3bdDwH4d8+wJqEHcSizuQpUMpkUdROfbq4dTQCayaSooAepqf6cTLt2ASu67FbYmbU/iJlcP77vftNpae6kq7N31GZzq7x2AT7WMdXHzC5ox3ovah5NpsWRZLIzo36QYCmn/u3Wq5IVzOZwu+vobhy9jcLxxxzKWy9sNMqv928N9tLdQ3Zmc2sbHU4uJhUEqgKprM8gDJu+lWnZ2p9dsJfJnK36sZs707iN5MoyzYfds2kyfStYTerZ+Vm8Hnud4MBQ2ppLN/3HJp7pe/4c+epLv93l9r7cU1aNoFEjhLgO+A/gNBKm78dImL5/A2wALgEeJxF0dtyeiPp2NWoXY46uzl7isQ9lznKxByCEQLouigmB8qlFBAJ7o5VK7tZgsiSuB14D1gFrgDeAG6SUbcBZwA1AF3AksOSjv8dMTBofdSX1Rk1L10yUtqR2p/f1vASYtYMUkvPvFKymwyltSrXRz3EK9krtrosT/6hddKthvzxS6sdo0lKc0rJGq0kr+XMHsqkM5xKW0dTcfKHsYwCsaE8wVposDkp+fdxLktaptOMifR5MwWmp9sm1oPrXU39Mfahz9bnRNd7KYvv0HX0erCljylpzYtXVwLDmqMZFXdeafqb6a0p+TqX9icw1qQc7ogXqdYlePB7B4xt+w7qedWmn6s/Q6p70tWiCXVCfVQ678dYDAwGeKU4/R3+uijwJTdoauNXUkz4+eht9nQE0kG65sgvMtLZ3CgK1ymyFmqsGzM9QQm7zvTbG2ygqLGTK+llUypgxgG5+8RdZ3b3raU5jig/nox4RUsoI8NXkn/7dMmDf3SqAAa5G7WLMUVyaT3F5/liL4WIESCnp7OwcazFcjAKhwTDRSGysxXDxEWHS+KjBa/Qv2flT7dJTrG0UdL+wVRPSNc7R+JBPzz8agFubrgfMBBh2bRVG45ccDamC3t5OWx4N0YNdSlrV1BJ6/TvZ0rjT6BfUYZf2ktJCtDm03qOCk3amp/Lon53GZyTyktHMgwl2MQ661cWJBEfB5Bu1szBY+8jJyeGAAw7gtddeM8rrZGXRz1GasxMxjz6Wup/ZRF4zGiIVBSdt2NqXFfo4XZi0cKiUutGQKjkR9NilGpriIuzSK+cXf5HSigLWtr2d0cY6R03dT088H/Whs+Wrz9qn2I0EX/EZI/qoxyNcjdrFmCPYHyIciY61GC5GgN/vJxZztbSJgCl1oyHgmojYIz7qcYdJo1HXFi92jCj+IHSadtqqE+GJ8o3p0aKmCG6dHEJhJF+XtT8noofRaqSmCFydeMF0z3ZWAzttORAIMKNqMX29mXmfTlq+k9ZtvR/IHA/9uBW6j1hpbqOxYJjiIOxkttPcTRYBu8j20VDE6tB9ytZ+7KLJa4sXkV+QS0lJAdu2tqT1ZzevJkIeBTvrgckiMJK1y3TMzopgxUgUn6b70klYnNanrjHrVhB9LTrdo07MBPa/Ka1s5qhjDmbFi86kRKu7b5t4GvUhs+Sry/9nl9v7yj/jatQuXOwKcnNzqZlSMfKJLsYU4VCEnm63HPVEwODg0FiLsJsgETK+y38TFZMm6nuuPNio5aQibm3amaIvnXImdega6Ei7d8jUsnUZTBqR2onrUd7qnq07fl0z1LUEtfM3+QDVueq7SoOPd25RetT1SH7naDRKd/hNmrpXp47pUdSme1XQYw/UdazzrfpRY+g0d0ru1Z3m/FeT1lZp44vW21jnQZ/PLnrTZLOuSbu8YCcri76mdd90KjrbILe+jpq6l1NRUYEvu4SmrevS7klBrQ215q1zNhpfvd6nroGqPuYm731qIDd17jNatoOe/aDoK0yWJTtZTOtVrXt9Xk3jr1trVJS2OkfNv8mKoD/jai2bivfoz9lceTCBLflAg/G+rG1cTAxMmhe1i/GLUCjE0NDeqgHsPfD7/UwGV9negIopRemM1nsTJrCveVcxaV7Uy3tuSu1SrdqU8vm0jpD/avUn2UY8G7Rj/ZiuSStGJRU1av1Ov57OvjSaohMm6KUwdS1B5fqadt1Ky9T9uKst5+g+btW/nf8wGo3iC+1LbXFN6pg+XkobsULXRO0Kk1j70+/JdK6SW1kGlnena3R6fqz1mNJE1fWOcGA10yN8naKQdX+minzuiqffh4kVL+Xj1TQ4Jx+ykqHSotmV5hfwQm9m7q2dBULPAU7rV7tHJ7a9jHz5ZB54QyizfzUulfHEOXqchHW+7bRKu1KxJqix1dcKZD6T+n3o14HhMXNay6lzbRjyXo3dTlf/HCqZn3Y9SP99a2LilblMVM+afJtF10ftYlxgn+nVYy2CixEQ7A/R22sOknMxflBQUEBX197K8z05o74njUbtYvwiHo+Tk5M91mK4GAFFZXkUySKCwb20KtNegv7+frq7uykJjHzuhIOqRz3JMGle1J8p/X4mTSLDJu9hs2/CXDU1OxGoMl+km1fB3mQ5GsIHPUhk+1Dmj57qXzdBK/O4HkhkPcfO5G0KjNHTRuzksJ6rm++UuTPNNJu0TCmTt6qz/G6SvVEFOVll3dz8PE3dr2eYcJ3Sy/Qa4rqZ0JQKZaJU1WGlmRwt9BSilLkx+ZtSklEdbxh6So6J0lI3Izd1OqdewfC4PxNaYTzXtCbs6kMvKrqCrIAvzUetB1TpdZatz4FdilUqsMpgxrUrOuEUzKk/43bplqbvdJgIbkYq7mJ6/uyoedX1rb8tumxOZDh27pyP113OQF+I57b8xratXfqgi/EJ1/TtYlxg69atYy2CixEQj0k36G8CoLyqiEg4MtZi7D7I+K7/TVBMGo0azLtdpZWpYCW1O30mZF/GMYMQJDn/OgmCFbqWpApHmHbtegqRnq4zGkIMPRjlgwSl2KXoWKEH0Fm1Al3jUcFverELqyZw9v7fpyG0LaWN68FjpiCg1rh5joyBOFr8SYo4Ijl3SvuETMvFSJoXZGooSpZTy6YA8OON12X0pQcp6cFf1sCkkYg81D1bx9RuDc/ViFVM/erXbeAtmjvzKc1aSH5xJK2NrtmaSmXqgXJqLY8mTcgutdGUUqkoPdWa07VYaxlQOyIbfayt36tnIiMY1BDsmGqjl7bVUsesa0cfyyO0dEjrPas1XBJLJ1YJZhewdXC4cIrVMqaC7XbFajQ+ICel6dvVqF2MC2Tn7Y0l+fYuVFSV4M+aVHv7CYmN67eNtQi7Dyrqe1f/JigmzVOXIKHP3FUrpHysybnUyTPmWn2wWpnADF+ZgwY27Ie09z0Nl6w0E0roZCOQqRWkfLtJrUxpGjDss9TlVrt1PUUNTOQN2H628yHr42bd6fvDid2+XlLS5L8bqdiHqdCGSp9R0OMI7mrJTGvS05lMvnUFO83wzo6XbNtgoyXrpSvBnphHtx6YrCwpC4RGdGLtX18vpv6q4wto6lrDwMBA2jl2qUQmH7jSEEu0640GdlS3VjmVNcSu0IzJb67Wpb7+nZ5j1Vb3/5vWga45OxXm0YuWoK1layzI8HOVLndhcZS21i5jmpyKbXBK33Qx/uBq1C7GBVq37K3pJHsPYrEY4XB4rMVwMQIqKkvHWoTdCDc9a6+H2mFad9Up7azHTOmpa7GQGfGcQelp0RzVuTqJhlPUpS6D6kOPaLVaBvToa52oJS26PLkDt6P0VNdTfnSTTE6EDOo7RYKi795VH1aNqCuvi9UNq43asH6dlH9ZG3flP1SfTUU5nAouKGRoQNqY6n5P6z3q/tPREM/o2p9OR2q9pl1ZSJ2gxE7OtD4s2qyy8Oh0stb7K+krIBp9M0M2u/VqWhvKN2pXTMTOV65kACjyJPOOLL+7IxXTcYoUV+tFnytTSddha5dZXhOZkk7Fa1d0x9qvHb2pU7lL1d9Mrkg7bu1jNPEW4x4T+IW7q5hUL2oX4xeFhfbpSy7GByqqi2DjWEvhYiQ0bt4x1iLsPkgQ7ot670Ul9cZC7Qp2WoExT1ik+7B0akMTjWMqElaY81StsNMqdd+cdaeu+6OcSiYq6EUUMvySxRlNMq6n4HQfGVGvChbLQzj8ftq5pmIlCnp0vU6vaZpfO3+t6X6UxqboOVWkrILJX6xrvHYlPk3Qo7FTEeoGy4yuier+c5OVRb93nRLVilT8g3aPJbKQKcUVRq5vOx++df2mYg6S46IXmhmNX1hBX68m2D3P1nlXvnpdXiWb4lJY3mKfe61/tsZ16PEWqes6+Nr1fvQocyvs8u5rsuqJkZ+6jnVNKJnsihCNf0iYhHzze72PWghx+ljL4GJkbNiwYaxFcDECouHoWIvgYgTk5AYoKskbazEmNIQQzwohhoQQ/cm/Bst35wkhtgghBoQQjwgh9khAwF7/ogbWj7UALkZGdbXL9T3esX1Tx1iL4GIEFBTkMdA3ONZi7F7smWCyr0kp85N/cwGEEPsDtwEXAFVAEPjdR35/Boi9vWydEMILRD9TenUqkMUayJWRQpSEXgvXanrSUz5GQ9qgt9FTi0yBJZ/RKi/pQShWk68enKab1k1mTrua2CZzrX5Mr5PrBL2tyex/2Sd/zusvrssYB908b4Ju+rYLVLJiNLXEdVnsagTD8DrK93uB4bQdtY6U+dzqrrBzxZiCgOzWnFNQnE6gos+VKf3OLlgNYN4BM+h4d/j3QpdBjYEeMKb34yS3Y7piEqZ67PqzYWdudrqWPsam+bGjNTV9b1c9S0eKOInM3yHdvWOVRX8WG8RblJQWEolE6e8LZvSRiRhSylGQ6o4fLNi/Tr523/d2ub3nwP9cJaVc4HSOEOJZ4G4p5R+14z8Bpkspz0t+ngmsAcqklH27LNQosNdr1FLK2FjL4GJkxCcwGcFkQXFxwViL4GIESCn38prhH4LsJPEbUy6EeN3yd5nNhX4qhGgXQrwkhDg+eWx/GE5Kl1JuBMLAnN15xzCJgslWxlfS1JO5s2y12xE7pEmMVPvZtNNXwRsZgSSkF7uwyqC0L1XQQd+Zm2g79T5SlKUO5CUKGTWJHbTwVJELg/Ztp0HoMlrHrXF9s7GNE9WhOlcn6UgFdJGp8eq0kU4pOLosusZohep3dUv6GKq0JyfLSQZ1qGF+7AKe9GIp1oC9qYFEMNRIJCBWOGn3Mh43yq/W9gFJUp2HOjOD1XTLlV0Kl8mKYxdYOJqgwZGOO8EpEHM0GOlaqt8jSo/IOKagE/+YCuWoNMojPEcwc8ZU3l/TxJAMO9bRri1eRFP3RK1H/aGivttH0qiB7wHvk3gJLwH+LoQ4BMgHerRze4DdvoPd6zVqFxMDJeWutjbesWFvpqbcS5CTl8XQgEtK82EgpXxVStknpQxJKf8MvAScCvRDRhm8QmC3mr1hEmnU1p2qiZhfaZxqd6u0JtOueiQaRKdSd7pmYfJHZqQSaSkaTj5MdW96iUzr7toudUs/bqI21ItlmGBXos+uPChAfUke7Z4tKRKLYfKP+rQ+nK6nYCKUUHOlE9uMRmtS46385GqMG+KZGtNI5Qmtn1VBB0VGo1OHmnyXujUls1DF8H0sIt13r9+jKX1Kt4ao9bq6848UTd3fcR7symmaMFJxETDEJ4yCmhftGdEJaEy0rLplTC92YR1T09yAmdY3ZcXS0hx1i4bVQqM/+0oWpxiNFPlK53LeWTObQbFPWl9WWC1JTUxAjRrGgvBEkqCJeg+GWaCEEDOAALDOpt1HBlejdjEuEInE8CcDsVyMT1RUVIy1CC5GgOJh33uRzKPe1b8RIIQoFkKcLITIFkL4hBCfB44F/gn8FThdCPFxIUQecB3w0O4OJINJEPUNIISQ84u/nCplaN3569qkXcSw0n5g2Oen4NRW15oaxFuEo7209r8KQHneoQR8ZYSinUTjw2kVfm8eB3qOoye2nQ2x1UAcv7eIgK+YwUgrAsGxgdMQIrHXWhlfiZRxSiK5CATSV0BvZBvdcjt+Tx7Z/griMsJQpJ2YHMIrsjkm+1SkjPNS+J/E4oMUiykU++vp9DQjZYzBSBvReBCfJ4ccf1XqWuFoD+HY8NrM8hZS60tsNKWUxCPthGQ/awf/BUBp7oHk+CuJyzCDkTZyZQH5vmrW9f8Dxe5x0j4XUjhYy9K2nwGS2dnH4xNZVPrn4BPphCOm0qCwayQy+vfWfpwi//XrjETNaNKw9Whsp0h6XdPVizeYimiMVibIJGrRrzu/+IssOGYOT7z4z4z2dv5fqwXFjqhFh0lmfR52JYNBwRTtb5ch4ZT9YAerpp2KW7DJ8DBZmkx+dzu5TTIt/NhBvPLS2yO2bWUzTd1PT7yo73nT5Gt3fWuX23uO+LZj1LcQogJ4AtgXiAFrgf8npfxX8vvzgJ8BZcAy4GIpZecuCzRKTBrTd3ZuVmLYxxjhaA/kbuZrX/hP8vLyeOqpp1jz7kqKywKcfcYZqfPuu+8+Vg1sp3pWARecdBKBQIB//etfvP32Mvbbbz8ikQjNOzdSkzU71WYw0kLR9BiRSIRt27bxqU99iunTj+LFF19k5YrXicYH+NySs6mvr6ehoYGHH7qJgMhj8eknsP/++7Nlyxbuu+8eSrLn0zHwJicuOpYFCxbw/PPP8/aqDRTnzCEuY/RE3uSCCy5IXfdPf/ozUwsORAgPA7FmQhVvcdJJJ3EMlwLwyiuvsGndGmKinSVLllBZWck999yDP+TlzDPPZPbs2TQ2NrLs0T8DksLCfBZfMI/m5mYeWvq/HFNwOVkel8RhrKEC/ly42FshpWwDDnf4/h7gnj0nUQKT5kXdyCO83JLgwLXu2nXqTX1Hr3a71qIWuvYxJz/xEmkQiban5x+dOncgItPObe1/jenl+/DOO+8wODjI73//ez796U9TV1fHaaedxi233AJANBrlhJMP4ctf/jI///nPCYfDXHLJJXzzm9/k+OOPp7+/n/eWDlecqqSeNjnA8ccfTH9/P/F4HL/fz9NPP82Pf/xjrrvuOl555RUGBgZ4/PHHufjiiykvL+e2224jHA7z+OOPc+aZZ3LVVVdx3XXX8dWvfpVp06bxwAMP4PV6yZa5VFJPVA4Sys/n3HPP5ac/TWhzUkZppRGBIEwvMhiksbERgKuuuor33nuPYPhdHnjgAR588EGee+45/H4/FRUVFBYW8tRTT3HjjTcSDodZunQpd955J7feeitHH300lZWV3P2nJ5mds9h2bnWNxeSPtEa9m+bQCqWB7ErhCP0c1dakSeoR4UqbMkWiK6jvdHpK5ctUPn0r7DR1qz9V+bzteAVa2UxB4TQqW4b7P0LzIeuaqFV+PTdZjwVRY20aW71EqerDlKet5xav1jM9DNkVOvT1pCxxAM+EnDV0U/EePcND16ytc2bHZWBnCYL0tfX+5p3MlackrmeINdnVCPZxhUmYyjlpXtQ+3/i51cbGLTQ2NpKfn09HRwceT8Kk3NTUxDPPPANAPB7nBz/4AZ/85Cfp6uoGJK+99tqor7Ft0w7e3NnMuvAWnn32Werr62l9I8Jjjz2G1+tl06ZNeDweSvyzePLJJ/F4PMybN499990XgM9//vNce+21zJ07l0ceeYQq39Fp/QcCAaZNm8azzz6byN0kRjwex+fNZUdbB8uWLSc3N4ecnBxWrFjBfvvtRygUwuv1UlBQwMqVK6nxH8jz92ygJ9rPSy+9xMyZMykqKiI3N5fly57jxRdf5PHHH+eO2/f4BtaFAZVVpfStH5ngxsXYob29nZqxFmK3QrrVs/ZmHMoFxItfAZz9eJmF2xP/WH3UenTrq/2JfzOKTgDvhhLmwuFSel+iZegtDltcyaWXXkowGKS1tZVp06axePFi7r77bjo6Ovj6179OYWEhXV1d+EUuv7j5p+Tm5nLVVVel+l418A9WDTyRuo9+hikew3KId4LLmDVrJosXL+aTn/wkdf7/oLJoG7/5zW+YMWMG559/PmXeKQQ927jzzjuZNWsWX/nKVwA4+OCD2X///WltbeVvf/sb53z6AkqzZvF2793k5mZzyy230N/fz7333stFF13Eli0vk5ubSzgcpihnNkg48+wjefDBBwGoq6vj2GOP5Z577uGMM85gzpw53Hrr7yECtbVTWbRoEZ/73OeoqKigvb2dCt9MWgbXkJubSzweccxjV3Aqr6hgVwbUlEet52PrvkXrOtI1qybtuIlNTtd4dF+s9VyldemWH7WudA3Yem1VXKIrZGavs0IV8tAxVx7MNGbSKYfLZ+mR6Pp1rf3rGQxNneljrM+L9ZhuWTCNjypkoqwGqs1oGMqcfNKQHpOiz/1czTKTZrlJFlVJcSloRTRMGEmTNhXYUOe2Z2dTV1dHw3pzLjyQsijMlQezvOd/HCQZp/jwedQTEpMm6ntKfdlYiwBATIaIyhD/fnwlZ555Jg0NDZx88skAPPXUU1x4/hf58RUJ8/fAwACFhYVEZYgrr7yS/Px8QzlIyXC5pfTj06fXccstt3DeeedRwgGE4r0MdAiWLFnCJZdcwtVXX83moRUUxmr40ue/xqmnnsoNN9wAQHNzMzfffDP33HMP1dXVhOO9bB98FZAEg0EeffA5/vXkCm6//XaOP/54jj76aH74wx/y6U9/mkisn/7QFi688EL+8pe/AIKOjg5eeOEFnnjiSX75y19y4oknApKammruuOMOvva1ryGiRXR0dFBaWkp3tIlAIMDQ0BBZnvzdNBsuPgi2b2wfaxFcOKCwsJD+/v6xFmP348Mxk01ITBqNOic/a6xFAKA91ED1vnHi8QqEqOToo4/mr3/9K0VFRQBk+8o5IOd0codKufHGG7njjju4/vrrCQaD1NTUEE/uJmfPns1RRy0E4J133iEWH0q7TlVVFY899hg/+tGPmDlzJo2NjfQMbeTwIw5m27Z8zj77bNasWYM3SzD/hLls2LCB0047jTVr1gCJTcMZZ5xBa2srPT0JMp4TPzOP559vIxAIUFpayuDgIOeeey5XXnklb7+5npUvbgAhyPaVMrUul97eXlpbWwEPq1atorq6mn33ncvpp5/O66+/TnFxMU888QS/+MUvmDFjBoWF7bz44lri8TiHHrk/xxxzDI8++igFvr3bmDdREMj2j7UILhzg9/tpa2sjmyljLYqLjxiT5kXdMtDpWPN22CxlJqqwmr+U+UmnQ1RmvaLgcIqGCkRRJvBCUUQ43M0555yDEILvfe97bFi3jfLKbh566CGE8NEleinKnsfjjy2lsbGR0047jaysLK666io2b97Miy++yAknnMARRySus2nTJsL9vQyEt1NUVMTOnTvx+/3ccccd1NbWUltby9DQEA0NDRx00EEsXryYt99+mwceeACAGTNmcPzxx9PQ0MB3v/tdpueeyLe+9S1TksBTAAAgAElEQVS+9KUvsd9++3HeeefhFQE6OjoIh8MIITj55JPJysrihz/8IatWrWJq0UkIIZJj+S9qcw7kmmuuoST3ALqCa4jF4lx88cVccMEFbN++nb/85S+UlZVx5513Ul5ezowZM1i3LsEbcNFFF/HFL36R5uZm7rrrLj6WfzmNDJtc7Ypl6OQQVjOhTjCTml/DJttE0Wq6jpXIwq6+dYo8w6Gogh5U5FSn2In+0w46hajel/U7O6rSLtHLjCnVdG3uzWiv2jqlZyno96QH0Fll1Eld9CBB6/xkUNsmn0Wn4jSpIDvSTdOVmincRJKiztHdIlbYUZ/qpnZT/Xo7WIPV9DVQ6J1PxBelMDo1rX+Ti0OvsT5xIEFOPtP3pHlRt+7o3uPXfKjzx5x11lnkvXhA6liN/wA6tuTxqxvvBiDLV0RVwdEM9bXx1spWCgJ1AHiEj4r8w9m2roP73n+eOHH6fINMKTqRbRtauXPdU1Qmd85VnqPZGH2NL1yyhMWLF/O73/2Onp5efv3r36SuW5dzHPt4/4Olt79Kr2zB68nhY3lfJSqHEr5ioDhnLmXZR1HqmU2er5pX71pPTEZYGDiLVQUNrHxhG3Xi43iCPn77y78hZZy+0BbAk3pJJyB4++13KMndn1x/DV2sATxUdHyMe37xbzo9HVTmfZydrc+nZMzJyaGgoADw0NHRxY03/hyAjxd8lYA3j6wsP16fh2gkRl5eHjk5Ofj9fnp6eiguzSOvIIearDJ62weozqqmoqKC+rIaupr78Pm9zK+eh9frIbw9B4CZdYkf6eymMiLhKKUzEi+KluYOBvqDzJg1jRKq6Wzvo7ujn/o5NQgB3V0D5LX7mTKzHI8Yoq93gJbmDurqp5CV5WegP8iO7W3UTqsiOyfAzHAtrVu7qKwqJ7cgQH4kwpbNO6isKmV68Wxi8ThNr1dSWVnJgulzkBI6G/opLM2lpOIghBBs3thETm421TXltPXH2LhxI7Vl5VTXlpJPHi1bOxmQVUyrS2wKd25vIxSOcGh9olbAwPq59Pb2snD+QcTjcdrbuunu6qNm9uHEYjG6urrIjedTUVVCqaxioD9EXiSP4uJiygoKiQxFGRgMkpOXRV5BNpFwlEg4hsfjSVl4XIw9pk6rYtuWvTyFTjKhTdi7iklDeHL44QvZuT5JCehQis4u+MSppKSCNY0D4K6WH3Hvvfey6Zp13Nr6EmAmQNExEpGEKVhnILSdvkgD0WiUktz9yctK7Kr1Motgn07zQYpCfKL423h9Hhp4i7y8HPYLHEI0EiMSjuGv8eAP+NgR3ER3dx8nzDoBf8DH9u5WOlp62X9GPV6/l2DvEG07eqipK0UWxUAIGt7eRnVtKU1yOaFQiCltJ1FWXUA4N0J4KMKOrR2EizrIyQ0QicRoae4gJydAIDuLbR3P0dXVRV35J/D5vJTGahkajCCEoF00EovFiUZjaWNogj7eGQGGSZgKqei0l6PRYnVZRkPcop/jVB7SSpLi8Xp4Xb5GPC6pDczC6/MSj8vEBig/gM/vJRaTrNhxG6WlpeTk5BCNRuns7GT+/EPJjs8lHpfs3NHOfjUHUVicS1u0ic0bt3N45UIKinPolQM0rm+mpLyAkrJ8pITYpgh5hdn4K7IBuO+NnxAIBDi1/htEwlGWrvkZAHNrTyEUjtDb0088Fsfr87Kx+Smi0agtwY3TOOjzYgq6syOPcaLq1c/5IEFqTnPnlJpn/R4yg+pih67m2WefdZTNOg4TkvBk7lT52q2X73J7z6Ifjljmcjxi0mjUubm5Yy3CbkVeYCq5WTUp9jATPB6Bx+dJ/QDnigC5+dmUlc8gOzuL7K0F5BVmc3z+8Ugp2bhxI9nZ2UydOpU5+XPYua2DzuLp1NXVcWBePc1bOykJF1JeWULeUDY9HQn6woH+ISIdUXYG24hGYzSs3kYsGk9tcN5tbUyTq7utn3BhmGkzKuls66OzrY/V3c8CsKjoKLrb+tM2R63d6VrDQH+C0W1HdyJPXtXizWLYbx8isgujuvchHosTjSc2K0ODEbCMS3dnNPX/YDBIMBhMa9vYuIVI1zDN67qOhDFavXg2te4EhjeynW3D7HXTPRV0t/TTszaRN729ZztCCDYO7MAf8DE4mJjDSDRKdnYW8VgukUiUaftUUV53JO3t7ZSLIupmViVl7Sfe3sWs2dMQHg8NW9tobm5mwaH7JWTo7KO9tYtA2Uyi0SgF/lwG+0PkeAKEQxFisb3PEjApAskmKcbNi1oI8QxwAuCXUkaTx6YD/wccCWwFvialXJb8LpsEQ8xRwP9KKW9w6r/Auz8ez3ri8XjaDtYuxSdFBaj5okznKmwfKjSmPPxg3TWp/z+j/JrJfazJj6eTVsyVByOEoEG8RV5+DuW5hSAEeQPzqJpaQl5BNtmhbNp39BCe3kF2doDsYCk7t3VQNbWYvPxs3ul4mPXr11NeXM5nSq9kaCDMQ+t/QnYwm8/JbxMeitDY3UtnSx+l3oTW74sdlqgL0warRMJ/XMon6OuGX3V/bVjAdVra0UBCG0iljdANwpCiY9EYs0PZRKYeAiTcBE60rKMpeAFwZP5wENqr2m+YXrLSybKhz8ciQzEWpT1ZfYhWqPVkJe+wS/sy3Y+uXet+29Fo30o2U5qQfm29rdfr4dB996NxRSaXtJ0WaF3betyAut6TLT9P+7yjKX38ujp7mSuPpBZ4X7zJ+83p89/e1p28pwRt5uuvvo/f78Of5SMaiXFw3rnkFgXo8gbpiQwwtaqS0rIi4vE4L79xHzU1NXhqh0BKKl+vpLy8nFPqP00sFuevr19Hbm4un675L0LBCL0dAzwaeplYLJahHas1oVLhYDiN065giClNy45qVc2HieRFxVmU9B7L/OJDMnzf1mdTrYEJW5Rjkpq+x8WLOkl8bpLlXmAFiRJjpwIPCiFmJ2neLgBeB84FlgohZiYLeRvRuGkHXu/u96mdddZZnH322anPS5YsSfv+30+u59nlryOlxOv1MrW8nJz8LHq7EtpLTV0p/SJIy45uQkNhptVXUiDy6Grpo62rkClTK8gJ5tDd0U8sGqNtZw9Nm9vIG0r8QDS0rwWGfwyUVrO6O/Gj0d7eztSihEaqtKYB/yBjjVAoREtLCyUcMPLJLvY4fD5vym0w3hGJRIlEEtaB3lCQ3s7gMDNgzzYgUa6ztbuV1tZWOraUp32u2b4Jj0fQ099Df38/A7lDZOdlkZ0foCheRH19PQeWzaG5qRNftJ+66VOYxkw6dvZSFPFQPauMcDDC+1vLGegPUptfS39/P16vZ7dq8lVTS+ho3dsJaVzCkzGBEKIIuAa4kMRLWR2fA8wHFkspB0m8jL8JnAX8HvBa/jzJf21RX7Qvz3bcQl9feqETtcNXO021G1WaVkmy/KhJ46qknqyAj5qccsKhCDVlxRS1T6fpbwO0b+3iiehdVFZW8szdO4htjJBXnIMsy+OIOQupavPg9Xl5O9ROsCNEY//aBMNXk0y9ZKd7Kuho7uLJeKIQwlx5MOE2eLInYTxYVHQFBMGHL/VD5FRKUkH3QfdHEj/Ayo+t7t3q1+5KPhs6FafpOnqxCQXln1cR8HMtO/1nen9FOBzO0HRNfnq9mIGuhajxe7V/Z6qNrrWqEoYmf7yCTniiRxs7FfLQNVRTmUJ1jrpOkScx3sqPairNqr5TGnqrDXWmVU4FXcOy3rtdWUiFIysvJ7w9m1bWpI7p86xrmSbtTx8HuyhzGF5T6t9hKxe20GXQ1781HsAuuruLXpAQiUSIRCI83fxMqs0UPkloDdze/d3UsZXvDs/P8vhK2Ao5uQH8Ph+RcJR9qo4jf3ouO7pX0NLSwrRD98Pv97Ff8HqamzrJnhYiJzeb3p5++t5+naKiIhbmfpxgX4gqMQMppSOZjxr/mFzN6u5nh9elIbNBt2pNSLga9ZjgJ8CtgB6uuD+wSSsh9lbyOMBfgPuBRuD3UkrHmqCxeJzy8vKMF7UOv99HIDuLrLCP8poi8gqziUZidHZspX7mVLxeL329AzTvbOeAunqEANku6GztIxaJ0bKli8FNUaSEd5reobW1lVUvrUv46Fr7UxuCgqRZtrU/YbqLM/l2iVZIKZk1axa8M9aSuDBBSkksOrnX6AfBYDDEIInN5tZkJHZT97sArFr5PmDZVLQlXp7Z2VkMDg7i8XjILsuipLKAwR1DlFYUMLMssQHbtGEbefm5VFWXEQqFady0gxJRgM/vJeqdBGViJZMyPWtMo76FEAuAPwILgFpgM0kftRDiAuA/pZQLLeffAEyVUn7hA15HlpdXcdIxF9O8s521W58iKyuL+vp6yvMOZef2NiLRKPvU1RCNRmna2sKGnU+Tn59PT09Pxss9jbrQgswSgbdx7733cu655/OV2v8HwN/7X047R2kJ1uLxumartAK7iFOAcHyAHUMr6QpvQggP0/yHUJN1IDsjKxiI9dAjewFBXtZU5vuPYd3QS2wPN+ARPnKzppDlK6Zj4A0SzvPEn7pOONqTLMspKMyeSTC8g2g8CAgOLDyfjnADreF3icYHyfZXMD37WHoj29gxlCjlWeCppNQ/nUG/h2BkB5HYAF6RxRE5n8Mr/Kmxm7ewlEf+9SeCsXZqsw5hZvYxPNv7vwBUFSyke3AtcRnGRwAPPqTXS3HOXIrCURpDbxCSYfID0+gd2sQwY5u6HwzHhG1kvWm8naBrpHY+RqecWTtLhFU+fb04lcgcKZrfZBFQ0H3eZ+7zA6r2Kab9/eGKfnoEte6rtlp31JrWLVejib63K3OZymcns6SkXeSz01zqGRKqT6uVQslwYdXVQGbJW9OY2q0ju1KcTrJZ57cn0ITHm0iNrK4pJ1Cync2bGykJLGB6/RT2FXPpaR/ghY6XmTmrlr6+IG+ue5Te3l7qK07i/a0PT7yo79lT5Gu/uXSX23tO/bEb9T0Skr7o25IfXyBR0/O/ki9m/fR+QLezFpIIbxrpOoJEHdFSIBcS9HoDA0G6OhVbFmzZsoXa4uFdqDWQpbu7m+7uD5d7Pb/4yzz44EMfqo/RoiPcwIlnHMRnP/tjsrKyuO+++7j33js488wzufjiiwmFQgwMDHDJJZewOrCTa268hurqarxeL0888QR33nkn3/nOd3jggQfYsmVbWt/94abUd1OmVPDtb/8Mj8fDc889x69//RumTKnh3l//GUhQj15xxRVEIhGeeOKJ1Cbnsssuo7d3gKuv/j4LFy7k2muvpfu9Jsr8iR+rYKyDhvZV3Pz7hPzLli3jH/c8nJIhGN7JmZ9ZxFlnnQUk5vPrX/86Gzc+zxFnfpLrPv8nhBBcfvnlMBTnm9/8JocddhgbN27kRz/6EUIIfvnLm5g3bx6XXXYZW7c6MS670OHze1yNepwhFBqO2N+2pZnsge1s2LCB2uI6dm5vI5Z0pbTFu2hr7aKwMFHlz+fzUT2lnPe3ghBiABgAOoF5ctzn605sKtBdxR59UUsp/wr8FUAIUUxicdyXfEmrN2aTEOIc4D1ghhCiwGL+PphR1AKVUkohxFUkXtbrgPCmTZuYXjlIe1s3sdieC4pZunTPvKhzvKU8+uijPPjgg3i9XlavXs29995LbW0tS5cuTXJuJ/CXv/yFX/ziFzz33HMIITjqqITveL/99iMvz1T3Waa+a2xs5NxzzyUSifDkk0/y97//nS1btvDZz34WKSU33ngjJ598Mv/4xz8QQvC5z30OgDxPGX5PHvfffz9ZWVmUlZWx0+I86wyv47LzvsATTzzBww8/zCOPPMLy5cvp2pHQgLP9Zdx//wPcf//9+P1+XnrpJTZt2sSsWTO58MILOeecc4jH4wghOOCAAzjssMO44IIL+NnPfsbixYt5+umnue2227jyyitt7tGFEyLhGN3tmRHfLsYHCovyiGQqO2no7R2gpbsFgHVrt6jDxcC+wJzx/5JOwn1R71H0QBop7TRgJXAY0CalDAsh3gSuEUJcDfwHcBCJYLIRIaVcqv6vtPVDyg9DyOK0YBQ7sgkFk5lNp6NURCcNIS3oBVLpXbc2XQ9kmuRS5jWL8SBlUtSeO91MmyarH/yRSo742HQWLFjACy+8kPrqqKOOSpj0m5p46623KCkpYcULq8n1VhKMtfLyy+nm+HkFZ5HjLU2Z/N6XO1LfDXYXUZI9nfbYq+Tk5NDb20ssFmfatFpOOOEE6urq+PWvf50YlwMO4MEHH2TVqlX87Gc3clTepazf+G8ikYQm0CQ20SESezC/FNTX13P//fcDiej0ww8/nEcffRQQxOJDTC1aRDC8g+NPmcuTTz5JPB7nlFNOoa+vjzvvvJPGxkauvfZaFi5cmCoXunz5co4++mj++c+nWbt2bcYmzWSCtQvc0QO2rIFKdiZXpbc7mTf1+td67WaA6d7EmkoFmvWkm1NV3WUrbWpr3HxNu+pj1v70e8+TPrxRL0FDPrpdUFkaXWrcTAyiB3SZTOF2dcGtgWnqnvSxUzKY3EX6nKVcTJ32NZvVuSog0o60BkYmYTHZdPRnXP2WmAIMre6VQNlMSlhAbXFNShb9dwpIBZipfqSUERKRIRMjOsStnrVnIRNoVn+Asju3SCnDyf8vIeG/7gJ+BpydTM3a1Yt+GJHHPQQewuEwg4OD7LPPPniTwSXhcJhgMEgoFCI/P5/+/n4EHvLL4K9//WuqEMdo4PPk0tq3gl/96lf88Y9/pL29AxDEYjEGBwfJycmhoiKxqZk3bx7nnHMO5eXlnHvuEjoijeR7K439lvjqePzxx7nhhhu4+eabWbhwIYFAgMWLF/OVr1xO7SxBMLKT/vA2Lr74Yv7v//6PKf65FBYWEovFuOCCC4hEIixZsoScnBxCoRAgCIVC5OTkpEbIxa6hoCSXgtKckU90MSbo6Oigo23P0ySPCdzqWWMHKWUj2i9p8tjxH0X/84u/yN/e+Ak7enbYBoPBsGai0xWadu9Ky9aJDVRhDytGDG4RlrQRbXduChQCnU7wl0Cc91YP8dprr3HqqadSVZVgcVq1ahUvP7mRAv9UdgZfo7KyEn9ujNbWVj7/+c+zYkV6fe3moTfwiWwivplU+uekfdc+sJr/+Z//4b333uPuu+8mMWVx+lpiPPzAY/h8Pk488UTeeustfKEKCr1lrFy5krq6Oh6KLWMo0gp8AoDewfWEIh0MRlpokmFiL+3LnXfeSWFhIaWlpbz55psA9PX10dbWRklsJjlVXWRlZdHY2EhdznFs2LCBSCSCX2Szdu1a9tlnH95//30WLFgAJCLJN27cSLavnKHo8B6v2F/HPjnH8XZ3wiVgTRVTqSt6cFSKSMKgvR5Rmq75KOjalAoqBFjXN5Ccu3QqSJVWZUpv0otCKCj5rYQrdpq6TtJhPcdEnAIQrDuBWCie1r++3nVN3Xrv6pr6ObqGbdUy1fiq/k0paHr/CvpzbLJC6cQ16tzTk3PUEkzkYptS6xScgtVMdcut1zGlpClZ7NLZTHSjlcX1TK0rp6O1h6HIsMVDJ1rR+2nqnoCEJ5MU4+ZFvSewd/sm43z3u98lEAhQUVFBJBJhx45hk3Wur4Ji/3Sqsg7lO9/5Do888gjPP/88WVlZdHV1pc77/ve/T0dHBwDf/tZ/U+GbjUTi8XiQUnLhhRdy1lln8dhjj3HzzTfz29/+lmnTpnHqqacyMDDASSedxIUXXsghhxzCRRddRHd3N6eccgpLlixhKNLGt771LU499VTmz59PXl4eS5cuZdmyZXziE5+gqqqK8847j6qqKrZt28aWDc2E4v3ABo7Mv4hm+R4XXXQRf/7znwFBkb+ORx+9n6VLlyKE4JRTTuELX/gC27dv5xvf+AZXX301xx13HGeffTZD0R6uv/56Fi5cyFVXXcWf/vQnNryyfg/P0cRFeChKaNClYR2vqK4tZfuWSVAvXE5szXhXMWmKcoCXL532c1a9tM6YIjNSKo5Ve02xHGnpF06aut7GSmoC6ZqQ0hjmFCQ2FlbiDhj2iSuiEoDXB5+nOfYKc+fOpb+/ny2bt3BM8SJeD7+MlCS5lAUgqQocRGf8PWbNmsXg4CCNjY0EfCVk58UtZmLoaYtS5NuH9tjbPPPMM5xxxhlEIpFklasEOjs7CYfDzJgxg5ycHDZs2EAoFAYk9fX15OXlsW7dOsLhCHlZtWQXBPH7EylZwWCQ3t7eRH57xxBHHbeA5uZmenp6aG3uoqLgcHweizyD6/HldtPb20tV3rHs6H0ekPh8HmbNmsXWrVspjh9AyBuhJ/QOM2fOZPPmzSzIPoXVwZcpLPXg8SS8PX19feSwL9n+srQ5tMJuLTjRddqlZ5n6sktnUulBVu389PyjgUwtXL++FSOlB5nSp+wKU+QVJPgEtg3Z0xXo2qUTIYwd3ahdwRsrTP2rZ8aOwMZOuzV9N9rfBJPcpgIedoVUnMqZ6n04rZ/lPTdx3HHH4XvzsLT+TG3T5yg28dKzZlbL1352wS6393z2F2561njHYDBETl4AJrgr566WHyXSlP49L3WsPDCPEjmLnZvfxyOK+K99LsQjPGzoTrzMBwefS54pmJpzJDXyMEJNveTiZWrRbIQQzIjNIT4QY6NIEDLsmz+Htf0Pc8NPbuAPf/gDg/0eQtFBBgYGObDwvMQ52eV4sn0MtnYRI8rCwCd4LvS/gCTYPoWB9jjhcBTwUJyzL/FImJnhROGETWItBUU+4uEwHytYwEG5M7h57dcBmFq0CD1lryhnNrFYiNx8v6X4iKAq7zi6tgeZ7V+IVwRoZTPZvuOZ0z6b+cXF+EUWW8Qg8aEwO3sTQXZTio7Dk8zhdjEyqmtLE/SUQyOf62LPY/369czjsLEWY89gDymXQojZJILsHpRSnp88dh7wU6Ac+BdwiZSy076XjwaT5kU9v/iLeLZKpvsq2GLYYSo/jt0O2bTT13fn+k7WCrvSeSoy1+qXVv3MIaFFXVo7XFwCYHU3nH322fxx2erUsenehGbeIRJevgd6E37najEbAE+xz9I+M9oXhgtG1Ih9UzLmZtdyzQ9+QbF3GvvmnclbPXcB8E7vvYBFq/H4AB99qV9ywVRvgrf7lKrFQMKX7xUBgkkWth3dz6euvZMXadt2IPOLv5Q2PnpkverHin2ZD55MX+8bsbcgaXSoEjNAgLc4kNavKRrbrvSp0tpOrDoqQ44MX+soyl7qvmM96tiqMSqryuqedL+m7j83RQUrON2z0t7tSkku8M4lbLHgWK9l5/tuwJ6+Vm9j0oRHiusYTWnJlB99RO0yc7yc7sMOTuOvQx8LGF20ut6+tngR9TVTWb4qff0r375VJhUD4PqoR4VbgNfUByHE/iR4QE4DVgO3A78jEfS8WzFpXtQudg05/kpy/JWODFIfFVpaWqjd7VdxsSsYGogQDrk+6vGKquqysRZhz2APVc8SQiwhYXt9GZiVPPx54O9SyueT5/w/YI3G9bFbMGle1K1s5i3RSVlNcSKD23IcMksa6hqdiUZQ92VZozAV1G5d70dFpSpYo3iVP3LYN13DrU3XZtyTtaRmbfFi43WUrNYIZT1KV92rKgpBLFNGtRPXI95N+Z26BqpyTvUoVN2HecRhB9Dzsjft2qk8ZIN2kir9152ujZkoLPVj+hyaIpTVsZQGmozMX96Sqf2lIrZFeulKpUnrhTeAVD6/7r81ZQ3oWp8eHaxbhmA4B1df0wpW36g6V6fiHL5+AX3RgbQxVXLqz5CKgLfmI6u5mqtFtutym/Kc9Xxj073q1gI7f/NoNpx6HrhdJHxChvSPptKkuvx6LIu+fq3QLRzWebFaftr6oxnFVkz0uNbfhwlZ5vLDM5OVCyFet3y+XUp5u/UEIUQhcB2wCLDyle5P4sWdkETKjUKIMDAHWPVhhBoJk+ZFDdDXG2T6jKljLcYuYTTlM5947MU9LdZHCu9kKCowQTG9fgpr3tsE0bGWxIUOr9fLxo0bmTtZfNQfjvCkfRTBZNcDd0gpt2lxMvmkqXmQ/FzAbsakeVHPlQezvPUmPJs20NS9IXVc7TpHYpCy+qjVrlnXWJSWYNr12vme1K7b2qaVdH95WUBQ9uZBvP56IuL2l1uuAeCB/3wv1aYx3pamLaQK2PcMf6+gl/a09gHDftAPUozCahHQtT+99KMp8neuPJjSnimsEE+azzX4CXWfqO7nNOUhq+hmO/+tVX69rZpDdb3UGJNZnEGfX7V+uiy/Mbr/XVkeTBHcTjnKYPZR65q5nc/Xem6twdoBUBnYh5ZoNG3O7CKpdSsCWOZPpGu0GfnPhmdHIWUl0qwJ1nYpy1FS09W1b1NUdsZnG3Y56zXt2lpl1q1QSkanKG/990LP8baOqV7GVI+jMf2WTfgyl7vZ9C2EOIQE0cOhhq93uf7Eh8WkeVErJNKUXIxHtO/c24veT1wE+4aIxSYfdeNEQGlpKYWFhYnXiIsPi+OB6cDWpDadD3iFEPsBT5GoNwGAEGIGECBRT2K3YtK9qGfNmsX27dvHWgwXBlRNK8Hb5XFfCOMQ7S26xc/FeEFhYSG9vb1kj7Ugewq7N5jsduBvls/fIfHi/gpQCawQQnycRNT3dcBDuzuQDCbRi7pBvMWiois4uGAmfcWzU8czzKeaWU0PmoJhk5gp5cb0WV0fMtO/5tqYbWHYTLuiPbFVVgQoF1ZdQ9syj1EmZV4rSfarTGZH5g+neCnSDEXYqgfimMx7GYFV2rvUqZ6zSvvSoaek5XpDTPHPIhSLpPozBYbpJj67VBaryVK1NxYqsJHfLoUoFdDV4hBkpMGJBOSZkJkMxIlYRa1LtQZ1F471mF1AozXAUMGurvO0+v1Y27bZuCbsUqJMa7rSxoRvmjO7whSm9ameX3081L22amsdyChQof8GWFOZUvIn2+tBcU6us5GKvJgoPjNr29sXUKnJPpyugR4jtSo4kzVNODCtiV8AACAASURBVOxmZjIpZRAIqs9CiH5gKFljok0IcTmJCpBlwDLg4t0mjAWT5kWt0N22d9iHXv/H+2MtwkeOvt4BPN69meZ14iIryyWHGa8Ih8KTygol9yCFqJTyWu3zPYyi1PJHjUlDIVpbvJim7uVUVVXhDx2Q+s4x9cICJ1ICJ03ILpjMCar9hVVXA8OBSvpnq0bUEwsZ+7cL3LLCLgjFpD3paTwK1t38aIJaTCgqymfdjieIRCIZ19OLXYA9ZaWpiIldEJYJdqlKTqkyesqNHRWmk2akpxSZ0svsztHTwkywS9+BzDnSr3PQIbN5+831WiEYc4qYU+lQBd2i4TQudilVTutqNM+1E60omMuN2j2/Jhn1tDu9DxMJiy6LUwCg+m7mwVGee+651HE7CwekpxGu7r5t4lGITq+UK39wzi639172uwlJITpmZS7HCjNmzMDvn3SGhAmB0vKivbxwysTFju27Xl3Wxe6FTrXrYu/DpNGo5xd/GYCZ86bQ0PounR2J4BilPdlppE47c1MaDZh34HaFO/RiCJC507ejdTRp7vo5Thhp927tQ9fclI9Uwaph25FOOJFNtLKZGbNqGegP0tLcmaHVmkgbdC3MqXyggl1BFev46XEJdmvESWPUZXWyUujzoCwlViuC3Vzp31vLaN7adD1gX/zBtLZ1ylOF7510C+tXNaXGAIbXrh1JipPGPhqMlsQEMu9Rt8SYLEEj9TsSYYj1ek4a72jbmuBkiVDXmjdvHmvWrLG1etkVCpmQGnVdpVx51dkjn2gD7+W3TkiNetKplh2tvWRlTbrbnhAYGgq52sE4RSDH9VGPV3R27vaaEOMLk7DM5aR5Y6ndZ/ZQNmdXXck+noRmoDQE3d+mw6Qd2EWuOpXq0/2DRVRkXFfXdHSfnyla1O4cdfzEwFGpc1V5TBNVpfW+0graaxG8qhyI0uAeasrUJPQdvg7dz93V2UulqKeSwozvrNCJRxR0UhQT4YmuvSgN0qopKi1MWRF07VJhruX6KqpYL8ah+p3uTY6BhXJSUcX+PflZjZOJMMRKSwuZa0+dm4roN0AvrWrtU42pGvcM3+jAm7wZb0hlCkA6RaipjUmTs9PunQqG6P2brCCp6OsUaQnGz07aa8qXnDx3NOU09WwI0+/HMD1x8plPWiLU+FUaLHN2MRVWS5Z6Bs9Y8G1WvTScyqtr0iYrjl2E+LjHJK1HPel81F6vl4ppxSOf6GKPIy8vh4KinJFPdLHH0bS1ZaxFcGED1wi192PSaNQJn8wfGRgYYKA4bEuXmbFbN1APKu30Lk0jdYpctYOSIy0yVNcGktCjSK00gHYl+9S5ip7SBLs8cCtFoZ0m5KTB6Zq0rpmaxmaLfJw13Wsy/INWTUjX7pX2WhlPpzM1zYc+hik/sOHHTllGdE1R16pgeL2oa6fytZOUmYo61Domf+9/OU0WtRZSa8+iOOhWjtFkEyi5laVByW8qpKJbP1Z3JsdORX1PnU17W3faOlUaeSrKnnT/vylnWdd8nUpWpiwWwpznb2qjl6bU15G1jVo3yrKU4TN2uI6CkyXAjr5UlbZVsllLuG4fCqbdh16ww2oFW1R0BT6/l/Vta2hl66gKjuixJhMSk1CjnjQvaiuCA6GRT3KxxxEORfBkTTojz4RAXn7uyCe52OOQUtLW2jXWYuxR7Mk86vGCSfWiVjvxd5vepJ3utGM6nHxlateroHayR4wiWldB13wPyB72ITOUXu5Q37V/kDxYkx9atbOLOs5gIWO47GQG21VSq7LKktJANMuAHs2sR637gh6CHg+1xdUZ/jVTYYSUZSOZV65rvk5+fyW3Uy6r0o6VFqJHOZui/nXNV8+1t64NPTrXKZJe70/d40ixFdb7QdOarWtD94/rbfPCi6ikPk1z12MynHLV9XkcqcgImItvWK9rKgSTwWVgk6MO9v54/VkyPWd6MR1ThLjej13O+2rLOSPl1Fs14eXdN1FWVsaxZZezpSvTNWG6Z72Qx4TDHqpHPd4wKdWXqbWVYy2CCwO8Pi8lZRM0yGUvR9NmN496PKKkpITB4CSzEMblrv9NUEzKF3VO7qShr59QiMclpWVFYy2GCwPKq9x5GY/w+/30dgdHPtHFhMakMX23sjll2sqPVGQEXynTol0aTBqSJl09cEUvVAGZQTq62VeZtKz1jPWUG2UC1GU0pb/YUQ6aavfqhRxGMgFa2+qfTeQiukx6EROrTK1sRkQEB/g+QSWDw+kjhgB9NWbKBaGbB03mYJ0+U92byWSpH0ulXnVmmhL1e1XXUWZyFeBmKi6SQYuaXD/q3ksspW+VydPORO0EPfDM1NY2LSs5v82+Z1nd/WxaG33d6OZsa/qgXf1su6CptOvYEP9YYZpHK5xId0YiVjERnlhdMdZzTCQ46pge8JcxXmQGoCmYgr9qixfhDxfxSvPvicfjRupZXSYFNz1rYmFSatRb1rfg9U7KWx/XkFKyZb2bBjQeEY1Gx1oEFwbsU1dNPD55CnIAiZf1rv5NUEwajbqpe3lqF/yduTfRQz+hYDgVyKFTS+oBSWnFCNTuP6nt6ZqcKfhEaTGpQhrF6X1ZNQ49cCT1XXKdqd2wCvCyXlPtzvWgHZPGqH9OaZCGYgJKi7cjebGSjdgFUumWAFN6kCzvobVtS0ZZQqv8dqX6lBZrgl4KU4f1XlU/KkXJrpyjaXxUsM7yznSrhZMmZ0eiYe1fjXurjfZqorA0aWzW/k3Qg7BUH/0tXdQWLzIGR+rBdyaiG12L1y0c+mfIDD4cTbCaDt2SZaL41DVoJ8uSE7EJaJqqSJ9zfY708bK2LyG9mI4dbfCU3OkZ/TuVyExdS2Sux4kACchJti+BSapRy7gkv9Ql1hiPKC1zyWjGI8or3HkZjwiFImMtwp6FivqeZMFkk6ooh9qVFhcXUD21nLXvbc7QhhXs/J5gnyqjF3OwttdTMuy0HSv0c5xIQEw7brvrWEvdWdsqOKUsqVKbz4RWpB13SmEZKQ3Mei8zPlbAKy+9PaqCHkr7UBqwXjTDqWiJmitT4QI9bcqOVOSDlDN1Kjeq5NfjF6zjY1deVF8LVvIMPW1Nv64VdmtBYeHHDkqbF1O/Cibt1s6/bLdurdA1dJOPXX9e7ShKTdDLotqtX2s/RlIX0jVquzKgdmVyTXLrz5f+e1FVVcXU0Olp3zmVY01Po5x4RTkOm1ouX/3P03e5vf8Hd7pFOSYKensH8PompTFh3GPTBj1Mx8WHRSweJhTtJCZD+EQOcV+MkOynJ7ojdU7IE6fAN5WYHCIU7SImw/g9eQR8pUgxSHCojbjM9FOHo73E4oME/GVIGWco2k4iKk4k/xKKQHd4M4X+aXiEj0h8kGAs0V/cH0PgTZ6nlAbVdhiRWD+bwqsIePKS51m/lwTDOwFollkI4SHqHSQc60n12Sv8yfsL0xvdikRS6JuG35ODlJKe2HZa41vxixzifolHeD/ssO8R1NTUQONYS7GHMYE1413FpHlRr+7+43DhAvk2JaWFdLT3ZGjSCnqkplOBCuVrUtqOdZet+4vsSPGt/atr6j65VBsH/9Jo/JJ6hK2+43d6VSotzSkCXSF1T8nnShFsZETLW9p/ouATbGtuy6CnNFFkjhSNnYoHYFgLU+OTovhU92zR6DKoMUU67aWyKrxrKGqh1oa6tloTxnWmCkUkI8OVZmUiqdHl1eMUFNmOlYyntngRUkp29C7jU5/6FLW1tbz77rv8+99JGT/zGfz+RFWsVatW8X7jq/gCQ5zyH6dQU1PDm2++yYsvLqOwsBCZVciOnn9TW3xSqv94PMKAfIeDDj6IFSuewePxcNZZZxGPz+Whhx4iP6sOf14Phx9+OB0dHTS8s4G+UCOFhfkcvvBwQqEQL774EgD77DONxYsXEw6HeeihhwjI2XQMvJ0c939RVlbKYZ/6FI2NjXif8bN/wbn4PAGkjPNu/92cdPp+Kbmam5t597kXOO6446iuTlgYXn31VYLNYdaFlnHmmWcSCARYuvQeotE42f5yps8s5fQTTmDdunW89VwjB+d9hrlFSWua9XnRrUMOBXlGk4Ght1HQ14IdPfGsqQfxSuPbaf3q61bPrpjocH3UkwRSSioqS8daDBcGlFZP0LSRcQuJEIK8vDzeeOMNLr30Us466ywArr/+esLhMOFwmHg8Tl6h5MknnyQnJ4fVq1dz7LHHsnDhQqqrq/nqV7+a0XNcRqisrOQb3/gGADfeeCNlZWVMmTKF66+/nr7QZk4++WROPvlkLr30UuIyDEiOO+44TjjhBK644grULu7EE09kx44dxONxli5dSndwTUp+r9fDI488wpYtWzjxxBM5/8IltIXfGb5DSeo+Fi5cyCmnnALAVVddlXZ/jaFX+MEPfsCsWbPIzc3lpptuAuIcvnAu1113HWvXriUrK4uonBgEItnZWQwNTgxZPzJMUh/1pNGoId132dYfo0nLC3WCqQCDgpO/085npj6rvqy7djvfn+4TN0WYZuQ1q0hxhv1gapdul9vqFBWsF3rQ84etcqodvV6WUtdQTddUvlalITr54+0oJq2xAk7+fev3Vtj5bXX/vLW9ukddAzb52u0i9J3OPULT1PXI6LmWea6kHgQM5XRw9913J9ofcQSFhYn56O/v5+GHH06df/XVV/OHP/whde7LLyeKhhx44IH4/X5y/FVpMoXoJcj21Odjjz2W//7v/wZgxYoVXH311Sy9/0nef/99Lr/8cgbC26kp/DjLnlrJa6+9xu9+97tkS8F9f32KgK+UnqEn+da3vkVMDjG/+MuE4n30FD5PS0sLy5Yt45133uFvf/sbj9z9eVoCGwEozzuM5/+5ia7BtZx//vlceeWVSXM6+Hw+Nm3axNatWwE47bTTOProo5FSctlllwHw7W9/m5tvvpmSkhKWL19OlX9/iryB1JiaLDMj+cSt36l1NFKuN2SW5dTpctXaA9jW9Qxtq7KZKc4BrOsp/ZlsNXihnWICXIw/TEqNGmD9+vVjLYILA3Zsah9rEfY6+DzZ1NXVsXTpUs4//3yeeuopIOHfvO+++7jv/7P35mFylOX6/+ft7ultevZ9MpPMJGQhCSEECbsBAgoEBFlkUVREIioKR0WOogh6OCoeEAUOmyLIF3/IoiwScpDIvgQkgZAQsk4ms+/dM71v9fujunqq367qmQTCZJi+rysXTHXVW0+9tT7bff/1rzQ0NDB79mw2bdoEwJe+9CVuvvlmjjnmGKxWK2MVnVosFhIJVefcYSlFpLQXS13zMtazWpxZy0BQ5p6PP7KLq666igceeIDaAjWUXSDcdHd309jYyJIlS7jooouoqqpiONlFb/BFeoMv4gtvw2b1UFlVQklJCTu3t+GwlXHPPfeQSCS48sor016/xWLBhguPtY5wOIzTqc7N2Wefjd1u5+mnn2Zn7E0SBvn4/Q1OpxOPxzPRZnz8SH6If5MUU/ZF7XLl27P2R9gdBRNtwicKiqIQTwTpbB/i3LPP58orr+RHP1I9xK6uLs477zy+/MXLaG9vp6Ojg+nTpwPw5JNPsm3bNhYvXkwkEiEYDJJUYoQSA0QSI1n7SSaTWCzq4ySS9KZJOBLJsN4aFCUpLVOX946s5esrv0x5eTm33HILM51H0xfZSF9kIw5LLV/4whdYvnw5ra2tdHV1UV9fz5133slNN91EJD5EMNrJRRddxAMPPIDHMR1nQSVP/P1Z1j/dzcqVKznrrLPS8xFTggQT/TgcDsLhMMPDw9x44408/NdHaG9vZ8aMGYSS+794RXV19ZgfUJ84KApKcu//TVZMmdC3PrTZDkybNo3t27cb/g65yRWyCjukkJY+rCQXBpm1GxkRnmhFTYd76gBY6+/K2L9RS5Q2jkw7ahS6NwvBafuf5hyVNvyXpIQl6y/rtZPlFhY9MQvA92dcm/q/Ufu19MHukmd5wfcCDSI1T1JIX3+McnhfO0YtPKz/gpZD3mbKRvpxxlIy0oqNQFcYJzKL0+bmCD9qkGk0jc6Ptm+tBU2jF9VCsd9s+CmQqQ/eZKliJDFAm7uD+bOb6e7uZvny5bS0jI5bIFwcU/h11vhu4q677uIvf/kLnZ2dbN++ncrKSoaGhrBarZSVlTF7Xh3wAb29vbj9BxG2RtB/7m7dupXjjz8eu92e9swthR3Mnr2MiooK5s6dy9Ytz1NaVsziAxdTUlLCggUL2LRpE1/68rmcdtpp/OhHP2LhwoW8tvEeFi5cSFlZGS+/3M5094E8+OCDXHXVVfzhD3+gs6OH73xTPeZS1zwGgxs499xzOeGEEwiGw1iFnaOOOYwtW7ZwyRcu4d131fPz1ltvccYZZ9Df309raysATzzxBCtWrOCpp56iqamJzs5OdobvpKH0RCAzhZJF9COlo4yIeeRnSbaS2+h9kE4Pkbntn8lug6xrmMO2rbuz7v10YZuBUtZ4Ckb3e0xiz3hvMWVe1DKCwSBut5tgME9on8cnFxasJBIJzjjjDCorK1m3bh0PPPAAAHfddRd2oX2MCVpbd3P++edz0UUXcdFFF/HOO+/w4IMP0tzczLvvvsuZZ54JwEsvvcT2N0cYiXdSXVSO3+/HZnHzrW99iyuvvJJkMskVV1yBu6COOXNmMm/ePDZs2MBnP/tZtmzZwowZMzj66KN5/vnn+dznPsemTZsIhUK88cYbnHHGGQBs3LiRZDKZ9hiXLl3KIYccwj//+U9Wr1pDXcmnsQj18RVLBCgpKeG3v/1t6n62klAiHHHEEZx33nl88MEHXH311ZS5F3LVVVdxxRVX4HA4+MY3vgEIfvvb37Jy5UquvPJKLr30UsLhCJMh2Njd1U8wIEcnpgAmr2O815gyhCcNpZ/J8JqKy93EYwnW+7O1kfUw8qhlEhRZkELviWrtTDIhhgaZ7EJvSy7SFTM7zYhCjAQ8ZOIWGXqvfyxSCCPvXo4ajIcC8oiDLqS9bZTvW6aANNrGbJ6MNLLHQ75iNq7sPekhH7MZLagRjOg/ZZhFYrT9nu45ijvar+Pss8+meu1BwKh3vSHxIuFYHyORXQDUFS8jngwSiQ/iLKjCbi1Kj+uPdzMS78CSjOO2lOO0T6O0Hny0sWtXGwACG1aLnelzrNxyyy3ccMMNvPVKOw5bKcFoDxXUUFtwILutuwhEO1B0+V6HrYJYYoQ6VKnZDqUdq8XFUHCTdMSCUtdcFJL4QtvIfDqrfdba+VUUhfW+e1LHdixWi5PiRClDsZ0MJ7uxWpy47fXYLE7avc8h92sfU7SSrtgmepRWHLayVFuYcQhkT0iI5GtOJmwxOqdjkQ/pn2ENB1TRvr3PkOBHD6Nre0np1ycn4UldhfL6V1fs9faOXz2QJzyZVJjcHO2fWIhJ9djY/3DOOefw0totGcsctlIctlJGImrls9Vix2qx47Bl04J6bLV4bLUZH2aWkJtocoRipz29XizhZ/PmtznppJOwUUG5eyFCWChxFTEr9TKxiHaKHDOy9uGwlXJg6qU1kvoAG0q3Y+lscTQC4Attx+zFCaQK1yypY1MlbJ3WMuqsh2LNSu9kk6k4LB6aHIcTEU7dOvs/KuqKad8+xXTCFfZ5rlkI8f+A5UAh0A3cqCjKH1K/LQduB6YDa4GvKorSuk8NYgq9qFVRjtGvSVGgUFLjoX1tbgk9ozyumZBAOj/ck922I+dr01+5yVH7ZGhf2mZUhLnk97Tx5NYfGM2bjpWLNcoLa15BbzJzXnK1nIyHNlWby/Lp0La7J+05yG1O+u2zcnIScUQuIZLqHJ6QNmfaMi3qMTdhHtkwOza5fUoPs8iM0fhmtKZNVnX5AUWj67qt6ovmhJpURXCPsSiKETT7NbuHkmCxCLq8L+Hz+aS11QfmQaVnZCzNJU4zmrtP2aSR9xhEOrT5WVpuTB1qlMOXawO0mgEj2VS5fcqM8taIMESWwDSKsshRFO0akFuu9CQ1ZvYaSWWWp/7ek7yzkXTnpMO+z1H/ErhEUZSIEGIe8IIQYj3QCvwNtbjmKeAXwF+BI/a1QVPmRS3DPxxiWlPlRJuRhwRlqkn2fUj8bfC/Uv8dXXZT68/S/3/DnOs/9D7KKj24Qi6DF/Xk8Dw/qdjd2jXRJkwI9jUzmaIo+jyMxm07CzgU2KQoyiMAQojrgH4hxDxFUT7YlzZNqRe17PUMts7Jot0bK9+jjZNUYqzx3QTAaaXfw25x8rfB/wagpkj9wLJanKl9KVR7DkNBob5kGRZhY0ZiJhastFiN+rmVlJ1q3q3Kcyg2iztlk0Ks6EgSyQj9gXVofMra1/T8onNxWEoop4SEEuOF4d8D0KPsQAg1PNgrIJGMpPcTS/ixiNG2KG0/eiSSEawWR8qrGf2tofREkkqCA5L1OEURbmsJbybfVHmfkz6swm6anzWiNT2i7UKsVgtbEpl5cyMPQJZXzEXYYiZYYDS+vE6ayEZk2mDkMWrQbPAUqMQb1ZHsPLTmVcokMkbeeZZHnvK8zj77bM4555z04vPPPz9jteef2cbQk+NvNTIibLEVWJnvPo/60oBhFMeMrnY8dRFapECWFAVdJX0y0zbNYzfyYrWKfzkPnKab1d/XkrcqHxc56grkuoVxkZhI8KciBUYdGfJzyCgyVm2pJEah6fznEiLJVQ+xX0PhY6n6FkL8L/BVwAWsB1YBN8Ao77GiKAEhxA5gAZB/Ue8rjIyMsDfU+6HEANvDT7BkyWIcDgf/XHcrzWIphYUuGhsbAdW92bl9N5DE6XTQODeOxWLhnXdeRiQLCZW+TSQSoTCxiAKrnrRAoaKijEgkgt/vp6mpiWnT7GzYsA71ClUorOqioaGBrVur6e7uARQaGxtpbm6mpeU1dnclmO04mndDj3HYYYcSDAZ5f9ML1BQfic3iIhofJmx5n3nz5qT2OUh3dzejYgcKJSVFKuF/Cl1d72CPzwEU7HYbjY2N7Nixg0h8iKHweuoOPpiNra2UjDTjY4BAbBeOpiZ6e3spVORjNEcs9tHJ9lmtFqxWKxaLwGaz4XA4KC5VC/3CoSgutwOLswKEYNjnp7DQhdvtpEJUMdQ/gtvjxFPswmIR9HZ6sXqqKC0rotI/QEdHBzXVZZRVFmGxCESXD2GxUDf7MDVnGqwimUgyq6kBBAy2x4hGYhwxT/2I6+vro5RC6poqcIsIQ4PD+Lx+ps+opVxMY8QXZFdLOY2NjVgsFjyWaQz2+6iuLcdqs+IOVuEdGKG57Vjeua2fYpL88t1rcLlc7Lytl0Q8wZ93P4/L5aCuppl4PElgJIytwEqR1U0ikSQcimKxCLWyOmE+j97BAMHAFKOqnASobSinozVPELSHqBRC/Fv3992Kotwtr6QoyreEEN8BjgSOAyKAB5CLAnxAEfsYU+ZF3VC6PMvjOmLJIoZeUT+15S98+WtbX629PraapUuXcuyxx5JMJrnppps47rjjOO7Tx3HNNdfw/PPPAyr38ZJFh3DjjTem2aCuvvpqzjnnHFau/BHvv/8+7/0zRKm1OZ1T2xV+gy+sPIb333+f7u5uLrroIrZv387NN9/M5z//eXp7e7nssstobW3luuuu49prr+WVV17hsssuo7Ozk6uvvpp77rmHxx9/hIcffpi3336buro6vF4vv7/hL9QXHs86/z0sXDg/7YmdddZZ/OAHP6DrFSfVBXNZ47uJpqYmPv/5zwNw7rnn8u1vf5v33vJitxTy05/+kLPPPptF8w+h37+Ohx95iLVr17J8+XK+973vMbJ5J3/6059YuHAhv/rVr3jyyX9gsxUQ8WzAbrfz6eLvYLNZ6LT/H3a7nf7+furd9TQ1NXHq0tPY8NZOXmv9IwcccABVniX09gxSM9xEw2y11/qd/hkMDvg4YM50hBAMDQ3T3zvEYbMWYLPZKBguoafTy3DZK9hsNoaHhymOFlNTU8NgwQuEQiEOTJyLx+OixF5IPJZgs/c2PHEP9pAdj+c84rEE7cFtFMRttA+9yMjICDMqTyQUCDMzeSq1xNg2sBHbsI1kMklL77MAnFShnsd4TH3z/XnwcQBaB55DURRsNvWWSyQStCRvoKC9gCVlXyOZLGQ40c2WD1oRohUlqXCA5RwK+guwWgWJhEJh1EVPVxcWq4WKpJtoJE7vQACb3Uqfoo6ZTCZ5bVitmq+1NlPocBH29GOxCLYM/J0SVwkHzjgZq9VCe1sPHo+bmroKBkPvsm3bNtw1J1BXX8WskTgtLS04y2qZsaiegkA97Tv76Bv4P2bOnIkQgsRIlFAwzPeOuR0UhfX9bzM0OExhdTexWAxbZDY+r5/K6jKOj91A0B+hK9CH0+1gZmw+0UiMx/t+bUraIYug+FNzKvfP6+9fzdsy40Uw6gTQvFWzyI9Rjz0Sr4Bmk1bPAKNevUydaySHK9ukQa4N0aI7TredcChqaG8uERDtN63qe7JB4UOHvvvHW/WtKEoCeEUI8SXgm4AfkMUIioFsBqCPGFPmRf1RwllQxb/XrufVV1Xln2OPPZbyclXk48UXX+S6665Lr3vTTTdx0UUX0d6uPg409qbxYO3atXSsH2Ew0YfH42Hp0qU8/vjj/PCHPwRgeHiYJUuW8Morr3DNNdcAKjXqsmXLePzxx5k+fTrnnXceFRUV3HfffcSUe9Jjb9y4iY0bN2GzWVmxYgXPPfccyyu+h8PuwB6y09XVzdMPvcEIuzj99NPp7+/nsCMWMa3pUBKJBPF4nGOOO5L6+noSiQTPPvssoVCI6667ju985zv85je/4YorrmDmzJkUFxdTWOjB4/EQjUZRIgqJhMLQ0BDRaBS/3w+oXmaj5SR6O4Zob2+nvb2dhtIUZ7NSzkC3+qDbKtQiy/4+b8Z8aX+nH1Tb38r4fXBwNJE7vSRMYDicfngGAgECAbWdqapUHccXVu3q96peSzAQJkiYgKL2roZFFMLqw1KLBERCmRGBEXTgwQAAIABJREFUSEL9Ox5XW5Q0ms3075EIkbC6ToIkCZ3IQpwk8XimJzscU220oxYg+WOh9G+hUIhIJEJX20B6WdAfoRe1rcrr9eL1ekn4Rol+Bvp9tO7qSvPei0Anu3Z20u59EYDkcDflFSUMftBPOBilzdtGW5s6nvYCeLdT5dzeJtSq8vd2voHdbqexvIp4LMHQ4DB1jjhWmwWL1UJRiRt3oYNEIsH2RDkzZszA4/EQDoeJDJZSV1+Jp6iQjsEQ27dvp3F+DYVlLkKxBO1b+ygpLsHlcRANx+ht91Jgt1LrqCQcimAbsaTm+5Nd62CzWejcPTD2ip80fEyhbwk21Bz1JuAr2kIhRKFu+T43YMIhhPgXcDxQoChKXAhRDfwOWIZaIr8R+J6iKGtT6wvgTuBM4FFFUb491j7avWvSlazal+7mXd34hCr+oH01a8xP7RqbVuphpFXXAhyYOJTt1gBHntPMN7/5TT744AO6u7tZtGgR55xzDnPnzqWtrY0f/OAHVFZW0tcxgE24uPCicxFC8NBDD6XH8tFLVDe+wzIajK9wLyYkBI7COCeddBK33XYbYKGpaTo333wzc+bM4dhjjwUENTXV3HXXXSxYsIAzzzyTOXPmsHr1av7973/jcDi48847OXbZUTiHa5jlu47GOdV0xDZTM1fhpZdeYvmnTyMaWc+OnhZcLgceTxGhRJQjjzmSJ598kq42Py0tT3D31+7mK1/5CieffDIvvPACp5xyCps3b6bjgyiP9T7G8uXLGR5UCA9HaWlpYcuWLQwMDDAwMJh+sAdQX3TTSAnAF45GLLb1vU8wEc4pRmDWK572RlLLc4kpaDlx7W+z3LV+HVkwQQ85f2o2Xq5+6lyQxVa0Dwztei2xOjir/Cese2Y4axvNFi1qU2JRvT7NO4PsSnc9W1alrYFn+68jGo0a9uS2S6xZ7Yk1hEIhtnY8ra7YC4Olo4Vou/yZ/bzKDthBC2pk0Zv+4Gr3qqIgN/R+Bxidu5remThcBdQ4ykkkkoiYwFlip7SsiI07nqSgoICZM2cCEPM2kEgmOW7xcSiKQpm/mlAwyoxZ1TQlrqCro48P2p6hpqaGmbYljPhCvNF9FxaLhUgkknF8esh5bI0FbM3gqEdsVsVfpknEiuy5Nuv3T7PgpXLtiYSCiGV+9MnXlhHDnRF74mTDvmyrTb17TgD+AYSAE4ELgAuB14DfCCHOBp4GrgU27OtCMtgPXtRCiC8a2OEB3gK+B/QClwBPCyGaFEXxo04ewDTgdiHEckVR9vjK6+vrw07tHtusKAoO4eGRh/7Gww8/zEMPPcSiRYsAePTRR7n22msz1o8oISzY6erq4he/+AVPP/204bi2AisFcRtOp5Pq6mpmHOBjwNfCfff9jfvuu4+DD17MBx9sweVy8fvf/57jjz+e66+/nltvvZW6miauvfZapk+fzn/+539yzTXXsGLFCo477jiKi4u5//77Ofn205juHqZK1DPYM8Jr/gd56Ft/5Morr2SgLcFnP384X//WV1mzZg333Xc/NksXN/7uB6xcuZJgMMq3vnsZ3d3dnHfeeVRWVnL88ccTCARwuVzEkkGKXS4CgQBC7E3mPzVX4SjxeI6EaR45sebJdR/5mIN9Ix9p7cCHhaIohINRhgOjbU27hjsB6PZ2A2R5/e3vvQDAktLZAPR1eRmwtlJQYMPv92O327HWWikpK6RwpJBZs2ZRVFSEz+ejo6OD5uZmXC4XwWCQXbt2ceD86RTYbbT6EnR19lPpLiaRUHCGnYTD+54trKa+lBFfaOwV89hTKKhh7jtRm/NbgSsVRXkCIPWSvg34f6h91OebjPORYkJf1EKIEuBnwJeBtMukKMpOQP8ZercQ4n+AucDbgBV1EvX/3WM0NzfTu9NGLLZnSjlt0bcZLNxAIhzFKqzYbLaMPFuRYyYVRXPxxz9g9erVXH/99Tz66KO0t7cTCoU4/PDDmTlzJpFIhNdff536Jjthz3vMTSynbZsLt1steOr37uSOO+7g6quv5s031XxWYWEhPt8QmzdvZtq0acybNy8tVOD3+6muriYUCtHd3Y3VaiUcDmO323G73cSVMNUH+XjvvVeYFz+D0uoCnE4nna2DNBeexKrHnuexR/5OkjggqG+oIJlM0tPpxW2fxqpVq9KeSiKRwO/3s2XLFn7xi18QUK7hiyev5NVXXyUc6yMU69bNWJLxtvKUlRcTicbo6phiRA77MSLh2CdS/CGRSJJIRInFYvT09NARUVMcXq+Xt99+O2Pd3t7ejL83R3dTYLcRcA8RjydIJBTKKj0cVHYQra2tVFZWcnCzeq9sXl9PYWFhOk1U1uNRNcLddgL+CCPeAIqi2jNeeIpddLcPjr3iJxD7sj1LUZQ+1Eiu2e/PAbL82z7HhFKICiFuB7YDfwdaSIW+DdZbDLwB1CiK4hNqn9GfgFOBx4GVSo4DEUIoS0q/kdY43hhRXyIz59Ux1O9nqH8ki/JRE47oC6tXRXc8jMVqwWqz0F/yHkedPIvly5cjhOC9997jmWeeobi4mMbGRjZtep94PMnu3a2EQgG++93vsmDBAsLhMG+99Ra33norn/vc57jgggvSD8Arr7ySrq4eIMl1113HG2+8weDgIFdddVVaiejOO+9k69at/OY3v8Fms9HR0cG1116LEILbb78dh8NBX18f1113HX19fZx55pmce+65JJNJfv/73/PWW2/xwx/+kPvvv5+CoXoOXFaJxWJh7UuteBzT0/OlhsWSnHLKyUSjUdpfteB2NOGPd5Ekzo7Aan75y1+mVJgEp556ChdccAEdHR389Kc/xZ4o5oc/+y4HHnggAP/85z/5y/2rKXOrfxtRomqez6KGJdhsVtp3qQ9No1DdWGIZRi12mmjFHe2/yNgm85gzMRaF6HhacnK1yshkGXJ4O5fGsfZbLtpUs5ZDo7C8TBGrYZ33Dxx33HFY1y/J2I8esr3a8WhFUzAaZjcrljIiFzEjhDE6v1rBmawVLod/9YVhY9Hh5rr2NIyHilYfArdYLHym8gcIAaJKobDIxZud9xONRpkzZw7VRYfS1zuIz+tn1uxGljgWMNQ1wj2br6e8vJwiy2JGhoPMaK7j+bV/wghyis8s3dLufXbSUYguqapQXj771L3e3nPX/8tTiO4JhBCfAo4GrgAacqxXDDwAXK8oig9AUZQkuqT+3mKo309hkROrVVDrrmRkKMiChgVUVlYys3o6vTsHsHtcFJW7KQsG2b2llwKnjZiYyVMPvsktt9yCoijMdR7DLOeneMr7O81qNA+yrvgYbrzhXkQsSIIE1QWzWeK8gP97+l88849X07aEY+qD7LOf/Synnnoqt99+O5EhF5de+EOUVHlrXMSwWtxceOGFALgL6vA4FhBPBPj6xVcSTwaxW0vwOJqAAR5//Akef1ytOi51HUiVZym3/vbP1FpmUWufz6svPI0QVkpcc41mnvXP7cImnBzgXMawCFFUMA2AJvdyfn3tPTS7T6IluIZVq55h1apV6eNeWHgit//iwbTdfjFCsXPmuM5JYCSCw5WXuszjk4lkMkksovoiQ+3DwBCtXrU4squri4bS0UdyX+8QbkchBU4bwWAwpZ1dQlVNOclEksMOOwy3200kEmHnzp3U16uee0Oyiv52H+WUE40aV4ZPZuxrwpP9ER+bR53KRWv9AC8DFcBViqK8KIRowsCjFkK4gNXAVkVRLv0Q+1ZOPPob9PcO0TxrGjabjYA/SF/fECc2HsfIYJCXBl5l2OdHCEEsFue8kqMBleXp7LPP5sB3FqXHWzWg5sNkD132iCDb85G9gYx1Q2sonROlr6+PoNfFSCQzz6ZBHksPMxIK/X7M2kRyjWu2b7ltRD+u2Re9kfekLXM6nRQUFDDbel7GcZgJC+ghr6v3nnIdkwyzOczlackwE2LQF7hp8y4fj5F3K0d8ZIwlXapHLqETo2jBAXMasW5RuxqM5nGs8wHZtJnaPaPByO6xrsd0KyXZc6lBJo8x8i5zEYPIkM+9HBEwav8yo5fNJcph5t1r6x569ByeefX/Mpb10oLNZqW4xEM4HGE48TbTpk3D4/Gwbds2PB4PdXV1CCEI9tfy5sYHJ6VH/eKZe+9RF/8h71HnhKIoDwIPAgghSlFZQf6qFnCnc8ztQohzFUV5WQjhQA1rdwDf2JN9parCN6PS4RYCfLBJvdD1LT0ut4NwWYTO7f0MJmV6xFGcc845bHpn656YsFeY7TwOX0snwtJOicudflFPJbjdburr6ye5YO4nC8O+AGWUT7QZeYwD8XiCwQH1Wdbt7U4RGY1i61b1OdZYptbjCiECQAAYAObnSiHmMXGYqNC3D6jX/d0IvInKpdonhCgAHkUtj/9yKtQ9biiKogghfoZK6/Y+EF1qWZpF6o8XPIdmCgpoX6fBROb1+v7QaNWr5jHKnrTc+qOH1uKR9qhSLT4aTWIu70z+4pfziEbIErgfZb5Leyo1bvX0t7dnttkYSUHKUp6j9J3Z3mfvGB60kfenLSssdNJYUc0H7bszxtDPgdZmpLXEaOdD3q/e+5Tzm7m8NTMqUvk8GxFJaNCiLVrOVDvv+siDZoM279p+ew18nDIOzvhby8lqMqpGHqPZMRp5n2ZRjyWlX+dTs+dw95YfZhwHjLaGadey7BUbeZf/klrb5GtD87ghsyUPsr399P6BuWQKj8gw8mrNJCtlmzNoO03oRY2uaTMBDPn+MvomlbeV1423LWKuor5s5SjdeFoAq5SmVHc95ajFUfMmxUtaAZKTKgjwkWBCXtSpCyL9qSdEWl+uJ9VHvQw4DfVF7RWj2oenKIry8jj38Vfd+KbrRcPZFd/rvHexLpNLIy1+AHBW+U/GY0Iee4FIOEY4mKer3J8wCR7fUw7d3d1Ujb3amFAUJYLKXz3+3NAE4iNgJpuUmPA+agBFUXah699RFOVFxtvPM068mXzT8Kv3vg0/p2ewJ4MCsHkMoYN1zwyz5sl16byhNq7m2aXJCciuLJVlG3OR45tJ6Rl96WvrpKlOhTmNYNrDGlHtlIkZjLx7WRJTQy5PzsjbNrJRb78lYSE00Eu1Mkp1CJkVxFlyhzm8wTSUzN+MSEvk7eWoRK5ovOz5NOk8T73N+nnKkjw12T+MXkfaMs2T1mCYBx3De82oj0g9p+Vrq0wpJjmgpNfVRwS0O9Q0GqSzfywvTxtD9rj1kK8jvfcs3yNylbd2zRvdM2bCPPJ6+vHk+yvXtZEmgpGW58pRm0Hb5lOHzGf32uFMm2SRkb0Yf/+HYJKl1T8S7Bcv6onEtGnT6OnpyVimPH8gL63dAsAd7dcB8MyVo+QzciFMHh8tZh7QgH8KsiPur/D2BybahDx08BS5iYQ/edXc44KS96g/8TCq1v1W0x9Y2LErnQ+rTqpfn7v8mdtmirur/5G95d5kS8bvuSB7orm+emUvIVe+czwynUZ9zHpbjDzStLdBtmeiPx7IjCjox9WgCRdsSY4ep97bs9sLsqubDXp/NRsO96gqX1tH1BeK5mllzKPIzF2Opxdag+xl5tpGO1bt3BhRcmrQPCx5vo28M9ljlMfTfs+o7ifz+pTt13uOZlGDLeJdjphzEFv638tYTw8zKlf9NWiWD56bo2dcg1mEQy+Uo+X15XOTfR2Z1xXIfeBG58HsntFgJOAhe+65rj2zPLP+b5fLQX+/D5XAMdsmWWTESG40X6s5uTClXtRGiEcSCMvUC6Xszxj2+cdeKY+PDzlqPPL4+BEMhkkmkxQxPunYTxryHvUURNf2fixWc0Wr78+4nuiLe89dnceeo6c7H/fen+DLfzjtV6iqKsM7NALBsdf9pEGBfI76k4xqmg1DTe84NjEYGM4i7tCKl/7qe5W/PvQqS3XqWUPSF12uMLNcqGVWOKQPRcnEF/K2GQU9KZiF7dJtSQZFnVoI3Yj4AiTVndS9IYcLjVqZtPY0MwUpo/3p113UPBNLXxmQHXI3GrcnqFbum5GBAFntNGYtOUbrjoc0Qx/yNIJ8fozGHc/4cohYu261tIv+d+23dSlFJy1cbnS9ateLPB9zlYMp7vYAO9X9GBRWrZOU5owIZ7QwvAYzelM90raYqaQZrGtGSJI+Tt1+5PTBaKGheeGbWZjf6F4yu/fMikP128gtnvq0VKPzSLZ2vs1C95cNbdJgNE96Ih59J8ukgQLKFGzPGr848icUSUWhoqJkos3IQwe7fcp8P04KTJtZMdEm5KGDoiifSGrQPMwxZZ6IvbSkPQy9vmyNt5m65gq27+pQ1xOpNqeE+sWv6VLnagWRPWC9VyPrHpt96RsVk8ntO/IXuBGtpuYlaDZpX/NGRUBmnrQR4UkaYxyHftlYVJtGrTJzlYOx+W2jnpum2WtgvzbfGvGF3MqljzwYFVtB9vnRQ452yPNiRBWrwexc6Qug5Jar9Dk08hxNWq1MlzNa1GfWGmU0/0bnLBE9DiOBOrMIhqxTrYfmeerJSvS26D12s7mTNbn162rjLB2HMIUZRWxWG5jRvSmtk0WmxOgzw0y4w8jj1a6jLD1qHTlOS4uxDXKBmNGcasfiKZi86byp2Nc/5T3qwHCYwe6xmb7y+PjQ0+4de6U8PjYMD+fvj/0J9fX1Y6/0CYaiiL3+N1kxoTKXHxeEEEpD6WcM2456aWHW7EZefOs+YHz5nlytSTLGK5ZgROco5yVP9xwFwFp/l+k4MtGD1gql92D2RKDCzM7x0BRqGEuaUR5v8ZK5vLNui+n+zM6NmYCBHppXps2LUb7fLBIg5yHHQ8FpFg3RYzx2j5V71WAkRDKeKI4Z2QdAZVUpFb0zTH/PRcQjj28mLalBjngY7TNXTYh8jswIUPS2jEUhqrdJltyUBW6MPGuziJtRm5ksVyrbvcZ3M8uWLePFF180PZ+5cuCZnnpi0olyLC6vVJ5dfsbYK5qg5tF7J6Uox5T3qAGqqssm2oQ8dHC5nWOvlMfHhsYZtRNtQh46aPr0UxGK8uH+TVZMmRx1u3eNKUm+EMK0QtnIAxpL6s6ImlH+2h2PCIfsSWiEHk1W9eu9uWhUt/kdr9pCs07KqWsV6lruXT++2TEaRRXMJPvGky+Uj8OIzlFDmVJMTWg6MvWwUbXu3tAhpu1M1SCs85lXxsr2yd63keiE5tFp+Vn5vOeifdUq62X5UTD30LUxjKQrzYg7cnUaGBHnHBBPsF1YM7bV22ImYmKUj5dtyCJhwYCEZRyEMNq+zXLSRvdU1v2aepDLeWKjjgO5tkGrrM+V99fuzfF0Ecj3kL7zY6S7lIbS5VnPkKx5SY17lkRnq/4G7d5ns5fnsV8i71EDrbs6J9qEPHToah2caBPySMFisTAyMjLRZuSRgsVioay8eOwVP7HY+/z0JIvyZ2DKeNRmOc513j9gL59JKScA2Xkko0rQtGB9quJW9naMvAL561n21vTeh1mltmbTUtT9P+8b/cDQvGyzqIGRRyrblM6DpbwF/Re6XKmank+DcNJY8oGaBKSeljXt6YhmaupLWDpoPMe5IHv505zu9G8aP7vs3cjylzB2z3IT2VXl2jFqHq1ZbYJRz6zmbWrn2yjPqclayjzzcvV3xjxJfc3ab0YUtGnvXpLTPKH4PygecvO29xcZNkN2v7x2bNUGkRS5ZmJdarkcTdBDnjszKk79OHKlea77QBunxKLaJHdBGEUpZMhRi1y1LPI6Rt0VY9W/zCw+kOqCMnxY0+fX7Ho16u3PVQU/WZDM91FPTTQ0NEy0CXnoUFjkmmgT8kjBarNQUTeVPbj9C4VFLvy+8ESbMXGYojnqKVP1vaT0G1lMX6B+WS44aBZtrd0MDweMJRIxJraXYeR95+xJxtjzkr+E5fye0XHInqG8P6PcmYZc/dnyOmY25Kr0lStljVi69N734iNmce/qH2VsY9Sza+QN66GfA7ma2MxbhlEPSjsP8vznqm42i1LIY0D2edgTD86sZkDzvCHb+zbrG85l/4zCeTTPqeX99a2GNhvZlqvCeixbxlMBbVQtLY8vV2EbRRHkWgB53FzdEdq62hhaV4XRdWomdmNUrzJW/np22UKCgQixaDy9zGzdsTom1nnvmnRV34tKq5RVyz6/19s3PnlPvup7sqKjvReRFx7Yb7B7R+9Em5BHClarIBzKs2DtL3C67Vht+cf2VEP+jAPJRJLEFG552N9QUZMPte4viITj9HbmCWj2F9TPqCAajk20GROKfDHZJxhNlipDcgtQKykPajiYbRs7DItCIDN8ZBbONmrlkvWD5XCbUfhLo37UCm/muFW95af8r6n78WWH0eVw8lKJ+EEfJpS3lwUZjG3KDEGbtbPpj1Gbb7OwvF4UQT+/7kInX6j5CfFYwrCwSoaZUIgRZBtyHYcZIYZMVQqj85xF/ShpcxulULRt5JC7UehVvsb05xVI66qDcYhYvz+jeZLDpw5nAcWlbl7afSuwZ4QkS8uzhWw0W8yKmfShY1NKT4NiNXkuNQrgXEI2cmGVWQg5l1a8Nq7W5qdvhTK7dsdLXqNfR4NFfJZkUsmwN1eaTrY/V3prsiA5iV+4e4sp86LOBZ/PT9F899gr5vGxIBqJYbNbiccSE23KlIfTbacgL5Ky36Bjd/9EmzCxUMSUVM+aMnegLxHJIP3QoH2xvryjjS3eLVlfmuliILIJPcygH0MuNpG9JiMPNb2vlFfwpj+zuChXEVC11CakfU2b0XXC6BzIX/r6/WgtY2atV/o50Vpv0p6byNyPkf1aIdXfBn/JzndKmVNwHvHk6Itab7MsSbonXoJe3EB/zJpMpN5OM7nDtCylbplePlDdVv2PLO+oh6kEY6nBytI2JziOBEY9aKNjl4ui9saLslotRCPx9DkzOh6zgjm9R5n2dMluGdIjl8jLnmxnRvWp9zbHEuHQlhsRw5jdK0aFgGaes1FkThbVke8zqyU7W2nW7mV2fPI+89j/kc9Rp+Dz+SbahDxSKCkpyXtx+wmGvUGGBvKEJ/sLahvKJ9qECYXC1GzPmjJPwy3iXcMv23Quce5curu7s5ZrVJzjEeUw+vJPCzhIeWFt3Fz0gWbSmLlysGORROwJjOTxNC9N9ixyyURq68p5er3HVZbyfJaUfp3m2jp2DL5Pf8Br6H3LXouZ96HPgWvELFreP5dYipyD1nKtmr25PBXZtj3JR2rIJcqh/aa1XuVqwzOT3pTHNII27vyag4nHk7gCzqwxtfHkXL6Rp2hGzJKzrdCEmteo1c1sfmXbMpBaV7YhV8RMvsbMSEz042revZncpR7y9ZI+5lQkY1tgFeu8LxjabUYZayTHOlc5mDW+35ge5/6MfI56CiPfnrX/IBaNU2AvGHvFPPY5PMUu/MMh8tUCEw+r1cKuXbsm2owJx2Su3t5bTKkXtdGXfpqOMHYMS0oPyPqaNhJTkL+ex1O1Ke/bSEJvLLuNBBPM9idva7Ru+pjGIGXRYyyZQqNx5XXXyesxSke5vOR7JHoUai3NFCv1GWIEMuTq8VwV3GlPMFV9nCbjENneq3Zuykw8uFwCG+OV4NTboB2jTMqhr9bW8vyyFyzPi1EURM615iK0kY+tsaASX9LPfb6fZm0jj5dF7bkHURyjbeRrazxyl9o4WpfCFkncxTCalqrMT18TKa8/V/W9XElvBJmG2LQaO8c8aTS4JTEHFouFtvAoK5l2Xco1FcvlY9dd46OCLJMzR60wNT3qfI46hYGe4bxXvZ/Abrflc9T7CQa7hgkOR8ZeMY99Dk+Zi/LyqZ2jnqqYMhSiYDX8stW+MD9zzKXsaumk0T8XyPZax+OFaBW/WoW3fhy5UjlX7tIs7yhX8Rp5FGYedK7xzXLhRrnSsSpMjdbZE8xVDqa8pogN4iG2bNliaL8Geb5l+sY9iXSMJy8sL8817jcbVA9UkyY18spyeWzyfrVzr3lRmrCJvm8aMqlQtXkxyyEbQaav3V76GL29vYRCoaxtx6LEzHVNjCdfK0O+34z6m2UaVq06/s89/5U1nnxfafOU6z4bi6p3T3qix0Phqp/LxpnVdIR30N2ptmiZ0cnK82NWa7LG95tJRyG6sLhaeeyI8/Z6+3n/vC0nhagQwgH8L3AiUA5sB36sKMozqd+XA7cD04G1wFcVRWnda4PGibxHnUIwEKa0rGiizcgDiEcT2O32iTYjD6C6ujofadpPkIgn8A6at/tNFSQ/xL9xwAa0AcuAEuCnwMNCiCYhRCXwt9SycuDfwF8/mqMa26g8gMEBH+UVJRNtRh5A0B+hJ9gz0WbkAdhsNuLx+Ngr5rHPEfSHicenelnfvqUCVRQlAFynW/QPIUQLcChQAWxSFOURACHEdUC/EGKeoigf7DOjmEIv6obS5TlDlsFgGIvVwkbfA8BoiEsrujCi4ZOLabRQo1ELi9zao4UYtTatXLbJBW6abXqKRjPyj3TxiFEBnUFoTL/cSAUsXfyWyphoNugpGuV9y201udSJhsQwdquNQyu/Qk90yHBestIIIrNF7HTPUQCs9Xelt9FarWrc6iX/lHSsGXrgBupeRshVSKftWybZMaKKlUPFRupocktYr8kc69vDqoVxaNQI6XMtka3EW1qIRkdFOTLmRCMxSdmrUdPKlJx6yC1E6RYmrzk1bVpDXLq2DRXtJPu11ICR0po8z+mwdWreZPpfGC3QMkud5LyOpHWN5sdMw7rJUsWCBU1sfXlj1jbyfIwWjGVDphbOIzeEEDXAHGAT8E0YrU5UFCUghNgBLAD26Ys6H/pOIZlUaJxeM9Fm5JFCdX0Oeq48PjYUFeXTQfsL8imI0arvvf0HVAoh/q37t9JsX0KIAuBB4P6Ux+wBZGYsH7DPb5Ip41FDbk+xMjmDBs+s9N+5qB/NCE9kMgfIFrzQIBf4aMVHAD1SQYzsucntPPIx6ZGruEXzMtcNGhcZ6W0205aWi+MYq7JSAAAgAElEQVT09mrjaV5ILm1mvRcciybwF/SaaoBrnmgZKe9FZEYGeoLxLJs0itD29kzv1agoy6xoKaulzuBbwmyeNKIVLYICpKMSskekeab61j3tepRb9bSITy7CELMio1zQxll5zI0U9W1NL9cLkWjXjTYPsm36Y01HAqT2L7l9Sj++Bu3cmd535I5G6G3UQ47omBX36edLFr2Ro2i9Ins7syI+eb5gdD60bfWRkuGBPsMCurEK2vTbaPfrZKYQ/ZCh7/7x6FELISzAA0AUuDy12A/IfXnFwD6n7st71DpEo1NbPm5/gaIodLQZK53l8fFiCjSFTBr09w5NtAn7BZLK3v8bD4QauvgjUAOcrSiK9mLYBKNk9UKIQmBWavk+xZRpz1pS+o0s+UXI/Nqtqi5j/dZHgdwUkxrMPK9cpBNyTssofyivK7fM5GrPMvOejDxuOXecq4VmPPOhQfacc7XtaNA8Ic3z7GpopW33aEHZeDwAmfrTqE1O9iaNiCs0G8xkUTUYeX+yGIrmsftTSmBm195YtslRCPl8Gp0frTVJ27ds23iuU1G0lba2tqzj1GM89stzaur5GuCjuBdlERMwb70cT+ueBrPzYPSbFgGT61VyRaP01/1RRx3Fa6+9lrWvsWhqjdr81HlPTLr2rPlFNcpfPnXhXm9/yAu35GzPAhBC3AksBk5UFMWvW16F2q71NeBp4HpgmaIoR+y1QeNE3qPWobomTyawv6Bheu1Em5AH5Nvk9iMUFORpdfc1hBAzgG+gvqi7hRD+1L8vKorSB5wN3AAMAYcD538cdk2ZHHUvLYaNdGfpqiCLigvTy9PeQA6KSbly1Sj3aualapWkuYQ2ZLq/XPlmudJW/trOlW82k/bU5xhHc7nGXk2mVF/uHGgu+lTNC55FLdUM56Tr1Etj6pdr57lMl06SPSw5SjGnaPTcP+V/LWN8Dc1F6oPyHa/6ka1VkMMosUlafCU1px1h45y1fExG0F9PcjTI7JrTn4eNY5wHPeR51s536MCDiQy8O65oSK6q/vbBzIjIcp0Iix5GeWf53shFQiRXPGv70Txpo6p1s3GN5E7leZBt1NsqV5rLERqjHHPW/Kb27XQ5sIRrgBfTP8nV9hrkXLveJnndyYgk+7Q9qxXMd6AoynPAvA+zDyHE8UBCUZSXxrtN3qPWIeAPUlhYOPaKeexzdHfk83F55KFBSSbp6RqYaDP2C0w2mUshxItCiKNT/3818BDw/wkhfjzuMaZKjhqs6b/1X+L63FxxcTGxWCxNl6hHrv5OGUaVmTKVoVl+SY+9oeDUIHsHGZWlIrMKW84f5uq7HQ+F6FgeUK4cqbbs2GnL6G33GuaWZQ/OrKrWiPrRLNebUWGdWkfzYj0F6rWj5Xpz9cvLxy5TWhr145vJFeoh517lPLxcD2A0jqkoBNk1Atq1UD+9gs7dxi8Io5qPXPuDsWsNxkOla4SxpGFz9TnLyEXtata5IEd5IJva1qwyPVdkIN2VUlWK0+mgvW20bsPsmpN/N7JTHX/y5agPLKpV/rzki3u9/dKXbh4zR/1RQwgxAFQripIQQmwHTketIH9VUZTp4xkj71Hr4Ha7cblcE21GHkBdc8VEm5AH+arv/QVl5cWEw3lxFFBD33v7b4JgARQhxCxU53izoihtQNl4B5gyOWojL1pGPB5n+dzL2bG5M2eFqfZF3Cud91w5rT9LeeZcUpnpr3YyvaRcogQatN+y82ymh5PlEeXKm5vlDfUV0GWJzEpqre9Z6xvO5Tlqx97GjgyPRp+71DxQzYazJLYlWa4QRpmvvlzzEwA6wsGMsYzqC9JecESqZk7lvvVRCs0T1fLjssf71cqjAXi9P11EmrZbW0f2+ow8du03LS+fFTER5pGHXNXLsgyotm6gYi3r3nvB0JuV2a3k8Y0iSxrGIyAhe5q5quTNPGkNuarMze4Vo7HMeq/LUl07+ntJZqVLH5tU96L3wrU5lefH6bQz7AvknFM5AlFtcM70THZrfL/J+j2PfYJXgNuAOuDvAKmXdv94BxjToxZC/OfeWjfZ4PV6KSrJe9T7A3q68/m4PPLQ0NXZn+d5SGGy5aiBrwJeYAPws9SyecDvxjvAeELf4054T3bE43E6WvMviP0BAX9wok3IA8bsoc7j40FNbT4VBB8JhehE4ARFUX6sKMrPUqIfKIryNMZ07IYYT+h7UhUbmGEs2kQtBLoz/gTbvNtM26nAvAhFw3gEMGSRBaPQokzxKYuA6Atj5MIUM6EHPYwKkPTbGrVPyWQrWvjWKOQnFz5p6+Qq1tHaR7537O2827VjNKSsD92bfBlr+5PD0HpsjHQDsNBZm/G3EbmI3J6l2e+1jGCxCJqsVepXuqJgsVkQQnBAspZkUiFojSME+BNBkokkO6NFKIpCpbuQRDxJgcNKa7KfZCJJER5sBRYKsDAcbac/tglHgRurTUFRIBDuY7dQi4jW+d8DYFnxd/DG2yAawCHcuAqSJIhhi/VSbmvAbS3JCE0nkmG6hl8GBNNKTiAc76cqWUOZtRG3tYxS5SAG462Ekj5KbQ102FqIxIdYJI7C6ZrDrujrOGxlqTG0kyAAkRGmTSoJOn3PAwoLiy/EbvGkz008GSboXgAo7IqqLXB2awlJJU5fYhMWrJQWNGK3qJ0X67z3AFBRuAinrYLaoiOJxAdp9/4TEFSXXpo+Pvma1VId2v0gF3Rp9uqvm7laUZ9Ea6q/DuSUg5zG0V9HWmpMvifnSveV/t4xayMsKlZSc5JNfyy3U2rr5BL90OZnMkKZfK+kPwKPGCy/G3h0PAOM50VtE0JcTO7esnvHs7PJgPr6erZt2zbRZkw5FBTYsFgENpuNoqIiikpdFJe7ccQslFZ5OKCgkUg4yrAvwMyGOhzOAiyREXq7B5g9swG7w0ZhoJCutgFmTZ+Gq9BOPDTC7l1d1NZVcoAlQSwWw9VbRHl1MfNqGkGBzo0BSis8TK9UX9xtW3spKXFRWVNCraWUrp0DFDhsVE4roTJZRntrPwJBTUMZtZQw0DlMIp6gclopCgq+Xj+RUIyaaYUoCliHBP7hEA0z1Zd60BdiZChE9fQybMJOYCSE0ieonl5GLL6VA5qLmTbtQJLJJG+++SbhIFTVTGPhwoU4nU66ug7n8ccfx1f/IstPOIGGhgbWr1/Ppk3PU1xczLGHHsrfHnyKzzVfjrVCfYDv2NZG1LKVL678Pm+99RatLbs59qglLF68mJdffpn4DkF37H2OOHEhM2cexmOPPYZn0MrSRY2cfvoy1q9fT19fES07uqgKL6ShoYEDDjiAd955h127Wim2uImEYxQ7nLQPvcyKFadQXl7Oo48+SqP1JDy2OgBaQy/yqU/PorKyElCpYh9++GGam5s58cQTCQQC/P3vj9FgWU5RwTRA4eCDF2GxCDZueJPSciennXwydvuRPPHEE/QF3qfKMX9CrtePG4oyTjXlPPYbCCFmpv7XIoRoJvMdOhMIj3es8byoC4Av5/hdASbFizoXjab2xb2MZUC2NJ0eZlSJGjGJXizDTE5O9nBzecey9z3q5WcX05h5B3qiA3k8edt09EDnuW4R72KxWOgLvEJhYSGfmfd9AiNhWgq3UVZeTLW9gO6ufjweN1+YdhYAL7e8jMNeQEV9GUJA1+5WFAXKZ6jH2tRRTyQao6m5no7BN+js7KS0tJT6+nq8sRH8BUE2RbdQEi0iHogTCkWIRmKIrhChRICt/l0kEkke7P8boHo+xThZ0/cOMOqV9Pd5qeYAAJyKYKB3hEc3vTG6Th/s1J/TXti1rSezGGtHZguOt8OHwx3Agpo/2tql8vKnKTK7MwvCvIOBjPPc0e9lmtONJ3XvhrYM8crAi5xUcSRtbW0cfvjhfOELX+Dyyy/nscceY/Xq1QwMDNDR0UFvby+/+93vePfdd/nb3/7G7NmzOeSQQ/jjH//Ir3/9a2666SaGlAF2bNYISBp53vcIf7zvDv7nf/6H0047jRNOOIHHH3+cb3/726xYsYIjjjiCE044gbvvvptf//rXnHjiidRPX0Z9fT2rVq1ieHiYje//m09/+tN84xvf4JZbbuHnP/85V155JSUhG0rCQ7xsGz+45D+or6/ntdde4+9//zu/ufF3OJUCnG1VVB54KAcubMDpdBKNRrn44ovp7e3llFNOYf369cydO5fVq1fz46t+TqwzyEGNC7n33ntZt24d3/nOdzjppNNJJBIMDg7yzDPPsHTpUtpCr6KFTgQ2NiRewGErM5WL1N9n2j0hR6rkIjKje1j24I1EOTTIzxLZYzd6LqXFgVLRnff+/SS93t4xSXKMoC+GMxPvmTTYA87u/QDbGQ097ZB+6yZT9zonxvOiDiqKcvy4TZvkaG1tnWgTPnLYbFbcbjfxeJzy8nIa6qpQkgotoozm5mZm1R9MwB8k2uGifnoFTpedcChKoDVKVX0J7iIHnliMlh0duKqacDgcuGwO/MMh4vEEA/1eIpEYwUCYocFhHDvVa7JLqC+tYIsaiu5FDd/qe0EBujr6aPeOchj39/dTHdrFYN8IQcIEA5kfnuGAqo+cSHyyvIwS11yeekpVyh4ZGeE//uM/0r+tWrWKjo4OAI4++miCwSC/vfEOsFh55ZVX9mg/X/rSl7j66qtp393Dl770JWbOnMkFF1zATTfdxLq3NnDaae+wdKka7g0Gg0QiEV599VX8fj+HHnood999N88//yKHH76aRYsW8dYj71FvP4h3Ol/n1zdfzYoVKwiHolx44YW8sfYlSqxh5nIIid56fvf6rUCSyy+/nFtvvZXXX3mXta9+gMNWxiPRRzj99NN5Z9MbxGIxfv+T33PHHXdw1FFHUVpUz/pXW5jZuBAfu0kkEhx00EE0NDTw3e9+F6/Xi8Vi4e6776bEMZ9EdxGhYJS6xnLCwSid22sJBAJUTSshHIgSCkQRQjBZeCSqqqro7e2daDMmHFqOejJAURQLqIQniqIs+zBj7TftWUKIfwHHAwWKosSl35YBLwA3KIryk9QyJ/AX4EjgNkVRbhhrH0bEAmZylrnaRrLWla4b/Re4mfiGnDPT22FEYWi1Wvhs5VV4Spy4Ch0E/RFabJtpnFGLw2HH1V5HLB7nmKZDQFH4d89bBPxBLp79BRLxJBs6DmHEF6K8qoj20A5GhgOU2pbi6xC8vlOXd9ZF/ZeXfA9vn9pOtEW8D8BcZQUAfsK4cOIKNKd+H/USzIgctFyfEWGInEsvnaPwQV+LoahIR6rda6k1czyZsMUox65BzgEa5cubUuMPSS1L2n7e9JsTtmjXRNb4+tac1PfHNKcbgKMLjucfYh13/OE2Dj/8cK644or0qnfeeSfBYJB7772Xuro63n//fSzYWHToAZx33nm89957/OlPfzI81iExnJHWr62tpaenh+n2+XR3d1NbW5te5iioTC/bsGEDa9asoba2lueee47jjz+et99+m/POO4/t27dz8skns2rVKqLJXQDEEsMUFhamCIMEfX19VFdX09b2Mr28jJKwcXDJV3jP9wDnn38+p556KpG4en2FYt38/Oc/56677iIQCHDaaafx9ttvs3HjRhYsWEB330662cXm1tc599xzefPNN9mwYQOnnHIK999/P2vWrOGiiy6iuLiY51evYTCoXq8zB07G6bQTDoeJx+MEHWFc5XYsUcFBJZ9n1uwGmq1zCIxE+PsHv6a5uZlTq24kFIzyXtt6qmvKWWo/mOBImOG+AI+JdcRiMebYUhTPSub5N8JYMpd6pClQdbUxFovg8OkX4ejYbvgc0q41MwpUI4rSyetZi0mXo/6wL2kY34t694fdyVgQQnzRzJaUePfvgLXSTxcB/wYuAB4TQsxSFEUOL+wxKisr9/mXq8NZgN1up6ioiOlN1didBfR3+6iuK6W41M1g0sP2bW2UTFtAVVUVVZ6D2ballUpXMQ6XnVAgQjgYZUQE2bRhO5HIaNvGu23qFOwUakBvU+8uADqTajX7iC9IL5NAQlJREEKYFo59EjEY76TCNp1LLrkEl8vFmjVrWLNGfchedtllDHXHiCd9LDvx0yxevJioEmDDhg2Ew2GuvfbajBf1ULyXUGIIp6VUnUcdhoaGKC0tZaCvndLSUgYHB9PLOtt2pJft2LGD7Vv6eG7NPzjooINYtGgRq1atQlEUzjrrLNauXUtnZye+RCctYTUiEo1GsdlsxONxSktLGRoa4uabb8bj8fCzn/2Mgf6tHHzIQWzfvp1oUBP8SPL973+fWCzGPfeoBWTXXHMNr7zyCsuWLWPevHksXbqUN998kxUrVnD66adz8cUX47ZW0djYSF1dHTNmzADUiJg+nxuNxohGY3i9XgDaW0av/UF8DA74GFbUR0+vr5fe3l5ipQcB0I8X79AIM8tn4HAVYLEICgsLqamp4ZCa2bRu76GxrIbSykJGCLJ7Zy8ut53qulJCwSgdu/pACKYVTmN42Fzffix4il34h7PZEqcqJlHoG4BUfvoGVKEPj/638TKTjfmiVhRlocnOy1Ffkl9RFGWp0TrjgRCiBLW37MvA6warfB94FqiWllt1/yzoOUIN0EtLTrpL7St0fnI5M6efxvbu9ozfjSq5NTgcBSSTCl+Ydx2FxU62J97H5/UzZ+50pltm4/cGSfaczYzmenzR9+jr62O24xSKSwp5q/t+fD4f5fYj2TqQzNjXktKvM9wBwwxjoYwHvT/N2L+RTVmEDqlqaf0Xvxm9opab1gQZNFIQGPUM5fG1udRXxp5QkykpqHnJ6epWkW2T7HUc0N+IzWalN5YtyqFFHzRPV64ybzDIBcr2a8QnGrboSJ+0cWQCFS1fqM0PjCp8accq07JqQh4lI5kCIvpjGoqo427xP8IhRx1MfMsghx12WNYHY3HhPOaymH/963Z+9KMfcfoZJ/PSSy9RUTHaumOz2ViwYAE7eYlQIEBfp4vp7k9njPPUU09x6aWX8uCDDzJr1iy2bNnCU089xde+9jVuvPFGjj32WK6//nrmz59PSTnMnjudpUuXcv311+PxeNi2bRu7d+/mtttu47/+679IOpKcctaR7HzgVVavXs3Xvva1tByj1+vlP3/wK5x4cFrqGErs4D8v+Qn33nsv4fggbnsdF196JkcccQTXX389Bx54IJs3b+ass87CZrNx6KGHcvrpp7Np0yaWL1/Oj3/8Y7797W8zb948tm7dmvb0b731VqqqqgiFQnymeAV/DX2QcS61mg2jCJqZ1KZ2n2yL6R6BYi49fli941kA/rnVgGBlB7jcDjp9LyKE4JC5Z1E4y8XIcIBoLM7ipiUAvLzjXoaGhpg3b57aGtrRwaeLL6ewyEVgJExgJEyPspNgwo1nVyFlSnFG9M4sGpRLKlO7FxtKl9PufdbwuPP4yPEX1Bz194G96jvdo9C3EMIGrAC+ApyKWodx197sWIf/Bu5ATa7L+5uBqv25BJXZRY8HgIeBXcCdiqJs/ZB2ADDYM4Lb48BiERSVuHGV1OH3B8HTwKxZsxBCEB1SW3AaZ9SiKAptu7sJBSM4XXaGB4O0+3pIJJK88dp7DKlpCvqFl/4+L+3eFwBoKK3F5/PT4VXzjqWln6x864fFQL+PZHJqzUlUibB48WIuuOACWltbufjii7EIOw899BDDw8MUCSs24WC+4zRWrFjBJZdcwvXXX097ezuXX345APfffz9nnaUW87W2tvL4X15gILoVhUR6P/feey9f//rXWblyJRdffDGKAs+seo6ioiKuuOIKLrvsMqLhJCUlJZxyyiksWbKElStXEvN5sLpjXHrppeliMKKVYOtFURQ8lmp+9atfcfnll3P++efz1a9+lXL3Itz22vQLs9v3Lhs2bOCll14CLCSTEUZGRtiwYQOf//znicVibN68ma4utY5BURSCwSCBQACbzcbq1as5/fTTAbj11lt54vEnSSQS/Pd//zeDg4P87//+L06b8+M7aSYIBSMEAmoBYcuOjozfEh3qo+oDr/ox0dPTg81mw+VyUVeYQFgE9dMrsFgEia5B5i+cySzHLIb6/Qy0tlJbV4nNZqV8qJL+Lh/F9kLC4ejHe4ATiMkW+gYWAEcrH6J0f1yiHEKIQ1Ffzhegeq5/R9XlnKMoyl7HiYUQnwL+AHwKaABa0OWohRBPAH9RFOWvQoj7gHYtR72H+0mLchQVFVFTeAylZUVUVpXhi21g586d1NbWUlpayvzyz9HdNsj7I49it9txKQvo7/UiBBkhZjDPX+fyFI1yrmAsCiELemg9v7nyS2aygbnGl23SbNX2C6Meo3yMWo+03lOU+ztlkQvNUzXKnWk2HbPwWNp39fFK++1Zxyjnns2ENoxgNj/joZg93KO2GfUE1RIKTawDRqMPmiet/aaPSoDmvSU4++yzWbtGrRTX5imU9NIT/YCwMoxdFFJTMA+rKKA7+j6KzU1pQZOOCvP/Z++94+Mqz7T/75kujcqoWMWWLXcbMBgMBkwxBLOQXgATnGpCICGBH7ssSUheQggpC2EJ2SQksCGFsEAgb3izQBIg9IQOxmAwyL2oWMXSSBpJo2nn98eZZ+bMM885GsllPMxc+ShmTnnOfcrMea67XPfNgE695zDcjjJmupagk6Avui11rL1aNz5XPSP6Bu68807efPNNbvqP2xmL9gI6Fd5Z+Fz1+Nx11OnT2TveRnv4RYTLQ9Ogrq6Ovr6+1LIF/g8yGNuFhkaVaxaV7ukEozsYi/fTFX4teWTjN2VaxXK8rkDGNd0de43x2ACLnCuocjWnzqPKNzdlt9dVi9dVwzR9Nv3RzQQTHfjc03BFYyRME45Zrtk0ueeza/xNNsU24NBcTHcvxe9qtGx2Y77PwgskS+iqJFwFrLK9J26AYS2bqtpHYJG+lPlHTefdXbsYHkw/S75yD9v1/0coFKK6upqZM2fSUreCbVt2468op6GxFk3T2L61HTSNsjIvg8EQnoE6Egk9+dwXXlOOhRXN+q1Hrp3y/me9eEM+mnI8DHxH1/XXJtzYAhMyak3T3sKo+forRkPth3Vdj2ia9sHJHiwZixYM/B9AHXCFrusxOY6madpHgEpd1++bwnE04K3k+BVgZMq6XC66urpwhl3ous7OHZ28s8t4AXV3GzP4sWmLWXLsbNpebQOgJSB73Es4GEjoOh7PIZPruN9x3nnn8dITmclfZY4As30nZm0723eiQovcEBuZVX4qAJXJl0uVM+2Oj2pvoOsJIiGdtWvXEh5NUF9xLGNR48UbKFuU2tapeWnwHUV7OJ0I6fX6mDt3Pn19/allle4ZyRrnNALu2QTcs+kKrzPZRuolbYbxEq6lSm/OOI8q37ysbTVNo86zkDhG+KDBmflim5Gc+M3xLaM3YUye/DRmjVPo8Ff5smLU4dEIXcEuwKgQaG9vpyVQnlzbz7YtRujO5XIa17G+mmkNAfyVdYyPxzj96NN5+ukn0DRtBBgG9gJL9AJIgy+UrG8TdgCPapr2AJLnWNf1a3MZIJdfwnIgDoxh+NenLDir6/rdwN0AmqYFgH7gvuRLWtCTdk3TVgOrgOM0TRMnVg3ENU07Utf1j01wHF3TtB8A7wAbgfBzzz2XWt8SmMnwkDpUEIvGcTptw90lHASEhsZKnZv2AzTNQUPFSegkCFRNbuLjcrmIx+MTb1jCAUXXzv4pl5HFYsb929O1lz1de2lIqkave+dpsUktcCRwWCG8pKEg80v9wEMYmiQzpzJALslkczVNW4nh+r4PCGuadj/gY9+u2SAw3fR5JvAycCzQC6wHbjCt/y+gE/heLoPrun6P+G9N02z73JrRw3a27k1kJYyp3Nlydxq5/AjUpVZmpIQNFEkuYp8nLTpf2fWrlpPkzJKBVjatkhJuzO5uWU5TuK+XuA0GZxZ5EeefkvKMZyaTibFSXbVIJ34JN/BwcJR4LJ5yF5q7c8kyjgKyK1F1fWR3pKoTk1XvZ+HyTt9fb9b4Yl2F22A34ho80P/9rG1FMk87j7Es8KXUcpGs5nenmcNI1BhP3JN/bzUm4vcNGhNQuUTHfG6N2ryM80ofP72t/Cy3BFbhryijv//tLLtlO4VNcicycwhCjJ8qGUKd8GS+Z7K98r3rUXynhXiJeG6sxEwMm7JlP8Fajtc8rnhe5eNmhGVEKZ7UMU92m6vumVh2fO3xBNzqmLtVqZWVq93838sCX2Rd8HZ0XR/HqJ55VXmQEvYZuq5fuK9j5DTF1nX9WeBZTdMuw4hNfw6oBJ7WNO1WXdd/MdkDJ2dvKTdAsi4aoDsZo45guGTE+jFgRNf1fg4wBvqnXkpRwv5BZXUZ8bhOeCyYb1P2C84991zOO++81OcLLrggY/26vw3xxIPr5N3yimgkRv/wAf+6lTAB6luqsZFxKCroeuG5vk1SolnQdX2b1bqMMabq7dA0bQbGC/uzuq4f0oK7mqbpywJfSs085dIcgN93G4ynJbCKE086khef35CxXsWoraQ4pwK7PrO5JK1NJXHF6nh2TTmsIEQ7IJ309sE6w2GyccCIlghGLTfpUNn//sOvwuvzENpqqIKYY7Ty9ZZLr1RMQr6GgtWr2LlYl+pHLV07OanMvK25RzWkGbVg2gPaEOuCt3Pvvfdyx5fXZWyTkh9NMryUR0KxzqqhSi6Qk/zM4woMaEME6ioI1PrZsblbuZ2VsI2KHcteLDmpT3Ue8j7y86hK9pLv81SSyezEjqw8MXa/AXLDDvneqTx8ZmZ92mmnsfWNbE4lf9ft+nULZLLvwksmW+Bv1m9Z8oUp7/+Rl3+Yj2SyBGkpUQEdQNf1nOKsubS5VELX9Q7gP5lE8+uCgVZQz25BIa5HGEsMp0QpdF1H1xOpPxFNGR+LEouPM54YScXnjG3VE0tjeXpdLDGe1cggro+j63HTPuJ4ummZzlhimKg+jgq6rjMaDymbJLeouKEAACAASURBVOi6TkJPpP7ENnE9xngiRELaJ6aPkzCJ8Ol6gkhihLh+aPQddntcJApNXeI9iPb2nLshFgV0XZvyX37s1R26rjuT/zowQr7/jSHalROmzKgBNE3zYmiBH9LZV6I8y06yz8zOZi1sYLR9hOh4LKPsSIbc4tGuZeVEzMfMxGSmYiU2YoZVfFBerrJTZlOCHcslWZCepQu2XOMxnp9wPP0l6E++49YHQ6llMT3CK6HfgS9KZWUlPT09HFP+ITaNvcCYlnZvG8lLDrweH7V11USj0VR5kJg/LfB/lApXOrt5XfBXaJqOEzeLfWezefwZPH6dkZGR5ItGo8bZRLRsiHA4TLNjKXXuKtaPPEVjYyP9/f1UawvwO6exc+wZGhsbGR4exjNex5HlH+Ufw7cBMM9/FltH/kZtbS39/f3MLj+DWs8CAKZTwd8Hf0nMkX7B67qOS/cQd0RTWs1V3oUEx96ltbWVvXv3Eg6HWeQ5Abfm4c3ksfv7+2lmPrO9/4JTMzKeJ2qtalX2B9mMSzy3qmc7o0ytsZZjnMcwsCcVgcpgn2nhFwPieVEJC6kYO9h7fNKlaGrmLnsvVNvaMWoBmTnLtkzFa6EaX743uch5rqq+kvrp1fR1DgJqL4hYJpeVqQRRzPcmGaMuKFaywN+s//iIi6a8/0df+cFBZ9QqJN+dm3Rdb81l+/du/cs+oL97GG9hPb+HPEbivbQums7VV1/N8PAwRxxxBB//+MdpnFPPE0+8hsjKv/baa+nv7+e3v/0tiUSCjo4O5s6dy3nnncdHPvIRWlpauO8Xz2e8qEFn9erVtLS08OMf/5jvfve7tLS0MHPmTC6//HLa2tr49KXnsGLFCurq6rj22mt5+eWneOihh9ixYwdHHnkk119/PU8++STXXHMNDQ0NzJ07l0ceeYQHbn8mdYz22JM8/PDDbNq0iQULFrB27VrKI/X4nDWEEgO0LmjhO9/5DgBHHnkkv/rVr3j44Yf56U9/yo4dOzjmmGP41Kc+xdBuL+eddx5Lly6lsbGRq6++mtdff45bbrkFTdNYsmQJv/jFL1j/l1eY4zvp4N4oE0KhUUa1nDvxlXAA4C1zU99clXpRFzt0lG3mCxGLMCqqckLRMOqWwFm2sTPzslmtTfjHGtnbo04qmyjWlEsrOpndmJmKzHitYsiq41jFz1XbWgmQqGySGZGInzaWG3O9cmd6YjO30nimusaMZbtCCeJ6nH8O3cvOsKFFftNNN/Hwww/T3t7O9ddfz6c//enU/j/96U959tln6W4f5B8v/h2fz0csFuOcc86hpaWFX//iYSp9s1P21pYfwZkfXkxLSwu/+c1vuO+++zj77LNZunQpl156KZdddhnPPPMMJ598Ms3Nzdx6660p9S6vq44Fi5v52te+xuc///mUDV6vl8cff5wPnb6a5RWfpTe6mZnvixpSmt/5Hueu/gSzZ8/m//70n8z1nUI/QTrDr9A9/gag8/jjj7NmzRp6e3spc1QylhjmC1/4AmVlZfz617/mscceY+XKlcyePZv/+I//YM2aNaljL1iwgOuuu46vrv02c/3/knHdBYsVeQAiXr5peCTr/lo9n3YStGa0zGxkR++T7NmzJ/VMmCsa7MQ+zMdVHTuXfazyClSCOfJ5yOOrYshW4iVWOQ+QLfAjf0ftMritvs92wicNjbVUVvnZunl3xjUA6xa6uXjghIRooTHq+f5m/abDp86oz3n14DNqTdP+QWaFVDmGWtn1uq5bu2xNyEXw5Pp92b8QMTIyxvR6v+WLuoTJw6k5Ocx/FLNPaOHSSy/F5/Px3HPP0drayooVK7jzzjuJRCJcfPHFnHzyyXzjG9/g2CNXsmzZMnw+H2+++WZOx5k7dy5btmyh1bOUd955h8WLF9PY2EhXVxc+dwNdXV00NwuxDQfxRJjVq1fz+OOPY+R66Nx8880cf/zx3HjjjcSTMWQHbgYH+2hsbCRBjMbGRg477DC2j9/EQKydhKbT6DuG7vE3WbhwAcFgkMH+KJ+o+T+MJoI8NvQLPvrRj3LNNdcwY8YMdu3aRaP7MHbseIfZs2dT6awlFB/kd3f+hoULF3L55Zen3N75gq/MUzBtIN+r0DTo7S5l3qdReN2zMNQ3zRgB3tB1fbNqYxVyedFOVKD9+1wPlk+0B59Q1uTKTSt62M5gMERoeg89bFdmfoqG8wJi5pxLza8YT2xrNSsG6yxOkVqiip1ZtdIzM+JUk/tEZkzueFMttLyPnL0smHRLufGlWVSZ1hr2Oowf91llqSXG/4/X8Ot//C/r16/nv/7rv1i5ciU7d+7k5Zdf5pJLLkntH41GDfnDnZs4/cyTuOiii/jmN9O2VVBr2Jw8t+lRf2pdLBbD6XSyM/ImZWU+otFoalmFXkmYHpOGeILPrf0kfr+fe++6jw8HruSN0Ue5+uqrOeqoo7jhhht4+OGHkzKX4Ping7PPPps777wTXdcJhUKsXLmSiy++mA0bNvD7Wx5gunsJF164ht/85jfM96xgLDHIo4O38rOf/Yz777+f7Rv3UD/Tj9PppNwFRCGRSKChUe1s5pJLLuG0007j3//937nks1elzkvc6yfHM+/ZSyFDnaqGTI+HHeQmLObxzcw3Hk8QDhuub/GcitaiAA0J+9irHbtE+qyMKWftk3keKtlXWeNAPMMqNitrDIhtxLMu1pvPr0f6fmXFtW0qP6w8ZSovgsDmzkeJRCKp+yDqz824tMVo1iOqEOTfFNV1qtGraKfwmnIY/ajzbcXkoOv6nfs6Ri6CJxdqmubWdSMVVdO0U8jMFn9+X4041BCLxdnT9d5LZs8ndo7t4N7uu0gkEgwODtLW1kZTUxM7d+4kHo8zPh4BNOZ4l/Hggw/ypS99iaeffpq7776b5cuXZ4zVEX6RjvCLeJzV1PuXZazbsmULhx9+OJoGJ510EuvWraOnp4fGxkaGHLtZsmQJmzcbE9nPfe5zHHPMMVx++eUAPBy8GafTiZ5wsnHjRqqrqwFoamogFAoRCoX49reNH8XrrruO9evX8+yzzyYbTMCRZWeyMfIUZ555Jtdccw0n+7/CE0O/4ic/+Qmvv/4699xzDy7NR0dHkFmzZrE7upnjjjuODRs2MBTfi9PpxBHxsn79eoO55zn7u79vkNHRKTX7KWE/YfHixWzYsGHiDUs4ZJFs1XwNRpb3dAzhrruAH+i6nlM3lVxc318GTiadSv4YRkmWhuFr/zrw68kaf7CxqvrKlJqQYJJmyKzgqKO/TF9vMDUjn21iEvLMXlYnMs+6s5q4S8sFMmbSFrNyOU6sgjiOaOsn1JHM2aLyrF14AMxNJgAay9NMVczWF1Yay06dZpQ5TfMaz1mlO/1SWTjLmOR0dBkvumNb9nDPjs30HLmKL34x2dpxYICbb76ZxsZGdu3aRZm7kTr/UcyIz+Omm27i2muv5eabb6azs5PR0VE2b95MIBDg4osv5oQTTgDghhtu4PXXn2HYO5v5rhOJRqOMjo7yy1/+kj/84Q/E43GuuOIKdF3n+uuv5+6770bXdb72ta8BcMUVV7Bt2zbuu+8+1q1bx4033shtt91GdXU1ZWVlXHONUW//6U9/mueff54XXniBP/7xj+i6zltvvcWD//sgn2r4Fi7NzZPjL9AR6ea4447jvvvuo8a5kO5EB/MXz2HFihU0Nzdz9tlnc//99/OnP/2JG2+8kXvuuQdd17nyyivRNI0//vGPRKNRfD4fX//615nuXpK65zVk1z6b712WGhzQllDX6do1Imk3fZ7T1MyOvseJRqNZrT9V49rlZshqdCklPgtvkXmZ2Eau/87wcknnJGdAq/I6LBmu4vdBtsmqbaZKxUwurrKruZbXzZp2Mp3eStrHrOPxv2z/XubxbJQX94fmQ75RgK7vHwHHA18GdgKtwLeBKuDfchkgF9f355MHEBgXza41TTsao0XlIf+iniz8FTkn5JWQA85unsVvnnmD1Y+uBmCmdw4XNa3l+YEX+fl1P8PvMRo9eB0VLPddyI+v/x2PHP8Izz33HH5nIyPxAR599FEeffRRHElZeKOTkkZDi8bq1au55ZZbqC0/ihceeJd77/1k8sgOwME/n3qXRx5ZjYaTWeUrWeibwcrlZzKWGMoY6+KLL07up1Hlm8u0iuXcfLPh+m72Hcvq1atT53Re/ZW4THFkt7OCt17dyluvbmd2+Rm4HRV0bI6y8sQzieoGMy1z1HB8xed4/ZG3efDB83HhYXHZ2fi9izn3nPPRieHRylhacRozPcpW8AcN/gpv0bUaPdQwOBiaeKMiQ6G5voHVwFJd1/cmP7dpmrYOeIP9+KKeo+u6uYhzo+m/38DorPWeQywWm3ijEpSovfv3nHvuuVxHdWpZndfHOU3ncw4wlry0tV44v/lcAH7Zk26aUuaoZo7/TMp6KlkWMF5WZo/HxzPqgBNMmzaNW265hRf+uY6GyhNZ5juRZf4PZdQJB8oWEihbmKHfvaT8jBQTNWfIZrMNY2LQ7DuOZt9xKVvKnZUZW7mdfhZVZvaLOcr/CeU1qixrZHnFB4A0Gx71GccR7UXlFpkHG4mETiRSPH2OD0WUEskyYUiI5tuKScPKBZCzayCXF3WFpml+XddHAHRdP9m0rhyjM8ghD7PLUJXkIids7djWCZjEAhTEwsrFZOf+snJ5m93acrJaChbNOcyQmwYId6HZJWoljSkLnHzSd3LWPv9WadT1DkSNl8oJTUZ955xvmHIOTzfaOB4eTr58Y4aM+wntxgvppf7sZhafrDaOdfPO61PnUddYxbu9Rra3+boJW1oCq0joMQbf8OLWfJxScTEOXKkXtLlRiFgmXJay2IedKzBVvpO8puIaixIpFVQyqVmIZ5b5iXuVGtf0NU6FYKSSutlMyxjjif5s8Qw5/CLOx9yoRSRfmd3A8d39LK28MPUZMp8ZuZGHXLpkvqZWSZUCdmWEciMP+bxU44qJlzhX0YBDtX+ukr3mZaIJip3QjLwsKwxm46IWz0Ll3Ch9vUHldRPXW74utvLBpnEKVe+sAF3ffwQe0jTtu8AuDNf3NcnlOSEXCdG3gLMs1r0fsG6vU8Com5bDW7GEA4qq6onngA7NxXTPEqa55+PQ3pPVgnlD8/RpE29UwgGFy1V6pt8D+DrwOHAr8BrwM+BJ4Gu5DpDLU/AT4BeGDCcP6rqe0DTNAXwM+DmQe+eGPEJVlgHWwvYf8lxKWbmXsdFszWc5yUUeI6NxQVAtaZg1m9fSs14rwX+VOIuALBco9hVMq82UICMLIoieTYJ9CPbdG067EdbWGYx3y7DhdxICJ26XkVTmOP3/ZNnkvPDnqf/uWb0WX9JVvHfcGGMkmu3DStng8NLkqFY2kJBLiY6vzWwvqip9E8tE8o8oaXkoZBQtmIUkxDjiWsrynXaSkikWJT0LQpbV7M4WiXkPhYzxRcLY+6oNedbtw+kEPdlLoEruMp+nGVbMy/wcySI+AJVVfh6Rnl8zS5SPJdui8izJsqACstdC3t8MO+lNwfLl9rFCKEY03zFvIzNoKyZstkksE+Ous9k2ZZuUMGcnaTygDaFpGp6QI2NfM4S3RuUhyYBNw5lCRKG4vjVNOxn4qK7r3wCuTf6JdTcCy4AXcxkrl/KsPyQ7Zf0P4NE0rQ+oB8YxlFXunfwpHPoYHAxRHahUvqhLyMZEbRw9HXth9+5Jjdm+ycZtXMIBRylPI79wODTad/fk24xDCgUmIfotwKoF9FPA/wE+kstAufajvlnTtF8BKzBe0nuBF3RdL0gBWjvpRDFbf3Xj/+Dz+QgGg1nbiZm3YHsi/pVL6YNVjFrFVKxm9qoYmly2o2JIAoIhyoyo2mEwaVWMV0RJhFTlp1sNNZPeIYMV3nXMKLz0MADlP7kbgNXdxnWOdRhiDb3jht2CjQuxDpBEaJKoqvXT1v0UkE6wMpCU0ZTijoKliTamoWh6TDlWLEpaxLYZ8fkphMBSjFyKmKRYeXK+t4h0IwlxLcWyFHMPZjebEPcqVUKXHE9cF2G/+ToKz4BgT7JUpvl7ID/DywJfZHhrulxP5c2ZqFmFeVs5Zi97mFRynXKZovzcm59PuTFOyu7kv4LxqhqFyNdDtk0Vlxf7inyCXMqdrGLhVt/9qqoqjqk7h4H+IVsJVDnPxm584X2yi48f6igg1dOjgUcs1j0O/CbXgXIOgOi6PgQ8muv2hQ6Xy4Xf70+9qEs4+Kie5od38m1F8aK2oQpyFjksYX+jtraW8XAp676AUQV4gDHFOjdQqViuRNFkKpglRFHFkaTZaDgcNrobjRglNCqZP5Xwgt3xITsj0y7b1WoMwRLsxBvk1nc9ikmoaOgg2OUJybjtOWQ35RjsM8ZZUV8BwNtJX8rSGuPfN19rzBr/qT/UAbApZLDvYMR6JiyOJaQwdyR6qU/UpLwW5tiuYECCxQqWKc5dxCFvXfLt1D7bho2471ODRja/YJepcU2mmUu4wLoBg7nNoszYU3kKWibrV2Xfp7wF4UwmLeLaANVRYz/BnMWxxbmqnh85m1zlXREQ52RmZYGadDKfKutYfu6tPEzGYGTsb5VvYd7HSixIwBxzF/dTHs8yJwT1d8IMu3a1Yl9xzuKziqmuksRRGmxi7GL8ZYEvMrepmcc2/hdDQ+r7NpHnTXVP7dr2FgIKzPX9LkYi9v8q1p2VXJ8TiuZFPVnEYrFSxuUU8fcTv0HDmzH2Nbq2Y0v3frGnhKmh1I8jv+jvHSYUKgmeyCiUZDLgFuB2TdOcwJ9Nidgfx8gAzzkRu2jeRC2BVbbMVyWH6N9bwzAD2estMrjthP/l8cVMXLAC1exabjcp2686jhzLEjXZYlZvhsh4FtsKmdAUuzVlrx8dMJj0C32hjM8/2GD8e3Jj+lFqLY8y+Ni7DEUz66X7k3HV0bjxTTPHUwUrFgy3Rq9iekU9Q85sNtHen5ntLVimYGsio/uJznQylIjXCsYuZ3KrmKKoUbZiaeL4AAOJzHVCKlPOFTAzb3HMVHxcYnhtpjxGc1a6eTyZrZnHT3ltBm0aX0i2mJ+p7Zu6srZTMV65dlnAzEitMqoFhFfBnHcgM0KrtpSQPn+5+kHsK8Y3Z31PBLvWlXIWtl1FhrBNWddssc+64B0sbV3K9Kr3KfdRQfYAqK51Zoy78JpyQGa/yEMZuq7fo2laE3An4DUlYoeB70wmEbtoXtRTgct1SLfZfs+jtqmKoW2lVqP5QqCuohSjziMCgQB7d+bbikMLRvesgkkmQ9f1H2uadgdGInYd6UTsSf2wFc2LeqIsR9UsvamllnU7XrHcxy6+ZrWNgNxKT2WriGHKtquYkVXmp5hlm2ssZVYgWJ9gYypVrfXJnDoRNxU11oKphuNu07aeDBv+urcz4zjK2L4iKxpdV0p8ypnaMovaNGwcxxwPNv83kAp0qeK3YpmspiXur3hWhG0APVom+5OV4WRFMTPMsW4zzDaJY4k2k+LeyLkI5ufX6pm3awYh0BD4IjV1lZZtU82QPT2q1qoihivWpRTzkpUGInva7GVZ4s6sfZavrfn85NpkmYGq5FgnUkmTPWXmdcKrVoP63plh5QmbqP7ZrLNu5Ykw26l6BkrIP/ZHInYuymRFi1KMLr9o39qHw1E4s+f3GrTSpc8r2tra8m3CIQl9H/4KFaUXtQ3ad/Ti8bgn3rCEAwK3x1l6W+QROzZba5mXcOBRX1+fbxMOPSSbckz1r1BRNK7vlsAqW/e3cK2a3ZyN3kbK9aMzlpshxkvJOiqE/+WEGFliUsBOVEGMa9f0QLZFFoAwJ5OlXG1ify1zfFUymXAdyy5KsbxtMO2mm+Yz5n9y0pgYV8guvmVKlpLdgwPaEM11NYzuHWNsZDzjXOVmGHK5VqrpSCL7fmS5EBWS7lZlO7IspapkT3abys+VlZvbDLGPWdBDnNPxGOcoSutEQqDKBStctrLbXZaQNdsnnqMetlNZNROSifeqfs5WyZkpoRDT90HeX048S30/+rOT1eRrJ9z97Yr9LW1LPuN2rnv53qgS7OSELTlpTbW/LJuaapxjsy/AEXOX8seNagliM+QExpQIjuLZtmsiUggosPKs/YYSo7ZBRUUF9Q01+TajaBGNxkoJfXlEQ2Ntvk0oWvjKvIyNhvNtxiEJXZ/6X6GiaBi1GXazX/NMc2BggLLpb9EefCuVwATZyS0qhisjNVtPznKzmZ0iwUcqq+lJZLJzMwsX7MKqSYNggSqkRBwSmeUoZvYwIE1jzYlUADsS6fFrwgaDEE0nxLbvC2SKjpiRFp4x/lmkLyXamaArtpVRMn+wUi0fnZklSwIqJmRV3mK3rezZSLFAxfWXPRfCayGXT5khmKHsKRH7qFpkprwFoTkZNsjiJpD2dshJiYLp2j2v7cEn6A3FaWC+8dlyyzSymK/pnK0EfeR9GhTlWQKy1KdqTNmjId9fMyNN3avkfRWM1Gos1TJVWWeW/TZs3myjGcNaJ9u3dqQ+y+WckE6qFL9H4hkYGM981lSlh8sCX2Rd8HalPcUOTdMuA9YCRwL36rq+1rRuFUYN9CzgJWCtrusHPDe/xKhtEAwGiURKEn4lFCe2bNmSbxOKFi6XE7enKHnUBNBI7MNfjugEvo+kxa1pWj3wAPBtoBZ4FbhvP56cJYrmSVikL1XGIwXk2buYGXcMPgRkxkWtWlbaih4kZ7tyi0wBVUtAq23sWg5mt4A04pxmBqxqx2m2cZENC5TjnSIuXE26rEasa0uKKomSK9G2UVVGco5k54A2hL/ay7zI4XSPDCjlKEWwyqq8xhzjlWVAxTapciCbwFdKyjMpm5pmptmMTm54IsezzbFkYUNN8nqrSukEZOYpx75TMEmWyiIsdpBbMK6qvpLp9XU8FXpSfRyyvVBy7NVOpEMeT9UoRGbMcrtO83dW/m7YMWkB+RqK6y6eG1UpnWzTIkVZp2zTGalywu0ZNqm8eMKWivIOugYGLG01xnshY5ns1amRm72g9iAVGg60C1vX9QcANE07DmgxrToHeFvX9T8m118H9GmatljX9ZzlQKeCEqOeAIsXL863CUWLWDSG212KUecL02ZU59uEokV1dTWDgwXZnPCAQiSTTfUPqNc07VXT3yWTOPwRkG6Yruv6CLA1ufyAomgYtTnLVBVHkmfcYna6uvJKWgIu5exdhl1muKqRhnm9yiZ59muX+SlDjJfK/h7MZt8CVlnTKog4tmB2qjiqLPUoYqWCLasYlxyfXRe8g8p4JWc1/hs1epXy2gp7ZYlVcX4qL4K8jcy0zbDK0Bfbiux1SLPiNjKZlVVzDvM4Yh9xPezus5wtLT8jKqY0YUa0aZm4/k8N/4TI0MkYzX8U56OwRf4uLTJXGkgZz5Npsyjuw7oJtlPtk4tgi5w/Isf0lYInElReLrFMFuYRUGV9i2M697QSDoez4uiqeHOWnUnGqWwdKh2nCNGn6/pxU9y3ApB/8AaZRBesqaJoXtRTRTA4nG8TihbxeJx4NJ5vM4oSmqaxfft2YFG+TSlKaCX9AEvksR46BFRJy6qAA/6SKKoXdaqW2HyjtcyYsRwD7O3uz3l8uxi1qmGH2SZzPNiq9abVmOZx5VpTu1Z64tzTrD9zZm5baynF+81sQWSjCtnGVKaydDxzjFeO6a6qvpLKQBmeFhcDg0MZDECOZ4tGG3JMTmTNi/EgXSNtF6ObiI2pmLaQEE19lq6xgFnKtE3Kspfvt6r23Uq21o6Fi+tl1a4TsptWLK+7hPrqaiLDxkRJPE/meKd8TPEMiOxpVVtNmbnbtYrdlziq1b1TZeqLZ3kynioZudgqZ/mLOv+MXJGkLccdcRSx4Jspb4uqTadsr/zMqWLtZvZdqFnfeayyehv4vPigaZofmJdcfkBRilFPgNlzp+fbhKJFLJYoxajzBI/PTV2DTB5KKCG/MJpyHFhlMk3TXJqm+QAn4NQ0zadpmgv4f8ASTdPOTa6/FnjzQCeSQelFPSHGwxEqq8rzbUZRIhKOMhzMbqZQwoGHy+UkVgo75A17uvrybcKhiX0QO5lEtvg1wBhwNfCZ5H9fo+t6L3Au8ANgADgBuGC/n6MCReP6bgmsSrlVVS5dubREuOYSPQ5mli3gsV3WJTPyZ1VXK0s3skngI1fYuaaF21FOmjJDTjySy7VUblbZrS+72M0uUdFHWbi6rZLiVDCX+jh0jdhIP30EM7ZJufKSbmyrkhOVBKcs66gSoJFdw3JCmEgMtCsPkt37qu5ZchKTXM5kdh2vskhWywqdKK6tnByoem7ekuRvu2JbGerppFcbyFhu17FN1dVKhjhHOaFQJWuaSjyzGEslXiKXFOYiLCRDDhXYPRsy7L5vYpwe6Rkx7yOWHTF2FQ14s0oZVdfWsoufInFP5UIvIRO6rl8HXGex7nHgoJcClRj1BBgOjjA2WhI9yQcSCZ35C2fl24yiRCKhE4uVGHU+4HQ6mTG71JDDCvtYnlWQ0PRCFkDNEZqm6eC0ne1aYW7VYdQ1VLNzS3fWPlZ9olWYTEmXgJWAvqo8SO63KzMW1XlajW9XZiYgJ6qYPQKCFclJZbJtudhy8Yd+xGvPbcraHrKFU6xYLVgzoSyGTXYSlJyoJ6RRRUMM1TjiGsjlNeYEMfk6ZDUVUSQ+TSRDqZJCtepTrCr1Ecvqm6rxV/h4ZcuLyuPZQXVN5VIuAdk7pCqFksv8VCWB8v7yd9Qu2U6+plZCLqpxZftVXij5OHZJpwCBmkrwb+Gtt95SrrdCLolumc/U7ei6XlDp5TN8M/SvtH5pyvtfs+k7r+1DeVbeUGLUE2BkeJz6xpLww8GDbvqD/r4hdD1u+ktPLKOJMSKJUcW+ilH1RGpfXdeJJyLIk9RIYpSEnmaRCT1OJBFC1xOmcXTG4iPE9ZjlGRhjqOzQSejx1F+mPeNZ9ui6jq7HM/Y3ziOR59f9QQAAIABJREFUte3+hstdilHnCy6Xk66urnybcchC34e/QkVRMWo79mqF9uATrFixghdeeCFrnTyeXZxtopaAZsj7WElk2jHfVZK0oR2TkMcXTMhcSiQ34ZDHNTPFiRipCqPxAV4I3UF1dTUej4fe3j5qyo/AWzlA3960N8Oh+2n2LmPn6FMEAkZwNxgMUu85nIHYJsBJQ8UJOB2+1HkNRXezfewxwElr2elsG3mUQCBAMBhkdvkZlDunsXH4PqqrqxkaGmKG7yRG470MxrfS0NBAT08Pje7j6Ay/AiSoqalhaGiIctcsqnzz0TSNafpsdo09y97Iu7hcLmKxGOCgJXAmABWxStpGHsDpNGWxJ5zM8K1g5+jT1NTUMDAwwJzyM6nxzCOuR3hj8LepsWrc8xnWd6R21eI+Dq86nzcG78y4jnZ5BQKyUIwZ4tlaOv8c4rEEb+34s3IMsJYItfNSTfR85iJGlAs7nsw+snfILsYujyPnd6jkOq08YlZervIKL4mETtgUclNtOxkJY/W+8YJk1F+aNXVG/Z3NhcmoiyaZbF+wdevWfJvwnkcwvpuzzjqL8847D4CGhgY+8YlP8I3/7xusWbOGDRs2AHDRRRfhnr6bv/3sb+zYsQOHw0F5eTmf/exnue6663jxxRd55R/dlDl8qbFDsT18+9prePHFF3nkkUe46667CAaDLFiwgDVr1rBjYICf/vSnuN1u5s2bx0UXXYQnGuXBXz/Ili1bOPbYY7nwwgthc4Jbb70Vh8NBS0sL1157LTvb9lDuaSaSGMI3bZhHfv0Iy5cvZ8aMGYTD6R/ascReTj/9dC666CIATj31VL7whS/w5JNP8oc//IGenh7mz5/PBRdcgD/RSMfYS1x88cVcf/31NDc3MxDdQltbG6+88goA3/zmN4kGQwfsfoyPR0kkCjmqV7iYOaeBjp3Zk6gSihdF86JuCaxSztrFTFgWCBHbLKq+knkLm3k10pbaxyqDWxV7tWsKINsnjy9naE5G9s+uCUgqI3mCxgUZMS9JKESwMiGSYvYiyHHZlJiJJG5hZtjvjP2ddx5L8NhjjwHwl7/8hfr6ejRN4/777+cHP/hBattbb72Vyy+/nJ3beonGRyj3Z8pc7h15A9BSDUlGNX9q3fLlyxkcHOTyyy9nzZo1fO5zn+PPf/4zTU1NnH/++ZxxxhlceumlfOtb3+K8j1xAhTPA+z6xgnPOOYff/e53tLa28uEPf5g5c+Zw4403cv7559M/upEFVVewe0+C97///Tz5pNHI4ujqC1kf/B0AR1V9lreee5XPPPUZXC4XL7zwAk899RSnnHIK7e3tXHXVVVx44YWsWbOGv/z2KfyNYQ4//HB27kx30Nu+fTtr164lFovhdJTRVDmQxc4yvBbJbHIhZiKkLFWyqXJG/uFNRzE8OMaS2qMy9lGxNZlN2jWbEP+K7Ox9kbK0lX2VYMc25az4yUj1piooFLzUqtGPlW1gVAlUVJXx7K6fK+01ezGERKvcxCUXZl2ogieGC7ugnAD7BUXzot4XVFSX5duEIoAGaHzqU2s4//zz2bZtG729vYRCIS666CIWLVrE9u3b+e53v0tTUxM7thtFO2esWonL5eKll17C6XRSV1fHrFmziESi+DweahoqiCbmUFNTQ0VFBccccwyjo6Ocuuwj7Nmzh3POOQeXy8XQ0BCzW47C7XZz8skn8y+nfoKZfUtY532IL3/5y9x7771UVFQwffp03ve+97F48WKWLFnCYYcdRmPjdI7xL2Dalq+w2fkYgUCAlStXEtnpZF79bFpaWqhwjjGt+zS2hEJ85jOfZuPGjcyePYcTTzyRRCLBaaedzsjICCeeeCJtbW18/etf5/rrr+fUU0/l9NNPB8DlcnH//ffT2trKDTfcQF+7G2dfJS1zpjHiqWIkNEpZewVNs2rwlnvwjYzRvrubWbOacHtd7BmeS2d7L776+ZSVlTHb10jvnkHKK3z4PE3E4nH6+wbxeNzUTKskGonhdDnQHBput5toNJq/x6OIMDxY0g6wQx4lRPOGonlRL9KXcnytwQIFOwDr2bOZ1Qb0eMbs2CrGlIuI/0QtMiG7JlRm+eKzKmt3ouOaIZiQYANZ8TZTza58boKFiHEFa3N5nIw7NGKROEcEPoa/sowm9zSCe0OMV/dRV1fN2b7z6N7Rj17ppKbR0LNfsvtG9mhb6Opq48477+TKK6/klFNOoampiddff50bb7yRaDTKypUr8fv9zGhpJDIWY9WqVZx//vl84AMfwOVy4fP5cDqdxGJjvKy9QtWwn4GRrawYWUw4HKarq4tYLEbbu5uZdXgFXV1drFu3jrq6Oga7R3ibt+nq6uKZ558iEv8zP/rRjdxzzz38/rd/wqE5ueWWW7j44ovp7e2lv7+fXW29VO0+kccdL+FyeHk9+A+CwSDPPvss4fDfWbPmAj74wQ/yyCOP8I9/vsyuyA6OP/54/vVf/5Xt23fQ29vL0NAQLz//LsuOjxrx9vp6NmzYgK7rlJWV0dvby9tvv81L/3gLN25WfuBYTj75ZH75v38iUd7HuyYvaXvwNki2kRZ60YPBEC6Xk86hZ4hEIni9XrxeL47adxiJjuELe/G7ynC7XPSMPodf81Pv+wBl03zc1/kDyr3lfOaM63G5nLyxcx1ul4vpLQ30htaxc+dOPBUraJnVyIkcxZ6uPsLhYebMnUFV6HT27NnDwMAAcxdFGR8fxxmez2AwRFVjjGgkRt3uOkZGRpjf9H4i0SjOsIN4XO1yz7X+3vxZrvuX69DNmEplht2+shfBquJAru3u6x7M2kauxYb0uVqx7slUehQSSi/qEpRo27gTt9tFNGqd6VvIcLtd6LpOoMqPr9xDRdRPeDTC4a1zKSv3MTIyRmRzAwsWLODwwEJGhsdIdA0ws7UJn8/L2GiYqm4/tTOqcbmd9AfH6OsYpLLSj9PpIDwWITIeZTAYIjgwTEW0nlg0zmDXOLs29QAwkniHV8ceIRGDBDHOPfdcQqEQg4ODjI6O0rE9QpVvLs/veJUXX3yRRYsW8cgjj/DNb36TY489lq6uLsbHx+no6GD7diOnYMT9EmOjSxkK7yUSiRCLxXjuuef43ve+x02jN/HJFZfz6quvsmHDBq6++moGot/iX046n9dee41IPMgPf/hDdu3axR133IGGC5ezjLvuuou77rqLD3/4wwwPDzOS6KO7/im6Onvw6y3SldW59957uffeewFY4DuD5uZmysrKkg0vHLz22mtcddVV3H777Zx00md57bXX2LlzJzNmzODEE0+koqKCI444gnfffZexeB/jOKmqqiIcDqNp9kUbIlE0FosTi8UZHR1Nfo4xMjJCecJ4IYTDEYIDRl+BoaEhhoaGaHutndHQOL17jVnAG4PGNe1JNg/auaOL9uDTAEQDc2nfnU74A9jT2ZdaD9DT04PX62VmbR2xaJyB/iG8Pg8+n49IJEJ9QwC/v4yqWBM9XUFmtNYx6qskHB4nsmEDLS0tzJu+lGg0yo5tnUxrrGV29QLCYxF2be1hZuVMPB4P9e5qBvtHKCsrSyb0FR5a5kyDzfm2ooRDCUXzoh7QhniiPztbWlaHkpnu8Y7jmVYd4MnIM6kXtVVWq2rmbFXXmdXuUrIV0mpWor2frCQmZsUOhwOn0/gBb21tZWhoCJ/PR0tLC60Np7BrZ1eKBQF0tjcTi8epbTV+zJt21zE6GsbREGJwdJzn2x8mHA4zVzuLcDhCJBLlSP0z8Ba8phk1zX0E6esNps7nnNpv0tll2J1qOxk0frw/UjEH3OVsGjKkWGNOo+xH1CMD/KVnD2vXruWss87C7Xazfv161q9fz2mnnUZ/fz+a5kDTHFSXLeSrX/0qP/zhD/n85z9PPB5nw4YNjI6OsmfPHi677DIj8Qu47LLLCITrGElsxeVyEY1G2bx5M+vXr+d//ud/CIVCXHHFFSRiHh544AHuueceIpEIl19+Oa2trZx55pls376dU089lQcffJC7776bG2+8kTlz5tDX18dVV12F11HFVVddxfXXX8/AwHbuu+8+fD4fd911F//5n/9J74ZqAp45rAvewebwU6w5/QJuu+02RNB/w4YNbN26lbvuuouhoSF+8pOfMNt5Mn/d8Cabw09x3HHHcf/99zNz5kxuvfVWxsfHicVifOUrX8HtWZxqQmkXTxXPuMgnsM3gTq6LzR9g28YdtnXOsmKYnNEtjgdwTLWRRLeuM/kdjBrHaeQDNDrB2VZFGHhDexaANpOCpocj6dkG69aZYrGbjfPwlXlJxBMMjA4QCARoDtTjHy9Db/gYzdOnERx/k23bthGua6Z5xjTmhWLs2rWLeDzO3LlzicViRIIthMcizJ3/eUZHxhgcDBGLxkkkEsTjCdvKDLumKFa19Smo9gl8EbfblZOCmFwVkvK0JW2zY9ZGzs5jlmMfqij0Mqup4pB4UWua9iTwPsCt6+kCVU3TrgD+FWgAdgEf03V9k2b49G4DPg78X13Xv3qgbZw2rYZdO/cc6MNQVlaG2+OisrqM6TX1OJ0O6jfX09raypymo4jFYoS2uahvrKbKdTqJRIKNGzdSU1OD1+slFAoxNjZGNBrl7bffpmtzWnRi547M2syO3T0Zn/f2GQwrGDQkO4eGRg7w2aYxw3M0f/rtY9xxh/FjM79sCasbvsybz2/l9XXrKSs3FMq8rgBzYh/j21f8iP6YkWjlczdQ7T2c2267LfkSNFDrXkC39iZzllSzatUqbr31VsDBDTfcAEDA1UC17xhcvjL++tvnuP322yl3VFNetpCezg5WnLCShB5Bw4HPUcVi36lcc/V3iOphqp3TmVX2fiK+EF+/4jrKnHXUOBq54JNr0DQ3uh7F7axisf9jprPUUuzakDDQAAe3/vAu9sa2p5bPKl8OQFiLcsnaf6XZtxy6E3z0ox8FoNLRgLdsLh73gWuD63a7iBWAByk8ZpQNhkIhQqEQ7cPGJLFzoJfO9l7ag88AoA93Jb0Az6T23bVrF06nkznTziKR0HG7nZT7y3C7XQwPj7Jg0SycTiebdveyZ88e5s+fj9vtJhQKUTNUSUNzgFjwKPr7+/HFvXjcLjyjHiKRfVMyHBsdn3ijYsUkmmu8l5D3F7WmaZ9W2aFp2heBi4APAe8AczGE0AHOTP47A7hV07RVuq4fsE7oI8ExqlorJr2fpml4vW50XWdGQwOVleV4u+cRCoU4bvlCdB2C/SEG+oY59chTcToNoQNf2EO538tYaJzRoTD9/f309fXRnawbbmAO/b3DrDO5Fvv61CL+tR7l4rzigf7vc+6558JLR6aWlTtrWFbxydRnwbYTA80cW3FYRkZ9pbORY/znpxhKvf9oAPpHN2YcZ7b/DHaMPElDw0wuueQS9L4aoAdwplTTRCb08oqPs5yPA0b83eeuS40jGGm108vh5aelasoHtCHKmUbAk84V8JQ1Z9jgwmf6pGE05CFj2dF+oyRNZlzTvEcwzXsEYLCyhWVnpNapKgz2J4aHR4tCQjQej6fK6Lr3ZLa0feVFo3the/BNwHDfCywLHMPQwAjtiXbKyspwuZwEaipZNn0ZLpeLTZs2MX/+dAK1FVTgZ/emHhY1LaKqqoqhoSHa29upqCwnHo9jlrJ3ODQ6d+09wGdd2NCLkFPnVfBE07Rq4BXgc8ALJBm1ZgTfdgJrVS9gTdPej9HF5DLg58AfdV239OMIwRM7TCSUoPvfpaOjA4fDwVl1/05lTTnx6hjB/hEqKn00zqhF02D39l6GPXtoml4Pus72bR3E4wlmli8gNDTGs7t+TiKRm7KU2f0O2XKd5h9r2WVvV3pllXwiXO3iRaSSfcxlfLnX8LkNRqvQseTv/ve3fod7772XO768LrXPB6cbL+ZbutKynADLlh/GulfeyVhm5eaVRTQW6UsZT4ywN7YVn6OaGucsgg4jFisn05gFW4TQi1ySZHWNVeNZuYxVsppWgiSyyAxkh0VEmEHlXpWbS1gJ9KhsiXg2ZLyYBMxjWAnx2EEu3bMbfyJxFDsXfi62TJTYaVf+JR/bLvRgDn+VlXsJ6a8biXVOJ7Nnz+bohtV0d/QTi8WJz3iDxsZGXnrpZYLBIEcv/BjDQyM49gaIjMd4pe+/LX87JhJKMq9bpC/licGbCk7wpMk7Q//8jKkLnvxoe0nwZCr4IfBLQPYptyT/lmia9jsgBvwe+K5u6Dk+BqzBCJP9Gfj7vhridrvw+8voj5TT1NREQ0MD8XicaDDA9BnTCExvZOfOnWzatImm1lo0TaN9sIfh4CihoTHad6QZbQ+d7NjemTG+A2N9PP7eZyn7Ex6Pe5/29zr8TPcctZ+sKR4sXLhQ+aIuYd8wNjpOVzAdgurt7SUeSE+YeoIb2bJla0pkaZe3i6rqCmprKwgNjXHi/BPxeDwMDw/T0dFBa2srZWVl9PX14R/yUeb3Mj5WweDggRPDKeHgI28vak3TjgNOBq7AeCmbIT6fBRyJker1GMaL+VfJl/XnJ3O8mTNn0lixgkgkxgmLTwRgYO8wW/vfYd78FjqDL9Pe/g4Oh4NQKETDyFnEx2PU6VWM90CH/g7PPfccAL/rNZhKiiXFrFvRyWxgMnJ/YhtzUo75syqxJ3VsifWZE3+sjm0uW5PHl0u27JJcxLmmRFFGdX7Zfl3Wdk8M3pT67wEtc5Ys7B4bDVseR762QvhB2K0SYREQ2whmWuFOe1xEE5FVFoISKo+GgLim4nrJrMy8j7xOXNPGcuNr+XIoU4gD0mVwoaQOt8ykhUsf0m59q7ao5udKZvxx1zpUMD/bVu0nBVQNSORrKX8fVJ6fXNpnyl4nq/HtJFblz3as3Kp1q8rLYtUgRMX+Fzctprs7nUH/zq6HMs8nKOyvoTu4LrVtZWUlW6N3UB2pprm5mTmzKmncM53qOj9bfX8DoK2tjVXTvorb6+L14CswSEGi+BzfB/FFnYxFCymcfwB1wBVJV7e8+Vjy3x/puh4Egpqm3Q58EPhVDsfSgA1APVAB4Ha7CQZDJOKJjG5MvQzQ2zNAezDtcg2FQrQEYvKYuZ5qCQqce+65KXlQgAsuyOy3vu5vQzzxYPbLQS77KeHgQCQUlnBwIerqJ4vhYSOkEw6HUy/vVdXLGegJ8fTg04DxG9Y9HqS6rtzo0GUsGwGGgD7gKL0Amj+UkskOIHRdvxu4G0DTtADQD9yXfAEKOtOuadpq4DUgwhQnT7qu65qm3YSRhLYBGI30zwGMmJ9KNGCRFFeVY4u+gRlZM++UCMGgdbtLIVpiVyphhYni5oINAtRI7FLArlWfYCGypKTMBCAtimIuxwJTYwcFU/lIy0lAsh3kE6A/9XbyeN8H4NmvpWVZNw2PUENV6jji2Kc2r2RrsIOX+/476/ytZChllgPWrGx28jzMrThlqVMBu/iq7J2wij9nHFvKCRDP0UsWzS4Aft/9fct1AG+NZ1cmWElZqhijsPvokXNpCaQT6uyar1hJ0NolvGUxUEmYBKzvmUpwSDyHE4mWZMRtLb5fshdKxcKtWLJKNlVAFjJSPacrFp7Mjk17eGXvfyvtVo0v/7bI3gXzd//v/f8J/RnHrAeWAosL4SUNUBhW7l/ky/U9CEw3fZ4JvAwcC/Tquh7RNO0+4Ouapr0OVAMXAzdljWQBXddTbYX2BxtOFOM07hCA0+XA5cl3KkXxoXXOdPp6S6z6YCNQW2GpzHYgoOv6GPBi8q+EQxR5+QVMztxSU39N00QNS7epjvoy4L+BTowChl8Bv9nftsgxPjHTlDNmT1lyCl0bX1Amg8kMJWOGbpEdapdhmsWCLWb+5nhcg5bJwmQhFxWTFyxEjk+qGJewV5YQFbN5MYsHaAgYyx4KPZ+xjYi9kqyCeSmUTqqpIZ0NbT7X1/Z00hHqUGYbC3vl+LNgYqqsZpkVp8RZtPT1sRLukJ8ROwlXeSzlOjKPY5e1K9i3kMGVWzKqmLuVx0SMnxFDJjOHYjCygfbg01njqto4Cli1Tc2AhYdB7GMeX278Yhs7luQ6VTFv+fhWWeVi/NRyhexoLsJFMnIpqWsbfph1wWezjqO6bnLbWFVjEFB7ECfj2TuUoAPF2NPtkKAquq7vgMyWKLquDwEXKHfIA4LBIIFAgL17SzWO+4pV1V+j7a+5NXjo7OxkfHwcSn1RDipCoVLWcD7Q1tY28UZFjmJ0bh4SL+qDAfPM2jwLFlmoE2VA68PzaKlZSFk8WzDfTkZQZjxWMUvzDFeOQfck1M0/VK0xU7YF5ij3Me8nM3c55qiqI7WSLRSxXvMyuZ56flJI66XQEA8+9FxGjF3EaeWY5cqZpzM6FObPO9NtLlPsQvIiCIYtMqPN8Vo5rp3FhBTXR84il6+BuSZaxJfFvjJzt2XheuZnFYuSnwHBpuT7nMGUEpnnI99vFTsW++/atStjebu0XdaxmFwNs+wFUcX9s6odbLwHVutktmxGqjrA4jdAPLeqZ8MqVm0+L3lcq6xv83PUWduZkfVt13LTKpdCfJcWkelVg8zvZjuFJyGKXpwxantV/xJSiMZiRCKlNn8HG06nA5//EJRXe4+jtbU13yYUJRobG/NtwiEN4fqe6l+hovSingTmzpPLvUs40IiMGz2RSzi48Pv9E29Uwn6F2+tibGxs4g1LKDrkVUL0YEHTNH1Z4EtK+T+7ZB/ITLRaeuo83vjHVsukEOGONLvxrNxeIlFGJDOpEj5y6SktH1suL7NzE8qwc7NNJOMo3M2QFtqQXdCy61Xl+pavrc/nweV2UT6cZhqqkjPzcrvzkGEnEylwacu3gXRynApWx7LqsqSC7AoV9xKsQw5ycpA5wchKCtUOYv/y5eO8/uq7tn3TrcazExeR95VdxqrvjjyGHFIB63IpO8hJb3JiqV3ildV9ULn95Z7YcjhELPeVu9npbSMYHM5KVrMqgTNDiN3IJXyqkjrDznjBSYg2eGboqxunLiH6i/aShOh7HkN7D143qRIMeL0eyivKiA/n25Liwu6D0CmuhEw4nA5cJoW8EtQoZBf2VFE0jBqctqwgF/bV0NCQk/5xLrKgdqL+drNzq/UTMV47gX67BhsyrOxWnbPM8u16cgs2I7pm/bL9e8bymhpaWlrYsGFDzjbJttltI2DXYMNOdEIgV+ZjzW6sG3mYx5VZt0q2VkYu90x+BhrmDrBuXbZSnIol53LuMgvOpTxoInZslSBqhp0nwyoZVB5fVTqZS6MWAasmGfJztHDhQoaGhtizZ09O98zK2yF3hlNdpx620x58rOAY9TTPdP3chqkz6ts7ritIRl0K/k0CCxcuzLcJRYdIJILHU0omO9ioqqqaeKMS9isCgQCDgwUqwH0QkdCn/leoKCrXt2qmL5efyLEy8wy0ObCUloA3qymD3aw6V2EBFXuaSJxAVWYmIM/IVexbLm+SkVFqkrweE8UaVcfOYhRS4wrz+G1aZhmbw+EgMlCBoSqrtk8WpMilEYlVfFJ1bvJ5qDwa8j2yYoFmW4UNMhsU+9o9O3I5k+pZke+V/NkczzbHe8GYIKlgvm7i+loxUvN5ibI4K2+FijFaMXXVtbVqMyrDfA0abEr0VMdXQbBXOQ/DbKfcRtaqcYgz3EidtxK86XXyd8bOGyg+yzKyVt6EiZqqlHDooMSoJ4GBgSHc7qKa2+QdmgY1tSV2d7CxZcuWfJtQdCiCKOR+gb4Pf4WKonnrtARWKdsTykzKqqF9A3OIdZQzjdmWDRdUQhVWcc0stqM6qFXTAMVMfzLZoVZxTVmURWbpqm1T0qEmUQVxzlmCETZylAIyO4jHEzQ01ipZgSxIIq6xuD6qeJ5dtr0My5jiBOI1k4UVYzRn0otMXvncrIQ3zLBioippTHHOsabejHwMK4ZqBxW7t5LbtWOvE3kGzJDFXWRWa/6eWd17u/wR+bq/FbButiPH/df128fC5x99Oux2Zuwrfp+EPKid1HDqmpK9rYBVvLxQoFPYLuypomhe1PsDVTV+HA4NevNtSQklHDg4HBrV1dX5NqOEErJR4LHmqaJoXtTtwScyWJ+AFTtWMeHOriYCgexBJtOUwyo72wzZFqt4s2p2PZFtdtvIWKSIUcsMRW4OAWS1LMwls94us/e5dRtp5kOpZRPVrtrVsirtlY6fqne18CjYsRGreK2qzelE2cZPmh4124YUE8CqHaLKvnXBO/B6vXzS821GAotyOl4u91d+xmQGLcvOQrZ3y+448nhZ2yqer4li0CkJX5t68Fw8WOLaNkzwXezo6KCB0zKWid8JlUaDwER6C6rjleLThYVSjHoS6O/vp6ys1B3iYKOysjLfJhQV4vE4u7eV3EYHG6VGKLlB34f/FSqKhlGfU/vNdEtDm9iuHeuIRCJ0dHRkzVhFHMmuVvP4ZNMKYYOAnXLYRDN+83LRllPOKM0l61xWtRKz+BrSWcFWs3S7ZiNy5rxgFIKpmBufWMVRlwW+yLELFvKrTV/PWGa2YSKFMvP4MlJZ/ib2LDeDkI9nxzKtWF+7tF7+b9Vnu9puu2YTVuPZ1RSbmajP5yFSvZeegS7Lhh4qWN0HUJ8/ZF8nO1U/O0wUk1aNYZUbIPYVanntg+l95euuin1b2WaFlsAqnE4Hxx59OC+/8JZyG9V9tlI8k49rVfu+Lni7rV2HIoo1Rl1i1JPEjBkz8m1CCSUcUPh8XsorSp6jg4mq6gqGhkrKh7lA16f+V6goGka9v1BVVVXKJTvIaN9RuuIHEy63k1g0lm8zigoul5OePf35NqMgkChgF/ZUUTQv6pcTL6eTOhTJQPIy2R0m3EtHls/hmeDlmTsHMvfJXJd0HVqUZthBdlvbCT7ILm87F/5E4h/is9mVlourVd5fuANlF6MQpsypYUhgFeWecdvrZiU2kouEqBDiUO2fS79xq/GtmnHkkogmsEjq2Wwexyp5oepcAAAgAElEQVTRze46WYV55GW+EQ+xsIMG5mRdW7vnaZGisYaVXVblWmaI8rTfJ0MRwt5FNk05BOSyS9X1F8cUTVeEbG3qOzuYfZ/lpMpcwgmyDapzH4xXEovFUt2z5PFS4jQ2CbECkwkVlFAYKLm+J4n2LSV2d7DRNL0+3yYUFdxuF16fO99mFBXmzp2Ly1U0vGmfUHJ9v4dhZge5lJFkzfSTM9lF9a2w2fhvO/lDK1hta57py4ImuTQ/kG2R5RFt2auQrNSk5SZYyaWqICceCXbTELBvSqAat4E51NBMe/CWtN3Jf63YmGD/5qQwldiNeV9Vwo1gblYtGWXZTcguN5LHlO+LeR8BcTyVIMlEz48dU5ITnsyfzc+Wt7qRCNBDt+XxVTYIe1X3xeo7J8uymiG3a7QrQ8r2xGRuo7o+Yp1oX5rL93kitmpXOpa2LVsitqamhuHh7BZxYjzxLNuds5X9qnvWwJzCTSbLtxF5QIlRTxI+nxe/359vM4oKXbv35tuEooLT5SQai+fbjKJCMBjMtwkFA13Xp/xXqCgaRt3D9hSrkstvwDrmJM/IncEAK2d/he6OAZZ4m4C0jKDcelAFqxIWVXmH2DaLCSna76XWJf+1K8uyug52IiC5xL0EUqIVye9FLq0YVWVSho2wt7pVaYvVOYrjmfcRbE9mG8pyIykOnMUcbc5HLkXLis9PorTLrpRLwI6pT5RXYNU8Jtg/zNbuRxkbG0tfH5sYu/ydEWOpWnqqjmcew4yJmnLY5QpYxcCtSpXMx8lFJCjLuyJyHRTji98FOb5ttr+rqyvLPjNUNk1GNvg9gyJVJisx6kmip3OA8Ki6s1AJBwazZ8/OtwlFBbfHhdPpzLcZRYU5cwpTe7uEg4OiYdQNzEnN6u1iT1bZqSJe6XN6eH3893QGO1PSgnYM1wqWUodYs3sxM7ebXctZ6kr2J8Xv5OMKmPexa0Yv7yuYQypWnAMTks/DnIW8sGIhLj3dum9RdfLckixZiL0IARW7GKOViIw5S1jO9p1MDoJdFrAMK2lP1b5yMxGZtari2RNJcFrFqOsbaohGziToGs7KEFc9czLSuQ/Z61IVARbX1Px5ovaWqtawMuyy7lXNbcz7qL5nEzU2MbcOFTkZqsoC81jtwSfwer3KbWRPk9KLZvH9Ul031b0vJBgx6uKj1CVGPUlExqLMmzcv32YUFbo7B/JtQlHB7XISjZXqqA8mRkdH821CwaCU9f0ehpkxiexmMyaKS6VibDocW/URRgKLJpyJq5ZZMRTBCiFdEy2zJVmS047By3FJ1azaitEJ9mbO0pYzcOVxzSxZ2CVnAVtlN0N2PNjc5q8s7OPBwf9AhtxoQ+AcC7lWM+yYhZVnQb5nqvs8kUSmah/B7GwbO0jtFIUtspSlKkYqP0eqe2Zmr/rmd5kx/iH8JGxbe1rFdO2ey4navdqty2obacPuxX2Vz32ihiRgLcergizfqcp/sUIq76XuXwjvraAlkP6NkrO9VbCq75c/m1m+2cvRHnwsZ1sPFejoJUZdQm7o3FXKQj6YaGgJ4PF48m1G0UDTtIJmH4UGX5mXmtqqiTcsoWhRelFPAZqCkZdw4BCLxEsv6oOIUvLewUVNTVVJsnUSKLm+38NQiVNAtuiHlRvJ7Gabd8qV9OzabunWVCWfWCWoiPXmTlIp25CS1BRCCVnnIR3X7EIWEG5U2a0pIGxRlQdZuddULlGrrj6qZCk7YYq2rS1Mrz6NUVc4Yx+r8VX2y/tYHd8MK7esXIakQi7PhkAuco5ZJTg2iWETQXVe5vvYVH0U2+LDSrtVIRS5NEwOoUC6E5VALuIccnmZneCJ1b3I5dmTx7VzecvPp/wdtUs8szruqsO+wJ5Ow0snl07KY5jPU04cFfvIya1WyWyFimJ0fRfNi3p/opAL5wsRIyMjeD0lAY6Dha6OXsCXbzOKBr09QYaHS8lkucBoc1l8v79aMbx0NE3TlwW+ZCu9adXEQlV65ZwRYqB/iPBYJkuQ9zGPPxE7M5eNyA0FrOQ7VQ0G5KSaXM7ZrhzFCnYSqFYCDHbXwirhrD34BIsWLaKVD9HXPaS0V9VkQjWW3TZW4h9W9pqPb8ZU7oOVjSr7ZS9CLoxXPp6VJ0KM19RSw1/fuklpm3l8q6YldnKdYp3ck1x1/ycqmczFC2L3TFs1SrEr6Zro/pq9CLJnx0pgZfHhs3l34w6lLbn0k7eSj7VL9OxhO+3Bx9B1vaACedWuZv3kyrVT3v9vwRte03X9uP1n0cFBKUY9BYTHxknEi1FxNj+IRCK4PCXnz8HCjNZp+TahqBCoKSWSlWCPomLUAqpZu4DcSELFOk44cg1Oh4NdO/dkjJGLyIUdW8oVghHZNYUQyKUloxUzmmgc87ZWs3bz+HYCFvI5mc8jUFPJYe6l9HcbcdNcJEnNdpjPzc5uq3V2bD9XTObZELBjpBOJgditsxPCADj99NN5+umnJ7TX6rsylXitgIq9ylAx3cnIjFphIplWyC79k200P3Piuohn2ur7NW9pjGeeeUZp90Tlfqp9VkntRlVeEMOe2wuSUa/YB0b9aIlRFw+GBkNUVVfk24yiQTgcKcm2HkR0dHTk24SiQltbW75NKBgIZbKp/hUqisafWKNXZYtDQFbGs9xYQzXLfmfXQzgqjwCMphyyqIJq1itnsObSik7AqoWfin3IYg12TMtKmMKuZaI8W1fZLDMH+bOKodpl5U9zT8M9cxkDm4Yy7JePbWd3roxOBSvWdLxJpEaW9jTbr7JZZZtV84aM/XNk++b9ZaauyhA339eRkZGsMVQML5W1bGq+YbbFLoZvd3z52Cm7cxBHkc9ZbomqsmUi9m3eV447Z0n2miRFrdrGyp9PW74WV3h3xjJL6VBV1r0kdiOyvFXnpWreUlgo7C5YU0WJUU8Rvb3Wqlcl7F9EIhG8Xne+zSgaLFiwIN8mFBUaGmvzbUJBocSo38No095Q1hSLBgxi9imYnTzrNbOGhsAcjjluPo8+/3dA0YRCIftnNW4qS9Qk7TdRFmfKdoWEolUNsYotWLEbVXMIq1i+XYs9mdXIrNAuHmlmLF6vm46xbfQkR7KSSJS9IOYx7eJ2VrDaRpxzT8I612EyY6brkecol6uWybXctse3YOFmmJmsZlL0SdWdB7JtEuNktSaV7rPKbtleu9aw8nMkYP4ey8+j+Fc0k3lrfE/GcjvIY6li7XKTFDk+L+9n3legPfgEFRUVzB6dQ9zhzRhPXA87eVarVqqyl1DVvKQoWmK+h1A0L+r9DYdWckYcLESjcQb631uiDYcyuru7821CUWHP9v58m1AwKNbuWUXzom4PPpGeaWrZvV9lhSeZdZhjT+3BJ0h0HA3UZWwrN6EA6/immNmKWHJmG8rM+Jc8e7dr5GHFAu3qX2XbVJDZTC7tHOXxL235NgC/bP9e1pjysc0Mwqk5aJrrTr2sZXYmYnJZqmMmL4XcjlBmaXbeAxl25zxRgwq7OmHZk2E+H9kTIO9rF4OVt1VVNJjH7e/vT32W8y7snhE7TQKrdpzytTR7rqwaaag8EOKc5IY7HeHR5HLrOnarDGuVt0tA/i6q1Oqs8lIEzqn9JuVVPv469FP29u/NGCeX1qdWTW6ssr8hff8Ktc0lgE7xlcaWaOEU0dnZmW8TigbxeAKvt6T1fbBw2GGH5duEokHd9KqMUEMJE2Hq8elCZuJFw6j3N2bOnMnenU5isWKSttTZG91OWB+C5EOfSEQZjw+kPqv2AeOHaDgWZG+0O2OZQCQxzFi8nwpXMxqO5DY6scQYLkcZw8MhwtE+Enr0/2fvvOPjqs68/z3TVWfUq2XLHVdsSsBADDgJCYEEbPPSnCwkBgKbhEBgwyahLMuSEDYhQCDJklBCqCYhlJhqYrDBFGNw73KTrC6NpBlJU8/7x8wd3bm692pcZFnW/Pjog+eWc55zbjtP+z2J88ORbgIRL22EybaVg8glKsP4Is0EpJ+ILYjVov3Ax+RsCWzGYcnpJ0ssolT22943PoGUklCkk1DEhxAWnLa8xH5vaLfm+DTSMEaW24XX6x1qMdI4yjGiCE/0zJFGwRWK2cgobWjs5DK2t2yktaXDMF3oYKENjlJgVttYgRHxg9qMakTAYEY6EmsvwhlnnMHEiROpqalh+b9WIAkzd+5ccnNjpscdO3awefNmLBYLZ511FqNHj2bbtm2sXLkSIQSnnXYaWz9sZEbWBSqTnEQIyWmnncbHqzYSinZx1llfxO1288orrxAORxlVOo7K6kIqKyt59dVX6enppbi4iHnz5hGJRHjllVdwMhpfaAdTp06luLiY99/5nMk581Vjlbid5YyfVsKsWbNYu3Yt27Ztx2q1093djd1uIysrg2nTpjFhwgTWrl1LXV0dLpeLk08+GZfLxerVqwkHbGRkC0488URcLhcrVqygvSVKjifK6aefDsCuXbv4/OPdFJbHgoSymEaH10dZZREWIfD7e/C2dVFSlk+RtYreniCyWZBXnE2tcyeB3iCtzV7y8nNxOO3sbXmPpqYmJld9HafTTm3bCpqbm5lQ/lWcLge1be/R2trKF0quxu6wEo1E8fsCWK0Ci9VCNBLlw8Y/IoSgwn020WhU17Q+z30j1VNKeX3zG7r3XJJpWmPSVQK3lNrl6mO1z1EqBDQHQlpi5mJQt6H37CswIpMxO0cLMypaBYpJ/ePox4weU8b7n//VsL2DeZekkgqoPM/DjfAk21Yij8++7KDPf7/jt8OS8CStUR8k2lt8ZGVl0NrSMdSiHFGMGzeOffv2cdFFFzF16lR+97vf8etf/5r77rsPAJfLhc1m46WXXuLtt99m/fr1nHbaaRQUFPDqq69yzz338I2zL8Vqs+B2u3E6nYTDIcLhIPfffz/f+ta3uOCCaykpKaGzs5MrrriCW2+9lYsuuojp06ezdu1arrrqKhYtWsSPfvQjgsEgVquV6667jptuuolZs67kjDPO4MQTT+Tyy77FiZUTCUei1H5aTHFxIeeffx6nnXYaTzzxBFOnTiUUChOJSPbt20dGhpNLL72EU045heeee47S0lL279/PHXfcwccff0xrayu/+c1vuPTSSzl5/MnU19dTVVXF3XffzQUXXMD5F1zNuHHjWLt2LYFAAJ/fT9eumIukOKuccChC7d5Y9HEkEiUUDFNX20xIZCGlJLMng7bGLhpsLcioJBAI4m3vwu6w0dnZSSgUorcnENPoQ6HENbFaLGRkZGC323Fm2MlxZ2K1CmjowJnhIL8oB6vVwm5RisPh4IQpU7BYrDj25iEllI7OJ+I7k3379lHkdFM+tpBTC2bS1NhGpLaMSZMmAdDU1IQnmM3oScUgBKK9k+bGNkrHn0g0GqXYlkdXWzfVmdVEo1Hc1iy6fQEcThs9kV5CgTCRNPVuEkLhdHnLA0V0BPqoR8yHuoldumk7qZai0x7X3mEjK5yRtE8viGagtBQ9jdcoVcWM3EIrp1ZedUCJEoS2RiOjtvzlbM9iLBaBEILWjA/IycnmnXfeob29nYqKCubMmcOpp56KxWJh9erVlJaWkpuby7XXXsv27dtZv24rggyeffZZhBCceeaZ5Obmkl/hpsW+h3OLbyQYDNPe0sma1keJRqM0Nzdz7rnn8pWvfIVoNMpbb73Fxo0b+f3vf8+FF15Ic1MrL738IlJK7rr1PvIdE6nteZ81a9awevVq9qzr5ZFHHmHVqlV89vmnfPb554n52LRxOQ899DtuuOEG8vLyePHFF+OuCwuVnnnU1S/jwgsv5Prrr8fj8fDuu+8SiUTIyMjg+eefp729ne9+97s0NDTwz1ffIhLtwePxMH/+fPx+P+FwmObmZrZu3crKlSvJy5hJhojlJOd0l8cmu+/7ShO7CIXCbPE+2Hd9u6BEju13zSo983C6YH3Ni0nXtaBpNAA7OnYAsKnhc2hIvq7qNsLdsOsDhdAkpuVu2beHNd7lAOzkds4oOIMVK1Ykzquvr0/8u8ztw9vsA2Cr2IUQAntnIQ6nnUc676S3txe3201mZib12TvxhrsoLMpjnHsiAG9seIDy8nIuqryRSCSC2O4mrzibHY6lSCkp3L+AvPxcCgo95EZL2LO9kRmjTiAzy0mgJ0RbSxctYg9Wi4Xt9a8lFixGGrRZSqP2mVTSnbTzdiBFavSefe1zqwSiAYweU0641jj41IzEx6jgiFlqplGq2/CBRIr0hzqNFCGEoKQsH6+3a6hFMYXVakFK8Hg8ZGdnxzQ3m5OiqjxOl6fT3d1NbW0t1dXVzCicSKA3SO36YkaNGsXs0okEAiH27WyiMr8Sm82KEJLf/OY3TJ8+ncsvv5x169YBcOeddwLwi1/8guLiYpYvX867y1dw1rxTueqqq1i5ciVvvfUWnZ2d7Nmzl+KcMmiMsTFJGaXL10UwGKS5uRm7PWaKdtmKaGtro7CwELfbTVNTE1mOChoaGigrKyPQM5Z9PR9wzTXX8NJLL+G2j2FU5mk0BzfozkVUBpk0aRKXXHIJe/fu5brrrmPBggVAhFrvmwBMmTKFhQsX0tjYyDXXXMPFF1/Mgw8+yNKlS+nt7eUPf/hDbF6Fi5/f/h/Mnz+f3/3udwCsWbOG8ePHc9ZZZ3HDDTewYP7FZLjPHMSrOziwWq0pHyulJBgMEQyG6OiIWZeampoACHvGAdDV2Y2fWKxAk7eJpqYmWnbHMiYmyZl4m30s71gOxD4yLc1etm/dS5l1HEKAv8tCICcDZ4Ydh8OG0+KgrLwQT+VJNDQ0EAqF+MKMGbH2G9vw+7oZN3MuQggsvaNpa+2gZNwJ9PT00NLSQldXFxkZGbgcDnp709S0wwnp9KwhhBDiHeAswC6lDMe3HQ88CMwAuoD/k1LeqTrnduBaYAWwSEqpX3NSB3opIP00UK9+Okzi/ABEnGuo9S4/oIIL2vQvZZWt1p6MyDnKs4qQUjLFXom7OJtVkadpbY2lddx4+kMAvLzlPrq7uzlt9iVIKVm3/Z+0tbVx0pSL6OnuxdvWxZL6X+Boc5DvOIVIxImDPOq2QmjrNgAcTKdxJzzy6X8kZJrtWYwv3MA230ssXLiQcePGce+99zJ//nxCoRAXX3xx4tg5c+ZQUVFBJNrLJ598gsfj4eyzz+att2IEMcFIB7Xet+NzIQAZM9XGEY1GEUIgoyFycnLwer20tbWRnZ2Nz1dHbm4uXq+Xvb5/cNlllzFz5kyuu+46SnPOoEFuT5r3cvdcekMtdAX2ANDd3c1PfvIThLRy2WWXkZOTw8MPPwzA4sWL6ezs5Kc//SkAl10W84XdddddnHrqqfT09LBq1Sr++te/YsPFL//7t9x555189NFHPP7443z4wWref/8DQPLOO++QmeUgP1qOzeJMidY0Fc1Ne65R2hnQj1gmka5l0L+C9vZ2QyuRkgoHA5eU1PPXatvVktQk013Gzw9HCQa6knzH63Yq58SOia6K1c9+r+2JmCwNyc9Xlf8LeDKduPJq8Tt6KC0rpNeymXA4TGHnAipHldAV2Uhvby8LWm+jsNyNzI3g6+rl812ryc7NRErI6CrC39VLE7t0qSz1fOxK6phCrqRo7sVUE2nKJE/VjPaapELQYlRkRy+1S215UxanaRz9GPIPtRDicgM5ngZeBM4ExgArhRCfSylfFkJMAE4GRgM/BhYBfz4iAqsQPgT/ktVqISPLSWfIidudRX7VDDIzM6mpqaF6fCm5+VmEu+ayZcsWxo8eRWFRHkW+Iup3t2Jz2gh0B9m+dzs+nw8pJWu9O4E+E+iqbiXQJ/bx3byhJtF3IBAgEAjg9qRuQorIEPvCbzFjxgxqamqYM2eOToqaFZA888wzLF26lNWrV7N27Vrs9j76T5fLxdixMdNuV1cXzc0taCPA33vvPRYsWMCGDRvo7u4mEAiwevVq/u3f/o2XX36Z0tJS9u7dy4IFC/jWt77FD37wA8aOHcvuXR9ht1sYO3Zsop/a2pUUFhYyffp03nhjK2+88QZz585l586dSCnp6urixivvpDkc+8C/8847ibEFArG1XygUoqqqCq/XG/eph5kyo5iamhrGV01BCEEoFGLatGns3buXsWPH4na78fl8WN3Di/pUCMH+/ftxUjjUohxW9HbHCrs0ESMX2bl9H7XejwCo9HhoafZS641VsMp2n4a32Ue76MSVYScQDUIn5Be4Ka8qoKWxgyx3BSWlMavA7l37cTrslFUU0dQVZvv27UQiEcZUlOPr6sbWbjUsi9vl7T4Coz+2MBJ91EMa9S2EcAOfAN8GVpGsUXcDJ0opN8V/LwHWSCl/IYSYDPwGWEjsQ90opfw/k35kpecrSdGWCgaK9jbThI4rnklrU2fiGKfTSTQaZeaE+eTmZhGNRtm4659MmjSJyyqupLcrwF+2L2PU6FLaej6nubmZ+vp6srKyKHSdQleXn0gkOmDZTMWfbURYoR6Hnr9bG1VuRpDQB4nTaednP/sZFRUVbNmyhYcffhi/3891110X10pjJlO3aywudyfXXHMNo0ePZuvWrTz66KO0tbVx1113JVpcvXo1f/97zOeam5vDCy+8wFfPOQ+7Q3DTTTeRl5fHvffei7tjGpVzJDNnzqSqqooHH3yQmpoaLr/8cqZOnZpo79Zbb6WoqIgf/vCHiW0PPPAADoeD2bNns/SVd7E6ern55pvJz8/nwQcfZOfOGsDCPPeNdIT3s5l/cPPNN+N2u3nggQeo3dvKqNGF/Pu//ztOp5NHH32UNWvWcPnll3P22WfT2trKI488wvbt25k/fz7nnnsubW1t/PGPf0TUjaLXlZwelkqZQkMrjuG1SS3Wwei6q1FddA7HTa1m3efJlokDKQeaSrlUo0IqesQzRvEdehHoZqVCB5JJgVksSCpwOGKLs/xCNzk5mWT3ltDTHcATc9Mj2nLwtvoYP6WcyuoiXlv+Nq2tXrJzsuj29dDZ6Wdf+9spy60tN5pKGVhFox5uUd9ZtiJ5XM6Cgz7/U+8f01HfB4G7gd+TCH9Jwm+BbwshbgXGAqcCvwKQUm4RQqwD9gDvA5cOppCZmZnk5eXR29uL3W7n5FnTsFqtlLgqqdnawNy4P2z37t10dXXhcjloafbS2eGjpbWF5uZmvjD6bABaOrzx1fv7ifa7urqweY5uXzcIAoEQv/qfR4lGg+RaShnj+AYbeY6HH/49au6cHFc1QX8H993zVyKyl+5gPSAoyJrJL/7rEboCu5PaHTWqgocffpjnn3+eTEc5WY4KHvjfp5AyykT7WeQ5R1FqyeSZh18hIgNE7W5Kc05n2QubefuFjTQGYi+mgqzjCXQE+cV/PZJo3WYpoJco77y+noKs6dR3ruTOO/+bLEclGfaiJLndtnKmRS7isbuXEiFErz2fkpwJWBrt/PI/H6WbDpy2fMDCU089zVNPPZ0YA1j4+99fZPmrG7AJJxW2E8h3ju5nmj7aYbNbsVjSPEiHgmAwFuDWsL+FBqA4voDd0pxcn11YBI11Xpqb24mEI0gpqRhVzBi7jeCm9VRWVpKTk0MoFMLf5KGwOA+rxUKH10dTYxsZGRn09PQMyRiHChKIjsBgsiHTqIUQJwJ/Ak4EKoFdJGvUc4C/EDN7W4E7pZS3H2RfEqz9VqVWq4X20EcUFhaSk5PD/v37KS8vx+PxUJQ1i507ajnecyIZWU7WdayhYX8LFquFnQ2vE4lEuOi8G1m1cm1KWoECLS2oXhENo5WwkQYD5iUStW0a+bQUrPH+kQULFrBrWX/z5xhLEdCfQtFMFqPo1NmexYSiPWwPLMGV4STYZWd81rnYLK5+x35pwg20NScvZhSNR0sdqjcH2oIsRpScejCaL7MI4oHaUCOV8opGJRm12p9ZoRMzTVFpLzs7m/LycrKbvqjbhpmcytzq5eFr+zHLlNAeq+0nFe1bC71rppVbe79qx6OWU2vV0ispqn02lGdHeebPnXYz/q4A1nYrXZFGfNEWLFjJs43CITLxRmpZ41+SNA63201eXh6dnR1kZ+cwduxYpJTU1NRgt9sZNaoKj3MGe3btxxOqQFijbG5ZBVEHVksGdR3LAMmUnP/Hpq7nhp1GnWkrkhNzv3nQ569t/3NaozZD3Bf9x/jPFcSIsq+XUoa1FHpCiHzgdeD7xHzVpcALQohGKeXDB9P/9OnTsQXyGDO2HJvNhq/LT+2+Jlz2Mvx+P9u3b6enpydRvrLSE5uavY2xCNbdos8fG4nE2Mi6/T1kZrnAzzGHhQsXcu+y5YPej92SwSTXJchoFFuOy/C4olJPvw91GocfwWCQpqYmsodakBEAX2cvgd4QrcENyIpa5syZQ09PD//85+NkhSooGGfl6+O/FjvW5+Pdd9+lo6OdyspyzjjjNLxeL8uWLaO7u5uTTz6Zzz77jJqaGsYWZ+Bw2glGwsjCnXxj3vF8+OGHdLV1ctnXL2Hy5Mm88847bFo+tONPI3UcMRuXlPIpKWW2lDKbmKn6ROA5IUQDMT81QK0Q4gxipu6IlPIvUsqwlLIWeBY4N5W+RAyfCyH2CyF8AOvXr6e5qZ1PPtzIqpVrWb92B+1tnWzdupXa2lq6u7sPuCD5zh21I7KI+eGGVTiwWYw/0gA57owjJM3IRlZWFoWFx1Yg2dGKqnHFAASiPsaPH097ezt5eXksWbKElvAOFi1axNy5c8nPz8ftdgPw05/+lB/+8Ie0traSn5/PzTffDMAdd9xBTk4OEDO9+7q66e0OsnHTei644AJqa2uxZfSwaNEiPvroI+644w4AhBC++HvyczEsSMcl0UP4b7hiqHzUHUC56vco4GPgBKAZcBH73l5G7ANdDFwMvJNK41JKKYR4ENgMrAV889w3JuiX9QJyjExmemZU5d9Op51I2Ard5m2AcdUsPaRSS1rdFvRVDTIKTNKTTW121EvVWOP9Y+Lf89yxF2V8ZXMAACAASURBVEJHJBYJPcYaM+OtSRxrTCKjTRNRZDMzq2qP3eR9mTXelbr7lPrfZvOfqFOseRUdiMlbW+83ldrD2vb1UpbUQVHQFwykvr4DBW4lZNQZh5HJWy2LkjIkSjrIys6kpkU/nUoNbd9mtb6V88/W0Ixqayer+1HGoq28pTeexBzGn/F+AVUm1aeUeyKVYDhtWpl2u95zkKhr3ZZsCi/OzKM+0E7IlcXbb75LRPbi8XhYtGhRoo233norkdaYn5/Peeedx5w5cyiwjcUbfpMIyZknZblf1MjSV4vg4osv5qGHHuKNpcs44YQTlM0lwCzgODkMtI4YC//w/eAeLIbkQx2/IRIBZEIIRZ1qjPuog0KI+cA9xILNeoBXgP85gD4S6VqDtVCMRKKUVhTSdgxw6i9YsICFCxcmfl9yySVJ+7cuDbHi5fVHWqy+/rduHbK+RxKEEPT0pExJkMYhoMcXI1uxWVxYLS5uvfUW5s+fz/3335845uc//zmLFy/mzTffZN26dWzevJkcSzGZZSF+dPXttLS0JB1vhvLycpYuXUqJfVIitVJK6QdWxv+GASRR1eJjpGCoo74BkFLuRpNMK6V8BzjpcPWxVaxNBICkEtiT0JZMgkQm82OmH1fNfd7vA+YpNNrAEu2qXa99Izn1avsqciv0oIqWqRdko0eZWPs3EsFjiiZ987WPJc4pphpEn2xKAQYzjctQW0pBS9PKnVtUT2trK9Fo1DBAT4tUCjwcUtEDHSuLAuVeU66DXtCUXrqg+thUqG7N6l8nNEZNoFmiXZ022/d+iJSSfMepSdv1gr20QVJaSlo1FO24SWON6GdV0ZPJoDCOHjnKwQTQ6VELG/eTXPxDqzWr51+ZFwWT3PH0uPhz+/ctr9DY0Uhp7hzs1izuuvNXCQKdJ56IEbfcddddLHv7XazYKK0soLy8HF+0jWCTlccee4xnn3026UMdifaypvORuGxfotn3aWKf1+slNzeXNcHluN1f0h1rGkcn0nkYhwApJQ1724ZajBGB7OxsnE7nUItxzCMvL4/s7HQo2ZFAVVUVAO3dmxg3uQBnhmDy5MlAMplSfuY0puUuoqG2Db/fz6JvXYrNZqO3tzcplW706NFkFjZQVVUJOubh119/ncsvv5ycnBy+/vWvD+7gBhGHUpF6uOKo0KiPFNzW2Iu+ONpfk9OuuLVaiJKqoUa76CTT2kdooUcuYlR+r7+ftf85ehSA6n6S0pI8sf8pqR8K9DQxbfsJkheSNRe1xquMXzn3ncCqpGP0tBFFu0/IlMKYjawSec7jqS4qpbOzf4j9QKk5ahhqcipox6Sco/X/Khox9GnFfdp28rF6/Sna9kAlGtXtajW4VLRC7T4zLXN8+Zfo8Pr4bNsLurLpjWmN4RH9ZVCg7VvvHlTmW7n3FF+y3nOhbU+vSIYW2rFN0tx7egUstHSgZmlmik9asT7tjsbGdn72HAAiJTlEPDPZ6Hue448/nhtuuIHW1lYuu+wyhLCxYsUKdu/ejRAemsVuPFlTufTSS1m8eDG//e1v8Xq9LF4cG8OSJUsSNL5+v5+7/+dear1vA1EyMzPp7u5m5YqPKC8v55577uH22w8q03XIIZEjMo96RH2oBwOllfkMM06LATHbcw1rXtM3Nw4V9u1pIBBIF1AYbAghCAZCAx+YxiHB5rDS0dULQH7mDP7x/Ae88MxbdIcaAEFZ7hf58L2dWISdLEds1ee0eQj5Ivz+97HCMNmOUTjtBZTknMYLTy9H8q9E+/mZ02j2reaXv/wlLS0tBAOS0tzTePbZ53j22eeoyvjikR7yYcNI9FEPKYXokYIQQs72XJP4rV71GpGVmJGYqHHq6TNpi1cE1KMdNYrCVqAlPlHjQPyqB0IOYUa2An2aeoUrM7HNF4o9HErUtxGVpV7fWs1FTyY9WlQ1vjrlJrp9vfg6ewekhdTzfRtFPB8MKYdZpHgqYzWSUyuLHh3oQPdCKmM3k3/q6G/S3d1LXmhUkvx6/Zm1oyeb+hyjeTI7X3uP6PnjB3oOzCwEeqQxkGxNMyI40SPfUd4H05ylAGTZBb+vvYMFCxZQu6IUV4aDro7upPaVcw6EmEc7JuXcj/1PkVUYpbGxkcKsE3Ha8jTnR4Yd4YnLlidHuQ88rkTBjra/DUvCk7SP+hBRX9c88EFpHDKcLgeZ2ea51mkcOvIL3djs1qEW45jGwoULych0kJU7uPfz+KyvU9g9j/LcL+G05Q1qX2kMLkaM6Vu9YlfnrRpFlJqtwNWr3WhjOWWWryOlTER5Nqk0AWXFPUmT55nwg8WjVfX6UWQwK7ChQOt3VGTUUpZCnz9V6xfUruLp6Gs/od3E199amcyoK7Xb9SLFlXaMNK3PWv6K1Wpll3dXPy1Jq2Xo5RJr5TXy8aYit5l2oy2MoEDPl6+VUzsvekVXjH7r+f2NjjXz0wdtW9nXtpYprkVJ2/WumbZcpnY+1NqlEZ3sQONKajfu90/EMXj7z49WTu1zoKcda9s4kHtDe+zJ+X3PmZvY+2BmfuyhybNH+X180sYUluHv7CVP5upSlCKS3wtG8Spg/LxVeuaBAKFKqFE/B8OxzKUEonLkmb5HzId6sFBQUECuL5OO9mOQR/QoQnNzczrq+wjAYrEQCoVilENpHBb8ePMd/bZtFEtYt2cdgUAAtVsujYEgh3X09sFiRH2oldWo3kpcgTbSs5+WqcL8/P+kQOay2bOJpvb9NEX7+7gGKlSg51vTypSKn6qfJqWJOtYr7alEHWu1TbPcaK3GaBb1bRR5a1Ygwcgn2hn9JPGhNopeNivXOZCPN2ms2m0GcQt6zGRGPnazc7RQxqNEzUNfERQ9jVk9DjO/sTZ/Xs/fvHPnTiKRyIBWEfX5WquRMtd6z5k239gs+l6xAin3qQI9H7VRPrYSna1AsWCpZVKgvX/0crONzlFkUceaKNdPj0zI6XQm6p3/67XtLH05xjdi5odX92cGs7gF5T2USjtHK+QIDCYbUR/qwUBnazey5NgPyBtq2Gw2iouLaWxsHGpRjmkUFxfT1NQ01GIcU5D/Oo4l/9oIwN/bYtSpHz7YTDDOwbDU98GQyTb8IIc1Z/fBIh1MdoiIhKO6ub1pHF4Eg0EcDsfAB6ZxSEgX5DgyyC3IHPigNNKIY8Ro1LM9i3UDMoyIJBQoZjx1AJqy7ePoxxCF6oog62tW9LUZp46PITn7oTozbi7MPhGHzR0nJUg+NhD2ImWYWe4rEcKaJFMg7KUwayZOWz5RGaQ33IZF2HDZChHCkmivIpxDiX0c/qgkLAO82/m7eD+CWe7FdEda6Ik0YxEONsvVWCz2hNmtXXQSiHTSE96LU2SRZxvNvzp/mzSOubn/Tlt4D81yE1m2EqbkLKQn0sfSJoSFUdFJdEYa+My/JGke9oXXEIr4qM48G7e9CouwGdZbVv5vtVqpr69HD1p3hUJsY0b2og1E0zMpa4OltOZVszQ8ozQgMxeBMv/K/aU2o5qlFan7TSUlyszcPDH7XDo94w2vh167ipk5j+S64GYBknpUoVoo7hqtiV1L46nuS+sG0W43M90nZIo/jmYBXIlAOU/yser3hCK/0r6SpqVgW1dsgV8s+kzTWjfXQOmh6jEaBVemMtfDBSO1KEdaoz4MsFrV6SwSl8vBggXzufrqq5g+fSoQxeGwceGF3+T4c7I5/pxsyNxFq38teXluFi5cwOLF32XKlMlAFEvWHoqqemgJbknqJxjuTOxr696AN/QJ53xjGtNOdNPQuYJAuB2bzcKCBfPJO93PK+3/S0e4jve6HuT887/ON7/5DSwW2OZ7iWjZer582URmfjmbRv97hCJ9tZ69od3UWpYye34+9ql7+NT/FH2LidgY3+t6kIovBvjKZRPxZq1kR+DFxNiOPyebwqntvNv5AI5pe7j66qv44hdPJ0ZrGKV8XJCLFp3OhNMFazueIBhNzSJht9sP7gKlkTJ2bWsY+KA0DhrfLrmdfa9DfU3rUIsyTCGRMnLQf8MVI0ajbmJXMuWmAk3QVSKNKb7dqKydGs7IRCo9VibJmfREO9juehGHw0FNTQ33338/P/rRj9i/fz+33nor99xzDxBjgKock8uf/vQnHnroIXbt2sX3vvc9fvnLXzJ9+nTmzJnD7bffwb6eVX3BUb5fc85pX47vu51n/vIM//jHP7jwwgupqKjg6aef5uGHH+bTTz9l2rRpHHfccdx3333ccccd+P1+ent7ufvuu7nlllv45je/xcaNGzn++OM555xz+M/rf0V7VidSRqnxv8Frr73Gww8/zPe//32efPJJtr8fosA5GSklm7qe4/6H72HLli1s3ryZgoIC2tvbE6bpL3/5y9TU1LBmzRrOO+883nvvPb7zne8wduxYHn/8cS688EI++OADzj33XGbNmsU99/wKZc1opP2V5ZzJSdNmEOlYZ1gmUy+gRwujlCK1xmJEcDIQeY0aqZCjaKENeFO3rx2rESGPXlBiKhSiSnshTxtNTfsMtVj1OYngNM0zole0pF+gn1efOEQNIwIS7X41tPOtpfw0a+dAyqZq3wd9gXrGAZgK7e47L62ielwFftHflWN0j5lZE4xgSrLjmTcs07OAEemjHjEf6sFEY0Pf6jjD4sbRNY5nnnkGgG9+85t4PB7279/P/v37ee655xLH/vKXv+SWW25h2yeNtIZrWLYs9nBOnz59wD49Hg/5+fk8/9wLvPbaayxZsoRnnnmG2bNnc91112G1Wlm+fDn33XcfX/3qVznllFMAWLUq9rJ46P6/km8dzXvvPcDrr79OKK7V9ka9TJo0iaamJv756uts3bqVn/3sZ/zo3f+mwDmZYLSLwrJsiouL+dvf/kZ7ezsbN26kMGs2b72yifbuTVxxxRXcfvvt5FHNH/77b2RaLTwWfIwLLrgAgMfufhGHJYM/7P0Dt91222G4AmkcLhQV57Nj276hFuOYhsNhJ7/AjX9nz1CLksYwwYj5UNd6l/XTktX/VrQNZUWsXcXraSrKMaeNmc6mpj2JVXZd78eccsop/OxnPyM3N5ef/OQnZGZmMnv27MSH+rLLLmPy5MmsX78eopl8//vfp7Kykj//OVFGm1LnLMozTkq2OsdRUlJCQ0MDkiidnZ3k5ubidrvxemPFsaMRic0Wu7zqetzRaBSLxYI7YyJ1nSt56KEH+fWvf013pIUmdtEbbWNaWRn19fXk28dTX19LaWkp7aEdtHt3AHD6zNOZM2cOL7/8MgsWLODkk0/mhT+/T6F9IjmjOwmHw9TV1QFWFFfAA7e8yPXXXw9Y2BNcj9UqeO6u57j33nvJy5hCe0/MzG9UMKLWu4xPN9VQqyI8MSq4oEcQY5ZGprSf+Hf8/0o/ihajaEbadCHt+WoYpfOoocimEOYo96De+LQlTlMhDNHu09Uy4/vOlBfSJo3TCdUwug5m2r06ZQvMU960z6CWAEgtv9K+1i+u7S8V2lEFWisAGGvSeoQqCfk8ycd+acIN2DqyWeN9sF+fhqQ6B0AhanbPJYiXRLVhqt/RDTki07PSPurDgGgkijMj5j+VMgpIPvzwQ84//3yeeuoprrzySgDWrFnDxRdfwpWXfZ9IJML+/fsZNWoUPVEvzz//PE6nk+rqvpdTWPbSG/ESjHb367O9vR2PxwNIHA4HgUCArq6uRIlCSRSFx13N5y6EIBqN0ti5krvvvosNGzbwj3/8AxB0BfbQE2pMtN0dacbj8eD1ejnppJN48sknueOOO/B6vXz88cc88fhf+OlPf8r5559PT6SV1uAWrrjiCh577DFiwWMSh8PGk08+yd133822bdsAsFjgkUce4cknn2TNJxvJdJSnNs/RkWfyOtKoS/tOBx2RcJTGunR53IOBJPaOPdi/4YoRo1HP9izWjTg1itI1KsMHJDRcpWhFe7OPjGwnxb3VdIT3UFU1CovFgs/n4+STT+bll19GfXJ3pI3JGV/h/vvv53//93+5/vrraWxsTKoDXFhYSP6YMGE+4/P6ero6/ByfOR+IBX01NTWRlZXF+PHjOeuss3j99deJRCK0tLRw/PHHM3r0aD766CMANm3axNlnn01vby81NTUA3Hb7rXg8Hh5//HGqq6vZtWsX008ooqWlhQ0bNjBt2jQ8JQ6uuOIKli5dyieffMI13/kPJFECkWays7MpLSth7ty5bNiwgUyRQ3N4M+eddx53330353lu5I2uh1my5FneeOMNGhsbKS0tpaGhgT/96VF27tzJ5s2bKSn3UFv7Nsqa0UjLqfTM4+TpM4l0rO3nuzSK1Fe3ofXtGZGZqNsziiBOBUZ+bDMKyCYD/2TSv2Vy+0bRzkZ9gT5da6JkZdFetndsT8kfb1REREucM1A7RjAisjGLFzGyAKRSBtTIL6xH3GI0Hj1KYi0hjBQR3X70xnEg989AliboH1U+/DAy86hHzId6MNHR4kPEC7gLLNhsNq699loyMzN58803efXl13Bl2nn22WdR0pTK7dNZ+8Hf+fnPf853vvMdPB4Py5cvZ9myZVRXV9Pa2sqiRTG+5SVLlrB+/QbqgusYmzUNv9+Py5LHlVdeyQ9+8APq6+u599578WQcx3e/+11+/OMf4/P5uOWWW8jLmMIPfvADbr75ZiwWC9dddx0AXq8Xq9XKokWLaG1t5f7778dms2G1WsmlgsWLF3PTTTexefNmnnjiCcpzz8JiiVkNugJ7uOqqq/jxj39MS0sLt912G9W2MyG/jXvuuYcycRwWYcNmF6xdu5bS0lIWLVrE2rVr+dvf/saePXtwOp0sWrSInTt38sQTTxzxa5aGPioqKti+fftQi3FMo7K6iB2b6oZajOEJybCO3j5YjJgyl2A1zSM1WinraVNKPmSRK/Zxzsh1kenJ4KcrbgAkY7O+TFeoDkmEfEs5ZY5pvNv5ICApzTkNmzWTYqqRUrI3/DGBcDtSRrBbs8mwl1Lf+a7uOL70pXn813/9F1dffTWB3WPw0khvuAmBja7AbhRzszove7bnKnoirdQGVyOBTHspTb6PAUmOM7aS7wrsAgRu1ziEsFLtOJ2O8D5q/G8mtaNGR2gvnaF99Ao/WY4KpohTqAt+Tkj2kuUci92SwZ7QRwTDnfH2ocx1Ig5LNoFIrNqHn5g/PdNRRmPXh0nta2lAZ3sWM2psMftqmgbMLTXTUPT8jpCspWm1ea0sB5KrbHYfGVkGzLRPrdZqVNZRrz09alUtzjzzTJYvX95XsEXjq9bzkRqNMZWobG0bZqU9zXK6jfyyqWith1Ku06jcpV6fyj2x8Os38OH76/pdSzW0VKJmfn+tTKmOpdb75rArc2m3Zsu87IGDbY3Q3PnhsCxzmdaoDwG/3nM7CxYsYOxnMymdVBzfKvDYx+CxjwHUwSUCENisfYxEQggy7MVk2ItJhl7ogOSjjz7izDPPJM8ymQpXBb0ihMueD8S0XHU/amRYC3BnTFRtiR3jzhifdG6Oqzq+1xqX3ziEwW2vwm2vSryYhBRUOmcBfS93ZWxK+2Wu2UltmJno9BDoDR7Q8WkcOBTXSBqDB3WWSBoHinRRjmMaamYyNYxW6WaMZb5QUeLfCxcu5E9vryHY1d2vbKQa3y75OQAbAvqEEmbRnLGVuKArzmRU6ZkD6Jcc1I4rFa1BuzJPpYCEdt7U5f2Wtekfq4W69KY2MlbrR21iF2OrZ7Bhf/88XgWpaHJG0cdJ/met3zF+PbU5wOpzJhlEY5uxghmx4ZlpjpPcOlwABm1pzzcq66g+ViHvMSoKoXeOkQwD39N9MMtDVqBomWZR99qoaQVmi0Kjkq1mfn+z7ITEvw36y+wuphiHroXGKGe8H3uaQZ/a9o41KMFkIw3pqO/DhNqdLUegl/7achppHE6MHj16qEU45jF6nNaClkbqiKVnHezfcMWI0agPF2q9b1JLMqPPso57mV41nfUd65nnvnmIJDv20dLcPtQipJFGGkOMkahRj5gPdZ7MBZFcvAH6F3QYKChFr7Ys9JUH3Lo0xJ9e+WtfA/E+lzXqB/DomakGqt2bijlbMSur61BrMVBgj1nRCe286RWQ0Jo3tXI3mZhR9QJtOrw+w7GocSC0nVoCEb3ztQQoCtRmT4XcwqjQg14AnFHQmln6kXbfwQQUmSHYXkGlZ15CfiXGoukADDnae0Mtp5ELRYGe6V45Rn2NtOdqi7hog+H03Dna2uoKjKhpk/YZEJKYja2YaqxWC1sbN9FEH03r2c5TE8coNKPa+T4YSloFqaTspXF0Y8R8qA8XPlrWxa5lywFY4/0jAH/63hpmnj6WtSvjgThp6/SgYNyEUTQ3pbXqwUQkTSoz6Ghr7RhqEYY10hr1MQwzLQX6Bwppt2tX82os6/gNn63Kx+M8mWAwlLRPu5I3IicwSwFBEyCTSknD3dHmpN/qdCSz9Byjc7Tj12qIeoQhRtALxNGOTS/wSaFCNQq2SqUkoBZ6c6Edk9aSYda+UdnMVMgoFO0vlRQoo99q2dRlS9XjMJp/IQTTRx1PaF9fHrXZvWIkg0KFusbwzD5o51gJugT4iyZozMjqAv0DzLRj1gu2MyvUoT5HjYGeYz1SHHWfOZ5MqgqnsautPrH9L413DSiDmZVCaz1LJWVvuEKmCU/SOBRkZmZijVognUE0aGht8SKEYCTk/g8F7HYb4fDwDbgZDsj1ZOLrTBfjOBSkNepjHHopDtqVsXYVrWiS6lQiRVud576ZrUtjGrQQguLifPbsrk9a6RsVWFB+6/lijVJ6tEUijApM6PWnR21o1H7iHFWamSLT/Pz/BPqv3tUr/YQmrikhalZgwKgYgVqjEC05FFPNp95Hkto18tPqFVNIhTxDwUDah1mhFu25eoUwtDIM5L/V60eZd72iI9pyjQNZAhwOB5vr82iiKbHdzBKglaHv+iafq5bLaN6VYxUfrd6xWh++2spjNJepXGftGLXX0CytU9uPev71tGuL1cLymgcJBAL92lJDGwuiyKC+p5XnU2s905LHmMVfpDE8MKI+1IOBFS+vB2JFMqaPyx7g6DQOBeVVBXT7eodajGMW0Wg0TSozyPC2+giFQgMfmIY+pExTiB6rEELISs9XdPdpV6xGhANmUFbRVVVV7N27NyVSCO1+tW9O0SqMZDPzxWrPMaMp1Mpg5JtVQ6t9pNK+NoLYiP5Sb0zqY2bNmsXOnTsZb/l/STJo5VeiaNXkMkYRvlo/rhoHQlVqdI2MxqUnt3a73vlmZBzatgayHmh9l253Nva8PXz++ef9+k+FftfsvlEsMersAPW5etfBKL5De64aRhpjKqVPD+X+1/rE1e2pZTrllFMo33YWAB2RQD+ZFGgpRM0wUFERI8vQcKQQtVpcMsM16qDP9/fsSFOIjnQo9Z/TGBy0tbUl1dZO4/DCZrcSDKY16sGEy+UaahGGOWTaR30sQ72qNStcYETFqeePVFa9CVrB42YQbFun2782qlz5rVBC6lGLGvm/9Hxfyr5+tIUaak69sRnlsuppZ0o/qRR4GMgHrte+VptRazCZMhObKwRx955eJCz0RdGq+9NqLYkShilENRsVV9DLnTXKfdctlZlCFL9R+0Ywo5XVQqsx+vDgdDqTthkVGQHjqHsF6mOVmAbt89T33PWfH6Pca7P7XwutJq2OHzEseGFyHYwsSep2tVDfR6MsY/hX9F+x/nSizpWxaWVTYmTUFgkjS0kqFKjD1Vc9UilER8yH+kggre0NLvLz3fT0BKBxqCU5NhEIBIhERp7/70iifl+6IEcaB4401/dhRP3+5qEW4ZhGOBLB5XIMtRjHLIqLiyksLBxqMY5plFTkDbUIwx6S6EH/DVeMqGAyPRNjqoFOZhVuFLNbRUUFdXXJBeEHSv04mDrFZpWYUoGR2UvPpKjAKBjLrP2BzGxmJCx6Jtf8AjeZmS5q9zUeUD9q6NE6qvsxa88sSMfoWDMZtfOtEIUYEVekIpve2BSYBbxVeuYxZmw5uxrfSbqHtfevut+B6nSnEiyoldXsOqRC+GMUIHYglbzM9hvJrxcMp50zu93OSSedRMbGUwD9eTMLZDOC9r5UnlWlfSWQD/pM57M9i1nj/eOwCyazWBzSYS856PMDwdp0MNlIR2VlJW1tbfT0pAkNBgN+X3c6tWUQEQiE8PlS41NP48DhdrtpaWnh4GOW04C0j/qYh1FwEPStPrVkHcpqWB0sYqRVloXn4RlzBs313sQ2swAwNXRX0Aardz26QqO6uFqCEtAhRIiPR7sSV7dvFHR1IEFl/UhYVIQqWu1Fr16xx+Oh2F0MnfqvOjONy8g6UWxyXYzSdfSKdBQbaJ5mlg7tfBNv40A0aS3FrXr/2fGUPyW4ziwosYld+Lr8FLpOJUeE+gqnaK6ZmRVkoJrQYBwsaJYKZxSIqaX7Bfo9M2bXQZl/bT96qVba9rTn6FnitH329PRQW1tLtyO5ZrmaTEmt8aph9h7RErNoC8ToBaANdyrRkYa0j/oworWpE4tlWFmShhXC4TA5OTlDLcYxi4rKYjIy0ulDgwW3251OzzpkSCB6CH/DEyNGoy6m2pQSUIE23UJJGzHzzSqr1LrADjJ8TjZ6X+q3T4Hih2yKJqdAmaVQKFqxIouZH0urzWgJJtT7FM1Bm6qUStEMM/RLTTI6MAWKTPUYlahkI1+9ot0o85Qkq8aKoFhMtOdCf83N6Nqr52cgohy9eVPm30jLSYU4R6tJq89RiHP6WZIMtHyHw04oHAb6z+23Ndq5+hgFqcRdGFHpmlketPOvnTd1n9q+U3nWlWMVC08q2mYijUpPq49Dmz74peOuY8emOvb2bEuWWVVQxIgYRoFeXMRAaZDq630gRCpHJeTINH2nNerDiEgkwsTjRg+1GMcswuFwv2C9NA4fenoCBAPpGIDBgtPloLcnPb+HAkk66vuYhRBCgjUlGkTFPsmsugAAFZRJREFUX6Sl9zMr46jW/ubOnYvt8xMS+wxJFTT96kUDG0WuHkihAbOxKjgQ8oOBImXN5DOLIDbSqLRjnj5zPK+9+0fTfg8kKluB3vXVah96/niLxYIQglnu7wDQat2LEIK9bW8jpWRM4ZcRQrCn9W2i0SgnF10NQCQSpSFSg91upYgxRKOShkgNVqsFKSVSSva2vZ2oFlbhPjtpHEb3iBmhh9GcKtsKCwvJjM4iGo0aUtGaaWLa+dEryjGQFq6GUTRzKv5gI5jd60b3jx6ZidE8mFlBSkpKaGxsTElWo4h9vWP6xTroyKIvU2TYRX0LYZNWq/ugz49E2tJR32mA1+slnYl6aFCIY5wuB27pRkqJy+XAk59L9bhKKndW0tnZSUVFBS6Xi0AgQGNjI8fPnIQrw4mrO5+G2jbKKieSmZVBIBAkuHY9FRUVuN1uQqEQ/iYPRSX5eDw5yGgU73ZBXmEOeQXZtJPLzu37GJVTRH5pLhHfmWzfvp2K4kIKK9xEfGdSU1ODxWJh1KhRSClxd+QTiUSoHDURKSG6bQs9PT1MmT4OALmrio6ODiZMqwSgs91PT3sTo6vLKLBU4OvspbelmarRpdjsVrr9vfi3FFBdXU1GRga5tknU7mukdPyJZGdnM9peTd3uFmZVz8LtdpPnmsqunXWMLS4jJy8TpGT9J7G86KljYx+andv3kZObxbjMuQgh8DcX4XTYKasootkXweNx07w7h9LyArJDxTTt9yJDXgqKPIwKFtPZ5icnmoPH4yEYDOLz+QgGgzgcjqRqUGnoIy8vj8bGNFtPGgeOEaNRz3PfnPit9nkZFZXQbjfLf1VrlyUlJdgD0xK/D0SrHKj9g9GEUynccSBavlamLxR/DyklG/xPkpubS0ZGBm1tbWRlZTFzwvk4XQ4+2fB3MjIyqKioACC77RSEAF/+R0gpqa2tJd91EmOqywFoqG9hW+0bjB49mjzn8bS2drCt9jWKi4uZPn0a7Z9VEegNsTX4HKFQiK9lXU80HOUT+QmRSPSAin2YReMPVAzFzAqi3a6Xhz6QdqyHVIu86GGgPORTT5/Jkld/g8ViobroK0gJ+9qXkZOTw+jCswkFw+xqfouSkhIcDgezbJfR3RkgZ5wLh9PGJ3VP09jYyOknXIrVamVH3b+oq6tj7NixOJ1O/H4/e/fupaqqiuzsbPx+P72tleQXuGnp/oTu7m7KAl/D6bTH7ovADnp7Aindn0ZI5Xkzgpm/2Mgio6f5Kn1edN6NrFrZ//qbaeFmueoD5ZebtV/pmTcsi3LENOqDr1IYiXSkNeo0YOzYsezbPNRSpAabzYrdYcPR7SA/P5/s7NgD4IrkMKqqhPEigt/vZ8+ePRw3pYrMLBehUJjaXc3MHD2TvLw8qqyV7N3ZRHFWMU6nk56eHgKBANFolN279tPbE6SuOeZX3rFjBwCzPRMAWLNueUKWgGcM9XV9zG6N3sa4mTAW5d3Z2Zn4qwzGbBZt3jYAwvYY7WUkOnx9UEcD/L5uIF7uMu6rDoVCtLW1kRltjx3j91NTUwNAhTuWhrjvs5iWuN4bK/n68aoNANR6PwOgqamvvrX6t9VqpdLjoacngDfUiNPpxGIROFx23PlZ5GRUs29PAzllx1FSUoKUku3bt1NdVkFJaQHNvjC7du3CarVSUVGB3++ntraWcDhMVlYWfr8fm9VCNCqHc8BvGklIF+U4puG2OhO5xGr/j9b/qESUmvl7lMhtvZW23W6nruMdFEuFdnXbr5xmCtqBke9M2S6EYEz2ZDKzXaxuegyAL0y/iMxMF6GGTAK9QXLGRpFS0tLcTofXy7gJo8jw+qmvr+fUsu/hzs9if+9Ourq62dLwKltrBSVZXwRycTCdp5bfliTTbM9iOvfAX7w/T/wGyAKirph85R2xD3LIE046N5X8VKOo3bKyMtiTfK6WycvMj25UyMPMl28UBay+J4y0baPc1oHa08JIqzQrM2rEG6CMXevPDm5a32/etTIl5dZrIp4Tz1A8enqSKpJezzIViUSIRKJEegK0eFsAqOOhpL4s5LHZu5nNm/tWv/v3/0Ul2wSiwKq9y8nKymJu7r8TtUs6iurIGOMiw5dPtz/A7EnnALCzdTStLR2Mm1BJgaWCro4emuq9FJd5CAbDdLb78XX2YLNbeWn/r/pxnxtq8zrb1VkIFouF99c8y37vfsygbd8sxsUo2tuobKdazklyJrW8aSrL0Yv0h/qIQghxBfBnQE3ldZ6Ucnl8/xjgMeALwF7g+1LKt+P7XMDTwKnA76SU/3Ok5DZDfX09ubm5dHR0HNT5Qghsdis57kwys5x0tPvJLCintKyAPFHO7u0NuPOqKCyKcQbvqqnD5XQwKreYbl9vwle4c0ct3f5eiuQYADbsT/7YNDe1U+t9HwCPp5uujm6aiBUMCIeTP6xHEzweD117Bj4ujQPHmDFjCG8baikODpFIhM7OTrpF7P7fvSv2QSwmtmBua+4CoCm+ymtp9lKMH4g9cz3+XjKzXdgdNuwOKwXFbk6pOoVoNEpNTQ1lZWW43W6KsqazY/s+3BVTycjIoLOzk3379pGTm0k4HAGvVjISfaTL4B4OSEhr1EOCVVLK0w32PQOsAs6N/70ghJggpWwGvgWsBi4F/iaEGCel3HlEJDZBQ0NDv1W4EAKPx4PdbifLmcGoqhLGeCbQ7etFNngZNbqU8aGYmXn37t2MmVhKNBKl09tNoDdEW2Mre3bXUyRj9I5NTXvZvnVvUh/dxMoTKhSQftuxSWMaTZu3Bw2ZmZkqrriRAyklvT2hpNQpX2cva+ILWSARBFbpib0ya70bycrKIjc3F4fDgcvlpKKymIqJsUBDq9XKzKmxQMLdm8eRnZ3N+PHjsdvtNDY2EgqFiEQiR/WiOI2jB0MaTBbXqBfrfaiFEBOB9UChlLIrvm0F8JSU8g9CiO8BRcCvgReAH0kpdfUBIYScn/9zsu3WfvsUUggj07NZMFaxPQ+L1UJ78T5y3dl0dvjIK3AzffQM2lu6aG7o4MO6R5kwYQIdHR3s378fj/0kHHY7m/a+jJTS1KRlFACjZxZOpUjDoWCgQh5q07FRgFYqtay1wVda019hkYeWZq+pTHomP7NayVoMFHCkN//aogyppDUNdJ1TkVHbRipUt0aEOSeffDLhbTOS9pnVc9amLqZSL107tlTGbBT8ZpaepT0nlWAvI5jRdppdX/UYJ06ciJSSnp4eprsvpdsXIFSxGrvdTnt7O42NjYwbNw673U5zczN1dXW43W7cthPo8PoSC1SzMRullRkXChmO6VkWKYRz4AMNIGVvOpjsIDFLCNECtAFPAr+QUoaBqUCN8pGOY218O/Fjnwd2A38w+kgfDGw2Gx6Ph97eXipGFVNWXojVaqFmRx15+bmMK5gIQOvmLuxOG20S9u1poLPTT0uLl3zK2fRZzMRW762nvr4+0bbTE6CHACMh2n4woP5Qp3F4sXv3biqZMdRiHJPo6emhoaGBUChEsS8WmLdmzwdJxyhae0ZGBtFoFKfTycTx+YwZW07t3kaKivMYZw0jpWTr1q2MqxqFzWahw+ujpdmLDQvh8EiwOA3uGIUQ+cRcsl8BWoD/lFI+PaidDoCh/lC/B0wjFh40FXgOCAO/ALIBraO3A6gAkFL6ga+n2lFHJEC2PRNhEfgyweaw0eMPMG/G2Tgcdqxd59JS38HevNcT5qn6+nr8vh7WfbYdT7ASgQdvEzzi/Q9ArU2qrqEXps0Yb0oHqf6tt5rXah/aQLdUUk3MUrC0sigkL0pwXCrauLYYhF5glREFpxkdq1F6k7J9vONMar3LTeXUK7gxUBqTer9ZoQVQFXMQxrShyvxrx2pKAmJSNEYbIGSkjRd7+s410rqVYMg8TbDXjCkTKNxcmLTPbY1rL/F3o1pz1AbbGZGZqI/VUn2a3WtGAZepaN1msmgx0P1uRu6jnm9tv+p5KcxyY8ldRyQSTcz/Gp3+a73LEtX3mpqaeLvpz32Nb+u7N6dxIv/69Lfk5eWRn59Pr60LUVTAuNFljGMm+2ub6Arvp6qqlAJvOY11XkLBEE2tKwgGg4n0rGGJwVdyHgKCQAlwPPBPIcRaKeXGwe7YCEf0Qy2EuBxQaKVWSCm/ptq9XghxJ3AzsQ+1D8jVNJELdHEQqBhXSF7ESvGYfHY2tNFS30GwN8zmz/YQDkcTL9+Pt3+cdJ63/cC727UzTXOZxvBDZlbGUItwzGLM+BI2NRxeTTAajdLa2kpraywI1NbbRN2+5FS4+roWJuRNxemyIWWU2bNn43K5cITHUrvysIpzTEAIkQUsAKZJKX3ASiHEy8Riom4ZMrmOJhOsEOJi4CdSytlxH/U6oEjlo34PeFpK+YcB2hHAp8RWRG5iWUNppJFGGmkkw08sVr0BOEkeTR8EHQghXodDIn90Ab2q3/8npfw/VfuzgA+klBmqbTcBc6WU5x9Cv4eEoU7P+hqwRkrZKISYDNwKLAGQUm4TQnwO3C6E+DnwNWAGsdWOKaSUUgjxf8DmePsHpYUfLIQQfiBfSpnmVRwECCH8Usr04uswIz2vgwchhB3wHm3zK4TIAWYDU472jzSAlPKrg9yFkct1SOvrDrWPeh7wuBAiG2gE/grcrdp/CfA40E4sj3phPDVrQAykdQ8yuoj53j8dQhnSSCONoweTIZ64fRQhrsS8G/9L4zC7XA8XhvRDLaW8CbjJZP9u4MwjJc9hRCuxBzP9oR4kCCHsUsp0zcDDBKFUQkljsDCRWGZLGkc3tgG2OF/H9vi2mcCQBZLBUeajPlYghBDDwYw0XJGe38FBel4HF+n5HR4QQjxLrPT1YmJR30uBOUMZ9W0Zqo6PZaQfxsFFen4HB+l5HVyk53fY4DogA2gixo557VB+pCGtUaeRRhpppJHGUY20Rp0ChBB/FULUCyE6hRDbhBCL49sdQogXhBC7hRBSCHGm5jwhhLhHCNEa//uV2hcohFgshNgvhHhbCFFwhId1VMBobuP75gkhtgghuoUQ/xJCjFbte1wIERRC+FR/VtX+24UQDUKIJeJQOAeHMQ5hbp1CiEfj5zUIIW7UtDui5zY+P38WQuwRQnQJIT6LZ7Ao+xcLIXbE78nXhRDlqn13CCFCmvt2rObcEf1OSKM/0h/q1PALYIyUMhf4BnCXEOKE+L6VwCJieYhaXA1cQCwYYQZwHnANgBAiE7iKWJDJY8CPBnMARzF051YIUQj8nVjKXj6xAizPac79lZQyW/UXARBCTABOBkYDnxG7PiMRBzu3dwATiM3fWcB/CCG+Cum5jcMG7APmEuNpuBV4XggxRggxl1jmyjeJze0uYuZTNZ7T3Lc1kH4npGGMoU7PGhbQ+Cdk/G+clPJT4LcAQoiIzqn/BvxaSlkbP+bXxB7EPxBbJFk1fyMORnMLnABslFIugZgmArQIISZLKbcM0KwVEKTn9mDn9tvAlVLKdqBdCPEIcAXwOum5VeiL71BtelUIsYvYvJ4KLFHmXgjx30CdSK26X/qdkIYu0hp1ihBCPCyE6Aa2APXEIgEHwlRATfacKCoSp6d7AtgKfIf4B38kwmBuk+Yu/nLcSV9RFoDrhBBtQohPhRALVMduIcZqt4fYy/PJwR/F0YkDnVshRB5QjvF9m55bDYQQJcS04I3EFjHqVDfl39NU286P37cbhRDXKhvT74Q0jJD+UKcIKeV1xNhpziBmNkyFdUzLctMBZCt+ainlg1LKUinlmVLKJt0WRgAM5nYghqAHiJlni4mZHh8XQpymavMWKWWRlPICKeWxWZw7BRzE3Garfmv3KW2m5zYOEWMcewp4Ir6IWQr8PyHEDCFEBnAbMUtGZvyU54HjiJXovQq4TQhxqdJe+p2Qhh7SH+oDgJQyIqVcCVQC1w50PP1ZbnIBXzpNoz905taUIUhKuUZK2SqlDEsplxJ7Wc4/kjIPFxzg3PpUv7X70lBBCGEhZlEIAt8HkFIuA24H/kbM6rCb2NzVxvdvklLuj1+TD4D7gYVHXvo0hhPSH+qDg42Yr28gbCQWSKZgyBluhgGUuU2aOxGraqNs14Mk2eSYRn8MOLdxv3Q96fvWFHGr2J+JFf5ZoGbJk1I+JKWcIKUsJvbBtgEbDJpK37dpDIj0h3oACCGKhRCXCCGyhRBWIcQ5wKXAO/H9TiGEK364QwjhUqVg/QW4UQhREU/R+DEx7vI0GHBuXwSmCSEWxOf3NmCdEkgmhFgYP88ihPj/7d09iF1FHIbx53UlERQSIYUpEiy0UsRKooJC/MAUEkQLYcEuIoukiGgsLNT4Ray08AvRCEoaLbSyiCEiJGpjITbaiAohIYYQNy5C4G8xZ/Ugu4l3l7CTzfODgcvMGe6dw728954zd+Ze2uzjz1ZqLL1ZzrmlvW+fSXJ12mY5O/B9+19v0i5h3z++/D98/m9Msxl4B3ht+AJEku3DeU2SW4CdwKcrMQBdRKrKco5Cu5f0JW0ruNPA98COUfvP/Dujdr5cO7QF2Etb4/fk8DgrPaZeyv84t3fTJkHNAYfmz+vQ9hXt3ulp2mSnh1d6PD2VZZ7btcB7Q79jwK6VHk9PhfbXtKJtlzg7KtPAetpkuzO0v2y+DEyN+u6n7QUwO5z/nSs9Hkv/xZXJJEnqmJe+JUnqmEEtSVLHDGpJkjpmUEuS1DGDWpKkjhnUkiR1zKCWJKljBrUkSR0zqKUlGJbn/CbJmSTHh8czw9KQ+5K8sEi/JHkyyU9J5pL8kuSVJGtHx+xLUsMSk/N11yVxdSLpEmRQSxNK8gRt16NXgWtoGzM8BtwOrDlP99eBR4FHaFtHbgO20rY/HDsJLBj2ki4tBrU0gSTrgOeBmar6uKr+qOa7qpquqkX3KU9yPTADTFfVkWpbdP4APAjcl2Tr6PAPgJuS3HkhxyOpfwa1NJlbaZtWLGXHo7uA36rq23FlVf0KfA3cM6r+E3gJeHGJr1PSKmFQS5PZAJyoqrPzFUkOJzk13HO+4zx9jy7SdnRoH3sb2Jxk27JesaSLmkEtTeZ3YEOSy+crquq2qlo/tJ3rM3UC2LhI28ah/R/DZfQ9Q8lCnSStfga1NJkjwF/A9iX0PQhsGs/mBkiyCdgCfLFAn/eBdcADS3g+SauAQS1NoKpOAc8BbyR5KMlVSS5LcjNw5ejQqSRXjMqaqvoReAv4KMmWJFNJbgA+AQ5U1YEFnu8s8Cyw+4IPTlKXDGppQlW1F9gFPAUcB47R7ifvBg4Phz0NzI3KwaH+ceBd4ENgFvgcOESb+b2Y/Sx+b1vSKpcq11CQJKlX/qKWJKljBrUkSR0zqCVJ6phBLUlSxwxqSZI6ZlBLktQxg1qSpI4Z1JIkdcygliSpY38D3MaSaqTpxygAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f95d449ccd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gta.write_roi('model_test',make_plots=True,save_model_map=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Customizing your model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we saw before you can customize your model directly in the config.yaml file.\n", "However, sometimes you want to change something in your model directly in your Python script." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can free or fix sources using gta.free_sources.\n", "First let's fix the SED parameter of all the sources." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0059.0-7242e : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0112.9-7506 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0023.9-7203 : ['norm', 'alpha', 'beta']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0029.1-7045 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0021.6-6835 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J2351.9-7601 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J2338.7-7401 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0146.4-6746 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J2336.5-7620 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0002.0-6722 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for isodiff : ['Normalization']\n", "2018-03-31 09:10:09 INFO GTAnalysis.free_source(): Fixing parameters for galdiff : ['Prefactor', 'Index']\n", "2018-03-31 09:10:09 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 \n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 \n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4997.47 1770.8 \n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 \n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 \n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 \n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 \n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 \n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 \n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 \n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 \n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 \n", "\n" ] } ], "source": [ "gta.free_sources(free=False)\n", "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we free all parameters:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0059.0-7242e : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0112.9-7506 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0023.9-7203 : ['norm', 'alpha', 'beta']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0029.1-7045 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0021.6-6835 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J2351.9-7601 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J2338.7-7401 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0146.4-6746 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J2336.5-7620 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0002.0-6722 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for isodiff : ['Normalization']\n", "2018-03-31 09:10:13 INFO GTAnalysis.free_source(): Freeing parameters for galdiff : ['Prefactor', 'Index']\n", "2018-03-31 09:10:13 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 *\n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4997.47 1770.8 *\n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 *\n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 *\n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 *\n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 *\n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 *\n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 *\n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 *\n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n" ] } ], "source": [ "gta.free_sources(free=True)\n", "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we free all the SED parameters of sources within 3 degrees from 3FGL J0059.0-7242e:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0059.0-7242e : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0112.9-7506 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0023.9-7203 : ['norm', 'alpha', 'beta']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0029.1-7045 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0021.6-6835 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J2351.9-7601 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J2338.7-7401 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0146.4-6746 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J2336.5-7620 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for 3FGL J0002.0-6722 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for isodiff : ['Normalization']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Fixing parameters for galdiff : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0059.0-7242e : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0112.9-7506 : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Freeing parameters for 3FGL J0023.9-7203 : ['norm', 'alpha', 'beta']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Freeing parameters for isodiff : ['Normalization']\n", "2018-03-31 09:10:19 INFO GTAnalysis.free_source(): Freeing parameters for galdiff : ['Prefactor', 'Index']\n", "2018-03-31 09:10:19 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 *\n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4997.47 1770.8 *\n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 \n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 \n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 \n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 \n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 \n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 \n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 \n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n" ] } ], "source": [ "gta.free_sources(free=False)\n", "gta.free_sources(skydir=gta.roi['3FGL J0059.0-7242e'].skydir,distance=3.0)\n", "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we want to delete the source 3FGL J0021.6-6835:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:10:23 INFO GTAnalysis.delete_source(): Deleting source 3FGL J0021.6-6835\n", "2018-03-31 09:10:23 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 *\n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4997.47 1770.8 *\n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 \n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 \n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 \n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 \n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 \n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 \n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n" ] } ], "source": [ "gta.delete_source('3FGL J0021.6-6835')\n", "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also delete all the sources as a function of the npred/ts or position using the options minmax_npred/minmax_ts/skydir options. Finally, you can delete sources in a given list using the option names." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on method delete_sources in module fermipy.gtanalysis:\n", "\n", "delete_sources(self, cuts=None, distance=None, skydir=None, minmax_ts=None, minmax_npred=None, exclude=None, square=False, names=None) method of fermipy.gtanalysis.GTAnalysis instance\n", " Delete sources in the ROI model satisfying the given\n", " selection criteria.\n", " \n", " Parameters\n", " ----------\n", " cuts : dict\n", " Dictionary of [min,max] selections on source properties.\n", " \n", " distance : float\n", " Cut on angular distance from ``skydir``. If None then no\n", " selection will be applied.\n", " \n", " skydir : `~astropy.coordinates.SkyCoord`\n", " Reference sky coordinate for ``distance`` selection. If\n", " None then the distance selection will be applied with\n", " respect to the ROI center.\n", " \n", " minmax_ts : list\n", " Select sources that have TS in the range [min,max]. If\n", " either min or max are None then only a lower (upper) bound\n", " will be applied. If this parameter is none no selection\n", " will be applied.\n", " \n", " minmax_npred : list\n", " Select sources that have npred in the range [min,max]. If\n", " either min or max are None then only a lower (upper) bound\n", " will be applied. If this parameter is none no selection\n", " will be applied.\n", " \n", " square : bool\n", " Switch between applying a circular or square (ROI-like)\n", " selection on the maximum projected distance from the ROI\n", " center.\n", " \n", " names : list \n", " Select sources matching a name in this list.\n", " \n", " Returns\n", " -------\n", " srcs : list\n", " A list of `~fermipy.roi_model.Model` objects.\n", "\n" ] } ], "source": [ "help(gta.delete_sources)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the example below we delete all the sources that have an npred=[0,500]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:10:36 INFO GTAnalysis.delete_source(): Deleting source 3FGL J0112.9-7506\n", "2018-03-31 09:10:36 INFO GTAnalysis.delete_source(): Deleting source 3FGL J0029.1-7045\n", "2018-03-31 09:10:36 INFO GTAnalysis.delete_source(): Deleting source 3FGL J2351.9-7601\n", "2018-03-31 09:10:36 INFO GTAnalysis.delete_source(): Deleting source 3FGL J2338.7-7401\n", "2018-03-31 09:10:36 INFO GTAnalysis.delete_source(): Deleting source 3FGL J0146.4-6746\n", "2018-03-31 09:10:36 INFO GTAnalysis.delete_source(): Deleting source 3FGL J2336.5-7620\n", "2018-03-31 09:10:36 INFO GTAnalysis.delete_source(): Deleting source 3FGL J0002.0-6722\n", "2018-03-31 09:10:36 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4997.47 1770.8 *\n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n" ] } ], "source": [ "gta.delete_sources(minmax_npred=[0,500])\n", "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can aldo add a new source in the model using the gta.add_source function." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on method add_source in module fermipy.gtanalysis:\n", "\n", "add_source(self, name, src_dict, free=None, init_source=True, save_source_maps=True, use_pylike=True, use_single_psf=False, **kwargs) method of fermipy.gtanalysis.GTAnalysis instance\n", " Add a source to the ROI model. This function may be called\n", " either before or after `~fermipy.gtanalysis.GTAnalysis.setup`.\n", " \n", " Parameters\n", " ----------\n", " name : str\n", " Source name.\n", " \n", " src_dict : dict or `~fermipy.roi_model.Source` object\n", " Dictionary or source object defining the source properties\n", " (coordinates, spectral parameters, etc.).\n", " \n", " free : bool\n", " Initialize the source with a free normalization parameter.\n", " \n", " use_pylike : bool\n", " Create source maps with pyLikelihood.\n", " \n", " use_single_psf : bool \n", " Use the PSF model calculated for the ROI center. If false\n", " then a new model will be generated using the position of\n", " the source.\n", "\n" ] } ], "source": [ "help(gta.add_source)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the example below we add a Source called Source_PL with a PLSuperExpCutoff and pointlike and a source called Source_Gauss that is spatial extended with a PowerLaw SED and with a RadialGaussian template with an extension of 1 deg." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:10:44 INFO GTAnalysis.add_source(): Adding source Source_PL\n", "2018-03-31 09:10:47 INFO GTAnalysis.add_source(): Adding source Source_Gauss\n", "2018-03-31 09:11:00 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "Source_Gauss 0.655 1.000 0.00621 2.00 nan 410827.7 *\n", "Source_PL 2.274 1.000 0.00319 4.00 nan 471919.8 *\n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4997.47 1770.8 *\n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n" ] } ], "source": [ "gta.add_source('Source_PL',{ 'glon' : 300., 'glat' : -46.,'SpectrumType' : 'PLSuperExpCutoff', 'Index1':-1.5, 'Index2' : 1.0,'Scale' : 1000,'Prefactor':1e-9,'SpatialModel' : 'PointSource' })\n", "gta.add_source('Source_Gauss',{ 'glon' : 302., 'glat' : -45.,'SpectrumType' : 'PowerLaw', 'Index':2.0,'Scale' : 1000,'Prefactor':1e-9,'SpatialModel' : 'RadialGaussian', 'SpatialWidth': 1.0 })\n", "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now I load the model saved into model_test to have back the intial model." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:11:04 INFO GTAnalysis.load_roi(): Loading ROI file: /nfs/slac/kipac/fs1/u/mdimauro/software/fermipy-extra/notebooks/model_test.npy\n", "2018-03-31 09:11:04 INFO GTBinnedAnalysis._create_binned_analysis(): Creating BinnedAnalysis for component 00.\n", "2018-03-31 09:11:23 INFO GTAnalysis.load_roi(): Finished Loading ROI\n", "2018-03-31 09:11:23 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 *\n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4997.47 1770.8 *\n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 *\n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 *\n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 *\n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 *\n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 *\n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 *\n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 *\n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n" ] } ], "source": [ "gta.load_roi('model_test')\n", "gta.print_model()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is also possible to modify the SED parameters using the functions gta.set_norm, gta.set_parameter, gta.set_parameter_bounds, gta.set_parameter_error ." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on method set_norm in module fermipy.gtanalysis:\n", "\n", "set_norm(self, name, value, update_source=True) method of fermipy.gtanalysis.GTAnalysis instance\n", "\n", "Help on method set_parameter in module fermipy.gtanalysis:\n", "\n", "set_parameter(self, name, par, value, true_value=True, scale=None, bounds=None, error=None, update_source=True) method of fermipy.gtanalysis.GTAnalysis instance\n", " Update the value of a parameter. Parameter bounds will\n", " automatically be adjusted to encompass the new parameter\n", " value.\n", " \n", " Parameters\n", " ----------\n", " \n", " name : str\n", " Source name.\n", " \n", " par : str\n", " Parameter name.\n", " \n", " value : float\n", " Parameter value. By default this argument should be the\n", " unscaled (True) parameter value.\n", " \n", " scale : float\n", " Parameter scale (optional). Value argument is interpreted\n", " with respect to the scale parameter if it is provided.\n", " \n", " error : float\n", " Parameter error (optional). By default this argument should be the\n", " unscaled (True) parameter value.\n", " \n", " update_source : bool\n", " Update the source dictionary for the object.\n", "\n" ] } ], "source": [ "help(gta.set_norm)\n", "help(gta.set_parameter)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Prefactor' 'Index' 'Scale' '' '' '' '' '' '' '']\n", "[ 1.51191261e-11 -2.46682153e+00 6.65532043e+02 nan\n", " nan nan nan nan\n", " nan nan]\n", "[ 1.25024392e-12 -6.17596151e-02 nan nan\n", " nan nan nan nan\n", " nan nan]\n" ] } ], "source": [ "print gta.roi['3FGL J0059.0-7242e']['param_names']\n", "print gta.roi['3FGL J0059.0-7242e']['param_values']\n", "print gta.roi['3FGL J0059.0-7242e']['param_errors']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the example below we fix the normalization to 1e-11 and the slope to 2.0." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/u/gl/mdimauro/kipac/software/anaconda/lib/python2.7/site-packages/scipy/interpolate/fitpack2.py:226: UserWarning: \n", "A theoretically impossible result was found during the iteration\n", "process for finding a smoothing spline with fp = s: s too small.\n", "There is an approximation returned but the corresponding weighted sum\n", "of squared residuals does not satisfy the condition abs(fp-s)/s < tol.\n", " warnings.warn(message)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "['Prefactor' 'Index' 'Scale' '' '' '' '' '' '' '']\n", "[1.00000000e-11 2.00000000e+00 6.65532043e+02 nan\n", " nan nan nan nan\n", " nan nan]\n", "[ 0. 0. nan nan nan nan nan nan nan nan]\n" ] } ], "source": [ "gta.set_norm('3FGL J0059.0-7242e',value=1.)\n", "gta.set_parameter('3FGL J0059.0-7242e',par='Index',value=2.0)\n", "print gta.roi['3FGL J0059.0-7242e']['param_names']\n", "print gta.roi['3FGL J0059.0-7242e']['param_values']\n", "print gta.roi['3FGL J0059.0-7242e']['param_errors']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is also possible to set the SED shape of a source using gta.set_source_spectrum tool." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on method set_source_spectrum in module fermipy.gtanalysis:\n", "\n", "set_source_spectrum(self, name, spectrum_type='PowerLaw', spectrum_pars=None, update_source=True) method of fermipy.gtanalysis.GTAnalysis instance\n", " Set the spectral model of a source. This function can be\n", " used to change the spectral type of a source or modify its\n", " spectral parameters. If called with\n", " spectrum_type='FileFunction' and spectrum_pars=None, the\n", " source spectrum will be replaced with a FileFunction with the\n", " same differential flux distribution as the original spectrum.\n", " \n", " Parameters\n", " ----------\n", " \n", " name : str\n", " Source name.\n", " \n", " spectrum_type : str\n", " Spectrum type (PowerLaw, etc.).\n", " \n", " spectrum_pars : dict\n", " Dictionary of spectral parameters (optional).\n", " \n", " update_source : bool\n", " Recompute all source characteristics (flux, TS, NPred)\n", " using the new spectral model of the source.\n", "\n" ] } ], "source": [ "help(gta.set_source_spectrum)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:14:18 INFO GTAnalysis.load_roi(): Loading ROI file: /nfs/slac/kipac/fs1/u/mdimauro/software/fermipy-extra/notebooks/model_test.npy\n", "2018-03-31 09:14:18 INFO GTBinnedAnalysis._create_binned_analysis(): Creating BinnedAnalysis for component 00.\n", "2018-03-31 09:14:37 INFO GTAnalysis.load_roi(): Finished Loading ROI\n", "2018-03-31 09:14:37 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.12 140.7 *\n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4997.47 1770.8 *\n", "3FGL J0029.1-7045 3.008 0.746 3.1e-06 2.38 89.09 378.7 *\n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 *\n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.29 198.5 *\n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.48 179.2 *\n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.10 170.3 *\n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.61 147.9 *\n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 *\n", "isodiff --- 0.913 0.0286 2.12 1145.04 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5109.11 17185.3 *\n", "\n" ] }, { "data": { "text/plain": [ "'PowerLaw'" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gta.load_roi('model_test')\n", "gta.print_model()\n", "gta.roi['3FGL J0059.0-7242e']['SpectrumType']" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'LogParabola'" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gta.set_source_spectrum('3FGL J0059.0-7242e',spectrum_type='LogParabola')\n", "gta.roi['3FGL J0059.0-7242e']['SpectrumType']" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:15:23 INFO GTAnalysis.fit(): Starting fit.\n", "2018-03-31 09:15:38 INFO GTAnalysis.fit(): Fit returned successfully. Quality: 3 Status: 0\n", "2018-03-31 09:15:38 INFO GTAnalysis.fit(): LogLike: -77883.001 DeltaLogLike: 0.000 \n" ] }, { "data": { "text/plain": [ "{'config': {'covar': True,\n", " 'init_lambda': 0.0001,\n", " 'max_iter': 100,\n", " 'min_fit_quality': 2,\n", " 'optimizer': 'MINUIT',\n", " 'reoptimize': False,\n", " 'retries': 3,\n", " 'tol': 0.001,\n", " 'verbosity': 0},\n", " 'correlation': array([[ 1.00000000e+00, 4.40010977e-01, -1.80903032e-03,\n", " -1.29673069e-03, 3.87817026e-03, 2.64332600e-03,\n", " -2.04198717e-03, 9.41038275e-03, 6.18965916e-04,\n", " 1.18313905e-02, 2.62916494e-03, 4.12849233e-03,\n", " 2.26000858e-03, 6.23891541e-03, 3.04105095e-03,\n", " 5.05645412e-03, 3.00353477e-03, 4.90626867e-03,\n", " 2.82449046e-03, 2.82031889e-03, 2.93014665e-03,\n", " -1.19680073e-02, -2.71265943e-02, -3.41242300e-02],\n", " [ 4.40010977e-01, 1.00000000e+00, -1.81621670e-03,\n", " -7.32754724e-04, 2.44740751e-03, 1.49292747e-03,\n", " -8.93745178e-04, 5.79304529e-03, 4.32350178e-03,\n", " 1.14652827e-02, 8.09005714e-03, 3.14397563e-03,\n", " 2.46443004e-03, 3.52454107e-03, 2.37096614e-03,\n", " 4.72386017e-03, 3.46125929e-03, 2.76468822e-03,\n", " 2.53278353e-03, 1.15894276e-03, 3.11172827e-03,\n", " -3.39077196e-02, -2.77540909e-02, -1.89906219e-03],\n", " [-1.80903032e-03, -1.81621670e-03, 1.00000000e+00,\n", " 8.61787939e-01, 5.57550572e-03, 3.44059022e-03,\n", " -2.20704334e-03, -1.68151354e-02, -1.15186150e-02,\n", " 1.56722554e-02, 1.05487303e-02, 2.77193258e-03,\n", " 2.56573839e-03, 5.95117489e-03, 3.78280704e-03,\n", " 4.66781225e-03, 4.01891459e-03, 3.48241472e-03,\n", " 3.20035094e-03, 6.91485427e-04, 3.48455951e-03,\n", " -1.95753025e-02, -6.10088327e-02, -3.71947727e-02],\n", " [-1.29673069e-03, -7.32754724e-04, 8.61787939e-01,\n", " 1.00000000e+00, 2.21844270e-03, 1.44347366e-03,\n", " -7.90470631e-04, -7.08738255e-03, -5.00629583e-03,\n", " 7.50301160e-03, 8.19997549e-03, 2.34604520e-04,\n", " 1.10416771e-03, 1.99669462e-03, 1.79391848e-03,\n", " 1.45040587e-03, 2.02224228e-03, 4.46055027e-04,\n", " 1.36791422e-03, -9.66890171e-04, 1.56792928e-03,\n", " -1.11987392e-02, -4.14265699e-02, -1.53951058e-02],\n", " [ 3.87817026e-03, 2.44740751e-03, 5.57550572e-03,\n", " 2.21844270e-03, 1.00000000e+00, 9.12794676e-01,\n", " -7.87387195e-01, -1.12933332e-01, -7.75789895e-02,\n", " -2.13540610e-02, -1.62704772e-02, 2.04205710e-03,\n", " 2.10561763e-03, 5.79314587e-03, 3.58099264e-03,\n", " 2.64602281e-03, 2.79123264e-03, 1.24610943e-03,\n", " 1.19157719e-03, -1.96345718e-04, 1.90464271e-03,\n", " -1.51143517e-03, -6.58797942e-02, -5.19246295e-02],\n", " [ 2.64332600e-03, 1.49292747e-03, 3.44059022e-03,\n", " 1.44347366e-03, 9.12794676e-01, 1.00000000e+00,\n", " -9.53006611e-01, -5.66935236e-02, -4.82988376e-02,\n", " -1.41035967e-02, -1.23516314e-02, 4.24102285e-04,\n", " 9.65151924e-04, 4.21371130e-03, 2.60739988e-03,\n", " 7.85177633e-04, 1.50411220e-03, 5.53569374e-04,\n", " 6.10302575e-04, -7.05319173e-04, 8.66909407e-04,\n", " 1.10796568e-02, -5.58470765e-02, -4.97881237e-02],\n", " [-2.04198717e-03, -8.93745178e-04, -2.20704334e-03,\n", " -7.90470631e-04, -7.87387195e-01, -9.53006611e-01,\n", " 1.00000000e+00, 3.26407713e-02, 2.44138611e-02,\n", " 9.72780037e-03, 9.03431459e-03, 9.90441985e-05,\n", " -3.56367019e-04, -3.19245662e-03, -1.85352276e-03,\n", " 2.40927129e-05, -6.85183821e-04, -3.64337719e-04,\n", " -2.50450372e-04, 5.82240863e-04, -2.70585849e-04,\n", " -1.64014563e-02, 4.18856752e-02, 4.38643321e-02],\n", " [ 9.41038275e-03, 5.79304529e-03, -1.68151354e-02,\n", " -7.08738255e-03, -1.12933332e-01, -5.66935236e-02,\n", " 3.26407713e-02, 1.00000000e+00, 5.80487472e-01,\n", " -1.87595578e-02, -1.23060789e-02, 1.19052085e-02,\n", " 7.64558006e-03, 1.27493248e-02, 7.06093880e-03,\n", " 1.36421567e-02, 8.84446196e-03, 1.02288328e-02,\n", " 7.10200432e-03, 5.64930029e-03, 8.29629772e-03,\n", " -6.92002424e-02, -6.61472086e-02, -3.83361561e-02],\n", " [ 6.18965916e-04, 4.32350178e-03, -1.15186150e-02,\n", " -5.00629583e-03, -7.75789895e-02, -4.82988376e-02,\n", " 2.44138611e-02, 5.80487472e-01, 1.00000000e+00,\n", " -1.33306016e-02, -9.83690603e-03, 5.25041106e-03,\n", " 6.17726862e-03, 3.77239953e-03, 4.51690976e-03,\n", " 9.17089932e-03, 8.34603639e-03, 2.16761030e-03,\n", " 5.03044211e-03, -8.93480298e-04, 7.00248571e-03,\n", " -1.02228467e-01, -7.82270683e-02, 3.42990225e-02],\n", " [ 1.18313905e-02, 1.14652827e-02, 1.56722554e-02,\n", " 7.50301160e-03, -2.13540610e-02, -1.41035967e-02,\n", " 9.72780037e-03, -1.87595578e-02, -1.33306016e-02,\n", " 1.00000000e+00, 8.47824788e-01, -1.09930376e-02,\n", " -7.48634299e-03, 1.59055343e-02, 1.11948590e-02,\n", " 2.15383897e-02, 1.64886598e-02, 1.18746541e-02,\n", " 1.17888253e-02, 4.00708119e-03, 1.42861194e-02,\n", " -1.61261963e-01, -1.47766781e-01, -1.12714296e-02],\n", " [ 2.62916494e-03, 8.09005714e-03, 1.05487303e-02,\n", " 8.19997549e-03, -1.62704772e-02, -1.23516314e-02,\n", " 9.03431459e-03, -1.23060789e-02, -9.83690603e-03,\n", " 8.47824788e-01, 1.00000000e+00, -5.31363796e-03,\n", " -3.81314007e-03, 6.94723247e-03, 7.84505557e-03,\n", " 1.35674397e-02, 1.32308281e-02, 3.24757136e-03,\n", " 8.17782104e-03, -2.50550792e-03, 1.07313695e-02,\n", " -1.47850432e-01, -1.51047458e-01, 2.83374484e-02],\n", " [ 4.12849233e-03, 3.14397563e-03, 2.77193258e-03,\n", " 2.34604520e-04, 2.04205710e-03, 4.24102285e-04,\n", " 9.90441985e-05, 1.19052085e-02, 5.25041106e-03,\n", " -1.09930376e-02, -5.31363796e-03, 1.00000000e+00,\n", " 6.09604262e-01, 4.22991217e-03, 2.33096454e-03,\n", " 8.14367940e-03, 4.57041968e-03, 5.08251972e-03,\n", " 3.42510687e-03, 3.76244490e-03, 4.37764552e-03,\n", " -6.18951575e-02, 3.48306679e-03, 2.57515666e-02],\n", " [ 2.26000858e-03, 2.46443004e-03, 2.56573839e-03,\n", " 1.10416771e-03, 2.10561763e-03, 9.65151924e-04,\n", " -3.56367019e-04, 7.64558006e-03, 6.17726862e-03,\n", " -7.48634299e-03, -3.81314007e-03, 6.09604262e-01,\n", " 1.00000000e+00, 2.86373426e-03, 2.07338410e-03,\n", " 5.47517823e-03, 3.76054540e-03, 2.79451239e-03,\n", " 2.61953324e-03, 1.45883310e-03, 3.37000180e-03,\n", " -4.70426189e-02, -1.68863278e-02, 1.54644100e-02],\n", " [ 6.23891541e-03, 3.52454107e-03, 5.95117489e-03,\n", " 1.99669462e-03, 5.79314587e-03, 4.21371130e-03,\n", " -3.19245662e-03, 1.27493248e-02, 3.77239953e-03,\n", " 1.59055343e-02, 6.94723247e-03, 4.22991217e-03,\n", " 2.86373426e-03, 1.00000000e+00, 7.32648960e-01,\n", " 5.84270803e-03, 4.15812081e-03, 5.32235340e-03,\n", " 3.68420001e-03, 2.27864484e-03, 3.82471168e-03,\n", " -1.56427340e-02, -5.36847541e-02, -4.76668130e-02],\n", " [ 3.04105095e-03, 2.37096614e-03, 3.78280704e-03,\n", " 1.79391848e-03, 3.58099264e-03, 2.60739988e-03,\n", " -1.85352276e-03, 7.06093880e-03, 4.51690976e-03,\n", " 1.11948590e-02, 7.84505557e-03, 2.33096454e-03,\n", " 2.07338410e-03, 7.32648960e-01, 1.00000000e+00,\n", " 3.80466597e-03, 3.14837825e-03, 2.63601650e-03,\n", " 2.45828768e-03, 6.37329113e-04, 2.75366311e-03,\n", " -1.98045470e-02, -4.16937207e-02, -2.11093803e-02],\n", " [ 5.05645412e-03, 4.72386017e-03, 4.66781225e-03,\n", " 1.45040587e-03, 2.64602281e-03, 7.85177633e-04,\n", " 2.40927129e-05, 1.36421567e-02, 9.17089932e-03,\n", " 2.15383897e-02, 1.35674397e-02, 8.14367940e-03,\n", " 5.47517823e-03, 5.84270803e-03, 3.80466597e-03,\n", " 1.00000000e+00, 7.52998489e-01, -4.19339831e-05,\n", " 1.46617404e-04, -3.57858050e-02, -5.78234433e-02,\n", " -9.11410155e-02, -1.80565433e-02, 3.29270656e-02],\n", " [ 3.00353477e-03, 3.46125929e-03, 4.01891459e-03,\n", " 2.02224228e-03, 2.79123264e-03, 1.50411220e-03,\n", " -6.85183821e-04, 8.84446196e-03, 8.34603639e-03,\n", " 1.64886598e-02, 1.32308281e-02, 4.57041968e-03,\n", " 3.76054540e-03, 4.15812081e-03, 3.14837825e-03,\n", " 7.52998489e-01, 1.00000000e+00, -4.44307202e-04,\n", " 2.51184832e-04, -1.75598835e-02, -3.99710132e-02,\n", " -6.05610510e-02, -3.55894924e-02, 1.29882217e-02],\n", " [ 4.90626867e-03, 2.76468822e-03, 3.48241472e-03,\n", " 4.46055027e-04, 1.24610943e-03, 5.53569374e-04,\n", " -3.64337719e-04, 1.02288328e-02, 2.16761030e-03,\n", " 1.18746541e-02, 3.24757136e-03, 5.08251972e-03,\n", " 2.79451239e-03, 5.32235340e-03, 2.63601650e-03,\n", " -4.19339831e-05, -4.44307202e-04, 1.00000000e+00,\n", " 2.69314517e-01, -4.70052066e-04, -1.81469896e-03,\n", " -3.16592750e-02, -1.13876227e-02, -8.64561610e-03],\n", " [ 2.82449046e-03, 2.53278353e-03, 3.20035094e-03,\n", " 1.36791422e-03, 1.19157719e-03, 6.10302575e-04,\n", " -2.50450372e-04, 7.10200432e-03, 5.03044211e-03,\n", " 1.17888253e-02, 8.17782104e-03, 3.42510687e-03,\n", " 2.61953324e-03, 3.68420001e-03, 2.45828768e-03,\n", " 1.46617404e-04, 2.51184832e-04, 2.69314517e-01,\n", " 1.00000000e+00, -9.34001434e-04, -1.02728602e-03,\n", " -3.70742103e-02, -2.70291621e-02, -7.68125765e-05],\n", " [ 2.82031889e-03, 1.15894276e-03, 6.91485427e-04,\n", " -9.66890171e-04, -1.96345718e-04, -7.05319173e-04,\n", " 5.82240863e-04, 5.64930029e-03, -8.93480298e-04,\n", " 4.00708119e-03, -2.50550792e-03, 3.76244490e-03,\n", " 1.45883310e-03, 2.27864484e-03, 6.37329113e-04,\n", " -3.57858050e-02, -1.75598835e-02, -4.70052066e-04,\n", " -9.34001434e-04, 1.00000000e+00, -3.61087988e-01,\n", " -2.18834017e-02, 2.27156673e-02, 1.14068621e-02],\n", " [ 2.93014665e-03, 3.11172827e-03, 3.48455951e-03,\n", " 1.56792928e-03, 1.90464271e-03, 8.66909407e-04,\n", " -2.70585849e-04, 8.29629772e-03, 7.00248571e-03,\n", " 1.42861194e-02, 1.07313695e-02, 4.37764552e-03,\n", " 3.37000180e-03, 3.82471168e-03, 2.75366311e-03,\n", " -5.78234433e-02, -3.99710132e-02, -1.81469896e-03,\n", " -1.02728602e-03, -3.61087988e-01, 1.00000000e+00,\n", " -5.53725022e-02, -2.64941078e-02, 1.36263348e-02],\n", " [-1.19680073e-02, -3.39077196e-02, -1.95753025e-02,\n", " -1.11987392e-02, -1.51143517e-03, 1.10796568e-02,\n", " -1.64014563e-02, -6.92002424e-02, -1.02228467e-01,\n", " -1.61261963e-01, -1.47850432e-01, -6.18951575e-02,\n", " -4.70426189e-02, -1.56427340e-02, -1.98045470e-02,\n", " -9.11410155e-02, -6.05610510e-02, -3.16592750e-02,\n", " -3.70742103e-02, -2.18834017e-02, -5.53725022e-02,\n", " 1.00000000e+00, 5.00425333e-03, -6.93525545e-01],\n", " [-2.71265943e-02, -2.77540909e-02, -6.10088327e-02,\n", " -4.14265699e-02, -6.58797942e-02, -5.58470765e-02,\n", " 4.18856752e-02, -6.61472086e-02, -7.82270683e-02,\n", " -1.47766781e-01, -1.51047458e-01, 3.48306679e-03,\n", " -1.68863278e-02, -5.36847541e-02, -4.16937207e-02,\n", " -1.80565433e-02, -3.55894924e-02, -1.13876227e-02,\n", " -2.70291621e-02, 2.27156673e-02, -2.64941078e-02,\n", " 5.00425333e-03, 1.00000000e+00, 6.08696397e-01],\n", " [-3.41242300e-02, -1.89906219e-03, -3.71947727e-02,\n", " -1.53951058e-02, -5.19246295e-02, -4.97881237e-02,\n", " 4.38643321e-02, -3.83361561e-02, 3.42990225e-02,\n", " -1.12714296e-02, 2.83374484e-02, 2.57515666e-02,\n", " 1.54644100e-02, -4.76668130e-02, -2.11093803e-02,\n", " 3.29270656e-02, 1.29882217e-02, -8.64561610e-03,\n", " -7.68125765e-05, 1.14068621e-02, 1.36263348e-02,\n", " -6.93525545e-01, 6.08696397e-01, 1.00000000e+00]]),\n", " 'covariance': array([[ 5.05948071e-03, 4.34320701e-03, -1.81484607e-04,\n", " -5.19547582e-05, 1.52672650e-05, 3.55204282e-05,\n", " -1.17089926e-05, 7.28819889e-05, 6.08955107e-06,\n", " 1.05209245e-04, 1.15498768e-05, 6.05894364e-05,\n", " 1.79407483e-05, 3.84854584e-05, 2.58903501e-05,\n", " 3.32019871e-05, 3.27364997e-05, 2.18260196e-05,\n", " 1.92918544e-05, 3.28010369e-05, 2.09375000e-05,\n", " -1.72406892e-05, -4.56261686e-05, -1.18965985e-04],\n", " [ 4.34320701e-03, 1.92569761e-02, -3.55469782e-04,\n", " -5.72763375e-05, 1.87967054e-05, 3.91387767e-05,\n", " -9.99818820e-06, 8.75308057e-05, 8.29841706e-05,\n", " 1.98904202e-04, 6.93349461e-05, 9.00172363e-05,\n", " 3.81670008e-05, 4.24161470e-05, 3.93804479e-05,\n", " 6.05140352e-05, 7.35994865e-05, 2.39944307e-05,\n", " 3.37499405e-05, 2.62961650e-05, 4.33788672e-05,\n", " -9.52955094e-05, -9.10724058e-05, -1.29163618e-05],\n", " [-1.81484607e-04, -3.55469782e-04, 1.98921604e+00,\n", " 6.84642658e-01, 4.35217794e-04, 9.16744727e-04,\n", " -2.50937397e-04, -2.58226793e-03, -2.24701932e-03,\n", " 2.76336100e-03, 9.18856542e-04, 8.06633210e-04,\n", " 4.03860002e-04, 7.27911003e-04, 6.38581627e-04,\n", " 6.07742194e-04, 8.68553067e-04, 3.07179132e-04,\n", " 4.33430504e-04, 1.59463170e-04, 4.93709356e-04,\n", " -5.59151206e-04, -2.03469561e-03, -2.57116446e-03],\n", " [-5.19547582e-05, -5.72763375e-05, 6.84642658e-01,\n", " 3.17281780e-01, 6.91595539e-05, 1.53605201e-04,\n", " -3.58939998e-05, -4.34678738e-04, -3.90035957e-04,\n", " 5.28351969e-04, 2.85260519e-04, 2.72653702e-05,\n", " 6.94120872e-05, 9.75368684e-05, 1.20944612e-04,\n", " 7.54183713e-05, 1.74542969e-04, 1.57138009e-05,\n", " 7.39881765e-05, -8.90504456e-05, 8.87220428e-05,\n", " -1.27753117e-04, -5.51781708e-04, -4.25022787e-04],\n", " [ 1.52672650e-05, 1.87967054e-05, 4.35217794e-04,\n", " 6.91595539e-05, 3.06311147e-03, 9.54396839e-03,\n", " -3.51304165e-03, -6.80555421e-04, -5.93869592e-04,\n", " -1.47749842e-04, -5.56145260e-05, 2.33185607e-05,\n", " 1.30058399e-05, 2.78054840e-05, 2.37217150e-05,\n", " 1.35188584e-05, 2.36714052e-05, 4.31328174e-06,\n", " 6.33263525e-06, -1.77680276e-06, 1.05895478e-05,\n", " -1.69414560e-06, -8.62182873e-05, -1.40851598e-04],\n", " [ 3.55204282e-05, 3.91387767e-05, 9.16744727e-04,\n", " 1.53605201e-04, 9.54396839e-03, 3.56902003e-02,\n", " -1.45138943e-02, -1.16618620e-03, -1.26205052e-03,\n", " -3.33096078e-04, -1.44113731e-04, 1.65309405e-05,\n", " 2.03492153e-05, 6.90357207e-05, 5.89580875e-05,\n", " 1.36932787e-05, 4.35412939e-05, 6.54058795e-06,\n", " 1.10713502e-05, -2.17869566e-05, 1.64524547e-05,\n", " 4.23916781e-05, -2.49482848e-04, -4.61006686e-04],\n", " [-1.17089926e-05, -9.99818820e-06, -2.50937397e-04,\n", " -3.58939998e-05, -3.51304165e-03, -1.45138943e-02,\n", " 6.49870913e-03, 2.86506130e-04, 2.72217216e-04,\n", " 9.80377520e-05, 4.49795707e-05, 1.64738478e-06,\n", " -3.20618478e-06, -2.23189186e-05, -1.78843322e-05,\n", " 1.79293394e-07, -8.46383629e-06, -1.83691021e-06,\n", " -1.93872461e-06, 7.67454464e-06, -2.19129640e-06,\n", " -2.67778539e-05, 7.98444672e-05, 1.73313360e-04],\n", " [ 7.28819889e-05, 8.75308057e-05, -2.58226793e-03,\n", " -4.34678738e-04, -6.80555421e-04, -1.16618620e-03,\n", " 2.86506130e-04, 1.18555010e-02, 8.74215248e-03,\n", " -2.55356960e-04, -8.27534670e-05, 2.67454199e-04,\n", " 9.29068830e-05, 1.20387594e-04, 9.20203027e-05,\n", " 1.37122279e-04, 1.47563171e-04, 6.96556387e-05,\n", " 7.42543294e-05, 1.00575222e-04, 9.07458515e-05,\n", " -1.52597486e-04, -1.70308857e-04, -2.04585802e-04],\n", " [ 6.08955107e-06, 8.29841706e-05, -2.24701932e-03,\n", " -3.90035957e-04, -5.93869592e-04, -1.26205052e-03,\n", " 2.72217216e-04, 8.74215248e-03, 1.91307122e-02,\n", " -2.30505060e-04, -8.40292795e-05, 1.49834331e-04,\n", " 9.53541394e-05, 4.52499231e-05, 7.47770345e-05,\n", " 1.17096127e-04, 1.76885587e-04, 1.87506798e-05,\n", " 6.68117146e-05, -2.02063064e-05, 9.72971897e-05,\n", " -2.86363212e-04, -2.55851744e-04, 2.32516771e-04],\n", " [ 1.05209245e-04, 1.98904202e-04, 2.76336100e-03,\n", " 5.28351969e-04, -1.47749842e-04, -3.33096078e-04,\n", " 9.80377520e-05, -2.55356960e-04, -2.30505060e-04,\n", " 1.56289676e-02, 6.54602716e-03, -2.83553699e-04,\n", " -1.04450942e-04, 1.72443966e-04, 1.67511654e-04,\n", " 2.48566965e-04, 3.15861801e-04, 9.28445372e-05,\n", " 1.41519592e-04, 8.19086320e-05, 1.79416308e-04,\n", " -4.08297663e-04, -4.36825230e-04, -6.90639031e-05],\n", " [ 1.15498768e-05, 6.93349461e-05, 9.18856542e-04,\n", " 2.85260519e-04, -5.56145260e-05, -1.44113731e-04,\n", " 4.49795707e-05, -8.27534670e-05, -8.40292795e-05,\n", " 6.54602716e-03, 3.81428460e-03, -6.77097119e-05,\n", " -2.62825077e-05, 3.72094262e-05, 5.79914310e-05,\n", " 7.73516319e-05, 1.25210336e-04, 1.25439840e-05,\n", " 4.84981354e-05, -2.53010597e-05, 6.65800617e-05,\n", " -1.84930673e-04, -2.20589951e-04, 8.57776731e-05],\n", " [ 6.05894364e-05, 9.00172363e-05, 8.06633210e-04,\n", " 2.72653702e-05, 2.33185607e-05, 1.65309405e-05,\n", " 1.64738478e-06, 2.67454199e-04, 1.49834331e-04,\n", " -2.83553699e-04, -6.77097119e-05, 4.25701241e-02,\n", " 1.40371179e-02, 7.56864964e-05, 5.75637899e-05,\n", " 1.55109415e-04, 1.44495774e-04, 6.55845847e-05,\n", " 6.78590034e-05, 1.26928454e-04, 9.07351465e-05,\n", " -2.58635978e-04, 1.69933897e-05, 2.60413254e-04],\n", " [ 1.79407483e-05, 3.81670008e-05, 4.03860002e-04,\n", " 6.94120872e-05, 1.30058399e-05, 2.03492153e-05,\n", " -3.20618478e-06, 9.29068830e-05, 9.53541394e-05,\n", " -1.04450942e-04, -2.62825077e-05, 1.40371179e-02,\n", " 1.24553228e-02, 2.77169095e-05, 2.76960933e-05,\n", " 5.64080113e-05, 6.43094707e-05, 1.95053513e-05,\n", " 2.80725782e-05, 2.66207011e-05, 3.77824505e-05,\n", " -1.06328281e-04, -4.45634152e-05, 8.45897653e-05],\n", " [ 3.84854584e-05, 4.24161470e-05, 7.27911003e-04,\n", " 9.75368684e-05, 2.78054840e-05, 6.90357207e-05,\n", " -2.23189186e-05, 1.20387594e-04, 4.52499231e-05,\n", " 1.72443966e-04, 3.72094262e-05, 7.56864964e-05,\n", " 2.77169095e-05, 7.52088914e-03, 7.60486984e-03,\n", " 4.67750017e-05, 5.52558547e-05, 2.88674581e-05,\n", " 3.06802352e-05, 3.23107931e-05, 3.33208285e-05,\n", " -2.74743268e-05, -1.10090874e-04, -2.02608509e-04],\n", " [ 2.58903501e-05, 3.93804479e-05, 6.38581627e-04,\n", " 1.20944612e-04, 2.37217150e-05, 5.89580875e-05,\n", " -1.78843322e-05, 9.20203027e-05, 7.47770345e-05,\n", " 1.67511654e-04, 5.79914310e-05, 5.75637899e-05,\n", " 2.76960933e-05, 7.60486984e-03, 1.43259196e-02,\n", " 4.20380751e-05, 5.77423909e-05, 1.97323868e-05,\n", " 2.82536688e-05, 1.24727264e-05, 3.31096474e-05,\n", " -4.80071555e-05, -1.18004254e-04, -1.23835086e-04],\n", " [ 3.32019871e-05, 6.05140352e-05, 6.07742194e-04,\n", " 7.54183713e-05, 1.35188584e-05, 1.36932787e-05,\n", " 1.79293394e-07, 1.37122279e-04, 1.17096127e-04,\n", " 2.48566965e-04, 7.73516319e-05, 1.55109415e-04,\n", " 5.64080113e-05, 4.67750017e-05, 4.20380751e-05,\n", " 8.52177509e-03, 1.06513767e-02, -2.42103681e-07,\n", " 1.29966509e-06, -5.40147300e-04, -5.36230459e-04,\n", " -1.70395729e-04, -3.94153516e-05, 1.48978993e-04],\n", " [ 3.27364997e-05, 7.35994865e-05, 8.68553067e-04,\n", " 1.74542969e-04, 2.36714052e-05, 4.35412939e-05,\n", " -8.46383629e-06, 1.47563171e-04, 1.76885587e-04,\n", " 3.15861801e-04, 1.25210336e-04, 1.44495774e-04,\n", " 6.43094707e-05, 5.52558547e-05, 5.77423909e-05,\n", " 1.06513767e-02, 2.34797360e-02, -4.25794650e-06,\n", " 3.69590592e-06, -4.39951314e-04, -6.15282067e-04,\n", " -1.87940256e-04, -1.28953803e-04, 9.75446086e-05],\n", " [ 2.18260196e-05, 2.39944307e-05, 3.07179132e-04,\n", " 1.57138009e-05, 4.31328174e-06, 6.54058795e-06,\n", " -1.83691021e-06, 6.96556387e-05, 1.87506798e-05,\n", " 9.28445372e-05, 1.25439840e-05, 6.55845847e-05,\n", " 1.95053513e-05, 2.88674581e-05, 1.97323868e-05,\n", " -2.42103681e-07, -4.25794650e-06, 3.91147434e-03,\n", " 1.61737564e-03, -4.80676171e-06, -1.14013776e-05,\n", " -4.01006133e-05, -1.68410463e-05, -2.65016650e-05],\n", " [ 1.92918544e-05, 3.37499405e-05, 4.33430504e-04,\n", " 7.39881765e-05, 6.33263525e-06, 1.10713502e-05,\n", " -1.93872461e-06, 7.42543294e-05, 6.68117146e-05,\n", " 1.41519592e-04, 4.84981354e-05, 6.78590034e-05,\n", " 2.80725782e-05, 3.06802352e-05, 2.82536688e-05,\n", " 1.29966509e-06, 3.69590592e-06, 1.61737564e-03,\n", " 9.22065526e-03, -1.46644176e-05, -9.90956897e-06,\n", " -7.20995589e-05, -6.13732656e-05, -3.61509901e-07],\n", " [ 3.28010369e-05, 2.62961650e-05, 1.59463170e-04,\n", " -8.90504456e-05, -1.77680276e-06, -2.17869566e-05,\n", " 7.67454464e-06, 1.00575222e-04, -2.02063064e-05,\n", " 8.19086320e-05, -2.53010597e-05, 1.26928454e-04,\n", " 2.66207011e-05, 3.23107931e-05, 1.24727264e-05,\n", " -5.40147300e-04, -4.39951314e-04, -4.80676171e-06,\n", " -1.46644176e-05, 2.67345433e-02, -5.93105459e-03,\n", " -7.24654550e-05, 8.78269177e-05, 9.14133333e-05],\n", " [ 2.09375000e-05, 4.33788672e-05, 4.93709356e-04,\n", " 8.87220428e-05, 1.05895478e-05, 1.64524547e-05,\n", " -2.19129640e-06, 9.07458515e-05, 9.72971897e-05,\n", " 1.79416308e-04, 6.65800617e-05, 9.07351465e-05,\n", " 3.77824505e-05, 3.33208285e-05, 3.31096474e-05,\n", " -5.36230459e-04, -6.15282067e-04, -1.14013776e-05,\n", " -9.90956897e-06, -5.93105459e-03, 1.00917153e-02,\n", " -1.12656551e-04, -6.29357702e-05, 6.70916578e-05],\n", " [-1.72406892e-05, -9.52955094e-05, -5.59151206e-04,\n", " -1.27753117e-04, -1.69414560e-06, 4.23916781e-05,\n", " -2.67778539e-05, -1.52597486e-04, -2.86363212e-04,\n", " -4.08297663e-04, -1.84930673e-04, -2.58635978e-04,\n", " -1.06328281e-04, -2.74743268e-05, -4.80071555e-05,\n", " -1.70395729e-04, -1.87940256e-04, -4.01006133e-05,\n", " -7.20995589e-05, -7.24654550e-05, -1.12656551e-04,\n", " 4.10165958e-04, 2.39654093e-06, -6.88413280e-04],\n", " [-4.56261686e-05, -9.10724058e-05, -2.03469561e-03,\n", " -5.51781708e-04, -8.62182873e-05, -2.49482848e-04,\n", " 7.98444672e-05, -1.70308857e-04, -2.55851744e-04,\n", " -4.36825230e-04, -2.20589951e-04, 1.69933897e-05,\n", " -4.45634152e-05, -1.10090874e-04, -1.18004254e-04,\n", " -3.94153516e-05, -1.28953803e-04, -1.68410463e-05,\n", " -6.13732656e-05, 8.78269177e-05, -6.29357702e-05,\n", " 2.39654093e-06, 5.59154099e-04, 7.05461730e-04],\n", " [-1.18965985e-04, -1.29163618e-05, -2.57116446e-03,\n", " -4.25022787e-04, -1.40851598e-04, -4.61006686e-04,\n", " 1.73313360e-04, -2.04585802e-04, 2.32516771e-04,\n", " -6.90639031e-05, 8.57776731e-05, 2.60413254e-04,\n", " 8.45897653e-05, -2.02608509e-04, -1.23835086e-04,\n", " 1.48978993e-04, 9.75446086e-05, -2.65016650e-05,\n", " -3.61509901e-07, 9.14133333e-05, 6.70916578e-05,\n", " -6.88413280e-04, 7.05461730e-04, 2.40222644e-03]]),\n", " 'dloglike': 0.0001458001061109826,\n", " 'edm': 0.0002503984850541394,\n", " 'errors': array([0.07113003, 0.13876951, 1.4103957 , 0.56327771, 0.05534538,\n", " 0.1889185 , 0.08061457, 0.10888297, 0.13831382, 0.12501587,\n", " 0.06175989, 0.20632529, 0.11160342, 0.08672306, 0.11969093,\n", " 0.09231346, 0.15323099, 0.06254178, 0.09602424, 0.16350701,\n", " 0.10045753, 0.02025255, 0.02364644, 0.04901251]),\n", " 'fit_quality': 3,\n", " 'fit_status': 0,\n", " 'fit_success': True,\n", " 'indices': array([ 0, 1, 3, 4, 6, 7, 8, 10, 11, 13, 14, 17, 18, 20, 21, 23, 24,\n", " 26, 27, 29, 30, 32, 33, 35]),\n", " 'is_norm': array([ True, False, True, False, True, False, False, True, False,\n", " True, False, True, False, True, False, True, False, True,\n", " False, True, False, True, False, True]),\n", " 'loglike': -77883.00088192237,\n", " 'niter': 1,\n", " 'par_names': ['Prefactor',\n", " 'Index',\n", " 'Prefactor',\n", " 'Index',\n", " 'norm',\n", " 'alpha',\n", " 'beta',\n", " 'Prefactor',\n", " 'Index',\n", " 'norm',\n", " 'alpha',\n", " 'Prefactor',\n", " 'Index',\n", " 'Prefactor',\n", " 'Index',\n", " 'Prefactor',\n", " 'Index',\n", " 'Prefactor',\n", " 'Index',\n", " 'Prefactor',\n", " 'Index',\n", " 'Prefactor',\n", " 'Index',\n", " 'Normalization'],\n", " 'src_names': ['3FGL J0002.0-6722',\n", " '3FGL J0002.0-6722',\n", " '3FGL J0021.6-6835',\n", " '3FGL J0021.6-6835',\n", " '3FGL J0023.9-7203',\n", " '3FGL J0023.9-7203',\n", " '3FGL J0023.9-7203',\n", " '3FGL J0029.1-7045',\n", " '3FGL J0029.1-7045',\n", " '3FGL J0059.0-7242e',\n", " '3FGL J0059.0-7242e',\n", " '3FGL J0112.9-7506',\n", " '3FGL J0112.9-7506',\n", " '3FGL J0146.4-6746',\n", " '3FGL J0146.4-6746',\n", " '3FGL J2336.5-7620',\n", " '3FGL J2336.5-7620',\n", " '3FGL J2338.7-7401',\n", " '3FGL J2338.7-7401',\n", " '3FGL J2351.9-7601',\n", " '3FGL J2351.9-7601',\n", " 'galdiff',\n", " 'galdiff',\n", " 'isodiff'],\n", " 'values': array([ 0.39538392, 1.94362954, 2.07191975, 3.25877604, 0.59012212,\n", " 1.19264762, 0.57570313, 0.74811706, 2.37595198, 1.51185817,\n", " 2.46682951, 1.26822259, 1.99775289, 0.52935079, 2.27543711,\n", " 0.4487337 , 2.3544816 , 0.57386554, 2.01149183, 1.42865223,\n", " 2.03646131, 0.94353891, -0.02082148, 0.91325844])}" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gta.fit()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['norm' 'alpha' 'beta' 'Eb' '' '' '' '' '' '']\n", "[1.51185817e-11 2.46682951e+00 0.00000000e+00 6.65532043e+02\n", " nan nan nan nan\n", " nan nan]\n", "[1.25015869e-12 6.17598948e-02 nan nan\n", " nan nan nan nan\n", " nan nan]\n" ] } ], "source": [ "print gta.roi['3FGL J0059.0-7242e']['param_names']\n", "print gta.roi['3FGL J0059.0-7242e']['param_values']\n", "print gta.roi['3FGL J0059.0-7242e']['param_errors']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see above the tool gta.set_source_spectrum has modified the SED shape from PowerLaw to LogParabola." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is also possible to set the spatial morphology of a source using gta.set_source_morphology" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on method set_source_morphology in module fermipy.gtanalysis:\n", "\n", "set_source_morphology(self, name, **kwargs) method of fermipy.gtanalysis.GTAnalysis instance\n", " Set the spatial model of a source.\n", " \n", " Parameters\n", " ----------\n", " name : str\n", " Source name.\n", " \n", " spatial_model : str\n", " Spatial model name (PointSource, RadialGaussian, etc.).\n", " \n", " spatial_pars : dict\n", " Dictionary of spatial parameters (optional).\n", " \n", " use_cache : bool \n", " Generate the spatial model by interpolating the cached source\n", " map.\n", " \n", " use_pylike : bool\n", "\n" ] } ], "source": [ "help(gta.set_source_morphology)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "gta.set_source_morphology(name='3FGL J0029.1-7045',spatial_model='RadialGaussian',spatial_pars={'SpatialWidth': 1.0} )" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2018-03-31 09:17:12 INFO GTAnalysis.print_model(): \n", "sourcename offset norm eflux index ts npred free\n", "--------------------------------------------------------------------------------\n", "3FGL J0059.0-7242e 0.088 1.512 1.12e-05 2.47 753.09 1532.2 *\n", "3FGL J0112.9-7506 2.572 1.268 2.14e-06 2.00 152.13 140.7 *\n", "3FGL J0023.9-7203 2.654 0.590 9.68e-06 2.70 4888.53 1770.7 *\n", "3FGL J0029.1-7045 3.008 0.748 3.1e-06 2.38 89.43 379.6 *\n", "3FGL J0021.6-6835 5.122 2.072 2.11e-07 3.26 10.91 46.4 *\n", "3FGL J2351.9-7601 5.495 1.429 2.81e-06 2.04 237.30 198.5 *\n", "3FGL J2338.7-7401 5.777 0.574 2.82e-06 2.01 257.49 179.2 *\n", "3FGL J0146.4-6746 6.423 0.529 1.65e-06 2.28 192.11 170.3 *\n", "3FGL J2336.5-7620 6.454 0.449 1.28e-06 2.35 119.62 148.0 *\n", "3FGL J0002.0-6722 7.153 0.395 1.7e-06 1.94 86.64 92.7 *\n", "isodiff --- 0.913 0.0286 2.12 1145.15 8289.4 *\n", "galdiff --- 0.944 0.122 -0.02 5108.78 17184.0 *\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "RadialGaussian\n", "1.0\n" ] } ], "source": [ "gta.print_model()\n", "print gta.roi['3FGL J0029.1-7045']['SpatialType']\n", "print gta.roi['3FGL J0029.1-7045']['SpatialWidth']" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 2 }
bsd-3-clause
rdhyee/working-open-data-2014
notebooks/Day_23_B_folium-ipython.ipynb
1
9904
{ "metadata": { "name": "", "signature": "sha256:26f9c5115f67d82016ff64d0bb66b8f16ab725c0df35c7c424618e520210cbef" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "A promising route for using leaflet.js maps in the IPython notebook -- use [Folium: Python Data. Leaflet.js Maps. \u2014 Folium 0.1.2 documentation](https://folium.readthedocs.org/en/latest/). Easiest way to install Folium:\n", "\n", " pip install folium\n", "\n", "This notebook is a tiny modification of http://nbviewer.ipython.org/gist/bburky/7763555/folium-ipython.ipynb. (See https://gist.github.com/bburky/7763555) Specifically, I host the us_counties_20m_topo.json file on my server. I confirm that this notebook works in IPython 2.0 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython.display import HTML\n", "import folium" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "def inline_map(map):\n", " \"\"\"\n", " Embeds the HTML source of the map directly into the IPython notebook.\n", " \n", " This method will not work if the map depends on any files (json data). Also this uses\n", " the HTML5 srcdoc attribute, which may not be supported in all browsers.\n", " \"\"\"\n", " map._build_map()\n", " return HTML('<iframe srcdoc=\"{srcdoc}\" style=\"width: 100%; height: 510px; border: none\"></iframe>'.format(srcdoc=map.HTML.replace('\"', '&quot;')))\n", "\n", "def embed_map(map, path=\"map.html\"):\n", " \"\"\"\n", " Embeds a linked iframe to the map into the IPython notebook.\n", " \n", " Note: this method will not capture the source of the map into the notebook.\n", " This method should work for all maps (as long as they use relative urls).\n", " \"\"\"\n", " map.create_map(path=path)\n", " return HTML('<iframe src=\"files/{path}\" style=\"width: 100%; height: 510px; border: none\"></iframe>'.format(path=path))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "map = folium.Map(location=[40, -99], zoom_start=4)\n", "map.simple_marker([40.67, -73.94], popup='Add <b>popup</b> text here.')\n", "inline_map(map)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<iframe srcdoc=\"<!DOCTYPE html>\n", "<head>\n", " <link rel=&quot;stylesheet&quot; href=&quot;http://cdn.leafletjs.com/leaflet-0.5/leaflet.css&quot; />\n", " <script src=&quot;http://cdn.leafletjs.com/leaflet-0.5/leaflet.js&quot;></script>\n", " \n", " \n", " \n", " \n", "\n", "\n", "<style>\n", "\n", "#map {\n", " position:absolute;\n", " top:0;\n", " bottom:0;\n", " right:0;\n", " left:0;\n", "}\n", "\n", "</style>\n", "</head>\n", "<body>\n", "\n", " <div id=&quot;map&quot; style=&quot;width: 960px; height: 500px&quot;></div>\n", "\n", "<script>\n", "\n", "\n", "\n", "var map = L.map('map').setView([40, -99], 4);\n", "\n", "L.tileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {\n", " maxZoom: 18,\n", " attribution: 'Map data (c) <a href=&quot;http://openstreetmap.org&quot;>OpenStreetMap</a> contributors'\n", "}).addTo(map);\n", "\n", "\n", "var marker_1 = L.marker([40.67, -73.94]);\n", "marker_1.bindPopup(&quot;Add <b>popup</b> text here.&quot;);\n", "map.addLayer(marker_1)\n", "\n", "\n", "\n", "\n", "\n", "\n", "</script>\n", "\n", "</body>\" style=\"width: 100%; height: 510px; border: none\"></iframe>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ "<IPython.core.display.HTML at 0x106b99890>" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "import pandas as pd\n", "\n", "#Grab the geojson from github\n", "#county_geo = r'us_counties_20m_topo.json'\n", "# https://gist.githubusercontent.com/wrobstory/5609959/raw/17e222ecd9e26348f50a04fa484485a0e0f54a58/us_counties_20m_topo.json\n", "county_geo = 'http://mashupguide.net/wwod14/us_counties_20m_topo.json'\n", "county_data = 'https://raw.github.com/wrobstory/folium/master/examples/data/us_county_data.csv'\n", "\n", "df = pd.read_csv(county_data, na_values=[' '])\n", "df['FIPS_Code'] = df['FIPS_Code'].astype(str)\n", "\n", "def set_id(fips):\n", " '''Modify FIPS code to match GeoJSON property'''\n", " if fips == '0':\n", " return None\n", " elif len(fips) <= 4:\n", " return ''.join(['0500000US0', fips])\n", " else:\n", " return ''.join(['0500000US', fips])\n", "\n", "#Apply set_id, drop NaN\n", "df['GEO_ID'] = df['FIPS_Code'].apply(set_id)\n", "df = df.dropna()\n", "\n", "map = folium.Map(location=[40, -99], zoom_start=4)\n", "map.geo_json(geo_path=county_geo, data_out='data2.json', data=df,\n", " columns=['GEO_ID', 'Unemployment_rate_2011'],\n", " key_on='feature.id',\n", " threshold_scale=[0, 5, 7, 9, 11, 13],\n", " fill_color='YlGnBu', line_opacity=0.3,\n", " legend_name='Unemployment Rate 2011 (%)',\n", " topojson='objects.us_counties_20m')\n", "\n", "embed_map(map)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<iframe src=\"files/map.html\" style=\"width: 100%; height: 510px; border: none\"></iframe>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "<IPython.core.display.HTML at 0x10728e390>" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Blending folium with interact" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython.html import widgets\n", "from IPython.display import display, Image, HTML, clear_output" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "# not the most interesting demo --> but a proof of concept on how we can control map using interact\n", "\n", "def plot_map(lat, long, zoom):\n", " map = folium.Map(location=[lat, long], zoom_start=zoom)\n", " map.simple_marker([lat, long], popup='lat:{lat} long:{long}'.format(lat=lat,long=long))\n", " display(inline_map(map))\n", " \n", "widgets.interact(plot_map, \n", " lat=widgets.FloatSliderWidget(min=-90,max=90,step=0.1,value=0),\n", " long=widgets.FloatSliderWidget(min=-180,max=180,step=0.1,value=0),\n", " zoom=widgets.IntSliderWidget(min=0,max=20,step=1,value=2))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<iframe srcdoc=\"<!DOCTYPE html>\n", "<head>\n", " <link rel=&quot;stylesheet&quot; href=&quot;http://cdn.leafletjs.com/leaflet-0.5/leaflet.css&quot; />\n", " <script src=&quot;http://cdn.leafletjs.com/leaflet-0.5/leaflet.js&quot;></script>\n", " \n", " \n", " \n", " \n", "\n", "\n", "<style>\n", "\n", "#map {\n", " position:absolute;\n", " top:0;\n", " bottom:0;\n", " right:0;\n", " left:0;\n", "}\n", "\n", "</style>\n", "</head>\n", "<body>\n", "\n", " <div id=&quot;map&quot; style=&quot;width: 960px; height: 500px&quot;></div>\n", "\n", "<script>\n", "\n", "\n", "\n", "var map = L.map('map').setView([50.6, -87.5], 2);\n", "\n", "L.tileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {\n", " maxZoom: 18,\n", " attribution: 'Map data (c) <a href=&quot;http://openstreetmap.org&quot;>OpenStreetMap</a> contributors'\n", "}).addTo(map);\n", "\n", "\n", "var marker_1 = L.marker([50.6, -87.5]);\n", "marker_1.bindPopup(&quot;lat:50.6 long:-87.5&quot;);\n", "map.addLayer(marker_1)\n", "\n", "\n", "\n", "\n", "\n", "\n", "</script>\n", "\n", "</body>\" style=\"width: 100%; height: 510px; border: none\"></iframe>" ], "metadata": {}, "output_type": "display_data", "text": [ "<IPython.core.display.HTML at 0x106f16590>" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
apache-2.0
kristinriebe/cosmosim-uws-notebook
cosmosim-uws-intro.ipynb
1
20799
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Exploring cosmological simulations with CosmoSim\n", "## Introduction to job handling with uws-client\n", "\n", "CosmoSim is a web application available at http://www.cosmosim.org/ where data from cosmological simulations is available. This includes catalogues of dark matter halos (clusters) and galaxies for different time steps during the evolution of the simulated universe, merging information, substructure data, density fields and more.\n", "\n", "In this tutorial, we will use the [uws-client](https://github.com/aipescience/uws-client) for connecting with CosmoSim's UWS-interface for seeing your list of jobs, sending jobs and retrieving results." ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Imports\n", "Import the necessary libraries and the UWS module from the uws-client:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# load astropy for reading VOTABLE format\n", "from astropy.io.votable import parse_single_table\n", "\n", "# import matplotlib for plotting results, mplot3d for 3D plots\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits.mplot3d import Axes3D" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# import sys\n", "# sys.path.append('<your own path>/uws-client')\n", "\n", "from uws import UWS" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Setup the connection\n", "\n", "The URL for connecting with CosmoSim's uws-client is 'https://www.cosmosim.org/uws/query/'. You also need to define your username and password, either by inserting it directly below or by saving your credentials in a local cosmosim-user.json file and reading it here. The credentials are the same as on the CosmoSim webpage. If you do not have an account yet, please register at [CosmoSim registration](https://www.cosmosim.org/auth/registration/register). Alternatively, you can use the user `uwstest` with password `gavo` for testing purposes. (Be aware that anyone can use this user and delete your results at any time!)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# set credentials here:\n", "# username = 'uwstest'\n", "# password = 'gavo'\n", "\n", "# or read your own username and password from a json-file,\n", "# format: { \"username\": \"<yourname>\", \"password\": \"<your password>\" }\n", "import json\n", "with open('cosmosim-user.json') as credentials_file: \n", " username, password = json.load(credentials_file).values()\n", "\n", "url = 'https://www.cosmosim.org/uws/query/'\n", "c = UWS.client.Client(url, username, password)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## List previous jobs\n", "Once the connection is set up, you can retrieve the list of previously run jobs with `c.get_job_list()`. You can also provide extra filters for the job list, e.g. filtering by phase or creation time of the job or just output the most recent ones using the `last` keyword." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "filters = {'phases': ['PENDING', 'COMPLETED', 'ERROR'], 'last': 5}\n", "jobs = c.get_job_list(filters)\n", "\n", "# printing the returned resulting jobs-object gives a list of jobs\n", "print jobs" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "For each job, its unique id, ownerId, creationTime and phase are stored within this job list. \n", "At CosmoSim, we store the table name as the `runId` for each job. If no table name was given during job creation, the current timestamp is used." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "print \"# jobId, ownerId, creationTime, phase, runId:\"\n", "for job in jobs.job_reference:\n", " print job.id, job.ownerId, job.creationTime, job.phase[0], job.runId" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Create, check and run a job\n", "\n", "For creating a new job, first define the necessary parameters. For CosmoSim this is `query`, which is the SQL string and the optional parameters `queue` (long or short) and `table` (a unique table name). We set here an SQL query that will select the 10 most massive clusters from the MDPL2 simulation, Rockstar catalog." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "parameters = {'query': \n", " 'SELECT rockstarId, x,y,z, Mvir FROM MDPL2.Rockstar'\\\n", " + ' WHERE snapnum=125 ORDER BY Mvir DESC LIMIT 10',\n", " 'queue': 'short'}" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Now **create a new job** with these parameters:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "job = c.new_job(parameters)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "And print the job's id and phase:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "print job.job_id, job.phase[0]" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "The job is created now, but it is not started yet - you can still adjust its parameters with c.set_parameters_job. E.g. let's change the queue to long:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "update_params = {'queue': 'long'}\n", "job = c.set_parameters_job(job.job_id, update_params)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Print the parameters to check this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "for p in job.parameters:\n", " print p.id, p.value" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Now **start the job**, i.e. put it into the job queue using `run_job`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "run = c.run_job(job.job_id)\n", "print run.job_id" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "The job should now also be visible in the web interface, at the Query Interface, left side, under 'Jobs'. \n", "Let's check the job's phase: " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "job = c.get_job(run.job_id)\n", "print job.phase[0]\n" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "You can also use the `wait` parameter to wait at most the specified number of seconds until the phase has changed:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "job = c.get_job(run.job_id, '10', 'QUEUED')\n", "print job.phase[0]" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Repeat the step above using \"EXECUTING\" as job phase until the job phase is \"COMPLETED\"." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "job = c.get_job(run.job_id, '10', 'EXECUTING')\n", "print job.phase[0]" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Get the results" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Once your job is in \"COMPLETED\" phase, you can retrieve the results.\n", "\n", "Print the job result entries:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "for r in job.results:\n", " print r" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "With `r.reference` you can access the URL of each result. Let's download the results in VOTABLE format:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "fileurl = str(job.results[1].reference)\n", "resultfilename = \"result.xml\"\n", "success = c.connection.download_file(fileurl, username, password, file_name=resultfilename)\n", "if not success:\n", " print \"File could not be downloaded, please check the job phase and result urls.\"\n", "else:\n", " print \"File downloaded successfully.\"" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Since there is only one table, we can quickly read the VOTABLE into a numpy array using astropy:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "table = parse_single_table(resultfilename, pedantic=False)\n", "data = table.array" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Print the results row by row:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "print data" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Or print only a column:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "print data['x']" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Get the units for x and y values:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "field = table.get_field_by_id('x')\n", "unit_x = field.unit\n", "field = table.get_field_by_id('y')\n", "unit_y = field.unit\n", "\n", "print \"Units for x and y: \", unit_x, unit_y" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Plot results" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "%matplotlib inline\n", "ax = plt.subplot(111)\n", "\n", "# set axis labels\n", "ax.set_xlabel('x [' + str(unit_x) + ']')\n", "ax.set_ylabel('y [' + str(unit_y) + ']')\n", "\n", "# set axis range\n", "ax.set_xlim(0, 1000)\n", "ax.set_ylim(0, 1000)\n", "\n", "# plot data,\n", "# using decreasing point size,\n", "# so the biggest point is the most massive object\n", "s = range(20,0,-2)\n", "ax.scatter(data['x'], data['y'], s, color='b');\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Delete job\n", "\n", "Delete the job on the server, because we don't need it anymore:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "deleted = c.delete_job(job.job_id)\n", "deleted" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Example: Retrieve progenitors of a halo\n", "\n", "Let's do a more elaborate example: for the most massive dark matter halo from the previous query, get its progenitors that merged into this halo and plot their positions over time. We restrict the progenitors to those with mass > 1.e12/h solar masses." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# store id of most massive dark matter halo from query before\n", "most_massive_rockstarId = data[0]['rockstarId']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "query = \"\"\"\n", "SELECT p.rockstarId, p.snapnum as snapnum, p.x as x, p.y as y, p.z as z, p.Mvir as Mvir, p.Rvir as Rvir\n", "FROM MDPL2.Rockstar AS p,\n", " (SELECT depthFirstId, lastProg_depthFirstId FROM MDPL2.Rockstar\n", " WHERE rockstarId = \"\"\" + str(most_massive_rockstarId) + \"\"\") AS m\n", "WHERE p.depthFirstId BETWEEN m.depthFirstId AND m.lastProg_depthFirstId\n", "AND p.Mvir > 5.e11\n", "ORDER BY snapnum\n", "\"\"\"\n" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Create and start the job:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "job = c.new_job({'query': query, 'queue': 'long'})\n", "if job.phase[0] != \"PENDING\":\n", " print \"ERROR: not in pending phase!\"\n", "else:\n", " run = c.run_job(job.job_id)\n", "print job.phase[0]" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Check the status and wait until it is finished (this can take a couple of minutes!!):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "job = c.get_job(run.job_id, '60', 'QUEUED')\n", "print \"Time out or job is not in QUEUED phase anymore.\"\n", "job = c.get_job(run.job_id, '60', 'EXECUTING')\n", "print \"Time out or job is not in EXECUTING phase anymore.\"\n", "print \"Job phase: \", job.phase[0]\n", "print job" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Retrieve the results:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "fileurl = str(job.results[1].reference)\n", "resultfilename = \"result.xml\"\n", "success = c.connection.download_file(fileurl, username, password, file_name=resultfilename)\n", "if not success:\n", " print \"File could not be downloaded, please check the job phase and result urls.\"\n", "else:\n", " print \"File downloaded successfully.\"" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Plot the positions of the progenitor halos, colored by snapshot number (increasing time):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "table = parse_single_table(resultfilename, pedantic=False)\n", "data = table.array\n", "\n", "field = table.get_field_by_id('x')\n", "unit_x = field.unit\n", "field = table.get_field_by_id('y')\n", "unit_y = field.unit\n", "field = table.get_field_by_id('z')\n", "unit_z = field.unit\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "%matplotlib inline\n", "ax = plt.subplot(111)\n", "\n", "# set axis labels\n", "ax.set_xlabel('x [' + str(unit_x) + ']')\n", "ax.set_ylabel('y [' + str(unit_y) + ']')\n", "\n", "# plot data,\n", "# color by snapnum, i.e. snapshot number, i.e. increasing time\n", "cm = plt.cm.get_cmap('viridis')\n", "sc = ax.scatter(data['x'], data['y'], s=0.7, c=data['snapnum'], alpha=0.5, cmap=cm)\n", "plt.colorbar(sc)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Now use an interactive 3D plot instead:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Make an interactive 3D plot\n", "%matplotlib notebook\n", "fig = plt.figure()\n", "\n", "ax = fig.add_subplot(111, projection='3d')\n", "\n", "# set axis labels\n", "ax.set_xlabel('x [' + str(unit_x) + ']')\n", "ax.set_ylabel('y [' + str(unit_y) + ']')\n", "ax.set_zlabel('z [' + str(unit_z) + ']')\n", "\n", "# plot the data\n", "cm = plt.cm.get_cmap('plasma')\n", "\n", "ax.scatter(data['x'], data['y'], data['z'], s=0.7, c=data['snapnum'], depthshade=True, cmap=cm)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Delete your job on the server:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "deleted = c.delete_job(job.job_id)\n", "deleted" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
kit-cel/wt
sigNT/spectral_estimation/psd_Bartlett.ipynb
2
275818
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Content and Objective\n", "\n", "+ Show estimation of psd w. Bartlett\n", "+ Method: Get noise, filtered noise and sinusoid, and perform psd estimation" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# importing\n", "import numpy as np\n", "from scipy import signal\n", "import scipy as sp\n", "\n", "import matplotlib.pyplot as plt\n", "import matplotlib\n", "\n", "# showing figures inline\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# plotting options \n", "font = {'size' : 30}\n", "plt.rc('font', **font)\n", "plt.rc('text', usetex=True)\n", "\n", "matplotlib.rc('figure', figsize=(30, 8) )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Helper Functions" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "########################\n", "# periodogram estimator\n", "########################\n", "def find_periodogram(y, omega):\n", " \"\"\"\n", " estimates periodogram out of the given observation at the frequencies specified in omega\n", " \n", " IN: observation y, frequencies\n", " OUT: psd estimator\n", " \"\"\"\n", " N = len(y)\n", " per = np.zeros(len(omega), dtype=complex) \n", " \n", " for p in np.arange(0, N):\n", " per += y[p] * np.exp( -1j * omega * (p+1) )\n", " \n", " per = ( abs(per)**2 )/ N\n", " \n", " return per \n", "\n", "\n", "########################\n", "# Bartlett periodogram estimator\n", "########################\n", "def find_bartlett_estimate( y, M, omega):\n", " \"\"\"\n", " estimates periodogram out of the given observation at the frequencies specified in omega\n", " using Bartlett's method\n", " \n", " IN: observation y, group size M, frequencies Omega\n", " OUT: psd estimator\n", " \"\"\"\n", " \n", " N = len(y)\n", " K = int( float(N)/M )\n", " \n", " per = np.zeros(len(omega) )\n", " \n", " k = 0\n", " while k<K:\n", " \n", " yk = y[ k*M : (k+1)*M ] # mind that the upper limit is not included \n", " Yk = find_periodogram( yk, omega )\n", " per = 1.0/(k+1) * ( k * per + Yk ) \n", "\n", " k += 1 \n", "\n", " return per" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Parameters" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# parameters: number of samples and according length of acf\n", "N = int( 1e2 )\n", "N_range = np.arange( 0, N )\n", "\n", "# width of segments\n", "M = N // 10\n", "\n", "# number of realizations for averaging \n", "N_real = int( 1e2 )\n", "\n", "# number of freq. points and freq. range\n", "N_freq = 512 \n", "Ome = np.linspace(-np.pi, np.pi, N_freq)\n", "\n", "\n", "# filtering noise?!\n", "filtered = 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Loop for realizations" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# initialize arrays for psd\n", "psd_noise_per = np.empty( [ N_real, N_freq ], dtype=float )\n", "psd_noise_bart = np.empty( [ N_real, N_freq ], dtype=float )\n", "\n", "psd_sin_per = np.empty( [ N_real, N_freq ], dtype=float )\n", "psd_sin_bart = np.empty( [ N_real, N_freq ], dtype=float )\n", "\n", "# avtivate parameter \"filtered\" in parameters if you like to see filtered noise\n", "if filtered == 1:\n", " # filter parameters\n", " cutoff_freq = 1.0/4.0\n", "\n", " ripple_db = 60 # ripples and transition width of the filter\n", " width = 1 / 5.0\n", "\n", " N_filter, beta = signal.kaiserord(ripple_db, width) # find filter order and beta parameter\n", " \n", " taps = signal.firwin( N_filter, cutoff=cutoff_freq, window=('kaiser', beta))\n", "\n", " \n", "# loop for realizations\n", "for _k in range( N_real ):\n", " \n", " # generate noise\n", " noise = np.sqrt(2) * np.random.normal( 0.0, 1.0, N )\n", "\n", " # activate to have filtered noise\n", " if filtered == 1:\n", " noise = signal.lfilter( taps, 1.0, noise ) \n", " noise /= np.linalg.norm( noise )\n", "\n", " # find estimations\n", " psd_noise_per[ _k, :] = find_periodogram( noise, Ome ) \n", " psd_noise_bart[ _k, :] = find_bartlett_estimate( noise, M, Ome )\n", "\n", "\n", " Omega_0 = 1.0\n", " Omega_1 = 1.2\n", " y = np.sin( Omega_0 * N_range ) + np.sin( Omega_1 * N_range) + np.random.normal(0.0, 1.0, size = N)\n", "\n", " psd_sin_per[ _k, :] = find_periodogram( y, Ome ) \n", " psd_sin_bart[ _k, :] = find_bartlett_estimate( y, M, Ome ) \n", " \n", " \n", " \n", "# get mean and std along realizations\n", "psd_noise_per_average = psd_noise_per.mean( axis=0 ) \n", "psd_noise_per_tria_std = psd_noise_per.std( axis=0 ) \n", "\n", "psd_noise_bart_average = psd_noise_bart.mean( axis=0 ) \n", "psd_noise_bart_std = psd_noise_bart.std( axis=0 ) \n", "\n", "\n", "psd_sin_per_average = psd_sin_per.mean( axis=0 ) \n", "psd_sin_per_tria_std = psd_sin_per.std( axis=0 ) \n", "\n", "psd_sin_bart_average = psd_sin_bart.mean( axis=0 ) \n", "psd_sin_bart_std = psd_sin_bart.std( axis=0 ) \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plotting" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, '$\\\\hat{\\\\Phi}_B(\\\\Omega)$')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABvkAAAICCAYAAADlMKEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzde3hcV33u8XfpPpIsjW6+XxTJcZx7YjuEAAkOkZMTIKcE7ACFAqdpbChtIX3aGM7h1tIejkOfUODwcOzQ0h4uPYlNoaS0JLYTJyQhIZESkxA7tiXfb7qMRrasGUmjWeePmT0aydJoRprRnpG+n+fRY3n23mt+mo1xlt/9W8tYawUAAAAAAAAAAAAgd+S5XQAAAAAAAAAAAACA1BDyAQAAAAAAAAAAADmGkA8AAAAAAAAAAADIMYR8AAAAAAAAAAAAQI4h5AMAAAAAAAAAAAByDCEfAAAAAAAAAAAAkGMI+QAASTHGNBtj7ARf3dHzHjDGeN2uORvFfVZb3a4FAAAAAGaDFOazO2fCfNYYsz7u52pyux4AQOYQ8gEA0skraZWkLZK6jTEbXa5HxpgtcZObB9yuBwAAAACQlbySmjQ8n93icj0AAEyIkA8AMBmN1loT/yWpStJqSQ/GnbeViREAAAAAIItUjTGfbZS0QdKOuPMeMMY0u1MiAADJIeQDAEyGb/QL1lq/tbbFWrtZkbCvLXroAWPM+mmtDgAAAACAJFlr26y1O6y1GxQJ/Fqih1YZY7a7WBoAAAkR8gEA0s5a26LIU5COh12sZXPcE5oPTnwFAAAAAGC2sta2SbpNww+urjfGNLhYkiTJGLMxumfgzlyrJZtqB4CZhpAPAJAR0aDPWerEy2bfAAAAAIBcYK31S9oa91I2rE7TqMiegdkwt061lmyqHQBmFEI+AEAmxT+lt8q1KgAAAAAASE1L3Pc1rlUBAEAChHwAgExqi/u+0bUqAAAAAABIzbq471tdqwIAgAQI+QAAmRS/bwGTIgAAAABA1ovuwbcx+lu/tXabm/UAADAeQj4AQCbFP/nYMt5J0U24m40xNvrVbIzZmOD8pug5zc4G6MYYrzHmgehr3XHnro8bN+H6/9FztxtjuqPntxpjthpjkl5q1BizKrqhePwYW4wx3mTHSEct0c9ja9zn2mqM2RI91hD9rHZGX+8edW3Sn++oep3xnPfbnsRnHv9eq+LGao772ZuNMQ+Mum5VdHzn/bqjP29KnzMAAAAAxIvOS3ZKcuYWGyY4Px1zoTHnXdG5sjXGWEkPxF1rR31tn8LPm9R8PNVapqN2AIBU4HYBAICZKToxcjYn91trd41xToMik6eGUYdWSdpqjNlkrV09zls4YZc3OnnaruFJWKq1eqPXj56EOU9vbjTGbLPWbppgnI0auTm7M8YDkh4wxjw4HbVEP/vdGvl5NERreGC8a6y18UFsUp9vgmMN0a/1xpgd1trxJsbeuPdqiAaRo3/2VZJWGWNusNZuiP4MW8YYZ6Oke4wxl1hr/eO8HwAAAADEROdgzvxlk4bnI35Jt42aJ8VfN9W5kJTGeW2qpjgfBwBkCTr5AABpF50sxD+Nd98Y53glNWt4QrFNkc6/ddHvpUiwM9FTfU0a+ZTlLkmbU6jVqcOZyO1Q5EnN1YpM8JwJ3UZjzM4E46zSyICvLXq9M84uxT29mKlaomM4AV+LpNXWWhMdI36PxNWSqqJfjaOOxZvo8/VGv9qir6+Ljrcueq4Umdwm/NmjHo6+3+ZofRs0/L8FZ5ztigR8OzT8v5fR9YzbBQoAAABg1nNWDHG6zLoVmYc5D1u2SNpgra0aL+CLSudcaMx5V3SZUGfetiPu/Kr4rwmCxItMZj6eai2Zqh0AMBKdfACAyWgwxowOhaoVmSBs0MiQ5UFr7Q5dLP4JxXWjOv12GWNaFQlz1htjGqy144VQTkfXLkUmYql2cD2s4YnNhlG1tkjaFu0ue0BSkzHmAWvtWB158Z1lD1pr44On0eNkspbPa/hzvc35PKy1LcaYdRreG7Ep7tpEn9lEn2+LpE1j7FHRpuH72CBpS7QDMdF7eUeN1SJphzHGr+HPbb2kXaMmgruMMbsUmaRKkUB0wq5JAAAAABiDV5E5b6J5qJTeudC48y7ne2OMRr82BZOaj6daS4ZqBwDEoZMPADAZzYo87Rj/1arIk4fxAd+mUWGXpFjXm9Ot9uBYS3lGAyjnP/4TLpMpaYe1dl2qk4VRS4puGyeMVPRncJ7gvGh/vVE/T8tYP3PU1zJdS1wdu0Z/HtGJmXPtOiVv3M/XWts2wSb08eHn6GVgRhtvrNFLoF70v4foE7bOBLx6gvcBAAAAMHs5HXfO12oNrxCyQ9FgTlJsX/OxpHkuJE1yXpuqDMzHAQAuIuQDAKSTX5EQ6UFFlt0Yb8Lzwbjvxw2+NLxMSKINy/0aYznQJMVPViZa4jP++D2jjjWNc54btTh7Ooz3xKnz+pok65rK5zu6jonec7xgM36MtgRP0zqvT8seFgAAAABy0svRgM75arHW7rLWPhhdMSR+eckHjDHNCcZKJJW50FTnXalI53wcAOAylusEAExG4wTLlkwkfpLQHb90xzgSPfV4UcdaCpyAzJ/EGC/HfR+/T4EUefpTkjTWU5DTXItf0eVlxrnWef3lcY6PNpXPV5J8cd9PFL61TnBcGj+8BAAAAIApi85/NhhjtiqyUs0qY8xWa22qHW2pzIWmOu9KRTrn4wAAlxHyAQDckOokIdGE6KUp1OGMO2HgZa31x01+RtefbFfcdNTyqCIT0Ytqii7t6XT6JdpAPl7Sn290/HsUWe6mIfrF0pkAAAAAco61dpMxZo0ic6iNxpgt4z3smoa50FTmtalK53wcAOAylusEALhpl7XWJPOVYIx0dHZlUxA11VqcfR+8xpidzp590V+3R4/5lXhZlngTfr7GmPXRJWy6Fdk/b6MiT4em+rP4Jj5F0/V0KwAAAADE7w++avTBNM6F3FixJB3zcQCAywj5AABuSHVfuExxAqMJn2Q0xsSfM3oC9vI457lRS7wmRZZf6VZk0uksy7IhXUvBRJew2a7IhNevyH6Mq6OTwSpJt6XjfQAAAADAZSPmajk8F8qW+TgAIA0I+QAAbnD2rfM6nWZZUMdE4Vr8U5ujl1KJ30tusiFfumrZHP11U/yYikw6d0iqmsK+gSMYY5oUeVJVkrZZa6ustZuttckuBQoAAAAA2Wxd3PexByxzfC6ULfNxAEAaEPIBANwQv+TJw65VMbKOLeOedfHxbaOO7RrnvNEShXfpqmWNJFlrt1lr10WXVqmKTjrT1sEXFT/h3TzOOdm0FCoAAAAAJMUYs0rSeuf31todcYddnQtNMZxL63w81VoIFgEgvQj5AADTLrpZuTNBWm+MeWC8c40xTcaYiUKvydaxS5LzpOW4dRhjtms4oHtwdFAWfVrTCfpWJfh5to/zetpqiTvPWZpTaQ724nXFfd80zjmbMvTeAAAAAJAR0fnU7riXRgd5bsyF4vcwH7106EX7BY4nTfPxVGtJS+0AgIsVuF0AAGB2stZuMMa0KvIf+FuMMesUeaKwLfraDYpMllZpZKdcut0m6bAiS1o6dexUJHBbpcjEzJmEtFhrx3tKc7Ok5uj3o3+eNYp03030xGI6ank5eu5OY8wuXbxnn1+RJT53pSH826HhrsLtxpgHJT0S/f2aaL1M2AAAAABkvWjY1CDp8xo5j9lmrX1w1OluzIWa475/2BjzNUW6BTdE37Mq2YHSMB9PtZa01Q4AGImQDwDgptWKdLc1xX2NZdwOuKmy1vqNMZco8pTmqgR17LDWbkgwTosxZpOGlz4ZPU6bpPuUuJsvHbVs0fDeEON9npIkY8wOSfdNNuyz1rYZY7bFvd8D0a8RtSpuiRsAAAAAcFm3MSaZ8/ySNltrR2+R4NZc6FENzzdXaeTc0m+M8aY4t5vKfDzVWtJdOwAgiuU6AQCusdb6rbXrFHl6b5cikygpEojtUqQ7rmqsSVUG6lg9Rh1+RSZmqxMFfHHjbFNkouQ86ehXpAtvs7W2Mfq689WaoVq2Jjg22npJzVPZE8Fau0nSgxpZZ4si964x+qvzM4/uKgQAAACAbOJXZO6yKbqv+bhz0emeC0VDsHUa3ubBWXZzQ7TWlEKyqczHU60l3bUDAIYZa63bNQAAgDSI7pXgPD26WZFlZfyjzmlQ5AnNzRq5t994y5ACAAAAAAAAyEKEfAAAzBDGmG5F9vNLuLToGOe3RLsHAQAAAAAAAOQIlusEAGDmcJbdTHYpGOe8SS/XCQAAAAAAAMAdhHwAAMwczv4GG6PLco7LGNOkyIbn0vAeggAAAAAAAAByBCEfAAAzx32KbJbuldRsjNlijHGCPBljvMaYVcaYrZJ2Rl92NoYHAAAAAAAAkEPYkw8AgBkk2sG3XcNdeokktXcfAAAAAAAAgOxDyJflamtrbX19vdtlTNmFCxdUVlbmdhmYBO5dbuK+5aZ03re+vj51dHSor69P/f39GhoaUlFRkYqLi1VaWqq6ujoVFxen5b1mO/685SbuW26aKfetubm501pb53YdmJlmyhxSmjl/5mcb7ltu4r7lJu5bbuK+5SbuW26aKfct0RyyYLqLQWrq6+v18ssvu13GlO3Zs0dr1651uwxMAvcuN3HfchP3LTdx33IT9y03zZT7Zow56nYNmLlmyhxSmjl/5mcb7ltu4r7lJu5bbuK+5SbuW26aKfct0RySPfkAAAAAAAAAAACAHEPIBwAAAAAAAAAAAOQYQj4AAAAAAAAAAAAgxxDyAQAAAAAAAAAAADmGkA8AAAAAAAAAAADIMYR8AAAAAAAAAAAAQI4h5AMAAAAAAAAAAAByDCEfAAAAAAAAAAAAkGMI+QAAAAAAAAAAAIAcQ8gHAAAAAAAAAAAA5BhCPgAAAAAAAAAAACDHEPIBAAAAAAAAAAAAOYaQDwAAAAAAAAAAAMgxhHwAAAAAAAAAAABAjiHkAwAAAAAAAAAAAHIMIR8AAAAAAAAAAACQYwj5AAAAAAAAAAAAgBxT4HYBAADkgl+f+rX8/X7decmdbpeSsvMD5/X917+vjddsVElBidvlAAAAAAAmqdXfqiePPanDPYfV0dmhzgOdum3pbaoqqXK7NACACwj5AABIwjdbvqmzfWdzMuTbfWy3Hn7tYV1Zc6VuW3ab2+UAAAAAAFLkD/q15aUt+ve2f5ckLShboPOB83rh1y/o717+O228ZqM+ceUnlGdYuA0AZhNCPgAAJnBh8IL2+fYpbMPq6e9RZXGl2yWlpNXfKkl6+ezLhHwAAAAAkGNa/a36k91/orN9Z3XvVffqo1d8VLWeWj311FNacO0CfeeV7+gbzd/Qq+2v6n/d/L9UWljqdskAgGnCox0AAEzg1fZXFbZhScOBWS455D8kSWo+2+xyJQAAAACAVBw/d1z3Pn6vgkNBff+/fF+fXf1Z1XpqJUnGGK2sXqlvvetb+txbPqenTzytzz71WQ0MDbhcNQBguhDyAQAwgZfPvhz73gnM0skf9OvZk8/qcP/htI8tDQeT+337dX7gfEbeAwAAAACQXucGzmnTrk0askP6h9v/QdfWXTvmecYYfeTyj+grN31Fvz79a33l+a/IWjvN1QIA3EDIBwDABJrPNuvq2qtVWlCakU6+B196UJ/a9Sk9dOYhtfnb0jr2hcELOn3htG5ccKOsrF5pfyWt4wMAAAAA0s9aqy8/92Wd7j2tb7/r22rwNkx4zd2X3q1PXfspPdb2mH526GfTUCUAwG2EfAAAJDAYHtRrna9pzbw1avQ2ZiTkO9t3VkYm9n06OfW+f/n7VWAKCPkAAAAAIAf87NDPtOvYLn1m1Wd03dzrkr5u0zWbdOP8G/U/X/yfOn7+eAYrBABkA0I+AAAS6OzrVCgc0rKKZWr0NmZkuc6e/h4tnrM48v1AT1rHdkK+K2uv1LyyeTrVeyqt4wMAAAAA0qsr0KW/e/nvtGruKn3syo+ldG1+Xr7+5h1/o/y8fP3tC3/Lsp0AMMMR8gEAkEB7oF2SNLd0rhorG9UV7JI/6E/re/j7/VpasVSS1BNMf8hXnF+sxeWLNa90njoCHWkdHwAAAACQXg81P6S+UJ++fNOXlWdS/+fb+WXz9afX/6meO/Wcnjj6RAYqBABkC0I+AAAS6OiLhGJzS+fG9kBo60nvvnnnBs5p6ZxoyJfuTr6eVtVX1Cs/L191pXWxnwcAAAAAkH32+/brsdbH9AdX/EFS+/CN50OXfUgrqlbo75v/XoNDg2msEACQTQj5AABIoL0v0slXV1qnSyoukSQdOXckbeP3D/UrEAqozlOnIlMkf396uwSP9BxRfWW9JKnOUxf7eQAAAAAA2ecbzd9QRXGF/ujqP5rSOPl5+bp/9f060XtCj7z5SJqqAwBkG0I+AAAS6Ah0qCCvQN5irxaWL1RhXqGO9BxJ2/g9/ZHOvcriSpXllcV+nw4DQwM6deGULqmMhJNzS+eqL9SnC4MX0vYeAAAAAID0aD7brOdPPa/7rr5PFUUVUx7v7Qvfrhvn36iHX3tYgVAgDRUCALINIR8AYNY53Xs66c3H2/vaVeepU57JU35evpZVLNPhc4fTVksmQ75j544pbMOqr6iXFOlGlJR0N9+5gXM6P3A+bfUAAAAAAMa37bfbVF1SrXsuuyct4xlj9MlrPylf0KefHPhJWsYEAGQXQj4AwKzyzIlndPtPbtdvzvwmqfPb+9pj4Zgk1VfUp7WTz1mes7K4UqX5pWkN+ZxlRZ3lOud65kpS0vvy/cWev9C9j9+rsA2nrSYAAAAAwMVe63hNz596Xh+/8uPyFHjSNu6a+Wu0et5qff/172tgaCBt4wIAsgMhHwBg1gjbsL79yrclSa91vpbUNR19HbFwTIoEZifOn9BgOD0bl5/rPydJ8hZ7I518AxkI+UZ38gUm7uSz1uq3nb/VPt8+PXHkibTVBAAAAAC42D+/8c+aUzhHH7zsg2kf+76r71N7oF1PHGVuBwAzDSEfAGDW2H1st/b79svI6IDvQFLXtAcu7uQL2ZBOnj+ZlpqcUK+yqFKleent5Dvcc1hzPXNVVlgmKbInn5RcJ9+pC6d0YfCCjIy+8+p3NBQeSltdAAAAAIBhp3tPa9fRXVq/Yn1s/pZONy28SfUV9fqX/f+S9rEBAO4i5AMAzBrPnnxW3mKv3rHoHTroPzjh+YFQQOcHzsfCMWl46cvDPenZly9+uU5nT75k9wucyJFzR2L1SlJZYZlKC0qT2pPvYHfk87mr8S4dOXdEpy6cSktNAAAAAICRfrz/x5Kk37/89zMyfp7J04dWfki/7fitftf5u4y8BwDAHYR8AIBZo6OvQwvKFmhl9Uod7jk84X4EnX2dkqQ6z8hOPkna370/LTX19PeoMK9QngKPSvNLNWSH1DvYO+Vx+4f6dbjncKxex9zSueoITNzJd6A70un4zsXvlCR1BjqnXBMAAAAAYKT+oX799NBPddvS2zS/bH7G3uf3Gn9PpQWlsUARADAzEPIBAGaNzkCnaj21WlG1QkN2aMJuPGfvuvjlOiuLK7V63mpt++02PXPimSnX1NPfo8riShljVJZXFnttKgaGBvTZpz6r3oFevXPJO0ccqyutS2q5zgPdB7SofJGWVSyTlNwSnwAA5BpjzHpjzFZjzJbo11ZjTMN0j2uMaTDGNBtjHog/L/r6RmPMznTUBQDIPk8ee1I9/T1av2J9Rt+nvKhcdzXepV8e/qV8QV9G3wsAMH0I+QAAs0Z7X7vmls7ViqoVkoa71RKdL0lzPXNHvP6td31LjZWN+vLzX57y0po9/T3yFnslKW0h338e/k89e/JZfeGtX9Ati28ZcazOU6ezfWcnHONA9wGtqFoxvI9fEt1/AADkEmPMVkkftNZustZuttZulrRZ0k5jTNM0j+uVtErSFkmtxhhrjLGSWqPXbrLWtk22JgBA9vrJgZ9oUfki3bjgxoy/14dXflgD4QH968F/zfh7AQCmByEfAGBWCIVD8gV9qvXUamnFUhXlFU0Y8r3pe1MFpkCL5iwa8XpFUYXWr1ivzkCnTl84PaW6egZ6VFFUIUkqzSuNvDbFkG9vx17NKZqjDSs2XHSsvrJep3pP6dzAuXGv7x/q19FzR3Vp1aXyFntVkFdAJx8AYEYxxqyXdI+1dsRfltZav6RNkrYbY7zTPO4OSdsk7ZLUEv39JmttIwEfAMxMx88d14tnXtTdy+9Wnsn8P9M2eht14/wbtePADoVtOOPvBwDIPEI+AMCs4Av6ZGVV56lTQV6B6ivr1daT+N/LXml/RVfUXCFPgeeiY1fVXiVJer3z9SnV5e/3D3fy5ZfFXpuK1ztf15U1V8oYc9GxVXNXycpqb/veca8/eu6owjas5d7lMsao1lNLJx8AYKbZokigdhFr7a7ot5+f5nF3Rrv/1llrV1trN1hrxxwLADAz/PTQT5Vn8vS+5e+btvd836Xv08nek2o52zJt7wkAyBxCPgDArOB0otWW1kqSls5ZquPnj497/sDQgF7vfF3Xzb1uzOMrqlaoIK9Ar3dNLeRz9uST4jr5Bibfydc/1K+D3QdjIeRoV9derXyTr1faXxl3jOPnIp/L0jlLJUWW+KSTDwAwUxhjVklqkPRSgtNelrQxG8YFAMxMoXBIPzv0M9286GbNK5s3be/7riXvUmlBqX7e+vNpe08AQOYQ8gEAZgWnE83ZX29JxRKdOH9CQ+GhEeedHzivv33hb/WvB/9VA+EBrZq7aszxivKLdFnVZfpd5++mVNdYe/JNpZNvv2+/Qjakq2rGDvlKC0t1efXlaj7brO/u/a5+eeSXF51z7PwxSdLiOYslRUM+OvkAADOHsy9eopb+NkleY0xDFowLAJiBfnXiV+oIdOgDl35gWt+3tLBUt9ffrieOPqFAKDCt7w0ASL8CtwsAAGA6OCFVXWmdpEiX2mB4UO197VpQvkCS1DfYp0/v/vSILrfxOvmkyJKdv2j7hcI2PKn9E3oHetU/1K+qkipJUr7J15yiOeoKdKU8lsNZPvTK2ivHPef6edfrB2/8QC3tLTIystbqzkvujB0/fv64vMXeWIdhXWmdWtpZygUAMGPcEP01URjXGv111QTnTce4AIAZ6LG2x1RdUq2bF9887e/9Xxv/q3526Gd68tiTek/De6b9/QEA6UMnHwBgVnCWm6wpqZEkLZmzRNJw15okPfLmI3ql/RV9+rpPqyivSMsqlqnGUzPumFfVXqXewV4dOXdkUjWd7D0pSVpYvjD22qLyRbHXJ+ONrjdU66nVvNLxl3txuhPXLlmr6+dery8//2UNDA3Ejh87fyz2+UhSradW/n7/iHMAAMhhXkmy1iZqnXeOVU/nuMaYBmPMA8aYjcaYLcaY7caYprHOBQDkrt6BXj19/GndUX+HCvKmvwdj9bzVWli2UI+1Pjbt7w0ASC86+QAAs0JHoEPVJdUqzC+UNLzf3LHzx3TjghslSS1nW1RfUa9PXvtJXT/3ehmZhGPWV9RLkk71nlJDZeqrbjlh3uLyxbHXFpUv0uGewymPFT/msoplMmb82m9ZfIs237BZ71v+Pr1w+gXdv+d+7fPt07V110qSTpw/EftekuaWRpY47Qx0jggkAQDIUSkHd9M07jpJPmvtg84LxhivpN3GmK3W2m0pjA8AyGJPHn9SA+EBvfuSd7vy/nkmT+9tfK++99r31N7XHpvzAQByDyEfAGBW6OzrVK2nNvb7eWXzVJRXpOPnjkuSrLXa27FXtyy+RZJiwV8iznKWk91Dzwn5FpUvir22qHyRnjv5nKy1CYO68fT092hZxbKE5xTlF+mjV3xUkmJh3qvtr+raums1MDSg0xdO667Gu2LnO59bR6CDkA8AMBOkEtyN39Kf3nH9knZaa3fEv2it9RtjviZpuzHmZWvtmOtnG2M2StooSfPmzdOePXtSKCV79fb2zpifZTbhvuUm7tv0+uHZH6o6v1rdv+vWnjf2THqcqdy3eYPzFLZhfXvnt3Vb5W2TrgGp489bbuK+5abZcN8I+QAAs0JHoEN1nrrY7/NMnhbPWRxbrvPY+WPq7u9OuAffaN7iyL/l9fT3TKqmk70nVVpQGgsLpUjIFxwKqivYNSKUTJa/369ri6+d+MSoutI6LSpfpL0de2M1hW041ukoKfa5dfZ1plwPAACYmLW2TdKYnXrW2h3GGL+kLYp0+411zjbn+jVr1ti1a9dmqNLptWfPHs2Un2U24b7lJu7b9OkKdOnA9gP6b1f9N9266tYpjTXV+/bTf/+pDuqgvrr2q1OqA6nhz1tu4r7lptlw39iTDwAwK3T0dVwUmi2Zs0THz0c6+ZyQK36ZyolUFFXIyKTcyffsyWe1+9hunTx/UovmLBrRsbd4TmTpzoPdB/W/X/nf6hvsS3pca638/f4RoWEyrqm7Rnvb98paG/s84vfkqyuNhHztgfaUxgUAYAboypJx2yQ1RZfvBADksCeOPqEhO+TaUp3x7qi/Q7/r+l1sHggAyD2EfACAGS9sw/IFfeOGfKFwSHvb96q8sFyN3sakx83Py9ecojnyB1ML+b7Z8k399a//WsfPHx+xVKc0vHTnP7z2D9r626361clfJT1uX6hPoXAo1mGYrOvqrlN7oF1nLpzRkZ4jkobDRkmqKq5SnslTVyBT/84JAMC08kux/e6SOtflcaVIyCdJqW8CDADIKv/R9h9a7l2uS6sudbsU3V5/uyTpiSNPuFwJAGCyCPkAADPe+YHzCtmQajwjt7+5fu71CoQCaj7brBdOv6Br665Vnkntr0ZvsTel5ToHhwZ1yH9IvqBPrT2tWly+eMRxZ8+7F8+8KEna79uf9NhOR2GqId/1c6+XJP369K/17MlntaximWpKhj+r/Lx8eYu98gV9KY0LAECWcgKz6gTnOH+ZpvKX36THNcZMFN45Y69JoR4AQJY51XtKr3a8qvc0vMftUiRF5p/X1F6jx4887nYpAIBJIuQDAMx4XcFIB1p1ych/c3vHoneoJL9EDzU/pGPnj+nOS+5MeezK4kr1DCQf8rX2tCoUDhgY+AIAACAASURBVMV+P7qTz1PgGRGw7fPtS3psJ+RLdbnOldUrVV9Rrx/t+5F+c+Y3alraNGIJUSny2RHyAQBmCCcwS/RUjNPa35LpcY0xWyW1GmPWJ7huMqEjACDL7D62W5J0+7LbXa5k2O31t2ufb5+OnTvmdikAgEkg5AMAzHi+QOTfw0aHfKWFpXrHonfoja43VF5YrnXL1qU8dmVxZUp78jmdec7SoaNDPklaNGdR7Jw3fW8mPXZPMBI2ptrJZ4zRBy79gA50H9CQHdK6+os/h5qSGkI+AMBM8Uj010Tdcw2S/NbatgTnpGvcakWW70z0HxTOf8SkEjoCALLMrqO7tKJqhZZWLHW7lBgncHziKEt2AkAuIuQDAMx443XySYoFe+++5N0qLSxNeexUl+vc79svT4FH61dEHtZ3Ar14i8sXqyCvQB9e+WF1BjrVGehMauzJLtcpSXc13qUCU6BF5Yt0RfUVFx2vLqlmTz4AwIxgrW1RJFBL9HRPk6Rt0zTuS5JWW2t3TXBdS4qhIwAgi3QGOvVK+ytqWtrkdikjLChfoGvrrmXJTgDIUYR8AIAZz+lAG70nnyTduvRW3b38bn3iqk9MamxvsTflTr4VVSv00cs/qs+95XO61HvxZuv3Xn2vHrzlwdheecnuyzfZ5TqlyGdz/+r79ZlVn7loqU7nOJ18AIAZ5D5J9xhjLnoyJrpspl/S18a60Biz3Rizc6xrJznuNkmbxyvUGLNRkeU6N4x3DgAg+z11/ClZWb1r6bvcLuUid9Tfof2+/TrSc8TtUgAAKSLkAwDMeL6gT0ZmzA43T4FHf/32v9aSOUsmNXZlcaUuDF7Q4NDghOeGbVhv+t7UyuqVqiyu1Ecu/8iYgdqKqhVat2ydLqu+TFLyIZ/TUTiZkE+SPnblx8bdl7C6pFq9g73qH+qf1NgAAGQTa+0OSY9Kejj+9Wg4t0XSBmvtRU/xGGOaJK1XpLPunnSMG/399mh42DDquvVx19HFBwA5bPfR3VoyZ4lWVK1wu5SLOCvc7DqWqKkcAJCNCtwuAACAyQjbsL703JdUXVKtP1/z5wnP7Qp0yVvsVUFe+v/ac4LDnoGe2D574/EFfeod7FVDZaKteoZVFFWozlOno+eOJnW+v9+v8sLyjPyczlKnvoBPC8oXjHvemQtn9Me7/1j/48b/odXzVqe9DgAA0sVau8kYs94Ys1XD++F5Ja0bL1Cz1u4yxjj74j2a5nFflrTFGFMdPV+S2iRdMlbgCADIHecGzunFMy/qDy7/gzEf9HTb/LL5uqb2Gu08ulN/dPUfuV0OACAFhHwAgJy0de9W/Vvrv2lh2cIJQz5f0Dfmfnzp4IR8/qB/wpCvb7BPkjSnaE7S45cXlceum4i/3z/pLr6JxEK+YOKQr+Vsiw52H9Sf7/lzPfLeRzS/bH5G6gEAIB2inXc7UrxmwqdYJjmuX9KmVK4BAOSGZ048o1A4pNuW3eZ2KeNqWtakh5of0snek1pUfvHe8QCA7MRynQCAnHPmwhl9d+93VVFUoVMXTql3oDfh+b6gb8z9+NLBCdWS2ZcvEApIkkoLSpMev7SgNHbdRHoGesZckjQdnM+vK9iV8LxD/kPKN/kKhoL69ivfzkgtAAAAAJBLdh/drbmeubq69mq3SxlX07ImSdKuoyzZCQC5hJAPAJBz9nbslZXVh1d+WJLU2tOa8Pzp6ORz9sNLpC8U6cjzFHqSHr+0sDR23UR6gpkL+eI7+RI56D+o+op63bTwJr3a/mpGagEAAACAXBEIBfTsyWd169JblWey959il8xZopXVKwn5ACDHZO/fLAAAjOP1ztdVlFekdze8W5LU6k8c8nUFujIW8jmdfD0DSYR80WU3U+3ky6blOrsCE3TydR/S8qrluqr2Kh07fyyp8BMAAAAAZqrnTz6v4FAw1imXzZqWNunVjlfV3tfudikAgCQR8gEAcs5rna9pZc1K1VfUy1Pg0cHug+Oe2z/Ur97B3owt1xnbky+J5TpjnXwFKXTypbJcZ3/mOvlKC0vlKfAk7OTrG+zTid4TavQ26praayRF7hUAAAAAzFa7ju1SZXGlVs+bcEtX161btk6StPvYbpcrAQAki5APAJBTQuGQ3uh6Q1fXXq08k6eGygYd8h8a9/zuYLckZayTz1PgUWFeYXIhn9PJV5h8J5+n0JNUJ18oHNL5wfMZC/mkyGeYKOQ73HNYknSp91JdUXOFjIxe6yDkAwAAADA7DQ4N6ukTT2vt4rUqzCt0u5wJNXgb1FDZoJ1Hd7pdCgAgSYR8AICc0upvVSAUiG1Yvty7POFync7ykpkK+Ywxqiqukj+YfCdfyst1JrEnnxMyZmq5TkmqKalJuFznQX+ko3K5d7nKi8rV6G2kkw8AAADArPXSmZd0fuB8TizV6Vi3bJ2azzZPuB87ACA7EPIBAHLK3o69kjQi5OsIdIy799vZvrOSpFpPbcZqqiqpinUMJjKpTr4Cj/pCfbLWJjwv1rHoyUyYKUU+w0R7M7T6W1WUV6Qlc5ZIkq6qvUqvdb6mUDiUsZoAAAAAIFvtOrZLngKPblp4k9ulJG3dsnUK27CePPak26UAAJJAyAcAyBnWWu04sEMNlQ2xIGnxnMWSpNMXTo95jbOE5CWVl2SsrqqSKvn6J37KsS/UJyOjkvySpMcuLSxV2IbVP9Sf8LxYyFecuZCvvrJeR88fHTe0O9V7SgvLFyo/L1+SdOuSW+Xv9zM5BAAAADDrDIWH9OSxJ3XzoptVnF/sdjlJW1G1QkvmLNGuo7vcLgUAkARCPgBAzmg+26x9vn366BUflTFGkjS3dK4k6eyFs2Ne09bTprmlczWnaE7G6kq2ky8QCqi0sDRWezKcpT0nWrLTCRmrSqqSHjtVjd5GhcIhHT9/fMzjZ/vOxu6HJL1z8Tu1uHyxfvDGDzJWEwAAAABko70de9UV7MqppTqlyJYUTcua9OLpF8ddMQcAkD1mVMhnjFlvjNlqjNkS/dpqjGlwa1xjzEZjzPbo187oV279zQ4AWWIwPKj/89v/I2+xV3c13BV7fV7pPEnDy3KO1upvVWNlY0Zrqy6pTmq/gr7BvpT245OGl/Z0lvocjy8wDSFf9HNs87eNeby9rz12PyQpPy9fH7n8I3q141X96sSvMlYXAAAAAGSbXcd2qTCvUDcvutntUlK2buk6hWxIT5942u1SAAATmDEhnzFmq6QPWms3WWs3W2s3S9osaUrB2mTHNcbslOSz1m6Ifq2TtEHSpuiYAIAkDYWHdP9T9+vF0y/qT6//U5UUDC93WeOpUZ7JGzPkC9uw2nra1OjNfMh3YfCCBoYGEp7XF+qTp8CT0tjJdvJ190c6Cb3F3pTGT4Wz5Okh/6GLjoVtWB19HZpXNm/E6++/9P1a7l2uzz71WT1/8vmM1QYAAAAA2cJaq91Hd+umhTepvKjc7XJSdlXtVZpfNl87j+50uxQAwARmRMhnjFkv6R5r7Yb41621fkmbJG03xqT8r56THTca4m221u4YfV10rAZjzMZU6wGA2eq1ztf09Imn9dlVn9U9l90z4lhBXoFqPbVq72u/6LozF84oEAqowTvlpu6EnO65ibr5AoOBWGdespLt5OsOdquyuFIFeQUpjZ9qLQvLFqq1p/WiY76gTyEbGrFcp3PN9+/4vuaVzdO217ZlrDYAAAAAyBb7fft16sIpNS3NzQW9jDFqWtqk508+rwuDF9wuBwCQwIwI+SRtkTTmvxxaa51dYj8/jeM2WWtbJhh3Q4LjAIA4+337JUnvvuTdYx6fVzpvzD35Wv2RMCrjy3UWV0vShPvy9YUmsVxn9PxAKJDwPF/Qp+qS6pTGnowGb8OYy3U6n3/8cp0Ob4lXNy24SQd8B2StzXiNAAAAAOCmXcd2Kc/k6Z1L3ul2KZPWtKxJA+EBPXPiGbdLAQAkkPMhnzFmlaQGSS8lOO1lSSl1zk123Oh1E/0ra1t0bABAEvb79quiqELzy+aPeXxe6bwxO/naeiJhVEPl9HTyTRjyDfbJU5jicp2FSS7XGexWVXHm9uNzNFY26nDPYQ2Fh0a87iyXOlbIJ0mXVV+m84PnderCqYzXCAAAAABu2n10t1bPWz0tD2JmynV116mmpIYlOwEgy+V8yCfJ6Xu/uK1gWJskrzEmlX/lney4zmuJQsVVkhJ1+gEA4hzoPqDLqi+TMWbM43NL5465J99+337VlNTIW5K5feokxSZuXcGuhOdNpZNvouU6p6uTr9HbqIHwgA73HB7xeizkKxs/5JOkN31vZrZAAAAAAHBRm79NrT2tum3pbW6XMiX5efm6beltevbksxOuLAMAcM9MCPluiP6aKIxzNg9alelxo/v1tUjaaozZMvqC6B5+WyRtTqEWAJi1hsJDOth9UJdVXTbuOfPK5ql3sHfEXgGDQ4N65sQzetvCt2W8xqQ7+SYR8nkKIp1/E02quoPdsToy6aaFN0mSnjz+5IjX2/vaVWAKxg0aL/VeKiNDyAcAAABgRnM639YtW+dyJVPXtKxJgVBAz5983u1SAADjmAkhn1eKhWvjcY6l0uIwlXGd/fYeMMa0RpfwdAK+hyVtstYmCg8BAFFHzx9VcCgY6wQby9zSuZI0opvvhdMv6NzAOd1Rf0fGa6woqlCBKVB3f+KQLxAKxJbfTFZsuc4EnXxD4SH5+/3TEvLNL5uva+uu1RNHnhjx+tkLZ1VXWqc8M/Z/WpQWlmpZxTK92U3IBwAAAGDm2nl0p66fe31snprL1sxfo8riSu08xpKdAJCtZkLIl3Jwl+lxowFeoyIdfQ2Smo0xWxXp4LvPWrsrhbEBYFY74DsgSVpZvXLcc5x94OL35Xvi6BMqLyyPdZ5lkjFG3hJvUnvypdrJV5JfErk2wZ58PQM9srLTtt/DHfV36M3uN3Wk50jstfa+9gknsSuqVmi/b3+GqwMAAAAAdxw9d1Rvdr85I7r4JKkwr1DvWvIuPX38aQ0MDbhdDgBgDAVuF5AGqQR3NdM1rrW2zRhzm6RmRYK+jYqEftUa7gAcU3Q/v42SNG/ePO3ZsyeFUrJTb2/vjPg5ZiPuXW6aSfdtt3+3jIyO7z2uM+bMmOd0DHZIkp5uflrB8qCG7JCeOPGErvRcqed/NT3LihSFinTgxIFxP/eQDWkwPKgzx89oz/mxzxnvvhWZIr15+E3t8Y993emB05KkM21ntOfs2OekU3moXJK0bc823V55uyTpcOdhLSpalPB/d4X+Qp3sPanHn3xcxXnFGa9zusykP2+zCfctN3HfAABANnOW6mxa2uRyJenTtKxJPz30U71w+gXdsvgWt8sBAIwyE0K+rGSMaZK0SdI6RQLD7Yrs3ddqjNlkrd023rXRY9skac2aNXbt2rWZLzjD9uzZo5nwc8xG3LvcNJPu21PPP6WagRqtu3X8JyH7h/r1Nz/6G5UvLtfa69bq9c7X1XesTxtWb9DaS9ZOS50/fOKHCoaC437uPf090jHpyhVXau0VY58z3n0rf6RcNfNrtPamsa976cxL0mnp7averrcueOvkfoAU/eDnP1B7SbvWrl2rUDiknh/36M76O7X2hrFrlCT/Ib9+8dwvdMWaK7SkYsm01DkdZtKft9mE+5abuG8AACCb7Ty6U9fUXqMF5QvcLiVt3rrgrSovLNfOozsJ+QAgC82E5TpT0TUd40Y78TZZazdYa9ustS3W2kZJD0ZP2WqMeSBDtQDAjOIL+FRTkrgRuzi/WPUV9bGlIH9z5jeSpBvm35Dx+hzVxdUJl+sMhAKSlPJync41iZbr9AV9kqSq4szvyed4y/y36NX2VzUwNKAjPUfUP9SfcN9ESar11EqSuoKZ+usYAAAAANxx4vwJvdH1xoxZqtNRlF+kdy55p546/pQGw4NulwMAGGUmhHx+STLGJLO8ZsJlMtMxrjFmlaTN1toNo0+y1m6WtDp6/hZjTEMK9QDArNQV7FKNZ+LVlldWr9S+rn2SIiFfQ2VDLFSaDtWeanUGOmWtHfN432AkpCstnETIV1gau34sXYFIaJbM55QuN8y/Qf1D/fptx2+1zxf53C+vvjzhNU5Y2xnozHh9AAAAADCddh3dJSmyvOVMs27pOvX09+jlMy+7XQoAYJSZEPK1RX+tTnCOE9T5pmHcLdGvMVlrWxQJ+iRpfQr1AMCs5Av6VF2S6P+KIy6vvlxn+86qo69DLWdbprWLT5KWVSxTX6hP7X3tYx53OvEy0cnX1tOmssKyCTse02nNvDUyMnrpzEva59sX6aasrE94TayTL0AnHwAAAICZ5T8O/4eurLlSi+csdruUtHvborfJU+CJBZkAgOwxk0K+RB13jdFfW6Zh3CZJCf/Gs9a2KbLn3vT+CzQA5BhrrboCXUmFVytrVkqSth/YrkAoMO0h33LvcklSq791zONT7eQLDAbGPd7qb9Vy73IZY1Iee7Iqiyu1snqlXjj9gvb79mtF1QoV5CXe6reqpEpGRp1BOvkAAAAAzByHug9pn2+f3tvwXrdLyQhPgUfvWPQO7T62W0PhIbfLAQDEmQkh3yPRXxMtfdkgyR8N19we19Gq4SARADCGQCig4FBQ1Z7kOvkk6XuvfU/lheV664K3Zrq8EZyQ76D/4JjHM9XJZ63VIf+h2PtPp3XL1qmlvUWvtL+ildUrJzy/IK9AVSVVdPIBAAAAmFEea3tM+SZfd15yp9ulZMy6ZevUFezSqx2vul0KACBOzod80eUv/ZIS7WrbpEjn3HSM2xJ9fSLrJO1MpSYAmG1ie80l0clXWVypBWULNBge1Cev/aQqiyszXd4IVSVVqvXU6pD/0JjHA6FIJ56n0JPy2J4CT+z60bqCXfL3+3Vp1aUpjztVH73io5pfNl+hcCipkE+Sqkuq2ZMPAAAAwIwRtmH9ou0XetvCt03rPunT7ZbFt6gor0g7j/LPmQCQTXI+5Iu6T9I9xpiLltY0xqxXJKz72lgXGmO2G2N2jnXtJMe9T9KWccZzrm1SpAOQhawBIIGuYCTkS2ZPPimyT9xy73L9/srfz2RZ41ruXa5D3WOHfLHlOifTyVdYGrt+tIPdB2PvPd08BR49cMMDyjf5WjV3VVLX1HpqY/cVAAAAAHLdS2de0tm+s7qr8S63S8mossIy3bz4Zv3y8C81GB50uxwAQNSMCPmstTskPSrp4fjXo0HbFkkbrLX+0ddFw7b1inTe3ZOOcaMdgPdJao4GgaPf8wFJm6PnAAAScMKgZJ+G/Ku3/5X+5T3/osL8wkyWNa7l3uVq7WlV2IYvOuYst+kpSL2Tr7SgVBcGL4x5zOkcbPQ2jnk809YtW6dnP/SsllclFzLWeGpYrhMAAADAjPFY62MqKyzTrUtudbuUjPu9xt9TV7BLz518zu1SAABRBW4XkC7W2k3GmPXGmK2KdNhJklfSuvH2zLPW7jLGtER/+2gax91hjNkl6fPGmE3Rl51rH7HWJloCFAAQ5Qv6JCXfyVeYV6jCPHcCPikS8gVCAZ3sPaklc5aMOBYMBSVNLuQrKSjRQHhAYRtWnhn5fM4h/yFVFVcltaRpppQXlSd9bm1JrboCXbLWyhiTwaoAAAAAILMCoYB2Ht2p2+tvV0lBidvlZNw7Fr9D1SXV+tmhn2ntkrVulwMA0AwK+aRY592OFK9ZnaFx/Yp07AEAJimVPfmygdNNd7jn8EUhXyAUUL7Jn1QI6QSDwVBQpYUjl/ts87epwduQM4FZjadGwaGgLgxeSCkcBAAAAIBss/vYbvWF+nRXw8xeqtNRmFeo9za8Vz/e92N1Bbpm9B6EAJArZsRynQCAmckX9KmiqMK15TdTtbB8oSTpzIUzFx0LhAIqKSiZVBjnPBEaCAUuOnam74wWlS9KeUy31HpqJYl9+QAAAADkvEfffFRL5yzVmvlr3C5l2nxgxQcUsiH99NBP3S4FACBCPgBAFusKdCW9VGc2qCmpUb7JHzPkCw4FVZI/ueVbnOuCQ8ERrw+Fh9TR16F5pfMmNa4bnK7MzkCny5UAAAAAwOS96XtTr7S/onsuu+eibRVmsobKBt04/0Y9+uajGgoPuV0OAMx6s+dvIABAzvEFfTm1/Ed+Xr7qSut0tu/sRccCocCk9uOTJE9h5LrA4MhOvq5gl4bsUG6FfNH76SzFCgAAAAC56P+9+f9UnF+s9y1/n9ulTLsPrvygTl84radPPO12KQAw6xHyAQCyVlcwtzr5JGle6bwxQ75gKDjpjdg9+dE9+UZ18p29EHmfeWW5F/LRyQcAAAAgV3UGOvXzQz/Xexveq8riSrfLmXZrl6zVgrIF+uff/bPbpQDArEfIBwDIWr6gL7a8Y66YWzo3Fr7FC4aCKi0ondSYTgfg6D352vvaJSmnOvm8xV4ZGXX3d7tdCgAAAABMyo/2/UiD4UF94spPuF2KKwrzCvXxKz+ulvYWvdL+itvlAMCsRsgHAMhKg+FB9fT3qNqTm5181toRrwdCgUl38jnXjQ75zvRF9v7LpU6+grwCeYu98gV8bpcCAAAAACk7N3BOj+x/RE3LmlRfWe92Oa65e/nd8hZ79fBvH3a7FACY1Qj5AABZyQmBcq2Tb37ZfAVCAfUO9o54PR0hXzA0arnOvrMqzCtUVXHV5Ip1SVVJFZ18AAAAAHLSP772jzo/eF4br9nodimuKi0s1cev/Lh+dfJXajnb4nY5ADBrEfIBALKSL5ibIZ+zdOboJTuDQ8HYspupcq4ba0++eaXzZIyZ1LhuqS6pVlegy+0yAAAAACAlZy+c1Y/2/UjvaXiPVlavdLsc133k8o+ozlOnh5ofumg1GwDA9CDkAwBkpa5gJASq8eRYyBddOvNs38iQLxAKqCR/cp18sT35Bkcu13m276zmls6d1Jhuqi6pjoW4AAAAAJArvv7y1zVkh/Qn1/2J26VkBU+BR5++7tPa27FXj7U95nY5ADArEfIBALJSrnbyOaHb6JAvGApOfrnOaDg4upOvva89p/bjc7BcJwAAAIBc89Sxp/T4kce16ZpNWjxnsdvlZI27L71b19VdpwdfepAVWwDABYR8AICs5EwOqj3VLleSmrmeaMg3ernOUFClBaWTGtMJBwOh4U4+a63OXjir+aXzJ1mpe2pKatTT36PB8KDbpQAAAADAhDr6OvRXv/4rLfcu1x9e9Ydul5NV8kyevvK2r6hvsE9ffO6LCtuw2yUBwKxCyAcAyEq+oE8l+SWTDsbcUphfqJqSGp3pOxN7LWzDCg5NvpOvIK9AhXmFI0I+f79fA+GBnOzkqy6JBLf+oN/lSgAAAAAgscHwoP7ymb9UX6hPX7/l6yrML3S7pKzT6G3UX97wl/rVyV/pe699z+1yAGBWIeQDAGSlrkCXqkuqZYxxu5SU1XhqRuw5FwxFltmcbMjnXOuMI+XucqZSZLlOSezLBwAAACCrhW1YX3zui2o+26wv3fQlLa9a7nZJWetDl31I777k3fr2K9/WY63szwcA06XA7QIAABiLL+hTjSf3AixJqiiq0Ln+c7HfO3vpeQo8kx7TU+AZsSffuYFzsffKNU4nHyEfAAAAgGw1FB7SV1/4qn7R9gt9ZtVn9N6G97pdUlYzxuirb/+qugJd+uJzX5Qk3dV4l8tVAcDMRycfACArdQW7YmFQrqkoqoiFcNLwXnol+ZPv5PMUeBQYHF6u0wkRK4pzMOTzEPIBAAAAyF7BUFCbf7VZPzn4E9139X2696p73S4pJxTlF+mb7/qmVs9brf/+7H/X91//vqy1bpcFADMaIR8AICv5ArnbyVdZXDki5HOW2ZxKJ19JfokCQ8MhX89Aj6Qc7eQrjoR83cFulysBAAAAgJE6A52694l79fiRx/UXa/5Cf7bqz3JyGwm3lBWW6btN39Ud9XfooeaH9OBLD2ooPOR2WQAwY7FcJwAg64RtWL6gL7c7+frTG/J5Cjwj9uRzxq8srpz0mG6pKK5Qvsmnkw8AAABAVjnUfUif3v1p+YI+fWPtN9S0rMntknJSUX6RHrzlQdV56vTDfT/Uqd5T+trNX1NpYanbpQHAjEMnHwAg65wfOK+QDammJDc7+SqKKxQcCmpgaECS1BfqkySVFEx+uc6SgpLYsp/S8J585YXlU6jUHXkmT1UlVYR8AAAAALLG3o69+vgvP66B8ID+6b/8EwHfFOWZPG1+y2Z97i2f054Te/SHj/+hOgOdbpcFADMOIR8AIOt0BbokKWeX63SW0HSCOKcDb6oh34hOvoFzmlM4R/l5+VOo1D3VJdWEfAAAAACywvOnntd9T9ynyuJK/eDOH+jK2ivdLmnG+MjlH9E3b/2m2nra9PH//LjOXDjjdkkAMKMQ8gEAsk5HoEOSVOupdbmSyXGW0HSW1AwOpWm5zqHhkK+nv0cVxbm3H5+jpqRGHX0dbpcBAAAAYJZ77uRz+vTuT2vJnCX6v3f+Xy2es9jtkmactUvW6uHbH5Yv6NMnfvkJ5oIAkEaEfACArHOq95QkaWH5QpcrmZzRnXzOMpue/KmFfIHBkct1Ou+TixaWL9SpC6fcLgMAAADALPa7zt/p/j33q7GyUf94xz/m7IOmueDaumu1bd02+YI+fWrXp9Q70Ot2SQAwIxDyAQCyzoneE8o3+ZpXOs/tUibFCd96+nskpWm5zvwSBYbiQr7+czndybeofJF8QZ/6BvvcLgUAAADALNQV6NKfPfVnqi6p1nebvhtbkQWZc3Xd1frG2m/okP+QvvDcF2StdbskAMh5hHwAgKxzqveU5pfNV0FegdulTIoTvl3UyTfV5TpH7cmXy518i8oXSZJOXzjtciUAAAAAZpuwDWvzM5vV09+jv7/171VXWud2SbPG2xe9Xfevvl+7j+3WP/3un9wuBwByXm7+6ykAYEY72XsyZ5fqlKTKouiefKNCvil18hWUaDA8qFA4pIK8b8ZyiwAAIABJREFUgsiefDkc8jn392TvSTV6G12uBgAwWxlj1ktaJ8kffckraYu1ti1bxjXGNFtrV0+lHgDASD9844d68cyL+spNX9HK6pVulzPrfOyKj+nV9lf1rVe+pbcvertWVK1wuyQAyFmEfACArHOy96RuWnCT22VM2pyiOZIiS2pKkeU6C/MKp9SZ6HQBBkNBlRWWRTr5cny5TilyrwEAcIMxZqukamvthrjXvJKajTGbrLW73B7XGPOApFWTqQMAMLYjPUf0rVe+pbWL1+r9l77f7XJmJWOMvnjTF9Xyby36wrNf0I/f8+OcXckHANzGcp0AgKwyMDSgjr4OLZqzyO1SJi0/L1/lheWxTr7gUHBKXXxSXMg3FFRwKKjB8GBOd/LVempVnF+sU72n3C4FADALRTvt7okP4iTJWuuXtEnS9mgw59q4xpgGSZ9PtQYAwPistfrab76morwifemmL8kY43ZJs1Z1SbW+8NYvaJ9vnx558xG3ywGAnEXIBwDIKqcvnJaVjXV65aqKogr19PdIiizX6cmf/H580vBSn4HBQKxDMJc3hjfGaEHZAjr5AABu2SJp21gH4jrtJhOwpXPcTZIm1U0IABjbk8ef1POnntcfX/fH7MOXBZqWNummBTfpO698R12BLrfLAYCcRMgHAMgqTuizsCx39+STIgFc/J58nsKphXxOJ19gKKCegUh4mMudfJK0aM4iQj4AwLQzxqyS1CDppQSnvSxpo1vjRjsCH5HkS6UGAMD4QuGQvtH8DTVWNuqDKz/odjlQ5OHPz934OfWF+rTtt2M+IwMAmAAhHwDAVd/d+13d/W9366UzkX8Pc5ZvXDxnsZtlTVlFUcXwcp2hoEryp7Zcp3N9MBSMdfLlfMhXtih2vwOhgL7+0td1+47b1dHX4XJlAIAZrin6a1uCc9okeaNLZk7ruNHlPG+w1rak8N4AgAn8vPXnOnruqD6z6jMqzCt0uxxENVQ26O5L79ajBx5lOwcAmARCPgCAq5448oQO+Q/p3sfv1Wsd/5+9+w6P86zy//++1Xtv7pbk3uRux44TJ3EKqZA4DiUECISEssCXBQL7W/bHfhcIybILuwuEOCyQCukQp9tJXBLHRS5yb5J7ZHVZvd/fP2bGMcaW9IxmNMWf13X5mmT03Oc+8shxZs5zzr2T443HiYqIIjs+tEenpMSmnCnGtXa1DvhMvjPjOrtazxQPU2JDu8g3NGko9e31NHQ08E/r/onH9zxOeXM5m05tCnRqIiIS3ua4H3srxpW6H2cGIO4PgAcc7CsiIn3o7O7k4ZKHmZY1jcUjFgc6HTnHvdPuJYIIflvy20CnIiISclTkExGRgGnubKa0vpS7Jt1FUkwSy3cs55XSV5iRM4PIiMhApzcgf9fJN8AiX0JUAnBOkS/EO/lm580G4BdbfsGqY6v44pQvEh8Vz87qnQHOTEREwlwagLW2vpdrPF/LGMy47pGfm/uIISIiDr1S9gqnmk/xlelfwRgT6HTkHHmJeSwdt5QVZSs41Xwq0OmIiIQUFflERCRgdlXvwmJZMHQBt4+7ndUnVlPZWslXir4S6NQGLCUmhdPtrrPz6tvrSY9NH1C81NjUM7E8cUO9yFeUXcQlQy7h+QPPExMRw52T7mRS5iR2VqnIJyIifuW4cDeIce+11j7vII6IiPShx/bw+12/Z0LGBBYOXRjodOQC7pp8F9ZaHt/zeKBTEREJKVGBTkBERC5eno6tKVlTKEwr5PHdjzMjdwZz8ub0sTL4ZcRl0NHTQVNHE5UtlSwavmhA8bITXONLq1qqaOpsIioiiuSYZF+kGlBfnf5VPij/gBsKbiArPotpWdN4cu+TdHR3EBMZE+j0REQkPDkp3GUOVlxjzJeBBx3EOHftlwFyc3NZvXq1N2GCTlNTU9h8LxcTvW6hKZxft50tOznScITPZ32eNWvWBDqd87LW0tYNp9stp9stbd2Wjm7o8Dz2QFePxZ5ZABbo6Ojg5dK3ADBAVIQhOgKiIiA6AqIjDQlRkBRtSIw2JMUY4qOCt5NxZsJMntn7DFMappAQmRDodPwmnP+8hTO9bqHpYnjdVOQTEZGAKakqYXTKaFJjU0mNTWX5NcsZkTwi0Gn5RG5iLgClp0tp6WohJz5nQPFiI2NJjU2lsqWSxs5GchNyiTCh35A/PWc6v77q1xRlFwEwNXsqnbs72Ve7j2nZ0wKcnYiIyOAwxqQBadba3s7zuyBr7XJgOcDs2bPt4sWLfZhd4KxevZpw+V4uJnrdQlM4v25PvfUUeYl5fPNj3yQqIrAfhVprOVrTwpajdewtb6C0qomy6mYqGtpo6+zxIqIBOh2tSI6LYkR6AqMyE5iQl8LkoSlMG5FKTvLAjpjwhdyaXJa9sozqvGrumnxXoNPxm3D+8xbO9LqFpovhdVORT0REAsJay86qnSwc9tG4lHDo4PPIS8wDODN60tOJNxDZ8dlUtVZR315PbkLugOMFi8uGX3bmn6dluQp7O6t3qsgnIiLBoGaQ4v7AWnu/n/YSEbloldWXsaF8A9+Y8Y2AFfhaO7pZe7CKN3edYu3BKqqbOgCIjYqgIDuJKcNSuWZSLtnJsWQnx5KVFEtSbBTxMZHERUW6HqMjiYmM4OzjBI2BdWvXctlll2MM9FhLR1eP61e367G9q4fTrZ3UNXdQ7378sL6V43Wt7DvVyBu7T2Hd7YET8pJZNDaLayfnMWtUekDOLpyYOZHp2dN5Zv8z3DnpzrC4sVVExN9U5BMRkYCoaauhpq2GiRkTA52KX3iKcJ6RpDkJA+vk88Soaqmitq2WqdlTBxwvGOUm5pIZl8m+2n2BTkVERMJXPbi656y19f251p9xjTFLgZUO9hERkX768/4/Ex0Rza1jbx30vQ9WNPLH9Ud4adtJWjq6SY2P5orx2czJz2D2qAzG5CQRGTGwQlpUhCEm6qNCWGxUpKP1ze1d7C1voPhoHesOVvHY+qM8uu4wozMTuG3mcD49bySZSbEDytGpT034FPevu5/1H67n0mGXDureIiKhSEU+EREJiEP1hwAYkz4mwJn4R3ZCNgZzpsiXHe+bTr5D9Yeoa6vj6sSrBxwvWI1JG0NpfWmg0xARkfBVBswEMrhwEc9zvl7tIMSdoy4+ERHfa+tq45WyV7h61NVkxjs5YnVg9pY38OAb+1i9v4qYqAhuLhrKx6cPY15BBtGRwdWZlhgbxezRGcwencF9lxfS3N7F67tO8fyW4/zHygM8vKaUz84fxT2XFZA1SMW+q0ddzQObHuAvh/6iIp+ISD+oyCciIgFxqM5d5EsLzyJfdEQ0WfFZHG88DvhmXGdOQg6VLZUAYTWu81xj0sfw4sEX6bE9Gs8iIiL+4Dn3Lq2Xawrdj1v9GdcY82VgqTFmyQWuL3Bft8XzhLV2loOcREQuWu8ce4fGjsZB6+KramznP97az7PFx0mOi+Y714zjU3MHvxNuIBJjo1g6azhLZw3nUGUjv3rnEI+uK+PJDUf57rXj+ewlowfcfdiX6MhoPpb/MV448AINHQ2kxKT4dT8RkVCnT85ERCQgDtUfIi02jcy4wbujcrB5zuVLjE4kMTpxwPHOLhR6YoejwrRCWrtaKW8uD3QqIiISnp5xPxb0ck0BUG+tLevlmgHHtdYut9YWWmtnne8XUOy+7uznRESkH1469BLDkoYNytnvq/ZUcO0v1/LC1hN8YWE+a767mK9fOTakCnznGpOTzC8/OYOV376cWaMz+NGKPdz28HoOVDT6fe+bC2+mo6eDt4685fe9RERCnYp8IiISEKX1pRSmFQbkMO/B4inE+WJUJ0BO/Efn+oVzkW9s2ljgo25PERERX7LWbsU1TrO32ddLgOXBEFdERJw71XyKjeUbuaXwFr9OB2nr7Oaf/7KTLz1eTF5KHK9/cxE/vHESaQkxfttzsBVmJ/HYF+bwyzumc6y2hVt+9T4vl3zo1z0nZ04mPzWfFaUr/LqPiEg4UJFPREQGnbWWQ/WHwnZUp4dnpGZOQk4fV/bP2Z184TyuszDNNcnMc26jiIiIH9wDLDPG/N1oTWPMUlzFugfOt9AY85wxZuX51g4kroiI+M6bR97EYrm+4Hq/7VHX3MGdv9vIkxuOcc+ifF762gLG5CT7bb9AMsbw8RnDeONbi5g8NIVv/GkbP31tL13dPX7b7+bCm9lauZXjDcf9soeISLhQkU9ERAZdRUsFTZ1NYV/kO9PJ54Pz+OCjYmF0RDQZcRk+iRmMkmOSyU3IVZFPRET8xlr7PPAs8OjZz7uLcw8Ct1tr689d5z47bymujrxlvorbiwz3+t5GgIqIyDnePPImEzMmMipllF/iH69t4bbfrmfHidP86tMz+P9umERsVKRf9gomOclxPH3PfO6cP5Lla8v4xp+30emnQt8N+TdgMLxS9opf4ouIhIuoQCcgIiIXn/21+wHCvsh3ppMv3jedfJnxrvMLcxJy/DpyJhiMSR/Dvtp9WGvDeqSriIgEjrX2XmPMUmPMI7g67ADSgKsvdBaftXaVMWar+1+f9VXcs7k7/n4AzDzr6VJjTBmwylp7b5/fnIjIRexE4wl2Vu/kWzO/5Zf4R6qbWfbIB7R1dvPEF+cyryB8z5k/n5ioCH788amMykjkJ6/tpbtnK//zqZnERPn2PeqQpCHMzZvLy6Uvc1/RfXpfKCJyASryiYjIoLLW8vtdvycjLoNJmZMCnY5feTr5suKzfBLP08EXzufxeSwatoifbfoZ7518j0XDFwU6HRERCVPuzrvnHa6Z5Y+4vlgrIiKuLj6Aa0df6/PYp063cef/bqSrx/LcfQsYnxee4zn7457LCoiONPxoxR6++tQWHr5zFtGRvi303Vh4Iz98/4fsqt7F1OypPo0tIhIuwrsNQEREgs4bR95ga+VWvjb9ayREJwQ6Hb8qSCtgdMpopudM91nMhUMXMn/IfJ/FC1bLxi1jZPJI/qP4P2jtag10OiIiIiIiEiLePPImU7OmMjx5uE/j1jV38Nn/3Uhdcwd//MKci7rA5/H5hfn828ensGpvJT/8yy6stT6Nf8WIK4g0kbx97G2fxhURCScq8omIyKDosT3807p/4ntrv8f49PHcOvbWQKfkdykxKaz4xAqmZU/zWcyfLvop9xXd57N4wSo6MprvzP4OpadLue6F69hUvinQKYmIiIiISJA72nCUvbV7fd7F19HVwz2PF3O0toVHPzebacPTfBo/lH12/ii+dkUhf958nEfX9TmV2pHU2FRm581WkU9EpBcq8omIyKAoqy9jRdkKlo5byh+u+wNREZoYLb27YuQVPPGxJ4g0kTyx94lApyMiIiIiIkHOX6M6f/raXoqP1vHz24tYUOib4xjCyT9ePZ7rp+bxwOv7eHP3KZ/GvmrkVRxpOEJZvW8LiCIi4UJFPhERGRS7anYB8NmJnyU5RmNNpH+m50xn3pB57Kr2/egXEREREREJLyuPrmR69nSfnmP+1+0n+eP6I9y9MJ+bi4b6LG44iYgw/Mft05k2LJV/fLaEYzUtPot95YgrAdTNJyJyASryiYjIoNhVvYvE6ERGp44OdCoSYqZkTaG6tZqKlopApyIiIiIiIkHqVPMp9tXu48qRV/os5oGKRr7/wk7mjE7nB9dP8FnccBQfE8mvPzMTY+Cbz2yjs7vHJ3FzE3OZmjVVRT4RkQtQkU9ERAbFrupdTMmcQoTRXz3izNSsqYDrZ0hEREREROR81p5YC8Dlwy/3SbzO7h6+/ex2EmIi+fWnZxIdqfeyfRmensBPPjGVbcfq+Z+3D/os7pUjr2R3zW5ONft2FKiISDjQ304iIuJ3Hd0d7K/bz5SsKYFORULQ+IzxREVEqcgnIiIiIiIXtObEGoYnDSc/Nd8n8R5ZU8qukw385BNTyEmJ80nMi8HNRUO5beZwfvXuITYdrvVJzKtGXgVoZKeIyPmoyCciIn63v3Y/XT1dKvKJV2IjYxmXPk5FPhEREREROa/WrlY2lm/k8hGXY4wZcLz9pxr5r7cPcuO0IVw3ZYgPMry4/OstkxmWHs/3X9xBe1f3gOPlp+ZTkFrAO8fe8UF2IiLhRUU+ERHxu721ewGYnDk5wJlIqJqcOZk9tXsCnYaIiIiIiAShTeWbaO9u57Lhlw04Vld3D999voSUuGj+9Wa9h/VGUmwU/3bLFMqqmlm+pswnMRePWMzWiq00dTT5JJ6ISLhQkU9ERPzuVPMpokwUuYm5gU5FQtSwpGE0djTS0tkS6FRERERERCTIrDmxhoSoBGbnzh5wrKc3HWPHidP86ObJZCbF+iC7i9Pi8TncMHUIv3r3EEdrmgcc79Jhl9Jlu9h4aqMPshMRCR8q8omIiN9VtFSQnZBNhNFfO+IdT4G4oqUiwJmIiIiIiEgwsday5sQaFgxdQExkzIBi1bd08J8rD3BJQSY3TtOYzoH64Y2TiI6M4F/+uhtr7YBiTc+eTmJ0Iu+ffN9H2YmIhIeoQCfgS8aYpcDVQL37qTTgQWvtgPrCBxLXGFMA3A/MBjynza601j40kJxEREJJRUsFOQk5gU5DQlhuwkdFvvzU/ABnIyIiIiIiwWJf7T4qWyp9Mqrzl6sO0tDayb/cNMknZ/td7PJS4/j21eP4v6/sYeWeCq6ZnOd1rOjIaOblzeP9k+9jrdXrIyLiFjZFPmPMI0CGtfb2s55LA7YYY+611q4a7LjGmC/jKvDdbq2996znlxhjHrTW3u9NTiIioaaiuYJx6eMCnYaEME+Rr7KlMsCZiIiIiIhIMFl7Yi0Ai4YvGlCcQ5WNPLHhKJ+cO5KJQ1J8kZoAd10yiic3HOXf39zPVRNziYzwvji3cNhC3jn+DocbDlOQWuDDLEVEQldYzE1zd9otO7sQB2CtrQfuBZ5zF+YGLa67wPcgMMtau/Ws59OAlcCXneYjIhKKrLXq5JMB8/z8VDRrXKeIiIiIiHzkg/IPmJgxkaz4rAHF+cmre0mIieQfr9YNqr4UFRnBd68dz8HKJl7YemJAsRYOWwigkZ0iImcJiyIfrmLa8vN94axOux8MVlz3iM5HgHvcBcGz19UDZUCxF/mIiIScps4mWrtayUv0fiyHSFxUHKmxqTqTT0REREREzmjpbKGkqoT5Q+cPKM6Wo7W8u7+Kr10xhsykWB9lJx7XTcmjaEQav1h5gLbObq/jDEsaRn5qvop8IiJnCfkinzFmJlAAbO7lsmIcds4NMO4jQL219vnzLbLWFlprr3aSj4hIqPJ0XqmTTwYqJyFHRT4RERERETmjuKKYrp4uLhlyyYDi/GLlQbKSYrjrklE+ykzOZozh+9dNoPx0G49/cGRAsRYOXUhxRTFtXW0+yU1EJNSFfJEPWOJ+LOvlmjIgzd1h59e47nGcS4BnHewlIhK2PGeoec5UE/FWbkKuxnWKiIiIiMgZH3z4ATERMczImeF1jM1HannvUDX3XlZIQkyUD7OTs11SmMnl47L5zepSmtq7vI5z6bBLae9up7hCQ9JERCA8inxz3I+9FeNK3Y8zByHuMvfjFgd7iYiELU/nlTr5ZKByE3LPFI1FREREREQ2lG9gZu5M4qLivI7xy1UHyEqK5c756uLzt28tGUt9Syd/2njM6xizcmcRGxmrkZ0iIm7hcHtKGpw56+5CPF/LGIS4njGcZe6uvrPHeWYCK886z09EJOypyCe+kpuQS01bDZ3dnURHRgc6HRERERERCaCqlioO1R/ipsKbvI6x6XAt7x+q4Z9vmEh8TKQPs5PzmTEynQWFmTy6roy7FowiNsr573lcVBwzcmaw6dQmP2QoIhJ6wqGTz3Hhzs9xPaM7a4EfWGsfOuvX/cD9xpgHHcQWEQlpFS0VZMRlEBMZE+hUJMR5CsVVrVUBzkRERERERAJtQ/kGAOYPme91jF+9e4ispFg+M09dfIPlq4vHUNnYzgtbTnodY96QeRyoO0BtW60PMxMRCU1h08nXT5mDENez7l7g/vNceztQZ4zZbK19/nzBjDFfxt0BmJuby+rVqx2kEpyamprC4vu4GOm1C03B9LrtrdxLQk9C0OQTzILpdQtGFa2urtA33nuDgjgnx+z6l1630KTXLTTpdRMRERGPDz78gPTYdCZkTPBq/f5Tjaw9UMV3rhmnLr5BtHBMJtOGp/LI2lKWzR5OVKTzHpS5eXMB2HxqM9eOvtbXKYqIhJRwKPIFrfON+rTW1htjtgIPAuct8llrlwPLAWbPnm0XL17szzQHxerVqwmH7+NipNcuNAXT6/abFb8hPz4/aPIJZsH0ugWjIbVDeHjFwwybMIzFoxcHOp0z9LqFJr1uoUmvm4iIiABYa9lQvoF5Q+YRYbwbVPa/75URFx2hLr5BZozhq4vHcN+TW3h1Zzm3TB/mOMakzEkkRieyqXyTinwictELh3GdTtQMQlxPYW9lL9cXAwXGmJl+ykdEJGhUt1aTnZAd6DQkDGTFZwFQ0+qvv85FRERERCQUlJ0uo6q1yutRnZWNbfxl24csnTWc9EQdLTHYrpmUS2F2Io+uK8Na63h9VEQUs3Jn6Vw+ERHCo8hXD2CM6c94zb/rrPNDXM8w6LJ+XB88s8ZERPygu6eb2rZaMuOcTEsWOb+02DQiTSTVrdWBTkVERERERALIU9yZO2SuV+uf+OAonT09fPFSfTQXCBERhs8vGM2ukw1sO+7k49qPzM2by5GGI5xqPuXj7EREQks4FPk8xbSMXq7xFOqcnMbqbdzeinvnmuPgWhGRkFPfXk+37T7TgSUyEJERkWTEZVDTpk4+EREREZGLWfGpYvIS8xieNNzx2taObp7ccJQlE3PJz0r0Q3bSH7fOHE5ybBSPrT/i1fp5Q+YBrnP5REQuZuFU5Out467Q/bh1EOJucT/251agUgf5iIiEHE/HlYp84itZ8Vnq5BMRERERuYhZaymuKGZ27myMMY7X/3X7SepaOvnipfl+yE76KzE2ittmDee1neVUNrY5Xj8ufRypsalsLN/oh+xEREJHOBT5nnE/9lZUKwDqrbVOuuy8jbvK/dhbl56ncFjsIB8RkZDjOTtNRT7xlcz4TBX5REREREQuYodPH6a2rZY5ed4NyHp60zHG5SYxL7+34V0yGO66ZBSd3ZY/bTzueG2EiWBu3lw2ndrk1bl+IiLhIuSLfNbarbjOuLu6l8uWAMsHI6674LcVmNnHujL3HiIiYau6TZ184lvq5BMRERERubh5xjPOyXVe5Nt18jQ7Tpzm03NHetUFKL5VkJ3EZeOyeWrjUTq7exyvn5s3l/Lmck40nvBDdiIioSHki3xu9wDLjDF/N1rTGLMUV7HugfMtNMY8Z4xZeb61A4h7P7DEGPN3XYDGmCW4OgBv7+X7EREJCxrXKb6WFZ9FbWstPdb5G0AREREREQl9xRXF5CTkMDzZ+Xl8T208Rlx0BJ+Y6Xyt+MfnF4yisrGdt3ZXOF7r6eYsrtCwNBG5eIVFkc9a+zzwLPDo2c+7i3MPArdba+vPXecuuC3F1Vm3zFdxrbWrcBX6/qZ46C76PQfcqy4+EbkYVLdWEx8VT0J0QqBTkTCRFZ9Fl+3idPvpQKciIiIiIiKDzFrL5lObmZM3x3EnXmNbJ3/dfpKbpg0lNT7aTxmKU5ePy2FYWjzPFDsf2VmQWkBabBpbKrb4ITMRkdAQFegEfMVae68xZqkx5hFcHXbgOvvu6gudxWetXWWM8RTbnvVVXPe6h9yxH3UX+jxrr1KBT0QuFtWt1WTGZQY6DQkjmfGun6fq1mrS49IDnI2IiIiIiAymww2HqWmrYXbubMdr/7r9Q1o6uvn0vJF+yEy8FRlhuG3WcP7nnYOcrG9lWFp8v9caY5iRM4OtlfqoVUQuXmFT5IMznXfPO1wzyx9x3etWAaucrhMRCRc1rTUa1Sk+lRXn+nmqbq1mbPrYAGcjIiIiIiKDqfiUayyjZ0xjf1lreXrjMSYOSWH6iPOd2COBdPus4fz32wd5YcsJvnGVs/d5s3Jn8e7xd6lqqSI7IdtPGYqIBK+wGNcpIiLBSUU+8TXPz1NNW02AMxERERERkcFWfKqYnPgcRiY768bbU97AnvIGPjV3hOMxn+J/IzISWFCYyXNbjtPTYx2tnZkzE4AtlRrZKSIXJxX5RETEb6rbqs+MVxTxhTNFvlYV+URERERELibWWrZUbGFW3izHhboXt54kOtJwc9FQP2UnA3XHnBEcr21lQ5mz93oTMicQHxXPtoptfspMRCS4qcgnIiJ+0dHdwen20+rkE59KjE4kLjKO6tbqQKciIiIiIiKDqLy5nMrWSmbkzHC0rqu7h79u/5CrJuSSlhDjp+xkoK6dnEdyXBTPFh93tC46Ippp2dN0Lp+IXLRU5BMREb+obasFUCef+JQxhsz4TKpaqwKdioiIiIiIDKLtldsBKMoucrRu3aFqqpvauXXmsIEnUfouPPEJ+Pk4+MP1sPUJsM7GS4aF9kZY9SP49Tz45TR48ctQf2xAIeOiI7ll+lBe33WKhrZOR2tn5cxif+1+GjsaB5SDiEgoUpFPRET8wnNmWmacinziW5lxmdS11QU6DRERERERGUQlVSXER8UzLn2co3Uvbj1JekI0i8fnDCyBt/8Nnvg4VB+CgiugtR5e/jo8cyd0tg4sdiipOgCPXA7v/xekDIWhM2Dfq/DwQji0akChb5s5nPauHt7cdcrRupm5M7HYM4VgEZGLiYp8IiLiF7Wtrk6+jLiMAGci4SY9Lv1Mp6iIiIiIiFwcSqpKmJI1haiIqH6vaWjr5K3dp7ipaCgxUQP4GHTDw7Du5zDjTvj6Jrj1EbjvPbjmJ64C14v3QE+39/FDRUM5PHkrtDfA516Bz74Eyx6Dr7wPaaPgmbugvMTr8NNHpDEyI4GXSz50tG5q1lSiTJRGdorIRUlFPhER8Yu6dletPVm5AAAgAElEQVSnlYp84msZcRkq8omIiIiIXERau1rZX7vf8ajO13eW097Vw60zh3u/+fHN8MYPYMKNcNP/QHS86/mICFjwdbj2J7B3Bax50Ps9QkF3l6trsaUWPvM8jF740dfSR8NnnoP4dPjzndDR7NUWxhhumT6U9w9VU9nY1u91CdEJTMycyNYKFflE5OKjIp+IiPiFOvnEXzxFPnsxnn0hIiIiInIR2l29my7b5bjI99K2kxRkJVI0PNW7jbs7YcU3XGMpP/FbV2HvXPO/CtPugLU/hw/DeFzkB/8DJ4vh5v+GodP//uspQ+C238HpY/DuT73e5pbpQ+mx8OqOckfrZubMZGf1Ttq7273eW0QkFKnIJyIiflHbVktMRAyJ0YmBTkXCTHpcOl09XTR26lB1EREREZGLQUmVawTktOxp/V5T2dDGxsO13FQ0FGOMdxtvfAQq98D1P4fY5PNfYwxc9zNIzHKd0ReOYztrSl2Fu4k3wZTbLnzdqEtg1udhw2+gYo9XW43JSWbSkBT+ut3ZyM6ZuTPp7OlkV/Uur/YVEQlVKvKJiIhf1LbVkh6X7v2bKZEL8HSH1rXVBTgTEREREREZDCVVJYxKGeVoUsxrO8uxFm6cNsS7Tdsb4b3/hIIrYML1vV+bkAHXPQCndkLJn7zbL5it+hFERLuKnX29x7/q/4foRFj9gNfb3TJ9KNuP13O0pv9jP2fmzATQyE4RueioyCciIn5R21arUZ3iF56fK53LJyIiIiIS/qy1lFSVOB7V+erOcsbnJjM29wIdeH3ZtBxaauDKf+7f9ZNvhWGz4Z0fe30mXVA6tgH2vgwLvwnJeX1fn5AB87/iWlO+w6stbyoaCsDLDrr50uLSKEwtZEvlFq/2FBEJVSryiYiIX9S21ZIRryKf+N6ZIl+rinwiIiIiIuHuRNMJattqHRX5Tp1uY/OROu+7+Dpb4YNfw9hrYPjs/q0xBq75MTSWQ/EfvNs3GK3+GSTmwIKv93/NJV+D2FRXJ6QXhqbFMzc/gxU7nI/sLKksoTscR6aKiFyAinwiIuIXdW11ZMSqyCe+d6bI164in4iIiIhIuNteuR3AUZHv1Z3lANzgbZFvx7OuLr4F33C2btQlkH8ZrP9vV6Ew1H24HcredXXmxST2f118Gsy6C/a8DPXHvdr6+il5HKho4lBlU7/XzMydSVNnEwfqDni1p4hIKFKRT0RE/ELjOsVf0uPSAXXyiYiIiIhcDEqqSkiISmBM2ph+r3l1x4dMGpJCQXaS8w2thQ0PQ95UGH2p8/WXfReaKmDbk87XBpv3/wtikmH23c7Xzv0yYGHzo15tfd0UV4H2jV3l/V7jOZdvW+U2r/YUEQlFKvKJiIjPtXS20NbdpnGd4hcxkTEkRydT114X6FRERERERMTPdlTtYGr2VCIjIvt1/cn6VrYeq/e+i+/Ie1C1F+Z9xTWC06nRi2D4HNjwG+jp8S6HYFBbBnv+AnPudnXmOZU2EibeDFseg842x8vzUuOYOTKN13ed6veaIYlDyInPoaSqxPF+IiKhSkU+ERHxudo2V4dVemx6gDORcJUel65OPhERERGRMNfS2cKBugOORnW+7h7V6fV5fNufgtgUmPwJ79YbA/PucxXJDr7lXYxgsP5/ICIK5n/V+xizPgdt9bD/Na+Wf2zKEHZ/2MCxmpZ+XW+MoSinSEU+EbmoqMgnIiI+5ynyZcZnBjgTCVcZcRlnfs5ERERERCQ87areRbftdlTke2t3BROHpDAq08EZch5tDbD7LzDlNohJcL7eY9ItkDwUNj7sfYxAaqqCbU9B0acgOc/7OPmXQ+oIr0eXXjfFtfcbu/s/srMou4iTTSepbq32ak8RkVCjIp+IiPhcXZtrjKLO5BN/yYjLoLZdRT4RERERkXDm6cjqb5GvuqmdzUdruWZSrncb7n4Julphxp3erfeIjIY5X4Sy1VC5d2CxAmHb49DdDpd8fWBxIiJdhcLSd+D0CcfLR2QkMGVYCq/t7P/ITs/PSkmluvlE5OKgIp+IiPjcmXGdcRrXKf6hcZ0iIiIiIuGvpKqE/NR8UmNT+3X923srsBaumexlkW/bk5A9AYbN8m792WZ9AaLiYONvBx5rMPV0w5Y/Qv5lkD1u4PGmfxqwUPInr5Z/bMoQth+vp/x0a7+un5Q5ieiIaI3sFJGLhop8IiLiczqTT/wtIy6DuvY6emwIH2QvIiIYY1KMMbcaYx4wxjxsjHnGGLPZGHPQ/fiM+/nvuK9LCXTOIiIyOKy17Kja4XhU5/D0eCYN8eKvi6oDcGITTP+M61y9gUrMhKm3Q8kz0BJCNyiWvgP1x2D23b6Jl5EPoxe5xn9a63j5xzwjO3f1r5svJjKGSZmT2F613fFeIiKhSEU+ERHxudMdp4mOiCY+Kj7QqUiYSo1Npcf20NzZHOhURETEIXdh77vGmENAHfA7YBZg3P/+NrDc/Vjnfv4a93V17gLgA8aY0QFIX0REBsmxxmPUtdf1u8jX1N7FukPVXDMpD+NNkW77k2AiYdodztdeyLz7XOM/tz/tu5j+tvl/ITEHxt/gu5jTPwN1h+HoesdLC7KTGJuTxKq9Ff1eU5RdxO7q3XR2dzreT0Qk1ET5Mpj7rsolwBwgDcgACtz/XA+UAbVAqfufV1lrG3yZg4iIBF5DewMpMSnevbES6YeUGNeduQ0dDSTHJAc4GxER6Q93UW45roLes8D9uN4TnnYYZwmwFNhqjNkMfNlae9S32YqISKBtr3R1YvW3yLf2QBUdXT3ejers6XZ13I29BpK9HPV5PnlTYMQ82PIHuORrvukQ9Kf643DwTbj0/0BUjO/iTroZXvsulDwNoxc6Xr5kUi6Pri2joa2TlLjoPq8vyi7i8T2Ps692H1Ozp3qTsYhIyBhwJ5/uwhQRkXM1dDSQEqtpWuI/Z4p87bpXSEQkFBhjfgasBB6x1mZaa79irX3BaYEPwFq7ylp7n7U2A/h34AVjzANe5rXUGPOIMeZB969HjDEF3sTyRVxjzPeMMc+5f610/1oy0HxEREJRSVUJSdFJFKYV9uv6t3afIiMxhtmjvDg24uh6aDoF05Y5X9uX2XdDzSE4ss73sX1t6+OukZozP+fbuDGJMPFG2LsCujocL18yMYeuHsua/VX9un56znQAjewUkYuC1518ugtTREQupLGj8UwRRsQfPEXkhg4V+UREgpkxJhV4DnjLWjvW1/GttauA2caYe4wxbwK393dajDHmESDDWnv7Wc+lAVuMMfe6YzvmTVz31x8FHrDWPnTW80uAlcaY58+OJyJyMSipKmFa9jQiTN89Cp3dPby9r5LrJucRFelFT8PuFyE6AcZd60WmfZh0C7x+PxT/HvIv8318X+nudBX5xl4D6aN8H3/yrVDyJ9eZf+Ovc7R0+oh0MhNjWLW3gpuKhvZ5fU5CDkMSh1BSVcJn+ay3GYuIhASvOvmC9S5MEREJDg0dDSryiV95fr4aOxoDnImIiFyIu8D3KHCvtfbn/tzLWvsocAfwYD9zWwosO7dwZq2tB+4FnnMX3hwZQNxHrbW3W2u3nrNuFfAQsNQY8z2n+YiIhKqmjiYO1R/q96jOzYdraWzr4upJXoza7O6CPX+Fcde5Os58LTredSbd3legqdL38X1l/2uubsbZd/snfsFiiEuDXS84XhoZYbhyQg7v7quks7unX2uKsovOjHwVEQlnjop8xphUY8xbQLW1dqy11vl/lXvhLvjNBsqMMW+6z/gTEZEQ09Cuc9LEvzw/X+rkExEJagXW2mXW2sODsZm1tt5a+xVjzPR+XP4grsk054vj6bT7gRdpOI7rLvotNcasvEBMz/N3eJGPiEhI2lm9kx7b0+8i39v7KomJiuDSsVnONzu8BlpqYMptztf216zPQ08nbHvSf3sMVPHvIWU4jL3aP/GjYlxn8+1/DTpbHS+/amIuDW1dbD5S26/rp+dMp6KlglPNpxzvJSISSvpd5AvmuzBFRCS4qJNP/E1n8omIBD9r7bYA7dvrbfvGmJlAAbC5l8uKgS872XcAcTPcj7MvsMbzaabjzkIRkVBVUlWCwTA1e2q/rn93XyXzCzJJiPHiZKLdL0JsCozx4xGo2eNg9CLY8kfo6V8n2qCqKYWy1a5iZESk//aZfCt0NMHBC93XcmGLxmYRExXB23v71w3pKRCXVJU43ktEJJQ46eQL5rswRUQkSPTYHteZfLEq8on/JEYnEmki1cknIiLe8HyKW9bLNWVAmjGmwN9xrbVluM66n3WBNZ5rvTojUEQkFJVUlVCYVtivm0cPVzdTVt3MVRNynG/U1QF7V8D46yE6zotMHZj9Bag/CmXv+Hcfb2z5I5hImOnn8+tGL4KELK9GdibGRrGwMJNVeyuw1vZ5/fj08cRGxmpkp4iEvX4X+YL1LkwREQkuzZ3NWKw6+cSvjDEkxySryCciEqKMMdONMV8yxnzH/XjBmzuNMTOMMT9zX3ulD451mON+7K0YV+p+nDkYca21W93FvvPxjOl8xEEuIiIhq8f2sKNqR79Hdb6zz9XZdaU3Rb7Sd6DttH9HdXpMuMlV4Cr+g//3cqKrHbY/BROuh+Q8/+4VGQWTPw4H3oT2JsfLl0zK5WhNC4cq+14bHRnN5MzJ7Kja4U2mIiIhw9GZfCIiIn3xFF1U5BN/S4lJ0bhOEZEQ4y7uHQS24CpaPeh+3GKMOWCM+cS5a6y126y13wdeAB7io/GV3kpzx63v5RrP1zJ6ucbvcd0jQJcC91trtzrIRUQkZB1pOEJDR0O/i3zv7qtkbE4SIzISnG+2+yWIS4OCxc7XOhUVAzPuhP2vQ8OH/t+vv/aucJ1JOOvzg7Pf5FuhqxUOvOF46RXjXYXcNQeq+nV9UU4Re2r30N7d7ngvEZFQ4cWg6r/nvutyNq43NfVA8YU68IwxM3DdiVgNbHVfq0/oRETChKfooiKf+Js6+UREQosx5lbgOcC4nyrD9f4xDddIyjHA88aYLbiKWu+evd5ae9gY8zYwY4CpOC7cDXZcY0warvGfPwBut9Y+38f1X8Z91l9ubi6rV692kErwampqCpvv5WKi1y00BdPr9kHTBwC0H2ln9cnVvV7b2mX5oLSFa0ZHO87f9HSxYM8KajLnse+99V5m60xc1wTm224Ov/h/OTr6kwOO54vXrWj7L4iLy2Xj8Qg4MbBY/WK7WRCdRv3a37OnJsvx8mFJhpc27GdM97E+r41siaSrp4unVj5FQZyTCdz+FUx/3qT/9LqFpovhdRtQkc9d3HuOj84IOPtrpbjemL109vPusZ/bjDH57rXTB5qHiIgEjzOdfDqTT/wsJSaFxo7GQKchIiL94L7Z83lcN3reb619+wLXfBK4B1hljFkJ3GutPXrWZdU+SMdJ4S5zMOO6O/fu4KPC5zO4fs96Za1dDiwHmD17tl28eLGDVILX6tWrCZfv5WKi1y00BdPrtnr9alIaU1i2ZBkRpvchZG/sKqfbbuVzV89ifoGT/2TjGtW5tpm8K+4hb8Jir/N1rPpZ8qvWkv/ZX7nGVw7AgF+36kOwehdc9S8sXnTlgHJxpOnj5Ox4jpyF8x2fhXh98x4eW3+UuQsuJSGm99+/Ka1T+N2zvyNieASLpyweQMK+FUx/3qT/9LqFpovhdfN6XKf7LswtQCGuOzEPA9vcj4aP7sLcZIy54tz11trDwNt8dBeniIiEAY3rlMGSEpuiTj4RkdDxHPCQtXb2+Qp8cGYs5/3W2gzgWqAROGyMecAH5/CFBPfZfPdba++11l4NrMI1yvR7gc5NRGSwlFSVMC17Wp8FPnCdx5cSF8WsUenON9q7AqITofDvPrb0r9l3Q8NJOLRycPc9ny1/gIgomH7n4O478SbobIayd/u+9hyXj8uho7uHDWU1fV6bFZ/F8KThlFSVeJOliEhI8Op2kSC7C1NERIKIp7MqXIp8bZ3d/GXbSVbuqWDfqUbaOruZNDSF+y4vZOEY56NFBktbZze/WHmAd/dXUtPUQXZyLJcUZvLx6cMoGuGk0SB4pcSoyCciEgqMMbcBZe5z9frFWrsKV4HLs/53xhgLpDO4N4r2/QmiH+Naa7caY+4BnjPGZFpr7/dTPiIiQaGho4HS+lKuHX1tn9daa1m9v4pF47KJjnTYx9DTA/tehbFLIDrey2y9NO46SMqD4t/D+I8N7t5n62yD7U/D+OshOXdw9x59GcSmugqtDn8P5uSnEx8dyer9VVw5oe+8p+dMZ0P5Bqy1GKNeExEJP9528ukuTBEROa8zZ/KF+LjO5vYuHl1bxqKH3uX7L+7kYGUTc/MzuGpiDmVVzdz1+008W3w80Gme1+nWTj7zu408sraMvNR4rp2SR05KHE9vPMYtv36fZb/9gI39uOsx2KXEpNDQ3oC1NtCpiIhI75bgPi/OG9baF6y1y6y1dwC345omMxD1cObcu35dG8i47vP46oHvGWOC50AhERE/2Fm1E4ulKLuoz2v3nWqksrGdy8dlO9/oxGZoqoAJN3mR5QBFRsPMu+DgSqjv+1w5v9n3CrTWwuwvDP7eUTEw/jrY/xp0dzlaGhsVyYLCTNYcqOrX9UXZRVS3VvNh84feZCoiEvQcd/KF+F2YIiLiZw0dDUSaSBKiEgKditfe2VfBP724i1MNbVw6Jov//uQM5hdknLnrr7Gtk3uf2MI/v7SLxeOyyUlxdoaAv/1m9SG2Havj15+eyQ3Thpx5vrGtk+eKT/DI2lLuWL6BT8wYxr/cOIn0xJgAZuu9lNgUumwXrV2tJESH7s+biMhFINNae8QXgay1p4HTAwxTBswEMrhwsc1TqKsNgrgAxbiKpUuBhxyuFREJGSVVJUSYCKZmTe3z2nUHXUWey8Z6UeTb+zJERMO4a5yv9YWZd8G6n8OWx+CqHwYmh+I/QPpoyF8cmP0n3gQ7noGj70PB5Y6WXj4+m7f3VXK4upn8rMRer/UUjEsqSxiWNMzrdEVEgpU3nXzBdhemiIgEkYaOBpJjkkN2DMaja8u4+4/FpMZH8/x9l/Dkl+ZxSWHm33w/yXHR/PQTU+nq6eH37x8JXLLncbq1k6c2HOOGaUP/psAHrrzvvjSf1d+5gm9cOYYVJR9y68PrOVHXEqBsByY5JhlAIztFRIJfWaATOIcnn9467jzvU7f6O64x5jljTF0fXXqeouEcB/mIiISckqoSxqSNISkmqc9r1x6oZlxuEnmpDm+6tNbVxVZwOcSlepnpAKWNgLHXwLYnoLtz8PevOgBH34OZn4MIbwe9DVDhVRAV7xrZ6ZCne3PN/so+rx2bPpb4qHi2V213vI+ISCjw5r/iPr0L01p72BexREQkODS0N4TseXyPrT/CT17byw1Th/DyPyxk9uiMC147OiuRj00dwlMbjtLQFoA3ZRfw5IajNLV3cd/lF/6cMD4mkm9fM55n7p1PTVM7dzyygbrmjkHM0jc8P2cq8omIBL1gm6v8jPuxt6JaAVBvrXVSoPQ27lJchcElvazzFA43O8hHRCSk9Ngedlbt7NeoztaObjYdqfWui69iF9QdcXWSBdLsu10jQ/e/Nvh7b1oOkTEw487B39sjJsF1JuK+V1xnJDowKjOR/KzEfo3sjIqIYmrWVEqqSrzNVEQkqHlT5Au2uzBFRCSINHSGZpFv18nT/OTVvVw1IYf//tQMYqMi+1zzhQWjaWzvYs3+/p0FMBhe2VHO3PwMJg/t+47UWaMyeOKL86hsbON7L+wIubPtzhT52lXkExEJckF1jpy1diuuzrire7lsCbB8kOKuAu611va232z3o5POQhGRkFJWX0ZjZ2O/inwbD9fQ0dXDIm/O49v7CmBg/PXO1/rSmCWQOgKKfz+4+7bWw/anYcpSSMoZ3L3PNfFmaCyHk1scL718XDYflNXQ1tnd57VF2UUcqD1Aa1erN1mKiAQ1b4p8ofUJoIiIDKrG9kZSYkOryNfV3cM/PltCemI0/357EZER/Rs1On1EGgkxkWw+4vRYHf843drJvlMNLCzM6veaohFp3H/dBFbuqeClbSf9mJ3veX7O1MknIhL06owxwfY/B/cAy4wxfzda0xizFFex7oHzLXSP11x5vrVexn2QXo6xcK9LA553n3cvIhKWPOMU+1PkW3ugmtioCOblX3j6ygXtXQEjLwl8gSsi0jUus2w11JQO3r7bnoDOZph/3+DteSFjr3Gdjbj3ZcdLLx+XTVtnD5sO9/1+fFr2NLpsF3tq9niTpYhIUPOmyBdUd2GKiEhw8ZzJF0qeKT7O/opG/vXmyWQkxvR7XVRkBDNHpvfrTcVg2HK0FmthTn66o3V3L8ynaHgqD72xn9aOvu+CDBYp0a7Pixs7GgOciYiI9GEl8Ki3i40xVxpjfmuMedYYU2yM6RpoQtba54Fnz83LXZx7ELjdWlt/7jpjzBJc4zWXAMt8EddduCt1Fw8Lzlm3xB1rlbX2dqffp4hIKCmpKiEtNo1RKaP6vHbdwSrm5mcQF933BJa/UVMKlbsDP6rTY+ZnXUWujY8Mzn7dXbBxOYy6FIb0XUz1u/g019mIe1e4zkp0YH5BJjFREazux2SdadnTADSyU0TCkjdFvmC8C1NERIJEU2cTSdF9H5IeLBrbOvnFygPMHZ3BtZPzHK+fm5/B/opGTrcE/ly+TYfriI40zBjhrMgXEWH45xsncaqhjd+tC52p3Ekxrp+zps6mAGciIiK9sda+AFxtjPlif9cYY0YbYx4wxtQA9wIPWmuX4Sqg9a/lvu+87gWeMcY8Yox50BjzIK5C3NUX6phzP7/V/etZH8ZdjqsL8H53se85Y8xK4H7gHmttbyNARUTCQklVCUXZRRjT+3/mP6xv5WBlk3fn8e17xfU44QYvMvSD5DyYtgy2Pg7NNf7fb/+rcPpYcHTxeUy4EeoOQ8VuR8viYyKZl5/BmgOVfV6bEZfBiOQR7Kja4W2WIiJBK8qLNZ67MO/wZkNjzJW47njMwNUVON1a600eIiIShJo6mkKqk++3a0qpburgfz83sc83k+czZ3QG1kLx0Vqumpjrhwz7b9PhGqYOSyU+xuHdrLi+j+sm5/HwmlLumDOCnJQ4P2ToW55isjr5RERCwjLgLWPM1cD3rbVHzr3AGDMaV5fcvbjeK24Fllhrt511mU+Pj3B33j3vcM0sP8Wtx/W9i4hcdE63n+bw6cPcVNB3h917B6sBuMyr8/hWuDrY0vvuFhw0C74B25+CTcvhih/4d68Nv4W0kYE/j/BsE26AV/6PqwCbN8XR0svHZfPjV/dyvLaFERkJvV5blF3EhvINWGu9eu8vIhKsHHfyBetdmCIiEnidPZ20dbeRGJ0Y6FT65WR9K79bd5iPTx9K0YjzHavTtxkj04iONGw+Uufj7Jxp6+xm58nTzPHmTAq3739sAp3dPfznygM+zMx/oiOjiY2MpbmzOdCpiIhIH9wdbN/HVewrNcYcNMa8aYx5xv1YA5QCDwGZwDJr7ZxzCny4vyYiImHGM0axP+fxrTlYRW5KLONyHU6QaSiHE5thQpCM6vTImQDjPuYq8nX48b3N0Q/g2HqYd5/rPMBgkZTjOiNx7wrHSxePdxV63ztU3ee1RdlFVLdW82Hzh473EREJZt6M6wTXG7NHjTF/dt9t+Xfchb3vGGMO4nqztgTXXZh3WGsPuy/z6V2YIiISWM3uNySh0MnX3WP5/guuUR3fvW6C13HioiMpzE7iQEVgu8kOVzfT2W2ZMjTV6xijsxK565LRPFN8nHUH+z7XIBgkRSepk09EJERYax/C9V6yASgErgZudz+mA6eB+621Ge6bS89nyWDkKiIig6ukqoRIE8mUrN47ubp7LO8drGbR2Gzn3VieUZ3Bch7f2S79FrTWwrYn/bfHmp9BYjbM+rz/9vDWxJugYpfrzEQHCrOTyEmO7VeRz3Mun0Z2iki48arIp7swRUTkfBo7XcWWYD+Tr6u7h4fe3Me6g9X86ObJDEuLH1C8wpwkSqsCey6cZ//C7IH93v/jNeMYk53Et/68nUOVwV88S45J1pl8IiIhxFr7vLU2HVdx7yFgufvxandx79/PXWOMmWGM+a0x5gHgAWDMoCYtIiJ+V1JVwrj0cSRE9z5ycefJ05xu7WTR2Cznm+x7BTLHQPZ4L7P0o5HzYcR8WP8r6PbDee9HP4Cy1bDwmxAThJN3Jt7oevQUYvvJGMOlY7L4oLSGnp7ee0nGpY8jLjLuTNeoiEi48PosPGvtQ8aYMlzn8xW6f52tHnjgfG/SzqK7MEVEwkhTh6vYkhQTfEW+9aXVvLW7giM1zRytaeFwdTNLZw3nk3NGDDh2YVYir+8sp72rm9iowIw9KatydVHmZw3sDVtCTBQP3zmTW3+znut+uY45ozNIT4xm2vA0PjVnJKkJ0b5I12eSopNU5BMRCUHuTr0Ldeude+024D7/ZiQiIoHS3dPNzqqd3FTYd4fd2gNVGAOLxjo8j6+lFg6vg4XfgGA9j23Rt+HpZa7z+Xzdbefp4pt9t2/j+kraSBgy3TWyc+E3HS1dOCaLF7edZO+pBib3MtkmKiKKyVmT1cknImHH23GdgO7CFBGRv+UptgRbJ9+7+yu583cbeWbzcWqaOhiWFs/Dn5nJvy+d5pMDtwtzkuixcLSmxQfZeqe0qolhafHExwy8yDgmJ5m3/3Exd84fRUd3D7s/bOBnr+/j7sc209bZ7YNsfScxJvFMcVlERERERELPofpDtHS19Os8vnUHq5gyNJWMxBhnmxx4E2x38J3Hd7ax18DwubD6Qehs813cYO/i85hwI5wohsZTjpYtHOPq6lx/qKbPa4uyi9hbu5f27navUhQRCUZed/KdTXdhiogIBGcn3/HaFv7h6W1MyEvhufsuITHWJ3/1/Y2CLNf3W1rZxLjcwJxHWFbVTBev3MAAACAASURBVEG2796wZSfH8qObJ5/591d3lPO1p7fyryv28MCtU322z0AlRydT3dL3+QsiIiIiIhKcPOMTp+dM7/W6pvYuth2r58uXFTjfZO8KSBkGQ2d4k+LgMAau+hd47EbYtNzVdThQ1sI7Pw7uLj6PCdfDuz+G/a/D7C/0e1leahyF2Ym8d6iae/r42SjKLqKrp4s9NXuYkRPEPwsiIg4MqJNPRETkbJ5OvuTowBS6zuex9Udo6+zmkc/O8kuBDzhTXCurbu7X9c8VH+czv9vAPY8X09ze9Xdff2XHh9zxyAfc+0Qxtc0dfcaz1lJW1TTg8/h6c8O0IXzuklE8V3ycygYf3lU6QEkxGtcpIhKsjDFXGWO+NMh73mqMuXUw9xQRkYEpqSohIy6D4UnDe71u8+Faunrsmc6tfutohtK3XZ1iEUH+UWj+Ihh7Lax5CBorBh5vz1/h6Htw+f3B3cUHkDMJ0kfD/tccL710TBabDtfS0dXT63XTsqcBaGSniISVIP+bTUREQkljRyPg306+6qZ2Xtx6gtMtfR9G3tbZzXNbTnDt5DxGZPR+gPtAJMZGkZcSR2ll38Umay2/XHWQ/acaWbmngmc2H/+br3d19/DTV/dyqLKJN3dX8MauvkeVVDS009zRTaEPO/nO5/ML8+nqsfz5nJzPx1rLtmN1vL3XB29Me6Ez+UREgpe19m3AGGMeNsb4/Q4gY8zPgAJr7Yv+3ktERHynpKqEouyiPo9SWF9aTUxUBLNGpTvb4NAq6GqDiTcOIMtBdO1PXfm+/a8Di9PRAm/9EHImw6z+d8YFjDEw/gbXaNH2RkdLF4zJorWzm23H6nq9Lis+i2FJw850j4qIhIN+F/l0F6aIiPSludPVyeavM/m6eyxffWor3362hLk/XcW6g1W9Xv/qjnJOt3bymfkj/ZLP2QqyEyntRyff8dpWTta38g9XjmXu6Az+973DdHV/dLfhW3sq+PB0Gw/cOpXclFjWl/Y9irKsqsmdg3/HpOZnJbJobBZ/2nTsb3I+l7WWLz5WzCd+s54vPlbMu/sr/ZZTUkwSzZ3NdPcE11mBIiLiYq19FNfRDtuMMV/0xx7GmNuMMQeBt6y1P/fHHiIi4h91bXUcbTjar/P43j9Uw6yR6cRFOzyHfN+rEJ8OIxd4meUgyxoDl3wNtj8Fpe94H+edf4PTx+D6hyDSP1NtfG7CDdDdAYfedrRsfkEmEQbeP9T3++ei7CIV+UQkrPS7yKe7MEVEpC+NnY3ERMQQE+nwEPR++v17h9l0uJZvXz2OvNQ4HnhtH9baC17/0raT5GclcklBpl/yOVtBdiJlVU295gPwvrtot3BMJvdcVsDJ+lZeP6tb7w/vH2ZERjxXTcxlYWEWH5TW0NPTe0xPcdGXZ/JdyCfnjKT8dBsbD9de8JrVB6p4Z18lX1lcyPjcZL73/A7q+jF21BuegnJzV/9GpYqIyOCz1q4CZgNzjDEHjTHfMcakDCSmMSbFGHOPMeYQsAyYba0dwCehIiISCJ6xiX0V+eqaO9hT3sCCQofv7bo74cCbMO660Cl0ASz+PmSOhZe/AW2nna8/+gFseBjmfAlGX+r7/PxlxDyIz3AVZh1IjY9m2vA03utHkW9a9jQqWyo51dz31BwRkVDgaFyn7sIUEZHeNHU0+W1UZ0dXD79efYjF47P5hyvH8A9XjmVPeQNv7z1/l9jplk42lNVw3ZS8Pse++MKojEQa27poaP37M/bO9v6hanKSYynMTuKqCTkUZCXy6LoyrLUcrOtm85E6vrAgn8gIw4IxWdQ0d7C/ovdRJSdqW4iJiiA3Oc6X39J5XTEhm9ioCFbuOf8YTmst/7XqIMPS4vk/S8bxn3cUUdXYztObjvkln+QY131HzR0q8omIBDNrbb219j7gWmAMUO8u+D1sjPmSMeZKY8zoc4t/7mLeaPfXv+S+/hBQB8wEbrfW3mGt9eITUBGR/8fenQfHfZ93nn9/+8BJ3DcBkATAmzIO3pIsWZJF2fEdR5KzcTKbSWLJqdTMHzOzlr1HzVbN1njlZGtrs7PxSE5mNputrGXJsT1jSbYoUZRsSTxBgDp4AiAJkCDu+270d//oboikun/dDTQaaPDzqkI1id/z+/YXbJDgr5/f8zyy0lr6WvAYD7uKdznGvdc+AATaMsbl6rswPRyoEEsl3kz42g9hrBt+9ufgd541d5vxXnjpnwfm2z36Py/TBpeJ2wPbfgcu/TqQoI3D/ZuLaO0aYWza+bzGkkYg8L0nIrIWxD2TT3dhiohIJOOz48vWqvOti30MT87x3967CWMMX2tcz4bCLJ57uy1s/JELPfj8ls/tKl+W/dypqiATgM6hyYgxfr/lvbYB7t9cjDEGl8vwpw/UcLZrhBMdg/yyfY6CLC+/v78aYOEu1WgtRzqHJqnKz8TlWv5kZlaahwe3lvDahzfDVi2evDJES+cwf/5QHWkeF7vW57F3YwE/P3M9apXjYmR7A9WLY3PxzWwQEZGVYa1tt9Z+21rrAr4HGOC7wOtAOzBkjJkPfRBI5rUHj383GP+MtdZtrf1za+2ZlflKREQkEVr7WtlWuI1MT6Zj3DuX+8lOc1NflRffE5x/GTwZUPfIEna5Qqr3waF/BxdehqP/PrZzZifhhT+CqWH4xj9A+rI3Y0u87V8MVC9efSeu0+7fXMy833K8PXLXGYCtBVtJd6cvVJGKiKS6uJN8sHrvwjTGPG6Mec4Y82zw4zljTO1i1lqudY0xp5e6HxGR1Wp8bvkq+X7ecp3C7DQ+vSVw56bH7eL391dz8soQ1wY+mVh77cMeynLTqa+M8yJwkaoLswDockjyXR+eYmBilr2bPh4U/3u7qyjMTuNf/H9naO2b54/vqyErLdBGZn1+JlUFmbR2Of9Y7Bqaoir4/Mnw2M4yboxM88H10U8c+9mZLrLS3Hx9d+XC577WVMml3nE+6v5k/FLleAMXreOz4wlfW0RElpe19qVgwm+ztdYVTPxtJnBT6WPBx81AQfD45mD8T1dy3yIikhg+v48P+j+IaR7fe20D7K8pxOuO461Ma+HCK1D7MKQt/2iDZXHwz6HpD+Htv4S3/yrwNUUyMw4//gPoOgFf+xso/1Ty9plItQ+DJzPulp27NxSQ4XVFbdnpdXvZVbRLc/lEZM1YVJIvZDXdhWmMeQ74hrX2aWvtM9baZ4BngMPGmEdXw7rGmO8QSGaKiKxJ43PjC0mXRBqbnuP1j3r4cn3FbRd1X20MJJJ+0XL9tvip2XneutjHozvKklLdBh9X8nUNTUWMuRpMRtYWf5wIzfC6+bdf3sn2ilz2lbv54/s33XZOTXE21wacW1F2DU0tPH8yfHZHGS4Dr37Qfdvnp+fm+eXZbj6/q3whUQnwxU9V4HEZfn7m+p1LLVkoqTw+pySfiMhaYK3tsNaesda+EXzsUCtOEZG16dLQJaZ8U1GTfN0jU7T3T3B/vK06b56Fkc7Ua9V5K2Pgy38Nn3oCjvw7+NnTMBmmUq3nQ/i7Q9DxFnzlP8A9X0/+XhMlLStQeXn+Feek5h0yvG72bSrk3bboc/kaSho4N3CO2fnlmR0vIpJMS0ry3Wol78I0xjwOPGmtfeKOPQ0DTwMvGmPyV3LdYOXf9+Ldg4hIKhmbHVuWSr43L/Qx4/Pz5Yb1t32+Mj+TAzWF/Kzl9laQh8/1MDk7/4n45ZSX6SUn3UPnYORKvivBZN2m4tur7r7aWMn/8yf7+YvGDPIyvbcd21SUzZUwlYohEzM+BidmqS5IXiVfYXYa928u5r+evXHbn/vRC72MTfv4WlPlbfEF2Wk8sKWYX0Vo8bkUC0k+VfKJiIiIiKSU0Ey0xtJGx7h3Lwfm8d0bHGcQs/Mvg3EFZrylMpcbfvd5ePh/gLM/gf+jEV7+13Dm/2X99Vfgx9+EH94fmN/3hz+Fpm+u9I6XbvsXYLQLuuOrtrt/czEXe8bpHZ12jKsvqWfOP8e5wXNL2aWIyKqQsCRfOEm8C/NZ4PkIe3g9+MvFJNgSue7TBCoYRUTWrPG58YUZaYn0+kc9FGWn0bSh4BPHvr67kva+CU50fHw3439puU55bgb7NxUmfC+RGGOoLMiMUsk3QbrHRVlORszrbizKYmRqjuHJ8HcYhp4vmZV8EEhMdg5OcaZzeOFz/3iik9Kc9IVZgrc6tLOczsEpLvQkdnZeaAakKvlERERERFJLa18rJZklVGRXOMa909ZPQZaXHeW5jnGfcP4VqD4A2XFWAK5GLhd85jvw5+9A7Weg5R/hF3/B1kvPQdcpuO9fwL9oTs3Zg+Fs/XwgQXvhlbhO+3Sw2vPdtgHHuPqSegBae9WyU0RS37Im+ZLBGLMbqAVOOoSdAp5aqXWDFYEvAM6TX0VEUtzE7AQ5aYlt1zk37+fNC718dkcp7jCtN7/SUEl+lpe/+20HAEMTsxy90MdXGtcnrVVnSHVhFp0OM/muDEyysSgrrn1tKspeODecUOVgdRJn8gF8blcZ6R4X/6XlBgCXesZ4+2Iff3RwI54wczIe3VEKBBK2iaQkn4jI2hOc5f5nwY9NK70fERFZHq29rTSUNGBM5Osjay3vtQ1wb11RfNd3Q1eg5/3UbtUZTtku+MY/wDNX4V+28N7Bv4V/fR4e+3eQlbybXJdddjFUH4x7Lt+OilxyMzwca3dO8pVmlVKRXcHZ/rNL2aWIyKqQ8kk+IDQXr90hph3ID7bMTOq6wXae+6y1zXE8t4hIyvFbP+Nz4wtJl0Q53j7I2LSPR3eUhT2emebmDw9s5PC5Hjr6J/g/j1zG57d8tTF5rTpDqoKVfJFaUl4dmGBjUXyVjqHWnlcjzOXrCiYVk13Jl5Ph5dDOMl481cmV/gn+7rcdpHtcfPPgxrDxpbkZNFbnczjBSb5MTyZu41a7ThGRNcIYUwN0EOio8jzQZoz53TtiGo0xjxhj4izpEBGR1WJgaoCu8a6o8/g6+ifoHpnmvro4q/EuvBp43PaFRe5wlfOkQWENMxklgbl9a9H2L0LPB4GEbYzcLsP+mqKoST4IzOVr7VMln4ikvhVL8hlj/qMxZiD48WtjzJ8ucql9wUenZFxb8HH3Cqz7PeD7cTyviEhKmpybxGITXsn36gfdZHhdPLClJGLMP7t3IxkeN7/7N+/wn97p4I/v28Su9XkJ3UcsqgqymJydZ2hy7hPH/H7L1YFJNhXFV3FXVZCFMXClP0Il39AUmV43Rdlpi9rzUnzvCzvwuF387t+8w49PdvLE3ioKHfZxaGcZrV0jC4nJRDDGsC5tHWOziW0DKiIiK+ZZ4DRwCHgC+CfgJWNMA4Ax5tfB44eBIWPMv1+pjYqIyOKFkitR5/EF2y6GGwng6PzLULIDiuoWtT9ZBbYHE7Tn42vZebC2kCsDk3SPRB6lAYEk382Jm/RMJPZGVBGRZFuRJJ8x5j8Gf/ld4EWgCPiRMeakMSZ8CUBk+QDW2mGHmNCxeOrWl7xusOXnyShriIisCaF2iYmcyTfr8/Py+90c2llOZpo7YlxpbgY//fP72FiUzZ6NBXzvC9sTtod4VAer6UItNG/VMzbNjM8fdyVfhtfN+rxMx0q+qoJMxxY3y6UyP5P/7YkGfH7Lv/zsFv6nL+10jP9KQ6C68hfBFp+Jss67Tu06RUTWjlpr7WPBue4/tdY+AXwD+IEx5s+AOgLXkd8FjgDfNcb8zQruV0REFqGlrwWPy8OOoh2Oce+29VORl0FNcRzXUZODcPWdtdeq825TWAulO+Nu2XmwNpAQjlbNF5rLp5adIpLqVqqSr81a+21r7Y+Cj3uBAgIXaa/H2XYl7sRdEtd92lr7UhzriIikrFC7xHVpiWvXefRCL8OTc3y9qTJq7M71ufziL+7npW/fS7onckJwOVUVBKr0uoY+ecdgqBJvU5xJPoCNRVlciZDk6xycSnqrzls9urOMs//2Mf7Voa1R/9yrC7PYt6mAn525HrGl6WKs865Tu04RkbXjE51UgtdUHcAha+1ma+1fBj8OAY8Bvx+q9BMRkdTQ2tvKzsKdpLvTI8b4/R/P44vrpsaLvwbrV5JvLdj2Bbj2biBxG6OFuXxtzufsKNxBmiuN1l617BSR1OZZ6Q2EWGtHgGeMMS8QaHH5vRhPjSdxF09t/5LWNcY8RaDVTNyC5z4FUFZWxtGjRxezzKoyPj6+Jr6Ou5Feu9S0Eq9b23Sgg/GVc1c4eiUxz/38mWly0mD+xoccvflRQtZcTpNzgcTVW6feJ3vwwm3H3uoMtPDsvnSWo9fD32MT6XVLm5nh/V5f2GNX+iao8HpS5u/pzqw5/v7KLH//X46wKS8xyVj/pJ/Oyc4V+zPQv5OpSa9batLrdleI9I7ccwQq+m5jrX09eP3034c7LiIiq8+cf46PBj7i8a2PO8Zd6h1naHJuoTIrZud/CTnrYX3TEnYpq8L2L8Jv/gou/goa/yCmU9wuw4HaIo51OFfyed1edhbtVCWfiKS8lUryvW6MecRae+TOA9baZmPMnpXYVKIYY/KBfGut0zy/iKy1oSHz7N271z700EMJ3N3KOHr0KGvh67gb6bVLTSvxutlrFnrggf0PsKto15LXO9s1zOlfv8NTD9Ty6CPOLVxWk7x3XyOtsIKHHvrUbZ8/9up5vO52vv75h3G7wt+FGul1u2DaOPrqeXYfvJ/cDO/C50em5pj81WscuGczDz2YGrMmmibn+OmzR3hzIIf/+yv7EtJm9Bdv/oIro1dW7N8q/TuZmvS6pSa9bneFsKXe1tozxpi9EY69FEz0iYhICrg4eJHp+WkaSp2LsI8HkzQHa+JI8s1NQduRQEJoBUYaSIKtbwokbM+/HHOSDwItOw9/1MON4SnW50fufFNfUs+Pz/+Yufk5vG5vxDgRkdVspdp1DhOYqfBDY8zDYY7HU0UXD+dbOBK37vestT9YpucSEVmVRmdHAchNi6fj8sdmfPNcH55iem6e8Rkf/+PPP6B4XTp/8cjmRG5z2VUXZoZt13l1YILqwqyICT4noTl+1wZun/XXNRT4fXWwTWgqyMvy8q8ObeWti338tDnQtrN3bJqhidlFt/DMTc9ldGY0wTsVEZEV4jQ2wekHheagi4ikiJa+FgAaSxod4463D1KRl0F1YRzjCdqPwtykWnWuFcbA9i8EErdzn7zOjuRgbeC/E8ejVPM1lDQw65/lwtAFxzgRkdVspSr5niUwa2Ef8LQxxgKvA4cJDFJ/7tZgY8zXrbX/FGGt4WBMvrU22oVdPBd+i1rXGPM4ga9DROSuMjIzAkBeel7c5751sY+n/+EU03N+0jwuPC7D5Ow8/+EPmm6rXEsFVflZXOod+8TnrwxMLmoeH8Cm4qzgGhPcU/nxn2/nYOAipyqFknwA/+zejfy85Tr/5sVW/v0r5xicmAUCF2L/8KcH8LrjuwcpLy2PkdmR5diqiIgk3xPB68PDwBvW2isxnhf7sB4REVlRrb2tlGWVUZ5dHjHGWsvxjgE+vbk4vu4f538J6bmw8dMJ2KmsCtu/CCf/NpDA3fY7MZ2yozyXvEwv77UN8LtNVRHj6kvqAWjta+We4nsSsVsRkaRbqSTfSWvtX4Z+Y4x5FHgU+H1gN/CUMeZ14DSB5N/TQKQkX3vwnEIiJ/FClYHxXPgtdt191tpn4ngeEZE1YWR2BJdxsc67Lq7zhidn+e9ebKWqIIt/fv8m2vsmmJqb5/E9VezeULBMu10+1YWZvHmhF2vtwsWotZarAxMLdxPGa0NhIIl3NVIlXzx3tq4CHreLf/zWQX525jqnrwxyT2UegxOz/M3RNn54tI1/+dktca2Xm57LzPwM075pMjwZy7RrERFJoseAJwFrjBkGThFI+sU5lElERFaj1r5WGkqcW3W29U3QPz7LgXjm8fnn4cKvYMtj4Elb4i5l1dj46UDi9vwvY07yuVyG/TWFHGt3fiu4PLucsqwyWntb+eaObyZityIiSbeSM/n+DdBsrT1irX2dQDIPY0wecIhA0u9J4Ls4t2UJzb1zavEZGlTUHMce4143OAfi8WDSMpzaYNzp0CestSk9f1BEJGR0ZpSctBxcJr4qrP/98EUGJ2b5T3+877YqtVRVVZDFjM9P3/gMpTmBhFPf+AyTs/OLruTLSvNQlpvOlf6J2z7fNTTFunQPeZmpVe0IsC7dwx8d3MgfHdy48LmuoSn++o1LfH13ZVzViaEWsaOzo0ryiYikvpestU/ecl14CPhs8BFjzHf4uAtM8y1z3hfX81lERJKqb7KPGxM3oiZUQm0WD9TEcaNk5wmY7A+0d5S1w5MWSNxe+FUgketyx3TavcG5fNeHp6h0mMvXUNLA2f6zidqtiEjSrchMPmvtGWvtXwEdYY6NWGtfstZ+21q7mUAl3RmH5V4IPtY6xNQCw9badoeYJa9rrX3eWltnrd0T7oPAHajc8TkRkTVhZHaEvLT4knR+v+WVD27yuV3layLBBx9X1d06ly9UgbexaPFtNTcWZYet5KsqyIyvfc0q9q8f24rPb3ntw564zgu1iA21jBURkZT2HNx2Xfh08LqwgECi768IVPT9gMDNo/PGmJMEbhAVEZFVrrWvFYDGUud5fCc6BinJSaemOI4bJc//Elxe2HxoKVuU1Wj7FwIJ3M4TMZ9yMFgFerzdeS5ffUk918ev0z/Vv6QtioislBVJ8oVYaz+R5AsTMwx83+F4M4F2mk4/wR8Fno9zb8uyrojIWjU6M7pQURWrs9dH6Bub4dGdpcu0q+QLVaB1Dn6ckAtV4C22ki9wbhZXBm6v5OscnEq5eXxONhZls6V0Ha+fU5JPRORuZa19I8LnR6y1b1hrn7HW7rXWughcq32PwHWtUwcWERFZJVp6W0hzpbGjcEfEGGstx9sH2V9TGPsNjdbC+Zeh9jOQEd91qaSAzYcCCdzzv4z5lO3lOQtz+ZyEWseGEtAiIqkm4Uk+Y0yuMebPjDH/xhjziDFmyT9ZrbU/jRLyLeBJY8wnLuyMMY8TSNaFTRQaY140xhwOd+5S1hURuduMzo4uJFti9ca5Htwuw8Pb1lKSL3wln9tlqCxY/Oy8jUXZ9I7NMDnrAwIXvl1Dkyk3jy+az+4o40THIKPTczGfc2u7ThERuXsEk34/CHZICZscFBGR1aW1r5WdRTvxuiOPHLg2OMnN0WkOxtOqs+88DHXANrXqXJMycqHmwUAi18bWodvlMhyoKeRYh3OSb0fRDjwuj5J8IpKyEprkM8Z8HRgi0GLlWQJzEgaNMX+ayOe5k7X2JeAnwI/u2E9+cB9PBCsC79zvo8DjfDz/LyHrOigMnu/UAlREJCWNzIyQmx7ffR2HP+phz8YC8rPWzlD0rDQPRdlpdA3dUsk3MEF1QSZe9+J/7IaqAEMtO4cm55iYnV9TlXwAh3aW4vNb3rrQF/M5quQTERHim78uIiIrYG5+jo8GPlqonIrkePsgAAeC7RZjEqrwUpJv7dr+xUAit+98zKccrC2ic3DqtuvzO6W709lZuJPWXiX5RCQ1JSzJZ4z5PvASYAjM0Hsj+OgCnjfG/E2inisca+3TwAvGmOeMMc8aY54lkIg7ZK19PcI5rxO4GGwmkMxLyLq3MsY8bow5bYyxwO7gp9uMMW3GmOfi/kJFRFapkdmRuNp1Dk3Mcv7mGA9tK1nGXa2MutJ1nOseW/j95d5xNi6hVSfApuKshbUAzt8MVK3VlSxt3dWmsbqAvEwv71yOfR5CaBakKvlERO5e1trvrvQeRETE2bnBc8z6Z6PO4zvWMUBhdhpbStfFvvj5V6ByL+RWLHGXsmqFErjnX475lHvrQnP5Bh3j6kvq+WjgI+b8sXeUERFZLRKS5DPGNAFPA09ba13BGQmP3TIr4RvA7xtjHk7E80Vyy2D2Z4IfT1tr26Ocsyf4EbEibzHr3nHuHmutueOjLphAFBFJeX7rZ2x2LK52nWevB6quGqvX3gid+so8PuoeZdbnZ3LWx8WeMRqq4mtleqctpTmke1y0dgZ+XJ3tCvz51VetrT8/t8vQUJ1PS2fshfLZ3mzcxq1KPhERERGRVayltwUgpkq+/ZvimMc3egNuNMN2VfGtabkVULknriTftrIc8rO8HGuPPpdven6ai0MXl7pLEZGkS1Ql3/PAHmvtj8IdDLa93Av8IEHPJyIiq8j43Dh+64+rku9sMIlzT+XSkl+rUX11PrM+Pxd7xjjbNYLfQtOGgiWtmeZx8anKPM4sJPmGqS7MpDB77bQ6DWmszudizxgTM76Y4o0x5KblqpJPRCRFLcdcdxERWX1a+1pZn72ekqzI3Vy6hia5PjzFgdo45vFdeCXwuP1LS9yhrHrbvhBI6I7eiCk8NJfvvRiSfABn+84ueYsiIskWU5LPGNN4y69fuONYE/ATa22H0xrByrefBOf23Xr+CxFOERGRFBGqoIq3kq+2JJvcjMgD11NVqGqvtWt4oSKtIQEVi43V+bx/fYRZn5/WzpE1V8UX0lSdj99+XK0Yi7z0PFXyiYikoJWa6y4iIsnX2tcatYrvREegreL+mjiSfOdfhqLNULx1KduTVBBK5IYSuzE4WFtE19AUnYOR5/KVZ5dTkllCa5/m8olI6nFM8gXvqHwBuLU1Ze0dYZ+11v5lLE8WjDt0x6fvXE9ERFJMqIIqNBstFme7hqlfg1V8ABsKs8jP8nK2c4Qz14bYVJSVkIq7pg0FzPr8vNPWz/XhqSW3AF2tQi1c42nZqUo+EZHUs9Jz3UVEJHluTtykZ7KHhtLorTpzMzxsL4+xqHt6BDp+E6jwirW9p6Sukm1QWLe4uXwdkefyGWNoKGmgtVdJPhFJPRGTfMaYGuBF4Clr7a3vmi01KXfnO3ZK8omIpLhQBVVuemwXYj2j0/SMzqzZSjRjDJ+qzKP52hBnrg0nbO5g44bAOv/pt4HilWxXywAAIABJREFU+bX651eQncamoixaOodiPic3PVeVfCIiKWS1zHUXEZHkCFVINZY0OsYd7xhgf00hbleMCbtLh8E/p1addwtjArMXO34TSPDGYGtpDgVZXt5ri96ys2u8i4Ep5zgRkdUmbJLPGPNZ4CfAk9baO//FLDDGzBtjLhljLgHfC/06lg/gqVt+Pw+szXcoRUTuIvFW8oXaMDZUr81KNIA9Gwu41DtO79jMkufxhazPy6AsN53fXOonze1ak/MMQxqr8zlzbRhrbUzxeel5quQTEUktmusuInIXaeltId2dztbCyC01e0anuTIwyYGaotgXPv8yZJdC1d4E7FJSwvYvBRK7lw7HFO5yGfbXFHK8wzl5V19SD2gun4ikHk+Ezz8BnAqT4AsxQN0tv4/33ctb42N7905ERFat0ZlAciXWSr6zXcO4XYadFWs3SfXtz9Sxa30evWPTfLWxMiFrGmP4v/5gN+39E9RX5bEuPdKP8dTXWJ3Pz1tu0D0yzfr8zKjxuWmq5BMRWU2MMY3W2pbgr1+w1n7jlmMxz3U3xvzEGPN1a+0/3XL+beuJiMjq19rXyj3F9+B1RZ7Jfqw9kIQ5UBvjPD7fLFx+HXZ+FVzuRGxTUkHVPsgqDszl+9TjMZ1yoKaIX3/Yw/XhKSojXF/uLNqJx3g423+WhzeokYCIpI6wlXzW2m8D7caYH4Y5PAzUBluquIAfhH4dy8et8cBmPtm+U0REUsxCu860WJN8I2wpXUdm2tq9EMvwujm0s4xvHtiY0GTc3k2FPLm3OvYZFSmqMVj9GOtcvrz0PMZmx/Bb/3JuS0REotBcdxERudO0b5pzA+eituo80THIunQPOytivNa5+g7MjAbm8cndw+WGbb8TqOTzzcZ0SihxfLw9cjVfhieD7YXbF1rLioikiogz+YIXU6+HSfS1WWuv3PL7eBsVL1TuWWvbuf3iT0REUtDg9CCZnkwyPBlRY621nO0apr5q7VbxydLtrMglzeOKOcmXn56PxTI8o3uHRERWiua6i4hIOB8OfIjP+mgqbXKMO94xyN5NBXjcEd+uvN3FX4EnA2ofWvIeJcVs/2IgwXvlNzGF7yjPJS/Ty/H2Qce4+pJ6Puj/AJ/fl4hdiogkheNPTWvtT4HnjTFfv+XTd06+bTbG/FksTxaMO3Xnp2M5V0REVq+eyR7Ks8tjiu0ammJoco76Ko1klcjSPC52rc+l5VpsSbvQ99/NiZvLuS0REYlAc91FRCSSlt4W4OOZZ+H0j89wuXec/TUxtuq0Fi68GkjwpWUtfZOSWmofAm9WYCZjDFwuw75N0efyNZQ0MOWb4vLw5aXvUUQkSaLeGmOtPXPr/ANr7d47jr8BfNcYk+O0jjEmD3gmmDi89XxNxhURSXHd491UZFfEFHu2K/C+X4OSfBJFY3U+Z68PMzcfvQVn6Puve6J7ubclIiLhxTrXvY7AjPa6OD5ujddNoiIiKaalr4VNuZsoyCiIGHOiI1BhdaCmKLZFe8/B8FXY+vlEbFFSjTcT6h4JzOWzNno8cLC2kCsDk9wcmY4YE0pEt/aqZaeIpI4Y69+j+jZwxRgTdiqpMeb3CLTlfCZBzyciIqtI90Q8Sb5h0twutpU73hsiQmN1PtNzfi7cHIsaG/r+UyWfiMjK0Fx3EREJx1pLa28rjaXO8/iOtw+Q6XXHPtbh4quBRyX57l7bvgBj3dAdW0IulEB2quarXFdJUUYRZ/vPJmSLIiLJkJAkn7X2deAIgRl+A8aYF4wxPww+XiLQtuWNWysCRURkbZiZn2FgeiDmdp1nOofZUZFDmidR95nIWtVUHbjTN5a5fPnp+aS70+keVyWfiMhK0Vx3ERG509XRqwzNDNFYEiXJ1zHIno0FeGOdx3fhV1DRCLmx3Wwqa9CWxwADF38dU/jO9bnkpHs45jCXzxhDQ0kDrX2q5BOR1JGwd1ittU8A3yPQSuUJ4OngYx3wl9baJxP1XCIisnr0TPQAxFTJN+Obp6VzmL2bYpyzIHe16sJMirLTYkryGWOoyK5Qu04RkRWmue4iInKrlr7APD6nSr7hyVnO3xzjQKzz+Mb7oOskbPudRGxRUtW6Eqja+3FVZxRul2HvpoKoc/nqS+oDyenpoUTsUkRk2SW0jMJa+wMCSb0fAM8HH+ustd9N5POIiMjqEUqqxJLke79rhFmfP/Zh6nJXM8bQWJ0fU5IPoDy7XO06RURWAc11FxGRkJbeFnLScqjJq4kYszCPrzbGeXyXfg1YJfkEtn4ObpyBsdiuAw/UFtHeN0HvWOS5fA0lDQC83/9+QrYoIrLcEt4rzVrbYa39rrX228HHjkQ/h4iIrB7xJPmOBy/e9qmST2LUWJ3P5d5xRqbmosaqkk9EJKVorruIyF2gta+VxpJGXCbyW5DHOwZJ87hin8d34VXIrYTy+gTtUlLW1mCi99JrMYWHqkVDieVwdhbtxG3ctPS2LHl7IiLJoIFIIiKyJKGkSll2WdTYk1cG2Vy6jsLstOXelqwRjRvyATjbFb2aryK7gr6pPmbnZ5d7WyIiskSa6y4isvaNzo5yefiyY6tOgOMdAzRV55PhdUdfdG4a2t4MVHAZdW++65XtgtyqwIzGGNxTmUdWmpvjDnP5srxZbC3Yytn+s4napYjIslKST0REluTmxE2KM4tJczsn7ub9ltNXhlTFJ3Gprwok+c5ci57kK88uB6BnsmdZ9yQiIomhue4iImvb2b5AkqSxJHKSb3R6jo9ujMbeqvPKb2Fu4uMKLrm7GQPbPg/tbwYSwFF43S72bIw+l6+hpIH3+97H5/claqciIstGST4REVmS7vHuGFt1DjA24+PTm4uTsCtZK/Iyvexan8ubF3qjxlasC3wfai6fiEjq0Fx3EZG160zvGdzGzT3F90SMOXVlEL+Fg7HObb/wCnizoObBBO1SUt7Wz8PcJFz5TUzhB2uLuNgzzuBE5A4wjaWNTPomuTR0KVG7FBFZNkryiYjIknRPdC9UUDl5+Ww3mV43D28vScKuZC35wqcqOHNtmK6hSce4ULL5xviNZGxLREQSRHPdRUTWptbeVrYWbCXLmxUx5njHIF63oWlDQfQFrYWLv4a6R8CbkcCdSkrb9EAg8XsxtpadH8/li1zN11TaBAQS1SIiq52SfCIismgTcxNcG7tGbV6tY5xv3s+vPrjJZ3eUkpXmSdLuZK34cv16AF55v9sxbv269WS4Mzg/eD4Z2xIRERERkQh8fh9n+89Gn8fXPkhDVT6ZaTHM47v5Pox2BSq3REK8GVD7cGAun7VRw+ur8snwujjmMJevIruC0qxSWvpaErlTEZFloXdaRURk0T7o/wC/9Ue9cHuvfYCBiVm+VB+9rafInTYUZVFflccvz3bz1IN1EeO8Li+7inctzP4QERGJxhjzOHAICA1/zQeetda2r8S6xphngUeD8QDNwPettc1L2Y+ISLJdGrrElG/KcR7fxIyP96+P8O3PON80uuDirwADWz+XmE3K2rHt83DhZej5EMojt4cFSPOE5vJFTvIZY2gqbaKlV0k+EVn9VMknIiKLFvoPb31JvWPcT051kZPh4aFtpcnYlqxBX2lYz9muEc7fHHWMayhp4KPBj5j2RR+6LiIidzdjzHPAN6y1T1trn7HWPgM8Axw2xjyazHWNMbXGmBeBF6y1e6y1dcCe4OHTweSfiEjKCFVAhdoehnP66hDzfsv+mqLYFr3wClTugXW6rpQ7bHks8Bhzy84izt8cZXgy8ly+ptImuie6NfNdRFY9JflERGTRWvpaqMurIzctN2JM//gMv/qgm9/bXUWGN4YWLCJh/N7uKtI8Lv7x+DXHuMaSRnx+Hx8NfJSknYmISCoKVto9aa194tbPW2uHgaeBF40x+WFPXp51nwW+dWvFnrV2OLjOS8B3jDFPxbsfEZGV0tLbQmlWqeP89uMdA7hdhj0bY5jHN3YTbpyBbb+TwF3KmpFTDut3xzWXz1o44VDNF6pCVTWfiKx2SvKJiMii+K2fs33RZyy8dLqLuXnLNw9sSNLOZC0qyE7jS5+q4J+arzMx44sYF6oqbe1rTdbWREQkNT0LPB/ugLX29eAvv5eMdYPVfYeDicBwvhV8fG4R+xERWREtvS00ljRijIkYc7x9kHsq81iXHsM0oUuvBR41j08i2fp56DoF431RQxuq80nzuBxbdm4t3EqmJ5MzvWcSuUsRkYRTkk9ERBalY6SD0dlRGkoaHON+1nydvRsL2FKWk6SdyVr13xzYwPiMj8Mf9USMKcosYkPOBl2IiYhIRMaY3UAtcNIh7BQQV+XcEtZ9IlxgSDD51xx8jkW3ERURSZaeiR5uTNxwvCF0em6e1q5hDtYUxrbopdcgZz2U7UrQLmXN2fZ5wH6cEHaQ4XXTVJ3P8Y6BiDFel5dPFX9K15YisuopySciIovyZuebAByoOBAxpmtokgs9Y3z+nsgtWkRitWdDAUXZaRw53+sYd7DiIMe6jzHlm0rSzkREJMWEEmXtDjHtQL4xpjYJ69YCz0WZu9d+S6yIyKoW6qoRancYTvO1IebmLQdqY0jy+Wah7ShsOQQOlYFylyuvDySCY23ZWVvERzdGGZ2eixjTWNrIxaGLTM5NJmqXIiIJpySfiIgsymtXXqO+pJ7169ZHjHkzmIx5eLsGo8vSuVyGh7aV8tbFPnzz/ohxn9v0OaZ8U7zd9XYSdyciIilkX/DRKRnXFnzcnYR1DwPDOFcAhub4Oa0tIrIqtPS1kO5OZ3vh9ogxx9sHMQb2boohydd5HGbHYMtjCdylrDnGwNbPQdsR8M1EDT9YU4jfwqkrkVt2NpU2MW/neb///UTuVEQkoZTkExGRuF0dvcq5wXN8buPnHOPeON/LxqIsaouzk7QzWese2V7KyNQcZzojjS2CPWV7KMoo4tdXfp3EnYmISArJh4U2mJGEjsXYR27x61prf2CtLbDWvuRw3t7g46k49iMisiJae1vZVbQLr9sbMeZ4xwA7K3LJzYgcs+DSa+DyQu1nErhLWZO2fh5mx+HqO1FDmzYU4HUbjrdHTvLVl9RjMGrZKSKrmpJ8IiISt1Dy5LFNke+knJqd5722AR7ZXuo4bF0kHg9sLcbjMo4tO90uN4c2HuI3Xb9hYm4iibsTEZEUEXfibiXXDc7hywdeipJAFBFZcdO+aT4a/Iim0qaIMTO+ec5cG+ZATVFsi146DBvvg3TNeZcoah4Edzpcej1qaGaam4aqfI51RE7y5ablUpdfR0tvSyJ3KSKSUJ6V3oCIiKQWay3/te2/srt0N+XZkWftnbs5yozPz721MV64icQgN8PLPZV5nLk25Bj3hdov8OMLP+bw1cN8bfPXkrQ7ERFJEfEk7uL5j8xyrfvMHY+fYIx5CngKoKysjKNHj8ax/Oo1Pj6+Zr6Wu4let9SUqNetbboNn9+Hu8cdcb0Lg/PM+PxkT97g6FHnedvp073c23eOy7n30qXvq0/Q37dPqs/dSfrZX3AyI3p713L3LK9cm+PV198k0xP+5uQyXxmnu09z5M0juExi6mX0uqUmvW6p6W543ZTkExGRuLT2tXJl9Ap/cs+fOMad6x4FYEdFbjK2JXeRHRW5vPpBN9baiFWijSWNbMzdyC8u/0JJPhERSVnGmMeBR4EnrLUR5/FZa58HngfYu3evfeihh5KzwWV29OhR1srXcjfR65aaEvW6tb3fBj3wh4/8IQUZBWFjPjhyCbjIn3zpQQqy05wXPPl3AGz+/LfZXLJtyftba/T3LYyMb8CvvstDDTVQsNEx1F3Zxy/bT5C14R4+s7UkbMxY2xjv/PYdKhsq2VaYmO9BvW6pSa9barobXje16xQRkbj8/PLPyfRkOrbqBDjfPUZOuoeqgswk7UzuFjsqchienOPm6HTEGGMMX637Kqd6TtE51pnE3YmIyBozsFLrGmPygR8Bz0SZ1ycismq09LWwKXdTxAQfwPGOQbaX50RP8EGgVWf+BijemsBdypq2+VDg8fLhqKF7NhbgcRmOt0f+sdxY2giglp0ismopySciIjHz+X28duU1Dm08RLY32zH2/M1RtlfkaB6fJFyoOvR895hj3JfrvgzAqx2vLvueREQkpQzDQhItptgVWvcN4PvW2h/EsQcRkRVjraW1t5WGkoaIMXPzfk5fHeJATQxjTH0z0PEWbHkMdF0psSqqg/yNMc3ly0rz8KmqPI47zOWrWldFcWYxZ/rOJHKXIiIJoySfiIjE7IP+DxibG+PBqgcd46y1nO8eY3u5WnVK4m0rzwECcx+dlGeXs71wO8e6jyVjWyIikjpCbS+d3mEOJeoiv+u3jOsaYw4DLyjBJyKp5NrYNYZmhhYqn8J5//oIk7PzHIhldvvVd2BuMpDkE4mVMbDlEHS8HUgUR3GgpoizXcNMzc5HWM7QVNqkSj4RWbWU5BMRkZgd7z4OwP7y/Y5xXUNTjM342F6Rk4xtyV0mN8NLZX5m1Eo+gAPlB2jpbWHKN5WEnYmISIoIJeOcKu7qgo/NyV7XGPMccFgJPhFJNc09gX/aGksiJ/mOtwfucdi3KYZKvkuHwZ0Omx5IyP7kLrL5EMxNwNV3o4YeqC1kbt7SfG0oYkxDSQPXx6/TN9mXyF2KiCSEknwiIhKz4zePs6Nwh+N8BYDzNwPJF1XyyXLZUZHDuW7nSj6Ag+sPMuef40yPWquIiMiCF4KPtQ4xtcCwtbbdISbh6xpjvhM8/okEnzEm3xjzaBz7ERFJqubeZvLS86jNj/zP4PGOAepKsinJSY++4KXXoOYBSMtK4C7lrlDzALjT4HL0lp17NxbgMnDMYS5fU2kTAGd6dV0pIquPknwiIhKTKd8ULb0tHKg4EDX2Yk8gyRdqqyiSaNvLc2nvn2Bu3u8Yt7t0Nx6Xh2M31bJTREQCrLXNBGbiHXIIexR4PpnrGmMeB4qstc84nCsismqd6T1DU2kTLhP+7cZ5v+XUlaHYWnUOtsPA5UBFlki80rJh4/2BatAocjK83FOZt1BlGs6Owh2ku9OV5BORVUlJPhERicnZvrPM+eeituoEuDYwSfG6dNale5KwM7kbbSjKYt5v6R6edozL8mZRX1zPye6TSdqZiIikiG8BTxpjPtFaM5hsGwa+H+5EY8yLxpjD4c5d7LrGmN3APocEH8A+4JTDcRGRFdM/1c/V0avsKd0TMeajG6OMz/g4UBNLq85gBdYWJflkkbYcgv4LMHwtauiBmkJaOoeZngs/l8/r9nJP8T2ayyciq5KSfCIiEpP2kUBXqR1FO6LGdg5NUl2YudxbkrtYdUGgZU/n0GTU2O2F2+kY7cBau9zbEhGRFGGtfQn4CfCjWz8fTM49CzxhrR2+87xgu8zHCVTVPZmIdY0xtcAbwO5g8jDcRxvwnXB7EhFZDULz+JrKmiLGhNohHoylku/Sa1BYB0V10WNFwglVgcZQzXegpojZeT9nrkX+MdtU2sT5wfOa9y4iq45KLEREJCbXRq+R6cmkKCP6BVnn0CRN1c5z+0SWIpREvjY4yf1RYjfkbmBiboKB6QGKM4uXf3MiIpISrLVPG2MeN8Y8R6DCDiAfOBRpZp619nVjTHPwtz9J0LrPBY9Ha8fZHOW4iMiKOdN7hgx3BjsLd0aMOdY+QE1xNmW5Gc6LzU7Cld/Ann+e4F3KXaV4C+RvCMzl2/enjqH7agoxJjAz8t668O95NJU28bf2b/mg/wP2le9bjh2LiCyKknwiIhKTq6NX2ZCzAWOMY5xv3s+N4Wm+0qBKPlk+5bkZuF2GzsHolXwbcjYA0DnWqSSfiIjcJlh591Kc50TuRbeIda216kUnIinvdM9p6kvq8bq9YY/P+y0nrgzypfqK6Itd+S34ptWqU5bGGNj8KLS+AL5Z8KRFDM3L9LKjPNdxLl9DSQMGQ3NPs5J8IrKqqF2niIjEpHOskw25G6LGdY9MM++3C+0URZaDx+1ifX4GnUPRW6WEvm+vjl5d7m2JiIiIiNx1xmfHuTB0gabSyK06z3WPMjbti71VpzcLNkbr2SESxeZDMDcB196LGnqgtpDma0PM+MLP5ctLz2NzwWZO95xO9C5FRJZEST4REYnK5/fRNda1UBHlJDQjrbpQST5ZXtUFWTFV8q1ftx63cXNtNPrAdRERERERic/ZvrP4rZ/dZbsjxoTm8R2oiSHJ1/YGbPo0eKO09RSJpuZBcKfB5ehz+Q7WFjHj83O2ayRizO7S3bT0teDz+xK5SxGRJVGST0REouqe6MZnfWzM3Rg1tmswUFmlSj5ZbtUFWXQNRU/yeV1e1q9bz7UxJflERERERBLtdO9p3MZNQ0lDxJhj7YNsKsqiPC9K4m6wAwbboe6zCd6l3JXS18GGe+HS61FD928qBOB4MCEdzt6yvUz5pjg/eD5hWxQRWSol+UREJKpQBVR1TnXU2M6hSVwGKvJ116Usr+rCTPrHZ5mcjX4X5YbcDarkExERERFZBs09zWwr3Ea2Nzvs8Xm/5UTHQGytOtvfDDxuVpJPEmTLIeg7ByNdjmEF2WlsL8/heEfkuXyhalW17BSR1URJPhERiSpUARVLJV/n4CQVeZl43foRI8sr1BK2K5a5fDkb6BzrxFq73NsSEREREblrzM3P8X7/++wujdyq8/zNUUanfRyoLYy+4OU3IK8aijYncJdyV9t8KPB4KXrLzgM1hZy+OsTcvD/s8dKsUqpzqmnuaU7kDkVElkTvwIqISFTXRq+R6cmkOLM4amzn0BTVhZlJ2JXc7aqCLWFjmcu3MXcj43PjDE5HvitTRERERETi8+HAh8zMz0SZxxf4P3jUeXzzPuh4G+oeBmMSuU25m5VsCySOL0dv2XmgtojJ2Xnev+48l6+5txm/DZ8IFBFJNiX5REQkqhvjN6hcV4mJ4ULrxvAUlfmaxyfLr6ogkEy+MRy9kq9yXWUgdvzGsu5JRERERORu0twbqGhqKm2KGHOsfYANhVmsz49yM+j10zAzCnWPJHKLcrczJtD+teNtmJ9zDN1fE5rLF/nm0D1lexieGaZjpCOh2xQRWSwl+UREJKr+6f6Yqvh88356RqdZr3l8kgQl69Lxug3Xh6ejx2aWADAwHXmIuoiIiIiIxKe5p5lNuZsiXi/6/ZYTHYMcjKVVZ9sRMC6o+UyCdyl3vdqHAwnk686z9IrXpbO5dB3H2iNfN+4p2wNoLp+IrB5K8omISFQDUwMUZUYfkt4zNoPfQkWe2nXK8nO5DGW5GXSPRK/kC33/9k/1L/e2RERERETuCn7r50zvGccqvvM3xxiZmuNgbfTrSdqOwPrdkBVDQlAkHjUPBhLIbUeihh6oKeTUlUF8EebyVedUU5JZoiSfiKwaSvKJiIgjay0DUwMUZ0Sv5OsOtk1UJZ8ky/q8TLpjqOQrzAi8UTAwpUo+EREREZFEaBtuY3R21HEe3/GOwP+/D0RL8k0NwfVTatUpyyOrMJBAjiXJV1vExOw8H94YDXvcGMPust2c7jmNtTbROxURiZuSfCIi4mhiboLp+emY2nXeGAkkW6LOWhBJkIr8DG7EUMmX5k4jLz1PlXwiIiIiIgnS3BOYx7endE/EmGPtA1QXZlIZ7Rqx422wfiX5ZPnUPRJo1zk17Bh2MDSXryPyDaK7S3fTM9nDjQnNfBeRlackn4iIOAolRWJp1xmq5KvIUyWfJEdFXiY9o9P4/dHvoCzKKNJMPhERERGRBGnubaY4s5iqnKqwx/1+y/GOQQ7WxNiqMz0XqvYmeJciQXWPBBLJHW87hpXmZlBTnM3x9sGIMZrLJyKriZJ8IiLiKJQUiSnJNzJNTrqHnAzvcm9LBAi0hp2bt/SPz0SNLc4sVrtOEREREZEEae5tZnfpbowxYY9f7B1jeHIueqtOa+HykcDcNLeuJWWZVO2FtJyY5/KduDLIfISbSbcUbCEnLWehmlVEZCUpySciIo5ClXyxtOu8PjxFhebxSRKtzwu0/Qm1inVSlFmkdp0iIiIiIglwY/wGNyduOs7jO9YWnMcXbH8Y0UAbjFyDuocTuUWR27m9gURy2xuBxLKDg7VFjE37ONcdfi6fy7jYXbpblXwisip4VnoDiWSMeRw4BISaK+cDz1pr21diXWPMs8CjwXiAZuD71lrd5iEiKWOhXWdGLJV8U1TkaR6fJE8oqdw9PEVjdb5jbFGGknwiIiIiIonQ3Bt4a2t3qUOSr32QyvxMqguznBcLVVZpHp8st7qH4cLLMNgORXURww7UhubyDXJPZV7YmN1lu3mr6y36p/pjuilaRGS5rJlKPmPMc8A3rLVPW2ufsdY+AzwDHDbGPJrMdY0xtcaYF4EXrLV7rLV1QGgK8elg8k9EJCUMTA3gNm7y050TKADdw9OsVyWfJFE8lXzFmcVM+iaZnJtc7m2JiIiIiKxpzT3NrPOuY2vB1rDH/X7LiSuDHIzWqhMCSb6CGiisTfAuRe4QSiRHadlZkZfJhsIsjrdHHvcQmst3pvdMwrYnIrIYayLJF6y0e9Ja+8Stn7fWDgNPAy8aY6K/O524dZ8FvnVrxZ61dji4zkvAd4wxT8W7HxGRlTAwPUBhRiFul9sxbnpunoGJWVXySVLlZ3nJ8LroHp6KGhu6uzI0Z1JERERERBbnVM8pGkobIl4nXuodZ3BiloO1UVp1+mbhym9UxSfJUVgL+Ruh7c2ooaG5fP4Ic/l2Fu4kw52hlp0isuLWRJKPQFLt+XAHrLWvB3/5vWSsG6zuOxxMBIbzreDjc4vYj4hI0vVP9VOUGf3uy5vBSqqKPFXySfIYY1ifl0l3jDP5IFCdKiIiIiIii9M/1U/HSAf7y/dHjDneEfg/d9RKvq4TMDuuJJ8khzGB77WOt2F+zjH0QG0Rw5NzXOwdC3vc6/bSUNJAc4+mMonIykr5JJ8xZjdQC5x0CDtR71ZzAAAgAElEQVQFxFU5t4R1nwgXGBJM/jUHn2PRbURFRJJlYGogpiTf9WAlVWWBKvkkuSoLMumKp5JPST4RERERkUU71XMKgH1l+yLGvHt5gMr8TKqiXR+2HQHjhpoHErlFkcjqHobZMeg65Rh2oCY4l699MGLM7rLdnB88z9hs+ESgiEgypHySDwglytodYtqBfGNMPM29F7tuLfBclLl77bfEioisav1T/RRnRB8i3TUUmHNWXRBlqLpIglUVZHJ9KPqcvVCSr3+qf7m3JCIiIiKyZp26eYosTxY7inaEPe73W95rH+C+uiKMMc6LtR2B6v2QkbcMOxUJo+ZBMK6oc/mqC7OozM9cqEoNZ0/ZHiyWlt6WRO9SRCRmayHJF7ptyCkZ1xZ83J2EdQ8DwzhXAIbm+DmtLSKy4qy1DEzHVsnXNTSF22XUrlOSrqogi/7xWaZm5x3j8tPzMRj6p5XkExERERFZrJM3T9JU1oTH5Ql7/KPuUUam5rh/c5SbRScG4EaLWnVKcmUWQOWeqEk+CFTzHW8fxNrwc/nqS+rxGI/m8onIiloLSb58WGiDGUnoWJRpv0tf11r7A2ttgbX2JYfz9gYfnevCRURW2NjcGD6/j8KM6P98dg5OUp6bgce9Fn60SCoJtQDqilLN53F5yE/PZ2h6KBnbEhERERFZcwamBmgfaXdu1dkWuKnu3rooN4t2HAWsknySfHWPwI1mmIzcihPgQG0hAxOzXO4dD3s805PJzuKdSvKJyIoKf8tNaok7cbeS6wbn8OUDL0VKIBpjniI466+srIyjR4/GsZXVaXx8fE18HXcjvXapKVGvW99cHwA3O25ytM95vQ+vTLHOoO+XJdDft8XpGwpU8L3y9nEaSpz/a5M2n8bFzoscnT6asOfX65aa9LqlJr1uIiIiKys0j29v+d6IMe9cHmBz6TrKcqN0ebl8BDLyYX1TIrcoEl3dI/DWs9DxNuz6WsSwAzWBRPWxjkG2lOWEjdlXto+///DvmZybJMur8SUiknxrIckXT+Iuer+55V/3mTseP8Fa+zzwPMDevXvtQw89FMfyq9PRo0dZC1/H3UivXWpK1OvW2tcKN+C+xvt4oMp5EPp3332D+zcX89BDDUt+3ruV/r4tzs7Raf6X429QWLWZh+7d5Bj7n1/9z3hcnoT+Oet1S0163VKTXjcREZGVdfLmyUD1UtHOsMdnfX5OdAzyxN4q54WsDbRLrH0IXO6E71PEUeUeSM8NfA86JPk2FmVRnpvBsfYB/ujgxrAx+8r38Xcf/B0tvS3cV3nfcu1YRCQi9VRLImPM48CjwBPWWs3jE5FVb3g6UHBckFHgGDfjm6dnbHqhbaJIMhWvSyfN46JraCpqbEFGAYPTzi1ZREREREQkvNM9p9lduhuvyxv2eGvXMFNz89xXF2UeX98FGLuhVp2yMtxeqHkQ2t4MJJwjMMZw3+Yi3msbwO8PH9dU2oTHeDhx88Ry7VZExNHdluQbWKl1jTH5wI+AZ6LM6xMRWTVCyZD8dOfi5u7haayF6kK1ppDkc7kMVfmZMSX58tPzGZ5xGrcrIiIiIiLhDEwNcHn4cpRWnf0YA/fWRml61XYk8Fj3cAJ3KBKHuodh5BoMOtdhfHpzMYMTs5y7ORr2eJY3i3uK7+HkzZPLsUsRkajWQpJvGBaSaDHFrtC6bwDft9b+II49iIisqFAyJFolXyi5oko+WSmVBZl0DU1GjSvIKGB4ehjrcLemiIiIiIh80ume0wDsLYuc5Hv38gD3rM8jLyt8pd+CtjegaAvkb0jkFkViF6oiDSWcI7h/c6Aq9Z3L/RFj9pXv48OBD5mYm0jY9kREYrUWknyh2y0KHWJCibp4+nMlbF1jzGHgBSX4RCTVDM0MkeZKI8vjXKEXSq4oyScrpaogK+ZKPp/1MTY3loRdiYiIiIisHad6TpHpyWRX8a6wxydnfZzpHOK+zVGq+Oam4co7sPmzy7BLkRgV1kLBpqhJvrLcDLaUruO3lyM3cttfsZ95O7+QCBcRSaa1lORzqrirCz42J3tdY8xzwGEl+EQkFQ1PD5OfkY8xxjHu2uAkbpehPDcjSTsTuV1VQSYDE7OMz/gc4wozAvfuhOZNioiIiIhIbE7ePElTaVPEeXwnrwwxN2+jz+PrPAa+Kc3jk5VX9wh0vA3zc45h928u5kTHADO++bDHG0oa8Lg8atkpIitiLST5Xgg+1jrE1ALD1lrnJssJXtcY853g8U8k+Iwx+caYR+PYj4hI0g1ND1GQ7tyqE+Bizzg1xdl43Gvhx4qkos2l6wC41ONcoReaLzk0M7TsexIRERERWSsGpwe5PHyZfeX7Isa829aP123YtynKNWTbEXB5YeP9Cd6lSJxqH4bZcehyTs7dv7mY6Tk/zVfD3yya6cmkvrheST4RWREp/26stbaZwEy8Qw5hjwLPJ3NdY8zjQJG19hmHc0VEVrWhmSHyM6KPJr3YM8a28pwk7EgkvO3B778LN52TfKH5kqrkExERERGJXazz+Jo2FJCV5nFe7PIR2HAQ0tclcosi8at5EIwrasvOA7WFuF2Gd9siz+XbX7Gfc4PnGJvVaAgRSa6UT/IFfQt40hjziXeig8m2YeD74U40xrxojDkc7tzFrmuM2Q3sc0jwAewDTjkcFxFZccMzwxSmO40mhYkZH9cGJ9lepiSfrJzqgiyy0tycj5LkC1XyDU7HM6ZXREREROTudupmcB5fUfh5fMOTs3xwY4T76qLM4xvrgZ731apTVofMfKjcGzXJl5vhpaEqj99edkjyle/Hb/2ayyciSbcmknzW2peAnwA/uvXzweTcs8AT1tpP3LIfbJf5OIGquicTsa4xphZ4A9gdTB6G+2gDvhNuTyIiq8nQdPRKvovB9ohbVcknK8jlMmwpy1n4foxkoZJvRj+CRURERERideLmCRpLGvG6w8/jO9Y+iLWBtoaO2t8MPCrJJ6tF3SNwvRkmnW8E/fTmYlo7hxmdDj+/r76knjRXGidunliOXYqIRBSlfj51WGufNsY8box5jkCFHUA+cCjSzDxr7evGmObgb3+SoHWfCx6P1o6zOcpxEZEV5fP7GJ0djTqTL5RU2a4kn6yw7WU5vH6uxzEmy5NFmitNM/lERERERGLUP9XP5eHLfKn2SxFj3m3rJ9PrpqEqyriHtiOQVQzl9Qnepcgi1T0Cb/2v0PEW7PrdiGH3by7mr49c5ljbAI/tKv/E8XR3Og2lDZrLJyJJt2aSfLBQefdSnOfsSeS61lqnGX4iIikjVOkUqnyK5PzNMTK9bqoLspKxLZGItpbn8MKpTvrGZijJSQ8bY4whPyNfM/lERERERGJ0rPsYAAfXH4wY85tL/RysLSTN49A0zO+Htjeh7mFwrYnmYrIWVO6B9NxAAtohyde0oYBMr5t3LveHTfIB7Cvfxw9bfsjIzAh56XnLtWMRkdvoJ6qIiIQVSoJEa9d54eYYW8vW4XKZZGxLJKJQNemFKHP5CtILGJpWJZ+IiIiI/P/s3Xd8XFeZ+P/PnSpZvVdbtiTLco1773HiNJJAQkghLBs2yW5YWJYtwAK78GP5LmGBBbZAEgKkUNJIQpoTO7ZjO+7dkmzJsmyr996lmfv748xoJE2TLY3q8+Y13Jl7zj33zIxiaea5z3PEUBypOEK4JZzsqGyP7SX17VyubWNjVpzvgapyoK1aSnWK8cVoglkboXA36LrXbhaTgVXp0X7X5dPROV51PBAzFUIIjyTIJ4QQwiNnOUNf5Tp7bHZyypqYlxw+WtMSwqu5Sern8HSJ7wBeZFCklOsUQgghhBBiCHRd53DFYVYlrcJoMHrs81FBDYD/IN+l3WorQT4x3mRsheZSqC3w2W19ZiyXatqobOr02L4wdiFBxiAp2SmEGFUS5BNCCOGRs1xnpNV7Jt/xKw00d/ayKSt+tKYlhFfRIRYWpUbw4YVqn/0kk08IIYQQQoihKW4pprKtklWJq7z22VdQQ0pkMOmxIb4Hu/QhxM+HMM+lDoUYM5k3qm3hhz67rc2IBeBjL9l8FqOFxfGLOVJxZESnJ4QQvkiQTwghhEd1HXUAxATHeO2z63wVFpOBDbNjR2taQvi0bW4Cp0saqW7xfGUlQHRQNPWd9aM4KyGEEEIIISamw+W+1+Prsdk5eKmOjVmxaJqPJRy626D4sFqPT4jxJmomxGSqQLQP2YlhxIRYfJbsXJ20msLGQmraa0Z4kkII4ZkE+YQQQnhU11mHhuY1k0/XdXbmVbEuI4YQq2mUZyeEZzfNS0DXYfd579l8McExtPa00mXrGsWZCSGEEEIIMfEcqTxCUkgSM8JmeGw/VdxIa1cvG2f7KdV55WOwdbsypoQYbzJuVD+nPd4vGDUYNNbPjmVfQQ12u+f1+9YkrwHgcMXhgExTCCEGkyCfEEIIj+o66ogKisJk8BzAy6topri+nW3zEkZ5ZkJ4l50YRkpkMO/mVHrtExusMk+d2apCCCGEEEIIdza7jSMVR1iVtMprlt7+izUYDRprM/1Ud7m0G0xBMGNNAGYqxAjIvBF6O6D4oM9um+fEUdfWTW55s8f27OhsoqxRHCo/FIhZCiGEGwnyCSGE8Ki2o9Znqc6ff3iRUKuJ2xYkjeKshPBN0zTuWz6dfQU1nC5p9NgnJkj9XNd2eC+xIoQQQgghxFR3oeECzd3NrE7yXKoT1Hp8i6dHEhFs9j3Ypd2Qtg7MwSM8SyFGyMz1YLT4XZdvgyNrdW++5+oxBs3AqqRVHKo4hK57zvYTQoiRJEE+IYQQHtV11hEb5PlqzNMljbyfW8WjG9KJCrGM8syE8O0LG2YRHWLhR+/ne2yXTD4hhBBCCCH8c67Htypplcf2+rZuzpY1+V+jvakUavMhY+tIT1GIkWMJUZmmfoJ8saFWFqVGsLfA+5p7a5PXUttRy8XGiyM9SyGEcCNBPiGEEB7VddR5zeT76a4CokMsfGHDrFGelRD+hVpNPLE5gwOFtRy9XO/W7vy5ru2UTD4hhBBCCCG8OVJxhMzIzL6L5AY7UFiLrsPGLD/r8V3arbYS5BPjXeaNUHMemsp8dtucFcep4gaa2ns8tjvX5ZOSnUKI0SBBPiGEEG50XVdBviD3IF9OWRN782v4wvpZhFo9r9cnxFh7aFUaMSEW/m9voVtbdFA0IJl8QgghhBBCeNNl6+Jk9Um/pTojgs3ckBrpe7DCDyEsCeLnjvAshRhhGTeqrTMw7cWmOXHYddhf6DmbLzEkkZnhMzlUIUE+IUTgSZBPCCGEm/bedjptnR6v2PzF3kuEWU08vCZtDGYmxNAEW4w8sn4We/NryClrGtBmMVoIt4RLkE8IIYQQQggvzlSfocvW5TXIp+s6+y/WsD4zFqNB8z6Q3QZFe1UWn+ajnxDjQcJ8CE2ES75Ldt6Qqtah/Cjfe8nONclrOFF5gm5b90jPUgghBpAgnxBCCDe1HaqM4eBynU3tPezIreSBVTMID/KzsLoQY+zhNWkEmQ28crzErS0mOIa6TgnyCSGEEEII4cnhisMYNSPLEpZ5bC+oaqWquYuNWX7W4ys/BZ2NUqpTTAyapkp2XtqjAtRemIwG1s+O5aOCGnRd99hnbfJaOm2dnKo+FajZCiEEIEE+IYQQHjgznAYH+fYX1mCz62yfnzAW0xLimoQHmVmbEcuefPcPXrHBsZLJJ4QQQgghhBeHKw6zIHYBoZZQj+37ClQG04bZQ1mPT4P0LSM8QyECJGOrCkyX+w7Obc6Ko7qli7yKZo/tKxJXYNJMsi6fECLgJMgnhBDCTV8m36A1+XZfqCZympnF06PGYlpCXLMt2fEU17dTVNs2YH9MUEzfz7kQQgghhBDCpbGzkZzaHNYlr/Pa56OCGjLjQ0mODPY92KXdkHQDhLiv9y7EuJSxFdCgcJfPbpuyVID7owLPJTtDzCEsilsk6/IJIQJOgnxCCCHcOMsY9l+Tz27X+Si/hk1Zcb7XXBBiHNkyR33w2nOhesD+2OBYKdcphBBCCCGEB4cqDqGjsy7Fc5CvtauXI5fr2Jod73ugziYoOarKHwoxUUyLhuQlUOh7Xb748CDmJYWz18e6fKuTV3O+7jyNnY0jPUshhOgjQT4hhBBuajtqMWgGIq2RffvOlTVR19bt/4OcEONIatQ0shJC3T54xQTH0NbTRkdvxxjNTAghhBBCiPHpQNkBIq2RzI+Z77n9Yg09Nt3/Z8Oij0C3yXp8YuLJvBHKjkNHg89um+bEceJqA82dPR7b1yStQUfncOXhQMxSCCEACfIJIYTwoK6jjihrFEaDsW/fqWL1x+2qWVJmRUwsa9JjOFXcgM3uWpfPWYpW1uUTQgghhBDCxa7b+bjsY9YkrxnwebC/D89XEx5kYlman2UcLr4P1giYvioAMxUigDK3gW5XgWofNmfFYbPrHCz0vBTEgtgFhJnDZF0+IURASZBPCCGEm7qOOmKCBwbzcsubiQ21kBBuHaNZCXF9FqVG0tZto6imtW+f8+db1uUTQgghhBDCJb8+n7rOOtanrPfYbrfr7MmvZmNWHGajj68VdR0u7oSMLWA0B2i2QgRIynIVoL7ku2Tn0rQowqwmryU7TQYTK5NWcrD8ILque+wjhBDDJUE+IYQQbkpbS0kJTRmwL6e8mXnJEWiarMcnJpZFqREAnC1t6tvn/PkubS0dkzkJIYQYHzRNu1fTtKc0TXvScXtK07T0sR5X07R0TdNODHceQghxrT4u/xiAtclrPbafK2uitrWbG+f6KdVZeRZaqyBr+0hPUYjAM5ogfSMU7lYBay/MRgPrZ8eyJ78au91zv/Up66lsq6SwsTBQsxVCTHGmsZ6AEEKI8cWu2ylpKRlw5WZXr42LVS1snhM3hjMT4vqkx4UyzWLkXFkT9yxLBSA1LBUNjeLm4jGenRBCiLGiadpTQLSu65/uty8SOKFp2uO6ru8azXEdfZYDNwH/DDRez/mFEGI4DpQdYG70XGKDYz22f3ihGk2DTVl+gnwFH6ht5rYRnqEQoyTjRjj/FtTkQ3y2127b5ibwXk4lOeVNLEqNdGt3freyv2w/s6NmB2y6QoipSzL5hBBCDFDVVkWXrYsZ4TP69l2saqXXrjM/OXwMZybE9TEaNBakRHCm1PVdqdVoJSkkiavNV8dwZkIIIcaKpmn3Avf1D8QB6LreCDwOvOIIuo3KuJqmbQNeQQX4XgKuK8AohBDD0dLdwpnqM6xLWee1z+4LVSydEUV0iMX3YBc/gOQlEOonGCjEeDX7JrW9+IHPbluy4zFosCuvymN7Ykgic6LmsL90/0jPUAghAAnyCSGEGORqiwp6zAhzBflyy1WZw/nJEWMyJyGGa1FKBHnlzfTY7H37ZoTPkEw+IYSYup4EnvbU0C/T7hujNa6u67t0Xb9J1/Wv6bp+8jrOK4QQw3a04ii9ei/rkj0H+aqaO8kpa2Zrtp/AXVsdlB6D2VKqU0xgEamQsBAKdvjsFh1iYXlaNDvPV3vtsyF1A6eqT9HS3TLSsxRCCAnyCSGEGMgZ9EgLT+vbl1veTKjVRFr0tLGalhDDsjA1gq5eOxerWvv2pYWncbXlqiyALoQQU4ymaUuBdOCYj27HgcfGw7hCCDFa9pXtI9Qcyg3xN3hs331BBTH8BvkufQjoMPvmEZ6hEKMsazsUH4b2ep/dts2L53xFM6UN7R7bN6RswKbbOFh+MBCzFEJMcRLkE0IIMcDV5qtYjVbip7k+uOWWNzM3KQyDQRvDmQlx/ZxZqHkVzX37ZoTNoKW7hcYuWfJICCGmGOcCUUU++hQBkZqmpY+DcYUQIuDsup19pftYm7wWs8Hssc8HuZWkRgWTnRjme7CLH8C0WFWuU4iJLOsW0G1wabfPbtvmJgDwoZdsvkVxiwi3hEvJTiFEQEiQTwghxADFzcVMD5uOQVO/Imx2nfMVzVKqU0xos2JDCDIbON8vyOfMVpV1+YQQYspZ4dj6CsZdcmyXjoNxhRAi4Eq6S6jtqGXz9M0e21s6e/i4sI7t8xPRNB8Xf9ptULhLrWdmkK8dxQSXskwFrPPf89ktPS6U9LgQdp33vC6fyWBiXfI6DpQdwK7bPfYRQojrJb9thRBCDHC15eqAUp1X6tpo77YxPzk88CdvqYKezsCfR4wvTWVg6w3oKYwGjTmJ4eSV98vkC1frTpa0lAT03EIIIcadSABd132lcjvbosfBuEIIEXA5HTkYNAMbUjZ4bN+bX0O3zc72+Ym+Byo9Dh0NUqpTTA4GgyrZWbjT72fWm+YmcLiojubOHo/tG1I3UNdZx/m684GYqRBiCpMgnxBCiD42u43SltK+4AdATlkTQOAz+brb4P9Ww46vBfY8YnxpLoefL4H9Pw74qeYlhZNX0dy3Bl9qaCoGzSCZfEIIMfVcc+BujMcVQoiAy2nPYXHcYiKDPP/z9EFeFTEhFpalRfke6OL7oBkhY2sAZinEGMjaDp1NUHLEZ7dt8xLosel8lF/jsX1dyjo0NPaV7gvELIUQU5hprCcghBBi/ChqKqLH3kNGREbfvrzyZixGA7MTQgN78nOvQEc9nH0Zbvr/IEjKg04Jp14EWxcc/zVs+CoYPa//MRLmJYfzh6PFVDR1khwZjNloJi08jfP1ciWlEEJMMdcSYIsZB+P6pWnaY8BjAAkJCezdu3ckhx8zra2tk+a5TCXyvk08Db0NlPaUsqx7mcf3rseuszOnnZVJJvbv+8jnWMtO/QlbeDanj5wO0GxFf/LfW+AZe82s00yUfvg0RRmes/QA7LpOuAVe2HOWsIYCj31mWmfy1vm3mB42Xd63CUj+e5uYpsL7JkE+IYQQfU5VnwJgSbxrgfTc8mayEkMxGwOY/K3rcOxZCImDthoV6Fv5aODOJ8YHuw1OPKfe99ZKuPAOzL87YKeblxQGqMB1cmQwAEvjl/LB1Q+w6/a+dSiFEEKIiUbX9aeBpwGWL1+ub968eWwnNEL27t3LZHkuU4m8bxPPSxdegjJ4ZNMjpEemu7Xvza+m03aMz29bzObsBO8DNVfA3suw7TtsXr85YPMVLvLf2ygp38CM5jxm+Hmtb284x5uny1i9bgNBZqNbe1FOEf914r/oCeqR920Ckv/eJqap8L7Jt1lCCCH6nK4+TXRQNNPDpgOg6zq55U3MTwpwVl3Faag8C5u+BomL4OTzgT2fGB8u7YHmUrj1SYiYASd+G9DTzUkMR9Mgr8K1Lt+yhGW0dLdwseFiQM8thBBiwqqbYOMKIcQ121u6l1hTLLMiZnlsfz+3ihCLkbUZsb4HKtihtrO3j/AMhRhjWbdAbQHUXfLZ7baFibR32/iowHPJzq3TVRnbs+1nR3yKQoipS4J8Qggh+pyqPsWS+CVomgZARVMnDe09zE8JD+yJ83eAZoAF96g/nqtyoLcrsOcUY6/8pNpm3QoLPgVX9kNXS8BOF2o1MTMmhPP9gnxLE5YCcKLqRMDOK4QQYtxpBNA0bSjlNRvHwbhCCBEw7T3tHK04yoLgBX2fA/uz23V25lWxeU68x8ykAS68A1GzIH5ugGYrxBjJcgSuC9732W11egyR08zsyKn02D4zYibpEemc7ZAgnxBi5EiQTwghBAC1HbWUtpa6leoEmJ8c4CDfpQ8heSlMi4aYDNDt0Fgc2HOKsVdfBOEpYJkGmTeCvRcu7w/oKecmhQ3I5EsOSSYxJJGT1ScDel4hhBDjSpFjG+2jjzNQVz8OxhVCiIA5WH6Qbns3C4IXeGw/dqWe2tYuti9I9D1QZzNc/giybwcPwUIhJrToWRCX7cpW9cJsNHDT3AR25VXR1Wvz2GfL9C0UdhbS1NUUiJkKIaYgCfIJIYQAVKlOgMXxi/v25ZY3oWmQnRjAIF97PZSdUEEegGjHGhD1Rd6PEZNDfZHr/Z6+CswhKuAbQPOSwrla105Lp1owXdM0lsYv5UTVCXRdD+i5hRBCjBvOPzJ8ZdxlOLbXchVIoMYVQoiA2Xl1J5HWSDKDMj22v3OugiCzgRuz430PVLgLbN0qyCfEZJS1Ha5+rALaPty2MImWrl4OFnquzL11xlbs2NlXui8QsxRCTEES5BNCCAHA8arjBBmDmBc9r29fTlkzs2JDCLGaAnfior0qcy9DgnxTTn2RuiISwGSFmeuhMMBBPkdWan6lqyzosoRl1HbUUtJSEtBzCyGEGDdecmzTffRJBxp1Xb+WP0gCNa4QQgREt62bfaX72DpjK0bNvRSnza7z7rlKtmbH+/9MeOEdmBajLt4TYjLKukVVnync6bPb2swYwoJMvHuuwmP7gtgFhBvD2VOyJxCzFEJMQRLkE0IIAcCRiiMsiV+C2Wju25dX3sT85IjAnjj/XbBGQMoy9XhaDFjDJcg32XU2Q1uNK6gLKpuz4TJU5QXstHOTVJCvf8nOZQnqZ0/W5RNCiKlB1/WTqDXxbvLRbRvw9HgYVwghAuVwxWFae1rZNmObx/YjRXXUtnZxx6Jk3wP1dsPFD2DOrWDws26fEBPV9FUwLRbOv+2zm9VkZNvcBHaer6LHZndrN2gGFgUv4kDZAbpsXYGarRBiCpEgnxBCCOo66ihsLGRl0sq+fQ1t3ZQ3dQZ2Pb66S5DzJ1jyEBgdV4ZqmsrumkhBvspz0FQ2tnPQdSj6CHo6xnYeQ9VwWW37B/kW3KtKdu7/ccBOmxgeRNQ0M3nlriBfekQ6kdZICfIJIcTU8ihwn6ZpbqU1NU27FxWs+w9PB2qa9oqmaTs9HTuccT3wVfZTCCGG7YMrHxBmDmN10mqP7W+drWCaxciWOX5KdV49AF3NMEdKdYpJzGBU5WgvfgA9nT673rYwicb2Hj4urPXYvmjaIjp6OzhUfigQMxVCTDES5BNCCMGxqmMArEp0lVbJdQRBAhrk2/cjMJph3VcG7o9OnzhBPrsdfns7PLVBrS04JjiDFuwAACAASURBVHOwwTtfhefvhCNPjc0crpXz/e0f5AuJgVWPQc5rUJMfkNNqmsa85PABmXzOdflOVsvySEIIMVXouv4q8DLwTP/9juDck8CndV1vHHycpmnbgHtRGXn3jdS4HqT3O04IIUZcj72HPSV72DR904BqLk69Njs7ciq4cW4CwRY/2XkX3gHzNMjYEqDZCjFOzLsTuluhyHepzY1ZsYQHmfjz6XKP7bODZhNuCef9K+8HYpZCiClGgnxCCCE4WnGUEHMIc2Pm9u07WdyApsHClACV6+xogLMvwbLPQ1jCwLbodGgsBltPYM49FK3V0FLpv1/DZehsUrc/PhT4eXly7hU4/mswmKB8iIGqirMq+2+sOIN8UbMG7l/zJTAFwbFnA3bqhSmRnK9opqPb1rdvacJSSlpKqG6vDth5hRBCjC+6rj8OvKRp2lOapj2padqTqEDcTbqu7/JyzC7gpOP28kiNq2naUk3TTjhuDbjW9bvcb/+9w3rCQgjRz7HKYzR3N3NTmucKwwcv1dHQ3sMdi5J8D2S3w4V3IWMrmIMDMFMhxpGZGyEoAvL+7LOb1WTk9kVJvJ9bOeBzp5NJM7EtbRt7SvbQ2es7K1AIIfyRIJ8QQgiOVh5lecJyTAbXYuqHi+rITgwncpolMCct2gu6DeZ/0r0tOl0taN1UEphzD8XvPg2//4z/fhVn1HbuJ6ClArrbAjsvT+oKQTOoNTCc8/Gl8EOVeXje9weTgKq/DKEJYA0duD8kBmZt9LuY+XCsSo+mx6Zzsrihb9/yhOUAHK88HrDzCiGEGH90XX9V1/XHdV3/muP2uK7rPssJ6Lq+zHHzmpF3rePqun6y37hRuq5rjltUv/2vDue5CiFEf7uu7iLYFMza5LUe298+W06Y1cSmrDjfA5Ueg5Zy9XlIiMnOZIGsWyH/Xb8XJd95Qwpt3TZ2na/y2L595nbaeto4UHYgEDMVQkwhEuQTQogprrKtkqvNV1mZ6FqPr7vXzsniBlbNig7ciQt3gTUCUpa7tzlLOI52yU5nZlv5aahw3Bqu+j6m4ozKoJu1ST1u9fwHfEC1VEJIPCQthoYrKqvQF2dw78RvXftGO6uv/rJ7Fp9T5jb13tddCsipl6dFYdDgSFFd377s6GzCLGEcqTwSkHMKIYQQQggxXvTae/mw+EM2pm4kyBTk1t7ZY+O9nEpumpdAkNlPqc7c18FohTm3BWi2Qowz8+6Ezka4st9nt1WzokkMD+LN02Ue21cmriQ6KJodV3YEYpZCiClEgnxCCDHFHatU6/GtTHIF+c6WNtLZY2d1eoCCfLqusskyNoPR5N4eMV1tm0oDc/7B2urg2e3wxt+ox6deUIE7gPz3fB9beRbi50KkY84t/YJ8djsc/gVU5Y3MPG29cPIFKB209l9rlSp5mrTYMadz3sew29VzMpjh0h5VFrUqD34yD479amTmORRNJRA5w3Nb5o1qe2l3QE4dFmRmQUoEhy/X9+0zGoysSFjB4fLD6GNZxlQIIYQQQogAO1JxhPrOem6deavH9l3nq2jp7OVTS1N9D2S3Q94b6iK9oACu5S7EeJKxFcwhfkt2Ggwady5OZm9+DQ1t3W7tJoOJbTO2sa90H+097YGarRBiCpAgnxBCTHFHKo4QYY0gKyrLtc8R/Fg5KyYwJ63OU6UtMz2v/0BYkio/ORpBvt4ueP5OKDkMZ/6g1oI7+wrM/xTEZUP+O96P1XW1tl3iDRCaqPa19lvHrzoPdnwdntoIZ/44vHn2dMJvboE//y3s/Y+BbS2VqvRl0iL12FfJzvKTKii4+Wvq8b4fwXv/rErsvPMPcOp3w5vnUNht0FwOEV6+NIjJUFl+hR6XLRoRq9NjOF3SSGePa32E1cmrKW8rp7RllILLQgghhBBCjIF3it4hzBLGhtQNHtv/dLKMpIgg1mT4+TxYckR9rvO0BIMQk5U5GGbfBBfeVp9tfbjzhmR67Trv5lR4bL9l1i109Hawr3RfIGYqhJgiJMgnhBBTmK7rHK08ysrElRg016+EfQU1ZCeGER0SoPX4yhyZaDPXeW43miAseXSCfOWnoSoHPvEzFVh656tgMML6r6iSM1c+di9/eeYluHoImsugvVYF18IcQb7+mXzO+RstA0tjXtc8T6r1Lswh6rz9tVapIF9ovAo2lp+Gng6VRTi43Gj+e6AZYcVfwarH4eRzqszILT+A+PlwehSCfK3VYO/xHuQDmLlePd8AWZ0eTXevnaP9svlWJa0C4HDl4YCdVwghhBBCiLHU3tPOruJd3Jx2Mxaj++e9mpYuPiqo4e4lKRgNmu/Bcl8HUxDMuSVAsxVinJp/N7TVwBXf6+nNTw4nMz6UN0+Ve2xfGr+U2OBYKdkphBgWCfIJIcQUVtxSTEVbBSsSV/Ttq2zq5OiVem5ZkBi4EzcWq0BThJdyjaACQMMN8p19Gf78Zd8LYtcVqu3MDXDX/6oF4x/bCwnzIWUp6LaBawN2t8Hrj8NvboWnNwMapK2F4GhV4rN/Jl9TidqmLFXZdsPhPD5l6cDXxW5THy6cQcZZG+Dcy/DTRSqL8PAvBo5TW6Ay5YKjVGDv9h/D4s/CyscgZYnr9fDm6kH440P+1/3zxTl/Z1lWT6JmQnuder0DYG1GLGFWE38+4/qwNSt8FvHT4jlUfigg5xRCCCGEEGKs7S3ZS0dvB7en3+6x/c3TZdjsOvcsTfE9kN0GeW+qjCZrWABmKsQ4lnULWELh3Cs+u2maxieXpHD0Sj1Xat0/2xoNRrbP3M7+0v00dzcHarZCiElOgnxCCDGF7SneA8DG1I19+946U46uw12L/XyoG47GYghP8bwen1NEqitIdr32/Uhlqr37T6q0pid1F9X6dJFpKrPwMy9CVJpqC3e8Bs39rrqrvQjokLoCYufA59+BxIVgMEBI/MBMvuYyNXbiQhWkG85ab84gX+py6Gp2BdnaakC3q0w+gDt+Cpu+DuFJKhuyNn/gOM3lruelaSqj7+7/VdmLMZkqK7DTy4eLukvwxwdVWZL8YVxp6HxffWXyRTreg8Zh/gx4EWQ2sn1BIjtyKvtKdmqaxqbUTXxc9jFdtq6AnFcIIYQQQoix9HbR2ySGJLIsYZnH9j+dLOOG1Agy4/0E7ooPqwscpVSnmIrMweoC4bw/qyVAfLhnaSoGDV454fmz7SfSP0G3vZsdlyWbTwhxfSTIJ4QQU9jukt1kR2eTEuoK6L15Rn2omxUbErgTNxZDpI8sPnAE+crUYu7Xo/6yCnBFp8OJ33hfp66uEKJneQ44OoNhTf3KY9Y4gmZ3/Q/85TsDS46GJaggmVNTKYQnq1tvhwrOXa/WSlX2M2HBwDk5z+fM5LOGwpZvwOP7VFZfzeAgX5nreQ0WM1ttvWXzffhdFVAMjoaL71//c+nL5PMV5HP8fDQWX/95/Lh7cQqtXb3svlDdt2/L9C2097ZzpOJIwM4rhBBCCCHEWKjvrOdg+UFum3XbgOUanM5XNJNX0cynlvr4O90p93UwBcPs7QGYqRATwMJ7oasJLu702S0xIojNc+J59UQpvTb37zfmxcwjMzKTNy+9GaiZCiEmOQnyCSHEFFXXUcfp6tNsnb61b9+p4gZyypoDm8UHQw/y2Xugrdp3P28ufqC2276rtg2XPferLVQZbJ6ExKlMvP5r4NVcUGU5o9Pd+4cmDgrylannEepcr28YJTtbqtQ4zhKXzjk5MwdDPZRXjZuj+jkz82w9ag4R3oJ8jteh7pLn9voimL5arVVYuMt3GVRfmkrBGgFB4d779AX5rnrvM0xrMmJICLfy/KErfftWJa1immkae0r2BOy8QgghhBBCjIUdl3dg021eS3W+crwUs1HjEzck+x6otxtyXlNr8VlDAzBTISaAWZthWqzfkp0A9y2fTlVzF/su1ri1aZrG3Zl3c7bmLEWNRR6OFkII3yTIJ4QQU9Tekr3o6Gyd4Qry/XTXRaKmmfnMCh9rpQ1Xbze0VECkn3M4g1nXuy5fwQ6VmTZzvXrc7GGha7tjvT1vQT6DQWXhNQ/K5IvJBKPZvX9YwsBAXlOpCvKFOUppDivIV6HGcQbonK+Lcw3A0Hj3Y+Ky1ba2oN/5dfWcPImeBZpBlTD1pLlclQHN2q7KhZZcZ7ab83XxJTRBZS4Ot2SrD0aDxmMbMzhcVM/hojoALEYLG1I3sKd4Dza7LWDnFkIIIYQQYrS9eelN5kTNISsqy62t26bz2slSts9PJDrE4nugwp3QUQ83PBigmQoxARhNsOBT6rsHb0teOGzNjicmxMJLxzx/vr09/XaMmlGy+YQQ10WCfEIIMUW9XfQ2aeFpfR/wTlxt4KOCGh7bmEGI1cdaecPVXKZKPg4lkw+uL8hXfxku71dXlgZHgSnIc5CvqQRsXd6DfKBKWzYNyuSLm+O5b2gCtNeqDDe7zVUaMyxJtffP8rtWrVWqJGdoImhG1+vSl8mX4H6MM8hXc0FtncHKcC8BNpNVvS+eynX2dkF7nXo+GVvAaIWTL1zfc2kq8R/kMxhUnwCW6wR4aNUM4sKs/HRXAbpjzcSb026mrrNOSnYKIYQQQohJI7cul7y6PO7Jusdj+7HKXpo6enhoVZr/wc78QVU9ydjqv68Qk9mCe6G3Ey6847ObxWTgU0tT+PB8NTUt7mv4xQbHsiFlA29felsuNhVCXDMJ8gkhxBRU0lLC8arj3JVxF5qmYbPrfPetXGJDrXxuzRA+1A2HM2hzPUG+5gp4+S/gv5dDT6f3Yz/4lsoCW/0EaJoKsrVUuPdzBrNiZ/uYR4orONbTqcp+OoNngzkDba3VKiin2xzlOp2ZfB7mMFQtlSrAZzSp5+OcU2slBEWCOcj9mMg0FYxzC/L5KL8Tk+k5yOece1gSWMNg9d/A2T9C6QnvY516EX4yH079DhwBNGBomXygfkYCHOQLMhv50tZMDhfV8+45lRW5efpmIqwRvFH4RkDPLYQQQgghxGh5teBVgoxBXkt17inpJT0uhNXp0b4Haq+H/B2w8D7P65oLMZVMX6k+t559yW/Xz6yYTq9d5/VTni9kvivzLqo7qjlYfnCkZymEmOQkyCeEEFPQW5feQkPjExmfAOCPx4o5W9rEt26fG9gsPhh6kC8oAixhA8s1vvww5L2hyknWnPd83LlX4cLbsOGrrmBWeLIKEA5W6whm+cvkay4Hu10Fv3S790y+MMe6eK2VruBkRKoKipmnubLurlVPB3Q2usp+RqT2y+SrdJ13MKNJBTBr8tVjZ0aitzX5wBHkuzQwKAeu1y/ckZW48R9V8PKtv1OlOz0p2AHNpfDmE+o+QHebKu0zToJ8AA+unMGClHC++1YuLZ09WIwWbpt1Gx8Wf0hzt++yK0IIIYQQQox3bT1tvFv0LrfMuoVwi/u62OcrmilstPPgyhlomuZ7sJzX1Nrpix8I0GyFmEA0DW54AIr2+v3smhkfxoqZUbx4uBj74M/bwKbUTURaI3m98PUATVYIMVlJkE8IIaaYzt5OXrv4GquTVpMYkkh1cyc/eO8Cq9OjuWuxnwXWR0JTiVr3LdxHoAnUH8vRM6HWsT5cVyuUnYAFjvIylTnux5x/C/70GMxYA2v+1rW/f+Zbf43FKvgWEud9HuEp6kNsW40rIy7WT5CvuWJgkE/TVFvrda7J5yzz6Sz7GZHSL8hX4blUp1PcnIGZfJYwFUD1JmomdLeqK3T7c75+YY6fEWsY3Pk/auzn74LudvexKnNgzu2qXOrl/Wqf8/2MnuV9Dk6RM9Tr3tPhv+8wmIwGvn/3Qmpau/jxB2r9wrsy76Lb3s2fCv4U0HMLIYQQQggRaO9dfo/23nbuzbrXY/vvjxRjMsC9y4ZwId6ZP0DCAkhcOMKzFGKCWvyQ2p7+vd+uf7F2JsX17ZytcS/JaTaauTvzbnYX76ay7Tq/OxBCTEkS5BNCiCnmpfyXqG6v5tFFjwLwr2/m0tVr5/99cqH/qzaHQtdVcOfyPvdsMFCBtbBkMJr9j5WwEKocwbzyUyqLbuF9YA6BynPu/ff9pwpqPfTqwPKV4ckq423wfFoqVODM1/N2Zr01l6mMOM3gPfMvOkNt6y66gnDOYGZooprD9ehbdy/RNWZzmcourC30XW40Llu95t1tjjUC/QRynYHEwaVFnY/7H591M3zyl+q9ufjBwP6dzaq0afISSFoMpcfUfuf7mTCELwUiHaVjGz0sTt5aDQXv+13gfKhumB7Jw6vTeP7QFc6WNjI/Zj5rk9fybM6ztHS3jMg5hBBCCCGEGAuvFrzK7KjZLIpd5NbW1tXL66fKWJVoInKaxfdANQXqwssb7g/QTIWYgKLSIH2zWq7Cz3p62+cnkhgexK6rvR7bPzPnM9h1Oy/nvzzy8xRCTFoS5BNCiCmkpr2GZ849w7rkdaxIXMGOnAp25FbylW2zSY8LHd7g7fXwyl/CT+bCL9fBc59QWXWD185rLPZfqtMpcaHKYmupgrLjal/qCkiY7woWOXU0QMVZmHcXWAc9l/BksHW5Z6e1VLqCWt6E9wvy1eZD1CzP698BBEeqQFxNvspwC4lzZc2FJVx/kM+ZAegs1xk7G2zdUHwIupq8ZxaCq7Ro7UVVrtNXqU7oF+QbNNfmCpX1ODgLcN5dKuh6Zf/A/dV5apu4EFKXQ8UZ6O1WwVlzyNAy+SKmq+3gsidXD8Iv1sHv74MfpsNTG4d01aQ//7h9DjGhVr7+2jl6bHa+vPTLNHY18szZZ4Y9thBCCCGEEGMhry6P3Lpc7p19r8eLOl89UUprVy9bpg9h2YZTz4NmhIWfDsBMhZjAlj6sqhYV7fXZzWw08NCqGeTU2SisbnVrTw1LZdP0Tbx28TW6bF0BmqwQYrKZVEE+TdPu1TTtKU3TnnTcntI0LX2sxg3UfIQQ4npcbb7Kw+89TLetm79f9vc0tffw7TdzmZ8czqMbhvlPk67DO1+F83+GmRvgjv+Czd+Acy/DqRcG9r3WIB9A1TkoPa4CbCExkLhAZQv2z8y78jGgw6yN7uP0Ba7KB+5vqfC+np2TM8jXVKqCd3HZvvvHZal+FWchcZErSzAsaRiZfM4gn+N5JDquwD33suucXufjmG9N/hAz+Ryvh1smX7nnrEejGdLWuMpxOjkzLRMXQMoyFWStylH7E+aBweh7HuD6OWm86tqn6/DqF8ASAve9AGu+qDIa//wlKDvpf0wfwoPMfO+uBeRVNPPLvZeYHzOfT2Z+kt/k/obfnf/dsMYWQgghhBBiLLyQ9wLBpmDuyLjDrc1m13n2wGWWzIgkM8rP3+c9nXDqd5B9u//PUEJMNdl3QHCU+/cfHjywagYmDZ4/dMVj+4PZD1LfWc/7V94f2TkKISatSRPk0zTtKeAzuq4/ruv613Rd/xrwNWCnpmnbRnvcQM1HCCGuR25dLp9773O097Tzm+2/ISsqi2++cY76tm6evGcRZuMwfx3kvQG5r8OWf4F7noHlj8Dmr6v13fpfyWbrUYGmyOlDGzdxgdpW5qiyMKnLHfsXqgy2/hleV/aDKVgFlAZzBraa+wX5dN2RyefnA2pIrMrOu3IA6gpdmXHexM5xZPKdh6R+5XBCE6Cn7frKS7ZUgsEEwdHqcfxc9Tj3Ddc5vYlOV30L3lNZkf7KZPYF+QZn8pV7DxDO2qiyHPsfU3lOfcgJT1HZl6ACtZU5Q1+/IywRDOaB73NtgQo4rv97mHcn3PRd+Pxb6vX902PqZ2wYblmQyO2Lkvj57oucLmnk22u+zdbpW/nB0R/w4+M/ptfuuayKEEIIIYQQ401lWyU7Lu/gntn3EG4Jd2vfmVdJcX370C76zHsDOuphxRcCMFMhJjiTFRbdD+ffhrY6n11jQ62sSjLx2olSWjrdP7+uTlpNekQ6vz//e3RPS6AIIcQgkyLIp2navcB9uq4PqBeg63oj8DjwiqZpkaM1bqDmI4QQ1+NwxWEe2fEIQcYgnr/1eebHzueFw1d5+2wF/3BzFgtSIvwP4s/RZyBmNqz7ysD9Mzeo4JuzLn1zuVpXb6iZfMFRqmRj7p9UZlmKI8jnDFT1L9l5eR/MWK3+uB7MU5Cvswl6O/yX69Q0yNwG+e+BvXcImXxzVDDP3gtJN7j2OwObTR7Wl/OnsRgiUsHg+LVtsqpAX2cjWCN8ByqNZrWGYN6f1ePZN/k+l8mqgomDM/maK7wH+WZuUNsrB1z7qnIgYYF6/SJSVRDu9IsqODvUIJ/BqI7t/5pd3qe2/TM2g6Ng+/fVWohFHw1tbB++f/cC4sOC+OLvTtLaofOjzT/i/jn389vc3/LErido6moa9jmEEEIIIYQItBfzXkRH5+F5D3tsf3pfEdOjg9k+fwiZeceeVZ8rZm0a4VkKMUksfRjsPXDG/1ISN6WZaOu28fsjxW5tmqbxQPYD5Nblcrb2bCBmKoSYZCZFkA94EnjaU4Ou67scd78xiuMGaj5CCDFkuq7zu/O/44ldT5AcmswLt73AzIiZvHm6jO/8OZet2fH89caM4Z+oqUytkbboPvcSjLM2qWBapeMPU2dG1lCDfKACQhVnVDBu/t1qX8I8QHOVhGyvV2vAzVzveYzQBNW/f+CqrwTmED7QZt4IuiNQ6S+Tr397Yr9MvsiZatvgKD3ZVgsHfjqw5KhT+Wk422+h7carEJk2sE+iI4AYl+VeQtPTnHSbKncaM4T3PDx54GtltztKm3oJiCbdANZwV5DPboOqPFcwT9Ng9RPqfQT/2YT9Rc4YmMl3eZ8K/EbNHNhvzm0q4Jnz2tDH9nbKaRb+96Gl1LR08fCvj9DeCd9c/U2+s+Y7HK86zv1v309BQ8GwzyOEEEIIIUSgtHS38OrFV7l55s0kh7pfrHfiagMnixv5wrpZGA1+Pk9UnoPSo6pii7/PHkJMVQnzYcZaOPq060JnL2ZGGFmfGcuvDlyms8e97ycyPkG4JZxnzz0bqNkKISaRCR/k0zRtKZAOHPPR7Tjw2GiMG6j5CCHEULX3tHOs9RgPvPMAPzj6A9Ymr+W3t/yWCEsMP9xxgb9/6TQrZ0XzPw8uweDvw9xQ5L4O6LDgHve2WY4ML+d6bdcT5EtbpzK1PvuaKyBnCVHBKmeQr9yxFpuzLORgRjOExg/M5HMGsfxl8gFkbAHNAGgQ62P9O3CVzrSEqaCaU5QjSOdcX+7Yr2DXv6nyk4Md+SW88QR0tajHDVddxzs5S4H6KtXp5Mw+zBxiteiwxIFBvvY6dUWit0w+gxFSlrreh7pLKkuyf8beur+DlY9DUIQjSDtE/YN8drvKDJ210f3LBZMV5t4BF95W64UM0+LpkTz18DIKKlu5+/8+5sTVBu7Juodfb/81XbYuHnznQb5/+PtcqL8gJVSEEEIIIcS482rBq7T1tPH5+Z/32P6r/UWEB5n49PIhLKVw7FkwBcEND4zsJIWYbFb/tfr8mv+e365PbMmgpqWLV0+UurWFmEP47NzPsqdkD/n1+YGYqRBiEjGN9QRGgPMbyyIffYqAbZqmpeu67qvfSIwbqPkIIUQfXddp7m6mvLWc8rZytW0tJ78hn7M1Z+mydTEzfCbfW/s9FkTcyHMHKnnx8DGqW7q4b3kq37lzPtMsI/ArQNfh3MuQtNhzhlhYoirjeXkfrPuyI1ijQXjq0M+x5ouw8lH3MpyJC6HMEVQqO6nGTV7sfZzw5EFBvmvI5AuOUgHE1iqwTPPdNzTeEcha4CqvCTAtBswh0HBFPb64U23bat2zA9tqVFDt8j5I3wxt1e6ZfEn9Mvn8cQb5/JXqdApLhKpc1+PmMrX1FuQDSF4KB3+uAmzOzM2EBa52TYPbfgg3f89zSVVvImeo172nQ62J2NHgKg862IJ74PTvoGCHK+tzGLZkx/P8F1byDy+f4Z5fHGTznDjuWZrKMze9yG/zfsFrF1/jj/l/JNoYzY59O0gLTyM5NJmU0BSSQ5NJmJaAyTAZ/tQSQgghhBATSbetmxfPv8iqxFXMi3G/wK6gqoUduZX8zaYMQqx+/l7tbFJVRhbcA9OiAzRjISaJObdDxAw4/At1EaoPa9JjWDIjkl9+dIn7V0zHZByYi/Pg3Ad5Pu95njr7FD/Z/JNAzloIMcFNhm+enGkbvoJllxzbpX76jcS4gZqPEGKS0HWdXnsvHbYOOns76eztpKO3g05bp+uxo62lu4XGrkaauppo7GqksauR+s56KloraO1pHTBusCmYtPCZbE2+i86yeMw9K/nP1xooa1RrmG2YHctP71/M2ozYkXsyVw6oEoy3/9h7n7S1apF2u10F+cKSwGQZ+jk0zXNQKGGByiLsbFZBvtjZKrjmTVgyNFx2Pe7L5BtCkA/gzv92Zdb5m+/Wb6uSkoP3R6WprLy2Oig7ofa3e1iUu61WbQt3QXS6uj+4PGXyUpUZN/+T/ueUfQfc8yxkDjXIl6QCa3abytLre618BPlSlql1CCvPqfX4DGbP6xdeS4APXFmfTaVQfFjdT1vrue+sTar/wf+GeXeNSCmh1ekx7PjKBn7z8RVeOHyVvfmnMBk0Vsy8nXtm3Ik9+Cw5FXs4WXWS9y6/h44rq8+gGYgNiiV2WixxwXHEBscSYY0g1BxKiDmEEHOIum8JIcQUQpApCKvRisVoIcgYhMVowWq0YhxcBlcIIYQQQggfXil4her2av593b97bP/ZrotMMxt5dEO6/8GO/1qtOb5SClIJ4ZfRBKsegw++pb4rcV6c64GmaXxxcyZ/9fxx3jpbzieXDLwYOsIawQPZD/Crc7+isKGQzKjMQM9eCDFBTYYgXySAruuNPvo4267lkqPrHTdQ8xEioHRdR0fHrtvVl9Q66Oj06D109naio/f16ds67juPt2Pva+s/prfj+p/H07k99bfpNux2Ozbdph7bbdh1x2Pd0e7lsV239936P/bVZtft9Np76bX30mPvTE59KgAAIABJREFUocfe4/2+zXm/lx6bY9vXTz3usnXSZevCrvuuz96fhoEgYyhWQyhWLQyLFkGyKQODFo2tO4qezgja2sNpajNzvK2HY44YQ9S0GtZkxPDXmzO4aW4CiRFBI/5zw/4fQ0g8LP6s9z7TV8HJ56DmAjSVXFupTl+c691V5aiAWeaNvvuHJ8HVj12PWyrVGm6WkKGdz99afP2tfNTz/qiZKpOvaA84g0Htte792uvVtnAXzN6u7g/O5DNZVGbcUJgssPDeofUFFfjU7SqjMCzRlQEZ7qO0acpStS07AZU56vW6lmCuN86fl8ZiFeQLTfT+M2Q0qbKg7/yDq6znCAgLMvPlG2fzxS2ZnC5pYGdeNfsKavj1vnps9kTgASxGA0mRJsLD2rFYG9DMjeimOmx6Ey1tTdS0FNNuO0OHrRU7vdd0fpNmwuII/lkMFqymIKyOAKDFaMFsMGFy3IyaUd3XHI8Nxr79ZoO5r925v6+f8ziDCYNmwKAZ0NAwGoxoaH37+m647muahlEzommqn1Hzcky/cfv6OY4xYAANNDQ0TaPvf45ArfO+QTMMeOzWb9A+jUH7+7XbdBu99t6B+2WNGSGEEEJMcG09bTx99mlWJa1iTfIat/YLlc28c66Cv92SSVSIn7/XezpVRlL6Ft9VU4QQLksehj3/AYd/CZ/8hc+uW7PjyU4M43/3XOLOG1Lc1sf83LzP8eL5F3n63NP8cOMQP/8LIaacyRDku+bAXYDHDdR8xtQ9z91Go70ZYECWgieDW3XAbrdhuGx0a/W3ipGvc7m36F7bdG1wt6HPQ9f6t2ruxw4+WPM+D7exr/P5eRu7X3htwP973jruDeX7zN8Noc8kpukamm5Aw4BBN6j7uvqiWrMbVTsGsHvoo2tougkNCybdgMVuJEI3odlNGHQjhv5buxGDrraarvYbbRaMdnPfF9UAOhoWo8Y0i4lQayehQb2EhTQRGm0mJthAWpid7qpClmelYjAXq2BYcKzKyqo8CwUfqHXhertU5lv8XBUACo66thfmxHMqWLXtu2D2EUCcsVptSw6r805ffR3vggfO9d4KdqhylslLffcPS4LORuhuVyU3WyqGnsU3UiLToOgjuPiBeu07m1RW32DttRAUqQJbFz9Q+wavyRdIznUKna9RS4VakzAk3vsx4cnquLITKpsvY8vIzKV/kK/kKMxY5TtDb/FnYe+T8N7X4eE/Xft7fPUgXNqjAtK2bpgWq77QyLoFY3AUyyJaWTazkK9HXKZbs1DSauBoYSVETae0zURVl4WGpjDauqx0dEbR0dWNXbdjxk40dvVbROtFN3RjN3SjG7rBsbUbbKD1oms2dEMvaDbsmtrnbOvSbHQYbOhaJ7rWhm6wAXb1u0pzbLGja3bQdHRNXTyhtmq/runo2If27/9k94KX/TquAKHj/50vlzZoj7f2/jQvj3y9BZ7GCeh4+oBH1zSev2fsbe/1PA+73Y7x8vVntz6U/lke2fTX1328EEIIMd49n/c89Z31/N2Sv/PY/tOdFwmzmvirDbM8tg9w9o+qwsennh7hWQoxiQVHwuIH1cXO2/7N52dSg0HjS1tn88Xfn+SNU2Xcs2xgNl9kUCT3Z9/Pc7nP8VcL/4qsqCEs1yGEmHImQ5DvWgJlMaMw7rDno2naY8BjAAkJCezdu/cahgyMrOYrdBq7+h77+15QGxT50rzcH9JY13Cspg9u9x5E8zvWNfQdfJr+572W8wzm//kNZHCcV+t/6xfHM6D37adfm+umux3n+tJSxzBoPLdj3cZzHasBhus5VnfNyeC4GXU1F4OunpPRcd/oOI+x337Nsd/g2K8N7q+jHqM7jht0Dg+v86jR8P2vtA1od9w8ueK6q/d9Da2jo9FticZmtGDuacbc20bXru9TkPUEdbErhzS11JI3yLz0G+qjFpPTNRe7r3+ndJ215giaDr9MbGMpxeE6l0fi3zVdZ605HO3Is5iBE1XQ4mPchMpm5gJHdr1Bx7RklpTlYzdYOTOK/8am1PUwu6cN+7nXqEzcQnz1ASoLzlCoqzm0tray78P32djTTmn8VpLL34MTz6EbrOw/lgta3qjMM6y5nGXAuYM7qYttYk7BCaLNURzaf8DncfOtM4g8/y7m3lYKW4MpHZH32cZGzUjtkVeIbyqmMPYmv+NGp/8N83OfpOd/1nJi2U/osfj/1WzqaSXj0m9IqtyFjoEuazR2gxlLdyOmo08BYNeMGPpl4VqADMeNKi8DDyWZ0e64jTI70Av0ahq9GthQW7vjt5hNU310NGya46IdNDXdQW3qPtg0zdFPjadrrqdn1zTXfUB3PLY57uuOMVwXojhumvO+1jfv/m042jwer/Xr6zjefVzPY7jGdh/DruHhfNqAx079LzTyeVHREO47z9PHx9hDH8/bfAb+9vP2PIY+3hDn5yOI7+/iqaFozT/BXse/uUIIIcRkU99Zz3O5z7FtxjYWxi10a88tb2JHbiV/d+NsIqf5+UPVboOPf67WX5+1KUAzFmKSWvOEKnX78c/hlv/ns+utCxJZlBrBT3YWcPuiJILMAy9oe2T+I7xW8Bo/PPpDnrn5Gak+IoRwMxmCfJOOrutPA08DLF++XN+8efPYTgjYvGwPeCsv6JbKNqARgEOHDrFmzaAyET6Pcx17vecc8WP9zne0zzk6z/PYsWOsWOFcanIsXtuxej99Hevn0EDN2e+xgMEE1lAOnTjLmk3boKsVKs+iVZ4D3Q5RM9GybsHqXDBd16H8JNY3v8TCnO+rxdRXPKqy77z94Vh9Afa9CNl3EP3p59hoHMKvkqoNxF14GzQDaTd+gbQ097Ix16X2Rri4E5b+Bctuf0SVa/SmCLjwM1bNnQ6zNsCJFkhbyqj+G3uhHQp/hUHvJfnOf4WXHyY1OohUxxz27t3LxsUZsB9Sl94MkWa17mBsJpu3jFBm3FC0ZMPJf2ThjChYuRmKfwrGmf5fq4xp8PZXoSqHzBs/R2bykpGZT8XNxBe8B0Dm1ofITFnm54DNsGYLxmdvZl3TG/Dp33rv2tGgXuOP/hNaK2H9V9E2/iNBzjKuuq7WfLx6AEN7PUROh8QbIDYTbL3Q3cqxg3tZsTBbrdnY1Qy9naAZVfajwbHtfx9QtSm1Qfcdjwfc99bX33Ga3+MMgAUNi/Mcg7n9G6D5aR9Kn+s4T4DmcuToUVatXDWEcYZ3npF7PqNhDM57jc/14KFDrB38N+W1CLqGMs1CCCHEBPPM2Wfo6O3gS0u+5LH9R+/nEx5k4pH1Q8jiu/A21F+Ce38zhn+bCDFBRafDos+oQN/6r0Co96o4BoPG12/N5sFnjvDCoas8unHgWpmRQZF8cfEX+Y+j/8Hukt3cOMPPUiVCiClnqgX5PNREG9NxAzWfkReWMKzDu4LiICLVf0cx7rSFVkPCvLGehrhGXUEVqvxmcJQKSmTf7rmjpkHKMnhsL+z/kbrKLOc1WPcVuOm7no95+ytgDYM7fuo7qNZf2lr1IfHWH8JIBfhAfeC024Y2j7BktW2pgO42aCmHmIyRm8tQOEtuTl8FSYtUKcj2Qb8KnGv0hcSqgGvu6+7r8QVaaAKYQ6DuknrcUgExQ1jke/pK+JsDYOsBo3nk5vPJX8Kvt0NTqWstRn+Sl8Cmf4bd/w43PAhZN7v3aS6Hp7eo4F7iQrj/RfXfQ3+aBqnL1M2jONpCr47sz7UYFR3TylSwVkwo3dYYVR5YCCGEEANcqL/AHy78gU/N/hTpkelu7XsuVLMnv4Zv3T6XiGA/f6vrOuz/CUTNgnl3BWjGQkxyG/9Rlbz9+Gew/fs+u67NiGVTVhz/s6eQ+1ZMd/tv9L459/FKwSv86NiP2JCyAYtxKCVjhBBThcF/l3GvEUDTtKGUyWwchXEDNR8hhAgckwW2/Av800W1SPTHP4XcN9z71RRA8SHY+E8QGjf08Zc/Ao+8DysfHbk5gwrADDXQGO5YZ665DOqL1P2hBK5GUnSGCiJt+mf1eFoMtNUO7ONco29arAqOzrkdsraP7jw1TQVA6wrV4+bya/tSfSQDfKDWNPj8u/CX713b2Ou+ooK7J59zb+vthpc/p7Lv/nIHPL7fPcAnhBBCCCHEBGCz2/jOwe8QYY3gK0u/4tbe3Wvne+/kkR4bwufWzPQ/YN4bUHFafe4zXP9auEJMaTEZsPA+OPYstNb47f61W7Jp7uzh//YWurWZDCb+acU/UdpayvN5zwditkKICWwyBPkc39QS7aOPM+BWPwrjBmo+QggReNYwuP0nKgvq/W+CfdBCYeffVNv5d1/buOZgVQJ0LFnDwBoOzRWu4NVoB/nMQfDobsjcph6HeMrkcwb5YlSw7YHfw4ovjO48Qb02dYWq5GtX89hnzoTEqOzHa2E0w9xPQOEu9Tz6y30dSo/BnT9XWXhSgkgIIYQQQkxQf7jwB3Lrcvn6yq8TYY1wa3/+0BWKatr41h1zsZj8fBVo64EPvwdxc+GG+wMzYSGmio3/BLYuOPgzv13nJYdzz9JUfn3gMherWtza1yavZcv0LTx15imKmoo8jCCEmKomU5DPV+acsx7byVEYN1DzEUKI0WGywOonoLkUSg4PbMt7U5WaHOuAz/UKS1JlOp1Bvmj3MjajalqMCur1X2uxr1xnzNjMySkmExqvqhu4yp1ONPPuVGvkFe4cuP/cKxAxHeZ/amzmJYQQQgghxAioaK3g56d+zvqU9dwy8xa39rrWLn724UU2ZcWxZY73dcH6nHpBrcV3479KFp8QwxWbCQs/DUefgcYSv92/cWs2IVYT33w9B73/9wQO3179bawmK/+y/1/osfcEYsZCiAloMgT5XnJsfX1Tmw406rp+LZc5XO+4gZqPEEKMnjm3gSlYBUKc6oug8tzEXpMhPMmRyXcJwlPAEjK285kWowJQ3W2ufW21oBkhaChVnwMoJhN0O1w9qB47y51ONDPWQEicClA7tdXCpd2w8F4wTIY/hYQQQgghxFRks9v45sffBOBbq7+F5qE6xXfeyqOzx8a375jrsX2A7nbY+yRMXw1zbg3ElIWYerZ+G9Bg57/67RoTauUbt2Zz9Eo9r5wodWuPmxbHv635N3LrcnnqzFMBmKwQYiKa8N9s6bp+ErW23U0+um0Dnh6NcQM1HyGEGFXWUMi+TZU07O1W+3JeU9u5d47dvIYrPAWaSqC2QNXHH2shsWrbv2Rne52rVOdYcpYyvbRHbcNTxm4uw2Ewqp/Z/B1q/T1QP9e6TV1RKYQQQgghxAT1q3O/4ljlMb6x8hukhLr/vb4jp4K3zpTz5a2zyYwP8z/gof+F1krY9p2x/zwixGQROR3+//buPE6vur77/+t7zrn22ZPJZCckgbAGQlgEXFATqt4Coglatba2Ii6tttWCS+/a+utdG1R+2hvvW+CuVdu7CKGgt9YNsPRGUYGEHQIkgQDZJzOTmbn25Xv/cc41S2YyMyEzc82Z6/3U8zjnOte5znyvHK7rOp/v57tc/El46s7BRrRj2Lh2Cecta+VLP36GrnRhxPPrT1jP5Ssu55YnbuHRA49ORYlFJGRCn+QLXA1cZYwZ0e3BGLMBP+n2pdFeaIzZbIy5e7TXHsd5X3V5RERmjNXvgWw3bPuhP5zkY7fBCRf7N6hhtex10L8fdm+Z/vn4RpMMhuSsDtEJfpKvmvyrpTlBh/Rn/x2al0LL0tqW53isfjeUsvDMj/z/lrd8BzrOgI7Ta10yEREREZFX5f5X7ucbj36Dt534Nt6xcuSc6V3pAn/5/Sc5Y1ETH7lk/AaO8exeuP8r/sgtJ1w4FUUWqV8Xf9JvOPvTz0ClMuahjmP4b1eeSX++xOfufGLUYTs/c/5nWJBawJ/d92fs7d87VaUWkZCYFUk+a+0dwO3ALUP3B0m2TcBGa23Pka8zxqwDNuD3rLtqss77al8nIjKjrFwHrSfCb74Jex6BQ8/7yZIwW32VP4E8zJAkX5DMSw/pyZfuHEz+1VKidbB8b/wcuJHalud4LDkfWk6Ax2+DXb+C/U/A+R+udalERERERF6V57qf47r/ex2r2lbxhQu/MOownH/1gyc5nC3ylY1nEXHHqf6zlpOf+yY4EXjLpikqtUgdiyZh/Rdh72P+vJfjOLmjkU9fuoqfPrWP7z00ci6/xmgjN77pRnKlHB//xcfpL/RPRalFJCS8WhdgslhrrzHGbDDG3ITfUw6gBVh/tLnvrLX3GGO2Bg9vn6zzHs/rRERmDMeBC67xW5p9/6PgRsM9Hx/4Qzeu+2u49d0w/8xalwZS1Z58RwzXOVN6mM0/0086rh7RDiZcjPET1Pd/BQ6/Aom28L8nEREREalLLx5+kQ///MMkIgm+/savk4wkRxxz64Mv8aPH9/LpS0/mlPlN45/0yX+jrftReOv14Z2LW2SmO+Nd8PC34Of/ldiaG8Y9/OrXLef+5zv5mx8+xXnLWkcMubuydSVfveSrfOyej/Hp//tpbnzTjXjOrKnqF5FjMKs++UEPujuO8TVrp+K8x/M6EZEZ4+z3wf03QCkHb/syJEYb2ThkVr0F/vQJaJ4Bw46OOlxn58wYrhNg47f9tePWtBiT4oKPwIGn4fm74fV/AZFErUskIiIiInJMdvfv5kM//xAWyy2X3sLChoUjjnns5R6+8IOneP3J7Xz0kgmMXpLthp9+lt7GlTSd96EpKLWIAH7j0ytuhP95MauevRF+511jzn3pOIYbrjqLt3z9fv7k1ke562MXEY8Mj80vWngRn3/N5/nir7/Ip+77FF9+w5eJutGpficiMsPMiuE6RURkisSb4FPb4BOPwto/qHVpJk/L0pkxkXysCYwDucP+Y2v97URrbctVlWiZHYld8HtNvud/w+f3wus/XevSiIiIiIgckx09O/ijn/0RmVKGm9ffzPLm5SOOOdSf56P/soX2xhhff/fZuM44MY+18H/+BLJdPHfyx2ZH4z6RmaxtOaz/Im3dj8DW74x7+LymOF/ZuJpt+3r51O2PUamMnJ9v48kb+ez5n+UXL/+Cj9/7cTLFzFSUXERmMCX5RERkbI47MxJis5ExEGuEfB8ATiUPtuLvk6mh/55FREREJGR+tftXvP/H7ydXynHL+ltY1bZqxDG5YpmP/e+tdKYLfPP9a2lNTaA3z8P/CM/8EN78BfobV0xByUVkhHP/iO6WM+Fnn4euF8Y9/E2ndPDZt57Cvz+xl6/8/NlRj3nvqe/lby/+Wx7c9yBX//xq9qX3TXapRWQGU5JPRESklmJNkOsFwCulg31K8omIiIiI1Ltypcw/PflPfPzej7OwYSG3/pdbOX3uyPm7i+UKf/yvW3nwxS6+vGE1Zy5uHv/k+56En34OVq6DC/94CkovIqNyHJ5d9Sd+A9Tb3g+F9Lgvufp1y/nd85fyP+7bwe0PvTzqMVesvIIb3nADz/c8z1U/vIoHdj8w2SUXkRlKST4REZFaijVCvprkywb7mmpYIBERERERqbWXel/igz/7IDdsuYE3Lnkj333rd1nQsGDEcZWK5do7HueeZw7wxctP54qzF41/8mw3bP4Df2j+d3wTHFUPikynXKID3vUt2P8U/OCP/aFzx2CM4YtXnM7rTprLZ+58nDu2vDLqcW8+4c187+3fY05iDh+55yN89eGvavhOkTqgX3EREZFaGjJcp1vODO4TEREREZG6kylm+OZj32TDDzewvXs7f/fav+OGS24gFUmNOLZQqvDpzY9x1yO7+YvfWcXvXbhs/D9QysP33g/dL8KGb0FD+6S/BxGZgJPWwZv/Kzx1JzzwD+MeHnEdbvq9tVy4Yg5/ccdjfO/Bl0Y9bnnzcv71v/wr7zr5XXz7qW9zxQ+u4N5d92LHSSSKSHgpySciIlJLQ5J8XklJPhERERGRelQoF7jjuTu47K7L+Maj3+DihRdz5xV3ctmKyzCjzCndmyvyh99+iDsf2c2n1p/Mxy6ZwJx61sIPPg67fgnv+J+w7LVT8E5EZMJe++dw2hVw9xfg8c3jHp6Mevzj75/HG05u5zN3PsE3/3PHqMm7hJfgCxd+ge++9bs0Rhv50/v+lA/85AM8sOcBJftEZiGv1gUQERGpa7Em6N4FgFuuDtepJJ+IiIiISD3oynWx+dnN3LrtVg7lDnFW+1l85ZKvsGbemqO+5oXONB/9ly1sP9DPVzaexYa1i8f/Q9bCz/8SntgMb/4rWL1xEt+FiLwqxsCVN0GmC+66BiIJOPXtY74kHnG56ffW8ue3P8bf/2QbT+w+zPXvWk0qNrKaf828Ndz29tv4t+f+jf/1xP/imruvYfXc1bznlPdw6bJLibmxqXpnIjKNlOQTERGpJfXkExERERGpK5lihvt338+PdvyIX+7+JSVb4uKFF/OB0z/AhQsuHLXnHoC1ltsffpm/+eHTRFyHb/3Bebz+5AkMt1mpwE+uhYdugfOv8XsPicjMEEnA794K/3wl3PFBeM+/wknrx3xJzHO58XfXcMbCZr78s208v7+P///dZ3P6wuaRp3civOeU9/DOk97JXc/fxXef/i6f++Xn2PTQJt524ttYf8J6zpl3Dq7jTtU7FJEppiSfiIhILY06J19TDQskIiIiIiKTqb/QzzNdz/BE5xM8sOcBtu7fSrFSZF5iHu8/7f1cseIKVrauHPMcuw6l+dt/f4a7n97PhcvncMO7z2JBc2L8P14pw//5BDz6L3DRJ2D9F/3eQyIyc8Qa4X2b4TuXw63vgcv/O5z93jFfYozho5es4IxFTfzZbY9y+Y2/4kOvO5E/ffPJJKIjE3ZRN8q7T3k3G1dt5MF9D7L52c3c+fyd3LrtVtribVww/wLWdqxlTccaTmw6kYgbmap3KyKTTEk+ERGRWoo1QTEN5ZJ68omIiIiI1JC1lkO5Q+xL72N/Zj+HsofIlXLkyjmypSz5ch5rLRY7Yj30HBZLtpRlb3ove/v3sie9Z+D5lS0red+p7+N1i17H2o614/ae6U4X+MZ/bOc7v34Rz3H43NtO4UOvXY7jTCBRl+mCf/sQ7LgXLvksvOE6JfhEZqpEK/zBj+D2D8D3Pwo9L8Mbrh33M/u6k9q558/fwJd+vI2b/nMnP3psLx974wo2rF1MzBv5/eIYh9cseA2vWfAaMsUMv9z9S+596V4e2vcQP3nxJwB4xmNx42KWNC6hNd5Ka6yVuBfHMQ7GGBycYd9/FVuhYisD20kvSVOsicZoI03RJuan5rO4YTHJSHJK/ulE6p2SfCIiIrVUTegV+vyefF4C1GJORERERGRKWWvZ1buLh/Y/xLNdz7K9ZzvPdz9Pb6F31ONd4xJzY34lNwb//wZjDAP/G1IZH3fjzE/NZ03HGt7Z9E5Om3Map805jTmJORMq3zN7e/nOAy/y/Ud3ky9V2Lh2MZ+6dBUdTfGJvcH9T8H33guHd8PbvwbnfnBirxOR2ok3w3s3ww8/Cff9Hex/Ei7/Bz8BOIaWZJRNG1Zz5TmL2PTTbXz+rie58Rfb+f2LlvHONYuYd5TvjWQkyaXLLuXSZZdireWVvld49OCjvHD4BXYe3sme/j083/M83bluCuXCsAYNQxnMQAIQoFQpjXrcnPgcTmk7ZeD78PQ5p7OgYcEx/AOJyGiU5BMREamlapIv34dXyqoXn4iIiIjIFDmUPcRv9/6W3+z9Db/e+2v2pfcB0BBpYGXLSi5ddikrW1ayMLWQeal5zI3PJRlJEvfiRJypbYhXrlie2dvLz5/ez8+e3Mez+/uIRxyuXLOYD168jJM7JhgnVCr+3Hv3/LU/asgHfwxLzp/SsovIJPKi8I7/AfNOhXv/Br75CLzrH2HpBeO+9DXL53DnRy/iV9sP8d9/8Tx//5NtXP/TbbzupHbWn9bB609qZ+mc0XvTGWNY0rSEJU1Ljnr+as+9si3j4AxL7A1VLBfpLfTSW+jlcP4w+zL7eKXvFV48/CLburbxrSe/RdmWAVjUsIjz55/P+QvO54L5F9CenMA8oyIyjJJ8IiIitRQP5t/LBz35lOQTEREREZkU2VKWrfu38us9v+Y3e3/Ds93PAtAYbeQ1C17D1WdezQULLmBp49JRK6onm7WWTKFMb67Iwb48Ow728/z+fp7YfZhHXuqhP1/CGDhvWRtfuOw0rlyziJZkdOJ/oGsn/OBPYNcvYeV6uOJGaJw/dW9IRKaGMXDxJ+CEi+GOD8I/vQXOvwbe+LnBOoSjvtTw2pPm8tqT5rLzYD93bt3N9x/dzX9+/yAAi1sTrF7czOkLmzlpXgOLWhMsbk3SnBi/IUO157JjnDGPi7gR5iTmHLXncr6c57mu53i883Ee2vcQ97x0D3dtvwvwhzS+cOGFXLTwItZ2rCXhTWDuUZE6pySfiIhILQ3ryackn4iIiIjIq1WqlNjWtW0gqffIgUcoVopEnAhr5q3hE2s+wYULL+TUtlPHnQvvaCoVS2+uSE+myOGsv/TmgnW2dMTjYMmVBh6XKsOHu/Mcw8p5DbxjzULOPaGNi1fOpb0xdmyFyvbA/V+F334TvDhcfiOseb/m3xMJu8Vr4SP3wz1/43++n7oLLv3/4IwN4IydaANY3t7Ap39nFZ+69GRe6Exz//Od/PaFQzy1p5cfP7Fv2LGNMY95TTGaEhGag6UpHqEp4dEYj9AQ82iMezTEgiXu0RiL0BDsi3rjl6cq5sY4s/1Mzmw/k/ed+j7KlTLPdj/r97Le82tu23Yb//z0PxNxIpwz75yBpN+qtlXjJhhF6pGSfCIiIrUUG9qTLwuxic3RISIiIiJS7zLFDM90PcPW/VvZsn8Ljxx4hEwpA8Cq1lW895T3cuHCC1kzbw3JyOhD1FVZazmULrCnJ8uenlywzrL3cI7O/jxd6QLdmQLdmSLlyujzUgFEXDOkcjxCczLK0jkpmuKevz+oPG9NRlk5L8XSttQxVY4Pk+3FDo+sAAAgAElEQVSBLf8Ev/oHyHbD2e+FN/0lNC18decTkZkn3gxvvwHWvA9+9Odw59Vw/w1wyWfg1MsnlOwzxrC8vYHl7Q38/kXLAOjNFXmxM80r3Vl2d2d5pTvDwf48vdkSXekCL3SmBxopjPWdVxX1HJriEdobY8yrLk0x5jXGWdya4IQ5SRa3JolHRjawcB13YJ6+PzzjD8mWsjyy/xEe2PMAD+x9gK9t/Rpf2/o12uJtXLDgAs6bfx6nzzmdk1pOIuJO7VDKImGgJJ+IiEgtDfTk6w168p1Y2/KIiIiIiMwgxUqRA5kD7O3fy970Xl7ue5nnup/jue7neLnv5YHjVras5O3L387ajrWcv+B85ibmjnq+csXycleG7Qf62X6w318f6GfHgX768qVhx8YjDgubE8xtjLGivYHWVJQ5qSitqSityciwpF1T3F/HI6PPUTWpDj4HW78DW74DhT5Y8WZY99ewYPXU/l0RqZ1Fa+Hq/4Cnvw/3fQk2/z60rYDz/shP8Cdaj+l0TfEIqxe3sHpxy5jHWWvJFSv05Yv050r050v050r05Uv05Ur054r05/3HvdkiB3rzHOjLs21fL539hWEJQmNgflOcpW1Jls1JsXROkhXtKZa3N3DCnCQxz08AJrwEFy26iIsWXQTAwcxBfrP3Nzyw5wF+vefX/OSFnwAQcSKc1HoSq1pXsbRpKUsal7C0cSmLGhfRGGmclmGYRWYCJflERERqqZrky/VquE4RERERqQv5cp7uXDdduS66cl0D28PW+S72p/dzMHuQiq0MvNYxDksbl3Jq26lcvuJyTmk7hbPbz6YlPryiOl8q80Jnmu0H/Hnvth/0E3k7O9MUSoPna2+MsbK9gSvPWcSJc1MsakmwsCXBopYELcnIzKgkthY6n4ft98CTd8DuLWAcOP1KuPiTsOCsWpdQRKaD48AZ74TTrvCH7nzwZvjZ5+DeL/rJ/tMuh5N/55gTfmMxxpCIuiSiLvOOsbqiXLEcSud5uSvLS11pdh3K8NKhDLu6Mty77QCd/fnBt2ZgSVuSFe0NLJ/rJ/6qCcC5DXO5bMVlXLbiMqy1vNL3Ck91PcXTh57m6UNPc//u++nc3jnsb8fcGHMTc0csbfE2WuOttMRaaI210hJvoTnWTMRRj0AJLyX5REREamnInHxuOTPuJNoiIiIiImOp2ApdOT9Bti+9j32ZfezP+NsHMwdJF9NkS1kyxQzZUhaLxeAnsowxxN04yUiShJcYXHtJUpEUyUiSpJcctt91XKy1WCzWWp7oe4LtT2wnXUzTX+gnXUzTW+gdTODlu0kX06OW3XM82mJ+BWxrvJULFlzAwoaFLEgtYH5qPgtSC1iQWkDciwN+D5OudIHn96XZefAldh5MsyPonfdSV4ZqBxJjYElrkpXzGnj9ye2sbG9gxbwGVs5roDlxnBW7lQr07YG+fZDrgVwv5HuhmAM3EixRf4k1QrTBX8caINrob7sRqJShUvSH3ew/AL174MDTsP8pePlB6H3F/3sdZ8Cl/w3O3AiNHcdXdhEJJ8eFMzf4y97H4ZF/gWd+CM/+O2Bg3qmw5Hz/+6L1RGg9wU/8RRvAi0G5COU8lApQykGhH/L9/npgu88/zvH8Jd4EqfbBJdE27lChrmOY1xhnXmOctSeMTDz250u8cDDNzk6/EcaOzjQ7DvTzq+2d5Ic0xmiKe8FwoylWBMm/Fe0X88az1g/0/ksX07zS9wq7enexN72XzmwnndlODmYPsqt3F1v2b6En33PUsjZGGmmJDyb+WmL+0hhtJOEliLkxXux/kf6d/VRshXKlTNmWKVVK5Mt5cqUc+XKebClLvpwfvl3Kky1nyZeG77dY/zc1+F1tiDSMSEq2J9vpSHbQkeog5h7jfK1SN5TkExERqaVICjBDhutUTz4REZHpYozZAKwHqrU+LcAma+3OWpx3qspT76y1VGyFiq3gOd7M6Jn1KmWKmYGKy2rl5f70fj+Rl97P/oy/lCrDh52MOBE6kh3MS85jXnLeQAIv7sZxjF9Ja/H/nfLl/EACMFPK0J3rZndpN5lihkwpQ6aYoWzLYxe0Czzj0RBtIBVJ0RBpoC3exuLGxbTF2wZ6UrTGW5kTnzOwPdrwarlieWCevAd3Z9jd8xKvdGd4oTPNzoNpDmeLA8dGXYdlc5OctrCJy89aOJDIW9HeMOo8UBNWyED3i9D9gr/uCtbdL0LPLigXXv25x9NyAiw6B17/KVjxJmhdNnV/S0TCZ8FqWHA9vOXv/V6+O/8DXv4tPHkXbPn21P1dL+4nEOesgLYT/aFD25b7jxsXTmiuwIaYx5mLmzlzcfOw/ZWKZXdPlp2daXYe7GfHwX52Hkzzq+2d3Ll198BxjoGlbUk/ATg3xYp5DSyfu5bVi1PMaYgScYeXoVgu0p3vpjvXTU++x19yPXTn/cfV/Z3ZTrZ3b6c73022lB1e6PuP/n5c4xJzY8S9OHE3TsyLEXfjxL04SS9JW6yNuBcfOAYgW8oO/N725fvY1buLg9mDFCvFEedvi7cxPzWf+cn5Aw1f5qfmDyztiXZc5zh+62qo2ljIYEJ9n1YrSvKJiIjUkuNArAn6D2CoKMknIiIyTYwxNwFt1tqNQ/a1AFuMMddYa++ZzvNOVXnCrlwpky75PcL6Cn0czh/mcOGwv64uQx735HvozfeSLqUpV8qUbGlEwivmxoi6UWJujJgbG0h4VXurpSKp4duR5Ih9CS8xkBSr2AplW6ZiKwMt+gvlAoVKwV8PXSrDt6vHFstFf7syfHvosYfzh0dWNgJRJ0pHqoOOZAdnzzub+cn5A4/np+bTkeygLd42rNKsVK6QzpfpL5TI5P05lrLFMtb6I0NWrKVirf8YS6UC1VmVrLWUbZFcOUuhkqViK34/QGMwGHY8t5M1p5+LZ44+1GXFWrKZMvu7y7xQKJEpFMgU9tCTKXAoXaArWA715+nNDb9+joGOpjjL5qR4++oFg7075jawqDWB6xxD5aC1kO/ze89luyHbBZmuIYm8F6BrJ/TtHf66WJOfbOs4DU55m7/dtAjiLX5vl1gTRBJBb5mC30OvWO0t0zfYUybfN6S3TMSPDRKtkJoHjfNh7ska6UNEJsZxYMl5/gJ+L+P+/YONEXK9/vdNKR/0MI75vfqG9TJugGgq6GXc4D9X7WWc64X0wcHl8MtwaCcc2g7P3+33DKxyo9Cy1G+k0LrM70nYuszf19ABybngRcd4K4YlbUmWtCV5w8ntw56r9v7zE3/97Ai2j+z9B9CWijK3IUp7Y4w5qRhNCY+GWITGuEcqOo+G+CJSEYdm1yHSaPBaHDzH+EuQICxViuTLBXKlLI888Qgnn3oSxjqAg8HF4OCZGJ6J4hgPi/875RiDMX5vxuq2Y0zwGKKuSyLqEPP8oVDjEZdExMV1DNZaegu9HMoe4kD2APvT+9mb3jvQO39X7y5+u++3I3rFGwwNkQZSUb9xTWO0ceCexTMenuMRcSN45oi14xFx/LVnPFzHJeJEcI2L5/iPq895jjewv7q4xsV1XL/HYpCwzJayZIv+dn/R79VfXaq9/NPF9LDnLHbE+/Ecb+Deq9poKBVJ0RRrojnaPLBujvlLU7RpYN0Ua6qbYViV5BMREam1WKM/HE91W0RERKZU0GPuKmvtsLGjrLU9xphrgM3GmBOttUcf12kSzztV5amlv/zlX7KtaxvgJ4mqQzlWVberzx25L1vK0pvtJffPuTH/TtSJ0hJr8St5Ys0sbVxK89xmUpHUsMonz/FwjEOpUiJXzlEoFwaG0MqVcwMVTJ3ZTjLFDOmS//jIBOFkibkxok6UiBsZSDpGnMiwBGRjtJGoGyXqRPGcCAm3gcZIG0m3lbjTTJQWPNuMqaTIFMr058ukMyV6ukvsKZT8JF6+n3S+h/58iUyhTDpI6B1ZETq5ovDI48f8qohraE74FbJtqSinL2xiTirK3IYYi1oTA3PlzW+Oj+idAUAhDYdfGp6wq25nukffn+2Go13jhg6/V8ryN/rrthP9XittJ/qJOPU0EJGZzHGgaYG/nHDh8Z+vaSFwyujPVSrQu9tvFNG1I+jpvMtf79nqf9ceKd7sN2hItUOyDRIt/ndrPFgnWgf3VffHmibU++/lrgyd/XkO9uUH1o9199CXK9GXK1Is25HlmZAUbNnzKl87MRHXEI+4pKIeTQmPxniExvgCGuNLaYx7nBD3OLM5QmOHRySSp2S6yNNNptxJf/kQRZslX06TDpJnXbkuvzFRpUipUqJYLlKyI9dTyTEOKS81kHxMRpI0RBvoSHUMJO6SkSSe8YbdM1ospUppWIIwXUxzKHeIFw6/QG+hl75C34jk4FCpSIpYJUbz95sHk5ZBUtI1/nDjFfyWTNXGW0PvWSu2wvtOfR9XnnTllP4bHS8l+URERGptWJJPLXVFRESmwSbg5tGesNbeE/Q++ixw3TSdd6rKUzPNsTbaE/MBv7MUDCZE/N5hJqhQYUjvsepz4Eai9OWyzG9fQsQk8UwClyQRUng04NgUjk1SKXuUKlAoVyj2VSiWKxwqW/aWK5TKFYpl6z9XXUqWYrlCqWLxHL9FfXWpPm52HNqCbeOUME4eTB7j5rGmACaHNQX/dcbFdRy/4sh1iTien7xzokTdKI6JYKwH1sPYCBYXW3GpWChX/LJki2WyubK/LpQ5XPS3MwX/8ehJuRLQGSyDHAOpqEcq5pGKuTTEPJJRj8WtSRpiLqmYN7Cv+nx1Xzzi+r0Pgl4Gxvgz9TlmsBfC4EWsYEo5nFIWU8xgbJmKl6DiJXn48ac559wL/MOOUvFmMCSiLqmYSzLikYi6RL1REneVMmQO+b1R+rbBrv3Qv8+fs65/P/Tt99f9B/weKkcTSfmVxMmgsnjeqf58UtXK4+SQ7UQbNC/2e7GIiMj4HAdalvjL8jeMfD532E/69bwE6QOQ7vR7A/Yf8NddO4OGFz0wSo/1AcYJkoBHJP+Sc3AaO1jS4C+cMM9vqJFq9+cvPEK+VCadL9OXK5Iv+fcHpbKlVPHvG0plS7Hi91I3xgz0zHv8scdYc9YZuOUcXiWHV87j2BLWS2AjSUwkiXUiWMPA77w/ZHjQQ77ib5etpVCqkAt+73PBki1UBh6n8yV6c0X6ciUO9Rd4sTMdJClLFMqjNdSZEyy+mOeQjLoDv/eJqEdT1B3Yl4i6eK4Zci9UAaeM61gcU8E4FcqVEqVgVIRypRSMjlCmYksD8xH66yIlW4ZKBGNjGBvF2iiUo1gbw5YjVEqGcsb/d85XLOmKpTxkKVUq/r8XDNyTOcbguQbXcQbK6TmGqGNY6Dqc4Dp4EXDcHLhpKiaDNRnKJu0vZCjafjp79xKrJIAyVCqUqVCkDFRwHRfHeH4vS+MScQyuMTjGwXUcHGOIu8lj+zzUgJJ8IiIitRZrhM7nBrdFRERkyhhjzgGWAw+NcdjDwIc5hqTaqz3vVJWn1n7z8GvYsmvVFJ09D+TxnG4irkPENUQ9J9j2H0dch6jnVwpFXIeGmDfsOdcxQyqW/Iq30hEVTvliCVMp+j29ypaCjZOvpMhVXMqWgQqpUsUOVA76iTsLlIFssPgcA57j4Dj4FUiOIeo6JKL+EF3V4bpaklEWBvviEYfmqKXFLdDkFWh2CjS4BRpMjpTJk6BAwjPEPIi5EHXAYP3kmK2Mvgx9LleBbMUfvq2YhWI6WGf8eeiG7cv6veWK2TErYU8HeCLqD1cZbQiWVDAMXGMwFFySoYlfbNk/dyEdDGN5GPqDIeFGm/8v2giNHX4l7oLV0DAfGuZBaq6fpBuWtGv1h6QTEZHaiDcHcweuHv/YYtZP9uV6hvS6HrI9dH+mCw7t8BuD5HtHnss4/tCgDR3Q0O7//nhxYp4/X16btf5vfHUpZqGUG/wdLOaCtf8beGEhjfPEOL3ejAuR5JDfvYYjhkOt/iY2Dtn2IOH6r3WCxbh++Y0T9Bw3wbZHoVwhU7RkixUyhQqZYsXvrV+Ew5UYvZU4PZUYPaU4vUWXTLFMulAmky/RkymSKfhDdFfvWaqNjqr3NKO+LcNA8stxogMNgKqJN89USDlFPAdcxwHHwXUAp4RxLK47mKiLRRySjoNrGEzgBQlH4Kj3Z34StkKm4G8XSkFjrlKFQtmhWE5SLMUplFuOo7fmSGd4K/w79RlMST4REZFaizX6N6rVbREREZlK64L1zjGO2QmsM8Yst9aOddxknHeqylNTn1zVQ67jAC5lPEp4lHFtCY8SkUoer5IfXFt/7S8F3EoOt5wn23uIpriHU84BFuN4GMcDx8W41e1gGagIO8qC9edGKxegWBzcLgXr8pB9Q+dROxrH8+dQ82J+MsuLgZeASBy8BNaLU/Hi4MUx0QTGi2MiCb+WrHr+gb+d9xNqhbSfUEunoTt4XOgfPck12YzjV0pGkkFyLuWvI0k/gXbkviOPM+5ARegLzz3FiYvmBYnC9OD8c4U0ZHb5jwuZkX8/mhqs+GxaBAvODipmO/yEXmreYGIvmpr6fxMREZl+kYS/NC04ttcVMn4vwWpP72ov74H1AejbFyTy8n4yzziD9xGOO/i3vYTfQ7AxMbgvkuSVPQdYuuKUIfsS/msHkoJBQrCQCX7rqr9//dD7yuB2vn/sHovjiAZLy0QOdrwgoRjMs5hKQWtqMMEYTfnzMwZssFQqZZxSHqo99geSndV1zn8P1XV5nOSn4/lzNTqRYE7IKLjBPjfq73Mig9tuBCJR/xpVysOTsdV5Ioc9LvmNlwbehxlY9+VKJJrnUnHjlL0EJTdO2UlQcmMUTYySE6XoxCgQo+BEyRP1t02EYhmWtC86xis0/ZTkExERqbWhN6+Nx3gjKyIiIsfqvGA9VrJsR7A+Z5zjJuO8U1Wemnr9C1+Hl38z/oFeYkiiLD64jibIRxuIti/yHxtnlMqc8hGP7VF6rwWtud0gKedGgkqt6JCKpujwiqYjtx036NFX9JdK0a8kLBcGW/6XckFlVw6T78VNHxj5nK2Ad+Tfivk926INfkKt2tOtWgEXqW4HPQMiqcFjvMRgktM5MrnpDn/sjPWcO2lzzO0q3MeJl1wyKecSERGZkGgSosugddmU/Ymd993H0sn6fSuX/IRfMTN4L1PtbV+9x6new9gKg2OcV7ftyO1qr/h838ilmnSs9prvPzi4byBB56fGDOBghiU4iQaNe+ILBhOhI+7fYv79hR3yXgbeU3FIQ6riyEZVQ/eV8n6ZK0X/tUMbdVUTstX7uerj6r0QgLUDYwUYW6a4fw/Nsbh/H5bpHpKozAzeo42l/a+Asyfnuk8RJflERERq7a3Xw9oP8tvHt3HBnBW1Lo2IiMhs1wJgre0Z45jqc23TcN6pKk9tXfY1vwJloGV2ZLAVd9Dbza8MOnpi6fH77uMSJYtERERktnG9YG7BCfXHk+Pw5Hj3k9YODtM6dF3K+YnVY+1VWgNK8omIiNRaNAWLzyW7vb/WJREREakHx5y4m+LzHnd5jDEfxp+zj46ODu67775jOOXM1d/fP2veSz3RdQsnXbdw0nULJ123cNJ1C6fjv259wHOTVJqpoSSfiIiIiIiI1JNjSdzNmYbzHnd5rLU3AzcDnHvuuXa29H67Tz35QknXLZx03cJJ1y2cdN3CSdctnOrhujm1LoCIiIiIiIiIiIiIiIiIHBsl+URERERERERGd2iGnXeqyiMiIiIiIiGkJJ+IiIiIiIjUkx4AY8xEhsnsmYbzTlV5RERERERkllOST0REREREROrJzmDdNsYx1YRb1zScd6rKIyIiIiIis5ySfCIiIiIiIlJPqkm1sXrOrQjWW6fhvFNVHhERERERmeWU5BMREREREZF6cluwXj7GMcuBHmvtzjGOmazzTlV5RERERERkllOST0REREREROqGtXYr/tx268c4bB1w83Scd6rKIyIiIiIis5+SfCIiIiIiIlJvrgauMsaMGCLTGLMBP+n2pdFeaIzZbIy5e7TXHsd5X3V5RERERESkfinJJyIiIiIiInXFWnsHcDtwy9D9QZJtE7DRWttz5OuMMeuADfg9666arPO+2teJiIiIiEh982pdABEREREREZHpZq29xhizwRhzE35POYAWYP3R5r6z1t5jjNkaPLx9ss57PK8TEREREZH6pSSfiIiIiIiI1KWgB90dx/iatVNx3uN5nYiIiIiI1CcN1ykiIiIiIiIiIiIiIiISMkryiYiIiIiIiIiIiIiIiISMknwiIiIiIiIiIiIiIiIiIaMkn4iIiIiIiIiIiIiIiEjIKMknIiIiIiIiIiIiIiIiEjLGWlvrMsgYjDEHgV21LsckmAt01roQ8qro2oWTrls46bqFk65bOOm6hdNsuW4nWGvba10ImZ1mUQwJs+czX2903cJJ1y2cdN3CSdctnHTdwmm2XLejxpBK8sm0MMY8bK09t9blkGOnaxdOum7hpOsWTrpu4aTrFk66biL1RZ/5cNJ1Cyddt3DSdQsnXbdw0nULp3q4bhquU0RERERERERERERERCRklOQTERERERERERERERERCRkl+WS63FzrAsirpmsXTrpu4aTrFk66buGk6xZOum4i9UWf+XDSdQsnXbdw0nULJ123cNJ1C6dZf900J5+IiIiIiIiIiIiIiIhIyKgnn4iIiIiIiIiIiIiIiEjIKMknIiIiIiIiIiIiIiIiEjJK8omIiIiIiIiIiIiIiIiEjFfrAoiIiNQrY8wGYD3QE+xqATZZa3fWrlQyEcaY5cBma+3aWpdFJsYYswlYh/85A9gKfMlau7V2pZKJMMZcC5wXPKxev03W2ntqVCQRERGRmlAMGV6KIcNHMWR41VsMaay1tS6DiIhI3THG3AS0WWs3DtnXAmwBrpmtNx5hFlyfc/GD6muBHmtta21LJeMJgulNDAnGgmt5C7ABuN5ae10NiyhHMeQ6DQukjTHrgLuBO4Z+h4qIiIjMZoohw0cxZDgphgyveo0hleSTmqu3zPpsodYs4aYWZLUVtL68ZbSb++DGYzNworW2Z8SLpSaC63Id/nfdbfg3/OcqQJv5jDGbgatH+zwFz23ArxS5edoLJ2Myxmw+WgAW3IdcC1xnrb1+eksmIrWmGDKcFEOGm2LI2lIMGT6KIcNLMWR41WsMqTn5pGaMMS3BF+M91tqNwbIe/0fv7uA5mWGMMcuDa3ObtXattXYFUL3J3xJ8YcoMFHzm1gXXaAewvNZlqmObgFFvBodUTn12+ooj47HW3mOtXW+tvU4VUeFRba03RmXH1cH6pmkqkkxQ0AJzgzHm7qMcUt3/7mkqkojMAIohw0kxZHgphpxRFEOGjGLIcFIMGV71HEMqySe1dEsQlA37oQtuTq7H/1BeW5uiyRg24bdmGbhu1tqeoJXEHcC1xpgP16x0MqohLfvW47cgUyvnGjHGnIMfHD80xmEPA/ociRy/MYfhCAK36vAr66alRDJRbcH63KM83xWsW47yvIjMToohw0kxZAgphpw5FEOKTCvFkOFVtzGkknxSE/WcWQ8ztWYJL7Ugm1GqN4FjTYy+E2gJhsQRkVdvOXDTOD0Edg45VmYIa+1O/F4eRxsSrHq9VOEoUicUQ4aTYsjwUgw5oyiGFJk+iiFDqp5jSCX5pFbqNrMecmrNInL8qvPHjBWg7QjW50xxWURmu7uBHsZu9Vy91xjrMyk1YK3dGgRqo6lW4qtSWKR+KIYMJ8WQIsdPMaTI9FEMGWL1GkMqySc1Uc+Z9ZBTaxaR49cCAxUaR1N9rm2MY0RkHNba6621rdbaO8Y4rFpZ/PB0lEmOXzBk1Qb8CdPVs0CkTiiGDC3FkCLHTzGkyDRRDDk7zfYY0qt1AaR+jfOBmrWZ9ZC7G/+HTK1ZRF69Ywm61BJdZAoFPQZagDvGqTSRGSAYqm8d8Flg4ziBt4jMQoohQ0kxpMjxUwwpMkMohgyXeokhleSTGWe2Z9bDzFp7Pf6E9mNRaxaRsR1L0DVnykohIgDXHbGWGSi4N3w3/vfncuA2gqHdRERAMeRMphhSZFIohhSZORRDhkC9xZBK8smMUS+Z9dlMrVlERCQsjDEb8O87No4xZr/MAEGF/UBAFgRsW4wxXwoqj0WkTimGDD/FkCIiEhaKIcOj3mJIJfmk5uotsz7LqTWLyOQ6VOsCiMxGQaXwLfg9PlQhHDLW2q3GmKuBzcaYOdZa3XeI1BnFkLOKYkiRyaUYUmQKKIYMt9keQyrJJzVXb5n12UqtWUQmrAf8G8QJtFZWa2aRqXEvoPuMELPW3mGM6QGuNcbcpHsPkfqiGHJ2UAwpMmGKIUVqTzFkyM3mGNKpdQFEjhQEbFcDm4wxm2pdHhmfWrOIHJPqTcRYk6dX51zomuKyiNQdY8zdwG0KzmaF6txNG2paChGpOcWQ4aMYUuSYKIYUqSHFkLPKrIwhleSTMRljNhhj7CQsxxRoBTf51cz68ql5d7NXDa6bWrNMglp93mTaVQO0sSZPXxGsNeyUyCQyxtwE3K3fq5nPGLPZGNM9zn1gtaX6edNRJhGZGMWQ4aQYMpwUQ9YNxZAiNaIYMjzqOYbUcJ0ypqAb69pJONWr6f76MP7QHRsAfZEeg+m8bmrNMnlq/HmT6XMbcC3+/DFHC8CWAz2zaegAkVozxlyL/7ka8Xtl/N4E51pr75n+kslRVFtWrgNuPsox1Yquh6a+OCIyUYohw0kxZDgphqwbiiFFakAxZOjUbQypJJ+MKxj6ZFIZYzbjf+DWjnEDMisz69NlKq7bkdSaZfJNx3WT2gom++0B1gNHG5poHaqYEpk0xp/zZ6zJtdeh+UtmmnuAzdbaowVnAOcGa/12iswwiiHDSTFkOCmGnP0UQ4pMP8WQoVS3MaSG65Ra2YCfOV83xjGzMrM+W4zXmsUYM9a1Fal3VwNXBS2/hgluJHuAL017qeRYjfh5aXsAAAJlSURBVDVcjswQxphzgPPGCM7Arwx+eIznZfptYnDYqRGC78oW4A61nhWpG4ohQ04xpMhxUQw5OyiGDAHFkKFVtzGksdbWugxSh4LhOcbMrBtjuvE/eOtn2wcv7IIvxaP+2FVvMHXdZq7gM3iutba11mWpV0Er5jZr7cYh+1qALcA1+vzMbMaYHfhD4rRaa9V6b4YKxuLfwtjB13JgubXWTE+pZKKMMR/Gb7F+3dBeO0El8GbgYWvt+lqVT0Sml2LIcFMMGX6KIWtPMWS4KYYMB8WQ4VavMaSG65Ra2YT/gRvVbM6sh90xtGZRC7KZTy3Iashae40xZkMQqFVv8KuVUppHYYYJvvtuCR4uZ/Dz84Ixpnq9vmStPdrwOVIbNzF+rw+YZUN1zBbW2puNMbcDm4wxbcHu6mfvan3eROqOYsiQUgw5qyiGrCHFkOGiGDK0FEOGWL3GkOrJJzVTr5n1MFNrltlDLchEREREJGwUQ4aPYsjZQzGkiIjIzKQkn9RUMKzAJuDIzPpNszWzHmbB8BwTmSdhq7V27VSXRyZujBZkPYBakImIiIhIKCiGDBfFkOGlGFJERCQclOQTERERERERERERERERCRmn1gUQERERERERERERERERkWOjJJ+IiIiIiIiIiIiIiIhIyCjJJyIiIiIiIiIiIiIiIhIySvKJiIiIiIiIiIiIiIiIhIySfCIiIiIiIiIiIiIiIiIhoySfiIiIiIiIiIiIiIiISMgoySciIiIiIiIiIiIiIiISMkryiYiIiIiIiIiIiIiIiISMknwiIiIiIiIiIiIiIiIiIfP/APbqMgkfaGTjAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 2160x576 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABuMAAAICCAYAAADVvLABAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXCb+X3n+c8PAA8dvESJOklR1NUt9aGW1L4POS21k/HsjieR7GR3ZraytS1VMltZ70yttN5KpjxJzdrqzEycy5tW15SzmXjLbskz3q3Yid2yTdvdvlpSt9qtlnWR4qH7IHiIFEXg+e0feB4QhAAQEJ8HIID3q4olCXjwe34k+ofm7/k+3+/XWGsFAAAAAAAAAAAAwH+hUk8AAAAAAAAAAAAAqFQE4wAAAAAAAAAAAICAEIwDAAAAAAAAAAAAAkIwDgAAAAAAAAAAAAgIwTgAAAAAAAAAAAAgIATjAAAAAAAAAAAAgIAQjAOACmOMOWmMsbN8DbnHHTTGNJd6zvNRys/qpVLPBQAAAACqQQH72VcrYT9rjNmb8n3tLvV8AADBIRgHANWpWdJ2SYclDRlj9pd4PjLGHE7ZhBws9XwAAAAAAPNSs6Tdmt7PHi7xfAAAmBXBOACobOuttSb1S1KLpB2SXkw57iU2MAAAAACAeaQlw352vaR9ko6lHHfQGHOyNFMEACA/BOMAoLLdTX/AWhu11p6y1h5SIijX4z510Bizt6izAwAAAAAgT9baHmvtMWvtPiUCc6fcp7YbY46WcGoAAOREMA4Aqpi19pQSdxV6Xi7hXA6l3PH44uyvAAAAAABUK2ttj6TnNH2D6V5jTFcJpyRJMsbsd3vavVpuc5lPcweASkMwDgCqnBuQ80p8NNM0GgAAAABQDqy1UUkvpTw0H6q9rFeip9182FsXOpf5NHcAqCgE4wAAkpR619v2ks0CAAAAAIDCnEr5e2vJZgEAQA4E4wAA0nRZDylxJxwAAAAAAOVgT8rfL5VsFgAA5EAwDgAgSal19dm8AAAAAADmPbdH3H73n1Fr7ZFSzgcAgGwIxgEApJl3Ep7KdpDbzPmkMca6XyeNMftzHL/bPeak10jbGNNsjDnoPjaUcuzelHFz1qd3jz1qjBlyj79kjHnJGJN3iU1jzHa3MXXqGIeNMc35juHHXNyfx0spP9dLxpjD7nNd7s/qVffxobTX5v3zTZuvN553vqN5/MxTz7U9ZayTKd/7SWPMwbTXbXfH98435H6/Bf2cAQAAACCVuy95VZK3t9g3y/F+7IUy7rvcvbI1xlhJB1Nea9O+js7h+81rP17oXIoxdwCAFCn1BAAApeVuYLwm11Fr7fEMx3QpscnpSntqu6SXjDEHrLU7spzCC0o1u5uco5reLBU612b39embJe9uyP3GmCPW2gOzjLNfM5t8e2MclHTQGPNiMebi/uy/q5k/jy53DgezvcZamxowzevnm+O5LvdrrzHmmLU22wa2OeVcXW7AMP173y5puzHmWWvtPvd7OJxhnP2SPmWMWec2XAcAAACAnNw9mLd/OaDp/UhU0nNp+6TU1811LyT5uK8t1Bz34wCAeYLMOACoYu4v9al3t72Q4ZhmSSc1/Yv/ESUy6fa4f5cSAZjZ7pLbrZl3LR6XdKiAuXrz8DZcx5S483GHEhsxb+O13xjzao5xtmtmIK7Hfb03znGl3A0Y1FzcMbxA3ClJO6y1xh0jtYffDkkt7tf6tOdSzfbzbXa/etzH97jj7XGPlRKb0Jzfu+tl93yH3Pnt0/R/C944R5UIxB3T9H8v6fPJmlUJAAAAoOp5FTi8rK0hJfZh3k2RpyTts9a2ZAvEufzcC2Xcd7nlMb1927GU41tSv2YJ+D3kUfbjhc4lqLkDAGYiMw4AKluXMSY9eLNEiV/k92lmMORFa+0xPSz1jr89aZlzx40xl5QIuuw1xnRZa7MFi7wMqeNKbJgKzYh6WdMbkH1pcz0l6YibrXVQ0m5jzEFrbaYMt9RMrRettakBovRxgpzLZzX9c33O+3lYa08ZY/Zounff7pTX5vqZzfbzPSXpQIYeCj2afh+7JB12M/pynas5baxTko4ZY6Ka/rntlXQ8bcN23BhzXInNpJQIXM6ahQgAAAAAGTQrsefNtQ+V/N0LZd13eX83xij9sTl4pP14oXMJaO4AgBRkxgFAZTupxN2DqV+XlLiTLzUQdyAtKCUpmUXmZX+9mKmEpRso8n5Jz1keUtIxa+2eQn+pTyuleSRL0FDu9+DdEflQ/7e07+dUpu/Z9fmg55Iyj+PpPw93A+W9do/yl/Xna63tmaWZeWqQMr38SbpsY6WX/nzovwf3jlVvo7xklvMAAAAAqF5eBpv3tUPTFTeOyQ2gSUr23c7E572Q9Ij72kIFsB8HAJQQwTgAqE5RJYI9LypRbiLbxuTTKX/PGqDSdHmMXI2vo8pQBjNPqZuK2Upbpj7/qbTndmc5rhRz8XoOZLuD03t8Z57zmsvPN30es50zWwAydYyeHHeneo8XpccCAAAAgLJ0wg2keV+nrLXHrbUvuhU4UssqHjTGnMwxVi6F7IXmuu8qhJ/7cQBAiVGmEgAq2/pZynXMJvWX+aHUkhVZ5LqL8KEMsAJ4gaxoHmOcSPl7ah19KXE3pSQp012FRZ5LVG5ZlSyv9R4/keX5dHP5+UrS3ZS/zxYkuzTL81L2ICMAAAAAzJm7/9lnjHlJicov240xL1lrC80QK2QvNNd9VyH83I8DAEqMYBwAIJdCf5nPtXF5Yw7z8MadNTBlrY2mbFLS559vllkx5vKKEhvGh+bklrT0MudyNSJPlffP1x3/U0qUeelyvygZCQAAAKDsWGsPGGN2KrGH2m+MOZztplQf9kJz2dcWys/9OACgxChTCQDIx3FrrcnnK8cYfmRKzaeA0Vzn4vUlaDbGvOr1lHP/POo+F1XuciSpZv35GmP2uqVbhpTo77ZfibstC/1e7s5+iIp1tygAAAAApPav3p7+pI97oVJUAPFjPw4AKDGCcQCAXArtWxYUL7Az652BxpjUY9I3SieyHFeKuaTarUTZkSElNodeOZJ9fpVAcUu3HFViYxpVol/gDnfT1iLpOT/OAwAAAAAlNmOvVsZ7ofmyHwcA+IBgHAAgF6+vWrOXuTUP5jFbECz1Lsj0EiKpvc4eNRjn11wOuX8eSB1Tic3hMUktc+hrN4MxZrcSd35K0hFrbYu19pC1Nt8SmAAAAAAwn+1J+XvyRsgy3wvNl/04AMAHBOMAALmklvp4uWSzmDmPw1mPevj5I2nPHc9yXLpcQTa/5rJTkqy1R6y1e9ySIi3u5tC3jDhX6sb0UJZj5lMJUAAAAADIizFmu6S93r+ttcdSni7pXmiOQTRf9+OFzoUAIAD4i2AcACArt+m1t5HZa4w5mO1YY8xuY8xswalHncdxSd6di1nnYYw5qulA2ovpAS337kcvILc9x/dzNMvjvs0l5TivJKV8DsClupPy991ZjjkQ0LkBAAAAIBDufuq7KQ+lB9xKsRdK7bGdXjLzoX522fi0Hy90Lr7MHQDwsEipJwAAmN+stfuMMZeU+EX8sDFmjxJ36PW4jz2rxKZmu2ZmnvntOUm9SpRy9ObxqhKBse1KbKC8zcIpa222ux4PSTrp/j39+9mpRDbbbHcA+jGXE+6xrxpjjuvhnnJRJUpbHvchSHdM01l6R40xL0r6mvvvne582VgBAAAAmPfcoFCXpM9q5j7miLX2xbTDS7EXOpny95eNMZ9XIvtun3vOlnwH8mE/XuhcfJs7AGAmgnEAgHzsUCJbbHfKVyZZM8rmylobNcasU+Kux+055nHMWrsvxzinjDEHNF3yI32cHkkvKHd2nB9zOazp3gXZfp6SJGPMMUkvPGpQzlrbY4w5knK+g+7XjLkqpbQLAAAAAJTYkDEmn+Oikg5Za9NbA5RqL/SKpveb2zVzbxk1xjQXuLeby3680Ln4PXcAgIsylQCAWVlro9baPUrcDXdcic2OlAhcHVci26wl0+YngHnsyDCPqBIbqB25AnEp4xxRYkPj3TkYVSKr7ZC1dr37uPd1KaC5vJTjuXR7JZ2cS81+a+0BSS9q5jxPKfHerXf/9L7n9Cw9AAAAAJhPokrsXQ64fbez7kWLvRdyg1V7NN3ewCs3uc+da0HBrLnsxwudi99zBwBMM9baUs8BAICq4tby9+7GPKREOZVo2jFdStzxeEgze89lK78JAAAAAAAAYB4iGAcAQJEZY4aU6DeXs6RmhuNPudl4AAAAAAAAAMoEZSoBACg+r9xkviVQvOMeuUwlAAAAAAAAgNIgGAcAQPF59ff3u+UoszLG7FaicbY03eMOAACUgDHm5Gz/7wYAAACAdJSpBACgyIwx2yV9V4lMt6ikI5K+Zq095T7frESfuAOS9rsvOyXpORpmAwBQOsYYbwPdo8T/w+/mOPwla+2x4GcFAAAAYL4jGAcAQAm4d9Uf1XTWWy559ZYDAADBcf/ffamAl6y31uZbkhoAAABABSMY55OlS5fazs7OUk/DF/fu3dOiRYtKPQ0UiPetPPG+lSc/37fx8XHdunVL4+PjmpycVDweV21trerq6rRw4UItW7ZMdXV1vpyr2rHeyhPvW3mqlPft5MmTt621y0o9D8wPbunofZIO5cpUd4/rstYemW3MStlHVsqarza8b+WJ96088b6VJ9638sT7Vp4q5X3LtYeMFHsylaqzs1MnTpwo9TR80d3drV27dpV6GigQ71t54n0rT7xv5Yn3rTzxvpWnSnnfjDF9pZ4D5pUuSYdnCcQ1SzqQb0Z7pewjK2XNVxvet/LE+1aeeN/KE+9beeJ9K0+V8r7l2kOGijkRAAAAAADKVHMeZScPS3qhGJMBAAAAUD4IxgEAAAAAMAtr7Yu5njfG7JV0MlfmHAAAAIDqRDAOAAAAAIA5cMtT7smnTxwAAACA6kMwDgAAAACAuTnsfgEAAADAQyKlngAAAAAAAOXKGNMlSXn0k/OO3y9pvyQtX75c3d3dwU2uSMbGxiri+6g2vG/lifetPPG+lSfet/LE+1aequF9IxgHAAAAAMCje0nSoXwPdktZHpGknTt32l27dgU0reLp7u5WJXwf1Yb3rTzxvpUn3rfyxPtWnnjfylM1vG+UqQQAAAAA4BG4WXE7rbWnSj0XAAAAAPMXwTgAAAAAAB7NAUnHSz0JAAAAAPMbwTgAAAAAAB7NfklvlHoSAAAAAOY3gnEAAAAAABTIGLNdUrOknlLPBQAAAMD8RjAOAAAAAIDC7Xb/JBgHAAAAICeCcQAAAAAAFG5PqScAAAAAoDwQjAMAAAAAoHBd7p/Rks4CAAAAwLxHMA4AAAAAgMItKfUEAAAAAJQHgnEAAAAAABSu2f3zbklnAQAAAGDeIxgHAAAAAEDhjkvqsdZSphIAAABATpFSTwAAAAAAgHJjrd1T6jkAAAAAKA8E4wBgFq/2varG2ka9d+V7Sz0VAPPMP1z+By2tX6qdK3aWeioAAAAoM2/dfEvfG/ie6sJ1+uiaj+qJpU+UekoACnT2zll1D3ZrfGpcu9p3aXvbdhljSj0tAPMQwTgAmMV/OPEftKF5A8E4AA/50ltf0spFKwnGAQAAIG9xJ65/f+Lf62/P/q0ioYgc6+ivTv+Vfnfb7+rAUwcUMnSVAeY7a62+fObL+tNTfyprrSKhiP76zF/rU5s+pc++97OKhLjsDmAmPhUAIIcpZ0rX711XZ2NnqacCYB6aik9pcHSw1NMAAABAGfnCz7+gr577qv7Z4/9M/3Lbv5QjR1/42Rf0pbe+pLAJa/9T+0s9RQCz+Jt3/0Z/cvJP9PHOj+sP3vcHqgnV6K/e/it9+Z0v64HzQH/0wT8q9RQBzDME4wAgh2tj1xS3ccVsrNRTATAPxW1c1+9dV8yJcecjAAAAZvWDgR/oq+e+qn++5Z/r4LMHk4//uw/9O8VsTH/51l9q5/Kd2r58ewlnCSCXd26/oy+e+qKe63hOf/yRP06WpfxXO/6VIiail3/xsj68+sN6vvP5Es8UwHxC3jsA5OBlvMSdeIlnAmA+ijuJYP31e9dLPRUAAADMc+NT4/rcTz6nTS2b9Jntn5nxnDFG/+Z9/0YrF63UH/7kD9mDAvOUtVZ/+JM/VGt9q/7tB/7tQ/3hfmfb7+iJ1if0Rz/9I40+GC3RLAHMRwTjACCHgdEBSYnsFwBI52XNDo5RqhIAAAC5fe3c13R74rZ+/32/r9pw7UPPL65drM/s+IwuDV/St3q/VYIZApjN8f7jOnv3rH5v+++pqa7poedrQjX6g/f/gaKTUX3l7FdKMEMA8xXBOADIwbvAHnMoUwngYd5ngxe4BwAAADIZnxrXl9/5sj646oN6pu2ZrMc9v/Z5PbbkMX3prS+xDwXmGcc6+os3/0JdTV36xLpPZD1uS+sW/Ur7r+hvzvyNRh6MFHGGAOYzgnEAkIN3gZ1NEIBMvKxZgnEAAADI5RsXv6GhySH9zrbfyXlcyIR04KkDGhwb1A8Hf1ik2QHIx0+v/lQ9wz164akXFA6Fcx77u9t+V6NTo/r6+a8XaXYA5juCcQCQA2UqAeTi9fLw+ksCAAAA6ay1OnbhmLa2btXTy56e9fhd7bvUtqBNr5x/pQizA5CvV86/opa6Fj2/9vlZj928ZLO2t23XsfPHZK0twuwAzHcE4wAgC2tt8gI7zbMBZOJlzRKMAwAAQDanb53WhaEL2rtpb17HR0IR/cam39CPr/yYCgzAPHHj3g11D3Trkxs/mbHnYyZ7N+1V/2i/fn795wHPDkA5IBgHAFncvX9X47FxSVLM+l+msn+kn7ujgCKZcqZ0J3bH1zGttcnPhoHRAdYzAAAAMvovF/6LFkYW6tfW/Vrer/n1jb8uSfq7S38X1LQAFOBbvd9S3Ma1b+O+vF+zZ+0eNdY2UqoSgCSCcQCQ1dD9IUlSbajW955x1+9d1yf+6yf09SF+IQOK4bf/4bf1uSufk2Md38b0xqoN1WpsaozekgAAAHjIVHxKx/uPa/fa3VpUsyjv161YtELbl2/Xd/q+E+DsAOTr25e/rSdan1B7Y3ver6mP1Ov5zufVPdit+7H7Ac4OQDkgGAcAWXh94urCdb73jBt7MCZJ+sHoDyiBCQRseHJYp2+dluRv/8fUzwi/xwYAAEBl+Mm1n2j0wWhePabSfbzz47oYvaiLQxcDmBmAfA2MDujMnTP6eOfHC37txzs/ronYhF678loAMwNQTgjGAUAW3oX12rD/mXGpF+27B7t9HRvATF+/MJ2B6mfw2/tc8PoF+Jl1BwAAgMrwncvf0eKaxXr/qvcX/No9a/fIyJAdB5TYdy4n1uDznYUH1Xcu36mWupbkGACqF8E4AMjCu2hfF67zPXsttQfdN3u+6evYAGb6u57pPht+Zq9569jLjAuityQAAADK15Qzpe8NfE+/0vEryRu4CrF0wVJtX75d3+3/bgCzA5Cv7/V/T0+0PqFVi1cV/NpIKKLn1j6n7sFuTcYnA5gdgHJBMA4AspiRGefzRfbUTLvxqXFfxwYwU+oa8zPL1QvSexdWKDkLAACAVKdvntbog1F9rP1jjzzGR9Z8ROeHzuvGvRs+zgxAvobuD+kXt3+hj6z5yCOP8bH2j2kiNqGT10/6ODMA5YZgHABkMaNnnM8X2VPHI5sGCFZqNpyfwThvLHrGAQAAIJPXrrymiInofSvf98hjfHj1hyVJr1993a9pASjA61dfl5XVh9d8+JHHeHbFs6oN1epHV37k48wAlBuCcQCQRWqZyiB7xpFNAwQrdY35GTBLDdinnwcAAAB47cpr2ta2TYtrFz/yGBuaN2j5wuX60SAX8YFSeO3Ka1pSv0RbWrc88hgLIgv07Ipn9dqV13ycGYByQzAOALLwMtZqw7W+Z7x4wb2IImTTAAGL27hqQjWJv/sYMPPWcbJMJWsZAAAArpvjN3Vu6Jw+tPpDcxrHGKMPrf6Qfnrtp5pypnyaHYB8ONbRj6/8WB9Y9QGFzNwuo394zYd1eeSyBkYHfJodgHJDMA4AsnCsI8ktU2njstb6NrZ30T5iImTTAAGLObFk9pqfZWEfyowjGAcAAADXj6/+WJLmHIyTpA+u/qDGpsZ05vaZOY8FIH9Xpq5oaHJIH1j1gTmP5X0WvH6FkrNAtSIYBwBZeEGyILJevIyaGlPDBXwgYI51kus4iJ5xyc8IAusAAABwvXH9DbXUtWhTy6Y5j7Vz+U5J0okbJ+Y8FoD8Xbh/QVKi59tcdTR0aMWiFXrj+htzHgtAeSIYBwBZpJaplPy9iO9dtI8YylQCQYvbeCB93ShTCQAAgEystfr59Z9r54qdMsbMebyW+hZtbNnIRXygyC7ev5gMos2VMUbPLn9WJ26c8LXyEoDyQTAOALJILVMp+ZwZZ6cz4/wM8gF4WGqZSj/XMWUqAQAAkMng2KCu37vuSzaN59nlz+rNm2/yOydQJHEnrouTF/1dxyue1d37d3Upesm3MQGUD4JxAJCFl0GT7DVFZhxQluI2Pp3h6mfPuLTPCMpUAgAAQFIyg+09K97j25jPrnhWE7EJ9U32+TYmgOzODZ3ThDOhnSt2+jamF9j7+fWf+zYmgPJBMA4AskgvUxlERk2NqeECPhAgxzpyrBNIUD3IzwgAAACUrzeuv6El9UvU1dTl25g7lu+QJF2cvOjbmACyO3njpKTpno1+WL14tVYuWkn/R6BKEYwDgCy8MpVB9IzzxqoxNVzABwL0UClJesYBAAAgYG/efFPb27b70i/O01Lfos7GTvVO9vo2JoDs3rr5lpaEl/jSL85jjNGO5Tv05s036RsHVCGCcQCQRZAl6FJ7xnEBHwhOkL0fgwz0AQAAoDzdHL+pK2NXtK1tm+9jb2vbpsuTl7mIDxTB6Vun1VnX6fu425Zt0+2J27oydsX3sQHMbwTjACALL2CWLG8XQK+piIlwAR8IkLe+asI1koLJcA0i0AcAAIDydPrWaUkKJBj39LKnNeaMqX+03/exAUy7fu+6bozfUFedf6VmPd5nw1u33vJ9bADzG8E4AMjCcdwylSH/y1R6F+0jJsIFfCBADwXV/VzHbqDP+4xgLQMAAOCtm2+pNlSrLUu2+D7208ueTp4DQHC8QNm6unW+j72heYMW1SxiHQNViGAcAGSRfhE/iF5TNabG1+AAgJkeKjfrY8AsyM8IAAAAlKe3br2lJ5Y+kazM4Kf1zetVb+qT2XcAgnH65mnVh+u1una172OHQ2E9tfQp1jFQhQjGAUAWyayXsP9ZL6nBOLJpgOAE2dctyM8IAAAAlJ/J+KTevfOunm57OpDxQyakzrpOLuIDAXv71tva0rpFYRMOZPxtbdt0fui87k3dC2R8APMTwTgAyCL9Ir6vPePcsWtMjRzr+DYugJnSM+P8XMfpPePIcgUAAKhu5++eV8yJ6cmlTwZ2jrW1a3UpekkTsYnAzgFUsylnSr+8+8tA1/ETS5+QYx2dvXM2sHMAmH8IxgFAFg8F4wLoNRUxES7gAwHy1nEye83PzLi0zwgC6wAAANXt3TvvSpK2tPrfL87TUdehuI3r3N1zgZ0DqGaXopf0wHmgrUu3BnYO7zPC+8wAUB0IxgFAFg+VoPOzZ5yNKWRCCitMaTsgQMXIjPM+I/wcGwAAAOXn7N2zaqpr0qpFqwI7R0dthyTpzJ0zgZ0DqGZnbifW1tbW4IJxSxcsVdvCNp29S2YcUE0IxgFAFg9l1PjcMy5swgqZkBzrkFEDBMQLkAUVVJeC6UcHAACA8vPunXe1ZckWGWMCO0dTuElLFywlowYIyJk7Z9RQ26D2hvZAz7OldQvrGKgyBOMAIIu4jStkQqoJ1Ujyv0xlJBRRyP0YJjsOCEaQmXHp2bME1QEAAKrXg/gDXYheCLREpSQZY7S1daveuf1OoOcBqtU7t9/R1tatgQbVpUQwrne4V+NT44GeB8D8QTAOALKIO4lgXDgUluRzMM7GFTERhUwoeS4A/kvv6xZEz7hkmUr6PwIAAFStC0MXFHNierz18cDPtXXpVvUO9+re1L3AzwVUEy+oHmSJSs+WJVtkZfXLu78M/FwA5geCcQCQhRcwi5hI8t9+iTkxhUNhhZUI9JFRAwQjyICZN1Yy0EeGKwAAQNXyergFnRknTV/EPz90PvBzAdXkYvRi0YLq3mcFpSqB6kEwDgCyiNu4wqGwIiE3GOdzRo3XM07yt3QegGnpZSr9Dqqnjk1QHQAAoHq9e+ddNdY2as3iNYGfa/OSzZKkc3fPBX4uoJp4a2pzy+bAz7Vs4TItW7CMYBxQRQjGAUAWyTKVxi1T6WPAzMuMS/aMo0wlEIggM+MoUwkAAADPu3fe1eOtjwfeZ0qSli9crobaBjLjAJ+dHzqv+nC92hvai3K+La1bCMYBVYRgHABk4ZWpDKpnXE2oZrpnHOXtgEAEWUrSC6LXhmp9HxsAAADlw+szVYwSlZJkjNHmls0E4wCfXRi6oI0tG5PXgYK2pXWLekd6NT41XpTzASgtgnEAkEWyTGVQPePMdGYcGTVAMJLZa17AzMcs1JiNKWRCqgnXSKJMJQAAQLXy+kwVKxgnSZtaNun80Hl+BwV8Yq3VuaFz2tSyqWjn3NK6RY51CKwDVYJgHABk4ZWpDKxnXCicLIHJBgoIhheMqwnXyMhoypnybeyYE1PERKZ7PxJUB4CqYozpMsa8ZIw5aYx51f06WOp5ASg+r8zc1iVbi3bOzUs2ayI2oSujV4p2TqCS3Zq4pehktOjBOEk6c+dM0c4JoHQIxgFAFullKv28iB934jMy4+gZBwTDW1thE1ZYYd/LVAaVPQsAmN+MMfslvSrpJWvtDmvtHmvtHkmnjDGHSzw9AEX27p131VDToDUNa4p2Ti9gcG7oXNHOCVSyc3cTa6mYwbhlC5aptb6VvnFAlSAYBwBZpGev+V2mMhJKyaixZNQAQfDWbdiEFTIh3zNcUwP2BOMAoDq4gbjDknZYa0+lPN6sRIBuf6nmBqA0zt45q8dbH5cxpmjnXN+8XiETorwd4BNvLW1aUrxgnDFGW1q36Ozds0U7J4DSIRgHAFl42QX2+CsAACAASURBVGtBlKmMWbe8HZlxQKCSmXEh/zPjppypGUF11jEAVD5jTJeklyS9YK2Npj7n/rtH0olSzA1AaTjW0aXhS0XNppGkBZEF6mjoSGbzAJibc0PntHLRSjXWNhb1vJtaNql3uNfXakwA5ieCcQCQRdymBeMCKG+XvIhPRg0QCC/r1MuM87XcrJs9K0kRE2EdA0B1eElS1Fp7LNOT1tr1brlKAFXiyugVTcQmtKF5Q9HPvallE5lxgE8uDF3Q5pbNRT/vhpYNijkx9Q33Ff3cAIqLYBwAZOEFzLwylb5fxHd7WEmUqQSCkpoZF1LI/6C6+/kQDvmbdQcAmH/cMpS7Jb1S6rkAmD8uRC9Ikja2bCz6uTcv2azBsUGNPRgr+rmBSjIZn1TvcG9J1vHG5sQ5vc8SAJWLYBwAZJEMmHn9oPwsU5nWM85xHN/GBjDNC5BFTERhE/a/Z5ybOet3PzoAwLz0KffPkyWdBYB55cJQ4gL6+ub1RT+3VxrzYvRi0c8NVJKeaI/iNq7NS4qfGbeuaZ3CJpz8LAFQuSKlngAAzFcxG0uUqTT+l6mM2ZjqTN10zzgyaoBAeGsriMw4r2ecRJlKAKgSXvnJHjdLbn/Kc62SXrXWHi/+tACU0sXoRa1evFqLahYV/dxeSb1zd89pW9u2op8fqBTnhhK9F4vd+1GSasO16mzsJDMOqAIVF4wzxhyU9Kz7z2b3z8OzbYqMMXuV2Fx5Tbib3df1BDJRAPOe4zgKh8Iyxihswoo5/pWSjDuJjJpQPBGM83NsANOSZSpNOJB1PKNMJZlxAFDputw/70r6rLX2UOqTxphXjTF70h8HUNkuDF1IlpkrthWLVqihpoG+ccAcnR86r/pwvToaOkpy/g0tG3Tm9pmSnBtA8VRMMM69M/FlSZ+31r6Y8vhuSa8aY45Za/dlee1LkpakPu+Od9IYc4C7G4Hq5JWplBIX8v3s6xa3iX50XplKMmqAYCQz40wiM87XYJy7jiW3TCXrGAAqnXez5wFJmQJu+yQNGWPesNYeyzaIMWa/3Ky65cuXq7u72+95Ft3Y2FhFfB/Vhvdt7qbslHqHe7Xeri/azzL9fWsLtemNvjfUPVmc8+PRsN7mt5/d+Jnawm360Q9/NOPxYr1vkWhEg2OD+vb3vq26UF3g56t0rLfyVA3vW8UE4yS9nCnYZq09box5UdJBY8zB1ECdlMyI+5S1tiXtdVFjzAFJR40x66y1UQGoKjEnlrzQ7nfWS8yJJXpYyf9+dACmecG3cCiRGedruVl3HUuUqQSAapNpf+juIU9JOiwpazDOWntE0hFJ2rlzp921a1dQ0yya7u5uVcL3UW143+bu3N1zcvodPff0c9rVtaso50x/31776Wv6Zs839dGPflTGmKLMAYVjvc1vn/va5/SRjo9o1wd3zXi8WO9bvD+ub37/m1r15Co9uezJwM9X6Vhv5aka3rdQqSfgBzeLba8x5tUsh3iPfzrDc4flboTSpWTEfXZuMwRQjhzrJDPjIiF/L7R7gT4vM87PrDsA02ZkxpmQv0F1G0v2jKNMJQBUBS8Al23fKUknJHUZY7YXYT4ASuxi9KKkRIm5Uulq6tLY1JhuTdwq2RyAcjY8Oaw79++oq6lr9oMD4pW6pW8cUNkqIhgnaYn7584sz991/2xOfdDdIHVJeiPH2Cc0szE3gCqRWqYyYiK+l7eLhCIKuR/DjnV8GxvANG9teevN13KzKT3jKFMJAFXB21fm6ivuBexKd0UPQNFcjF5UxES0rnFdyebQ1Zz4uLkUvVSyOQDlrGc48b91by2VwpqGNaoP1+vCEME4oJJVRDDOWtsjaYf7lYn3aZre+223+2euzVSPpGZjDJspoMqkl6n0NRjnXsRP9owjowYIRLJMpUmUqQyqZ1wkFGEdA0Dly7VvTPdsYLMAMG9cGLqgzqZO1YRrSjaH9U3rJU0HFAAUpieaWDvrmkoXVA+ZkNY3ryczDqhwFRGMkyRr7Sk3KJeJV57ypbTHvQ1Srt9YvFuLKDMCVJlAy1S65e28zDjKVALBmFGmUv5mr8WclDKVPvejAwDMSyfdP/O5UZMUFaAKXIxeTJaXK5WlC5aqoaZBvcO9JZ0HUK56hntUF67TqkWrSjqPjS0bdXHoYknnACBYFROMy8YtRblX0iFr7am0p5ulzM23U3jPLclxDIAKlFqmMmz87QdFZhxQHN7aCofCgazjiEkE4yhTCQBVwau0kivrzWuNcCLguQAosXtT93Rl7EpJ+8VJkjFG65rXkRkHPKKe4R6ta1qXrHpSKhuaN+jO/Tu6e//u7AcDKEsVG4wzxjQbY/ZKelnSPmvtixkOKyTA1jz7IQAqSWqZykjI355xMRtLlM1TYnwu4gPBiNmYjIxCJuR7z7iYjVGmEgCqiFuJ5ZRyV03ZLaknw42gACrMxWgig6XUmXGS1NXUlSy1B6AwvcO9JS1R6dnYkvgsITsOqFyRUk/Ab24m3KeVCJ51SfqaEhumTAoJsLVmONd+Sfslafny5eru7i5orvPV2NhYxXwv1YT3zX/3xu/pTuyOuru7NTkxqWs3r/n2M558MKnrV6+rI9whSTpz9owaBhp8GRvBY72Vj96hXoUUUnd3t2zcKjoc9e29i45EFR4Pq7u7W+Nj47o5cZP/LgLAeitPvG+oYIckvWqM6Upvk2CM2a3EHjRbL3MAFeTCUKK3U6kz46REMO4bF7+h4clhNdU1lXo6QNkYnxrXlbEr+uSGT5Z6KsnA/oXoBb1n5XtKPBsAQai4YJx7B2Iy+OYG504aYz6fJTtuLuc6IumIJO3cudPu2rXLz+FLpru7W5XyvVQT3jf/feHrX9DKtpXa9eFd+vP/78+1ZPES337G5itGnR2dWhxdLEWljZs2atcmf8ZG8Fhv5ePUiVOq+WWNdu3apSOvHJHq5dt798VvfFErmldo165devmbL2tx7WL+uwgA66088b6hUllrjxtjvIDcDq/lgTGmS9JRSQfIigOqw6XoJdWH67V68epST0Xrm9dLSpTbe6btmRLPBigfl0cuS0oEtEtt6YKlaqxt1KUobWeBSlVxwbh01tpTxpgXJB01xrRaaw894lB3/JwXgPkvtUxl2IR9LSUZc9wylYYylUCQUktJ+r2O43a6Z1w45G8/OgDA/GWtfdEYc0rSy8aYZk33GX+OQBxQPXpHEqXtvD7gpeSV2OuJEowDCuH1WpwPwThjjLqautQ73FvqqQAISMUH4yTJWnvMGBOVdNAY81JKORHvLsZm747GHGZ7HkCFcayTDJb53jPODfQZmeS/Afgv7sSTF0hCCgWyjiX/A30AgPnNWntc0vFSzwNA6Vwevqynlj1V6mlIklYtWqW6cF0ysAAgPz3RHoVNWGsb15Z6KpISgfUfDv6w1NMAEJDS375TPCfcP/emPOb9lrIkx+u8vnJ3fZ8RgHktbuOKhNysFxNWzPpzEd+xjqysIiaisMiMA4KUmr0WMiF/M1xtLBmwD4cIxgEAAFSLidiEro5dTWaklVo4FFZnYyfBOKBAvcO9am9oV024ptRTkZQIxt25f0fDk8OlngqAAFREMM4Yc9QYM+TW6c/Gy2x7NuUx77eUZmW33v2TciNAlYk5sWRGTSQU8a0EnTdOJBRJjk95OyAYqdlrfmfGxZ2ZAXvWMQAAQHXoG+mTlZ1zabu4Y3V6IKozV4c1FXfmNFZXU5d6ogTjgEJcGr4053U8FXd09tqI3uwfUsyHdSyJUpVAhaqUMpVetttuSUeyHOMF3N5Ieexrkg5K6lL2YFuXpGhKaUsAVSK1TGU4FNaD+ANfxvUy7MKhsELuPRFk1ADBmLGOTVjxuM8941KDcaxjAACAquBdKJ9LZtx3zlzX//Ff39HtsUlJ0tLFtfo//+mTen7rikcar6u5S39/+e81PjWuhTULH3leQLWYcqY0MDKg5zqee+Qxvn/upv73r7+tGyOJddy6qFb/9p9s1T9+atUjjed9pvQO92pb27ZHnheA+akiMuOUqNV/wFqbLRAnSTvdP5NBN7e5dlTSnhyvyxXgA1DBUi+0R4x/PeO87JmwCSeDBFzEB4IxI2Am/8rNSm7WHWUqAQAAqk7PcI9CJvTIfaa+/Hqv9v/nk1rZVK8//c1t+rPfekbLG+u1/z+f1F+//mgZMV5GzeWRy4/0eqDaDIwMKGZjj5wZ99Wf9+u3v/yGmhfU6ouf3qY//61n1NG6UP/z//Om/q/uS4805qrFq1QTqiEzDqhQlZIZd1g5AmrGmL1KZMYdcxttp3pB0svGmEPW2miG10Ulfd7n+QIoA+llKv0KxnnjREIRGRlJlKkEgpIaMPO9Z5wTm9lX0scSmAAAAJi/eod7tXrxatWF6wp+7esXb+uP/u5dPb9luf7st55RfU3id9Vf3bpCv/uVU/rDv3tXnUsXadfmtoLG9QIKPcM92tK6peB5AdXG67H4KMG4H1+6rd//xjv68Malevlf7Eyu449vXaF/ffS0Dv/DL/XYigZ97LHC1nEkFNHaxrUE44AKVRGZcW6A7ZLbO27GJ6gxZreklyUdt9buy/DaY5JecY9JfV2zEkG+felBOgDV4aHydj5dxE+WqTRhhUxIRsbXbB0A0+I2ngyqhxTyNfAdt/FkP7qwCcuxc+sPAAAAgPLQO9z7SCUqR+5P6X/56pva0LZYf/LpbckL+JJUGwnpT39zmzYtb9DBY29r9P5UQWOvbVyrsAnTNw7IkxeMK3QtTzyI6387+rY6WhfqL//77Q+t4z/e+5S2rGzUZ772lu7eK7zdybqmdeodIRgHVKKKCMZJklui8gVJh9yg3FFjzKuSDkl6wVqbNXPOWntA0teMMS8ZYw4bYw7LzbbLkEkHoApYa2eWtwuFfbuI740TxNgAZoo78cCy1+JOXBGTso4pUwkAAFDx4k5cfSN9WtdYeDDuL753UXfuPdB//NQ2Lap7uFjVorqIDv/GU7o1Nqk/PX6hoLFrwjVa07CGMpVAni4PX9byhcsL7rH4l9+/qCvRCX3h159SY33NQ8/X14T1xd/cprHJmL54/HzB81rXtE6Do4N6EC88kAdgfquUMpWSJDeD7cAjvvaYpGP+zghAufIuqifLVJqIb9lr3the1l3ERMioAQISt/HpMpUK+baOrbWK2diMzDjKVAIAAFS+q/euajI+WXA2Tf+dcX359V7t27FGT6xuynrc0+3N+s1n2/XlH1/W//CBTrUvyT9QsLZxrfpH+guaF1Ct+kb71NnYWdBrbo7c15Ef9uifPrNa71m3JOtxm5Y36L97T4e+8rN+/Yv3r9WGtoa8z7GuaZ3iNq7+kX5taNlQ0PwAzG8VkxkHAH7ygmNeRo2fPeMyZcZRphIIRnopSd8yXN2gejIzjjKVAAAAVcHr5dTVXFifqSM/uiQjo3/9/OZZj/295zYqZKT/9Fphpeo6GjrUP9rP76VAHvpG+tTR2FHQa/7T672KOY7+192bZj32M7s3qjYc0l/9oLDSsV4PO0pVApWHYBwAZOAF3pI943wsQTdlp2aO7WOAAMBMqaUkQwrJyvpycSKZ4eoG+iKhCOsYAACgCnjBuELKVA7de6BjJwf1yWdWaXlj/azHr2xaoE9uW62vvtGvO2OTeZ+ns7FTE7EJ3Ry/mfdrgGoUvR/V8OSw1jauzfs1wxNT+spP+/WJp1apo3X2jNXWxXXat3ON/t+3rujmyP28z+Nl63mfNQAqB8E4AMggvUylnyXo0jPjIqEIvaaAgKSWkvTWsx9rObmOvUCf8a8EJgAAAOav3uFetdS1qLm+Oe/XfOVnfbo/5eh/+nD+2XQHPtql+1OOvvrGQN6vWduUCCz0jfTl/RqgGnm9FQspU3n0xIDGJmM68JH81/H/+MF1ijlW//dPLuf9moU1C7Vi0Qr1DBeWUQdg/iMYBwAZZCpT6Xd5u9QAAb2mgGDEnfh0UF2JNefHepty3AzXlBKYlAMCAACofL3DvQX1i3Mcq6++MaAPbViqTcvz7xu1oa1B7123RK+cGJC1Nq/XeIEFgnFAbv2jid6K+WbGWWv1yokBPd3enLPnY7rOpYv03GNtOnpiULF4/vvFrqYuMuOACkQwDgAySC9TGQlFfMt6Sc+oCRv/SmACmClu4zOy17zH/BhXCiZgDwAAgPmr0GDcz3rvanBoQvt2rin4XJ/a2a6+O+P6ee/dvI5vW9imunAdwThgFpeHLytswlrdsDqv408PDuv8jTF9emd7wefau2ONbo5O6kcXb+f9mnVN69Q73Jt3IB5AeSAYBwAZZCpT6deFdi+ol9priowaIBhxG5/OXnMz4/xYy94YXsCeMpUAAACVb+j+kIYmhwoKxn391KAW10X0/JYVBZ/vHz25UovrInrlxGBex4dMSB2NHQTjgFn0jfRp9eLVqgnV5HX8KycGVF8T0j9+emXB5/rYY21qXlijr5/Mbx1LiZ6UE7EJ3Ri/UfD5AMxfBOMAIIP0MpXhkH8949Kz7vzsRwdgprgTnxEwk+RL0Mxbs6mfEQTVAQAAKpvXZyrfYNzEg7i+9Ytr+sSTK7WgNlzw+RbUhvVrT6zQd85c12QsvxvKOhs7CcYBs+gf7c+7RGUs7ujvf3FNe7asUGN9fsG7VHWRsP7J06v0nXdvaPT+VF6v8T5j6BsHVBaCcQCQwUNlKk3Et1KSyTKVKRfxKVMJBCM1My7k/trjR/A7meGa+hlBmUoAAICK5gW58r2I/8MLtzT+IK7/dtuqRz7nP3pypUYnY3o9zxJ3HQ0dGhwd5IZPIAtrrfpG+vJexz/rvauh8Sl94snCs1s9/83Tq/Qg5uj7527ldbw3t/6R/kc+J4D5h2AcAGSQXqYyEkoE4/yo1+1dxE8G43wsgQlgppgTm5GFKvnUMy4tqE6ZSgAAgMrXP9KvsAlr1eL8gmvffue6mhfW6D3rljzyOT+woVUN9RF96xfX8zp+beNaxWxMV8euPvI5gUp2c/ymJmITeQfj/v6da1pQE9ZHN7U98jm3d7RoWUOdvv1Ofuu4bWGbFkQWkOUKVBiCcQCQgXexPjVglvr4nMZO6zUVNmEu4gMBidvpMpW+9oxzPwuS/ejcPylVCQAAULkK6TP1IObo+Nkb2v34ctWEH/3yW10krD2PL9d3zlzXg9jsv2t2NnUm5wrgYf2jiWyzfIJxjrX6h3du6Fcea3ukUrOeUMjo+S3L9f1zN3V/avb9qDFGHQ30fwQqDcE4AMjgoYCZe6Hdl/J2XgnMlIv4ZMYBwYg7KWUqg+gZZyIz/mQtAwAAVK7+0X51NHbkdexPe+5o5H5Mv7r10UvbeT7+xAqN3I/pZN/QrMd6AQYu4gOZeb0fOxs7Zz22d9jR7bFJPb91+ZzP+6tPrND4g7h+dCHPkrONHcnAIYDKQDAOADJIZr2k9INKfdyPsVMv4pNNAwQjbuPJtRZkzzg/A30AAACYfwrtM/X9czdVFwnpQxuXzvncH9ywVDVho+5zN2c9tqWuRQ01DcmAA4CZ+ob7VBeu0/JFswfY3r4VV8hIH920bM7nfV9XqxbXRfT9PNaxlAgWDo4OasqZmvO5AcwPBOMAIIPUEnRvXL6rW6MPJPlTgu6hnnEhylQCQYnb6cy4ZLlZH7LXvP6RF27e07nro8n1TGAdAACgMt2euK2J2IQ6GvLLjPvB+Vt6X1er6msevbSdZ3FdRM92LlH3uVuzHmuM0drGtWTGAVn0jfSpvaE9eUNlLm/fjmtbe7OaF9bO+bw14ZA+uKFVPzh3K7mfzKWjsUNxG6f/I1BBCMYBQAapZSoPHXtbPzyfKCPgx4X2TD3jKG0HBCPuTPeM8zLj/Mxw/duf9usLf382eQ4/su4AAAAw/3jBrXwy4wbujqvn1j1fsmk8uzYv07kbo7ozMfuedG3TWvWPUN4OyKRvtC+vEpW3xybVO+zoY5vbfDv3Rze16Up0Qpdu3Zv1WG+OBNaBykEwDgAy8C60W2vUd3dcMcfMeNyPsVOzdfwYF8DD4jY+I/At+RMw8wLzUzGp9/a95F2VrGUAAIDK5PVuyqdnXPf5RAbbRzf7F4zzAgK/uD3775trG9fq2r1ruh+779v5gUoQc2IaGB3IK6j+Q3cd7/IzGOd+JuRTctb7rCEYB1QOgnEAkIGXqXb3Xlxxx8raRDDOlzKVbiDA62MVDpEZBwQl5sSSgW8/e8Z5azYeNxoYmpBxx6ZMJQAAQGXqG+lTJBTRykUrZz32h+dvaU3LAnUtXeTb+Te0Ldbyxjq9eyePYFzDWllZDYwO+HZ+oBJcG7ummBPLKxj3+sU7WlwjbV3V6Nv5Vzcv0Ma2xfrB+dlLzrbUtaihtoFgHFBBCMYBQAZedsutkUSj3HjczYzzIWiWDMZ5PePIjAMC41hnukylj9lrXtAt5hjFHauRCe/flKkEAACoRP0j/VqzeE1yH5dN3LH6ac8dfWjDUhljfDu/MUYfWL9UZ+/GZ+035QUaKFUJzJRvhqu1iXX82JKwQiH/1rEkfXDDUp24PKQHsdw3chpjtLaB/o9AJSEYBwAZeEG368OTkiTHzYyzmr3J7qxju4GA93/++/rJ1UTWDsE4IBhxG1ckFNF/fPW8/vKUG1z3IajuyHHHSnwm3L0XS54PAAAAladvtC+vbJp3r45o9H5M71/f6vsc3r++VaMPpPM3xnIet6ZhjSSRGQekGRwdlCS1N7TnPK7/7riuRCf0eGvY9zm8r6tVE1NxvT0YnfVY+j8ClYVgHABk4F1Qvz7sXbyf+ficxnYDAbG40UtvTypiImTTAAGJOTHJhvRn372gkQdumUrrQ884xw3GuVmzd8ZiMx4HAABA5XCso4GRgbz6xf20546kxAV3v33ADfD9+NLtnMc11TWpqa6JYByQZnBsUHXhOi1dsDTncT++lFjHjy8JIhi3RMZIP3HPkcvahkT/x8n4pO/zAFB8BOMAIIPpYJybGee4PeN8uNA+HdBL/FI3et8hmwYISNzG1Xt7wv2XW6bSh8w4b816lUXujCYC934E+gAAADC/3By/qfvx+1rbMHtm3E967qhr6SItb6z3fR5rWhZq2QKTDBTk0r64nWAckGZgdECrF69OtjDI5seX7qitoU4rF/lbolKSmhfW6rEVjfpJTx7BuEa3/+MIaxmoBATjACAD72L9laFJ999uzzgfgmZTTuKivWziI7j/zoQvwQEAMznWkWMdvXNlNPGA9TEzznplKhOfDbfG/CuBCQAAgPnFKxM3W2ZcLO7ojd67el8AJSo9jy0J643Ld+U4uVsotDcQjAPSDY4OJsu4ZmOt1c977+i9Xa2+9n1M9f6uVp3sG9JkLPf+0SuNS984oDIQjAOADLyg2y0328VLiPP6RM1pbO9ivRsYuD9FnykgCN66ujfprlubyEb1pWdcejBuZGrGOQEAAFA5+kYTF8Jn6xn3y+ujGp2M6b3rlgQ2l40tIUXHp9Rze/a+cdfuXZu+GRSoctZaDY4NztovbnBoQjdGJvVsZ0tgc3lv1xJNxhy9c2Uk53HeDQDeZxCA8kYwDgAy8C6oWxtSJGSSF9z9LVMZSv7JBXzAf17AzHESa826AXA/Lkh4Y8sa1YSN7txLZNuxlgEAACpP33CfakO1WrFoRc7jTly+K0l6tjO4YNymlsQNZm9cHsp5XHtDu+I2rmtj1wKbC1BOopNR3Zu6pzWLc2fGnehLrOOda4Nbx890NEuS3uzPvY4bahu0pH4JmXFAhSAYBwAZxJzEhXVrQ1pUF1Hcve7ux4X2mBOTUUhSIsBnnRCl7YAAeOvKC8Z5ay4ZSJvL2ClB9YW1kWSgj7UMAABQefpG+9Te0D5rn6k3+oa0qqleq5oXBDaX5QuNWhfV6kQewThJlKoEXIOjg5I0a5nKE5eH1FAX0eYVDYHNpa2hXmtaFujULME4Seps7CQYB1QIgnEAkMH0xfqQFtSE5Tj+XcS3ssm647WhRMCPbBrAf15vOMca1ddMB8D9WMepmXELasLJsrOsZQAAgMrTP9I/a784a61OXh7SjgCz4iTJGKOdnS3J7J1sCMYBM3lrYdbMuMtD2r62ReFQMP3iPNs7WnSqLzrrcR2NHQTjgApBMA4AMkheULch1deE5PXU9SujJuR+/NaGE8E4LxMPgH+SmXHxmQEzP4NxVonPCIJxAAAAlSnuxDUwOjBrv7gr0QldH7mvnWuD6zPl2bl2ifrujOvm6P2sxyxbuEz14XqCcYBrcCyRGbe6YXXWY4YnpnTuxmhR1vH2jmZdH7mvq9GJnMetbVyr2xO3NT41HvicAASLYBwAZDAdHAupviasuPUxo8ZxZEyizn9t2MhawwV8IADeukpkxoXl/drjx3qbDth7Yyc+IyhTCQAAUFmuj1/XlDM1a2bcyb5EubkdRbiI7/WbOj0wnPWYkAlpTcMagnGAa3B0UMsWLNOCSPYysm8PJjLVnukoQjDO/ayYrVSlV1aTtQyUP4JxAJDBdAm6kOpqworH3QvtPl3E9zLjakKStcaXIB+AmbzAWNxJBNXlZ1A9OYZRXU1YsokAO4F1AACAyuKVh1vbkDsz7q2BqBbUhPVYgH2mPFtXNSkcMsnAQTYE44Bpg2ODs/aLe3swEeB+ck1T4PN5fGWj6mtCs5aq7GhI3AjAWgbKH8E4AMjAu6BubUgLakKKu9fd/bqIb4xXptLIoUwlEIhkZpxjVBcJyc/MuNSA/YKakCxlKgEAACpS/0i/JM2aGff24LCeWN2oSDj4S20LasPa2LZYpwezZ8ZJib5xg6ODstYGPidgvhscHZy1X9zpgajWLV2kpgU1gc+nJhzSU6ubZ82Mo/8jUDkIxgFABullKq31NzPOpGbGOSEu4AMBSPaMc2auY38z40KUqQQAAKhgfSN9qg/Xq21hW9ZjYnFHZ64O68nVzUWb19NrmvX2oRntWwAAIABJREFUYDRnoK29oV334/d1a+JW0eYFzEcP4g90/d71vDLjnipCVpznmY5mvXt1RJOx7PvIhtoGNdc1q3+0v2jzAhAMgnEAkMF0P6iQ6iPTvab8uKPQsU6yTGVtOJG141iHUpWAz2I2Nag+nRnnx1qbDqCbxGeEmxk3fU4AAABUgv7RfrU3titksl9CO39jTPenHD3dXryL+E+1Nyk6PqWBuxNZjyGjBki4OnZVVja5JjK5OXJf10fu66k1xQuqP9PRogdxR+9cGcl5XEdDB+sYqAAE4wAgg5lZL6Fkrym/ytt5mXG1ISPHobwdEIRklpr1esYFUabSuIG+8MzHAQAAUBH6R/pn7Rfn9W4r5kX8p91znc7RN45gHJAwODYoSTkz47yyr08XMTNu+9rEOn5zllKVaxrWaGCEdQyUO4JxAJBBskylNVpQG5b1O6PGvauyJiw5lvJ2QBCmg25ehqt/ZSpTx15QG54O2LOOAQAAKkbMiWlwdHD2fnFXhtVQH1Fn68IizUzavKJBtZGQTg9kD8atWrRKIRMiGIeqNzjqBuNy9Iw7PRBVOGS0dVXxgnFtDfVa07Jg1r5xHY0duj5+XVPxqSLNDEAQCMYBQAapF9rrIuHgMuPC8rWPFYBp3nq11guYuZlxPgTMvJK11hrVRaYD9pSpBAAAqBzXxq4pZmNa2zh7ZtxTa5pkjCnSzKSacEhbVjbqbTebJ/MxNVq5aCXBOFS9gdEB1YXrtHTB0qzHnB6MamPb4sTesYie6WjR6YHs61hKZLk61tGVsStFmhWAIBCMA4AM4k7cDZiZRHk7H3vGxW1cxs3QSS1TyUV8wF/TQTevZ1wwmXEzSmCSGQcAFc0Y02WMOWmMOWiM6Up7fL8x5tXUxwGUt/7RfkmJfk3Z3J+K65fXRotaotLz9JomvXN1WHEn+z61vaE9mRUEVKvB0UGtWbwma8DcWqtfXBlOln8tpidWNepKdEJD9x5kPcb7DPI+kwCUJ4JxAJCBYx0Zt5Rk6kV8XzLjnOnMuJqQFHdM8nEA/kmuVzd7zfu1x9Hc19rDPePIcAWAKtEsabukw5IuGWOsMcZKuiTpkKQD1tqeUk4QgH+8jDKv91omZ6+NKObYovaZ8jzd3qzxB3FdvDmW9Zj2hnYy41D1BscGc67j/rvjio5P6en24gfjvLKYZ66OZD3G63XHWgbKG8E4AMjAsY5C7kfkgprpMpX+ZdR4ZSqNHC8Y50OAAMA0K+8OYTd7TZJRyJfstRk941Iy4wjGAUBVOCbpiKTjkk65/z5grV1PIA6oLF5pu2ULl2U9xisTWYrMOO+cpwez941rb2hXdDKqkQfZL/QDlcxam8iMa8jRLy65josfVN+6qlGSdOZq9lKVrfWtWhhZSDAOKHORUk8AAOajRClJLzNuOqPGj8y4RIDAKBwyCoekuJVqxEV8wG/JoFsye00yJuTLWpuZGefvZwQAYN571Vp7pNSTABC8wdFBrV68WiGT/V72tweHtXRxrVY21RdxZgldSxepoS6itwej+tTOzFk/XjbQwOiAtrZuLeb0gHlhaHJI47HxnMG4tweiqouEtHlFQxFnltCyqFarmxfonRyZccYYslyBCkBmHABk8FCZSh+zXuJOXMaGFAkZhY2SWXf0mgL8Nb1eTTIzLiSfg3FyA30+Zs8CAABgfhgYG8hZ2k6S3h6M6qk1zVl7UQUpFDJ6YnVTMjsvk9RgHFCNvP/21yzOEYy7MqwtqxpVEy7NpfKtqxpzZsZJibXcP0LPOKCcEYwDgAwc68zIjLM+9oNKjJEIxoWMKG8HBGS6Z5xbSlJumUo/ej8m12toRmYc6xgAAKAyeKXtcgXj7k3GdPHWWElK23meWN2oX14fVSye+fdQLxtocHSwmNMC5g3vv/1smXHWWp29OqInVpVuHW9d1aTe2/d0bzKW9Zj2xnZdGbvCjdxAGSMYBwAZJMpUJgJw9YH0jDOKhEOKGE0H+ugZB/jKWq9nnP9lKr117GXdWTLjAAAAKsqd+3c0EZvIWdru7LURWSs9ubp0F/EfX9moBzFHvbfvZXx+Uc0iLalfQmYcqpYXjFu9eHXm54cmNDoZ0+MrG4s5rRmeWN0oaxOfKdm0N7RrypnSjfEbRZwZAD8RjAOADNIz4/zsB+VYR7Ih1YSNQiZxMV+SHIeL+ICfvPVqbShZptLPzLiQ+7mwgJ5xAFB1jDFdxpiDxpj9xpjDxpijxpjdpZ4XAP94F/BzZcZ5F85LeRHfO/e7s1zEJxiHajU4Nqi2BW2qj2Tu6/huch0Xv1+cZ6ublffOleylKjsaOiRRchYoZwTjACCDGcG4iM8942xciTKVIYVDSo7NRXzAX6l93eoi08E4v8rNTveV9Dd7FgAw7+2RtN1a+6K19oi19pCkFyQdNsbsL/HcAPgk2WcqR2bcu9dG1bSgRiubMl/kL4b1yxarJmx09tpo1mM6Gjq4gI+qNTg6OGuGqzHS5hWlC8Ytb6zT0sW1eudq7qC6JPWP0jcOKFeRUk8AAOYjr6+bMVJtJCT53jPOKBwyChsp2WuKMpWAr2b2dXPLVPqYGTddyjYkesYBQNWISnrVWnss9UFrbdQY83lJR40xJ6y1p7IN4Abs9kvS8uXL1d3dHeR8i2JsbKwivo9q8/+zd6fBcaT3nee/T2YVrqrigYMAyQIPkH23+mRLtizZtKfb9ozDGzGyWvJ6x3OEdc7E7L5Yr1uOjdgXsxMjt8Yx3n0xtiXNxO5s2DOWu2V55LF1daupw9JIfVpq9cUm0GQVSRAAL1ThRuWzLzKzCkBlFY7KAqrA38fBAIXMSjxsMMvE88/f/6/vW33fufEdDIZzL53jgone/P7Bm3Mc7IZvfetb27auqO/bUI/hb3/yDme6xyNfs3xjmSszV/jGc98gaZLbsEpZS/fbznl76m1u77q95n//7/x4nsFuww+/992qY9v5fRvqKvGDty5x5sz1yOOe9UiQ4Hs/+R4Dlwa2ZU3tSvdbe7oVvm8qxomIRAhnxiUcQ9KNtxhXsqUVbSqpJGrUplIkVuX71ZpVbSrjuo9Xt7JVMk5E5FZgrR0FPlfj2NPGmBvAk/jpuVrX+Fx4jVOnTtnTp083YaXb68yZM+yGP8etRt+3+r72na8xuDzIYz8ffTuXPMvlZ7/Ghx8Z5vTpe7ZtXVHft0cmXuG7Z6dqfj8L5wp85btf4cSDJxjZN9L8RUoV3W87Y6G0wM0/ucmpk6c4/cDpyHP+jx8+x8Mn9nL69ENVx7bz+/bD+Tf43LdH+en3vb/c2WWt7JeysA/9XVqH7rf2dCt839SmUkQkQpiMSzgOCdfE2krSsx4WQ8J1gmScie3aIlJRuadWFL8xlLy4knErZsZZ3cciIgLAKPCoMWbfTi9ERBqTL+TJpmu3tjt/dYa5pRJ37+C8uNDdB/cwUVjganEh8njY3k6tKuVWc6l4CYut2aayML/EhWuzOzovLnTPob0se5a3xos1zzmyRy1nRdqZinEiIhHC1EvCMSQcB9uEZFzC8VtVhoU+i2342iJSUW79ag2u4xe/Y50ZF/wzqlNtKkVEpGI0+KjoiUibyxVy5SJWlHBG210tUIwL11Brblz458gX89u2JpFWkC/4f+dr3ctvjrfOfXzvYX8Nr166WfOc4cwwFwoXsFb7RyLtSMU4EZEI/j9sHFzX0OE65YJZLJv4ngfWkAiSOlbJOJGmqLR+9VvOhjMa45jPGKZnHYP/HoEBjIpxIiK7nDFmvSJbWIw71ey1iEjzzC7NcnX+6jrFuGlcx3DbYHobVxbtziE/1fP65enI471dvXQnusuFCZFbRViArpWMC++ZVijGHentId2Z4LVL0fcx+MW4ueU5rs5f3caViUhcVIwTEYngF8b8DfyE62+yQ3zJOGv9FphhcQA0M04kbmGB21q/3azrAJhY7rWSLWFM0G7W73+JUTFORGRXM8Z8FjhnjPlgndPC9pTXtmFJItIk4Qb+esW4kf5UeTbxTupLd3Ig01mzGGeMIZvJqhgnt5xcIUeX20VfV1/k8dcuF9jTleDg3q5tXlk1Ywy3D6Z580p0whXUclak3akYJyISwbNBeq1ZM+OsIekGSR3NmhJpikphrJKMMzix3cfGOiSDVrb+V4nn2iIi0rJ6gRvBr3rnALzU/OWISLOEG9210jTgF+NaIU0TuuvgHl6rUYwDGE4PawNfbjn5Qp5sJosxJvJ4eB/XOr7d7hjaw5vjhZptKFWME2lvKsaJiEQIZ8a5jiHphC3oYmpTiYfF38D3kzqaGSfSDOX7tZxE9Qvrcc2MA4eEGxTsAcfEc20REWlZzwMPW2ufqXPOo8BL1trROueISItbb87UjdlFLt2cb7li3LnJIovL0f8ezWay5It5zZqSW0q+mK9ZVC95ljfHCy11H985lOHm3BJXphcijx9OH8YxjopxIm1KxTgRkQiVjXazOhnnxZCo8fxkXGJtMi6Ga4tIxcpknOtU2lTGlYyDMOEatqlUMk5EZJf7HPBErYPGmI/ht6l8fNtWJCJNkSvkyHRk2Nu5N/L465f9NnJ3Hcxs57LquutghqWS5e2JYuTxbCbLQmmBqbmpbV6ZyM6w1vrJuHR0Me781Rnmlkrc3ULFuDuC+Y+1WlV2uB0M9QxxYfrCdi5LRGKiYpyISATP+uk11zEk3RXJOOKcGWdwTLzz6ESkolIYcyrFb+JJr/nX9hN3jmNwgmvrSWMRkd3LWnsDeMoY85QxZmTlsWCO3JPA40rFibS/fCFfd17cG+N+O8hWStSEBYVac+PCgkQ4D09kt7s2f4255bmaybhKUb117uM7BoNi3HidlrN7hjX/UaRNJXZ6ASIirSicGZd0/KJZrG0qbZiMc4JknP9cRByFPhGpKBfGgvmPrgFrY5oZ53kYKi0qE46DiSl1JyIircta+4wx5gXgSWNML34SDmAUOB4U7ESkzeUKOe7svbPm8dcvT9Ob6uBApnMbV1Xf8f4UnQmndjEuKEjkC3kePPDgdi5NZEeErRxrFdbfGJ/GdQy3Daa3c1l17Q/eV94Yj07Ggf/neeZ8vY7ZItKqVIwTEYkQpl781nZ+Mc7gxNJK0k/Ghe3toFzo81SME4lTpTBmSAT38jImvmScDZOzkHD99wglXEVEdr+g4PbxnV6HiDTHsrfMpeIlHjv6WM1zXr9c4K6DGUzQrrwVJFyHEwNpztZoU3k4fRiD0awpuWWEKdBaybi3rhQ42tdDV9LdzmWt646hDG+uU4y7sXCDwmKBTEfrtMoVkfWpTaWISIQwGZdwDcb4hTMT0yZ+mIxzHQfH8ZM6gBI1IjEL71drHdyg+B1XMs5iCYt8QFC018w4ERERkXY3PjPOsl2umabxPMvZiQJ3DLZOa7vQ7YNpztaZNTWYGlR7O7llhH/XD6cPRx4/e6XI7Qdar5h151CGsxNFSl70CITwvUmFdZH2o2KciEiElTPjIGxB58Q2M87zDElnTTJOiRqRWK2cGZcM2lQSVzLOK2FxSITJOMcv2GtmnIiIiEh7C9M0tYpxueuzzC953N5Cre1Ctw1muHRznsL8UuTxbDqrmXFyy8gX8hzoOUCnW91Odn6pxDtXZ1ryPr59MMPissc7V2cij6sYJ9K+VIwTEYngJ+P8DXwgmAvlxNJK0k/G+bOmXBPvPDoRqagUxkzQchaw8bSbLc+VdMNknIOScSIiIiLtL9zgrt3azm8Dedtg6yVqbg/WVKtVZTaTVTJObhn5Yp5sOvo+Hp2cwbOteR/fOeSnbmu1qlQxTqR9qRgnIhIhnAcVJuOSrp+Mi2Oj3bMenjUk3CCpE7SpVDFOJF7l+9UGM+MMWBvnzDin3KYyqZlxIiIiIrtCrpAj4SQY7BmMPP5W0AbytkYTNTfz8OX/Gf7gXviDd8FT/xSmzjZ0yTDlU6tVZTadZXJukrnluYa+jkg7yBVyNYvqZyf8e+T2Rotx10bhix+B/+s++Hd3w1/+C7j+TkOXvG0wjWPgjRrFuFQyRW9XrwrrIm1IxTgRkQieV0mvAcGGe3yb+NYLigMOhG/FStSIxCu8Xx3j4Dh+EtVaE0u7WQ+/lW0yaFOpmXEiIiIiu0O+4KdpXMeNPH72SoGDe7vY05Xc+hd562vwh++FHz8Fhx6EI++Bt5+FP/wpeOW/bPmy2f09dCWdcnpvrTBRc7FwcctfQ6QdLJQWmJidqNlu9q0rBVzHcLw/tfUv8upfwL9/D7z5FcieguF3w2t/CX/0Pnj9r7Z82a6ky7G+FG/VKMaBn3JVMk6k/SR2egEiIq3I32h3ViXjlmNKvXhekIxzHBwDWFP+miISn/B+TRh/I8V1wGLiaTfrhW0qKzPjFmMq2IuIiIjIzskX8hzOHK55/K0rxcZa21347/Dn/xj6b4cP/SfoHfE/X5yEL/4W/OUnwUnAfY9v+tKuYzgxkK7bphL89n0n95/c8h9BpNVdLPoF53rtZo/19dCR2GJO5bUv+4m44XfD4/8vZIb8z9+4AE/9M//XP/oijPzcli5/+2CGN2skXMEvrL905aUtXVtEdo6ScSIiEfy5bn7BDMKZcfEl4zzPnzXlB++CYlwMBQIRqSgX48L0mgHrxddudmV61nUMWLWpFBEREWln1lpyhRzD6eg0TcmznJsscvuBLbaoLE7Cn/0G7DkMv/mXlUIcQHoAfuMLcPS98OV/ueWWlbcPZmq3qQyLcWpvJ7tc+He81sy4s1cKW29Ref0d+Mt/7qda/6enK4U4gH1H4B89DX0n4Qu/CdOXtvQl7hjK8M7VGeYWo392Hc4MMz4zzmJpcUvXF5GdoWKciEiEtfOgEo6JbWacxQYz48K2eWpTKdIM4T0VthhyguJ3bO1mWVGwd5zYri0iIiIiO+PGwg2KS8Ware0uXJtlYdnb+ib+V34HFgrw6/8ZUn3Vx5Pd8Gv/EZJd8BcfBW/zPyPeNpjm8s15pueXqo7t79xPT6KHfFHFONndysW4iGTc/FKJ89dmt5Zw9Tz40ifAGHj8/4HOiMJ893749T+F0gL89f8K1m76y9w5lMHaymy7tYYzw1hsOQEoIu1BxTgRkQhhK0nXrbSpJKY2lSXPT8a5YZvKIBln2fw/0ESkNs96GFYW1cF6JrZkHNYhGc6VdIOZcVvYMBERERGR1hBu4NebMwV+wWvT3n4WfvIX8LO/AwfurH3enoPwD34fLr0Mr/zppr/M7Qf8AsPZiLlxxhjNmpJbQq6QozvRTV9XddH77Yki1sLtW7mPX/0iXPg+/PKn/RRcLX0n4Of/d3jzb/xfmxQWCt+u0XI2fI/SvSzSXlSMExGJ4OHPgypv4rt+C7rYNvExJB2D3z3P/xraxBeJV3ivVdpUGryYWkn6bSorLTATjgFrNPtRREREpI2FG9u15kydLRfjNpmosRa++X/6m/c/87+sf/69vwbZR+C5fwOLM5v6UmFqr1aryuHMsNpUyq6XL+bJZrIYY6qOhQWuTSdclxfg2X8FQ++C+39j/fN/6p/77Sq/+a/9RN0mHO3rIeGYmvMfw2Kc7mWR9qJinIhIBM/6ybi1LejsFtoLrOUX9BwSruPPjAvaVKq9nUi81ibjXAesjaeVZDgzLumsmBmnNpUiIiIibW29YtxbV4oc3tdNujOxuQu/+Td+0u3nnoBEx/rnGwO/+K+hcBme/4+b+lLZ/d10JR3eikjGgT9D62Lxov7dKrtavpCvOS/urSsFEo7hWF9qcxd96f+DmxfgsX8Fzga21N0EnP5dmHgNXvvSpr5U0nU43p+KTLgC9HX10Z3oVjJOpM2oGCciEqHklbArknF+K7rG29tZa/12lNaQdI1fjEMz40SaoWRLfjEuaCXpGL8YF8e9VrLBe0TYptJxYkvPioiIiMjOyBVyDHQP0J3ojjz+1pXC1lrbfeffwf7jcN+vb/w1R34Kjr0ffvDHUKqe/1aL4xhOHkjXnDWVzWRZKC0wNTe18bWItBFr/Vlq9Yrqx/pTdCQ2sS3uleD7/x4On4KRn9/46+75AAzcCd/5g03PjrttMM25yehinDGGw+nDSsaJtBkV40REIvipl8rMuHCjvdGnBysb9Q6uY/yZcTaYGRdD6k5EKvz71SknXF0DXqzJuEoLzIRrsBi8TbYfEREREZHWkS/ma86LWy55jE7ObL613cUX4eIL8FOf9JMym/HefwnTF+Enm0vV3H4gUzNRExYotIkvu9XV+avMLc/VTMadndhCUf2Nv4brY/49GdH6sibH8e/9Kz/2Z81twsmBNOevzjC/FP3A53BmWMk4kTajYpyISAQPb1UyLtxobzT1Ui4CWL9NpTEGx1EyTqQZ/DaVJmghCQkD1osnGRe2sl3VptI6mhknIiIi0sZyhVzNNM35a7MslrzNz4v74eehIw33/4+bX9DJx6D/dj8dtwm3DWYYn57n5lx1oi4sNmoTX3arsNAcdS/PLZa4cG2W2w5s8j7+wWf9mY93/ermF/Sux6Frr3+NTTg5mMGzMDYVPTdyODNMvphXy1mRNqJinIhIBM/zsF5lZlzS9ZNxjabXKkWAyiZ+wrj+19Q/oERiVZ7PuKJg5tl40mslW/LfI8JknGNim0cnIiIiIttvfnmeidmJmsW4s1f8to+bStTMXYdXvwj3fRi69mx+UY4DD/9TP1135bUNvyxc49sRrSoPpQ5hMOSLSsbJ7hQWmqNSrucmi1jL5hKuV8/B+e/CQ/8EHHfzC+pIwYO/Ca//FRSubPhltx3w7+OzE9Ep1+HMMAulBSZnJze/JhHZESrGiYhEKNkS3qp5UCaWWVPhRr0NknH+tZ1Vx0QkHtbaIIW6emZcHOm1MBkXXtt1HLCGkqeEq4iIiEg7uli8CERv4IM/Zwrg5IFNFON+8iUoLcJD/3jrC7vvw+Ak4eU/2fBLwjWem6hO1CTdJEOpIbWplF0rX8xjMBxKH6o6Fs5g29R9/MqfgnHggd/Y+qIe/E2wJb84v0HH+1M4Bt6uU4wDpVxF2omKcSIiEcKN9rC9XdJ1gMZTLyuTcWFaxzEqxok0g3+/Gb9QRmVmXFxtKq01JMvpWYOl8bmSIiIiIrIzwuJUrWLcuckih/d109Oxiblvf/dnMHAnHLx/6wtL9cMdfx9+9GewvLihl2T399DhOuXCQ9XxTFbFONm18oU8B3oO0Ol2Vh0bnZzBGDja17Oxi9kSvPKf4eSjsKe6uLdhB+6Egw/A3/2XDb+kK+lypLcnMuEKKsaJtCMV40REIpSTcStnxlmn8WSct3JmXFjoS5S/pojExy+MrZzrhj/XLYY2lWExrpKMU5tKERERkXYWbmhn09FtKkcnZxgZSG38gtdGIfcDP9lmTGOLe+A3YPYqjJ7Z0OmuYzjen6pdjEtntYEvu1a+kK/ZbnZsaobD+7rpSm6s3eS+Gz+BwuWtzXxc6/5fh/EfwcTrG37JyQMZzl6Jvo8Ppg/iGlf3skgbUTFORCSC396uMjMuEbSgi29mnFO+tquZcSJNEc6Mc8vzGQHiScaF106umBmHinEiIiIibStXyNGT6KG3q7fqmLWW0ckiJwY22aIS4F2PN764E78AnXsr19zISw6kODdZ3aYS/ETN1fmrzC7NNr42kRaTL+RrF9Wnihzv33hRfWDybyHZA7f/UuMLu/eDfrvLTbSqPHkgzTtXZ1gqVf+cmXTUclak3agYJyISoWRLa9Jr8c6MwxqS5WurGCfSDGFRPSyYuY4B61CK4V4reaWgYF+ZGRfHe4SIiIiI7IxcIcdwZhgTkWK7Mr3AzGJpc8m41/8KDp+CfdFtLzcl0Ql3/gq88dcYb2lDLzkxkObCtVkWl6v/7RumhsI5eSK7xfzyPBNzE5HtZq21jE3ObLyoXlpmYPL7fiGuYxP3fi3pATj6M/D6f9vwS247kGapZDl/NbpwPpwZVjJOpI2oGCciEsHfrF+RqHHjaUFXeX1lHl04z0rFOJF4rU3G+R8cvFiScR4Wh4S7Ymac1cw4ERERkXaVL+ZrzosbDdo9jvRvcBP/xgW49DLc9atxLQ/u/QAs3KT32ssbOn1kIEXJs1y4Vp2OC1NDStTIbnOpeAkgsk3lRGGTRfXz36Vj6Sbc84H4FnjXr8Lk6zB1dkOn3zbov+fUmxuXK6oYJ9IuVIwTEYng2ZI/DyosxsWUeqkk4yrt7ZKOn4xTokYkXp71VqfXDLHNdQuvnVwzM073sYiIiEj78azHxcLFmnOmzk35Ba0Nb+KHyZc4i3HHfw4699A/9YMNnR6mf96eiCjGBX/OfFHFONldwr/TUfdyOENxw20q3/hrSk4HnHw0tvVx56/4H1//8oZOr9zH0XPjhjPD3Fy4yfTidCzLE5HmUjFORCSCFyTjwk38pGvwYki9hBv1lhWFPtfgp3WUqBGJU/k+LhfMAGJqU1l+j6jMjPNimCspIiIiIttvYnaCRW+xbjKup8NlaE/Xxi74xl/Dgbuh70R8i0x0wMm/R9/VF8Bb/9+zI8EmfliAWGlf5z5SyZTa28muE/6djpoZN1Yuqm8g4WotvPlVru+/Hzp64lvg3iwcesh/j9iAVGeCw/u6OVunGAdKuYq0CxXjREQi+Jv4Brfcgs6Jt02lrbS3cx0HQzxpHRGp8KwXJFyDgpkBrImlTaUXzoxzV7SbVTJOREREpC2VN/BrJONGJ2c43p/CcarnyVWZvwkXgjlTcbv979OxdMNvgbmOdGeCoT1dkcU4YwzDmWFt4Muuky/k6Un00NvVW3VsdHKGrqTDwY0U1Sdeg5sXuNr37vgXefsvw8WXYGZqQ6efPJDm7JX6xTgV1kXag4pxIiJrWGux2FXt7RJuPG0qK693VrTANKBZUyKxK1m/YFaZGeenUKHxGY1hMq4jKKonXD8Zp/tYREREpP2ERamaybip4sbSNACjZ8CW4LZfjGl1K9z2GBYH3voUL5pnAAAgAElEQVTKhk4/cSDF6GR1m0rwk0NqUym7Tb6QJ5vJYkx14XxsaoZjfRssqr/1VQCu9j0c9xLhtscAC28/u6HTTx5Ic26yiOdVd2EJHyBQMU6kPagYJyKyxsqCWbiJn3QMYChtoB1IPZVkXCVRk3ANRm0qRWLnF9bXtKm0/u8bLaxbvNX3sWbGiYiIiLStXCGHa1yGUkNVx+aXSuSvzzGy0TlTZ78OnXsh24RETU8vN/feCW99bUOnnxjwN/GjWqlnM1kuFi7q51DZVfLFfGSLSvDbzW547uNbX4eD97PY2Rfj6gIHH4DUgP9esQEnBtIsLHtcujlXdSyVTNHb1auUq0ibUDFORGSN8g8q1iHpVpJxWIeSF18yLulWZk2BNvFF4hYm48IUqn87x5mMM5oZJyIiIrIL5Ao5DqYOknSSVcfOX53FWja2iW8tnH0GTvw8uIkmrBSu9T4I4z+C4uS65470pyjMLzNZXKg6lk1nWfQWmZxd/zoi7cBaW07GrbW47JG7PsdI/wYSrgsFuPgCnPh7TVgl4Dhw8lE49yxsYI8pfO85VyvlmskqGSfSJlSMExFZo1IUM/4cKILUSwxz3SqvX9EC03FAyTiR2JVnxoXzGQ2AKR9r7NolVrab1cw4ERERkfaVL+Rrt6gMZq6d2Eibysk3oDgOJ5u0iQ9c3/9gsLAz65574oC/5nMT1Zv4am8nu83U3BTzpfnIYtyFa7OUPLuxovr574G3DCM/14RVBk4+CnPX4fIr654arnk0Yv4j+O11dR+LtAcV40RE1gg36e2KRI3jmGCjvdE0TSm4tlNJ1LhKxok0Q8mWVt3HrvHvPYijGOdhbaWVbcI1WOs0/B4hIiIiItsvV8xFbuADjE75hazjG2lT+c53/Y/HfzaupVUpZEagez+MPrfuuWEB8VzEJn5YfNTcONktwr/LUYX1sJC1oft47NvgdsLwe2Jd3yrH3ud/fOdv1z11IN1JpitRc/7jcGaY8ZlxFkuLca5QRJpAxTgRkTWiZsb5m/lOwwUzrzxzbuUcK7/Qp/Z2IvHy7ylTvo/doCUsxDAzbs21y+8RDbayFREREZHtNb04zc2FmzWTcecmiwzt6SLVuYG2k2Pfhr3DsO9ozKtcwbgwchrOfdNvi1nH0J4uejrcyE38g6mDOMbRrCnZNcK/y1Ez48aCovqG2lSOfguG3w3J7ljXt0pmCPpug3e+s+6pxhhGgvmPUYYzw1gsF4sX416liMRMxTgRkTXKiRlryjPj/GRc46mXcgHAmnIxLmxTqWScSLz8ZFxlPqNrgDAZ5zWYjMOfR7eq0GcNFiXjRERERNpJ2N6tdpvKmY21tvM8OP+3cOz9YEycS6w28vNQuAyTb9Y9zXEMIwOpyE38pJtkqGdIyTjZNfKFPAbDofShqmOjkzP0pTrY21M9F3KVmSm48uPmtqgMHX8/nP8+lJbXPfXEQKpuMg7UclakHagYJyKyxsq5buHMONf4iRqvwdRL5doOyRXz6DQzTiR+nvXwVhXMIPynTyPF75X3sWNWJuMMpQaLfCIiIiKyveoV46y1jE4WN1aMm3wDZq9W2s81U/g1zq/f4m6kv3aiJpvJagNfdo18Mc9gapAOt6Pq2NjUBovqY9/2Px4/He/iohx7HywWYPzv1j31xECa8el5igvVhTsV40Tah4pxIiJrrGxTmVjZgs4avAZTL1HJONcNrq1inEis/Lluq2fGYU352FatvI/LhT7XT7h6SriKiIiItJVya7uImXFXZxaZnl/eWGu7sN3cdhTjekcgPQQXvr/uqScG0ly8McfcYvW/U4czw2pTKbtGrpCLbFEJMDpV3Nh9PPYt6NwDhx6MeXURjgbvFWPrt6ocCWbdjUWk4/q6+uhOdOteFmkDKsaJiKxRaVNZmRnnhOm1BlMvlblwJmhPCckgUaNinEi8StZvJZlwVrSpjCEZV7mPK+8RyaBg32grWxERERHZXrlCjt6uXlLJ6tRM2BZuQ4mad74D+47A/ibOiwsZA0ffC+/87bpz404cSGFtZWbWStlMlmvz15hdmm3WSkW2Tb6Qj0y43pxbYqq4yPGN3Mej34KjPwPuBmZENiozCP13wDvfXffUEwf8QuLoVHXK1RhDNpNVMU6kDagYJyKyxso2leHMONcBS+Mb7ZVEjVNJxjkO1mpmnEjcSl4JWHmvGWycyTjWzIxTu1kRERGRtpMr5OrMi/M3vk8MrJOo8Ty/MHbs/XEvr7aj74XCJbhxvu5p4dqjNvHDFJHmxkm7m1ueY3JuMjLhGhaiw3RZTTcuwPWx7ZkXFzr2Pj/hus7cuKN9PTgGztWaG5ceVptKkTawq4pxxpgnjTEvGmPOBb+eMsY8tIHXfdAY89ng9U8Gvx/ZjjWLSOsJN9OtrcyMc4wB23gLuvK1V7TATAZtKu06TzSKyOaUrA2ScSvaVMY4M85aJ5gnCQnXL/Q12spWRERERLZXvWLcuckiHQmHQ/u6619k4jWYu7Y9LSpDR9/rfzz/vbqnHe9PYQycm4hOxgFK1Ejbu1S8BBDZpjIsqq+bcC3Pi9vmYtxiES6/Uve0zoTLcG9PzfmPw5lh8sW8Hg4VaXG7ohhnjBkxxjwFfMFa+7C19gTwcHD4RWPMk3Ve+1ngw9baj1trn7DWPgE8AXzDGPNo81cvIq0memZcMA8qpplxDgZjVqR1MErGicSsZEvYFek1xwDW/6dP/Mm4cGacfvgRERERaReLpUWuzFypk4yb4XhfqvxvvprCNnPbWYwbuAu69sH5v617WlfSJbu/O3ITPyxcKFEj7a7e7MexqRkcA0d61ynGXfg+dPfCgbuascRoYZr2nY3NjRutlYzLDLNQWmBydjLO1YlIzHZFMQ54Eviotfal8BPW2hvW2seBp4HfMcZ8bO2LjDEfBD4UnMfK1wIfB54yxuxr7tJFpNVEzYxzHcA2PtctfL1r3PLnEk6YutMmvkicSl7Jbwm7Khnn/z6WmXG2emZco+lZEREREdk++WIei61djJua2cS8uKP+zLjt4jh+Ou7899c9daQ/HVmM29u5l0wyo2SctL2woBxVjBudnGG4t4eOxDrb4LkfwvB7/JmM2yU9AAN3wtgGinEDacaminhedVel8M+twrpIa2v7YlyQXvtGUECL8tHg42cjjj0JfC7qRdbaZ4Lf/m5jKxSRdrMy9RLOjHOMARovxoXXNqby9ptwHaxVMk4kbv6MR4eEG7abpZyMa6Qt7OpknP+7cGYcNJa6ExGRjTHG7DHGfMAY82ljzB8ZY75gjHneGHM2+PiF4PO/HZy3Z6fXLCKtJyxCRRXjFpc9LlybXX9enLWQ+0GlbeR2OvpeuHYOCuN1TzsxkGZ0cqZqE98YQzaT1cw4aXv5Yp5UMsX+zv1Vx0anZtafFzd7DabeguFHmrTCOo78NOSf92dP1nFiIM38kselm3NVx8L3MBXjRFpb2xfjgMfrHQyKdC9BuXBH8PuHgBHg+TovfwGoStSJyO62OvXiv00m3HhnxnUZD576p/TM5Eg4/qwpzYwTiZdnvcrMuLFv88DYH5WPxTEzrvo9wqw+LiIisQoKcP+bMeZt4DrwH/DHE5jgfz+L/7Dls8H/NsAvBuddDwp1nzbGHNuB5YtIC6qXprlwbZaSZ9dPxt04DzOTkN2BTfwNzo07cSDF3FKJ8en5qmPZTFbJOGl7+UKebDpbHgcS8jzL2FSRkfWK6vlge3j4PU1aYR3D74aFab8YWEf4XhTVqvJg+iCucVWME2lxiTgvFjxt+CjwCLAP6MUveO0DbgCjwDXgXPD7Z6y10w1+2RHgY8aYE8G8tyijQFh8Cz264lgto8CjxpgRa22980RkF1mZekk4BqbO0j07gz8PqrGCWXjtw+Ya/ORLPMJfcuan/jtoZpxI7PziufHbU/6nX+U44CQfCo41MDPOq7xHdF4/C8kBXKcDJeNERJojKJ59Dr/w9uf4M76fsdbe3OR1HgU+CLxkjHke+Ji19ny8qxWRdpIr5OhOdNPX1Vd1bDRo67j+Jv4L/sfsqbiXt76h+yGZ8otx936g5mlhuu/tiSKH9nWvOpZNZzmTO4NnPRyzG57Zl1tRvpDn2N5jVZ+/PD3P/JLH8fWScbkfgnHh0EPNWWA9h4P3jvzzcODOmqeF9/G5ySI/e/vAqmNJJ8lQakiFdZEW1/D/l22BpxO/gV/oq5dwC+e+rSyoPRLxubXOBR934J1YRHZKZSPd+K3n/vyfcPKV38PGMTMuaDuQNOFXsOxfnsBaR8U4kZiVPL9N5cEbL5Y/5wT19LiScf1f/xfw1Sf8mXExzKMTEZHVjDG/h/8z32ettX3W2k9aa7+42UIc+KMIrLWfsNb2Av8W+KIx5tNxr1lE2keukCObqU7TgN/aDlg/GZd/ARLdcOCeZiyxPjfhp2rWScaFf4axqepETTaTZclbYmJ2oilLFGk2ay35op+MW2tscoP3ce4HcPA+6OhpxhLr6zsJXXvh4gt1T+tPd5DpSkQm48BvValknEhr23IyrlWeTrTWfgb4zDqnhY8nrXxX2xe8vtasOfCLfOAn/ETkFhFupFvrkGAZpt4kMdQLDGBpbJM9vHbHip/1Hhx/CmIo9InIamGbyhOjf1L+XBL/PvPW6cdf97rBNSwGZ2EaJl7HdQzWKhknIhIXY8xe4Cng69ba2+K+fjAj/JQx5qPGmK8Bj8fQtUVE2ky+kOfYnmORx0Yni/SnO9nTlVznIs/D4Yf8wthOGH43fOszsFCAzkzkKQPpTtKdiXLab6WwRWeukGMoNdTUpYo0w+TcJAulhcjZj6NTQcK1v07CtbQMF1+Eh/5xs5ZYn+P46bh8/WKcMYaRgXT5z7TWcGaYr5//ejNWKCIx2VIyrp2eTgyKffuAp9cU3jZTYNu3/ikisltUZrc5dExfAG8Zx1vGb1PZYDIueH0HlescmDmLxbDcQHFARKr595thz3Sl974T3N8NJeO8SnrWeEtwbYwkS4TJOBXjREQaExTiPg983Fr7+838WtbazwMfBp6M43rGmBfXP0tEWoFnPfKFfOQGPvhzmdZN0ywvwPiPdqZFZejwKcDCpVdqnuJv4qfKab+VhtP+n1/t7aRdhX93o2Y/jk7OkOpwGdzTWfsCV16FpdmdmfsYyj4CE6/5RfU6TgykODdROxl3c+Em04t6tkikVW3qsZ02fTrxiTUfQ5spsFU3DweMMR8DPgYwODjImTNnNr24VlQsFnfNn+VWou9bfMYWxvzfWMPb3/syp4C56evgGCyW5557LrKNyUa8VnwNAKe0WP7c4lwBkn1cu35N38M2ofutPcwvzvstYBdmy59LYFkEXnzpRW501QvH1zaxFLTwsQ7L87O4tsQ7P/wqWP994dvf+TYpd52NG9kw3W/tSd83adCItfZD2/XFgoc2P2mMecBaW3s3ex3GmN9BIw5E2sbE7ASL3mLtYtzUDL90z2D9i1z+EZQWd3YT//DD/seLL8Lx99c87Xh/ihfeuV71+aH0EI5xyBdVjJP2FP7djSzGTc1wfCBVfw8n90P/4/B7mrG8jck+AtaDSy/D8Z+tedqJgTR/8dJFZhaWSXWu3tYP38tyhRz39O1A21wRWdeGi3Frnk4ca96S/KcTjTFP4T+d+MmtXscY80HgUfyiXr3ZcFtirf0cfqtOTp06ZU+fPh33l9gRZ86cYbf8WW4l+r7FZ+/EXvgKgOG+oSS8AZmeTpj3//H2sz/3s7iOu6VrT701Bd+HVNKFZfBMgnRXB2BI70nre9gmdL+1B/c/u4BDZ8KAlwBvmYT1i3H3PXAfjwxtbdNk9MYo/FcAhw7XwjKcynbBeb/hwE//zE/T26UO13HR/dae9H2TRlhrX96hr9tIIW4E+N0YlyMiTRbOVooqxt2YXeTazGL91nbgt6iEIJ22Q1J9sP/YuvOmRvrTfPnvLjG/VKIrWfl5NukkOZg6qFlT0rbyhTwGw6HUoapjo5NFHjyyf50L/BAyh2BvdTFv2xwOnuXJP79OMa4y//Hew3tXHQvfy/KFvIpxIi1qM20qR6y1H2p2IS5krb1hrf2kMeaBrbzeGLMPv3j4hLX26QaXc7XB14tIGyl5Qfs66+BePQuA4y1BDPOg1rap9JxOHBu2wLR1Xikim2Xx21Q6dhmS/iDuRHjvxXAfYw2UlgDovvl2LO8RIiLStj4OPLPTixCRjQtb20UV485N+m3g1m1TmX8e9g7DnoOxr29TDp+Ciy/VPeX4QApr4fzV2apj2XSWi4WLzVqdSFPlC3mGUkMk3dXzHeeXSly8McdI/zr3ce4H/uzFLXZAikVPL/Tdtu7cuJEB/wGBc+vMfxSR1rThYlwbPp34LPBpa+1nahy/AeWi3Xq21sdKRNqSJSyKGZygGGe8RcK3zIZmTQWb9J3G/1hyO3HtMlhTKQKKSCxK1gMbzHULinFJ0/jMuMprjd+WCOi8eQ7NjBMRaT5jzAPGmI8YY347+Fjz4U1jzIPGmN8Lzv0FY8yeJq3pg8AXgGvNuL6INEeukMM1LkPpoapjo8FGd7jxXVP+hZ2dFxc6/DBMX4TpyzVPCQsSozU28dWmUtpVrpCLLKqfvzqLtesU1QvjcOPCzraoDGUf8Qv8dR7UPtrXg2MqDwyslEqm6O3q1fxHkRa2mWRc2zDGfAP4Qp1CHEDYtrJeH6mwUKcfqkRuIeWNdmugnIxbxNrGN9rDa3eEBQG3koxrpDggItX8e9XBeMuQ7AagI4aCWfhaYw0muG87b6gYJyLSTEER7izwIvBZ/JEGnwVeNMa8ZYz5h2tfY6192Vr7KeCLwGdows91wcOdj1hr60dSRKTl5Ao5DqYOknSSVcdGp2ZIuobh/d21L1AYh5sXdnZeXCgsCF58seYpx8Ni3FT1Jn42k+Xa/DVmlqqPibS6fDEfOS9ubCooqtdrNxsmSsPZizspewpmJuHG+ZqndCZchnt7Iovq4Cd9lYwTaV2xFONa6elEY8xngW+sU4iDSjGuXjLuRPBRP1iJ3EI8z99I73VmMQvTgMGUlgjfMuNtU9nlF+OsUZtKkZjZcjJuGTr8zYekia9NpUt4DUPy+tvlgr0K6yIi8TLGfAC/CHcC/8mHMeDl4KMBTgJPG2N+aIz5+bWvD0YtPEv41ES8fhf4dBOuKyJNVitNA3567EhvDwm3zrZZ2E6uFYpxQ/eBk6g7Ny7VmWBoTxejEYmasJChRI20m7nlOabmpsimq4txYXrsWH9P7QtcehmMC0PvatYSNy58L1mvVWV/KjIZByrGibS6hopxrfZ0ojHmd4AbUYU4Y8w+Y8yjKz71heDjSJ1LjgTXG61zjojsMuFG+j4z73+ie7/f5i6GjfbqNpUdON4yFoOnDXyRWHmrZsb5TzV3BqnUOIpxybCA3tOLszRDImhxGxb0RUSkccaYB4Gn8Ytvj1lrHWvtSWvtqeCjAzwM/D5+Ue4ZY8xXjTFH11xqqglrewh43lqrsQYibah+MW5m/RaVF1/0C2BD9zVhdZuU7ILBe+sm48BPx4VpoZWG0/5/BxXjpN2Esw6jk3EzHMh0kumqTr+WXXoZDtwFHXUKdtvlwN2Q6F63GHdiIM3YVBHPq36gezgzzPjMOIvBOAURaS1bLsa12tOJQZ/+PmvtEzVOWVmII2gjcgN4rM5lHwU+F8f6RKR9hDPjwlaSdKT9YlwMLejCQl4n/kfPCdpUWsefbyUisfGsR3gbV2bGBYXwGGbGJYJrkfRTd27wtTx0L4uIxOgp4DNB8e3ZqBOCBz6fsNb2Ar8EFIAxY8ynmzUnLvBxa+3TTby+iDTJzYWbTC9ORxbjSp7l/NXZ+nOmAC6/4m/iJ7uatMpNyp6Ciy9DnVnkIwOpmm0qAc2Nk7YT/p2NSsaNThbr38fW+sW4QzUbvG0vN+En9C7/Xd3TRgbSzC95XJ6erzqWzWSxWC4WLzZrlSLSgMRWXrTi6cSXgCeifigKzvl14KP4Tyd+A/+HlZWNb2N5OjF4IvGROoU4gEeobh/yUeDzxpgn1j7NGBT3bkS8RkR2uVLww0sHYTGuBzMzCY7//EIcybiwTWXJ7SrPjNOcKZF4WbzKU0dBm8rwvo6l3aypvEcAODRe6BMRkQpjzK8Bo0FnlQ2x1j4DPLPi9f/BGGOB/cTYptIY8zH8zjBbfe3HAAYHBzlz5kxcy9oxxWJxV/w5bjW38vftwsIFAG5euMmZqTOrjk3MeiyWPJau5jlz5kr0BazlvRde4Grfu3lzm/8b1vq+DRZS3LVY4Idf+VNmU0ciX+vdXOLG7BL/7evPke5Y/ZbY7XTzgzd+wNHJtcFiicOtfL8103PTzwFw/kfnuepeXXXszcszPDKYqPnfvXN+kp+eneKtYopLNc7Z7u/bbV4/g5e/yXef+yaY6AzNzav+z5tfeuZ73Nvvrjo2Ne9vtf/N9/6Ge7rvae5iW5jut/Z0K3zftlSMo/J0Ys0fiqy1L+Mn5Z4I2kN+HP/pxCeBT1trp7f4tVcxxozgJ+xeCAp+UUaAkbXFOmvt08aYx4DPA4+vuOY+/B+sHlfLEZFbT7kFXXmjPRW0qfT/IWQbmO0WFvoqbSq7cLxlUJtKkdhZ6+GGRfUgGRcW0OJIxnWEnwiu7VoooTaVIiIxepSgaLUV1tov4o9HwBizF+iNY1HBz4v7tjrOwFr7OYIOLKdOnbKnT5+OY1k76syZM+yGP8et5lb+vn117KswDr/8U7/MHb13rDr2zTeuwLdf4B+872FOHavxtnEjB9+a5uBDv8zBd59u/oJXqPl9mzwEb/zfvPuQAw9Gr8m+McF/eeN5Dt5xPw8fXf1nO/ZXx/C6vVv270Sz3cr3WzN97wffI11M8yu/8CsYUykwX59ZZOar3+B999/G6ffXmFD02pfhv8PtP/dhbs8+HHnKtn/f9ubhv/4Np991BPpPRp5y9/Q8Tz7/LJlDJzj93mOrjt07dy9/8Od/wL5j+zh91+nmr7dF6X5rT7fC923TxbgWfDrxs8A+1rShjPBSjbV93BjzQWPMZ/GTcATXe0yz4kRuTeFGe7kYl+zBeMtVx7eiPDOunIwL21QatakUiZG1FovFKbep9GfGdQSF8EYKZmFBPrxWmLpzsZRQMk5EJEZ91tp34riQtfYmcDOOawG/u05XFhFpcblCDiCyTeXopN/G8US9mXFhG7mDLdLeDqDvJHTu8efGPfiPIk853u//u3V0cqaqGJfNZDl7/WzTlykSp3D248pCHMBoMBsx/Dsf6dLL/tzHwRZKkB283/94+ZWaxbiBTCfpzgSjk9XzH/u6+uhOdGv+o0iL2koyrqWeTrTW1pv5ttFrPI3fdlNEZEUryUoyDiBhG29vV07UmMrMOH8enaNknEiMwnttbZvKzhhaSVbu49XFuASWRRp7jxARkVVa7uHIYJxBrY4sItImcoUcfV199AQdDlY6NznD/p4k+1MdEa8MXP47v4VcK23iO46/kX/5RzVPye7vJumamnPjnss9R8kr4TpuxKtFWk+ukOOO/XdUfT4sqo/ULaq/Agfubp25jwADd4Lb6a/tXR+MPMUYU3P+ozGGbCZbfuBARFpLdPPZ+mJ9OtFaOxbHtURE4lKZBxVsqIct6Gi8vZ1nPbAOSfxrrEzGeQ20vxSR1cL0mluVjGvGzLhKMg7AQ8U4EZGYtOI/jh4JOr+ISBsL0zRRRieL9Tfwwd8oH7izPDu4ZQzdB1dehdJy5OGE63Ckt4exyepN/OHMMMveMhOzE81epUgsSl6Ji8WL0QnXqRkSjiG7vzv6xdb6ybhDDzZ5lZvkJv0if5i+rWGkP1UuOK41nB5WMU6kRW2lGNdyTyeKiMSpknpZs9EeWzLOIcEyOEmscXG8JTQzTiRelWTcmplxQaEsloTrmmuX3yM0M05EJC41hrzsDGPMx4APGmNejPoFfCg4b+XnRKQF1S3GTc0wUq+1Hfgb5WE7uVZy8H5YnoertdtNHu9Pl1v4rZRNZwHIF9XeTtrD+Ow4y95y5L08NjnDkb4ekm6Nre8b52HuOhxqoVazoYP3++8xdR7YHhlIc+nmHPNL1ftIw5lh8oW8OraItKCtFONa8elEEZHY1GpTWU69NJioMRg6KIGbxBq/W7CxRv9QEolReD+V/6ETFMziaFNZa2ZcIob0rIiIrHLdGLNnpxcRstZ+zlp7wlr7cNQv4IXgvJWfE5EWs1BaYGJ2InIDvzC/xGRhoX4ybvoyFK+01ry4UHneVO1UzYmBFO9cnaXkrd7ey2aCYpxmTUmbqDv7carISH+d+/jSy/7HVkvGgV8gnL8J19+pecrx/hTWwlhEq8rhzDCL3iKTs5NNXKSIbMVWinEt9XSiiEjcarWpTMSQqPFfa/xknOsn4wAMqE2lSIzC+zRMq1XaVJZWHd+KsNjWaWok41RYFxGJyzeAz2/1xcaYXzDG/LEx5s+NMS8YY6L7tonILeVi4SIWWy4+rVSZM1UnGRcWuloxGdd/GyS66xbjjvenWFz2uHRjbtXnh1JDuMZVeztpG7WKcSXP8s7V2fr38aWXwe3wZ8a1mg0U1cM/W1SryvC/h+5lkdazlWJcSz2dKCISt3AjPVlOxoXFuBhnxhm/TaXn+Mk4B9SmUiRG4X3qrkm4dsR1HwPJcDZc8B6RNI0X7EVEpMJa+0XgMWPMb230NcaYY8aYTxtjrgIfB5601n4I+HP8559E5Ba3XpoG/PRYTZdfAQwMvasZy2uM48LQvXD5RzVPCVN/o2sSNUknyVBqSMk4aRu5Qo6kk+RAz4FVn790Y47FZa9+u9lLL/uz2RKdTV7lFhy4G5xk8F4T7Xh/WIyrbjmrYpxI69pKMU5PJ4rIrlaZGRcm44IWdDauWVMOCVtalYxzLHhoA18kLuVk3Jq5bp0xFMzC94iuIGUXvkckjZJxIiJN8GaucE4AACAASURBVCHg88aYPzPGHIs6ISjA/bYx5ixwDngUeNRa+2Fr7Vhw2na0IOgN1qNuMiItLNygrpWMcx3Dkd51knH9t0FnnRZ4O2noPhj/EdSYYxxu4o/V2MTXzDhpF7npHIfTh3Edd9XnzwV/t4/XKsZZ27pzH8EvEB64q24yrqcjwaG9XVVFdYChtFKuIq1q08U4PZ0oIrtdpU3l2mRcM9pUVpJxVhv4IrGptKkMPhHcxx003qYyfG3nmtRdUjPjRERiZ619BvgUflHunDHmrDHma8aYLwQfr+IX4D4D9AEfstY+Yq19ec2l+pqxPmPMB40xLxpjLPBQ8OlzxphzxpjPNuNrikhjcoUc3Ylu+rqq3xZGJ2cY3t9NR6LOdlkrb+KDv7aFabg+Fnm4P91BpisRuYmfzWSVjJO2kSvkOLLnSNXnwzlqNWc/3sz5M9mG7mvm8hpz8H649IpfOKxhZCAdmYxLOkkOpg7qXhZpQVtJxkF7PZ0oIrIp5WScXZ166Ywh9VKyJbCOX4xzVibjrNI0IjGqJOOC+yoRzIyLragOiaCwV2mBufq4iIjEw1r7GfyfQaeBE8BjwOPBx/3ATeAJa21v8PBolEebtLanrbUPW2vNml8nrLUfb8bXFJHG5Ao5hjPDGFP9bPi5yWLtDXyA4iRMX4SDDzRxhQ0KC4Xj0a0qjTGM9KfKBYuVsuks1xeuU1ys3uAXaSXW2vK9vNbo5AyZrgT96Y6IVwLjP/Y/tnIx7tADMHfNLxzWMDKQYnRqBhtRsBvODCsZJ9KCElt5kbX2GWPMp4DfAx43xowCo8ANYB9wKvhogs99qMYPRU15OlFEpBHhP2Q6yvOggjaVsc2acvxNfLdj9cw4takUiU14n4b3LW4SzyToDApoccyM6yq3sg1mxjlqUyki0izW2qeBp40xvwY8gv/z5g3gG9baZ6NeY4x5EL8zy3Xg08BL27RcEWlhuUKOE/tOVH3e8yzvXJ3hfSf7a794PGgbd7CFN/EP3AVOwk/w3fMPI08ZGUjzw7FrVZ8PW3fmi3nu7L2zqcsUacS1+WvMLs9GFuPGpmYY6U9FFtyBoBhnYPDu5i6yEUNhUf3HsK86/Qcw0p+iML/MVHGRgczq2XfDmWG+dv5rzV6liGzSlopx4D+dGBThPo//dOLaf8ncAD5trf23dS7TlKcTRUQaUTUzLmhvF7akaygZ55XAGhJ2GdzEqjaVy9rAF4lNpU1lUIxz/PstGUMyrvwewer3iI4Y3iNERKS+4CHPWum3tee+DHyiuSsSkXbiWY+LxYucHj5ddezSzTnml7z6ybgrP/E/Dt7bnAXGYQPzpo73p/jSyxeZXyrRlazM2yoX4woqxklrC1Nf0cm4Iu8ZqZP/GP8x9J0sP3jdkgbvBgyMvwp3/krkKceD96rRyWJVMS6byXJz4SbTi9Ps6djT7NWKyAZtuRgHejpRRHan8sy4cKM9aFOZjKFNpWc9LEGbSrej3KbStVYz40RiVGlTuSIZ57h0mSAZ5zWejAvnz4XvEWEBXzPjRERERFrTxOwES95SzdZ24Ld+q2n8VdhzGHp6m7XEeBy8H978qj9vKiIdFP4Zx6ZmuOtgZaM+/O+iWVPS6sJiXFhADs0uLnPp5jzH++vdxz+Cw6eaubzGdaSgdwSuvFrzlJHgzzg6NVNVfAzv5Vwhxz199zRvnSKyKQ0V40J6OlFEdpNwIz1Z3mjvAqDTxJSoCZNxTnJVm0qrNpUisanMdQuTcUk/GRfc33HMjOtck55NKhknIiIi0tJqbeCDny6BdYpxV16FwTbY2B66H17+E5i+BHsPVx0OCxVri3F7Ovawp2MP+aKKcdLacoUcBkM2vfpefmdqFqhzH8/dgBsX4OF/1uwlNm7wnrrFuMP7uulMOOX3rpVUjBNpTc5OL0BEpNWEM+M6jQdOElw/7h+2t2t41pR1cFkGN1lJxmH9/4sYvCsimxfep+U2la5fjItzZlwHy/4ngplxHTEU7EVEBIwxf88Y85Ft/pofMMZ8YDu/pohsv7qt7aZmyHQmGEh3Vh0DYHkBpt5q7RaVoXCm3fiPIg+HxbioTfxsJqtknLS8XCHHYGqQDrdj1edHp/y/0zWTcWFxa6iF5z6Ght4F18Zgofo+BXAcw/H+VDnVu9LKlrMi0jpUjBMRWaOSjPPATfq/WJGM8xpLxlkMrl0uFwcAnKBeoE18kXiEhe2wiI6TwHNcEmYZrBPPzDhbAuNAoiv4WkrGiYjEIRh5YIwxf2SMyTT76xljfg8Ysdb+RbO/lojsrPPT50mYBAdTB6uOjU7OMDKQwkS0dQRg8g3wlmGoDYpxB+72P9ZI1fR0JDi4t4vRqYhN/HS2XLQUaVW5Qi6yqD4WFKZqFuPGw2Lcu5q1tPgM3gtYmHit5ikjA6nI+ziVTNHb1at7WaTFbLgYp6cTReRWUW5Bx3KQjPOftOqIKRlnreMX45zVybiVX1tEGhPepwmzOhmXtMuAE0syrpOSn5wNCvaaGSciEh9r7efxRyG8bIz5rWZ8DWPMrxljzgJft9b+fjO+hoi0lgvTF8hmsiSc6qkto5NFTgyka7/4yk/8j4NtsInftQf2Ha2sOUKtRM1wZphLxUsNzVgWabZcIceRzJGqz49OzXBobxc9HTUmM43/GFIHIDPY5BXGICz8j/+45ikj/WkuXJtlqVS9lzScGVYyTqTFbLgYp6cTReRWEc51S1ICN1EpxgWb+patt5JcNTPOrcyMC4tx2sQXiUdYMAvTargdWJMgQQkw8c2MczsguI87rdpUiojEyVr7DHAKeMQYc9YY89vGmD3rva4eY8weY8xHjTFvAx8CTllrvxnHekWk9Z0vnOfInuoN/NnFZS7dnK8/L278VUh0Q9+JJq4wRoP3wpV1EjWTxapRCdlMlmW7zJXZK81eociWzCzNcG3+Ws3Zj8fr3sc/ao90K8DeYejaW3du3PH+FCXPcuHabNWx4cywknEiLWZTbSr1dKKI3Ar8jXTjb9o7lTaVyXDWVANPCFpr/TaVa2fGqU2lSKwq7WaDm8tJ4DkJEixjbDzJuA5Kq1rZJpWMExGJnbX2hrX2E8AvASeBG0Fh7o+MMR8xxvyCMebY2iJdUHQ7Fhz/SHD+28B14CHgcWvth621N7f/TyUiO8GzHrnpGmmaICE2UjcZ92M4cBc4brOWGK/Be+DqWViajzx8vD/N9Pwy12YWV31es6ak1dWa/WitZXRqhpH+Gvfx8qLfbrYdWlQCGOMX1cdrF+PCBwhqpVzHZ8ZZLC1WHRORnbHpmXF6OlFEdjt/o90JknFJSPgDvDtNacXxrSl5JbAOjl0uJ3UAXJSoEYlTeWZcUCALi98JlgFT9QTwZpRnxnnLQTJudZvKRq4tIiLRrLWj1tpPWGsd4HcBA3wKeAYYBa4bY0rhL/yi22hw/FPB+U9Ya11r7SettS/vzJ9ERHbKxOwE86V5ju45WnUsnLlUMxlnrb8hPnhPM5cYr8G7wXp+8SFC+GcdWzNvKpv2i3FK1EirqlWMmyouUphfrj0vbuotKC3C0H3NXmJ8Bu/x28160XtF4QMEo5PFqmPDmWEslovFi01doohsXI0GuvVZa28AnzDGjAC/g/904jn8H3RexP+hZxS4Zq2dDl8XFO16gZHg18PAY8Bx4HP4TyfqhyIR2VFhMs5l2W8/F7aptI2nXpat3yLP9aJnxilRIxKPcsEsnBnnJPGcJG6pRHwz45ZXJ+NieI8QEZH1WWufBp5e+TljzHFgH/7Pm9eAG/g/jyr5JiKAPy8OiC7GTRYxBo711djEL1yGuWvtk6gBP1ED/kb+oQeqDo/0VxI1p471lj8/lBoiYRLki0rGSWuqVYwbW6+oHs5ea7f7eGkGbrwDvSNVh/d2J+lPd9RMxoH/3+v43uPNXqmIbMCWinEha+0o8An8wtwHgUfxnzoM3x2sMWbty8JPhE8pPmGt/WIj6xARiZM/183x21S6Sb8NiXEqyTgaScZ5YB3c8sw4takUaYbwXkrY6mSctfHMjPPbVHb47UOMW07G6T4WEdl+1tqxnV6DiLS284XzQK1i3AyH93XTlazRgvLKT/yPg20yawr8jftEV2Xta2T395B0TTkVGEo4CQ6mD6pNpbSsXCHHvs59ZDoyqz4fpsNO1Go3O/5j/57obZO5j1CZbzf+amQxDmCkP83oVHUyLmw5q5SrSOtoqBi3kp5OFJHdImxTmbClcvs53A46wlaSNdoDbETJlrAYHLsUFAf864fJOG3ii8QjvJeSxoJxwRisSZCwCzSajCun7lgqt7HFTZbfI5SMExEREWk9F6Yv0OF0MJQaqjo2OlWsPy8uTNS0U5tKx/Vn3F2JnjflOoajfSnGojbx01kV46Rl5Qq5qlQc+Mm4joTDoX3d0S+ceM2/J9zYtsOb78DdYBz/Pr77f4g8ZWQgxTOvX6n6fF9XH92Jbt3LIi1k0zPjNsNaO2atfdla+2zwcUyFOBFpdWGbykTYgg6CYpy/wd7wJv6qmXH+k5cJzYwTiVWlYGbL97HnJPz7OtZkXPAe4VSKcbqPRURERFrPO9PvMJwZxjGrt8KstYxNzpTbNka68irsPQLd+5q8ypiF86ZqGOlPRba3y2ayalMpLStfyJdTXyudm5zhWF8PrlPVpc038ToM3NXk1cUs2Q19J/1kXA0jAymmiovcnFta9XljDMOZYSXjRFpIU4txIiLtyLMeWINrV2y0u/FstJc8P3XnekvgJPAc/4kszYwTiVc5GYdXTrhak/BbxOJQ8hooqnslsIZkUFQHwE2QDAr2KsaJiOwMY8weY8xHgl/Hdno9ItJaLkxf4MieI1WfvzK9wMxiiRO15kyBvxE+1EYtKkOD98LsFBQnIg8fH0hx/uosJc+u+nw2k+XGwg0Ki4XtWKXIhi2Vlrg8c5kjmep7eXSqyPFaRfXZa1Ac95Nx7WbwXrjy45qHj/f7qd6wTedKw5lhLhQuNG1pIrI5KsaJiKzhF8QcP0HjVCfjGirGWX8T3wlmxpWTccE1rbX1Xi4iG7SqGBe0IbHG9YtxsSTjgveIsBinZJyIyI4KRiSMAZ8Lfp0zxvzDNec8YIz5BWPMnp1Yo4jsnJJXIlfI1ZgX529g12xTubwAV9/228W1m3DNNVpVnuhPs1jyuHh9btXns2k/daT2dtJqLhYv4lmvqk3lcsnjwtXZ2vfxxOv+x3a8jwfvgRsXYCG6OD4SPEgQlXI9uucouUKuoYdRRSQ+O1aMM8b8sTHmavDra8aY39qptYiIrFROxlGq9BJ3O+i0y5XjW722V8JgMNhVbSqVjBOJV1QyznP8ZJxtcGacR9DKNpj9CPjpWauZcSIiO+hJ4EXgMeBx4C+Ap40x9wMYY74WHP8GcN0Y8292aqEisv3GZ8dZ8pYik3HnpvwN7JFaybipt8CWYLBNN/GhZqvK4+Em/pq5cWGhQ60qpdWELRfXFuNy1+dY9mztZNzEa/7HdkzGhQXEiTciDx/p7SHhmKr7GODYnmMse8tcmrnUzBWKyAbtSDHOGPPHwW8/BTwF9AGfN8Y8b4ypfkxJRGQbhakX10Yn4xqbGedhwvCbk8Aav9iXDIpxStSIxKMyM65UTq/5bSqXGk/GeR5YJyjGhcm4BB00XrAXEZEtG7HW/mIwr/yL1trHgQ8DnzHGfAQ4gf/z56eAbwKfMsb84Q6uV0S20fnp8wAczUQn43o6XIb2dEW/uJ0TNal+SA/VLMaFc/LWJmrCeVyaNSWtplYxbiwoRNVsNzvxOnTuhT2Hmrq+pggLiGFBcY2k63Ckt6dmMg4q74EisrN2Khl3zlr7CWvt54OPp4D9+D8UPaO2ISKykzzrYa3BZXlF6iW+NpUGU76m5/jJuKSScSKxqiTj7Oo2lSxjbWPJuFWtbMsz45J+Cg8V40REdsjo2k9Ya5/Gb135mLX2pLX23wa/HgN+Efj1MDknIrvbhWl/ZlJ0m8oZjvenMMZEv/j/Z+/OvttIzzTBP18EAK7gTpDaRVKUSEm5y1leptzpKbu6+6LP9Hicrr7sc7rsrD+gT2XV3M3N1KS7buZm6tieu76YSjvdp3oWz/RkekplV9lVzkxlOrWR4ipKokhwB0CKCyLeuYgIbPEFJGIjCTy/c/LAwkeAn0gFTH4vnveN33PepNl7qZpbrJ6Ba4FtKnvaIuhoDmFuNf8QPxqJoqupK/N1IzouFpILaAm1oK+lL+9+rxA13FekTWVsHAi6zo+zrgtAuC37xgCN4f42FuOIToBjMzNORLZE5F04717886PeDxE1LuegXcEUCzC8NpVhRKQyyTjDS8aZYUCZAFTmEJ8z44gqI7BNpZ2GlJmM82Y/mlI4M6781wgiIirZesD9P4RTkMsjIh8B+D6A/76amyKi4+Fh4iFaQi2ItcZ8a7OrqeA5UwCwfA/ou5x9o+ZJM3ANWJkErAPfklIKQ/3t2vZ25zvOYyHJYhwdLw8TD3E+et5XPJ9d3UZXaxjdbRH/g0ScovpJbFEJAIYBxMaAuD7hCjgzL+fWtmHb+WdKPc09iIajmN+ar/ImiehFHFUx7iOl1H+tWxCRW9C8q5GIqFZs24aI26YyJxnXBOeXl3IG39piI/MjY86sqbBiMo6okrLFOCtzrYkKwZA0AKPs6xgoaFNphhBmm0oioqOkfUeTiHwGYCZg7QM4HVqIqM4tJBdwLnrOd4C/e2Dh8cazTLtGLS9Rc1INXAesfWBtWrs80teGOU2i5mLHRaZp6NhZSCwEJFxTwddxahnY3TyZrWY9sfGiybihvjbsp2082XyWd79SChc6LvBaJjomjqoYtwmnd/9fKaW+oVnvqvWGiIg8Nuxs6sXILcaV36bStnOScd5zG2GEODOOqKK8wnY4J+FqG+7MOChYZSbjJJOMy17HYfe1g9cxEdGR6CmyVqz1wGalN0JEx0/QAf7DtR2IOC3etHYTwNbCCS/GXXNuA+bGDfW1YXFrFzv76bz7z0fPI74Tx87BTrV3SPRCDuwDPEk9KdJuNqhFpTtr7SRfx7GrwPYKkFrRLmfmP65qWlV2shhHdFwcVTHuPTjpty8B+IVSylJK/Rel1L9XSv0VgA9zP1gp9e2j2CQRNSbLtiBQToImJ70WETcZV+asqcwLb16ihrOmiCrJa/kaUXZOMs50CmhiIF1uMk5MhOz9vJlxIaQBsBhHRHRE3lZK/bVS6t8ppS4e4nFB7S2JqE6k7TQeJx/jfPS8b212xWnPOBLUpnJlwrn1ClonUd9l581pAcU4r0Xn/Gp+0e1Cp1PweJR8VN39Eb2gJ8knsMTyFeNSe2nEk3vBRXUvUXbSi3FAtrBYwLuOvde0XBc6LuDp9lPspnertj0iejFHVYz7WES+KyI3RMQA8M8BfAbg3wB4B8CnbnHuf3TbWb5zRPskogZkiQ14bSq9mXGhJjRJ2l2vVDHOm0cXQYTFOKKKyiTjYGVSqKLc4rqosq7jtO0U3QpnxpliATDYbpaI6Oj8IYAfA5hRSq15b/gEMHLE+yKiI/Q09RRpSevTNG6KJPgQvw4SNaGIU5ArkowD4JsbdyHqfL2YqKHjwpthWHgte21WR4pdx239QFtfVfdXVZlinL5VZV97BNHmEGYDWs4KhIV1omPgKGfG/XtvbpyIfCQifyYiN+D07P8jOEO2vwvgIwDfPKJ9ElEDcmZJ6ZJx5RfjbLFhiDunwChob1fmcxNRllfYjkg2GWcbJgBAQZU9M07EgCEHzuEGAJghmHBSd7bNojoR0RH4QER6kP198gM4RbgfAHi3oBtL7vzyYi0siagOzCfmAQDnO/zJuJmVFE51NqM1EtI/OH4fCLcBnf7HnigD155bjCucG+d9vbwCCNFRm9+aB+C/lr1CcnCbyhM+9xEA2mNAS09gMk4pheH+dl9RHcgWL1lYJzp6R1KME5HPROQv4RTcCte2ROQDEfkTEbkEp/f/ZzXfJBE1LNtNxhli5c2MC1dgZpwlaZjeH9imkqhqdDPjRDm3hqiy2lR6BfuQHOQl40Jw7rfB65iI6Aj8EMj7ffId9/fJbgDfAvCXAHrhFOc+cotzH8N5AygR1bGgNA0AzKxsB6fiAOfgOzYGGEf1XvYKGbgGJB4DzzZ8Sy0RE6c7m32zptrCbehv6c8UQIiO2kJyAdFIFN1N3Xn3z65sQyngQm+r/0G2DcQnssmyk0op5+8QkIwDgJG+tsBkHJB9YwIRHZ0j/WlCRHzFOM3HbAL4ixpsh4gIAJAW50DdaUGXbSUZlgOnvV2ZiRrDe/+199xGGCEW44gqypsZF4KVKZh5xTiF8tpUWmIB4v4IlZOeNYUz44iIjoqI/CLg/i0R+YWIvJszJuFbAP4czu/DXbXcJxHV3sPEQ7SGWtHb3Jt3v4hgdiWF4aA0DQAs3zv5h/gAMHDduS0yN66wGAc4CSQm4+i4eJh4iAvRC1BK5d0/t7qNM10taA6b/gdtLQAH2yc/GQcAA24xTvSh/uH+Njzd2sXOfjrv/tZwK2ItMRbWiY6BihfjlFIdSqk/9tp/KKU6yn1OEflZJfZGRPQiLNtLxqVzknFhhCSNcudB5c+M85JxYYTdDklsU0lUGd611IR0TptKtxgnKKuofmBbUJmiupeMCznFODHKem4iIqo+tzj3AxF5A4C2iEdE9WMhsYALHf4D/NXUPpK76eBkXGoF2Fmtj2Lcc+ZNDfW1YW4llXlDm+dCxwW2tqNj42Hiobbd7OxqCsP9RVpUAnVyHY8D+0lgSz/7zWvTOacprF/o5LVMdBxUtBinlPo2gA04LULeA/AhgHWl1L+r5OchIqomy7YgvplxEZhy4MyDKiP1YosN0/v9JmdmXITJOKKK8q6lkNg5bSqdd0oa5SbjbAsK7mFOTlHdhAWgvNcIIiKquVtHvQEiqq6HiYfaFpWzK85speBDfHc2Uz0kajpOA02dgfOmhvvbkNhNY217P+/+Cx0XsL67juR+sha7JAq0Z+1haXsp03LRIyKYW9nGcF9AUd37N98/Vt0N1sJziureGwt0rSpZWCc6HipWjFNK/QWcIdkKzoy3X7i3BoAfKaX+l0p9LiKiarLEghL3oD1nZlxIDlBuMs4WC6abguPMOKLq8a6liOiTcWXNjJPcYlxuwT7ttLJlwpWI6MQQkT876j0QUfUcWAdY3F4MSNM4B9bPPcSvh0SNUtkWdxpD7tegMFFzIeoUMRcSbFVJR+tR4hEE4ruW48k9bO9bwQnX+ATQeQ5oLrtx29HzCooB7WaH+tqglL4Yd7HjIjb2NrC1t1XNHRLRc1SkGKeUeg3AOwDeERHD7cX/hzk9+f8IwL9RSn2jEp+PiKiabBFkGpjkzIyrxDwoWyyYXuuPnJlxYVjuOotxRJXgFcRCyLab9WbGGVCwy0rG2dmCfUGbSoGCQN/Dn4iIiIhq63HqMWyxA5NxTSEDZ7pa9A+O3wNae4H2WJV3WSOxcWcGnmbe1IibDvTSgh6v8MFEDR01799g4bU84yVcg2Y/xu/XR7oVAFq6gI6zgUX15rCJ050tmF1N+da8rxuvZaKjValk3I8AvCEiP9YtisgHAG4A+EGFPh8RUdU4c90CknFiIG2ngx/8HE4yDpnndG6zxTgmaogqI5OMs61M4TvTplKAdBnXWtpO5xTsm9zbMGfGERHVWDXmlRNRffESXeejmmTcyjaG+tpgGMq3BsA9xL/qpMrqQewqsLcFJBZ9S6e7WhAJGZm0oOdc9BwUFB4meYBPR8v7N1iYjPNSYEO6ZJyVBlYn66cYBzh/l4BiHOC0qgxqUwmwGEd01F6oGKeUejXnf79fsPYagJ+IyFyx5xCRWQA/cefK5T7+/YCHEBEdCcu2oLw3C+a0oFOQsmbGiQhs2NlkXGZmXAhh9zkLB2YTUWkyxbicZJzt3hoAbLv0FKolFgwpaFNphGGIM2+SCVciourjvHIiehFBaRrAaVM5EjQvTqS+EjVA9u+iOcg3DYWLva2+Q/zmUDMG2wbZppKO3EJiAT3NPeiI5L/vZnZlG81hA6c6mv0PWp8FrP36aDXriY07BUZL/ybxkf52zK6kfGdLZ9vPwlQm5hPzNdgkEQUpWoxz32n4PoDZnLuHCz7sD0TkP7zIJ3M/7lsFdxc+HxHRkbLEzs6DMrw2le6BexkH7d7jsjPjss/tzYxjMo6oMrzrLSRW5vrNTcZZUnrC1bLt7A9QmYJ9GKabnuV1TERUXZxXTkQvaj4xj45IB7qauvLu30tbeLi2jZGgOVObC8B+qs6KcW5BwpuFV2Cor803Mw5wCplM09BRm0/MBxTVUxjua9cnXL1/696stXoQu+oUGNdntMtDfW3Y3rewktzLuz9shnGm/QyvZaIjFliMU0oNAfgpgO+LSCJnqdzi2WbBn1mMI6JjxRYbhi8Z596KKvmgPVMc8O7ItKmMIMKZcUQVlZkZJ+lMUd2bGWfCKbqX89y6mXGGpAFhMo6IqJo4r5yIDmNuaw7DncNQBa0mH67twBZgJFZkzhQAxK5VeYc11NoDtA8Gtrgb6mvHw7VtpK38n2VZjKPjYCGxoG03O7OSwnBQUT1+H4AC+q9Ud3O1NFC8qO59LWYCWlXyWiY6WiHdnUqpPwDwPwH4pohsFSx3K6UsZNNyPUqpdw7xOXuUUt9x/zcLcUR07NhiZ+dB5bSSBOAU40qcB5V2kzjaNpWcGUdUUZk2lZLOFNNt9zp2knGlX2uWbWXfzWS4UyDdmXECBauMFphERPRc3rxy7ZgEEflAKXULwPsAvlTTnRHRsTO3NYevn/267/6ZeAoAgttUegfdsTpK1ADuvKm72qXh/jYcWIInm89woTdb3DgfPY/EfgKbu5voau7SPpaomnYOdrDybMWXjNs9sPB44xm+/dpZ/QPj94CeYSDcUoNd1kjfZUAZTqHx2n/rmWMSBQAAIABJREFUWx52X9NmV1P4ykhv3tqFjgv4ZPkTiIjvDQpEVBtBybi3AXyiKcR5FIAR97/unP/9Iv/lfjyvfCI6diyx/C3ovAN3VCIZ57WpzKbuwm6BjzPjiCojvxjnpNe8ZJwBwC6nGCd2NhnnFeqNMBQEShTSLKoTEZWM88qJqFIS+wms7a5hqHPItzaz4hTjghM194COs0BzZzW3WHuxq8DKJKB5g+lwn/O1KJwbd7HzIgBw1hQdGS/Ndb4jPxn3cG0HIsWu4zqb+wg4hcWeYWBZX1Q/1dGM5rDhu44BYKhzCM/SzxDfiVd7l0QUQFuME5E/ATCrlPorzfImgGG3JYgB4Afe/36R/3I/HsAl+NtWEhEdKVt70O7cKlFIl5qMs51kXEgKinFGmMk4ogrzinEGkEmhejPjzHKTcbkF+8xcSa/ZQOnpWSKiRsZ55URUafNb8wAQUIzbxpmuFrRGtA2j6vMQH3D+TuldYGPet5RN1BQU4zouAmAxjo6O92+v8Fr2iurahOvBrjNXzZuVWE9i44HtZg1DYaivHbPu1yaXlyzktUx0dAJnxrm/vHykKcjNiMh8zp/XDvk5M7EP9x2Ls0U+loio5myxYWTSa9l5UACgKpqM82bGZdtUctYUUWVYYgGinAi+Wyjz2lSaKO9a0xfsnYKfAmfGEREdFueVE1E1zG05IVqvmJRrOl5kzpR1AKw+qM9iXJF5U92tYXS2hH2H+KfbTyNshDNfT6Jam9uag4LytamcLZZwXZsCxK7P6zh2DVifBfZ3tMvD/W2+ojqQLcZxbhzR0Ql4C5BDRH6mlJpVSn1bRP6Te3dha8lbSqk/FpH/9XmfTCn1xwA+Kbz7xbdLRFR9tlgwxEu75M+MU2KUnIzzingh2HnPCSOMsDtPjof4RJXhtHz1CmZeMs4txomU1aYybac1yTi3GFdGepaIqBFxXjkRVcvc1hxCRghnomfy7hcRzKyk8N0b5/QPXJ8FrP36TNT0uzPwlu8B4/8qb0kpheH+NswVHOKHjBAudFxgMY6OzNzWHM60n0GT2ZR3/8zKNk53NusTrl5yrB6v49gYAHHeNHD6Vd/ySF8b/u/bT7GfthEJZXM4sdYYWkItTMYRHaGixTgAEJHPAHyW8+cbBeu/UEpNK6XeF5Fk0PMopToBvCsiowWPvxHwECKiI+Ek41yFbSqBklvQeY8zRSDKzA7MNcMIu0U4FuOIKsMpfmevMSCnTSXKT8YZXs7fmyeZ+xrB65iI6DBedF65p/uQz5/78RzOS9RA5rbmcD56HmH3jVmepcQudvYtXIppWtsBOYf4dZioibQB3Re1yTgAGOprw6+n/Q2whjqHMLUxVeXNEenNbc1p283OrqQy7VV94vecN2X2jujXTzKvwBi/ry3GDfW3wRZgYX0bl2LRzP2GMnA+ep7JOKIjFNim8pD+BMC8UuobukWl1H8H592M71bo8xERVY0lNoyCQ/zcmXGWXdpBezYZJ9kiH5CXjOPMOKLKsMUGClpJinJ+7DGAspJxdt7MOPc1IicZx+uYiOjFcV45EVXLXEJ/gD8Td5Jf2jlTgFuMU0Df5Sru7gjFrgbOmxrpb8dSYhfbe+m8+y92XMTj5GMc2Ae12CFRhi025hPzvmvZSbhuB7ebjd93rmEzrF8/yXqGnbEnK/rreLjPeW2bWdG3qvTmaRJR7VWkGCciHwH4/+DMmFtTSr2vlPor93YKwE8A/CKn1SUR0bFliwVT3DdOGwXFuDJmxmWKcSKZGVYA3JlxbFNJVEnOtRSQjCuzTaWVl4zzz4wrNT1LRNSoTuq8cqXUnyqlfur+96H73zcr+TmIqDQH9gEeJR7pi3HunKmRWMAh/sp9oGcIiLRWc4tHJ3YVWJsG0nu+paE+52syv5Z/iD/UOYS0pPEo+agmWyTyPN1+ij1rz3ctryT3kNpLFymq33PbOdYhM+wUGgOK6l6BclZTjBvqHMLj1GPsW/tV3SIR6VUqGQcReRvAn8NpA/I2gHfc2xEA/0FEvlupz0VEVE15qRezoE1lGfOgvAN6bTLOXWOihqgybLGhpHBmXE6bStjuXLnDs/KScfkz4wxhMY6IqBQi8jMAP1JKfTvnbu288hd5vmrOK1dKdSmlfgrgIxF52/3vWwDeA/Chu0ZER+hx8jHSkg4sxkWbQ+hvb9I8Es4Bd38dtqj0xMYBsYBVf9vJoEN87+vIuXFUa16K62LHxbz7vdSXNhm3lwQ2F+qz1awnNh5YjIs2h9EfbcKs+8aDXMOdw7DFZqtKoiNSsWIcAIjID+AU334A4Efu7YiI/FklPw8RUTVZYsHMpF4Kk3GlF8y81JspBcU4M4wwODOOqJLSdhqZH3N8yTjn7lKvN1usIjPjFNIsqhMRlUREPsvtpqKbVw7gz5RSUd+Dc+TMK/9ZweMrNa/8x24B7lbB838E53fg7yil/rRCn4uISuAVjYY6/MW46XgKI/3t2RneudJ7wNpMnR/ie/Om/HPjLva2QSlgbjW/GOcVQliMo1rLXMsFhfVMwlWXjFuZdG69f+v1qH8M2HoE7Ca0y8N9bZhd9SfjhruGAQAzWzNV3R4R6VW0GAcAIjInIn8mIn/i3vL/qYnoRLHFzknGecU458C9nHlQaXcuXLgwGWeGYbhdlJioIaqMtG3lJOO8mXHOdZy53soorAcn48qbR0dERM91pPPKlVJdcIptHwZ8iHf/H1Xj8xPRi/EO8C92XvStzaykglvbrU45qbF6Lsb1XnJ+htUU45rDJk53tvgSNe2RdsRaYizGUc3Nbc2hI9KBnuaevPtnV7bREjYx2NHsf5D3b7uer2Ov0OgVHgsM97drk3EXOy5CQWFuk9cy0VEIPf9DiIgaS7GZcQYAyy41TROQjDPCCJWZ1CGifJbkFOMKknHe9VZ6Mc6C6f3BNzMOJbeyJSKi5xORj5RS3rzyTQAfAVgH0APgdQDDAH5WxXnl3mlgUMpu3b3tqtLnJ6IXMLc1h/6WfkQj+UHa5O4BlhN7RebFTTi39XyIH4oAvaNF500VJuMAJ5nktQwkqpW5xByGOod8SdaZlRSG+9tgGJqEa/w+EGoBui7WZpNHwXuNit8Dzn3JtzzS34aNnQNsbO+juy2Sub851Iwz7Wcwu1XRMbpE9IIqnowjIjrprNyDdrMg9QIFy024Hfp53QP6MGwow8wumOHMi3G6xOcmonwHloXMaCDT+eUjOzOuvCSqLXZOm0rvNcIt2HNmHBFR1R3lvHIRmQXwhvufzrB7+1G19kBEzzefmNfOi/NmoV0KSsbF7wHKdNJj9WzgqjYZB7jt7Va2ffOVL3ZexFxiruS5y0SlmNua01/LqykMB17H94HYGGDU8bF31wUg3BpYVB/qc+c/BrSqZJtKoqNRx69KRESlEdjBM+Ok9GScl8IJFbapNEKZJB6TcUSVkZeMc4vfopwfe8xy21TCyjxHdmac16ay9Fa2RET04o5yXrmI3HKLcjpee8ofVnsfRKQnIoEH+Jk5U7GgQ/wJpxAXaqrmFo9ebBzYXAD2kr6lob42JPfSWE3t59/fOYTkfhJru2u12iU1uMR+AqvPVn3X8u6BhccbzzDSH5Bwjd+v73lxgFNo7L8SXFR3C5W6VpUjnSN4uPXQnbNORLXEYhwRUQGnBZ170F4wM85A6fOgvAP6COz8YpwyMkk8JmqIKiNtW1BeMs5NxEEpiDIzxe+yZsZ5BXvvNSKTnhXOjCMiqpHjNq9cKfU6gO8AeFdEbh3lXoga2fruOhL7CVzsuOhbm46nEDIUzve06h8cv+ckauqdV6iIT/iWhgIO8b2CCOfGUa14bVGHOvKLcfNr2xCBPhm3sw6kluq71awndjXbWrfAue4WREwD05pi3FDnEPbtfTxJPan2DomoAItxREQ5bLEhEIQyM+NCebdO6qXEZJwdnIzzXoyZqCGqDMu2kJkeUHC9hVBeEtUWK/MchTPjTJT+GkFERCeTUqpLKfUdAD8G8Lab2iOiI+LNQgpKxl3obUXY1ByH7e8AG/P1n6gB8udNFRh229sVzo0b7nS68LIYR7Uyn5gH4L+WvXaz3r/VPF7bxoYoxo0DqWVg259WDZkGhvraMBP3F+OGu5xreXaTc+OIai30/A8hImocXjHMn4xzi3EovWCWTcZJtrVdznNDDLapJKqQtFgwMm0qc4txZqYNbaltOYrPjEPJcyWJiOhkcZNwfwSgC86suPcBPDcRp5T6PoDvA8DAwABu3rxZxV3WRiqVqou/R6Op1+/bL5O/BADE78dxc+pm3trt+R0Mthnav3d7cho3ILgbt7ByjL8uFfm+iY3fN5rw9NaHmE5eyFuyRRAygJu3JjC4M5tzv42IiuBXd3+F2NNYeZ+/AdXr9VZNNzduwoCBmVszmFfzmfs/mnFaqD65fwurUyrvMaef/ByXAfx6Zgv7j2+WvYfj/H3rXj/AKwA++/B/w1bXdd96p9rFFw/9+39mPwMAfPTZR1Czyve4enCcv28UrBG+byzGERHl8IphoYCZcc5Be3nFuBDs7PPmPDdEIc1DfKKKsHLbVOYU48QIIVxmMk5gZwv2qmBmHIA0i+pERA3BbUWZKb65xblPlVJ/USwdJyI/gjPnDjdu3JC33nqr2lutups3b6Ie/h6Npl6/b3//j3+P9mQ7/vUf/GsolT1oPrBsrHz4/+C/+dJFvPWWphXl54vAp8C1b7wN9F+u4Y4Pp2Lft6lrOBtJ4KzmuUY+/yXSLa14660b+ff/HyM4aDmoy3831Vav11s1/c3f/g0uqAv4g2/8Qd79/3n5c5zuXMM//+Y3/A/6P/93oKkTX/3DbwOq/ELTsf6+bY0CX/wPeO10E/DmW77lz9MP8PEvpvDlr/0+msNm3tpf/uQvgV7grf/K/7h6cKy/bxSoEb5vbFNJRJTDayVZdGacXWprO+dxTb42lc5zKxglPzcR5UuLBZVJxuUnUU33WixlRqPXytYEIMpwBmcDmdcKU4TtZomIGpRbnPsegPeUUu8d9X6IGtXM5gxGukbyCnEA8Gh9BweW4JJuzhTgtLczI0DPcA12eQzErmrbVALAUF8bZlf97e0udl7E3CbbVFJtzG3N+ebFAU672ZFYkes4Nl6RQtyx13EaaOrMtuYsMBqLQsT5ehUa6hpim0qiI8BiHBFRDi+ZFoINgcoe4uekXmyUmIxzD/7DsH0zrAAAoniIT1Qhlp2GKmwl6f5vb95bKddbJuEqAij/dWzAmSlHRESNSUQ+ALAJ4E+VUg1yok90fIgIpjencanrkm9txp0zVfQQv+9ypv143YuNA9srQGrFtzTc34aFtR2krfw3iw53DmNxexE7Bzu12iU1qAPrAAuJhcx8M4+IYHZlWz8vTsQpMDfCvDjAKTjGxgOLcZcHnNe6qWV/MW6kcwSzW7MQEd8aEVUPi3FERDm8ZFpIkE3FAZmDdlNKb23nHeIHFeMUWIwjqhTLtmFo2lQqw3QKaSitGOdd/yYEkpu4yyTjSn+NICKiuvGJe/udI90FUQNa213D5t4mRrpGfGvTcedAerhfc4gPACsTjXOID2T/riv+g/yhvjakbcGjjWd59492jQIAZreYqKHqmk/MIy1pX2F9JbmH1F5aX1RPLgG7m07qs1HExp0CpKaodqG3DSFDYSqe9K0Ndw5jJ72D5Z3lWuySiFwsxhER5fCScaavlWQ29VJKazsgpxgn4mubB8BJxpX43ESUzxILRjWScbmtbDUFe6PE5yUiopNBKfVTpdTGc1Jvm+7tl2qxJyLKmtmcAQBtMW5mJYVYtAkdzWHfGnYTwNYjoF8zS65eDVxzbjWpmmG3ledcQatK7+s6vTld3b1Rw/Ou5cJi3LTbcnG4T1OM8wrLDVVUv+oUIJNLvqVIyMDFvjZtMs5LHLJVJVFtsRhHRJTDS7SEfAUzd2acCGyUl4yLKCswGXfAYhxRRVi2BQX9zLgQypsZB3ivEf7r2EnG8TomIqpj3wHQBeCbRT6my739uPrbIaJcXpFI36YyhZGgeXErk85tIyVq2geAlm7t3DivBeCs29rTcy56DhEjgukNFuOouqY2p2AoAxc7L+bd7/2b1CZc441YjHPfQKBJuALAaKw9kwrONdzpFONmtmaqtjUi8mMxjogoR17qJSAZV+pBe2ZmnO8Q3ykUKCbjiCrGEiv7Q07BtRx2W3iU0k7SK6o7rxH+hKsJFuOIiOrcRwDeEZEfFfmYG+7trRrsh4hyzGzOIBqJor+lP+9+EcH0cgqjA0Hz4tyCVKyBknFKOcXHZX8xrrstgp62CGZW8g/xTcPEcNcwprdYjKPqmtmcwfnoeTSZTXn3T8dTaI2YGOxo9j8ofg9oiwFtfTXa5THgvYEgYG7caKwd82vb2Evn/47a09yDzqbOTAKRiGqDxTgiohz5rST9xbhQGfOgvMeFEZyMS9vpkp6biPIFtalURggh5Sx4bWkP+7wAYAYU1U0RzowjIqpv7wHw979zKaW85NwHIvJRzXZFRACcA/xLXZeglMq7fymxi+ReGqMDUf0DVyaAUAvQdbH6mzxOYuPOIb5m3tSlWLu2vd1I1wgP8KnqvGu50HQ8hdFYOwxD+R8Uv99YqTjAKTy29WsTrgBwaSAKW4C51fyUq1IKl7ouseUsUY2xGEdElCOberEDknFScurFK7RFxNYmapQopJmoIaoIy7ZhZNpU5l/LkTKScZk2lQHpWRMCGxZEc6BBREQnn1tgm3Fnx+XNjVNKfRPAjwF8JCJvH8kGiRqYiGB6c1o7L+6BW1QajRVJxvVfAYwGOyaLXQX2k8DWY9/SaKwdU/GU7+faS12XsLS9hOR+sla7pAazZ+1hIbmAS93+YtxUPIlLMU1R3baB+ERjtZr1eEV1De81T1dYH+0axfTmNH93JaqhBvspg4iouEwryaAWdBVJxukLfQoKls1EDVEl5Cfj8uc/ejPjSkmiZl8j9Nex6X5OpuOIiOqX26LyewDedYtyP1VKfQjgXQDfE5FvHe0OiRrT6rNVJPYT2jTN1LJTOLoclIxr2EP84BZ3o7F2bD07wEpqL+9+7+vLdBxVy9zWHGyxfYX1rWcHWE7s6dvNbi0AB9uNl4wDgP5xZ+6l5jxpqK8NhgKmNHPjRrtHsX2wjcXtxVrskogAhJ7/IUREjcNLxoVEoIxwdsEwIMpwUy+lHbJnWmD62lRmZ8axTSVRZdhFZsZFsO9+TOkz40LitLzMPq/zeuGV/WyxYcIEERHVJxHZBPDOUe+DiLK8dmu6ZNzUcgp97c4cNJ+ddSC11Fjz4jze3zl+D7j8h3lLXvpoOp5CLJqdz+V9fWc2Z/Bq7NXa7JMainctX+rML6xPuwWlS/2aYpxXUG7EYlxsHNhPAVuPgO4LeUvNYRMXe9swHfcnWS93XwYATG1M4Uz7mZpslajRMRlHRJQjUzBTBS3oAECFYAKQEltJes8dEf3MOCPnY4ioPJZYmZRa4fUWhrPgpdwO+7yA28rWLCjYQ8FE6fPoiIiIiKh0XlJLl4x7EE/iUmCLSu8QvwGTcS3dQPS0dt6Ulz6aLkjUnGk/g5ZQC2dNUdVMb0wjZIRwoSO/sDTj/lvUJuO8f8P9jVhUD064As78xweaNpXea+XUxlTVtkZE+ViMIyLKkSnGie0rxolhwhQnGVdKT+389nYBM+NKKA4QkZ8lFgy3MOYvxtmZjzmszMw4ESijIPlmhBAqYx4dEREREZVuenManU2d6G3uzbtfRDC9nApuUbniHmA34iE+4M6b8hfjYtEmRJtDvllThjIw3DnMYhxVzczmDC52XEQ4982PcObFNYUMnO1u9T8ofh/oPAc0d9Rol8dIbsJVY3SgHfOr29hP5/+O2h5px5n2MyzGEdUQi3FERDnyZ8YVJOOMUCb1Uk57u6BknEJpSR0i8rPFDkjGmWUV47LpWX/BPvc1gi1niYiIiGprZnMGI50jUErl3b+U2EVyL43RwHlx94FIFOg8W4NdHkMDV4GVB4CV//OrUgqjsXZMadrbjXSNsBhHVTO1OaVvNxtPYaS/Haah/A+K32/MFpUA0NwJdJwFVia0y6OxKNK24OHatn+taxRTmyzGEdUKi3FERDm8IpvTprKyqZds6k4/M84QBYtpGqKKsMWGAUCgACPnxx0jhEg5xTivYC/+gr0YJpNxREREREdARDCzOaNvUekmuy4HtqmccJIlSnPA3whiVwFrD9iY8y2NxqK+NpWAc4C/+mwVW3tbtdghNZCdgx08ST3RXstTyyl9i0orDaw+aNxiHOC8hgUk47wWvVO6a7l7FPNb8ziwDqq6PSJysBhHRJTDS7Po2lTCMBHyZk2V0d6u6Mw4pmmIKsKStDPjUZNeC0vpM+MybSoD07Pe52fKlYiIiKhWFrcXkTxI4krPFd/a1LKT7NIm40ScA+yGPsR3/+7Ld31LowPtWE3tY317P+9+L7XEdBxV2tyWUxQuLMZt76XxZPMZRnVF9fVZwNpvzLmPnti4NuEKACP97VAKvpazgFOMS0sas1uztdglUcNjMY6IKEcmvaY5aBcjDFNKL8ZlCn0BM+OYjCOqnEybSuVPuEZgZT7msJ7XpjLkPifbVBIRERHVzuT6JAAEFONS6GuPoKct4n/g9grwbL2xD/H7rgBQTpu/Al6ipjAdN9o96ty/wWIcVZbXMrGwGDez4vwbvBTTFNW9RFhDF9WDE64tERPnulu1LWdHu5xrma0qiWqDxTgiohyZuW7wH7SrnHlQ5STj/G0qc5JxTNMQVYQtFgyIJhlnOsV2AGk5fMEsm3C1Na1ss+lZtqkkIiIiqp3J9UkoqMzBcq4H8SRGdQf4QPYQv3+sirs75iKtQM+wtsVdtr1d/iH+QOsA2sPtPMCnipvZnEHEiOBc9Fze/V6q65IuGRe/DygD6Ltciy0eT14hMqBV5WisXdty9kLnBYSMEKY2eC0T1QKLcUREOTLzoArTa4CTevEO2u3DH7Sn7TQgCiGktcU4JaW1zSMiv0wyTnMdh8tIxmUTrgIY4bw1ZYSy6Vley0REREQ1M7kxiQsdF9Aabs27X0QwHTRnCnDmxQGNnYwDnIN8TTLudGcLWiOmr72dUgqj3aM8wKeKe7DxACNdIzALfo+biqcQNhUu9Lb6HxS/5xSUwy012uUxlEm4TmiXRweimF3ZRtrK/x04bIQx3DnMa5moRliMIyLKkU2vaeZBmSGEymhT6Ty3CaOwBab7Q6ZZ4vMSkZ8NGyHRJeNCTqoN5c2MC2vSs7kFe17LRERERLUzuT6Jy93+VMxSYhfJvbR+XhzgHOK3dAPtsSrv8JiLXQXWZ4CD3by7DUPhUkCi5nL3ZUxuTLIjBFWMiGBifQJjPf6k6nQ8iaG+NoRNzVF2/H5jt6gEnIRr98Wiybh9y8bC+o5/rXuUKVeiGmExjogoh9e2TnfQrgwTIbiH+CUctFtiQUE5f9DOjOMBPlGleG0qoTTFODcZV+p1DMB5LdCm7liMIyIiIqql1H4Kj1OPtQf4D9xE12VdazsAWJlwClFKVXOLx19sHBAbWJ30LV2KtWtnTY31jGH7YBtPUk9qsUNqAKvPVrG+u66f/RhP6dvNHuw6heT+Bi/GAc5rmSbhCiCTDn6w7C+sj3aNYml7CYn9RFW3R0QsxhER5cnMg4JVNPVSyrv/LLEAMTLPlfu8gPOCzHcVElWGLTZCgHauW7gCyThnZpzmNUJKL9gTERER0eE92HgAAPoD/GWniKRNxok4B9eNPC/O47Xp1Bzkj8aiWE7sIbF7kHe/V/ycXPcX8IhKMbHutFgsLKzvHlh4tL6jnxe3+sApJDd6Mg5wvgZr00B6z7c00u/Of1z2F9ZHu51Zm2xVSVR9LMYREeXwDuedg/b8Q3xlhstqU+k8t5eMy5k1lZuM45wpooqwxYJZ2BIWcNJrZRTM8udKFqZnQ4iAM+OIiIiIask7wNe1qZxYSqKvvQk9bRH/AxOLwF6Ch/gA0DsCmBFti7vRmHeIn5+oudR1CYYyMl9/onJNbjiF3cJreWYlBVugL8Z5BeRGn/sIuAlXyynIFWhrCuFcTwsmNcU4r/jJa5mo+liMIyLK4bWpDAXMg/Ja0Nl2ack4pU3GcWYcUaUJbJi62Y9GCOEKtKnUz4wzOTOOiIiIqMYebDxAV1MXBloHfGuTS0mMnwqaF+cd4rMYBzMM9F3WJuOuDDpfv8ml/EP85lAzhjqGmIyjiplYn8CZ9jOIRvKvWe/f3tig5lqO33Xe7Nw7UostHm/ea1lAq8orAx2+6xgA+lv60dvci/tr+scRUeWwGEdElMNrQdcEy/mFJFdOMc4r2h2GczivmRmnFESZbFNJVCEiAoHtFMY0xbiIe/2Wcr15jwnr2lSaYadIBxbjiIiIiGplcn0SV7qvQBXMfUtbNh4sJ/UH+EA2BcZZU47YuPYQ/0xXC9oiJh5oEjVXeq5gYoNpGqqMyfVJ7ezHyaUkIqaBi31t/gfF7wP9V/znN42od9T5HVWTcAWA8VNRzK5uY/cg/3dVpRTGe8dxf53FOKJqYzGOiChHpgVd0Dwo5Ry0l3yIr0vGARBlwhQe4BNVgncdOck4/8y4iJuMS9uHL6p7hfgwLM1zhxBB6fPoiIiIiOhw0nYaU5tT2nlx82s72EvbGBvs0D94ZQJoiwFtvVXe5QkRGwe2HgG7W3l3G4bC6EAUE0sJ30PGesawtL2Ezd3NWu2S6tTOwQ4eJh5qr+WJpSSG+9sQNjXH2Mv32KLSE4oAvZcCk3Fjgx2wbMF0POVbG+8Zx8zmDPYs/7w5IqocFuOIiHLkt6DzH+KHy5gZ5xz8e8m4gmKcYcKAwGYxjqhsXrHcScb5C2Zht1BWXjKueHqWhXUiIiKi6ltILGDP2gs4wHeKR2OBbSrvsUVlrtg15zbuT7qNDUYxuZSEuL+5KFifAAAgAElEQVQPe7yvuzfri6hUDzYeQCAY6/Yn4wITrs82gcRjYIDFuIyAhCuQfS2c0LSqvNp7FZZYmNqYqur2iBodi3FERDmyyThL394O5SXjlOiLcVAhhAQsxhFVgJd4C4lAFZkZV3q7WThFN+3MOLapJCIiIqqViXWncHSlW1OMe5qEaShcirX7H2hbzoH14EvV3uLJkZk35W9xd2Uwio2dA6wk81Mz3tfd+z4QlcqbPVjYpnJr5wBPt3ZxRZdwzcx9vFbt7Z0c/ePAxjywv+1butjbhqaQgYmn/pTreK9z/d9b07e4JKLKYDGOiCiHd4AeCSjGhctoQWfZFhBQjMsm4zgzjqhc3nVkBsyMC5dTVLfdZBwCCvbuu4W9jyMiIiKi6pncmETICGG4c9i3NrGUxHBfG5pCpv+B67NAehcY4CF+Ruc5INKuTdVcGdQnanpbehFriWUKKUSlmtiYQEekA4Ntg3n3T7qzCrXJuPhd55bJuKzYOAABVvzXpGkoXB6IZr6muU63nUZHpINz44iqjMU4IqIcmWJcwEF7OakXS6ycZJy/dZ4pgA0e4BOVy7s+QyJQpv86VgAgRmlFde81wg6aGVd66o6IiIiIDufe2j2Mdo0iXNg+HE6byrFTAfPilu84tyzGZRkG0D+mTcZ5c/cmNe3tLvdcxsQGk3FUnsn1SYz1jEEplX+/2272iq4Yt3wPaOoEOs7UYosngzc/L3BuXBT3n/qvY6UUxnvHcX+NxTiiaqq7YpxSalgp9ekhPv47SqkfKqXec//7oVLK/5YqImoI3uF8SPQH7WEpPVGTLpaMUyZMsLUdUSXkz370t5J0/0fJRXUACAUU7DMz40oo9BERERHRixMR3F27i2t9/oJaYvcAjzee6dM0ALB8F1Am0Odvb9nQYuPO16ZgNlxPWwT90SZtomasZwxzm3PYt/ZrtUuqM5btzCrTz35MItocwqnOZv8D4/ecVFxBAa+h9QwBZhOwoi+qXRmMYjW152s5CwBXe67iwcYDHNgH1d4lUcOqi2KcUqpLKfVNpdR7AGYAvFAxTSn1QwB/JCLviMi7IvIugHcBfKiU+mYVt0xEx9Tz21RK3scd9rkVAmbGGSGYIhC2qSQqW26bSt3MOACAqJIKZt5z618jzLIK9kRERET04haSC0juJ3G997pv7YGb4Bo/VaQY13sJCGsO+BvZwDXg2TqwveJbGhuMapNxV3quIC1pzGzO1GKHVIceJh9i19r1zYsDnDTm2GDUl5iDiJOM82YdksMwgf7Lgcm48VPBKdfx3nEc2AeY3Zyt6haJGtmJL8a5RbOfAvgWgPcBfPSCj/sOgO+KyNu594vIJoB3APxUKdVV4e0S0TH3/GKcs17KIX7aTue0qdQU4yCwmYwjKlvadlpEhgPaVAKAKjMZZ+Y8V+5ze/Po2KaSiIiIqLrurDqtJq/3+Ytx3mwzr72iz/IdtqjU8QobmlaVVwaieLCchGXnp+bGe5zH3FvzP4boRXitEa905yfjRASTy0l9i8rEE2BvK9uWkbJiV4u2qQScNr6FeC0TVd+JL8aJyEci8i032XbrEA99D8CPgp7T/Z9/XvYGiehEKd7eLoSQlJ6MS9sWDATPjAtBYIPFOKJyeam0UMB1DMBJxpVSjHML8YaI9rm9mXFMxhERERFV153VO2g2mzHSNeJbm1hKBLe2290CNhdYjNMpMm/qymAUe2kbD9e28+4/Fz2HaCSKO2t3arFDqkN3Vu+gJdTiu5YXt3aR3E3jiq6ovuwWjHgd+8XGnWLls03fUm97E/qjTZk3LOQ633EeraFW3F/n3DiiajnxxbhSKKVeh9PK8uMiH/YJgO/XZkdEdFxkDtoBTcHMRARO2qXUmXHKexOhpr2dKcIDfKIKyCRcoSuYZWfGlXK9PTcZ5z6nl84jIiIiouq4u3YXYz1jCBX+TAZg4mkS44Md/tZ2QLbQNOBP1DW8tn6gtddp41nASycVtrczlIHrvdczSUWiw7q9ehvjPeO+a9lrN3tlQJOMi7v/Rtmm0i/mFig1CVfAScfpknGGMjDWM5ZJKhJR5TVkMQ6ANw+uWBPcWQBdSqkXmj9HRPXBEgsQ96WxyEF7qYmaYjPjQhAIbEjBsGwiOhyvqG7C1qZQAUCJKqlg5hXwjIBCn5eMK+U1goiIiIheTNpO4/7afW2LShHBxFISY4Hz4tyiERM1fkoFtrgbjUWhFDC57E/UXO+7jqmNKTxLP6vFLqmOHNgHuL92Hy/1veRbmyhWjFu+B3ScAVq6q73Fk2fQfV1c0hfIxwajeLCcQtryvzn1au9VTG5M8s2lRFXSqMW4L7m3xYpx3uTZ16u8FyI6RiyxoBBQjDPDmXlQJc2MkzSMYjPj3CIc03FE5fGuobAUa1NZWjIu0wJToG9TKWxTSURERFRtM5sz2LV2ca3PX1B7vPEMqb10kXlxd4GmTqDzbJV3eULFrgIrE4Cd//NsS8TExd42XzIOAF7ufxmWWJhYn6jVLqlOTG1MYd/ex/V+f2F9cimBU53N6GwN+x8Yv8d5cUGip4CWHmDpC+3y2GAH9tM25gtazgJOYf1Z+hmmN6ervUuihtSoxbguABARf/PcLG+tp/rbIaLjwrKfk4wrYx6UZdvINEkpeG5lOsk4gIkaonKlxXkXn75NZfbPpc1+dJ5b38o2lCnY852ERERERNXjtUTUpWnuPXXarwUn4+46qThdC0ty2v7tp4CtR76lKwNRbTHOSyjeXrld9e1RfSl2LU8sJTPtUfNYB8DKJDDAYpyWUsDgS9kUcIHxU84bFe4u+ltVvtz/MgDgixV9IY+IytOoxbjDFNi6qrYLIjp2nCJbUDHORMguvU1l2rZyknH+Q/yQsBhHVAmZ9Bp0yTjn2lNilJRw9Z7bFF2hL8xkHBEREVEN3Fm7g2gkivPR8761u0+2YBoKV09pknG27bS3Y4vKYF7aSDNvauxUFHNr29jZz3/jWV9LH061neLcODq026u30dPcg9Ntp/Pu30/bmFlJ6ROuazOAfZCdjUZ+gy857WYt/5tERwfaETENbTHubPtZ9DT34Hcrv6vFLokajn/KbWM4TIGtN2hBKfV9AN8HgIGBAdy8ebPMbR0PqVSqbv4ujYTft8p4uP4QbkANk9OzeLpzM7M29OhJJhl3++5tROYjh3ruZCqReQfEx7c+x/aDzcz37eXkdiYZ93e//Ds0G83l/lWoini9HW8LewsAgLBYWFyO44H7vUqlUrgbn8Q1ABCFxeWnh/4+zmw6XawNABMPprGUzD5+5MlThNxU3sSDCdxcOtxzkx6vt5OJ3zciIqqmu6t3ca33GpQm3XZ3MYFL/e1oDpv+B24tAPtJFuOKiY05t/F7wJV/mbd07XQnRID7T5N440L+rK7rfdfxxSrTNHQ4t1du46W+l3zX8oPlJA4swbXTmmJc/K5zy2RcsIHrQHoXWJ8B+q/kLYVNA2Onori7uOV7mFIKr/S/wmIcUZU0ajGuIkTkRwB+BAA3btyQt95662g3VCE3b95EvfxdGgm/b5Xxq9/8CmrTKZldGbuKK6+/lV2UX2N+0SnGXRm/greG3/I9vpi//Nn/jIPNFADgS29+GYiNZb5v9nwvQmtPAABf+dpX0NnUWe5fhaqI19vx9sXKF8DPnTaVp8+cw2n3e3Xz5k1cG3kFuAcYUOjp7Tn09/He5/eA3wEmgLFrL2Hs5ZzHH/wt1p44ibjhkWG8de1wz016vN5OJn7fiIioWvasPUxtTOHfXv+32vU7i1v42kif/sHL3iG+fz4VuZo7gc5zTqqmgFcYube45SvGvdT3Ej58+CHWd9fR08yJL/R8qf0UZrdm8S+G/oVv7Z6b2tIW45bvAcoE+i5Xe4sn16D7Grd021eMA5zC+s9vP4WI+Aqhr/S/gr999LfY2N1Ad3O377FEVLpGbVN5GGtHvQEiqh1LLKhMK0n/rCnvvZUlzYwTCwb0z62MEELuc7K9HVF5irepdP8sCukS2lSm7TQgyrmSNe1mI256lu1miYiIiKpjYn0CaUnjeq+/oBZP7mI5sYdrZwLe3OgV42LjVdxhHYiNa4txpzqb0d0a1ra38+bGsVUlvah7a/cgEO28uLuLW2iLmLjY2+Z/YPwe0DcKhJpqsMsTqu8KYISdYpzGtdMd2Hp2gMcbz3xr3ty426ucAUlUaY1ajNsEAKXUi7Sr3KzyXojoGEnbaQTPjAvBcFtJljJryhILhnjPlX+Ir8xQpk0lD/GJyuNcx0BYNMU40/mzAYV0CdeaU+gLLtizGEdERERUXZ/HPwcAvNSvO8B3ikTXdWkaAFi+A3QPAU3tVdtfXYiNA6sPAOsg726lFK6d7tQW4671XoOhDBbj6IV5xR6vkJvr7mIC46c6YBj+VrRYvsuC+vOEIkD/mPOap3HdfcOCrlXltd5rMJWZea0lospp1GLcrHtbLDfvFerWq7wXIjpGbLGBTDLOn3oxJefjDv3cVvZFV3OIH4bznKUU+ogoy7s+I7C01zEAKAHSmmHWz/Pc9Kz7GsHrmIiIiKg6bi3fwtn2s4i1xnxrd584B8tXA4txdzkv7kXErgLWPrA241u6eroDk0tJHFj5vxO3hlsx0jXCNA29sDurd3A+et43psO2BfefJvQtKveSwOZDIMbr+LkGrwNL+mLc2GAUpqFw54m/sN4absXl7svO+AciqqhGL8YVS8aNuLe3qrwXIjpG0pJ+TpvK0tNrabtYMc5E2H1utqkkKo93fWqTcV4xDgpWKe1mbRuQoPSsmWlly2QcERERUeWJCD6Lf4bXB17Xrt95ksDF3lZEm8P+xf0dp7jEeXHPF7vq3Mbv+Zaune7AvmVjOp7yrb3U9xLurN6BiPjWiArdXr2tTcU9XN/B9r6Fa6c17WbjE87twNUq764ODFwHUkvA9qpvqTlsYjTWjjuaZBzgtKq8vXqbbzIlqrBGLca9794OF/mYYQCbIjJb5GOIqM7Ydm4yTtOm0ku9lNjezsy0qdQk49xfWNJy+LQOEWV512exmXFKVKad5WEc2AdQCE7PKgAQxWIcERERURXMbc1hY28Dbwy8oV2/+3QreF7cyn0AwmTci+i7DChDOzfOSyvpWlW+1PcSNvc2MZ+Yr/YO6YRb2l7C8s5yZj5ZLq91ojbhGvfmPrIY91yDbqEzcG6cvuUsALzS/wp20juY3pyu1u6IGlJDFuNE5BacWXDfKvJh3wTwo9rsiIiOiwM7nXPQHpx6KSW9ZuW1qfQf4ofcNpVMxhGVx7uGiiXjDLgpt0NK23aR1wjvzwbfQUhERERUBZ/GPwUAvB7zJ+O2dg7waP0ZruvSNIDTohJgMe5FhJuBnhFtMm6orx0tYVM7a8orkn66/GnVt0gn28dLHwOAtrB+dzGBsKlweSDqf+DyXSDSDnRdqPYWT74Bd65mQDHu+pkOrCT3EE/s+tZe7X8VAPC7ld9VbXtEjahei3HF2k96vgfgu0op38cqpb4Dp1j3F5XeGBEdb/nzoHQz49w2lSUctNtiZR7PmXFE1eMl3kyI5jp2/myIKimFmrYtoEjCFQCUGCyqExEREVXBreVb6GnuwYUO/0G8Vxy6fqbIvLhwK9A9VM0t1o/YuDYZZxoKY6ei2kTNxY6L6G3uZTGOnuvT5U8RjUQx2jXqW7u7mMClWBSRkObYeum2037RqNcj7Qpq6wWip4Fl/dy4626KWNeq8mz0LHqae1iMI6qwenzlGgYAXZEtl4h8AOAnAH6ce7/7uPcAvC0im9XaJBEdTwdWushct1BZ86Bsec7MOPfwnu3tiMrjFcJM4DnJuNJmPyrvSjYKZpFkCn+lFfqIiIiIqLhby7fwxsAbUEr51rwDZe2cKQBYuuO0tuMh/ouJXQXWZ51ZewWune7A/cUEbDt/NpxSCm8MvMFiHD3Xp8uf4vXY6zAL3jwpIri3uJVph5rHtp3rePClGu2yDgxed75mGuOnOqCUM2uzkFIKr8Ve47VMVGEn/icQpdTrSqlP3f82kJ0DN5dz/3d0jxWRdwC8r5T6oVLqPaXUe3AKcd8SkY9q9FcgomMkbecm4woO8c1w5kWzpGIcbISKzYxz4zZM1BCVx7s+TUHxmXElXMdpOw31nGQchG0qiYiIiCptaXsJi9uLeC32mnb9zpMETnc2o6ct4l8UcRI1PMR/cQNXAQiwOulbunqqE8m9NB5t+At1bwy8gafbT/Ek9aQGm6STaPXZKuYT89oWlfHkHlZT+/pi3OZDYD+ZnYVGzzdw3bmG03u+pfamEIZ623DniT8ZBwBvDr6JJ6kneJx8XO1dEjWM0PM/5Hhz57/pJ/e+2OM/APBB5XZERCeZM9etyMw4Kb1gZosFo2ibSufwnokaovJ4hTADUjQZZ5dUjLNyZsb5W9kCgIJiwpWIiIiowryExusD/nlxgJOMu3YmIBW3MQ/sbQGnXqnS7upQ7KpzG78PnM4vgHqFkruLCVzobctbuzF4A4Dz/TrTfqb6+6QTx7uWbwzc8K3dLZZw9Wafsaj+4gZfAuw0sDKhff27dqYTn86vax/6e6d+D4Az3+9s9GxVt0nUKE58Mo6IqJKKJuPKblNpwwQgUP7WKEYIIbfAZ9tMxhGVo3gyzpsZ585/O+xz23bR1wgAgLAYR0RERFRpt5ZvoTXUiivdV3xrW88OMLuyjZeDinFLXzi3p16u4g7rTPcQYDYB8Xu+pSuDUZiGwj3N3LhLXZfQEenAJ0uf1GKXdAJ9svQJWkItGOsd8615/6bGT0X9D1y6DSgjWyim5/MKlwGtKl8+04nFrV2sJP3JueHOYfQ29+Kflv6pmjskaigsxhER5UjbFgyvBZ3pP2jPtKks4RDfFgumLqnjPncEnBlHVAmZYhwkML3mJOMOX/gump41s8U4tpslIiIiqqxb8Vt4NfYqQprfp754vAkAePV8l/7BT38HKBOIXavmFuuLGQL6LwPL/mJcc9jEaKwdX2ja2xnKwOsDr3PWFAX6NP4pXu1/FeHCGdwAbj/ZwlBfG6LN/jUs3wF6R4FwSw12WSd6hoFQi/O10/BeMz9/tOlbU0rhzVNv4rdPfwsR8a0T0eGxGEdElMPKa0EXnHopJVGTmRmnLcaZmWQci3FE5fEKYcVmxhklptcOXmBmnIJC2ma7WSKieubOHP9UKTXj/vdTpZS+dx4RlW1jdwPTm9N4Paa/zD5f2IRSwCvngopxXwD9Y0C4uYq7rEOxa8DyXe3SK2e78MXjTe0h/Y2BG1hILiC+E6/2DumE2drbwtTGVKadaaHPH23ilbNBCVfOfTw0w3TmP3otPgtcP92JkKHw+aMN7frvDf4eVp6tYC4xV81dEjUMFuOIiHJYkpOMC2hvp0ooxjnFAYEJgeiKccpExJ0Zx0QNUXmyyTg474DO5V5/JkqbGWfZdvaHp6CZcWKUlJ4lIqLjTyk1rJT6KYD3ReQNERlBdob5p0qp945we0R165+eOm3Svnz6y9r1zx5tYqS/HR26NA3gJOM4L+7wBl8CUktAyl9Ue/V8FzZ3DvBwbce35s0CYzqOCnn/Jt4YeMO3trS1i+XEHl7VFdV31oGtRyzGlWLgupOM0xTOWyImxk5F8dmCPxkHAG+eehMA8Nunv63qFokaBYtxREQ50raVc9AekIyDcehiXHaGVXCbyrBbhGOihqg8XiHM0F1vmWRcae1mrdy5kmbBYU/O5zpgMY6IqF69B+B7InLLu0NENkXkbQAfAPhTpdT3j2x3RHXqN09/g2g4imu9/jaTIoLPH23qD/ABILkEbMdZjCuF9zV7+oVv6ZWzztf7d4/9h/hXeq6gLdzGYhz5fLr8KSJGBNf7rvvWvFaJ2oSrl9Ac9D+OnmPwJeDZBpB4ol1+9VwXvni8Bcv2F+vOtp/F6bbT+O0Si3FElcBiHBFRDkvSMLyDdl/qxTl4V6JwcMiCmXfoHyoyM86E84MPk3FE5clLxvmuY9Ndk5KutbSkixTsnec2xDj0awQRER1/SqlvAvhQRPRvHwe+597+sEZbImoIIoLfLP4Gb556UzsvbmF9B+vb+3it2Lw4ADj1chV3Wae8FNLS73xLlwfa0Rw2tLOmQkYIr8VeyyQaiTy/XfotXu5/GU1mk2/td483ETYVxk91+B/otVkc5HV8aJmiuv86BoDXznUjtZfGzErKt5aZG7f0W55VEVUAi3FERDkssZ+bjFM4fKImO8NKoAJmxpni7YGJGqJyZK43XfE7NxlXaptKKT5XUolim0oiovr0drFFt0h3C8gU7oioAhaSC3i6/RRfPqVvUekVgwKTcV6qi+3tDq+lC+i6oE3GhUwDL53p1BbjAOArp76C+cQ8FlOL1d4lnRCrz1YxsT6Br57+qnb984VNjJ/qQHPY9C8u3QbaB4D2WJV3WYcGrgPKABY/1y6/6r6R4fOgVpWDb2JrbwsPNh5UbYtEjYLFOCKiHJZtIfNjX1CbSlFI24d7R1BanJRMCAKYmh8sjRAMNxnHQ3yi8njXkCkIvI5NADYOf63ZYkFlnitgZhzYbpaIqE4NA/jhc+bCzeZ8LBFVwD88+QcAwFdOf0W7/tnCJlrCJq4MRPVP8PRzoGcEaApYp+JOvQIs+YtxgFMAvbuYwH7a//vx1858DQDw68VfV3V7dHL8ZvE3AICvnvEX4yxbcPvJVnBRffm2U1Siw4u0Av3jwOJn2uWh3jZ0NIfw2aMN7fqbg87cOO/7R0SlYzGOiCiHLRYMr012UAs6qEPPjLNtL6mjeV73Pu9eRv+JypPfpjIoGSewS0nGiV3kNSKbjDtswZ6IiE6EDwFsAvi4yMd4p4izRT6GiA7hl09+ifPR87jQcUG7/tmjTbx0thMhM+CIa+kLzosrx6mXgfVZYHfLt/TKuS7sp21MLiV9a8OdwxhoHWAxjjJ+vfhrdDd1Y7xn3Lc2u5JCai+dmUWYJ70PxCeYbi3H6VedNyaIfy6cYSi8er4bnwUk4wbaBjDaPYpfPflVtXdJVPdYjCMiymGJldOmMiD1UsLMOC8ZFxY7oE1lKHPA730sEZUmU4wTTZtK5VzhIZRW+LYk/dz0rFOw53VMRFRvROQHItItIh8U+bAb7u0ntdgTUb3bOdjBx08/xtfPfl27vpe2cH8xgdeC0jQ768DmAufFlWPQLWQu3fEteYWTzzWJGqUUvnr6q/jHp//In40Jttj4zeJv8OXTX4ah/MfRn7ntTl/RXcurk4B9wGJcOU6/BmyvAAl929hXz3XhwXIS23v6a/Wfnf1nuLV8C4n9RDV3SVT3WIwjIsphi52Z3RY8M+7w86C8Q/+Q0hQHAGdmnNumksk4ovJ4xTgD8BfVlYIYIRhAack4u1gyzvlcSthuloioEblz4roAfODOjyOiMv126bfYt/cDi3H3FhPYt+zg1nZLt51bJuNK533tNK0qz3a3oK89gs8f+VNzgNOqMrmfxBcr+jaX1Djur9/H2u4avnb6a9r13z3aRLQ5hOG+Nv+iN+vs1KtV3GGd8752Aa0qXzvXBVuALx7rr+Wvn/06LLGYdCUqk+ZEmIiocVmShuG9NAa2oDv8Qbv38RHd87r3eUVAq4QCARFledebU4wLaAsrAhuHL3zbeenZIsk4XsdERI3o3YJbLaXU9wF8HwAGBgZw8+bNKm+r+lKpVF38PRrNSfi+/fXaX6NJNWF7chs3H9z0rf+/8wcAgGdP7uPm2qRv/eyjv8ElAP8wk8LBI//jT6Kj+L59JdKNjc/+CyZ2/e0Fz7RY+M3kE9y86U/H2bYNEyb+46//IxLdjZ2oOQnXWzX9fPPnUFAwHhq4+fimb/3v7z/D+Tbgl7/8O9/a6IP/CwNmC/7+9gKgHtdgt1n18n0zrD38Pgw8/Mf/jPnldt96at85kPpPf/cp9h5FfOu22Gg1WvGTT36C5vnmqu+3XPXyfWs0jfB9+//Zu+/4uMoz//ufM31GvXfJcu8F926DMQ6hJZRkSQKBFB6SDUvIJuym/DZLslk2ySa77CaQDglJlhrANGOMCxgbF3CTi9zUi2X1NvXczx9nZmzjmdHIlmQjXe8Xfg323Jq5beuMZ873XNclYZwQQpwloAKYVZQwznz2ifb+ncQPBWwWolXGWTAFK+OkokaIi+PXA6A0NIh8vGnmC6+MUzomQGlmNE07987wPDr6PVdSCCHER5umabcAq4BblVIx58UppX4N/Bpgzpw5asWKFYO/wUG2adMmhsPvY6S53P/edKXz0DMPsbRoKatWroq45tm/vE9uciufXHNl5Ad55glIKWbx6hsGcadD65L8vdXMIbejjtwIz7svcJSfv1nOFQsWk+ywnnf/8288z/Ge45f199pQuNyPt8H2y7W/ZGb2TK6/6vrz7nP7AtS+sY57lo9mxYqJ53/x0YegcDYrVkY5zgfRsPp7K5/MKGsLo6L8fv5z70ZazUmsWDEn4v1Xvn0lb9e+zeJli7Gazj/WLyfD6u9tBBkJf2/SplIIIc6iK/3MVQpalJlxFzAPKhTGWZUeo1LnzB6EEBfOpwfQVDAoi1EZp9BREQZYx2IE9qCiPC4YrxEXEvQJIYT4aNI0LRX4DfBgH/PkhBD9sLdpL029TawqiRzEKaXYcbKFuaXp0R+kdjcUXDFIOxxB8mZA02Hwuc+7a0ZRKkrB/ijt7VYUreBk+0mqOqoGe5fiMtXQ3cChlkMsL1we8f6yunb8ugrPIDxHwGfMK8yXFpUXLW+m0fIzymfguaPS2VXZgq5Hvn9V8SraPe3sapCxuEJcKAnjhBDiLLoKYFIKpZnA9KGXyLOqXvrdpjJUGRd1Zpwl/ILsVzLcWoiL4Qv4CdbFnT8zDoy2sBc4o9FoU6nOD+vPei6pjBNCiBFnA/DvSqkfX+qNCDGcrK9cj9VkjXoCv6K5h1OdHuZHC+O6T0NbJRTMHsRdjltWxIAAACAASURBVBB500EF4FTZeXfNLEpF02BXxfltKoHw39/G6o2DukVx+dpcbbSeXFG0IuL9oe+dWcVp59/ZdBgCHsifNVjbGznyZ0LPaeiojXj3/NEZtPX4KD/VGfH+RQWLcFqcvFn55mDuUohhTcI4IYQ4i46OGSBSyb3Z6JutYbSq648zM+OihXHmM+GALpVxQlyMQF+VcWajMg4uJIzTjco48/l99EOvGyZk9qMQQowUmqatB56SIE6IgaWUYkPlBhblLyLRdv58I4AdJ5sBWDA6ShhX94FxK5VxFy93unFbv++8u1KcVibmJrOjojnilxYmFTIxfSJvVL4xmDsUl7E3Kt+gNKWU0SmjI96/42QLo7MSyEqyn39n6DjOk8q4ixYKNEN/ph8SurBhx8mWiPc7LU6WFCxhQ9UGGa8ixAWSME4IIc6iqwBmpVBRqmnAqHrpbwu60Al/o01llEqdYCcAOYkvxMXx6YGzKuMiV6KGjsL+VqIarWxVeIbkhx8XgmGcfDgRQohhT9O0XwHrJYgTYuDtO72Puu46ri65Ouqa9060kJFgY0xW5LCO2t2gmeQk/kBIGwWOFKjfG/HueaPSeL+yDV8g8oVu14y6hn1N+6jvqh/ETYrL0ene0+xq3MXqktXnz9wGdF2xs6KFeaOihep7wJYE6ZGDPNEPOVOMz6x1eyLeXZjmJD/FwXsnIodxAKtLVtPsbmZXo7SqFOJCSBgnhBBnUaGZcRGraYxKGBP9b0EXOuFviVoZZzFa3yFhnBAXy6/7Y1bGaSazcSxyYS1nTQowRaqMM57LrGRmnBBCDHeapn0LaIsUxGmalqppWuQhV0KIuLx8/GXsZjtXFV8Vdc17J1uYV5oe8QQ/YIRxWRPBHiWsE/HTNKOqpu79iHfPK82g1xfgQG3kuXGrS1YDSHXcCLShcgO60rlm1DUR7z/S2EmH28/caGFc/R6jveKHx4iI/rM6IWtS1Mo4TdOYPzqD9042R52tvrxoOS6Li1dOvDKYOxVi2JJXMiGECFJKoWNUxkUO44wWdGbV/8As1HrSih41jLME3+v0t22eEOJcfl3vc2ac9QLDb6UCWNCjVMadmRknoboQQgxfmqbdAmQopR6MskSCOCEugk/38XrF66wsWhm1RWVNaw+1bb3R58UpZYRx+dKicsDkXwGNZeBzn3fX3FJj1tfOisgVNcXJxUxMn8i6inWDukVx+Xm94nVKU0oZmzo24v2h75l5kY7lgA8aDkDejMHc4siSP9MI46KEbfNL0znd5eXE6e6I9zstTlaVrGJ95Xrc/vNfC4QQsUkYJ4QQQaEQzBxjrpvSTMEWdP0LzLy6FwCHihbGmcMvyH69f23zhBDnMirjgj+JEn7bgh8+fLqvX49tzJVU4UrZDz8ugAklYZwQQgxTmqZdAcyNEcQBzAWkf5MQF2hr7VbaPG1cN/q6qGtCM43mlWZEXtBWBT3NMi9uIBXMBt0PDfvPuys7yUFpZkLUWVMA15Zey/7T+znZfnIwd3nZaHW3sqN+By8ee5E/HfwTGzs28sKxF9jZsJMeX8+l3t6QqO2qZVfjLq4tvTZqBet7J1vIS3FQmOY8/85ThyDgOTPrTFy8wrnQ2wItJyLeHQpFY7WqvH7M9XT5uthUs2kwdijEsBbhDJUQQoxMoTDOohRapGoaQJmswcq4/gVm3oARxtmJNTPuwtrmCSHO5Y9jZpwtWBkXOjbjpSsdi1LhStkPPy6E2lRKhasQQgw3mqaNBjYAuzRNWx9l2WhgdB9hnRAihueOPke6I51FBYuirnnvRAspTisTc5MiL6jdbdwWzB6EHY5QoWCzdjcUzT3v7rmj0lhX1oiuK0ym84OX60Zfx3+9/1+8dPwl/uGKfxjs3V4SR1qOsL5yPVtqtnCo5dB59z+/9XkATJqJ0SmjWVa4jBvG3MCY1DFDvdUhsfb4WsAIbyJRSrHzZAsLx2REDuvqg7PNZO7jwCkMHrs1OyHj/O+70swEspLs7DjZzO3ziyM+xNycueQm5PJ8+fOsGbVmMHcrxLAjYZwQQgSF5rqZIfIJfIJhHP0PzELVN45oLTBNFszhtRLGCXExAnoAU4yZcZjM2NWFhnEBrCi0PivjJIwTQohh6FdAKn23oYw8VEkI0aeG7ga21Gzh7ql3YzVFuPgpaEdFC3NHpUcMfQAjMDLbIWfKIO10BErOh6S8mHPjnt5VQ/mpTibmJp93f5Yri0X5i1h7fC1/P/PvMUe5APajRlc6m6o38aeDf2JX4y5MmokZWTO4b9Z9TMmcQlFiEcn2ZN555x2mz53OyY6TlJ0u44NTH/BE2RP8/sDvmZIxhS9M+wJXFV+FSRseTcyUUqw9vpZ5ufMoSCyIuKayuYdTnZ7o8+Lq9oA9GdJHD+JOR5isCWBLMsK4GZ8+725N05hfms57J1tQSkUMSc0mMzePu5lf7PkFVR1VFCdHDu2EEOeTME4IIYLClXHR5rpBeLabT/WvtV3ohL9D+aOGcdKmUoiB4df9hD8yRDne7HiAMy1k4xVQPqPFZYwwzqyM0E4IIcTwopS6+lLvQYjh7rmjz6GU4uZxN0ddc6rDzcnT3dw+L8YJ4LoPIG965G4G4sLlX3Gm6vBD5gUDlZ0nWyKGcQA3jr2Rb27+Ju/WvcvSwqWDts2hsrNhJz/e+WMOtxwmLyGPf5zzj9w45kZSHannrU0wJ1CUXERRchHLCpcB0NzbzGsnX+OpI0/xwKYHmJg+ka/N+lr4/o+yXY27qOqs4svTvxx1zY7gvLiosx/r9xjz4kzDI6C8LJjMRpVrzc6oS+aXpvPyvnqqW3opznBFXPPJcZ/ksb2P8ezRZ3lg9gODtVshhh15NRNCiKBQCGZRoEWrjDPbsCrw93PO1JkwTo96El8DUJpUxglxkQJKP6syLsIVt2abUaUK+AL9O5YDyo9NKTRzpJDPhELDjIRxQgghhBD95Q14ebb8WRYXLKYwqTDqum0nmgGYPzrKCfyA3wjjpEXlwCu4ApqPQW/beXcVpTvJTXbwXoy5cVcVXUWGI4Onjjw1mLscdI3djTyw6QHuXnc37Z52/n3pv/PqJ1/lzil3RgzioslwZvDZyZ/lhRtf4EdLfkS3r5uvbvgq92+8n4buhkH8HQy+/zv8fyTbklk9anXUNTtOtpDmsjI2O/H8O/0eYz5hvrSoHHBF86DhAHgjzy6cP9qYxbntxOmoD5HtymZl0UqeP/r8iJmBKMRAkDBOCCGCQpVxVi1GZZzZikUp/P2tjAtW3ziVP8qsKSMw0JSGLyCVcUJcDL/uP/MGJ9KxbLbhwAjL+lMZp5QigA+b0iO3qQw+nxklM+OEEEIIIfrp5RMvc7r3NHdMviPmus3lTaS5rEzJT4m8oOkw+HqMKi4xsEJz4+o+OO8uTdOYV5rOzgqjvV0kVrOVm8ffzJaaLdR01gzmTgdFqPXiJ176BG/XvM3fz/x7XrrpJa4bfR2WaOcQ4mA2mbl+zPW8eNOL3H/F/Wyt3cqNL9zI00eejvpneTk71XOKt6re4hNjP4HT4oy6bmew3WzEeXEN+yHghcJ5g7jTEapwLqhAxOMYYFx2IjnJdraURw/jAO6YcgftnnZeOPbCYOxSiGFJwjghhAgKBCtZrIoYbSqtwcq4/gVmoco4p/LFbG+noeHX5SS+EBfDqIwL/iRiGGfFGQzL+jMzzniNUMa8uWgtj0wWo00lUhknhBBCCBEvXen84cAfmJQ+iQV5C6Kv0xVbyk+zdFwW5mjz4qrfM26L5g7CTke4/FnGbZS5cfNHp9PY4eHE6e6oD3Hr+FsxaSb+evivg7HDQdPuaefrm77Ot9/5NmNSxvDsDc9yz4x7cFgcA/YcVpOVL0z7As/f+DzTs6bzg+0/4IFND9DuaR+w5xgKTx15Cr/y86kJn4q6pratl8rmHuZFa1EZaqNYKMfxgCuYY9xGaVWpaRrLx2fx9tEm/IHo56dmZc9iRtYM/njwjzJuRYg4SRgnhBBBoTcPRmVclGHSZhvWC6iM8wXbWjp1f+wwTmkEpE2lEBcloAcwhabGRamMcwbD9/6EcaG1dqK0mwUwmbGgpE2lEEIIIUQ/vFHxBhUdFdw19a7IVTJBB+s7ON3lYfn4rOgPVv0eJGRDWukg7HSEc6ZB+hiojRzGLRtn/L1sKW+K+hC5CblcM+oanil/5iMTMu1v2s9ta29jc81mvjH7Gzy+5nFKkksG7fmKkor41dW/4huzv8Gm6k3csvYWdjdGntV3uenydvHXw3/lquKrKEouirou9D0S9Viu2QnJhZCcNxjbHNkSMiB9dMy5ccvHZ9Ph9rO35vyWtGe7a+pd1HbV8vKJlwd6l0IMSxLGCSFEULhNJSpGm0oLNqUI9LdNZagyTo/WpvJMZZxPrigS4qL49cBZbSojzYyz4lD9b1MZCtXtKkYrW5MFs5I2lUIIIYQQ8fLrfv53z/8yNnUsq0uiz5cCo0UlwLJYYVzVdiieDzFCPXERCq6IGsYVpbsozUyIGcYBfGHaF+j19/KXw38ZjB0OGKUUfz70Z+54/Q4UiifWPMHnp34ec7SLdweQSTPx+amf50/X/gmrycrd6+7msb2PXfafM54pf4ZObydfnPbFmOu2lDeRl+KIPC8OjKCocM4g7FAARsVhzU6I0gZ1ybhMzCaNzUdiH8tXFl3J5IzJPLrn0X5d6CrESCVhnBBCBIUq0iwqVhhnw4oioF9YGOdS3iiVcWdmxvmlMk6Ii6KrACYFSjNHPgljtuEMtpH0BeI/lkNhnCNmZZwxM05xeX9IFkIIIYS4XPzt2N+o7Kjkvln39RlybD7SxNSCZLKS7JEXdNRDWyUULxyEnQoACmZDZ53xZx3BsnGZbDvRjNsX/XPt+LTxrChcwZMHn7xsq+O6vF384+Z/5OEdD7M4fzHPXP8M07OmD/k+pmZO5enrnmbNqDX8Ys8vuPfNe2lxtwz5PuLR7evm8bLHmZ83n6mZU6Ou8wd03jl2mmXjsiJXwnY2QluVtKgcTIVzoasR2qsj3p3itDKrKDV8AUQ0mqbxD7P+gbruOp468tRg7FSIYUXCOCGECArPjEOPPg/KbMWuFAH6OTNO94LSsAQf4zzhyrj+z6MTQpzLr4zKOBUjVHcq4zjrV2VcMLhzqBhhnNmKWYFC/0gOWxdCCCGEGEqt7lb++/3/5orsK1hRtCLm2g63j91VrX20qNxu3BZFnzsnLlLBbOO2dlfEu5eNz8Lt09lV0RrzYf5+1t/T6e3kdwd+N9A7vGhHWo7wqZc/xYaqDXx99td55MpHSLGnXLL9JNoSeXjpw/y/hf+PXQ27uHXtrew5teeS7Seax8sep8Xdwn2z7ou5bk91G51uf/QK19D3loRxgyf0ZxuzVWUW+2rbae7yxHyohfkLWZS/iF/u+SVNPbHDOyFGOgnjhBAiKBTG2VBRZ8ZpZhs2pRNQvn6daDdO4puNKVaxZsYhlXFCXKxQZRxatNmP1vDMuP5UxoWCO7sKgDlam0pjZhyceU0RQgghhBCR/Wz3z+j2dvO9Bd+LOSsOYOvR0wR0xfLx2dEXVb0HFifkDX0F04iRO934TFv9XsS7F4zOwGY2seVo7JPyE9IncN3o6/jzwT9T11U3GDvtN6UUTx95mttfuZ1efy+/Xf1b7p56Nybt0p8+1TSNW8ffyp+u/RM2k427Xr+LJ8qeuGwuADzVc4onyp7g6pKr+6wg3FLehEmDJWMzIy+o2QkmqxzHgylnivFaWb0j6pLlE7JQCt4+ejrmQ2maxrfnfxtvwMuPd/54oHcqxLBy6f81EUKIy0SoIs0SY2acZrZiC77Z9av4K9i8uhdNBR8zRhhnUhDQpb2dEBcjoHTMgIrW5shswzVIlXGaySJhnBBCCCFEHDZUbuCFYy/w+amfZ2za2D7Xby5vIslh4Yri1OiLqrcblVvROp2Ii2d1QP4sI/iMIMFuYc6otD7nxgF8bdbXMJvM/Nt7/3bJQ6VuXzcPvv0gP9j+A+bkzuGZ659hTu7lN7NscsZknr7+aZYXLeenu37K/Rvvp8Pbcam3xcM7HiagB7j/ivv7XLv56GlmFqWS4opynNbsgtxpYHUO8C5FmNlqzOSrfDfqkqn5KWQk2PpsVQlQklzCl6Z/idcrXueVE68M5E6FGFYkjBNCiKDQIGQbeowwzoY9OAuqXxU1AS+o4EtupA+GwV8zKU3aVApxkQJ6ALNSMVpJ2nAG57/1Z8h0KLhzEDCu1IzEZCF0T0CqXIUQQgghIqrtquVftv0LUzKm8JUZX+lzvVKKzeVNLBmbicUc5VSWtxvq90Hx/AHerThP8QKo3wM+d8S7l43P4nBDJ40dke8PyUvM42uzvsaWmi28XvH6YOw0LgebD/Lplz/Nuop1fG3W13h01aNkODMu2X76kmRL4ucrfs4353yTLTVbuG3tbexv2n/J9rOhagPrK9dz78x7KU4ujrm2tdvLvpq26C0qA36ofV9aVA6FksXQsB/ckec2mkway8ZnsaW8CV3vOyz/4rQvMit7Fj/c/kMq2isGeLNCDA8SxgkhRFB4ZpyKURlnsWEPXrHn0/sXxmkqWKUTKSAI/poJqaYR4mLpKhCsjIs+182Jcfz25zgOrXUqf/SrraUyTgghhBAipnZPO1958yvoSuc/lv0H1jiq2MrqOqhvd7NiQox5cbW7QQWgeOEA7lZEVLQAAl6o+yDi3cvGGX9P8VTU3D7xdqZnTucH235ATWfNgG6zLz7dx6N7HuUzr3yGHl8Pv139W748/cuXRVvKvmiaxh1T7uAPa/5AQAX47Guf5ZH3H+nXxYYDoaG7ge+/+30mpk/kzil39rn+7WOnUYroYVzTIfB1Sxg3FEYtBhRUbY+6ZMWELJq7vXxQ3dbnw1lMFh5e+jBWk5WvbPgKLe6WAdysEMPD5f+vixBCDJHQiXMLetSZcZgsOILr+vMm16f74gvjFPikmkaIixJQocq4KCd2zDacwQrUflXGBdc6VCBmGGcNhXFyLAshhBBCnKPd0869b95LVWcV/73yvylJLonr69aVNWDSYNWknOiLqrYDmpzEHwpFwerDqm0R756Ul0RWkj2uVpVmk5n/WPYfAHxj8zfo8fUM2DZj2de0j8+88hl+ufeXXFN6Dc/f+Dxzcz963zszs2fy/A3Pc8OYG/jN/t/w6Vc+zfuN7w/Jc3sCHv5x8z/iDXj5ybKfYI3WPeQsW8qbSHFamVEYpd1szU7jtvDyaxE67BTONTq+VLwTdcnKidlYzRrryhriesj8xHweufIRGrsbuWf9PRLICfEhEsYJIUTQOSfao1TGYbYZbSzpf0WNpgdfciM9tsmMQsOEUdUjhLhwutIxE6NNpclqhO7K3O9QHcAeY2YcJjM2+l89K4QQQggx3J1oP8Gdr93J4ZbD/Ofy/+xX8LGurIF5pelkJNqjL6raDtmTwBljppwYGAkZkDEOqiPPjdM0jZUTsthc3oTX3/dM9MKkQn609EccbjnMN7d8c1DfR5/uPc133/kun3n1M5zuPc3PV/ych5c+TIo9ZdCec7Al2ZL4weIf8L9X/i8dng7ufP1OHtzyII3djYP2nAE9wD9t+Sf2Nu3locUPMSplVBxfo9h4+BTLxmdhNmmRF1XvAFcmpPX9eOIiWZ3GjM0Yc+OSHVYWj83k9QMNcc91nJk9k0eufISK9grufO1OjrYeHagdC/GRF+VssxBCjDyhk/JOpUCLUhlntuJUAcDa74oaLTwzLsJJfE1Dma1Gm0q97w8rQojodKVjiTkzzrhiU1OW8By4eITmRNpiVd2ZLDiCj+kJeOLftBBCCCHEIPPpPhq6G6jvqqfN08auzl1UlVWF77earaTaU0mxpZBiTyHDmUG2K/uiW/b5Aj7+cvgv/GLPL3CYHTy26jHm5c2L++tPNHVR3tjFv1w/OfqigN+oqJl680XtVfRD8Xw4/AroOpjO/x5ZPTmXp3fVsO1EM8ujtSQ8y4qiFXxn/nf4wfYfcP/G+/np8p/itDgHbLune0/zhwN/4JnyZ/DpPu6eejdfnv5lEqwJA/Ycl9ryouXMzZ3L7w78jscPPM6Gqg3cMv4W7ppyFzkJMapK+8kT8PBPW/6JN6ve5Ftzv8U1o66J6+t2VbTQ3O3lmikx9lK5FUoWghYlrBMDa9RieOe/wNMF9sSIS66Zkss/P7+fQ/WdTM5PjuthFxcs5terf83XN36d21+5nXtm3MMdk+/AFu0zepx0pdPU08Rp92naPe3hH2efn3NZXVR3V+Ood5CfkE9uQu5FP68QA0XCOCGECHIHjOHSTuUDS/ST+KE2lf2dGWeKFcZhzLcyK/AH2+cJIS6MTgALCs0SvU0lgMaFVcZZUUY7jyiP7aALkDBOCCGEEJdOp7eTsuYyDjYf5GDzQQ41H6KmqwZdfejCvz46iNlMNgqTCilOKjZuk4spTCykKKmIgsSCqPPedKVzvO04G6o28Ez5M5zqOcWSgiV8f+H3+x0KvHbAaI92zZTc6Ivq94CnA0qX9euxxUUoWgAfPAnNRyFrwnl3LxmXictmZl1ZQ1xhHMBtE24D4Ifbf8gdr93Bj5f9mNKU0gveolKKA6cP8NzR53j5xMv4dB8fL/0498y4J+4WqR81LquLr836GjeNvYnf7PsNTx1+iqePPM21pddyy/hbmJE1A+0igq7qjmq+teVbHGg+wLfmfovPTf5c3F+7rqwRm8XEignZkRe0VUNbFSz46gXvT/RTySJ4+z+NKtexV0VccvXkHL7zt/28ur8+7jAOYFb2LJ694Vke2vYQ//3+f/OXQ3/h5vE3s6p4FePSxkW90MMX8FHfXU91Z3X4R1VnFTWdNVR3Vsf9Ofv3b/weAA2N/MR8JqRNYEL6BGZkzWBW9ixcVlfcvxchBoqEcUIIERQ6KZ+gB2K2t3ME21T2p6LGc04YF/kDqzLbjMq4D39AFkL0i64CRptKS5Q2RqEwTpn7HaoDWPuouksIHsOhgF8IIYQQYig0dDfwVtVbbKzeyK6GXfiVcZFfQWIBkzMm87HSj1GQWEB+Yj5pjjTKdpdx5dIrwydEPQEPHZ4O2r3ttLnbaOptMk6CdlRR3VXN9vrt57y/MWkmclw5pNpTSbYlY7fY6fZ10+ntpK6rji6fcYHS/Lz5/Ouif2VJwZIL+n29uKeWOSVp5KfGqJI6udm4lTBu6BQvMG6rtkcM4xxWMysmZLH+YCM/vHEqpmhtCT/ktgm3kZuQy3fe+Q63rr2Vz03+HHdMvoM0R1pcX6+Uory1nI3VG1lfuZ7y1nKcFifXjb6Ou6feTXFycdy/xY+yoqQiHlr8EPfMuIc/HPgDa4+v5cXjLzImZQyrR61mZdFKJqZPjDuYa/e08+ShJ3mi7AksJgs/X/FzVpWsins/SinWlTWwZGwmifYop6ND7RJLFsX9uOIiFc03OkNVvhs1jMtMtLNoTCYv7a3jG6vH9yvMzXRm8siVj7C9fjuPlz3OY3sf47G9j+GyuChMKiTRmkiiLRFPwEOnt5M2dxsNPQ3nXDjiMDsoTDIuAlmcv5iipCKyXFlGJbfdqOS2m43P/rrS6fX38tbWtxg7bSx13XXUddVxsv0kh1sOs7F6IwqFRbMwOXMyc3PmsrhgMbOyZ2GJNq5GiAEk32VCCBHk9p9VGWeOfhI/XBkX6G9lnBZ+jMiPbcWsFAF1pjKuvqueLl8X49LGxf1cQow0+5r2UZxUTKrDmA+iKx2r0tH6bFN5gZVxSoE52lxJO87gB4f+PLYQQgghRH+FQoe3qt9iY9VGDrUcAmBU8ig+N+VzLMhbwOT0yeH3SB9WZ6k7Z05WEklkOjNjPl9TbxM1nTXUdBkVCrWdtbR72+n0dtLR00GCNYGCxAJmZc9iSsYUFuUvuqj2eIcbOihv7OIHN06JvfDEZsiZCgnR9y8GWMZYcGUYFTWz74y45Jopuby6v4Fdla3MK02P+6GXFS7juRue4+e7f85v9/+WP5b9keVFy1mQt4AJ6RNItadiN9sxaSaaepto6mniRPsJ9jftZ1/TPk71nkJDY1rWNL634HtcW3otibbILfiGu4LEAr674Ls8MPsBXjv5Gi8ef5HH9j7Go3sfJdOZyfTM6UzLmsaYlDFku7LJcmWhlMIdcNPuaae8tZxtddvYXLMZT8DDNaOu4Ruzv0FeYl6/9rG/tp3atl7uu2ps9EWV74AjBXL6ON7FwLEnQf5Moz1oDDfMzOdbz+5jb007M4v6P5dzQd4CFuQtoKmnia11Wyk7XcapnlN0+jpp6mnCbraT4chgdMpoChILwuFbYWIhWa6sfrVLTrGnkG/Lj9gOucfXw56mPexq2MXOhp08UfYEvzvwO1LsKSwvXM6VRVeyMH+hVM2JQSNhnBBCBIVK3RN0X/R5UOGZcf1rU+kJeDHH06aScyvjfrrrp7xT+w5/u/Fv5Cfmx/18QowUe07t4Y7X7uCL077IfVfcBxiVcRZUjDDuTGVcv2Y/BqthbYoYoboNVzBQDwX8QgghhBADxa/7eb/xfTZWb2Rj9UZqu2rR0JieNZ37r7iflcUrGZ0yelCeW9M0sl3ZZLuyuSLnikF5jg97cU8dZpPGtdNinPj3uY1AaM7dQ7InEaRpRlVN1faoS1ZNysFhNbF2b12/wjiAbFc2/7703/nC1C/wdPnTbKjawPrK9TG/piipiNm5s1mQt4Blhctihssjjcvq4ubxN3Pz+Jtp7m3m7dq32V6/nQOnD/BW9VsxvzbLmcWNY27ktgm3MSH9/CrIeLy0pw6rWWPNlBjHcuW7ULwQTOYLeg5xgUoWwXu/Al8vWCNXIF8zJZfv/u0AL3xQe0FhXEiWK4ubxt7ETWNvuuDHuBguq4tF+YtYlG9UX/b4ethat5WNVRvZVL2Jl46/hN1sZ2H+QlYVr2JF0YpzoI9PEwAAIABJREFULloR4mJJGCeEEEGhMM6l+2K0t7PiCJ5o729lnDlcGRc96DMrhR4M+wBa3C30+Hv4/rvf51dX/+qiersLMdy4/W6+t/V7KBQt7jMDTxQ6FqWjRZ39GArjTP1qNxs65mO2qbTYcKkAYJLKOCGEEEIMiLNPFm6p3UK7px2bycaC/AV8adqXWF60fFiGDgFd8cIHtSwZm0lGYpTPZwA1O8DvhtLlQ7c5YSheCEdehc4GSDp/pl+C3cJVk3J4dX89/3L9ZCzm+KtbQsamjeXb87/NP8/7Z2o6azjRfoIObweegAdd6WQ4M8hx5VCYWBi1ClScK8OZcU4g0u5pp6azhsaeRk73nsakmbCb7SRaExmdOpripOKLOheh64qX99WzfHwWKa4o50M6G6D5GFwRucpSDKKSJfDu/0DNzqitflOcVq6cmM3avXV85+OTsF7AsXw5clldXF1yNVeXXI1P94UvdtlQtYFN1ZuwaBbm5c1jVckqriy6kgxnxqXesviIkzBOCCGCwmGcijEzzmzDoRTQv5lxXr3vyjjMNiz46dHPtKns8HZg0kxsq9/G0bajjE8bH/dzCjHcvV37NhUdFZg0Ex3ejvCv6yqADRUz+AbQdFO/KlxDa21KQbR+8uYzYZzMjBNCCCHEhWrobuDt2rfZVL2J7XXb8erecButlUUrWZS/aNi30Xr7aBP17W6++/HJsRee3GLMPJI5U0MvdOL+5BaYflvEJTfMyOeVffVsPd7M8vFZF/xUmqZRlFxEUXLRBT+GiCw0d2sKg9MecmdFCw0dbv752onRF4XnxS0elD2IGEoWGa+hxzfGnLt565xCXi9rYMOhU6yZen74/lFnNVmZnzef+XnzeXDug5Q1l7G+cj1vVr7JQ9se4ofbf8is7FlcXXI1VxVfRW7C8PszEINPwjghhAjyBDygNOOFMVpgZrJgCYZx/TqJH/Bh0R3GT2KEcTblo+OskK/T20l+Qj41XTU09zZDfDOrhRgRmnubAchPyKfT2xn+db/y4lB6zGMNQFNavypcwzPjiFEZZ7aRoHyAVSrjhBBCCBG3bl83+5r2sa1uG2/Xvs2xtmOAMe/ptgm3cWXxlczKnoUl2gVBw9Azu2pIc1lZNTk79sITm6HgCnAkD83GxBm508CRCic3Rw3jVkzIItlh4W/v11xUGCc+up5/vxaXzcyqSTHmR1ZuBWsC5M0Yuo0JgyMZiubB8Q2w6l+iLls+PovsJDvP7KoelmHc2TRNY2rmVKZmTuX+K+6nvLWcN6ve5M3KN3l4x8M8vONhxqSMYWH+QhbmL2ROzpxhf4GMGBgj512cEEJ8SIu7hV/u+SUPzH4Al9WFx+8BZUGD2IEZwcq4fs6acqhQGBelWsdiw+7txqd7wr/U4e1gRtYMarpqaPO0xf18QowErZ5WwJgN0e5tB0ApRQAvTqWDOVq7WeP4Nqn+tZIMrbUqYlTd2UgIzYwLVsY1dDfwRNkT3D/7fuzR9iSEEEJcIkopaYU+xHwBHyc7TnK09Sj7mvbxwakPONJ6BF3pWEwWZufM5qaxN7G0YCmlKaUj8u+nucvDGwcb+OyCEuyWGPOjPJ1QuxuW3D90mxNnmMxQuhRObAGljDlyH2K3mLlpVgFP7azmX3t9pDijvI8Ww1K3x8/L++q4bnoeCfYYp6ErtkLxfDDLqepLYsxVsPGH0NUEiZFDc4vZxM2zC/nV5uM0tLvJTXEM8SYvDU3TmJA+gQnpE/jqzK9ysv0km6o3sa1uG8+UP8OTh57EolkYlzaOaZnTmJY1jWmZ0yhOLsZqktc7cS55hRNCjFjPlj/LU0eeYnXJaublzcMT8KCp4Mti1FlTVmNeFP2sjNO9BGO+qEGfZrZhR+FXxuP6dT/dvm6Kkow2HBLGCXGudk87SdYk0hxp1HTVAMZxAyoYxvXVplLr38w43YemTJjOeozzWOwkBF8bPH4jWN9Ss4UnDz3JzOyZXDPqmrifTwghhBgK//bev7H2+FoSrYkk2hLJS8hjdOpoxqWOY1b2LEqSS0ZkGHQx/LqfNk8bzb3NNPY0UtdVR11XHTVdNZxsP0lFewX+4MU7TouT6ZnT+dK0L3FF9hXMyJ5BgjXhEv8OLr3/21mNL6C4fV5x7IWV74IKxGytJgZZ6XI4tBZaKyC9NOKS2+YU8cdtlby0t47PLSgZ2v2JS+rV/fV0ewPcNidGe9HuZmg6BNNuGbqNiXONvdII405sjFrlCvB3c4t5bPNx/vxeJd9YPWEIN3j5KE0ppTSllLum3oXb7+aDUx+wo2EH+0/v59WTr/J0+dMAWDQLRclFlCaXMiplFLkJuWS7sslx5ZDtyibDkYHZFONiE3EepRRVnVXsa9pHWXMZVR1VNPQ0cLrnNO6AmzWj1vDQ4ocu9TZjkjBOCDFivV7xOgAtnhaAc8O4qBU1VmxGFtevihpfwIdFhR4jetWdXdfDlXHdvm6AM2GcW8I4Ic7W6m4lxZ5Cki0p3KYyVI3m7GP2I4D5AirjtNDsx2hXuJltuIIBX2gOZavbqOBbV7FOwjghhBCXnQV5C7CZbXT7uun0dlLTWcOuI7vC/47luHJYmL+Q1SWrWZC/4LK4yltXOtWd1RxvO24EXd11tLpb6fR20u3rRqEwaSY0NDRNw2F24LA4wrdOi/P8n4fWBH9u0Sz4dB9e3YsvcOa2y9cV/rPq8nUZt94uOn2dtPS20OJuoc3ThkKds2ebyUZeYh6jkkexomgF41LHMTZtLKUppZfFn+nlxBfQ+dO2SpaOy2RcTlLsxSc2G5/diuYPzebE+UqXG7cnN0cN46bkJzMpL5mndlbx2fnFEvCPIE/trGZ0ZgKzS2LM3KjcatzKvLhLJ28mONPh2IaYYVxxhourJubwl/eq+OrKsTisIztMclgc4VaVYLw/qWivoKy5jJPtJ8M/ttRuCV44fIZZM5NqTyXZnkyKzZjbmGxLDt+6rK7z3ps4zA5swfMZutLRlY5CoSsdT8BDt687/KPH12P8v9/4udvvPvOeJuBFobCb7djMNlLsKWQ4MshyZlGSXEJpSimFSYWXRWtsb8DL9vrtbKrexOaazZzqOQUYFzONSh5FQWIBs7Jm4bK6mJIxOHMvB9Kl/xMVQohL4HjbcY62HgXOnCj3BDxoevCNRNSZcf2vjFPKqHazhcO4yB+2NYsNh1L4lXEiv8PTAUCqPZUkW5JUxgnxIe2edtIcaSTbkun0dqKUCp84dMUVxmn9C9V1H8G6uJiPnRisbg2HccF2mltqttDl7SLRlhj3cwohhBCDbVXJKlaVrDrn1wJ6gKrOKnY27OS9+vfYULmBF469QIo9hVXFq1hTuoa5OXOH7IpuXemUnS7jndp32F6/nSOtR8IXroFxQibdkU6SLYkEawImzWScoFLGCaoOTwfugBu3P/gj4KbX33tRe9LQwtWEibZEkqxJlKaUMjtnNunOdNIdxo/chFzyE/LJcGZg0kwX+0cxIqwra6Chw80Pb5ra9+Jj66FkEVidg78xEVnmOEjMhZNbYPbnIy7RNI3b5xfzvRcO8H5VW+xgRgwbZXXt7Kps5TvXToodwB7fALYkKJwzdJsT5zKZYcxKOP4W6DqYov979flFo3jzUCNr99Zxa6yKxxHIpJkYnTqa0amjz/l1Xem0uFto7GnkVPcpTvWcorGnkVZPK+2edjo8HZzqOcXR1qO0e9vPeY9zMZwWJy6LiwRrAg6LA5vJhs1sw24xChBCFxmdbD9Jc29z+OJmAIfZwZTMKczImsHc3LnMyZmDwzI0rUmVUuxt2sva42t5veJ1OrwduCwuFuUvYlHBIqZnTmds6tiPZGWhhHFCiBFpXcW68If0UMWZURkXfMMRtU2lDVsojAvEF8aFQrtQiBerTaVD6QSCJ/I7fEYYl2xLJs2eFj6hL4QwtHpayXBkkGxLJqAC9Ph7zgrj/H22qbQoDW/AE3lNBN6AF5PqI4yz2Iy4TpnPqYwza8bPN1Zv5Pox18f9nEIIIcSlYDaZw22YbptwG96Al3fr3uX1itd57eRrPHf0ObJd2Xx89Me5fvTg/LvW4m5ha+1WttZt5d3ad2n1tKKhMSVjCjeMuYFJ6ZMYlzaOgsQCUu2p/a60CV3E4/YbwVxvoPdMWOd341d+rCYrVpMVm9k4eWU1WUmwJpBkS8JpcUq4NgiUUjy66TilmQmsnJgde3HzcThdDnO/ODSbE5FpGoxebpzEjzI3DuCTswr48WuHeeLdCgnjRogn3q3AaTXHblGpFBx7y2g1G+3zmxgaY66CA89B4wHImx512eKxGUzMTeJXW05w8xWFmExS6doXk2Yi05lJpjMzruotn+7D7XfjCXjo9fee8/+egAcTJjRNw6SZwu9F7GY7CdaE8A+XxdWvsEopRaevk4r2Ck62n+Rwy2H2Nu3ljwf/yO8P/B672c6c3DksLVjK0oKlFCf30Ub6AjT5mnh0z6OsPbGW6s5qHGYHK4tXct3o68KdHD7qJIwTQoxIR1qOMDplNE29TbS4z7SpNPVVGXcBM+NC6/pqU6lZbDiVjo6fgB4IV8Yl2ZJItafS7mmP6/mEGCnaPe2MSRlDsj0ZMKpJQ3PaEuKujOvP7EffWWFclLdQwcfWlPWcMG5yxmSOtBzhaNvRuJ9PCCGEuFzYzDZWFK1gRdEK3H43m2o28fLxl/lj2R/5w4E/UGgrpKqsitWjVpObkHtBzxHQAxxoPsA7te/wTs07lDWXoVCkO9JZXLCYJQVLWJS/iDTHwJzE1zQt3PopldQBeUxx8TaXN1FW18GPb5mOua8TvOXrjNtxqwd/YyK20mWw7yk4dQhyJkdckmC3cMucQv60rZLvfHwSOclDU2EhLo2Wbi8v7qnjk1cUkuKKEbI1H4P2Klhy/9BtTkQ25krj9viGmGGcpml8ZeVY7vvrB7xxsJE1Uy/s330RndVkxWqzkkQfrZoHkKZpJNuSmZ41nelZ07mRGwFw+93sbtxtvD+rfYeHdzzMwzxMSXIJSwuWsqxwGXNy5mC9wDC9vquedRXreK3iNQ42H0Sr05iXO48vT/8yq4pXDbvOQhLGCSFGpBZ3CxnODPy6P1xx5vZ7zjrRHn1mXOifl3jDuFAbPJtSKDS0KFemaGYjjAOjgiY0AyvZnkyqI5Wmnqa4nk+IkaLV3Uqqw2jjCtDh7UBXOgB2pWKG6mAE5F16/9pUanpfbSqN1w6TsuD2Gy0eWj2t5LhySHem09LbEvfzCSGEEJcjh8XBmlFrWDNqDc29zbxe8Tp/2fMXfrLrJ/xk108YnzaeJQVLmJ41nSkZU8hx5USsWmv3tHOs7RgHmw+yo2EHuxt30+ntxKSZmJY5jXtn3svSgqVMzpgsFWgjhFKK/3nrGPkpDm6aWdD3F5S/DlkTo84pE0OodJlxe3Jz1DAO4K5FpTzxbgW/2XKC714XfZ346Pv9Oyfx+HXuXjwq9sJjbxq3Y68a9D2JPiTnQfYUo8p1yddjLv34tDx+9sYR/ueto6yenCPVccOYw+JgccFiFhcs5kEepLqzmrdr3mZL7RaePvI0Tx56EpfFxfy8+czMnsm0zGlMTJ8YPk9zNl3pNPU0caT1CLsadrGjYQdlzWUATMmYwk1pN/HVq756wRd2fRRIGCeEGJGa3c1MzZyKN+ANz4xz+92Yw5Vx0drb2dAATZninjV1ThhntkZvoWOx4VQBwKio6fCeaVOZak/lWOuxeH97Qgx73oCXHn+PMfDYFqyM83ZgNRnHrl2pmO1mwQjj+jMzzmhTGTx+TbFbYGrKEn7sFncLE9Mnku5Ip9ndHPfzCSGEEJe7DGcGn5n0GQoaCyiZVcLm6s1sqd3CE2VPEFABAFwWF2mONFLsKQD0+Hpo97Sf04K9KKmI1SWrmZ83n4V5C0l1SKXaSLT+YCO7K1v50SemYbP0EcC6O6ByKyz86tBsTsSWWgxppXB8Iyy4N+qy4gwXN8zI58/vVfGVlWNJT/jotxwT5+tw+3hiWwVrpuQyLqePyp5jGyB9DKSNGoqtib6MvQq2P2q8xjqSoy4zmzTuu2ocDzy9l5f313PDjPwh3KS4lIqSirh90u3cPul2enw97GjYwds1b/Nu3btsrN4YXpdgTSDXlYvNbENhtAav76oPz6WzmCxMz5zOfbPuY82oNRQlF7Fp06ZhHcSBhHFCiBGqxd1ChiMDj99DdVc1YLSpNIdnxkWpjDMZL5uaMsdfGaefFcaZYnzYMNtwBU9anFMZFwzjZGacEGe0eYxZj6n2M5Vxnd5OXFYX0FdlnPHrVhV/hSuAx+/DHArjogX2wdcOTZlxB9wopWhzt5HmSCPDkSFhnBBCiGErNGPu81M/T6+/l/LWcg42H6Sqo4o2TxutnlZMmChOKibRlkhJUgljUscwPm08OQk5l3r74hLzB3R+vO4IY7ISuG1OYd9fcPwt0P0wfs3gb07EZ9xqeP+P4OsFqzPqsq+sHMsLe+r47dsn+NaaiUO4QTFUHt9aQafbz1dXjo290OeGinfgis8NzcZE3yZcC+8+AsfWw9SbYy69cWYBv95ygp+sO8yaKbl9X0Qhhh2X1RVuYw5G96L9p/dzou0EDT0NNHQ3GOM+NBNWk9WYNZdUTGlKKdOypuG0RP+3YriSME4IMeK4/W66fd1kODPo9fey7/S+4K97sPR1oj14Et/Uj8o4X3AmlV3psQcSm0OVcYQr48yaGafFSao9NTyo1R6thaYQI0ioovXDlXGWYGBu11WM49j4dasChU5AD8Q12NhoZRvfa4Smm8PVe17dS7o9nXRHusyME0IIMSI4LU5mZM1gRtaMS70V8RHxxLZKjp3q4tefm43FHMcJ3fJ14EyDwnmDvzkRn/HXwI5fwYnNMCF6SDo+J4kbZuTz+60nuWPhKHJTZHbccNLc5eHXW05w9eQcphWmxF5ctQ38vTB21dBsTvStaB4kZMOhtX2GcWaTxj9fO4k7f7+D37x9ou/wVQx7aY40lhUuY1nhsku9lcuWRNZCiBGnxW3MbEp3pJPmSKPN3YZSCq/uOavqJfrMODDaVPa/Mk6PXqkTfOyEYBjn9rvp9HaSbEtG07Rwq542d1tczynEcNfuaQeMN3tnV8aF5rTFWxkHZ47RvngDvrMC+9iPbQpWxoVeb1IdqaQ702nubUYpFdfzCSGEEEKMBPXtvfzsjSNcOTGbqyfHUSWpB+DoGzD2ajDLNeaXjVFLwJYI5a/1ufSb10wgoCt+vr58CDYmhtL/vHWMXl+AB+Opejz2pvH5adSSwd+YiI/JDBM/DuVvGJWLfVg+PouPTc3lkQ1HqWruGYINCvHRJmGcEGLECZ0cz3BkkGZPw6/8dHg78Pg9WPs80R4K47R+z4xzoNCizbAKPmeC8gPByjhPRzhkSLUHwziPhHFCAOG2rSn2FJJsSWhoxnEc8ADgiCuMM0KxeI9lT8CLOZSj9VU9q5vOmUmZ7kgnw5GBT/fR5euK6/mEEEIIIYY7XVc8+Nx+AkrxrzdMiT5f+2y1u6HntFGJJS4fFjuMudKoWuzj4rOidBd3LBzF07ureb9KxjEMF2V17fxpeyV/N6+IsdmJfX/B8begeAHYEgZ/cyJ+k64HXzec2Nj3WuD/XT8Zi0njm8/uJaDLhadCxCKXEAkhRpyzK+M6vB2AEXJ5dA8poTAuWmhmMk7Am5QJjz/OyrjgiX670tFiVsbZcCgdCIZxvo5w+z0J44Q4V7gyzp6GSTORaE2k09sZDuNsqu82lTaMDwpxV7kGvGcq40zRZsadaWXr9rvDx2yaPY12h7HnFndLOGgXQgghhBjJ/vBuBVvKm/jBTVMpSnfF90VlLxgXQElru8vPhI/BoZegfi/kz4y59P5V43hlXz3ffn4/a7+2BGs87UkvIaUU3d4AHb0+Ot1+Ot0+fAFFQFcElCKg6/jP+jmAhoamgUmDskY/nrIGNEDTtOBt8Acawf+wmk24bGZcNgsum5lkh5VkpyW+oPoSCuiKbz+/nzSXjW+ujqMqrrUSTh2Eqx8a/M2J/hm1FBwpRqvKCR/rc3leipPv3zCFbz67j8c2H5d2lULEIGGcEGLEae5tBiDdmU671zg53upuxRvwYNWDi6K2qTROtJuVRq/fE9fzhVrgOVB9hnH24Jt2T8BDp6czfMI+zZ5m7NNz5qrBH733I5RS3DvzXtId6XHtRYiPourOan6x5xeMTR3LF6d9ETh3ZhxAsj2ZDs+HK+OiHMeahjJZz7SpjLvK1XdWZVy0qjvjOU26CU/Ac06bygxvBmCEcSXJJXE9pxBCCCHEcLXteDP//uohVk3K4bPzi+P7Ij0AZc8bLSqdqYO7QdF/Y68GNCh/vc8wLslh5aEbp/DlP+3m5+vL+VY8bQ0HmVKK6pZe9te2c6Shg5rWXmraeqlt7aWhw33xVT8f7L6gL7NZTGQn2clJdpCb4mB8dhITchMZl5NESborvjmLg+wXG4+xt6adR/5uFimuKBcunu3QWuN20vWDuzHRfxYbjF8DR16FgC/6Ra5nuWV2IZvLm/jPN44wJT+ZFROyh2CjQnz0SBgnhBhxmt3BMM6RHq5aOd17moAKxN2m0qRMeOI8ge8LGFU3LvTYb2LMNiNAADx+Dx3eDvIS8wDCM+Pa3UZ46Nf9PHPkGfzKz/b67az9xNq49iLER02nt5NPvfwpOr2djEoeFQ7j2jxtJFgTsAaPqSRbUvwz4wDMVmOOI/GHcT7dR3i8vMkc5XGDgb2u4Ql4zmlT2e3rBs5cECCEEEIIMVIdbezk3j/vZlRmAj/71Iz4q34q34XOeph28+BuUFyYxCwonGuEcSv+qc/lq6fk8qk5RTy6+TgLx2SwdFzWEGzyjICu2F/bzpbyJrafaOZAbTsdbmN0hEkzKn4KUp3MK00nN8VBmstKksNKssNKosOC1axhMZkwmzQsJs24NWuYgt/PSoFCoRTs2LmT2bPnnPfrCiMEVMFf9wd0enwBejwBur1+Onp9NHV6aOxwc6rTw/6adl7dXx/uBOqwmphTks6C0eksHJPBtIJUbJahDed2nGzhv94s58aZ+Vw/PS++Lzr0EuRMg/TRg7s5cWEmXQ/7noLKrTB6RZ/LNU3jP26ezvGmbr72lw/4v3sWMCU/ZdC3KcRHjYRxQogRp8Xdgsviwmlxkm43KsoauhsAsIUudIvWpjJ44t+sNDx+4wT+8bbjdHo7mZkd+cq/UGVcAnr0Sp3gY9vOqozr8J6ZGZdiN97EhCrjGrob8Cs/o5JHUdFRQae3U9reiWGpsqMyHMTVdNUQ0AOYTWbaPG3hqjiAZFsyHd6Os9rCxmhTCedUooaO0UjeqX2HsaljyU3Ixad7sSjQTbbwB+zzBF87LErD7TfCOJvJhsviIsNxpjJOCCGEEGIoKKVo7fHR3OWhtcdHp9tHQDdO/B9p8pNc1Uqq00puigOXbWhOER1p6OQzv92O1Wzid3fOIdkRRxVNyIHnwOoyqjbE5WnCGtjwEHTUQ3Lfwcy/3DCZD6pb+eqf3+f5ryxibPbgfq7t9QZ481Aj68oaeOfYadp6fGgaTM5L5roZ+UzNT2FaQQrjcxOxW6JcgHcBGpPNTC0YmHCi1xvg2KkujjR2cqC2ne0nmvnpG+UAJNjMrJiYzcem5rJyQjYJ9sE9riubu/n/ntxNcbqLH940Nb5gvaMeqt+Dld8Z1L2JizDmKrA44eBLcYVxAAl2C7+9cw63Pvoun/ntezz5hfkD9j3fF7cvEA6se7wB3m/007u/HofVjNNmJsVpJS/FQYrTetm3fBXDm4RxQogRp8XdEm7rGKo4OxPGBdO4qJVxZ9pUeoMVbz/b/TN2NezitZtfi9guMhQOuDS9j0qdsyrjAh46vZ3hmXFWk5VkW3K4oqa6sxqA+XnzqeiooK6rjgnpE+L6/QvxUVLXVQcEv9ePVNDY00h+Yj7Nvc3nHG9JtiQqOypxB9xoyoQJ+jze7H6jMi5Uvfphh1sOc++b9/LZSZ/lwXkP4tf9RmtLU4y3T+YzYVxXwEOrp5U0RxqapoVfb0LVuUIIIYQQA8nr19lf28bOilaONnZx4nQXx091hSt9IvnZ7nfD/5+VZKc0I4HJ+cnMKEphWkEqozMTMJkG7sTlmwcbuf+pPbhsZv765QWUZCTE/8UBHxx8ESZcC7Z+fJ0YWuODYdyRV2HuF/pc7rJZ+N2dc/nEL7dy5+938tcvLaA4I875gXHyBXS2HjvNi3vqeKOsgW5vgMxEO1dNzGHZ+EyWjM0kIzHGhbOXGafNzLTCFKYVpnDL7EIAWrq97DjZzOby06w/2MAr++qxWUwsH5/FddPzWDUpZ8CDudq2Xu78/Q6UUvzhrnkkxRusH37ZuJ10w4DuRwwgmwvGXwMHX4A1D0e/YP1DClKd/N+XF/LpX2/j1se28Z+3zeDaaXFWS8Yh1Ep2Z0UL+2raKG/s4uipLk53RRgj88H75/2Sw2pidGYik/KSmZSXxMTcZKYVppDi7MdFIUJcBAnjhBDDXrunnWRbcvjql+beZtKdxkl8p8WJ0+KkvrseIFwpE/UkvilUGUe4TWV9dz09/h5+s+83PDjvwfO+JBzGEeizUscW7EHf7mnHp/vOqXbLdmVzqucUcCaMW5C3gKeOPEV9d72EcWJYCh2boe/16s5q8hPzOdVzitKU0vC6UGWcJ+DBrIJXsMYI4zSzDWfA+P9olXGPvP8IAI09jQD4lBeLsqBihnzGh3jrWW0q0xzGzEeryUqKPeWcNpW+gA+v7iXBKieUhBBCCNE/voDOvhqjKmb7iWZ2VbTS6zPe4OQk2xmdmcj1M/IpzUwgJ9lBmstGstMSrvDfvnMXYyZNo63HS12bm8rmbk40dfPUzmoef7cCgCS7hZnFqcwpSWfOqDRmFqVe0An9pk4PP1l3mKd31TC1IJlff27GtgutAAAgAElEQVQO+anO/j3I8Y3Q2wJTpUXlZS17MmSOhwPPxxXGARSlu3j8rnl89nfvceuv3uV3d8696IoapRTvV7Xy4p46XtlXT3O3l2SHhetn5HPDzHzml2ZgHsCg+VJLT7CxZmoea6bm8cObprKrooXXDjTw+oEG1h9sxGk1c9WkbG6Ykc/yCVkXXfV3uKGDLzy+iw63jyfunkdpZj8+zxx80fgeyb70cwJFDDM/Y4RxR9f1a7ZfcYaLF766mHue3M1X/vw+n5hVwD99bCI5yf8/e+cdHkXVt+F7tmdTNr13CAQSeu9IE7C8omJ/PxVeBBVBwYqKHUQRRBRERERURERRQURAeguQhIQSIIT0hPSy2WyyZb4/JlmIYBIQpTj3deVKsjtn9uy0nT3PeZ6frunGf8Bqs5OSX8n+9BIOpJeyP72EgkpJeHPRqmjp68KgaB9CPfX4uenwddPholWSnJhAj+7dMFtsVNfaKDVZyCuvJrfMzMmCSrafLGR1fDaAwxnbI8KLHpGedA/3xMO5eeKjjMzFIotxMjIy1y2iKLL0yFLmxc/jxR4vclfruwDJGRfkEuRYzkvnRY4xB5DEOLtC/ecRdHVimkoUsNglN02BqQCFoGDl8ZWMbTcWbyfvBk3ql9OLTTnj1A5nXGF1IYDDGQfgp/dziALZldloFBo6+HQAcPRfRuZ6I8eYg4vahbZebQFJiO4R0IMCUwE9Ano4lquvGddQjGtM/FbjTF1M5QVqxh0uOsyOnB0oBIXjvLPZrWhEVZPrBVAjiXyF1YV4OXk5nvbSeTWIqfwg4QNWHl/Jq71eZWTkyEa3hYyMjIyMjMy/mz+KbwczSjHVSuJbtL8rd3cLoWekJ90jvPBsxkBi0UklA1v7nve4zS6SWmDkUHYZh7LKOJhRyvubTyCKoFQItA1wo0uYB13DPega5omfm/aCsV8Wm53ErDJ+TMzhu4PZWGwijw5sweTBUejUlyAEHF4NOgO0HHzxbWX+OQQB2o2GLTOgPBsMwc1qFhtkYOUjvXhoaRy3L9zNc8OjebBXGCpl8+ufiaLI0bwKfj6Ux8+Hcskpq0arUjCkrR//uUwi1LWAUiHQI9KLHpFeTL+5LfvTS/jpUC6/JOexNikPV52K4TH+3NoxkF6RXhe1jW12ka/3ZfDWL8dw1alZMa7nxQmnVUVSHbK+Uy7hncn8o7QYBC7+kPDVRYlxAL5uOr55pCcfbTnFgi2p/JKcx+2dg/hPxyA6h3pcsK6hKIoUGmtIzCwjMauMhMwykrLLqKr7nAtyd6J3Cy+6hnvSLdyTKF+XP3VuV55W0ibA7YLP1VNkrCElr5IDGSXsSyvhq30ZfLbrNCB9pvZu4U3vFpJA12zXp4xME8hinIyMzHXLL6d/Ye7BuQgI7M3b20CMa+fdzrGcr96XU+WnAEmMExWNC2YAqjpnnNlqprymnL5BfdmZs5OUkhT6BvVt0OSsM87a+CC+Sutw5tWLcZUmFbtTi+jd0htfvS8nSqUc+KzKLIJdg/F28kar1JJnzLuILSMjc+2QZ8wjwCUAP70fKoWKrMosTBYTlZZKfPXS4NGvh/PB7kS1tZqq2ioU9WKcqvEajU6CFFN5ITHuUOEhAHoF9CK1LBUAm2hBLWoRmjiPATR26UtBjjGH1h5nXaueOs8GYtye3D2YrWae2/EcoW6hxHrHNrFFZGRkZGRkZP4tWGx2knPqxbcSDqSXOMS31n6ujO4STK8WXs0W35qLUiHQ2t+V1v6u3NU1BIDyagsJmaUczCjlQHppA/ecXqMk2MMJX1cdggB2UaS0ykJakRGzxY5WpeCm9gFMvKElkT4ul9apWhOkrIOY/zR+jydzdRB7B2x5S3LH9ZnU7Gat/V1ZN6kfU79N5I21R/kmLpNx/SIZ0c7/TwfDq2ttxKWXsPNkIb+nFHCqsAqVQqBflDdTh7ViWIw/Ln9z3bSrGcU5wtyrt8awK7WInw7lsv5wPqsOZuPtomFkuwAGt/GjY4j7n8b1GWusbDicz+IdaaTkV9K3pTdz7u6Ar+tFup1S1oFoh7ZyROVVj1IFHe6G3R+CsQBczp+80RhalZIpQ1txR+cgFmw5xZqEXFbEZaFVKYj0ccHT+exE+IKKGnLKqjHWSLHKKoVA20A37ugSTNdwT7qGeVy8m7oJvF209I3S0jdKmlBfY7WRlF3OvrRi9qQVO8Q5pUKgXZCBPi296N3Cmy5hHpc2oURGBlmMk5GRuY6JPxOPq9qVPkF9SCxMBCSXWqm5tIFTxdvJm/gCKUtaZ7c3GSUJkjOuSrQ4YiN7BvRkZ85O0srSzhPj6p1xzk2JcUqNdFEWBYqqiwBYn1TOrJP72fTUAPyc/SiqLsJit5BVmUWIawiCIBDgHEBuVe7FbBoZmWuG3KpcAp0DUSqUBLsEk1WZ5XCq+Tn7sedUMRO+PMiArpKgVmQuQinWzY5romacvt4Zd4GYyrSyNFw1rrT1asvevL1Y7Vbs2NCIIkJjefl1r6muS7wtrylv4Jb1cvLiWPExAEwWEyfLTjK61Wi+PfEt8WfiZTFORkZGRkbmX0q9IyApq5z4OtHrUHYZZos0eahefOsZ6UX3CM9/vL6VwUnNwNa+DiedxWbnWF4F8RmlZJSYyCmtptBYgwAoBAFfNy09I73oGu5Bvyjvv+4qOLoGaiuhw71//c3I/P14tYCgrpD87UWJcSDFLX72UDc2HMnn/U0neXZ1EtN+SCYmyECktzOuOhVWu8iZcjOnCo1klpiwi6BRKugW4cGYvhGMiA24rAL19YJaqXCcx2aLja3HC/jpUC4r92fxxZ4MBAFa+LgQ6e2Mt6sWtUKg0mzldHEVh3PKsdhEWvq6MP/eTtzcPuCCjtgmOboG3MPAv/3lf4Myl5+O98OueZD0LfSeeEmrCPNyZtad7Zl+S1t2nCziQHoJpwqNVJqt2EURuyhFW/Zq4UWop54OIQZiAg3/uOClVSnpVue6mzgoCrPFRkJmGbtPFbErtYiPt6Xx0ZZTaFQKOoe60zHEg44hBjqEuOPvpru080HmX4csxsnIyFy3pJSk0NqzNe192vNr+q8UmAqoslRhE22EuYU5lqt31wBSTKS6kS+2CiUiAipELHaLQxRo7dkad607pytOn9ek3nXjJNqajKkUACUqCk2SM67cqKLWaue1n48wvLcvIiLF1cVkVWbRzb8bAIEugeQaZTFO5vok15hLF78uAAS7BpNdme0Qwb20PkxfeRiAarN03haaClHa6yIvmoiT1CPNLK8XzM/ldMVpIgwR+On9sIk28qvyAdAgIiiaFuwd9SdpeI0JdQ1lU8YmLDYLR4qPYBftDAgZwNasraSUpDS2KWRkZGRkZGSaQBRFioy1ZJaYyCoxkVNWTbGxluKqGkqqaik11WK22Kmx2jBb7FhsdhSCgEIQUCkElAoBF60KF53q7G+NCledCoOTGjcndd3vuv91asfjzRk0tNlFiqtqyC83k1duJq+smtNFVRw/U8mJM0ZKqqTvDSqFQEyQgfu6h9E13IPuEZ54/8PiW1OolQraB7vTPtj9n3nBg8vAqyWE9flnXk/mr9NuNPz6HBSkXHRtMEEQGB4bwI0x/hzMKGXTsQKSc8qIO12CscaKWing5awlJtDArR0C6RzmQY8IL5w0sluluejUSkeNuaoaKwmZZSRkSpMAThdVEZ9ZhsVmx0WrItRTz5g+EQyK9qV7hOeliw4VeZC2VYqolIWLawOf1pKwnvgV9Hr8L+03Z62K4bH+DI/1v4wd/PvQqZX0auFFrxZeTB3WGmONlbjTxexOLWbf6RKW7EzDYpO+93u7aGnp60xknZgd4e2Mr6sOLxcNXi6aZsXj2uwiRrOV8mpLg58Ks4WKaguVZisVZul3pdlCRbX0v7HGitUmYrWLdeKmiFqpQKtSoFMr0akVuDtp8HSW+uLtoiXQXUeop54QTz0+LheOmpb5e5DFOBkZmWuCWXGz2Ja9jSCXID4Z+kmTHxQ2u40TpSe4s9WdjkjK5MJkqGsWaYh0LHuua8UJO0JTsSdKDWpRwHaOGOer9yXSEElaWdp5i9faa0EU0GJt0qkDoLArHTGVZVVKnNRKNqcUMKSLKyCJjCariWBXKXs/wDmg2YP4p8tPMytuFiariYkdJ9I9oHuz2jWFxW7BarfipLq8sQFXGpPFRIGpgHBDeKPLnSg9QaQhEpXi+vpYrbJU4aRyQiE0v4ZAY6xNW8vKlJW469x5o/cbuOsaH7ypqK3AaDES6BwIQIhrCIkFiY7zLi1fyckCI05qJcZqFWikiFeNvW4/NHG+OVENgMV2vhiXVpZGv+B+DiEt2ygVd9YhNr7euuuH1n5WjPNx8nH8HekeiU20kVmZSXJRMgDtvNvR2rM1x0qONbY5HFRbq7lv3X3YRTujWo7iodiHmtVORkZGRubyIghCJLBKFMUuV7ov/0bKTLUcy6skJb+ClLxKjuVXkFpgdMQ41uOiVTkGoHxddTiplWhVCrRqBRqlAruINIBlF7HY7FTVWjHWWCkz1ZJVaqLSbMVotlJtsf1JTyQ0KgVuOjUapYCiTthTCgI1VjvVFhumWqvD5XYuzholrfxdGdbWj1Z+rsQEutE+2F0WFc6l8Dhk7YWhr8sD+NcSMaNgwwtw+DsY9NIlrUIQBCmiLtzzMndO5lyctSr6Rnk74vr+NpK/lSIqZYfrtUXH+2DdFMhNgKDOV7o3VwwXrYpB0X4MivYDwGyxcSyvgqTscpJzykkrNPJLch5lpvPHF1y0KnRqBWql9KNSClhtIrVWaWJQjVW6/zhnTu95KARw1alx1alwq/sd4qnHVatCpRRQKhQoFZI73WITqbHYHPcg9fc0xcZaRxRoPU5qJS18nWnj70Z0gBttAlxp4++Gh+wu/lu4vkYNZWRkrksKTAV8eexLfPW+7M3by+ny00S6RzbaJqMiA7PNTLRnNG282qBSqEgqSsJVIwla4W7hmGqtrD6YjZf32RtOnd3WeAQdgFKNShSxnhNT6af3I8IQwZasLYAkzjy3/Tk+HPwhFpsFUVSiFpuOqQRQiAqqLFUAlFSq6BXmwc7UImprpL7H5ccBkjABkjOuxFxCtbW6STHsm5RviMuPQ61Qs/L4yssixhVXFzN2w1gUCgUrb16JujHX0D/A8ZLjzDk4h+SiZN7t/y59gi599uy0ndPYlr2NZcOX0d7nwjEav6b/yjPbnuHh2IeZ0uXSi1CvTFnJBwkf0COgB891ew4/Z79LXtfloNRcym0/3kaURxQfDvoQneoiawFcgGVHlpFflU9ZYRm/nP6F+9rc1+jy9bUQA1wCAOmYN1qMjpjHCqMzAF3CPMioygWNJCDqxTqRr8mYSiMguVcTCxJ5c++bfDz0Y9QKNcXmYiIMEfg6S2JcTmUOAFqQsvP/jDpBVsPZu2id0p2v92Vyd7cQx0SAtPI0kgqTCHUNxUPnQbRnNLtzd2O2mpvc1ntz95Jaloqv3pdPkj7hgbYPXHdCsIyMjMzViiAI7kBXYCjwLFB2ZXv078Bis3M0t4L4zFLiM8uIzyglp6za8byXs4Y2AW7c3S2EME89oV56Qj2dCXJ3umyiVo3VJs1Kd8xUl/6uMNf9XzdD3WK1Y7OL2EQRm11Eo1Kg1yjRa1Q4qZV4u2jwNzjh76bD36DDy1mDQiELTI2yfwko1NCh8XtHmasMVz+IGADJq+CGF2Uh9d+OKELiCgjuBt4tr3RvZC6G2Dtgw4twcOm/Woz7Izq1kk6hHnQK9WjweElVLenFVRRV1lBcVUuxsYaSKgs1VhsWmx2LTaTWZketENCoFNKPUimJbHUOfMl9r8Kgl1z4bk5qnDXKy+JgM1ts5JRVO1IE0otMnCyoZMvxQlYdzHYsF2jQ0THUnc6hHnQKdb8i0aHXI/LIjYyMzFVPvfj0Uo+XmLRlEluytjQpxtU7TKI9o9EqtUR7RHOo8BBBLkH46n1x0bjw3m/Hmf97Ki+PPjvw7aoQEZRNOePUqEURm2ilwFSAi9oFZ7UzEYYIVp9cTZm5jE+SPiG1LJXfM3+X6r/ZdagoajKmEkCwn3Uh2Sw62gcb2JlahNksiXEbTm8AoK1XW0AS40ASLhrbLja7jY0ZGxkQPAAXjQu/Z/6O1W79S4P4tbZaxm8cT0ZlBla7lW9SvuG/bf97yev7q4iiyMu7XiavKg+dUsfsA7PpFdjrkpxdKSUpbM7cjFJQMnXbVL675TsMWkODZTIqMnhl1ysoBSXfpHzDQzEP4am7+Fmbxloj8xPnY9Aa2J69HZWg4p0B71z0ei4nHyV+RFlNGXF5cTyz/RnmD5r/l9ZXVF1ESkkKkztPZl3aOjakb2hSjMsxSgJYkEsQgKOe2m/pv+GmcaOwQsRJraSlrwuHkpRQp8Gp7fU14xqPqXTD7ujbsZJjHC89ztfHvmZAyABActD66SVR9Kwzzt74eSwIiEqtFHlbx6F0O++sTUanVjC8XTggOe+SCpMcgngbrzbYRBunyk4R4x3T6HbZmr0VV7UrT3Z+kmk7p5FSkiLXmpORkZH5BxAEYQjwHBAPrAQ6IwlzMpeZImMN8RlnhbeknLO10wINOjqFefB/vcIcM7j/iYglrUqJ1kV51cVFXveYy6V4tNg7wMWn6eVlri7a3w1rJkDGLgjv2/TyMtcvufFQeAxumnOleyJzsTi5Q4e74dA3MOQ10MtO1cbwdNZc1TUrdWolLXxcaOHjct5zhZU1jsSBpJxyEjJL+SVZKtmhVgq0DTTQuU6g6xLmQaD79ZWO9U8gi3EyMjJXPXF5cbhp3Ogf3J82nm3YmrWVse3GAmAX7WzL2kZX/64O1xtI7iiNQuMQp3oG9mTp4aUUVRcRaYikzFTL0l3pAFRXOzvauWFrfAAfEJQaNCLYRAtnqs44YuwiDBEA7MjZwcaMjQDsyd3D4aLDWKtaoBTTmxDjpC/2ijoxTqt0ohIlMYEGVAqBcqMajUJDQXUBrTxaOeI16yP8cow5DcS4Z7c9ix07b/d7G5VCRUJBAoXVhQwLH4YgCKxJXcPhosN09O3Y6PttjHVp6zheepy5A+fy3YnvWJi4kP+0/A9uGrdLXudfYWPGRo6VHOOtvm+hUWh4ZvszrD+9npsib7rodX186GNc1a7MHjib8RvHsyZ1DQ/GPNhgmc+PfI6IyMdDP+aR3x5h2ZFlPNXlqYt+rS+OfkF5TTmLhi5ic8ZmFicvZky7MUR7XlxthctFWlkaq06s4p7W9+Cj92Fe/DwSChLo5Nvpkte5O3c3AH0C+2C1W1mQuIAzVWfwc/bDWGvk8c2P09W/K090esLRJq+qzhnnLDnjYr1jcVY7U1BdQEv3luRXVBPgrsPHVYvRrKH+VlIl1otxjQyWKTV4iDYUlmB25uykrEYyNnxz/Bu8nLwA6Zz21HmiUqjIrmxmTCWAUo3unJjKkgpJ8P9g80lu7TCAAOcA1p9eT2F1IT38ewAQ7SHt62MlxxqIcQWmAk6VnaJXYC9AuuZtzdpK36C+jsf25e2TxTgZGRmZfwBRFDcBm+r/l+trXB6sNjsp+ZUk1LveMkvJKDYB0sBPTKBUO61LmAedw9wJMMgDP/8qEr+GWiP0nHCleyJzKbT9D6x/Dg4slcW4fzsHPgO1s1RLUObao/t4OPg5xC+Dvhc/5iFzbeDjqsXH1Yd+UWcnvxRUmkmouz9LyCxjRVymYzzV301Xd3/mQec695xGdXnKnFyvyGLcdYbFbqHIVOSI9JKR+ScQRZFDhYc4cOYAOqWObv7daO3Z+rKte1/ePrr7d0epUHJDyA0sPLSQouoivJ28WZO6hld2v0KAcwDvDXiPdj5SfbijxUdp6dHSEZk4JHQInyZ/SkZFBr0De/P57nSMNVYUApRXnv1C7yLYQaVvvFMKNTpAxE5+Vf55YtzMfTNRCkoGBA9ga9ZWRESsxhtR2n9tVkylUpQ+uJyUkkjob9Di56Yjv7wGH70POcYcegX0cjSrrx1X79wBSCpMYn36egA8dZ5M6zGN9afXo1VqGRA8AIvdgkJQsDt3t0OMSypMYnv2dnoH9qazX9PRA3bRztIjS4n2jGZw6GB89D488MsDbM/ezs2RNzfZ/nIjiiILEhfQwtCCmyJuQhAEFicvZlHSIkZEjGjUHZdrzCWvKo923u3QKDVkVWbxe+bvjGs/jt6BvYn1imVd2roGYlytrZbf0n9jUOggegb0ZFj4MFYdX8X49uPRq/UYa42klKQQbghvUJfwjxhrjSw/upzBoYOJ8YohxDWElcdXsiBxAR8M+uCybqPmUn/sPNL+EZxUTiw7sozPkj9j/uCm3XGiKLIjZwcJBQmMajmKULdQAHbm7MRL50Vrz9ZoVVo+SvyIDekbuL/N/Tyz/RniC+JJLkp2CIAAWZVZOKmcHG5DtUJNN/9ubM3aip/ej9xsM4EGJ3xdtYi2s+exul4Ha8IZp8YKVTEcKvwNEZEbw29kQ/oGPkr4CLVCTZBLEApBgY+Tj0OMcxLtjijKP0Wlxalu9r6H1oO8UgtKhUB6sYl1yXlEGiLZlbsLpaBkYMhAAIJcg3BRu3C0+KhjNVuztvLizhepqK3gsxs/o5t/N5KLkikxlzAwZCDeTt60dG/Jvrx9jgkKl4OEggQSCxJRCAp6BvS8bNdzGZnmklWZRbBLsCx0yMhcpxQbaxyDOvGZpSRllzvqvHm7aOkc6s593UPpEuZBbJAcifSvxmaFvQshpAcEXvqkMJkriEYPHe6RhBjj27K78d9KdRkkr4b2d4HuykzclfmL+LWVYmf3LYKejzlqpctc//i66rgxxp8bY/wBKTo8Ja+SgxklxGeWcTCjlHXJ0kRqrUpB+2ADnUPrBToPfFzlY+VcZDHuOmPi5omUmkv55uZvLimWTebycqrsFKtPrkav0nN/m/vx0Hk03egao9pazSu7X2H96fWOxxSCgvHtxzO+/XiUivO/PJssJjZnbsZV40q1tZq9eXvZmb2TCR0nMLpVw1lS2cZscqtyeSj2IQAGhw1mwaEFrEtbx+1RtzMvfh7RntGU1ZQxffd0vr/1e2psNSQWJjZYV1uvtvg7+5NflU+kIZJ1h0tpF2SgrLqW/FIBrVJLja0GF2zNcr1o6yLoso3ZDAiWIu0CnQPx0nmhVWqZ3nU6SkHJlqwtKAQlVmMrlBpLs2IqVXVinFqQxDhfVx0BBh255dX4hfiRY8yhd2BvRzMfJx90Sh1ZlVmOxz47/BluGjdGRIxgRcoKfPW+/JD6AyMjRqJXS2JjrFcsu3J28VjHxxBFkTf2vkFKSQqLkhaxcMhC+gadP3PRZrcRXxBPlHsU606v43T5aWb1m4UgCLTzboeXzottWduuiBi3N28vp8pP8VbftxzH3ZjYMTy/43l2ZO9wRA/+kc0Zm3lq61OIiPQM6MmioYtYdWIVCkHBXa3uAuCmyJuYtX8Wp8pO0cK9BSA5ICtqK7gpQnLd3Rd9HxvSN/Br+q8MDx/Ofb/cx+ny02gUGpaPXO6IFf0jq0+uxmgx8r92/wPATePGPdH3sDhpMdmV2Q6x9Z9kW9Y2Ovh0cDjE7ou+jwWHFrAjewdRHlGcMZ2hvXf7Cw6Ur0hZwcy4mQBkV2bz7oB3sdlt7M3dS9+gvigEBZGGSDr5dmLJ4SUUmYvYmbOTsbFjWXpkKcuPLXfU3suqzCLUNbTB6/QK6CWJcc5+JJRX0z/KB183HYhqVIIGq1iLRhSwK9QoGhvIV2pQY6WmsjVqdyn69ZH2j9DRpyOLkhYR4x7jiHD10/uRXpEOgLYZ1whBqcHVKl0jvPXeZGaY6N3Ci8S6qK2IgAh25e6iq19Xx+eCQlDQybeTI5a32lrNtB3TCHQJRK/WMytuFitvXsmPqT+iVWrpGyydnz0CerD6xGpqbbVo/tCvuQfnsiF9AzeE3EBX/67YRTuiKHJD6A0XrO0oiiLzE+azOHlxg8fHxo7liU5PXPB6fq2TVZnFqhOrALg/+v4rXqtRRrpHeOCXB7gx/Eam9Zh2pbsjIyPzFxBFkdxyM0dyyjmaV8GR3AqO5lY4ar2pFAJtAtwY3SXYMWAT7OEkC/EyZznyPZRlwPC3r3RPZP4KXR+GuEWQsBz6XXqNbZlrmEMrwFotHQsy1y59n4Tlo6S4yi4PNr28zHWJWqmgXbCBdsEGHuojPXamwkx8RikHM6SJVkt3pbNoexogxYu3DTTQNtCNmEA32ga4/avv92Qx7jrj5sibmbZzGpszNzM0bOiV7g4mi4llR5ZhFa0MChnUZB2c64kScwnjN46n2FyMXbSTWJDIoqGLLnowM78qn4WHFtIroBfDI4b/Tb29NOyinae2PsXunN083vFx7o2+lxpbDfPi57Hw0EJOl59mRt8ZqM9xp+zO2c0LO1+gxFzieEyv0uOr92XG3hlEGiLp4tfF8VxcnjQwXR/l1sqjFZ19O7MiZQWnyk5Rai5lwZAFpBSn8OqeV0ksTKTaWk2NrcYR4QZSjNDg0MF8dewrIgwRZJWYiA0y4FqlIrusGm8/b3KMOc0X4+oG2stqyhzOOKVCydpRa9GqtKgVaspryhEQaOvRgf12jaPtn69XWqY+Yk+JJJr5uGrxN+hIzimnR7QfGoWmgXNNEASCXYMdYlx+Vb7D1TWhwwSOFB1hXvw8XNQuPNnlSUe7ASEDmJ8wnwJTAbnGXFJKUpjaZSpLjyxl1fFV54lxaeVpPL3taU6WnnSIl30C+zAsfBggiQn9g/uzKWMTFrvlgoP9zaWitoID+QcYEDyg2efMipQVeOo8uTH8Rsdjw8KH8X78+3x2+DP6Bfc7b5KCKIosOLSAcEM4IyJGsCBxATP2zWBD+gYGhQ5yDMwPjxjO7AOzmRc/j0mdJpFZk8mG5A146jwdx1kn305EeUSx/OhydubsJL08nZd7vsz7B9/n09MJSFAAACAASURBVORPmTPw/Gz8GlsNXx77kq5+XRvEDI5uNZolyUtYeXwlU7tObdb7N1vN7MzZSf/g/ueJMhdDflU+x0qO8WTns8fK/W3vZ1PmJib+PhEFCqyila5+XZk9YLZDsANpe357/FtivWJp59OOVcdXUWgqJKMig9KaUvqH9Hcs+3z357l33b0sPbyU4eHDmdx5MtnGbFYdX8UTnZ5ArVCTVZlFC0OLBv2r395eOh8KKmsIMOjwrZtppVM6Y7TWohFFaOr4U2pQiVbMxgCC9L5Y7Vai3KNo5dGK0a1HYxftjkV99b4kFiYC4IS9yShblBpcFNI1wsfJh32lJtoHB1BSVUtmiYkR0ZKLdnDY4AbNegf2Zsf+HeQYc4jLi6PSUsnz3Z+nyFzEM9ueYX7CfH4+9TM3Rd7kiILt7t+dr459RVJhEl39z5Yt+unUT3x2+DOiPKJYeXwlXx770vFciGsIcwfObeB4q7HV8PKul1l/ej23R93OlC5TqLHVsPDQQpYcXoLJaroqhZFlR5ZxxnSGCR0mXHQ8bpWlisc2PUZ2ZTYiInF5cXwx4ou/dP5ca+zO3U1cXhweOg8eaPPAVSG4fp3yNSXmkkuKF5aRkfnnEUWR8moLGRU21iblcrqwirSiup9CI5VmKwCCABHeznQKdeeBnmF0DnWnfbA7Tporf92RuUqx22HHHPBpA62uru/BMheJbxvJURP3CfSaCKp/z72WDGC31Tlce8oO12udyBsgoCPseh86PQBXwXcHmasDPzcdI9oFMKKdlNRnttg4kltOfEYZyXWTsn5POUN9NQ9XrYoIH2civZ2J8HYh0seZCG9njLUioihe10KdLMZdZ4yMGMni5MV8lPARg0IG/W2DKnvz9rIpYxMCAmPbjcXf2f+8ZeoHuRIKEhAEgeVHl/P58M//1B1yLmllaZwuP82AkAEOZ8KlsjZtLUeKjjAodBDd/Ls1ubzJYuJQ4SEKqwuJco8izC2MitoKMisyifWOdbiKGkMURabtnEapuZSvR35NSkkK03dPZ3HyYiZ0mNBguQ3pG1hyeAmFpkJaurfkxZ4vOuIOkwqTGPfbOExWEz+l/oSXk1ez3sPlIq0sjRn7ZuDv7M/rfV4/T8j46thX7MrZxbQe07g3+l7H42/1fYtWHq2YfWA2FbUVzB04F71aT1p5GlO3TcXf2Z/ZA2ajVqjRKDVEeURhtpq5Z+09vLbnNX78z4+OC+++vH34OPk4tgnA/W3uZ+q2qfyQ+gP/a/c/YrxiiHCL4N0D77Lq+Cq8nbxRKVR09evaoL93tb6L7Mps2nrGkl26jZHtAnDWqNicUkDbCF9yKnNxFqzNEOM06OrEOJVC1cBx5aI5WwDVoDUwpcsUnAkncVexo21j64Vz6l3ZnHDTqdCplQS6O/Hb0TM82PZBBoUMQqfSNWga4hpCZkUmAAfPHEREZGjYUNQKNTP7zWTshrE82vHRBnGJQ0KHMD9hPpszN5NYkIiL2oW7Wt9FsbmYL49+6YgCrefDhA/JN+bzai9J9PTUefJEpycanKMDQgbwQ+oPxJ+Jp0dAD6osVZSYS/B39v9TJ87atLV46jzpEyRNqSk1lzLut3EcLz1ON/9uvNP/nfNiHkvMJfye+Ts3R96MTqUjqyKLbdnbGBs7Fu05dcLUCjVjYscwY98MJv8+mRn9ZjSoLbgzZycnSk/wZp83ubXFrWRUZLDy+EqABse0t5M3/2v3Pz5N/pQtWVsAcFI58Xz35x3vXxAEHmjzAK/sfoXUslQe7fAod7W+i/yqfD5N/pT08nTCDeGOdeZX5fPUlqfIr5K26bn4O/szKHQQ35/8nvHtx+OicaHUXMrvmb8zMnIkTqqGtVLSytOYunUqqWWp9A3qy/s3vI9WqUUURdadXoeH1sOxff+I2WqmsLoQbydvnFRObM/eDuCITwTJrbd8xHJm7Z+FXqUnyCWIdw+8y/KjyxsIvMlFyZwqP8UrvV6hu393VqSsYNWJVVTUVqBRaOgfdFaMa+vVljGxY9icuZmXer6EIAgMCRvChvQNnCg5QbRnNNmV2QwMPtsPgHC3cF7q8RJRbt2YIx4jwN3JIcZpBGegFI0dxGaI6irRAghM7jQVQbA5rjvaP9SaGxo2lN8yfpOeE5snxrkiXSPcNV6UmSyEeOopqarlxJlK+gb1pV9QP4aHNxxYqhca9+Tu4YeTPzSYnPBb2G8sObwEkJyK9XT174pCULAvf59DjDNZTMzYN4Oufl1ZPGwxNtFGSkkKKoWKQlMhb+x5g8lbJrPiphV46DwoNZcyectkEgoSmNx5MmNjxzq2xSu9XkGn1PHlsS/pG9SX/sH9z+0yZquZyVsm46x25oXuLzgiRv8J1qSuYfaB2QD8evpXvhz5JYEuUg3NxIJEZsbNpMBUQKhrKI92fJSeAT0btH9r71tkVmby6bBPqaytZPKWybx34D1e6PFCs16/xFzCqbJTRBgi0Kv0HC89TnZlNgHOAXTw6dBgIsqFsNltbM/ezu7c3dwQcgO9g3o3unxTmK1mNmdupqtf12Y5/LZkbuHJrU86BPYjxUeY0XfGBe+7TpWdYunhpRi0BkZGjiTG6++ZXFVZW8nSw0sZEDyADj4d/pbXkJGROZ/SqloqzBYsNhGLzY7VJmKx26m12jGarVSYLZRXW6iolv4uMtaQX27mTIWZ/Aoz5rpoZnYnANIM6AgfZ/7TMZDW/tIM6Gh/V5y18vCDzEVwdA0UHoPbF4NCTv255un9BHx1p+R27HDPle6NzD/JsZ8lh+uwN690T2T+KoIA/Z+GlQ9A0kroeF/TbWT+lejUSrqEedIlzNPxWHWtjZR8KSnheH4l6cVV7E8vZU1iboO2U7f/ir9Bh5+bDn83Hd4uWgxOatycVLjp1Lg5qXHVqdCoFKgVClRKAbVSgVop4KpT4+l8dU/4kO+GrzOUCiWPtH+EF3a8QEJBQoNZ8peLpYeXMufgHPQqPVa7lR9P/ciy4cto49WmwXKz4mZxqPAQ7wx4hy6+Xbj/l/uZuHkiX438qtGadhszNvLizheptlYT7hbOgsELCHELAaSB+1UnVpFalkqURxR3RN3RaBznB/EfsDh5MQpBwZfHvuTOVncyrfu0Cw6QxeXF8eOpH9mYsZFqa/UF1xfkEsTMfjPp5CvN5jFZTGRUZOCh82ggSG7K3MSunF083/152ni1Idozmj25e1iUtIhh4cOINERSa6vlpV0vsf70elq6t2RgyEA2Zmxk9M+jmdVvFt0DuvPs9mdx17rz+fDPeX7H80zdOpXv//N9o/WnzqXAVMDUrVNJr0inrVdb3hvwXgOxqDFOlJ7gvnX3OQZ5/Zz9eKLTE47nj5ccZ+7BuQwMHsg9rc+/mX4w5kHcNG68uudVHvz1QUa1HMWSw0vQKDUsGLzgvGNArVHzcOzDvLbnNY6WHCXGK0aqF5e/j16BvRrMihgUOogWhhYEuwYzseNEAPRqPTdH3szqk6sxaAx08u10nnAaaYjkw8Efkl1qwmoXCfXUo9coKTLW4KH1AlGNFmvTM/WUajztFhAVvNP/nUYHDB+KfYgD6SWo2VjXtumYSrVdeq82m06K3wMCDDpqrXb8dS0v6DANdQ1ld+5uhwtTr9LT0r0lAOGGcDaO3njeuRLpHkmEIYLPD39Ovimf+9vcj16tZ1TLUXx+5HPWnlrriActri5mS+YW7mtzH3e0uoM7Wt1xwbfQK6AXTionPj/yOSXmEqbtmIZVtHJv9L3nuWpsdhuv732d709+j4DAlC5TuLPVnYzfOJ70inTGxo7l65SvmbxlMktvXOpwq+zK2cULO16gtKaUzZmbmXfDPOYcnINWqeWe6POPxXta34NdtDN7/2zGbxzPoqGLHILcZ4c/w0/vx8iIkQiCwMy+M5nSZQo2u+28Y3Rip4ncHnU7+/P3cyLlBP8b8r/zomdHtRxFN/9u6FX6sxGPbe5j2ZFlfH7kc17t/Sog1agbs2EMZTVlvD/w/QsKZWNix7AxYyOLkxczJnaMQ6BccngJcwbOIdozGpDEy0c3PorZZubBtg/yxdEveHrr07w74F3mHJzDipQVAEzqNIlx7ced9zpPbnmSXbm70Kv0zB80n6+PfU2YWxiRhsgGy+nVel7r/Zrj/315+/jx1I883ulxh9D6Q+oPOKmcGB4+HBeNCwOCB7DsyDJ0Kh29g3qfd05O7jyZJzo94Tg2O/pI9QvrxV6L3eK4/tcjCAJ3R9/NgXTJXRtg0OGh16BSCCiQREqtKCKomhbMlKI0W7+P/2C8XP48x3x4xHDyq/J57+B7+Nib4Z5VaXEVpIFJDe4AhHjoKa2qZXNKAf76ABYMWXBes0hDJL56XxYlLSK/Kp/nuj3nuPa92edNsiqz8NP7NXC0uWncaOvZlri8OB7v+Dgg1ZqrslTxWMfHUClUqFCdvU55SeLyg+sfZMyGMYxuNZovjn5BoamQdwe8e55ACPBklyeJy4/j5V0vs/rW1Y7PIFEUmb5rOnty96BWqDl45iDf3/p9A7dkY+RX5TN5y2Tyq/Jp792eWf1nNWvCC0ifQa/veZ0eAT2Y2HEiEzZN4Pkdz/PZjZ/xTco3vLP/HQKcAxgQPIDdubsZ99s4xrUbxxOdnkAQBHbl7OLntJ+Z0GGCY5LLPa3vYUXKCkZFjXKcX6Iokl2ZTZW1ihaGFo77h40ZG3ltz2uU15RfsH/uWneGhw/n9qjbz7s/Akl0em77c+zI2YFCUPDtiW95pdcr3B51+5++5xpbDSuOrSDbmE3PgJ4MCRvieC6xIJGntj5FUXURnjpP3r/hfce9yoU4UnSE53Y8R1vPtiy5cQkrUlbwfvz7tPJo5YjMref3zN+ZsnUKWqUWq93K1ylfM6vfLIcr+nKyMWMjFbUVDSYuycjI/P3M+jWFb/ZnNb0g4KxR4uGsIcCgIzbIwNC2fvi56SjJSePm/t0J99aj18jDDDJ/EZsVtrwlueJiL/y9Q+Yao+UQ8ImGXR9Au7tkgfXfgijC7g/AIwKi5dSD64LomyV33JaZ0vVZrh0n00ycNEo6hXrQKbThOFp1rY304irSi6rYfvAwrr7B5JWbOVNuJiGrlBJjLVV1tYWb4raOgbx/z9XtwJXvkq9D+gf3RyEo2Ju397KLcStTVjLn4BxuDL+RGX1nUGAq4P5f7ufNfW+yfMRyx4DqseJjrEldw/+1/T/HwN6CwQv47/r/8tjmx5jUaRI7c3ayNXsr4W7hPBjzIP2D+7MtaxtPb3uadt7tuLv13cyMm8mz25/lixFfgABv7HnDMdhbba0m/kw8r/d5/YKOm+3Z21mcvJg7ou7gmW7PsDhpMUsOL+FA/gGe7PIkg0IGIQgCFpuFt+Pe5tsT3+KqdmVkxEiGhQ3Dz9mPI8VHKKouwkXtgkFrYF78PMZuGMvrfV4HYM6BORRWFwLwQJsHHLFe7x14jyiPKO5ufTcgDR4/2/1Zdubu5NXdr/Jct+d4Z/87xBfEM6nTJMbEjkGpUDKx00Qmb5nMlG1TcFY5U2WtcgidcwfOZfTPo3lt92s81vExUkpSKDYX0y+oX4OB2XrKa8oZv3E8OcYcRkSM4KfUn5iwaQIfD/m4SUHOZrfx2u7X0Kv0fHfrd3yY8CGfJH1Cn8A+dPbrTI2thud3PI+bxo3X+rz2p/bhUVGjcNe6MyNuBjPjZtLC0IKZ/Wb+qRg7NGwoM/bNYO2ptcR4xZBalkqJucQRUVmPSqHi21u+Ra1QN3jtiR0ncqrsFAfOHOCBwAf+9P1llpgACPXUO6Jx/HWRiJbDqMkBZRM3Ewo1vc0im2vfY+g5g6F/RrXFhoa6D47GnBJ1NzHqOtu2pVZHcJ1AEGCQRLm8crNDNFi2Ox2FAHd1CyHENYQaWw2FpkIOFR6inU+7Bu6GPxOth4QOYXHyYlp7tHYIm5HukXTw6cD3qd/zYMyDCILAT6d+wipauSOq8S/DerWeyZ0n83bc2+zO3U2sdyyuGld+OPkDj3d8HIPW4Fj257Sf+f7k9zwc+zDZldm8d/A9Pj38KcZaIx8M+oD+wf2J8Y5hytYpTN89ndd6v0ZWRRZPbX2KYNdg7o2+lwWHFnDrmlvJMebwRKcnHJGh5yIIAve3uZ8A5wCmbpvK5C2T+XTYpyQXJXPgzAGe6fqMY4BdEIQLrqOeQJdA/tPyP2zN3nrBGpCCIBDi2lA88nby5raWt/FDqrQNnNXOPLLxESpqKlgybMmfxvfGesdya4tbWX50OWtPraW0ppSnuz7NF0e/YOLmiay8eSUqhYqp26ZSWF3IFyO+INY7liDXIGbsm8GQ74ZQXlPOf9v+l6LqIj5I+IBu/t3o6NvR8RonSk+wK3cXt7a4lfgz8YzbOA67aGfhkIVNxgLc0eoOtv6+le3Z2xkcOhiTxcT60+sZGjbUcY15uefL3LPuHoqqixgSeuFz5dxj09/ZH39nfxILEolyjwIk12eF2cKXezMI9dRzc3vJ+ZRbbgYgwOCEQiHg7aIFmyTkaEQRoakvBUoNCtECgKnWRlPy0UOxD7HgZw9a259pVgSmJ3YUdj0uijBAut6Ummqptdo5U2kmwOB0XjNBEOgd2Js1qWsYETGC0a3P1r3Uq/V8c9M32LGf165HQA+WHVmGyWJCr9azNm0t/s7+DSJ/zyXWO5b5g+bz8q6XHdfmJTcuaXBsnItWqWVWv1ncs+4epu+azkeDP3JcF9anr2dy58n0DerLvevu5d0D7/J2v6bruuRX5fPwrw9TVlPG0LCh/HjqR6ZsncIHgz44LyayfpLBnrw9hLuFE2mIZNrOabhp3Hi3/7t46Dx4qedLvLDjBQZ+O5DymnKGhA7hzb5v4qx2psZWw8x9M1mcvJjMykwejnmYt/a9RbhbOOPanRWoJ3aayK/pvzJz30w+vfFTaqw1vLL7FYcrMtIQyZQuU0ivSGf2gdnEesXyeu/Xya/Kx2wzE+QSRJR7FKcrTvPr6V/5IfUHVh5fyaTOkxxuQ6vdyo+pP/JR4keUmkt5ofsL3NziZp7d9ixv7HmDDj4dHHUpz8VYa2TSlknsz9+Pk8qJlcdXMrHjRB5p/wgVtRU8ve1pdEods/rNYsGhBUzYOIFlI5bR2qM1a1LX8P3J78k35XNL5C208WrDW3vfwlPnyfzB89Gr9YxtN5bEgkQ+Tf6U21re5hBc612WLd1bsniYNLnpid+f4Jntz+CidvnLbr4/sjd3Lz5OPn+b805G5mpBEIRHgEcA/Pz82Lp16xXtTwuFjXHtNCgFAaUCVApQClJNNycV6FUCerX0t0pRf39QW/dTATYwupgpOBFPwYkr+EZkLhqj0XjFj78LEZC7gdbFqSTHTqN4+44r3Z2rjqt1vzWFn9cI2qTM5fDqWRT59Gq6wXXGtbrf/gqexQdpn3OQ460eI+8aPZf/jfutKTx8bqND0quc/GYaOcG3XOnuXBB5v117OAF9vGtw0Z8BPRAAoAB02Owi1VYwWUVMFhGTFax2EZsIVjvY7GATRbw1JVf9fpfFuOsQN40bsV6x7M3by8ROEy95PZ8d/oydOTvx1fsyof0EzpjO8Pb+t+kX1I9Z/WahVCgJdg1mSpcpvLTrJX469RO3tbwNURSZfWA2Bq2BRzo84lhfS4+WzL1hLo9teoxJWyZJ8X7BAzhZepLHNz9Oj4AeJBUmEe0ZzSdDP0Gv1qNT6ZiydQqTt0zGLtrZlbuL8e3H83jHx/k0+VM+SPgAN43beZFSZquZmftmEmGI4MUeL6JWqnmyy5N09uvM7AOzeXLLk3T06cjAkIGsTVtLalkqY2LH8FjHxxrEk/1xQKxnQE8e3fQoL+yQXq+VRyue6fYMB88c5MtjX7IjZwcCAvlV+SwetriBGOLt5M3z3Z/n5V3S4LSTyolZ/WYxMnJkg2UWD13Mh4kfUmOtYWDIQMfgaKR7JJM6T2L2gdlszd7qaDMvfh69A3vTx37WWZNflc+jmx4loyKDBUMW0DOgJ/2C+vH0tqd5dNOjLBiyAFeNK6IokleVh7vWvYEbYemRpSQVJTGz30x89b483/159uTt4a19b/HVyK94dvuzpJalsnDIQjx1Zy3HF+KG0BvoG9SXI8VHaOvVttFaPAatgQHBA1h/ej1Tu04lLr+uXlxAj/OWvdB63HXufDLsEzZlbGJA8IDznq8ns1gS40I89ejqxLjOhjtZlBaGyvB0s2IqtUI1Vsv5g+kXwlRrQ43V0fZPqRvgV9fFVJprNPh61Ytx0mvllZuJDTJQVWPl9bVHsdlFVh3M5vlRkgB0vPQ4x0uPNxhgbozRrUaTbczmyc5PNjgGRrUcxat7XuVQ4SFivWNZdWIVnX07E+ke2cjaJO6Nvpft2ds5VXaKeTfMo7i6mDt/vpPVJ1czJnYMABabhY8PfUxbr7Y81fkpAFafXM3CQwt5qudTjii8oWFDmdhxIh8mfkhiQSJGixG9Ss/CwQvxc/ajlWcrliQvwVntzP+1/b9G+zUodBDTe05n+u7pLEpaRFJhEm4aN+5sdWezttVf4aGYh/ju5HcsPLQQq91KZkUmS278cyGunsmdJ7M3by8tDC2Y0GECnf06092/O/9d/19G/zwaEZGymjJe7/26o+bcvdH3Umgq5Nf0X3mzz5sMDBmIyWIiLi+O+QnzWXLjEsf6vz72NTqljme7PUt+VT7/t/7/uKXFLefVC7wQfYP64qv35ZuUbxgcOphNmZuoslQxquUoxzJ+zn58OOhDvjr2FYNDBzeytrN09OlIQkGC47z30gYybM528ivMBLk7OcS4/HLJwRzgLgnVvm5ayqw6UEg3cUIzYiqVdkmMM1uaN8uqptYJtdLSvJhKoRZD0Zt4togEUgjxdKLUVAtI16ALiXEg7fNBIYMYGDLwPEFUqVCi5Pz46e4B3VlyeAnxBfG08WzD7tzdPBTzUKPO8d5BvVlz2xrSy9OJ8Y5pdFmQPsOndJnCzLiZvLP/HSZ0mMCcg3Po6NORMbFjUAgKxrUbx8JDCxkUMqiBa6q8ppwaWw0+Tj4IgvQZWe8MXTR0Ee192tPJtxPTd0/nsc2PMXfgXMdn1J68PczOn01W5vmOjfmD5jtE8Zsjb0YURfbn7yfIJYj/tfufI6pbq9TySq9XCHUL5YP4D9iQvgGtUsvCIQsbfJbURwtP3z2dB355gDNVZyirKePRDo8S4BzAgkMLmPi7dF81OHQw7/R/54KfRZHukQwOHUxlbSVv7H2DefHz2JWzi96BvVmXto5T5afo4NOB9294n/Y+7QGY0W8Gt/xwC2/ufZPPbvyswb63i3ae2f4MCWcSmNlvJjeG3cgru1/hw8QPSa9IJ708XYoXHvklMV4xdPXvyn3r7uOR3x4h3BBOQkEC0Z7RRLlHsTh5seO9Lhi8oIHTfmrXqYz6cRQfJX7EK71eAWBx8mLOmM7w7oB3Hdv64yEf88D6B3hux3N8PvxzjBYjSw8vpaK2glEtR3FLi0v7Qm4X7ezL30efwD7XdY0AGRkAURQ/AT4B6Nq1qzhw4MAr2p/L8epbt27lSr8PmYvnqtxv1WUwfwyE9qLdHc9KsWgyDbgq91tzsPWFBT8TW7QW7njuX+eOu2b326UiivDp62AIpfVdr9H6Gq0V+K/bb81BHADGbURlryJq1Avg3Lz0rn8Seb9dm/wb9pssxl2n9AjowWeHP6OytrJBfaTmsvzocuYenEuURxQpxSmsP70eu2h3xDSeW4vulha3sOrEKuYenMug0EEcyD9AXH4c03pIs9bPpWdATzbeuZG8qjz89H746H2osdUw58AcDpw5QO/A3rzY40WHKDA0bChPd32ahYcWUm2tZnqv6YxuJTkFxrUfR2lNKcuPLqeTXyeHA08URWbsm0G2MZslw5Y0iKTsH9yf3oG9+SH1B5YeXsr78e8T4BzAh4M+bFD3688waA18OuxTtudsx9fJl3Y+7VAr1IyIGEH/4P7Mi5eEh8XDFl+wttutLW6ls29nNmdupl9wv/Ni4EByPzzb7dkLvv5/2/6XKPcoTFYT4W7huOvcWXtqLYuTF7O7djdrf16Lk8qJpMIktCotHw/5mO4B3QEYEjaEd/q/w7Pbn2XYd8No5dGKk6UnqbRU4qRyYkjoEO6JvofkomTmxc9jePhwboq4qUGfpmydQs+ve2ITbUzrMa1ZA/YAaqX6Tx0Xf2RU1Cg2ZW7i8yOfsy5tHWFuYY4aQM16rbr90RiZJSZUCoEAgw6dWjqWT+QbASVqu6XpmEqdARcxp9kD+GaLDbXQHDFOgahQoalzxlVVqx21sOoFh7w6ASIxqwybXaRvS292phahQXJH/nL6F+yivdnbO8AlgHf6v3Pe48MjhjNr/yzWpK4hx5hDVmUWU7tMbdY6FYKCjwZ/hMVuwUnlhLeTN938u/H1sa+5v839aJVavj3xLTnGHEetMIA7W915QWFsfIfxtPZszVfHvsJD68FDsQ856iENDh3cbJEH4LaWt7ElawsLEqWIwCc6PdHsWLy/QohbCDdH3syqE6sAeDjm4WbVf/TV+7J59OYGj7XxasO8G+ax+uRqTFYTj3d4nHY+7RosM6nzJCZ1nuT4X6/WM679ON6Oe5udOTvpG9SXQlMha9PWckuLWzBoDRi0Bn6/63f0quZtD5VCxf1t7mfuwbkcLjrMDyd/INQ19Dw3Vox3DDP6zWjWOgE6+nbk1/Rf2Z+/H5VCRV6Rlv9n77zDoyrTPnyf6ckkmfTeSUIICS30XgVUVFQEC1iwsq5tV1137a6f6+quZW2sDRXsumBD6dJ7DSGNkN57nUw73x9vCiGQhNDh3Nc11yQzZ06ZOe8pz+/5PU9Rjbl1X8+vaiTI3YmCKjMuelEzHMDXVU+JWQ8GkUTVHVG9xRnX2M2x3Gi1Y6AODKbOJ9To0FFPvRnyKhtx1WswOWkJ9PGoIwAAIABJREFU9RTfbU5FA8Mij+/F83byZkLohG6tTwsDfQfipHFiyaElBBgDkJG5qtdVXX7OVefaYd/pjBtjbyS3NpfFhxbzRcoXyMgsnLKwVci7M+FONhVs4q8b/4oDB14GLz5N/pSNeRuxyTY8DZ6Eu4WTVJaEVq1tFeJAHPvVKjVPb3qaSd9MIsE7gdLGUo5UH8FD7cFzI59jUugkcmtzKawvxNvJu0MZxhm9ZpxQCJIkiTvi7yDRL5GksiSmhU87bjnNmdEz0av1PLvlWeK943lo0EOt6zg1fCoHyg5Qa6llfMj4LnvauupceXnMywzzH8a/d4nrnFjPWF4b/xqTQie1E5w8DZ48lPgQz295ng+TPmxXKvKDAx+wMX8jTw57kisjrwREb1Y/ox8fHPgAL4MXL41+qdVN5uvsy7uT3+Vfu/5FaUMpDwx8gPkJ81FJKnJrc6m11BLiGtLh+jDcFM6c2Dl8nvI5N8beiE6lY9HBRVzV66p237Wz1pnXxr/GjT/fyDXLrkFCwtPgiYvOhSc3PYmL1uWk92GA9Mp0KswVDA8c3vXECgoKCgoXL+v+AQ0VMP1lRYi72FBrYNzj8P1dkPQd9JvV9WcULlxSfob8XTDjja5jLAoXFpIE0/4B746ENS+I31hBQaFbKGLcRcqIwBG8f+B9dhbtPG5AxO6wk1KZQl5tHrIsE+0RTaQpEkmS2Nuwl492fMTk0Mm8Ou5VKswVLDq4iECXQGb0mtFBYFNJKv427G/M/mk2T218ivSqdCJNka2i2bF4OXm1C4Dp1foOzrajubXvrVzd62rKzeUdnGoPD3qYA6UHeGL9E9RZ6kj0S+Tr1K/5X8b/uKffPa1C1NFoVBpmxcxiVswsyhrLcNO5derWOhZnrfNxe+qMDR7LmKAx2GTbcctmthDsGsytfW/t9vKORiWpOpSEui3+Nq6LuY5/Lv8nBboCzHYzt8TdwvUx1xPmFtZu2svCLyPIJYglh5aQW5vL5ZGXE+MRQ0pFCj9n/syPmT8CMMR/CH8f/fd2gcLJoZN5ZewrJJcn09e7L1PDp/ZoG7piTNAYxgWP443d4mT+7uR3ezwvs9XOqkPF5FU2MnNgEH7N/ddyKhoI8nBCo1bh7aLDSasmubAGALVs7TqI7+SB0VHXKsZ9uyuPXdmVPDAp6rhul/bOuK4dNTpZqHEWq751nb2NenRqFbnNJTa3H6lAJcF943uxMaOMwnIDGknDiqwVaCRNa/C4pxi1RqaFT2NZxjLW5q4lyj3qpIKrGpWmXaD67n53c9eKu/gy5UumhE3hzd1vMiJgBKMCO/ZKOx7jQ8YzPmT8yW5GByRJ4oVRL7AiewVR7lGtPcrOBs+OfJYZvWZQUFfQGlDvKaOCRh23z1xnzIqZxZcpX/LClhf4/urveW/fe9gddu7oe0frNEat8aTmObv3bD488CEPrnmQksYSHhz04Ck7Wgb5DgJgRfYKgl2COZBfC8CC5n19Z1YFQQOCyKtsbC3fCuDrZqChWgsGMEqObo01SXagwkHDCeqPpxfX8tbaDK5PDGZUL28kmxmNxgJOHUuUHjtvnWSntslGTkUDwZ7OSJJEoLsTKqmtVG7LMlanlNDLx4VJsb6oVCf//TlpnHho0EO8tP0lAObFzeuWi/VkkSSJx4Y8RphbGMUNxQzxG9LaWw2EY/mtiW8xb/k8Hv39UUCITHPj5uJn9CO1IpWMqgyujb6WW+Ju6XCOuqrXVfQy9eLb9G9Jq0wjwBjAbX1vwzXPlSnRUwCRFNPiAu0J/X36d9rnE+DyyMuZEj6lw7ncWet8XKd2Z0iSxHUx1zE9YjoWuwV3g/sJp70++np2FO7gzd1vopJUTA6dzM+ZP/POvne4POJybuh9Q7v5PjjoQaaETSHCFIGTpv25J9ojmvcmv9dhGceW0T2We/vfyw+Hf+C5zc+hVqkxqA08nPhwh+nC3MJYdvUylmYsxeKwcGvcragkFXf8dgePrX+Mj6d9DIjrzbTKNDKrM9Gr9USYIlqvN49lS8EWQCRuKSgoKChcouTthO0LYfAdEND5+VrhAiX+etjyFqx6FvpcCdruVZtRuMCwWWDlU6JP4IATtxBRuIDxjYXh94nxnDALwruXrK+gcKmjiHEXKf19+mPUGlmRvaJDAH1r4VYeX/84FeaKdq8HuwQT5xXH2rK1JPgktDrgfJx9eHTIo50ur49XH27rexsfH/wYg9rAmxPf7DJj/GRwN7gfN4ClVWt5Z/I7PLj2QZ7b8lzr69dGX8uCAQu6nO/R5ZlOB5IkoZW6CACfAVx1rkwyTeqWlfdELpUHBj7A2ty1hJvCSfBO6PD7SZLEtIhpTIvoKESeTiRJ4snhT3LgpwNc1euqbrvvjscnm7N4aXkKAMU1Zp6ZIVwDuRUNrQ4VSZKI9DGyN7cK6K4Y547RXtvqpvlo4xGSC2v4aV8BKx4Z20GQa7TY0bb2jOt83pJaS6svye5EoLuYl0ol0dvftVU03JFVQay/G4PDPdCpVSTl1dLLvReF9YU8PeLpDqJ5T/jT4D9hl+38cPgH/jrsr12WseuM4QHDGRk4koX7F/Jt2reAEKfORSkyk950wmSBM4lWpT2nQWadWscLo15g3vJ5zP9tPikVKcyKmUWIW+fB+c4wao3cHn87b+15i9vjb++yVGh36OPVh8eGPMbru14nxiOGvTlVRHobGRbphYtew/YjFVw9IIjkgmoGh7eVyQ1yd6IxXY/BBM7IXfd+bBbrtNiO64zbm1vF9e9uxuaQsTlkEsM8cKdOvNmlGKdHhxWLzcGhwloGh4vpdRoVge5O7cS4F385xLpU0Xt04dxEpvb17+orOi43xt7ItsJtZNVk8YcBf+jRPLqDJEnMiZ1zwvc9DB58M+Mb9pTsEb0CwyZ3EIo6o6933w7lW9flr+vp6vaYzpJqeoKz1rlLF64kSTw/6nlqLDW8tus1Xtv1GgAzImecsD9rnFfcaV1Pk97Enwf/mWe3PIssyzw5/MkTXiv5OPtwV7/2JZHfmvQWt/xyCwtWLSBMHcZz3z5HWWNZu2lCXUN5Y8IbRHlEtb4my3JrkkRnfTsVFBQUFC5irGZYugBcA2Hys+d6bRTOFCoVXPYifHIlbHoTxj9+rtdI4Uyw7V2oyISbvxOOSIWLkwl/hZSfYNn9cN8m0J1ccq+CwqWIckS8SNGpdcyMmsmXKV/y0KCHWku6bcrfxB/X/JEwtzAeH/I4UR5RyLJMUlkSK7NXklGVQZQ+iv9M/A8GjaGLpbTnkcGPMD9hPk4ap5Nymp0qrjpXFk5eyPai7RTVFzHIbxARpoiztvyLBXeDOzOjZ3Y94VnA3+jPqutXtSsx2hOWJxURH+SGp1HP6kMlPH1lHJIkkVPRwOUJAa3TRfu6sHRvAQAqh6VbYpxONuOwmGmy2UkrrmVKnB8rk4v5cV8Bd49t7+BstNrRIcrhdad0nhMi4Co72sQ4gIRgEz/uK8Bic7Anp4rZQ0LQa9T0CXRjb24V7817D61Ki0nfRQk9oLS2CS+jrlMXjklv4sXRL/L40MdPi7j3SOIj3LfqPlx1rjyc+PBJlR9VOD0M8B3A34b9ja/TvibAGMA9/e855XnOj5/PDb1v6NY+YrE5qG+y4WHsfBzMjZvL9IjpaCUtkzftYHSUN2qVxKAwD3ZkVVBa20RBtZl+wW37eqC7ARzivGXE0a2xBqDHSuNxnHFf7chFp1ExLNSdg/nVmK0O3KUWMe7E7iYxby2aZjdsUY2ZaN+2coChns5kN/etbLDY2Hy4nBuHhrI8qZBfk4p6LMZJksTrE17H5rCd8rHzVDFoDIwIHHFO1+FCxaAx8N6U90gqSyKtMo0Q1xAS/RJPKRniZJkZPZPpEdOxOqwnXerc28mbdya/w7Obn6WwspABAQOYHDaZ3h69sck2DpYd5O29b3Pbb7fx0dSPiPGIAWBf6T4OlB3gb8P+diY2SUFBQUHhQuC3J6AsFW75Dgynfu+hcB4TMQb6zoQNr4pnn5hzvUYKp5OKI7D2JYiZDtGTz/XaKJxJdEa4+m1YdCX8/GeY2fPKVgoKlwqKGHcRc3Ofm/k85XM+T/mchxMfpsZSw5ObniTMLYxF0xa1C9j39uzNdTHXAaJZoqfB80Sz7ZTuiABnAq1ae9Il2xTOb44NJv+aVMTOrAp6+7sya3DXTp6iajN7c6t4dGpvTE5anlyaREZJHQatmsoGKzF+bQHG6Oa/VTiQZAdounDUNLtidLYa0orqsDlkrhkQRGF1I78cKOLusb2w2Bzsyq5keKQnjRY7Hi1B/E5KlAGg1uEsiTKVst2JwKPK8CUEmfh8Ww4/7iug0WpnSLMraECwiW925eGh90J9lLi2I6sCg0ZNwlGCRVJ+Nfd/vpus8gbuGRvJE5f36Xx94LQIcSCOM2tuWHNa5qXQc2bHzmZ27OzTNj9Jkrq9j9z/+W5WJBeTEGRi4dzEdmLzpowyvF309PYX49HbyZvC6kZKa5vo37wPDw334NUVpaxLLQEgPugoMc7khGwX83OW5a7LVDaPRTepnkaLvd2YtTtkfjtYxMRYX/oEuPHKb6mU1jZhol58titnnEaPtrkfHUCMn8tRf7vy5Y4cLDYHG9LLsNgczOgXgMXmYGVyEVa7A626c+HF4ZD5cOMRSuuamBTr29p/TpKkcy7EKZwe4r3jT6kc56li0BgwcHJJWS1EmiL5dPqnx22+HesZy9CAocz9ZS5PbnySz6/4HI1Kw6fJn+Kmc+tWr0MFBQUFhYuQ/d/Azo9g1IMQpQTvLwmm/xMOr4Uf/gi3/ay4py4WHA748QFQaeCKf53rtVE4G4SPhnGPwe8vQ9gIGHTq1XIUFC5mlLPdRUywazBTwqbwWfJn9Pbozbq8dVSYK3hr0lvnTDRTUOgJBwuquXfxLrRqCatdxtOoY1Ifv9b3ZVnuUL5rZXIRAFP7+mHUa3hyKaw6VIK3i3DDDI9s61sY7SsC5W3utS6C2c2BeCd7LfvzRXnL+CA3Lk8I4J+/ppJVVs+LvxxiZXIx/5rVn5JaM4Ha5iC+sYvSqGodfnY1skOL2mHC26VNGExoFh5eXZGKXqNidLSYV/8Qdz7Zkk1GSV2rkLHiYBH3LdmNk1bND/ePItLHBYdD5onvD1BvsTM6ypsPNx5h1uBgonxPzvlwPMxWOzq1qkf9rs53HA65y+3qzjQXIla7A6BLcag7rE0pYUVyMZcn+LMmpYSXlqfwnxsHArA5o4y5H27DqNOw5K5h9AsWQtm+3GpA7OMAl/X159UVafx7ZRqSBH0D20TAQHcnHBZvZFlFoMPRdZnK5rHoRQ3FtWb+syad/6zJ4PZR4Uzu40dFvYUrEgJw0qkB2JVdeZQzrqsylVpR8raZ6KPEuOGRnizanMX+vCpWHyrG1aBhSIQndU02vtudx9bMcsZE+7Sb3bHHuI82HeHFXw6hVUss2ZrN+scm4OXSxfYqKJwnhLiG8MSwJ/jz73/mP3v+g7eTNyuzV3JXwl1dlvJUUFBQUOgGDjtUZUNNAdQWQUMF2BpFGUhJBTpn4WZwDcC5vhgs9ee2tFjONlj2BwgbBROfOnfroXB2cfGFy1+F7+8UQfyJijv+omDTa3BkPcx4E0xB53ptFM4W4x6H3G3w08PgEQ4RY8/dulgaoCoHz/KdsCsbLHXiNdkBWgNonMDZE1z8wC0Q3EO7jgEqKJxGFDHuIuep4U+RW5vL4xtEHe67Eu6ir1ffLj6loHB+8epvqZictKz+0zhu+WAbf/n+AL8+6I6Xi57Vh4p54Is99A0y8dDkaEb2EgH2nw8UEuljbBWa4oPc+OVAIdF+Lngada0CHLQ543TNZeW6DOI3O2rcqWNXViWuBg2hns5c0SzGTfzXOhwyeDhreXNNOoXVZl4NkqEYcPbqfN5qHYlmPXVpTxHq4d5O4Inxc0WnUVFYbebagUGYnMQFw6BQIQxsO1JOb39X8iobuP/zPfQNdCOvspF7PtvFdwtG8mtSEQfyq3l99gDGRHsz4dV1PPtDMp/NH9rj3m2V9RYe+XovmzLKCXA38Nkdwwj1OnfB1Ozyel5bmcbBghou6+vHnaMjuyyJeCIKqxt5/LsDbM4oI8rXhVeu79/OZQiw+lAxz/+UTF5lI5cnBPDMjLh2AurJkFvRwAcbMtmQXsbYGB/unxjV43mdDvbkVDL/k52YrXamxwfw4sx4DFp1j+bVZLPz3I8HifQx8vrsgby1NoM3V6czd3gYge4G/vjFHiK8jVjsDm7/eAeb/jIRg1bNtiPl6DUq+gQI0S3Gz5UBIe7sza2il48RV0PbRbOfmwHZEkBd6jNEmF7sukylszhWDPdzsGhTFmarHU+jjo83ZfHJ5iyctGrG9/al3iKOCzuzKjBJzaJ6lw5XPWqHEOM0Kokwr7YA19AIcQz4Pa2U1YdKGBfjg1atYmyMD05aNT/vL2wV437cV8DC9Ycpqjaz6PahxAeZSC+u5ZXfUpncx5e/TO/DZa/9zttrD/P0jNPbO0xB4UxyWdhlTA2fykdJHwEwPmQ89/a/9xyvlYJCj+nipKBwXmFrgvIMqM4TYlV9mRCqbE3ifZ1RPIw+4BYE7iHgHgaqnl0DnXGa6qAkGYoOiEdxEhQfBGtD158FhgLseAC8oyFwIAQPgV4TwTMSzkZv58J98MVsMAXD7MVKQPRSo98syFwL61+B4MEQM/XsLNfSALWF0FQjBGpnL3Dxv/DdeQ57swBfJv7WuwmxQXeW7s8z18GaF6HvtYo76lJDpYZZn8BHU+HLm2Hu/8SYPhvUlULqL5CzBfJ3Q1kaINMP4EA3Pq/SiHOed4x4+PUFv3jwijo/jwkOO1TliOuY6jyoLxFJNZbmWIVaB1qn5uuYQHF+9YoGzdlrJ6XQOefhXqVwOjHpTbx/2fssTV/KiMARRHtEn5b5ltSYkQEfF32nbpAmm51fDhRSUW8l1t+Vkb28ehz0P9s0WGwk5dewL7eK9JJaLDYHA0M9uLJfQLcdCFa7g5yKBmQZIr2NJ/yuzFbRr6inge5zTV2TjbzKBmoabdSarcgy+LrpiQtwQ3OMo0aWZRwy7copdsau7ArWppby+LRYvF30/OuG/lz7zmbmf7JTiF+/pRDhbSS/spH7Fu9m9Z/GUVlvYWtmBY9N6906nzlDQnlyaRKpxbVMivVt91uEejqj06jQ2ZrFuK5OUs2uGHepnm1HKogPNCFJIuD+5BV9KK1rYmi4J9WNVh75eh86tYrxIRKUasHQhStVrcNJsoOsI8DUvkSYTqOij78r+/KquWFIW6nOMC9ngj2cWJ9WxrwR4Xy3Kx+L3cHbNw0it6KBeR9tZ/bCrRwuqSMxzIOr+geiUkk8MiWGZ39M5reDRUyLDyCtuJaf9xdisTu4a0wknseIWLIsU2O2tYqAFfUW5n64jfSSOm4aFsrSvfnMWriZb+8dSYjnqV3wy7JMk81xUmMiKb+aG/+7FZtDJiHYxLvrDvPNzjyeujKO6fH+HfbFo6mst7A8qQhJAm8XPZmldby1JgObQ+bmYaGsTC7mjk92sOwPo1pLKx7Iq+YPn+8mzNPI7CEhfLMzl43ppTwyJQY/NwPFNWaMeg3T4v1x1p34dNtosfPNrlxeXp6C1SEzKNSdz7ZmszK5mG/uHdGulGNXmK3203Ic2ZNTyc0fbMPHVc/Uvn58sT2X6kYL/7lxEE46dYd94WiyyupZsi0bk5OW6xKDCTA58eHGI2SVN/DJHUPRaVTcOy6S73blcdenO/Fw1mK1O1g4dzAlNWZu+mAbK5KLuap/IBvSyxga4dlum+YMCWFvblWrU7QFnUaFr6ue4ppmYb2rYE6zM+6GOCcWrhEBuP8tGElmaT2HCmuIDzLhpFPjpFMTYDKw7UgF00+iTKXKYQEgwtvYzlnoadQR6+/KwvWZWGwObhwaCojj/4z+ASzbW8ATl/ehoKqRh7/aS6SPEZ1axU3vb+Xx6bG8u+4wLnoN/zczAV83A9cnBrN4azZ3jY0gwNS9feVETk6z1c7Bghoq6i04adV4uejwctHh6azrdPycr8iyTKPVjlolodccf1xY7Q6OlNWjVasI83TutsM1r7KBZXsLSC+uxUmnoV+wiaERnkR6Gy+Y6xyb3cGqQyUUVDUS6O7EZXF+nW6/ze6gqMaMUafpcZJDC5Ik8crYV7ilzy0cLD/IDTE3KCVWFS5UIgEkSXKXZbnqXK+MwjHIMpSlQ/YmEaQr3CeEOIet/XQqDWgMYnprfcf5aAwiQOfbRzz84sXD1f/sCFYt21Jb2Ca6tTwqMgFR4h6DCfwSRBDcry+YQsQ6OnuLwJzGIJwB1uagXU0hyZuXE+enh8K9kPk77P9KzMs9DHpfLvp5BQ8B1Rm4DsjZCl/MAZ0LzP1eOBUULj0uf0WIyN/cDrf/AoEDTv8ymmqFWytjldjPjx43LWgMENAfek+HPleBV6/jzuq8oyITDv0EqcvFOD5WiJdU4NMHggYJoT1m6plxwhYnw1dzwac3zHjj7B0bFc4fnNxFz89FV8BnM2HO56I/5JmgKhdSfoJDP4rzu+wAo6/Yz+OvBa8odmeWMmjclaB3Aa1RjAWbWTzqy6CuSCTllKULAa8sHdJ+bbtG0BjAJxb848W51T9enFu7igWcTupKoWi/OEaWHBLJN6WpYhuORevcto0drnO0bdvi3w9Ch4vn81FsvARQvvVLADedG/P6np6slLTiWv6xPIW1qSXIMgR7OPF/MxMYG+PTYdqk/Goe/HIPh0vbbmjiAty4Z1wkY6J9cMgyqUW1HCqsIbWolqpGK0adGme9Bhe9BmedGleDlkgfI7H+rvi7GbA7ZLLKGyiqNiNJkBjm0WXgeWdWBUv35pNeXIefm4FxMT5c2T+gQ2DObLWzMrmYzYfL2JtbTVpxLXaHuEDzcdWjUUks3VvAy7+mcPfYSOaNCG8nVpitdpqsDhqsNjJK6vjlQBHLkwqpahDuiF4+Ru6fGMU1A4JaA3WpRbW8tTaD35KKsNgdhHs5c+eYSG4YHIJO01HE2pJZzve780kvqcPkpGVULy9uGhbazh1yOtmTU8mWzHJc9Rqu7BfYLvgmyzI/7i/kgw2Z7M+rPu7n3Z21TOzty6AwD6obrfyeWsqhwhosdgejoryZOTCI0VHemG12DubX4O2qp0+Aa7vf5p21h/Fw1nLryDAA+gaaePPGgdy3eBd7c6sYHeXN2zcPorTWzPQ3NvDMsoMY9Wp0GhVzhoS2zmfW4GDeXptBYbW5XYlKEMJgLx8XqgpLm1/orhhXR35VI5cn+Le+deeYyNa/rXYH/12fycRYX9yafhbB/64uStVa9CohzgYdR4SZ1EcES4dFtN2sSpLE2Bgflu3Jx2Jz8P2ePEZEehHi6UyIpzOvzOrHw1/tY0i4B+/PG9wabL1leBhf7sjl+R+TSS+u4511hzHb7EjA1sxyvrhreOv4Kqxu5JGv9rElsxx/NwPxQSZ2ZlfQ0GRn4bxEJvT2Zc7QEG54bwt3LNrBkruG0WR18NvBImwOmenx/u3cQS3Issy+5v0nIchEg8XGJ5uz+GZXHnmVjVw9IJC/TIvF161NmPw1qZAvtudSXGPmqgGBXDswmEOFNTzy9V7cnLR8dc9wgj2cOVhQzSNf7eOPX+zB20XP4DAPrugXwNS+/u3G16dbsvj7z4ew2Bzt1m1cjA/PX92XMC8jNw0L47p3N3PnJzv55t4RVJodPP7pDryMehbfOQwfVz23jwzn8e/289Syg+3m88wPB/n3DQOYEtdWWrW+ycayvQWsTC5iZ3YltWYbwyM9eXVWf4I9nNmfV8XN72/jpve38vqcgZictHy5I4d1KaWEeTlz19jI1p6BABkltbz0SwqrU0qIC3DjxmGh3DA4GBClHt2dte36JB5NUn41G9LLMOrVXJ4QQFWDlbs+3Ym3i55v7hmBr5uBuEATTy1NYvK/fyfaz4V9uVVUNli5ekAgL1wTj1vzMai0tolbPtxGYbUZu0Nm0eZs7hwTwVtrMpgS58e45nOFs07Dl3cP59aPtpNX1cji+cOI8nUh0ttIkLsT3+3KY3CYBxkldcwZ0r5H5JX9A3l7XQYTYn07bEuguxPFNU1osHY9jpvFuF7OZi5P8G9NuBgY2vHium+giVWHivHU1iNLaiR9F6Vd1VqkZmfc8b734ZFepBTVMjjMg5G92o5H80aE8/XOPD7edIR1qaVif757BHVNNu7+bBd/+18Szjo1X949vHVM/HFiNN/tzuf99UfauePqm2wcLKihwWKjb6AQLlcmF/PDvnx2ZFXiZtDQL9id0VHe6LUqNmeUsz69lAaLvcP6ShKM6uXdev4+moKqRn7aX4BKkhgX49PqND7dVNRbWLQ5i+1HyrHZZWIDXLl6QBCDwzw6iF91TeI4smhzFqW1TRh1aq4ZGMQfJkS1ittWu4NPNmfxwYYjFNWIm5kAk4Er+wVwWV9/wjydcXPSoteo2s0/v6qR99dnsnhrNjaHTLCHE3VNNr7YngMIsbVPgCux/m6MjvJmbIxPh+STWrOVb3flsSOrgsp6K3GBblw7KKj1dzoRNWYru7Ir0WtUBLuLJAyAvMpGUopqyCqvp85so67JTn2TjTqLjSarA1eDhjAvZ/qHuNM/2B2b3cGvB4t4f0MmuRWNrfMfHObB63MGEOzRPplClmX+tyefF35KprLBilYtMaNfII9Ni8Xf1LO+ciDOXQN8BzDA9wwE3RQUzhCSJA0C3m/+N5I2V9wRSZIym/9+SZblb8/6yimIbPGiA5C9GXI2Q/YW4RABEaQLHgyxVwpBzT0M3AJEmaqjkwEcDhHMriuGmnyRfV6aIoJgWRvbxCoQbhq/ePBPaBbo+opg16lmnzdWiWBbaYp4FB8U29VY0TaNR7hYbr/Z4tk/Xohv3QmAa3TifsbQ9Pn2AAAgAElEQVQUTIlfPXEt/T1lWQT2D6+BjNWih9u2d4VDMO4aEeAMSjz1ILssw+5P4JdHRcb+Ld+L7VG4NNEZ4aav4YPJ8Nk1wlETOPDU5yvLkLcTdi2CpO+EA1bnAuFjxLhxDxUCtuyA+lIRiM/ZDKueFY/AgTDifrHvn28Ba4ddiBBb3oK8HeI1/34w6FbwiRGOGEktRMjyDCjYLYSLPZ+JgH3MNBh4M0ROPD1Ce1ESfHq1mPdNX4Ph9PScV7gAMQWLHpCfXSvG89SXYOhdp0ecLcuAQ8vEvl+wR7zm2xfGPgZ9Zohz8FHLqSlfJ9ztR6N2EeKc0Rt8Yzsuw2YRwlxxUpvbPPVX2LO4bRq34GZhLr7t2TPy1Bz0NosoL92y3JZHbWHbNK4B4vplyJ1C9HYPE9+3i68QG48ey3Yr1JWIz1dmtW3L4bWw7wsxjc5ViHLhoyBstEiEUJIjzwqSLMtdT6XQJYMHD5Z37tx5rleDjGaRxse156XN1q1bx/iWC/Jm6ptsvL8hk3fWHsaoVzN3eBjernoWbc4is7SeByZF8/Dk6NaA1ebDZdz96S7cDBr+PjOeASEerEouZuH6w+3EuRa8XXR4u+hptIoAUn2TnUZr+4CgRiXhaHZVteCsU3P/xCjuGdurQ7CrqsHCS7+k8NXOXFz0GmL8XCisNlNYbcbbRcecIaGMivLGanewPq2U73bnUdlgxeSkpX+IOwOCTSJwFeLeWioupaiGN1alszypCJ1GRaS3EBeKasytotvR6zYlzo+x0T402Rws3ppNcmEN/UPcmdjbl7SSWpYfKMSo13DdoGB8XPWsSC5mX24VEd5G7h4bydgYH+x2mfXppSzemk1KUS0mJy3xQW6U11lIKarFw1nLHyZEEWrJ5rJJE1qXX91gZenefNaklCAjhNBbR4Z1cE7Y7A7qLXb0GlWr8JJVVs///XKIFcnFrdPpNSruG9+LWYNDKKhq5N8r0tiSWU4vHyMzBwYR7m3E3UmHq0FcqOZUNLA2pYTVKSVUN4rvpk+AG0PCRaB79aES8qsaOZYwL2c+vHUIUb4upBTVMO31DTwyJYYHJrV3dW4+XIaTVt0ucP7m6nT+vTINgOsTg3l1Vv92n1m8NZunliWx6pFx9PJxaffeA1/sIT1lP8ulB2Dmf6H/7A7r1kpjFbwcRunIZ/iMK7guMfi4QlM7Pp8jLOT3bWz3cofx9uFUMqusTCz9E/dPiOLPU3vTHX5NKuTexbt5aHI0r69K59VZ/bk+Mbj1/YySulYH4NHsyq5g/ic7qWqwMjDUnYVzE9mdXcl9S3ZzWZwf79ycSEFVI9e/t5las41bR4ZTWNXI/rxqgjycePKKuNY+dSB6f837aDt2WUaC1vHq7aLnm3tHEOHd9j0dKatn/qIdZJaJY4KmeQzbHDKjorwI8zLy/e48fFz1LJ4/jEB3J95ak8Ebq9MJ83LGx0XPzuzK1vlF+brwwbzBhB+1DLtDZk1KCT/tL2D7kQoKq80EuTvx0ORo+gS48f6GTJbtLWBirC9/vqw3bk4aKuutGLQqonxd2gXh16WWcMeiHSQEmSiurKHWquK7BSOJ9Xdrt7zUIiHk+7rpyalo4IWfkjmQX838URFclxjM5sPl/GdNOlUNViK9jQwJ9+TaQUEMjfBst7xd2ZUsWLKL4hrh2lJJQsTJKKmjssHCC1fHM3tICHtyq7jto+1IksTMgUHszqlkf141WrWE3dF2zBwU6s6Htw5pJ6rvyKpg7ofbMFsdrb+BzSHjZtDw/YJRRB1VznVrZjkvLU/BbLHTP8SEs07DZ1uzifFz5at7hqNRScz571bSimv56u4RGPVq7vxkJ1nlDQS5O/HFXcM7lDCta7JRWW9p56R89bdU3lmXwf0TonhzTQa/PTS23T7WGX/4fDc/7y/koPvDGGOnwDVvt3u/w3j7uz8MmQ9TX+x0vntyKtmUUcbtlW9iPPwLPHa48xVZ8yKs/yfh5iU8MCmGR6bEtHt7bUoJty/aweL5w1p7P7Zw3bub2dW8X78xZwBXDxC9FmRZZlNGOe7OWuKPcQU+8tVelicVsfkvE/Ew6tiWWc59S3ZTUW/psGpRvi6Mj/Gh3mJj8+FysstF9qyfm57JfYRg6m8y0GixU15vobzeQn5lI0v35FNUY+bKfgEsGB+FQati0eYsFm/Nbt3HJAluHBrKQ5Oj8XUVIk2DxYbNIWPUaTqcpzNK6vhsSxaHS+tx0qm5LM6PGf0D2yXZWGwOnlm8mp+yHNQ32UgIMqHXqknKr6bBYifS28iswSFc2S8Ahyyz4mAxC9dnUlbXxNgYH0b28iK9uI4f9xegkuCq/oH4uxn46UAhmaX1jIj04vrEYKx2B6sOFfN7WilWe9uFhkoCV4OWAJMBm0Mms1T0DbxxaCj3jutFiKczsixzpKye7Ucq2JNTRUpRDanFtZitDgJNBm4YEsKwCC8sdgdrU0r4Zmcu9RY74V7OmJx1pBTW0GRzcN2gYJ66sg/uzu2DuI0WOy//msKSbdnt1k2tkpAQx8wWJAmMOg1GvRqjToNeq6am0UphdWO76yeAgaHu3DuuF8MiPFmZLEruGnUaPps/tFVUtdgcPPH9Ab7bnUdimAfXJwaTVlzLF9tz0KlVPDq1N3OGhh63r+Txrie7S25FA2qVdFLO4DOFJEm7ZFk+S3V2FC5Fzpf7yFPlVMZ8j2mqFcH23O2iV03udrDUivfcw0QPsrAR4vl0lV1srBLi2NGBupJDbVnqKo0Qr0zB4tktUAT8tc6iV43WWWSsW+rB2iiEv/pSkZ3fUjqzRUAEMb1P72bBL6H5ue9pC3Z3+ruZa4RLIOl7OLwa7BYh+PWZAXFXQ/DQkw/klx+G3/4q5hsxDmYtUhxxPeCcjLczTWUWfDJD9Dic+Z7Yz3pCYxUc+EaIcMVJIkidcL14hAzvWiyvyhXB/p0fCiHLPRTGPgoDbj7lcrWn/Ls5HCIh4PeXofIIeESIe5k+V4FHWBeftQsHUdL3kLwUGsrFtg2aBwPnChdtT0j7Db67S4iqt/4I3lE9m895zEU53s40jVXw3Z2QsVI4Mqf9Q5zLTgZZFufZQz+KR+kh8XpQojg+dOFgPW2/myyLBJ2iJCg+0PycJAR8uTlurXUWDnrXAHDxEQlARh9xvFFpxENSiesWcxWYq6GxUiT8VGRBTZ5IDAAhpPvEQkC/5mSb5oSf03WurCkQSUtZG0XlgLK05m0wQsgQcZwMGSoSmLqq7HUGuFjGW2f3kIoYd5o4X26ibvt4O+vTShkT7cPfr4nvtFSc3SGC5S0uGVmWSSmq5aPlW6nRerYGZxssNpILaqi32LmiXwDPXdW3VZwyW+08uTSJb3flMSbam9tGhrM3t4p31h0m0tvIZ/OHtcuadjhktmaWk1xYA0Csvxu9/V2PKx7aHTLVjVbSi2tJLa6lsNqMRiUR7mUkxNOZeouNL7blsCK5mMFhHvz7hgGEeomg2A/7ClozuO8cE8FDk2JaS6ttyihn0eYjrE4R7j4QAeipff25cWgoI3t5dVmmKrWolm935ZJT0YDdAf4mPf5uBpx0GgxaFcEezgwN98RJ13ax5nDIfL0zl482HSGtuA5vFz0z+gfwwMTo1uC4LMusTS3h5eWppBbXtltmrL8rt48K5+oBQa2Byn25Vby6IpUN6WV46CUWTIrF103PtiMVLNuTT73FTqSPEaNOQ3JhDRJw9YAgxvX2odZsZV1qKZsyymiw2FFJEO4tyqGlFtei16h4YFI0Nw4JpbDazNvrMvh5f1tWhqtBwxPT+zBnSEiXZa1Kapsw6jXtStrZHTKbMso4XFqHWiXRJ8CNgqpGXvgpmSabgz9NieHb3XkcKa1n818mYXLuOkNDlmW2H6lgeVIR80dHdNj/ZVkmv6qxQ9Y/CHdQXtoepv1+NVz/scj8PBEOBzzvCWP/DBOf7HK9AJHpp3OBeUvbvdzhRPPJVRSUljOy7K/838wEbvLNgtpiUU+/E6obrQx6YSV2h4yXUcf6xyZg1Hcvg8/hkCmpbcLHVd8aLP9w4xFe+CmZ8b19OFxaR3WDla/uGdHau6sz0oprWX6gCIcsM2twMHVNNm56fxvOOjU/3j8aD6OOynoL1767mepGK09Mj0WvVXOo+bgwPd6ffsEi0Xx/XhXzPtpOfZMNHxc9BdVmrh0UxEvXJqDXqEktqmXz4TJUksScoSEnLEXXsp2/p5Xyym+prccgnVrFveN78eCk6G6VTv1qRw7/WZOBrcnMP2YPZnzvju6sY2m02Hn+p4N8uSO39ZgzKsqLR6b0ZlCoe6cl7WrMVpZszcHkpGVMtDchns5UN1i5b8kuNh8uJ8TTibzKRkI9nVly5zCCPcQxcEN6GZsyytCqVfQLNpFX2cg/lqcwINSdz+YPRa9Rk1lax9VvbcLHTc+SO4dRZ7bx7a48vF30TE/wP+44OZZ1qSXc9elOonxdcdap2ZNTycK5g1tdgBabg6oGCz6u+m6X7ssur2fKa+ux2Bz4uenZ+sSkrj+79T2IGMOLOyXe33CEVLcF6PtdC1e+1n59jx1vryWITLCZ73Vr3fjmdlEm4o+7Op/u91dg7d95f/w2rhgQ1kFQ6OxYtCenkl8OFHLNwK6dUi2kFddy2WvrGRfjw9AIT15flUaIhzN/vbwPzno1KYW1qCRICHZvt8/Jskxlg5Ummx0/V0OXZaffW5fJ2+syWl2kKkk4bO8cHYlOo+L9DZl8vOkIapVEjJ8rtWYbORVC7HN31jI22odxMT5IEvxyoIhVh4pbewKW1jaRX9WIl1HHdYnBxAeZyK1o4IvtOeRVNjK+tw9PXtGntQ9ofZONXw4U8vXOXHZkVbZb16ERnjwxPbZdskZeZQP/XpnGyuRi6pps9A925/4JUUw+yrEKIpFle1YFRdWN1DbZaGiyU90sZmnVKqL9XLlhcHCX48Nqd7AquZjPt+ewIb0tqNriKrttVHjrca660co76zL4cMMRPI06/nFdAhNjxXodyKvmoa9ElYEbh4Ywo18gkiSRXV5PbqUogx3q6Uxvf1d6+brgotMc93esb7KxP6+aA/lVGLRq+gW70z/Y1G5sHSqsYe6H22mw2PjTZb0JNBl4e10GSfk1PDgpmgeOOk5mldXzl+/3szWzAndnLbH+ba52V4OGxDAPjNVHuOHyia3zP/a683gcyKvmmR+S2J1Txe2jwnlmxrnvc6yIcQpnmvPlPvJUOePBE3M1lKRASbNLLHeH+Ft2ABL4xkHoMCG8hY4AU9CZW5djsdug4nCzOHdQBNdqCkRwraagY7moYzG4N4t3gULA8wgX2e8+vcEUemZKRDbT7d+tsUr05EleJpxzdovosdV7OoSPhrCRYv2Ph80C2RthzxIhAmgMMOGvMOy+M7ptFzMXS7CyAzUF8NUtkL8LBt4Ck58HYxc910Hcn7fuY8uECy6gPyTeLkS4rqpanGieacthw78hf6dw4Fz2PERNPvl5NXNKv1vm77DiSXEvEtAfxvxJOH17IhDamiDlZ9j1sSjfKanFWE68HXpN6N48GypgzQvCQevfD+YsEeLeRchFO97ONLIMOz6A1c+LBJQ+M4TwGzEGNMcxkMiy6HmYv1OUlM1YDdW5QsQKGyU+H3uFOF92gzP+u1nNze71JCHQlaUKN1pdiUiqkR0n/qzGSZT1NIWIc75nRPO5P04IcdqeVx85aepKhCiXtUmUjz722ipkiBAEffuKaxOnM9sq+WIZb4oYdxY4X26iUotq+XFfAZ9uyUKtknjn5kRGHFUCq8FiY8nWHL7YnkN2RQMqCfzcDHgZdeRXmSmrEw6MCG8jbs3CiV6tore/KzMHBTHoOOW7ZFnms63Z/GtFWqsD6uoBgTx/dfxx+wmdTmRZZunefJ5eepAmu4PhkV4UV5tJLa6lf4g7L81MIC7w+OJBeV0T+/Or0WtUxAW4dchEP5NUN1px1R8/YAZiu/bnVXOwoAYZmSHhnkQf49I5mi2Hy3nqm+1kVImDvXOzw+CusZGtwdzcigY+3HiEr3bktroOg9ydmBDrQ7iXkZpGK2nFdVjsDuID3bhleFi70oAAyQU17MquwFmnYXpC532wekpuRQMPf7WXndmVuBo0Hcr7nVEK98HCsaK2dewVnU/7cjjEXwdX/Kt7835jgMgsue6Ddi93ONEsXUB98gr61rzBx7cPYcLGueJiZMG2LrPMnv3hILVmG49O7X1KpcNa+OevKXy2JZtgT2f+fk1fEsN6nomzN7eKG97bwsgoL56/Kp4/fL6b1KJaPr9rGIPDO59vbkUDn27JIim/httHhTMlzu+UejLZHTJ7c6vIKqtnaIRnj/rb9eQCIaWohkOFNcT4uRIX4HbK2/D1zlyW7slnZC9vbhke2mUvy2V783nwy71M7uPLMzP6cucnOympNfPTA2OOWxK1uyw/UMgrv6VSXm/hsWm9uXlYF1mZ3SC9uJZXV6SSGObB3WO76NeQsQoWXwcDbuFjnz/zyo+7STbcAZOeFjepR9Hhd/vveNFH5ZZuVhP79Bqw1MGdqzqfbtMbsPJpeCJflME4C3y2JYvnf0rGapeZ2tePf17Xv1tJDCdLZb2Fnw8UolVLDIvwaudEBSHSfLIli+zyBpx0amL9XDFo1aQU1fJ7WglldcKt5+GsZd6IcOaNCMPLRY8sy2zNrOCDDZmsT29zpw0N92S0Vz0PzDpx4COztI5Nh8vRqiQGh3u2c3Qei83uoNFqP2PlnY9HSa2ZQ4W1aFUSCcGmEy47Kb+aP329r/UaxqBRsSOrAl9XA6/O6t/BRXkmOLokMUCgycDTM+KYFh/QYVpZllmXWsrypEIySupoMe2VNQurLZ/3cdVTUttESW0TakkiyteF20aFc+3AoHa9CJfuyefx7/bjadQxb0Q4V/YLOOX+o6cDRYxTONOcL/eRp8ppC57YmkSWdktvlOJk8Vyd2zaNzlVcV4cMO6fZ293C4WjrUWNtFA+VWrhItE4im/4U3TanQo9+N3MNpK9oE+YswjWO0UcEFt1DRKDRWi/EleJkIY7o3YTAMuohcD1L93cXKRdLsPK42Jpg7Yuw5W1Rdn7ATcKJGZTY1utMlkXPp5wtzWVVV4ljhN5NJNUm3nZ6Sl22LCt5qShdWZklXD6X/V04VE+SHv1upamw4ilI/02Mr0nPiDjE6RKyyw+LsrF7lggBwTUQoidDr0kiscHFt81VbGkQ5QGTl8HeJcLZO+w+mPSUOJ5dpFzU4+1sUF8m7o93fyISazQGIeqYgkUvM2uDcIyVprY5w3WuEDkOoi8T/UtdOrZG6opz+rs57CKJxWEVCTkOm3hN7yac7ccTI88XzDUiIaKl6kDeTmg6qjWRWzD4xTX30W0W6LxjTpuAeLGMN0WM6wJJkq4HpgAtTbfdgZdlWc488afac77dRB0pq+euT3dypKyehydHMy3en93ZVby2Kq25Z5YniWEeOGQoqjZTWttEgMnAoDAPnCsPc/XUCV0v5BiqG6ykFNXg52boEJw70+RXNYoAXlopASYnpif4M2dIaLecLhcLa9euJXbQcGoabYR5OZ+wl16DxUZeZSMqSaKXj/GUBIEzhcMh8+vBIvoFm7rlzjlt5G6HD6fAzd9C9JTOp31zoLjAv/6j7s37/4LFzef0f7R7ucOJptlRE2v+mGV/HE/vj+PEzWufGTB7MRcyi7dm8+TSJEA40hbOTTxu368LgQv1AuGzLVmtPe0kCT65fehxe35eMDjsQkAvTgKfWH4bv4zXFv+PX/V/Oa7DtcPvtvh6URrqnt+7t7yF48QN6c3fdD7d1vfg18fh0czuZfOeJg4V1lBcY252n52fx/bU4lp0GhXBHk4ndLLWNdnIr2zEw6jF19VwwY63ntBks/PhxiOsOVRCvcXO5D6+3Dk68owIqyfC4ZA5XFpHZYOVfsGmLnvzHo/cigbe+WETjQZvyust+LkZ8HczYHU42JBWRnJhDTF+Ljw0OYZePi58sT2HRZuzGBbhyTs3D+oyueBsoohxCmea8+0+sqf06Fhtt4mSTzlbRcCn+KAIDLeUfVJpwCu6OegTJ4LfvnHCfXEenucuRE75HGu3CadOzhbhEKjKFeU27RYRcHX1F79b+BiIHA+6c59kcTFwSVwblabCxtdFvzd7EyCJPk9qvQjot5Sk1bkKp03fmcIpdqb2MVuTcPn8/k9oqhH39hOePClh+aR+t7pSWPeSKLepM4okw2H3njnHjM0CqT/DgW+FW65JVJJB5yqSHeyWNrePWicE0tEP90iUvNC4JMbb2cDaKPatI+vF/XtNoRCpdEZRRcqrV3NZxn5CfD/F/qvK73aakGVxXi9JFtdpLYlSZWlCbAThXvSMFMeD4KFCyA/o16MedBfL79bZPeR51oX07CNJ0kLAU5blWUe95g7skiTpHlmWu0h/Pz+J8DbyvwUjeeTrfby6Io1XV4gasHEBbrwxZyBDI07sRFm3rtsaZDtMzlqGRZ69oOPRBLk7nReljM4lkiQRYHIioIukUGedhhi/HpRpOIuoVBKXJ3TMwj/t2K1QuB+CE8X/VTni2a0bZW2cPESmS3ewNYmbBWM3XA2eEQA8M9qZaClXCHH+/ZprZKeJhswXKLcMD6NPgBtbM8ubEwKU/hBnm7kjwgl0d+JwaR3jYny73YvtvCV9pbiQ90+AoiTGhuqx9JcgBXEx2BVGHxE46i6Nld2rdd9SpqkqW4hxDjvk7xaZ+2cweNgnwK1bpWTPFarmksRd4aLXXPj7Zg/Ra9QsGB/FgvHnrt+GSiW19ozrKSGezkwN1zJ+fMes9L9Mk/ntYBF///kQC5bsbn197vAwnp4Rd9z+cwoKChcR1kbhqkr5WfQNMzdnW5tCReAm7urmbOs48Ox1ysE4hTOMWgNBg8RDQeF04tMbZr4Ll78igvdF+6G2UIhGeldR0i2gv3DH9iDge9Jo9DDiD9D/Rlj/Kmz/Lxz4DkY/BCPuP30ioNUM296F9f8SjqHBd8D4v3QvlnAqaHRC0Ow7U8RJ8naKykGVR4RTRqMTpWn9E4RjqSelPxUubbROEDNVPBQuHCRJON7dQ9r/dnarSKAqPdRWzaBgr3DOgnABRl8mqo7FTG1zNitc2mJcsyPuBlmW29VelGW5SpKke4BvJEmKkGW5mxH38wtXg5b35w0mvbiWndmVxAW4kRBk6rIfmoLCJYHDDt/fDQe/h1u+E7Xfy9JERkcnTWBbMbiLwHx3qG+22ndLjBMCwo29bFDQHKSc9AwsuU5kDF/AYhxAYpgHiWEdy90qnD0m9fFjUp+LpDRQzhZR2mL8E/DlTTiVHWBGsLlZjIvo+vNGLzE+Zbl7Ipm5Soz9rvBuHqdl6SI4teMDWP4YjPmzKOOioHAJI0kS0+IDmBjrx+6cSrLK6hkT43NK5XIVFBQuAErTRH+ivUuEAOfkIVwsUc2l0E7Ub0xBQeHSRu8CsZeLx/mAsydM+z8YMh9WPSNKam5bCMPvgyF39ryfkrlG9F/b+g7UFUPMdJjy/Lm5/1drIWyEeCgoKCgcD7UWfGPFo+/Mttdri0ScJmM1pC6HpG+FMNd/jkgu8O1z7tb5POGSFuOAl4H/Hu8NWZZXNZd4egJ4/Gyu1Okm2s/1lDOcFRQuOta/IoQ4SQ0H/yfEuNJUkWHXnfrNTh5Q0U0XaX2peHbuvjOOikzRANbJU9SlN5hE3eZBc7u3TAWFS4H8XeAfL4J4Lf9XZomx1p3eMc7ewn1qqe+6t5vD3hY87ArPSHFsKROudA7+T/y/4VWR5dvvhq7noaBwkaPTqBge6cXwc1RVQUFB4SxRuB9+fxlSfhIJNHFXwaB5EDZauKoUFBQULkS8eok2EjnbxDX+mhdEX6y+10DCDRA2quu+bg6HSLg98LUox2muhsgJohVG+Oizsx0KCgoKpxNX/zaXrcMO2Zth96ei5O72/0LMNBj3+CXtqL9kr34lSRoERAI7OplsJ3A3F7gYp6CgcBz2fSlELmcvSPkFrrQJF4t3NzPPnDy674xraUJr7EZvLiePNqEvf7eola1SQeAgITQcTepyUVs7fHRHV4/DIV5T+mkoXEjIsngce+PqsEPab2JstGRoOuyiDEL/2SJD1TOyublwTfdccdA2JhvKuhbjWspodUeM0+jEOpSlQm2x6IUz7jE48A3s/1oR4xQUFBQULn4qs2DFU3DoB9CbROBlyJ2i96qCgoLCxULoMNFPunAfbH1XlK7c/SkYfSF4CAQNBO/e4OSBe+UBOFQrEvbyd4t7l7oi0DqLUm7DF1zSAWoFBYWLDJVa9PSMGAPT/iHcv1vegvcnCPfvZS+Ad/S5XsuzziUrxgGTm587s7ZkApMlSYqUZblnjdQUukaWha0/cx0EDoBRD4pawucLDgdU54obx/NhvSqzIGujaIwZ2LEXi8JR1BaLLNy+M0WwvoXyw6L2+Yg/iKyNA9/Akd+hPAOiJnZv3k7uIjjvcHSd8VZfLp67W+fdM1LYusvSIO4a8VpQImx8TfTZ0DrBniWwbIF4L2w03PJt2/6ZsRq+vR2a6mDAjXDVW4oop3B+Y2uCz2eLcegaIG5oW5qB1xbDJ1eK8aDWibKyEWOFeG6phaDmnrjBQ0QPGrUOIsd3b7ktY7K+XLhiO6NFfO9u6RnvGLGOKT8CshjL5mqREdYyjluozhN9c/rN6VoUvNTJXCf2icjx4HoelFttqhP7hin4/DrO1pfDptfEPthvNsRfe67XSEFB4VLB2ggbX4dNr4vy7+MeFwHmnpZuU1BQULgQCOgPM9+DK/4lkmbTfhNtJ1J/bp1kAMC+5n88I0VSbUtPJeUeQEFB4WLG6AXjHoVh98D2hbDxDXhnBAy/F8Y+Boaue8tfLFzKYtyQ5ufORLbDzc+Dupju4kGWUdvqT/geTbUiaGow9XUELVkAACAASURBVLyZtsMu1HEQQsaaF2Djv0XT7rTlUJULVx8lHhz8H6SvFA6gyc+cWtNHh13cFHY3YJbyM6x+HkpT2l4zmIQINuNN8Ahre93aCDs+FE2Fhy8AU1DP1/NE5O2Ej6aCwya2Y8yfhdvibDQsvtCoK20L4K98GmZ/JpxwIPYnEKUpXfxAaxRNmO1NImutOzh5ALLoIdUi9NUUCCHMLQDCx7SVu2wtU9nNUlyekUIgVGlhwE3itaBEkO2i1I9shx/+KILRMdPh18fhl0fhsr8L182KJ0V2iV9f2LNYuOqGzG+bf2OV6NmRvkrMK/46Ubu5ZVwei80itsHV/8TTKFya2JqgoUIkK5xo37A2iuynlJ/FGOg9HQbcAlpD2zSrnoPMtTD0Hjj0Iyy6Eq54FaKmwHfzxXlh5n/FueLLm+Ge39ucokGJ4jnxNtj/lfi7ufdil7SUjm0ZoyDOc5nrxHpHTW4b343N7WO744wDIcalr4S9n4NXlKiNHjUFtr0HWZsgujknaPen8NMj4LDCwaVCiDwfEj/ON5rqxLFuz2Lxv94NFmw9M+fakhTY8b44dvab3b6MWv5u0f+v5BBY6tpeDxkm+nqEDu/eMk72euR41JXAqmfFNUD8dUKkBrDb4JtbRVKH0VcEg8zVMPh28f6JHKjdxWoWDlSd8cTXZI0XZLtlBQWFU0GWxbn+179AVQ70vVZcm56J47SCgoLC+YrOCAnXiweIa6KqHDBXsXfvXgYMHwemkPbJwgoKCgqXCgY3GPsoDLoVVj8Hm/8jKpdNfpb/b+/O46Ou7v2Pv79JSALZAwSQfQdBVBap4oIK1XK9dQOtdeuG9te9vf1pb2v3W71we+29vS5FbbVqryB0s1arqKXiyqYguyyCYQ9ZyZ6Zc//4zJAAySQRJjPfmdfz8cgDyEwmhznf73e+n/M5n3N05qdj3boukczJuHxJcs5FGi0IP+bvT0nnrLKrdIfUc2TbAdHh7dIzX9O03W9K3jctyRNOJhzaIv35y1Jxi1U9h18iXfL95jJ652xg6Mh+qfdYS9Y11dsyYqXbLYnw4VvS/vdsBnn/yZa82P2GnYRX/Je07G7by6vXCGnaN2zz2he+a0uJ1Ry2mUXXPGwDvx+8Lu16XXJBa8PYK9seWGpqsNd67V4pJc2SGGfeIA0859h9heoqbBCubKcNxq59Suo9Rrp8nlVgNDXYcmbrf2+Dxbc+Y0uRHd4uPXmNVa15qZaUu+630qjL2u+fpgZp/zpLNhYOi5zkfO0XUkaOdMufpbd+Jb06X9r+sr0nH5Vz1q+7XrdNg/ueYTO0jl9CprbMBopz+0uDz+vczK3i1TYAHWy06pBxV3X8ZxtqQoPuzvqubJf1zZH99n71GWfHWFOdtXvirZYge+JqG8C/6kE7pl74nvTF1+0Y2bbUBsfDS9lNvEV6+0H7e0eXqQxvOrrpL9IZc2xAdMVD1k7J2tp7rCXBdr5qibWO7GElNScSzrpByh9ofw+fZ+88Lu14VcofJF33hH2QVR+Ulv+n9M4T9pwhF0jXPS5l5kvVJTYokp5l/fbO72z5jPoKm70XDErPfVsKNErnfunEtqz/g/Tnr0iN1ZaEvvUvdgy25/B2Ox+GXmQD2S70vkQaeA40WXVQWoYdhzl9T3xObZm0+rd27Rj0MUuYBBrsmjL8kvaThXWV0vZXpMPvW0Iot99xbWiUDqy387jvGZ0fKA8G7TqVliEVjTvxmlTyvl0/+k+247VlQqo1TfX2ntSUWoLGS7EB9r5n2DWstaRNQ7WdM8GAXesi/R+ca368sVba/ndpwOSOLSFVsUf6zeVSxW67Rl/3ROubfL/wPWnVr6UB59j5+9d/kf7xH9IF35JOv9KSK2/dL51zmzRrvs2MWnijtORzza9x1YO2HOXgc6UHz5f++EW7Zmbk2rks2fE9eJpdyzqajAtXxm39m026eOcJO3bD53FqujT9O9J5X5c2/kmS1/FlFHqNsmventXSrJ/b+zxkmpSWadegkTPseFz6A0sojrvaztWnb5Gu/529xpv3SQc32jnX9wzpwxX2OZt7mjTiUku0BJvseOs/qeMTM5yTVj5iVdaZufZ523N4x35WsuNx56t2zIy76sTjsGyXvfbh9y0BO2LGSW3UnFO5RfrVN+yacv637PV+e4XNqJv5k7Z/MBi0+4/GWvus6MhkgpWPSM/dYX93j9ix++nFNpOveJX0xDXWH2fdaFUeaZl2Xq54SHr0E9LUL1pfFAyV+px+7HtTXWLv27pFdg+TkSNd8j17rbbO06Z6e37JVimtuyXcBk6142LxZ2wCUFqGnUdzHpNGz5Ke+xfpg+XS1QvsHFt4o/TsN+w4T02346iu3JKNA8+xY6vncKnvBHuPGqqtUvz4gaJtL0mv/MyucWGjPiFd8Yvma2ltubT0+9Kax3V67/OlKePbrgoved82+O41Kj6qHAF8dCXbdMZ7P5H+scbuf2/9S/MEAQBIZt3zj1YGl+8KWgwOAMkuu0i68n4rDHj+Tss5rH5M2X1ukDQ91q2LqmROxnUmwebPNTUCTTaze8XDNhgl2YBRvzPtTxe0KqBh0y1Zt/xeKbWbSgsnqtfyn9teN3N+awO/T862AaWL77Ibico9Npv/kRmWtBs41RJdO1+135ORZwPpFR9KjTX2vbTuNkA19Ys2oFa8wgZ8PnmfdPZNNhA1/V9tAOilH0krf2ODvKdfKV37G6ua+/1c6X8m2WBRoMESHF6KVTQVjbNB054jrLLBBez/V7VP+uu3bGPckZfZwODW521AXLLnnHaWJeK2v2KvK9lg/LSvW8Lx+AHOibdKj18pPXyJNOlWGwRzQemWZ2yps6dvlhbdbANjY2bZwOf2V6wvdr9h1RhFY22AcPebLd6jTBukH3yevW7egObfWbLNZpte+O3QEggPSiNnSs9+U/rVBRo4cLZUM8GqNsp327JnaZmWxGltkK+6xGYfrHnc+jp8fLhg8/sy5HwbPN63zhKMDVX2WEqaJWYKh9vSVyM/fuLvKN1he7Ftec4GxzPzbS30DX+Uau49tlKrpYZqS7bsfsMSLgc3Nb8/YVlFlqRau9Ae69HT/q/vLbb/T32VHWM3LLQB69R0q67Z9IwlGnYuP/b3n/dVG3ANNHR8oH3YxXY8/2OeLbN6cIM0Za5VHlQU2x5R21+xAVB5tiRmRxM7A6ZYkuH8bzZ/L6evbQT9zpPWT597obmMe/p3LWlcudeO5aEXNf+uax+xwf0/3t78WmOusCWD+k2wY/N/r7cK1TGz7PgNJ163vWTLfA78mCUO/n6PtPDT0g2LpPQebbf/w5XS7661c6p7oR3HVfssIXjl/c2bUTtniejUDHv/XvuFJevDisZZ/035vLXr4GbpsVmWmE/LtIH4lgqH2UD0xFuk3i0qHGvLpDfus/4v2dr8/eX3WoXrhDn274YaO6+LV9i/Z/youQ9KtlmiZtC50ujL7XtrnrD3fOItNhDtnPSXrzZX7oy7Wrr2180JgOX3Sq/8m12bpFDCb7xVtEz9YvPkB8kGy9cutPf/yIFj/59pmZZ8fvN+6bPP203MvnX2/N1v2nsabLLnDr3Ijr28gXbcFI1pfp31v7ekQ1qG9VPZB3aO5w+2hH+kfdeOHLQJCHXl0mV3S6setfdu3FVW/TXmn+wY2fWGnVsf+5J0+T32szuXS8vuseqi50NJjzPm2Oz5cD9+8XX7v5d9YNf0MbPssfxBVjH3h7mSPPv8aZnwvPi70pPXSv3OarvtLeUNsPNh9aOh9+tCafxsO0bTe9gm7C//RNr2iiXVJlzX8URf+BjM7mOfcZJ9jg69UNr4Z+nSH1oCp7ZMuvxuu56kZdg14zcft8+HQ5utP2rLbX31zHz7/XtWNyffwzLzLKmRP1gadpHNKktt5TbPOUsAvvFLe251iVXvDb/EqhZHzzoxER4MWNXttqWWQNn/no4mLJf+wI6xXiOtvzf9RSrfZY+FP1NevMuuaxNvsUqJ1iZzBBot2SVnfZ5dZAnfFQ9p4ppfWl999jn7fJRsYseqR61CvOWSFgc3WVv3rLaJGvWhvf4y861fAw02waiuwibMnHO7NGBSc4LyuW/bvcJVD9o1/JmvSL+eacfgioftvbn12eaJEmGTP2cVym890Py99Bxp+MX2GVS8wj6bJZvUMmGOvY9//rIlyWb82BLMJVvtHM/IsZ/5x3y7l0rrbm1/db59loY/+z7zV+v3J6+RFt0k5Q6QKostaXnmp+z3ffppu76+8T+WGBtyviXQi1dawjd8vcjIs0Rv2QdSU619b9w19n/b8Ec7l/MH2WdOj0K7F3zrV9KCC61vck+ziTD71kpjP6lem5+T7pti52l6li0jW1Fs176meulAi+t93wl2zzX+2vha7hNAZHWVNiHszfuV53WTLrtHOmcuq3YAAACgff0nSZ97UVq3UHrx+5pU/G0pZZNNWu3oqkQ+47lwtUKS8Txvu6Rhzrk2I37P826TtEDSfOfcnW08fpsk9enTZ9LChQuj1dxO84IBnbn2LuVXbFR53jgd6n2eanoMUH75e8qpel+SJ8lTTtVWdQstS1nSc4q2jvp/Km3M0JiylzVi+29UlT1cPWr2qC6zl9ae+VM1ZDTnMFObajRq6wPqc3C5JKkpNUu7B12tuswiFZStU1pTteoye6kib7yqswaqLrOPXEoH8r8uqMG7nlZexUaV9Jqqff0uO/pz6fWl6r/nWaUEAyotPFsVeacrmJKqooOva8gHT6lH7d5WXzKQkqnNY76qQ0Xnh96fRhWUrVP2kR3KL1+vHjV7FEyxRGRp4dmq7d431N62A8nuNfs0fv3P1KOmWJW5o7Rl9NdUk2XJs24NlTpz7V3Krt6lquzhSmuqUve6g2rolqeSXucorala2Ud2ynlpKiuYoPL88UoNNCj7yHbll29Q9pGdakjP07oJP1R1tg2Ij9rygPruf0VvnvuIGtOb88MZdSUaveU+FZa9E+qHTKUF6o4+Xt1jgEp6fUyN3fKUUV+izLqDyqgvUfaRnUpxTarIHa19/WaqpNe5CqR2D7VhvfLL1yuvYoPSAnVyStHBomkqHnClUgM1Kix9V7mVm9WjZo/SGytUnne6dg69UZW5o5VVvUuDdv9RRYdekyQdyRqiQ72nqXjAFXJemk7fOF+9Dq/UpjHf1IG+0495T71goyas+4kKytepNrOvarv3VU2P/iotnKhAaqY8F1BTWo6OZA+VPE8pgTqlN5SrLtNm1J+292/qt2+pPBfUzqE36nCv0Gq0LqApK7+m1ECtanoMVF7FRq2ccp/qujfPxB++7RH1PLxGK6Y+oI4qKH1XZ677oRrTsrXx9G+rrPC4PfycU17FRjWk56u2R+sVqUeOHFF2disD0y5gA5bHySvfqNRAnUp7dnxjZy/YpL77X5HkVJk7RtXZg495PKPukKas/KoCqZkqLZykooOvKjXYoLqMIpX0mqodw25RMDVdffYv05jN/63K3JE60Ge68io2K7dys5rSsnWw6Hzt6T9LuZVbdMZ7d6shPV8fDPmU8svfU3pDuRrS85VXsUnda/dr1+DZakgvVP89zyqrpvhoO+oyemv78FvVkN5TuZWbVVj6jvIqNsp5KTrU+zwVlNkC+++dcZeqswYrq3qXmtKyFExJV17FZp2292/Kq9ioYEo3bRh3p/WHC+jMtT9Sfvl6lRWcofL88arMHav6jEKN3nKf8io2a/OYr6u08GyN3XSvCsrWaduIzyuvYoN6H3pTm8d8TZ4LavSW++UpqIZuuXp76gI1lu/T9A3/XykuoEBKhtaP/45yK7dq6AdPqbj/FQqkZmrw7iXa1/dSbRvxBfXf81cN2/mkDvaepu3DP6us6l3Krdxi51LVVu3t93FtHf1lSVLffUs1essDCqSmqzx/gvb0n6XqrEFKDdQpNVCv6qzBKih7V+M2zFN9Ri8dyR6s3ofeUjAlTVU5I1WRN1YVeWOVWXdAQ3c+pW5NVUff48qcUSoecIUKytaq3/6XVZkzUrXd+yk1UKv6jJ6qyhml4dsfVTAlTesm/Fj1GQUa+OGf1PPwGqUGalVaeJaqswZrQPEzyqgv1boJP1BF/nilNVZqxLZfq7D0HaU3VqgxLUuHep+vooOvqrFbrlZO+aWCqcdWAeZWbFH2kW1qSsvRwaILOj4A75x6H3pdNT0GnnAs2+OtnztS2+dbdpVNWDmSc1x1mHPqu/9ljdr6oCSnFefcr7ru/U74+dakNtXo3De/oB3DbtLe/rOOfj+vfIPOfve7Otj7PBWWvqOKvNP13oQfHH28396/qf+e5xRIzdSHA69WSe9zJRdQ99r9qssskkvpJi8YUE7V+0oJNsh5KerWWKWeh1cps+6getQUK6OhVPv6ztCW0V854X0dsvMpDdm1UHtOm6X3R85VekOFBhT/Sb0PvaXudfsV9FK197TLtaf/LNVn9FZh6TsauvN3yqrZrbqMXqrtfprK88eprOAspQQbNGj371VY9q4kKeilqazgLJUWTlR5vn32pzdUqOjgq+q3b6myaj5UICVTlbmjVNOjvxrS89XYLUfdaw+o96HXlFl/+Gg7w59lTp729JymnWO/pEBa85KIOZXva9Kab2vb8M+peOCVkqSC0jUav36ePNeo6qwhqswdqaqckQqmdFNB2Trll69XMCVdR7KHyHmp6lXyptICdaruYZ/dWTXFKi04W+vHf1fB1PRQf63XqK0LlFWzW+V547Vh3B1qTG+7yjklUK/utfvVvXaveh5eqfzyDfJcUFU5Q1WRd7qqckaoIm+sHaPOaUDxMxq+/TF5Crb6epU5I7Vz6E0qKzhTqYFaFZStU0HZWtVnFGpP/1lH35PUphr13/NXFZSt1cGiC7TvtA5U5ofam1l3QNlHPlBexUalN5SqPqOXKvLGKqdqhwYUP6MUZ8m63QOv0s6hNx1zb9SjerfOevcuSVJjtxz1qNmr9eO/o8O9pkqHNmvi7keUW/W+JKk+vUBHsofKC036KSuYoCPZw5R9ZIf6HFiu7Oqd2t9nujaP/abiycUXX7zaOTc51u1A4po8ebJbtWpVrJvROcGA9O7vpJd/ais0nHmD3uhxmc677OpYtwydtGzZMk2fPj3WzUAn0W/+RL/5E/3mT/SbD9WWq/jJL2nA3udtwvjMH9sk44+6vUIMeZ7XZgxJMu4kknEtxV0Q9d4SqwSa9XNpyhciLH/UYDPY0zJClRNe8wXrtV9IW/5ms5//6d4Tl3OTbCb5gQ1WudHvzLaXIuoKgSabtd9UZzPKnWwZp+wiW7YvGvsVBANWhdXahuRN9TZDftvLVrEw9pNWNdKy+qUtBzdZdUdTve2JI0n/Nd72rvnkL1v9kZXPPqopuSVWsdJzpFUpVO6VVj9mS0oFm2w2fd4A++ozzpbGirR0WKBJ2r/WLoKtVckEGqU1v7WZ+y2rd9K6S+d9xapBCoac+L48ea1V8Fz+79Lkz9uFtaHGlqXb+rxVJIT3SjtV9q215cVqSqwCc/p3jn08GLRB/M7M5HVO2vAHW+orUhVRBHFzg7BvnV0zSndaNcWUL4SqaI+7dmz4k1XZNdVZpcmwi6SqA7YErZciybOKoJv/eGJ1Tf0RKz9/N1Q51u8s+z1pmXZ+Dpx64jJyFXusqubDt21WzDUP29JvbancK/1ujlUUXfOQVZi9/Svpygeks288sT1PXG3VJylp1vYr7rXqnYYae+zD0Pk3/FJbRvGp66Xzv6UDW1eqT+kq6eY/WDXMgfX2vPHXStc8Ysf0yz+Vlv/cXjvY1Fzle3y10ks/tsrij/+bvYcvfNeqlOb8NvImtttfsd/dWGcVTZfcdeK1qKnBKpbrK+3asGKBVa3Ksyrbi+488Zg/uEl6/CqrQAw22nOHTbeqru1/t4qZ7oXSpxfZEnctBYNWCbtigVVIDTrX+uz4KqIY+cjn2761tg9leJ+3jmqqb/2a//svWCVvz5HSLX86tgr6ZDkn/f1uq6CaMlf6xDw7r5rqpWX/bsfaWTcduzdr+OcObbbqr9WPNVdwSlYFfen3rRqttfuJAxuskq/3mLaXMHbOKt/WPmWfSWUfWFWgZNeAQedaRXhGjnRgo1Vd5Z4mjf2klq3b1Xq/PXaFXbO+/q5Vuz18sVV137Sk9WVuj1dXae3Z/opVZU+43j4XW7vZrym1a1A0qrZKtkm7Xgu9h6ND9xaVVkU/9MLYVoqV77YVC/IHt72U6YENdp1urJUmfdaWlFXofLvwQqn8A+v/gqFtB1LBgPTi923J2tuWWfV9nIgUSAGnQtzFkZE4Z8vgvvA9q8QfcI7dzw+YFD/3tOgU+s2f6Dd/ot/8iX7zJ/rNn5YtW6bpowttxZoP37YtFS75ga0M56MVVEjGtaKTybg7nXPzI71eXAVRzkm/Ot8SJV96q9MZZC5YceLgJmnBRbbEVcEQSyh8eaXUu/U9zSL2W2OtfUVrILGh2pakPLxNKhhsy1ZGSszWVUqLb7UB0MJhtnzZvrU2mDrrP2x5m2g4vN0GwKd9vfW9tmIgrs63QFMomd3OfoAN1ZbI6l7QvMfh7rdtWcvGGumCf4m8IfUHr9kSswPPic7xWFdhidc9oWvy5M9bkq01TQ22XOPuN6Wpt1uSOizQZMuyHd5u+1J1y7TlZzc9Y49P+4bN1KkptYHoEZfakm4t/087l9t+T6NnSaMub/16HGiyJN+2l+zfY/9Zmv1odJZ4CgalncssmXZahKUcS3faZIKsImnsFc1J+8Zam4CQkdv+fnd1lbbsXhzNYoqb8626xJa3nXp7dCaxOGfH5Jv32dLHBUMsSVq1zxJx//zfrS9hGVZRLG19wY7torG2nGM0jsdAoyV9e/SM+Ppt9tvWF6T/vc4S2WsX2qSQL70V24lBOKrT51tdpfSL8TbJ4/on2n9+FyEZh2iLqziyLc7ZUrPL/9MGRnIH2D1Qi6Vl4+YzFp1Cv/kT/eZP9Js/0W/+RL/509F+Cwal9Uukv//MJvIO/JgVfYz6ROSxjDgRKYaM/9ZHT7kkeZ6X75wr78hzfWPd01alcdWDcTUIik4qGitd+gPpxe/Zv0d9os1EXLu6dY9u8ik9q3nfrY7IzJVu+oMlxtYtsoRFTl/p+idt4D9aeg4/sSIOzVLTpNR2EnGS9Xd61rHfGzTVvjoivGdctGTmWcXa8nstMTxkWtvPTUuXzrrBvo6XmmbJkpau+IU0cqY2b3lfYy4KFUz3KJSuamN506EX2FckqWnSjUtsj7QDG6ULvhW9vVZSUqzqrj2FQy0xfrzOXEsiVfUlu6xetgZ6tHiedNnPrB9XPWbJ5gGTpUmfkUZ0oLovb0Db+3qeSqndOlbB1pYRM60a70VbJlE3LCQR52eZuTYZZ/l/2t6jA6fEukVAcnPOJtqte9ru18t32Uoqs35uq1/EycQ2AAAAJJiUFGnCdbY6zztP2Op9i26ye9Gzb7bVofqe4atqubBkTsbtkDRRUqHaTraF1/sq7ZIWnQr710vPfsMyxmd0IjmC+HTul6166MgBW8IrkXieXVgnXBfrliARZebZjO1TLauXNPEW7a9cpjHpPU7d63qeVcSN/edT95rAlC/YV6JKSZE+/bS0/z2r/us7PtYtwsk67ys2Uefpm6Xb/iHl9Gn/ZwCcvIObpcPvW7VydYldVz982yqq5VnF6iV3SeOujt6EIQAAAKCltHSbKDzpM9KW521LlGV321duf1tprdcoK77IyJXyB8X9uECyJ+Ok5oRba8KbY6yJcltOnefvtEHo6x4nUEoEnnfinkwAAMAUDLYvJIbuBdKn/lf69Uzp7/8mffJ/Yt0iIDm89YDtAx2WN1AaPE0a9DFpzD/ZHp4AAABALKSk2kpqY6+Qqg7Y8unvv2h7GG96RnJBe96ET0nXLIhtW9uRzMm4RZLukDRMbSfbhkkqd87taOPx+DPnUalqPzOJAQAA4D99x9tS1v0mxLolQPKY9nWrpO7R05bfZglKAAAAxKOcPtLEm+1LkprqpfIPpYYjUkZObNvWAUmbjHPOrfE8r1zSTElL2njaDEnzu65Vp0B2kX0BAAAAfjQ4wZbmBuJdz+HtPwcAAACIN2kZUq8RsW5Fh6XEugExNlfSdZ7nnbBUped5s2V7yd3T5a0CAAAAAAAAAABAQkjqZJxzbomkpyU93PL7oeTcPElznHPlsWgbAAAAAAAAAAAA/C9pl6kMc87d7nnebM/zFsgq4SQpX9JMX+0VBwAAAAAAAAAAgLiT9Mk46WiFXFv7xgEAAAAAAAAAAAAfSVIvUwkAAAAAAAAAAABEE8k4AAAAAAAAAAAAIEpIxgEAAAAAAAAAAABRQjIOAAAAAAAAAAAAiBKScQAAAAAAAAAAAECUkIwDAAAAAAAAAAAAooRkHAAAAAAAAAAAABAlJOMAAAAAAAAAAACAKCEZBwAAAAAAAAAAAEQJyTgAAAAAAAAAAAAgSkjGAQAAAAAAAAAAAFFCMg4AAAAAAAAAAACIEpJxAAAAAAAAAAAAQJR4zrlYtyEheJ53SNKuWLfjFOklqSTWjUCn0W/+RL/5E/3mT/SbP9Fv/pQo/TbYOdc71o1A4kqgODJRzvlkQ7/5E/3mT/SbP9Fv/kS/+VOi9FubMSTJOJzA87xVzrnJsW4HOod+8yf6zZ/oN3+i3/yJfvMn+g1ILpzz/kS/+RP95k/0mz/Rb/5Ev/lTMvQby1QCAAAAAAAAAAAAUUIyDgAAAAAAAAAAAIgSknFozUOxbgA+EvrNn+g3f6Lf/Il+8yf6zZ/oNyC5cM77E/3mT/SbP9Fv/kS/+RP95k8J32/sGQcAAAAAAAAAAABECZVxAAAAAAAAAAAAQJSQjAMAAAAAAAAAAACihGQcAAAAAAAAAAAAECVpsW4AAADxzvO82ZJmSioPOshjCQAACI1JREFUfStf0jzn3I7YtQod4XneMEmLnXOTYt0WdIznefMkzZCdZ5K0RtI9zrk1sWsVOsLzvDskTQn9M9x/85xzL8WoSQAAADFBDOlfxJD+QwzpX8kWQ3rOuVi3AQCAuOV53gJJhc65OS2+ly9ptaTbE/UGwc9C/TNZFvzeIancOVcQ21ahPaGgd55aBE2hvnxY0mxJ851zd8awiWhDi346JuD1PG+GpKWSlrS8hgIAACQyYkj/IYb0J2JI/0rWGJJkHDos2TLViYLZIf7GjKzYCs1mfLi1m/DQDcJiSUOdc+Un/DBiItQvd8qudYtkN+aTCaTin+d5iyXNbe18Cj02WzZ48VCXNw4ReZ63uK1AKXQfcoekO51z87u2ZQBijRjSn4gh/Y0YMraIIf2HGNK/iCH9K1ljSPaMQ7s8z8sPXcBecs7NCX3NlH04LQ09hjjjed6wUN8scs5Ncs4NlxS+GV8durAhDoXOuRmhPtouaVis25TE5klq9aatxSDSv3Zdc9Ae59xLzrmZzrk7GTDyj/DstwiDEnNDfy7ooiahg0IzGmd7nre0jaeEv399FzUJQBwghvQnYkj/IoaMK8SQPkMM6U/EkP6VzDEkyTh0xMOh4OmYD6TQTcR82clzR2yahgjmyWaHHO0351x5aNbBEkl3eJ53W8xah1a1mCk3UzYji1nDMeJ53kRZELsywtNWSeI8Ak5exOUnQgFWeNmRGV3SInRUYejPyW08Xhr6M7+NxwEkJmJIfyKG9CFiyPhBDAl0KWJI/0raGJJkHCJK5ky1nzE7xL+YkRVXwjdrkTbY3iEpP7QUDICPbpikBe3MuN/R4rmIE865HbKqibaWwgr3FwODQJIghvQnYkj/IoaMK8SQQNchhvSpZI4hScahPUmbqfY5ZocAJy+8v0mkQGp76M+JUW4LkOiWSipX5FnE4XuNSOckYsA5tyYUULUmPNjO4C2QPIgh/YkYEjh5xJBA1yGG9LFkjSFJxiGiZM5U+xyzQ4CTly8dHXhoS/ixwgjPAdAO59x851yBc25JhKeFB3VXdUWbcPJCSzXNlm28zUx9IEkQQ/oWMSRw8oghgS5CDJmYEj2GTIt1AxD/2jnwEzZT7XNLZR84zA4BPrrOBEfM7AaiKDQDP1/SknYGNxAHQkvUzZD0r5LmtBMgA0hAxJC+RAwJnDxiSCBOEEP6S7LEkCTj8JEleqbaz5xz82Ubo0fC7BAgss4ERz2j1goAknTncX8iDoXuDa+XXT+HSVqk0JJmACARQ8YzYkjglCCGBOIHMaQPJFsMSTIOnZYsmepExuwQAIBfeJ43W3bfMSfCmvKIA6GB9aOBUyiwWu153j2hQV4ASYoY0v+IIQEAfkEM6R/JFkOSjEOHJVumOsExOwQ4tQ7HugFAIgoN3j4sq6Bg4NZnnHNrPM+bK2mx53k9nXPcdwBJhhgyoRBDAqcWMSQQBcSQ/pboMSTJOHRYsmWqExWzQ4AOK5fsRq4Ds3+ZHQxEx8uSuM/wMefcEs/zyiXd4XneAu49gORCDJkYiCGBDiOGBGKPGNLnEjmGTIl1A+BfocBqrqR5nufNi3V70D5mhwCdEv6wj7QJd3hPgNIotwVIOp7nLZW0iCAqIYT3Fpod01YAiDliSP8hhgQ6hRgSiCFiyISSkDEkybgE4XnebM/z3Cn46lRAFLoZD2eqh0Xnf5e4YtBvzA45BWJ1vqHLhQOpSJtwDw/9yXJLwCnked4CSUv5vIp/nuct9jyvrJ37wPDM7yld0SYAHUMM6U/EkP5EDJk0iCGBGCGG9I9kjiFZpjJBhMo3J52Cl/ooZZ+rZEtWzJbEBa8TurLfmB1y6sT4fEPXWSTpDtn+Jm0FSsMklSdSyTwQa57n3SE7r074vPJsdv5k59xLXd8ytCE8U3GGpIfaeE54QGpl9JsDoKOIIf2JGNKfiCGTBjEkEAPEkL6TtDEkybgEElry45TyPG+x7MSYFOFGISEz1V0lGv12PGaHnHpd0W+IrdCmseWSZkpqa0meGWIACThlPNuTJtImzTPE/hrx5iVJi51zbQVRkjQ59CefnUCcIYb0J2JIfyKGTHzEkEDXI4b0paSNIVmmEu2ZLctEz4jwnITMVCeK9maHeJ4XqW+BZDdX0nWhmVTHCN3wlUu6p8tbhc6KtEwM4oTneRMlTYkQREk2aLsqwuPoevPUvNzSCULXynxJS5iNCiQNYkifI4YETgoxZGIghvQBYkjfStoY0nPOxboNiGOhZSkiZqo9zyuTnSAzE+0E8bvQxavND6XwjSD9Fr9C5+Bk51xBrNuSrEKzggudc3NafC9f0mpJt3P+xDfP87bLloIpcM4xGy5OhdaKX63IQdIwScOcc17XtAod5XnebbIZ4He2rIIJDdYulrTKOTczVu0D0LWIIf2NGNL/iCFjjxjS34gh/YEY0t+SNYZkmUq0Z57sxGhVImeq/a4Ts0OYkRX/mJEVQ86520Mbri9Q89IG4cEj1vmPM6Fr38Ohfw5T8/mz0/O8cH/d45xra9kYxMYCtV9FISXYEhWJwjn3kOd5T0ua53leYejb4XNvLucbkHSIIX2KGDKhEEPGEDGkvxBD+hYxpI8lawxJZRzalayZaj9jdkjiYEYWAAAA/IYY0n+IIRMHMSQAAPGJZBw6JFROP0/S8ZnqBYmaqfaz0LIUHVnHf41zblK024OOizAjq1wSM7IAAADgC8SQ/kIM6V/EkAAA+APJOAAAAAAAAAAAACBKUmLdAAAAAAAAAAAAACBRkYwDAAAAAAAAAAAAooRkHAAAAAAAAAAAABAlJOMAAAAAAAAAAACAKCEZBwAAAAAAAAAAAEQJyTgAAAAAAAAAAAAgSkjGAQAAAAAAAAAAAFFCMg4AAAAAAAAAAACIEpJxAAAAAAAAAAAAQJT8H2xwBXjZC5brAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 2160x576 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "\n", "plt.subplot(121) \n", "plt.plot(Ome, psd_noise_per_average) \n", "plt.plot(Ome, psd_noise_per_average - psd_noise_per_tria_std) \n", "plt.plot(Ome, psd_noise_per_average + psd_noise_per_tria_std) \n", "\n", "plt.title('Periodogram') \n", "plt.grid(True); \n", "plt.ylabel('$\\hat{\\Phi}_p(\\Omega)$') \n", "\n", "\n", "plt.subplot(122) \n", "plt.plot(Ome, psd_noise_bart_average) \n", "plt.plot(Ome, psd_noise_bart_average - psd_noise_bart_std) \n", "plt.plot(Ome, psd_noise_bart_average + psd_noise_bart_std) \n", "\n", "plt.title('Bartlett') \n", "plt.grid(True); \n", "plt.ylabel('$\\hat{\\Phi}_B(\\Omega)$') \n", "\n", "\n", "\n", "plt.figure()\n", "\n", "plt.subplot(121) \n", "plt.plot(Ome, psd_sin_per_average) \n", "plt.plot(Ome, psd_sin_per_average - psd_sin_per_tria_std) \n", "plt.plot(Ome, psd_sin_per_average + psd_sin_per_tria_std) \n", "\n", "plt.title('Periodogram') \n", "plt.grid(True); \n", "plt.ylabel('$\\hat{\\Phi}_p(\\Omega)$') \n", "\n", "\n", "plt.subplot(122) \n", "plt.plot(Ome, psd_sin_bart_average) \n", "plt.plot(Ome, psd_sin_bart_average - psd_sin_bart_std) \n", "plt.plot(Ome, psd_sin_bart_average + psd_sin_bart_std) \n", "\n", "plt.title('Bartlett') \n", "plt.grid(True); \n", "plt.ylabel('$\\hat{\\Phi}_B(\\Omega)$') " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 4 }
gpl-2.0
LSSTC-DSFP/LSSTC-DSFP-Sessions
Sessions/Session04/Day1/LSSTC-DSFP4-Juric-FrequentistAndBayes-01-Probability.ipynb
1
142650
{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Frequentism and Bayesianism I: a Practical Introduction\n", "\n", "**Mario Juric & Jake VanderPlas, University of Washington**\n", "\n", "**e-mail: <[email protected]>, twitter: [@mjuric](http://twitter.com/mjuric)**\n", "\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*This lecture is based on a [post](http://jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro/) on the blog [Pythonic Perambulations](http://jakevdp.github.io), by [Jake VanderPlas](https://staff.washington.edu/jakevdp/). The content is BSD licensed. See also VanderPlas (2014) [\"Frequentism and Bayesianism: A Python-driven Primer\"](http://arxiv.org/abs/1411.5018).*\n", "\n", "*Slides built using the excellent [RISE](https://github.com/damianavila/RISE) Jupyter extension by [Damian Avila](https://github.com/damianavila).*" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "<!-- PELICAN_BEGIN_SUMMARY -->\n", "\n", "One of the first things a scientist hears about statistics is that there is are two different approaches: ***Frequentism*** and ***Bayesianism***. Despite their importance, many scientific researchers never have opportunity to learn the distinctions between them and the different practical approaches that result.\n", "\n", "The purpose of this lecture is to synthesize the philosophical and pragmatic aspects of the frequentist and Bayesian approaches, so that scientists like you might be better prepared to understand the types of data analysis people do.\n", "\n", "We'll start by addressing the philosophical distinctions between the views, and from there move to discussion of how these ideas are applied in practice, with some Python code snippets demonstrating the difference between the approaches.\n", "\n", "<!-- PELICAN_END_SUMMARY -->" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Prerequisites\n", "\n", "* Python Version 2.7\n", "* The \"PyData\" data science software stack (comes with [Anaconda](https://www.anaconda.com/download/)).\n", "\n", "\n", "* [emcee](http://dan.iel.fm/emcee/) -- a pure-Python implementation of Goodman & Weare’s Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler.\n", "* [AstroML](http://www.astroml.org/) -- a library of statistical and machine learning routines for analyzing, loading, and visualizing astronomical data in Python." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Frequentism vs. Bayesianism: a Philosophical Debate" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "<br>\n", "<center>Fundamentally, the disagreement between frequentists and Bayesians concerns the definition (interpretation) of probability.</center>\n", "<br>" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Frequentist Probability\n", "\n", "For frequentists, probability only has meaning in terms of **a limiting case of repeated measurements**.\n", "\n", "That is, if I measure the photon flux $F$ from a given star (we'll assume for now that the star's flux does not vary with time), then measure it again, then again, and so on, each time I will get a slightly different answer due to the statistical error of my measuring device. In the limit of a large number of measurements, the *frequency* of any given value indicates the probability of measuring that value." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "For frequentists **probabilities are fundamentally related to frequencies of events**. This means, for example, that in a strict frequentist view, it is meaningless to talk about the probability of the *true* flux of the star: the true flux is (by definition) a single fixed value, and to talk about a frequency distribution for a fixed value is nonsense." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Bayesian Probability\n", "\n", "For Bayesians, the concept of probability is extended to cover **degrees of certainty about statements**. You can think of it as an **extension of logic** to statements where there's uncertainty.\n", "\n", "Say a Bayesian claims to measure the flux $F$ of a star with some probability $P(F)$: that probability can certainly be estimated from frequencies in the limit of a large number of repeated experiments, but this is not fundamental. The probability is a statement of my knowledge of what the measurement reasult will be." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "For Bayesians, **probabilities are fundamentally related to our own knowledge about an event**. This means, for example, that in a Bayesian view, we can meaningfully talk about the probability that the *true* flux of a star lies in a given range.\n", "\n", "That probability codifies our knowledge of the value based on prior information and/or available data." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "The surprising thing is that this arguably subtle difference in philosophy leads, in practice, to vastly different approaches to the statistical analysis of data. Below I will give a few practical examples of the differences in approach, along with associated Python code to demonstrate the practical aspects of the resulting methods." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Frequentist and Bayesian Approaches in Practice: Counting Photons" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we'll take a look at an extremely simple problem, and compare the frequentist and Bayesian approaches to solving it. There's necessarily a bit of mathematical formalism involved, but we won't go into too much depth or discuss too many of the subtleties.\n", "\n", "If you want to go deeper, you might consider taking a look at chapters 4-5 of the [Statistics, Data Mining, and Machine Learning in Astronomy](http://www.amazon.com/dp/0691151687/) textbook." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### The Problem: Simple Photon Counts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Imagine that we point our telescope to the sky, and observe the light coming from a single star. For the time being, we'll assume that the star's true flux is constant with time, i.e. that is it has a fixed value $F_{\\rm true}$ (we'll also ignore effects like sky noise and other sources of systematic error). We'll assume that we perform a series of $N$ measurements with our telescope, where the $i^{\\rm th}$ measurement reports the observed photon flux $F_i$ and error $e_i$.\n", "\n", "**The question is, given this set of measurements $D = \\{F_i,e_i\\}$, what is our best estimate of the true flux $F_{\\rm true}$?**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Aside on measurement errors\n", "\n", "We'll make the (reasonable) assumption that errors are Gaussian:\n", "* In a Frequentist perspective, $e_i$ is the standard deviation of the results of a single measurement event in the limit of repetitions of *that event*.\n", "* In the Bayesian perspective, $e_i$ is the standard deviation of the (Gaussian) probability distribution describing our knowledge of that particular measurement given its observed value)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Here we'll use Python to generate some toy data to demonstrate the two approaches to the problem.\n", "\n", "Because the measurements are number counts, a Poisson distribution is a good approximation to the measurement process:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Generating some simple photon count data\n", "import numpy as np\n", "from scipy import stats\n", "np.random.seed(1) # for repeatability\n", "\n", "F_true = 1000 # true flux, say number of photons measured in 1 second\n", "N = 50 # number of measurements\n", "F = stats.poisson(F_true).rvs(N) # N measurements of the flux\n", "e = np.sqrt(F) # errors on Poisson counts estimated via square root" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Now let's make a simple visualization of the \"measured\" data:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QXNV55/HvM4MkwJLwCIFGGI8FsQRMVANCA4a8eIlU\nsb3OEEDssph4pThTpV1v4vdxLCebwkntH9ghrthrSmutHUdg44BjDFoqtuNMLDsbYgcNVoQQCLCQ\nLLBGCmSiEYsDkubZP/q21PPSM7d7+r6ce3+fqq7pvtMvj2615pzzPOeca+6OiIiUV1vWAYiISLbU\nEIiIlJwaAhGRklNDICJScmoIRERKTg2BiEjJqSEQESk5NQQiIiWnhkBEpOTOyDqAOBYvXuzLli3L\nOgwRkaAMDQ296O7nzfS8IBqCZcuWsWPHjqzDEBEJipkdiPM8pYZEREpODYGISMmpIRARKTk1BCIi\nJaeGQESk5BKdNWRm+4FjwEnghLv3mtki4D5gGbAfuMXdR5KMQ0RE6ktjRPAr7n6Fu/dGjzcBg+6+\nHBiMHouISEaySA3dAGyN7m8FbswgBhERiSS9oMyBvzGzk8Dn3X0LsMTdD0W/HwaWTPVCM9sIbATo\n6upKOEyRqf30pz+ddOyCCy7IIBKR5CTdEPySu79gZucD3zGzp2p/6e5uZj7VC6NGYwtAb2/vlM8R\nSdqhQ4cmHUuyIdi1axcPPPAAP/nJT+jq6mLdunX09PQk9nkikHBqyN1fiH4eAb4BXA0cNrOlANHP\nI0nGIBKKXbt2ceeddzIyMsKFF17IyMgId955J7t27co6NCm4xEYEZvY6oM3dj0X33wb8EbAN2ADc\nEf18KKkYRAB27tzZ9Gv37t076Vh7e/tswqlr8+bNnDhxgldffZUjRyr9oxMnTnDXXXfx3ve+N5HP\nbKUrrrgi6xCkSUmmhpYA3zCz6ufc6+7fMrNHgfvNrB84ANySYAwiwRgeHmbJkvEls/nz5zM8PJxR\nRFIWiTUE7r4PuHyK4y8Ba5P63DJSXnl6s+mpnjx5sqXvN51Vq1YxMjJCR0fHqWMjIyOsWrVKvW1J\nlFYWB0555eJYt24dIyMjjIyMMDY2dur+unXrsg5NCi6I6xFkaTb55TSEnFdWL3e8np4eBgYGxo3u\n+vv7NbqTxKkhCJzyysXS09OjP/ySOjUEM8h7r1V5ZQmNalr5oxpB4JRXlpCoppVPGhEETnllyXsd\nq1bINa2qIo601RAUgPLKEgrVtPJJDYEkRrngdITUQ1VNK59UI5BEKBcsU1FNK580IghQCDnh0HPB\n6p0mQzWtfFJDIIlQLljqUU0rf9QQBCiE3qpywcWnGlBxqEYgiVAuuNhUAyoWjQgkEcoFNy6E2k9V\n6DUgCGNknRY1BJIY5YKLSzWgYlFDIJITeeqhzpT/Vw2oWFQjEJFx4uT/VQMqFo0IRFJQxPx/X18f\ng4OD7N+/n87OTvr6+hgbG8vFv1WjksaoIRCRceLm/1esWMGKFSvSDE0SooZAghfCfPaQeqjK/5eP\nagQSNM1nbz3l/8vH3D3rGGbU29vrO3bsyDqMUslDnjeOzZs3c+zYMRYuXHjq2OjoKAsWLGjJfPY9\ne/ZMOtbd3T3r963Kaw87hFGWzMzMhty9d6bnKTUkQdN89mRoDUi5qCGQKeW1pzpR0vnskydPTjoW\nyrlJikYLxaMagQRN+ex0qSZTTBoRSNCKsKdRKPUY0B5DRaWGQIKnfHZ6VJMpJjUEUip5zG+H1EPV\nGoNiUo1ASkP57dlTTaaYtI5AWiKEPHczaw6SXkfQiLz0uPM4qpKp5WYdgZm1AzuAF9y9z8wWAfcB\ny4D9wC3uPpJ0HCLKb7eGajLFk0aN4APAk0C1G7YJGHT3O8xsU/T4YynEIQnKS291OvXy2xdccAEP\nPvjglD1crSOQMki0RmBmFwK/Bnyh5vANwNbo/lbgxiRjEKmaKr+9b98+Dh48qLqBlFrSI4I/BX4X\nWFBzbIm7H4ruDwNLJr1KgpfXmsHEPfTnzZvH3Llz686L37t376T3aG9vTzvsKWlkIq2SWENgZn3A\nEXcfMrPrpnqOu7uZTVmtNrONwEaArq6upMKUkpm4h/7tt9/OokWLxj1HdQMpmyRHBL8I/LqZvRM4\nE1hoZl8GDpvZUnc/ZGZLgSNTvdjdtwBboDJrKME4ZQbNzBIJpbc607x41QikDBKrEbj7x939Qndf\nBtwK/K27vxvYBmyInrYBeCipGGT2ij73XvPiRbJZWXwHcL+Z9QMHgFsyiCEX8ppHrxXy3jJxeu5F\n2KtIZLambQiiNQB3u/tvzOZD3H07sD26/xKwdjbvJ+kpw9x7zYuXspu2IXD3k2b2JjOb6+6vpRVU\nWYSQa9beMq2nlbmSN3FqBPuAvzezPzCzD1dvSQcm+aAcemsVveYiYYpTI/hxdGtj/HoAKYFQcuhJ\n1VtavY4g5JoLhDGKlcbN2BC4+x8CmNnZ7v5K8iFJ3iiH3jplqLlIeGZsCMzsWuCLwHygy8wuB/6L\nu/+3pIMTiavRnmrcPH2r1xGo5iJ5FKdG8KfA24GXANz9n4C3JhmUSJKyzNOr5iJ5FGsdgbsfNLPa\nQ5O7SVJ6IayLgMby9EnsNTRxv6O+vj7GxsZinT+NGiQJcRqCg2b2C4Cb2RxObystEqSs8/QT9zsS\nyVqchuC/Ap8B3gD8FPg28NtJBiVhSqK3msSc+0by9NprSMpgxhqBu7/o7r/h7kvc/Tx3f3e0Olgk\nUUnl8pWnFxkvzqyhi6mMCK4BHPgH4EPuvi/h2CRBIeTzk5xzHzdPP5sagUYOEoo4qaF7gbuAm6LH\ntwJfBd6SVFAikGwuX3l6kdPiNARnu/s9NY+/bGYfTSogSUcIvdU8zLnPS41A+xNJkurWCMxskZkt\nAr5pZpvMbFm0Ad3vAn+VXohSVsrlV2h/IkmauU998S8ze45KTcCm+LW7+8VJBlart7fXd+zYkdbH\nSY4k1ROOWyPZs2fPpGPd3d2z/vxGbN68mWPHjrFw4cJTx0ZHR1mwYIH2J5JpmdmQu/fO9Ly6qSF3\nv6i1IYk0TvscZbPu4emnn2ZwcJDh4WE6OztZu3ataioFFmfWUDvwa8Cy2ue7+6eTC0skWXF7qXmo\nEaRdK9m1axcPP/wwHR0dXH755Rw9epSHH36YgYGB0jfKRRWnWPx/gH8DHgfGkg1HpJhmM123u7ub\nu+++m4ULFzJ//nxefvllRkdHWb9+fSLTgEPfKhuUjmpUnIbgQndXN0AkIytWrGD9+vXjUjU33nhj\nYqmarLfgkPTFaQi+aWZvc/e/TjwakYKabQ+1ra2NPXv2cPz4cZYuXcqll16aWJomD9N2JV1xtqH+\nAfANM/uZmY2a2TEzG006MBGpSHv6qKbtlk+cEcGngWuBx73eXFORwMTNrSexDXWjssjZz2ar7Ik0\nisi/WNtQA7vVCIhkI4ucvbbgKJc4DcE+YLuZfRN4tXpQ00clZJo+mi5tkZFvcWoEzwGDwFxgQc1N\nRFIQes5eW2TkX90tJvJEW0xIVoaGhiYdW716depxTOxRd3d3B5O6CX2LDAi3zjHrLSZq3ui7VPYc\nGsfd1zQZm4g0aOJWGyFcT6JK6xLyL06NYKDm/pnAzcCJZMIRSU6R8tQh9VCLUOMoujiXqhyquf29\nu38YuC750ERaR3nq7IRe4yiDOKmhRTUP24DVwDmJRSRBCSVF0exc/DysI4CwRgAT9fT0MDAwMG40\n1t/fH+xorIjipIaGOH1dghNUZhH1JxmUSKspT50tbSeebzM2BM1el8DMzgS+D8yLPucv3f32aIRx\nH5VtrfcDt7j7SDOfIdlra2sLIu/ebJ46D+sIRJIWZx0BZvYLZnabma2v3mK87FVgjbtfDlwBvMPM\nrgE2AYPuvpzK+oRNzQYv2Qop7648tUh9cWoE9wA/B+wEqt0jB+6e7nXRlhQvRw/nRDcHbuB0sXkr\nsB34WGNhF18IuffQ9q2v3T9n1apVylOLROLUCHqB7mb2GoqubjYEvBm4y91/aGZL3P1Q9JRhYEmd\n124ENgJ0dXU1+tGSgtDy7rX75yi9I3JanIZgN9AJHJrpiRO5+0ngCjN7PZWtrFdO+L2b2ZQNjLtv\nAbZAZWVxo58duhD+UGl+eDkVaT2GVMSpESwG9pjZt81sW/XWyIe4+78C3wXeARw2s6UA0c8jjQYt\n+aC8e/mEVBeS+OKMCD7RzBub2XnAcXf/VzM7C/hV4JPANmADcEf086Fm3l+yp/nhrRFCPagqtLrQ\nVDRanSzO9NHvNfneS4GtUZ2gDbjf3R82s38A7jezfuAAcEuT7y85oPnh5RJaXUjiiTMiaIq77wJW\nTXH8JWBtUp8rEpqQeqhp1oVUi0hPrHUEIiKQXl1ItYh0xVlH8AF3/8xMx0Qkv1pZh2jl9YzrUS0i\nXXFSQxuAiX/0f3OKYyJSAmlcz1i1iHTVbQjM7F3AbcBFE6aLLgD+JenARIoqi9x3SL1T0BqVtE1X\nI3gE+BPgqehn9fYR4O3JhyZSPMp9x6M1KunSNYulEJKai79nz55Jx7q7u5t+v9Cv35tmb1yzhmav\nldcsXkdlIdj5VK5JYFR2h1g47QtFZBLlvuPTGpX0xCkWfwq43t2fTDqYslLPZ/aS6qm2+noEyn1L\nHsVZR3BYjUBylDMuF+W+JY/ijAh2mNl9wINULjYDgLs/kFhULZT3fVxCni+tHmzjtD+T5FGchmAh\n8ArwtppjDgTREOSdcsblo9y35E2cTefek0YgScl7r1U5Y1GNSLI2Y43AzFaY2aCZ7Y4e95jZf08+\ntHJQzrjcVCOSPJhxHYGZfQ/4KPB5d18VHdvt7iunfWELFX0dgXqErdeq2lCr1xFMFPq6Asj/qLvM\nWraOADjb3f/RzGqPnWg6MplEOePyUo1I8iBOQ/Cimf0clQIxZvYfaOL6xRKOIoxQWtVLbfU6golU\nI5I8iLOO4LeBzwOXmtkLwAeBMMas0jDlrNOlGpHkQey9hszsdUCbux9LNqTJilIjyPuaBgg7Z51E\nD3poaGjSsdWrV7f0M4owApN8auVeQ68H1gPLgDOqtQJ3f/8sY5QcUs46faoRSdbi1Aj+CvgB8Dgw\nlmw4xRZCzlc56+apZy+hilMjONPdP+zuX3L3rdVb4pFJJpSzbo5qKxKyOOsIPgS8DDzM+L2GUrtK\nWVFqBKHIU88267pK3HUEIddWIIzRqjSulesIXgP+GPh9oimk0c+Lmw9P8kw568aptiIhi9MQfAR4\ns7u/mHQwIhNl3VONu47gggsu4LHHHuO1117jnHPO4bLLLuOss85SbUWCEKdG8CyV3UdFZAq7du3i\n4MGDjI6OMmfOHF555RW2b9/Ovn37VFuRIMQZEfw/YKeZfZfxNQJNH5VEZV0fANi7d++kY+3t7eMe\nb968mYULF7Jy5Uqee+45jh07xty5c5k3bx5jY2O5+HdMRyMWidMQPBjdRGQK1fpAW1sb5557LgBj\nY2McPnw448hE4olzPYKtZnYW0OXuk7tHIgnJsqdanTn12GOP0dnZyZo1a1i+fPmUcWnthYQuzvUI\nrgd2At+KHl9hZtuSDkwkK7VrAs4//3xGR0e55557eOaZZ6Z8vtZeSOjipIY+AVwNbAdw951mpqmj\n0rC858qraq8jPTIyAlRmD33ta1/j5ptvnlQjAOjr62NwcJD9+/fT2dlJX19fZvUBjUKkUXEaguPu\nfnTC9Qhm3GrCzN4I3A0sobLuYIu7f8bMFgH3Udm7aD9wi7uPNBi3SGKmWhNw9tln8+KL9WdQr1ix\nghUrViQdmkgi4jQET5jZbUC7mS0H3g88EuN1J4CPuPtjZrYAGDKz7wC/CQy6+x1mtgnYBHysufAl\nJBN7qnlawVyrNuc/Nlbp84yOjnLJJZdwySWXqMcthRNnHcH7gJ+nMnX0XuAolWsSTMvdD7n7Y9H9\nY8CTwBuAG4DqXkVbgRsbD1tCl+e9eSbm/EdHRzl27Bhr1qzJOjSRREy715CZtQOfdPeBWX2I2TLg\n+8BK4Cfu/vrouAEj1cf1aK+h+ELKw+d5b56nn36awcFBnnrqKRYvXsxVV11FV1cXALfddlvG0YnE\n05K9htz9pJn90iwDmQ98Hfigu4/W1hrc3c1sypbIzDYCG4FT/wGlOPK+N0815z/VpnMiRROnRvCj\naLro16isMgbA3R+Y6YVmNodKI/CVmucfNrOl7n7IzJYCR6Z6rbtvAbZAZUQQI04hnBkjzcy9z6Km\nMNVeQyJFE+t6BMBLwBrg+ujWN9OLorTPF4En3f3TNb/aBmyI7m8AHmokYCmGRufe57mmIBK62Ncs\nbviNKymlv2P8lc1+D/ghcD/QBRygMn102msbqEaQrKzqCtU8/PDwMJ2dnaxdu7buFMysagpxr0cw\nk1BGalIsrbxm8Zc4fR2CU9z9t6Z7nbv/X8Dq/HrtTJ8rxdfI3Pu81xREQhanRvBwzf0zgZuAnyYT\njmQhhN5qVvv5xL0eQRnldR2ING7GGoG7f73m9hXgFmDGoYZIK2k/n3xRzaZY4owIJloOnN/qQESm\n09PTw8DAwLgeaH9/f6F6oKGsAYHx+zEdOVKZ+HfixAnuuuuuXKwDiUMju9Pi1AiOMb5GMIy2hJAM\n6FrK+aGaTbHEuR7BgjQCkfxQ7jcbIfVQdQ2GYolzPYJfNLPXRfffbWafNrM3JR+aZEG5X4lDNZti\nmXEdgZntAi4HeoA/B75AZe7/v0s8ukhR1hGEkAPO+x5A00miJzo0NDTp2OrVq1v+OSHSyDH/WraO\nADgR7Ql0A/A5d/+imfXPPkTJI+V+JS7VbIojTkNwzMw+DrwbeKuZtQFzkg2rmELIneY196vep0hy\n4uw19J+oXIug392HgQuBP040KslMHnO/qluIJCuxvYZaqSg1grypV7NoZA+gNGRZt5jtXkMhjAKl\nuFq519A1wP8ELgPmAu3Ay+5+zqyjlFzK2/V3VbcQSVacGsHngFupXI+gF1gP5OevhDQtlN5qlnWL\npPcaUu1D8iBOjQB3fxZod/eT7v4l4B3JhiVyWh7rFq2g2ofkRZwRwStmNhfYaWafAg4RswERaYVG\n9xlq5XqNvXv3TjrW3t7ekvcOfb+eUEaUMrM4DcF/pvKH/3eADwFvBG5OMiiRiYo4Z121D8mLOHsN\nHTCzs4Cl7v6HKcQkMiut7KkmWSOo1j5ee+01nnzySY4ePcrcuXO58sor1duWVMXZa+h6YCfwrejx\nFdHF7EVkFtatW8e+ffvYvn07r7zyCnPmzGF0dJSDBw+qTiCpipMa+gRwNbAdwN13mtlFCcYkMmut\nqhMkWSMAmDdvHmeccQZHjx5lwYIFrFy5kjlz5gRTJwDVCoogTkNw3N2Pmo27/HD+V6GJBOD48eNc\ne+21tLWdHpyPjY2pTiCpitMQPGFmtwHtZrYceD/wSLJhicxOq3qpSa8jyOveTkWhdRrxxJkG+j7g\n56nsN/RVYBT4YJJBiZRFUddI5IHWacSnvYZEppHG9QhC6bWGcD2NWiFfW6PWbEaGrdxrqBf4PWBZ\n7fPdPX/fVGlaKH+MiqiIayTyQOs04otTI/gK8FHgcWAs2XAkC9UhdEdHx7gh9MDAgP5AySmh1SxU\nf4kvTkPwz+6udQNNCmE4HfJWB/oPLfWsW7eOO++8E4BzzjmHo0ePMjIyQn+/LrA4UZxi8e1m9gUz\ne5eZraveEo9MUjM8PMz8+fPHHdMQWkJX3aOqo6OD559/no6ODo1y64gzIngPcCmVy1NWU0MOPJBU\nUEUSQo81qSG06g6SNdVf4okzIrjK3XvdfYO7vye6/VbikUlqkpjCqKl7IuGIMyJ4xMy63X3yNfsk\nE0nUHfr6+hgcHGT//v10dnbS19fH2NhY058Vct0BwhjJibRKnIbgGirXIniOyqIyA1zTR4ul1Zen\n1NQ9kXDEaQiauhqZmf0Z0AcccfeV0bFFwH1U1iTsB25x95Fm3r/MQsjba+qeSDhmrBG4+4GpbjHe\n+8+Z3IhsAgbdfTkwGD2WlKSZt9fWCSLhiDMiaIq7f9/Mlk04fANwXXR/K5WtrT+WVAxpy/uagbTz\n9q2sO2gUIZKcxBqCOpa4+6Ho/jCwpN4TzWwjsBGgq6srhdCKL+28favrDiKSjLQbglPc3c2s7o53\n7r4F2AKVTedSC2wW8t5rVd5epqN1H+UVZx1BKx02s6UA0c8jKX9+qSlvL/Vo3Ue5pT0i2AZsAO6I\nfj6U8ueXWnXJfW2vr7+/X72+hOS9ZlQr9HUfkP8ReZ4l1hCY2VepFIYXm9nzwO1UGoD7zawfOADc\nktTny9S05F6monUf5ZbkrKF31fnV2qQ+U8onz3ntkHqoqh+VW9o1ApGWUV67dVQ/KjddqlImCSW3\nncalCPfsmbzFVnd396zfN4+97DyPrqQ5LbtUpUheKa/dWqoflZcaApmkkd5qlr3INPLaJ0+enHQs\nj715kdlQjUCalnWOXnltkdbQiCCnQsjT52HuebP7GalXL3KaGgJpWh5y9NrPSGT21BDkVAg91hDn\nnldrGp/97Gc1M0YkohqBNC20HH3WNQ2RvNI6ApmVag/7Rz/6EZ2dnaxduza3qZpm1h0ktY6gGXkd\nZUl+aR2BpKI69zyE4nYeahoieaSGQFoihLUHzdQ0tI5AykA1AklVlnn60GoaImnRiKBAQkjPZL32\noNF1B3v37j11/5JLLkk8PpEsqCGQVGWdp9e6A5HJ1BAUSAi567ysPYhbp5iqRiBSNKoRSKrykKfX\negKR8TQikJaJW6Nodn+gVmmkTlFbI6hqb29PJc6phDDqk/CoIZDUZZ2nz7pOIZI3agikZfLeW63W\nBQ4cOMDw8DBXXnnlqQahXp1C6wikDFQjkFKorQu85S1vYXR0lO3bt3Po0CGtJ5DS04hAZiWEtQsw\nvi5gZqxcuZKnnnqK7du3c91119WtU+SlRqBRiCRJDYGUwsS6wLnnnsu1117L4cOHU7uIjkheqSGQ\nWYnbU83y2sbQ/PoF1QikDFQjkMTlYd5+HtYviOSVRgSBCyFHn/X+QlVZr18QySs1BJK4vMzbz3r9\ngkheqSEIXF7y1dPVAPKyv1AzhoaGsg5BJHGqEciszVQDUH5eJN80Isi5EPLXcWoAec3P531EIpKG\nTBoCM3sH8BmgHfiCu9+RRRzSGnFqAMrPi+RX6g2BmbUDdwG/CjwPPGpm29x9T9qxhCCEHmtINYCJ\ntYy2trZU1zOI5FEWNYKrgWfdfZ+7vwb8BXBDBnFIi4RSA8jDegaRPMoiNfQG4GDN4+eBt2QQh7RI\nT09PbmsAtZpZz5CXvYYgjNGhhCm3xWIz2whsBOjq6so4GplJCDWAZtYzLF68OOmwRDKXRUPwAvDG\nmscXRsfGcfctwBaA3t5eTyc0aVYIvdWQahkiacqiRvAosNzMLjKzucCtwLYM4pCSCaWWIZK21BsC\ndz8B/A7wbeBJ4H53fyLtOKR8enp6GBgYoKOjg+eff56Ojg4GBgY0a0hKz9zzn3Xp7e31HTt2ZB2G\niEhQzGzI3Xtnep62mBARKTk1BCIiJaeGQESk5NQQiIiUnBoCEZGSC2LWkJn9M3CgRW+3GHixRe9V\nNDo39enc1KdzU1/W5+ZN7n7eTE8KoiFoJTPbEWc6VRnp3NSnc1Ofzk19oZwbpYZEREpODYGISMmV\nsSHYknUAOaZzU5/OTX06N/UFcW5KVyMQEZHxyjgiEBGRGoVrCMzsA2a228yeMLMPRscWmdl3zOyZ\n6GdHzfM/bmbPmtleM3t7dpEnr865+YSZvWBmO6PbO2ueX9hzY2Z/ZmZHzGx3zbGGvydmttrMHo9+\n91kzs7T/La3WyLkxs2Vm9rOa78//qnlNWc7Nf4z+T42ZWe+E54fxvXH3wtyAlcBu4GwqF935G+DN\nwKeATdFzNgGfjO53A/8EzAMuAn4MtGf970j53HwCGJji+YU+N8BbgSuB3TXHGv6eAP8IXAMY8E3g\n32f9b0v53Cyrfd6E9ynLubkMuATYDvTWHA/me1O0EcFlwA/d/RWvXPfge8A64AZga/ScrcCN0f0b\ngL9w91fd/TngWeDqlGNOS71zU0+hz427fx/4lwmHG/qemNlSYKG7/8Ar/7vvrnlNsBo8N1Mq07lx\n9yfdffLFrQP63hStIdgN/LKZnWtmZwPvpHJZzCXufih6zjBQvXDtG4CDNa9/PjpWRPXODcD7zGxX\nNOytpkPKdG6qGv2evCG6P/F4EdU7NwAXRWmh75nZL0fHynRu6gnme1OohsDdnwQ+Cfw18C1gJ3By\nwnMcKN1UqWnOzWbgYuAK4BDwJ1nFmCdl/Z7EMeHcHAK63P0K4MPAvWa2MLPgpCmFaggA3P2L7r7a\n3d8KjABPA4ej4Vh1yHokevoLnO4VA1wYHSukqc6Nux9295PuPgb8b06nf0p1biKNfk9eiO5PPF5E\nU56bKO3xUnR/iEoefAXlOjf1BPO9KVxDYGbnRz+7qOTA7wW2ARuip2wAHorubwNuNbN5ZnYRsJxK\nEaeQpjo31f/ckZuopJCgZOcm0tD3JEqVjJrZNdGsj/U1rymaKc+NmZ1nZu3R/YupnJt9JTs39YTz\nvcm6Ct/qG/B3wB4q1fq10bFzgUHgGSqzZRbVPP/3qfRi9lKAWQ1NnJt7gMeBXVS+uEvLcG6Ar1JJ\naxynkqPtb+Z7AvRSaTx/DHyOaJFmyLdGzg1wM/AElVTjY8D1JTw3N0X3XwUOA98O7XujlcUiIiVX\nuNSQiIg0Rg2BiEjJqSEQESk5NQQiIiWnhkBEpOTUEIjUYWYna3bV3BnttHmdmT2cdWwirXRG1gGI\n5NjPvLJ1wilmtiybUESSoxGBSJOiazkM1DzeHY0aroo28TvTzF4X7VW/MstYRaajEYFIfWeZ2c7o\n/nPuflOcF7n7o2a2DfgfwFnAl9199wwvE8mMGgKR+ialhhrwR8CjwL8B729dSCKtp9SQSPNOMP7/\n0Jk1988F5gMLJhwXyR01BCLN20/lsoWY2ZVULkdY9XngD4CvULkOhEhuKTUk0ryvA+vN7Angh1Su\nfYGZrQekw9crAAAATElEQVSOu/u90RbNj5jZGnf/2wxjFalLu4+KiJScUkMiIiWnhkBEpOTUEIiI\nlJwaAhGRklNDICJScmoIRERKTg2BiEjJqSEQESm5/w9djscy9RH7jAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10b403890>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", "fig, ax = plt.subplots()\n", "ax.errorbar(F, np.arange(N), xerr=e, fmt='ok', ecolor='gray', alpha=0.5)\n", "ax.vlines([F_true], 0, N, linewidth=5, alpha=0.2)\n", "ax.set_xlabel(\"Flux\");ax.set_ylabel(\"measurement number\");" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "These measurements each have a different error $e_i$ which is estimated from [Poisson statistics](http://en.wikipedia.org/wiki/Poisson_distribution) using the standard square-root rule.\n", "\n", "In this toy example we already know the true flux $F_{\\rm true}$, but the question is this: **given our measurements and errors, what is our best estimate of the true flux?**\n", "\n", "Let's take a look at the frequentist and Bayesian approaches to solving this." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Frequentist Approach to Simple Photon Counts" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "We'll start with the classical frequentist **maximum likelihood** approach. Given a single observation $D_i = (F_i, e_i)$, we can compute the probability distribution of the measurement given the true flux $F_{\\rm true}$ given our assumption of Gaussian errors:\n", "\n", "$$ P(D_i~|~F_{\\rm true}) = \\frac{1}{\\sqrt{2\\pi e_i^2}} \\exp{\\left[\\frac{-(F_i - F_{\\rm true})^2}{2 e_i^2}\\right]} $$\n", "\n", "This should be read \"the probability of $D_i$ given $F_{\\rm true}$ equals ...\". You should recognize this as a normal distribution with mean $F_{\\rm true}$ and standard deviation $e_i$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "We construct the **likelihood function** by computing the product of the probabilities for each data point:\n", "\n", "$$\\mathcal{L}(D~|~F_{\\rm true}) = \\prod_{i=1}^N P(D_i~|~F_{\\rm true})$$\n", "\n", "Here $D = \\{D_i\\}$ represents the entire set of measurements. Because the value of the likelihood can become very small, it is often more convenient to instead compute the log-likelihood. Combining the previous two equations and computing the log, we have\n", "\n", "$$\\log\\mathcal{L} = -\\frac{1}{2} \\sum_{i=1}^N \\left[ \\log(2\\pi e_i^2) + \\frac{(F_i - F_{\\rm true})^2}{e_i^2} \\right]$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "What we'd like to do is determine $F_{\\rm true}$ such that the likelihood is maximized. For this simple problem, the maximization can be computed analytically (i.e. by setting $d\\log\\mathcal{L}/dF_{\\rm true} = 0$). This results in the following observed estimate of $F_{\\rm true}$:\n", "\n", "$$ F_{\\rm est} = \\frac{\\sum w_i F_i}{\\sum w_i};~~w_i = 1/e_i^2 $$\n", "\n", "Notice that in the special case of all errors $e_i$ being equal, this reduces to\n", "\n", "$$ F_{\\rm est} = \\frac{1}{N}\\sum_{i=1}^N F_i $$\n", "\n", "That is, in agreement with intuition, $F_{\\rm est}$ is simply the mean of the observed data when errors are equal." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "We can go further and ask what the error of our estimate is? In the frequentist approach, this can be accomplished by fitting a Gaussian approximation to the likelihood curve at maximum; in this simple case this can also be solved analytically.\n", "\n", "It can be shown that the standard deviation of this Gaussian approximation is:\n", "\n", "$$ \\sigma_{\\rm est} = \\left(\\sum_{i=1}^N w_i \\right)^{-1/2} $$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "These results are fairly simple calculations; let's evaluate them for our toy dataset:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " F_true = 1000\n", " F_est = 998 +/- 4 (based on 50 measurements)\n", " \n" ] } ], "source": [ "w = 1. / e ** 2\n", "print(\"\"\"\n", " F_true = {0}\n", " F_est = {1:.0f} +/- {2:.0f} (based on {3} measurements)\n", " \"\"\".format(F_true, (w * F).sum() / w.sum(), w.sum() ** -0.5, N))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We find that for 50 measurements of the flux, our estimate has an error of about 0.4% and is consistent with the input value." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Bayesian Approach to Simple Photon Counts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Bayesian approach, as you might expect, begins and ends with probabilities. It recognizes that what we fundamentally want to compute is our knowledge of the parameters in question, i.e. in this case,\n", "\n", "$$ P(F_{\\rm true}~|~D) $$\n", "\n", "N.b.: that this formulation of the problem is *fundamentally contrary* to the frequentist philosophy, which says that *probabilities have no meaning for model parameters* like $F_{\\rm true}$. Within the ***Bayesian interpretation of probability***, this is perfectly acceptable. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "To compute this result, Bayesians next apply [Bayes' Theorem](http://en.wikipedia.org/wiki/Bayes\\'_theorem), a fundamental law of probability:\n", "\n", "$$ P(F_{\\rm true}~|~D) = \\frac{P(D~|~F_{\\rm true})~P(F_{\\rm true})}{P(D)} $$\n", "\n", "Though Bayes' theorem is where Bayesians get their name, it is not this law itself that is controversial, but the Bayesian *interpretation of probability* implied by the term $P(F_{\\rm true}~|~D)$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Let's take a look at each of the terms in this expression:\n", "\n", "- $P(F_{\\rm true}~|~D)$: The **posterior**, or the probability of the model parameters given the data: this is the result we want to compute.\n", "- $P(D~|~F_{\\rm true})$: The **likelihood**, which is proportional to the $\\mathcal{L}(D~|~F_{\\rm true})$ in the frequentist approach, above.\n", "- $P(F_{\\rm true})$: The **model prior**, which encodes what we knew about the model prior to the application of the data $D$.\n", "- $P(D)$: The **data probability**, which in practice amounts to simply a normalization term." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "If we set the prior $P(F_{\\rm true}) \\propto 1$ (a *flat prior*), we find\n", "\n", "$$P(F_{\\rm true}|D) \\propto \\mathcal{L}(D|F_{\\rm true})$$\n", "\n", "and the Bayesian probability is maximized at precisely the same value as the frequentist result! So despite the philosophical differences, we see that (for this simple problem at least) the Bayesian and frequentist point estimates are equivalent." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### But What About the Prior?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We glossed over something here: the prior, $P(F_{\\rm true})$.\n", "\n", "The prior ***allows inclusion of other information into the computation***, which becomes very useful in cases where multiple measurement strategies are being combined to constrain a single model (as is the case in, e.g. cosmological parameter estimation).\n", "\n", "The necessity to specify a prior, however, is one of the more controversial pieces of Bayesian analysis." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### But What About the Prior?\n", "\n", "A frequentist will point out that the ***prior is problematic when no true prior information is available***. Though it might seem straightforward to use a **noninformative prior** like the flat prior mentioned above, there are some [surprisingly subtleties](http://normaldeviate.wordpress.com/2013/07/13/lost-causes-in-statistics-ii-noninformative-priors/comment-page-1/) involved. It turns out that in many situations, a truly noninformative prior does not exist!\n", "\n", "***Frequentists point out that the subjective choice of a prior which necessarily biases your result has no place in statistical data analysis***. A Bayesian would counter that frequentism doesn't solve this problem, but simply skirts the question.\n", "\n", "Frequentism can often be viewed as simply a special case of the Bayesian approach for some (implicit) choice of the prior: ***a Bayesian would say that it's better to make this implicit choice explicit, even if the choice might include some subjectivity***." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Photon Counts: the Bayesian approach" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Leaving these philosophical debates aside for the time being, let's address how Bayesian results are generally computed in practice.\n", "\n", "For a one parameter problem like the one considered here, it's as simple as computing the posterior probability $P(F_{\\rm true}~|~D)$ as a function of $F_{\\rm true}$: this is the distribution reflecting our knowledge of the parameter $F_{\\rm true}$.\n", "\n", "But as the dimension of the model grows, this direct approach becomes increasingly intractable. For this reason, Bayesian calculations often depend on sampling methods such as [Markov Chain Monte Carlo (MCMC)](http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo). Here, we'll be using Dan Foreman-Mackey's excellent [emcee](http://dan.iel.fm/emcee/current/) package. Keep in mind here that the goal is to *generate a set of points drawn from the posterior probability distribution*, and to use those points to determine the answer we seek." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "To perform this MCMC, we start by defining Python functions for the prior $P(F_{\\rm true})$, the likelihood $P(D~|~F_{\\rm true})$, and the posterior $P(F_{\\rm true}~|~D)$, noting that none of these need be properly normalized. \n", "\n", "Our model here is one-dimensional, but to handle multi-dimensional models we'll define the model in terms of an array of parameters $\\theta$, which in this case is $\\theta = [F_{\\rm true}]$:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def log_prior(theta):\n", " return 1 # flat prior\n", "\n", "def log_likelihood(theta, F, e):\n", " return -0.5 * np.sum(np.log(2 * np.pi * e ** 2)\n", " + (F - theta[0]) ** 2 / e ** 2)\n", "\n", "def log_posterior(theta, F, e):\n", " return log_prior(theta) + log_likelihood(theta, F, e)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Now we set up the problem, including generating some random starting guesses for the multiple chains of points." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "ndim = 1 # number of parameters in the model\n", "nwalkers = 50 # number of MCMC walkers\n", "nburn = 1000 # \"burn-in\" period to let chains stabilize\n", "nsteps = 2000 # number of MCMC steps to take\n", "\n", "# we'll start at random locations between 0 and 2000\n", "starting_guesses = 2000 * np.random.rand(nwalkers, ndim)\n", "\n", "import emcee\n", "sampler = emcee.EnsembleSampler(nwalkers, ndim, log_posterior, args=[F, e])\n", "sampler.run_mcmc(starting_guesses, nsteps)\n", "\n", "sample = sampler.chain # shape = (nwalkers, nsteps, ndim)\n", "sample = sampler.chain[:, nburn:, :].ravel() # discard burn-in points" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "If this all worked correctly, the array ``sample`` should contain a series of 50000 points drawn from the posterior. Let's plot them and check:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x10f9a9a50>" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VeW99vHvLwmDTIYhyDyDEGZIIBAGZRIRBNFW7ala\nx1q11drjW2t73va89pxahw6eotYBKz0VSh0OqJQhggxJCCQIhARBBhEIBiwyTwl53j/2DieNATaQ\nlbWH+3Nd+2Jn7bX3vpeXcGetZ61nmXMOERGR84nzO4CIiEQGFYaIiIREhSEiIiFRYYiISEhUGCIi\nEhIVhoiIhESFISIiIVFhiIhISFQYIiISkgS/A1SnZs2auQ4dOvgdQ0QkYuTl5X3pnEsKZd2oKowO\nHTqQm5vrdwwRkYhhZjtCXVeHpEREJCQqDBERCYkKQ0REQqLCEBGRkKgwREQkJCoMEREJiQpDRERC\nosIQEZGQqDBERCQkUXWlt4gXMgqLQ1pvTPIVHicR8Zf2MEREJCQqDJHz2Lh+DY/deSML3p3F6dJS\nv+OI+EaFIXIOmzdv5mff+zYb1qzi2Z89wr1TrmLJvP+hrKzM72giNU6FIXIWxcXFjB8/nrg445W5\nS/n576cTn5DAfz52P/ffOJrMD/+Oc87vmCI1RoUhUkFGYTEZhcW8t3obw0ePY88XX/DktD/Tpn0n\nho2ZwB/fWcwTz7xEyalT/OIHd/LQzePZszPk2aFFIpoKQ6SS0pISnvzRvWzduIGfPvtHuvcZcOa1\nuLg4rp4whVfnLOVff/k7dn22lVd+86SPaUVqjk6rFanAOcfv/v0xVi9fzA9/8SxpV42rcr34hASu\nueEWdn++nVmvPM+OrZtBp9VKlNMehkgFM6Y9w4J3Z/Ht7z3KhG98+7zrT73tXurUrctfX/2vGkgn\n4i/tYYgEzZ49m/9+8TeMn3ortz/4WEjvSWzSjAk33cb/vPkaf164ipZt2p95TRfySbTRHoZI0DPP\nPEOHLlfy8P99GjML+X3fuPN7xMfFM3v6NA/TifhPhSECrF+/ntzcXK696dsk1Kp1Qe9tdkVLxk25\nmQXvzOLLvV94lFDEfyoMEeD111+nVq1ajJ449aLef/PdD3G67DRvvf5iNScTCR8qDIlZ5ddczFv7\nOdP/NIMho8ZzeeOmF/VZLdu2Z9R1N/DB32Zw8Kt/VHNSkfCgwpCYt3LJQg4d2M/4G269pM+55Z4f\ncPLECd6Z8Uo1JRMJLyoMiXnz33mTpBatGDB05CV9TvvO3Rg2ZgJzZk7n6OFD1ZROJHyoMCSm7d2z\nm9zMjxg3+Wbi4+Mv+fO+9d1HOHr4EHNmvl4N6UTCiwpDYtqiuX/DOcc1N9xSLZ/XpUdvUoeP4p0Z\nf+To0aPV8pki4cLTwjCz8Wa2ycy2mNnjVbxuZvZ88PX1Zjagwms/NLMCM9tgZjPNrK6XWSX2lJWV\nseDdmfQblE7Ltu3P/4YQfeu+Rzj41X5effXVavtMkXDgWWGYWTwwDbgWSAZuNbPkSqtdC3QNPu4D\nXgy+tzXwAyDFOdcLiAeq51dAkaD83Gz27NzBNVMvbbC7sl4DBnFlr368+eab1fq5In7zcg9jELDF\nObfNOXcKmAVMrrTOZGCGC1gJJJpZy+BrCcBlZpYA1AOKPMwqMWj+uzOp37ARw8deV+2fPWTUeFat\nWkVxcWj3AxeJBF4WRmtgZ4WfdwWXnXcd59xu4Fngc2APcNA5t7CqLzGz+8ws18xy9+3bV23hJbod\nPHiQ5Qs/4OoJU6hT97Jq//y0kWMB+OCDD6r9s0X8EpaD3mbWmMDeR0egFVDfzKqcOtQ597JzLsU5\nl5KUlFSTMSWCzZo1i5Mnjl/ytRdn0+nKZNq2bcv777/vyeeL+MHLwtgNtK3wc5vgslDWGQNsd87t\nc86VAO8AQz3MKjFm+vTpdOzWg269+nny+WbGxIkTWbhwISdOnPDkO0RqmpeFsRroamYdzaw2gUHr\nuZXWmQvcHjxbKo3Aoac9BA5FpZlZPQtMGzoa2OhhVokhGzZsYNWqVYy/4dYLmpX2Qk2aNImjR4/y\n0UcfefYdIjXJs8JwzpUCDwELCPxjP9s5V2Bm95vZ/cHV5gHbgC3AK8ADwffmAG8Ba4D8YM6Xvcoq\nsWX69OmBiQYn3ejp91x99dXUq1dPh6Ukaphzzu8M1SYlJcXl5ub6HUPCXKdOnejVqxc/eMrbOZ/G\nJF/BlClT+Pjjj/nss8883ZsRuVhmluecSwll3bAc9BbxytatW9m+fTvjxlV9r+7qNnHiRD7//HM2\nbNhQI98n4iUVhsSURYsWATB27Nga+b7rrgtc4/Hee+/VyPeJeEmFITFl0aJFtG3blm7dutXI97Vs\n2ZKUlBSNY0hUUGFIzDh9+jSLFy9m3LhxNTqeMGnSJFauXMnevXtr7DtFvKDCkJiQUVjMC39byIED\nB2jRI5WMQu+n7Ci/o19S8hCcczz76izPv1PESyoMiRlrspZiZvRPG16j39ulR2+aNm/Byo+qnN1G\nJGKoMCRm5GUvpUuP3hd93+6LZWakjRxLbuZHnDp1qka/W6Q6qTAkJhw/epSNa/MYMGSEL9+fdtVY\njh87ytKlS335fpHqoMKQmLA+N4vS0pJLvm/3xeo3eBi169TV2VIS0VQYEhPyspZRu05devVP9eX7\n615WjwFpw3nvvfeIptkVJLaoMCQmrMleSu+BadSu49+dfgdfNZbt27dTWFjoWwaRS6HCkKi3e/du\ndmzdzMCh/oxflCu/qZIOS0mkSvA7gIjXMjIyABgwxJ/xi3LNrmhJlx69+e/Z7zJw0nfOLB+TfIV/\noUQugPYwJOotWrSIxKbN6Nith99RGDh0JJ+sX8OJ48f8jiJywVQYEtWcc2RkZDAgbQRxcf7/7957\n4GBKS0v4ZP0av6OIXDD//waJeCg/P5/i4mLfrr+orGf/QZgZ+Xk5fkcRuWAqDIlq5dOZD/Tp+ovK\nGjS6nI7dksnPW+l3FJELpsKQqLZo0SJ69OhBsyta+h3ljD4paWxcl0tpSYnfUUQuiApDotaJEydY\ntmxZjd0sKVS9B6Zx4vhxPt2Y73cUkQuiwpColZWVxfHjx8OyMADyc7N9TiJyYVQYErUWLVpEQkIC\nI0eGx/hFucbNkmjTobMGviXiqDAkai1atIghQ4bQsGFDv6N8Ta+BgylYs4qysjK/o4iETIUhUeng\nwYOsWbOGUaNG+R2lSn0GpnH40AF2bNnkdxSRkKkwJCqtXLkS5xzDhg3zO0qVeqcExjHWaxxDIogK\nQ6JSZmYmcXFxDB482O8oVbqiVVuSWrTS9RgSUVQYEpUyMzPp27dvWI5fQOC2rb0HppGfl6P7Y0jE\nUGFI1CktLSUnJ4f09HS/o5xTr4GD2b+vmK1bt/odRSQkKgyJOuvWrePo0aNhO35Rrk/weozly5f7\nnEQkNCoMiTqZmZkAlCV1I6OwmIzCYp8TVa1d5240SmzCsmXL/I4iEhIVhkSdzMxMmrdsTVKLVn5H\nOafAOMZg7WFIxFBhSFRxzrFixQp69h/kd5SQ9B6YxtatW9m9e7ffUUTOS4UhUWXHjh0UFRXRs3+q\n31FC0mtg4LRf7WVIJFBhSFQpH7+IlD2MLt170aBBAxWGRAQVhkSVzMxMGjZsGBb37w5FfEICQ4cO\n1cC3RAQVhkSVzMxM0tLSiI+P9ztKyEaMGMGGDRvYv3+/31FEzkmFIVHj4MGD5Ofnh/0Fe5WNGBG4\n3/iKFSt8TiJybioMiRrlEw5GWmGkpqZSu3ZtHZaSsOdpYZjZeDPbZGZbzOzxKl43M3s++Pp6MxtQ\n4bVEM3vLzD4xs41mNsTLrBL5wn3CwbOpW7cugwfregwJf54VhpnFA9OAa4Fk4FYzS6602rVA1+Dj\nPuDFCq/9HpjvnOsO9AU2epVVosOKFSvCesLBcxk+fDh5eXkcPXrU7ygiZ+XlHsYgYItzbptz7hQw\nC5hcaZ3JwAwXsBJINLOWZnY5MAJ4DcA5d8o5d8DDrBLhSkpKyMnJCfv5o84mPT2d06dPs3r1ar+j\niJyVl4XRGthZ4eddwWWhrNMR2Ae8bmYfm9mrZlbfw6wS4datW8exY8cibvwCIKOwmBOJnQD485xF\nYTv3lUi4DnonAAOAF51z/YGjwNfGQADM7D4zyzWz3H379tVkRgkj5RfsRWJhADRKbEzbTl0p/Fh7\nGBK+vCyM3UDbCj+3CS4LZZ1dwC7nXE5w+VsECuRrnHMvO+dSnHMpSUlJ1RJcIk9mZibt2rWjTZs2\nfke5aMl9B7JxfZ5uqCRhy8vCWA10NbOOZlYbuAWYW2mducDtwbOl0oCDzrk9zrkvgJ1mdmVwvdFA\noYdZJYI558jMzIzYvYtyyX1TOPjVfnZ/vt3vKCJVSvDqg51zpWb2ELAAiAemO+cKzOz+4OsvAfOA\nCcAW4BhwZ4WP+D7wl2DZbKv0msgZ5RMORnxh9E8BCByWulZnkUv48awwAJxz8wiUQsVlL1V47oAH\nz/LetUCKl/kkOkT6+EW5dp26Ub9hIwrX5fkdRaRKnhaGSE2Y9d5C6tVvQHF884g+wyguLo7uvQew\ncW2u31FEqhSuZ0mJhKzg49V07zswoiYcPJue/VPY/ulGDh065HcUka9RYUhEO3jwIJ99+gm9IuSG\nSefTo28KzjlWrVrldxSRr1FhSEQrn3AwuV+UFEafAZgZ2dnZfkcR+RoVhkS07OxszIzufaq8TCfi\n1G/YiPZdriQrK8vvKCJfo8KQiJaVlUXHrj2o3yDyJhw8m+S+KaxcuZKysjK/o4j8ExWGRKyysjJy\ncnLo0S+6zr7u0W8gBw4cYNOmTX5HEfknKgyJWIWFhRw6dIieUVYYPYPjMTosJeFGhSERq/wf1Gjb\nw2jToTNNmjTRwLeEHRWGRKzs7GyaNWtG63Yd/Y5SrcyMtLQ0FYaEHRWGRKysrCyGDBmCmfkdpdoN\nHTqUwsJCvvrqK7+jiJyhwpCI9OWXX7J582aGDInOSfrKtysnJ+c8a4rUHBWGRKSVK1cCgd/Eo9Gg\nQYOIi4vTYSkJKyoMiUjZ2dnEx8eTkhJdA97lGjRoQJ8+fVQYElZUGBKRsrKy6NevH/XrR+et3jMK\ni2l7ZV8ys7JZkF8U0bPwSvRQYUjEKS0tZdWqVVE7flGuR78Ujh09wudbN/sdRQRQYUgEys/P59ix\nY1E7flGu/AK+Qt0fQ8KECkMiTvkFe9G+h9GybXsSmzSlYO1qv6OIACHecc/M6gITgeFAK+A4sAH4\nwDlX4F08ka/Lzs6mRYsWtG/f3u8onjIzevRNYaNu2Sph4rx7GGb270AmMATIAf4IzAZKgafMbJGZ\n9fE0pUgFWVlZDB06NCov2KssuV8Kuz7bysGv/uF3FJGQ9jBWOed+fpbXfmNmzYF21ZhJ5Ky++OIL\ntm/fzgMPPOB3lBqRHJwnq3BtHjemJ/ucRmJdKIWx4FwvOuf2AnurJ47Iub00++8A1GrZPSZONb2y\nVz8SEmpR8PEq4Da/40iMC2XQ+8zNhc3svzzMInJeG9fmkpBQi67Jvf2OUiPq1L2Mrj37UPCxBr7F\nf6EURsUDxeleBREJRcHaXLr27EPtOnX9jlJjevZPZdOGtZw8edLvKBLjQikM53kKkRCcOnWKzQXr\nSO4bndOBnE3P/oMoOXWSvDydLSX+CqUwupvZejPLr/B8vZnlm9l6rwOKlFu7di0lp07So99Av6PU\nqJ79AxfwZWZm+pxEYl0og949PE8hEoLyC/ZibQ+jcdMkWrfvxIoVK3jsscf8jiMxLJTC+Nw5d87D\nUmZm51tH5FJlZ2eT1KI1SS1a+R2lxvXsn0rWig9xzsXE9ScSnkI5JLXEzL5vZv90rYWZ1TazUWb2\nBnCHN/FE/ldWVhY9+8fW3kW5XgMGn7lplIhfQimM8cBpYKaZ7TGzQjPbBnwK3Ar8zjn3Jw8zirBz\n50527dpFjxg7HFWufBxjxYoVPieRWHbewnDOnXDOveCcSydwRfdoYIBzrr1z7l7n3Meep5SYV34j\noeS+sTXgXa5txy40bdpUA9/iq/OOYQQnHrwf6AKsB6Y750q9DiZS0fLly6lXrx5desTGBXuVmRnp\n6ekqDPFVKIek3gBSgHxgAvCcp4lEqrB8+XKGDBlCQq1afkfxTXp6Ops3b2bvXs3EI/4IpTCSnXPf\nds79EbiJwBTnIjXmwIEDrF+/nhEjRvgdxVfp6YGJFspPLxapaaEURkn5Ex2KEj9kZmbinGP48Nj+\nXSUlJYU6derosJT4JpTC6Gtmh4KPw0Cf8udmdsjrgCLLli2jVq1aDB482O8ovqpTpw4pKSk6U0p8\nE8pZUvHOuUbBR0PnXEKF541qIqTEtuXLl5OSkkK9evX8juK79PR08vLyOH78uN9RJAZ5ek9vMxtv\nZpvMbIuZPV7F62ZmzwdfX29mAyq9Hm9mH5vZ+17mlPB17NgxVq9eHfPjF+WGDRtGSUkJq1drunOp\neZ4VhpnFA9OAa4Fk4FYzq3zLsGuBrsHHfcCLlV5/GNjoVUYJfzk5OZSWlqowgIzCYkqadgHgjXfP\neV8zEU94uYcxCNjinNvmnDsFzAImV1pnMjDDBawEEs2sJYCZtQGuA171MKOEuWXLlmFmDB061O8o\nYaFRYhPadeoavAOfSM3ysjBaAzsr/LwruCzUdX4H/B+gzKuAEv6WL19O3759SUxM9DtK2OjZfxAF\nH6+mrEx/NaRmeTqGcbHMbCKw1zl33jvGmNl9ZpZrZrn79u2rgXRSU0pKSsjOzo7502kr69k/lSOH\nDrJxo47WSs3ysjB2A20r/NwmuCyUddKB683sMwKHskaZ2X9X9SXOuZedcynOuZSkpKTqyi5h4KW3\nMzh27BiJHfuQUVhMRmGx35HCQq8BgdOLdT2G1DQvC2M10NXMOppZbeAWYG6ldeYCtwfPlkoDDjrn\n9jjnfuKca+Oc6xB832Ln3Lc9zCphKD83MOFg74FpPicJL63adSCxaTNdjyE1LpQbKF0U51ypmT0E\nLADiCUxaWGBm9wdffwmYR2B+qi3AMeBOr/JI5MnPy6FNh840bqY9x4rMjJ79B2kPQ2qcZ4UB4Jyb\nR6AUKi57qcJzBzx4ns/4CPjIg3gSxsrKyihYs4r0sRP8jhKWevUfRGbGPPbs2UPLli39jiMxIiwH\nvUUKCgo4fOgAfXQ4qko9BwwCNI4hNUuFIWFp2bJlAPROUWFUpUv3XtSrV4+lS5f6HUViiApDwtLy\n5ctJatGKK1q1Pf/KMahW7doMHz6cDz/80O8oEkNUGBJ2nHMsW7aM3gPTMDO/44St0aNHs3HjRoqK\nivyOIjFChSFhZ9u2bezZs4deA2N7OvPzGT16NACLFy/2OYnEChWGhJ3y8QsNeJ9bv379aNKkiQ5L\nSY1RYUjYWb58OU2bNqVd525+RwlrcXFxXH311Xz44YcEzlAX8ZYKQ8LOsmXLGD58uMYvQjB69Gh2\n7tzJli1b/I4iMUCFIWGlqKiIrVu36v4XISofx9BhKakJKgwJK8uXLwfQDLUh6tq1K23atFFhSI1Q\nYUhYWbp0KQ0aNKBfv35+R4kIZsbo0aNZsmSJ7o8hnlNhSNhwzjF//nxGjRpFQoKn05xFldGjR/OP\nf/yDdevW+R1FopwKQ8LGli1b2L59O9dcc43fUSKKxjGkpqgwJGwsWLAAgPHjx/ucJDKU31Sq8EA8\nbTt1Zfaceed/k8glUGFI2Jg/fz5dunShU6dOfkeJOP0HDyM/byWnTp3yO4pEMRWGhIV5az/nw8WL\n6TlohG7HehH6pw3nxPHj5OTk+B1FopgKQ8LChjWrOHH8OCnpV/kdJSL1TR1KXFycxjHEUyoMCQt5\nK5ZQq1Zt+qam+x0lIjW8PJEuPXqrMMRTKgwJC6szl9Br4GAuq1/f7ygRq3/acFauXMmRI0f8jiJR\nSoUhvtu9ezfbN2/U4ahL1D9tOKWlpWeulhepbioM8d3ChQsBSB02yuckka1n/1Rq166tw1LiGRWG\n+G7+/Pk0bd6CDl27+x0lotW9rB5Dhw5VYYhnVBjiq9OnT7No0SJS0q/SdObVYPTo0axdu5Yvv/zS\n7ygShVQY4qvVq1fz1VdfafyimpRPE7JkyRKfk0g0UmGIrxYsWEBcXBwDhuj+F9UhNTWVhg0bkpGR\n4XcUiUIqDPHV/PnzSU1NpVFiE7+jRIWEhATGjh3L+++/r+nOpdqpMMQ3+/fvZ9WqVZpssJrdcMMN\nFBUVsWrVKr+jSJRRYYhvMjIyKCsrU2FUs4kTJ5KQkMC7777rdxSJMioM8c38+fNp3LgxqampfkeJ\nKomJiYwaNYp33nkH55zfcSSKqDDEF845FixYwNixY4mPj/c7TtSZOnUqW7ZsoaCgwO8oEkVUGFLj\nMgqLeXXOUoqKimjbO01TmXtg8uTJmBnvvPOO31EkiqgwxBe5mYHrBFLSr/Y5SXQpv5fIhv1Gcr9U\n3nhztt+RJIqoMMQXq5Z9SIeu3Wl2RUu/o0StYWMmsG1TAdu2bfM7ikQJFYbUuP379rI+N5v0Udf6\nHSWqpY8J/PfV2VJSXVQYUuOWLphLWVkZV193g99RolrLNu3p3L2XCkOqjQpDatySee/SuXsv2nfu\n5neUqJc++lqysrL44osv/I4iUUCFITVq27ZtbFyXx9UTpvgdJSYMGzsB5xxz5szxO4pEARWG1KhZ\ns2YBcPW1Koya0KFLd7p27arTa6VaeFoYZjbezDaZ2RYze7yK183Mng++vt7MBgSXtzWzJWZWaGYF\nZvawlzml5rz55pv0GjCY5q3a+B0lJpgZN9xwA4sXL+arr77yO45EOM8Kw8zigWnAtUAycKuZJVda\n7Vqga/BxH/BicHkp8CPnXDKQBjxYxXslwuTn51NQUKDDUTVs6tSplJaW8sEHH/gdRSKcl3sYg4At\nzrltzrlTwCxgcqV1JgMzXMBKINHMWjrn9jjn1gA45w4DG4HWHmaVGvDmm28SHx/PiGsm+R0lpqSm\nptKqVSsdlpJL5mVhtAZ2Vvh5F1//R/+865hZB6A/kFPVl5jZfWaWa2a5+/btu8TI4hXnHDNnzmTs\n2LEkNmnmd5yYsviTfaSMvIZ5f5/P+3nbNRWLXLSwHvQ2swbA28AjzrlDVa3jnHvZOZfinEtJSkqq\n2YASsuzsbHbs2MG3vvUtv6PEpPQxEzh54ji5mR/5HUUimJeFsRtoW+HnNsFlIa1jZrUIlMVfnHPa\nl45wM2fOpG7dukyZovELP/QZmEbDyxuT+eE8v6NIBPOyMFYDXc2so5nVBm4B5lZaZy5we/BsqTTg\noHNuj5kZ8Bqw0Tn3Gw8zSg0oLS1l9uzZTJo0iYYNG/odJyYl1KrF0FHXkPXhfI4fPep3HIlQnhWG\nc64UeAhYQGDQerZzrsDM7jez+4OrzQO2AVuAV4AHgsvTgduAUWa2NviY4FVW8dbixYvZu3cvt956\nq99RYtqEm77NsaNH+PCDt/2OIhHKoumOXCkpKS43N9fvGFLJuCk3k7V4PrOXrqd2nbp+x4lZzjm+\nd9NYyspOs/WTAgI78hLrzCzPOZcSyrphPegtke/48eNkZsxj2JgJKgufmRnX33on2zdvJDMz0+84\nEoFUGOKpefPmcezoEUZdN9XvKAJcPWEK9Rs2Ytq0aX5HkQikwhBPzZw5k8ZNk+g7KN3vKAJcVq8+\n10y5hbffflsz2MoFU2GIZ/bu3cv777/PyPHXEx8f73ccCZp0yx2UlJTw6quv+h1FIkyC3wEkej3/\n/POcOnWK62+90+8oUkGbDp0ZMHQkz097kdTr7yQ+IfDPwJjkK3xOJuFOexjiiUOHDjFt2jSmTp1K\n245d/I4jlVx/y3fY90UR2R8t9DuKRBAVhnji5Zdf5sCBA/z4xz/2O4pUIW3kWJJatOa9WX/yO4pE\nEBWGVLuTJ0/y29/+llGjRpGamup3HKlCfEIC133zNtZkL2Pn9i1+x5EIocKQapVRWMwTT79AUVER\n4279rmZGDWMTbvwXEhJq8d6sN/yOIhFChSHV6vTp08yePo2uyX0YMGSE33HkHBo3S2L4uIksnPNX\njh/T/FJyfioMqVZZH/6dXZ9t5ea7H9TUExHg+lvv5OjhQyz54F2/o0gEUGFItXHO8dfX/kCrth0Y\nNnai33EkBD37p9KpWzJzZr5ONM0rJ95QYUi1WbJkCZs2rOWbdz2oC/UihJkx+V/uZtumAubOrXz3\nAZF/psKQavPUU0/RpFlzxk7+ht9R5AKMm/xN2nfuxqOPPsrJkyf9jiNhTIUh1SIvL49FixZxw233\nalbaCJNQqxbfe/xJtm3bxm9/+1u/40gYU2FItfj1r39No0aNmHTzHX5HkYswcOhIJk+ezC9/+UuK\nior8jiNhSoUhFy2jsJiMwmJemfMRb7/9NhO+eQf1GzbyO5ZcpOeee46SkhKeeOIJv6NImFJhyCU5\nXVrKsz99hIaXJ3LjHd/1O45cgs6dO/Poo4/yxhtvkJOT43ccCUMqDLkks19/gc0F6/j+z35FYpNm\nfseRS/TEE0/QokULHn74YcrKyvyOI2FGhSEXbfunG/nztGcZPm4iI8dP9juOXKKMwmJydh7jtu//\nhJycHH7ya92VT/6ZRdPFOikpKS43N9fvGDGhtLSUnv1SKC7ayStzltK4aZLfkaSalJWV8fC3rmPv\nF0V8tvVTGjZs6Hck8ZCZ5TnnUkJZV3sYclGefvrpwKGof3tKZRFl4uLieOCJ/2D/vmJ+9atf+R1H\nwogKQy7Yhg0b+MUvfsGIayYx8prr/Y4jHujRZwBjr/8Gzz33HJ988onfcSRMqDDkgpSWlnLnnXeS\nmJjI93+m3z6j2d2P/ozLL7+cSZMm8eWXX/odR8KACkMuyNNPP01ubi4vvPCCzoqKck2TrmDOnDns\n3LmTKVOmcOLECb8jic9UGBKSjMJiXno7g5///BeMHH89icnD/Y4kNWDIkCHMmDGDzMxM7rrrLs1o\nG+NUGBKSrZ8U8ON7biaxaTMe+ul/+h1HakhGYTFNeo3k7kd+ysyZM/n5z3/udyTxUYLfAST8ffzx\nxzx210247/KFAAAJxElEQVTUvewynpn+tg5FxaCb73mI3Tu38+STT9K5c2fuuENzhsUiFYacU15e\nHmPHjuWyevV49vV3aNm2vd+RxAdmxsP/9mtKDhRz77330q5dO66++mq/Y0kN0yEpOavVq1czevRo\nGjVqxHNvvKuyiHEJtWrx1ltv0bVrV6ZOnUp+fr7fkaSGqTDkazIKi/mvWX/nqlGjuazh5fzHq2/R\nonU7v2NJGEhMTOSDDz6gbt26pKWl8cYbb/gdSWqQCkO+Zm3OCh6/55tc3rgJz73+Dle0aut3JAkj\nHTp0IC8vj0GDBvGd73yH22+/ncOHD/sdS2qACkPO+PLLL7n77rt57K6baNysOc/96V2at2rjdywJ\nI+X3QCk8EM/jz/+F2x98jL/85S+kpKSwdu1av+OJx1QYQllZGa+99hrdu3dnxowZfPOuB3nxrUUk\ntWjldzQJY/Hx8dz2wI9YvHgxR44cIS0tjWnTpulajSimwohx+fn59EkZwj333EPL9l144a1F3Puj\nf+OyevX9jiYRYuTIkaxdu5ZRo0bx0EMPMWbMGBYuXKjiiEKa3jwGOefIy8tj+vTpvPzyy9RveDn3\n/uu/MW7yzcTF6XcIuThlZWXMeXM6s155nv1f7qVDlyu54bb7GDPpRmrXqcuY5Cv8jihVuJDpzVUY\nMWT79u38v9/+kQ/ff5ud27dQq1Ztxk7+Jnf/8AkaJTbxO55EiVOnTvLRvP/h7Rkvs21TAYlNmjLx\n5jt45v8+RosWLfyOJ5WETWGY2Xjg90A88Kpz7qlKr1vw9QnAMeA7zrk1oby3KiqMf3by5Eny8/NZ\nuXIlf/3rX1mxYgUAvVPSGDPxJoaPm0jDyxN9TinRyjnHulWZvD3jZVZ+tBCAPn36cNVVV3HVVVcx\nYsQImjZt6nNKCYvCMLN4YDMwFtgFrAZudc4VVlhnAvB9AoUxGPi9c25wKO+tSqwWRllZGfv27WPH\njh2sWbOGvLw88vLy2LBhAyUlJQD06NGD2267jXapY3WarNS4XZ9tZffHS1i6dCkrVqzg+PHjQKBA\nhg8fzpVXXkmnTp3o3LkzHTp0oG7duj4njh0XUhheTg0yCNjinNsWDDULmAxU/Ed/MjDDBVprpZkl\nmllLoEMI740ozjmcc5w+fZrTp09TVlZ25nlJSQmnTp3i1KlTnDx58szzY8eOcfjwYQ4dOsThw4fP\nPPbv309RURG7d++mqKiIPXv2nCkGgIaNEunasw9Tb/8uXXv2oVtyX1q0aUdgh06k5rXp0Jk2HToz\n+IZ7+OGpU2zasJZ1q7PYVZjLG2+8wZEjR/5p/datW9OpUyeSkpJo3LgxTZo0oXHjxmeeN2jQgLp1\n61K3bl0uu+yyM3/Wrl2bhIQE4uPjSUhIOPOIj4/HzIiLi9Pfg0vgZWG0BnZW+HkXgb2I863TOsT3\nVpvmzZtz7NixKl872x5Y+fKq/qz4KCsrq/azReo1aEjT5i1o1rwFV/YbzNBxLWjavAVJLVrR6cpk\nWrRWOUj4qlW7Nr0GDKLXgEFA4O/MgX98yZ5dO9izawdFn3/Gnl07+GL35+xcX8DJo4fYv38/J0+e\nrLYMZoYFy8MwzILLgn9vKj4v/7mq51V9rh+aN2/O1q1bPf+eiJ980MzuA+4L/njEzDb5meciNAMu\n6HZmx44c5tiRw+zc9qlHkTx3wdscBbTNYcQ5hzt92ouP9mWbjxw5cillFfIkcV4Wxm6g4sHyNsFl\noaxTK4T3AuCcexl4+VLD+sXMckM9fhgttM2xQdscfbw86X410NXMOppZbeAWYG6ldeYCt1tAGnDQ\nObcnxPeKiEgN8mwPwzlXamYPAQsInBo73TlXYGb3B19/CZhH4AypLQROq73zXO/1KquIiJyfp2MY\nzrl5BEqh4rKXKjx3wIOhvjdKRezhtEugbY4N2uYoE1VXeouIiHc0cZCIiIREheExM3vYzDaYWYGZ\nPRJc1s/MVprZWjPLNbNBFdb/iZltMbNNZnaNf8kv3lm2ua+ZZZtZvpm9Z2aNKqwfcdtsZtPNbK+Z\nbaiwrImZLTKzT4N/Nq7wWpXbaGYDg/9NtpjZ8xbGF9BcyDabWVMzW2JmR8zsD5U+J1q3eayZ5QW3\nLc/MRlV4T8Rs8zlVvtBMj+p7AL2ADUA9AuNFGUAXYCFwbXCdCcBHwefJwDqgDtAR2ArE+70d1bTN\nq4GRwXXuAp6M5G0GRgADgA0Vlj0NPB58/jjw6/NtI7AKSAMM+Hv5/xfh+LjAba4PDAPuB/5Q6XOi\ndZv7A62Cz3sBuyNxm8/10B6Gt3oAOc65Y865UmApMBVwQPlv2JcDRcHnk4FZzrmTzrntBM4eG0Rk\nOds2dwOWBddZBNwYfB6R2+ycWwbsr7R4MlB+k+s3gCkVln9tG4PT4DRyzq10gX9VZlR4T9i5kG12\nzh11zq0ATlRcOcq3+WPnXPnf5QLgMjOrE2nbfC4qDG9tAIYHd8/rEdibaAs8AjxjZjuBZ4GfBNc/\n21QpkeRs21xA4C8awDf43wszo2Gby13hAtcRAXwBlN8A4lxT4OyqYnkkOds2n02sbPONwBrn3Emi\nY5sBFYannHMbgV8TOAQ1H1gLnAa+B/zQOdcW+CHwmm8hq9k5tvku4AEzywMaAqd8C1kDgr9JxtQp\niNrmADPrSeDvwHd9CeUhFYbHnHOvOecGOudGAF8RmLb9DuCd4Cp/438PwYQynUrYq2qbnXOfOOfG\nOecGAjMJHMeHKNnmoOLg4YfyQy97g8vPto27g88rL48kZ9vms4nqbTazNsC7wO3OuYr/j0f6NgMq\nDM+ZWfPgn+0IHMt/k8CYxcjgKqOA8lkE5wK3BI97dgS6EhgsiyhVbXOFZXHAz4DyCzijYpuD5hL4\nZYDgn3MqLP/aNgYPaxwys7TgWTO3V3hPpDjbNlcpmrfZzBKBDwgMiGeWrxwl2xzg96h7tD+A5QTu\n47EOGB1cNgzICy7LAQZWWP+nBH773kSEnklxlm1+mMDe1WbgKYIXjUbqNhPYS9oDlBA4Jn030BT4\nkMAvABlAk/NtI5BCYNxnK/CHiv9dwu1xEdv8GYEB4yPB9ZOjeZsJ/CJ0lMBh2PJH80jb5nM9dKW3\niIiERIekREQkJCoMEREJiQpDRERCosIQEZGQqDBERCQknt5ASSTWmdlpIL/CoinOuc98iiNySXRa\nrYiHzOyIc66B3zlEqoMOSYmISEi0hyHioUqHpLY7527wM4/IpVBhiHhIh6QkmuiQlIiIhESFISIi\nIVFhiIhISDSGISIiIdEehoiIhESFISIiIVFhiIhISFQYIiISEhWGiIiERIUhIiIhUWGIiEhIVBgi\nIhKS/w8Jl3aYBOAINAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10f9365d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot a histogram of the sample\n", "plt.hist(sample, bins=50, histtype=\"stepfilled\", alpha=0.3, normed=True)\n", "\n", "# plot a best-fit Gaussian\n", "F_fit = np.linspace(975, 1025)\n", "pdf = stats.norm(np.mean(sample), np.std(sample)).pdf(F_fit)\n", "\n", "plt.plot(F_fit, pdf, '-k')\n", "plt.xlabel(\"F\"); plt.ylabel(\"P(F)\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "We end up with a sample of points drawn from the (normal) posterior distribution. The mean and standard deviation of this posterior are the corollary of the frequentist maximum likelihood estimate above:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " F_true = 1000\n", " F_est = 998 +/- 5 (based on 50 measurements)\n", " \n" ] } ], "source": [ "print(\"\"\"\n", " F_true = {0}\n", " F_est = {1:.0f} +/- {2:.0f} (based on {3} measurements)\n", " \"\"\".format(F_true, np.mean(sample), np.std(sample), N))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that as expected for this simple problem, the Bayesian approach yields the same result as the frequentist approach!" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Discussion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, you might come away with the impression that the Bayesian method is unnecessarily complicated, and in this case it certainly is. Using an Affine Invariant Markov Chain Monte Carlo Ensemble sampler to characterize a one-dimensional normal distribution is a bit like using the Death Star to destroy a beach ball.\n", "\n", "But we did it here because it demonstrates an approach that can scale to complicated posteriors in many, many dimensions, and can provide nice results in more complicated situations where an analytic likelihood approach is not possible." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "As a side note, you might also have noticed one little sleight of hand: at the end, we use a frequentist approach to characterize our posterior samples! When we computed the sample mean and standard deviation above, we were employing a distinctly frequentist technique to characterize the posterior distribution. The pure Bayesian result for a problem like this would be to report the posterior distribution itself (i.e. its representative sample), and leave it at that. That is, in pure Bayesianism the answer to a question is not a single number with error bars; the answer is the posterior distribution over the model parameters!" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Adding a Dimension: Exploring a more sophisticated model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's briefly take a look at a more complicated situation, and compare the frequentist and Bayesian results yet again. Above we assumed that the star was static: now let's assume that we're looking at an object which we suspect has some stochastic variation &mdash; that is, it varies with time, but in an unpredictable way (a Quasar is a good example of such an object)." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "We'll propose a simple 2-parameter Gaussian model for this object: $\\theta = [\\mu, \\sigma]$ where $\\mu$ is the mean value, and $\\sigma$ is the standard deviation of the variability *intrinsic to the object*. Thus our model for the probability of the true flux at the time of each observation looks like this:\n", "\n", "$$ F_{\\rm true} \\sim \\frac{1}{\\sqrt{2\\pi\\sigma^2}}\\exp\\left[\\frac{-(F - \\mu)^2}{2\\sigma^2}\\right]$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Now, we'll again consider $N$ observations each with their own error. We can generate them this way:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "np.random.seed(42) # for reproducibility\n", "N = 100 # we'll use more samples for the more complicated model\n", "mu_true, sigma_true = 1000, 15 # stochastic flux model\n", "\n", "F_true = stats.norm(mu_true, sigma_true).rvs(N) # (unknown) true flux\n", "F = stats.poisson(F_true).rvs() # observed flux: true flux plus Poisson errors.\n", "e = np.sqrt(F) # root-N error, as above" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Varying Photon Counts: The Frequentist Approach" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The resulting likelihood is the convolution of the intrinsic distribution with the error distribution, so we have\n", "\n", "$$\\mathcal{L}(D~|~\\theta) = \\prod_{i=1}^N \\frac{1}{\\sqrt{2\\pi(\\sigma^2 + e_i^2)}}\\exp\\left[\\frac{-(F_i - \\mu)^2}{2(\\sigma^2 + e_i^2)}\\right]$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Analogously to above, we can analytically maximize this likelihood to find the best estimate for $\\mu$:\n", "\n", "$$\\mu_{est} = \\frac{\\sum w_i F_i}{\\sum w_i};~~w_i = \\frac{1}{\\sigma^2 + e_i^2} $$\n", "\n", "And here we have a problem: the optimal value of $\\mu$ *depends on* the optimal value of $\\sigma$. The results are correlated, so we can no longer use straightforward analytic methods to arrive at the frequentist result." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Nevertheless, we can use numerical optimization techniques to determine the maximum likelihood value. Here we'll use the optimization routines available within Scipy's [optimize](http://docs.scipy.org/doc/scipy/reference/optimize.html) submodule:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization terminated successfully.\n", " Current function value: 502.839505\n", " Iterations: 58\n", " Function evaluations: 114\n", "\n", " Maximum likelihood estimate for 100 data points:\n", " mu=999, sigma=19\n", " \n" ] } ], "source": [ "def log_likelihood(theta, F, e):\n", " return -0.5 * np.sum(np.log(2 * np.pi * (theta[1] ** 2 + e ** 2))\n", " + (F - theta[0]) ** 2 / (theta[1] ** 2 + e ** 2))\n", "\n", "# maximize likelihood <--> minimize negative likelihood\n", "def neg_log_likelihood(theta, F, e):\n", " return -log_likelihood(theta, F, e)\n", "\n", "from scipy import optimize\n", "theta_guess = [900, 5]\n", "theta_est = optimize.fmin(neg_log_likelihood, theta_guess, args=(F, e))\n", "print(\"\"\"\n", " Maximum likelihood estimate for {0} data points:\n", " mu={theta[0]:.0f}, sigma={theta[1]:.0f}\n", " \"\"\".format(N, theta=theta_est))" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Error Estimates\n", "\n", "This maximum likelihood value gives our best estimate of the parameters $\\mu$ and $\\sigma$ governing our model of the source. But this is only half the answer: we need to determine how confident we are in this answer, that is, we need to compute the error bars on $\\mu$ and $\\sigma$.\n", "\n", "To see how this is done in the frequentist paradigm, see the sub-slides." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "There are several approaches to determining errors in a frequentist paradigm. We could:\n", "* as above, fit a normal approximation to the maximum likelihood and report the covariance matrix (here we'd have to do this numerically rather than analytically).\n", "* Alternatively, we can compute statistics like $\\chi^2$ and $\\chi^2_{\\rm dof}$ to and use standard tests to determine confidence limits, which also depends on strong assumptions about the Gaussianity of the likelihood. \n", "* We might alternatively use randomized sampling approaches such as \"Jackknife\"...\n", "* or \"Bootstrap\", which maximize the likelihood for randomized samples of the input data in order to explore the degree of certainty in the result." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "All of these would be valid techniques to use, but each comes with its own assumptions and subtleties. Here, for simplicity, we'll use the basic bootstrap resampler found in the [astroML][4] package:\n", "\n", "[1]: http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test\n", "[2]: http://en.wikipedia.org/wiki/Jackknife_(statistics)\n", "[3]: http://en.wikipedia.org/wiki/Bootstrapping_(statistics)\n", "[4]: http://astroML.org" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "from astroML.resample import bootstrap\n", "\n", "def fit_samples(sample):\n", " # sample is an array of size [n_bootstraps, n_samples]\n", " # compute the maximum likelihood for each bootstrap.\n", " return np.array([optimize.fmin(neg_log_likelihood, theta_guess,\n", " args=(F, np.sqrt(F)), disp=0)\n", " for F in sample])\n", "\n", "samples = bootstrap(F, 1000, fit_samples) # 1000 bootstrap resamplings" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Now in a similar manner to what we did above for the MCMC Bayesian posterior, we'll compute the sample mean and standard deviation to determine the errors on the parameters." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " mu = 999 +/- 4\n", " sigma = 18 +/- 5\n" ] } ], "source": [ "mu_samp = samples[:, 0]\n", "sig_samp = abs(samples[:, 1])\n", "\n", "print \" mu = {0:.0f} +/- {1:.0f}\".format(mu_samp.mean(), mu_samp.std())\n", "print \" sigma = {0:.0f} +/- {1:.0f}\".format(sig_samp.mean(), sig_samp.std())" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "I should note that there is a **huge** literature on the details of bootstrap resampling, and there are definitely some subtleties of the approach that I am glossing over here. One obvious piece is that there is potential for errors to be correlated or non-Gaussian, neither of which is reflected by simply finding the mean and standard deviation of each model parameter. Nevertheless, I trust that this gives the basic idea of the frequentist approach to this problem." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Varying Photon Counts: The Bayesian Approach" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Bayesian approach to this problem is almost exactly the same as it was in the previous problem, and we can set it up by slightly modifying the above code." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "def log_prior(theta):\n", " # sigma needs to be positive.\n", " if theta[1] <= 0:\n", " return -np.inf\n", " else:\n", " return 0\n", "\n", "def log_posterior(theta, F, e):\n", " return log_prior(theta) + log_likelihood(theta, F, e)\n", "\n", "# same setup as above:\n", "ndim, nwalkers = 2, 50\n", "nsteps, nburn = 2000, 1000\n", "\n", "starting_guesses = np.random.rand(nwalkers, ndim)\n", "starting_guesses[:, 0] *= 2000 # start mu between 0 and 2000\n", "starting_guesses[:, 1] *= 20 # start sigma between 0 and 20\n", "\n", "sampler = emcee.EnsembleSampler(nwalkers, ndim, log_posterior, args=[F, e])\n", "sampler.run_mcmc(starting_guesses, nsteps)\n", "\n", "sample = sampler.chain # shape = (nwalkers, nsteps, ndim)\n", "sample = sampler.chain[:, nburn:, :].reshape(-1, 2)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Now that we have the samples, we'll use a convenience routine from astroML to plot the traces and the contours representing one and two standard deviations:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEtCAYAAAC2+E+oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfX1cVFX+/3sE8wlQGGcZ8CHQCTEcFcSHMR+IVkmpiF1b\nizYNv9au8SvcrZU1el6JpV7bRom7pStbm1NmSaaJkyuSD2AKo0gmCoqJjJM0goDWhnB+f+A5nrnc\nO3MHBhn1vl+vecHMvfeczzn33M/nfB6vihACBQoUKFCgwJPRq6cJUKBAgQIFCpxBEVYKFChQoMDj\noQgrBQoUKFDg8VCElQIFChQo8HgowkqBAgUKFHg8FGGlQIECBQo8HoqwUqBAgQIFHg9FWClQoECB\nAo+HIqwUKFCgQIHHw7unCZCDwYMHk5CQkJ4mQ4ECBQoUuBmlpaU/EEI0zs67LoRVSEgISkpKepoM\nBQoUKFDgZqhUqu/knKeYARUoUKBAgcdDEVYKFChQoMDjoQgrBQpuElgslp4mQYGCTkMRVgoU3CQI\nDg7uaRIUKOg0FGGlQIGCGx6KVnn9QxFWCm443OiM6UYfX3dA0SqvfyjCSoFDXI+M8UZnTHLHZzKZ\nupmS6xfX47q+2aEIKwUOcaMz/hsZcXFxPU2Cx0JZ19cfFGGlQIECBQo8HoqwUqBAQY9CMcl5JjzN\njKwIKwUKFPQoFJOcZ8LTzMiKsFJw3SEtLa2nSVCgQME1hiKsFFx3yMrK6mkSFLgITzMpKbj+oAgr\nBQoUdDs8zaSk4PqDIqwUSMJsNss+V3GS3xhw5Z4rkAdlTt0DRVgpkERUVJTsc4ODg5GTk9ON1Ci4\nFnDlniuQB2VO3QNFWClwGwwGQ0+T0KMwGo1ub1Px9ShQ0I5uE1YqlaqvSqXar1KpylQq1RGVSvXy\nld9fUqlUtSqV6tCVz9zuokHBtYWn7CB7yiSZlJTk9javpa9HjmBUzL0KegrdqVn9D0AsIWQcgPEA\n7lapVFOuHPs7IWT8lc/WbqRBwU0IJW9HPnh/ihzBqMytgp6Cd3c1TAghAJqvfO195UO6qz8FChS4\nDk/RhhUocIZu9VmpVCovlUp1CMA5ANsJIV9fOfSkSqU6rFKp1qpUKv/upEHBjYGMjIyeJkHBNYbi\nr+sabjSTbbcKK0JIKyFkPIChACapVKoxAP4BYATaTYNnAfxN7FqVSvW4SqUqUalUJXV1dd1JpoJr\niM4+QOnp6W6mpPPwhFBkT6Chu9GTuVk3gqC80Uy21yQakBDSAGAngLsJId9fEWJtAFYDmCRxzbuE\nkGhCSLRGo7kWZCpwA5wx0Z58gNy10+ys6cydO11PMN91Z6pCT2sFShKz56E7owE1KpVq0JX/+wGY\nBaBCpVIFcaclAvimu2hQcO3hCUxUCp0RlI522K7uvjvTvydrUCkpKZ2+1pkwutG0AgVdR3dqVkEA\ndqpUqsMADqDdZ7UFwGsqlar8yu93AvhDN9KgQEGX4GiHzR/rLk2gp4R/dyd4u1sYuWP+XR1zd+TV\nKZCGqj1oz7MRHR1NSkpKepoMBW6ExWLxmN2zu2gxmUyK+agTcGX+3b1uPGkd3qxQqVSlhJBoZ+cp\nFSwU9Agog/AER7a7mJUiqDoHV+a/K/dKTPtSBNX1A0VYKeh2OBJICoN3D7pb6N8I7xBTBNP1DUVY\neQA82YnuCqTGcaMJJOqr6OmINR7dPcepqand2n5PQ+peetI9vtmhCCsPgCdH0LmCG2UczkBrALo7\nutCT4cpY5TB4TxMCUuO7UbWx63GDrAgrBU5xI5iAhLgWD6sYQ+Y1ILPZ3C1Rd8KxXWvBIIfBXw9C\nICcnBwsXLuxpMroF1+PGUhFWNyFcZdTC18g7ut5Td2xCoeDOh1VKW3LGkKOiorqUqyQEHaNwbNdK\nMHhySazOrMvExES899573UCNgs5ACV3vAZjN5utyZ+MpEIaId0f4cWfadBS67kkh0q7S0tO0u/q8\nKM/X9QUldN2DoTxIjuHMbKXX69n/XdHkHF3bGeYcFxcnSfu1YvZy5sNVWq4F7Y7uuavPi/J83ZhQ\nhJUCj4Mz5sgfj4qKgtVq7VQ/jphaZ/08riS3uhsmkwlRUVF44okn7H67HuCqQPRUc3Nn4GnBJp4K\nRVgpuO7R0zvpzjAbnjm7i1lRE+SqVas6/OYqXKFJKBC7W5BYLJYev+fuhJigVko5dYQirBR4JNzB\n8LoiBMQYCKVJSFtXzGRms9ml681mMywWS6fG5sqcukKTUCBGRUV1i8CiY+5us6Sjub0WQsRisbD0\nCAVXoQgrBR4DnsF1decsxXC6YhajNHWGtm+//Ravv/46ysrK7OjrbOCAkGHLEV75+fkdfpMr9ITn\nObuuM3NkNBodtnutfGeO+uluIWIymTwmEMfjQAjx+M+ECROIgq6htra2W9pduXKl29tct26d5DE6\njm3btnX4jRBCSktLXerLHfPiqI3i4mKSkJBAALDPpEmTyPPPP0+ampq6rV8ejubk4sWL5Pz58y5d\n011ryZX2HZ3T3fSJQWq+eoKW6w0ASogMOdDjgkjO52YSVp66uF0VAoTYC5TOwh1tuKMPeo6c+9PW\n1kby8/PJzJkzCQASEBBAXnzxRXL8+HHy5ptvktGjRxMAxNfXlyxZsoQcPHhQtJ2urAVH9+unn34i\nn332GZk/fz7p168fAUDGjBlDUlJSyMcff0ysVis7tzs2I+6EO4VEZ9Z4VyBF47VY854ERVgp8Hh0\np2B2tW130NLS0kKMRiMZN24cAUCGDh1K/v73v3fQoNra2sju3bvJI488Qvr06UMAkIkTJ5LVq1eT\npqYml2ipra2VdX5LSwv58ssvSXJyMhk4cCABQNRqNfn9739PXnnlFTJr1izSv39/pv2Fh4eT3/3u\nd8RoNMrSXKk2zJ/b1Tl15/qQastTN4c3E+QKKyUp+DqBpyc6WiwWZGdnd6h20ZOQmjMpv4Sc5Fdh\nm2fPnsXXX3+Nffv2YcOGDTh58iTCw8ORlpaGpKQk3HLLLaLt0L7Onz+PDz74AO+88w6+/fZb+Pr6\nIiEhAePHj8eYMWMQERGBIUOGQKVSyVoDhBDU1dXh5MmT2LFjBwghqKysxLZt23Du3Dn4+voiMTER\nDz30EO666y707t2bXbt//360tbXhq6++wldffYU9e/agqakJAKDT6TBp0iQMGzYMQ4YMwZAhQ3DL\nLbdg/Pjx2LhxI5566imHdDmag2uVdCyWtO1K3/z8G41GJQjCTZCbFKwIq+sErjJed7TtKsRoudbV\nD7qzv0uXLsFsNmPfvn34+uuv8fXXX6OmpgYA4O3tDYPBgD/+8Y+47777WO6XXFoIISguLsY777wD\nk8mE77//nh3z9fVFaGgopkyZwgRYr1698OOPP+LkyZPsc+LECZw8eRIXL160azsoKAiRkZFYtGgR\n5s6di379+smi6cCBA+jVqxcTXmVlZbBYLGhpabE7r1evXggMDMSQIUMQEREBg8EAg8GAiIgIeHl5\nibZtsVhgtVqv+QZMzvqg53j6BvFGgSKsFDhEWlpap7QgVx/gnijVw/cp1r+cMbS2tuLYsWM4cOAA\nE06HDx9Ga2srACAkJASTJ0/G5MmTMWXKFERGRqJv374wmUzQ6/UujXnhwoUdatD98MMPOHLkCI4c\nOYJvvvmG/T1//nyH6/v164cRI0ZgxIgRGDlyJPt/xIgRCAkJkS2cKOj8COfOaDTiwQcfxA8//IDa\n2lq7z5kzZ3DmzBkcPHgQP/zwA4B2ITtp0iQYDAaEhYUhPj4eAQEBLtHiKjxhw3SzoatCXa6w6nF/\nlJyP4rO6viAVqddTcOawbmtrI9XV1eTjjz8mf/rTn8jMmTOJj48P89/4+vqSadOmkWeffZZs2rSJ\nWK3WTo+LD9Tg/T9yAzfOnj1Ltm/fTtatW0f27t1Lzp49S9ra2hxe5yqt27Ztc+h7ctReW1sbqays\nJO+//z5ZsmQJGT9+POnVqxeby1GjRpFHH32UvPPOO+Tw4cPk8uXLsulyFCUqha4EiHQm4MIT1rsc\ndGYuuwtQAiwUdAalpaUOHzh3RirJYQZyznE11PncuXPkiy++IC+++CKZO3cu0Wg0jJnecsstZOLE\niSQlJYX8+9//JkeOHCGtra0O2xUGIJSWlnZg+FLz5mw+nY3N0fVyGJLcwANXQ8X535qamkhBQQHJ\nyMgg99xzDxk8eLDdRmD69Onk+eefJ1u3bhUNo5dDQ3fBXX1e60hDd6M7516usFLMgAo8Co4ql7sK\ni8UCX19flJaW4sCBAzhw4ACKiopQW1sLAFCpVLj99tsxceJETJw4EZMmTYJer0efPn0ctgk49kXl\n5OR0+dUf7poHagLLyMhAenp6t9DhqhmIEIKqqirs27cPxcXFKC4uxuHDh9HW1gYACA8Px5QpUzBs\n2DAEBASwj1qtZv/7+/vD29vbZVoV2MMT/HKKz+omBI1QcjfDd8SY5foDnEXg/fzzzzhz5gxaWlrY\n5/Lly3bf5R5raWnBoUOHcOTIERw9ehR0jYeEhGDYsGG47777MHHiRPTq1QvTp0936r9zt8/D0StO\nxJjHtYqa44MeXAlE4CFGPx85J8Ucm5ubceDAASa8Dhw4gHPnzsERf/Lz87MTYiqVCiNHjuwg4Bob\nG5GUlASVSgXg6vx7AqP2FPSkoFd8Vgp6DEKTh5gJhJoVysvLydKlS4larbar8tDVzy9+8QsSHx9P\nXnrpJbJ161by6KOPdsmE6ciMw5vb1q1bx0yp1CTozG/iyHe1bNky9rszc5tcmuUmo/Lf+ba2bdvG\nvrvi2xL77iiHq7W1lZw/f55UVVWR/fv3k/z8fLJu3Try9ttvk5dffpmkpqaSRx55hMTHxxODwUDC\nwsLsTIz8JyoqimzcuNGhSVdBO661PwuKGVBBT0DOjryxsREfffQR/vWvf2H//v3o3bs3EhIScPfd\nd+PHH3/EL37xCzQ1NSEwMBC9e/fGhQsXoNVq0bt3b/aprKyEt7c3xo8fj969e8Pb29vueJ8+fdhO\n+lqMU/jdZDLBZrN1OhfHHS9IdBYV6W64S1Ppag5TW1sbmpqacP78eRw7dgx79uzB+vXrUVVVhYiI\nCKSnp+M3v/mNZFh9Z+EJkbLXo7bY45oVgL4A9gMoA3AEwMtXfg8AsB1A5ZW//s7aUjQr1yG24+1O\nJ68zB2xbWxvZuHEjWbhwIavaEBERQd544w1y7ty5a0aHFJztJjvTrqNrnPVHNSoevEYj1o+Y9uUq\n3Z2trSj3uq7UcewKaHWRiIgIAoDcdtttZO3ateS9997rUvBAT0X/CQN4rmegp6MBAagA+Fz5vzeA\nrwFMAfAagD9f+f3PALKctaUIq+sXZ8+eJX/9619JYGAgi/567LHHyL59+0RDrmkkXU9DipFK/b5y\n5UrRDYLUWITt8AJHCq6WYZL6LtVXZ5mfIwEq9hsVqs7MkY7Mkp2lt7W1lWzcuJGMHDmSACC33nor\nWbVqFfnxxx/tzvP0mog3EnpcWNl1AvQHYAYwGcAxAEFXfg8CcMzZ9Yqw6n7IfTjlMNWWlhby+eef\nk4SEBOLl5UUAkGnTppHc3FzS3Nwsqx8hY1qxYkWH/jtT/6+zDLoz/Ym1IQTVoKSEmvAaMYYt/M2V\n/C2x6+WC9iMmrOSsJ3cJhM7cl7a2NrJ161ZiMBgIABIUFETeeOMN2etTCHelYdyM8AhhBcALwCEA\nzVSDAtDAHVfx3wXXPg6gBEDJkCFDum+mFDiFHAFFCCHHjx8nf/7zn0lQUBABQAIDA8myZctIRUWF\n22gpLS3tdgdwbW0tC5RwRouUliB2rRyhsG7dOtaeI6EjJrR4k5yze8W3TefTFSEnpU1JbQbosc7m\nldFgFbHz+P+l1oZUu21tbaSgoIDExsYSAGTw4MEkIyODXLhwocO5rqy768lE19O0eoSwYp0AgwDs\nBDBGKJwA1Du7XtGspOHu3Zqru+yffvqJfPjhh+TOO+8kAIiXlxe59957yd/+9jfy888/i17jDpr5\nXbm73r0kdq4cxu+oH0dmQ7HrnM1NfHx8h+s6Yx4TY7y0HbnzKVf4ukIXD3dUkBCjUardvXv3krlz\n5zJ/qjMtq7MapQJ7eJSwaqcHLwB4RjEDug+uvGPJHaAax5YtW8j27dvJI488wkLOhw0bRjIyMojF\nYpFFk7OwZf48qWscnesMcv0sYsfEXofRVZrkaq9y2hULK5eCGHOV8jdNmzaNaX6u0uUoDF54He/v\nE861MzOuO/xaW7ZsISqVijz66KMuX3stIDXmntaQOoseF1YANAAGXfm/H4DdAO4B8LogwOI1Z21d\nC2ElFn11M0Buzs1PP/1EtmzZQpKTk0lAQAABQAYMGEB+85vfkC+//JLU1NQ4vJ7CFUYqpFNMuHWF\nuTvK+xH+dWQCckUblRLQzkxk9LiUwJYjfN2thcuNoCwtLWU+R96MK9RahaZPuZC78aGQEpw8nn/+\neQKARQu6W2NyRxDR9RjFKAZPEFZjARwEcBjANwBeuPK7GsCOK6Hr/wUQ4Kytrgor+qDIhVzTz40K\nOvaLFy+SjRs3kocffpj4+fkRAMTPz4/89re/JXl5eeTSpUudapeCn2ch45bjH3DmY3Hk3xLbncpN\n/HUEXsitWLFCUkuQigak/zsLmuiMZiX8vnLlSlHG3ZW174rGKmcDIdUmPdcdTF9MEF2+fJnMnDmT\n9O/fnxw9elSSNgVdR48LK3d+FDNg1yDHJEfR2NhIPvzwQzJv3jz25li1Wk0WLVpEvvjiC/LTTz91\nuNYVBuOof7m+ls607eg4L4ikmK3cDQ/dhfOCWMxsKByHULDyjNgVZs8LXSog5VzPC1VX+hOrViJ3\nvdGgCTl+MEdtSs2Ts+/OUFtbSwYPHkz0ej3bmAnvmRiUqD/XoAgrN+NG3VXV1taS8+fPk/fee4/c\nd999LGE3MDCQLFmyhPz3v/8lLS0tDq8nRPwBdSYE5LbjCO5iDHJ9Hdu2bWM7cZ5J8h9HtLlirhK7\nRup/HpQ+XmgJhZHUJoMX3s40ODEISzFJ9eXoNTLCyD9XIVdjk9NGfn4+AUAee+wxWe3cqHyiO6EI\nqxsA3bXwV65cSc6dO0feffddEhcXR7y9vVmQRGpqKtm1a5fD9wx11VbuyATmSh/8ObzJzRWI7crl\nmsPkMHMxTUOO6YrOk9j1UszdFQbvyITaFXOgVB4Yrz2L3X8pjYw30cnRroTtyvnNGf785z8TAMRo\nNHY45o7N0s2uiSnC6jpFd1ZvaG1tJZ999hmJjY0lKpWKACAjRowgy5YtI19//TU5c+aM0zZczWNx\nBWLmIHfnVDnSTCjTkIr2EzJasTwr3jfFtyF2HWXivKlOaCoUajpyBZ0QQi2QEEKWLFliVy2itLSU\nLFu2TLaWKxQwvJCTsyGRm36wYsWKDmZYR6ZjV5i/2L0SttnS0kJGjx5NfHx8yPHjxx1q3VJw5fkQ\nm78bGYqwus7QneaFlpYW8pe//IXVRQsJCSHPPfccOXjwoNO3zEpVKZDDyOQwVmc+Cp4hujIHjnwn\nPMN2xhiktCJem5HKTxIKMerPkupDTJDSa3g6nfmJ5AgbudGNYveB/i7Wxrx589j5Uv0724DIeVOx\nHN+RFDrzLGVnZxM/Pz8yZswYh5s6TygVdr1BEVbdhOtpx3Pp0iWSlpbGcqGGDBlC1q1bJ+mDcsWx\n7so5UuYysbnsiglKqOXQvzSYQciExYIJ6Dk0SMIR/bQNftfPM2kxQevMdCg0e9GPs2hFqeuF9Ar/\nF2prYhqYM0iZY4VCqbS0lCxZssTpOIRpJELtTY5ZVOq42FjF2hAb+/bt24mPjw8JDAwku3btcjgG\nIdatWydbkMm1JnjSq+m7AkVY3aBYsmSJ08i0Cxcu2BWPnTJlCvn888875ELxcMfC70rFATnak1hk\nm9T5cs2VznbtUrSJmb/E+hIKHOFxqeg7qcoLUozZkSYp1HKE46AfKc1NTCPkzxcG0gjb4u+bs3dm\niQkQZ3lRjtad3MAeZ6DnHTlyhISFhRFvb2+SnZ3t1DLhSh9SuNFTaRRhdYNBTlLiuXPnSHp6Ohk4\ncCABQGbPnk127twp64FyBGfajpSgkWKKjiBHeDliysJr+Yg4/hxnkNOvMMrO0bliviBH88n7qfgX\nOkpdw7cvhFhpJzFNT0wrdSTM5filKPj7ILwnzrRyZ+jq9XKu5ROZGxoayL333ksAkEceeYRcvHhR\nso3r1Sx4LYWjIqxuIMhhsC+88ALp168fUalU5Ne//jXJz88XPc9di9CZ5iJlXiOkozbAt+WIgXWW\ndrq75zVSOYyVBzXjSCXnCk1NUkxeqGE5G6cjrU0IYci6EAsWLOgQBCGlNQqPCcfkaqCHUBPjhTw/\nL0uWLLET6mL5akIaeDqFWp6jdeooItLZhqi1tZU8/fTTRKVSkcjISHLo0CFHU6HAARRh5aHorh2L\nWq0mY8eOJV999ZXD85YsWdKtdPBty+lDbsixXEgxIEeBHI4YFWWWvKCTqkRBv/PCWErAiQksnhaq\nKfF9iNFK2+ffpyU2bp4GYSi58Bo6Xr4/YWAJPz+0b0oLTxN/rXBOpdDVtSllVpVb8d2V/rds2UIC\nAgJIr169yOOPP06+//57p7QosIcirLqIzizcawWxhy42NpbcdttthBDHNMuJvuP/OoOUFsK3K8bQ\n5bTHM0s59PA7cSFjF353piVJMVi6e1+xYoWkaU5s7fAMmtcI7rrrLrJixQqyZMmSDuY+oXYjpFdM\ns5Bat8L7umLFCocaoPA6+j9Nil65cmWHKhxSJkKp+RC+y8vZs+bIDOpozMLj7vQB1da2J9WnpqYS\nLy8v4ufnR1577TVy8uRJh9d1xRx9o0ERVjcZnnnmGdKnTx+713JILXRHv4sxajGIMXPKfPh3Msnp\nX2iqEe7SxcxichztzoQ21QjEBAG9Viy/R4rJC/sUE8y8/0hotuI1M6k+KN1S4d1iApkvuyQm5IRj\nFv5G6eKL0dL2hbSJQWrDwQs7MW3T1cAJKe1JbP2IfXd0TNgO7Y/H0aNHSXx8PAFARo4cSfLy8rrs\nL+4KnM2hp0ARVjcZPvzwQwKgg+3c2W5UzmKm1zt7PQQh0kWDxQSSHPooXGWEy5Yt6xCZJqVF1NZ2\nzGXihZKjslFiJjqhKVBIl/Ac4Vj471IFbTdv3kwuXrxIdu3aRerr68k//vEP8v3335PS0lJy+vRp\nUl1dTaqqqsjzzz9Pvv32W5KZmUkWLlxISkpKyJYtW8jatWvJ7t27ySeffEIqKioYU5XSPhxpI8Lz\n+LE5ezWIWFvOAkLE5kqMFrFzpNaL3HXoqG3a7rZt28jo0aMJABIdHU3Kysokz1WgCCu3wtNV8dra\nWnLs2DECgKxdu9bp+XKEjrP+eDiKhKOM3llQAX8O9XfIoVNoipNjShJ+F1aIENNshCY6KZOXI/8S\n/7sYoxIKPEIIOXXqFPnvf/9LPvjgA7JgwQISExPD8ubc+QkICCALFy4kH3zwATl48KCdhiekTzjf\nYt+Fc003MXLLJ/HHxXxkFHJ8nlKbAqncNSmt2RW0tLSQlStXkoCAAKJSqUT9Wc7QE3ynJwSoXGGl\naj/XsxEdHU1KSkp6mgyPRltbGwYOHIhHH30Ub7/9tsNzLRYLgoODO/wvhMlkQlxcXKfaMZvNiIqK\nYscAoLy8HHq9HsHBwaxtYR85OTlISUmR7JM/PycnBwaDgfVD+6L9AHBpbHQMJpMJer0e5eXldufw\n1/Djo98BdKAlODiYjV+MFnoMAHr16oWdO3fi888/R0tLCwoKCtDc3IyWlhYAgLe3N0aMGIGxY8di\n7NixuOWWW3D27FnceuutaG5uRkBAAJqbm6FWq9HY2Ijm5mZ4eXnB398f3t7e0Gg08PLyQnV1NZqb\nmzFp0iR4eXnh888/x8mTJ1FUVASbzQYAuPXWW/GrX/0Ks2bNwowZMzBgwABkZGQgPT3djn6j0Yjq\n6mokJycjODgYRqMRSUlJHcZpNptRV1fH5o/eJ4q4uDi7NSR2f4S/Cdcc/U7vjdj8O1rvroD2IVwH\nQtTX1+OVV17BypUr0a9fPzz//PN46qmn0KdPH9ExCMfi7BmUA3eNubugUqlKCSHRTs9ThNX1D7oY\nZ8yYgdbWVuzdu7fTbdCHT/iQyHloHDFlR30C7Q+/VquVvNZiscBqtaKiooIxw7S0NGRlZXVgShTC\n3+j4KLRaLQDAarWyvs1mM7777jvccsst+Pzzz1FWVoaff/4Zv/jFL+Dv74/evXvDy8sLo0ePBgCE\nhITA398fgwYNwjfffIN7770XFy9eREVFBQCwOaNM3GKxoLS0FEOHDsXhw4exfft2VFZW4tSpUzh3\n7pwdbZGRkUwwjR07Fjt27EBqaioTGhaLBXl5eTAYDIx+k8kEjUaD4uJipKSkwGg0IiYmxm5TYbVa\nAQB1dXVs82CxWKDVanHo0CF8+umn2Lp1K44ePYr//e9/8Pb2xoQJEzBjxgxMnz4dXl5e0Gq1dpsR\n/r5RGnjhxN9Hei/E7rHw3gmFT2Fhod14hBATHnTtitEptWGRaovvh64foZAWEw7Hjh3D008/jS++\n+ALDhw/Hm2++ifvvvx8HDx50KOzkQIxOTxdQPOQKqx438cn5yDEDdjb5zp3msO6Gs/6WLl1K+vfv\n77BiOg+5VRLEzqfniCUrC3N5xCBmKpIKr5a6XsocyfuieJ8UPUbbpucXFRWRjz/+mDz44INkwoQJ\nxMvLiwAgvXv3JlFRUWT27Nlk/PjxZNiwYUSj0cgyq/n4+JChQ4eSUaNGkenTp5NZs2aRX//616w+\nI/307duXREdHk9mzZ5OXX36ZPPvss2T58uWSZk3h73zYOB0vzVUSBls48uEIz6+trSVr164laWlp\n5IknniCjRo1ixY8HDhxIZs6cSZYsWUJ27dpF8vPzO/jrxPriowmF91HKNyekTWpN8KH7Yn5Tfi0I\nxy4Hjuo/8jTIaef2228nAMi8efNkP6s3MqD4rNyL7hZMnX2IeLz//vsEAPn222+7TIscH5DYMVeE\njFDgCZ3dkp9oAAAgAElEQVT7fK6RWD9S7fO+JL4P+v2LL74gxcXF5IEHHiCxsbHsHV4qlYpERUWR\n9PR08o9//INcunTJzidDx3bmzBmyZ88eMm/ePLJjxw6ye/du8sc//pG88sorZMmSJeS3v/0tmTlz\nJklOTib3338/MRgMZNy4cWTEiBHk3nvvZe1/+umndsxKSDftU5jjxOcvSQVlUF8c75fhjwn74yHs\ng7ZRV1dHMjMzyWOPPUZCQkKYwB02bBhZtGgRMRqN5LPPPutwb6hPUCyysrb2ag4bv4ngaeKjNsXo\nFcLRceF8OUtuF2tLKn/MWX+0LVpYGgBZunSp0zZudCjCysPQncKOPnDffPMNAUD+85//dLk/ISPj\nAxF4SO3WS0tLnRbvFBNE9DrhjlUoyIQ7b7HXelDmXlNTQ7788kvy4osvkkmTJhFfX1/GaMeNG0ce\ne+wxsmXLFnLhwgVCCOlQ7YKQq4xJmCwrrL5B6aMBGcJcKX7cziIceWHDX8trUfxfYfDGunXrGH3C\n15Dwgo/+z4e30/B42pdwk/HBBx+Qqqoqsnz5cjJ37lzi5+fHQrY//fTTDrSI/ZWK0hSbCzHhQe8F\nX3SY/k4hN6fKUdi6OzaSYnjqqacIALJq1Sq3tSk3Z82ToAgrD0d3LKaWlhbSr18/8oc//IH95kp0\nj7PwZOHO3BGzFVZJEFZ9ENOwpHazPMPkaaH/03Bw+tuZM2fIxo0bSWZmJnnggQeIv78/E04jRowg\njzzyCPn444/Jjh077KLehEyO71tYlUHIwHgahdqQ2DuT+PnmhRMvNCgNvLAWzg/tizJueoyOhc49\nLxyFgomnmRcyVGivW7dOVLvh6bh8+TJ58sknibe3N5kxYwa5dOkSS5zmBSV/ndh7qqQEPA+xtSic\nG6l1L7wfjs6VA2dRnY5w+fJlEh8fT7y8vGS7MbrKNzxRiCnCqgchd0G4I0xUuAOcMmUKmTlzpkt0\nSEEolIQajfBcPtTZWd+85uEorJ3XAniGK9ZPY2Mjeeutt0hoaCgTTkOHDiUPPPAAefrpp8n+/fvt\nzFr89WI5QHwfvFCgEAouXuhICWWxcldCbUlMOAuFi9BUyIOfL7GcJ9oH/SuWC0U3Afxc0aoXUveq\ntLSU5OTkEAAkPj6enDp1qsNxVyGmRQuFgZQWJNW3WMi6HH+TVD+deWMBncfGxkYyduxY4ufnR775\n5psO/dwMUITVTYrExEQSGBho95uzXZtQixDubMVMXhRizKGzPgUhnVI+K6Fvp7W1lTz22GOkX79+\n7JUo/+///T9y/PhxluwqpuEItQO+Hz55d926dXaMWyjgxKpsCBkib5qjAobPJeOrTAiv4bUa2hev\nOfEJ0Py4pMx4VFNatmxZh7JLUtorLzT4Y0LBXlpaSv75z3+y+2Cz2UQFHD82qWM8hNUuhH+lcqaE\nc8nT6g6Iba5cvea7774jgYGB5I477ug0HdezgFOElYdBuJPuDuzevZuoVCry5JNPyu7H2Tm8AHMV\nru4+pcyCtbVXfSiUEdPPwYMHSXR0NAFARo8ebZcUzWtjfC0/oYASBjCIma2E33mNkPf70PbFTIpS\nDJPvT/hqEPoRmuzEzHv8ebxA4ukT+rkoLdTkt3LlSrtoQrHx82WXxII9Vq5cSV577TXi7e1NBg8e\nTMxmc4e55ueNh9h6E1ujvAlRKFjlQCzQRAhHPjVHv0kVixZqb/xc3HHHHcRgMDik50aFIqxuMly8\neJHcdtttJDQ0lDQ3N8u+To4Dmt89O9OkKLMXtsubtwjpaGJ0VAVDrJ/6+npy3333kV69ehGNRkPe\neOMN0tra2oEO3pTHv5OIZyiUOQp9Q7w5T8pvJhRUYmPj2xEKQkKuak7z5s1jbYlpHLzA4v1IVKDx\ndPDjoMKIp0foi+MFjaP7wgtoMT8dP9/79u0jGo2G9O3bl7z33nt2AR9i60PMpCnsW0yLdUQvP3/8\n985uwMTaE/tdykwpBZ1OR+bPn+/wWeyuTW5PQ66w6tX5VC7HUKlUw1Qq1U6VSvWtSqU6olKpUq/8\n/pJKpapVqVSHrnzmdhcNngJhsmp34IUXXkBlZSXWrFmDCxcuyL6urq5O8hilmyZOxsXFiSYa0uRI\niqSkJFRUVNgl5UZFRdklYNJ2aKWJuLg4GI1GdpwmrgLtSY9msxn5+fmora3FW2+9hfDwcGzevBmP\nPPIIjh07hpkzZ8JqtcJkMsFisSAqKgrh4eEsGVRI77Rp01jiZHl5Oerq6mAwGOyqKoSHhyM4OBha\nrRZ6vR5WqxXl5eUwm83svJSUFKxfvx51dXUoLCzsUAWDzkd5eTkqKioQHh7OxkQrIPj7+8NqtWLx\n4sVsLk+fPg2j0Qij0Qir1cqSmfPy8libiYmJjM7q6uoO94HeQ41Gg/DwcOj1elgsFuzZswcajQZW\nq9Wu0ofFYkFKSgosFguqqqpgsVjYcdp/XFwczGYzEhMTodFoUF5ejuDgYMTFxUGj0UCj0TA6hw0b\nhrfeegsRERFYuHAhvvzyS8ybNw85OTkdqpvQ78JEdB56vd6uAgq9zzydfIUM+uGrYtCk6ODg4C4l\n4/LJ5RT8s0H/NxqN0Gq1ducLr21ra8Pp06dx6623Okzk7UySrxid1y3kSLTOfAAEAYi68r8vgOMA\nbgfwEoBnXGnL0zWrnlbbi4uLSa9evcjvfvc7l67r6k7Nkb2e11R4DUDMfyHURKR2pYcPHyYjRowg\nAMj48eNJSUlJB01OaNITms14PxWvFS1YsMCpCUpsN041BX6s9Fyp6DsxU5yw9iD9zoeQ03Z5LU3o\nR6JaFO1327ZtZMGCBR00wSVLlrD++GhKof+H9iHsn84V/8LHbdu22bVL22hpaSG//vWvCQAyatQo\ncubMmQ4mUX4e+LkTrgm52gs/987acZZeIQdCzVTsWqm2LBYLAUBycnJk9dXTcKfPjxAP0KwIIWcJ\nIeYr/zcBOApgSHf15wjdvbvoarkUoPPa108//YTk5GQMGTIEr732msP26G/CkjfO+qbzZzabRUvi\n0DaoNkTrwFEYDAYEBwcjKSmJ7YCBq9oT1VLorpiWrwHa53bXrl14+umnERkZifPnz2PRokVYvXo1\nVCoVoqKiEBMTY1feiO64tVotrFYr0wjVajXrOy0tjWkmWq0WqampiIuLQ2FhISs3ZTKZmLZGtam6\nujpkZGQwbU+tVsNisUCn0wEA/P392XxRLYNqPCtWrGCaGp17OgcxMTF2c56UlMS0Paq1UBpoeSiq\nTVHtITc3FzabDWq1GiaTid2D1NRUppHpdDpotVoMGTIEUVFRKC8vx/Dhw+3uKy2VRLUwWpaJr/EY\nFxcHq9UKg8GAnJwcZGdnAwASEhLYeLVaLUwmEz7++GN88skn2LBhA2pqahAVFYXS0lJYLBYYjUa7\nNaFWq9k9A9q1KZPJxNYaHQddJxRUw6JrkV8HdF0YjUZ2TWFhod18C58BqtUJtRmpZ4WeR+taipU7\nktKMTp8+DQAYMGCA6HEhTY7o6CrktNvVWoWdRbcJKx4qlSoEQCSAr6/89KRKpTqsUqnWqlQq/+7u\n3x3CpLvhSj09/u8zzzyDiooKrF69Gn5+fuw8+jBSpsr3kZeXZyfAhULLZDIhLS2NHaeMKyoqyu5c\n/oGkTBi4avJLSUlh5haj0WjHdCwWC2OmlFnRc4B2Zk0IwauvvooHH3wQb7zxBu69915UVVUhKioK\n0dHR7HqeBv5h4016FosFNpsN+fn5qKiowPz58xmt9C8VPmazmZm0srOzERcXh6ioKJSUlNg9qJSJ\n5+bmMvOUsG/KIMPDw5npkd6XiooKJhjLy8sZLXl5eTAajazGHzUZ0v6ioqKQm5uL5ORkZoYDgOjo\naKjVaiYk9Xo9SkpKoNVqkZ+fj/LycmzatAm5ubmstiDQLsByc3ORm5uL4OBgu43G4sWLAbQLPLqm\nNBqN3TzrdDokJSXBZrNBo9EgODgYwcHBKCwstJuvefPmoaSkBL6+vliyZAneeecdzJw5k907s9nM\nxsevzZKSEjaPdIPBQ7gWFyxYwNYanWth7T6+2C6lmYfQfEw3T/yGzBGENQgd4bvvvgPgnE8Jzei8\nqdMR+OOu0O1xkKN+deUDwAdAKYBfXfkeCMAL7YIyA8BaieseB1ACoGT48OFuVTs9Ga7kbBw4cIB4\neXmRRYsWEUKkzZGdMfcJX+3Bm4Xod1ei/XjTkZBWPqqL9vntt9+SO+64g1VF2Ldvn2TbjoJEhIER\n27ZtY2Howqg6ocmSp4kGQPD0C6PFaDg6Na2VlpaS+Ph4Rh9v0hNGNdI55EPYhZGBy5Yt65BcvWDB\nAjtTHf9XLOqPmqnWrVvHaOPvoTDIQRipWFpaylIK+Nwz4Xw4yme7cOECMRgMBACZP38+aWpqYmZN\n/p5KzbPY/Rdb+/wcSl3P0+oswIPvR5hzJjZfcvH6668TAKShoUHW+TdaoAV62gwIACqVqjeATwGs\nI4RsvCIcvyeEtBJC2gCsBjBJ7FpCyLuEkGhCSDTdKXoausO8KPZ6BbGd088//4xFixYhMDAQf/vb\n3wB0DHSQgthOS7j7o3RQhzrd9SUlJbHvvLkuKSkJGRkZsFgsos5k6oTnK3zT46GhoQDad62VlZXY\ntGkTxo4diyNHjmDVqlU4duwYhg0bBqPRCIvFYkeryWRi5j7hPGVkZLA+6Y4xLi6OaVVUG1Kr1Uxr\n0Ol0CA4ORkxMDMxmM2s3ODgYixcvZgEWFGlpacjNzWV9JyYmIjc3F7GxsdBqtXj33XfZWP39/aHR\naOzMXnV1dUhNTWVt2mw2hIeHw2q1Ys+ePcwUWV9fj5MnTyI8PNxOE8vMzER9fT3ThioqKqDRaJiJ\nb/369bBarUhLS4Ner8fp06eZBjlnzhx2XzMyMlg1c3rPLRYLCzIxGo0IDw9HXV0dYmNjAbRrJFVV\nVXZjMZlMKCwsRFVVFdPw+Orp+fn5qKqqwttvv40nn3wSGzZswIQJE+Dj48Oq0gNXtQw6d3zwDV03\n1IxIK8DTa/lz+edJqDVQ7SsuLo6tE+ErSChoUAilKz09XfTcpKQkp9qJkG989913GDhwIAYOHIh7\n7rnH4bVi47hpIEeideYDQAXgfQBvCn4P4v7/A4CPnLXl6QEWPYEXXniBACCbN292+VrhbtuVnZqj\n3a1chzI9xgcOlJSUkE8++YQMHTqUACCzZs0iOTk5djtyuqMnhLD8ITFHOX+N0HHP08vnC/GaH68Z\nCQMJ+EAIYfAB344wiIMPZBBqHDQwQdhObW0tK6NE6efD22k7fE4X1aZ4unkNi6/Szs8rTVDmtT1e\n4+SDT3ja582bZxfGLhYkwx8Tatjbt28nAwcOJH5+fmTt2rV2c03pE9PQ+OP82B1p+I7WuqN13RmI\nBeNI4d577yXh4eFO27tRAQ/QrO4A8AiAWEGY+msqlapcpVIdBnDnFYHl0XCXM9NdmtiqVavw6quv\n4re//S3uuecel2zWAJhWRB3R1A5Pz8vJyQFwVduif6nfgO5cjUYj84nRNsV8YTxo+DDQrkVERETg\n6aefxtKlSzFv3jx4e3tjz549+Otf/4r777+f0RMVFYXY2FgWtpyVlQWDwcDopmNJS0tjIeR0V041\nhMLCQua/iIqKQnJyMsxmM4qLiwEAJSUlLIBh3LhxyM/Ph81mQ3BwMHQ6HUwmE9up5+bmsjB0GvxA\ntRm9Xs/6TkxMRFRUFKxWK1JTU1lAQV1dHZtnjUaDxYsXQ6PRICMjg7VTXl6O6OhoFlRA3+VUXFwM\nrVbL/HfJycnIyclhWk1dXR3TePz9/ZGXlwetVmsXnKDRaNh9zMrKQmJiIgvyoL60+vp6Nh8FBQVM\nm6urq0NaWhqsVis2bNgAnU6HFStWAAB7oWZ5eTm7L3TdxMXFITs7GwUFBWxtBAQE4PDhwwgJCcGi\nRYuQk5OD3//+9+zaqKgoaDQaFkhCw/jpcV5Dp1qylLVAKvVCuFb556Wz/m6h788RTp8+zQJ0HLUH\ntGvA3Q1nPraeQndGA+4hhKgIIWMJIeOvfLYSQh4hhOiv/H4fIeRsd9HgDHKFkLvUbrEXpLmKlpYW\nrF69Gmq1Gn/+858d0icMrBCCmr4oXcKIJj53xWw2M0YdExPDnNRRUVEoLi5mC5w3x6SlpcFisTBG\nyqOmpgY///wzZsyYgTfeeAPfffcdVq5cicrKSvTr148xeABMKAFX84Z40yT/IMfGxqK6upqZ/qij\nX6vVIjw8nOVf8dGLiYmJsFqtmDNnDuLi4qDVarFnzx4kJyezscbFxbHItLq6OkRHR7Px5ufnswAN\nmr9EhSrQLtQrKiqwfPlyqNVqFk2XmJjIIgzr6upQXFyMOXPmsHb0ej00Gg10Oh1iYmJQVlYGnU7H\nGFtiYiKba4PBAI1GwwSOTqezG19eXh4SExNZLllUVBSqq6uxfv16RicVZtQEyjPQ2NhYFBQUwGKx\nYNOmTYiNjUVdXR3MZjNKSkqwe/duLF++HMDVKEjaf2ZmJjPfZmVlMTMsnb8ffvgBf/nLX7B48WK8\n+uqriI2Nxfvvvw8AeOKJJ+xeckivoWuX9sFH/dHz6boFnDNgYZQr4HxzKXZcGFUpB9999x1uvfVW\nWecK39TcHeipaD9nuCbRgJ6KzgohfkG6InCED4zUbs4R/vrXv+LQoUNYtWoVIiIiHJ4rtSvk7euO\njvPRdBQmkwl5eXlMw6IJogCYT4mOKysrC0C78KMPQFVVFd566y386le/QnJyMnx9ffHBBx9g9+7d\nMBgM8Pb2tqObMlaz2YyqqirWNtWGKIKDg5GcnAyNRoPk5GQ7/wUfsn7PPfegrq6OJemKzVdeXh4W\nL14Mq9XKPiaTiUUGFhQUwGazsfOTk5MBtPtXeL8hFVzh4eGIiYlBamoqqqqq7MKxqd+HD3PPzMwE\n0M6I6+rqoNFokJeXh9jYWNhsNhaByIe/0118eXk5jEYjCgoKkJmZyULB6XnFxcWw2WwwmUxITk7G\n/PnzWfv+/u2BudnZ2axfGp1ns9nY/Vy8eDH0ej3i4uJQUVHB5jszM5OtcaoN0c0CFdBUS6ZaHWX4\nQ4cOxerVq/Huu+9i9+7d+Oc//4mnnnrK7j7QCFI+so/eA7oW6VoAwDQvmqBNtTyaikDP4a+h4N9O\nzIP/LqY5CcPphRDyjmPHjqGhoQHDhw/vcG5XcC0KEVxzyLEV9vRH8Vm144svviC9evUiDz30UKeu\n530brlaKFkZK8VFyQn8V9UXxPh0+mXXgwIFEq9WSjIwMcubMmQ6JnmIvtxOWTuL/5yPJeJ+SWJQY\njV7j/Re0rXnz5tlFhtF2+Ndv8H6dBQsW2NFD/8bHx5OVK1faJQovW7bMzudG+6F+LELsS1IJS1zx\n34WvEqH3lc4RPwbet8bfd2FZJ+pbo3/59UHnS9imcG0I/XfCMlTCd4EJz6V4//33yeDBg4mXlxf5\n+9//zpKIxfxh/H2nbfF08f058mmJJRuL+WCF/j5ncFb8ee/evQQA2bhxo9O2ugpP9XtBps9K1X6u\nZyM6OpqUlJT0NBldgliSoCOYTCY7dfybb77B1KlTodPpsHv3bqcJhLyZzNFvUnTyO0u+dEx4eLid\n9iA1JuF46fdjx44hPDwczz77LCIiIlgEGPX10DZ5M11FRYVdjkx5ebmdiUVID79bzsnJYeY2mhha\nX18Pg8GAuro6Fn1H54VqBjabjUXH0V047ae8vJz5hE6fPo1x48YhJiYG5eXl7DpqplKr1axUk1ar\nZdoqTbylPp6SkhIkJyez/qiPyWAwsP91Oh1L+tVoNKioqEBMTAxWrFiB5557DkC79kTLUiUkJLC+\niouLodPpsGbNGqYJ03b40ke5ubmYM2cOm8/i4mKkpKQgIyMDoaGhbGwxMTFMo+PHR0HvJ72HfCI0\ncHUtZmRksJwvft2dP38ec+fOxddff4377rsPubm52LZtG1sHdI7o/ab312QywWazYc+ePXjuuefs\nTHpr1qzBqlWrOlwvpIn+D1zNpaP98H/F1rmrePXVV5Geno66ujr8/PPPN2Wkn0qlKiWERDs776Y2\nA15LOFqEYrZvXlAdOXIE8fHx8PHxweeff95BUFHzBg9eKAnDgfnfpECTVXnQqgp8Ei6PhQsXMue3\nMGiDmg1ramoAAI2NjYiJiWGh2SUlJcxkBLQzXUov9cPQtqhQ40OJqRDIyclhviqLxcJ8NNTPFRMT\nw8xdcXFxUKvVjMmaTCZs2rQJmzZtYsLHZDKxfmi71I+UkpKC+fPno7q6mvl7eLNbfX29XQBLbm4u\nM/lptVomcKuqqhAaGsqCBzIzM+0EVWFhIRITE0E3bBqNBvn5+UhKSkJubi4zlQFgfq+EhATYbDYU\nFBSgrq4OOp0OGo0G48ePh1qtRllZGWw2Gws3z8nJQXl5OQYNGoQ1a9awII6UlBQYjUY0NjYyQUFr\nHdK5p+ZF6qujNQf5c+haycnJYYLCbDazIBfeH2U2m5GVlYUnn3wSjz/+OLZu3YpRo0YhNDSUBaXw\ngopWvKC+xaSkJKxatcpufWq1WibQqVCigTh0bfHBGjSQhA/KoH9587hwQ+bIbAh0DMH/6quvMGbM\nGAwePPimFFSuQBFW3QThIjWbzTCZTKLRPI5s2xs3bsTkyZPR3NyMLVu2YOjQoQDsF31wcHAH/5PQ\nYSwUPHyhWB70XFpBQSh0qO1f+LvFYkFqaqpdlQsqOGgEYExMDHbv3g0AmDhxIoKDg5ngoUyLBjRQ\nJlpXV8fymPiHWcxfUF5ezpgr/c5X1aAMNSYmhjFFvlCrRqPBc889x5g/3TDwZaYsFguKi4uZ854K\nB4PBgE2bNrFIwJiYGBgMBhiNRsb4k5OTkZiYyIre0vZOnz6N+vp6rFmzBvn5+SxQYf369SgsLERZ\nWRmsViuio6NZNGBoaCjMZjMGDRqE7Oxs5Ofns/JHFRUV0Ov1qK+vx/z586HX61FVVQWtVsu0pvnz\n5yMmJgY2mw3A1SAWnU7HmPqKFStgsVigVqtZUATVfqiWSgUvjXrkK52UlJTAZDKhoqKC3ZOUlJQO\nGx56L+hcA8C4cePw8MMP48UXX0RRURF8fX0xY8YMXLp0CW1tbQCu5kkJ1zR9xvgKD3SjQXO9gI45\nUfR/6ucSK4IMwC5PDrgaPcvn8wnb5CuzULS0tGDv3r0sz5DClWg8ofC7kaGYAXsAckwHbW1teOGF\nF5CRkYHJkydj48aNkiYLYbtiJjx6HLB3QFPzjZxERmrGEosW4gUY7/SmpjSK7OxsLF26FB999BGm\nT58u2T8/FmrC0uv1KCwsZKZDoXmyoqIC9fX1LDE3PT2dmdiio6MZk+FNcQCQn5/Povtoe5mZmbBa\nraxSen5+PubMmYOKigpm2issLIRarUZBQQGysrJYTURqqrPZbKiursagQYOYNkfNZ8XFxWhoaEBo\naCgLgefNaNnZ2cjKyoLJZEJBQQHmz5/PtCwALGikpKQEjY2NsFqtTOOmWpXQ3EnnZvny5bh06RKW\nL1/OhD4VvvwmIC4ujjH+5OTkDiY9Orfp6el25lWtVovly5fbzSFvxhWaDKUCjXgT3o4dO7Bt2zYU\nFBRg7ty5yMrKws8//8zWpNBUJ7aW6L3laRH2L4TQHM+vEakEfjkakslkwsCBA2EwGLBhwwbMmzdP\n8lxHz/qNAMUM2I3gtSNX6m4B7eHczhbZV199xez5//d//4evvvqqwzVi2hhvSuG/88fpb7T2H32V\nBz8esTHR3TL1C9Bz+YKf1FxGw9Vp9QO+3fLycgwYMADTpk2z61+4g6XXVVRUICUlhfk/hAVfaQg9\n0P6qDFqPkEboAe2MNi4ujuUMaTQaFsmm1WqRnp7OftNoNEhKSkJeXh7q6uqYEKQaSXV1NYCrOU98\nlFxmZiaqqqqgVqvZ3zlz5qChoQEAsHbtWqSmpjLhSwUkLyCoMBo3bhzbNdOaj+Xl5YiJiWHmRaPR\niOjoaKSmpqK2thaLFy/GkCHttaLLyspw5MgRptXU19fD398fhYWFyMzMZIVnaQ1EXtBSU6XZbEZ6\nejrS09NRXl6OzMzMDuaz6OhoLFy4kN2X7OxslJeXIzU1lYXl06onVBOi46WmU1o0mAoyXgui8/Pw\nww/jtddeQ3x8PLZv345Zs2bh0KFDAKRDrcWidqnmLmb5ECInJ0eybalIWrkChBZNBoCwsDBJGgD3\n1Da9EV4Vct0Kq56cfD7XwVmoqlBNp4xNCkePHsVjjz3GSg2tXr0affr06XCecPxC8yJvthJDVlYW\nMx/yRWuFDxtvx6fj4c0gYqaS4OBg+Pv7sxBlfgdbWVmJIUOGQKVSMeZLfRaUoQFXTSGUCVJnPt3R\ni5k2Ka05OTmwWq3IyMiAzWZjviCbzWZXPJa2nZOTw0w/QDsD9/f3Zya9+vp6VFRUMPMbDYe3Wq0s\nCTUtLQ3Lly/He++9h02bNjEfUV1dHQYNGoSkpCRMmDAB/fv3h06nw9tvv820naqqKhQXFyM4OJgF\nMPCBHlRQ2mw25OXlsZJJYWFhjOn96U9/YkLVZrNh+PDhSEhIgFqtxqRJk9DQ0IDq6mpmUszNzQVw\nNQWAhqfHxMQgJSUFxcXFyM/PxxNPPAGj0QibzYbs7Gw7kxcVdJTZ6nQ6ZGZmsuAPGmaflpbG+qFh\n5NQnRzcPdE3R5F9qTqR5deXl5ZgwYQLeffdd7Nu3DwMGDMDixYvxhz/8gfk7hYEPdN2K5U0tX74c\n5eXldgnkfDi7xWKxy2OjEJoru5JA+9VXX+H222/H2LFj2T0QtifF54Tj9ES4m0d7vfTSS25tsDvw\n7rvvvvT444/b/RYUFNRD1LgGoX3bETZt2oS5c+eitbUVX3zxBQwGA5qbm+Hr68vOMZlM0Ol0IITY\n/T5jxgy7tpqamuDr6wtfX1+YzWY2XxaLxe46AJg1a5bd98rKStY+PZe/PjIyEgDg6+sLi8XC8mjU\namwNlGMAACAASURBVDX7berUqexvU1MTO//1119HS0sLnnvuOeh0OjQ1NcHHxwdNTU1Ma9HpdOjf\nvz/r32KxoLq6mmkTkydPRlNTEwIDAxmzOXz4MCoqKjBp0iTU19dj5MiRuHDhAov027lzJ2JiYhAS\nEoL3338fM2fOZLlFCQkJaGpqAiEEFRUV+OyzzzB79myEhYWhsrISRUVFiIiIwKhRozB79mzs27cP\nfn5+GDNmDI4ePYoxY8YgJCQEWq0Wf/zjH3HhwgUkJibi7NmzGDlyJO666y6YTCb4+flBrVZj48aN\nmDVrFnbt2oWZM2fi/PnzaGhowO7du3Hq1CnMmTMH+/btw+zZs3HgwAFMnz4dJSUlUKvVGDVqFLy9\nvTF48GCYzWbk5eUhMjISer0er776Ku68807Mnj0bQ4cORWBgIAghKCoqwg8//IBx48ahT58+uHjx\nIgCgqKgIAwcOxMSJE1FUVITJkyfDarWyeXj66afh7e2Nffv24cEHH4TVasXEiRMREhKCyspK1NXV\nYeTIkfD29sZHH32E0NBQREZGIigoCHq9npkqp0yZgsuXLyMuLg779+/HwYMHodPpcOnSJfY5evQo\npk6dyu755s2b2fU+Pj4IDAyEr68vioqKMH36dPTv3x9Au0+3pKQEI0eOhEajQVFRERobGxEWFgZf\nX18EBQUxIRYUFISmpiZYrVbcf//9bN7o+mxubkZQUBCjwdfXF01NTSgqKoJOp4PFYoGPjw8bO5+g\nLQT/zNHnhrYDAJcvX0ZKSgoSEhIQHx/PzqPH6XMqfM55uGIK7Al+KbfPl19++exLL730rrPzrlth\ndSPgiSeeQHx8PNra2vDyyy9jyZIlGDduHAoKCqDX6+2EBQVdzFILmII/zi8aKsTEYLFYUFlZiaio\nKFRWViIoKIg9dPThof2bTCb079+fBUno9Xq8//77GDp0KHuAmpqaGHPw8fHB8ePHkZ2djfj4eCQk\nJDCzYGBgIIKDg9HY2IgBAwYwpuLr6wuTyYTIyEjGLPr27YuSkhL07dsX//rXvxAREQG9Xo/Ro0dj\n9OjRaGpqwrlz50AIwZgxY5ggDAkJQXBwMHx9fXHgwAGMHj0aX375Jfbt24fIyEgWfWixWPDAAw9g\n+/bt+Pe//w2z2YwFCxZgwIABWLNmDXbt2oVx48YhPDwczc3N+OGHH3Dq1Cns2LEDAwYMgE6nQ3l5\nOT7//HOYzWasWrUKTU1NeOihh9DS0oKJEycyIRUbG4stW7aAEILGxkb06dMHQUFBmDp1KoKCgvDC\nCy/gxx9/RE1NDQtb37FjB9MIm5qaMGrUKNx6660ICwtDTEwMqqursX//fvTt2xfV1dWoqalBWVkZ\nG+NDDz2ETZs24dlnn8WsWbPw6aefYsCAAYiLi8PmzZtZTgsV0HQeN2zYgNbWVhw8eBCXL1/GpUuX\nUFVVhdGjR6OoqAh33303PvzwQ0RGRqKyshKHDx8GIQQ+Pj6wWq3YtWsXZsyYAbVaje+//x6JiYk4\nceIE9Ho9AgMDcerUKbS0tIAQgsrKSsyePZsJEaqRE0IQGBiIoqIiTJs2DRMmTEBLSwsKCgrwxRdf\n4MKFC5g6dSq0Wi2Kiopw4sQJJrjo+qZCi38GKisrUVJSAkII9u/fD7VazdY/v+aLiooQGRmJs2fP\nYvr06XbPjlA4CRk1bYdaJkpKSrBq1So888wz+N///tdBKNH/6V+hRUP4jLsDwjFcKyjCqoch58bH\nx8ejsbEREydOxIYNG5CcnIxPPvkEAQEBXe5PTIMCOi5w/jy6EwXAHh76lwoenmnQAAN6PRVUOTk5\n+Pe//40HH3yQ7YR9fX1RUVGBNWvWICEhAX5+fggLC4NOp8Nbb70FnU6HsLAwHD58GP3790d5eTka\nGxtx6dIlrF+/nlVDf/PNNxEREYFLly7hvvvuY8wxLCyMMZMTJ06gpqYGU6dOZb9RDfPNN9/EhQsX\nMGXKFISEhKB///44ePAgJk6cyLSr6upqBAQEYPr06Rg2bBhqamrYbvq2227DnDlz4OPjg+rqalgs\nFvz000949NFHQQjBzp07ER4ejttuuw379u1DQkICIiMj8Ze//AVz585FcHAwvv32W8TFxWH79u0Y\nOHAgnn76abS1tTFTlre3N4vo8/LyQmNjI9PKWltbcfHiRQwePBhFRUUoKytjNfz8/f1RU1PD/Gzb\nt2/H8OHDodPpEBkZiUGDBoEQgn379sHb2xsnTpxAa2srCCFMUNhsNhw4cACvvPIK03qrq6tRUVGB\nPn36wGAwYOTIkTh37hwCAgJACMHFixdBCEFqaio2b96MyspKzJw5E9XV1YiMjMTOnTuRmJjINl+U\n6Z44cQJFRUW46667oNfrsXPnTkydOhWHDx/GiRMnQAjB9u3bUV9fj5qaGoSEhMBqtaKmpgZ9+/bF\nhAkTMGzYMDz++OPIy8vDtm3boFKpMHDgQIwbNw6EEGi1Wnbved8Q3YA1NTUhLCwMer0e/fv3x9Sp\nU7F582bMnj0bOTk5mDTp6ksheO1K+BzJZfJ07OvWrcN///tfrFy5ErfddptTwePMQiP1vLuCnrJW\nyRVW163PytMhxym6a9cuTJ48GRUVFVi5ciXuuusu9O3bF4A8WzhvE+ZL2ADO87rouWLn8XZ+4Xc+\n30gYVUV9QykpKVi1ahUsFguqqqpgsViQkZGBs2fby0COGzeOvdARaPcBUmczzUuijm2NRoP09HTW\nf2pqKiv1IwzMoGWM9Ho9wsPDO/jxiouLMX/+fGRlZSE1NRVr1qwBAKYN0Sg1WgeQvm6juroaBoMB\nixcvxv79+1l7RqMROp0ODQ0NyM3NhVarRVlZGdasWQOtVotVq1ahuroadXV18PX1xYoVK2A2mxEd\nHQ2r1QqdTgeDwcDuY1VVFYveo/c/Ojoaw4cPR3V1NQoKCpjvaf369Zg/fz4yMzMRHR3N6jkC7dGN\nZWVliIiIQHV1NTOn0ZdPLl68mAVS0ARh+sLMmJgYhIaGMq03NzcXGo0GWVlZaGhoYKWq+Dnas2cP\nCgoKWOoBXQs0LF6tVrMXfgrXdUpKCiyW9tfK1NfXs7B4+tLIlJQU2Gw2FmYeFRXFalLSHDir1YpD\nhw7h4YcfxjvvvIPly5ejV69eWL9+fYdwdOoLE+bj0eAOk8mE8PBwto75tAX6HPDPhnA8cn1Ie/fu\nxahRo1BbW+vwPLnt3SiRgY6gCKtuhCMH4+bNm3Hvvfcy005KSgoefvhhAO1MkDJrsTwKqQXMRyg5\ne4jE8rL4yD8KyiDo/8K2+AeeT9KllbZpQdXk5GQWKBIaGsqEEs09o6+Hp+8nAq7W2hPOAZ+7wtNE\nQ5jz8vIQFRXFAhNoLTh/f3/k5+czpvrcc8+xN9wWFBSwIACj0cgCECoqKhAaGgqtVsuSRLOzs2G1\nWvHee+9Br9djzpw5LHw8KysLCQkJsFqtMBqNGDRoEEpKSnDkyBFMmzaNCUBa/2/NmjUsGIHPkUpN\nTWVCxt/fH4MGDWLzCLRHCFKBZbPZ8MADD7ACvKGhofDz80NDQwNqa2tZdfb6+npER0ejuLgY1dXV\nOHLkCPLy8hAeHg6j0cjmma/GMWfOHCY8Q0NDsWbNGmg0GhbEkpSUhMWLF2P48OF2xYe1Wi1LMdBo\nNCyPi3/LMA2XDw5uf8s0NbfR/DEadMNvivgPvbdxcXHw9fXFf/7zHyxduhSVlZUYP348Zs2axYRN\nYWGh3RuBqZDkc7BokAldx1QY0lQHsQ0ofU75tsTACzygvfIJDUJyBFeFkCcHXHQVSp5VD+Dw4cMY\nN24cdDodCgoKMGzYsG7tzx05GcK8ErEcLj4iiz40tNo3ADzzzDP48MMPcf78efz4449shy6WR0LL\nJBUWFiI8PJyZD/nzaVQeLRnE5/Dk5ubi0KFDLMGWliaiQRXh4eEoLi5mtNHXxFMNj+aH8YVwaUkk\nq9WK7OxshIWFYdCgQayq+enTp5GVlYW0tDQMHz6caUk0KvDtt9/GK6+8wnK1Xn/9dSxatIiNmY4z\nIiKCXVtSUoI5c+awMQ0aNMiuCj3NLQPAQuQHDRpkl5cGgIXTHzlyBL6+viy0nKYE0LJClDHbbDaU\nlZXBz8+PCUi+2C2dE5oUTO8lvf+84CssLMSePXtY+SeqcVHQ0Ha+HBWlSyy/iObaCdcd0M7cP/74\nY7z00ks4evQoVqxYwfLt+CRvoKPwEcuponTRth3lcUnlZIlh9OjRGDlyJLZs2SLrfDml0q5XKHlW\nHgj6QI0cORKTJ09GdXU1du3aJXqeMzMgr7UJNQ/h9fzDJax27Qi8GY0veUTboLtJ3kzI/6UVFeh3\n+rB5e3sjLy+vQ9g7Hw5sMBjs3t+0ePFidh59NUVSUhLi4uJYJW6atxMcHIzQ0FBWPbyurs4uP0ut\nVrOad8DV3CZhGZ2cnBwkJSWxV3UA7XlExcXFSE1NBQAmUBsaGtDU1ASz2YympiZmMqOCCgATOjTq\n8bXXXkNZWRnCw8NRX1+P4uJirFq1ys6kd/z4ccYsk5OT4e/vjzVr1mD9+vXIz89ngur06dNMk2xo\naEBVVRUef/xxVFdXszEAYNUpqOZI88mo1kGDZYD214JQEyytTcgLKXpeYWEhSkpK7EK/6+vr2RuP\nw8PDmaCiJa7UajXCw8OZuba4uJjRVFVVxaqPLFy40G7N5uXlsTJd9J7xAoTmiy1duhQAWKUPShdg\nX6aLBx0P/zxRzUq4vnnQ33gti0LqOQsICMCFCxdEjwnboHRcT+iOd2LdFAEW7nA+CkGdtK5E0FAa\nbrnlFsyfPx9FRUX4+9//zioC8OHmUiGxdKdPncUAWC4LDUHfvHkz0xiE0Ov1HXZpwog/s9kMQggO\nHTrEQuJpcEVYWBhaWlrQ3NxsFx5MndF8iC4hhJ0DtIfm7927F0uXLsWdd97J5oQ61Gkk4P79+zF7\n9mzo9Xps3rwZc+bMQUlJCSZPnozKykrU1NRg8ODBOHv2LIte27FjBx599FGEhYUhIyMDDQ0NuHDh\nArZv385Ckpubm9G3b1/YbDZERkbi8OHDKCoqQr9+/ZCSkoLVq1fjxx9/BAAcOHCAhdDTRObW1lbE\nxMRg4sSJKCkpQXZ2Nu6++24MHjwYP/zwA15++WXs3LmTve4hICAAa9asQWxsLAYMGIAzZ84wk57N\nZsPs2bPR1taGmpoaREZGom/fvjCZTKivr8elS5dgs9mg0+lw6tQpnDp1Cjt37oROp4O3tzcmTJiA\n4OBgnDx5EidOnECfPn0QGBgIi8WCOXPm4OLFi9Dr9TAYDCCEYMWKFRg1ahRCQkLw9ddf44477kBc\nXBwTdlu2bMHx48fx/fff49SpUwgPD8eAAQPw5ptvYv/+/XjooYdQVFSEUaNG4cCBAzCbzSxc/+DB\ngzh37hx++ctfwmq1IiwsjAVFEEIwYMAA1NTUMCFGE8snTpwIHx8feHt7Y+bMmbhw4QJuvfVWTJw4\nkQVXzJw5E/3790f//v0RFhaGoUOHorCwEJMnT2bPSWVlJc6ePYuwsDAQQjB69Gjs3bsXBQUFeO+9\n92Cz2TB9+nT2fEk9uzRNIiQkBJs3b2bCi6ZRiD3r9JkRBipRSPGGyspKbNiwAREREbj99ts7HJfD\nr7qDr7mrTWcvk+ShBFhwENbncgcos+/sjsfX1xdbt27F3Llz8fvf/575eMTA786E9cwo+GRj3kQi\n3NnxPiHhWGi7tHYaTX6mO01+zPy4TSYT/P39YTabRc1B9HoqYE+dOmXXP9VcKF1JSUks+ZTuztVq\nNYKDg1npHlpoFGivoefn54fly5fDaDQiPT2dJeIC7bvruro6VjyWljfS6/Xw9/dHWVkZgPbADzpm\n6tin2hqt90c1gKSkJHz00UdsDLQOYH19PcrKyuDv74+qqiokJSUxvxRtR6PRQK1Ws3JFQHvwBw14\noDUGY2JiEB4ejrKyMlatoqqqijEC6lOaNm0aq903aNAg9qLJ6upqVnFiyJAhzBeVlZXFctZo4d7Y\n2FjodDpGP63uQefEarWioaEBWq0WmzZtwrhx4xAVFYW8vDykpKQwTRO4WmcxKSmJ3Veq2VJBZTAY\nmPZNNRK1Wo01a9Zg+fLl0Gq1MBgMLJCD3ofy8vIO/lZa95FqXnSdDBs2DD4+PgDACvUK1zG/hmn7\nfPAQYF8zkD+f9kfXek5OjmyfUUJCAi5fvoz//e9/oselNDKhv9jd8ORAjZtCs6JwRdpfC/Tu3Rvz\n5s3D8ePH8eabb6KtrQ0xMTE4e/as3W6tsyGlYte2tLTY5Z2I7aKEuVwWiwWEELtwXz5fi/pHgoKC\noNPpYDab7fKb+vbti6CgIBQXF2Pr1q2YM2cORo8ezXaqK1aswC9/+UsWrr527Vrceeed2LlzJ8aM\nGYPm5mYMGDAAO3fuZPT079+f5fFMmTIFkf+fvfePb7I898ffAZRaaG2IOU0DFGqzWoSc0q7CgqBZ\n5RAznTVHWKXbZB0dUzpWP3qww3Z+1bX2VM/HGSXgSzuqKNnywUPt3DFEZonYQx2GYBsrGVSDgYZC\nKKktPyoKz/ePel3ceZr+AGWi43q9+mr7/Lif+3me+7mv+7qu9/W+srNx11138b7PP/8c8fHxuOGG\nG7Br1y68/fbbOHPmDI4cOYIZM2agqqqK2a7nz5+P3t5e7Nq1C5FIBBMmTMCHH36IkydPcol7siTf\nffddfP/730dKSgoOHjwIh8OB5ORktLa2oq+vDwaDAW1tbTAajXj//fcZUKFUKjFp0iROuH3nnXeQ\nlpaGsWPHwmg04tChQ5g0aRJ2796Nu+66i9+Fx+OB0WhEX18f/H4/Dhw4gFAohLS0NGzZsgWffvop\nli5diq1btzLrgtVqxYwZM3DkyBHMmjUL27Ztw/e//312P/b09GDr1q0IBALIysrCggUL8Mc//hFq\ntRp9fX24+eabMWPGjKh4V1VVFXJzczFnzhycOnUKZrMZe/fuxfvvvw+fz4dp06ZxvPDYsWOsCCjf\nimJvZA1JksTQeEr27erqQkJCAn71q1+hrq4Op0+fhs/nw5w5cxCJRBAfH4/k5GT09vbC7XZHwbnH\njBmDcDiMxYsXAwDuvfdepKSkIDU1Fenp6ZyU7PV6cfDgwagk971792LcuHGQJIkT3mMJ5V7RmE9J\nScGsWbM4H3DChAnYvXs3VCrVkPmMADBx4kQ8++yzOHXqVExewMGSgb8Kq4eIBS4WuWRZfY1CVsFI\n5PLLL4fdbsedd96J3/3ud7jvvvv4gxD50YaSoVZzQ/m+Y62ixEB1VVUVQqEQV4sF+uMTWq12QBVh\nsp7sdnsUvJ2C93a7ndGA48eP5+vY7XbU1NTA7XZz/EkklQXOogKNRiOMRmNUiRBCn1GFXEIZirWx\ndDod1qxZA5VKxdYFlT/XaDSorKzkPCViKCcy2qSkJL53m82G7u5uOJ1OuFwuaDQa5OXlcW2rkpIS\n+P1+5vKjSrxEVkuuQ5VKhcTERDQ0NCAzMxM+nw8tLS1ob2+H0WiE1WplYEhLSwvTPJWWlmL69OlM\nUTR37tyo+BaR1NbU1KC6uhoWi4UtBqfTifb2dkYzBgIBmM1mGI1G+P1+jikFg0E4nU6mwgoEAnC7\n3SgtLWV0H9UHC4fDKCoq4hw4jUYTxcYfCoWiwBQipRaNn/r6eixZsoSPo7aodpZoBVMbZF2JMdOc\nnBzmM5QkCYcOHcLUqVOZ4DbW+I8VwxKRhrGOG0xMJhOXJ5HD28X26O9Ro0bhhz/8IV577TWcOnUq\nqi05m/z5ymBzx0i4FC9GuaSsLoCIE8hgIg6M0aNH4/7778evf/1rPPXUU1i2bBlOnz4NYHg3I+WL\nxBJ5vpS4PVZ/qLYUnSNyIJKQe0QER4RCZ8lkY7loKH+H4kF9fX0D7o0mJfrogbNIss7OzijlSNuI\nkb2zsxPt7e3cBgkpMKCfuLerq2sAwm/ZsmVMqgv0l8Xo7u6GSqVCQ0MDlEolli9fHsWSTiUdCN7d\n3d0dVdBQFCLDdTqdSEtLw6xZs9DV1YWioiJMnDiRy8wnJibyarempgYdHR18z0qlkq2iYDCIjIwM\nhMNhrFu3jrkXA4EAE8ja7XZs3LiR64QZDAakpaWhra2N31VaWhqzomdmZkYpFbPZDLVajdtvv523\nNTc3M4hFBELQwkAknW1ubmaFSy5bQvwRmIP4/gwGAwoLC9nd2dXVxX10u91wOBxR47WqqipKcWm1\nWjgcDrhcLjidToTDYRw8eBCnTp3C8ePHeSzTOaFQiN3HtJii7fR/rFpschGh87G2D+auE//Oz8/H\niRMn2IIlGSmicDg51xDFxewCBC4pq69N5ANj3bp1eOqpp1BRUYHa2lr8+Mc/xmeffTZsO6QYY62K\nxJwnOSJKfrxW28+oTvEqOoYsKVJmYq0gmkzFXCdxZSr+1mq1zJL96aef8jmk3ETCXLLOaD+tmkWl\nRVaRxWLBQw89FLVA8Pv9qK+vZ4tHrVYjKysLkUgEoVCI4yt1dXX4y1/+wiU/jEYj8vPzGapdUVEB\nl8vFSMTc3Fy2zsgCCwQCjDwsKyuDWq1Gbm4uwuEwVq1axaSuRUVFUKlUDJunQoeEsDObzWhvb4fV\nasXMmTPx85//HF1dXcjLy+Nr+Hw+FBQUIDc3Fw0NDbBYLAgEAlzriqxFeucajQY9PT1obm6GSqVC\ncXEx3G43Ghsb0dTUhFWrVnENrczMzChFGw6H8eyzz3LRRZ1Oh8zMTAaIEHgjHA5zPKmurg4mkwkW\niwWJiYmsoEioDpjT6UROTg70ej2am5s5rlVTU8OWL6VK1NTURBV5JHQijbOysjKUlpbyc6f3DwA/\n/elP4fV6UVVVFTVWxVwvEjE2KcZwxe9mMIQtCS0OR5oqMn/+fMTFxeGJJ54Y9thLcinP6qIUk8mE\nN954A/PmzcMbb7zBrBZyGeqjsNlsg1p455J3FSt/iqwTsmTEUuDy1dzy5cu5vPgLL7yAoqIi/Md/\n/AfHFsSy4bTypiC86MLxer08CVG+lMFg4HIbFI+gNoH+lT8pB7FuE7VttVpRUFAAh8PBKLa0tDRG\nyBEsXaxNlZaWhqamJkyfPh06nQ4NDQ2YPn06AET1B+hfzVO+F7FGUNsGg4GLDlJyr0ajgdVqZcUa\nDAYBgJNvPR4POjo6MHHixKgaWUD/ZDtz5kwkJSVxMvD06dOZcSMjI4Npm3Jzc6FWq+FwOAD0Q9QB\nMMyemDTIRVpcXMx5bDTpNzY2cr8aGxsBgDkTY9W7omdOVovD4YiqAWYymXjM0nuMVecs1rim/Dp6\nnuvWrYPNZsOBAwfw/vvvsxeAwCBiG+eagygqucHywICRWyl6vR5dXV3o6OiAQqEA8O3OqYoll/Ks\nvsHicrmwdu1aNDU14ZZbbsGxY8ei9pEM9UEM5YqMldQ41LHkQ6cP2+v1Mpu5RqPhEiP0gVGsCwCX\nF7fZbFxr6Xvf+x5ycnLg9/thMpnYraTRaNhdI1bwJSYBQrjV1dVBqVQyHQ9NRtQmLWwsFgtPnpQX\nVFVVxTlTQL9iS01NRWlpKcxmM1QqFdra2titFwgEmO7nvffeQ2ZmJoqLi2GxWKDX6zF9+nR0d3ej\nra0N4XAYSqUSXV1dUKvVqKysBNCvXH/7299G5XpVV1ejrKwMDocDWVlZAPoVTmpqKux2O7q7u5GV\nlYWCggJWVD09PUhISODEYHINNjU1IT4+nhOUk5KSkJ+fD4PBgNLSUq4QnJqaip6eHrY4S0tLGUWo\nVqvx0EMPscXmdDq5/83NzXC5XHC73Vz2IysrC4WFhWhvb0deXh4KCgr4WRNCrr29HWazGVVVVVxP\njCwXsm5JOdrt9ijqKbFsPbFQiPl9RJ0kKioag6NHj8bo0aM5tgf0KxYq+WGxWKJKnYjXkH8XZWVl\nUdaVmG8VK5FddKPTOUPJ/fffj4MHDw6gTrsYZDAvzNcll5TV1yhDgSfuvvturF+/Hm+99Rb+7d/+\njVfkX8afPdigEz/YWELXFCG8NIFptVqGzdPkYTab2fqibQaDAVOmTAEA5ggkiiWKjdGHTv10u93M\n1QeAA/pFRUXsSqNJh1bshYWFXExRDOITGIOq/XZ2diIvLy+qjhKhsubOnctcgUC/sqGqx+Rm8/l8\nzOiwZ88eTJw4kbkGA4EAnE4npk+fjrS0NBgMBrz66qvcnk6ng9VqRW9vL0/yQH88qru7G2azmcEP\nNJl3dHSwBRQMBrm+VlNTExISEjBr1iyO5TmdTphMJjzwwAPQaDSsGJRKJXP8UbKrWPjxueeeY7RZ\neXk58vPzOYmYal0FAgFotVpmxKAEZIfDwcAaSujW6XTsArXZbFEMGZ2dnQzeoUUFLX6IrYPcauFw\nmJ+dxWJhV54cUk4K57333sPMmTPx3e9+l+tjUd/o3YmLOVJ2sRhZSktLB9SZor7IpaSkJErRxEpH\nkQM44uPjMWrUKDQ0NESddzHIUInQX4dcMGWlUCgmKxSKrQqF4gOFQtGmUChKv9g+QaFQbFEoFHu/\n+K0crq2LWc531TGUqU9K4yc/+Qk2btwIr9eL73//+zh8+PCI2h1KRKQiVWgFzq4UB7sfOo7at1gs\nnKsjuj4IFRYKhZiyiCDN5M6k32IpcvF5EOKLFBJ94KJbkDjqlEplVIwL6H8n5DL0+/28YifuP1Im\ndrud84eAfnCFx+Ph/CBqo76+HpFIhJFq5D4j66ujowM9PT1Qq9VwuVzIzc2F2WxmYERtbS3HRIjR\no7OzE3PnzuV+E7KQKgsvXLiQ+ex0Oh0SEhLQ3t6O1NRU5OXloaWlBQaDAXPnzmVS3FWrVsHpdMJs\nNsNms2HlypVwu92wWq1M8WSz2ZCbm8vFKMkKJIWQmpoaFashK5biWR0dHVi+fDkaGxu52rHFYmFF\nSkLHkyI2GAxM70QuXVoQ1NXVMX2WCO6hcUTgD1KUoVAoigJJVB4UG6W4lM/nYwVJ90R9CIX6RRc9\n/wAAIABJREFUCZYHc+VRe0SjRH2TK6TBRA74iUWE+6Mf/QjXX399lLIarArxP7tcSMvqcwD3S5J0\nLYDvAShRKBTXAvgNgDclSfoOgDe/+P8bK+e76pB/IIO5ASwWC1544QXs2bMHt9xyCyPpRtquvK9E\n4AmAy7jLj5GLyHkmThLA2SRlUZnRB0mTHq1aiV6GJhcishXjUpRsqdfredW/atUqthqAfuWxZs0a\ndg3SxEiuIkoiBsCuqXA4zBRIRUVFSEtLQ2FhIfx+PwftVSoVcnNzEQqFUFtbi8zMTJjNZrS1tcFg\nMKCxsZGh9lQ5NxKJ4PHHH0deXh6CwSCj/RwOB4xGI3p6etg6aW5uRjgcxooVK+D3+znZt7m5GfX1\n9ejq6kJzczPMZjNuvvlmTlYGgIKCAhgMBiiVSng8HpSWlmLPnj1oampCaWkpGhsb2bJTKpVR/IGp\nqanMoUjJzpQ4nJmZCYfDwQqru7ubFbvH40FSUhKPlbq6OkyfPh0VFRVRysnn88Hj8cBut/NiSK1W\nMymsVquNAu7k5OREgTnKy8ujEKXkRhQTdEViYrLAq6qqoiyenJwcnDhxAj09PWwxi+hSQo76fD7+\nTgiUIX5/coUiIl/li8GhFIu4+Iu1OKV9+fn5aG1tZbfuxeZ+u1jkgikrSZIOSpLk/eLvXgC7AUwE\nkA/gxS8OexHA7bFb+HbISPKkgNhKhgbr4sWL8Yc//AEejwd//etfo9o9nwEtutrkFkms9kTXo3wl\nG+sYUUREYnJyMgDgyiuvjAqsiytlUXmq1WqYTCaUlpYy/BtAVMxBo9Hwyptg2HQubSe3EUHOKc+I\n9hNaUiw9UlxcDL/fzxYAWT4tLS2w2WwwGo1ITU1FMBjkvq9YsQJAf25UXl4eJxSTu5AAEc888wxU\nKhVSU1PR0tKC7u5uRgW63W7U1tZi4sSJqKmpQW1tLbq6uuD3+xEOhxGJRJCWlsbxI4LdZ2VlsVKk\n+lMejweZmZkIBoOcwwb0uzUp/625uRnbt29HOBxGY2MjT94lJSVIS0vDjh07kJmZCZvNhs2bN2PH\njh2orKwc8L7JNUuuP4KrA2c5Jj0eD3w+H8rKyqI4CEXgBl27vr6eacRoTFLpeQJSlJeXw2QyReVI\nHThwAEA/Kz2lNwD934vFYuFUCjmwglx9sZCsNIZGKrTgEq8R6/umfbNnzwYA7N69e0BcTJRzyd/8\nNso/JGalUCimAsgG8DcAyZIkHfxiVyeA5EHOWaZQKDwKhcIj+tW/aXI+wdJYtaYuv/xyAMD7778f\n1e5QOSCDKTLxgxDh5kMlM4oiTg7iB0QM1bTaFZVfYWEhx6rI5dje3h5VV4gmZFqN08qUkjaTkpJ4\n8tHpdGyVFRYWcpIuxXKoDIbYn8zMTJhMJqSmpvKkbDQaUVhYyHWaqqqqsHz5coTDYahUKrS0tMDh\ncKC0tBQNDQ2cD0Vs8llZWfD5fHjiiSfYcklNTWWQB9XCIjcgKWMqCZKamorm5mZG1M2cORPhcBh7\n9uxBWVkZjh8/jqampijCWnqeK1asQFNTE1tJxMqelJSElpYWmM1mOJ1OpKamwuv1MpDB5/NxWZKS\nkhI4HA7o9XqkpqYyg73L5UIgEODigxRnq66uRn5+PpYsWQK1Wg2Px8PISmqTYpFlZWWw2+0oKipC\nbm4uioqKoNfrkZeXx65eetcmkwlLlizhMaVUKqHValFQUBA1eVOCOdEryYERtJibNm3aoIS11BZ5\nDMgiJxAI7Rd/y8f+cCIiGWMtAuWoQqCf1eJ8QVNie4MtOr/pcsGVlUKhGA/gvwHcK0lSj7hP6sfN\nx8TOS5L0nCRJuZIk5cpdVd9kGckgiuVauOOOOzBx4kS0tbUNe774ocVCOYkxCTl6CQBPAhQEp20i\naooUhfgB0YcsIrDEmNSTTz4ZdX1ya4lKT14RlSb5UCjE16J8Hr1eD7vdzit3rVbLx5NlQAnDZCXZ\nbDYYDAa+DhUFJJRbT08P1qxZw+jB0tJSuN1uWCwWBkyQECu8Xq/HypUruVaWwWBAT08PwuEw/xaR\niR6PBy6XC1arlYEYO3fuhF6vR1JSEq6++mqYTCb09vZCo9Fg7ty56O7uRldXF1JTU5mpvLGxERUV\nFVi1ahWam5vR09MDpVKJ7u5uRvkB/Zaow+Hg2BOhASORCOcg1dXVcd7UkiVLAJx1kTkcDnZRAv0p\nAdXV1Ry7A8DXy8zMZC6/0tJSRCIRnozdbjfq6+t5fNA7cLlcUTXcgsEgL0DEMQmAE8x1Oh3zQ4rj\nnbgA4+LiWAmJlrvYpmhhicnug8lIvSSUfE4iXwTSNpL9+/cD6K+0Lcq5KJzhrvdtkAuqrBQKxWXo\nV1QbJEna9MXmQwqFIuWL/SkAhkcNfIvkywyi6dOnj0hZyRMxY11ThPoS/FfcR64cedxJXAkDA1d0\nZCGJbdPfxOC+ZcsWXvXSJEFMBp2dnQx9JwVFgfdQKMR0TASlJvQf3bfVao2CQAP9kzVRNel0Op64\nVCoVu63IfZiYmBhFarpq1SouZ0FCoId169bxSpySUuneKVEV6J/ciaS1tLQUubm5qK6uxqxZs2Aw\nGJCVlYWVK1cC6LdgEhMTEYlEUFFRgYKCAqhUKnazUSyKCiz6fD5kZGSwlSbGgkiBEV0SKXIChjid\nTk6ATkpKYh5Derd6vT5K8RHKj/qQl5eH3NxcuN1uNDc3c/yLFjFkfdJYMxqNjJgT0yDUajXD+sma\nou3y8Sq+A7vdzpWoSWgx8fbbbzMtkzh5i4shMcGdZCiy61gxp6qqKl7c0UKOnvNIZf/+/bjiiisw\nYcKEqO0Xo8KhNJWvQ4ZNClYoFA9LkvTwOTfcn+H2IoCjkiTdK2x/AkCXJEn/qVAofgNggiRJDwzV\n1j9bUvBgct9992Ht2rWoqanBr3/966+kTbI0gNgfI3D2oxksSCwqNPEYeTG6hQsX4r//+7/R19eH\nsWPHcqIocNYVQknCVAyRthPbuvya5CKmJFdKrqU2ia+O4mNlZWWcdKvT6ZjF3OPxIDc3lwlXm5ub\n2dJobGxEamoqdDodQ7jr6uo44E99IEBCW1sb519RAq7T6eREXuLlEwsnUjyLEo8DgQA6OjqQkJCA\nrKysKGaHWbNmIRgMoqCgAH6/Hy6XC7NmzeLric+UrtHd3Y2tW7di5cqVDKYQa215PB5s3boV69ev\n53PFZ/bRRx9xYjMpbsqpAsB8gSRqtZprhpWVlXERR1JgtPgghCDQbzH39PQgLy+PrysmMYvcg9Rv\neh/E9/ib3/wGNTU1nLNG/RTzBIeSwZKORZderGTgoWS46y5atAitra34+9//PuI2v00y0qTgMSNo\n6yGFQnEFgAkAvAD+JElSZATnXQ/gpwB8CoXivS+2PQjgPwH8P4VCsRTAxwB+NIK2Lgn6Lau+vj7c\ncsstX1mb4oc5XGZ/rA9UrNoK9E8isT5uSsxVKpXMmE3QdxIqDdLY2IiamhouuUFxlUgkEgX9JuVI\nfaOYlzzGqdFoUFtbC7vdjhdf7Mf22O12dvX5fD6YzWbk5OTA4/GwYqEcJ8pTosmYuNwIfTd37lwm\nvd2xYwc0Gg0rB0LT0YTr9/s5lpSWloZgMIisrCxWUklJSVyMkSZ3oN9SW7VqFWbNmsXWNRWVJIYN\npVLJDB0mk4mrLPv9fuh0OuzZs4erB5ObjVg+zGYzkpKSYLVamYg3KSkJHo8HH330Eacq2Gw2VkI2\nm40VODF9kALUaDSsgCmfjbgASeFUVlYyKKSzs5OtPHrO5IIVxx7FmkSF7PP52Aoj5T927NgB41XM\n8Yo1nl0u17DMFmSlyfeLSky+qBtOQe7fv5+rhZ8PoOOrkJEo8q/7WiNxA0oA+gC4AEwGsF2hUGQN\ne5IkNUmSpJAk6V8lSZr5xc/rkiR1SZJ0kyRJ35Ekab4kSUfPudffABmJv3kwQtnBjiFan5G4AkVZ\nvnz5sP3xer1RsHZxMFEfxJwqEpVKxcAKAFH5KPQ3JeGGQiGMGzeOt7tcLiYxJYVnsVhQWlrKeVrE\ncP7RRx+hpKQEGo0GTqeT86TouqFQiOMlarUa7e3trBzcbjfWrFmDWbNmMVecSqViUAXB5Ok+i4qK\n0N3djYaGhqi6S8QFGIlEYDabUVxcjISEBGZUJ5olmuypZD0BEUiIUSIQCEQpBqPRiGAwyEwYQL/F\nVV9fj+LiYtTW1iIYDKKiogLFxcVoaGhgDkSVSoVAIIDly5ejq6sLLpeLnx8JKbCWlhZUVVXB4/Ew\nHZXf74dSqURqaipbjESAS9yIoVCISXtdLhcsFgtTSEUikSgXW2dnJwKBALxeb5RbEehn7wCA4uJi\nzoMSrSY6vrKykseFzWbjhQ0pJsrpI6srFApxAVIx/kPoPBp35IKWf3+xStqLx4jAJdHbQH2JVSdr\nKKH2Dhw4gPj4eG5HTmwr79OFkH+kcjzfa41EWfklSfr/JEl6RZKkB9EPPf/9eV3tIpAL9bLlMpIX\nMhScNdYxVFG0ra1twH3EUkZ0DFEeDdcXOUu7aLUQXFt+LYIOx2qfJpfCwkKeTGbMmMFt0ORACaFA\nP+BBjJ/95S9/YZYD4CyZaXl5ORdkpGdE8ZJwOIySkhKEw2EEAgG0tLRwLILiOCaTCY2NjTzxkUVF\nMY+0tDSsWbOG74MUCFEdNTc3w+FwIDU1FeFwGGazmaHwPT09DE7Q6XQIh8McEyJ4ejgc5mupVCqU\nlJSgs7MTBQUFrHyodMjMmTPh8Xgwffp0pKamMpqvuLgYSqWSqZ86OjpQUVHBLOpWqxW5ubmIRCLM\nbUiWR1JSEoqKigYoNKVSCb/fz6VRyPqKRCJs5RHTOlloBoMBJSUlfF/A2Xw8gptrtVqm1bJarTwh\n06JCq9WitraWFzFerxcVFRUIhUIcIzQajVFgCSAaTKTVahlx+uGHHwLoV3JqtZqtYAIHie2IiFix\nXaKGkltQ4v8UoxxOaPzJ6dI+//xzHDx4EDNnzuTtIi0XCQGQLhYqpq9DRqKsjigUiu/SP5Ik7QHw\njYXnXciX/VXDRcX2vF4vEhMTMXnyZLS1tUWRxwLRFDCxcqiG6qOolEQR/y8pKeGPVF7LSlxxUmIv\nEI1q1Gq12LdvH7vFRGYKOjYUCrFSomsRkIImKrHP5Ea02+1YtmwZ8vLyOF8K6J8Ic3NzGSBgsVhg\nMBgYRNHb2wun0wmtVouenh52wZFLq6qqiicjUmoUxyopKUFBQUEUmWwgEGBovMfjYeQdlekAgIaG\nBgZBtLS0ICkpiZkvyIUpEuEWFBQgKSkJHR0dUCqV2LFjBxobG9HS0sKKgawTsrzpueXl5UGtVsNi\nsXDCM1lP3d3dzG5BjPDUL4rn0TMOBoMoKSmBUqlEbm5uFCM+jZ2qqqooy1ar1cJsNrNi9Xq97Oaj\nBOycnBzmVHS5XJg7dy5cLhfD5+neKHYG9LtgifmCxhkpRJvNxhZKb28vj1sAvPAgRSvmC9Lfouta\nPrbF40Tuy5GwTYgLM7n1FgqFcObMGXYD0nXkcq5lh76NMhJl9WsALysUipcVCkWZQqHYACBwgfv1\njZQva0rHWt2R0McrRwTGcj0M1Q8Rtg6cBU0MRuQpJkqKdDi0T7werUYJGk3nAMDTTz+No0f7Pb7E\nEwechY4D/ROJ2+3myY1KnhOiq76+Hs3NzSgrK+M+0yS7YsWKKNogr9fLHHnkKrJardBoNMjNzUVj\nYyOKi4uRlpaGqqoqBlAQqk2tVrPyCgQCnHdFABB5XCInJwc9PT1cRsNsNnMZDQBs5VEcDOiHexMa\nkVyX5C4kbsNwOIxgMIiEhASoVCrMmjWLiW+pHbvdzufV19fD4XDAZDKhvb0dTqeT2TGeeeYZVkTk\nhiwtLeXFB7k5KSG3ubkZkUgEBQUFsNlsUKlU8Hg8/G7oGRBCk9y9pDyam5uh1+uhUqng9/vZ6hWR\nfsXFxazggH4FTVY4PYf29nZ4vV627PR6PZMgk6WTk5MDg8HADC+kFMhFLS7IxDgYucjJeyD/fmJ5\nOojxhL4D+Tcj/77kbYjWFcHWRWU1nAylTGP16dsiwyorSZJaAMwE8McvNm0FsPhCduofIcO90AtF\nJjmUG3Ik+RHTp0+H3+/H6dOnBx20osjzpICBkHJiNafAsSgU5wDOWj/k+6eyHHLFRWUeQqEQr74X\nLVqEM2fO4IYbbuDSGwC4FAVNKi0tLQgEAkxqunz5cs7D2bFjB3Q6HbKysqKURWNjIzweD7NZkMWx\nYsUKpl+iekl0TwSaMBqNzG9HyEByi5WUlKC2thbl5eVcv4rqaonvUq1Wo6ysjNFnRONErq20tDSo\n1Wp2uwWDQej1ejgcDmaZoD4Tmo/ojkwmEwoKCthKAvotH7oXQuYRq0VJSQmX6iCgiMViQUtLCx59\n9FEYDAauWJyUlASfzxelJIuKivD4448DALq7u6FUKjmfqquri8EhZHF6vV7up0qlwkMPPcRVjoPB\nIKP0mpqa2FIT3W8ajYaVpQi7J0uHrFiqXRaJRBg4AvRbWmRd5+TksPvP7/ezEqJFFEHVaRwD/cqS\nvjkxZktKRlQ+8hgW9VMU0S0NxPZuiNbV+SiroZTpYNu+DTKiPCtJkj6VJOl/JEmqkSSpVpKk4xe6\nYxdahnuhg5n3X5by5Mu6IceNG4e+vj589NFHMQftUKwT4vGxKJNoxQz051PQ8UajcYAVJSo7rVbL\n+S60nWiKRBchnV9fX88ktxqNhmMdWm0/y3VRURFbcRUVFdDr9SgsLERpaSlPitRmV1cXCgoKeLVL\nSLicnJwomLXb7Y6KN5AFR0mqVEKCLKrm5mbYbDZMnz4dXq+Xk2aB/rgXIQxVKhWam5uRlZXF+71e\nL4xGI7xeL4qLi6NiEKRs6+rqkJWVhbS0NKZUamtr4+q75HIjtgYCEQSDQSiVSrhcLuY6HDduHFQq\nFaxWK8cWHQ4HDAYDgsEgtNqzzPjhcBhbt25FRkYGuxstFgt6enoYfk7KhIpNlpaWMh2URqNhMEhz\nczP8fj9bpyaTCY8++ihPxmQBhkIhVFRUwOFwwGazsWuQFgwmk4mtMADMbGG32wckiet0uqgYqNFo\njALoXHXVVQCAjz76aEB16Z6enmFpkMTt8vhULEYMAvqIYxwYfLErKjuXyzUiZTUSINY/g1wqEXKO\nMhLfsShf9aAi2Po777wD4GxiI8lQmfJiX2IpTfFjpPgPtSGuBuWuDZFdglajVH2XVpqHDh0CAJw6\ndQolJSXw+XysAI1GI8efCIpMConITEVXJLn7KOmTrBKbzYbS0lKuQSQvDkmuK5vNxu49i8XCzAzi\nRK3T6WCxWLicBiUeE9Civr6eefkMBgMnxBJsm3KcnE4n3G43W2vkFisvL2ci2YqKCqhUKo45ORwO\nnnxdLhe7Ct1uN/Ly8rB27Vp0dXVxxeCEhAS2jHbs2IHOzk6UlpYiLS0NpaWlPEFbrVao1Wr8/Oc/\nR3l5Odrb29HY2MjtkuL2+Xxwu91ob29n0AgR1VLpD7LiSIqKivgdEVMHQeorKyu5JIrBYEB7ezuM\nRiOjDOkeRRQclWQhoYrVYrmazs5OVFZWsnfg448/xp///Gd+zgTjp8WDWHU41nd5Pt9qeXk5L0zE\nb2Kwxa743ZlMJuzfvx8JCQmMCh3qHHGhHGux/Y8Cj31dMvrhhx/+uvswrDz33HMPL1u27OvuxnkJ\n1Qf6qiQ5ORmvvPIK3nzzTfzyl78cUJoB6P/o5NelDzFWf2iFLd8mSRJ6e3uRkJAAr9eLlJQUhEIh\nZGRkAABvo/2BQAAffvghtm/fjsWLF2Pv3r1obW2FTqfDlVdeibVr16K3txfXXHMN0tPTkZ2djYSE\nBO6TSqXiFX9PTw8OHjyIEydOQKfT4bXXXsO7774LnU6HEydOQK1W449//CPGjBkDtVqNgwcPIj8/\nHwcPHsSMGTMQDoexf/9+XHXVVdi0aRP6+vowefJk+P1+TJo0Cdu2bUN5eTmefvpppKSkYMaMGXjs\nscfQ19eHtrY2zJs3Dx6PB93d3Rg/fjyeeuopjBkzBvHx8fjggw/Q19cHg8GA/fv3Y+/evThw4AA+\n+eQTJCYmYt++fbjqqqvw5ptv4vbbb8eMGTPwySefYNeuXXjnnXdw4sQJjBkzBs3NzYiLi8P27dtx\n9OhRjnVNnToVmzZtwnvvvYdrr70WmzdvxuzZszFlyhSkp6cjMzMTFosFzz//PNRqNe6++26kpKRw\nCY0ZM2bAarVi+vTpyM7OxtatW/Hyyy9j0aJFSE9Px65du9De3o7s7GyMGTMGmZmZGDduHDZt2oSk\npCS8+uqrKC4uxrRp07Bv3z78/ve/ZxfrQw89hJ6eHhw5cgSfffYZZsyYgV27dkGpVGL8+PH4wx/+\ngDFjxmDq1KnYvXs3s3/cfffd+OSTT7BgwQK0t7djzpw56Onpwfjx4/H8889j0aJFmDp1KgBAkiTM\nmDEDWq0WCQkJXOLe6/Xi4MGDSElJAQCkpKTwO7nssstw++2347333sO9997LYA6dTsdjlCQhIQHb\nt29HfHw8b7fb7Zg6dSp6e3t5zCckJCAUCiEQCKCnp4evK/++EhISeF8scblcUdcSz1+3bh36+vrw\nq1/9atDzSYincTAZqg8XszzyyCMHH3744eeGO+6SsvqGCA3wUaNGITMzE1arFXFxcUxhBEQrD/F/\ncmfIFRWtaAcTUZFQO7SdlBb1KyUlBTqdDvHx8bjpppt4P6HKdDod+vr68Pzzz+Po0aMwm83o7e3F\n9u3bodPpuI+hUAi9vb04duwYcnJymLD2nXfewe2334558+YhPj4e48ePxw033ABJktDc3IzJkyej\ntbUVJ06cwP79+xnOvXXrVlxxxRUwm83YsmUL9uzZw2S08fHxyM7OxtSpU6HVaqHT6XD8+HGkpqZC\nkiRMmTIF8+bNQyAQwG233YatW7ciFAohLS0NFouFa19t2bIF999/P86cOYPZs2dj6tSp8Hg8OHny\nJL7zne8gEAggPj4ekiTBYrHg888/x/79+5mV/cCBA9DpdDh58iSmTp2KLVu2QKlUYuzYsTAYDEhP\nT4fdbsfWrVuRnZ2Np59+mmtdvffee9izZw/279+PrKwsXHXVVQgEAjh9+jRuvPFGvPbaa4hEIvjg\ngw/Q3d2NqVOnYvLkyXj33Xfh9Xpx5513YsuWLcjPz8fJkycRiUQwceJETJs2jWNDY8aMweLFizF/\n/ny89tprOHLkCBdLXL9+PXQ6HdLT0+Hz+dgS+/zzzxEKhXDNNdfgxIkT+PDDD3Hy5EmsXbsW2dnZ\n0Ol02LRpE2666Sbccsst2L59O7Kzs9Hb24stW7Yw88aHH36I2bNnY/v27Zg3bx4kSYpaPOl0Ouzc\nuRM/+tGPEAwG8V//9V9YtmxZ1NhasmQJZs+ejYSEBLhcLvT09CA9PT0qV2rBggU83nt7e7F3715I\nksTjQlSSNP6HWoiK+6keWSgUwt69e6O+m6effhpXXnklfvazn53LdBBT6Jl802SkyuqSG/BLyoX0\nHYtmvegKu+mmm7Bw4UI89thj+Pjjj/kYCnrLoeuxcqcof0VM9B3KNTJUsrD4t4gMJCHk3vz585GQ\nkIDW1lYAZ+NmYk0rcvs1NzfzNYkRnNx9hBokSiCCk5OLiALoy5cvZ1Z1n8+Htra2qDgJuRwBYMmS\nJQiHw2hpacG6deuY/JagzpTflZSUBJVKFcX/Zjab4XK5ooosNjU1ISkpiWtFUaJuXV0du+zMZjPX\nkFKr1VEFGtetW4e2tjbOD9JoNBwnuvrqq1FRUYGkpCSsWrWK74kSptVqNYLBIBPHtrW1wWq1IjU1\nlcER5CKsr6+HwWBgtJ+4eCF3HiVGk5uOFJXL5UIwGERXVxc/R7PZzGwXlGMGgIEkc+fOZWCOTqfj\n2A4hG4k0uKSkBHq9ntkx9Hp9FJs/je3169fj1ltvxaFDh/Dss8/isssug1arjaJxqq6uHhDPFMe3\n6BoU41RifFZ0xYnHiHHawZC8JG63e0As7MCBA1+JghH7+HXLhZoTh+UGvBjkEjdgv4iDPBgMIjMz\nEz/4wQ/wyiuvfKm2gNi8f7SNJgmRyieWiMpL/lES2m/jxo249957YbPZOFAPxOYfFP8WPwCitamq\nqoLZbI5ClMlja8SBJ08kDYVCHFcCztZ4AsCregJM0DGE2iPWBp1Oxxx4BE6ga5GSII7APXv2YNas\nWcx8TuAPShSmOByV2CAWcpVKxfE8SuglIaomEqJsor8pp434CJOSktDd3Y2enh6kpqZGAUaoX8SD\nCCBqEbBo0SJmdwfOcgFScjAVDqT3Qc+WFg6ECiTlRPcVCoU4j45Qm+K4pLHX2NiI0tJS3idJEn77\n29/iscceQ3Z2Np599llcd911fB6NPRqvscYtjSmR60+08OXfh9g3ck2eq9D9FhYWQpIkjB8/Hr/8\n5S+5IsE/o4yUG/CSsvqGisvlgsfjQUVFBbZs2YL58+cPOGa4D0r+QZ6rDPZhD3U8xTAmTJiAyspK\nJCcn80QhxiYeeOAB/PWvf+VJhvKmioqKYipZkfKJJh+aGAAw4IMmUSI/BTBg0iSlQ9V8e3t7MXHi\nRKSlpUWRuFKFXBHoQHx2hYWFWL58OebOnYtIJAKlUsmEsnICXFJQNMZJ4ZBCpP3E4yeS34qkuHSM\nxWJBfX09K0myvKjfANhlR+cDYPb55ubmKEWsVCqjlImoiImuie7H4/EwAbGc0khUYvQ+SInJrRX6\nm4iWCR2oUqlw4403YtmyZXjppZcwb948bN68GW+//TYnE9NChJQLjRFqN9bCLNZYFZXYYIu0oYib\nh5Pe3l4kJiaivLwclZWVIz7v2yYjVVaX3IDfUDGZTLj//vtx9dVX4+6778apU6cGHDPcyi9WXpW8\nRIIIwRUReaLIGS3ECUrM9vf5fBg7diweffRReL1erF27Nirni65BsRByVQJgSiM6JhQ+Gcr+AAAg\nAElEQVQKRfWDIPTihOfz+Xhi93g8qK+vh0ajiaqxRO2TogLAtZtUKhVqamqQn5/PMO7a2tqoiY4I\naouLi5ntm/gS16xZg0AgAKVSicLCQrS1tSEpKYlde0SkS7x6ubm5XDixpaWFqwET5RGJwWCAwWCA\n3W5nGqd169ahrKyMiYKVSiWKiopw4sQJ5lIkC5HcjZFIJKqsSSAQgNPpZIsLANfhEkl8LRYL1qxZ\nA4vFwmOMCi+KTPmUR9Xc3MzJ2hqNBoWFhfzcRZ4/ep8iKlAsKVJYWIijR49izpw5eOmll/CDH/wA\nb731FuLj46OeD6VEkFDOlZwUl/ooR9RSG+LYHMwqk6P7zkWIGuqaa645p/MuJvmKEIgjSjK7BLD4\nBsuYMWOQnp7OLrU5c+Zw4Ha4ADCJiIby+XxMd0Qilh4n5TZnzpyocwkgQQHtgwcPYtOmTdiyZQvM\nZjMHlLOzs2G329HS0oJgMIgDBw7ghhtuQGZmJlwuF6ZMmcJIQ6LLycjIgM1mw+LFi5GSkoLt27cj\nOTkZnZ2dePXVV5GTk8PBb7vdjs8++wzhcBjPP/885s2bhwMHDmDp0qUYP3484uLikJycDKVSCY1G\ng927d2Pv3r2YNGkSXn75ZXR1dWHatGl4+eWX0dfXh0AggDNnzkCtVjNog0AA9fX1OHr0KI4ePYq4\nuDikp6dj7969OH78OD744AOcPn0a27Ztw+HDh6HRaKDX6/HJJ59g0qRJWLRoEcaPH49jx44hEAjg\nmmuuwbFjxziW98knnyArKwsWiwVXXXUVRO/Htm3b8Le//Q3p6ek4fvw4rrzySixduhT79+/H9ddf\nD7PZjJdffhkLFixg+qfvfOc7bJXFxcXhuuuuw/bt26FUKvHOO+9g7NixuO6667Bv3z7MmDEDJ06c\ngF6vx8aNG3HLLbegtbUVHo8Hp0+fZgtLkiR0dnaitbUV8+bNw5///Gcu/dHa2or9+/ejt7cXycnJ\nuOmmm+ByudhNt379esTFxeH555/HoUOHcODAAahUKh5Xer2egTaEzNu7dy9+97vfYfXq1fj444/x\ns5/9DL///e+RmJiIjIwMvPTSSxz78Xq9yMjI4PGp1+uZAaS3txfr169nUuPx48dzOogccBTLY0Df\nlfht2Ww2jBkzZkDsKRQK4bXXXuN4m7ztYDCIF154AT/60Y+YM3MoGek3/Y+UryLe9sgjj/hHArC4\n5Aa8SCWWWyTWx+P1evHQQw/hrbfewrZt25CdnT2grZG6PchFMlT9H3LVyfsHIKYbR2yfpLOzE01N\nTSgtLYXNZsPy5csHvW86HhhYKJKojyh2Qi6lsrIylJaW8kpevK7VasWLL74Y5T4EzrqoSKgMht1u\nRyAQiCrx0dTUhIqKCvh8Pi5HX1BQwG49sf6VWDOKzhdjT1RLq6OjI2Z8S2S3IKQdlVIRXYS1tbUw\nGo0ck6K8ndzcXI7ZUKzNYrEwOIUsG/E50X1RvSwCWsj3EXWUWFZDdOsBZy1WMU5I90MLIRp34rXo\neHJX+nw+PPHEE7jqqquYP1AcJ/LrkCt2MDddKNRfJJH6HquO1bkK5YbFconH+iYcDgfuvPNOvP/+\n+1G8jrHATN9mueQG/Arkq0C1nG8bsdgpYg3enJwcPPXUUzh16hR+//vYZPixCiaK/ZIDI0SCT/l5\nlKwr759ITUMuI/m9E+s2AFx//fW44YYb8Oijj2Lv3r2w2+1RaC9CCGq1WlRXVzMlE/WNrBXisQPA\nnH01NTXo7OxEc3PzAKaO6upquFwuaDQaLFq0iJm13W43NBoNI+osFgsnk/b09DA6MBAIYO7cuVya\nIy8vD3l5eVyuXq/Xo7e3lxUJlcPo6uriRFly4ymVSjQ2NiI3Nxf5+fkIBoPIzc1FRkYGAx4IdAGc\nZeN2uVxQKpVoaGjgiXvmzJnYsWMHFy+k2liNjY3wer1oaGhAZmYmdDodfD4fJwgTlVJ9fT0TxALA\nzp07AYAJZwl9SeS6BLSg1AJSRPI6U0ajkd1v9fX1zCwiF6fTGaUUaVxNnz4d7777Lv7zP/8TOTk5\neOONN5CVlRU1/qxW66BKAjjrthbddFqtFgaDgb+FWIpqOBcXjW+RWmywRVqsvoljWRR5IvxXKUNV\nQr7Y5ZIbcAj5KkzuWMm5X6bdWBQ0EyZMQF9fH2w2G+bPn89orqH6JPZBnjS5adOmqARE0fUhuvwo\nUbKqqgo33HBDVL4VrYrJ9ZGQkMDHkNuOqIb+5V/+BRaLBZIkYcuWLZg2bRokSUJrayvi4+OxdOlS\n9Pb2Yvz48QgEApg3bx56e3vhdruxdOlS7N27F4FAAMnJyRg/fjwfq1QqkZOTg7179+LYsWMIh8OQ\nJAn79+/H1KlTkZ2djWPHjnHy8+HDh7F79262PJxOJ7Kzs3Hw4EEYDAZcddVVSEpKwpQpUzB58mQc\nOHAAN954I5KTk+Hz+biIIrGPx8XFQa1WIxQKoa+vD9OmTUNycjICgQDS09MRFxeHMWPGIBQKYcKE\nCZg1axZOnDgBrVaLDz74ACaTCcnJyWhoaMDp06exfv16PPTQQ9ixYwdaWlpgNptRWFgIj8eDkpIS\nfPDBB7j99tvR2tqKvr4+JuZNSkrCggULAIATqiVJwvHjx3HnnXdi/PjxOHToEOLj4zFu3DjU1tZi\n0aJFePPNNzFr1iz87ne/4/OPHTsGjUYDv9+PG2+8kROap02bhmPHjrE7c//+/QiFQpg2bRp27dqF\nSZMmYdq0aZy/JFIrxcfH45ZbbkFKSgp6e3t5olYoFFi2bBleeOEFLFiwAC+++CISExOjcpZSUlLY\nKiGX4fr16/m95eTkDPhexHGuVCrZ9SyOdfouYm0XvyP59+P1eqOS6el3LHn11VexY8cOPPbYY+gv\nrN4v4jcjylfhBhwqr/Lrkkt5VhepDLb6G+kqajDQxIMPPohJkyZhxYoVOH369IB2z2WVNpQ7RMx9\nIouNqIhIROoZoogR+0Gr8h/+8IewWCx4/PHH4ff7odFouK5TTk4O50KRW0eEDWu1WmRmZjIgQwRK\nEBUPHQuAWbopwA+A+6HVaqHX67msB1kCZrOZAQXNzc1wOp3o6uqC3+/nYoV1dXVwu91obGxEOByG\n3W5HV1cXo96ampr4mfp8PrYuyfoMBALo7u5mUAeRyqalpaG+vh6lpaVITEyExWJBdXU1r+BLS0vR\n1dWFuro6ZGZmwmazITc3F06nE8FgEMFgkJOWI5EIlx+h2k4GgwGFhYVccqOlpYU5+jIyMpieyOFw\nIBgMsgVKz5gUusViQVtbWxR4oauri+tcud1utLW1cZ5WaWkpvyti1SfeRrJkXC4XNm7ciOzsbDQ0\nNOCpp57CY489hj179kR5GcgtbLVamfiWikJqNBp2N8bKhSJrajD3uJiPSNeTfwPyv+n+RU9DLLc9\n9aezsxOXX355lKL6KuRC5Tl93XLJsrpI5MuumC6//HJMnjwZzzzzDJKTk3HddddxoNnlcsWMZQ0l\nBLig4DStZDMyMphtQBSytuLj43Hs2DG2sMhCo/tLSEjArFmzGIwRDAbxP//zPxgzZgzy8vLYOqNk\n5Xnz5mH9+vWYNGkSenp6MG7cOCxYsIAnk4yMDI5LJCQk4LPPPkNKSgpSUlLQ2tqK2bNnc0LqwYMH\n4fF4EAqFsHv3bnR2duL06dNc6JAmlilTpsDpdDIoYc6cOZg0aRI++eQTvl+j0Yh9+/axFSlJEkKh\nEJ588kls27YNx48fZ5j+Rx99hLfffhtjx44F0E+yeuLECeTn58Pn8yEuLg5XXHEF+vr6oFQqYTAY\nsGHDBkycOBFTp07FjBkzsHv3bmzduhX79u1DJBLB66+/jra2NmatOH78OKZMmYIjR47gk08+QV5e\nHsaOHctWIFlUAPDpp5/iuuuuQ29vL/bt24cpU6ZEWXi0SGhtbcXdd9+NzMzMKIupsLAQvb29CAQC\nkCQJn376KSZNmoQTJ06gp6cHkiQhPj4eGRkZ+OyzzxAfH8+ciGPGjEF+fj6zlGzduhWZmZnIyMhg\nIMmePXuwatUq9Pb24g9/+ANSU1Mxb968KKuAqJcyMjLYVUnvgazs5ORkBuTQuxXHoWip0PilcR2L\nrUL0MIh/D8YEE+ubJmBKRkYG1q5di8TERPziF78YlH1C3D5SS+tiA2EMJ5csq2+AfNUroIULFyI7\nOxt//GN/NRdaNQ4HqZX3w+v1orCwMMqKo3iD2B5BfmkFaTKZmAw2lr9f3Ea5UytXrsQdd9yBdevW\nYe3atdi8eTOAfgtSdN/o9Xo4nc6Y5cip/pUYQwDAQfjCwkLk5OQwRJuIVMkipL7r9Xq+ptlsRkdH\nB5dmr6+vR319PVpaWgCAqYioii1V3vV6vZyX1NXVxc8qLS0NRqMRFouF6ZqIxYEmOoPBwOzpZJlQ\nOREx/wnoB04UFxcjMzMT1dXVbD11d3cjLy8Per0eRqMRGo0G1dXVbFU6HA4uvCimHBiNxgElUBoa\nGrj0BtUpy8zMRFVVFerq6jgBWqlUcgkVsnJFEAwBctxuN8eJgP7xSe9GZEB55plnMGrUKK56TEo2\nFArBZrPxsU6nMwp2TmztlE9H71UO2KExIsaF3G73oN8JnU9EyHS8ODZHKmQRbtmyBVu3buXq34NZ\neEMBo/5ZABgklyyrr1G+7ApIvrJSKBSor6/H8ePH8Ytf/GJEbcSyulJSUqJWdKFQCDfddNOAc3U6\nHccY5NvIpSbyrImxAQBMcjt79mz09vbCarVCoVDg1ltvxbPPPotDhw5x4T6/34/Fixejt7cXGRkZ\nHI8gBBat8kUouyRJWL9+PZeJ37dvHwBg6dKlvCKePXs2nn76afh8Pk6yTU9PR3l5Oaqrq5GSkgKN\nRoNDhw7hnnvuYUtnzpw5OHjwIEPgN2/ejOzsbGg0GoZs9/b24sMPP4TJZEJcXBw2btyIlJQUvPvu\nu9i3bx/ef/99vP766zhz5gyAfuqdCRMmoLCwEIcPH0ZtbS1uu+027N69m2NGoVAIR48exYQJE5Ce\nns4J4TfeeCMOHz6MEydOYPHixaisrMTUqVOxceNGFBUVobW1lYlvi4qK0Nvby3E1p9OJlJQUJvrd\nu3cvJk+ejB/84AeYM2cO7HY74uLiEBcXh3nz5sHn8zH5b11dHXQ6HZKTkzkmpdFo+F0TN2QgEMDs\n2bNRVVXFVg+N3bKyMsyfP59pth5++GGUlZVhyZIlbHGRhURpBxkZGRg/fjySkpKQnp7Oz5ysI+Ky\nFGNGZBFVVlbirrvu4m3AWYVDVlIsa4ksdvF4amM4nk1RNm3ahH//939HZmYm/vSnP+GKK66IedyX\n4fq7GGHug8kly+pbKuLqMNbK6tSpUzz5jaQNEWYsWiZiQqRIhUS/aWUay5dP1gxl5efk5ERx6ZWV\nlYESfr1eLy677DLMnDkTd911F15++WUYjUYkJyczwovK0YtoNaB/YiEElggRF5+PTqdjRFphYSEC\ngQDsdjtXK+7s7ERHRwef09DQgM7OTsycOZMr9ZIFQvfg8/mwZMkSAP2QdSIWJi5BtVodtfKuq6vj\npOZwOIykpCS43W7k5ubi6quvRlFREd8jAKxatSqqSKHRaORn293dzcdVVlZCp9NxKRa73Q6lUsmI\nSIfDgbS0NFRXV8Pj8SAhIQFJSUlcObizsxMOhwNFRUXw+/38/CjXjsq4kDXp8XgYiWg0GrmAI5UV\nES0Q4tCz2Wwcf/T5fFyTTKwQTejNUCiElStXQqlU4s4774yK+5CFRMwhNEbFkiF0HI0N6ot8fNbU\n1MDr9UahT0loTJI1N1IZaULws88+i4ULF+K73/0utm7dCqVSOeAYsarx+cpXbXVdDHGwS3lWF6mM\nJDcqlvzwhz9ER0fHoAXbzmcQy3nRhms3Fu0M5T6JrhdxMqJtjY2N+OlPf4pJkybhlVdeYZJX8VlU\nVVWhvLycg9Qirxvl8RAPHSkqSmYlKDiRsdJzknP+UdVgkb6IqI5KSkqiWCXkeUvUrvh/WVkZsrKy\nmHoJQNS1ROokKkhJpSkKCgrgdDqRlpbGlEptbW2YO3cuc+xR3pVarUZ1dTWMRiPnaYn8jgAG8Bk2\nNjYiLy8PXV1dMBqNTG5rtVoxbtw4rjtF7YjPj943uQTdbncU1yEtCEjxUk4Vibh9+/btuP766/Hg\ngw+ipKQkKu+PFhvieBtuPFO/yAKXg5PkeVcXyq1mt9uxePFiPPLII3jkkUdw6623wuFwID4+/oJc\nj+TL3tOFfCaiXMqz+obLuSoqmuxHjRo1wLIi9NFIB55IY0RKU4xvUHtypSPP3xInyJqamigkl5i8\nKfbtJz/5CbZu3Ypjx47h1ltv5cqvopAlRPExyvOhNkhRkdWVmZnJLiYAXPEWOFtw0mQycR6TXq9H\nd3c3gH431qpVq7ik+o4dOwD0x70oV8rn83GlW2KLdzgcjBz0er3o7e1FZmYmSkpK0NLSwsm5K1as\ngE6nQ0tLC9LS0tDc3BxF/ZSYmIjq6mrk5uZyXGnHjh24+TvfwW0uF/5t4UJICgWW3ncfpq1ejZwr\nr4TFYoFOp+OCkIsWLWKKJ4/Hw1WEyeooKCiAyWRCYWEhVyn2+/2orq5GcXFxVFFOUtB+vx8ul4vf\nsd/vZ4sa6EdakjXkdDo5hlRVVcUxMI1GA6vVymPBbrfjsssuw8KFC9kypTijXNHIFzm0TRS9Xs/v\nWVR0JPK8q1htDLaNZCSVwwsKCnD33XfjkUceQVFREerr6y+4ogKGt66Gs5YutpjYBVNWCoVinUKh\nOKxQKN4Xtj2sUCg6FArFe1/8/OBCXf+fTWhgnTp1Kgq6TvvOZeCKEwNNUqKPntqLlRgMnHUtiqtW\nIBoOTMnDpFC8Xi+sViuAfrfX//7v/2Ls2LG44YYbBiRfrlmzht2I1Defz8cuJ6BfIYmB/FAoBIPB\nAJPJFNUvcZVP1pPb7YbZbObjXnzxRU4ira6uZnJVKtsB9Cs1it8AYCsqEolAo9GguLiYJ/iCggIE\ng0EAwJ/+9CfU1tYiNTUVTU1NbA1ZrVYUFRUhKSkJxcXFUW4pM4Cby8pwxYYNGHXsGBQA4k6dQqrL\nhc+vvRaBNWsYSl9TU4OZM2fCaDQy/2BiYiKnCojuU5fLhXA4zMS0xKVos9mwaNEihEIhti4JQEKg\nDGJdp/dCAJJQKASz2czWDTHBA/0uupqaGoRCIfj9fjz//PP46U9/CkmSUFhYyAsO0aUqjjVxgSJ3\nZVN6g9ziF9MfYkms72Sob2c41ou+vj4sWrQIzz33HFatWsXFKQeTf6S77WJTRsPJhbSsXgBwc4zt\nv5ckaeYXP69fwOt/q2WwQT1u3Di2rOTZ6hRrEid/+p8GLhHPni9BpRi3oAlBRFERCwUxUNC9aDQa\n1NTUcDvXXnstPB4P0tPTkZ+fz6S34iRFiokofkpKSrjv5H4qKyvjcuwajYYh8Z2dnVzyQoxfqFQq\nBnUA4KReqlcF9Csmip0QQ7tareZS8eQKKykpYRciUQlRLlNeXh6sVitycnIQHx/PLObEWkEVoA0G\nA7vYOjs7MfnUKfy73Y7LP/sMo2WLEnz2GcacOoUH3n0X9+XnA+iflNPS0hgBCPTnxalUKnahEncd\nWU2khKnvFosFq1atQl1dHYxGI5egp79zcnKQlJQUpQxIrFYro0OpwjGNE41Gw+9y8+bNOHXqVFQ+\nFy0ESHmK41a0aCh+SnEzkb1/MEtKbmnJvye5p4Cs93OR7u5uLFiwAK+++iqsVuuA5N9Y39g3TYH8\nI+WCxqwUCsVUAH+RJGnGF/8/DOCYJEn/dS7t/DPGrM5XCgoK0Nrait27dwP48sFauftwsFiavAyD\nvA0AA1bD4r7Ozk7U1taioqICWq0WZWVlqKmpwd69e7F06VK8/fbbuOeee/Dggw/i8OHDUX0QP3qq\noTSciIqcajKJEGs5nx0A1NbWIj8/n60ch8PBMHFyk4oWkNPpRHl5eRSPn7wm1o4dO9ht+eijj3Ii\ncXFxMZxOJ4MyKFH4NpcLV2zYMFBRCXJm9Gi886//il1Ll3JciuJR9B5IORFAg4Qg+eLzpPpbRLVF\n90HlQmiRQO9RjEPR+xHLtxDvIo2ZJ598EpWVlUhPT0dlZSXUajU/u1hSVVUVxXlI/a+srMSaNWv4\nmmIbcs5LsX8ksWJhI42PySUUCuHmm2+G3+/HSy+9hIKCghGf+88mF3PMaoVCoWj9wk04EArzTyAj\nWaGdrztg1KhR7AakHJmRKqpY15S7WQg8IK8SHKsqsSiD8Q3SajgnJwfFxcW8nz7ucePG4Te/+Q3u\nuecerF27Fj//+c9x7bXXDmAYIMYCKlxIFpZ4HFlIhPYiNgetVotIJAKXyxUFxgiFQhwX02g0WLNm\nDfPpOZ1O5OXlQa1Ww2q1Qq/Xs0uNfijviqyJwsJCPPTQQzCZTGhpaYHFYsG4ceOgUqmwYsUK5ukj\nQENRURErttzc/m/58o0bh1RUADDq9Glc9/e/8/96vZ7jUYTwa2xsjEISEsOE+Cyp7hflbFHF48LC\nQlY+5AYjZU3b3W53FN8jtZ+TkxOVawUAZ86cQSQSYXdnTk4OzGZzlGUkWjnl5eVsJVEunVarRf4X\n1iRxP1JsUwRpkIjoVLnI3dskYl4hSaxv5u9//zvmzJmDQCCA119//ZKi+orkH62s1gK4GsBMAAcB\n/N/BDlQoFMsUCoVHoVB45JDki03OVbGMZIV2vu6ATz/9lN2A51rJdKhrivvkClBekwqIdq/IyWRF\nEV0zYpvhcBgulwudnZ3YtWsXysvL8fjjj3NeEQEgAPCKmeJRFAejyZ/iF5T4Sdx2AHD11VfDbrfD\nYDCwG0yr1XL9JWJzIPcSAOZeNJlMcDqdDB7x+/1oaGjgWA71ze1245lnnoHL5cJf/vIXVFVVISsr\nC3V1dZwLo1ar2fVHfaPijpFIhJ/TZX19gz5LUcacPMkgCp/Px32nxGe6Fr2jUCiEzMxMLj5JZLP1\n9fWorKxklyHB6Ovq6tjisNlsUUoD6B97YkIvkQKL78vv9+PMmTN49tlnkZOTg9zcXGg0GpSVlbE7\nUFzkyMeR3W5HOBzmsUbPiCwtsrLkqRNarZYh/nT/tD2WkJuxqKhowHHyc/72t7/h+uuvx7Fjx/DW\nW29xUdSLAfr9TZd/qBtwpPvkcskNOLjI3XJ33XUX3n77bQ54D3WsKMN9sLGEoMHA2QlosGvGCoZT\nvEeEeNM5JPJ2H3zwQTzxxBPQarW444478OSTTw4o9wGAodnyUumiW1QeMxAr2QJny9gDZxk36Bjq\ns1imhCDoBA4Q3W7Lly/nEiBiZV45lJ1ymNxuNyKRCFfJpcrQKysrcfkIFNaZhARs2bgxCjpOSoja\nlZfiIFejyJZBlpf8vYjVmemZkWvQarWioKCA9xF0n/KbKLWAQDY/+9nPBpSKEUU+Ngcbq8OVtxlM\nhqqoPVQ78n1OpxMLFy6ERqPBG2+8gfT09PNOQflnkovSDahQKMR0bAuA9wc79pJEi3xipdWwPIdm\n9OjRMQEWBBmOJeerqEwmU1SbFIT2er28ko/lHhQTOAk2LlI0kduNABXifcyYMQNutxtHjhzByy+/\njNdee43vgc7TaDSsqEjIpUSVaylATy47EkLDkavLZDKhvb0ddrudJ0JRuYqIRHL3EZiAABgAMHfu\nXOh0OhQVFXHVXgIoRCIRLt9B57W0tKCkpAQajYbdT0lJSdg3dy7ODIEmAwBcdhmO3NyPbfL5fJys\nDPQDSAixSNZiZWUluxoLCwvh9/uh0+miaLVIyYjksKQAiVLJ6XTC5/MxUIbcfi6XC6WlpfxuCbSi\n0WjYQvvFL34RheQjF65YFobGPJEVy0EWBIAB+i1CERwRqzQGtScqKjkUfaTehvXr1+O2227DNddc\ng+3btyM9PR3Al0vsvSQykSTpgvwA+CP6XX2fATgAYCmAlwD4ALQC+DOAlJG09d3vfle6JMNLR0eH\nVFxcLCUmJkoHDhwY0fGDyebNm6P+37lz54j2ydvt6OiQOjo6pJ07d/Lfw52zc+dOaefOndLmzZv5\nPPk527Ztk7RarRQXFye99NJLfAz93rx5s9TR0SGtXr16QN8rKyv52A0bNnD/xPui69J++b3Q/srK\nSu7n5s2bpc2bN0urV6/ma6xevVrq6OiIOob6Je8zXU+8d/pZvXq1tGHDBqnhySelz8aOlSRg0J/P\n4+Kk1f/n/0Q9R0mSpMrKSr42PRe6Jl1PvM8NGzZE/U/niu9CfBbi81u9erU0d+7cqGPp3iVJkp55\n5hnpgQcekABI9913X1Rb8nEx2FiRjxnxGY5UYn0DQ30X8vs4c+aMVFNTIwGQbrrpJsnv9w849pIM\nLQA80kh0ykgO+rp/LimrkUtTU5M0fvx4SavVSh6PZ0TnyD96+hgH+2jlH6B8ohrqYx/J5CAqKNov\n9oeUxOHDh6UZM2ZIl19+ufTCCy8MaJcmP1IA8nsQt4sTHN2LqJjEyZnOk0/CHR0d0sKFC6UHHniA\nn8nq1aulW265JUrxioqIlNDChQtZ2VE71A9R6XR0dEh7n366X2FddlmUkjo9Zox0+oorpCMvvSTd\nc889fF/iQkFsh5SU+Gzp/8rKyijFJD6vDRs2SHfddRcfLz4b8dmJ+0hI+d98880SACk7O1tqamqK\nuhb1V2xX7D9dV3ymsZSaOHYkSeJrDCaxzh9KPv/8c6mkpEQCIBUUFEh9fX3n3dZXKcMp24tNRqqs\nLjFYfMvk+uuvx/bt23HZZZdh3rx5eOWVV4Y9Rw6eEPnWYkksHrRYbAAABsQh5KwDAJjrjdyIouuE\n4gJiIqjP50N5eTnUajW2bduGzMxMFBcXo6Ghgc+z2WxRNY0oKVXsLzGVE7iA+tDV1cUuSWK9EBkv\nCMItdzu53W5YrVbk5eWx68pisXCMCjhbLZnQdgaDAZmZmcwHSM9j1apV0Ov1UV8NrD0AACAASURB\nVInOdB3dihXwOxz4+4034tO4OGDUKHwWH48jFgs2PPAAXF8wlldVVTFbR2dnJ+rq6qLaoiKRYu0v\ntVqN+vp6ZoZ3uVyci0WxrEgkgtLSUk4ApmcEnAU3UHkZeRwyGAxi2rRpcLvdeOCBB7Bz505cf/31\nsFgsCIVCCIfD7P6lWCf9T8+NEs5NJhPC4TDvE2m35GMnFApFQezFPpHIx91QcuLECdxxxx2w2WxY\nuXIl7HY7l4ChZ/ZVy0hBGt/aXK2RaLSv++eSZTVQBlsl0qrq0KFDksFgkABI99xzj3TmzJmo/ecq\ng61ahzt2KOuMVvHi8WSVyF1LsdqhfZFIRMrOzpbGjBkjvfLKK1EuIXGlLkkSu+dE64a2y91fse6X\n3GfkxhPdhPfcc0+Ua02SzloSGzZskO655x52Q4r9Ee+NrB358xOtDEmS2CIT3YyiC1G0RslKouOo\nffEdiO9i8+bNbJnFcs+KFhltF4+Lde7Ro0elxYsXSwCkmTNnSn6/P6oNei/y5y2/7+FksPF2rtuH\nknA4LH3ve9+TFAqF9PTTTw96nDg2xG3nIl+nhfaPElxyA377Rf4hyN1zJ0+elH784x9LAKQf//jH\n0smTJ0fc1nDyZSYPuVtLnDxjiTihx3LNbd68WXrrrbekadOmSaNHj5YcDof0wAMP8PnipChJZxWi\nPJYmugRpUo4VZ6NzxHZouxibEid1UgyighBdhaTIRBeYeH9iTIz6Rwpo9erVAxTczp07uU1x0hSf\n+1133TUgLig+E/EasZ6R/H3I3cEkVVVVkkajkUaPHi09+uij0scffzzYcBkwTsT3NtL4Dyk+UTGI\nSj6WjHT8t///7Z17dJTF/f/fkxBIIEiUe4KIX0QURUqgATxgaS2N/NDWKwJa5EBLq6CIIpdv5KeH\ngj8vx6NYOAU9RaxcxKqABCRyx0tIhUC5FSoCEhKojYhclUs+vz+ys8xOZp7L7ia7m3xe5+zJ5tl5\nZuaZfXbez+czn5nZt486dOhAqamp9MEHH4SVh0pdECM3vIoVuwFrGN2Ut61R5gXd3Nfdc6mpqXj7\n7bcxdepUzJ8/H7feeiu++eYbT3np9dSjqUxuDic3hR72LCPtgEuuI/m/uvwRUDkJVNZPuodUF1/z\n5s1x+PBhFBUVoVu3bhg0aBC6du0anAAs50pNmzYNCxYsCK7+DlwKV5fL/xQUFATdg3LOkXr9xcXF\nwei6MWPGYPHixSETYvft24c9e/YEV3lQr23fvn349ttvgxGEMnS/V69eePrpp0NWLpfh82VlZVi7\ndi327NmD5s2bByfoZmdnByfkyiWZ1HoWFhbi6aefDrahdLXKUPvMzMzgBpfSlTZt2rTgBobqZptA\n5aRuGd0HXFp7MTOzcqFaGRkoV5WYOXMmli5dikcffRR5eXlo1KgRNm3ahMmTJ6Nt27bBCEPTvaMe\nP3r0aPCa1q5da7y39N+QXLXCtMal3F7loYceCllWzIvrbPv27cjJycG3336LNWvWhER/yjz8zqfi\naEEfeFG0WL/Ysoqc2bNnU1paGmVlZdH27dt9nau7YkxRWCpuT5j6E7hqxUjUJ2D53qlc+YS/ZMkS\n6tixIyUlJdEHH3wQfDqXFoJ+LfKvdF2pbjKZr2rJ2CwKmZdqBUnrRlphap3l9apReXr0n/pXdTnq\n1pwsT02rt4vq9tStKDWtzEMPqDC1/b333huSl2oxFhUV0bXXXksAaMyYMXTmzJngOXqEpfyrXpeK\nHiWo19nmKjbdr06uazXIxESPHj2oZcuWIRF/kQQzsFVVCdgNGF/Ew435xRdfUOvWrSk9PZ1WrFhh\nTOPnB+4Fk9A45Wdy+5jEUnXr6C6qjRs3Uvv27Sk5OZk++uijkHEqU+coy1HD2FV3mZpeH2ebP39+\nFbec7mrT3Y16x6yP/Uj3oe4WVMVIPVetg+6GVJFjXKaIO1OdVHHWy9LdqLINi4qKaOzYsZSUlERt\n2rSh1atXV/k+1f9NDx2yrqbPZH2cIvv0BwMdP+Hksj6ffPIJAaDp06cTUVUXZbR/39HML5Lfb03A\nYlXD+LkhavrmUTuckpIS+slPfkJJSUk0c+bM4HHZwRFVHeNR8TuGoP6o1Q7GJF665UFkHni31Uc9\n//XXX6euXbtSgwYNaPbs2SFCY0N2wvpYmm6ZqNdlGvdSz1PnecnjcoxJF0x5zbKz1QVLCoU8PnXq\nVKvVpR6T7STzVUVLP0cPnFDbWRezlStXhgjDu+++S507dyYAdPfdd9Pu3butYqg/iEhhV9Oq94uX\ne01asV4fjLwIgjz/tttuo+bNm9Pp06ddz2H8wWLFWDl58iTdfvvtBIDGjh1LFy5cCH5mc6XoQRBO\nEXMmd45pbpZehi0vFdUNJ89VOzz1aX3RokXUqVMnatSoEb388stVggWIKKQD191j+jE1oEHtTFUL\nSrU81DxU0ZEBFaoVpaZRhUzmobaTelwVNfVaevfuXSVCUH4PuuCo7kd9Pphu/annERFt376dpk2b\nRjfffDMBoKZNm9Jjjz1WpSw1D/27k+KpumB1a1mvgz5HzFZP0z3ll82bNxMAmjRpUvC6wkEN+mEu\n4VWsOMCiFmNaYgYA0tPTsWTJEjz22GN45ZVXcPfdd+P06dMAqg40ywFgGfwg13QbMmSIMX8ZrKAP\nNqtbZ8h0ehmmvPTFS+U2HrKee/bsCTlfBikAlXNynn76aaSmpmLKlCkAEFyqR274KJcBatq0aXBF\ncuDSnk5q+b169UJmZmZwPycAwXlfOTk5ACr3YJJ5ZWdnB3cplnnu2LEjGFAhy5WL3sqdbWVQhlzs\ntW/fvigoKAjuQiyXfJJr8QGVOwB36dIl2EaffPIJmjdvHrL78YIFCyDX2JTfjfxe1MWJ1fUQZfCI\n3JOsrKwMZ86cwdq1a/HTn/4UXbt2RV5eHg4ePIiJEydi165dmDBhQvD8N998M2Q5L9OeV3Lvr9zc\n3GB91LlTMhBCPW/IkCHIzc0Nfg9qAI5EfndqcEw4c5CmTZuGjIwMTJw4MXhd4aDu18aEgRdFi/WL\nLavq47XXXqOkpCTKzs42Pp2aUJ/U/aCfZ7KoTHOv3PLTLTB1PKm0tJSWL19OWVlZ1KRJE9qxY0fI\nU7secFBaWhq0elSXn2lemLSi5HuZVreAdPdgaWlpSHDC+PHjQ+Zjyfx0y0O12ExuO/mZXE5Jvwab\nK85kNen3QFFREY0bN4569uxJDRo0IACUmZlJ48ePp1WrVlFFRYVxXpFqzerto2NagsqG6XOnfL1g\nynPnzp0EgCZPnhxyXA/EqWliWXa0AbsBGa/k5+dTo0aNqE2bNrRt2zZP54TTmRD5GzjWgz3c8tQ7\ncvXYvn37qHHjxtSkSRN6//33q7iZTONpuojpIqpPYLaNbZkCEnQXnx4VqI8lqe5P3T2pzr9S85Pr\nFqqY3LF6/VTeeecdeuihh6hZs2YEgC6//HIaOXIkvf/++/TFF184fi9qmWq++gOGLmjqg4QX9PKd\n6uPHDXj48GEaNGgQNWrUiMrLyz3Vw0/+ficIe0Ud561uUYtGIAiLVQIRjh89Gqg38tatWykrK4sa\nNWpES5cuDUln6kxs2D4zTdDU/zd1ljIk2+sTtzxHtyKIiHbv3k1XXHEFNWnShJYtWxYiDgMGDAiO\nKeirPKjCoraZKiD6mJReVz2iUbVe1HBxNb3peGlpabAzkmnUYAtTO6jnyr+6yOpRfV999RU98MAD\nJISg1NRUGjhwIC1dupQOHDhQ5Tr0c/Vr1VGtWa8WtHoNXsRJz1efwE10abqCia+++opyc3MJAE2c\nONG1jkz4sFjVYqIV1moKDe7evTsJIejFF1+kefPmRVyeVyE2rW5uy09/Utddb3pHqOZdWFhI7du3\nJwA0fPhwOnTokNF9JfO69dZbQ/JVXY9qfXRBV/PQgzX09tTde1IEZb560Ib619Ym+uobujCq+ati\nU1xcTPfddx/Vq1ePGjRoQKNHj6Zjx46F5KMvEaUGaKhlqXWU5Xm1guRx1UoI96FOfQhyy+PcuXP0\n/PPPU1paGqWnp9M999xDy5cvd6wjExksVglGtAQoUk6fPk0DBw4kADRs2LCQlaRN6G4Gp47fr+tQ\n7+hMriHThFWTpaam+/zzz2nEiBEEgPr160dr1qwJWbJIFzx9/EePSJw6dWrIOn1qHrqImtx9+jww\nmU4VKCkQqhUkRczkTlIFSe/w1chFyfr162nSpEmUlJREAGjo0KFUVlYW0p56tJ5qfZrGItUIQ7UN\nbPeBLfJPz9PpPBWTVemUftOmTXTTTTcRALrzzjuppKTEmM4v8SBq8dK/mGCxiiHV5YuuKSoqKuiJ\nJ54gANS7d2/65ptvfJ1v8pPr4xNOab38sGxzprz46GWH+cYbb1C9evUoMzOTpkyZUsUS0MeJ9LEW\n1dJS3YRqiLLqOjQJmLxetQz1OvT5U6oA6J2/GpShW54yjVqXLVu20OnTpykvL48uv/zyYCc9duxY\nIiJjqL+pLeW16w8K+u9Az0e3EGVdVVRxtn2PXu4XJ8H4/vvvadSoUSSEoKysrCpr/oWbbzjpokk8\niKQXWKwYI36esBYuXEipqanUrl072rFjR/B4df8IbJaS/N92ju4GU5/4Tcs5SasjKyuL6tWrR7Nm\nzQpZnV51k8k81LJkGif3pR7wobsR1Ym/6vWp+0XJukorT28nvQxVOHRxnT9/Pq1YsYJmz55Nw4cP\np+TkZAJAv/jFL2jr1q3Gzl8fMzOVL8vV9wV7+OGHQyxEN3RR1ctUcRoTc8tf8sEHH1BmZiYJIWj0\n6NH0/fffu9bRa95OaUwrjNRVWKyYqFBUVEStW7emxo0bW333ErfxB7fzdKtG7/hs6fUnb70T1fPQ\nLZvy8vLgZoD33Xcf7du3r0p++uoTNhE1CZl6vmmsTReqLVu2BLcbUettaid16w+1HNXqk+353nvv\n0ejRo6lly5YEgBo0aEDDhg2jTz/91LHt9EnJpsnCuijqFpnNJedmZatpnFb98MuhQ4foN7/5DQGg\nLl26UFFRUVj5MJHDYsUEidRfXVJSQl27dqWkpCQaOXJk0PqIBJsLz0nY9M7Y1BFKpHVh+kwXqxkz\nZtD06dNp5MiRwf2WPv/885C0+rJHej4mwSGikG3v1fXu1L96B6yn1S1NaV2Z5knprruFCxfSq6++\nGgwqSU5Opv79+9OECRPos88+qyL4pnlr+jyl0tJLEY/6+J3exuo5Km7z7WyfObl53VzAW7ZsoQsX\nLtD06dMpPT2d0tLSKC8vj86dO+d4XnWQKC66moDFKoGJ9Eb2Kk5uEVLq8S+//JLuvvtuAkC/+93v\n6Mcff3QVFx1bKLWpXHXNOT2dl/qaOkenz+X/06dPpyZNmlBGRgYtW7YsRIhUcdOj8dT66u430/qA\nJktLLUtd9880lqYLpSpcp0+fpkceeYRuuummoJsvOzubnn322ZD1IHWrRgqxXif1Om0CqmJaEsuE\nl3vBRji/ka1bt1KnTp0IAN12221UWFhoHCOLhpBEU4xqu7CxWDFV8HrTm57YiYguXrxIeXl5BIB+\n9rOf0Zo1a3zXQVoNXuqod45+OxK1o9XdiCY3lvy7f/9+ys7OJgD04IMP0scff0ybN28Ocdup4zSq\nOOmfyb82K1C9Rn0TRfV69UAOvc5ffPEFLVq0iAYOHEiNGjUiANSyZUuaOHEi7dq1y1GApEiZIv1U\ndKHS29bJWtYXJLa5Dd0eoEz1cWPJkiU0btw4Sk5OphYtWtDChQuj4h1gogOLVR3Ej7svkpntf/7z\nn6lBgwaUlZVFu3fvDh43dTC2TkcNfvAyIG4SKtVtZcpf7SRt56uRe1Is5s+fT2fPnqVBgwYRAAJA\naWlp1L59e+rXrx8NHjyY/vjHP9LcuXPp3XffpaVLl9KmTZuqhHbrnbBuAamrr8s6qmNPNoFRO/S1\na9fSI488Qm3atCEA1KhRI/r1r39Ns2bNopKSkirRdKapBjYhN6U3pTM9FFS3pWRzP6r/X7x4kRYt\nWkTt2rUjAPT73/+ejh07FlG5TPRhsWJ84beTKSwspJYtW1JGRkaIYDkR7hpturWljpkQmdebs1lw\neuCAFDNVVNQn/LVr19KUKVPoySefpAEDBlBOTg5lZGQERUx9tW7dmnr06EF33HEHjRs3jp566ika\nMmQIFRQU0LfffhsSaThlyhTav38/nTx5knbt2kXTpk2jjz76iA4cOECLFy+m2bNn07Zt2+ijjz6i\nwsJC2rhxI61Zs4ZWrlxJc+fOpbFjx1JmZiYBoKSkJOrduze98847NGfOHMe21NtLt2bUOV8StY1M\n35XTg4/pQURd4cNp9X6nPGz1kaxatYq6detGAKhz5860ceNGa1omtrBYMWHjVbD2799PLVu2pPbt\n23taO80rXkVNRbViVHRXmn6Oeq4eRq7mQRS6xcPZs2dpzpw5NGnSJHrmmWeob9++9Ktf/Yr69OlD\nbdu2DS72qr7q1atHKSkpRqEL59WuXTuaMmUK/ec//wnWUw2wUJeP0sfQ5HWrFp/JXWdqB7XNbJgm\nh6suRy/5OH2nNjZv3ky//OUvCQC1bduW3nrrrZAtcKoLttDCx6tYicq08U337t1Jbm3AhIe6rYb6\n3omCggLX7RAKCwvRt29f9OnTBx9//DGSkpKCZQBVtxzxUlZxcbFx2xD1+IIFC/Ddd99h1KhRIWnk\ntenl69dcXFwcshWGU7nyXLnVROfOnYNlHD16FHv27Alu1yGPb9++HdnZ2Th06BC+/vpr7NixAwcO\nHEB6ejqOHTuG66+/HikpKTh9+jT++9//IiMjA+3bt0dKSgpKS0txzTXXICUlBSkpKfj6669RWlqK\n/v374/jx42jdujV2796NYcOGBesm615cXBysh2ynIUOGYMGCBWjatGlw+xGJPFeeU1BQELLNyvr1\n64PbjMg81bIAhJRn+y7Uz/X7yst9BgAzZ84Mft+m73PlypXIy8tD06ZNkZeXh4cffhipqalV6sPE\nF0KILUTU3TWhF0UL5wVgDoBvAOxUjl0BYBWALwN/L/eSF1tWscFt3ovk9ddfJwD06quvhqQxzcvx\ngsntp+JnbE6th+4uNI0Bqej1Ns2Jktg2hTS5KPUlkNR5W7olaLt+3ZVnskJMY0pux/WxNR1Tm6l1\ndlocVq2/LV+nY04Wd3l5OaWlpdEdd9xBx48fJ6LatY1GbQaxdgMCuAVAtiZWLwKYGHg/EcALXvJi\nsapeInVhVFRU0IABAyg1NZX+9a9/RaUOTkETfvKxpfEaDKKHqOvp9C3qTWNBJmwRhG4TbvW66mKq\nh8bbrstUhizb5O4zlaeWYRIpLwE0tnqZHirkcdP1/OlPfyIAtHPnzojnFTI1S8zFqrIOaKeJ1V4A\nrQPvWwPY6yUfFqvY4uUJtaysjK644grKycmh8+fPh3zmFKru5SlbjTRTO01bh6b/rwdVqGnUdE6D\n/SbB0Nft0z9Ty1c7Ydvaibq1pNdRP0+f16Wet2XLlirbqKvtIBfGNVlcalo9mEXWwzR5WL8eL9jG\ntWzji6b75ezZs9SyZUu67bbbPJXJxBfxKlbHlfdC/d/pxWIVf5iesBctWkQAHAfpo1W27n5yG/C3\nuQBNecv0buWrW3eoq1rYXG62cvW6S7egbQKxKX99/T3TOoYyL5M7zSZaTscktvlX4WJre1uE51//\n+lcCQKtWrYqo3HAFlomMuBerwP/fOZw7EsBmAJvbtm1bTc1Udwl3HMj2xCu5//77KSUlhbZu3Vrl\nXJNF4bTunQmnNQK9nC/xcr02UTC1gT5fSaKvMq9G3klsezbp73VR08VXt7RM37FtfM4k0nrddfyO\nRerXYvoO1GNeJoFXVFRQhw4dqEuXLtaJvuwWjG/iVazYDVjLKS8vp1atWtGNN95I+/fvd01vWsMv\nnDEOL52vnk4XF5OrzuQq0/93E3DT2I3e0euTpNVdgk0iYxsbc3KHmsROnq9PTjald8KtTWz1i5QV\nK1YQAPrb3/4W1XxrC+FMA6lp4lWsXtICLF70kk8ii1W4q0LHaySTU6SYJD8/37gduBf3kltn5udz\n2/iWl3LVjtp0rqlD18eWTNF9Mp1tMVo3C0oiLTnbmJ9TPl7uLad8ndKFK3Bejpu49dZbKTMzk378\n8cewymJiT8zFCsBCAEcAnAdwGMAIAE0BrAmErq8GcIWXvBJZrGqCmvgh+i1jxIgRlJSURJ999plj\nfqpLyKkTdXpaN6XVt8owlW0aazG5+Uz1cHOz6fnqeehjSqZ6EdndpDYXqFPIuS3c3pafanmZqAn3\nmtN9t3XrVgJAL7zwgmtanXh9GKyLxFysovlisfJHPPjov//+e7rqqqvommuuoVOnTvk+P1w3kh9L\nTe2g1TUETajuSpuLUP1ctbJkOtNWG7Z5W2oYucmVY1vw1mRRmSw/J6F1EktTHdzE3Qs2V6aTqDz4\n4IPUsGFD+u6773yXp5fJxA4WqzqCbdzFhtugdjRZt24dAaDRo0dbOx1TwISXcHa9szbNT3LKw+Qe\nU883zTnSyzTVU+3A9WuWe1t5sX5ME35N16JP4tWtKyd3oi1vG3rwg15nv3no9TNhGnMrLS2lkpIS\nqlevHj3++OPWvJnEgMWKiQgvYd5eGDNmDAGg1atXV/nMi9Xjhp+66R2rTbzUtfN0i4XIHoCgd5Zq\ngITucjO5EtVybddoEyI9L6cJvmrdvIqFycXo9nBgw4sLzi3PoUOHUlJSEh04cMBX2Uz8wWLFEJHz\nk7UX/J6jdzJnzpyhjh070pVXXhnirtHLcBpvCbd8kzCZOmgnl5leT4nuCjRt6WGrm2ohlJZeWnBW\niovJgtHzMC0UKwl3IWCvn/t5yHCyck1WmRfhO3HiBDVp0oQGDhxoTcNWVuLAYsVETLQGofPz8yk5\nOZk6depEb7zxRpXPI7HcnPAaiWmybry4IvWxIlvghY5q1ci0+saLtjL1fEzWnH6OnC+lplUDPPxY\nSF7dhrY5YLZzTXUzcfLkSerXrx8BoOXLl7Mo1QJYrJgQ/IxNRKMsndWrV1NGRgalp6dTXl5ejdSD\nqGpEm1Pnpnf0+vtwrEwn95n+vzr2ZKqvW92d6qB//+ouxk6EY/mY6mCrlx/Ky8spJyeHkpOT6c03\n3zTWL1xq6rfBVIXFiqlCNH6Qbp2DUxklJSXUs2dPAkBPPvkknTt3LuJ6eY0c85KPU4CHmr/83LRV\nu46+RqA6jmWqg/5XtdZMY2gmS0rPzyZITgLnJQTfFN3oVI9IKCkpoeuvv57q169PS5YsqZI/i03i\nwmLFVCteXUY6P/74Iw0bNowAUJ8+fejIkSOueZoWUnXCzVrQx0tUd5rbYra2//W06l89MtAmMKat\n2m2CaCvbNCYn81Vdj05javK9bBebsLq5StXrUb9Dv+Kyd+9eatu2LaWlpdG6des8n2fDy8R223nR\nSMOEwmLFxDXz5s2j1NRUatWqlXXLcS9jOG7WkPzMqXPX83OzVkyf24TMSeBMLkJbnfRzvIiN3w7Z\nFPTgZk25oS7wa8PNwmvevDk1b97c8Xsx1ZVJDFis6jDx8KP18oS5fft2uuaaayg5OZkeeOAB40Kk\nbp2TV1eWjtwiwwmbIJkEUoqDaol4saZM5eh4DTF3s/ZsnzuJk5so6se8uFNN5w4dOrRKvuvWraPU\n1FRq27Yt7d2713p+uEuaMfEBixVTbURTDI8fP0533nknAaChQ4daV872g5OAqSHfXsXK1BGb0rpt\neOi20oPJanMTIRPqflNeXKK2+nrFzeJxK9vE4sWLqUGDBtSpUycqKSnxXA/bsXh4gGPMsFgxEePl\nB677//0+VRNVbvMwefJkAkDPP/+8Y1nhYNpoMBxM5atuMZNFJVdPJ6oqPPpqFvo8rpUrV1YRGz+u\nPSfRVv+GQzjuOC/f36FDh+i3v/0tAaAePXpQeXk5DRgwwFOdeLwoMWGxYnwRa1dKRUUF3X///ZSU\nlBT2Jnp+Oitb4IKX+VXqcS8i6LbElel8p2WZ9PqqOwKreenr+nlZkipa+M3/+PHjNHHiREpNTaUG\nDRrQhAkTfK8pGa1rqu7NQ5lQWKyYhOPkyZN0ww03UNOmTengwYPB405jJF4G/J3GnrwEANhw6tR0\nl55phXMVXVhkejmh1+aKNAVSOK096HTMr1tUoj/o+BGNc+fO0YwZM6hZs2YEgB588MGQ7z5c2O2X\nOLBY1VHC6XTjabuEf//733TZZZdRdnY2nTlzJuQzpw7IFI7s1Y0p06pBGbbJsLZIP30szOvYlnrM\ntlCs7Zr0gA5TGjdiFV1XUVFBixcvpmuvvZYAUK9evWjz5s3GtKorNdFg0XSHxaoOEqkrz8sPqyZ+\nfB9++CEBoDvuuMMx4MLWgZmsLVnv8ePHRz0YwFamCduDgU1w3Mad9GNeAjsiFTMvY1JOZRQVFVGf\nPn0IAF133XW0bNkyOnz4sOc6OcHikHiwWDFRIxYdgAy4ePnll6ulDurisV6sC909ZzvHLSJQT+NU\nlsTvkkhOefnJw4RtrEzidv2PP/44AaAWLVrQrFmz6Ouvv/ZULlN7YbFiEpoLFy7QPffcE4wQdLI0\nZAfpRQSky802VuPkvnNLo9fPJoR+hde0WK3tM1M5Xt2hfif8mlyaTrz99tsEgP7whz/QiRMnjGlM\nAhgJTqvTM/EBixVTBb8/2miEe0fCuXPnaPDgwQSAhgwZYnUVOQmCySoJ1y1mG69yqpOTKHqpm1v+\ntmP6506L9HrJ2y/6vbNv3z5KT0+nPn360IULF6JafqwjWZnIYLFiok51C5epoz506BANHz6cANBT\nTz3la9KwHpEnjzlZA06TSPWndJO151VsZJSfnpf+Xl0818mq1K1H3Yr00wZu+L0Pzp07Rzk5OZSR\nkWF1+yVqAAUTOSxWTEwIR9D0jlN3R128eDG4+O2oUaPo4sWLVfIIt7Nz5Pr7cAAAEdVJREFUirbz\ncy1umyb6zc+E2xiYn2AMWzovbkU39O9z0qRJBID+/ve/ezrfiWg/MLGLMPawWNUiauoHFc8/3IqK\nCho3bhwBoOHDh9M//vGPiPLzMjYVDXR3oB8XpLoXl5eJqqoVabMQTeVXp1Uza9YsEkLQiBEjjPV0\nws934XfjSiZ+YLFiEh69E62oqKBnnnmGANDgwYOD+2HpRNpJmcZAdHebWkd1Cw79M9UFp7v+ZH6m\n8nSR0y0+rwKjp4vGnDqb8OoWcXl5OWVlZVHHjh19r0bB1B1YrJi4JBpBG88//zwBoLvuuot++OGH\nkM/CcWPp4zx6fmrnbOrsbWU6TexVhcs2HiXxu/yPlyAQL0EJft2gKhUVFXTnnXdSSkoKFRcXR+xe\nZCup9sJixdRqXnvtNQJA/fv3r7LShVeiuXKH09iXW9pw8zFhW8WjOjr70tLSkEVm1TL+8pe/hMyT\ni6QMpnbjVaySEAOEEAeFEDuEENuEEJtjUYe6SllZmfF9deRfHcj8H330UbzxxhtYuXIlBgwYgFOn\nTvnOKzc311hfeczvtajpMzMzUVBQgOLiYk95lZWVYebMmTh69GjI8fXr16OsrCzk/IKCgpC/ah6d\nO3cOKVPml5mZGfa12MjMzMSUKVOCaWUZu3fvxtixY5Gbm4vHH3/cV7mmMhgGQGwsKwAHATTzmp4t\nq7qD3yfpefPmUXJyMnXv3p2OHz8eUV5u9ZLuOKd1AyXq+I0MeZfuP7c62ha9jfbcqHAtS6eyzp49\nS507d6YWLVrQkSNHwso/3IAPDn9PTBDPbkAWq+gRT4vQhoOsv5+JnXpn+d5771FKSgp169aNysvL\njefYVgZ3aj+/C+PaJiKHszlhpO4/p1UvTGXp5XkRVTVvWb6cE7d8+fKQNDxxl7ER72J1AMA2AFsA\njLSkGQlgM4DNbdu2raZmYmJBJKs02MjPz6f69etTx44d6ejRo475ueVrivxzmiysR8eZ0trOHz9+\nfMimjZFaSHIldluEoum8SOaoqfXNz88nADRmzJiw8gvnwctPe1XX+BePq0VGvItVVuBvCwD/BHCL\nU3q2rOKLaP04I3Xb6Cs9rF69mho2bEjXXXedZytInqtjso7089Tj6mfqWoVu1xhJG/i5Rr28aLrM\nKioqaOnSpZSenk433HBDlQjN6iIaE5iZ2BPXYhVSAeBZAOOc0rBY1R6i0YmY8pACsWHDBmrYsCFd\ndtllNGXKlOCCqV4nAXuxNpxWqjBF8+nb1cu/JjejF+vPrQ29WIF6eV7LUI9LkeratSsBoPbt21Nh\nYaFj3aqLRHeHm6grY3BxK1YAGgForLz/HMBtTuewWCU+1fHDM7nZiIh27dpFubm5BIAaN25ML7/8\ncjC8PZwVG2zlhFNfJzFyE6jSUvOafiZryU1sIhlDM4nUK6+8QufPn/eVTyRpbNRG0artxLNY/U/A\n9fdPALsA5Lmdw2KVeITTGbthG6S3Hc/Pz6d+/foRAMrKyqJZs2ZZV70Ip+xoudRUAfEqJnIisVP6\naD8gSJG68cYbgyI1d+7coEjpdfA7mTnasCswMYhbsQrnxWKVOPh1Kzlh6my9dMB6mrVr11KvXr2C\nHey8efPowoULxnOdotbUfL1u7+EkaLb9oyK1PpzKCkfATJaUKlJqfdweUvxEKYZLbXWf1dbrYrFi\n6hRuGy9WVFRQfn4+denShQDQjTfeSIsXL66y5YgXoXAqa+XKlda1/pyi/bys/ReNzspPxGFFRQXN\nmTPHUaTCxWkpqmjBllViwGLFxD3VMSnVLd3FixfpnXfeoQ4dOhAAysnJoZkzZ9Lhw4dd3ZQzZsyw\nTtj1UzfbfKxw0MXHbW6YU3CKxM3dx4TCohgZLFZM3BOJ6ERaxvnz52nw4MF05ZVXEgD6+c9/Tp9/\n/nnE83ZM4hDtQf9wdzqW2Orjxd3nVA91jCrc76y2uroYOyxWTMLjFkCg4nWir84PP/xA06dPpxYt\nWhAAuv3222nbtm0heYbb8ZqsHKewd6eOWs/LtvKHaRzMaYdhoksi1bFjR2N0X12LsGPBrFlYrJgq\n1JYfoVfx8ONmO3nyJD333HOUkZFBAGjQoEG0d+9e3/VRO3YptnI7EKcJxbY8va4NGC6bNm2qljEp\nIu9z1Zi6DYsVw4TBsWPH6H//93+pYcOGlJycTCNGjKA9e/a4nmcTkmh0yn4Ey4+gVVRUUMeOHSkr\nK8sqUvPnzw+u/efVwgp32aiahMUyfmCxYqJCPLqAbAvD+rFcnPImIjp69CiNGTOG6tevTwCob9++\ntHDhwhpbSojILDwmN5/TShROeX766acEgObMmRNxvbjzZ8KFxYphosCRI0foueeeo6uvvpoAULNm\nzWjZsmXWOVKSWCya6ub21AVl5MiRlJaWRidPnvRVB15BnYkmXsUqJpsvMgwQ2UaNXs+VGxHKv35p\n1aoVJk2ahH379uHdd99FeXk5tmzZglGjRlnPmTlzZsimgdHckNJpM8IhQ4Y4lpednR3yf1ZWFs6e\nPYsFCxa4lqvmKcsBKq81moT7PUWDaG8cqm+OyUSIF0WL9Ystq8QlVmMX1bENybJlywgArVu3Lsxa\nhaLX0c1aizbnz5+nW265hRo2bEglJSXWdNH4Dr2uPBItt3NNtyUTPmDLiokHnCyBaD5F69aBbkXY\n8LNt+oYNG1C/fn306NHD+LmX61GftrOzs0Oe5p2sNR15XllZGQoKCnxZBTJtvXr1MHfuXFy8eBGT\nJk2ypndqowkTJngqU34fTvXMzs5G586dPeXnhp+2ZBIDFismZpgExdbhu7mbVNdUOHgRmvXr16Nn\nz55IS0szfu5FIHNzc4PllZWV4ejRo57qp1+/PC8zMxO5ublGQfHihrr66qvxxBNPYN68eSgqKvJ8\nnuT+++/3nBZwfzjw8/DA1DG8mF+xfrEbMD5JFFdLNFxLL730EiUlJdHkyZMjyidablG3aEgvi+TK\ndjlx4gS1atWKevbsSYcPH45K/apzU0mmdgF2AzLVTTRcLQsWLIj6wLaOtGb8oFtanTp1QkVFBfr2\n7QvAf2BBWVmZ43U6BTmoLj+JyQKRx8rKyqzfjWrJ5ebmoqysDI0bN8Zzzz2HTZs2YcOGDVXOCSdQ\nwKsb1oTp2mIZeMHECV4ULdYvtqwSg+pYwy/a5YTL+PHjKSUlhU6fPm2d9Kpuaz906FDfZTz88MOO\nn0dr+xVpUannXbx4kbKzs6lNmzZ06tQpX/nVFdjiqx7A86yYaBDvP9Bo18+2qnpOTg717t07xL3m\nZTKuzR2mHtddduFM8I2G2G/cuJEA0LPPPluljn7zSjR47ljsYLFiEoZIVhGv7s6ytLSUTpw4QcnJ\nyZSXl1djZZv2tPKyWK9+jm28ziZE9913H6WkpNCKFSt8nccw4eJVrERl2vime/futHnz5lhXg0kA\niouLIxov0SkrK8P27dvRv39/rFq1Cp06dYp6xFpZWVncRMEdPHgQ1113He69917MmzevRsosKCgI\na1yRqR0IIbYQUXe3dBxgUcepbbPsdaGKdGA+MzMTGzZsQEpKCnr16hUSxOBGtFd3kHhZcUJ+r37r\n0K5dOzz55JOYP38+Nm3aFFb9/BIvQlXdgT5MZLBlxcTVk31143Stts9uvvlmCCHw2WefOeYdiYUQ\nLYvQ73dpSn/q1Cl06NABV111FQoLCyGEiCi/unR/Mf5hy4rxTCJ1JJE+/Tpdq+2zu+66CyNHjnTN\ne+3atZ7qoFt7xcXF2LNnj+t5NitYPe7lu1RXnTClT09Px0svvYRrr70W586dc81PxSmknmEiwsvA\nVqxfHGBR+5AD/zUxsbg6AiHUwAW/+bttuuhlb6zqCu6QUXHh5B+tdf3icVsapvoARwMyiYaXPaqi\nla8fIuk89ZDocMPBvdRBnjd16lRrPl72ovJ6vX7Cvat7x+NoMH78+FhXoU4S12IF4DYAewHsAzDR\nLT2LFeMFPx16uES6VbtTHatjpXg/+YZLdeRvCt2vaWJdfl3Bq1jV+JiVECIZwEwA/QF0AjBYCNGp\npuvBxDfquI5tnEof+/ES3GAaP5k2bZrnujgFQcjP1Ag8WXcvUYluARZyySZTAIMTrVq1cvzcS3Sh\nE3q99fqEE5GZmZkZ1SkI4RDr8plQajwaUAjRC8CzRJQb+H8SABDR/7Odw9GATCIzbdo05OXlAXCO\nGPQaNXf77bcjPz/fNT+GSQTiORowC0CJ8v/hwDGGiTuisYCqFCrA2frThcpWthQqt/zciNSiYpia\npF6sK2BDCDESgIwXPiWE2BvL+sQJzQCUx7oScQK3xSXCbosHHnggylWJOXxfXCJR2uIqL4liIVal\nAK5U/m8TOBYCEb0O4PWaqlQiIITY7MVcrgtwW1yC2+IS3BaXqG1tEQs34BcAOgghrhZC1AcwCMCH\nMagHwzAMkyDUuGVFRBeEEKMBFABIBjCHiHbVdD0YhmGYxCEmY1ZEtALAiliUneCwW/QS3BaX4La4\nBLfFJWpVWyTEQrYMwzBM3YYXsmUYhmHiHharOEIIMUYIsVMIsUsI8XjgWBchRKEQYocQYpkQ4jIl\n/SQhxD4hxF4hRK2aGeqnLYQQ7YQQZ4UQ2wKvWbGtfWQIIeYIIb4RQuxUjl0hhFglhPgy8Pdy5TPj\nfSCE6BZoq31CiNeEn70+4ogotsf6wDF5n7So6WuJFD9tIYRoKoRYJ4Q4JYSYoeWTePeGlzWZ+FUj\n6yXeCGAngIaoHEtcDeAaVEZP/iyQZjiAPwXedwLwTwANAFwN4CsAybG+jhi1RTsAO2Nd7yhe/y0A\nstVrAvAiAutoApgI4AW3+wDAPwD0BCAAfASgf6yvLcbtsR5A91hfTw22RSMAvQH8EcAMLZ+EuzfY\nsoofrgdQRERniOgCgA0A7gZwLYCNgTSrANwTeP8bAO8Q0Y9EdACViwLn1HCdqwu/bVGrIKKNAI5p\nh38D4K3A+7cA3Kkcr3IfCCFaA7iMiDZRZe/0N+WchCIa7VEjFa0B/LQFEZ0mok8B/KAmTtR7g8Uq\nftgJoE/AdG8I4P+gcvL0LlTejABwHy5NqK7Ny1b5bQsAuDrg2tkghOhTs9WtEVoS0ZHA+6MAWgbe\n2+6DrMB7/XhtwW97SN4K3CeTE8L15Q1bW9hIyHuDxSpOIKJ/AXgBwMcAVgLYBuAiKt1djwghtgBo\nDMDf1q0JSBhtcQRAWyL6CYAnACxQx/ZqG4GnYQ7jDeCjPR4gohsA9Am8flutFYsBtfneYLGKI4jo\nr0TUjYhuAfAdgH8T0R4i+hURdQOwEJU+eMDjslWJip+2CLh8vg283xI4fm2s6l5N/CfgvpFunG8C\nx233QWngvX68tuC3PUBE8u9JAAtQe9yDtrawkZD3BotVHCGjk4QQbVE5RrNAOZYE4GkAMtLtQwCD\nhBANhBBXA+iAykHTWoGfthBCNBeV+6RBCPE/qGyL/bGodzXyIYCHAu8fArBUOV7lPgi4hU4IIXoG\n3F1DlXNqA77aQwhRTwjRDACEECkAbkelu7k2YGsLIwl7b8Q6woNfl14APgGwG5XRTLcGjo0B8O/A\n63kEJnIHPstDpRWxFwkQzVNdbYHKQItdqHQXFgO4I9b1j/DaF6LStXkeleMJIwA0BbAGwJeojI68\nwu0+ANAdlR3yVwBmqPdOIr2i0R6ojIzbAmB74F6ZjgSMng2jLQ6iMiDjVCB9p0S9N3gFC4ZhGCbu\nYTcgwzAME/ewWDEMwzBxD4sVwzAME/ewWDEMwzBxD4sVwzAME/ewWDEMwzBxD4sVwzAME/ewWDFM\nnBDYb+m6wPum6p5FDFPXYbFimPjhGlSuzgEANwHYEcO6MExcwWLFMHGAEOIqAKVEVBE4dBMqlwZi\nGAYsVgwTL3RBqDh1A4sVwwRhsWKY+OAnAFIBQAjRAZWbTLIbkGECsFgxTHzQBUCSEOKfAP4vKlec\nf8j5FIapO/Cq6wwTBwghvgSQTZUbAzIMo8GWFcPEGCFEY1TuSM5CxTAW2LJiGIZh4h62rBiGYZi4\nh8WKYRiGiXtYrBiGYZi4h8WKYRiGiXtYrBiGYZi4h8WKYRiGiXtYrBiGYZi4h8WKYRiGiXv+P19y\nmhxegkPHAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10f9a9550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from astroML.plotting import plot_mcmc\n", "fig = plt.figure()\n", "ax = plot_mcmc(sample.T, fig=fig, labels=[r'$\\mu$', r'$\\sigma$'], colors='k')\n", "ax[0].plot(sample[:, 0], sample[:, 1], ',k', alpha=0.1)\n", "ax[0].plot([mu_true], [sigma_true], 'o', color='red', ms=10);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "The red dot indicates ground truth (from our problem setup), and the contours indicate one and two standard deviations (68% and 95% confidence levels). In other words, based on this analysis we are 68% confident that the model lies within the inner contour, and 95% confident that the model lies within the outer contour.\n", "\n", "Note here that $\\sigma = 0$ is consistent with our data within two standard deviations: that is, depending on the certainty threshold you're interested in, our data are not enough to confidently rule out the possibility of a non-varying source!" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "***The other thing to notice is that this posterior is definitely *not* Gaussian***: this can be seen by the lack of symmetry in the vertical direction.\n", "\n", "That means that the Gaussian approximation used within the frequentist approach may not reflect the true uncertainties in the result. This isn't an issue with frequentism itself (i.e. there are certainly ways to account for non-Gaussianity within the frequentist paradigm), but the *vast majority* of commonly applied frequentist techniques make the explicit or implicit assumption of Gaussianity of the distribution.\n", "\n", "Bayesian approaches generally don't require such assumptions." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "(Side note on priors: there are good arguments that a flat prior on $\\sigma$ subtley biases the calculation in this case: i.e. a flat prior is not necessarily non-informative in the case of scale factors like $\\sigma$. There are interesting arguments to be made that the [Jeffreys Prior](http://en.wikipedia.org/wiki/Jeffreys_prior) would be more applicable. Here I believe the Jeffreys prior is not suitable, because $\\sigma$ is not a true scale factor (i.e. the Gaussian has contributions from $e_i$ as well). On this question, I'll have to defer to others who have more expertise. Note that subtle &mdash; some would say subjective &mdash; questions like this are among the features of Bayesian analysis that frequentists take issue with)." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Conclusion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Philosophical differences underlying frequentism and Bayesianism lead to fundamentally different approaches to simple problems, which nonetheless can often yield similar or even identical results." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "***The root of all differences is in a different interpretation of probability***:\n", "\n", "- Frequentism considers probabilities to be relative frequencies of a large number of (real or hypothetical) events.\n", "- Bayesianism considers probabilities to measure degrees of knowledge (belief) about something.\n", "\n", "... and differences in methodology follow:\n", "\n", "- Frequentist analyses generally proceed through use of point estimates and maximum likelihood approaches.\n", "- Bayesian analyses generally compute the posterior either directly or through some version of MCMC sampling." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "As we've seen, in simple problems the two approaches can yield similar results.\n", "\n", "But as data and models grow in complexity, the two approaches can diverge greatly. We turn to that next..." ] } ], "metadata": { "anaconda-cloud": {}, "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" }, "livereveal": { "scroll": true, "start_slideshow_at": "selected", "theme": "sky" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
openconnectome/ndreg
notebooks/demo-ndreg-2.ipynb
1
3096623
null
apache-2.0
GoogleCloudPlatform/vertex-ai-samples
notebooks/community/gapic/automl/showcase_automl_text_multi-label_classification_online.ipynb
1
62331
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "copyright" }, "outputs": [], "source": [ "# Copyright 2020 Google LLC\n", "#\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "title" }, "source": [ "# Vertex client library: AutoML text multi-label classification model for online prediction\n", "\n", "<table align=\"left\">\n", " <td>\n", " <a href=\"https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/community/gapic/automl/showcase_automl_text_multi-label_classification_online.ipynb\">\n", " <img src=\"https://cloud.google.com/ml-engine/images/colab-logo-32px.png\" alt=\"Colab logo\"> Run in Colab\n", " </a>\n", " </td>\n", " <td>\n", " <a href=\"https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/community/gapic/automl/showcase_automl_text_multi-label_classification_online.ipynb\">\n", " <img src=\"https://cloud.google.com/ml-engine/images/github-logo-32px.png\" alt=\"GitHub logo\">\n", " View on GitHub\n", " </a>\n", " </td>\n", "</table>\n", "<br/><br/><br/>" ] }, { "cell_type": "markdown", "metadata": { "id": "overview:automl" }, "source": [ "## Overview\n", "\n", "\n", "This tutorial demonstrates how to use the Vertex client library for Python to create text multi-label classification models and do online prediction using Google Cloud's [AutoML](https://cloud.google.com/vertex-ai/docs/start/automl-users)." ] }, { "cell_type": "markdown", "metadata": { "id": "dataset:mcdonalds,tmcn" }, "source": [ "### Dataset\n", "\n", "The dataset used for this tutorial is the [McDonald's Service](https://TODO). The version of the dataset you will use in this tutorial is stored in a public Cloud Storage bucket." ] }, { "cell_type": "markdown", "metadata": { "id": "objective:automl,training,online_prediction" }, "source": [ "### Objective\n", "\n", "In this tutorial, you create an AutoML text multi-label classification model and deploy for online prediction from a Python script using the Vertex client library. You can alternatively create and deploy models using the `gcloud` command-line tool or online using the Google Cloud Console.\n", "\n", "The steps performed include:\n", "\n", "- Create a Vertex `Dataset` resource.\n", "- Train the model.\n", "- View the model evaluation.\n", "- Deploy the `Model` resource to a serving `Endpoint` resource.\n", "- Make a prediction.\n", "- Undeploy the `Model`." ] }, { "cell_type": "markdown", "metadata": { "id": "costs" }, "source": [ "### Costs\n", "\n", "This tutorial uses billable components of Google Cloud (GCP):\n", "\n", "* Vertex AI\n", "* Cloud Storage\n", "\n", "Learn about [Vertex AI\n", "pricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storage\n", "pricing](https://cloud.google.com/storage/pricing), and use the [Pricing\n", "Calculator](https://cloud.google.com/products/calculator/)\n", "to generate a cost estimate based on your projected usage." ] }, { "cell_type": "markdown", "metadata": { "id": "install_aip" }, "source": [ "## Installation\n", "\n", "Install the latest version of Vertex client library." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "install_aip" }, "outputs": [], "source": [ "import os\n", "import sys\n", "\n", "# Google Cloud Notebook\n", "if os.path.exists(\"/opt/deeplearning/metadata/env_version\"):\n", " USER_FLAG = \"--user\"\n", "else:\n", " USER_FLAG = \"\"\n", "\n", "! pip3 install -U google-cloud-aiplatform $USER_FLAG" ] }, { "cell_type": "markdown", "metadata": { "id": "install_storage" }, "source": [ "Install the latest GA version of *google-cloud-storage* library as well." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "install_storage" }, "outputs": [], "source": [ "! pip3 install -U google-cloud-storage $USER_FLAG" ] }, { "cell_type": "markdown", "metadata": { "id": "restart" }, "source": [ "### Restart the kernel\n", "\n", "Once you've installed the Vertex client library and Google *cloud-storage*, you need to restart the notebook kernel so it can find the packages." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "restart" }, "outputs": [], "source": [ "if not os.getenv(\"IS_TESTING\"):\n", " # Automatically restart kernel after installs\n", " import IPython\n", "\n", " app = IPython.Application.instance()\n", " app.kernel.do_shutdown(True)" ] }, { "cell_type": "markdown", "metadata": { "id": "before_you_begin" }, "source": [ "## Before you begin\n", "\n", "### GPU runtime\n", "\n", "*Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select* **Runtime > Change Runtime Type > GPU**\n", "\n", "### Set up your Google Cloud project\n", "\n", "**The following steps are required, regardless of your notebook environment.**\n", "\n", "1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.\n", "\n", "2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)\n", "\n", "3. [Enable the Vertex APIs and Compute Engine APIs.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component)\n", "\n", "4. [The Google Cloud SDK](https://cloud.google.com/sdk) is already installed in Google Cloud Notebook.\n", "\n", "5. Enter your project ID in the cell below. Then run the cell to make sure the\n", "Cloud SDK uses the right project for all the commands in this notebook.\n", "\n", "**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_project_id" }, "outputs": [], "source": [ "PROJECT_ID = \"[your-project-id]\" # @param {type:\"string\"}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "autoset_project_id" }, "outputs": [], "source": [ "if PROJECT_ID == \"\" or PROJECT_ID is None or PROJECT_ID == \"[your-project-id]\":\n", " # Get your GCP project id from gcloud\n", " shell_output = !gcloud config list --format 'value(core.project)' 2>/dev/null\n", " PROJECT_ID = shell_output[0]\n", " print(\"Project ID:\", PROJECT_ID)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_gcloud_project_id" }, "outputs": [], "source": [ "! gcloud config set project $PROJECT_ID" ] }, { "cell_type": "markdown", "metadata": { "id": "region" }, "source": [ "#### Region\n", "\n", "You can also change the `REGION` variable, which is used for operations\n", "throughout the rest of this notebook. Below are regions supported for Vertex. We recommend that you choose the region closest to you.\n", "\n", "- Americas: `us-central1`\n", "- Europe: `europe-west4`\n", "- Asia Pacific: `asia-east1`\n", "\n", "You may not use a multi-regional bucket for training with Vertex. Not all regions provide support for all Vertex services. For the latest support per region, see the [Vertex locations documentation](https://cloud.google.com/vertex-ai/docs/general/locations)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "region" }, "outputs": [], "source": [ "REGION = \"us-central1\" # @param {type: \"string\"}" ] }, { "cell_type": "markdown", "metadata": { "id": "timestamp" }, "source": [ "#### Timestamp\n", "\n", "If you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append onto the name of resources which will be created in this tutorial." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "timestamp" }, "outputs": [], "source": [ "from datetime import datetime\n", "\n", "TIMESTAMP = datetime.now().strftime(\"%Y%m%d%H%M%S\")" ] }, { "cell_type": "markdown", "metadata": { "id": "gcp_authenticate" }, "source": [ "### Authenticate your Google Cloud account\n", "\n", "**If you are using Google Cloud Notebook**, your environment is already authenticated. Skip this step.\n", "\n", "**If you are using Colab**, run the cell below and follow the instructions when prompted to authenticate your account via oAuth.\n", "\n", "**Otherwise**, follow these steps:\n", "\n", "In the Cloud Console, go to the [Create service account key](https://console.cloud.google.com/apis/credentials/serviceaccountkey) page.\n", "\n", "**Click Create service account**.\n", "\n", "In the **Service account name** field, enter a name, and click **Create**.\n", "\n", "In the **Grant this service account access to project** section, click the Role drop-down list. Type \"Vertex\" into the filter box, and select **Vertex Administrator**. Type \"Storage Object Admin\" into the filter box, and select **Storage Object Admin**.\n", "\n", "Click Create. A JSON file that contains your key downloads to your local environment.\n", "\n", "Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "gcp_authenticate" }, "outputs": [], "source": [ "# If you are running this notebook in Colab, run this cell and follow the\n", "# instructions to authenticate your GCP account. This provides access to your\n", "# Cloud Storage bucket and lets you submit training jobs and prediction\n", "# requests.\n", "\n", "# If on Google Cloud Notebook, then don't execute this code\n", "if not os.path.exists(\"/opt/deeplearning/metadata/env_version\"):\n", " if \"google.colab\" in sys.modules:\n", " from google.colab import auth as google_auth\n", "\n", " google_auth.authenticate_user()\n", "\n", " # If you are running this notebook locally, replace the string below with the\n", " # path to your service account key and run this cell to authenticate your GCP\n", " # account.\n", " elif not os.getenv(\"IS_TESTING\"):\n", " %env GOOGLE_APPLICATION_CREDENTIALS ''" ] }, { "cell_type": "markdown", "metadata": { "id": "setup_vars" }, "source": [ "### Set up variables\n", "\n", "Next, set up some variables used throughout the tutorial.\n", "### Import libraries and define constants" ] }, { "cell_type": "markdown", "metadata": { "id": "import_aip:protobuf" }, "source": [ "#### Import Vertex client library\n", "\n", "Import the Vertex client library into our Python environment." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "import_aip:protobuf" }, "outputs": [], "source": [ "import time\n", "\n", "from google.cloud.aiplatform import gapic as aip\n", "from google.protobuf import json_format\n", "from google.protobuf.json_format import MessageToJson, ParseDict\n", "from google.protobuf.struct_pb2 import Struct, Value" ] }, { "cell_type": "markdown", "metadata": { "id": "aip_constants" }, "source": [ "#### Vertex constants\n", "\n", "Setup up the following constants for Vertex:\n", "\n", "- `API_ENDPOINT`: The Vertex API service endpoint for dataset, model, job, pipeline and endpoint services.\n", "- `PARENT`: The Vertex location root path for dataset, model, job, pipeline and endpoint resources." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "aip_constants" }, "outputs": [], "source": [ "# API service endpoint\n", "API_ENDPOINT = \"{}-aiplatform.googleapis.com\".format(REGION)\n", "\n", "# Vertex location root path for your dataset, model and endpoint resources\n", "PARENT = \"projects/\" + PROJECT_ID + \"/locations/\" + REGION" ] }, { "cell_type": "markdown", "metadata": { "id": "automl_constants" }, "source": [ "#### AutoML constants\n", "\n", "Set constants unique to AutoML datasets and training:\n", "\n", "- Dataset Schemas: Tells the `Dataset` resource service which type of dataset it is.\n", "- Data Labeling (Annotations) Schemas: Tells the `Dataset` resource service how the data is labeled (annotated).\n", "- Dataset Training Schemas: Tells the `Pipeline` resource service the task (e.g., classification) to train the model for." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "automl_constants:tmcn" }, "outputs": [], "source": [ "# Text Dataset type\n", "DATA_SCHEMA = \"gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml\"\n", "# Text Labeling type\n", "LABEL_SCHEMA = \"gs://google-cloud-aiplatform/schema/dataset/ioformat/text_classification_multi_label_io_format_1.0.0.yaml\"\n", "# Text Training task\n", "TRAINING_SCHEMA = \"gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_classification_1.0.0.yaml\"" ] }, { "cell_type": "markdown", "metadata": { "id": "tutorial_start:automl" }, "source": [ "# Tutorial\n", "\n", "Now you are ready to start creating your own AutoML text multi-label classification model." ] }, { "cell_type": "markdown", "metadata": { "id": "clients:automl,online_prediction" }, "source": [ "## Set up clients\n", "\n", "The Vertex client library works as a client/server model. On your side (the Python script) you will create a client that sends requests and receives responses from the Vertex server.\n", "\n", "You will use different clients in this tutorial for different steps in the workflow. So set them all up upfront.\n", "\n", "- Dataset Service for `Dataset` resources.\n", "- Model Service for `Model` resources.\n", "- Pipeline Service for training.\n", "- Endpoint Service for deployment.\n", "- Prediction Service for serving." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "clients:automl,online_prediction" }, "outputs": [], "source": [ "# client options same for all services\n", "client_options = {\"api_endpoint\": API_ENDPOINT}\n", "\n", "\n", "def create_dataset_client():\n", " client = aip.DatasetServiceClient(client_options=client_options)\n", " return client\n", "\n", "\n", "def create_model_client():\n", " client = aip.ModelServiceClient(client_options=client_options)\n", " return client\n", "\n", "\n", "def create_pipeline_client():\n", " client = aip.PipelineServiceClient(client_options=client_options)\n", " return client\n", "\n", "\n", "def create_endpoint_client():\n", " client = aip.EndpointServiceClient(client_options=client_options)\n", " return client\n", "\n", "\n", "def create_prediction_client():\n", " client = aip.PredictionServiceClient(client_options=client_options)\n", " return client\n", "\n", "\n", "clients = {}\n", "clients[\"dataset\"] = create_dataset_client()\n", "clients[\"model\"] = create_model_client()\n", "clients[\"pipeline\"] = create_pipeline_client()\n", "clients[\"endpoint\"] = create_endpoint_client()\n", "clients[\"prediction\"] = create_prediction_client()\n", "\n", "for client in clients.items():\n", " print(client)" ] }, { "cell_type": "markdown", "metadata": { "id": "create_aip_dataset" }, "source": [ "## Dataset\n", "\n", "Now that your clients are ready, your first step in training a model is to create a managed dataset instance, and then upload your labeled data to it.\n", "\n", "### Create `Dataset` resource instance\n", "\n", "Use the helper function `create_dataset` to create the instance of a `Dataset` resource. This function does the following:\n", "\n", "1. Uses the dataset client service.\n", "2. Creates an Vertex `Dataset` resource (`aip.Dataset`), with the following parameters:\n", " - `display_name`: The human-readable name you choose to give it.\n", " - `metadata_schema_uri`: The schema for the dataset type.\n", "3. Calls the client dataset service method `create_dataset`, with the following parameters:\n", " - `parent`: The Vertex location root path for your `Database`, `Model` and `Endpoint` resources.\n", " - `dataset`: The Vertex dataset object instance you created.\n", "4. The method returns an `operation` object.\n", "\n", "An `operation` object is how Vertex handles asynchronous calls for long running operations. While this step usually goes fast, when you first use it in your project, there is a longer delay due to provisioning.\n", "\n", "You can use the `operation` object to get status on the operation (e.g., create `Dataset` resource) or to cancel the operation, by invoking an operation method:\n", "\n", "| Method | Description |\n", "| ----------- | ----------- |\n", "| result() | Waits for the operation to complete and returns a result object in JSON format. |\n", "| running() | Returns True/False on whether the operation is still running. |\n", "| done() | Returns True/False on whether the operation is completed. |\n", "| canceled() | Returns True/False on whether the operation was canceled. |\n", "| cancel() | Cancels the operation (this may take up to 30 seconds). |" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "create_aip_dataset" }, "outputs": [], "source": [ "TIMEOUT = 90\n", "\n", "\n", "def create_dataset(name, schema, labels=None, timeout=TIMEOUT):\n", " start_time = time.time()\n", " try:\n", " dataset = aip.Dataset(\n", " display_name=name, metadata_schema_uri=schema, labels=labels\n", " )\n", "\n", " operation = clients[\"dataset\"].create_dataset(parent=PARENT, dataset=dataset)\n", " print(\"Long running operation:\", operation.operation.name)\n", " result = operation.result(timeout=TIMEOUT)\n", " print(\"time:\", time.time() - start_time)\n", " print(\"response\")\n", " print(\" name:\", result.name)\n", " print(\" display_name:\", result.display_name)\n", " print(\" metadata_schema_uri:\", result.metadata_schema_uri)\n", " print(\" metadata:\", dict(result.metadata))\n", " print(\" create_time:\", result.create_time)\n", " print(\" update_time:\", result.update_time)\n", " print(\" etag:\", result.etag)\n", " print(\" labels:\", dict(result.labels))\n", " return result\n", " except Exception as e:\n", " print(\"exception:\", e)\n", " return None\n", "\n", "\n", "result = create_dataset(\"mcdonalds-\" + TIMESTAMP, DATA_SCHEMA)" ] }, { "cell_type": "markdown", "metadata": { "id": "dataset_id:result" }, "source": [ "Now save the unique dataset identifier for the `Dataset` resource instance you created." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dataset_id:result" }, "outputs": [], "source": [ "# The full unique ID for the dataset\n", "dataset_id = result.name\n", "# The short numeric ID for the dataset\n", "dataset_short_id = dataset_id.split(\"/\")[-1]\n", "\n", "print(dataset_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "data_preparation:text,u_dataset" }, "source": [ "### Data preparation\n", "\n", "The Vertex `Dataset` resource for text has a couple of requirements for your text data.\n", "\n", "- Text examples must be stored in a CSV or JSONL file." ] }, { "cell_type": "markdown", "metadata": { "id": "data_import_format:tmcn,u_dataset,csv" }, "source": [ "#### CSV\n", "\n", "For text multi-label classification, the CSV file has a few requirements:\n", "\n", "- No heading.\n", "- First column is the text example.\n", "- Remaining columns are the labels." ] }, { "cell_type": "markdown", "metadata": { "id": "import_file:u_dataset,csv" }, "source": [ "#### Location of Cloud Storage training data.\n", "\n", "Now set the variable `IMPORT_FILE` to the location of the CSV index file in Cloud Storage." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "import_file:mcdonalds,csv,tmcn" }, "outputs": [], "source": [ "IMPORT_FILE = \"gs://ucaip-test-us-central1/dataset/ucaip_multi_tcn_dataset.csv\"" ] }, { "cell_type": "markdown", "metadata": { "id": "quick_peek:csv" }, "source": [ "#### Quick peek at your data\n", "\n", "You will use a version of the McDonald's Service dataset that is stored in a public Cloud Storage bucket, using a CSV index file.\n", "\n", "Start by doing a quick peek at the data. You count the number of examples by counting the number of rows in the CSV index file (`wc -l`) and then peek at the first few rows." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "quick_peek:csv" }, "outputs": [], "source": [ "if \"IMPORT_FILES\" in globals():\n", " FILE = IMPORT_FILES[0]\n", "else:\n", " FILE = IMPORT_FILE\n", "\n", "count = ! gsutil cat $FILE | wc -l\n", "print(\"Number of Examples\", int(count[0]))\n", "\n", "print(\"First 10 rows\")\n", "! gsutil cat $FILE | head" ] }, { "cell_type": "markdown", "metadata": { "id": "import_data" }, "source": [ "### Import data\n", "\n", "Now, import the data into your Vertex Dataset resource. Use this helper function `import_data` to import the data. The function does the following:\n", "\n", "- Uses the `Dataset` client.\n", "- Calls the client method `import_data`, with the following parameters:\n", " - `name`: The human readable name you give to the `Dataset` resource (e.g., mcdonalds).\n", " - `import_configs`: The import configuration.\n", "\n", "- `import_configs`: A Python list containing a dictionary, with the key/value entries:\n", " - `gcs_sources`: A list of URIs to the paths of the one or more index files.\n", " - `import_schema_uri`: The schema identifying the labeling type.\n", "\n", "The `import_data()` method returns a long running `operation` object. This will take a few minutes to complete. If you are in a live tutorial, this would be a good time to ask questions, or take a personal break." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "import_data" }, "outputs": [], "source": [ "def import_data(dataset, gcs_sources, schema):\n", " config = [{\"gcs_source\": {\"uris\": gcs_sources}, \"import_schema_uri\": schema}]\n", " print(\"dataset:\", dataset_id)\n", " start_time = time.time()\n", " try:\n", " operation = clients[\"dataset\"].import_data(\n", " name=dataset_id, import_configs=config\n", " )\n", " print(\"Long running operation:\", operation.operation.name)\n", "\n", " result = operation.result()\n", " print(\"result:\", result)\n", " print(\"time:\", int(time.time() - start_time), \"secs\")\n", " print(\"error:\", operation.exception())\n", " print(\"meta :\", operation.metadata)\n", " print(\n", " \"after: running:\",\n", " operation.running(),\n", " \"done:\",\n", " operation.done(),\n", " \"cancelled:\",\n", " operation.cancelled(),\n", " )\n", "\n", " return operation\n", " except Exception as e:\n", " print(\"exception:\", e)\n", " return None\n", "\n", "\n", "import_data(dataset_id, [IMPORT_FILE], LABEL_SCHEMA)" ] }, { "cell_type": "markdown", "metadata": { "id": "train_automl_model" }, "source": [ "## Train the model\n", "\n", "Now train an AutoML text multi-label classification model using your Vertex `Dataset` resource. To train the model, do the following steps:\n", "\n", "1. Create an Vertex training pipeline for the `Dataset` resource.\n", "2. Execute the pipeline to start the training." ] }, { "cell_type": "markdown", "metadata": { "id": "create_pipeline:automl" }, "source": [ "### Create a training pipeline\n", "\n", "You may ask, what do we use a pipeline for? You typically use pipelines when the job (such as training) has multiple steps, generally in sequential order: do step A, do step B, etc. By putting the steps into a pipeline, we gain the benefits of:\n", "\n", "1. Being reusable for subsequent training jobs.\n", "2. Can be containerized and ran as a batch job.\n", "3. Can be distributed.\n", "4. All the steps are associated with the same pipeline job for tracking progress.\n", "\n", "Use this helper function `create_pipeline`, which takes the following parameters:\n", "\n", "- `pipeline_name`: A human readable name for the pipeline job.\n", "- `model_name`: A human readable name for the model.\n", "- `dataset`: The Vertex fully qualified dataset identifier.\n", "- `schema`: The dataset labeling (annotation) training schema.\n", "- `task`: A dictionary describing the requirements for the training job.\n", "\n", "The helper function calls the `Pipeline` client service'smethod `create_pipeline`, which takes the following parameters:\n", "\n", "- `parent`: The Vertex location root path for your `Dataset`, `Model` and `Endpoint` resources.\n", "- `training_pipeline`: the full specification for the pipeline training job.\n", "\n", "Let's look now deeper into the *minimal* requirements for constructing a `training_pipeline` specification:\n", "\n", "- `display_name`: A human readable name for the pipeline job.\n", "- `training_task_definition`: The dataset labeling (annotation) training schema.\n", "- `training_task_inputs`: A dictionary describing the requirements for the training job.\n", "- `model_to_upload`: A human readable name for the model.\n", "- `input_data_config`: The dataset specification.\n", " - `dataset_id`: The Vertex dataset identifier only (non-fully qualified) -- this is the last part of the fully-qualified identifier.\n", " - `fraction_split`: If specified, the percentages of the dataset to use for training, test and validation. Otherwise, the percentages are automatically selected by AutoML." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "create_pipeline:automl" }, "outputs": [], "source": [ "def create_pipeline(pipeline_name, model_name, dataset, schema, task):\n", "\n", " dataset_id = dataset.split(\"/\")[-1]\n", "\n", " input_config = {\n", " \"dataset_id\": dataset_id,\n", " \"fraction_split\": {\n", " \"training_fraction\": 0.8,\n", " \"validation_fraction\": 0.1,\n", " \"test_fraction\": 0.1,\n", " },\n", " }\n", "\n", " training_pipeline = {\n", " \"display_name\": pipeline_name,\n", " \"training_task_definition\": schema,\n", " \"training_task_inputs\": task,\n", " \"input_data_config\": input_config,\n", " \"model_to_upload\": {\"display_name\": model_name},\n", " }\n", "\n", " try:\n", " pipeline = clients[\"pipeline\"].create_training_pipeline(\n", " parent=PARENT, training_pipeline=training_pipeline\n", " )\n", " print(pipeline)\n", " except Exception as e:\n", " print(\"exception:\", e)\n", " return None\n", " return pipeline" ] }, { "cell_type": "markdown", "metadata": { "id": "task_requirements:automl,tmcn" }, "source": [ "### Construct the task requirements\n", "\n", "Next, construct the task requirements. Unlike other parameters which take a Python (JSON-like) dictionary, the `task` field takes a Google protobuf Struct, which is very similar to a Python dictionary. Use the `json_format.ParseDict` method for the conversion.\n", "\n", "The minimal fields you need to specify are:\n", "\n", "- `multi_label`: Whether True/False this is a multi-label (vs single) classification.\n", "\n", "Finally, create the pipeline by calling the helper function `create_pipeline`, which returns an instance of a training pipeline object." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "task_requirements:automl,tmcn" }, "outputs": [], "source": [ "PIPE_NAME = \"mcdonalds_pipe-\" + TIMESTAMP\n", "MODEL_NAME = \"mcdonalds_model-\" + TIMESTAMP\n", "\n", "task = json_format.ParseDict(\n", " {\n", " \"multi_label\": True,\n", " },\n", " Value(),\n", ")\n", "\n", "response = create_pipeline(PIPE_NAME, MODEL_NAME, dataset_id, TRAINING_SCHEMA, task)" ] }, { "cell_type": "markdown", "metadata": { "id": "pipeline_id:response" }, "source": [ "Now save the unique identifier of the training pipeline you created." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "pipeline_id:response" }, "outputs": [], "source": [ "# The full unique ID for the pipeline\n", "pipeline_id = response.name\n", "# The short numeric ID for the pipeline\n", "pipeline_short_id = pipeline_id.split(\"/\")[-1]\n", "\n", "print(pipeline_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "get_training_pipeline" }, "source": [ "### Get information on a training pipeline\n", "\n", "Now get pipeline information for just this training pipeline instance. The helper function gets the job information for just this job by calling the the job client service's `get_training_pipeline` method, with the following parameter:\n", "\n", "- `name`: The Vertex fully qualified pipeline identifier.\n", "\n", "When the model is done training, the pipeline state will be `PIPELINE_STATE_SUCCEEDED`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "get_training_pipeline" }, "outputs": [], "source": [ "def get_training_pipeline(name, silent=False):\n", " response = clients[\"pipeline\"].get_training_pipeline(name=name)\n", " if silent:\n", " return response\n", "\n", " print(\"pipeline\")\n", " print(\" name:\", response.name)\n", " print(\" display_name:\", response.display_name)\n", " print(\" state:\", response.state)\n", " print(\" training_task_definition:\", response.training_task_definition)\n", " print(\" training_task_inputs:\", dict(response.training_task_inputs))\n", " print(\" create_time:\", response.create_time)\n", " print(\" start_time:\", response.start_time)\n", " print(\" end_time:\", response.end_time)\n", " print(\" update_time:\", response.update_time)\n", " print(\" labels:\", dict(response.labels))\n", " return response\n", "\n", "\n", "response = get_training_pipeline(pipeline_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "wait_training_complete" }, "source": [ "# Deployment\n", "\n", "Training the above model may take upwards of 240 minutes time.\n", "\n", "Once your model is done training, you can calculate the actual time it took to train the model by subtracting `end_time` from `start_time`. For your model, you will need to know the fully qualified Vertex Model resource identifier, which the pipeline service assigned to it. You can get this from the returned pipeline instance as the field `model_to_deploy.name`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "wait_training_complete" }, "outputs": [], "source": [ "while True:\n", " response = get_training_pipeline(pipeline_id, True)\n", " if response.state != aip.PipelineState.PIPELINE_STATE_SUCCEEDED:\n", " print(\"Training job has not completed:\", response.state)\n", " model_to_deploy_id = None\n", " if response.state == aip.PipelineState.PIPELINE_STATE_FAILED:\n", " raise Exception(\"Training Job Failed\")\n", " else:\n", " model_to_deploy = response.model_to_upload\n", " model_to_deploy_id = model_to_deploy.name\n", " print(\"Training Time:\", response.end_time - response.start_time)\n", " break\n", " time.sleep(60)\n", "\n", "print(\"model to deploy:\", model_to_deploy_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "model_information" }, "source": [ "## Model information\n", "\n", "Now that your model is trained, you can get some information on your model." ] }, { "cell_type": "markdown", "metadata": { "id": "evaluate_the_model:automl" }, "source": [ "## Evaluate the Model resource\n", "\n", "Now find out how good the model service believes your model is. As part of training, some portion of the dataset was set aside as the test (holdout) data, which is used by the pipeline service to evaluate the model." ] }, { "cell_type": "markdown", "metadata": { "id": "list_model_evaluations:automl,tmcn" }, "source": [ "### List evaluations for all slices\n", "\n", "Use this helper function `list_model_evaluations`, which takes the following parameter:\n", "\n", "- `name`: The Vertex fully qualified model identifier for the `Model` resource.\n", "\n", "This helper function uses the model client service's `list_model_evaluations` method, which takes the same parameter. The response object from the call is a list, where each element is an evaluation metric.\n", "\n", "For each evaluation (you probably only have one) we then print all the key names for each metric in the evaluation, and for a small set (`logLoss` and `auPrc`) you will print the result." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "list_model_evaluations:automl,tmcn" }, "outputs": [], "source": [ "def list_model_evaluations(name):\n", " response = clients[\"model\"].list_model_evaluations(parent=name)\n", " for evaluation in response:\n", " print(\"model_evaluation\")\n", " print(\" name:\", evaluation.name)\n", " print(\" metrics_schema_uri:\", evaluation.metrics_schema_uri)\n", " metrics = json_format.MessageToDict(evaluation._pb.metrics)\n", " for metric in metrics.keys():\n", " print(metric)\n", " print(\"logloss\", metrics[\"logLoss\"])\n", " print(\"auPrc\", metrics[\"auPrc\"])\n", "\n", " return evaluation.name\n", "\n", "\n", "last_evaluation = list_model_evaluations(model_to_deploy_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "create_endpoint:automl" }, "source": [ "## Deploy the `Model` resource\n", "\n", "Now deploy the trained Vertex `Model` resource you created with AutoML. This requires two steps:\n", "\n", "1. Create an `Endpoint` resource for deploying the `Model` resource to.\n", "\n", "2. Deploy the `Model` resource to the `Endpoint` resource." ] }, { "cell_type": "markdown", "metadata": { "id": "create_endpoint" }, "source": [ "### Create an `Endpoint` resource\n", "\n", "Use this helper function `create_endpoint` to create an endpoint to deploy the model to for serving predictions, with the following parameter:\n", "\n", "- `display_name`: A human readable name for the `Endpoint` resource.\n", "\n", "The helper function uses the endpoint client service's `create_endpoint` method, which takes the following parameter:\n", "\n", "- `display_name`: A human readable name for the `Endpoint` resource.\n", "\n", "Creating an `Endpoint` resource returns a long running operation, since it may take a few moments to provision the `Endpoint` resource for serving. You call `response.result()`, which is a synchronous call and will return when the Endpoint resource is ready. The helper function returns the Vertex fully qualified identifier for the `Endpoint` resource: `response.name`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "create_endpoint" }, "outputs": [], "source": [ "ENDPOINT_NAME = \"mcdonalds_endpoint-\" + TIMESTAMP\n", "\n", "\n", "def create_endpoint(display_name):\n", " endpoint = {\"display_name\": display_name}\n", " response = clients[\"endpoint\"].create_endpoint(parent=PARENT, endpoint=endpoint)\n", " print(\"Long running operation:\", response.operation.name)\n", "\n", " result = response.result(timeout=300)\n", " print(\"result\")\n", " print(\" name:\", result.name)\n", " print(\" display_name:\", result.display_name)\n", " print(\" description:\", result.description)\n", " print(\" labels:\", result.labels)\n", " print(\" create_time:\", result.create_time)\n", " print(\" update_time:\", result.update_time)\n", " return result\n", "\n", "\n", "result = create_endpoint(ENDPOINT_NAME)" ] }, { "cell_type": "markdown", "metadata": { "id": "endpoint_id:result" }, "source": [ "Now get the unique identifier for the `Endpoint` resource you created." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "endpoint_id:result" }, "outputs": [], "source": [ "# The full unique ID for the endpoint\n", "endpoint_id = result.name\n", "# The short numeric ID for the endpoint\n", "endpoint_short_id = endpoint_id.split(\"/\")[-1]\n", "\n", "print(endpoint_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "instance_scaling" }, "source": [ "### Compute instance scaling\n", "\n", "You have several choices on scaling the compute instances for handling your online prediction requests:\n", "\n", "- Single Instance: The online prediction requests are processed on a single compute instance.\n", " - Set the minimum (`MIN_NODES`) and maximum (`MAX_NODES`) number of compute instances to one.\n", "\n", "- Manual Scaling: The online prediction requests are split across a fixed number of compute instances that you manually specified.\n", " - Set the minimum (`MIN_NODES`) and maximum (`MAX_NODES`) number of compute instances to the same number of nodes. When a model is first deployed to the instance, the fixed number of compute instances are provisioned and online prediction requests are evenly distributed across them.\n", "\n", "- Auto Scaling: The online prediction requests are split across a scaleable number of compute instances.\n", " - Set the minimum (`MIN_NODES`) number of compute instances to provision when a model is first deployed and to de-provision, and set the maximum (`MAX_NODES) number of compute instances to provision, depending on load conditions.\n", "\n", "The minimum number of compute instances corresponds to the field `min_replica_count` and the maximum number of compute instances corresponds to the field `max_replica_count`, in your subsequent deployment request." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "instance_scaling" }, "outputs": [], "source": [ "MIN_NODES = 1\n", "MAX_NODES = 1" ] }, { "cell_type": "markdown", "metadata": { "id": "deploy_model:automatic" }, "source": [ "### Deploy `Model` resource to the `Endpoint` resource\n", "\n", "Use this helper function `deploy_model` to deploy the `Model` resource to the `Endpoint` resource you created for serving predictions, with the following parameters:\n", "\n", "- `model`: The Vertex fully qualified model identifier of the model to upload (deploy) from the training pipeline.\n", "- `deploy_model_display_name`: A human readable name for the deployed model.\n", "- `endpoint`: The Vertex fully qualified endpoint identifier to deploy the model to.\n", "\n", "The helper function calls the `Endpoint` client service's method `deploy_model`, which takes the following parameters:\n", "\n", "- `endpoint`: The Vertex fully qualified `Endpoint` resource identifier to deploy the `Model` resource to.\n", "- `deployed_model`: The requirements specification for deploying the model.\n", "- `traffic_split`: Percent of traffic at the endpoint that goes to this model, which is specified as a dictionary of one or more key/value pairs.\n", " - If only one model, then specify as **{ \"0\": 100 }**, where \"0\" refers to this model being uploaded and 100 means 100% of the traffic.\n", " - If there are existing models on the endpoint, for which the traffic will be split, then use `model_id` to specify as **{ \"0\": percent, model_id: percent, ... }**, where `model_id` is the model id of an existing model to the deployed endpoint. The percents must add up to 100.\n", "\n", "Let's now dive deeper into the `deployed_model` parameter. This parameter is specified as a Python dictionary with the minimum required fields:\n", "\n", "- `model`: The Vertex fully qualified model identifier of the (upload) model to deploy.\n", "- `display_name`: A human readable name for the deployed model.\n", "- `disable_container_logging`: This disables logging of container events, such as execution failures (default is container logging is enabled). Container logging is typically enabled when debugging the deployment and then disabled when deployed for production.\n", "- `automatic_resources`: This refers to how many redundant compute instances (replicas). For this example, we set it to one (no replication).\n", "\n", "#### Traffic Split\n", "\n", "Let's now dive deeper into the `traffic_split` parameter. This parameter is specified as a Python dictionary. This might at first be a tad bit confusing. Let me explain, you can deploy more than one instance of your model to an endpoint, and then set how much (percent) goes to each instance.\n", "\n", "Why would you do that? Perhaps you already have a previous version deployed in production -- let's call that v1. You got better model evaluation on v2, but you don't know for certain that it is really better until you deploy to production. So in the case of traffic split, you might want to deploy v2 to the same endpoint as v1, but it only get's say 10% of the traffic. That way, you can monitor how well it does without disrupting the majority of users -- until you make a final decision.\n", "\n", "#### Response\n", "\n", "The method returns a long running operation `response`. We will wait sychronously for the operation to complete by calling the `response.result()`, which will block until the model is deployed. If this is the first time a model is deployed to the endpoint, it may take a few additional minutes to complete provisioning of resources." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "deploy_model:automatic" }, "outputs": [], "source": [ "DEPLOYED_NAME = \"mcdonalds_deployed-\" + TIMESTAMP\n", "\n", "\n", "def deploy_model(\n", " model, deployed_model_display_name, endpoint, traffic_split={\"0\": 100}\n", "):\n", "\n", " deployed_model = {\n", " \"model\": model,\n", " \"display_name\": deployed_model_display_name,\n", " \"automatic_resources\": {\n", " \"min_replica_count\": MIN_NODES,\n", " \"max_replica_count\": MAX_NODES,\n", " },\n", " }\n", "\n", " response = clients[\"endpoint\"].deploy_model(\n", " endpoint=endpoint, deployed_model=deployed_model, traffic_split=traffic_split\n", " )\n", "\n", " print(\"Long running operation:\", response.operation.name)\n", " result = response.result()\n", " print(\"result\")\n", " deployed_model = result.deployed_model\n", " print(\" deployed_model\")\n", " print(\" id:\", deployed_model.id)\n", " print(\" model:\", deployed_model.model)\n", " print(\" display_name:\", deployed_model.display_name)\n", " print(\" create_time:\", deployed_model.create_time)\n", "\n", " return deployed_model.id\n", "\n", "\n", "deployed_model_id = deploy_model(model_to_deploy_id, DEPLOYED_NAME, endpoint_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "make_prediction" }, "source": [ "## Make a online prediction request\n", "\n", "Now do a online prediction to your deployed model." ] }, { "cell_type": "markdown", "metadata": { "id": "get_test_item" }, "source": [ "### Get test item\n", "\n", "You will use an arbitrary example out of the dataset as a test item. Don't be concerned that the example was likely used in training the model -- we just want to demonstrate how to make a prediction." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "get_test_item:automl,tmcn,csv" }, "outputs": [], "source": [ "test_item = ! gsutil cat $IMPORT_FILE | head -n1\n", "\n", "cols = str(test_item[0]).split(\",\")\n", "test_item = cols[0]\n", "test_label = cols[1:]\n", "\n", "print(test_item, test_label)" ] }, { "cell_type": "markdown", "metadata": { "id": "predict_item:automl,tmcn" }, "source": [ "### Make a prediction\n", "\n", "Now you have a test item. Use this helper function `predict_item`, which takes the following parameters:\n", "\n", "- `filename`: The Cloud Storage path to the test item.\n", "- `endpoint`: The Vertex fully qualified identifier for the `Endpoint` resource where the `Model` resource was deployed.\n", "- `parameters_dict`: Additional filtering parameters for serving prediction results.\n", "\n", "This function calls the prediction client service's `predict` method with the following parameters:\n", "\n", "- `endpoint`: The Vertex fully qualified identifier for the `Endpoint` resource where the `Model` resource was deployed.\n", "- `instances`: A list of instances (text files) to predict.\n", "- `parameters`: Additional filtering parameters for serving prediction results. *Note*, text models do not support additional parameters.\n", "\n", "#### Request\n", "\n", "The format of each instance is:\n", "\n", " { 'content': text_item }\n", "\n", "Since the `predict()` method can take multiple items (instances), you send your single test item as a list of one test item. As a final step, you package the instances list into Google's protobuf format -- which is what you pass to the `predict()` method.\n", "\n", "#### Response\n", "\n", "The `response` object returns a list, where each element in the list corresponds to the corresponding text in the request. You will see in the output for each prediction -- in this case there is just one:\n", "\n", "- `confidences`: Confidence level in the prediction.\n", "- `displayNames`: The predicted label." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "predict_item:automl,tmcn" }, "outputs": [], "source": [ "def predict_item(data, endpoint, parameters_dict):\n", "\n", " parameters = json_format.ParseDict(parameters_dict, Value())\n", "\n", " # The format of each instance should conform to the deployed model's prediction input schema.\n", " instances_list = [{\"content\": data}]\n", " instances = [json_format.ParseDict(s, Value()) for s in instances_list]\n", "\n", " response = clients[\"prediction\"].predict(\n", " endpoint=endpoint, instances=instances, parameters=parameters\n", " )\n", " print(\"response\")\n", " print(\" deployed_model_id:\", response.deployed_model_id)\n", " predictions = response.predictions\n", " print(\"predictions\")\n", " for prediction in predictions:\n", " print(\" prediction:\", dict(prediction))\n", " return response\n", "\n", "\n", "response = predict_item(test_item, endpoint_id, None)" ] }, { "cell_type": "markdown", "metadata": { "id": "undeploy_model" }, "source": [ "## Undeploy the `Model` resource\n", "\n", "Now undeploy your `Model` resource from the serving `Endpoint` resoure. Use this helper function `undeploy_model`, which takes the following parameters:\n", "\n", "- `deployed_model_id`: The model deployment identifier returned by the endpoint service when the `Model` resource was deployed to.\n", "- `endpoint`: The Vertex fully qualified identifier for the `Endpoint` resource where the `Model` is deployed to.\n", "\n", "This function calls the endpoint client service's method `undeploy_model`, with the following parameters:\n", "\n", "- `deployed_model_id`: The model deployment identifier returned by the endpoint service when the `Model` resource was deployed.\n", "- `endpoint`: The Vertex fully qualified identifier for the `Endpoint` resource where the `Model` resource is deployed.\n", "- `traffic_split`: How to split traffic among the remaining deployed models on the `Endpoint` resource.\n", "\n", "Since this is the only deployed model on the `Endpoint` resource, you simply can leave `traffic_split` empty by setting it to {}." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "undeploy_model" }, "outputs": [], "source": [ "def undeploy_model(deployed_model_id, endpoint):\n", " response = clients[\"endpoint\"].undeploy_model(\n", " endpoint=endpoint, deployed_model_id=deployed_model_id, traffic_split={}\n", " )\n", " print(response)\n", "\n", "\n", "undeploy_model(deployed_model_id, endpoint_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "cleanup" }, "source": [ "# Cleaning up\n", "\n", "To clean up all GCP resources used in this project, you can [delete the GCP\n", "project](https://cloud.google.com/resource-manager/docs/creating-managing-projects#shutting_down_projects) you used for the tutorial.\n", "\n", "Otherwise, you can delete the individual resources you created in this tutorial:\n", "\n", "- Dataset\n", "- Pipeline\n", "- Model\n", "- Endpoint\n", "- Batch Job\n", "- Custom Job\n", "- Hyperparameter Tuning Job\n", "- Cloud Storage Bucket" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "cleanup" }, "outputs": [], "source": [ "delete_dataset = True\n", "delete_pipeline = True\n", "delete_model = True\n", "delete_endpoint = True\n", "delete_batchjob = True\n", "delete_customjob = True\n", "delete_hptjob = True\n", "delete_bucket = True\n", "\n", "# Delete the dataset using the Vertex fully qualified identifier for the dataset\n", "try:\n", " if delete_dataset and \"dataset_id\" in globals():\n", " clients[\"dataset\"].delete_dataset(name=dataset_id)\n", "except Exception as e:\n", " print(e)\n", "\n", "# Delete the training pipeline using the Vertex fully qualified identifier for the pipeline\n", "try:\n", " if delete_pipeline and \"pipeline_id\" in globals():\n", " clients[\"pipeline\"].delete_training_pipeline(name=pipeline_id)\n", "except Exception as e:\n", " print(e)\n", "\n", "# Delete the model using the Vertex fully qualified identifier for the model\n", "try:\n", " if delete_model and \"model_to_deploy_id\" in globals():\n", " clients[\"model\"].delete_model(name=model_to_deploy_id)\n", "except Exception as e:\n", " print(e)\n", "\n", "# Delete the endpoint using the Vertex fully qualified identifier for the endpoint\n", "try:\n", " if delete_endpoint and \"endpoint_id\" in globals():\n", " clients[\"endpoint\"].delete_endpoint(name=endpoint_id)\n", "except Exception as e:\n", " print(e)\n", "\n", "# Delete the batch job using the Vertex fully qualified identifier for the batch job\n", "try:\n", " if delete_batchjob and \"batch_job_id\" in globals():\n", " clients[\"job\"].delete_batch_prediction_job(name=batch_job_id)\n", "except Exception as e:\n", " print(e)\n", "\n", "# Delete the custom job using the Vertex fully qualified identifier for the custom job\n", "try:\n", " if delete_customjob and \"job_id\" in globals():\n", " clients[\"job\"].delete_custom_job(name=job_id)\n", "except Exception as e:\n", " print(e)\n", "\n", "# Delete the hyperparameter tuning job using the Vertex fully qualified identifier for the hyperparameter tuning job\n", "try:\n", " if delete_hptjob and \"hpt_job_id\" in globals():\n", " clients[\"job\"].delete_hyperparameter_tuning_job(name=hpt_job_id)\n", "except Exception as e:\n", " print(e)\n", "\n", "if delete_bucket and \"BUCKET_NAME\" in globals():\n", " ! gsutil rm -r $BUCKET_NAME" ] } ], "metadata": { "colab": { "name": "showcase_automl_text_multi-label_classification_online.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
gfrias/udacity
2_traffic_signs/Traffic_Sign_Classifier.ipynb
1
145123
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Self-Driving Car Engineer Nanodegree\n", "\n", "## Deep Learning\n", "\n", "## Project: Build a Traffic Sign Recognition Classifier\n", "\n", "In this notebook, a template is provided for you to implement your functionality in stages which is required to successfully complete this project. If additional code is required that cannot be included in the notebook, be sure that the Python code is successfully imported and included in your submission, if necessary. Sections that begin with **'Implementation'** in the header indicate where you should begin your implementation for your project. Note that some sections of implementation are optional, and will be marked with **'Optional'** in the header.\n", "\n", "In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.\n", "\n", ">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## Step 0: Load The Data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Image shape: (32, 32, 3)\n", "\n", "Training Set: 31367 samples\n", "Validation Set: 7842 samples\n", "Test Set: 12630 samples\n" ] } ], "source": [ "# Load pickled data\n", "import pickle\n", "from sklearn.model_selection import train_test_split\n", "\n", "# TODO: Fill this in based on where you saved the training and testing data\n", "\n", "training_file = '/Users/gfrias/Downloads/traffic-signs-data/train.p'\n", "testing_file = '/Users/gfrias/Downloads/traffic-signs-data/test.p'\n", "\n", "with open(training_file, mode='rb') as f:\n", " train = pickle.load(f)\n", "with open(testing_file, mode='rb') as f:\n", " test = pickle.load(f)\n", " \n", "X_train, y_train = train['features'], train['labels']\n", "\n", "X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=0.2, random_state=0)\n", "X_test, y_test = test['features'], test['labels']\n", "\n", "assert(len(X_train) == len(y_train))\n", "assert(len(X_validation) == len(y_validation))\n", "assert(len(X_test) == len(y_test))\n", "\n", "print()\n", "print(\"Image shape: {}\".format(X_train[0].shape))\n", "print()\n", "print(\"Training Set: {} samples\".format(len(X_train)))\n", "print(\"Validation Set: {} samples\".format(len(X_validation)))\n", "print(\"Test Set: {} samples\".format(len(X_test)))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "## Step 1: Dataset Summary & Exploration\n", "\n", "The pickled data is a dictionary with 4 key/value pairs:\n", "\n", "- `'features'` is a 4D array containing raw pixel data of the traffic sign images, (num examples, width, height, channels).\n", "- `'labels'` is a 2D array containing the label/class id of the traffic sign. The file `signnames.csv` contains id -> name mappings for each id.\n", "- `'sizes'` is a list containing tuples, (width, height) representing the the original width and height the image.\n", "- `'coords'` is a list containing tuples, (x1, y1, x2, y2) representing coordinates of a bounding box around the sign in the image. **THESE COORDINATES ASSUME THE ORIGINAL IMAGE. THE PICKLED DATA CONTAINS RESIZED VERSIONS (32 by 32) OF THESE IMAGES**\n", "\n", "Complete the basic data summary below." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Summary for feature set: train\n", "-----------------------\n", "features shape: (39209, 32, 32, 3)\n", "labels shape: (39209,)\n", "sizes shape: (39209, 2)\n", "coord shape: (39209, 4)\n", "\n", "Summary for feature set: test\n", "-----------------------\n", "features shape: (12630, 32, 32, 3)\n", "labels shape: (12630,)\n", "sizes shape: (12630, 2)\n", "coord shape: (12630, 4)\n", "\n" ] } ], "source": [ "def print_summary(feature_set, feature_set_name):\n", " print(\"Summary for feature set: {}\".format(feature_set_name))\n", " print(\"-----------------------\")\n", " print(\"features shape: {}\".format(feature_set['features'].shape))\n", " print(\"labels shape: {}\".format(feature_set['labels'].shape))\n", " print(\"sizes shape: {}\".format(feature_set['sizes'].shape))\n", " print(\"coord shape: {}\".format(feature_set['coords'].shape))\n", " print()\n", " \n", "print_summary(train, 'train')\n", "print_summary(test, 'test')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Visualize the German Traffic Signs Dataset using the pickled file(s). This is open ended, suggestions include: plotting traffic sign images, plotting the count of each sign, etc.\n", "\n", "The [Matplotlib](http://matplotlib.org/) [examples](http://matplotlib.org/examples/index.html) and [gallery](http://matplotlib.org/gallery.html) pages are a great resource for doing visualizations in Python.\n", "\n", "**NOTE:** It's recommended you start with something simple first. If you wish to do more, come back to it after you've completed the rest of the sections." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAACXCAYAAAAlBD1zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztvXucJElZ7/39RWZWdc8MCwIfh5vITRAPgigiCyy7CnLz\nuOIdRRe8HG945OPnVTgosggiL3BEvOHhKGcVFTy8KqAIrNxvclEWucjKRRZZYHdcYNmd6e6qyox4\n3j8isioru7q6e6anpxviO5tbnZGREZFZWfHk88QTT8jMyGQymUxmv3DnugGZTCaT+fIiC55MJpPJ\n7CtZ8GQymUxmX8mCJ5PJZDL7ShY8mUwmk9lXsuDJZDKZzL6SBU8mk8lk9pUseDKZTCazr2TBk8lk\nMpl9JQueXSIpSLr4XLfjMCPpUklXbJPnq9O9vud+tSvVe5mkvznDMi5MbT9vr9q1TX0/Iem1+1HX\nXrDdb0jSmyQ9r7N/laRfOMM6t33mlpx7C0knJN3+TNpwmnWf8fO4w3oeK+n6bfI8S9Lv9tLuLulq\nSau7qe/ACR5Jt5T0h5L+Q9JI0jWSXiPp/HPdtrOFpJ+U9FZJX0jb6yR984J8t5H0Z5I+J2ld0vsl\nfWMvz90lvVLSFyWdkvRuSbfrHH9z+uG3m5f0gl4ZXyHpLyTdIOl6SX8s6egeXvJzgQd36tvqx7Xr\neE570UntEafT9odJeqekGyX9p6S/kvTV25wzBJ4OPK2Ttpo6iY9L2khlvUnSd+76Kg4G9wH+9xmW\nsdNnbhG/CrzCzD7VOf93JP1z6qM2CbT08vEKSZ9Nv8P3SfrhBfkukvTeVM5HJT32NK7ttJH0CUnf\nlna3e2b/J/BYSXdoE8zsSuCdwP+zm3oPnOAB/ga4F/CjwNcA3wm8GbjFOWzT2eZC4CXARcD9gKuB\nf5B06zaDpJsB7wDGwMOAuxO/7Os7ee4MvA34MPAg4OuBZwCjTl1G/BEfB24F3Bp4Yq89L0nlPxj4\njlTWC/fiQgHMbN3Mlr5dJbRXdR500o/5FcDric//Q4FbAn+9zanfD9xgZu/qpL0QeBTweOBuxOfl\nrzikvyEz+7yZjbbPubSMnT5zc6Q3+R8H/rhfJPAi4C+3OPX+wPuB7yH+Di8DXizpkZ2y7wC8CngD\n8Tv/HeCPJX37btt5OiRrws2At+wkv5l9Hrgc+NneoT8BflbSzuWJmR2YDbgpEIALtsn3i8AHgFPA\np4A/AI52jj+W2CF/B/BvwBrwMmA1HbsK+ALxi1bnvKuApxA73lPAp4Gf69UdgIs7+7cD/m+q7/PE\nzuOrz/A+OOAG4Ec6af8v8JZtznsp8Kfb5HkT8Lwlx782XeO9O2kPAxrgVluc83jgg539R6UyfqqT\n9jrg6envpwHvS39fmvL6zueDgK9O+98NvDF9h/8C3G+b67sK+IUl9/WPgU8A6+nZ+IVensuILz9P\nBf4zfQ9/CJSdPAKe3CnnfcD3do5fmK7jvF18598LjHtp/zXd92LJeX8HPLuXdj3wozu4T9s96zdN\n96u9D68H7tnL813Ae4EN4OPpvrnO8bsAb03HPwQ8pP8b2u4Z7X+n7bOVrn2N+KJ1P+DO6dxTxJe0\nO3bOuXS7Z26LtnwfcO2Stl4KXLHD7/hVwB939p8NfGDBb/jV/eexs//N6fv45e51AT8G/AdwEvj9\n9Kw/EbgGOAH8yoL2PAV4Sfr7scQ+8aHpfp4EXgMc753zo8B/9NKq9P1+606f94Om8ZxK26MkDZbk\n88B/B74OuAT4VuKX2OVIyvMDxI7zW4GXAw8HHgH8CPDTxAeryy8Rv8hvIHb2vyPpwSxAUkl8A7gB\neADxLeck8Np0rGvv3419+Cjxy/xCJ+07gX+W9LJkb75C0k922iKioP2YpNemPO+S9F0Lyn+MpOsk\nfVDSb/bss+cD15vZ+zpprye+4X3LFu19C3B3Se0b9YOA64gaXHufzid2CqSyWrX+fxJfCl5L1MJu\nDfxjp+zfAJ5DfCP8KPCSXb1ZzeOI2uT3EjW6XweeKan/DDyEKIAvBB5NfGu9tHP8V4jPz08Rn8Hf\nBv5M0gVbVZyegUuWtO29QJD0Y5KcpJsSf+SvMzO/5LwHAv/cS7sWeKSkY0vOg+2f9VZLehjwjcAV\nwOuT9k263j8lXv/XEn9PjyWaptpn8uVEjfubgZ8h/k73IiT+U4hv2vcCriQK0P8FPBP4JuLLwe/3\nztnpM9flgcTvZi+4KfO/6fsRf1tdLif+VjaRTGL/ADzZzJ7bOXRnYr/2MOLz+pPA3wO3If4WnwT8\nxgLz/cXAKzv7R4lWlMcAFwC3J96rLu8Bbtftz8ysJr4Ubvn8b2KnEmq/NuIb7ueIb5JvJz5IX7/N\nOd8L/Gdn/7FE4XSHTtofEoXCaiftNcALem9Wf7/gDeRVvbeti9PfPwJ8uJd/QHwLe0jnDeXDwK13\ncQ9eAHwMGHTSNtI9eQbxx/bf0v6PpuPHU9tOAr8A3JP4wHk6GiTxofx24L8AP0TsiP+qc/zJwJUL\n2nQC+Oklbb4O+J709xXEt63PpP0HEDuflc5b2hWdc+fe6lJaq/E8rpN293Q9d13Sji01ni3y/x7w\nsl5brgOGnbSfJpqz2u/3FPAtvXL+CPjz9PcmjSc9A9+1TVseRBQadbr2t7NEa2JmIXhAL/0C4tvv\nmNhRPA+4/4L7tOWzTuxwrweqXp6PAT+Z/n4d8KTe8cd0vveHpjYc7xx/GHuj8Tyts/8tKe2xnbQf\nBNY6+9s+c1u05eXAHy05viONh/gCvAHcvZP2kQX37xHp2Rl220m0ItwIfN+C+k8CRzpprwH+vZfv\nSuCJnf3bpPacl/YX9Zk/C3y2V85NWGCVIpqEX7TT313JAcPMXi7p74k/nvsRv4gnSvoJM3sxgKSH\nAP+D+JZ1HlACQ0krNrMFr5vZJztFnwA+aWYbvbSv7DXhnQv2n7BFc+8JfI2kk730IfEt5PVm9k/E\nt+IdIel/EB/SC81s0jnkgPeY2a+l/fdLugfxLfLPmI3XvcLMWs+TD0i6f8rzNgAz69qq/1XSNcAb\nJd3RzK7aaTsX8FbgIklvIAqIFxC/t7sSO9R/stOz03+w8/c1xDfZryRqP7tG0uOJZonbE02vA+Jb\nf5f3m9m4s/9O4JikryL+8I4Ar0tv9C0VUeAuxMyWPgOSjhOF12XEcYObEF8y/pr4orCIVlOdu69m\n9jZJdyL+fu5PHKt7m6Snmtkze9dFb7991u+Z2vCF+ctkBbhT+vtewP0lPaVzvAAGklaIv8+rzezE\nkjpPl+5z0Zb/oV7aiqRjZnbqDOpZpXd/d4ukbwX+D1FgX3kaRdyPaPH4XjP72wXHP2lm6539E0QT\nLb20bl93MfB2M7uxk9bvM69hc//Y9p9HFqT307bkwAkegNThviFtz5T0R0SzyIvTgNzfEcd1foWo\nul5AtEUPmD0kdb/YLdLOxNx4jGjm+GE2D4Rft9vCJP0SUVN4sJn9a+/wNcS3li5XEs1AELXEZos8\nD1hS7XvS512Ib5bX0nvYJBXAzdOxrXgzUQu7gGhLPyXpbUQT54XscABzAd3vrDWVnNZ3JunRRO+m\nXwTeRXxTfCJw310U05qvHgl8tndszOnzeKJW9eQ2QdKPAFdLuq+ZvWfBOZ8n3pOv6B+waJ57R9qe\nK+lXgV+T9Gwz63dKizhGvL4L2fxsf7GT56nEN/I+Z3IvdsKi52LPnpUOn2PB/d0pki4E/hZ4gpn9\nRe/wtURLRZfjwI29F5+Pp3b8hKRXL/j+Tqevuzi1a7ty+t/9zdNnv3+7eWrnjjiQgmcBVxIHMSHa\nmmVmv9QeTB3KXnG/BftbvaVcQdROrjvDtyokPZFo5nqozY+vtLyD6KHU5W5EkwpmVkv6pwV57trm\n2YJ7Ex+wa9L+O4GbSbp3px0PJj6A715SzluA5xO9rN6c0t5MHC+5P5ttxV0mxDflPnsxFtDl/sA7\nzGzqoZc8AfvcS9Kw8+M/HzhlZlcrznUYEx1I3r6HbTvC5rfUkD4Xdp7pO/8wUaPujxX0uZL4e18h\nmgph+bN+BdHr0VvHjbjHFcDdzOwTiw5KuhL4KknHO1rP+ez998pplLnVM9fnfUTz4a6RdBHxJfmX\nzexFC7K8k2jR6fJQNmuFnyO+YL4FeJmk77fl437bteso8YXwZ07j9HsQ713/xfgewP+300IOlHOB\npJtLeoOkx0j6ekl3kPT9wC8TvcUgStVK0i9IuqOkHyXa4PeKB0j6JUlfk8wy30fsUBfxF8SH4pWS\nHpjae5Gij/9t0jV9s6Qru67RfSQ9iTgX48eBT0k6nrbu3JnfBu4n6cmS7qw4J+AnmR9AfS7wg4rz\ngu4s6eeJnlF/kOq5k6SnSPpGxQmaFxMHh99iZh8CMLN/Iw5w/lFq+wOI4yAvNbMtNR4z+wBxTOCH\nmBc8jyKaHt+x1bnAJ4F7Srqr4mS99oXodN2pbyvpXr3tZsTxiftIemj6fp9OHIPrMwBepDgn6pFE\nL7zfS9d5iihEf1vSJeme3lvSz6dnsWWu7ZL+TYsdPVr+HrivpF+TdBfF+VmXEbXQRS8iLZcTx2O6\ndb1J0k91vudHEsdK39h7QdryWTez1xM7wFdI+vZUzv0l/YZmc8eeDlwi6amSvk7S10r6QUnPSMdf\nT7znL5Z0T0VnhN9Yci1nwqJnZdnz80kWP3N9Lgf+i6Kzx6zg+Pv6BqJjwmrnOWudir6V6MX2O8DL\nO7/prvb0v4A7SXq2pLtJ+jnid/A8epjZ54BvI5ov/zJZIU6XRwAfWfJCsYwLgLd1NTLFuWa3YfuX\nnxk7HQzaj434g38m8E9EE9pJ4qDs05gf7H0C0f3zFPBq4hvJdDCX5Bq4YBDuil5a31XxKqK3zF+m\nsj8DPL53jmfenforUzkniIP9HyM+UMfS8Xag+fZLrvuqlKe/PbWX75FEN/J14hvHjy8o63HE8Y81\n4hvpf+0cux1RGFyXyvgI8Ky2rZ18NwP+nOitdz1x7OHIVu3vnNd6MB1J+yIK5rcv+y6I81VeSxw8\n7bpTezruu8TB9C1dX7e5lz9MHId5UXq2Pk8U2s9kwaBzauN1zNyp+4Ps/534bI6IJpNXAw/sfedd\n5wIPXLLN/fsBoun2xlTmy1niSJHOuXt6Vm/SSXsS0THhuvQcfIzYmX3FLp/1o0RBdHW6zk8CLwZu\n28nz7cTxw1PpWXkn8BOd43chvqlvELWpb6f3G1pwTW9k3rngE8w7F/R/g4uelbnvYCfP3JL2vBP4\nb720N23xnN2+8xwtOv7GXjkPYuaO/jF6bvBs7qNule7jS4m/r237tc49/a3094tJUxs6xxf1md9F\n1Hi7aVcC399LezIdF/CdbEonZoiz3oHfttngfCZz4JH0f4mdT39KwbJz8rO+Q5LG+Bwzu8e5bsuZ\nkjSlE8DDzazvhr/duQ8navv3NLOQ0iqiwHy0zU9iXsqBMrVlMpnT4peZjdtk9hgzezXwvyXd9ly3\nZQ+4OVGb3JXQSRwBfqwVOonbA8/cjdABssbTRdIngOfnt8DMlzr5Wc+cS7LgyWQymcy+kk1tmUwm\nk9lXsuDJZDKZzL6SBU8mk8lk9pUseDKZTCazr2TBk8lkMpl9JQueTCaTyewrWfBkMplMZl/JgieT\nyWQy+0oWPJlMJpPZV7LgyWQymcy+kgVPJpPJZPaVLHgymUwms69kwZPJZDKZfSULnkwmk8nsK2dN\n8Eh6vKSrJG1IepekRWvbZzKZTObLjLMieCT9IPBbxPXA7w28H7hc0i3PRn2ZTCaTOTyclYXgJL0L\neLeZPSHtC7ga+F0ze86eV5jJZDKZQ8OeazySKuCbgDe0aRal2+uB8/e6vkwmk8kcLsqzUOYtgQI4\n0Us/Adytn1nSLYCHAZ8ERmehPV+qrAB3AC43s8+f47ZkMpnMjjkbgme3PAz4i3PdiEPMY4CXnOtG\nZDKZzE45G4Lnc4AHjvfSjwPXLsj/SQDnCkIIFEUxa1xZUVWDWU5p7sSN9VOsrh5tD27dIsVT19dP\nceTIsZjWDm3Z/G7MHFM21k+x2ubv1NHWJHWrFetrJzly9CadPNYre76d62snOXLkGGbGoqG29nLr\nekJdT/DeT++PYQTvId2/TCaTOSzsueAxs1rSe4EHA38LU+eCBwO/u+CUEcDRIzdhY7TOsWPndTrq\nOXHATCjEI5IoyxJMbOUiIWkqeJwcZVl1Ggttj29dwSXFFNfN3xM6C3YkR1kOUpKxneCRRFFUgLHI\nyaMVPGVZsrJ6hFOnbuTosfMA8E3DqZNfhGyezGQyh4yzZWp7HvAnSQC9B/hF4AjwJ9ufKsQCDaCn\n7cztyVCrY/TOs37e7oEF5c63g2m5C+tOhatTZ/zbsCUK2I6Yk2xtZZlMJnP4OSuCx8xelubsPJ1o\nYvsX4GFmdt0uSlmQpiXHthQxU2G0dde9XEpsrrVTkql3+k4FRM/Wt6nCM5VcmUwmczA5a84FZvYC\n4AU7PiGZw6SO1rJIlizop2dazoITzECdbt5ao1prnhPdDwDNqU19c9/y+m1z4hKtapssC9LUXkuW\nS5lM5pByoGK1DQbDLY8t0iMGg+HCQfmtChhUw2lZc0LnNNqzqILBYCUJnC1HnOb+HgxWthZKm5I1\nbU+WOZlM5jBzNiaQXiop9LYP7+TcwWBltrOw757v1Ktqh4IhnVYlQWX0S1renuX5ZkeHbfsXnqDe\nJwyHq/2ktL9YtAyGuxGEmUwmczA5W6a2DxG92NoetNnuBDNmnl0LbW1bj+FEltmqFosOafs8C07Y\n7MHQmthaZ4Np3e2OQK7XSsO6vnR9YTOtq72SzvVLOBe2b28mk8kcQM6W4Gl250gwTxzDSKrJUuGz\nU0Ek+oKl9VlbfOqicaKeu7XZXImt0JSBSR3/gOhm3U766QqeuIW59s2q6Qx4dQd1UplOB8pKmslk\nMjvmbAmer5H0GeIck3cCTzazq3ddSsc6NT+LJiWrn3EXhfad0frlqiMker7R1gqiqWDsHKMjRqbZ\nrCNyuvN4Yu5WhHWOdC5uSUMzmUzmEHI2BM+7gMcBHwFuDTwNeKuke5jZ2k4KiC/682/47QHB3GTL\nLa1f2x3rHG+1F7V1OOGkOPm0nQSaogtErzjFz57b88xAaNOdmSCyaX1aoIF1Tplqe4vmEE0nvOZp\nPZlM5pByNiIXXN7Z/ZCk9wD/AfwAcNlOy+l36l0NRAsG32dJ05mhm47NLGbzhrZWOLRRDpyEK4Rz\nbtrDh2CEEAWCyeaEQtcSZ1MT3EzytHrNfDvnsd7Owqk8Zti8TpXJZDKHjrMeJNTMbpD0UeAuy/Jt\nbJyKYyHxLCC6M0eX476pbSed7kwA2Zw6sYAkDSQh53AuCh3nNBUYTkZIW9R+rCNUpnoR7RlzU4sA\nLIAJaycrbfKrS3pREjoWVTsEjMcjxuONOYFmIQueTCZzODnrgkfSMaLQefGyfKurx2LcNWCuQ144\nxLH9G/9clIGZDYs42L+wnUgOyeGco3BR6yF5npkMyaIAMsPCzPTW1bEsNW2+hTNHCUMzM5lmdXev\nyyBOYlUUYsPhyiZX6qZpuOGLeTWETCZz+NhzwSPpucDfEc1rtwV+HaiBly4/c6YBtB2z0lv/Tmb+\nLyxueTunm5NDzlG4Im6F0kbSOgIWjGBs+gwhaUCEKJDMMAuE7nwh6+gqraBqBVTn2rZaDXax+0Im\nk8kcTs6GxnM74vowtwCuA94O3G93i5XNBNCsY94D05JiOUZ0HnByFEVBWZSULn0WJWUhisIonEUT\nWQhzzgVRaxE+GD4EQjC8eULwhOl+EkzMnKbba5pejjpu2L15O5uFbVeH6pvpMplM5vBwNpwLfmhP\ny4uFEm1ui9/2d/b+r1Se4r8kdKqiZFBWVEU53UoHZWE4BQh+OrYyjXpgDiMKniYEfAh4Ax+z44kC\nycN0M2YRt6cO1MZUwCzUdjYlzaJeWxY8mUzmkHIQViDdzNwASXcWzOmamNKAvlw0rTlRlSXDqmRQ\nFFRyVA5KCxRNTSGjbAIOj1kSPslEFgWP4shPShBQKJoEvXN4MzyiMdEY1GaY+eQQYAush/MCVQvS\n5vyzM5lM5hCz6+nvki6Q9LeSPpPisF28IM/TJX1W0rqk10la6tG2uKL53TPqbyXAJeeBArmSsqwY\nDgasVBUrpWPFwcA8VVNTTSYU4zHFaEw5GlGMxtN9NxrjxmmbTCjqmtI3DMxYcWLFOVZcwdAVDFxJ\n5SpKV+BURC85xYmj/aXr1Nnmr7q77dUNyWQymXPH6Wg8R4nr67wI+Jv+QUlPAn4euIS4LPNvAJdL\nuruZTZYVvKkvXTI3Z7sSppM1JYRDKnGuoHCOonAMJErzFN5HD7IQPdVCACxghKnTQDt/pu3+o+OA\nEYDQeqmZw0woQJH2RUGhgkKO0ok6CO8ammAE09QBYX7O0R6OaWUymcwBZNeCx8xeC7wWaJe07vME\n4Blm9qqU5xLgBPAo4GU7q+V0JkhOB1DSRzuWo6RtlJSupCoclXNUNJS+jma0EPA+zrORRbOe67px\nSz3dIwqd6GwQ3QYUPOYBWoGTltp2JZUcXqIxx9jDWEYd0tQemzV6/mbmSaKZTOZLkz0d45F0R+BW\nwBvaNDO7UdK7gfNZInj6M/fjR1eDmfofz9I2zdKcHomRDuSiGHAFpSuoioKBcwwcODMK36DgUQgQ\nDFGAHMhhri2j/WQani2YJS0ppHOTFAntXJ8QtaxOW3AFtRFds9O/YGHmp7atjOkb4bJLdSaTOZzs\ntXPBrYh984le+ol0bCmz4fTF7sI7m8HiZkKnNXMVBZUTlQIlnsKMwmocnkJQlBWOAoohcgNUlhSl\nQ0WBc6BWCKURsWBR+ISmweoGa2rMTzA/IYSAeQNrosYVWj+6qIV5lfjCEfB481jwBGv1qJ0Jk6wH\nZTKZw8yB82rbSrjsfNpkdCSAAqmkcEnoOKgUqMxTmKewBoePmpCrKMshlEdQeQQ3GFAMC4qqRAUp\nhE6KZCARAnGezqQmjMeEyYhQr+En4OsJzaTB0tiR8LhQUFDg5AgqCU54m1AHI6gdS+qHz9n6/mQy\nmcxhZq8Fz7XEXvM481rPceB9y04cbaxtCv5ZVQOqwYC5jnjhdJeuK3J0m3ZFa1orGShQyVNYdJEW\ngaIsKIuKqhoyqI5QVUfQ4CiuOooGFa5yuNJFS5mz5IbNdLynNGFNg9UTrB4T6gFhMqAebTAZjfDj\nCaEJhLqhG4PNISqJAcJr5sfWOixAO6dndk2TyYh6Mpq7BVtFOchkMpmDzp4KHjO7StK1xNVHPwAg\n6TzgW4A/WHbuyupRiiI2p3U17ixWMBvP2U7tmQb6jIJnpSgoLVCGKHSwAAq4cki1MmQ4PMpgeIzB\n8BhueBOK4TFUlbTDPUbAFFL0apua8ZDi+I730EwI9RCrh4zXTuJKx8RBvTHGN3U0paVLKZyoLIk/\nxaChQaKZm6A6f0lVNaSqhnPrDzW+5tSN12/7nWQymcxBY9eCR9JRYtDPthu8k6R7AV9Ii709H3iK\npI8T3amfAXwaeOXScjsFzjreTvBMbc6/KEWuDYOjGIHAGaUPFASchVhUUVIOhlQrRylXjlGu3IRy\n5RjFyjGK4VFwDlNyAjCP4adBBuRSMFHnkCXBUwhXeKwIFKGhNE9IIXSapgZvWPDJa85RWqDCCBLB\nxYmmtTS//PcmZpEPssNbJpM5zJyOxnMf4E3MPAB+K6X/KfDjZvYcSUeAFwI3A94GPGK7OTzb0x2i\nb7HpkXZp6bJwlKVjUIhCHlkD1kBokERRVhTVgGpwjGp4jHLlKFo5gq2sYEnTMQJN8Pjgp5901ugp\nClEQhYk1NdZMMN9gPhBcAYMVXAg4Hyi9J0w8NglYqKNjnhmFoBJ4oiAqgsNkaQG8rpvFItuiZVNb\nJpM5tJzOPJ63sE3EAzN7GnHl0Z2Xy1Yv8d0lA/prcnbHdmYRpgdlQVVAGRpcqKNmEkLUdIqKarDK\nYHiEcngMt3IUraxiwxUoSqyE4ANNaKjrmtp7Jt7HssuSohQlgRIITYOvJ4RmAr7BvMU5Q4Nh9Jbz\nDcHXmI0JdTPnt1bgwEWTWxkchUI0u3WFznTBuelM07zyaCaTOfQcOK+2haSo0p2d3mFNF28rnaOS\nKNI8m9D4GIW6rCjLKrpOu4K6qZlsnIpzcELABTgyWGGVEl8HxhsTRqMNRs2EUVMjJ4rKUVUlw2HJ\ncFhRj0dMNtaYjDcIjSc0zXS+T0GgZEC5elNcWMeadcKkjnHeQoMVZWyXc5TOqIqCdmmFNJd1ZnoE\n2hVYlSJa51k8mUzmsHLwBY96nwvzKEUJKCjlKBW1EvNR8KgqKMuKshpSFCXOOUZNzaiZ4JsGI2og\nRoxM7SeB0caY9VPrrNUj1icjKIxy4BgMC46GFXBDxqM11k7ewGh9naYJ1HVArkBFDEB6k8GA81aO\nQKNoavNG8B7feJwroulPoiyM0uLS2l7CZNPlFOKla9MwVxY8mUzmsLLnQUIlXZbSu9urty95i2CY\nOzhLzARPJVEBpbUx04jmr2JAUQ4oqgFFWYIMH2omzYjReIO19Q1OrY84tT5mbaNmNPbUTSD4FJEg\neGjGUG8Q6jXC5BShPoX363i/QeNrmhCYNIHxxDOuIViFK4+g6giuWkHlAJPD22zROCwF2ZHDTbUa\nSxuzrRNGVFq8imomk8kcBvY8SGjiNcDjmL2Yj0+jnki7hsCCGaRd57fCOapW8JhwQXhSBANXTp0K\niqrClRVOnoIa4fGTMd4XnKoL/MjhzLAGzFVUpVEVDmmMcxMK1QyCx03GuDCmKhrCULiypGgqvBfe\nCxcKnJVIQ5yrsWqCGo81Hm9jLAQKHwit6UytWNmJ4I1zlTKZTOYwcjaChAKMzey63ZQ75069qdLZ\nwUXdctR4kkeboDJwBjLR4ChcOdN2qgGuKilVUxjIe6yZUNeCpqSZVFRFQelEVQyoSkelIrpiMwE8\nha/RJOBCQ6mGUAlXlBTlCvXEkI9eaqJEDFAxRNUK1DXmRnFhuGCY95iLV+BaTWbuXm9xo1CO1ZbJ\nZA4tZ2u1AcxRAAAYzElEQVSM5yJJJ4DrgTcCTzGzL5xJgUvnjypGk3aCAouuzOZxkARSSTUYMlhZ\npVoZUgxKmnGgVkNde+o6ria6Ohxw5OgxqrKicFDgKZoRzoM1Bb5RFBgWl09oPEwaY2LgSlFWBQoB\nVwYqQemSMCkcripxVQnFTFMxS/NZnZKZbZkw6ap8lgd5MpnMoeVsCJ7XAH8NXAXcGXgW8GpJ59tp\nTT7Zfki99fYqHEnohPRpFIiiLKmGUfAMVlcohhW1PDUTJjahaIwSY3Wl4qY3PcZgMIxRpoOHEdio\nwQcHBo03CBAcNI0xbowaGBairBxFMIoGSozSRcGHK7CyQmWJXAzDYzCTppYmpU7/bT2JNEucTCZz\n2NlzwWNm3aUP/lXSB4F/By4iTjxdyMbG+uJYbdVK2tuiw002OqnjnGABszBdNycuS+BQWaCqxA0G\nuKbCNRUqPFKDLFA6Magcg8rhZOA9jTMCIXqZuRIVQ1wZJ5NKY0JjeDMsLaltDnDJ1JeaLOdwZYEr\nC1S42XiOzYICOTrmRmtDBkUmkxGTyfwwWZ5AmslkDitn3Z06xW/7HDHMzpaCZ7UTq22rTnWrd/25\ncZE4GwaZxaULAA94ieAcVhSoLKEswBVJOkTzmczHpRJSIFHUYFZT+0kULq5ChaMYlpTDimL9FFZ7\nQjPBJGwqBKcBfLBW6LkSV0ZXbudcimAQW+wgCi51hE+HwWCFwWBlVjjQ+IZTN3x+6xufyWQyB5Sz\nLngk3Q64BXDNGZUznbo/G+eYakjth6wTTqZdmrqzJbMXRTH9lEtjLhZQiufmaJB5gk3wfsKkGWMW\nIx8UxZBiZUC1OqDwAZXrBN9gclOpYckBIJrU4sRWKWo8zhXR/GbznnrZRy2TyXy5sKdBQtN2KXGM\n59qU79nAR4HLz6ShrfFpW61nk/fbbP4L1i5hncZU2gH9dpQ/eBRi6BuzCU2zwaReZ1RvIBVUxSpF\nOURFhXMxAoJzaf5NilodVBBcwIe43HUgrudTOIc5h3Na0OjWRDjf8q3vRI4SmslkDi97HST054B7\nApcQA4R+lihwnmpm9Zk11ZgfW58F02wVjM1nKG3TEjBESDYxNxU+SfCYj5v3hLBBU68xqdcYTdYp\nyiMUgxIVq6go0uqkbdibqNXEJbMNH1ePIxruiJEUnIOimAme1PypCNmRHOkInSx3MpnMIeVsBAl9\n+Ok0ZNE6NLMjMA2caa2JzebSZoEPorBpg2vO9lzcLH0qrtlTJFdmZ4ZCQMETGqOuJ0wmE+o6UAdF\nDadaoRweoaqIQUido0zngwgUUJQUKys4K6AcxKUPzNKS2D5GQUj55dr5OEpRqOcFykIX8nZCbZY8\nmUzmkHJgYrW14zJL89Dx+mrHd1oPMGO6kNpsguXUsIZwuOhcHf9WQTE1laUzLIbGCSFQj2vG45pJ\nbTRWMHADisERBitHqcqGqmgoi6jtFIpTQC0UqBxSVhVOJTJHMAghEEJDaDxYao/i8tzIJTmyWOhs\ncbNO4w5nMpnMwWBXY9qSnizpPZJulHRC0ssl3XVBvqdL+qykdUmvk3SXnZQ/VVpaIdLtYHsdc+tE\nEPMnD7YYVo2QzGvW5klRqkOKvWYBsKTpTOfPABZiEM+6oR7XTEYNTWMEKzAKzKLTs1KUgUJKGo/D\ngqgbaLxo0sIJARe97EJcAjs0NebD7FI0MwXGoKDzbtQw847bHC8oC59MJnM42a0z1QXA7xGXsn4I\nUAH/IGm1zSDpScDPAz8F3BdYAy6XNNhdVVsvQNOTPwQDH4w6BJoADdGFOqROv64njDc2GK2vMxlP\naOomCiBT3JLbsw+Bpmmo64Z64qknAWtEYQWhNsbrY9ZPrjMejwneA1AUBUVR0DSBjbUxp25c58Yv\nnuTkjaeYjEbIPPiaUI/xk0lcCjt4fIjzfzxGY+Bt5oU3vZd0goKmlDyBNJPJHHZ2ZWozs0d29yU9\nDvhP4JuAt6fkJwDPMLNXpTyXACeARwHdyaXLaupXPDOtbcoRtRofjCYYDpuGzwkYwTz1ZMJofR0V\nQ8qVVcrhCsGS5pPmxgRi2Jy6afCNp540NBOPuRKnEquN8cYIBahcia8KhCiK6CLtJ4H10YQmNATG\nDMqK4bEVVK5gvo6BSCdjfN3gfQAXkGvnGVmca2Sxza3LxNyE2iR8ohaYhU8mkzm8nOkYz82IMuAL\nAJLuCNwKeEObwcxulPRu4HyWCJ75IKE7HDxPnXA0tQUa31AUwqcOOzqvGRZqfLNBU1dMxhVuJAIe\nTyAEByopiioN9ocoBtS6nPlYvhe+EY0LjEcV62VF3RjSCoNKND7QeKMyEQwGRaBggjUBP17Dj9Zo\nRhvT9X9mI1CBYNAQr6ETf2EqcFsBNO9YkclkMoeT0xY8KTL184G3m9mHU/KtiL3iiV72E+nYbmpg\nZx1s6r4t0ARP6RxecZG1aLcygk0IDTQTx2RUokqYc5gr8F5IFa60FEctGbzSmjiWHAPACDIaecZj\nj1OMLO1YYVCV+HaZ6/SvElTU0EzwkzX8xhrNOK7b07Za6mg8yfQ2WwBus2YzE0BsOpbJZDKHhTPR\neF4AfB3wgL1pyqKFEdT5a/5IF0vuyh5oLC17rbS4WlECrdYzoh6vQSlUraByiHCUZQUS1WCAKwsA\nyuGACqKLtbfoel06ylLItb5yjqIskVWYTXASFuJcIIUGFyY0zQQ/XsePRzSTOrpVt27grX4VjCaE\nqPGYTZ0PbJpTm+VMljuZTOaQclqCR9LvA48ELjCzbiica4ld4nHmtZ7jwPuWlTkarfXe6NsgocNt\n22NAMIMQaEJAFidzuqKMS0xbwMzjm5p6MiIUojQoXUnhCobDAUMNWBkOGawMCcGgLCmGw+gAEKI2\n5Fx0JKiKkqosaZcHNQuUzrFSFVgzJtRGqAN+PGIyWiOMJvi6JviAN4gjUfFCvRneAj6EqPFMBc9M\n6I4n69ST0dw1h+zVlslkDimnEzLn94HvAi40s091j6WAoNcCDwY+kPKfR/SC+4Nl5a6sbB8kNB5c\nlBQDg5qJJkQ3NydRpqCe+DHWeIJvqCcjGgxcSVENKcqCsqwoqpLBYEA1GGBAMRhQJdfnQApwrRjy\nplCBU5HaCnGdBCETfuIJ1EzqhvV6TL1+ijDxhDoQQhI6cskbLyTBFvDBE6Zu5GlCqeL4VVUOGVQr\nqI38AzT1hFMnv7j9F5bJZDIHjF0JHkkvAH4IuBhYk3Q8HbrBzNpX8ucDT5H0ceCTwDOATwOv3EVN\n7HoAPQ2J+GDgY8TnCkegpCDgnIFi9ACbjPBFQSMhGgqtUpSOAqhSRAPKFFFgGoA0DvK7JIAKKc0J\n8vg09yc0Y2y8Tr1+imZtDRuPUONRaL3UHKjAVBAIUdPpbMFiOJ/ZYgkdk6PFsSO1Zris8GQymUPK\nbjWenyH2e2/upf8Y8GIAM3uOpCPAC4leb28DHmFmk91VtUj4LHcljpM1DWsMZ9Dg8FQ4DDmQ1TTJ\nCaBxQgo4F6hKRzEcUAKVCqqyoixLiqKIftnTJQsUNZ/ksh2aBl8bzQQmtWfix9TjDcL6Kfz6GjYe\noyagkEL2qMBUgisxa/AWaAyaELWeqQmOdqmG7siWpf8smRbD4puQyWQyB5zdzuPZ0YRTM3sa8LTd\nNWXmXBAXdetNFKUrcjZHMbNpnLPoiebl8T7QyFNo5gzgLC1JUDd4jWicoylKalfgvKHGw3AFNxhQ\nDqoUDLSzeBtGDCgasKbGJhPCeIRfP0mzEQVO2Bhh4xoaw7Wx4ZxDFHF9HsUJo421TgXTSG19Pacn\nerOak8lkDj8HJlbbzuhrO5s1ILMARO8yrxofwMsIjhSjraTARTfpcU3DBmMc5gNNMWJcnKJeWSGs\nrsLKkKIso+daW58Z5psYfWAyIdQT6vGI8foa4/VT1KMxYVyjxnDBxbrS0gleihEVzOPx1MHTJKeC\nqUjRNIBPnLfTu9pMJpM57Ox2jOfJwHcDXwtsAP8IPMnMPtrJcxnw2N6pr+1HPdjMLEjo7jrYvi5k\nYD4F54TGG4WLAkBpbMYp4EONWU0DYCI0PgYOlcMPV9D4CFpdpaxKymomeCwEfNPEra4J9YRmPGay\nsc54Yx3fBMyHNBUoBSWVsCJGJcBCnLxqUeg0FlK0Ak3HkWA6N3aOtIBD1Ly0tckxk8lkDjK71Xja\nWG3/nM59FjFW293NbKOT7zXA45h1nePdN22Z+FnmfJCEl3kaAwUDyhiLDVEhShVxoqgqALz3hPE4\naiU48A00E+qNNYrCUbiiDTuKWQw06tMyB+Z9Guup8U2IY0zJcy24ElNJkOEVqM0zDp5RM6H2M03H\nOvN0rHcdy+5AJpPJHEbORqw2gLGZXXfGrTst2kgG0bXaLE7YDHIE5zDFgKCFSgoBeHzjMatxycgV\nJo5mVDCSo1CKpGqt4LFpNOype5m1Yz9EV2mEuQJzFeYGeBpqGsa+YRw846amScFN541peZG3TCbz\npc+exmrrcJGkE8D1wBuBp5hZP8+2dF2Gp5al7iJw7fFNHXVMCK2PWGiiMDDDzBFMVIWBU1yjp7Bk\nFgNnqQ5TEi6WPMisI3zaGlpniOQYkRZ2Cya8SOa0mtoaJtYw8Q1j76mDzZZvaMvS5igNmUwm86XI\nXsdqg2hm+2vgKuDORHPcqyWdb0tnhm5DKxBi7WynFrRebt5i0M84OdNjwREKxQXYClG5aEorFAWZ\nTNFdmqjpKPi0WI7FwKFt4E4AF5fOnrq8ESMKNMFoLFCbUQfPJDRx857GRxNgnCQ6L8AymUzmy4E9\nj9VmZt0I1P8q6YPAvwMXAW9aXuSyiGz9QZDF/l69mS+AEYLHFOfFxKgBQipQUSbpIuRKNJsu0xrs\nZiW1q9NNm5HC5TiXtBXDZDTeOgLHqA0m3jP2niZFJ/Ch4wyRhKmsk9a78uxSnclkvpTY61htm0hh\ndD4H3IUlgifGaovThFrn4rKcxWo7EzOUtd5kJhpFM501MSp06QNlEShdwBFXJS0kSsUlrWOYnFTv\ndJltm4bSCcHi8gop+kDjY5TsdlE6n+bqNCnm20wgThu39KIMqCdj6nrcSWF5WKFMJpM5wOxprLYt\n8t8OuAWwVEDFWG3Ry6ztnjf1rdt00gux9iOu9mkpLI03ow6iKHw0tRWBUo5CjrJwVIWjlIsCyMXx\nnzSvNS5l3REoTQg0oaFOWk3jUwickJbkhhQKh8UXsMV1tZdfDYZUg+FcqvcNa6du2OXNyGQymXPP\nnsZqk3QUuJQ4xnMtUct5NvBR4PJlZSdRw1aSRXN/bf+23zfaxZLVBjeIkaADBGLwTh8MrzjRs/SO\n2onSxVA5RRrTac1hlpYv8J3xHJ8iY7fRrNso06Fjult0NbPdBQa1tr5pvqkUzRpPJpM5tOx1rDYP\n3BO4hOjx9lmiwHmqmdW7q0opdE7XoWCnzgX98Z9uB54mYRqodY2W4UKgEThEnYRNDNMWzW8QBc9M\nRth0GYPpJ0nDmVtTp9ueBUJ1iaYzMzr2D2Shk8lkDi97GqstRah++Ok1RcwLly3q2EEp8wnqqgxT\nMdQKhqjJpMjPmi2B0LTH0v+m/zqdv0ESMq05bTaGs9ndoS9At3IZsE2ajhmb82eNJ5PJHFIOTKw2\nJ+FcSeyUozeZtRGYp7HMpmJjy3IWHpmeYtM4aAvPaacHWcdz27oioz1/3snAYhO7PnDQ1jTNvkgA\nbXUd1hM6215hJpPJHBp2FG26RdLPSHq/pBvS9o+SHt7L83RJn5W0Lul1ku6yo7JdMV3h07liLm5Z\nxHqf7d877IinCpUhWbt46BxRg4kCxFu0G8bltFMkaaCh/Yybn+ad13aM1lU6zhma0+ambVms5W3p\nXJGFTiaT+RJgV4IHuBp4EvCNxDA5bwReKenuAJKeBPw88FPAfYE14HJJg+0KLlxJWZaUnbVwihTV\nedY1d4XPVp3w1s4J2zrELcwU9ZytiMqMaM14m9uxCze8ZLZLf55ZWZlMJnNA2e0Yz9/3kp4i6WeB\n+wFXAk8AnmFmrwKQdAlwAngU8DKW0C5BLTksiJDcnzHDS6jtkHf01r8zzzc6wTm3YvNYzeYippGk\nOyY1LTtnSV1bD93s9JoymUzmYLNbjWeKJCfp0cAR4B8l3RG4FfCGNo+Z3Qi8Gzh/24YUBePxGmVZ\nUBQO51qvss26REtdj+dcErbbmpR/dhFMnQba4KGmqOEYYjIex4H+Tnibzc4D6VpTe1KxUzvenCu0\nbCrrRJwYOlWyNl1izxlBUDdjdivMMplM5qCxa8Ej6R6SThKXOngB8N1m9hGi0DGihtPlRDq2lKIs\n2Ng4iXPMBM5cHxu7+74g6TVuaR113V19uzvmstgQV/fLXyT/Wo8zs1T+lpk2/V3XIxb7wPVFZkxr\npu3fkeEwk8lkDiSn49X2b8C9gJsC3we8WNKDzrQhMTqAKJwwN3Ms0GJ1YDGdWGrTPxbarmadts0J\nq645a5Ezw/xucgGYuTZ3ju3UKbzrFi2SJ3Wb1G3bLvwoMplM5iCza8FjZg3wibT7Pkn3JY7tPIfY\ndx5nXus5Drxvu3I//7nPUk/GXHPNp5KbcmA4GFJVM7+EvRnl0NzHbulOaW2XSZgemK+hV+f2Lbc0\nn6hfSl2PaSYjvG/YWD+Zqgu7bXomk8kcCE57jKdXxtDMriKGyXlwe0DSecC3EJfIXsotj9+W4coR\nbnPbr+ZWx2/LLW95nNXVo/TNSosdkE+f7cZu+nlnnyl3G7V6gQCaZ/sWt9pTK4DaoqpqyOqR8yiK\nktXVY6yuHmU4WN22vEwmkzmI7DZW228S19v5FHAT4DHAhcBDU5bnEz3dPg58EngG8GnglUuKXQGY\njMeE4BmNNgi+oWlqfNPg0xo2U7qmLjO8b3qN3LoiM8OHZi7TIlfp1pnBLGwqv+/W3U4ijcT8/TlI\n1vtrOje10/6psJkqPC7N/2mdDyy1J0YeCmF6T1a2vuJMJpM5eOzW1PaVwJ8CtwZuAD4APNTM3ghg\nZs+RdAR4ITFW29uAR5jZZIvyAO4A8J/XxEDXn776E0uybmZtbXcRmncb0Xnt1Bd3lX99/cbdlb+2\nu/wbG6f6SXdgBxplJpPJHBR0rmN+SboF8DCihjQ6p405XKwQhc7lZvb5c9yWTCaT2THnXPBkMplM\n5suLvXAuyGQymUxmx2TBk8lkMpl9JQueTCaTyewrWfBkMplMZl85EIJH0uMlXSVpQ9K7JH3zFvku\nlRR624c7xy+Q9LeSPpOOXbygjP56QY9edo6ky3r1maRa0glJL5d01yV1TNK6RSe3yr+k/D1d7yiT\nyWQOCudc8Ej6QeC3gEuBewPvJ67hc8stTvkQMQzPrdL2wM6xo8C/AD/HonjPi9cLeh5xPtLCcxKv\nSXW+MZ1/f+AhQAX8g6RpGIFeHe8CPg5cT1wSfFP+Xvk/AjwauA97vN5RJpPJHBimIVrO0UbsnH+n\nsy9itIMnLsh7KXDFDssNwMW9tM8Cv9jZPw/YAH5gyTmXAX+zRR23TOc8cCd1bJF/y/LT8c8DP7aT\n9uctb3nL22HYzqnGI6kivtl31/Ax4PVsvYbP1ySz2L9L+nNJX7XDus5kvaCLkqns3yS9QNLNU/rN\niFrSF3ZYx1z+ZeXv9XpHmUwmc1A4nWUR9pJbAgWL1/C524L87wIeB3yEGLbnacBbJd3DzNa2qet0\n1wt6DfDXwFXAnYFnAa+WdD4xNt3bzawdZ9qujn7+ReU/D/hpomZ0krTeUarvtNc7ymQymYPCuRY8\nu8LMLu/sfkjSe4D/IJqxLjtLdXaX7P5XSR8E/h14BfB1wAN2WNR9iEJ2Lv+C8j8MfJQ45nQH9mi9\no0wmkzkonGvngs8Bnjiw3uU4cYmFpZjZDcROeieeXdcyWy9o13V16ryKGFPugcBFZnbNDup4YErr\n519U/seJ9wUz+1Wis8UT9qr9mUwmc645p4LHzGrgvcyv4aO0v23EZUnHiEJnaWee6jqj9YI651wG\nrBKdHz61gzpeSDQLPrmff4vybwfcgtk17cl6R5lMJnNQOAimtucBfyLpvcB7gF8kDqj/ST+jpOcC\nf0c0r90W+HWgBl6ajh8lCqJ2yZs7SboX8AUzu5rF6wV9BviEpG/on5O2S4ljMNcCvwt8R6r/tZJa\n7eMGM2sja3freAzwPamOV/bzp/Z2y/9NorPFJ4BPS3oWZ77eUSaTyRwszrVbXXRi4+eIHekG8E7g\nPlvkeymxo90gLkb3EuCOneMXEgflfW/7P508TyO6Ja8DlwM/vNU5xKUHXksUCiPi4P6ivJf02tnW\n0S5NujD/gvJvTNtGSvsH4Nu2KLtt/13O9feXt7zlLW+72fKyCJlMJpPZV861c0Emk8lkvszIgieT\nyWQy+0oWPJlMJpPZV7LgyWQymcy+kgVPJpPJZPaVLHgymUwms69kwZPJZDKZfSULnkwmk8nsK1nw\nZDKZTGZfyYInk8lkMvtKFjyZTCaT2Vey4MlkMpnMvvL/A2unEdJPVuPuAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11f910cf8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import random\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl \n", "\n", "mpl.rcParams.update({'figure.max_open_warning': 0})\n", "%matplotlib inline\n", "\n", "def load_label_descriptions(filename):\n", " ret = {}\n", " \n", " f = open(filename)\n", " for line in f:\n", " v = line.rstrip().split(',')\n", " ret[v[0]] = v[1]\n", " \n", " return ret\n", "\n", "def show_sample(X, y, index):\n", " s = \"Sample: {} with Label: {} ({})\".format(index, y[index], label_descriptions[str(y[index])])\n", " \n", " image = X[index].squeeze()\n", " \n", " plt.figure(figsize=(1,1))\n", " plt.text(0, -10, s)\n", " plt.imshow(image, cmap=\"gray\") \n", " \n", "label_descriptions = load_label_descriptions('signnames.csv')\n", "index = random.randint(0, len(X_train))\n", "\n", "show_sample(X_train, y_train, index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----\n", "\n", "## Step 2: Design and Test a Model Architecture\n", "\n", "Design and implement a deep learning model that learns to recognize traffic signs. Train and test your model on the [German Traffic Sign Dataset](http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset).\n", "\n", "There are various aspects to consider when thinking about this problem:\n", "\n", "- Neural network architecture\n", "- Play around preprocessing techniques (normalization, rgb to grayscale, etc)\n", "- Number of examples per label (some have more than others).\n", "- Generate fake data.\n", "\n", "Here is an example of a [published baseline model on this problem](http://yann.lecun.com/exdb/publis/pdf/sermanet-ijcnn-11.pdf). It's not required to be familiar with the approach used in the paper but, it's good practice to try to read papers like these.\n", "\n", "**NOTE:** The LeNet-5 implementation shown in the [classroom](https://classroom.udacity.com/nanodegrees/nd013/parts/fbf77062-5703-404e-b60c-95b78b2f3f9e/modules/6df7ae49-c61c-4bb2-a23e-6527e69209ec/lessons/601ae704-1035-4287-8b11-e2c2716217ad/concepts/d4aca031-508f-4e0b-b493-e7b706120f81) at the end of the CNN lesson is a solid starting point. You'll have to change the number of classes and possibly the preprocessing, but aside from that it's plug and play!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation\n", "\n", "Use the code cell (or multiple code cells, if necessary) to implement the first step of your project. Once you have completed your implementation and are satisfied with the results, be sure to thoroughly answer the questions that follow." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import cv2\n", "from sklearn.utils import shuffle\n", "\n", "#normalize image: (values around zero mean as discussed in the lecture)\n", "def normalize(Xs):\n", " return np.array(list(map(lambda x: (x.astype('float32')-128)/128, Xs)))\n", "\n", "#as in the paper cited, converting images to grayscale improved signals recognition, \n", "#reduced the amount of input parameters\n", "def to_grayscale(rgb):\n", " #converting to grayscale using a similar approach to MatLab\n", " #https://nl.mathworks.com/help/matlab/ref/rgb2gray.html\n", " ret = np.dot(rgb[...,:3], [0.299, 0.587, 0.114])\n", " \n", " return np.expand_dims(ret, axis=4)\n", "\n", "X_train = normalize(to_grayscale(X_train))\n", "X_validation = normalize(to_grayscale(X_validation))\n", "X_test = normalize(to_grayscale(X_test))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 1 \n", "\n", "_Describe how you preprocessed the data. Why did you choose that technique?_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer:**\n", "First of all, I converted the images to grayscale, after reading the cited paper for the base line model since it ackknowledges better results than using the RGB space which I also confirmed while exploring with the validation set.\n", "After that, I also normalized the values around 0 mean as discussed during the lectures since this it is believed to provide better numerical stability and also improved (although slightly) the results.\n", "Since the images provided were all 32x32, no addional padding was required as in the LeNet lab (where they were 28x28)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 2\n", "\n", "_Describe how you set up the training, validation and testing data for your model. **Optional**: If you generated additional data, how did you generate the data? Why did you generate the data? What are the differences in the new dataset (with generated data) from the original dataset?_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer:**\n", "\n", "The validation set was 'generated' by splitting the given train set in 80/20 for training and validation respectively by using the _train_test_split_ function\n", "The test set was left untouched from the one provided (except for grayscale and normalization transformations)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import tensorflow as tf\n", "from tensorflow.contrib.layers import flatten\n", "\n", "def LeNet(x):\n", " mu = 0\n", " sigma = 0.1\n", " \n", " #Layer 1: Convolutional, input = 32x32x1, output = 28x28x6\n", " conv1_W = tf.Variable(tf.truncated_normal(shape=(5,5,1,6), mean=mu, stddev=sigma))\n", " conv1_b = tf.Variable(tf.zeros(6))\n", " conv1 = tf.nn.conv2d(x, conv1_W, strides = [1,1,1,1], padding='VALID') + conv1_b\n", " \n", " #Activation 1\n", " conv1 = tf.nn.relu(conv1)\n", " \n", " #Pooling. Input=28x28x6, output=14x14x6\n", " conv1 = tf.nn.max_pool(conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')\n", " \n", " #Layer 2: Convolutional. Output 10x10x16\n", " conv2_W = tf.Variable(tf.truncated_normal(shape=(5,5,6,16), mean=mu, stddev=sigma))\n", " conv2_b = tf.Variable(tf.zeros(16))\n", " conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1,1,1,1], padding='VALID') + conv2_b\n", " \n", " #Activation 2\n", " conv2 = tf.nn.relu(conv2)\n", " \n", " #Pooling. Input=10x10x16. Output=5x5x16\n", " conv2 = tf.nn.max_pool(conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')\n", " \n", " #Flatten. Input=5x5x16. Output=400\n", " fc0 = flatten(conv2)\n", " \n", " #Layer 3: Fully connected. Input = 400. Output = 120\n", " fc1_W = tf.Variable(tf.truncated_normal(shape=(400,120), mean=mu, stddev=sigma))\n", " fc1_b = tf.Variable(tf.zeros(120))\n", " fc1 = tf.matmul(fc0, fc1_W) + fc1_b\n", " \n", " #Activation\n", " fc1 = tf.nn.relu(fc1)\n", " \n", " #Layer 4: Fully connected. Input = 120. Output = 84\n", " fc2_W = tf.Variable(tf.truncated_normal(shape=(120,84), mean=mu, stddev=sigma))\n", " fc2_b = tf.Variable(tf.zeros(84))\n", " fc2 = tf.matmul(fc1, fc2_W) + fc2_b\n", " \n", " #Activation\n", " fc2 = tf.nn.relu(fc2)\n", "\n", " #Layer 5: Fully Connected. Input = 84. Output = 43\n", " fc3_W = tf.Variable(tf.truncated_normal(shape=(84,43), mean=mu, stddev=sigma))\n", " fc3_b = tf.Variable(tf.zeros(43))\n", " logits = tf.matmul(fc2, fc3_W) + fc3_b\n", " \n", " return logits" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "x = tf.placeholder(tf.float32, (None, 32, 32, 1))\n", "y = tf.placeholder(tf.int32, (None))\n", "\n", "one_hot_y = tf.one_hot(y, 43)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "rate = 0.001\n", "\n", "logits = LeNet(x)\n", "cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, one_hot_y)\n", "loss_operation = tf.reduce_mean(cross_entropy)\n", "optimizer = tf.train.AdamOptimizer(learning_rate=rate)\n", "training_operation = optimizer.minimize(loss_operation)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1))\n", "accuracy_prediction = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))\n", "\n", "def evaluate(X_data, y_data, batch_size):\n", " num_examples = len(X_data)\n", " total_accuracy = 0\n", " sess = tf.get_default_session()\n", " for offset in range(0, num_examples, batch_size):\n", " batch_x, batch_y = X_data[offset:offset+batch_size], y_data[offset:offset+batch_size]\n", " accuracy = sess.run(accuracy_prediction, feed_dict={x: batch_x, y: batch_y})\n", " total_accuracy += (accuracy * len(batch_x))\n", " \n", " return total_accuracy / num_examples" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training...\n", "\n", "EPOCH 1...\n", "Validation accuracy = 0.798\n", "\n", "EPOCH 2...\n", "Validation accuracy = 0.887\n", "\n", "EPOCH 3...\n", "Validation accuracy = 0.909\n", "\n", "EPOCH 4...\n", "Validation accuracy = 0.948\n", "\n", "EPOCH 5...\n", "Validation accuracy = 0.953\n", "\n", "EPOCH 6...\n", "Validation accuracy = 0.966\n", "\n", "EPOCH 7...\n", "Validation accuracy = 0.962\n", "\n", "EPOCH 8...\n", "Validation accuracy = 0.972\n", "\n", "EPOCH 9...\n", "Validation accuracy = 0.968\n", "\n", "EPOCH 10...\n", "Validation accuracy = 0.976\n", "\n", "Model saved\n" ] } ], "source": [ "EPOCHS = 10\n", "BATCH_SIZE = 128\n", "\n", "with tf.Session() as sess:\n", " sess.run(tf.global_variables_initializer())\n", " num_examples = len(X_train)\n", " \n", " print(\"Training...\")\n", " print()\n", " for i in range(EPOCHS):\n", " X_train, y_train = shuffle(X_train, y_train)\n", " for offset in range(0, num_examples, BATCH_SIZE):\n", " end = offset + BATCH_SIZE\n", " batch_x, batch_y = X_train[offset:end], y_train[offset:end]\n", " sess.run(training_operation, feed_dict={x:batch_x, y:batch_y})\n", " \n", " validation_accuracy = evaluate(X_validation, y_validation, BATCH_SIZE)\n", " \n", " print(\"EPOCH {}...\". format(i+1))\n", " print(\"Validation accuracy = {:.3f}\".format(validation_accuracy))\n", " print()\n", " \n", " try:\n", " saver\n", " except NameError:\n", " saver = tf.train.Saver()\n", " saver.save(sess, 'lenet')\n", " print(\"Model saved\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test Accuracy = 0.906\n" ] } ], "source": [ "done_training = 1\n", "\n", "if (done_training):\n", " with tf.Session() as sess:\n", " saver.restore(sess, tf.train.latest_checkpoint('.'))\n", "\n", " test_accuracy = evaluate(X_test, y_test, BATCH_SIZE)\n", " print(\"Test Accuracy = {:.3f}\".format(test_accuracy))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 3\n", "\n", "_What does your final architecture look like? (Type of model, layers, sizes, connectivity, etc.) For reference on how to build a deep neural network using TensorFlow, see [Deep Neural Network in TensorFlow\n", "](https://classroom.udacity.com/nanodegrees/nd013/parts/fbf77062-5703-404e-b60c-95b78b2f3f9e/modules/6df7ae49-c61c-4bb2-a23e-6527e69209ec/lessons/b516a270-8600-4f93-a0a3-20dfeabe5da6/concepts/83a3a2a2-a9bd-4b7b-95b0-eb924ab14432) from the classroom._\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer:**\n", "\n", "The architecture used is based on the LeNet lab, it consists of 2 convolutional layers (with ReLu activation and Max pooling), flattening and 3 fully conectted layers for the final classification.\n", "\n", "* Layer 1: Convolutional, input = 32x32x1, output = 28x28x6\n", "* ReLu Activation 1\n", "* Max Pooling. Input=28x28x6, output=14x14x6\n", "\n", "* Layer 2: Convolutional. Output 10x10x16\n", "* ReLu Activation 2\n", "* Max Pooling. Input=10x10x16. Output=5x5x16\n", "\n", "* Flatten. Input=5x5x16. Output=400\n", "\n", "* Layer 3: Fully connected. Input = 400. Output = 120\n", "* ReLu Activation 3\n", "\n", "* Layer 4: Fully connected. Input = 120. Output = 84\n", "* ReLu Activation 4\n", "\n", "* Layer 5: Fully Connected. Input = 84. Output = 43\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 4\n", "\n", "_How did you train your model? (Type of optimizer, batch size, epochs, hyperparameters, etc.)_\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer:**\n", "\n", "The used optimizer is the AdamOptimizer since it provided a slightly better performance than gradient descent. Batch size = 128 and epochs = 10, several tests were done increasing the batch size and number of epochs without significant accuracy improvement and making the training phase longer so they were ruled out.\n", "As for the learning rate hyperparameter, by making it larger (in an order of magnitude) it increased the accuracy in the earlier epoch stages but made it unstable and less reliable by the last couple of epochs. Reducing the value in 10x would cause the training rate to be slower and less accurate, even extending the # of epochs.\n", "\n", "The original value of 0.001 turned out to be a good compromise." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 5\n", "\n", "\n", "_What approach did you take in coming up with a solution to this problem? It may have been a process of trial and error, in which case, outline the steps you took to get to the final solution and why you chose those steps. Perhaps your solution involved an already well known implementation or architecture. In this case, discuss why you think this is suitable for the current problem._" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer:**\n", "\n", "I started of by using the LeNet archicture from the MNIST digit recognition and extending it so that it will fit the new input and the amount of final clasification labels.\n", "After running it a few times with default parameters, I tried changing learning rate to a faster one, to a slower one, changing the number of epochs and batch sizes.\n", "Also I tried normalizing the RGB image as discussed in the lectures, converting it to graycale with and without normalization and found that the best combination was the normalized grayscale on the validation set." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "## Step 3: Test a Model on New Images\n", "\n", "Take several pictures of traffic signs that you find on the web or around you (at least five), and run them through your classifier on your computer to produce example results. The classifier might not recognize some local signs but it could prove interesting nonetheless.\n", "\n", "You may find `signnames.csv` useful as it contains mappings from the class id (integer) to the actual sign name." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation\n", "\n", "Use the code cell (or multiple code cells, if necessary) to implement the first step of your project. Once you have completed your implementation and are satisfied with the results, be sure to thoroughly answer the questions that follow." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.image as mpimg\n", "import os\n", "\n", "directory = 'streetview_imgs/'\n", "\n", "imgs = []\n", "labels = []\n", "\n", "files = [f for f in os.listdir(directory) if os.path.isfile(directory + f) and f.endswith('png')]\n", "for f in files:\n", " img = cv2.imread(directory + f, 1)\n", " label, _ = f.split('.')[0].split('_')\n", " \n", " img = normalize(to_grayscale(img))\n", " imgs.append(img)\n", " labels.append(label)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 6\n", "\n", "_Choose five candidate images of traffic signs and provide them in the report. Are there any particular qualities of the image(s) that might make classification difficult? It could be helpful to plot the images in the notebook._\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer:**\n", "The images were taken from Google Streetview, manually centered cropped in the sign and reduced to 32x32 RGB png color. The rest of the preprocessing is of course the same as for the training/validation/test sets.\n", "The images in general are sharp and not twisted/tilted (were taken when front facing the signs as much as possible) " ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQkAAACXCAYAAAAGc67jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXuUZFdd7z+/6urq6qrunu6eSU9mpueRCYEkQkAEREhI\njGAQluGlPBWiy4UIXhUuKly8N6h41bjgChcQLkoiVwHjFRLAhChCiJgELhJCwiPvYchM5tHTj+qq\n6up69L5/7PPbs2v3qerHdPWM3P1d66yuOmefs/c51ft7fq/9+4kxhoiIiIhOyJzuAURERJzZiCQR\nERHRFZEkIiIiuiKSRERERFdEkoiIiOiKSBIRERFdEUkiIiKiKyJJREREdEUkiYiIiK6IJLFGiMiS\niFx5usexVqxm3CJyrYh8arPGlPS5NxnbRad4nS+JyHs2alynChHZKiJHRWTPGs55RER+Yw3trxaR\nu1Zo0/abisgnROQtq+0DzkCSEJFtIvIXIvJ9EamJyGMicrOI/MTpHlsvISI/LyLfFZEFEblbRH5m\ng7s4G7g56WtDJmZyrdeJyMwpXua0rA0QkZeIyC0iMtXpeYjIh0TkQRGpisgxEblBRJ6wisu/A7jB\nGHNQRJ4jInUReVZw7YKIPCQi1yS7ngb8rzXexlqf3buAd4jI8GpPOONIAvgU8GTgF4HzgJ8FbgW2\nnsYx9RTJP8/HgY8ATwFuBG4QkQs3qg9jzDFjTEO7ZGMn5qleSzZkFGtHEfhX4HfofA9fB64Czgd+\nGjvWW0Sk45hFZBD4ZeAvAYwxtwHvA/46Oab4M6AK/F7S7oQxpnYK97MijDHfBh4CfmEtJ50xG7AF\nWAIuWaHdm4FvAWXgIPABoOgdfx0wA7wQ+B5QAa4HBpNjjwDTwHsB8c57BPuDfTy59qPAG4O+l4Ar\nve+TwN8l/Z0AbgD2rvG+Pwl8Jth3B/DBLuccA17qff8mcMj7fjFQA/LhuJPPreTvEvDFZP+1WJL+\nz8BhYAp4P9DXZRyvA6a7HL8COxFnkut9FtjvHd+bjOEVwL8BC8A9wHOC6zwRuAmYB44AHwO2ese/\nBLxnnf93OoaLVtH2ScmzO6dLm58DjgT7BoB7gfcl338yudenBP9/vxHMh79Mfus54Av+GIGrgW94\n3zPAe5JnfRz4U+A64FPBWP4r8OXVPp8zTZIoJ9uLRSTXpV0L+E/AhcBrsQ/8T4M2haTNy7H/qD8J\nfBp4PvAzWCb9VewP6uOtwF3YN/qfAO8VkZ9KG4SIZIFbsD/gs4FnYf+JP58cQ0QuTUTZbrrpT2D/\nAXzckuzvhNuAy5I+RrFvukEReXxy/DnA10z6m+kZ2Dfi5Vg15KXescuB/cm1X4t9i17VZRwroQi8\nG3hqcu0W9ncIcQ32zfoULEF+VkTGAERkC/AvwL8n17kCmMASfypE5J0i8sgpjDvtmkWshPAw8IMu\nTS/GjtXBGLOIJdTXJ7ahvwL+yBjzzS7X+T9YCfoK7H1/A/hC8nun4a2c/M0uBsaBl6S0+xrwDBHp\n79J32+DPqC25qSmsGPYV4I+AJ61wzsuAY8HbrQXs8/b9BXYCD3r7bsZ7W2OZ/B+Da38C+Jz33X8j\n/wLwnaB9Diu5PDf5/nTgO8COLuNfBF4R7Ps14LEu5/w68K3k85XA7Vgp4PXJvn8C/rDDuFPfnFhJ\n4mHapau/Az7eZRxdJYmU9tuSvi8MxvJWr00fVkJ8a/L9HcDNwXUmk/Mel3xvkySANwH/vMoxdZUk\nkt9iPmnzHbpIEUn7TwMf6XDsaqAJfBXIBMecJIGd5DNAf9DmAeBXvGv5ksQh4C0pzzGUJFQa2r2a\n53OmSRIYYz4N7MTaIm4GLgW+ISKv1TYi8lwR+YKIPCoiJeB/A1tFJO9dqmqMOeB9PwocMMYsBPsm\ngiHckfL9gg7DvQg4T0TmdcOqHAPAucn9/F9jzIXGmMdWvPm14cvAhSKyFfuMbk22yxIp5lnJ97Xi\n2yb5T0rwGMuf0aohIo8TkY8nBro57EQwQChZ3akfjDEtrC1An/uTgcuD5/zd5DrnpvVrjPmAMeZ5\n6x13gL/BSjjPAe4H/n4FSXcQq+ql4V1YteBPjDFLXa5xETAMTAf3vY+UexaREWAHVkoA2p5jiAWs\nJFno0r9DdjWNNhvGmDpWvPwX4I9E5CPA7wMfE5F9WL32A8B/wdoWLsHqbjlO/jiN9qtiOuw7FaIc\nwv4Ir2a58e34Gq5zBNge7Nue7E+FMeYeEZnGqgWXYp/FUeBtWOkli5Uu1oqNfkafwxLDr2DtHBng\n29jfarUYAj6DNTCGz3mjyXcZjDHzWEniIRH5KvYN/xKslJWGKWCsw7Vaic2ztUK3Q9jndSnL73l2\ndSPviHHs77qq/9EzTpLogO9idVuwupkYY95qjPmaMeZBYNcG9vXMlO/f7dD2G1gPzHFjzMPBNr+G\nPu8AQrvH81gu1YT4CvAirG3mK1hj7gDW1vL1QGryUU/+9q1hjGuGiIwDjwfeZYz5kjHmPjp7qZ7p\nndcH/BhWtAf7nH8E+H7Kc+50j2vFaj00GeykHejS5i7sb3Iq+AbWXtRKuefpsLExpoQlzB/Xfd5z\nDPFE4NG066ThjCIJERkXkX8RkdeIyJNEZJ+I/Dzw21ivAcCDQL+I/IaInCMiv4idFBuFZ4vIW0Xk\nPBF5E9aw+ecd2v4t9q1xo4hcnIz3MhF5r4jsTO7p6Un8w44ufb4XeL6IvEVEniAi78T+uO9fYay3\nAq8CvmmMqSZqwm3Aa7DqSCccw4qczxeRiURUPRVkReTJwXY+Jz0+rxeRc0XkcqwRM21CvklEXpzE\nIHwQGMXaSMBKjePAJ0XkaSKyX0SuEJGPdnJFisibRCQ0BodtxkTkyVgCEuD8ZOzbk+PniMjbROSp\nIrI7cVX/PdZedlOXS98C/EhicF0XjDFfwL4kbhCR54mNbXmWiLxLRJ7a4bT3Am8TkRcFzzHEJVib\n1apwRpEE1rNxJ/Bb2H/ye7BqxoexngqMMd8C3oIVPe/BTpK3beAY3o0NarkLK8K/OfnBFO4fPHmL\nPQdrHPoH7JvvI9i3TClpVsC+TTtako0xd2BVltdjXZkvBV5kjPlOp3MSfBn7G37J23drsu/WsBuv\nP/UO/SrW2HUDp4Yi9s3nb59JSOuVWMK7B/ts35pyvsH+hm/D3v+zgJ/VN11iz3l2cl+3YCWm9wAz\nnv0kJJ5tWC9NN1yJ/Z0/m5z/iWTs+tKpYSfUP2INhp/AerKeZYyZ6nRRY8y9yXVe3qnJKve/AEv6\nHwXuw7rm92DVyjS8G2ufuw6rapawxmwHERkAXswagrak3Ub1/zcSl9n/MMa873SPJeI/NkTkBcA1\nxpgnnu6x+BCRNwAvNsY8f7XnnJGGy4iI/+gwxtyUeHZ2GWMOne7xeKiTSOWrRSSJdkSxKmLDcCZK\npMaYj671nKhuREREdMWZZriMiIg4wxBJIiIioisiSURERHRFJImIiIiuiCQRERHRFZEkIiIiuiKS\nRERERFdEkoiIiOiKSBIRERFdEUkiIiKiKyJJREREdEUkiYiIiK6IJBEREdEVkSQiIiK6omckkeQY\nfERsbcs7ReTpveorIiKid+gJSYjIK7D59q4GfhS4G1s/cVsv+ouIiOgdepJ0RkTuBL5qjPnN5Ltg\ny6K9zxhzTdeTIyIizihsuCSR1Bf8MWxhHQCSjMZfoHtty4iIiDMQvchxuQ1b9CVM+30UeELYOClT\ndwVwgM6l0SKWI48t+XaLMebEaR5LxA8xzoREuFdgi9xErA+vwdZjiIjoCXpBElPYOoerrW15AGBy\ncpLp6Wl27tzpDlx44YVccIGtGdtsNmm1Wm5bWlripptu4rnPfa5rn8lkEBFEhGw2S39/P7lcjr6+\nPvr6+rj++ut51atehV/0SSsnLy0tr916/fXX89KXvpSlpSXXTkTo7+93WzabJZOxWtt1113HVVdd\nhYiwtLREs9l04242mxhj6OvrQ0TIZDJ88pOfXDYeH2ovuueee7j33ns5dOgQu3btwhhDrVbjBz/4\ngXt+ERG9woaThDGmISL/jq1t+RlwhsufAtJSjNcAXvCCF3Drrbfy6le/uu3g0tISS0tLiAjGGEcS\n9XqdpaUlqtUqgCMCbZ/JZMjlcvT395PP58nnbcHxTCZDX1+fjtVNRP2r/ShpZDKZtmPZbJaRkRFG\nRkYoFosUCgUGBmxZyKGhoTZSq1arLCwssLi46Mar/YsIuVyOs846y92rElw4tssvv5zLL7+cD33o\nQ7zhDW8A4ODBg1xzzTXu+UVE9Aq9UjfeA1yXkMXXgDdjy91d1+mESqVCs9mkVCq5fTpZjTE0Gg0a\njQb1ep16vc7i4iKNRoNyuQxYktAJrW98nZBKEo1Gg9nZWfr7+1MJwpcqms0m9XqdY8eO0Wq13LUG\nBwcpFAr09fU5SSWXswWyM5kM/f39bZJBs9mkVqu5+9NxigjNZpPZ2fYC0Z2kCr2Wttf7jojoNXpC\nEsaY65OYiD/AqhnfBK4wxnQsdb6wsECz2aRcLrdNWiWJZrPpSGJxcZHFxUVarRa1Ws0Rgv/W1/MB\nd45e3ycJv71KIT4hTU1N0Wq1yGazTmIwxjAwMNC2GWOc9KLSiBJBrVajXC6zuLjYphLV63VmZmba\nxgDtEoUvWTQaDWZmZgDayDQiopfomeHSGPNBbFXjVWF+ft5JEv4EVqJYWlpyur1OYp04OqlExKkd\ncNKOoZJBq9VyE9UnCF+VaTabLC4uUqvV3HgajQb5fJ6lpSUGBwcREQYGBpyEksvlHEnk83lno8hk\nMq7PcrlMrVZrI4lms8n8/PyqSELvRyUIVbMiInqNM8G7AcDs7Czj4+PuzRqShE8EOkm3b9++zOjY\n399PoVBARFhYWGBhYYGlpSUWFxfZsWNH20T2r2eMcRKHfj777LPbiCWfzzu7hBLEwMCAkx5e+MIX\nMjQ05K7d19fnSEftE319fWSzWUSEvXv3sri42PGZ+FJEJpNh3759zgDabDZ7/ptEREAPSEJErsaG\nY/v4njHmwm7nzc3NMTw8zOzsbJuaoZ99b4WK+JOTk+6Nr2/jvr4+CoVC21tcjZ1nn302mUyGwcFB\nstmsm6zqjdA3vdoOduzY4dSEbDZLq9UCaDOGKkn09fXxspe9zJGAejJ8kqhWq84rIiLs2rWLer2+\n7FmkqUyZTIY9e/ZEkojYdPRKkrgX681QWXnF/+hardamKsBJNcCHb39Qu4FOHF8aACuSVyoVRzi5\nXI56ve5UFX1DA+5cPe6rNfV6nWw2665dqVQolUosLS2xsLDgSEKJp6+vj1KpxPT0NNPT08zMzDA3\nN8fCwoIjOr0PX1rw71H3+1JJq9Wir6/PqVkREZuBXpFEs5uRMg2hAVI3f8JAO0nohNYJY4xx9gRj\nDJVKhXK57M4fGBhwRKDE4UsSSgI+UWj7bDbrrl0ul5mbm6Nerzs3q8ZMhCRx4sQJRxK1Ws21912x\nOva0e1TiVBJSe0qaBBIR0Qv0iiTOE5FDWB/+HcDbjTE/6HaCGhf9OILQNamGRd/TUavVaLVarm2l\nUiGTybC0tES5XHbf1ZYwNzfnJpy6I7WPWq1GrVZjYWHBSSG1Ws3ZJCqVCnNzcxw9etR5O5QYfILI\nZDKUy2W+//3vc+TIEWZmZiiVStTr9bYALB1X6GXRZ5DNZttcrEp2asiNiNgM9IIk7gSuAu4DdgDv\nBG4TkScaYyqdTvLFb38S+y5QP2pR9f1ms+naAM4taoxhYWGhTUJRD0mpVGrrTyefXs+XKPSvHz9R\nq9WYmppqm+xKDnrNxcVFp26o0dKPtwhVDZ8QNQajv7+foaEhZ8Pwt4iIzUIvIi5v8b7eKyJfA74P\nvBy4ttN5/lvdF7Ph5OSt1WptLk99o/pv4Xq9TqViuUhVBn/iVioVp9cDbRNP9ykZ6PX94Kpqtcr0\n9LSTdjpNXI23qNfrzg3rqzd+n+GmEoS6V1VqUGLrxfL+iIhO6LkL1BgzJyL3A4/r1m5mZqaNJESE\n0dFRisVimxFRrfo+SSh8cRxom5z63X+D++eF6zl8AvK/K+n410mLaVCpRVWhMLozeEbLNpV8lpaW\nOHLkCCdOnGhTT6JNImKz0HOSEJEhLEF8rFu7sbExBgYGnBTR398P0EYOShZpurk/gfzjaaHXwfhS\nJYHQThCes9K+tH58wvH7CG0vKk0owWzfvp1zzjnHeVEajQZTU1Pcfvvt3R5pRMSGoBdxEn8GfBar\nYuwCfh9oAJ9Yxbnus7+oy9fdfckh7Q2t5/n70iZiKDmsNMnDfauxC6RJGGlSQ3iOb7hU6UolE6DN\nUBsR0Wv0QpKYxOY32AocB74CPNOsMjGKP3l0wuhkCScb4CZRuB9W98bvJEV0Qzc1YzX9hf2EqosG\njOXzeRfwpcZbVWFiMFXEZqEXhstXrWsg3mQIiUKNmL7B0n/7+ypDGF+R5mJMm+Rh38m9dBzvajwN\n4TE/r4Qv8YTxIT5JqGfDV51CY21ERC9xxqzdKBaLLmAJTqoWOuFVovAnmUInVi6Xo1AoUCgUHOno\ntTq9tfVvGkl0QxpJdJJI9O/i4iLz8/OUy2UXpOV7PDQaU+9hcHDQ2SF8iUnJJCJiM7BmkhCRS4Df\nxia73QG82BjzmaDNHwC/AowC/wb8mjHmwW7XHRoaQkRSPQJh5KHq59qmr6+PXC5HsVhkfHycsbEx\nl2QG2u0Q4QRL82ysVmXxz01rF0pFlUqF48ePt9kWWq2WG1d/f7/LV6Gb2ib8a6p0FRGxGViPJFHE\n5of4K+BT4UER+V3g14HXYlOrvQtbc+MCY0xHv90TnvAEms0mhw4dcsuqG42GiwvQSaTk0Mm1mM1m\nKRQKbjVmmIgmGWPHyZ1mSAyPp0kP3aQIlRqgPQZDz1MiGBgYcCQxMDDgwrd9UoskEbHZWDNJGGM+\nD3weXFq6EL8J/KEx5nNJm9diM2W/GLi+03UvuugiqtUqrVaLY8eOueAlVTmUJHTC+8FOqn40m01n\n+BscHHRRi2kuRp8oVuu1WI1BM2yjhKbBYBr2rTEcOuF1ZWmxWGRwcJCBgYFlkZl+P1HdiNgsbKhN\nQkTOAc6mveZGSUS+iq250ZEktmzZQl9fn5scYVyB6uyAW8rtT/5Wq0Wj0XAShtopVO0Ig6J8O4Qe\nX8kQmWav0O+d4iy0T10PsrCw4GwRgCMIX4rQpey+sTZ4zpEkIjYNG224PBswpNfcOLvbiXfffTeL\ni4scPnyYubm5tqApnfQ6aRqNBtlsti2qUVeC6jJuNfjl83k3UdPiJRSh2tLJxpD22Yc/ZpUgyuUy\nMzMzzM7OUqvV2tpls1kGBwcZHh5maGiIYrHYtqArzUAaPRsRm4kzxrtx991302q1mJmZcYY9P3LS\nX/S1uLjYlvhW10m0Wi2q1SqlUol8Pk+hUACWp83vNMlCElgrUYT2CT91nZKE2iZ8j4ZPEuqZ8dWR\n1QRuRUT0ChtNEkewiWa20y5NbAfu6nbiPffc47wbiqGhIUZGRuxAvUS0Gqbt17ZQ1Ot1yuUyg4OD\nbeevB93e2N2IxhjjMnmXSiVKpRILCws0Gg038TXTVrFYZMuWLYyNjTlbhKpBao85dOgQBw8ebCOL\nuHYjYrOwoSRhjHlERI5gs1J9C0BERoAfBz7Q7Vxdu5H2dtZJlcvlXEYqf1m3/8ZVksjn84yOjrZJ\nHb16I4dve5Vs5ufnmZqaolQqteW9UAkin88zNDTEli1bGB8fdy7e0DW6f/9+zjvvvLZAsRMnTnDj\njTf25H4iInysJ06iiF2wpbNiv4g8GZg2NrHMnwO/JyIPYl2gfwg8CnT9j67X68vS1yX9tS36UjuD\n2iE0h6VO0mazycLCgstKVa1WXU5MVU9WIos042Q3m4Bv9FTyqlarzM/PMzMzQ6VSaSMzNar6QVN+\nun7fXuLbJPycFWrEjYjoNdYjSTwN+BLWQGmAdyf7/xr4ZWPMNSJSAD6MDab6V+BnusVI+EiLZ/BD\nllXt0AzYaqfQSaVJZyqVCvPz88zNzTEyMuLySmofqx1L2rjS2qhx1ScI3bSmiAZ+6T0UCgWXgVtV\nETV4qk3CX9gFtEWSRkRsBtYTJ/FloKv/zRjzTmxGqnUh9DD4RKHRlSLiEsv6OSvVVqETVSt2aURn\nWl+d4hvS2oTxFSF5NBoN52FRktCFWXov6ur1SULvwffCqF3CJwl9FpEoIjYLZ4yzPW2Vp75N/Ter\ntvVTvPlLqhWtVouFhQVKpZLLValv85VcimkTMU368OMVVIIpl8vMzs4yNzfngsO0T1+CGBwcdAu4\nYPmiLV+98G0qacQREdFLnJEk4Qc9haK3P+H8rRNJzM3NUalUXO1QVQu6vYl9NUfH08mg6ttC/Eza\nmkJfJRs1Vg4MDFAsFl3NDlUfwhR3nXJnwsnQ7oiIzcCaSUJELhGRz4jIIRFZEpErg+PXJvv97aaV\nrrt79262bdvm3qw+UaSJ9dC++jM0eGrlca3ipZGO/srSNEkhzQ6S8gzavqt9RI2l8/Pzjph8l6eG\ni6ua4UdVhlKEL810ItCIiM3AeiQJXeD1RqzhMg03Y2Mjzk62FXNMPOUpT2H//v2uBJ8f/ORPFJ1Q\nmq/ST86i8NdyNBoNarUa1WrVqRxhJGM4Qf1Vp2GAVJoEoqqG2iFC9Ua9ERp6XSwWXfi5XrNT6HUo\nQaQl/42I6CV6scALYNGssTjPueeey+HDh3nooYe0nzaS8IlCSULELubSMG1vjE5V0bT41WrVuRw7\n3FdbPzqBffdqWjyEklG1WmVubs65XVWKgJPrM/L5vJMkdIWnbxD10YnIVBKKJBGxWehVWPZlInIU\nmAG+CPyeMWa62wkPPPAAs7OzztgHtOnjYTEb/23q54T0PRE6idVWoKssdZ1HOOlD0T60TYQTWSUV\ndbfOzs5SLpedO1Oh6zM0iUyYECdEGvf6mcS1YHFExGagFyRxM/APwCPAucAfAzeJyE+YLq+/Bx98\n0KkF+vYO1Qx/UodGPiUJfbOrHUPXT8zPz5PP5xkZGXFl+8Iye2kivm+XCCe2H5NRKpUcyYVRoL4U\n4a9y9a+Vps6EdhI9T4sUR0RsBnqR49JfDv5tEbkHeAi4DBuElYqvf/3rLs5BJ6zq7uHE9eMIVOrQ\nZDOA82Io1C7hL9dWW0aIcPKmLehSVaZWq7mALbVDpK3P8PNV+h4Tvz//cyhJPPzwwxw4cMAd09D0\niIjNwGYU53lERKawodwdSWJiYoK+vj73FgaWqRnBddvS2GkhXvU0+IlmtRiwX+NT7RmqmqQFU3Wq\n26FrR7Q2qJKEP3YNmPIlCE1q66/LgM5EoWPbu3cv+/fvb4vWnJub42Mf61rKJCJiQ7AZxXkmsen1\nH+vWTt/uOnl8Q2Ka9R9OTmQRcW/qRqNBtVp1XgzArfNQdaZSqbgl2mrH8N/sfiBXSBSqzqgxtFQq\nuZgIf3m3n45Ox+YbQ7vFavjEFa7l8O89ImIzsKELvJLtaqxN4kjS7k+B+4Fbll+t7bpd9XH9rMdC\no+XQ0BBDQ0NugZdOZg3GgpNqR6VSYXBw0E3WcCIqSWjAkj8h/fgLfxGZiv9qN9DM1757Ni22Ibw/\n38bi20W0byXPuFQ8YrOw0Qu83ghchE2COwocxpLDfzPGrEmJDkXwkCB8lSSXyzE8PMz4+LiLV1CV\nQyevMTYhrUoTunrUr1zuX1+lj3ASq+qiEkm5XKZSqbSRlgZOhTEcvks3LCDs36e/3ycLP5N4JImI\nzUIvFng9fz0D8dWMpJ9l6kYn1cNPR18sFp0HQz0bOvFVTdAIzFqt1vbmDl2s/qTWcWm+itnZWebn\n513QlJKDShDqxfBtJ74aERKDv3UrRKTPJq7diNgsnDHp60IdvdskCuG7GQuFAsPDwy4zNbQbOdWW\noEShtoPQ8+CThC+9aMzF9PQ08/PzTmJRo6KqGBoq7rtz9T6VPEK3a9oz8JfBK9JsFBERvcKawrJF\n5O0i8jURKYnIURH5tIg8PqXdH4jIYRGpisg/i8jjVrq21ppYjUtw2U14q0KVKDSlfhilqSqH2hRU\n0ghjF3yiULVF12f4bs96ve4Mp1u2bGF0dJQtW7ZQLBbbskxpMhr/c1gx3beh+LYUvTeVUJTUIiI2\nA2uVJC4B/ifw9eTcPwb+SWzhnQVYf3GeiYkJms0mU1NTyzJb+7p6mioQvo113YUuJfcnne/l0CjM\nwcHBNr0/zasR5onQoCljDAMDA2zbto2dO3e6aMpGo+HyW4ZeilCS0D5CCUGlE3/FqJ8xPCJiM7Am\nkjDGvMD/LiJXAcewJf++kuxeV3GeiYkJyuUyJ06c6CpOh4ZLJYjQM6BLyLU4j05+9VgsLCxQLpcp\nFovL7AX+sm1FvV53cRHq0dA3fS6XY+vWrezbtw8Rm8LOt1ekuTLDIK3wuNoj+vr6Uqt6qSoVEdFr\nnKpNYhTr4ZiGUyvOs7i46IyN/gRayRYRru3QSMh6vU4mk2FwcBA46RnwoyV9F2atVktdcKXqwcLC\nAvPz885zAjjRf2Jigr1793LBBRcwPz/PiRMnqFarAC5uwjde+uP32/hrVTQDl96TSg7qkYn5JCI2\nC+smCbH/4X8OfMUY851k97qL8+jE9itseX25z/4b15ccdIKpcVFJIp/PO6+GLyFoPYxCoeBIwpc8\nFJqRWwOn5ufn2+wQIyMjjiTOP/98HnvsMer1OlNTU0C729O/h7Qw86WlJecuVYOqJBGaSqAqJUUX\naMRm4VQkiQ8CFwLP3oiBaC7IMOAozbOhE8pPyuJ7B/StrJGO6tXwSUInusY7VKtV8vn8skVf6vL0\nJQ5VA4rFIhMTE+zevZs9e/awZ88eGo0GR44caTMyqns0XNUakoQSgBopVZLws1upJyeqGxGbhXWR\nhIi8H3gBcIkxxg+3PqXiPNCe63F4eJhisbjMNaiiuxrx/ImnHg5fHG80Gi5sWit9hes5yuUyIuJS\n22sf1WqVmZmZtnR0KrmMjo4yOTnJOeecw86dO9m2bRtTU1Mu85QW3vElndDQCiftEyoVaRCWrvS8\n7777ePjFDIgqAAAPGklEQVThh9vsFVHdiNgsrCcs+/3Ai4BLjTEH/WPmFIrzaDVtP0zaDypKE819\nlcN/yw4ODrrzAWd/0BWavrfDt03kcjlnN/CTyczMzDhDpKoEuVyOsbExdu/ezf79+9m5cyfj4+OM\njIy49RpaeMcnCe85LkuNp8ShsRb9/f00m0327t3Lrl27HMHlcjlKpRKPPdZ1OUxExIZgTSQhIh/E\npqK7EqiIyPbk0JwxRuXfdRXnAZZZ9/23rk8U/gTTSEqVCkSEoaEhp8+LiIuLUGJQwyOcTIE/Nzfn\nbAxLS0tt7s4wP6ZKCDt27GDv3r3s2bOH0dHRtkmu0Z+Li4vL1mJ4z7Pt3n2i8xeE+fesqk6Y0zMi\noldYqyTxBqxh8tZg/y8BHwMw6yzO40sK+j1UJfy2Shx+mrqFhQUymQxDQ0NtHgpVKTQk2zd8qmuz\nr6+PkZERF9ykmaaUJFQKyWazFItFxsfH2bFjB/v27WPPnj1s2bLF2UL8En4ash3aIMK//nj94sgK\ntWv4qklExGZgrXESq/rPNKdYnKcbQYQrMgGq1Sqzs7NtXgNVCXTCjo6OumXk8/PzbWqLhmorMTQa\njbbaGUoQ6i0ZGxtjcnKSnTt3MjExwejoqFMNNGxbA6lKpVLXpDn+Pek953I55+XRHJ1qvFTDbqlU\nWu/jjYhYE86YtRuwXMUIa074tgigLbS5Xq8zPz/vztcw6eHhYbLZLGNjY7RaLUqlEtlsti1uQl2k\nc3NzLgahVCpRLpfbao1qYNPExAT79+9ncnKS8fFx8vm8I5u5uTmOHz/O4cOHmZmZYWZmJlXdCKNK\nAVdoqFAoMDQ0RD6fd54VdeuqZKJxGBERvcZabRJvB14CnA8sALcDv2uMud9rcy3wuuDUz4fRmiF8\n678f+xCuzvQ3P22+xjIoSRSLRWfEzOVyDA0N0Wq1OH78OAMDAy6kWiMsNQ+mb7BUQ+XS0pJLQzcy\nMsL27dvZt28fO3bscHVGdRJr1uyZmRmmp6cdSYQSUVroubpN1eiqZFAqldx4Go1GTF8XsanY8LUb\nCW4GruJkYppFVoBmcfIniMYKaLyA2iD0jayh1xqdqDEJ+sYfHR1leHjYHWs2m4yOjjI6OuqK6PhR\nmH52KfUkgNX/C4UC4+Pj7N6928VFjI+Pk81m2+I7+vv7nWETTpJfKEmEYeeqImlmbXWjag3TQqHg\npCaASqXCo48+uqYfLyJiPejF2g1YR90NjQ1Qu4IaAP3M0L5xD04a+LR0XqFQcBNNJ5hfUk9JYsuW\nLS4GQsPAdQWmrgpVqARQLBY566yzmJycdEQxNjbWproYY9pIwg+tTvNueM/R3Y/Geqg9RSWMcIWo\nX2ckIqKX2NC1Gx4ukzXW3QhT13eLTFQVwHc1Dg8PMzw8vMwNqVGPfnDT1q1bqdfrlEoltwBLr+9X\n//azTGlMxDnnnMPExERbgR2/bmkYq+Hfy0ok4UeL+i5QXb/hGy5jmb+IzcJGr92AddbdSK7Z9tdH\nmN9BIy7z+TzDw8NOQvADsTRqUbdCoeBIolwuO9tEWm1N39MwODjItm3b2Lt3L+eeey5bt25tK7AD\nJ4v4at/qoUgLK+92j3DS3emXAfTHqKHmERGbgQ1fu2HWWXfDRzihvGu3EUUmk2nLSD04ONimt8Py\nhDQjIyPUajWmp6fJ5/PO4BiuPAUr/hcKBUZHR5mYmGBycpLJyUmnSmhblUDq9XrbpjEXaYbL8L46\n7ffvWSUTVbEiIjYDG712YxnMKutuHDx4sG3iAc6LkFxnmctQRXOwkZO6CKtarZLNZl2Akxo0BwYG\nGB4eptFoMDIywtDQELVazU1wvaZu2WyW0dFRdu/eza5du9i2bRvDw8POA6HtTZKUplqtcuLECR59\n9FEOHDjA4uIitVrNSTIqffi5PP178XNgqLpRq9W4//77OXjwZAS8ViqLiNgMbOjajQ7tV1V3Y8+e\nPRSLReCkfSJM0RYSha/rq9qgxXJ0Qg4MDLjU+Vq8xxjjYijK5bJLwa8TXkmqv7/f2SJ27drFWWed\nxcjIiGuX3B+AI4np6WkOHTrEgQMHXJ5NrQOqyXHDDN1KSioRqbG2r6+PcrnM0NAQ5513HmClm/Hx\ncZaWlrjhhhtW96NFRJwCNnTthtiaHOuquxGGJnc6nvYG1nM0QlGL7/gVtVTqUNIYGhpiZGTExSBo\nVS9orwI+OjrK9u3bGRsbI5/Pt60j8TddYernrFSPh29HCe/JJ6Zuaod/vxERm4mNXrvRYp11N1aw\nabo2nRaBKfSNriThk4+SBOBIYmhoyEVh6nXVo6GxFhp6reeG3hc/tkJjJlbybPiL1NKuGS5mU7XK\nT64TEbEZ2NC1G8lK0HXV3egGP9oyzPQUukg1AhOWuwnDBVgaW6FJZvX66p1Q96pmv9bYhDSPhV8x\nLCQJHZu/heeHhBKGqIfL4iMiNgv/oSJywgVR/oQK13XA8tWifh0NP0pTbQCaz9Kvn6HJZ/3w8DT4\nkoSqGb76FJJEOM5urlLf0NnJ8xMR0Suste7GG0TkbhGZS7bbReT5QZs119xYoU/3OU3V8Nd1hJMz\nfJP7rkSNgVCS8FPWq4tRyUMXXqWtRu0mSfjHw/79+1uJJNKOrUY9i4jYCKw1KcEPgN8FnooNxf4i\ncKOIXABtNTdeDzwDqGBrbuRWc/HQc+FnpmobtKe7+5KCH8zkr+sI3+b+4ipfBVEy8HNNpl0juddU\ndcNf0u3fT/g5RBoZqrHTjw1ZycAbEbHRWBNJGGP+0RjzeWPMQ8aYB40xvweUgWcmTVzNDWPMvVgD\n5k5szY3V9tFmrEsLQAqNfHBS3FcpwScJPyVeOOE0PkHjGHyC0e9p4+hmk/AlGr0n//7CfWlSQphm\nL61oUETEZmDd6Y1EJCMirwQKwO3SoeYGoDU3uiKXyzE3N9em//sI9fhMJsPRo0fdZPaNeyFB6OS7\n/fbbUw2IviThL1E/cuTIsmt0mqCtVovbbrttmSSRNn79e/z48Y62CiU6jSgtFArMzMy4WIpY5i9i\ns7BmkhCRJ4rIPHb59weBlxhj7uMUam4AbZNAVz+Gerxfk0NJQqMZ/SXZqiqEGarvvPPOtPtpa+9v\nhw8f7ipJKHRsd9xxR5tdwkdIAsYYjh8/nqpKKEHoStaxsTG2bt3K1NQUY2Njbvl7RMRmYD3eje8B\nTwa2AD8HfExEnnOqA1EX4+DgoJtoijSjn058324ALFM10oyBoUQS2jB8e0jolvThSxd+Xgr9nHZO\n6Mr1ySRtfYbfd39/P1u2bCGXy7Ul842I6CXWTBLGmCbwcPL1LhF5BtYWcQ3rrLkBtu7G3Nwcd911\nl5ssO3bsYPfu3drvMrLwv2t2Kn+pd6dgpjQPSZgZy/+8klfB96z4wVRh27XYEnyiuv/++7n//vs5\nevQon/vc5xCRWMErYtOwEXESGWDAnELNDYBLL72Ur371qzzvec9zC6PCFG0hMQDus6bVD/NBpE3y\nNC9KN5LoFDHpj8sPve5mXEyLk0iLm/D7veCCC7jwwgu58cYbednLXoaIcOzYMa677rqVHmtExClj\nrWs3/js2X8RBYBh4DXAp8NNJk/XU3MgDzM3N0Wg0mJmZcRmifZLQxVK6HkPXShw/fpxcLsfs7Cyl\nUqktNPrYsWNkMhln+KtWqxw4cIBGo8GJEyeYnp52afMrlUpbDdFyuUy9XufQoUOMjIw4MV+9IGrH\nGBgYoFKp8MADD7CwsMDU1FRbISAN29ZJ7xNSs9mkXC47MtCEvEqSWuxYSa5er3P0qBXSpqen255f\nRESvIGsRgUXkL4HLgR3AHFZi+BNjzBe9Nu/ExklozY03GWMe7HLNVwN/u57BRwDwGmPMx0/3ICJ+\neLEmkujJAES2AldgJY9YBXf1yAP7gFuMMSdO81gifohx2kkiIiLizEasFRcREdEVkSQiIiK6IpJE\nREREV0SSiIiI6IozgiRE5E0i8oiILIjInSLy9A7trhaRpWD7jnf8EhH5jIgcSo5dmXKNMN/FK7ud\nIyLXBv0ZEWmIyFER+bSIPL5LH3WxeTfmO7Xvcv1NydcREbESTjtJiMgrgHdjE+j+KHA3NgfFtg6n\n3IsN9T472S72jhWBbwJvxC42C/tKy3fxHmy8R+o5CW5O+vxicv6zgOcC/dhaqIMd+rgTeBBbyez5\nae2D6/8C8ErgafQgX0dExLqQtlR5MzfsRHqv912wUZq/k9L2auAbq7zuEnBlsO8w8Gbv+wi2OvrL\nu5xzLfCpDn1sS865eDV9dGjf8frJ8RPAL61m/HGLWy+20ypJiEg/9o3p56AwwBfonIPivEQ1eEhE\n/kZEdq+yr1PJd3FZoi58T0Q+KCLjyf62Wqir6KNr7VT/+rLB+ToiItaL050IdxvQR3oOiiektL8T\nuAq4Dxsa/k7gNhF5ojGmskJf68130bG2Kctroa7Ux2pqp74H+FWsxDFPkq8j6W/d+ToiItaL000S\na4Ixxi/wc6+IfA34PlaUv7ZHfXaqbXoDKbVQu+BpWEJcqXbqd7DFjN6IDbvekHwdERHrxek2XE5h\nC/psD/Zvx1YA6wpjzBx2Qq3Gwn+Ek/ku1tyX1+cj2DUmFwOXmfZaqJ36uDjZF7ZPu/6D2OeCMeYd\nWEPub27U+CMi1orTShLGVvX6d2wOCgDEJmr4KeD2lc4XkSEsQXSdeElfj2Ank9+X5rtYsS/vnGuB\nQaxhta0Waoc+PoxVjd4etu9w/bB2qsvXsRHjj4hYM0635RSrKlSxmbXPBz6MteifldL2z4DnAHux\nbsh/xurkW5PjRWxqvadgdfrfSr7vTo7/TnLtnwWehFUZHsQaT5edk1zvGuxE3IvNi9HErljdhX2L\nbwfy3hj9Pj4J1LGlCCbD9inX/1tsesAHkvH8cdLf5V3G/wCQO92/Y9x+eLfTPgBjDFj9+wDWnXcH\n8LQO7T6BdY8uYBPffBw4xzt+aTLRW8H2Ua/NO7GuxCq2TumrO52DXY79eewbvIY1HKa1fW0wTu3D\nJFtq+5Trl5JtIdn3T0oQXcb/uNP9+8Xth3uLS8UjIiK64nQbLiMiIs5wRJKIiIjoikgSERERXRFJ\nIiIioisiSURERHRFJImIiIiuiCQRERHRFZEkIiIiuiKSRERERFdEkoiIiOiKSBIRERFdEUkiIiKi\nK/4fOEOIjKB6X88AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10c41e128>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAACXCAYAAADefwrpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXucZFdV77+r3l1V/ZqeyUwSAnkSgkBEwiMmmFxQQfyI\nQSEqKCAq7wsfvFzRKx8TCW/kDVGuYhAvAYI8RUJA3kECQhIIIZB3wmQyj0xPV3fXq6u79v1jn3Vm\n1+lT1dUz3Znp9Pp+PufTXaf22XvXqVO/s87aa68tzjkMwzCMjUHmSHfAMAzDGB4TbcMwjA2EibZh\nGMYGwkTbMAxjA2GibRiGsYEw0TYMw9hAmGgbhmFsIEy0DcMwNhAm2oZhGBsIE+1VIiJdEXn6ke7H\nahmm3yJymYh86v7qU9TmQ6K+Peow6/maiLxjrfp1uIjIlIjsEZEHH+m+rDWHcp2IyB0i8or16tNa\nstq+Hs41LCLfEZFnrOaYo060RWSriPy9iNwlIi0RuVdErhSRs49039YLEXm4iPxbdLF01+ni3gFc\nGbW3JkIZ1fU8ETlwmNUckVwKInKRiNwkIvMiMi0iXxaRx6WUO1tEvhKVq4nI10WkuEL1fw18xjl3\nd6Ku343qmhaRRtT+B0XkF9fysyXavEhErlvDKl8BPH8N61vTa3INOAv4v6s8ZuA1POB38nrgLatp\n6KgTbeBTwJnAHwGnAb8FfB2YOoJ9Wm/KwG3Aa4B716MB59xe51wneimsrVAebl2yJr1YPT8DXgY8\nAjgHuBP4kojE11pkLFwJfBH/Yz4LeB/Q7VepiIwALwD+KbH/LcDHgGvx1/VDgWfjv/s3rtFn6seK\n35GI5IaqyLk559zs4Xept3nW6eYtIvnVlHPO7XfOtVbbzBDvp32+K4FREfmNoVtyzh01GzCO/zE8\ncYVyrwJ+BMwDdwPvByrB+88DDgC/CfwUqANXACPRe3cA08C7AQmOuwN4LXB5VPdO4KWJtrvA04PX\nDwI+HrW3H/gM8JDDOAd3AK8Yotxe4HeC19cD9wSvzwVaQCnZ7+j/pehvF/hqtP8y/E3zfwG7gPvw\nApUd0I/nAdMD3n8K8K3o/NwH/DtwcvD+Q6I+/B7wbaAJ3AD8SqKeRwBfAOaA3cCHgang/a8B7zjM\n62806sv/CPZ9B7h4lfU8E9id2PeEqO6XDVnHS4BbgTZwE/CHK5Q/H/hudN0eiM75CdH3E37fS8Bz\ng+vgxcBno+P+Bm/I/RNwO9CIfj+vSLR1GfCp4HUV+EhUx8+B/5n8PqLr+q+ADwKzwF3AnyV+V8uu\nyT6f9bzos7ai6/RNQCZxLbwXeCewD/hKn3ouAz4N/B/gHuC2tN8gcDpwdXBtnk/v70mv4WcAX8Xr\nzfXAE4L+Jr+Dvwnq/yDwL0NfX4dzka/1BmSjL/TtQGFAuVdEJ+LB0Qn8CfC+4P3nRRf7F4FH4QVs\nX/T6o8DDgKdFX/qzEhfWDPC/gVOBlwMd4MmJi0u/rBxwI/5R6uHRl/uv+B9ZLvGFPXjIczCsaP8b\n8J7o/4nos0wDD432/R/gm336fVb0+nzgGGAiuIhn8DfBh0bnaB74kwH9WEm0fwe4ADgp+i4+A/ww\neF8v+LuicqdH57MGTEZlxoE9wCX4p68zo+/yK0E9SZG4GLhjFddeHnh1dA63RPu2RX17Of6Gshv/\n1HfOCnW9C/iPxL53R58pM0RfnhFdvy+KrsNXRdfheQN+NweANwMnRufwj/AGRRF4G97I2RZ938Xg\nmrg3+g5PjMrngIuAR0ffzR/gb5TPDNpLivY/4kX+fPzv4JPRdZQU7X34m8TJ+KfKReC0Qddkymc9\nLrom3xNdo0/HGzChCH4tOtdvjq6X0/rUdRlebz4EnAGckfwN4m9iP8VbxI8Afhm4Bi+8SdG+EXhq\n9J1dEZ2TTHRtvSL6jvQ7KAf9eBFw+9DX6rAF768tumDvw9/lrwbeADxyhWN+F9gbvH5edFJPDPb9\nfXTxjQT7rgQuTVxYyR/bR4HPB69D8ftD4CeJ8gX8nfZXo9ePxd9Ujh3y8w8r2i8HfhT9/3Tgv/BW\n8gujfV8CLunTb73IHpVyEd9O79PHx4HLB/RjoGinlN8atf3wRF9eHZTJ4p+gXh29/mvgykQ9D4qO\nOzV6nRTtlwFfHqI/vxldF0t4K/ExwXuPj9rYBzwXf7N4B/4GecqAOj8N/GNi3xeA6xL7XhW1rdto\ntP9q4O8TZT8O/Huf9iaj/qc+oeJF+NqU/V3g74Y4R+8FrkhcJ5+K/q/ibzDPCN4fwwtrUrQ/lKh3\nd3C9pl6TKX15A8t/cy8BasHrrwHfH+JzXYa31HP9foN4EW4D24L3n0z67+n5QZkzou9Ejai+vxO8\nq6wz7G/oqPNpO+c+jb+b/hZeVM8DrhWR52oZEflVEflPEdkpIrN463ZKREpBVQ3n3J3B6z3Anc65\nZmLfMYkufCfl9Rl9uvso4DQRmdMN7yIpAqdEn+e/nXMPd86tta/6G8DDI//reXgL8OvA+ZFv8pej\n16vlRhddSRH3svwcDY2InCoil4vIbSJSw/8gHP4pKeQa/cc5twR8n4Pn/UzgSYnzfFNUzylp7Trn\n3u+c+7UhuvjVqP6z8db7J0Rka/Se/j7+wTn3YefcD51zf473hb9gQJ0jeGFfiQ9Gbb8IP66hftEz\n8DfhkG/T5zp0zh0A/gXvj/+ciLxCRHYM0T7AD5I7RORlIvJ9EdkbnesXsvz7Uk7GW+f/HfRnFn+O\nktyQeL2b1V9bD2P5b/TbQFVEHhTsW/a5+nCDc25xwPsPBX7unNsX7Ptev7qC/+/Ff5/DfL4mkBli\ncBs4Ogcicc4tOOe+4px7g3PuXPzjy98CiMiJeL/o9fhH71/CW1XgrVylQy+uz77DOQdVvLg8Cv/j\n0+2heL/4uuGcuwH/KH8+B0X7G9Hrx+J/SMkf/jCs9Tn6PN4S/FPgcdEm9H5XK1EFPsfy83wa8M3D\n6BvOuaZz7nbn3Pecc3+Gf2T/k+htvdHelDjsJvqLGPgnxcnEvluAk0UkG7Q965y7He9PPSyccy/A\n+82/jR8fuDktEiaFevhCRH4f7075R+DX8Of5Mlb3ffVjra+tQdRXLrKqcsMQfj41fIb5fFuAunOu\nPUwjR6Vop3ATUIn+/yX84/urox/arcDxa9jWE1JeJ3+0yrV44dgX/fDDbW4N+9SPq4HfxvsRr8b7\nLYt4y+37iaeKkIXob7bP+2uCiGzB38Be75z7mnPuZ/SPAnpCcFwWeAzerQT+PP8CcFfKee73GQ+V\nDP4cEj2p7cL7iEMeivfB9+M6/HcS8lH8zeelKeWTkQc34aNZQs7h4PlIJXoSeItz7hzgx/jIFPDf\n97Df9S8D33bOfSCq73b6PM1E3I6/0T1Wd4jIOP4crYZhr8mb8E9FIecCc865natscxh+BpwgItuC\nfWk3Q5eyL2TQd/AI/DUzFEeVaIvIliiG9Tki8kgROVFEnoUfGPxMVOxWIB89Ap4kIn+EF6m14hwR\nebWInCYiL8NHAryrT9mP4K2qz4rIuVF/zxeRd4vIcdFnemwUi3tsvwZFJC8iZ0axugXg+Oj1oB8L\neOv6D4DrnXONyK3xTeA5eKu7H3vxj2RPFZFjRGRshXZWIhf1N9wexsGImheKyCki8iT8IHPaBf4y\nEblARE4HLsUPrl4Wvfd+vDXyMRE5S0ROFpGniMg/i0hqqFX0iP+f/TosImUReYOIPF5EHiwivyQi\n/4x3zX0iKPo24BVRfPUpInIJXsQ/OOB8XAX8QiReADjnrsH7w98uIm8XkXOidh+Pd7U4DoYRvg14\nvoi8OHIv/Tl+rOdtfT7LiSLyRhF5QlTnr+ONCRX5O4GTou9lSkQGWc23AGeJyK9Hv4HXEQhyEufc\nPN4183fRtf8L+OiTJVYXwjfsNXkpXkTfKyKni8hv4wed376KtlbDl/E3pg9HmnQOPrba0fv5Vgr5\nuxPvwnlS9B2MBO89ET8GNRzDOr/vjw0vWG/A+8em8YMzP8F/KcWg3Cvx4Xjz+AGe5+AvkrF+Tn9S\nBmNYPgp+Bz7k72NR3feQCNEiGDWOXh8T1bMHP3h6C/APQDV6/7zomL7RIxwcyFhKbH3DnqLjzozK\nvSFxbpaAX1uh3y+ILqQOiZC/xHHvHNQPDg76Jreb3cFBmx9H5+Y6/AWaHHlfwj/SX0P/kL9T8BEz\n+6Pv5kbg7cH7X6V34OsiBozI463pT+IHH5vR9fRp4JdSyv4F3rKewz/RnD3EtfwdgpC2YP8zga/g\nr+9WVO+/Ao9NlHtRdC218Nblswe0dQx+EHpn9FlupzeaooCPZpimN+Sv55oIyn4wKrsfH/L5BoLf\nTvI6wT8F/2t0fu6JrsFrEtfl7SwPHbw20c9l12Sfz/vE4Fq5J+pfGPLXcy0MqGfZ9Z7WV/xTwzej\n9m7ED153iX5jwTX8qOCY8WjfrwT73o8f1I5D/vBeghZw3Er91U2iAw389FXgnc659xzpvhgbGxF5\nGvBW59wjjnRf7m9EpIwX0z93zl22UvmNRmRtfxMfuXTHYdb1Znx444uHPWaoGVCGYawO59wXItfG\n8c65wx5oPJqJ3HoPw0dVTOAn6Tj8pJ0Nj4hcgH+6uwXvdnoXcPXhCnbEHlbp2jHR7sUeO4w1Y5M9\nsb0a70ZYwIfbneucmz6yXVozRvH5QU7Aj2F9Gf95Dxvn3DtXe4y5RwzDMDYQR1X0iGEYhjEYE23D\nMIwNhIm2YRjGBsJE2zAMYwNhom0YhrGBMNE2DMPYQJhoG4ZhbCBMtA3DMDYQJtqGYRgbCBNtwzCM\nDYSJtmEYxgbCRNswDGMDYaJtGIaxgTDRNgzD2ECsm2hHa/TdISJNEblGRPquM2cYhmEMx7qItoj8\nHn41houARwM/BK4Ska3r0Z5hGMZmYV0WQRCRa4DvOudeGb0W/AKq73HOvXXNGzQMw9gkrLmlLSJ5\n4DH4FacBcP7O8J/A2WvdnmEYxmZiPdaI3Apk8QtWhuwBTk8WFpEp4CnAnfil5I3hKAEnAlc55/Yf\n4b4YhnE/cTQs7PsU4CNHuhMbmOcAlx/pThiGcf+wHqJ9H7AEbE/s3w7sTil/J0ChUGBxcZFSqYRz\nDucc5XKZsbExstkslUqFarVKpVKhWCxSKpX4xje+wamnnsrCwgKZTIZMJoOI4F3oxPXodsstt3Dq\nqafGDYflwteZTIZsNstPf/pTHvnIR5LJeC9St9tdVmc4JnDTTTfxsIc9LK4rrU9h2zfccANnnnlm\n3Act2+126XQ6dDodGo0Ge/bsYXZ2lna7TalUAmBpaYlWqxWfP8MwNgdrLtrOuY6I/AB4MvA5iAci\nnwy8J+WQFsCWLVuYnZ3luOOOo9Pp0Gq16Ha7dLtdCoUCxWKRSqXC2NgY1WqVarVKsVhk+/btsWhn\ns9lYLOGgyCp33303xx13HECPmIaiKiJks1my2Sx33303p5xyCrlcTj8bzrm4X6GIA9x1112ccsop\ny+oJBVuPyWQy3HbbbXF55xwLCwuxUM/Pz9PpdMjlcmzbto1t27Zx5513cvLJJwNQr9e59dZb4/Nn\nGMbmYL3cI+8APhSJ9/eAVwFl4EP9DlDhLJfLLC0tUSgU6Ha75PN5crkczjmazWZsvWazWcBb6CqM\nKtgi0iOu4EVRy6jQhmIaWs6Li4tkMhmWlpZoNBrkcrkeq3xpaYlutxv/1bq63S7NZjMWce1rWhsi\nQqfTYWZmJn6/0+mwsLBAu92m1WrR6XTodrtxn8N6DMPYnKyLaDvnrohisl+Hd4tcDzzFObev3zEq\ncNVqNRbAUHhVtJeWlnrEN5fLkc/n43pCcVVh1f+BuD5tI7SyFxcXWVxcjIW10+lQq9V6bgphvWH5\nbDbL4uIitVqtx8IPBTfpTllYWGDv3r3x66WlpXhbXFzsuemkuXwMw9h8rNtApHPuUuDSYcurO6FS\nqcRWdLfbjS3PxcXFHstWLVi1wlVAg/Z73Bi6hdZr6BIB4jZCYVxYWCCbzfa4U1RY1e/c7XbJZrMs\nLS3FN5ZQuPv9XVxcZHZ2Nu5DeINKnMue/02wDWPzcjREjwBefI855hhKpVIs2ip+nU6HYrFIJpNh\nZGSELVu2MDU1xemnn46I0Gw2mZubY35+PlXUdN/4+Djz8/PLLGfdVJzVF33CCSdQLpd79qlo6w1F\nhds5xzHHHNPjPkkOcIZ9AZiYmOgR8uRAp+5XxsfHe9w9hmFsPtZctEXkIvz09ZCfOucePrAjuRzH\nH388xWKxx3rudDpkMhny+TzFYpHR0VG2bNnC1q1bOfPMMzlw4ACtVouZmRn27dvX4/5I+pTz+Tz1\nep1isdgj2iqypVKJYrFIPp+nUChw2mmnxRZ2Lpcjl8uRyWRi90in06HdbsdPA8cccwwLCwvx+8E5\nifsRCvLk5GQswvpe+H9SoEdHR5f54g3D2Fysl6X9Y3y0iKrL4oCyALEw6sCiCpVat/l8npGREarV\nKqOjo4yNjdFut8lkMst830m/tvq9NVSwVCr1hONp+2ppq8Cq60NvAtqXMIpE+1kqlRgZGYkt73AL\nredkxEmyv+HfUJyTrhzDMDYn6yXai4MGHdNQF4SKtlq/KqK5XI5SqRTHa4+OjjI3NxeLdhiVkRTt\nbDZLsVhkZGSEkZGR2AWTzWZjCzqbzfYMMKrgLiwssLCwEPczFE09Pp/Px6Ktx7ZaLRqNRvzEkPSt\nJyNYksKdPDdaRm8aJt6GsTlZL9E+TUTuwccQfwf4K+fcz1c6SIVbXRCKDjyqQOqmlm+322VxcbFn\nkk3ohx4ZGaFSqcSCXSgUetpVF4kKrgq1+qwXFhZ6rGMVTxV89bfrE4L6xwuFQo+bJxmdom2nWdTJ\n/9NeG4ax+VgP0b4GeD7wM+BY4GLgmyLyCOdcvd9Baf5cjdJIWqXJwb5ut0u73Y4HGbPZbOyf1ok4\no6Ojsb88m832DCKqmOr/YehdGHanaD/U395qtajX6/GNJLTgx8bG4voXFhZoNps0m814QDNZb5ow\npw1KGoaxOVmPGZFXBS9/LCLfA+4CLgQuG3DcskiKUDSTcc+hi2FpaSkWRBVLHUwcHR2NRTufz/fE\ngLfbbRqNBo1GIw7VU0tYSZsxGfY5SbFYjGdvjo6OUi6X48+iszw7nU7PzShsJxw4BfpGi5iAG8bm\nZN1D/pxzNRG5GTh1ULldu3ZRq9W48cYbY1E+/vjj4wiLpLiFbhHnHPl8nnK5HA80jo6OMjk5yfj4\neDz5Joz0UItXY7tLpVJsOSet++SA5aD4a40qUX92OMXeOUepVCKfz9NqteJZj2mRIvq/c44DBw5Q\nq9Xi9oFlVrphGJuDdRdtEaniBfvDg8qdcMIJnHzyyezYsQMgFta5ubmeWYHJgUa1xnO5HOVyOXaH\njI2NMTExEcc2Ly0t0W63mZubY25uLp4qnsvlGBkZif3S4QSacCA06bpIDn6q2Gr8tlr/8/Pz8Y1E\nB0MLhQKzs7M9Twrh8SHdbpexsTHGxsZ6zkGz2eT2228//C/IMIwNxXrEab8N+He8S+R44G+BDvDR\nFY6LBTI5hV1FLWn1hqJZKBTihFITExNUKpU4f0m73Y5dIfV6Pbaw1UIfGxtjdHSUZrMZu0parVaP\nmGp7yTwgSUIx1yn3oTtHB1T1ZiEicVtpdYXtGoZhrIel/SB8fucpYB9wNfAEt0Kifh3ACyMwkoOR\nYSY/6I3iKJVKLC0tMT4+zuTkZJzqtV6vx1u73Y79ySqeY2NjbN++nS1btlCr1ajVamQymdhaDttJ\nY9Agoe7TeO9wgFOn7OfzebrdrqZZTb0pJD+vYRibl/UYiPyDQzkutLTTBhuBZe/rPhVtEWF0dJTR\n0VFEhFqtxvz8fDzFvdPpxG3pgOH4+DhTU1Ns3749jhFfXFxkfn5eP09PH1ZxHuK/Ovio1n23242j\nWbLZLI1Go2fGZNq50b82ycYwNjdHTe6R0F8dbirKYdImRae3l0qlOF5aXSKdTof5+XlqtVpsYYfT\n28vlcmyVl8tl8vk8lUoF53x2v2azmTol/VBQIVa/unMuzhEOxFEu6sZJThJKZvozDGPzsuqFfUXk\niSLyORG5R0S6IvL0lDKvE5FdItIQkS+LyMDIkeC4ZYKdTNYU+rN1AovOlBwbGyOfz8fZ9lS0G41G\nPCtRBXFkZISpqake0a5Wq2zZsiWOOlH3hbaXFnaX3Pqh4q+hia1WK560o/HkOuknfIpItmcYxubm\nUFZjr+DzY78UWKYiIvIa4OXAC4HHAXXgKhEpJMsmjkuN0EgKORy0WEOXg+YGWVhYiH3TrVarR0x1\nOrvGUI+NjVEul+Np8+ATV1UqFSYmJpiamqJSqSxbBKGfQPezhMMBVB2gbLfb1Ov1uI+aqGqlSJV+\n6VsNw9gcrNo94pz7IvBFiJcRS/JK4BLn3OejMs/Fr8R+AXBFv3qT4pw28UT3a26PULjVGm82m8zM\nzNBoNOK4a43p1ljuMOmUrrnY6XTiNkqlEpOTk/Fx9Xp92WIK2q/wb/Lz6N9k1IlO7AFvgVerVUZG\nRuKokjBmOzwmtMBNtA1jc7KmPm0ROQnYAXxF9znnZkXku8DZDCna0XE9IX2haKt1rREeYby2xna3\nWq3YtaIiqH7riYmJ2MouFArxTEgV/nw+z+joKJlMhkajES9U0G63l+VECUU5/Cxpf8PPpVEsIhLn\n7NaZnGFiqZBBkSqGYWwO1nogcgfeZbInsX9P9F5fkmlP01wQ6uPVAcLFxcV4kFJnGKq7IUyxqv+X\nSiXGx8fZunVr7EPWuPAwYkXjvp1zTE5O0ul0OHDgADMzM9Tr6elTtL9hRr5+YYBhZEyY80STW2k+\nE52tGcauH2o0i2EYDwyOmuiRMDIkmcIUesPddPGB0Dput9vMzMzEYX1pq62Hoj0yMhIPMoYRIjoL\nUl0Vi4uLcbuablXpNzg5KKY7nPmooq2bRrWISDy9PfnZTawNY3Oz1qK9G7/wwXZ6re3twHWDDrz5\n5pvZuXNnT8jetm3b2Lp1K0C8T8Pi2u12z2QVfU9dCqHFq9PINSJEQwRDUdRJPeGiB+DD8cbHx+NM\nfmF2wH4DgqtxY+iMzUajEYcBqptHP8PMzAwzMzM99SVdJ4ZhbA7WVLSdc3eIyG78qjU/AhCRMeDx\nwPsHHXv66adz0kknMTU1FS8fNj8/Hy9AoOFyoWgnXQwLCwvLprqraE9MTDA5ORlPbw/dFyraaZn3\nCoUChUIhFm2N+ggXEVaS/vjke2lWuEaShAsq6PR6HXBUH3x4k2i329x5553DfzmGYTwgWLVoi0gF\nnwBK1edkETkTmHZ+oYN3Aa8VkVuBO4FLgJ3AZ1eoF0hf4FYHGnVldB3E021hYSGOww4tbP1bKBTi\npFBwcEBRV7UpFArkcrmeJcI0r3ahUCCfz8ciHS5JtlJukFD8QxFPDkzqZJ5KpdIzmSi8kSSPMwxj\nc3IolvZZwNfwA44OeHu0/1+AFzjn3ioiZeADwATwLeA3nHMLaZUpK/mzNR91KMa6T/NU6yruSZFT\n63txcZHZ2dnYUl5cXKRSqTA5OUm1Wo1TqtZqtThsUF0WusiCJnfqN+CYdI2k+aWTn1lvPGGuE7W8\n9YbV7wZgGMbm4lDitL/BCpNynHMX41esGZoweiOZcwQOuhFE/CK/uVyuR7Q1CVMyukJdJSrajUaj\nZxmxycnJeMFgFe39+/ezc+dOpqenY394MrIlKdpp8dT9xDU5sKjhihrKGM4CDZcnM0vbMIyjJnok\nLT47zVUSlg8X4k0Te61Tkz9lMpnY9aFUKpUeCzc5I1GtYCWMG0/2u98NJ/k5+7lSVLi1H5qpMDwv\nYXnDMDYfR41oK/3EOk0M1UpNriWZjLKYn5+n2Wz2lFdfdeiWgF7hBnpcEyrYYYrYMD9IUriTIYe6\nJWc0hk8ZYRhjoVDomTmZPE+GYWw+1jxhlIhcFu0Pty+s2JFEStZw8YOkUIeugkEL72r5xcXFeKWa\ncPp7mmWeNjOznwWtZdQqLpfLVCqVeNkzXZNS+5k8Nmlxq2jrgKpO/lnp5mUYxubhUCxtTRj1QeBT\nfcpciV+RXVWpvVKlyYRKOlAYCnS/ySz9BvvSwu6SmQOT+bmT5ZPWdFLUgXgm48jISM/SZroSTii6\nyWPD6fkai679CsP+kulZTbQNY3OyHgmjANrOuX2rqTcUz9CNkZa3I2p72b60VKbhRJmwjaRoJwl9\n1kmhTS55JuJTvU5OTsZt6uQY9aGHCyAkXSdKuAJ9LpfrCS0MwxlNsA1j87JePu3zRWQPcAD4KvBa\n59z0oANUoJKWcJprZJCrYL0t0dAq1jbCWZi6gO/S0hKVSoVKpRIvJqw5U9rtds8K7WmRJ6Gopz0x\nGIaxOVkP0b4S+CRwB3AK8CbgCyJythugpGmiHfpzIX3iTejTTrod1KJNE700Szd8P1lf+Dp0V+hT\ngX4GzSKYzWbjleH37t0bW9thcqi0/qXdgIbpm2EYm4P1WCMyTL96o4jcANwGnI+flJPK9ddfz003\n3UQmk4nD7LZs2cK2bduWRYWEA5XqThjkzx7k5+5HmnskzSLW15r/xDk/Bb1YLMZuGO1fqVTq8XPr\nZ0lz+4TMzc1Rq9V69lnuEcPYnKx7yJ/z+Ujuw0997yvaj370o9mxYweFQoG5ubk490jawKNGWYSi\nnfQzh39DBlnYaSRD9EKRDcVcE1aFq71rYqpMJsPIyAjj4+PUajVmZ2fjSBaNYkn6urUtgPHxcUZG\nRnrea7Va7Ny5c6jPYBjGA4d1F20ReRAwBdw7qJwKo4px6DNO+rJDt0iae2SQNb2SWIcRI5qeVafH\nh22FMdu6insySiSfz5PP5+PoEs0wWCwWmZ2djRdZ0NDGMEZ8UMSJYRiblzVNGBVtF+F92rujcm8B\nbgauGlSvJvpfXFyME0Cl+bNVzFeyrMNQwUEkxVFD7XRqu2b5S0tEpf73XC5HqVRiZGQkXoUmGZet\nwq1uEk1gVavVYktd29YbQPIGlsxeaBjG5mOtE0a9FHgU8Fx8sqhdeLH+G+dcZ1ClmtGu3W73LCOW\n9GOnDTrzQI35AAAUYklEQVRCegx3kn6DfuG+ULSXlpbi3CPq5tAB0jDbnyZ3UmFWP3bYJ7XaR0ZG\nmJiYoFgsxgmhms0m9Xo9XupMc46Eoh1+BsMwNi/rkTDqqYfSkVDkkjMi4aDbQl0VKpQqlmkuhDSB\nSwp7eDNQUdWMgWNjYxSLRUqlUk9OEv0/FG5tT0V30IQdLZ+8CYWirTnDk3m7LUbbMDY3R03ukaQ7\nIQzvCy3NXC4X/1Wfse5biTDELs0vrjcAXQC42+3G7hE9PunyUIEOo1jCFLH9BkV1ar1GnISLIOj7\n4TqRaXUYhrH5WFXuERH5KxH5nojMisgeEfm0iDw0pdzrRGSXiDRE5MsicupKdadNMkla3aGrIOma\nSFsTclhXgrYV5hAZGxtjfHycarUa5xEJZyRq38Ip95o3JBw8TE5RbzabzM7OMj8/T71ej3OBJwc9\n1VUU+vaTk3oMw9h8rNbSfiLwXuD70bFvAr4kImc455oAIvIa4OV4v/adwOuBq6IyfRdCSE6MGUTa\nrEEd/EuWGXRscgp7GN6ncde66VJnSRFNHlutVhkbG4tzcKt/OxRsDWms1Wq0Wi2A2Metvn1tM7wR\nhIOrJtyGsTlZlWg7554WvhaR5wN7gccAV0e7Xwlc4pz7fFTmufhFfi8Awok3y1itdazHqGCnDU6u\ndGzYptYVLmM2Pz/P3NwcjUYjzhCoAqrlAPL5PIVCgW3btvVEnGQymVh85+fn2bdvH7t376bVatFs\nNgHiaJIwQZS6T5Lhjyt9NsMwHtgcrk97Ah9BMg0gIicBO4CvaAHn3KyIfBc4mwGinbbMWBqhywQO\n+pVXih5Jm8UYirf6pgGazSbT09PxBJ+5ubl4+nnYP3WJZDIZyuVyXIcOUOr7upq6buEAo4YLaqig\nZgfUSTrmDjEMI+SQRVu8wr0LuNo595No9w68iO9JFN8TvdeXtAk0adZl6EuGg6KtgppmrferM/Q/\nh5Nams0m+/bt495776Ver8czM5Or2mguEe1DuVyO+yQidDod6vU609PT7Nmzh1qtFoc0an065b1c\nLiMi8UzJMOzRMAxDORxL+1Lg4cA5a9GR0IIWEXK5HMVisWdKdzgg2en4sG+NuNAoDGWlOO5kWRVs\nHQCcn59nZmYmFlG1oMPwQrWk9XUul4v3t1qteIFgtdrr9fqyG4WKdrFYjP3euo5lmsvHMIzNzSGJ\ntoi8D3ga8ETnXDg9fTd+puR2eq3t7cB1g+q87rrr4kE78KJ67LHHcsIJJ5DNZuMJKBqtoaKtiZna\n7XYscsm82iH9ZkqGNw1d+FdziOjNI7TIwzoKhULslwbivu7bt4+9e/fG/vDwSSCcTamhi61Wi3q9\nTr1ej29CIhLvC86/JYwyjE3KoUxjfx/w28B5zrm7w/ecTw61G3gy8KOo/BjweOD9g+p95CMfSblc\nZmFhIY6VViu0UCgwMzNDs9mMBXthYSEe/HPOxbMLo34M/Az9ymmUR+i/DteDjD7PMtHXfugNpF6v\n02w22bt3L7t27VqWQyTMF65x5uriCUVbGR0dZXR0tKe/CwsL7Nq1a+DnNAzjgceqRFtELgX+AHg6\nUBeR7dFbNedcK/r/XcBrReRWfMjfJcBO4LMDOxLFWquLImgznrwS/t9ut3sWwNU457RQPHVtpMU5\nJyfZ9POnh4TWulq9jUaDAwcOxJa4Rp6Eg5167NLSEvl8nlKpFN90dAakDlL2SzerbZulbRibk9Va\n2i/GDzR+PbH/j4EPAzjn3ioiZeAD+OiSbwG/MShGG3pFOxTWZEhfKNphThCd/h1Of09ax/0iSA5l\n8krYP11eTNvVxFehiyOcZKMzIPUpIinanU6nr2APc1MxDOOBy2rjtIeaQemcuxi4eJV1x5tOYFHf\n8sLCQjwwB8TiqG4M9TuPj4/TbDZjN0pyQd7wb0hykk6aYPYjjCRJTosP/fPJm5AmpcrlcnEu7vAz\nhv0yDMNQjprcIxoVEs4GDPOBwEHxDFc8b7VaFIvFONXp9PR0zwSY0MINSU53Ty51Fgpmsq602Zvq\n9kizgsPUqjrtPm3gUv3YyYFUE27DMJQ1zz0iIpeJSDexfWGlusM0pJpTW8Pf6vV6HNus7gidMajh\ncYVCgcnJSSqVCvl8fpng9lsdJupzzwChinfoUgldG0n3TRgu2M+9ou3m83nK5XLsz9YV2xuNRo9b\npN8TgWEYm5s1zz0ScSXwfA4ulNAepnK1tNXnqyKng4w60KhRHhpG1+1241jnSqXC2NhYPBgYRmEM\n8hGHZZLlwiRV4f7w76AFhtXvXiqVGB8fZ3x8HCCeyt5oNOKQxbSbirYR5koZFNZoGMYDl/XIPQLQ\nds7tW03d4eQZOJgvWwfrNFJEc4J0u91Y9JxzTE5OUiqVqFQqsXtkfn6ehYUF7esyQUwT7jTfdyjQ\n/fZr30O/uKKx2NVqlampKbZu3RpPvJmbm6PZbLKwsNAjyNrPUMj1PXW1GIax+VjT3CMB54vIHuAA\n8FXgtc65ZJkeQneETjpRodbXhUIhtlzL5XI8eJfJZGg2m9x3330sLi5SKBQYHR0FiKeT6wK6yZDC\npGCnTb5Js36TxyejUrSf6r/WG4rmF9GZluFAatLPnuaPD284hmFsPtY69wh418gngTuAU/AulC+I\nyNlugNKoOMPBJEr5fD52mWiu62KxyOjoKJlMJs4Loj7hVqtFpVKhUqlQrVbjKI35+fke10vYjeSy\nYP18yqHfe5hJPCIS97darVKtVuPPo1Pa1SWStpBD2o1j0GvDMDYHa557xDkXZvK7UURuAG4Dzsev\nLbkiYQyzWqOhz1j912qJ1ut1Go0GjUYD51wslhrHDcSx1DrgGcZT64CmksybnUTbTe4LBzF18ky5\nXKZarcY3GnWFuGgWZ7jmZLK+5Ba+Nzs7O8ypNAzjAcZa5x5ZhvNT2+/Dr8zeV7SvvfbaOJ2p+rMf\n/OAHMzU1Fc84bDabcXxzuVyORVwTNXW73Tgp08jICCMjI5RKpXhRAhX2RqMRi3ej0WD//v091rNa\nwskse0lXSPi/CrDm0laXiAq3LvhbKBSoVCpxsil1ByXDD9U1lMvluPXWW7n55pv13CMitNtDje0a\nhvEAY01zj/Qp/yBgChgo7qeffjr5fJ5ms0mlUmFiYoJCocDc3Fw86KhCpe6PcJASvDU9Pz/P/Pw8\n1WqVbdu2MT4+Hq8i02g0mJ6ejq1udavcd9998YAm0JOcKiRNtMP8JCrIlUoljhsPN7259COM49bc\nK/l8njPOOKPndTab5e677+Yv//IvVzr9hmE8wFjT3CMiUgEuwvu0d+Ot67cANwNXDapbozw0OkTj\nr9U9oj5iRad7a6IljXMOhXd2djYexFQ3SblcJp/Px4OYcNBST2YQVNdFOPkmjA5JE1i1uIvFIlu2\nbGFycpKJiQkmJiYoFotx/8PYcY3vTov/DteO1Pay2SylUmk1X51hGA8Q1jr3yBLwKPz6kBPALrxY\n/41zrsMAVEA1FzUQC7K6TNSPrcKuIhuKrVqy7XY7XnSgVCrFCw2Uy2W2bNkSl9dN/dhhsqakzzmc\nManCqRNlVFy1rlwux+TkJA95yEM49thjOfbYY6lWqz0RLOHsz3C6vqaFTYYQ6v/hqu2GYWwu1jT3\niPOZ/p56KB1RwVWXhGbxCyeWqHip4IZ/w/UatR5dVEB9y0tLS3FkStJyDX3K+Xw+tnzTRFs39V3r\n2o6asEr97pOTkxx77LEcf/zxHHfccVSr1R6xDhcM1k1XrVHxThvwtIRRhrF5OWpyj6irQ33EKkxh\nKKDGWqtIA7GwqwCG7gUVZp09qaI4OzsbR5iohTw6OkqlUumZph7GZ4cWrwq6PhWECxSo/7parTIx\nMcHWrVupVCrxxCC15rU/6qZRkU7ehPrN2tSnEcMwNher9Wm/GHgJcGK060bgdc65LwZlXgf8Kd49\n8m3gJc65W1eqW8UMWGblFgqFWNjCxXXVVQDEWQGTy3lls1larVYc1z03N0epVIrD8EZHR2ORVQFP\nm+4exmirwNZqNebm5uK82d1uly1btsQDpRMTE0xNTcWL9oZ5VXQBXxXtpFiHbpRkPpNut2vRI4ax\nSVmtpf1z4DXALfi8Is8HPisiv+icu0lEXgO8HO/TvhN4PXBVlJtkYD5ttbSV0B2ieUTU76yiqhEb\nKt5qXfebuag5S8APeGqUSL1ep1qtxuF6YT5stY7T3BFhMisV9TCfiNat/QwXbVA3TOjiCfuZ3JIT\neky0DWNzslqf9n8kdr1WRF4CPAG4CXglcIlz7vMAIvJc/FqRFwBXMAC1QFWkw1XW1bpV0Q6nt6s/\nWZMyhXk/0ixUFUidiFMqleIQQR2wXFxcpNls9viX1eKFg8uLaZ+dcz3rPKpoq3CXSqWemHJdZiwZ\nQZLM5Z3MjRL690OXjGEYm4fDmcaeAS4EysB/ichJwA7gK1rGOTcrIt8FzmYF0dYY65GRkZ4ZguHy\nXcnZjPv27WP79u04d3DhhH5JnQDq9XqcwzqMFAn92yrG7Xabe++9N44dV6sbiCftqPtC29+/f3/s\nfy+Xy0xPT3PgwIF4gk94QxERPv7xj3PhhRcuc8EkhVv/fuxjH+PCCy9ERCiXy4f61RmGsYFZdao4\nEXmEiMzh061eCjzDOfczvGA7eldhJ3q9Y8WORFO8VQDVwlWrVa3d8P39+/dz4MABDhw4QLPZjC1W\nFeRQ4HVCTWjZakidRnuoL7pSqVAqleI477R6w8FKrXtmZob9+/eze/dudu3axe7du9m7d2+c+yQM\n2ctkMlxxxRXLwgiTGQJDrrjiip7p94ZhbD4OxdL+KXAmMA48E/iwiPzKWnUozEkdCmw4EBiuclOr\n1VLTq/bza6u1HOYy0TDAcrnck4kvbDNMGxu6SrROnQQ0MzNDo9GgUCiwf/9+pqen2bFjR+z+0C0Z\nmZLW135/w74YhrG5WLVoO+cWgdujl9eJyOPwvuy34gcnt9NrbW8Hrlup3pmZmVj0VMh04kq4NmRo\n9arFGUZZ9MvQB16o1W+ejNLQcuGCC0kLWMVWQ/ZCAVUR1ZVpKpVKPEgaLmGmfY/O5bIsg2nZ/K64\n4go+8YlP8IMf/IBnPetZANRqtWG+LsMwHmCsRZx2BihGiaF2A08GfgQgImPA44H3r1TJ+Pg4s7Oz\nTExM9ESBhMIaxkcnRVv3qXUcEvqHNXqk3wCfTrgJo1FCC1kFWtOqhhY79Ip2sVjsmZijTw+dTqfn\nqSGtL0q32+WCCy7gggsu4NnPfjaXX345IsIPf/hDzjvvvEP8ygzD2KisNk77jfh82XcDo8BzgPOA\nX4+KvAsfUXIrPuTvEmAn8NkB1ZaAePZfcmakWrLJSItQrENLG5avMKNo+RDNczI7O9sTRz07Oxtb\n1GH0SHKV9TAuPPS31+t17rvvPnbu3EmhUGBpaYmxsbGeFeRrtRrXXXddXI/Wmeyz7qvValx//fWI\nCLfcckvP+TMMY3Mgq5kOLSL/BDwJOBao4S3qNzvnvhqUuRh4IX5yzbeAlw2aXCMizwY+ciidNwB4\njnPu8iPdCcMw7h9WJdrr0gGRKeApeMvc5mYPTwk/M/Uq59z+I9wXwzDuJ464aBuGYRjDY0t6G4Zh\nbCBMtA3DMDYQJtqGYRgbCBNtwzCMDcRRIdoi8jIRuUNEmiJyjYg8tk+5i0Skm9h+Erz/RBH5nIjc\nE7339JQ6Xiciu0SkISJfFpHfH3SMiFyWaM+JSEdE9ojIp0XkoQPaWBCRmojM9Ss/oP6aiPyXiDy1\nT93a/1NXe74Nw9i4HHHRFpHfA96OXxD40cAP8Tm4t/Y55Mf4qfE7ou3c4L0KcD3wUnzyqmRbmu/7\nhcDjgDrwDny8eeoxEVdGbX41Ov6XgV8F8sCXRGSkTxvXALcCB/DLsC0rn6j/D4HfB84CHhO191kR\nOWNA/68SkQKGYWwO0nI2358bXtjeHbwW/CzKv0gpexFw7ZD1doGnJ/btAl4VvB4DmsCFA465DPhU\nnza2RsecO0wbfcr3rT96fz/wx8P03zbbbHvgb0fU0haRPN6iDHNwO+A/8Tm40zgtcmXcJiL/T0RO\nGLKt1HzfgOb7HsT5kXvjpyJyqYhsifZP4K3z6SHb6Ck/qH4RyYjI77NCvvIh+28YxgOEI72w71Yg\nS3oO7tNTyl+DX+LsZ/ip9BcD3xSRRzjnVlrK5VDzfV8JfBK4AzgFeBPwBRE5G59r5WrnnPrVV2oj\nWT6t/ncAL8Jb5HNE+cqj9g45X7lhGA8MjrRorwrn3FXByx+LyPeAu/Cuh8vWqc1wxZ0bReQG4Dbg\nM8DDgXOGrOos/A2qp3xK/T8Bbsb72E9kjfOVG4axsTnSA5H3AUv4QbiQ7cDulQ52ztXwAjdMBMVu\nDub7XnVbQZt34HOknAuc75y7d4g2zo32Jcun1X8r/rzgnPtr/MDsK9eq/4ZhbGyOqGg75zrAD/A5\nuAEQn1P1ycB/rXS8iFTxgj1QCKO27sCLW9iW5vtesa3gmMuAEfxA6d1DtPEBvCvnr5Ll+9T/IGCK\ng58pzle+Fv03DGNjczS4R94BfEhEfgB8D3gVfvDtQ8mCIvI24N/xLpHjgb8FOsBHo/creBHXZNon\ni8iZwLRz7uek5/u+B7hdRH4xeUy0XYT3Oe8G3gP8ZtT+F0VErd6ac04zFIZtPAf4naiNzybLR/0N\n638jfmD2dmCniLyJw89XbhjGA4kjHb7ig0V4KV6EmsB3gLP6lPsoXqSa+IUYLgdOCt4/Dz+At5TY\n/jkoczE+dK4BXAU8u98x+PSnX8QLags/EJhW9rmJfmobLtpSy6fUPxttzWjfl4An9alb+3/qkf7+\nbLPNtvtvs9SshmEYG4gjPRBpGIZhrAITbcMwjA2EibZhGMYGwkTbMAxjA2GibRiGsYEw0TYMw9hA\nmGgbhmFsIEy0DcMwNhAm2oZhGBsIE23DMIwNhIm2YRjGBsJE2zAMYwPx/wEvuA9CfcdmYwAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10c3477b8>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAASQAAACXCAYAAAC80CaDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXmcJEd157+vqqu6q4/p1kzvzEgMmhldgIQRSAIkJJAM\ntoWxLYPxgQGD8PIBG+zFrFkOmzUY7MVgwxovyB+WQza2wfbaEkY2QocRYKwDGx3oBEmM5pLm6u7p\no+4j9o/IlxMVnVld3dNN15Ti+/nkpyozIyOisip/9eLFiwgxxhAIBAK9QGa9KxAIBAJKEKRAINAz\nBEEKBAI9QxCkQCDQMwRBCgQCPUMQpEAg0DMEQQoEAj1DEKRAINAzBEEKBAI9QxCkZSIiLRG5Yr3r\nsVy6qbeIXC0i1/yw6hSVuT2q27OOM59bRORjq1Wv40VENonIQRE5db3rsh6IyDNEZK+IFJZzXc8J\nkohMisifi8huEamIyBMicr2IXLTedVsrROSNIvJNEZmOtptE5LmrXMxW4PqovFURgSiv14vIzHFm\nsy7jl0TkFSJyg4gcSbofzn1qRq/u9solsv9d4EvGmD1eXgdEZMQr5y4R+b3V/XTLZzVF3RjzIHAb\n8NvLua7nBAm4BjgX+BXgTOBngK8Dm9axTmvNpcAXgMuAC4G9wI0icvJqFWCMOWSMqUe7wuqKwPHm\nJatSi+UzAvwb8E6SP8MerJCfHL1uBd4HzBOJexKRVfCrwGcSTo8B7ziuWq8zIpLtMulfAL8uIt3r\njDGmZzZgHGgBL1wi3duB7wIL2B/NJ4ER5/zrgRngp4CHgCLw90AhOrcLmAY+Dohz3S7gvVhxWAD2\nAW/xym4BVzj724C/i8qbAr4EbD/O+5ABZoHXdkhzCPg5Z/9uYL+zfwlQAYb8ekfvm9FrC/hadPxq\n7B/CbwOPA0eATwDZDvV4PTDd4fzl2Id+JsrvOuA05/z2qA6/BPw7UAbuBV7k5fNM4CtYMTgAfB7Y\n5Jy/BfjYCu+31uFZXaS9E/i/S6T5eeBAShl/FH23k865u4Dfc/Ynos83Hf12vwKc0cWz85nodzEL\n3Ox+HqyQ3gW8NvqdHwW+SPTcRN+9+7toAqdi/yxbwEuB/4x+U6+Pzp/n1eG3gMec/Vz0ff5ot99F\nr1lIC9H2chHJd0jXBH4TOBt4HfCjwIe9NMNRml/EPhQ/ClyLvbE/if1i3oz98bi8A/vFPRv74/m4\niLwkqRIiMgDcgP0BXAy8APvAfDU6h4hcGpnqy/EljGC/zOkOab6JtagQkQng6UBBRM6Kzr8I+LYx\nppJw7fOwVsmLsf/6P+ecezFwWpT364Aro22ljAAfBc6L8m5ivwefjwB/jL3vtwHXichJACIyDvwr\n8J0on8uBzdg/mURE5P0isus46p2U5/lR/T67RNJLsHX1MVgReAQrEGn8JfZz/jTWYhbgX5awTP4B\n24q4PLr2TuDm6LehnA78LPAy7J/1pcC7o3Nvw973TwNbsFbhXufaDwHvAp4BfBm4CXiDV4crgc/F\nH9Za5HcDL+xQ73aO5598LTbgFdh/0hLwLeAPgR9Z4ppXAoe8f+0msMM59udYsSg4x64HrnL2dwH/\n4uX9ReCfnX3X0ngt8ICXPo/9V/uxaP+5wAPAycu4B1cBDwP5Dml+A/hu9P4K4FasdfOm6NiNwAdT\n6p1oEWD/JX9Au9X4d8AXOtSjo4WUkH4yKvtsry7vcNJksZbvO6L93wWu9/LZFl13RrTfZiEBbwVu\n6rJOXVlI0fdyXxf5XQt8Oq0M4CeAKrAzOhdbSFg3RQt4vnPtxug39cqU8i7GWqA57/jDwBuj99rU\nHHbOfxi41dlfZGVyzEL6ae/4L2Cf01y0fx7QAE710v0j8Nlufx+9ZiFhjLkWOAXrO7oee0PuFJHX\naRoR+TERuVlE9onIHPBXwCYRGXKyKhljHnP2D2LNybJ3bLNXhdsS9p+RUt1nAWeKyLxu2GbbIPbf\nCGPMfxhjzjbGPLHkh7ef7d1Yq+7lxphah6TfAM4WkU3Ye/T1aLssss5eEO0vl/tN9EuKeILF96hr\nROQMEfmCiDwqIrNY0TfY5oDL7frGGNPENg/0vp8LvNi7zw9G+ZyeVK4x5pPGmB9fab0TPscQ8Msk\n+4V8CtimTSLGmBuxf7YfTDj9dKAOfNtJPw18j/Tf4blY39S0d4920H5/HjPGlJz9br9bw2KL70tY\noXpFtH8lcIuJnPgOZWxrpSsGuk34wyR6EP812v5QRD4N/D7weRHZgfVDfBL4HWyz5oXYH0qeYz+E\nenuumJRjxyPKo9gH59UsdsweXm5mIvIOrIP1JcaY+zulNcbcKyLT2KbVpdh7cRBrgj8X+93eutw6\nsPr36J+xIvRGrF8qA9yP/a66ZRTbTHgni+9zV0K/CvwCVmj+qou0R4CTlkjzbuBWEfmT460Y9v48\njv0d+PfnqPP+eL7bYtuFxtRF5PPAG0TkWqxY/2bCdRuxTdSu6ElBSuBBbNsXrGkoxpi4p0JEXrWK\nZV2YsP9gSto7sdbMYWPMwvEUKiLvBN4D/IQx5q4uL/sW9r6cHb0vY62zNwP/6VmDLmp5ddtbsiJE\nZCNwFvBfjTH/Hh27JCX5hdjPoL045wN/Fp27E+vn2m2Maa1RdZfqKfxV4MvGmKku8roLeE2nMowx\n/xHFfP2RV/aD2Ofy+URWY2QFPw0r5EncifUFNhMslOVQY3m/ic8A9wFvia5L8g0+E/h/3WbYU002\nEdkoIv8qIq8RkR8RkR0i8gvA/8CaiGDVNici/01EdorIr2AfwNXiYhF5h4icKSJvxTq9/zQl7d9g\n/w3/SUQuiep7mYh8XEROiT7Tc0XkwU5d+CLyLuAD2B/9HhHZEm0jaddEfB37z3S3MaYUNbW+iX0Y\nvtHhukNY8XqpiGwWkQ1LlLMUAyJyrrc9nWM9j28SkdNF5MVYB3fSw/9WEXm5iDwN66uZwPq0wFrD\nG4G/FZELROQ0EblcRD4nIokhAyLyVhG5uVOlReQkETkXOAdrWTw9qvsWL90Z2E6CT3d5P24Azomc\n8W1ZefvvxTr6n6YHjDGPYK3BT4vIxVH9/hrrYP5yUmHGmJuxroUviciPRzFPLxCRPxCR87qsM8Bj\nwPOj6zc59zbxHhtjHsKK5oexfsZq24cV2Y51v3T8Hlx6SpCwPWy3Y7sPv4Ht/v194FNE5qAx5rvA\nf8ea7/diH8h3J2W2Qj4KXID9l/sd4O3RF664/3Jl7A91D9Z59wD2RzsIzEXJhrFWQq5Dmb8Wnf8H\nrOmt21JBZd/Afoe3OMe+Hh37upfWrbf2Ur4Z2M8xsV8pI9h/aXf7ciSQr8JaO/di721SDI7Bfofv\nxvbKvAD4mch3QuR/uzj6XDdgQz4+Bsw4/i5f5CaxvYWduAL7PV/HsR6wO1n8B/cGYI8x5qYl8iOq\n730cs57bTnnpHsb2Sg156a7E+myuw4ZCtICfir63NF6G/TP6HNbf9AWsn+5gN3WO+BNsZ9AD2D+t\npybV2+Oz2N/u5xLOvRq40RizN+FcItLuv3xyE3UT/29jzJ8tmTgQ6ICIvAz4iDHmmetdl7VERP4n\ntvfv2d7xHLaX71XGmNsTL07gRPEhBQInFMaYr0Q9jE8xxuxf7/qsNpE7YSc2vOJ3EpKcCvzhcsQI\ngiD5BHMxsGr0uaX9CWxz/FqO+fpijDGPAo8uN9PQZAsEAj1Drzm1A4HAk5ggSIFAoGcIghQIBHqG\nIEiBQKBnCIIUCAR6hiBIgUCgZwiCFAgEeoYgSIFAoGcIghQIBHqGIEiBQKBnCIIUCAR6hiBIgUCg\nZwiCFAgEeoYgSIFAoGdYM0GK5jTeJSJlEbldVn+t+kAg0GesiSCJyC9h509+H/Ac4B7gBhGZXIvy\nAoFAf7AmE7SJyO3AHcaYt0X7gl014c+MMR9Z9QIDgUBfsOoWUjS59/nYRR4BiFaGuBm4aLXLCwQC\n/cNazKk9iV00zl9+5SDO+lNKtAje5dg1oVKXHw4sYgi7VPINXS5eGAj0PL0wyf/l2AUXAyvjNdg1\nuAKBE561EKQj2MXmtnjHtwAHEtI/BnDSSSdRLBbZsOHYIqqnnHIKp5xyiq3owAC5XI5MJoMxhlar\nxW233cbznvc8ALLZLJlMhkajQb1ulzDPZDJt22233cb5559Ps2nX2zPGxBuAiJDNZslmswwMDHD7\n7bfznOc8h3K5HJ/P5XKMjIwwPDxMo9GgWq3SbDbj9Oeddx7FYpFqtRrXU8vPZrPkcjkGBgao1+vc\nc889nHPOOeRyOXK5HK1Wi0aj0fZ5BgcHOXToEPv27WNqaorJyUlarRbVapWpqan4/gUC/cCqC5Ix\npi4i3wFeQrT0b+TUfgnH1mp3qQBccMEF3HvvvZx33nnxg5vNZtHVfPP5PPl8nkwmQ7PZpNFokMvl\nmJiYIJPJMDAwwMDAALVajWq1SqvVisVFN01fq9Xiwl1REhEymQz5fJ6hoSHy+TwTExNks3a582w2\ny+DgIOPj40xMTFCtVimVSnFdBgcHmZycJJfLUalUaLVaiwQpn8+Ty+WoVqtks1lGR0cZHBwkn89T\nrVbjuml9R0dH2bZtGxdeeCHXXXcdr3zlK6lUKuzfv59rrrkmvn+BQD+wVk22jwF/EQnTt4G3Y5eU\n/ou0C+r1OsaY2HpRMVLrJZvNxsKhgqTvjTFkMpnYwmg0GrRardhC0TyMMW0WlB7TzRWOVqsVn9f3\nItKWb7PZpF6v02g02iw3fdVN0TRuz6abl9ZNxbTZbJLP52k0GvHnr9Vq1Ov1ts8QCPQLayJIxpi/\nj2KOPoBtqt0NXG6MOZx2jYqIWhStVisWgFarxcDAQPwgq/C4Aqav7kPdbDZjYVMx8AVJ84NjTTy3\nLF+wkgSkXq/HVpSeU6FM2hQRiUVX86vVavE9UMHTV22q1Wq1uGkXCPQTa+bUNsZcBVy1jPQAcRPN\ntTbSHmp97wqZe8y1aDqV6efnp+kUq9XpmqQ6qwjp59RX/zrXwtLNFa4gSIF+pBd62QDbJNu2bRu5\nXG7RAzswMEAmcyxkSq2YHTt2tKXV9JpWHcPqQzr99NPJ5XKpYpfJZNqsltNOO62tjnpOy1e/USaT\nIZfLcdZZZ7UJqis+7ufR+mzbti1+r3nm8/lYTN1zmUyGM888M65bWHE40I+sRWDk+0Sk5W0PLHVd\nNptlx44dsTMbiEVCH8q40tHDe9ppp8XH9YHX9AMDA22v2WyWs846K3aOq3NZe73cdJrnzp07F1lu\nbv65XI58Ps/g4CC5XI6zzz67rZ56nStGrp9qx44dcbmuyLn1GxgYiPM488wz43xd31Qg0C+slYV0\nH7ZXTU2XJdsXroPatyxcqyPJt+NaLnpOrQy/GaR+HzcN0FFIdF9FY2hoiLGxMbLZbJyXa8mopaV1\ncV/1+lwuR6PRiP1N6hNz74dbto9f30CgH1grQWp0cmAn0Ww2Y1+J29TyhSGpudJJkFzHuOuI9mOP\n1P/k5uk24VxBKhQKjI2NISKUy+W4l80XpCRHtl6vQlSv16lUKnGdfNF18QU4EOg31kqQzhSR/dgY\nmduA9xhj9i43E99iSOutUnxLKkm4VOh8K8p1HMOxHjft5YL2HjS1blxhc8XIt5AUV2jd3kS3jio6\n7rEgQIEnA2shSLcDVwLfA04G3g98U0SeaYwppl2kVorfy6a4FkxaF3oS+nCrfwisleI2l5rNZtzd\n3mw2ERGq1SoiEscZqVhlMhlmZ2cZHBykWq1SqVRSm5p+vXzBdAUwySLzN7+MQKDfWItI7Ruc3ftE\n5NvAbuAXgavTrtPmUJRHYgBhGu7Dn+T38ZtSGtHtxivVarVEX46blwrP3NxcHLiokdX5fD7xGrcZ\n6YutL0hu09D3jQURCjwZWPNuf2PMrIh8HzijU7r77ruPoaGhOCix1WqxY8cOdu7cSbPZjHufNGBQ\nxUGtKA0NyOfzbcNNtJvfGEOpVKJYLMbDPXTT/PxQAGCRlaKWVLlcjq0Wjew2xsRj2NQac/PQkAbX\nMvODMlXo1MnfarX4/ve/z6OPPtpmWVWr1bX4ugKBdWXNBUlERrFi9PlO6S666CLOOeccNm/eTK1W\nY2FhoU04dGyX/0D7zSUdF5bNZhkaGmJwcJBisRgL0fT0NNPT07FllCQ+bnPKbeppmnK5zOzsbNxl\nPzg4GOehguQ2P92BtW79VQzdNFofV3B37tzJaaedFkeFNxoNDh8+zC233LIG31ggsH6suiCJyB8D\n12GbaU8Bfh+oA1/sdF0+n2dkZISJiYm450qFyI0pUkewWg/NZjO2jPL5fPzAam9auVxmfn6eubk5\nZmdnmZ2dZX5+fpEQAW0i4o5l853M2jumdVLx0CagOqrVqnMH9/qxRa6D3e15y2az8ef3m6Sh6Rbo\nV9bCQtqGnZ9nE3AY+BZwoVliEjE3yFDHmumDrYGL7vQj7pbP5xkfH2d8fJyFhQUWFhaYnp5mamqK\nAwcOxIJUqVRi31Enp7Hi95S551zBUl9SsViMxUebn6Ojo4mBl75TW/NstVrUarW4rm7kugpZiNIO\n9Ctr4dT+5ZVc5/aEuUF/7vxEKkiKWjTDw8Ns3LiRjRs3ks1mY9GZmZlh3759sUhpvFBSEKPfM+Y6\no/3ePN1Xi8ZNp6Kq17vR1661o9donm7ckgqPaxW6zu0w0j/Qr/TMWLZKpUK5XI7nEcrlchQKhbiJ\nkyRWhUKBQqHAwMAArVaLw4cPs2vXLnbt2sXjjz/O1NQUpVKJWq22qJfLdYgnWUtpLNXb12w24/mY\nms0mCwsLcT11iEk+n08MYVDBUcvJD1dwB9iGoSOBfmTZgiQiLwT+B3Yi/5OBlxtjvuyl+QDwRmAC\n+Hfg140xj3TKt1KpxJtON1IoFNomZnN9PAATExNMTExgjOHw4cOxIN17770cPHgw0fENx7rd3cBE\n3yqKPkdbHZcSIxWTRqNBpVKhWCySyWQYHR1ldHQ0nmlyeHi4LU+Nc1KLSK0lfzoUf/R/INBvrMRC\nGsHOb/RZ4Br/pIi8C/gN4HXY6VX/ALsm2zOMMTU/vaIPZq1Wi0e9qxC5TSy3CTQyMsLQ0BALCwsc\nPHiQhx56iN27d3PkyBEWFhYWNYWi+sXi5AuMipTWR9MvhWtZ+RO0aVnuFCmDg4Ox1eeeV1+T+pF0\nalzXinJDEwKBfmPZgmSM+SrwVYinpvV5G/BBY8w/R2leh11x5OXA33fKW3uYBgYGGBwcbIvv0abL\n4OBgbHHosVKpxN69e7nrrruYnZ2lWCzGvW9+hHdUp0VBl25A4nIedv8W+E5yIBYXsM1MODYdritW\n2jzVaXgrlUoszkCbyAUC/ciq+pBEZCewlfY12eZE5A7smmypgiQiNBoNSqUSuVyO4eFhBgcHqdVq\n1Gq12J8yODjI2NgYmzZtYn5+ntnZWZ544gn27t3Lrl272vwrfm9cEq615Kdxu/yTLCbfEe4ec/NU\nyy+TySzqPdPATSC2mtxZMJNmnvTrEQj0C6s9h8VWwJC8JtvWThdqwOHMzAzlcplMJhM7rOHY0JJ8\nPt8mSPfccw933HEHe/fujX0xmh8s7slK6uVy66DHlxIzf6hHJ9zu/GKxyMzMDHNzc7HDHYibZhpH\npWKlkelaB10oYHBwsGOZgcCJSM/0sokIlUqFarUazzVUKBTiB9a3kDZu3Mj8/Dx333033/nOd5if\nn2+bBiTJgkg65kZ5u7jC5lslaWKUJl7q+6nX6ywsLMTH1SLSgEkNV3CDPbVJp2Vrj1vS2LlA4ERn\ntQXpAHZSti20W0lbgLs6XXjHHXfE3eFDQ0MUCgUuu+wyLrnkEsbGxhgeHmZ0dJShoSGmp6c5evQo\nDz/8MAcOHGBubi5u1nXrhHZJ6oL3raWl8vCPu2KlVo5aSaVSiXw+3xaxLdE4uWq12rZySrPZ5Ac/\n+AG7du1qq0uIRQr0I6sqSMaYXSJyADtb5HcBRGQD8Hzgk52uPf/885mYmKDZbDIxMcGmTZuYnJyk\nXq+zefNmxsfH2bBhA41Ggz179rB7924eeughDh06FC/kmGYZLfMzpB73nd+dytKQAjeoUf1JbkiA\nnstms1Sr1XjhSaXZbPLUpz6Vbdu2xaImIszMzHDTTTcd12cNBHqNlcQhjWAHy+rTeJqInAtMGzsJ\n258C7xWRR7Dd/h8E9gH/1Cnfer0eP4yzs7OxlTAyMkImk4mnjS0Wi0xNTXH//fezd+/eRU214yHJ\nwa3NrSTfU5I1Fd2jOI7IDXh0gxrVT6a+MY3A1iBOzUdf3cHAIVo70K+sxEK6ALgF67w2wEej438J\n/Kox5iMiMgx8ChsY+W/AT3aKQQIol8txDE61WmVhYYFqtcrExARbtmyJV6gFOHr0KLt372Z6eppG\noxE7vo+HNDHy0TTusktJaV0Bc8MPXH9SpVKJxcpdly4pityNQQIoFlPnugsETlhWEof0DZbonTPG\nvB87U2TXlEql2GHrjtTfsmULCwsL8YBYgNnZWfbs2cP8/Hy8GGRSfE43PqW0XrckK8htqvk9cGmC\n5Dq/3ShrtXBcgXLFx22eJY2rq1TCCtqB/qNnetkU9wE2xlAsFjl06FA89KJYLLKwsBAHG2pavzcq\nKd9uy09L74qPPyjXFy73GnfyNTcfd+EBjVB3B9Ymzc/tdv8HAv1GTwmSK0YqSAsLC7EgjY2NUalU\nYotJmzXuEAwXVyQ6xR/55aeJV5oF5g4bSRMpf605tYLUGlTxcQfTdgpFWI1maiDQa6z64FoRuRp4\nvXfZV40xL+uUr798kGv11Ot1SqUSs7Ozcff+2NgYY2NjsUXhLqOkzSB3EKrbxEpatTaqe5sg+k5y\n1wJKmpA/aRkk/3r3FdqtJA2O1LokWVpJ5wKBfmHVB9dGXI9deUT/4pecANpdHgiODXTN5/MMDQ0B\n1s9Ur9cpFAo85SlPYWhoKJ4ATad3daeHVevDXZctbfNXOEkLekzqAdNXdxCwCpJrcWkvmc4E6U4r\n4tZDR/4rvqV0vKENgUCvshaDawGqZpkLRbrWhVoDGsWsA1J1ju2hoSFOPvlkxsfH2bRpU7wkUbVa\njYdeaBe67rvNI/fV3Xw/kGvluFaX3+PlCk9Sk00FB2gLUXDnd3ItuqQATdeP1G0AaCBworFWjojL\nROQgMAN8DXivMWa60wV+r5ZaLPl8ntHR0XjpaR2kOjw8zMjICIVCIZ7M3+0613mJ3NVE3Lm4/Xm5\n/ZH0SfVJEqS0njb1EbmT+Wskti4E4NZJHfT6aoxpc2y7dfHLCgT6hbUQpOuBfwR2AacDHwK+IiIX\nmSWeIrf3Sd/rdCOtVise65bJZOLJznQ2RqWT8zqpeF9c/EnQkrZO1+gxnUrFXSnEtdp0q1arlEql\nuBtfhVQ/i+s7Sro/gUA/sRZzartTjNwvIvcCjwKXYQMqE3nkkUdiB7U+cKeeemo8hq1cLsfd/UA8\nFkx9MX5zycU9tlR3vu/4TmpGJVkqfhoVFvVruT4tfa3X68zNzTE1NcX09HRcN/1M+rkOHjzIgQMH\n4vpmMplYtAKBfuKHsVDkLhE5gh1ukipI5513HieddFIctVyr1eLYo9HR0bZmj7s0UlQGsHjitSXq\nFb+6IuX2mLnpfPzAxyT85qG7qUBNTU3RarVYWFhomzfcFdnt27ezfft2gLi5WiqVuO6667r6rIHA\nicIPY6HIbdglkZ5YIl3bQ+46ft0FFt0eKn8wbaeo6aRYpE5O6aQ6JXXz+6+a1iWp2adilc1mOXLk\nSDz3kQqR7zvS9+49CQT6jVUdXBtt78P6kA5E6T4MfB+4oVO+R48ebesW11HxOpmZTv7v9l5F9Wl7\ncDuRFjzpnvNFKamny7sfHcvUNGlxQ66wai+hG4fl9/xlMhlKpVI8w0Eg0E+s9uDatwDPwk7wPwE8\njhWi3zPGdByePjMzE4uOO5xiZmaG2dlZKpVK3AMFx6KW9SHt5Oj1RSVJlNK67t3r0gRtKR+Va934\nuAGY1Wo1Hp/nBoZqTJbrVwqCFOhH1mJw7UtXUhF1VrtDKvL5PAsLC8zOzrYNwdCBt2o1uFNxJIlD\nWmS1S5ojfKnNzdcXHN9y853nLm7PnDvZXFIUOVjxCgT6jZ4ZEKUPoStIOgf17OxsPJ1rJpOhVqsx\nPz8fP6yFQqHtgfUFSB3g/mRpS/mIOllLSQLnC50rSGrR+b12el7PaQ9cUpNU04ZetkC/sixBEpH3\nAK8Ang6UgVuBdxljvu+lW/ZCke7EZNoTpfMizczMsGHDhniytlKpxOHDhymXy5TLZYaGhhZFP7vO\nYR1F7zuMkxzTrqglCZxfjr+fJFB+T5uKiYqvG8ipFpKKltukc4+5s0oGAv3Cci2kFwL/B/jP6NoP\nATeKXQSyDCtfKFIdukCb32R+fp7p6WlyuRwjIyOICHNzc+zbt498Ps/w8HDcQ6VNuiRxcq2kTpsb\nA+Ret9Qxnag/Scjc+CQNX9B9dwiLBkpWKpXYqnIFybWa3LF3gUC/sCxBMt6IfRG5EjiEHfn/rejw\nihaKdCccc53Mc3NzTE9PMzY2Flscc3Nz7N27FxG7VJAbs5MkSK6AJAmPK1rupiKjm39cr8nlcgwO\nDpLP5xfl6U4l4ltExpi2lUZUkKrVanw+zecVIrUD/cjx+pAmsD1t03B8C0VG17ftG2OoVCrMzs5S\nLpcxxrRZOu4Drg9oUmyQ34RLaoKpmLni5YrTciykpKaj609yt5mZGaanp+PVRlwh0nvi+5C6CTUI\nBE5EVixIYp+KPwW+ZYx5IDq84oUiozzb9lWQjh49GguSKxQ6tYg71MPNZzlOal+sfCunk1/JH+rh\n55PkBNf6lstljh49GjdZk6ZBUesqDKwN9DvHYyFdBZwNXLwaFfEFQh86dWyrX8UVJH8+o07DPNy8\n3eP+a5LodHKCJ1laafm4gqQCU6vVqFQqcbPNrW9SerWQgg8p0I+sSJBE5BPAy4AXGmPcISErXijS\nnyRNaTQa8ZLT6uTVJbVdB3FUr1QrQh/kpLFrSbhWlxsp7Y6+94eKuFaMO52tb+n4n08d236wp+av\nTm+/foFDctfaAAAMhElEQVRAv7GSoSOfAH4WuNQYs8c9Z45joUj1v0TXxMf1YdQ12ySKKxoaGmrr\nIk+yrqI6dfW5/J4s16HsLnnkDunwPntiWa4ouSKnx92R/+6c2drcA+IlxF1Lr9FotC3LHQj0A8uN\nQ7oK+GXgCqAoIluiU7PGGO0mW9FCkVH+qefK5TJTU1Oxz2br1q2I2CEUOtTC72JXOglFpzRuuqSm\nl17nWnbd+Kp8X5c71a7f1NMykpqXgUC/sVwL6dewTuuve8ffAHwewKxwoci0ZpQ+vCpI6kPasmUL\n5XKZw4cPx74XV5Dca9PKcfHTuunS/EF6nXuta+WpeCbVxxUnnVbFbea5PYlBhAJPFpYbh9TVUhdm\nBQtF+haLL0oLCws8/vjjtFotJiYm2Lp1K7OzsxQKBebn5xcNB3F9Rn45aZaOW55fhw6fdVE63zLS\ndL6vy58jKSnuKK0OQZwC/UjPjGWD9JHyIsL8/Dx79+6lXq+zYcMGtmzZwpEjRxgbG2Nubi5+qH3r\nRV9dx3TS6iB+6EASfk9XWp3d9P64Nb1Gnfjau+auUpskaN3cq0DgRGdZi3uJyHtE5NsiMiciB0Xk\nWhE5y0tztYi0vO0ryygjcSuVShw4cIADBw5QqVQYGhqKZ5PU4SNucKQ/mNaP0NYIa39ISSe/Uprj\nOu0zuNf4gqdipILkWk++pbiUOAUC/cKqj2WLWNG6bEm9bH5Tp1KpsG/fPu655x7m5uYoFApMTk4y\nNTUVB08m9bqpX8aNY1L/jjtQNSlKejnNpyRR88XIGEO1WqVWq7WFM6SVlWY5BgL9xlqMZYMVrMum\nloy7D8cmYtOHuVKpsH//fiqVCqOjo4yOjjI5OUm5XGZ6erpNkPzNH7OWy+XaxEvL8a2VbiyUpPL8\nKHL3tVarUS6X4/giV8jSBDDJ3xUI9BOrOpbN4TJZ5rpsSU0VPyZIBWthYaGtZwrsAz0yMrIoWFJJ\n8uOkbW4at/y0vNy0fhp/NRJ3YcpOA2iXEqdAoB9Z7bFscBzrskX5Jh53fTw6Ql4fcJ3wfsOGDfEc\nSRpEmclk4tH1rgN7qZ60JIFx3ycFUKY5012/kU48pyvlallp1lC39ycQ6AdWfSybWeG6bJBsDbgP\nu0YuqxWkzaKhoSHy+TyFQqFtoUWfJIvFF5Q0C8nPx+9t8wUqyUJyl/NOGtWfdj/8e5GWPhA40Vnt\nsWyLMF2uy1YulxfNE53P59um9IjKjnvFAOr1eptgZTKZeLpbd4lqVziazSbZbLZt0QA3qDKpq16v\nTWtW6XWaDxybaM4fBKzX+E78NCupXC5TqVTazofBtYF+ZFXHsqWk72pdtuHhYQYGBvSapHzahEdF\nQKe+HRgYwBjTJki1Wm3RCHoVDndWSiBu2qU1vRQ/KttvBvpp/RVs3Waa68R3P6dPoVBgeHi47Vy9\nXufIkSOdbmkgcMKxqmPZxK7ZtqJ12ZbqzVqqF6tWqyVO9eoOatV9FRE3OtrHFRe/9893cPuWi+vA\nTpoapVNzK8kCc9+7zv5AoN9Y7bFsTVa4LttKBMkVHPXLuM05OGb5+HMVqUi5eSc5o5frs1Ghc5tq\nbjlLkda71q3TOxA4kVnVsWzGjvhf0bpsaU0Y97y/n2aZaJMuyTJJc2Cn5e2nTbrWjzFyx6YlDUdR\n8evkyF7KgR0EKdCP9NxYtrTmU9qDmtSsccXBdf66TTkNjtT0vrXkOrv96GtfjNxNBckP6OzWwulG\nMAOBfmW5Y9l+TUTuEZHZaLtVRF7qpfmAiDwuIiURuUlEzuiqIikT77t+nzSxcMeuAYt6tdxVPpRs\nNtvWixfVva3MtOlnFVeENL5IY6Q0+NH3IaU1PTttScNKglgF+pHlWkh7gXcBD2PHqV0J/JOIPNsY\n86CscE02SI9B8n05fvpOebld8HpcxWF8fJytW7eSy+XiGSmPHj3K0aNH454738pJCgPQV38BSLfM\npOZXkmO6k4UYCDwZWK4P6V+8Q+8VkV8HLgQeZIVrsilL/et3as4k+Wl8X41r0YyPj7Njx454uEm5\nXGb37t2USqV4WEfShG9JIQBuj1pSPTv5g9KEKRB4MrKsJpuLiGRE5FXAMHCrSPKabICuybZUfpTL\n5WX5T0qlUtu+PyTEb+5ocGEmk2F0dJTNmzezbds2Tj31VLZv387k5CTDw8NxU65YLLZZaWnxSIrm\nn9TsS2pylUqlZfmMtD6aRyDQbyxbkETkmSIyj51S5CrgFcaY73Gca7KBjUhOKG/RA634grREvSmX\ny/GqJcPDw0xMTDA5OcnWrVs55ZRTmJycZGxsjEKhQD6fp1gsLprXOk1wstlsHAuVtCVZSr4g6fE0\nisUi0D5VSyDQT6ykl+0h4FxgHPh54PMi8qJVrVVE0sPZyQfTKR/ddPqRQqHA2NgYJ510Evl8nnq9\nzsTEBCMjI5RKpViA0oZ3uK9+EKVvnSXhCly3n9n9LEGQAv3IsgXJGNMAfhDt3iUiz8P6jj4CK1uT\nDWBubo5Go8H09LSWQ6FQYGRkpKPVkOQ76kSSUKigZDKZeElsHSOnk7qttq8nTYiSRGphYYFisUi1\nWuXgQXtrw1i2QD+yGnFIGWDQHMeabADj4+PMz8+zadOm9syd5Y0g3bG8nK7wpB4vFSR3NknXolpq\nvu2V4tY5rWm6YcMGxsbGeOKJJ9i8eTNgV/Q9cODAqtcnEFhPljuW7X9h5zvaA4wBrwEuBX4iSrKS\nNdmGgLhnS+c5UtKsGSAewxbVre01qetd04sIU1NTPPbYY8zNzTEwMECj0WD//v0cPXqU+fn5eE4l\nfe0kSNrLpoN9/WZVmlC69dd0aU0x7R3UGRHq9XgkzlDiBYHACYgs0xfzGeDFwMnALNYS+iNjzNec\nNO8H3sSxNdneaox5pEOerwb+ZiWVDwDwGmPMF9a7EoHAarAsQVqTCohsAi7HWlSVzqkDDkPADuAG\nY8zUOtclEFgV1l2QAoFAQAl9x4FAoGcIghQIBHqGIEiBQKBnCIIUCAR6hp4QJBF5q4jsEpGyiNwu\nIs9NSfc+EWl52wPO+ReKyJdFZH907oqEPPz5ml7V6RoRudorz4hIXUQOisi1InJWhzJqYueNmk9L\n3yH/VZ1vKhA4EVh3QRKRXwI+il0c4DnAPdg5lCZTLrkPOxxla7Rd4pwbAe4G3oId6OuXpfM1vQl4\nHlAEPoaNp0q8JuL6qMyvRde/APgxIAfcKCKFlDJuBx7BruD70qT0Xv6vBV4FXIBdnvxr2PmmntGh\n/jeISD6l3oHAiYU/BesPe8M+tB939gUb3f3OhLTvA+7sMt8WcIV37HHg7c7+BqAM/GKHa64Grkkp\nYzK65pJuykhJn5p/dH4KeEM39Q9b2E70bV0tJBHJYS0Bdw4lA9xM+hxKZ0bNq0dF5K9F5KldlnU8\n8zVdFjW5HhKRq0RkY3R8AmtVTXdZRlv6TvnLKs83FQicCKz3JP+TQJbkOZSelpD+duy0ud/DDl95\nP/BNEXmmMaa4RFkrna/peuw6c7uA04EPAV8RkYuwY/e+ZYxRP9ZSZfjpk/L/GPBmrCU1TzTfVFTe\ncc03FQj0OustSMvCGOMuNnmfiHwb2I1tDl29RmW6U+/eLyL3Ao8CXwLOBi7uMqsLsOLblj4h/wew\nC2u+BTs0ZM3mmwoEeo31dmofwS4uucU7vgW78m1HjDGz2Ie3m56mAxybr2nZZTll7sKOubsEuMwY\n4y4RnlbGJdExP31S/o9g7wvGmN/FOvnftlr1DwR6mXUVJGNXs/0Odg4lAMTO1fES4NalrheRUawY\ndXzIo7J2YR9ctyydr2nJspxrrgYKWKf7ni7K+BS2efkeP31K/tuATRz7TPF8U6tR/0Cgp1lvrzq2\nuVXCLp30dOBT2J6l/5KQ9o+BFwHbsV3vN2F9KJui8yPY6XWfjfXB/Fa0/9To/DujvH8G+BFss+sR\nrGN90TVRfh/BPvTbsfM6NbAzEzwFa51sAYacOrpl/C1Qwy4ftc1Pn5D/32CnCH44qs+HovJe3KH+\nDwP59f4ewxa21djWvQLGGLD+ksewXdi3ARekpPsiNiSgjJ0k7gvATuf8pZGoNL3tc06a92O7z0vA\nDcCr067BTvHxVaxlUsE6lZPSvs6rp5Zhoi0xfUL+c9FWjo7dqGLUof5nrPf3F7awrdYWph8JBAI9\nw3o7tQOBQCAmCFIgEOgZgiAFAoGeIQhSIBDoGYIgBQKBniEIUiAQ6BmCIAUCgZ4hCFIgEOgZgiAF\nAoGeIQhSIBDoGYIgBQKBniEIUiAQ6Bn+P6UC6eI4in/3AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10c3acfd0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV4AAACXCAYAAABduzPSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXmcbFV177+rurq6eu57+w4QEFAGEQUVQUFBUEQ04TEk\njkER/RjjlPBRzFOfhkE0OEQUjfh8ETHmqdE8NagREBkE4kAUZJbxXhC4c89d3V1VXfv9sc86d9fu\nU9Xdl+6+3bi+n8/5dJ9z9tlnn1NVv7PO2muvLc45DMMwjKUjt7sbYBiG8ceGCa9hGMYSY8JrGIax\nxJjwGoZhLDEmvIZhGEuMCa9hGMYSY8JrGIaxxJjwGoZhLDEmvIZhGEuMCe88EZGaiJyyu9sxX+bS\nbhG5XES+v1RtSs65b9K2w55kPdeLyMUL1a4ni4j0i8gWEdlnnsct2WcgIscl975nKc63u0mud3qh\nr1dEvi0i75/PMctOeEVkjYh8WUQeEZFJEdkkIleKyNG7u22LhYicLiL/LSKDIjImIreJyJsW+DR7\nAFcm51sQsUvqeouIDD7JapZ83LqI5EXkUyJyR3LPHxeRfxGRPaNyzxCR74vIVhEZFpF/E5F1czjF\nR4D/cM49mtSj91yXKRF5QEQ+Eh33t8BZC3KRc+OPKWfAfwF7OudGFrjejwMfEZHuuR6w7IQX+D7w\nXODNwIHA/wBuAPp3Y5sWmx34D+8o4FDgcuByETlxoU7gnNvqnKskq8LC/uCebF2yIK2YHx3A84AL\ngOcDpwPPBK5IGyXSAfwUqAHHAy8G2oAfNatYRNqBtwFfjXY54OX4h+ABwLn4H+xb0wLOjS6CMKwI\nRKR1Met3zlWdc1sXod67gYeAuRtLzrllswC9+C/5sbOUex9wBzAGPAp8CegM9r8FGAT+DPg9MA58\nF2hP9m0ABoBLAAmO2wB8FPhWUvdjwLujc9eAU4L1vYHvJOfbAfwHsO8C3IvfAhc02b8V+PNg/XfA\n48H6McAkUIzbnfw/nfytAdcl2y/HP/jOAZ4AtgP/BLQ0acdbgIEm+08Cbkruz3a8aD0j2L9v0obX\n4y2SCeBO4KVRPc8BfgKMApuBbwD9wf7rgYuf5D0/IrkveyfrJwKV6LvVk5R5eZN6XgNsjrbpdR4W\nbb8G+GKwfjnw/WBdgP8JPJB8nhuBDyf7rg2PTbatAaaAlyXrBeBT+N/JJHA/8NZk33HJtfRE35sb\ngRLwCP430hHsf3dSx0TyOXx3lnv6kuSzGcf/5q4EeoPP7IvA54BtwLXJ9qfhH4CjwDD+97UuqPMw\n4DpgJNn/38Dhyb59gB8m5xpLvkuvCq63ptfLTp14JXBPcr4rgfXBuVqALyTltgKfAL4O/CC6zr8H\nfj7X79pys3jHkuU0ESk0KTcN/A1wCHAm8DL8lyukIynzOvyP/2XAD4BXAa/GP53+Gv8jCfkAcBve\nGvokcImInJDVCBHJA1fjP/yX4C2iUeCqZF/oR5uzry8530HAz5sUuxFvhSEifcDBQLuIHJTsfylw\ni3NuMuPYF+J/0Gp9/Xmw7+XAM5K6z8S/9p4117Zn0Al8Fjg8qXsa/znEfBr4DP6+/xL4kYisAhCR\nXrzI/Dap5yRgHf5hmomInC8iG+bZ1j68VTqUrLcl6+WgzBT+x3tMk3qOSdraFBE5An89v2pS7JN4\n4b0AeBb+AbU52fdV4I2Rpfhm4DHn3PXJ+r8mx7wX/x15O/43ltWe/fHC8+/4B93r8d/rLwbtvQRv\nnByE/xxubHJ9zwN+BtyFf5s7Gi+oLUGxM/H39MXAO0VE8MLZBxwLvAL/ffxOcMw3gT8AL8Dfv0/i\nH5AAl+IfNsck1/DB6Hrjt7MOvKFxRnK+fYB/DPZ/CHgjXqSPAVYBp2XUcwvwwjlb7U/WMlvoBf/K\ntx3/xL0Z/4Q5dJZj/gLYGqy/Bf8D3y/Y9mW8KLYH264ELg3WNwD/GdX9beDHwXpoOb4JuCcqX8A/\n3V+RrB+Jf5ruOcs19CTtKyfXftYs5d8L3JH8fwrwC7y1+o5k20+BCxu0u5H1dTnwMPVvAd8BvtWk\nHU0t3ozya5JzHxK15QORlfGobsP7S6+M6tk7Oe6AZL3O4gXeA1wzj3a1Ab8BvhG1dRBvkbXjHyJf\nTL5bX25S1w+Af4626XWOJZ/zVFY9BBYv0IW3LN/apM07gNcE234HfDT5/6DknC9rcHydxQv8c0Z7\njgGqyff69OR+dDa69ujYbwI3Ntl/PfCbaNuJyW/gT4Jtz0qu4wXJ+jDw5gZ13g78/RyvN0sn3gU8\nEaxvAt4XrOfwbx3fj+o+NKnraXO5N8vN4sU59wPgT/C+3SvxN+tWETlTy4jIK0TkZyLymIiM4J/q\n/SJSDKoqOec2ButbgI3OuYloW9xR8suM9Wc1aO5hwIEiMqoL/ofQBuyfXM9/O+cOcc5tmuXSR/G+\n7SPwQvM5EXlpk/I/Bw4RkX78PbohWY5PrO0XJ+vz5W6XfJMSNjHzHs0ZETlARL4lIg+JyDD+4ebw\nlkVIavU556bxIqj3/bnAy6P7fG9Sz/5Z53XOfck5NycfeXK//j2p791BHduB1wIn4wVzEP+AvA0v\nBI1ox7/WZ/G65HoOS/4/TUQualD2WXjBuy5rp3NuCv/df1tyHYcDz8a/CpOcp0oTqzTiucBZ0X2+\nKtn3dLxb5FFgg4h8Q0T+MvFnN+J5+DeVZsRvBgcDf3DOPaEbnHP34t9C9PtwMXCZiFwjIh8UkWcE\nx38B+HsRuTl56zl0lvPHOpF+35Poh/V4V4a2pZbRZvAPSMFb0LOy7IQXwDlXds5d65z7hHPuGPwX\n6QIAEdkP7yf8Hf4V+XC8dQP+S6pUqMc12PZk7kEXXiAOw39pdTkI7yeeM87zsHPuDufc54D/B3y4\nSfk78X6s49kpvD9P1o8E8ngreL4s9D36Mf717O14F4e6OZq5kmK68K+f8X0+kLmLSiaB6D4NeKVz\nru413Dn3M+fcgcBaYI1z7i3AXvg3g0Zsx19zFo8ln/N9zrnv4a3p9zdwrU1kbIv5KnCiiPwJ8Fa8\nv/6xeRwf0gV8hfr7fBj++/xQcm+eD7wB3wdwAXB7k/CsuZx/fJ5txDl3Ad7N+GO8++puETk12XcZ\n/iHxDbyr4Tci8p5GdZH9fd+Vzt7VybHb5lJ4WQpvBvfiX/PAC6045z7gnLvFOfcg/oewUByVsX5v\ng7K34n/825IfU7iMPsl25PCWczNuBk7Ffwlvxnc4tuF917+JrPsQ9Vm2NNi/IIjIavyP9uPOueud\nc/fRODrlqOC4Frz/7p5k0614S+6RjPs8X3EJ26ei+wzgBOdcw7A459yAc25ERF6OF+EfNqn6Nvxn\nMqOaBtvyZD+ItEMts48haddd+If/O/C+yMuC3Xfiv0fHNWlryK14F9CGjPtcTc5Xc85d55z7EF6Y\n98OLXxZ3NGt7A+4FniYi6W9aRA7B+3z1+4Bz7kHn3CXOuZPwrp0wMuRx59z/cc69Bt+/8FfzbIPW\nM4J/Kz4yaEsOr0Exz8E/VAfmUveyEl4RWS0i14rIGSJyqIjsJyKvBf4OHy0A8CDQKiJ/KyJPF5E3\n44VmoXiJiHxARA5MnpSvAT7foOw38dbNFSJyTNLe40XkksQCQUSOFJF74/jQEBH5UOI+ebqIHCwi\n5+D9x/86S1tvwP/YfuecKyUughvxHQXNOua24q2RV4nIuiYWy1zJi8hzo+VgdkZ6vENE9k9E67Nk\nC9B7ROQ0EXkmvoOkD+/vBB+1shr4NxE5Qnxs7Uki8rWkM2YGIvIeEflZowYnovs9/I/oTfjv1Ppk\naQ3KnSUiL0rO+SZ8h97FzrkHmtyPq4FnJ52CdacF1iTn2EtEXo2P270utrQhdSV8Cvi0iLw5acOL\nRORtUdHL8J1AsPN3gnPuEbzl9zUROTX5fh6X/KbCNimfAl4sIl9MPsMDkuO0c+3PRORvkn374H2k\nAtzX4D5cBBwpIl9Kfs8Hi8g7kwdyJs457Yz7pog8X0ReCPwLcL1z7lYRKSbtO05E9hGRl7CzHwUR\n+ZyIvDK51sPxner3BKeYrzX7ReB/icgp4juuL2FnJ2zIsfh+lbkxF0fwUi34p/4n8D6VAbzf8x7g\nfKAtKHc2PtRrDB9idAYzneYDUd3nAbdG2+LQnQ34Htt/S+p+HHhPdMw09eFk65J6tuA7xR4A/jfQ\n5eod+vs0ue4L8V/ecbyQ30zQYdLkuOcmdX8iujfTwImztPtt+E6CClE4WXTc53R/gzZoB0W83J/s\nPwH/QyrhLcFjw7bgO52m8T3ov6JxONn+ePfLjuSzuRv4bLD/Ouo7184DHm7Sbj1vuGiY3UuDchfh\n/X6T+NDEs+f4Xf4l8FdNzlfGh2t9mfqwuKzP4MN418Zk8h39YLS/M7knX2jwm/pH/O9lIvmevSX6\nbobhZC/A+3WH8eFatwEfSvZpaNj25Hy3AX8xy304Fh9OWEo+u5+w83da95kFx+yNt2JH8L7dbwNr\nk32teDfexuR6/oA3jArJ/i/gw91K+OiPy4FVWddLtk6cCkwH6y14sdVwyIvwHc7fDMq0JfuPnKvW\nSXKgAYgPP/qcc+4Lu7stxspGRP4U+LRz7jlLcK798G+CL3DO3b7Y5/tjJnnDuhf4jnPuvGTbO4HT\nnHOvmms9+UVqn2H8UeOc+0nyqr6Xc+7xxThH4i5Zgx/1+EsT3YUncam8Eu+6K+LDOPejvvO8jB8z\nMGdMeOsx899YMJbgzUlf/X+PD3szFp4afgDRZ/D+4bvwHbGpX9s597X5VmquBsMwjCVmWUU1GIZh\n/DFgwmsYhrHEmPAahmEsMSa8hmEYS4wJr2EYxhJjwmsYhrHEmPAahmEsMSa8hmEYS4wJr2EYxhJj\nwmsYhrHEmPAahmEsMSa8hmEYS4wJr2EYxhJjwmsYhrHELJrwJnNebRCRCRH5lYgcOftRhmEYT30W\nRXhF5PX4SQ3Pw08HfTtwtYisWYzzGYZhrCQWJRG6iPwK+LVz7uxkXfCT0n3BOffpBT+hYRjGCmLB\nLd5kauwXANfqNufV/WfA0Qt9PsMwjJXGYsy5tgY/JfKWaPsW4JlxYRHpB07CT9c8uQjteapSxE+6\nd7VzbsdubothGPNgOUx2eRLwzd3diBXMGdTPeGoYxjJnMYR3OzANrI+2rwc2Z5TfCHDwwQfzxBNP\nsM8++yAiiAhHHXUURx99NLlcjlwuh3cVg3OO6elpLrnkEs455xxaWlrI5XK0tLQwMjLC8PAw27dv\n5/HHH2fTpk3UajWmp6e5/fbbOeyww3DOISJpvbooep5bb72VU089lT322IP+/n5Wr15Nd3d3WqZW\nq+GcwzlHrVbjk5/8JB/60IfS4/U6dF3bXqvVaGlp4ROf+ATnnntu2pbwuJAbbriB66+/nvvuu48D\nDzwQgFKpxN13353eP8MwVg4LLrzOuYqI/BY4AfghpJ1rJwBZ011PApxzzjlcdtllnHvuueTzeQqF\nAq2treTzeVpaWupESTsEu7u7OfTQQ+vEc3BwkIGBATo7O6nVapTLZaanp5menqa1tZW+vj6AGaLb\n0tKS1q8UCgX22msvnva0p7Hnnnuyxx57sGrVqjqx1cU5R3d3N89+9rNTEY2X8LhcLkdPT8+M9sei\nm8vlOPzwwzn77LN585vfzFe/+lUA7rrrLk4++eT0/hmGsXJYLFfDxcDXEwG+BXgf0AF8vdlBuVyO\nYrFILpcjn89nClGjKIzYsoy3xwIYl2lWR6NyajmHx4QCGlu84bm1TGith5ZvuORyOaanp8nlcrS2\ntlKr1ZrdRsMwljmLIrzOue8mMbsfw7sYfgec5Jzb1ugYFaD29vbMV261FuPtIXMVzdnKRteSnleF\nVsnlcjjn0r8qpHMRXXVtqOjq9TdaQuGtVCoNH0CGYSx/Fq1zzTl3KXDpXMurpdfa2pqKXSh4SpYF\n28xXmyWAIXO1duOy+jeXy1Gr1dJtzSze4N7UuTi0vPqi47LOOSqVCuVyma1btzI1NcWOHRbIYBgr\nleUQ1QB4wTrxxBOZnp6eYd2GQhZaiCeffDKFQqFuWyhkiv6/zz771J1zNut3//33zxT4RuVPOeWU\nGWIa/g3PKyK89rWvTV0H1WqVycnJdJmamqr7OzExwYEHHshNN91EuVzm4Ycf3vWbbRjGbmXBhVdE\nzsMPFQ75vXPukGbH5XI5TjrpJKrV6oztGgWgApbP52ltbeX000+f4SeNO+JC9t1334b+0Swx1QgC\n3R8LaPi/c47TTjutTnhjq1bLa11nnHEG1WqVqakpKpUKY2NjDA8Pp4tGaIyMjDA6Okq1WuXGG2+k\nUqmwffv2ZrfTMIxlzGJZvHfhoxhUzapNygKkghj6SONX9qzX80YRBFlugdhlEf7N6ijT/bG1HR4T\nhpTptunpaSqVSuZSLpdTodV1XSYmJpiYmKBUKs34X63fqakppqenGR8f37VPxjCM3c5iCW+1WUda\nFiq8cWdTLKLxK38zd0Gzbc2iIML/s1wcYVSDCm964dUqlUqFyclJxsbGGBsbY3R0NP2r1uvY2Bjj\n4+NMTk6mIqyhadPT01SrVarVahoKFy7OOSYmJuZzew3DWEYslvAeKCKP42NMfwl82Dn3h7kcGFq1\nWbG1s1m5zazfsI7QQlXR1+1qiba0tNDZ2UlXVxddXV10d3eTz+dTgVSRDQVSLdqJiYlUeEMBVuEd\nHx9nfHycqamp9PhQ0JW4o1G3VSqVXflcDMNYBiyG8P4KOAu4D9gTOB+4UUSe45xr+H4c+k+zrM54\nPbZGsyIcGgmvoqKrEQW6bXR0lMHBQcrlMtVqtW6gxOjoaNrhpeJZKpXSDjB1B5TL5RkuhkqlMmPf\n9PT0DKs5bG+j6A6L5TWMlctijFy7Oli9S0RuAR4BXgdc3ui4Zq6DLOGdi9g2snxDkQ3rVhEcHh5m\n06ZNjI6OzrCMh4eHU+t1eHiYwcFBhoeHGR0dTUVZrdistmZdU0zsl46FN7aADcNYWSx6OJlzblhE\n7gcOaFbu4osvrsuDICKcfPLJnHLKKTOs23w+Tz6fn9WibebHVQtWRNK6SqVS6g4ol8up0D722GNM\nTk4yMDBAV1dX6k5QK1dDwNRC1jhdPVdyH+L7kv5tJKS6XSMbQsziNYyVy6ILr4h04UX3G83Kvf/9\n7+eQQw6pE9YwDEtFtKWlJd0fxtSqkGacv25RgdNOrPAcKq4qvNPT0wwNDVEqlRgYGODxxx+nWCwC\n9YIZ52zQ88bEftqw3WHbw7qdc7S1tbFmzZq6OjUKwjCMlcdixPF+BvgR3r2wF3ABUAG+PctxqdiG\nwqrCFvtC1WrVTi3t5FI3wNTUVJqMRpfQxRBapNq5VSqV0kgDHUEWd5yFAzaauQtmQ0VV6w7D0uIl\njPjQB0gc72wYxsphMSzevfH5YfuBbcDNwFGzJevWQRGtra2p+AJpjGs4oks7p8KRXbq0trZSKBSY\nmJigWq3O8P+GaRlbW1vTAQwquhMTE2kuhCzfcCjmYThZow6xRoSWroaONRJddYmE1rm5Ggxj5bIY\nnWtv3JXjqtUq5XI5tUY1rlUHEmjcq0YRqFCG66VSibVr17J27VpEJE0sE4tirVZLhb5arTIxMcHw\n8DDj4+OpiyEW3dDy1jC3OI43FHbd34gwZlet9XhARii88bBoE17DWLksm1wNGzZsqHutV0swDM/S\n/7O2qcXb0tJCV1cXhUIhrU/jbTV8K3zNL5fLjI2NMTQ0xOTk5AxLNxTtcHCDWryx0MZLSCjioag2\nCiXT9ayHh0U1GMbKZd7CKyLHAn+Hn9ByT+A059wPozIfA94O9AH/BbzLOfdgs3offvhhtm/fnsbE\nhsNqNZY2FORwWyisXV1drF27Nk2lqOXDiAPYaXFOTU2lORLUrxuLrlqy4f44T4MKaNYQ4kYdbVkj\n3+IoiLANocsjzmJmGMbKYVcs3k58ft3LgO/HO0Xkg8B7gTPx09J8HLhaRJ7lnCs3qnTTpk0MDw+n\nPlYVyrDjSf/qtnBdBVrDwGq1GpVKpS7cC0g77sJhvZOTk3WdVVnCGwqini/09eoDoNGAh5iscllx\nvnEccfjgMAxjZTJv4XXOXQVcBemUPjFnAxc6536clDkTP8PwacB3G9W7ZcsW2tvb61wNjXr64/Ct\nMLdBuC1MPKNuCBXeiYmJNPvX1NRUXVuyhDe4/tRdofG/QCrGWYMdMu5h3XpWqkm1smMfs2LCaxgr\nlwX18YrI04E9gGt1m3NuRER+DRxNE+EdHBycNS41S3izksqEFnJWfl8RYWpqipGREcbHx+vyHmj0\nQJgrInYLqPhmjaDTOsI2Z/lys1wJ0b2cMXLNMIynBgvdubYH4PAWbsiWZF9D9NVdyXrNh50WZyy2\n6mrQtIm5XI5CoUBXVxdtbW20t7en9YWjzrR8eL62tjY6OjooFoupkGtIWyjS2pZ8Pk+xWKSrqyu1\nqvVanHPp+dSdEV5DfL1Zbge1fDXOWY+PLXXDMFYGyyaqQXMbhFEF8ewNYSdXVq5b9fGqkLa1tdHV\n1ZVanOp6iJPaxJEMbW1t9PT00NXVlYr7+Ph4el5F42udc6nwFotFCoVCGocMpMOQVSidc3WpIEM3\nig4MCa9XQ+w0ztk5R7nc0F1uGMYyZ6GFdzM++fl66q3e9cBtzQ4cGBiYYeV2dXXR09NTJ2L66p41\nDU9oLcZ5fUPh1WHA6hPWOnRQRVdXF/39/axatSrt6NMOORV2FUf9m8/naWtro7e3l97e3tTCBti2\nzacm1uTlKpz5fL4uhE6vTduvQhymmwwjGwzDWJksqPA65zaIyGb87BN3AIhID/Ai4EvNji0Wi+nA\ngNbWVtra2igUCnWj2IAZvt2sjrCsyS9VfMfHxxkYGKBUKqWv+irYKp7d3d2sWbOGtWvXpvHCzrl0\nwEbWIAl1bfT09LDHHnvQ09OTtlndG1peO+Z0VJ5a0XG+BiXOWaFlLaTMMFYmuxLH24lPeqOm5jNE\n5LnAgPPJzj8PfFREHsSHk10IPAZc0azeMExMBTjuEFMLMBbW2FLWMvl8nkKhkIpnqVRibGyMkZGR\nOqsVvHAWi0V6e3vp6+ujp6eHnp6e1MqdnJxkZGQknYpHLVTYKYI6QEPr03YUCoV0Ca1r9dmGLpRQ\nWMOOuziO2Cxew1i57IrFewRwPb4TzQGfTbb/C/A259ynRaQD+Ap+AMVNwKubxfAqociECXDiMKrQ\nJxseF6KCJ+LTPQ4NDTEwMMDY2Fjq1w3PqyPe1q1bx+rVq2lvb0/9qi0tLfT09NDf30+1WmVgYKBu\nlJvOgaades75ZOoaujYyMkK1Wq0T29bWViqVSmrNq9CGHXDq2w076izCwTBWPrsSx/tzIDdLmfPx\nM0/MmUYhWKFLQfdBfaauWHRVsLSTq1qtMjg4yMDAQJq5LMwwpsLb3d3N2rVrWbVqVer60Fjd7u7u\ndFDH5OQkg4OD6flUeNUNUalUGBkZoVgs0tbWlmY7U8EtFAp1eR/UWo6HJ4dWfaPhx4ZhrDyWTVSD\nCqm6Gtra2lLhamtrq3uVV9FpNHW6CpW6CYaHh9mxYwdDQ0OUy+U6y7pQKNDe3k5PTw+9vb1p+JmG\nbSmtra10d3enEQ6jo6NpeFnoa56ammJ0dDRto1rMxWIxfSDE1x37sUOLP569wixew1j5LCvhVVpa\nWlJBbG9vp1gspvl1Q5FrNCOxCm+5XGZ8fDwV3uHh4brwNO3k6u7uZvXq1fT29tLZ2UlbW1vaGad1\nqvDmcrk0t4M+KEL3gLogwItuZ2dnnbCGSc9jf7SSJbrxSDazeA1j5bLgSXJE5HLgLdFhVznn/rRZ\nvfoKLiK0t7fT1dWV+llVuHR/nL9A/acqwODz+A4NDbFt27Z0VJyWCzvlisUifX19rF27lu7u7jSS\nIvanajucc/T29rJu3brUJ6tRCeHABrVy29ra6gZUaFxwmFdXB0dkhcqFAmtiaxhPDRY8SU7ClfiZ\nhlUpZh1i1dbWRn9/fzpirFgsksvl0rSPOrBBBxCEORlUdNUfW6vVKJVKbNq0iQ0bNqSZx8JZI8KY\n3dWrV7Nu3TqKxeKMiIFY7FpaWujt7U23aya1MBZXxXdsbAzY6UZxzqXCG15j2IkWR2aE7TA3g2E8\nNViMJDkAU865bfOpVwcfrF69OrUSNaJBBx7o63ho6WpkQKFQIGlTOnR4y5YtbNy4MT1H6AfWYb7d\n3d2sWrWK/v7+Rteb/h92wrW3tzM1NVWXQD0chVapVBgfH0+t29AtUa1W04k99UESim1Wx2EYWmcC\nbBgrm8Xy8R4vIluAQeA64KPOuYFmBzjnmJiYYHBwMB08Uav5WX6HhoaA+sERLS0tqW+1WCzS2dmZ\nhm9t27aNycnJuunZY0tSLd3Vq1enE1jGZEVLAKnl3NXVxZo1a5ienmZ4eJjh4eE6a1nbp35qdVXo\nDBj6kAijN8K26jmzphcyt4NhrFwWQ3ivBL4HbAD2By4CfiIiR7smppoK79TUFIVCIRVDFV4VHu14\nKxQKqRBqboWenh6q1Srbtm1LJ72MO6Ti0LFQeOciZmEdKrwqjupa0OvR4cAqvOrKEJG6/BLqpggf\nDHFMczh4JE4RaRjGymIx5lwLUz/eLSJ3Ag8Bx+MHXmSyefPm1CJUi7a/vz99FQ871EKrUUVaxW14\neJiRkZG6pDRKGC2h4WOdnZ3pOVQEVVjDMLUQ3a71VKtVSqVSXYhZGOmgSde1DblcLh0uHOZmgJnT\n0WsHntZnrgbDWPksejhZkr9hO36YcUPh3XvvvdN43UKhQFtbGyLC6OhoKoyhm0EHSKglqT5enUNN\n/a4h+Xyezs5Oent7UwtZXQDT09N187aFdWpeXqh3dxQKBTo7O9Np5cfHxxkZGWF0dLTuvOVymdHR\nUSYmJtIIhzBkrFAo1HUaxlavpqcM26DT0RuGsfJYdOEVkb3xU71valYuzCKWHDcjxjWO3S0UCnR0\ndKQirZ1qOuNEnO5RoxhWrVqVWrvqSw4n0FRfcRgGBvUzA6vl2draSkdHBz09PWkOh8nJyTrRVws4\njL5QWlvXocogAAAUkklEQVRb07bFPt545JoNGTaMpwYLmiQnWc7D+3g3J+U+BdwPXN2sXhVUHbmm\nHVhh8u9QiDXut1AokMvlUrHVGSVCkVKx6+jooLe3l/7+/jRmV6Mm1BrVkDWN51Xh01y/4SzHKvwa\ne7xmzZp0SLGOaIuT6ejDResNr0VzEus9CK37WHitc80wVi4LnSTn3cBh+Iku+4An8IJ7rnOuMrOq\nnYRuhHAwhP4fJo0JxaqtrS21WAcGBtIQrjitoopkX19fGi9cKBQolUqpiyC0gkOLt6WlJbWkR0dH\n0w6/3t5e1qxZkw72KBaLdVnMNHdvPOBD3Qj6QNAE54q6IMJ7EgqvWb2GsbJZjCQ5r9qVhsR+zawk\n56EFG+ZTqFarqShqh1VYr0Y9aC6G9vb29BW/UqkwNjbG0NBQamGrFR3G1Ko1PT4+nia9URdBGK3Q\n3d1NX19f6muOpwoKoxS0fXHMbqP702zdMIyVw7LK1RCLrxLPOKwWrLomdGaJsbGxGa/iGn2geXbD\nXAxhPofBwcH0/CrKYTs0J6+OUgsjJDo6OtK2hsKrCXXiBOeNhLcRWftNeA1j5dI0vWOMiHxYRG4R\nkRER2SIiPxCRgzLKfUxEnhCRkohcIyIHzKHuTBEKU0Sqn7e1tTWdWmdycpKxsTFKpRJTU1N10/mo\n9drZ2UlfXx/d3d20tbUBpFayxg5rJjPtYNPQsvCvzhah4h8m29FrUOtaRV6zk4UxuY2mrte6YlFu\ndJ8Mw1iZzNfiPRb4IvCb5NiLgJ+KyLOccxMAIvJB4L14P+9G4OPA1UmZhsnQswQXZmbz0g6wzs5O\nBgcH03SPpVKp7vhcLpfOLtzd3U1vby8dHR0459LJLnV0m45CKxaLqairz1at4DDVo7Z1enqa0dHR\nNKZY/bTaiafpI7XjL54ePkz0Hj9gmt2bMO7XMIyVx7yEN84wJiJnAVvxmcpuTjafDVzonPtxUuZM\n/MSXpwHh4Io64ml8kvOlYhRGNOgQ4e3bt7Njxw527Nih7UktSxVenTBTJ6CsVCrpYIeRkZE07Cv0\n/ba3t9PX15dO1x7OGKE+W40+GBsbo1wup5nINLxMY5B1lmO1ovW64unpYys4vJ7gfs/n4zIMY5ny\nZH28ffjIhgEAEXk6sAdwrRZwzo2IyK+Bo2kivFmo8FYqldSK7OzspFKpsHXr1jSxeThTsAq0Jt1Z\ns2YNhUKhrkMstDjBx9Jq2JqKZKlUqhu0MTk5iYikQ5XDZDjqegjFuVwu097ezvr168nlcml4Wehq\nCEPU9NzxJJoxKsbhoA7DMFYWuyy84pXu88DNzrl7ks174IV4S1R8S7KvWX2Z23XmiXw+nwrv6Ogo\ng4ODDA0NZc6fplZxX18f69ato1ar1eWByOfzdZa0hqbp+XR4bzhbhVqrOrouzDRWq9VSQVbLtlar\npS4LHdmm9YbCq8OJw47FRv7e8BrN+jWMlcuTsXgvBQ4BXrJAbamLW9XE4OqnbW9vT6MRJicn0yna\nw9d3IO1MU5EuFoupVRkPwtDICK1bB0aosIbugNASDX2y8RTx4bVoLLC2R+dm0zhjteY1p4TG8842\nUMKE1zBWNrskvCLyT8CfAsc658KhwJvxI9rWU2/1rgdua1bnAw88UJckJ5fLsffee9PX10c+n6e9\nvT3tGBsfH099q2q1qlB1dHTUTVipgxE0J4O6FTo6OlKBV9/u8PAwExMTgBfBtra21CINB0Pow0EJ\nQ+DCzGnT09Op/3fNmjXk83m2bt1al2NBXRsq5nHyc40hDo8Jr9cwjJXHrgwZ/ifgVOA459yj4b4k\nIc5m4ATgjqR8D/Ai4EvN6j344IPp6upienqaYrFIR0cH+Xw+9ZWqFTgxMZEKb5zyEaCzs5O1a9fS\n19eXRh6EuRfUl6uJcHQAREtLCxMTE6mgqfBqsp2JiQkqlUrqVtAwsXiknQq7zoJRrVbTCTtbW1sp\nlUppZyDsFN5KpZIeH2cqC3NK1Gq11CreunXrfD8+wzCWAfMSXhG5FHgjcAowLiLrk13DzrnJ5P/P\nAx8VkQfx4WQXAo8BVzSrW1/vQx+tilVra2uaX3d4eDidCkgJ5zfr6+ujp6eHzs5OYGcEweTkZCqK\nOsxYh+8Cde6EMHqir6+P1tbWdPBEOBxZ01GG+XZD3y9QJ/jOOfr6+tL0kWGHnz4ktKMtK7xO71HW\ndO+GYawc5mvxvhPfeXZDtP2twDcAnHOfFpEO4Cv4qIebgFc3i+GFncKn7gAdEaZ5a3W4biy8GlGg\nGcJC4VUfrcbtOufS6dvD4bvqqw2FVy1hzWg2NTWViqX6jDXTmc4krMl6dEAGkAq9xgT39fUxPj7O\n0NBQGukQ3gPNeKYPCXUrhD5lE17DWNnMN453TlH7zrnzgfPnU3ccYaCip0OBNd+tvvJDfehYV1dX\nmnVMLWX1FatQq+UbzhQRdqA55+jo6EjdHGp9h8ly8vk8pVIpFUxNRakWqg6WCPMKh37fOH2k+o3D\nTju9LhXY2PI10TWMlc2yydWg1q5ah5oEZ3x8nM2bN6eZx9TPCjtTSeow3f7+frq6umb4SXVUWbVa\nZXR0NB3lpoMgtE7NXlYsFtPJNrUOFXiNyW1paUmnkA8711TINVqivb09Fe9arUZXV1cq1qOjo3XT\n/+jDJ5wKKIxuMNE1jKcG8/Xxfhg4HTgYmAB+AXzQOXd/UOZy4C3RoVfFo95iQotXhVNHhm3dujUd\nequ+U9gpvGoh64SXKqZQH+YV5lsI8/+GMbo680StVkvja0MLNPS9qktB2x4u6u9Vf60+LAqFQjpL\ncVtbW2r9xqkjtU1ZdVs4mWGsbBY8V0PClcBZ7EyWXj/5WQahiOmrfLlcZnBwkFKpVCdwSmhljo2N\nsW3btjrhVitRR5KFQ3Tj+dRyuVwaKRF3boWCG85WEVuqWlbr1QEecVu0PXF5vSbtSAutXe3w05A1\nE17DWLksRq4GgCnn3Lb51K2CpHOJacaxoaGh1K8b+jtDUVLh1TjYMIlMLFChH1WH3upUPNqBp8fF\n1mV8brVOw20aWqYRCsPDw5lJbdQvHIp8mGsijLoIrXMTXsNY+SxoroaA40VkCzAIXAd81DkXl5mB\nClE8a288JDgUYI2DBS/eWRZxo9dzPZ/G5GblSgiP021hMp9QhHVfvD9LwDUlpXbqxW2Lr1lH5Km/\nOJ7I0zCMlcNC52oA72b4HrAB2B/vjviJiBztmvQMqQhqp5UOlNB5yNTnG1u9+rpfqVTSUWdhnfo3\ny3INLV4V3qwcuXquLOEN98fnykrvqIQhbLELJawvjBnWHL+1Wo2hoaFGt9IwjGXOgudqcM6FGcju\nFpE7gYeA42kyvbvmTQDS1I0axdBIzLJEMkvbY6s3dEM0mlAydiPE+ROyLOH5EE4tpHU2qsc5l+Z8\nWLVqVTobhmEYK5OFztUwg2QY8Xb8jMMNhXfLli3p9Dva+aQxvXGe2qDusE2Zr+y6LxRd9avGUQqh\nuGtdKsDx9l3xscZukNByzhJyPZ/OCffEE0+kydbN1WAYK5cFzdXQoPzeQD/QVKAPP/xw2tvbmZiY\nYHBwkO3bt6eTRTazBpuct+7/UHTDGYxhZ4dbWFYJs4/tSjsataeRLziLYrFIb28v69atY9WqVQAM\nDw9zww037FJbDMPYvSxorgYR6QTOw/t4N+Ot3E8B9+OneW+IxuJqyJaIn44HZs67FhK7GTSBDTBj\n3rS4oyscGRZPSBl3loUuieReNBXh0D2R5ZoI1xtZ9GE9Gu2hYWWaStIwjJXHQudqmAYOw8+31gc8\ngRfcc51zFZqg+RnUvaAzTYRzk8Uxs1n+3c7OTrq6uuoiBzTHguaDiDvodJRYVueadrxptjKNpW1G\n7CcOXRrxvjD3b5ZQh0nXtbOxWCzWTRtvGMbKYkFzNTifoexVu9IQEUkTw6gIq9iqxRoKbyxiKr69\nvb309vYCpBnNxsfHyeVyaU7d0HLW2N/Qog7DyrRNmolMZynOan9Wm1RI1VLWc8QPkzjCQa3scPiw\nTfdjGE8NllWuBhUXFUIN8WptbZ3haoh9sSqYvb299PX1pdtVuMrlciqyWbNGxJaz/q9xs+3t7XR2\ndtYJb9iWMKlNXHcoylliG7oTVGTD+kLxVutbB3oYhrHymK+P953Au4D9kk13Ax9zzl0VlPkY8Ha8\nq+G/gHc55x6crW61MLXzKwzn0v3hNO9QP1hBRUxTQ6qQaYSERkc08rWGI8tC0VRXQ2dnJ93d3RSL\nxRn+2FAUo/s14+EQzywcuj3CPL76AAqjHuKhy4ZhrEzma/H+Afgg8AA+D8NZwBUi8jzn3L0i8kHg\nvXgf70bg48DV4nM5zBr/FCaHgXoBDGcF1kEPYeeUWpC6xP7SrM6rsOMsHGoci53m5w0fCqFlK7Iz\nA1qWKOvf2GIPryd0K4Rti+vQRYc5G4ax8pivj/c/o00fFZF3AUcB9wJnAxc6534MICJn4udeO41Z\npnZXYYqtUkV9vcCMzqpYeHW0m9YbtD9dwiiF8G9oaYbCp7MTx5axdp7FwttIfPVvLKKaVS1LeON6\ngDRywzCMlcecEptnISI5EXkD0AH8QkSejp/C/Vot45wbAX4NHD1bfVNTU9x3331pFMLU1FQ6+0SY\nszZcHnjggUzRDf2oQVvSuc5CSzae2ViTlhcKBbZu3ZqGp6m/NSvKQpf77ruvzhcdRi9khYxt3Lhx\nRnxxmHg9jj/esGHDjCngDcNYecxbeEXkOSIyik/1eClwunPuPrzoOupnFyZZ32O2esfGxtiwYUOa\nIaxUKqUiPDExUTfLr+bVffDBB2eIn/p1w9AxFakdO3bUWbjxIIZQAFtaWti0aVOd71anYtdFHwo6\nFdD999+fTg0UPjA085qua9seeeSR9PrDdqrLJYzCqNVqPPTQQ3V+YsMwVia74ij8PfBcoBd4DfAN\nEXnpk22Izsg7Pj6edmjFvtew80pFVQUojBSoVqtpZIQSD5qI69eIitidoMOL1doNBS90HagFHObf\nbRb2Fops1hIKrrYpjP0N52ozDGNlMW/hdc5VgYeT1dtE5IV43+6n8R1u66m3etcDt81W78aNG5mc\nnOTOO+9MBWvPPfdkzz33rIthDTunnHNpmFgoSFmdaHq8/g0t36zhxGGnmYp4OO1Q2BYgPW+5XK6r\nQ8tl/a+zXJTL5brsa3FUxYYNG3j00UfZsWMH11xzDWC5GgxjJbMQXeM5oM35ZDibgROAOwBEpAd4\nEfCl2SrZd999eeyxxzjooIPqXve1oywrfCsW3jgELSyvYqjRAHGyHN2n0RJheFtra2vqJoDs+F+1\niMvlcp1YZw1FDoV3amqqzhccx+w659hrr73YZ599uOmmm3jpS19KPp9ncHCQH/3oR/P6oAzDWB7M\nN473H/D5dh8FuoEzgOOAVyZFPo+PdHgQH052IfAYcEWTaotAOt3P2NjYDGsUqBNjFcpKpcLg4OCM\nV3mdbFKnZFefcbVaTWcYzgojm5ycrIsWqFQqDA0NpQ8A9dvGhG4ILR+Hj2m5cD1sf2jtxg8Kdb2U\ny2V27NhBPp9ndHS07v4ZhrFykPn0jovIV4GXA3sCw3jL9pPOueuCMucD78APoLgJeE+zARQi8pfA\nN3el8QYAZzjnvrW7G2EYxtyZl/AuSgNE+oGT8BayZfeeO0X8CMKrnXM7dnNbDMOYB7tdeA3DMP7Y\n2OUBFIZhGMauYcJrGIaxxJjwGoZhLDEmvIZhGEvMshBeEXmPiGwQkQkR+ZWIHNmg3HkiUouWe4L9\nx4rID0Xk8WTfKRl1fExEnhCRkohcIyJvaHaMiFwenc+JSEVEtojID0TkoCbnKIvIsIiMNirfpP5h\nEfmFiLyqQd3a/gPme78Nw9i97HbhFZHXA5/FT5L5fOB2fA7fNQ0OuQs/DHmPZDkm2NcJ/A54Nz5h\nT3wuzRf8DuCFwDhwMT4eOfOYhCuTc16XHP9i4BVAK/BTEWlvcI5fAQ8Cg/gpkWaUj+p/E/AG4Ajg\nBcn5rhCRZzVp/9UiUmjQbsMwliPxqK+lXvDidEmwLvjRbv8zo+x5wK1zrLcGnBJtewJ4X7DeA0wA\nr2tyzOXA9xucY01yzDFzOUeD8g3rT/bvAN46l/bbYostK2PZrRaviLTiLbswh68DfkbjHL4HJm6B\nh0Tk/4rI0+Z4rieTL/j4xFXwexG5VERWJ9v78FbywBzPUVe+Wf0Lne/YMIzlw+6eP2YN0EJ2Dt9n\nZpT/FX66ofvww5bPB24Ukec452ab/XFX8wVfCXwP2ADsD1wE/EREjsbnprjZOad+5tnOEZfPqv9i\n4K/xlvEoSb7j5Hy7nO/YMIzlw+4W3nnhnLs6WL1LRG4BHsG/xl++SOcMpyy6W0TuBB4C/gM4BHjJ\nHKs6Av+QqSufUf89wP14n/N+LFC+Y8Mwlg+7u3NtOzCN71gKWQ9snu1g59wwXqTm0rO/mZ35gud9\nruCcG/A5JY4BjnfObZrDOY5JtsXls+p/EH9fcM59BN/ZePZCtd8wjN3PbhVe51wF+C0+hy8A4vNA\nngD8YrbjRaQLL7pNxSw51wa8QIXn0nzBs54rOOZyoB3f+ffoHM7xFbxb5MNx+Qb17w30s/Oa0nzH\nC9F+wzB2P8vB1XAx8HUR+S1wC/A+fIfS1+OCIvIZ4Ed498JewAVABfh2sr8TL8Q6He8zROS5wIBz\n7g9k5wt+HHhYRJ4XH5Ms5+F9sJuBLwB/lpz/KhFR63PYOaeZ1cJznAH8eXKOK+LySXvD+v8B39n4\nMPCYiFzEk893bBjGcmN3h1X4IAbejReSCeCXwBENyn0bLzQT+GTs3wKeHuw/Dt8pNR0tXwvKnI8P\nyyoBVwN/2egYfOrFq/CiOInv3Moqe2bUTj2HS5bM8hn1jyTLRLLtp8DLG9St7T9gd39+tthiy/wW\nSwtpGIaxxOzuzjXDMIw/Okx4DcMwlhgTXsMwjCXGhNcwDGOJMeE1DMNYYkx4DcMwlhgTXsMwjCXG\nhNcwDGOJMeE1DMNYYkx4DcMwlhgTXsMwjCXGhNcwDGOJ+f9T7quQNXcPhAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10bba59e8>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAACXCAYAAADeU8isAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXmcJEd157+v6+i6uvqamZ6RhEdoEAKBJMwt0LXgFYK1\nOWwvhzEgvJhLGBYva8yCLQysvdyHDV6WQ5i1wcCCBQI0MgKEEJjLAiR0azSjQZqrzzq67qrYPzIj\nJiqnqvpQN9PTvO/nk5/uyoqMjMrrl+/FixdijEFRFEVRlI3F0PFugKIoiqIox6ICrSiKoigbEBVo\nRVEURdmAqEAriqIoygZEBVpRFEVRNiAq0IqiKIqyAVGBVhRFUZQNiAq0oiiKomxAVKAVRVEUZQOi\nAr1CRKQjIs883u1YKctpt4hcISJf+lW1KdznzrBtZz/Aer4tIu9bq3Y9UERkUkQOi8hvrHC7FZ8D\nEdkrIq9dWQtXj4g8SURuEpHGr/p62UhstGtuPfh1+I1R1uM5KCKvEJGvrHS7DSfQIrJFRP5eRO4V\nkZqIHBSRq0Xk3OPdtl8FIvL8ULDW+sG3Hbg63MeaiGJY10tEZP4BVnNc8s2KyHNE5BoRmel3PETk\nj8OHVCEsk19m9W8GrjTG7A/rscfcLrMicp2InBfZ7rXApQ/oh0VYy/Md8j7gRmAna9zWXyXLPS4i\ncuEKz/2GZwUi9BzgL1ZQ71pfa+vGgLau+T0IfBJ4tIg8eSUbbTiBBr4EnAO8CDgd+B3gOmDyOLbp\nV4KInAq8G7h+res2xhwxxjTtrlhbUXygdcmatGLlZIHvAn9G/9+QJnix+Z8DynQhImngj4CPR74y\nwFMIXpbOBw4AXxWRra6AMSVjTHEFv2FZTWJtz/cu4NvGmIPr0NZfJcs9Lrbc8bpOjxvGmAVjzOIK\nNlmza01E4mtRz6Bd0KOt63EPhs/ezwCvW+mGG2YBRoEOcP4S5V4P3ASUgf3Ah4Gs9/1LgHngPwG3\nA4vA5wketi8B9gJzwAcB8bbbC7wlPJBl4D7g1ZF9d4Bnep9PAT4X7m8WuBLYuYrfPgTcALwUuAL4\n0hLljwC/633+GXC/9/k8oAakou0O/2+HfzvAt8L1VxC8IP03AvGYAf4OiA1ox0uAuQHfP41ABOfD\n+q4CTvO+3xm24XnA94AqcDNwQaSeRwJfB0rAIeDTwKT3/beB963yurNtOHtAmQvDY5ZfRn2/Dxxa\nah/AI8J1v+2t6zr3QA74p/B6/CXwJ9HfGl63bwI+ARSBe4E/jlyzx5zvPm1PAh8CDofn4rvAYyO/\noe39ffEaXZ9972kgAxT8+sL1zw7LZ/u0Yalrb8nj0uc3f9K75j4AvJPg3j8IXB7ZfpTgRe1I+Buu\nXeI6s/t7DvAtgmfXz4AnRsqdR/AiXwnP9weBTPjdGeF2z/fKPzcs+zDg8h6/6YI+7Vmzaw14GXBr\neF3dCryqx+9+LoFBVgFeDPxGeN7mwnN9M3DJCp4LQvACfld4ve0D3rTEc/BTdN+Dfe8J79nQIXj5\n/nF47L8HnB45lueH2w8v+9m0mgfaei1ALDzp7wWSA8q9NjwovwFcFJ7sv/O+fwlQB3YDZ4cX83T4\n+bPhRfqM8IT958jFtwD8d+AhwGuAJvDUyAVohS4O3AL8H+BMghvj/wK3AfHIyfuNJX77XwFfDP9f\njkD/P+BD4f9j4W+ZAx4arvsfwPV92v3Y8PNFwDZgzNvvAsHD8aHhMSoD/2VAO5YS6N8leJA+ODwX\nVwI/73Fj3huWOyM8ngVgPCwzGt4cbyfwqpwTnstvDniQvBXYu8zrbq0F+gPA1wbtg+Bl8T1hnRd7\n5aIC/THgnvBcnQl8MTxH0YfmNPBK4DTgjUCL8AHR73z3afsHCV4ELia4T64gEJ8xgofdtnD/rwn/\n7/mwWcX1udQ9/VHgqsg+riQUy1Vee0sel/A3Pyc8T7vCciPeNTdP4ALeReD1a9P9vPgG8C/Ab4Zl\n3kUg1j3PgXed3AJcQvAc+nx4DQyFZXYRCNKfhOf7icBPgE949bwqbNsp4TILXBZ+lwX+GfgasDX8\nTfE+7ekl0Cu+1oAXEhg8zwp/47PDel4U+d17wu92EniariK4188ETiV4Jp23gufCOwlezv4wvA6e\nALx0Gc9B/x7se094z4YO8H0CrXkY8B3gu5FjmQ6PVc+XoZ7Hf7kFf1ULwc0wQ/AGdQOBa/GsJbb5\nPeCI9/klBDfKqd66vw8v6rS37mrgI5GLL/pg/SzwVe+zL3R/CNwaKZ8keIP6rfDz4wgeNjsGtP88\nAqvBCtJyBPo1wE3h/88ML44vAS8P1/0r8PY+7e4pSOF+76Hbq/A54DMD2jFQoHuU3xLu+8xIW97g\nlYmFx+MN4ec3A1dH6jkl3O4h4efog+Qy4BvLbNNaC/S/AB/rs49yeB3aN/cf4nko/HNPYD3Xged4\n3+fDOqIPzU9F9nfIuxaW/H1huUy4v+d56+IED9b/5q2bp4/lvNrrs8f20Xv6cUADmAo/bw0/n7cG\n195Sx6XnuQ+vue9E1v0Q+Ovw//PCY5WIlLkLeNkS1+Kl3rqHh/u3LzcfA/4+st15BA//pLfuKwRC\n8Q3g65HySz5j+txXq7rWwt/8vMi6NwPfi2z3mkiZnwN/0adtA58LBPdPlVCQBxzrXs9Bew8ueU94\n18dFXpmnh+uSkbpnCV9KlrNsuD5oY8y/ACcR9D1fTfDjbxSRF9syIvJbInKtiNwnIkUCq3VSRFJe\nVRVjzD7v82FgnzGmGlm3LdKEf+vx+eF9mns2cLqIlOxCcAKGCd5yMcb82BhzpjHmYK8KRCRH4Jb5\nY2PMSoKtvgOcKSKTBMfounC5KOy7eVL4eaXcYsIrKeQgxx6jZSMiDxGRz4jIHhEpENzghsBS8vmB\n/ccY0yawCOxxPwd4SuQ43xbWs6vXfo0xHzbG/MfVtvsBkiawGHvxXOBRBNbdXQQPj3afsqcRPAx+\nbFeYoG/sjh5lb458PsSA8yYi53nHsygiLyA4lnECMbX7awE/ov89gIj8wqvra+HqFV2fS93Txpgf\nE7zoviTc5EUE9/MNA9q13GvvgXBT5LN/v5wNjABzkWv3VPpctx7++TzIUe8FBPfDpZE6d4ffPdjb\n7r+EbfhNgq6ztWKl11qG4Pd+ItLmN0faC/Dvkc8fAv5CRG4QkbeKyFned0s9Fx5OYDB9a4W/z2cl\n90T0nMGxx6VKIPrLYr074VeFMaYBfDNc/qeIfIzABfzpMJDqKgI37P8gcJudT9DPk+Tog7HZXSum\nz7oH8pKSIxCSP+DYAJLpZdaxi+BN7ioRsXUMAYhIAzjDGLM3upEx5mYRmSNwz1xIcCwOA39OYG10\nXVQrYK2P0VcJHowvI+jXHiJw3yVXUEeOwBr4M449zj1ffI4zM8B4n+/uM8bsAfaISAK4UkQeYY4G\n8K2WlZ63HxM84CyHCV4IVsPTgUT4fxVWdn2KyE6Wd09/HHg1gZv4UoLI2EGsxbW3FIOOey7c74Uc\ne90urKBe+8Ls1/tRwhiayHb7vf8fReDObgM7CI7/WrDSay0X/n0ZgbD5RF9OuwLSjDGfEJHdBPFE\nFwNvEpE/NcZ8mKWfC0u9BK01g86ZZYLla8PGs6D7cBvBhQbwaAIX7BuMMT8yxtwNnLyG+3pij8+3\n9Sl7I0Hfx7Qx5p7IUlrm/m4DziK4mc4Jl68QvPWdQ9D30Y8bCPp0zgz/v4nAen8F8JOIt8CnEf6N\nLbONq0JEJgj6st9hjPm2MeYO+kfjP9HbLgY8hsBiguA4PwK4t8dx7vcbV4pZusiy+SnBORm4D2PM\n/yNwS766Tz33hN8/zq4QkVGCY7oSjjnfxph65DguEvT/NQE3FCS0dm03TU+MMb/06vFfmJZ7fT6G\n5d3T/wjsFJE/IbBePt2vTcu89pZ7H6z2frmRoB+13eO6nRuw3VLX4o0Ebvq9PeptAYjIOIGr9h0E\nQU+fEZHhyG9aj/u/17V2hOBFZVeP9t7rbdvzdxtj7jfG/B9jzO8TxCf9cfjVUs8FGxj21OW2tQeD\n7olbBmx3DCJyGsH1/9PlbrOhBFpEJkTkmyLyQhE5S0ROFZH/TBC0dWVY7G4gISKvFZEHi8iLCG74\nteLJIvIGETldRC4jiMj9QJ+y/0RgLX05dBmeKiIXicgHReSk8Dc9TkRuE5EdvSowxjSMMbf6C8Hb\ndckYc5u94fpwHfAC4GfGmEromr6eICDjOwO2O0Jg6VwiItvWYHxnXETOiSwP42hk+8tFZJeIPIXg\nBut1I14mIs8WkTOAjxAEFl0RfvdhgjfPfxaRx4rIaSLyNBH5pOd16EJELhORawc1WkTGReQcgptc\ngIeFbZ/yykyFZU4Py5wdlulnIQNcAzwiFNOuXfYo+yECqyAV/cIYUwb+AXhPeF09gsCKbLOyF4pl\nnW9jTIUgVuPd4fE9M9xfmiBqd6Vcx/Kuz2Xd08aYBYL+/XcD1xhjDgzY93KuveXeB/eG2/2OBHka\nsn3KRdt7LUEX2ZUi8h8lGHf7JBF5h4g8esCmSw3neifwJBH52/BafIiIPEtE/tYr89Gw3e8gGJUx\nRPD7LfsIruWHSpBUZ628qf2O6eUE1/mfhM/WR4rIpSLyX71tj/ndIvJ+Ebk4fLY+GvgPHH1ZHPhc\nMMbUCY7Vu0TkReH3TxCRP1qirY4l7gnfg9PrnEXXnQ/c08sj2o8NJdAEwS8/AP4rwQ18M4Fr+6ME\nEYsYY24C/pTArXEzwQPgz9ewDe8liO77KYG77fXhjWZxN3j4lnYBgVvpiwQXzscI3pLsOLoMwZt8\ngrXnOwTn8NveuuvCdddFyvrtbhMcz1cA93P05We1ZAneZv3lK+ED+fkEFtLNBMf2DT22NwTn8M8J\nhpQ8Cfgda2WEVtmTw991DYEl9j5g3usvjwrWFpZ22T6T4DxfFW7/2bDtvji8Mizz0bDMd8Iyv9Ov\nUmPML8Iyz+3xO6P8A4G79zV9qns9gSv4KoLAqhsIhg76fdy96l3t+f5zgmv50wTdN6cRRJkXlthf\nL5Z1fa7wnv4EgYt6oHs7vC6ex4Brb7nHJXwRuBz4XwT9rX/bq1wfnkHwUvJJgtiBzxD0gQ9yNy91\nPm8mcJufHtZ9I8GohfsBwhecSwiCkTqhyLwIeJmIPC2s5mNhe35CIFRPWmZbVnWtGWM+QeDifinB\n/XsdR4e8Dqo7RjDU81aC4VS3EwSALuu5YIx5G8G5/6uwjn8mCDBcyX2x2nsiuu4FBCNUlo10xwP9\neiMie4H3G2M+dLzbopzYiMgzgHcZYx65xvVmCB4mf2qMuWKp8puNUHzeC5y0hHdJUTYMoeX9TYJI\n/OV2f27MIDFFOdExxnw9dD2ebIy5f7X1iMijCMZV/ojA7f+XBG/mX16blp4YSJCd7SSCcbf/W8VZ\nOcHYQTA0cdniDCrQUdSdoKwZa+iJeQNBN0mDYBjKeUsEGW1G/oxgWM51BK5mRTlhMMZ8czXbqYtb\nURRFUTYgGy1ITFEURVEUVKAVRVEUZUOiAq0oiqIoGxAVaEVRFEXZgKhAK4qiKMoGRAVaURRFUTYg\nKtCKoiiKsgFRgVYURVGUDYgKtKIoiqJsQFSgFUVRFGUDogKtKIqiKBsQFWhFURRF2YCoQCuKoijK\nBkQFWlEURVE2IOsm0CJymYjsFZGqiPxARB63XvtSFEVRlM3Gugi0iDwPeC9wOfCbwM+Ba0Rky3rs\nT1EURVE2G2KMWftKRX4A/NAY87rwswC/BD5kjHnXmu9QURRFUTYZa25Bi0gCeAzwTbvOBG8B1wLn\nrvX+FEVRFGUzEl+HOrcAMeBwZP1h4IxoYRGZBJ4G7ANq69CezUoKOBW4xhgze5zboiiKoqwx6yHQ\nK+VpwD8d70acwLwQ+MzxboSiKIqytqyHQM8AbWAqsn4KONSj/D6Ak046iYWFBU4++WQ6nQ7tdpsH\nPehBjIyMMDMzw/bt29m5cyeTk5PE43FisRhXXHEFv/d7v0e73WZoaIhYLMbQ0BBDQ4Hn3hiDMYZG\no0Gz2eTKK6/kt3/7twFcOX+bTqdDp9Oh2WzSbDa56qqruOCCC6hWqywuLrqlUqlQqVRoNBq0223a\n7TbGGEqlEplMxtVj9w8gIgRd8bi21et1hoeHjzkg0biAdrvt6ozFYogIxhharZY7foqiKMrmYs0F\n2hjTFJF/B54KfAVckNhTgQ/12KQG8KxnPYvrr7+e1772tTQaDSqVCnNzc9xzzz0cOXKEeDxONpsl\nn887sWq32xw4cIB6vU42myWbzTI6OsrIyAgjIyNks1kymQyxWIx4PM4NN9zAxRdf7LZttVq0Wi2a\nzSb1ep1isUipVGJ+fp5isUitVmPfvn0UCgUqlQr1ep1Go+GEV0ScuBtjGBoaIh6P0263EREn0rZc\nlEajQSwW63UMuz7HYjFisRjVapXx8XGGhoZotVrMzMy446coiqJsLtbLxf0+4FOhUP8IeD2QAT7V\nb4NWq9UlZlaUrMXY6XScoFrh63Q6lEolyuUyxWKRWCxGLpdzwpxOp0mlUiQSCeLxOKVSiVtvvRVj\nDM1m01nWrVaLRqPB4uIi5XKZUqnkBHp6etpZy61Wy1nr1iK2i7Wi/cVazNbi9S3oQfQqt9xtFUVR\nlM3Bugi0Mebz4ZjntxG4tn8GPM0YM91vG1+grTBbV3Y8Hnci1+l0uizSdrvtrNt6vU4ikXCCbLe3\nn+fn5/n+97+PiFCr1ajX607wO52Os5Dt30ajQaFQ6HIxW0H23eM+9uXBYq3r8LgMFNrod4OGwKlg\nK4qibG7WLUjMGPMR4CPLLd9sNgGc4MXjcSesvhXdbredCFvRbjabLC4uUiqVALosVyv48XiccrnM\nXXfdBUC9XqdWq9HpdFwbbH+ytYZbrRbVavWY+qxb24o04OrxhdPfzse2u9d30XL+//6iKIqibG42\nQhQ3EAj02Wef7dzH1gK2i3Ujt1otkskkyWSSM8880wm4XXpZndbyzuVy1Ot15y63QuwLn31B6HQ6\nJJPJY9zTtoy/X7uPdDp9jGBbeomqX3+/sr6Qp1Ip4vF413pFURRlc7IeiUouF5FOZLl1qe2azSZn\nnXWWs0qtMFsrGujqA04mk5x99tnE4/FjIrJ7uYo7nQ7pdNpZzjYCO9pnbEV3aGiIVCoV/W1d+/Lb\nGY/HyeVyPdvgb+cLvRXopaxou+RyOfeyoiiKomxu1suC/gVB1LZVktZSGzSbTTeMyPbbWvG17m3b\nLwwwPDxMIpHoEr2om9kKsx8pHbWEe7mNoxZs1Br2+8LDoU6un9ofWmXL+m2LshxXd7Td9sVAURRF\n2bys11O+NSggrBeNRsOJaSwWo9PpODeyHaPsC3QymSSRSLj+aeAYd3UvCxmOWqW91tmXAYsf9OXX\nZev2g9V6iXN033Zfg+jnvvbb2Gt4lqIoirJ5WK/pJk8XkftFZI+I/KOIPGipDWw0dTQAyx9nbIdZ\niYhzffca8tQvGrpXX2+vpdf+/eQn/jAvG1QWTU4S3Vevdf766Hb91sdiMTKZDPl8frnnQlEURTkB\nWQ+B/gFwKUEKz1cCDwauF5HsoI2sBQrdWbesUEaHWfl9z36/da8+aJ9+Lujod7Ze2w/uB3/ZdvgJ\nUwaJs2U5fcdRUfaFHwKBHh8fZ2oqmqhNURRF2UysRyaxa7yPvxCRHwH3As8Frui3nbWgo/iWrBUr\nOJpdK2rx+mV6tK3rL3T3V/tub9+N7LvL/fHQ/dzZ/md/P/6+lmpftC4r0rFYzGVJUxRFUTYv6x5p\nZIwpiMidwEMGlbvllls4dOgQu3fvdv3Aj3rUo5icnCSRSHSl57R9v1E3dD+XdS/Xt98v7ItzlGjd\n7XZ7bQ+QR7/x0q1Wi8XFRarVKgsLCxw4cKBn6lBFURRl87DuAi0iOQJx/vSgcmeccQYXXnghj370\no4nH49TrdQqFAvv27SMej9NsNo8RaH/8c7Sf2BfkqED3yujlW6x+hHcv8e8V2f0Aj1FXO6Jts/3t\ndvx3JpMBYG5ubs3aoCiKomws1lygReTdwFUEbu2Tgb8CmsBnB23nT1xhBcqm6Uwmk12TW0Rzdvtj\nke33foS1FdVoH7MfAQ5Hh0rBsULpu7ztZBhLuaofCL36q60XoVqtrqslryiKohx/1sOCPoVgfuJJ\nYBq4AXiiMWZ20EbtdtvlwbbC6Qu0zQDmZ/+KJjRJJBLH5Ov2xdmfXcrW7Zex00z69LKslwo0Wykr\n2caPHFcURVE2L+sRJPaC1WxnZ5MqFApAkIjECnAymXQBYH4wWVSk7VSP0THJ/oQYdrtEIuFSZ1rR\nrVarPYPA/O18gY5OjBE5Dn1/a9SlHS3fqy/alrFjsFWgFUVRNjcbJh3V4uIi9913HyLCSSedxI4d\nO0in025IlQ3QslauzTzmW8rQf1IJ33q2c0uPjo6SyWRcys3Z2VlmZmactW7r97H7s/9Ho8b7jcVe\nCVH3uu8VsOtVoBVFUTY3KxZoETkf+O/AY4AdwLONMV+JlHkb8DJgDPge8CpjzN2D6rUCXSgUaDQa\n5HI5UqmUs5KtGC5XoKNRztaq9vNmT05OOpG2/cuLi4vuRSDq3vbHZg96AVjOkKqV0Gu4lQq0oijK\n5mY1Y3WyBPM7vxo4Rn1E5I3Aa4CXA48HFoFrRCQ5qFLrwm42m25CC2vJRgWxV0IQK1q+NRt1Q9vE\nI8PDw4yMjLBlyxa2bt3K1q1bu/4fGxtjeHh4yUjvflHegyLI+7GcMv44bBVoRVGUzc2KLWhjzG5g\nN4D0VpTXAW83xnw1LPNi4DDwbODz/epNpVJuAgwI+qRrtZqbjMIf99wrgrpXRi9/na0jHo+TSqXI\n5/Ns2bKF8fFxhoeHGRoaolaruSjyZrNJrVazv9n99QXXt9LtPn1h9rftx3Jd4f1SfyqKoiibkzXt\ngxaRBwPbgW/adcaYooj8EDiXAQKdTqfJZrMkk0mGhoao1+ssLi46KxromunKDrnyU25Gs2/546Zt\n33MqlSKXy5HP5xkbG2N0dNS9FIyNjbmhXpVKhWq1SrPZdPuxLwa+xRzN0e2PlbbrveNzzDp/ffT/\naLl+WcoURVGUzcdaB4ltJ3B7H46sPxx+15exsTEmJiZcH7GNqLYCaeeBjsVitNttKpVK17zOQFeE\ntRVoaxHb+Z3z+TyTk5Pk83nS6bSbtrHT6TA8PMzY2JhzsbfbbUqlEsVisctVbgXYF+loQJnfjuW4\nrn36RXH7nx9IEJqiKIqy8dkwUdxWoK11WqlUWFxcdN+3222XNazVavUVaD/RSKvVotFokEwmnfU8\nOjraJdCJRMIFnKVSKZcUpV6vu+xlpVKpa6iVbylH+6KjfeD2by9BHTS0KrpeLWZFUZRfL9ZaoA8B\nAkzRbUVPAT8dtOGNN97oEo1YsXvYwx7GIx/5SJLJpEtikkgkmJiYIJPJdPVb+33TUdd2LBZzKTJH\nR0cZHx8nkUg4N3qpVKJarZLNZt2wq4mJCSCwrGu1GouLi86ah95u5n5pQaMWb7QPfZA42wQqdr+9\ntlcURVE2H2sq0MaYvSJyCHgqcBOAiOSBJwAfHrTt4x//ePL5PM1m041RzufzZLNZcrkcrVaLWq1G\nLBZjbGyMkZERisUi6XTaJTWxwmVd4v7UlMPDw67e8fFxhoaGqFarFAoFDh8+TLFYZGpqiqmpKZLJ\nJOPj46RSKSfiIkK5XO6Knu6VZcyfv7qXOPss102dTCZdP7lNsmKMYX5+flnbK4qiKCceqxkHnSWY\n/MKqy2kicg4wZ4z5JfAB4C0icjewD3g7cB/w5UH1joyMMDo6SqPRYGRkhPHxcUZHR8lms2SzWVqt\nlksDOjo6ytjYGOVymZGREQqFghMwm22slwU9PDxMOp0mk8k4F/r09DQHDhxgbm4OYwyJRILx8XE3\nDrtUKrG4uNjVpw29o7atSMdisSWjrftZwb0CxqLWts2ApgKtKIqyeVmNBf1Y4NsEwWAGeG+4/h+A\nPzLGvEtEMsBHCRKVfBd4ujGmMajSk08+mZNOOolWq0U6nSaXy5FOp7vcxsYYkskkY2NjTE1NOQt4\nYWGBubm5rjzV1tK1Am1TglpLu1arMTc3x/T0NIcPH2Z2drYrIcrw8LCL9Lai7A/9svX3mlTDF2k/\nuMwvu5rhV3b70dFRcrkc+/fvH1iHoiiKcuKymnHQ32GJBCfGmLcCb11JvaeccgqnnXaas2LtcKtG\no0GjcVTbU6kUY2NjbNu2jXK57ETWun1t/7Of4MSfmtKuq9VqzM/PMz09zZEjR5ienu4S5y1btrio\nbhtIVigUKBaLbj+9oq/tCwHQNTSr17CrfvQTZ9s/byPRFUVRlM3LhoninpiYYPv27U4kbSR1rVaj\nWCw60W00Gtx3332Uy2UOHz7M3NwclUrFLTZFpy/MdsINP6e3nZyjVqthjOmKDi8WixSLRUZHR12f\nd7VapVKp0Ol0mJ+fZ35+vmtqS4ufejQ6uUWv3N5Reo199jOI2ReIkZGRdTkPiqIoysZgwwj0+Pg4\nO3bsIBaLUalUKJVK1Ot16vU6CwsLXXm3FxcXOXToEKVSyfURW4HuN190IpFwAt3pdKjX626olrW2\nW62Wi+ouFAqMj4+7xb4cWKEtl8td019aegWK+bmze2Ubs+vtXz+4LFqHCrSiKMqvB2s+WYaIXAG8\nJLLZbmPMMwbVu7CwwOzsLIlEwonkwsICCwsLXeOQ4aiILS4uUi6XmZ+fp1wu02g0ulzBfmpPO4TK\nRnz7aTqtGFrLulqtOtEfHx8nnU4zOjrqUoHWajVKpRLlctmt6+XCtvu3FrDf9ui+rVs82kdt22l/\nTzKZdMPLFEVRlM3LaixoO1nGJ4Av9SlzNXApRyO960tVetttt9FqtVx/b61W6xJKG5hlxTcWizE/\nP8/c3BwzMzOUSiU3VtgXvUQi4QTWRoXboVl2+JIfHGaTm9RqNZdNLBaLkclkGB8fd27wSqXSNcEH\n0CXEtg1WoK1VbPvIIeij9ueztv3kQJdL3CZA6XQ6pNNpUqmUK6coiqJsTtZjsgyAujFmeiX13nnn\nnVQqFZLFASIWAAAbnklEQVTJ5DFjmf1pJm0k9/DwMIVCgenpaWZnZymXy7RaLSe2vkDb8c9WoO32\nNsmJn087KtCtVssNbcrn8869vbi46MTapiX1o7btS4R1dffK0e0LdDqdJplMut/faDTc77HpSI0x\nXTnLFUVRlM3LevVBXyQih4F54FvAW4wxc4M2OHjwII1Goys3djQ4qt1uk0gkGBsbI5lMukktKpVK\nl3vbT06SyWTI5/NMTEyQz+ddtDfgLFbfrWz7eq2r2waHxeNxlw88m80yOTlJvV6nWq26JCp2Yo/o\n2Ggr1Fasfes4lUqxZcsWtmzZQi6XI5vNuvSilUrFRbRbKzubzbJz50437ltRFEXZnKyHQF8NfBHY\nC+wC/gb4uoicawaMMTpw4ACFQqGrL9aPYLbrMpkMiUSCfD5Po9FwCUf8YC0rijZ7WD6fZ3x8nHw+\n76xkf3x0dF++FW1FOplMumCyTCbD5OSkSwFqI8Hr9foxCUrsy4Kd5MOfwMO6rLds2cLOnTtdQFqj\n0WBmZoZCocDw8DCpVIpUKuXGh59yyilUKpV1OHWKoijKRmHNBdoY408peYuI3AzsAS4iSHDSk+np\n6WMyY23ZssWN97WC549JtuJoh2BBdzBVNptlbGyM4eFhOp2OK1+pVFhYWHDTSUaTjVjXdaFQYGZm\nxuXn9rOJtVotksmke1GwAm0n2PDF3h+HbfvErYdgZGSEsbExJicnuwQacFHnd911F3v27Onqp/bH\nhiuKoiibj3UfZhXm554hSA/aV6DPO+88JiYmjnFrW/wsYZ1Ox1mY/nzRvkvZZgKzU1jaoVs2Mnx+\nfp5isUi9XqfdbndNcGEFem5uzrm24/G4c0snEgnnYs7n80Ag6tVq1bm6/bmq/f5ofzy23d72j9vs\nafF43L04VKtVTjvtNM444wxGRkZIpVJUq1X279/PnXfeuU5nTVEURTnerLtAi8gpwCRwcFC5HTt2\nMDU15YTYt4qtaNrkInNzc8zNzVEul91UkTY5iB3zbCO3t27d6jKSLS4uMjMzw8zMTFcQWHRSi3a7\nTbVa7RomZVN3xmIx11dsLehkMunGVdtIbT/Azf4eGzGeTCadJWxFOZFIdE1laT0A9mWh1Wo50Z6Z\nmeHAgQPrfeoURVGU48iaTpYRLpcT9EEfCsu9E7gTuGZQvRMTE2zbtq1n5i2bmtP2u9qobZtkxJ+o\nwibxGB8fZ+vWrWzfvp16ve76lG2wVSKRcAlL/EAxOBphbdvgJz7x3cypVIpMJkM2m3UvCrZef8pL\nfyiWtaZtFHkymaRarbp0pdbCtn3xQ0NDzlq3rnVjjAumUxRFUTYnaz1ZxquBs4EXE0yUcYBAmP/S\nGNMcVOnk5KSzoO3i9w3b5CU2EKtUKrnMXv5Uj8PDw+RyOSfQO3bscG5tf9IM26dtrdleAu1PdOEn\nPrH1WDe6HQ9trefFxUWq1eoxQm/3Z9uZzWZJJBLUajWXCxxw81bncjnnUrd937ZdGsWtKIqyuVmP\nyTIuWU1D7AQQ0chtK5CtVouZmRmKxaIbVmXTZ/opPXO5HFu2bGHr1q1u2kjADbuy39uxzENDQ5RK\nJfcyYMcwWxfzli1bOOWUU1z0uLVy7fjqbDbrXPDW0l9cXKTZbHZFl9vf1Gg0GBoacjN1pVIpcrkc\nmUzGeQKseGcyGUZGRroizm1K0n379nH11Vev5lAriqIoJwAbxk9qA7p8fEt2ZmbGzV5l+56tqPoR\n0vl8nq1bt7Jt2zZGR0fJZDLE4/GuTGB2GNPs7CzNZpPp6eljUnRaV/n27dvZtWsX+XzeJTaB7mks\n7cuEDUYrl8sueM264e3vaTQadDodZx2n02kmJibYsmWLs9Ltb7EvAVbAs9ksqVSKTqfD2NjYr+jM\nKIqiKMeDFQm0iLwJeA7wMKAKfB94ozHmzki5twEvI3Bzfw94lTHm7kF1J5NJZ0WGdRwTMFYqlZif\nn3ezSvl9z8lk0gWGbdu2zSX+sJnCbOYtW6/t452eniaZTB4zp7NvcU9MTLic3H4fs7WMbb9wLBaj\nXC47gbaTb/hZ0VqtFq1Wy/WL2+xg4+PjLpOYdZUDTqDHxsaYmJhwk2QUCoWVnDpFURTlBGOlFvT5\nwN8CPwm3/RvgX0Xk4caYKoCIvBF4DUE/9D7gHcA1YZm+g3dtYJifF9sGV9kI7IWFBTe0yhdnmyrT\nWuFbt25lYmKC4eFhJ+5W8Px0m9F5oqPzNltBtWJqo7BtW32r20Zhj42NuaFb1s1tk534ol6tVpmf\nnyebzTI1NQUc7Xs2xrgUon6mNL8P3B+CpiiKomw+ViTQ0RmpRORS4AjBzFY3hKtfB7zdGPPVsMyL\ngcPAswE/iUkX1sK0w5msqEYFemFhwYmVPyGFFTcbDT4+Pu76hn2BtkIMR1N9+q7q6KxT1iVuI6jt\nuGhbX/gbXWS4dT13Oh2XEMVGi/u5uiuViktUYl84rLvbtqFerzuLvNlskk6nyWQypFKpY+aNVhRF\nUTYXD7QPeowgknsOQEQeDGwHvmkLGGOKIvJD4FwGCLQd22sF2mbmsqJ8zz33sLCw4NzJvvVrXcQ7\nduxwrmh/FqleYuZb33axUdL2xcBaznbiikGiaF3kyWTSucXtUDDrFrcWuRV7a0Xv37+feDzuIr/T\n6TTtdpvh4WE3jaadVtOfKERRFEXZvKxaoMOZrD4A3GCMuTVcvZ1AsA9Hih8Ov+vLzMyMC5yylmal\nUuHQoUMcPHiQ+++/n4WFBecm9qdp9AV6bGzMTcfoD2/yh2z5Gcf8eqwIWxFtNBpOpKMJTXxXuY8N\n7LIBYrYNlUqFej2YddP2SbdaLSfQ1i2eSCSYnJx0cz6LiBNoO1RseHj4mLSoiqIoyubigVjQHwHO\nBJ68Fg2xggSBa7der1MsFjl06BB79+49JjjMJvCw0dYTExNMTU0xOjrac4xwdGZMf2iWHTplrdzo\n/NA2x7Y/U1W/en13+fj4OMYYN/Sq1WpRLBZdvu5Op0O1WmVubo5ms+kitY0xTE5OuiFW9mXAzpNt\no8EVRVGUzcuqBFpE/g54BnC+McZP4XmIIMPYFN1W9BTw00F1fulLXyKXyzkhqtfrnH766cRiMebm\n5tzY4nD/wFFr1U42sW3bNjcuOZqf2875bLf1E48kk0lSqZQTfZuOc2hoyPUf+8O6+lnP0baNjIww\nNDTkAr6s9V+tVrumuLTzSR85coRMJuPakUqlEBFuvfVWfv7znztLf2hoiGq1utzTpSiKopyArCbV\n598BzwIuNMbs978LJ8Y4BDwVuCksnweeAHx4UL3vf//7Oeuss2i1Wtx///3s3buX22+/nR//+MfM\nz8/TaDS68mXbhB52NigbvW0tWD9SG+galuWPn/bnjbZR3/a7aIrNfpHTUdc5BAKdy+UYHh6mWq06\nka/VaiwsLLiXDWuh1+t1pqen3QuDnURDRDj33HO54IILyOVyrs57772XV7ziFSs7eYqiKMoJw0rH\nQX8EeAHwTGBRRKbCrwrGmFr4/weAt4jI3QTDrN4O3Ad8eVDdNjGHiNBsNpmfn2d6eppyudwljH5w\nmE0kYoPDrMVpRRlwAWW+RW33l0wmGRkZYevWrS4y3I6Ptvmu/fHPdjiWtbxtfdEx1P7/sViM0dFR\n149dr9epVqsuOttGddvI7unpadLpNCMjI64P2o7jtrm77dhuRVEUZfOyUgv6lQRBYNdF1r8U+DSA\nMeZdIpIBPkoQ5f1d4OmDxkADri8YAot1YWHBCbR1DduhVVYg8/k8U1NTLjjMCprFj+L2BdoY4wQ6\nl8uxdetWN8wplUoBOIvZCqMVaCu6vtXs43+2lnw+n3du92q1yuLiIoALQBsaGqLdbrvxztb6TqVS\nbipKO7nG8PCwe0FRFEVRNi8rHQe9LLPNGPNW4K0rqbtUKrlpIA8ePMiBAwc4cuQIi4uLTpT9/mQ/\nwMvmwF5YWLD7d3+jAm2xbmXrOk+n026x/eB2Io5ms0mlUqFQKHTNUGWJinTkWFCv111EN+CSjfgR\n4f40lcVikSNHjrjANZubG3DHQVEURdncbJhc3NPT0wwPD1MqldizZw/33nsvhw4dchNa+AFa1s1s\nA7jK5bILtopmA+tlQQNuKJUvnjYpiS/Q/vjlWq3mIs0HjbG2+AlXbAR3uVw+Zq5r+9fWVavVmJmZ\ncW52OymHfTno9cKhKIqibC7WPBe3iFwBvCSy6e5oFrIoc3NzGGOYmZlh3759HDhwgNnZWVvnMYFY\nvmU7Pz9PqVRy/cL9RNofC237fv282u122wm0FVW7WIs92r/tT0kZxe9ftsOtisWiy9MdHVdt62w0\nGi4wzubhzuVyjIyMdKULVRRFUTYva56LO+Rq4FKCIVcA9aUq7nQ6LmnHkSNHnDVs8UXJRloXCgWX\nwMRa1X75Xn97fe9HfPtR3/7SS0h7CWWvFwNLs9l0ebkrlUpXdrLoS0i73aZWqzE7O+v61u1wsHQ6\nvdThVBRFUU5w1iMXN0DdGDO9krrtzE++QIf7dH+tZWvdwQsLC9RqNZfWc4W/xf6GruFX/vpe+49a\n5/7faLle+7T9zP6EG1HvgC1nBdrmAB8dHWVsbEwDxBRFUX4NWNNc3B4XichhYB74FvAWY0y0TBf1\nep1CocCRI0ec8Pr9rL7o+ZNJ+IK9Grdvv9Sd/azlfqLcq2w0mCtaTzTQrNc+/SQmY2NjpNNp1x+u\nKIqibF7WOhc3BO7tLwJ7gV0EbvCvi8i5ZoCCVqtVFhYWmJ2dpVAodEVRRwXY79u1kdFW8HoNe4ru\ntlcUdK8+bn/bfsLsb9/rRaHXsC/7G6JzWvdqt5/EJJvNuqh1fzYtRVEUZfOx5rm4jTH+jFW3iMjN\nwB7gIuDb/SrzI6pt36w/FCms+5jAqkGR2lFxtOv6uZ/7bet/3w/bLl/IB9Vhx1Pb/3u52P11dvar\nUqlEtVrVRCWKoiibnLXOxX0MJkj/OQM8hAEC/YUvfIFGo9E1paSNXLZC5Qtwr2hq34K2AV92iFYv\nYbfb9lqi9fWylv3vouV7DZ/yx3L7KUltxLiNKBcRl3c7k8lQrVaZnp6mVCqxb98+fvKTn+gwK0VR\nlE3Omubi7lP+FGASGCjkL3zhCykUCtx0002USiU3e1RYR5dAR5N12O98l7ifEtQXaLttL0H2g7f8\niTmiIu2nBAW6hmrZbfy2+WJtt7VpO004/MqOtbZDukSCXONjY2Ps2rWLbdu2sW3bNqampti6dSuF\nQoHLLrtsqcOvKIqinKCsaS5uEckClxP0QR8isJrfCdwJXDOo7lwuRz6fd2Ob/ekd+0VYW3xx9UXU\nn/0puvh92H4iEjs15OLiIpVKxYm3LT80NOSmxrT1tFotSqVSV97waN+yL/SdTodMJsPExASxWMzl\n5y4UCi4bWiqVIpvNsn37dk499VSmpqaYmJhgfHycbDars1kpiqJsctY6F3cbOBt4MUGE9wECYf5L\nY0xzUMUjIyNMTk6SzWZdP7Q/93OvIC372bc+ravZTtloJ5dIJBJdYu1bzTaDWLFYpFgsMjc3x8zM\njHO323qNCTJ7jYyMkM/nnfhWq1Un0racdWP7mc8A90KQyWTYtm0bmUzG9b3ff//9bvz38PAwuVyO\nHTt28NCHPpTt27eTz+fdfNFHjhxZ4alTFEVRTiTWNBe3CWa0umQ1DUmn02zdupVcLker1XJC5luh\nvcTZF2g7LaRNZJJMJt1kF6lUqkugrZBbd3a9XmdhYYGFhQUymYyzYBuNhpuJqtPpuBmuxsfHEQkm\nwCiVSi5nuB9N3st6tu22LxB2go5cLuf21W63yWQyTpBTqZR70YjH49r/rCiK8mvAhsnFbXNOp1Ip\nJ55+YBf0n5Si0+k4ca7VatTrdYwxTqBt9i0r0FZYfWGv1+tONO0sUouLi12TarRaLYaGhhgfH2di\nYsKJ++zsLLOzs8Risa582b5Y+20XCSb3mJ+fByCbzZLJZJiamiKTybj9xONxms0m9913H4uLi4yP\nj5PP50mn0yrSiqIom5yV9kG/EngVcGq46hbgbcaY3V6ZtwEvI3Bxfw94lTHm7qXqjsViZDKZruCr\nqKj1W+e7uG3fcafTcS7udDpNJpMhHo93bWO3s5ZrPB5neHjY9YU3m00n+PYvwMTEBBMTE66/XETI\n5XLOpR2NBPdd9LbdVqBjsZh7gbAibeeNtu267777KBQKlMtlJicnmZycpNVqLfu8KYqiKCceK7Wg\nfwm8EbiLIM/2pcCXReRRxpjbROSNwGsI+qD3Ae8ArpEgV/fA+aB9K3aQGPvr/Ihs6xaPusF9N7Yf\nye1PlmG3sS5n+6JgjHEBY+VymcXFRdrttptdqtlsIiJks1nnqm42mzQaDSf+tg2+eAMuAM22odFo\ndFn61p1tZ9pqNBqUSiXX9rm5gYnZFEVRlBOclfZBfy2y6i0i8irgicBtwOuAtxtjvgogIi8GDgPP\nBj7PAKzV2K/ftp9ARye38N3ifqS2Fc1YLNYVxW23A5wo2vmX4/G4i6y2GbyazSaZTMYJ9NDQkBPo\n4eFhKpUKQFeGs6GhIdrtdtc46Gq12mUlV6tVxsbGXJR2Op0mkUg4l3m9XncZxJrNpnOPK4qiKJuT\nVaejEpEhEXk+kAG+LyIPBrYD37RljDFF4IfAuUvVZ4xh9+7dXXMw9/vfCvHXv/71rkhsf2iWHW/s\nW+Rf+9rXembrio6rtlm7Pve5z1EsFimVSk6obYT3kSNHmJ2dZX5+nnK5TLPZZGFhwVm/iUTCjcMG\nnLBaV7xNylIul1lYWGB6epqZmRmmp6ddnXZaSmuN33zzzZRKJebn51WgFUVRNjmrSVTySODfgBRQ\nAp5jjLlDRM4lGIJ1OLLJYQLhXqperr32Wi655JKe2bjsX3/ZvXs3T3/6048ZZmWHOFmxtEK5e/du\nnvWsZ3VZ6XB0qJZ1T9vx0F/4wheYmJigWCyysLDA/Pw89XqdfD7vMpzZKO75+XlmZ2fZsWOHixi3\n+/Dd3n6ylVqtRjqddlNP2j70crlMpVIhn893JUG566672LlzJ41Gg0KhsNJTpyiKopxArCaK+3bg\nHGAU+H3g0yJywQNtSFR87bpe3/uuYuvCthaq/c4XaL98r/34ru5arcbc3JxLrXnHHXdQLpedBV2r\n1VzUtY0Kt4Jp84fb+ZptW23ubGvh+4lPbN+5DUQrlUqu37ndbjtr3LbRJigpFosP9JAriqIoG5gV\nC7QxpgXcE378qYg8nqDv+V0EgWNTdFvRU8BPl6r3/e9/P/v37+cNb3iDW3fxxRdzySWX2P36bejK\n4tXLevb7p/0kJ/4czLYOP3Cs2WxSLBY5ePAglUqFffv2dWUWazQalMtlhoeHnXh2Oh0WFxfd0C47\nrnl8fJyxsTFnQZfLZWZnZ5mbm6NarVIul127fNGOuuD37t3LPffcw+zsLNdffz0AjcbAmDtFURTl\nBGctxkEPAcPhpBiHgKcCNwGISB54AvDhpSp5/etfz8c//nHe85739M1l3WtGKdv/bC1OK87R/mcr\ngLYvOxqMZq3xZrNJqVTi0KFDTqCtMPuBZvF43CVBsVa0MYZEIsHY2Bjbt29n586d7Ny50+13dnaW\nPXv2sGfPHubm5jh06JBzk0cjyv227dq1i9NOO41vfOMbnH/++RhjmJ2d5dprr13lKVMURVE2Oisd\nB/3XBPM97wdGgBcCFwIXh0U+QBDZfTfBMKu3A/cBXx5QbQrg3nvvpVwuc8cdd/Tbt/trreNSqcTt\nt9/eZUH7aT2tSFvK5TK33hpMXR0V8Ha77TKJ7d+/nwMHDtBoNJibm3OpR6242yFTNhFKLBZzLwjV\napXFxUUXWGaHQxljKBaLVCoVarWaE3Q/jahtS6VSoVgsds1qBcFQtLm5OVeXf/wURVGUzYX0skr7\nFhb5OPAUYAdQILCU/5cx5ltembcCLydIVPJd4LJBiUpE5A+Af1pN4xUAXmiM+czxboSiKIqytqxI\noNelASKTwNMILO7acW3MiUWKIKPbNcaY2ePcFkVRFGWNOe4CrSiKoijKsaw6UYmiKIqiKOuHCrSi\nKIqibEBUoBVFURRlA6ICrSiKoigbkA0h0CJymYjsFZGqiPxARB7Xp9zlItKJLLd6358vIl8RkfvD\n757Zo463icgBEamIyDdE5PmDthGRKyL7MyLSFJHDIvIvIvLQAftoiEhBREr9yg+ovyAi3xeRS5Zo\n/0NWerwVRVGUjc9xF2gReR7wXuBy4DeBnxPMIb2lzya/IEgfuj1czvO+ywI/A15NMHFHdF92vuqX\nA48HFoH3EYzn7rlNyNXhPr8Vbv8k4LeABPCvIpLus48fAHcD88AlvcpH6v9D4PnAY4HHhPv7sog8\nfED7rxGRZJ92K4qiKCcqfv7n47EQiNgHvc9CkH3sz3qUvRy4cZn1doBnRtYdAF7vfc4DVeC5A7a5\nAvhSn31sCbc5bzn76FO+b/3h97PAS5fTfl100UUXXTbPclwtaBFJEFiK/hzSBriW/nNInx66o/eI\nyD+KyIOWua8HMl/1RaGL+nYR+YiITITrxwis7rll7qOr/KD6ZY3n21YURVFOLNZisowHwhYgRu85\npM/oUf4HwKXAHQTpRt8KXC8ijzTGLC6xr+2sbr7qq4EvAnuBXcDfAF+XYP7rDwA3GGNsP/hS+4iW\n71X/+4BXEFjaazbftqIoinJicbwFekUYY67xPv5CRH4E3EvgPr5infb5ee/jLSJyM7AHuBI4E3jy\nMqt6LMHLSFf5HvXfCtxJ0Cd+Kms037aiKIpyYnG8g8RmgDZBgJTPFHBoqY2NMQUCMVtOJPMhjs5X\nveJ9efvcS5Az/DzgImPMwWXs47xwXbR8r/rvJjguGGPeTBA097q1ar+iKIpyYnBcBdoY0wT+nWAO\naQAkmHPxqcD3l9peRHIE4jxQ9MJ97SUQMn9fdr7qJfflbXMFkCYIYtu/jH18lMAd/6Zo+T71nwJM\ncvQ3ufm216L9iqIoyonBRnBxvw/4lIj8O/Aj4PUEgVGfihYUkXcDVxG4tU8G/gpoAp8Nv88SCLaE\nm5wmIucAc8aYX9J7vur7gXtE5FHRbcLlcoI+4kPAh4D/FO5/t4hYa7ZgjLEzcfn7eCHwu+E+vhwt\nH7bXr/+vCYLm7gHuE5G/4YHPt60oiqKciBzvMPIgaJtXEwhOFfg34LF9yn2WQJCqwH7gM8CDve8v\nJAiuakeWT3pl3kowXKkCXAP8Qb9tCKZ03E0gnjWCIK1eZV8caafdhwmXnuV71F8Ml2q47l+Bp/Sp\n27b/Icf7/Omiiy666LL2i043qSiKoigbkOMdJKYoiqIoSg9UoBVFURRlA6ICrSiKoigbEBVoRVEU\nRdmAqEAriqIoygZEBVpRFEVRNiAq0IqiKIqyAVGBVhRFUZQNiAq0oiiKomxAVKAVRVEUZQOiAq0o\niqIoGxAVaEVRFEXZgPx/mqzUs7A2tmwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10bc3c898>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "idx = np.random.choice(np.arange(len(imgs)), 5, replace=False)\n", "\n", "test_imgs = [imgs[i] for i in idx]\n", "test_labels = [int(labels[i]) for i in idx]\n", "\n", "for i in range(len(test_imgs)):\n", " show_sample(test_imgs, test_labels, i)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 7\n", "\n", "_Is your model able to perform equally well on captured pictures when compared to testing on the dataset? The simplest way to do this check the accuracy of the predictions. For example, if the model predicted 1 out of 5 signs correctly, it's 20% accurate._\n", "\n", "_**NOTE:** You could check the accuracy manually by using `signnames.csv` (same directory). This file has a mapping from the class id (0-42) to the corresponding sign name. So, you could take the class id the model outputs, lookup the name in `signnames.csv` and see if it matches the sign from the image._\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### **Answer:**\n", "Based on 22 images taken from the street signs in Google Street View, the accuracy is around 85% which is less than the ~90% from the test set.\n", "For the 5 randomly picked images, it is 80%.\n", "In order to see what to do with this differences, things like brightness, contrast and image distortion should be thought of by adding preprocessing or making the network more robust by adding layers. The last image (Right-of-way in next intersection) is considerably sharper and brighter than the samples. We could consider some image processing techniques like histogram normalization preprocessing for the training set." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Testing accuracy on 21 images...\n", "accuracy: 0.8571428656578064\n", "\n", "Testing accuracy on 5 images...\n", "accuracy: 0.800000011920929\n", "\n" ] } ], "source": [ "def test_accuracy(imgs, labels):\n", " X_new = np.array(imgs)\n", " y_new = np.array(labels)\n", "\n", " print (\"Testing accuracy on {} images...\".format(len(imgs)))\n", " with tf.Session() as sess:\n", " tf.train.Saver().restore(sess, tf.train.latest_checkpoint('.'))\n", " accuracy = evaluate(X_new, y_new, len(X_new))\n", " print(\"accuracy: {}\".format(accuracy))\n", " print()\n", " \n", "test_accuracy(imgs, labels)\n", "test_accuracy(test_imgs, test_labels)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 8\n", "\n", "*Use the model's softmax probabilities to visualize the **certainty** of its predictions, [`tf.nn.top_k`](https://www.tensorflow.org/versions/r0.12/api_docs/python/nn.html#top_k) could prove helpful here. Which predictions is the model certain of? Uncertain? If the model was incorrect in its initial prediction, does the correct prediction appear in the top k? (k should be 5 at most)*\n", "\n", "`tf.nn.top_k` will return the values and indices (class ids) of the top k predictions. So if k=3, for each sign, it'll return the 3 largest probabilities (out of a possible 43) and the correspoding class ids.\n", "\n", "Take this numpy array as an example:\n", "\n", "```\n", "# (5, 6) array\n", "a = np.array([[ 0.24879643, 0.07032244, 0.12641572, 0.34763842, 0.07893497,\n", " 0.12789202],\n", " [ 0.28086119, 0.27569815, 0.08594638, 0.0178669 , 0.18063401,\n", " 0.15899337],\n", " [ 0.26076848, 0.23664738, 0.08020603, 0.07001922, 0.1134371 ,\n", " 0.23892179],\n", " [ 0.11943333, 0.29198961, 0.02605103, 0.26234032, 0.1351348 ,\n", " 0.16505091],\n", " [ 0.09561176, 0.34396535, 0.0643941 , 0.16240774, 0.24206137,\n", " 0.09155967]])\n", "```\n", "\n", "Running it through `sess.run(tf.nn.top_k(tf.constant(a), k=3))` produces:\n", "\n", "```\n", "TopKV2(values=array([[ 0.34763842, 0.24879643, 0.12789202],\n", " [ 0.28086119, 0.27569815, 0.18063401],\n", " [ 0.26076848, 0.23892179, 0.23664738],\n", " [ 0.29198961, 0.26234032, 0.16505091],\n", " [ 0.34396535, 0.24206137, 0.16240774]]), indices=array([[3, 0, 5],\n", " [0, 1, 4],\n", " [0, 5, 1],\n", " [1, 3, 5],\n", " [1, 4, 3]], dtype=int32))\n", "```\n", "\n", "Looking just at the first row we get `[ 0.34763842, 0.24879643, 0.12789202]`, you can confirm these are the 3 largest probabilities in `a`. You'll also notice `[3, 0, 5]` are the corresponding indices." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer:**\n", "\n", "As it can be seen in the last block code below, for image #5, the label prediction is far off ('11' is 5th place)\n", "This means the prediction is really innacurate for this image, and leaves room for further improvements discussed in Answer 7." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \\n\",\n", " \"**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Testing on 5 images...\n", "accuracy: TopKV2(values=array([[ 1.00000000e+00, 6.13789184e-12, 3.47589631e-17,\n", " 2.75008913e-18, 2.09709440e-19],\n", " [ 9.99547184e-01, 1.63430173e-04, 1.04088809e-04,\n", " 6.26783149e-05, 6.10630450e-05],\n", " [ 1.00000000e+00, 3.30285026e-08, 2.78208762e-10,\n", " 1.02531048e-12, 1.71245288e-13],\n", " [ 9.96130466e-01, 3.85568733e-03, 7.11382017e-06,\n", " 4.89867534e-06, 1.42611668e-06],\n", " [ 4.84159917e-01, 3.80829424e-01, 1.30196035e-01,\n", " 2.16162438e-03, 1.03527424e-03]], dtype=float32), indices=array([[13, 35, 33, 34, 12],\n", " [36, 12, 17, 14, 38],\n", " [17, 14, 40, 12, 36],\n", " [29, 24, 22, 28, 25],\n", " [24, 27, 20, 30, 11]], dtype=int32))\n", "Test labels [13, 36, 17, 29, 11]\n" ] } ], "source": [ "sm = tf.nn.softmax(logits)\n", "top_k = tf.nn.top_k(sm, 5)\n", "\n", "print (\"Testing on {} images...\".format(len(test_imgs)))\n", "with tf.Session() as sess:\n", " tf.train.Saver().restore(sess, tf.train.latest_checkpoint('.'))\n", " res = sess.run(top_k, feed_dict={x: test_imgs})\n", " print(\"accuracy: {}\".format(res))\n", " \n", "print (\"Test labels\", test_labels)" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "widgets": { "state": {}, "version": "1.1.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
oliverlee/antlia
python/notebooks/find_avoidance_event.ipynb
1
3455041
null
bsd-2-clause
szczeles/spark-oktawave
spark_oktawave/templates/Spark.ipynb
1
833
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from pyspark.sql.session import SparkSession\n", "from pyspark.sql.functions import *\n", "from pyspark.sql.types import *\n", "\n", "spark = (SparkSession.builder\n", " .appName('appname')\n", " .getOrCreate())" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
mlperf/training_results_v0.6
Fujitsu/benchmarks/resnet/implementations/mxnet/3rdparty/onnx-tensorrt/third_party/onnx/onnx/examples/np_array_tensorproto.ipynb
1
4067
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original Numpy array:\n", "[[ 1. 2. 3.]\n", " [ 4. 5. 6.]]\n", "\n" ] } ], "source": [ "from __future__ import absolute_import\n", "from __future__ import division\n", "from __future__ import print_function\n", "from __future__ import unicode_literals\n", "\n", "import numpy\n", "import onnx\n", "import os\n", "from onnx import numpy_helper\n", "from distutils.version import LooseVersion\n", "\n", "\n", "# Preprocessing: create a Numpy array\n", "numpy_array = numpy.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=float)\n", "if LooseVersion(numpy.version.version) < LooseVersion('1.14'):\n", " print('Original Numpy array:\\n{}\\n'.format(numpy.array2string(numpy_array)))\n", "else:\n", " print('Original Numpy array:\\n{}\\n'.format(numpy.array2string(numpy_array, legacy='1.13')))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TensorProto:\n", "dims: 2\n", "dims: 3\n", "data_type: DOUBLE\n", "raw_data: \"\\000\\000\\000\\000\\000\\000\\360?\\000\\000\\000\\000\\000\\000\\000@\\000\\000\\000\\000\\000\\000\\010@\\000\\000\\000\\000\\000\\000\\020@\\000\\000\\000\\000\\000\\000\\024@\\000\\000\\000\\000\\000\\000\\030@\"\n", "\n" ] } ], "source": [ "# Convert the Numpy array to a TensorProto\n", "tensor = numpy_helper.from_array(numpy_array)\n", "print('TensorProto:\\n{}'.format(tensor))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "After round trip, Numpy array:\n", "[[ 1. 2. 3.]\n", " [ 4. 5. 6.]]\n", "\n" ] } ], "source": [ "# Convert the TensorProto to a Numpy array\n", "new_array = numpy_helper.to_array(tensor)\n", "if LooseVersion(numpy.version.version) < LooseVersion('1.14'):\n", " print('After round trip, Numpy array:\\n{}\\n'.format(numpy.array2string(numpy_array)))\n", "else:\n", " print('After round trip, Numpy array:\\n{}\\n'.format(numpy.array2string(numpy_array, legacy='1.13')))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Save the TensorProto\n", "with open(os.path.join('resources', 'tensor.pb'), 'wb') as f:\n", " f.write(tensor.SerializeToString())" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "After saving and loading, new TensorProto:\n", "dims: 2\n", "dims: 3\n", "data_type: DOUBLE\n", "raw_data: \"\\000\\000\\000\\000\\000\\000\\360?\\000\\000\\000\\000\\000\\000\\000@\\000\\000\\000\\000\\000\\000\\010@\\000\\000\\000\\000\\000\\000\\020@\\000\\000\\000\\000\\000\\000\\024@\\000\\000\\000\\000\\000\\000\\030@\"\n", "\n" ] } ], "source": [ "# Load the TensorProto\n", "new_tensor = onnx.TensorProto()\n", "with open(os.path.join('resources', 'tensor.pb'), 'rb') as f:\n", " new_tensor.ParseFromString(f.read())\n", "print('After saving and loading, new TensorProto:\\n{}'.format(new_tensor))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.5" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
FavioVazquez/Electrodinamica-Clasica-PCF
Tarea9/.ipynb_checkpoints/Problema3-checkpoint.ipynb
1
444280
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from __future__ import print_function\n", "import numpy as np\n", "from numpy import arccos,sin, cos, pi, array, sqrt, log, exp\n", "import matplotlib\n", "matplotlib.use('nbagg')\n", "import matplotlib.pyplot as plt\n", "from matplotlib import rc\n", "\n", "rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})\n", "## for Palatino and other serif fonts use:\n", "#rc('font',**{'family':'serif','serif':['Palatino']})\n", "rc('text', usetex=True)\n", "\n", "#LaTeX\n", "plt.rc('text', usetex=True)\n", "plt.rc('font', family='serif')" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width);\n", " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'];\n", " var y0 = fig.canvas.height - msg['y0'];\n", " var x1 = msg['x1'];\n", " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x;\n", " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Close figure', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width);\n", " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'];\n", " var y0 = fig.canvas.height - msg['y0'];\n", " var x1 = msg['x1'];\n", " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x;\n", " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Close figure', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width);\n", " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'];\n", " var y0 = fig.canvas.height - msg['y0'];\n", " var x1 = msg['x1'];\n", " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x;\n", " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Close figure', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width);\n", " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'];\n", " var y0 = fig.canvas.height - msg['y0'];\n", " var x1 = msg['x1'];\n", " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x;\n", " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Close figure', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Linespace for theta\n", "\n", "theta = np.linspace(-pi,pi,360)\n", "\n", "# Variable definitions\n", "x1 = 3/(8*pi)*(sin(theta))**2 #l=1,m=0\n", "x2 = 3/(16*pi)*(1 + (cos(theta))**2)#l=1,m=+-1\n", "x3 = 15/8*pi * (sin(theta))**2*(cos(theta))**2 #l=2,m=0\n", "x4 = (5/8*pi) * (1 - 3*(cos(theta))**2 + \n", " 4*(cos(theta))**4) #l=2, m=+-1\n", "x5= \n", "\n", "# l=1, m=0\n", "ax = plt.subplot(111, polar=True)\n", "ax.set_theta_offset(pi/2)\n", "ax.plot(theta,x1)\n", "plt.show()\n", "\n", "# l=1, m=+-1 \n", "ax = plt.subplot(111, polar=True)\n", "ax.set_theta_offset(pi/2)\n", "ax.plot(theta,x2)\n", "plt.show()\n", "\n", "# l=2, m=0\n", "ax = plt.subplot(111, polar=True)\n", "ax.set_theta_offset(pi/2)\n", "ax.plot(theta,x3)\n", "plt.show()\n", "\n", "# l=2, m=+-1\n", "ax = plt.subplot(111, polar=True)\n", "ax.set_theta_offset(pi/2)\n", "ax.plot(theta,x4)\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
shashank14/Asterix
1-Python Crash course/Python-Crash-Course/.ipynb_checkpoints/Python-Csv-Files-checkpoint.ipynb
1
12292
{ "cells": [ { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[{'': '1',\n", " 'class': 'compact',\n", " 'cty': '18',\n", " 'cyl': '4',\n", " 'displ': '1.8',\n", " 'drv': 'f',\n", " 'fl': 'p',\n", " 'hwy': '29',\n", " 'manufacturer': 'audi',\n", " 'model': 'a4',\n", " 'trans': 'auto(l5)',\n", " 'year': '1999'},\n", " {'': '2',\n", " 'class': 'compact',\n", " 'cty': '21',\n", " 'cyl': '4',\n", " 'displ': '1.8',\n", " 'drv': 'f',\n", " 'fl': 'p',\n", " 'hwy': '29',\n", " 'manufacturer': 'audi',\n", " 'model': 'a4',\n", " 'trans': 'manual(m5)',\n", " 'year': '1999'},\n", " {'': '3',\n", " 'class': 'compact',\n", " 'cty': '20',\n", " 'cyl': '4',\n", " 'displ': '2',\n", " 'drv': 'f',\n", " 'fl': 'p',\n", " 'hwy': '31',\n", " 'manufacturer': 'audi',\n", " 'model': 'a4',\n", " 'trans': 'manual(m6)',\n", " 'year': '2008'}]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import csv\n", "\n", "%precision 2\n", "\n", "with open('mpg.csv') as csvfile:\n", " mpg = list(csv.DictReader(csvfile))\n", " \n", "mpg[:3] # The first three dictionaries in our list." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[{'': '1',\n", " 'class': 'compact',\n", " 'cty': '18',\n", " 'cyl': '4',\n", " 'displ': '1.8',\n", " 'drv': 'f',\n", " 'fl': 'p',\n", " 'hwy': '29',\n", " 'manufacturer': 'audi',\n", " 'model': 'a4',\n", " 'trans': 'auto(l5)',\n", " 'year': '1999'},\n", " {'': '2',\n", " 'class': 'compact',\n", " 'cty': '21',\n", " 'cyl': '4',\n", " 'displ': '1.8',\n", " 'drv': 'f',\n", " 'fl': 'p',\n", " 'hwy': '29',\n", " 'manufacturer': 'audi',\n", " 'model': 'a4',\n", " 'trans': 'manual(m5)',\n", " 'year': '1999'},\n", " {'': '3',\n", " 'class': 'compact',\n", " 'cty': '20',\n", " 'cyl': '4',\n", " 'displ': '2',\n", " 'drv': 'f',\n", " 'fl': 'p',\n", " 'hwy': '31',\n", " 'manufacturer': 'audi',\n", " 'model': 'a4',\n", " 'trans': 'manual(m6)',\n", " 'year': '2008'}]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import csv\n", "%precision 2\n", "with open('mpg.csv') as csvfile:\n", " mpg = list(csv.DictReader(csvfile))\n", "mpg[:3]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "234" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(mpg)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "dict_keys(['', 'year', 'model', 'class', 'cty', 'trans', 'hwy', 'displ', 'manufacturer', 'cyl', 'fl', 'drv'])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mpg[0].keys()" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "16.86" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum(float(d['cty']) for d in mpg)/len(mpg)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'18'" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mpg\n", "mpg[0][\"cty\"]\n" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "23.44" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum(float(d[\"hwy\"]) for d in mpg)/len(mpg)" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'4', '5', '6', '8'}" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cylinders = set(d[\"cyl\"] for d in mpg)\n", "cylinders" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'audi',\n", " 'chevrolet',\n", " 'dodge',\n", " 'ford',\n", " 'honda',\n", " 'hyundai',\n", " 'jeep',\n", " 'land rover',\n", " 'lincoln',\n", " 'mercury',\n", " 'nissan',\n", " 'pontiac',\n", " 'subaru',\n", " 'toyota',\n", " 'volkswagen'}" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cars_types = set(d[\"manufacturer\"] for d in mpg)\n", "cars_types" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'4', '5', '6', '8'}" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cylinders" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'4runner 4wd',\n", " 'a4',\n", " 'a4 quattro',\n", " 'a6 quattro',\n", " 'altima',\n", " 'c1500 suburban 2wd',\n", " 'camry',\n", " 'camry solara',\n", " 'caravan 2wd',\n", " 'civic',\n", " 'corolla',\n", " 'corvette',\n", " 'dakota pickup 4wd',\n", " 'durango 4wd',\n", " 'expedition 2wd',\n", " 'explorer 4wd',\n", " 'f150 pickup 4wd',\n", " 'forester awd',\n", " 'grand cherokee 4wd',\n", " 'grand prix',\n", " 'gti',\n", " 'impreza awd',\n", " 'jetta',\n", " 'k1500 tahoe 4wd',\n", " 'land cruiser wagon 4wd',\n", " 'malibu',\n", " 'maxima',\n", " 'mountaineer 4wd',\n", " 'mustang',\n", " 'navigator 2wd',\n", " 'new beetle',\n", " 'passat',\n", " 'pathfinder 4wd',\n", " 'ram 1500 pickup 4wd',\n", " 'range rover',\n", " 'sonata',\n", " 'tiburon',\n", " 'toyota tacoma 4wd'}" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "models = set(d[\"model\"] for d in mpg)\n", "models" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'audi',\n", " 'chevrolet',\n", " 'dodge',\n", " 'ford',\n", " 'honda',\n", " 'hyundai',\n", " 'jeep',\n", " 'land rover',\n", " 'lincoln',\n", " 'mercury',\n", " 'nissan',\n", " 'pontiac',\n", " 'subaru',\n", " 'toyota',\n", " 'volkswagen'}" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "manufacturers = set(d[\"manufacturer\"] for d in mpg)\n", "manufacturers" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "16.86" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "avg_mpg_in_cty = sum(float(d[\"cty\"]) for d in mpg)/len(mpg)\n", "avg_mpg_in_cty" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "23.44" ] }, "execution_count": 83, "metadata": {}, "output_type": "execute_result" } ], "source": [ "avg_mpg_in_hwy = sum(float(d[\"hwy\"]) for d in mpg)/len(mpg)\n", "avg_mpg_in_hwy" ] }, { "cell_type": "code", "execution_count": 103, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%precision 2\n", "def Avg_Mpg():\n", " avg_mpg_in_cty = sum(float(d[\"cty\"]) for d in mpg)/len(mpg)\n", " avg_mpg_in_hwy = sum(float(d[\"hwy\"]) for d in mpg)/len(mpg)\n", " avg_mpg_in_cty\n", " avg_mpg_in_hwy\n", " if avg_mpg_in_cty > avg_mpg_in_hwy:\n", " print(\"The Avg Mpg in city is greater than in Highways {}\".format(float(avg_mpg_in_cty)))\n", " else: \n", " print(\"The Avg Mpg in Highways is greater than in City {}\".format(float(avg_mpg_in_hwy)))\n", " \n", " \n", " " ] }, { "cell_type": "code", "execution_count": 105, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Avg Mpg in Highways is greater than in City 23.44017094017094\n" ] } ], "source": [ "Avg_Mpg()" ] }, { "cell_type": "code", "execution_count": 131, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "7" ] }, "execution_count": 131, "metadata": {}, "output_type": "execute_result" } ], "source": [ "class_of_vhl = set(d[\"class\"] for d in mpg)\n", "class_of_vhl\n", "len(class_of_vhl)" ] }, { "cell_type": "code", "execution_count": 132, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "7" ] }, "execution_count": 132, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HwyMpgByClass = []\n", "\n", "for vehicleclass in class_of_vhl:\n", " summpg = 0\n", " vclasscount = 0\n", " for d in mpg:\n", " if vehicleclass == d[\"class\"]:\n", " summpg += float(d['hwy']) # add the hwy mpg\n", " vclasscount += 1 # increment the count\n", " HwyMpgByClass.append({vehicleclass, summpg / vclasscount}) # append the tuple ('class', 'avg mpg')\n", "\n", "#HwyMpgByClass.sort(key=lambda x: x[1])\n", "HwyMpgByClass\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
tommytwoeyes/continuity
Homework_Assignments/S11.8_Power_Series_Examples.ipynb
2
4597
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<hgroup>\n", " <h1>Power Series</h1>\n", " <h5>Section 11.8</h5>\n", "</hgroup>\n", "\n", "Although the section number is from our official course textbook, _Stewart Calculus: Early Transcendentals,_ these examples are from the (vastly superior) textbook, _Thomas Calculus, Twelfth Edition._ Its author, George Thomas, was an MIT professor and a master of explaining calculus concepts.\n", "\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3\n", "\n", "<p class='lead'>How to test a power series for convergence by using the _Ratio Test_ to determine for which values of $x$ it converges/diverges.</p>\n", "\n", "For what values of $x$ do the following power series converge?\n", "\n", "___\n", "\n", "__a)__ $\\quad \\sum_{n=1}^{\\infty} (-1)^{n-1} \\frac{x^n}{n} = x - \\frac{x^2}{2} + \\frac{x^3}{3} - ... + \\frac{x^n}{n}$\n", "\n", "First, examine a larger list of terms:\n", "\n", "$$\\sum_{n=1}^{\\infty} (-1)^{n-1} \\frac{x^n}{n} = x - \\frac{x^2}{n} + \\frac{x^3}{n} - \\frac{x^4}{4} + \\frac{x^5}{n} - \\frac{x^6}{n} + \\frac{x^7}{7} - ...$$\n", "\n", "The Ratio Test says that for series with positive terms, you take the limit of the ratio of two consecutive terms. If the result, $p$ is less than one, the series converges:\n", "\n", "$$\n", "\\require{cancel}\n", "\\color{blue}p\\color{black} = \\lim_\\limits{n \\to \\infty} \\left|\\frac{a_{n+1}}{a_n} \\right| \\\\\n", "\\text{If } \\color{blue}p\\color{black} < 1 \\text{, the series converges.} \\\\\n", "\\text{If } \\color{blue}p\\color{black} > 1 \\text{ or } \\color{blue}p\\color{black} \\to \\infty \\text{ as } n \\to \\infty \\text{, the series diverges.} \\\\\n", "\\text{If } \\color{blue}p\\color{black}=1 \\text{, the result is inconclusive, meaning } \\\\\n", "\\text{you can't tell if the series is convergent or divergent.}\n", "$$\n", "\n", "For the series in __a),__, the ratio test, is:\n", "\n", "$$\n", "\\lim_\\limits{n \\to \\infty} \\left| \\frac{ \\frac{x^{n+1}}{n+1} }{ \\frac{x^n}{n} }\n", "\\right| = \\color{blue}p \n", "$$\n", "\n", "$$\n", "= \\lim_\\limits{n \\to \\infty} \\left| \\frac{x^{n+1}}{n+1} \\cdot \\frac{n}{x^n} \\right| = \\lim_\\limits{n \\to \\infty} \\left| \\frac{x^{\\cancel{n+1}}}{n+1} \\cdot \\frac{n}{\\cancel{x^n}} \\right|$$\n", "\n", "$$\n", "= \\lim_\\limits{n \\to \\infty} \\frac{n}{n+1} \\cdot |x|\n", "$$\n", "\n", "$$\n", "= \\left( \\frac{n}{n} \\right) \\cdot |x| \\quad \\text{ (<= n / (n+1) behaves like 1 as } n \\to \\infty \\text{)}\n", "$$\n", "\n", "$$= |x|$$\n", "\n", "So, the series converges for $|x| < 1$, which is the same as saying, $-1 < x < 1$.\n", "\n", "It diverges if $|x| > 1$, because in that scenario the _nth term_ does not converge to zero.\n", "\n", "Therefore, the radius of convergence $R$ is equal to one: $R = 1$.\n", "\n", "___\n", "\n", "__b)__ $\\quad \\sum_{n=1}^{\\infty} (-1)^{n-1} \\frac{x^{2n-1}}{2n-1} = \\left[ (-1)^{1-1} \\cdot \\frac{x^{2(1)-1}}{2(1)-1} \\right] + \\left[ (-1)^{2-1} \\cdot \\frac{x^{2(2)-1}}{2(2)-1} \\right] + \\left[ (-1)^{3-1} \\cdot \\frac{x^{2(3)-1}}{2(3)-1} \\right]$\n", "\n", "$$= \\sum_{n=1}^{\\infty} \\left( (-1)^{n-1} \\cdot \\frac{x^{2n-1}}{2n-1} \\right) = x - \\frac{x^3}{3} + \\frac{x^5}{5} - \\frac{x^7}{7} + \\frac{x^8}{8} - ... $$\n", "\n", "The Ratio Test for this power series looks like this:\n", "\n", "$$\n", "\\color{blue}p\\color{black} = \\lim_\\limits{n \\to \\infty} \\left| \\frac{ \\frac{x^{2(n+1)-1}}{2(n+1)-1} }{ \\frac{x^{2n-1}}{2n-1} } \\right| = \n", "\\lim_\\limits{n \\to \\infty} \\left| \\frac{x^{2(n+1)-1}}{2(n+1)-1} \\cdot \\frac{2n-1}{x^{2n-1}} \\right|\n", "$$" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
gcallah/Indra
notebooks/IntroToABM.ipynb
1
155863
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Agent-Based Modeling\n", "### What Is It? What's It For?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is an introduction to Agent-Based Modeling (ABM). ABM is a type of computer programming with applications to physics, chemistry, biology, epidemiology, weather forecasting, forestry, sociology, economics, business, and even film making. But to understand what makes it different from other modeling, we need a little background." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### What Is a Model?\n", "\n", "A model is a construction that \"resembles\" something we want to investigate, and which, by manipulation of the construct, we hope to learn about the subject we are investigating." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Three Types of Modeling" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Simple Orders" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first successes of mathematical modeling of reality were in describing *simple orders*. A classic expression of a simple order is Newton's second law of motion, *F* = *ma*: it relates one quantity to only two others, in a very straightforward manner. Similar examples are models for springs, and pendulums, and heat diffusion. Models of simple orders usually take the form of *differential equations*. These types of models were developed extensively in the 18th and 19th centuries, and are still very important today.\n", "\n", "<div align=\"center\">\n", "<figure>\n", "<img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Hookes-law-springs.png/440px-Hookes-law-springs.png\" width=\"25%\">\n", " <figcaption>\n", " <i>Hooke's Law is a model of the simple order of an isolated spring.</i>\n", " </figcaption>\n", "</figure>\n", "</div>\n", "<br/>\n", "<div align=\"center\">\n", "<figure>\n", "<img\n", "src=\"https://upload.wikimedia.org/wikipedia/commons/f/f2/Orbit2.gif\" width=\"25%\">\n", " <figcaption>\n", " <i>A simple order: planetary orbits.</i>\n", " </figcaption>\n", "</figure>\n", "</div>\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Disorder" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The second class of phenomena to be successfully modeled were *random* systems:\n", "\n", "\"Whereas ordinary mechanics only considers the behaviour of a single state, statistical mechanics introduces the statistical ensemble, which is a large collection of virtual, independent copies of the system in various states. The statistical ensemble is a probability distribution over all possible states of the system.\" -- *Wikipedia*\n", "\n", "The study of such systems was conducted by the use of *statistical models*. Examples of phenomena successfully modeled in this way includes thermodynamical systems, gas diffusion, Brownian motion, the evolution of a quantum wave function, height and weight distributions in a population, and games of chance.\n", "\n", "<img src=\"https://upload.wikimedia.org/wikipedia/commons/c/c2/Brownian_motion_large.gif\" width=\"25%\">\n", "\n", "<div align=\"center\">*Brownian motion: gas molecules producing random motion of a dust particle.*</div>\n", "\n", "In the mid-twentieth century, many scientists believed that these two types of models were all that were needed to capture all of reality: if some phenomenon could not be captured exactly by a simple model, then it must be random, and could be described by statistical analysis. But this view was soon to collapse, as, from multiple fields, researchers discovered..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Complex orders" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The discovery of complex orders had been hinted at in work on the three-body problem: Newton had \"solved\" the problem of the planet's orbits by assuming that only the sun influenced their orbits, which is a good approximation. But once another planet was allowed to sneak into the system, the possible behavior became far more complex:\n", "\n", "<img src=\"https://upload.wikimedia.org/wikipedia/commons/1/11/3bodyproblem.gif\" width=\"74%\">\n", "\n", "Well, at least for our solar system, these complexities could (mostly) be ignored. But for other systems this was not the case: as researchers looked into \"far-from-equilibrium\" systems like our weather, or chaotic fluid dynamics, or the behavior of asset markets, they found that these exhibited patterns that could not be captured by models of simple orders, nor models of pure randomness. They were discovering the existence of *complex orders*.\n", "\n", "<img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/LogisticTopMixing1-6.gif/440px-LogisticTopMixing1-6.gif\" width=\"25%\">\n", "\n", "The behavior of these orders could not be captured by analysis of a differential equation, nor by statistical procedures. Instead, in general, one creates a model based on some (seemingly) simple rules, and then *runs the model*, and only by doing so does one discover what the system does.\n", "\n", "A milestone along this path was the discovery, by the mathematician Benoit Mandelbrot, of the *Mandelbrot set*. Mandelbrot took the \"simple\" equation, *f*<sub>*c*</sub>(*z*) = *z*<sup>2</sup> + *c*, where *z* and *c* are complex numbers, and *iterated* it (feeding the result of one iteration into the next), with *z* at the start equal to 0, for *c* near the origin, and found that this seemingly simple equation produced fantastically complex results. In a *simple order*, small differences in the initial value of *c* ought to produce small differences in the final outcome. But Mandelbrot discovered that *extremely* small differences in the initial value of *c* could produce wildly divergent outcomes: this is a characteristic of complex systems: small differences in initial values can produce very big differences in the development of the system. If we color each point *c* by how fast the above equation moves away from the origin, we get a result like:\n", "\n", "<img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Mandel_zoom_00_mandelbrot_set.jpg/644px-Mandel_zoom_00_mandelbrot_set.jpg\" width=\"25%\">\n", "<div align=\"center\">*The Mandelbrot set*</div>" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/pCpLWbHVNhk\" frameborder=\"0\" allow=\"accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import HTML\n", "\n", "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/pCpLWbHVNhk\" frameborder=\"0\" allow=\"accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similar phenomena were discovered in many fields... see the list of applications of ABMs above!... and a new field was opened to science: the study of *complex orders*. In general, we cannot either \"solve\" a problem in such an order by solving a differential equation, as we can for simple orders, or by purely statistical analysis, as we can for random phenomena. Instead, we must specify the rules the parts of the system must follow, and then we must *run the system*, most often on a computer, and see what *emerges*. (Another name for this field of study is *emergent phenomena*.)\n", "\n", "One of the important tools in exploring this (relatively) new field of complex orders has been *agent-based models*. In such models, instead of trying to find a \"top-down\" equation that we can solve, and therefore say exactly what the model predicts at time *t*, we instead create a number of *agents*, which we program to follow some rules of behavior, and then set those agents \"loose\" in an \"environment\" (our model), and allow them to interact. Such models are also sometimes called *cellular automata*.\n", "\n", "An early example of such a model was John Conway's *game of life*, where each \"cell\" on a grid evolved according to a simple rule, based on the state of its neighbors. Although the rules were simple, the \"game\" could produce very complex patterns:\n", "\n", "<img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e5/Gospers_glider_gun.gif\" width=\"33%\">\n", "<div align=\"center\">*A \"glider\" in the game of life*</div>\n", "\n", "The pattern produced is clearly not \"random,\" but it also could not be predicted by any \"top-down\" equation attempting to model the system. The system needs to be *run* in order to see what patterns *emerge*." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Applications of Agent-Based Modeling" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An early area in which ABMs were successfully applied was that of *flocking* or *schooling*. Birds form \"flocks,\" and fish \"schools,\" and these groups exhibit behavior that clearly is not random, but also cannot be described by any simple equation. For instance, check out this school of fish:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/15B8qN9dre4\" frameborder=\"0\" allow=\"accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/15B8qN9dre4\" frameborder=\"0\" allow=\"accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that there is no fish \"choreographer\": the school must emerge \"bottom-up\" from the behavior of inidividual fish.\n", "\n", "Using ABMs, researchers discovered that they could create agents that followed simple rules, and yet produced this sort of complex phenomena, like \"boids\":" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/QbUPfMXXQIY\" frameborder=\"0\" allow=\"accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/QbUPfMXXQIY\" frameborder=\"0\" allow=\"accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "ABM models have also been useful in many other fields, as noted above. Perhaps of particular interest is their application, over the past two decades, in film making. A common difficulty faced by film makers trying to shoot such scenes was whether to employ large numbers of real humans, all of whom would need to be directed, fed, and so on, or to try to animate these scenes with top-down control.\n", "\n", "Massive realized that ABM could cut this Gordian knot: instead of trying to control all of the animation top down, film makers could instead create \"agents\" who would follow simple rules, and then instantiate a whole host of such agents, and create the movie episode by simple allowing all of those agents to follow their own rules.\n", "\n", "This technique was so successful in the *Lord of the Rings* movies that since then [most film makers](http://www.massivesoftware.com/gallery.html) desiring huge crowd scenes have used ABM." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/EmTz7EAYLrs\" frameborder=\"0\" allow=\"accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/EmTz7EAYLrs\" frameborder=\"0\" allow=\"accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture\" allowfullscreen></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Our ABM Efforts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's look at a few agent based models we've made here at Tandon.\n", "\n", "The first one is of the spread of a forestfire." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "from models.forestfire import main as ffmain\n", "\n", "ffmain()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another model we've built is of bacteria avoiding toxins and moving towards nutrients:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "from models.bacteria import main as bamain\n", "\n", "bamain()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, let's look at a model of trends in fashion.\n", "\n", "In this model, there are trendsetters and followers. The trendsetters want to wear something that only other trendsetters wear. Meanwhile, the followers want to be just like the trendsetters.\n", "\n", "This leads to waves of fashion.\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/scipy/__init__.py:115: UserWarning: Numpy 1.13.3 or above is required for this version of scipy (detected version 1.13.1)\n", " UserWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "What is the grid height? [2-100] (8) \n", "What is the grid width? [2-100] (8) \n", "How many fashion trendsetters do you want? [1-100] (4) \n", "How many fashion followers do you want? [1-100] (4) \n", "Welcome to Indra, gcallah!\n", "NOTIFICATION: Running model fashion\n", "\n", "***************\n", "Menu of Actions\n", "***************\n", "1. Run for N periods\n", "2. Display a population graph\n", "3. Display a scatter plot\n", "4. Examine model data\n", "6. View log\n", "0. Quit\n", "Please choose a number from the menu above:\n", "\n", "How many periods? 24\n", "Steps = 24\n", "NOTIFICATION: Running env fashion for 24 periods.\n", "NOTIFICATION: Switching 0 agents between groups\n", "NOTIFICATION: Agent tsetter1 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "NOTIFICATION: Agent tsetter2 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "\n", "Total census for period 1:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 0\n", " Red Trendsetters: 4\n", " Red Followers: 0\n", " Blue Followers: 4\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 6\n", " Total agents who switched groups: 0\n", "NOTIFICATION: Switching 2 agents between groups\n", "NOTIFICATION: Agent tsetter2 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "NOTIFICATION: Agent tsetter0 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "NOTIFICATION: Agent tsetter3 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "NOTIFICATION: Agent follower3 is scheduled to switch from Blue Followers to Red Followers\n", "\n", "Total census for period 2:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 2\n", " Red Trendsetters: 2\n", " Red Followers: 0\n", " Blue Followers: 4\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 10\n", " Total agents who switched groups: 2\n", "NOTIFICATION: Switching 4 agents between groups\n", "NOTIFICATION: Agent tsetter1 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "NOTIFICATION: Agent follower3 is scheduled to switch from Red Followers to Blue Followers\n", "\n", "Total census for period 3:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 3\n", " Red Trendsetters: 1\n", " Red Followers: 1\n", " Blue Followers: 3\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 16\n", " Total agents who switched groups: 4\n", "NOTIFICATION: Switching 2 agents between groups\n", "NOTIFICATION: Agent tsetter0 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "NOTIFICATION: Agent tsetter3 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "\n", "Total census for period 4:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 2\n", " Red Trendsetters: 2\n", " Red Followers: 0\n", " Blue Followers: 4\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 22\n", " Total agents who switched groups: 2\n", "NOTIFICATION: Switching 2 agents between groups\n", "NOTIFICATION: Agent follower1 is scheduled to switch from Blue Followers to Red Followers\n", "NOTIFICATION: Agent follower2 is scheduled to switch from Blue Followers to Red Followers\n", "NOTIFICATION: Agent follower3 is scheduled to switch from Blue Followers to Red Followers\n", "\n", "Total census for period 5:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 0\n", " Red Trendsetters: 4\n", " Red Followers: 0\n", " Blue Followers: 4\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 27\n", " Total agents who switched groups: 2\n", "NOTIFICATION: Switching 3 agents between groups\n", "NOTIFICATION: Agent tsetter3 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "\n", "Total census for period 6:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 0\n", " Red Trendsetters: 4\n", " Red Followers: 3\n", " Blue Followers: 1\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 34\n", " Total agents who switched groups: 3\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent tsetter2 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "\n", "Total census for period 7:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 1\n", " Red Trendsetters: 3\n", " Red Followers: 3\n", " Blue Followers: 1\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 41\n", " Total agents who switched groups: 1\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent tsetter2 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "\n", "Total census for period 8:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 2\n", " Red Trendsetters: 2\n", " Red Followers: 3\n", " Blue Followers: 1\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 48\n", " Total agents who switched groups: 1\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent tsetter1 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "\n", "Total census for period 9:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 1\n", " Red Trendsetters: 3\n", " Red Followers: 3\n", " Blue Followers: 1\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 55\n", " Total agents who switched groups: 1\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent follower2 is scheduled to switch from Red Followers to Blue Followers\n", "\n", "Total census for period 10:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 2\n", " Red Trendsetters: 2\n", " Red Followers: 3\n", " Blue Followers: 1\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 62\n", " Total agents who switched groups: 1\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent tsetter3 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "\n", "Total census for period 11:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 2\n", " Red Trendsetters: 2\n", " Red Followers: 2\n", " Blue Followers: 2\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 69\n", " Total agents who switched groups: 1\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent tsetter1 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "NOTIFICATION: Agent tsetter0 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "NOTIFICATION: Agent tsetter2 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "NOTIFICATION: Agent follower0 is scheduled to switch from Blue Followers to Red Followers\n", "\n", "Total census for period 12:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 1\n", " Red Trendsetters: 3\n", " Red Followers: 2\n", " Blue Followers: 2\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 73\n", " Total agents who switched groups: 1\n", "NOTIFICATION: Switching 4 agents between groups\n", "NOTIFICATION: Agent tsetter3 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "NOTIFICATION: Agent follower2 is scheduled to switch from Blue Followers to Red Followers\n", "\n", "Total census for period 13:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 2\n", " Red Trendsetters: 2\n", " Red Followers: 3\n", " Blue Followers: 1\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 79\n", " Total agents who switched groups: 4\n", "NOTIFICATION: Switching 2 agents between groups\n", "NOTIFICATION: Agent tsetter1 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "\n", "Total census for period 14:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 3\n", " Red Trendsetters: 1\n", " Red Followers: 4\n", " Blue Followers: 0\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 86\n", " Total agents who switched groups: 2\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent follower2 is scheduled to switch from Red Followers to Blue Followers\n", "\n", "Total census for period 15:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 4\n", " Red Trendsetters: 0\n", " Red Followers: 4\n", " Blue Followers: 0\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 93\n", " Total agents who switched groups: 1\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent follower3 is scheduled to switch from Red Followers to Blue Followers\n", "NOTIFICATION: Agent follower0 is scheduled to switch from Red Followers to Blue Followers\n", "\n", "Total census for period 16:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 4\n", " Red Trendsetters: 0\n", " Red Followers: 3\n", " Blue Followers: 1\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 99\n", " Total agents who switched groups: 1\n", "NOTIFICATION: Switching 2 agents between groups\n", "NOTIFICATION: Agent tsetter3 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "NOTIFICATION: Agent tsetter1 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "\n", "Total census for period 17:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 4\n", " Red Trendsetters: 0\n", " Red Followers: 1\n", " Blue Followers: 3\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 105\n", " Total agents who switched groups: 2\n", "NOTIFICATION: Switching 2 agents between groups\n", "NOTIFICATION: Agent tsetter2 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "\n", "Total census for period 18:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 2\n", " Red Trendsetters: 2\n", " Red Followers: 1\n", " Blue Followers: 3\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 112\n", " Total agents who switched groups: 2\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent tsetter0 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "NOTIFICATION: Agent follower2 is scheduled to switch from Blue Followers to Red Followers\n", "NOTIFICATION: Agent follower0 is scheduled to switch from Blue Followers to Red Followers\n", "\n", "Total census for period 19:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 1\n", " Red Trendsetters: 3\n", " Red Followers: 1\n", " Blue Followers: 3\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 117\n", " Total agents who switched groups: 1\n", "NOTIFICATION: Switching 3 agents between groups\n", "NOTIFICATION: Agent tsetter0 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "NOTIFICATION: Agent follower3 is scheduled to switch from Blue Followers to Red Followers\n", "\n", "Total census for period 20:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 0\n", " Red Trendsetters: 4\n", " Red Followers: 3\n", " Blue Followers: 1\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 123\n", " Total agents who switched groups: 3\n", "NOTIFICATION: Switching 2 agents between groups\n", "NOTIFICATION: Agent tsetter3 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "NOTIFICATION: Agent tsetter1 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "\n", "Total census for period 21:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 1\n", " Red Trendsetters: 3\n", " Red Followers: 4\n", " Blue Followers: 0\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 129\n", " Total agents who switched groups: 2\n", "NOTIFICATION: Switching 2 agents between groups\n", "NOTIFICATION: Agent tsetter2 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "NOTIFICATION: Agent follower0 is scheduled to switch from Red Followers to Blue Followers\n", "NOTIFICATION: Agent follower3 is scheduled to switch from Red Followers to Blue Followers\n", "\n", "Total census for period 22:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 3\n", " Red Trendsetters: 1\n", " Red Followers: 4\n", " Blue Followers: 0\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 134\n", " Total agents who switched groups: 2\n", "NOTIFICATION: Switching 3 agents between groups\n", "NOTIFICATION: Agent tsetter1 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "\n", "Total census for period 23:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 4\n", " Red Trendsetters: 0\n", " Red Followers: 2\n", " Blue Followers: 2\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 141\n", " Total agents who switched groups: 3\n", "NOTIFICATION: Switching 1 agents between groups\n", "NOTIFICATION: Agent tsetter3 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "NOTIFICATION: Agent tsetter2 is scheduled to switch from Blue Trendsetters to Red Trendsetters\n", "NOTIFICATION: Agent tsetter1 is scheduled to switch from Red Trendsetters to Blue Trendsetters\n", "\n", "Total census for period 24:\n", "==================\n", "Group census:\n", "==================\n", " Blue Trendsetters: 3\n", " Red Trendsetters: 1\n", " Red Followers: 2\n", " Blue Followers: 2\n", "==================\n", "Agent census:\n", "==================\n", " Total agents moved: 146\n", " Total agents who switched groups: 1\n", "\n", "***************\n", "Menu of Actions\n", "***************\n", "1. Run for N periods\n", "2. Display a population graph\n", "3. Display a scatter plot\n", "4. Examine model data\n", "6. View log\n", "0. Quit\n", "Please choose a number from the menu above:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "2\n", "Drawing a line graph.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEJCAYAAACXCJy4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd8FGX+x98zs7tpGxJCAgmQDaj03iENxVOa7SceKCogHHYR9fSsZ293ngr6w1MOxa7YUbEdPyXZICWA0jtkAyQkpJFN2TIzvz8mu6RndrOhyL5fr7yU3Xlmnpnd/c4zn+f7fL6CqqoqQYIECRLkD494qjsQJEiQIEFODsGAHyRIkCBnCcGAHyRIkCBnCcGAHyRIkCBnCcGAHyRIkCBnCcGAHyRIkCBnCcGAH+QPx6OPPsq4ceN46aWXfGq3du1aLrnkkkbfW7BgAV9++WUguhckyCnDcKo7ECRIoPn444/55ZdfiI+PD9g+77zzzoDtK0iQU0Uw4Af5QzF9+nRUVWXu3LlMmDCBzMxMnE4nxcXFXHHFFcyfP5+KigoeeOABcnJyEEWRfv368cQTTwBQWVnJXXfdxf79+3E4HDz11FMMHz6c+++/nx49ejBnzhyys7P5xz/+QVVVFUajkfnz55Oens7nn3/OTz/9hCiK5OTkYDQaef755+nZs+cpvipBgtSgBgnyB6Nnz55qUVGRet1116kHDhxQVVVV8/Pz1T59+qhFRUXqF198oc6ePVtVVVV1u93qQw89pB48eFBds2aN2qdPH/W3335TVVVV33rrLXXGjBmqqqrq3/72N/U///mPWlxcrI4ZM8a7ze7du9WRI0eqNptN/eyzz9Rhw4apeXl5qqqq6hNPPKHed999J/nsgwRpmqCGH+QPy7///W+2bdvGq6++ynPPPYeqqlRVVTFs2DD27t3L9ddfzxtvvMHMmTNJSkoCIDExkUGDBgHQu3dviouL6+xz8+bNWCwW7zY9evRg6NChrFu3DoB+/fp5paS+fftSVlZ2sk43SJAWCQb8IH9Iqqqq+J//+R+2bdtG3759ue+++zAYDKiqSmJiIj/99BM33ngjdrudG264ge+//x4Ao9Ho3YcgCKj1rKYURWlwLFVVcbvdAISGhjbbPkiQU0kw4Af5Q1JcXIzdbmf+/PmMGzeOdevW4XQ6URSFDz74gAceeIDU1FTuvfdeUlNT2bNnj679Dho0iAMHDrB582YA9uzZw/r16xk5cmRbnk6QIAEhOGkb5A9J586dOf/885k4cSLt2rXDYrFw3nnnkZOTwxVXXMG6deuYNGkSYWFhdO7cmRkzZrBz584W9xsTE8OCBQt48sknqa6uRhAEnn32Wbp3786mTZtOwpkFCeI/ghp85gwSJEiQs4KgpBMkSJAgZwnBgB8kSJAgZwnBgB8kSJAgZwnBgB8kSJAgZwnBgB8kSJAgZwnBgB8kSJAgZwmnRR5+SUkFiuJ7dmiHDmaKiuxt0KMzg7P5/M/mc4ez+/yD525HFAXat4/wuf1pEfAVRfUr4Hvans2czed/Np87nN3nHzx3/whKOkGCBAlylhAM+EGCBAlylnBaSDqNoaoqJSWFOJ3VQOOPMAUFYqPuhWcLf6zzFzCZQmnfPg5BEE51Z4IE+UOiO+A///zzlJSU8Nxzz9V5/ciRI9x7770UFRXRvXt3XnjhBSIifJ9MqI/dXoYgCHTq1BVBaPxBxGAQcbv/KAHPd/5I56+qCqWlx7Dby4iMjD7V3QkS5A+JLknn119/5Ysvvmj0vccff5zp06fz/fff079/fxYtWhSQjlVV2YmMjG4y2Af5YyEIIpGR7amqOjuzL4IEORm0GE1LS0t56aWXuPnmmxu853K5WL9+PePHjwfgyiuv9BaSaC2KIiNJzT+AqKom/fj+h09/JwNf+6SqKvhx/qczkmRAUeRT3Y2Ti6qCovj0p8qyN7OtLf9O9++Lbvy4xifth3+SaVHS+fvf/85dd91FXl5eg/dKSkowm80YDNpu4uLiOHr0aMA615yWW1HmYO+BEFSkgB2vKbp2VYmNbbsvQH6+QH6+77p1NLmY0X+9BVEkqkcvDGFhPh/rZHA2aveRN95A6Fef+9TGjcglXM13tG1x9Guu6ceCBePb9Bi+sv6RB5BLjzH6lcX6GjidxCQPR7Id9Ok4SrsoildvQO3YUdf2zz2Xxdathbz33hU+Hedk02zA/+STT0hISGDMmDF8/nnDL2VjIwB/frQdOpgbvFZQIGIwNP0AEtEuhI7RFcg+DAhlhwPF5SIiIUF3m6IieOWV57DZfsflcnHoUC7du58DwLRp13DJJZfr70ATlJVBWBi0b6+zgaqSnyfjNkZjjtM7DaNiP3IEt/04oZGtn2NpK0RRJC4uUte2erc7bamqgu++gXHjYOxYXU22bS+gy8f/4ZE+hYy++sY269oXX+xk7dojp9U1VlWVA58vw1FSwvglSzDpmSu0WsF2EGbNgu7d9R3o0CHExYuJPbIf+p2rq8nnn+/i4MFSRFGiQ4dwfcfxk9Z8Js1GixUrVlBYWMjll19OWVkZlZWVPPPMMzz44IOAVv3HbrcjyzKSJFFYWEhHnXfE2hQV2RssJlAUpfkJSQESz4v0adKyqrCCisOHiWkfg1irdmlzuN0CV175AAMGKBw9eoQ77riJt976oNb7rZs0dbmgqkokIUGlY0d9TxHu6mqO5SlgCCW0o/7gXV1SguN4OaFxnfztbpujKAqFheUtbhcXF6lru9MZY8YvRDudlM29FeeFF+tq86+/reQK6Wcurd7LebcMbbO+FRVVsGjRBvLzy5Ck02MerWTHdqoKCwHY/s2PdBn3pxbbhH/zPeGCQNGDj6NG6xtRiYdy6bB4MeWbd1A9eHSL2+fklHHwYCkAX321g0svbbsnL8/3XhSFRgfKLdHsJ/nWW2/xzTff8NVXXzFv3jzGjRvnDfagFXwePnw4K1asAODLL78kPT3d506cLERTCACy06m7jdmsaf4VFXVfVxSFq666FJstB9CKZl955WQcDgeXXPInnnnmcWbOvJpbbplNXt4RAHbs2MYtt8xh9uxrueuu2zhy5DB2+4nj6EVxOpBwIyu+yVlGcyTuCjvqHyaV88zGaM1AlSRco8bobmO15mI7dwjCgQOIOQfbrG8WSxRut8KRI6fPJHq+dRWgSZP51gxdbYzWDNwDBukO9gBKQmdUoxGp5rfdEllZuQCIooDVmqv7OKcCv27dDz30ECtXrgTg0UcfZdmyZUyaNIns7Gzmz58f0A4GEslkAkBx6Q/4EREgCGC315WqRFFk4sRL+PHH7wD45ZeVJCenEhISQmlpKUOGDOPttz/iwgsv5uWX/4nL5eK5557i0Uef5s033+fqq6/j+eefxm4XkCQI9+EpUHY6EXHjVnz7+AzmSFRFwV1Z0fLGQdocU+Yq3EOGoZr1PaLn59vZs6cY4cJxWvuszDbrm8USBUBublmbHcNX8jIzMCd1o0tKCnk1wb9Zqqowrl+LK9XHQagkoXTpipirL+BnZtqIjQ3n/POT/jgB/8orr/Tm4D/99NNceOGFAHTp0oV3332XFStWsGTJEqKiotqmpwFArAn4skN/wPcE4/oBH2DSpEv56SctK+n7779l4sRLATCZQpgwYTIAEydewsaN2eTm5nDkyCHuv/9uZs2azmuvvVIzwheIiFDxZepDcTqRBDdut2/JBMaau5fLfvqM2s5WBHs5ht824kzTH4w8I8neV6ZBx44YdY5y/cFiaQeAzXa8zY7hC4osc/TXLBLSxpI4bhzFm3/HWVbabBtj9joEpxOXD9fYg2zppmuEr6oqWVm5pKUlkpZmYc+eYo4ePX1/X6eHOHeSECUJ0WBAcTp8amc2q1RW0mCCOCGhM/HxCaxa9X8UFxfRr19/7Tii4J28VhQVSZKQZYXOnbuwdOkHLF36AUuWvMuCBf/B4QCzj1Kc4nRgkDSpyZdJa9FgwBAWhqv8zNa+/wgY16xGkGVcKfqDkdWaS1RUCP36d4QLLtACfhulD3bt2g5B0PTp04GSrZtxlpUSn5KG5YILUBWF/F9XN9vGaF3ls2TmQU5KQsppOeDv21dCfn4FKSmJpKYmApzWo/yzKuCDNspXfNDw4YSOX1XV8L3Jky/j5ZdfYPz4Sd7XqqursdaMvlasWM6oUckkJXXj+PHj/P77JgC+/XY5TzzxEACRkb79aGWHE0PNnLPb7VNTTcevrET15U4RJOAYMzNQTSZcI0bpbpOZmUtycldtEnXcOKT8PKR9e9ukfyaTREKCGZvt9Aj4eZna7yk+NZ2E0aORQkO9mn5TmDIzfJLMaqMkWhCPFTacvKtHZqYW3FNTE+nfP46oqJBgwD+dkEwhPk3awgkdv6Kioe4yduwFHD9e5pVwPPz883+ZOfNq1q5dw5133oPJZOLJJ5/j1VdfYubMq/nuu2+YM+fvGAwQGurbOchOJwaj9tH5E/BVVcEV1PFPKcasTC3Y61wTYbOVYbOVkZZm0V4Yp+n4bSvrRJ02kk5+VgZRPXsR3ikeQ0gIHUeOId/a9ByGP5JZbWRLEgBSrq3Z7bKycunSJZLu3aORJJHk5K6ndcA/bc3T2grRZEIpK0NVVd1rBkQRIiJUZLkLn376tfd1VVXZuDGb4cNHEhsbV6fNI4880WA//fsPZPHid2rawo4dIuHhPur3shtVdmMK8S/gGzw6frkdU2Q73xoHCQhCSTGGLb9Tee8Dutt49PuUFE024NxzkTt3wWjNoHrWnLboJhZLFJmZzQe8k4HicnH019WcO+0a72vxqWlseuYJqo8dIzQ2tkEb49pfEdxunySz2ngDvu0gcu8+jfdL0fT7Cy/s7o0lqamJfPfdPmy2Mu/E9+nEWTjCN6GqCorL5VM7s1mTdGoH2IULX+Sll/7Jbbf5npnkdGp/Puv3NRPOxlDtXu12+7bQTZQkjOERuOxBHf9UYVydhaCqOFP1LbYCTTqIjQ2jd+8O2guCgCs1HVNWhmYF0AZYLO3Iz7fjcPg4qggwxzZtxF1ZQUKt65VQk3mTv7rxUb4/klltZEs3AMRmJm537DhGUVGVV7sHSE3VnsA8N+jTjbMu4Hty8f3R8QFqJ7jceec9LFv2FZaa0YAHqzW7xf15sn58yb8HkGtSSk3egO9TcwCMZjPuqkoU+dT+kM9WTNZVqOHhuIcO07W9JxMkNdVS56nUmZqOWFSEtGN7m/TTYolCVeHw4VM7OPCkYHZKSfW+1mHwUIzmyCbz8Y3WDJ8ks/qocXGo4eFItqafcDzSTe2A37t3B2Jjw05bWecsDPg1qZk+ZuqEh2vSTmPpmf5gt4PRCCEhvrXzjPClkBAMBj8DfmQkqCpue1DHPxUYszK1zJGa72JL7N9fSl6e/YScU4Mnv9yU1TY6flKSJkmc6kyd/KxMYvoPJDSmg/c10WCg4+gx5DUS8IXSEgxbfseVkub/QQUBOdHSbGpmVlYu3bpF0bVru1rNBFJSErFac09L87mzLuB7F1/5OML36PiBCPiqCuXlAmazb/o9aDcqQZQQJMnvgG8Ij0AQxaCscwoQCgow7NyB0wdt2aOjp6XVDfhK10Tkbt3bbOI2MfHU5+LL1dUUrFtDfCPBOyF1LMf37qEyv66xoz+SWaPHTrQ0Kem43UpN/r2lwXupqRby8uzs39/8OoFTwVkX8AVRRDSafM7UAU1vr67W/G9ag8OhBWpf9XuoWXRlMiEIAkajfwFfEEUM4RHBBVinAM9o3JfFQFlZuXTubKZ794aFYZxpYzGuzvJtQYZOEhLMGI3iKU3NLMheh+JwEN/I9fK8Vl/WMfoomTWFYklqcoS/ZUsB5eXOOnKOB8+N+XSUdc66gA/aKN/XET6cyJdvbZwsL/dPvwct4Ish2lOKNsL374nDGBmp6fj+3DGC+I3RmonSLgr3gEG6tvdkgqSkJDaaVeZKTUc8XoZhy++B7iqSJNKlS+QpDfj51gwESaLTmJQG78X0G4ApOrqBrGPKysQ1crRuyawpZEs3xONlCKUlDd7zBPP6MhtA9+7RJCSYsVpPfYZTfc7KgC+aTD5r+KDN/0hS63V8u137Lvr6fVRVFdnpRKqZePZ3hA/axC0QHOWfZIzWVbjGJGt3ax3s3HmMY8eqGpUOAJzJmtRhzGwbWUfLxT+1Ab/DoMGNphALokh8clqdEb5QUIBhx/ZWyzlQOzWz4SjfarXRq1cHOjbiVisIAqmpiWRlnX46/lkZ8CWTCcXl0u0auXFjNhddlMYNN0znmWemcdddU3j77SXe96+66lKvI2ZLaM6bDfX7t99ewqxZ05k1azqpqcO9/1/7OKrbjarI3olnj4bva1be7bffyJadOxBEyScd/6uvPvd6B1mtGXz00Xu+HfgsRzx8CMOB/T6ZeTXIv6+H2qkT7l69MekxE/ODpKQocnNPjYbvstsp3JhNfDPBOz4tHbsth/Ia51BTTZqmP/459VGStIAv1rNYcDpl1q493Kic4yEtzcKxY1Xs3FnU6n4EkrNu4RXUpGaqKorLhaQzTaZXrz68+uobFBYK7N9fxXPPTSE9/QJvMRS9eHL568s5M2fOYeZMbQFNaupwli79oEFbz7yDWGuED5p8K/p66xYEjGbf8vG3bt3MkCGaLrpr1w4fDxjEM7nqa/59UlKUdwK1MVyp6YR++L62sKOVMkZ9LJYojh2rwm53YjYHdt8tUbBuDarb7c25bwxPbn5+ViaRSd00ySyynW7JrDmaWm27aVM+lZXuZgO+5wZttdro06fhwrBTxRkR8D/+eDsffri1weuC4J93lCrLuKsqkcJ2ce11g5g2ra/utmazitNZjSCImOvNuq5Y8TWbNm3goYceA7SR9OzZNzJ06HDefXcpP//8Ew6HQo8eY3jggTsAfdLQihVf891331BaXMTQXn249i8389JzT5CXdxSnU+S2224jJWUUS5a8zrFjheTm2jh6NJ9LLrmcmTPn4HQ6ef75J9m5cwfx8Z0pq3EZLK128PQ/nsItSoiSyJ133kv//gPYsWMbCxe+iMNRTVRUNPfe+yCHDx/Cas1gw4b12O12vqopyxcfn8AFF/yJF198nv3796EoCtdeO4OLLprg7XdZWSkpKel0734uH3zwDqIo0rlzZx555ElCfM1LPYMxWTNQOnRA7qPv+ybLCqtXH+Kyy3o0u50zJZ2wJW9g2LQR96iWC3b4gsc1Mzf3+EkPXPnWDESjkY4jmz6nqJ69CI3rSH7mKnpMv16TzJJTdEtmzaFGRaNERTcoj2i15iIIkJzctcm2iYntSEqKIjMzl7lz265Qja+cEQE/4Hi0FB+0kF27djBr1nQURSE39xBjxvypgZ1CU6xZs5pdu3awePE7HDggsmjR3/nll+/qGK61RGFhAYtffBVHwVEW/vsVJk++jOHDL2Dt2kJeemk2Q4ZoTwR79+5h0aL/YLeXM3XqFVx55VS+/vpLAN5//1Nyc23MnKktUf8x8xeG9x/IjDk3se3AfjZv/o1evXrz3HNP8fzzLxEfH8/atb/y/PNPs2DBIlJT0xkyZBiTJl1Kebn2mD958mW89tor9OrVh4cffpyKCjs33zybvn37e/v93nufYDAY+POfL+eNN96iffsY3nhjETbbQXr06KX7GpzRqKq2GCg5Tffj2JYtBRw/7vCu3mwKV3IKqiBgsq4KeMA/kZpZdtIDfp51FbHDRmBopliEIAjEp6aRZ81AOJSLYf8+qm/4S8D60FhqptVqo3//jrRv3/yirrS0RJYv34MsK6dN1bAzIuBPm9a30VG4wSD6VWJQVVWKNv9GWMdORCR01tXGI+kA7NxZxT/+MZ93313KjBk3tNg2O3sd27dvZc6c66muBll2cOCAb2UGe/bsjSDLiAYDGzasx2azsXjx61RXg9vt5vDhQwAMHToco9FI+/YxtGvXjooKO7/9toHLLrsSgMRECwMGDARgxOgUHrz/bnIKCkj/08VMmTK1jm+/h4oWHAOzs9fhcFTz7bfLAc0t9MCB/d5+e4rcp6Skccstc0hLO5+xY8edPcEeEA/sRzp8iMp5d7e8cQ3NZYLURo3pgLv/QE0yuudvrepnfTx+MCd74tZZVkrx5t8ZePd9LW6bkDqWg198hvzFp1pbP/1zGkOxJCHt3e39d1WVi/Xr85gzZ3CLbVNSEnnvva1s3VrIoEGnR1lRXQF/wYIF/PDDDwiCwFVXXcUNN9QNcq+++iqfffYZ7dppo4GpU6dy7bXXBr63AUIQBCSjf6mZALGx4QwYcAG//76mwX5rz8rLNdYFiiIzdeo1XHrpdezZIxIbW0ZMjG/lCUNCNJdP0WRClhUWLnyNdu3a89tvEBZWwDnntCcj4xdMtTTcE/0RUNUTN0ZJ0o49aNBgXn/+JdasW8PKlT+yYsXX3HbbfK9vv3YOMiUlxc32TVFkHnnkSXr16g1AcXER7dpF8eOP39WRbObP/yt7917Or79aefLJR5g9+0afnnLOZDzVqVxp+vV7qzWXnj1j6NSp5brFrtR0wt58Q5sk8tNOoDHi4sIJDzec9MVX+b+uRlUU4nVcr/gajV9d8Q1KTAxy334B64dsScL083817VgQyM7Ow+mUGyyCawyPxp+ZaTttAn6Lzxnr1q1jzZo1LF++nM8++4x3332X/fv319lm69atvPjii3z11Vd89dVXp3Ww9yCaTCgO31MzAcLC3OzZs4GkpN51Xo+KiiYn5wCqqnLkyGH27tW8yocOHcEPP6ygsLAKWXbz7LP38MsvK30+ruJ0IJlCGDZsOJ9//gkGA+Tn72f+/Gk4HNVNths+fCQ//fQDiqKQn5/Hli2bAVi0aAGrstdy/vAR3HnbfHbv3tWob/9jj2m+/VohF7nB/w8dOoIvv9RGV8eOHWPmzGs4ejS/Th/cbjdXX/0/REdHc/31NzBhwmR2797l8zU4UzFaVyF3ikc+9zxd27tcMmvWNJ8JUmf71DQEhwNj9rrWdLMBgiCQmBh10u0V8q2rkEJDiRs6vMVtI7t1J6JzFyK3b9XcMX3OYGgaOSkJoaoKoaAA0G7CkiQwenTT+r2HTp3M9OwZc1otwGpxhD9y5EjeeecdDAYDR48eRZZlwutpalu3bmXx4sXk5uYyYsQI/va3v532k3FSSAjO4/q/xB4NH6C6uorOnfszfvysOtsMHz6Sb7/9imuumUJSUhIDB2qPfamp6ezdu5v77puJoiikpY1h4sRLfOqvqqooThdilIm77rqPf/zjaa69dipVVXDrrU8SHt70KPDKK//MgQP7uPbaq4iPT+Ccc84FYMqUaTz26IN898MKjKGh3HPP/V7f/gULXsDpdBIeHsHDDz/uPb/XX1+E2Wxm8OChPP30Y8TExDB79lz+9a/nuf76qSiKwq23zqNLl67emwaAwWBgzpybmD//VkJCQjGbI3n44cd8ugZnLKqKyZqJM/189HppbNp0lMpKV4v6vQfX6GRUSdImLX14itCDxdLupKdm5mdm0HHkGF1ZdIIgcO6QoUR8+zXlyaktbu8LSi2bZHenTmRm2hg8OF53xlJqaiIffbQdl0vGaPTtqb4tEFSdKwMWLlzIm2++yYQJE3j22We9q/4qKiqYP38+Dz/8MF26dOH++++nS5cu3HXXXa3q2LZt2+ncOanlDf3EnpeH/fBhOg0diuDHiODAATh+HAbpzP5SFPjtN4iNBYu+33AdZKeTws2baZeURHjcicni7du1TLzz9A0cG6Xgt98JiWpHVPfu/u8kQBw5kkO/fvqzps4Itm+Hfv1gyRKYPVtXk6eeyuDvf/+ZwsJ76dBBZ4X7MWO00W1WVis625A77ljBO+9sprT0b7prSLSGysJCFnXsSNozzzDqAX01Aw7Pnk2Xt96i+Msvibn88sB1xvPZvf8+5ZdOISbmH9x3XzJPP32hruaffbadq676hKys2SQn63taa0t0T9rOmzePuXPncvPNN7Ns2TKmTZsGQEREBIsXL/ZuN3v2bB588EGfAn5RkR1FqXvfURSlxQlZfydtAQRJS2J3VFZj8LXkFBAeLlBUJGC3K7oqVtntoCgiERGKX6tjXZU1ko1k9J6zwSAiSSpOp+D3dQBt1a3jeDkul3xSftDNoSgKhYUtrw2Ii4vUtd3pQOjyFUQCRQNHoOjs8w8/7KVfvzgURW70PBs7/4hRKYT97wKKDhzxq6xfU8TGhnH8uIM9ewpbzEwJBAeXfwdA5OCRus89Kq8AO7Bl83b6Jo8LXGfCY4gDKrbt4ltxF263wpAhnXR/9/r31zKbvv56Jz16NPRC8hXPuYuiQIcOvptxtTi03bdvHzt2aItswsLCuPjii9m164T2euTIET799FPvv1VV9WZlnM54/Gh8LWjuwbNwyuOL0xJ2u4AgaOUS/cFjBSHWW1jjr2NmbYzmSBSXE9nPOY0gzWPKzEC2JKEkddO1fXW1m/Xrj+iWczw4U9MR3G6Ma3/1o5dNcyJT5+TIOnmZGRjNkXQYrDN/XVUJ37CevAgz+autge1MRARKbByiLYfMTBsmk8SIEfoy+wBiYsLo3z/utCmI0mLAP3ToEA8//DBOpxOn08nKlSsZNuyEC11oaCj//Oc/yc3VfCPef/99LrroojbtdCDwrFaVHf5l6oSEaFKKXisau11LnvD3XujJKJLaIuBHaiMFd9AuOfAoCsbVmTh9sFPIzj6CwyHrnrD14BoxCtVkCrivjscX/2SlZuZbV9FpTDKizh+LtHsXYmEBFQMGkZ9lDbghoJyUhJSTg9Way/DhCYSHG31qn5KSyLp1R6iuPvVGhS0G/LFjxzJ27FiuuOIKpkyZwpAhQ5g8eTJz585ly5YtxMTE8MQTT3DLLbcwYcIEVFVtkLZ5OiIaDAii6HdqJmijfLtdaHG1ryyf8M/xF9npRDSaGsw3GAza/EBr3HFFUwii0RQ0UmsDDNu2IJaW+uSf48kEGTOmi28HCw/HNWwExqymi3v7g2e17cnI1KnIO8LxfXub9c+pj7cewKWX4So/TnGAnUNlSxIcPMCWLQUtrolojLQ0Cw6HTHa2Pr+ttkTXLXTevHnMmzevzmt5UDXrAAAgAElEQVS1dfvx48czfvz4wPasjREEQUvNdPkvY5jNKsXFAlVVWkWspqis1NJ4WxPwPT749TEYtDx7t1tz8vQHQRAwms24yst9Ku4epGU8o21fA/7gwZ2IjPQ9082Vmk74C88hlJagRrf3uX1jREWFEhUVclIydTzOl/Gp+qtVmayaZBZz+RR46G/kWzOJHdI6L/zaKJZumJZ/haAquvLv6zNmTBckScBqzfVZpgs0p8d631OEZDL5LenAiQImLdklt1a/B03Dr6/fwwmJqPWyTiSK24Vc3XQ+fxDfMVpX4T6vB0p8gq7t7XYnGzfm+zWSBG1hl6CqWlGUAHKybJLzrRmYoqOJ6TdAXwOPZJaSRljHjkT37uOtgRsoZEsSouzmvJAKhg7V9znWJjIyhEGDOp0W+fin/+xqGyKaQnBVVLa4XV7eEa655kq6ddOcMVVVoaKigokTLyE5+RbsdujYsen25eUC4eGwdOnrAMyZc5P3vW+/Xc4nn3wEwMGD++naNRGDwciAAYO4p2aZvKoomrNnMwFfj6Tz9NOPeb1w6nPCH78cQ72VmlZrBocO2bj66uvYvn0rv/zyf9x667wG+whSD5cL46+rcfx5mu4m69Ydxu1W/B4JuoYORw0Lw5iVgXOSb2s9msNiacfu3c2vuA4E+VmZxKek606VlrZtRSwp8T5Bxaems/eDd2vqRgTG3dPjmjmxtwGTyb/H6NTURBYt2nBKXEdrc1YHfMlkQpXdKLIbUWr+UsTGxtWxLD52rJCrr/4f+vUbT3j4OSiK2ugCP1nWVrt37Ni4nDN58mVMnnwZoPnq//OfC0io5++juFygqt6J5tp4An5ryy5KphAkUwguu52wuLp3r9pWyAcPHmjRaiGIhuH3TYgVdp8mbK3WXIxGkZEj9WeC1MFkwjVyNCZrBoEsUZ+YGMXKlQfaVPIrzzmI3ZZD31tu193GZK0rmcWnpLPzP69TtGkjHQNkJFcYEUc0kG7xP/U5NdXCwoXrWbfuCOPGdQtIv/zhrA74HolEcTgRw327FMeOHUNVVWJjw7DbYenSpVitPyHLCqNGjeaWW+YhCAJvv/0OX3/9BR06RBMdHUmfPvp9PjZuzOa11xbidrnoGhPLX+9/hBeeetRrQzxjxizGjr2YNWuW8+GHq3E6yzhy5DAjRozmr3+9H1VVefXVl8jKshIbG4uiKAwZMoyKCjuPPfYQRUVacYbZs+eSmjqWwgo7C158nkpZJjQ0lLvuuhej0eS1QjabzXz88QdUVVXx9ttLuO66WSxatIBNmzYgywqTJl3CtGnXevstywrnnHMuEyZMZtGihQiCQGRkJI899gzR0a3PST7d8QajZP16tNWay7BhvmeC1MaZNhbzU48hFBaixulzdG2JpKR2VFfLFBRU0KmTH8WYdeDR7xN8mrBdhfvc81BqBknxySkgCORZVwUs4GcchHOBge1aVgOaYuTIzhiNIlarLRjwW2Lfxx+w58OG1ZX89cP3oMoyCennE9ntnGYtWEEb0c+aNR2n00FZWSm9e/fjmWdeICmpE598ksWOHZr9sSAIPPnk3/nxx+9ISurG998v54EHPqRfP5Vbb73Bp4APkJtr47033obiIt5f9kEdG+JbbplDr159EQTYufN3PvxwGaIoMX36FPbtuwqb7SC7d+/ivfeWUV5ezqxZVwOQkfEL8fGd+ec/F3Dw4AG+/XY5qalj+dcb/8ucy69k6IUXk3s0nwcf/Csffvg5l1+uOW1Om3YtkZHt2LRpAzNnzvH657z55vs4nU7uvvt2evfu6+33p59+g9ls5o47buLeex+gT59+fPLJR+zevZORzXic/1EwWjNx9+2PGqvPVrisrJrNmwu4++5RrTquZ7RrWp2Jo+azay2eXPycnONtGvBD4zoS1VOni6rbrUlmU6Z6XwppH0PMgEHkWzMYFCDn0Iw1+VwsRNHZcczvp6bwcCPDhiWcch3/jAj4bYVHJ9STmumRdBRF4dVXX2Lfvr0MGzYCgwH27l3Hrl2a/TGAw1FNp07xFBUV0b9/KjExYUREqFxwwZ+8hmN6SUxMIsxopEoQ2LBpQx0b4qqqKg4c2I8kQY8eg7x+Op07d+H48TI2bdrA2LEXYDAYaN++PaNHa4Wg+/cfyOuv/y/HjhUwZkwqs2bNobKykl17drPwvaWIH7+PaDBSVVXlLZbSGNnZ69izZzcbNmTX9KeSffv20q1bdxITk7wFYlJT03nwwXtJSxtLWtpYRoz44wd7HA6M636laqY+KwWAX389jKKoTdav1Yt74GAUcyTGzIyAB3ybrcx/uakZVFUlz5pBfGqabsnI8PsmRHs5znrlDONT0tj55hu4q6oazEf5g9VqoyQ6nvh6la98JTU1kRdfXEtZWTVRUb6v7g8EZ0TAP3fadM6dNr3B662xVgDtS1a8dbNPBc1FUeTWW+/khhum8+GH73L99TdgMMhccMG13HnndEQRysvLkSSJL774HJdL8Wbz1HaY1EtISIiWkmk0NbAhLisrISIikt27v8dgqDsR5NFaa1tWeGyRExMtfPDBp6xZ8ytZWVpt2jfeeBuTKYRXHn8GyWii3bnnUVBwlHbtoprsmyxrRmljx2pL2UtLSwkLC2Xbtq11zPOmTbuWlJR0Vq/OZNGihZx//jZvOcc/KsYN6xGqqzX3Rp1YrTZCQyWGDo1v3cENBlzJKRgDmK3iKYTSVqmZx/fuoepovo9yTuOSWUJaOttfe4XC7HUktNJI7vDhcvbvL0Ud3A3RtqVV+0pNTeSFF9bw66+HmTDh3Fbty1/O6rRMQRCQTCE+L74yGAzcdtt83nnnLYqKjjF8+HDWrv2WoqJK3G43Dzyg2R/36TOCrVszEYRyHA4HGRk/+9VPxaGlZNa3Ib7uumkcPZqPJKkoSsNR0fDhI/n55//idDo5fvw4a2uW3H/22ccsWfI648b9iXvuuZ+SkhJUVaVr10QyNm3AVVHBurW/ctttNwJN2yIPGzac5cu/xO12U1lZya23zmHbtoalKOfOnUllZQVTp05n6tTp7N6906/rcCZhzFyFKoq4xiTrbpOZmcvIkV0ICWn9OMyVmo5h/z7EI4dbvS/QJIm4uPA2S83My9RuTvE+THCbMjNw9+nXQDLrNDoZQZICkp7pkWDaDeqNmJ8HrbAfGTYsgdBQCau1dU8KreGMGOG3Jf764o8enUy/fv1ZvPg1/vrXR9i4cS933DELUZQZNSqZiRMv4fBhkXHjpnPnnTOIjIykUyffc3hBW2VriopqYEN8++130qVLVyRpU6NzGWlp57Njx3ZmzJhGTEwHb1rphAmTeeyxh5gxYxoGg4HZs28kMjKSRx99in88+wTLvviUkIgInnjiGQRBqGOFPHLkGN588w1ee+0V5s69hUOHcrnhhunIssykSZcydOhwNm7MrtOPm266jaeffhxJkggJCeHee/U5IJ7JGLMycQ8ajBqlb3L62LFKduw4xpVXBsbe11P1yWjNwDH1moDssy1z8fOzMonomkhkN52OrQ4HxvVrqLp+VoO3jOZIYgcPJT8zA1r5VcvKyiUmJpSYYX0Q3laRDtmQz22+xnBThIQYGDmyC5mZp07H122P3JY05paZn59DfHzz9sitlXQAKg4forqoiJgBA1uVbrZ7t4ggqPToceI8du4UMRpVzj3X/0usyjJFW34nPL4z4fF1H/U955+XJ1BQIDBwoKLXbr1JFLeb4q1bCI9PaHC8k4Gezx1Oc7fMigpie1qouuk2Kv7+hK4my5fv5i9/+YbvvruGYcNaHhi0eP6KQoc+3XGOn0T5wtf09rxZbrrpWzZsyCc7O7BynKoofNz3HLpeNIHUV/7d4vZxcZGULv+e6MsnUvb2hzgnTm6wzcZnnmDrqy9zze4cjH46h6qqyrBh/2Hw4HjenRtD9OUTKf34C1wX6LNGboyXX17LM89ksX37zcTG6rS9rkWbu2X+0RFNJlRFRm3lUlWzWaWyUvAugHK5oLr6xGpcf5FdjZum1UaStGyl1vjpeBANBgxhYbiCRmp+Y1y3BsHl8in/PjPThtlsClwpPFHElZKu6dwBGtNZLFEcPny81YOs+pRs34ajuJgEH66XVzJLTmn0/YTUdFS3m6OtcA49eLCMQ4fKSU1N9C6+kuoVNPcVjyHe6tWHWrUffznrA77kcc1shYkaaAFfVTXfHDjhohkZ2bofm2d+wWPn3Bian07r7RU8GM1m3JUVqEpgf9hnC6asTFSDAdeoMbrbWK25jBnTBYMhcD9JZ2o60qFcxJyDAdmfxdIOWVY5ciSwg4H8LI9/jg8BPysT98BBTUpmcSNGIZpMmqzjJx5L47Q0C0p8AqrR2OqA76mWlZl5anT8sz7gexdf+emL7yEiQlsX4PHHt9sFJKn19aQ9Xj+NrbL1YKxZoxO4gB+Jqii4KgK5VvPswWhdhXvocN3mSXl55ezbVxJwYy1vPr41MHbJtVMzA0meNYPI7ucQ0aXlOrEAVFZizF7XbAaUISyMuOEjyW+Fc6jVaqNjxwjOO689SBJy10TEVgZ8g0FkzJgup8wfPxjwawJ+a0f4kgTh4arXSM1u1+yQW62pO50IotisN3igDNS8+zObQRCC/vh+IBwvw/DbJp/tFACf/e9bQu7RE7ljp4ClZ3oCfiBTMxW3m6Ors3xKxyQrS5PM0pq/xgmp6RRt/g1HaYnP/VJVlczMXFJTE71ze4olCcl20Od91SclJZG9e0vIyzv5v69gwJckRIOxVb74HsxmzTenqkrL3mqtfg8nXDKbm1A+EfAD43EiShKGsPCgP74fGH9djaAoPhUSt1pziY4OoV+/wNggeBEEXKnpmDIDo+N36RKJKAoB9cUv2vwbrvLjxLcQvOvwf/+nSWYjm5fM4lPHgqpy1A/n0N27iyksrKxjhyxburVa0gG8C+tOxarbsz7ggzbKb+0IHzS9XlXh6FEt8LbG/96DZ9FVc3h88ANZ6McYGYmrsgIlEDPBZxFGawZqaCiuYSN0t8nKyiUlJRFRDLwpmSs1HbGwAGnP7lbvy2SSSEgwB7TUYb5Vk1ziffAb4uefcQ8Z1uKIKnboMAzh4d45Al/wBOPaNtWyxYJYVKS/zF0T9OsXR3R0yCmRdXQF/AULFjBp0iQmT57MW2+91eD9HTt2MGXKFMaPH89DDz2EO8AlxtoayWRqtYYPWhEUUYTSUgGDAV3FzVtCdjoRQ5ovhCGKgSl1WBuj2Qyqijuo4/uEyZqBa8Qo3R9+Tk4ZNtvxgMs5HjzSkjEzULJOu4Bq+PnWVUT37kNYc/7itRCOl8H69S3KOaD9rjuOHE2eH3MYVquNxMR23vKOoEk6AFIrLRZEUSA5OfH0HOGvW7eONWvWsHz5cj777DPeffdd9u/fX2ebe++9l0ceeYQffvgBVVVZtmxZm3W4LRBNJhSni6aWJOTlHeH880cza9Z0Zs2azsyZV3PVVZeyZMnrdfcjajo+0Kh+v2TJ6w3agGaLfN11f/buf9as6axa9TOK240quxukZG7cmM3tt2urYG+//UY2bswOfMAPj0AQxGB6pg8IRUUYtm3xsbqVFjzaqhKSktQNOdES0InbQAV82emkYN0a37Jz1qwGRcGlU/OPTx1L6Y7tVBUW6j6GoqisXn2ojn4PBCw1EyAtLRGb7fhJKRtZmxZX2o4cOZJ33nkHg8HA0aNHkWWZ8FrOkocPH6a6uprBgwcDcOWVV7Jw4UKmT2/ofXO6IplCUNWmi4xA0374F154Md1qrQ6MiNAmbiMifJNzGvPBd9fkeDZW6ao+BoPafMCXZcSj+SDrT7WMMkhQXIzoQxvfUXFXVSGFhiIIIoK9BPO/Xm652eD+cG3b+fEobjfbFr1Cj+tmEBrTQVcb42orgM8TtnFx4fTsGeNXP1tEEHClpGH6YYVW/FhnYZH//lfihx8ahoedO0eTn9+du+82IUmtk6CqjpZSXHkfzyT31N3GaM2EkBBcw0fq2t5TKjE/K4PuV0zR1WbbtkJKSqobVB2TLd0AAjJx67nBW602kpJ0VvcKALqsFYxGIwsXLuTNN99kwoQJdOp0YnFIQUEBcbU8t+Pi4jh69KhPnWhsxVhBgejNSTZ99AGm99/xaZ96cV47A7mmMpAguzEYGj6KS5LWj9o50qWlRagqtGtnxmAQeeedt/jvf3/C4XDTo8do5s27BYMhjPfee5svv/yc6OhoIiPb0bdvv0ZzrSVJbPC60+Vk8Scfse3gfkRJYsKEycyYMQtJEr0jD0EQkCQRo1Hg00+XsGnTCiRJYuTI0dx++53cd9/dTJkyleT+A3jtP/9m1+FcXp53D8fKSpn38gt88OhTrPg1i49W/oiqqvRO6sZfr7meEKORK+65g16JSRSXH+eF2+7ksTcXU+VwIIoCd0+7lv7ntN4ASlVUDLIbwVGNIIoIjkrCvvu6+UbV1fD2EuKmTYME/+wqWiJn5Uo2PvUo5shQRt53n75GG36FiAjaXzT2RK5sM6iqNpK88MJz6Nixnc99jIvTuYJ03Fj46H3iqkqgWzddTV58ETZvhvplC6qr44H2fPed0fu78JfK43HYeZRne5bpP5edW2HIEOIS9U1wd7gwjR9MJqr27tB9jIMH9wIwfnyPum1izRAejrkwD7Pe/jZBbKyZyy/vRY8esfrPvQZft6+Nbi+defPmMXfuXG6++WaWLVvGtGla2bbGZBBfLQoas1ZQFMW7ok+SlUaTDFrrhw+a4yM11a6cVVWIYQ2XO8uywrFjhVx33dX1/PD/SUxMHFarle3bt7N48dvk5JSxcOHT/PDDNwwZ0oevv/6KN998H0EQuPnmG+jdu2+jKxXvvvsODAYtSFgsSTzxxLN88eXnHCsp5q0330dWVe6440a6dTuH0NBQ73VXVRVZVti8OZPfflvFkiXvIkkGHn74Pj799BPGjElh3bq1jDqvF7/t28NRux1H775kff8to88fx+6wcL7cmM1rSz8kJCSEf//7Vd79bSOzZv2FUrudSy6aQPL4ibz/2TLGXDSe6dNnsHFjNht37qC33rqjzVBx+BBVhQWEREYS2e0clPwcCrfubbaNYfNvtP9TOse/WlHHCz2Q7PzmewD2fv8j3W+4RVeb9j/9F3l0MsdLq4GWawPv2VNMXp6dESPifbaJ8MVawhgTTzRQumkbrgh9Tyv790dw9dVuXnih7tzWmjWHuOyyZfzv/17Z6kIer174V57Y8jo7DxhJ6qnvXGL27UdKT/PpekV0TaRg5x7dbbZtO4ooCoSHiw3atLckIe/cw/EA2HosXqxZQvhyLq21Vmgx4O/btw+n00mfPn0ICwvj4osvZteuXd73O3XqxLFjx7z/LiwspKPOCRi9OKZNx9EG9sgeREUBhGZTM5vywwfNF3779q3MmXMd1dUyTqeDuLhOqGolo0eneCWw5vzwG5N0Nv2+iQuTUzGYTBgFgYsumsiGDetIaWTByfbt6xk6dAImUyiCoJVO/O67b7nzznu4//67qbj0CgDOO68Hu3fvZM2a1UyZMpVNm7I5dCiXm266AQC320XPnr29++11zrm47XaGDx/JQw/dx+7du0hOTmVKgAKtq1z7srvs9ibnUOrj7jcA2rfHmJXZZgHfU32pYO0aXfVRxaP5GPbspnr6DN3HOJF/3zb6vYfa2rOeSph2OxQXi1gsDT+PQC2+cldVIe5cUbMvEdCRDeZyIR4+BN11GqzVYLYkYfdBhsnJKaNLl0iMxob1a2VLUkA0/FNFiwH/0KFDLFy4kA8//BCAlStXMmXKCS2sS5cuhISEsGHDBoYNG8aXX35JeroPObWnAYIoIhqNulIzG/PDVxSZqVOv4fLLp7FrVxGKUo3LpbJ3byaqeuKG5KsfviK7EQ2GWk9MapPtBeGEvYLR6PHWcdOpUzyKorIqK4OB55xHdK8+ZGevZ9euHQwYMIjdu3cxbtyfmD//XgAqKyvrHCOifQyu8nIGDhzMe+8tY/VqKytX/siKFV/z8suLdJ9Lo+fncuGurkIKDUOurkKurtLXUJJg7FhMAco8qY/LXs6xTRuI6tWbsl07ddVH9Xqzp/pSztBGly6RdOvWdM2BQKB06Yoqiog6g15OjibVJCU1HEx16hSB0Si2OuAXrl9LuOsQoSHumoDfMuLhQwiK4kfA70bR5t90b2+zHcdiaVxiUxItGFdnaT+wNqrt25a0eKXHjh3L2LFjueKKK5gyZQpDhgxh8uTJzJ07ly1btIIAL7zwAs8++ywTJ06kqqqKGTP0j3JOF3xJzazvhz906Ah++GEFhYVlyLLMG288xaZNWfTuPZjVq63Y7Xa//PAH9OrD/61ZjSzLVFdX8+OP3zNkyPBGtx08eDgbNnxPRUU1brebFSuWM3Sotu3o0cks/WwZQ3r3ZeiwEXz22cf07dsfSZIYMmQYGRm/UFJSjKqq/Otfz7Js2YnJaaPZjLu6iv995SV++GEFEydewl13/Y3du3c12g9fcFVo+cweV05XuQ/5zePGIeUcbPVS98Y4umY1qiwz+K/3e+ujtoTRmoESFY27/0Bdx1AUlays3AaZIG2C0YjSpStSjr5r5QnAlkaKdkuSSNeu7Vqdi59nzUCUJCwWlZwcfefvHVn7McJ3FBfrzjiz2cq8TzL1kS3dEO3lCH6s3j0d0KXhz5s3j3nz5tV5bfHixd7/7927N59++mlge3aSEU0mbwDSQ20//Pvvf4S9e3dz77034XbLpKenkpx8Ee3bh/LnP1/DX/7iux++qqpcPCaF/OIiZs26Brfbzfjxkxg79oIGfvMAyclpbNy4h1tvnYGquhk1agxTpkyreS+Vjz56j0G9+2I6rwdut4vkmoUuPXr05IYb5jJv3s2oqkqPHr247rpZ3v16rGUvmzCJZ1/6JytWfIMoitxzz/26z6UpXOXlCJKEKSoaKSRU+0HqLSY/TquyZczKxGFp2U7ZF/IyMxBNJrpePJGY/gPJz8pssT6qyZqBKzn1xCq4Fti+/RjFxdVtLud4kC1JuvPHc3O1ANyYpKO93vrUzHxrBrFDhpHUXvAeryW8/fcx4Ecmad8Pu81G+77N15SurnZz9GhFMwH/hDzmbt9GmVVtyFlfAMWDZArBUVKCqijeWrceEhI68+mnDTNHaksaM2fOYdiwy4iODiExMYoDB0opL3cyZcrUFvXuxvatut1IgsDtN91GWFzdOZGhQ4d7R++vvvoGoCWuTJjwF266aTbt29fd16BBQ7AufkczgBIEvvnmv3Xev/TSK7i0RuOvjdWarZVKlCTah4azaNF/mj0PX3HZ7RgjzAiCgNFsxlFaghqmr2AIffuixMZhsmbguOa6gPYrPyuTjiNGYQgL0+qjvrW42fqooi0HKecgVTfqm9yFE06MbbXgqj6yJQnTzyt1bWuziUREqMTENBXw2/Htt75l4tXGI5n1v+MuLOUKa9YYdSkkou0gqiQhdO0KJTrlP7QRPkC5LafFgH/okPbk0pSk4wn4oi0HBg3R3YfThaC1Qg2a/bCK4tIzrdWQqio3sqwQEaFN7pnNRpxOGYfDv9VQnvkEqRmXzNq06KfjdqM2Y8DWFIIgYIwwB3wBlux0IjuqvU8QRnMkqizr9zQSBJypaQH1ewdwlBRTvOV34lO0J6CEtHQUh4PC7HVNtjHWODI6fTAAs1ptdO8eTZcurUvv04uSaEHKz9NGBi1gswlYLE0X00lKiqK4uBq73T87Eo9klpCajsWiUF4uUFracjspJwelS9cTX3admBM9I/yDLW7reXJJTGx8hK/UPC3olcdON4IBvwbJ65rpn8WC58sfGekJ+Kaa1/27gXjmE/QsugJNSRCEplfbCm4XGFrODW8MozkS2VEdEL8hD54biLHGD8XzX9nRckDy7iN1LFLeEaT9zadx+kJ+zYRcfE3w7qijPqopcxVKbCxy7z66juF2K96VnCcLrxRxqOXl/Dk5jWfoeGhtpo5HMosbMYrERLVmXy2HIsmW4z0PXwjp0AFDeAR2HfM9OTnaCD8pqfERvtouCiU6OiCLr04FwYBfwwlffP+Cmt3uJDTU4E3lCg01YDCIfo+CPMFVb8AXhGb8dGQZFMWvET6cCMaBdM902+2IBgNSjUwiGo0YQsOQfagv7PWJsfrveV6f/KwMDOHhxA4dBoApsh0dBg/xmnw1QFUxZmVqfdE5+bplSwHl5U6va+LJwLNKtKVMHVXVgm9jE7YeEhO1YOjvxG1+ViZxw0diCAvzZgLpCfiinwFfEATMSUm6Ar7NVkZIiESnTk3nuMuJZ25qZjDg1yAaTSAIfo1iFUXFbnd6R/VQ8yUzm7Dbnbrzy+vs0+lENBgQdU4CQjMB3/OinwFfCgtDNBgC5o+vqipOezmGGv3eg8FsRnY4dH8GSvdzkDt38aZEBoJ8awYdR46uk3efkDqWY5s2NCprSfv3IuUdabYYR3081Y6Sk3UW/AgAeqWI4mKBigqh2YDfmhG+RzLzlDP0HKfFTJ2qKqSCo14DM18xW5Kw65BhbLYyunZt16xzqWJJapPssJNBMODXIAgCktE/18yqKheKotYJ+KDJOi6XjMPhu8Ww7HQ2W+WqMQwGFZerkS+qJ+Ab/Qv4giBgiDDjDNAIX3E6UZzOBsWljZGRoKocayQLqYmOaX7vWRmaT0wrqSoooHTnDq+c4yG+mfqoxpoSei4f/Nyt1lx69+5Ax476KmIFAqVTPGpISIuZOi1l6ADExoYRHm7wK+DXl8yioiAqSiU3t/lQ5Om3PyN8gEhLEvZcW4uDr9zcpnPwPciWJE0aC+Dc0ckiGPBrIZpM3pKCvuCRbeoHfI+e74+sozgdLa7urE9TI3yh5kV/JR3QdHzF6fBJcmkKr34fWS/gR2iP0fk+jNidqemIx44h7dzR6n55fNMT6gXvjp76qHUNSBEAACAASURBVI3IOsasTOTOXZC76/MVcjpl1q07fFL1ewBEUVeJvuZy8D0IglCTmum7pFNfMvMcqyVJR8rV+u2RpnzFbEnCZS/HUVLc7HbN5eB7kC1JCNXViAX+ZyqdKoIBvxZSSEijGv7GjdlcdFFajTXyNVx77VW8/fYS7/s33jiNiopjDczPTCYJo1HSHfBTU4fX2CNfw7zHHua2h+5j27atTW7/zTfLefrpxwDNYrm4+AiNLsR110wctybgR3p0/NbLOi67HdFoRKrn8y8aDIgmk0/+5d66rX4UuahPvjUTY2Q7YgYMqvO6ITycuGEjGt6IFAVTVgaulDTd+v3GjflUVrpPWv59bfSU6POssm0u4Gvv+5eL35hkpgX85q+fWCPHeKQpXzHX3Cia0/HtdifFxdUtBnxPH8QzMFMnmIdfC9FkQnG7UGUZoZ523qtXH2/Oe2VlJddd92fS0y8gKak7qqoSHt5QfvHo+OXlDi2fXUdQWLr0A2Snk5LtWzF3tRAaG6u7/waDd362rguuZ9gv+f9xSyGhiAYjLrud0A76+1QfVVVx2csxmiMbvR5SSAiF2euazXuvjdI1Eblbd4yZGVTN1Z8H3xh51lV0Sk5ptH5wfGo6v7/wHI7SEkKitYUO0s4diMeO4fSpnKENQTi5+r0HOTGJkN83NbuNzSbQvr1KZAvZohZLO1avPqT7ew0nJLNzrrq63r5UVq4Um83Fl2w5qCEhKHH++XSZE7UbrN2WQ+zgoY1u4/Gmb1nS6VbTp4O4R47yqz+niuAIvxbe1ExX8yNyh6MaURQxm81UVmqj54gIAytWfO0dcYNWnOTgwW243QpLl77J7NnXMnPmNSxatKBZLVGpl6FTXV3N448/zPXXT2XmzKv57rtvGu+/pLmMvvTSP7nuuqlcf/1U3ntvKYLbzfRnHudgjQ76+OMP88ILzwKwdesW/vpXbRX1u+8ubdDHvLwjTJ8+hVtv/Qt/f+VFdu/czo03zmLOnOu55ZY55PpY/Ud2OFBcLm/mT4NzqHnKKly/Vvc+nWljNS/6VpRjrDh8iPID+72TifVJSKupj/rrau9rnqcKV4ov/jm5DBjQkejoAJRD8xHZkoRYXIzQzFNaSxk6HiyWKOx2JyUl+tNo81drklh9ycxiUaiuFigoaPrGIdlykBMtuv3862P2rLZtZlTueWJpUdKpuXmciZk6Z8QI/+OPDXz4YcMcckEQ/MqAqc0117iYNk0bAddJzQytO7rctWsHs2ZNR1UVDh3KZdy4i4iNjSM/XysBGB7eeI57WJiB7ds31Ngnv4MgCDz55N/58cfvGD9+UoPtZ82ajiq7kZ1Oho9KZv7d9/Hmm68TFRXFu+8uo7S0lLlzZ9KjR68GbQ0GFav1U44ePcrbb3+Iy+Xijjtu5FxzJCkDB7Nhwzq6devOvn17vG3Wrl1NcnIaa9asZteuHQ36OHDgYGy2HD755BXam0w888wTTJ0ylT+Nn8TKlT+ybdsWEhP1yxMn8u8bH0JKIaEIBgN51gwS0s/Xt8+UNMLeXYph62bcfq5+9Mg19SdsPcQOGYYUFka+dRWWiZqtrTEzAzmpG4rO86+qcpGdncdf/jLYrz62ltpShNyvf6Pb2Gwiffu2fOM8kZpZRkxMy09iAPmZGY1KZrUzdTp1avz3LNpy/M7QAS29NqR9e8qbCdKeOYmWAj5hYShxHc/ITJ0zIuCfLDyrWhubuK0v6dx333zee28po0df7i1C0hgGg8iePb+ze/d25sy5HtCeEDp1im90+6VLP6AyP4/K/Hw6DNR+GBs2ZHP//Y8AEB0dTVpaOps2bSAysu4oWZJg9+71XHrpJUiShCRJmqXylt8ZO2QYH2RlMnToCLp3P4ecnBxKSopZsyaLJ5/8B59++lGNxXPdPg4cOJj27WNISOiM7HAwvP8AXl74Ius3ZpOcnMb551/o0zV228sRTaYm1xcIokDs4KHk++CE6Uzx1G3N8Dvg51kzCImJoX2fvo2+L4WE1K2PKssYV1txXNbQkqIp1q/Pw+mUT/6EbQ21fWAaC/iKomXpTJjQ8iDqRGrmcQYPbvy7XJ+mJDNPRpDNJjJyZONPF5LtII5aE73+YLZ0a3a1rc1WRkSEkZiYlp++zlSb5DMi4E+b5vaOwmsTKD98D4LBgCCKLaZmhoeHk55+AevXr2HgwEnep8z6Txyy7K7pp8D551/O/Pk3IQgC5eXlSM3k18tOJ6LR6PX0qW2xrP37xL5rYzBo29ZVNlRkt5v+ffqy9+0lZGevY8iQYbRv34Gff16Jy+UmPj7ea/F89dWaL42nj2VlpYTUTK6KJhOpo8YwYNAQfrfl8MknH7JmTRb/z96bRjdynmeiT1UBIECCO0CCCwrsTb2pu9kbu0kA7FiJtes6tjyOFWcU29eyr+NYGd97bGlkOZ6rO47tSHZOHMX3JBpnzskcx45GvpY8lmxFseQmCmSr91W9q4kCQYIEuGMhlqq6P4oFglirUEU22+Jzjo/VYNVXH5Z66/2e73mf96mnni35eS3NWxD9c+rqS/K+Nnc/Lv7gbzJcf9lxW1uR3roNBuYo4n/+F7LmkjuvIDMAm7M/z0cpG23uIzj9X/8L4qEQakdHQM7NKu5fS1EEDh9eff4eyOKe/YUD1cQEgWSytAZfgtTcW25PVoky2/bZJ/L+ZreL1ysmzSTmZkHOzFSs0JFgph2Yvnyp6N9FSWbp36YEzuGA/qRM+fAawjqHnwWCIERpZpnCH47jcObMKXR1bVm2aVVf3wCf7xYEQcDoaAA3bogl/wcOHMS7776Nqak5pNNp/Of//H/ht78tbmTFJ5ZLMvftO4jXX38NADAzMwOP57cFbZIpCrjrroP4zW9eX2apvG/LXaAMVdixYydeeeWn2Lv3APbvP4B//ud/Qm+vM3ONN998A7FYrOgcCYLAC//0j3jv0gV85CMfw+c+93/g6tUrMj7Zxc9tIQ4+nS7K30tocx2BwHEYPzZY8rhspJxu6I8NARV4Ic3feh/RwEjZZtqSv874oGdJf6+Qv9+715Yn310tCE1N4GvMRamIUj74uairq0JDQ5VspU6GMitQoFZdDVitxZU6JLuowa9QoSPBLGnxi9Rs+HyzmQdZOXB0F8iAv7iXyRrFHZHhryYoQ2FppsThA8DCQhzbt+/EAw98AvPzQqYq78CBHrz++mt47LFH4XA4sHu3yNXec8+HcObMRfz5n//vIAgBhw714YEHHi46By6VzGjSAeAzn/kcvve97+Lxx/8IPM/j8cc/i61bt+HWreUeMiQJ9Pc/itdf9y1ZKt/7AD60aw94nQ69vS6cPXsaDkcXmpqaMT09hb4+FwDA5erHjRvX8PnPfxo8z2XmGAyOLbvGpx77Ezz/ve/ild/8G3R6Pb785a/I/mwlv/tyWbv1QI8oz/QMoPMP7pM1dtJ1BKZ/egm6M6cVKyeCi+ZnxTZsJTTv2Qu9uRZjngHsGWGRvmsr+CLUXC4ikSTOnAniy18+qGhumoIgwNN0USpCCrhyMnzxuHr4/fK0+BnKrIhbJU0LRbX40nzl7pUUg9lOg08kEJ8YR7VtuVW5IAhg2VnZdBtPO0BwHMjRgKq9hdWGrID/4osv4le/+hUAsSHK13KaOr/44ov42c9+hro6cSPnE5/4BD71qU9pPNXVgeiLH1322r59B/DWW/lFN9euTaK6mlhmb/ytbz1fcNw//MM/wSc+8afYuLGx4N+BRTtingefTIFqXJJ51tSY8Zd/+f/kHf/ww/8b7r9ffHBIc5iZIfEf/+PX4HAsUkvpNHDxPASdDvff/xDuv1/ccKytrcXRo8uVMJ/+9Ofw6U9/btlrudbQ23Z144WvfR01HZ15ts3lkIrMg6oyli0o05lMaDl4SFEBVqrPCYEgYGCOKg74Y8xRmFptqNu8peRxpE6H1j4nxpmj0AeDWPhkftvNYjh2bAQcJ9wW/X02ONpR1F5BCridnfKEEDRdjytXwmWPEwQBQa+nJGXmcPA4ebIwzSnVDlRaZSshW6mTG/CnphYQjabKb9guIns/5E4K+GUpncHBQTAMg5///Od49dVXcenSJbz11lvLjrl48SK+//3v47XXXsNrr712xwZ7QJRmClwafJmlGsfxiMfTspfnkq9ObrP2XPCpJABBtmlaLvKqbVX66OSCMhhAVVVletHKhSAISEUjZekcCTZXP6Yuni9bGZkZv6kZ6Z27FPvqiPy9B22uflncrc3Zj5r3b4KIRTObxXLg8fhhMFA4eFB+E5yVACf5wBRQt7EsidZWHkaZilG7vQ5+/1zZ3/T88C1ER/wZSqzwWDwCAaIgQ0KyPvDmWggqG47ULu4BzBfYuF2SZJbW4Eu4U6WZZQO+1WrF008/DYPBAL1ej02bNmF0dHTZMRcvXsRLL72ERx55BM899xwSGpTf3y5I/jXlXDMlUzTJPqEczGYDeF5APF6aY8744FdVGvCFZZ74hMYBHxApmVRUftNxAEjHYhA4Ls9OoRjaXKLuPTjolX2NlKsf+hPvyvJ8lzB77SoWQhOwySyeanP1Q8rRU06X7Ot4vX4cPNgGk6kyi2qtwNMOkNEIiKn8B6nogy//O6XpeiQSHCYmoiWPk1ZqbSU+Y5oWwHEERkcLFONJWbTKVpDZxVe5kKvBl8B32hX1CV4rKBvwt2zZgu5ukYseHh7GG2+8gSNHlr64aDSK7du346mnnsLPf/5zzM3N4Yc/VNfc+nZiyRe/XMBPgSSJovr7XCz545cel08os0XORX6GLz5ghAq98AtBalaSjsdkn5PR39fIy/Cb9+6DrroaQRn9ZDPXcPeDSCSgL9GsJBeSz32p7DMbjTvvhkOnw0xDI4SmZlnnTE/HceHCBJzO2yPHzEYppY7coisJkmd8OaVO0DtQljKTrluIx6/UBz9vHKMRplZbwYAvvQe5m7bQ68G3d9xxjVBkp33Xr1/HF77wBTz11FPo6urKvF5TU7Osv+1nP/tZPPPMM/jKV+Rv5jU35weBiQkSFEWUXWbn+teoBVm9WESSTpUcW7JDNhjk2RfrdCSqq/WIRFLo6Cg+rpBOgSAIGEwmWQlNvn+PGPAzry8qEnRGA6DRZ0U21GHeB/CxKHR18jJ2LhqBzmSCwVTcAVQQBJAkCatVHLPT7UbomDfz71zkvf7wfQBFoeH0MeCjD8ma1+DxQdR1dWHjgV2yjsfCAjiexyUujV0WsywaiGFGIAjAI49sK/peKkFFY3WLdQaNMxNA1vnpNDA6CmzfTsJqlZccdHe3AwBmZpJF5yIIAsa9HnT9/u+jpaU4XbJ3sXxiZqYaVuuyAQDWB9399y27RqWfY+OmjUgEA3nnh8NxNDebsGGDvIc4AGDTRlDBAIwafqdyoOY3JCvgnzp1Ck8++SSeeeYZPPTQ8htpdHQUg4OD+PjHPw5A/IJ1CumDyclIHg9IkjrMzs6gpqau6E2ltQ5fBAGC0iG1sFB07HSaRzyeQkODWdH1a2oMmJyMIZnkivptpxMLIPUGcFz5cQu9f5IkIAgEEgkeFAWQySRIAGmQgFafFUFBZzQhMTuHKkv5jVuB55Fc9OAp9nkJgoBodA4kqUMoJK4GmnucGH7zL8FeuglTy/LrWK21meOyJoaG7r3Av/07Zp78GspB4Hn43nkH9IOPFBirMPTMABp4Hjfm52E+eQG1XeUbar/xxjVUV+uwYUOd7OuUQ+H3Xx6EuRkWAJELVxD/vaXzfT4CHGeGxRJHKCRPalhTIyY7ly6NF53LzNUriI2Po/FgX8n5mkwASZpx8WISodDSKpgIh2GJxRCxtiG+eH6l7x0AjG2dmDjxbt75V6+GYbcr+35q2zqh/+3bmNLoO5UD6b2TJFEwUS6HspF5bGwMX/rSl/A3f/M36O3tzfu70WjE888/j0OHDqGzsxM//vGP8eEPf1jxRHLR2GjF9HQIkUjxZpckSYLXwAc9FzEuDmI6iYiu8NixWBqpVAwLCzEEg5Oyx00m00gkYmDZCIzGwh99bCYEgiSRCJZfKhZ6/9EogVSKwOgoD70eIKanQXAL4MeVed6UQ0JIIDU9heiYrmyWyyUSiCciMCaMmC/xvnQ6Axobl9I7m0ukWYLeAWz46MdlzSvlOgLT3/8tEIkAZTaIpy5dQHJmRjadAwB65igEisIIx6GVGZAV8BnGj56eDtmrwZWEUFsHvrExb7NRolKkloNyYDLp0dJSU1KLn6HMykhe9XqgvT1fmplR6Ni1UcLU0DSir/4MfDq9rOKXZeewY4cyU0COdsAo9QmWu9N9m1E24P/oRz9CIpHAd77zncxrn/zkJ/H222/jySefxK5du/Dcc8/hi1/8IlKpFPbt24fPfOYzqidGUTpYLKUVDWqe9KXwztPPYPbmdfyhpzAX/LWv/Qb/83++h2vX/izT0lAO5uYS6O39If7Tf+rB0087Cx7zr/fcA/v9D6Lv+39XdrxC7/+ddyj80R9V43/9rxgOHeJQ9/VvgLp6GdPMCdnzlAP29AV4P/3HuP8Xb6L1cH4ikI2zz38b5174Dj55dTjjNCkHTbv2QF9XjyDjkR3wk65+VP/t96A/PoTUPaUTj6BH8s+Rr7YxMB6k9+wFNeJHkBnAXX/ypyWPn5iI4sqVSXz84/L63a4GOLorzyZZjg9+IdB0XUlf/CDjQY2dRq2jS8ZY+cVX0oNJCw4fEJU6AschGhjJzInnBfj9c7j/fnk9DSRk9wnmykh61wrKBvxnn30Wzz6bXzr/2GOPZf77vvvuw333ySuQuRNgttMY/e1vilq/er1+9PZ2Kgr2gFid2N3dCoYp3Eg6FY1iIRzKqAkqgcUiZmjhsDhvIhwCb7GWOqUitPY5AYJAkDlaNuAHmQE07+5WFOwBUfdu63OWbCCei9TBQxD0ehg8A2UD/hhzFHWbt6CmrV3e4JEIdKdPIv5nT8I2wiLIDJS1Bx4cHAGAVe1fWw487QD13vI+CyxLgKIEdHQoMyOk6TqcPDlW8G8CzyPoHQBdosgwG3a7gKNHl99TpMYB37w4ToT1ZQL++HgEySQnW6EjQdLfk+zwHRPw160VCsDscCAdi2EhFMr7WzAYwfXrUxUrLlwuO06fDhZU60QWrYbNKn7cuQGfXKGAX9XQiKZde8o2K0nHYgidOqGINsmGzenOWB/IQnU1Ugd6oC/TEIVPpTA+NFiw1L8Y9MeHQKTTSLr6YXMdQXxiHLPXr5U8x+NhUVdXhV27KvNxXwlwtENsGZhFB/p8JDo6BMXqXZquRyAwX3BvJkOZyVxB0TSPYJBcpqqlfD7wzc1l6Tm5yA74Enw+cYUiqY7kIpPh30FKnfWAXwBLP4rhvL9J2bnbXVnAdzrtSKd5HD8+mvc36XpqAn5zc37AF5oVKA8UoM3Vn2lWUgwTJ94Fn0zCpqDnazYku2JFVbeufujOnwMxM130mMlzZ5CORvK82UvBwHgg6PVI9RzO2DCUmxfD+NHb26G5mkwNONoBIplc1qLP71cmyZRA0/XgOAGBQD61KrWEVBLwASAQWFoxUeywZtk9ANR0dIKgKESyZKl+vzINvgTe1gbBYLijiq/Wzq9wDUFqh1bIO5thWDQ0VGHnzsqy5p6eDuj1JBgmfxNVyjqkisBKYDCITaHDYQJIpUBOT69Ihg+Im6rlmpUEmQEQOh1aD5WmfYqhcfsOVDU3K257SPA89EPFzdek8Wx9yjZsU/sPAtXVMDu6UNNpLxnwA4F53Lo1c9vtFHLBFWjRJxZdVRbwxfPzN26DzFHUbdosmzKT7EAkEzdApHTUumRmg9TpUNPRuawRirQH0dmpLMPP9AlW2ATodmI94BeAxKFHC3yRDDOC3t7Oov735VBTo8f+/W0FefwIy4IymWBsUbf8t1gETE4SIKdEBdFKBfzWw30gKKpkMA4yA7Ds3S/L5rgQCJKEzdmf4cvlILXvAASTqSStE2Q8aNxxt+wWksTsDHTnz2XskAmCgM3Vj6B3oKj7ovQd3y7/+2Lg7ZIPzDAAIB4HxsdJRVW2EiQrglwTNT6dFimzIg1lCo+VU3zF86BG/KpN03JhttPLkjmWnUVra01R5VwpyOkTvJawHvALQF9TA6PFmpfh+3yzYNlZ1RtwTqcd589PYHZ2uQVAhPXBbKdl9wgtBouFRzhMgFjcg1ipgK8318Kyd3/RLDc5P4fw2dMZeWWlsDndop/68C15J1RVIdVzGAZP4XlxiQQmjg8pmpd+aBAEzyOVZQ/Q5upHYnoa0+8V9lhnGBZNTUZs3155D+CVQK4PzMiIJMlUnuF3dNSCJIm8DH/y3BmkIvOKKDObTYDBIGSUOmRwDEQqpSmlAyzaJOcEfKV0jgRR8bRO6dzxMNN0Xv9Lr1ebjM3ttoPnBQwNBZa9LgV8tbBYREqHDIsBX7CuTMAHRH42fOZUxjohGxPHBiFwnOiLowKSB4sSHj/p6ofu8qXMQy8boVMnwC0sKMo+9cxRCEYjUvuW+hBI3HQhFZEgCGAYP5xOe9Eiu9sGoxFcqy2jgFmyRVae4ev1FNrbzXn2CsEKKDOSFJ06pQxfa0mmBDPtQHw8mNl7Ytk52aZpueBoumyf4LWE9YBfBGIWMLzsNYbxw2Kpxtat6jZB9+9vg9FI5fH486xP1YathNyAv1IZPiBmucWalYwxHpBVVbAe6FF1jbpNm2GytSmTZy4GY8Ngvq110HNUpIp6+2SPZ/AMINXTC1Rl2Va3d6Bu46aCD6Lh4VkEAvNrjr+XwGe16FPS+KQQaLo+T4s/5hlA4/adsikzCXY7nwn4pG9YnKvKxie5kO6x6IgfqRSHQGBevodODjLSzDtEqbMe8IvATHchGhgBv9gvUMzYWLhcdtWUS1WVDj09Hct4/MTMNFJzs5kNYzWQOHwhJHH4K0cpWA8eAmkwZBQZ2QgyA2g50AOdSV6T62IgCAJtTjeCjEc2j5/esxe8uRb6AvMa83rQtHsPDPUN8q4fDkN3+RKSBegJm+sIxocG8+y0pYf5WuPvJWSkmRA586oqAS0tyjN8QAr4Sxk+l0hg4sSxipRZ2cVXFOuDQBDgOrV9aGbbJAcC8+B5QQWls+SLfydgPeAXQS3tAJ9KITYmyidv3pxGMBjV7AZ2uex4770wwmHRcXJJoaNNhi8IBKZH4hB0OggyA1sl0JlMsB7oydu4XZiaxNTF84qqWEvB5j6ChdAEZq9dlTkxHVK9fdDnrApS0SjCp04oopn0i6uEQu0MbS43UvNzmDx/dtnrDONHa2sNNm9WVmy2WuAcDpCBESCdht9PwG7nM72ZlYKm6zA+Hs1Yf4dOnwQXjyuqcZDgcAiYmiIRiSzaItvalq2qtECmEQrLZjabK6d0ugDgjtm4XQ/4RZDR4i9mQR6PtooLaRypEjOy2LfTrMHyNVN8NZoU6RyVK5JyaHP1Y+rCuWXNSsYHvYAgqObvs68BFObLiyHlOgLdzRsgx5ZqHiaOHwOfSimzU/AMgDfXIt29L+9vEkedTetI/L0Wq8GVAk93iS36AiOLtsiVZffAkjRT0uJnKLO+wvYhpcdaUuqQK9RNytTSCrKqChHWp9gHPxdCczOE6po7Rpq5HvCLIBPwF3lEr9eP9nYzNmzQJlvu7habWUu0jpTha8XhA0B4XFhR/l6CbbFZyXiW7j3oHYCuugbNe/ODZCUw0w6Y6a6M/40cJBeDenYXrKDXA0KnQ4uCugA9cxSp3r6CTWRMLS1o2L5jWcC/dm0KoVBsTdkp5CJbqcOyZEUKHQm5WvygQsps+VhSwCdA+dnMPLUEQZIwd9oXA/4cKIpAe3uFlsMEAc7hWKd07nTUdNoBgkCE9YHnBXi9frhc6iWTEnQ6EocPd2S43nl2GPq6esV+M4WQCfiTxIpV2S673r790FVXL8u+x5gBtBw6XLZ/rRLYXG4EBz1Fde+54HbeDb6xcXnAZ47Cuu8A9DU1ssYgx0ahu3kDqRL0hM3pxvi7Q5mmOdJ3uhYanhSDxD1Hr41ielpZp6tcLDVCmROtNE4er4jOAZaUQuwtAeRoQHOFjgRJmunzzaKjo1ZVJXSpPsFrDesBvwgogwHVbe2IsD5cvhzG5GRc8w04l8uOGzemEQxGNJNkAlkBf6ZqVTJ8ymBAS8/hTJYbHx/H7NUrmtE5Etpc/UjOzGDq0gV5J5AkUn1uGDxHAUFAcm4Wk2fPKKJzpIdFqsQGZJvrCLh4HOHTJwGI9B9N11Ws/FgN8B2dECgK/ksRAJUrdACgtdUMg4ECy85mKDMl+vtsNDcLqK4W4H8vBoLnwclw2awEZroLEXZYlQZfAmeni/YJXmtYD/glYKYdmGd9munvcyEt+RnGLwZ8jbKZxkYBJCkgPG9clYAPiLTOzJXLiE9MILi4yVmpf07xayz61yikdagRP0jfMMaHBiHwfMneqrnQMwPgGxqQ3lm8I9aSc+gAeF7A4KB/zapzMtDpwHd0gr0hqtAqsVWQQJIEOjtrwbKzS5RZT2VWGgSxqNS5KaqeVoLDB0RxRGJ6GsHhiYo3bCWU6hO81rAe8EugdnHZxzB+dHXVK/faKIOdO61oaKgC4/Eh4mc1UegAYgFLcxOPULoB/AoWXWUj06xk0IMxZgD6uno07dqj6TWqbW2o27wFwTJOmNnI6PG9HgSZAbEuYP9B2ecbvB6k+twoJWHJdg69dCmEmZnEmqZzJHC0A/6AuC+hJuCL54ta/DHm6KKVRuXuljQtwB/QZ+a4EpDEEVw4oD7Dv4OUOusBvwTMtAOxsVG86x1ekQ04kiTQ12fH6YH3wMXjmih0JFgbUphAC4RVyvCbd3dDX1uHoGcAQc9R2PqcICntOzy1ufoRHPSCS6VkHc/dtRW8tQV6z1FxX6HnMCiZ3YlI3zAo1ldQf19oXqGTx+H5jWiXvOYzfIjB1BeuhdksoFHl1hFN12PcSxK+nwAAIABJREFUN47JM6crpnOWxuLhmzSDp3Tg5fYqUAhpNd2EGQ0C/p2jxZcV8F988UU89NBDeOihh/DXf/3XeX+/fPkyHn30Udx33334+te/jnRaXk/MtQ4z7QAEAeT8xIrdwG63HbGAf+l6GsFqjmECLStadJUNUqdDa58Tvtdfw/zwLc3097mwuY8gHY1g/NQpeScQBJLufugHfovpSxcy8k45MEj8vYy9CJu7H3wyicu//i02b25EW9vqNrauBLydxnC8BbQ9rVq5S9N1aJy5CoHnFVlWFB6Lx3zSiLDt7oLKKC1gXjSQa8Q07HaVlI7kPsqufWlm2YA/ODgIhmHw85//HK+++iouXbqEt956a9kxX/3qV/GNb3wDb775JgRBwMsvv7xiE15NmBc3jJowg76+lQn4TqcdTRD79mpRZSvBaoosBvzVyfCBRTOxRR6zUpVGOUi6d/8778g+J+U6AiocQpPCeemZAfDWFnB3bS17bOuhXhA6HWIX3r0j6BxAzExvYQPo5qjqsRyOemzCMAi9AS0qrTQkpc5Nq7pxSqGqqQmCwYQmzKjeXC/WJ3gtouzj02q14umnn4ZhUV63adMmjI4uFbIEAgEsLCygu7sbAPCxj30MP/jBD/DHf/zHKzTl1YOkmtnemkJrqzwZn1Js3dqMzuooEAPMndoFCot+BhNwgLckNBuzHKRgWtXUjMbtO1bkGsbmZjTs2ImLr7yG6ba9ss4xparRjTpUURsxFWzGzOvyXDebfjuCLrdbVuGa3lwL45a74bh8E91rWH+fjbS9C7ewAS7zGACbqrHs9jpsxi3oNu+WTZkVg7Sf8L55FzarGqk4CIJAytwKy8wMWlrU39uxjs24fmYBMZm/LQAg9SQ2/QENYhXN9coG/C1blno1Dg8P44033sBPf/rTzGsTExOwZm0MWq1WjI+P43cBJlsb0qCww1K8o5NaEASBbc0xxBbMqja6ctFChjGH3YiZ41B3+8lHw/YdiFG1mK3fDqLSOn0ZGK3ZjuoTr2D6Mw/IPufLOI0L3F7gc0qu5MX/aPgV5HZrnmrcgU78BAd3r105ZjZCdRsRhRlduhGoDfgdFgptCCLSor63NW2JAqjBLf1dqscqhTl9E1p0Y5q4mf5F5K/wT8N/AHxG2Xk/+A9v45N/L19EoBayCbLr16/jC1/4Ap566il0dXVlXi9kZqW0OKm5ufJAZ7WuHFcaDEbAogObItdX9DrW+eu4xHeirs6EqiplnGWxeXXqwuJ/VNuwSkId3Lgxhb/jPo2mZAues5hXzFbg39GPOroR/+Hj22UdPxOpwYV/3Itturfwf3+5BqTMeX3+H/fjt8S9+BOrvM3niws0DkKAOXQN1oMrlZsuQe1v8laVmNlu1/tgtX5I1VhC4CZIADfmG1TPyxryoxE6BMgNRcfS4n6c5BuwibsEiwa/1fea+7FHmMGzj16WfQ6lI3D/U70wNSkzF1Tz3mVFl1OnTuHJJ5/EM888g4ceemjZ31pbWxEOhzP/DoVCaFHYsWlyMgKeV160YLXWIhRaOR/q06dHcRMbsJH1IHDDX1GpeDnM+4ZBzozhJrpx5swoNm2SL5co9f4bYiKfePVqFEajOsmdXLz22mWE0YxwgMOJEyOa2VBkIxJJYvD0NJ5++pN48C/kZUY/+5n4M7+SvgXrI3+Au++W9wQ8fJnAW78hZP3GEok03rhkwH5Shyu//DVqD6pr+lIOWvz2z1/UATChY+oMQqFHVY3Fnn0PAOC9nMLY2KyqylXD2UvYgDiuzzgKvket7ns2Uo2tXAIjV30wqqxIv8nW4N57q3Hk6bsVnRfh0ogoeC/SeydJoqJEuey3MjY2hi996Ut44YUX8oI9AHR0dKCqqgqnFlUTr776Kvr7V2bDbrXBsrO4gQ2AwCNYoj+qGgS9YpHSDWzIayKhBq1xUTEgNTNfDTCMHyaTbvG/V0axcOzYCDhOwD33bFAwLwq1tTyAoKJ5ud0cWJbM2PWWwqlTY4gkSFRt7VbUqOV2QvLB3zApU/FUApIXVCBuxrlz6ihdkvVhA27BN6lt3Us25ucTGImLATO374VSxGJAKETCbv8dqLT90Y9+hEQige985zv4yEc+go985CP4yU9+gieeeAIXLogl7i+88AK+/e1v44EHHkA8Hsfjjz++4hNfDbDsHHzoBFllRFCBS6MSBJkBGJosGIe1YCPoStESeR/A6gV8ySHywQc3o7W1JlOdrDUYxo+qKgq9vZ0KztHB5eKwcWO9onm5XGIVqtdbntJhGD9IksCme38fUxfPL3MOXatgWQLNVfNoCLyneqwIOwxdjRkxmFR/95TPhy7KD/+YHjJtkxTD55vDNMQVaESlusbvF8Oo2uK11UBZSufZZ5/Fs88+m/f6Y489lvnvbdu24ZVXXtF2ZmsALDuLJmsdWrcdLtjgQy0EQcAYM4A2dz/0b1CaBnzbrFgAtFoB/+rVSYTDokOkIAAeDwtBEDTn8RnGjwMH2mAy6RGJLJQ9nmUJ+HwkPv/5JCwWO1599SrSaV4W5bB1Kw+LhYfHo8Njj5WuLWEYP3bvbkHX72/Elb/9LoKDXjgeekT2+7odYFkSjqZ5kGPTIObnINRWnlFHWB9qHV3YLljg8fjx5JOVSyopPwtHkwWJEIGJCQI2m/aZM8vOYgoifTqv0vhsqUXk2g/465W2JSAZK9nc/Zh+7yIWsvYqtMDczRuIB8fQ7j6Czs66vDZxFUMQUDflg5FKIRxena9Ysnl2uexwu+0IhWK4dk3bLHd6Oo4LFyYUtQ2UsnOXi4PbTWN+Ponz5+VRDgQhnscwVElfrFgshVOnxuBy2TPOoSu1ItQSLEuC7hAdPtW26JPac7pcNI4fDyCRqLz4kmR9cLSL85JoJ63BsrNIoAr6hibVGb7UktHh+B2gdD7IYNk5OBx1merMYIH+qGow5hGDgs3VD5quh9+vTYZPzM2CTKdgNcdWLcNnGD9ouh40XZ8JyFrz+IODIxAEZbYFDKODxcJj2zYefX2dmbnKhcvFIRgk8f77xT/H48dHkUrxcLlo0Tn0UG9eB7C1Bp4HRkYI0BuXNwyvBIIgIOpnYXY44HLZEY+ncfp0sOLxKNaXmZec/ZNKwLKzMJsNqOvK712tfCwSRmPlLSJXE+sBvwg4jkcgMA+arkdz9z7ozbWab8YFvR5Ut3egdsNG0LR2Gb7UvLy5PrkqAZ/j+EWHSDGgOhz1sNvrFAVWOfB6/aiu1mHvXnmacUEQN2xdLg4EAbS01GD79maFAV/MVD2e4uwnw7DQ6Uj09Ii+L22uI5i9egXxiQnZ11ltjI8TSCYJ2HeI0kzKX3nAXwiHkY7FUEs70NvbCYJQ9lDNBjE7A3J2Bh3bxQ1ViR/XGn7/HGi6TrRJVtmtimXFFpFrtLnZMqwH/CIYHY0gneZht9eB1OnQcljbrE3geQS9A2hz9YMgCNB0PSYn44hEkqrHJkIi9WRp5lcl4EsOkdlUi8tlh9frr0huWwwM48ehQx0wGOTp4t9/n8DYGAmnk8u85nTa8e67ASSTXIkzl7Bhg4D2dh4MU/yaDOPHvn1iBzMgyzlUgavnakOiSuzbjODNtaKfe4WQMuQauwMNDUbs3t1a8epOWmkYNnWgpYVf0QyfputFR1w/K7upTuGx1LWIXE2sB/wiyO112eY6grkb1xELjmky/vTl95CYnMyYjEme3Fps3EoZvqWFWJWAn83fS3C57JiZSeDSpZAm15iYiOLKlUlF/D3DiFm5273EJ7tc9CLlIO97lHj8wUGqoGJkbi6Bs2fHl733pl17oK+rX9O0jhRIHQ4BPK2uRZ/EgUv23i6XHSdPjiEWk+domg1pL4F3OEDTQoYf1xKCIMDnm4PDUQ8z7QCfTCI2XjkFpbZF5GpiPeAXQW7Al5p5aEXrSNnfUsCX+oKqp3UyAb9dh3CYWPFGPAzjx+bNjbDZlgpBpACoFa0jNXtXxt9TaG/nsWHD0gfQ16eccnC50giHSVy5kn+7HDsWAM8Ly+ZF6nSw9TnXtB5fCqQdHQI4mtYk4JuzAn4qxePEidFSpxWENA/OTouNUFYg4E9OxhGLpWC318FMiwlEpMJN69lZYHaWuCMUOsB6wC8Kn28208kHAJp27oKhoUGzrC3IDKC2a0PGMC23EbQaZDj8TiMSCQKRiOohiyKV4jA0NJKXebe11WLTpkbNNm49HhZ1dVXYtUteFbcgiAodp5Nbxq02NBixa1eLooAvUUKFaB2Ph0VVFYUDB5b7ttucbszfeh+RkZWpR1ALliVhs/EwGrN6slaYGcyzPlQ1N2e8oA4d6oBOR1b0sKf8PvC1dRAaGuFw8AgECGjttp6dzEkOtZVu3N5JCh1gPeAXhd8/h/Z2M/R68SYnSBK2PrcmWRvPcQgOemHLarVnsZhQXa2D369Nhs83NMDSIka6UGjlaJ1z58YRjabgdudn3i6XHUNDAaTT6rMfhvGjr69Tdsn+lSskwmFyGZ2TPa+TJ8cQj8ujHOx2AV1dhXl8r9ePnp52GI3LN3UlT/i1muWz7FJWytMOELEoiMnJisbKbc9pNhuwd6+tooc9yfrEtoaE2Fid4wgEAtr+fqVVNE3XZRKuSqWZUsBfz/DvcLDsXF4nHJu7HxHWh3nfsKqxpy6cQ2puFjbnkt+KtHGrhb0CEQ6Dt1hhtYpZx+TkygV8KYsr1C/A7aYRiSRVl9oHAvO4dWtGMZ0DYNmGbfa8kkkOJ07I349xu9MYHNSByxpuaiqOixdDBf3vG7fvQFVzc8Y6Y60he6NRbYu+COtDbU4vB5fLjrNnxzE/r8yem2J9mQ5SUhDVmtbJzvApoxEmWxvmKw74d07RFbAe8IuCZWfzOuFIfu9qb2KpCXdbTjMOu71OM0qHt1hhsYg39EoWX3k8fuzYYUFzc77jXyW690KQzlfSWMTjodDVxRf0N1miHORnoE4nh7k5AhcuLH2WS83t8zeSs1eEhRxlbydSKWB0dCnDz7Toq0CeyHMcoiP+TO8ICS6XHRwn4NixgPzBBAGUn83MR9oI9fu1z/Cbm00ZVVUt7UC0Qmkmy5KorRXQoL1P4IpgPeAXQCKRRjAYycvwG7Zug9FiRdCjropyjDmK+q3bYGptXfa61AhabYAgwyEIywL+ymT4iUQaJ04Eivb7tViqsX27BR6POh6fYVg0N5uwfbu8do0cBwwO6jIa+lyYzQZ0d7fC41HO42fr8RnGj+pqPfbubS14js3Vj2hgBPO33pd9ndVAIECA5wk4HBKlI35/lVTbxoNj4FOpvPacBw60oaqKUvQZE6EQiFgM3GLLwI4OASSpvVJHlGQuJXNm2qEiwydB03eGBh9YD/gFMTIyD0FAXsAnCAI2dz/GVGRtXDKJiXePFeytStP1iESSmJ4u7xFTCuRkGLzFgubmlQ34p06NYWGBK0m1uN12VaX2kimb02mX3aji4kUSc3NExvys8LxonD0blF330NoqYOtWbpmRmtfrR29vR2afJxdt7rXJ40sBVFr9COZa8E1NFSl15nMUOhJMJj0OHmxXZKQmUUr8Yr9ZvV4M+lrbK4ir96V720zTiAVGwKeUy0iloqs7BesBvwAkHt3hyDeTanMdQXw8iLmbNyoae/LMaaRj0YK9VTXR4qfTIKamwFusqKoCamuFFQv4Ho/oEFnKudLlorGwwFVcaj88PItAYF4xnQMU5u+X5iVRDiOyx3U6ORw7RiGZBMbHI7h2barkvOo2bYbJ1oaxNVaAVWijkaMdFXH4kcX9LLPDkfc3p9OOixcnMDUlr2NcRpKZ9fDQWprJ8wJGRuZzMvwuCDyPaED+bwEQRU1+P3nHKHSA9YBfELka/GxIG61jFdI6Y8xRgCDQ2ufM+5sWWnxiagqEIGSal1ssKxfwGcaPPXtaUFdXVfSY3t4OkCRRMa0j8eyFVEDFz9Hhrrs4tLYWvxEPHGiDwaCMcnC5OMRiBM6coTL7CsXoLEBcEbY53Qh61haPz7IEKEpAe/vSnDi6q6Jq2wjrAwgC5s78z8HlskMQlmooyoFc5NG5rP0AsfhKu99vMBhBMsktu7el1YlSpU4oRCAWu3M0+MB6wC8Iv38OBgO1rJBIQu2Gjajp6Kx4mR70etB0924Ym/I77Dgc6rX4kgaft65swI9GUzh9eqxs5Wt9vRG7dyvTvWeDYfyw2WpkdwJLpYBjx6iSdA4gUQ5tiubV15cGQQjweil4vX7U11eV7Z5lcx/BQjiEmatXZF9npcGyJDo6BOiylKQ87QA14odSA/qIn0W1rQ1UVf5Df+9eG6qr9bJpHYr1gbdYgKzezjTNY3ycRFyjttKFkjmpQlgpjy9tJq8H/DscLDuLzs7agpwxQRCwufoR9A4o9t9Ix+OYOPHuMjlmNurqqtDQUKUqw5cCvpDJ8FfGT+f48QBSKV4W1eJy2XHqlPJS+2z+Xq6v/pkzJGKx0vz90rxoXLw4gelpedGkqQnYuVPU43s8fvT2doKiSt9CGafVNUTr+HxkZsNWAkc7QCSTIBVaDORq8LNhMFA4dKhd9kOV8vmW0TnAUjAdGdEmVPl84r0lJVcAUN3eAYKiFGf4S9TY2lm9lYPsTzESieDhhx/GyEj+8uzFF1/Ehz70oUxHrB//+MeaTnK1kbupkwub043E1BSmLyvrFBQ6eRx8IoE2d/EWkHZ7vTYZfrOoaLFYhBUpvGIYP3Q6EocOdZQ9Viq1P35cWan9tWtTCIViJWmT/HnpQBAC+vrKbxI7ncooB0CkdY4fp+DzRWTRTGbaATPtyEhx1wL8/nwaQgq0SpU6EdaXJ8nMhstF4+rVSYyPR8uORbHDeQFf2ljWSprp98+CIJCpoAdEK4yaDnvFAf93btP23LlzeOyxxzA8PFzw7xcvXsT3v/99vPbaa3jttdfwqU99Sss5rjrEoqvi3X8k/xulTS6C3gEQFIWWw31FjxFtkjUI+BYx4FutAqamCM1bxXm9fuzf34aaGn3ZY3t6lOvegSX+XknBlddLYedOHk1N5Y/dt8+G6mqdIlrH7U4jmSQA2GUbudlc/QgOelQ5MmqFeByYmMh3d+QXN12VbNxyySSio4GiGT6wtPcyOFjmM+Y4kIER8DkFXNJKRCulDsvOwWYzo6pqeWW02eGoIOATsFj4bAZqzUPWp/jyyy/jm9/8JlpaCvuYXLx4ES+99BIeeeQRPPfcc0gklFXXrSVEIklMTsaXLflyYe60o3bDRsW+OmOeATR374WhRCs5sRHKXMW2wkQ4DIGiIDSInLfFIoDnCUxPa5flSw6RTqe8vrJmswH79tkU8/gejx80XVdw87wQFhaA48fL8/cSRMqhQ9G8Dh/mQBA8TKYt2LYtfx+mENpc/UjOzGDq0gXZ11kpSP7yuVkp1yEGZiXSzOiIHxAEmB1dRY/ZtUvc1C/3GZNjoyBSqWUbtoAoh62q0k6LX6igEgDMdlpxwPf57ozG5dko29MWAL71rW8V/Vs0GsX27dvx1FNPoaOjA08//TR++MMf4itf+YrsSTQ3V/6ItFpryx+kAMGgaANw992tJcfe8OE/wJWf/hTNjSaQuvIfYzISweSZUzj41a+WHHfnzhYkEhw4jkBra/n3ljdWZAawWmFtFYPkxo3iyzxvhrX0/qJsHDs2Cp4X8Mgj22R//vfeuwl/9VcMDAY96uuNZY/neQFDQyP46EeLXyP39XfeARIJ4OGHDbBaDbLmdf/9W/DUU/8OnifQ2lr+d2ixCNDpgqiuvgstLfJ6wJo+8iA8fwbMn3kX2+5xyTpHDir57Z84If7/nj2mnN9DLdDejpqJUdTIHDd6VlxNdu7eXnIuv/d7XRgcHCk93/fEsWp3b0dtznEOBzA+vvw7rfS+HxmZR3+/I+/81u134ca//A80mHXQm/KrxgshEAD279c+BpWDmuvJCvilUFNTg5deeinz789+9rN45plnFAX8yclIRRmt1VqLUGhe8XmlcO6c6K/S0GAoOXbD/sNI/uM/4urbDCx795cdN/D2W+DTadTtO1xy3KYmUe1w5swo9Pr2oscBhd9/3cgYqCYLphdfF5uFVOPatRisVnmZbzm8/vo1GI0UNm2ql/3579vXCp4X8MtfXsW9924se/yFCxOYnl7AgQNtBa9R6L3/8pcGUJQB27dHEJJpw9/dLa5aX3vtMj760W1lj3///WmkUj5MTztx69a8vOW8vhZ1m7fgxq//DV2Pf17exMqg0t/++fN6AEbU1UUQCi2/5xo6aQjXbmBW5riBC6LyiKuzlpxLT08bfvGLqzhzJoDOzsIPyarzl1EHYKreCi5nrI4OE65fJxAKxQBU/t5TKQ4jI3NoaTHlnU82i13Uhk9fQsNdW8uOxXEAy5rx4INJhELqmxbJhfTeSZKoKFFWvU4aHR3FK6+8kvm3IAjQych41ypKafCzIRVOjcncjBvzDIDU69Fy8FDJ49TaJEs+OhJWotqWYfw4eDDfIbIUDhxoXyy1l8fjS8cpNUzr7uZRqyABkks5LM3LD2AYPE/i+HF5nbcAkdYZHxqsqJpTS5Tqv8opbIQSYX0gdDpUt5VOTCQlV6nPmGJ9EAgiQy1lQ6viq5GRefC8UJCuVWqTHAwSSKWIO0qhA2gQ8I1GI55//nn4/X4IgoAf//jH+PCHP6zF3G4LWHYO1dW6gmZg2TC1tKBh23bZcrsgMwDrgR7oqqtLHidlQOoC/pLnjNZ+OpOTcVy6FFLUeQoAjEYdenrkl9p7vflNVUohEgFOn6aK+ucUg05Hoq+vU3bAZxgWNtsU9HqhZJ/bXNjcR5CORjB57oyi+WkNv794/1WOdoAcDYjFDDIwzw6jpr2zLKW5fbtorlcu4PNt7UABPT9NC5ieJjCvcjEvWY8XSuakSuEIKy8hudNskSVUHPCfeOIJXLhwAU1NTXjuuefwxS9+Effffz8EQcBnPvMZLee4qvD5xF6XcnTfNqcbE+8OgUuWXtIlZqYxef5sRt1TCtXVelit1RUHfCIczhRdAUBTkwCC0E6aKaktlGTeEsRS+1DZUvtUisPgYH5TlVI4fpxCOk2UtFMoNa9bt2YwMlK6/kEQBHi9frjdbThwYLmvTjnY+hYrtG+zr06p/qucowsEz4OUaTEQYX0FLRVyQZIEnE47GIYtWnFMsvkafAla2SSXWr2bWlpBGY2yN259PqlF5O9wwH/77bfR2SkqM1566SXs2rULAHDffffhl7/8Jd588018+9vfhsEgb8NsLUJqbiwHNtcRpGMxhE+fKnnc+NAgIAiyAj6w5JqpGPE4yMj8MkqHokRaR6sMX3KI7O4u7BBZClIAL5flS01VlNI5er2Anh7lAV9uO8YrVyYRDsfhctnhdHI4f57EzIy8axibm9G44+7brscv1X+VX1TIyKV1Ij5fpkq1HJxOO0ZHI7h1q/AHRrG+zPVzoWXApygCbW35q0aCIFDTKV+Lz7IkCEJAR8cHjNL5XYIgCGU1+Nmw9TkBgiirxw8yR0GZTLDuOyBrXIejMi0+ORkGsFRlK0FLewWGKe0QWQp797bKKrX3esUMU/LTlzcvHQ4c4FCGMSsIiXIoN6+lugAabjcHnicwNKSE1unHxIlj4G6TbHluDpiZKe79kvHFlxH0UtEoFsKhkhr8bEh6/IIP1UQC5NhoiQxfDKpqPXVYdhYdHXVFu6bVKrBJFltECoUYqDWN9YCfhenpBUQiSdkZflVjE5ru3l22IcoYM4CWnsMF/UYKgabrEQjMK24NmFtlK0GrgD8+HsH161OK+XsJej2Fw4fL6949HhY7dlhgsciL3rOzwPnzZEV0DiBSDhKPX8rkzOPxw+Goh91eh337OJhMgjJax9kPbmEBoVMnKpqnWkjFS8XcHfn2DggUJctELbJodCY34G/a1Aibrabgd08F/CAEAVwRPX9Tk4CaGvVafJ9vrqADrgQz7ZC9aZvdIvJOwnrAz0KpTZ1isLn6MXHiXaSLuDvFQyHMXH6voP99MdB0PThOwOiosl2q3CpbCWLAV/9VSzdrJfy9BJfLjmvXpjA+XrizeiKRxvHjxZuqFMLQEAWeJ+B2Vy47dbnoTCvFQuA4frFZu/jeq6qAnh4uY8UsB7bePhAkqbqBTqUou9Go04HvsMuqto36C/vgFwNBSDx+/kOVXNwo5YuMRRDaKHXK0bVmugvJmRkk58qvrv3+4nshaxnrAT8LciWZ2Whz94NPJhE68W7Bv48Pitm/XP4++/pKaR0iLFI6/ApROgwjzyGyFKRAXizLl5qqKPG/ZxgdTCYB+/ZVHvBLUg4ALl4MYXY2sexh53JxuHyZkr0hbqhvQNOe7tu2cSun/yrncICSoVSRqI/cXral4HbTCIdjuHp1ebP0Qj74uXA4eFWUTiyWQigUKx3wJaVOGT+hZHJ5i8g7CesBPwtS4xO5HD4AtB7uA0FRRZtcjHkGoDfXonnPXtljSqXfSjduyZCU4ecH/Lk5AmXERGXh8fjR11feIbIU7r7bivr6qqJ8OcNITVXKm7ItzYtCTw+nik+VKIdi8ypUFyBJQAcHlejxjyB8+iRS0fJmYlrD7y/ff5WjHfIoHZ8PlNEIYxG7lUIotjlOsT4Ier0oyywC0RefRKVtBSQFVql7W9qAjpTpbzsyQkAQiDtOoQOsB/xlYNk5NDRUlWzokQu9uRaW7n1F1RdB7wBa+5yy7BckSNbMSjN8cjIMwWQCamqWvS5p8ScnK8+QWHYWLDuriGopBIoi0dvbWbTxiNRURY79AiDWF1y+LN8/pxgkysHjKczje71+3HVX0zL7hT17eJjNAhhGCY/vBp9KYeL4MVXzrQRy+q/ytAPUxDjKGdBLLplybasBceVK0/V5AZ9kh8F3dIqSsiKw23lEowSmpir7DctZvZszvvjDZca682yRJawH/CwokWRmw+Y+gvCMRLD/AAAgAElEQVSZU0hFlnPu0dEA5m7eKNjOsBT0egrt7ebMikMuMlW2OTehFtW2UuarhGopBrfbDp9vNrNnIiEWS+HUqTFF15Cya6UFV4XnVZhySKU4DA0F8ual0wG9vRwYRv7DvOVQLwid7rb0uZXTf1UyL6PKZLmlfPBLweXqxOCgHxy3NA+K9YGzlx5LrVJH8sEvleEbGhqhN9eWlWbeqUVXwHrAX4ZKA36bqx8Cx2H83aFlr0s3tZINWwmVaPFzq2wlSBm+muIrj8cPi8Uk2yGyFIrp8Y8fH0UqxStSAXk8FMxmAXv2qL/5JMohd15nzowjFitcF+BypXHzJomxMXmfrb6mBtb9B1e9IYogiIGqXP9VbpGTL7dxO19xwKcxM5PApUtLZkcU6wNXpoBLrRafZWdhNFJoaakpegxBEItKnXIBn4BOJ6CtbT3Dv2MhCAJGRuRr8LNhPXgIpMGQR+sEvR5UNTaicefdiscUbZKVb9rm8vcAYLWKN0ulGb5UYepyKVvCF8O2bc2wWEx5vjoMw8puqiLB66XQ28tBC/smkXKoy6ObSq1uJCpJKa0zefaMLDWIVgiH5fVflXzxSzVCSc7OIDU3m/GfUYI8Hj8SARkOF1XoSFDriy81NSr3+5UT8P1+sUVkCQZqzWI94C9iYiKKhQWuogxfZzLBeqBnmfpCEASMeY6itc8NglT+MdN0HYLBKBYW5FMVucZpEtT66bz//gzGxiKa0DlAcYkew/ixb59NVlMVABgbI3DjhnL/nFJwuex5lAPDsNi504qmpnx/pZ07eTQ2CoponTb3EQg8L1ZgrxLkKHQAgG9phWA0liy+WlLoKM/wbTYzNm9uzAR8akT8/1IKHUBsc9vUVLlSR25BpdQIpVQ9hrQXcidiPeAvolCvSyVoc/Vj6sI5JKanAAAR3zCiI/6K6BxgaXOpnL9LBoIAMhzKq7IFgNpawGCoXJopZeJyWvrJhctFY2wsgvffF3XvUlMVpXYK4lja2D5L88qmHBYW0jh+fLTovEhSbG6uJMO37j8IymhcVR5fanxSdqORIMDZ6ZIcviRblOOjUwguF42hoRGkUlyGOioX8AFx7tL7UAq/Xx5dW0s7kI7FkJicLHqMz3dnKnSA9YCfgbSLX6gbjhzYXEcAQchkbVL1rc19pKLxpGxErlKHmJ8DkUzmVdkC4h6umuIrr9eP9nYzNmwooedTiNyl/bFjAfC8oEgF5PVSaGwUsHOndjdf7rxOnRpDIsGVnJfLxcHvJzOGWuVAGY1oOXh4VfX4SvqvlpNmSpRHqV62peB22xGNpnDu3HjmOpwMeqjS4qu5uQRmZhKyAr5EUxVT6kSjQDh8ZxZdAesBPwO1Ad+ybz901dUYW/TVGfMchamlFfVb7qpoPOnHKa08yqFYlW1mfhUWX/G8yN87nXZN+HsJGzc2oK3NnPGn8XhYVFVR2L+/TfYYDKNDX18aFTBmRZFLOXg8LEiSwOHDxfcVlnh8Bb46LjemL13AQolMUkv4fASam+X1X+XtdMlN23l2GPraOhgW22gqRV/f0kOV8vkgmEwQZLRjs9sF+P3K+zMrqa+RHmLFePylldJ6hn9Hg2Vn0dJSA5NJHn+cC8pgQEvPYQSZAQiCgCAzAJvLXXGQtNnMMBgo+Rl+qHCVrYRKA/6VK2GEw3HV+vtcEAQBl8sOr1fk8RnGj54e+U1Vbt0Ss1Yt6RwJ2ZQDw/jR3d1asjbjrrt4WK28MpuFRaovOFjah0krlLJFzgVHd4GcmQFRZFNZkmRW+ttubjZhxw4LPB7/oiSTzpMSFwJN80gmCYyNKbuekgp6SXlULODL3QtZq1gP+ItQ4pJZDDbXEcxcuYzxIS/iE+MizVMhSJJAZ2et7ICfccoskilZLEJFhVda6u9zIere4xgaGlHcVOWdd6QxtA/4EuUwNBTA6dPBsvsKBCHOw+ulZFeCWrr3QVdjXjUeX8lGI1dGqVOpBj8bbjeNEycCIHzDsvh7YEmpc+uWsmtJ8mY597febEZVc3NRe4Ulaux3nNKJRCJ4+OGHMTKS3xzh8uXLePTRR3Hffffh61//OtJp7VQTqwUx4Fe2YSvB5hKbXJz9rtj03eZ0qxpPlGYqpXQKB3zJE19paXq2Q6TWkB4i3/3u4LJ/y8HbbwMtLTy2bNE+05Ioh+99bwjpNC9rXk4nh/FxEjduyLulSL0erYd7VyXgc5xoByA34PMlbJIFQUDEz1ak0MmG02nHwkIaxPBwWUmmBGn+ygP+LGprDWhokFe9baYdRTl8liVhMhVuEXknQNav89y5c3jssccwPDxc8O9f/epX8Y1vfANvvvkmBEHAyy+/rOUcVxzpNI9AYK5ihY6E5t3d0NfWYXzIi5pOO2q7NqgaTyy+kpnhF7FGlmCxCIjHCSixcOE4HoODI5qqc7Jht9fB4ajH0FAA1dV67N0rr6mKIIgB3+Xi5DABiiFRDkNDAej1JHp6ytcFSNJQZbTOEcxev4ZYUCFHoRBK+69mfPH9+QF/IRQCF49XrNCR0NvbgSYiAX0sImvDFgA6O8X5VxLw5XaxA0RDuFKUTrEWkXcCZAX8l19+Gd/85jfRUsAoKRAIYGFhAd3d3QCAj33sY/j1r3+t7SxXGKOj8+A4QXUWS+p0aO1zAhA5WrWbnDRdh6kp0aO/HIhwCHx9A1Ck21glxVcXL4YwN5eo2P9eDqSHiZKmKjdvijzuSvD3S/MS3/P+/W2y6gK6ugR0dvKK/PHb3Is8fpl+CmqhdKNRaGgEX1tXUKkj+cWby1ghlEN9vRH33SX+FuVSOkYjYLPxKJJ3FoXfr4yuNdMOREf8EArsDivZC1mLkLVD9q1vfavo3yYmJmDN4o2tVivGx8fVz2wVUYktcjHQu/dg95u/QnTvfvVjZZQ6s9i5s7SKoZitggSp+OqJJ0yoqZH3gw0EmgH8Kf7bf2vDP//zypQVhkIfBrAfN27U4w//sHTjeAmSgZbTuXLUodNpxz/8w2nZNBNBiLTOW29R4HnIUg417twFQ30DxjxHsfHRT6iccXEo7r9KEOBpB4yv/gy69y4t+1NVKIQ/AtD8ve9A9//+nap5PR8W6eFoSwfkSiVomsf778vfehS72M3iyBH5Dygz7QCfSiE2NoqajuVd11iWRE+PvCbv5XDqv/4X0Pc/COuBHk3GkwPVBemFKtKUZrbNzTK0YkVgtdZWfK6E6Wkxg967t131eHU1RlQBSNaZYFA51p49okRxdjZZdF6Z12engTZb0ePuvRd46CEgEpEfuOfmkjCZ9KipWbk+bq2tZszOJtDWVgu9Xt7PsbUVOHIEOHjQvGJL60cf3Ynf/GYYX/pSj+zfxIMPAv/6r0AwWIs9e+Rdh/7Q7yE0xFT0u5N7zpUrooHqvn1m6OVG1i9/CfjJT5C7XlxIi/eK0VwDUqW3gKm9BS9PVqNRaMGHZb6XvXuBf/kXoLGxVpadxqVLE4jF0jh0qFP255XsPYBjAJLvX0ZX9/bM69PTYpvIHTsMsFrV9e2euXULF3/wfbTetRHWB35f0blqYpTqgN/a2orwYuMNAAiFQgWpn1KYnIyA55Uvk6zWWoRCyrpCFcKlS+MgSQJGI6F6vLpB0faWP8og9OinVI1VWyt+PRcujKOvL59Hzn7/jWNBcJu2YK7E/P/7f5d/7VSKw5YtP8Jjj+3Ad76j/YbtchgBlLbjzYVW330pPP+8eCPKvc7u3QQAM37xiwW0t8vLApt6+nDj1Vdx69RFRcoXJe//rbeqceiQgJkZBZ/xx/5Y/F8OBv/PL8M/P48/+v/ekD9WEUSjKXxqy9/ji/82jO5D8lZSBw7o8A//YMK//3sU+/eXX7H84hdXAAB79rTI/ryorm3QVdfg6uu/RqP7w5nXz58nAdSgqSmOUEjd6vL6L34FAKjZfVDR71j63kmSqChRVi3L7OjoQFVVFU6dOgUAePXVV9HfX5mdwO0Cy86ho6O2osbcy5BOQ79YaatnBlBxt4ZFNDebUF2tl2WiVsxHp1IsOUSuHH//u4aODgEbN/LwehUUYC1aZ4+tEI8/Pk7g2jXt/IYiLKtakimhpkaP/fvbyjaPz0Zfn7hvI/czZhg/aFqZyowyGEQFVc53oqUtcpAZgNFiRcPWbarHUoKKA/4TTzyBCxcuAABeeOEFfPvb38YDDzyAeDyOxx9/XLMJrgbEXXz1Wazu/FmQ83NI9jpBjfhBDiuUE+SAIAg4HHXlbZI5DsTkJPhm9dbFEhiGBUEAfX2d5Q9eRwZOZxqDgxTkKpMbtm2H0WJZsT630iayVhvcEXZYs4APAE5nJ86eHcfcXELW8VargLvvlqeGElVm/opUZjZnP2avXkE8az9Sq6IrQRAwprIws1IoCvhvv/02OjvFAPDSSy9h165dAIBt27bhlVdewa9+9St873vfg6GIUmStolIf/FzoFzXVsae+DgAwaKCxpun6so1QiKkpEIIAXkZ5ulwwjL+oQ+Q6isPt5jA/Tywu/8uDIAjYXP0YW6zQ1hoMQ6GuTsCuXeqzUp7jEA2MVGSLXAxuNw2eFzA0lF/fUwz33AMcP04hUeYZcelSCDMzCUWGfBJsbmnltXQPsyyJurrSLSLlYO7mDcSDY2hTUZhZKT7wlbYLC2kEg1FNCosMzADS23cg1esE12qDXoMmF3Z7HVh2tmQwyFTZakTpLCykceLE6DqdUwEkykGRXbLrCOLBMcy9f0Pz+Uh+Q1p4t8fGRsGnUhWbphXC/v1tMBqpos3jC+Gee4B4nMCZM6XflNTXoJKA37RrD/R19csK47SyRZbGtFXopKsGH/iAv9TcWGWGn0xC/+4Qkk43QBBIOd0weNTz+DRdj2g0hamphaLHlKuyVYqTJ0eRSHAV3SgfdLS0CNi2jVPWEGWxQrtYX+RK4fcTGB7Wzm8o45KpIaVjNOpw8GC7ooDf3w8QhFCW1vF6/diyZXkfYrkgKQq2PmdOwJdfrVwKY8wAqts7ULtho+qxlOIDH/C10uDrT58EEY8jtbhMS7mPgAxNgLp2VdW40rxKVdxqHfAZxg+KItDbK7/z1DqW4HJxOH6cQrJ8vRwAoHbDJlS3d2hul6w9f7/Y+ERllW0uXC4aly6FMDkpT0XU2Ajs3s2XfKiKfYhHVCUtNlc/5odvIeJnIQhiAZvaoiuB5xH0DqBNg8LMSvCBD/hLjU/UUTp6ZgACQSC1WGmbXFyu6VXexHICPrECAb+7uxW1tSunv/9dhsvFIRYjcPq0vCyfIAi0ufoxPugpWN1ZKTweHSwWHtu2aTNmxDcMEARqOrRd+UlBeXBQfpbvcnE4dYpCLFb472fPjiMaLdyHWC4kjj3o9WBigkA8rr7xycyVy0hMTt4WOgdYD/jw+2dRVUVVtOzLhp4ZQHrXHgiLHuG8owucnVa9cSs9iEopdchwCAJJQmiszJ88G5FIEqdPB1fEHfODgr6+NAhCUEjr9GMhHMbMlcuazEEQxAy/r4/TrF9AxM+iuq0dVJW2iUB3dyuqq/WKaB2XK41kksCJE4U/Y0nqKRnhVYKGbdtR1dyMIDMAv1/MxuU0kCkFqV/GesC/TWDZOXR21oEkVSyvYjHoTx5HKudLTLr6oR/0QHHHhizU1lahsdFYmtIJhSE0W+TV85fB8eMBpNP8+oatCjQ0ALt2laYcciE5q0oBQS1u3SIwOqptv4B5DWyRC0Gvp9Db26Eo4B86xEGnK/5Q9XhElVlzc+UqM4IkYXOKCirJnkItpRNkBlDbtQHmztuTUK0HfHZWtUJHf+JdEMkkUu7lAT/l6gc5PQ3q0kVV40tKnWLQsujK4/EvOkS2azLeBxUuF4eTJynEZRa3mu00ars2IMhoU4Dl8YgqIbdbO7+hCOvTVKGTDZeLxvXrUwgGI7KON5uBvXv5gmqoRCKNEycCmogO2lz9iI0GcP2c2HtZTYbPcxyCg96K255qgfWAr4EGX+/1QNDpkDrUu+x1KeNXS+uINsmlKR2tAr7X68eBA22orq6s89c6RLjdpSmHQrC5+hEcZMBz6rNyr5dCWxuPjRu10fZziQRiY6OqffCLQSqOUlJ163ancfYsifkcZ4JTp8awsKCNykzS418/MwWLhUdNTeVjTV04h9TcrOo+GWrwgQ74kUgSU1MLqqtsDZ6jSHfvg2BebmrEt7UjvWkz9CqX6TRdB79/rqjfEBEOgbeor7KdmVnA+fMT6/y9Bjh0iANFKefxU3OzmLpwTtW1BUEsuHI6tesXEA34AUGA2dGlzYA52LnTivr6KkW0jtPJgeMIHDu2/DP2ePwgSQK9veqrxOs2bobJ1obh93k4HCrpnEXZbZvz9lnPfKADvlTBqqbxCRGZh+7saSTdhb/ElOuI6K+jogsYTdcjmeQwPl54uUtOTmqS4Q8NjYDnBc37134QIVEOErUiB1IgUEvrXLlCIhwmNaVz5n3aa/CzQVEk+vo6M8VScnDgAIeqKiHvM5bTh1guJAXV2GSt6g3boHcA9Vu3wdQqr9HPSuADHfCl9oFqKB39sUEQHJfR3+ci5XKDjMxDd+5MxdeQHkgFaZ1EAuTcrCZVtl6vHyaTDvv22VSPtY4lyiEij5aGqbUV9XdtRVDlilBaVWi5YRv1swBWLuADos0Cy87K7vJmMgEHD3LLms5EoymcPj2m6SrV6vw9TPGdaK2ZqHgMLpnE+LGh20rnAB/wgK9F0ZXeMwDBYECqSBODZJ/4BavR45fS4ku2Clpk+B6PHwcPtqOqSrVr9jpQnHIoBZurH+PHhsCnKm+ywTAUaJrXtNH2POsDqdejum3lNvOlIK2Ex3c6OVz8/9s7+6A2zjuPf3cl8SJeA0iCAPJb8EuIDTi2A2KFz+1hUhtit3GvaWbKpb46M23Tzng6HTfNpb3LTJPUydXTNOl0ztebdlp3Gk/bJHWutcmdW8Mi/AK2MU5sxy8YiRchCbBBsiQk7d4f8vJiBNpdvWHr+fyFpF3pefYRP/32+/xeLtIYHQ0+Pn16AD4fF9UscapsCziokOmSH3wxcu4s/HdcCamfM5OkN/gZGSrk5YlrbhwKFdsK38Yngu5GCHiNBv415RFt3JaUBPcGQnn40cqydTju4NIlB5FzosjGjQGkpMyVHBaiiNkM/x0XHOfOyvrMQAAwmZRRlXOAYJXMjOKSiJueLMTq1fkoKEiXJOswTAA8T8FkCl5jlrWI7kMslhF/8McjdYCV/R5D7a0ARU21QE0USW7wg70u5aY4U2OjUF68MCf+/l4mGSNUp08ibHm/eUhPV0GrzQjp4U9n2c7f3lAMJlOwWiGpnxM9QkkO4dAZagGKkh2Pf/Eijdu3qaj3+w2GZMZOzgGCejnD6MGyZtGVQ6uqAlCr+alrzLJmrF8vrg+xWISyyPSl/5EdQWVlW5FXvhZpedErYS6HpDb4fX2RhWSqTO2geB6TYXbdfcxmUG43VGc7ZX+WXh86Fp+2R8fDb2szIzMzBRUVidtQehBhmAB6emiMjYk7Pi0vH3nla2cV7ZJCLPR74K7Bj3INnVAwTCmsVhdu3Lgl6viUFKC6Olisbnzci+5uW9Sdlr4+GhTFI8N5EWMf90g+3+92w3bmVMKya2eStAZfaG4cicFPYU+AV6vhX79ww3KfoRY8TUes44eWdO6WRo6wFj7LWlBTUwylMmm/EjGhtna25CCGQqYOtjOnEPDMXyF1PlhWibKyAHS66On3PqcTHocjphu2AoKxbmsziz6ntjaAK1cU+OtfrXejzKJr8M1mGkU6P5TwYUhGRVN752lwXi+K5onkiyei/ruPHDmCbdu2ob6+HocOHZrz+ttvv40tW7Zgx44d2LFjR8hjFhujox64XL7IPHy2NZhsFabhC5+TC//aiogM/pIlORgYmIDPN9tzox128Glp4DPk1wIaGprA9etjpJxCDFi/Pig5SInHLzLWgfN6Yes8LemzfD6go0MRfe8+DhE6AsuW5eLhhzMlxeML+xXvv+9FWpoCjz9eFNUxmc0UliyjkFO2UlYElbW9FZRCAW21IarjkkNYt2N4eBgHDhzAn/70J6SkpOCZZ57BE088gUceeWTqmIsXL+InP/kJqqqqYjrYaCL0iZWbdEXZbFBeuQznP81t9BwKH1OH9P/8OXDnDqBWS/48vT4bHMdjcNA5K29gKss2ggwb4Z+L6PfRJyUlmIQlRcfXVhtAKRSwsidQJEEGOH+exp07MdDvLXfLIsfB4As6/vHjveA4XlSNq7VrOWRn8zh7Ng0bNxZHPcrMYqFhNAZQuLoO1w//HpzPB1olfo9gqK0V+ZVVSMmKvMlSpIT18E0mE6qrq5Gbmwu1Wo2GhgYcPXp01jEXL17EwYMH0dTUhFdeeQVemZuT8USQR+R6+Cl3u1n5GHFxtZPGOlA+X3DzVgbzhWZSDju4/Mg2bFnWgoceSkN5efRaJBKmqa0N4PJlBWw2cT/KKVnZyK+skiwfCHVlhK5b0WK68cnSqL7vfDBMKRwONy5fdog6XqEANmyYxNhYUdTlHK8XGBqiUFrKoZCpg9/lhOO8+Agqn9MJx7muhIdjCoQ1+DabDZoZ+rBWq8XwjMa+LpcLa9aswb59+/Dee+9hfHwcP//5z2Mz2igiZNnK9fBVbCu47Bz411aIOt63qQa8UomUdnlZlEKBt3sNPj3iiDhCh2UtMBhKIqsYSpgXQXKQ4uUXMZvhONcFn9isLQQ3bMvLA8jPj25vXGdfHxTp6UiLYs/khRDi8aXIOlqtDUAeVq5cFtWxDAxQ4Plgp6vCuzk1UjbUbac7wPv9i2LDFhAh6YQKj5oZxpiRkYGDBw9OPd69eze+//3vY+/evaIHkZ8vX3/WaLLCHxQCu/0O8vLSsXy5TGPZwQL/sBmaIpE16DVZwKZNUJ9koZYx5txcNWiagsPhmTVn1egIULFO9nXo7R2DxTKOfftqZb9HorhfxvuZzwA5OUBXVzqef17cOau2N6Dnp/8B75VuPPzkkyGPmTl/jwc4fRr4xjeif10mhweQs3QptNr4SBIaTRZWrHgIZ84M4aWXQs/l3jly3DkApfD7l0GjiV7gwbm7CfIVFekoXb0UmooKjJxqh0bziqjzP+k6CVqlwqPb/hEqGVJuKCJZ37AGX6fTobNzOpzQZrNBq9VOPR4cHITJZMKuXbsABH8glEppGtrIiHPewmALodFkwW6fCH9gCK5ccaC0NFvW+XS/BfnXrsH5z/8Ct4Tz1dW1UP/0Jxi5MQBehp5XXJyFS5fsU2PWFGSCt9ngzsyFS+Z1+OCDYMONigqt7GuZCCJZ+0RQXZ2Ojz6iYbe7RB2funIdaJUKlz88iszH5ybr3Dv/9nYFvF411q+/A7s9upLOyNXrUBeXxvV619QU489/vgqr9TYUitkGPNTanz3bDZVqE1paFHjqKXHXWAwXLqgApCE72wm7nUdBdS0+/fV/w2qxQ5EWPmHzRsv/QrNhE265AoAr8usnzJ2mKVmOctifQoPBgI6ODoyOjsLtdqOlpQV1ddO3J2lpaXjjjTdgsVjA8zwOHTqE+vp6yQOJN0LSlRyEaJtJibqcj9kMKhCA6qRJ1ufOicV3OkF5PBHF4Le1WaDRqLFyZZ7s9yCEh2H86O2l0d8vTjZTqtXQbNgEa7s4+aCtTQGa5lFTE11jz/N8MAY/Dhu2M2EYPcbHvejpCV+/xmp14tq1UZSVjaO9XQGROVuiMJspqFQ8CguDb1rEbEbA44G960zYc723xjDa071o5BxAhMHX6XTYu3cvmpubsXPnTjQ2NmLdunXYs2cPenp6kJeXh1deeQVf//rX8eSTT4LneXz1q1+Nx9hlw3E8+vvH5W/Ysq3g8vMRWPOopPN8GzaBT02FSkYsLxDcuBUKvgEAbMF/BrkaPs/zYFkLjMbShDRUTiaEyBmpXbBGL3TDeyt81hbLKlBZySE7yqrL5O1b8E2MIytOG7YCgo4vpsyCoPXX1wMDAzR6e6P3XbZYaJSU8BAqSuhqDKBoGkNt4cMzhztM4Dnu/jL4ANDU1IQPP/wQx44dw549ewAABw8exNq1awEADQ0NU6+/9tprSAkTl55obDYXvN6APIPP81C1twWza6W2FExLg2/jE7Lj8fX6HAwPu+B23y2sJRh8mZtp166NwWZzkfj7OLBmDYf8fA7t7RISsIybwXMchjsWviN0uYCzZxVgmOjWzwFmRujE18PX6TKwalW+qEJq7e0W5Oam4otfDNazCtUFSy5mMw29frosckp2DvIrq2AVEXxhZU9AkZ4OzfoNURtPpCRlWuV0HXzp7hDdewOKgX74ZJY59TF1UH7cA2p0RPK5ggTV339XC7xr8OWWRhayGUnDk9hD08FwSZYVLzlo1m+AIj09rKxz6pQCfj+F2troyjlAMEIHQFzKKtxLbW0JTp4cwOTkwvNqa7PAYChFWRlQWMhJioYKh9lMzTL4AFBYWwd71xn4XAvvFVjZNmg3VUe96XskJKXBF3Tw0lLpHr5Q9dInsy/lZG0dKJ6HytQu+VxhvFM6/pSkI8/gs6wFJSVZWLo0shaPBHEwTECS5KBITYV2Y/VUp6T5YFkFVCoemzZF3+BPCB5+jHrZLgTD6HHnjg/nzlnnPUaon88wpaCo4DVua4uOju90Ag4HPadxeSFTB97vh+1Ux7znuu12jF36WFLiXDxIUoMf1MHlNC9XtbciUFiEwIpHwh8cAn/VevDqDKTISNEW7kiEO5Qpgy8j8YrjeJhMFjCMnuj3cWI6Hl9CuWRjHcYufQyPY/4kpPZ2JR5/PBBRv9X5cJpvQpWdg9RckeHHUcRgKAFFLVwfX3hNyBI3Gv1wOGhcuRK5abNYgu9xr4ev3VQNWqVaUNYZNgVfW0z6PZC0Bv82dLoMpKVJ1Pp4HiltrUE5R66RTEmBr7oGKhkJWDpdJlJTFdMevt0OLisbkOaakeIAAA/eSURBVHHL+MknDoyOeoicE0dWrOCh03GS+9wCgNUU+vty+zbQ3U3HRM4Bghp+PEoqhCIvLx3l5ZoFE7Da2iwoKFBj1apg2WHhOkRD1hHKIt9r8FUZGShYv2HBEtZDbBtUmVnIr1hc5WaS1uDL2bBVXLkM2mGXLecITNbWQXnlMqgZGctioGkKJSXZ01UzbTbZETosG9TvSf2c+CFIDlJ0/PyKKqgys+Yts9DRoQDHUTAaY2fw471hOxOG0ePMmcHpQIUZBKPMzHflHME489DrObS1RcPgCx7+3MUqYuow2n0ek7dDl3G2siegqzGAlpiTFGuS0uBbLPJi8FXtQvx9ZLdpvrtlUlNExljPRK/Png7NtNlkb9i2t1uwfHkuiovvj2zVBwWj0Q+7ncann4r716OVSuhqDPNWaWRZJdLSeDz+ePQNPs/zcFrMCTX4RmMpvN4AOjuH5rx2/foYrFbXHKfFaPTDZFKCi6znOMxmGmo1j4KCuQZfiKCyhoigcg0NYvz6NRQukvo5M0k6g+/3cxgYmJhVcVIsKW2tCOiXgIvwH8C/tgJcdo4sWSdYF39aw5ezYev3czCZ+kk4ZgKQFY/PbMb49WtwDQ3OeY1lFdi0KSBH1QuLx2ZDwONJSISOQHV1MRQKKqSOP1+VV4YJ4NYtCh9/HJl5EyJ0Qqm3msc3QpGWFjKCSqi1s9g2bIEkNPgDAxMIBHjpkk4gAJWpLWLvHgCgUMBnqEWKiOSNe9HrczA25sHEhFe2wb9wYRgTE5NEzkkAciSHQiZ00S6Hg8Inn0S//r3AhPkmgPiURZ6PrKxUVFbqQiZgsawFDz+ciWXLcmc9L1yPSGUds5metxH8QhFUVrYVqQ89hIfKH4vo82NB0hn86ZBMaZKO8uMe0Lduhe1fKxYfUwfFzV7Q/eIrAgLTsfh9vbeCm7Ya6Rq+4BkZDCWSzyVEDsNIkxzyytciJTd3jsE3mYR2htFPuAKmk64yYtzLNhwMo8e5c1Y4nZNTz3Ecj/b20FFmOh2PsrJARAlYPD836epeCo11GPvk4qwIKp7nMdR2AjqDEZTUxMw4sPhGFGMEgy/Vw1exQfklWgZfqMMjNetWGPfwJTPAcbI8fJa1YM2afGi1MYjjI4RFquRA0TQKa+vmhAGyrAKZmTwqKyMUq+fBmcAY/JkwTCn8fg6nTw9MPXf5sgMjI+5571IZJoCODgV8c/d6RXHrFjAxMTfpaiaCZGPtYKeec/bdhKvfsijlHCApDf44FApK8malij0B/yNl4Aqj0z4tsHoNuIKCqUQusQgGf+xKMMpG6qbt5GQAp04NkHDMBCJHcihi6uA092Gi7+bUcyyrQHV1ALEKBHGa+5BWoIEqFgH+Eti48WGoVPQsWSdclzaGCcDlotDdLc/ELRShI5BfUQVlRiasM6RZ4Ue5MMJIvliRhAb/NoqLs6Q16/b5oOowRc27BwDQNCYNxqCHLyEtMC8vDRkZKrh6g96OVA//7NkhuN1+smGbQAoLeTzyiDTJYSoe/66DMDgIXLsWm/o5Ak6zOaEbtgJqtQobNhTNisdnWQuWLs1BSUloaVbo+iVX1pk2+PN7+LRKBV2NAUMznLahthNI1+qQU7ZS1ufGmiQ0+NKrZCq7z4F2OTEZ5V9tH1MHxeAAFL3XRZ9DURT0+hx4+4NhalINPstaQFFEv080UiWHnJWrkKbRTlVp/Nvfgs/HKv4eCG7aJjIkcyYMo0dPjw23bnkQCASjzIzG+Z2W/Hwe5eUB2Ru3QtLVkiULy2VFzGaMX7uKO9Yh8DwPK9uKQsa4aLPXk9Dg35Ycgz9VP8cgr2DafAjx+ML+gFiWLMkBZ5VXVoFlLVi7Vovc3PDNGwixQ6rkQFEUioxBHZ/neRw/DuTm8igvj41+zwUCcA30x70s8nwwTCk4jkdHRz/OnbNifNwbNsqMYQI4c0YBOS22zWYaubl82HLTMyOoxq9dhds2vCjj7wWSyuC73T4MD7skF01TtbXC/+hj4PPzozqewPJHECgsgkpiXZ3S0mwoRhzgKQp8nvjGJW63D52dQyQccxEgR3IorK2De9iK8WtXcfw4YDD4JVfoFsudwQHwfn/CN2wF1q8vRHq6EixrwfHjvQAAgyGcwffD46HQ1SXdyw+GZIb/MX3obgTVENs6dfdVKLOSbjxIKoMvlBWW5OF7vVCdOYlJYwx23SkKPqYOKWybJB1fr8/BQ/6J4A+QQvyX+cyZIUxOBha8FSbEh4ICHo8+GpBVV6frg3O4eTO2ck6i6uDPR2qqEps2FYNlzTh+vBerVuVDp1t4M7mmJgCa5mXJOqHKIoeCVihQaDDCyrbCyrYio6QUWUuj20g9mogy+EeOHMG2bdtQX1+PQ4cOzXn90qVLePrpp9HQ0ICXXnoJfn/sNpIiQU5IpqrrDCiPB74Y3aZNGjeDdtihuHJZ9Dl6fTa0cMGTLe2Og2XNUCppPPFEsdRhEmKA0RjA6dPiJYespcuQUVKKvx/zAEDMEq6AGWWRF4nBB4JlFi5dGsGJE32i7lKzs4HKSun18Xk+WClzoQidmRQagxFU/f/XgkKmbtHq94AIgz88PIwDBw7gd7/7HT744AO8++67uHbt2qxjvvvd7+Lll1/GsWPHwPM8Dh8+HLMBR8J04xMJBr/tBHiahq/GEJMxCY1UpMg6en0OtHBhIl2aNNXWZkFlpQ6ZmYu7I1myUFsrTXKgKAqFtUZ0XtJBp+OxcmVs9HsgGE8OikJGyeKR/4RQYo/HLzqsuLbWj64uBcL0KpmFzUbB4xHn4QNBqQ0AAm43ihaxnAMAYQVEk8mE6upq5OYG05cbGhpw9OhRvPDCCwCAgYEBeDweVFZWAgC+8IUv4K233sKzzz4bw2EDnD+AM6/8F8aHxHeO4k4N4MtKG0pPtoCixf0Kpx79C/wVleCzY9MkhNMvQUC/FGkfvAdOqxN1zhqPHz6ModdZio///KmocwIBDufPW/Htb2+KZLiEKCJIDr/5jQoOh7jvozXjOVyZfAyG4k/Rd+RUzMZmO30SGQ8XQ7GI2pVWVASdFZdrUnSUGcME8LOfUfjFL1JQVibOgN+8GfSDw0XoCOSuWo20Ag08Dvuiq39/L2ENvs1mg2ZGz1StVosLFy7M+7pGo8GwxLK/+fmZko4HgEu/PYqNP9wj6ZzPCn88/660D/vBD6DRxLCqZNN2KN55BzkLdNCZifDT8+s+Gv/6tQ8lfdTTTz8a27nEkft9HhoNUFsL/PGPKvzxjyqRZ9UDAHLP7sOJr/0mdoMDsGzbtkV3jbdvL8PAwARWrdKKPB7IygJ+/GNp1eUoCqipUUNsu+iyHU9huKsLSyvXSPocOUSyJmENPh9iM3GmRhXudTGMjDjBcdJ6khU01KK/rRvDN+aWTV0IrTYDGRkSvBaaRmD5CsA+IelzJPHiv0PxpWZJp0w4J7Hz4eWoGxcfc5aersKSJTmwx3IucUKjyXog5vHrXwP9/dJiJ/y3bHhs2T6Mjb0Qo1EFydIvWXTX+I03Pov8/ExJ4zp5ksLIiDSblJ3NIyODh90u7viKf3sdnN8f8+slfO9pmpLlKIc1+DqdDp2dnVOPbTYbtFrtrNcdM4oH2e32Wa/HkhJmHVJXSd8Rj91Wl0xSUhBYLc0zUANY8oAYvWQmMxNYvVqqFl8Q9PKScO3T0pRQq1VwuTyiz9FoeGg0UWhyuwCK1NRF1ax8PsK6FgaDAR0dHRgdHYXb7UZLSwvq6qZ1quLiYqSmpqKrqwsA8P777896nUAgEAiLg7AGX6fTYe/evWhubsbOnTvR2NiIdevWYc+ePejp6QEAvPnmm3jttdfwuc99Dm63G83N0uQJAoFAIMQeig8lwscZORo+8ODouHJJ5vkn89yB5J4/mbt8DT+pMm0JBAIhmSEGn0AgEJIEYvAJBAIhSYhRrxxp0CKzXqN97oNAMs8/mecOJPf8k33ucue/KDZtCQQCgRB7iKRDIBAISQIx+AQCgZAkEINPIBAISQIx+AQCgZAkEINPIBAISQIx+AQCgZAkEINPIBAISQIx+AQCgZAkEINPIBAIScJ9a/CPHDmCbdu2ob6+HocOHUr0cOJKc3Mztm/fjh07dmDHjh3o7u5O9JBijtPpRGNjI/r7+wEAJpMJTU1N2Lp1Kw4cOJDg0cWee+f/4osvYuvWrVPfgY8++ijBI4wNb7/9NrZv347t27dj//79AJJr7UPNP6K15+9DrFYrv2XLFn5sbIx3uVx8U1MTf/Xq1UQPKy5wHMfX1tbyPp8v0UOJG+fPn+cbGxv58vJy3mKx8G63m9+8eTNvNpt5n8/H7969m//73/+e6GHGjHvnz/M839jYyA8PDyd4ZLGlvb2d/9KXvsR7vV5+cnKSb25u5o8cOZI0ax9q/i0tLRGt/X3p4ZtMJlRXVyM3NxdqtRoNDQ04evRooocVF27cuAGKorBnzx489dRT+O1vf5voIcWcw4cP44c//OFUr+QLFy5gyZIlKC0thVKpRFNT0wO9/vfO/86dOxgcHMTLL7+MpqYmvPXWW+A4qX1xFz8ajQbf+973kJKSApVKhRUrVuDmzZtJs/ah5j84OBjR2t+XBt9ms0Gj0Uw91mq1GB4eTuCI4sf4+Dhqamrwzjvv4Fe/+hV+//vfo729PdHDiik/+tGPsGHDhqnHybb+985/ZGQE1dXVePXVV3H48GF0dnbiD3/4QwJHGBvKyspQWVkJALh58yb+8pe/gKKopFn7UPM3Go0Rrf19afD5EAU+KSo5yqVWVVVh//79UKvVyMvLw65du3DixIlEDyuuJPP6A0BpaSneeecd5OfnIz09HV/5ylce6O/A1atXsXv3buzbtw96vX7O6w/62s+c//LlyyNa+/vS4Ot0OjgcjqnHNptt6nb3QaezsxMdHR1Tj3meh1K5KNoaxI1kXn8AuHLlCo4dOzb1+EH+DnR1deG5557Dd77zHXz+859PurW/d/6Rrv19afANBgM6OjowOjoKt9uNlpYW1NXVJXpYcWFiYgL79++H1+uF0+nEe++9h/r6+kQPK65UVFSgt7cXfX19CAQC+PDDD5Nm/YHgP/mrr76K27dvw+fz4d13330gvwNDQ0P45je/iTfffBPbt28HkFxrH2r+ka79fekW6HQ67N27F83NzfD5fNi1axfWrVuX6GHFhS1btqC7uxs7d+4Ex3F49tlnUVVVlehhxZXU1FS8/vrr+Na3vgWv14vNmzfjySefTPSw4sbq1avx/PPP48tf/jL8fj+2bt2KxsbGRA8r6vzyl7+E1+vF66+/PvXcM888kzRrP9/8I1l70vGKQCAQkoT7UtIhEAgEgnSIwScQCIQkgRh8AoFASBKIwScQCIQkgRh8AoFASBKIwScQCIQkgRh8AoFASBKIwScQCIQk4f8B1EDGFt72dZcAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "***************\n", "Menu of Actions\n", "***************\n", "1. Run for N periods\n", "2. Display a population graph\n", "3. Display a scatter plot\n", "4. Examine model data\n", "6. View log\n", "0. Quit\n", "Updating the line graph.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEJCAYAAACXCJy4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd8FGX+x98zs7tpGxJCAgmQDaj03iENxVOa7SceKCogHHYR9fSsZ293ngr6w1MOxa7YUbEdPyXZICWA0jtkAyQkpJFN2TIzvz8mu6RndrOhyL5fr7yU3Xlmnpnd/c4zn+f7fL6CqqoqQYIECRLkD494qjsQJEiQIEFODsGAHyRIkCBnCcGAHyRIkCBnCcGAHyRIkCBnCcGAHyRIkCBnCcGAHyRIkCBnCcGAH+QPx6OPPsq4ceN46aWXfGq3du1aLrnkkkbfW7BgAV9++WUguhckyCnDcKo7ECRIoPn444/55ZdfiI+PD9g+77zzzoDtK0iQU0Uw4Af5QzF9+nRUVWXu3LlMmDCBzMxMnE4nxcXFXHHFFcyfP5+KigoeeOABcnJyEEWRfv368cQTTwBQWVnJXXfdxf79+3E4HDz11FMMHz6c+++/nx49ejBnzhyys7P5xz/+QVVVFUajkfnz55Oens7nn3/OTz/9hCiK5OTkYDQaef755+nZs+cpvipBgtSgBgnyB6Nnz55qUVGRet1116kHDhxQVVVV8/Pz1T59+qhFRUXqF198oc6ePVtVVVV1u93qQw89pB48eFBds2aN2qdPH/W3335TVVVV33rrLXXGjBmqqqrq3/72N/U///mPWlxcrI4ZM8a7ze7du9WRI0eqNptN/eyzz9Rhw4apeXl5qqqq6hNPPKHed999J/nsgwRpmqCGH+QPy7///W+2bdvGq6++ynPPPYeqqlRVVTFs2DD27t3L9ddfzxtvvMHMmTNJSkoCIDExkUGDBgHQu3dviouL6+xz8+bNWCwW7zY9evRg6NChrFu3DoB+/fp5paS+fftSVlZ2sk43SJAWCQb8IH9Iqqqq+J//+R+2bdtG3759ue+++zAYDKiqSmJiIj/99BM33ngjdrudG264ge+//x4Ao9Ho3YcgCKj1rKYURWlwLFVVcbvdAISGhjbbPkiQU0kw4Af5Q1JcXIzdbmf+/PmMGzeOdevW4XQ6URSFDz74gAceeIDU1FTuvfdeUlNT2bNnj679Dho0iAMHDrB582YA9uzZw/r16xk5cmRbnk6QIAEhOGkb5A9J586dOf/885k4cSLt2rXDYrFw3nnnkZOTwxVXXMG6deuYNGkSYWFhdO7cmRkzZrBz584W9xsTE8OCBQt48sknqa6uRhAEnn32Wbp3786mTZtOwpkFCeI/ghp85gwSJEiQs4KgpBMkSJAgZwnBgB8kSJAgZwnBgB8kSJAgZwnBgB8kSJAgZwnBgB8kSJAgZwnBgB8kSJAgZwmnRR5+SUkFiuJ7dmiHDmaKiuxt0KMzg7P5/M/mc4ez+/yD525HFAXat4/wuf1pEfAVRfUr4Hvans2czed/Np87nN3nHzx3/whKOkGCBAlylhAM+EGCBAlylnBaSDqNoaoqJSWFOJ3VQOOPMAUFYqPuhWcLf6zzFzCZQmnfPg5BEE51Z4IE+UOiO+A///zzlJSU8Nxzz9V5/ciRI9x7770UFRXRvXt3XnjhBSIifJ9MqI/dXoYgCHTq1BVBaPxBxGAQcbv/KAHPd/5I56+qCqWlx7Dby4iMjD7V3QkS5A+JLknn119/5Ysvvmj0vccff5zp06fz/fff079/fxYtWhSQjlVV2YmMjG4y2Af5YyEIIpGR7amqOjuzL4IEORm0GE1LS0t56aWXuPnmmxu853K5WL9+PePHjwfgyiuv9BaSaC2KIiNJzT+AqKom/fj+h09/JwNf+6SqKvhx/qczkmRAUeRT3Y2Ti6qCovj0p8qyN7OtLf9O9++Lbvy4xifth3+SaVHS+fvf/85dd91FXl5eg/dKSkowm80YDNpu4uLiOHr0aMA615yWW1HmYO+BEFSkgB2vKbp2VYmNbbsvQH6+QH6+77p1NLmY0X+9BVEkqkcvDGFhPh/rZHA2aveRN95A6Fef+9TGjcglXM13tG1x9Guu6ceCBePb9Bi+sv6RB5BLjzH6lcX6GjidxCQPR7Id9Ok4SrsoildvQO3YUdf2zz2Xxdathbz33hU+Hedk02zA/+STT0hISGDMmDF8/nnDL2VjIwB/frQdOpgbvFZQIGIwNP0AEtEuhI7RFcg+DAhlhwPF5SIiIUF3m6IieOWV57DZfsflcnHoUC7du58DwLRp13DJJZfr70ATlJVBWBi0b6+zgaqSnyfjNkZjjtM7DaNiP3IEt/04oZGtn2NpK0RRJC4uUte2erc7bamqgu++gXHjYOxYXU22bS+gy8f/4ZE+hYy++sY269oXX+xk7dojp9U1VlWVA58vw1FSwvglSzDpmSu0WsF2EGbNgu7d9R3o0CHExYuJPbIf+p2rq8nnn+/i4MFSRFGiQ4dwfcfxk9Z8Js1GixUrVlBYWMjll19OWVkZlZWVPPPMMzz44IOAVv3HbrcjyzKSJFFYWEhHnXfE2hQV2RssJlAUpfkJSQESz4v0adKyqrCCisOHiWkfg1irdmlzuN0CV175AAMGKBw9eoQ77riJt976oNb7rZs0dbmgqkokIUGlY0d9TxHu6mqO5SlgCCW0o/7gXV1SguN4OaFxnfztbpujKAqFheUtbhcXF6lru9MZY8YvRDudlM29FeeFF+tq86+/reQK6Wcurd7LebcMbbO+FRVVsGjRBvLzy5Ck02MerWTHdqoKCwHY/s2PdBn3pxbbhH/zPeGCQNGDj6NG6xtRiYdy6bB4MeWbd1A9eHSL2+fklHHwYCkAX321g0svbbsnL8/3XhSFRgfKLdHsJ/nWW2/xzTff8NVXXzFv3jzGjRvnDfagFXwePnw4K1asAODLL78kPT3d506cLERTCACy06m7jdmsaf4VFXVfVxSFq666FJstB9CKZl955WQcDgeXXPInnnnmcWbOvJpbbplNXt4RAHbs2MYtt8xh9uxrueuu2zhy5DB2+4nj6EVxOpBwIyu+yVlGcyTuCjvqHyaV88zGaM1AlSRco8bobmO15mI7dwjCgQOIOQfbrG8WSxRut8KRI6fPJHq+dRWgSZP51gxdbYzWDNwDBukO9gBKQmdUoxGp5rfdEllZuQCIooDVmqv7OKcCv27dDz30ECtXrgTg0UcfZdmyZUyaNIns7Gzmz58f0A4GEslkAkBx6Q/4EREgCGC315WqRFFk4sRL+PHH7wD45ZeVJCenEhISQmlpKUOGDOPttz/iwgsv5uWX/4nL5eK5557i0Uef5s033+fqq6/j+eefxm4XkCQI9+EpUHY6EXHjVnz7+AzmSFRFwV1Z0fLGQdocU+Yq3EOGoZr1PaLn59vZs6cY4cJxWvuszDbrm8USBUBublmbHcNX8jIzMCd1o0tKCnk1wb9Zqqowrl+LK9XHQagkoXTpipirL+BnZtqIjQ3n/POT/jgB/8orr/Tm4D/99NNceOGFAHTp0oV3332XFStWsGTJEqKiotqmpwFArAn4skN/wPcE4/oBH2DSpEv56SctK+n7779l4sRLATCZQpgwYTIAEydewsaN2eTm5nDkyCHuv/9uZs2azmuvvVIzwheIiFDxZepDcTqRBDdut2/JBMaau5fLfvqM2s5WBHs5ht824kzTH4w8I8neV6ZBx44YdY5y/cFiaQeAzXa8zY7hC4osc/TXLBLSxpI4bhzFm3/HWVbabBtj9joEpxOXD9fYg2zppmuEr6oqWVm5pKUlkpZmYc+eYo4ePX1/X6eHOHeSECUJ0WBAcTp8amc2q1RW0mCCOCGhM/HxCaxa9X8UFxfRr19/7Tii4J28VhQVSZKQZYXOnbuwdOkHLF36AUuWvMuCBf/B4QCzj1Kc4nRgkDSpyZdJa9FgwBAWhqv8zNa+/wgY16xGkGVcKfqDkdWaS1RUCP36d4QLLtACfhulD3bt2g5B0PTp04GSrZtxlpUSn5KG5YILUBWF/F9XN9vGaF3ls2TmQU5KQsppOeDv21dCfn4FKSmJpKYmApzWo/yzKuCDNspXfNDw4YSOX1XV8L3Jky/j5ZdfYPz4Sd7XqqursdaMvlasWM6oUckkJXXj+PHj/P77JgC+/XY5TzzxEACRkb79aGWHE0PNnLPb7VNTTcevrET15U4RJOAYMzNQTSZcI0bpbpOZmUtycldtEnXcOKT8PKR9e9ukfyaTREKCGZvt9Aj4eZna7yk+NZ2E0aORQkO9mn5TmDIzfJLMaqMkWhCPFTacvKtHZqYW3FNTE+nfP46oqJBgwD+dkEwhPk3awgkdv6Kioe4yduwFHD9e5pVwPPz883+ZOfNq1q5dw5133oPJZOLJJ5/j1VdfYubMq/nuu2+YM+fvGAwQGurbOchOJwaj9tH5E/BVVcEV1PFPKcasTC3Y61wTYbOVYbOVkZZm0V4Yp+n4bSvrRJ02kk5+VgZRPXsR3ikeQ0gIHUeOId/a9ByGP5JZbWRLEgBSrq3Z7bKycunSJZLu3aORJJHk5K6ndcA/bc3T2grRZEIpK0NVVd1rBkQRIiJUZLkLn376tfd1VVXZuDGb4cNHEhsbV6fNI4880WA//fsPZPHid2rawo4dIuHhPur3shtVdmMK8S/gGzw6frkdU2Q73xoHCQhCSTGGLb9Tee8Dutt49PuUFE024NxzkTt3wWjNoHrWnLboJhZLFJmZzQe8k4HicnH019WcO+0a72vxqWlseuYJqo8dIzQ2tkEb49pfEdxunySz2ngDvu0gcu8+jfdL0fT7Cy/s7o0lqamJfPfdPmy2Mu/E9+nEWTjCN6GqCorL5VM7s1mTdGoH2IULX+Sll/7Jbbf5npnkdGp/Puv3NRPOxlDtXu12+7bQTZQkjOERuOxBHf9UYVydhaCqOFP1LbYCTTqIjQ2jd+8O2guCgCs1HVNWhmYF0AZYLO3Iz7fjcPg4qggwxzZtxF1ZQUKt65VQk3mTv7rxUb4/klltZEs3AMRmJm537DhGUVGVV7sHSE3VnsA8N+jTjbMu4Hty8f3R8QFqJ7jceec9LFv2FZaa0YAHqzW7xf15sn58yb8HkGtSSk3egO9TcwCMZjPuqkoU+dT+kM9WTNZVqOHhuIcO07W9JxMkNdVS56nUmZqOWFSEtGN7m/TTYolCVeHw4VM7OPCkYHZKSfW+1mHwUIzmyCbz8Y3WDJ8ks/qocXGo4eFItqafcDzSTe2A37t3B2Jjw05bWecsDPg1qZk+ZuqEh2vSTmPpmf5gt4PRCCEhvrXzjPClkBAMBj8DfmQkqCpue1DHPxUYszK1zJGa72JL7N9fSl6e/YScU4Mnv9yU1TY6flKSJkmc6kyd/KxMYvoPJDSmg/c10WCg4+gx5DUS8IXSEgxbfseVkub/QQUBOdHSbGpmVlYu3bpF0bVru1rNBFJSErFac09L87mzLuB7F1/5OML36PiBCPiqCuXlAmazb/o9aDcqQZQQJMnvgG8Ij0AQxaCscwoQCgow7NyB0wdt2aOjp6XVDfhK10Tkbt3bbOI2MfHU5+LL1dUUrFtDfCPBOyF1LMf37qEyv66xoz+SWaPHTrQ0Kem43UpN/r2lwXupqRby8uzs39/8OoFTwVkX8AVRRDSafM7UAU1vr67W/G9ag8OhBWpf9XuoWXRlMiEIAkajfwFfEEUM4RHBBVinAM9o3JfFQFlZuXTubKZ794aFYZxpYzGuzvJtQYZOEhLMGI3iKU3NLMheh+JwEN/I9fK8Vl/WMfoomTWFYklqcoS/ZUsB5eXOOnKOB8+N+XSUdc66gA/aKN/XET6cyJdvbZwsL/dPvwct4Ish2lOKNsL374nDGBmp6fj+3DGC+I3RmonSLgr3gEG6tvdkgqSkJDaaVeZKTUc8XoZhy++B7iqSJNKlS+QpDfj51gwESaLTmJQG78X0G4ApOrqBrGPKysQ1crRuyawpZEs3xONlCKUlDd7zBPP6MhtA9+7RJCSYsVpPfYZTfc7KgC+aTD5r+KDN/0hS63V8u137Lvr6fVRVFdnpRKqZePZ3hA/axC0QHOWfZIzWVbjGJGt3ax3s3HmMY8eqGpUOAJzJmtRhzGwbWUfLxT+1Ab/DoMGNphALokh8clqdEb5QUIBhx/ZWyzlQOzWz4SjfarXRq1cHOjbiVisIAqmpiWRlnX46/lkZ8CWTCcXl0u0auXFjNhddlMYNN0znmWemcdddU3j77SXe96+66lKvI2ZLaM6bDfX7t99ewqxZ05k1azqpqcO9/1/7OKrbjarI3olnj4bva1be7bffyJadOxBEyScd/6uvPvd6B1mtGXz00Xu+HfgsRzx8CMOB/T6ZeTXIv6+H2qkT7l69MekxE/ODpKQocnNPjYbvstsp3JhNfDPBOz4tHbsth/Ia51BTTZqmP/459VGStIAv1rNYcDpl1q493Kic4yEtzcKxY1Xs3FnU6n4EkrNu4RXUpGaqKorLhaQzTaZXrz68+uobFBYK7N9fxXPPTSE9/QJvMRS9eHL568s5M2fOYeZMbQFNaupwli79oEFbz7yDWGuED5p8K/p66xYEjGbf8vG3bt3MkCGaLrpr1w4fDxjEM7nqa/59UlKUdwK1MVyp6YR++L62sKOVMkZ9LJYojh2rwm53YjYHdt8tUbBuDarb7c25bwxPbn5+ViaRSd00ySyynW7JrDmaWm27aVM+lZXuZgO+5wZttdro06fhwrBTxRkR8D/+eDsffri1weuC4J93lCrLuKsqkcJ2ce11g5g2ra/utmazitNZjSCImOvNuq5Y8TWbNm3goYceA7SR9OzZNzJ06HDefXcpP//8Ew6HQo8eY3jggTsAfdLQihVf891331BaXMTQXn249i8389JzT5CXdxSnU+S2224jJWUUS5a8zrFjheTm2jh6NJ9LLrmcmTPn4HQ6ef75J9m5cwfx8Z0pq3EZLK128PQ/nsItSoiSyJ133kv//gPYsWMbCxe+iMNRTVRUNPfe+yCHDx/Cas1gw4b12O12vqopyxcfn8AFF/yJF198nv3796EoCtdeO4OLLprg7XdZWSkpKel0734uH3zwDqIo0rlzZx555ElCfM1LPYMxWTNQOnRA7qPv+ybLCqtXH+Kyy3o0u50zJZ2wJW9g2LQR96iWC3b4gsc1Mzf3+EkPXPnWDESjkY4jmz6nqJ69CI3rSH7mKnpMv16TzJJTdEtmzaFGRaNERTcoj2i15iIIkJzctcm2iYntSEqKIjMzl7lz265Qja+cEQE/4Hi0FB+0kF27djBr1nQURSE39xBjxvypgZ1CU6xZs5pdu3awePE7HDggsmjR3/nll+/qGK61RGFhAYtffBVHwVEW/vsVJk++jOHDL2Dt2kJeemk2Q4ZoTwR79+5h0aL/YLeXM3XqFVx55VS+/vpLAN5//1Nyc23MnKktUf8x8xeG9x/IjDk3se3AfjZv/o1evXrz3HNP8fzzLxEfH8/atb/y/PNPs2DBIlJT0xkyZBiTJl1Kebn2mD958mW89tor9OrVh4cffpyKCjs33zybvn37e/v93nufYDAY+POfL+eNN96iffsY3nhjETbbQXr06KX7GpzRqKq2GCg5Tffj2JYtBRw/7vCu3mwKV3IKqiBgsq4KeMA/kZpZdtIDfp51FbHDRmBopliEIAjEp6aRZ81AOJSLYf8+qm/4S8D60FhqptVqo3//jrRv3/yirrS0RJYv34MsK6dN1bAzIuBPm9a30VG4wSD6VWJQVVWKNv9GWMdORCR01tXGI+kA7NxZxT/+MZ93313KjBk3tNg2O3sd27dvZc6c66muBll2cOCAb2UGe/bsjSDLiAYDGzasx2azsXjx61RXg9vt5vDhQwAMHToco9FI+/YxtGvXjooKO7/9toHLLrsSgMRECwMGDARgxOgUHrz/bnIKCkj/08VMmTK1jm+/h4oWHAOzs9fhcFTz7bfLAc0t9MCB/d5+e4rcp6Skccstc0hLO5+xY8edPcEeEA/sRzp8iMp5d7e8cQ3NZYLURo3pgLv/QE0yuudvrepnfTx+MCd74tZZVkrx5t8ZePd9LW6bkDqWg198hvzFp1pbP/1zGkOxJCHt3e39d1WVi/Xr85gzZ3CLbVNSEnnvva1s3VrIoEGnR1lRXQF/wYIF/PDDDwiCwFVXXcUNN9QNcq+++iqfffYZ7dppo4GpU6dy7bXXBr63AUIQBCSjf6mZALGx4QwYcAG//76mwX5rz8rLNdYFiiIzdeo1XHrpdezZIxIbW0ZMjG/lCUNCNJdP0WRClhUWLnyNdu3a89tvEBZWwDnntCcj4xdMtTTcE/0RUNUTN0ZJ0o49aNBgXn/+JdasW8PKlT+yYsXX3HbbfK9vv3YOMiUlxc32TVFkHnnkSXr16g1AcXER7dpF8eOP39WRbObP/yt7917Or79aefLJR5g9+0afnnLOZDzVqVxp+vV7qzWXnj1j6NSp5brFrtR0wt58Q5sk8tNOoDHi4sIJDzec9MVX+b+uRlUU4nVcr/gajV9d8Q1KTAxy334B64dsScL083817VgQyM7Ow+mUGyyCawyPxp+ZaTttAn6Lzxnr1q1jzZo1LF++nM8++4x3332X/fv319lm69atvPjii3z11Vd89dVXp3Ww9yCaTCgO31MzAcLC3OzZs4GkpN51Xo+KiiYn5wCqqnLkyGH27tW8yocOHcEPP6ygsLAKWXbz7LP38MsvK30+ruJ0IJlCGDZsOJ9//gkGA+Tn72f+/Gk4HNVNths+fCQ//fQDiqKQn5/Hli2bAVi0aAGrstdy/vAR3HnbfHbv3tWob/9jj2m+/VohF7nB/w8dOoIvv9RGV8eOHWPmzGs4ejS/Th/cbjdXX/0/REdHc/31NzBhwmR2797l8zU4UzFaVyF3ikc+9zxd27tcMmvWNJ8JUmf71DQEhwNj9rrWdLMBgiCQmBh10u0V8q2rkEJDiRs6vMVtI7t1J6JzFyK3b9XcMX3OYGgaOSkJoaoKoaAA0G7CkiQwenTT+r2HTp3M9OwZc1otwGpxhD9y5EjeeecdDAYDR48eRZZlwutpalu3bmXx4sXk5uYyYsQI/va3v532k3FSSAjO4/q/xB4NH6C6uorOnfszfvysOtsMHz6Sb7/9imuumUJSUhIDB2qPfamp6ezdu5v77puJoiikpY1h4sRLfOqvqqooThdilIm77rqPf/zjaa69dipVVXDrrU8SHt70KPDKK//MgQP7uPbaq4iPT+Ccc84FYMqUaTz26IN898MKjKGh3HPP/V7f/gULXsDpdBIeHsHDDz/uPb/XX1+E2Wxm8OChPP30Y8TExDB79lz+9a/nuf76qSiKwq23zqNLl67emwaAwWBgzpybmD//VkJCQjGbI3n44cd8ugZnLKqKyZqJM/189HppbNp0lMpKV4v6vQfX6GRUSdImLX14itCDxdLupKdm5mdm0HHkGF1ZdIIgcO6QoUR8+zXlyaktbu8LSi2bZHenTmRm2hg8OF53xlJqaiIffbQdl0vGaPTtqb4tEFSdKwMWLlzIm2++yYQJE3j22We9q/4qKiqYP38+Dz/8MF26dOH++++nS5cu3HXXXa3q2LZt2+ncOanlDf3EnpeH/fBhOg0diuDHiODAATh+HAbpzP5SFPjtN4iNBYu+33AdZKeTws2baZeURHjcicni7du1TLzz9A0cG6Xgt98JiWpHVPfu/u8kQBw5kkO/fvqzps4Itm+Hfv1gyRKYPVtXk6eeyuDvf/+ZwsJ76dBBZ4X7MWO00W1WVis625A77ljBO+9sprT0b7prSLSGysJCFnXsSNozzzDqAX01Aw7Pnk2Xt96i+Msvibn88sB1xvPZvf8+5ZdOISbmH9x3XzJPP32hruaffbadq676hKys2SQn63taa0t0T9rOmzePuXPncvPNN7Ns2TKmTZsGQEREBIsXL/ZuN3v2bB588EGfAn5RkR1FqXvfURSlxQlZfydtAQRJS2J3VFZj8LXkFBAeLlBUJGC3K7oqVtntoCgiERGKX6tjXZU1ko1k9J6zwSAiSSpOp+D3dQBt1a3jeDkul3xSftDNoSgKhYUtrw2Ii4vUtd3pQOjyFUQCRQNHoOjs8w8/7KVfvzgURW70PBs7/4hRKYT97wKKDhzxq6xfU8TGhnH8uIM9ewpbzEwJBAeXfwdA5OCRus89Kq8AO7Bl83b6Jo8LXGfCY4gDKrbt4ltxF263wpAhnXR/9/r31zKbvv56Jz16NPRC8hXPuYuiQIcOvptxtTi03bdvHzt2aItswsLCuPjii9m164T2euTIET799FPvv1VV9WZlnM54/Gh8LWjuwbNwyuOL0xJ2u4AgaOUS/cFjBSHWW1jjr2NmbYzmSBSXE9nPOY0gzWPKzEC2JKEkddO1fXW1m/Xrj+iWczw4U9MR3G6Ma3/1o5dNcyJT5+TIOnmZGRjNkXQYrDN/XVUJ37CevAgz+autge1MRARKbByiLYfMTBsmk8SIEfoy+wBiYsLo3z/utCmI0mLAP3ToEA8//DBOpxOn08nKlSsZNuyEC11oaCj//Oc/yc3VfCPef/99LrroojbtdCDwrFaVHf5l6oSEaFKKXisau11LnvD3XujJKJLaIuBHaiMFd9AuOfAoCsbVmTh9sFPIzj6CwyHrnrD14BoxCtVkCrivjscX/2SlZuZbV9FpTDKizh+LtHsXYmEBFQMGkZ9lDbghoJyUhJSTg9Way/DhCYSHG31qn5KSyLp1R6iuPvVGhS0G/LFjxzJ27FiuuOIKpkyZwpAhQ5g8eTJz585ly5YtxMTE8MQTT3DLLbcwYcIEVFVtkLZ5OiIaDAii6HdqJmijfLtdaHG1ryyf8M/xF9npRDSaGsw3GAza/EBr3HFFUwii0RQ0UmsDDNu2IJaW+uSf48kEGTOmi28HCw/HNWwExqymi3v7g2e17cnI1KnIO8LxfXub9c+pj7cewKWX4So/TnGAnUNlSxIcPMCWLQUtrolojLQ0Cw6HTHa2Pr+ttkTXLXTevHnMmzevzmt5UDXrAAAgAElEQVS1dfvx48czfvz4wPasjREEQUvNdPkvY5jNKsXFAlVVWkWspqis1NJ4WxPwPT749TEYtDx7t1tz8vQHQRAwms24yst9Ku4epGU8o21fA/7gwZ2IjPQ9082Vmk74C88hlJagRrf3uX1jREWFEhUVclIydTzOl/Gp+qtVmayaZBZz+RR46G/kWzOJHdI6L/zaKJZumJZ/haAquvLv6zNmTBckScBqzfVZpgs0p8d631OEZDL5LenAiQImLdklt1a/B03Dr6/fwwmJqPWyTiSK24Vc3XQ+fxDfMVpX4T6vB0p8gq7t7XYnGzfm+zWSBG1hl6CqWlGUAHKybJLzrRmYoqOJ6TdAXwOPZJaSRljHjkT37uOtgRsoZEsSouzmvJAKhg7V9znWJjIyhEGDOp0W+fin/+xqGyKaQnBVVLa4XV7eEa655kq6ddOcMVVVoaKigokTLyE5+RbsdujYsen25eUC4eGwdOnrAMyZc5P3vW+/Xc4nn3wEwMGD++naNRGDwciAAYO4p2aZvKoomrNnMwFfj6Tz9NOPeb1w6nPCH78cQ72VmlZrBocO2bj66uvYvn0rv/zyf9x667wG+whSD5cL46+rcfx5mu4m69Ydxu1W/B4JuoYORw0Lw5iVgXOSb2s9msNiacfu3c2vuA4E+VmZxKek606VlrZtRSwp8T5Bxaems/eDd2vqRgTG3dPjmjmxtwGTyb/H6NTURBYt2nBKXEdrc1YHfMlkQpXdKLIbUWr+UsTGxtWxLD52rJCrr/4f+vUbT3j4OSiK2ugCP1nWVrt37Ni4nDN58mVMnnwZoPnq//OfC0io5++juFygqt6J5tp4An5ryy5KphAkUwguu52wuLp3r9pWyAcPHmjRaiGIhuH3TYgVdp8mbK3WXIxGkZEj9WeC1MFkwjVyNCZrBoEsUZ+YGMXKlQfaVPIrzzmI3ZZD31tu193GZK0rmcWnpLPzP69TtGkjHQNkJFcYEUc0kG7xP/U5NdXCwoXrWbfuCOPGdQtIv/zhrA74HolEcTgRw327FMeOHUNVVWJjw7DbYenSpVitPyHLCqNGjeaWW+YhCAJvv/0OX3/9BR06RBMdHUmfPvp9PjZuzOa11xbidrnoGhPLX+9/hBeeetRrQzxjxizGjr2YNWuW8+GHq3E6yzhy5DAjRozmr3+9H1VVefXVl8jKshIbG4uiKAwZMoyKCjuPPfYQRUVacYbZs+eSmjqWwgo7C158nkpZJjQ0lLvuuhej0eS1QjabzXz88QdUVVXx9ttLuO66WSxatIBNmzYgywqTJl3CtGnXevstywrnnHMuEyZMZtGihQiCQGRkJI899gzR0a3PST7d8QajZP16tNWay7BhvmeC1MaZNhbzU48hFBaixulzdG2JpKR2VFfLFBRU0KmTH8WYdeDR7xN8mrBdhfvc81BqBknxySkgCORZVwUs4GcchHOBge1aVgOaYuTIzhiNIlarLRjwW2Lfxx+w58OG1ZX89cP3oMoyCennE9ntnGYtWEEb0c+aNR2n00FZWSm9e/fjmWdeICmpE598ksWOHZr9sSAIPPnk3/nxx+9ISurG998v54EHPqRfP5Vbb73Bp4APkJtr47033obiIt5f9kEdG+JbbplDr159EQTYufN3PvxwGaIoMX36FPbtuwqb7SC7d+/ivfeWUV5ezqxZVwOQkfEL8fGd+ec/F3Dw4AG+/XY5qalj+dcb/8ucy69k6IUXk3s0nwcf/Csffvg5l1+uOW1Om3YtkZHt2LRpAzNnzvH657z55vs4nU7uvvt2evfu6+33p59+g9ls5o47buLeex+gT59+fPLJR+zevZORzXic/1EwWjNx9+2PGqvPVrisrJrNmwu4++5RrTquZ7RrWp2Jo+azay2eXPycnONtGvBD4zoS1VOni6rbrUlmU6Z6XwppH0PMgEHkWzMYFCDn0Iw1+VwsRNHZcczvp6bwcCPDhiWcch3/jAj4bYVHJ9STmumRdBRF4dVXX2Lfvr0MGzYCgwH27l3Hrl2a/TGAw1FNp07xFBUV0b9/KjExYUREqFxwwZ+8hmN6SUxMIsxopEoQ2LBpQx0b4qqqKg4c2I8kQY8eg7x+Op07d+H48TI2bdrA2LEXYDAYaN++PaNHa4Wg+/cfyOuv/y/HjhUwZkwqs2bNobKykl17drPwvaWIH7+PaDBSVVXlLZbSGNnZ69izZzcbNmTX9KeSffv20q1bdxITk7wFYlJT03nwwXtJSxtLWtpYRoz44wd7HA6M636laqY+KwWAX389jKKoTdav1Yt74GAUcyTGzIyAB3ybrcx/uakZVFUlz5pBfGqabsnI8PsmRHs5znrlDONT0tj55hu4q6oazEf5g9VqoyQ6nvh6la98JTU1kRdfXEtZWTVRUb6v7g8EZ0TAP3fadM6dNr3B662xVgDtS1a8dbNPBc1FUeTWW+/khhum8+GH73L99TdgMMhccMG13HnndEQRysvLkSSJL774HJdL8Wbz1HaY1EtISIiWkmk0NbAhLisrISIikt27v8dgqDsR5NFaa1tWeGyRExMtfPDBp6xZ8ytZWVpt2jfeeBuTKYRXHn8GyWii3bnnUVBwlHbtoprsmyxrRmljx2pL2UtLSwkLC2Xbtq11zPOmTbuWlJR0Vq/OZNGihZx//jZvOcc/KsYN6xGqqzX3Rp1YrTZCQyWGDo1v3cENBlzJKRgDmK3iKYTSVqmZx/fuoepovo9yTuOSWUJaOttfe4XC7HUktNJI7vDhcvbvL0Ud3A3RtqVV+0pNTeSFF9bw66+HmTDh3Fbty1/O6rRMQRCQTCE+L74yGAzcdtt83nnnLYqKjjF8+HDWrv2WoqJK3G43Dzyg2R/36TOCrVszEYRyHA4HGRk/+9VPxaGlZNa3Ib7uumkcPZqPJKkoSsNR0fDhI/n55//idDo5fvw4a2uW3H/22ccsWfI648b9iXvuuZ+SkhJUVaVr10QyNm3AVVHBurW/ctttNwJN2yIPGzac5cu/xO12U1lZya23zmHbtoalKOfOnUllZQVTp05n6tTp7N6906/rcCZhzFyFKoq4xiTrbpOZmcvIkV0ICWn9OMyVmo5h/z7EI4dbvS/QJIm4uPA2S83My9RuTvE+THCbMjNw9+nXQDLrNDoZQZICkp7pkWDaDeqNmJ8HrbAfGTYsgdBQCau1dU8KreGMGOG3Jf764o8enUy/fv1ZvPg1/vrXR9i4cS933DELUZQZNSqZiRMv4fBhkXHjpnPnnTOIjIykUyffc3hBW2VriopqYEN8++130qVLVyRpU6NzGWlp57Njx3ZmzJhGTEwHb1rphAmTeeyxh5gxYxoGg4HZs28kMjKSRx99in88+wTLvviUkIgInnjiGQRBqGOFPHLkGN588w1ee+0V5s69hUOHcrnhhunIssykSZcydOhwNm7MrtOPm266jaeffhxJkggJCeHee/U5IJ7JGLMycQ8ajBqlb3L62LFKduw4xpVXBsbe11P1yWjNwDH1moDssy1z8fOzMonomkhkN52OrQ4HxvVrqLp+VoO3jOZIYgcPJT8zA1r5VcvKyiUmJpSYYX0Q3laRDtmQz22+xnBThIQYGDmyC5mZp07H122P3JY05paZn59DfHzz9sitlXQAKg4forqoiJgBA1uVbrZ7t4ggqPToceI8du4UMRpVzj3X/0usyjJFW34nPL4z4fF1H/U955+XJ1BQIDBwoKLXbr1JFLeb4q1bCI9PaHC8k4Gezx1Oc7fMigpie1qouuk2Kv7+hK4my5fv5i9/+YbvvruGYcNaHhi0eP6KQoc+3XGOn0T5wtf09rxZbrrpWzZsyCc7O7BynKoofNz3HLpeNIHUV/7d4vZxcZGULv+e6MsnUvb2hzgnTm6wzcZnnmDrqy9zze4cjH46h6qqyrBh/2Hw4HjenRtD9OUTKf34C1wX6LNGboyXX17LM89ksX37zcTG6rS9rkWbu2X+0RFNJlRFRm3lUlWzWaWyUvAugHK5oLr6xGpcf5FdjZum1UaStGyl1vjpeBANBgxhYbiCRmp+Y1y3BsHl8in/PjPThtlsClwpPFHElZKu6dwBGtNZLFEcPny81YOs+pRs34ajuJgEH66XVzJLTmn0/YTUdFS3m6OtcA49eLCMQ4fKSU1N9C6+kuoVNPcVjyHe6tWHWrUffznrA77kcc1shYkaaAFfVTXfHDjhohkZ2bofm2d+wWPn3Bian07r7RU8GM1m3JUVqEpgf9hnC6asTFSDAdeoMbrbWK25jBnTBYMhcD9JZ2o60qFcxJyDAdmfxdIOWVY5ciSwg4H8LI9/jg8BPysT98BBTUpmcSNGIZpMmqzjJx5L47Q0C0p8AqrR2OqA76mWlZl5anT8sz7gexdf+emL7yEiQlsX4PHHt9sFJKn19aQ9Xj+NrbL1YKxZoxO4gB+Jqii4KgK5VvPswWhdhXvocN3mSXl55ezbVxJwYy1vPr41MHbJtVMzA0meNYPI7ucQ0aXlOrEAVFZizF7XbAaUISyMuOEjyW+Fc6jVaqNjxwjOO689SBJy10TEVgZ8g0FkzJgup8wfPxjwawJ+a0f4kgTh4arXSM1u1+yQW62pO50IotisN3igDNS8+zObQRCC/vh+IBwvw/DbJp/tFACf/e9bQu7RE7ljp4ClZ3oCfiBTMxW3m6Ors3xKxyQrS5PM0pq/xgmp6RRt/g1HaYnP/VJVlczMXFJTE71ze4olCcl20Od91SclJZG9e0vIyzv5v69gwJckRIOxVb74HsxmzTenqkrL3mqtfg8nXDKbm1A+EfAD43EiShKGsPCgP74fGH9djaAoPhUSt1pziY4OoV+/wNggeBEEXKnpmDIDo+N36RKJKAoB9cUv2vwbrvLjxLcQvOvwf/+nSWYjm5fM4lPHgqpy1A/n0N27iyksrKxjhyxburVa0gG8C+tOxarbsz7ggzbKb+0IHzS9XlXh6FEt8LbG/96DZ9FVc3h88ANZ6McYGYmrsgIlEDPBZxFGawZqaCiuYSN0t8nKyiUlJRFRDLwpmSs1HbGwAGnP7lbvy2SSSEgwB7TUYb5Vk1ziffAb4uefcQ8Z1uKIKnboMAzh4d45Al/wBOPaNtWyxYJYVKS/zF0T9OsXR3R0yCmRdXQF/AULFjBp0iQmT57MW2+91eD9HTt2MGXKFMaPH89DDz2EO8AlxtoayWRqtYYPWhEUUYTSUgGDAV3FzVtCdjoRQ5ovhCGKgSl1WBuj2Qyqijuo4/uEyZqBa8Qo3R9+Tk4ZNtvxgMs5HjzSkjEzULJOu4Bq+PnWVUT37kNYc/7itRCOl8H69S3KOaD9rjuOHE2eH3MYVquNxMR23vKOoEk6AFIrLRZEUSA5OfH0HOGvW7eONWvWsHz5cj777DPeffdd9u/fX2ebe++9l0ceeYQffvgBVVVZtmxZm3W4LRBNJhSni6aWJOTlHeH880cza9Z0Zs2azsyZV3PVVZeyZMnrdfcjajo+0Kh+v2TJ6w3agGaLfN11f/buf9as6axa9TOK240quxukZG7cmM3tt2urYG+//UY2bswOfMAPj0AQxGB6pg8IRUUYtm3xsbqVFjzaqhKSktQNOdES0InbQAV82emkYN0a37Jz1qwGRcGlU/OPTx1L6Y7tVBUW6j6GoqisXn2ojn4PBCw1EyAtLRGb7fhJKRtZmxZX2o4cOZJ33nkHg8HA0aNHkWWZ8FrOkocPH6a6uprBgwcDcOWVV7Jw4UKmT2/ofXO6IplCUNWmi4xA0374F154Md1qrQ6MiNAmbiMifJNzGvPBd9fkeDZW6ao+BoPafMCXZcSj+SDrT7WMMkhQXIzoQxvfUXFXVSGFhiIIIoK9BPO/Xm652eD+cG3b+fEobjfbFr1Cj+tmEBrTQVcb42orgM8TtnFx4fTsGeNXP1tEEHClpGH6YYVW/FhnYZH//lfihx8ahoedO0eTn9+du+82IUmtk6CqjpZSXHkfzyT31N3GaM2EkBBcw0fq2t5TKjE/K4PuV0zR1WbbtkJKSqobVB2TLd0AAjJx67nBW602kpJ0VvcKALqsFYxGIwsXLuTNN99kwoQJdOp0YnFIQUEBcbU8t+Pi4jh69KhPnWhsxVhBgejNSTZ99AGm99/xaZ96cV47A7mmMpAguzEYGj6KS5LWj9o50qWlRagqtGtnxmAQeeedt/jvf3/C4XDTo8do5s27BYMhjPfee5svv/yc6OhoIiPb0bdvv0ZzrSVJbPC60+Vk8Scfse3gfkRJYsKEycyYMQtJEr0jD0EQkCQRo1Hg00+XsGnTCiRJYuTI0dx++53cd9/dTJkyleT+A3jtP/9m1+FcXp53D8fKSpn38gt88OhTrPg1i49W/oiqqvRO6sZfr7meEKORK+65g16JSRSXH+eF2+7ksTcXU+VwIIoCd0+7lv7ntN4ASlVUDLIbwVGNIIoIjkrCvvu6+UbV1fD2EuKmTYME/+wqWiJn5Uo2PvUo5shQRt53n75GG36FiAjaXzT2RK5sM6iqNpK88MJz6Nixnc99jIvTuYJ03Fj46H3iqkqgWzddTV58ETZvhvplC6qr44H2fPed0fu78JfK43HYeZRne5bpP5edW2HIEOIS9U1wd7gwjR9MJqr27tB9jIMH9wIwfnyPum1izRAejrkwD7Pe/jZBbKyZyy/vRY8esfrPvQZft6+Nbi+defPmMXfuXG6++WaWLVvGtGla2bbGZBBfLQoas1ZQFMW7ok+SlUaTDFrrhw+a4yM11a6cVVWIYQ2XO8uywrFjhVx33dX1/PD/SUxMHFarle3bt7N48dvk5JSxcOHT/PDDNwwZ0oevv/6KN998H0EQuPnmG+jdu2+jKxXvvvsODAYtSFgsSTzxxLN88eXnHCsp5q0330dWVe6440a6dTuH0NBQ73VXVRVZVti8OZPfflvFkiXvIkkGHn74Pj799BPGjElh3bq1jDqvF7/t28NRux1H775kff8to88fx+6wcL7cmM1rSz8kJCSEf//7Vd79bSOzZv2FUrudSy6aQPL4ibz/2TLGXDSe6dNnsHFjNht37qC33rqjzVBx+BBVhQWEREYS2e0clPwcCrfubbaNYfNvtP9TOse/WlHHCz2Q7PzmewD2fv8j3W+4RVeb9j/9F3l0MsdLq4GWawPv2VNMXp6dESPifbaJ8MVawhgTTzRQumkbrgh9Tyv790dw9dVuXnih7tzWmjWHuOyyZfzv/17Z6kIer174V57Y8jo7DxhJ6qnvXGL27UdKT/PpekV0TaRg5x7dbbZtO4ooCoSHiw3atLckIe/cw/EA2HosXqxZQvhyLq21Vmgx4O/btw+n00mfPn0ICwvj4osvZteuXd73O3XqxLFjx7z/LiwspKPOCRi9OKZNx9EG9sgeREUBhGZTM5vywwfNF3779q3MmXMd1dUyTqeDuLhOqGolo0eneCWw5vzwG5N0Nv2+iQuTUzGYTBgFgYsumsiGDetIaWTByfbt6xk6dAImUyiCoJVO/O67b7nzznu4//67qbj0CgDOO68Hu3fvZM2a1UyZMpVNm7I5dCiXm266AQC320XPnr29++11zrm47XaGDx/JQw/dx+7du0hOTmVKgAKtq1z7srvs9ibnUOrj7jcA2rfHmJXZZgHfU32pYO0aXfVRxaP5GPbspnr6DN3HOJF/3zb6vYfa2rOeSph2OxQXi1gsDT+PQC2+cldVIe5cUbMvEdCRDeZyIR4+BN11GqzVYLYkYfdBhsnJKaNLl0iMxob1a2VLUkA0/FNFiwH/0KFDLFy4kA8//BCAlStXMmXKCS2sS5cuhISEsGHDBoYNG8aXX35JeroPObWnAYIoIhqNulIzG/PDVxSZqVOv4fLLp7FrVxGKUo3LpbJ3byaqeuKG5KsfviK7EQ2GWk9MapPtBeGEvYLR6PHWcdOpUzyKorIqK4OB55xHdK8+ZGevZ9euHQwYMIjdu3cxbtyfmD//XgAqKyvrHCOifQyu8nIGDhzMe+8tY/VqKytX/siKFV/z8suLdJ9Lo+fncuGurkIKDUOurkKurtLXUJJg7FhMAco8qY/LXs6xTRuI6tWbsl07ddVH9Xqzp/pSztBGly6RdOvWdM2BQKB06Yoqiog6g15OjibVJCU1HEx16hSB0Si2OuAXrl9LuOsQoSHumoDfMuLhQwiK4kfA70bR5t90b2+zHcdiaVxiUxItGFdnaT+wNqrt25a0eKXHjh3L2LFjueKKK5gyZQpDhgxh8uTJzJ07ly1btIIAL7zwAs8++ywTJ06kqqqKGTP0j3JOF3xJzazvhz906Ah++GEFhYVlyLLMG288xaZNWfTuPZjVq63Y7Xa//PAH9OrD/61ZjSzLVFdX8+OP3zNkyPBGtx08eDgbNnxPRUU1brebFSuWM3Sotu3o0cks/WwZQ3r3ZeiwEXz22cf07dsfSZIYMmQYGRm/UFJSjKqq/Otfz7Js2YnJaaPZjLu6iv995SV++GEFEydewl13/Y3du3c12g9fcFVo+cweV05XuQ/5zePGIeUcbPVS98Y4umY1qiwz+K/3e+ujtoTRmoESFY27/0Bdx1AUlays3AaZIG2C0YjSpStSjr5r5QnAlkaKdkuSSNeu7Vqdi59nzUCUJCwWlZwcfefvHVn7McJ3FBfrzjiz2cq8TzL1kS3dEO3lCH6s3j0d0KXhz5s3j3nz5tV5bfHixd7/7927N59++mlge3aSEU0mbwDSQ20//Pvvf4S9e3dz77034XbLpKenkpx8Ee3bh/LnP1/DX/7iux++qqpcPCaF/OIiZs26Brfbzfjxkxg79oIGfvMAyclpbNy4h1tvnYGquhk1agxTpkyreS+Vjz56j0G9+2I6rwdut4vkmoUuPXr05IYb5jJv3s2oqkqPHr247rpZ3v16rGUvmzCJZ1/6JytWfIMoitxzz/26z6UpXOXlCJKEKSoaKSRU+0HqLSY/TquyZczKxGFp2U7ZF/IyMxBNJrpePJGY/gPJz8pssT6qyZqBKzn1xCq4Fti+/RjFxdVtLud4kC1JuvPHc3O1ANyYpKO93vrUzHxrBrFDhpHUXvAeryW8/fcx4Ecmad8Pu81G+77N15SurnZz9GhFMwH/hDzmbt9GmVVtyFlfAMWDZArBUVKCqijeWrceEhI68+mnDTNHaksaM2fOYdiwy4iODiExMYoDB0opL3cyZcrUFvXuxvatut1IgsDtN91GWFzdOZGhQ4d7R++vvvoGoCWuTJjwF266aTbt29fd16BBQ7AufkczgBIEvvnmv3Xev/TSK7i0RuOvjdWarZVKlCTah4azaNF/mj0PX3HZ7RgjzAiCgNFsxlFaghqmr2AIffuixMZhsmbguOa6gPYrPyuTjiNGYQgL0+qjvrW42fqooi0HKecgVTfqm9yFE06MbbXgqj6yJQnTzyt1bWuziUREqMTENBXw2/Htt75l4tXGI5n1v+MuLOUKa9YYdSkkou0gqiQhdO0KJTrlP7QRPkC5LafFgH/okPbk0pSk4wn4oi0HBg3R3YfThaC1Qg2a/bCK4tIzrdWQqio3sqwQEaFN7pnNRpxOGYfDv9VQnvkEqRmXzNq06KfjdqM2Y8DWFIIgYIwwB3wBlux0IjuqvU8QRnMkqizr9zQSBJypaQH1ewdwlBRTvOV34lO0J6CEtHQUh4PC7HVNtjHWODI6fTAAs1ptdO8eTZcurUvv04uSaEHKz9NGBi1gswlYLE0X00lKiqK4uBq73T87Eo9klpCajsWiUF4uUFracjspJwelS9cTX3admBM9I/yDLW7reXJJTGx8hK/UPC3olcdON4IBvwbJ65rpn8WC58sfGekJ+Kaa1/27gXjmE/QsugJNSRCEplfbCm4XGFrODW8MozkS2VEdEL8hD54biLHGD8XzX9nRckDy7iN1LFLeEaT9zadx+kJ+zYRcfE3w7qijPqopcxVKbCxy7z66juF2K96VnCcLrxRxqOXl/Dk5jWfoeGhtpo5HMosbMYrERLVmXy2HIsmW4z0PXwjp0AFDeAR2HfM9OTnaCD8pqfERvtouCiU6OiCLr04FwYBfwwlffP+Cmt3uJDTU4E3lCg01YDCIfo+CPMFVb8AXhGb8dGQZFMWvET6cCMaBdM902+2IBgNSjUwiGo0YQsOQfagv7PWJsfrveV6f/KwMDOHhxA4dBoApsh0dBg/xmnw1QFUxZmVqfdE5+bplSwHl5U6va+LJwLNKtKVMHVXVgm9jE7YeEhO1YOjvxG1+ViZxw0diCAvzZgLpCfiinwFfEATMSUm6Ar7NVkZIiESnTk3nuMuJZ25qZjDg1yAaTSAIfo1iFUXFbnd6R/VQ8yUzm7Dbnbrzy+vs0+lENBgQdU4CQjMB3/OinwFfCgtDNBgC5o+vqipOezmGGv3eg8FsRnY4dH8GSvdzkDt38aZEBoJ8awYdR46uk3efkDqWY5s2NCprSfv3IuUdabYYR3081Y6Sk3UW/AgAeqWI4mKBigqh2YDfmhG+RzLzlDP0HKfFTJ2qKqSCo14DM18xW5Kw65BhbLYyunZt16xzqWJJapPssJNBMODXIAgCktE/18yqKheKotYJ+KDJOi6XjMPhu8Ww7HQ2W+WqMQwGFZerkS+qJ+Ab/Qv4giBgiDDjDNAIX3E6UZzOBsWljZGRoKocayQLqYmOaX7vWRmaT0wrqSoooHTnDq+c4yG+mfqoxpoSei4f/Nyt1lx69+5Ax476KmIFAqVTPGpISIuZOi1l6ADExoYRHm7wK+DXl8yioiAqSiU3t/lQ5Om3PyN8gEhLEvZcW4uDr9zcpnPwPciWJE0aC+Dc0ckiGPBrIZpM3pKCvuCRbeoHfI+e74+sozgdLa7urE9TI3yh5kV/JR3QdHzF6fBJcmkKr34fWS/gR2iP0fk+jNidqemIx44h7dzR6n55fNMT6gXvjp76qHUNSBEAACAASURBVI3IOsasTOTOXZC76/MVcjpl1q07fFL1ewBEUVeJvuZy8D0IglCTmum7pFNfMvMcqyVJR8rV+u2RpnzFbEnCZS/HUVLc7HbN5eB7kC1JCNXViAX+ZyqdKoIBvxZSSEijGv7GjdlcdFFajTXyNVx77VW8/fYS7/s33jiNiopjDczPTCYJo1HSHfBTU4fX2CNfw7zHHua2h+5j27atTW7/zTfLefrpxwDNYrm4+AiNLsR110wctybgR3p0/NbLOi67HdFoRKrn8y8aDIgmk0/+5d66rX4UuahPvjUTY2Q7YgYMqvO6ITycuGEjGt6IFAVTVgaulDTd+v3GjflUVrpPWv59bfSU6POssm0u4Gvv+5eL35hkpgX85q+fWCPHeKQpXzHX3Cia0/HtdifFxdUtBnxPH8QzMFMnmIdfC9FkQnG7UGUZoZ523qtXH2/Oe2VlJddd92fS0y8gKak7qqoSHt5QfvHo+OXlDi2fXUdQWLr0A2Snk5LtWzF3tRAaG6u7/waDd362rguuZ9gv+f9xSyGhiAYjLrud0A76+1QfVVVx2csxmiMbvR5SSAiF2euazXuvjdI1Eblbd4yZGVTN1Z8H3xh51lV0Sk5ptH5wfGo6v7/wHI7SEkKitYUO0s4diMeO4fSpnKENQTi5+r0HOTGJkN83NbuNzSbQvr1KZAvZohZLO1avPqT7ew0nJLNzrrq63r5UVq4Um83Fl2w5qCEhKHH++XSZE7UbrN2WQ+zgoY1u4/Gmb1nS6VbTp4O4R47yqz+niuAIvxbe1ExX8yNyh6MaURQxm81UVmqj54gIAytWfO0dcYNWnOTgwW243QpLl77J7NnXMnPmNSxatKBZLVGpl6FTXV3N448/zPXXT2XmzKv57rtvGu+/pLmMvvTSP7nuuqlcf/1U3ntvKYLbzfRnHudgjQ76+OMP88ILzwKwdesW/vpXbRX1u+8ubdDHvLwjTJ8+hVtv/Qt/f+VFdu/czo03zmLOnOu55ZY55PpY/Ud2OFBcLm/mT4NzqHnKKly/Vvc+nWljNS/6VpRjrDh8iPID+72TifVJSKupj/rrau9rnqcKV4ov/jm5DBjQkejoAJRD8xHZkoRYXIzQzFNaSxk6HiyWKOx2JyUl+tNo81drklh9ycxiUaiuFigoaPrGIdlykBMtuv3862P2rLZtZlTueWJpUdKpuXmciZk6Z8QI/+OPDXz4YcMcckEQ/MqAqc0117iYNk0bAddJzQytO7rctWsHs2ZNR1UVDh3KZdy4i4iNjSM/XysBGB7eeI57WJiB7ds31Ngnv4MgCDz55N/58cfvGD9+UoPtZ82ajiq7kZ1Oho9KZv7d9/Hmm68TFRXFu+8uo7S0lLlzZ9KjR68GbQ0GFav1U44ePcrbb3+Iy+Xijjtu5FxzJCkDB7Nhwzq6devOvn17vG3Wrl1NcnIaa9asZteuHQ36OHDgYGy2HD755BXam0w888wTTJ0ylT+Nn8TKlT+ybdsWEhP1yxMn8u8bH0JKIaEIBgN51gwS0s/Xt8+UNMLeXYph62bcfq5+9Mg19SdsPcQOGYYUFka+dRWWiZqtrTEzAzmpG4rO86+qcpGdncdf/jLYrz62ltpShNyvf6Pb2Gwiffu2fOM8kZpZRkxMy09iAPmZGY1KZrUzdTp1avz3LNpy/M7QAS29NqR9e8qbCdKeOYmWAj5hYShxHc/ITJ0zIuCfLDyrWhubuK0v6dx333zee28po0df7i1C0hgGg8iePb+ze/d25sy5HtCeEDp1im90+6VLP6AyP4/K/Hw6DNR+GBs2ZHP//Y8AEB0dTVpaOps2bSAysu4oWZJg9+71XHrpJUiShCRJmqXylt8ZO2QYH2RlMnToCLp3P4ecnBxKSopZsyaLJ5/8B59++lGNxXPdPg4cOJj27WNISOiM7HAwvP8AXl74Ius3ZpOcnMb551/o0zV228sRTaYm1xcIokDs4KHk++CE6Uzx1G3N8Dvg51kzCImJoX2fvo2+L4WE1K2PKssYV1txXNbQkqIp1q/Pw+mUT/6EbQ21fWAaC/iKomXpTJjQ8iDqRGrmcQYPbvy7XJ+mJDNPRpDNJjJyZONPF5LtII5aE73+YLZ0a3a1rc1WRkSEkZiYlp++zlSb5DMi4E+b5vaOwmsTKD98D4LBgCCKLaZmhoeHk55+AevXr2HgwEnep8z6Txyy7K7pp8D551/O/Pk3IQgC5eXlSM3k18tOJ6LR6PX0qW2xrP37xL5rYzBo29ZVNlRkt5v+ffqy9+0lZGevY8iQYbRv34Gff16Jy+UmPj7ea/F89dWaL42nj2VlpYTUTK6KJhOpo8YwYNAQfrfl8MknH7JmTRb/z96bRjdynmeiT1UBIECCO0CCCwrsTb2pu9kbu0kA7FiJtes6tjyOFWcU29eyr+NYGd97bGlkOZ6rO47tSHZOHMX3JBpnzskcx45GvpY8lmxFseQmCmSr91W9q4kCQYIEuGMhlqq6P4oFglirUEU22+Jzjo/VYNVXH5Z66/2e73mf96mnni35eS3NWxD9c+rqS/K+Nnc/Lv7gbzJcf9lxW1uR3roNBuYo4n/+F7LmkjuvIDMAm7M/z0cpG23uIzj9X/8L4qEQakdHQM7NKu5fS1EEDh9eff4eyOKe/YUD1cQEgWSytAZfgtTcW25PVoky2/bZJ/L+ZreL1ysmzSTmZkHOzFSs0JFgph2Yvnyp6N9FSWbp36YEzuGA/qRM+fAawjqHnwWCIERpZpnCH47jcObMKXR1bVm2aVVf3wCf7xYEQcDoaAA3bogl/wcOHMS7776Nqak5pNNp/Of//H/ht78tbmTFJ5ZLMvftO4jXX38NADAzMwOP57cFbZIpCrjrroP4zW9eX2apvG/LXaAMVdixYydeeeWn2Lv3APbvP4B//ud/Qm+vM3ONN998A7FYrOgcCYLAC//0j3jv0gV85CMfw+c+93/g6tUrMj7Zxc9tIQ4+nS7K30tocx2BwHEYPzZY8rhspJxu6I8NARV4Ic3feh/RwEjZZtqSv874oGdJf6+Qv9+715Yn310tCE1N4GvMRamIUj74uairq0JDQ5VspU6GMitQoFZdDVitxZU6JLuowa9QoSPBLGnxi9Rs+HyzmQdZOXB0F8iAv7iXyRrFHZHhryYoQ2FppsThA8DCQhzbt+/EAw98AvPzQqYq78CBHrz++mt47LFH4XA4sHu3yNXec8+HcObMRfz5n//vIAgBhw714YEHHi46By6VzGjSAeAzn/kcvve97+Lxx/8IPM/j8cc/i61bt+HWreUeMiQJ9Pc/itdf9y1ZKt/7AD60aw94nQ69vS6cPXsaDkcXmpqaMT09hb4+FwDA5erHjRvX8PnPfxo8z2XmGAyOLbvGpx77Ezz/ve/ild/8G3R6Pb785a/I/mwlv/tyWbv1QI8oz/QMoPMP7pM1dtJ1BKZ/egm6M6cVKyeCi+ZnxTZsJTTv2Qu9uRZjngHsGWGRvmsr+CLUXC4ikSTOnAniy18+qGhumoIgwNN0USpCCrhyMnzxuHr4/fK0+BnKrIhbJU0LRbX40nzl7pUUg9lOg08kEJ8YR7VtuVW5IAhg2VnZdBtPO0BwHMjRgKq9hdWGrID/4osv4le/+hUAsSHK13KaOr/44ov42c9+hro6cSPnE5/4BD71qU9pPNXVgeiLH1322r59B/DWW/lFN9euTaK6mlhmb/ytbz1fcNw//MM/wSc+8afYuLGx4N+BRTtingefTIFqXJJ51tSY8Zd/+f/kHf/ww/8b7r9ffHBIc5iZIfEf/+PX4HAsUkvpNHDxPASdDvff/xDuv1/ccKytrcXRo8uVMJ/+9Ofw6U9/btlrudbQ23Z144WvfR01HZ15ts3lkIrMg6oyli0o05lMaDl4SFEBVqrPCYEgYGCOKg74Y8xRmFptqNu8peRxpE6H1j4nxpmj0AeDWPhkftvNYjh2bAQcJ9wW/X02ONpR1F5BCridnfKEEDRdjytXwmWPEwQBQa+nJGXmcPA4ebIwzSnVDlRaZSshW6mTG/CnphYQjabKb9guIns/5E4K+GUpncHBQTAMg5///Od49dVXcenSJbz11lvLjrl48SK+//3v47XXXsNrr712xwZ7QJRmClwafJmlGsfxiMfTspfnkq9ObrP2XPCpJABBtmlaLvKqbVX66OSCMhhAVVVletHKhSAISEUjZekcCTZXP6Yuni9bGZkZv6kZ6Z27FPvqiPy9B22uflncrc3Zj5r3b4KIRTObxXLg8fhhMFA4eFB+E5yVACf5wBRQt7EsidZWHkaZilG7vQ5+/1zZ3/T88C1ER/wZSqzwWDwCAaIgQ0KyPvDmWggqG47ULu4BzBfYuF2SZJbW4Eu4U6WZZQO+1WrF008/DYPBAL1ej02bNmF0dHTZMRcvXsRLL72ERx55BM899xwSGpTf3y5I/jXlXDMlUzTJPqEczGYDeF5APF6aY8744FdVGvCFZZ74hMYBHxApmVRUftNxAEjHYhA4Ls9OoRjaXKLuPTjolX2NlKsf+hPvyvJ8lzB77SoWQhOwySyeanP1Q8rRU06X7Ot4vX4cPNgGk6kyi2qtwNMOkNEIiKn8B6nogy//O6XpeiQSHCYmoiWPk1ZqbSU+Y5oWwHEERkcLFONJWbTKVpDZxVe5kKvBl8B32hX1CV4rKBvwt2zZgu5ukYseHh7GG2+8gSNHlr64aDSK7du346mnnsLPf/5zzM3N4Yc/VNfc+nZiyRe/XMBPgSSJovr7XCz545cel08os0XORX6GLz5ghAq98AtBalaSjsdkn5PR39fIy/Cb9+6DrroaQRn9ZDPXcPeDSCSgL9GsJBeSz32p7DMbjTvvhkOnw0xDI4SmZlnnTE/HceHCBJzO2yPHzEYppY7coisJkmd8OaVO0DtQljKTrluIx6/UBz9vHKMRplZbwYAvvQe5m7bQ68G3d9xxjVBkp33Xr1/HF77wBTz11FPo6urKvF5TU7Osv+1nP/tZPPPMM/jKV+Rv5jU35weBiQkSFEWUXWbn+teoBVm9WESSTpUcW7JDNhjk2RfrdCSqq/WIRFLo6Cg+rpBOgSAIGEwmWQlNvn+PGPAzry8qEnRGA6DRZ0U21GHeB/CxKHR18jJ2LhqBzmSCwVTcAVQQBJAkCatVHLPT7UbomDfz71zkvf7wfQBFoeH0MeCjD8ma1+DxQdR1dWHjgV2yjsfCAjiexyUujV0WsywaiGFGIAjAI49sK/peKkFFY3WLdQaNMxNA1vnpNDA6CmzfTsJqlZccdHe3AwBmZpJF5yIIAsa9HnT9/u+jpaU4XbJ3sXxiZqYaVuuyAQDWB9399y27RqWfY+OmjUgEA3nnh8NxNDebsGGDvIc4AGDTRlDBAIwafqdyoOY3JCvgnzp1Ck8++SSeeeYZPPTQ8htpdHQUg4OD+PjHPw5A/IJ1CumDyclIHg9IkjrMzs6gpqau6E2ltQ5fBAGC0iG1sFB07HSaRzyeQkODWdH1a2oMmJyMIZnkivptpxMLIPUGcFz5cQu9f5IkIAgEEgkeFAWQySRIAGmQgFafFUFBZzQhMTuHKkv5jVuB55Fc9OAp9nkJgoBodA4kqUMoJK4GmnucGH7zL8FeuglTy/LrWK21meOyJoaG7r3Av/07Zp78GspB4Hn43nkH9IOPFBirMPTMABp4Hjfm52E+eQG1XeUbar/xxjVUV+uwYUOd7OuUQ+H3Xx6EuRkWAJELVxD/vaXzfT4CHGeGxRJHKCRPalhTIyY7ly6NF53LzNUriI2Po/FgX8n5mkwASZpx8WISodDSKpgIh2GJxRCxtiG+eH6l7x0AjG2dmDjxbt75V6+GYbcr+35q2zqh/+3bmNLoO5UD6b2TJFEwUS6HspF5bGwMX/rSl/A3f/M36O3tzfu70WjE888/j0OHDqGzsxM//vGP8eEPf1jxRHLR2GjF9HQIkUjxZpckSYLXwAc9FzEuDmI6iYiu8NixWBqpVAwLCzEEg5Oyx00m00gkYmDZCIzGwh99bCYEgiSRCJZfKhZ6/9EogVSKwOgoD70eIKanQXAL4MeVed6UQ0JIIDU9heiYrmyWyyUSiCciMCaMmC/xvnQ6Axobl9I7m0ukWYLeAWz46MdlzSvlOgLT3/8tEIkAZTaIpy5dQHJmRjadAwB65igEisIIx6GVGZAV8BnGj56eDtmrwZWEUFsHvrExb7NRolKkloNyYDLp0dJSU1KLn6HMykhe9XqgvT1fmplR6Ni1UcLU0DSir/4MfDq9rOKXZeewY4cyU0COdsAo9QmWu9N9m1E24P/oRz9CIpHAd77zncxrn/zkJ/H222/jySefxK5du/Dcc8/hi1/8IlKpFPbt24fPfOYzqidGUTpYLKUVDWqe9KXwztPPYPbmdfyhpzAX/LWv/Qb/83++h2vX/izT0lAO5uYS6O39If7Tf+rB0087Cx7zr/fcA/v9D6Lv+39XdrxC7/+ddyj80R9V43/9rxgOHeJQ9/VvgLp6GdPMCdnzlAP29AV4P/3HuP8Xb6L1cH4ikI2zz38b5174Dj55dTjjNCkHTbv2QF9XjyDjkR3wk65+VP/t96A/PoTUPaUTj6BH8s+Rr7YxMB6k9+wFNeJHkBnAXX/ypyWPn5iI4sqVSXz84/L63a4GOLorzyZZjg9+IdB0XUlf/CDjQY2dRq2jS8ZY+cVX0oNJCw4fEJU6AschGhjJzInnBfj9c7j/fnk9DSRk9wnmykh61wrKBvxnn30Wzz6bXzr/2GOPZf77vvvuw333ySuQuRNgttMY/e1vilq/er1+9PZ2Kgr2gFid2N3dCoYp3Eg6FY1iIRzKqAkqgcUiZmjhsDhvIhwCb7GWOqUitPY5AYJAkDlaNuAHmQE07+5WFOwBUfdu63OWbCCei9TBQxD0ehg8A2UD/hhzFHWbt6CmrV3e4JEIdKdPIv5nT8I2wiLIDJS1Bx4cHAGAVe1fWw487QD13vI+CyxLgKIEdHQoMyOk6TqcPDlW8G8CzyPoHQBdosgwG3a7gKNHl99TpMYB37w4ToT1ZQL++HgEySQnW6EjQdLfk+zwHRPw160VCsDscCAdi2EhFMr7WzAYwfXrUxUrLlwuO06fDhZU60QWrYbNKn7cuQGfXKGAX9XQiKZde8o2K0nHYgidOqGINsmGzenOWB/IQnU1Ugd6oC/TEIVPpTA+NFiw1L8Y9MeHQKTTSLr6YXMdQXxiHLPXr5U8x+NhUVdXhV27KvNxXwlwtENsGZhFB/p8JDo6BMXqXZquRyAwX3BvJkOZyVxB0TSPYJBcpqqlfD7wzc1l6Tm5yA74Enw+cYUiqY7kIpPh30FKnfWAXwBLP4rhvL9J2bnbXVnAdzrtSKd5HD8+mvc36XpqAn5zc37AF5oVKA8UoM3Vn2lWUgwTJ94Fn0zCpqDnazYku2JFVbeufujOnwMxM130mMlzZ5CORvK82UvBwHgg6PVI9RzO2DCUmxfD+NHb26G5mkwNONoBIplc1qLP71cmyZRA0/XgOAGBQD61KrWEVBLwASAQWFoxUeywZtk9ANR0dIKgKESyZKl+vzINvgTe1gbBYLijiq/Wzq9wDUFqh1bIO5thWDQ0VGHnzsqy5p6eDuj1JBgmfxNVyjqkisBKYDCITaHDYQJIpUBOT69Ihg+Im6rlmpUEmQEQOh1aD5WmfYqhcfsOVDU3K257SPA89EPFzdek8Wx9yjZsU/sPAtXVMDu6UNNpLxnwA4F53Lo1c9vtFHLBFWjRJxZdVRbwxfPzN26DzFHUbdosmzKT7EAkEzdApHTUumRmg9TpUNPRuawRirQH0dmpLMPP9AlW2ATodmI94BeAxKFHC3yRDDOC3t7Oov735VBTo8f+/W0FefwIy4IymWBsUbf8t1gETE4SIKdEBdFKBfzWw30gKKpkMA4yA7Ds3S/L5rgQCJKEzdmf4cvlILXvAASTqSStE2Q8aNxxt+wWksTsDHTnz2XskAmCgM3Vj6B3oKj7ovQd3y7/+2Lg7ZIPzDAAIB4HxsdJRVW2EiQrglwTNT6dFimzIg1lCo+VU3zF86BG/KpN03JhttPLkjmWnUVra01R5VwpyOkTvJawHvALQF9TA6PFmpfh+3yzYNlZ1RtwTqcd589PYHZ2uQVAhPXBbKdl9wgtBouFRzhMgFjcg1ipgK8318Kyd3/RLDc5P4fw2dMZeWWlsDndop/68C15J1RVIdVzGAZP4XlxiQQmjg8pmpd+aBAEzyOVZQ/Q5upHYnoa0+8V9lhnGBZNTUZs3155D+CVQK4PzMiIJMlUnuF3dNSCJIm8DH/y3BmkIvOKKDObTYDBIGSUOmRwDEQqpSmlAyzaJOcEfKV0jgRR8bRO6dzxMNN0Xv9Lr1ebjM3ttoPnBQwNBZa9LgV8tbBYREqHDIsBX7CuTMAHRH42fOZUxjohGxPHBiFwnOiLowKSB4sSHj/p6ofu8qXMQy8boVMnwC0sKMo+9cxRCEYjUvuW+hBI3HQhFZEgCGAYP5xOe9Eiu9sGoxFcqy2jgFmyRVae4ev1FNrbzXn2CsEKKDOSFJ06pQxfa0mmBDPtQHw8mNl7Ytk52aZpueBoumyf4LWE9YBfBGIWMLzsNYbxw2Kpxtat6jZB9+9vg9FI5fH486xP1YathNyAv1IZPiBmucWalYwxHpBVVbAe6FF1jbpNm2GytSmTZy4GY8Ngvq110HNUpIp6+2SPZ/AMINXTC1Rl2Va3d6Bu46aCD6Lh4VkEAvNrjr+XwGe16FPS+KQQaLo+T4s/5hlA4/adsikzCXY7nwn4pG9YnKvKxie5kO6x6IgfqRSHQGBevodODjLSzDtEqbMe8IvATHchGhgBv9gvUMzYWLhcdtWUS1WVDj09Hct4/MTMNFJzs5kNYzWQOHwhJHH4K0cpWA8eAmkwZBQZ2QgyA2g50AOdSV6T62IgCAJtTjeCjEc2j5/esxe8uRb6AvMa83rQtHsPDPUN8q4fDkN3+RKSBegJm+sIxocG8+y0pYf5WuPvJWSkmRA586oqAS0tyjN8QAr4Sxk+l0hg4sSxipRZ2cVXFOuDQBDgOrV9aGbbJAcC8+B5QQWls+SLfydgPeAXQS3tAJ9KITYmyidv3pxGMBjV7AZ2uex4770wwmHRcXJJoaNNhi8IBKZH4hB0OggyA1sl0JlMsB7oydu4XZiaxNTF84qqWEvB5j6ChdAEZq9dlTkxHVK9fdDnrApS0SjCp04oopn0i6uEQu0MbS43UvNzmDx/dtnrDONHa2sNNm9WVmy2WuAcDpCBESCdht9PwG7nM72ZlYKm6zA+Hs1Yf4dOnwQXjyuqcZDgcAiYmiIRiSzaItvalq2qtECmEQrLZjabK6d0ugDgjtm4XQ/4RZDR4i9mQR6PtooLaRypEjOy2LfTrMHyNVN8NZoU6RyVK5JyaHP1Y+rCuWXNSsYHvYAgqObvs68BFObLiyHlOgLdzRsgx5ZqHiaOHwOfSimzU/AMgDfXIt29L+9vEkedTetI/L0Wq8GVAk93iS36AiOLtsiVZffAkjRT0uJnKLO+wvYhpcdaUuqQK9RNytTSCrKqChHWp9gHPxdCczOE6po7Rpq5HvCLIBPwF3lEr9eP9nYzNmzQJlvu7habWUu0jpTha8XhA0B4XFhR/l6CbbFZyXiW7j3oHYCuugbNe/ODZCUw0w6Y6a6M/40cJBeDenYXrKDXA0KnQ4uCugA9cxSp3r6CTWRMLS1o2L5jWcC/dm0KoVBsTdkp5CJbqcOyZEUKHQm5WvygQsps+VhSwCdA+dnMPLUEQZIwd9oXA/4cKIpAe3uFlsMEAc7hWKd07nTUdNoBgkCE9YHnBXi9frhc6iWTEnQ6EocPd2S43nl2GPq6esV+M4WQCfiTxIpV2S673r790FVXL8u+x5gBtBw6XLZ/rRLYXG4EBz1Fde+54HbeDb6xcXnAZ47Cuu8A9DU1ssYgx0ahu3kDqRL0hM3pxvi7Q5mmOdJ3uhYanhSDxD1Hr41ielpZp6tcLDVCmROtNE4er4jOAZaUQuwtAeRoQHOFjgRJmunzzaKjo1ZVJXSpPsFrDesBvwgogwHVbe2IsD5cvhzG5GRc8w04l8uOGzemEQxGNJNkAlkBf6ZqVTJ8ymBAS8/hTJYbHx/H7NUrmtE5Etpc/UjOzGDq0gV5J5AkUn1uGDxHAUFAcm4Wk2fPKKJzpIdFqsQGZJvrCLh4HOHTJwGI9B9N11Ws/FgN8B2dECgK/ksRAJUrdACgtdUMg4ECy85mKDMl+vtsNDcLqK4W4H8vBoLnwclw2awEZroLEXZYlQZfAmeni/YJXmtYD/glYKYdmGd9munvcyEt+RnGLwZ8jbKZxkYBJCkgPG9clYAPiLTOzJXLiE9MILi4yVmpf07xayz61yikdagRP0jfMMaHBiHwfMneqrnQMwPgGxqQ3lm8I9aSc+gAeF7A4KB/zapzMtDpwHd0gr0hqtAqsVWQQJIEOjtrwbKzS5RZT2VWGgSxqNS5KaqeVoLDB0RxRGJ6GsHhiYo3bCWU6hO81rAe8EugdnHZxzB+dHXVK/faKIOdO61oaKgC4/Eh4mc1UegAYgFLcxOPULoB/AoWXWUj06xk0IMxZgD6uno07dqj6TWqbW2o27wFwTJOmNnI6PG9HgSZAbEuYP9B2ecbvB6k+twoJWHJdg69dCmEmZnEmqZzJHC0A/6AuC+hJuCL54ta/DHm6KKVRuXuljQtwB/QZ+a4EpDEEVw4oD7Dv4OUOusBvwTMtAOxsVG86x1ekQ04kiTQ12fH6YH3wMXjmih0JFgbUphAC4RVyvCbd3dDX1uHoGcAQc9R2PqcICntOzy1ufoRHPSCS6VkHc/dtRW8tQV6z1FxX6HnMCiZ3YlI3zAo1ldQf19oXqGTx+H5jWiXvOYzfIjB1BeuhdksoFHl1hFN12PcSxK+nwAAIABJREFUN47JM6crpnOWxuLhmzSDp3Tg5fYqUAhpNd2EGQ0C/p2jxZcV8F988UU89NBDeOihh/DXf/3XeX+/fPkyHn30Udx33334+te/jnRaXk/MtQ4z7QAEAeT8xIrdwG63HbGAf+l6GsFqjmECLStadJUNUqdDa58Tvtdfw/zwLc3097mwuY8gHY1g/NQpeScQBJLufugHfovpSxcy8k45MEj8vYy9CJu7H3wyicu//i02b25EW9vqNrauBLydxnC8BbQ9rVq5S9N1aJy5CoHnFVlWFB6Lx3zSiLDt7oLKKC1gXjSQa8Q07HaVlI7kPsqufWlm2YA/ODgIhmHw85//HK+++iouXbqEt956a9kxX/3qV/GNb3wDb775JgRBwMsvv7xiE15NmBc3jJowg76+lQn4TqcdTRD79mpRZSvBaoosBvzVyfCBRTOxRR6zUpVGOUi6d/8778g+J+U6AiocQpPCeemZAfDWFnB3bS17bOuhXhA6HWIX3r0j6BxAzExvYQPo5qjqsRyOemzCMAi9AS0qrTQkpc5Nq7pxSqGqqQmCwYQmzKjeXC/WJ3gtouzj02q14umnn4ZhUV63adMmjI4uFbIEAgEsLCygu7sbAPCxj30MP/jBD/DHf/zHKzTl1YOkmtnemkJrqzwZn1Js3dqMzuooEAPMndoFCot+BhNwgLckNBuzHKRgWtXUjMbtO1bkGsbmZjTs2ImLr7yG6ba9ss4xparRjTpUURsxFWzGzOvyXDebfjuCLrdbVuGa3lwL45a74bh8E91rWH+fjbS9C7ewAS7zGACbqrHs9jpsxi3oNu+WTZkVg7Sf8L55FzarGqk4CIJAytwKy8wMWlrU39uxjs24fmYBMZm/LQAg9SQ2/QENYhXN9coG/C1blno1Dg8P44033sBPf/rTzGsTExOwZm0MWq1WjI+P43cBJlsb0qCww1K8o5NaEASBbc0xxBbMqja6ctFChjGH3YiZ41B3+8lHw/YdiFG1mK3fDqLSOn0ZGK3ZjuoTr2D6Mw/IPufLOI0L3F7gc0qu5MX/aPgV5HZrnmrcgU78BAd3r105ZjZCdRsRhRlduhGoDfgdFgptCCLSor63NW2JAqjBLf1dqscqhTl9E1p0Y5q4mf5F5K/wT8N/AHxG2Xk/+A9v45N/L19EoBayCbLr16/jC1/4Ap566il0dXVlXi9kZqW0OKm5ufJAZ7WuHFcaDEbAogObItdX9DrW+eu4xHeirs6EqiplnGWxeXXqwuJ/VNuwSkId3Lgxhb/jPo2mZAues5hXzFbg39GPOroR/+Hj22UdPxOpwYV/3Itturfwf3+5BqTMeX3+H/fjt8S9+BOrvM3niws0DkKAOXQN1oMrlZsuQe1v8laVmNlu1/tgtX5I1VhC4CZIADfmG1TPyxryoxE6BMgNRcfS4n6c5BuwibsEiwa/1fea+7FHmMGzj16WfQ6lI3D/U70wNSkzF1Tz3mVFl1OnTuHJJ5/EM888g4ceemjZ31pbWxEOhzP/DoVCaFHYsWlyMgKeV160YLXWIhRaOR/q06dHcRMbsJH1IHDDX1GpeDnM+4ZBzozhJrpx5swoNm2SL5co9f4bYiKfePVqFEajOsmdXLz22mWE0YxwgMOJEyOa2VBkIxJJYvD0NJ5++pN48C/kZUY/+5n4M7+SvgXrI3+Au++W9wQ8fJnAW78hZP3GEok03rhkwH5Shyu//DVqD6pr+lIOWvz2z1/UATChY+oMQqFHVY3Fnn0PAOC9nMLY2KyqylXD2UvYgDiuzzgKvket7ns2Uo2tXAIjV30wqqxIv8nW4N57q3Hk6bsVnRfh0ogoeC/SeydJoqJEuey3MjY2hi996Ut44YUX8oI9AHR0dKCqqgqnFlUTr776Kvr7V2bDbrXBsrO4gQ2AwCNYoj+qGgS9YpHSDWzIayKhBq1xUTEgNTNfDTCMHyaTbvG/V0axcOzYCDhOwD33bFAwLwq1tTyAoKJ5ud0cWJbM2PWWwqlTY4gkSFRt7VbUqOV2QvLB3zApU/FUApIXVCBuxrlz6ihdkvVhA27BN6lt3Us25ucTGImLATO374VSxGJAKETCbv8dqLT90Y9+hEQige985zv4yEc+go985CP4yU9+gieeeAIXLogl7i+88AK+/e1v44EHHkA8Hsfjjz++4hNfDbDsHHzoBFllRFCBS6MSBJkBGJosGIe1YCPoStESeR/A6gV8ySHywQc3o7W1JlOdrDUYxo+qKgq9vZ0KztHB5eKwcWO9onm5XGIVqtdbntJhGD9IksCme38fUxfPL3MOXatgWQLNVfNoCLyneqwIOwxdjRkxmFR/95TPhy7KD/+YHjJtkxTD55vDNMQVaESlusbvF8Oo2uK11UBZSufZZ5/Fs88+m/f6Y489lvnvbdu24ZVXXtF2ZmsALDuLJmsdWrcdLtjgQy0EQcAYM4A2dz/0b1CaBnzbrFgAtFoB/+rVSYTDokOkIAAeDwtBEDTn8RnGjwMH2mAy6RGJLJQ9nmUJ+HwkPv/5JCwWO1599SrSaV4W5bB1Kw+LhYfHo8Njj5WuLWEYP3bvbkHX72/Elb/9LoKDXjgeekT2+7odYFkSjqZ5kGPTIObnINRWnlFHWB9qHV3YLljg8fjx5JOVSyopPwtHkwWJEIGJCQI2m/aZM8vOYgoifTqv0vhsqUXk2g/465W2JSAZK9nc/Zh+7yIWsvYqtMDczRuIB8fQ7j6Czs66vDZxFUMQUDflg5FKIRxena9Ysnl2uexwu+0IhWK4dk3bLHd6Oo4LFyYUtQ2UsnOXi4PbTWN+Ponz5+VRDgQhnscwVElfrFgshVOnxuBy2TPOoSu1ItQSLEuC7hAdPtW26JPac7pcNI4fDyCRqLz4kmR9cLSL85JoJ63BsrNIoAr6hibVGb7UktHh+B2gdD7IYNk5OBx1merMYIH+qGow5hGDgs3VD5quh9+vTYZPzM2CTKdgNcdWLcNnGD9ouh40XZ8JyFrz+IODIxAEZbYFDKODxcJj2zYefX2dmbnKhcvFIRgk8f77xT/H48dHkUrxcLlo0Tn0UG9eB7C1Bp4HRkYI0BuXNwyvBIIgIOpnYXY44HLZEY+ncfp0sOLxKNaXmZec/ZNKwLKzMJsNqOvK712tfCwSRmPlLSJXE+sBvwg4jkcgMA+arkdz9z7ozbWab8YFvR5Ut3egdsNG0LR2Gb7UvLy5PrkqAZ/j+EWHSDGgOhz1sNvrFAVWOfB6/aiu1mHvXnmacUEQN2xdLg4EAbS01GD79maFAV/MVD2e4uwnw7DQ6Uj09Ii+L22uI5i9egXxiQnZ11ltjI8TSCYJ2HeI0kzKX3nAXwiHkY7FUEs70NvbCYJQ9lDNBjE7A3J2Bh3bxQ1ViR/XGn7/HGi6TrRJVtmtimXFFpFrtLnZMqwH/CIYHY0gneZht9eB1OnQcljbrE3geQS9A2hz9YMgCNB0PSYn44hEkqrHJkIi9WRp5lcl4EsOkdlUi8tlh9frr0huWwwM48ehQx0wGOTp4t9/n8DYGAmnk8u85nTa8e67ASSTXIkzl7Bhg4D2dh4MU/yaDOPHvn1iBzMgyzlUgavnakOiSuzbjODNtaKfe4WQMuQauwMNDUbs3t1a8epOWmkYNnWgpYVf0QyfputFR1w/K7upTuGx1LWIXE2sB/wiyO112eY6grkb1xELjmky/vTl95CYnMyYjEme3Fps3EoZvqWFWJWAn83fS3C57JiZSeDSpZAm15iYiOLKlUlF/D3DiFm5273EJ7tc9CLlIO97lHj8wUGqoGJkbi6Bs2fHl733pl17oK+rX9O0jhRIHQ4BPK2uRZ/EgUv23i6XHSdPjiEWk+domg1pL4F3OEDTQoYf1xKCIMDnm4PDUQ8z7QCfTCI2XjkFpbZF5GpiPeAXQW7Al5p5aEXrSNnfUsCX+oKqp3UyAb9dh3CYWPFGPAzjx+bNjbDZlgpBpACoFa0jNXtXxt9TaG/nsWHD0gfQ16eccnC50giHSVy5kn+7HDsWAM8Ly+ZF6nSw9TnXtB5fCqQdHQI4mtYk4JuzAn4qxePEidFSpxWENA/OTouNUFYg4E9OxhGLpWC318FMiwlEpMJN69lZYHaWuCMUOsB6wC8Kn28208kHAJp27oKhoUGzrC3IDKC2a0PGMC23EbQaZDj8TiMSCQKRiOohiyKV4jA0NJKXebe11WLTpkbNNm49HhZ1dVXYtUteFbcgiAodp5Nbxq02NBixa1eLooAvUUKFaB2Ph0VVFYUDB5b7ttucbszfeh+RkZWpR1ALliVhs/EwGrN6slaYGcyzPlQ1N2e8oA4d6oBOR1b0sKf8PvC1dRAaGuFw8AgECGjttp6dzEkOtZVu3N5JCh1gPeAXhd8/h/Z2M/R68SYnSBK2PrcmWRvPcQgOemHLarVnsZhQXa2D369Nhs83NMDSIka6UGjlaJ1z58YRjabgdudn3i6XHUNDAaTT6rMfhvGjr69Tdsn+lSskwmFyGZ2TPa+TJ8cQj8ujHOx2AV1dhXl8r9ePnp52GI3LN3UlT/i1muWz7FJWytMOELEoiMnJisbKbc9pNhuwd6+tooc9yfrEtoaE2Fid4wgEAtr+fqVVNE3XZRKuSqWZUsBfz/DvcLDsXF4nHJu7HxHWh3nfsKqxpy6cQ2puFjbnkt+KtHGrhb0CEQ6Dt1hhtYpZx+TkygV8KYsr1C/A7aYRiSRVl9oHAvO4dWtGMZ0DYNmGbfa8kkkOJ07I349xu9MYHNSByxpuaiqOixdDBf3vG7fvQFVzc8Y6Y60he6NRbYu+COtDbU4vB5fLjrNnxzE/r8yem2J9mQ5SUhDVmtbJzvApoxEmWxvmKw74d07RFbAe8IuCZWfzOuFIfu9qb2KpCXdbTjMOu71OM0qHt1hhsYg39EoWX3k8fuzYYUFzc77jXyW690KQzlfSWMTjodDVxRf0N1miHORnoE4nh7k5AhcuLH2WS83t8zeSs1eEhRxlbydSKWB0dCnDz7Toq0CeyHMcoiP+TO8ICS6XHRwn4NixgPzBBAGUn83MR9oI9fu1z/Cbm00ZVVUt7UC0Qmkmy5KorRXQoL1P4IpgPeAXQCKRRjAYycvwG7Zug9FiRdCjropyjDmK+q3bYGptXfa61AhabYAgwyEIywL+ymT4iUQaJ04Eivb7tViqsX27BR6POh6fYVg0N5uwfbu8do0cBwwO6jIa+lyYzQZ0d7fC41HO42fr8RnGj+pqPfbubS14js3Vj2hgBPO33pd9ndVAIECA5wk4HBKlI35/lVTbxoNj4FOpvPacBw60oaqKUvQZE6EQiFgM3GLLwI4OASSpvVJHlGQuJXNm2qEiwydB03eGBh9YD/gFMTIyD0FAXsAnCAI2dz/GVGRtXDKJiXePFeytStP1iESSmJ4u7xFTCuRkGLzFgubmlQ34p06NYWGBK0m1uN12VaX2kimb02mX3aji4kUSc3NExvys8LxonD0blF330NoqYOtWbpmRmtfrR29vR2afJxdt7rXJ40sBVFr9COZa8E1NFSl15nMUOhJMJj0OHmxXZKQmUUr8Yr9ZvV4M+lrbK4ir96V720zTiAVGwKeUy0iloqs7BesBvwAkHt3hyDeTanMdQXw8iLmbNyoae/LMaaRj0YK9VTXR4qfTIKamwFusqKoCamuFFQv4Ho/oEFnKudLlorGwwFVcaj88PItAYF4xnQMU5u+X5iVRDiOyx3U6ORw7RiGZBMbHI7h2barkvOo2bYbJ1oaxNVaAVWijkaMdFXH4kcX9LLPDkfc3p9OOixcnMDUlr2NcRpKZ9fDQWprJ8wJGRuZzMvwuCDyPaED+bwEQRU1+P3nHKHSA9YBfELka/GxIG61jFdI6Y8xRgCDQ2ufM+5sWWnxiagqEIGSal1ssKxfwGcaPPXtaUFdXVfSY3t4OkCRRMa0j8eyFVEDFz9Hhrrs4tLYWvxEPHGiDwaCMcnC5OMRiBM6coTL7CsXoLEBcEbY53Qh61haPz7IEKEpAe/vSnDi6q6Jq2wjrAwgC5s78z8HlskMQlmooyoFc5NG5rP0AsfhKu99vMBhBMsktu7el1YlSpU4oRCAWu3M0+MB6wC8Iv38OBgO1rJBIQu2Gjajp6Kx4mR70etB0924Ym/I77Dgc6rX4kgaft65swI9GUzh9eqxs5Wt9vRG7dyvTvWeDYfyw2WpkdwJLpYBjx6iSdA4gUQ5tiubV15cGQQjweil4vX7U11eV7Z5lcx/BQjiEmatXZF9npcGyJDo6BOiylKQ87QA14odSA/qIn0W1rQ1UVf5Df+9eG6qr9bJpHYr1gbdYgKzezjTNY3ycRFyjttKFkjmpQlgpjy9tJq8H/DscLDuLzs7agpwxQRCwufoR9A4o9t9Ix+OYOPHuMjlmNurqqtDQUKUqw5cCvpDJ8FfGT+f48QBSKV4W1eJy2XHqlPJS+2z+Xq6v/pkzJGKx0vz90rxoXLw4gelpedGkqQnYuVPU43s8fvT2doKiSt9CGafVNUTr+HxkZsNWAkc7QCSTIBVaDORq8LNhMFA4dKhd9kOV8vmW0TnAUjAdGdEmVPl84r0lJVcAUN3eAYKiFGf4S9TY2lm9lYPsTzESieDhhx/GyEj+8uzFF1/Ehz70oUxHrB//+MeaTnK1kbupkwub043E1BSmLyvrFBQ6eRx8IoE2d/EWkHZ7vTYZfrOoaLFYhBUpvGIYP3Q6EocOdZQ9Viq1P35cWan9tWtTCIViJWmT/HnpQBAC+vrKbxI7ncooB0CkdY4fp+DzRWTRTGbaATPtyEhx1wL8/nwaQgq0SpU6EdaXJ8nMhstF4+rVSYyPR8uORbHDeQFf2ljWSprp98+CIJCpoAdEK4yaDnvFAf93btP23LlzeOyxxzA8PFzw7xcvXsT3v/99vPbaa3jttdfwqU99Sss5rjrEoqvi3X8k/xulTS6C3gEQFIWWw31FjxFtkjUI+BYx4FutAqamCM1bxXm9fuzf34aaGn3ZY3t6lOvegSX+XknBlddLYedOHk1N5Y/dt8+G6mqdIlrH7U4jmSQA2GUbudlc/QgOelQ5MmqFeByYmMh3d+QXN12VbNxyySSio4GiGT6wtPcyOFjmM+Y4kIER8DkFXNJKRCulDsvOwWYzo6pqeWW02eGoIOATsFj4bAZqzUPWp/jyyy/jm9/8JlpaCvuYXLx4ES+99BIeeeQRPPfcc0gklFXXrSVEIklMTsaXLflyYe60o3bDRsW+OmOeATR374WhRCs5sRHKXMW2wkQ4DIGiIDSInLfFIoDnCUxPa5flSw6RTqe8vrJmswH79tkU8/gejx80XVdw87wQFhaA48fL8/cSRMqhQ9G8Dh/mQBA8TKYt2LYtfx+mENpc/UjOzGDq0gXZ11kpSP7yuVkp1yEGZiXSzOiIHxAEmB1dRY/ZtUvc1C/3GZNjoyBSqWUbtoAoh62q0k6LX6igEgDMdlpxwPf57ozG5dko29MWAL71rW8V/Vs0GsX27dvx1FNPoaOjA08//TR++MMf4itf+YrsSTQ3V/6ItFpryx+kAMGgaANw992tJcfe8OE/wJWf/hTNjSaQuvIfYzISweSZUzj41a+WHHfnzhYkEhw4jkBra/n3ljdWZAawWmFtFYPkxo3iyzxvhrX0/qJsHDs2Cp4X8Mgj22R//vfeuwl/9VcMDAY96uuNZY/neQFDQyP46EeLXyP39XfeARIJ4OGHDbBaDbLmdf/9W/DUU/8OnifQ2lr+d2ixCNDpgqiuvgstLfJ6wJo+8iA8fwbMn3kX2+5xyTpHDir57Z84If7/nj2mnN9DLdDejpqJUdTIHDd6VlxNdu7eXnIuv/d7XRgcHCk93/fEsWp3b0dtznEOBzA+vvw7rfS+HxmZR3+/I+/81u134ca//A80mHXQm/KrxgshEAD279c+BpWDmuvJCvilUFNTg5deeinz789+9rN45plnFAX8yclIRRmt1VqLUGhe8XmlcO6c6K/S0GAoOXbD/sNI/uM/4urbDCx795cdN/D2W+DTadTtO1xy3KYmUe1w5swo9Pr2oscBhd9/3cgYqCYLphdfF5uFVOPatRisVnmZbzm8/vo1GI0UNm2ql/3579vXCp4X8MtfXsW9924se/yFCxOYnl7AgQNtBa9R6L3/8pcGUJQB27dHEJJpw9/dLa5aX3vtMj760W1lj3///WmkUj5MTztx69a8vOW8vhZ1m7fgxq//DV2Pf17exMqg0t/++fN6AEbU1UUQCi2/5xo6aQjXbmBW5riBC6LyiKuzlpxLT08bfvGLqzhzJoDOzsIPyarzl1EHYKreCi5nrI4OE65fJxAKxQBU/t5TKQ4jI3NoaTHlnU82i13Uhk9fQsNdW8uOxXEAy5rx4INJhELqmxbJhfTeSZKoKFFWvU4aHR3FK6+8kvm3IAjQych41ypKafCzIRVOjcncjBvzDIDU69Fy8FDJ49TaJEs+OhJWotqWYfw4eDDfIbIUDhxoXyy1l8fjS8cpNUzr7uZRqyABkks5LM3LD2AYPE/i+HF5nbcAkdYZHxqsqJpTS5Tqv8opbIQSYX0gdDpUt5VOTCQlV6nPmGJ9EAgiQy1lQ6viq5GRefC8UJCuVWqTHAwSSKWIO0qhA2gQ8I1GI55//nn4/X4IgoAf//jH+PCHP6zF3G4LWHYO1dW6gmZg2TC1tKBh23bZcrsgMwDrgR7oqqtLHidlQOoC/pLnjNZ+OpOTcVy6FFLUeQoAjEYdenrkl9p7vflNVUohEgFOn6aK+ucUg05Hoq+vU3bAZxgWNtsU9HqhZJ/bXNjcR5CORjB57oyi+WkNv794/1WOdoAcDYjFDDIwzw6jpr2zLKW5fbtorlcu4PNt7UABPT9NC5ieJjCvcjEvWY8XSuakSuEIKy8hudNskSVUHPCfeOIJXLhwAU1NTXjuuefwxS9+Effffz8EQcBnPvMZLee4qvD5xF6XcnTfNqcbE+8OgUuWXtIlZqYxef5sRt1TCtXVelit1RUHfCIczhRdAUBTkwCC0E6aKaktlGTeEsRS+1DZUvtUisPgYH5TlVI4fpxCOk2UtFMoNa9bt2YwMlK6/kEQBHi9frjdbThwYLmvTjnY+hYrtG+zr06p/qucowsEz4OUaTEQYX0FLRVyQZIEnE47GIYtWnFMsvkafAla2SSXWr2bWlpBGY2yN259PqlF5O9wwH/77bfR2SkqM1566SXs2rULAHDffffhl7/8Jd588018+9vfhsEgb8NsLUJqbiwHNtcRpGMxhE+fKnnc+NAgIAiyAj6w5JqpGPE4yMj8MkqHokRaR6sMX3KI7O4u7BBZClIAL5flS01VlNI5er2Anh7lAV9uO8YrVyYRDsfhctnhdHI4f57EzIy8axibm9G44+7brscv1X+VX1TIyKV1Ij5fpkq1HJxOO0ZHI7h1q/AHRrG+zPVzoWXApygCbW35q0aCIFDTKV+Lz7IkCEJAR8cHjNL5XYIgCGU1+Nmw9TkBgiirxw8yR0GZTLDuOyBrXIejMi0+ORkGsFRlK0FLewWGKe0QWQp797bKKrX3esUMU/LTlzcvHQ4c4FCGMSsIiXIoN6+lugAabjcHnicwNKSE1unHxIlj4G6TbHluDpiZKe79kvHFlxH0UtEoFsKhkhr8bEh6/IIP1UQC5NhoiQxfDKpqPXVYdhYdHXVFu6bVKrBJFltECoUYqDWN9YCfhenpBUQiSdkZflVjE5ru3l22IcoYM4CWnsMF/UYKgabrEQjMK24NmFtlK0GrgD8+HsH161OK+XsJej2Fw4fL6949HhY7dlhgsciL3rOzwPnzZEV0DiBSDhKPX8rkzOPxw+Goh91eh337OJhMgjJax9kPbmEBoVMnKpqnWkjFS8XcHfn2DggUJctELbJodCY34G/a1Aibrabgd08F/CAEAVwRPX9Tk4CaGvVafJ9vrqADrgQz7ZC9aZvdIvJOwnrAz0KpTZ1isLn6MXHiXaSLuDvFQyHMXH6voP99MdB0PThOwOiosl2q3CpbCWLAV/9VSzdrJfy9BJfLjmvXpjA+XrizeiKRxvHjxZuqFMLQEAWeJ+B2Vy47dbnoTCvFQuA4frFZu/jeq6qAnh4uY8UsB7bePhAkqbqBTqUou9Go04HvsMuqto36C/vgFwNBSDx+/kOVXNwo5YuMRRDaKHXK0bVmugvJmRkk58qvrv3+4nshaxnrAT8LciWZ2Whz94NPJhE68W7Bv48Pitm/XP4++/pKaR0iLFI6/ApROgwjzyGyFKRAXizLl5qqKPG/ZxgdTCYB+/ZVHvBLUg4ALl4MYXY2sexh53JxuHyZkr0hbqhvQNOe7tu2cSun/yrncICSoVSRqI/cXral4HbTCIdjuHp1ebP0Qj74uXA4eFWUTiyWQigUKx3wJaVOGT+hZHJ5i8g7CesBPwtS4xO5HD4AtB7uA0FRRZtcjHkGoDfXonnPXtljSqXfSjduyZCU4ecH/Lk5AmXERGXh8fjR11feIbIU7r7bivr6qqJ8OcNITVXKm7ItzYtCTw+nik+VKIdi8ypUFyBJQAcHlejxjyB8+iRS0fJmYlrD7y/ff5WjHfIoHZ8PlNEIYxG7lUIotjlOsT4Ier0oyywC0RefRKVtBSQFVql7W9qAjpTpbzsyQkAQiDtOoQOsB/xlYNk5NDRUlWzokQu9uRaW7n1F1RdB7wBa+5yy7BckSNbMSjN8cjIMwWQCamqWvS5p8ScnK8+QWHYWLDuriGopBIoi0dvbWbTxiNRURY79AiDWF1y+LN8/pxgkysHjKczje71+3HVX0zL7hT17eJjNAhhGCY/vBp9KYeL4MVXzrQRy+q/ytAPUxDjKGdBLLplybasBceVK0/V5AZ9kh8F3dIqSsiKw23lEowSmpir7DctZvZszvvjDZca682yRJawH/CwokWRmw+Y+gvCMRLD/AAAgAElEQVSZU0hFlnPu0dEA5m7eKNjOsBT0egrt7ebMikMuMlW2OTehFtW2UuarhGopBrfbDp9vNrNnIiEWS+HUqTFF15Cya6UFV4XnVZhySKU4DA0F8ual0wG9vRwYRv7DvOVQLwid7rb0uZXTf1UyL6PKZLmlfPBLweXqxOCgHxy3NA+K9YGzlx5LrVJH8sEvleEbGhqhN9eWlWbeqUVXwHrAX4ZKA36bqx8Cx2H83aFlr0s3tZINWwmVaPFzq2wlSBm+muIrj8cPi8Uk2yGyFIrp8Y8fH0UqxStSAXk8FMxmAXv2qL/5JMohd15nzowjFitcF+BypXHzJomxMXmfrb6mBtb9B1e9IYogiIGqXP9VbpGTL7dxO19xwKcxM5PApUtLZkcU6wNXpoBLrRafZWdhNFJoaakpegxBEItKnXIBn4BOJ6CtbT3Dv2MhCAJGRuRr8LNhPXgIpMGQR+sEvR5UNTaicefdiscUbZKVb9rm8vcAYLWKN0ulGb5UYepyKVvCF8O2bc2wWEx5vjoMw8puqiLB66XQ28tBC/smkXKoy6ObSq1uJCpJKa0zefaMLDWIVgiH5fVflXzxSzVCSc7OIDU3m/GfUYI8Hj8SARkOF1XoSFDriy81NSr3+5UT8P1+sUVkCQZqzWI94C9iYiKKhQWuogxfZzLBeqBnmfpCEASMeY6itc8NglT+MdN0HYLBKBYW5FMVucZpEtT66bz//gzGxiKa0DlAcYkew/ixb59NVlMVABgbI3DjhnL/nFJwuex5lAPDsNi504qmpnx/pZ07eTQ2CoponTb3EQg8L1ZgrxLkKHQAgG9phWA0liy+WlLoKM/wbTYzNm9uzAR8akT8/1IKHUBsc9vUVLlSR25BpdQIpVQ9hrQXcidiPeAvolCvSyVoc/Vj6sI5JKanAAAR3zCiI/6K6BxgaXOpnL9LBoIAMhzKq7IFgNpawGCoXJopZeJyWvrJhctFY2wsgvffF3XvUlMVpXYK4lja2D5L88qmHBYW0jh+fLTovEhSbG6uJMO37j8IymhcVR5fanxSdqORIMDZ6ZIcviRblOOjUwguF42hoRGkUlyGOioX8AFx7tL7UAq/Xx5dW0s7kI7FkJicLHqMz3dnKnSA9YCfgbSLX6gbjhzYXEcAQchkbVL1rc19pKLxpGxErlKHmJ8DkUzmVdkC4h6umuIrr9eP9nYzNmwooedTiNyl/bFjAfC8oEgF5PVSaGwUsHOndjdf7rxOnRpDIsGVnJfLxcHvJzOGWuVAGY1oOXh4VfX4SvqvlpNmSpRHqV62peB22xGNpnDu3HjmOpwMeqjS4qu5uQRmZhKyAr5EUxVT6kSjQDh8ZxZdAesBPwO1Ad+ybz901dUYW/TVGfMchamlFfVb7qpoPOnHKa08yqFYlW1mfhUWX/G8yN87nXZN+HsJGzc2oK3NnPGn8XhYVFVR2L+/TfYYDKNDX18aFTBmRZFLOXg8LEiSwOHDxfcVlnh8Bb46LjemL13AQolMUkv4fASam+X1X+XtdMlN23l2GPraOhgW22gqRV/f0kOV8vkgmEwQZLRjs9sF+P3K+zMrqa+RHmLFePylldJ6hn9Hg2Vn0dJSA5NJHn+cC8pgQEvPYQSZAQiCgCAzAJvLXXGQtNnMMBgo+Rl+qHCVrYRKA/6VK2GEw3HV+vtcEAQBl8sOr1fk8RnGj54e+U1Vbt0Ss1Yt6RwJ2ZQDw/jR3d1asjbjrrt4WK28MpuFRaovOFjah0krlLJFzgVHd4GcmQFRZFNZkmRW+ttubjZhxw4LPB7/oiSTzpMSFwJN80gmCYyNKbuekgp6SXlULODL3QtZq1gP+ItQ4pJZDDbXEcxcuYzxIS/iE+MizVMhSJJAZ2et7ICfccoskilZLEJFhVda6u9zIere4xgaGlHcVOWdd6QxtA/4EuUwNBTA6dPBsvsKBCHOw+ulZFeCWrr3QVdjXjUeX8lGI1dGqVOpBj8bbjeNEycCIHzDsvh7YEmpc+uWsmtJ8mY597febEZVc3NRe4Ulaux3nNKJRCJ4+OGHMTKS3xzh8uXLePTRR3Hffffh61//OtJp7VQTqwUx4Fe2YSvB5hKbXJz9rtj03eZ0qxpPlGYqpXQKB3zJE19paXq2Q6TWkB4i3/3u4LJ/y8HbbwMtLTy2bNE+05Ioh+99bwjpNC9rXk4nh/FxEjduyLulSL0erYd7VyXgc5xoByA34PMlbJIFQUDEz1ak0MmG02nHwkIaxPBwWUmmBGn+ygP+LGprDWhokFe9baYdRTl8liVhMhVuEXknQNav89y5c3jssccwPDxc8O9f/epX8Y1vfANvvvkmBEHAyy+/rOUcVxzpNI9AYK5ihY6E5t3d0NfWYXzIi5pOO2q7NqgaTyy+kpnhF7FGlmCxCIjHCSixcOE4HoODI5qqc7Jht9fB4ajH0FAA1dV67N0rr6mKIIgB3+Xi5DABiiFRDkNDAej1JHp6ytcFSNJQZbTOEcxev4ZYUCFHoRBK+69mfPH9+QF/IRQCF49XrNCR0NvbgSYiAX0sImvDFgA6O8X5VxLw5XaxA0RDuFKUTrEWkXcCZAX8l19+Gd/85jfRUsAoKRAIYGFhAd3d3QCAj33sY/j1r3+t7SxXGKOj8+A4QXUWS+p0aO1zAhA5WrWbnDRdh6kp0aO/HIhwCHx9A1Ck21glxVcXL4YwN5eo2P9eDqSHiZKmKjdvijzuSvD3S/MS3/P+/W2y6gK6ugR0dvKK/PHb3Is8fpl+CmqhdKNRaGgEX1tXUKkj+cWby1ghlEN9vRH33SX+FuVSOkYjYLPxKJJ3FoXfr4yuNdMOREf8EArsDivZC1mLkLVD9q1vfavo3yYmJmDN4o2tVivGx8fVz2wVUYktcjHQu/dg95u/QnTvfvVjZZQ6s9i5s7SKoZitggSp+OqJJ0yoqZH3gw0EmgH8Kf7bf2vDP//zypQVhkIfBrAfN27U4w//sHTjeAmSgZbTuXLUodNpxz/8w2nZNBNBiLTOW29R4HnIUg417twFQ30DxjxHsfHRT6iccXEo7r9KEOBpB4yv/gy69y4t+1NVKIQ/AtD8ve9A9//+nap5PR8W6eFoSwfkSiVomsf778vfehS72M3iyBH5Dygz7QCfSiE2NoqajuVd11iWRE+PvCbv5XDqv/4X0Pc/COuBHk3GkwPVBemFKtKUZrbNzTK0YkVgtdZWfK6E6Wkxg967t131eHU1RlQBSNaZYFA51p49okRxdjZZdF6Z12engTZb0ePuvRd46CEgEpEfuOfmkjCZ9KipWbk+bq2tZszOJtDWVgu9Xt7PsbUVOHIEOHjQvGJL60cf3Ynf/GYYX/pSj+zfxIMPAv/6r0AwWIs9e+Rdh/7Q7yE0xFT0u5N7zpUrooHqvn1m6OVG1i9/CfjJT5C7XlxIi/eK0VwDUqW3gKm9BS9PVqNRaMGHZb6XvXuBf/kXoLGxVpadxqVLE4jF0jh0qFP255XsPYBjAJLvX0ZX9/bM69PTYpvIHTsMsFrV9e2euXULF3/wfbTetRHWB35f0blqYpTqgN/a2orwYuMNAAiFQgWpn1KYnIyA55Uvk6zWWoRCyrpCFcKlS+MgSQJGI6F6vLpB0faWP8og9OinVI1VWyt+PRcujKOvL59Hzn7/jWNBcJu2YK7E/P/7f5d/7VSKw5YtP8Jjj+3Ad76j/YbtchgBlLbjzYVW330pPP+8eCPKvc7u3QQAM37xiwW0t8vLApt6+nDj1Vdx69RFRcoXJe//rbeqceiQgJkZBZ/xx/5Y/F8OBv/PL8M/P48/+v/ekD9WEUSjKXxqy9/ji/82jO5D8lZSBw7o8A//YMK//3sU+/eXX7H84hdXAAB79rTI/ryorm3QVdfg6uu/RqP7w5nXz58nAdSgqSmOUEjd6vL6L34FAKjZfVDR71j63kmSqChRVi3L7OjoQFVVFU6dOgUAePXVV9HfX5mdwO0Cy86ho6O2osbcy5BOQ79YaatnBlBxt4ZFNDebUF2tl2WiVsxHp1IsOUSuHH//u4aODgEbN/LwehUUYC1aZ4+tEI8/Pk7g2jXt/IYiLKtakimhpkaP/fvbyjaPz0Zfn7hvI/czZhg/aFqZyowyGEQFVc53oqUtcpAZgNFiRcPWbarHUoKKA/4TTzyBCxcuAABeeOEFfPvb38YDDzyAeDyOxx9/XLMJrgbEXXz1Wazu/FmQ83NI9jpBjfhBDiuUE+SAIAg4HHXlbZI5DsTkJPhm9dbFEhiGBUEAfX2d5Q9eRwZOZxqDgxTkKpMbtm2H0WJZsT630iayVhvcEXZYs4APAE5nJ86eHcfcXELW8VargLvvlqeGElVm/opUZjZnP2avXkE8az9Sq6IrQRAwprIws1IoCvhvv/02OjvFAPDSSy9h165dAIBt27bhlVdewa9+9St873vfg6GIUmStolIf/FzoFzXVsae+DgAwaKCxpun6so1QiKkpEIIAXkZ5ulwwjL+oQ+Q6isPt5jA/Tywu/8uDIAjYXP0YW6zQ1hoMQ6GuTsCuXeqzUp7jEA2MVGSLXAxuNw2eFzA0lF/fUwz33AMcP04hUeYZcelSCDMzCUWGfBJsbmnltXQPsyyJurrSLSLlYO7mDcSDY2hTUZhZKT7wlbYLC2kEg1FNCosMzADS23cg1esE12qDXoMmF3Z7HVh2tmQwyFTZakTpLCykceLE6DqdUwEkykGRXbLrCOLBMcy9f0Pz+Uh+Q1p4t8fGRsGnUhWbphXC/v1tMBqpos3jC+Gee4B4nMCZM6XflNTXoJKA37RrD/R19csK47SyRZbGtFXopKsGH/iAv9TcWGWGn0xC/+4Qkk43QBBIOd0weNTz+DRdj2g0hamphaLHlKuyVYqTJ0eRSHAV3SgfdLS0CNi2jVPWEGWxQrtYX+RK4fcTGB7Wzm8o45KpIaVjNOpw8GC7ooDf3w8QhFCW1vF6/diyZXkfYrkgKQq2PmdOwJdfrVwKY8wAqts7ULtho+qxlOIDH/C10uDrT58EEY8jtbhMS7mPgAxNgLp2VdW40rxKVdxqHfAZxg+KItDbK7/z1DqW4HJxOH6cQrJ8vRwAoHbDJlS3d2hul6w9f7/Y+ERllW0uXC4aly6FMDkpT0XU2Ajs3s2XfKiKfYhHVCUtNlc/5odvIeJnIQhiAZvaoiuB5xH0DqBNg8LMSvCBD/hLjU/UUTp6ZgACQSC1WGmbXFyu6VXexHICPrECAb+7uxW1tSunv/9dhsvFIRYjcPq0vCyfIAi0ufoxPugpWN1ZKTweHSwWHtu2aTNmxDcMEARqOrRd+UlBeXBQfpbvcnE4dYpCLFb472fPjiMaLdyHWC4kjj3o9WBigkA8rr7xycyVy0hMTt4WOgdYD/jw+2dRVUVVtOzLhp4ZQHrXHgiLHuG8owucnVa9cSs9iEopdchwCAJJQmiszJ88G5FIEqdPB1fEHfODgr6+NAhCUEjr9GMhHMbMlcuazEEQxAy/r4/TrF9AxM+iuq0dVJW2iUB3dyuqq/WKaB2XK41kksCJE4U/Y0nqKRnhVYKGbdtR1dyMIDMAv1/MxuU0kCkFqV/GesC/TWDZOXR21oEkVSyvYjHoTx5HKudLTLr6oR/0QHHHhizU1lahsdFYmtIJhSE0W+TV85fB8eMBpNP8+oatCjQ0ALt2laYcciE5q0oBQS1u3SIwOqptv4B5DWyRC0Gvp9Db26Eo4B86xEGnK/5Q9XhElVlzc+UqM4IkYXOKCirJnkItpRNkBlDbtQHmztuTUK0HfHZWtUJHf+JdEMkkUu7lAT/l6gc5PQ3q0kVV40tKnWLQsujK4/EvOkS2azLeBxUuF4eTJynEZRa3mu00ars2IMhoU4Dl8YgqIbdbO7+hCOvTVKGTDZeLxvXrUwgGI7KON5uBvXv5gmqoRCKNEycCmogO2lz9iI0GcP2c2HtZTYbPcxyCg96K255qgfWAr4EGX+/1QNDpkDrUu+x1KeNXS+uINsmlKR2tAr7X68eBA22orq6s89c6RLjdpSmHQrC5+hEcZMBz6rNyr5dCWxuPjRu10fZziQRiY6OqffCLQSqOUlJ163ancfYsifkcZ4JTp8awsKCNykzS418/MwWLhUdNTeVjTV04h9TcrOo+GWrwgQ74kUgSU1MLqqtsDZ6jSHfvg2BebmrEt7UjvWkz9CqX6TRdB79/rqjfEBEOgbeor7KdmVnA+fMT6/y9Bjh0iANFKefxU3OzmLpwTtW1BUEsuHI6tesXEA34AUGA2dGlzYA52LnTivr6KkW0jtPJgeMIHDu2/DP2ePwgSQK9veqrxOs2bobJ1obh93k4HCrpnEXZbZvz9lnPfKADvlTBqqbxCRGZh+7saSTdhb/ElOuI6K+jogsYTdcjmeQwPl54uUtOTmqS4Q8NjYDnBc37134QIVEOErUiB1IgUEvrXLlCIhwmNaVz5n3aa/CzQVEk+vo6M8VScnDgAIeqKiHvM5bTh1guJAXV2GSt6g3boHcA9Vu3wdQqr9HPSuADHfCl9oFqKB39sUEQHJfR3+ci5XKDjMxDd+5MxdeQHkgFaZ1EAuTcrCZVtl6vHyaTDvv22VSPtY4lyiEij5aGqbUV9XdtRVDlilBaVWi5YRv1swBWLuADos0Cy87K7vJmMgEHD3LLms5EoymcPj2m6SrV6vw9TPGdaK2ZqHgMLpnE+LGh20rnAB/wgK9F0ZXeMwDBYECqSBODZJ/4BavR45fS4ku2Clpk+B6PHwcPtqOqSrVr9jpQnHIoBZurH+PHhsCnKm+ywTAUaJrXtNH2POsDqdejum3lNvOlIK2Ex3c6OVz8/9s7+6A2zjuPf3cl8SJeA0iCAPJb8EuIDTi2A2KFz+1hUhtit3GvaWbKpb46M23Tzng6HTfNpb3LTJPUydXTNOl0ztebdlp3Gk/bJHWutcmdW8Mi/AK2MU5sxy8YiRchCbBBsiQk7d4f8vJiBNpdvWHr+fyFpF3pefYRP/32+/xeLtIYHQ0+Pn16AD4fF9UscapsCziokOmSH3wxcu4s/HdcCamfM5OkN/gZGSrk5YlrbhwKFdsK38Yngu5GCHiNBv415RFt3JaUBPcGQnn40cqydTju4NIlB5FzosjGjQGkpMyVHBaiiNkM/x0XHOfOyvrMQAAwmZRRlXOAYJXMjOKSiJueLMTq1fkoKEiXJOswTAA8T8FkCl5jlrWI7kMslhF/8McjdYCV/R5D7a0ARU21QE0USW7wg70u5aY4U2OjUF68MCf+/l4mGSNUp08ibHm/eUhPV0GrzQjp4U9n2c7f3lAMJlOwWiGpnxM9QkkO4dAZagGKkh2Pf/Eijdu3qaj3+w2GZMZOzgGCejnD6MGyZtGVQ6uqAlCr+alrzLJmrF8vrg+xWISyyPSl/5EdQWVlW5FXvhZpedErYS6HpDb4fX2RhWSqTO2geB6TYXbdfcxmUG43VGc7ZX+WXh86Fp+2R8fDb2szIzMzBRUVidtQehBhmAB6emiMjYk7Pi0vH3nla2cV7ZJCLPR74K7Bj3INnVAwTCmsVhdu3Lgl6viUFKC6Olisbnzci+5uW9Sdlr4+GhTFI8N5EWMf90g+3+92w3bmVMKya2eStAZfaG4cicFPYU+AV6vhX79ww3KfoRY8TUes44eWdO6WRo6wFj7LWlBTUwylMmm/EjGhtna25CCGQqYOtjOnEPDMXyF1PlhWibKyAHS66On3PqcTHocjphu2AoKxbmsziz6ntjaAK1cU+OtfrXejzKJr8M1mGkU6P5TwYUhGRVN752lwXi+K5onkiyei/ruPHDmCbdu2ob6+HocOHZrz+ttvv40tW7Zgx44d2LFjR8hjFhujox64XL7IPHy2NZhsFabhC5+TC//aiogM/pIlORgYmIDPN9tzox128Glp4DPk1wIaGprA9etjpJxCDFi/Pig5SInHLzLWgfN6Yes8LemzfD6go0MRfe8+DhE6AsuW5eLhhzMlxeML+xXvv+9FWpoCjz9eFNUxmc0UliyjkFO2UlYElbW9FZRCAW21IarjkkNYt2N4eBgHDhzAn/70J6SkpOCZZ57BE088gUceeWTqmIsXL+InP/kJqqqqYjrYaCL0iZWbdEXZbFBeuQznP81t9BwKH1OH9P/8OXDnDqBWS/48vT4bHMdjcNA5K29gKss2ggwb4Z+L6PfRJyUlmIQlRcfXVhtAKRSwsidQJEEGOH+exp07MdDvLXfLIsfB4As6/vHjveA4XlSNq7VrOWRn8zh7Ng0bNxZHPcrMYqFhNAZQuLoO1w//HpzPB1olfo9gqK0V+ZVVSMmKvMlSpIT18E0mE6qrq5Gbmwu1Wo2GhgYcPXp01jEXL17EwYMH0dTUhFdeeQVemZuT8USQR+R6+Cl3u1n5GHFxtZPGOlA+X3DzVgbzhWZSDju4/Mg2bFnWgoceSkN5efRaJBKmqa0N4PJlBWw2cT/KKVnZyK+skiwfCHVlhK5b0WK68cnSqL7vfDBMKRwONy5fdog6XqEANmyYxNhYUdTlHK8XGBqiUFrKoZCpg9/lhOO8+Agqn9MJx7muhIdjCoQ1+DabDZoZ+rBWq8XwjMa+LpcLa9aswb59+/Dee+9hfHwcP//5z2Mz2igiZNnK9fBVbCu47Bz411aIOt63qQa8UomUdnlZlEKBt3sNPj3iiDhCh2UtMBhKIqsYSpgXQXKQ4uUXMZvhONcFn9isLQQ3bMvLA8jPj25vXGdfHxTp6UiLYs/khRDi8aXIOlqtDUAeVq5cFtWxDAxQ4Plgp6vCuzk1UjbUbac7wPv9i2LDFhAh6YQKj5oZxpiRkYGDBw9OPd69eze+//3vY+/evaIHkZ8vX3/WaLLCHxQCu/0O8vLSsXy5TGPZwQL/sBmaIpE16DVZwKZNUJ9koZYx5txcNWiagsPhmTVn1egIULFO9nXo7R2DxTKOfftqZb9HorhfxvuZzwA5OUBXVzqef17cOau2N6Dnp/8B75VuPPzkkyGPmTl/jwc4fRr4xjeif10mhweQs3QptNr4SBIaTRZWrHgIZ84M4aWXQs/l3jly3DkApfD7l0GjiV7gwbm7CfIVFekoXb0UmooKjJxqh0bziqjzP+k6CVqlwqPb/hEqGVJuKCJZ37AGX6fTobNzOpzQZrNBq9VOPR4cHITJZMKuXbsABH8glEppGtrIiHPewmALodFkwW6fCH9gCK5ccaC0NFvW+XS/BfnXrsH5z/8Ct4Tz1dW1UP/0Jxi5MQBehp5XXJyFS5fsU2PWFGSCt9ngzsyFS+Z1+OCDYMONigqt7GuZCCJZ+0RQXZ2Ojz6iYbe7RB2funIdaJUKlz88iszH5ybr3Dv/9nYFvF411q+/A7s9upLOyNXrUBeXxvV619QU489/vgqr9TYUitkGPNTanz3bDZVqE1paFHjqKXHXWAwXLqgApCE72wm7nUdBdS0+/fV/w2qxQ5EWPmHzRsv/QrNhE265AoAr8usnzJ2mKVmOctifQoPBgI6ODoyOjsLtdqOlpQV1ddO3J2lpaXjjjTdgsVjA8zwOHTqE+vp6yQOJN0LSlRyEaJtJibqcj9kMKhCA6qRJ1ufOicV3OkF5PBHF4Le1WaDRqLFyZZ7s9yCEh2H86O2l0d8vTjZTqtXQbNgEa7s4+aCtTQGa5lFTE11jz/N8MAY/Dhu2M2EYPcbHvejpCV+/xmp14tq1UZSVjaO9XQGROVuiMJspqFQ8CguDb1rEbEbA44G960zYc723xjDa071o5BxAhMHX6XTYu3cvmpubsXPnTjQ2NmLdunXYs2cPenp6kJeXh1deeQVf//rX8eSTT4LneXz1q1+Nx9hlw3E8+vvH5W/Ysq3g8vMRWPOopPN8GzaBT02FSkYsLxDcuBUKvgEAbMF/BrkaPs/zYFkLjMbShDRUTiaEyBmpXbBGL3TDeyt81hbLKlBZySE7yqrL5O1b8E2MIytOG7YCgo4vpsyCoPXX1wMDAzR6e6P3XbZYaJSU8BAqSuhqDKBoGkNt4cMzhztM4Dnu/jL4ANDU1IQPP/wQx44dw549ewAABw8exNq1awEADQ0NU6+/9tprSAkTl55obDYXvN6APIPP81C1twWza6W2FExLg2/jE7Lj8fX6HAwPu+B23y2sJRh8mZtp166NwWZzkfj7OLBmDYf8fA7t7RISsIybwXMchjsWviN0uYCzZxVgmOjWzwFmRujE18PX6TKwalW+qEJq7e0W5Oam4otfDNazCtUFSy5mMw29frosckp2DvIrq2AVEXxhZU9AkZ4OzfoNURtPpCRlWuV0HXzp7hDdewOKgX74ZJY59TF1UH7cA2p0RPK5ggTV339XC7xr8OWWRhayGUnDk9hD08FwSZYVLzlo1m+AIj09rKxz6pQCfj+F2troyjlAMEIHQFzKKtxLbW0JTp4cwOTkwvNqa7PAYChFWRlQWMhJioYKh9lMzTL4AFBYWwd71xn4XAvvFVjZNmg3VUe96XskJKXBF3Tw0lLpHr5Q9dInsy/lZG0dKJ6HytQu+VxhvFM6/pSkI8/gs6wFJSVZWLo0shaPBHEwTECS5KBITYV2Y/VUp6T5YFkFVCoemzZF3+BPCB5+jHrZLgTD6HHnjg/nzlnnPUaon88wpaCo4DVua4uOju90Ag4HPadxeSFTB97vh+1Ux7znuu12jF36WFLiXDxIUoMf1MHlNC9XtbciUFiEwIpHwh8cAn/VevDqDKTISNEW7kiEO5Qpgy8j8YrjeJhMFjCMnuj3cWI6Hl9CuWRjHcYufQyPY/4kpPZ2JR5/PBBRv9X5cJpvQpWdg9RckeHHUcRgKAFFLVwfX3hNyBI3Gv1wOGhcuRK5abNYgu9xr4ev3VQNWqVaUNYZNgVfW0z6PZC0Bv82dLoMpKVJ1Pp4HiltrUE5R66RTEmBr7oGKhkJWDpdJlJTFdMevt0OLisbkOaakeIAAA/eSURBVHHL+MknDoyOeoicE0dWrOCh03GS+9wCgNUU+vty+zbQ3U3HRM4Bghp+PEoqhCIvLx3l5ZoFE7Da2iwoKFBj1apg2WHhOkRD1hHKIt9r8FUZGShYv2HBEtZDbBtUmVnIr1hc5WaS1uDL2bBVXLkM2mGXLecITNbWQXnlMqgZGctioGkKJSXZ01UzbTbZETosG9TvSf2c+CFIDlJ0/PyKKqgys+Yts9DRoQDHUTAaY2fw471hOxOG0ePMmcHpQIUZBKPMzHflHME489DrObS1RcPgCx7+3MUqYuow2n0ek7dDl3G2siegqzGAlpiTFGuS0uBbLPJi8FXtQvx9ZLdpvrtlUlNExljPRK/Png7NtNlkb9i2t1uwfHkuiovvj2zVBwWj0Q+7ncann4r716OVSuhqDPNWaWRZJdLSeDz+ePQNPs/zcFrMCTX4RmMpvN4AOjuH5rx2/foYrFbXHKfFaPTDZFKCi6znOMxmGmo1j4KCuQZfiKCyhoigcg0NYvz6NRQukvo5M0k6g+/3cxgYmJhVcVIsKW2tCOiXgIvwH8C/tgJcdo4sWSdYF39aw5ezYev3czCZ+kk4ZgKQFY/PbMb49WtwDQ3OeY1lFdi0KSBH1QuLx2ZDwONJSISOQHV1MRQKKqSOP1+VV4YJ4NYtCh9/HJl5EyJ0Qqm3msc3QpGWFjKCSqi1s9g2bIEkNPgDAxMIBHjpkk4gAJWpLWLvHgCgUMBnqEWKiOSNe9HrczA25sHEhFe2wb9wYRgTE5NEzkkAciSHQiZ00S6Hg8Inn0S//r3AhPkmgPiURZ6PrKxUVFbqQiZgsawFDz+ciWXLcmc9L1yPSGUds5metxH8QhFUVrYVqQ89hIfKH4vo82NB0hn86ZBMaZKO8uMe0Lduhe1fKxYfUwfFzV7Q/eIrAgLTsfh9vbeCm7Ya6Rq+4BkZDCWSzyVEDsNIkxzyytciJTd3jsE3mYR2htFPuAKmk64yYtzLNhwMo8e5c1Y4nZNTz3Ecj/b20FFmOh2PsrJARAlYPD836epeCo11GPvk4qwIKp7nMdR2AjqDEZTUxMw4sPhGFGMEgy/Vw1exQfklWgZfqMMjNetWGPfwJTPAcbI8fJa1YM2afGi1MYjjI4RFquRA0TQKa+vmhAGyrAKZmTwqKyMUq+fBmcAY/JkwTCn8fg6nTw9MPXf5sgMjI+5571IZJoCODgV8c/d6RXHrFjAxMTfpaiaCZGPtYKeec/bdhKvfsijlHCApDf44FApK8malij0B/yNl4Aqj0z4tsHoNuIKCqUQusQgGf+xKMMpG6qbt5GQAp04NkHDMBCJHcihi6uA092Gi7+bUcyyrQHV1ALEKBHGa+5BWoIEqFgH+Eti48WGoVPQsWSdclzaGCcDlotDdLc/ELRShI5BfUQVlRiasM6RZ4Ue5MMJIvliRhAb/NoqLs6Q16/b5oOowRc27BwDQNCYNxqCHLyEtMC8vDRkZKrh6g96OVA//7NkhuN1+smGbQAoLeTzyiDTJYSoe/66DMDgIXLsWm/o5Ak6zOaEbtgJqtQobNhTNisdnWQuWLs1BSUloaVbo+iVX1pk2+PN7+LRKBV2NAUMznLahthNI1+qQU7ZS1ufGmiQ0+NKrZCq7z4F2OTEZ5V9tH1MHxeAAFL3XRZ9DURT0+hx4+4NhalINPstaQFFEv080UiWHnJWrkKbRTlVp/Nvfgs/HKv4eCG7aJjIkcyYMo0dPjw23bnkQCASjzIzG+Z2W/Hwe5eUB2Ru3QtLVkiULy2VFzGaMX7uKO9Yh8DwPK9uKQsa4aLPXk9Dg35Ycgz9VP8cgr2DafAjx+ML+gFiWLMkBZ5VXVoFlLVi7Vovc3PDNGwixQ6rkQFEUioxBHZ/neRw/DuTm8igvj41+zwUCcA30x70s8nwwTCk4jkdHRz/OnbNifNwbNsqMYQI4c0YBOS22zWYaubl82HLTMyOoxq9dhds2vCjj7wWSyuC73T4MD7skF01TtbXC/+hj4PPzozqewPJHECgsgkpiXZ3S0mwoRhzgKQp8nvjGJW63D52dQyQccxEgR3IorK2De9iK8WtXcfw4YDD4JVfoFsudwQHwfn/CN2wF1q8vRHq6EixrwfHjvQAAgyGcwffD46HQ1SXdyw+GZIb/MX3obgTVENs6dfdVKLOSbjxIKoMvlBWW5OF7vVCdOYlJYwx23SkKPqYOKWybJB1fr8/BQ/6J4A+QQvyX+cyZIUxOBha8FSbEh4ICHo8+GpBVV6frg3O4eTO2ck6i6uDPR2qqEps2FYNlzTh+vBerVuVDp1t4M7mmJgCa5mXJOqHKIoeCVihQaDDCyrbCyrYio6QUWUuj20g9mogy+EeOHMG2bdtQX1+PQ4cOzXn90qVLePrpp9HQ0ICXXnoJfn/sNpIiQU5IpqrrDCiPB74Y3aZNGjeDdtihuHJZ9Dl6fTa0cMGTLe2Og2XNUCppPPFEsdRhEmKA0RjA6dPiJYespcuQUVKKvx/zAEDMEq6AGWWRF4nBB4JlFi5dGsGJE32i7lKzs4HKSun18Xk+WClzoQidmRQagxFU/f/XgkKmbtHq94AIgz88PIwDBw7gd7/7HT744AO8++67uHbt2qxjvvvd7+Lll1/GsWPHwPM8Dh8+HLMBR8J04xMJBr/tBHiahq/GEJMxCY1UpMg6en0OtHBhIl2aNNXWZkFlpQ6ZmYu7I1myUFsrTXKgKAqFtUZ0XtJBp+OxcmVs9HsgGE8OikJGyeKR/4RQYo/HLzqsuLbWj64uBcL0KpmFzUbB4xHn4QNBqQ0AAm43ihaxnAMAYQVEk8mE6upq5OYG05cbGhpw9OhRvPDCCwCAgYEBeDweVFZWAgC+8IUv4K233sKzzz4bw2EDnD+AM6/8F8aHxHeO4k4N4MtKG0pPtoCixf0Kpx79C/wVleCzY9MkhNMvQUC/FGkfvAdOqxN1zhqPHz6ModdZio///KmocwIBDufPW/Htb2+KZLiEKCJIDr/5jQoOh7jvozXjOVyZfAyG4k/Rd+RUzMZmO30SGQ8XQ7GI2pVWVASdFZdrUnSUGcME8LOfUfjFL1JQVibOgN+8GfSDw0XoCOSuWo20Ag08Dvuiq39/L2ENvs1mg2ZGz1StVosLFy7M+7pGo8GwxLK/+fmZko4HgEu/PYqNP9wj6ZzPCn88/660D/vBD6DRxLCqZNN2KN55BzkLdNCZifDT8+s+Gv/6tQ8lfdTTTz8a27nEkft9HhoNUFsL/PGPKvzxjyqRZ9UDAHLP7sOJr/0mdoMDsGzbtkV3jbdvL8PAwARWrdKKPB7IygJ+/GNp1eUoCqipUUNsu+iyHU9huKsLSyvXSPocOUSyJmENPh9iM3GmRhXudTGMjDjBcdJ6khU01KK/rRvDN+aWTV0IrTYDGRkSvBaaRmD5CsA+IelzJPHiv0PxpWZJp0w4J7Hz4eWoGxcfc5aersKSJTmwx3IucUKjyXog5vHrXwP9/dJiJ/y3bHhs2T6Mjb0Qo1EFydIvWXTX+I03Pov8/ExJ4zp5ksLIiDSblJ3NIyODh90u7viKf3sdnN8f8+slfO9pmpLlKIc1+DqdDp2dnVOPbTYbtFrtrNcdM4oH2e32Wa/HkhJmHVJXSd8Rj91Wl0xSUhBYLc0zUANY8oAYvWQmMxNYvVqqFl8Q9PKScO3T0pRQq1VwuTyiz9FoeGg0UWhyuwCK1NRF1ax8PsK6FgaDAR0dHRgdHYXb7UZLSwvq6qZ1quLiYqSmpqKrqwsA8P777896nUAgEAiLg7AGX6fTYe/evWhubsbOnTvR2NiIdevWYc+ePejp6QEAvPnmm3jttdfwuc99Dm63G83N0uQJAoFAIMQeig8lwscZORo+8ODouHJJ5vkn89yB5J4/mbt8DT+pMm0JBAIhmSEGn0AgEJIEYvAJBAIhSYhRrxxp0CKzXqN97oNAMs8/mecOJPf8k33ucue/KDZtCQQCgRB7iKRDIBAISQIx+AQCgZAkEINPIBAISQIx+AQCgZAkEINPIBAISQIx+AQCgZAkEINPIBAISQIx+AQCgZAkEINPIBAIScJ9a/CPHDmCbdu2ob6+HocOHUr0cOJKc3Mztm/fjh07dmDHjh3o7u5O9JBijtPpRGNjI/r7+wEAJpMJTU1N2Lp1Kw4cOJDg0cWee+f/4osvYuvWrVPfgY8++ijBI4wNb7/9NrZv347t27dj//79AJJr7UPNP6K15+9DrFYrv2XLFn5sbIx3uVx8U1MTf/Xq1UQPKy5wHMfX1tbyPp8v0UOJG+fPn+cbGxv58vJy3mKx8G63m9+8eTNvNpt5n8/H7969m//73/+e6GHGjHvnz/M839jYyA8PDyd4ZLGlvb2d/9KXvsR7vV5+cnKSb25u5o8cOZI0ax9q/i0tLRGt/X3p4ZtMJlRXVyM3NxdqtRoNDQ04evRooocVF27cuAGKorBnzx489dRT+O1vf5voIcWcw4cP44c//OFUr+QLFy5gyZIlKC0thVKpRFNT0wO9/vfO/86dOxgcHMTLL7+MpqYmvPXWW+A4qX1xFz8ajQbf+973kJKSApVKhRUrVuDmzZtJs/ah5j84OBjR2t+XBt9ms0Gj0Uw91mq1GB4eTuCI4sf4+Dhqamrwzjvv4Fe/+hV+//vfo729PdHDiik/+tGPsGHDhqnHybb+985/ZGQE1dXVePXVV3H48GF0dnbiD3/4QwJHGBvKyspQWVkJALh58yb+8pe/gKKopFn7UPM3Go0Rrf19afD5EAU+KSo5yqVWVVVh//79UKvVyMvLw65du3DixIlEDyuuJPP6A0BpaSneeecd5OfnIz09HV/5ylce6O/A1atXsXv3buzbtw96vX7O6w/62s+c//LlyyNa+/vS4Ot0OjgcjqnHNptt6nb3QaezsxMdHR1Tj3meh1K5KNoaxI1kXn8AuHLlCo4dOzb1+EH+DnR1deG5557Dd77zHXz+859PurW/d/6Rrv19afANBgM6OjowOjoKt9uNlpYW1NXVJXpYcWFiYgL79++H1+uF0+nEe++9h/r6+kQPK65UVFSgt7cXfX19CAQC+PDDD5Nm/YHgP/mrr76K27dvw+fz4d13330gvwNDQ0P45je/iTfffBPbt28HkFxrH2r+ka79fekW6HQ67N27F83NzfD5fNi1axfWrVuX6GHFhS1btqC7uxs7d+4Ex3F49tlnUVVVlehhxZXU1FS8/vrr+Na3vgWv14vNmzfjySefTPSw4sbq1avx/PPP48tf/jL8fj+2bt2KxsbGRA8r6vzyl7+E1+vF66+/PvXcM888kzRrP9/8I1l70vGKQCAQkoT7UtIhEAgEgnSIwScQCIQkgRh8AoFASBKIwScQCIQkgRh8AoFASBKIwScQCIQkgRh8AoFASBKIwScQCIQk4f8B1EDGFt72dZcAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Please choose a number from the menu above:\n" ] } ], "source": [ "%matplotlib inline\n", "from models.fashion import main as famain\n", "\n", "famain()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "0" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 4 }
gpl-3.0
globus/globus-sample-data-portal
notebook/mrdp-notebook.ipynb
2
13584
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# The Modern Research Data Portal: A Design Pattern for Networked, Data-Intensive Science\n", "\n", "In this notebook we demonstrate the core logic for developing a Modern Research Data Portal (MRDP). This code leverages the Globus platform to manage identities and data access. We first demonstrate how to use the Globus SDK before stepping through the MRDP logic. \n", "\n", "The following notebook contains a brief introduction to the Globus SDK. More complete documentation and example notebooks are avaialble in the following locations:\n", "\n", "* https://docs.globus.org/\n", "* https://docs.globus.org/research-data-portal\n", "* https://github.com/globus/globus-jupyter-notebooks\n", "* https://github.com/globus/globus-sample-data-portal" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup\n", "\n", "To use the following notebook you must first install the Globus Python SDK. This can be done by downloading the SDK and installing it manually (https://github.com/globus/globus-sdk-python) or via Python pip as follows. \n", "\n", "```\n", "pip install globus-sdk\n", "```\n", "\n", "To access the SDK you must authenticate using your Globus identity. In this notebook we use the NativeAppAuthClient as a way of acquiring tokens. If the MRDP code is deployed in a service web-based authentication flows should be used. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from globus_sdk import AuthClient, TransferClient, AccessTokenAuthorizer, NativeAppAuthClient, TransferData\n", "\n", "\n", "CLIENT_ID = '2f9482c4-67b3-4783-bac7-12b37d6f8966'\n", "\n", "client = NativeAppAuthClient(CLIENT_ID)\n", "client.oauth2_start_flow()\n", "\n", "authorize_url = client.oauth2_get_authorize_url()\n", "print('Please go to this URL and login: {0}'.format(authorize_url))\n", "\n", "# this is to work on Python2 and Python3 -- you can just use raw_input() or\n", "# input() for your specific version\n", "get_input = getattr(__builtins__, 'raw_input', input)\n", "auth_code = get_input(\n", " 'Please enter the code you get after login here: ').strip()\n", "token_response = client.oauth2_exchange_code_for_tokens(auth_code)\n", "\n", "AUTH_TOKEN = token_response.by_resource_server['auth.globus.org']['access_token']\n", "TRANSFER_TOKEN = token_response.by_resource_server['transfer.api.globus.org']['access_token']\n", "\n", "tc = TransferClient(AccessTokenAuthorizer(TRANSFER_TOKEN))\n", "ac = AuthClient(authorizer=AccessTokenAuthorizer(AUTH_TOKEN))" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Using the Globus SDK\n", "\n", "We first show how the Globus SDK can be used to discover endpoint IDs. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# discover an Endpoint ID\n", "search_str = \"Globus Tutorial Endpoint\"\n", "endpoints = tc.endpoint_search(search_str)\n", "print(\"==== Displaying endpoint matches for search: '{}' ===\".format(search_str))\n", "for ep in endpoints:\n", " print(\"{} ({})\".format(ep[\"display_name\"] or ep[\"canonical_name\"], ep[\"id\"]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Research Data Portal function\n", "\n", "The following code uses the Globus SDK to create, manage access to, and delete shared endpoints, as follows. \n", "\n", "It first sets up variables for the host endpoint on which the shared enpoint will be created (in this case the \"Globus Tutorial Endpoint\"), the source path for the data to be copied and shared, and the email address of the user to be shared with. \n", "\n", "import sys, random, uuid\n", "It then creates a TransferClient and an AuthClient object and uses the Globus SDK function endpoint_autoactivate to ensure that the portal admin has a credential that permits access to the endpoint identified by host_id. Activation of the endpoint assumes that the endpoint is configured to trust the Globus IdP (as is the case with Globus Connect Personal)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import sys, random, uuid\n", "from globus_sdk import AuthClient, TransferClient, AccessTokenAuthorizer, TransferData\n", "\n", "host_id = 'ddb59aef-6d04-11e5-ba46-22000b92c6ec' # Endpoint for shared endpoint\n", "source_path = '/share/godata/' # Directory to copy data from\n", "email ='[email protected]' # Email address to share with\n", "\n", "tc = TransferClient(AccessTokenAuthorizer(TRANSFER_TOKEN))\n", "ac = AuthClient(authorizer=AccessTokenAuthorizer(AUTH_TOKEN))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We use the Globus SDK function operation_mkdir to create a directory (in our example call, a UUID) on the existing endpoint with identifier host_id. \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "share_path = '/~/' + str(uuid.uuid4()) + '/'\n", "r = tc.operation_mkdir(host_id, path=share_path)\n", "print (r['message'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we use the Globus SDK function create_shared_endpoint to create a shared endpoint for the new directory. At this point, the new shared endpoint exists and is associated with the new directory. However, only the creating user has access to this new shared endpoint at this point." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "shared_ep_data = {\n", " 'DATA_TYPE': 'shared_endpoint',\n", " 'host_endpoint': host_id,\n", " 'host_path': share_path,\n", " 'display_name': 'RDP shared endpoint',\n", " 'description': 'RDP shared endpoint'\n", "}\n", "\n", "r = tc.create_shared_endpoint(shared_ep_data)\n", "share_id = r['id']\n", "print(share_id)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To provide access to the requested data we copy data to the shared endpoint. We use sample data contained on the Globus Tutorial Endpoint under path \"/share/godata\".\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tc.endpoint_autoactivate(share_id)\n", "tdata = TransferData(tc, host_id, share_id, label='RDP copy data', sync_level='checksum')\n", "tdata.add_item(source_path, '/', recursive=True)\n", "r = tc.submit_transfer(tdata)\n", "o = tc.task_wait(r['task_id'], timeout=1000, polling_interval=10)\n", "print (r['task_id'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To confirm all data is in place for sharing we check the contents of the shared endpoint. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for f in tc.operation_ls(share_id):\n", " print (f['name'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now share the endpoint with the appropriate user. We first use the Globus SDK function get_identities to retrieve the user identifier associated with the supplied email address; this is the user for whom sharing is to be enabled. (If this user is not known to Globus, an identity is created.) We then use the function add_endpoint_acl_rule to add an access control rule to the new shared endpoint to grant the specified user readonly access to the endpoint. The various elements in the rule_data structure specify, among other things:\n", "\n", "* principal_type: the type of principal to which the rule applies: in this case, ’identity’ —other options are ’group’, ’all_authenticated_users’, or ’anonymous’;\n", "* principal: as the principal_type is ’identity’, this is the user id with whom sharing is to be enabled;\n", "* permissions: the type of access being granted: in this case read-only (’r’), but could also be read and write (’rw’);\n", "* notify_email: an email address to which an invitation to access the shared endpoint should be sent; and\n", "* notify_message: a message to include in the invitation email.\n", "\n", "As our add_endpoint_acl_rule request specifies an email address, an invitation email is sent to the user. At this point, the user is authorized to download data from the new shared endpoint. \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "r = ac.get_identities(usernames=email)\n", "user_id = r['identities'][0]['id']\n", "rule_data = {\n", " 'DATA_TYPE': 'access',\n", " 'principal_type': 'identity', # Grantee is\n", " 'principal': user_id, # a user.\n", " 'path': '/', # Path is /\n", " 'permissions': 'r', # Read-only\n", " 'notify_email': email, # Email invite\n", " 'notify_message': # Invite msg\n", " 'Requested data is available.'\n", "}\n", "r = tc.add_endpoint_acl_rule(share_id, rule_data)\n", "print (r['message'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The shared endpoint will typically be left operational for some period, after which it can be deleted. Note that deleting a shared endpoint does not delete the data that it contains. The portal admin may want to retain the data for other purposes. If not, we can use the Globus SDK function submit_delete to delete the folder." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "r = tc.delete_endpoint(share_id)\n", "print (r['message'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Putting it all together\n", "\n", "The following code integrates the code above into a single callable function." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from globus_sdk import TransferClient, TransferData, AccessTokenAuthorizer\n", "from globus_sdk import AuthClient\n", "import sys, random, uuid\n", "\n", "def rdp(host_id, # Endpoint for shared endpoint\n", " source_path, # Directory to copy data from\n", " email): # Email address to share with\n", " \n", " # Instantiate transfer and auth clients\n", " tc = TransferClient(AccessTokenAuthorizer(TRANSFER_TOKEN))\n", " ac = AuthClient(authorizer=AccessTokenAuthorizer(AUTH_TOKEN))\n", " tc.endpoint_autoactivate(host_id)\n", "\n", " # (1) Create shared endpoint:\n", " # (a) Create directory to be shared\n", " share_path = '/~/' + str(uuid.uuid4()) + '/'\n", " tc.operation_mkdir(host_id, path=share_path)\n", " \n", " # (b) Create shared endpoint on directory \n", " shared_ep_data = {\n", " 'DATA_TYPE': 'shared_endpoint',\n", " 'host_endpoint': host_id,\n", " 'host_path': share_path,\n", " 'display_name': 'RDP shared endpoint',\n", " 'description': 'RDP shared endpoint'\n", " }\n", "\n", " r = tc.create_shared_endpoint(shared_ep_data)\n", " share_id = r['id']\n", "\n", " # (2) Copy data into the shared endpoint\n", " tc.endpoint_autoactivate(share_id)\n", " tdata = TransferData(tc, host_id, share_id, label='RDP copy data', sync_level='checksum')\n", " tdata.add_item(source_path, '/', recursive=True)\n", " r = tc.submit_transfer(tdata)\n", " tc.task_wait(r['task_id'], timeout=1000, polling_interval=10)\n", "\n", " # (3) Enable access by user\n", " r = ac.get_identities(usernames=email)\n", " user_id = r['identities'][0]['id']\n", " rule_data = {\n", " 'DATA_TYPE': 'access',\n", " 'principal_type': 'identity', # Grantee is\n", " 'principal': user_id, # a user.\n", " 'path': '/', # Path is /\n", " 'permissions': 'r', # Read-only\n", " 'notify_email': email, # Email invite\n", " 'notify_message': # Invite msg\n", " 'Requested data is available.'\n", " }\n", " tc.add_endpoint_acl_rule(share_id, rule_data)\n", "\n", " # (4) Ultimately, delete the shared endpoint\n", " #tc.delete_endpoint(share_id)\n", " \n", "rdp('ddb59aef-6d04-11e5-ba46-22000b92c6ec', '/share/godata/' , '[email protected]')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
unlicense
nlehuby/OSM_snippets
conflate/201812_BATO/partition_by_ddtm.ipynb
1
15009
{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import pandas as pd\n", "\n", "import geopandas\n", "from shapely.geometry import Point, Polygon\n", "\n", "pd.options.display.max_rows = 10" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# xsv partition transport_mode data BATO_GTFS.csv" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>source</th>\n", " <th>stop_id</th>\n", " <th>latitude</th>\n", " <th>longitude</th>\n", " <th>stop_name</th>\n", " <th>transport_mode</th>\n", " <th>geometry</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL46132</td>\n", " <td>45.716301</td>\n", " <td>4.814736</td>\n", " <td>Gare d'Oullins</td>\n", " <td>bus</td>\n", " <td>POINT (4.814736 45.716301)</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL46133</td>\n", " <td>45.713623</td>\n", " <td>4.817385</td>\n", " <td>Kellermann</td>\n", " <td>bus</td>\n", " <td>POINT (4.817385 45.713623)</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL3167</td>\n", " <td>45.710812</td>\n", " <td>4.820113</td>\n", " <td>Yon Lug</td>\n", " <td>bus</td>\n", " <td>POINT (4.820113 45.710812)</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL3026</td>\n", " <td>45.706046</td>\n", " <td>4.820918</td>\n", " <td>Vaillant Couturier</td>\n", " <td>bus</td>\n", " <td>POINT (4.820918 45.706046)</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL2318</td>\n", " <td>45.702555</td>\n", " <td>4.821277</td>\n", " <td>Pierre-Bénite Centre</td>\n", " <td>bus</td>\n", " <td>POINT (4.821276999999999 45.702555)</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>149200</th>\n", " <td>opendata_GTFS_fr-idf-OIF</td>\n", " <td>StopPoint:92:7</td>\n", " <td>48.852338</td>\n", " <td>2.601715</td>\n", " <td>MAIRIE DE CHAMPS</td>\n", " <td>bus</td>\n", " <td>POINT (2.601715 48.852338)</td>\n", " </tr>\n", " <tr>\n", " <th>149201</th>\n", " <td>opendata_GTFS_fr-idf-OIF</td>\n", " <td>StopPoint:92:15</td>\n", " <td>48.848283</td>\n", " <td>2.585516</td>\n", " <td>BOIS DE GRACE</td>\n", " <td>bus</td>\n", " <td>POINT (2.585516 48.848283)</td>\n", " </tr>\n", " <tr>\n", " <th>149202</th>\n", " <td>opendata_GTFS_fr-idf-OIF</td>\n", " <td>StopPoint:92:9</td>\n", " <td>48.844801</td>\n", " <td>2.582994</td>\n", " <td>AMPERE</td>\n", " <td>bus</td>\n", " <td>POINT (2.582994 48.844801)</td>\n", " </tr>\n", " <tr>\n", " <th>149203</th>\n", " <td>opendata_GTFS_fr-idf-OIF</td>\n", " <td>StopPoint:92:11</td>\n", " <td>48.841617</td>\n", " <td>2.584096</td>\n", " <td>CROUS</td>\n", " <td>bus</td>\n", " <td>POINT (2.584096 48.841617)</td>\n", " </tr>\n", " <tr>\n", " <th>149204</th>\n", " <td>opendata_GTFS_fr-idf-OIF</td>\n", " <td>StopPoint:92:13</td>\n", " <td>48.794042</td>\n", " <td>2.449382</td>\n", " <td>CRETEIL L'ECHAT</td>\n", " <td>bus</td>\n", " <td>POINT (2.449382 48.794042)</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>149205 rows × 7 columns</p>\n", "</div>" ], "text/plain": [ " source stop_id latitude \\\n", "0 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL46132 45.716301 \n", "1 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL46133 45.713623 \n", "2 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL3167 45.710812 \n", "3 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL3026 45.706046 \n", "4 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL2318 45.702555 \n", "... ... ... ... \n", "149200 opendata_GTFS_fr-idf-OIF StopPoint:92:7 48.852338 \n", "149201 opendata_GTFS_fr-idf-OIF StopPoint:92:15 48.848283 \n", "149202 opendata_GTFS_fr-idf-OIF StopPoint:92:9 48.844801 \n", "149203 opendata_GTFS_fr-idf-OIF StopPoint:92:11 48.841617 \n", "149204 opendata_GTFS_fr-idf-OIF StopPoint:92:13 48.794042 \n", "\n", " longitude stop_name transport_mode \\\n", "0 4.814736 Gare d'Oullins bus \n", "1 4.817385 Kellermann bus \n", "2 4.820113 Yon Lug bus \n", "3 4.820918 Vaillant Couturier bus \n", "4 4.821277 Pierre-Bénite Centre bus \n", "... ... ... ... \n", "149200 2.601715 MAIRIE DE CHAMPS bus \n", "149201 2.585516 BOIS DE GRACE bus \n", "149202 2.582994 AMPERE bus \n", "149203 2.584096 CROUS bus \n", "149204 2.449382 CRETEIL L'ECHAT bus \n", "\n", " geometry \n", "0 POINT (4.814736 45.716301) \n", "1 POINT (4.817385 45.713623) \n", "2 POINT (4.820113 45.710812) \n", "3 POINT (4.820918 45.706046) \n", "4 POINT (4.821276999999999 45.702555) \n", "... ... \n", "149200 POINT (2.601715 48.852338) \n", "149201 POINT (2.585516 48.848283) \n", "149202 POINT (2.582994 48.844801) \n", "149203 POINT (2.584096 48.841617) \n", "149204 POINT (2.449382 48.794042) \n", "\n", "[149205 rows x 7 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stops = pd.read_csv(\"data/BATO_bus.csv\")\n", "stops['geometry'] = stops.apply(lambda z: Point(z.longitude, z.latitude), axis=1)\n", "stops = geopandas.GeoDataFrame(stops)\n", "stops" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "dptm = geopandas.read_file(\"data/departements-20140306-5m.shp\")\n", "dptm.dropna(inplace=True)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/pclf/.local/share/virtualenvs/tt_bato_maproulette-_HzSl9D-/lib/python3.6/site-packages/geopandas/tools/sjoin.py:56: UserWarning: CRS of frames being joined does not match!(None != {'init': 'epsg:4326'})\n", " '(%s != %s)' % (left_df.crs, right_df.crs))\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>source</th>\n", " <th>stop_id</th>\n", " <th>latitude</th>\n", " <th>longitude</th>\n", " <th>stop_name</th>\n", " <th>transport_mode</th>\n", " <th>geometry</th>\n", " <th>index_right</th>\n", " <th>nom</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL46132</td>\n", " <td>45.716301</td>\n", " <td>4.814736</td>\n", " <td>Gare d'Oullins</td>\n", " <td>bus</td>\n", " <td>POINT (4.814736 45.716301)</td>\n", " <td>69</td>\n", " <td>b'Rh\\xf4ne'</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL46133</td>\n", " <td>45.713623</td>\n", " <td>4.817385</td>\n", " <td>Kellermann</td>\n", " <td>bus</td>\n", " <td>POINT (4.817385 45.713623)</td>\n", " <td>69</td>\n", " <td>b'Rh\\xf4ne'</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL3167</td>\n", " <td>45.710812</td>\n", " <td>4.820113</td>\n", " <td>Yon Lug</td>\n", " <td>bus</td>\n", " <td>POINT (4.820113 45.710812)</td>\n", " <td>69</td>\n", " <td>b'Rh\\xf4ne'</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL3026</td>\n", " <td>45.706046</td>\n", " <td>4.820918</td>\n", " <td>Vaillant Couturier</td>\n", " <td>bus</td>\n", " <td>POINT (4.820918 45.706046)</td>\n", " <td>69</td>\n", " <td>b'Rh\\xf4ne'</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>opendata_GTFS_fr-se-open-GTFS</td>\n", " <td>StopPoint:DGL2318</td>\n", " <td>45.702555</td>\n", " <td>4.821277</td>\n", " <td>Pierre-Bénite Centre</td>\n", " <td>bus</td>\n", " <td>POINT (4.821276999999999 45.702555)</td>\n", " <td>69</td>\n", " <td>b'Rh\\xf4ne'</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " source stop_id latitude longitude \\\n", "0 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL46132 45.716301 4.814736 \n", "1 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL46133 45.713623 4.817385 \n", "2 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL3167 45.710812 4.820113 \n", "3 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL3026 45.706046 4.820918 \n", "4 opendata_GTFS_fr-se-open-GTFS StopPoint:DGL2318 45.702555 4.821277 \n", "\n", " stop_name transport_mode geometry \\\n", "0 Gare d'Oullins bus POINT (4.814736 45.716301) \n", "1 Kellermann bus POINT (4.817385 45.713623) \n", "2 Yon Lug bus POINT (4.820113 45.710812) \n", "3 Vaillant Couturier bus POINT (4.820918 45.706046) \n", "4 Pierre-Bénite Centre bus POINT (4.821276999999999 45.702555) \n", "\n", " index_right nom \n", "0 69 b'Rh\\xf4ne' \n", "1 69 b'Rh\\xf4ne' \n", "2 69 b'Rh\\xf4ne' \n", "3 69 b'Rh\\xf4ne' \n", "4 69 b'Rh\\xf4ne' " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stops = geopandas.sjoin(stops, dptm[['nom', 'geometry']].copy(), op='within')\n", "stops.head()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "stops.to_csv(\"data/BATO_by_regions.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#xsv partition --filename BATO_{}.csv nom . BATO_by_regions.csv" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
myinxd/cavdet
levelset/mock-samples.ipynb
1
503710
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Mock samples\n", "1. Generate beta-models according to given parameters\n", "2. Generate the mock samples with additive background noises\n", "3. The total number of counts is restricted" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib\n", "matplotlib.use('Agg')\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import utils" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "matshape = [201,201]\n", "cen = [101, 101]\n", "betaparam = {\"A\": 2,\n", " \"r0\": 10,\n", " \"theta\": 45/180 * np.pi,\n", " \"beta\": 0.2,\n", " \"majaxis\": 50,\n", " \"minaxis\": 30,}\n", "matbeta = utils.genBetaModel(matshape=matshape,cen=cen,betaparam=betaparam)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x7feff2bf2198>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvX2sbVt1H/Yba+9z733v8eDxMKUUkwIWjoSj9gUjYimO\n65YmsVFU4qqiUMkhrtVnSyAlUqoG21VrRYqUpv6QolZusYxsV64dV4TYiohrgpK6kYpj7BAMxtiA\nQeYJQwIO7/Huu/eevdfoH2vOucYcc8yP9bHP2feyhrTP2WvOMT/W3nv81m+MOeZaxMzYZJNNNilJ\nd90T2GSTTc5fNqDYZJNNqrIBxSabbFKVDSg22WSTqmxAsckmm1RlA4pNNtmkKicDCiL6DiL6BBF9\nkojeeapxNtlkk9MLnSKPgoh2AH4PwJ8H8DkAvwHgrcz8O6sPtskmm5xcTsUoXg/gk8z8aWa+B+AX\nALzpRGNtsskmJ5b9ifp9GYA/FMefA/Bncso36CbfwiPzR6PmwjYNqretd9bQR1WlotA0zSvoo7mf\nBR0s7v+apErYFzL65uaMp+998d8w84vnDHMqoKgKET0J4EkAuIWH8WfoDbIy0yglQNQZuoYelB5Z\nY3RGO61n6CR96TnV5qPbT51/y7kkY1htKjpWG1XG5veR+z4nlnuxxmiRKReAuS55X2mX69cqz+iS\nHqOx7a/8wY99tjy5vJwKKJ4C8HJx/PWuLAgzvwvAuwDg+fT4eFZLQMIyMGAeSDQCSREkGgx+Kkgk\n49XmWdNvMeyGMROAWBMcasAwhwHWpKVPy0DlXC3QkP3K9r7cKlPl3FEMFkTpXKz+FsipgOI3ALya\niF6JASDeAuC/qra6DpCYwSJsoKnMp2aQDfpFFlE7j+sEiNay3Lxa2q3dBqgbme5X67eCRg0wfLkC\nC0Cwi8Z2c+UkQMHMByJ6B4D/G8AOwLuZ+WPFRl9LIFFjEbV5186jpD/HsOe4F1OYQw4cWgz8FGyi\nte/cVdyq1+eoGYHWb2QJJruw5rZQThajYOb3AXjf7A4yxn9fgUSTQeX1zfEio58YhyjFRRraz2IP\nU5hDzTAngAKvACC0lFGUjNaff8mFKLkpJbDQOiuwii0zc5NNNqnKta16FGUum8hQ2CthE9fpblSZ\nR6GvqSsZc2MQU92LCiNYgzHUJDdGlmnUApVWXUd1N8SXL2UVC+T8gOKqQaJhdWPy8ucCkFjkblTB\n7MQAsQQcCj/kJlA4FTfu0yJrPgl4lNwOXdfihlhlLWCxkpwXUJw7SLTkbFSNqzEmUZvbknhEZZwi\nQMxhDxNYQxUUrtpZtsargAe1sglt+BowLIaiQaZlNeRcVz1myZmBRJVF1OayxNWYMvcqkLUb/ZUA\nxBRwaAGFK3BB0mVPQ0eARxY0ANvQ9RjaHfF6OZAxwCBiFyuAxfkAhZKmjMs1QGKNTMtiDGBBAtVa\ny56FdtWlzqnuReOqhwkOJWCYCghzAKQl9pDTk3M3QMMEjFL+xCnAYoGcJVDMBYnJGZfnBBJXwSLW\nAogZeRSTWEPtR30qFlHqt+RO6Hp/TjWWYbEJafBWwtZEsFhLzg4o5oCECRBA2ac/dTp2JZ8iCxJT\nMiynuAo5kJjQbqpr0wwOE2IYlqy9AmKuatTAwXQh3H8V00hYRiVIOfRF7WAh5rFWgPOsgOK+AYkp\nqxpTlj1PHKxcBSAa4g6J4bayhorBzwaEjFswZZwqeFjLkIEZ2OMzUZ5dTAULa24rgsXZAEVTxuV1\nZFuuBBKL8iJajHZKHGKOi1Ex7Co4TGANJ135mNI24zp4MVc3JrKMIrsw22fA4oRuB3AuQKG/g/sR\nJKbkRpRcjWLcYiFIrAEQU9nDHAaS6ysna7getQAlkHUhgAlxB9l3iV20BjpLYKFYxRI5D6CQ0hIL\nSOpXAIkpezZKLELpz3I15gCENr4ZbVpXTiaDQytrWHPVY6rk+rfYgJfS6oblSug+DXaRBQstJbDQ\n4z5QeRRAM0hQzthGBdXHgiSqteIRra5GaW5XBRJrAEQLa8gBQw0UTg0azenXorzkSlh96n5yYCHb\nnti9KMm2KWyTTTapyvkwitx2ca1WupqYV62rZxOzA5dT2cScgOUMxhKxgQluRjOLaIhj5IQXkguy\nLtAlFmG5EEBbkFK2SeIOsFmF17VYxZQl0wcjM9P6QVVcDqC8UqDrdfslINEak5gTtFy67JnTmzFG\nFiCWBjgb+oj7y1YtllzfEYDkwGFq3EG2MQ2/0m4JWCyUMwEKJecEEnMDl1cAEs15EdYYpwaIGasf\nQx+p2tjniWMTItdAzyMAR45tVBjC2E9ltcJoV29Dabq3loVxnfMDiqsGiZU2dp0EJErG3AISLSA0\nFSBWBgcTGCqAsFYmZpJEpcc1gCNxVWoMAWhbBs2ARXOblvkskNnBTCJ6ORH9UyL6HSL6GBH9NVf+\nw0T0FBF92L3e2D6bhSDRdVcDEh1NBwmitqv8FJDQ+rn2JX3fp3/fYfxVZPSZKLyybax5hfbjK8xP\nvtQY+hV/LhNeSqr9qznpuUcgV/hstZVFY2R/E4U2lrTs3F0gSxjFAcDfYObfIqJHAfwmEb3f1f04\nM//IpN5aUrOXpGXPBYm528OnBiwLV+2qq5EDlwpLycYSWhiH1K/Mv4U1FA1hrd98rR9O50KS3nsp\nMY0SSwjtJzALp+/nRcx1VqFlBVYxGyiY+fMAPu/eP0NEH8fwhLDF0vxwnkJdM0jMDFomY1ggUTL+\niUZvgsRMAGpyF1pcksIcEnBoAYaSIa98hRwmoWm7rm8HDSakcQxv1Hos51o0uxTKFTF1/Lxqd8ma\nKavkURDRKwD8aQC/7oreQUQfIaJ3E9ELJ/aVFi7ZKr4GSBiuBkmDChS8mw8SBbcj62ok41O1b9Nd\nkDqGi5Ho59wL5F0Kk96TelnzUDReU/85r+w5a5dBzkt/Hl4id8noX48V2o19ZvUNsQFW/d5ru3xn\nyGKgIKLnAXgPgL/OzE8D+AkA3wDgCQyM40cz7Z4kog8R0Ycu+Y4vM2bYDhKRAQPrgUSu/6muhuwv\nBwzCzfCvbJ8lFqF0EqOXejVdS1+8IiPMgMM4N/Gy+sRCI68Zf6F/s29jztl4hug/6guZ4xpYSBE/\nrxFoG9otBAgvi1Y9iOgCA0j8HDP/AwBg5i+I+p8E8I+sttEjBbsX8eRNXmvt3Ui+yIYkqtJcs0DS\ncOUQIBHPqfDDmLKaYcUUEiOaoisOOmM8AKY7Ueono7NYcv1xGm8AYLsRQHw+wjUh5vEz6DmOXRDF\nLoA8LrkheuxWFwRoWzKdILOBggbL+SkAH2fmHxPlL3XxCwD4LgAfrfalCx4kkJibYZm7Elngk9E1\nYwsLASIXeyiCQw0YGq6iq4s3OD02jzEHL8HYRf1QgSgAGsUwdOwiAZwKWEgxwMDUzYHGCrKEUfxZ\nAN8N4LeJ6MOu7AcBvJWInsDwEX4GwPdN6nUJSKyVSHUKkGgw/GaQaMi5MN0M1aa66pEDiBb2UAIX\nY74lUFjzDlakVxSk9IjnpUAjMnhf7w8tdpELdBZWLMyVDSlTWEVrfYMsWfX457CJ5fzHCG6yySZn\nKeeVmdmyZTyqWoFNrJltuUZMIsMQEjaxgCFMycCMVjCcmElPqn3VvTC+6pPmUhg5EgBi+q63jSt3\nIWIGgGIH8RgWqxjG0+3c+xxT8OO3uh9SVoxTnA9QLH3uhpZzA4lcHKGkm4u9mK6BYfwlMLF0Ir10\n3MkAkQMka86yv4zMcUFIGnLSYQE4ZLKTMNhi7KICFkO5ARZeWmMVFqhIHT+fFeV8gELKVJCYE7w8\nJ5CwxmsEiSo7KOmVGIQYM8p7sM6jARxaEqyqQDAVJwwgCF3J+EJGn7xRAlmGMehhNGKK+2oCixpb\nKMQYqjGNcDLLKNl5AEXOML20gsSctOxTpGQ3GH4TSFSWSdvZQUZPz8kflgCixh4mgMPk7Ew9ZkbG\nwKHVgT12AhxJcNKVl1wSwxWJwALIP9SnhS1I/WY9WsX9OA+g8PK1ChJWm9Y07NZVjWy8QkystNRp\n6UfzHYtKS6W1HIvme09k9l6U+hiMWQ8YzytxVaSxA7GBKpekChZ+3r3QN88NwQUJc6oxBj+fM1we\nPa2U9nYAVw8SJdZzKpCYafyRXg0gcnswcgCRnLtqJ9vq8qQOqVhB6Zq0tOk5GS8BDsv1oLg8YRdA\nMNBS/MFaOm1xQYpSi2msKOcDFLkreKg2rt5A0fhbQKLpLtkLQaKaadnITNpdiOkgMQkgzHRio0yV\nR/2p8c36lYTYGKu3ApNyItL/N8qA1B2xwMIBTX2SCiwEc0niEJMBhRa7H+cDFF7WAols/2cKEpUg\naN3460wjG4MAJgGE1S7PKBBLbk9EaLs+UrCyVAs4WBhSAA3NJKwyYDTqBrDQAc6iCzJHhDu0pity\nfkChpAkk7IZF3UUgUcuRsECi5JaUAAcTQKK46hHPvRSoTEBCA0SFPZRYQ2nD1MnYhBzHWuIEomDj\naOi+jWIXVlyjBSx0XzUXRDCWLKu4IvfjvIBiyhJoqa7ickx6irjWmQoSOUDKgUQLQ3Dv2wKa8bxz\nLkakWwGIKeCQjW3oNnJOawmnY1CEcgZoCOMNZYJJaFcEkIYPGyweADkfoFg7maqkl9O3Vjca4wfy\nfXHpU76vgURLXsRUkKCMTjQvxGNogIgYRTxGVGaBUBgLqZyAUUQigKPENCjHLnSMQrCLokgXQPeT\nYxVnJucDFE4mPQ90ySavBxEkJrIIJn2OMPXTYzG3jtIyE4QQizpec+PXOETe4EKqRXjjT04YrWYX\noS25tnHcouqCuP6bAEYChnYvWsAkcVGWfb6n3Mi7ySabPCBydowikVOziSlp2Tk20sImGvqblETV\nWe3FnCw2ofVybKLGJApuhskiauyhcrFjK2xUykoEkM2JcHXhnGSfgvpX3RAMzKKFVWSnSHaKd7Nc\nYUDzrIBi1m3scoFLpXflIJFzPWaCRLO74cZocjcy+RA1gCi6GQY4FJOucpy2Bh47FOm7BhIWHQaX\nROVOBC8knLjthsgApV4NScACiNsElyCdv7n64eZx3XI2QHElIBHVzwCJdNIAGkGikCdhgkAUCMyD\nRDV5KsciutzqhWQUcd/FIKX6n9tIlgCD8dE2xysI2SuoHId6MY7Mg5CWGgUsU3aRjVlklk7HwRVD\nScChkQXU9nacWM4DKNTVMK5rCKNM3Qm64t6NVUBiahKVNv4pQUvDxdBtSwBRci1M4CkAw1QXxBLO\nNJIgkIDG0NBewWgEi2jOqi+LVcSTo5QlNCZgTQporijnARStUopL6HpcI0g09DU50zLnalhuRhhD\n9d1pQLAYBcoAYQBF4qp0qW4NFGYnW2UMK+dq+Ll5wDD1Qh8ZsBBzlkunfj4pCI1GHbshol1yXo1A\ncEWAsRgoiOgzAJ4BcARwYObXEdHjAP4+gFdguG/mm5n5j6udLd3oFc/L1i+VyXEKINF8sxnZV6Mr\n0VYPm0WYLgGZLKIUhzADlAZQRKATLefaYyRzU/pzxTITiurJlcWAYbkkkQtBGbCwApzIuCANrKLq\nfrSAwYldk7WWR/9jZn6CmV/njt8J4APM/GoAH3DHlZksBImauwEgm5qtXYS1QIIIs0Ciw8giaiDh\njViDhG/rWITXle+9mxH69CDh2rIHAILQF88bIYB3sQ47hhPqu3EM3R93Vj2VX4T0peYIVR/NXZ57\nN76kzvB5I/zP75yVvwX1/ar3+neg2yX9WdJgreEcrfkukFO5Hm8C8O3u/c8A+GcA/mZefT2QiLtt\nAIlSHzmQqLGVjtK22pWw+hdX/9RVieepsyyTlYgciwjvdX9GX97IdFvFHooJWVaZPj+rPieuXRIU\n1Bu/xoo4+AjFMDwbEAxDL3v6+ZF4L+dQckEAJFf7ehyiXD9ZVnBP1gAKBvCrRMQA/nf3YJ+XiGd7\n/BGAlzT1tOaW8VaQaNzdmd27YfU3ESSmZFpaAcviHo0cSHQpuDQDhL56ajBIjgugMPOix9IQAZDq\nyAOHBowkHVsFPU2wkO0xGl1wQ+buAq25H/5zK90m74pkDaD4VmZ+ioj+HQDvJ6LflZXMzA5EIiGi\nJwE8CQC3ukfaR2u9r0TQKWzyWgoSWt9gP7WU7NLSaDE3QupYAOH0cqsZOn1bxyHM+IMs131mwMEM\ngupzg62TSLL0qK7yBnBowJAXfGsbuQkWvoHMhQBGA1YrIeYKCETbM8iLmCqLgYKZn3L/v0hE7wXw\negBf8E8MI6KXAvii0S48UvAF+xdzM5swdLJbxmv7N6w2OZDIzUeDRGToVwsS5h6NHItI3BW0AQQh\naVcDh1rwst3tcP9U+oPVrU6eigAjsAOpTylYQLAOHdwUcyc9iZz7AWSSsKQetWdpXiHoLApmEtEj\nRPSofw/gL2B4hOAvA3ibU3sbgF9qn1EBJGr3lZABoymbvDIgYc5jLkiocaog4YKLAST8FZ/GgF6I\nRXSIdTAey2ClDlSCIAKncR8+wMdifB94jIKBfk4+0NjFddFxF5frQKIMiOoyGOMmwVF5vqosOW8T\n8MaC0K+oT0T9nmR/q29yW7u/ibKUUbwEwHudse4B/J/M/CtE9BsAfpGIvhfAZwG8eeE4m2yyyTXK\nIqBg5k8D+A+N8i8BeMPkDidu9KrmSsjyHJsotJ+bUDVr34ZmE7Ifkm1FGxW0NOMHclXDCFgmbcSV\nVLKSqE8d25B1kO3j4+TzMepMnVAo3hPGOIDRlS6T+RAMDkHNoCdzIcRqiBWrSNsU3A/f58Q4xeor\nHwvlPDMzG0CiqG+tcuj2FWCZBRI5EJD9TgGJiPqmIJEELSPqCzsm4V9qjCQeUQAIExAy4NCcdBXO\n0yvk64KBYuyb5N2qOO2GovcxWHg9cm88WGRjFdGcYqOvgUZ6TmP761jNaJXzAYpsLkRllSMy3Ep6\ndo1JtIJEJumqvHlLzlPUTwEJ0b8FEmkAFHH/JPR9WwMgpL4JNMjp+HLVjxTdPif6WqECiN6yE9AA\nHAyIbmTwUixzBrAQ/XqdUObBwoia6sBmafVj1MG1bu6aK+cBFMooTJm6G1T317h6MRckxnmkdbNB\nIjJyBRLKKHMgYS57eoCIjFb0kwGIkmthroo0gIVZ79U0OADBYNWhcjvG/AhWuhZYQJSHc0DKILKs\nAvNchXNzL0pyHkDhJTLcCXs4WraM5+qkv90KEhbAiJhBkWX4+hJIJBS/ASSibeZ+bAQWEenrVY6o\nndE+qZNtFFAp/ahvxDo1idoIIyafbcnGseueiZwLwiI+EYPFoOw+a8dJEpaADKsQc5RJWNE5KpAB\nsNy1uCZGcj5AUQKJlrhE0oe8ilcAAGcKEoqJJEFLARKxIeplQAEQUGWEuC8iowwKNCipH+cs3mM8\nbo5RyNOwkiQskEhVwrFnBhZYWKDg5ybbWoleo3Km/VQ8UMCyqqwQ9zgfoPAy9y5VNZelxDJqUugj\n2fiTzM+uawIJ8VFUQSKaE2yQEMeRnhhTA0MCEBa4GO+zgCGkBBaBJQTlsZ8k4aoAGCZYQIKBb0OB\nVWQNlhCvgFhiJUxZIEC0igFflZwfUHgp3Vsi6DTGJQrso3k3aAkkurQ+YRnakOeCBMV9mLEIoAgS\n2sUYx7UZQj5+EesVmQXiNtHnJ6vFPopRERFASHBQKmM9BGuAAguplBHNKuQKiCmUBkdPIlPcjhWB\n6LyAYm5cwryS58FhEkiU9m8AZnr2WiCRW/7MggQZ7SogUXIz7DbKiAsAk3xWGMvNY1b6CUXg1OXQ\nAOLVxUpHDizSQGcDqzCk5Gqc85LnFDkfoJi6bVyX5VyKDAA03TG7lEwFZFYwbJAIxjUFJCh+L/uw\nQKIEEH4M7uJ2NlAUAEKBRMlF8TrR+WuJLXUsVscBRHhgHdrlUKpZsFgjDhACk1AIpYUKdfeZnA9Q\neMm5HGvEJZaABLUEJ43+ELOIoCcvnBmQqO38tGIRw/nFZbnVjFY3I9qPATEXA1yS+ZaAQls3Msfa\n9VCAEQFB3CTpNyRTiXaA7GNkFQkTKax+XIsYTOUBv11/+itavG28xjTMaeRBYhzf0AdiEInAJR5C\n50kUQUIbWQUksqsaGZDIpmsb/03XQ84zAzxeT4v+XJIlSQUUcglUJlnljN41UwYfG/4pDX7WyscZ\ny6Ldo5tsssnXhpwJo3BibfYaClx9IYBZu99gzu1ojG2YuRLufZVNlO5MpVmJZgOQfch2SNlEkR1Q\ntE08chncvKz61A2RjMh2QywXZTxH89OOcxqUqwFyDIMFc3D1zDQU9JwwCfneckWYUr2zcSvWljlP\nIhNyPkBxHQFMK6ZQW+WYCxJyqhokdDLVTJDQMQ0zcKkM3ow3dKk+Km3SWMeoE/0vCEug0P8DMGB0\nRUS3LPIXImDw75P8CXs1Yqi/oqXONeXE2ZrnAxROqrEJq74hOLnKlvEcQGXiFhGTEPXNIGFtES+B\nhDfWLm0jQUCOE8c1ABsoyM0TSEDAAJQSoyiKM8xg1AIoEmBACghhXFknWYk8FmXQ5Si0aZEpd6lq\nFQFqkwKWKwU3zwooqjfHjZVdXcZ42wYUY6QAkl3lcFJcCi3dvi6MmYKEnM9oaHWQiF2PuE3sUlBS\nBhjg0FnjjHPwbaqMInxuyIsVhRQIIJmEf1GfgoVctgwGLsHDHZvGXwIFyjOQ1UR13QxOuTmtPNez\nAoogrS5FrX2LyzF1NyiUK+LrFEiMdRiNVupbezdEe8k6iiDRUWqcpG5LR7ZutINUgIe8FV329neQ\nc9Lji3NpxW/BJmQMwldJDCEgLFVGYBFAQdz/EjGrkKBkGr/U0dJ6Lg+gnA1QmPkSwDSXw2AkTS6H\nUZ7bw5EkXBlGHtoT7HHULtChPAWJ1CArICGApQgS3tiV0QcWIRlIp9oI49egMcv1sNwN4WqE9rK8\nN8BCJ1KQUe6WWEmMGyGQfytAKpluB9CxcD5Am9txAnZySsYzGyiI6E9ieGygl1cB+B8APAbgvwHw\nr135DzLz+8qdGWVT93HMAYnMjXzzAUpRDl03dpNNqHJtYwZBeZCIjLAOEj7ekAtaSqM3YxTdOIYE\nkuTpXvLcZF0WKHJWR6GagRgMvJsh6j1eUDeCRfQZieFC6rQADAkAGgzOIe8hMXR93BfqSrJCvGQ2\nUDDzJwA8AQBEtAPwFID3AvgeAD/OzD8yudNWl6O2FNoyRia2UYtLJJknEiT0CocMXCbtGkAiGFwb\nSOire2L4BkMYwRTRXbGt/5aLkQIFR/XR/+iDDn/ADhzAlKxshHrDzQguCgRT0ONqt0OWlYRo0VW/\nBXRWA6bciscZbgp7A4BPMfNns6sWNckFL0v9FdyJpnyJbPBUlEmWkdkyPrRRbgnFcYYwLxW8LIFE\nbu9GFiQ8sKhApMkmuvicTBYh30P1Ec2L1bzH+uh/9EGM/0dwcNRBAgYcSKiYhGYSJADAs4PhMygs\nc2rQaAWRVmGDJdSkcvWv9nci92OtzMy3APh5cfwOIvoIEb2biF44bUYzXY4WkLAYiQYDPV6hfKjT\n/SFmGUBwNyaDhGYB3r3IgMT43Iw8SIyvASSi52v49zuEhw+zLote7F6qvDP+l15JewZ3nJ6/dJkM\nUGJ1HH0n4n+yInNqKdlui2GvsbKxEEAWAwUR3QDwnwH4v1zRTwD4BgxuyecB/Gim3ZNE9CEi+tC9\n/jlLoWzg0yca91FyOUzGoMpzcQkNKjJwqUEimaPSka5A1AdskJBgpJlB5FYMbXtlxH0DQPR7DgDR\n712ZrN8B7HWErvmSrIXGeY7zHQEjAkjIzwExEMhjqPcrSPGeFKV2zHk2MHdpVPVvykr5HGswiu8E\n8FvM/AUAYOYvMPORmXsAP4nhEYOJMPO7mPl1zPy6G91DK0xjk002OZWsEaN4K4Tb4Z856g6/C8Mj\nBtuktn18HMT8X7wRDVBeKQHqN6Fx5bFbkaZoywBmsgwK3Tbus7h3o0OkbyVHDZ+D0BXMIgpuiit3\nmLNolzIRjtoB7kIY5sTRnHM0P9rPEWISTtFfrX08InzuDOqHcyZ/zr4v8TlYSVRp3GLeFXs1mZtq\nnVvxuIJAJrAQKNzzRv88gO8TxX+XiJ7A8BV9RtXlZWFsovmWdkrHTJ5yksQmEmApBDDV6ST3liit\nckh3Q7SJQCLy1wW4oAASORCAeJ8ASQwQHhyGNoZbQIyE/svPwf/x4OBXOHp2CVAA9whgAQggEK5X\nyI/QwUipn1kKDbo+4IkCdU8mv4K03EdijqGfYx4FADDzswBepMq+e9GMSsa9pL+Wu1WJsc2YBUYj\nj8cAEqbh+xeGLNtXA5iqDXejfpwHodhGGMMACQkgBlCAoGIUbLTj8UofykXgsQIUY64EAczDb7v3\nnzsDPUCgABb+4x3WSFNWIQFkjiG3rkqsncxkshodT1BjRnO44v0eZ5KZWQGHJXesioYx9DSRydUV\ngKAUwJx0G7tg8KqNqZ+ChDbg3OpGxCg8uMiyHad6nQg+djyOI0CiyCY4fh9yJfrhcs80vPeMQ36k\n8rwTVlGRkHhVmo/ZcKJxsVuG7d3/luYms5g27NDmtIFM4GyAQsmEuMKk29qJstkuh7UjFAjGX41L\nRGMiAYl4ZWPsO45HCD3lTgT9RpAIjGKHkTHstD6HZUsNFCAe/0vAcB/HuAPUn4x7uVvKMWFkEeCB\naXTuZnRH8dUEINLf2/h5JR/5VJaR0y2Vc964ycVgimykZX5T4hMP9q3wMN3laA14tm4ddzqzXQ4T\nPAQzsLaMi35ycYkwd88iAkCMAU29dNgMErsYKDxIRCzC6+w4AAUCUIwgQY5ZkAcM8RENDGIECu6H\nuaF3Lw8SoDHJihUoCDAI7kfyeY8f11xXZBjbfj+Wzei4EMQ8aXzCly8EkPMBCi0Nwcm5d6sa+s/o\n6Dpl1DpFO56zBIcYJKTRa5dD50rIwOVwnppFxLGKKADpP5cSSMjXzrXR7kZIpOJwPAADj7GDXT8C\nRMcON9UllgnMfuP3ABLUMbgnMDqM1kzD284vTWBkVC5wSZo5zACD/NXfKGwtmyKcyRSdGZ+4CrcD\nODegsFw0wPoWAAAgAElEQVSFqW1z/Vguh3ZjWlwONTXL5ShtCjODl0AMEiJwKduMSVWiDwkEAYxG\nsMmCRMicdAa8EyzDgQRcYlQAhx2P4ACAdozOsQkiRufLnSV4FtH3FN4zEfpg7f0IFjzMhzhdBSLx\n3p9fVVriBFOAgDE72crub0Z84prcDuDcgMKSKQFMKTWXQ/U/zeWQRp//1ZptgZg9WHEJCQaAMHxK\nAGKMC4yfSZInUQCJwCg0iwhsgh1AOJDYMbpu+JV2HWO36wec7HoMpzv+WHsmly5B6HsPGh1wJPTh\nS3Bg0ctzcW5HdCMJ/5ZRRYrIdUiv4FM3bJVcjSFwmQYyZ8cnWnIkSm3m1DfI+QBFIaZQDWDmXI+S\ny6EZg6xz9abLYQFDzeWQfck+M3GJwCAEo0hWOBJGIbaZWyDhdRVIjDGKESR4PzII7B047Bjd7ojd\nbgAHYACHHQ3AsescuxBsondux7EnHN0Dno7kP+h+AAsGuHfjea9DAGL4zDSrMKQEAFmwsOIREc03\nOjPaFqVXfUbz4HXdjt7WXSrnAxQtUgpgWislQpo2fPm6yipHFGTUIKH1THYgmIEVl6DRsH0b7U7I\nPRI64SphEIR4JUOARHA99r58YBDYMWjPoH0/MIf9Ebtdj/2ux343LEfsOsbF7jiAhQOJjnhwLQAc\n+w5HJhz7DpdH/aPtAGYcaYxZtALCbFHuCBmAUAxk1hhCg3gGYpaXZKnb8UAEM/0PY8lNcpM+C2zC\naldzOSKjLwFWzl3x/SqjFuwgJFQpg/FxCe2m6NWNoK9BQrocCiTY/QJGJsGAB4j9wCL2+x67XY+L\n3RE39kfsnetxsTviRnfEruvROZAABpejdwBx4A6Xx11gGuHzZaDvhhyHABLR5zQNL7LByLkBSY7f\nl+ITObejuf9QtqLbsdJqhxcd+99kk002SeQ8GMVc0ayhdms7qavLjfqgk7u0tcYmVPtabCIKXmIs\n08FPc+UDikUEJmGzidH1cC5HYBMDi9jvj9jvety8OODG7oiL3RE3dwcAwI3dETe6A/Zdjw6j29GD\ncOg7HPod7vW7gWkchp8a7yjEL4jGJVW2kqlqkokV6BVaMzHKcDVs98O4Iku9YqCTF8UnSvkV1fjE\nynI+QDHnHphWe1XffGu7hpUOuRTaIslSKJC6IFZsQrselQCmLPfnFAAlBDRZxCtU4BJIQGK/H1yO\nG/sDbuyPuLU/4ObugIf2l7jhgOLW7hIX1GPfDXEKL5f9DgfucPe4R3ccfmL9zsUtmLDrOhz6YTm1\nbwUI70YwJW5BVF8RCxii8kIgs8mlqI3bEp/Qbsfc+MSK7sf5AMVUaY1RAOZKR7J93NU3r3SI+hyb\nSPpBGmfIxSaY0jyKKKApYx1ihUOOMQYwJZOQ7ILHLEsFEhcXR9zYH3Dr4oBb+wEgHt7fw63dJR7a\nXQIAbnYH3OwOuKBjYBNHdDj0He72F+jgYxYdjv0wuZ0LeoZPR6Z7y68iY9BmmRF09LGCwC4UKIQr\nsgkWilUUnmB+kviE2cZiNo1lK8h5AcVSNmG5DbrvQrnsL7eCEd1Fu8Xl0N23uhyyrWARIV9CHvt6\nASx6hSMwC393KeFqADBB4qGLAx66uMQj+3t4eH8Pj+zv4ZH9XTzc3QMAPLy7hws64sLdv/4IwmW/\nx91uj86tcvQg3Ot32HVDwoYMfMoAp/n7zrgP0rWI/rcYqAUMYqzE7TBAqMQOorZruh26rW5Tu9fm\nA/Ps0Rap5U1oPaDucog6NozaLG8VfeWPyhExjyjPQtb7OuleSGahlkKBtCwBDQ8cu4FFADBB4pGL\ne3jk4i6ed3EXz9/fxSP7u3h0dwfP290BANyiS9zqLtG5nIgjd7jTXeB2fwPAsPpxt98PMQxhgXoF\nJBJGYtDFq3nuv3pFcQvRfwwWGbejlSlkpBTLKLoduk3tdv0WgKzEMM4HKAogwFZ2o5elbCJZJrV3\nh+qcidBXiU2E+SNqI+stNpGwEcPlCPEH+d/r67iEcD8gciVoz+gcoxgCl30CEi+4cQeP7u/g+fs7\neMH+Nl6wew6PdHcBAI90d3FBQ7ziyB0ueY9nHUhc9nvc6S5w0R1DoHP4eCWL8CcF8R+jQTqkJCB2\nIXKv0PFKbgfDXhZ17edmY9Y2gZ1TENPL+QBFTUpsIscwWtkEUGYTU6PxwfAVqPg6P14ugKkYRXaV\nQ7gcMkHLA8MIGEjjEvt+cDdc8tR+P8YkHrq4jEDihRe38cL9s3h891U8f3cHj3bDzZBv0SUu6Iie\nO9zDDnf6CwDAJe9xuztgd3RsRad1u1UPYAALFiBBAjwSBiDBBBAGCiRgoUXpFDMzYRkr4jnVxLkd\nWf2e82zGOm4NYhqsYqnbAZwNUCxkE0oWswmrWysDM8cmxGlFm7UgAMG/d3oygMmqnWQTySqHcj8A\npO6IuOmM3LvRdYy9cz32uz6sbjyyv4fnXdwNIPF1+6/i8f1X8aLdV/FYdxsPd0Mw8xYdsQPjHne4\nyzugA+7wBXbUY4c0AQvAmNoNt1kMSICA/JVcAQWpFxD/T4Elbjd+CXFbN7GxzHI7SlKzw5LbolY0\nmu5iFbVZ18XISdNCn3s+xxeJ6KOi7HEiej8R/b77/0JXTkT094jok+7ZHq9dPMsTsgkWxq7HnMom\nzOVQKHch6Ck2gbFt9iVXTARIpG3FUqh2OTqEvRs+LXvn8iTk6sbz93fx/P2dgUnsv4oX757Gi3fP\n4PHdHTzeHdwLeLQjPNr1uElH3MARO+rRuctfz4Sjy6vwYDFkbBL6vhvYRD+8EtcjYhkNbkcEDJy2\ngeF2aBDRANGrY0ZgCZHbAeV2LNzbkZNJt8LTbGIhkLRmZv40gO9QZe8E8AFmfjWAD7hjYLh9/6vd\n60kMz/moizL4IUdgGpsIz7XQfaKBTXidFjYh3ANrOXQYw2YFteXQKF9CvjpK6qIVj4RFIL4Bjb+X\nhNsFOmzwGtKyL3ZH3HCJVHJ14wX723h8NzCJF+2exWPdPTzeAY91ezzW7fEwXeBh2uEGEW5Qj85Z\nVo8Ol7zDJe9w6Hc49MPyqN/7MYAEHEC4D8cziJ5AvWIOLW4HABs00roYHBiRi6DAZJUgptE+CXCu\nEcQ8IatoAgpm/jUAX1bFbwLwM+79zwD4y6L8Z3mQDwJ4jIheOnuGJ2YTuTFXZxN6zIz7oYOYYTlU\n9t/F/8dyHgOYQBSn8G6H3yq+23FwN27sB7B4aH+JW7vLsLrxgt1zeP7uDh7rbuPR7hIv6AiPdjfw\nEA2vm7RHhw4d3NIo73DJe9zpL3DJO9zt97jkDvf6Pe65LM3L427YKHbsBhek9yBBoJ5Gw/fA4a7s\n0UuBxAgqbAYxZf3woY/l4xcTg4oOYko2gZ7zQcwMmwgPAGpdEm3ZQdq6JHrNCVcvEc/v+CMAL3Hv\nXwbgD4Xe51zZ51ETnTORk9ruUNFXUqfZRLhFXWbMXJq2a9vKJkbjpwQcEjaB+L0OeCaMo4vHy7KJ\nDqDObQt3u0D9Bq+buwNu7A54aHeJh7t7eN7uDh7p7uLR7jk83F3iYWLcoj322GHnt4xzjx497jDj\nDu9xhy/wbH8Td/gCt483cLff487xAveOA0AACG5H3xP4SOBjN9yF298Wr8cAGBDGqtmEAxESYBKv\nlhjvFWjkwUIZruxrglTZhJTWe2K2sIkTsYpW16MozDz544wfKXh7jWlssskmJ5IlQPEF71K4/190\n5U8BeLnQ+3pXFkn8SMGH097llb+UYKVdiyVuh4gfTJaK25FlCKKtdjmsVz6IKXImUHY7um682YyM\nUdzaXeJmd8DDu3u4RZd4pLs7JFXREbeInJMxMIkj9zjgiDt8xG0m3O4v8Ez/EJ7tb+Krx1u43d/A\nc8cL3Dvucfe4d5vEOhyOu8Ht6LvR7eid2+HiE4FdaNdDuRs60GmtiERuRxLjGMsSt0Nf9oTbEY+p\n3A7rp+FdDn1TmTluh5epbscVBTMt+WUAb3Pv3wbgl0T5X3GrH98C4CvCRcnLVLcj51qU6jLLoS0J\nVskdtXNLoii4Hf4Ysp6yIOLn1hrE1KsjftUDJNwOGu5QtSMO95MYXgdcUB/2btzqLnFBw/sd2Nlu\nj7t8wHN8D8/xPTzT38NXesYz/QX+bf8wnj7ewleOD+GZ4y08e7iJO8cLPHe4wOVxh3uH4XU4djge\n29wODx5RIDLjdlCv3ATDJdGrG61uR3PuBDACytJMzJzbUcq+PGEwsylGQUQ/D+DbAXwdEX0OwP8I\n4O8A+EUi+l4AnwXwZqf+PgBvBPBJALcBfM+iGU5hEy11OcawhE249lbW5vA+no+VYDXqpeVj/+I/\npB5H5SEPwz+cpxt1hhvhjrex27kYxb4bdoH6vRvjEmeHe9zhHvcAjuhwxB33g7zNhGf6G/jS8RF8\n6fg8fPn4PHzl8DCePdzEs4cbuH24gbvHfRyjOHboj7sBJI6UZROeRQCoBzHlVR6qTrGJkQ1wCgKN\nbGIEmgqbUOAj+2thE3PusE3WrfCuKpjJzG/NVL3B0GUAb580C/8Dr90wN+gX2ERDGwD5VG2vayRY\nRcuhTi9hDCrBKru6gZFNyHLJJlpcER3oHPRZ6bg7ZYe7ZY/3uAyp1eBwSzsAYe/GPeyGZKoeuEE9\njiDccbfFuu2YxJeOz8OXD8/DHx8ewdOHW3j6cBO3Dzfw3OECdw573L3c43h0bsthh94xCvQAHQk4\nEuiIsOpBbhUkYgfIsAkd0IQ6FuxhXGqNl0OH+hOyCZ2FGcrjtma5rLsmNgGcTWZmRbxBZ+45kStL\ntpKbbQp1ll5GkhyM6Mofswndn8kwFEPQ/3XORQRAnSwfQYMAdO75G/IelwCiLMojKOzduNNfAB1w\ng4/oqMcl73CHh1TtZ/qH8PTxFr58HEDijy8fxjOHW/jq5cAo7hz2wd04HIYvwq92eDbh2UPIn1Av\nQLyXrgd7lmEsh0Z5GLFLolnH+CWkbEIviUZxCYj3JTZhLYdeB5tYCCRnAxST74UppeR2qGMzC1PW\naXApCCsDHcvrwBDKjPbjvMf/NbcjrfN3jRqOicZt3RokAIw3xEUXNnT5DV4+LRuA2/h1EwDwbH8T\nXzk+hK8cHsbTh1t45nALX7l3C89e3sRzlxe4c7nHvcMeh8MOvXM9+NABhyE2QUf/gnI7KAaKCBhi\n4LCSq3QWZ4lN6Bvszl4SlWxCtZ3NJnIBzitmE8AZAUVVJtxZO6nL1RdYQutNaaI2mSBmFPew3A5X\nbrodvk3F7WAg/kUq1yO4IAocPED0oOHOVH2Hu90+bBW/5H1Iy+7R4U5/ERjFV4+3QuDy6cPNgUlc\n3sSzlzfwXACJbohLHIZx+OBdDeVyBBZB8aoHELsYcjUkk6o9ggNHdWkMYzTqUrp27sY0tQQr89b5\nc9hEQ4KVmVx11TGKK5NS9qWlB9TvrC3EDmJSvq5FcoZd6l+BSM7tkG20+2HNI+m/BIQeINz/g7tj\n9t3+Itx05rJ3u0CdZfi07NvHAURu9zeiwOWzhxt47vIigMTl5W5gE4duYBKAczkAHDGAxNF2Ocxg\npl4ijUAjwygAARC2mzLUxSAwVYpsojUlu5aqLcuvkE0A5wYUOWlZEhXSsiRqigxi5kQHIKO6CW6H\nLy8BlAIHK0YR9VE4rTA+y81Z4y3qDv1uuMel+6X3TLjTXWB37MNt7nxa9t1++Nk8d7zAneNFFLi8\nkwMJxyhwJNBhdDuCu6FBQxp+r8ChR1gOTdwQIGIbpvuBDChI5lFgE+GKn9lKvtpDfSIQMQDB1Tex\niQf2DldTYhQTVknGstr4GbcjpyvYi+l2RGDR4HYYIFScew6MMPxWSFQMdjDs7Dy4id/rd+ONcDHc\nmeqiO4Y+jkw49Dtccoc7x8H1uHfc47nDBe4e9yFw6d2NBCTcIwWjuISLTUTuxxERIAASHJB1OWJG\nwQZAMKDbCPdGG2gVJLQY9Tk2QdKIJejIvnJjlOpPKOcDFEuDmDPdjtkuB5AwCF+m52TFKLJzsvqy\nGEMUe2iYKzs20YvH/PVdyG8YVz063Ot32Vvw3+uHvAgAuHvcD8lUxx3uXu7d6obLvJQg4VgEAAES\n41KojktEwODmPupyvAoi6tIYBTwqxi6LXrUAELGJmoR5NS6HWisjhsuxCpuw+nhwblxTkKWPB1R9\nreJ2ZFRKbkcRLCgtS0Ck4l5khYcOmQkMDmBxpOExfyG4edij3w3gset22Sd/+R2gwBDXuHdwO0Ld\nEmh/3KE/UMQkvKsBAHQQLoYHDMkupOthLI9Gqxk6O9MbT4PLkdzirtXlyKRpm2wjF+Q06sky9BMl\nT82RVTaFbbLJJg+2nBejmON+WNKaZJWdx4T4BJDNxqyNYZYZ5VPdI3Iuus5U5H5gVH3fuaeKizF2\nQ8xCpnV7t8MHQI9MA3tw8YbD0e/d6IaMy35gEn4JFEeRK3Fwc7PYhGIREYOAdEU4CmyGYKa46vvz\nzcYmgCjWYa5yqFTtRCLmovqY6XZE5Y0xiklux4OScFWUqfEJJSeJT0AEHjNj5QKZ4xxgA8Yaomg6\n98NTw3t2RqzIJPPwBC+fiOVdkgAS7j4S/g5VwLBv43ikwd3wadmHLiyBjqsbGF0Pa4XjaIBEEqOQ\nt6CTADGeo0zQysYmjPdjm8wKhnQ7DJ2g17o71Nfn6gDb7bDka3Z51ErXFrJ6fCKM1zo/5I27FMgs\nrUpkYx4N81GAIMuIafgd9RjiL+6p4T26UDheeAiHfkzv9jLeCHfQHbaIDxPr+y7sApVp2UMyFeLA\npTdiCRJHxPEIBRJjjKIcwCxtCivGJqI2M2ITLSsdFpsorXTkApo5NlFqfyZ3uFpX5ixxaqmlcgPF\nK3jTA4dLbcP7+lQtsEjYRlMnrI7hfow00mIHFhwAwoEFM3oHyMNmMQ7vh248ILhgaO/uoO3YAfck\ndoFCgATFrgUPoAAYIKEZRJRw5X/o40sHNnW+BJBxOSSw1FyO7Odd2EJecDlIsQv3BYx1so3rKzc+\nUHA5TsguzgcocnIit2MtSeIT0TiNZbq+lUnI9+qKCvfbpN4BXD9UBLBg4Eg0rhQA7oHBMfCwYxT+\nRrgBHIAADgEg+phFREbvXQ+9uqHBQRk3oHTFuRJzwjKGecexDPNmuWEcd/7q82xyOUK9MvapLkeN\nBcwBgJVvXHOeQHECtyPty9CbKo1AsMi1SBqJoTwY6N9CYBE0VPZyYgNYcD9sO2efCEWcfh7sWAVj\nvKW+BwdA7P50LEIlT0Eee0ahYhJQoKEDl75NErwUN6oZ3ZDR6BP3oYcJEsH4W10OwUaaXY4Mm4jq\nLEM2wKLKJk701LAzAYqVVjsKbUo3z50qub7MQOYcUQwh+epdHWMEi5hhUPhBMQGEIYdi8KeQxCwG\nPfdDJAk4JGi/Awn/HwiJUgEI9Fbxo9CRQNEIElHMQbCNkL4dsY/MPSYCiIwfj86XGMsMBgCha7ks\nrS6HiksUXY7a1b+VHazokpwJUBjSYti5zWHZPvNVyVPAknqU3YKp5dmJpG0iMCClK2IRYeo9wBjY\nBPUDSJADieAq6b588FXPJYwBZ3QWUCgWIdwNvYIxCSQEo4iyLzk+TgOXQk/HJVpsRrKJ3EoI0O5y\nKENtcjlKbEL3m5vPinJ+QNHidjTK7PiEEcicJDNvgkPMTecpgUMahfxteEMbWIdb/egYxCJQWwK+\n0L9gFf65G9KAPVhEABAvfcrVhgQYonYxSCTg4tiEzryMApdAMHQLJMzsS8R65vZxY4UjfM4tLofl\nwmidQt1slyPU6wlMk+p1OPM4wf+ZiH7XPTLwvUT0mCt/BRE9R0Qfdq//rXkmU4wxF58gSvvJxSdW\nlBbjzt7Et2kAGFRbvleBw2BopPIVyCVCQSRClV8Q77sDQAegOxA6Xy7djCPQyZRsARKlAKYJEuJ8\nLZAYg5VGElYEDBWQUHpZIJDF8gFA4TvivMshbHSRy9EilruzgrQQ9p9G+jjB9wP4U8z8HwD4PQA/\nIOo+xcxPuNf3L57hqeITa618NHYTnhQFmPRX/uisyH8QFvo5ANFX5T42XgkSOMavCCi80R8wHh9U\nHOKAAUD0rlC3utEZ+ziaQELqeIZggYQ49/AZCwZTA4noe/EiXQ7tTiy4tZ3pcmjdJWwiBwwL2QTQ\n4How868R0StU2a+Kww8C+C8Wz0TKKeITtf6uQYgHMuD/A0AuRhFcC6/vdMPKR+8DDwB3zlD8+R3h\n2JbrmziMYX7S/vfGlACSNsIQmxDGbYFV3Ma/2NYVLGI4f2MZ1IOEdi+gyoAEJEzx+lZcItSJ/oDE\ntbBjD3qcjJEbdYvugbmSy+FlDVP5rwH8Y3H8SiL6l0T0/xDRn1uh/0022eSaZVEwk4h+CMABwM+5\nos8D+BPM/CUi+mYA/5CIvomZnzbaPonhaee4tX/+UHjKQGY2l2G+C8JrMxLJJqTbQeNxYBOeWbir\n6sAiRK6EIxAswjbM/j1lP4+RTTgVi024D1eyh9glMFwHEcz08YYcC0kYgWQTkVsg9DTTKaxy6HyJ\noWxkE+NnwUncIgleqhiEFZuo3gNzSSyhNbFqYbxiNlAQ0V8F8JcAvME9ywPMfBfAXff+N4noUwC+\nEcCHdHtmfheAdwHACx56aftZLMm1KN5ronkGq0hwNzw4aJCgkeJGLocwYIYEiRG4yOdHeGX9Auzz\n5fh/6nZQ7BIYIKBdiGhlAwgUPQcyUUwiMvwUJGQSlXZVWmITEQhEAUcEkAhipXc3xiZ0me8vKp/j\ndlxBbMLLLKAgou8A8N8B+I+Y+bYofzGALzPzkYheBeDVAD49a2aNKwlFqT2e0OpvbcCQAGAdC/E/\nUCZK4hYyLhHKfHcCLIbzcB9fiEtwxCyGwTJzFf8DOEjA6HW9MnALACJwYVs/KtNP5DJAQjMJafRT\nQSKcf0MAUwUvJ9/ariGQOfuO2tG8ert8plSBIvM4wR8AcBPA+2n49X3QrXB8G4C/RUSXGD6q72fm\nL0+a0YoZlJbM2bA1fRBuYzgeNCR4CAMJhuK7dGWMETgisPABSsccJGB4N2RQyPxwvEshxw8Gh4g9\neL0oCcpiEc7wJQuJ3RhdFoOBb5OAhHBdtBvRAhJBAmtRIOF1o8xN9bnlwMByOaL6BqOvyRW5HF5a\nVj2sxwn+VEb3PQDeM2smU67+rbfrRwPruAKJ2IE6jlY+AAwuxsgqgAyT6AHqFFh4nQgkXDNPlsY/\nqYgreDiWQAHlRkSGi4QhaDcj9J24GcLwNegA7SAhx8iBRPgOOIpJmKsciPvzc0nyIkpxibkuR4lN\nlIAm427wdcUorkpOYuhNW9brOtQDvMvUKXAIhi7dCSDeKa6WPsfOBIPwbgYcWBjxhwAapFhGizBi\noPB9ScDQoGEAhmQHEigSBlECiWh5sw4SCbBYd6rybXTg0rWL4xblu1WZezmAFCRywcwaSFhgUbjR\nbgISrnwpSAD3AVCcvTiDbK0jHnZe6MDlUKdYBSgqT2ISiPEnvPcgAcQ/9BJYqN+Spv8JGKgybbwR\ns1BtrPwHzTCiXIYAHhWQkMCijDyXnh3lRMjPIErvFoDg+4o+O2+oRlnOwKeAhCVX5HJ4OU+gWLiL\ntHVpdC1JjD+qG40/V07yNyrZA/wVgaJQhgcLySSiYKWOe0hQKgmPcwvH0th5LAt6vlwacgIcok3E\nJgxAESBhLXeWQCLMOwo+GiAhvgMZkxjKOA8SMnAJ0dbVhfYlkJhjwFNcDlW3BpsAzg0oJrgZxaeB\nrSE9T141yYGCrwPSet1Gs4exERKwiMoEMCTuRstpcPy/xCgSHe06lIBCtEn0vcH3uk0jSAiDNFc4\ncoFLiHFyRl1axSgFLxtiDk13rJricoTqSvsJcl5AkZP77KECg7EPW7utFRTPQORKhGQVmhCg5/C0\ndw0MUdBSdiD+l1ZxdBAvKiuAg6+3DF4bv5XjkNZbwMFiHFG2JkjIeVkrHBoIMoxi8t2qpoCElFJ9\nrs3XxAOA7ndhgwGQXZ+NOQDDl00DkwrLn76OET2YiFRnyZhex5hrmJN+r4wv9FEAiJLRW65Gou/H\naQSJeM4cjws5Dsd6wDSQUEyjGrzUZTmQyEkpflFzOVa649V9dq3eZJNNrkM2RmFIsrS5tjAg7jsV\nBymRehBxfbwaEtwPFg1gMAhrqVbWc1yXuBjKZUjamExBtYOuQ5FN5PZuZNlEmJdiE5FrY7AJ+Rnk\n2ET47GI2kZS3BB5zMjUIasQmssFLXpbOfbZAUXxG6LmI+zEPS5WW4bs4BQpGb9zQNgpkRvruP3Nw\nQ4DU1QiNYBxnfkcaKBJ3QRlzNN/E0EV7C1yksfeA6TI07t2I+zRAQIIEYNSLPkL9eFBLzy6ucliu\nQmtsYsodq1xZAhIr3mj3bIHi2kRatVUHjMuWa4CWAAaZgJUFC6eYAIZSJquxOAd9TkFVg4N8r0Ci\nFSBSoKiwCAkQGMfVIGEBTNROg0TCNIyEKtG2CSRkW9dndGyAxZUHMBeyCWADikh86rRdh2nuSDD2\nkVUABjuwmIgAC9dVmEOUSBWhB0zWkIAI9A88Pc8wfwku+hgpEFTdDKAJJJL9GI0gEZ3XmiAh+0w+\nP1m/ACSk1J7tYQQwT+VyeDk/oJhylb6CUKxf6izNy3Q/aqfBKIKFUxn6R2w3EjDkcQwQvi79AZVW\nPDQ4hLLC+5KLEhm41IFoa4EEIzHkCCTCHBaCREL5DZCoxStKZdrV0Pq6bMbW8aZ8iSmxEkPODyiu\nQtgwfGmhXipJV6WMTN+nZBVyGJ0/ocECYjqMFBwgyoKSf6tdD3Pu6Vzl/7xhS508QIQ+WBu21+Ox\nrJKSHdqVQEIFFptBwmAMoU7+j87XMPo58YC14xJJmvg6bAI4J6A4ZZDSAoGKZF2NyFLTuhqrGIHB\ndUU2WMihLMCAn59WggECORF6abAv1knYg9QzwSTdLj7Wc8oi/Fi6vRdrF6gGCX/1XgASdnCyESSm\nsHoF4foAABhgSURBVIkSSLTGLKSUQGIhmwDOCSjmSI/F7of/AUSxCQtYOJ9p6X/0+tZ4MSh4i6Ox\nDWywGEBgBAwPChokSozCPtd03ma9AofhPZtsQ+pJFmDGIcS4rfeRiOZWAYnUnWgAieoKRsYV8bLG\ntnEpubrWuIRmESuABHC/A8UMmRyULLVhpEucvky6JCzfCsCRYAH9fsyX8HVQurJA3++idj5yvmad\nvtJDGT+kHmyAkP34PkrLnkAdJGTb0t6NlUBi7G9lkJByFXGJr4m9HqcSg5EkKx8qTkEsbEslMSWs\nwgOBMmITLIyVDhJWrJOsgush+o1PRHRkSI5dmODgz4W1rj9ujENAlPt+LKBJViQyIBGB0zyQyLKF\nqbtBayChQSDntkR1DfeXaFkG3fZ61CUyfGYUYyHeCENbxSSs9hyzimgFxC1NRgsSwc1IA5wQeiQO\nBjdjRJEINIBoztG55M4xnJ/+8Y7nnRzrOqAMEK59dNMaCIOP2sRbxGWfso3Oj5Dt4/lOAAnTQI36\nJSChxeorqWtwIUogsZLL4eWBBIom90IZfcIkCqBB8ncpliFTd0MAiGojl10lS7GIQJpPwdBsJjk9\nohQIIoX4MM8WxLE0zqROzM0DhNNJ8jY472rkg6Z1kIiXSFcAiaSucPXXICGl1JfRR6m9udmrFLi8\nqk1hmWeP/jARPSWeMfpGUfcDRPRJIvoEEf3FVWa5ySabXKu0MIqfBvC/APhZVf7jzPwjsoCIXgPg\nLQC+CcC/B+CfENE3MvNxhbnmpeZSTBTJLogBlnGKjPsRMQkRq9BMQ7MHvxoi3RCI7qIyNU75PhPp\nlWTWqgegruBKXzEJANmAZdxO9GllWkL1kVvdiHTGQZrZRMRCRH3Sts4mIsnFPmRf2foJd6tqZROn\n3hRmPXu0IG8C8AvuQUB/QESfBPB6AP/f7BmmE2oHhcjAERur78J/fp5bKWMsxSyC0YdAZBqrAAmw\n8O0AI3hpA4bXD6cvyy1UscT4feWDmf6Y1bGoj4y+AhCurRnbKOz8DO+B8wOJjIuwyh6OFpCouTda\nZ4XEqyVZCO8goo841+SFruxlAP5Q6HzOlSVCRE8S0YeI6EP3jrctldOL+nDlVTi5IuurgPa7ZbuM\n4ehMxmAg0TEHgwivXuj1iOt8Well6EK3Y/dDZzYf0hMdu3MxHwvoz1OdW/jMBEjIz0C2C+97jDEJ\n3y70Iz5vATh6rOG7k9+NMs4eNkjo7z1n9Do2UQOJpbfaXxkAWmUuUPwEgG8A8ASG543+6NQOmPld\nzPw6Zn7djd3DkydgBuq0AVu6OXQvjuXeGBuJoiuudVUURm7T6ri9+WMvAEfrKwGNXvWvwMEGsxEc\nEoDoBUD0or0HH3985KKrkQQtI7cn1tMgEX3/op8RhAyQCN+xYeCNqxfN97xsXQp1ZczcBhK5cbTe\nApm16sHMX/DviegnAfwjd/gUgJcL1a93ZS2dtrsUDVJb+UjqZU4FI3E/zFUPy5UJ+mNsIsqvYIT8\niLDMCdGfBxA135DZKeY/vKl8ZiZwRh3bdRL05HGUhJTWmysaQGzQun/53nIz5HlEYGJkY8r3pazK\n2iavEr2XzHPKbtDsPBvSrVtBIppvn6+bKLMYBRG9VBx+FwC/IvLLAN5CRDeJ6JUYnj36LyZ1Hq4g\nDJM1aKkBZvQBZ8bLuByJEej+ovkiMpbQXl194yt2TNMlazAZARuvnsuvSFeNb7glkh0k7OEo6vt4\n7rI/7WJoN6Poasi20Xc0tvPfQwIS/rt07sRkkAjtM+Ah/6MCEmKeUf9JvW30s5iElBVBApj/7NFv\nJ6InMHx9nwHwfQDAzB8jol8E8DsADgDevsqKR8uejgojaUq8MlhFsgJCGK+Onc+uHPrTwc2ovf+u\nJMPwgKIYhu8iOcXKR1CS+opHCqjRg36kTmTEon8JmkDiYkRjyT6tTV3WfLSrIdpA9oNGkCgZttVW\nuxqWTq4vKdYFMAcSkU4DSGhXY6U8ilWfPer0/zaAv71kUoXJtLknJT1nwIB2GcY2kXEXXJCoDw0W\nQsxUbB/cNgBD6kX9yPlMkQZQCHV9Wm65F9GcDIAY6+wxqysaMNpaIKH7QRkkJm3wMvRmgYRVD5gr\nHFe9h6NV7s/MzGCU+TtSAYoB6PtKVFhFzCQM4MDYrwkWglXE4BQzDOnzy30ilOEPFoDkxA74Kh3t\nuuXYg2QOQbcAEK6NxUKyLMIfW+Cig5aibdGVsOqXgkTO8FtYSRhvIki0BCULbOKBf0hxk7S4JoAJ\nLFFg0gKPwCTivRuhzRSw8GN6V8NwScKwmfNJ0rdzkvld6GBk0reu0wAhffQCQIT+TKMf+yqyiFxu\nhPw/NSU7aV8x+hJISJkDElHzRpCY4XJsDynW4j8QotRgIz044x2BIUnC6mJw0PGKqI0FFoCZPCVB\no+RqJFd6fQoGkNTaFIFB1kdXf1+mwAAoA4Q7TlwMqy8LUGogUcp9WAISRj9ZkJjaH5BdBh3rC8bf\noqdA5sF89qghwTg9a8i5DDUJxlx2V0L/JbAIfoQCCwDkXBzNLkL34cTEAcVGa90QVwtNDBFnQcE4\nbmEPsZ4aIzF6Oc7MWIT83+RKVHQa3YjV3I2lW8ZngMSasj0pbJNNNqnKeTEKfzVvYQ3haq0Yh+yn\n2B6j+wGouEKdVQxdGAlTGTdEujh++JzkApmzxeoucUNkXYObIfqoMgmLmZjuSYZJyPcbm7D1DDbB\npTlMlPMCirVFxym0++HBQujW+xzbpABScUO8CHckukHuqaQECkEnDw5ReeSitAFELsMybjMRJAr1\n8dwqIJGJOzQlU8n+crpLbkCTxDcKYKJkTZAAHnSgmCFVVgEksQUNFkDKLrxo0CAVxDwFcKTJVgYA\neGkFB1FeBYhim4zuJIZgza1w5a8Y/yKQkFJIzV71BjSlFY4VQAK4T4AiG9C03A/kdAqsAohWQUpg\nASAGjFz2pWIXPo+jBBo68LmKGD/gHGtI6grsISqrrWhk21VAYmqmpZqDadQllwWNIJFJ4491GkAi\nKmzY72HprrwMmpPzAwpp4MC8FY6MZMECQBSzKIDF0I8ADAEWaZk4Lf3j6lJQ0Bu/1hATeCzWME5C\n1BWYADAJILLJU5Fuwfhb9KbGD64bJFpXKRriEiZItGw2a5TzAQore7IkOVYBZJlHvU/UwQKIACNl\nEqoslIthJNPwYgDHKmL8GMu7R1NwiMqTTM4JACHmMwkkpjCNSK9Q5+edM/yVQaL4pPGFG71ODRLA\nOQFFRczVjRZpcEEA4U6odglYABFglNhFVB5OJL2Km8BhiQTSxquRHbiU9QmtseuMFYyo/wYXw9af\navwNOnLMU4BEdsyrB4lEVopJaDl/oGhhA4JVAKgCirUHpLQSklvq1O5IEvNAJq4RTSZjzECaUVpj\nB2YnaVFpU1hSX1riVOXVQKVu02L8LXo5QywY/oMCEtXVjRXYBHBuQOENtwYOrVmaLS6ICDY2gYUv\nAxJ3JGEXXhTLCDqAaahyd2uTVPSqWZlax4g9RPPJ9NfEIOT7lmBlq94Ew29Oydb9ZoFp4j0lgDaQ\nqGwZnwQSD0QeRfWqODKGbPq1AAFTL+eCeGlcDQHaAWPQNdKxDeAo6lck19fYaYN+DRxkea6/GkDI\n4wl7NZI5TwUJeT5fiyCxgpwHUFiiab6WCqsoxjRawQJAFOB088kucWYCntHQOSAgW79ZCs2qwAAk\nP6xJAAHkg5T6/YQlz6xepNtu+M2ZlrLfTF+DzhWBhJIiSJjf9YOYcFVZ/aiyBcBwL5CCSo4llMAC\nqg8AVZcEiIBqkgsyUYogUwGGoX2mnqWO/eO2gWWO4RvjWH3K8XOGrF2NBl2z36Q+b5yrpmUb9cVc\niROBBLBtCttkk00apOWeme8G8JcAfJGZ/5Qr+/sA/qRTeQzAv2XmJ9yDgj4O4BOu7oPM/P1NM8m4\nEMX63MpGKaZhsApAMQNr6dSDdSGbMmEWrt68AXDGNVlFcheRknth1NeWOpM+zKu+ap/TrS2PRrrt\nDKH51nVhvmfEJmr3lqjlSqy4VDrrkYLM/F/690T0owC+IvQ/xcxPrDVBCyCqAGDp5naXqtiDBotk\nPOmGGO1DsQUaTm/oP3O+a0nNtcjoTHYzZD9zACKnW4sdWPUaCJfGJBKd+xckTn4rvNIjBYmIALwZ\nwH+yaBZacnGKGquQMYKILTRsRbdiFmrpdChPlz6TsQEbNKSelqmp6g1ffGmX6HhstVsOEFE/WWZQ\n0a0ZcoEZzNoiXhx/Rlr23J2gS0Cidpu9mbI0mPnnAHyBmX9flL2SiP4lgKcB/PfM/P9aDYnoSQBP\nAsCt/fOHwpz7YbgLZsp2od0UsBj08+wiqFugod0O5PMhmgCkIvWEqzJrGPtpAIdiADDTVw4sWjdz\nqfmUQCKbRJVrtxAkZiVTlfRU3eTU7BOBBLAcKN4K4OfF8ecB/Alm/hIRfTOAf0hE38TMT+uGzPwu\nAO8CgBfc+nfTs1G7LptdEK3bAhZANm4BpOxCjj/Uq5WLnNsRGpYBZJaUfhA1YADaYg/WODMBItKf\n6w6IskmZlrrvnN4cgAAeOJAAFgAFEe0B/OcAvtmXuaeY33Xvf5OIPgXgGwF8qLljDQiWG1JzQbRO\nDSy8znBiphsRsQsvLSwDADSWrfgFxv3mq2rAMOjo/nJGVujbNLgG/RYjzoxTTaIq9b8miwDyIFHS\nU/VVkGioq85zoixhFP8pgN9l5s/5AiJ6MYAvM/ORiF6F4ZGCn27qLed25HRyLgiQD1paYIHWNq5I\nJ2iF9hnQAIoGPDSq1Etp/L7tJKsCawj9F4xtKkCINtmgpnyfM+CMvrmisUb/S12NpL+VQSI312z7\n5RemWY8UZOafAvAWxG4HAHwbgL9FRJcYfiLfz8xfnjyrFlYh56hdkNIKRy7NuxQU9e+RGlcr04jb\naIaUPbWiVJdWp7KGXFnOvdC6GVCZtJohywtjNYHEVBYBtIFEzfDXAomJ+zdOBRLA/EcKgpn/qlH2\nHgDvmT0bbdRAyjLmGn5rGxTaGfOpMg0gAbnVcycKP4Ym1mCVtYKDPm4BCHncasA1V6M4pzMAiakZ\nl2cEEsA5pnDnRLKKguEDsFdDKm2K7YAUMLzUmIaf+xVIMThaM3ag7FrU+pgKEMD8Jc+K3rWAxBS3\nRNWfO0gA5wgU2u2Qxw1gASCNWzQyhGq8Iyiq+RnlzfeYmCjtW88bWAOQgMMwRqMRqvZNLgbQZrwt\nILF0jMqGqllJVDVdVb86SOQAouXZpQU5H6AoGP7qYAFkAcNkJYC9QiL70eW6LswrKZovNRcmV18D\nB922AA5J25YYREkvF4dobJOMNQMkZgcta7qqvgoSle+3eflzIUgA26awTTbZpEHOh1HMlYI7Ucze\ntFiLagsYzAJGP1JKDOOUUhqrhUFYfazBJICrYxOnTMcGlrGJKWnZVt9KpzkusQKbAM4NKEoxhJz7\nUelnctyhBhiyHy8l4ND9L5FW4Mn8NqrBSatsUYCzMdaRA4hWd6gVIIB1QKIKhH2+To+j52T1b+kk\n9acDCeDcgAIoxydKsQog2664dFoaV/Rpro7I/qTk9p2sLZXfQRNryJW3sgerbI6xYwWQKILWFQQu\ntf6JQKIpgKnmnTxXZqKcH1BY0gIWvg5oXzoF8mnchTLLAIuMoyRy/JkXgPo9MxsBYyp70GWtRquO\nFy97VnUbWYTud0WQWJpxme2n5h5hOUgAZwQU1DO4sAEskpob0hq3AOzYQ8klkWVy/jXwyMkEcGhO\n1JrJGrLj1NjE2gBRO24FFqAtP8Lsd4KrofUfMJAAzggoAAMsgOlLpla9OjbjDsB0lhFNvg08VpU5\nTGJu/GIJQBhtm1jElDEnUPrqY/3mxiOM+pPtAr1CkADODChMybkd+tjYazE77lDLnfDSusIxJ5A5\nFWRK+q2rHlY/VUNZCSBqbaewjyXP/jwjkMjmSVwxSADnAhSS1UtWEeobwcLLhEBnGNdiGbklUdlP\n1EkGENZkFi19tbKGXH9TwcEqy7kYFd0rYRG6T6Acj2gwzCJItDx3YyWQyALEg5iZuTpYeB2gmMIN\nNLAMKdbKyVXLSVc+VgYIrd8ah6jqlg1xUsCyOo+VU7INnXMDCeCcgAJIwAJADBgaLIBysNF/cLk+\ndDvZFpUlUaANPNaShu+6GBOZAhhTjNQoqzIIXVZ1BxpZhDHOaglUlv7UJCpzjPMHCeDcgMKQhF20\nsAldpgEjwyZKdc2rGuvluBRl1pJoqXwOe1BliwBCz6HWdkpehO4bWAYSV5Uf0TIXnB4kgHMECit+\nMBcsgBQwLHckDFTfFRqpZ77YpmXRikxaMZkDGtkf13TAmBSDsMqmtp/CInT/NYCo6V9nEpUxn6sA\nCWDbFLbJJps0yPkwilKwEo2sIigX9Ky4he4jx06s/g05af5ES9+tFLak28AKFjMJPacpTMKoP6m7\nYdWbY14zm8gxiYW/ySqjIKKXE9E/JaLfIaKPEdFfc+WPE9H7iej33f8XunIior9HRJ8koo8Q0Wtn\nzYy5jeK2RuKtL0O+LP1S/6XXXKn12zqX3Hla7XJ9ZfSo5/DK9pU71u5GadlzggEy8zSQyH1OOX2r\nHl87IAG0uR4HAH+DmV8D4FsAvJ2IXgPgnQA+wMyvBvABdwwA34nh7tuvxvCAn59onk3JEJwkP9LG\ndtkyLzmDku1agaDF4OcAzBRQsAyxBASVzyr7ubcAhDXHUpug24+vjH6yqpH036cgUZqPb5Op96CU\n5EnUQMLQuV9AAmi7ue7nMTzYB8z8DBF9HMDLALwJw925AeBnAPwzAH/Tlf8sD5/CB4noMSJ6qeun\nLv7EKisZpisSKsuburK6XqwsT2uOJZkS0Jz7Zday73L9TiifvJJhHbe4PLWrs9KZs4MyYTQ1/amZ\nlnqMnI7VV6PxXwdIABNjFO4ZpH8awK8DeIkw/j8C8BL3/mUA/lA0+5wri4AieqTg7tF0sJyBK7AA\nYCdnWW11mSwfJxYfW19M6V4YuX6XSEs6bm28FgN3Uk2UypVdAUAMh5VxpsYirDZrgMTczV3WfHB9\nIAFMAAoieh6GW/H/dWZ+moRBMTMTTbsbpHykIBH961/5gx97FsC/mdLHfSJfh+287id5kM/r35/b\nuAkoiOgCA0j8HDP/A1f8Be9SENFLAXzRlT8F4OWi+de7sqww84uJ6EPM/Lpp0z9/2c7r/pIH/Lxe\nMbd9y6oHAfgpAB9n5h8TVb8M4G3u/dsA/JIo/ytu9eNbAHylOT6xySabnKW0MIo/C+C7Afw2EX3Y\nlf0ggL8D4BeJ6HsBfBbAm13d+wC8EcAnAdwG8D2rzniTTTa5cmlZ9fjnQPYxum8w9BnA22fM5V0z\n2twPsp3X/SXbeRlCzQ8R2WSTTb5mZdvrsckmm1Tl2oGCiL6DiD7hUr7fWW9xvkJEnyGi3yaiDxPR\nh1yZmep+7kJE7yaiLxLRR0XZadP2r0Ay5/XDRPSU+94+TERvFHU/4M7rE0T0F69n1nU5+VYLmZJ6\n1S8AOwCfAvAqADcA/CsAr7nOOS08n88A+DpV9ncBvNO9fyeA/+m659l4Lt8G4LUAPlo7FwzB63+M\nIZb1LQB+/brnP/G8fhjAf2vovsb9Jm8CeKX7re6u+xwy5/VSAK917x8F8Htu/qt8Z9fNKF4P4JPM\n/GlmvgfgFzCkgD9I8iYMKe5w///yNc6lWZj51wB8WRXnziWk7TPzBwE85nJrzk4y55WTNwH4BWa+\ny8x/gGEl7/Unm9wCYebPM/NvuffPAJBbLRZ/Z9cNFLl07/tVGMCvEtFvuhR1IJ/qfj/K1LT9+0ne\n4Sj4u4V7eF+e18KtFqZcN1A8aPKtzPxaDDto305E3yYreeB8D8Qy04N0Lhh2OH8DgCcw7En60eud\nznzRWy1k3ZLv7LqBYnK69zkLMz/l/n8RwHsx0NQveEqnUt3vR8mdy339PTLzF5j5yMw9gJ/E6F7c\nV+dV2mrh6md/Z9cNFL8B4NVE9EoiugHgLRhSwO87IaJHiOhR/x7AXwDwUeRT3e9HeSDT9pVv/l0Y\nvjdgOK+3ENFNInolhnus/Iurnl+LnHyrxRlEa9+IIUL7KQA/dN3zWXAer8IQIf9XAD7mzwXAizDc\n2Of3AfwTAI9f91wbz+fnMdDwSwz+6/fmzgVD5Px/dd/hbwN43XXPf+J5/R9u3h9xBvRSof9D7rw+\nAeA7r3v+hfP6VgxuxUcAfNi93rjWd7ZlZm6yySZVuW7XY5NNNrkPZAOKTTbZpCobUGyyySZV2YBi\nk002qcoGFJtssklVNqDYZJNNqrIBxSabbFKVDSg22WSTqvz/YWHxjGzkfcgAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7ff01c4c2c88>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.imshow(matbeta)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-21.21320344 -21.21320344]\n", "[ 21.21320344 21.21320344]\n", "[-13.30750929 -13.30750929]\n", "[-29.11889759 -29.11889759]\n" ] } ], "source": [ "deprate = 0.2\n", "cavparam = {\"majaxis\": 30,\n", " \"minaxis\": 20,\n", " \"theta\": 165/180 * np.pi,\n", " \"phi\": 45/180 * np.pi,\n", " \"dist\": 30,\n", " }\n", "angbeta = 60/180 * np.pi\n", "matcav,rot1,rot2 = utils.genCavDepression(matbeta=matbeta, cen=cen, \n", " cavparam=cavparam, \n", " angbeta = angbeta,\n", " deprate=deprate)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x7ff01c4c2b00>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvWusLNl1Hvat6j733rnzvEMyDEPRISnMSKTsZEQRtADL\nihL6IRFGaAUBTQaQaUXwSAAJ2ICDmJKCRDBgwHFECTASKKEgQlKgSFZA0xIMWhFN2FEMmLJGEk2R\nHM7wIRLigBpaM8N53bn3nO5a+VF771p77bUfVV19Tt/LXkCf07Xf1d3rq289dhUxM45ylKMcpSTd\nRS/gKEc5yuHLESiOcpSjVOUIFEc5ylGqcgSKoxzlKFU5AsVRjnKUqhyB4ihHOUpV9gYURPS9RPQY\nEX2eiN63r3mOcpSj7F9oH3kURLQC8DiAvwjgKwB+B8C7mPkzi092lKMcZe+yL0bxFgCfZ+YvMvMp\ngF8B8PY9zXWUoxxlz7Le07ivBvBH4vgrAP5srvElusxXcOf82ai5sK0F1fvWB2sYo9qk0qBpmecw\nRvM4Owyw8/gXJFXCviOjb+7OeO70a3/CzK+YM82+gKIqRPQwgIcB4Aqu4s/SW2VlplNKgKgz2hrt\noNqRNUdn9NPtjDbJWHpNtfXo/lPX33IuyRxWn0obq48qY/P7yH2fE8u9WHO0yJQLwFyTvK/0y41r\nlWfakp6jse9v/OFPfbm8uLzsCyieAPAacfxNriwIM38AwAcA4B66fzyrXUDCUjBgHkg0AkkRJBoU\nfipIJPPV1llr36LYDXMmALEkONSAYQ4DrEnLmJaCyrVaoCHHlf19uVWmyrmjGCyI0rVY4+0g+wKK\n3wHwABG9DgNAvBPAf1PtdREgMYNF2EBTWU9NIRvaF1lE7TwuEiBay3Lraum3dB+grmR6XN2+FTRq\ngOHLFVgAgl009psrewEKZt4Q0XsB/D8AVgA+yMyfLnb6RgKJGouorbt2HqX2cxR7jnkxhTnkwKFF\nwffBJlrHzl3FrXp9jpoR6PaNLMFkF9badpS9+SiY+SMAPjJ7gIzy31Ig0aRQ+fbmfJHST/RDlPwi\nDf1nsYcpzKGmmBNAgRcAENqVUZSU1p9/yYQomSklsNBtFmAVx8zMoxzlKFW5sKhHUeayiQyFPRc2\ncZHmRpV5FMaaGsmY64OYal5UGMESjKEmuTmyTKPmqLTqOqqbIb58V1axgxweUJw3SDRENyaHP3cA\niZ3MjSqY7RkgdgGHwg+5CRT2xY37tMhaTwIeJbND17WYIVZZC1gsJIcFFIcOEi05G1XlavRJ1Na2\niz+iMk8RIOawhwmsoQoK520sW/NVwINa2YRWfA0YFkPRINMSDTnUqMcsOTCQqLKI2lp2MTWmrL0K\nZO1Kfy4AMQUcWkDhHEyQNOxptBHgkQUNwFZ0PYc2R3y7HMgYYBCxiwXA4nCAQklTxuUSILFEpmXR\nB7BDAtVSYc9Cv2qoc6p50Rj1MMGhBAxTAWEOgLT4HnLt5NoN0DABo5Q/sQ+w2EEOEijmgsTkjMtD\nAonzYBFLAcSMPIpJrKH2o94XiyiNWzIndL0/pxrLsNiEVHgrYWsiWCwlBwcUc0DCBAigbNPvOx27\nkk+RBYkpGZZTTIUcSEzoN9W0aQaHCT4MS5aOgJhRjRo4mCaE+698GgnLqDgph7GoHSzEOpZycB4U\nUNwyIDElqjEl7LlnZ+UiANHgd0gUt5U1VBR+NiBkzIIp81TBwwpDBmZgz89EeXYxFSystS0IFgcD\nFE0ZlxeRbbkQSOyUF9GitFP8EHNMjIpiV8FhAmvYa+RjSt+M6eDFjG5MZBlFdmH2z4DFHs0O4FCA\nQn8HtyJITMmNKJkaRb/FjiCxBEBMZQ9zGEhurJwsYXrUHJRA1oQAJvgd5NgldtHq6CyBhWIVu8hh\nAIWUFl9AUr8ASEzZs1FiEar9LFNjDkBo5ZvRpzVyMhkcWlnDklGPqZIb32IDXkrRDcuU0GMa7CIL\nFlpKYKHnva3yKIBmkKCcso0N1Bg7JFEt5Y9oNTVKazsvkFgCIFpYQw4YaqCwb9BoTr8W5SVTwhpT\nj5MDC9l3z+ZFSY6bwo5ylKNU5XAYRW67uG5WupqYV63zZxOzHZdT2cQch+UMxhKxgQlmRjOLaPBj\n5IR3JBdkXaBLLMIyIYA2J6Xsk/gdYLMK39ZiFVNCprdHZqb1g6qYHEA5UqDrdf9dQKLVJzHHablr\n2DPXbsYcWYDY1cHZMEY8XrZqZ8mNHQFIDhym+h1kH1PxK/12AYsd5UCAQskhgcRcx+U5gERzXoQ1\nx74BYkb0YxgjbTaOuWffhMg10OsIwJFjGxWGMI5TiVYY/ep9KE331rKjX+fwgOK8QWKhjV17AYmS\nMreARAsITQWIhcHBBIYKICyViZkkUel5DeBITJUaQwDawqAZsGju07KeHWS2M5OIXkNE/5KIPkNE\nnyaiv+XKf4KIniCiT7jX29pXsyNIdN35gERH00GCqO0qPwUkdPtc/1J7P6Z/32H8VWTaM1F4ZftY\n6wr9x1dYn3ypOfQr/lwmvJRUx1dr0muPQK7w2Woti+bI/iYKfSxp2bm7g+zCKDYA/g4z/x4R3Q3g\nd4noo67up5n5JyeN1pKavUta9lyQmLs9fKrDsnDVrpoaOXCpsJSsL6GFccj2lfW3sIaiIiz1m6+N\nw+laSNJ7LyWmUWIJof8EZuHa+3URc51VaFmAVcwGCmb+KoCvuvfPE9GjGJ4QtrM0P5ynUNcMEjOd\nlskcFkiUlH+i0psgMROAmsyFFpOksIYEHFqAoaTIC18hh0Vo2q7r20GDCakfwyu1nsuZFs0mhTJF\nzDZ+XbW7ZM2URfIoiOi1AL4dwG+7ovcS0SeJ6INEdG3iWGnhLlvFlwAJw9QgqVCBgnfzQaJgdmRN\njWR+qo5tmguyjWFiJO1z5gXyJoVJ70m9rHUoGq+p/5xX9py1ySDXpT8PL5G5ZIyv5wr9xjGz7Q2x\nAVb93mu7fGfIzkBBRHcB+BCAv83MzwH4GQDfDOAhDIzj/Zl+DxPRI0T0yBnf8GXGCttBIlJgYDmQ\nyI0/1dSQ4+WAQZgZ/pUds8QiVJtE6WW7WlurvXhFSpgBh3Ft4mWNiR2VvKb8hfHNsY01Z/0ZYvxo\nLGSOa2AhRfy8RqBt6LcjQHjZKepBRCcYQOKXmPmfAAAzPynqfxbAP7P6Ro8U7F7Gkzd5LbV3I/ki\nG5KoSmvNAknDlUOARLymwg9jSjTD8ikkSjSlrTjojPkAmOZEaZxMm50lNx6n/gYAthkBxOcjTBNi\nHj+DnmPfBVFsAsjjkhmi5241QYC2kOkEmQ0UNGjOzwF4lJl/SpS/yvkvAOD7AXyqOpYuuJ1AYm6G\nZe5KZIFPpq3pW9gRIHK+hyI41ICh4Sq6uHiF03Pz6HPwEpRd1A8ViBygkQ9D+y4SwKmAhRQDDMy2\nOdBYQHZhFH8OwA8A+AMi+oQr+zEA7yKihzB8hF8C8MOTRt0FJJZKpNoHSDQofjNINORcmGaG6lON\neuQAooU9lMDFWG8JFJa8gxXpiIKUHvG6FGhECu/r/aHFLnKOzkLEwoxsSJnCKlrrG2SXqMe/hk0s\n5z9G8ChHOcpBymFlZrZsGY+qFmATS2ZbLuGTyDCEhE3swBCmZGBGEQwnZtKT6l81L4yveq+5FEaO\nBICYvutt48pciJgBoNhBPIfFKob5dD/3PscU/Pyt5oeUBf0UhwMUuz53Q8uhgUTOj1Bqm/O9mKaB\nofwlMLHaRO3SeScDRA6QrDXL8TIyxwQhqcjJgAXgkMlOQmGLvosKWAzlBlh4afVVWKAi2/j1LCiH\nAxRSpoLEHOflIYGENV8jSFTZQaldiUGIOaO8B+s8GsChJcGqCgRTccIAgjCU9C9k2pNXSiDLMIZ2\nGJWY4rGawKLGFgo+hqpPI5zMbpTsMIAip5heWkFiTlr2PlKyGxS/CSQqYdJ2dpBpp9fkD0sAUWMP\nE8BhcnamnjMjo+PQGsCeOwGOxDnpyksmiWGKRGAB5B/q08IWZPvmdrSI+XEYQOHlGxUkrD6tadit\nUY2sv0IsrBTqtNpH6x2LSqHSWo5F870nMnsvSmMMyqwnjNeVmCpS2YFYQZVJUgULv+5etDfPDcEE\nCWuqMQa/ngMMj+5XSns7gPMHiRLr2RdIzFT+qF0NIHJ7MHIAkZy76if76vKkDqlYTumatPTpOZkv\nAQ7L9KC4PGEXQFDQkv/BCp22mCBFqfk0FpTDAYrcFTxUG1dvoKj8LSDRdJfsHUGimmnZyEzaTYjp\nIDEJIMx0YqNMlUfjqfnN+oWE2JirtxyTciHS/jfKgNQcscDCAU19kQosBHNJ/BCTAYV2Nj8OByi8\nLAUS2fEPFCQqTtC68teZRtYHAUwCCKtfnlEgltyeiNB3eaRgpakWcLBQpAAamklYZcCo1A1goR2c\nRRNkjghzaElT5PCAQkkTSNgdi213AolajoQFEiWzpAQ4mAASxahHvPaSozIBCQ0QFfZQYg2lDVN7\nYxNyHivECUTOxlHRfR/FLiy/RgtY6LFqJohgLFlWcU7mx2EBxZQQaKmuYnJMeoq4bjMVJHKAlAOJ\nFobg3rc5NON150yMqG0FIKaAQ9a3ofvINS0lnM5BEcoZoCGUN5QJJqFNEUAqPmywuA3kcIBi6WSq\nUrtceyu60eg/kO+LoU/5vgYSLXkRU0GCMm2idSGeQwNExCjiOaIyC4TCXEhlD4wiEgEcJaZBOXah\nfRSCXRRFmgB6nByrODA5HKBwMul5oLts8rodQWIii2DS5wizfXos1tZRWmaCEGJRx0tu/BqnyCtc\nSLUIb/zJCaXV7CL0Jdc39ltUTRA3fhPASMDQ5kULmCQmym6f7z438h7lKEe5TeTgGEUi+2YTU9Ky\nc2ykhU00jDcpiaqz+os1WWxCt8uxiRqTKJgZJouosYfKxY4tt1EpKxFANifC1YVzkmMK6l81QzAw\nixZWkV0i2SnezXKODs2DAopZt7HLOS5Vu3MHiZzpMRMkms0NN0eTuZHJh6gBRNHMMMChmHSV47Q1\n8FihSN81kLAYMJgkKnciWCHhxG0zRDoodTQkAQsg7hNMgnT9ZvTDreOi5WCA4lxAIqqfARLpogE0\ngkQhT8IEgcgRmAeJavJUjkV0ueiFZBTx2EUnpfqf20iWAIPx0Tb7KwjZK6ich3oxj8yDkJoaOSxT\ndpH1WWRCp+PkiqEk4NDIAmp7O/YshwEU6moY1zW4UabuBF1w78YiIDE1iUor/xSnpWFi6L4lgCiZ\nFibwFIBhqgliCWc6SRBIQGPoaEcwGsEiWrMay2IV8eIoZQmNCViTHJoLymEARauU/BK6HhcIEg1j\nTc60zJkalpkR5lBjdxoQLEaBMkAYQJGYKl3atgYKs5OtMoqVMzX82jxgmO3CGBmwEGuWoVO/nhSE\nRqWOzRDRLzmvRiA4J8DYGSiI6EsAngewBbBh5jcT0f0A/jGA12K4b+Y7mPmZ6mC7bvSK12W3L5XJ\neQog0XyzGTlWoynRVg+bRZgmAZksouSHMB2UBlBEoBOFc+05krWp9nPFUhOK6smVxYBhmSSRCUEZ\nsLAcnMiYIA2somp+tIDBnk2TpcKj/zkzP8TMb3bH7wPwMWZ+AMDH3HFlJTuCRM3cAJBNzdYmwlIg\nQYRZINFhZBE1kPBKrEHC93UswreV772ZEcb0IOH6sgcAgmgvnjdCAK/iNuwYTqjvxjn0eNxZ9VR+\nEdKXWiNUfbR2ee7d+JJths8b4X9+56z8LajvV73XvwPdLxnPkgZtDedorXcH2Zfp8XYA3+Pe/wKA\nfwXg7+abLwcS8bANIFEaIwcSNbbSUdpXmxLW+OLqn5oq8Tp1lmUSicixiPBej2eM5ZVM91XsoZiQ\nZZXp87Pqc+L6JU5BvfFrrIidj1AMw7MBwTB02NOvj8R7uYaSCQIgudrX/RDl+smygHmyBFAwgN8k\nIgbwf7gH+7xSPNvjjwG8smmkJbeMt4JE4+7O7N4Na7yJIDEl09JyWBb3aORAokvBpRkg9NVTg0Fy\nXACFmRc9looIgNRAHjg0YCTp2MrpaYKF7I9R6YIZMncXaM388J9b6TZ55yRLAMV3MfMTRPQfAPgo\nEX1WVjIzOxCJhIgeBvAwAFzp7myfrfW+EqFNYZPXriCh2xvsp5aSXQqNFnMjZBsLIFy7XDRDp29r\nP4Tpf5DleswMOJhOUH1usNskkoQe1VXeAA4NGPKCb20jN8HCd5C5EMCowCoSYkZAIPoeQF7EVNkZ\nKJj5Cff/a0T0YQBvAfCkf2IYEb0KwNeMfuGRgveuX8HNbMJok90yXtu/YfXJgURuPRokIkU/X5Aw\n92jkWERirqANIAhJvxo41JyX7WaH+6fSH6xhdfJUBBiBHcj2lIIFBOvQzk2xdtKLyJkfQCYJS7aj\n9izNcwSdnZyZRHQnEd3t3wP4SxgeIfjrAN7tmr0bwK+1r6gAErX7SkiH0ZRNXhmQMNcxFyTUPFWQ\ncM7FABL+ik+jQy/4IjrEbTAeS2eldlSCIByn8Rjewcdifu94jJyBfk3e0djFddFxF5drR6J0iOoy\nGPMmzlF5vqosOW8T8MaCMK6oT0T9nuR4i29yW3q8ibIro3glgA87ZV0D+L+Y+TeI6HcA/CoR/RCA\nLwN4x47zHOUoR7lA2QkomPmLAP5To/wpAG+dPODEjV7VXAlZnmMThf5zE6pm7dvQbEKOQ7Kv6KOc\nlqb/QEY1DIdl0kdcSSUricbUvg1ZB9k/Pk4+H6PObBMKxXvC6AcwhtJlMh+CwcGpGdrJXAgRDbF8\nFWmfgvnhx5zop1g88rGjHGZmZgNIFNtbUQ7dvwIss0AiBwJy3CkgEVHfFCQSp2VEfWH7JPxLzZH4\nIwoAYQJCBhyak67CefoG+bqgoBjHJnm3Kk6Hoeh9DBa+Hbk3HiyyvopoTbHS10AjPaex/0VEM1rl\ncIAimwtRiXJEiltJz64xiVaQyCRdlTdvyXWK+ikgIca3QCJ1gCIen0R739cACNneBBrk2vhyNY4U\n3T8n+lqhHIhesxPQABwMiGGk81KEOQNYiHF9m1DmwcLwmmrHZin6MbbBhW7umiuHARRKKUyZuhtU\nj9cYvZgLEuM60rrZIBEpuQIJpZQ5kDDDnh4gIqUV42QAomRamFGRBrAw630zDQ5AUFh1qMyOMT+C\nVVsLLCDKwzkgZRBZVoF5psKhmRclOQyg8BIp7oQ9HC1bxnN10t5uBQkLYITPoMgyfH0JJBKK3wAS\n0TZzPzcCi4ja6yhH1M/on9TJPgqoVPtobMRtahL1EUpMPtuSjWM3PBM5E4SFfyIGi6Gx+6wdJ0lY\nAjKsQqxRJmFF56hABsDupsUFMZLDAYoSSLT4JZIx5FW8AgA4UJBQTCRxWgqQiBVRhwEFQECVEeKx\niIwyKNCgpH5cs3iP8bjZRyFPw0qSsEAibRKOPTOwwMICBb822ddK9BobZ/pPxQMFLIvKAn6PwwEK\nL3PvUlUzWUosoyaFMZKNP8n67LomkBAfRRUkojXBBglxHLUTc2pgSADCAhfjfRYwhJTAIrCE0Hgc\nJ0m4KgCGCRaQYOD7UGAVWYUlxBEQS6yEKQsEiBZR4POSwwMKL6V7S4Q2jX6JAvto3g1aAokurU9Y\nhlbkuSBB8RimLwIogoQ2McZ5bYaQ91/E7YrMAnGf6POT1WIfxdgQEUBIcFBNxnoI1gAFFrJRRjSr\nkBEQUyh1ju5FppgdCwLRYQHFXL+EeSXPg8MkkCjt3wDM9OylQCIX/syCBBn9KiBRMjPsPkqJCwCT\nfFYYy81jVu0TisCpyaEBxDcXkY4cWKSOzgZWYUjJ1DjkkOcUORygmLptXJflTIoMADTdMbuUTAVk\nIhg2SATlmgISFL+XY1ggUQIIPwd3cT8bKAoAoUCiZKL4NtH5a4k1dSxWxwFEeGAd2uRQTbNgsYQf\nIDgmoRBKCxXqbjE5HKDwkjM5lvBL7AIS1OKcNMZDzCJCO3nhzIBEbeen5YsYzi8uy0UzWs2MaD8G\nxFoMcEnWWwIKrd3IHGvTQwFGBARxl2TckEwl+gFyjJFVJEykEP24EDGYym1+u/70V7TztvEa0zCX\nkQeJcX6jPRCDSAQu8RQ6T6IIElrJKiCRjWpkQCKbrm38N00Puc4M8Ph2WvTnkoQkFVDIEKhMssop\nveumFD5W/H0q/KzIxwHLTrtHj3KUo3xjyIEwCifWZq+hwNUXHJi1+w3mzI5G34aZK+HeV9lE6c5U\nmpVoNgA5huyHlE0U2QFF28Qjk8Gty6pPzRDJiGwzxDJRxnM0P+04p0GZGiDHMFgwB1fPTENBzwmT\nkO8tU4QpbXcwZsXSMudJZEIOByguwoFp+RRqUY65ICGXqkFCJ1NVQOLq5/4EwTci1638Kc+94d7E\n3NAKb/oburQ9Kn1SX8fYJvpfEJZAof8HYMBoiohhWeQvRMDg3yf5E3Y0Yqg/p1DnkrLnbM3DAQon\nVd+EVd/gnFxky3gOoDJ+i4hJiPpmkDC2iCcgkbtpTgfc8/hzABGe/dZ7IhCQ88R+jbFNwjo023B9\ncv6MsG6Mx1VxihmUWgBFAgxIASHMK+skK5HHogy6HIU+LTLlLlWtIkBtksNyIefmQQFF9ea4cWNX\nl1HetgnFHCmAZKMcToqh0NLt68KcKUjI9YyK1gYSCai5sns+9zxAhK9/612RqRI5HzU4yLWpOtmn\nyijC54a8WF5IgQCSSfgX9SlYyLBlUHAJHu7YVP4SKFCegSwmauhmcMqtaeG1HhRQBGk1KWr9W0yO\nqbtBoUwRX6dAYqzDyCJke2vvhugvWUczSCjQCmXu+N7HX8Qzb7grZhPiqj/epo5GtpC7/R1EmQYH\nBRpNItiE9EH4qoRJdAZYBFAQ979EzCokKJnKL9tomXEtul3kYIDCzJcAppkcBiNpMjmM8twejiTh\nylDy0J9gz6N2gQ7lKUjECtkAEnqdEbMYxr7v8esAAU+/4epoTvj5/bqkmdHJOr8Wd766v65XwGGK\nZW4IUyP0l+W9ARY6kYKMcvY+CESAIdfh153NtOwA2hbOB2gzO/bATvbJeGYDBRF9C4bHBnp5PYD/\nEcB9AP4mgH/vyn+MmT9SHswom7qPYw5IZG7km3dQinLounGYbEKV6xszCMqDhAUUJZBQPgoNEtyN\nx9cev4Gn33Al9lF4Z6UHgMAw/BoUOEDVZYEip3UUqhmIwcCbGaLe4wV1I1hEjEhMF1KnBWBIANBg\ncAh5D4mi6+O+UFeSBfwls4GCmR8D8BAAENEKwBMAPgzgBwH8NDP/5ORBW02OWii0ZY6Mb6Pml0gy\nTyRI6AgHCRMi6dcAEkHh2kDC9FGsxJrUeq597iaeesOVcT1dzCByjEKzkBgoGAmTsL6ugAzDb54Y\nAFMS2Qj1hpkRTBQIpqDn1WaHLCsJ0U5X/RbQWQyYchGPA9wU9lYAX2DmL2ejFjWJlNHIlyj1MVhF\nU76EZV4AbXs4kj7KLKHYzxDWJf0SFZBIci/EmkyQEOvjjmLgEuvhlViDzwi1WIR8DwUeEO89OBhA\nkqw/fBDj/xEcHHWQgAEHEsonoZkECQDw7GA490KYU4NGK4i0ChssoSaVq391vD2ZH0tlZr4TwC+L\n4/cS0SeJ6INEdG3aimaaHC0gYTESDQZ6vkL5UKfHQ8wygGBuTAYJ/77DmCdRAgl/nAOJlQCJbkjA\nuvb4Ka49fjoCQ4fhwcOrkWFEZdGL3UuVd8b/0ivpz+CO4/OX/wN7UezGAin5nsR3dp5S0t0WxV4i\nsrEjgOwMFER0CcB/CeD/dkU/A+CbMZglXwXw/ky/h4noESJ65LR/yWpQVvDpC43HKJkcJmNQ5Tm/\nhAYV6bjUIJGsUbURpkALSISnjGuQ6GgAiTDusHZejX2uPXaGvgEg+jUHgOjXrkzWrwD2bURb8yVZ\ni2czErAEYEQhWoj3/iU+PxMkFpLiPSlK/ZjzbGBuaFSNb8pC+RxLMIrvA/B7zPwkADDzk8y8ZeYe\nwM9ieMRgIsz8AWZ+MzO/+VJ3xwLLOMpRjrIvWcJH8S4Is8M/c9Qdfj+GRwy2SW37+DiJ+b94Ixqg\nHCkBTAdmZPu78jS9mqIrl3QYJmFQ6L7xmPm9G3U2YYVmh3Jn+ogU7MEEocjfEK7kpK/sGPwQ4ooP\nuAthcHJykpcRPgv58QnfxOiTcA391dr7I8LnzqB++IzIsy4/lmAWVhJV6reYd8VeTOamWuciHufg\nyAR2BAr3vNG/COCHRfE/JKKHMHxFX1J1ednRN9F8SzvVxkyecpL4JhJgKTgw1ekk95YoRTkCzZZ9\n6iChM0FNkFg5syOEQsc+1x7f4Kk3riNAGOi/OAaEA9QwC4iR0H/5Ofg/Hhx8hKNnlwAFcI8AFoAA\nAg8SXtkFEITzlu0zodDQlsfPuMnpuJTutdxHYo6iH2IeBQAw84sAXqbKfmCnFZWUe5fxWu5WJeY2\nfRYYlTyew/eJi7P3lmhxYKo+z73h3rB3I8mdsMKyjSDBq/Ec/PHoo+CIZUjg8J/NUC4cjxWgGHMl\nCGAeftu9/9wZ6AECBbDwH+8QI01ZhQSQOYrcGpVYOpnJZDXan6DmjNZwzvs9DiQzswIOu9yxKprG\naGfkRZh1BSAoOTCtjV4lkNCbtoYxYTIJH+rU66iChK9bxYxidGAqFiEBwgMIxPtwHgWQ4Ph9yJXo\nh8s90/DeMw75kcrPKWEVFQmJV6X1mB0nKhe7MGzv/rd0N5nFtGmHPvt1ZALLhUeXlQl+hUm3tRNl\ns00Od/XW/Zv9EtGcSEAiykUQ75mAZ7/1niTjUvsjpoKEB4TeHV97rI+jHD4MusYQxVAvrBhYM7Du\n3X//vged9OF9qFu5Vze8BlDiGHS8uYORNURAZH6Gmc93iuT0qlTOeeUm54MpspEWXZ7in2DGPkyQ\nA2EUmG5y1Nq1mBzKrNjJ5DDWo/MlwjianQiQSHwZfu009g39w+YtfzzOmwWJAA4jSADx8Wh+cHgP\nodAIjMIdE4OckpNSZgIcg3CFDHDvWFHvXhj2exJoTLJiRSs8i3CfofX1+yl2MUWGue33Y9mMgQtO\nzL36J3w059YKAAAgAElEQVT5juBxOEChpcE5OfduVcP4mTa6Tim19gXEa86YHMaWcckmrJvhSvCR\n6dNf/9a7cO/jL0Lv3Qh5Ev5zaQQJ/xnK42B+ODaBzv/nERwA0KofAaJjh1nqEssEZoJ/xif3BOoY\n3BMYHUZtpuFt50MTCJ8zO8clCbDwXaaCQf7qbxS2lk0RzmSKzvRPnIfZARwaUFimwtS+uXEskyMx\nH1SdYXJoOmuZHKVNYabzEohBwkczCFEf77945g13uV2g0t8hAawdJAKjEKbIkFSFgUWsBDiseAQH\nALRidI5NEDE6X+40wbOIvqfwnonQB23vR7DgYU3EaRSIxHt/flVp8RNMAQLG7GQre7wZ/okWs2NP\nclhAYckUB6aUmsmhxp9mckilz/9qzb5AzB5Mv4RQFox1MioiTRGZlu3nTXwSFkh4swLDce9NjjUD\ngU2wAwgHEitG1w2/0q5jrFb9gJNdP7gXxK+9Z3LpEoS+96DRAVtCH74EBxY9xLk5syO6kYR/y6gi\nRWQ6pFfwqRu2SqbG4LhMHZmz/RMtORKlPnPqG+RwgKLgU6g6MHOmR8nk0IxB1rn6aoq26Ne0jwOI\nmUbGL6H3McQhzeH46TdcxbXHbzhgc4rv269kclXquIzDoE6B5d6M9cggsHbgsGJ0qy1WqwEcgAEc\nVjQAx6pz7EKwid6ZHduesHUPeNqS/6D7ASwY4N7N560OCYj+M9OswpASAGTBwvJHRDTfGMzoW5Re\njRmtg5c1O3q77a5yOEDRIiUHphUpEdK04cvXWSZHNJZoq0FCtzPZwagIpl8iMIKxj2zjw5RPv+EK\nrn3upovCDAAxnoMEhDxI9C6Pwpc9/dA2RCZozaB1PzCH9RarVY/1qsd6Ndy5ZdUxTlbbASwcSHTE\ng2kBYNt32DJh23c42+ofbQcwY0ujz6IVEGaLMkfIAISiI7PGEBrEMxCzvCS7mh23hTPT/zAaQp2L\nOTAtNlEyOSKlLwFWzlzx447MIGovxk8yNX25MlO4w3A/iW7YBRo5P3Mg0cUg4ROuPJvw4U5a9+jW\nA4tYr3usVj1OVltcWm+xdqbHyWqLS90Wq65H50ACGEyO3gHEhjucbVeBaYTPl4G+G3IcAkhEn9M0\nvMg6I+c6JDl+X/JP5MyO5vFD2YJmx0LRDi+HmUdxlKMc5aDkMBjFXNGsIet0bDQ7VH1ok7u0tfom\nVP+abyJyXmIs085PWfbUGy/h2mNnSfvg1whhz5hNyKjHM9++EWxiYBHr9RbrVY/LJxtcWm1xstri\n8moDALi02uJSt8G669FhNDt6EDZ9h02/wmm/GpjGZu3moeC/IBpDquwdmFMk4yvQEVozMcowNWzz\nw7giy3ZFRyfv5J8o5VdU/RMLy+EARcmkaIl0WHkXEMqWMzu6tCwX6ZCh0BZJQqFAaoJYvgltenRx\neWJKuPKnvu0knNO1xzdj+JMMk0MkVwEpSKzXg8lxab3BpfUWV9YbXF5tcMf6DJccUFxZneGEeqy7\nwU/h5axfYcMdbm7X6LbDT6x3/pMtE1Zdh00/hFP7VoDwZgRTYhZE9RWxgCEqLzgym0yK2rwt/glt\ndsz1TyxofhwOUEyVVh8FYEY6ku3jrr450iHqc2wiGQepnyHnm2CxFiudO/J1dON/P8dTb1wHxnDt\nsT71UayE4xJIQOLkZItL6w2unGxwZT0AxNX1Ka6sznDHamAul7sNLncbnNA2sIktOmz6Djf7E3Tw\nPosO235Y3Mo5PcOn47SElP7nFNosM5yO3lcQ2IUChXBFNsFCsYrCE8z34p8w+1jMprFsATksoNiV\nTVhmgx67UC7Hq+7lANpMDj18q8kh+woWEfIl5LGvF8AiN3g99WfGSEdv7dMATJC442SDO07OcOf6\nFFfXp7hzfYo71zdxtTsFAFxdneKEtjhx96/fgnDWr3GzW6NzUY4ehNN+hVU3UBfp+JQOTvP3nTEf\npGkR/W9R0FxUI2d2mJGP0qJF3yXNDt1X96nda/O2efZoi9TyJnQ7oG5yiDo2lNosbxV95Y/KETGP\nKM9C1vs6YXboUKl8AWlZtCt0BWCFMdNy7XIiDJC48+QUd57cxF0nN3HP+ibuXN/E3asbuGt1AwBw\nhc5wpTtD53IittzhRneC6/0lAEP042a/HnwYQgN1BCQSRqLQxat57r96RX4LMX4MFhmzo5UpZKTk\nyyiaHbpP7Xb9FoAsxDAOBygKIMDaXyBlVzaRhElTNhHaCudlGKvEJsL6EfWR9RabSNiIYXIMaZDq\nv28fzBEWQKHSsl2eROcYxeC47BOQuPfSDdy9voF71jdw7/o67l29hDu7mwCAO7ubOKHBX7HlDme8\nxosOJM76NW50JzjptsHROXy8kkX4k4L4j1EhHVISEJsQuVcYeCGzg2GHRV3/udmYtU1gh+TE9HI4\nQFGTEpvIMYxWNgGU2cRUb3xQfAUqvs7Pl3NgKkZhRzFik0MmaMmbzsR31hZ7N9b9YG645Kn1evRJ\n3HFyFoHEtZPruLZ+EfevXsA9qxu4uxtuhnyFznBCW/Tc4RQr3OgHZ+oZr3G922C1dWxFp3W7qAcw\ngAULkCABHgkDkGACCAUFErDQotoUMzNhKSviNdXEmR3Z9j3n2Yx13OrENFjFrmYHcDBAsSObULIz\nm7CGtTIwc2xCnJZkE8MaEIOFaycdmKz6STYhoxyjzwJF08Pf3yFsEXd7N7qOsXamx3rVh+jGnetT\n3HVyM4DEy9cv4P71C3jZ6gXc113H1W5wZl6hLVZgnHKHm7wCOuAGn2BFPVZIE7AAjKndcJvFgAQI\nyF/JFVCQegHx/xRY4n7jlxD3dQsbyyyzoyQ1PSyZLSqi0XQXq6jPsiZGTpoCfe75HF8jok+JsvuJ\n6KNE9Dn3/5orJyL6R0T0efdsjzftvMo9sgkWyq7nnMomzHAolLkQ2ik2gbFv9iUjJgIk0r4sGIfe\nCYqwd8OnZa9cnoSMbtyzvol71jcGJrF+Aa9YPYdXrJ7H/asbuL/buBdwd0e4u+txmba4hC1W1KNz\nl7+eCVuXV+HBYsjYJPR9N7CJfnglpkfEMhrMjggYOO0Dw+zQIKIBolfHjMASIrMDyuzYcW9HTibd\nCk+ziR2BpDUz8+cBfK8qex+AjzHzAwA+5o6B4fb9D7jXwxie81EXpfDhbk05yeznmM0mfJsWNiHM\nAyscOsxhs4JaODTKl5CvjpK6KOKRsAiMZod/PkZgE73b4DWkZZ+strjkEqlkdOPe9XXcvxqYxMtW\nL+K+7hT3d8B93Rr3dWtcpRNcpRUuEeES9eicZvXocMYrnPEKm36FTT+ER/3ejwEk4ADCfTieQfQE\n6hVzaDE7ANigkdbF4MCITAQFJos4MY3+iYNzCSfmHllFE1Aw828BeFoVvx3AL7j3vwDgr4ryX+RB\nPg7gPiJ61ewV7plN5OZcnE3oOTPmh3ZihnCoHL+L/4/lPDowgchP4c0Ov1V8teJgblxaD2Bxx/oM\nV1ZnIbpx7+ol3LO6gfu667i7O8O9HeHu7hLuoOF1mdbo0KGDC43yCme8xo3+BGe8ws1+jTPucNqv\nceqyNM+2q2Gj2LYbTJDegwSBehoV3wOHu7JHLwUSI6iw6cSU9cOHPpaPX0wMKtqJKdkEes47MTNs\nIjwAqDUk2rKDtDUkesEJV68Uz+/4YwCvdO9fDeCPRLuvuLKvoiY6ZyIntd2hYqykTrOJcA+HzJy5\nNG3Xt5VNjMpPCTgkbALxe+3wTBhHF8+XZRMdQJ3bFu52gfoNXpdXG1xabXDH6gxXu1PctbqBO7ub\nuLt7CVe7M1wlxhVaY40VVn7LOPfo0eMGM27wGjf4BC/2l3GDT3B9ewk3+zVubE9wuh0AAkAwO/qe\nwFsCb7vhLtz+tng9BsCAUFbNJhyIkACTOFpivFegkQcLpbhyrAlSZRNSWu+J2cIm9sQqWk2PojDz\n5I8zfqTg9SWWcZSjHGVPsgtQPOlNCvf/a678CQCvEe2+yZVFEj9S8Go6urzylxKstGmxi9kh/AeT\npWJ2ZBmC6KtNDuuVd2KKnAmUzY6uG282I30UV1ZnuNxtcHV1iit0hju7m0NSFW1xhcgZGQOT2HKP\nDba4wVtcZ8L1/gTP93fgxf4yXthewfX+El7anuB0u8bN7dptEuuw2a4Gs6PvRrOjd2aH808EdqFN\nD2VuaEenFRGJzI7ExzGWJWaHvuwJsyOeU5kd1k/Dmxz6pjJzzA4vU82Oc3JmWvLrAN7t3r8bwK+J\n8r/uoh/fCeBZYaLkZarZkTMtSnWZcGhLglVyR+1cSBQFs8MfQ9ZTFkT82lqdmDo64qMeIGF20HCH\nqhVxuJ/E8NrghPqwd+NKd4YTGt6vwE53e9zkDV7iU7zEp3i+P8WzPeP5/gRf76/iue0VPLu9A89v\nr+DFzWXc2J7gpc0JzrYrnG6G12bbYbttMzs8eESOyIzZQb0yEwyTREc3Ws2O5twJYASUXTMxc2ZH\nKftyj87MJh8FEf0ygO8B8HIi+gqA/wnAPwDwq0T0QwC+DOAdrvlHALwNwOcBXAfwgzutcAqbaKnL\nMYZd2ITrb2VtDu/j9VgJVmO7tHwcX/yHbMdRecjDCM/JGNsMN8Idb2O3cj6KdTfsAvV7N8YQZ4dT\n7nDKPYAtOmxxw/0grzPh+f4Sntreiae2d+Hp7V14dnMVL24u48XNJVzfXMLN7Tr2UWw79NvVABJb\nyrIJzyIA1J2Y8ioPVafYxMgGOAWBRjYxAk2FTSjwkeO1sIk5d9gm61Z45+XMZOZ3ZarearRlAO+Z\ntAr/A6/dMDe0L7CJhj4A8qnavq2RYBWFQ127hDGoBKtsdAMjm5Dlkk20mCLa0Tm0Z9XG3Sk73C17\nvMdlSK0Gh1vaAQh7N06xGpKpeuAS9diCcIOHn811xySe2t6Fpzd34ZnNnXhucwXPbS7j+uYSXtqc\n4MZmjZtna2y3zmzZrNA7RoEeoC0BWwJtEaIe5KIgETtAhk1ohybUsWAPY6g1DocO9XtkEzoLM5TH\nfc1yWXdBbAI4mMzMiniFztxzIleWbCU3+xTqrHYZSXIwoit/zCb0eCbDUAxB/9c5FxEAdbJ8BA3C\ncOfsAe/Ge1wCiLIot6Cwd+NGfwJ0wCXeoqMeZ7zCDR5StZ/v78Bz2yt4ejuAxDNnV/H85gpeOBsY\nxY3NOpgbm83wRfhoh2cTnj2E/An1AsR7aXqwZxlGODTKw4hNEs06xi8hZRM6JBr5JSDel9iEFQ69\nCDaxI5AcDFBMvhemlJLZoY7NLExZp8GlIKwUdCyvA0MoM/qP6x7/18yOtM7fNWo4Jhq3dWuQADDe\nEBdd2NDlN3j5tGwAbuPXZQDAi/1lPLu9A89uruK5zRU8v7mCZ0+v4MWzy3jp7AQ3ztY43ayx2azQ\nO9ODNx2wGXwTtPUvKLODYqCIgCEGDiu5SmdxltiEvsHu7JCoZBOq72w2kXNwnjObAA4IKKoy4c7a\nSV2uvsASWm9KE/XJODEjv4dldrhy0+zwfSpmBwPxL1KZHsEEUeDgAaIHDXem6jvc7NZhq/gZr0Na\ndo8ON/qTwChe2F4JjsvnNpcHJnF2GS+eXcJLASS6wS+xGebhjTc1lMkRWATFUQ8gNjFkNCSTqj2C\nA0d1qQ9jVOpSunbuxjS1BCvz1vlz2ERDgpWZXHXePopzk1L2pdUOqN9ZW4jtxKR8XYvkFLs0vgKR\nnNkh+2jzw1pHMn4JCD1AuP8bd8fsm/1JuOnMWe92gTrN8GnZ17cDiFzvL0WOyxc3l/DS2UkAibOz\n1cAmNt3AJABncgDYYgCJrW1ymM5MHSKNQCPDKAABELaZMtTFIDBVimyiNSW7lqoty8+RTQCHBhQ5\naQmJCmkJiZoinZg50Q7IqG6C2eHLSwClwMHyUURjFE4rzM9yc9Z4i7pNvxrucel+6T0TbnQnWG37\ncJs7n5Z9sx9+Ni9tT3BjexI5Lm/kQMIxCmwJ939iBdoCnQeLntFtgWe+pUsBAeNxAIceIRyamCFA\nxDZM8wMZUJDMo8AmwhU/s5V8sYf6RCBiAIKrb2ITt+0drqb4KCZEScay2vwZsyPXVrAX0+yIwKLB\n7DBAqLj2HBhh+K2QqBj0YNjZuXELP+1X441wMdyZ6qTbhjG2TNj0K5xxhxvbwfQ43a7x0uYEN7fr\n4Lj05oYGiWufGMamAA7+xeH9yz69DWXPPLgOV9gRHJA1OWJGwQZAsAABxIzE9xEfWBUktBj1OTZB\nUokl6MixcnOU6vcohwMUuzoxZ5ods00OIGEQvkyvyfJRZNdkjWUxhsj30LBWdmyiF4/567uQ3zBG\nPTqc9qvsLfhP+yEvAgBubtdDMtV2hZtnaxfdcJmXEiR+fw13W80ACt02Bgkwj8CxBV726bOgPM98\ny4lwYnLEIqSjM/VRwKNibLLoqAUQAUtVgrnSGA61IiOGybEIm7DGuH1uXFOQXR8PqMZaxOzINCmZ\nHUWwoLQsAZGKeZEVHgZkJjA4gMWWhsf8BefmZo1+NYDHqltln/zld4ACg1/jdON2hLoQaL9dod9Q\nxCRCVAMYTQ4HCFL5c1GMl33mFM88eCmt19mZXnkaTI7kFnetJkcmTdtkGzknp1FPlqLvKXlqjiyy\nKewoRznK7S2HxSjmmB+WtCZZZdcxwT8BZLMxa3OYZUb5VPOInImuMxW5HxhV33fuqeJijtXgs5Bp\n3d7s8A7QLdPAHnoXKdn6vRvdkHHZD0zCh0AhciS86aFNjuS9qJfU+f7P3AQx45kHLid+Bh3qLPom\nEPs6zCiHStVOJGIuaoyZZkdU3uijmGR23C4JV0WZ6p9Qshf/BITjMTNXzpE5rgFtoDJrcfGL++Gp\n4T07JVZkknl4gpdPxPImSQAJdx8Jf4cqYNi3sd3SYG74tOxNF0KgPrrhfRKAAAYLMFxZ8CtsR4Uk\nZlDPuP/RG3jmwStJqFSaE0XfhPF+7JOJYEizw2gT2rXuDvX1uTrANjss+YYNj1rp2kIW90+E+VrX\nh7xylxyZpahE1ufRsB4FCLKMmIbfUY/B/+KeGt6jC4XjhYew6cf0bi/jjXCHtsMW8WFhfd+FXaAy\nLXtIpkIEEv7qVwSJ4D8YQGIMjzqldop6/6PX8fUHr4q07vymsKJvIuozwzfREumw2EQp0pFzaObY\nRKn/gdzhalmZE+LUUkvlBopX8KYHDpf6hvf1pVpgkbCNpkFYHcP9GGmkxU7JOACEAwtm9A6Qh81i\nHN4Pw3hAcM7Q3t1B29kt3JPYBQoBEiScliMQABlzox+VUSr9SK0xsAuVG2HlSwAZk8ODhGQTWnKb\nt8LnW9hCXjA5SLEL9wWMdbKPGys3P1AwOfbILg4HKHKyJ7NjKUn8E9E8jWW6vpVJyPfqigr326Te\nAVw/VASwYGBLNEYKAPfA4Bh42DEKfyPcAA5AAIcAED3GvRvBPyHCmcj5JxRIbFkpPkdKSsy49ugL\nePbBO5Mw6bBuDz5AdMWXIBFAxJ2/+jybTI5Qr5R9qslRYwFzAGDhG9ccJlDswexIxzLaTZVGINjJ\ntEg6iak8GOjfQmARNFT2cmEDWHA/bDvnfmQUyefBjlUwxlvqe3AAxO5PxyKCWUEmcwDQDBLDsTuh\nrQAJcWPb+z77Ap594C6RRzEqfWI+9DBBIih/q8kh2EizyZFhE1GdpcgGWFTZxJ6eGnYgQLFQtKPQ\np3Tz3KmSG8t0ZM4RxRCSr97VMUawiBkGhR8UE0AYcigGewqJz2Jo536IJAGHBM13IOH/wwGEAwra\nItkq7k0Pf4Uf+oymSGJuaJCInJPuhHtB/yOzI3OPiQAi48ej8yXGMoMBQLS1TJZWk0P5JYomR+3q\n38oOFjRJDjePgmia2dFyJq3+CbMeZbNganl2IcYQQRmMtkKZwxL9VZ+1MlMwFXz4Ehv/GrZ/81kX\n3sd1jjVsrNdgaoS9G+417N1g4auYBhID6+CgoMQxSKAH7v3sc2n0Q77XfokWnZFswjA5zFvvl0wO\npahNJkeJTehxLTaxsL/iQBiFkBazo1Fm+ycMR+YkmXkTHGJuOk/JIqRSyN8GOeYwsA4X/egYxMJR\nWwK+ML5gFf65GxE7cEDkldKDkmAWIWoBRCHQGkiMiuCUc8uQIBGu2NJxKdsbIGFmXyJuZ24fl3Xq\nu2gyOXK5FCWTQwLPXJMj1OdSStukeh3OPE7wfyGiz7pHBn6YiO5z5a8lopeI6BPu9b83r2SKMub8\nExYLyfknFpQW5c7exLdpAoQfuX3l9KzB2+KIWEQo9ywiOBtzDGF8QbzvNgBtgG5D6Hx5GBsu0kER\nqwgMQhw3g0Q4T3f1zoDEPY8+qz4XzrxHChKqXRYIZLHwk4zfEedNDqGjO5kcLWKZOwtIC2H/eaSP\nE/wogD/NzP8JgMcB/Kio+wIzP+ReP7LzCvfln1gq8tE4TKCrQN68EO+L5gaQAIaVrRjdZi4yC0aQ\nCCaID2tKoPBKv8F4vFFsYYMBQOTdqkQOxTMProMJIR2YtOUqSEiKH8o1kxBOytDefQbh8yqARPS9\neJEmhzYndri1nWly6La7sIkcMOzIJoAG04OZf4uIXqvKflMcfhzAf73zSqS0OB6n+idq412AEA9k\nwP8HAO9z1O2CaeHbu7Yh8tETPIpw5xTFn98Wjm25sYnDHOYn7X9vTAkgaSUMd8/2ACXfO7DypsnQ\nZ0ymCuwiAxLB0VgFiREghvaAZAeW89I656xfQq9HnEuQHjYQ1EyOwsavne6BuZDJ4WUJVflvAfxz\ncfw6Ivp9Ivp/iejPLzD+UY5ylAuWnZyZRPTjADYAfskVfRXAn2Lmp4joOwD8UyL6NmZ+zuj7MIan\nnePK+p6hcJ+OzGwuw3wThJdmJJJNSLODxuPAJjyzcFfvgUWIXAlHIFi4bZj9e8p+HiObcE0sNuE+\nXMkeIhYh2AX1w/0kXvaZ02Hc3mATIk9CXr0jyl1gE6GfZDrCN6El2fuBmE2Mn4VYT9RXtcnlRVih\nUNlmCd9Ea2LVjv6K2UBBRH8DwF8B8Fb3LA8w800AN9373yWiLwB4EMAjuj8zfwDABwDg3jte1X4W\nu+RaFO810byCRSSYGx4cNEjQSHEjk0MoMEOCxAhc5PMjfGP9Auzz5fh/anaMZgaggAKxuRG9Zwz3\nkwDCLlAwVFq2ARJBoSogIe9ngRgkSr6JCAQih+O4niBWenejb0KX+fGi8jlmxzn4JrzMAgoi+l4A\n/z2A/4yZr4vyVwB4mpm3RPR6AA8A+OKslTVGEopSezyhNd7SgCEBwDoW4n+gTJT4LaRfIpT54QRY\nDOfhPr7gl+CIWQyTZdYq/gdwkIDR63rn8jDYhfZbDH18diVMkNAhUN8nCxJi7ebdqlpAIozR4MDU\n82rfhAE8CQNJPvcMSFj9SswgWldvl8+UKlBkHif4owAuA/goDb++j7sIx3cD+HtEdIbho/oRZn56\n0ooWzKC0ZM6GremTcBvD8aAhwcMrJcb/khwEJsGqez+umxxzkIDhzZChQeaH400KOX9QOETswbeT\nd5nSLELu7vTn8swDl3H/ozcipZRp2QkgwCiLFJKhnZktIBEkmCsKJDgGicTkkH2h6krZl37Numyq\nnJPJ4aUl6mE9TvDnMm0/BOBDs1Yy5erfert+NLCOc5CIHajjKPIBOBNjZBVAhkn0AHUKLHybCCRc\nN0+Wxj+pSKbgjyVQQACAqk+YRAAMbRYAzzx4Bfc/ej1SRhMklL2fA4lgJsj150AifAcc+STMKAfi\n8eRaonFKfom5JkeJTZSAJmNu8EX5KM5L9qLoTVvW622oB3iVqVPgEDkm3XG4you6xMRQ5cHMgAML\nw/8QQIMUy2gRRgwUfiwJGBo0DMDwTCIq8+P3wNcfvAowcO3RF/IgkfNRAAokWK3bSKqKzi8GibGO\nEYFEIalqOH8FErJcllnzGP9n3yg31PVm+a4gAdwCQHHw4hSytY6YwTLqINokrAIUlSc+CcT4E957\nkADiH3oJLNRvKQIHXy/BQJXFbIJjZqH6SPB49sE7cd9nX7BBwvJRAAlIXH/g5dFVPwIJyDEKTCIx\nSVjVGUAAUQ/kox9+zVafFpCw5JxMDi+HCRQ77iJtDY0uJYnyR3Wj8ufKSf5GJXuAvyJQ5MrwYCGZ\nROSs1H4PCUol4XFt4VgqO49loZ0vjzIkoYBD9JEhVAcofqv4vZ99LmUWwwfQBBJh3ZHz0QAJ8R1I\nn8RQxnmQkGuC6OvqQv8SSMxR4Ckmh6pbgk0AhwYUE8yM4tPAlpCeJ0dNcqDg64C0XvfR7GHshAQs\nojIBDIm50XIaHP8vMYqkTciJiNuYQCH66PbPPXgPwH7vhlI4qSQ5kBAKaUY4co7L0IfzSl2KYpSc\nlw0+h6Y7Vk0xOUJ1pf8EOSygyMnhboY3ZVB2Hu4DYYKGr0Xs1PT1iAkBeg5Pe9fAEDkt5QDifymK\no514UVkBHHy9pfAaNKwch7R+HOeFB+8dlTvMA0jFH8fYESTkuqwIh2UCYRxrnLOg3LuChJRSfa7P\nAjezuTWA4lYWNhgA2fVZnwMwfNk0MKkQ/vR1jOjBRKQGS+b0bYy1hjXp90r5whgFgIj/x0of16dg\nk927UQCJeM0czws5D8ftgGkgoZhG1Xmpy3IgkZOS/6Jmcix0x6tb7Fp9lKMc5SLkyCgMSUKbSwsD\nBGF+IM8qkNTH0ZBgfrDoAINBWKFaWc9xXWJiKJMh6WMyBdUPug5FNpHbu5FlE2Fdik3oLFA5pv4M\ncmwifHYxm0jKWxyPOZnqBDV8E1nnJe+Wzn2wQFF8RuihiPsxD6FKS/GdnwIFpTduaBs5MqP27j9z\nMEOA1NQInWAcZ35HGigSc0Epc7TeRNFFfwtcpLL3gGkyNO7diMc0QECCBGDUizFC/XhQS88uRjks\nU6HVNzHljlWuLAGJhcwO4ICB4sJEarVVB4xhyyVASwCDTMDKgoVrmACGapzkT2gggH2cgIN8r0Ci\nFazP7XwAABoGSURBVCBSoKiwCAkQGOfVIGEBTNRPg0TCNIyEKtG3CSRkXzdmdGyAxbk7MHdkE8AR\nKCLxqdN2HaaZI0HZR1YBGOzAYiICLNxQYQ1RIlWEHjBZQwIi0D/w9DzD+iW46GOkQFA1M4AmkEj2\nYzSCRHReS4KEHDP5/GT9DiAhpRQtAUwH5r5MDi+HBxRTrtLn4Ir1oc7Sukzzo3YajCJYuCbD+Ij1\nRgKGPI4BwtelP6BSxEODQygrvC+ZKJGCyzYQfS2QYCSKHIFEWMOOIJFQfgMkav6KUpk2NXR7XTZj\n63hTvsQUX4khhwcU5yFsKL7UUC+VpKtSRqYfU7IKOY3On9BgAbEcRgoOEGWhkX+rTQ9z7ela5f+8\nYss2eYAIY7BWbN+Ox7JC+DNabwkklGOxGSQMxhDq5P/ofA2ln+MPWNovkaSJX/D9KPYi+3RSWiBQ\nkaypEWlqWldjFSMwuKHIBgs5lQUY8OvTjWCAQE5Eu9TZF7dJ2INsZ4IJp3UQY7ACCD+X7u/F2gWq\nQcJfvXcACds52QgSU9hECSRafRZSSiCxI5sADgko5kiPnc0P/wOIfBMWsHA+09L/6PWt8WJQ8BpH\nYx/YYDGAwAgYHhQ0SJQYhX2u6brNegUOw3s22YZsJ1mA6YcQ85r+CA0SuWxLiPc64xLjGppAohrB\nyJgiXpbYNi4lV9fql9AsYgGQAG51oJghk52SpT6MNMTpy6RJwvKtABwJFtDvx3wJXwfVVhbo+13U\nzkeu16zTV3oo5YdsBxsg5Dh+jFLYE6iDhOxb2ruxEEiM4y0MElLOwy/xDbHXY19iMJIk8qH8FMRC\nt1QSU8IqPBAoJTbBwoh0kNBinWQVTA8xbnwiYiBDcuzCBAd/Lqzb+uNGPwREuR/HApokIpEBiQic\n5oFEli1M3Q1aAwkNAjmzJapruL9ESxj0uNejLpHiM6PoC/FKGPoqJmH155hVRBEQF5qMAhLBzEgd\nnBDtSBwMZsaIIhFoANGao3PJnWM4P/3jHc87OdZ1QBkgXP/0AcEcAGLsE28Rl2PKPjo/QvaP1zsB\nJEwFNep3AQkt1lhJXYMJUQKJhUwOL7clUDSZF0rpEyZRAA2Sv0sRhkzNDQEgqo8Mu0qWYhGBNJ+C\nodlMcnpEKRBEDeLDPFsQx1I5kzqxNg8Qrk2St8F5UyPvNK2DRBwiXQAkkrrC1V+DhJTSWMYYpf7m\nZq+S4/K8NoVlnj36E0T0hHjG6NtE3Y8S0eeJ6DEi+suLrPIoRznKhUoLo/h5AP8rgF9U5T/NzD8p\nC4jojQDeCeDbAPxHAP4FET3IzNsF1pqXmkkxUSS7IAZY+iky5kfEJISvQjMNzR58NESaIRDDRWVq\nnvJ9JtIryayoB6Cu4Kq9YhIAsg7LuJ8Y08q0hBojF92I2oyTNLOJiIWI+qRvnU1EkvN9yLGy9RPu\nVtXKJva9Kcx69mhB3g7gV9yDgP6QiD4P4C0A/s3sFaYLageFSMERK6sfwn9+nlspZSz5LILSB0dk\n6qsACbDw/QDDeWkDhm8fTl+WW6hiifH7yjsz/TGrY1EfKX0FIFxf07dR2PkZ3gOHBxIZE2GRPRwt\nIFEzb3SbBRKvdslCeC8RfdKZJtdc2asB/JFo8xVXlggRPUxEjxDRI6fb61aT/Yv6cOVVOLki66uA\ntrtlv4zi6EzGoCDRMQeFCK9etOsR1/my0stoC92PEZ7Ope+ePdb7tQ7nEm6B16d1UOcWPjMBEvIz\nkP3C+x6jT8L3C+OIz1sAjp5r+O7kd6OUs4cNEvp7zym99k3UQKLlvpdKJkc59iBzgeJnAHwzgIcw\nPG/0/VMHYOYPMPObmfnNl1ZXJy/AdNRpBbba5tC9OJd7Y2wkiq641lVRKLlNq+P+5o+9ABytrwQ0\n1E1qk1vrm2A2gkMCEL0AiF709+Djj7dcNDUSp2Vk9sTtNEhE378YZwQhAyTCd2woeGP0ovmel62h\nUFfGzG0gkZtHt9tBZkU9mPlJ/56IfhbAP3OHTwB4jWj6Ta6sZdB2k6JBapGPpF7mVDAS88OMelim\nTGg/+iai/ApGyI8IYU6I8TyAqPWGzE6x/uFN5TMzgTMa2K6ToCePoySktN6MaACxQuvx5XvLzJDn\nEYGJkY0p35eyKmubvEr0XjLPKbtBs+tsSLduBYlovX2+bqLMYhRE9Cpx+P0AfETk1wG8k4guE9Hr\nMDx79N9OGjxcQRgma9BSA8zoA87MlzE5EiXQ40XrRaQsob+6+sZX7JimS9ZgMgI2Xj2XX1FbNb9h\nlkh2kLCHrajv47XL8bSJoc2Moqkh+0bf0djPfw8JSPjv0pkTk0Ei9M+Ah/yPCkiIdUbjJ/W20s9i\nElIWBAlg/rNHv4eIHsLw9X0JwA8DADN/moh+FcBnAGwAvGeRiEfLno4KI2lKvDJYRRIBIYxXx85n\nVw7jaedm1N9/V5JheEBRDMMPkZxi5SMoST3ikQJq9KAf2SZSYjG+BE0gMTGiueSY1qYuaz3a1BB9\nIMdBI0iUFNvqq00Nq01uLCnWBTAHElGbBpDQpsZCeRSLPnvUtf/7AP7+LosqLKbNPCm1cwoMaJNh\n7BMpd8EEicbQYCHETMX2zm0DMGS7aBy5ninSAAqhrk/LLfMiWpMBEGOdPWc1ogGjrwUSehyUQWLS\nBi+j3SyQsOoBM8Jx3ns4WuXWzMwMSpm/IxWgGIC+r0SFVcRMwgAOjOOaYCFYRQxOMcOQNr/cJ0IZ\n/mABSE5sh69qo023HHuQzCG0LQCE62OxkCyL8McWuGinpehbNCWs+l1BIqf4LawkzDcRJFqckgU2\ncds/pLhJWkwTwASWyDFpgUdgEvHejdBnClj4Ob2pYZgkYdrM+STp2znJ/C60MzIZW9dpgJA2egEg\nwnim0o9jFVlELjdC/p+akp30ryh9CSSkzAGJqHsjSMwwOY4PKdbiPxCiVGGjdnDKOwJDkoTVxeCg\n/RVRHwssADN5SoJGydRIrvT6FAwgqfUpAoOsj67+vkyBAVAGCHecmBjWWBag1ECilPuwC0gY42RB\nYup4QDYMOtYXlL+lnQKZ2/PZo4YE5fSsIWcy1CQoc9lcCeOXwCLYEQosAJAzcTS7CMOHExMHFCut\ndUNcLTTRRZwFBeO4hT3E7dQcidLLeWb6IuT/JlOi0qbRjFjM3Nh1y/gMkFhSjk8KO8pRjlKVw2IU\n/mrewhrC1VoxDjlOsT9G8wNQfoU6qxiGMBKmMmaINHH89DnJOTJnizVcYobIugYzQ4xRZRIWMzHN\nkwyTkO+PbMJuZ7AJLq1hohwWUCwt2k+hzQ8PFqJtfcyxTwogFTPEizBHohvk7ktKoBDa5MEhKo9M\nlDaAyGVYxn0mgkShPl5bBSQyfoemZCo5Xq7tLjegSfwbBTBRsiRIALc7UMyQKqsAEt+CBgsgZRde\nNGiQcmLuAzjSZCsDALy0goMorwJEsU+m7SSGYK2tcOWvKP9OICGlkJq96A1oShGOBUACuEWAIuvQ\ntMwP5NoUWAUQRUFKYAEgBoxc9qViFz6PowQa2vG5iBg/4BxrSOoK7CEqq0U0sv0qIDE101KtwVTq\nksmCRpDIpPHHbRpAIips2O9htV04DJqTwwMKqeDAvAhHRrJgASDyWRTAYhhHAIYAi7RMnJb+cXUp\nKOiNX0uICTwWaxgXIeoKTACYBBDZ5KmobUH5W9pN9R9cNEi0Rika/BImSLRsNmuUwwEKK3uyJDlW\nAWSZR31M1MECiAAjZRKqLJSLaSTT8GIAxyJi/BjLu0dTcIjKk0zOCQAh1jMJJKYwjahdoc6vO6f4\nC4NE8UnjO2702jdIAIcEFBUxoxst0mCCAMKcUP0SsAAiwCixi6g8nEh6FTeBwxIJpI1XI9txKesT\nWmPXGRGMaPwGE8NuP1X5G9rIOfcBEtk5zx8kElnIJ6Hl8IGihQ0IVgGgCijWHpBSJCQX6tTmSOLz\nQMavES0mo8xAmlFaYwfmIGlRaVNYUl8KcaryqqNS92lR/pZ2OUUsKP7tAhLV6MYCbAI4NKDwilsD\nh9YszRYTRDgbm8DClwGJOZKwCy+KZYQ2gKmocndrk1TaVbMydRvD9xCtJzNeE4OQ71ucla3tJih+\nc0q2HjcLTBPvKQG0gURly/gkkLgt8iiqV8WRMWTTrwUImO1yJoiXxmgI0A4YQ1sjHdsAjmL7iuTG\nGgdtaF8DB1meG68GEPJ4wl6NZM1TQUKezzciSCwghwEUlmiar6XCKoo+jVawABA5ON16siHOjMMz\nmjoHBGS3b5ZCtyowAMkPaxJAAHknpX4/IeSZbRe1bVf85kxLOW5mrKHNOYGEkiJImN/17ZhwVYl+\nVNkCYJgXSEElxxJKYAE1BoCqSQJEQDXJBJkoRZCpAMPQP1PPso3947aBZY7iG/NYY8r5c4qsTY2G\ntua4SX1eORdNyzbqi7kSewIJ4Lgp7ChHOUqDtNwz84MA/gqArzHzn3Zl/xjAt7gm9wH4OjM/5B4U\n9CiAx1zdx5n5R5pWkjEhivW5yEbJp2GwCkAxAyt06sG6kE2ZMAtXb94AOGOaLCK5i0jJvDDqa6HO\nZAzzqq/659rWwqNR23aG0HzrurDeA2ITtXtL1HIlFgyVznqkIDP/Nf+eiN4P4FnR/gvM/NBSC7QA\nogoAVtvc7lLle9BgkcwnzRCjfyi2QMO1G8bPnO9SUjMtMm0mmxlynDkAkWtb8x1Y9RoId/VJJG1u\nXZDY+63wSo8UJCIC8A4A/8VOq9CS81PUWIX0EURsoWEruuWzUKHToTwNfSZzAzZoyHZapqaqN3zx\npV2i47HVb3eAiMbJMoNK25oiF5jBrC3ixflnpGXP3Qm6C0jUbrM3U3Z1Zv55AE8y8+dE2euI6PcB\nPAfgf2Dm/8/qSEQPA3gYAK6s7xkKc+aHYS6YKduFflPAYmifZxehuQUa2uxAPh+iCUAqUk+4KrOG\ncZwGcCg6ADNj5cCidTOXWk8JJLJJVLl+O4LErGSqUjtVNzk1e08gAewOFO8C8Mvi+KsA/hQzP0VE\n3wHgnxLRtzHzc7ojM38AwAcA4N4r/2F6NmrXZbMJotu2gAWQ9VsAKbuQ8w/1KnKRMztCxzKAzJLS\nD6IGDECb78GaZyZARO3nmgOibFKmpR47124OQAC3HUgAOwAFEa0B/FcAvsOXuaeY33Tvf5eIvgDg\nQQCPNA+sAcEyQ2omiG5TAwvfZjgx04yI2IWXFpYBABrLFvwC43HzVTVgGNro8XJKVhjbVLiG9i1K\nnJmnmkRVGn9JFgHkQaLUTtVXQaKhrrrOibILo/gLAD7LzF/xBUT0CgBPM/OWiF6P4ZGCX2waLWd2\n5NrkTBAg77S0wAKtfVyRTtAK/TOgARQVeOhUqZfS+H3bSVYF1hDGLyjbVIAQfbJOTfk+p8CZ9mZE\nY4nxdzU1kvEWBoncWrP9d78wzXqkIDP/HIB3IjY7AOC7Afw9IjrD8BP5EWZ+evKqWliFXKM2QUoR\njlyad8kp6t8jVa5WphH30Qwpe2pFqYZWp7KGXFnOvNBtM6AyKZohywtzNYHEVBYBtIFETfGXAomJ\n+zf2BRLA/EcKgpn/hlH2IQAfmr0ardRAyjLmKn5rHxT6GeupMg0gAbnFcycKP4Ym1mCVtYKDPm4B\nCHncqsA1U6O4pgMAiakZlwcEEsAhpnDnRLKKguIDsKMhlT7FfkAKGF5qTMOv/Ryk6BytKTtQNi1q\nY0wFCGB+yLPS7kJAYopZouoPHSSAQwQKbXbI4wawAJD6LRoZQtXfERqq9RnlzfeYmCjtW88bWAOQ\ngMMwR6MSqv5NJgbQprwtILHrHJUNVbOSqGptVf3iIJEDiJZnlxbkcICioPiLgwWQBQyTlQB2hESO\no8t1XVhXUjRfaiZMrr4GDrpvARySvi0+iFK7nB+isU8y1wyQmO20rLVV9VWQqHy/zeHPHUECOG4K\nO8pRjtIgh8Mo5krBnChmb1qsRfUFDGYBYxwpJYaxTynN1cIgrDGWYBLA+bGJfaZjA7uxiSlp2dbY\nqk2zX2IBNgEcGlCUfAg586MyzmS/Qw0w5DheSsChx99FWoEn89uoOietsp0cnI2+jhxAtJpDrQAB\nLAMSVSDs83V6Hr0ma3yrTVK/P5AADg0ogLJ/ouSrALL9iqHT0rxiTDM6IseTktt3srRUfgdNrCFX\n3soerLI5yo4FQKIIWufguNTt9wQSTQ5Mte7kuTIT5fCAwpIWsPB1QHvoFMincRfKLAUsMo6SyPln\nXgDq98xsBIyp7EGXtSqtOt457Flt28gi9LgLgsSuGZfZcWrmEXYHCeCAgIJ6Bhc2gEVSM0Na/RaA\n7XsomSSyTK6/Bh45mQAOzYlaM1lDdp4am1gaIGrHrcACtOVHmONOMDV0+9sMJIADAgrAAAtgesjU\nqlfHpt8BmM4yosW3gceiModJzPVf7AIQRt8mFjFlzgmUvvpYv7n+CKN+b7tAzxEkgAMDClNyZoc+\nNvZazPY71HInvLRGOOY4MqeCTKl9a9TDGqeqKAsBRK3vFPaxy7M/DwgksnkS5wwSwKEAhWT1klWE\n+kaw8DLB0RnmtVhGLiQqx4kGyQDCksyiZaxW1pAbbyo4WGU5E6PS9lxYhB4TKPsjGhSzCBItz91Y\nCCSyAHE7ZmYuDha+DVBM4QYaWIYUK3Jy3rLXyMfCAKHbt/ohqm3LijjJYVldx8Ip2UabQwMJ4JCA\nAkjAAkAMGBosgLKz0X9wuTF0P9kXlZAo0AYeS0nDd130iUwBjClKapRVGYQuq5oDjSzCmGexBCqr\n/dQkKnOOwwcJ4NCAwpCEXbSwCV2mASPDJkp1zVGN5XJcijIrJFoqn8MeVNlOAKHXUOs7JS9Cjw3s\nBhLnlR/RshbsHySAQwQKy38wFyyAFDAscyRMVN8VGjXPfLFNYdGKTIqYzAGN7I9rOmBM8kFYZVP7\nT2ERevwaQNTaX2QSlbGe8wAJ4Lgp7ChHOUqDHA6jKDkr0cgqQuNCO8tvocfIsRNrfEP2mj/RMnYr\nhS21bWAFOzMJvaYpTMKo36u5YdWbc14wm8gxiR1/k1VGQUSvIaJ/SUSfIaJPE9HfcuX3E9FHiehz\n7v81V05E9I+I6PNE9EkietOslTG3UdxWT7z1ZciX1b40fuk1V2rjtq4ld55Wv9xYmXbUc3hlx8od\na3OjFPacoIDMPA0kcp9Trr1Vj28ckADaTI8NgL/DzG8E8J0A3kNEbwTwPgAfY+YHAHzMHQPA92G4\n+/YDGB7w8zPNqykpgpPkR9rYL1vmJadQsl8rELQo/ByAmQIKliKWgKDyWWU/9xaAsNZY6hPa9uMr\n0z6JaiTj9ylIlNbj+2TqPSgleRI1kDDa3CogAbTdXPerGB7sA2Z+nogeBfBqAG/HcHduAPgFAP8K\nwN915b/Iw6fwcSK6j4he5capiz+xSiTDNEVCZXlTV7atFyvL01pjSaY4NOd+mbXsu9y4E8onRzKs\n4xaTp3Z1Vm3m7KBMGE2t/dRMSz1Hro01VqPyXwRIABN9FO4ZpN8O4LcBvFIo/x8DeKV7/2oAfyS6\nfcWVRUARPVJwdXc6WU7BFVgAsJOzrL66TJaPC4uPrS+mdC+M3Li7SEs6bm2+FgV3Uk2UypWdA0AM\nh5V5pvoirD5LgMTczV3WenBxIAFMAAoiugvDrfj/NjM/R0KhmJmJpt0NUj5SkIj+/W/84U+9COBP\npoxxi8jLcTyvW0lu5/P6j+d2bgIKIjrBABK/xMz/xBU/6U0KInoVgK+58icAvEZ0/yZXlhVmfgUR\nPcLMb562/MOX43ndWnKbn9dr5/ZviXoQgJ8D8Cgz/5So+nUA73bv3w3g10T5X3fRj+8E8Gyzf+Io\nRznKQUoLo/hzAH4AwB8Q0Sdc2Y8B+AcAfpWIfgjAlwG8w9V9BMDbAHwewHUAP7joio9ylKOcu7RE\nPf41kH2M7luN9gzgPTPW8oEZfW4FOZ7XrSXH8zKEmh8icpSjHOUbVo57PY5ylKNU5cKBgoi+l4ge\ncynf76v3OFwhoi8R0R8Q0SeI6BFXZqa6H7oQ0QeJ6GtE9ClRtt+0/XOQzHn9BBE94b63TxDR20Td\nj7rzeoyI/vLFrLoue99qIVNSz/sFYAXgCwBeD+ASgH8H4I0XuaYdz+dLAF6uyv4hgPe59+8D8D9f\n9Dobz+W7AbwJwKdq54LBef3PMfiyvhPAb1/0+iee108A+O+Mtm90v8nLAF7nfquriz6HzHm9CsCb\n3Pu7ATzu1r/Id3bRjOItAD7PzF9k5lMAv4IhBfx2krdjSHGH+/9XL3AtzcLMvwXgaVWcO5eQts/M\nHwdwn8utOTjJnFdO3g7gV5j5JjP/IYZI3lv2trgdhJm/ysy/594/D0Butdj5O7tooMile9+qwgB+\nk4h+16WoA/lU91tRpqbt30ryXkfBPyjMw1vyvHbcamHKRQPF7SbfxcxvwrCD9j1E9N2ykgfOd1uE\nmW6nc8Gww/mbATyEYU/S+y92OfNFb7WQdbt8ZxcNFJPTvQ9ZmPkJ9/9rAD6MgaY+6SmdSnW/FSV3\nLrf098jMTzLzlpl7AD+L0by4pc6rtNXC1c/+zi4aKH4HwANE9DoiugTgnRhSwG85IaI7iehu/x7A\nXwLwKeRT3W9FuS3T9pVt/v0YvjdgOK93EtFlInodhnus/NvzXl+L7H2rxQF4a9+GwUP7BQA/ftHr\n2eE8Xo/BQ/7vAHzanwuAl2G4sc/nAPwLAPdf9Fobz+eXMdDwMwz26w/lzgWD5/x/c9/hHwB480Wv\nf+J5/Z9u3Z90CvQq0f7H3Xk9BuD7Lnr9hfP6LgxmxScBfMK93rbUd3bMzDzKUY5SlYs2PY5ylKPc\nAnIEiqMc5ShVOQLFUY5ylKocgeIoRzlKVY5AcZSjHKUqR6A4ylGOUpUjUBzlKEepyhEojnKUo1Tl\n/weWnaJ6TNwetQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7ff01c4c2e10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = plt.subplot(111)\n", "ax.imshow(matcav)\n", "# ax.invert_yaxis()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# generate Gaussian distributed background\n", "matbkg = np.random.normal(0.8, 0.12, size=matshape)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x7feff0acf7b8>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWeQZlla3/k759rXu/SusrK8d+2qu2faDNM9PQZGgFhY\nzCp2WIjYEGZAhKSVQCwbCnY3QkhipZBAESIASYBGY5txPT09Pe27uqrL+6ysykpvX/9ef89+ODk1\nfBBMANuxPRH1RLwfMvO9955z7jmP+T//50mhlOK+3Jf7cl/+KpH/fw/gvtyX+/L+l/uK4r7cl/vy\nPeW+orgv9+W+fE+5ryjuy325L99T7iuK+3Jf7sv3lPuK4r7cl/vyPeU9UxRCiI8IIa4LIaaFEP/o\nvXrOfbkv9+W9F/Fe8CiEEAZwA/gwMA+8A/yEUurK/+cPuy/35b685/JeeRQPAdNKqRmlVAj8KfBD\n79Gz7st9uS/vsZjv0X1Hgbm/8PM88PBf9mUjm1PWcBkVSowAlAS1NTJlK0wjIemZKEshzBQB0DVQ\ngq3fKaRMSQJ9kbQT6BgoA5QBCIWIBcpUIAAJjhURdmz9dwAzhUhiuDGJv/VwqTC7gji3db2TAgK2\nnDDpC2QEcU6BoSCRgH5GJdeju5AlLOtfYWxdFEswU2wrIfRNSAVIBQiklSCaBklWQSIwgq2xlWPS\nVCK6EhlDUkpRCqQnSS0QVoqK5NZ9gFggFBi5GEsmROsOif2dtQCR6DHJXEISb9mKVGC7EWFoIiKB\niPQ7UKZeXxVIZLK1VIUIgNC3QCqKWY9uZCOFIu5Z2LmQILD03NRfeCZsreHWOmwN1/QgcUCkQC5B\n1g3ikkKEQq9zCElO4doRfs8GK4VYIiN9TeJ+5/1u3c+J9X4x9QMMK0EpQdH2CVKTIDYRbYPEgWzW\nB8Cvu6Q5hQgEuCkq1OOzPBC1iERJkkBvFsPfWjJTr5EMIc0oiASYikLGp7eRQZRi0o4JClL7L+yz\nVGDbMVHXQmQSlGdgZGPi0Li332w3Jtzaz1k3oNdxke7Wd3MxScdEZPXPmUKA33RQEpxCCEAQmSil\n11kkICPw1ubXlVL9f9k5/KvkvVIU31OEED8H/ByAWa4w/qlfJawlyHyEezWDe3IdgHLG587FEYb3\nrdLoZfBnCpRuCJq79H3kWI8npqZ5a3EbvY4DgHnXpXJsjdWZGspOsTZNKldg7QcCzAWHzKpACeiO\np5gjPX3NuTzHPnGFN25OsXt8hRtXx/j0k1/j9//wY6hHmnRXc2CmCM9AZfSur5yxqJ+I2P/PFrn6\nD8dxBntEd3Mk+YSPHb/AV944RmVqk9bVGnElBiAza5Ec6iCv5ClNp3SHJd7xHmrF1UoMcFckwUGP\nTHZLU7xRBgHeQArDAWndxuhKBk6nbO43CHd6qJZNZaIOQPN6FasjCaZ8VCQRvh6zlQ3JvZqnPalw\n6oLaE0sc79P6/Pmrh0g7FpVzBp1JSEZ90raF2+8hzheI9vfIv57F+uga67er+h2WQ4b7mixO97Pj\nNUFjpyQsKQqzgu6IwvQEwW4Puehi+HpyYSWhMGOQuCAfqSOA1mqe4kCHgUIH6+dNrv3vAxQmWsSn\nKgAMPLXAndsDZKoeXtPF2LQwJrqY5/LERzsk81nUYIBq6tNYGG3hXywTlVLKVyT1ByKsXIRxLcdP\n/shL/MeXn8Ae6mGcLWB6eol/5xd+j7//Rz9P4iiQEFVj3AWLoD+hMKbvl1uExoGU7EgHgNFSk+nF\nfoaed1h6DI4eu4WfWNxer5FfyiJDgV2XpDb3lJbVEngHPbIXM4gY2vsidk8tcfeVCaI9PaqlLhv1\nPMN9TVbODepr2gJvMuKZI5d44cIBzGyMeS2LPxKTnTWJjnSIQxM3GxLeLgCQlGIydy2CvR5ixcFu\nSK7/1q/M/o3P63uEUZwEflMp9ezWz/8YQCn12/+97+f6xtXeT36a+gFFdkHifmgN/yWt+Myuovm4\nT9o1EbGkek7y6M+f5hvPP4jhb1kiBdG+Hk/vvA7Ay984itUS9MYT3CWD+FAH83Ke/CNrFH6nyPzP\nRSSxgXMpgzeiD72zYSAPNeltZNm5Y5lbl0bBUEhPkuQScrMmvfGE7EiHXsvV8zRTWHd48pFLvPnl\nw8Q5hbMp4GSDzmYWYSicO462eNu7AKhUEPkm1b42m4sltn8mZeUhh+yj66wvlMjOWniDKUiFu6wt\n2MlPXOCd/3qYoKaIxgLcXIi3mqU63qB+u6KtfiSpndOHMbVg83jCw4emufqZvQz/4Cwrn91Ga0eK\nqoWoRGrvZdnFqetrvKGE6kWJ/1wLgOF/aTPz8yDnXdxNQWqC35eChAPH7gDQ+r/HWX7YJMorRg+s\nUP/mMNbjG0Sv1Yhy+r2ICMKyIre4pShKkD2xjneqD3+Xj33HQYaCYK9WKHE1Ymi0zvrFAVJL783s\nksQ72mOk1mRuto9cX4/oapGwliDcBGvBJiqkmF3tHbn7GuysrnP2xjayt2yCqsKZahFfLWovwFIU\npwVBRc8LwG7DT33q6/zZv36G5k6oXoLuqMAbSDE9wfCDS8wu1DDW7Xue27Yji8yuVkl8E2GmKM8A\nU5G/ZpPY4E1GyI5Bmk+wClrpx+sZpC9IsinOugFKYBxsUvmTPKsPSDJ7G8gXKvSGFeGANi5mw0SG\nEI2HDL5gsXFYkDiKfcdmWfovk7SnwK4LuttiZFF7e851rYhkDGFJoSTc+se/ekYp9cBf/0S/d4rC\nRIOZHwIW0GDm/6iUuvzf+747Oq4Gf+MXKV4z6WxPMTxxz7qaXUFQTbHaApEK/KGY/vE6wQv98FQd\n42tlGge0OysDfVH1oqC5G6rHV2m+Poi/M6D2bZvekMB4uE78ToUkq7D2tfC3NHD/GfDLkqAK+XlF\nZ0xQmFWM/9xNrn5lN1FBYe5u461nEZF+jtnvkcuENJaK5KdNeiMpMhaoUR/bifDaDqPDdcLEoH6p\nD9Bu8hMPX+bb7+wHCZl5AyOA4Tc63P5kDrMjcDbBCBSNvXoNPvTEOV68vpdyuUv8zT7SJxqkqSDr\nRHTf7MMbj7E2DaJ+vbGMXIR7PgvoTZJkFWkuIX/TIrHAH0p44Ng0Z07tQm0dRnuwR7CZgRRkMUIs\na+8syaYYnqQ4Lagfi5Fdg9INPf/68RiEInPbJiwrtn01pDts4dck8ZNNem2H3CWX7liKsvQ7cpdN\nHnzuEm9/8wCFWdj9967x5vldGKUIhGLvyArT396O1YbuhFbiMhQktYj8FYfueIJIBCKF3F1J9IEW\nwXwed7zNSFkrudm1CuWCx6HaEm/++WEGn1hg6Y1RcouK+sEUZ8Mg2dPlDx7+A35j5pMApErQ+OIo\n4VNN5NslgorCbgp6IwkYMDi1zvJsDelJMitaIXWnIp4+fJXTy+PEpypamQ7HVM4b1E/EWGsmTl3g\n1xT9Z/U6Lz0bk79ik55s8qFtN/jGlx4kt6joDQm8bRHCTrDuOqQO9xRlbnuT4LL2kA4emmX+T7dT\nPx7jzlvIEHrjMbIQkUYGsqE1n6qF0LEoX5Tw0U3anQwzP/FP31+KAkAI8VHgXwEG8B+VUv/8L/tu\nrm9c9f/WL/HA0WneubYd2Ta/+zK2xQxNbrAy04fZliSOQpkKd8Wg+Ogqpkxp+w7ROxUc7Xnj90F+\nTh+0uC+CUOKumBz40A0uLIyQLGbJLknCBzrkvpUDoDMJUVFvTHvT4NmPnOZr33gAqyWIigojEMQZ\n7THkn1gFYONiP3EhoTLWxPpMlcxPLzG/Xgag/FKGjcdC/vXjf8IvfeOnMDw9HzUQUCr1aMyWKW9r\n0O5kSFdd3FWJ88gG0as1vKMexoyLsa8NwAOjdzn95wepXk9YeUCSjARUXnPwawIjhPaOGLvmk8xp\n5WB2JcF4iDNvkTu2QTXrcXu5Dznnkl0QtHYl1KbqfHB4mpfmdwNQcANW3xomrCVQjKBuU5yWdLal\nILQrm614BLcL9yw3Qt1T6t5Qog90MYFE4K6Y5BYUwUeblDI+jqmV2MaXxmgeDTmyY46LZ7YjEoGM\nQcSgdnURAsS1PGbvu3G9khBnFWZPkGQUuX11mnfKTH0+ZOFJFyUVYS2FLewEQAUG5oZJOuqTBgbl\nczbimQ3aV6qUb0Bjr3bpw9KWkYkFcU5b+WAgwVk1CHb4KN/gZx5+gz9+5XE9v3JM4YoemDeoSLIp\n7pJBWE3JzUnGP3mbydwmXz5zBHvN4OMffZuXf/9hEkcr1+b+GBRULhg09qXkJ1oEl8p6v93cT+mF\nLPWDiqSYkKvpsDi8USTqi6gMtOmerxL2JxSG2vTnu8yeHb0XZngTETKr1/nQ+CJXX50i7Euw6gYy\ngpu//jf3KN4zHoVS6itKqd1KqR1/lZIAiAsKqyF559IOsrdsytcE3YmY7kSMiASbpwcgFiSjPspU\nFGYMvJGY1fUiK+cGCc9VCPpTSp9cpPTJRZBQ/MkFhALpJJRHWoTllDPXtpNEGuTs7IgJN10aJwMa\nJwOcPU1EPqZ82SSsJTz/7lHsprZc7r4GZheyiwIloZrpUc30EBM9nD6PMDbxBgQL62WM2xnSSFK9\n6oES/PJXfgYshbMucdYlYtmlc1nH+M1mlmKhR5pLCGop3fNVojw4lzMMnk5w7QjXjpjrVPjAD51l\n4UOKZCSgdMql/liAEUD7QAhOSthySMoxSTkmt6DIV3qkFsQv9jE9PUTfVxzGH1hg54/doLStyfp8\nma/9t0ewP1vB/myFouMTFVOkL8jmA378g28w8vUVitOCsUPL9A83Ce5o78s5Usc5Usc40ELGkFtU\nmP0+I4dWyNy1sOoGQS2hOyzo1LN0vzTEneUad5ZrpE/XyVd6rHs5TE9gtwRRX0zlxBqWlaBSQWYV\nnLrCmwrwpgLcNSjOQFDTivynd5zCHPBYechlx5O3Gf12SGmsiXvdxb3uIjb0QVaWYri/iTtvEz7V\npDGnsZ7GXkgyKaSgEXFB4cAGylAE/QnuooFIQXVNZM9gOShi9vmYXcHI6CadqYTOVEJ+VqCyCflH\n10hyKYX5hCvnt/Hli4fugddf+PZDyAiaByKaByJ27lrC6BjUjyRQjjBlSrLdRwpF7vUc64/GuKuS\n2lsm6dkS6dkS2QWBWwrwTtdIbRDZmPZygbnTo7jrWgEV7iqQir4XXPpecJn+yg5kJEAoolKCc7jx\ntzrP95mZ9+W+3JfvKe9Z6PHXEXfHqNrxOz8LgDddwt0QJDpExgjAO+hRedmlfkCHHSofkyv5+L7F\n3pEVrs4PoVJBpaLR6FY7S9y1cOcsyidXaL4+iN2E1u4ECjHHd8zy7rkdyFB8Nz3aFzD4vMPGIUH5\nOng/0uDx0du8cGMfUqZEPYvqKYv0o3UaS0UAsndNwpLC3d3E/lqJzQcj8tdtah9eZOHcMGK8R7zu\ncvjwHc5PjwNg50PS2RzlazpltfpkRN9rFqavaE1KkoxCGWB4gqBPu8X/4mP/iV///Z8hONGhVuqy\neWaAeJuPXHIp7N2kc7lKVI3Z8afa4tZ3O1R/bJ4gNll7c5hnP3GKt1Ymqb/bT3ZJEGf0lDs7Y9xF\nHdMGtZSxvSssXB5ERgKnrsFgWQnIns7S3hWTG+zSXctibsXBuQVB+eOLzJ8fRo53YSZHNBxiOglx\nYJAt+vTWcohAp3UBRCyYOLHA/FujyFDQ/9gSS2eHsHa2sV4tEn+wSSET0HpjgCi/BWbubdDtulh2\njHmqQOLA/mdvcPHbu4gqKcpMwVS4xS3A8FZep8ZNhbsqyS0p1k+kjOxaY/P1IZ0aPt7EerFE7geX\nAdh8dQinCXx4k55vEwUmKhGYazZ2XdDbHmHWTZKhALWVUn5s3zRnn99PbzLC2jDJzQu644p4OISW\niXJTrHWTeCzAcvQCSKmIQhPHDUkvlMg+sI5lpOTskLVOjuTtCjKC7mTyXZyu5hF1bYxNi6FDK2y8\nMYTpaZA4NSHJpxhdSdwf0j+gcZrWmT4SB+JyrMHQCKb/yfsMzPzrSmbniBr89K8gfUnqppQvS+pH\n9aYXmRhzUac0W4dCiAQilhRuGARVQCj6z6bErqA5pV9gZk3R2QbGnjZKCbhcwD5aR7xUofixJRY3\nSpS/lcGvCaKCnn//iRXavkOn7VKrdlifroFUZEY6mK+VCAtQvKOo79OhCIAhFMm3q2TWNfippOZU\nRLWY3C0L/0iPpGFj13wcR8fP7eWCBrsOJ+RnTKI8PPHcWb41s4uoY0MqsNZNElfdAxpFLKAvQDVs\n3GXtFiOgNxlhNE1yi4LYBR5oAlD5kzxWJ2Vzn0X8eJMoNFFKoJRALLgkbkp20WDsmVluXBq794xD\nJ25z/voEA6+ZRDlQH6kTnKri7/HJ5ALC6SJxX4Sd17l6buRw6oLoZJskEcgbOcJKSnbeIPvBNSwj\nYfFOH+6iianDbdxNRXdYII436bVcMoUAzhYJKylTn/VYeCqHjCGoKuIh/RxpJxRey5JkoDecklRi\nymdtWjs0LtA95uFkIsI7eUDzRT7xwdO88LmHSDIaRzEeaCBeLdPZnlA9Jwk+3qR3p4jd1HvG8DQn\no3vIR0iFcy2j98a4h3suS2dvyPjoBksbpXv71j2XpTMZkx3UGS2/Z5MGBgiQTROzp7Mq6ahP/l2t\nnbtjKamlkKEgzSgqE3XqdyrsPTjH1ZujPHfsIi/d3kXum3lyP6yV2NxilcJFh8Izy3hfHKR+OGH0\nRcHCxxKyJY/oehGmuhjX8vjDep8VrlsoCZ19IdaaRTwSMPvT/9v3t6Jwto+p4X/wy5qAI0HlYn77\n0c8B8Ouf/3HicsK2LyoWnjTJzwpaj3qkHQu74mNczBPnFaMnFhH/l84szH7Mwl2VKBOivEKN+UiZ\n4p7OET3Sxn25QFiE3ONr9F7Radgor4i2BTiZiGQ6T5JRWC1BMJBgbxjEEz5sOOw6PMfNc9o7GD2w\nwtytfkQ+pvCuS2tvrLkWdorYtDlw7A6XLm7D6EnMnjYP+buK9UdiHjt4k9cv7iJ328LvT0myKWbb\nIC4mkEJmwdQKAQgO9ZCzGZIxH/OuiwwF/raQTNHH/WaB1g7FyKEVNr81DEB4pEuylEGkULgjGfzh\nWRa+to3OrghzQ2/g7Ipi83hM+aIFQON4CIHEqXkELQcRGNjrBsmuHnHXwmiYZHc1CEMT09QDiy8V\nNZHLUiSFRMflWwQrQklusEuv7ZC96uLX9D5LqhG5mzZhURFVE3ASihccPvIzb/D5r54kKicYXQN3\nXRAd1x5iHBqYs3re/edj5p7VmRnnWgZvPCLX36O/0GF2sQZA8bRL6wFfW/5YULhu0d4Z60DbSRj4\nls36MYUc9Ik97R0J34BcTPGMg/d4B27kiIqKyhVBc5fCakui3R7O5QzquLba0a0CcUGPNynH5Kat\ne1be8CGaCCi/6dCZ2CLlfUekwmxLStOw/lhEruKRnC9RvZKw8ncCkqaNu2Lij4f3vp+77hAc7hG3\nLWTXQFkKGQjcNUlYUdSOrLKyUmbX+AoAt5b7SQID2TRJMyknDszw+cf//fsPzPzriNkROgwoxJCP\n2bNtmd/4/I/zG5//cfouaIZefbeFnOzSfChg6j+A0TaIF7KaILOtx9Ibo6S2JLUlIhaEZYXzwCZJ\nLiVpWkRtm85hn3wmoLVDI/ney/0YIRghROWUga/bWG8WiEcCzK7AONBi+FsSZ1MgVnS+/8bdIbJL\nkuySZPnsENgp7k0Xd1NhdCTCSqFh4Yx1sGWMDARqzMMfjvCHI+KsoDLU4vXrOzCbJn5NYU10kYEk\ntRU7dy1h13xyi4qgLyXoS0nrDsoAaeisiz8Wkb1pY5wqYn58neyiZP7aIL2xhN5YAkKRFhLEiE/w\nZIvrt0YIiwozFyHQLvnmsQSjY+ANKLwBxXOHLmHVDaLFHNkZm8Joi2AgJtl0EE5CUovo3C2ilCD7\npSLZLxWx2oK4EmN2JFYxgFQgTKUPnaHotR2kqehui0mzKWlWs19TQx+c8iUTOxvRPubzpS8+qhmw\nSqAMRXdvwHClxXClhe3GRAWFPNLEbsZYlQCVCLyJiKGJTfyZAktvjELTgqZFUIFdY6tkbtvUTpt0\nj3vU3jXATMnMOLQmBSIWJLEkd8Mmd8PGbElULAhqkM/6DD60jMrFpKbO5ETFFDnr0psKKX4hT/EL\neU2iczXnZXC0zsEfvEY64eNuCKJSinPbpTuKTsW3BFZLUJnaRFnaC+4NCbLTNt5sgcRVpP/zOuma\nC25CWE75xJHzfOLIeYrnHbpTEXHDZvfOJT7xxGnsTQN3TeINa1A2iEzcaYc7b41z561xSq+4nNh1\nh8yypHzJ5MbG34iQeU/eFx5Fbvew2vUDv0b4TAv7hSL1o8k9rgJA/ylJ/6fucPnK+BZVWtC/rU78\nfB9+nyDa30PIFPOydj3F0SbB7QJJISE3YyFP1ilnfNZeHybe2yPZcEDA4yeu8tqNnQA42YhqoUuj\nm6HXyFC4ook6qQGladh4MMYsRNgXsxhbij6xISoqonJC9q6Jc3KD8I0a5ZsJKw9JBo+ssDjdr1Nu\nfVuhVKRDFAAqIWLDJjcvESlUr4TM/08x3M0gE7QSRMegIhMj12xEKsjsbuBdL+OuC3Z8/BZX3pjS\nBLOdemDFSzbewx2s83m8fT7VbztsPKyZhu7xTYJTVZDgjUfs3rEEwI3ZIWTTxK5LgsEEZ83AH4qx\nKz7m+TyHPnaNG3+8h6gg6I1suTp9AeVyl+67fYTVBFkLMG5lUAZklwVev8I51CD730rYP60t3cLV\nQfp3r7N2vQ93VWK3IbOW0huQNA/EFIbadJoZVGhopQvYsw7KVJh7WxwYXObK83sIagpjskO0kMNd\nlfj9KVZbL2wwGCM9SX57k/ZcESRYm5L80Q0at6oUtzf4+7tf5t/82x+mcULjGqJr4i4b+IMJVkti\n72/S2cwinYS0Y2EUQ5KGjcjFyC2WZbHQo75WwFqxkDFkVgV+VeM9Tl3Sf3KJlUaBODRwrunQI7Om\nCJ9rEl0o42xC4kJ8ok3QcZiaWGXu9CiFAxs0r1dJtti8KHj64DXemNtOciuPsy5wmores22Mt4oM\nPTfHrasjOqXbr/eZclOcJZPE0RmevnclZ/7g+xyjcLaPqaF/8osAjG9bZ/7mACRaUWSWJenxNlKm\nBL6tMYlKm7Ur/SSlGCKJ1TCIC+k95ZKdbBGfLcOhNsnNPHZLUHhihY1mjnQuhxFA2JdgNg0K+zYB\naN6qYI12CZouQy8ZbH6yR7jhggS35uHXXWTPoLZrg85bWjs7m9DZpojzCbv3LHJzbpBs0WdnbZ3Z\nP9tBZ0Jx4OQM01/dQVjS66wMcHc1Sc6UyS4r1A9tsKu6zvX1Afx3q1qhlCKcGZeguqVcYoEc8im/\nmGHjiEKkYDckYSklNy/pbE8waoFWgICshigF1XKX9pk+lKHY84HbXH9lu+aD5BVRMcFqGHzg6YsA\nnPrcYQwf/D6F2Nch9E0mhzfoRRYbzdw9pUPLulevUR5o09jMMfJVi86IpLUvAoEG8HIKc7CH826e\n8efucPfrkwA6zMqlZGdNUhvS/R0+OHmLF88coDBt0t4dk71r4u/3MEw9f+NansKDa6zfqiJrIYW8\nR/h2VV9vKPJHN+i+24d9RBNpetMlcnMS75EuUdtmcvsqay+OYvY0oC0qIca8qwl6W1wV00wxZIp4\nqYLXrwj7E4rXTYIyVB5aYXmuirVhUj2yRvvVAf0uJUx8aJaFZgkpFN2eQ7rhgILyFUmUF3QOBMiG\nDoUBvLEEJRRW1YeZHCKBOK8QAwFqzSGzJInyinjSJ92qOTIaJqmTIiNB9YKgvl+TsVQtRHkmmQWT\nwqzC6xf3wtXW/ojcLQvxcIP4fJnyjZRT//kffH+HHsQC4UtIBXMz/ZQvS8yuwOwKZALBcpb0Ygl5\n12Xosw4rayVGDq5QGWhTuWAQ9cUoqe6FBL2ugxHCPz38FZC6IKn98iCGoZAxfPqHv4T0dEhhfaaK\n9ZkqaS4hjg3sVZNjv3KOyLMgk+Aum/hNh8pQi+p5Qfq5Pp1/TzUhyOwIMksmN+4MYc3bpGdKXP/m\nDrxBqB1e49LCMN3JmKhPf2QIXs/B6mgvpXu2xmyrghAKebjJEw9ewZx3CIsp2bEO2TEdp7vnsmw+\n5WN4ghMP3sRugtWWdMe1gkxXXArTBoVpncZxrmfwQguhIMko1no5zWzd7fPIE5eRxYhoKMIxYhwj\npjeS0htWFO6Aa+sDf3uhj9Yrg7huhPvoOuaig9GRlM9blM9btLsubj5k8amU7LMrPHhgBqwUIxTU\nzgkKOR/viMeNdydQDzZRDzbJzUs+8cBZopIiLKWYZsJLbx7CahmYT26AUPR2BYwP1CkXPMoFD3mo\nyeaVPlQhJmlZtG6V6W2PCKoJTkPQvljD9CBrR2TtiL7963S2pcQbLlYh5O5yld5+n96o0oB5y0JE\nel98B+QNbhSJTlcIytobclYNgjIMPLLEynQfwjOoXNUku8LdlMLdFG885uaFcboLBfryXZKWTWHa\nYNu+ZcKyICoAqSAtxFqp2ZqJ66wbuO9oAxYOxqSZlFxOc4SmPjqjC/0MhQgkIpAkhYShN7Qn2tgD\natwjzSW6jicTM/Wh26w9HfLxn3pNexAOOIsW3gEPy0iQAbQm/3ZH/X3hUeSr46r227+Is2Zw+Okb\nvHNtO1Zui2V3OwsCorKm7ho9yYefOsvXXz2qU6XZBCOTkDmfYd8P6lqP6c0+uue1xXF2teiu5sjM\nmUQHepReytDYp0hyKbmBLl5Xk3PMWRcUuIcatJYLmC2D7O4GrdU87oJFtNujr9ImSiTuH+liJfGp\nNTbeHMIfjShesWjvSCiMt2jfLVKebNC5UmXk+BLzaxWMGV0fEvZr0E94EuRWBWgmxer3ODE2x6m3\n9iBiQTriM/S89hDWfriHupOj78gqa1f6MXo6rfuJZ9/m+ZsHUXdzmD2Bv1UbYG8aiN0d0pk8w68n\nrB8yiQqKdJuH60YEvkWy5moy2Zalsx/ZpHW7rLMrqUD5BrJjYHW0wu7u1O8jO2PR271VrBYYZO+a\nqOMtotAP18ZtAAAgAElEQVTEvpglOOhh3chgHavjXy2jDLAbuggPYOczM1w5PUlSjRBtk+xYB+Pb\nJRIXgorC2rlFk4/FPa/S2ZT4wzH5GZNHfuQ833rlMKmrqeVJJkVlEtw5+x4hS+USzDWLuJyAVBQG\nOmTtiLbn0FvL4S6a+NsDRM9kZMcagC7AmvAQdzOklqJ4U9AbFthH6vjXykTVmOxti9SG6kmdjVhc\nrGIvWIg9HcLVLP2nJOvHFJltbSarm1ydG0IaCvtiFm9Yj23oDcHkL1znzes7yBR9kqsFwoEYe90k\nsyJonfAx7QT3nRzdCe0eVHdu0n2zj7CsKNwWyOfW2VwpUrpg05lIMXxB9lCddieDWtV7RtmKoVcF\nS08n2GsmtYuKt//k+9yjiHKQG+wS7/DZ8HNs+6wg6thEHZu4uOVLGYrsvIEyFC9O72H0wApmR9I/\n3CRpW3QP+rxzYQfvXNhB92IVZcLAkRX8W0XMpgHHWqiFDEaoyXjusonv2TjXMjoVVkmJKqlmyA10\n2fHAXeJEIjsG0W6P8T8ycP9thQN9y2wcNNg4aLB0dUCXUAeS9lSC0ZVEsYHKpESv1IjKCStvjFAs\n9EgyiiSjMBsG/SMNzJ5EuVu118WIyDe59p/2kr8jKc4AAoxPrWB8agXnTJ6xE4sEXxwgu6NJOBLh\nbAq++oVHqHw5R+XAOv5ohNPn4fR5ushqPYOc6rB+0MQIILOvgXU9S28xTxIaKCcluyApfnCF4gdX\n6F2s8NjDV1B1m8K7LplZi9RNSXZ69Pb7WGsm7pxFbzIiM+OQmXHATIkKil898CJjf2jS2xajUgjL\nKdHZClElIR3xUUIDeklWcfHqBKmrsJZtlK3wbxfojmnAM67GeG2H4lWTyrY6ItUpS380AichKCtO\nL+uMk6iEKENBMUJYKYVZxVMPXeaphy5Tecciyadk75qY+Yj2ap6V+Qr+bIHycIuomFJ73Ub2JC3f\noeU7xBUN3EaVmOyOJplPrhBWEzp3i0S1mMpZ856SWD89yPrpQXJlD7MniEKT3GibjSOK1EkJQwPv\n/xih+HaGJJb4Aym5eYPcvEGvX/LuwhjSSvCXcsQ5xcmD0yQ2dLalVF91KBU8usc9xl9IGH8hoXW+\nRuIqMjubJBlIv9oHStCeSnnmiXO464LwrSpqTVeJ2g1JebyB9xMNhC8xO4Ll58K/1Rl9X3gUzrYx\nNfxrv4yohqhNm8Jtg/bUd+Pz3Jyke9xDbdqalqogt7NJ+nqFzv6A4jkH+8PrbMxqS7/tSwkLf08X\nGcnredTeDup2jsTeIvAsSnpHPeSCe69PgtUW9KYiSATlSybdx7pETUenRjMaF/hOgVT6nfssGHQn\nY0hh554lbp8bxRzvUin0aHYzpFcKhJMB5rxDdklbxyQD4tE6Hxyd4cWvnCC7rGgcTDHbOhugLEXp\nmrZm4RZG4awbiFgftiivcEa61Apdli8N4E61yX+uwMZBQeGOnktmI6Wx0yAqqq2eCYrh1xSNn+yg\nFPTWdH2LtWkQlbcWQGqFlxlrU8z6fHLsAr/38tM8dPwmb1/cibtoEkwFWAs2yaRuyJB/K4MyoX0k\nwMmFBMtZRCKgFjA5vMHm58dIbYgfb+LPavq36gv58N6rfPPVI1tzk/QmYh47coPXr+7EyMTYV7OE\npRR3baveZ7uuj3j48DSnzu0id9ugM6WzH3FoUHrHJSxA5Qlt6RMlWL84QFyLkE1TZwdGErbtXUb+\nn33Uf6lDfSNPsdKjtaYB8OIlC/VUnfZigep5g+Yuzb8IRyKEb+CsGCT7OzhOTLetvUNppmTPZEls\n8AdSlK2gECGEIo0M8pUevTtFytcE0XOae9OZL0IxYuJPDOp7LH7nF36Pn//8/6JJU4UI+2qG9HCb\ncDVLaVzzYnoXKkTjIaJukeZ1LU3/eJ32O/34AzFGOcSczpBZFmQ2tWFt/Vgb66USMlL0fqCDv+ly\n9+f+4fe3R1HKeYhEMPkHkup5iTeoKF01KF01MEd6VK9GpIGBM9wjySeooQDPszUvYMW+56KZbYnZ\nlkSf3qRW7mBcy5Pu6RB2bc2zGPI58dBNUgtUw6bvvEJNeqhJj6igY0KEIqhA5JsUbpiUjq6TXZL8\nrx95geJIm9RRDLwtGHhbIEN9uPpPGSx9Y5zMkiRcy7Jyox9/OUfmSB3aFmZX0HusQ++xDu6aIggs\nvvW5E9gtaO5SfPShc9pirAh+7ZnnaX1A112YHYnZkUTFFG9HqJmKhkIpaLw8hLMhSc+U6A1KEFB/\nOKT+cEjjxzukDpSvQVKOESk0txt4PZvMV4tYDYNfePxFMmtCZ5G2PpmxNr5ns7JW4t+fegK7Lrn4\n53uRnsQfiXFmHML+mDQRpIkgqEB7MkXFAi4WyCwaZBclqWey+jVN5OpMpPieDf0B9AdYcw7vro4j\noq0CMgHlyyYXP7Mfe8kiDQ2qVxKScqy5LXlFZt7EKIW88/Zu8jNaARpdgw9sv4Wo27RPekQlRf2V\nIeqvDNF8bRAZweBwg9yCpDcZUZmsY8uE2Y9a9HwbIRWt9RzCThB2QnuHxqgMT9KZ2AKQI4G5ZmH1\nedgtSBODzBdKGIsOxqKDFIr2vpCwoijelJSuGmSuuZh3XDK3bTqbWdxVSWs7GN+oYHxDtwSQKw7z\nPxXjPdzl0xd/DMMTWKWAxDPIPbJO5uUCKpvgv1vFf7dKNBEg12zSTErxskVlpEnODol2eZhtA7Xi\nEvQlyFixfliwfliQ+0KR7qgiygmMMwWePnL1b3VG3xceRXZwXD3+Zz/C0pe2EVQgu6xoT+q/jR5b\nYvbWgEbC+1PsliQspihHkZs1QEHtw4ssNwoEbR2fPXf4El+9eBBz3dJMwgWLqJRSvSBp7YTE1mXX\nx/bdYdPX1nX1lRFdSt4V+KMRpcsWvSFFNKiBPXNNM92Mie69cYebLiKUqGyCU/KRFwpklxUbD8YU\nBjtEkUk8kydx9X0BTE9XoVp7WnhdB+UbWBsmIoGopLsfORs6Ji8Oa0TeNhM21guU37bxBjSyHdRS\nyjs2dUHaTBHDE0Rj32UyFl/J0J6CuKqrZ61KQLKSIS3EmBsWpBCXE40FoEv0k1yKCCTOhiTe28O8\nkcU43KTbyFC8aMMTddI3KlQ+pFOqcws17EWL3Dw096h7aUqRghoMeHLXTW791j7mnjGwG9omFW8p\nGrvhQx85yzdeOoZQUL4K6w/o8m9/LMQpBojLBYq39d7cPAjuqqA3lqKkQn5HyZgp0kpJOxYiG2Pa\nGqOJGi52xcc+nSfOQOooEkeRVGNEV4OJ/nBMZsHEG9fYy8CrJq0f7BDO5XSTGUM3wBEvVWid8HW6\n1pOIRJBmtgxT07iXAjc6kqG3U+afSxka32TzzAC7Hr/D7Je30xvVDFIAq61o7lFkViQjz97VIPia\nRTrhUcx7NO6Wyd01CE90SG/rvek0BEFZNxsaPB3QGbUJSoLmkZC+1y2MULFxWOBsCnqj2kM0e5LE\nVtgtSby7h2kl3PjRf/b97VHcl/tyX97f8r5QFIkFiZL4Jzs89uwF9v/0VRj3YNwjSAyePKbdph2f\n0amy7JKkdkbS2RnhDShanxsmXMtCKCGUvP5fjiPthMqBdVBQOr7OyCsQVARqwsMY6ZGZs1j4DztZ\neW2ElddGKN3SVsIIQeZizd6c6oJUOHM2hi/ILQqitQzm+Tzm+Tzusok72qH/NZNgPUN2RVH7iTmc\nZYvgUhkpUzJ7GogUBs6kDJxJsVo6gxPcKfDA1CzuvPXdfpLZBKsj8McjMgsm/sUy/sUySSqovmbT\nmdD9JUde9XHWJI2bVboLBQxPMPjgMvasgz3rkHs7S/1IgrsmsHIRxesmI39sM/gWHNk5x9SJOeKB\nCKMQbfXHFCTVCKfq3fNWauUOzga6sU8g+dmf/TLpGxWivGL++gDz13Xpf2EWorygf886mTXNCM3u\nbGLMu7z81kGWHjMpbm8gA5ABbBxRKAu+9uYRElcRZxT1A1A9J4kKKdaahW3H+IMxflXgVwX5PXX8\nPkWaTShMtEiqunPUv3z8z0hDA6MjMRcdSnmfUt5HBFIXdZ1skrgKuyHI7WySu2FTuSjJLSpGJtcJ\ndnuUB9uUB9ukJohzBZStENUQoxLQvlukdcLnkZ23ka5moDrrkiePXuXJo1dx6oLunw9hNSUDZ1I2\n9xrs/KOI1fUi0XjA5WvjBFUFqW4gFJYU235qGhEJ7IbSKfGWSTruoxJBGJuobEJnX0Du5RylW1C6\nBYM/ME9mTZBkYOkRB6ub0jygPcPekGD1pEKG4G4oStcMStcM3YAoEvgTIe7ZLNFWHczfVN4XoUd+\n95Dq/81fRG3aGH0B9qUsQUWPK7OzSWclj7VpgIR4KEQFkvHJdY7W5nn+1DHcVRMl1b2qyNRJySwZ\n5JYUQVlg/8A6vTf6dNFWXlG6oXPNtR+dZ/nrGkXvjaSkRd2xSbQsCnckvSFNmQ4rmiZefDFLczfk\n92pij2tHdAObXtdFCEXcshHZmB2ja2z+1zGyqylen2TzMQ1EAeTvStpHAuy7NvFOD7XqkuYSCv0d\nOnNF3BWDnR+e4for23E3dFjQPu5DXZPNlJNybN8dzp/ZQf6upDuqiTiFgxs0buo+F1ZHkNjgbgq6\n+wOcGUc3bG0KcguKtZOJLkx7KARP8y5ysyZhWZGM+aSxxFyzyS7qoqbOzhir7GNdyBMe7JFEW014\nYskzhy7rgraWg7VpEvVFVN+xSGxBd1RRvgGdcYE/qMOCA/vnWGiWaN4t6RZ+iUBWA9JYsnd8Gf+3\nR+iMWDSf62JuEa4AxisNZk5NsPPhWZr/boKVhzWPJLOsXXmzJwgHt1LqsabxD7wlaG3XzWXjnEIk\nmk0LkIwEFIoenTu6yKt0TaCeq9O+WSZ1FdmRDlknpPt6P2FZkb8raD4Q4N50GHxyAYDZ60O4Kwa5\nh9cZL9a5tjqIulAk84BukJNb0E2Ov8NtAN3hLOhPdDe3yZTqrk02ZipQirAzEaGnaeh2Q5Ls1A09\nM2eyBA91+PDUdb55Zzd+08FaszA8QXpAY3CZGRt/OOHgQd0W8+LVCU0UbDkQSQo3TC7/i1/5/mZm\nuiPjavA3fxGrbmgq8u6A8jt6ZZt7E1QmRWZi5IJLdlnQ3pFQGm8Sv1ZFhpBbTtk4KO41cHUe2kR8\nrULmh1ZYqxeIehZ9gy2Cl/ronfAwrRiu5cke3aToak7Ao/0zvL0xyczsgK62yyhULqb2tkX0sQbd\nnoM5nSEYiXQHaSB3xyQ82iFeyaJcna8uHt2g3XMINjI6xdk2kDFEpa3uWRsGmTVBc39M7YxB58Md\ngpZD7U2LzcMKd7RDfKMA23tEXa1czA2d7iuNNfHPVHVzlRUDd11RPxFTHWrSvF5l/4N3AFhoFcn8\nYYXVH/WY/F3B+j/yCV+vEdQUpeuQ/x+WWH5zhNzxdTaX9EERvqS0rUnvUkVbwIEYLEXxgo3VVfg1\nQenJZRaXKoitpizmgkOcVZrnMBjTN9Fg/W6Z7JxJb1fI1MQqM9ND5Aa6fGeb+Z6NWHJJnRRRDTk5\ndZtb/89elj8U6ybAuRhr2dZZnoy+KLUAoSjdMGju0XNXBiT7OkR1F+lJZCwYO7YIwPy7I+T31mks\nFMFOQQnyNy22ffQ2Vy5OoHIJ/YNNuq/10xvXCqx/W5322/1Ur6UsPpVibxi4BxtEZypE+3q4mZDO\nUh6RCCqT2lA4/7nK8uOKgakN2q8OUHtyidVmnmA9g1GKGOlr6LKBrG44BODccik9vMr61T4yKxL/\naI/sO1laB0OceZs4q+dc2F3H+JLO4m1+MECFBuVzFs7HVlmdqZEfa9G9UwIF+TuS3ErK0lMJmXm9\nZ7wR3fRpZPcarW8MEZ9scf1HfvP7G6MwPTh56KZudXasjbFp0Z1QdCd0yzujYcK6w4efPkvrQEhm\nwaA5V6J4JyEswcrDGiT8DlfBO1fFrwkarwyRzmcxGib1qzXahwL6Km24lidxoL5SZHa+j9n5Pr7+\n7x5jdrWKtBNkCIeP3qbvDYuNYwn+5TJiLkMwFkEk+eJHfpcvfuR3ifIKMa0Bp2xfDwRs3qjyzNQ1\nrHKAs2rgbApNL491IVLqgP3sGrnbJhsnI8LlLFY+ZOPBhPxdSTxdYOD4CuaVnC6wMrXrXLxm0LpV\nJrUVRk+Sn1NEBUF1qMnmSpHyVcGVU9u5cmo74at9LD0miFoOrakMwVs1uttj4nzCyM/cxo9N2Nem\nea1GYaBDYaCD2ZWEscH2k3eJtgXIngGBxHukQ3Y1ITzawf5XNfJXHfZPLLF/Yol4OMRqCfIPrlO8\nYdK4UiMz0CM60uHA1AILr48xuWOFzJ8XCWb0x3EjxKgHEszbLp3IoTUpsVcs8jPau4lHAsL+RP/b\nBgnmYA+VSUlsKIy3+Lt/99sEAwmmmZLp71G6IYiLCWvfHGXtm6OaufhSlcyiiQg04J0asNgqYtQC\nstM2Gzdr/y977xls2XWe6T1rp7P3yenm2Pfe7r6d0Gh0QCMHEiAFZlIUKVFprDBVkiwNpRqPa8oz\n5Rm5xmXPeGSXrbFKM5Il0aJEimIQKZIACTRSoxudc7w5x5PjTss/1sHFuMqWbELloVzcVacK1bgn\n7r3WXt+33vd5aexpY1R0jIrO1kwWb2+T1Q+7mGX1nOpiEndfA79hUK/a9IwWiGzryG/nkN/O0fzJ\nEtIMEUKSWAzZPN1H5K0EkU2DoGLS8g28vU363wwwliMYyxHcdMj6YoauC+ra92smzS6JtWIidam2\n3oVkX35djU4N4tdsMj0VypMB63NZpBVivJhGZl2MhqB6pM3Wx5oYCQ9nXeKsq12s5H2dwulefBuG\ns8X3NEZ/4BWFEGII+BOgB2Uu/n0p5f8khPivgV8CNjt/+k+llN/+m17LHh+Q/b/yW9DfIixZpG7q\nlA6rZaRW1zGaAr2puv3Opqr5KhMqVyGMhsioT/xWhNqYujuYRZ2feOFNvnznCF7JRmtoiJ429jWH\niRemuToziBX1sCwf6zvqjlreq3B1rf0KpT7+oWmuXRsleU+n+bjC6zsbktLJNskLah/daEkq4+BM\nljjQtca9/22S0jMtxLLNwCmfRo9B4QA8ePI+V851zGejVbQzKVp5iVURtLpDeic3WJ3qIrKp46ZC\nkjMa9X5J/OC7PhQRQJAKMAoG3RdCVh8X6G2BGK5jXY4z/ME5pk+PAOCPtDBnbZis4W5G0VoCo6bR\nHm7T96KJs+kx9/MhMhQ7BqfYOYf6oCpPWhPKnalZAXbUpbkaR6RdwqZB/ozB9pNqdyXfVeFAbo1b\nv3uQ4j6Ugrbbw563yD26RuV7vXhxdXU4x7YBNTnbSyZmVflK7G2lMpUnFZ9CShA1g8im/u6uxwHw\nMz7OkoneVtBdaYZYGwZeJiQxrVOdCEjeVRNNbUjibKhcFP/pMp8av8LV0iCb/8sohQMK0yfSLsaC\nreT4KMK1uWzBRB1vyyF3QcOqS8q7NPyjVZKxFrW3uui66tPoVu/T6FEWg9qkWj2tvD6IH5fYW4La\nuIfwNfS6htSkyv0AtLSLEJL09x22HvGJ5+vUyw7WgkXmjuTR3zrH1946jlXQScyp51R/rIZhqAlJ\nnk3TGAyID1VwXeUFCafiBEMtjDkb0RnOzuEi9UYEf9smNq/Tzkmm/8l/AlOYEKIP6JNSXhJCJICL\nwMeBnwBqUsp/8//0teyBITn6C7+JfWKb0mwGmfTQI+/Wp4k3o1T2hHTv3WRtKUvPQJGNmRyRTZ12\nNsRZ0whsdgw+e3o2mf/6GJUDLta6iZv3MVNtxHSM5DS0P1oi9qUUGy+0OTyyBMBWM477hR4qIxrN\nEQ897mHdiiICaIz4JG8b1E+oskW/rMRDjRGf+JRS7LVzIc66Rm2yA7VdhuLBEBkJMbcNuo4o9+TK\naoaPHLpGr1Xhr3/7adyfK1K4nyV0Qo4fnGaqkKd6K0uQCNk9qWrhjVoc/ZsZjE9u0vYMjK9nECFU\nxgRmXQm4Wk0L2YHrRpcFjX5J0Nsm+0YENyWojitS876hNea/tQs3Jek5scbyhoIBy0KESH8deSuh\n7mxjTVKnHGqDSi9iNCF4rIw7ldwhL2kjdeyIR20uhehuYV+NqgmwJGhOtLGWLNweX/E5OgwLbcUm\nUhDUd7tE000a6zFlLdck6f4K/htZAhse/LHbnLk3ps7/jQjV/R0ASyJEtNUWsnm8SMpp0fRMvBfz\n6M+rLJhSOYZhBhhX40pwdrCKZfn4FzI4m5LW8xXk5RReUip1JyhPhtUBylgSsyZwOxAYfdskOaMY\nE7mfWaD275RGZP2TbQJPQ2xbqhcRD4jNmrQfaBD4GrKlo8c9WLF3nK2tQSXqi6yrQR5flNQ/UMOf\njuPnfEZHN1h/dQAvpcC9gBroR2uES1HlKA0FIhLg3LFpH2jCik2Q8zA3TLysulkOjWyxfLsHvSXo\nPRvQ/MUSlz70r37gieIHDgCSUq4Cq53/rgohbqMSwv5fH9FkS7kKmxHsgRpCSJprHVpRJKD1TBW5\nEqNwqRvdlhQSUZBgNFDGGwHtQRd9UZUB82cSaE8XMG5ncHs8hCHpz1bYjvgMPL7NtdlBsuUAY8Hm\n1oxKEmr3+BiHBH7aw1kwmXhuEbdX5971IaLzBtUjbezbDl5concGirWpv3uHi4SEo1VM18AbCyh0\nm+TP6Ww94dP70BqrV3oB0CzJ+c1h1qfz2Ht15Lk8kRDaeTh/dxfOrEX0WJHMv49zz1Qgmp88/jZf\nfuYokWaERtlBHA0xixpmTb23fT6DeKCGUe1kdPRJzKogsC0Kh0O0XBuxaRPWTWZf3IVTlrhpMPWA\n7Cm1Oqp8oI5l+oQ18GMC7U6U8m6JvdW5208nieoh0TWBUVeDy9/jEY24VKyQ94/f55VwD6nTNlKD\nthniDrrsHVlj5u1hRMcx/U4fyYy5HOhZ42JjmOQZBz8KqfEW3nxA7XMVzr01iegoYGuH2iBVGSJc\n5T3xUpLmaoLWdprQgL2fmmV2WzVzdSNAux0n9tgmzVe7aM3EsabBaUnSP7/I1LVBZG9A4r5OQ/3E\n+N0ez+6/w6kLB9BaapWTumxRGw2RhqSV13BObHF3to/uqBr0ft2EQGDVBI88f4OLXz6EFwfzVpSg\nNwBDIpYcdh+fZ67z2SjZ2KsmbjpEbwsq72sgZ+JEJ5Vyc7MaVxNxCGZHe1Lb46GtRQkTAT9+5CLf\n/fNHqO0S+FHJyV2znK7vxp6z0A6XCduqR7H9ah/hLg9roMWyHSP6Wv4HGZo7x99Jj0IIMQocAd7u\n/NOvCSGuCSH+UAiR+dueX29GSMxpxJw2/v2EcvRZIdIK6X7NRNNCEnMacrxOmHexLscRnqC226Pn\n4AZeXGJumCR3F0nuLuLb4PxZmuQMRGcszGWLjUqcINC4eWYMw/bY3m/iJUP0tuJyCl9gTVQQdoAX\nl9yYHeDu3QFkwkd3VdhPO6tO7jtd7HC8SXm/z2efOIOR8GhsRdH0kMhdBz3hsX1ENdKWb/cgB1vq\nkfHYuN2Fs6zT6gpp9wToLXCGq0yMrtMcc/EuZlj6nBJ6IeBb8wcI2jrNlTj57gqxOZ0jz96lnZNI\nKyRzX7kwQ1MSmgqS0trdYnjfGjLu89DwItEVjexAicaYx/ZxHz8mmVnopvKBOpUP1On/Q4vW9fQO\nGt+qQHr/Nkc+cYPRbAEhIWIEuAkoHPcpHPepNyJsl2NgSl4+f1DV9SPKem/MK2fpaiWJPlHDG2nj\njbQxG6jdqbkYV1/dg6xYtLrAf7jK/Ew3xc/U8XydIOUjzU4eSNnkYw9cJXMTZNZFhIL4nEBra5j7\nK/jJgMVSmvg3ksS/kYSZmNpd+H4XzW6JPlZTqMQJwczFIfS2YP/BBQKHndhJUdM5vbALLdum68Am\nXipg8FOzZPYWePbR63gJSeVWDmGEuJ8q4n6qSOaioRq1upKNtx+uEUZU2E5kQ1c7OiN1Vr46Smst\nRmstRiTZJjQkVlnDj4ZYV2MgoLIZp163aTUtWhNt/FRAfBHii2AUDbS2YGh0i1d+7yS1PaqPEikK\n3rqwl+isupbNV1PK0BcK0k+tEZ01aa9H0VuC2rj/nsb4e54ohBBx4C+BfySlrAD/KzAOPIhacfwP\n/zfP+2UhxAUhxIWgWkf4qhaPrgrc2QROpomTaVJ8oUFzJU69XxKsRDGsAPdIDaMpSNwxsX4ni1kV\nxJbFjmU49/Qqmw8JvBdKNHa3CWzJcLZIaz2G5kHg6wQOmBXt3eZP3CcINOJXbcWMiLchEmJsmPBE\nkeQZB6MhaA+52FtgbwELDtEFgy+9+iijPduYSZd22cZ3JNYth9yuIqKhkxorErvgELvgkMtXscoq\nZs5oCKQTUNvr0VhMMHW/D1oa0TVJULE4vm+G4/tmaN5LM/GHah+/eDtH7NkN7v7pJNEVQfK2ycYx\ngXUqheYp2bGXlMSv2kR0H2PD4uZf76WVlzRaEYxtg6GRLWJLGpoV4G04eBsOSz/nY28JUs+skTmw\nReUBl63NBGdfPcBKJYmfDNjaTOAlQ6x1A2vdIJVoIKZiTIytEV3SSb1l46cDEpMFrP1lfE+nXrcJ\n78aJXbeJXbepHm4rvF48xNhXQa9pmFXwPZ30dQOuJnHn42CGJO8bJO8biGyb783txf9UgdgNW+Wv\nPl8kjPtYLyURMZ9a1aaVEbQyQrEqTQUdEiGEM3HKB3yGX6zjrAsI4f6bo1iPbhOkfDUp2SGPDc+i\nCUmlYWOvGxR+b4Ti7Rwv357k08+dxt4SyLqB/aU09pfSVJ9swrkUbq/H/VIXwZIiroWWxHyoiNQk\nciZGZUI5XKUTYJ5LoHkC88EiZk+TIAL2pkCPeaSSdWLnHaJ3IhAJCSKCICLouiQREtZLCUpPthBm\nSO/ZgMgzWyptDOVDaj1RRfoa0tdYvdut4MyBUNfJ3feWHvqetkeFECbwLeBFKeW//b/4/6PAt6SU\nB4aSN7IAACAASURBVP+m14mMDsrxn/otzEcKlLbipPM1ykVVRlAzkLokf06ncFgisy7S1Yhmmniu\ngVe1sJdMWv0+wlGzZvKiMgnFHtmicC+LURfI3XXC5SiRLY3HP3GZO799iKVnNR4+oazpq40kpW8M\nEPvwGu6f9dDsEfjHq3T/scPyUzphNCQ2p+Om5I7BqzoW0ntGUv5cleZUqrM6ETjrUmWj9rcI6gbC\nCjEX1Qa+7graOVV7SkNidjWxLsRpDIRENtUEEu6t4ZyJ0+5wJt1MSHRZJzUdUB7XkRo0dnl88qGL\nfP8LJ0nN+awf14kuq89VesDf2ZaVGlgTFTRNElxI0xzy0RMeQcUkumjs2L/3PD9Nqe2w+nYfwVgL\nY9pm7Il5ZrdyKix3K4I0JenrmkoIQ93pug+vUzjbS3RFUhtSk5/+cJFG3UaGELvsIJ4sYn1D9UK2\nHvdUv6JmYhY0zLpqOjb6JPbuMq5rsK93nav3h4hNqd/Mi0nMAxW0N1PUDrdIXlTljRdXIJz4SJmk\n3abeVn9fLkXRzBBdD/E2HYQrSN0TeAlB6n1rrGykkU2d+LSJd0z1tdz1KLv3L3P/9gB7f79M6b/z\nKL/Vg39AnYv6oCTIeFirJm5HKp9/3SL5uWW1BTxnIDVFVq/tbzPUX2Bxtot4Tw3zpRSVcXUu03cE\nhSfaxK/atI7X0e/E8PY0sa87tB9o0P21CG5Co3DwXdm/26c4o+2cRAzXyX0jSuMzZSKmj/tiF9UT\nTTRNYl+OUh8Md8bVsaP3uXpqD/q+Kg/0rfAXj/7+//c9CiGEAP4AuP0fTxJCiL5O/wLgE8CNv+21\nNCOkMRhgtRXEtbWQRUuoL/wOBk5qOporcJJNgnMZQtPCzwdEV3RaPSHJ2wbtnJpdy/vVHnJwJYdm\nqsRpf9MhNVGiPmDx8uuHCT4UoifaXHpZ5fbJvXXc/T7t0720D4dYFYE/E6f0iyUigUZrIUFtr8uz\nB+/wxpxqsmUTTZbTKZKvponEwHq4QHUqTXtPm76uMssLObS6jrlq0u5cXGbUQxZsPv3o23z924/g\nRi10S5Ue9biDXjSJnotT2avSvwCGMxW2lvsp7tFJPrZB/ZVu0CXXSgMK17ekmKPN3ndi1tVFnXnL\npN4vcNsm5s0orT0tnCmbVrdAgNKKdOIKbiz3KTpTJiR1xiH24TXuXh5GBCrFXSZ8ul81KU90IEOo\nuMf16z0EQy6tEYlWVp4a29exbjk7sBYh1SAFsNZMMkc2SQy2mb7dj5uTRBcNfuoDr/Mn5x8hfs9i\n1oujDYfUx1QzMT5lUluPEbUBoXa73lGQyriPqQdsXO4hHFECJWM1ghTgxUNyo0WarkmtlcTL+rgX\nexg/ucT0nX58G9rFjhPUE8yeHyLSFNz/Jw7hVArG2wx82WHlyZDIloa+btHqkhibakJqdQm25rox\nSjpmFYLnikSMAPurOWoft8hd0Mn/VJmFbJqfeN9pAL5eehz7nk3tcIuE41LpjdCbrbCVtmHJYeV9\nAT3Dm4jbeeSEQpfHbY/x3SpZTW46FA4I/LkUblGjfawFoWD3wDp33D60Dj5wpGebxd/djfusj942\nufbtyb9tGP7NY/Q9PPcx4GeAZ4UQVzqPF4D/XghxXQhxDXgG+Pzf9kKWHiCtEG4nVOx7VOJsaDgb\nGru/4KKvRqiOKgBK0m7TGPTx9zZUTJ9QuLz2Y1WFZW8K7DUDraWhNwVGU+D1ukhTUqk6/Pz+t3HG\nK9irBub9dy9m7VYcLeHR2t1SVOlOrekHGq2mhVnRSObrvHJ7L/v71tnft04+WsfY6ghcekIqs2ms\nooYMBda/zZJ721Cg33yAuWFibpj058qkr2t8+eIxvAGXXX+uhEWtmQQEgtQU1I80wZS4VQu3arF8\nqQ//oSrNXS7GH+So7fEQmmTtu0P0nlxl45hGa8Sl9+QqvSdXeezgfRX0+5hHc7yNfSlKc8Qjdt1W\nDtRQkLyvlK7vcCKCpoGMKLv7wI/PIn6/i8i2ctPKaECmq0r9ExWC3Q3MioZZ0WiNuoR2iKip0GWk\n6vV4riKIGw0lXa6txyk/6FJ+0MWsCtbnsiy9NsTPPPEmybsGrQNNvnjzOPFcg+6Lbayy5KeffQNr\nw8DaMKjtcbHXDLwHahiWT3WPj5sGqUsiyyaO2UmKvxzFuRwlGFCAWwLY3kpQ34yi+WBlWgS7msxc\nH0Cvqs/vLJk4SyYy65G6p9LI9g+uEhusYtgeS88r2nWkqPio2RsQ2RZEthU71Ix5xJcE5f0Bo5ki\nWwtp3I+WKC6lsIsh968M0c6FnFrbzam13crYWAVzMYL2vQxGyqV0pofxEwsMfd8j/7ZO7bVugqzH\n4B8YDP6BgXctzdW7w0QKGseOTOGlQ/SGwN6GRydm0HTJwndHSV6KEFRMgopJ4w/6lYgtEqDP2TTH\n3xuP4r3serzJzkbZ/+n4GzUTPzp+dPzo+Pt3/FBIuCOjg7L3n/06etRHNwJVV6bVDBi56+zU9JHB\nGjHbpXoxj5sOlZmqq03qLZvyHqnAIahkpcjFuEoXbwtkJ/uz2asSpaJ9NcxXUvhRqB9Qy3tRtJBZ\nl+xrEYXKSwQ4iyZ+VBJbEmSmXFYeN0nMQn3gHQiNJD4P0a2QxH++yN3Lw9ibGv6DNZiKQQheRmHu\nMgm1jGy+2I1VkWw97rFvbIXZU6NqCR3ziU5bSF1Be1MfX6HwYj8A5tNbJP5dioXPBlAzGZ9cYf7c\nINnDm6QiLe4t9CB0iayped/uapL8qzhmI2TlGUgPl6hfy+LmA6JddRrbUYyCgZ8MSN5Tz/ESwOEK\nvq9hWQHtlomYc3jwyXvc2eomCDR0PaQ+k9rZ4vR6PB7bN8XpG7tx5k38QzUeG53l1WuTCDsgn6uy\nXYwjA0H0tlrit3IKAiSGGwRrjvIrjLTIpOqUbuYwxhTYN/Oqzfbj6hqwoh66HuK8lKD6TEPlaTZN\nkALd9un7iwhP/PMzfOnUowDExsp4lzO0uwIy1zUKR332TqwwdWkIc6ROMBXH73Pp7i5TaajPFf9m\ngu0jEr0l8Hpc0hcjhAZU9voIX2WM6kWDyWPz3JpT58WOt5FSYL+aQPvgFsH38pQnlX3dfnib+rUs\ngSNVGRx/l5kSDKnMkXxXhc21lOJjFk3MisbEU7Os/8ko5ecapJPqmgm+kafZI2gO+BgVnYEHV1m6\n2sfk8Tna/1UPU5+zyJ/XqQ2KHdq7M1CjtZhAc4Xyugz8/yEAaHhI9v0Xv6HCf6IBQpMqowHVHIzP\nCWqjEgab+E0De9EifS+k5x/Ocv+744Qm2EcLtM+rverQUrW31ODHP3iaP7t4QhVZvsDcNghNlRZt\nFowd7UHskS1q5/PK0djnolkBQcnCzLYY6Soyc20AESjfgezUgZnBMv5rObwEtPo8tJhP6GngaQwM\nbyOBtc0Uo3+kUR1Sde3YL93lwtk9SB3MsjIs6Q+WVUzBQ2qpmM7Uqd3M7hCVpa7wfT/1wdf5kwuP\noJUNIgWN5qiLaOvoVQ2/22P0S+rvN365SWMzRvqGoki7+xsM5ksUGw6O5bG+mMFKt3GrFs68+lyh\nAcahMvXNKM6SSXuvIoD5eQ+tYijeRc4nPm0SmJ3PZUBoKHVlK6+IUK09auKNzCqYSn5XgXrL2iFc\nmYN1vJUYySkNnitQWk+QvGWiP7uNlALrLzNsPKWk8pmrnY5+RFCZ9DFKOn6Xh24HhL5Auh2XZMxH\nrEdUqQR4CclHnn+br54/hrNoYDQh8fwa6ze6QQq0oTqmGdBciaN3ktk1D+wtQeZDKyzc7cGoaugt\ngdEAqyLhI9sUZ7I7KW0AoROgNXUmDi3x22Nf4zMv/Qp6xSBIK75mKx8ydniZqaletLr6LkZd4A6o\nXJbGmEf8rkltQjXipafR01+ifLYbebCKu6YEdHZ/nWbRAV+V1fY2VB9tYN6L4o43iV5zaOUkmgfZ\nW2o8r73fJ33RotGvKGf23jK3Pv4v/357PUSgcG9ato0za2HfjyATPjLho3nQyqM8E3UTYYToTaj1\na1y9M0xzb5vWsEvtbgY/LhX63BfYG4L0A1v8+euPkrxpMTSwza6vSOILivqkV9TuwTv76NvTWdyJ\nJv1HVzFWLPLpGnrKw7oSxwt0jJryaiTmNDLXdDLXdPzXcognirRzgdrrXrHRzBB7xcQPNQ7nVhAb\nERbfZ9H8WJnmx8pcnB9m8ug8sQUNZ1PxJV1X5+QvXEZ4GulMneJGgqHjy/gxiR9Tuojx4wv86c3j\nOLMWYdKnnQvJv2WSvKvjZ3zsRJu5T8Pcp0HXQ4yyTr1f0trTQq7ZLNzpwQ80tq93EZ03ibwdJ3PB\nZPTZOUafncM4VMa/kSSabxA5ViCXqdF7NiRxS+EHw9Em0TmT+lBA91MrdD+1gn64THzx3eaiH5c4\n8TbmQgRC0Osapat5gkDDqqiHux4ljAa001BaSRKdMxn/5H2K60lKy0k2nvaI31ZOWSQgwSpLlavR\n38ZaMYnGWiSu2HzkyBUIBMaczeArAY1Bn8agT+rQNi//0Ul6R7Zp9QZ0vbCE/8UeklMC3YXkyzHE\nuRT5i//R5a9B70cXWLnYB5qCxYgQRj48S+FIQP1yjp95+g0yN8ROMj2A6Gqz8MYw//jXf5X4fVPl\nsV4xaR9oEkZDpm/2k+mroPkCreP1MddMdn1gFjRJ/VCL0fF1ZFtHGJLS+W6CqES/ktjpBfn31CT7\n84++iZcM8W0IyhZSQOjp1Hb5BI6S329/tMn2R5v0DxQIbDVpGuM1kk7rvY3RH4oVxdiA7P3nv67u\n+AkXr2ah1dQMrLlqT/wzz7zFXCPHhdcm0TzBiedvcHZuFw8MLrNWT1J4sxd7u/NdJOQ+vcTSG0O0\nRtrQ1jl+cJrZUo5CMcbE/+xz7x9GIFT71wBBxWLP7hXuTfdhbhuk70Dz4yoExpmz8OKScKClSqOC\nWq7aXU2kBONSgsCGcF9NLdFnHbxkqC64DUVTElHVcEun69hfzLBxXKkUBx9exv3dPkq71d2xts+l\n55TB5gfbdOdUdN3WdZUjoXngZgMO75/n2rVRnFWdSFH5T8yFCFalo8zsCUnfFVSebeCVI3Sf1tl4\nskORNpXV2csEiKiP2FIrinci6vSWar7mzutUd4F1oIx+Kk1tSKK3FEX8nWBjaUjcbEj32Dab9/Lo\nPU00PaRdt+j5vsnmUZA5FwQkLqrfrD4o+dizb/PqyoQyVvWIHdVme7KJLFmKMBUq6zuAHwU3FxCb\nU54FbbxGe8vBzLaIRHy8a2mcBwvK+YpCALpJgZsEjpXx7ySVBd1X+HvNVVuyelMw9twsoAxjpbk0\nIuti33QwmtDslsq7smhhPFhid26TW2u9hFNKNdx7dI2Ns31EDhfh1Qy1kVDFFFYstJiHLFo4qzrt\ng02CSmeF3CGbB5N1tYK6HmX3B6e5enMEvamRvC+QhsCLo0plID5apvdfGdz/NZPU2zbdn1xg7ZvD\nVMcCjK4WzrkY9cEQ2dNWNHkgf3SdjUKSYCuCva7T7gqZ+40fnML9QzFRxPJDsut3foXItK2UijWN\nSLEj9X2kgB9quK6BfTZO9XCb/aMr3Lw/iJ1u0ZuuMDfTTeKuucOwCMab6LMO+t4qTsSlsJFkaHCb\n+l/20nxeBRd7rkEmVad8TeVVap7abQkySjMvR5uw4IAGPW+HuAmN7M0a8x9K7FiB9aagPegSv22p\nbcBjZeplG3PdUri9aIiwAz57+Dx//tYjgMp1aOzyEE0dratF4nSUykRIarxI+2yOdjYktCSJGZ3o\nB5Q/pHChGzToP7HC2psDRFclhWM+Txy6y1tv7UdzhUrQ7vQozLJSsYqpGM5GJ5ns6SKNRoT091Q4\nc23SJXnd2tFqaG2BfLCKuxyjb3KD9Ss9CGDsxAK27nP13jCJrhrWX6c58ovXAHjt1AOEhgSB8iC0\nNOIzBuaT25h/kaXeL+h5boniVwZoZ9T5FCHUxzzMgoEcaaJPObi5ECkkOAHWkurTPPP+K9wsKH31\n6lYKTZPEzkTRntumdiNLMNQiecahdMRDuBrJO7oyoKEGmNEU+H1tJv+bEnd+rZsTx+5xfa0P2/Jo\nvaXkzI0hH/EOWyPp0fuSiRbA6pMSI9disn+duWKG2lKS2ECVWjGKPWfhT6reQe6vbdafClTAUDVO\n+14SPx2ozFa7I7wqa3gjbfYMqnO5+o0RwqdL6KfSVE80iV5xaAyE6hymfbUVPO7jLBo7ZZx9X4nM\nvJjqoWTvBqw8qSbqQwcWuD49SO60SX3g3R6FtFUGrmyqeMfeUzrnvviDTxTvTa71d3T4yRB9LYK3\nt4msmqSmoLi/U6CfyaK3QI9D/mqb5gmfm1MDHNk7x+2Xd7O4x1A1aqDyFQDChkV6FspGAjlWo+sN\nk8WHuzAmIGya5LI1qje64Hidx55VMo83Xz8ImgRPw8sG9GaqrBcjGNkWhUqMVk/A5kkHM13D7+y9\n+10BkUWL+PvWWVvJELmRRORCgoik/3XJ0o9Jer9j8t3svp1gHinAKKmaPzIXpbwvQG9oNC/liNSg\nMRxiJF2CQY/1jQ4rYrRF/ILD3FQPXSc2mUhvceH1SSJaQGJao9UFXksn1q++f12LQTVCfhr8GMog\nNpNC6lD+QB2vZGPGXdAszE6Pxo+BvJUgsQXaPmWKkoerTK12E5RNYvMG4maG6IbP219SBO1wIGTP\nQwvMvTxKM6YxtmeN8uUBCoU43VLiH60xu5InpYkd7kNs3iDW1SDxaoKNIYEuBfgCIuq3f8dafer7\nDzL4impmyp9VSlepq5CfYs4necmh8VQNsemQP68Bkv2fvQPAxVOTylV6xeb2b+ZxVjTOn9+D3tsg\nuJGCI+pm0RVv4gdqouiO17j7TD/mlkH3Wdh4Tuf22V3YmwK5zyW4mMayJfJgFbmgxIDVYY3RXavM\n3+pDxnwiLsiqKmmDuMoEDaKS+BWbOVv1z2Reogca7UfqhHWT1kMN9vWvM/viLoK4RmigUtRMiN7q\nNIAPN0icjlLf7bFndI33/+RtTm9PcHVmkOt3h8AM2T6p+luR6Y4uxNUREvSTRWpVm9D4T6jM/Ls6\n4rkhOfoPfhMhVb3b6pIEPQr04dyxVZbjtlItuhNNZKCRyVUpzmRVPkVXnUbRwVpTyzu3TzXDtJaG\n2V9XGReuRmy0DG9kqE6oTrbIuMhiZ+kdC3CmLeV6XLbw45LIpoa9LSk+5BNZVWKi7nOKfwGqqamn\nXcLCO/gigUx6RJMt7JeStHKCD3/6Lb5y6iRhQs30Wk3fSfzWe5sk4k0KaykylwyaXUIZe66mCPbX\noANXzd6U1D9Voe9fm8z8qkbQVPVs6kKEp/7BOd5a20X9zS7CDr3JSypIr1VWQb6xaZP6iK8ClRct\nWv0eGJLUVYtGXyfqcKRJGAicGw71XYpolXw5Ru25GuJmgtCQeEnJ7oNLrLw4rD7XbZ+Fj4Xga8S6\nFXTYvZPEy/sYJWMH8eelAkS8U3q9FaF4wkMrGUSKGkFE4vZ7jA5tMjfdQ3zGoNkdkpwWO6sQ74Ea\n4WKMvrdCKqM6rZM1goUYYTQkfUOjdLJN7tUIpY6mKLTUzoreEGTuSmoDagA2Rz3i903qAyFWX53I\nWwmVQA/0vKlRHdbwY5JgtIVcjxDGAoQdELthw6Ml6gtJSLuId64ZQypKV1sBlq01A7fb58i+Oaa+\nsZvargB7TcdogPmMcrY+0LXK2e8c4lOfeIM/PfMI1lYHZHTAY+QbUB00qO4Cc08F7W11o6gPBmRu\nauR/YpF7Cz3oW9a7sZhJl4EvmGwdNvESksDunM9uNX4yr9nUBwSJE5tcfOG//fvdzPQd1dBsnqjT\nPqruitnXI2Rfj9AY8clMFggfqiJ8iDge2rZJ5VaOyLYyOvm3kuTOmkQPFYkeKmKtmpglndwVgbsR\nBV2i9zSRUhCaYGZaJO/pyIJFZFtXjyWTzBNrdL1mIQ1IjRVp50PKkxI95pOYk8RGy2wdFkSHqkSH\nqmgtjaBmYlQ1+ic2Ebk2xrpF4qsJCg97tA80+fK548TGyjvftW/fBmEiILKl4RdsumJ1egaKFA8H\nClf3Sgp7C0wzQHOV4nLrsMDUAxY+GCUsWMSmLGRbo7or5MLmMJsraUaen8OPSvyoRG8IPvzseUXE\nbqudFaugk+6qET22Rfy+iVY2aDxSJxxpEo408ds6Qpc0hoJO0rfO9iMe7ZKNm1ZLeRnzWXhtmNqk\nS23SZfVRnZ7+kpqQX0nh30gSRCX4Amu8gt/n4qwL7HWDVKpBKtWg/kwdvWgQRkMCSzVr45kGa28O\nIDyB1gZ9qIHUBFYJrBJomirjll4IqfdLwlmVH/vgoRlKB0KSF20KhyV+3sPPe+htQX7fFu6Ax+Yx\nlbnRHFacTamBtAOV2v6BdbSWuqEUDgrctMQbapNK1unbv4Fo6dj3bPwTVfwraWVU7IBwkKC1BHrC\nQ1ohWlVHdwWirXF5eph2ViqnaxP6PrSAY/o4ps+5vzpEq8/nSy89jp5Uxr9Gr8ReNSlMmjS7BPa+\nEl2JOs2ekGZPSHxep/iIS+mPhzBX1Sow2NVCi3uIOYfNX2xQ39smOcUO7EdWLGTFovZ8jdCSbK6l\n3tMY/aGYKKQV0hiQxKJttT8ObB8P2D4e4Cwb1C7kMYwALykZyJR3tj79qKSwnMY8UKHwZJvSsuqc\nB7taBAMt3IQgtqAjnADragz5dpr6qE/McXGfqqA3lSHJrEJ7yGVlJUt1VOCsC7RvZolsaUSXNCI3\nHIr7oXk3TeCE+L6G7ysYTs9gEa/Lww81InccnMkS9QGNeKZB4CrlaLUYxV4ysZdMiq/1Yi+ZWBXV\n6Jw5O8y+7DoYIXKwReVkk8aAJLyaoj3cpj3cJkj61G5mMQ+VGd67Tn2Xh1EyCA1YXs2gVXU26/Gd\ngRJbgVOLu5VSta5RHwkIx5o02yb5347Q6A8ZeD3Ea5qkX3FIv+JAS0fTFIlL6hJZsrAXLNJXTezh\njurSkAT76hzdPcfR3XMqr+TlbpDQyoGbC4muaKqUWo4jPRVc3M6GtD2DtmdgXYyjeQIr00JvC4X4\nv58iemwLq6hRHQuJnYpR3htQesil9JBLOBOHmE/f93XobzF4dAUvGXLlyhi7JldpPFJHcwWE7zxg\nYyMFnmDs0DKaJxh4SSM+p9EYDNCiPqk7gtKZHkIrJLRCIgVlJpM1g+JMlkorAoZEGiCuJnA2JKlb\nBsLTCOMBYTwguqph3nNwlgysssbos3NEB2vEb6ugYquiURsO2fjLYdxAxw10rDJoLY38oQ30ORVj\n2X9sFf2BMrWxgFZfQHU1wdK1XqyChlVQr5E9bdH4RJnM7U78QMXksfFpjLrA+U4SUTHZetLdMQY6\nvTUm9y/iNk2MmkB33pt79Iei9HD6huTAb3xe7cv3t7CmHLU8BhVgHPexoy6tWgR9zSKyp0JjMYGM\n+xiOj1+xMJIuclXVZ2ZFwzpSpLqcVAQjCTISIlrKKKU3BOF4U0XrdeCyP/voaf7s9lGG8iXqf9TP\n+tM+2Z4K9Ut5MifWCUKN7WKc0NPQiu9qPLysT+6CQfuFMvJsGj+qBFPVoy3sezbBoRrutk3qjqoR\nFegV2g/ViJ6O42yFFPcJzIpAGmor0PqISsyOFDuEo13gpwJ63tQo7Bc8+OQ9rn9/L+1MiNbVQiw5\n9DywzuqWumvoCzbBUAuhQViyyF3QKO+GriuSdlJgfmqD9em8ch6+s1F0oIoQEHfaeC/lKe/3Mcq6\nyjkZcTE3TMRYnXA+tqPv8BMhxHxEwSQ+r1HbFTL9E7/Hb60+xFfPHSNx3yC2GrJ5DIJOFkZi2qA+\nEDJ8aJWcXefStXH1/prEzjcJpuJ46YD+Uxprj3Y+W8Yln6/SermL+pEmMhQYyxGcdaF6Kzo0hzyi\nc+q8JOdCnvzHZ/mLaw/h3LHx41JBdTUFpvEyKhPk4X0z1DxVNt49N4pRE9hHC9SbFrlUnYPZNb5/\n8QDZKzqFEx5azUCmvR0IT+Y1m9qgINyr2J0iEJhFDb0tMI8VidttglDdi8tn1c6VP9nAuBtFP1xG\nO51CPFGkOp8idU9j/LP3KPyLERafszDGaphn1LaoVZU084LoY1tsz2aQVkh03sQqg10MWXtCbYf7\n3R6a1cn1mLNx+z0Gv6WzfkLD739vgqsfihWFCFQdblYEsmjR6vHpGSzSM1gk2lPnxPgcXE1iRV0+\n9Nx56gUHq68ObY18porwhYKVtAVaWwXshG9lsNd0nBVd+TR6amg+hDkPaUDvVyJomxaJ+waJ+wYv\nLu8jEWuxeGGA7QdUglZhJYUflazN5mi93EX8ooPQJJGiRqTY+el0yYlfvgygfBT7qtQfbtD3TZPm\nsIdbUnemwIbAhvL+gMYDTawrcfo/Ocfa8x7t3k5wTUJtda6vpYmtSrwPlPE+UMZPqVT17RdaJGfh\n/J1d9D++BJokLETw0z7F13p3lsReOiCbqSOEZNfeVSpj4PW5lMc0Gn2CzWKC6KK6u9nb6uFEPNp1\ni8bpPJVjLdLXDMSw4oAmr1mYFUGwFFV6lliIH1O8EFE0kTlXNd9GKuz661/iq1cfAjvAPVml8PGG\nErdVdMyKzvBHZokUNbZeHKDxCylEqpMhagd48zG8TEDfqxriP9vY0Sv09ZSI/Ics1T0+xoJN7IaN\nNVlBe7aAUQd/fx18QWCrGv3R3zrH/WoX8Ws2z3zyIvEFGHzFJzJaxd5XIrpgkHvb5PLSIBv1OBv1\nOEZdka2Mr2fQb8fZ2E7yxvwYIu6r5DAzRO9pgibJvGaTec2muF+SuRviNSzi0waTBxZVWHRXSG0m\nxfp2imI1yua9/E5ZmHjDwUuEON9MUp3wadxLE1vWqEyEXF/pZ/4Fk+iaoF23aPZImj2SVlbQGHep\nv51XWaue6p1JHTaPoq4DW2JsmehGgG4EBBF13pbeLwksSfb1yHsboz8MK4rI0JAc+EefJ8h4dwnS\nDQAAIABJREFU6FEf8150pxHWHHF5+uBdLq0NUllNQCTc0VswF1US1Q7tKn9NrUIWftrHvunQzoeE\nBkw+sMDtmX70kkF0RWP4I7P0ORVevj2Jc7eT/ny0gjedILl/m9KU6lDnLwm0n9qgeK5HZYQeCDFy\nLaUcBQwjoLEZY/AlQfGnazTnEoTxgOFvCtopjY1HlC1bd6GVV4256JqkNihU2G+2iTedYPz4Altf\nHKY6opSfsRWBH1XfCaCdhfaYyn5IXI/QONZAAIGro5khcjMC+Ta7/oN6j8JkhGaPwDxSpDGdYvzB\nJea2sopHKUC/EUdzVe3+xGM3ATj/tUOYNSgd8kGT2Msm7VyA3tLoPROy9FEfZypCqyege0LxLwuV\nKJomiZ5Sr2fVJYX9KgO1/FwD+0IMN6WaoGFKnRtr2UJOKM7ns58+z7dOH0UmPdIXI1QfbcCKTdeB\nTSqv92A8rICwlZUEaDCxW+W7WkWNgWcWmV7qQvoadrJN1//u0Ppl9feb8xkSU4YCDB2pEn0lTnVU\nrQD93Q2OjSxwcX4YuWoTHVf9o1opij0VoZ1TSWdhl4u+FkEbqeMWbHpGCqwvZTAKBnJYuVS7MlW2\nignCdRvNU4ntzkQZ7dU0jX5JdE1QO9rEmH2XZWlWBV5CYj1Qwvd19nRtsvzHY2wdC8gMlimuJUnc\nMbHft4nxBbV1v/ZBD2vBws2GJO/qlB9qI6oG0g7J95fZ2kiCqyIKhKeuAZl1kb5GJNFmIFtmtZT8\n+0/h/tHxo+NHxw/38cOxohgZlP2/9Xl6Jzcon+rFP1plf69Kpp4u5NFeyhBGVHiLPFGmuRpHa2qk\n70H1/XVir8YoHg7QOpwEvbdBGGrKd1E20fNt/tlD3+JffvPThJEQGQ+wFyz0B8qIs6qu9+KS0FTL\nduwArWiiu4LIliJG+TFJfF5TAJNIR6TU1SLcjmCWNBUVkAzI9pUpzmf47GNn+OYXHyc0oDHmITr+\nEOlqSkcxWqNdcNT3uCMoPBgQ763Rup8iMQPVMeg9o56z/AzE53WqezwmJtaYvjFA6q5Go1/Jdps9\nIbuOLDM13wNA/I6FPFnGbRv42zZ6tk30fBQvpmr57tMGm8dC0NkB+O5ObvLtsw+SGi4TvJ6lOq7S\nwoNVhzClMjeI+VhRl2BGKZvCgRaROw5eSuKnfLSGjt5Rd4amxO3zsOcs3ExI7qq60+mf2WCzkCRo\n6xi2j98ysBcsErOSer+gtb/Jk7unuPKFQ7SeVlCZ/kyZ2Vt9SFOi1zV6Dm7Q/HoPvFCgVIxh2j6G\nEbC3awOAyzd28fDhKd6+PcbI1wRrP9dC3lUsyuiaoHTQJ9NfpnU+h9ZxXwcRaA14HJ5c4NqNUaQV\n4iyYGEeL1GdThJGQ33nui/yL//FnaXZ3rtuiel47J8kc2KJ0Pb8jtNPrGlJAbEmj70ML3F9U52bi\n3wds/5cNqjVHmdtKKpdEZt2dHZVIpoUQ0Opk6eILhKehNRVU+KlPXuKl1x5E6pCYUaHeRqODZ1jv\nwG6eqmC+maSVk8Qf3KY0nX1PyswfihWF8AVaS9D8eg/tjETcSrBYybBYyVCfTtHslbiPVpEajGSL\npIbKaIMNvJjALdrIDxYxyjrpW4L0LYHfMskkG8Ru2OQvaej3o/zLb34aISExq6MXDDQXPr/vZZqH\nmzQPNwkt6LoUIlyN/r4iuisIBlvUJnwScxBb1Cjv9/HTPnpLDYagaWDUNNweH4QK0WmfzhPZ1Pmr\nP3+c2qRLbFWS7yuTOh8hdT6ivAl1QTgdZ+D7gkhBpWdjB7TvpJCaxNkO8btcrF9dxfrVVdAUoyI6\nZzJ7aZDoqkbpIRe338NNSUQomJrp5cDYMgfGlrGe2KI5lyByKYaRbxKxPXxH8RTQUGj9tEfX2xoh\nghDBd944glXUKC+m6HlhEbOkE7kUo3f/BtnuClpDo7u7TKTTYAMIG0o9OPzQMtamgdHfQHhg1JX0\nXugh9jZERyvon9lA/8wGPdEa1i2H7FkTv2RxdPccZhUKz7foemYFfdHm1Sv7FEj3agJxNcGx3AJ9\nezaJ5JpYJY3V6S6qY9A6nyP1to12K05jM8bdzW7ubnbzk4+c5eLpveglg8Wf9Im/FCe0VIxB6qMr\n6EmXxpUswcEa1mPbWI9tE+yvodV1pr4zTmxeR7MVVzT2pRRde7fQGxrfLx3ATSoOhtRV/wCh1Kal\nShQvGdA1uUX6mkH2miBS1Kju8dn42vDOb1b6p3WsP8uS/m6UeLSNXtXVzcvtELsDQTATp7Xt7ERk\n6hU1gehDDRrDPt89d5gg5xGmfMoPuthbqi9nHSiT+egymY8u88jgHEj4+IfPUFzIEF15b0P9h2JF\n4fQNycFf/zyhrjwHIhA7iLYwEiItiVHRYbCJfUkh4R956ibDTpGvfOMJ/FiosHOlDm6uqZGd3GZz\nIYOI+shAI3HDorYrwMirHkP3lxw2HtIYPKnuqOvfG6TVpfTyiXMO9UcasOTgp33SV01KB5TcN1LU\n0JSWhcZuF1HTifQ1aFUj2HMWB567x92/2sPAj80z/9oI7fEW5nwEt9OwjE2Z5N+3wuJ6Bsv2aRVs\n0tdN2ilIPb7O5o1u5ano9TG2O16HrI+TbSpS1V2H+JJk+7AkMavx2Ocu8eKdfYQ1k2RnZ6Vy8F2R\nlVnSESHEF8CPCip7lfBqaGCbwit9tLrVqiU6XqY/WeHubB9mzCXxSozaEPSfXGH1TD+aK2j1BRD3\n+LWjrwLwu1eeIn7BoTYcMnF4iXszfQo2U1QxjMIXCmDcFHRdVu9T+1yFymoCs6gTRCVWQSOwlTTZ\nzYSE0YBkT43qfIrBSSV7XrrfjVnSkBN1hIBgKUrmhiCx7DH/MwFiPcKuI8vMbyqvh1e3yJ4zKe+R\nRFc0/GhHpzPZ4l+f/Ar/Zvo51tfTpM5HVMYsSjyVGiljWx7eV7sZ+7l7XD69h+T+bcJQo7SWQK/q\nRFc1qgc7F4CrYW0YihI2VsffcpB2QO5tk+L+/4O9Nw2S7DrPM59z95t7VmXta1dX9b6gFyyNjSBI\ngABBQpQ4pERRtqhRSDNjWROyLFt2hMOB8XhsecIjydZEyJJFS0NLpFaSogGRBImNWBroDei9u6q7\nuvY9K/fMu5/5cYpNOSb0Y0hFCIrQjaiIXiIr82bee/I73/e+zys5eHyOqwsDONdcvD71PFZF49iT\n1zl9fbeq0mKhvB+OxBxtMfJrGgu/kOC8kcXfwVJ7o8om0B5MsEebGEbMEyM3+eq1o8iKRWpZpz2Y\n0HVJUL5XNfdy19Xr8nqlMo+Zkrl/9Lfc65GaGpRDn/slnMNV4tNF2iMx5FTzS/o6qVmT2EEZwV45\niO6pBqbUIX/fBsd7ljj3fx+jckD9vu7LSo3X2hVBglIFSujrrdHyLfQXi7RGJVE6IbuTTvXAZ97l\nxXcPgS7JllqqWXi6iF9UQT1PfPIML375PtxNid+lVrHEAO6p462ncdZ0OhM+dPS7JXvXnm0abZvc\nC4oNAXDgl67w9p8cpTkR4a4YSsfRVrzJoCtRNnsjgbqJta2+Bfz+iGxvk9FClas3hzm4d4lrF8dw\n1zTCvGTsBY+Vh126bqqLZN8vX+HKdj9Nzya8nCcY95UBbt3i2EPTnD87xfjhFap/PMT2Peoxqb4W\nYahj2xGthRxWTWAeruHN5JFCTQ2W/l5I7nWXILezjQigMRmrcnlLx7ynwmihyuZ/GWfjVIxZ1Snc\nVAE+qbUdlWUawn1tNCFx3YDGQo6uSxr+MzU0IWnUXcS2Rc852LhXfZ7umkZnOKbrgkb3ZeW3Sa1J\nGuMQdasGePFbLp2PKxNdGOo8On6bl08fhm6fXE4lh9UPhnz8+Huc+/cnqI9rtPf50FKLq1HTiFNK\naWmUOjhnM3ROtMm/5KqbT5egST5z/AxfntmRsMcaUgqymQ4fH7vC1/7zB6geiLC2dXKzKpBZiyDu\nCsld3Gma7wiimlMhZtlQ1UAaBt/wWH3AITjcJt620bp8nEvKZt7aEyCMhOIbNvUJsKbqZF0f4/Pd\nrDyqRuupVUFjt1LkAiAkfYc28P+sj/ZHGnS2XRZ+5pf/di8U6e4R2fPcL2Bva6SXJE/9/Bt86dWH\nAFVhSE2CmSA6Ou5gE0NP6PkPLsuPOjibCiY7ObXK2tdV4HBrl/rm09fUrL1zso1YcEEqgIe2YeFs\nabQmA8wd96hzNk3jUIDo6IhQIAshUyPr6FpC5T+P0vp0jXbLQZ91yCyq112fgCinvBrmWItwLkNm\nUbEZjjw+zfq/283CsxK9rt8FpeqeIEorBaCMNEjAXjEJxn0enJxl5jf30xwWdAZinE21iHl9MVpH\n45FHrnDma4cJ8uozc/bUEELSrKYQesL4gJpGzM70qwsbKPbX6ZzrJj+bsP6BmOx1E69HMTfy52zq\nEzsp7oNt9GsZzOMVGqtZikM1mm0b/UaGIJ/gjDaIbuR4+EOXeXtZJZJ11jJKp6JB/rpOfSJBlgI+\nduAyz185QvdrFm4lZusn2nhrSo5ub+oExYTHHrjCbKObrOVzZX4Q2Taw1w2MNjjbKuv0u6HTWrTT\nQ7IkSSbGyvlEKyn0nXG4fbRCvZKi79tKR9EY02iPh3cnN6llndY+n+xlWyWuucphm5vRqO9R5z96\ncJXVSo74TgZtvEXQsOh71aDdp9HcFSv25uslWlMB2Wuqcu16aoWF6/073AqBNxySvW4S5CG2FTnb\nrCtr+Xcdsp3BiOFvCVo/VaW6neHIriUuzQ1hzdu4Ryu0LxeJXUnvGVh9/Lsx9wKzqiuOSjrBWTM4\n+sQNzlyYwuprY72TJTHVxEzfcZO3BxKskRbepouQAntDZ/q5v8GQYiHEHNAAYiCSUp4UQnQBfwSM\nA3PAp6WUf2X4oT0xJA/8xudovdut8jwl9B1UjanVmR6yt3WaJzv81JHTfOkPHwcJ6Yc32VwqkLlt\n0twTcHRqkaunJ3ZOCjLz4BfVKKowDa0BdfNJSzL0bcHGcaWajHbCY40Vm5/5+Iv81sVHcdyA5Hwe\ncbxGkmiYZoRjRpS3MwgNugpKZl65UiLKxaQWDeJ7GkSLaeJcjOhooIO9rqOF4JcSHjilDEvvrg4R\n3cjRfVlSH9OY+OgsVy6NQTbinokFbn59is5en0yhTXRe1Z7ebh+xbWLVlTfC3hY09weUeutsV9Mk\nnk7XGZPqvp1QXychtWjQ/6ElZud679rko1yMkIol2fuOQsFvH/oukBcVqjTYJqjZ6A2dwnXBxOem\nFe6/L8FoCsJigrOmFjC/S9mq40ij7xsW5UOCsEu5J4OSqijcdcHID93h2oJygvZ822bjUWX5tso6\nQUklXxkNHX28SbCeQuoKuBtldnwLE23SKR++1UX1UITmadhlDW2nH1I7GGFWdKyaWoy7PrjK9ssD\ntCZDcldNmmMqxa2112d8eIuNl4fw+pK7FHSAoGbjLph0xgOIBb/48Iv82tkPY8/aWDUICuD3KOT+\nsSmVGG5oCefOT5G7rWG0JNqPbLG5lid1y6K9K6TrnAECapMQ73h9jKrihwBkZky1nShraCdqdNoW\n2oqjxGdbSkUKoHU0UlNVwtAgms1g7m5gvJUjSoE82sBrWuDpWNu60vIApckym+t5el8x8T5ZxbVC\nzj79K3/jzcwPSinv+Usv4p8BL0kpp4CXdv7+Vx+hhheYBEX1jWRvaThGpH7WdYICDPVU+d1vP8b4\n787SHosoz3SjN3TMhsQteFy6Mo6xu4mxu8lHnzxL49EO4dEmaKrTHjuQHmmQuWWw+akOUSZR2LlZ\nB3vWISzE/NY3n6Cr0MSfzmFXQUrBl07+Du3beZodG1m36O+uUbtQonahhBYoOW6nL8HfchGxoP9l\nHQohqUX1zemXEnJTFRIpSKSgs5zB2RQ0RjQmP3qb2XI3zoaOuWxxaXGY9liE6YY0tlUGiRYCTQN9\noIO9DdFAgNcjceYtlfFxwWVoeBvdB3u0iT3aBENieDC72IM7ZyEScLaViMwqa+Rv6mwdh/IJJblO\nrWhMHVlUTeWrGYyKoXoGH6vy7ht7SGwwGgJ7WzWd08uS9LKaAiVrDiSC9QclUT7BLbUV76Gp1IBS\ng6vXR8iddciddWj3C9w5i56RCsFgoEA5Gwa9R9bRNIl0Yyb2rOFsSw4+couDj9wi2nTuxjek5lXE\ngF9MME9tUzsaML57Hd0XDD2xwNATC8Sf70PfmWaIBJJcpKowX2fudh9enzrv4lgF53QG53SG8V0b\neFMe9opJ30iFX33rSUqvWGghPPDZd9GO1GAnj/XWn09x68+nsLSY0gVBe0DS6RNsVzNodUPFSy6a\nDPz4HJUHfWU3r+iYFR3DEwhPZ3CsTGE2xqpp+N0J7YbNwFctNB/c3XWMFuw7uMi+g4skfT6OGRHf\nzpCYkvBWFr8oMZsQz2TIXLdxe5To5ruA6VrTRbNimp+o07lWQPzXHywp7K+rojgppdz6S/92E3hM\nSrm6k1H6qpRy71/1OzJ7+mXv//JPSC9otO5vE9ctxr6mXtf6SRO7Ct7DDfyqQ6anRXyhQHSwSdgx\nuXdqjrPXJ3DnTOIj6ps+Xkqh+aqPEZQihsbKlE/30/92wPY+i+DhBpYZEZ4r4tynyvU40YjeKRLm\nJWF3hGjrjH09ZuuIifPoFomExtVuwmKEWdlpMqYT9h1aZO2Px2iMgxZA+ug2leU89oaBVYNOn2T4\n+Arz19Q3qt4RZBYEtQc8jGVbgXlseRezp3uqJ4GZYDo7is2ajVHVyd+GTo+gPeWjbylzkDcUkult\n0VzL4O4AZbxJD9OJGP5tkzs/bKhA3jkHZ1MQPNwgm/LovNKD+WiZ+s0dcdnBTTanS8hCiPQ10ndM\nvCNK2GVaEZ3NFDix4jvuqIdk1cJd0fEOdhCrDp/7yCt88Y8ex91UvAwSQba/wb7SBucuqJBmCiFi\n20LqktGvJwRZncpeDe1ojXbF5aEDt1hoFFm50gcDqo7OnE4pl6tQsvHUoo7uQfJYFW8mz8H7Z7l4\ndezu9WRWdcKBgGyxjfvlAu1egfWBLbZX80zuXuPW9ADYCelpC6/7e1VY5o5OcyLGrGlEYx65t11q\n+5RJzlnXiDKSZFeHeHMHXDTUJAwMHDdA+04B/5TKOA3fLSIitWU68ux13p6ZQH63d+BrmDUdsUu5\nbVNOQG0xj72pY1UVEiDqDnHvWHh7d3iuO2rQRIfKkRi3t41pxDSqKfJnbVrDCneX3aOCiQFKX3XZ\nOiYIczGFawbVgxEL//M//RutKCTwohDivBDiZ3f+re8vZXusoRLP/8ojjHQSR9I45mMYMUZVZ/5T\nCfOfShTAdiUmjnRKbxt02japVUlYs9EqJrd+fw+ZGRNvMEbOppGzaZIeJSm2KgKny2P1ei8fffZt\n5j6h0RmQpL6doV5JEWUk1fkC1fkC+d/LEhQkjLewcj5aj8fWYZPWIY/a5W68t0qEuRjha4S9IWFv\nSHpeZ/VPx9EiSK0KsvOQsQMwE6KUpNMriboiml8aVNkYdkKUj7E/tkEq4xP2hcoOvbup2AVOQjDu\nk7tu4mZ9hCYRmmTvb7XQfYGfFyTHGtiLFk89doE4JSlcMjG+VVAycUv9pK47xEsp+OebZGd0xJrN\n4P0rtEYTotkMlVoaw4PKZhZrVwNrV4PypR4mDy9By8BZNolcsO2QqGbR2UghQoHpRMhIU8i/FQej\n5JFdSNCW1I3zuy89plLWqgqUImKBfKPIrT/Yg7Oh42zo5M45uGsa7orO4o9HbB4XquF3JY+5YXL6\nnX3UvjFAUgoY+x2dsd/R1QKRTzD31EGCU5Ykj1VJEoEzVePi9Cj9u8qklgxSS4rlQCxozxQwf3wd\nv1tSWSjiLpjcutWPvakzOLhNayrA6KgAZndFx/zgFu5AExGDtuzQfLDNE/ddUqPQ/R7pnd6UzETK\nZ2TEJBvq3B/4zLv42y7tmQL+bg9/fwe/S3L5z/erhfemRfqmhbuiKiLzQoawYxJ/p4v0nM6uL63T\nHlDBxEYqwmyB7Cgvkq4nxKYgfqqKvWngraSVWrVu0O5XtDKzIRjI1dFmUmgzKTZPCMJiROaOQW1f\njFnTf6Cb/K9joXhYSnkceBr4OSHEo3/5P6UqWf4/ZctfjhSUzSbWlk7PyxbBeoqoEIOvg68Tj3gs\nf0gSb9k0RwRxzaQ+AcKJSfIRflEovkBZu2uZNudVqlWnPyGcT5OZ1/jWFx/AXTE4cGqWdr8AT6Hn\nvpvvuX5CJ7El2nQaptOYN1KEWYkoWxhTDbXwdHuKO7BsYi2rSUxrWNLuU9i1+gTUnx8ge83CbAkG\n3o6x1g3CjEBra2htjcMHFmi83ovxap7Du5d44uNn8bZc7MNVpJ2Qfdehvj9EXsmp6MNIZ/p/zKAf\nqjH00Xn8loU/FPKN147Re886zTFJ/cEO5qahRF+uJPXIJqULcGeph/R6gruhsfbmEKV3VWrYJ/Zd\npLYnxr1j0Sm7dMou7oagFVq4SzphXjX49vZskB1okF4w0NsayVIKAg2nLNTPuTSNUUUj++yT3+Hx\nBy+jhWD9zCrrTwWcPHqL3LzKVu3sCujsCr5nKEurRdBoCfxDbfzBUAGMOoIgC2LbwvwXa5j/Yo3a\n4RB7U+djE1eRuqR8X0Tndg5vPot/PY9e09m62EtnKKYzFFPcX8YteBgd2HivD2OqgVnq4O3xSM2b\niFjw90bfoX+wQuQqzIEWqgzcznJGcSZbgrhs89Jr9ygr+oZFawRYchkb2WJsZIvwvSKJlRBczfPm\n0gS7/yhS24x5GzcVkJ8BryQRocbwR+YZ/sg8UoBTFnT6E/R1i/SH1Qh49l+nkLpasGwnpL4vInfd\nJHfdJFl28XqhOZdXYr+c0u2kRxoEPTF6QydKS+5sdd/V+IjRFva6QXNSvXdhKfyBbvK/1qmHEOI5\noAn8DP8/th726Ijsf+4fIjydD5y8xtvfOEzPKVWQrJTzuBdStAcTkp0YeL2pUbwqqE9COOKjGQnG\nTOp7ryOBYKrDaN82a68PEWUUodg5WCV4r0iYTTCaGtk5ydb9Ow2jTEhXoUWt4RKFOoYVkft2mu1H\n1WhR6AmDX7Gojes0DqkNcO+rJtpnNgi/3EtsqcWiPREiOhpGUyM/A3yyjPP5IkvPqm1E9rJN9GAd\nbzWNCAWfefxNvvTKQyCUg1ILBXEmpme4ysFupU597fwBCiNVKst5hnZt4f1JH+WTMXv2rDA9M6j0\n/RJSw2rr5d3JYo62iGYzxOmE/tcFaw9LzLpGMBjQdVp17ZsfaqHt+Fa8poVhxzy79xIvf/4BUs+q\n516/0ovUIUnFmBUDY7KBt6yUmYfumePmG7sQU02yKZ+tpYJyMXZFmGWDKJNglXUOPT7N1Zf2AND/\n0DLzyyWcW2oCkVhgHqsQRTreahq9oxHlYkrDVY6UVgB49a1DSh2qS2QkKPSoyMndvxNT2e9Sf7yN\neTlNeyfkJtfdon2joAKlXUnulnLgplZUmlpsQZyO/7uvSae7Q+rbGSqHEkoT2xzuXuW1Nw6R2JL0\nvI7ZlEx8dgZNSC6cVueSWhU0d8cM7N5k9WYvMh2hOTFJx8DM+sQr6pos3BBUju7g+msaz3/23/Mj\n538W1wqxjIiMGTA9O0DumknwYANxMUtQTBg7qs4/bQbceX6C1oiasI1/3WP5YZcwJ7Ergn3PTDP9\n1T1Ep+rEN5Qgzl0Xqsm7raOFqq/03m/947+ZqYcQIg1oUsrGzp+/Bfwr4ENAWUr5K0KIfwZ0SSn/\n6V/1e+yJIdn/y79AasGgdDli8X+IOTk5B8CNr+zFv69JFOjIbRs0pYrTsiFJxyA9a+IXJHE2wd7Y\n6caXYqVH8HSkkZCeNdF98E416ck375Y3Gxf7lHMRFfKqdzTiVEJ63qA9EqO3NLL7tvHOdpOYEn8o\nJHXb4oFnFTPy5Wv7ODE1x3vvTJK4Er2pkZiS8RdCtv/XFif7F7le6aP+Yj+Ng+oidmctYkdNdvzh\nkGKpQetilxqvHVQqyuRalqEHl1l7aRhQDEjpxphlg5F7l9n8i2Ea+0L0hq5yMSyIsjHpOdWjcDck\n1X0gxlpEGy7okB+u4Z/rojMQoeVCul5y6PQKRp9S7/P1W0Pkrpi0hiXFa8Any0RfL5Fej1l+JsK5\nY+OeLFOrp8icU3PL+sEQo6xMUrGvYy9aCjJs7EQV6hKtGCCWnbud/kJvg9bVImEpUmKlSSVU6n9D\nENmCrRMJFEJ6X7SoTag7ufvBNX505Dy/fuFxzFkXpww//T+9wK9/82nyM4LKfQFCAHV1/sWrGu1+\ngdcXqSSyHkkyod5b3snfRQEkNndr3TADpfvV4rg8W+LeI7c5e2k3IlTY/vTSd7NcFOwXwN/lQdPE\n7m3jWCHiG0VqU0o8pvvq+fWORnp3jcZCDoAnHrjEt945Aij0gbNiUrh/nerbfXhDIbneJh3PJJPy\nqdXUE6Xfc+mcaDPQXWNpupfMSB3fN8l+K02QFxgtSeWemExfk8yfqOdJdEH92Sbivayq5MyE+b//\n/dvMf1BmZh/wFRVDigF8UUr5DSHEWeCPhRA/DcwDn/4Bn+fvjr87/u74GzzeF4KrVK+ymWuhINrb\nJpdt03xPWWwTC/Y/cIc7/22CTn9C4krsHSGSuy6p3Kuo2WP3LpHs6L5n53rp6qtTmVdMip/6sW/y\ne1/8CO3dAYPf0Nn8EQ/zUhqrDq0hdf5hjyqXjaYgOdJAu6iszfJIg2ApjVXR8Hd7ODMO2Xn1mM0P\nBWQu2TQO+xBo5K+Y+EWlGA13d9CNGPNihtRDW/ivqPFUczQhO1bDfKGA93Qd89t5END5QAM5nUFq\nMPGVJvGvVJm9NARAZk7DfnKTrTtdauxYiDFqOnG/rwJ5RzvEZdWXAbDKOiKG4g1Jq19TSsDJCBEL\nRC7AdkM6dQfR1u8G4DhlgX+sRbLsEhci3PmdyidWnAxntEHW9am/2UtQVGX08EsxsaOu9FOUAAAg\nAElEQVRR2aPT8+Fltp8fwt1K2P54m+58i8ZrfUTHG/gNW8mVUTQzt9gh+7Us1b07gUpDnhK/rDok\nPQHZCw6NY97dqY9+JUNnOGTgZR2rGTP/SYmb83hy1w2+9sZJCrsqZP5LnuXH1LkkmYix0S38WKdc\nzRDHGmLVQRtuIzRJuOFiNDXSS+KuTJp76ox2VZg9M0pYiBmb2GB+vgciQd/YNlvXSySGUomeeFYB\nma+X+9nayOHMW9jboIWS6oGE1IpObIFVg94LHRY+4mA21bVZeGyNciPN0cFlLry+l/5ja5SbKcSZ\nPGFOEvREZKZNWiMJ6VGlND3cu8pMpQfrC11sH9DwBkIVNJSNcRcNkqMqLMhZ18k8uAlAebobsyHw\ne5VyNj1ncP1Xvn/Blf7cc899P4/7az3+1W/+X8+VfuIQXmxirFp0qininFoUzKEWG5f7CPZ4JGik\nFg20SMXdmydqhGspjI7Au5LHv5KjcyMHoc49R2dJvlAitZHwzuIeWpMhek0BXTuWSeHeTTobaYIJ\nnyQX487axBYUT27SvF0g6InQfA26A2JDICOd9G2T1KOb1KIUXgmMisHYk3PYbkRiQSOrM35shU0/\nzYcO3uD2Ri+FfRX0P+xGPrONNt7Br7gYV1N0+sHq66DvadEIXaLAIDVZI6w4NMZsiruqtG0NIx8g\nJjpU5wuKZdkd4c6ZSBNE28CqCY7fe4uNq730vy3JzSrvgFWFjcdDzIqBAIy9DcybLuaGiTbSIWhZ\n2N0dQqkmTky0SZZTCt6SDyntLdPayNB1ReIXBFHdRl7LEOakCrOJBfKZKhs9NiIRlP0UsSXwegWR\nA9pbeYKCRF+20Vs6VkXDbGgqW6MrxDpWx19NkZ0DrWISlGKsdZP7751m81IPSaTjTNsYSxbtgx7O\ngk31aESr1+Do0TssX+9nScsQBAZMZ6gclgy9Atl5qI8LxBt5tkwHMxOSrLrk5jQ6joE1a8N4h9CE\nrktQ26OiIaWbcKx/idurKiWs8AWb5oDJqftvcmujhF1SQUpBT8IWLqvNPO2rRezBNmExZvKBReZT\nGYQbc++D0zRfKhHmBObntgims6RXJFYDNgcN4lBjaakHvaPRWs4glhwSS4GNcjd0vJJEDvhEkUEU\nGqyf7yfpjqg7DlFaord0/t0n/oCXLh0lHPUpveBiPlylGdu0mg7tuovUJV1XNKyKztEPT2P8jsud\nxVdWn3vuud/+fu7R90VF4QyNyE/86dOcvrkbrWaQ311BvrhTURjQ//EF5k6PEE900OZc2NUmWXaZ\nPL6IF5nsLazz0mv3kJtVv69yLKJ4waC5M1pPL6lmX3NMEuVjekYqlFItOpHJ8lmVI5laFRSfXWbl\nzCBBr/omS82atHeF7PnZs5R/+hR+l6C5K0LLqg5yodDCD03adYdsoU1zNk9+RtBWkglFter3oWEi\n/O/lOZtNpRgVieqNpOcUZMUbV30Mc80kSivxEYAINFKLOoUPrrH+Xh/JsJrxi1gJffL3bbB1tQdt\nR/GbjHYovOKie1DfLVTs35agfihAeDp6W8PZErRGlLwZVOc/MSVhIUbzNZJ0jJX3CbYdSmd0th4K\n0asGpQNb1E8rn7VzbxnxfBfV/epcSvu31DdvT4CmS7QFhw9/+F3O/KdjPPwPzgLwtTdPIN0EYgFC\nIpyYgb4q5Xf6lUTbklhVDa8nZmy/6hlsPz9E45gPNVP5Pvb6pPMd+v6DQ+2XmjTPlFSi3I7xKnES\nxfhMBNkZpY61GpLtQzshSqWIwmWTxphqcoPC6v/ch1/k/7l1P+kv5dk6qlSm+WsG9T0xRl0jyicU\nLu+4fVHZq/ga2Alu3iO4kyV7R1Upfk9CYieMTGyy+dYAwaRSgJqzLvGUyhVtv1mis9en0NVU4UPF\nAHPWJRhTHpTeXUrjU2269P1XlzCtsfbRgOx5h/aQSlKLukOcBUuNedvAk9vqMRtZiATusqFAOVXB\njX/zt7yi+N9/41efC+1nSYTA6Aj0aylaw5IgD8WH1llY7yLSBf3fNGmf6hCvuchSQHW6m86dHDdb\nJUQx4PEnLjFybJWycGgGKcKeUKUuTfm4dwzsh8sYFzJU0ga6nbA810PhuoZdhdo+SWMlS2ZRwxuI\nsTZMYlvla24/M0xnKkDf1SZuWqS6OphWTN71sb5Q5MjHZni4d5bttM2amSIpRUQm6G0Na80kvaAR\nOypkaPj4KqI3oI2usjM1idSEikIMNKQhOXXfTRa2i5h5H92OKbxlUzsYo72VY8+Ts2zMlgjykiAr\nyB/bonK5B7MuGH9kgeJQja3tHNlpDffvr1Gpp7G3lVxdn2whlh0GT6yy5ZpYayb6jjAtdiRhvzIq\nMayadONfgMaISXMyZmi0jPGdDNUgTWypLWGnY1N8aINmOY3REdSlBbkIc94mCXTcqTqrrRzOWZvV\nvSYr7Tx1Tyk59UyEsW5BV0iz6TD8FxA81cBPdGIXRDFQMYOVDOahOkHdxip5iC0Lo2LQNnW6LkuW\nR1OIkTaiahF2R0hL4i6YxOmdRmrdpDOQ0NwTI0o+0jOQlkRKne5jG3graYRUn83VN6doJjZS1wj3\nd5ChRu+9G8RuQmawRXQnTWKrz0oaKvUrSSWY2QDn9SzeZECCjjQBBLIY4qYCfvLB73Du3H5Ew6Dn\nYkJtRMNfSeNs7SwqFRdpSrpOW0z80CyNt3sIuhJabVUhCB083SZyBZGuKXVnJDA8QVhIsDd12mOx\nShdLDLy2hbnjdcrfgvaAJLGh8q0Xv++K4n2xUPzrX//V58b+4W6ckod5JkX1YIwUCja7b3yFtUYO\nGWs0pxJG/tDAeKpKmOy4/UINzdMZfkFwrruXmY0+0hmf/FCDe0YWWZrtxe7pUM8adAJLzZ3LFu3N\nNOlFndYQ+EXovQDNcUnsCIymTu5omWZgYzR0rKpGas6gbRponkb3cBXHjFhZ66IxKqh9p48zcoDO\n1QIi0XCWDMyGhkAQ7mvjZTTcDQVdHTm4xsK5YZJE+UGsiq5gr4lA6/ExVizWpntJ+gLihk3iGZg1\nnSefPs/WkM5GM4t5OYU3GCE1aNdc0gsafrdEFiM6oUU67bOtpYku5rArgvY9HegYRA2bsBiT+2Ia\n37Z4/Jl32XqpH7MJYVZw4tQMC508u4a2aCQWzfsj4nSCkQrxz3WRWZHUDiQkjmI0do1UqZ/p5Z5H\npgm6EjJZj1bbxh5qk3/dwW+67Dm8xHRXnuRcHm8uQ25GI8gK4kQjySTqxkVgbZp0PBcRaCSWYnh0\nyilEIggCEzOrJhvaukVnMCI1b1J+OkQGOomvE2UTRKgpkdeox4m9cyytdWFWdXovJES6QRIayAEf\niSDOxYTX8/S+m5Belfg5jd6PLNE3WGFFT5G+6hANBzQ7DsVsG9eMCLtiChM16pU0UgNnS8Pe0yBY\nUmTxWNeI8rHayggoDDTYWi1wsTFEGKgFyvngNubpLI8/e4ErssRjR26w/Vo/+oEG3q6IcitNUrUZ\nObpKtZECAYlvEGUVfiHsigmzYJc12kMxhaE6TWHxoZNXmIvyiG1LvYe+gVnTOPSZ66xf6yUoxdSe\n/9b3vVC8L8A1ektQvthL860eqgckIh3dBdgGsYEmJEY6xEoHrN9rsrWS54f3qhFlnEmISwEbxw1E\nW0e0dcJvllhe6eLO/7lfjR07Fj1jFSbH1tHdCDngUbihJLZRd0TUHVF+to3maYRdEUZLUPy3KfRc\niLuvSmJJPvXTL4OuWIoNz6bh2UyNrIOVUN8T0fWmxVPPnEVEChDjdyfIAw1S51NYZZ2f/6mv8vM/\n9VXO3xwndiTpBZ3CaJUoJcn0N0kvaUgJdkXgjfkYCw7ZaYPstEH/swuc2Rhj63wf9a00yUM1iv11\njJbGnv1L+EX1uM7rJTqvl9i61U33oU28kqTzQBNj3iGZamNP1ikM1Fm7X+Whvvbl42ycitk4FeNN\nepSsFlY2YPZWP8maQzSfUdJvJ0T3oDmgYW7rGLkAIxdQneli+NFFLr20Fz80aL7WSyrjY+gJm4+E\neH0xS40Coqkz/vQdxp++g/HDm2TnNNxlg/Rt5fY0yiaJAf5uD3d/ldSSTinVQhQCRCEgdcdEzqcI\nt1ycskTzNAofWKPrWw7CjXjm+CVVje0AZSw75Py5KUr9dextWD2lEeQlcsjDcQNylyxljd+GTkmj\nU9Jo7wqZXezh1ttjmJsm7YEE+7pLEmqsLXQxP9tLHGssL3QripcvCPOS1kqW7KyG16e2GiLQKL2j\nYzQ1Oue6yV0zeXDkDpk5ncycTqPtEOTg1T89gbVq8p3TB+n0S9JOADNp+n/PIdzdYevFIYhUTyfX\n00RLh/zQx0/TfdZQRDUH9JJPo+niLum8dO4QccNExIq9kZ5XvI+5ehd+t2rO/iDH+6ZH0fdvfo77\n99zhnRsT9L5qUp/YgdGe3EL7SrdqOlmSzESN+kYGe81g4pF5tj8/yuGfv8w7q6M8NnwLgP927hj7\n9y4xfWGU/LSg+oja01cPK+3BxJc7OP92nZlXJu4CbFuHPNzrDt6BDtrO3N8sG8qHEQniAR8nFSDO\n5+52vW//6n42j2mEpUjF4hkSzY3Qlx3CbgW88brBOlahXlampswNi9ZhD9nRVYmckkSjHrlch8ZM\nQUXRGQmpWYv21PcAKfv3LHP95jBaJiRpG0xMrHPn2gB6W8PYrTwH2YzaB48Uqtz+5gSdvR6FYotq\nNY1mJCQVG5ELSAIdJ+fjb6TYd0DpkherBVo1F8MJyb6SJswIdXPpEPSHpG5ZFD6wxspc6b/Ta2wf\nkeRvCNqPNwk6Js4tB2dTsSIKh8psV9J84sBF3lxXzt7ylR7i3gDZVr0Rq6ITj3uUig06gYmuJQSR\nQXQlp3gfqG2BdrBOOJtVFU5D6VWSUoAz4xClFMbQ2VLXzNM/eprnbx8i8A3SF1z6nlnk9vVBHjg2\nzZm395KZ00g/s8bq7R4yOzySdr/EKQvCtEL4ld4y2X7cI2kbECl3a34ato8nyB2soeZGiA0bzReE\nvSFjfyZo9xlokaQ2qeENKoCyv5Bh8uiSep9fHcXf2+HY2CL3F+/w+7fuIzxfxOuLEYFADwRRNtlR\nyO5AnBsK6hOnE3BU9alvmxy5/xbTW720yimMbYOuq1B5Wl3Q0ZbDgcMLVH9jlJUPqPfwzi/+LQfX\ndO8vyRO/+RPcvDkEmsQq+Oi6+jC89TTDkxtsvNNPkJdkx2qE54voPhQ/tMryRoHE1xEdHensKDdr\nOkjFCEj2KNGRtBKVlnUTBVWp6Hzmme/whdOKe2HUdeRwB11P6Mk3qb3cj1WTFD61zJ0bA+Rv6Hgl\nNfJqnlA3ZH+pxspsCZGJMFZsxQsoRqRmLLxeRXPWh9tY5zJ3E9DCho0INNJ3dJqTEYf3L3DrxQm0\nSDESJo8uMbteIq7YkFZNVTfrId/LY7R2kHgZn9ZCDmkqNoF7skytllIXNZC5ZdI66Cty82iAPWsj\nDUmyp0X6jQxeF+z64By31kskizuuzDXB4Ks1GruzVCc10g9t0uzYPDZ2i5u1Xhq/P8TWiQS9rd0V\nHzXu65DOejQqKex0gN+w0ewYw4w5OrTM2esTWDmfh8dmeeXGjjC3YXD8ntvcqXZRvd1Fkg/RaiZJ\nLlIk6VjZ4K2KTrJHGafidcUSGdi/wea5PsSeJnGkY19K4XfJu6K478bpRWkJ3T5SCvJnHEY+Ncvl\n66Ps/qOIpcccpK4YqEk2wlrfqWpaAq+UkJ3TqB3z2Tu2RpfdxtYjXr89iZvysb6eJygIwpOK5Rku\np9l7zwLX5wZI5z3aDRtrzqHnvZjlD6OSwtoCZ0uQPFoFwHwxj9ctyJzaZGtOGfJyN3SCPHgDMaNT\n65S/PYizJdm6/3uhPZkZ1WtJLWsEBamCnZ2dZndHR1oJekNXQUhA2BuSu2ThP9QgWE/hDja58SP/\n29/uhSI1NSB7/vkvoNUNsnMqKq/rkjph/4eq6EJSv1PA2tY4+pEbvPfSXsT+JqNdFQUtbRqQC9E2\nlDQ5ziQUBup3nXRdL7hoEdQ/3aC17TI2usX8bC9GdWc0iCrX+g9usDxXUu7DQky2v4F/pYDZFOie\n+tYpHCrjvao0Eb0XfOq/2KDzeon2YMJPPvYd/vT3H6M5oRB0ui/of2iZMNZZ3dwJHNYlMhE8tPs2\nb792UMFYMzFaW1cSbl+V0PT6GHeU4Sjoj+j9jkFjVNAZC3GWTOL9LcZ6t7k1PUDuhsH+T9/g2p+p\n8M3m2E7mhhsjPV2d57CHfdPFPrlNdTWHVdaxqoL2wE6YzVVB9YAkzkcIX4dMSKnU4MfGzvNqeQ9X\n3x2HRLEwzR0IT2wrT0T2kQ360+rmubo8QBILUpdcpAbaKQXCKVxRi1jrkSbu2xnsJ3ZulEwIDZPd\n+1e4NT3A4K4tVm/3YPe2iUL1bb+7f5N2aLG0XkS2DYyaTmpNUHx6hXZoon2xm/VHkrtw5dSKhrMl\nMVuSxo/Vyf9+lo2TGk89cY7n3z5OZlbJ8DUrJtkhXGkdHWlKjLpG+kCF5o0ixWvQGlJYxs54SGrW\nVKyTR1UZf7JnkVe+fILgcJvUmRT+gw38pq1u0KKyEnijCoaUv7ajGn68zqH+Vc7NjpG+7NDpT8jv\n2aYy2wWGRG/sBDUnkNmvEC61WgrqJs6qrjQTbYtsoc3BnjVWWnmGM1XOvrJfbWN3qfiBxnwea6CF\nv+2Sv2qgB5L3/tP3L+F+X/QopBRkutto/R5BHpJCyNb9MVv3x0TniwghSY3VCfd2uLI+wOSjcwx3\nVbm10kP6ig2JAs9IXYmdrE2dtmehX0+DkNQmNNaeCmlVXDI3LeZv9+J0d4jTCYXrgsJ15a9Yu9qr\nzFu+IgrlHB852cLrSejc36LnXUmllia6v0F0f4PZT+u03inR6UsY2LvBi//Ho4QZSC0aiIkWQS7h\nvtI8y3Ml9GUHfdnho3uuktRNXr+u/AKJm6CnI6QmkU5C3B3y0KlrlF50MA/WMQ/WmZxYY+MDIZ3d\nAXo6It7fImyZTGS3MOo62afXuPrn+2gcCmgcClRS+oaBMBK0jJr//ZPjLyJ1KGVapOYNYlvS3BWR\nZGOSbEzrqSb6cButYTDwmsCacyhXMpxMzTL92i70vg5JPsJsCry+GK9PORbTD2+yMdvNpUvjTG/2\nkCQC67arLPMBeDcKZG8pm3P1YIR9LkNrJCFr+2iewLBiUks6WdOjeFFn+3Q/Ukii2xkMU1Un0wv9\njGYrGGZMqqeF7gkaxzyWLg5QqaXhs1tkZ4y7Wa2xDZ1eQWtAQ7xRoN2rYVUFr/zxvXSPVxTIZtZC\nxkLJ4BsKXpu9pdNzbJ3qepbEktT2QHvKZ/RD85ibBqk1iVdKWF/oYn2hi1cXJ+kMxWi3XZUAt5jG\nzvh4p5oEpZiPPHsGZ97CWdfRfYnuS+xXcjRDm/QlhygNcTrB+mIXWo+H3tQw2oK9983Rd8869dsF\n6rcLyLZBel5X/JTTWaiZNBZzXP3T/ay+M8CFFw4QFGP63obonSLRO0XuOzlNHOlk+ppMfnoa54fX\nf6B79H1RUdgTw3LgX/0c2fMOrWGJs7tOeF1p1s39dUaLFWbOjHH0wRnee3sKbbiNpif4ZZenT17i\nm2/cAz0+5m3lQUhMSfexDcoXewn7Aox1C8NTmZTa0Rr2t3PEtqAxEdP9nlorox+qoL1Q5P6feZfT\nK+Ok7YD1S33EaTV+8gZCtI4q7dwd/mNzXLELdE/gPrBFT7pFzXeIYp34hW7sZzfwnu/b2bOqc9UD\nCLqVlT6zv0J1KwO+hkhHuDcd2uMhZjbAPZNWIFwUpVzaCT9y/DxfeetezN4OSaxhXk0hTeg5tcry\n1T7lrwB6p7ZovN6LPFHHW0tjbatwmCitdANiTxPTjAkv5zn1pOq33PiPB2n3akx9cpqr396jEsSe\nWWfrYi8HT81S9dV7u/zewN14wMGpTaptl1ZFQVKKrzloEWw+oOz43e8Jqk900PQE4z1lJPP6EhJH\nlcliaEdbYEV0qg7OoqVQdbYkfxuqH1H7bfNyWrlNp5poF7N0xkN6Bqtszhfpe1OjPqHRGQ8wymob\nEeViPnfqDf741jEFw3m7oFycO85VLQRnU9AaTRg8pG6gxTs9AGT7GzTKaYSRIGMNY9Mk6g0QuoSq\nyT/+8F/w27/1cfVZfqhM7XZRKYqLEd1vG3g9CptvV9SCJe+t0V5Pkx1UFVezmiJ91SbMSvyemJ63\ndTo9Aq9XoncEZgtIwHy0TOeC0hIZbQhONNnbv8Hc1yYQkWKVju5dZ+X8APpkE79jQsO863cK97bV\niPqmjX+4jdxwfiBc//tioXAHRuSuz/0i/tE2mTdSeD3fY//ZD2+xvVRAb+qYTUH+VsL6h0OQgvS0\nRXsgwdlUUBGj8T1RU5RV4iFQzkCuZLEr0JhQVmZnf5X27bxSCwL5WwnbH2vjvpMheriGrid0pgtY\nFUHPB1dYPTNAvMsjfcbF2VbvWXWvKsWjfW2K+RadwKS1kEMLlf4iyUQYZZOuK9AcVq+tPRZxdP88\nF2dGIBEU3zWonAwRuiSd7xAEBuFaCpFA8Zp6zMRPTvPed/YQdsWMfU2yespQDbf+OltLBQAGx7do\n+2rrFZ7ugvtqxO/lGXtsnu1OijgRVCoZtA2LnoObNF/pozkVkr6lbq7Rp+ZYqBQxX84TZMHv3qFG\njzfxF9X4Lz+tzvm7Ww+jpS7i6vEANIm9aJE+VmZ7K6v6DaGG5gkSVypQIiAtqfbSIYRdMe6SQWIp\nvF/jmKdm/zNgfnKDjZvq5p04vMx22yV6uURigt8lSUY7JBUbe10nKCSYDY1gl7poBr9msr1PEcay\ns5rK7uwR3PupS7xy7iDSTBBOjGHFRGW1vRP5gNxpF+fjyqAlYggKCflpofoSGUlQTEgv6MQ7cRvB\n/g6aHiNupRVOf38D8/Ucrfs6aPMOdkUhC4de0Nk4qa4za2+df3noeT6/+Ah3zo6QGJK4O+SRfTOc\nXxnBMmKqa1mGxspsN5UprFN3EA2Dwq4Khf+YoXxIvQD98TL1Rgpz2lXX9nhyV8YvUzG5yxZmQzWc\ns3c0rvza9y+4el9sPf7u+Lvj74739/H+WCjSMV5J0v2CoyAsDWiNRbTGIpJvlhChILETvKGQyBFk\nCh20mgH31cjOasSHFZWoM+nTmfSJ0pJ4yEPraFhbOt6mi70NtUMh+++Zp+fYOo31DLLXp3g9oXg9\noXxEoE2n8YsS3zdp385jlwW6D4PpGkFfhDnj0jjuUZuC2pQyNEUpSbLhsK9rneBaHpmJGHotwd7U\n6DpjEpVCNu9N7oYUmxWdmW/sRq8aFPvrtD/YxF42oWbSXM8QL6bYdXCFJBdR3Sep7pOcvbFLld6x\nQPyjDYKeGHPTpDxXJNPXRASCB3rm7r6dBz52k9ZGGj2A+dfGKM90E+6Y0nRfUDnbq/wYDZ34ZIP4\nZANLi9HeyNMeUKpDEQmcTY1gPoM+0Gbo1QinmmDVBMFkh2CyQ2LA2KdvU+xpoNVMUvdsU7vRjWga\nDI2V0ZsacSYhe0tH72jqJ6uoXv1nVKK4PNogcqE1rKA9UU9I+YEQ8Xs9d3meS9sFKrNd1PdGjH30\nDmEhJq5baIWA5GCT7ksCvzcilfFJZXy29+tEB9XEpPFQm8p+yC4mvHx9L9KNsdcNaJoYV9MqrzMS\n9P6FjZCSotMhciVBXknJt+8P4VSV3Ikt0KB9tENnKKIzFKHPOhwfWSIsJiQWGKdz1PdFWDdcUquC\noafnIRJs3KuRjHokox5ex+JffumzzNwYIh7ySE3W0KqqZyWlQHyjSNdgjc3zfTy96xpP77pG9qqF\n3hG0LnWx8Q88WsMJz/zkG1TWc6QuuBgtdS1mFpWyVxoSa8Wk0y/xnqlTmiwTFH6wW/R9sVDoWkJ2\nXtAc0TBvu9gVlX4lEkFtvyJnS0PSNVCjNSQwX8yjhYIkEbTvbxOupYjSEjfr42Z9NYe+4qL7Autg\nDSEFB37sOvkrJnPbXWy/1U+q1EbWLMpHBOUjqqyOXFVuJpFGbqpCUJC0ByTNyMaoGHiDITIR2GX1\nk1kUSFOS21XlrbdUqIiT86lOGOgBbD8Q4s5aGE2NZG+TZG8TBIR5SXaqSmUth/N6Vu1lrQSto5GU\nQlbeGCZz06Lv4AZ9BzfIX7LIzGsULmssnxtk9Hm1xyYT0VrOYpd13lyfoF53qdddzl6bUFuBh7YI\nCgnWUIvGgQDDihCRwO+JCboSknRMsJgmWExz8fqYaiTrYJ6oEGcTlScRCcxLGVYfNNjeryM1SJom\nSdPErkiuLg9Qv9lF4sYYeoIWKen6ykwPpUuSzKxB+9723c86DjSyc7DyiMaxPfP0/IHLruNLKslK\nwsToBkQa9R9tMPTUPENPzWO9mcWuaAgn5saySm03cgFy3SZaSfHkL7wBQHI+r+jpMSRLKRJb4r6X\novfYOrVdKnUrPWP9v+y9d5Cc6X3f+Xne/Hbu6Z4cMTPIabEANmAX3EBqE5cil0GiZNFKlHQ6le8U\n7FKVrkon2ee6k0/yXcnyyZIsWtLJosUjKR65u+SSm7F5F2GBATDAABjMYELPTM907n77Tc/98Qwh\n/+GyfSKvSF3xrXr/QBe633fe8Ht+4RvwczE9ZzTEkRofOvE+HzrxPmuP+9R2Sha+NYG5LSRsV8Be\nNonO5Ni6VIQYsq87GA0do6EATW/PTJFY1Jk4toR3XN3fzrhP7iMrXCv1ojV1ek/HGGaIYargMnFy\nAWkoJGtjLcXo/hJ6xcC1fZpjYP9lD7EJX5/fx9fn99Eci4kSMdFkh+5chv/jY3/Ky79zAmFHNMfV\nItsekAQJMPMeZt5j8E2F3E05XSozxdt4ob/r9n3Ro7DHRuXQ//yLsGmj9Xn0/t8Omwe3TXZMZehT\nfryLcc2lOxhgVAylaxgIHnj8LM9f2UPifZfm9DbuoNjGW01iVjW0PcpZiTdzdIPTw10AACAASURB\nVHol+b2bVOsJEm8nlEbnqqrrB9+IWPxYjOGGDBZq3FFY4ltPH6f/xArrrwyRvLfMoeIKr7x2gIdO\nXgDghXcPqPl1XSfKRApsZUZkXkiyecJnYKBKqZSDjk5yQY3homMNvIoDkWDglEb0Dzapny5ibwqC\nlKJ0P/rBM3z9yj6SZ1QD0c8pb8no6LY0eyRwlizSN1WT1B8IMMvmbe+IIBPjrupqVawr79T0/k2a\n5wv4vSF6QydKKEn/zrBqHoxMr7P58iDt0ZD+NzS2nmxj2yHRezmOPTnD+184QOtYh6htkLqi+hqR\nC30nV1hcKWA4AdFKQuEQDgRgSDLnLRpHPPKv2+z9qcsAvP/lfXSPtkglPRqXe2C0Q/6bLuUHfUTF\nxGgK7Ipyc5fbgCspIMiqkfnwT97g/IUJnJJO8eQqPU6b8zeHcWcdOntUjyKR7tJeTiFC5dWZObFO\n5UzvdqYEcqpNULMxK/ptuwYZamRmLKSAXU9d5WJpkCDQyX/LpfpDHVh0EbFyI0+fVOPR6nu96J5g\n92NzzG320iylyM0YGG2JVxR086r34mcl+l7VzCymW9xZvMU3njlOdyBk4GWdtUd9pK9jprtwM0ms\nQ9yvyIQAWlvD3lLZrdcncfZU8S7lCDNKQUz3YPyRm9z6+sTtZ2DfJ2Z5571dypM0pYSDL/7e33NS\n2O/80//tt8aNk5h1gT8e0ijq5GYFdhXaYzGdosDu7RCXbWJdoA+3CTSN5KLOlWo/ycEW2ryLFAK9\no9HVdcan1nnq2Htc/coevK7NyANLfPjgOS58dR9eXqK1dCaPLLO1qvQgulkdfaJNsO6iZ3zW/2iK\n2jEf70Ke40/MkLa7zPyH/XTGQqrCYrWVwS8lkXaMyAeImons6khb8tjjp1l+boJNw6HwlklnWBJk\nY0XgmXUVO7MYMvBgieUrfegdjSAnmX7gJptLOVbfGiLQdIK0JEhLCndsUHVNbDcgLDskFk30o1Wq\neRMGuhgrNtGoRxzqxBaQCzDLBt2BiHDQJ3fOYKvH5J7jV9ESMZVmAi2tfEu1RIiwI7wLeaJ9LaWQ\nLTQGDm6wMV+g53CZubcmsBqCjzzyLutfGMfrFUrAVoNaOUXqmkHcNrF3Nei2bKJUTKrQJi45JHbW\nqfZpVF4aZO1SL35OEqZjur5JesYkbpuYbUXZdzYE7bEY+2CNuC8gMdrAHGrT3XQBQZCFimsQNi2i\n4S711QxbV3qIcxFG1cDYNDC2DPyGTZyOAFVWhNdSiFjw2Iff5dq1YQKhkX9fZ/CRJUKhYTsh/qZL\ndzgkHPFZu9rH9FSJStulsyNm8Is2raFtNumBLcrlNK22Tfa8QWwJltwEQWCQ72tQ6xW0egWxIQj7\nAvxCRHrO4PB91xlM15mZHWO+kyfAwNrSuf8nznJ1dYDewZpCpLZMzLYgtAR2sYOeDIiTMX4SgqQA\nKdDnXLrFmJ37ltnQbZxlg+rNHKkH1qm3E4QpiPMRgSORuZDk+w6JjZiV8393Utj3R0YxOSx3fOYf\nE6QUHbZbjNG2admJkqB+1KPnlI34mMoGhBYTBTqyYqEXlVN3ZEN7e3W0+ttoF9J0xgJOHrjCm6/u\nR4y10Y0Yb0uxFxFK4CV7h3IZqDVdgo5J7i2LynFF3Q1SkuSSoDmuuuqRLdF2tNg9oFaU0ud2sHGP\nQnkCBMUQZ9lE86F7oIO45RAWA3r66zh/oRRSVp4IsRIK2+DXbHZNrXL1pkqnEfCRw+/z9Ft3MrZr\njcozigLfLUgKd62xcquAnfXwO6Zy1ip0KGZaWP+yh8VHjduybtN/3WL+h1PEJvTdsUbl1ACDDy3R\n/twQzSENuyYJHUFzTJJcVte5frjLyT1zvH5tClFyQJNow22Kf5Ng/aNKiyFORdirJn4+un3vtK5G\nYlWQWomV7L4PmYUYoyPZuEPHbEHnjjZxZdtSz1XixGL3NuR7zsHfp2wBjKsJRABeX6wWjYI6Tt9b\nOhvHY3rOaTTHlL3BP3ziJf7i6YfQppvIKynFvt0ef+qeIJrw+M2jX+Ofv/8EmaTHVjVJ37M26090\n+dlDb/Anrz3A0GSZrYZCpkZzKQozipHbzQnawxGpsTqNlTRYMc7i9kQprWwCAYy2oDPZpbevzsZy\nDjRJ4U2TzaMR2jb3JHVTp3mwC9vapNRNpB1DKNDbGlN3LHHrpTHsClTvUKCu6IiS/W/NK5CevaWh\nHalhvpileiAksWAQHGrxG0e+zm+//DEmp0ssvTlMbHN7dK13NIyW8n6VAqya9r11CvtubO70kDz4\nBz9J+VKRKKOUq/1B9TK58xbJe8u03iyCpqzlIjfG3lIpV2ssxO1rM5yvcW1OCUHs3b3E7MIgdtJH\nfy9N50AHe9alMxwy+hys/qiPWHBxS4LmcTXL/zZCrzhcY/NmHmtLI3QhfVMQfqhKu2UTN0yMuk7U\nr3Qj7KSP9UYa/0SDKBIYMykQ4GckcZ+yDDSTPkHHVHN4QFuzFa3blrdt/2QyJHXZJkiC3NNECIlf\nSsA2LkIasTIyqhrYk3V2FsvMvjJJbKiSqf5zdbzTPfg71d+SSHVpraRJDDYJLmVIHtoieK1Aazxi\naGqD9K/bLP82dK7kCDPbDlZ1nSgVkx+rEEQ61tM5RATluyOSfS28G2minhAr6eNX1EgRXXFb4q6u\nRr39dXWcsYhDB29y/WtTtCYiCqc1Kj+kzi35ToLGEY+pkQ3WnhklsiG5Ktm4L0RYkeKKlCW9n7zF\n1SsqUPa9pbPxsPLflFsWn3ngNf7qGx8gGuhyYGKFxS9N0phUDWRA9Qmmureh4bsnVrl6qx+xZWFV\nNaw6dHol1p46rXUVKIQToZcsxESLB3Zc5/mz+8mdN6ge89G3jNvKat6or1zGgcJpnc1jKmNo7AnI\nXDLp3ttAbiut7R1Y49JqP/aZFM2d6nnuf0Vn7cEQIxGiXXfpPb7GyvVeet/W2HjYR3Y1JqfWWDw9\njDWtFK6EgPBCFqOtBJvSO6s05nJYNaXbYfR1FBRfU/wXADfVxVtMY7QFuVmoTQvmfvN7MB4VQuwW\nQpz7j/a6EOKXhRC/JYRY/o8+f+K/+Ft1na1zvbglDTSJPxBibpiYGyZ+TjKe3aKzw1cIzLZAWhKr\nBpOP38Dta9OTarP0yijukoG7ZDD/8gTuVRt/KUl+LqK30KAzFoAbUbpHx3F9pIDGlILwxi0DPRXi\n3jI53r+I1tPl3kdmsLcEPU8t0Swnyb3qYJWVh6jsamq/lKZ+qEs8m8J8P0XkSDo7fNw1gWGHZC5Y\nRIGOaBi4yS5usovRgeLBdWR6G41pxZirFs0plaYmXknheyZmQ0PaEdKOMNIBo2NlrKpgINvg6vNT\nFO9aI8zE3PpkRKdrogUQdxXlWr6Vwyh0EG9m8XsiOu8VMNqgeYLV2T7mft2mUUojR7y/fRAmWoxM\nr1NvJGiU0mzeFdKYEBg1HefZDHExUHJ/28QzgMO7FrHsEAKNVLFFdSGHFoBZ1bi4PEhzZ4BR7FDd\nA8Y1F+OaS2NnRH9fjaVXR1Wm1oLysZi908v0vGYrluooXFvpJTXYJDXYZPNRJZUnSjZ6W+NL1+9g\n7z3zZE47zL6+g+bd6pzCpOJwDD64hGiqwN/bX+M3Jp7BuerQt2eDaG8T/0SDeNwjvJAFM1a7kMhR\nD02TvHh1F8mbBn4WcoUmsr8LsWp0J3IdUjcMUjcMoo9UMHOeEtsNFZ+ju+WiXU5hGBGlP95BtJqg\ne2eT1JxJas4k+VMr5M5auKcTGG3BSimP3tLYPCSV/+iSyepLIxQPrdNZStNZStNaS5I+WqZzoENs\nScQ38phNDW+qy9ArMNRT3/aykdiJADsR0K473H3XFcXKzQnSR8t8J9t3JaMQQujAMnA38NNAU0r5\nu/+137cnh+Xe3/9parUE+VcdCp++xdWrajURkUC6EaMjm6xuZhn5c4PSvRaRLdGnmwzlayycHSZz\nHeyPqpJg7VoRZ7BFdCVNtKND1DI5eeAKp97fQ+qGQWxAZMPkB26y+I0JAFrTAVpLqVobLcHEB28y\n/9IEyVVJ/WHV/HJKBr33rlKqKEl0MZfEaKtSSfZ1seZcusUIESvrvex1FBr042UqF7ct3WKILcnH\nH3ybv3npbsYPr7Dx7IiCHQ9FyFSIXraIUtFt7oLeUfJ24z90k/KfjVM+rlS5iQTC00gt6DR2hrcz\nlMQNpZDlD/tkz9qKcDTt4VxzttNQ1RQLcvFtzcwwH+LcMgl2d9BvODhbguZYTJwLoKtjr+t0hwLM\nZED2W9tAoD5BazJAeBrucBPbDPHeKZBYk7QGVYmQvqH+37e77qNPzXPp4hjmlobc2SIqJZCmksSX\nGnTzEmOySXwlhT/0t1ml1CB0JWZT0N3doSffonGmQLDDQ27ZJJeUOA+AVZX4j9cYz1e4ODuqIOsO\n/Nln/hU//trPIZsG6BI77+F7qmFIxeL+uy7x5vwkiUSX5nwWo6k0UYJ8BJrEyXv0ZpqsbqqSQK46\nSA2G963R47SZ/8oUreGYKB3xPz34ZX77zJNwM8EDD5/n9Vs7ANS4uSOwD1Rp3sqABu6y0jjVfajv\nC0gW2rSXU2g9KjuIWgbWhsHjj73L07MHMcyQYCVJ+oamdDoPxBCDyPk4l1QDvDOkUMPJJajcFaDb\nEfM//j98b0sPIcQjwP8opbzv294e/68CxdioHPrVX8adaNCfaXDjej+iqx5gt6Qr1uRYjFXRGH7o\nFp3AZHm7Xo+vpUjuryC+nlcGLSiCl3WoivlsjvjDFawv5qlPCswGNPYGmCmfwDOwViyiHWo1cpwA\n8UaW1gHFuuyO+mhGTCKlWIjxmextL9D0I0qibfV6L3pTw6wLvJ1d9DULzQe/NwJdoidCku+oVTQx\npNijrS0XMxmQfzZB5cMt3LdSdPok7rqS66vvDZmcLlFuJmlfUcNvq6o6586WIDYg94ES5VoKMZui\nOxAwvmOD5hcGsT+p4Mirazlkx1BMzBiMlkasQ/Ya1Hco0lx2tIZjBaxdVwFsx55V5i8Pkrqp49/d\noLvpYtR0zJbA2+mRvOCg3VdBnsrDSUVWai5mcDZ0Qleid8XtPku0t0lQt1Vp0jCQhsRobievEy2C\nisM/Ovk8f/rvH+NHPv0y3/hfPsDmR9uYZoRlRMQv9dA44im3dwAJZtkk1iGxs0pjM4mV8okXkqR2\nV+gGBuJ05vaUxM8pv9fGbA/EMHF8icU3RogSUpW2JQMtFIw/sMCVG6pcFWaMvmZTPLiOrUdU2i5R\nrCHeyOL1KfKb5issTLyNfjQb6r4ICdpUEyHAeDeNFkBzNCZORxzfe4Nzr+66fW4iBhGg5BaluN1X\nGjilsf5El96v2+ifWccLDGqzCsJtbwnE8Rqt9ST9Y1us3ygw/AJs7dGZeuwGF89MkL8kbtME1IFA\n60LQEyMyPrJmsfBL/+R7Hig+B5yRUv7BdqD4KaAOvAf82n/OyRzAHh+Ruz/2aziPr1NpJGAuibZb\nvVj2qTT1qVjdlN4QLRESN1WvQESq2VnbG4IT4aRUBN7Zt8G1b07SLcbEboy1oWbeUS5EaxgYLUHv\n2ZjNH23jb9Os42zI3XtucObUbsyawGoAErTHyshnCjTHlUGwvm4hxhSYh/kkZkPQHg1JXzPY93HF\nbO25KNnap9Ed9cHTwJQIextOfsWhu7fD/tFVZhaGuHPHIqv/aprV+yUyqbw9aRkkFnXa+1VpMPw3\nJpXdOto9FVoNBzZtUvMa7WGJPtGkW3UQHZ3E6rYKtQHanTVyiQ62EXLrnWEG3om49RiIRIimS5wL\nLrGhAGMAxfcl1s+WqH5tSI03tx9iEQiMtkZkKe9Pil0OjiljmvMzE4hAIPM+QpPYboA4k2Hg4SUW\nzg1hjrcI51OE2ZDkvFq5RaSua3Ovj+GGOOcSGC2oT8VK+HiHj9AVzyJ1aZsN7MDkh+a5tDCIbsYY\nZoTfNci84apsaX+H3q/bbG2P1MNkjMj7yC0L6cSIjs6O/StsfnWE1j1tMq+4VE500QxJtK0Obi9Z\ndEd8hZuY7hCFGuaiTTju8U/v+iq/dfojcMtF7257wwLCjigUmlQuF9A9SC2B1yM4+OQs794Yx73o\nKkew/o5SGQcODK1y4a1ppCZVg9xRloCj34DNz7SQZ7O3Vc73HFWu6RevDWOvmARpibumYTageiCk\ncEanPSDoua/E+pl+jF0NvKZqGmubJu5kne5sFikgGux+R74e3w2TYgtYAfZLKdeEEP1AGRUr/xkw\nKKX8mf/E934e+HkAPZ8/+vCX/yF9boNLn9vP5p3R7TSy+I6OV1DjuKFTHeZ/2CF2YkQoSM9rOI+t\n03qxj+YeH237ZYw9Q+lapHz6cw2aXxmgui9mfE+J1UqGdKJLpZ5Qno5LKo3u3bdB9e1+EkfL1K72\nIAY9wrqFs2IoH8j7qzQrCRLZDt6iKj10TxCNeIg1Gwa7yHWb1I4a//LgF/i5Zz+LPdBGnEuTvLdM\nY5vyHs2nMOuC1LKkNqV+ozgTsvyAhlPWiI806JYSiFCQmazevl5tz0LeSBImYwZPQe3HmvQk26xc\n6Cfu9RGbFvq2FoFbUi95a1QBdXBi3HmLiYfVrH30mU2u/kaC/kLtdte/kG5RmukjfVPDz0BwsEUY\n6Mi2gd7UQAqcqTr+bAajo46TumeDrcsFolRM72iF9qlesg+WqLw+gDzUoJBuIYFKM0F0RV2z4w9d\n5vWZneipgGSiS/BuHi2C1k4frWYgewLG/lrj1qO6esGA+3bc4LUbU8RrDvpgG/N8CrMBtf0hVt7D\nb1j0D1XxvqFEf2t7QtxlA7OJItZp0HNGx3+8RnM9iV43MBvKReyBh5VS2rV6kZtLRbSKyX/zyLf4\ns796lM5ABFJgb2l4wwob4qS7txcXeruIdZvCOWW2E8+mCHd4jPZVWHttSIHarBgz371NmZdt1Ufz\nsxJpKiKY7ilZfXdJp7O7izNnkz9ZYm1LESNlLHAuqpGo7qlpkN3TQcykyd6zTvfpPsRjm1QXchQn\nlbiu90IvzUllsKz5Am28xbUf+c3vKdfjcVQ2sQYgpVyTUkZSyhj4E+Cu/9SXpJR/LKU8JqU8pqeS\n34XT+MH2g+0H2/9X23cjUPwY8Plv/2Pba/Tb21PAzH/Nj1wr9XLq/T24mzGDr2gkelskeltU9irl\np85ujxtP2ZhNQWJZx97S8D9QZ+1mD0YH7BWTvmKdvmId4WtKvuz9FJ3ApDmuVJ0XLw7Sbdo0Ozam\nGZF7JknukiB3SbAx08fOh27QPl3EHGsRrzn86snneOqp1+j2SFo1F2fBwr+eYWDvOgN710nuq6Df\ncijuK7NnuITMB3gXc/za//4LFCe3eHJqBjSoXiwQBsqjIR72SN+SVB9t89994mmcuzdZfkgjzge0\np32s19KK2+LE1Baz1Baz2F/IEUVKWUq6MWtPdWk3bdbeGQApSFx2SOyoEzlSTV7ubvHZn3+GKKUy\nL/uWhZ+NufXsBK3hmGs/0UPyXZeU6RPcTBHcTFFtu8TFQCk5D0ToV5JQNdEzPifvv6g0ORfS5A6X\n6RZiuoWY6oUiTlnpX9ZPF+n2SOodh9gA/1aSlfUcK8s9dGqOMoSO4fTyKAd330JbdIlfyyNi6Hlo\nlSM7F8hMVZESUr++hIhALiSQCwlen58k+6LL0eNzuG+l6HtomdrBAHfZIFpKMD5W5q6+BdoDCsqs\n53y8/oj6gYDUTYP+Uxr1KWhuJii8a6B7IA80MFqC1xYneW1xkuXTQyTmbHKzgj/56iNwtIZZ05DJ\nkG5fROqaiXvdYiBXR9+WrDMWHaJ0RGNcEAY64YTH0YlFRlJVzBbEdkzxXZ2gYWEu2mrf0kkuK4Sw\n6POIDSjMRGhtDalD4RULd0PyocErFJ91KD7rEPs6vQ+tECUV89m9ZRCFKkNZL2eon+hQWc1gbels\nLObZWMyjP7AFkUD2+ETJmKDsfkcv+XfDe3QRmJRS1rY/+z+BO1Clx03gF6SUq/+533EHR+XEz/wq\nUlf0ZpkPsBZUqp5eUAIihfclpYcUAu/wvXNc+eoumnt90j0tGuspEjdN9j5+FYDTcxOkZi2aOwPM\nDYMgF+GUDILdCgSVv6zo0nKiQ+p1VXrU9qg0TVqSH7/vDb70lZPIfQ2YTak00Y7R2hqxGzP4soqv\n68cEUU9AMt8hnMkwft8trp8ZJUpGiIRSl7LXlSwf2xDeOBaEvkHPKzYDn7lJuZ2kcrYXfyBAdLYd\n1rMBxqpNel5dH++ROvbzGWq7FKgou2uLzttFsvetUVoo4JQMNB/iI+oY8lKayJaY0w0yCY+NK0US\nE3U6bZu4amHUNZy9VQwtptVR19l6N0VzOlQPbNGHikVyWaOblwQFhd7UDEn+BYfKXnVe6V0VhrM1\n1lspNucKJMbrhOdy2Fuw79OXWWrmWLnQjxzokkmrMmI4W2Otmab1dpHu7g7WVRdvNEBYEckZFWQM\nD9V72PZXGXsWlh7WkAWf3Fs2lTtDEJKRZ3S29uh4+zsM91a5taKk5YgEWtMgeUsjvLdO8tk09Uno\nfy/iU//8Of71l57Az8eISEG8Abq7t7VS02pqJQ2JUdeJLfV+6J7AmG5gv5ShcZ8a4bjnEnRz6p5Y\n+2uEZ3PIAw0Gcg1uXRwgdmLMmk5iWdAa3VZSG20z2lvh5syQCobbYKj8lZi1D3dxZ1y8vm3Q1Ig6\njmMHdH0D99U0jYkYY6yFfjaNuyHRfdh81MM969I91lSUd8DviTCaOtkrcP9/+y5X63089+Dvf29K\nDyllS0pZ+HaQ2P7sM1LKg1LKQ1LKH/4vBQlQfI5/8bOfw9vpoXsC+6ZNckWSXFFmu+GAz8YxIBak\nbgpmXtyl5OZKJp3ZHOaW4ixcXu/n8no/+paqAe2sh7MpuPvwNawaRJ6OFqq5fTjSxbqQuL0KSStm\nYO86hfEKzyzsZ8cDN+luuYRTHvZQCxEo5WWzqlP5ZIvKJ1s4mwKhS8KZDN2BkLFUBWO8qa5q3SBz\nxcCuCLq9Id0tl+6WS7ycIH1aOUNt/OkETc/GH/LR3ZD0NR1px+wbX0WfavKJX3qRT/zSi4SXMtSn\nJLnpLTRfULvag7+3Q6WRQEsFjJ1cpDMU4TUtvKaFkJC5AZ2aQyzVuNe7kmXPcIk7D10nyEc0Smkq\npQzWuykVJPYr9KCIYXxwUxnlZCT5y5C8YTLUX0UsO5TvD4gdJT5Tv57jxgs70P99AYpd9veViE1J\np0/y1twkXmgQZSP+yZ3fhOd64LkeThauUZtRps97R0rE+5toTZ30WYfWSEx7R4B3TxOrBtgx2DG/\n8/t/SJwLSWc7VA5GmCmf3ZOreD9bweuLiRsmGdtDtyN0O8JMBsSZkE6vpNsxyfz4MnpHULpL519/\n8cNo+xrYZR19oE1+NiI/G5F93SGzTxnupOd0RCgYu3MZJFgVDWdPFeuVDP7DSqtE12OCJMQTHdLz\nkE90FFZFkyxc6yNORBhZn6A3IEjD7z315/zeU39OuO6yUsmidQXOuobsCfDGfWo7NPQlB/v+Mj0X\nBLElMc+mMM+mSPx1Fn81SfShCu6aRnwthZ+TbJ3ssnEs5sDICs3dAXeMLJO5Y5PMHZsUzioN2NaI\n4OnZg9x6ZuI7edW/T5CZA6Ny5L//FcUALWn0fnCZvP23dLe5r+6kdcijWGgoJlxH0C2ohmd2VidM\nKIfpofuV0vHqKyN0xn3MsknkSGSPT+5Nm8pBtdI71238jMRsKIgrQJRRI03DDQk7htK27Gokbpq0\nJwP0mo67rhFZat4N0Nzts3dyhfW/HGfzREDqskXrQBf3ik365DrBV3qpTwGjndtovTgU0DCRmiRx\ny6A9HmJt6MQ2WBVBZ3cXGWg4OY9fP/gcAM+WD/LupUlEoOEu6YRJhYFAKAHX2FaeFjK13Y03lVOW\nbsZYdgCns7QnAjBjRNtAz3fp66lTmu0j3nYj09o6A3vX8UOD9htF2lNqAuCP+ViLFk5ZTZcGXtWo\n7FHri10Br1fi9wcQCzKXTfwTDdwXUnTzCjvRONIlkfGIz2Rv308/FxMXA7SyiVXTEBF4+zoUv6lw\nHp1egVeUJLaVxOqH1PRISwe4F11FsppuwsU0hXtKLC8UsNcM9O0mq3+wzVjfFrW/Hmbz3kBpY7YN\nhBORuOigdyE8WaO9kbyNPRGehtHUsCuC1niEdCOOTC9w7twk6bE6retZ9LZQo+9tFW7R1tU1DzXc\nBROjA5Gl3OeTyxrdnAQNnD1VMn+pGpPrRzV6j6yxcaaf8buXFJpYl0rVaku51d96Z5jUga3b2d7w\nn1rU/lGdajVJMu3RuZJTlg/LGs1ppSwfG5C9olG7W03KTCckvpkkzKrGZ+bZFKf/3d9zzczYAL0t\nkLokvRiz2Upw7twk585Ncv7dKVoHupyYvkG5nCYsBnR7Iz541wzSjqlPxTR3+xgtmF/qZX6pl8Sq\nRK8ZGNMNeneVGXzaoro3xip4CCMmTEiK70uMI1XlC5JSL1pq1iLatDHcEG3TRHQ1fuiT70AgGHkx\nQjtRIchIWsMxreGYXLHJ9fUi1T1gJgLahztYCZ++h5epnO0leEJ5goQNk6hlELUMsm87SE2SXDQ4\n8pFLYCotgzAT3WY/Agz9ocVX1o7wlbUjnH9hN5OTa5hVjfa48jktTFTonywzuHcdva0hnYjknEVy\nzsK56iBbBualBOFshvZoSKLQhq6ugE6rDu2uheYLHjkywyNHZpD5gJWVHryXiwr0VFZjwl1jJaRQ\ngVhEgtIPhZhN1EThcBerIsDXSBTapB8tIS+nqO6P0SJoHPUQVRP5Xva2hkNqaVtXQ4+xtzSyJ9bw\n9qogUT4iCRPgFZW1YGNnRGNnhLFuomUCxLrNZz/zLIlVgX46jYig8dyAEhHWlMye1x8jVxxqfz2M\n/Yk1fvf+L5DNtNFrBk/uu0B7JKIxHZH9QhprQ1fWhpEiE4bJmMLFQIkbBxB16QAAIABJREFUx3D5\nhZ1Kfb1r0r9/HS1QNohmIsBMBLhDTbTtoCENpcoWJiQyFRImFP6heE7Sbtvw2Q347Aa5Q2Uqrw3A\njjbzZ4dxCh2Ep2DbQTbixvV+dF+Qcbro51Po51PM/yhsLefIvu4Qns5jVVWWiASjatD/luTQHfNK\nS8TTkZ6OZYWE2Qh32WBX/8ZthbW/6/Z9ESjS6Q5hUpIYbrJ2QtLYTGLWNcy6RmZOoJVNzpWGyb7j\nkDtjYTQ0nr+wFzPlM3ZgFfemhXekjWzryLbO5p0RUS4k8VyatdUcG0910D2NR6cuY5gR+UtQ/1iT\n5lqK9ECD9EADQoHZlBw7cg1Nj9GGOgy9Aqf+6Dhmjwe/vEFjMYMc9pCWUrkGKHw5wa98+GnMC0mk\nFPRlm1S/MoyzLujO5Hj4xAV+5K532TW1yq6pVboFyM0YtMZCXr80jb1s4mwKJqbWoGkiAw171WDl\npM3Ftya5+NYk3WGf+YtDyqA243PvyYu03yiycamX1ct9WBNNrLJBkJIEKal0F1GYhWDYJ7Fo4C2m\nyQ/V8PtC4kLAjvwmU19o8MKrh3nh1cPsm1hRWIiKJHZj7Iog8XaCdmARZGPE3VXMitJ0aE4HNKcD\nnHmb9pC6DuHlDKWZPtx1gdHS6BzuoK1bJFY0Ygu0VICWCmiMC9x1wWh/BbOhULTGokNzWKXi1b0x\nYSEkTkYK4q5JEnuqWFddnnrobf7DwjG0QCLuruJsSOwPbeBcdbDqAopdKHaJiwG1neAYIb918Unc\nv8wjTcnXnz+mjH/KOo1P14mnOqTnDNJzBn2H1sjM6azfqfAeZjLAqivP0uOji/ihAQcbCCei8DWX\nwtdcup6FseCAkDjrCtvgj/gU3jTRDtbQfTB+eg3X9dmopdR+K483GGGfTrLr6CLOK2mkLpm/MghW\nTPqKSf5yzHI5hxahditi4FWNICPojASklhQDtzUeYTQF5cMa718ZI0xJ0ldN0ldN+tJNjKqOVYWN\ndhJ34zuEQXw/lB726Kgc/he/SH+hRhRrrC323FaPtmdd/H1ttAUX3RN44z75YoPKagbR1ciO1xBC\n0pjtYTu7Jyr66HaEcc1VrMuFAvlzBtUDMeaWht8fYpdUqvptY1tQ+pfJWwKvCNHONrYT4M2n6d23\nwdbpPnqOrlNaKJC+qmB2Xq8kHu8Q1Szc3jacyxAfahDNp9RL2h8gzJh0pkP3fcUe7Q77pIstpBQ0\ny0kwYo5OLzD3pV00x2L0wQ62E2BoMeLr6jv6k5t0Q6UKXprp48R9l3jnW/vp9kWYOY+gY6JbMXeM\nKTOf+WoP7dNF5UFyZwf7qktnJFArb1cpTgtPw2hrqnkKuBsKsp3cUUO+kcfPSJwDVVpzObSRNiP/\nzqQ+ZlKfBHuvaknJt3OEdzYIA4P0my7VwwFOzkOcS5NelAx+9gYX35wkGvAp9iqCU+2MKh3bE4Gy\nAPQFdlkjeW+ZjONx49oAA+Ob+H/TR223ejZP3neR91ZHkVLQvZohHvHQ9Vj1X4yI+EYKe0vQObyN\nsj3vEh1r0F1LoPd0CesWmVmDxKNrlM/3MXFsibVnRglP1JVWCSDfyNPa10W3Ior5Bo2X+2mPRhgN\nZQVpHK7SuZ7BbGgM3L8MwM25fty+NvJCBrsC9WklsvTho+9z6q+Ocs+PneWlGzux7VDda1S54pY0\n3LIkerJCq21zbGyRa3+8h83Dyrqh57RBa0hB4AEy16D+oRbiehK/EGFt6tibgtZoTJwOsVdMuiMB\n2bMWnb5tb5O0RG8rajxWTOa89f8DzUxDYs+4rJ/vp/lqn5o+VCxkxcLri4gDDRGCdqiGO2/RPlvA\nzntqNGj7mF/sIUrE5GZR+3s2UdWiW4yoNBPYeY/sx1cwahp2VSinpY6gvaurZjNSGcCk92zR6ZeE\nO9vEaw7hhSzOjgbr5QxGSzCcqqF1NLo9km6PVLTzRRd7Q6e7mEJqkHB8jLYgKCoUqHvZobGYIbUk\nSS1JpSfwrTz6SzncRRPRMjhzbgrv3iZ771xgtFehLz82cZ76SY/6SY/yapbObI7qywPEruTUzG78\nnpj+sS2cd1OYJQt7xuXsu9OcfXeavYV13JKkdayj7AQPNtAbOm6yS2rOJHPJxGhp/IPHX0H3FOCn\nsSNC9HVpNdTkof94ia5vEOUDhgo1Vu6z6PYoJe/gfI7gfA6jDcM9NRzXZ/RTN8j0KjVoPydpDQm8\nyCDsCTGXLXrcNj1uG3N/nRMffZ+B0S363hBYFY3UkqS8lGPh3BDpgQZrc0W2jkTI/i6yv8srb+/H\nv5ilteUS9oQcnVjEPJ8kqlpYVsiO47fws5L+r1j0f8XCv6NFdD1F8qaOcyaBng5ojcRUmwm0AKod\nl/bRDqP5vwW0xQYqbV92WVvPEjnwbx77HO66QO5r0Go4/OMnvoafjVl/cZj1F4fZ8eUIcTrDQ0+e\noTkeY1U1zIpOwWrS7pd8661DhJ5JayWNnfWwsx4yFeLnJXt++jJhrJF+OcFb7+2mNg3JyRrjExtU\n7vUxDtYwmgKjKWgPCIK6jb2/CjHIyTbN8ZjMnIZZNpECtLpBe0ji90b4vRHF09vliS5BSKwPfR+Q\nwr7TzR4dlXv/8CeprGXQnJC4YZK6oVZtuyppjKsIKfM+CBh82qL8iTZTfWUuzw+Rf8ekmxfI7bAX\nZCXxoIdx00ELVVPNrij9ydiWGA2NYECxId1b6jhhWhIO+GhmTDrVQXs2T2V/jNHXIag4HD94nStf\n3I3uSWq71DVLLmvkHlll5UI/ekdgHagRRRrxxQz24Qr6czkiW+BnodunVq6de5ZZb6awzZC1tSzO\nTRu7An4Geu4v0Xx2gMiGnR+ZY/nfKvB+5+NVxCt5RdJyY5wVg+60Rz7fxA8NkrbP1vlesgdU175S\nS6IbkaKDS8hdNKgeDrh733Xee3MXD9w/w6svH+ToySvMbSmuR222QOY6ND7QIWwbEGoYNUXUyu7Z\npO3ZpJ9OUb4rxiyqlTtaSjB6aJWC0+L0zCSpeYNOr4Qhj8wpB7smKT0SkJy1aY+ovz95SycywWpA\n/ahH4rKDiCE41sDfSCB1yfED1zl3ahfOXvUip/8qi/PzKyxvZfE7Sl80NVYnijQ6LRvqJtamTndE\ndZn1qkFyqkYx1eLGjX7MTYPEiiC9FLF+VEnxbd6rsj1jZVvRuq3QkUZTwy0JuicaxNdSyIkO2Rdd\nKg966LccJu9eZOmb4+q+9KmGcs/OLcprGRLXlYbJnQ9c4e0L04hQ4C7rBBl5e8w68nzEwsdArxtY\nVUFnLMBZNTHaEB5v0O2YJM877H9qlpmvKUOn+FidsZ4Ki1t59LczBMcb2FZIo+5iX3cUv2Z3C/ts\nEruijuOnBfH9NaxvZggerdH/+w4vvfg9hHB/NzZ7dFQO/dovk1rQaE7E2GWNYP/2DPlMgsyHlOfl\n0f03WG+nuXW9V7mApyTWYIvoZop40ENGKlIIIyaV8ujM5tRosDdCRILEssZDn36XdzfGaL7YT+dI\nm6irgCsDA1VKCwVS1w38Y03kjSRmXdAeCxGxQG9phD0B9oqJ2VQ1jleQ3PuBi7x+fQrKNtKUJAab\n+FcyCprbheknrjOzNIT1bVbfSEhi0SA4rLgs2hVFT4/6fQw7JF520UKBCNXYGBT56FOfeoXPP/MB\njF0NfN8g9VaC+s4IvaWRWBMMPLl4m3Fr1HXCQsCuHSVKT4/hFSThuIcoOei+0sUMc0pkNkhv+2j6\ngsw8tAcE3phPatZSug59MflLAj8jqO8L6HnPoLpPPTPfhtK7K7rybF1xlCfHnEbr/iZBVelWGFUd\ne5cqPVqlJNamjlDJFca+OuHlDLEFiV1VGtUEmhUReQYDg4oiVFrsIbFg4u3tsHtkjYVvTtAZVHgH\nESnjaNkyGHpJ3f/N/Rrpo2Wq9QTGlQTeYEjhtE67Xyhp/7qGN+FDJLDWtm0YD29SWcyTGq4TnM3j\nDYaY2S6GGeGtJHFXddqjIdamftvjdMfHrzP/5Snqh7fHYL4qpdLX1SQuONwkqCkLSaNXBVcxlyRy\nlfXkw/tnee/zh+h5cpnyt4ZpjUeYVQ2rJghdpb0CIE2Ju6px91PnGXErfOnzD5B9sETpch/2lkZy\nWbJ1UNK3Z4O1ayrwp2/ojH/sBjMz4xROa/g/XGXmo//s73mgGB+R+x/5VbYe6JJMewSBTuIlZRhT\nPRAztlMZnYgIwpQS2tV7ujy68zIvPHMUb8THXrYYvk+NR6NYo/TmEGZDsfWaUxF6UyPsDVQ3v79L\nz2s2zlbM2t3bwSVSpC9t01Sj0kiQnDcI7mzC1SRT9yuCzuyFUURePRjTQxssVbPE57MEGcVYrM/l\nQUJqQaP7gQb6e2naoxHa9nesSy7G8QqmHrG1luHk/qvM/MV+KgeVhf3e4hpX/nyPyloGlZ6jZQfo\nb2do7vURDQNpx7dJccbOBnEs8NcStz0dxifXWX1nELsicB7eQEpBIdFi7YvjeA81EELiWAHVSpKp\nP1GBonQigXHfFu3zeeR0G+tckvZIxBP3nOMbL99J3NeFmolV0Ql3qiDem28ok6W+AGvZpHh8jZWV\nHlL5NvqLOfZ8epYLT++hMxypRihgNQStfV2S2Q7NUorCGZ3WsMDPqmwp2deiN91k44VhOgPbDZQY\npCFxh5t4i2mcsQbh5YzqGd0sIAKBW9JvK0+FDkw9PM+l98cpvC+o7ga9C35eeadaNWUT6PXFyITK\ndNxFk9zVmNVHQwgE7qKpNFCkwKgo9bD0PDTHlZIZgJ31MM2IKNKIrqQRobKe1O6q4s1lsSoC50SZ\nynweq6r+fj8fk76u05iMIBegGTHZdJvW2QKTJxeoeC61lktnPQHbo2tiwcTYBosXBul7DzYPCMLh\nLp84eJYvnjkKAnQnwp5x8fPbUgPLgsad3m0WceqGzsXf/XuucJXaNSALv/ErIMG5ZTH14DzrfzYB\nwOZhiT7YJl5O0Ltvg42ZPg7dfY0Lb00TZiImp0usVjN0ygn0jHoZB3rqrF7qw9nQCA4p+z133qIz\nHGL2eDhOQHAujzhQR17YdiRroiTLGgZ3HL7BuXOTCiG5YqMFqnTInTdoP9AkKCk058889DKf//zD\nqqMsoP1og+5SCpn36e+rsXGxlygbkbpqom8bk9d3bzfPTDWStco6/rg6rtbjo2kx+pUk3qjCMYCS\nX8tdFlQOx6SH69QrCUw3wJhJYW9BY4dEH2sRrqjzcksarWmF/RBDHlGo0fOqTXWPkuKXplQybTcM\nWuN/K2uXvqZT3xmCE2Oum1gVgdcbY+9o0L2RQRttsWdwnbmXJrfPK8ZoCXX+NROZiOh71cT48TVK\nl/rITFVpXcqrGnr7MFZNYSSsiiDIKtTnI4dnmNkaZHU9RzLtYTyfoz4VM3Fo5fa5rbw6gn5HDd/X\niVYSmCMtwlAn96LL5vEQYcfIbSaoCAV79t8iiHWuXR1kdHKDciOJ8UaGxnSIVdHxh3wMO2KiX5Vr\n124MIOwIJ+HTXUzhTjRo30qje4KwEJDId4gvZPFGFNgL4OrFERVohMpiRdkiTimXtPuPXWb23+yn\nPqnUvI0Pqh5B560inbEAc0vZOhodQbSjQ7xpYzQ1gt6A9CWLyN42W/72O7KoVN2TVy2FzxAwcWyJ\n67f6GB8us3hxkNS8Rn2vCmKp/ibmc1lEDIlyTOUnmlx+6u9uUvz90cz8wfaD7Qfb9/X2fREogq6B\nO28hdMkffOaPlHfDp8rwqTK9u8vEywmidMTWmT6cTYGlRySWBbnzBrYeor2XUY23koMsOWy+OcD+\nozdpT/lEkcbE+Abezi5WwWNH7xZhqBObEq9tMXD/MgP3L9OYDqFmkr6hc/HUNDIVkX3XQfMF3QFV\nm9Z3xgTrLnZFw65onK8P4+cl8qObbB2K6d5K8eh956BpEsUad917BbNs0Nzj0+lT0GajriGFxNw0\nEFkfIcG+aUM2IK5aWHaIOFAnfdHCL8T4hRhnXaNyf5fcaJX6RgpzzUIuJhExtIclI4dXSTi+GruV\nNFoT4e1rm3g7QbHQYOuQMmR2S6qO1jyN+O6aMmVua2gdQXi/Gns+uO8K+lSTzqBCULY3ktgVgZhL\ncm2jSGRJ5cJuS7pDAelzDkavAotpoSRtdUnf1KiuZojHPMLeAL8Y4hdDvILS0GhPBkSWxFo3+OaZ\ng4ymq4wPbuJdzVK/p0OcD1g5NcLKqRFuXhgiciT9mQbxUoIdX/Wx30xjXUxQn1Jlg2zr9JxRu97S\n2Pq3Y6w8P4pZ0ak9O4j+TobGLpVNPProe2TybZJvJZhfKzC/VsBdMKFqEvgGySWNOFb0cmdXDaNs\nor+RRevC7slVrpV6uVbqJXtZp9hf5+F9s6QzHYy2mjLIRMSbr+xn44GAzLykccQjfL5I+HwRry8m\nc8kk6A0onFe9DutyguRIg9yhMpkLFn5O4pwoE9lKic2qCcInqmg1g9aOgDAXYVUF164P8NCeK9yc\n70PzBN0ecJcN3GWDMNRpDwr2/tRljF8s0ao539E7+n0RKPSOajjuGivxC29/hsEvWZQ305Q302xe\n6EUEaqRp1QTdQ22agY376Dq1vRHt/3UYPyfRPaWsjVBSc5eWBzA2TXKnHMI/HEAGCnC1+swY9osZ\n/CEfJJRODVM6NYy1qTO0ex2jJcneUWZ4aAspIHlnmdQ1kyAbk5veQpqSWFf7lf9rN5EbE8eaIo0F\ngteXd6A3NbwXenlnYRzNF/QO1DBaalwVZmKMps7g6xHORRc/G3PisfPIpkFquE5nIY3XtGmNxmRm\ndTKzOl5fTPYth/qVHuwVk8jaftkmAvzekKX3BzH/Jk/6wTXSD67hrBoMfUsntagYifWWA9mAzXtC\nOgc6WDUNa0vDeDWL0RYY7f+HvfcOkiQ9z/x+X/osX13tfY/3fmdmvcMuFgBhScKQOIJHzxNPJEEd\njShRilBIcRGMO4ruKJA68gjQHAAS5ALEAgtgsYt1s7vjd7zpnvbd1bZ8ZlaaT398hVkcdZJ4xDEE\nRCAjKma6ZrK7OqvyM+/7PL9HYNY0gqkcelPnwif3o53PIotttv+7NtaaTu7BMvEWH+tFhW9Dg/w1\nnXSXR5gB60Iad8Zi/T0tbl4aoXbMhwRyLzukix6pGZPUjInRFAQbLuaqgTtep/uiJN3b5Npf7aLy\nN0Pkb0HmrIs7ZdMuJrSLKqhISFiq5IhLIauHHfxuyY4nJ0kM8EZUsJFfEh12iaT8YEJ6UUmopQHN\nfT52l4ezKnj2S8d4auwajRGJTAQyUaQqdIhaBtKAXb1l2sWE1kwOPRA0Dvi0toRUfFfFRqzZtAsg\n/qrEY8VrhGeK7H/4Ft0vm+RKTVJLSn3qdwmy51QHyK4qUlbtYBtzxaTyVJOwkChYz0sFpFR5Ju6K\noFpP0be/TN/+MgjlJXFWNMx1Ay2tNEZ61eDrl3dhF3wKN0HbW7sb8RCUVX7tq+d3Mn27D1Ezv617\n9DuiRpHf2ScHPvirbHtyiuuLfTw4Mckrs4oxGM2m0T3B6H3zTC12k3gGpdMG9VFFFGo81sS2Q+qb\nKbaNKmamrUdcm+8nc9ZF9yWbRyIO75zmwqUtGFWNKJ8wsXOJci2L9RVVoxj88DRXro2ALnG7POJY\n43eP/iW//Ns/STsP3liInoroL1UJPtMHgOFJNvYIMofWaZ3uxh9UM7mzbOD3RqT7m7QaNuaMTdwZ\n0K2qYOCReSqfGaL1RAN/00Fr6Tx08gqv/91+YlsSFhPIREivg+Hu+BHMdYNoMEAzE+Syg1XT7upA\n/CHltwBwuj0OD85z69/vov2eCrxQxPAkzcc7Keahjn0qS2MsUQldQGNLRO6agXeySRQY3Ldjkmvr\nvdQbLsmCS1wK6e6pU32zpBiSqO6Ku1O1ML2bBVV01JV0eftTk1ycGkbrpIKn852W6pkCzol1glMl\n1bK+N0BbtTBGm7SXU+Rv6LQfq+J+KUf/R6cBuP3iOOEWn3TGpzGfQ9oJ7qxJlJJEuQS9rmH4gmCL\nWtWkLztMvGuKyWe3II/USK7kcNZAf3IN/a9L1EcFwZaAx3df55XPHwRQERF96vyoYUIiGPqqYOHJ\nRLlRsyFi2aF/f5nGM/0AtO5tErZM3LyP+9UsXo/SmcSOUrf2jGxifLJE+SQcPnYbgPOnt5Fa1kgM\nyMxJNvYrtJ5VUZ6X2FXemfQtC2+/umb2dZfEUgOASMDa0BQUp6etcIESto2XWX52BHFfB1M4rz7X\n6RldOYC7I2Z/8le+u4uZ9pYhOfRzH0f3BOP3zbH62REqu9Xrcpc1OFaltZ4ie8NUIz+QmYPaYy3i\nssu/f/cf8ou/9TM0htW/xa4SmUgnQQQaP/HwC3zqc4/j90eqdZiJEekIa8am66o6pzauEGOtQcno\nyXnuLHcjJQz1VJi/3UtqVoXrSO2tIlOcSnAXdVpblGy38riHNuMSFmPyVw1SK4mKsjtWRZxWpiiv\nL+GfP/4Cn/r8owpttqygsMbxTTzfVO2zrR4yFsiqQsH1vK5R2QntUkzfyxp+Sd3c5pNrbNzqonRB\nIH9wneTzirFYfdjHuuqSn0pYPygoXIPNPZBeENQnOp0EqXJI7V1qu5EkAm8hQ/6mzsD3T1P5xCju\nTywyvVRCNxKMy2mCXR7dX3UY+PEpAG49uxWvL0FIyE4qqXaksnow66A9ukHTszg0vMBYSpGXvji1\nl2A+gzXUJPBMsjl1M4SRjjibo52XRAUFFv74k18E4LcvPoacTSFHPGw7JAhMZCwYeNpifY9O35mQ\npY8Fd4u5UpfY6zrGoQpBYBCtuJh9HqFvoC/ZGFsb6Gez+N0JcbqT2r6mK6OdBHeoQXQ1R2KCNtEk\nXHMZ3a5yVrRYIQkApBOjVw263hQ0RlWr1huI2bN/luuLffQU6/SlGtx6dutd1TAC/IFYnetGsOjc\nXQVrpYD+v7YRCawd0DEPq5u+vpJRERa9EWMTqyy/NkDsKMt65hspGqMQDigc4aM7FWrhRqWXjZf6\ncdYlmwdiBl/QeO3T/91390CR3dkvtz/yy4QpQe1Amx+/52XOVRQpd3Kjm/aFIv5AyNE9d7j2zA68\nXT7aqoUY9On5vMPSI4maxTuCm/GxVRZODxKP+BRectjc34mDNxJKr5to71tj7U4XmqcRd7+V0dFu\nWchAU5GFCcQplSvanWlyZ7mbONDRnYht/avqtb0xSlRUmP93feAUz3z2XsXT0JUuwWyoZXC7K6Ew\nqmZe/40S3tZAka27PNJfy1DfAoX9awShQa2cwcwHxKGONam0F5ErifIx/WPrrFfTxIsphWfri8lO\n6koEtvOtAJz0vMaxD73JeqAyRTVPyZBzt6A1KNSqJSuRZsLQc+oTvPCEpGdkk42r3cSlkKHBDZYv\n9SH7fbQFB6lDXIgo9NapLKjZyu720C5m8ba0sectzAMVMk7A+vlewlJE8bxBZX+C5gniLrXa0ioG\nhicIswmjzybMvkPj8Xsu8/yLB3C21lQUYChIUsld0V1jd0Cx1GBzNcuPHDvF5/78YexNSf1tTdp1\nC61hsP3AHDcmlY4EIdk2UWa6XCLyDd594CLPPH+M7LQyUlUOROgNjYcfuMzzp/cCYG3oBD0RWAl2\nLqC9msLqadFeSqNFkHS3cW46+P3xWy5dAcVTFtUdktJFoQA2KYlQuAyydyD9kSXmL/XTfU69tPV3\n+SRlhySnYg7cOYP23hZJqKGbCdqki9zWInUqTXWv2mKgS5xZiyiluiTRzhZxW8dOt/ErDhgJuh0z\nWKpSrijkYD7jsVlNk6w4pOY1muPx//9w3W/3yO3sk8Vf/TjCUJ90w47eEuvk2uSyLbzXuzGPbaIJ\nSf1WATHokyw72KONu22v+w+p0fTV07uQZkLfqxrNAXWRAMiGOKk24VSW8aPzrDXSVFbUhUWC1tQV\nNGfWuktYjlISd7xOeDVH8bpk7RDYEwoQ4z6Tw/j+Vbxne6ntjNi5a4Glp8fQH1+nOlVEakpVpLUF\n+V2qDee/2o23y2fHSJnbZ0fRR5uEgYG2apGUVAgyQoKnv4Xrb6v8SKOmERZjctcNBt47w8wLY8R7\nGnd7+Vt61M+4dnsIEWg4S7pq3SWQvn9VKTZvqb1r0JWQH68QnFGwF6l3TGRpyQ+940VW21mee/Yw\nIoHEgtiSGEMtosUUSV7dKH3PGZQfiTFXDZw9FRpV9y5wSGrQ7o7pGdlkdaHAwHNqG7WxR0OLINjh\n4VxVkBbFPxUc/9HzvLk+yPJsFz3DFdam1Guz13TE/hqZL2TxS4LWsRZJpHFofI6L57aSvyGo7E0U\n2xO1x49S6jX4gxGiLRDFNpYTKf3IegatqvJrnU5okFWTbB6KKFw0qe5M+NgjL/K3n3gE451rarvV\nFSPciEKxSfCaWrk9+v6zfP3pozjH12l6NqFvKGBv08CdU5EJyYiPmwrIOKo/vnaxl+6LkvX3tghr\nSoyFhPSsTnM4wV3WiA/XyaYCjD9Xv7/5o2VWXhtAi8DfGqhJbSFNYqv82NZohHAjpK+T61NCvt5s\ng8qfDRO5Shn8Kx/7DP9852vf3QNFqndE9v6bf4FmJtiXUspuXVHLbrsj1MkcW6PacNB1SXshzYce\nfpXPPHcfzpqmRFXjEd1n1Idx6GNTXLyqZLboksHRdRanuhl4UaN8HGSpjTlno4WC7HG1Omi+0kN7\nX4vIM7DnLWJHBQNvf2yKGy9OEI37KsLQ14iynYFHgFHViXJqS9Dq0whKEn2noiGnrts0t4ZoDV3l\nYwD6usnDD1zm1S8fYOLhaa7dHKLrrEE7L4gd+F/+2Z/xa5/7YRhrEXZi+IQU3Hf4BpdWBqgtZ9HS\nIV1fd6jugD33TXHp7ATveugsp//tUQDiH16n/kYP6QXJ+klFzrJXdfQAmltDUqUW/lxW0ZUGlNW0\n9Fdp2mklTnLWBY2JiN5TOhv7wWgIHnjXRV5+5iBBT3wXvZ+YksyWsmCSAAAgAElEQVSMQhL6Cxk1\n8zoSZ1mnXUjo37vC4mQPvacEwQ+qFVWUaISX8ohIsP3xKe58YQt+tyTKxaT6mrRW0zhLBplZSa2D\nnw/zSiptr6hoAMNT6lF3qkPpPtBAv5R5K7H7oU38qwVyd1SYULuYIDMR/f0VelJNLl8ao3fLOkFo\nUFlWE8XQ2DpHuud4bmYHrdU06TsGze1tBoc3WLnQR9ShpFmb0BhTE1qSiclfNgmKsP2xKS5dG2X/\n7lkuXR1V/qW8j2EktG/kOP6wCmk+/dxuoqwkcRLcBQNvvA2BRrq/ianHhLGO9nKe1rEWXXn13qyt\nZ8lcdKhvj3C7WwSzGXK3NaIMuA+vUj3XTWJClI/Rc+pzZt5y7ybpmVUdqcPUv/rH8yi+IwYKZ2hE\nDvyrX0APBOk9m9RvFejpLNXWvs8nDjUKr9lU7g2wpxwyx9ZonO4mc88a4rMlNveorAp3Xg0UI0/M\nMPnGKNKUxF0homWg+YI4G2NsGsqnP2fgD8ZYa+qc2JVoIYTDAbKtI+wYfclWEmETkt4AfdnGqgpa\n29R2pXDGIiiBvQHh41Vyn8nSHNAY+sISdz46QLijhZh3ibIxXcPqRqnVUxS+5uJ3CXJvW2ZpuQhV\nE7Mm1GAkBbJlkOuvU1vqrHasBHfaQg9UjUN2apyZOxq1g21+/sTX+OTvvYO6qv8SFSIwE370yCn+\n8umHCbNKtNbzuRRLDyhMfLsUY+YDwrq62bSWztDuMtGf9LH+fpWxEfgmUcPELvgEVYeDO2ZZ/f0J\nlh7uSIuNBGEnOLeUX6VyICJ706A5miB1SXpWpzERkbtlkF5UN1dlu4Y8WCeazBBnEyXy2hkhnBjZ\n0tHaGomTYJeNu/kZaOCsCsy6pDUg8Aci7C6PeCpDMuRT+prD2j0J2VvqwmQXYhbeGbNtrMzkQg/6\nkmKtDjw8T9pss/JH45TvU90n+c1YRwG9Z6A2plF8eJnFmz2qi5YPsaccIkdRszMzGl6fOqfryAof\nG3uNHqPO//THH2X07dPcPjVGMuYj5h2ifMfpuSGI1ZhPazQic9tAi1XrUz+5yW/u+yt+5os/jhZC\nnI3Raway38e6pbaemTnJ2oMhE38hWXzIQttTx29ayKaB5mv0noHyfRKRb5N/Ra3EG6Oo2seoT/oN\nlwc/epY/OPbn/7QDRSe34/uAFSnlvs5zXcCngXEUG/ODUspNIYQAfht4J9ACflRKee7/7fvbE8Ny\n8Od/kaG9Zcpv9NPuiSl1Vgf1CeVN0ELouiop36s+6On9G3hnS8i9ykz0zeouQGbvBtZniqyclKSH\n6jw1do2vzO4iPFPEm2ijVwzcJY2hd84w9fooALEjlTS4Ay2NYw3HCfEnc2gRpOcEYVbNyN+MEtCc\nCPeKy8ATcyy8MIIUSuFZ36FSu9516E1e/4MjrN0boVfUflv2+xwcm+fNuWHc8y6tQx7avENuCvyS\nwBuKcQca+DNZ7jmhtlKvX+pMrR1ICgL0DUMtU20QR1Sx151VLbCgKyE7rVEfV7UZs9ejve4w9kXJ\n2o+3CK/lMBqCdkHJ4QH+2dte5FNfe0iZ5moaYSEGTXEk7BsuXfcvs3ijF90TRPm3VlTunEFiS+Xb\n8ASDj8+x/OwIjfEILRuizzkUboD8QbUtWivnEL5O/qpOdWdM8bLGxpEYva6DJjFHm/h1G2vBZPw+\nZZu/vdRDId8kbYXM3+xV+SdNHZmO0arqupYuCJpDHQ9OT4K9rhHs9EhdcvFLktwU1LZC3B8gfR3h\na4pcdUuFLIkhRSFLKpbKejUlO8eXmH92DO3eTaQUGFpC8vUurJq6ZtaHyvDHvZiNmAf+t9f49NWj\n2BdTNCdUXIDUob3Vw7nmIo6ponGz6uDetrFq4D9YJ450tEmXaMKnkG8ShCbhlRxRVmINqRWFX3FI\nTZkE3QnOqkY7JxVvU4f03k0MPSH9+3kWHjZIL6prUN+SkLutUb3HJ3vBobYzYvanf/mfXJn5H4Cn\n/t5zvwo8J6XcDjzX+RoUvn975/FTwB/8f31zvSHIb9tk/YUB2NEkPW1gfGAV4wOrtAdCxu+ZJ7Fg\n+cEEkQgiV1JruIQZibiSVTbvgiQzA5kZiJ8vsbFPYPe1iM8W+PLMbupzObyRkC1jK5h1jea+gBuT\ng1gVgVVR0JPkzbzKzmjrsOCSJIKBUwk/8NQrBCXwBhKMDQPR0hUGLdbwS5I754fgYI30omTouU30\nXBtj3eDLL6hBglggVCMG+6bLlRe3kUSCxs4QVm2kDt6TdcKDDWQ6IooUdk9Dqkenb24tmxAJrCUT\nLXorpSq+nKd43sAbjPAGIzJbqsRWR6rtJJhmTO6mwfwPh0SXc0SjPt5ATGpZsSDsNY1PXTmurNZm\notqfToKeDdk+uEJQTGjHOoWJTWJXsnvXPLt3zWPUdOzjG8qcJaGdl3j/bpAoBfcfuommS9yyoD4u\nWJstsDZboHDOQuqS4NEa0pRsHI3QsyHutipiwMd4PUtffwXDE0yVu5kqdyMTQWWyi43nB5DpmOJp\nk+xtnZ4+ZcXue12t+lojEa2RCGdFwxuKcNNtRATOmmDjSETU08a54WBm24iu9l0bfVwM0fQE+7KL\nCAXmugFCcvPaMP4Bj+hskWLKozpdIMxyVwi1draPzQ82WLrf4DNffgBmXZx1ye6d8+RvJ0hNos85\n/I8f+0vCaznCazlyb9p42wLqWxLElSzWpRTZaWDFJvUnRbzpLKmywBmp370/nDmT1rY2SXebrusR\n8YjP9genCUsR7UindqHE3BM6sSup7o6o7o4w6oKtH7qJDHTqW9+aeP+xxz9ooJBSvghs/L2n3wv8\naefvfwq871ue/6RUx2tA4e8h/P9vR+xA7VaRKCPR9YT2wSbNwKIZWBAL5l4eQSTg9HhYGxpJLqLn\nCw7ZaYHdeVVRWlJ7yKP2kBIAAVgvZ4lSHdT+QBMEzFwYxO+PEEaC1lAW4DAnsW+6quawvc7h8Tn6\nTkukFGzs1Pn05aO4x9fQ2kr0teNTDXZ8qkH38wpka441aU9nqG2B+SeKmGZMelGgDbcw1wx6RjaJ\n+wLivoBoT5OwmJC+5CACVV8RMQwUakTrLlYqJLmTpjkWceNPd3HjT3cpV6wdK82EpnBrVkXdnK3R\nCMMD8c510jMG6RmD8GyRrhsRpfMamhsRXskROyDLDkF/hHPVJT1Sp74txhtWjyTSSM9riEBDz3XM\nc77OwpfGsCoawVd7aFztwt7QWP7MGMufGUNEEL7aRenksvImFCKqH60T7mhxamqCYr5JmFWtP3T1\naOfAWTQY+l0TZ8mgeMEgDnQC38S4kaKxu03aaqNFIBdc5IILEvpeg/bBJpmrFuGTVepHfLrcFu2+\niESH2hbAkGBIvP6ED558AyEkraGExvYQZ8GEtobhgXMmTX+3muH7nzPof86g3bTY+tQUsquNWRfc\nu2OKP3rq/0SWbfQjFcpv9COdmEPvuHY3WrI92MZvWWihao3GqYTaNrjz/Di1H6jTf3KJ449c43/+\n9IdJdLUybufBnrVBws7HJvF7EtbvDbEqGpUtOlq/T5CH6GoOf93FX3cJtgRYmTbmvM3ce2NyOY8b\nr41jrRkYL+VVq3uwhVkTd4O620MhN9d7SE2bkA1ZPx79Z++9f+jx7Sgz+76FsL0M9HX+PgTMfcv/\nm+889/94iA7pOEpJ7Odz9BbrlNItSukWwooJ+kPiYR9/3WXi0Wn6Biusv8ejti2hcDvE2oTCdQEL\nLiy4eBNt4iGfxliCvr2B9HT8poXWUkUd7Bjrtos90kBEAhEJvJEQrQ3GqznOn93G6gdahKFyJFpO\nxMZaFm2sSZiTrPxGyMpvhDg/tExmVuBXbeJMomoZFoShTtAF5ptpwt6QtbUsetlWjxtppC5pF9US\n3xxtYm8K7lwZRPME7YpN3N9GxILIVQ/3hs3Y0DrhaIC1YpDfuklrt4+7InAXDFq7ffxXu+8qM5Gw\n9MM+1e2ogXcgpDUSM7J3GWElhAcbeFM5nL4mdlnHLutkzyq1I7kIseCw5egchhuBgKAvpp1XzAa3\nLKltU4/YlTR3tFmYKRGnE3pfMWispDGvp3j37kusrnREP/s30DwdzVOzXrirRf1X6iSmpDWAyp+Y\nS6G1oesNk+Q3e7Gqkt4z6iE9A/mxVcTtFI09SsVoLNksPDMGmmTtMLhlAZpUJPGugM++eYT4bEEV\nXiX4EwF6NqS+IyI7l9B4th+uZalNaNQmNB7Zc4PbX9vCkYlZvN0+F7+4m3/5xz9NUgxpLGfQYkGu\nr8GNT+5i/VjM+rGY/Hl1ww8/76GFKnPF3F4j3t1E0yS9qTqvnt9JMNJGGmqb5w+F5I6tYtY1Jr+4\nld95z38g292keFMNaFGgIw3ubrsAnthzlXZTDUiEGl5g4uysEqUljWMe7f4I/XpGQZk66mR7zsJr\n2Xgdglvm9renzPyvIuGWqtDxX1QVFUL8lBDijBDiTNxs/td4Gd87vnd87/gnOr6dgaL8zS1F58+V\nzvMLwMi3/L/hznP/yfGtkYKmkcYbishOadS2JywuF1l5cZCVFwfJXnBwSwqKIgKNyVfG2KilMK6k\ncUbr+P9yU4XFdAtKl6B0CfA10uddDh6bJLqTUWnYszaiJ8Be19AqJv5QSHQze3ekH/miwDi+SWtA\nqSXTrmIRBEWJX7NJ3bJptxR2rDJXoDJXYOPrA9THE+7dPYloC9xtVVrbA3IZj/1vu4E3EGMtmtiT\nDva6wF4XBN0xQ+NrSgW4pYn5WpbWXh+tx8doCURbQ1s3Mbo9GveoR9f1mDDRyFx0sPdWqNZSyFCj\nMaxgutIzaI1EbJzrZeNcL2FOknsuTdjfJpP2sZZM3AWdINYx5yyYTpOYEvOVHP5EgD8RIB/dVECe\npkGcTpjdKJLEgtgEva4hdYl7bJ3K/oQ4FxPnYoyWQHcjNE+nMFrB7xJoqYjhh+d4+sxhnDuq/jKa\nr2BVNMVk2NUg9g3qL/cSpSW9J5ZJ3zaJ3QRvl8/AR6ZZ/WmPzfsDBn/uNoM/dxvN67AcSjHOrEXz\nsIfUoDkaIzydzIxG80SL3m+Y9H7DpKvYhLqJe2JNJZtfN3EnbbRpF7Pg0xhSnYsok9AuSNoFyUsv\n7UMcqnLuzihmZ2sQZSS6lYAhSS1J6rM53v/fPA9ODE7M6PdPMTa4zu2PGhSvJXT1V/Hms0RrDkki\nuDA/hFZoUzhjk9+5QX7nBlpdx2ub2Ac3afUn/Pe/92PUN1Os7xWISEOrqoiJ2RdHKVw2KFw2eO7F\ng2S7mnzfe06hpyPiqQyeZ5HYCbYTMvgVja6TyzT2B0QZSZSRpBck2qSLvaFh2BHx8dq3cav/F7RH\nhRDjwN99S9fjN4F1KeW/FkL8KtAlpfxlIcS7gJ9DdT1OAL8jpfzP5o9+83CGR+Twv/lp4lhTrExT\nkruhqtlhBlJLko2HAmw3xH0uQ+W+ALFmIfp9zBspHnrXeb5yZj+pDtauvb8F8y5bjs4xWe4m/w2X\n2gRYNYG/Wwl9hFR73mhNtZOcAVVn6N6zxsqdEsU3VQydMdEgDHVk2SEzq1HfEuMsdwJnDcVkSByJ\nFgiMkSbyRoauYytsnu4l6FG4dG9Y9b8B/IbNoS2znL8xjlU2MFqC+FAdw0hoNWykr5OaNglKyd0U\nq9ZWZSIyGgJ/h49Yt5C2JD2t09gaKdOcBkZJyaHd1zOYNaVDcMuCgffMMLdZILyZIzElcTa+6x8x\n1tSSNE4lpBYU+k4k0NwWUjxnUH9QdQM0PcZ8M6Nw9OoyYzQF3pYAfJ3sQJ34jSKlh5eYWyipIB4r\nIkmEwgNG6ndJXVHhR9kZyeZupdEIcxIx1iReTmHUBVZd0D6qtBGgCpX2wU3qlRQD/ZusXOjDqgq0\n4xWadQchJKzbd1udZkWj3RuRu2ZiNiXNIYF7ZJ1qNYV93SXKStLzgsrRAEL1ugoXTIKS6lp5JxrE\nSykeufcyz9/cQamrwdpKDtFQAU3Dz6pzvC6NzX2S4mXB5j5JaqxGMeWxfK4foyVwj6+xsVBAb2hk\n73QGu8eqBHeyFK4J1u8PIRRgJSAF6RsWUusIxfpiHj1+BYCvX9yNmWsz1F1h5etDtPOSOKWEaplZ\nxXCNtvoUvu6Q/4iak2fKJVJpn/j1oqrD5WNmf/afuOshhPhL4BSwUwgxL4T4ceBfA08IIW4Bb+t8\nDfAMMAXcRoUU/4t/yM+I1h0yGZ/0cJ3sLYPavja1fW0OPHWd2tua2FMOYagTvr3KofE5stMaxVwL\nfzDkuVu7yAw0kLpqGbmpAGtrjbmvj+KeT1F92EPf0sDvTjBmHFpjEflHlvmtez6NVgrQSgHjJVUV\nrb7ei3RjNvcmKkOknEJ2YLxerwK+fOiDL/ChD76A1MBZ08gM1xBRJ+DHguWZEva6oHukgtECc0Pn\nsbFbPDZ2C/eGzY0vbcdaVoOE4UFQt2mupDk0Psf4xAp+T0J2W+VuWtrQ0AbWzhrtrgQapsL6zeo0\nRxTOTm9piECQejVD6tUMkQt2LSF/CxpHPRZrOZJEY9/9t9UeVoPMDYvUpEX3wRW6D67w/vtPk5tJ\nVGJ2AFpdEbRSqYDYV7CYoCuB7U1E3FFx7m6RzvuIdIR/vYA4VqV8pp/+gU20OQf9TBbjQgbzZgoq\nysadWpboAVS/r6FSxbYFpBYF+vUMzkidxFLdE+2qinJs56UKDHq1CA2DxdkSiS1pTYSYX8njXneQ\nmxZGQ2Vz6J5GuydGhBqt4y0290q0NgSnSjhXXfQAwu6QrvfNoxkJeiZEz4S0C+CuSGrbI2w7Qu/3\nePmr+8nn1QBvLajrTiJY26+ztl9n/Z6Ivteg1SeU32MlzdxiFyKCJ9/3BlGss2P7IlZVo3F/i8b9\nLZUyNtJi40iC0BM+cOwsRtnqWMgjOFbF29rGrGm89vQBXnv6AMLXsc+lmb08gF2Rd+ncRlPgnWwQ\n2yAlVPZI1r4wzNoXhombBilLRQ6YNfFtFxm+IwRX9siIHPupj5PsaJL/Soq1kxGigwFzbjkEXQkj\ne5dZPDNAYku0tiAZ9cm85lLdrWLt9YZG127Vq/e+0UNzr8+B8QUu3hpBrxgUbqjcjvxPzlH+3BjV\n3TFGTSPuXPTeM3DgFy7y3DcOERcVGzPoi8hdN+l+1zz+JwZo9uuEj3QSplAsyA899TJ/8eJ9yExM\n6ZSJ1y2IXYm+t4b+ap7mIQ9ZtXj42FUATv/tflojMcSQHa0RvVFUBdAOuzJOJdglD3Eli3u0A8ud\nz5OeMQiKkmTIJ5fzqN8uqMJsAg/dd4WXXt57F+DadVFj/WjM/r2z3PnCFh780DnOrw3RDKy7Ltul\nag5NSzCfUTqCjSMx1qoq9saORPQFuBddGtuUbsRcNcjfgvVjCZqvBsXu87ByQiLdGGPDxKwrL4Vd\ngdqWBGdNozUakZox7r7XQoLfrQq/7rJGUErQIkHp4AobtTTtlkn3SxbBeyrUN9R1zl+wqO6OsDZ0\nwpGA9JsOVk3SGIGwK8Hc1HjkyQucXx0GYG01hzlnqViArW2V+7LNx3JD2kuKhWpvCppHPPTZjlVg\nR51jQ7O8/MYeDE/wA29/hXm/wBtf2UfQH4IGpdcNqtvAbKrfv+t+BUOubYuRGbUtOvrkVV69tQXZ\nNJR8PhXx+K4bvPbXyqXaPtpAu5Yh6I4hAXdJxxuIef/9p/n8cydg2CMKdEwngmllctPaakIRJyq0\nL+dhh3JMey1baTA64GmhybsirXZXQnZSo+d9c4SxjvepAc588rtdmbl1SI782C/R7ol58sglTv3H\nw+SeXAZg/VQ/hgeNbSFmLmDgzxy8n91E//MSa4cEPWclS0+FPLn3Kmf/6BCgZLtBX0TfyCYb1TSp\nU2m8+xt3L66YcYlHfMSyfRdgaw82cZ9TBq0nHj3Pl6/tYeSzBkv36pg7a6TskLXFPE7RRzunFJN+\nX0KSihG+Rmq4QftmjtiWuGWNA+++xumXdiFNiT7col1R0jxnyUQLIDzQJNpwMCsaYUaSGaviXy0g\nYkDAzgfvsPnbSoZu/OwyXmiydqUHLVTCpvxkQvnJkMybNmZT0hiFwg31uzSG1GAVZiRmQ9DuStAC\nZVDrOyXwP1yhNllAdoVYqY4p7tUsve+e4865YUSsgL6psiTMChojCdZIk2AxjdEUd39O18dmmVnv\noifXIEw01i71ovsQ5pSKsfu0xuZuKO5bYzCj9sjXllVzLAp15KZF/ppO5R5lkisOVvFfLymrdU+E\nllItvfwrDq3HGnTnmlRaLq2GjVa26dm3Qv0bfbQGY3q3rVNeVoNe5qpFY0eIlQ/o+YzL8n0C+gOy\nGQ//bBf+YISWCUnq5l0R27aJMneWu3EvuMh7q7RqDtQNpCmxV3SK1ySZn+jkeZSV1yPesLHXdOSe\nOtFMBjRlDtv+M9e4udlD5WI3qSVBc1jirKvBJfNomZVrPQztLbO4nufDe87ylYVdrM6oDBctG2Ld\ncsmfXGH9zR4AUsuCxFRbwsiFA++4zoWv7SIYbuPMWvijbbSagTTkXX9QYie4SzpRSpKdUWKzyV/9\nLh8o7PFhueMDv4TXr7IyBnavUPPVjWU8W2D8I7e5udZLcCtH78Eym40UftOi9ysW4qOrLM93UXrD\nQL6nMwOvZ3EyAcF8hp4da2zWUwwUayyeGSAaCsidcQgzapsQ9HQsw+kIoUt0Q+V1mi/kaQ6rG033\nVZ5kZkajMSLZekS1rhaqeQopj4XpboyqjlURtMY61kEBek2HgQBNjxG31OyYWBCVQpx5i9iW6J5Q\nmgEB7sk1fmzrKX7ri9+HWRfEe5TBxz6TobGrjTtjEez06PmyTWQL1k9GaA2d4mVB70dnmP7aOAB6\nCI1dbew5i7EHZrk5NYC9ZNAuJEhL4iwaxLubJIsuccfgRajs7nbZUOyDUoQzbxL0xmzdvcjaX49Q\nu9ej74u2ss6jrom9oZGYqm6RmFIBhioCeajORPc6018bV67WjprVG4xxF9Us2vu6YOWkJDOlU98Z\nqkCnmzqVfRG9r+g0B9VJXl+CO14nuJkjOw3tvKA1rAjk6QVBbUeMvaYT7lA1Gn3aoedcwsI7YkTT\nwBpoEs6nGT+wyNRcD9aiwurfd891Vj1VB/lmhEL1jV4ys5LKDvV6/9cP/AW/fub9RE1TiezshNSs\nWiF5AzHWhq4+HztV5mx0SMGYw7y61qkZA78nwayra6a1O96T/gDniovXn1C6IBA/sEal7iqjmK8h\n3YRfuf8ZAH7v+iMEN3NosWo1e+dKRK7ErAkyC5K1RwO1AgHklPqcmbVODmuHrxn1tJn90V/77h4o\nsoVh2ferH0ckqpCTWhb4DyhlWjydwdpao30rhxhr0f20S/k4nDhxg9duT6CtWTirKiDomx6I1mCC\n4anwFHmwjnY+S5iRxCmJs6Ix9sQ0G16K8mKBLeOqWTP95iD0BhjTKgAnGfaR6zb2pkZ7q4co28rl\nOA1+j3oT7A2oj6vioFHRycwrTb/XJ9l7YorLpyfITQq8XmViAjDciPRrKdp5sCrgd0P3iWW63BbX\nX5kgdiW5Wxpev3KugtqO4HSCcetKup2Y0N7hIQScnLjDhaf38PYPvgbAM1N7MU5nae7pyJVTEW46\nQF7IIwXkJxNqWzT83pj0rLpojd1tcpcsWn0qvDnKSoxtdewXctROeIhlh+9/2yn6zBq/9/wTAJTO\nadTf0SCZzCjeggZRMSJ1xyQ/lRDkBIklqG1L2HlwFoCp1RKlXJOVC330HioTxjprqzmcWzYcrhHe\nzmJVBeGBJkPdyh8zt1pErjgcPnqb63+3A6mrUOP0eWV8atzfQrvj3n3/E10h/NNX1GTjH24p1eSG\n6mKJRBnNjIbG4BElBVo4N8DQkSVmbvfSM7ZJ8JUe2kUISsoEl78FwXsqRGeK+Ns7GbE1U1nO24o8\npQeC3nMR849quGUNe1MSvrNCfTOFvqGWrv2vShYelwgpGN62Qu2LA1T3RGiepjpwpiTbX8e/WuCd\nbz8NwPN/dhztkQ3qDbWtGPysydpHlTnMWdWwK1IFO4+E0KmV2as64RafJFSdlCQdM/sT/3hwzXcE\nCq+dF9gVgbOvglsWWG9fRbuURbuklvjul3IkjsQ+m2b1iMAebXDp6d3Its7AK1Lh0AYSmhMRzYkI\ne0PDrAq84YhwOkN4oIG9u8rInmVaEyHXpgZpRzqZUovppRLTSyWSlCp0hiOBChnqriJzId0XY37q\n0Mt071kj7m+TXkkwj25iHt2kNSjJzAr6Rjcw64LqPb6KGbQkF6+Pkp7XqG5XN7y+aaBvGtgXU4jH\nN3DuWae2Kya2JSvn+0ikspIjUTNAWmJvaCrI95pBd28NJxuQHq0pmfIaJDUT+7LLnVoXzbGIr33q\nJF/71EkODi7Q2NVGVEwGx9cQ6xatTZfUssTwYPWpgPSJNfSWRnS8TnS8jm7HiEjBbfQASgdX0E7n\nFC6uYhEXIp5f3M7vnXuE/GiV/GiV9ErEgcFFitdg+Ogiug/OvEliQfk4bNzbpjEqEb0+ky+PMfny\nGEHTYiK3QdTXpv7VflYXCpzcPqU6SG0DbaKJFoOcTbFcybFcyZFsqtZ24xf6+IkfeUbJmUON1kBC\nUADdiPnEhz9BlE2IsgnutirFVy1FFbuvQubVFHEmoTWgAqqRMPCiIHYky5Usy5UsyZBP9fODiFAj\nijXCDBgHK6CBvavK2n0hrdt5/B0+6csO6csO2/csIFoG6SmTsBjT3ubR7NMxWgKvL6E1KIhOF3En\nbcyqhlnVWDmm4SwbkAlZ3siRe9cSZsFXYqpciNvdor6UJbElT58+wtOnj9AcSqjfLMKyTVw3mXt3\ngnYmR2pZ4+h7LlPbAsbhCqmuFqlZg9SsoVgoncyaxEpITX0HCK6+7SMG76CH8zm1x1ydL2Af28A+\ntoG1tUbQJUgtajiPrOEuC0wjJrqnTtcZg/JxDW8sJM7FCEr3yW8AACAASURBVEc93KPrGCc2wY5J\nUoppmf/zLAvnB8h0N9HqBpVKGtcKSTyDxDNwlgzsDYFeton72ixf7sW5Y7P4oOATzz9G9Dc9ICQD\nH79NczJPczJP5EqqeyM2ailiR6Iv23dVZ5qn076/jtkQRN0h+kgLfaSF++Aa9ZtF7umfxahpaDGE\nvSFX7gwysGMVrS2obVWYM/vkOvbJdUXW+psS/qZDczFLz+s6zYcaWBs6/l6P1UoGo67f9SBc/Mou\n5QnZ0FirZlR2Zme/3xpMlHficglnR5UHRqd4YHSKpGLRzis5/eA7ZlmvZEiVJdp4E5mOMdcN0lYb\nw4ypzuepzueZe0Lnxmd3EqZVDmcw0sY4pDo9Vk3DWLEYP6qyVtoDIe2BkPw5m1dubMWZsanvCjE2\nDE5d24o/HtBdrCMn07SzktSyII404kgjO1Qj2bS4/XGL33n+7RgrJt0vqsFr25NTlHJNfvHyB9GK\nAVoxoNWwCYqqdRv4Jtrb15BOTOGawBlqIGJB7SM1NF+wb2CJfQNLsG7jd8NT912g6dnoxyq0mjYi\nEBQ+lcWZtUgcyW8c/zv8wy21SgGMqqaUxRs6H9p3lqBL0O6KMYZa+P0R3kiE0QL32DrusXXCvhDn\n6Aapaw7pV9JsfnWA3kJDdW3MhPZ0BnfeILd9k9SMQWrGwJ6oI2JIz2pKfRpqREfqhBnJ2cURSm9C\nYzOF8VL+rqfIfGCdwlmLXLGFlg1pbW9/W7fod8TWwx0YkTvf/4s0h0FubZEsunRdUkso88NllsoF\n3ExAT7bJ/FqBpK0r0IvdyXusqayInSenAbj56jhhSXVOzDkb3ROYDWgeb5FKBezqXuHCSzsIS5Hy\nB6ASo3U9IV52GdpTJvizftYOS3rPgPzoGqvrWdIXXPxuiRxTe2HzaopUWbKxP0F0tbFvqOVv0BOT\nvqMTZiHoD9m5fZE7ryqXampRUDkQIVIRO4bLzKx34byQpTmilvqu3ab9YjetgYQkpbYbbneL+EaW\n3MF1Wq9003MhZHOXSf2wj75kU7gB1gfLLK2ogVbGgp859iJ/ePEBUumA9uU8qbKguiPm+x94g796\n/R66zutsHIsY/pKaK1aOaYQjAbnTDq0BSf42VLdDmI/JDdZJXi7S2BFiZEL0W6oaH9uSzO5NKstZ\n9EwESzZdu9dZnS9gbhjo2xo4L2QJMxCpU7Cq0DzikX3Dxevr5LeGgp5zCYuPS1KzBsWHlilf6MPa\nrgqgrY0UxrrKMXUW1czoD4V3w5alnaC1dNwxtV3VX8zTGE/ouiio7Ops3XIhO0bKLFTzNDZT9PRV\naXg2/mKng9Xr8ZHdZ/mbTz7MAx8+x0ufVTP5wM4VFmdKmBsG2tYGhpEgXlNYQxHDPT/4Jt94aT9i\nyCOqWSo0uuKg+RoiVODioD+k0K9eW7WaQrYMdmxf5NZ8L9kLDuH9NYZ+12TqvTZJNsadNpWPZ0KZ\nAYWnobVVRuzRR69z7mu7ibYrhEHhOlSfbBKVUxhNQe+RMgDLl/ro3rtK9XWl5+m6qHH+D7/Li5nO\n1iG576FfwvxImfhTvazeA5QUESj3ukvtpEr4Dm9nkSM+xm2X3pNLlE/3kzu0TrXu8uDEJC+8ug9Q\nRCipqZsySqloNmmAsyKITtRxvpGleX+TrnyTRqdoGtzMsf3EDAvVPOGZIs66xOtVEXTWcBOuZEl0\nSdexlbfOCQyicgpnVcMbjLjnwCSrXobyC0OgQdBB7VsnNqjV1P4yaeuq3bc3QgQa2bEqnm8Sh2qZ\naF930Y+ppKlvAnK0QMNd0mgXlZqQbIi2ZiH7An7h8Nf53599BwN7VliYVnFywo1wbjt4E226e2u0\nXu0mKEriYkhq0iLY52HZIX45/ZbwPhtizdiULiW0+nQq+1VLsNhXozJXuCtmstZ1cpPqlPpTDfTz\nWfJTCeP/7Q3OzI4SL7mIvgCx4JCZFlQOhhQHalRraqTYP7LImxfHyU7pGI+vkTzbTe2ER+Flh80D\nCSLfJp1RNYBvAmKlIek5pbN6f6TMXaj31FkTmHVlqY6zMfay+rconZDeVqV9vkh6UQ3k2Umd2q4I\np2wQW5LMHHg9AvZ3amGTGRhrcXL8Dm98ZR96gGpHW5LcpEb9Hg833b7bcYHOzF0X+H2qjhH2tREC\naBhoXQFi1oVRj2TFIbHfYnO2h0LcKRVINbJllc2WS3AtT8+RMqsX+tB9FSn5zSzdYKvPYF+FzaaL\nP5sltaTR++Q8G387TOVIG33TQAsVG9V7nzK7RZGO/VKWbT94k7O3x8DXmf2Zf7zg6jtioLBHR+TA\nr/08elMju2uDSiXNrhHVHr12c0glgDfVVctOaVTvCZChhl7VidMqXs/ZUaX/36o38PYPmezYscj0\nayPoO+vor6k4PmPVpHgdvPdWaSxlOLzvDleXFVE52HARgcbDJ67wwvnd5AbqRG8U2f72SWb/4xZq\nD/gkkUAGOprbqTDXLPS6RpxNkFaCsGIMK0bOqHi/1IJGmFMzT+myuukTU7B8LySFEM1MSGomuZuG\nCjKeCMifsWn1qxk9fL+Cq9amCqTnNbweiRzx6S7WWatkiKsWZtFHTKbJTcLag2p52fOCRWUXhMVY\nqTYFSDvBWTAZfnCOjZbL5p0iZp+HdbZjtZXQHItxF3T8voTC1g2ir3dT2xWq659rI8sObllT4bwo\njFxrJMKs6CRjPoUXHBIdmkNKbq1lQ/R5Fex7ojQNwKeffoh2l7pexoZBallQP+xj33FIDEl6QTlh\n5RdLbB7udGSsBGPFwqoql2ZzPCLT36B9JY/UlHIzzsZkb6luRFBUqxTtQBUhQP9Gnvr2GKPbUx2k\nrWq1mb5qM/bOOwBcuT6CUdNJDNXebg0myKwqVIpYMLh1lcXJHpWJEqjV7iOPvsnzLx4gzsSYhYBk\nPoU53oDLWZCQKkvq42owaec6helMgt3X4vHxm7zx+0cI04LmA036u2rMzZUo9tZpRwbxxfxdBqrR\nUjm3bGlinc/QGo1x+ppkvpDFe1+VxkYKYSa46YBWVU1I9pyFe0jBjaNyCrMmuP0//ONXFN8ZNYrv\nHd87vnd8Rx/fGSuK4RF59I9/iObf9eM/XMdfc9EbHdJUNu5o4cHKtNGuZfBH24iWjt7q8DRnBPET\nmzTvqL1jZlqjtivinv2TnDm7ndLWDX595zP8+p/8CMnhOrnPZ6htEQSlmOwd9XNqOxU+buCrBivv\n8RnurjAz04M7beJtC0hft5HHq1hGjPXXShyzdkTp/L131Oj54xTzj+rcd/9VTt3ZQrxpIw1lva5N\nqKUkgL/TR8YCAh2tpanszl4lpHDnDPy+GC0U/PDbXuJTF06ok+omA9tWWd3MYjshyekCrdEIu2wg\ndYm+q46uJzRW1H4bKeh5TWftsQDLCTHPZBl6aoYgNpie6UE0DaQbY+YC7h/vzKj/xz5WHwgZHN6g\nfLkXe12jXVBy4SQVqyIaoDUM8lvUSmdHaZXXL21Dr+skfQFa2caqqExRqUkSR2J0exhXMgRFNT3K\nUpv86w5RSq0Egn0e6dMuqbeX2aynCP4v9t40SLLsPM97zt1zz6zKytqruqu7q/fpHbMPMAswGIBD\nAqBIBACSBmguoswwTUomRdFSWBEKKxQSbUdQP0hTXGQHCUjY98HMYPalp3t6md67urq69j2zcr/7\nPf5xCg2KIYo0x7aGEbgRN6I7ozLz5r33nPud7/ve523b5Hs6hOdKeP0/9EUd2bPOVjfFo6O3+NbV\nw2gbFnEhJj1j0h1XKD1rfpuzWhW0dyTsPzbHtUtjFG7qSuy3LgjysPOPZrj2L0YY+p7B2vYp1oa7\nZFIB8vkemic9Ks9Z8OlNNq+VyexuEMUa7mIOhKQwpe4Zv6Cup9Ak5oxDUFD+HOljVTqXe2B3B3kn\ng9jZUXoUVLlfxDDx5RbzT+XvEtGzc0qzEQwHGBsWzp4G3Tm19HrqwQt8+9wR9JZO/+E1oj/vZ/QX\nb3FhbhRrKoU3EmLUDdLLQkUegEgEyd42SaIRNy2cFYOp//lvb1L8nogohJ2wtNxDbEE4l0GEAqup\n9txACyKBsWkibmbwe2PStyxEMSDKxnzuwy/Q2B/TmS2gBYp43dwboXc0Lrw2yeDedeJE8OsvfYoo\nIzk2tEh7RKAFYDY0+i569F30+Ocf+ArGhokWSTJn0qy/MsRnTp2m8v5lim/b+L0St+XQulW8K9wx\nWoLakQTj1QID/+Q2WiR4/c0DRE0LsiHoktJn5wmzEuPUFsapLUgEWt3E3NJJSiFhKWH4WY3xb0rs\nOoztWyMx4AvffIRST5tSTxvyIavXKwBkvpzHO+CidzTKl2PSh7dwN9J4NwsYDQOjYYAd45cEomph\nv5EjOtVi8XvjzN7qR/g6WtnHrBmELZtG4NAIHFofbZO+bbH1+gBxISY43MVwVZid7u1SuGShOTEi\nhiOVZY5UljlzcQ8iFRHnYtJXHcwdSm9z5P5bjNyzSnpRJ/1GVoXd25wE2TGon/JJLBVSG7cd/B7J\n6kIP8mYW0TJoruZwhyPIbu8JbLYylNIu37u9n3K5RVyKyE6ZSENBd81UqNrmDzZp7VYTzNx3diIS\nwfGfvUTmnhqNowF2Ha7/y2F271hj46hg5PAqI4dX0aYy1DeyNI77DH3DZGu/4P2D08TZBPdakW4t\njRaB2dIQkUREksr7l5UxcccgtSoo3NTwh0K2NhW4WNcTUvvqHB5axjASDCNh8MgqUS7h1q+ZuIMR\nUUaSm9XoHHPJLIFhx/Tfs4Z4tYjmq/P//W+fACvB2RQIYOupLu8sjCC3rLuTRFSIaB33sA41sA41\niB1J5JloWoKI1ZLtXY3R90JE4ewaliO/+A+xmoLuYIIWKBAuwOgzsPywRvGaoD2uyneJqToaoxGf\n1HUHaahsenpNPbVWH5SqpLdmktztfhQEhYT/7oPP8odf/DBWHXRfsnVym1q8YSImOhSyLhsLJUQg\nGJrcYOVGBWtLIyglpMZalLMdNl5S/hF+SdJ3aJ3+dJup53fhTvgYaxZOTTDw5ALr3xzF65UEZYWi\nA2geCLHWlA4g6FOeIH6PcqnKv5yiuUs9EWObu+KfcDhABhrZWyZOVVI9mkA+wly0SK0LOkOSeNCn\ncFbpFsSHqmwtKX2Id9hVWTfAuJUmtQHdQcnOr7Y4+AfX+OoV1fbe+5KN1ZF0KxpBDnILCcmnqpQc\nFz82aPkWtZUCe3cvEybqiTozPYBV8ghX1RpYiwWaD1qEqto4Cdk7BtH7WmrdjnKFl6kYY8PEqQo6\nwwnSTsjfNPDKkjCfkBlp0d5KU66oqkf7TFmh721J7rZG44CK/voGVeXCbdmIjqHyMYCzvm1GlJbs\nOjWPo0dsuBk627oMkQj0riBOy7vvMVsCvxLT/4Zg9ZGE0lCDrmfh11KwnSswGzq5WWgrSQm/96l/\nx29d/UmKaRf33w+y9mCCUQiINxxSqxrd3QFWNiBo2IoJ+oP7fWdLofHyiWphP6m6aMNcQpKLGR6t\nsvZOP3JEJXUHv2Rh/INVls8MqVbuWHmG9HxykY2vj9IdkNhbgu5Qgr6dP0GCmOiQey5D9f4Q0dWZ\n+9W/474eqd1DsvJPfk2hypo6UX+AmVIDOFlMIxKB1CSpdQ2vLCkfXqf7vX6a+0P0bIRzKaUcq7Yv\naFxQ+gvpJOyeWGXmnWEQiqI19Mgid24Mkl7UefATF3jhpaN3j8OuqpMtUzGpHpdgNovuCsIxH5om\neq9P5BoMDSul6fJMGbPkk305jdQFqWpCZ0CjtTNB9Ppk306hPVrDO9dDclC1Y5vns4r1mQjCfILu\nCaJcgigGZM6naB/1yOZd3JvFu3Z9rVqG/GWLzpAihUdZNZnqo12YyhCnJFKH/IT6+65n0fcfU6w8\nKJCWMs1N5T2iSMO2IzoLOcrnNDZPJmS3l15RBu796GVendmFdT1NsM9Fbtg4axpGF6JHGvi+iXU1\nTaIifKK0JC5GZG6bdPb6pKZtCg+tEcU6mxs5sldt/BMdBr5gUz24jQAoqJv6B0bKuVsGrV0RZo9H\n2LRJzZkMPrrI3FovpR/g6ueLFK8YdIclzoayNYhSYBxu0G3b6Ms2ZksgjquMf3cjA2ZyV0JvTChn\nMCnAHY6x13USWyL2tJHbFl7JnQwjJ5ZZuDSINrTtKmYlaPMOuqci0O62x+nYPlWCXH95iCirLAR1\nV6DtbhOsppFOojQkvo61oRNlJD1X1Pd0Brcnpq5CKFgNyKwm1D/ZottIkZmyiI638P+CqbC9bGLX\nwdlUlTi3XyJHXGJXNfH17K9Sv1Rm6MQKy1W1/L5nZImb35ykvTtk/54lbr01zsxv/R1PZiaBjpkN\nGJ7YRJoSbcskdNWuj3ZJDEnfwQ3cPknUF7B5WaHShJ0gFhw6OyOyc5paT9uSdE+XnftXMDIh03f6\nySwqaIo3FLFUK5Ba0gnykmfPHUbqSjo+dnyJ7lDCoaOzlIcahNM50ssa2r422rqNKAWqq7JtsFbL\ns1bLY2/qHBhaJf2xNRoHYtZPQXNfBJok8XSakxE5x4fDLcSNLOJGFq8s0X1BYksyCxrxqKey8ddT\ntCditDWb9lIeJLTWsrTWsqSnLVoTKuyPRz3sTZ24qAaavr+FNtJl7JkI92IP7sUedvZV8UoqWy+t\nhIHnDILZLGHLxr9RoHdii+oHPTRf0BlL6IwluCMhL799gMnBdby+mMIrDkk6Rgvh5Kcu0a2lSUIN\nbyhm4EzIwJmQvkPrGFsGnfGI1G0bdyJg9U4v7TNlij0dfua/eY5EChY+IjHet4Xxvi0Q0Pf4Es6K\ngdHUaU2GpJYMHEfd0FKH3931ReS6Ted0mc7pMuO71+k83CHoi+iMqqeB3x/x4MgM6asOzt4GQSnB\nNiNsU5nhkAjEeIeoHBIGBt19PuERtYzTfeg7sYaUgmzaI5v2EMDyW0Now13Cuo29YBG3DYyOwDle\n4/O//L9i9XogBY2vD9H4+hCDjy5i1wTOWEs5u7dseie2qLxm3BW5xRMeVkOjsUf1pdhbYDWhNRET\n7O9iPbnB8uMx3XqKzE2L4EiHeCaLnglVJJPA5AdmaB31WH8gpjOsfn/p+RQ9b5lYdY3atTLJuMs/\n3fVNwi2bcMvm3HXl3aB1dWZe2cGTj/8XQfh/7faemCiEmZBJBaxe7kfzBfldddJTNukpG8cOyc5r\nrN7pxdkUZK/ZGDvbDH72DrkLNuUj69hrBlEaBvdsMLhng13lKneWy8ilFJVXTNyTXcYemSd/0yBY\nT9PdERL2KHhLnEqIUwkb3x0BIbnx5k7qzTRWQ9wFtBRvgr7o4B3pKk/Tv+CAPfcfd7G8VsRoaUgB\nwonRen3MTZPhiU00ITkxvIB9ZAv7yBZxT4jhAlI9UdiwCZs2UVZCLHCqAmdVx64LMjMmmRmT9ANq\nAs3Nwc4/FohEOVmnnYDoVg5tKkO3YhLs9Ah2eqx8c5xuv8CuCT7zvtOEGUGcSeh9yyA3q9zNZUN1\nNopQIEJB/rpJ/65N5p/ZAUB9n0RvGAw8tcDLrx1SXMuOQeaOztIjBkuPGGxc60N3Bb1v67hjIcJI\n6N9Rw+yApiX84bOPk4QaRi6kuZyjuZzDnGix9tIwRz50Qzl+p2K8PT7h+RLLX92BFsInXv0VsrMa\n4YEu4YEuK28Nok1lMGvKGsAvKdL1mT89xk9++mW6bZs4nbC1kWNrI4duJpg5nyd2TdE30CBumNy3\nZ4bMq1msWWXKVH9xAOd0lq2a2s2GICwlRNUU+SmDxASjrgx6/LM9fPr8f4sQyhTK6wWvF+qug9cr\nKWZcdFdgLZtU75SoHlY2BlGiEXs6/k5fQZQTCB5v4NRUA1jqQpqtq2XKbxmkZi06OyMGvmATFWPi\nuoW1YWBtGFxbGqDnNZuPnnyH0lV1LfOfXiJ4SkVQcSHCvpLmd+efpHDDoHDDQM+GdA+r45KG5Dtv\nHf3PDb2/+Rh9Lyw9sj2jcuA3fx2zJQhzkmjYJ7vtft2dLtB3cIPqxQp9FyQrHw1wMgHx9RxRTrEp\nkBD3B4ht4Y3RFTgbAuOJTWpreZwFpdTMLAkaB2LsDZ1El8g9HayLqo+gsyPCWTbof2iZuZnK3dBV\njHdACsTtNJklRXvuP6xCz416liTRYMVBCxXcRj/S4OjAEivdPLNXhkicBGtTR+5WYXTuhQydYYE/\nGCLsGGfKwR1TCak4pZYUjz/yDi+8cFT5pQKJAZkltezK7avRvdijrAmWI1YeMAjHfQpvOTT2q7yO\nvanjbEDjXg8aJtnRJt3bBZJyQPq6g19SblvOsRrtm6qCk5gKAdg94GFYMbkX0yCg8YhHJuMRvVXC\n71U0r6Hdyl1teb2Ic9Mhc/8m1VqWzGWH9mRIat7E64uV/4anc8+hWS7Pq7yOjDWkqzP8fcHqfQKr\noeGOhfScNXA/1MJdT+OsGXiDkUpkA91bRVLrAq9PcuyBKd55afKHsuu0RGYjeipNOudVw5lfUROg\nzCpUnt7WlC/MVYn52TUW10qUX7CpT0LYv+3vmQi0VETSNNGLAYVcl2YrTdS0lNo2JZm4d57p86MU\n9m5DjqZ6yE8Lto5G9L1p4PUIvIpUorR+H+emg+FCa3/4w5s9FvSe1WnuVo1hyqNW23ZdU4gE3RN4\ng/FdxW16Xif18CadN9XvMzywa5L8Z5aofn2EoADuUERm3iA4ou6z/i861HfpVJ5cpPGFYaoPvjv1\n6HsiotD7Aj7y5FmirKSknNfwLxfxLxfpuSJYne8hyiY0x5UU2lvNkNhA2cdoCypH1jBWrLuEq/Sy\noHkwJH62TO66hd8bE/ZGdAck2eGmEgZNdogj/S4z0azp+JWY6vNDmAUfo2oS9YbY57LoNzIUbgES\nEif5QQKfZCHDh/dcJ06pcFD3oLOR5vUre1h5cYSeS4JMpYPc1UW/kUW/oXgXYSHhU6feQroG7q6A\nHRPr227WAXEh5vvTe1WGe5sQrkXqu50NQdYOiG3QYqgdMOl/3ypsWTQOKBCP0dRwNkGLJMaijeYL\n4jMldh1dJHVDlfCcDYE80GK0WCfKx0T5GGddozsco21YmJcyyB+rUbgTwsq2l+iJJvnJLWQmYuVG\nhZUbFUTNov8DS4TfK6OtW7R3KuVoUEiwazo9lSb5mzp3vraL/Jsp8m+m0NctrJrO0kdi4lzM7idm\nMHM+sSNwmw5mQ6fvgRV6hut4nonnmew8vog7kBD1Bcz8ySR7HpqlfFGSjLuYA11EV6e2VCS7KMku\nSnZPrtBzWUO3YzRXEOVjilOw+v6E5Sv9GMs2+375KpllwdhXNca+qtH3moG+4FC6rCMWUjRu9qBP\np7j38DRRWhIOBMzXSsSliEYzQ6OZIXdHI3qyTmrRpLFb3XvRQIA22oFEJUvdiiQ1Z2LmfMycj/A1\nao/43PeBqwxObqikdjEhtlD3xrjPoadukl7Q0TyB5gmy71+nfq0XkUBqQ9IdSkgsmD+n4PZef8yJ\nwzN0h2PMSxnMSxlW79VoH/BZbeSUa1gieDfbe2Ki8FyLb1w+grMuaH+sCQLCUkJYSij87CJGLsTe\n0IkdqJSbZGZ1dFeQeDrakQbdbwwohaarnuoI6Bls0PexBcTDW5TPaaRnTaKdHq3VHFGf6scwb6cI\nizFhMSbZoSKYyocWCVuWGjzzFu5Rl/TJTTYf82k+7EE+ZPl2H8u3+4jzEVfrA+zfv0g0ECjtfywQ\noRKqhRkBbxXIvJ7BGwnwRgJ0V2AMdnl+eS8iEOg1g/rXhuk7B3HLRG/oFF5K0d4fEFXULis+RgcM\nFzSh0G7pT6/gbEo2mlmMikv/xCbFKShOQXtMUjsac+ihafrOQXePz/IzYwRFxU7Mz8UYRsLcVonc\nlEFuyiAsqOhMRAL/kEvjdonZn9BJ+gLCsyWy38qxtZnD2LBIL2mklzSs4Q6L54Zovc9FxIL8lEGY\nk4hYYHSgtlIgyEN7LMHvAb9HRXtBT0zxbYvMjImjhxRzLo3DIeaaSZRLWLk4QM4OSBbTJItpbl8d\nUnYMgUaUFtw4uwPn51dINhyYyqjynxNTvS+kel/I9PQA3SdbFF90iHtDnLKLSCR6S3XyIuG1c/sJ\ncuD26ri9OpsnlVWj16MGlBYoZ/J2aBPnEuwFi8A3Ea6OcymFcylF816X3T2bBHkF2une40LL4OTo\nAtLTMfc3icrbmpTpDGI6Q2XPJkPfNHn1nX0sL/WQlAMSJ1HLh6rAuuNw9vIuklNNSlcEpSuC6uU+\nfuGp5wmKktajXcymhvZ0FUZdGvsjNE/j4uk9FK9pd02Q4gGfnz56Du2tAh/96Fv0DTTe1Rj9aycK\nIcQfCyHWhRBX/sJr/1oIcUMIcUkI8VUhRHH79R1CCFcIcXF7//2/2VFI0nmP9kkXz7XInXMov61R\nfltj6cVRDo8s4e/yMFtQP1vh4MdvEO3pkr5toZ0uoEUSZ1MjTifE6YTjP3uJ5vVe/N8bpLmco/Yh\nj/BIG6Ep0dH9kzM4G+APhcpYx45JtmzMPpe150dAUzeV4UFStTheWUJULVh2+MfvewZRCJQm4Y7J\n/OVBblwdRQYaqXWBXXYxtzT6hus0DkQUHl2lPSLvuotFaUnQsag1Msi0IlnXD0VsHhEUrxgw5NHa\nCc68ReGCrbwjgPrRkG6/ZPOFIYL+iPnVHryyULX6VEAQ6WweT9g8nhAP+GTvGKx3c9Q+1kXokv0/\ncZPewxvYGwY7f/0m8qxSwHaOuXSObYvcWkrNqs84UPaRVoI162B2IPOZZUTL4KOPn6UzktAZSfC7\nJmJcOYsbHZU7+YFfaOZRlei0mqr0+APTHKRiJbgDEq+S8M6Lk1h/3IOzpKTaPe8ot/PO5wcVU7Qr\nsGs6Xq/ArBm0x5WMvOE65GY0wjGfJB1TftGicHF7v2IShTrdQUGm4LGzXGVrv8DsqAgvLMVUTguC\nw12qxyTVYxKzqeGsC+Wuvq3o1YZdNrsZsjM6hx69lH1kmAAAIABJREFURVK1yN/U6R7w6B7wSF9K\ncWF6XJlTrZhkz6WQdsLFlWEGxqvEFwtodoweQvZIleyRKvILfax+PEDzNMxMgD3j8MSxq1jrBgMf\nXiDe08Vo6pRzHaxPrmF9cg0tgD/7kw8iYqiUWjjHaxztWyLetHH6XDUZVgUf+eXXENkIkY2QXYMv\nv3AfQUHylQvHkV8u/z+cGv7SPPDX5SiEEI8AbZT71w8I3B8CXpBSRkKIfwUgpfytv0zq/ptugwdL\nMvOz/xTdF4R7u+i3U8jdSsYbtiyMLUPNygmqYmBJwkLC5IFF7rw+xo4HFlj9xhide9V7kqpNelHH\n7KjGqMYxH2KBvWyqPgxLUrosCPOC7uA2ubkl6LsQsX7cQD/aIIo0wsUMqXWNkQ/NcfPOIMamSVSM\nlOUcMHAmxvzVVWbmK5ipUD0BnYTMnI4eQHdAMvnALLde3UHYs1273R4o4aRLHCgptkhQScb3u4j5\nFNlZhS6zdqo1eubbOTbvjdHbGuUDm6wtlBh8Uac5rimv052KyJxZUk9DqUHrhEcm59FeyWKXXSb+\necCN/1Hh2lI3HJAqjHW3ITwIkMeb5NMetUt9RNuU5yMnb7Plp5m7PoDR1VRy7KA6Lr+aonRJx32s\nTXIjy9B9y8zO9XFw9xLz9SI/v+dN/o8//wgiUTQsUD0WVk3D3+dizKvcjjeo8hpBKSF/W+D1Cvze\n5G6T0M9+8BX+/Tv3QcOEfIgMdB48eIvrf7qf6CN1gtAgCnWMm0p45g2HlE8biJ/cZGOhRN/oFl5o\n4JgR7ot9JPc3CKfyZA/W0L7eAygY8er9guxEg+T1El6vJCopEZo3EmJuGsgdLtk30jT2bVPRrIRM\nuUv2yznWH1DVMz0fYF9J0x2JSC8YdMcj0n0dwpuqyzLZ4ZLPuoSv9DL01Dzr7SwH+1Z5/eIkeiFE\nn3FI36M6X7tXVP7oAx+8yLNvHyZ/yyB6qIFtRri+RRjqDP0Hi+CXazhGxOKlAfRtnqkWCbyBCKOp\nU7gFYUZw5X/723dm/k1NinfwV0wAQoiPA39PSvmZv+1E4YyMyomf+w06OyJSiwbueIiZU+rRsOag\n+Rp9b4PXo9G+z8V2AnzfZKi3Qe3FQdxKQnpZI1Z6GOURMtCitb7t6VHw6flWmrVHYjAT0nkPbz6n\nuiu72006GwK/R6JFKuTUd7SJ5jOYbQ1vKERvKf+I7pAkGVNP4NJzKfSf2mBtvgfsGHPFIsonWFVd\nRSsStI5O4iR3282REPdECoSaDkg7AY1GmkKhS8e1Sb+apXHK4yMHrvLd148BoA90mahUWXpmnDAr\nOf74DS6tDZH6Zp7Gh7pEoU5vT5v6lW2WY0oien1kLMhccdSSKIGR+5eYmR5QbMe3DOqPKUAxQHtH\nwtChNZYv95OYsOObIbMfN7ArXbymDZEgf8PE3pJE2+dZ/6iSvWcXJVKD6lFJklLNSs2pEqldTTot\nB8OMKebVJL4xV0IvBshVh4E3Jd2KTv2I4lIUbqnesOojAfq6hTauEnPO6Sy6J2nthOKBKrV6Bmsq\nhVNT1QctUKCfcGxbcfy2w//+a7/Pl2qn+PaVQzhzNt5AhFXVCUd8CmccOg91lBH1VfVjuuMRRkMn\nKsSMfRs6/TqJAY19CjmnBYJgv0v6fIpw22R+8DWf+n/fZquaVcnQlkFiJxgtnagvQK+ZSF3ltQbG\nFaax9VI/QUmdr/571lie6iO9rJNelVSf8BArDkkqUVWmtJqQsjdNOjuUwM8Za3FiaIFXL+xDZCIF\nDF5NU9ldxXumQu+PK/5H4wvDTHx2ircv7Mbq7xJFOnc+9T/9V01m/jzw3b/w/51CiAtCiJeFEA//\nv/D5P9p+tP1o+6+8vauJQgjxO0AE/Nn2SyvAmJTyGPAbwJ8LIfJ/xXv/E0tB96BL5Q2d5J4Wmdsm\njhOqfdXAaAvWty2EMhlPCV1cg9VzA3TGI5JSiDuY4O918fe6aK7GZO8G9qqBCDTSr2eZ+JWbTEys\nYS9Yqhuv7Kuuy0pIWAlJP7FOWEjIndogvSzIZzzibIIUCtOemmjSvb9DPOKxs7/Kzv4q1aOSjaky\nTq/LwZ3LhMUYs6GROlqjWGmptl2pWn+14S7acBejo0EkSOU8wuUMzVaa4qsOW8sFit/KEOTBmrN5\nZuoARkdgdATWxSxzL4/THUrwRwMiqdFt2XQHBKlUAE2TrZs9RMWYqBgj8yG2E5I771B4fFXlRfpi\nFjZKCCeGSFA7mpCE2l2PDtnvs3Z2gKQvwBluM/9hE2nHBL5Buuji9HiEGbX8SwxBYgi80KA76bP+\nUERzQpCkEsyajheYpHYpM5zCaYe+Uov2m3203+zjE/e+DUspRALLT8YkFgyNVTF2tWnugSD/A38U\nSealDJmXMjQPBeQ/vkLc71OtZtEXHUZedhn9qRn88rbJsgFsWbBloT1R5XPP/gLPTB1AtAzMJiCV\n9L1Q7FL5xDz6TRWVJDYkNmiexv777tBzQWf5IZ3aIz6NvVIZEt1TJ8xJyt+xad/j4Q2GeIMhsz8D\n9XoGraHAu1ogmJxcJipGWEsWcS4mO6thlTxW7/SyeqeX1MObyg4hgaU7Zay6hri3Tu2DHsVXHVIb\nAmdNx1n/4dB0BxP63xAUd9fQ3ixQD9KYdZ1U1sdv2Zgtjc16luYJj9nLQ8xeHqL+qMe5s3sU98NI\nGP689W6G+t9+6SGE+Czwy8DjUsruX/G+l4B/JKV8+7/0+faOEXnwyd8gNhX9KVPpEGyv6YyuUHzJ\nVpq4YWI2dcJCzMQelRtw5i12feAOt9b60K6rnogwm6gbbVHHrSjDFccOadXT2LM23qDqW5AjHsmW\nOoGaL7DqGu5ghF12lcovgbD0Q+x/9uU0+o9V6bylEkNRRp07fVcbLufQjzYw9ZjWdJGkHCCqFj2X\nBfUPukSuymvkL1l0RlRPR1CAMJ+QmJLijjr1WpZMwcW/WSCzf4vGllKDylDDyvtEy2mSTMzotwXe\nL22xdbmM1RS4AzHSTjALKvTWpjJoB5SitNNIkbto4w5IrC1Vau2MJCSFiEzRRdNU7iDn+LSeHSB5\nqEGnlsLYNMnNwaO/8BZfOXuS0lAD+WwvRldS36euW2pV0B1OiLMqRNbb+nYJWVK8qtF9tI12KQcC\n3B2KlSG6OiJW1answRp8twe3T+DUoHHKQzMkccukdFGnNaG+p3Rwk42VAuaGSfGeTYJn+lSPx4FI\ntUjv8JBSsGtY9XfcuTiMiARxKkGmEoSv0XtOozEJ0bBP6TWb+n6J7glligRcmBpn4PsGm8cUAKb2\nmEf2fAqzLak9qI5dX7ewaz8sM3aHlG5E81TezBzp4FdTiFSMNWdjuKplfcc3uiw+pq6l3YCejy2y\nUs8T+CZJ1WJs3xpLm0WsK2ncfR6p6w7dsejucnXo0BrLm0VY/QGtTRBmJOkVwa5PTfHOwgj6dAot\nFIRZdU9OfLXD+m8HRImmnO6mskz/zv/PLdxCiA8Dvwn8+F+cJIQQfUIIffvfE8AelGvYf/nzIkFn\nSOD2w/jEOoW0e/dJ544HbG3kyGVd7LJLWIrATpi508+pyTuIEKpuGu1qliCfEORVEk5akvZEhDHW\nIVpJ05orIBNBNNkle8skGVKEYpmJkJlIlc2ONMkNteB6jsJNCIsxqXmTxukKhhkTO4Lq7R7sKthV\n1RiTWRQYZ9Wi1Z3L0VgokFgSZ8qh/y0IioKoaVE8p/adn7hNXIxwByTJgTbGaAejz6N7oRfpa/CG\nUqc25gvIUEOGmqqWLKUZ+b666Rd+PKFxvoy5u8WeJ2/T847GkX3zRBspoo0Ujz11AXEuj/ZyEdoG\nRz55BbMh6A7HdAeVcCh/2aJTTdP/b2z6/43N8myZzjGX5EIBe9kkKsbUDyW88m/vRaQjvDO9kEB7\nVLDn1Bx7Ts0Byq3KyIWIVExiS+JsgtnQlLfKZorSQ6ukVyU7xjbYMbZBaqitkn7b4iW3ovoNmrsT\npGswObRGuq9D/YCq3sQDPq2zfVirJvG2SKozKjFbEqOhaFGJa/wnFtnpZQ27JsiONbELHiTQ+WiL\nsD/EmrXpDgoq+zZIrQtmP7+b2c/vZuAFg/aIRuwkHPrlK1C1SX9oDecn1yicVVaP1pbAeqBKmJV3\nB+QH7ruyLcVP8BsO5dE6xZ42WohyJeuNuPVz9t0eD/8DTVa/P4K3nCEONNBgfrkXMZvCqyRIV3FQ\nRToiO6uRndXYen4QTY9J72oQ9MakVyX5Y1XqJwMuLozQ39MkdsDb4zFyfJmR48ss/WZMY75AdKGI\nvJklzL27xsq/SXn0P2cn+G+BHPDcXyqDPgJcEkJcBL4E/H0pZe2v+w49FZFekdhHtljcKFE9009Q\njgnKMenbFvkrFvWNLI/tvEX2tqnAsasGq508g48uUjtfQUjILGpkFjU1uxc98jcMwuWMygQbkv07\nlzGvpekOJQhdIl0dY91SlYdYEEUa/tUi4YRLczcMfV8oi72jDQLf5OnPvkp6tIXuS3RfUrqekHt6\nBb9Hoh9tKJJyomrwAJvHBK0jPiJSJdD6oYirS4P0D28RDfoEXdVJuntgg2CnR7rcVQTubKwIWTMm\n6RkTrexj1zSaOwyFh08EQV+Mt5Rl+Y8n+KV/9HWuvjnB5MFFJg8u8szVg/g9EndAMvCaYGqrgn1/\nFYohcTrhwQ9coT2agCbx+my8PpuJ3YooZlfhiafOk1o0MOsatcc87GmH5J4W7oDE742ZOjfG1Lkx\nYhushoD5FL09bYZ2b+AsG4SFBKshyMwb1FoZqveFzN0cYO7mAKWMS887Gv5ODy9Qytkom0DZx6rq\nzNVKJJcKDL4KmUsOmUsO+j0NZZvXsGh2HHRX0JhUCsrcVYvdu1bZNbLB9Fw/03P9yIfquIddHhu9\nhW1F6J6GP58ld8Ui6E0IdrvUT/fTOenS2Ctp7JXc+w/fJvPoOullnfcXb5I4CWvrBbwv94OEew9P\nk5iQ+8PCXcm8XdO59AeHSY23+NS9p9HaOt4rZbyzvfS9E6lk+ZbB+K519ECiBxK34eD3KsVsatrG\nqnRJ37Ax2wog/cTRa8hIQ1+xaU7GNCdjOuMxcjaDf7mICAV+QRBEOs68xfsnplm72E9qTVDubbHy\n5hArbw7RqacwKy6JrSaV4o1313D1nmjhtneMyKf//MeYrpVpTJdIr2p0RlQ4aw10CdbSmHUNw1V1\n7sLEFu2rPdj7GvjXC8rCb7CLmFbhXVCOcZYNgkmXpGNQuGLSub+LmE+pSUOCNx5gbJp3M+va9Sxe\nJcJs6JSug/apdWrnKkRZiTnUgRtZgp6Eew7P8s515eBl97iEyxlEn0+yaSNTMUNjVdqeTftOgb69\nmzTfrGC2UQMTxfPUXUFyoI1zOktrV4w0FaZu7+O3mfviLpr3uehGjL2NqfvIp9/g2T96gPqhCIwE\ne9nk5BPXufCtA3THFIouyv7Q6s/oaPj9KosvdUmcj7HWDbRA4PcpmbdeN9A9QTCw3V6ssb2eF5x4\n7Abrv7OTmc8KZCww101S++vIV0p0T7jY25UCv1dFD34lpnRZI/OJVZY3i6QupnCPuuTeSOH1QZRS\nTWIAlQsJS4/BvoMLXJ8a5uDeRW6e2aHKtevKKqB+XDlf5ae3jY1/bJX1Wh4xmyLsiRGpCHPRJrbl\n3d8qQoGxbbJj7WtiPZdn64RihI5/aJalr+3Aq6jqT1hKSC3plKZiVj6uDixpmQrGvGih72vR8/kM\n8hc32Hp1gOiQMktK+gKyeRdeUWXL1t6QzB2TRIfsAxtUa1mSlkl6QfWP1E/66oHk6yqyAYK1NKll\nnbCgmt/0rkacj3EWVRlW66hrlpvR8XrU2IwyksLuLTqXetD2tkmmspBAbg46wwLjaB3HjNhcyzMw\npEqr9bf6CTPKoSzR1Wfc/u2/4+pRYsHbM+Nk/6iA1KFzwKd4XaN4XSPz/SzOqk72aJXMgxsMv5Tg\nvdULEtyZPMUjm9hVjYlKlaA/IuhX0FpvPCB9MQWmKkXJpRS6K8id2sAvx6TuWDDiKtNYPSGc7OKs\nG4w/42F8eo2tM/2UbqgLFaylSfZ0GXlecvn8Tn763jP89L1nSBJBkomJPZ2RFxLMTYOS4+J6Jkkq\nYaOWw+9JaB4OSK0pU5j8bZRiVarJwyi72CUP50SNS1d20NqRIATkn8sQZZT8+yvfux/7I+uk+zpk\nb1gYXcGbZ/Zh31cltWhAAuN7V0nKIUk5VH6qZkJUCdCGXewVk8wSBHtcTh6bxsoFHDp1h6Ac3306\npmYsjP4uQ/ct8+Y7e6gecshcs+mpNEksSXCxhK5SIHdD77gYKXs+TxDbAlOPKb7ogECF1RLkgRZi\nrEuUkUQZSfPnmkgz4frMEM6Kyc0zO7B2NYnTieJRZCF73aK4q0b54wuUP76A+7V+yt9ySEzQWzpC\nk8SWiiB7713FKnlkFnQK01CYhsA3kEItr9yRmIXv7iB4qIVdU8Ivs67h7vdYO6WRyXpksh6F6wa5\nizaFWxBN51h5UND8/oDSXMymEbHAXLDp3i7Q2hfS2hdiFny6IzFBKWFjvsSpiTmyMwbuYMzDnzsL\nrq6c59YNxJUc4kqO1FAbdzBGCpXkTu9qQKwa0oaf0Ugvawy9BK2jHkElUvSzPp/o5V4SE7wt5y6m\nwOxK+s+GPD42ReNKL8f2zLG5lWNzK4fUVMLULyoZfJx+dwGB8df/yf/3m0hA1CzGfusGC1f3QCyo\nH9hG1S/rIKDj2miXc1Q/kJCZhwMfvsVqJ0/t9QHcoYipy6Po2yG/iEF0Tcy2xJmzMLuqvh8YAv+5\nPiqbCYYXs7TDYPRP1Sm48/cEcSVi+pMmrJQQPTEbJwRJLkJrGEQ1h/qEjtGVdCLVLandzMJwAIlg\n4emE9G2Da1fHkGaiYLTrDtKS5Hs6xKik6dZByf6jc8zXiwQjHXJpn+7rZVo9kvKBTcw/7WH5CYPm\nBzt3z08u7VO93KdwgPc3eHRsmhe/coJmJUW8I0BYCRstlQgF6ADGuqUcvzIWfl9E0CP44N4bPD+1\nj+Evmlw/OYG2U+VpAPJ3Ejb26SyfHkKMBvglQ1nrdRzSyxpuv6Q9DpmzKdon1fcQaohIkPQF+C2H\n5ddG4MkWgWew/1+0uPkrZfTbqpcl1VDXphsVSW8p012vrFzJ3MUc0okRiUZ3KEY6Cff3bHD5q/sB\nCEYk+tEaxvleRCwYH15n5dw4rV0x7WuVbeNjSfce9dTuK3ToOhlae0MwJFLoVP7PFO1f2kQuFwgG\nY07snOfixm7GiorhcbunRLK/jTyTJTETZDmgndURVkIcmEx81Wf2ow6JKRHb/p7W7SymDvHRFnHb\n5uyZSZIDAbmeDt+6dpjeczq192sYgVJwArgdG93TePKx87z6Zycwp4twQlVt1u7VmDgxT8N3yAUm\n7oqyX4h8jaCgvE60BZPDn7nCQrvEojNEVBAsTx0ktSJIpEbxORXtbd4XUbxsUj8SUnzHpF5+d4ir\n98TSwxkZlTs/+xuEhzvI+TRyxENuNzIKXVJ8MaUyzx2D3nMaWwcl5f2bxF/qw+tRBq7GvVu0t5mZ\niZ1g1nUyy4LmREJ2QSNMQ5xWyr6oEuLMWmRWJO//+28BcPlXD7P1Oy6bSwUKV00a+yPS84bylJyy\n8fa72FMpvIqqMADkr5l03tcl7pjodUPpGIrKzjAe9tgzvM7N6SFO7L/DuZs7ANDrBv/Lj3+e33r5\npxWQ5MgWPZkuS2eHYBuxZzYF7riiEgGkVzQ6kwHWiknQGyMigdnnUsi6tN7qU1ZygLbtP6mbMaFr\nghTYCxZaqMqN/mCE5kSksz7erQLZOYH/qKJIGUaMY0acrCzw3fOHGd+5QePrQ9SPBZgbJlEmITfW\n5GDfKrO/txeAbkUjSkF3TLmzGxWX3m+kiT9TZWOlwI7xDZY2iyDkXe/V2FEcVOFryFyE1jTQB7rE\nkY5sWEhNgpWQuWWxDdJCHm3htWyK5yz6f3KO+e+P4/cmFG4Jhj45y51ndxIfbeHXFexFz4YUcl1a\nV3uJhnzYUtWn5hMdoo2UUpbqKGTAdsUme83CHUywd7RI2yEdz6L4pSy1T3TIZzy6r/Spia0jMLbT\n9/aWpPtkC69tk7li07nHY3ywSs7ymf3GBP/yV/6Y/+ErnyOzKGjt2GaG2pLUQJtgOk/UF6JXTaQu\nMYa7OKezxA83kGcLeAddkrbKYWmeRmIp2rzVEKrLtRCSvmHj3dMl/XYa3QORSKKMmpBbBwOy1y3c\niqKw1ZoZpn/6n/0dX3okCisXr6R48rHzxL5O8TWH4msO+u0UydM1UlM2RlOjeiKhdEWwPt2raD/H\nXBIbul0bfbCLPtglM2cwdHKF+qFIMTT3hegBlE+sKTOY7UmoPQov/cG9vPQH97L2vgzNd3oxtgy6\n93ewejy64xFa1aQ7FiHWbcymWv+jS9Al7fGE3mdSOIsmcTbGaqpBHfaFiDWbhefGGR6rcu7KBJ84\ndp5PHDtP5W347e98isy0iT8Ukvl8gfUXhomyiTLDGe/gjofomZCx/auM7V8l9dAmoq0TW5CeUxg9\n6+0s9XfKcLiFkQk5tX8GcyaFOZMi92IGfdPCWlYTizscEfQmlN80SCKNrOMjIug+0iacyRHO5PAv\nF4m/Xua5F44hUjHid8sM/9QdSpUW6RVBeVeN7o0iKT2kvkejvkejOyhJP7JB7/gW6IAUVJ922Zgr\noTkx680s1sUMKSfE3hLYW4Li1PY1NyS5qxanTk2ReTWLWLMhAaOlMzC0hRQQ5SRRTpLczJIuuNSP\nhjR8B28g5pOPvkF3EJa+uBN5vEngmWSn1W5OpWk0Mzzx+AUA+ic3cLYSwq5FdlYnu6BRuKVhVFyc\neQtn3kL3lROX23KIvlvGa9usn4Ri1iWMdLrDMXExIpzs0hmN6YzG1PdJ3LoDDVM9rBZtPjf6Otfe\n3oF3ssM//v2fJ+oLKD29dHfpKQoB5ssFxHiHdMHlnz39RWQ5YKinQZAH5zt5upM+QkDlDZ3KGzpG\na7t7uCZIP7gJmkRG23iFjkmUhvqhiPwnVmgdCGgdCOh7xaQ9ETH0Wkz9dD/JbOZdDdH3RkQxNCoH\n/tU/IFdwaS3mkXbC+LiqiS9cGyDJRvS/aOAXNeIPbjFRqrH8JxN4H6sTBGrpIAQES+pk3HvqJm+d\n3QuJMo8pXdVoTCozYa2zXevPxpQuGLRH1THonmDXY3e4emMUEQmMtkZqXx3/nZLyqPAESEFcDu5K\ndke/obHwdIK+ZRJnYnpG66TMiLV3+jnywC0unN3N7iOL3FNa4vl/d786zkTSeNCj5wUH/ac2SKRg\nLL/F+ZkxaJmIYsDg1yzkL2zcdf7SVxWYRaZiek+bVE/ElM/obD4Y0lNp0rqqSpdhRUUWxqZJ1Bcy\n+Qc+y+/PqZZrAelVSWOPgq+ISJC/I+kMbzc4nWzibqYZfElj5QOqDGt0BWF/SO6KRWYlYWufht8X\n3X28iFjg9HfwljPoXe2uSXCci7FKHvZbWVq7Iypv6myc2u7XmNEJM3D/05d44eIBUgvb/NCCRA56\nyC0Lo6URj3l3S576kkOUSUgv6VgNSX1/oiamTETmmo1flPQeW6d6UQGItV1tjHOqRT8+1iJYyeAM\nt3FbNlrdRJZCpe7c0smrNgrCp+ukrJDwa30kpsCtKNGgkQn58b2X+MqZkxSHmvBcD8WfWAJgZStP\nuJjBrmpYTWU4bR/Zwr1eJCyqluv+04ITv36BZ58/rs7NqEf6YgqvT0GTdFejeLDK5nqecqVJFGvU\n13LkKm1FRwPqnRTdWpq9u5a5OTeAvWDhD4UIM0GGGoVLFq1TLtmcx4PDiqp+emWc+kJR+c6kEzLz\nOtf+9d9xCrc0JfYdh5QV8r5jtzC2DIq2S9F20Soe9rKJX9LgQzXa9TSL/9cEiQ6Z/1DAtiLE1RzR\nnSxJOiZJx5x7aR8nTt5i4sgSdlWndiQmcSSl8wa9k1XKFwTC1YnSgnAwIBwM2PXYHW6c3UF6zkAE\ngmggIIyUsExvKw7Gju/4OHdshr5nMPQ9g/agWsPKAQ+9o7N1p8R6PYs0JFefn0Sakpm1Ml979j7a\n45L2uMQrC5K2ydYTHrV3+hjKNrl4eg+FYpfeHVvIRLB6r8bKdB/6suJB/syTLzPwmiB7w6KxS/Wa\ndPsFoqvTl+lgtITyF62ZGDWTxJIYVZP5p3K0J0MSU+KNhNSOxTCoOlK9oQjt0+uEx9qEx9q4TQer\nqtP6ZJP8deOuVWN62qK1J6J2UPDRHztNetHgBwaXqSUdbRvjH5UiRAzZBcGJgzOEvoHVlORvGmy8\nLyE7p5Od0/EfaPHUJ07z0huHyN8w8CY93NFQmeq6BtKQPPzYZYxZh3TWJ531iXJqkgBwH2uz88CK\nIopt51cqx9dovtJPMu6SjLuIazliW00+SaxhtgXeaoZju+bJ39aQkaBwzSAxJbWHA2oPB+jPFGmc\nqeCVFdxISLj/wDSRZ/DMl+6jf7xGY7FAYsLctUHmrg0SrKYRCeRnEzqjEr+i0Iel62A0dfSyT/3j\nHb59+TB95xP6zidY0ynauyOQkL+lY7iCrUaGTNGlfqWX7hXVPdufa7OyVmRlrcie8ibZWybT50cx\nUyF2TWCtmVizDsLX6T7QRjdjxAslnnnjKM+8cZT6nRKpgTbxQEBqVVfK3XexvScmih9tP9p+tL23\nt/fE0sMeHZU7P/cbOFVJfZ9iS6RX1HHVDksoBugrtqI374wwazrGZIvc13NsHpckdsLuvSvcvqpw\na1Zd1fYRkp7zBt1BQc99q6xuFHhscooXbk2SfyNF/ZTPwf+bvTcPliu77/s+5+639+637w8PwMM6\nwAAYADOYFZyNGlLkSCRti6KqFNFRLGtxJDux7MgVRqlYiUsqVRImsaIokWSZlCiKY25DDgecfYiZ\nAQb78oCHh7fvW+9995M/ThNkObbkoqIKmXIwBMDxAAAgAElEQVRXdRWA16/Rfe89557z+32/n++O\nJQCu3xzCrLRDhyyJtCVkQoV32xNirRlEIx77Ble49c4oAP1vxcx9CMyyTjzk4bgBOzs3uXZlBLu3\niXEui/PYBvX3Onn6I+cAeGlqH5mUR+V2ibgQsePPYO4Zg96zkqXT8OTxa1zd7GN1vqi2SbTt9Z4g\n6A/RyuquW7qsirrOhoZ/sMnR4XkuvTEOKK1Gx4MrtF7oQUSg/eQG60sFzHUD0RaE7X7yLtcujVK4\nqbYe9RGQI+2czDa+z6oIohM1rLez+KdqBO0CqdDVNkLoknTKp1Z16XrZpj4oaO4I6R/epHqml/qY\nYiOILYued9S53ni+CdNphZW7OIQ2oJyxS9Uc4aUiuSnJ2qMR6c4mjQ1lG9dSEUnLwF4yyc5Ktg5J\n6PApFBpoL3SweSRBpmIe3qf2Ed+5uAfZjihIzyqe6v7Tk0y9sBsSaJ5sEgc6xpJFWGh3A3QFa5ae\njrtoUHx4hY33e+g8tkql6dJcznD00BRTnx/H2W4Dbn9+jpt3BtDLBrLXQ8Ya1qyNNCSFCSjvUedO\n219Df09ZErySJM4mpPtrBIGBpqkaTDLWUjstKdDmHcXEyLWLaRpoTQ36PWJfB1+j9w2N9WOKOI8m\nsdtu66EO1cWZXulEN2JOjUzznZcPEvSFzH3613+0cf1O/5Ds+c1fptBTw3yhyOb98l476eB9s1y9\nOazoRB0hpXdNqo+3yKQ9ordL5D+wwuJCSVXY26jyZCGFta0RZiV2WdDY4yMaBsUrGkFe0OpJiDtC\nUjmP7Jfa8usuDfvpddaXChzYvcD124NgJmSv2sQPV9DeyRNmoON6wvbfUuh9r24jI7WNSQ3UaVYd\n0tdtEhOaIyEi0DDLGuaBKt3/UrWttn+xTvxGidouJUUvdtYw/qJE+lNL1H2b6kVlFQ9LCfsPzAHQ\n+K0BKr9YU3ZmTyczZRDmJIkBUS4he0dZov2O7wp0ErJ3dRoDEiEhTidIM2F0xxozC51kCi0ac+1a\n0NgaoNDzrR0Bxe4a5XIaGWj0vWzQ+mSZp4Zu8cVzDyDshNwFG/OZDQA2VnP3uI7dr5qsH0+QlvoM\npQu6Kjb3R4zvWWL+FZXmXriTUB3VOP4TV3n7tYOEhRgtHWLMOgplqEGUj+kZ3qJ8vgtQCsyt+1SI\nUG6sTOtSiXCshaZLjNsprPu3CS4UCdrMD3uwTnIji9+rNDVGp4e4m0LE4PdGoEvMdEC8nLoXBEwx\nQDcShJCU8g2aZ7ppdUu6718l+aNuVj8YQFlpTe4fVDWK9VaG2cVOZEtHa2mkljVavYkCA2chP5XQ\n6NNIDDAeVQJl04gpX+5k6MQid2e7sRcsElOSvW+T4M1OWt0JiS2Rboww2wwPQ2LccQlGPdLXHFpH\nmiAFhhmRezHDh371df7wO4+AhEyfujYb81mkIXEXFb0sTiXM/uKPeK6HPTYgB//538e6miLMK/9/\nc1i1+jrO61THVBEonfVoNhyyZ12crYTVZ1SLyC9I0L5HV/pu8nb2rk5QQJnG3hxF31ejO1dn8UKf\nigUIBYcengRQ7ctQQ29opBc1tCe2KK9l6XrL4MAvXOP19/aTu6OKadUxNTqitDKf2X1N4kgjjjWE\nQMXHzbk4W4LYBOP49+IORSTQA4iGPcSqjez1MaYdUsuC1hM1okineMalNiIonlAQX+9rPZTvi3CW\nDcwj2wwXytxa6sG+nMLrSkDAwQemuXJJIdqddXX1px/coPFuJ/YmtHogzKockbAUY23oiPE69nfa\nwTwlFblX2ReT6qvjtSxMK8JfS5Ge0dEe3qa6kUb4OsUr6v1rO0AKcFcF5ukNqrUUj4xN8fZrB9HG\n6iR3MyRDHk/unuC1lxUFOswn7N63yOK3hhl77i53XxxDSKjvCTDTAdFqCvIhQk9IX1KTq1lXeSb1\nQaW/SEzQjpfxJ1Q6nF2GxvEm+l31+uws2B9bxQsNthZVe5ZYYG2qjI3clEblhIe+atOO9SA7LfBO\n1zDNCF1IKvN5pBtDoGFWdOJBD33BwVkXJA8rrFxwO0fYE+BmfQwjJm0HbFzpRiSQnhdUDsQ4yzri\nSIXcX6jjvPOXJnhnegeP75zk9bcOsvPIApPXB8hN6lTuD9CsGH3RQQ630NrfR/cUEd4vKu5KY0+A\nO2URHGjCksPI/UssbuVVgrmtihG+byLmXSV+cxPMqsadf/qjrsxMBPG6Q2EqIR708LpVz9io6vR+\naobsLKQyPsGVAvk3HHb8rUm2n28gE0HnB5YwG4LMrCA9r5Ge1zCaGpkZneqeiNKDK1y/OURmHsa7\n1pmd7lICrz6Va3HzxXFuvjhOaspSlCcDqgcCUnZAqbfC9j547dI+yEU0T9Xxi4LRR2cZfVSZojIz\nOoFnEAU6rNt0FmuIORfDE9RHI+JDdewvF0gclZxljNT5pedfRFt0sDc1Rns3kSbs/KnbiOtZ4pbB\nxoMRQSGhfLaH8tke6kNSuSRdSW0zzfRLOzg+MktzMObRR66z68g8c5UCMhcicyGtsQDdh+1KGn9P\ni/qoxFBJA5g1gVFR24pwKU3vj8/R++NzGE1BdZfiSXp3s6QuuHBdCaHCrER7uUi2s0F2oEplt+qe\ndN+/SmJK6jtjHu6bJmqYvL8ySNgdIq5nKR1aR5t1eOXV+zn2xATHnpjALGssnBlGJDBxdgdRWtL9\nzAJ93zLQb2RAl6Ru2qQuu7S6JK0uSXYuYuNkRJRS3yPMSeplVwFlQtA9SeZsitKxNUrH1vB+rMrW\n2V62lvOYWzrmtoFRCGC8gUjgvk9dg7KFiKB4Uz39EoRzafzrBcqLOdIDNdy8x9ifx3QcXsO+6SJU\nRCzH++c43j9Het826Qkb640crYkClbd6MOuCKJdQPhYgjQQ9UB25lSdiVp6IefetfcRVkwurgxhN\nwe3Jfnb9qUflQETHOyZJyyC1KLCdkPQCpBdUUdbrDxElpQQ1UwEigefGryMSQbnlEC6kEfPuPaVx\n7Ot0XpZ0n5foHT6pxf8/eD0Gh+SOT/8aPe8FrB63KD6ygtm2P0eJxvJGXikIE0HPqwabBxWf0awr\niKv+5CbJyx1U96j9prOi2JRdlySNXo34dJn6ZopCV53qVIGkEDH6ZzD70wmiXbXvKNZZXyzwU8ff\n5aszB4ljDa9h0f2yRaNPcRvy0zELH46xlpQQRvcE0mwj4zVJnE7IThp4xxuYV9JkH13D+r0SS387\nULM70He/Ml9t1lO0ljOIfEDuXZfqrgS3vXR1VzQaIxH2umr9JrbErCjyllkXNAdj0oM1WnfyKpZv\nNEJLh4j2Ssq5nKIxHqBVDNWgCAVjx+dpRSYbb/bR/dgS82tF0hdc/JNqqZrMpJGDHmLRIenzsG+7\nig6dSkjPGiQPVNE0iTyfx1IaLcrHfFK3bZ77xFm+eOEYeiqCZYfEkdirOn5XTGqgjqYlNJtKzWpO\npHAf2ER/oURtVCVwhQeUgil9NkWQg9YO1YLO3lLHef9PTnD9hb0YHpT3R2RmDOpjEQ8fus27b+xD\niyA/CdUPqe+i6wnJlTwiAm9c1Q66eipszJQwahq978Q0enRaT9dIrufa5xJaez0QkLnkENsw+NQc\nU5cGsbbbrV8Bwa4WXd9Q32XrgLJ82w9uUt5OY87bGA2Bt78Fmzai20OfcgkGA7RKWzzlCw6fmuTu\n53YjhUINZOcTVp+IcOYsDA/q4wHZGxbZZ9S1snG+B31vjdaWy08df5ev/9Ej1Haq9qvuC5KRFq4b\n4Hsm0UY7YUyAs6ryVogFdqnF5Cf+6x/9rUfvb/yKmq5jgbNs4I8pOa6+YpNYksJNQbNXkFmQdP3M\nLEtfGmX041NMfX0njYEEq6yhH1RLQn86izbYJJ/xKLlNtT8+UiW8m723VNYilWAuArWo0iK1l9fS\nIayrgpS9peMNBjy0b4qLL+8j0SWJxb1MyO8+tDmHsCMiNWOi+xCcrOG8lcVvr3pLD6/gR+3s0YZD\nsO1QuGZQ2RfTObpF07f42M5LfO6lxzj80CRX3txN2BdgLSjZd9AbMTKyzs7cBq9O7IGKyeMnr3Nu\naRj3aznqw8q16ijaGuX72li3YkTv0BZxotKknJ1V5Lk8QVHi7K7QalnkMkqOXZ0sMvBqwtxPJEot\n2dfEcUKSd4pIrV1QfXCb2myewg5lPLKMmOa3u/FP1AmaJrodk0Qa47/rU/jsMje+tJfGUEKSD6Gl\nCrMDrwjWjmkw2mSoa5uZq/0Ubgr+l1//LL9+52OsvtVPcqBO95+5rB1V50bVLRLsNR3n6BZ+aCDe\nz2FVoP5IE23axagLnC11LTd7BVKXdJxYZWmxBJokc8Om1ZOgDbTUFnHZQRqK3A6QXhIc+OQNzn17\nH8GgwtjFmRhn2SQaVxOZdS2Ft69F0lTnsmuwzMZGlvR1h46nllg634ceCOxNcJ9bZW0jh5SCjlKd\nzbvKSCbTKmtEGpLCVYPy4RDNVWrZVsviyV23mPjN+9j6dJ30F9UktvkhjyQRGLMOYncd7XKW1lCE\nua0TDfhQNjGaGta2IH9aTS7Vb/fidUqizhAn55P/N2nO/ck/+hGfKIaH5PDv/DzG5QyJobwaQfsu\n80uHX+N8ZZSz7yhaitRR9OUcKiyoEOGWWniLGayyurD87ojiQIVq3UXTEroKdWqezcm+Oc7c2Evm\npo1fkux9aJrbryk6ilWF+g4lzx4Y2qT6cq8K2u0KcDM+zks5/KIKKLIPqspya6LAfafucOnyGPam\nTurYBtt3S1AMcCccmjtCUqUmXssi/7aa6cOM4MDzE5yfHSb1for6IU/lbRQkIgZjvIb1eo7azgRZ\nVM5GGeh0vGewfUAiiwFiy0L3BfnbsHEiJjdhkDxepr6q3KbfZUPqyzZRZ0jqrkVigt8Zo3f4PL17\ngqlqJ5M3BtA6VLU8bpiIQMPpaaCdy5FYij36XTDM0OcMakMGtR2qXgTgXnVp7FC1pEJflfJmBmPd\nRA56KnogF5BEGjIWDPWrYt7KdpZo0yXVV+ehgRlen95JvJJS6d++IO4O2Dm0xvxbQ4TZtt9ntEYh\n1WLtYg+JJUlMyd994jX+j9eewKxqxDagSfK32h2cYcjdr3iezZEIva5hNDRyD6yzVUkT102MbYPM\nrKA2pv6PB09N8Pa13fS9opPoUBvWaA3GnLh/kvPf2YO7SzmVo2yCvdnuRoXQGozoeVtj/YM+uXdc\ntGc3KJfTFN5yCHKC2FLb2e8a6kQM/tEGqe+kqT7gQdlSnauS4oTYWyqo21nT8Hq+B2Tu3rvO1vvd\nBD0RRAKjpqONNND1hLQTsLWdxnZDWmuqU1S8qpP7iWUWL/QRlRQQeurXf/AaxQ/HRDEyJAd/8VcR\now2KL6apf7RK6mvt2fS0j7Zu8eEnzvPqn5zA65QExfhemtTYrhXWahmiSwU4qOjQgWeQBDrHxme4\nPD+INu1i7qsS3szRf2KJlTcH8Hti9IZGalwNel1L2N7MoJVNdF/w6BNXeXViD84dm6CgErKkmWBk\nQ5IVNegzY+qu3PUlh9pPVxGgADl2olyEh1u4l12avQlDB9VMX7BbVAKHuat9qu3lCVIrgshVS9/0\nNYf06TXiL3axeURdKKVLGpsPhdy3e4E7Z8Ywj21Tn8krB2JVEO3wkJv2PVBwYkkeffg6r13dy33j\n89x6YwfG/irFdIuGb6F/rUhtpG3Gi9TvZOYlAz97l0ZksVTOEV/PkT6ySfVmB7GbkJnR8QuScMTH\nvqO+v72NAvDoanvUu2+NpZlOBTZeyt5rOVpzFlobVOP1xZANMeds5O4G8XKK/jclqw9oyNEWyapD\nko4hFiroF+j9tsHaie9i+AAhyd/WqRxXk6yQ0Nzv0d+tzuXapR50T+AXlZpVr+qYVa1NcYdn/s47\nfOvzD9IYiRk/oGC0t+72UXzfRPcgtsH+6Bori0WsbED2jGJqGOsmiSPvka5BiUeTAY/er9osP9YO\nhJ6y+IVPfp3Xt3Zz4cIudh5c5O6yoqIlga4Co0OdsGrRf0Zj/Sc9rMtp+p6eZ+nMEFrcfuP20AyK\nkq5jq6xd7CHsCjFSEUksMGYcek6sUPtyH5WTHtaMg9yrtl/p19KU9yppwf6RZa5PDjL3d//xj/hE\nMTwkj//BT7G0mWews8xgpszbV5QmQGtpikqcAE6ilm2aVMao7hahb2DO2pRuSio71Yqi+PAKG+d6\niHZ46HpC4ZspqmOCrssx9T6d8n0Rne/phGlBY7DdUuwOINAo9Naw/7zA6qmEzLShlm8F5cSrnPCQ\ngYZWbcvGEyjt22R9rkhm2sCsSqo7gYEW1vUU0cEGQpNoNxV9C5SkXO/00SdTBIUEmY5UizESauKo\n6UhbIu0YK6tWFEHZJttTJ7hSoPediLVjJvrRMo2aowZce/9sjaviQXg9R8/5mMWPh+hGQpJo9HRU\nKL/ei9FSW66ekS38r3djVdX33zgikR0BYtsiyajCmtch8A83cdwA86U8xY8vMr3Yid5OD7Mqig/S\ncUnw+D94h39z5kHlVwkhcSXmtobU1CTyqz/2dQB+++0PYm4aRL3K5Ocs6TgnN9leySmjWCrmAwcm\nOL8yRMtT+/o4VHdw+5ZLmJPEtsSqCJUIn03YdWSekcwWr7yiOitRIQYjuddelC0Ds+AhJtN0HV9l\ncbGknK9OjNZ+jXvRpf/H5rh7boi43ydzySHMqFVY/xuw+EyCsGOomGgd6rzYTkBrMYPR1NS4Ntq6\nlnYXzt4U5KcTlk4n9yZko9NDn0gjIkVLTy9AY0i1gJOPbFEupzm16y6rrSwz5wbVANGgdBWaP1mh\nvp3CXDEJSzFPHbnO668c4oNPn+dWpYeNPxvC62xPyPtapC67NHbEWF1NzHNZbvyLv2Fc/9/0w94x\nKPf9zz+L924HUVYqs4ujPpcWCOJUguZpxLkIp+QRT2XQAhh9ZI5btwdIzRkMPTXL7RvqwJpdLZKZ\nNFFniFYzcNY0/I6E7LRGkIXUqmTzcR9rxiEoqgKoiAXpHRVsI6bpm7TqNu6EQ2ufh2woP8LI2BqP\ndE/xlX+l4OKNgQRpSGRagWDo9TFvuwTFhPScRmotQWqC8h7QxttFw1sZnHUVeYguGf1zwcoJE28g\nRDgxYtNCWpLusU3WNtSqSluziNMJXe/q+M+X0YSkMptXxaqxAGvJJMpInOF2VudmCr2qY++oYb6e\np9UtCTpjShd1tk/5nNg1w/mz4yoNq839VFVPIK9wcX5nzBNHb3J2bpRwKU3X+AarKwXMFWWAAkhS\nCe6CjteTkLQdtYWrBrWxBHOkAdeyeH0qgsHrVsdZ6/T5uYNn+eMXnlTHTocwFyNSMTLQyNwxVWzC\nWB1xo83Fl+Dv9NCNhKhsYW3riEhQmExY/UCElQ6IF1LkdqvaSfV2kdwdQW0Uuu9fpdpy8H0D1wmp\nz+Qp7Nwi/lYn7nOr1F7rUedyh/qcmQXJ+kMRD983ybtv7MOqCsL7GjjnlG091dnEflmdF78oKNyJ\nqe5QEunCZMTqcQPdU85SLYbNh5RT2TiiVjv+rTzuisB9Zo21yU7MmmDPo9NcvTOI0CUHdyyy/T+O\nkP3leaa+owBJpaNr1F7rIfXYOhtTJWQ2QtQNRKiAxtjqRirMRGWfAFpHQPGMg9elCsbdPz7PKx/4\n3R/tiSI93ie7/tmvkL7q0PnsIrYecfddJdCxKgKpQXNXgKjr5EcqBJGObUZUJ4tk7ypBS/Nkk6jR\nvoJjgVVUq4nWlosINZwVndaAuhjEkQqtpQyiGCDLqmBoVDX2PjzN1DfH1OTQNBCOgqQGOzyEplLM\nuzurrG+qC3igu8zCcgln0sbricmPVGjcLGJWBf7BJuN9a0x9Z4SwkJAfVIXW8nIOZ9mg9NAKS8tF\n8hdtClMha0dNIrctkLIlSKEwc6guwIcOXeXbXzuGv9ODbYvOXZvU3u0itaJWMVZZ0Nyt7nTutEWU\nUjmuVj1h8Ql1txvfs8TtyX4Fm925hfZnHWx+UNUbklBDlE2OHLvDhQu70D1FAA/zCSJUzk+vKyEu\nRRjr7YtxtEFQt9CqBlJXMOPEaEcfBtB6vEYc6XzywDle/i01uVY+UYPzeeyy5OO/8Aq//+5jmFmf\nsOyoMOHBJnI2jVURZOfU5OMVNSr3qYk119GgMZWneE1Q+7E6vYUaa2/0E+YUqAVQ0ZSHfAw7Ilp3\nMBoavUcVfUuu24pXEqobkLuiVitGCx7/6XO88sXjhFlJmFXiMaOiCo+xm9BxUaf5bI2HBmcAeO2d\ng5gVDaMJiQXB3hbJtkVhuEzrfAfm0W1sIyb6ZidBm0UfZiRhVwShQPM1knxE8ZzJ3/uVL/PZ33+e\n+s4Yacf0vGbQ6PteMXfw2Vlu3RpApCIOjS6y9H+OUd4DYSlGzwWKPyQktqN0FPWVDKk5g+ZoyKOH\nbnFuYYTbH//Bux4/FDqKqGUgfZ3Mk6vMX+pn5YWRe/3tVk9ClJaImoG0E/SvFimmW9TqLnFecSgT\nG1IpHxFoiEDDKOtwJ03pT9O4cyZubx1/vKUYkT0xv7zvNdKzOtZtF62lobU0ihOwUMnjdybsH15G\nz4ZkL9vIvXW0dQvHDfivjr9I3vbuUaEWlkuYCxajT80gLUnjepHYkow8PYN1I8XKF0bQmwKjo4X4\nRhHxjSJ2qYXRhOWVIkP9W8QOzD+pM/7UFDtOzhO5kuLeLRJLwv1VuL/KwMAW728MkliSTK6FM1DH\nDw20CMqPqYEeZSTGhqnwfgGEpYi1B2M2D+iKFJ0NuXN5kGJ/BbMmCF7u5B/+s8+RhJqCDDd18rcE\nF67sxFnXiPt8YkclnMe9gcLM52O0ikFqSZBaEvQVq1jLpgLTLOs0exN0TyEDqrsSwsU0ncUa//rl\nR+9Z05OreZ7++HuUTwb84dc/QLarjnE1g9bSiDtConUXq6zUsxtHYOMIFD+yiFbXMTZNdnes46xr\nVJ5pEt/NsPp2P/6eFh0H1wm7QvXMgW7FlPIN+sfX6T26wsrFXuxr7r02ttQVZnH084uMfn6Rzg8t\n8PrCLvyiVNJpTalLM3vVKiV/02DzWExr0+XsVw9x9quHFFqwJyI8WsfZkFgTLmZF40j3InYZdCEJ\nXu6kerJFkJcEeUl6QWDnPQoDVTKzGu60xfbxkN96+zm8TonV1SR7w6LRqxEerxEerxEUJEvVHB8/\neY7OzhrT2yU2HkhIRjy6v6NTfNnFmEjR8wUHr2XhtSxwYpojEfaqwd3f3odXsf9aY/QHzR79jBBi\n8fsyRp/7vp/9EyHEHSHELSHEs3+tT/cfH//x8R8fPxSPHzR79DNAXUr52//Wa/cDnwdOAP3AGWBc\nSvmXcrjs0UHZ94//c9zeOs21NOmeBs1l1erTPJW3EaaVgKq8S3n/m/2S0qF1+jMVDC3h9hf2UD+p\nNAGGqaznsSNJRloYRoxftbFWTEQssKpQ2x0hXBXmCmopKtNKsmuVPJLZNEZD4HfEWGWNYLTdbuwK\nGRpQgoXly73EtiQ/WqZxo6jksoNqy5NJexQ+m2X64wowkplSy/VWl0K7G1WN9KKgfDgk21UninSE\nkPiehRASbdolctu+iWuCjVOKeGWVNaK0JLGUH0CvqL3qI09c4+K/vg+Ayr4IZ9UgzCb83DOv8scv\nPIl+sIJ4L09yvIq3nKY4us32dBFnXS29/T0txIqtWIw1QWswREtFiBWHwcPLLJ/rIyjGpOcMGjvU\n8lYEGvaGkkXLAbWy0eYcwnyswnMnM8g2bFEMtbUIl9M0B2Nyt3Tc51ZZ38rR90WLtaMaWihIL0qS\nj27hWiGbVcUXKWabbJYzxMsquyK3fxPxlQ7KeySy1yeT8XC+VGDtUdWq1Wo6xkATOZVm10OzzL84\nirMh2XgkJHVHEb+cJzY41LnEmzOqPa7dyuD3hZhbBmFneI/q1XNW0OzWVBtVl2pV2zYPWtsa9rYK\nkP7Zk2/zh2cfYc/4IndXO4kjjdRll/pYhNXhkXtJfZf6kFC5sy2djrMmW4+2C6PpgOS2ql9l52P4\nT9fZPNsLqK1oakXgdUoGXg9YetTmY8+/yRe++QhRb0Aq5yGEpL6VYmBAtaG36imiySx6S3D42Qlm\nq0Xe++D/8De39ZBSvgH8lcj99uOjwJ9KKX0p5TRwBzVp/OUfwkgwOloUP5fh2MG7+HdyWJsa1qbG\n0ZOTSA2efvIi5Z0aXndM5YACyK5NdnL5wk7OXdtJ5rkVrBsu1g2XaD4NAgq3lBLQspT2Vu5qIGL4\nzz79VdLTBqaj8iitTV2ZmTRJabCMmMjgrAmyM5LMrE7kgjXtYO+uIpo6C7e6WbjVjbsqOH3yGrU7\nBcLegNSiIGkY2E5IGOssPmoiWjpP3X8DcWobcWqbOB9hbmnEQx71QYlbbBFeKGIYMVIKklDDupYi\n2dGCLh+6fIKcIDVlMX5wQRG8OwPS8zp6WTEVxEiTd79+H/UHW9QfbGFWdIKiKih+9b8/rfbbF/L4\nHRJvMYPUJduzRTIzOvlTq+r5ltrLG02Bt8vjicMTyLKF7sHixT6iYQ/cmMaOEGEnCDvBqGtKvdkd\nYF93ybzjYm8JsncMNE1tGaNcjO5BtOUQbTm0uhOMmkZtZ0LrxR5O77rN2tH2/zsYYnxsncrdImtb\nOcLFNOFimtXVAqd33iYpKAT+9naGZo+APh9t0cHzTRID0lMm6SkTaUiipRTuumD+66MKWffhKkKX\nbcCMpHy9g1ffP4A+kUGfyOB3RTx1+AZhKUIYkrArxF3RWT2lMPvOhoZR0yj1VqDPhz4fswlBAcZ3\nLvN+eZjCVYM7y90wnSLxDKQO7qIBt9O0Plyl9eEqugdJrHgSzT4BFZPuMyZ+w6J4ZF0liH04onKm\nF3+Hj7/DJxr0afWoTt/0Rw28noiX/qdHiDIJ+oqFP5kj9UKewvsWi9OdLE53Ii7k6D+2DMB7l3az\nMlf6DxzC/54x+tf43V8SQlxpb02K7ROqi2AAACAASURBVH8bAOa/7zUL7X/7fzy+P1Iw2vDIpHyW\nfjzi8tnduCuCYNQnGPU5N7GD2JW8Mr0brz9m+BsJQy8KnHUNISFJxWAliN/rojUS0hoJSQwIdrbY\n3qdEWbXlLKlSEzmXxhsJ+J0zz6lA48k0QW9I0Buya/cy+pZJuZym+8Flmv0Jrecr+CVVJEssqejO\nhkRa6ul1Sd46cx8iFJTOWiRPbpPrqXNqYJr4fIH80Q2cNY3JShf6mSL6mSKFnhq7H53Buu0SZxL2\n96wQ7W0SXCkQxxoP7r5LbIN5I0VSN0nqJs1eSWsgZu7VEbQIZKLMZplZDS0QOOeUp0OfdtCnHaK+\ngMJNQRTqrB1XIT1BQZJaFEg7QaRiyIXUdkdU3u6h8nYP5QcDRh6ZQ/Mhe8HhvS/fR3pWgY3NqmCg\nu0xvbxm9ajA+vML48Aq5O6or9QsPvEarL0aLJN3PLtDskzTLLsWxLfRsiIgFmSmdzJSOFgnCYsyB\nIzOIGM5c34fUoTkaUrhisjbdwehXQpJVBxEpEpcwEt788hFSkxZxISKd9eh+bIkTozMklqT05RSb\njwU0hiMaw5HqQvmCMA2ZJ1fZfsKjuZGCukFjSCJNSTLgkb2t/DORK9HzIW+8fAgSQf6cTf6yhVUG\np69B7AjsbQh7A7aW8sSBRhxoVPeG2A9usu25pIyAHX97kvQ5l9iVOAsmjT0BcUpi1YSKgKzZeJ1S\nrRgDgbfbI72oURlT5311qUDlUEDprEXzcAtrzsKaszDnbDqPrRJmJTv2L4Mm2TyaYHU3leZiqEWz\nRxn6NE9D8zSawxFzSx24D2wiUxGi3ZX6QR8/UKSgEKIH2EBJQv5boE9K+XNCiM8C70gp/6T9uj8A\nviGl/OJf9v72yKAc/OVfI7NnG/98iSCfMHRG7VZmnlcXS/fYJtELXbQ623BRXVnRC31Vyos5RCrG\nnlEFm8hV6r3S+BZbt0tkpzUq+yLsDV2FsjRUBd8drd1jHtjLJkYLes75LJxWBrEwmyBKAfqcg9FS\nMunYleh7VRsyuZ4jNy0Z/Lk7TH5tN40B9blKlzRqI+CuCyoHQrrfMtjz968D8OaVPUpHkE1Iz+o0\nhlXYj+ZpHDs+yfn3d6N3edhOSLPepn2v2pgNJQ1uPlwndyZNq0sQFCVRV4C5YhF2RpTOqXX+1slQ\n8QkmMgR5idapckfSixrN/gS9KUgtK5+B16uOc3qgRqtp09tRofpyL2FGnd3UqmTrWETmtolVk2w/\n7KMZbfuzlhC2TDKFFs8MT/D1r58kzEmOPTDJ+9PDdH3TZvURdUy+iw+0NvU2al/gdUuilCTJR/R/\nQ2f5CSAbIrYsOi4K1h9RWwl3ziT30Bqri0U0N4INm8SNSXU2sV7NY1UU0u/481cBeOPsAYy6IMpK\njIZSR544NcH7r+xFJIKgI0ZqksMHZln4Y7X16PjkPHffH8KoC+L9dZhOw44G5pUMzZ0B7rSlVLm7\nq/htfYdhxoz884TJX7PI55tUb5WUJ+iOctbGO1qw6KpAqjb30t4SDH9kmomlHtxLyubuPrLB9s0O\n9OEGQc1CmAnGon2vDW2VBbmH16i92Y1dllQfbVE847L5WIDQE2TVIjOl0/Fji6y8pe7L9jZUj3mI\nLQsRA1Iw/Y/+hpWZ/67s0X/Xz4QQ/wRASvlb7Z+9BHxGSnn2L3t/Z3BI9vzmL5G+Y5FelNQHBa0+\ndQFLU+kqsBPMdVMF6uqKD2msmVgVoYJcHhb3FHO/9vxX+F9vP4Y3USC2JElWeftlJEhPWvgdUlXn\nO2OGXlKfof7pCo0rJTJz4HUIrAe3lIJxVKkBD5+a5Pq3x/F6IsyC0uNGmw4yFVPsrBElGv61ArEN\nzoYSKsWRRvaCg3Z6i/JyWxORDsm9694L8xGW6n1LWwl6zAWboDsiM2nSGGqb3NZ0WmM+djog7fpU\nbpco7tmi9VYng8/McmuqH62uk5lVC8TCnYj5pzVEh491x4UDNfyGhbFs4awLWg+oz5bOemTaXMb1\n7SzZtEd5M0Nq0iKxwO+I+cjD7/PqH58gKEBiKD3GR09cAOAr7xxTXFI7wdg2iLoDrEWLwi3lt/CP\n1Xl8xxSvvXaIpF/VMMxpB6MpaHUn2Jsahgc/+598k8//zrNsHk1wl3UOf+gmZy/vRmtj8RM3IdtX\nQ75dpL4rpHOgQuVKB7m7sPmAUti6Y1XMb7V5JKZSugYFJf4KCglGd4vuQp0P9t9gutnJK9f3kpqy\n0E+orkZzsoDU1aTV1Vvh8b47fOnG/dhOSBTqROsOMhOjVY17x7m2I2bnnwcsPeq2b05K7CVSEbKl\nQyLQPA1nXaP7tGJYfD9tPe7xcTM+xlt59NObhG904B1tEm/bEIPe/v65fZtszRfo+Y7G6sMJxSs6\n0bNlHhu4y7e+fZR40CNpGErN2haNWpu6sjsc3MT6XIn1o/8fTBRCiD4p5XL7z78KnJRS/h0hxAHg\nc3yvmPltYPdfVcx0dvXLnt/4B4imTt+udZbmOkhNq+k0zEui3gBhJMiyxd4D82w006zPq1ajv+3g\nzptoRyvfIyI1dJWsXdZVcnQMekuotltvorwiWdXGi0rqruUsmCDA6w/RWjrOUI3mehp3weATn3id\nz3/jMUC9jzekClBmJkAI2N2zztQrOwjzCe5YlXrZxZm18YsJ6eEq+isFKodUATB9x0TqEBxsEm/Z\nmBWNxITYUeItLReS1E3MbZ2xkwpcc+v2ACIWFIbKlOcLSCMh11NHO1MktqE2HoKVYNjtsOA7LpEL\n+09MM/XSGM3BCGfFINzTQq7ZZHZUqM/kSVLxvYwKo6Ho4c6CRe6uZO3BGHdJCaVkNsJOB+gXs3hd\nCUkbce8smZCANxhibhjoviDa00TMuoSdEcJM0Ncsomx8jx4WdoX09JVZnS2ptvR1wdZjPr0vWkhN\nOTKVfkPeo08LCe6qpPxkiyTS0NYs6Pc4OjzPuSs70Rs62Rmh7OPAW+f2KYOhkBRuaJTvS5TyVZfY\nazrZWUmYFZQPRN8bWBs60lBME2tLUystAea2RjzmoU87iKQdN+C0FZ/pGN2NyH4nRf1UE30yhT8Y\nMP57PvNPZ9EDaB5qYU47BB3qd8wtjWiHx+HhBaa/sJtmj6T0wBor0x2IVIwzadMajDiwb57rd9u7\ndl8jf8Ogcijk5P4pLr6yh8SE1LIgzCruSHCmE7Mu2X5cTciZ8y6NEy3say6t/hh3WWfiv/sbhOv+\ne7JH/4UQ4qoQ4gpwGvhVACnldeALwA3gm8Av/lWTBLTPlQS9obE034GeCWmOqWfsSLRNk8TT+YmH\nznG8NEvtPRWG4zcsMJTeoDmfxcz5mDl1h8xNGBgNocAmG4p2VT/gkxvfJniyopKussk97YXfE+ON\n+jjLJs8/+h5pJ8Da1LGPb/HKf/MI8aCHURP4Y949vUIS64hbaSbOj5BelohYsLtjnZ5vqwHkbGg0\nFrNIHcx1A3NdFbiKt2KiqoVZ0Qg6Yoo3lOdCy6rJRM+GWBXBrZk+bs30Ubqgk7+uU62lEPkAYkFw\noUj5/oDIBeFr6FaCXHKQS+qOvfPoPNdm+mmN++QnDDWYb7nQ6dNoKmCLkQnROn20Tp/8JJhrJn4p\nZuOIJLWgdBpGt+okSSlojoaYgw21jUgE/qiPNxJgbhjsekjxOcZ6NrC3BMaWQfGsRXbvFkiVCh8W\nIzITFolUpia6fDYfUGrU1ifLrHygrd48UcZdFnjjHt64R+FOQuu5KubtFO6Eg1XRMCdSXHh3N+6y\ngbsuKB8LOLcwwrmFEVVDcmPMqkb5lA8SjKbALGuE+YTtZ1uUj/lonnaPexLmE8JcjDVSx+tOKF3S\nSM3r7Hlsms5v2AS9IfamQPdAfjclvW6gT7tET5YxJlL4/YqKPvdfqFXvd4ljsQPSVkIqxhsUX3W4\ndHWM+qAk3tlifSuHWfI4vfcW/+XPfBERC9YaGQgFhIKTh+5QOaJuTpcWB0h2thQNTAdvl0/4Uie1\nsZjClM9Ad5mB7jJ+h0Su2iS2GmBW5T9gNvjLxugPgzLTHh6Sn37hcV7+lkKah7kEt19Jno038tTG\nYwpXNaQm8IuAUM5GdIm1biha1JqNCNXtoXAbyk+1yLyVUsG6fRGF7hqV+TyF4TKD+QrXrowgUzHO\nvFJmdjy4wuJiCWPDpPfdhOWHVLFUCojzKhjYzPvYF9IEeXXMdj8yw8T5EbRIqBtYDGExVlSup5qE\nFRsRC/7h6Rf5099QUpOFDyZ84NBNpqqdzN3sBSFx1nU+9Ylv869unUA/n8UuS7b3S0RJTXqpyy71\nPSHpOybZJ1bZrqXwN1z63tDY+skG/raD1tJxV9S8H2YkyViLqGUg6gbSStAyIUnTIDVjEh5qYF9I\n0+z7HrpOahK9qZSR8XKK3n1rrF3uQQtUcJLs9nGvuwT31+GuavXl74BXEjQOeRSLdWrXOogdqQZy\nDWIL+p+aZ2q++56nIvZ1RNtyTjaEskl2uMrhnkWub/RSniqBVEVSs6rOp9+R4K5peIeaaEIi51M4\nG4pF0uyXpJYF9SHF6gAIcpLOA+usTXZSuioI8oLIUddNUEjYeWSBemixfKfrnllNbwrssqC2L0B4\nOukZnfBEDf1SlsQCr0cRxvye77vvJaB3+GjTLkFHezXXUAVmqyLwOhXPIzdp8OBPqYyRN148gnNk\ni+p0gdSixoMfv8ybs2PEdzNEpUipgWdszKogPKFqYSMd2yy/OEzj/hbP7r3JN88epn98nbVLPRgN\npVz2+iLcRUOxPAA8jdGvSGY+qibl/G24+Ps/6oQrCXfrHfdSsjRfYJsRthlRG4+RusT6yDpRSnlA\nWoMRhasGItQIM5K/d+QN3FWNzIIgsyBo9ggyaY/KgZjedyOyEybV6QJSk1TrLguVPKmBOqX3lMfC\nGwhZnOuAWB30xScgt2cLe1PgrgmMsoG9ppPPtvC65L2M05uXRhCJwFlX25ool2DUdPySwH0njb2m\nY21q/NH0gyyfEiyfEnT2V3jj9ftImQH3H5nCrCnj1B9cOUV8JwMCth8KyE1pGHMOxpyDeGQbjITE\nhLWbXSR3M4hEsHFYEIWGwgDmQxq7Axq7A4KBAKEluHcthZO/Zai8jIpa0egTaWXWSineZvaOjrWt\nk17QsN/PMHRghYwZYFUEwUDI4w9fQ6zZigsRGFhVgVUVtLoE3tEm2fcdtrczjJxYQMRKvv1de/XG\nXwwxMrBB6n2X1Psu+YsWIh+QGahiLNiYPS2id4vc+IMDDOUq5Me2kZYkvSgI9rcI9rewqhqtAy3M\niRT6zTTOhrJi+yVgV4MwA1EuJj5YJz5Yx10V2P9bCbMu2DwZEZ+q4GxKnBObxJmEO5cHqXk27pKO\nPVrDHq2hB99D3A1/I1EF85tZtEBNLqnuBs6xLbSmRm5CJzehI2KBlKpYWriqjGckgrAzwi+pzFt7\nQ6c+lPDtNw7z7TcOox+qsLO0gWxn4r791cP4FQdjZ509u5Yw52zVtctLxPUs4nqWtXqG+mGPpGZy\nbasPEQkWZzqJbVUMjvY00esa+tEyHW+bdLxtgiGZf1onN2GordJfcz3wQzFRDBa2mN7owF1RQBmj\nKZDf6kB+qwMRCB66b5LNK13UD/jKNCYktbEEe10HTfJ//emzBDlJs7f9HAsZKWwjUxHzT+sc+tgN\n9JZg8GVBXLWwzYjoap7KYx65aya5a0qGTKwGABpsL+Vp9idkPqBwb+EOj0rNJeoIsVYMrBWDzIyG\nvSUoPLOM15Mwvn9B3QUFNPsk0a4WUkDlYie6r2hEmzNFjIag/C+HuXx+J+GQj98VY8w4aIGKR5SJ\noDGgkrdJoLacJXfZJjvbJpQvCYZeUoaqpL331som1op69vdtY13M4Hcl5KYUnevJk9fUZJaRJPvr\nNHYH99LO6iMJxSPrVA/7WI9tMLvYwexmEamrwOB3l0aICxGDT85huyHN/phmf0xqRaLfcen+yDxi\ny+LOZJ+CvjbVcjsxFKuz3HQxmhKjKamdaFHIN6jP5QhLMe7bGbQIGoOCidfHSF7uQPMErW5JEguS\nWHWbEl+n6+Fl9ECJ1uyhusL7CUljj0+qu0HQsAgaFu7pdRZOa8QW7PxcTBjqKrD3nQ6OHbhLUgzR\nXinibEq82SzebJb8qVUaWy79g1s0fqFC4kqV2Xq8jggFgW/iXShhjtaJbWVFT9wYbdZh17E5Kntj\n7PMZnE3BM4evEduS9FiFxFRhU3EpIi5FWN/KceHKTuWfeWQDrzcm09nAeDfL1HvDiFig7aoT9IX4\nHTF+R0z0Vgl92cba1tl8TfFe0zMGiZvQ/X5CVLHIzGk0Gzbdn5ql+1OzZG6bOGsa+eeWkamYIz9/\n5a81Rn8oth7priE5/PO/hhZD46CHsWgTZdRS1VnTkUIRqIK8JDsN20cjxncuM3lzgMJ1jfLJAFE2\nMRptWtF9Stm3NN1Jtq9GKdVi8VIfsa2IRmZdMPrkDAA37yrEv/B07DUd3YPxD01ybbEfMZVS9YWa\noON6xPyzMPJ1ydr9qtB66LkJLr66B21PHf18Fu9wE11P2N2zzo2rw+gtjcSQWGXtXgBL8fEVWl/q\nIXYE9eEEaSg8mtQg7lSg1lbVQdR10vNqiZ4+vYb3zW6aDzXQ9IQHBud59w2lP0hSCcTQN75O8ytK\nyVfdnagEdzMh3dsgeT9P7LZ790MhSBgZXWf5vT5S96mqf2VWdQyMLg+EJGyZ9PaWWZnpIHvHILWa\nsHo6Ymhwk/WqUs0mtzOISBBlEnKTgu0jEUY2RJ9MUTi+RvSlLrbuT+ge26TWUq1er2nBumrVBjlI\nHdlkeyOLVjFICiH2nPLXhBsuRlXdx0QE2Tno/9Q0a//7KOvHQO9vqi1QG6psDDWwLVWY9q4VCLNK\nMbu7Y50L7+zGXdXglPr7tbd2qdVfh8d4n6KQ37g+TG5CJ8iB2YTarhgRCAXifcDHWLYIizFmWb+H\n+NfSoSqwH5xn6q0RtFjg9YXkr5tU98QIX6CFgsGjSyxtqeObdn1F6DqXp9WbIDWJ0eWRfS1F+VEP\nw4zRbmTIt2nlAK0RRcEypx3sLUHtqIdpRwRVG3PTwN1bJuv4VF/upTGoxo3uqRsTB2pkXJ/NrQyz\nP/NPf+Cth/6Zz3zmB/m9/1cfv/nZ3/1Mz46HqB4I6eyu0TB19G0TLRTo+2oE+YTOfZvE+Zig7qIP\nNylf7kILBM39PtqGRe6OStxOTCATU54vgJ0QxTrOnxeo7ZLoLQ0x0sA3NCp3izQvFgm62iG1d0y8\n/S1CU6NysRPf0YhdydihJdZMB/2RKtFCmma3jjcYEuUTNsIUctsisMFeN4gSnZ6XDOaGbbIXbIae\nmqN+q0j3hYjtpzzinpDaTB53VWB4qtMQ7PUgHyLTMbnzDk3NZP/+ebZmini9sVJYvp1Ff3YDfypP\nKDSWprqxqhrZOfD3eSSRTm07RbKvSTgaEDcNsnd1dE/jow+f54ZZpPSmidQEmqeT+b/Ze+8gy677\nvvNzbn45dffrHCb05IxBGgADAiRIUAQpgitR1MqUbVkql+UoW7XrtWyrXLt2lS1bsqRdybJlaxUp\nygySaAYQgcgYADOYnHs659cvv3ffjWf/OM2GXLUrqaiqNVmlW9U10/G9d989557z+32/n+90gx+a\nfJdrr0zT7TkEmwlELDjz0HVmlwdIXkmgTbl0rxZI7mqSeNdh62mP/hdsmpUMP/yB1znat8J6NgHn\n0rj7An7k4y9z76t7MJdVFmanmiS+v4VcdxCFgH39G/SnOqws9oEAsb/D4SPzzFdKyK5BeU+FQGpY\nMzZRzyS1pHHmmctMTq3j98Vs+hkaN4u0H3aJNNDWHHRfaWKEBGvGppU08LoWiVVVhNx4Yxj/G0Va\ne2PSR6roWsz89RGcimpZBtKkZphUOykiqeEVJIn9DbqhjbOu0/9eTGdYw1kx8Pb1MNYtBk6s02o7\noEkyl1VhtbKew2oL3MEIkQqRvkGYj7A3DPzBkMZGhtRFB2PRouMlyL1iI2IIU4JPPnGOWxem8AuQ\nmDVxsxBmYmIMxp+cJ7erwXB/nehL/USOwB2KyV0ySB5p4vomBw8vst7I4oUG06cWWOtlIBGDpxEM\n+eSfT9AIkxQmG6z+7qurP/uzP/tr38kY/a7Yevzl8ZfHXx7f3cd3xdbDGRmTE7/44yReTFM/EFO4\npqmcTCA1Z9CZDMGKlaAEOLFvjuvf2kPyeBXxlSLtMUgf36K2zYnQKiZRJsKsGSpha4+LbFiYVY0T\nT9wiloKLr0xjtgXpRfX63X5Bazokfdege9wFCU/vv85LXzxFdzzEqirzkzPWUstnwLyXUMteV2A1\nwOhImnshyEfkrxr0SkohZ9clvdJ2wz6GgY8vsvTyGONnF1ioFuBKhighKR3foPlqGa8Uk9rdoHtT\nhRTHIz2sOwl6kz5CkxRfs2h+sENYSeAMdvAW0iTXlOoSULbvdQ13IEb2+Zh2iJxNEdlKen78yD1u\nrA9SzHRYnVEhO1KTJBcMegdd/uaJV/jdX/kw3WHJ1EMLLD4/QWyAFoB3RGVJAPQf2mR9I4f0dLSu\nzr/+6O/yv/3+/4zVEvRKksiRlKc3Od2/wJv/l1rxdkYEXjHGGu2gaTGHymss//s9rH/Sw7qRxM/F\nZPbW2de3wbkbSjVpb7e8zXcy2zZ2VeXP3TDQAok7IMjNxNT2qXMcjPno6xZaqJSQ/gMtvK2E6loM\nREzsW6PaSRK+XSBWbyW5OzGVkxBlI5L3TNzRCCQUJmrUZ4rIfIC2aZFaEbRPqZaxvuhgNRQFPTXQ\nobuYQWZCJVg72eLBsTlu/NIhKt/3/hbn5sKgUl1OuphmxESpSvPXxtg8obYoC2tFLCfENEOCi8oZ\nEU53sa4kcfd5THxOw/27Ndbnioh0iIwE+XdsogSMPzPLtVm1lU7nXUVAm7dBA38wYOGvf48nhaX6\nxuTQT/8DjK7Avq+K9YUCWx9+H6giuzpPnLzOS+cOY7iCgXdjin9nnutLQ8gY4o6JWX1/75hYVpj6\n7qhK4yq9YVJ7vEfycoLEpqQ1KegNhohI0Dep/G6b8wWFKxNANthBvDc7DmGoEzUtnj51mZf++CS9\nIbUXzg61KKa6zC31qSLepknpsiRICdrj0HdZUtur/XfrtiAtGTi2Tv3lQbKPrdN+oYxbVgVasd11\n0T0VlGM2ttF+JxUUNmhbnDl0hzdnpji9a54Lr+wjzMTcd/wuV57bx+mnleCoF5m8e3EPhcsarUkF\nN0nPGLSnQvrf1vEKgtauCBEKinvV63d9E3chs8OrdEouUSSIVpM4Gxru/h75t2wKn1rm3pxKDRcd\ng8J15Y6tPaIChU09or6W4Wce+2N+7veeJT7UJlpIEZW2NSJbJlGfj+ga5K7phB+q064mwddAl6T6\nunTbNtLXKA8rKtTWlX6idEz2plIb6j1J/WGPdNbFu5pXxLB9IXpetQY/se8yL/7nBxEf3qI+WyC5\nqhGebBEsp7BGOwRz2zUWR+klANKfXqXywjD2IxVaV0qEwz7pfJdO20GsOmRnIMioiMVwG80X+TqJ\nW2ob0R1W4rp2JYXW0UktajgVyeBfn+XOi7vojavnlrlmUbwV8NS/eoXf/oMnCQ+10XWJt55E+ELV\nnFD1D9NW15m/msKqa0hNEuQVvzRIge6D2YTGoYjMXZ32uKK4ATT3RSSWdZyHKtRqaRI3nb+Q4Oq7\nYqKwx8fk/k/8FPXjAeZ2loW+dzu2r2mTyPUIZjIMHFtnZa6P9Iyh1JYeNB9y+fSh87zw787QK6o7\nijQUpg5NXQxmVeezH3uJ3/jm45QPbbB2YwCrsX3ip9SE9HdOvsSv336Y9maK5KzJqY9f5cpvH6Z+\nKEQkI8xEgH4ljX/AJfWOyujwipJ4ukPq1TTtcZVwNv7kPLcXBlWuZSmkMNTEe7OE8YAqGgbvFvDz\nMborCIoxWsEjapuYWY9wM6Hs7qbkYw9d4KXPnwbAbEp0HyoPhThLplKPdnUSEy1V9V/J8OR9V3n+\n8kEAcpdN/KwS5GgBdPf6TI5tUvnmCIUnV6m8OkRmXk2Y36ZD/9iPfpX/8AcfJbKVPyI8rPQS0gA5\n6lLMdai3EoiZFP6AuoCFq/GhBy/zwivHyN0W1PdLCjcE7keaBLezyAmXsG4hIkFufJvwtZ4hX27R\nO18kfX+F+vUS4yeXmVstEbdMypNVahf6kQbYle1VmKY6Hf0XJJVnerCYIB7ukUx7aC/n8R5uMVGq\nsfI1RUXrjEdISyKcCOeujbfPxXJCLDMkijXCUFM5qk0TsmoCy7zn0DwUYG4Z9F+QbNynFKJhQjJ5\neom7t4bQcwFRy1SrW0BrGjz24DU6ocWdrX7cSwW0gy16Kynsik5iQxImBf2XPOaeUQXwn3rqv/FL\nVx9HSkFfrk3lfBnrYIPkl3JsHVFq2mvnJ0muabR3qfOsZ30+uf8S31rZSznd4sbFCZITTbqzWcae\nj1j8oE72rkb9RIDWVpNYYk2DBxp01lMkVgyClOTe//I9TuFODI3JT37pIyz+y2mWPh0Qh9oO3n3r\n5SF6B1zEmkOUDyESiETI4FctWmMa5mNb1JZyYEqsje1JZl+L0Z83uPtDNlZVx2qwYxwK0xIRQjjs\nc3L3vIoSBPSGQWwo9kPv6SbRxRzHPnyTc1d3k5o1Sa1IavvV3blwaRuf1oX2My3klexOXJ/RVYPP\nrkoa++DsBy5z5RePsHVsO4awL8BZsNA88I90Gfktk+oBk/YxhduLQw1jQ+kf7Nq2kerRCtX1LKJj\nqIzMFbWc1AJ2GA6ZH1zBj9Tzqr02SPqhTYzfLLH+MY841GBbgYoE3VXaDbP1PjPz2zF49ft8+gaa\n1G4Wsbc0Jp6aY62ltnStdoL060mau9VAGXgXGs+20d/O4hVVSFF3POSho3c4984+pCHZf2iR+ecm\n+anPfhGAX/j1Z+lMKW2MvW6QrBpfMAAAIABJREFUnZVsPhhh1nSCUsjEH8LS4wZjx1eofENJmLUQ\n4rN1kl/MUd8PxauS2ic7mG8rMdSR77vJO+emd+IaRs8ustFK417PK1/Jbo/COYvafQGaE2HfUqlf\n3wYDAwTP1oheKdIrSYJihOZqJNY1ldOSgU9+8jU+98rDJFc1FeMIaMMuoa8z8ocm66c1whEPJ+nj\ntmxyF2wah5Ul31i1kBNquxLHAm1ZkcONtsCd8hUw2lEslMSy0rr40y6JpFqFdDZSYEckZpS8W3iq\n5R0XAsrlBrEUbC7nVTbrVTUhTT07w6W7YyRmLbxijOaL7/2JIrl3SJZ/8h9h1TViW7Xxom1oi94V\ncKTFRKlK27c5U77HC7/8EM3dKPagBGvTIBjzkKG6UJJ3LLw+5ZK0j9QxvpGnvl/9XWlIEusavSMu\nYlm1mwB6R5QPQvMFQ8fXWL5Wxq5q9MoR0ooRPR2notHb29t5HEXOlmT6OrTrSVI5l27bRlt2CPMR\nZlVnz0Pz3FoqI7fdk8aqrbZIMRw4sMSNG6P0n9NxfniNlStl+g5WqL8zQPFGzNrD6hycvf86b7xw\nmPQCdJ5s47VsCDSytwza4zFxKiI1Y9Lr21ZZmhIRCKwpxXd86Z1DkA2Y+F2N9R/vob+Vpb1HgXu+\nfYwPVWm4jspbHa5Ta6RwLiQRj9QYyrRYfm6czmRI/ppB/aS/c5670x7lcoPhdIP3bkySKavc0ngl\ngeYJMnPg58WOwa14WaNXVHqZ8Wdmmf3GFN09PhNfEJj/cI2tTpLhbJPrlyaU6xGQtmTkBWhO6ATp\nbVPgdJe4ZlOaqDGV3+Kdy7sR2+c4NacT2eAXFfKucE1Qf7xHXLERJQ8n4ZNN9ti81s/QG+qcLZ8V\n2DUNzUf5WWwlnsvdUXUVP6+8OEa/y9868goA//G3P4o81cQwIrXlqqcQa8oTok128GuO0sIImJ5e\nAcCPdeaX+0BINEOizzkEox75N206Y0pQOPS6ZPVhsaO0BRVyHLxRxCtJ8ge3yCdcYimYXelDVCwF\n2RWKWg8gLeVirp7x0cwYfdbh7j/5Hp8o8vsH5O5H/lekgK3TEcKJMNZUlSk2JE8+dokX7u5T5ptx\nSTTgIwMNLRESuwb2ikmYjikfUgWj9asDWJNt3EoSZ9VA87fdeo7EHwrIX7BoTUlKl1URE8DPQXJV\n4pZVdJ9VF/RfDJh/RoXb+qM+uhXjXEnQ3b9dXFuylD5h2EUuJpGa0ky4YwGJkkvuC2mq398l2Ejs\n1BucTUGYBHG6QWczydMnr/D1a4eQPV05Ddc1rIYK4v22Yal9yqW/1KLz0gBaqJbhmTnFy9Q0SbSp\nXKwPHJwB4O13p9H6PMYGqmhCUv3yKM0HXBJXEyQ2lCJQi6B6WBIPqEEvtiySqxreiQ5hxVFJWxd0\nth5Q253YlPjFSIF+tqG/nYkIYoFMb29F2sofggSroUJt4kxIYs7aWbl8O1HNHYoovyloTmp0x0K0\nTKAYHQmpDGWuCu0BldgukyF9/S1qN4uK8pWUSmujqeg8ebRFr6W0GnbaI1hSMnOzLcjOqMFuVyX1\nB33u2zPHO9d2sWfPGivPj6nHSKvzIgVEwx75fIfaco7UnEFyTVI5FTPx3yI6gyb1jyhaVynfZn1T\nFXOL7xpM/cgd3ju/Z6fOY+Y8Egmf1kKW7F212mtNxhSuC7ZORQy+qhGkBKEjCFPwwR94m+dm9+P1\nTPKvOgRpdZ5z9yKWPxGiVUxydwS9olq5GTmf0lcdOp9q0t5KcmJ6nvmGKoDW7hXRAjWp2mNtuJTl\n1r/4zmsU3xU6in/+b37xZ42/cQK3oOFsGDz0wE2qb5QxW8o6fmdzkEgIZd7JSBLzJkFfhLloo7ka\ncm+HxC2b7kqa3kJaeRMqyg0TFCLyNwWdEUgdrhEupHBHlMW5tUuSOFFDm3RxkxDu9vBtQZxSABC3\nX6f/+AbNVoqpvet8bOoq5xtj4Chn4cSBdWqxTeSaUPSJ0Rg/uYJvaIi3c7TPKt9E+ZyguVuq1VKg\nEaUkmdEW3UaChSvDZCaahMvJHaOPe9DDrBi0d0f4JUmuvw1/VGL42XlWUzbZ8SYnHrnLfL3I0B/Y\ndMsacTJmpZ5nuVoAXyOONAJTsLmZg57B4IEKjZzGxCPLbI0LGiOCvjcMjKqJvWLg9cVIXaCVPOKm\nRWmqxlbOItvf5qGTt1lxEgyWGzRMg8wNA8MF0Dj7wcvM3xxWJKfdHcyiR9A1cTY1whTYgy6BbyJH\nPGQuxFiz8Hd5DD+n0/5ME+1egsgGPRcwfGCTIBcRC8HTx65yZ2kQqUP2jooESKY90s8niE2Bnwf6\nPRL3LAwX3CIMD9XIZFwa9RSpGZPkmroBjH9ijvVajuCIi5UIWLw5hNHWqRkm6ZvqtZhN0EJBbIM9\n3KV7Nw8I/L4IcarNsT0LzHbLuGXIXDKx50za1TSpuwa9cozZ0FlsFDG6gigbYaQDDDOmnGvRXM4S\nWRCmQJvqYs9aiFDHywn8R9r4gQUIbkRFUkmfXtcmNHTckQi/FNPcBWY6UOepaeAOxSSXdQJ0zJag\nbdqkZg0WohzxTIpgLYnV0Cjet0FwJ4Mx7NI1dBp//Px3rKP4rpgo/vdf+rc/m3rkIYy6gV+MWL9a\nRn+oDrt6tEyT6f/SpD2SUtuJnmDqiXmy/2eaykMxuakG/q0c7nCEHO8RDQTcd/geC80CpEP63jCZ\n+rHb1C73EQ/7TE+vsOklCU2N1KJOK6vh9SymRirsKVWovltG8zWGHlilEifoBCa7/++AzmyRN/0J\nnA0dhnpoeoz3Wh9ayyAWAunrCASJL2RoOg5aKBDDHk7Jpe/BCk0stFSIlxAkVnXqtone1Bk6sc7m\nZg57TQ00Z6iLRJDe10BcSmM1NJq2gX68RaWZRr+T4v5jd3npnUPoGxZmR9CZirGLLvkXEiTndWJL\nU/Tv2w76ng7agkNFd9DtkEozg7eeJNXfJTrYoxs6BDnovwBuWeDctPH6Y0aHqrSvFXEDi+ZXBulo\nNnEuJJn06HRS+DmB2YbVfgu94NNzbZLlLp1KahsQJFSAchEeOXGLLT+JaYX0bIG2oSjTvdjAL8VI\nR4IuqW1miJeSnDp6j1e/dQRtvIvIBrjlGKGBu5rGeaxK/6EKVWyG+hvEV9OqaNs08ObT9ObTKiTI\nFJSux3SGNNbrObJ3NbolgW5HiA0bfU+bsGfiJzW8Ehj3N+j6DuGgTybjol9NESYldkVn/+FFLr61\nF78UEaUk4f4e/lSAr+tECYHe1fAPutAxKL8rST5Wo7WRRk+EdM71M/7QEpVGhtiG4isWUoDVUvGS\nbkogfI3YgvQtkw+ffY+hYpO7rRJG3UDzNKyajp8C0TIJM2oLnTm1xehYhfpCnsSGoDuoumZBKSJK\nxySWdeq9FLovCKs2VkVn65VvfMcTxXfF1sOeHJWD//Tv7ixxCyc3cb+pWnCtqQjN09AiVQXvDSgZ\nd2OfJHtHI//9y/iRTvXNwZ22pdbT0Msu9oUUWgDugFT97zFJVPZxZmzcCR/RMdj9RbWN0P7ZJrdv\nD2PWdOKJHsaMg9cfUTqv0y2rANzuB9p41QTlcVVoXV8uYGxLaD3PJPv1FFsnYqYPL3Fvo0TQtUje\nsXBHVIweQL7Qod1xkItJhY23I8xUQPKNFI1jyrlolHrq8yPbENtALcETg22SdoD520VWz8ZYFZ2g\nGCMNVUMR22+lM9bCXUuj9QSp3Q0+vesCn/9PT9LcGyHyPvYtFVLEUI+R31NbvMaUqncYXWVyEpMd\njo8u887V3RzYt8SN2WGMiklmf5X6nNJ3iFiQWtBo7QuwtmE+jh3Q3EwzNl5hcb6P4ed11u8He0o5\nId22Teqaw+CHF6l2E9TmC+SvaQy802L9gSztcUn+0BaVhbwiYwFoykqfuavTGY1xdrVIOx7Vy/0E\nxe3s2bUU2nZW60R5i8W3R0BTmhajrpM+UKO+lcZaNfFLkWo/3ksQpratAhUNP6tIVH5BYky1Sdg+\n4itFWh/oYlxNoZ1q4M5nMIbV1qOcb7H+9iD+qE++2KHRSJLK9GhvpOh/w6AzrEhqTkVD3Ke6PuGV\nHHYd2idd+r9u0xnR6Bz0GBhokLN73F4oo1dNsncFiU+sq3Pmm9SWc6BLzKpBPNYjmerRvZMnKgU4\n8xa6p4rb7aOqiycjjfR1C7cssZqCXn/E/N/56e9t96gIBcKKMNvgj/hs3u7D6EiMjgKKJtcE9pbi\nPkaJmOYjPezRNpmlkH+1+4tU3xrEz8Uqq9KM0csu1sUU2pkaP/o3vk6UkNQPh/zo0y8hA43Iljs9\n+pkftJj5QYuNL4zz7P3vEqZjop5O6f51rC2dJ3/yTYJDXeoHY35k/zsYDZ0o1ohijfwlRdgKLhRI\nvpymcjrCaGss1fPIhRT0NNxhNUkYVoRhReiaRNxNEmYjpBnjLFjY76VoHAxJ3bEo764QtCy0D22B\npoC/xKC3NYJAp1pP0fmhBpN71nEqAjIB/aN1po8skppskJpsEMfK4bj7+BLt2Rx/MHuC7sNtrJqG\ntupw8MO3iUsBrDgsPiVYfGob07alkZlT78mecoWLr07TP1Zj5YuTlN5UeSHx8yW1kZdKP9E+3kP4\nGoFn4G85tBazEENfoo25ZdCc1JCD3o4bWGxZ2DXJ/NujtK6W0IsezUddZj+RoX48QAug93If2TuG\nmih0iVFVVvn2hIrm61QTNN8cUKCdZRMuZknPKoq5EJJ7M2XCdExqUdD/lq4wgp/P42QUmyI1a6Ct\nOoR73B1Qrn+sQ/42JDYlYToi8UKa/lSH2sM+2ReTyOMqKFkLBPFsing2xeYbQ6SOVdGMmL60io/s\nS3cY+abG8F+/hzjdwBjp8qFPvQ1v5+DtHOklyUc++wb51xzan2rRGY8Y/LpJ+MV+bt8ZBqmKmM1d\nsDLbx8psHx3XVrySZEjx6CZiyYFXCsT9Ptkrqv7TO+LSHZTIQEMGGtaySWcyIkpHuOMBzrr+Fxuj\n3w0rCmd0TJb/2d+l9I5O8IyKzKtvqJZc5oZJa3+gWkhmjOZp6ENdwo0EiTUdq672fu2pEGO7h+xU\nBN6JDsbVFGZXOTmRasZNHa3SvF1Qd849LmFzW2VZ1YktqfwlniB9X4Xq3SKTh1dYfXkUqwHdQUmY\n26YlAUP7Nqi2UsS30vjFiPLrGmFC4A4IjnzfTVb+zR6Wz6pWVpR6H26q53y0hQT2lqC9JyDV36XX\nMzk6usytr+3FK0oMF7yyWiFN71nl9swQnzl9jm/86hmqD/rkLig1XugowpSzYuIV1GMYrmDwzYjm\nuEHrfhexYZO/IYg/XqVxr8DQ/g38SKd1rh9byTvQPrSF92YJgDCpzsPpp6/y+rmDxE6McCLyb1nw\n0SrRi+rnjn36KudePITc1SWsOmRu67gPdgh9Hdk1cNYNvEJMaXeVypJahdhFpUh072V3rM/lwxus\nXxsgyoVMjFdYuFVGWjFmdhtlfz5F/0WPub8iEbpEW1ZE9NPDC1z71cNoP7hJ69UBgm1OSPlcTGdQ\nI/fsCgtXhjh0ao6rVyfYvX+FSjtFs5kgdTFBdi5C+wlVAN96eQizjVrFxZCcMwlT6jz4BZWWVroC\n2R9dIpbq/b93d1DxJzzFskg9vkHtfD9Md4gjjd2Dm9y9MMYnnzjHl156QL3YoR7WtaQSaU176FaM\nvu0cNluoNnnVUlEA6l6m3KoPNJU+Y0vHqUD7TBdtJoG+/XtSV6SzREm1YQ+W17j+9WmipMTvU+yW\nhR/7Hldm2hNjcvznfgJxK4U/6WGs2GTuqe8196iwVz8nyd2BypmA0a/qrP9Aj7CiSM3Zuxrtifdf\nR5iNMPM99OtpgozK0dDyPqw4mJNtjHcyeAWJOd0k8JX2ImhaDH5LZ/OZHvq9BEZXPWbYF4CnWpGd\nUUlcVhVxgKzjsXxxiMSaUnRmPrTG2s0BRCDYc2qB2dfHFefgSGvH2ShfLeCWJYVDFdpv9CNONogv\n51RBrl8yfHSNlatl7C1NhQ8DxOBOBjx+5CZvLkzirycRgcCZaOHfzSpkfyTQRtWSOPfNJOnPrDB/\na5D0aJP2UpbSZA3/hT6MJyqEL/ahf2CL6MUSzQPbiL5Zk86EQsM5KwrQUt5Vof5WmTCh0rXSY03S\nv5dD+2tqcC3P9nHm2G3eeHcf9lAX8011XvO3oTWhlt1Th1aYvT6ENaieWxgYGDMO5pEGnUaC5A0V\n8RdkFMxY2pLkok6vLyZ/Qw3IrQdDnGWT0UcXmT83SvYe1B7vEXs6RsUkGlSJ9/o2hGb0RZ/5j5rI\nAQ9txSEeViwH3dWwJtrIq1mVppaRBINqMpocrTA3UyaxbODnlKsXqUjn6Y+sYekRK+eGsQ/X6d7Z\nnvR2NfHmMohAkJmH5i5gxCXxXpLOIU8V2CdC9JaOs7Wto0lK/Lzq1oi8T9xVrMviRZ32KCBA94Rq\ny2vqmh58VaMzpJHYlGw+EDO8Z5ONehrzUprkmQpCSFpdh4fHZnlrWeWVui0HGQvKg3XWV/LYWY87\nP/A9Hin4l8dfHn95fHcf32mk4O//iTjBOSHExe2vTwoh3D/xvV/98z0Nyfgv63h9EfqqDRNd6gcl\n9YMKRx9kJXLSJfpkFWvdZOuAjnk5pUAvuZDWpCSxJsge2CJ7YAujoRNHOtk5SVQIyNzVmR5eJ7Yk\n+nl11wsGAkq/lSLccgi3HDK3TTbvA/uKalO6gxFWXaC1DKyaTueBLoYL0tOpL+apL+aZX+ojGvBx\nByXJtZjeF8tIQ8mt7709Tu5kBaOjtPqtxSytxazaR466VK/3EaYlblt5BbyTbe5/+CaNrw2BhO54\nuJM58dAzl9FTAZc2hvEqCaStEHZuy8FsCwxXMPZ8QLSaIFpN0BlS5CWtJxAvFTDrGluVDK1dEdWN\nLL2ipPd2ifYpF3PLwNwyiE61SC6o1LEgp8hX65s50gvbqWR2jH85z+rjMdV2kmo7Cbrk7YVxZDqi\n17SROiSP1tg6rihkmVmN7n8eRuvzMN/NYL6bIfVuQrX0qknslE93NKJ90Gf68XtkZzRSwy32PD2D\nPdXCqcc49VgxQV2o/v4oQSGi8YTLwFdt7IzHyIlVMjlX8S0KEX4hIvFPVzDGOsiaKvIJDZx+l9iR\nWC9n8YoRkSMxugI8HTydxYvDCF+QuL9ClA+xNzVKlwTNwz5rNwaYW+xHdwXdrk1iXZBYF6S/rLZP\nVlNQOxIRJ2LEUgK7LjHWLGUss2JSK2LnSg9399C7GkapR+JqguJ5AwR4eUE42UP3BO5QiNYT6Hkf\nPe+zdVTgliWRDYllneXZPvYPbZA/u0bK8qld7aPXtnjx6v6dx0netCESeIHSGZlvZ/78s8L/y/Hn\nWVH8BvCR/25YS/lpKeVxKeVx4AvAF//Et2e+/T0p5d/88zwJYUiWnkwgIiWBjpcTOOtKfIQU+AMh\n+WyXej3F5B93ME7XcIcj0nMaE6MVokJAbjai0UzRaKaUXmHRQfzQJol8j+a+kNU/mETaMclVRYYq\n9LdYfkxDOpGSz0p2UsnM6SafPPOOUtgN9AhG1LbF2RQ4iybTB5aYPrCEXjN4eHqGIw/epbZfUD0Z\nUbykZNInH73FrvwW/oMt+i4IEis6iRWdKBsiY/U6w2EPa87BOFVDxhpXN5Vu4K8+9S2ELwiGfIIh\nn3NfPopzKUm7o7ZaejpQCjxN4hVigrRk4ydcDpyc58DJeRIPVugGJsOvxbiDakBk8l20kkcy76L7\nAnGigZP0icZ6RGM9Ei+k+cCz51U4TimgMxpj2iHtcbWtSt810V0BhmSk0GCk0GBwrEq4kQBfQ6+a\n+Pe16VwrcPbMVfSWjuFKNj/WQ5tP4B7v4h7vYjYl2pkaoqsTBjqaL0jcs7g6P0xjOqY7m2XpN3cx\nnG+ychZWzoK0YqympDMKhUs6T+y5xcbTHv5aks1vDeP2TAY/toBZ7GEWe9xcKcPNNKmx1k6dJ76l\nukCNAyGZGR32t+l7ZJXiBZ3iBZ3MvGpztq6UmJzYxC9u13uqihRlrpk89ezbCJQYLjYh/aPLRMmY\n1LLELHjIZLQDKAr6ApKLOnrVoHno/XAi0woJyz6/fPp3VXH4ozWIobM7QDdi9JN1Cld0GO7x4OQc\nD07OITWV7dHcA92JkIndG1y5N8LGxTJLmwWidAyeTuqORXQtS3QtS6zDrql1vHeKxHu7dMb/TMb1\nnz5G/yK5HkIIASwAT0gp7/xp+R9/2mGPjck9P/xT/ORf+0P+w51H6Vwr7FCdJ9NVvnb+KIklgyc+\ncZ67rT5uL5VJX3TwShKjLZAGJNcktUPqtSTGW/T9epLFzyiJdxzo5EttvLeLuHs8rCULv1/FxR8c\nWQNgrlagvZhFOjGip/GpM2/z2s89QG2/wBsNFHFqrEV7Lb0jFZZWrEjJGlibOs6ROsbX8nSHBH4u\nVmlVfSozVN+W1mo+MN0hXEkycnCdjXODRJbC/51++ipvvXyI7AwM/PA881WlsvNm1d0gtqTK+BgN\nSSwZ5M6ss7ZcgEClQ6WnVAuufS+H5guS++s0qylEV0dqUu2/D3XJvZygPYYyd2l/4v0P1SSXv2YQ\nWXDwUze59bv76ZXAPFnDu5YnmnIZ7VNVtpXzQwS5CAyJlgyRNYvR6Q1WtnKYt5L0hgNEqDow7Qk1\n8OKE5Oyp6wzYLb58+yjBegJnWFnlAaQhsWo6QUZJ0wHKr+psHRU4FUFnPCIz2qTVSGAu2kRTKnez\n/w8d6tPbRKgpnw8eusHzVw+oFWFdI3QkCJXPcnFhjHjLQjrxjvrVzHgUs12EkGxdGoAYxO4OftXh\noaN3eO+bB0iequB6FvKqymixatDrlwSjPsaKRd9lpd+oHlYDO392jd4XyzjPrtN6TtHHPv7ZV/ni\n3WO4dQcE2Bk14aFBerRJaz1N9qZJkAZ3LNh5a/qGG1RWcqT7O3g3c+h72qS+nqb+hHr9j+ya4ZW3\nDu1k24gQgkKMs6ZUq2Ggc+8zP/M/JgBoO8D43337wbd/7hpwG2gCPyOlfPX/42/+BPATAFaqcOrA\nZ3+Gxj6JGPCwryboHVLVW6FJlcc556jJ4FSAtW4SJuSObiCxptEZizDL279zM83Ag6tUWilMIyL/\nnzIs/VBA3NMpDLRo3ipiVwXdiRCzvu22219nd7FCtZdiYaVEMtujU0+g1wyGD6+zdGsAo6Opi/XE\ntsEn0Ojrb2HoEWuzJZwNg2MfukndS9ALTZauDBL3+dAw0Xz1Bg4fWaf+3BCt/QHHphfohBZL1Tzh\nTJoordBoZlNHAj/8tPIU/Na3HlVhOSfqmM/lcPsFUXLb3JaUZO9pdEYlQUHdPc2aoQawGWNnPby6\ng1E3SO+rUd9MM/CySWOvKhI39287FLuakp+PhIhAkJrXkQ83CK9mQQpEDNaJGs31NCcOzAFw5c09\nSF0SFUI0K4ItG9HvMVhqsH65THK6jn+hQOnhtR3DmvMfC+z7x9d46dUjZO5pNB7okT3v0H6wS9Sw\nyF038LPbRrDtgGOrBZmliKWnY6ysx77BDe59bdeOcKl+MCR/3VCcUZRMPDvQpnMnjzHRZs9Ahfla\nAe9WTgGCs2oFqXka8bb8XPEWJVrDwNlUQdjtccnQ8TWW1gpIX1dsUjMidVG5h0WkOmn1k0r/Irfb\nuU6+h7ikYhp65XAnyBkU70LYETLQMDZNxGQHw4jJpVy23htQ0GNHonnKDwPg9yk6t/R0yi/rbJ6C\n5JpGr08SGxJZDNDXLPRdbew31U3FerLC1kwR3RUk1wXd093/oRPFrwB3pZT/dvtzG0hLKbeEEKeA\nLwOHpJTNP+3v21OjcvBn/zbZizad8Zjkskak2Cg4FUmQFuqkn+iSfiNJ50wH3YjxVpOgg7Omb+/r\n1B1F9wS5I1vonyuy8SEfa95G7ynWQ3i4TbSSRAsEpSObrK+oCnZhoIX/egn9oRqdjnpwbcFRrcJQ\ncRkRYNY1wkklarFvJfAPuCSSHu31NPaGTv6+TTZv9qEPuTCXpHADOkOC4KSyzcezKSXVHuoRdw2E\nHWEnA/LpLvJ3+jF+ZIPay2oLYqrmCp1hSZSJ0FtKVBUNvJ+A3WvYCFdHhEJxIYHMfMzah7adtmbM\nDxw7z+cvnkKrmyr8ZzaHPuiqbcM2wyGV7dGuJzDsCLmcYOz4CksXFAQlNlVeJ7mA7LsO5lMVALYq\nGQaeN+kMb1uijZhiuUn9TpHiVUF9Wr0XYTpWEyaQuuLgDsVYNY2xDyyw8PI4H/3EW5z/mVPMf0pC\nJEgPdHBdC7kNKoo9HdHVGZ7eZPOdsgo0PugSt0zOHL/NpfVhzG/kaO5R1/LB03PcfnkKuyqIHLWs\nN9M+QdNCOBETw1vMLfRDLBh8SU1gWx/vIgRwR1nrc7fA+0SdnmuReCu1TYBXYUTBNs81ykYcml5i\n9htTyFNNNE1ifTOL/EiNxlIOo9gj6JjgazvXZvGqosQHWakSvlxD8V8Xy9BS2bbliSrOLxeo7ldO\nUKsl8QoC95i6QdlXlSfm2Wde53NvPATpAKRganST6pdHASUJKJzYZH09h2bGHBpb5b899sv//3c9\nhBAG8Czw+9/+2naK+db2/88DM8D0n/3HJI8fuE37tMujZ66RXI/5nR//eX7nx3+eXp+gddDHHYwx\nbiV56sfeQC4k8RdToKPyPo62KL2nk17USC8q1qX7Wh9+WmAs23hDIWFKktiURKtJ9OEuVl1Qud6n\nBpmr03Ft3KGYTschk3aJOgZhKsbZ0IiSMUePzZEcaWN2BGPlGmPlmtJHNE06LYfkgqIneV9VPMug\nbaEF0NwlcA+7iFsp9SGh//CGIm5lPfR1m95WgsqlAbaOCDbfKWM9WEWcaNCcDmlOh8R2TO6aoSzs\nk21kT8dwArT3MugNA5mKKFxTisrIgvpeDWJIzJskbtl8/sJ9FM5ZxLkQ7fmCckZeTWF0BQPPWQw8\nZ+Ffy5F/x8a8lkQO9mh2oCp/AAAgAElEQVR7NuVj6yqAKRSYDY2B5ywahwK8F/vwXuxD+hq5u128\nvMSq6CQLLo2bJaQOW8dj8rfAG/GJDTAXbcxFmyArMdoaR5++ycx7oyRPV/jSa/ez/AEDQo3Eoslw\ntolzOQlbNmzZHNi9guYLVjbyBGM+dk2SPp/AWTd454UDpGyf2v3BDul8rZ3BK4cMPrOg0tetiGgt\nQWLRZGJ4i/VvjSB6Ovt2r7B2NmLtbETirTSphEeUkGTuwchfvYdjhsiFJK1TPcXl0CXepKfMYxpk\nr5ncWBwkTEnk1SzmCzml1fnNHMITBDWb0/tnFZCoz0f2+XSGVNs4yEUkriVILJhsfGEcZ0ZxOv/W\noy+wvpJn8TMh7WM92sd61M726BzqEYeCqG3AfQ30nuBzbzxEclEHKeh/waLZc3aG1ANPXGN9NY+1\nYpG8mGDpc1Pf6VAH/mLt0Q8CN6WUS9/+ghCiXwihb/9/F7AXuPdn/SHR03hrcZLY03nvd45Q+3iX\nH/j83+cHPv/38Q65lF8yGD2yRm844MtfeYiwFBAXAlLzOt1hCGfTdAcV5ai5L0SEqhbQONNDRDD0\ngg57Ougfr5C/IQiqDn5BMn1qAb2jqY+racYPrdL3VZtHR2YYekFH264/nDl2m2tv7tpOo46pfn2Y\n6teH1fZIk/SVWniHuzxw5C6NAxFeISZRcAmyknC6i7biYB+tYx+tUzq+gfvVMlKXBN+2IWuS4jUY\nOr6G2RbUl7PkUy4iFohYMHFgjea+CONIA981sSo64m6K8FgbMdRDMyOauxQerjcUklyT6p0V0Dvo\nkrtk4eeVz6H5gIvZ0FUHR4PuoEZ3UEPvqXAlLYSfPvUcWzNFul8uIxMRYS4k2uWqOsGySe90h97p\nDvmLJveeTRHkI/xyiPmtHFKXyGTEwJ4tqkclRsVEpsKdwWXVBfF0h3M3dxHlQ3pv9OFsaBhtgVnV\niY60mXtrDPtMhTgZEScjbtwdYfDwBsN/ZKqaykertI57+Htc9AMt8o4LvobVUME7ndf6efzYTSrd\nJJgS2VWE78QDFY4UVvD6Y/SCRzewMLM+Ztanc39XZXQUA6QOV85P0XmtH7MlMKwQcbzB6Sdu0Nff\nxJlo4Uy0aJ92kVLQf986H/i+C4Qp6H6kxdrDgtSyhpH3Wetk0Tsasqcjezrubh9ZDPi5D36OIC1V\njOFTNbQAzjxziV/76lNY6yZs2pgL6sOYU5oIJ6W2ON31FOK+BnrBw2yB0GMSlZDKepbG3pjG3pgr\nv3UYQsGxs7fpHO3RGf0LjHT+HFuP7UjBx4E+YB3451LKXxdC/AYqufxX/8TPfgr4F0CAGgL/XEr5\nx3/Wk7AnR+XUZ/8h6Yc2qV/q476zN5lvqUJe/ZVB3MEIuW3d1dMB1vUkvUEFP8ncNXAHJOVj6ywv\nFwEYG91icbYfzdUQoVAqx8EQPR3Q/xWHxm5NJUYdX2J+Sz2Orsf4d7JYexWdyWwKtPvruHdzpBcF\nzVM9tU+VYFbU5tnoqn1kZzzkoWN3eOvOLoYHa9ReGcQtx2QmGuwtbdKLTOa+pmb02IChDyyxdG5E\nrXLWNDoTIWZNx5huwaWsImD1BH5xu5j3mkZ7TKM7HJGe0/EKksKpTdZX8+QuWtgNSfnHZllqKCR8\ns5Vk/8gai384RXYuQsSS5N9bxtIjZiolvFm1f5aWJLGklt69slIfIiR2VfkeBs7HrH+/j6bFGNdS\n9LZTsmRC/WtWTEQAQVFFBtgVnd5IQHLOpDsVkJw1mfiva3zqj97gF/7LswD4p9oKJVex0bsCsyXw\nDis2SFgMyF+0qB8Mlb9l27thLNlYTUGQkvj9EUZTuSYjS32utzUQkFxR973IBrccgybROxojr4Zs\nHlXL+O5uHzvr4W8mMZraTsRDkJGIiY6avAGjpWN0Bd5UD+qK8h4/WaO1nn4/mb2i4w+ETExtqu7L\ntIe+ZiGkqh0ZHUE80SPqGhzaq+6n1y9NIO2Yf3z2K/zrr3yC/E3IfWYZU4tYqufptmwSNx38nGKx\nAow+tsjM1RGcTQ1vv6uk4vk2va8N0DgUorkadkWj72rI4tPvj6tD+xfJWy63qgNszRWY/8nv3Ovx\nXaHMTAyOyZGf+gekD1bpvV3CHQlJz6jB2JlSadUigpH7Vtj62gj+gy3yaZdGJ8Hov9eZ/2gCOeki\n5lSRKX24ivdmCb8gFRq/I2nuUQMgTErK70Tof3udzRdGdp5DmIBnP/4af/DNM9hVlTHZub/LcKlB\n/GsD7P3p67yzolBr0UU1IINcrC4aTdUQ7FUTbzBg8kuw8qhBNOWSeT1J80EXa0Y9N3+3q1gHswX6\ndlepbGVIXlMXZ5CR2DWB2ZL0+gTypCrtxNeyRI4k7A8w11TIce62Uixaawog3BuIGdiragfra3mM\nTZOB85KVpwOEJim9bNMrCQXJvb9OeCmPc6KKY6nK+tpciT3Tq9ydGUQEGlrBw76S5OHvv8TrXzmG\nOxwq/PyEh6irQad31YUcORJpS6QZc2DvMjdujaKlA3YNqefT6Dlsbku4jbpBck3Q2hORuaOj9yT+\nU02821kS++u0l7NYWxremA/fNsMtmriTPua6Sf/Jdda3cohFB7MlKD++zMJ6ESEg3lJyfL2nMfxK\nxMqjunJWDsf8vY98jV+48ARCA/2eQ/n+NdYuDO7EFrojETIZsW9ylVs3R9g1vcbaC6MYPWiPxcRO\nTP85nfq+96/bKCnZd2yB5UaO5mpGnb/bQySWDaKESvFKz2l0h+SOhN/oaKQWBO2J7ULpzTJanyrg\n6z4YXUn9UEz+mkb7MaVmDRo2Wk/jzAPXeeONgySXNTJPrbFxqYwY78J8kqHXI5ae0HYiEqUp0Ua6\nfHTvdf7oyjEQkvnPfue5Ht8VE0Vm36Ds/5s/TWxKnHXFnEiuqRfcHo8RkeAffd8f8Sv/8RMqxv4D\nDbrVJCNjW6xWcjgJn7FCnbavwCVr1wYYO7rKwlqRXK5LbSWnagiHXOKt98OB0/cM2ntUaXnyy5KF\nj+js+pLHzP+kfmbo/lWW3xsiLIZojgpg2X/2HpduqgnDzHkMF5s0vzREfb/E3lL1kXDYo1RqU1nO\nIQINZ1UnPqbck9zIYNeguS+kOFrHf7mP7miMXdH4J3/l9/k/fvPTGKdreFfzO+cnyMUM7N6i89IA\n7oBUXpaSJLks8IoQplQ2Z2dEXYyi5JG4ksCuSeqPKvly8ZKOXZesno3pe1endkhdSNbF7bakgO5k\ngFPs4S+lKE1vsXWnRPGyqn3UjqlOgdHUlRkNaB/0QUhKryvi9eaDKjQnd1unW5boniC5Ktk6He20\nYbWuWpWlpxqkHY9GN0Em0WNtqUj6jok7EBMVQxIzFu7YNhAnGWLfc/AKsVrt5GJSyxrp5ZjWqEZ7\nd0hqztjhfzaP+BhbJs6GSl5zhyOV6TLWJV5OkFzRsJ+oUL9Wwqpv90cFBEfbDOTbVF8fJDzURtxN\nERRizOp2hspHG/BGfkeToJU8tIUEYqpD0vFp1FLYszaxJfFLEdkbBr1+idzTIf81BdJpfaxN8ptp\n9E9UaFzo28YEKGNf+61+3JGQ5Ly6SXYn1SRuZALCtkly1iQ22aGxa2aMtugQZCN+/JGX+f3//CSt\nKXUNFK4LqveF6E2dqBDSN9Dkwvf9y+/ticIZHpMHn/kHND7gEno6qVs28bbPwR0J0beXVt1pD71q\nklzR8O5vI2dSJFcFrQdcRv6rydL3vy8qObv/NufX1MastZpRKxQB4kwN8XKBxIc2qF7uR9uluhFS\nCrJfT1F5MFStxEWB1ZREFngFZd5yij2CuTTamGpHhOtJUssapQ+usHxxiMceu8KrLx0hKAcQCvbs\nXmNmqR9tw6Z4UN1da9f6lG9ipMlorsF8tcCDI/O8eOEgj564yetvHSS2YwVnPaYcW/XVLOm7Bu5g\nTGpJ49inr1L1UjQ9h9o3hxQ3dCWHVVEnLRjz0DaUh8KuK5x8YtHA2+8St1V8opFX+aThllrpJBd0\n5P3KdxLsU63Kvrd1KqeVTgKp0tQyEw38QF3IvbaFvbAdZpOU6B7E0x2iUEdWLciGZPJdmhtp9OY2\nuboYQk/Dqur4xYj0UJu049HxLFrVFKKt07e7SvN8H9pBNbnmUi4bW1mo2KQnGzTXMmRuG3glxWbw\nShH2lr5jMvPKEanhFr5v8PDELG8+d5jEmqBxv4duRZjXk7ijIWNTm6xVlSYirDgYLe3/ae/NgyS7\nrjO/331rvtwza9+ruqt637B2YycBEASapEgRQ1KWRwtJDzke2R4tHovy2GH9MXLIY89MzEgOeSR7\nJFFkkJZJUNwBYiGIrbH0vndXdde+Z+W+vMy3XP9xE00EQyBAgJpuMOqLyOjsl5VV9+Z7ed+555zv\n+9hz9xSXvztB/L41Cie68IaaUDGJLOnXFq7X5eb03gb+RgSjqnIsrZTEKgkaQx5G0cBPBMr4uSWu\niUVrxxPUR3xlGl1VOZf4pKmusx0N7t92mR89vU/ldIZUdc24okhjja1N7tp+hXPrvejfyiAk5G4P\nwA4QVYNde+eY/Y7a4tYPNEgmGmRjdeZfU5HzlS+8102KgVq/IHIiiul4RO9ZpzHs0Rj20FMeIhA0\nBtSHkdqWJ7DAfkV5VsY/tMJQd4FKv4GxZKnHisXRx/bSOp2mshFDBILaaEBogHshTWVLwNp0BxJI\nxlySMRdxMc7G+5psn1hSUv89kvIWge8Iqts8kj1V3JxD2N1kV98qu/pW0TwlsDu/liGIhRz/0j7k\nSAMjZ5LtK3F1uZPIZAS9CdWXu6i+3EXY76rkqZBcPDdEYznO8dVBIisGL7y6C6MqiPbUuOuhM5Qr\nDuWKQ/KSwdaPXCHsamEXJce+tYdzF4YoNiL0PjJPJtrAKOskr0DyCmwbWsUqKeGY+k5XhcIRJdwr\nHHXxMucQBjrOgnrUBwK8lkGzMyD5vINZ1KkOqW5Fra6TPG+q1vHnM7j5CG4+gqgZpKYkkQ0I4iHN\nHh9/zSF60sHobiAKJuKZDEbRQAQCEQhoakQXDLx0SM9ontb5FPnj3VTyMbSSge5qjKdziJ1VIpZH\nxPLYKMaJnnLQexoMpYukzhtwbwGjKmhudbnz1kuIAJLTkuS0RKRaBMfT6KfjvLo4TGhAcb+HfdUm\nXIvAgTJ2tsHKsV4CXyPwNeJDZQJHcn6lF82D1bksrT4PJ9YksqIWOb2qqVxSVWBUBXsGlA6mHwsJ\nbEnY3SS2pESDAydEhAJ7Q+VP/Ktx/KuKpCgiAQ9uu4iebKHHfKoTHtKE+FGHhzNnuO+B0xiuIHLG\nIXLGoTngod9SJJmp8/LMKO6JLJUtsHFzqOQTZ2wifTUuvzTKwOFZBg7PIvMW5Stpln84SDDk/mKY\nFG9iE5u4sXFDLBR92QKtdKj6AJaibBTiWOkmVrqJXLUxagJphWTOaARPduLtq2GVJDc/cJGlS90s\nv9pHaUeAHw/x4yFeMiDUodUREpm16BtfJ3Namdg4KwJSHkZJIzUJrce7aD3ehV1UArNTy90qEy6g\n/+4FqsMq7K7MpkheNrCnI8x/eQvzX95CaEnKW0MMM2BixyJ2McSJNkldgu7/2UDTJPE71pVpTVM9\njJkIQSykdiHD4MQaRlWjMplWQqjRQLm1Az88uhu5YSM3bNxDVU6fGUWGgtK40h4w000SkSYzrw2y\n/v1B/IxP6aE6pYfqTC5146xLqts8NEOqvM5gi0hcmTmP3zyPHG6Qei5CKy1ppSUy4RMEGs6STuH2\nllJ6SocEyYD01jzxR1ZU09A9BYySgVEyEKkWlRFB/Z6qSjh7SraturNF4ocxYmMlkh9aJrImMLZU\nMbZUcRYNvH1Vsqc01nJJvKEm1q6S6ohc0whNycuTW7BeTFA/maV+MstY9wbO+9bx8xEuzPcy+ugV\nqgtJut6/hKZLTq8pA2r30SLuo0XEik3mYoDbE1AvR/AyAVpdR+wrI7MtelIVtNMJgmH3mqBQdT5J\nfE5DnE0ogRxPIPSQh0cv0Hn3Mvd/7Jhqj5bQeUbSeUYy98VxBp5BSdBlQiiZlB6qkZiBzFkVSQQR\nyO5fJ+htEvQ28bp8hvs3eGlxjO5vRhBC8uD+8xh1iK2GfOGoqg4hVeWm0aMS5pbho2shQdWkmQ1I\nzIC9ppO6pLZe7mqM7DnJ+leHWf/qMMlJnZ5XVLnbibYQ4Zt+/d4WbogchTPeL7v/4LfRKjr2sJIg\nK8yqsuXAM1DcqmPUofn+Mq3ZOLF5jdpQSJD10IxQdThG2sxTlPJyYk7SerSAoYfUmyYcTVHf1sSK\nerTyEbS4hzkdIT6vxpC/q8Vw/waF7/VTmQiQUR+aOlpdQ0hITGt0//IcS+Uk1WWVAHSWDZzbc3jP\nduIdquDmI8S66tTLERLpOo0LaQae9bB/f5l8IwpAbj1JLNXAP5GmlQmRHS00XRIGgl3Dy1xe7sYr\n2iQvGdd4COVdHlpFR+9rEI+5OF/K0MgKWimBu081hxEKrHUVImcuScqjGsHeKtHn4rgdEF2VlLeC\n3+GpTsG4h8zbvN4HHxuq0KjbiPkIW2+fY6GYJhurEzVbTC52Ez/qgAbG/TkKM+rcmGUNf8QldHWy\nPWWqpzto9XjEJi2y9y+zcKlb8SlCQeeg4ofkFtJ0DhYRQmL9ZZbFD4T0PK9THtUILcnAnYtk7Drn\nf7ANt1Nd3TLuY0Y90k9E8T+ep7CQYveuec7P9RFLuISvpq+paANElwWtFDQGPax1g77blyl9q59W\nEsKbKgRTcVJ7Nyid7eCTD78AwLP/6k4WH1Q2B2ZZY/jQArlvDHH/p1/me988hB+X+FkPZ9oi2Kfy\nDVu7c1x5Sek/hIbqEREhPPKpIzwxt4PKahxr3SC02p87oBcMzKpSWfNjansysHOVfzz8Cv/HqQfx\ncw794+usnuwh6FPZWZFXWhtexic2bRLZkJS3gD/QJHEsQmVbADElXPy6xYFVErhZVRSoDUiClM/c\nP/n993YyM9o9JEc+97tYJWimIXPPCrnXegBITalsOgK0uEf/YxZrNykxUq0FoQ1+PEBEfyzxH9iS\nMNJWw2qoWr2zJinuVD30oa0UsRNXdEY+pvrBLi534685GFWNbXfOcOmVUWILgtJu5Su5r2eJk4/v\nvOabCRCxPJyvpFm9XWWZg48UqLsWsR/G6PjEAlNXenHmTZWj2NnW5iya9O1cY3EhS/ySRaM3RBuo\n0/01h7WbNYIhl0/tOcY3//ZuGr0/rmKEVRM94dHxeIS1OwOsrIt+Ok5jSPVg+NEfc1+iSxrNtMRP\nhkSWdW798Flm/2gHq7+uWoA7kjVq31UkpdqgelNoScyBGsHVOGhw210XOfHkTpAQ7KjhOC3KGzG0\nioHe5tR4JVtJAzohItvCmnKw81AdkhgjVcKrcZxlQfXWBqHbNmeK+qSeixBfDJh/RBCb1qmNBfRv\nXWf5fDdhLCDRU0W+kKE2pObfdUywdpcS1ekdyrOykEUvGmhDqpqw8QEXYyai2K0oq71P/8bj/MkL\nD5LpL1FYSWKtGnjZELu7TnMtqgh9uiQyp66ZzMWQlbslzqJOfaJF6qRFvVfiZQIGxnKsv9ZDq7Nd\nvTHUZxa/ZFEbDuh5UZA7oKINP+OTuGTymc9+jz/9/sNEchqBDYlZ9Z7SuPIBRZfs37JA3Gzy4qlt\nRLtrDP2vcOUTSex2JWbwIUWMrP3pIM2ExvrBgP4tOepNi52dq1z+qx2EH8kThBq6FlLIJRTnBhju\nyVP9Sj+FB1xiMRf3TJqp/+k97uthDw/Jvn/x24hsE+uKg9bkxw5WgWoCSsxA8lcXmV7owlixsIqq\nAcePSaShtDWTW9Vdq3opg9YEaYJVEAQOBDuqpOIu+UKMzicjuFmB2yVp9bzOC9YQMZ/IZIRGn0/2\nlE5+f0Dv2AYr81n0uEeYtzFLGvp2lY2PPJWgmRV89BMv8LUn7kJqkD0La3f5JM+binL8wTz+81kM\nlcCmemcdbdohNBST8cxzE/jDLl0dFYpHu/DGXJV0LJvqYgawQzq7y9SOdBI5uEH1XJbYoiAx77Pw\ncR9jUTUktdLqM7M3BNUtPva6jjfmohsh/R0lFk/0IUZq6BfjBNvblZu86uGQdoBWNhA9TZwTDo0e\n9bnSpRa40NUx8ibaSA2v/aW3r0YIzXbloUd5XdYHfSJdDRLfjZO7RZV1g691kd+jxta1I4ehhZQa\nEapFB6FLfueWp/l3xx5AX7IJeltoG6bihpRVvwYpD23NIjUp0H8pR+XVLppdSp80uigU03Kni6yr\ncXW+ouN2Cep7G3R3lqm6NpqQJL+YZPnRFmHRwlnQae5pELgqCjNXTfxEiIwG6vlAk62D6zR9g/Uj\nfUSXJdVh8NIh0lTnZXzrCrlqjOJSksSUgdshiewqIl/M0DjQwD7nqO7cRIjZdjELIhKzpKHtLzHW\nkWfquVHVXLenTu/XbKq9OuU7G6RTNfKLqkSuV5Q8gVkwsLaVca8mkL1NwoqJaKmINzlWpFxxCBvq\nM8i+ZlC81yV2wqEy4WOUda7+i3e+UBjv5E0/d7RFZMWqjdujnMO9wXZRXCgGaWufy+yJAaIbAmdV\nYn1qhdWz3cQWNMz352i80kmpU4X32UnVuFJ9tIL5dAq3KyTzgxiVkThDdywxe08Xoq5DuqWIQIAM\nBNLV8XbWoWbi5JRTVP5YN9vumGfy3ABGd4PAjWIcVyW1IKIEZr4zu1u5Zt9SxTlQJlaN4SVTuFub\nRAMdqyrxH1aL2Pv65nhmZS97b5nm2MUxrBA6no6wdpONYannufubJKY1ytvUBWnPW/RsqbBQ7iQI\nNeKzUNwbUNwrlQGPBv7NFfw1Nf/QEGCGeEmN+HGH8i6P7qEKcz0daKFGGA8J2lqhrxv7alpI7IRF\nqUMoT1VL5TZYUcKuqRkILUEtjBFry7o5a5Lc7SGZUxrejiZuKwIauOsO8nCVlO1RqjlkP7mKU1dl\n2PypLvx4iNVTR5RN9hyY4f9buBnpqx6UWKoB522qMYPETLva0NDRPUl+b4icz5CoQisjkIBZk5T2\ne0QvREjc09a/LHax/dA0Fxd7WdtIEro6mh1QfkhiaiGiouHtryLmYhBXd2ARKgZtZFanOu4TT7rM\nvzCEswo7f2WSE5dGEa5GbEYn+cA6APMvDtIabWKv6zS6JH4qQF5M44/5mLMR3E6lwG1UlR4rqBuf\n2+/DWoyVx5M0b2uT9/I2q7dreCkfXZMUJ7PsvllFFJOrXYRrDpF1QSUVg7SPvmKj97vItQi33DrJ\n2e9vZ+i4x9b/5QIAF5/cQ/KIw8Anprkw34s1++6+6jdEMhMguqhj1DTivVWMmiCdqZHO1IhMRsg8\nG6FxPo1VFLj76hR2S1bWU9gbGtWxgMJGAn93jcSJCIkTESqjsHpPSH0pjl0KVdNNt2DgrgUWTvdi\nFAxIt7Cj3jWyEqGg4xUDFhyQsH6zRnxO0OrzuLLayYEDV/FqFkZd4KwrglltQKLFPeqTadwOibwa\nY+FUH7XVGLGDOaQvqC/HKdzkU69FqNcivDg/ht4UzBYzWMkmmi/Y2Cfpfg28VEDtI2WMBRvjgRzO\nkoGzZJC+bY3Fvx2j0SOpTaUo3eVCTFGPE2ds9t81SbNiE7+qE7+qE8RDzHWTvhcklTEVLl/9y22I\ngok+7TC0f5m+H+qIpoZ13sE672Ccj/HgZ4+QedFW3pseBBkf+pr4WR+7LDEfymEX1B3ci8P6nT74\nqoQcVE1FyqpqON11mhsOtunTcg0K1SjipZR6+MpOodUwkUmPs6dHWDrdS2TW4v0Hz9I6l0LcWcBe\n0/EOVfAOVShvC/Gigondi3QOFqls94isavg9LWqHK+weXyRz3wpr0x2sTXcQWpLlr4wy0rNB2NSJ\nd9QJayYP3XyG1JNR0pfAK0aIzQtivTVivTWMnWWMhpLqT50zaFxN0uxVvI9CM0q2t0Tqgk5tJGDp\naidLVzuJz4M5ZyO312C4gV7XCGIhRrpFEJGkLqtOWKOuchihAXsPTRHvqaJXdQJLIJoa0TmDyIqu\nZAJEW2XNkKzV4qzV4rTqJocPnaR+c4POoSLWqskffOjvCGomRkVwYm4IEcL8B3SOrw5yfHWQwnaN\n1EeXOH9uGN0MlBr8u8ANsfWI9A/J7Y/+LsW9PlrMQ6xE2HqzyjLWPAs/1Kg8302jLyC6pFMb9bll\n91VOvTiBGK2hn1f76tBsJ+bmofWQCtFEKNh/xyQnXxkniId0HNXJ7w9VrqK7hX1Vhd6trarNOrYo\n2bjVx15RHiOhCdGJIr88dpq/ee5uZa7bdlxHKDf00NOxYi3C2Rgde9ZxH++mmQXhgTvRJHrBVsK1\nQGzWQEio7XYxF2zk1hpeMYJw1BYitCRmVcPt8665ZsdSLpkvxZGfW2dpsgsk2Bs6ehNii5LqkKCx\nrYk1q5K5zaEW0SkLtytkaPcKcxd7EKEgTPrEL1poLahMBNhrOnJ35dp56E1XWC4k8dYdbr9pkqpn\nM/nCKK0eHzyBiAZYcz+2B4ysadSHA6JzOs2sSiYmZgT1fknXiZC1mzW8Dh971cDapyKqylICzdX4\n4D0neWFxjMpKArOgo4+rPhUMibACdDOk5+tqPqu3aZgVlSisD/tE51SCsNkVsHXnEnNHBkFAz61K\nhCj3XB+NAV+pgHcE2HmdZkYJCfmdHtFJCz8q8TIhdo9qk3YrNjQ1el7Q2n00Go2DVUa6Clw9PYDu\nCuwdJcUUjqtoNzidQu6qoJ9I4Paoa8qsCtxx5U8r6jqRNZ3IbRtUzise0t47p5j/y3EGfvMqZ06M\nITWJUdOILgmqhxr85t4jPPZn76dwi4e5rrZeXm8L0/HQLsXRXahv8UieNWlmlSDx+P4FlisJDvQs\nknNVon1qtRPfNdHXLKSmrCNnf+093sJtjw7Krb/6e9QHA+KDZXoSVaZPqG6yjlOC1j8qwBNZSrsC\n4ld16gPKgBihiFCNmMgAABuiSURBVFnRO3NszGbQ2smsIOsj9JDohQh6A6qjIWZZw1mD4i0tktka\nlZKDtm5h51VQ5e2r4lUtzHWT4SearByK4MUVxdrt9ul/ViO3X9DqCHDm1ULR7AiJLmm00pK+25dZ\n2kihX4jRyoSkthaIWh7LF7pJj+epu+qit15KUNmqeAWROYtWOmT7/jmydp0jV8ZIvRghNAVOLmTl\n3nYy0xPISEj6lEl1SCJG6linYrSSkvi8MkPqOgqFj6iLvlWyMfIGQV8T52KEZlYSnSiq5jNdIhs6\nzqJBY9hD2G2iVyjo/75JrUdDPJhHPp0liIB/WwVNCxVj0Vfj0Etq/lZR4PYpKcGhb2vk9qnGrq13\nznLhwiDZoSL5xTQiEMTa24jQUK3Jwg6xr9q4vT5GuoVfNckcNyjcrgxtvveZf80D3/k9dQ2MFMgt\npRAtjQP7rnLi/BjYgVLkMkIGvmtQmNA5/IkjAORacY4+tpfqqE/XSIHcehKhKzWrsKUjqjoyGqBH\nfXb0K5Od1S+O0swoJ3q3A9yhFrFJi8zlgNh/u8CV14bxOz3sRBPtlBKHCfZVMU/ECW8tI44l0QKI\nvW8NvtyJ9eurzC90IKoGMu5jbLT5MaNV9vQtc+K1caQh+Z0HHuf/+tKHGPvgNBeXeghKFtu3L5L7\n8jCBo67n4h4fK+Mip2MEAy7JIw7lbaESzmkJdUOzJJmxApWzykohvS/H+myG9ECZlq8jpeDSo3/4\nHl8otgzIoT/+p+jn4zS3qjvt64Qjt1sxKf1UwD+7+2m+NHU7jYZF6gdRqoerNFdVBtuZM4kvqLms\n3+1hrpkIqVSI/PEG5uUobrdPrLdGbS2G5mrERkvEv6IIXiuPeMi6jlnS0RsCsa9MoxwBCdF0g9aV\nJCKEYNCl/+tqf792S7s8WDeIZF3cDQfh+DgXI4w8NMOlU8PodUHvLSvkn+kDUAlHCX4qRHMFhIrd\nmrkgWbmvnbw0QkaGc8zOdQKqUmDbHtrLKdwuydBTHtOfEGSPGnhxwa6PX2SllmT9h0poRtxWIjid\nQturWrJ7715k9dkBwv0VvIUYMusRTbp0JarknlALsuaD7koa3YJmZ0BmrID4Zgfeh4u0TmQwq9C4\npY5ftFSCGRjZscLisX6MilLc8tIh3WMbbJzt4uDdF3h1doTsdx3WHmox/BW1UMw+KsHTsNcUccos\nC5odoVKHkgIZCYhfMakNhPQ/13YafzjEWjEItigmJoHAWTCQRlviv0cZ+8i8WoxFRxOhSeJHotT7\npSoZSlRkFAqczjrucgxpK78SAH3FJrosqA2G1+T3i7tDjLKmvF5cVU2p31JnpFs5xV2d6+bP7v0b\n/ruvfQY/GmJ0uWiXY9z84AVee2EH1ngZ8VqKen+A0+7urA/5DP5AsPgAaK5Aawkiu4pU8sowSkQD\nRN4kvqVE8LIqQ9f7A5xlHbe7rY8SgfH7VA7GmHLwtjRIvOqoCCOpriFnVYkJGckWQcHGWdS5+Efv\n3KT4hshROJaHl1dqUsaSjbWrRPKuNZJ3rdGzbZ3krg2Q8BffeojMn8fRLsfI3emTijWUxmKqSRCR\neFGBF1UuVsGQy+57pnD2FzCmHIz9RYiENC8nSZ03CBM+zbNpiuMaxXEN6QuMqq6arTQQx1TCMn7R\nor4aU0rUgDEdYflOjeU7NfSmYLx/XbVFH02gJ1ukMzUMFxZLKYyaILF3g8W1tOqJEOBlAoIhl8wp\njc6dOTLnFXN19S7JJw++ihb3EDWDwvf6rzlldX0nQn1VqSz5HR6L95gIO6C4Q+I7cGJhkNnFDtyu\nELcrpHUxSeSmPI2ajb+9zuxSB9E1SdimR8fTdYLTKQZipWsNV6C+GP6OOtFFHVMPCSIC/fE0bo+P\n2ynxqyYDW3LIqIqI5lazhDpot5SwioJDBy5TfK0brQknvr0LZqOs3hsQS7jkP18l//kqZrxFpLNB\ns8/DTwY0RjzClI/e2SR1WcNIeAQWpC5rxH9rgfhvLYAuGb5zgYe3nUerqdxKKyXpv3uB+KzGHVum\nEas2mqek6ZKJBixHKI+H2AVB8sCGUiUTcHDvFMGFBDIWYK8YOLEmTqyJURP4EWXUlJpUJLjUUEmJ\nLVdU9Fjd76LNOFyd7+LqfBdO0uWff/Uz6A2BtCTBqkOz3+PMN3bip33c+QTythJGXaM+7FMf9on3\nVilO6GiZFomJIsGwi/NYmuQZC6OqY88oNbbwhcw1DQ+ts0lzb53dN8/gJSTNXo/5b4xhmD7NHh/r\nioNzeBUvqZzUhC+wiuqc6pNRpBMw9tD0u/qO3hALhVu26T6iqwYTCdWNKLnzneTOd1J/QvVTICBz\nARbvM2h1BiS6quQKCTqO6rSqFkzUMA7nMA7nSHdXkKFg/i/HiX4ppYxwpcBcM0EoaTlhhHiZEHei\niTvRRBiKjWnnwSpCaIGo61S3t4jNGmjdLs6aoNXvYYxUMUaqNMZaXJ7pJfOijVGH6NEotVNZ3A5J\n1G5x8P5zNF7uJHLBwbwjj3lHnnhPFTZsYo+uUHumG/GPcqrqI+H5Pz5E5JyjeAuzgaJZexprt0L3\nyzqtiQZ63mTsmxWyz9sq8gmhP1tCz1mETkjohIx+t6HCzbqhFrdlmy2/cVn1iQzU6YrXaI65HLk6\nhh9VdOjybsWpEbMOjb6Q3PlOvBh0fWJecUVsSfyySfDFbuKXLOKXLOyLDgw0qFdtRj40zYkndyIN\nSbDFpbHDVZyIooF/Kk11Lkl1Lol+Ps6dQ9PYyyZGsgVGiLFmcnB0huqIJHIiiripRHGPz3whzXwh\njV4wmD4+yFPfu4Uw5THwI0nY1eLqVC+V0ZBXZkYZ/39rBPGQIB5Sa1j0vaC0PlpJSb1p0t1ZJtNT\n5uy3d+ClQoycSd8dS9euwf57Fmh2hvSObJD4lSViMwb+81kSs1AfCNE8QddTNn4qxHQ8TEfxUEQg\nkLsrCE8QRpRgUXCojLWmrA+CQENqkO4rk+4rowlJKymxbA/raxkMM6CwE8q7W4jhGs7NG8jRBpH8\njyN961yUj24/rdTFNWXWdN+vvUZrPYpW1/AmGlR+1ENooJTi1wWFfSFYIWYVHtl7lnOX351yzQ2x\n9Yh2D8mB3/4drJJi4LW6VMkIID5jKEs1W13Q0RWNem+o3Kn7JBP3zDD1ozGVWEy2V1FX4CUDJVKr\ngT1eRrycIrDA7Q3IntRofbhItexgmCr0fJ09GNtdoJiPoW+YKrFY0vBSIf/V+57li393P81+j0y3\nSgA6lsfq2W7Vqpv2sZZMWgMe1rKJubNM63KS+K48rRc7aOxtC/K2dETFQO9yCQOBWLWxxyo0KhHu\n23GZ15aGcSyP3EoSvaD2tVJXbmex9mfh9vrEryrBnuhEkWoxSvpli95PqXLa8tdGKR7wEGaolJFm\nLYbvnWPuuWGaW11sxyMIBImYy76uZQCee3k3ZlkpRLkdEt0VStbt7nXu65visfMHlOuWKa91/wlf\n4Hd79D1hUNqiUd/ikT5pUru7Rhhq2OccJj54hTNz/de2BZkteWrHOzErUB8MCaMBesxHm49gbSvz\nmW1H+Oupg3jHMrjjqvlEN0Oiryq/lcoOD72kE6QCjJhHOllnYzoDCZ9IO8nYdE0liz8XIzGj4T9Q\npOmahFJgXYgqunpB456PnOCpl/arv9FbJ1yIEkYkyUs65fEQmfToeNHC+3CRymyK9AVB+R6X2FHn\n2rUr7ytQm0kRHSlTXY3jzBs4h3LUGjba6QQHP3yGF6e3oF9UNHOthXKg6/awYi3ME3Hi967R8pVf\nTPqsRmUUgmiIWVL3caOm6PLx23OE3+qgMsa1rl2vp0Vk5sfUdqdT5akaBYed44tMrXTRmy2zfKKX\nq7//C8Ae3cQmNnHj4oZYKIJ4iJ1XYiyhCXt3zF/Ti2wlJMGeKn1HfESvi1EHNEUb9jIhzcDAWYPO\n21cxagKjJvC6Pay8jr0hCGIh9fkEjQN1xQUIBPn9IZV8jPipCPaxGPaxGHpHk9S+DSpTaURFCdka\nXS6tfo/UJZ2/ePE+wom68obUJLomWc0nsfNKfDc2aZG5JElma3zml56ivhzH3l6i0bQQIfR1lujr\nLJE8YylFrJzNzqEV0pcE3uUkVAyePbUD71xSVXCqBmFEKStFRiqMfiMkNKA51iR13iAxF5KYEQSv\nZBBGSPHOJvPFNPPFNMU9PvHOGlrOJHlK9f/P/3BYcUtcneZKFO1yjMrZDl6eH+Xl+VFicxoiFGQ/\nuKRa3C1JfbyF+VdZzpX61B2608POaZgjNcyRmrqpeYLl94c0+gJES6PRjXJee8mhvrXF2aNjmFcd\nRKiamjQBsSVJdcIjTHkQCsKCpWjQr6b44n98mCBUSmSdnRU6OyuIOYfyDh/7/Tm0qs4nH3iJWEcd\nO+IxlCww/HioXOovJQguJdDnIggBsreJe1+FetUm/qMomWQdLybJbsvTGPR4Zmo7uivQXUH0RcUh\nGtuxTDMD8ZESv3v7U3T+6hzu2TQj3w8o7A+Iv+LwqU8/zac+/TTBPSUGUyVi8xq9yQoiEpC6GuIF\nOtbLCXQXXn58L5bto7VUNFEf8bELqtu4VbNopSRraylavsHIthWqIyqaMLoapG7KkbopR2MwoOfu\nJXLLKcIPFdCbguwZSTDgIuoGrYkGjNcwizreVAJvKsH4lhWmcx3oRsh8Oyn+bvB2NDOHgC8CPajT\n+edSyn8vhMiiFLhHgRngk1LKQtsU6N8Dh4E68JtSyuM/7W9Eu4Zk/59+Hsv28c4nVUtr25k7tS1P\n+XwHctDln+x7gf/7+w+ijdQwTsWROvzjTzzNX3/rfryhJrGzqiei2SGxCoI9v3SR9UacpUIKz9NJ\nPetQ3Cmxcxp2ARIfVd4fAOJ4ksTda5h/0cHKHRp+MmDwCcHY/3CBE1/fQ3VcKQ81+gOMSruk2qWk\n6FodAVpLQ3iqvJY8sKG8PhayYCgXp9fl2ncemOXcxSHlgu2pLVJ82kDzIfrQKuXneq61I3e9rDLl\nOz5/jmPf3kNjICCyrDP6wAyTr47gd3pE5i16XvMojZoEH1BCN7VKBHI2sbESlVyMSKqJdjyBUVf+\nGLF/tsjkxQGsDe1aTwShILTbGgo5DedgjuYLnbTSksBWMoJuj+LcvD7/17eKdkHgdiozpp0PTnJy\negh91SawJVqXi37Fwd6r+iis76Qp3t/AcVpUV+Ik+yp4vo5t+vjPZ6kPhvTtWGPjpV60/crQyHw2\nRWmn6kNxFg1aaUloh5D20FdsxHAN+1ic7b90GYDl/7CVwnad5vYGsmBh53VCQyK2VWlWlNWemTOI\nLgt81cyqhH8P5fECnUbNYv/IAifOjoETIAQ4l22aGUWyqve3yWo6aE2VJzpwz2WOTo1izlsEjiTs\n9DAXLXRXEFuUFB5UW8+gpG4UVs6g65ZV8tUo/mQCEUDXravUv9lD5Z4GfsNQNxWgOhISJn2i6Qb2\nU0mqQ4oQ9roXSeJEBLdDEkQkiQn1ObdeyWIdzFPMxYldtthy+Oo/uFy/D/yelHIXcAj4LSHELuAL\nwNNSygng6fb/AR5BqW9PoAx+/uyt/kDgQLDqkPlSHDsvaGxp0bt7jd7da0RMX7lRFy3+/MkH8LMe\nga9TH2/xyMde5snVHQRjLvYV9WG5HRJrWxlnTfLKmXGmlzoJQ4Fl+TQeqqD1uDRGPWr3VlnJJ2ls\nODQ2HLZ+8Cq1Z7qp9Wj0HgmxVw0WHgk59q09hG3KgX6wgDQlXjrASwdE0i59B5ex8rq6+/c0SV+G\n3Hya6jM9alkNBSISXIsOzp8bpud5DWOoRqirHIzeRFUPhGTwwTlkU6f7JZ3qoKA6KPBDnca2JrEZ\nncCRXDo5zB33nkMvGPyXH3+GeqeB/2Dx2uepGyFWUaPrT6Jke5Tu5uCDc1S2hNR6dSYXutFryq4x\nOakeQVuNKTqiPrvCdIbwtjIiUJGAF5fYOWVyYxcEdkEgfDDLAilg4MAy/o46J09uwZxXe2YMyVCX\nWry84xm84xnl0L4cIfLtFMPfA/+VDJm/jVOpRagNB1h5DU1I2FshHWuQjjVo3F3F2tARUtDsDAlS\nPkiBYQb4nR4f3XaGRk/IqZcmOPXSBEsPKC8WfT5Cx0mN5piL3Fon+1iMnr4imCHOriLaBzYILZW4\nbqUltfMZglMp7p2Y4uTMEHZOx4p6SkFbQ9lB3l2k94ik94jkkbtOEF0WbDk4x6lntyGbGl46JHNe\nIAPlbBbJSfL7JGLeQcw7aHEPe9VAakqysVGK4HX6GDXB0pUuCvsDtCsOsUmL2mBIbTAkTPlEr1hE\nLI/4x1bwejxSr0QQRoixYFPe7pM8sAF9TW7tnefW3nm2PzxJaTbF0Lc06rtdpp7c8ja+6m+OnzmZ\nKYT4JvCn7cf7pJTLQog+4Fkp5XYhxH9sP/9K++cvvf5zb/Y7nd4hOfrZ38XtDpnYP8/0egfyirrT\nR5cFkUfW8P6ui9BUXX/RPQUaTZNmxea27dOceXI7ux+8zPlVxYh0F+PEFjVS96+wONOJmXbRNEns\nqTiNLkFkQ+JHBcb7Nqi2O+b8RIiRdWE6irOrCD/MEMlLtv7Ti5x9bCdWUZK/KVQ+mO3OTBGoLsjx\nvwq58kkLo6Kx5fY5Lp8bJHVBp/vROS5P9qNXNXbdNgPA2bMjxK/oNA9WaZVt0CQ9fUUaLZPKfJLE\nUBnP13Fr1rWu0dCUqjNRQm0kwNrQuOOhs7z6zb2ACmcTkwbVkXbzVMIncdbGvbWGfimG2+szunWV\nmZluhBUgQ4GeN3GWNWp7VAIwlmpQK0cQuuLcjB1YZPa1Qbysz8APNJpJjdwdKsk8ulU1KS3lUxhG\nAMdSRHKSVlpZ/vVszVF6qQdxoITxQorarQ0sW5HvPrL1LN+5upv6ujq/RllHBJDYs0HlTAd6S9Ac\nbSpzo6q6ozqJJs2GSff3bdYON4mdcKj3KZ3Q6haf+JSBl+AaZV7bVUGeSaK76iak7ytRr9roRohx\nMYp+oIQ7naD7VdjYo7KCN91/iaX/fZzib1Zonk2TPLBBzbVozsXRfMHeQ1OcPLMFGQmudUwGgy59\nf2ex+MEQvWiQmoTSfS5ByURLeISeighvGp/l1NGt6twYkvR5jWZGYLgQ3FMiCDSaSzFEtknY1Ol6\nwaSZ/rGLm2hqGN0NZSakS7aPrND4dwOEhmDloMaW2+aZWurCmImQuag+g7WDSmPEXFVRjdhTflcN\nVz9TjqLtGHYT8ArQ84Yv/wpqawIwAMy/4W0L7WM/+bs+J4Q4KoQ46jdqRO/K0bdzjdXHRmiV7Wvm\nuaEJa1Md3PW5o9SGJKkDOcJnszy89QJ6weC1S2PYeTj14sS13933ItT7Q5bXU4rPYAVkvhGj9L4G\njVGP8j0u0dWQ0tUMySlIToGZ15RJzKqgvBHj1v/iNLmbJEfOjlPZ2WLjTg9rQ1d0921VtG1VVULV\nJKu3OkSWdRK7N7i80ENkRafeL1l8cpiO15Th7IXFXi4s9hJZVnL7xsk4etQnfsGi5es4X0spF7JA\nozkfRzdDZSjUHbT9KiSthCQ6r2OVBM+/sJv6kK+8RULFvZBOiHRCenuLSAF+06A55hLvqTJ/uo8P\nHTiNZqryXnRJoz4YksrUSGVq1JYSmPM28dcc7JzGlYv9BBHJ8LcFi4eVb4hoaJhpl4Xj/Swc78df\njNKaSuLuauBHBdUxHxnzWZ3qxJ1w0V9K0eiRJI44NNajNNajfOOJO2g2TRUhtJShke4Kiley6K6g\n83QANQOvZZA4a5M4axMEGmLVpvTxKolXHKojAc6qqn4Nja3TuKmBCKGVDWllQxrFCF4ipOO8T2tr\ng+FMgdjZCGEgcIc86stxkhMFsv/1LF46xEuHzP3JNpY/2aJWiZBQxSP8yQSyo4Xf4XFqbpD0WY3o\nlHWtvyGsmCweVjYS6ctQHgdtNoKzaLClP4fQQ+IXLE5eHcasqvZuo8ulvFXZBox97AqNmoXxSkIZ\nHC9GQArSkw1Vrm5qiKaGtEOsU+2FddXi0kwf9c8XqX+mgAjhyolBkkllPp073CR3uIlR0xA1g9CU\nGHWlO/pu8LYjCiFEHPgR8EdSyseEEEUpZfoNrxeklBkhxHeAP5ZSvtA+/jTw+1LKoz/ld68DNSD3\nLuZyo6KTzXm9l/CLPK+YlLLrnbz5bXFPhRAm8HXgy1LKx9qHV4UQfW/Yeqy1jy8CQ294+2D72JtC\nStklhDj6TsOiGxmb83pv4Rd8XqPv9P1vufVoVzH+H+CClPLfvuGlbwG/0X7+G8A333D814XCIaD0\n0/ITm9jEJm58vJ2I4i7g14AzQoiT7WP/I/DHwN8KIT4LzAKfbL/2PVRpdApVHv30z3XEm9jEJv6z\n4y0XinauQbzJyw/8PT8vgd96B2P583fwnvcCNuf13sLmvP4e3BBcj01sYhM3Nm6IFu5NbGITNzau\n+0IhhHhYCHFJCDElhPjCW7/jxoUQYkYIcUYIcVIIcbR9LCuEeFIIMdn+N3O9x/l2IIT4T0KINSHE\n2Tcc+3vn0k5c/4f2OTwthLj5+o38p+NN5vWHQojF9nk7KYQ4/IbX/qA9r0tCiA9en1G/NYQQQ0KI\nHwohzgshzgkh/nn7+M/nnEkpr9sD0IErwBbAAk4Bu67nmN7lfGaAzp849q+BL7SffwH43673ON/m\nXO4FbgbOvtVcUMnr76NyWYeAV673+H/Gef0h8N//PT+7q31N2sBY+1rVr/cc3mRefcDN7ecJ4HJ7\n/D+Xc3a9I4rbgSkp5VUpZQv4KvDR6zymnzc+Cvx1+/lfAx+7jmN525BSPgfkf+Lwm83lo8AXpcLL\nQLrdW3PD4U3m9Wb4KPBVKWVTSjmNquTd/g82uHcBKeWybJMvpZQV4AKqI/rncs6u90Lxttq930OQ\nwA+EEMeEEJ9rH3uzVvf3It5V2/4Njv+mHYL/pzdsD9+T8/p5Ui1ex/VeKH7RcLeU8mYUg/a3hBD3\nvvFFqWK+X4gy0y/SXFAM563AAWAZ+DfXdzjvHG2qxdeB35ZSlt/42rs5Z9d7ofiZ271vZEgpF9v/\nrgHfQIWpq6+HdD/R6v5exJvN5T19HqWUq1LKQEoZAn/Bj7cX76l5/TSqRfv1d3zOrvdC8RowIYQY\nE0JYwK+gWsDfcxBCxIQQidefAw8BZ3nzVvf3In4h2/Z/Ym/+y6jzBmpevyKEsIUQYyiNlVf/c4/v\n7eAfnGpxA2RrD6MytFeAf3m9x/Mu5rEFlSE/BZx7fS5AB0rYZxJ4Cshe77G+zfl8BRWGe6j962ff\nbC6ozPn/2T6HZ4Bbr/f4f8Z5/U173KfbX6C+N/z8v2zP6xLwyPUe/0+Z192obcVp4GT7cfjndc42\nOzM3sYlNvCWu99ZjE5vYxHsAmwvFJjaxibfE5kKxiU1s4i2xuVBsYhObeEtsLhSb2MQm3hKbC8Um\nNrGJt8TmQrGJTWziLbG5UGxiE5t4S/z/SPu6+MPxLO8AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7feff0b73cc0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.imshow(matbkg)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAFmCAYAAADTZ7UHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvUmvJUl2JvaZj3ce3/wiXsxTRmZlZmXWwKoi2UWKbAoN\nLrSTIOkf9EKCoI2gVW8bEKCdREBAQ4DU2qi7oalJdqvJqiKLVZlZU+QYGfOLeC/eeOfBZ9PCzjn2\noqCqapGR7GDJzyZe+L3X3dzc3MzOd77zHaW1RmmllVZaaaW9yub8u25AaaWVVlpppf0qKxer0kor\nrbTSXnkrF6vSSiuttNJeeSsXq9JKK6200l55Kxer0korrbTSXnkrF6vSSiuttNJeeSsXq9JKK620\n0l55Kxer0korrbTSXnkrF6vSSiuttNJeefP+XTegtNJKK620l29//9t1fTrI/9q//9Gd+E+01n/w\nEpv0N7JysSqttNJK+zW000GO9/5k56/9e3fz3spLbM7f2F6Jxer3v/aPNADMz9dQOU0AAP7zCXTF\nBwDkzQoAIO4FSOsGuWw+XiDuhgCAjI5pR6H5aG7+dhWSdgAASBuuOU+gUD3NAABR10P77sQcr5vv\nZVUX2jPn8qcp0qZP5wL93kHUMZ937i2RNXw6vzkWDjPMN8yx+kEq95dXzOe1ewPMr/cBAME0xWLN\nXFcVkH+rBxEAwBstML/aNe2qKNOmRQHtmL8LT2Fy0TTs3D97CgCYfHkLqtD0G7qPeYGk6VA7FWpH\nZqflpOZ7eejIb6KOi94d0yfzSw3TjkWB8HABADh9uwU3Nt9tPVoCANxZjMFbpp1OptHYi825eube\nkqaDcJxL//sLc7MqM+eZXPCR0/1tfneEeK1Gz4KeqavgLuk3hcb0vOlfb2l+78Ua83XTD+GoQDgu\npH8BIK15SFou/a1QpZ2mR+cEgOF109b681z6enbOXD8Ya2jPHGs+zTC+aF6Z6qn5PfeHaaCS8y77\n5ppaAf7CfMfJNbQ5FerPzHOO1kM4CfXFjofVH88AAIPbpv8r4wLhwNzL+FKIuMdtMdeJWwrBTFNb\nc7iJOc7j0F9oZFVFbXLQ3MvpdxQB0EDapEYVQGyGJ1zzGOHNgN5d85/Fmo/pjvnd2k/Mezo950uf\nzjZcVIamLTymGk8WOPhG09w/vRKVYSFjvnaYIK2bPuVxWhnmmG2aY+GkkHd+tk3j5K8inL5u5oT2\ng1SuFXfMb9K6gmNec0RdhfYT85/ZpnkmzWc5Jjt0/lGB1kMzlqcXq3Sfjjzf+YaDzkNzf4sVmnv2\nMowvmP7tPEwxPW/O1dg31xnc8NH/2PRP4TsYXTGfBxPuG8h74M8LBCPz3X/9F/81PYiXYxpAgeJX\nfu/vir0Si1VppZVWWmkv2zRyXS5WL9UK3+xYqs8jZOTNJDf6qO4bL2l23uyicl+h+czs8sZXanBp\nR1o9Nlu24PkEyWZLzpvVzU5qucI7No2sZv6u70UY3jbfrZ6YHZH2FLw57bwPx1iurZnfDczOpzJJ\nUKdzJ6tV2bE3do3ncfJmHbUjMzjGFwM0npvznt4y9xQe12T3CPhwybvhnXURKLgLc63ZjS6q/+I9\nAED8D75i/m25qAxN+7QL8KZpfnuDPnfEo9Ou2aQF0xRJy3ignfsxgoOp6Zuu8WCmF6oIJ+ZE1dMc\ny21zh+zhzrZCzNdNP3U+X0rfJl3jjcQXqwim5GUkBfwj4xnkvvlNVvWlLXHbgRfRPZPavz/XCGnH\nOb3aRO6b7+aB+bdzb4Fo1bTfmxcoTFdi1qfnuK9RPTHXbzxdIu6b7052zJjxYo20bs7V2Esx3zQn\naNP9nb5RRfXY/D5pOOJltB6bY637U0Tk7eVVB6s/Mx5RQrt4J9FYrNHOeWonBr7P6nEq43t8yb5u\nWcWcM21APMtz//QBhn/vEvWbOeYeFTh+y9xLZaDhzc1505r5PBwXiLrkBU6B0ZWAjpvvLXu2z9WZ\neYvfnfrzBJMd02d5CKzcMePr+G3yFp4VGF4z52w9zVD9iRnTu79n+nHrL3IU5HnWTgok5AVVRvQe\nXKuLR9XYN+cORylmW+acg5uh3GtAbW7fjxB1zTgcX3al3ZWB+Xy+Gch7BscgHmfvKRznmG2Z9vfu\nplAZeTEz876Ornro3DP3sVhzcfxlcy1vcdbzMX/3P04RkZfMXq2/cMWz144Zw4BFC8KRxmKdUKEA\naO2a+2avvTLMZcw4OZC2AnwRZjyrX5+qGq/EYuUfjOXvIuwBAMKDGUa3OwCAzifmcxWlmN00n1cG\nOZyc4I998/nB765h5adm4XCSDG5kBmRt35x7sVXFbIMgo1OFzl0zscb9Ch2LMT9noAAnbskk1/zu\nEwDA+HeuyYtT31uegeQIBhxrODRglbaTQ/8TgqRaAcJJLteKe2aSiDumTV6kMbluJnl/VuDoH34D\nALDysyW1qYA3N/e0XKmi9ZReAlqAW7uxTIwCZ22FAvlNLoQIu+Ylar33DADQ8NcwukKT4chCTkmL\nYaQC9QNzzaN3a1h/3/Qvv5iqsJBSMAOOvmFg7urAwmQM06z8aAJN7ZtdMJP1ctXB2ge02L9Vw+qP\nzQYlWqNF51IVit63uOWi8Zw2Ew9ogWm5qD8z/XP6Om8lgPX/2zz049/aEphK5Rr15+b+luvm/LXj\nAtPzpv+3//QU80ttAHYBOfhGG727ZmGbrDvwZw7dv7mOdhRqR5k8B2/xYkB7cDNE+7G5phsBVdps\n8O8L30Xt2Bw7+f3LiDvmunW6z6TpoveZ+f30nCft4sl0ueKgfkjQY88T+IvHob+0k3gMYHTV3Gv1\niODimgufJt607sjGovcxb4oUup8n8l1eWM7/a9Om59/0ce7fmA3kctVH5555lknHTMBODtQPzLkY\ntg5GDgKa4CsDLfAec5NPX28AdKh2oKHpeP3Q3FzhKUQ9hlld5CFtcMwjhT+30Oiy7yKY0cI+4ffF\nRXXPjLMiaGAemgu0H5n7SNoekgZvKh2Blvl973w2w/x8nc7lYLFO8CDBjdWBA29mrhWt+PJ+8DhR\nhUbjme3Twn+p6N+vrb0Si1VppZVWWmkv38qY1Uu2dN3sZrOmj8qegani9QYaTyM6brZMbuDBn5od\ni7vM5PfLy+SNjTXcOcGEtzro3DkFAETnzfn9WY7uyPzOfz5Cumk8t+UqwTjjRHak3ukMbYKqhr9/\nHQDQfLyEJshherGGyonZXbJn2J5EyBumrfXP58hWiKRwbO7p8Ntr6N8xO8+86iFu006T4COVa+Qt\nhi49tGin5qTmntOGh5Q8HicFUtrlehTkH10OxZtjCLLwFMaXzf21H2WyS00uGYhTJQVW//f75prv\nXJQdbfWAIL+sQLRlvCAoYErwGsNQvU8XGF03nydNR34fjM31455nCQTXmwLvMZxbPUnlnhr7OWY7\nxrOtHZqdp7dwBG5dnHcQzM3v+VjcclCQlxZMteyyJ28baDScFsho51y4CtXDWPqX+26NvMXBW11p\nf+U0pzYBlcdDAMDasCakmvEl868bA439VM7P8E9A0GratDBV536E598w99d4xrt1CGkn7ih075t+\ncwm6i7qujBOVA9275lpx1xyrDCHQaf0wxegKw08MvSrxvP2ZhhuZ4/Mt82/1VGF6jj2LHOHInJ9h\nOn+hMSIYcHxdo7b3Ymrm1ndjnL5GZIfHKRZbBL8u7f2xN8bzppMBBZGWwkmOyumLbQomkLGvXUu8\ncGPzTObrIYKZJSgwwan7KT3H2w1UTpmU4mNCpJjVO+acvY+XMqaTugOPhnrSNt8rPAWXoMv5moMG\neYbsoe7/Vgvr7xMp40KI7ueEnFAII6s4iPiZFZC28jzjxhoNItiMrgVCZnnZpqGR/xoV130lFiv/\n0Ez2ea2P46+Zhad+kEFRR3sj8zTjtSqiPrGxThTcJTHbiAFVPSpQEIOw8IDBO4baxNBI8+Ec7pzc\n79UW/EPDfGt4ZjGLVisysWarTQxeMxNLSPh7VvcQUFtUESI8MFBCcp5YezVX7qkIXJy8YV7c/sfm\neP/OAnmVsepCYm0M7Y1u1GTiy0MHEU1I9fvmxZjdrgu8AQDdj0y/Ta8Z6HCxpbBCLyQvSmndERaS\ndiDnZIZVMC1QhOfN+Tc9dO7RS36tTv2cYUl9jgKoH5j+49jX4lJHXuL2vblM5gwTQgMLekmrg1xi\nKfMNMwFWhjlm2+bzPFDSVmaIBaMEoIXJW2gMrxOMS/GLwlcCUzLrE7CTYe0oQdQ319IKmF40z4Qn\nUC/SAlmFk0IgU2btFZ7C5EsG2swqym4GKP4SDBOcvm7GSREo6ffaoenH2nNXoLdmEKJNzDI+j7/Q\nWKzSs5jYZ8vXZ9aY+Y1CQYsx9/l8w0WFINfKswnq9S59mc4ztSy8s9eoH9Dv112ExODzpxlOiGXH\n0GJlkCAPzAZs67sFsiqdniD4xYYv0Oyy78nEzGw+JwOmF01j2vfMZ05uN1qVIQSGbD7lmJNlAFaG\nGYbXzbkmF0zbmrta+u/wKz62vmcmfo79qNwuDL3PYsw3zfHpOXqfvBCnr5m/a4cavU/N+zXfInZx\nxUFG+7P6UYG4Se+M2Xui8yDD7Lz5blpXWPbNmG8+M/1QuBbyi7uuLLZxl2DE+7ls+uoHuWyQvwgr\nY1allVZaaaW90qYB5OVi9XJtfnMVgNlFN/YoGHqyhDOjnJ0LBq5TuUbzsdkF5VUPcY9ybojBFx4v\nEG0YjyCYFQJpqJQgmVaA0U2zPWrfX+DkGwYKaz021yl8hYx2QU6mJchdEKSiXYVo3Wwt/XmO2XWC\nL8/sdpsPjMex3K6jtUuQDkGWSmvMt4iN9vkcLgWZi5A9C5P/BRgviIkJedtcM5hrVAl6jHoe1P6J\n6UDyrFZ/kgkMxkQJaMNOAky+FzPDGMZzEwVFbkhzL0Veod3nPnlQeyNMz62b78YaR2+bHWHrCcFN\noUKTcq7G1+poPDV9OTsX0j1bZlxad9B8aLzR6bZ5DsFUofuZ2RnPt0O07hJk+k3Tt4XnCUsrHGu0\nH1C7yMN9/s2WwFxOZmHAGe2i23/+DLixDQA4frsGRfyH+pElQvCOWxUQMoQ/ZTisJnl8nQepQHoS\ngNeBwEituxFGl819D27w/Ws4pslwUy2e25IIAklbyTGVQ2Bu9lzGGyFaT+ietRYvgX+zWNdwUnPP\ni4tt8eLO/cuB6Z9v92QcpnVHxip7nmlTofXYXHN4I5Sxwp7dfCMUBiYi6TLMKWcpHGqkxGsJJ7l4\ndC7ds5NpqMwcTBvEGjwuMN8w/bdMXSG9THYIbrzkSTuCYYzGnnknuO3agVync6+QvpoSq3G5otB8\nZo7NzgUCiTJBYtmzUGb7YYLxFYKeyRuq78dIOgTzLgssVky7mk/tfMDn9GdamIn+nFl/HsJTyqPr\n19H9xBC50o5pH7MnzXcdxO2SYPFvY6/EYlVaaaWVVtrLtxIGfMmWUwB8vl2RY24cSuP8idmmqTTH\ngiijjU9OgXPG42KFgcVOU5QPnFRjdNlSsgHa5RI+vNisoHrCMS+iCddDtO+bIK27SBBtmt0/U0sn\nF3w0nxLpIddQGdF7Fe3if3KIeMfE3Gr3hxi8a2IdU2pz7TCX+MFiu4bGQxMzG98yGf71wxwh5f/k\nNc/mYhAF30003AVh4ZcCQ4iADbC7scZijXaNilQ5QoUKUbfrj6cA7UInt4zn0rw3gSICR7LWQEGe\nA3so8fkuqqc29+bcnxk3gvOYsqqlKWsF2ZFKbtPzDAnFkro/2Ee2YZ5ZTjGL6XkXLW7TBQdRx3iJ\n7UeUOzdKpU1aKSzXKCZJFPjGfo45pSPUn+eSc9V6Yto8+t0rEh/pfxJjQb/n3bU/16gdc3wmxfGX\nKC6yR66HY3fUixVPvAyOg07brsQR5xuB/K2IYDE750pbVK4xusr5SzbtoPPA3OvwaoCT183uu/3Y\nXCCYFRi8RgSjWKOgl4LPuf6BxuAWq2o4qFEs6vTdrtzflGKCtZMCfmHjlwDQuZ8hmBBBoB7K+Gk/\nsu/MlOI/tYNU1Bg6D037vEWBwU1WK7HKEUymcGNg9WeUbkH5Srmv4FM/5YHCwVfN/a18SN8rXInV\npa1A4nOcjuGmGjEhIMG8wPC6eWaa+sZbaMQt8iB9G19kpYmsruCb1xzDG4GQOaDZQ6uI55ZuefDI\no+S0gdmmi85D02dOanM3OWbq5MDiXI36WeHoXfN+s4d7lqruJhqN/S+GsaeBkmDxso0fXuU0hUMJ\nfLnvCAy4vNSV74UnZjLX1UAIDQwDOEmB1q6BkfJ6gOoRueqPj8yFAh8ZMQ/dSYR01Swis/MGBvBi\nDRBUMLrdRucTs5icvml+Ux0UqO2SRFMzRF4x3ceJpqe/sSGQ13RnFdVjMzg5kTfuuGjfMzBYXvGg\nEvN5gyC3+aaPmCC/zmcz9J6Za6W9GvVPgqzOZIVCoCrO09KuDaBzcmY4LVA5JoLG5RYqx6ZPw6G5\n9v7vdCUp9qx0kD9jUokj8MnqTzLMts3EEswpEXc/A2/e6gcFliumLzh3yJ9kcCPz3aPf2cbqDw08\ntfknBI1stTG8aiab2qGWcy2IrVf4ShbjcJhhTjkt/MxVAVlA8lChdZ/yZwhajTq+TEbT8wFyyr+s\nndhE4IiSPZ3MQ/9jYpNepmC9hhB93ESLXNXoKl1UWcgsWOTSh0ya8Za+5HG5kWX58TipDLWwDVth\nX+6LCQZxyxHST+tRIos0P/OsqrD2YzN+liueJLjPzlnSChMwCg8YXTO/5wUkDxViyr2Luo7kdDGp\npvkshqZJfrHuo/345/PElE2QVfa5MwMz7ticJ4YeZ9uOJNJqF1i9Q9fsWbmklBL6o44j0C2PjbMM\nu7OQYOsxMyU9WYxVfgayJaueFJhv8mYFOH7L3H/lxFygdzfC0VtErhprgcQHt8zYX72zlPeg88kE\n8y9ROID22vWjHAtamBsHGZyMCUJ0IwpI60RE0lpyxr4I+/UhrpclQkorrbTSSvs7YK+EZ8WBSa2s\nGgQAzK8ZSI1hjo33rHisf3cPfpeIB8cUtL/ewXLLQHdZ3RFlg/iaybmZXAix8n9+DgCI3roo8GKD\nREHziofFhtkxOakWUVveBTfvTZC1zPZpfLWGDnlJ7UesJmCDuY1nicCbvKMqfIW0aXbsUd+D3zCQ\nGO+CG88ykYmJ1qvILhLk+dhcZ7Fdkx2jdhVikjyKiBLb2IdAfixoGpwsML1qoLXZtgvtmPurkofa\nuWdJGV5UCIya07/ByKYQzLYDOT9T4N2lI0oiy74nUE1jl8gx66EIiHY/T3DyLuXEsTSRBrp3zXM6\n/nJNPBvOVwKsl+ctc4HsakekKrFTQe2AIKO6wvi66TNJV3hmpXe8WFvIjuAuJ7c7fsDm2lRGFnri\nnBnTLvp8SJ5ZU1loMNWS/zXfIOjsOJM2pzXHyEjAplsMv+zByQxcnFYdkeDie16u2HtJOp54Ge17\nxjMdvtbE+CKJJx/lcl1+plnFEhuauynqtKPnnb8qrDJEMLHSUQw3qkKLZ5Y01RkoznyeB+a8ADC+\n7At5gPukcz8R6LVKfaY9R1QtptuewMSS4zcoBLqtH2Wm32AlxJxUS25a+1ECRfgfp7UA1tt1c+sZ\nFb55d6OOg859VrdZIg8oHzJiQVxfCB5QFnJmD3J6PhQPenyzJZBl7dAqZDBkuOx78n5mIZFjMsCn\nPLS06mC58sUQLDR0yQZ82Va7a1htyfmu5NcAFuPe+IGZzIKnp8ivGuag3uwjIsgpaVP85c8+Q/L2\nFQBmsuaFL6I8iM79JZRnzq8KIKcXlxlWlUF+JplRYb5jJj5+8eL1OjyC3rqfzQTjTkk2qXXnGEWH\noMWdmkBtc0qw7L53iLxHLLgzuDVPfMEokfhN2nBRowRWzg1zowpSyvnwlgXijlWbBwzziuEhN6EX\nbOpZuZfDQu4vbdAL3nNFFb3wlOT8+GZ9RP1RhAX1g7fUci3+119kmNMCXztMZWE7fcNAl727EQrW\nBux6MiFlIpGjsOyZTUf1pEBWtQr53A6epKY7FZkkEkrAnG8r9D6l2GPuCJtucoFZlVbaJ60qaTcv\nRklTYYUStdOmj5gm1pDOE3VciVkUrs1v4ja5sVXlX/Y9uX/OA9KOknut7ycYXaWcH1KPX7mTCzPT\nfN/8y0ryWU3B5fzsipJn3iBtu7RmFlzAMAwTYpbVDlmvUSOljUdWd22uzz3KE5tk0qbOvQTjS+Zv\nVh2P+sELVQGYRckLSO4rW9UgVJhcYEklgv48u8BJwvVQy7u9cmeB0bXqC/fuZJD7WGz4qJyac3Hs\nKe44IucVdz0ZKwLBb7uSz1ffnSNaI7YfwfJxy0ocHfxGU2BwWeCrDmbnzN8bP7R5WixxtVh3JN9s\n5cNMmJm80XGTQpi81ZMM4ZhgbIpHH36thvqHtKmMcyRNG6t/qaYlRP1rYa/EYlVaaaWVVtrLNSNk\n++tjr8RiNfyKyePp/vgEyy8Z1Yn2RwM4GTHHCE5bXl9D9b7xwo5+e1MkhXhHtvz6ddmx9X4yQEZk\nBbb5Voi6NpDgctWXnCWWxglPI1FuyAOFzj2zpS0os71wlaiNTy54kl/BO7vFN9dl5+0tNbyZ2UnV\nDsz1o4s9hEdEsKhWpeYU1zZS2rL9AEjgGznV2Vn30CY1C/9wAueK6SveuRa+Qu2IpV8oQL1WFSFX\nAFbiiWCm1sOlCMX6+0PErS0AQHVAdb82ame8BCAhL41FQZOWj6Rh1aj9GYm6EoyTNH2EJHG1WPcl\np218yfRp82kinmfr4QKTy8Yj45yX6XkrOxWOcglGixrBnj7jheXiWbKaQNy2SuqNvQynr5s+XX+P\niCYjVwg2aV0hYzVzw9NBMLOq7dXTwpIpxixO7AnM2ft4joOvm/FTJ2hydNkTGDCvWhYZe+hZ00fc\nJoSgqSRni/s8GGvxvNmbA4DdPzRw6spHmRAIop4jXoI/twQShpyitoM6Mc8mOyzX5MAlzzHqe9JX\nXswwloPFphkg5/4sxXTHykwBBrJjhYbGfiEEGLbJRV/yzJih5y2tNzq4XbX12giidTLLwAymuZAt\n2Kv0FxrjS4wwaIFJ+Z5XPopEAmqxXZMwA0OUcVvBpfsrPAj0GvXt+Rt7FvpmGaiK4Qah9SSHP2PZ\ntxyDW1ZuCgBOXwvk+UPZ2nIJqad0P8/O3JOHlZ/O8MWYQg71q7/2d8RKgkVppZVWWmmvvL0SnhUL\nuS4ud2V3NHinL7tr+d4gwugd44UFcy1kAMmJqCnJhp9f7ggNmEUt84orBA0owI1I04xiX37dF+rz\n6GZD8r5YDcLJNNKm6bLu54mIfTIWHnVd2cU2Pj7B6B2jkMH3pF1guWa8RW+pEZB3Mr5qdvbtRxHc\nOe24G75QdVmjsDLSmFw2fydfqmH9vQn1jDk2uuxj5UMuR8HxLCva2txNUHtm7u/kLUO6GF+qyY62\nWXWFks4eWOU0Q04BZje1fV7bM3Ge+U5d4gdOqhFTnhXXfYpWfCxJmy+YF5hcIGUH2niOrgZoUe5a\ntFqRcgvs7TZ3MwlWZxVH2seVfOuHKZyUy4V4SJr8XasQwaSE2baH/kdMBqAaWZGWHXdWVVIvqrZn\nXJykG6LwzD3FTXt9zvdKmkpywp5/s47epxkdJw90pOVeikBheo5o4tQnjadaxrlWnpQQ4ZhVccab\nmm07Qq9m6vjosieVcN1DW4mYxYubT3PMtvhZFkKQ4Thm4QFRnzyHz7UI5Z4VXV39KcVkWu4LxA3A\njHkRcm04MpaYtJHVHPHimLTgRVrqkXG+FgAMblAeVE3JO+0kjsRPOR4YjDP0PrMahKwtyGNqei6U\nFA5T9RcvfB6OtZBO6s8LeESQaOyZz5c9x3prS43WY/L4aBxVDyIR7NUdT9Q6mJzSvZciPI2pT3xU\nKXWDU1ycpMCM/m7uZVD5F5dnVZQxq5drzJbTDoSBVz3OUOE8oz7puWgtZABvlkptpOCByaOavruN\n2TYzbjS6PzP5K1yjSOUa4ZBq1jRdSYadXOJ6MxBIrPPZDNPLxCyjRe/wqxWs3GHx2RT994yQLNfY\ncnLApwVo/9/fQGPPlnMHzKKpHZr4Wg76PzK/r5rSUsi6Vbl/N8oFnuFgcDDKUM04qVMhbZsJl5M+\nK6MCyzVKJGIh1Gku0KQbZZhRufrWU5q0L/oywc3OBRKA50krrzrCvKoOcjRJTollq8JxIYmiaz9J\noJX5m6WwzubEVE8SJHUWSrUwH1seKIGM2BZrHpbrBMMdaeQ+5ZTRPiXueBLgrh7FmG4bGJGTv4Ox\nlmuNL/oYXybm3HOb88Kis+PLgdREGtL9RT3FKCyqR1oWPpaVOn67iqmwOQshdrQJ7jv8ig+PNw6u\nhfK4uKOTAsNrrNSusVihRZYWXSeHLDa1w0IgSSZ9BLNCmH1uatmgDPc5qRaC0GLDquJznlNaV/Cn\nVhRXSq/TmHdjK96rNGQDxQQML7ZJsWeLT/Kx8UUXNaqdZfPxYmGlhqcpRpRn19iz5KYFPXN/ajeD\nJwThhmNX3imlLVnHWzJ5Jpd3pnpSSJ9ziEBpS6bwFhqnt6nGG+WQwbHjJwtt3bvpJTMfLDcqiNpc\n8NEugrzpGdzwUTk142B2XmH9fTOoWRB7vukLDKoyjXi1hi/Kfp1gwFdisSqttNJKK+3lmhGyLRer\nl2qVzw0DYXF7U3KfBrdq0B5nhtPO/ghSFiRtBUId19cMNDjd8tD93Ox4taswv0xVXzn36ckCx182\n0if+XKOgch3r75vfzDcCBFNzLBzENshNpIiVnzki/TO5XIObEDx3amswsGfXemKVGzjPRBW+QIq5\nH+DkK0aZg725lb88xNFvmXvpPIyFYMH5Ysv1iuQ3VYa5iKE298zOc7LjgQtks5JB0nKteOp6RTwD\nFmStnRRnAvQK7YdMWiGCRN3BynvGQz19pyu/F1LFXAkMlDR9nL5OChuH5O0M8zPlLEKRbhIJoOMc\ntcfGg16eb6G5x/ANwWCeVRbwlrbq8OpPiShw0ZPA9/BGVXJhGMZxEy1CxO1HqcBbfM+1k0wEVN0I\nqA9ZmscjZbeVAAAgAElEQVQG8DsPzDH2cADg5E3z7OsHhXh53rIQGPjkS5wuUYiX5MY2/4frZWlP\noX5oji1XHIEhq8cW2uJzxk1HFDSO3yQP7oF+oTowew+S+5Ur6b8iOEOpp4HixlpIFdq1HgfDeeGk\nEGkqN1FC2WabbbhCAMmqri2NQTCyk1q6f1LnFAZfjh1+tSrl7N2Zhe5qNH5aTyJMzzFka655+pon\nZU20AylRwtBr62GEvd+mEjdHjtxTnfKgkoYjnnUwzZFVrIKHuWaKqMepHUqo7/yehsMUs03jDbqp\nrfrLeV6VkRbSTX1fC6Wdx0nvoylGN4znnlccgea/CCt0uVi9VIuvmgk6aXuSjOqmQO29xwCAxVcv\nAjDJdl7E5baByhHhwlTHpn6UW2bZk0g0zVjuaL5TR/MZa5rlMiFPz1H8YC+RATm9UJV6U8gsm451\n1LJKgNpzqrPVZWkem4eUNBxka7YOEwC4UYHFOuVc/eVTwDX3uv+Hpp5UfL6LxgHHL5RAMdEqvRix\nhaEK37IVuQR8+2GCKU28vBh5i0KSYhv7GZImTyI26ZUhj40fzKGpTQyRxp06Dn/TLKq9T2Oc3jZt\n4fLzg9s1+AvK7TlIJb4Rnpi2HX2lKTkvWcXWq+Lk3EXfhRu1qE0Fxhfp+T3l2I9rlcI9K+czuGG/\nx7GO5q6tEVYQgzTquli0bPFCLlHO97zse8KWXPZsMudsx/Tzlf9lhNO3SPVfW5aj5Pw0HYEOvcjq\nNHLZ+NxXCAhmy6pW+oiLJ+ZnamC5sYUshzesBBBDTtqFxAwDDlcCUnvJmQI5xZJ4jgoHGU5vmwZu\n/CDBjFT/WS9ztunKwmTaYP6NKFHVTRTaD81kvFj34bCCep0ZoFryxNKmkjplvNiGIy0bm+ZTy1Qd\nU4n71q5VYK9xPC7XiDv0buah1dKjhfb8Hw+lusLkgi8bD4bZ0qaPYEw35JgFl/saMEUevUfm76jn\nofPA3PQJ6UJOz/tYfX9k7v9qS66/WKG+HzvofxLRd0OJX44pnLDxXowW5wO2XImJ8QYo+koTlQHD\nrBrD2y2U9qvtlVisSiuttNJKe7lWwoBfgHENpXCQImvYekp626hVsBeAQsOdsMsdIOkSs4w8kHCY\nIfcpD2SeIpiRzMue8QKGr7eEtBB8+gzj37oEwFYqdeNCqoXWDlPZUS0vmp11MIwxoxLq4TA7024S\n3F2vCAGk9myOyTUDOXoRqwkUCCh/Z/7GloWnKBif1V0EQ7q/tVAgL4af2CsEjGRMWmMoihlcvhGW\nBeCPSfA3cKBy85gHt3z0P6LaSPR5HlalfdFqRYLEtefGM6qe5PCWjjyn7j3zu6THlX4LxLTzH9wM\npQT49C1z72vvT0WBurGbSO6ZKswxL3ZEtFU7DtZ/YLbER18zEC60JQMYAVCCQVkCqOGg9YTa31FY\nrprnF5kUNHTvFsJ2q+/rMx4VPbtJIZBj60kqnnHrvmnTwTe7sjN3Fhb+nG2RIOydRBh74ys+QoLE\nLKlBof2AoMlUWzYheVbzbSWQV+4r8Zw4X+osgcLJgNFVYkHuafk8D20eEldoZoXvpOPBI4Xxky8F\nQrwQL2Fi2xS3HMkpOven5jnsf7uNtE4K/jWrls45jsNrvsB4vU8TgVm5ukDcVsKW49y/+YYrny97\nSpiN/G/9DJGk8JV4rkx0Ov5KR/LhKqeFjP9TUqcPR1pyp1bfH4sX9vT3zPVXPyjOKKgA3pLafCZH\n8oDQhMZ+LvAgs17nG77AqXFbobVrxnxz1xwbXwxQo4oOtUM75mfb5p3o3o1lzhrerNjx/ZJNQyH/\nNcpOeiUWq9JKK6200l6+lTGrl2zjSzZ3qfGde+bgag/ppsFyK3vGHZnc6qDy4TEAwDlXR9wxv+MM\n9Ty0QqDLjRqCMQV7V2xU2COCxskfXJH4VOsRVardCiXwO7loaxMtqYTEyjQV0crK7gijt43nV6WC\nvUb81vydNwLZxVcPzPkHt+ro3jXb3P3frEvtocrItKlxf4ysXZFz1Z6YwER4SgHeQkssSk1sfGy6\nTXGIcSECqeOrxnPpfjSBQ4GMtR9HsvNerpMg7yUXnQemzeEwxf5vmuNJgyouzwvR48uqjsRsRCPv\nzLvQ/TyWEitcvTlthdDKHJtcqiKvmHthD7B6EElbvUgjXiPqOe28O58vJSZ3/KaLre9R6kHDUvSj\nDuQ37IW3KKbjLbXknsUtVwL/HKeKOq5QqtO6K/EXHhuN57l4uCqHeDH9T1O5/6hv44Ccv8M5RVnd\nUr/TuoJP9Oo6xSbrRxAh17gD1J7TWLnN/eBIfGm+7qL55MUxk9YceRazHYXmI3Ot8SUaE8MC7YeW\nps8xNdbeqx9m4lkmLRs/G75BccTMEgO8ua2ntSAPCtqSWaKed0ZHkD0/o6wBQJQ8ULhY/Zjeuc1A\nhF65Lpm/0FJeB8p6m4x0OJnGErae1XLV3GvvLnkwW754gEdfa8sYbTzmsZtLdV43BsYXzb2sfGTG\n1mQnEBRj0XcRcsyRvLHG8xTD61TDzYOkG1QkHmpLvIQDjTnVs+uTBuVyo4JgYs7f3E1x/BbTokr7\nZfZKLFbr3yO22btdBCdGDimvB/BJTT1ZM8yZtOZg8eULAIDK4VKIFbwAZVVXFJIrJ5GwBQevExy3\ntMyctKGERcdyTm6iEQ45qdZF9alZJCvrZrClrUBgsoPfWZMJlaEV11VwWQC1F6DxxAzOpG3aGU4K\nSSZc/VkqLxFLCA3e6opYppNpTK8zG5LlghLUd03Ox+xSQwrQcbKiGxVIiUwgbMB+RV788UW7GPME\n0/80lck66vvof0x5bLTYJG0Py75NMGbIgsklScuX/Jqk4wm8xG2qDAq5JhSEIOLTyzrfrspilgfA\nhOR8mJQwvlIVmGrlwxyLDUqszO0Cwh3pZFo2E5xUa+7b/MZbalkkObep8zDFgMgM0I5Afpx7tVj3\nZdMStx0rlkq5Vcs1hZ1/aVbG4a2mMPcqJOWldIDBa5QA+7mFn8IhC+6GkjSuCoWjd0iuiYRoq8eJ\nMEybe5lZXHEmZ6iwCbrVAysNxRuMuK1E0NlbaoHPuvfs2OeJ3Y2NMC5glejrB4XIJIVjK57c3CU4\n+PVQcrfy0C52CSV3dz9P5fdM9PEXGtPzZgOS+2fyjwhadTIIG6/1aIHptumTpMNEjUIIIPUDqxDP\ni1nzaSKq/Y29HIPXiGhFBA7tKtmMpE0lZAeeB/LQEpQaB1b1nZmslb0pVudm05VXXCFo8Tuh8gLz\nc+bzrO4JG3FJDMLChQg2z9dduf7LtjJmVVpppZVW2t8BU8h1GbN6qZau0HZOA9NrBn5Y9h1Am+Oc\nLa8KLQoBq6dA+ENTm2r8D24DAFr3Z3CmBC9c74kyRv8D47ktd5qyC1z/wVjUHJjuHk5yTHeoxPb3\n9qWqMJcY0Y4VnW18PkdKHp9/aHbW2aWuwGx5oBCtmZ0UQ09uohEOLEnCWxDNOiBZp1GKgqjjs+0A\nPVLgmF0x7fAmMY6+avqn8yCVchhz8jbm65aGXXtsqLdZr45Fh6sL5wJ59D+lGj+e3XnlgRKBWt7Z\nVgYZ/BnBjec9tB5QjbAVyn1Z5AifUKLT1RXUmAvjWbiQr9l+lMGnCrqz81xXKxOFjMbjFMGh8aZ1\n1dzT3m83BWarDCwMxd5OWrMB+HBs4ReGK/15jsrABuv3fsucYOsvOQXBsYLEvkLllDwOgp6Wa45I\neC1WXCvTQ0Kl3gKYXCG1i75C8MS0ZUa7bZUDzUeWQMHG3lLjWWJLUMwtjMhEDm/pSal5aMi98ve8\nhbb5R29qtO+C+h30ey2kCX9mSQwMvZuyMeTFbjpSCZjp1oARowWAPHBFzYPnwMZ+LtJNWdXKJHEe\n1GTHw3KVyBAEl/sz621PXnexcsdcq/8x5eu1XDSemptabFax+kPzHhx+y5Aeoq6SPL70TBVg9oCO\nv+Sj/cjWQONpjr3NqKteqDrM1aNnmyyXlAgB4uidirSL0xrml9uoPjeoyfhyVbz5hASJ444rx7xZ\nKrJunDepCoumtJ6mkk7ysk0DKEqCxcs1frHDSSHxJ1UAtWdmQGQUnyh8X/JviqqH/N1rACzbbrlR\nw/K2gfzSpkL7IWHNHbMY+HOrcxet1VDbMy+ENzLXKWoBYsp5SLe6Z3JVzGCtPJ9Bk9zP0TdX0PvY\n/G5x1cgtZVVHGE/BLBd9MEUzjD9NbR2pvofOJ2bil0JulyoyGTsZMHrdBGNEDuliQ2Ihoys+1j4w\nkGCVFqaiWcH4mpk4ZzfMix2eJDJJ+rNCIAdm1eWhkomxMiok5sMTZDhRoqTuLT0sSC+R25Q0fBy/\nuQkAaO3mshjHXUqEdC30ZyYzKoQY2ZiXI5+7iG/Swkxw2ub35xhfMZuW5rMY44ukgE/9VD/MRNon\n6jgSM+HFRCsIQ3Ox6qFBjC1eTBerjlwfBbD/LXN+nliDsZY8Gqgzi7zU6HIlt8vJPVl4FxtWFokn\n7sK1SbkxTbJJ00pcnf/TKapH5voDYraNWjYONL3goLlLY50WgPUfRRiTmvf6DyCxEC4S6WSQ3Dbt\n2bHG8Z2o79u+PLAwZVqzE6hHouB5FVJbiuH2yQVXcqoMzK5eaF/7UQ5/xmw6Sl4/70lOlRtB+oyV\n7mfbDkb0zIMpoF1K7q9yPl+BkGJ2SuNMwUfzb+d+LpuWPLBK80uq1VY51ZKPhgKywNriixb67n2S\nymaLocfKicay36T22YWXoWE3sXlws50K5puOtBswsUveYCxWPWEzfhFWwoCllVZaaaX9/9qUUucB\n/I8A1mEcuT/SWv+3P/ed/xLAf0z/9QDcArCqtR4opR4DmALIAWRa63d/2fVeicWqfd94KHE3hBub\nHZM/irHcpDyiB2abUvgN2dFF/QAB1UmqPTHQUbRREwbe+g9nQEbEh7H5PN7pwaN6UZPLVVSp3PXJ\n10xZcW+phSwwulpF91OzpWRSxHK1i/oBVe1NgMFrZvfHu8lgakuAO6lGtGJ+x/BB5SDBiBTW3UQL\nS1EUuicFKlRNdHreBt4L8YxyRFRh1p+basQAAGX+dWMr9MveRtr00dwlaHS7IqKcw9ca8pv+HXNs\nfr4mquCdB7RDX/XgtjknKUdGQWhWGGjuZuKZePMCTsJkFxbsdaW67GTHlTy39b8yeTwn77Sw9udG\nbuv539+UnDOGd/yJIzvacOoJ/KVo5xp1XWGbNZ7nAu9wnyYNX4g0zacJMvIoh9fM0A8mWiCtcKbh\nEptOoJ2mIzlV4VCLR8oVleOuQloNqM12F8sKCsFUi2hpHipEZqhh+7umI4bXQ2GFHn2lKV4Q51kV\nvhKyQzCxZIQ611BbD+HFLGflICEyA5N/Ck8hIjZr45kWgdixIrTCAxS5ybXjAqevkWjucyvRlJmh\ngvbDXLwgrgvW3C1QP4ipTytSoZhVKbSj5P3gyt7+RFtyUAZ0Hpq+GF22Xnufqj+PrroiXcTVh+OO\nwozGaftRbhmOdO/V00Lu2Uld6TOWvaqeZgL51Q/zF0RxAWC27WLlDrXpaihe0MYPzH2e3g5lnpiv\nW7mpkJ5d5SQV2bio20D3LktQOfI9Ri56nyQYXfli2IBaf+ExqwzAf6G1/rFSqgngR0qpf6W1/sS2\nQf9jAP8YAJRSfwjgP9daD86c49ta65N/m4u9EotVaaWVVlppL9+KLxAG1Fo/B/Cc/p4qpT4FsA3g\nk1/wk/8IwD/9617vlVisvKdmYT194wJ6pLAwu1BDhTBuJmD4kxR5jWIhicLglsH1W7sUgD+OAJhj\n7vEYyTkTS4rXzHbWn6YoAlKDeBojb5jvssZeVvckFuMtcszPm+ty7k3rSSyeXTAtZMe8+oHZ5o9v\ntaUcgcq1aIGtf9/ElOaXmmhQsL5wlcR1mEZ++BUH5/6cdrZHmeSXJIS/+7NCtPGG1zzUDrm0CcVM\nUi3nFMFST+H0tvHguvdiTK7Wpf2A8Ry49EHtMIGTmd9Pdsy/nYep5NR4i0Ko/U4WyPk5zhUOY0kn\n4KB7MNVC6QVCIYVMrhvM342BfMX83X6cSu0trl108PWq6NXNNlwhQyxX+N4LiYmNL7m2ZhKlAEAr\nIROsfTDDkAREt/7MuD7Lc3Wc3ravQYV+P7lA1X/vpnBS0nTrO+KZJabJ6DwoRBNu7UexUOs55pG0\nlbSlOigQ9xgZIIr+zNLtZ5uu7L4ZIXAT6zF4kc3jY89hfB1o3afGO9a7Y3Hh6baH7j0rxNu9T3Wm\nQo6ZKYlZacdqA2Z1SyRhb3i+5kpKQUixz+WqgyUhBKy7CNg8s/m6zQNDQXG+vkKTVEfqBxkO3zG/\n53NDQcZZ6xGEAMJoQaKU6CEuVh2J3U6uUIpJ1ZHrN59EUt2b7y1tuJKioB1btRg0jtI6JI7V2Msw\nojQHfraG6GO+0PssxvgS6SEOWQMwgPbIW9K2qnTUNZ5j9XmCYEq5Y4Ejff2yzVDX/0ae1YpS6oMz\n//8jrfUf/b99USl1EcDbAH74Cz6vAfgDAP/w55r4p0opDeC//0XnZnslFqvRN4yQa/tBIrkIwbQQ\nZtjygpkZHE/BpUJ7allg9cdUW2pMtcC1hkdK6surq6KQzvkTwTBG2rMstpMvm7/rz20pcJ54k5Zr\n1c5psYz6vkAG2jEJtwCw3DITYP1ZJAUbmQEEAIsd0/7q/hLj65RHs5+icmzOz2yyS//bXARko7Wa\nqKrzZNX7eClqzb3PMjQ+MXW88jbV2TlXx2ybBUIJxltxRYk+bXqo0sLG+WZZ1eZOZVVXFtuVD6n4\nYMc3Ly/1Cb/ZnPulCqD+mOr9XGvaOkg0QdWOMxx8zfRf52GGGSUwM2sxbrtCoHAyIKTFjOWItr43\ngzs17T/6jZ6QQfg5BZNc2uztF5Kgye07W0Nq8FpDYMKTLxsiTftRgnBgfpM2lBAjGKZbbASy8LuR\nLTGfEQHBjQu0CTqMe74Uj+QaUeFYw4tpY1B3sPLRi6r28w1HCmWa89F9zS2kpHKWO7KLTPsRjZOR\nI5Nt9agQFqQkj+sXa3sxMYTbNDvnYblKC8+aK/fNDMW4pQTGZikpwL5T4bCQjUNWUSJW69L5o76P\n6TlSgqf5u/UoF1Zt1vTRemJJVQBQuA6ef928R50HhUDOXBdNO64slm6iMbphBqgtognJ3SsCF3NK\neuZFQbtAZWjzBZ/+e2b8tR4y+cQmgk8uerIZ4o1E+3Eq+W6DW6GMeYaGqyfFmRpwBeK+LdQJmLpp\n/M5VTzO5/5dvf2MY8ORXxZEAQCnVAPC/AvjPtNaTX/C1PwTwlz8HAX5La72nlFoD8K+UUp9prb/7\ni67z68NrLK200kor7W/VlFI+zEL1P2mt/9kv+ep/iJ+DALXWe/TvEYB/DuCrv+xar4RnVd+3md/s\navszjfkVs/uVXKCKg+ZdA9/EWw3JL6oMSby044pygz9NBbJjuaOi6kngfrblYvMvDFd2TkKr3jwX\nBQjtADl5aWt/afI8Bm930X/PyD2N31zB4W8YSi0Hs9e+P0adq5KuhwJF+FNLt2eFCm+RCs2c7y+v\neIi2DSRSPYzRJu+M6e553Rcyg5NpZASfsVBs7it0HpjGTKgCbzjROPwqZc57wM7/QZDlFUNtrx8W\n4i0Obvmy41OkxJqFth7Qsu+g/6Ehwxy/TaoCLY3qAZUg2V1IORPeYY8v+0IaKDyF1hMD8woEmgLN\nXfP8s7qHJXlG7C3s/2YD/Y+ITj4sBJ5jyGi56gnkWD/UAkXxbr/7eWKh0dzU7wKA0WUL7XDOVhEo\nIW5MLoTU90rKgWjXBuH9Ced5ObJj1i4EMuOgvJNpzEhGKK8qZNMXIZ9gqkX6p/PQkgWGt4hmfWTF\ngZOmK3lW7G2r3PbFdMcRSI9z03qfZRhSCRU3AmLy1rkqb32/kKQp7UBK2HC+3XzLl+9mZxQqeBxn\nFSXjXLuw9cKa9j75c67462Qae98242fre0vMbtjq3oDJXePzx20leZZMDVe5ll123HHkmQshyXPE\nM4r6nkB+7cfm+oNbobxzwxtVeFROir36rOJgsmPGcWs3k3eJIeL5mifjwI016gec78hjV8l7ql0g\nqb1YY6x6aoV2w8M5hte6+CLsi86zUkopAP8DgE+11v/NL/leG8BvA/hPzhyrA3Ao1lUH8PsA/tEv\nu94rsVgNXjMTdOtJKvBO1LVNCya2UN34tsk9CkeZTHIM93nxWTgll/gW489RL0A4NAO29SCW0uX1\n5yQd0/ZkkkzqCoVnRhcPptpJAbUws1DlNJVcHF7gljttwdXDQYrZa5wUbGaY5l5u2X4XasIszCpc\n49ow/gCq6UPxG57Aln1bPHHZd5E0Kf/okXnbxtcbEmtqPjNfLHwlE2vtpEC0SWXtn1CgTGtoZcum\ns6QMJ1+vf+8UhWdif5OLDoY3WLOOJpYImF40z89fWB1BkcvZzaTQohtp0XN0KafF87UkCKd1JYsl\nJ7X2Ps2khllWd2Sy7Nwzz35wK5Q4jhvrM4X2SF183cpBjS95qJzahQUwOVg2tyyw8Rv6PFq1/2k/\nSmUsaZf0/NpA3GNmZCGTJMchoWxBw6QFOCnFP2niLAIlC3Q4THH4Di32j21ulhR91DYZl8eBm2iB\n/oKJlv5juO/4Tau6rl0IW298mSSg7ueSO1U7zmTBOPgq1Yjb15ZFd1LIxoBjY4sNjSYlQjuZhd94\n/C37rpVgohzE6Y4juWd5aGNaArcmGqMbpGr/k0wgx9qZ4onC4BwXmJ4n6JUWHW+pZYFKq1YvdHCD\nNj2nBebrZ+cK6h/FD9cWvJyvebYemdQ6U1j/gCod9DypnsC5ZU5qa+jNNl0ZC9179Ju+JxuU3G9L\nJYMvwvIvVsj2mwD+UwAfKqV+Ssf+KwA7AKC1/u/o2H8A4E+11merTK4D+OdmvYMH4H/WWv/xL7vY\nK7FYlVZaaaWV9nLtiy4RorX+C+BX0w211v8EwD/5uWMPAbz5/+V6r8RixSWmw6MFlisG+qvvJwJJ\naHLZ65+dYPTOmvnuyRLTK0S8oN1g4/FcalwttqoSBG0+5QBzJjI3/jRF/wemnriuEYMwClGQqnYW\n+tK+zkO7I0rPmUJJWc2VqsEq59wbT3Je8oorkJNU5a06EhjWDpDWOeOdc2ocgVHShovxlRdzXvyF\nRkq76PrzVILgswvEgNDWo4i6XB1XyzF/miHpcIltzsZPpV5PVrNyOU0iaBx/rS873+qJLaHOMM1y\nxZEd4/FbgSh8M8xSOYowOW+8ubMKCqL03VZSDynqKxGaHV0x/V+4LtSKVTXnHfkpea0b3x9J3bCz\nXgwrHIwv+hhfIbJBBlROqavIWUlrjoizOqn1WNjDauxq2VFHfVd230y0WKw5cGhjvFxxBBLm3K60\n6ohqSPXECslyHth8035+9HZFvAsuH69y64VOrgDb33lRiNeNteziF6uu5DexN+BFwMpHJBe15omX\n3iGGYNxyREGjMlYybhrPmE0JzM5Rn45frGoMAOFQCQEnq1mFi+OLLHEEJE1zrH2f8rkOrbd2/FaI\n/iemfYObnENI14ZRRGe1dq5SHMxt9eGo62D1jvn9fM2KVAuRJCpEhqlJYyutWfHewr7mAh07CdB8\nRqxdzxdSDueobX83EiWVYFaINFXrCXu4hShodO8lUv16dJVyGO+nVoIt1VbBvrRfamUvlVZaaaX9\nmlpRCtm+XOOcGmhtCRKjCFUmK1Dm+/itVQSk0JB0KwhJwYLjILOLdVSPzTY3HMRoEhkivbQOAHCW\nGUCe1fBGDc0GBdlpR+YttQRp07oyigiAiNOqwlTeBQB3mcMbEb15LZD7YLp70glEZ4072Z/mGF2j\nnKdPZuIFcnyusbtEhTwSb5mLx8gxHyirX1aEjsTaxpcpz2NQSImO3l2qi3SzgsqA41eOLR3R4piD\nLwHqYHZWgYGJEK4oOLQf5Wj9zNDlp28YD7d+mEttn/X3IvGogon5d3qxhu7nFJuru0KDZg/qpGcJ\nDrWjXOIa6owHNztH9/RphikFu9lzOPyNtsR/Bq/ZXTCXyvBnGnXyTBcbjnhJvLPOKnaXnWwp0ZGb\nXGSCRi46g7NtG2tQlDPkZDbmURkUtoQIPbPCs15o0nKkTAV74CqHBOjTmq0Xxh5Y7SgX6nd4Chy/\nRcoND2xMkgkU3hzokVoC55Y5sc1PcjLrmZ+dw9izm224WHvfMExY5DmtOWiREO/4kgOf9Pv4nY17\nWuKAbmIFhjv3KTa7E8Cbm89Ht8xna+8XEofqfZrg9HXKlyQK92LNgUvZKOFIWwFguuZ80xFvvHpa\niGfCXlJrNxPS0GzbxowCakcwLcSzySsK3bup9CVgPFQmZzV2l1Lug/O9htdC8cCbj+Y4+EZLrst9\nw20ZXQ3E8+YcwbThCkEjGGXwfxHZ+29oLyHP6pWyV2KxYtOBJ0mhWbUhrjQPEjcqhGxf2ZtguWPY\neJzn4ORaoDGVB/C2KFmRhGiX5+oSOG08niOv0CB3qd7RIpfihcFUyyLFEkKL9RDd90yawPy1NSl9\nzeWwV346w+mXzEu++t4Q/sRAVZPLph2dD44BxxRsXJyroUILKxTLvWjJCQoOZxhfMpAji/eqTEsd\np7NyVB692IVnCQoMMbYep0gbVpSUz89wWetJImSIcJTLYjO4xblRMYIpwSt1B8urJsGa62rFqzW0\nHxJbayfEdMf8nqVpmvdnmF02fRIOM0SUoMkwTetJLvc/ueBZGJLuOeq6spgs1jzUKcjOcNzsnCvS\nP60nBZZ9hqzMb0ZXLJvRiS3xgfdH1ZMMM2KZVY80pju8MLOqeoGYoLHKsDC5ZrAMUKVNzSRzLVcg\nN8YZndyK/tYOCyGOsIVjjeF1y1ZMzbyHitlnofBsvaXFhkLnvk3wBQyRgReuPFTCSGMYsfCA4XWX\n7sXCnwlB5P5My8TbeJ4LtD66yonoduPQfnSGzECLlhsreDTm1r4/xO4f9uj+SW6rq9B+RBvQOcHl\naws/JtIAACAASURBVI4wRAc3Q3RJVPfoHdp0HWt0HvBztkLHTIooAsg4Waw76H5G7/cKbzoLzDat\nbBiTjtim51xheM62XAQjEiemEEDScM6whmuokVxYxWHBZIX+R4a1cvj11hkhAdro7PiyGWjuZoip\nr/l704sOup8T3H0tEDmql20a6osmWPyt2iu1WJVWWmmllfbyrCwR8pItpt0qiorsfL15jpBo3jlR\nu4vQEfgASolHxdBO61GE0GUBV092TFypt/p8IeVGFttW9Lb51HxPezaAHEwLgQdd2ll37qWYvEWV\njEOF3qfGe+B8r8V2DZ0H5thipyUVjBnaPPrtTQmgV0Y5FpsG/phtc+kCz9YrqvfQvbt84f7HlwLU\nThgqqUuQmrPx3UQjIM+R6+UUvhIYanTFKiiwwkHhW4JBHirxYtuPE7q3QCC1rKaEuBBtGM9rdNkX\nmE87EJp02iS4buyIN5i0PelflrDqPIxtnZ9cSU4REzCqJ4WQEQBL42eCSDjS9po1JZAge1uNPS10\n8sJTUhqiQ3Th5ZovnoObaNSfm78jUk1Y9nyB9tKqEpiRIR3tWjIGYEWLGaacnVPizeIIQkYIjQIX\nhq8BDaJ+144LGdMszrtccVAloo4/O3P/jIydmYvSurLKHXS8saeFQOFPta3qS2oSUU+dyd1z5bnU\n9wjOvKBQo9pRuQ+B53gcN55qIRDt/24P1RNLvAGA1Z9EGF0hMgJ5YMFUI2Gh4rmWsjpMnnFjSyoZ\n3rBjZuUOCU+/EUge39E7ATJCYEY3zff8pSU3TbddUc6Quls1JaSLcKwxvGnGMitl1A4LUaMoPIXT\n1ykdZJfzuay4dWVQiFwWV7mGtnlw880zY57e160/n2JEaTMqs3W8Svvl9kosVpInMlWo7VM2pVKi\n48fxE+feLuIvXwVgSt2zgnrhkzRML7R5TqNM4CX+/fhaA80nSzpmJWMcknDShRJlaCfTNv5wwQ7c\n5lOzGGmlBOPm4nzLNV8YjF5UCO7NE4QqIDkf3rKQ0uQs97RYdWzS6XMrwZK0CKY6tcyjpO5g418Z\ntfK8Zwb+cqtqX3zKM5lc8ET7MPcrwpDs/9DEnuY3+qIUn1UUqofm/sakDq/yMzGZYS6QiihRf3+M\nIdUA0wrofWr6YkjMrsKrycQUd22hRIYuR1cqMvG2nmbC6OKYVtJ0ZYGonmQCw3FMwslsrMKfaxy/\nbf6z/R2qNbYZIiWNxTyw+UEnb5qGqMwW94x6SuILDNdFK/ZeVWHZgmxOqkXD0Z9pSVxl1fTKwC5c\nJ28pbPyAJzZmegIZLWD1nyxFx250nWI6H1mF7sqwkNLv3Gdn9fq0Y+FPhpa0gsTh5luOjDUeu97C\nQqOqgGju8aJbO9ACeUY9R8ZKRNqHnQeplKtPukBBkCtvAAY3rWo51yhLGo5oZMZtF1Gbnw/naGWY\nk9J6VrNs2NPXKWF5pOFREc/6ni/amcFYyfmrtKmrjDSCXY7jMVycY3TVnP/cn4yRkmYfvzuLNVeq\nAkyvNkUhnjdyg5sOGs/oWFTAo9zI5S169idaGI5OYoUOuLrB8FbDSmQNCixWvphpWGuUlYJLK620\n0kp71U19oarrf9v2SixWrJoAZWSKAEMEYIXuuGu2e7XgkqhVAFZskyGJYJpC5TaPiGG25n0TDQ5H\nAWISsk2aDpqPibnXZVKGhjfnnKQUqmOOd++aY3HLhTejEtehi+UqVyC2Ap+tu+Za0VZNgrRcPbd+\nmCEYGTfFOxhBK5szBgDV44rAc+FpBHdmvjv9MlfKzQUmKnyFxQ0qjkSeR+4rJHVWuyAP6qMIKi+k\nfyMiIJytbsyQUPUkR9riOkFmO3z0VlWq4w6vBdj4jiGYnHzFkEtGN5tYUr2p1m4uCtVcgylpWrWB\n6rHNr1m5YzwfJ8kFEhle9SXwvTgj28Oq5XHHFZirfpRJ+5lskFeUQILHb5s+qwwKTC+SFzE/o0bP\nCghT/QKUNiOCCO/mm08KqfQa9TXq+0R2oGB/WrfQp9JWIYKhUyextZ3a92wdJ55DsgoEZnv+zbp4\nOZxPNbriiec43zoTmL9CRKSa9ZIAIKXaU5t/ZcbOkz8I0L7HpJqzMKr5XvtJJt7g5LJCnfKrGDp0\nUgtpZXUgr5gfMnQ1PeeJ5xUOgObT/IXzL1bt+OLreEuN5183BysDiLfN4/js9VfuZAIJN5+yV+pg\ntlOR7zLMzIoyTqoFAVCFlhptTOpY9h0Lc15tiJe18UPTZ/m2h/1vd+j6scwpImT7qBDovrGncEyC\n2Bf+hWHFnL67IhJrcc+XMXf8jnk4laGW9xjqRSj3ZZpG6VmVVlpppZX2d8BK6vpLNjfinb8SungR\nKtnFseeSVV1UnlvKtEPKEV5kPZvaA7PzP/z2moiuZqTNt1zx0Hoc0TmVaAcy0eLkjQCtx6xDF8qO\nyJsTUSLVUp3XnxeoHXKeE+eJJIjXqXpww5XAu6I8sKTuSP5LY9+qFcx3SOHBhZQW8Bcekp7ZPXIw\nP2k4UoHXizTGF4iYQDxsfw6sfu/FONbz32zKPXmRRuc+i9YZizoKvU9Nn0wvWIHPtEb4/tNcquPW\nD3JMb5p0AfZAmk+ABsVE3Fjb0hhMlImt2kDvzggH3zIe2fgKVYE+SEW7L605mFwkyjfFjLQHgDyX\nqG/zxDhOVLiWFOMtNGpjVpZw5fPK8ZnAPaUZcOwqmBZyz+FIy+5bcqMajuRZqdwKxVYozuVGSrxV\nJ7MCrhysD8caber/4XUXvhm+4oEMr7mijLB6JxXlDtZmbD3NxUtdrLtY9F/MQ4MHSedQmaHnA8Ax\nxeTa96xeoJMBgzfM541dG9/h8RV3HPH4mOwQ9ZXVURxoieWx51sdFBjcJDLMsbb1uFKbB8WxX64b\n5iaWwGH61fzLz/z4TQ/LbaK7T1yJeS17Nt2B01rmm0pUSTi2qgrrbdWOCyxz0hYkCvpixRWiS15x\n5J5Y8BgKkg83uBWKZ39Wj3HlQ3r3L/mSTnD0LYN0NPYyLDZInDcHWg/NAB7etHXj4o55ztqBkH5K\n++X2SixW3oLr2WiB7mrPY0mGWa6bpxmOcmRNqkc1z5A17IQEACopkHfMYlE/zLGg2lhMWqgdpZZU\nkWkpPX36OteIShGeUunq1+tY/+NdAEC+YSbY2cW6EBy0sow0hjEXa75AJq0nNoGVrfk0xuAmSTvF\nttw551s5WYHqMZddr6BC5biZbeRFkGTG6nEmjLWUrlk/zDG/ZfK4ON8mHNgikCsfxgI/LFdpoSuA\n/W+RkPDjQs7FyZ2THVcm62CaiyQOw2HV01wgR60cKVHO4rzzTV+gu5N3OnZh4eTkjk20NYUIQccZ\njrOTnXNkmWdHRKTwlpD2zTccJG2rmg8AKz9bIlq10C8TA1jiK+o6WK5RUmtsxgBgF0OltSR35xVI\nCXo2J7N9sVxVMmEy6SEPlSTi+hNboPD4TaoIcGQnweFV3wrwrtodMd9/VrEkBF5MFhsKnQfmN0fv\nKjSevPh5+3Es0lRxB1h7nxbJmyzHpeT+1z9IBYbmTVP3fiYElWBaYL5Ov6NF7fS2i8Yu36slIfDY\nHtx2USWYkxeowRsW5oxbLmK6J95AtB4V2P4Ok5aUbOqqJOU0vujJpqV2qKUQZe3Isj65/wc3XVl4\nGC5OWkpkobRr4UXu28Z+LtCqe6wF0h0bbhd6nyq4MUHLS3lMZ0SmPZsPOctx8iWzSJ2tNcbvRNJS\nL8C4L9M0FIoyz6q00korrbRX3UoY8CVbtMpECS07pvl2RaqNsudVuAo6ME0e3Arku5wBX4QuTm+b\nXUz1pEDUtTIwANA5TuDOrITAybuGct25b7bDyxUfeWC8jDxUOPq9HQAWEur8mwcY/73Lpq0aomwg\nEkYdJaKbWgGr7xv668nbBjpbrAciQ5NXXMlvYupqMC8kAK9ySDkTpsDPNzwJQmvX1vmpDug+l4Vk\nyzOkklWBze+ZdswuNcQz4V3m1ndGiAi6VBrIA8r8/9yo+Z/ergt1WhV2Fyr5QB1Xdub1fY2kZdVA\nTNuBOsEvbqSRUK5L9Zgo7tcDqQHVeJZgdJVIMVzixLV5dGnXkZyZxh7vou2OuHZYyO68uUsEgAsV\nLDa4HEYG7bxIfdeu2cnz3yyTxNBe9cSSQqBt4J+JDtPznnzuZLa0BHvwsyv2nnuf5fJ8O58DfFLx\n7JbWoxJB24pC3mLqNIQ6zvlQqoCltp+YMiSALZex/42KyE21nuRCSed7np1z0CCh5+FVWy+N4fjF\nqiuQo3YdzC6A2kr9c6iRsBd8YEuksGdaObFeJtPu3aUVra2cWM+oRaXu59sO/KV50FHHkWfKHqbS\n1osJpoXA1EzkcBP7uT+FlPAQb7rn2nIksRG4BixSUoRKKjJHPYXtPzZpHoVnUIvqSYbjN83FVj5M\npcQLE2Ea+1a1YrbtnanHxSVSfFFlaT7LkJxRmHmZplFqA750a35kaDzT11cQnnAhRt8uVnMq5He1\nJpN1/aBA674JALDq+LLvCJssqyphVnEJdSfNJadiueaj9cjM6KzEXnhKSme7iUb/p0a0a/i6mQFO\n/+CquPdZxSqEq4xhOkdenLO/Y+aaVgqVPXPOohKg8YG578Wb582xwEFjZmWG+MW3Sa32hdWundD4\nJV2ueJidNy9cm6Ch+kGG0U0joeOmpo8AYPVnZoWYXG+JnmD7cWoTHC9Rqe8nCU5vmwXEybTk93AR\nxM7DDM1nGR0LcfIGxVoe2aRLVnV3Y9t+ri1UOymkhldWd2ViykMuHhhL/kvScCXWw0xLb6kx2+Z8\nPLvIuLFN0GTpoeO3PJEx4hLn/U9SPP+GaXP7np3kqgQpZTXLRqwONEZXXsxzCqYa801irn2YC9TD\ncaL6U0d+P7rsStIsw8WAfY7e0jITx9fNv9GKI8UBoQCH2r/YtKxFXizaD3NMqS+4H7v3Chkfkx1P\n8vx4gT3/fw1w+E0Dcy/X/x/23iTWsiy7Dlvndu++vvn9//Gj7zIyMrMyK7OyiqSKpEhComzDNuAB\nYdkTzwR4YEAGDHjokUcGCMiGQdgeCLBhwJDgBiAhkQJpVrEaZlVlZR8ZTUb34/f/9f1tjgdnNy+K\nrJJgRgjBwtuT+PGa++49tzlnr732Whbh4Pmm69rjXO65WcNDiSBPrrPUH6UC1/cuh1JLSmrUTzgG\nTPp8I3N8qpPuZN3Dxo/cfdi94nY0C91YAa4OxotB8eoKlG2aRQoTcu1v9dNU2JLNu6nU//jerexZ\nqVOnRa2NM5wdd3O5ZmpPMwxvOuYsK+2nJQ/b33HPnt7VkowVQ9fDJEDjgbu/gmaoDchsUukpTDpZ\nCdC4Q4XMZfzCeCUmq2UsYxnLWMaLDoNs2Wf1YqP/hmPRFLopJpvsLWVROHQrjskuqRo/mMBLSLQz\nDuA9pfT8ioPmSifqANq6MxM1CS4am8xKN7mXWBROXDXfBqQAseqjetdBZuZKXSSFZDVaNqg8oizv\nYiRQBvs5WW9BAqrsCVQTTGi1WfLg77hjmdcDWPJhkgL8OEde5VVYJmQMViWo7KciSpsHBtUv3b52\n33Q9Ic1P+0jKbvsMsy0qtftzi5jIINyj5idWvJf8WY7JCrkT08p51ojUQr7pic9P8dTtZ+9CgJRY\nlY0H+QLpRBUoeGU9qy/4Ic25N0ZJL7OGL6KtvAo/u1WQon0WKzONv59FRnqbwnGO8Sb7KBHcuaNK\n4cHEyurYc6RJhMMUax8S5FP3MCLvpvr9XH6TYbrKQYZg/DysMjjvIaLtw0CySP6dpAJhYM4boRyX\nZMuhARZ7v7j/6Z77t3F/iqN3iRV6pJkXuyMnFVWK715dZBsq6/PkHTdotXsWWZFJBO47B7/eEgZk\n5anCiAwdDndUVSWLICeG4djOtVAyntrjFJ3rJHP12L0fDXPpSavsse28kd61QscKC29GGrilI6sK\nJZkVMgOLF6exitvmoRE0JQ8pqyx7km31LgVyrXCf17wGtO4oqYLlsPicWR8imDzc9lEnP7sxkZJm\nLYOj9xyaEw6Ubcr9crkP9C7FdKwQibRCwhi+81kDmGj1cqC6JQy4jGUsYxnL+FsRy8zqBUf9Q+fY\nm7UqCHukvecZTLfIU4dw8LAPzFZINWKQILm5A0BXqdZTKmla9hHMtD8JAEa7JZSOSJOsEWB42S0j\nvYUVz2jhNRaybdx3G51sFKR+Ek4sSpSlcIG0eJIgKbsVU6GrflSsxFF+lmBwwWVrhV4mOoYrH7k6\n1uBKVepsk9VABEw50pKqAaSxh1KdxTTd9p/+bh3Nu5Q5bdPKbQ6pKaRFT6jHbJsRDSyqT9yYJ9VA\n+k/Yy2u06YvOYGl/ipO33Qe2/sRltUe/viaZxaxmsPGBqz8c/Irb0agHsYgoDFRolVUPZs1AspHi\nmZJiuJ+pfJQLtd2bW1kxc81l2tJVtJ9Yycy4mN/6MkH7BikYDC1Sqk9w5nh6uyir7MaDGdIS07wp\nG65o/85koTDPtiKFM6WyD7d9LfJTZhdMtWcqPtV2BSY6zBrqXhxMlcwhRfnzBc2iSkDpyI1l4y6p\nTlzwZHyCEVA64v4tznYzVB/SbxY082elk/qjVHqjwpFqN/I9EQ6M2JY07uVC5mD37GnTlyyo/Voo\nfXacwY2qRloL2COs0FG9QetD9j9eGEsOa1R8eEgZ7sqnmQj9ctYNLGR7Nzy0vnC/efqWQe2Bez2m\n67j2KJfWjpWPF3zlyCpnsuah9phtTZRMNCMiSKFthZTipeoKzGO3/sMeJjtMV/fkmpuvKlFn9TP3\nTJk1Qhy/W/4rx/0iwlqzzKxedMwuuPw/6M/ET8caID5zV3TtjpOoHl2ui+22txKg8sQVMblPIW5n\nUqz3Zzn6F5hZ5h6g0ekYZ19zkFnl2VzTf2o0tpdq0iDKBXjAqbEDjoFVp4kLm7EIWPoThmEirJF5\n3XSrhDGxhEgbFPNaoH0ypxMMvuaO1SONnGnDQ5EKz56v8F2f+rXCkUVM5pONO2N0XqOxogdg9XEu\nBAqGZkYbnhR2i2cp8kB7TQBg5hlgl3rXprkoqHPkO4E+oM8X5bf6t53XVjBxCvKAa7YUTyGCo8K+\nRfumqlbzQ6r9OhXwHxghNRhr5eHDk828ZsTbaFbXpmoOk+nxT5s6cUFgoFDYhklJ/b7mBD3WH+Qi\nhzQvFwQGYyJE434ui520qGQIJXKoUGyaAjOCEbvXiPTRtcJGs3MrDzQu4FcfWbnWvEzZhnFHGXAM\nf+WRQfsWwbd0bcRt9aMaXrAA2OeK2H7bvjzsw4EVYgbDhVkcyGIvK6iQLy/I8xBiDti54aFIkNdw\ni2XNlMyRxiozxQSVYlc9wrgfbV5RpXdASS1sOImJlePzMit29jypJyVPG3QTi7Nb1PtF52bls1x6\nEJtf6LUu577moUDQ53SjKPfkeMEvi5X+43Ym5qabP5zQ5wqyEB2veUJAYdLI4a82ZP+bd6cYnuP7\nSyfW9k2Cdk9ygWGX8YvjlZislrGMZSxjGS8+ltqALzjYtr7gG4FRuLcJcBkVAESdudql7xZELomJ\nDIWu2o3nkSfw1XCbbDtWQslMpqtqgR516PfP5hjtuBUPQ2OA9oFloUH3OvdxpfCnBJWdI4WNvsV8\nzS2Zw36C1RO3pE9qKpTLNgbjnRJKJ+rwCrj+EV7RJWUARlUUACeEKxYdw4KszlmOBlAYtEDqF/FZ\nJhmkP80RDZ7vWWnf8BXGq3uYkfcXF5ur+6lI/HjZglrEFsOJkGwtnKgFOZNCgpmFN6fMtGyk8F/o\nsBWLQp2Tli8rc+7t2fnTNk6/7qjVjXsTnL7p8tT6Q+qj2g2QRpwGKPGAM7RwbKUdoXMtEGUOkTDa\n9DBraJbSuK89c26ftc8n7uSYk1BsSNdhHqpQrZcs+jypoC1Dq1FfRW8Zmh3uGlF2mKx6okbBcFsW\nqe38vGbQ+oL8uki6KKlYFI+Jxr7v6Ofu9QW69IKKAdPghe69ZVF56v5ufpmIAgj7UeURUCUn5HDs\nCUwZ9ZWgwH2MwcTKuPE1l/sqChyxSPRIjy+PjMg9SR9Vrgok3WuejJlIocWefHbS9LD2MY3JLbo3\nxjm8MiuoGOkN5Bic9yTbjvpGnwN9JSLx82fa8lH/yh3gyVvuhlv7aILxBhPBnGcZAJQpm1z5fCrP\nnO61WK65McHdaUnPqT/NkbdeIsFiWbN6sVF+5q6cLA5QOqSaUjOATz5TLKs0b0b6YM8h3kY1agAd\nrweIO9SHU/YFHixQzSgpegiJGVTsJxicdxfUZJue+lZ1BicbkeD2bFtffZZIHWte86XxkbH48r5F\n5ypBBt8bo3eTmH90g1efpuhdJDVou6DWTTBM3M31NxNVhU9uU9Numgtzz7Gk3PfZ3HG4HchNtihh\nJeaNVyK58YIBi++VxGfI+gppnr7hbsbGgxT1h2pUyAuD1Y8IEtkqSO9R814uk5UYElqF6bLQKIxL\n+z5reAKZ1J4mojlXeUa/uVPFhPpnbFAUCSpuyE4qRiCr6ZpB80uutXnymwzj+VNlXnIDZ6FrUejQ\nvtQ85Oy3xeM4tTLZnP17E+T77lqpPKIJ4jhHoe9+s38+QDjShYcbB4O0RH1WN4HS/vMPj6gPOb74\nzGK4rQ3MgGOzsTdVUtZamnx/YITtFg6tLEasp5MuPxjjTobuLdLJ22cleK319C8GAjnyNe8FRry3\nJutWepX8ucKgM7eWhJcaGdfhLvc0GVRosmPZL29u5T62HqSfMqXeuvGW9raVDtVckyH68ZYRiTUA\nmNI1U6Wm4u6VQGSrZokaiva4d+vISu/j8dshzv8RsWqpH3G64jk/PADl/bkYiQoEfiGWxU6xk6Fy\nwP2gpIh/tYiQGawFrckxw3BW87DyscNWh5cqCl2/8DDLzGoZy1jGMpbxaoejri8zqxca7NsUnA6R\nrrnVTR55mFfdMm1K0ISXqqrz6icTDIkYcEZF59qTTIRew1Eun2VozHqqsJ5HnpAlbMgSN1aUEwat\nUGA6hlRMz6L1gVOdGF1rIerS6n+FJJoioP6YsrzdikAZDC9khQWJpJNE4L0BExzGuWSD1gP2v+2W\n9CxKmsW+sJhMFojCRvd1N2bBVPtweDvTlVCyicqzFCdfo96ttnqBcWaVxp4Uzrm3KhokOH2DoM2h\nFYX0s9sO+mzenaNIMGfvsoqWCiuzqASJ0YYnCg/sSOvPIH1M4STQczZjp2H1qCp0c5UDkj4lhYkq\nz3LJAmpPMt2nY3r/IJNiekSkgXBsZeWbh4BPK2KGI6O+2sIXf1jW8ZVsRJuj/JkW8c9uE9vunkXz\nSyJr3Bli77dcts3QWR44xiT/ZvOeW50fvk/H8dBi4mzPsPX9FJ0bzDbVcR5coIxj00h/GJMagolm\nkc9+04M3VeULADh922LzBzS+7QSH7zMdkK6ZJ1bgu6ygFvGceeU+sPoZqa40fPE2496orKC9Z5yZ\nJFVVl2l8lQpDtUaOvrNmKKK17VsemsTWZISicGYFmrU+EPUWetbg0ACWQFr5bI4B2c0zOSQa5pLB\nRz2I0zWzapOKkeswClT1pfaYiUSeuh8PM9jAozEnJotxKhyAux4YGuXMsPosQfc1JlcBjXsLOP4y\nfm68EpPVMpaxjGUs48XHUsj2BQf3UxkL0dbLQ4PSkcu4oh71dKxGmDnmOfoXY6kVVJ8uUD/pz2CS\nS0GWIz6dI9xz/NfOt3YEY05LqgrBAq/FhZ6P8p5b+Zy+VUL7NbfMLR/kCEe0oqZVcvE0w3CbfH5O\nc8HKy48cT/j4/Zr0b3jzTMgcvOIabgeajQ0tdv/IeXMdf9MRDLJY8ffmR13k5DnFNN7K/kwESBPK\nSqsPJ5i3qDa3GiAY6eoScBp/vGJMykrpZXHPeTVE434i7/Mqk1fGWezJyj0Yav8S1xTCkcWQssGN\n7/dEFSQckdDnOU/UEnqXPBFgZdFPGCeQyjGhVfrgkvv/6sc5/DllE9uB7BfXqYKR0sUr+6nU4riH\nbVY3mK5ynUb7g9ijyOTA2kfu+IebAYpEPOlcJ4r4k1ytH2KjFjEPqai+aVDed79/7x9WtOeJxqmy\nl6N/gS04gMNvUJbxlXt/eN4gdpcB2jdDTNeolrPPRBQrNbGoZ4Tyz1lM826Cw/dZVcKIXQbXFAtn\nHqzR1gtWYeAx6dwCCh3VXmSViUWh38E212H1nmE0YNY0kqWyi3HU05pg52ogY8HXbDiwmFEWVX6q\n1Hc+J9O6J0LHg3O+2M2IY3ZB63hntyMlk2y6fzf+MpPrKI+0P4rHbF41aH3u7vn2rRgxHwuRn2pP\n1P5ntBXJWHJtMRwoqcV6iqywr1tSCiVDTUsG0+bLMbRaWoS8hGCrerMA8zW+HGNw0cFPDNOEI2Dj\new4zsaEn6Xf/svtcoZcjJiHWwvFY0vvGl26yGJ0vY9bccr/pQ2BEftgHU+156NzwsPYhPdBW3ZVV\nPM0RkxL6YEfZhOVDEqr1lYWXFnVi4QbB1pczpEUqVm/EKB26WW62opAXP2RNDozPk3TSGcN0+jDs\n3W6ge9V9lhtxk1KACcEbXAD21gOF+YoQvyieIDd+PMXgPPk91Yw8xBkunbY81B64GWS8VlHbeTI3\nPL0disdT+SgRtemAmJKzqo85FeCP36+hTMwvtgX3En1whkOF77gAP20aIc0MdnUyZ4bhyTtA9SER\ncOpQNt2qMq8Y0jy9XZA+L2GjhepRNasb8UTiSTktGniJwtD8kCtw8/GWJwQGwInJAsDpW6owzjBn\nfKwNrvww9+dWJojxhkFaZhal+5zJDSbrRAo6MohPn3/4DC4DKx/TNXvTPOevBABH74bIiu592zM4\ne9O9zgzCjR8nOPq6wmQ8vkxW8Gee9p5NLaIn7m8+Z7Om7l9pX/uneAFnfb2WCtQ71r2dYudPaIGQ\neEJG4Gs2KRkhnZQOrIw1L3r8mRW/repehjb1WTFRpvH9Hp79lrvoPCX1ynkebYXaFL/Q48TNlgYg\nxwAAIABJREFU2/4caL9GXniZso2Z/JTFBqNtWtTcy2UybH1Bi7qqL5913lp0L5DhYv2rBCktygc7\nPuLuy+uzyn+JMqtfniNZxjKWsYxl/NLGK5FZhUP1k1n50KlVzNZKKB+Q91NEdhInKdKG+3u4HaH6\nmPqYytzT4Uv6H3UDWbG1b7tiZukoRXw8pu9U5XuNu245GgznCFZdlhZ3dR4vkCjsrBUJzDbcNfAT\n7klyK6fSoz4GNxxOOVkx0ovCdO2k7KH60GUpeTHAaMcdC2fq4SSXVag/XyCIEMzhpRBRzTz0sPEj\nynI2aMV2f4we2aK3PndLytF2KEK8xbMclcfu+Mc77jinK6EUg0vHuaxu/XFK+xxh/zfc+BWPrMBz\nlUNWCvGELt8/HwiN3BodP848JqtG5Kqk2D3IhdK86E3FskzWGIw2tJ+ueTd57phrD9S7q9C1aBM1\nm91ri22LznXNVllZgWGs5t0cM8pWvVRtJuZkcVF9bDFZY8hLMwbuB4SnPV3Dc+Y5FQQAqDy20mcz\n3PEw3uIsyb3fue4jqVJm+tRlGgBgPZK4OrRov0XXUe7BZ4IEZQSFMyOkhsqeFXiNr22XiRPMfDlD\n/c7z3knHb4do3tNslKWV2LcqGKryxHhTqek85lHfqUS4nbYYb5rnxmftI83cOIP0Bz7SmLI9HwL5\n8f1qrG4/i1XVY+VzgtBnVloXxmseVj8htIMksPZ+p46ND0i2zTfiPeW5RwvyUO1CsoIRUk28gGBw\nBDMrKAS3DWSRQfXRwjhTYjQ4R3DrfipSaqMtH/2L2pPIx3d6271Wf5Cj0H2+XPGiwlogW8KALzY8\ngoyyYoDZmqtp2MBD5tNNTL1XNjCY17kmlGK461L1lU9oAqqG6Fx3F+Zwp4L1n7gL1p+qqncWO+A8\nGmaYV8hob91dRdm5WC68yt4UE3q9RzAjDLBy32ENGx800LtEFyf1BA2v1gUyWPl0gt4Vmvh62ueV\nR3STbRREc4zZVl5qMauykZwn8jOiZN5OcfqGO761j+c4ve3+ZgZZ52ZpoafFvVc6UQZZOLAYr7nj\nFwbdQSKQRe9yIPUhbnQ2+UKDa0ktuLlOUT7OEA5Itb0WiXfY0Xvc02JEJ2/10xTDLWVrAg5uW9SE\nC2UsaNIqegJ9JlXtreMH6HR1AVpra9MrNzVPG57UIip7Kk3EkNHgnIfRRdJufOKLMvh0zLUxiwLV\njKwHnYzpzom6FhMyTCyeWIFJT96mfrwGnusNZDV1nkziU4tgTMdahkxck8xtc7JuUSGY058AM6dy\nJR5aUQ/SVFvoZTh+h841ySlNV630fpWe+vJA5n0u71uZrP2ZRUIHON8gvDQPZbKoPcwxXeHJlLa/\nojDn6ieZvM9sy+N3wueMJAGgfl/Pw7xupAHc+znPbFbNF1mpnUDU8aMOxChRJp22xbNv0wL30Ark\nytdBMNEJKC0Cmx+4i+HgN1xBrvEgEQ+qWcNDmRZmJvPpNXUPmLX0WuR7yvqqgbny6VRk3+Q5ZoCV\nzzP5mxnMLyOWNatlLGMZy1jGKx2OYPHLU+l5JSar3lWXTVX3ZhhuuVVI/cEYs5b7m9lWXgrEJ5Te\nh55IwhRP2MMox+onDhq0nkH/ossumKWz/a/amOwQpPV0gLDvMp8J+V75c4uUVsGD8/FzduUA0Pp8\nhPFlB/OlsYfVTxx8ePi+2071aS6rv87NoqzCWXUdFkjLbl97lz2sfegyMoZB03KgahTngoVeJ+7v\nCMSHqH8+FLFScUKdWxSP3fiUiS319HeqWPvQregmq4H0jvmk1GFSXWXGZ1ZW/JzN+bOFFa9Z6JUh\nZpc/99C5TivHfVUmaNyl3qLP+hhecR8udBMcvUtkCCJimBTiTjxteZg1SLSXoLPRNlB9oswyVtJn\n3y1YzaaSsvYfcQF+vGVk5ZuHQOOxG/Ojd+k6e5ijdEwwYZaLrTxH9REwcpwcTNeA9Q/o96mPx5+q\nXfpo08eUjosddSdrRmSx8sjKuJZJ9aBz0xO1iWBihIRQ2eOVty8kgFlD+6jKRM5p3ywINNe5plkM\nkyLWPrTovKY9T8fvu9crj0Djq5npYsZjRm58N36cYdJkO3ZPVFMY+ix0VEGkc83HyidEoNklR4HP\nMoGO+bmZlgy6NxQONbT/k1j73WYrbjv171npw5q0CII+SAFD5z9XsgzLQgHA6sfu78mqSjOJ03Bo\n0LhDChIXKzj8tsuoWDG+dzGUDNkaiPty474bcy8N5dkT9YDVj9wFyM+xLDbi7jDaigTGZ9+u0aaH\n9Q/ds+PstVhITy8jXqZFiDFmF8A/BbABh0n9gbX293/mM78B4P8CQDxY/HNr7X9D7/19AL8Pp778\nP1lr/9tf9HuvxGS1jGUsYxnL+FsXKYB/bK39iTGmCuDHxpg/ttZ+/jOf+4619t9dfMEY4wP47wH8\nDoA9AB8YY/7vv+a7Eq/EZLXyA1dtHl9bQY1sP/z+DJ1vEuX7DmG9vhEaee4b1B+5LIRdb60HrP3J\nYwDA9MYWVj4hyvquW/Ecf6uJFvnIDK/VF+irbhUV9RL0L6lHVIGUBZiOPV2LJQuaV3357OYHtM2d\ngtR/4o6VjPDsVkH2b+u7bqOFdojRFlGGT9nnZy51snBohWzBvVtxJ0ehTcSHmo/Odff6uX/pKsdn\nb9UxpFoTE01WP0mRLvjtsG2JoRSp0MvFG2i8brDzXfLZaZIras0XtQgvVWp7j/QA406OYKqrN1aQ\n4AXdrFYXzmnnehGVPaofeFqnYhp7ZS9HkTzCulfd769+nAmdP+pp/xaPjcmNFO6HO0ayxKmzOoOX\nqndWWjSi0MD9RkffACLKZsLhwiqUs+KRlWwnSQz2v82Uavd+dS+XlfusBbED4cwwHAPDC1SHmxqM\nt9mBmK1ctCbjJWqRwsV8f6o0cX8OcdgdXHDnOSuoN5ZJVc1htO2+07vsYeVT6k9qevBnP+MDZXT8\nRjtGlC1Kh26bk6aPhLUtn+RS6xqep30aY4G6bzAmTUYW3J1X1EKDs736V6pUWz7M0blJCAnth5c4\nTUEAGG57ovPHdaDRRiDnNJhayVwYFZnXDFp33HOkd6Uo10SfevMKbSD3qzROnli8cD129eMJOjeU\nus4IB7uMZ5ERv7fOdV/ErbmPKm4nyIos7pyL2gfXpvyZFdWaaKBCyy86LF5uzcpaewDggP4eGGO+\nALAD4OdOOAvxDQD3rbVfAYAx5n8H8O//ou++EpNV72trAFwxPZhQ+r5blb6FEUkAlY4zFPfdw3Rw\nqSzClJt/Sc0lOXD89xyNqdDL4c0plWeJnMBI42EwyaXZNyXDxHktROMz9+RIGwXpi+AJqPxVD+ML\n7o6LBplAPiwL1bvkSYNyFkIs4NNCKMd68nX3fetDbuLxmttO/3xJWHYwQEBkA7BcjWcwPBfJPpWf\nEYtr18FspdMUcyJotG9qI2f52G2z9dkYsxWSqLpN0GGisJfJgSk1EDMclhaNwBRZQVXt2dwujc1z\n3llMPPDplBhrUfuKFhWbgTx4+QHXveYJ2cFY9Uli8slkVR92zXuJPFBkMhmq0KyxClMyaaN0nOPo\nPRLa/cIC5vmbt7znCfyTlgySqo4F4B6GPDF6iUHjDk1c9JvjdQ/hgJteLbxEmXkAMG0ZEY0Nxur9\nxNv35hAGXThQg7+oq6SAKbER88iifpd+d8GXSryfUmXR8cQbjBUS7V9x1vaAbrN0qHJA8Yn6Xc3r\n7nO1+8pWHW96qiBPE7izpVfIeHCNmb2BnAde4PA+zRqenL/TNw3kBFMU+lbEbQe7gbgP8HbmVQ/V\nvVTGke8fZtsFY+DsFpm09i1KJyQ0S6SZaGQxOKcSWTyZcUzXouf8spjhya8VT3MhCq19lCCjPlG+\n94bbOplGoxxzWiwKdNi3qD10z56Tr5WElPLi429cs1o1xvxo4f9/YK39g7/2l4y5COBtAD/8a97+\nljHmIwD7AP5La+1ncJPa04XP7AF4/xftzCsxWS1jGctYxjJefPwNLUJOrbXv/us+ZIypAPhnAP4L\na23/Z97+CYAL1tqhMeYfAPg/AVz7/7Mzr8RkxeKoWWSQEAEhLRqU9101d7jD4qoJMs6CqgYrn7nl\ni/edjwEA4//gXZQoizDWwp8SZFYiW4f9TBQexusG5UMq/NJqu3iW4uQ9l/nUHiciwNl4QHJL77ZQ\noH31EiuQFdOpVz7PMKJVWOUgEzknriD3rgMbP+TeqwVPnjUWykxVoSE1sl3OXExu0bjjirnt2xVR\nzuDPweKvEAQK/RwhwQzzViQZFVObo1GOnERH80BFRxnOCiZadPfm6rrKop+TXV8dl7tW/bSox6x9\n04f5SgkSnHGxj1XUU5o5oD5mDF2GCzDJYDdQMgi5srZvGVT23HdLhyqtxJlL+5YvPTF5qAKsvJ95\npPvqzz3JvFhot3fRlywgLUO8v3jlPKsrwaN4YgTKEtHVjpWepTwwyGJVowCclYaI2kYGsybDcO61\n7mu5ZGZZZsR7hOnY86qRFofpipUsb07bCQcG3RtuW5s/yDGrUZbOzzCrrsVeqq7Nhba2CzC0OLik\n1PvOa/T1wKiaxzmget9dX/WHrGDi4eTr7rOSjXUV2lz5xOLsLYIZiVQyWvcRULYSTCGtD0z+KfRy\naQ2IOliwxeHj0Ax3smaw8sXz/ZrzshGiyOrHE3HyZQizeJZjvKmqGJytlwiOzAOFw5OSJ/dX6YSz\n2VxIT9EI8Ola4eOwPnD6phv08mGG8rOfkR35WxTGmBBuovpfrbX//GffX5y8rLV/aIz5H4wxqwCe\nAdhd+Og5eu3nxisxWXFNpnyQIj51E0P/cllMDzf+2D2NZpfWEAzdmQ8mkfhJTf6TbwAAqk9nYnrm\nJ0D3W27i4T6JQjfBvOIuzNadVOAdjnlV4QljgfU/c4WJ+TYJEhpg0mJ9sAS9i6F8FgBqDxNUU1+2\nlYfut9a/c+Lef1RH9xp3k2pdqdBRzJybYofbHjZ+7C7iCY2Dl1ocv+dwqkIvR0b9JdxUOK+pKnb1\nSS7jYFJ+2EeoPaTJlpsiI21qLPSsMB950rQ+MNxh5psVOSkeu+JpLjBMONJj4knbS4E+jVP5IBco\nhBslN78/EkPFrGjkIVw6UtX0YagNlL0rXLOifxOj2mxVZS7yA9RLtKnU+hDtwVmTToIBulWWiHKw\nEaBwnZcCvVtuUFo/8WXhwNv0UqB/2W0qreRAThMLTQD+BNKn1bybqoX6mi/f50bfyVYGb6r1Q8Dp\n/TGkOa8agex4Ui50rU6cLTXinIZ0HFWVaBpu+wJzpiTBFEwtStSg3L8MmexmLaq9nqj0UeWxQoZF\nd0kjPrPSYF3at5jTrSL1o7pB9RHXhrkRV8d32vIQUm24/ZpKhdW/WoBBW89Dq7AQJfaz2waGpKMM\nL1RSXYwEU+D4HXcyRA+xY0XCbNYKZQHEDdVp0RNWqfUMVj9xkx1P8MPtUGqK1nOmlIBb4ALArBHI\nYmq4pUIFaz91F99wtyj18kI3FRbhi46X3RRsjDEA/mcAX1hr/7uf85lNAEfWWmuM+QZcBfsMQBfA\nNWPMJbhJ6vcA/Me/6PdeiclqGctYxjKW8eLjJfdZ/SqA/xTAJ8aYn9Jr/zWA8wBgrf0fAfxHAP6R\nMSYFMAHwe9ZaCyA1xvznAP4FHHX9f6Fa1s+NV2Ky4tWqDQyGF0jBwnfpNAD03nPUpqifwXvmVicm\nL6N632WYvdecaGXQnSFouVW8P7PY/L7DurIi+WKtRtLHNGv4Aj+yqvtoIxY3z5OvRajXNtx2SQi2\neWeE/mXKAgoeirR6qn3uGALDaw3pBYFR6aDZObd/w51IWET+JMe0RSSHBaVw7nIvHeYAQVkRuZb6\ns1ychvPAiKRNTplHUjLY+JFbUvYusqI7MCSlcZNCsihWkp6seqKAkIZGXF+rT4mVdyWQzHH9e2fo\nvul6UjirHe748v326waNL2kVTMeJA2Cwoytm/iwzp57+dlm6+adNT7yZSgfENmzrat5LrWRGvNou\nHVkMCUwoHhtRlc9lbBTyBPT4eZXtpUBE788aEAt0VuK3HlC9S06xnhXotk4eXf1LPqqPaVuJugKz\nUnoe6or85GuBMP+YjVc8MgIzlZ/4klkym2/9R+r3lBVV4SLsM0wLdG66z5rcKVYAQHxCCgxNi+oj\n0DHpKjsmmO/kbaC8z1ncorArEThGOr6AEeKHR5Bb7ypEgaI0BkICfdg9e7aao/KYskUiktQeZpiu\nKCmCn6cBZVjzOnDyDvWj7QGFqaqVyH4QNLnyiRW5KYbmrK/3XmUvw5j9sh5rH1b1U+dLd/b+uvSp\nMXnHn2m2msXKQGUlmMqzDF6mmZWocdT0Piz0qLRRhPRGDujZlsYGpWMmHYVyTb3oeNmq69ba7wK/\nuChmrf0nAP7Jz3nvDwH84b/p770Sk9UylrGMZSzjxcffkGDxSsUrMVkxfls6TlF+QL1RlxsiBql2\nFQHS0ioA58c0X3ErFS5czta1p8L6RsgYTEEPR5k4hBZPU2SUHczp/WI7Q9Rx+PRmJxHX4PZN0uBL\ntaYDu0DpvejSkTwwKNOKyRoj9Gu2BQnHWt+p7KtaBBd7C71MVndJJRQyAF9v83qA1U9m8lu8+i8/\nJSz8QhlpTPUlotsPznvS8+LPLI7fdsc6YkHaxxZD8kAKh1aL3ETNLR9qb83JN1dEDSQhmL3QVWp0\n7b7FcIfIGj7V7mpG8P8scv5VALD+IXtkhVKgzkIjWQCTV07fCDBbZeqxZh5oaD8T0+mjvjrISlG+\nYoUAUnlsJbtgokRW0FpFMFKCCWc+Z+9mMFSsb37i4eh9GivKbKZruXhXZQUjNGRWzbBGr2/rqRAu\nZxlesmhRo2otXHva+20PhVM+PmB02Z3LYOjO42DXSE0MRokfSgowUkeaNywMU6r7nMEaycZMrjVT\nFhq2HpCs8UUfiI4hZwNeYiRbzApGx5I+Fz1QGCqQDNaTDG28DfH44nPnxIbd32sfjnF2myyA6NyP\nN4wosYzWfXk+cL9W414uGpOzmrYmsAdZ826GZ/9gQ7bJBJs59UGNNnypc0+bvogvc7tFHhikpPrh\nzxdrokyHtzKOwVDruEx+Kh/nQvQq9LQFZhm/OF6Jyap4pnbWScXdWb2LAVY/dXds9wo10A0tYpIT\nmjcjEbVVcVGD+h2HJUw3yxiRdBMriQeTHKUTuvFyK/0PzHBrPEgwb5Lde2aF+MFK32nJF+mk+HSK\n/mXXdDJZZVVwSNOllynU1LzjMJPJtZL0wYzXAqz9yO3rjJTehzsRGnfdZ4/fLWPt4wntP6uGeyJQ\n68+t3AQ8KQ/O+dj6nvv+YJebahP0Lru/o74VmKtzUwkCfBNaTxXiOQbnPaTUW1Pe02MS36dVg7Wf\nJvTZQPqsWMInmChDb9Y0KFIz7umbZM9+ZtGl/as/1H3NA26gBDa/x5N2hs6155uOR9ueMAxP386x\n8QP32fbrenwF57eJec0gX+jFARzDb0aT3Xg7R/UhkXZc6x/Cjo+oZ+SzUZePy/3rJR5GZOrXv5ah\nxmy51xmu8xDT7xePdRLJCspQZFJDHgAZLQIS6nPKC7ljKcLBlPG+Gx8e56RsYdmb7EcJxnQt9q66\n90sHRnqjYBX+k/CU4TdrLhgFVpWUUrlLOJlRYgfDtY17ufQhTdas+HHVvjJyfHx9cfPu8Tu6D9VH\n+jpPVqNzBjEROI6/XpJjZWjX5E7aioMnFmsIWgwNDn/TvVb50pfv8+Ly7DVfSCtxLxNovfJMewdP\n39BnC8PUSVGvvfUfEPR/pQ6f2LTMWj29HYhh52TVUwkyckwYboXaCGyA+qOXY2v/spuC/23HKzFZ\nLWMZy1jGMl58LIVsX3Bw53cwyQWG2/nkEN33nIIor0wqn43FFdjL1E6Cz0cWeejeIofQ1KJ84LIw\n7t1KKj7CPssVBUJz5qL/rBGgeOJ+36QWXkqr1EuLw8R9SEXJbJiAEI6swHhxO8WUhCsnmy7NSEsQ\nW/s8NGi/6faVSR/OfZRp3M5GxB2X274/swJvNT7p4uA3HdmhfdONSTB2klBuUGhMCkqggLVCueU+\nGn+eC2Q43PKl2Fw+ZMFWg9ZnRI2vKqTi02LQehC4NveNCLhyb0kW6oq49lh7vjjFmLWM9Cn1roRC\n8KhQx4WXAr0rLCSaofKMIB3q8ymcGckWo4EHL2XRYILu7lhEQ/fa2WuBEhjO0ZhOtU8oizzJHEXB\nYqT7l4cKs/E5sR4wXaUxe+IL5MbQYThQmnwwAmYr7rc4W6s9zuU3hzsGOWVcrU/ca9NWIHJNdmWO\n6DGhDF2C8Q6B9q9RH+A0FviOqf3TNYWZG186ej+g/xaPVYFi1gIm6zT+TzjzUxg39/VazwjSO7tt\nwBdbfKaiuDw+XooFQWj3udWPVDw5iyAwNO+nN9cxa93JpN2Bx77QVQURL1HKO5/H7g2g9QEpoVir\nlHXuFzvviTvvaMOXbHdEfVZ56MgmAFB9lopPFiMMxSNgn+49LwVad9yOs4TWxgczUZqBAUr7dLNI\nD1+I4hkjE76Ssl502KWt/TKWsYxlLOMVD4slweKFR+1LV6FNWjFs6FYn7W9tS0bV/JIypHok9aXV\njydCjMgD1txKpdgb9eZSU2KLjdGGB5AdSNy2suJjTL3QTrD/KyRO+8OZZDErPyGh2HeaqOy5zMuf\nZlLf4qJ4OLNCt+/vhqjss4KF+8dLPSQVbqDNJCPk93f+bITOTZdZrX40x3CbtAnFMDBBSt8fXq/L\n/nFNpLqXoXPdfad5jzDzViA075XPZhhuu5X5yuckDuypaGzxJJd9qX/qjrl3uSVCssV2hvZNotsT\neaSyZ8WiIZhYOT+Gax8NpZNPVjwkC3Yvbp8SNZ8zWp/jc5PFWifrXvZldV0mVbFwbNG/wOcfohdZ\nIY3GWd0T1YZg6gr6wIKG4Kl9zomWV/yTiftO75oVUdfwzKJ96/mm3OpDg3GFiDRlowKrRDCYrls0\nSZpzsmYko2In4vbrRmpWacmiTBlljwRp8tAK9XvejVF/wGob3C7gI9h3OzO6ksB6oWwLANZ/lMuY\nDHcN5nWyhqE6XVbULDIcaP12RELA4RBCUCl0rahdcKOw9S0qT2n/Yz2vPL45gDkROOCpegbXxno3\nlHjB+1E6tIhGSucWavuUMzxVkCjvTdG97u4Zrn1Nh540P8/rFvX77m++TvyZ6n0utjUwAjFteJgT\ngef0zUDqm5tUDx5vFeSZE04s+ufdc6BIjuG9CwUhbVSfZjh6zz2HWKOwfJRjStmUyZyD+TL+9fFK\nTFb9G+7KykKDmNQYSscqEJmWVRWi/pAsrM/HAsMVT+eyLWb+DXYr4lrLrLyVT6ei5pCWA4zowb3+\n52fy/e3UqV6MNyO5OSwJ0cadTBQoGg8SISNwz0QWG3EPLh9lckEuqirzwxrWQ2XfPdnY3bhS8OSC\nP30jkhufSRn2XKQ9JSdWHFrZqr17NcA69Vkdf51cis+sqNNPV0NRQD97na3Gc/WO2vKEANF7vcG7\nKQ/z6Uqgrr50SEnViPtsVjCyLX5w9FtA7FpaUD6cI4+0PwUA2jfDBZhSoZYywX3oA8PzujpkHy1m\ny81aRlxpbQCBMQeX3L+lfe35Gm36An9yb19SUomhw2/5CGky4QdU1DGYMZuubuSc8GSYlFU6yfra\nc8STWVYCzt6i6/RAIUeezMYbVs7v/GKG8jMWIOb9sBhtc++WQe8qLwzo+NcyFPe4JyyQ4y8duO93\nr/lokAdW96onQryTNSaNWFngFTrKnGS4d7KhVvaVZ7n4ePGYZcVc+vyCCbD2p3RNX3XX9OBKjqjN\nPV/uO/GJ9s6FPWUech/VdM2gTwSR+NRT5QhSet/6iwwJLaD2fruMxj3ul8xozFT8uLQPCYaLvVT7\nsKxvRBR3Rn1SacnIOWnczQUeZKV76xuExBY9eQdY+wmz/Vjcdozjr6sqhcKotDg+mSHquW0evVfA\nyg/0+fOiYwkDLmMZy1jGMl7pWLIBX0IUj91qrH2rgHBCMFLuSU9U6zOXq8eBh9O33Iql8VUilPG0\nSESGVV+069KiEXorEyyad1V7cNYKReFifNUt+awxKLQd5Fh5MsF0zS2PGU6cNrUPpXM9ErJEMHH/\ndq4VUXvCflfKwmG4LphY1P+3DwAA+a+8Ia7BrA04aXrIirqy58yOe4P8mcU6uQvPGgFad9z2s1Av\nyN5lt/pjmASAaAhmkREfJy6Ah+OFbv2CFq4FkjmwQpDwUi1Sd69qPxFTl2tPMvUuouP3J0Zo2oPd\nULK0BilANO+lsiK1PlB75H6YfZvMAvU8HClkxzBSOMRzxXpWuGCCwWxF1SiqT3NRVuAMYrKuMJYF\nUD7QXh7AEUUmm26f4hN19WVVh6gH9G66AVz9QYDTX3V/F78iPceZgU/XdFoB5pRdpGUSP93zNBt6\nHIiALsNtw4s56l+4/R9vW9mWR2SEsO2JaO3m93Mc/BqPj0Kj3SuazfJx8fmtPFHigz+zMCmPpf4O\nj8ngvMKwTDqx59QPbf3DXDIqPo7VD7UNwKdsJIuNOCXP6kb8shiSywMgYIuTkRWlmBJpAA7OqXgy\noNc/K0wUT7U3cN4wIpTMr6Ul1zIBOD1KLyG/Ouqx86dWrFrGGx42f+h2jDPIs9djd60DWPuJrw4n\nNKaT9QIaD0hke5aj/Zp6VwFA/2IsCFL9QYbx9RW8rFhOVi842O559adj8ZvykhyNLx0WM111D+Dh\nTiAsnqTso/lT1w3Zfscxcwq9XOCB+uNEcGm2Sp/VPbRvksV6zyIkbydmI3qpFVHJxt2RTHbNu9SI\nG0aY07mPOxaFM/f6aMftX2U/Q6Gb0DYLAv+xNJHJgP7vvedeKxiBivgiziOFsTb/YoC93yJ4VBhW\nHvLQPQyywoJ3ET0ESqc5glH23DEPLnjadDpWVXSOpKSGhf5U4avuNbfPpQMr5n61uwnLGZp5AAAg\nAElEQVT6u7SAuEOyVG/5AtlNVjy5YbnptXSgquLd647JBWjN4Og9X2C0aGAFKuGHdfHECvwTDFXo\nVmSTfPWgCofAtEWfpePc+GEiD7H+BU9UzVeIbWfyhfPQM2i/4Q6AG3G9ORAO3FgkFYtCVydGwE12\n/oB6wuYWZkjSUgXeT4OMRGOjrrLlfIIBq09zHH9DX2O1e1ZnL5z5GFympuiRh6TGCx+utypMCQAh\nwUuTDYIej40sNgodhVG5ppUNDebEwMwKCvkxNOiOWyHL8jMaF5q0Vn8QSH1n2vAE6mM2aPuWKpxb\n+lz5mTbE56HWNPk6yyMyaIQz5jQkbcRMRC8DEhpHWOD0necZlOWDBLMamZj2tR+Rr7lFJfX6gwTH\n77qDbi3IfvFiKA8NRufcxciLzmiorN9gasWclJv/vcRishLI3wyN83VWPMvl2ZHsFpGUfnno5S8z\nXonJahnLWMYylvFi42VrA/7bjldqsurcKMrqaeXDPkYX3TKQYYosNrBjljwBerfdMnrle8785+jv\nbskqblZXoVoWoq3/9Azm6w6TmFcN+ufVOwsAGl+l2vNyviQrIrYdCUdWCvNRP8WULOirDx0m0r9S\nEafdaJiLgCvDEP5MV3nF4wyTtefZflmkAp3dmxWRJOI+j7iTy4qu0FPmHmdGow0PAbHYGGbIQg/1\nPcrwCkaIDewBlFSUYJCUFTIpfMl9IJ7CNwUPw4vusyxEGkyw0LPiybniDCoaKkPQn6uawoBsRxpf\nWhjLMKEnmRO7BycVg63v6Th0Xnf7t/UdOvbIkyzCGg9phZff7jcPvxXI8eWBRfWx9pfxMXPM6xbl\np2Rhct3BuWzZAThSBP9WgyDYYGrQv0EW5zd9VEm5geWaJmuAoQdGUrbwSO3ABsSWrBgUiW2YBxCF\nDc58/KnCiJxtLca8pmN19A1P+t9YVWFeUzLEeNMiaZACy5He+mwnM1n1JPMTx+QMkrlV9gwq++77\nLB3UfQ2wdNOmsVEYld2Phyruy9feeMsgD/g+UPiP+9UKbYUhg4lFyueIT21qBWaMeqoak5MtyuE3\nCmh96fbz6D0P2VOCUbfc+xs/ztC97I6/cyOULJLvrcmaZvD+zGJaJ0iVngdpwYjCSvFs0TGcma4+\nBueZCKXIiU10/5/9ursRVj5PnysZvOhYUteXsYxlLGMZr3bYZc3qhUf1gVvahBsl+DNa5e2UZXUV\n9bl5IxAaaxYZWFo9Ty67AmWhl6N/ifps9qz0aXEB1r/YlMxm5bOpUFE3/19XwR9frAsWP2kZWWnx\nymhWM6Ldl8e+aAuO33LL0LibIylxLSHH1r9w5o3Hv+7E42Z1I8oQx79WQJ0ot/OF3iPuiYrbFuN1\nd3oaD1y6+OzbMVpfsH6Zqi3Mmmz+lkp97OBXyBbhvpXjL3YydK9QZz/VluY1g9oj0j4r+0LqGIlT\nqkU4Zs0zXywgWKh1XjPoXdYCfvHYvT88rxRtzjJqD1VBY0Irb2Mh5n3xmRX6MtdOrAcxuUxLQOsT\nNm/U2pGNiDofqxstn0djjdDJJ1tOmQRw5xJwmSEbDRbaBoPLbiyqD8hRelstLoa7FiCCRf+y1rTM\nnP826L/mfowVLOpf+iJ6anJ1AuZsyfpWVC2y2KL8xP3WdJMtJgziEz1W0TacKPmG97n1kYfBZTov\nm0T0eBg9Z6RZ2qP6bYt6fp4ZDKj/CDmkJsbXVu2hGkH6E9XT5Os07EFaBwCI0DHT0SerRtQ2GDVJ\nS5Dan8m0JsvbKbZzMTm1vmaGTDGfrPhixBhMcpy8w9e/XpMp1b/WPrTIIs6SiHRTU6WWyl6O2leu\nwHnydZfttO5kkjnOq3r9nr3hvr/zZ3PMyIooi4zUAaXvsZPBWTSRhQjda2ySmpQ9qakmZU8UOl50\nLNmALyFYyHVe8zGmpt3SUYb6Zw5Lmm+4iyiYWDQ+dxPbdLMkAp4s7hoNc6x+5Kr53asRNr/r8JFn\nv+2qvkkpFJaP9WNHCAAQ3HDvFw+nwjBc+XSC4a67i7hnqPaTA+z9h06np3k3EVFcbt4NRzlmNff9\nrOih/U2n7FxkJ+BAXW3LTxUeY++o0zcCnPtX7viGF0rSjDvYdU+oyhOLaZNhQCs3ZJ2YR0nFw3BH\nFdABoHycYUCCvHnko0osJl4I+DMjTaPxqcWYb5wFyGW4Te+fOfkeQOGzPNCepOmKbre8p3CQl9HD\ntqDwVv2u+85kXQkAzPQDtMCfxQpJuYcaLVA2CFqdGsQHPh2fRZn6ariYnRaN9Jb5EyOipj0iLURd\nheHCkYX1qGmbIB+TGow3icByqNJLfB1NNnL45BQ7uzqF6VFP3hEpeJ9TpXNAiRHzBvUWbeYAjQ+M\nxWiXmG+PVUiVH6zTtRyFs+e9ofwpEB+73+pftTKxhX03qNbTSWB6MQFsKOMGuG2PdtxvFo88zFdo\nEnvMXb1WRHWnmbJJuc8tWJAYm9eAOjlRMwPRT/RhzRB99WkuEktZEUgC7u2isV0QHF79aCaq5wwx\nm8wt/Nw4+KiRq3D7NSJX3c+lUX3WVOYlE3mqT3NppM8ig/4VIlBMFK5kuL/YzuU+8wni7V2OFiTW\noD1jBGeO13yB2ct7U7RfZ6diuia2POz8KXnxXa8IM3IZvzheiclqGctYxjKW8eJjmVm94OA+BC+x\nqDwjuX8P6HyNVRQIJurkOHnPKUzUHyVIC7widf/E7RQeKVSYzKJz23FyWfrfSyyikRbYa9zRTplT\n90ZJ6OajnVgIGsUjl7N3vrmN+lcumzp+OxR6LX9uuB0I5DI454u1CPdhHb9TRJHUGuqP5pjX2CmY\nVnGnFoe/SpDimZUswKdVmucDic+U2RwZ9X0w2WHaVIUPppiP1n2BJ4rtXOANlstp3M2Fejuvepiu\nPb9KnNeUlJEV3arVjR8fpyekieKRUoJ9yrZsAIBgnHAI8asab1GG2LGYQaFPtnPh/ag+srL9/lUL\nTpPKz0juZmBRezSjcQgFUhlctDK2SYuguakvBAvOULxUKc29q86SAwAygnOtpxJCkzULS3YgWcOd\n2/AkUJp6buCPWOiYCCxrCcyEVCnOfJFZYhgQuScEG1gjWQjHbCUX6nzU9zDddh9m1YrZag5DmVnx\nUKnx0zWWI/K0DeBBhKz0PEnDZAB8yih84Ny/pLG45N5PqkYUSLJQM2rOQpKqqnLM60YcfvNALTDY\ntZgz5OKZelMNzxkUSDR2dE7hWM62j98piGpK9RkjCEbg/HCoCjGiGDPKFXIsekK3Z7ggmOTC9phX\nDQakUMGkjHCYYUowX1pU7yxWuCgdZyLenJSMQJ6CRiSqVDPcjRG32R3bfWftozmO33WDUehbgVRf\ndCzZgC8huCYUDXNhaRXOZqIgXnrqnpynb9flwZEWPfGWYlZfHhgMzqkkCrPM+GGUFo32PhU8geG8\nBZim8pA7E4HTd93EOKtTU3DLQ5Fu3JXP1CiRH+ZJ2ciFGXdUmmZWcxd+7VEmNblFSJD1/Br3ExSf\nOCxk/7dbaDwgmSRiG3VvAJs/JDbWqtaX+GGXloHOdbdR1lvjvh0AOPmajzrDgwTTTZsGHtVX4KnM\nkRzT4sOoZhCThJX0kaSQh8l40yBhNh4pTNfv5zj9mvt75RMrDaRcR5q1zIJEkRHVdZGQuqF+T5XH\nRo6ZYSB/Bpy8Ter0sW6X5YzScg5T5AHyMNp+vmcHBsI2i3qQsRhepEVTIReUzu8FMplU75CvlAFG\n592L4bMI8TF/n7ThPoswuEqGnIGVyZzZgGkrRXhKrgArGaIzWngQzIkcmG5z17ZBQD1dzHqMOp7A\nZ/0bqUxcKx+yRJBOtlEPCI4g4wYA7TeAje/RPu8AT/8dgjwfuvfjtsW4ptcHy2HxdWU9SFNvWrIo\n77m/S0d6zfBTnOGypKSTch4BfYJkVz4iaG8LqBGc2L+oOn3TsRuncGTl+7OGEbXz5l1iZV4LkFSp\nfnSqbFxm3XVuBAJnApD6F08mSckIsy+YWFFFZ72//sVAjFHT4mLNyv2bFXRf8lDFCfjZ0L0cIqTF\nXOkokfrvywi7nKyWsYxlLGMZr3osqesvOmhhMS97WvifhNLZPbjiUuba4zn6Fx0+MG36shLibvPu\ntUgUFArdHJVnDA9F8poy/DIkJXf45UMiSmwFmK67Bo7JaiAsoNKRW9maPBQYxORAed9tf3C+QNvJ\nJKPwUlWLmJCaynjNQ6HPjCSD1Y9HdCxuudq7GGK83qRjzUQtnAVrL/zRWMR3414uxAc+/qRiBWbj\nDKRz06D62L1WOtQhZ5glKxhRUM9CA0sw0oRIBVt/kYirbxYDHU9dYwFXoJdi/xyY0vd55dl5zaD1\nmXtttOUJQSFkhezYwLI31AyYXHRjXejQbxbsgmiswXSB2AEA3ZsAX0DhwEjPEIuPWt8gKpFS/sex\nWLhztlHoqAJG1IMw66IOM7Q8WaUD6iPFv+8lQOGUes7GqhxR2me5HwuEDBMClv4OT+n97VwK/+FQ\nMwL+/Vkrh98j5GBtjpz66JhAEgwNxiR0WzwIBGY8e5syu/u+ZkMLMB5/v/IYmLM48ARofERC0Bc1\n9eQ+rllLVVMEej+1ohAf9RQtYDh2XlMySYWuw2iQY7zBgr3ObRmAKGnEp3aBQWeFYchSWeEQGF5w\n22x9Yv8KgtK4n+H0Tbf98kEmzxRWHVn/8Qxnrxdk+wwpsoSYlxqUDpUVyYLY/OyoPUoFcgymFs17\n5JFXZlKJFciwfm+MqO9+i92H4zOLOamCHL1bkN64ZfzieDUmq2UsYxnLWMYLDbvss3rxwVkADFB5\n7NKReSsSymj5yK1sBuf1tfrjBN3LbhXIFhgm96XW4s8tDt9zlWUWTZ02fXHltf6CqykRNfzEIqe/\ni2fqMdO/5JZkzTtT5OS3NVkLYTLCwgnTX/l0hv1fc78Z9bUPqkLU1CzSXgx/ZtC/7LK4AmVGUS8V\nskQeqMoErzL3/05JajLGOi8oADh9w43D1vcSyVInJALc/EJ12MKRZkGc4QRTKwoexRMVJWUrjaTs\nCdki7CuNenSOVu6PPHGdzQqQLIqJEtbT8fHmqiLAGWAeKpnDZEDzJ4FsCwAqTwxGO7zKtZKFjG64\ngdj4C0+06zpvZvBn7BdG/WK7FuGPXO1xeDVVoVauQ03UpbV/LYU3Z4KEHkftPtW5cisrej4PpQMj\nNavZqkWRaPScTeQBEB1STaqmGdp4112T/mmkahG51to4m5k39VzYfgEzopaXDjRzyypMIPLQ+NJ9\nb0Yr/8mGRUCkonndIrnklvHmkJu/1C8rLeu1ViQKvEkXhJjHRkR9maAyWdfMHEY1Hfn8uXPLv09j\nGvno36Tz9x1PbE+kjhVAaou1xxkiqllyv2A4tohpfAbnPYSEVgzPUSvKGM/1I7LaBT8nZo1AlGK8\nxArBaYW0AXuXtR7sz63UxPk8rX6cynNkshqI3Q5n9YNtX9y3e1eVtMW1XS9VsshwKxBljJcRy5rV\nC47yM7V9Ztv6+r0R/CkpVxPDL/cDmbisMWh96TCJwpF78s4rddlmfJYK8SAkcVcvsXJj2dyiQj05\ni0KzY5osKgcpgrH7XqFLkMxKiNGGFktnJIS79qH7/bM3ytj4MfV5XQmVuMD71MnQJlHV2uNM+rxY\nqT0YpSLE62ULUJY8WNUbx8ssRhvu9DEMOFkJUNl3v8+NvJOWJxNU8URFNVk2h6WcAHfjcwMmk16m\nLU+aMQ+/4aP2lXu/Qs2rrS9m6NFkPq8ZDC4qWQFw0jncp2QygxoV7gcXaCGyb9Ej7yJP1wfSuxWM\ntWm0+pX2eTU+dft9/H4mzLrmx548JKW5+sRgSk23xWeBwMT84JiuQWCY6oNAyDY8QRqrPkyTnUzY\nfobg3tE5KwrheWCkJ4kXTd5cjQ79GeTBykSLYAKMt0gWbGgQk4Bu901iG54GGF8l7C3xULnP+KP7\nxx9r8zqgnlDaaGswo4mz+QUw6bv7i8cpPtPJyORGfrf4hFYlBW30tZ6VSYon8+pji85N+q0uhFnK\norTFsxzh6HkYLisarH2fiCKxEhN40VM8BTy6/to3fOndGm0qqYMXcv5Ehaa533K6ZnDwbWIWHnuo\nUrPwcIvk1UoGk3Xa556yXUW8NlDV/2BinxO1BYDisxGmWyXa1xTTphsrJpBUDjMRlJ6uBLJY5Gur\nsp8gmBLzcOQjPl1geL3Q+OViAy7lfpexjGUsYxmvfLwSmVWPOshLJymaHznViu6bDVQfuyXvZMMt\nA1ufjzHZdEvGPDRIiSARtWmVVjRSDO1fjNC4N6Xtx7J99sgq9HKxUw9HKjRrLEMJGYY7bqU2oW54\nL4H4Zc0rHqoPSW3iIttWa/+Fl2j/Rzgkx+JcV7SzmocSeU4Ndlmo1hNR2jz4qwKfjXu5yAQ1Px6L\ndUF45LbTuxigf8HtM5NDggnQukP7XDZC1ujS2BWP1arcZNq/MtqmDKkLySaLx0ZWxww37v1GhHjB\nfZep0wz5RD0gqbFahIfO65TlHClRpfqQqc+aOY62eZ+AEvXJ5JEW+Ee7tAO+o7Tzb5qF7AxwmRl7\nH83rOVY/dK+LX9Nce5KKxx56r9MPkDhqdOZjcs5tNDrxWQACyapbDUcHoWQx8ZlS99O6QnNMTe7e\nsJjs0Iq648Y0KwDFQ5agyjGiPqjmhySL1DBI6ToNep4QRNJ1yryONYPPihZp2b1f/5IzP7Urmax7\nmK4RwYOhs4sqUVXet4iOWe3EHVPU0ywtHBiB1JpfMsxmpKcsj4wQjALKfPoXVBzX+txHpddXMIW0\nRvSv0O+MjGR7tceqRsH9TOE4x9kbJNh84soDPFZuzIH1HzCMrQQNzSYVTs5iYOULN5ZntwjOe5qj\nfcu9v/FBJkSuCrV1HP6durhjd28YVChzqxyyLJxec3E7E9m0uEfiyVUf3SukMBIA4Vih6BcdSxjw\nBYf47ZxOka64J2fxNIU/Yj93d5VNtmKphRir+m6FlrsbWp+PpDcLVo0IuWk3jT2VTpkblAkyS8ss\ng+JLyn/0boyNH7vJLqmQuvpeKrBZ1LcY7bpJqnjoYIjxVkEmG1hVpmZMPPe1vyScqJozP/iDUS7E\nscmqL5p53HMCKLwyXY0FsutdpImnbWUyYUPEuG2lQXGybqQnp3JIMEVDJ0gv0fpW9RHBLIkVb6vm\nnVzgK2Ze+TMP699zvmKzzTKG50gu61gfLIa6m4OxFVNEVuruXXMPL8DVVLh+yArasNrHYnKtmfHD\n1p/68gDNfdXUY/PBSdVKHah45GFwAc+NOaBGjd4MMIPgue3nBYgeoLEAuI/rjIz+jg3mNRrz3QxB\nj3X2GA416F+i72/M0PyOuya7v+KumeIXsTDrbDOBoe123qIFTpyh9AX1kRWAeYMmwX4gh5HHz09A\nADD4tqv9eg+LUt9a/Aw3nBcPDAZXyA5+4gt0zoaXSdV5kgFA7zqQNEmuK+ZzCtTv8daVxcdM2KgH\neGx0GCsEyiab05YnPVtF6gErdC2612l/hx582hbLcQ0uqUalP7Oo7rnJhlm/xSMrepXx6cJkS/f2\neEPV4dOywbTpLuqND9z9PtgtiGwVvwdob1/xNMexs6XD5X82QfuWe2ZNWm5M/LmVcxpMciR0fbY+\ncjvdv1GX8S8fZDIxv+iwWBIslrGMZSxjGa96WMcI/GWJV2KyKtMqv3+lLMSAecVDvMe28e416wOV\nPYeNdd6oo/qUVlRNZpB5UuCtHKTCkjO5W2VV92bitOt6mGh1OOFVvK6e1j6ei+QKu9cONwM07rts\nbLAbicBtMCDXz6tFWfknZe3fMXvu3+EFD6077ph6lwLJGFi26fjdEJUnC/0dpwq1AJRV0K56SY7B\nrvsxZttZzwgLiWWrBru+HF/Us2h85cbs6OsRfc6ifJzJ7/DKuPO6+zc+9tC4y+fEiMwS97xU9iza\nbzsGQtzNRJWe4dppwxcyB6x6hxUIEgnHnqiW9C/6GHOfEsE0SU2hvzxU4kZC2cxsJUPUd6vfpAo0\nPyOY8zW6ZgJV+B69PkPlY5elMJvRSwziM/qtCmAr7vykROW0oUXYputkpGw4UfioGEw33fGVH/mY\nfd1dn/Gn7uQOL6dASMf6NJaMqfpTcr++lIkQbvg0kiwwp8wQJkDGDLtYmXuDd4jVd1BAfEzithcT\ngJQx/GfESu0pwSQvWHESFo+vEMLgyWJIFsOQWVKxGO0QpHUK+LPnVfsLXSvXZOf2X91+824u/Uvs\ncWZSvQ4mGxZluj+Yodq5tWBrP4Y4FYgHWdGT74dji+HW871/g/PqoRUN9A2+dzs3C6KEL31j0H7J\necUIwchkCucXSfViXvVQeeSOabQTi6gvP7v8uUX7NRLE/iwTFuLT33X3SfVJLvdnVjDyzHoZ8cvU\nFLwkWCxjGctYxjJe+Xg1MqsvHUBeikPYAmULN8oYXndCtqWnbsk1ulDB+LxLV7JQ/aw4m5i0tD+i\nvD9D8557f7zGTT9AOOSVsSdd9OyEuv3dKeYNNyRnr0Wyet/8vsuchjsRsoL6+UREgJicc6voNNae\nqTQ2OPcnbr/btxxoXX+Y4ez1QPZl40fkgEuOwuFwob4VqD5ZSCtOL4WIuu5/O8TGX5JOYMoeXqmQ\nNaZNziZzEfydNQ0OvskWLLqa49rZ4CJE7WLtJ0Ttbmi2Odk0ojnI1G9/bhH1mNQSYNpwxyqkg04u\n+xKMtacrotpZUjJSGF/5ZIZg7Pav/RY59c48FNqk2hBbWfEL5r/nS+9W2DdaTK+QEsWpj+Elt634\nq4Ics7/tMsDydytCTbfGESYASG9SVrSYbVAfXxpofanEqgYebNn9PbxkUfyMrgUWjM0BkEJD2DMw\nCfXRUTIQH/mShUzXcsy3VAfQ7ahFdMTmXhDvKzvSmtV0nTK3dgB/zBkpt3sYFDqcmRukRWp9gNau\nqo+0RWJ426UalS+YqKNqDp3bFh5Zi3C2Ot4wUscsPzUYb9O+UGbYveph9RM3flzvTUvAhASBg5Eh\n/ydXUwYc4YO1G+d1yD3nk2tzMNXaalIxqO5Rf9R1EjneUyuWtGQlS9r7u5G8P1/QluSarfRAziG9\neyZd+H3KwkxmUX9MPVs1X1pDImpxqT5N0frcvd+5FooFCLdIzOpG2hnqD+YIhy+Hum6xJFi88OiQ\n1XzpKEFWZObNHEmFHrwkgVQ8nGJw0cEbK58Ocfo192DgPg1AWV6T9UhYPI177gN5YORhmRSN+ECx\ndMrRe7E0EIdDlUsab5L9fGrls/VHmViz+3O9mMsHRNooFAQKi0bcVJmj9khvjBkJ1HLhOY0hfVK9\nSwVhxnEkFSPQYPlImxX5c/2LgUCCGx+4Yz57vSAEFgCIiczAqudRZ+G9M8dYA4DqY25+dsQKd/y6\nr9wHNasZJEUinQxURoY/t/bDHrLXG/Ib639+4o7vLUdxDKYWQ5bmaQTSH3Xl/3A3+9mtWB4ieahF\ndiaKjLct0hW+2UNlYVEj7ryeo/UhCQHfyqXpO99z19R0ZWFiMQpvqZyQgTUMfRlhHpqUoLcti/gJ\n9fdsJZiu0mKIob++L8zB8YUUEUkzjS7rAyo65cWKEfiRjQLTopXeq9G2+lUZ+lzuW0TX3GBkn9Yx\nWyPbevK4SktWHozeXCfJ4Lor9k8fVfS1scHan7v/9K65MUnOzSAaXLkSKBg+qz7OVc4oVmYjyz5F\nYyOQGLP+ogQIaNIzmRVZMfYIy4oK93oJxBx0SPdb7i8YHbYt+rvU+3hCA2qtTAzW4LnjA1zvFzsu\nDHZ8gfn4fra+LsbCscqaVaiRd7QVALSAnFcMpmTeycajZ6+HqD8kaPggV6PHfYUzU170roTIii+L\nDfhy+6yMMbsA/imADbi58Q+stb//M5/5hwD+K7g7agDgH1lrP6L3HtFrGYDUWvvuL/q9V2KyWsYy\nlrGMZbz4eMkEixTAP7bW/sQYUwXwY2PMH1trP1/4zEMAv26t7RhjfhfAHwB4f+H937TWnv6b/Ngr\nMVkxgaB3ORKyxWQ1FMo590P5c+0Gn9cj1B67lQ6n6VlkpGfKS3JY3y1pulcc/JOWNDNJKkZcgRla\nWvtoLq6/lf0UM6KtNj5zy7yT9xootnnFnCJoPQ8PAMDpG24VGrdzKcJzmNyKaoU/t7I6ZQsDLzU4\nve2+X3+YondZIUPgeaHcpOSpNX1V+5AYMjy77Q4qHFpZBeaBKicwTTgrGJSOlMjBGZGoCZwAE6Lg\n58FCrwuRXpKyJ6oJjfu5wLCVBw4vPPiNljghj9c97P89Jx3ALQKzukGVVrn9C754CvE5m9eA8/+P\nS//u/mcNyTK4XygYGZh9d86SVi5khNpddj/20L/CfUA5MNLVMwBMN1MhOFifPgO1DZlASRfx4wIG\nZP0RbblB9b6oYtZy+1x6FGJMGVO85/Zpup0grJCQ7p0KciJAlB+698e7GeYrBFme+aIQMXuDUtej\nWBRM8jjH8LL7m/e5cLWP5HOHV6e1HKgSKemR9nFxlmGsEh/sp+47XsEiIxgTYx/DcwTzUQZeehZL\na4A3N5KdMHloBE+kpeatHMVndM8QnX24o1k4W4mEQyvbNKlBlXqWEkIF6vdzueZKhzk6NxTGp2+J\n4G9S8eT6YfHc+qMU3askhFw0Ir3Fxz6vGbnnrBdgQvcx71P1aS7bmjV8kUvjrNyfWWkXKR3nqBBM\nmpT4+FTtwhoIDM/3VNzxpJ+xeDjFdE3h6RcdLxMGtNYeAPj/2HuzWMmy7DpsnTvGjTlevHnIeajK\nmqurJ3ZzkuQWWzRFQ4RBgzAhEBJgA5ZtAQQMWB82IAP+scEPf9gyYYmAAJqCzcGkTZtmS2ab7Llr\nrsrMqnw5vnmIFy/m4U7HH3uffV6qu7opMhNONuIAhYy678733HvOXnvttfb5d18pdRvAGoBbZ9b5\nxplNvgVg/S96vGdisJq7SR+2eK4Ab2gUjEPErFwcsG9VWnSlQ0zmfZEpcQxLqNcPyvkAACAASURB\nVOhZo8NXI5EWMh/g+t1EsPCwm5352POLfzjE6TVKYExS17IAL9OLnXuWBTZe8GWQMoNd6SBDn6E5\nd6LQO89ma+/TOR2/EggUUn0UYzpn2Ir8MqUKJX6JBmsuikdm4OXrCJXkj0qHuUCS1UeW+WfgEZMH\nCk+JHUX30RbNmo910NPyYVC5ZSaac3diLR+ZLLAwnBm0s8gVhmPnsieTgdanqnxNZ64vA6qM9Zvc\nWu1RaiWudnJRazfSS9GRxt7fmKN1NzX6XLPkMPQ7ncuRF/k+jRw4MUNmXDTsDZTI3FQ3PRlsRNop\nzKE5F+IujZEPjCYQf2zKKVSPcRxYeG7a54e+mAJs2DhZUPBOuZh3kWuXKgn0I0o0TpsZQvarGnFx\ncLAwgvsO52EjLR/+jG3pUU3Rv2YYdgpu/3EdveFRCc55Go2KH0RIWOF7uMESTkMlMNRkPUFwyLku\n/oal5RyVFcZU7zYwYJ1DMYdU9l4VD21NmYFJ45rdV3jkCnxm2HZpSUtu2cDqaaTk75VHWuzozeQt\n85XIYnUvWW3KkPX8RssKK9+webD+uskV0UYHn/Ex/wHLsrnWvNVoDDoxZFJaOM2ltswMYL0LrkzK\ntAPZvxmo/RHQvEUnG1dcmYA2P6AJzP4Xyoi5z3kTLTC8SVf0Ljiocbohizx5F57BNq+UevPM//+6\n1vrXv9+KSqkLAF4D8O0fsL+/B+D/OvP/GsAfK6U0gP/xk/Zt2jN7l2Zt1mZt1mbtL960/ktHVq0f\nlkcCAKVUGcDvAPiHWuveJ6zz06DB6otnFn9Ra72rlFoE8BWl1Eda6z/9pOM8E4NV7wrNPJNIwWcV\n7NqdAQ4/S9O4kqlD0JBoY9JQyAKasjS/QUZN+uo8YnblDfoaKUdhpqYh6CU4foVi/WIrlyilyHVG\nrU/VRY15sOagvMOzU66fqG5bP6zuBRfNW5w4ZzmVuOKgwTCWm2hhFpptFt+eon2dZr79jQAhw5zd\niyynMwY0QxZRKxd/HDNzi1q5zD4ndUeswU39Sf1ujuNX6PoN2y/3rZpE55pVGxix7FLxWEvkEdcU\n+hvGM4hnyEUlM0JvqFHdphlt+zk6zvK3RuhdYCJJV4syttmmvJ+I4C5gZ7kmAhssu6jw80mKDnpG\njaNl65kKj0lc0X7GC3aWXGCCwmQhl9mviKM2NDJWeBgUtSg4JDUTVjui8JD0i1BNI/3NBAAFqCbt\nLBsXzqhEsFOwqxHsMsutrKH4XoZXKBwYHpbgsswQKimmhk3Iqhh6syyuv2mkkdcZxjtmW/WKlRMD\nLAvSSCypVCFnpfmkZBUuJAo4o2pR+8BH7ypHHBHDmUce8GcNvhagfJ4g7+lNIsW4Eyv0Ol7UErkK\n+WgjE9JIVrBRuLn/0SEEmjXnnhQgz2S4plA4wWOtd8k6KTff1/KeGvLQ8FwKlXFkdKKFIQmH2YB7\nWtCS0bKy78nUQNhaon0n1SInZqTSCi3LNnSnWogRJgIsHmicXrMeeRV+J5Iyq5oc2/2nkRIYfMqs\n28adHOEpdZTe+RCuqfN8Cu1pK1gopXzQQPWbWuvf/YR1XgbwPwH4stZanrbWepf/PVJK/R6AzwD4\nxMFqVmc1a7M2a7P2I9q0/ov/98OaIuuBfwrgttb61z5hnXMAfhfAL2ut75xZXmJSBpRSJQBfAvDh\nDzreMxFZmcpvf0i1UgBw9OkKise03ODzQTeFM2Vq+TiQiGf/Z1ZohdzizoDNjxjqaXQEiQygre5X\neBLzehHmbhHuXDgtwGUZ/+EqzaKy0OZ86vczqRsxdRrFo1RsCAqdXPJTI07W9tdtIjXs5WJXMneb\no5XnPcnJubFV7ojLJlmuhMCQlBVyzsWd1tl2ZDtDgY9pSA/u2ObU1r+aiFhng/1+4ooSP53CiRZN\nwSGnQZ0pKReYczJ2KnMcVU4bgQj9uhMtka+hI5/c8LHwDk2zj18LkXtGLxHy73CRCTQJRW+AFRce\nzbuiATlt2JoeI86aNlPRHowOHIzOsR3MyJJfTP3LdCGDw781ExEKD0MMb3AY0PXh9Q2ZhPNsR5b3\nn7vA5Crlh/TUiCRqjCPjBwIojjzSYSB/v/jaLgDg4ZvrWHttn+7Fn5BS7/i5CZTRHnSA8C6FIdNl\nDtFyhaTBeaSBI7mi6Tr1WTV0AabR576GLnCUaryferY2bLKgAT7twrbJlwL9K3QvSg89ZN+lKEvx\n/XXHkJxOv5kjHJsoipaVHriYLHKUqIDp3Jn6MrBvmXq8jik8sVGWdizN3OyzvGMtXnoXrPuzeV/c\nqSt9uncZ4uFlolUqMKKffl9bPVE+p0ldoc5lK+3nQ8zdoud/+Gna6XTOko78oUbvHO3AWI1MGwoF\nVrOo3RlivELPrP0Ka4hu51LCMl4IJGJzTbWCBgb8TdEORXp/RdsXAPwygA+UUu/ysn8E4BwAaK3/\nCYD/AkATwH/PtjqGor4E4Pd4mQfgf9Za/9EPOtgzMVgZIkNxb4IR11T5Q8BnYsWIYaToMBMFdneS\ni8ySge68qRZILBgQ7AcAIcNp3UuRdPK4qjDHasujFVoY9DTGS/TGZKGDMSf+jaxSMNAobdFgdvRG\nBQWub0oY5jh+xUf9npVcMXJQprVvBGjepE48mfOEcWQgN3eCx0zfTDFteZ9hyldc1Dbp7/XNGEOW\nmZnyesNFR+qMhGnYzmUA2v+cJ6Z+rVdovdWvpeheMhbylkBSODLFn1pqsqpbmcAbZhs31oh4gIpO\nMpkAGDZdeKpFvb5+L5MPR59rY/LAGjVWtjRqD7g+7EZB/m7Oqfool4mBEezNtz2cfpqf82kgRatG\n4TuNAMWQk9t3BP5zOszWW0sQlemYk6EnkJyO+AvtaLjMEMReAaUqfVkH+1zjV0+QT6n/aD+D0+dB\nYI/O3wFwd4sYkM7qBLvv0MTKMbVdAx+KB9asniJbMywDJgW0XBmgcWmI5JS/6FxorAs5VGLkjBS8\nEV/XghH0tR5g2oXcHyMUrF2gwKSL4fkU9Zv8ewO8vcaAf/s9O1gGLJ2UVIDSDpOemnYSYvrZaBkY\nX6Zriu4b6MyShpKSJW0YuDA61EJwKHRyJDwZaL1Ify+0lC20nSoRfDYtrp4RYp7ad8r0nTSCTHpz\nn8haAETcFiBvN4AgPcMGNKy++r0ULk8kT58vo7JN19e4wymCiy6chNme844c37ASByuu+PJ5U41p\n5ekBXE+ZDfg14AfrOWmt/z6Av/99lt8H8Mq/yfGeicFq1mZt1mZt1p5s01AzBYsn3Ux4f/x6SWie\n8+/20b/AUdbI0JVThKcMebgKjW9TsVD/VdJuyXwlUVp0GsvsvHGHZj7DFV/sIIpHua2zMjTbSKGy\nw9JKq6HQtDMj7hk4GDeJZqzORO5GumXu40yq6YvHZ+rDjBPtVoYs4ChoyRGBWRNhhR0tNODhkisR\nV3+dqd1bWuy+D7/gYu5dnika+GRPo8cOvGaGm0ZKoLnGZi7SUxFDeyrTj7nnDtYej8zimhK/q8PP\nuCgRoiWklCxUqN2jQprDT5fP0Pi/V/w2iZSoBdTv0QlOGq5ESXFNYcAdYMJOro2PctQ+IoLRzt+o\nI2XxX0NdzyIN/4jJDsrK/ExWLNyrmIxwdv6q57j2qRUg6dAz9c4NkbaMaixHhpUp0kd00MLlHkYP\nKQzwV+iaC4UEOmIac+whmbDdxCW6wQcHdYnMPD9FyvBixkQTHWUQ4NrRqH5I19+/RPc3XktQmaNo\nvt8qwRlz/2c5qXDfl/41Ws6RFzhyZDp+55UE5TscgTeBwrGBbGmbybwWyLPxvoveVT7XgVFYsKon\nuQsMGDKMmSwQdKw783QtRuNNrnljJRNvAjS+w8s4gkpKEFuQoAOkLCFmFCjK+xlOnhecUJQthLRx\nrAUaNoQdwNZRRYcWDUlDJRY5ph8GPY3T5+g5l3cyef9M2qF7yRUFjdyzUaDifpqGDsYGQSgqxDU6\n1955Wjb//hTtG3RTCic5Jk2jykMIgHY9IV05qRZI9Gm0v7IA4/dpz8RgpRnTDru54NrOYILqx/Rw\nW58iHH20VrT1HSUHSYUgFXdiXrAMmnMip1cLkr8xdVhhJ0fvPEOKJxo5Q0Vloy12ycd4nnpkUlTy\nwTVFy1pZ/Lv54RhwzYsS8jFd1O9ynmvZFWXx9ovM3EocNG8yZDnRAiOmPBgOV5UdTA9zDNb4w8Qv\nidJWp61+V6H9HLOkuDantG9ZgGagjWtKCq3bNzwMOadTOKQLiSuBDEZpUT3mM2SObV7c6lYuBZTh\nKde5nAtw/Cp9bdxYo8THNwNQ6SiXlzjoWO8tUwdUvXs2J2m1A43E06ShEL9BTo6VnRwnL/FkhIua\nJ55CXGcG5ti1Ro8nVm7IfNiL5waYfEQst5zhOmdthKRNo706juQjr3mAi6dF6AoPzJkDzfBZwnVW\nee5A5/aDaXy6Tvs00Vpa6uJwi+rEMAgF0ixdJRzNdzMMRnT8eBgg/wnG13ZoAHW6Hvpgc8/7AfTr\nzAx+j7780+tjxCcMY3cc5JwzS4w5YzFGWjYFshqJKYxlBazCsRIYfbSkRHW9vGPr9UQJf1+JaaQp\nznYnFsZ24gDDNV6Xn09cse+3yfNohxh/tMxChoaBN6m70iemc8rmwfg2u7Fl+1UfpcIg9fv20xx2\nuPbwZV+uyeHrLG9N0WUGK5RCfZNGMfPtmNYdLH2HRsbTayE6V801M5w3yuEak9DQToEMzNe7GMg9\n9Udacmmdq/RSFE5yyU17E7vdE29/eer6M9VmbMBZm7VZm7VZe+bbMxFZmZqDsHPGO+p6A0nREAxo\nFh+eTDBeojCgcbOHzvOsksCzh9PnQsy/TzMib2LrM3KPZp7RSSaQXxYoFA9NnZSRWMpkxlM6yqT+\nwkRI9c2pkDHaL0So3aMZmaktKu/kIp47WrZRRmmHYYajXCAJldqIjUtGsPztifXUqSiB8ky9V++i\nI54/o0VHpJWCriEVnJHTOaONeXrd4/PPBL55zPGXz8lJLCRpkt1+3zIsWy+5WPtTur9DFvd1p1r2\nWX2UoXOJ7xnXtjiJjVwH666wrIxq93hBSeRYaGmBfIwChzcBwEr0nSuOrTPjYKW8peEyQ228pJGV\nuD7LZdWBvkLG4XA/qwAccSiXE/S3y0hYVT1cHqEcMdkioXs2OCmi2KCp+figLASFjeukWjqMAxwf\nUOQXlGMUVglfKxcYTp6EUMaJeG2MtMU+Vl26wcrRUAe0zFUa00Pal8NW8VkpR/UDhgYv5NAntF3R\nPOfTQJyMoyMI2SBlWalEB8grzKpN7CzbCOION3JRmFc50PiI9tX6W3Qd0dtF+Kz8kBYpugIIPgSA\nAErqn1ROlvQAwWcAQXcGMjd1j5M5oPmhVUop7ZnIwtYGmu3Lu1pIQ+bdnVhdZIwWXZT2H69jmtYV\nBuz1Vjyw4rsCsa+EqG5ZIo+Tcp0kv7uN21Y2TbtWLqq8R/1k3HQxrbNqxk6KoMfMUo682s8XUDwy\nyINnWc3aQn/1O3R/d3+yKDVrT6X9COGAz8RgNWuzNmuzNmtPvv0owYDPxGA1bdAs6Pg1R2Z2YTdD\n4YRmJ0GXptOj1UhmP7lfkRlT4Zj+7sQa4wWjYJHLLE9pg7+7gmv7o1zsSEzOpnSYSWV68a0EDvtE\nmTqT3oWC5FTKe5kkVs0scNpwZBZZOAE6V0x9FxMpmkoSq35fi3eViYaOXy2IN09ccYWeayLELLKR\nhzfScJkSK7VlSmHEOn8Gp3djLRYiuQfxwGq9aCw0lJx/6SDHcJlnpw2Te1LovMSR5QcOWi8bQym7\nTXRs1ShEL9GIEy8puf6zrqzRCV9n1bPaabGdnfYv8D11geiA79nQ0twNtXm4qs7Yemh4VTpIPinI\nPTPisHGiEFylcHR0yHp9lyZCA590CpgeMqmHiTzBtSGWa6Sdd/+kKFHwXpsioFp5DL9I0doXz9/H\nV79B/OoXPkvFP9/cuSzuvQuNPtoe5+K6dB+dUx8Zq1bAy4GQ68QeUafMajmu/wLt67s3L0ExpX68\nwhFymMMt0/E7b7jwuC7MYamMvJrL8wW0zO6NL5pKFE5fpX2W73qiYBK9wxYqi1ru/2Reo8qUcBON\nda9pBB2bk5pyZDdatXkuo9BgSiDqm9Y9WGU2J2vyrPXNDIN1I16tz+S8aL3cV9bXzFViN9J6g66j\n+Y4rtV1OeqZmb9HWiDkpPciwmwsasPAuRVv9jUDew0IrRu8i9aX2ddqmfi+Vmqk0cjBiIVpDUZ82\nFNzYk99ZwPt/n17K06sFuDF/Zw40qv9aicuTbDNb+yfcCi36wCx/00NWMB/bHO3nOIntG4YBsPAe\nhc/99VBeOG/KL2hsQ/604KB0wDI5IXUWlUKkf7xxjnHTkC0MqcCTj6CT2cFkwiF/dJLBMQWYnhIf\nH9OCrhWtdBILH5jJTekwF+kkJz1T/2HqjLYzjBaNtw9Qu08vzIQH84V3MilwDjsavYssL3Noi4/N\nwGtaHtgBUjvW+8rnc/OGWv6eBUqYSWH7DPTC3ky9K7lYqBvoxpvkYprnjbUkwc1zcGM8BkUYmNEM\nqtqz6zqpFijHJN2dxH5Y06L1dhovWZjQEAD08lQ+8nmTBgC372J0lfqB6vlINpmSxnBg+KCAySIb\nPU4c5KxArq8wXS5XeHCbiDz1c1307hMGFef0AWsdR4hWSFrp3eNV2f6bH16hYxYyBFU6/t5+A2DI\nUjHb0Fkfwb1b5HumkLE5YsrQnX/k47u4SOeSKSlGDrpm0uYgNbVPhx4SUyzc9uX6zCRhvJQjbdC1\nlrdYzqkIeD0m2zS0VeVnuK/8UGFw3g5QnasWMgaI6GIIApN5O/ExDEPtKIyo/hkhC+3EZSUQtnas\nxb0puO+dd1F9YDuNEag17gKFjhYIHcrWRF36HTYzXbdFwyoHTq/xpPGMOK0hCvlDLUK/40VTt6iQ\nlmib0laMSZP6lBl0u5c8Ydjmnk1TjBbo4quPrOPC0ndidC+yoeh16jNROxeCiHYBb2a++OdqM4LF\nrM3arM3arD3z7ZmIrJKqsdXIRZokOBlJqFw6tLJLRg1hvGjhpZgVKpyQ5PcBIiWMFmldM/MvHSY2\nsugmSHj2JKSCQGH5WwT5dK+WhEprYLosUCjv0Iz7+LWiUHZNZFA8zsS2Iy4rhD2efXGC+PhVh+Rn\nANQ3h9j/MarfiVoWpjP1Kf4AGC4zzMjRWn/NlVlg94qD8jZtd3KDJZ7aWmA4M6Eq72UYrljSQ/sl\nWl5gV9PcU5K4NolywJalL387wTY/n8oDRyw2vJGJMF2paZk0rRySULT3tUR7USuXvxto029bJ9dJ\nw5GaGxOVemPrdJsVrN35cINhmgMX/oDp7H9awOmL3FcMBX1xinqV4JfusGZn3ExKSK+NoFoM46yN\nkBw/HprWKmOUmsTdf7TblPqqnGG8ynof4zE9oFG7iLBB/SPdpgvJCxk8hv6mUxdLF6hoqTPgCPBu\nWazs/ZaPlGny5gEkzRRqxB5c5QyqT89i4Q3ihre/vgx3wjdQaUR36LzGKxwhKoj3k99TiO6xx9uL\nHGEtDTBkmrzfczG+TFGgOwrNLtH8gCP3RWW9rTgKygOg+MAgE648n9qm6cdWFHbMEXD1ge2fuW/l\nwEy05mT2705iaepZaBAAW3sZdlJM63T/9z/H55wDVT6n0ZIlcMRM2vF7GuNFSwox759ck29td1qv\nVxHwN6PCdVJJ2aX6ROAxdMXUTVYeDLH3U1y7N/EEMkxMnVZBIeyY8/MQN85YeT/JpmFv5I9AeyYG\nK4MFz32UCAyEq1XpkEYjL+jEwJJV+K4+4MQM49PTpo/yDi3KQiXFeEYHrLfhyz4H5wrC4pu7RR+Y\n7qUCjl/jAtCOFmVvk0cp7k9x/CrnNPpaPu5mAHTjHAPWCwx6lp208C594EoHnuTEdn+qLIOt+XCb\nGjMAmH9viof/Nt2Xxe+aj4UjA0vzppUuKrKVeOc6xE7dHZnaNUfqxQYrjtQnGfNDJ7HSOoVj631k\nbOO7Fz2UtrnmqApEDAPm/IHJUoXhurmPmSjFm8Fq0lQCv2ShkmepFecsdC5yUaRWzfkRkQhSUrOV\nlnLMf5VrYlxm1W3kov3nTgHNLDq3z3DbbgF5hfX8ihlKDXoWgyMeFYMM3iL1o7gXwp2jj7XDbMGT\ndhldnweQiYucc0oL61QP1elHSIYssRRkKBbo/E7n+KTHHhZWCf8a7ZbROmXvKgMHVnMo/p0sJsJS\nlNqt1IG3QOef7xQxd4OLjU+YgZgD0w06ZulOgOF1Ov/CQ86JJbYOz0ktW9AwCIfbFTTfcfheAkUe\n7Awc7I2Ak5cN9KdR4vfLGFrWbyuBpgE7sTJFx95UI+b8p8eTitGy9Rhr3krRfs5OtgCjV0n3Ybjs\nyrnUHhjFfw/1u/T3w88EAnN65phDLZBhZTtD+4bJSdH2wyVX3j3tQeoQwzazgxcimYDmLtD8iHYc\nswbnpO6gvknLehcKMhkOWR5uuFFEdGiLkg3ruH2Dbo53nMMbcW4y9uD3jLnak2+znNWszdqszdqs\nPfttNlg92dbYNPULnsyix01HIhYji6QyLWrepcMMSYVnOs2z0BtDHkNtlZnZvdfUOwAEHZooYtrk\nxGpdocD1QYVWgkpIJ2NU4TtXI5mFOamGkz2e8hvPe1h4h6GCiiskgsNPUzRWaGupX6ps5cK8MjVJ\nxVYOj+Gr1sshanc4ClwzDMQcA5/+Pm6csbXnCC86trVbRpRzMqfEqhzKwmtG1Xra1JhjYf5JA8g5\n4BitcC93gPrHXD+ybGtmjBCqibRo2dkoiGfjsZ3NT+Y0PI4iDDTjpDYKy10LCZmZuXYtG7O47+D4\nZQ4t+dobt5XUXJ3esBFVzn5N0coAvWOGWxtjZG+zTxP7PmVhjsVFIkgc9kMsNCikzHI6qeN2hBJD\nf7VmF9uHpKbSekAH/dxrd/DWDoWm1dIEcxGt2+3RM8+1wlGPju8tjJFnHIUwUad54RSeSxd4eFxD\nhSHLCftJxXMZ6lXaZ3vVwUmb9qWOGO47n8AwLIYXUqJPAsgDEzkreWhhyxV4MDhiqbFIo3eZTik6\nAnpX6O/RPu1ncCFD7Tb9Hp7T6J+ndav3+JhrFvrNQo3aPfptVP/TkkKN+894mZYFHUsuOvy0KzJL\nBsko7lt3YQPBA8D+5+lAi2/lOHqD7l/h2NYMmj7jZBY58MY5XJbA6lxiBmwdWPk618GtBcISNMhG\n8TiX96h+N0br5UiWAwA0MFqmjh61UkxZeslIMBW6lmARHSdIKnRcw+5VOTBkp+Kgp5EHM+rAn6c9\nE4PVrM3arM3arD3pNhOyfeLNJFDLezHSIttyjDJM2QLE4TxTUrGaYSrXkh8q73AF+SnETyrs2cr3\nxTdp5ty7WERli6ZfhcARTxlD0HCnGgknkI9fDVHdYhn/kXWqdWPG+pdcmR0a/H246shMcNx0EHBN\nl5mxDVetAoUb28jPJHaToqX+hqf6MUo3QBGIiQbdxKo8iANq20ZZRnVjWncF39cORKHDOLoW95XM\nluOqPaZRLRhvJOix3YHft3kBd2KUJmDJAEVr19DYzOw9m1rqc/8iKx8Yl+TLrkSWw1WFkHUIE0rt\nEIlEm2UK3RfpZtc+oHMazyukJRulpWy9UT9HOaVJ7MMr0TZz5RF2LzxuseEXEhy1mM6eAysl0t7r\nJ7TetZfvoD2lTtGbFhCV2KfIpH6URq3MBI5BhMsNyimdWyIixYVKG3tDyi/de3ddaqpMBNjpFZFy\nNFRpjNBrc2jLpAvHz3C8TdGcM3aQG+kKVuqI5sbIbtPNSisaeZldazfoX/UwRP0W5zRvZAhZM9H0\nQ3WqhPgQ1wBnymQlw/NIFEas95dGGu7YlEFYCrvL+0qLSurQRi/TPWn+qwL653hdYxv2YoLah7Ri\nbVOjwmoSg3V6H09e1qje5dKEsZYoxbgHTysK5Ye0LAutB5qJ5gErvty+4SNgOcXGJt3T4ZIn9ZiT\nps3T5i5Hm6GSOquk6glxwtQgBl0tJShnlXCmc7wj2MgxrnmixFO7SxFyPBcgLtlPrynReSptBgM+\n2WZgtu6lQD7wk7plmUVc9OuOU0yb9GDTyBEVZmMrP/d+D4Nl+vAM1hwUTphlF5rapEySpEnRkVA/\najOBY5jDMR/WcSahvoEZ/VEuEkwqs/UlhqXkDW0nzkOgeJ/NH1c82cZ8uE9ecLHwHn9QUnMdZ8Rv\nn3NFtNYw/AbrjnxEtLL1R409U/OhBOYbrNF5TpsaidR0aCnmNAOEN7YfrrQE1D+i3wbmm867qG3y\nOb2kRK3dwIjaBXz+GKSRZet1udAy94DiAS0bLyqptTHioO7ECphWH+YYsnivEaSNqw76l+miK/dd\nqJhV6zcY2jpRKG/RPnuXACxQpxAYLnYtaQHAwjKNhq27TQBAEGRYZuivPSwiYEjuElegvtdaQ6tD\n0FulNMFajbbf7C0BAL7+/jWcv0TUynZaxp0TYoZ0OvRwtg7mkI/p+TeunuL0kPpnxqy/emmCXk5f\n1uGggI01ukHb92k/fnkK9zZ/eT/VxXjABAge4Ca7Zeh164GleLlzaswVlSip+z0H00Wu3WOGot/2\n4HfNBAdS3zRc5UnHLYXBBsN33TPSXjyAKG2hutKuxoAHpuq36ZwHG2TjDgDdSyxn9K6HwTmetHxE\nBohnm99TVu7rTB2UmSBlkRI2XvEol/fPqKPPfTQW6K76QMtg09/giWxXy3uoMiDgv4tv3EueOEH0\nNjxhqPo050V0kklqYTKnkEYMCZ6cSTOcIXhEXEeactqit+GheZtmfSfPF7DylUM8laZ/tOqsnonB\natZmbdZmbdaeQptFVk+2GTmVqJWLmsVkIYA/oJlO7zzXtGwpdM/T7CRq55KQNRFW73oFxRZtkw4c\ngcSM7YchZwA0MzSSQCZBqxJIsnTacMVm4PANI+EE1JkM0t9wpT7LUM8L7XZdlwAAIABJREFUbY3S\nIf29d86TmitTb2XEVQFyMh1w/ZNJBgf9XM4xi7RAdZph0KCrxTsr9yxJwTiYtl9QMvM1ViHasRYQ\nw1ULeYg9el0J5OaOrUCsgQPLDxRGZBeG4i7Q/iw9n/IthlDrljRS2lEIjS0LQ6PBUOPkBU6GtyAw\nqtTeLGo0btO6ceWM9NO2leOp3GdqdxGo3GXrD1MOpey1FNoKE56xZ23D1NBwqvQc9+8sQLPfU+Mi\nSWScHlThczRVLkzxsEs3wNRBXVlsCdki8FLcO5wHALx6icK59qSEnGevpdIE6xx5uUwN7w4KcNiK\nptcvYnWDIqf9QyJQdLtFNBo0Ze8PCzhkby2nQjfQ83IM2WnXu1eFnqflBa7nyo/KSHNrUW9Ec7Mi\nXWcCB9VNUw6gEPN5OSx06/fOwKgtiKu0eQ6mDwK0b9MvhuvcJzsK40VL5jAyX6YfQQFDloYydO64\nplDhCM5NNDpcOtF8zyAV9j2ZNpRETPPvMoLgKwzY100rJTC5qVHsXSwI2SIpKrEjWXyLnvPJDQ9z\nHzPRpG8jL9OPGh9nkhoIOxq1h7Tu8St0Uw4/42Lpu/Sed654Ug5jXLTDdoIspP7XueojOmYFDZaP\nS8oKgzX6+/z7Ixz89UXM2g9vz8RgZeR+Kg+G6FynmDstKJE5anxMb8BwrSCaG944F3hB/KZcJVb0\noyWF+Q+twR8ARO0M3UvG1A2oPWSZHQMJaIipmxtrKco1x4krCt6YOu78u1P0L9IHzUCX05rCtGqZ\nRdazxn6grcGbIy+H+bCP5x0xqAu6NHgDVo5mUlcCbWrP+vd0Lhu1aI0ppTcwYuZVdGShGe1AZG46\nz9G2C29pq5FY0hhw0e/CmyyLtKiQVBlO9YH6W1yUzXkOv28lmqZ1SJ2UgSsnCwqRFCADwzX6Xdox\nEC/QuUbLoIhRBkBMHrtXIM88963y9uLbLAF1zkXneT6/KEWZjRAHHjM56xN84cIDAMA3/QtoVAgn\nncT0gS80JlipEo65EvXwfou0ga4sEgy436/gCyu0/dZwDs8x5Pe1R/QF/Peeewu/ffdVuv+lMR60\n6SttCoWX53oo+bHsa/8eF5CVuO/5Gfo8MEZRjNCn5SebBFMOi54YQaaVDE7ACuP7nFxdj+Ee0LGy\nlSnUCf122aTR7ynpE8hBhVkAvJYtFDf5p2n9ewt0kQMhmy+mRSBh88vytmGgWp2/uGprpQxMTAMo\nbWMmh+W9HBPOtw5XHPicp+xeOlOoa/QkMwvvndXaLO/y87/gCDRtJJDSSMm7M3YcREc8iDF05yS2\nmHe0ZD3kXM7X+X0LPaocUgdmCo2rDycYroaybucq59y3eAI258oEuH43kdpDA11GLWuy2j8fiZ/W\n02kzGHDWZm3WZm3WnvU2gwGfbBs3DbRVsvDTborTawxvsL2pyjQ8DrlzT2G4zDU7XPvUP+egyiG7\nN1HoXDaitSZMdyQaScpKKs/9lA7aX3OlGj7s5SKAO2E16NxXmNbZ5+hGKAlZk6yd1lyBT8aLCqVd\nrpNaNjCATcBGxxrlPdr+9CqrXvS1EAcW7kKq+ANWk5jMeZLYTovKRk8Mr0zmlahtGAmZ0aIjbKj8\njGhs7Y7ie2bVBJypQsBK81MisCGLgPCUZ/YFe62OcdJt5FbhuwRE7JNkYJjpnE3G+32gdhd8XgxX\nhRbGhbYOwQaO8gcWps09K3DbepkliFyN8iMmXXx6gtxEdqxEngwDfGv7AgDgfPMU+32C2c7ViS14\npXKM/3eHRGcHcQjXoeOXfTqppbLCwYTC3Zu7K/g7z79L28/TiRzHFVSLLLGUO/B4e4f/7U1CUZtw\nvQyVNXoYLy3uAwB2BnUc9wlNcJRG+zZFVHmNCRiLfWQ8DR/drUEzZKsrHJmd+kjnTWjuobTPEfEK\ns0HnNZz4TM0Sf7xiFu+F8hDPMUNx5KDykBXoGcbLAxtNaVcLZIjcrOcIGSc8VRI5B2x47CTWGy3l\nqNiNlUB20zktHlm5JdOJNJI31Mirj9cj9i4Dq19j6HZH2TpIjryqj3IMuf8EAy1RvoGgJ3OO+MpV\nH+WIyybiy/g8rEi10kDtAX0Uuhc4nTAXSDQa9DXiga1jBNidm2uqnDhHxukAo17TvDWROkGvP8XR\nZ2t4am02WM3arM3arM3aM900ZtqAT7oZnDvspKJWsffjnignHL/OUzt1BpcuKFS4vsqdmDoiF+Ep\n08FzjeEyTeUqW7QsLTkSRRSPM5xeY4uQY4uVT4WSbUVjTZLZG1FEB9AsrXP5cesBd0J5MQDwpo4Q\nL6p8/LhilwUDjSFXzhtBXG9s61iSItC7yFTbU0uw6F+kcypvAwzli/dT9b7GaMnM+GiZO9WS8/KG\nkPyFobgHHWDaNOsCcY0jMnLFQOUR1TKZfZpjpZzA94YKnqm9OeNOHHPubbKaABztLH7Dtdp0tiRG\nBHk7z1EtGgCh7ccVJftSGTA4z9Fm15EduD9NpAV3HOKlZYpY9gY0W20Pi6gXKefZi0Mk7AC816Od\nLhQGKIU0c64Xxih7FFF9dEJJ7y+u3kefQwLHzbHEPP2jPtPZ/Qmu1o95/xHG7JPUdimntFLp4Tik\nyKk/LmDEArHvHlAIcqXZknv2aGcewQY/GI5wu49qoneofCAMuS+1aJ+1jxXGLNisPS0+ZEYvMS1r\nFPc4imkAjTe5dKNqiToRq1loB5gQf0TKGQbXY3htUxMFobGHHDmlJSB1zDJLADIIyHhZiUJFJKQf\niqgAIOgpEapuP2dzp4YoFLZtHi3naKd2V6Nz2XhLJehcod+NO+z11XRQZrRlsOyifp9eevNtKR7l\nGHCJxMRVaN7mKJyFrQdrjjha+70cJy/QCRQYGRk3XYlYopNMbGuGrDRT2tWSn0rLrojWJlxDOq37\n4t7tTiJR6pm1H9yeicHKKJmPVkJM2Gem/rFG8y2CWtqv0xc26OdipKhyK4raX2e4MAPaN9jCvpVj\n7Y8pM9y/zlbhqZbBJvfUGW8n+rfQSuD36cN18lJZlJmXvstW6JlG/5zFKur3MtkXQDCk8ZYarDn2\n483in4MN54xHlSNJaMMG1EphgRlPowVHXghDQPHG9iV2Yo36XVM/wgncXAuzr2C8g+pK6rSqWymG\nCUtT8QA8uJihuMPLalrs5g3bbtqwg/FkXqG8TcuNSLDK7MckrudwGXIyr19w6Mlk4OgnYxS26cNq\nREUnNZuMdhILFfXPG5hQCwypFVDe4josrn0ZX0wQc02V42h8+wOC9AwMuLbQwf67RGcsP3eKv37h\nDgCgk9AFvrm/gVUmWOx0a/i586Q9dTKhA3xwuoqAcaRfuPYu3uxSBfUX1oh00Y6LeHuf6Gw/sXEP\nX9+9+Nj1dyYReiO6qI1GB5vv0bpzN4hV8N6t81I75sYKaYcHDobWdCEHmE2oJg7iCSvxGxPGJV88\nsPS5MdQWXVdSYxgqsQWy2tEY0OmjwiaK43klk+/xki3ALTApoXI7QP956kDTRiAXZoguWllTTe0A\naZllrJi0E3QsQcKYL6rUEji8IQSSW3if+sT23wTmbnLR9HVg+Zu0vPUSiwDs5YgrzAotOlLAa74H\n7tRBf9WIA+Q4eZ7JNoMzRKG7tM/Tax6ywBArGNafKGEwBr1cJMQMLJ8FSmztAUugKu3Ze1O7R5Oe\n9guRwP+GiKUyoLxt1A2sKMDTaDMh21mbtVmbtVl79ttssHqy7ehTNDOe+yiGZuUF7QA7X6Ysr6nd\n0Y6VbBktOshCinJM4nTpO2NMmzQNCjsJjn6MIjIT+XhjLdbZ2rXWHkHPegidvEjwzmhJSTW/zOIi\nJdGQNwZ8nmkdvc61X4f6MXoseMa5/SXaZv1fpkh5xpn5SkgIZp/VrQSKa0a8soMpJ7nNeU7rSqro\nncT6cBlSx3TOkjqM9Izf1+hRsIFC2xGowtzH0iMXwwt0/bXbFvp0jN5qBORL9p6ZBLqpp4kbWqxK\n/L7zmHW9uaeDczzjPfUwWaZp5NEv0Q68tyoYvUA3Yu5PQ4FPukxnzz1Lky/uKvRepxPX7PEU1ieY\ntil0WL7QQs7P91PzFM624yIWf4ww0aNRBa2YIqZLRYLf2vUiViKKrBqFEWp8YV9epgjrvf6GEBx2\nJnWRXvqZ5gcAgG/1r+AL6/cBAL2kgM+tPgQAfHPvAgDgXOUUB22CHD++t4ql62zxwVYh8xsdnHJk\nqA8LiM7TucYf0Ta1i6do36WOoOuJccORaGy6mME/5Vn+o0jIDkbtwZkqTBbo/hcPHAyu0QOKT5ks\n0MzF/bq0o9C7zPAuP988UAh3ad3BpRT1D6izGV+rLIJ8ECfzCtEhQ3Vs53F61RMyhWneCFIOUTzW\n4kE3nWOYbgsIuMay/pEjQrOmbGO46Mrxg06K3nk6vyGTbsqPNEqH7OflAPMfspwTy6s5KeQ9rD7M\nRAHDwITlvUxqIHNfSZ1VXDYIBlA8YjmmsoPY+N4Zd+wpcPgZOsHmrQRdA+d3zPfEkZqrtOhITddT\nabOc1ZNt5iEmJReNu4QPdC77WPkG4fdS0zDIBIaLWrlocmWRkRYKEJ6wn9BzkSiwH32KjnP+j2JM\nBgyj+Bb+MPVUTmoVqBfeyaRA1zmTizHnGnY0vCF1uLnbRlswx7TODMJ5JZ5Q1Tu07OSGfeGKrVwG\nGc2Q3XDJE0gt6J2RRuLBdLTk2Q5fVZK/qz2wWLrJKZg6priqkNRMvZkn52RYkdoFvD4zyJY1CicM\nAxrW15kkbfmRNa0zf6/etQW+cIDeNTpW0OZ83qHC+AIb/X0cYMCadvpjVg/PAOeYzQuXFCbLDOkM\neFCvpQKD9Ra05L8WzhNE7Do5ulzourczh7/2IulF/eHbLwMAfu5T7wqb73r9CLdPSSZpuUAD1H6v\nir+39jUAwG8efBZbPENwma51OK4IDFjwEmEJ/sb2FwAAP7N8C0cxDTwvlvYQMr41XqJ+utlZwHOr\nJKfTmUSIPC7qZQbeKPGR9RhnqqUYD+l3vsgwZqWL9jxjnu0AeZmZscwG1LGDuEnXX7/pidq5ef7t\nVzP4nL+KaxrFe3yvV1kBPLWQ3nROwxvZAmKzzPiZ+QNP8oemXg8KwmxLKhC/tP660dmz6xoTyPK2\nRsS1W6MFK5tmbOPrdzOpjVS5tjVRK2fyZdzl9r8YonGbYbbbtrjXpBNyFxgu00sVdm09pRlg0sjB\nwrt8grz5aK0g+bFJw7EmqgzHT5oKtQcmHWFztfX7dCGTOR+mOHCw4omGp9m+fjeBOzb5NQ/1W/xS\nztoPbM/EYDVrszZrszZrT74Zrc4fhfZMDFYm2V/bnEBzsrNw4mLnpymUNsw1f+gIA3BSd3H8KkuW\nfMhqyssessCKYlbu04wp82kWn1RcqSafzClRVZ+w0kRlK4FWVprJJJtNBHf8SijMxdwH2jdoSmqF\nNK3qenlbCxnEzAyzSNnIpKhkXWEdVoHStq0FMcfa+3H2PnpXC7HASa3MUxpZ0VgTOVnWoEZxix5z\nUrbwjVGVmDQVNEcm2rdq52eFSg1cOVpWksyP57i2paTEAdadAH6HJaS6tnbGO2GF63mNaI9ZUK8T\nnSzLHGQtOqlxlENlNgkPAGrqCNnAKSVw2bX39EOirUXXO7g0T6HpllfHwwFFRl9+nWC699truFhl\niaNxFatllkPicOAfXPsq3hkR6+BvL76Hr3evAgBeZsvpae7jJ2oUrQUqwx+2XwEAXC4TnPe/7bws\nbMCP+0sSeRk24iT2cZDTTT35uIniRYroXlmibPy3HlzE3Bq7DndKyGOOKFhh/MPvXEI+z3JL81Ok\nfbqX8+t0Hb03F+T96LyYwmHlCpESK6XIRxy5aWB0gfqy27Nw9eQCnXNxM5TI32Tms1CJkOvgYorS\nIxZlNtZOivoNQH3F1FSZfhr0LIHA7/F7EAAThgaNszBg/aIGqy7Ku4aI5ErkVb1vI6OoxXDya75E\n9pUtuk/tG6EgB3AtAcLUYw2XrC09FDBcp5MeMaxee5DA7zvyd/OemnrN2v1cvOrO+rH1zoWyjchV\nlZTUPJrvwGDFQ1g2TOIEvWsVPJWmMctZzdqszdqszdqz3tQsZ/Wkm8xMLkVSGQ5YoVYzo0kjJQSG\n6qNUIjKTwIxaOaY1ppz2tdRn1R5wHmHBw3DFVq4bn5nGbcomJzVfsHCV21nfCdPhSwc5+ud4RhUr\nocK6PHNzY+sX5WS5qD2YVmhZ19xCW6N4xKK46zaPZoR4Wy95QoMvs6pA57rG3E2uSbqqhNJtzlOf\nmQVKH9WQa5rMa5S45oYDCKgMUieSliz+bmbDKlWSR1O53XG0x6STkkbA2m79F2JEDzjZfY4T3J69\nB141xuSUd7ZDs0lv6MAzfkWORniRQsNkgYk2pwXZXjnAYp0YJntTumejUYg7E9LbK0Ux/p2V93C2\n3TpdFj+pSjBBzacw8VJE0dC9ySLOsW/J/7L/Bn5h+W06vZgitL/deBt7KRF1vjY4D4dDiqMpnf+n\nF7awUaAEzHt6A9+8TyFtvUZRfZK5mC/T75PFKTJ2l/7OI4rm8naAjXWKslxHixNwscykgNiBy3VO\n+WKO4kP63d+na56uJJhyNOpWY6gORQmFY9MBAiFb+H0g530ZeCiuaBQe0DNJyhpxzTwL+tcf2L5U\nvudZj7aJ2V6hvGtp8P2r1HGWvmb6rEKRKd2mrGEyryRPVt7SaL9Iv6NjR/YT1zjyi+25mAircJqL\nLZA/sASl0RJdR3lXo7zDJSgvhlD8fpoctDfSiE45cqu5cGNjHEd/P33Ox9J3KFw9+FxRPNa8KZeV\nNG25hdfXouZS4H1O646IcxfaWhRADIKy8M4Imh2/08jDyYtPcUCZRVZPti2+RS9z93JROkFpP8GI\nk9RGVbl0mEkn6F7whQUo5myOsknYnpZi3LMD4Oo3aGDa/1wk1u/dy5HsxxQFF0405m7Sun027JtW\nFaoPrTV177yBDbgAccWVmhLAsofMeQ42lEAZ5IPDkIqBSQbWc6d4oEUyxjCrohNHmFUqs5CLEf0c\nLyhh45lEeVICxkxaqH3sCtur0GIG2J6WOhx3qjD6PD2L4F3CcaYNDY8/drkCpuydpIbGxM/BcJ2J\nHu8GmCwwVFNnD7LdAsKrBH05X6th+DrdU2eX7qk7Upict35M412j7cMf4IUJqmxu2B9EaPXovM6t\n0ACxdWcJGdcceeUJfv0OER+uNmkwOuqV8fIKfS1zrfAfLv4JAOA3Wj8OALhSPEQ3IxjyZ5c+wHtD\nqoP6xblvAwBuTtcx4C/rhcIJbg+pWrrm0zm9WtrCn7ES75s7G/i55wl+NOaNbx5sYPuEFNa/cPke\n/uw2reuGdM7+4hiPOjQY9voRNJMtkge0vWrkyJiUgr4vRdvmPQlannh/+R8XBZ4bXGR7+j0rITa4\nkKFwwMw6w7BVZyYjGWzNloFeT11M5vl3ZkkCcZ2hrXKGrMDF7UNg/rv027BOtaO/R0s1bGupbZzW\nFUo7zLDl4v7yDgsYAygeKIwXzW9+dxrOY3VexSPzHpt3QwtD0BtrKcqdNCx01z3Pnz4HMjDW79Gk\ntrfhCZsv6Gmp3xotWHPGwikzLA8TUYk3xcnV7RQ5G7+mBQWX5cgq26y6XvHFWNab5Fh8x8qwzdon\nt6fImZy1WZu1WZu1/1+b/kv890OaUmpDKfUnSqlbSqmbSqn/9Puso5RS/51S6q5S6n2l1Otn/vZ3\nlVKb/N/f/WHHeyYiq7jBFeajXKKQ3gVfZP7LjxhGebkiMNf8zTE6l2h6ZWoqeuc9UUboXvCwuEtY\nhaG+A0Bcsd4/BqYzs9SkaIVgnVTj9DqFHP7YwnwmcprWHFS2WEaFazYK7Vwq26dVQHN9F7g2qvrg\njPWAPlPFbyxEymfstEsOwi5Dgi/TY5p/P4VWtP9zf9RD6zXiERtoM+hbBQhDLdeewtK3OMoqarFD\nMAng0bISeGUyp6Hu0ozSzFzzQEMboVpfo3SHnpV5DklViy3IaFUjYAWM+ITuef2FE4y+Ps9/z5Ez\nQSBn6vbaa8fYuk0KE7qQwV+iiEV9TBFU0lToMDQWVSaol+jvo4Qlds6f4o0lktX4yq0b+Ldu3KLj\ncuRzo3qAhB/w5cIRvjEi/PM/Wfx/AAD/2cO/g19a+RYAoORM8UJI3iRfG14HAOxO63ij/AAA8Gfd\n61gtEBliwg/yX+x9GmtFwolK0RT/+62XAADlCvW9y3MtbLJ78AdHq2L3ERZsQZqxCMkTB4qtQ+LM\nWtkosa5QIsdlnm9S1hIFZaEWBYnqx2yVs6JFQaT5joPuNVr3dJ0ju44rxIegr9CvnilZAKiPa1Oa\nAYmSTD1V5U1gylFW75IVODZ92x9YP6qzpI2AXbadBBiza8r+FdNncyz/qYHkbL2jqZEMOlr6nz8k\nh28AaN5kmLFurXhUrqFNlMNEjMH5HM13aHsns9T4aY3JLRqoPqIDhO0E3UtM5HqTyiUGV2qCeiTF\nQBzNTSlJtDdG7zL13yxQqG9SX5iwr17uu6LaUTxMcfBZC3U/8fZ0YcAUwK9qrd9WSlUAvKWU+orW\n+taZdb4M4Cr/91kA/wOAzyql5gD8lwDe4LN8Syn1B1rr00862DMxWE24NsmbaPQ4PK8+TBEzxpwH\nRrU8k443rftofkijgOkY5V1rN13dStF6if2mOLdUaGfCBnSnQIkHs94lWi+NFCZsBBe27cBhajbc\nCcTuerSkUNl6fLCbzFuJJARK6k+Mtl6hrQWmqWzbYkTDLFIa6F2gnRUPc5y8xIWLDB2OFlwZzPd+\nsibw52SJdlq/B3Qv8sDJH6ikAhx9mk+po1BliaYR2TbBSSDmjCqzOnwGbgrbDsbn6csTHHrfA0Np\nB4Ax9JsqWR5yoWprvwa1xjBdz5H6FZ/9lB4li0CRjfCqUySciwr5o16vDXF6yoXavQJyY4TIvk//\n/pXv4Pd3iKF348IeHvZJ6HC9RINK3R9JTun9wQZ+Zf7PAADfGFNu6ecW30PdofxEoDLcnFLVc4PF\n8YpOjDsTgv7+46V/hf92/0sAgHMRvVOfbT7EO+weOByH+LkbBAPe6RF2dTiqYHBKE4ByYyTFvOY6\npmNfaseiypT+H7YblTb6sn02nyHjZJM+5A+co+GamrSihjfkvM8yQ+c71lxzcE6B03MA+J06UMIQ\n9fsaxT3OpfCy3gU78Ezm7cBn+snpdVfyV2EbIk0Us0Zh/SNS9gcsgxAKUmdVbGUYrtEzP/+HRi4p\nw8OfpR0V98/mrGkbb6rBEo4YNx14PJnqr9v31EzG/JFG5/yZQn0AS9+0qvJZwTJ4gz7DqUNIUfCk\n5qB4TCt0b9R5vQxF1jtUmU1DGBeI8UIFy1+1Um8556cMhBodxZhWaQDUSqHy6CnBgBpPlWChtd4H\nsM+/+0qp2wDWAJwdrH4ewD/XWmsA31JK1ZVSKwB+CsBXtNZtAFBKfQXAzwD4rU863jMxWM3arM3a\nrM3ak29/yTqreaXUm2f+/9e11r/+fY+j1AUArwH49r/2pzUA22f+f4eXfdLyT2zPxGBVvU+QzcnL\nRXHN7K/7qOxwfdNrFDkFfS3Mn8p2hu5VWm5mRlmgBNrLQqu8bFpadFBgmRN/kJPzMGydV2UnA5Sp\nE9LiVGyOWXuQizdV4UQLPDjg9Ur7OTLfRH6WLTiV7ad49GWaUTXfs54+4tHlW2mopGRZVMNVWta4\nk6G0w2SDc2Vh4VXu0fF7F87MXrkVTrQolMd1ImEAVi5Ju1baCFrb+ibejz8Extzj8+AsGYTPs6zh\njhzel0YamWQ8R1DHnihxTFYzOEy80CzuCk9Dsfut52VI2QHXfYUurt2qYG6eGILTxMeoT/cv5zqi\nb7YvIfKpn5T9KaIC/Z4PKepeCTr4XHSPttEOCtxZfjwiiaTNpIkvFWmbPxwV8IsVqqn6/QFJmTjK\nKq3/6r1/F1erNKX+UpUiqD/p38DRkCK/+eoQH3VJIePuAWFbS3M9XDt/AICcgosrdF7GNysKY4yn\nXNu3VZY6rPEhXeewX7CCxq1QILuE69yK265MnkeXEgSnVvoLALRnpY2C07Ouz/Y5GQmv4ZoSmK/A\nYvDjRS1wtspsdGPWKx5q6cfO1NbpGZhwuAKUWU3DKPZHhwqpqU1MlajuH79qzt1Dw8zNtYbPMJ9R\nKq9vxhgt07phR+Pgx2jVhe+yksUgl8goKTooHbCoLxO1/F6K3GcyxLsj9JhgZWTXOlcDQUUKnRwj\nw0zla65ujgSCn9YViocGmWD27kGGHkdhWkHO1URuR58qoMjnNF7wUXnIL+Oz11pa6zd+2EpKqTKA\n3wHwD7XWvad1MjOCxazN2qzN2o9qe4oECwBQSvmggeo3tda/+31W2QWwceb/13nZJy3/xPZMRFZj\n9p0qHufIWcECDjBYe5y6rnJtbTl8ZR0+2bF3POei+SHlGtKSLzOhpMLim6HC+EogxzKtxn43cdWV\nmqm4qgQrL++y62pVSc7MG2ukPLs3RBDt2MglqQLNmxRFHDVpljxaCsRbqH9OifWGIVjU3x9itEqz\nvOGyKwll42c1nnOQRBRNaheiWWaEQMNTYLjG++RoJvaVRFHRoZY6L4EHNCQaKrQcJJy4N0SJaUOj\n/jYLmZ7X0Cbvz/dWO0TCMMfMQpMMN75TCtPnWLR2u4CcI6qwzTPr2EN2he7/6LgExTP+yZiOWapN\ncHpC0/Vr5w7QDinyKnjslKs0Toa0rBGOsMJFMScsobDk9/AbrS8CAFbDLn7z9LMAgJeLhEBkcPDf\ntNcBANfDffx2n8LMX6xsAgB+f3gBBUXn96vn/xgPYyKLfG1ABIyaN5JzybWCwzfWZ6WNVreM4wd0\nLunqFOhRny4ss7qK42DSomfuLExle6PkgY4PRHQvS9sOBtdYW3CH9jO8lEBNOOfp50jKtL3R6Js2\nbE4lLQMxq1UYPca4auv0go6NjExutLwN9Jj44E6A+iZHH+zK27nreQpSAAAgAElEQVRGuSoAiHoa\n/UuMbDTpPOtvhYIMlLcMKQToPE/bLH0b4oFliD7OmTxQFgLjeTpW/S7dh+NXQznnLAQWv8PRoiFS\nRA4KrKGZBQqnV2lnJsc8bgYotPmdboaCrPhD6zxuxGXHTUfyX+abcfJKVfLNtYeZoBClfRanLbuY\nsl9Y8TiDw/dyvGBqwzSiE9b7XPTQv2jC1b9aTSmlAPxTALe11r/2Cav9AYB/oJT6FyCCRVdrva+U\n+r8B/NdKKXbYw5cA/Oc/6HjPxGClcn4ZphoJ1yY1Ppqg9Yqtf6K/Q4p+s0BJrYYxUXQSoPUyfRjC\nnkbtNuNkDsOIPY3xAr3k4znnjF06C+E2HHjMUoLS4gNl6rRyzw5MwxUHpQNbKwIAhVMtCs3jhoPW\nKzRIGVttldvCQG9k2U1mFrP1pYpI18zdykVGRuScYgvfqMwWIBe5XmyyoASeMxI8TmKT4WlRweNk\n+JjroUq7CtGhKVSD1IQY0VEnUXLOhROFAQ8s5p4FPYcMFgGkZUeKhQ1MNF3M4G8z5HdpCGzTsxi/\nQgNY1vURuKz0XY1lQnd+kb6A7WER61xTtder4soc4VP32jRonAyK2GgQmWK50MPOhOCXX1og6Pwk\nK2PLpWz689Eu2ilBdhO+0YdJDZ8vbcK0cx4RJ96Lab2CSvDbrIT8xbm7eLt3DgDwHyx9FQDwWyef\nR8pkidfnt/F2iyaLLl/Tcn2A0hJBh7e3l5Ez288UB4+7ARQz6NztAnJWkHd50AjbLobnmRTz6lju\n5XSBOlXxgS/MQH8vxIRFbaXe8NSSJdKChrfLRoLHpg7K9kka2PjDyqSg+t0ctTu2Hxqy0XiZrq9x\nS6F71Uz8HAvfgUaTSRMCM5qPelICFhmyG6y5KDORabBOfae2OUL3Cp107lvSj2GyAnaALe9YuN4f\nGqauQsyDRWUrx/xN2v/uT9J65UcOGrdpZOxci6yfFO++e9GV2sXRsnUyMOevMjuBHi66iHjgm5xj\nVffEMpTdcSYT8AIbs44WXMQVC2oZOben0Z6yNuAXAPwygA+UUu/ysn8E4BwAaK3/CYD/E8DfAnAX\nwAjAr/Df2kqp/wrAd3m7f2zIFp/UnonBatZmbdZmbdb+ajWt9dfwPSXf37OOBvAffcLf/hmAf/bn\nPd4zMVgVjlla5lyE4gGFM6PlQBx0jWilO83RuUyzl6idCxnBuO+OFhyBBPvrLoY/RRFm7ZG14izt\n0rHSSwUUOWw/foWTrY9ySfyGHY0xu+GW2LtGK2tLHx3n4uNklC4OPl8UaC/sa7FrMPBGUrQeVoV2\njvGCFcukYwJhlxOvcwrjRRv9AGQ/n3LkkxUgNTOGbuz3bJRqornJnBIaMaBkFm4cf4er+gzdXCE3\nop08i41rOVKO4Bq3AOYdSDQ2vJhKHRByJdR2kw1VqULKrrVqvwjNkJbPCg36wgSFkJUDjsqWTMBw\nan8QYTyl51OKpvhghwhDL6yRff25Uhvvt2nZOAuwENA0/iAl3SBfZSjzA+hnEQrMX/750kMAwGbq\nC+liM15EMzh8bPurwSEqLE7rqww/36QJ5G+dfB4AcLOzLH5XDX+E7piu61yDXa7HRTzapSjQC1Ns\nLNHyrU0iYqhyAqdJx69cHKLXp4giZUdgrz6Gs2XUha3ChLH9GK9m8A2BpqaFnh1ytcpwPUf9Yzq/\n9ks5whNXlgNAeOJIFJH7St6pKfeZuGKJQNqxBKDKfS67WAHCkzNwNT8/o4qhXUBznzKwdRq52P9x\nhgYfAq2XrbIEABy9UcLcx/QdGKwHIgRrWlxVCCiYRlpQovDSfo5l1441HI4mh6uO2N5s/EuWN1tT\nGK3QCarMQp7m2ur3Mvjsp+VNPfkOtDYYJtzT4v47qTvyHTARavO9Hg5+jPpP0HPluqMj/hCoQMgY\nccVB9+IZNd8n3WbagE+2TRZYm6yo0LtAv72xlgfqsiZXVnAwd4sGhs7VSKCABnfs8VwodVROCpR5\nMGq9SJdZ2bIvUxqdKQLk8H5aUyK5Mp73JJQfLdI+i0e5FPgO1lyBDI00S6GlpUC30Aaat9izaMHU\nXygLhZQVSvvGh8rqGZoXBgqi4ycMv9zWRMVVoHrXMPLoz06mBZI0g5KTQPJI2lXy4oqXlm/NE6cN\nW2xpVNN9Zf2GOs9pFPb9x7ZXU0cKVfNAw+Pf03kjUmihJTUfw9t9vAAyH/gYHNMzv/DiPgZT+r19\nRNCdH6SoFGmEL/oJ5ouEb7bGJdmHgeF2RzWcuPQs1kL6mr3dO4dfWaLaqpKKUWPXyf91QHo+dXeI\ngC/6JCvjOBs8dn6dPILHD2DZ6+I7w0sAIL5VLzX20OdK7A+6q1iuEnPx490l2Yfq0D1L5zQe3Wft\nIJZbCqME0w5tf9qak3upVug84ztVGDu1JHVEjT1e59q33UCktcZrGRze3phk+gNHfhf3XGHzVe+a\nekONpGKLus3xi/u2bxkPteGq7b/lHZ50jGxReX9DIWAu2OC8+UAr6Z+9c3Ql7gSo3Kfjz30UixHi\ncInNE/cz9M5zvjqzeWDDKizvWo3OoKMxbtJ2zdt0T06v+lLcX9qP0b3EOddl+7kzxfulg0zSDGbS\nGJcdnDwfyDGFRTgwOXJrouoPtUwMS3d5or1eEkiyvjnC4aepr07qXPwdANWHdK7RSYa08JR4bv8G\nRIm/Cu2ZGKxmbdZmbdZm7Sm02WD1dJo/tJFBFirU7jEUsMbupssK4SkLvR5lErGcsK9UWgaqj3h2\nsxhiwpGTgTniqkLIM788UJJEbtyhqZGTapwyW1C71lnUzCwnc45VeF7LUL3LyuMMOYSnBCWadU2t\nhyFI+H0tkJqTQNiMBjJrva4x9z6vO7B1KQWBQSxME3QgBJPhBrP5Tqwd+fA8XVPjfVdU1bPQ1qSZ\n2aIzVcaIlyznjQB1Svd5Op+hfotnvpdSZEyAMTCUIWQAQNB1ENdZhWBo1Ee0zFi9rQKyArMN+e/+\nqQv3CkUzg2kIxRnh189vAQA+PFiRmqS9kxqCkKLVL1+gTP6nSg/xjz/4WQDkBHw4Icisyyq/qXZQ\ncSgy62RF7LKCetOlY74U7ouaxauFR3ItRl39j3sv4Qs1ImD8Xut1vFF7CAD4o8MXAABHgzKSjOtw\ntELINV85s/4Q5li4SrIRJ+0y/AadS7ZDnSaeuPDn6aGlcYSc4TP3gH5kZ+5f4UEoorU6ZqUL10J2\nlU1XZLLSonm+Z9iAkX3+ps/4PVtnVX6kBEY268V1JZFZ0D27L9NPNYYrps7ORvkGehwtyy2V9ygL\nIKodw2VfyBCmxnLS9FDeYyKK71tImc+t9bISBuJ4QaGxSfeke9FomVnSU+4Fcv8GrKTR+CgX6Hs0\n74oMk3EqLnRzLLzPslcVRyzsjQu4N8oQV6x9uFFtNxFcoZ3LIDFaLWDhfXrmg9WA750Db8SOzxoS\npT2N9qNkvjirs5q1WZu1WZu1Z749E5GVqV3yhzmSEs1YGrdHotlnZnPNm4n8vXvRE6dfoxrhHGn0\nOFk591GMIVeOG0w96OfoXuAq+LspBqu0r/ZzxrVTSzK0eJTC4RnT/udpurrwfiLJmvKuQsY0clNP\ntfPXAskjQdsoxyReo5McbcblmzcTxFWuVVlkrP6Bg5xzEievaFTvmbwBzwg3c0wrVk2gd4l+G72/\n4ZoSur0RlwXsLBOw1g6m3ivo2WR4tO0h5/xWXDOinC46L7Lo6akHv/t4TiyLcmi26NCsngAAOUdQ\n1YsddLco2Rw3MwTHnL+7RA9lbeUUe5uk9vDCq/s4nVLEcTymKXq1OMFzDbI1HlY6qLAo3B9skmDs\n7nodVxaIzj7OfFyvEEHiXEDRzHFQwWZM0/uKM8ZxSpHX+2wF4tZzZNzBfm3vb+IL9Xs426a5h//j\n+GUAwCAJ8c9bVKe1WKZwJMsd8avabdUxZldexXqHXpii3aWcRT7wEYfGA4dFmpcGGHNNmY4yFPaZ\n8n2dZuN66CHaMVFuLvVzprQg6No6uqRiCRjGvXl0bQrFUZ4/sKUNodTR4Yzfme2rQc+gAUCRBDgw\nXD1D3ODcbFLTKFEQjOhIo/M89x8uy6h/pKWOyfxb3cokTwvN5wAgYffcuKwwmWOFitMcneum/7JW\n5gObjMl8hZMXaPnCu0yu2nBROmSR6TOkpsV3KFqaVl2xE2l8lEv/N23cdKQOyxtrmdIbixFv4ksd\nlXYh3yQTgWWhI7m9uOzAG3Gujokc8zfHOH6Nvm0qB5a+2cVTaz9CkdUzMViNG5Z1Zwpx936yhMU3\n6cPUZvPD6ESJJEqhoMSGevE79LD3f6KOxe/Sh2NwLkJtc8TbF3mZg5Wv0z6nc56wj8wHPguVkDLa\n1wMpgA3YKn5Sd5Ex/HG2cPGY66mWv5ViNG/YVhr5Aa1rYIDuhf+PvTeJtSxJz8O+OPOdhzcP+fLl\nXEPW1FXV1U1K6hZEioRMyrABGxLsnQHvvfDOgAFvBdsw4IVXhuCFBQuWJQ+CDVIU1d3sZldXV3UN\nWZWVc75883Tn4dwzhRfx/3+8JAmybWbZ2Y0bQCFf3XvPFCfOifj//xtCeXCO3wtkv9yijpaUSHXH\nTjCc2pksOvZlMtRIKCWU1rjYC8wMzQilfbK69yFF78m6Frmei6TKhAi84ZkFS7Bh3+RagoU/NQc9\n/26KlNKg/hkRHAcOVJeL3QrDmwQcODbfxx+3oUgaKDx15ViYmvPbP2wBkfns8z0rDeYH5j5MD6vY\nrBmwxN6wKbb0379iUnOfnFzCf3T1xwCADwdXMaUL+wkZInWTEn6oDdH3zeqepPp8RgDOVvBh16QB\n/7PNf4mvaWIrExCj5k5xFBuij9YK63XTmQzqGPZLQuS9vXGAyDXn/WRgACJJ5mJGCvHTXME5NDez\nWKPU0HkZfpU8ws58WUyA1Onh2gJ+USpkEQFCYE5XzD0AgNlKhupD0+9M7lVDTyao0pHCbIE2b9OL\n8zMtYAXtWIFij1KDaf150i6n+XJKM4ZnDiIirQ+3rDeVNWeEGDZWjkzfHH3gS3rKHwIRIWjZDDWp\nK/HbykOFtR+b1Orhb5BH1UQJwKPSzxEMbUrObANB9U6XlVjcH19nLy/rK5cHSvqX+VIMBDHHyoVn\n2aSyROE7SGgB2LqXWaAW7ScLFfwJCwUo5AygUJyOdwXIFZ7PMF23YKEX3uaT1bzN27zN27y9zE3p\nX6+a1UsxWbHckD/KUHhmRdl4XEhExXIl/jDD8fsR/VaLmsTB90w44SZaoqj23QmOv0PKFVTYXfvx\nDGdvmn364wtyScxWX1FSpM3KQG3XcikAw4Fi75rcVyiqz/Oo+lc8y1nqAPVdsha4Esr51Xcsy55X\npDGlTHq3rMBsEWqxrWdbB2+qERNAI15UIhbKEV5Ss33qj2k/gQWARKdWjYKjSicFPBKiHV0u4K+a\naNT5kuzVHwXovEmr2AcB4mW2caA00nKO6iNXjsUAjaRFEfCpi8q2iYbGRUPSI27DrCzzoY/tayZ1\nd9yvIaY0GgMpFq90cOfQWHS8tnqEM0oPegS6uNE6xceERBmmIRxaSl4jD4c9t4XrJZNG/M3SQ/xX\nR78NAPi9hc8AAP/04D1sVU1u63/uv4dnU5OTygjPnxQuigtclYOBibJukhPx7772Ff7wwSsAgE/7\nl6BJJikgcdykF8Ipm2vxnkVI1szn3gFFWAsp0o75O5oqUaaoPLXgnVnLvnGCA5JrIgpCHlih2tK+\nJ1kCws+gsutKFJVHQPO+6bceSRD1ryhkJNEU9BSmKzQ+Weqrb20/xpsFnITHPB2/pOX79t0c08Xn\ny+Cdd3JUH5vXDHvJlQ+tOG7UKSSlxq22WwhdpHJcoPOaOUDrHvG0IiXqLl6srDRTYHmXAgAZQoRs\nfbJSqe3FOH2bnKpjLel6VoQJ+xpnbxNdZd8VnqW4MK+5aN0jiS1fCQ806BKFZqEsSjvQQJneU+HI\nCmuzXch0NRJpp3n7y9tLMVm1PyVTsxsNS2pNgYU7JIlCCL140ZeQvnxWYErSL6sfmpzFcLssfk4d\nVRZl42BEPK2Sg+YjM7DipisqyGwO585cVIhUnAdKUHzsZ3P6lk0dBgOrAF85tATK6JwIhi4wuMzo\nIbqmTGG0blFUQjA+5wnAEQvt6YK17ubmJholUsNO6kq4LJVdyuU/tfUBrgPkoUaNagppWQnRmn83\n3sqhSduvvOOhIKNDoikhqUFSh7OWlhfDjFJ7zsRBYkpS0J4GqI6nQ/N9tN3D8K5JiW196wCHXfOy\nTw5pIbE6wf652UEUpVhfNgc+PKM618xDSlbv971lrDVMGo4NDd9e2cedjkndXa530U1MLWDHMcf8\nbv0R/sXxOwCAqhtjk8wTvxMZzczv3/yf8F+e/SYA4I+PbuDvbxg19Q+72+b4hYcZGSFWvAQJoSQ/\nvEPsaM9y96LGDNeofsaTWrs+xtGeOZfy7S58Qg5OiHvmnQTIV804T6cO/A4tHEjWyilnYnXv9Vxk\nlwlNOLJ6csyji84sD4r1Ht2pEp1H7RozQ8BKdBmisfnTyWCllS6OPZpL6o8c0Z6k+R+TdVtTHW+6\naF6YUACg+YUnTgj8HJ2/5slCcLLkyGKVa6tOZpG4hQcsf2QWUL0b5kTDfgGP0mydV315vrhOW92L\n0b1pfutNgd41WycGgMHlEKUT1k6ymoIzLkcc5XBjqp0/TNC9Yfqfr8ONNSo75p1z8u0GIofr1OZ3\njcex6JHGLVfQfpwmjNuuvOe8qf5zTgkvtM1JwfM2b/M2b/P20rd5GvDFtt5tEwZE3Qy9q2RXfj+R\nNGD9KXEuIoWFL6kwvRmi/sx8Ptoyea64pQxiD8B42UPjocmFTTbMKmtWdyVVEA4KWdEwyifqFhiv\nWWACo4TY9TY6t2z/rGzZ+pwGibqWJ+aPNFKum9KKr/FohrNvEcrp3AGZ0coqs/OKizKpZUe9QlbB\nVaL/DLccOaZ2geiUgA20Cp0uKRmcIut0DhDWANrRgvJiWZ7ygYvxNqU0Qsj2vCArQi0KCU4KjG5R\naEnprrysoX3TZ+GpI9JL3tD8O6kFyFpmm72P17HyNssZkd/QzJNo6rhTF6GxYkQ8onKG69cNHG2t\n3MeDnomo3lu1vm0J7Wtn0EI1MKmYv79s0nz/28lbWCfb+UfxMsqO+f5H08sAgCezJWxRnvW09ybW\ntk2Uf/f4OwCAf3DzY/zLPeJUMboAQHPVoGNCP0NnYMZfOZrhyyfGgjmsmOMsVCZwK6azh/dbokbe\nXjI3sn+6AJ2ROHMzgz+kKIr4hJlW4heWlwus/h9mUPb/fXNNycM6VGbVJsSnjDNLH/RR/MJEqWlN\no2nsuiSNNlnXIBoZpktWtJmbGwONJyYkGGy5MhYYwNG+o4WviMKm4lhINxhYBYqsTHJIZ1rShZXD\nAt1blHIjX6ioqyU1ngcOQkKZcgo+qTmSRmNEMGDH7HArQji0GQoWdT5/nVCRY42IASBVJefMWYfC\nU6jtcIree86hAQByH+i82aDjZxIlnb5NkdUjR9COSgP1HXPPWZFH5Tbtp12F0umvrJDt/6ftpZis\n5m3e5m3e5u0baPPJ6sU2l2pGww0fS5+SH1XZR9hjKKk5TVVo+CPzd9jL0b1BUdgD8kNa9uW3rXsJ\nhldMaMNKEVpZaO7w0kV46oVwgv5c/miCAfnM8Mow7GloLsZW7HYMzfVmGoVH8NuaQvmIa2Fmm/61\nAHWqCVSPcvSvEHz7+1QTeWZXpklNgdDTphYEA6HnFbNWNjoaGuQ1olNI/YiVIuJliILF6FoK99Ry\noQAgqWv4HbJIWcoRHdHfpsyCrKIxW+aiv4f6V2b70RatNjVQPqQ6y60EXsd8n67QajL2oVKCRvsa\nBw9NZOS02DHYw5iccotcIfSt6DAAVOtTgYnfOV3D7SUjYPt61dSc/s3ZLVQCAmtohX9v/WMAJmIC\ngN1BCx+0npr+z0p4MDbafJdDU1uKCx8/H2wDAN7cOMB/fe+3njv+T86uYrFsxmTZS/DpM8PPmtGS\ndewUuL5i9rXfbwiwIt0zY2/nURWlcxuNlE7MtU6fGHHbAECyTgX8vcgoVsDynLI6kNeI59Zzcfwd\nGmtfm5qYN1MCEBptaUw3aF8U4cZPanDYvXlma0l8f53UOkX7A6C8/zwAozzWOHuTIN+nFszBEPW0\nojDattSH0ebzoCOVaax8TNmOFRobVWB4lbh5zoXnkA1ztRaA0PAKUCWhZgZApBUl2pSAEg3P7g3r\nF5URDL7xNINLdWAGdXRu+XCpnq0bSiDr7Ejc3/YEWj64bCOrsEuZnHUrRDu85KFCjuQM5Ko+myAt\nmyi8tjsTixCuvbe/nKL7KnFIY6BYfv6ZnLe/uL0Uk5U3Nje7eZpgumIqu5MlFyGF5UufmTj+5N0y\nRuvmlPMQwoMaXjJ/uFONgAQkx+u+cLZ4MCc1V4wK608LJJQKYYScP9WSPkhagfBLRK7lkuVnqMyS\nmSUN4kCs7NMa0HpAKs+bJKS7m+HkXUYbuqge0EMytC8QfvGUTzVGJGPDQI7oXF8wpVNiysicqKQO\nzBaIbLpD3KuhxsRkphCceBhvkc8OpZaqTxUS4mblkUK8QhPTDkkIOQqK0mzjrQwBqXYXdXNt0W4g\n6cxoL0C8QcCAgbnmoOPAIYv6eBqAs0wX5ZQ88n7ShcLprkkJV5bNTn9n62v86MiAGXqdKg4rZjb+\nb740k8rGZgc3mgaZ9+nxBv7F0dsAgL2++d3VVgf3x0ZU9lr5FE+J//Rj9wYAoOQmeDIw5CPXKfCb\n608AAA+HNJm4+YV9naNRN+fF6ugLjTG+vmMmMO1qlHfNdUeUepquaRE1BZQQTEXiaC9Hn0AhUUdj\nQAsPNlGEA7iEYnNmShbKTPoFAOI3QxVAdODJdoDxQGMl/NqO5eHxOJ4uKXmO8gA4e4tQdvTsJE0l\nRPVZW6G8zxOG2WZwvcDyh+azs3cKLP7CfM58wemyQuGblzT3Q1pVqOyZcVTbKy6k0WiCeWjdDWpP\nNIbkc8XyYmHfCi67iRYBXHWhmzml17nlCWerus/uDUDtnkn3ZlFbJnCeIBtPMkyWeFGsL5i4Ejhm\nTaF9lwnArqQkF74wN/38jaqAt5KGJ89/9YAAJrdLaDy1ck7V3W/I1n4OXZ+3eZu3eZu3X4k2n6xe\nbBteMtHGwp0Egy2zylz5cChpvO6tEn0/e877hR1GWe6/1C3Q3zarn/qzXFJ9LqdEFhXqT2gVryy/\nKyRpljy0cPW05KC6T4Vl2ufyJxl6VymyK5noCoD47Qwv2+3rTwphrrM772DLk9RddK6RlrjIbf5V\nmeF6AWb1yStRjuD6N7UU0+tPtESEbPsQ9jTSxvPQ9aShBKY8WVWIDok/RNDz0TYuiNcqhOxTRRFY\n0HHBI94fuMKv8U/MwZN6gXiFYOyxI0u57dsHAIAn99ZQ5vp74sKNTKd99LmJlvx2DM+llFDiwm+Y\n/FFAVvH/y1dvY3vVACDevLKHTmwimu3LJppaiMb4umtSe4NBSbyl3lw26UJHFdgsmVX058MNbNXM\n3/3URPD3ess4JOj8B9tP8cfPDBplcmaO8/vvfopxasbc3ZMVVCJKX5pLwvHDRXhLJER7VhIFigkJ\nCZf2PEBzSlajcc9sN96gNF/kSJQwXbJyWXxPyl95Fi5+DIy38FxTBUR1xB8ZWDVgeVJFYO0+kgbE\n28wn2abSqcZklSHfGlPiUfkUmWjH2sGnZTs+maIBuDh/0/zd+sqmqfmaSidaeEb8PGrngsJFVQky\nov2ljbw4GkpqSp4Z7pO0qhB2CUCx6EgaXlEaLhhbWkjrfo5Znegsr1r5tf7r5gGZrDryHmGRaCfV\nKLGr76IrCjEMXa8/LcS2KKl5aDw2J8juxmG/EKHo0uEUk2WTEmSqzcKXMU7eLVH/FwIQ+0bafLJ6\nsY0NBwdXyhIqn7xXs/wLevBGaQCXBm4w1vISbzw2T3h/O5DUWO4rUXnm/RS+Qutzgzw7e7eFKT14\nLLcyXnHEqNGkFnhwmf2fvREIzytpKvhMwKTJonyoMTIgM8waDob0YmG033hTiX5Z/4orAykgabDC\nN2kbwExcjDzkNE147tiUTWg9pfias7JCZY/OhXgkhQtJfWpPC3/GJ7ReeG5Jw7OWtijCE0L4dXFB\nG9CVlxC3olzAqbDVvQckZr9PyHBQpQrZF2YycK5O4T42nZUvEwKxcHDaNdAyvzZDSGTgft+c1Dvb\nu0LQ3R82sFYzKLr7x6YmdezUsNGiNGN9Kpp9KySv/4e7tzBZoJqYVqiSkeLx2ByzOylhpW1++8nB\nJlrVyXPX9+n5JnafLNHFAtMK+a3ReYbrI2hG221mKNZNB1Y/o+sMgZhqnqUjgG+69TWDoNWigwK9\nm+zzRIuJdUfI3/ESEHZoYcOq6A0tKUM3cVBQzZPTP6qwExiUTeNNVnkBA9QfUUpwUYGsuYRHFS8A\nQ3pZl480MtIkzGmyC7taOHluYnl+vGhzUsOlAmzqMDrTwldUBdA3GVnR1dTKpr7Dnpbnv0QTpBoU\nkmZThUUJZrLQtIvGszdcbP7ALCaqtFDrXfVl4gy7GuPV5+WSavuZ9e06SJGR9h9PNkE/Q9ym+thE\nw43NxWQlMnTUCtohNOxSVWrbUZdqa69Ez72bmDP2TbRfpzTgnDo9b/M2b/M2by99eykiK4lsVh0s\n3jEr0+mCI2F37ZlN0zHb3KyezHbujNCC2soIKW3DdkbxjFcCdN6iAv5JBiizXe86gQ32NLrXzWeT\nzQKrPzbbn79uVuaLn80wXTKpBFUYXpbZL4EOQmDjBxSF3Q4kTRfTiqx5T4tIZuXQup2SqAEW7uRS\nTC6fFei8Yr5f+bl1QB1d4TSmI+nF6TKlBncK4XewXM102SosqFzBp224n6bLdukVdRTiRS39BwDT\nvzWCs2+WxNo1Kt4AgBmdtF/Ae2qW42mrEOCGntI6aHWGYtzjN4EAACAASURBVJXSLFMf6abpH//A\n9KnTjBGSaO3gqIbrt0xo6FC66nF3QdCAlTCRv//tG0Zp4p9++i5cSml+d/0pPj83aJI/3L0FAKhF\nM5zH5vxLXoo4J84OLZ2r0UyEct9e2MfPTkw4rCk1FWeepCbTsS9gm4zGXJ66UAxgeOAhD0la6AKo\ngRGo2rHpP06t9W5aFFxWdaxcVcWqOfD9S6uWSzR+09xI7yBEdGYjl4ikuRhIoV0DnAEM2IajFPa7\nKh84cHJWUwDKBPDhZ2vjj3rY+22zs1InR0oAkqRO51RTIuE02nTQ/tqM1ZN3SFrp2PKwrCMArEdX\nL4f3BY1V4l5pBUHgZaESuaTRJo2Dg0KQwKXzQtwTuEWdAh6J4679wSmGry9KXwAGvcsAB+MsThHT\niKNZV6TQ+m94qJFHXUTo5O7NACsfmQj+8Der6L5ixldtj1Tdm64gC8Oujcy4OamNrLVrPcTm7S9v\nL8VkNW/zNm/zNm/fQPs1mgdfismKo4FgoCVyirqF1KS45jRZcgV0EIwLOFTrYTZ++TQXd17tKMmF\nN++T+GdHyypyvGzBDgy6GG/YYnfzrhJlCuYuzVqeRIFerFHZN0vig+8RAOQXDkCrpNpubvPm79D2\nbQftL80O4rYj9SmuWUDZaHC07pBvD7D3dwjm+8RC0vPQKmfwgDx5Hygb+pFESO7M+vk4ueFVAYCT\nmnNrPrAOrHFLIblGopynZmg4d2ooCI6uYxce8YSyhrmO2pcBhjfNNs7UQXRCkOVvmb7Jhz4KAijA\n1VA14kQRDyybBEiOTH2qtd3D3fvGJqS0YLZ3HI1G2fzdGVorhSEVV966uoevjw3AYrfbxGrDKEtc\nbRkc8uNuGz4BOJZaI3z81ERO19cMQCNOfCyHZpsf7V8TnpfnkR7kYQOLq6amdTYKcG3DbDecmdBj\n8q+WhVOU1O29YDrBeN2AGMxnQETajgKK6SpRIMlDy63jemXhWRi5F9sxWf3cXP/4UiFAn/KxQiHR\ng/k3XtSYmu5BHioZ3627zOcDTt9lAI09bpXqrLu/05QocbTuSq2r9pTOs64w2qDa7p0Eow0C3jQ4\nq6FEO5M1BFUOqT2rDOhfpZoY/a4IgLBPVjPaUlOYFmI2NP9Mlh2puTIdYLTuSIR4/P1lyUAI6OE8\nFzh543GCuG06dbRBGoJfJeI1t/hFhmmboPMkWIs1F+evV+j6tNwfcRKeWpHsZCuUe8baiE6qBe4O\nrYWz9cLbHLr+zbVwUEB7bJGt5CbGNAhW/rSPwS1TGC+fJIipcM6TTlJzJDUXtxysfJTLvgDAnRbw\nh4TcuVaSFwY/2OUjLQNaFRC0XkpGg4WnZOL0phon7xqUz+IntkA9WTMvsWBgCJEAxLCwdKqRkC18\n4dk0Jj/Y3tTKyMQLlh/VuMefWS5IdK7RIzInS+j4IwcZvc/rhi6EyartHyiTCjS/NR8NtpVI59R2\ngIhUvXmCK3wgOqQXULMwNvUwCt+AAX84MV1TqRDQivfQdG7RLADiZPmHAYIVksBaoId14CNaN5+l\nuYv6CokS98wbSMcu4jql7h6U8cHv3QUA/PzUTDr7Owsi/aQqGXZTknHqm8797u2HKNGbcVZ4eGvL\npBn3hia19eriMfYm5u9cKyh6uuPY+kmdHZrVikocPLpjJlNdIZ5ZHXBpAkobGqVDTrPZPhewQaLF\ntp4XZeUjLeMQgNw/SQ2WgNIpncpMSyqLX3z+0JXU4vBKIYsQRgh6IyUpX39oQUlMsJ2uahkf2oX4\nRE0JFOFNrKhx4StUDmixQ5OekwKNJ2YHvRuBpAcZoMHXANjnwcmAqGORvNN1folTOt0Dmg/Zqj6Q\nZ4InK29mJ4g8VCgdPw+kAmzqvXJkF42lE5K92gpEPHq67MuiEXTPkrqLmFTTlz7uo3fVjI+oT+WC\ng1wWvdFpgpN3zYaL5FuX1jyUTzgl6ElKkVvhK7S+MuN8cK2CpPFSvYZf2jbvpXmbt3mbt1/XNo+s\nXmyzfkyO+NC4M42EILMcRg9u1qQwOV4NEYzY1p6Y5SsOWlTgTaqOpASrZPsRL7iIF6xQLRd8OT0x\nXVSoHNI5KaNoAVgh27RqV5Qn7zliJ8/nX9srhN+RBwopidqyQKeTGhUAc312Xy5FXoOrGlGHPosV\n2l8RmIJW06XzQvpkuqjgi9MwRXZrWqDJQ4LQV/Yv2D1oG2VJCtFSo1D4QFozx5wR8CI4d0RuyaT5\nSE6KosGsIoeHM3GQL1KnnlNkogBNrsDu9RGShCDDj8xJxdsJZlMSGA0zVEomD9Zsm5VnKUgl/Tdr\n5/hXOwY4Me6Z5bpbS/F3b5jQ8m5vBftnZhV8+YoJR+6crmI8Iu+oxMXVLbPk59TgTx9ekZSS4xXI\nWGC3Z7YJ21PMzsyxmpd6AvAYD8mD6gwYr5sOWPq4wGSZuX1mn/7IghoK30ojxRRZjjaVpKnCjkZM\nKHnmsylt3XmrhzlmlJ7S5Dpb6hRiB2/SiM9Hzm4MTNZsZoAbp54re0rEl6t7WuS+7O9sNGf80jiV\nR2NuCXBSEt0t2f3yM+FNtMipcYQ3ayiBi0+XFdZ+SACqoJDzHK+SNFNFWbsQGlKTJccKMZ8UNjV6\nYMZe0vAQEMDBmWm4Kd9g4nPdGeGUsiJuDFSOWSibXJbLjrwbJpeqWCSrIm9oPsxqgURD3ZslRCTX\nNGubExyvOKgRhWS8aksX3M+Ln8+EQzpddNB48rzE2Att88nqxTYOk2d1JQTfylEhoT4/mLOmHbjj\nVQegiYW1/yqHBbwppf48T37LOefKsZVRSStKfHz4wY46GlHPbJ9FjpjCcUom7NtcdPWZfSA5DVM+\nBsbkzO7M7CQVUPqif8URTlRatykVnuC8iYJHA3uyBpy/wQRMm+vn1KEq7MPPPJ7CKzA11k4onTC5\n2L4489CmdMab9AJw7W/jthaDupxeMNAKLtmGBwMlRn587LSZE3HYGi4CQLGcyN+1T82LfZRU0LxC\n3mUR5btyBcWpsYdVdKnmEZQotdSrYGvVzODDaIbhmCaJmrmoKEjxo72rAIDXl49wGpqX0M5jU6hp\nrg1QEHLx+6/fw8dHmwAAl2booJRC3zfbLL13jIMjgxZ1qbY2OyuJUWT3vAo1oPNbM6nL/vsx/Gfm\nAro3XWSUMuY+HVyz0kaFr0Rnkkm14w2LwAy7wIzqg5V9QtMdaQzIoy2PPOFMFS7x5IaFkGKHN3PU\nPjPXOiIJpuhcWTSie5GfZf51k4vIUPXnSL1RB+jTwsedWs4fL3BqO1omXm9yQW6MnklvpgX1Or5i\nrq12z5c63eIXGc7eMDttf00k/MuOoBq92O5/+RMzq/evhCKFloeWUzhZNrNW1M0ENTld8iTlmZVI\nCqvryzNdPs4w2mQ1eGu2ytyt7k0P0TkvQChFnloPqvbdsSjVp3Vz/MqRfeeMNzSWPn0+Tam0hkuG\nsq0HKc5ufzPagArzmtW8zdu8zdu8/Sq0+WT1YhtHMHmgxKnXySFpPC7g9q/4CLuEJvN9SQMyQKK/\n7WOwbVbei5+lIq9S22XRSUc4SYVvlR9EVPQgwTl5aKU1iFjllFI/07ZNkWjHFuP5d3HbEZRU3LYo\nLvEWAlDhVWDhYLxuV6SAWQVxGnThM8vD4sio8K1qhXYh3laTdSZS2eim8BiZpOT68tBGZt6YV6bW\nllxpey6cTgIssm1yNYU7oCirR4LAj11JOTqxA1BEgtNQ9ilgg2YirsEF8XzUxMXtm0bU9su9q3BI\nNDV7ZiIv5QHDFqG1JpEoXMRT81nvvISbN4y004dfX0VUJ7mmFvmejSO8etV8/6PH1+D7dK8IlJF2\nIijifh0ctaDJIdY5ItWL9RmrJaHSiDE7ps/Jo6zyZSSqD9oHAkrpstxV4yHQu2V2sPCZRa7GxD2q\n7GsRaC08oH7H7L90bj2k2FtJFVpW8Xwf05Ij0drl/1Vj598l4MeeGfuFb4WSC8+OxdkiATQGjqhi\nTNYLLH1M+72QGm884Gi6wHidgBeMgGtYX7byaS4AIv4+bjvCU1KZjSAkBV+xKT22d88D694dJnb8\nj9YpcuoVSEhU1kktmIJdGro3Aix9agby8JIv/CdOl5YPZ0iaPl2fh6WPDKy4+7pBh/hTDX/CqUmF\nxkNC/f5NM5A3fjDG6JJJyxy/X5WIqbZLShaRQvWQyhGNAOUDs/3gqtlmtBGImoV2rF/YvP3l7aWY\nrOZt3uZt3ubtBbc5dP3Ft8WPTYgwvlKFG9OKJnJkddbfJrb6WYHOK2Z1VT3IEZ6bJdf5bap/KKD5\n0IIpKodUsGU4eOuCx1Sq4Y/YoZcKxOXAaup1LS+DC/DhwFp0TJYVqgeW/wUYZvzgCtUkOpaRzytn\nVZi6BmD00ZjfxTyztGJ5ZlnFrli5ubG2ArXNAmmdIbkWDu+RcsR0yRyzsquRNC2cuvAJcnt+YYV+\noabO+m3ZdbMa9B6WxE/LO/dklc6CqONbKfxj4rGdOvCf0Opxi6DF7RTFmFx/YxdFSP1P0Ori8hSf\nPTZ1pNqtHoYd4q9smYufnZfQ7Ziakk4dtDcI+j4mjb56gvuP1sz2yyMBTnQft+Wa9sqmQLPYHOH4\nmflclYgbVk+x1DaheWdQRjYka4hbZrWdj0M4B8RpWnDhUl/k5+Y6vcCu/KcrBUJy/RWh1rrCxg84\nSvKEc8U1l6hfyJjwh2ZcAFZPT3sXNCAHWiIzjsqbDwqJvGZNF9UHFJ1QEJM0NCq7PKZwwVqDIpML\nkUvjgYI/MT/ovMZ1SiAcWlFXrtXwmNWedScebrkSpfM+vamW8cXcp+GWraMNVx0BnZTOLdChTDDz\nrOyKzh7XoSZLDuqULXHjAuNVUtUg8JE/1ih8irb6BeIWXSsDPBZ8iVDrz2KMt8344nr1rO4iLRFM\nfT/F2Zsmolr6lLzK6oG4+9Z2Uhy/b7b3xhTVao1Z05zTwpcz9K+ZsbL4kSnEJctVnL9mxtTKR0P0\nr1v+4Atv88nqxbaDv21eJlkJWDA0GpQOY8RNM0iqZG4WncyQRSwQqjBrM9rA/BMMNXKfuVFKCqZs\ncljdL6yFdT+Xwmr7azPItGcLo4UPyZkwisekHAjscIGHxZNRWgVa91lh2hGxSn7BVPfs8aNeIZMo\nF62hgJCIzv0bBarP2LwKcny2FXenruyfi9rdV23KjQv8s7ZFUSWXZwh2QvqcXpqtHNExT9ZaCKb6\nhCaDiUWjqQvIQfZTytYLW5QvgHiRznXTpGGK8wizJTIEjF1JP/JDVHRDwCeZm2d1rN4wpKXjR7Sj\nKAcI1FC7NBDb+nPywEr7Idy6+Ww8jGRiXKH99D9cxqhJE0urQI3s6BlgMRpHOD5kbSKguWVuwPiu\nWRUU9RxFg4jCZz7ykjkue0zNbk2x8EfmxVM+VnAyQoYRUEhlWhZDTgb0CYAj4sWufdl7E43hZSW/\nBcxLnycmpR3hLK391Fzz8XsB1n9kdnB+O7ILHHr/OX0lQtGjywqLVOxn0IabGBIuAFQPC/SvmHMt\nE3jJyTQOv0OuAx8XaDymVFeZELjL7nPcRp5QOM3Xv2HHrIAuJpZ75cZAmci2nVds2p5lzbxpIeK4\nF1XR+e+8bo8/XrXiAr3rZvxOl5SAKVi2ySjdMzcyEFV2Ts0ufp6Id1XveiBoYh77/jDFZDWk889Q\n330ezZfWXIwoXaoKD7U9Gp/XzDhLqnYhPluIvtnoZz5Zzdu8zdu8zdvL3r7JiVAp9d8D+D0AJ1rr\n23/B9/8pgP+A/tcD8CqAJa11Ryn1FMAQZimeaa3f+6uO91JMVlWy0s5KCkHfrFLO3ipL4ZUjmP4H\nZYkiouNC7BAkcjlIkZV4RatE4HLxDtvee8L5AC64mS6S03BixGoBIGl6AvBgW5C0qlAm7yvtKGuH\nQAV2b6LRvUXph661EGcgx3jDkWJ8vOhKKoRTK9GZtWjwJkpEZoMeRXBKyW+hrHUKSzRVn9kV+fjC\nCn62QGnIri/fg3yLmgeewGgHVxRc+jw8IB7QJQ3tElDEtRYVfO6ATS3Fb04RfW6WzOOYhlY5h182\nK0vvThUxidrq0FzI4lofo49MFJXcmOLkriEa6SqtZoMCAalq4BJwNjIhQ3ZKHVXJUVBKS+cKpUVy\nlT41xXJ1fQo/MPvqPWvCG1DK9LLJ0+UjT6D5zsYU/T3CdK+ZcaD6PnyC5pvI0/LkACDvB5L6ysoW\nzML3JK0qEWIufDwH8AEMD4ddbYvAAC4A40YLGKt0n4A0laNMpIc4Kq89K3D0XdPn5UMNf8rwb6sG\nMbpkrjk6B3o3zHate5QBuOxYgE2h5bxZ9cFNgeqeks9YlJUFl53UqmEAdvzx9alMIafULwMg4vZF\nnlSO/mV2z4Y9Dj07cdOVyGi6Sf1wYLhMgEn5eVQ6YPHb4aaL1Z+YCLr3SlUkqPg8nRRAwHSTVMa/\nS/Y2g8u+uP6qIsLZbZZeMvsZrZWEm3X2Zll4cnnA0WohQrnRyQzjjYi+Z26dg9UPzUbH71u7kF/B\n9o8B/LcA/oe/6Eut9T8C8I8AQCn1+wD+E61158JP/rbW+uyXPdhLMVmJiWAEDC5bCaX6jnnJuTGh\n/kaBpFRU7grKh9F+p2/5CNnC+iiHIskX1r7zx5ZUe/xtH41HZnDXn5iB03m1hM6rJrzX7oVJhCab\nzuuG+AsAww1PXtjsV5PWFJoPCO235AhKiGtf3lhJLSk6VxKi994011He8WxNLVFSq+D+8UdaUhXR\nGcSUj3Mvs7YW7yOWkCkC+ze0Qh5w6pAm6hUtEj3lI2B0mS6aEJBBTwlBdXypwHSV0mCU2gkfRoIs\n0wNfuGtEjYPychSMplzPgJL5rUeouknbR3aLIIiFwvKrhsw7nhECcL+O1e+YnNSzr1egKzQWVswb\nLOmH0AnnIYEpmSb6TZqMMhcpkXqdqYPqbfOsdI/NZHb5yqlwsoqZJ2hG3qcXO3Ayvhg7WSXbZrZy\nD0N5mUJZ6SK+d/5QCw+w8IHGffN5bZ9SQyu+pFlru7nUV5Y/MTuK27ZOlJUdIZjy76YLVmOyfGon\nM+ZxedPnib7DLTr/qq1ZsgL7eNmVSZhro6pQkvrrvOrJwpBrcv7EGh26M5vq49Sik0LMF8/eoHT8\nrha5qMElT9JsTk73UVuPO39SYEQ1KUa/zloKjadcR3MkdT0iR4Pln09w/pbpVH9kuZGVY7KVf80T\nTlfntUCMJllVPV5wcPquWRTVdzKs/wmp7td40aKkn9O6QvmMa112zJSPzf3b/15FFis8Kba/zpCV\nSO/zWYH6Q2H3v/j2Dc6DWusfKqW2f8mf/0MA/+Svc7y5n9W8zdu8zduvY9N/zf+ARaXUzy/89x//\nvzkNpVQZwO8C+Gd/5uz+QCn18S+735cismLV5cU7uRQ+J0su0rpH35tlmjszltKAycVylMSyRc2H\nhayiOrc8NAhtd/662c/iF6nIvFSfWX7LjHg8lWPrJ4UMkp5h7lP1meV/VI6tXbasmO7NMNw0kVlW\nBvLS8ymzYKBt+iiyEVntvjk/b6KNzxaAg1uepP8EINGwaSZvqtGkVTqLh8a+liiAV7a5b9OI8ZKW\n5QmfkztVUuwfXi3g95mzQvtc1IjXKQK952K0RWlQ9uraSKAIQVe/58qKPHpIQI6FQnhK4dCBdknt\nYoPCgZmPbETF9GqK+H9fAQCMv0uq680Eu18ZWQ4FwCPkYTqiCFtphGsmMgv8DIOjGn1PHVAorFwx\nKKxp4qN7SOnB1Fzn7p1VOMvmphQjH9Gh2e/sKoUOAPJbBrWgOxHcVVKTn5jzqL92jsHEpDGrz7Sk\nljma9scQHlTY1TJWuzdYbaGQyBUKkqYerdH1FUDvFdD+LViAeVb+yNrSO6kd/8xXG206FoFYV2jd\np+iCUlthzwo9T5ftuOAMweCyY/3afCMMCwDemCKjK4FIiDUe5QaFA4BwJigfaYzJW40zGXHbASjr\n4cVaULP8nLXuzTDYNheY1BwZy7U9G8Hwe8JNgMFl01fsMt55rSRpzNpuhvGauVdD3/re8bH8gZbI\niMsGTqIl2jt/zUOdnA7Kx5TpmdkUfnSmhR+29FMzzo7+1gLipjn/hbsZHHo/8Dkndeu4XX88RhF9\nMwoWfK1/jXb2y9SSfon2+wB+/GdSgH9Da72vlFoG8IdKqa+11j/8y3Yyj6zmbd7mbd7m7Zts/wB/\nJgWotd6nf08A/HMA3/6rdvJSRFaLX1jOBAvNVo5zgZEzNF0VloFffRYjrZrTH2wzW9/aiqjCFDoB\noLJvoa/lE1qdNRz0twlAccEnh/P7C1/O0LtulnS88jRwWxZHs6KwDNMdXA4lR1w6s5pmAtP2LL/J\nmUG0C7nNWgrpOQNELHCB6z9OZqOsPFSi78Zw4fKBIzwpcUxWQNLklZ2NuOIlFvpUmK6xwoCNskaX\n6Nw2pvCemprP4EYO1Mjv6gEpVKQ+9A0TeQwqAar3qdZ0nX0nAIfsNFKE0MHz15zFHvwOQeenLvq3\nyMG3ZiKb4XkFIG2+YC9Afo34X8/MOaWtHIFvnYbhUM3yazqPWynOe1U5Fi/PGGjhTRT0gPZ1c4KC\ndODKX7H6LxC7VIjzgJREd71T828na0AtUM0lcaV/RRVixUbotb1UVBRYgSEPFCpH5vxVAUzb7FrL\n3CmFtZ8QJyzViOmZmLX4/DUWvrJWOBx9OAIkcoVuUdstcPhv0bHo/Pyhgyq5Fic1JTUxhoG3HuRC\n/XBjdtY1NVvAREas81c+SeSZZD3PybKLcMC1W8h1Ml0jGGnUHpmazcH3zIDu3gwlInBjWzvmqLHw\n7Xk4qZZsA2dFWvdTZGUSXK45F3QOzY4aj3MEffPQdl8pC1iFa9OqgChxrPx8hnjB3Gv+l/sKAOrP\nrJDu6QcLph9OC4kWw7NEeForHxGf75Wa8MS6r1a/Wafg/5+xG0qpBoDvAfgPL3xWAeBorYf0998F\n8F/8Vft6KSYrbuM1D62vTUrn/I2yyJf0r5hBEg4zIc0OtiOUiJ/BIb/K7QRSe1Zg2rrAmQIAuDLI\n/LEW7yAxhysrNKmYfPA3Qylc13csUZkLzMFAy75GG0wEthNU634h6RlBViUatWeUqnjVRUKeOfxg\npnUtBnDRmRUbTav8sFsjxfGGJVuG5zybQZBJzKOKzpQcP480/AFNvKzk/RQYk1149RmQEOWIU4cz\nN5I0lT90UZDCfVoj1FhJwyUAhZq5Mlkyd0oNfGBC9yEqAEIWKvrX3wmgbtHb5rQMTduxqjkcDVDK\nLlnOoAj55zL3rJxh+IxSe40ULm9PPCI4GjlvE+bQYifOQB2b+ipSBzlNPEy49geOBdKMFdKQUlZN\nduHUqN4nhNytFEs/NvvtvGGur3nPghs6tyxnh1O3eaigCI0RDqzsDi/Kmg9SKeYnTYWgx2AdQtj1\nNWr3jDjw7u8torJ/AS4Kg1plCa3+dQe1z0I6Lp1+bAVW04pCVn4e4Xr2hovGIwbyWB8uSVduKSx/\nzM9p9NzzZfavMV4zF8Pk3/ZXM3RvWSBV/J7pDE6Le1N7/U6uMaLt2bgy6hWYUQmgepihv/08qKR3\nzReOpZtq8a5iCaXBZQ9u4lH/xshLjJy0i8ucFwVNTybTk/fNebbuJzh7g3mIBWa08PDFJLOAN6FJ\n/XKE2oHpn94t83A0djKEZ+blMquXsPCnF8y/XnD7hqHr/wTA92FqW3sA/nMAPgBorf87+tm/A+AP\ntNYXJQ5WAPxzZRY0HoD/UWv9f/1Vx3upJqt5m7d5m7d5e4Htm0UD/sNf4jf/GAbifvGzxwDe+n96\nvJdisuKQu/kgRhGSAOvEyiwx5BTaWk8b11SyUTi2PC3msUBZXkfvOqf7gAr/NlSo7NFKiLklgULv\nGlloD22Uwjfcm2gro9NUcKec/jCfubFdEfavOOJgyqubpKYwumRlbpqPGABCorCPLvhM2QU56o/M\nv5N1LZFPdKYkMhQ5m0PrHuwkrHSh4VJkFZ1aWxTOHU5XrIfV4KpCXia1kFPiLoUaaZ3h7AoFKTh4\npOCgcqD2Q7PT7gcJcoo8wl1zIWlNQ5PEE4ICHvlc5RFZsWzHKPpmGR90HGS0MncpNehqIG3Q/Q8L\nOMSZKq6YdGDg58jZr2pBIyMFC4aYR7sBGt82N+h4pw23bkJvVlUw52iuKXwcyd9Cp6hoOPGFyJWE\nfJkiMLqSS5RSfuqj+5q51vojjmwsdSCr2PQcA4X8SSEW60ndWoBwanC64AocPOxosQPhaKW+kyLe\nNCv+8pGW1X1MChppDUjqtM99JSkn7p/Ct0Kw9d0Mk4Xno4z23Vykn5wUGF4x18IKKWt/MsPwEkmg\nHWZIaiS9RaoSblzYc6FofrQRyHMIbSHf/Jw4mfXQilv2OZIMibZOyUnNweq/Nvd3fMuk4aoHOU7f\n4sjH0gkcksLKQyX3Ia16mKx4z/V53HIl2hyvuUiqpn9ZhDovOeJxlYcO2ndN6Hr87Yr0HTsFq6xA\nHpmLWfijp+Z3f+8Kpi2iU+TA9KqVBnuhzaL6fi3aSzFZcXg+a/vy4o0XLQ+J/5223ef8cpjs513w\n6wkpFTBdUSiRJw4P1spRbknDubX4ttp8SuoLWgE55cjZ4ru6nwtiyNR/6IXEpNi2nawqh9Yba7BF\naZ6eFq7IeF2Jfht79/hjqz3oTzS8qX2hACY1J95EntWRizoW7cUK6eyl1Xm7QHjGG9n04MXJsHxA\n11/XKO1Qmo9eLH7PEc6Qyi1xsvbEfNa/odB/xewz2AuQLFNhgvhK5U/LmH3LpPnyozLKtwzMML5j\nZl0nU8LTit7oYXrXfJ7VeIIEnBnVZzouElqMND8zndJ7IwNWaALai+CyQlWNapNLGsMfGR4VrqRw\ndszExtyctKah1s0KRH1VlpRnTnwuZEpM+wpHwxvbSQAwk/Zky+ysecfDZIvTfPaeuxe8wbjWwum0\nadsVNOl0ScGjz1nvLouA+jNW6FaImxduHEyaqnJAdJbWEAAAIABJREFU5oBTV178POYvvqzCfiGa\neMMt85nKAVKwQucVTxZjMqaqVtW9fS9H6RNa4PEz27J8w8Pf8FB7ar5nvUMoF4tfmJMZrdNCcFJI\nvbh6wGlLYLBNdaAnlqfmTa15JdeunDMtaMu07OL8A3N/G4/NAubsjRLaZMI6a7iSBufabti3z2Za\nc2Xi4j5XBVClPg17DgZbZjLm90QwUKgfm2P13q0haLrP9VlatqTt2YIvCNHJkpnpS90C/oAk3lyF\nvDTHuf0y7aWYrOZt3uZt3ubtxTaF59akv/LtpZisxmssZzLF2W0THvtDjRKhdzhNWD7LZRU0WvfE\nobf+C2KzL7sIhhyluejeMPtlgITSQNgnVfamK8Xk+g6lXNquIJbyyIjAApZzMqs7giZzYv2cAy9g\n2P4XbcvZU6r5wPpxMQ/JyYCTDygyMqINqBwBFUIrHn3bReWAIzvzfdjBn3NyBSAeQ0nNrqgnK1To\n7jtIKI3nucoqLLBEUC2HKhiZphGCozmKMB0g7HLKsEB4xuK+vJ8CoBVvXtbw+uS6eo9StL91gvhz\ncwHO1hSDQxOSuBGlXjVQeUquqq0IetMs7TXJNanEQZXEZYc7DYkUuM+DVoxkYP7HHylE75swdfRl\nW85/sm0u2j/zkC5TB5wQgjTUULsl+a0I7YJQe8sZMlLdKD0NxAmYASjeRCGPTJ+MNzXCExJ4pQhr\n4Ust4rBOZhFtfB/zUEnKLC0r4QpxtDRrBbJ96awQnhVLYLmJxpQcckunKULiyZ2/bj5LGlqQiYNt\nJcjVpGWOGXQc6x3VhUj/cBRRhPb5GW7azMaAU+t9JU4H3ZqS9KFPogzNx6l1KiDAUdgD1n5iou3h\ndlks6Nf/JKNzDw0nEEDznpb9M4KwvDtGvExKJVON0QaXEWicT613VeEplE/Nfjmyq+1aJ2FvkuHk\nHeJZEtAqGBaYrNAAA1DqEMIyY96lg7xE6eYCiOj789fNZ617GYIhRZNrkdjWzygCS6qOBWBselj8\nbIRvrM3TgPM2b/M2b/P2sre5n9ULbiwUe/idEnwCOAYjLd5Witjmw01XCszhoEDpnLkoFFnUFfyx\n1SljbyrmTk0XHYG0GjY+23nQyjfRsorqtz3xCZLaWKwlGnNn1i6EfXr0hbi7dS/DybfY1tdys0Rv\n8FzDJVfayZqm63OQVRjmC8wIus7cp7z0PGdKdy8oUwCo7iphy4vIbU8hOqXrX7XeRrGpRcONXfGo\nGt3I4CRchKZTdzUUueq6q1N4u6aIPF2xnBR/SHDumxN4X5sV73iT1Ao+WxIPK2evhIDFiWtcgLc8\nr6IXiPWGy9yaSiHRmJMDbs/05fAGhcDdyDgUw/iBISGbiafm687buahVwIHcH46gps0c0ZHZZ17W\nwIQ5eeZ39a98DF6j+sdCIfU91kis7jiIjslvybVcogb5Sp18S8kLo3Sixe6Dx5YXF/Apsmh1rW0N\nW+GUT1KrYFJXAsNmpYi45Yim3XTJl/pXica+yh0BbUxDhfoTywkDzDhkUM7i54VkMRh6nhU2il/8\nfCaQ7doTC3rg56v6zEH7rgn9Dn/DnH9Sc0Q1hq95uuhgtGGKos2HGSbLLIpLv9vLoSkrkVYgqicc\nwSStCOM15nNB9EDP3jJjMxhq+OQirnIHcZPVOqifFl1x6p20PTQeP09oDHsp0goJBgfKnj9pkc7q\nDrwpqWbsZwg6JhuwcIeyPhu+ZIvCgZaadeMpuZwHjuidNh/lmC1YTt8Lb/PJ6sU2RjCVToHFT8yb\nufdqXQqeLGhbObRikv1tS/Bc+xOTc/DHZesX1SkkPVAn0cvRhisoOSe1NvXVffP9eNWx3KW+LeIO\nLrNqteVsjFdtSpAL0KVTjcYj87Du/p0yqruEFjyzQAsmME6XlJi5KXobDW7kiI4pfRFYGanWAyK9\nXvYQLxI/KXbkJcbItqwMZHRNzEm5WKCGttwtFi+FcwENd+gL2pBb/aEjn7lfVzC8ySgnmqh3L6jH\nPysh3jTXFO0zUVtDL5r7lw98qNGFiQNAXimgPULGXTB3nFw2xwnbU8wozee1Y6QnJbkWAAjOXQF1\nqKUMsz3zElTEd4sOPcTb5vh67CCk87IEVSUpzzywABdG8PH/A0D9kVXNV6kt+s8WeWJQwmM7f5sm\no5GCptkqKyt5YTMfL+gDKRFYfVWInBGjUierAZY/IdHcaSZ26oxWSy4AjaJOhvPXqK+mnNrTkmab\ntaxUPhuTThcdtL8iNOgVV1CK/Gz4E2CyzAuYQNLHlR1KzSkFf8wAEB/9a6aDWNYpbjnyzHDqLeoC\nBclBjVcsAGLWYJNELRPQeF1h6TMS9aXzH7xjgRx5BISU+ndom+GGK6ltJ7UISZZ9CgdaJuDWnT5m\nS2aBFZ6YlXLn7ZakRgtfoXWfnBjqDBDRyCKe1As4MzOYSo/N9mdvrWLhS3POvWu+kJH5+pXW4gfm\nZFrAGPP2l7eXYrKat3mbt3mbt2+gzSOrF9tYFsmfONj9XbOMLx9p6WgWogx7hUQ+TgpRA2BmeNTN\n0XnVl+8bT6y0EmAKqCJhpLUUm91ZQdsrOMS5KjwLL27fs+KdHG1NF0Is/czwK87eNiuzpKpwSn8H\nQ0jKkGVg8tBaK3gTiLQUp25UoazoaNNC91mINzrXKFHKqfBM8ducl/lXu5TKMnsDYIra03WSs5o6\nwrnh1Fx1x5HznK7mWPzE7L9/w+xleK2QFaEOtaTMuE0u5XDbZuUZ3ClLGjNp0GrS09AT1tYphBsm\n6b4EKMgHKC9pOa/yEtnXn1bQ/MJsP97woVu59JXpE4WEohT3aYSUjstpzLAHxDNrd8LKGyn1Q3nX\nxYSEep0LEld5iVbuE4XyY4p8rxcSmW/8wKymj9/zBXSitHX9VTmvvJ/nWXGUyx5nhWdTw7O6K+lH\n9nZa+jQVi/TR66HY4TBfarbpWYDQki+R2WSJAQYakzU7/piuwdGSvrCoX/koxuF3iPNGqeekboFG\nwdA6/LLt+2TFQX3HfKYd6y3HtvKFCxFXbn9maAu91xsXlDAg4s1idb/uia9Wfcfa1rP4bPlAo/7U\nPEjdm5FIrIk488yCIbo3Xaz+zIzPEvE1h1uRRMyja3V5PtVNM2icTKPS53KBEjuPsEdZgzONow/M\nDXJjF3XPpKmzsklblA81gh7LjflofmkyP8PrJuqv7k4lQq7uTpGuM/nxBTc9r1m98MbcD39UCHLJ\nHxdSi8poYKfrLpoPSfl40RXV9dquGYyj9UAQeku/mIlRHOf0B5ddSS/knpJUCh8/ixRcfrENrQ8Q\nc1dG6y5CQm41nmZ4+vtmkF39Z2Yw7v52TXhU1f1CDOL4s6xsawHTFSX7Z4RYeU9J+ma6ZFNVLJdz\n8cXmjwFSjMGEaj7huYOsTCkfnghngLtAPJx7ZUFpTdYpZXItR3mfiK6HLkZ/xnZ9piB+V/4hJA3J\nNR935EANTT9M13IxVQxJOy9tFND0stK+NXKUyaCsRek9iB1JD033zAtAeRq9t4lHde6hskMT1xXz\n2eC1CxJON6ZQe2Y2TC7PqJ9COFMaR2Ut6ceE5JKyrRTNH5sXdFaxPDZJl5a0IABbdxQ6b5nrO/wN\n8jNq5nCHNlcYUX1PiOCNCwTcwC5WGOHp5AoOcdYu4owXPzc3v/CVkHL9oRZz0tO3zYu1fS8VzbrK\n4Qw7v2OupXnPptF4/Hga6F0jZO0RT9pKeEDByJMFHL/sVQ5Ud81n2rmQXqbJJOxpDLat0SOjTRfv\nmAs9fauECXH2wivmnmoFSU26Mw1vQhJkr4TyWfXQIvgS8ssSRfhHGZ7+nrnO5Z8XUp+aLvpyboxm\nbN3PMdowuUuuDbqpFlX75uOZ/La+wwg+X/iYTqoFWcgTvTfJxU8ri5ScP6cp609jqNwca+XDIfIq\naYwyX893hVt6frsi76FvpP0aTVZzNtq8zdu8zdu8vfTtpYisuJiZlR1RaO7eclE5oFTAUxJ9bHk4\nv21WX/WdTKR9Blv02bMZtGv+TusuhsSrYKdSJ7VW9rX9HJ1bhDgiIVhvatMjpfMCfRJ4LZ2xAoE9\n57jpYu0nBNy4bFIClQNboB9cdmxxXvGKzIIdvJEtkrPEUhEo+b59L5cVn4iDDu2Kd7qkJP3HaL/B\nNY3SISEMiVu0+gMXhWtTk7GxXsLCZ4QKbDtISVTVADCYv0Pn5ANp26xykwUFv/s8QCLsKdmmvOeK\nKOhshfNpgGqbnYUPSgIwiRcIIZgpSS3lTgFQeq9KHkKj7VwiJycDxgS88M8tdynoUwTc9qEJLLLw\nQ9Op59+LoQm5FRx4GN0w/RIeUeR3LZU+L3wgXmUFdOrzriPRbO8WEJDFvSAcJ47w4UZbhUScItez\noawc1pFG9zadH6VbZ20TZQMXHJ1hJbwKX4nMz3jZwWjTCsACRr29d532VY+w+Jk5LnvEOSksAtZT\n4jTNad7yMTClz5oPcjgUrjPHURXWh6l/xRNpM35mo26OtGy2ad1PMSBk7WCLrdwtUChu2AiMn0N/\nDDiUIeGsgptYdZmoV2BA17f4KQGetjxs/rG5T+NVD6MNijK/tkoZzQcJ9UMgz2Hvhvmj8dCm6LOS\ni/YdE3oOrtl0XP2hGajxSkkAMOzh1bseCGhEFaakwOcNmLQ2c98mS46ouTfumRTL6GoNtc/NDXbj\nNvLgm4sZ5mnAeZu3eZu3eXv523yyerGNVz5JVUkRtf6kEEgn5+fLx4Uw6MPzBBlxIcarZhVz+J0I\naz+lXPmbkayIuXYEZb2Fzm67Ai3n1UceWC7FeNkTNj/fcDfWUker7WeSo+ai/PCKFfj0JpAiMatJ\nVA4tfwewYqMiSAug+dCsDs9v+1Ks5za4bvP2pUNgdIX8unY52ikw2Tbnv/ih1Zbj+pB/CAyv0PW/\nYzYpSrlEC85MySq4QS7EZ+8X8HqkVjBWyMmPKiMFiuhMCbTdH9uaFtemwjMP6JJfVK0QhYOctm9/\nDAy3qBjv2yhE+FAjB06X+rkAGnepVkR1kMlmJgXw2hOF0fbzAJHgaYSsUsg+25+Y7acUYbrPIgFd\nqAs6hD75XTkJRG8RsMofDEyoPVUCQFj4XGG0af52SO8x7AK916j4CA+Nu+ZcOZpUhQVToLDiyadv\nWZ06rnkWvo3YyqfmmiZLjtQhZ01bh2WgznhdSU10tqBQ3aUxc2i2GW1YUM/Ju6HU1OIGg16s6Gt0\nroWfxGoN2gUWPzdjVjvWE4ojJ29qOXkBuU+nVYX2PbPN2W1fqBdcW/bHhYCeCs8VbqCTMRDL1oda\nX42w91sMcLARCr9TSp0COb1HymcMl3dENWSw5UERt405nEUJOHmfuH0JxFG8Q7SAqGO5cbOmi/Ga\nGRT8HnCnGfIV0z9uAqHQpBVTCI26BSY3zAAsAoXo7EJI/YLbPLJ6wW1WpwJ/J0efLKpHlxzUn1hE\nDmAGOac08rKHzitUOKXBtPBlIkXM5U+mOHmPEDdkSJeHdjJsPiwkfSJEzseFSLJoBUFenb3h0T4T\nDC6TarhvC9P8gq7uWoHPtGq/50nTTbRwowpXYeGueTP0rtJkfJYjob4oXKBgMVlK94XnSgRU4QD1\n+zTZ8e+GDsr7lBIiWSd3ZoweAaB/TaN0RNJA2+bays884QllZQ2XxHNHm4RaO3OhOOX0+gTNPyKy\nZ5PTiAZkAABp1xboc49Jv/bF4Sn1nDcUYJTeGTnojxykVdt/AFAEWhTOk6ZGvElpOiICu1MH/ohS\nW6/nqDwh5BvbYWWAG3PKTQunJ3nVrARKn5UwI6J10FcCpuB7lkdaXqZBH+i9SeaTZ2xIqFGilN1o\nUwmAZ0RCscliiupDQrN2NCZECmYh3bBnzwnKIA4BoEE+WNNlZQ0duxYhy0CJvKQFAJE5FkHKUmSN\nR4UYKZaOtSwWeByq/IK7AOz5sXjucMMThGHcctG7ajZs3zWDIqm5SKuchnTENJIXaOVjjaVfmGti\nE8fo3KbLmZhPhzffn84ELZcHSs61fBDTtUWC8D17p4rKvtmwsmNSd05SwXSZwBZTLXb0DLjypo68\nB6qHuUwyPAHmobIE4gUHzccE1iFUa9x04Y3sBM1pUgZi9K/x6gNo3Z0gXrbSTbJ9wP2TCBjjhTeN\nX6vIag6wmLd5m7d5m7eXvr0UkRXDYFUOLH5hVjGTVR8eyS2tfmhWRqONQLx3Cs+6+k4Jpj1d9AUg\nsfhFLM6hDHGfrCiB7KrCCldySicY5NCKWPLbDvKIUmm02u68EqBBnJbBlieSRaUj2kGhJeUCWJAC\np7RMyodh+hpH3zbL/6TFhVkX9acZbetY7yyCUechJKXljR3MVsznVfLlmrVNWg4AerdtBCAr83Pr\ngbX+r82/3ZvA4ifm78FVB9PLtAodE1t/oOASHDu4W8aU3DZSBmLESsRb/QvcsspDslVYLqDbBGp4\nYt2Xp1vms/pXPgKCrvdfy+AObcoRADBSVvR1OUGwb/bLoJKkYUVZ/a6D2cLz0HqVAdNNK400ukQA\ngd2I+kzL/ecIGbBpysZ92//xMgQGXyZQxWTNRH+ASf2G/QvACgD1r32RnlKFdR1mvltWhkQGpfMC\noPHH/eyNIaoZekGJhXz7a1Zdca3rcAQ0KBsRnZIs1IIjtjD+Ra9WatX9QiKXybqDxc+tHQlgIjD2\n2wr7hYxp/ky7ltoQ9QqJnpoPWfzWQRbZiAowqckqORrXHyc4/BtmULII9OhSSUBFqjA0EQCYrpqO\nqOzFcKhTVKExXiFQz6KJxopASWQ8WXIwbbPStPmncpQLDy1uuRJ9sNRaqaMFul49yEW5gjNAbqIx\nWSNQ170+Jpfr1BdKvudouX+jLO7ZPDZUAYl2o3OFePMb4lkBv1aR1csxWU1JR67lIqE04OKnE4wI\nUZTUzAtqtOHIZKMdyCBltGDvRnCBJ+NJKoIfcKVtesnJrVYYS6dkZUcmw9KZRpXsqCuHjMpzBO2U\nR8Dan6byOWAIiAHVD6ZLWjgpFwcM1yqiM/vwLnxpHpLTtz0kdV/OtRCUoPnXjYHqM+KceBqaUjoz\nSsmV963O4KX/02xz9F1r3sh1GgA4+o455/YdLervKitQvUcHU/Z8pxumH9b+jYOj75rPxWvL1aLK\nnjQsSi2tUmpmz4E+CKl/bf2s9rW5Tk5XAoDfdWViijfMjtyeJ4aP/l4gMouDV833lSe+mCOmrQLO\nhFOjVNs5BMZb9BJ8dwqP/KwkDbWv0L9B+x8qefFyUxryskEBhB1ChjFHr6+Q0ot1ulKITuLCHapp\nNOxkpjLLmWO5prBr65CTFVdSUsw3Cwa4IPFlpYk6r7l0/lpSWu7MIu54gq3uaUnzJQ27WOPJYNYw\n/DIAqD/SSGlf/L2bWL5h4Sl7fjTBaVchp/Pvb7to3yXkaM0mbZZ+YS66+6oZ/LXdAr0bZpzNmqFF\nntJ+8kBJOjHs5SLDVDqj560VoLJn9pnWAzTo/dG7RnU0pcRKfrLsidwR19u0o4Q03nqQyGTEfZv7\nFsmrHYVgyAhRGtOHiaAyu282ZWJvf27Iibu/0xSleKUB7VhpJt5nbddcS1a2flovuinMa1bzNm/z\nNm/z9qvQ5pPVi21jUl2GA0mDTdZC8abiwufqz2JhqcctR5x8e9fNKqfxJIM3Ntt3XotkdcMrT3+i\nRealcO3qr3ROAIGyI8iu+hONzivmWJyGqe5reATm8EfAwW8SJ4UQgGHPci0W7mj0rlsuiTl+IWz8\nZKAQ0Yq5kGKrTR8UnnWj5WI8FDBZo8jKMccDLD+l8GxKs3uTUjdnFm1WBPZceBUbLyi0v6A03DXr\nJFx/SMdsKyiSGJq2HYlSGdQwWS9ESNYdeCgfsdoARTs1IL5EPKsDX4RqOVqcLWUo77KclBKUnxtb\nwdksYzCFwmyJ0kcUmWUlXPD9cpARsq+g0LD7ukbQIwHTxyWMLnMalQAiC0DrK4oyWPAXgE8IvM7t\nQlKXaTtH9SHxiK6Zz8JzK+1UhAUKzxxrSOLH0+UC7c/N371bBZpfPw+6mS4rQYj6Q4sW5TSoN7Wc\no8pRLmoqjFTVrgUglE60RMTNR+wo4IijdPsgw+mbxE+jCCnoAS6Nn6xkxwcrwZRPc1ENV7kFa1bo\nOe3d8K34b2ZT8nJOZxrjzeejWSe1HnJ9x0f5xFrUAwbpmZCq/GTZEY+vpEFjupOif8OEu2E/x3CD\nAFA/NwCL/e/XMGWwRGQBWBx5VQ5zLHxpws3RpVDeCewenFQc8cBykkL6n/fD1woYDzGWg5tsmsEb\n9LVws1Sh5V6zS3TYzQXBWvhKMkvfRGMO2K9DmwMs5m3e5m3e5u2lby9FZMWrPHeiEZ0YSPH5W1UU\npKPHfKXj9yMsf2yWfOPVUFZcQY9ERd8PEQxpRZ5o9MgpmP1qvInlbiVVR/TJ2E8nXlAoHVtmfp/g\nwVz4hTZaaoARs2x/RZ9TYjhu21z3eNUW0zlaGC+7UpjPIgPiAIDaM+J8XAUq++a3UcfWIrh5U+td\nVTpSombBEUFaAdpf0op6i45T1kg2TWhQuxPKiplrW0Ff4fwd0z/1B544AI8v0aVlQHXH1kE4IhGP\nr7FC+Mz0+fC1BMmEahFbdKCZCzVlJ2Jbv2GAhDuxAIDCtzp2vDI3IBOKMmKgIDDG4Ja557UHnkTD\nSht9RMBGRkVoFTaKAGjcJ8j8dfNZXtKIycMrXinEm4r3mTdy+LtUC+m5EqUynH68qeWehj0Pw6sE\nPSc/q8Z9JU7K1R1H7EhGl81nqz/NpNifVp4HAJnPgMohc+9Ciey5pjNrKKlJebGNrLgOUn+ao3uL\nQRueWIAw9Nun/gaAuKUEIMNCuyfveaiSrYmTa5ROqG5E4rphV8NlBZpISeaAz3/phx3s/5bpTAZE\nMXweMGNKOwTKeGT27SSF7N+bFtCkAJNQVDm7HMLJuQ5oI4fezQrtJ7d1tr4Vqi5TBqT5swN0v2NE\nMOuPJxhuk8JL1zwn4+USwo4Zv/FSJFGScCSVL9wtVWgLlqCamJPaKE3lGpNlq7YCAOVnAyAjd+V3\nF1Hev3ATXmT7NYOuvxSTlQhMJhrOxAzY8kkudt7il5QBvWvmZehNtRAXSyQBU39aSEHRTTRqhDjq\n3CJuyL1C0hTBsEBCYXnzAfnVnHjo3qA0j+uJhbikgWoKK6S0fvxeGWABXAJN+EOgf4NJy9ZCnEEH\n1UObxlHapAMAS7CsPbEeWnkIAWtwai8PgcYD8/dwyxI7Z4QmXPlZgbM36froZT1rA+6Z6bN4QUsa\njv8N+xoFpeGc1AqtsizSrHXRh8emhziNF50qKeY7A0+utfZFKOcmRFrXIifFl2voyAOlCmB0nZ5o\nfsE/9TBdN595wwuTPd27LDJis4BBLnIakPliuW/Ras7MELcBiKFked8SafPIkevuv0kK27u+TDBR\nx3pH8cs4PFfPoQh5suSX6GgLWPiCJ+ML4sTU/+eveajtsB8WRA6J+6R8XGDvt0wHLnxeyPaTFTYk\nLCQd3nldCZiGU1vl0wzujIRYHVtwZzml6aIjfV2E1siQJ4NLfzgV0E/3pg+VE9lVJNKAlCaT+m6G\nqEfncuv/Zu/Nei1LsvOwL/Z49pmHO9+beTOzMrOyssauqh7ZFClxsChL1othUDb8ZL0I8Lv9JAH+\nDbQgEwYh6MHyk2XQBEmZItViT2R3VXfXkFk5z3e+Z573FH6ItVaclKiuZjPTvCycAAp565yzp9ix\nd8T61re+z4yp3ht1maR40lE5MCLobvtbY0y2GCYk6PaanZRVZicbZtoGI415heFkRyZrhuChgdGW\nuQ/8vAJ2As9WqlaIoB7KBDw6R15c92Y4ecdMfNXHKRKawANaPHevuNj6jtnvdC1E8/bzY9abaUyb\n1q+KJy5u8VoJs6atA+u9WsbLakuCxbIt27It27Kd/bacrF5sY0jCSYDZe4bLrDRQJTdSFnQNhlpC\n8dJBIlABU7iHuw5WyFX05B0fLYLppN6q7IqqhJM6Qvkeb5Popm/rQ0bbjsB/HFkUjzJMNsjGILbe\nWLwazwIltuf+2JI5bILXw2TD/F2/AyS0umQJKXaP5cZJ9LT8PDRjOshGfOXH5t/xhiMOwBlFe97U\nRhnRsZb6HVZ4GLwCJKtmR87tAJNzZpVYfsh9q8HYUhoBE/LG0kQnD449kSPKqyli/TzpRHtKHhhv\nArl+jwgaWaSR1HlpD0TPqKalaaMN+ayVY7IJ2q/tBxZv7Vy3+2W4VLsa5SfmnmgHIt0zOm8jg/EO\n7yuHc6DkuqSrc3v9W98xoeXD/4qi9U+U+DVloY2iS0fs5+Wid4WjQY0i7Z/H2eHfi5EW2Sreihqz\ni/Ro2xOyy6zpwCdJIK6tSsqOwMjlfY3+hedrmuKqi8Yda8fOY3lwkZ6pvlwm6vcysbXnEo55rSgS\nZYWuVZ5wiRQwXXPRuE3PzJYnERE/O+7c1kFxK+9nVonjSlGgQ34O6vcSITcVepasU3to+r79egEe\nW+00LTTrcQlDCVLHNd4poPTMhF7TFsmzrVctKca3JS7nftdIkRx/cxXr3zfspc5bdYki/aEZ+6UD\nhSxciFYZjq8TqjHOxRfPH6XovmoetuZnBqqJq77AtUlJofmjDpbt89uZmKwW8Xe2mNeuhVr4AWm/\npSRnAviyfVwyI2/l40T0wSpPcskFMA4PWHmXuKzkxcAafM78ebXq/mXzOTPcgrGS+pPJhkLtHr14\naWBOWxZymqwrNO5wfoAZclYhPBxkYmDHA1d7EObW8IKtZWIG3nDXQFF8fvzAsfRRWtTC0mP79CwE\nOm+aPs1DF8V9zt9Q7u0ESAkmVBrwB+5zx8w9m/NxMiXMNoahskgL/FG6F8j5j87RBHkCDEnD0Bs5\nwnLjfRobeGZJ2QJgLhSermmkqzQDzBwEPaqJoZddFmqRzcoDK30kx6latty8obH6EzqXiZWlYri3\neKAwJzt3VrRPqlomQH8M7H+TpLEIgh1vWU3M1JuuAAAgAElEQVQ4lVs2ZfsNkvaZWBg7C7WMH77Q\n6ocFgafmTSv3NCa/pdy3dXS5b8cq97N2gOP3zWf1245MUlJvWFKymIKyOnXMlJ01HIF201DJi5v7\nxI211BcVOpkYhh6/Zzq1uK9FBqm4D8xblLOk2qjuVVcKlXnRmYXWty0Y54hIR5F1N4PeHMGAc2IJ\n2tcL1Jdmnys/mSAjpffcVTZPJx5cGoPzAV3nDIOLZuXm0wRb6KQiveTEGpWnZjIfXjdV/rWHMUaX\nzGogHGbCVo7Yy2umMW9QTm2WY7riSf8CwKToygJ1uuJJnZwzJ4+unUiOqXIHsx22PXjxbQkDLtuy\nLduyLdvZb8vJ6sU2TloXOjlG2+Z/mjemOH3LxPcrN8wyT+mCkDF6Vxys/9CsuFlAcrLmIRiR0G2o\nBFbjlaM/1Rht2siJYYfpmq2TqpAq9WTdQf222W54ns/PRjOVx1okdbT4VVllg9IecPIOw2+WQchk\njNGma1fcBMmFHeNTBZj6l/p9s/o6fs8qcPPgcxIsqB2Yf8tPLDzUeYO+87UoiXsjG4WxUrebaGDK\n0JmFFPtXqTbnUyOPAxg/phGxDOer5uCVey7G2wQJdh1MNhjSMfsZb2sEXSsYzPc6WaGVZeohbhGr\nc+BhSvBdTo7DKlVofZ/VLiykyBFk2NM4fZ/2lSmMt5l0w3VeOTySSPIm1nWXSQlJxTITnVgLG1Fq\ngmIlkKKTKiFbcNTrzu1vw56W1XdMNXJZaF15ncQqpDPzbbjjSTTnD21kzqoZ2gVWCdoenPdkzPAx\nlQa2vmP2PzjnIOwzHGH+maw7IsRc3tMyvkVhYgF5djLDHgQsgeLoPRfrH/Az4cn95WuqPk2gPSuB\n1r9ECuYUmYc9KySbRObh0cqiJrmn5C3Ez07negmtj01H9a+URQ09otqnZ79qHa8rT61QLx/TybT0\nU+9yAT5FcZU7BvNsf6mBylNzTp3XQpGuCsWKHih06JyLnkU+FvqKmbpZ4KJ0ZLbrXzDjdPXHIwwu\nmRtY3o+lDotb6dAKVk+bCgvAz4ttehlZLduyLduyLdvfhLacrF5s49l/tONKtHP0laJEMf0LJvTw\nx1anrPJIi50HJ7W1gtDR06IV/Sz0OOkbA9qscgYXrZ8VEzS0AxSPGUv2UN4zIVk4MNuMtlypvM8K\nDjjXwnqDKgdmtEpe/ThBVqAkcXchT0YKFeWDHINd65nEjfUEp+tA77In1wqYZPV0hSKDkhxeVn7j\nbSWJ7WhBSYLFa72ZVbPgCC8t2mhFZRCdu5ByY8PzVtR1tKOEwFG+b1aG5WeZJEgmW1quxZ0zKUQ9\nJxTLUebGn5ht2m8Cfp+ESBta6rAqtH8nAcZEqogbVgGCKfbjLYWgzfmh/8hOA4A7d6SmTHtA8dB8\nz3qAQd+xti3BQpS6TwSIv5WjesuWULBQsChNTGz/575C9x0zGNkWJOhDCATexEbzR+/T90MbheaB\nJaBwbtNJgc5rLMQHFMk1OA1tHpTHfNTOhWbNUX9W0OJNlkaWHs7/QgOKosVxzZH9d0mQtvxUW1UK\nz0YvbBty8k4gBI+4otAgt96crVhKjthpqJzKGaqORDuzuiN9yUKvYT/HaLdE1289tDgf3fokQ0Bk\nh+BkCu1UaP+gYyqU96yeHz/fWZmteFJ4IzNQ3TjAeMP075REsJ05UHtMFiBKYe3PDNni9F1ThOhP\nNKJTUr0pOWhfN4OOnYr3f7EiRJPqnRkq5MM1eKVMfTqFXjXnEgwdFA/Eo2XZfko7E5MVP3hOYh+C\nsGdjYy7kVZmFvpxUywPHk0XUzq3h4pZC8Yh+S5DGwdcLKFLRrzuzxYnM5vHmwJwYhmmoMK+Td1VI\nyfDHKXqXaQLq5PKQcbJ41rIEgdM3fYEf+bOkouRlPtp0xPQvIQXu1Q8sM7KwIOPD1zfeVJJA98dK\nJunmZ1agk2Eurn2KTmwyfrJhz2/lU0oqn/MEOswX9Uw0n7P1c/JmlhnH53H8ZUd+HPSUEBO4qDYY\n2JoslVujSS6I1q5G5aG9TmYu+mNLKolXiIX12BN4LW/aU2VILou0TLIsSzU5l4q5ZNBV6F2jF2LX\nFg9bJXQlDMwxwcWlh46cf/FAy2KEryMYWtJE2NOo3iQZKFoU9F/P0PyxZSPKZEpSWblvJ77oOJf6\nN1H0P9KymJu1FCbrDGnSmF2oJ41OUpEe4wmw9AyYEmkiOtIiIzSjOqDRtoM85ufAXjfDfNMVJd5V\nnes+6vdIDo3IS/W7mUBmaaGAk3fM9bPcUzjIcfIl85Ku0gQwWfcxJ1Zu89YcaZEYjEfmYuYrkZAl\ngqMxJheqdK1M1EmE9NF7vYICyaWNSAm+eJzBm5rPOtdCMapE3fRN7xUfUZXV/bUQP7b/8AQAcPAr\nq0IaGp1z4Y/Myk682Oa5EEi8eS59IuSup5ncs+GVipVToleaO5qDkH9EBznab7+cOiuFLxYMuJRb\nWrZlW7Zl+6I2rX/+/z6nKaV+Ryl1rJT69D/z/S8rpfpKqZ/Qf/904bu/q5S6rZS6p5T6n3+WSzkT\nkRVDT/5ISxQ0vOJJFMD1Vt7U2h1MVlxrLUBXMVl1pP6m8jSXFRfXaQQLQqHeRItMkShkaI25x7/V\nGG+YLxieaF/3peZkuuJIRMXRUhpBak4m645EPlOKdsKOtrVUimnbVk1hvAXEFG0FA7Xgx0XQU2ij\nQX+oMSKoJyFVjPITJfAe28onJQXkli7OK3eGdirPUhECzRfzwCxEemTlfGZNa93hk6yVO7PuwvNW\nDm9Mq0uizs9WLHU6KygEXTx3rMZNqzwwb1ofos5b7MvkoviEHFpbGq2Pzfe9q+ZfJ1PW96uRC72Z\no9r6DU+EiJ3M2qWwBFZStuKtadHCY7y9kwIBRVtZwda+RRStDi45Eu133smx80fmcyY1rPzQERrz\nwS9qVB6wG63ZxptYObHxtiPwZfmZtbVgb6W46gqkKvWCsUb5wKzs268HQtapPbBwYZF824JRjgFZ\n8PA4io61lF6Mdhx4THOnVjzOpX4oOtHWE+qIJc58rH3oy/4dsrCxvm4OQn5mVs2xq49naL9mTvTg\n6wWhtmuXoL9ECwHm9MsN6T+OaquPn/fTqhA0X+VyjcARq/moYyNTvo61H47x9NfMsXb+/RTunCKu\nt004u/HtLtI61UbdTnH6ekTXTNBfZK2ENr7Tx2zD7CsPrDjtYmMh7nBAcGYtwmyFbY9chN2XKWT7\n0nYNAP8SwG8B+Fc/5Tff1lr//cUPlFIugP8VwK8BeAbgh0qp39Va3/xpBzsTk1XxyMqpsDRSeS9H\noUtq3hOqTzhva1K8uRZ9rpVPzZvl+EuhwCJpQUmtCpuq5b6FTdxYy0NQfkqGj5shhjuObM/Hktqq\n7Rw1yh+lYyUPZJEe3PGmbyYHmPwL5x34xTO4YFXL5w0lBbgMU2GqEAxsbVX/ivm4YNAJRIdaHoT+\nFUidl/+QJyZbWNy4ZT7rX1YCA/pDJZCjpnqk7mUPEzYHzICIvLtmLYbLlOR8slDDpfoXjsmzAMKQ\nU6kSncfhBdAxLfTlj63cUELQ42hHIRja/AnnrIr7No/FdW6Fu0D775qZyb9jXiBODNFz1MoVltiM\nvLtUBrvAWFeYkmGlT8Ww3szmYSYblrnJk6k/0gLDhj3L5swDW1TLDMbaZy6m1G88QbTf1ijumd82\nPtGYrprtK0/tPeM6QG9k4T0ec2lxgYF3YBW8WZYpGGl0rxI03dYy8TMcnBbt9buJkkmKJ7UsUuAZ\nqPwslwUYy4LlgZWjiisKK39ixCuf/Oau6ZOOVRNfXOxUntoC3ohgONY4HJwvyAKh+jSRyZiPmUYK\njdvmPpe0ffknFaptmmSAMn+3bs4wuGguhieDwkmMySpBdx7QuDWnazVjanghkhrIpOJJIXTtvmEd\np9UCBrtmn9FJKn3CxpJhz7ovjC9WpF6y/glhu65C0jTHD5520f2yGXTc9/OWj6BPHnGfHGP41hpe\nStN4qQQLrfWfKqUu/BybfgXAPa31AwBQSv2fAP4hgJ86WS1hwGVbtmVbtmV7We3rSqmPlFJ/oJR6\nnT7bBvB04TfP6LOf2s5EZMUMOSfTAu1lgUKX3ESDAXsbaVmZaxeoPjQroemawVRaNxLENZs4Zqhl\nTKzBtR8nUgsRV5SoWQzPmx/Omo6sXJ1Ui7IGr042v6sxWbErToEsz7FsEiTa84d2xc4RmD9cgJcS\noPmRVdsGgLiuUdy3fcJqBbyKg7LwlT9UGJEy+ub3SJpnJxDIjlmTQRdSxxMMgPIz7hNauZe1iKpC\nYYE5aFl3TKooHgLDXVqZU98WDywDL/es8y/XQUEDQxKnbf3ItXVkFNlkBaD/jrnp1Y8Cibi47+Kq\n9RObrAOFTyLpa8BEUHx93LeAhWbjqoX2kooWuSWWowoGWursohOjfgAAirbh7wBTA8URCRMoCqdW\nQsmcI0UpZFVfebDAsLvmSGRfOqQ6q21fyCRhP0P7+vPize7MkoriqmW4VimaHlxwsPIJERfWPMsW\npfuz9uEcfRJ/TkMlMB7LEQ12HbRuptSnGfqXCD47JdWFRKNH4s5JCTj4B6bosPbQnNS86gjZIfMd\nhORBxzDc2gcjJGXye1qj5zjTEmUkRUdqJwunTJQIsPfL5gbV7ueYEEuPEYLBboj6XVJI3wildi/a\nJzmjZkEifGem4c4ImTlHnQJL6gr6NqLy2ybcO/pbK6jdN/vPfQeNW+ampRVz/tFnh5hdNdHS8buh\n9P/gumELWggU8Ftr8nxrejaLx5n02cGvb0rk9jKa+qshjCtKqQ8W/v+3tda//ZfY/kcAdrXWI6XU\n3wPwfwO48vOezJmYrJZt2ZZt2ZbtJbS/2jx4qrV+/+c+tNaDhb9/Xyn1z5VSKwD2AJxb+OkOffZT\n25mYrBifdxJg7Ycm6fDsV6rivcPV9J1XXTRvmyVT74oDb2ZWb4w55w1LaohO7F0iVwO0X/fF24o9\nagCgSBXoTupjRDkraMgqlXNqB99Q2PgziqZ2lNCP47KNTJgyXt6z+QOfVDW8uSOU3UJbSy6CrUCi\nYyXuyKfvAJWHHBHwaj2X/EZSsqum/kX28AJGFwiLLzHF2apVzJsAlKV5A4baPKYAXOV2Fc/kjum6\nEhpvFtrPWeGidkeJKkZ0pOVcxcurolG/YYbZ6JxGSAQLzv0kVY2Nf0ff7wClZ5yrMd8H/UWFCEs6\nYd3Gxk1LNlDaRnazNaK7P7VEnOKetTPh65w1LZ3fnVllCz6/6EhLzib3lNwrjjBzX8m1+iNtNQnL\nTPe31OjmZzmO3zOfD7eJoBJrSdYPz3kybjlPFgytr9lkQ0v9mlqgrscV8hurKCEDzdj12FESJc2r\nNmfK46x1M4c3ZquaEO6M90uRU8ND6YBUYQIlCjH8zI23FNSepebz51yHNLhURGk/fu6YeaBESSb3\nHBQ6RP2mnNJ0xZESiPLeHFlgwlmut0pKjkSIYS9FQFF8+00DO9QexhK5hIMMcSOUewEA5QdD9F6r\nSp+3bpjnnwkWzZszjLcX1TYssgMAw3e3JFrf+aMexrvkEDxgJRag8MwMFF3w4OyYwRy2zXG6rxZQ\nv2dggOrTVMbPy2h/ndR1pdQGgCOttVZKfQUm7dQG0ANwRSl1EWaS+k0A/+3n7e9MTFYVKuAb7nho\nv2UKaWoPc7n5zPwpHlpSRdgG5lQr0bhhJnDtOphsm4ERly0MyC+jze+M0XndfO8kdjLKgkB+x8no\nuGJfjLMGJchvamREJohOtBR7zqjmp7Rva7+GuwoR1XmxL1dxoWZmUag3XxisDBnU7wA5MfqY5dR9\n1Zo7xrUcjRt0rAvUj48sM69+l2SprirMqWanet8uDJIyM7QcEWWdrQIzso0PeyxbZK8zKSvp0+o9\nZjLqBcHhhT4jaK7yxE6GYdtOFswWHJSsuKqZLMz3zMCbrilheObKEkhYFmp0DojrbHioxLwyOnbk\n/HgC8qYaUyow5gm4eKgw3qaJ94Etup6QuaM39ayP0XUz4fG5AuQXRn8HfQufCUEiUpiu0cLgSKN4\nsKCTBGDesLbtk9RB61MDOXWum3Gqcivzs/KxFZWdtiwcy+LL+YIH2urH5qQ610KBRLUHkS5i6L1/\nwYU/opqjkXUS4HpD7dhrqT5Opb6IodnmrUwWRrWnsZwr+2ENd0JEp7xwoue5FYgsVO4qKcq1DEe7\nWDl6L8Laj821zFrmd2E3k23Cfi77ZVZjUrUPlEq1CM3ypDlfK0q9Wukgx2jHXEz1vpkh+1dKiE7Z\ngwsYnifS1z4RqTZcuc/j3bJIVxWnKd0bD/6ACqBboRUqbrGSfI7BLhUFj18eE/BlN6XUvwbwyzBw\n4TMA/wzEI9Za/wsA/zWAf6KUSgFMAfym1loDSJVS/yOAfwvABfA7Wusbn3e8MzFZLduyLduyLdsL\nbho/U73Uz717rf/R53z/WzDU9r/ou98H8Pt/meOdiclqTjBG8dgmU6N2JnURqz80eFv7nbq1qw6B\n8i2zUprsGFbAvOpK5KHdBSiFoqXTt4qIOlyLYZP0DMdFJ1oUNABX4EeHqb+xhXdmTWvBzsluN9Hi\nWdO7HFn4qmvp6hwxuAlQOuDEtPnddM3CTIVujqOvsjcWXUfPRonNm1qgHqapjzcdrH1gzv/gF5ju\nrBCRxFBStjCeIrkK7VlqeVzLUXrK1HXzWe5BYDR3bvuMSR/DC0qiuLisxM6CI6Qktaodha6lgQ9e\noc9OLGlh3rClBQyNOAngEiTkD7Xdb5kjCy12IsOLVlqI+wkKCHu0Ct52UKe+4tqmwQUlJQa9y0oI\nPIUDgiYv5NL/0aHCaNdsV2ibz9Z+lErkHNcUYgotWFbJ1RorH1s6OCfTOVpp3ZiL6kQWKIn8y8/M\nifQv+kLQWCx9YIJCoWM93tKSEviNxZVLRzlO3zSdWX1oI6dE1BZy6ev+RQeNO2THTgv+JHTELuTk\nbR8bf26inCG56hZ6CmGfoPnLgUQcDH1Wn6YYkZBrkaKVYJRLBOskQErP9ObvGYLYya+ck+OXjnPE\nNUIm9syx561Qrl97ELuOApWo+OMUg3NEXXd8VJ4Q84aivsGuVeKYNV2BB/uXS7Ifpst7E+u95Y/M\nNqsfTtG/YqC/yr0BslcNXDCj8/AnuUTA4w1XnMi9MZFqLhRFScSIU79EgsVfIwz4otuZmKz8icXB\naw/MDQ36CeYN8xB33zCDQWnIgPMHGtNV334OM1nECwXGrMkXHZlB3r9cFMjt9G2FElmkMyafewqj\nLSrscxVygqxYriUuO/KSC4ZA85bZ78HXqWhwH1Ls58ZaJIWYbTVtWqX13qvWop7zUCq3f/cbruD2\nw106jyMLgyZFRyAxZsOV9jTa9GJiVmHuG8kbABiXHGG3Cdtsbg3/CifWIpxrZkp7wLxOv53ZQmre\nT+5rWWDMVjUqNHFPCFpTmSOTVe4BKzdMX3SJYTZvGGkpwOS3eDHC0F2hozHaoTxQVSELqabK49yK\n/czvKymG5jGRlBS6b5jrX/2BrZNixpY7B0a75vvKI0fgQZ60ohM7AYc9jc3vmxci52bar3viYVW9\nt5A/o/34U40ZK92PtdESBND7mtmmcc+Rcy0e5+hcp/vjsF+SHdMqtdqA/LKftRRKpGNYfZxgeI5z\nYeYGz5oKG39OOneO9TGDIpg01yInFnaB4Xmqb6vzpK5QIg+01s0U7TfMJMXq7dqxRa9ZoNC5zuOP\nYUDPshkr9ncFWsAVThPMVriojeC6w/S5ySgtmPPrXzYTuZto0RbUjpKape6rBlqrPQJqD+kGKmC8\ntcCGBND4bIruNTMQGrdnGBIkx3WX2UKNZf9iKH5UXtvM2qMrNdTumlVb+526PBPNzwhmrHuYbJr9\nF48zaxJL4gRhN8Vo25zTyvePMb1IidaX0ZaT1bIt27It27Kd5aawjKxeeONqe3duV2ndq/6CtI1V\nXWY2nXZskni8admEDLnNWg5cWX2Z1eCsoWRl2/zUKi/w6kMrmyz301xWb1xZH7UzWZHnMyUyLOWn\nNknKZBAnscQDrsMKezlOyWeq/pkS+IaT3tpVUkellVU7Z1vzNFIiEJuWlDDHOBobXFSoESQ33rKC\npLyizIIFB1iCG7W7cP0ZMKdokiOLNFKYrtMPTqx4Ljvahl1bZ6WyBZmjmwSXrlqYcbSjkEbPK+Un\nGzmKRxwNK7FtZ4WG3FOiahF2rIW8qLvHC3BvTwvkxxFCMNCi4D7eWowYCU7zIbb3/lBLXzCpRGUL\nzMhVBZMPtkQYJ7b3Jw+UjD+OsMYVJQzIpASUD8xYLj+ifpgnqD00nTFe99H69HkCBEfyAFB9kopa\nBUcrxSONORGABpcCiWgYhmrcTnH4FbNN5bH+T15epcNUIMFwkENTzR3LNRVOY1F+GG/4C2oY/Gwt\nOC2fpEJ6EgRkkmNKornezOzTH1tVitmKL5H98S8Z9kv93gz9V8wzWzxOkVPt38q/fwIAmF7fhJPQ\nfd4J4ZJfGcshIQfmBEPOmg7WPjAQRVI1B+pcjyRaGm+HKO2b/mc4cbTloUhwZqGXo7hnXhrDazXq\nBxf+MKRjpmh8Zl4aOY3tceSj8tAc05mnGBBMWByYjhpcKqF+z/w9udJEwD5ay/ZT25mYrJZt2ZZt\n2ZbtBbefUZD2b0o7G5MVw+jaipqGPS0rrukKextpqfZPI4XBJVp9U55i9Se5REFOrEVMit2Hw56W\nFW8Qa1mJsTaZdgB/amtS2K4jpWhn1vKk5ioLbd2FJPsDazHRecOqNHCyfXjOwfk/MKHH6duheE+J\nqsPQav9FbY2MVuScc8pCR85l5dNMVqy8f62UXdEO7cq3dEx5lronCX6ODKpPcql5YfICgOfsT9h2\no/wsR+4yscFSpzmaKj2zyhgFIrI4yULN1MDe3xHl4cK2I2SO0p4Wa4/CCUfICu7M1lGJ9xQt4Mt7\nuXibZAWbc2Qii8qt666bQCInzvOlBUi0PW9YIV3uv9GujZySshZNP6ZoF09zdK7RMfs2yi3ROOmV\nHaldSioKwx1rTQEAx++FUgcXDDWG56hM4p4t52h9albux+8WxGeLx552rHZfMFBiR+EuqKtwZKcd\nawMT0vX1L/iSp3RjQOVWpxMAOtcLEgV7Uy3KEEnED+1inaGL8lOzs5RUK9qv+9j8trnA3qvk57QX\niy1IEimJHpnO3nmtgMrTlO6JK8/X8a8b9YzyfoqkbF9dnIfjPNdkzUPzhjnmaLeEmHLfjNr4Yy3R\n5Kyl0LvMCjjkkjy3JQLDbRe5S2UENHbCXo7pmqXRa5fKHdbI1+rTIaYbRJT54DHm75ukb0R9Egwy\n5D69c5SCM3l5kdUSBnzBjV/w/UsOmrfMZ8EwlweGJ436/QSTdXPDq49jVKiANClZ6IFvjsogckn8\nYlM5JPyPjhN0r1FClkgduesKiymu2Ikn1Xwc+xDnvrKQE5koBgP7kj//b2P0LwbPHT860ei8Zo7p\nzi0LkYVu00ghrhFZYAh5MQhzKgOiA56glUj78MsGOXD0TbOv3f+HJs1rPrqvU53LVEMxjEYw37ym\nMLhm/qdw4KH8jIgL9AKcrNsCzDRUQqxgodbBKzZxDK2ETdZ+g6CfKYQo4o+0THL8goa2k910zRbo\nJrSoKB4tFE/3tCjIy0JkxxI4kpKtMxpeNP8W9y1cmvsKmiZ7lu4Zbyl4NHEUT3N5CTOM6s6sgn1p\n38pYsZJ4Ei3ITfmWhSgSQR1tBV71QjEykWNMvZsle/Akz3Ba8TjH4IIZM9XHmUzG3ArdXCa+aJiJ\n3JhDxbvBSMNt82JHiQU8Mzzr92IyEl0gX8C++OOKZUi6cw3Nk7kUJWfQjrlArYCsaB4Ahr6bnyWY\nrZHoME2wWeQgKdsxzYXqLGVWPrDXoTJLKmHSg5PkyAoWWgw7VNT7FXOc1qcxTt829ZrFdiYsPhbJ\njk611FH5U8c6GYxZCHeOwcVIjlkiFuLovPlsuuKgfp8knLY8VGhii07MeaTlQGoD41e3UKD3BE+w\n5R89w+jdHerTHCphBvJLaF+gyWopZLtsy7Zsy7ZsZ76diciKIwh3DlnFe5McuW9WT0yznqz51on3\nrRCNOxQR8Sqm7KBMydLxpi+reIacNv48M/AggKTqCcw43jA7aHw2wXTDYGFO7DxH7wZAckpEf72d\nYnDebBf0Fi6Gzr93OZDVM/v1LEr2O6mJagALIyZFJYl/lVt4T6wF6hYySSMlclQM6QFA4dCcU/8C\n9UkVqN4jaZzzGpMtsz278wIQvyiGLQFgeJ6S1ntaSB/DC0qS6dw30ZG1BclCiAeYYsFhZWriAEOa\n0PZUzfanWs4/OrV+X7w9FAQuBSwMyI7PSclG0MFAoX/VHhcw0STvc7qRo/LAkf0C5j7wNSVFJWoa\n3LejHQejcwTt7esF+I2O4yisfGw64PQNV1ybuU8G510r+ntoz4X3HwwzHH3ZXNS8ZQkaIXmxDc57\nUjox3nAFXuTmJFoUFHzXRuFMZkhDJQos1ccpancM5Xp40WCjgwuByDk1b83Rfp2UFaieq7yXixxU\n2M8xPEc+aEQq6l/0BUat3+gJmYDrFZ04x7xpxaMBYF7zUKJoqdCOMV01DyILJueeQukZl5tE8OYc\nmRB05to6Mn+UizIE106NtnykNKbynpLfrn5kHuRZyxdVi6RkkRUeM1nRQ3nPhJ7D8wFGVLMlBJGR\nEsHjqJND0/OZayZ1eAh7pNZxLkTjJ+YFMbpi+mby5jaiA9Nps7UIalln9TO1MzFZLduyLduyLdsL\nbhpA/sWZrc7EZHXyLuVuHmnRA9SOkmR88zOzIpqu+RiQ0GztQY7Rpi2c5MYrpmCUIybNsrUPeJXp\nALTKjavWVZdVE3qvFkWgtHY/R+Uu6atdNz9Mi0ryS71XPFSfmHPlPAA0njOq45wX0+2nqzZ/Mq8q\nidgSSsoHA2sImXtA71XKe5BR4nRdo05Pg7gAACAASURBVHbP9huTRbgosdDWEpnxKjHs2Ghs87uZ\nOMXGUuhr8yTQC8oPCxRulXLkYgWCuZB7VnMk/xF1UvQuEbWaAwBl+9dJbLEwkxbiqhJzPihgdJ4o\n159aIgfT9d25PS8u1J2taiSjBaNBinIlT6S0RGFZ6Ig1yGTL/OuNbT9WnmWITohY8LrNzTmxLfTl\na+XcltK2QNhJLIGkf8H0cxpZV+E0AuoPzOrfRssuavc4v5QLCYD19lRu+9JJNfoXiYBxh0VdbdEy\nF9oCwHiNHYmVkGp6VzzMayZM5shv5QddHH2zQcfSUkzLViXRMdC4PZfjFzpUoHuJyzG0IASHv9hE\noWPVTAAgWXelOJ/LDkqHqTy7Qc+RQnc2Se1f9KBdztPNRW+TC8nr9zWmFC2WD3PzXGNB3eXGCONz\npAGaafReCWn/FKEVFWpEHU8qvkRJbGvizXJ5jut3p0jIGkSlZvtGO0FcJ52/kznmJARQvH0KAEij\nVYSnZFdSLeP4G6Z/Vz42yVutlGigFro5Dn65hZfWvjhz1dmYrHZ/jwZOzZeHeLTpodBni3hi0Yxz\nNG8t1JEo9rkhGZPzgaimFw+1eAYNds323sy+TOKKMuww2JqfWdNOINpR6F2l8J9govBhjt4VCyNx\nspsTv/7Y+m2Nt5TAalynU9q3FuL1ezE6RPBoUZ3GaDvA6ds0Wd6zNV/MkkrLDiYb5rOkAvFREtt1\n3zLD+GU03tHCIIsrjgxeJj2ozL4405L1QeJ+yF0gJNLCeNu++DuvWlJL3CAFiAe+VRNhhZscmJGQ\na/OGhvaIwEK+VdoF+q9YyLF2G7JfwExA3P/zphYBW2ENniq5pty1kDCTLoa7CmHH/F19lAuzsneZ\nJZJMXwLAZMWVfmNB3OJJjiGxSec1Oz5YVWP141S+hwK6V73njh8da0mwpwUl37N9vDfTQtpRuYWG\nWdYq7OXyEq4+SnD8nnkxhl0zaONyaCWUSo7IHTGpJ/eVMBTLzzIhiDABpP8PmgJTp5Er0LYw3waW\n+ZaUlEzsrPpSPExEqNad51ZVJrPjnP3ieDKa11wUqXZyuuYLA3bRB8qbMCnEFfHcje+bVc90I0Sx\nbWWlWDSZF0XtN8tyH6uP5vaFLdDvosdVAdo1+2foLzwaIV41MOlkw0o7WY+vDGlkrimuFOSZm10w\nq6p51cW0ZQZV89MR/JZJLaQlVm/PF2S3nAWJtxffvkgw4JJgsWzLtmzLtmxnvp2JyGpMEv3RcYLh\nOdLxKinMaC7lmpDhlvdcbRNHRG5MkEtBiV+VdhQG5ArMRIWonWGySivfFPAJNmHqsTsD1n5kwpne\nK6FEXrxy8yfW2iIY5xgRmYDhhdGWKyum5me5CM1yndF01YqmDnZDiVKG5GA6r1mPLEDb6IRWR0Ff\no/rYrAhP3rYCp6dvUdL+gUblmTnp4y+R4+uRhZG8mRbqPusW6gW6f+WJTaaPdygafKKkJql5M0f3\nGql5EDSZRkDlIdO8tdyr3itWlSQk0df+RSURA59HFijx4FKZK9qBXAejcgjBIW5kCG7Q+orEebVj\naerRoZI+4Xql8lMtFP/6gxyda0SpvkV1PFUHJ2Qvl4WOkCUGF8y93f+mwtZ3eBVv4TkWIe5c84QG\nrzLr5Mx6enCAwS5Be1VIlMfjeLpqozV/mqN4Qn+TdcTJlzxxjC67ni0NeL1A/Ws1MFWmpb5KhG4f\nJRivW4HVPsG0vJ/oaIbeFTNAJ68wdmpVWbxJjoAie7fuQROawdDdZMMXmLt4mguxoHBgbvRss4zy\nMyIr0LMddTKJ4Ard/D8RmvXHOVwiM8ybnhXqpTql3FOSLpg1PLnnxUOzn7juI3pmjp+HHhxS4Gi/\nbrZv3UgwW2X1mRkmm6EcCwBUXhKdQe0A6981hWppLaLfhajcNXBD+52q1RF8hZ3NrXrNybtlIchw\n7VZcC9D4yAyE+UYFo50AL60ti4JfbGOWTe9KgMYdM+DGmwFKBzzIqR7qcYIJ5aQWfZRmdYKWakCJ\nXqKjTQetT82+mI3Uvm4txAsdW8fFckcq0/YlMLPMLzYXjOsKtftW9LZxz5xfUiY4MLYvDoGGAEw3\nzH5aH+dWFLVvBWS5KNiNjX8UYOAxhg8ZWiwdZSLnxNAYAMljeVMtBc6VJ5Y1dvIlYoM9sGrnDAMW\nD20dUPdVRxTk2f59tmLzVMNdB+UnlHNr2qLQ4hEbYtoCTmFSxrbAliEk7j/A5AGLe5b1yQsAYVi5\n1iiy+MxD91WzPYvfagU0P+WaMOD4q5Sf+zYXdyuRrZrVXWEWcu3eeMNB/TOaONbtJMVsxPothb1f\nMd+v/rkVMubzD3u2Diypamx9myZB9n2KlCwG/IE1h9z+D1Qc/mZBGH7zqovpCkOyBGfv29q0WdNB\n9YnZPzPYjAQZTcwda5fOY9LvJwhpTIw2PWEh8v2Ja4HkbgvdXCBnZhh2r/lwaC6pPUpQpusvHJGo\n624RAS1A/FEuTgnzGimRN9XCyxrSd60bpN5+PkRSoTFNvlRxxUVMOa1CL7c5u4ThVA+nb5iHZ/uP\nu+i+aY518o6ZdAudHGrTrBqmLVfqAPnZLz7uY3LBbNN5PRLDypQm4Hg3RP0uOTqs+zJJTTbMMet/\ntofjXzVGt1HHQqsME5YfjKCp6Pf0nbLcf86ne3ONeM2cn9Ia4WAJA/4s7UxMVsu2bMu2bMv2gttC\nqcwXoZ2JyapwbJZuuVuQKu9Z00HlsZU2AoDRhifQ3GRDofqYE57ms+1vTbD/SyYxGvS0hOWc7C7v\nW4UCb6oFsuNVdu4DDVpRda8EAu9tft98Nm15Cw6wEIUKro1xUusqrHIsrKiJNLJta5K0A4zPEfPt\nhiV9sFxRHizWPXHSXaF8kFKfOJYRRQ6m01VPrMG5GVkoReen4STEfHvCK2hbh1I80MJMtLJXShL4\naWStQZgVN9nQ0Ips1WtaIh4+59E56zE1Om+jYexxoj4T6DEtKqmZYifc6pMMRWLoTVuWtMISTU4K\nxHRNTgJU75pz6VEEqXIrWqu0tZDnsZOWAJfYftGxleDih7x/0UPpsRXC5Xs5uGq2X/uBrR8q3jF1\nRwCekwVjGLq8n6JzzXzP5BpvwUIkLVrmHsOlcVU9ZyvPdYIMmQXDTFRXuld9lEgoly3kB5ciiZwm\n6wq175ob175OpIe2kmhteM6Dk1gFF8CQMrjNay4qT0xEdPQ1QyBo3I4FWgyGSqIMYdpObURVe2Ci\nsazgon/JHF9lViiaI6voJIGbmPfAtOGIU3NcNZ/V7s/Q/Mhcx+EvNtC4RWzFxJxHaW8G/9AMlJN3\nNrH+A0Jrtghhea+FcEiCwnvWu4qj5ixQGG9aJ2KWRip0iJTx9haan43pWjw4MdWUsVPwdgkRRZ6V\npykKx1RTRRJMQTdG/xXztz/JUTxgCZoX2xTwUmu4/v9uS4LFsi3bsi3bsp35diYiK9bcWiRYlA4y\nTDbM6osTrO7M1m/U7+Wi3yZOvK0QKx+bMEtlWla5g0tm+3N/HCMlHUHtKMzqVn8MMEx4xpXH5zT8\nEa9YSaftSIsm3KJFSf8qETgOHYuLH+dov2G+X//QHGC04Yr+WlYAmp9QFEE04vKzDP7Yoc8UKk85\niWzJCodfpfqWroI/4PoZVggAKpRTGp7nlbFGdMjUdiCkyIeVGtzYiLkCXJlv/uZ83vBCjpUfm79b\nN3KhJDNpoPGZyRUCQPmJwnQVz7XSnkLvNUqA7ztCo+djxmVHKPpJGei+ao7VuE0Eg3dcVB9QbdaT\nVOqQuIbt+GsapX2KjGMb8bF5Y9jWsiQbbzgSpfdeIbryE+teDACHXyNXXcoD1u+nGK+bz0qHGTqv\nmf5f+RFTwG3kpF1LppF+LNo6q/Z1X0g1o23Kl/axkAcDSod2fAELthfUV/7QjO/2m+aZKXS1RFnQ\nNqJi9+KkrNC6YbbxR66Y/vE4DYa2XhGwDr+c+5o1bB2dN9PoXWb9PRutlA7NMUuPR9CXTMQlFPpA\nCZki98xNTyIlx889iBXPyTs22uLvK09tTRZH+1nkwpmb81z5yQTBUzOo05KxGNn7pSIqT8kQdc8i\nLJUnpG6z4aP0YGCud6ciqiscYUbHCaZrIfWfg94Vfua4Xg9QJMsya7ooEI2+9MTUWamNouj95aHC\nfJUiqg7l4C9GKHQpAu7FyKKX+BrOP/8nf1PamZisAgrJj74S4twfGObNyft1gdH4xVN5lsrAgrL1\nRQzZjDddNG+YkHveDGW72n16qV8OhUwxWXew+S3DyGm/26Dz0EL22PmTHHNy+CyR667KNaYEI81W\nrQxQ4waRChwtMF37uo/mTbOv43eJNXioRLU9GGSYrLOnkdm/m2j4ZHc9XfeFEccvo9wD6ncYctSi\nsD0hGG68bQpzAYhv1LyppJ+cFJgTfLb+wZz6wcdoy6qui+o4vYDrt5RACZ1rjsBT/AKbtZR4HGkF\nFI/olOkdG/ZzTFctASYlBXcuvl7/IEH7ui0kZrt4JqJExxYGHm+4wpzj2qHmRwrBiL2NXExIYZ1J\nId5Mo0cToLsASfG/hX4utV+VJwli8jzieqxpyxVocrjjIqnQC4tYff7YEiwatzJ0yel3i8bcNHWk\ndqryNJeawCygSWNi5aa2/nSI/hVzAVwv2LppFwizliPizRHX7u3NMG2al2H9fiILKO6/6qNcFkiT\nDccq5B9YuJP7on57LjVRvEAsHaXW6bfqonHbwF8n75jzbNyNhczRe60qbEQmJ3mTDPU5T0aWiRj2\nUtqnJzBgkSa95o87mFysSf/ze4B92aLDBKNdc83aVUgqpviQi7NrDy0r0RTqU00XORIX+hmGV2ty\nniw6wM/ZaKdgBYuHmSjtR0fkBNy0rMlCO0NKz+nJr56XY+ZhWX4Tnph30sl7priwdJwh7DI5yxM2\n4ctoXyQY8ExMVsu2bMu2bMv2gtuSYPHiW5/qoaoPc0zOE4zQzQWKCIaWDs0rvuE5x1bukxrC9n+Y\nYbxjwv+4bFf8QqSoq+ekdTpvN577frzpoHGbILstX/bPNF9/ooV6XH2oRXJotGl9criOKw8gAqGN\nz5hAYWGWuGqhEF55D857ssp1p8B420YEAJBFEOmfoK8tFZYkmtw5JIHPgzQYWJhLaSCuMiRFcjZP\nUiREUy4eaEypJok9kEpHqdyftKQlymRVhu4VVyIDlQEh1bwwdGlW4yy4a6WligR3nbzlI64TAeGJ\nEk+t1kcGGzz4WgHVRxSlrDjiTcUtqQDTNfb1sp/zfQ77Gu7Uklb4XLgGDrCQ57zhCSTJdWJ5aGrV\nAAOpcZ0Uj00nBtY+JBp55EiUzWSBgjKSP6bPPThEHBBVintj7P0dM+YPf6Ei8Gh5z5J/2ENs/Qcj\nzJvmvvFqfLoeyv6nLU9qAjkayT0lsmPNm4nQuLleLPcV6vfMRXevFqytDlHzhzueEBBKhxmcqbnW\niCS6soIjNVG5r+RcOdooDBOASD/N21wDaWuuRucUNr9nIpvBefPZ8ddbAt16E42o/R+RXi4X5dlz\nYi3H4nuuclOzZ/4HQqeP2iaamzU8VO+ZOqm4FYm3VvEOySUVVhD0CDoA0Kc6tGJG9WazHOMNqvny\n7Xmx4o4/yqX/oCAwYGWPYMbHQxG11a5V4Fm2n97OxGTFOH9pbybeNoMLBan/YRw+LTiiWh0da9Qe\nmZs8o2K+3iuhreXwba0MP8z+yExIAOBNraYay7SU9zJkVJMSLAy4Ob1gveMcwYDyS3sxkgo9BITP\nh4NMfIhKexaLLz0zs037zaLAS7OGIy95ZntN1h2pScp96y/EkJw/ttqD87p9cdfIW2e24svExhNw\nMNayzfCcg+jY7JOZiLnvoXBKN0JB8kMMh8YVVwp408jBmDT1/ImFmfg6Ct0c/UucE6TfDa0S+HRd\no/TUfM4vlqwAMVcsHmdiRz/aMi+u1s3UMt8e5bIw4Am4eKhlUTLadqQ2jfXk/EmOYEi5zV4uUJJo\nH5at3M2s4Ui/sQI4YNmkhVNrCy8mlkWbk4k6Vk7LfpZjSnm2ze/NMGux5I7Zz8l7ZdTvmeNnvnpO\nQR8wDEeWTmq/UbLXTXCyP81Fjy8LlMCD/MyMNl24c5p4zntSUySyW7Mcil7C5YMU/ticWP+CmTXj\nlkJp39YO+sMSXb+doECTWVJ0hAWIHkHLRQ+FE6rJumC2rX50grxGD72uoHuFimmHFq5mW/ijr1UQ\njPn6SF1+YmskM18hovzPyk8oBdAKEe2Z7ccXyqjcNiuvPCSmZs9BVjTHbL8eiDZl/N46AKB2e4C8\nQAvB4wH8bcq1EURcOBzDH5m/581A4PrqJyZ31nl/Rc55vO7K+6VIEP98qyyLmXnDk/qxF9/0sih4\n2ZZt2ZZt2c5+WxYFv+BW3iMFi6uRRAHhMEObmFcVYunkvoP6XbNNGimJfFhhvHSYCXOr0MklSmMF\n6uqTVKKdpKgsY4lWhvOqg9pDs4web/rGJRd2FTve8Gyy/VwgagPs1DtZswoHUHb1zH44s6Zl28U1\no3gAmCiPr2NELD5/YMVg2TXXia1tvDu3tVIsIxP0tfTVgFW/UyURqnYXkunkyDzZsCva3FtQ1aA+\nK+1bCaYsBFY+MRdw/C5FoH0L3fUvO1JntfZj04+DXStUWjixUQPDbbln+y+NbLTITM9eRQmM580g\nHmas1DFZcawAqrLXx3DtwPFEAmm8pRD2eEUOuabGKas6KGFw1u5xNJtjtG2jRfZ5YmZaWlBC5Eki\nY10PACEpmUxWHbQ+MZHF8ftFcZiV7SNHolFnbmsGx9uQ82BB5tG2TexzvVNS8ZGS028a2To8Vsp3\nY1ei2GCoEXbp+OQRNW/4OPx6ifaZYbRVkGsFTD0aQ47ZQIvrLj9zeeAKjJYF1tWXofPpqo/+BTOo\neBwHg6Y8u43bYyQko+RNWFw2Qh6YHdQepELWSIlokxWURM5ZaCHRlNTR53UHEQkRFzoxEhKlZSWc\n6CSFGxODcd9GadIna0WBFtVqQc6V/bT8yEdcozqs9hwqNdenC+RE3M4QdGZ0HyIExOBUFEH1LxdR\nu2/GxKzlYd5cyi39LO1MTFbLtmzLtmzL9oLbAtPzi9DOxGTFqhJOumDhUXbQvGVW8SwqGQw0Vr5t\nlkyDL22K/hrTZTvXPez8ocmAn3y5Ifg+14FMV1zB1GdNJWKkHHnU78U4+AbZdtzI5Eaz6Gu44Ahc\n6OZIiqzcYD7LA6D5GVfBW7ddrs/wR8DKj019R9woYLBr6cuAsWBgAkDmW4IGr7a1Aja/xxFLIKtX\nTkbPGwoTqrxnC4rcszk1f2gVENjiIhjaKGe+qSQ/wkob/cuO6CFq10HnmivbAaaGqHvN/F1+Yr2z\nMvIYygIbeTVvpVLbxnmo4rHGgDyanFTbyIdW0f7A1jHFdYWTt2j1SmUD1cepOD3XHmaYrFg1EsDk\nqZiUsvJxKqKus1WbM+MEvDfVCPqUX1uhvtWOkHqC4YLfGEeLvUwii+EFhcDcXolm/BEw3C3Q31qi\nfG4q01L75k9sXywSQdKiJc1wfuXo/aJcJ+ehkpKyZAfP5gFLR5aAEdfMxVTv0Dise+LRVjyOkYWm\n4yXaiHNMVug5iyG1j5yHLB7bnKV2gbBnBuuc/J7CYYoxaerVHizoJhLqMV0piWhvTmMmGGYYUs4s\nGOaI7psHb/hNc1MKXatE07gTo3vV7L9MdPzGJ33Zv9ebIa1a0V9zngppgRyPH09w8A0Tesf0PnEy\nwBubfXmzDLlv9s99G9cDifb6l4uCRoRtqsc6miBpFqT/uC+KT0werbRvyRvlvTlU/AWaUV5iOxOT\nFcNlSi94Q+UQC+3GbXNzZy0P3a+aDL/KtdRSxERqWPtwju6bxlWw+jTByVvEOKKaleqjTFSjK0+0\nSMowSyeNXHkxu/Mc0Sk9sDOubbGQ2KzuYP37RtLl6W+Qlfe+loE7azgi6SOFzPcTDC4b5pc/yRET\nCzBfgKT4ZetPrAU690/zVoL+JXOAyaaCP+LzM99HJ1Yol+ttkrKdOMKetvUjPXtMn5LlztyFRxNj\nSnBc41aG8aYtnuaXMXtAjbYVtv+D2aj/ir9g525ZbwydjTZduWafJrvct5DS8fvA5vfMDrgfskg9\nl3jnSaB+31qUM2SVRLaOiJmBvasKRWIwHr3vC0zJk910TQlDMS0oITuw39O8YdX9F4uH2fAy7Ci0\nPjU3YHChIGw8JjCEw0yU3t25XbiUDohV96iH6YU67dOTZDzfJ3dBicdJIcw47udp05HzrzzLMCQF\nb16UhQMtL/akaiXKRlS8m0RKoPH29QJ8Fjg+YXNHR64/aqcylmr3zTOZRS6Kx+a3adFB/+LzdVor\nH08RdmkBRRPAtBWI4LOOFCZUh1cjkd153RUijModnHzNTFIhMVArdwdI60QAqfhoktzSYNcc218p\nwmVIcTdC/WOzgC0Rg3O8FYpQ7/CcNVH1aNIsHE7Q/pKhGKvMFx8uJjx5o0xqrVSupZh4sk1Cuqcx\nvDFBf2mO5Dx5Y+2af4t7UyFruLMMSW0JA/4s7UxMVsu2bMu2bMv2EtoXZ646G5MVKxDMq7ZmY7xp\n/Zo48alyIOzbWg1OgnJk0nslEHimfnuGCdlpbH7bJsPFGiFSElGxNM10Q6Nx03w/2vTETqPyyPyb\ne7ZOKzrROH3XrL5WPzKrqINveKje52hICwzI3kD7v+ghOmRKtRLrED5mrIEKidKmoYPyM6afkyjp\nOU+sQbzp8/IvgIk6eEUuEKGyag5JWQn8xtu6iRZSSvE4F9deFoztXXElSlG5llU2K0h4sVUmyANL\nRpmzPXvRrkjdmY0IWEao/aaLIns/wUH/AuhcLJGhe40gt1MlUVr3qrno4mkuQqfBIMNkjWWGzH6q\n962r8OrHqUTuLNvUuJ0JzAVt3Z9ddlxOLHykctuvAg2ONGZkax5X7PjiCMUbZag+shKcXN/F4q9x\ntSWr/GCYo3GXOpiQofGm95woLp83w1D+RIt0z6zhyt+KIkg3zpGcJ+j0JJfxUTw0kVE0zxBTgn/t\ngwlO3y7LtQJAdJoiIYkyriEEgBlFA61PR1K7Na8X0bhlQsPj90wU0X+liMZnZgB1r5t9Z4E9/+Kp\nvScDOk9/osVjTs/s+K59z1zUwa+tSYmHk2l0r5ooa/2H5uFwRzH2/45BO7a+1Uf7fSPbwu+O2sdt\nIUOMLlUlMufaqvl6USLYpOhITR0TWWbbgbgKB/0Y43MmoioRzBfXQ7ETCbupKJAwRDpbKQh0nxZd\nhKdzvKy2VLB4wU2s0BMNj+o8klIgWHhKOHrpMJFiPDfRUoDIdVTasRbwk+0idn+PpG0In47LVruv\ndJRhcI7we4IBGndzyal4GbDysTkvliPypkYyBzCYPb/EOHdWu2PPxZtaZhhDcv5QiXeRN8vhzohF\nRTmdwqkWBqQbW6iKJ5Paw0R8ntzYRYekfc79iRnsvcuh5Hf4YfcmEDgx7Gm5fs45JGUlMGPnuhKJ\nKO77YGCvY7qupCZrSlb1W9/N0N8l1uYdq2DNuRWn7kgdVBrZ/FuhY/5ofWLh3ujEqp6fvkF1Sqda\nYNhFnT3OHXWvuuLRFFdceQnWic3XeU2h8sj2I+dyuEavfd1H467pgOMveajfoVwRFW97Y40SwVz9\nC9b8s3hgoUmWC8oiuwhguHPWDCVnaPrTfD/ZsDk9hkGH511Ex2SKSZNeFkDqwGo3hjj5KtEcKScT\n9nOZYOd1JT5Mx+9aCSZ2Dyg/GCKtmWfp+B0yH9zPpP/LFVvgbSdtF5WnZp/l+2Mc/qKxbmd3gqzg\nYbRDmn4aonNXv281Ohke4wkgejbG0ddrtI2W/uF7r1KNMi0ku1cLqD2ke/UVIzwZdnNZNFafZMLa\nTUiVfbQTYu1Dg59mxUBqwphBOjtXW7iPU2Hrxg3WTUwRUqGu9hwMLpnz57RD8TCGNyTo8WoV0bHt\nCwAIujOb+9yI5LjjdfOgtz6ZIA+5XtDDfIVm45fRvkCT1VJ1fdmWbdmWbdnOfDsTkRUnU5Oiwpwg\nFW+qRe2B5Uima4FUgadFB+UjjijMimXtwxGO3zNQg1auCFvyNm5s52aBfmAT/LO6K5FBUlRyfI48\nglEuDL3cg/hAcavfneP0TXMuUTtH9SElniPLCmRShzezq2epxo8gMF2hbeWcfEq6H78bCKSncog3\n1ZBWtv5Yi0IHw1S1B5nATJN1hepjinKIQFHa18LADHpKYEBWB3cTDYeEcAsdCMGEI6TuFU8gmVnT\nEeIBW727cy01TUlZoXHbdOb+N6mfjrXAPN7URlSNu+Q+fNkVVmjviitkgPGGFS1dlE7iyIXJEP5Y\nST/mvkLmU8RFslTrP5zh8GvmXMpPNfqXCbol9fq4qqApmiye5CgeMdmHYLySI0K2xUMtUSjXOZWP\nciGoeFMtUVKBVulpwbHIQgyB8RIRZZ2jf9GcXxbWxLW6+oiilNMYc2K7lfa1WLQzKSUpOcKWVdMY\nkyuGWMEMQicDCh27+q48e17pv3iSyjMx2a0KcsEMvOg0F5+nLHKEbSgSRKexuB/w2FZpUeopi8cZ\npvQssuAslPWGKu+nIitWfWhgvvF2Aa2bM7oPAZqfkar8wPzrznJxH9aOVTOR2raSi9JjA03GzUjO\n30k5QveBKnlj3W6jRmiJMzDHn1xuyDvHn2jxs2KPKqhIjjVtOhLZsmPybC0UpZtCL5P3wwtvGi9V\ndV0p9TsA/j6AY631G3/B9/8dgP8J5s4PAfwTrfVH9N0j+iwDkGqt3/+8452JyWrZlm3Zlm3ZXmxT\n0C87Z/UvAfwWgH/1n/n+IYBf0lp3lVK/AeC3AXx14fu/rTUvBT+/nYnJiiOM9W8do/NlwqUHudhx\nZFTnkBYUVEZYcNPBaJNwd6qvmGxFqOwRnb1sKb3TFtU/9DN0r1LNw1EuK/pC26zIepdDUQA4ecuH\nPyZK8FOOkJTQ0Nd/MEb3GmHxALL2CwAAIABJREFURG0d7IZyLmmonkucA0DuOrLiGpz3BKvnKMWb\nWcqyiQzYCdj8YOUTbXMJMVB5/HzNVONu/pxdBwDEFUfyJ8UjS11nWxKVa6H2zxsaqz+hlXXNUvQ5\nP9S7CslZ+UOuI9KSYM+hhWptPZoU6vfMirTzWiR9witvldooKi5bCxK+9/7Q1ptVH+UY7pCfFeWG\nhjsOKs+YoKMkSuW+zULXOrxu+dBsfUF6d73LoZyzdqyAr+T8ptpaR2w5yHwzaLhEoXyYSv1Q+40C\nKk95lc73QcGjPGFWsB5qUuKworD2obkZ3VdDjLc8uW4AqN5L4CQh9WmO9Q/IE4nUGLpXCmh9ahL7\np2+VMKzz+DDHrDxNMVk3Y/7Zf7km40PKAWL7MovLSurnGndNp0zWAqmDchItKEPlGanKuAqDXV/2\nGZ2YsRp0ic5/pSJ5Ws7dunFuo/l+guJTc9DJuQr1eYbJDmsH2mjTJRHdsO9j3iBSjwtEZLfBVi/T\nVV/yS7OGi/JTcy4u0cknuyVkVLs2W/FRJIQmpmjKSbSUw8zP1eVZCqd8bbGgKuNNF72rZFdCv6s+\nicXVuLKXSuRU3CPH4PVIcttBL0F08BKFbF/iZKW1/lOl1IWf8v33Fv73zwDs/FWOdyYmK55Uxq+2\nrOr4XKPQY8kbhkw8gfayghK18epHJwCAg/9iQ2oxiscpxiSGyjBL9f4MHpEqtAvZ//G7JqR3EkjR\n6NqPE4zoxRH0ifRR9AVe6l8uCtTGL97ReYUGyRhNVx3MVs0Xqz+i6ywrpBkTF7RMYionaaHLjliw\nDy8oW2dFSt1xRaFKL8Np08PgFcZVeAJ00bpJRZlE+pi2HIEC3NjaurM47WjHmuv5Q5vs771m9lm7\nYy3OVz7K5WLZvFFlliAS9C1ziycYKODgG+ZhTosQUVWWnWrcm4loqjfXyCJmM1q4tUBK53xMwPo1\nNW8nOPiG6Z/yE/tCnBPFK3dN/RJ3E0MxzACLHSU1SXmghNTCxdHeXGNIrNLyfo7uVa4zsi/w9hvm\n/Atdu5jg2p/TNwsysea+lpdU2GZjLVcmk0InxwqZGh69b06qf7UsfeFNM3lJl5+Zm3bw9QI61w2m\nGw60TCI8dk/ftKSbsKelJorPU7u2T0tHliAz3mBS0xy9V8z1pQWF1R+PaTvzu7gRWFbtrg9/SkXj\nNOn741zqq7hG6/jdUMSbtadw9HVTZ1Yi9q//dComkW5sXQW4JWVHvKWSiocJCc3yAiH3IIui3lUH\n1Ydmv523DHu30MswXbeyUjzxNz41RYSDq1Wp8ws7VgYqXjf9nBZdSSNEp7m8H+YkqJ2Fjsg5hScz\n5CG/c2gybbmo3zYT12S7AH/4fKH4GWorSqkPFv7/t7XWv/1z7ut/APAHC/+vAfy/SikN4H/7WfZ7\nJiarZVu2ZVu2ZXsJ7a8WWZ3+LLmkz2tKqb8NM1l9c+Hjb2qt95RSawD+SCl1S2v9pz9tP2disuIE\npBPn6Fynmp8DD2VKRrdfs3U8ZXLtrD1McfK2Of2n/9A4hYY9LRbTcdVF4w5BFURXTsuBULdnDQcb\n3zcrqXmtIufCkGTnmi+U9t5lqpnoa6nziStKZJbSEjkKP9OSmA76GjOyeGeadhZYWxLtGHICYCGZ\n4qElG5SfaVn9c0sqSuAHJ9OoPDafMzQTl01FPmChxXCQixpDWlBSf8TRSvHIEiw615X4HG1/iwRr\n37OqCov2FbxaD4Za+sybakzWuc6MIygtkQWUMjbzC+d8+NUIHtUk5YF1f2YCwHjDQTig2jrXqoEw\nNDc456FM/aC0kV8CIHDfcNdDg1QpVO6if4Et6gmaDZRE8+Vn+XOiuIC5z76IFzvWgXjOMKQv/RP2\nMmiHpJdotR5XjFszAERH9p4OKfJhJQc+5oxqnljcOQsUanfNAcY7BYnGx5tkq9G3NVHeLBfpKY72\nN7/dx2zdRLbTlof2695z+3djLfVHua+kpmhMkVdaKAjRyJ8ojHYj+pzLMhbhr1S277xhophgnKN3\niSTMPjPRUNi1ZSe5q7Dysbm+hIRo+6/VEJ0SgeRJH9qhiIRgwugkRvdVExmtfDiQesfmTbOf7uWS\n3N/WpxnG2+acF12MBSYvOwjJqVz7/O6Zw43Jw63sCkLD/RSXHVQfm2uZrvkIDw2MOW+asoKk5Ehp\nSC0NJcpiWL94ZG1vtKPEafmFt5dMsPhZmlLqLQD/O4Df0Fq3+XOt9R79e6yU+jcAvgLg7E9WpSdm\nkOWRh9anBHmVrRZX2KUn3MFzCuJs2jY8z344uei8AcbrBoC87MZbvtTElA8y7P+SGeQs0ZO7wOb3\nzMA7fq8seZO0xMwyLRPrrOGgQC9hrvMYb9mapaCvUSC5pg5pG3pTW38THWvrSTRhaM2VwTWvWqhq\n8WV6/D5BWqn9nGt+4EBeUrZ2xxpKTtYc6T/WO/SmNg9lYDTz97TF2mka3evms7C7eK62H6FszRAX\nMvNxok6GGUGS/kDD5aJigt78oRbVcpVBip65oNofaThSFO7a/CRp7DmJPad5TcnnnEcMBqb+ynQK\nJL/F5+8PtZhfarWohm5lk7if/ZG1oM/6BINVFKqU02y/bg07N787pOuooH6boekE/YtmrDbumZdd\n/4Iv11w6iKUmkMe+dhWyIuU/7o3QfdOMWb5PWQTUKWcGALUHZjDzZJZWQinKNhJldC3UZ9OGg4RU\n5f2JhQlrD4l1W3CeY9Mxc5fZfO7cynV5kwzujBYLDjNVXSnun9ft4owXOC4zAAEEXcod1TzJ8wyv\nNZ6T0wIA72kmcluT3RJqj0xfcp1U/UFmzQ9htAYBYBqQLmTdldxt9Uls2cArBCdmGj69M5KKKzk7\nbs0fHGN6ydSbVR6MMd80k2jA25RcgYGnqwEqd81Y6L3Ok20qdVaVu0OMLpXxstpfZ1GwUuo8gP8L\nwH+vtb6z8HkJgKO1HtLfvw7gf/m8/Z2JyWrZlm3Zlm3ZXkJ7iZOVUupfA/hlmNzWMwD/DIBvDqv/\nBYB/CqAF4J8rgwgxRX0dwL+hzzwA/4fW+g8/73hnYrLqXePaKKBCiWOlfUmYlg/Nas0fpaKWrB0l\n8FydRDV7lwMrnTLQsrrjpLF2lNix5671llr5iNlqBQwvkHTKUS6hehZapXBecc+aCiFJEvHKbOVG\nKtJN2lXiMCt+Ub6SKEg7lgwgMv7ayAcBwNh1rOQMw4HKWtxHx1qq+Dmaa9yJhVgx2mHHYi3J5txf\nIBB43DfWI2v9wxhH73GfWiLCxp8RdFpzhGzBcNi05T4n8MosN2bYTVZcK93TtjU5HG2qXEs/jXaB\n0tPn67RmLSUW6ElFycqeo+a4YqO03FMIe1xHRXDXs1yIMNqxqvIsp1Q+SMWbyNSB2dU9AEybrlxT\nFiqBl0oHNE6zwPqpHVgF8tmqWaXX7udS53X8pRCNe+b6D79qdrr7u120v2QIBuOtQGBOjvBUDjgp\nRVurvsDIDHeWn2mB/ty5xmjHepsBRuqLIbfpmoP6XfssAUbVfrpmtskCJREN99m85ogTsXYU6jfN\noG+/Y84ZgPR5FjnwiWwwWTPPkT8GKo/NoOVoIvcdgODCuB5IZM2K9Cs3phicJ9aOAho3TWTSeaMi\n94bhaneuBUZj2abyvb4orWcFVwg2HA1OV+w1ZQuRI6MJq//uCbJNEzkFxwlyYg6Ods01Dd5eRXFv\nRtfk4fQNImjctaw+VlqPSwoqMy+aylNSvThfELRnXvcxr/3N1GbQWv+jz/n+HwP4x3/B5w8AvP2X\nPd6ZmKyWbdmWbdmW7UU3/YWSWzoTkxUrHMxWFbRrVpzTNYXtb5nV673/xqxozv0xMFmxqyTWbNv/\nBbOyad7KZeWce0rEJjvXOME7k8hs1nTFtZUptYWelpxWONQIe+b7kPIT85qD8r45Zukwl+iEqd/z\nqiv1S1nh+YgKMAoYXL802VQidsqqAHEV4j3kzTSynKKMhTxZ6wbRaCuO5C2YDj1teaJpx/mw3FUY\nb9N+2jbnIiK4BSCinNVo0xftQ85pqQyiUKFyq1PHK9vJuiPU4jRSkhOKWdcxUqLtFtdcTFettQJg\n6N4qtxT+6mPz2wHpDTZvpRhvUJR4kNlcAyW4J+u+JL7ToiOrc0XR5njLQXRkE+s+3R92hO69Eoqq\nxnjdRXA8ov3SynqsMV5wjOZcC6uGVJ7O0ScCgRtrIUxkJHrqzTU6r7ECQy56lEx9H1ytSoRf6Gai\n1sA5o7jqSn6t8tTW0XG9Vu3BDBXK6WWRg+CWFT0GgMHFSNQy3JmNsvuXTORRPLaRVzDMJb/TvUK5\ntbs2Wp+su8C1Gp2/iZa61yLJiUUHUxx+w3zPUUx0lGJIpIziMentKWC+QqK149xGKZ75XRa6KJPn\nkz+IoUhZYuW7R+Y8rrYkWh1ue2LRwRGWX4uQlAnh8BRK++amcwRVehT/f+19Sa9lWXbWt09/bt+8\nNvo+ItvIqKysLFy2KTdlAbKExIQhMGECfwAJyRIg5oxAHiBgYsQMJBqrLGHZri6rMisrsjIjMzIi\no33xuvtu355uM9hrrf0CQ5bkisDPyfmkUkW+e+/pz957rfWt70Ne47SFxt43WUeRlCi+ecaqlSvI\nv1mE2Uk1JhfMsdYfLiSiCnvUm3a6gvrPTTtN+o0NMPo3SCnlWY6ARG3deYL6XVtzfKHQKCerFw1u\nxNWuJymtzfdW6L1p+hq2v09F8S1PGD/771YR9an/5+cUUjccSZlV9zIkVNDlnqKk6Umx3020SOKw\nR1TcL9D51Dxwhzcr4g20dts87IUXSBpwctb6VQWUGhpedrH1I/P7p78ZYvPH1BhJcjlaQSaO5n0r\nxskDf/eTTHp6nFQjo75IHqxXHUMyAMzEwT1JGU2Wac2mwVh8V3uQCW667crEwr1nWlkzuP13QrQ/\nZ1ILp0wUAvruYkMBYMNJmqiXlhnoT7Xsl1N/qgCWlF7JYiUCpcu2ffSYFNF4bBsouY9nfN6T3jk3\n0danq2GNN8WCPAemF8yxtD82267u22ta+FaVvvDMvY1GhXhvte4nGNw0k5T9nk3vLLq2MM/3ThWW\nYZpWlAzSHg2m4/OeTJZZrND6ggds7icDnJye71MumiTRxarswVhLynW25WLrz0warn/TEC2OXrce\nVPoYAYn/38k03EVO51fg8GYg2wUMqUhIJZHCgmSkWI4rrblyT1Rur//4IuVetVEmB4DYUTJxBGNL\ntCio/4jfp1XLMizzwEVSM9viZ3J83vYzbvw4x5jKBPGROaign8hk4a60uDLw4nGxEUgKv3/dxfYP\nmA1qdjB4vYHmPTOOHL5dxfpt8/w7qW0kP0784N42PndvXsgCaXIhFpZhvKQ0oALUxNyUYFpgtWWO\nf+N7pvlscb6OAU1clUMf4dFLbAr+S2YDvkiciMmqRIkSJUq8eJQWIS8Yyw7ROJ9m1uen6YkoKtN5\nW/dTWVFxBAGQSgNMioqLlYuuh7jHfVbm96OLnhSeZ6ccWSXzyjj3lQiBektt1TRolRWOrZ22Kqyo\nK0dz9ScFem+aFVP7ToHlekDnxxJACpvvU5rrnCfpH07npVVHqMOqsMoWTICIDzSWaxyZ5bJj7uNJ\nq3bF37nDvUkKvTeI+vzI+hlxGiUPHczJdsVbwtqu0GKv/rgQ76qtH62sGgQdWzQonos2ecXOgqju\nIsfeNylNtgTy0OxrRfX52rMc6x+y3pHGzrfN6plJC/7MRlnLlitpOE7pJFVH0qAAsPVDsoOgor0/\nSVH4nvyGqe+shJJWlEQWq7a1AOHUrZsc901T4qDLBxKOC9R+ugMA+PwfncOpPzX7H12gCDk7RvNO\ntKSUWNw2HBUSmbTuJXIvOBuQRUrSeJVDjTm5zjKZoDrWz9Hc+bz494BNE+euksiNr6+baNQ+NU13\ny7NNiW7mRLpYNRzxm4uPCmkjyI+l0zmymJ2OrcyWb99DJhNEByQ8fb0i21QF4E/pnlCLgVYKGx+Q\naOypSISoOTJadUPER/w3T9J/7Dhcf5pJlOXk9l5GOybayS+H6L9Orr79QvZbIdkj7SjxoBpejVAj\nj7mY0pjzrVAit8KzpBPuA/OnOdKLpvez/pOnmN08bT4/Zz6fbXpy/dOKA3dxYhUsThROxGRVOTiW\ncxZpoAK1pzzIU+qo68lL6iYak3MkbfMJ9axc9I/pj2l03zNh9/gNY77mzazEUVpzpReH03DBOIeT\ncDOmLz1V81NmAqo/mGHn2+aB63xq88w8AfTedNCmmoG/KORYncQc5+yUg8YDMzAvvu6LwSEjHBZW\ngVnbWlhljxplx1omuNqjOcZXSP6FJIw6n6YYXaAGap8ZTtaWPA+VTHZZhZtjbbqjsn9Ms417RmoO\nFtRUPN/wZbsywVaUTBzrHyYY0/65NuJESiSklutKUq/c0BwOU/TeoJSSMulfwDRjAmbyFL+lZwUm\npGPIqcXoSGNKSvNRTwtLkCWgvI0Qi3Xzt+7HudQMw4mtA3oLW5Njnygr3aOsTuK6TYNymq1/3cPg\n2nkAQLxnDQp5sgjGtg4VjLJjkyFP+pB073zLl54erkk5mZbnaL7uSQPrqsW9bRoxDeLuUkszKi8a\nzDW0HnCNj83ENL3WlmOavGrej6PXXZEm4jRlZT+T+mHjcSETXxrY94z91qp71huL34/64yVW1Oi8\n2CY/p58OsdyqyvFxzZib1725bY5ethTchOus9M4VGkVgvtv4YoakbR7GGj27zqpA9My8Z94ixoQY\nktolxflxgSrVyZy0gEpIwuw0pRt3phhfN7W3ymEudZ/em+Y5bX2eiPbh4LUGki7JidG7G81S+A9N\nfW3x2ml4c7tw5P3zNfNnudQ3XwrKyKpEiRIlSpxoaEiLwFcBJ2KyOnqFJGae5RLNQNv0Ca9GlQ0C\ncHjLwek/4V4XlvOx6cFVW+Hg143eEa+2s6rxsgGAyl6BwTVWuKaV64YvK9JomMvqh+V0Jhcq1k8q\nB+br5vPubSPblEUNtD8yEgFHt9py/Bk1qNeeFui/alZn8YEWHyH2kFo1HUmpZRVg7TalHTbtKpxT\nlodv1yyzj1Obm96fEyqt7hfwiKE3X3clDcWsxlXTqqoffB3Y+oH5fEQSV9W9QpiFWWwjsxYrpddt\nmmi+4ct2OVrNYkd625R2rAPxlMWJXYnMvKUW5WwuOg+vRlj7aEXnFEi0Wdux3keaFDSyiiWYrOg6\nJjUHp/6M2GCeVcJPOJqeaGHATbc8Se+wQoIqtAjtVncKVPaZ2UgSW/ta7MrH5yNJ73AaatX2JDW9\n7Iaics6fp1UHTSJdpHVXmHec+lq1XBut9XJJSTLDMqs4orbgD5boJuZYuXcqPkzFp2l6OsT0uo2o\nALPa59Tq2u1MIjpOPfrTDE5u06iMgJiy0zOBRH7hMENaMe9yTpHPquWLEHX8zKT2jt5qCZtw1Q0k\nDcoMyEXXFVZuNLBCsTmlFrOaK9tK64G4KrR/ZqLGwVsdhAcm5Tfd9tF8YO6ls2JZqRDDqyYaat5f\nINmi0sKR+d5z7sKRgkcySVbE18H8LIsH55IaZ9+9LHZx+HcvAQBO/fEQK+o5i56acSKPmujcYV8+\nF0njZUVWXy3q+l/NbrQSJUqUKPH/FU5EZNW+R06foxSD6ySUGXqo7j/fB1V4gEvuuNvfzzA9RcQA\nqjk0v0ilZlJ/ksuKbHzBrPY2fzRG7y1D+U0rSuouYlthHTDgpNZuYXiZVqn3CsnJe0tHiAf73zT5\n7c6dFXpfb9PnWuo+m+8ldPwKPkV28zVXcvT1x6ydZgkKjSc5em+SHQSJjvZfddC6awvTHFEtKNoJ\nhxpZSteKVRd8hZTqU0lDWW3A8/S3FlB9Yv4WjBXSKtWsRraOw30+wUiLOLA4nQ5yHLxNkV8K8WPq\nUO/S9LQnq+xgqkVt4jjBgQWLF21HIjJ2x3VXwJi0H/l6A5BoJRrk8vfabi5Fdqbe15+uMD5vbrQ+\npp3oZhxNO0LQcZdW+5EVCPJASX1rvu5gHJtjsXqEjlDjg4kWJ2O2vXFSLaSOtKKEAMNIKxCLEHdl\nnaSjAUdelm4PWJ06FiwOR9Zgb3G6KlkGzkbkgSNkByfVYm3BEdSyq9AhW5lglCCtmhvE99eb5dI6\nMDnjwp+RBQgdR3yYYUTvh5NZjziGqSGzwoT5MJwUWG6YfzuJPqYUY2vUTEfPYleIFSndE2+eY7Ft\nqevcvzV4i/T6Hi0xu2jec39eiLcUD3fx7gJRj97D7VAyKN2ppdvzsVT2EihqLVhsmWdyuuUipPe0\n/dMjSbXNL5t3v/AVOiTa2/taE92fmYhqQlFtFink3E/3xfLP1a5fKL5CkdWJmKwYSStA4wmz5XwM\nr5iHk1+WLFTwVjyYuNY6ep1TOgqNh5wecXFEMij8MqStCNGIC8hAbc8y4gBjNMgMwEXHk1QIS+ws\nuh6io2OFa5oQ2JxxeCUQZl7joUZKLCO2KPenhaQO05qyCu417t2xaUwn0WLAx2nMzfdSsQgPR4UI\n6PLDXjks5LuNh5yac6XpGEoJWYOhXYWQjfge2tQr28bPzipEB+a71f0ch29SyoNSmLWdHN2PmK3n\nIKXB+OgV6yElDaKHKUYXzT3hdKWTaUyJGVfp2UZrTvkWvk19en0tckN8TqumK99NKw5a98395z6u\nVduX50QrICZVfpYoat1LMd/wZJ/MWGO2W7rlI4tsyjAkI0CZLMYa9ccJ7csTNh2TWqJBLqm9VduR\n9CVPMKuGK9dH5cd662gALTy7GKs/STA+TxN3zKSaJfqkQN58mGJGE5/piTOq42GPmHXrDdTp/eJJ\nTTu2J2l2JhYyU1pl2a5AJvjGowyrNk1ytFiIcy0LLJXZpmhOk+aBEhadLBSWhexf5RpL6nPjibgI\nHJls07qLeMe8CIHL6V57z/1Jiixmbyla3EauPEezLVfMH3ngXmzHCMkJofZgisFVs9g8eoWU3G/P\nUX1KvXVbkQjo8nWqHBao7JnnJN2oIYuZ+UkLvWGC2RkmYyxxRD5a9R1aFIw1vAmptp+KX26fVTlZ\nlShRokSJE42SYPHisftNcxhrtwuo3K6ck5yL9JZIwH0caeyg8djQRyv7LCEToM0KFLcC1Elhgr2H\n5pu+FMC1Y9UGuNge93MRol372UqULTgduDznibtwfJiIdQlTUv1QSc+Vm2hZ3Y0vsqisktVl1NeI\niDrP59f6Isd0m1bGa55UFBfkEdV8kKPwzeeVvRSdH5uQave3jaTL6IKLGtm1S1f9USEpqepugclZ\nsvYg0kV8YFfZeaBsAw4TMR5piRZGFzxUnxFBgKLKxboVHM5jJQKorO7hzwpRqOjfCCVy5N6ayVlf\nVqxOpsWWhdMw4VBjesamIVufJ7Jf8z3bfxOOcozP0fXpcerNEfHbpKGEhh+TbcXoko/4sJDPV11z\nYhztxX0N+BTZLbSQXdp3zcr66NUIs02W+7LUfY6gpqc9tO8s6FhjSV9yuizqF9JOkdQdVPY5iqKV\ne9XD8LLZ5+BaIBEtK70c3Irlng+uBtZnjKJ27Sr0bjXkmkQ7Rk5qQtRsb2EVQNykkNS6VbUwkksA\nMNvyhWTBpJmol8CfUrS1Fgi1PWM1iXWFPCQhYsogdD9aAbydx0Ns9UjUeEoR4PU1aa3w5gWGr5mm\nvBaRlwJXYU49TYXvmOgPsL1b+bE0cb9A8wNDIx99bdOc+xkX8a7ZlzOao3XPMKA46wEAaSOQbf3v\nvnJGPJdSik/GUC0TRXkjM/YsT9elBBA87WO9F9C9oHToZIZ83Vz/PHDk+X3x0ID+6khYnIjJqvbU\n/L8ZoCgl13ZksOc6QuPuWIzk6k8z0dpiX6nGgwSzU+bBj/e1DNLcG1R4kIHBTQoEA/YUMttcdjxR\nAM+qljnHE5g3N30fAKAKHyEpiI9ogFw1FbofE4Nvw5MBPTq0bEVJiR3lOLxJAwP1xCY1R4zuxudd\ntEkhmxtMh5dDe0yXAxy9YSapCqUpm59P8eQ7ZmByUusHxarWwaRAlVTfuTZizN+YuaUQUOpRDCG5\nCRZA4buij5bRNZ2eUth8b0778mVfbC6YVqy6fdwrUCE78iXJ+uSRQotqlmnVQZPSuNyblFZs6jIP\nrU8TI4uUsNGyyJE0bB558hsebMKhRv0xS+JQ6rJrPb6ivk3TenRPZpsO6jtWzqtCddTDm8e09bin\nbd2zLEDpg1Lo3TTP1+b3R+Jp1PnYMMuW65FNWW271gfs0EpUcc9W7ivUH5jf9W6ZAbb2rLB9Zn1r\n3tkgj6cidKSXLhgmWJ0ihwPu+RnmGNPztfbhHP6YpJFI6b7xOBMPrtqzDEevmwPs/mfjozd+oyuL\nFXdRyGS99lMzKU7P1NEkVwROtyctD/Eh6Xa+sy7PYuueGfSdVWEXgNMMIU3Qz75jalJRT1vDREeh\n9oyfH57gcrT6XCd2ML+2Zs6fJpCkqvCM+iUbD6vwaVs+N38HrmzLn+XSFJySyWp0sIA7MQ9IslkX\nOabaLJFj4sVWcq5je0fn5LvVXYM3MJNlfJiI6n+JL8eJmKxKlChRosRLQFmzerFg8dgs9uAt2G/H\nE4IF9zzksS8rbuCYJBA5cc7PVyUNEQ21pKR4lQMoSWmlFQerBvU80crVSbVEPv4kg08Rh8Oin56C\nIiV0b1Zg/x2zjOUCc2Xfkirm20pIDiERNabbHlJaRY4vOOje4ZUerTibCgkV4zffm4tYaOcOpZxe\nDyX903iY4vAWpVeod2l6oYruJ1ZB3Fw7IDWLSKxaVs6Jm2uSJrD2U7PKm5yLhMAwNm0iiAZKel4K\n71ivG60WNz5YYniVGJxVJX1Wch3nWthseaCk8M7RhD+xaaj+Ky7O/SFZk1+1EVRiMiYmamViAve2\n9PUxPyAtzMrRRfO3zme5RKPzDQdD2q5HpI24V9goUykhbnC05C1smrH+NMGSRFmZ9OAmlo02Ph/I\ns8DnvHZ7Iavo4RstVPZbJNDVAAAgAElEQVTou5dNn85izUY+x4+FrdAz7aD1mYmmRleq8juOFgsX\naJK31bLlYu2nhnk2eNVE2PFRBpf6i7TnYO8dUlO/a9OUMZGG0mYgbExGHjnCfEvqLtY/INl614oH\nhwPuBwyx9jNzrKwq0fwil3Q6K93nkYMlpVu9lUbjAfdcmd9U7/axuGBSf1nVk+dji9yXn327jsoh\nq3Zk0MR25D6mZLMm0Y5WShii3E9Wf5LDW5ICxn/9CMm7N8w1uWOiQThKGMSNn+xAx+a4sssmshte\nr8HJzX1Iagqbf2psCwa3jBIIjs0PKreqL0mdFDx+sI/J69QDGijUnizwUlDWrEqUKFGixF8JlJHV\ni8WCBF+1o4RSHPdyqWUUFBmt1kIpoka9BPvvmFoA2yUEkwIe019DBe3Y1R9gVvlst1E5KIQGzx5Y\n/ryQnqD+jVAiMu6pad9ZIKtZ7bvjahYAeVhRgbuyqxEfmuMXa4S2OkZNB1akpsC9OQkUuqRzuFwP\nMbxmtuumvhwz23kML4eicMF0+/4NXzy66k+o3nXRelRpBzh6jfs7qBidQfx86k8KS6x4DDlPXsWr\nHBJ5NR+akz68FaG6a7ZV280Q9MnTZ51kOzREyDSLHLlWTCrxZ4WsfKMjjZ2/bsJA9sVatm2EOrro\nyfH5pCpSeLbYv2oqIcM0H9B+QiWFfSOaaiM+3j5H6OE4l1oJRzZaOVITm235x0gC5gAm52P0XzEr\n7/UPZpidNqvnOUXIh2/FcElVwlsA09PmWZhcNNupP9CWph07iHtsF2IjjwFZZATTAvH+ks6VVBEG\nudQc416OPKb6yTNLinBTEor+YopT3zPnysehHes9ltQ8rH/P+DD1v27qPAAQH9C2TgVYdShi8Uy4\nq7TGfIMIDqMME3LTXbXsNeealU96elpFoiQDKByRqKxLQZu+0ZHzzKo+VpStiCiaazws4E/MTctj\nT6jr2jHXKQ8coYNPz4SSTel8YrapkgJZbO6Js9ZB0DPR4IQo7FmkpMdzeW3TepOREoebuIhJrcJb\nephTFMjUeRQayzWr0cnPUvdHps43fW0NtQcmSlxsVyUyfCkoJ6sXC2ZrORmeY0b5lP5jDyocI6tN\nT8Wi7O3TBOZPUhy8Tbb0ewUiEr4cXKOQ/mEmpIvK/gqKHqLDWyak73yWISEB1e6dpaQqRhdItf1K\nbIv5sRIWm3g3ZRCjPjeB9FJ4K25ULoQZWNm1DaDM3Kvt5JIeW7YcxIc8oJvzHJ/zMD1tm2X5JZqv\nWQ8pbqZkCaukCYQmO4LJWWtEyMfc+WyFyVnbNNshW/fBNSKq9DLMiAEXDQoRkHXp3qBwxap+uu1j\nSgV83j6UMcgDDGlDc0qRbmkeKplYZ1ueqLEnxyYYTql5x7IlGQnVagdCmkgrNo3F23dySxZRuZZB\nhtXloT15foJxijFJK9WfkrnjeoQks88fb6v/mnnOCg8ioXTwdlVYdDxpZqEj99lbammwjnp8fFZ8\nN4shxXxmfcaHCVTKLDeN+ennSUXu0kowAZCU3+wMSUTtphheoYlvqyJkCu5d9GdaUsvataLP/Gy7\ny0LYdlHfiq5yatRZARGRJRaboajdt+7RBDVaYf8bZjFZ3Tf7dhON6JCesxsV+e6SZJOCcSZsvCx2\nUN2lPra1kK5dirRO5o2TVGSUWKpL5RoJNRAHkwLt24Y1O7vUlGPnnq7VpXVhHto+qgzjs9TPOLHN\n/d7IHHMQuzJBBkPrm+eMrQhB97ZJKboP9rD/d66Y879tJsva5yP03iGyyCCHS4uBEl+OEzFZlShR\nokSJF42vljbgyZisaEUTDTJJwy3WHEmZcVd/43EmdtCLjVCiCF65h2PnmGttLgKXXEyfbbtim77s\nBkJs4KK6u8igyU4hrXkYURTEckfQdsWfBwrVA9vLY45vhfkWkR5ihel59syhFddZHz4Vq6dnFOID\nW6QHTBqFpXeKAJISEo+inrVVzwMlkkksxBuMtNghcD9aOFCycvYWEGq5GrG4aYDGI7PiG16K0Hvd\nUrIBYHDdR+MRuddecLHxAdFviShROSxEVUMVNvLlyOLwpi/neTxKY9WM2uM5hleth9X2D82xcBrs\nuBXM1vdnGF82ZA5WSoACdn/FrLhP/+lSokS+pmmsoOkpdxKFKnmT9b5u9tm6l0qaeXTJur4WtEp3\nV8eElAvTUgHYdO+yYy1GAI3mF0QiiK3FB1tcZKGSZ0no3ssCR6+Z69e5kwkZgR2VRxdDeT7jg0T6\nv/j+QgWSbp5v+pJ+5XTlshWgcsh+V8DGeyb9dPi2+V7Uty0e4aTAmK71qf9pohGlNbKYrDX6Kwyu\nM7GA+vV2EmRE6a48ncNdN88PPx/+OJFryiLCnY/GWJwy24mPcgRHlNNV5n2ZbQUSmYejHEXI0lxW\nNiraNZFL1ojgLimK9W2/Jd+f+CC1EdcxhQkec1adUNREqk8XdOyB9Ga6SYEheezVKnRtY4X6YxNl\n7b0bo3uHLOrp2Yr7haQeV2+cE1m0bNvILQ2v1yzdvuYiaVOa4EVDAyjKPqsXCm6OdVd2gnFX1vSO\na0fDSz6UNg9O616KFemb1enFXqy5WHa5gdiRF5bZVtqBGLWFg1SaOWOTSsbsdCRNsyqH1KSqu+bB\nnJwJEdDElyj8OfPEVduXPqLx+VB6klhux59bv6E81qIgzi8htCcvNrSSQYTTYNHASix17qQIJjb9\nZ87fMssWZGgZ71jfLW+upKl5tsFsQS1yPeFIyyBvpWNso66TGv04ADh63Qyq8aEWVXp/bv2w/InZ\nb/eOEj26LLb1L15ojC9VRBqosl/IJMX3PBrm6H5MNasr1rSPB20owCcS1+BaKIuV8QV7H1v3qU+q\n7mB8yUx2/L0iVLJAqhxmYgTKenr+vJCBLT5M4aY0MD8ydQ7/fNU2lR8VGF0O5FrydWTzzLBvU248\n2Uy3PWEwJnVHeu5YAmrtvQHmpHOXxy66n5hnkVmJUd8aDborLZMp13uhTPoYANp3E8zOmgmBm6vT\nuoeI6jtZ1UXnM6qzXq3TPVmJKv1iK5JnjQfzpOGh/pnxjQOA0GE2qdnP4a2avJ+cQh+82pDf5wEQ\ntM094YVa/dESSYMXQFpqRewXlcWOeE/541RqelynA0izD8DBr66hzilfQhG58PvUqL0diXTWqUdm\nIi/WI9Se2kUZL0rjfXPtq0mO5YZ5Z858d4C8ZgYAluhaNRzkl8xkvGoqec/nZ2jxOrS+eWG/QFp/\nicPwVyiyKlXXS5QoUaLEiceJiKxWx1xReeWWh8CEIhIWiq0+mUv6wltk8jtFfj3uyhHVB62UTaVQ\nGB/1C1nZjs+Hwj5i6R8nKdB4RMXwVYGYJHuGl8wqKqsquJTyCSaWxcXRwrLloPCog//HfcwumoKu\njnibWlbcmz+eYXrWrCglvZFr+Xd9J5N/c7pvpZWk5BZdV6I0TnNV9gqR5mGGW+VQS2+aKqy0Eitl\nTE870o8GZZlbnDqp7K0wvEJ+PyuN/qtmxbj2ERXF2x6WHY6CtKx+3YX1jWp/Sj5Gb8QSObA4bFpR\nouSeVh05J4/YetMtDy6z9Ua5ddDlwEED6++bFXFWD4SZt/ETc3ML38GEIgutIAod3Ae2qrvwljZN\nZnuySD3+w4HYlSctT9RMUkqNrVpK7mladez1c1khwxOn5LiXISE182XbRtvcZzO+GIuP1ZPfZgWF\nJpYdTldbgVf2K4NSQiZRhXnGAaDyyKTxks0aUopSejdDsYtn8tCi4yAPuScJAskKtHyJ7AtfISWS\nZ4dIC3k1QFE11zytB1hRxFen1LK/O8Ted7YBQESm/XkhkXP94RLTs0RqeUj9fhdi+T0KjeE1E5Gs\n/cAoKh9+awPRkA607ls1Czr+cKSx/2uGzdh8mIpEFKdbt7+X4PDrhskTDQu075rj6n3DpOnWv3cI\nHZrzyKr1Y+dP6jrrAWqfm/NfbtdkzOJoqfFoJQQe7fioPSU/NkpRx9Mc882ArvNLjny+QpHViZis\nSpQoUaLEi4Yum4JfNHjlMjnjo7rHHlae/JupwdMLVZH7n5wJMbpKtYI9WqVkQOcTU0A5er2CYEKa\neCMrdMoEjeGVWPpzmI6bh44QKLwlMNtm/TrIdnhlu1hzUH/f7Gu2UZX9M6ZXm6KPx6t4wPYXTS5U\nnosiAaCysxBSxvSUJ9EDU7a9OcR7qXKQi8Ari9K6qe3Sb1C/VVpzj+3fapZxva11P0dll+nqsdCU\nOVpctX3xhsqjYzqLPvP2gc3vm2Vu72stNB4/rwM3OedgvmXOqX03k/oJW7XkodWAnJ6ykfHkNNUW\nR9pes9Oe3IsOFbWdXCOvMinGRURqJIMb5qKu/WyBgkgzjSfWJ4kFb/25FRweXPHRoCjeHREF/FJD\nosBF15HIdniZen+ONJqfm/pV/9Uaoh3TJ9D/WpeOD4jJV60IFcIRW6NY24n5diTf5dX51g+ItPPp\nEPoNcvcd25ou29ZAa8SH1vWXn+X+LUONVhoSuSZVB5Mz5ro0vjAPlbsIhIauNCTy42dz1XTlmE3k\nZv6+oBaFYJhgSaQKlWvUHkzpc/NOZHFXRH+Zgh+MEunHGtyIRfvz6W9V6dxXopeX1F00H5ooa++3\njBZm6/NEhIzjvQRJi6j5c3OeQeig/cM9AMDs1S04tN/Nn5jtTC7EqJBVjLPSQrBhq5fB19bQvGfu\nqco0ao/Me850+srOAlnTnPPkbCDjiPTAdUNU75nnwJ8GyMlCpHnHhPWrjdjWdme59Ca+cGhAl0K2\nLxbcQFjdLVAETJDIj3n62IFRFLaHGusfmoeTQ/LZpSZGl6n/JVDQjh1kATPAciivtEnbARBShje3\nZI3JKU9YXszKCweZDOa13VxeUk6ZeCsr11R4Co3HZlusOl7dy2Sw0Y4dEFjuaXy5KimpVcs2EDce\nsZGhK30sTmKJDfzgT0+5wgxkpLE1mWzdS9C7SWkySgfNtkOMiHQwPa9QefZ802z340zYlt2fLzAi\nNl4e2jTe5KohAGjPFsn9OV8zSyRJalbuiScjb6GlKTgYaSFmKJp1lbYTfH0nE5+snNKNzjQXcdu0\nqlB7ymQb6rfyHax9vKDrF8LzmYwA+R5f52CsZZLmonvzQYrBVUoJ3smEbLF2m1l/DkbEZsxDSPqJ\nFy6ZArRjJ4CUmK2csio8hdY9kmO6EkPTs85+Sc9+syvPx+iiL+aVrft2EGLm4eSMi7XbC/ouESnu\n2xVUHiq5/mx+GPZTDK6Z59if28XYlO5P57MEK+ojCvupXGtvaXub+FmofTHG7KJJj3JvZHWvgDOj\nhVOTev/qjvS7OZknz/T298h+Pi/knIJxLtJJ6++biXC5GSNiX7ELMSr7ZlurjjmnpOEg2mC5JgdZ\nyOLE1Nz//iGKqjnntB1JHxVf++bdCbRPpKCqi6xKQtc0XrQ+t6SItfcHmFwz6f6Ezi/aX2Fw0+y/\n9iyxPWkznpRixHskhNsJ0Cdx45eCr1BkVRIsSpQoUaLEiceJiKy4wBkdLDB4lXo6Rrms7lnINuqn\n6N+w7r/xMyrIXqdVVKiQmkUuvLmWIi3TlefrrliQo7BipNvfNyGKs8owukYKDFoLCYFX20nLk3+n\nsULeen6uD4eZEBgKT8nqnyOf+YYnBfTJaU8ir+k2RQsR4K5seoltHnjFV39sRV+zqiMpv+FVUt34\n2K6i2VZEaSCknqTDt0J0PjXX+uCWuSaV/UL6TM7+4VzERBNSmgiPlphtmWsyORdJ+mjwivl9MNFo\nfGgK39HZtlh/iKxSVUlPVB4otD/o0b0wKR2jxEHXb1xg710qtj+xEkocGS46rvRssepDsmWdgKN+\nIWkspvAXgYMekS7an6XSulCl1Xj705WIrhaelftiIsjRawG6ZPteeEqIEapg2a4MWnG0n4uCBqti\nHL3uo0b3Zb7u2ZYA+nx42cNyyHYcK3FSDiZMsNASpfqzQijvfBztD48weMukHONegeVaIP8GgOp7\nDzH+tYvmnBKN6l1D6U63LR2eCSxpVYmf3PqH1HPU8sVCY3QpkJT04Ko5zvrTTOjyi2+00PnEfCEi\npRRnmWG5bSITTnE2Px5hdsm8s4WvrDt0wf2Q4XPRDjv1piTiW91Njv3GtSnrpn0f8woJJrsKnffM\n8zm6ZZ655FRTIqM8VMiD53sTG3sT5E16P54tcECkLn6m4JixCgD2v9VG8wuKEomav9wM0frUpPzS\nViQyU8tzLTknd8FSbBXJnLwUlASLF4tgxBbSFdR2zACdVVxJk0mdxFVyY7Vrm245p164LrqkUL5q\n+dj/BtVKmCHoWBaam2qklF6ab/EEGGJFtuzNB7Z/hQfu2pMVZhuxHDez6LgBMam7mG2zp44WO3Zp\ncBwX0nM1OwNUejYlabZnB+bqXiEpNWs+WcgLGY4LqWm17nEdxkPrC9Yse163EDAD3/T08zWPRceR\nl3TnN6oIRs+fWxbWZNGgHUga0MoCKRz9tS0ARuGbWVCzc9zPplEhOZn9r0eonWnKsZjfG5kqwAym\nnD5jOZwscuW72rX9V6MNvk+FLGa8RSE+RDxwaGWZgwe3fDGPVDkxLFtVa7Fe2O+2f25qDquNWNiU\n9ccr6V+TnITWGF/gBYYjEwszELsfp/AW5Cc1deRZ5ueg/XkmPW+91z0xX5Rn2leijdd4sBAfLocm\n5dmVtqSh81DJ88Gpw+FvXBI5MzfVOHrXDNgxNaqHh0vobXY3sEab+tgEwim/LPblvrMxKrT1PIv3\nFtJ/xKzQ+t2RpL7jI3oPA6uk3rg/A2NIDcfRUS79buGoQJ1MVjldPd8KUHti/rbohlDF8wxEJyuQ\nVeicVoVMUrWHM9pPTVh44SBH4w6ptVPteXGhBY9Sl+4qx/oHpB1ILgj+3gTphllUdz9ZigMB19ni\nvSWKiLUBHUyumO969GzM1zzkgfmbP9Xwpi/J1l7rsim4RIkSJUr8FUAZWb1Y8Gq9/mSFpEGHpCBq\nDdVnzNpzhXSx8cM+Dr9hGE8sNwPlCdvJyW1Ew0X73puR9GytGg4iWr2yKOuya23rJ2c8VPfZ+8n8\n3/RsKFFGddeuhibELFt0HZEp0u6x9N+6dY2tPyEHUzcQAVpezUPZ/iJ/WkiqhxWgg2GKGaVUxhcd\ntO4+v30n03KsrN7RuZNiQQoS/lRjdpqLxMTQyn2JVqo7Nj3F0ZwqbJS1ajrY+jNDB5uRqsKi4wqL\nyh8ncFdsMW72M932MLxk7ok3swxL9uCq9AqEfVLQjly0P2MWI5+TTdf6i0J6ZkSpvZdKMf7olUD8\ntDhCWHY8bH7PhIu7325K6pTTdfFhhukZlo7KZcU9umFWvk5uyRJpwxMFE2ZQTs6FwhB0l4VEFIxg\nmGB6zjzfhWu3xREYtPV56nyaY3CdvstpzpoS0s98OxQHYiZK9F/xJDVqrqH5XeNnxsp9+PamsGqh\nFObr5lxXFJktOjVRk2jcm+LoTXPeOZESZhseohHvsxAF8ebnJg2mFXB0k9QkJj4W1GfFqh3Ldlt6\nz6LPdgEA06+dQf0+e1M1xelaMghHSxFE9hcK3r65f875SI6TI8y123Pp03Ko33K5FkmaLm3EwgDN\nKyxOm0uGZb7hwVsQQYaUTNK6K9F03LMSaBwZDm+tofbIbN/fG2Ly5iYAW65YbEbSZxcdrODNSNWD\nRJKDaSGpS1bveVnQLzGyUkr9WwC/C+BAa/36/+FzBeBfAfhbAOYA/r7W+gP67O8B+Kf01X+htf73\nv2h/JcGiRIkSJUr8RfDvAPyNL/n8bwK4Sv/7hwD+NQAopToAfg/AuwC+AeD3lFLtX7SzExFZNT8n\nd9gbFVFjqO7m0kvDq+DJGVf6rHrvdDA9S6uXkVn5rOpKcupQwOAaqSg02XpAi90GFOBSXad3k/q0\nEhvZqALSk5VWqOg9zeHNycfpZiS/b5DFxfCyj8Y9s2KcXKqJ2Of6+yYn/uR3mqju2fUBRwFSh9op\n5DdM4Tefk6tvzUV1l3UOXSxNYCkKCtqBrAgrfJ3e8KUO4iYajQdE+T1rLUDY3bb/SoBKj32k2M7B\n9uRMfq2C+TkTUbEoaeUwx+Fb1LvzyJN7FZE78vqPh0i65Dt2I5T6CffWzNccpDHpAUbWh4ujZb+/\nxO63m3ROtpbFSg1Jy5PaYm23kM9HF0hD8n6C+Xmzcq49zeXzhOpAScOVmos3t35erEeX1j24S+7d\n8hH1qIi+Zv2m2JessipEbWLtp4ZmPbxRQ06mx+FYS02UiQy6BbQ/t+LM/F2uuTkpEAyojhtFct5M\neuh8YhVM0tgRAs/Rr5g6Yv3hEr23zPXf/u4B3JW5f6ygEI5zUXBJOpHULzmyDceFfF59skIRmOvG\nkdfociyR72IjEIITO1bngRJVC/eCqR05SQFN3lTdnycSLTv0zGa1QM4JANLTz/tFzc5WxZ3YSQu0\nPzSkkfFr5oXw5gWWVFsOBynGFJFxNFXZTxDmrCEZITg0NanxDbMfd6lR/5zqWGsViX5YUab1syOk\nXXOi09c3JYPDUXX1wVj0AovAlWvdvmPHBr6m8e4MRzebeDnQLzUNqLX+E6XUhS/5yt8G8B+01hrA\nD5VSLaXUNoBvA/iu1roPAEqp78JMen/wZfs7EZPV/BQJqY4L1D8zIX+6XhGDuOMsH7ZY95Ya3U/M\nU8KCr05uB+vpWYWQJFm4KF49yIQNNl930P3IFGSrO/QCBlahW7tA/1VudjR/y0MPOTX6+jNtGWOv\nkMTSRwmyOrGk7k1lkBy8ZgaI9duphP8AMD5vJ1HA+BlxH82q40p6iSewPAY6ny7pnGN5eVkaCNqm\n7LghqLpboHHfTDa9mxVEpDnKKQ0nLURaCTAGjgBkUG7eX2DVMfdB6WM9Y7ukdF1xxChxeMWV/p/D\nt6j59zDE4Lq1qOdYnieN1u0+dn+De5O07L9GqV9VaGlK5rQqAFT2zAA+PRsKmWS24aBCatbxEfUe\nnfMlZaa07Q8LeICuu/Cm9nOemBjT0y78KTdf55K+44FPOwop+VXh0E62PBgHkwLVp8Q2HS+wIoJJ\nsE+NxLfaIn1kBjBOn1r1/dEVM9lUDjIhJqR1+8yy+LF2IX5ssy1aNAx8NO8T8+y1rnhPheT1Fu3N\nMLrRlN93fmLYmoffWpfj52PBti8NulnEjgSJMByPXo9Q2WePOUrnbgaSHuPesjyyvWnd7+9i53dP\nAwC2fmAmiN5bdbTJVy2te0grLB5sxobsWgvehBuNcyzOmeMPiTSStDxEB+Zz7TnPkbYA46jAacLK\nYSYLMBaqdZeZLLCy2EW8T71rV8wx99/uSp9X9f4Q06tmkguPSILsVF2k4LxFgVWT5J7eMCnWxqME\n4UePzX169yI6H5MG2IuGxl92n9VpAE+O/fdT+tv/7e9fihMxWZUoUaJEiZeAX07BYk0p9ZNj//37\nWuvf/yWP6C+MEzFZsUVB4SlMrptVklnRUpqN+pGCcYreayb0aH0+l9Uru4JOTrtSwK490Zhvkmvp\ngflj/4YvCg/hUIvbKKdu4qMCqWuJBW2OYuocTWWS/hhcDSQ9UHtGckDnfKEMH70aicxMRCu2Z79e\nxfqHZvXVeLjE5Bw59NI+/Zmluy9bDup3DJmBpXuiuRYL+upuIYXj5Rql1g6sxcfkHJNTtAiZKg1R\nC8hIAiZpKIkc48NCCvgc4Q2ux4hJmqZ9N7cOwYQsUghm/DdH0hub75G78cUILVrZL7qekDn42A++\n1ZX7u2o6UmTnPqrx+VBSc1rZ9NyIxIXzyH7XXQELakPgyKLxOJfItP3xWGzfufdOFRDxW39mFSzq\nT8wxr38wE7mcZccTuajmA9svt/YRCdGejySyXbzlyz0pfMqNoSpRRn6+LsfvHtnIg1O6uSi5aLln\ny46L1m2TLhi+SQoJj5ciN1R/tMKCLOa3fmiiuSJ0JaJZrHkIhpSZIGp20q0cuycag6+RAOwXRCA5\nG6JC70/lfh+rM2a/Q7JCOfXfd9D71VMAgM4nK0zOmr8X29ZdmPun+vTu1p9mQlRaXlpDjVLb7pGJ\nMCqHFUntVr8YYfyK2eechKELV2F+lq+p6Z8EgAYRVbxZDn9AFiDVQGSeFmvmmisNpC229VDSOuHv\nm8hOV0KJwN1lLrYqIfd+KYU5p9t/MkS9T6LBV811mG94EnmFvRXqH5r3eHnFpEHz2EF2zQQS0cEC\ns3P2XE4Yelrrr/8Sv98BcPbYf5+hv+3ApAKP//2Pf9HGTsRkxYP18Eog+ev1D+aYnjMDkihUTzOp\nLzz79So6n1ppJMBY0e9+0/ymfTdHZZ9fTPOb5hdW1btxdyKePdb23GrrrX8wRe9Nw0hiuaDptofu\nR6YWEfc8SRusqH6hcgcB6cD5dQf774S0XzNwVZ9pYRZp5QsbkZlZ83VHJjsANr1BOnrjC56kxIJx\nIbU4ru35kwyDG5RSJVZjOC4k/VF/mkkDMpsjpjVf+kgWWxGSOjXYDrl3TFnzx6NcDOZYAuf4YNS6\nbxmMxwdAfvELT4nFOw+gTmoU5AFjVV/bIe29K9R0u28nkHCQYdWh3jOSLYoGWiaAYGwXE9V96s3z\njHI6YFJubOfOk3pSd6TmWLhK2ICzLdITXBVYrHHPDMTIkFl1rfsrJLToad5fYHaazStJ1qjtygSe\nR46cK5vvxb1C0mjRkxGyqqm78DlXd1aWRTYucPS2qUO37prJaLkZIuyR91IrEO3IPKTj2EuRUcrQ\nXxSiHRg9NHWewTtbIgHVvL/E9Iz5HV/naJhLmnlybkPuz/YfGbbh4BvbIhEW9GYATVYigdT2ZDHE\n9bb46RR5lWzrK57UfsdvmTrbcXPF1VYNEUszJaTXeL0ienzVJzMA5gT42VxshXA2a7R9yyDmOmn1\n4RTLU+Y3wTBDRr15+pk5p8W3X4VDiyntOag+ntG15kZ4ywQe/OYlYZ5y71f98UrqVHFWYPKWUZ2P\netZvS/zSpiup4+QOw6EAAAGKSURBVL5oaAD6LzcN+F8A/GOl1H+EIVOMtNa7Sqk/BPAvj5EqfgfA\nP/lFGzsRk1WJEiVKlHjB0PqXTQN+KZRSfwATIa0ppZ7CMPx8s2v9bwD8Nxja+j0Y6vo/oM/6Sql/\nDuDHtKl/xmSLL92f/go1jZUoUaJECYOG6uh3ne/8hX//R8V/ev+XTAO+UJSRVYkSJUp8VfEVsggp\nI6sSJUqU+ApCKfU/AKz9Epvoaa2/rOn3/ynKyapEiRIlSpx4lHJLJUqUKFHixKOcrEqUKFGixIlH\nOVmVKFGiRIkTj3KyKlGiRIkSJx7lZFWiRIkSJU48ysmqRIkSJUqceJSTVYkSJUqUOPEoJ6sSJUqU\nKHHiUU5WJUqUKFHixKOcrEqUKFGixIlHOVmVKFGiRIkTj3KyKlGiRIkSJx7lZFWiRIkSJU48ysmq\nRIkSJUqceJSTVYkSJUqUOPEoJ6sSJUqUKHHiUU5WJUqUKFHixKOcrEqUKFGixIlHOVmVKFGiRIkT\nj3KyKlGiRIkSJx7/C3qN5QLcmJOAAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fefeae05b38>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.rcParams[\"figure.figsize\"] = [7.2, 6.0]\n", "plt.imshow(matbkg+matcav)\n", "plt.colorbar()\n", "plt.axis(\"off\")\n", "plt.savefig(\"fig_2d.png\",bbox_inches=\"tight\",dpi=200)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "33567.269963556697" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "matcav.sum()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(201, 201)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "matbkg.shape" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x = np.arange(0,200+1,1)\n", "y = np.arange(0,200+1,1)\n", "X,Y = np.meshgrid(x,y)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(201, 201)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X.shape" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-21.21320344 -21.21320344]\n", "[ 21.21320344 21.21320344]\n", "[-13.30750929 -13.30750929]\n", "[-29.11889759 -29.11889759]\n" ] } ], "source": [ "row,col,height = utils.genCavProfile(matbeta=matbeta, cen=cen, \n", " cavparam=cavparam, \n", " angbeta = angbeta,\n", " deprate=deprate)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x7feff01a1438>" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAHICAYAAABEV/HTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmUXNV97/vdZ6ipB82tqREWFphRFr6QYGdFNk6CE6+Y\nxODnZS0/E13CzQXHy/g6z8nLyrUT8mLHjo1jx+YmC0PAkFgmOMZgBkEYxGhAEppAEmpJ3ep5nmo6\n497vj3Pq1JmqelBPVfp91gJVnTrDruqq7/6d3/4NTAgBgiAIov6QFnsABEEQxPxAAk8QBFGnkMAT\nBEHUKSTwBEEQdQoJPEEQRJ1CAk8QBFGnkMATBEHUKSTwBEEQdQoJPEEQRJ2izHB/SnslCIJYfNh0\ndiILniAIok4hgScIgqhTSOAJgiDqFBJ4giCIOoUEniAIok4hgScIgqhTSOAJgiDqFBJ4giCIOoUE\nniAIok4hgScIgqhTSOAJgiDqFBJ4giCIOoUEniAIok4hgScIgqhTSOAJgiDqFBJ4giCIOoUEniAI\nok4hgScIgqhTSOAJgiDqFBJ4giCIOoUEniAIok4hgScIgqhTSOAJgiDqFBJ4giCIOoUEniAIok4h\ngScIgqhTSOAJgiDqFBJ4giCIOoUEniAIok4hgScIgqhTSOAJgiDqFBJ4giCIOoUEniAIok4hgScI\ngqhTSOAJgiDqFBJ4giCIOoUEniAIok4hgScIgqhTSOAJgiDqFBJ4giCIOoUEniAIok4hgScIgqhT\nSOAJgiDqFBJ4giCIOoUEniAIok4hgScIgqhTSOAJgiDqFBJ4giCIOoUEniAIok4hgScIgqhTSOAJ\ngiDqFBJ4giCIOoUEniAIok4hgScIgqhTSOAJgiDqFBJ4giCIOoUEniAIok4hgScIgqhTSOAJgiDq\nFBJ4giCIOoUEniAIok4hgScIgqhTlMUeADE3cM5RLBbBOQdjDIwxAPAe+/8rbQ//W+k1giBqExL4\nOkAIAcMwIIQA5zywPbzfTEW70gQQN2lIkhQ5ptI5/NsJgpgfSOBrHL+4S5IUEfWzPbcf/+QRfr30\neDYTSKWJAyhPGtOZPOL+JYhzGRL4GqYk7iW3zFyKOxAVybkUzbi7i7gJw/+89B6nO47pTh5x+5Ue\nV/uXIJY6JPA1ihAClmVFfO61wlKcPGZCpckj/JzWPYjFhAS+RrEsC5Zl1aS4zzcLOXkAoHUPYslC\nAl+DkLgvHnGf93xOILTuQZwNJPA1hmVZME2TxL1OWYquq/lc96DJY34hga8hOOck7sSsWYqTx0yo\nNHk8/PDD+J3f+R1s3LhxlqOvX0jgawTOOQzDIHEnliSLOXk89dRT+MAHPkACHwMJfA0QjnUniHOJ\nqSYPy7Igy/JCDqlmILVY4pC4E0R1OOck8BUgxVjChBOZpoJcN8S5iG3bUJSoM6KrqwvXXnstLr30\nUlx22WX4/ve/H9lHCIEvfvGL2LJlC7Zu3Yq33nprIYa8YJDAL1FqPZGJIOabw4cPY/v27XjxxRfx\nyU9+EldddRW2b9+O48ePAwAURcGdd96Jo0eP4vXXX8ddd92Fo0ePBs7x1FNPoa2tDW1tbbj77rtx\n2223LcZbmTfIB79EoVh3gqjO1q1b8dJLL+FTn/oU7rnnHmzcuBHFYhHJZBIAsH79eqxfvx4A0NTU\nhEsuuQQ9PT249NJLvXM8+uijuOmmm8AYwzXXXIPx8XH09fV5x9U6ZMEvQUjcCWL62LYNWZYhSRIa\nGhpi3TUdHR04cOAAfv3Xfz2wvaenB+edd573vLW1FT09PfM+5oWCBH6JQYlMBDEzplpkzeVyuPHG\nG/G9730Pzc3NCziyxYcEfglBiUwEMXNKFnwcpmnixhtvxGc/+1nccMMNkdc3btyIrq4u73l3d3dd\nxdOTwC8RKJGJIGaHbdtQVTWyXQiBP/7jP8Yll1yCL3/5y7HHXn/99XjggQcghMDrr7+OZcuW1Y3/\nHaBF1iUBxboTxOyplOj06quv4sEHH8QVV1yBbdu2AQC+8Y1voLOzEwBw66234uMf/ziefPJJbNmy\nBZlMBvfdd9+Cjn2+YTNsEjG3HSWIQKz72Yo75xyWZc3RyAiiNvit3/otvPjii0in04s9lIVkWrf5\nZC4uIjNNZCIIIko1H/y5Dgn8IkGJTAQxN5DAV4YEfpGgWHeCmDvoNxQPCfwiQOJOEHML/Y7iIYFf\nYCiRiSCIhYIEfgGhRCaCIBYSEvgFghKZCIJYaEjgFwB/IhOJO0EQCwUJ/DxDWaoEQSwWpDjzCCUy\nEcT8MsNM/HMOEvh5ghKZCGLhoN9XPCTw88RixLrTl5wgCD8k8PMAJTLVFpzzxR4CQcwLJPBzDCUy\n1RZ3/OwNfOVHTy72MAhiXiCBn0Mokam2sG2Oh145jl+8uA953Vjs4RDEnEMCP0dQIlPt8fw7PbA5\nB+ccj752dLGHQxBzDgn8HECJTLXJL99q9x4/vffdRRwJQcwPJPBnCSUy1S4H2we9HmVvt/cs7mCI\nWUFx8NUhRToLKJGpthnNFrzH45PZRRwJMVts24aiUGvpSpDAz5KlmMhE1sz0yWkmTNNCyYTnto3O\nwfHFHRQxYyo13CYcSOBnCcW61zavneiPbHvlnY6FHwhxVlC7vuqQwM8CEvfaZ++pAQCeCx4A8FYb\n+eFrDRL46pDAz5ClnMi01MazlDnWM+o88Lm1TnQPLtJoiNlSTeBvvvlmtLS04PLLL499fWJiAp/4\nxCfw/ve/H5dddhnuu++++RzqokACPwMokal+6B3NuY/KAt8/MrE4gyFmxTe+8Q3ceOONOHLkCD71\nqU9h586d+Pu//3vv9Z07d2L37t0Vj7/rrrtw6aWX4tChQ9izZw/+7M/+DIZRXwlvtPw8TSiRqb4Y\nzxUj2yZzhZg9iaXKX/7lX2LHjh344he/iG9/+9vI5/OB17dv346Ojo6KxzPGkM1mIYRALpfDypUr\n6y4ip77ezTxBse71R0E3nQc+F41u6JSsVkMwxqCqKtLpNDZv3jzj47/whS/g+uuvx4YNG5DNZvHQ\nQw/V3e+7vt7NPEDiXn8MZ4sQcRUkhUBb78jCD4iYNWcTB//0009j27Zt6O3txcGDB/GFL3wBk5OT\nczzCxYUUqwqUyFSfHGgf9h6HcwcOnOxd6OEQZ8HZRNHcd999uOGGG8AYw5YtW7B582YcP358jke4\nuJDAV2ApJjIRc8M73aO+Z0GBP9Y5sLCDIc6KsxH4TZs24bnnngMADAwM4N1338UFF1wwl8NbdMgH\nXwGKda9fTg34MlZDFvzpvlEQtUM1gd+xYwf27NmD4eFhtLa24o477oBpOmsvt956K7761a9i586d\nuOKKKyCEwLe+9S2sXr16IYc/75DAV8C2bRL3OqVn1B9tERT4/lEKlawlqvngd+3aVfXYDRs24Jln\nnpmPYS0ZyEVDnHOMTPrCIUMW/Hg2D6J2sCyLgh+qQJ8Mcc4xWdArvlbQDLzdQRmttQJVk6wOCXwd\nQe6kqfnl/nZohlneELLg84UiHqPmHzUD55ws+CrQJ0OcUzx7uBO2ZcLKRWvROM85jrT3w7TshR8c\nMWPIgq8OCTxxTnG8ZwR2dgSwnOQ1gWgN/a7BcQxPUtmCWsA0TaomWQUS+DqCGn5MzXi2AAgni5Xr\nhagFD2BwIofhLAl8LcA5J4GvAgk8cc5g2xyGrnnPhZaFsKOuGMu00N5P3Z1qAaoHXx0S+ArQgmX9\nMZrXUMwF49yFHV8e9s0T3QsxJOIsIYGvDgk8cc7Q1jsKUw+GSLIYcWAQONZBJQtqAcuyaJG1CiTw\nxDnDy8eiLfkScvROTXCOrqGxhRgScZaQBV8dEnjinOHImaHINmab0R0Fx9hkDrYdU1KYWFLQImt1\nSOCJc4aOwWidGcFtSEoiuM02Yds2DrX3L9TQiFlCFnx1SOCJc4axmDZ9gvOoH55zyLKEXx3vWqCR\nEbOFEp2qQwJfAYqiqS9OD0zEdnGyOYdA+G8toMgSjpAFv+SxLIss+CqQwNcRjDFKdqrAK+/2Qo6Z\ntG2bQ/BQLLwAFCbhdB+171vqkIumOnRvU2fQnUc8hzqGEFeTSggBWMGFVgEOJgGDY9kFGh0xW2iR\ntTpkwRPnBCf7xsAirhhH4IWphTeCQSBX1CL7E0sL8sFXhwS+CuTuqB/6RnMId28C4NalEZBkNbBN\ncOe/npHJhRoiMQuo2Fh1SOArQK6O+iJb1CpM2M42yW8FCgFuWwCAN45TyYKlDLloqkMCT9Q9Y3kd\nts1h8zgL3hX4kIPeMh2BP9xBkTRLGVpkrQ4JPFH37D3piLQVEybplQv2rHvnzs0wnHrxbT3DCzBC\nYrbYtg1VVafe8RyFBJ6oew50OCUK4ksPOMIuuGOxw3XNcTd0smcomv1KLB0qWfA333wzWlpacPnl\nl1c8ds+ePdi2bRsuu+wyfPjDH57PYS4aJPBE3XOid+rCYbbplg0Orb2MTObmY0jEHFFJ4Hfu3Ind\nu3dXPG58fByf//zn8dhjj+Gdd97Bww8/PJ/DXDQovoioe7qGnUiY6CJrWcxtUwdTkoFtAFDU4uvF\nE4sL5xwf+chH0N/fj+bmZvzbv/0bmpqacNttt+GjH/0otm/fjo6OjorH/+QnP8ENN9yATZs2AQBa\nWloWaOQLCwl8nUHZrFFK/VUZQoGS4UApWQ3tISAER99oFutXNs3rGImZIUkSXnrpJXzzm9/EJZdc\nguuuuw7ZbBYrV66c1vEnTpyAaZr4yEc+gmw2i9tvvx033XTTPI964SGBJ+qeQkUrPKjwTJIDZQsE\nF2AysPdED66/5uJ5HCExW2zbRjqdRktLy4yscMuysH//fjz33HMoFov44Ac/iGuuuQYXXXTRPI52\n4SEfPFHXjGSL4F70TOjOJpzrwFgw/8Ftzn2EQiWXLLPt6NTa2oqPfexjaGhowOrVq7F9+3YcOnRo\nHka4uJDAE3XNvlOD5SdTua7CrwvHmj/ZS0XHliqzTXT6gz/4A7zyyiuwLAuFQgFvvPEGLrnkknkY\n4eJCLhqirjncWY5jj8p70IIX3AZjUuA5AHQPjc/T6IizpVItmh07dmDPnj0YHh5Ga2sr7rjjDpim\nU1Tu1ltvxSWXXILf/d3fxdatWyFJEm655ZaqIZW1Cgk8Udec7POFSIYt9PAiq20CatL33IYQAsMT\n+XkbH3F2VAqT3LVr15THfuUrX8FXvvKV+RjWkoFcNBWgWjT1QddwtZK/IQve0kPbnAkhT1UllyxU\nqqA6JPBEXTPkhkgCmNoHD0QXXuGISK6oz+GoiLmCBL46JPBEXRMU5tkJPADsO9k7NwMi5hQS+OqQ\nwFeAXDS1T143Ydt25R1i/saRvq2u1X/oNIVKLkWo4Ud1SOCJuuXA6cHghmm4aGQW3CchO5PA8c7B\nuN2JRYYs+OqQwBN1y6Ez4VK/QfGOu0dLK8GfhOJqx+lB6uy0FCGBrw4JPFG3nOwPVZGchgtes4Iu\nmkLRKXMwlqeiY0sREvjqkMATdcup/lCCkhQUgji9t0I140ut+/KGNZdDI+YI8sFXhwSeqFuGJ4ve\nY2GZEKaGpqZpVIX0TwRuIxDDEjCtKgu2xKJAFnx1SOCJuiVXqiLJJAhLg4DA5MQ4kqmUs7nCcUwO\ntoATjAGMio4tRciCrw4JfJ1B4Z0OpmVDdxtnc90tNeD6ZGSvwXb0s2IMgBT+WTAIU8fBkz3zMlZi\n9pAFXx0SeKIuOdw5AiEEmjJJz83ilR7IZQFW4asvECg45mwTEJaB491D8zdgYlaQBV8d+mSIuuRg\nx7ArzGZ5oy8OnimJip2vwtsFtwFu48wAVZVcaliWRRZ8FUjgK0CujtrmaM8oACCX8xcbKwu34HZ8\nJqvzYmij83xghGLhlxqzrQd/rkAuGqIu6RiaBMC8bk5CiIAFL8zKFSKFHQyJLJUvmMgX4nYnFhHy\nwVeHBJ6oS4bG8xBiirDGsKVegtsBH33pbi5X0Kih+RLDtm2oqjr1jucoJPBVIDdN7TJR0AHLn30a\n87cMFxYDAAgwxqKhkkLA5hxHzwzM6TiJs4N88NUhga8CWWu1iW1zFDUdwvYtsMZN1lJUGFjca4x5\nzw9QqOSSgnzw1SGBJ+qOQ53DMYUjo5O1AKCoifiThEIlmRsb//YZqiq5lCAffHVI4Im6Y//pIQBB\n9wurkNSUyTQEtpXv2vwTAkPJtqeywUsLEvjqkMATdcfR7hEgtMAqSzEuGgHwSussgQVYgZLgnxkc\nnZtBEnMGrZVVhgSeqDs6h7OR5h5SpPwAAAZomhndjnCoJENJ4CdzReR1Kh28lCCBrwwJPFF3jEwW\nIi53KUYEVEmCZRlBf3tpYuDBW/9SLLzgNp5569Scj5mYW26++Wa0tLTg8ssvr7rf3r17oSgKfvaz\nny3QyBYWEnii7hjPFSJRkXFGniozJyRSTZU3itL+DIlk0n0iAG55/vlX3jkzD6MmZsL4+Dg6Ojpg\nWRZ0XY+8vnPnTuzevbvqOWzbxl/8xV/guuuum69hLjpUqoCoK3KagYJmQJUl+B0pcRGvrKTmvpBI\nwYQ3N3hFrIRzAkWRYXOOYxRJs+gcPnwYd999N86cOYNrr73WE/l9+/ZBkiRs374dHR0dVc/xgx/8\nADfeeCP27t27ACNeHEjgK0B+vdrkzZMDALehqkGBt2KSmuK2BQqShUIlVVWBrRvoGaaiY4vN9u3b\nsX37dvzmb/4mXnvttRn/Xnt6evDII4/ghRdeqGuBJxdNnXGuT0wH252SvlIoasaOEXPddCJtAguq\n/no1oZBJSXZ+LrmihsHx/FwNmVgEvvSlL+Fb3/pW/OJ7HUEWPFFXHO2qULNdxFSO5I5wMwhASUBY\nRkDgTcsVflHaj7nH2Xhqfxv+6Le2zeHIiZkihJh1tvm+ffvwmc98BgAwPDyMJ598Eoqi4A//8A/n\ncoiLDgk8UVe0uzXbIzXdY29sfPvICbd2TXmb4fp1BZw1W16Kjeccrx7tIoFfIszmrrW9vd17vHPn\nTvz+7/9+3Yk7QAJP1BkDYzkAgGmFa7pXP45JklsLXnghN0IIQFK8gy3Poud4t4sWWpcClcR9x44d\n2LNnD4aHh9Ha2oo77rgDpunkPNx6660LOcRFhQSeqBt6RrIw3B+xYYVLBccovN/fXnLXhAQjmUxA\ndycLyzQhhBNaOTxBPvilzK5du6a97/333z9/A1lk6nuFgTineOpA+bZbhAQ93kPjE3jb9AqK+THs\n8n6cc8+61wwDHYMUTUMsbUjgibphb1tf+ck01t78kwBjgJJIV9yzRDrp1IkXnOPp/SdnM0yCWDBI\n4Im6oa3XXwhs5tEVclxnIMEDbhteWq0VHK8dpYxWYmlDAk/UBXnNwOB4zrdlOgIfcuOw6M9B8KAv\n37DLz0/1jcxkiEQN8i//8i/Ytm0btm3bhs2bN+Paa69d7CHNCBL4KaCuTrXBE/tPBxdWQ3+2sE/e\n2RjcZvNoD1fGWHwxMgCjEzn6fiwiC/HZ33rrrTh48CD27t2L1tZWfPnLX573a84lJPAVONczQmuN\nI2fCCU4RhY8SEggm4v7uzA2VLB3jRNRkkiqEAI50UI/WxcK27XK9oHnm9ttvx0c/+lF84hOfWJDr\nzRUk8ERdUEpwCiApkCQJTQ0N0dcAhFVfkSWIULNtMBaIrhG2U1VSkhjAgKf3nzjLkROzZaEabt9/\n//04c+YM/vqv/3rerzXXUBw8URf0jpX9796tu6WDA8hmzaAVDsdSjxj1zClHIII7Ri8myShoJhIJ\nFW++S024F4uFaNe3f/9+fOc738HLL79ck3Vram/ECwi5aWoD07IxmffVBGcSYAU7NTEwMF8YZFzM\nOwQguBWzPboYyyGgyAzt/bTQulgshMD/8Ic/xOjoKK699lps27YNt9xyy7xeb64hC56oeV4+1gPT\njW6RJQmmXkTU6S4gTAPMLSomMYbIkipjEKYG5nPTMMYgbDt8JjAw6LqBomHDtjlkmWylhWYhBP6+\n++6b1/PPN/StJGqe546cgWk7i5+qXPmuizF4VnxcSCRjgDD1YNRMyWkT2CYAIWDZNoQQeOntjjl4\nF8RMWSgffC1DAk/UPAfaB2HZHEIIaJqG2MIEbvQLL+YAWQWTovuUtjBZiWwNbOO2d750QsGzByij\ndTFYCAu+1iGBJ2qe/rE8IAQSiuQssMYZ8V6vVUBKNiBuJ6/ee3Cj+6/vp8K555dXZBkHTvWe7Vsg\nZgEJ/NSQwBM1zVhOQ14znOYPdswCqUdZtrlRjF9kLeE7j1RaaPerPmOeRc8FR+/I5CxGTpwtCxkH\nX6uQwNcZ51rkzxP7T7sx6QxmKZM15jOQfNsYt6AmUzFnc6tGGoXyvlLJqvfVl/dlt1qWjXxRx1iu\neJbvhJgpZMFPDQk8UdO8eLTb+RILnwDHZK3K4R6tdkzDbe9FC5Ac4fAmBst3d+CbLHTDABcCj7/x\n7gxHTpwtJPBTQwJP1DTHukdgCRFwq8QmJ4VUn/NwZAyC8e5uYlRJ4BljgLfQyrx9hdsB6pV3Os7i\nXRCzgQR+akjgiZpFCIGRbBE81L0pTt7DFrtggFyx/jvASo22/a4d16pnjAXvGACc6BmeydCJOYB8\n8FNDAk/ULAfaB2FzjrB1nlCiX2ubh5pwC4aUKoW2lUVbWE5mrP9mQPFbiwGXkED/yCRVllxgLMuq\nyfIBCwl9OlU41xYsa43H959yfOshYVWVmNv2kMXNARSKWsBN4z9NaaGV+e4HLPdOIZNKOBuY7B1o\n2jb2nuie5TshZgNZ8FNDAk/ULHtPDiAZY63HZamGBZ7BaZ7NlKS3jfOgVc5kFYovM7YUhlnQnX9T\nbvs+CCej9Yk3qbLkQsI5Jwt+CujTIWqWM0MT0I1o7LsV8pTE3YmlE1LkNR6aBNLJBCyrvI0BUH1t\n/fyvgTG8dqxzJsMnzpJKi6w333wzWlpacPnll8ce9+///u/YunUrrrjiCnzoQx/CoUOH5nuoiwYJ\nPFGTDE4UoBsWbMuKhEDqYYWPofTFF7bpuWlEyE9vGHok4lIJCHywYmX38ATaemmxdaEwTTPWRbNz\n507s3r274nGbN2/Giy++iCNHjuCrX/0q/uRP/mQ+h7mokAOLqEl+8UYbMqqMvGUiqUgomFV2jrHg\nNdNyX2KAkoAwtaCLBoBRzENNBiNtHPePK/uCl88tBEzTxpN723D7H6ye7dsipsnXv/51HDhwAAMD\nA7jjjjvQ3NyMD3zgA/jwhz+M7du3o6Ojo+KxH/rQh7zH11xzDbq763fthASeqElePNqNktBKIQGX\nGPx5p4GF0hKmL7SSMQkCiAg8bDMQWQOUFlrLdj2TFAhuQZYALgQOnOybzdshZsjnPvc5tLS04JVX\nXsGVV16JycnJWQVF3Hvvvfi93/u9eRjh0oAEvgqMMQp9W6J0Dk2gUHRCGXnobyRLDNWq0oRxFk8Z\neEx2qyrL0H1nMw0TQpa9KaN0ZWHbEIxRPPwCsWnTJmzevBnd3d24/vrrZ3WOF154Affeey9eeeWV\nOR7d0oF88ETNkddNDE3kPXE1zKCcS7EdtivDGJxGICLSAgRMhEVfxLp8OJzwzIl8EW+8W7+3/EuJ\nswmTPHz4MG655RY8+uijWLVq1RyPbOlAAk/UHI/vOwXVt7BqhSzvsP5OS+4l2cte9WMUc5FtzP+z\n4aVJQUIyoUI3TDzw/MHpXJE4S2bb8KOzsxM33HADHnzwQVx00UXzMLKlA7lopkAIQQlPS4wXjnTC\nsuKdMEKSoSgKmJqCMLXKJwmLObchsUDNSABAITsGuXldYBtj3Oeb4WCSBMEYcpoBBuCtk1QffiHg\nnMcK/I4dO7Bnzx4MDw+jtbUVd9xxB0zTWYW/9dZb8bd/+7cYGRnB5z//eQCAoijYt2/fgo59oSCB\nJ2qO4z0jodIDAkIINDVmkM3lYJsKhKmDJdIQthVZKI2DQUBIUbEQnMOJgPctrLr+9hLJhArNEm4y\nFcPIRB7dw5NoXd08+zdJTEmlOPhdu3ZVPe6ee+7BPffcM1/DWlKQi6YKZLkvPYqGhf7RbGCb4AKQ\nGLI5x51SWhgXhuZa6tG/o4hx3AhWwd4JHc5DdwaeyAgBIQCZAT96uj4twqUElSqYGhJ4oqb45b6T\n8Oc1cdt24yLLC6QBi53bgBCQwpZejL9d8OgiaxyCc69ePBAKr5QkmJaNFw61T+tcxOyhpttTQwJP\n1BQvHO6EKvu+trIM8KA/PhLPziQkMk3BbRGBZxC2CTWRRBQWfew7XtcN33Pn36GJHCYLetX3Qpwd\nVA9+akjgiZricOeg06wDgCpLYDGhjSIs8BDQClmwVFNgWwDmuORSmYbqA3DddslAD27/oqvzIKXK\nuP/ZA1O8G+JsqLTISpQhga8z6nndYCKvYXii4GWhShIgx8WkRwTeQXCjXH0wxoKvdmyJUk34YiEf\nfME7LwdjDAXNxBN7qbrkfEI++KkhgSdqhp+/0QbBuZe5qukG5JhysXYlkbYtNDS5kS0VBD5fKEZa\n+fknTat0bsED+zWVasQDSCdV2LaN3pFsoCQCMbeYpkkW/BSQwBM1w9MH2iHLEoQQUN3ftSSHs5pE\njIumTC6fcxZIw6GT7mkYA1iolV/A5+/3x/uEP1vQvElDksp++p++dGTK90XMDnLRTA0JPFEzHO0a\nckoDM+aVJwgXGos00gbg97cLIcDUJCI++CrnsCvUIxK2zzr3WfSmO7aibuCJvW2Vr0OcFbTIOjUk\n8ERNcPD0IDTDchKcfAurUtgFHyvwwZ2EZQBS2Hfra67tWfMserTvSSlTVpIk1/R3rq0ZphOLLzje\nbu+DZlSrZUzMFtu2Aw1YiCgk8ERN8K/POV13LMuOjWH3iF1jjrR4QnNTY8VTeIlS7mFSZBZx4TbA\npNgWgQ2pJMAYdIvjcWrlNy+QBT81JPBETfD6id7Y0s2RnpwsruF2aBfGkM3lUWE2QFKVI/tXhLHy\naUR58tFMC6qiQAiBh195p/LxxKwhgZ8aEvgq1HPIYS1xvGsY43kN6aSKsFpPp15/uCyBqsjOcUoi\nsFcJb40IOu8pAAAgAElEQVTW/fMH/PyhywnbAvfHwLvWvM25uzgr8M6ZgSnDL4mZQwI/NSTwdUY9\nNij5/hP7AQC6GfVlF/TgtthJWVSYFCp8VuHQxsApw0E7hgYRiKwpx8PndRMQAoZl41+foaSnuYZz\nTnHwU0ACTyx5DrQPICFL4DZHQgl+ZcO14KeDaZdj2ZNpNyQyIPZB4a96HxfXEMR76DxOqgrViJ8H\nLMuKuuiIAPTpVIFcNIvP253DGMsWobrCHoxJB6IO9uphku5OvpfcSJnYP7UvOL4KwvbdRXBenizc\n4yQAvSOTVCd+jqFM1qkhga8z6m1S+vHzh8GFQM7tv2rPwmKvFvOuG07IZGNSqbj/VJ9oQyJ0rOT2\nbHUrWeY1HYDAd3/xq5kNm6gK+eCnhgSeWNK8dXogYLVrZij1XwCNjU1gahoskXEs+EjPvurrEolE\nArmi4T0PT5L+dY2GZDTuOqcZgWOaM0moiuJsc+8oGlJJ7G/rpQqTcwgJ/NSQwBNLlr0n+zA8WQT3\n12n3lwNgDBACuWwWwihC6AVAcCQSCbBkpvKJQwJumkYgyqWaxZ7X45KWBNKJstBM5jUoSuk5c4ct\nwLmNb/3s5SpnJ2YCuWimhgSeWLL86JlDKOh6pD0fwJx/OEec+8UwDAijCCnVBDaNRTghEGjgwWbo\nooEApMDiKvcW/0oh9bphwrY5nj1wui4jnRYDsuCnhgSeWJIIIbDvZF8oBt0Rd4n5yvpW0Uqu59DU\nHNMXNfaYyieypophFwLFQiEg3CWXjWnZUBXZqXDJGDTDxE9epAJkcwEJ/NSQwBNLkqfeOg0rHBYp\nBBiEJ+6OoIaFOfhc0zQwOeQ3jzPJue1VkSydoVSKeOqFXQHTsgKuH3/JYssujymvm3iAGoHMCSTw\nU0MCTyxJ7n/+bWiG5YtzFwBjU7s3Qi9LkgRwHuzUFHMKp8Rw2V8OlKtITseCB+BLgQ1OCqUesRIE\nIAQGJwo4cKqv+jmJKSEf/NSQwBNLDt20cKp/DEJwT+DjGnvEmuKhxCOpVDrAsn11amIVHrANx9oP\nZ7761wDi5hf3mv54eMv2NQQRAowxcCEgyxKyRQ3f+flrMSciZkIlC/7mm29GS0sLLr/88tjjhBD4\n4he/iC1btmDr1q1466235nuoiwYJPLHkuOfZw7BsG4obHplOKLDtmM5Ica6WkDgztxKkZZqQko4V\nn1ZjrD5XpNVkqnrdmEh5YlZ2zXDLu7wtRKhWvfO4FPJ5rGsQw5OFytchKjI5OYmHH34YXV1dOHz4\nMI4cOYLOzk6YbimLnTt3Yvfu3RWPf+qpp9DW1oa2tjbcfffduO222xZq6AsOCTyx5HjsjTYUddOx\n2oXwmntMJ4dLhCx4f3y60PNobGiIb+nnHmcZGqSQVRguVuYnfGfRkHSOTcgSAL+bRkCSJGiGCQaA\nC4GvP/TS1G+IiGBZFnp7ezE4OIjnnnsOd955J26//XacPn0aALB9+3asXLmy4vGPPvoobrrpJjDG\ncM0112B8fBx9ffXpMiMHVhXqLSu0FugYGMdorgjAcdUwSYLtxsE3JFXkCn5LfurCYuE9DMOEUaVP\nqhACmYYm5HRtWuO1uQh0HckVipCUBAzTAmMM6WQCRd1w4vPVpNMMBE63p9372/DNnb+FJDWtmBEr\nV67E7bffjoMHD+Kv/uqvcNlll83o+J6eHpx33nne89bWVvT09GD9+vVzPdRFhyz4OqPWJ6U7H3sT\n2VK2pxAQviQnzqcRP17FggecsEUW6uYULlhl2XZwZvBNGo2pKcTYNgMWf9G9+wAA1evV6kwMEgO+\n+uAL1c9HVISiaKaGBJ5YMgghcOD0ALhwxC/skykY4dLAkRPEVHeMgduBxCYlVMDM9kXUhMkVp9F+\nT/gmFp87qJzdKryF11+++S6GJvJTn5OIMNsomo0bN6Krq8t73t3djY0bN87l0JYMJPDEkuGnrxzD\nRN5xjdg8mP4PILYzU3BD9OscH1YpAm32wufhblJSSeSrWu1xXiI7NAm419J91jyY44+XJYY/v++/\nKp+fqMhsLfjrr78eDzzwAIQQeP3117Fs2bK6dM8A5IOvO2o5Df4nL74D3bSRVGVohglFru5uirwq\nyUA42qbS5yE4mKxC2Gak56pwLfDSobmiHnHrlHeOGUhpbghd2gn5dF5IKBIM04JmWDhwqg/vdA7i\nsk0t8dcgYqlkwe/YsQN79uzB8PAwWltbcccdd3gRNrfeeis+/vGP48knn8SWLVuQyWRw3333LfTQ\nFwwSeGJJ0DE4jr6xHIQQXkcl2w6Ls/NclhhsSJBlBpvLzkJmsRgbZlNtupMlwLIZpIhCOxEvEgMM\nI3SSuDDJyCbJibkX7mTjuo1MXyVMw7TQkE4gr5ko6Ab+94+fwyNf3VFltEQYy7JiLfhdu3ZVPY4x\nhrvuumu+hrWkIBcNsST4ziNvwrRsZJKqF8YYiXYRbkw85wC3XJ+7jaJWBGQZTE1EBDd8R+N3x9g2\nB1PUiEYzOOGPpuUmMFWdJqI0ZVJIqqGfluQrR+ZekHNnsuJc4PTAGJ7ad3JG1znX4ZzTIusUkMAT\ni45p2Xjt3W4UdDPQd9UquVvcImOMCRQDC60+4eW2t3ja0Njk21w5JNI7LqTwpUrE5ctUFviEEhWY\nbNGEbpiB6JxUzH5F3YBtC6iyjLxm4LuPvFbTLraFhqJopoYEnlh07nrqLeSKBlRFKpcGdoUuVeqW\nxO1piB8DuI18PgeWbnJPU6Hhto9w9KXN+bTDTf13GYriLsaWLHTffv5GJQzw5iYmSTBtG43pJIaz\nBfzgl29M67qEI/Aq5RBUhQSeWHQeevkoGHPcFX4kxqAbbuRJrH89HFbje03LgaUaYVlWYJd0TEcm\nkwNyMliMzOnGVHo+vTh4pibdoZbi3UMhm240jRDCy5ZNKrLTtKSoI1vQcN+zB1HQDRBTU8kHT5Qh\ngScWlSf2tmFksgAIQDN8YiycCo8li1uNcXGISOJTyP+u55FKpwPbiuGWf3ASqBL+apOR0JjydarF\nwdsCYEoisC2dcp+73ae8a9ocEAAXHKobCSJJEjjn+F8/eqbiNYgy5IOfGhL4KtR6Vmgt8M2fv45k\nQol0UYIUDF4JW+KAI45TkcvlgUA9+OjfNJWQndICqbLv3t9FKpOcbrAZQyKZClwi+BUSSCcT3mMw\nBsMsl0TmXKCgm3j16Bk8f6h9mtc8dyEf/NSQwBOLxq+Od2NwPAfdsDwLXZYYIDgaQ66UcJkCp8dp\n9WYf5SqPttOQuwIFt8+q5LO+OQDFXSQtaNN0mTDAEsyzyEvHJlTFa9Ydje1nToE04Yw/ocqwbI7/\n/eBzyE/3uucoJPBTQwJfZ7DpNMVYInzz568jlXCEjwunZECpLLBuTWWdx6WQBp9KcllohalVFfnS\nCaTMMgCAKkng7udYLUzSf5cnuZ+9GeoAZdgcec2ZRLIF3Zt3UqpSTrJy/1FlGZxzjGaLuP3uyiVv\nCWeSp7vs6pDA1yG18KV//d0edAyMo+haz4ZpBRpXm5GKjxWs8yr7qKEaM8LS40Me/b1UJRmyokCz\nbN9iqe+Y0GX95YJLDT2EoYfOzwMLrsL92WmmjUTJ2hfCW2xVZBmMMbx2rBP/8fI7Me+TAJzveS18\n1xcTEnhiUfjarpfLQSoQaEipVcv4Roj7YYfFO+45kyLVIyOTR6oZTnPvqMAnQpOGFBoHg3AzWMPZ\nUyy4j4vmi+tvTKcAOKGXlu1MMD94/E1qDELMGhJ4YsF59lAHekcmPd83wGKacEwj5j1MaNFVj5kw\nGlIqRLgoWeRSTqaT5z7xCXzY/cJCwTalPYXtXxQOZk4Jp9iN9zzjRtrkihr8c4pp2Rgaz+F//OCx\nyPsgiOlAAk8sOF9/+FUkFDcm3P1/IEQSwZh4yQ0xFO5/TekkIElIJYMhiWKq5tgA8poJwTkSiWT1\nHX2TQFItL+RFLHb/c8a8hV9h6V4jj1RSQTCCBkiqitcnxPJNRKU5qiGlQrgun9N9Y/jOI9TDlZg5\nJPDEgvLTl49iJFtArmi6Iu7ZvIH9nBh35sSKu+V7Sz7XbFEHEwKabgKQ0NzU5BT34tNw8bjWuGmZ\nrruGRW8G3Fr0pc26z42iKiG/vs+6lyUWmAA0XXdP52zzl1nQDdPr/WpYNhrSSe/aEnMmIlmSYFk2\nCrqBn7xwBM9R6CQxQ0jgiQVDCIF/3v0WDNNGSlVglSzukK9cVSTHEhYcU7tqBCazOaeBRjKDSo06\n/PuXLplUFXARvz9j5RIGwiwvmioh/72/1LDNRSB+XphObfvyQqwIDs93rnzRCYlsTCXQlHHE3rI5\nbC6wrCGFbFHHVx98Hif7Rqd4fwRRhgSeWDD+4ZHXMZotOh2b4mq9CyCTTMCyphb2qNtcgtALYEoC\nqVRqWuPRTSu2SUgmoQACsDyFt739wmu7mlH9rsHxtwfH6Z0oMLE5dyw5zcBEXisfwoCJvIZMUsFo\nrojP/58nkCtSfHythAIvNiTw04C+TGdPtqDjF2+cgG5aSKlKoLuR7ItMKWhGTCTjND5/1xoWlgFd\nNwBJmdZhABz3jo9SzHpAfm3X3RIuR+zbKzZkz9QCbhsmOFRZQqO7sFpaYC2f0Dlfqb2fl2ylm7Bt\njp6RSfz37z9K30kXCpOsDgl8FejLM3f85b/twURegxACuml66fkAkFSCYhwuwVvqsBTZ6MdniQsh\nYssAV8Mfz16OxvEdX5wAABiRWjYs8G+4Zo4QApP5Yvk5nOJmJVeOP0uWsbLgW7YFQMCyuftWGRKq\nDMO0caxrCLf985PTfm/EuQsJfB2y1Camt88M4bVj3TAtG6mEEijP25BUI9UTE+p00s8rN/II7ONr\nrh3njnEiZARsn5gL77VyJqxtGgCTIqGXpWifki8+mqAF9w7BPz4ebPTtjl2IctkEIYAGV+wZY053\nKdOGxBgYGF4/3oW/3fVizHsmiDIk8MS881f/vgcCArIkQTMsR8CFQGMqEVtvJRyKGOtribgoKpQu\nELws8jGTgBfXLgSYu5/MnDh1PVTgTNhGxDVSssQjZXFCNGaCYZnMXxpZCKd+jd/xDnifjcSYt/DK\nhYBmmLBtgf/81XF862evVL8wcU5DAj8FS80arjX+9dmDaOsdg2ZYXjKTI+AMuaLj1w5HpkyrHnrE\nRVNlH7/Ih+C+8wjhFPvy4unDibDFCTSlQz7zacAYQ1EzA4Ms6uGywwJpty5PMBRTwOYcE3nNG5Cq\nyE5TEgj82wuHcecvfjXjMRHnBiTwxLyRLej412cPQ3Duq/xYil8vq2e4wqIVyhaNCK0Q0Y2x+PYR\nPNZFEz6NLKtewbPwi9zUMZmPLxtQKn+QjLiXnAJkthvLX8K0LDDfxGZatlf+2LTK6weSxDxXjePW\ncZuSCwHTtGFYHD9+9iC++wiJPBGFBJ6YN/78gecxOJFHQ0p1LWXHTRO+KwpnsUIIJBQJQnCkVAkQ\nHAlZ8hqAKFKMuT6NJCeGciclb1voVEXdgOR2ZkooMXXgQ+UQ0m5LwZJPXQ8vwvrvHMLtA0OtAZMJ\nNbCv05DbXYgVzsTXkHLGZnIBw7KRTigwLY4HXziEb//nq/Fv/Bxj9+7deN/73octW7bgm9/8ZuT1\nzs5OXHvttbjyyiuxdetWPPlk/S5Yk8AT88Kzh9rx8jtdSKmKJ+4NqQRszoMCHRPul0yoMCwOxiRo\nJgckCYbNwdzJQZFlQFaRTpX92mKq5tood0zyi244MxVwKkqCSTDiKh+w4ARVdCcnOVLAzH0voXIK\nyYTqHu8urPpeKxQN+N04DamkU5YBQMJd8M1rOgABiTnlDAqaAYvbkCQJD75wGH92b/13gzp58iRe\nffVVFItFnDlzBhMTE15WsG3b+NM//VM89dRTOHr0KHbt2oWjR48Gjv+7v/s7fPrTn8aBAwfw05/+\nFJ///OcX420sCCTwxJyjmxa+8bNXocgyNMNCXjPRnEk6i4YiXLDLEX7mdaIWgdIApX38MIkBtoWi\nZgCQAEl1KzhWJ6GUe6U2ZlJxp3ajYRikVCNYItjuD4DT5FmJ+uHLkTfBO4RwWKVuWKH8pvITy7YD\nA5osaN46hWFanvQ3pBLgnEMzbAg4dxqTeQ2yLGHPkQ7c9N1HYJjRDlj1QkdHB37xi19gZGQEX/rS\nl/DJT34Sn/3sZwEAb775JrZs2YILLrgAiUQCn/nMZ/Doo48GjmeMYXJyEgAwMTGBDRs2LPh7WCim\n24uMIKbNV+57HoPjBU/cZIlhsuAmCkl+L4eAJEmuVVraFOdbD/pRZBZchAQvZaQKBGPYwy6R8uNc\nUXeKg4VcLqX1VSbJYEoC6ablKGbHvdctLsCUpFe+IKnKgaQtPSysgkcaUzSEoofSCRU25zDcia8p\nnUTWFfbmhpSX2SqE856cY50KnP59NcOCIjEc7hjAjd/8GX78pT/AyqboJFXr/PZv/zZ+4zd+AwcP\nHsQjjzwSeK2npwfnnXee97y1tRVvvPFGYJ+/+Zu/wXXXXYcf/OAHyOfzePbZZxdk3IsBWfDEnPLs\nwXa8+PYZL5xQgMO0o9USS0wv5j1IRES9E4uqIZFxAVHhCJ7A/rIKQ20KbmMSmCQ5biKUfe66GZMc\nBSCTVJGWRSC8Mq+bgcEUDROGr4NVSbABYCJf9J3TqaTZmEpAlpxoJP++maTj2tIMC11DE/jU3z+M\nXx3vrvj+apmzade3a9cu7Ny5E93d3XjyySfxuc99znPx1Bsk8MSckS3o+Nqul6AqEkxXsJKhhUon\nzLAcBRNZYJ2yWBgCE4bDNKJlEA1NZIxBM4PNOfylAxhjkNQUoJR9/UySHMtfCca1q+5EFXbRFHQT\nRU2L3JmEY/2bMonABNSQSriTH/PEHABymoFc0YDNhbe2ITGGhCIjr+lQZaehSVE3MDRZwO1378b3\nH3s99vOoZSoJ/MaNG9HV1eU97+7uxsaNGwP73Hvvvfj0pz8NAPjgBz8ITdMwPDw8vwNeJEjgiTnj\nS/c8C9OyHVeB7LgTvMxP4VjL0ZIDwacNKTX0elySU3hDTGIUYzGx7yGXjfs0nVS9cxTCk4AkIbF8\nne8Mzn7M9cNn3GbapQktfHdRCnFUWXm7xJgjzr6JKFs0XReMQ14zYLh3BTYXsEsh/UKgsVRaGM5j\n7oZh2raAyW3YNoeqKNAME4Zl44EXjuCPvvuIezdQH1QS+KuvvhptbW1ob2+HYRj46U9/iuuvvz6w\nz6ZNm/Dcc88BAI4dOwZN07BmzZoFGfdCQwJPzAl3P3MAe0/2YiKvQ5ElWJxDwA0fdGvJWDYPuBQA\noDGUOJQPJwCxaSSbVbDYITiYz9IOW82l8gKOZV/5GhyA1LDC8cuXygoASKVSKJQWhN3D04ngBFW6\npGlaENwR+VJyFWPCC690JjaBVKJ8x9OYTgQKKGRSCSiyhJymI+NeJ1fUkVBl2FxAVWRwLpBJKtBN\nE4rshJpqmonDZ4bwh1//Dzyx90TF91lLWJYVK/CKouCHP/whPvaxj+GSSy7Bpz/9aVx22WX42te+\nhsceczpj3XnnnfjRj36E97///dixYwfuv//+uk1oZDOsSnfOlbDTNKemdy19AUzTXNBqg0c7h/C5\n7z2Ggm5CkUpuD4e0qgQaXSQUKdh7VXj/820Ll9ENvcyDLe8gyc5Cqx//aq6sALYVdZOUwiZdGtNJ\n2JxHXDncKEJhAjw7BCwv3+6r4JC4iYJuIJnOwGIqUqqMQm7S26ehoQGFouY9V1IZgEm+uvHMHWep\n8Uh5cViSZDAG2DFtAv1LyBJjUGQJhsXRmEogpxvuexNoyiRQ0ExITEIqoUCWGT7w3vX4x1uuQyY5\n86zcpUJfXx++8IUv4Jln6j8stALTEiSy4KegloR9MdBNE//r3mdhWDaEEIHFwsaUGhB3ADGNtcui\nm0mqWNaQdBWMOa4TLrwEpxlNWv59bQtA1D3EQ+fLFXUU9bgFXAGbyV6tGu+9COZlsHqhn6GvS9jl\nA9sMCbbTyq+81luOuOGcR8TdHz+vuhasEMJ1MwF53YAiOxNXUpGRLRhIJ90oHdOGZQvsbevF7/3N\nT/Dg8wej77VGOJtF1nMJEnjirPgfP3wKA+N5z/dc8kk3plTkikYocqUsqKVufSVhAhwxzGumI85C\noKibThsMn+8+vkzB1MLPpNJevnDFGAu2IZ3wRLt8enfhNhWOqGFIus1FSuMLTxBNoSJjlsUDnZwA\nlDtb+UiospcQpvqELJNUvM/MtG00ppNIJVRM5HU0phLOR8fLNwOphIJc0UBDKgHTtmFaNhgYxvMa\n/vHRvfjk1x/CofaByPWXOiTw04MEnpg13/7F6zh8ZgBFw4QqO37gXFH3xF2VpcgaaUpVAMGc+l8s\nGtkSLkPgb75dElFH8J0wxmhnpBLhGHjnuSxLXjONfExRs3zR8BqBA8EJJdGwLLL/aMEZf8ndEa5l\nr4eihNKpJJgQUH3lgkuLot5YhYAiSZ7wl4QccO46DNPyfPe5ou6dq6CbSLiFyJy/B4duWkgqMnJF\nHemEAsu2YdoWJCZBt0y0D47jf971OG75p1+ifaB22gHatg0lrpQEEYAEvg5ZCLfS42+ewEMvHYVt\nc6STiuN6EQKZpOq1lDND7oXmTNINixTuAmzUAgtnftrV3DLcLVrmS/2vRGkx1+Ycls2RSSa8hUo/\nsuwUBxOI3i3oVjQEU00kkUymyiULQoXT/C4rwOnUJIDAXYKAE32zrKHcalCWJbSuKk8ouaKO1tXN\nsG0bNhdoWd7gvdayvAGZpFMSIpVQkFAkJBQZzekkBBewhYCqSCgYJprSCeimE2mjSE4DEcOycahj\nADu+83P86T8/jtP9S1/oyYKfHiTwxIw50T2Mr//sNWSLuht/bUJmDJmUGvA5J1UFDI5bARCYLIQb\ne4RdISLiF4/Whg/CADDvmOl/nQuGGbg7KFHyeTMmea4id3BIJ9VABUjAKTbG1KTnmhKhwvAlwS+J\nUVPGySzVTQuXn98CALhqi5MqLzHmrEEAuGDtcgxO5PCelrLIq4rkFRvrHcni1y5yFnyLhoXz1ywH\nAzBZ0HHhhlW45LzVGM0WcfVFG2DZHKubG9CcTmL9ikZsXNkEm3NkkgpSqlOsTJIYNN3Gr4734rPf\n+QVu/qfH8Ma7SzdJigR+epDAEzNiIl/EF370NMZyRaQTCnKaCYk5IYdhMbZsGwLCE/2GZNBizhWj\niUdhpruw6tjwAgwS4qz58MQBAAUjGGrn3Aj4XEKyDMGDcfyCB614xgDDFo51j6iL5gMXrAcAXH3F\n+3BB61psWFX245/oGcGmNctQuksYyxVx/prlznlc4eXCiTwCnDWD89Y0e8fvbevBts1r0TMyiWPd\nw7jqQmeieKdzyJtw9p7oxbbNa9E7mkXr6mZ0DU9iJFvE+S3LkC3qOH/NMmxa04w1TRm0rmpGQpWR\nTMg41TeGP7v3v3DD1x/CXb98w61nv3QggZ8eJPBTQFE0ZSzLxv/93cfQNZxFUlVQ0E1IEgNjDKbX\nO9RZIGRwF1J9hCNKMslwzHhceYEperECIXe7gCPwwa82ixF94d4xlPqoqjE+XSZJXnGx0mVSPtfO\nquaM8/5dT8zG1cGF2FKtewEGO9HouXIAJ6KIsWCJ4cMdA7jqwg3enUDX0AS2vsdJtEonVbx9ZhBX\nX7jR+yg000bLskYAwN62Xmy7wNn3nc5B/Lct673HF7euQiqhYMPKZnDO0TOSxflrluNY9xDWr2hE\nx+A4kgkZScVZ3N24qgmbW5ajMZ3As4fP4I++9yi++uDzeHp/G8wlUMiMBH56kMAT04Jzjpv+6Zfo\nG8shIcso6haSigLOhRfTndcMNKUTMEynyqEVclekYtL4/QT6lAIAoi6bSEGZuDh6tzKlIsueG8aK\nKSfM3dBLmwtkkomKJX+ZkgSTFax1/d6mZWPNMudx6a7Em4gqhPQLAD2jeaxqbgi8fmZwIuB7B4DD\n7QNe9ysA2H+yF1desM6L2d9/shfva13tXD+VQGM64Vn5x7qGsG3zOgxPFnHgVD8uP78FpsXRNTgB\nCcCJ3hFsXrcClm2jc3gCW9+zFq8d68IV72nB4fZBbFzVjP6xPAAgb5joG8sjnVTAGHB6cAIPvXIM\nX7znafzjz1/DY2+8i1O9owuac1HCsixaZJ0GJPDEtLjtn5/C4fYBmBZH0bDQkFIhK6wswEIgpSrI\nFkt+9lDcuijVThee6DZnkmCMQZacJBzDsiFLkhMGyBia0kk3G3N2AmLZHEIwqIoSOYc/9JALAc20\nIhOQO2wwxiCYhLybhWvZHOevXQkgGgUUdlN5Hnzh3DHsbevBle9dH9jnrZO9eP/mcjkEw7JhWjww\nnne7h72G3lwIDI7nsLo5DQbgdP8YLtvk+PN10waTgDXLMuBC4FTfKC5YuxxFw0LPaA4bVzbhWNcw\nLtywCrbNIcsS3rdxFfa19eLqC9djb1sPLj1vDbjNkVRlDE/mwYXAZEHHeK7ouNw0E291DOLR19/F\nt37+Gv6ff/0v/OOjb+CJfW3oH8tN8VeZGzjn0XBWIgJ9QsSU/L8/fg6vHe+GLDmRGElVRk4znDZ8\nwil25WSwlm/d41L2G1JOswvHOhWYLGheOzvNsNCUTpQzSYVAtmjA5s6CZ0kgZ+ow48JpcZcKjSeZ\nkCP7XdS6Ghe7lrFv5O74GfonChBu1cqDp/uwZlmDb0IrEV/vhgtgWToBzbBwrGvI86U3Z5Io6BZO\n9Y1h/QrH1aIqEt7uHMTFm8r1UYqG5XVwAoCxnIZlDWlMuGWYD5zux9UXOT54RZKRSarIJBUUDQtj\neQ3bLliH3tEsDNvG2uUNeKdzCBduWIVcUcfx7hFsu2Ct4+LZvA4D4zlkNQOn+8awbnkjuoYmkUmp\nzl2ZLTAwnkOuaEAzbUwWdQxNFHCsewiPvXEcf/3vL+DP73sW//zkPrx8tDO+8uccQC6a6UECPw0W\n43WB+XQAACAASURBVBZ0qfA3P3kRT+4/BYlJMC0bSUX2hNy0bKcdX6j1HOBYkiX3hcQYJIkhrxnV\nP8vQS/5SwowxJ7Il3A1pmmskkwUda5Y1eB2SNq9dEdmHc46OgXHP/QGElmuZ5NWdt2yOTS0rMJ7X\ngieJjMd5U1wIrGp0rq0ZFgR31iDWNGcAOO6tpKoiqcpYt7wRjDEcPN2Pq1zRXtaQxLs9I7hw4yrv\nzKf6RrGisVzvfe+JXrx/81rkNQNnBidwfstyKBLDWE5DUpWxqimNoYkCGGNYsyyD7uFJt8wBw6H2\nAVy1ZT0Otvdjy/oVGBjLu5+5c5cihEBzJomcpsPiApppwuI2xnIaUqqMybyOibyBoskxMJbD6yd6\ncN9/HcSX730Gd/z0JTz08jvoHc1O6281HchFMz1I4KfgXF5k/f/+42U8sf8UGBiKhgkG5lWHVN14\n8bwbXWH7mmqnEwoUmXmFw7gQSKvBH2MiplVeuKxBJZ94NCe1OqvcphdDEwUkVQUXrF2BpBK1/iyb\nQzMtnBkcx/taXSEN//2Z5FWpPNEz4gm093LsSN1+qsnyZ9A9MoktG1Z6Ew4AnBkcx2WbWgI++QOn\n+nBx62qsXe5Y94fbB3C1Gy2zpjmDN0/0eM8B4Hj3MMCcqx7rGsbl71kLwCnilkkqWJZJon8sB0WS\ncOmmNTjaNYzz1ixDQ1LFvpN9uPrCDTjWNYx0UkEmqaB9YALv27gKhulkwB7vHsbqpgz6x3KQJQmr\nm1LIaSZGswWYNodmmMgWDUhwMnQnC86dwON72/BXDzyP2+/ejR89/RYOtvf7GrHPHLLgpwcJPBHL\nHbtews9eOQrTchJhkqoM2y3eJUsMKVXxibpTmkCWnLrkRcOMhAuGf8rhBVggGsoYnVtjBKFUecsf\n3hjaZVmmLJjDkwX0jGbRkI6WKSi4ES6aYaFzcAJJpWSx+4cgnDsJWUEmqWLtiqbQWVh4dwDA6uY0\nmlLBSe5w+0BkgfXAqX6s9k0aNhfoG88GtpVcKaVkp71tjuVeeq/dw1lsdMMxD57ux1Vb1qNraBxd\nw5NY0ZhCUzqBvrEcZImhZVkD2npHsbq5ASsb0xjLaThvTTOGxvMYzRZxcesq7DvZh/Urm3CkfQCt\nq5ZhYDyHhlQChmVhcKIAzbRg2gK2zZ1sWlWBZtoYnizA5o6rzbKd6qLZooEXjnTg2//5K/zJXY/j\nb3e9hKNdQ5G/xVSQwE8PEngiwl/8+Dk88sa7UBXFy0a1bA6JMaTc0rR+cZckBotzp6CVa+FboSzW\ncFKRGvlxiohFp0bqucfgtYgqV5gM3x2Ea8zrpo180cSvXdQa2J4tlEsZFw3LeY+ROjHlReVxzcKB\n0324YF3Z3RMODfW7pBjgJTKVKOgGtrriXCKvmV4SFABM5HVIUjCs9GjXUKAd37GuYVy0cRXWrWjE\nZEF3k5uc1zuHJrFlg3NH0jE4jjXNGTSlEzjVPwYA5TBJVcaa5Rm8daofF21cBcacEMsPXbwRLx45\ng7UrGmFaNoYnimhd1QxVlrG6OYOTfSNY2ZTGwEQOSVWGxZ31At1wMmZzRcNJiNNNaKaNXNGAEMB4\nXkdeN3De6nJs/3QhgZ8eJPCEhxACt9+9G0+/1Q7LcoTJ5hwW506tcSG8UsCGZUNVJCRV2W0AHVxM\nC3ddCleRVEMinFSiZQNSybCPNc4p498mkEzIuLh1tSduAJBMRH21hmlh74ke/Lf3bvDq34xkC4F9\nFEkCk2R3YbV0CV/pAsMEJBmSP7zTNxzGynclQjBkCxrWrWgKhIMWDQsnekYCk0RRN3G6f8xNgnKY\nLBjYvHa5N4GUIm3WrWz0nveNZtHs3pkMjOeRTqhoziSxfmUj9rb1eq6c0wNj2LSmGXnNwOBEHrpp\n4/w1y9A3lsNEXscF61bgWPcwljWksG55I0ybY+vmFgxNOFb9JeetxrGuIdhc4GTfGJozKVg2R14z\nsaY5g2Ndw0iqMsYLmhPnb1lgDBidLMKybRi2DYtztCzL4Guf2R5wU00XqkUzPUjgCQDOD+aPvvcY\nfnWiF6ZlQ5EZJos6bC48f3XJamdCIKXKMC0O3XRCG/3uFcZ8PnnhiLkqS2hKJ9GUcXqKJhQn0qMh\nqWJ5QwobVjXivetX4P2b12LbBeuwcVUT1JhSAlPRsqwBhzsGoBkWrrrQCUeMK3eQc5tev3WqD1s2\nrMb6FY2BhCMAUBSniiWDFJso5bw/gZN9E9jqhjkmfOLtlGooLQgLTBZ1nOgZwRXvKVvsYzkNmmlh\noqBhzTLHDTOSK6Kgm9AMCyubHBfOaK6IdzqHAiGWw5MFSGBY7rp5skUDJudevH7X8CRWN2e8JiKO\nyDtJUqosY0VjGisaUhjNFTGSLeLK967D0c4h9I5mcfn5LegZySKvmWAMONQ+gNXNaaxqSuPA6X78\n+vtacaxzCBDA2uWNONo1hMs2rcGx7mGsW9FUbrLOgI2rGmFYNnKaY7mbFofEgL/81G94Ha9mSqWG\nH0QQEngC47ki/q9/eATvnBnCRE6HqjiCrUgSMkkVuuuHh3DEPpN0ShSUSIUs5JQqoymVRGPS6UBk\nmRzZooFsUUe2oCOnGUi7mbB53cR4XsOKxhRO9Y/hUMcADrb3o2ckC4sLbFm/AnDrwcdHzATdOiVr\nMK+b2H+yD5duCoc9uu/ZF/3ybvcwVjZlvDDFEiW3kleqOCZZqsSpgQkoEgu4aBKK4pZVc8Ikhyec\nBKKDp/vxaxdtBGPA4LgTNz6SLSKddCzu0rbBiTyWZVJoTKnodyNQ9p/sw9VuDZre0Sx6R7NY2ZR2\n6/0AnYMTkCTmTQyn+8ecv6Mn8s6irCwzdA5NIO1G8uQ0AwzA1ve0QDMsHO0cwlUXboCqMOw/2Yer\nLtzgljkoYNvmtegcmsCq5gxWNqVwuH0AV16wDrLEUNSdSendnhG8d90KDIznMZbToJsWCroBVZEw\nltVw429cgvPWRKtzThfOOQn8NCCBP8c50TOCT//DI+gcnHDa0CUV5HXTcy8UdCfuPSFLbis4KyK0\nEgNUWcLyhhQySRWKJCNbdITcsjmWN6Yi1zVCYqlIUb95/1gOJ/vGvPrpItTHNI7wZHOsaximbXtp\n+861nNBBP4w5af9b1q/0toXXCZgkVyxNXNBNrFm5PNCgI6HKvt1FIGZ+b1svPnTxpsBic+fQBDav\nWxFI4GkfGMeFG8qhkQCw90QPPnTxeSi4tedP94/hvDXLsCyTRN9YDn2jOTQkE1jm1qI/3DGAjaua\nfSLf6/nzS6GLjh+c4ciZQVy1ZT24ENjX1uvcbQhgX1spm1agfyyL5Q1JDI7n0Tk4iasv3IADp/qR\nK5poXdWMg6cHcNmmNegby2HDykasaEzjaNcQzm9ZjtFsEZvXLcMnr7k45nOcPuSDnx4k8Ocwuw+c\nxC0/eByj2SI0w4RuWSjoJhpTqlNS1hWflCqjaFieoPjDF9MJp1yBaXOM5zUUdBMrfbHZACKLaIrE\nMDwZ9HeHm16sDocfluq+i1KtGRbru5Uj5Q6A0WwRb53qw7YL1qIpncCq0Lmd96hgPK+he2TSyypt\nDVmYjDEwqXJmbf9YFj0T5cbWpRo3kFVMaFHrfzRX9GrHlLBsjks3rQk4hEyb4/Lzgwux427yUol3\nu0fwvtbVXu2bruFJLGtI4b3rVyBbNNDWO4oNK5vRmFKRUGS8drTbq2I5NFnAeF6DzW0IAS9cEnBc\nSBduXIllmSQOnO7HupWNeO/6ldh/sh8bVjV5/v2rLlyPkWwRR84MYtvmtegensRkQYMkSThwug9r\nmhuQVGWc6h/DLdddGVOWYmaQD356kMDXIdOJ3f/Hx17HHT95GdmiCS6EtxDZkFLBheNDTycUt4FE\nUNAKmoGkKkOVJRTdDFQ/y0IWezJUAmDNsoaIIRyuS9OcmXrhbe3yBmzbvB7n+0rq8pjuSCPuZHKo\nfQDphBKw0kuUrGbdtHHkzACuvmhjpDa9u6Pz+QYqSpY/78FJHSzp+MAVWfbuOnpHJj3XSon/n703\nj5EmP+s8PxF53/dd9/Xe92G7zRhbswiJ2fHisUEIWLQ7gpFY/2GtAGmEBGLXGuEF2WvtWjvaZRYs\nxGDLLNgGe9xrs9A2bmzXW+99V9ZdlXdW3vcRsX9EZlRGZjXt7n7B3U19pVK/VR0RGRlZ9fye3/f5\nPt/HZjbwaCerUcxYTHoebGe4OsK1W4x67m1nuLZ0pHe3mo083MlwcYTP70sSZ6YCatF4L1fGa7eo\nHP1GSpFDnpny05dl1jYUczL9QN76ZC+vyi1vxZNcmA2SLFR5dnCo9A+EPexmy1SabS7Ph9jNlsmW\n61xfiiiqonpLaZbayiDLcHM5yveeHRB02fHaLTzYyfLSmWn+q8sLk8/1DeKEg//hcBLg32WQZZle\nr0ev11OGQwy+JElCkiTqzRa//L//Ff/5lcc0Oz10okC11QFB0abXW10kqY9RL6rt8Y0B364TBUJu\nKyajnna3P5BQypTqbc09FKtNzffjknfPMZRNsaY9Z3xROA42s5F722l2sxUuzyuF2VZHG5StJoPa\ncAVKttrsdJVgO7IOji4M8oCS8DotmmMUq4Rh4XVIF00upqLegGCyqpOW9DoRvShza6wpSTeY2rSe\nOOTMmEXC7c2Uav87fH4KFz50klSkqk/2c+oCIQgKxXJm5ijIIwjYrUa12WsnU8JqNqoF3XtbaZZj\nPuaCbrp9ifsjjVT1VgezQU/EYydbrrOfL/Oe5SiPd7Pc205zbSmCLMusbaQQRRGLQc/aRoozU36s\nRj2H1RZnp/2AzOP9HBfngvyLs9PHSGTfOF6Lonn55Zc5deoUS0tLfOpTnzr23C996UucPXuWc+fO\n8fM///Nv+V7ezjgJ8O8yDAO5ICidpsPv+/0+D7bT/MzvfZn72zlanS7dnkS52cagE6g0FG8ZvSjQ\n7R0Nz9aLyiCP60sRDDoRo06vdq8ChD12jQeNAKQHRUKX1cRC2I3VqOfqYpjrSxGuL0cJe+xcW4pw\neT7E6SlFwVIYWxTGVSuyLE/sTEabqe5tZ0gV6qoyZAifQ0sXgZJZ34onOD3lV4uRzWM8U25vpLgw\nFzoqOciyVgbJaxV+QdQZqPaU6U16vQHdYMsyKlccSkc7vT7b2RIrMZ9Gbro2OLbWbI/9LKZq9nt9\niWcHeS7MBqkPOP6HO1lOTfkHO6wuB/kKBoOO8KCI3Or0QD6izp7u57Ga9Kq09FY8ydXFCH6nlf18\nhVqrw/mZgGI01+txeSGCSa/j9kaSsMfO1cUQq+tJJFnm0nyIpwd5upJilvZkP0+u0uDGcpTnB4f8\nq+vLxz6vN4rjiqz9fp+Pf/zjfOMb3+DJkyd84Qtf4MmTJ5pj4vE4v/u7v8urr77K48eP+exnP/tC\n7uftipMA/zp4J1kVDAO6wWDAaDRiMpkwm82YzWY+/zeP+MR/+hbpYp16SzHx6kuKXG0Yt4ZNTMMg\n5jAbeOmUMhFobSNFq9tXstoR+AcBNOiycnk+yHtPxZgLuLCbjZQbbbbSJZ4l8tzZTLO2kWItnqTa\n7HB7I8W97QzPDvLIKFnqtN/FlQVlERjnaI+zFhiHJMvc3UzR7kncWI6hFwWc1sndwlDZ8uwgjyzD\n2ZkA5bFdyHC84MMdhdZRaKhJ7l2A13Q1LNTbZGtddHo9knS0sxgG+dHGqlanx36uPCHpvBVP4nVY\nJ342unD1+pJqLzDE470cixGvSk+lizW6/T6zQRe5cl3l3U/FFLoqXaojyzAfUgaO3NlMYTLq8djM\nVJsdHu/nuLEcxSDquLOZIui2Me13spcrY9DpuL4cpdxoc387w+WFEEthD7fiKRbDHqIeB7fiSX7s\n3AwR73jn7xvHl770JW7dusXGxgarq6s8f/6carXK6uoqS0tLLCwsYDQa+bmf+zm++tWvas79gz/4\nAz7+8Y/j8Sh9B8Fg8LiXeNfgJMC/izCkGUYXpVKtwX/7mS/zf/2/tzmsKHK1riQhoMw7lWSI+RxY\nTQZa3T5npv3odSI3l6PKQImerMkqh1mzUS9yYTZA0GUj5LaRLTe4t52l2ugQTxVVnblRL5Irawuq\n401RbquJviSzn69wdyvNWjxFplTHbTNxZSHMxbkgKxMuj0zo1m1mhY5ptLvciicJeRz4HJMF1dHz\nivUWT/ZzxHzaQrBvZCFrdHoYDXplmtM4hMFzHw3MI+tAttwAua80RY3gVjyJf8wbvtuT2EoXWRkx\nFLOaDHzv2b6G2nHZTHzveUKlcAAcViP3B3LFIZKFKhajXlXTHFYVff1wgHe12WErU+LKQpidTInD\napNUoaby8Pe3M+h0IothD7Ks3LNeL+KymtjPV8iW61xbilCoNlmLJzkz7SfgsiocPHBpPsRmqshB\nvsKNpSgfujA3+fzeBLrdLtlsls3NTf7oj/6I3/md3+GVV14hkUgwPT2tHjc1NUUikdCcu76+zvr6\nOu9///t573vfy8svv/xC7untipMA/y7BMHsfDe5/9t3H/Jv/8Gc83MnS6PQGAV3G77DQlSRiPgc3\nliPs5irU28rovZDbhs1kYHU9Qa3V0fidG3QCFpOeywshdKLC95YabTKlunqMdcwWIDLh1QLVpjZb\nPq7Z5bDSoFRvc3crzYOdLEa9yOWFEKenjoJfpaG9zrjyJnFYpdnpcGk+rFH2jJ/nsppZXT/g7HRA\nLUg6zNoi72G1AQLI/TEqZ9Tw/YjL0RzS7PRxjSl+HBYjP1hPaAqvIY+NWqvLXq6icvKKNl8YKFWU\ngB4eGI+txZNcW4wgoFBlfUnm7lZaPS7mc7CVKWG3GNXmJ6/DwkaqoCpwuj2JSqOtft/q9ri/neH9\nZ6apNNrkKw12c2WuLUXw2s384HkCo17HqZiXdrfP031lPKDLauLpfp5Gu8u1xTAPtjPc385wcS6I\n22ZibSPJv7w0z4vAL/zCL/ChD32Ij3zkI/zH//gf+cIXvsC//tf/+oc6t9frEY/HeeWVV/jCF77A\nr/zKr1AqlV7Ifb0dcRLgXwfvBIpGlmX6A125IAhkSlX+u89+hd/9f75LqlhTOgcROBXzoteJ2MwG\nbq5EyZaHgVnm0lyQqNdOslDV8OH7+TKLITfXl6OYDHrub6W5t5VWR88Vxoqj434yx2ngRxcEmJQ2\nWox61ed8CL1Ox72tDM8ODol47NxYjtIay4qPk00OC4ftXl9VpuQr2tf3DXj4J/s5RFFgJeqdMEuD\nwe+CqBuj3UeHmgwlnBMnspsrazJu1Shs/ai7dGj92+r02EyXOD8bxDlST1gbcOOjqqXbmykuzoc0\n730tnuTGSky1a04cVun2JOZDbhxWE72+xL0R/3iP3TIwMAupVFiz0+PCbBC72UCvL3F7I8X52SBm\ng45cpUE8WeTGcpSliJf7OxlEEc7PBKi3ujQ6PZaiXvxORTnT6vT56fecnliA3wqOK7LGYjH29/fV\n7w8ODojFtMqlqakpPvzhD2MwGJifn2dlZYV4PP7C7uvthpMA/y6ANOz0BP63v/w+/80nv8S9rQxI\nAnMhD+dnAixEPDweTPKRZVhdT9LtSZj0Ok7FfNzfyZAp1dgaGFCZDDrecyqK12FlM1NiLZ7EYtIG\nXlGAxGFFcy+VsQEY42oYr8OsmUsKkz41QZeWugCteVmqWOPJXo5Svc2N5ZhaPLSYJv1smgNVTb3V\n5c5mmnOzQTVLH8I+EhwL1Sab6eKEQRkAgjAoXvMPNFzJMDb4WxgcuxZPcXMQzJ0jr3krnuTaUhTr\nyFCSTq/P0/38ROZ/ZzOFzWJUFTpwJP+0jnDwt9YT2K0mtbO2UGuSKtYwG0aPUZqXhuMB721niPgc\nhNw2BAEe7mZxWEzMBRVevtHu4nNamQu6kGSZW/EkbpuFsNtOsdbi0V6Wa4thHGYjj3ZzNNs9ri9F\nqLe7LETcr/G83hyO08HfuHGDeDzO9vY2nU6HL37xi3z4wx/WHPPTP/3TvPLKKwDk83nW19dZWHjr\nss23K04C/DscQ2rmm7fjfOx3v8RXvv+cgMvKlYUwMgoVkKs22M9XuL4UwWLUs5evEHLbuLYY4dZG\nkueJQwAWwl7cNjM3l6MY9Tra3b4a8AHCY3RL1OekO1DbuGyKYsZlMXJ9OcrNlRg3V6I4LEZuLMcG\n38e4OBfm2lKEczMBYj4nelGYpExsk1n/kNMfwu+y0er2uBVPkC3VuboY0fjADDEu2aw3u+TKTW6u\nTKlKnfHu174kU6y3uTgX1mr8NTy7xGubn8kjw0G0p60OsvBhQ9IQtzdSmI06TeBW7qOlyfwBcqUG\nCxEP9pFFKFmoEnTZNSZru9kSp6cCauBvdXoKHz5yvbtbafQ6UT1vJ1Oi2empO9dUsUayUOXaUoRs\nuU7isEqiUFXvaTdXotJsq7uj25spWt2eks23u6xtpFiOevnx83PHPKs3j+MCvF6v53Of+xw/+ZM/\nyZkzZ/jZn/1Zzp07x2//9m/zl3/5lwD85E/+JD6fj7Nnz/KhD32I3//938fn8x33Eu8KCG9wWtE/\nu9FG/X6fTqfztp3/+GQnzR+/8pCNxCE2i4lkoUbEY2M7U8Zi0iPJEk6LmY10QXEKDLnxO63c3U6z\nHPby5EDx4l4Ie5j1u/j2o13VOOzmcpTVeFJ9rZsrUVbXE0Q9dsJeB26b8nqpQpVyo43HZp6wAFiJ\neVkfLCAA15Yi3N5Iqd+LgrKwOCyKb02x1sTrsLD6XFsc8zutmu7Xi/MhHmxnNMdcXggjCgLpYpVk\nQfE7VwZrHx1zcS7Egx3lvKWIl3a3R9hj51Zc+3pzIQ87mRJhjx2b2cBetqRaJx9B62Sp/EgY+SsR\nQBQQBQFpzJrhx8/P8oPnB6o7J8DpKR99SSZdrKm2BjMBJ3u5iua5+Z0W8pUm034nrU6PXKWBbaD3\n9zut2Mx69nNVdDqBbl9i2u+k0+tTqDXp95XC+rXFCPe3leDe7vVx28wEXVaeJwpYjXqV0ro1+Pxt\nJgMrMR/PE3m1o/nKQpi9bJnDAU13YTZIpdFmN6fs6q4uhtlIFTDp9bz6+//9C6U7P/OZz7C4uMgv\n/uIvvrBrvsPwQz3Mt2fUOsHr4k48wX/44rf59Fe+z06mhMVkpNHukivVkGRIFau0uz38Tiu3N1PU\nmh1eOhPjsNpkNa7QMzazgXPTAc5M+dlKFclVGhpXyGGQ8TrMXFsMYzHo8TksJIs17mymqLW6PDvI\nq7RNaMysCyAzNoR5fEqTw2piI1Xg7laaW/EkG6kiAgIX5kNcX4kRdCkNQ+PWBqZj2tTLjTZ3NhUF\nzvUBPzyev5hGKIqNVIF0qYbdbJzQ3ecG9Yl0scZetsx7T08zAU3AEsb+CzD0k5/8W0wcVon6nJri\n72G1STxZwGUzE/HYEQRIFZTnd3sjxeWFMG6biXxFCaj7+Qr9gfZ82MyVrzTIlhrcWImqC9J+vkKr\n0+PqQvioaWozxVzIzekpP7KsWBJspIpcX4owHXDSlxQK5syUH6/dzFzIxd2tNE6rmeWoIq3s9RUr\n6WE37cPdLF6HhauLSsH2zmYaAYGffu+pF17LOvGi+eFwEuDfYbi3meJ//sIrfO5rt1hPFqi1elSa\nbZLFKo12h6Woj3vbaS4vhMiW69zbynBpPkTIbafXlwfBWObyfIh2t8fjvRxP9/OAMgxiiGm/E5fN\nyEJYMYi6vZliPXnI4QjlMT5Q2T6mhnFaTRPF0vFzjuPb6+0uD3eyrMWTZCtNzs+FuLkS0zYtHRMv\nhkG5LylGWXqdjpsrMcyjdYCx87o9iY1UkcWIlyn/0SDs0Waubl9SdiYjtY7jIR5rRibL0gTNkikr\n9Q69XmQ26MZi1Kty0oN8hWanx7XFqGbXcG8rzVLEp2nkKlSb9CWZSyPySKUDWeLmiEKn3GjTk1Bs\nBQbYSBUxGZQajPrcNlKE3HaV/nk66BUYLkTpYo3NwUJgNIiUG20e7GS4NBfEYTEiCgJ3NtOcnfYT\ndNkoN9osRjzHWki8FZy4Sf5wOAnw7xAUq03+1698j//j66tspIp0+n0ypTp9WcJhUTzWH+/lsZsN\niKLArXiKC3NBpvxO7m9nSBaqlGotri2FiXkdbKQOebibVa8/E3DiNBu5uRJTOxy//zyhcvA2s4HU\nWDY+rm8fj7lhz2TwHqdwjlO+jHe19iSJ1XiCQr3JudkglxfCNNtaTt5hMVIbK/BajHpW1xPYzEbV\nTbLdmexYzZZrbKQKZEsNbq5MHbvoWEwGZRar/A8NYT9eRSNLEmvxJOdng9jMiqSw2lDuNVuqky3V\nNG6XoJiJtXs9jSfN8BWMBh2zwaOipdVs4P52mpunjgK6Qa9jdT3JlcWIOuFKFATWNlJcG/lZty8T\nTxYmFgO72aRYNaP0ChRqLW4sR9HrFNprbSOFQadXF8X7O1n0OnGwQ5N5sp+n3GhxfSnMjaUw/X6f\nbrf7ml+dTucftNgYXyBOMvgfDicB/h2Ae5spfvs//y2Pd7KUG1063T69vsRhpYHZoMgHO90+52eD\nfPvxHg6LkYtzQRqtHvFkAYNO5D0rUUr1Frc3UiQKVRZCSvOK3Wzg+lKU+ZCbZLHG6nqC/XxF9SoZ\nYmqsEchk0JEqVtXvDTqRbq9P0GUl7LETctvwOiw4LEZNyBs9B5joWBUFyJS0C8lQ+SHLygi5e9tp\nepLMzVMx9T4DxwRlUZ3U1OT2hjJab7y46XNY1ManTq/P6nqCoNtO1DtJNwEIo2Zjr2EdPDhw4v88\n2s3isVtYmdIW9ZqdHvVWTxNkASxGA3c2U5qf60SBzGBRGLpeDhVGq+sJLi2EsBj16gDzu5tpoj4X\nEY9d3U3d3kwR9TmJeu3kB7Tc6nqC87NBXDYTyUKVdKnGdqak+NYDu7kyt+JJYj4nc0E3Bp3I7Y0k\nmVJNPabXVxbiS/Mh9bnmKk3mowGMRqP6ZTAYMBgM6PV6dDqd+iWoKiVZFQ+MBvtOp6MuCI8eHf5o\n/wAAIABJREFUPeLg4ODYz+gERzjx23yb45u3N/jT7zwEGZrdPo1OF8Mgi0JQimgrMS8PdrK8//QU\nVxfD3NlMU6y1EBG4sRxlK12k15eOdO+DLfeVxTCPd3OsbSgNM6MYn6HqtBpZCHvw2MzodCImg0i6\nUKfSaCvZZrfPbq6sydBngy6Vx3dYjMwGXciykg0LKLK78Ww47LGTLGgD/HHYTBfo9iR0osCVxQh2\ns0Gj+IFJ+eVWuojZoOfKojKEOl9p4ndZNbQTKIGqUFUy1mGRUdt9K4xo3l8jm5cl0OmV40ZsCg7y\nFUIeO5fmQ9wfKRIb9CKr6wkuL4R5tp+j1e2r9ZBh8N3JlFTXzWanp2TtKzGy5aPndX87w7TfpXHC\n3MmUcFiMmgHhO5kSXruZ2aCdvVwZUBaguaAbi0mhi/qSEvivLkY4yFeoNTvsZssYdCIvnZnm7x7v\nIsnK/S1FvITcNl59us/97Qw2s4EbyxHmwwpf/1ZFClozOJlkMslP/dRPvaVr/nPASQb/NsbXVp/z\nR//ffbpdmXy1Sb3VQRSULfROpszpKS+34kl2smVuLkdZTxVY20hhMeq4sRRFpxO5FU9yWG3Sl2Vc\nVhM3l6NEvQ52siXubqbVIJgey5qRZa4vRbm2GGEm4EKSlAB5ezPF6nqCRlvZHWRKykxPt3VSQTPa\nBasEeoHHeznW4kluxZM83suRrzTwO61cmg9xYyWmoR7U64w1NAVdVlWeqXRvpmj3FJuFc7MB9bhx\n/t/nsNDq9ri7maLe6nJzJXYsRdSX5IEEM8mZ6QAht33C7XLwkI752eiFesdm8jpB4P52Rs18AfX9\n3NtKE/LYiXodmvt/tJvFYTXRl7VUxWo8gctm0dgrF2tN9vMVjW2Bw2JSJ0kNF2+f06p0vi5F1X4F\nh9XEs4M8N1diqiOlIEC93VFppG5fotnuMRfyqJ/XRqpAr6/w/gadSL2l2EW855R2V/JmIYqi+nVw\ncIDL5WJpaemFXPvdjJMA/zbFdx7t8Cd/+4BCtUEfiUqzjSAowc5rVwJVs9Pj2lKEXl+i1urQ6vS4\nuRxFEESKtZYylk6WWY540AsCjXaX1fUktVaHnWxZfS33oLvx+lKUywshvHYz93YyrG0kub2ZYi9X\nnshyx02xwr5JSmOcoz+uESldrJGvNLi/neHWeoJeX8ZlM3FlMcKVhTA2s0E1zBriOH+ZviTzdD/P\n413FZOv8TIDsWM3AP0I7NTs9VtcTmA16zswENMeNau6f7ueoNdtqM9UQU2NDTF7LVRJkBFEkOmKy\nNSw0r64nOD0dUOSl9aPnu5stU663Jnz2S7Um25kSV0f4+pjXwf3tDGaDQVW3xHxOGu2ualtg0Ilq\n5+zqeoKFsIeIx672G6xtJAm4bMyHlGKvPMjKpwIuZoMuBEGg3uqq3ax+p4V2T+mRSOQralAv1lus\nricIuGycGzzT60va4vKLwJe//GU+9rGPvSO6zH/UOAnwr4MfxS/RbrbE//Lnr9KXZOwWI51un0yx\nhttmJl2sK1NzFsI8PzhkdT2J2aAn6LINONAk3X6frUyRa4uRgTugUhQbZolDx8BTUR83l6OcnQmQ\nKdVZ20hybyuDx2ZWjwWFX9/PlzX3OCwSDuEYU9CYDbqJXYE8ZmMQcFknuloByvU2dzdT3N1K0+9L\n+F02ri1G1db747xr6iMF1s1UgcRhlZDHzoW5I7dAu3kyW6+3ujzdy3F5Iaw2++TLWisDm8XIWjzJ\nudkgwcEiMdF2/1ozY2WlyFqqt9SB2aM7nacDe4TxzlmTUafy78OMOzbQvd8ZeMUb9SL+Qe0hW66z\nnS5zYzmmWRjW4klifqdG4RRPFqg025rP7CBf4SBfUUf5gULjJA+rWAeUGig7iWa7pzZP9SRJ6Y3w\nOdQmrWShyuO9HB84Pzu5EL4F3L17lz/5kz/h85//PJFIhAcPHpzw8K+DkwD/NkOn1+dTf/ZdivUW\ngiCwn68gigJ2s5HkYZVTUz6MBh19ScJqMnJ9KUKv3+cH6wmanR5Bl42XTk8hALc3kmxnSqrHiSjA\nuRk/XrsFj93M8+Qhq/HkxLg8z5gl8HTApZ3qJB9ZFOhFAbNBKZAZ9aIaCMbdGQGqrXFzsMnCaGNM\nHeNz2ni4k+X2ZopuX+byQgS75bV160MEXDa20kUe7mRZing5NxtAPCb+VgbGZ/e20tRbXd5zKqYZ\nyK3cpxLMH+9mqbe7alb82hjveFXqDXc3U1xbilAao3uMeh1P9/OKCmZw6pAvX40nWIh4CLntmg7f\ntY0kEZ9DQzH1JIlb8SR2iwn3iE3yTqZEvdXRSDXrrS47uTKXF466dbt9iQc7GZajPmK+ox3H3z/Z\nZyHiUSdnWc0GvvfsgNNTfvU4k17P470cVxcj6u+b02J6oQmSIAhsbW3R6/X4zne+w2c+8xk++clP\nvrDrvxtxUmR9m+H//uYdcuUGxWqT5YgXSZJ5spfj2lKEe9sZNtJFZgJOJEkmV6mTLtW4NBek25Mw\n6EUe7mapNBya9n+DTuT6UoR4ssDjvTyNUE+TRY5bBciyMq4v4nXgsprw2M0qLdRodzHoRA7yFYTB\nFKie1KdUb6lDQgx6Eb/TSrvXw242YjEZMOhEREHgVMxPqlil0mhrWu2HGKd1fA6Luph0en3ubaW5\nOBfC57SyEPawnSlSa7YnKCSH9Sg73UgVAPjxC7Msx3zERzprRxuxmp0e2VKdKb8Tk0GvduCOZrX1\nVpe1eJIPXpgj6LaRHTVOGxmwjagHqacG+CFShRoOm4mA287m4L58LhupkqJgOj3l57DSmMi47WYj\nzjHKZjdbxu+0cX05ytpIx/FBvoIgCpyfDfJoIIXdz1fIVxpcnAuxnytTbbY5yJXZ7kv4nVZmg27S\nxSr5SpNCtYnJoOPGcpRSrUk8VWQzVUQvitxcidHrS+TKDZ4d5DHoRU0t4c5mCrtZsae4vvJi6ZnL\nly/zt3/7t/zGb/wGv/qrv/pCr/1uhe53fud33sjxb+jgdwOOs+H9x8Lzgzy/8YffIuC2IYqiKmfM\nVRsIyDgtJsJeO2aDMqPTqNdxZSGMXhQHZmHK0IZmu0vY42Al6kUUBZ4e5EkcVml3+9jNBnIjnLZu\n0Eq/EPYwF3Qp8rZOj1SxRrHWIl2s4XNYWdtIki3XKdZaRL0ODvJauWOr21NpHUmSifkcPN3Pk680\nSBdr1FodNlNFDqsN2t0+PoeF6YCLoMuG22am3uygE4WJwuhs0E3iUPtaBr2OdLFG4rBKq9Pj+nIU\np9WkWRym/a6J8wRRYCtd5OJ8CKNeh4igZvBDzIXcPD9QGrquLUVotXv4nFaS4/dg0JEv17m8ECZZ\n0P4/QAnsggg6nSbIz4XcbKSKVBttrq9ESRaqzAXdJAbXyFca6ESB2aBb03jW6fWxmY3MBFyUa021\nAUoUBJ4fHHJxLkS70x/UZrpUmx2y5To3lqP0+n31M8+U6piNeq4uRtXrN9rdwbExDisNOj2JviST\nLFQ5NxtEQClYS7JM4rDKYsSLzWRQJJaS8rPZoBuXzUy2XKfT65MsVPkff/p9hNzHy03fDGRZ5jd/\n8zf55Cc/ic02ufv7Z4b/6Yc56ISi+SHwBv163vRr/J8v31asZbMlZgMuKvW2ktXF/PQleJY45NFu\nDrvFpBqCPdrN8mBXkdv5HBZ+7OwMLpuZnWyJ1XgSt82soVfmQm51ZN7VxQiX5kNkSjUe7mRYXU+w\nnsjzLJHX3Fuprs2Ox4ulIbdN0/kJk0O0w26tUdlhtUm6WGd1PcHjPUUWeH5W6Vg9Pe1Xeedx+2EB\nSI/IKCVZGUjyZD/PTNCt0ifjEkk4ytYf7GQ4KFS4sBDUmHOBdgzg7Y0UXUnCZjRM9C9lijWanR5r\n8SQRr4OzY4VaQOHEpB4rU341I7cMHCOH3PVyzKfq9YeoNjukCjVN3QGU4Hx7I4XLZuFUzIdRL6qL\ny4OdDIIo8N5TMU1d49aAgx8WYEFpomp2u1xZCOOyHVE8zU4Ps9GgGeRdb3VJHFbVQiooi9DTg7yG\njllPHPJoN8vFuRARjx2rycCZ6WOeyVvA9vY2DofjXT+F6UXiJMC/TfDynU3ubKVYinjp92WVigh5\n7EiyxGa6yLmZANeWwtyKJ1kdjL47PeXn7FSA8zMBitUWnV6P3RGFjHkwbu7yQohrSxGcVhOpQo3b\nGynubKYm9O5zgwaoIXSi4mU+ivFu0OEwiVFkxzzfRymTo2O0gbo/CHrP9vOYDHouL4SxmvSaAmTE\na5+oGRgGQXkvV2ZtI4XdasJpNWleMzhW0JVlaLR7VFsdbp6Kqa/RGzMUqzU7PEvmWYx4WYwoQdJl\nM2lorVShigAKVaF5nMo364k8ZpOe83NB1Zp3iPXEIZVmRx2mrV6zWOP2Zgq7xcSZqQAOi1H140kV\na6wnC7z31DT6EX15sdak1e1zbSmieWYGnY6NVEETpEVB4O6W4hUzlFM22l3ylYZiPTAfxuswk680\n1MXI77JxbjbA7iDzv7OZotvr89KZKQpV5d4e7GTIVxv81zdXJprY3iq+/OUv8zM/8zMv9Jrvdpxw\n8G8D9PoSf/itu2ynSzTdXS7OB1ldT7IaT+C2Kt7fMa+Dx3s5tai6FFGsfSVJ4s5mWr3W4cCIai7o\nJui20u72qbe6ij88ioPi+GuPwjkWiOeCLsqNNhajAZNBj14nYjToOD8bQJKVwOyxmZkNumi0u9Sa\nHQSBkWEiCsYJLrvZMMGbG0ay50a7y72tNC6rSe3SHWbX441Q4y6PxVqL1fUkggA3VmLsZor4XTay\nY3JLnSjQ7irdqy6bmRsrQYpV7TEGnUimVFNFMteXo3R7fU2TEoDVbGQ1nmAu5EaSZPay2kUxX2mQ\nrzT4wLlZHBaj2gAGqA1MZ2eC5Mt1epLSaAVK1p4p1fnA+VlWR9wnZVnx7Il4Heh1otrkZdTrlGDs\ntDIf8vBoN0u3L6nSx5jPgd1sojSYQVuqt7i7leb8bID6iDz0/nYav8tK0G1TG6FShSpGvchKzEey\nUCNXrlNrdai3ekz5XTgsRh7v5ej2JALHFNDfCmRZ5q/+6q/4+te//kKv+27HSYB/G+DPX31Ctdnm\n0nyIeOKQW/EkAZeV01M+dKLAD9aVAprXbsFmMjDjd7KRKqAXBdVVURTg7HQQi0lPtdlhJ1ui0myp\ngQIUb5btjLbbs1Brshz14rCY0OtErCYDp6f8VBptirUmbruFzXQJUIKxzWyg3tTSL+aFsGbXcGbK\nR6newmUzYzUZ0OtEzAYds0EXiXyFniQT8zlVH/ohxmesuq1mSg3l/ofFwpsrMa4shOn2JR7vZpGB\n8pjqJeiyqQvMrXgSvShyfi5Eqd7S8OWj3anleotb8QQLYS+XF8Lc21IWzajPoe5gZFlRr9xciSmF\nzY2kWlgdDvLeyZQQBYGIz0m6VJtohVrbSGEy6Lk07+X+dpqgy0q2rDzbJ3s5LEY971mJ8cqjXc15\nzXYXj92C22bm6YFCoYmCyN5gUPfNlRh3N1PqexouKFcXI5QbR88ncVhFFKpcX45hNxuoDai1dLGm\nNn+txRNIMvgdVtbiSRbCHnSiQDxZUNxJN1KYDIqR270t5d/DReDCXJBircXlxTAvEltbW7hcLgKB\nF0v7vNtxEuB/xOj2+nz+b+7zdD+PUS/y0ulpEodV4qkC25kSi2E3l+ZCyMhkSnW+/fjoD//0lCL9\nM+h0xFMFjAad2loPMBdwU6geZfenYj4QlCyv0e7R7nSJD5QcQ4wGR2BCjjjtd/FsX8vRj0sUbRYj\nTw/yGnMy18BZUikgupjyO3FYTeTLDbXYVxjLnkMeuxrgh+hLEncHwVfJUt0aqgcUff3oe+hJEtVm\nh3SxzpXFCIeVBnu58sS4Qa/DombCyzEfIkq9YZyiAiVQL4S9iCgqnVGjM0mWSRUqTPtdZCpNOp3O\n4L5s5MoNGu0uxVqTS/NhjHpRDfAw8KXp9Dg15aPW7KoKIhmFmkkVa1xfivL0IKc2ZA29ZGI+B+OO\nAI92M9jMRq4uRrizqfjJx3xOVtcTeOwWriz6ubuZIup18mBQh5kNujAb9Wp37PCZXFuKqHbPw51P\n0GVTx/wBPNzJohdFTRftW0G/3+cDH/gAmUwGh8PBRz7yEdxuN7/yK7/CSy+99EJe492MkwD/I8Zf\nra5Tb3W4uRzlyX6OrUyJvVyZuaCLab+Th7u5QQYNN5YjFGsNzkwHEBHQD6wIhhgtBht0As6BNUGr\n22MvV8FoUNwVh7i8cFRMA2WHME6tjLfoj3dXmg2641Uko9d1mNWdRF+S2c2WCbrsqrTPbjayEPFg\nNugQRVHleI/j7SsjDVb5SgNBEMiV65ydCWDQ6Xi4k9bIGoeot7tIsszdAZ11eSFCZSzzD7ns6n3G\nk8rC96GLc0S9Ds17HA68OAp8UXIV7SLjdVjYzyvB+cJciGyprgb4Ie5vZ3jvqSmN5w0oheXnB4eq\nBPHORlLD+a9tJPHazdhM2j/fSqNN4lCZvhRPFqg02swE3GykChRrKc5MB6g02vhdVvbzFYq1JsVa\nkzPTAY3VwXA39qELc/gcFpVKu72R4vSUX90tdPsS+UqDSqPDctSHKMDzxCExvxPvMd3GbwY6nY7v\nfve7fPCDH+RLX/oSOp2OYrFIJBJ5/ZNPcBLgf5SQZZkvfucRu9kyu9kyZ6cVtYVOFNjOlAi4bJTq\nLYx6kTPTfnSiiE4Qub91pJoZQico17u5EqPSaLGRKvBkP0d2JKCUx7Jhw5jd6pTfqclq9aKgbr2H\n6Pe1pMN0wKUGwyHGdfURj0NDFYHWDqDW6lCutXgweC2vw8J8yIPDbBo4Ix5RKamxxSTktpEr13my\np0ym8jutOK0mvHaL5r2MF30PK8oYw0vzYcr1FjvZEnbL5IJSqrXIlBQJYTxxSKnRIj+m1Y+nCvT7\nEjeWY9zZTNKXZMIj7/nhThaTQcf52SDP9gV6I8qgbq/P7U2luC7JElvpkko5dXtKcXPa75wYAi4M\nrH/PzwZVKeqUz8nTg/xAaWOasCB+up/DoBM5PeXDZNCplNjT/RyX5hUF07CZCxTVVqPdVQO6IEA8\neTh4f3bCHjulWoudbFn9Hbg0H55IHN4qNjc38Xq9zM/PAzAzM/NCr/9uxkmA/xHi2492ub2R5PJC\nGFmWEQVBHZGnF0FA5spCiGcHeZKFKrnSUWBZCLvp9yUWwx41O703UviLeuwkRygSg04Yc1uUqbfa\nzAZdOCwmTHodHruZmysxxaZVkrGaDRSrLWXs3YBNVrphA8pioxPw2s147BZkWabbl6g327Q6PQQE\n9ZzjrAXGA7XXYVGpkEJVabY5OxOgJ0lcmFMKrLlynb2cdsi3ZWyear7S4OCwQqXRHvDPbdKF6sRE\nKK9DyWKHxdJL82GMhkl/8WK9pU43spoMvOfUFPe30ppjIh4HzxN5bsWTTPmduG0mzXBrUCiNUr1F\nyGPHY7eoNYXiIJhvpApKEXcpwvaI/h2UIvKj3SxXFyNsp4sU6y0iXgeH1SaPdrMqHz5KppXrbW5v\npPjg+TnmQ262MyX1WslCFZfVTNTnUGsN+/kKhWoTj93C6Wk/64lD9TNaXU8QcttYifn4u8d7gMLZ\np4s1fuzsDCaDXq2n3N/O8JGXzkw8x7eCE/XMm8dJgH8d/GM2OH1tdR2r2aioRWwmOt0eF2aDGHQC\njAR7gPMzQZqtLktRLzpRxGTQ8/dP99X5l+Ne4lGfk2SxhtmgI+Z3EvE46PR6tLs9yvU2lUaL54lD\njUb+zLRfne4EilHUk/2c+r15kPWNyiivLw2KjQNEvHZShRp6UTG4GnrCX1uMUKg12c+VcVjNE9SP\nQT8ZXNPFGt2exMMdJRiemwmoappn+zkand6xluzpQo2eJKmc882VGJ1un/vbabXoaRoL5ve3M5yZ\nDnBpXinG7mbLCBxZMsBARlhuYLeYODfr4s5GShlsbh33dIEPXphj2u9UaRpQ1D2JwyqJwyoX50Lk\nKnXN9WVZ8XGRJJlrixFuD+4/6LKRHoxJtFuM3FiOaszehnz4+8/OaLpXAQ4OK+xmy1xfjiqSzEab\n/VyFWktphDo95UevE3i0mxvcY5PbG01urkSpNjpqQTdTqjMTcLEUUX7/ng96JZqdHs8Th1yYG8xj\nzZZfGP+uPBOZr33ta7z88ssv7Jr/nHAS4H9E2EgV+LNXn6AbtJQHXVZW1xM8HDQtXVkIgwzTAScR\njx1JUv6YhnLHoWHYEKVaE5fNxLTPidVswGzQq8F2M1XE57Bo+PczU34KI3YFAooCZBTjDV6zAfeE\n8mW8UBl02UgNAmyyUCVZqFJrudRr60WRlSkf/b6EJMmkilVShdqY37qiNR+f7GQ1G7k1eA8mg9LF\nazSIGld2j90ysXj0JYl722lCbhszAZciHTymESpdrKoWDsquSuL+dlZzjNtuZjNdJF9pMBNw4baZ\nj3UNThxWSBaqXF+OEk8eUq63Nd2wD3YyTPudXJoP83Ano9JQAZeN+9sZbtdSLEeVmbLmkV1Krdnh\nVjzJvzg7w+lpv6bgnchX2MmWuDAX5LDSJFWosp8vKxOY4kkcFiM/dmaav3+2r57z7CDPxfkQ15ai\n7GSKI9JVpQP6wlyI0sB+uCfJqu3D+dkg1WZHrSkMF+GbKzFOTfknH8ibRDwex+fz4fP5Xv/gE0zg\npNHpR4Svra5zfTmKzWzk0W5GUWK0OuhFgbPTfgw6kbDbxn6uwmaqyNpGUs22Ay4Le7kyixEPN5aj\n3FyOUmm2KdfbPNrLsbqe5MFOVh3YDEyMs3NYtc6Ks0H3hLNjbozWcNq05+hEgf0xjt40Rk3oRIHE\nSBbbkySkvjLC7s5milShht9pxWY2cG0pqo7Li3i1na+gdaNsd/vc3UpzfzuDx2FRRw1GjhkTOFR+\nZEp1bsWT6HQiDqtRU8NwWk0af557W2mQRS4vhNURhqPXAqWx6sFORjPXdIiDfEWdDdvvy/zY2ZmJ\nJievQ1nULSaDypePPr94ssBGqoDdbMDrMGvO3c6WeLaf59J8mLDHjl4UOBg854c7WbKlOu8/N6Mx\nRas2O9TaXaI+p8Zl02zQc3sjqcokLUa9amn8cCejFm5HdfKPdrPkyjV8Totm+lVfkibqBW8FJ/TM\nW8NJBv8jQL3V4T99847a7LIc9eIwm/DYzMSTBUx6PavrR7THfNhDrdVhIezBYTFhM+r53vMEm6ki\nmxS5NB8iXTwqIs6N+ZjoRC3/bjXqkWWZhbAHs0GP0aDDa7fgd1kRUGipYVYc9tjVTN5hNnF5PkSn\nL9HqKJaxzw+0Gf34cI4pv1NVxQwxbj9Qb3X43rMDzTkxrxNREFg/yKtFyfEisaJKqVNvdVmtKpn9\nj5+f5ZrJwKPdrFpEnLBRaHX43lPl9a4tRciV61hNxonisMmoNA0JgrKjylcaExYMoAS7cqPNxbkQ\n5XqLdq9PeqT+UWt1qDbbeB0Woj4ndwfUy5AmGtYc5kPuY6mqZweHNNvKSL/72wpnPqR27m+nMehF\nXjozw+3NJL2Wsoj0JIlGq4tOFDXFX6Nep1oDn57y0+1L6ntqdXsD+aQZm9mIXlQKwpIss544pNOT\nNMXmmaCbu5tpdKLAtaUIicOqOkbwrWJ3d5dGo8FXv/pVvvGNb7zh819++WU+8YlP0O/3+eVf/mX+\n/b//9y/kvt5pOAnwPwJ89QfPcdvMnJn2U260cVmMmoDelyQMOpHlqBe7xQTI9Puyyo9fmA3S6h5l\n2+PWtRGPHZNBh92iKHLMRj3ZkjJer1Bt0uj0eLKXU9USgEYnDXB22s+TMb17zOvQGHhdW4rQ7UvY\nLUa8dgsumzL8+8ZKlGa7x2G1gc9hmQjw47TOlN+pUeIc5CuE3Xae7OWwmgycj/lAljk4PF5BM4rh\nYAqb2cCFuRC5cn1ixmvMd8SN395Q3vMHL8whI2sWrCGNI8sobf2Ccu6U36lmy6MS0Ac7GQQBPnBu\nFgE0fQAmg17tSl0IezAZjrLkIbYzJZqdHhfmgpRqLfbzFSxGvSrRHHaonp32851BsVO5T4l6u4te\nJ3JjOcqdzRR9SUYnipQbbW7FE0S9DoIuG9URc7VnA3795kpMKwWV4e+f7hMeTJa6s5liOuDmyV6O\nW/EkFqOemytTiIKy8PYlmdsbKfSi8vovAq+++ip/8Rd/QTKZ5KMf/Sjtdpu5uTn+/M///HXP7ff7\nfPzjH+db3/oWU1NT3Lhxgw9/+MOcPXv2hdzbOwknAf5HgK98/xn7+TL7+TJ6UcBmUgZTL0Y8+J02\nRSYnwJP9PA6LkUa7q9IzBp3IelIJQn6nhZDbjsmgVxQjg07NWquj4cpvLkfVP2aYzPBhctC1fWyU\nnc1smHRnHBT6as0OtWYHb9MyEbxnAy4WI148NjMIAuVaYyJQj/qcDzH0ZB9aFkS8dsr1FhdmgxgN\nOtYTh8fq3YdZ/tDW12ExEvbYmQm4eLiToduX8DmtmuInKFn284NDlqM+rEY993cyE1YKNpOB7z8/\nUDL6xTD5cgOn1aSRgMqyUivJlRtcX46ynVZ47dFgPtxN3VyJsRB2szXoc7CZDKo6RRQEri9FNY1d\noKiEGp0ec0E3dotRLaiKgqKcuRVPEvU6CLltVEZ2PMN6yPnZIGemAzwdFM8Dg9qPTlReby9XIui2\nU6y31HuZ9jsJu22qFHU4Dev6cpSbKzGe7ueoNjv0JIlzsy/GCOznf/7n2d/f52Mf+xj/9t/+2zd0\n7urqKktLSywsLADwcz/3c3z1q189CfAn+MfHk70cP3h+ADJEfXaWIz5KtRab6SIbqSIuq0lVLoBC\n39zZTBPx2Al5FGvdbKlB4rBCvtLEbDTweO9I6SIKsDk2fLo+NkQj4LJqArzLZpoI3uNFz5mAi6d7\n2ox+vJgZ9dknAnyp3mYzdXQ/c0E3vb7EctSL22ah0+uhO0apdDAWgIfF24eDgKYXFVs5TzCaAAAg\nAElEQVSFK4sRnu5lVY+W8fOiXqeq+HDbzKzEfMcO6xjSM/HB4jkXdON3WkgeVlSKKOZ38vzgUMno\nN5WM/kPRearNtka+2e316UlKnWEoYTysjHX7mgxq0fvyQphcuY7NbFQ96CVZZm0jqdRYRoIoADLq\n53dm2k+vL6neMnAUzM9M+zk3E1B/P8Ieu7ognJkO0Ov3sRgN6oDttY0kBr1i6+AtWNQi936+gsdu\nZTbowmMzq3Lc3WyJXLmB1WRQ3mO1oRkU8lYgyzJf//rX+eY3v/mGz00kEkxPT6vfT01N8YMf/OCF\n3Nc7DScB/p8Y37y7yY2lKPv5CsnDGkGnjfs7R/r1Tk/CYTEyG3BhNRsw6nW4rKajNvVlrXQx4rFr\ngtpixKuhO0RB+UN0W81YzXrMRgMWk4ELc0F0ooggKJN3aq2OwrsPDMSMeh0X54J0+xLdnoTfYcVj\nU7xhZHnQBDVmqGU1Terdx0f9+RwWdrJFzT2uRH3MBl0EXXba3R61VmdMsz9ZvO1JElvpInu5Mhaj\nniuLEQyiyK14QnPcqHlaaTAz9NJ8iItzIXp9SX2Wo3JFUIzF1jZS+J1WFkIeHu1mJgZ0y7Jyzb1c\nhcsLYYq1lhL0RorT7W6fhzsZhIFfzDBQx/xONZjf20ojCgIfvDhHqdbSdBPLMtyKJ7CbjdxcifFg\nO62ZOPV0P48AXF4MMxt0qV2oQz9+gNNTfmRkLEaDWhsYZvAfujDHYtijJgXdnjLMo97qcmMlxmaq\nQKHaJHFY4bDaZJcyMwEXEY9dXaCUWb8JfuLywguTFT9//pxQKITX6339g0/wmjgJ8P+EaHd7/OG3\n7lAeZFs2s5J9x3wOwm47Br1I4rBKtdnh0Z7SdajXiRp1y8GYaqXX7zMbcOK0mgf+IUYcFiPNTo9q\ns4PHZhpkvV2GfVKVRlvT+HNzJapy0aBkeumxgdU2s4HiYMvvsptYCntpdXpYjHp0okin38egE3Fa\nj6x0o177hPPjuPc5KItAs3Nkc3x5PszpKT9Oq4lMqc5utjTBV+tFQQ3KzU6Pu5spLs2F8DgsLEW8\nZIo1dnPlY3XymWJdnRc75Xcy43dxdyulOcZjt7CdKammXXazEZfVPNEhO/z3sGHo6kJkYojItN/F\nevKQ1fWEmu2O7yEkWaZSVwzeri8rksV8palev9bqsLqewOew4HNa2MuJ6gStKb9TtWC4shAmV2kQ\ncFrVXdmQnvvghTmWo9oEIFtusJkucnEuRL3VYTNd5CBfod3tc2s9iVGv432np9XpU6Coh9w2pVEq\n7LFzfytNT5K5OP/iOli/8pWvvGn1TCwWY3//SAp6cHBALBb7B8549+IkwP8T4q/vbVGpt1mMePA5\nFGfIu1sZtfnl6mJEww2fnvar+uKIx86Uz4kgKH/Q1VaHUrXJ0/3DQcFVOe/MlF9D8US92qLXUBs/\ninJ93FpgMsCP7hLK9TaCIGioIVBsAiqNNi6bibDHTszrJOpzUq632MuVaXf7Gl4Y0BQshzAadNzb\nPuKdgy4bdrORczMBng9UNdMBl9qdOYTJqKdQbaqKmoWwB6vJoLHntZkMmmHgB/kKXrsFURS4sRzj\n4LCsNGqN0Ti1Voe9XIlqq831pSipYpVMscbBWGdtudlmM1Xg/GyQbq/P88ShRl46zHbfcyo2Qb0U\nBpOa1uIKVXJjJTohQ7VbjPzguRLoF8Je7m2lCLhs6u/NsBh8KuYl5nNqdibZcp14ssC5mQC9vsTz\nxCEHh8r1Hwx2kdeXo5TrbVUy2un1B+ZoLa4vRQb0Tw2zUa/+3g53OZdfUIOTLMv8l//yX/jrv/7r\nN3X+jRs3iMfjbG9vE4vF+OIXv8if/umfvpB7e6fhJMD/kJBl+S1vP//67iYWk0GRN6aKnJ32a7bb\nvX4fh8XIlM+J3WLEbjawGPaQOKySKtaYDjg1apuz034yI74oJoNObUQZYlzWF/U4NAFeLwpsjVkI\njwe3gMs6MSt1vAlqOBwClAWgXG/jsppUQzFBgNmAE5fNzPXlKLlyg91siYDTOhHgx++53u7w6lMl\nI7ObjSzHfLhtJpKFqsZieDzL30oXSR5W6csSVxbCtLt9+pI00axlNuqpt7rciiuSyAtzIc0gjSEO\n8hW6PYm1DcVr/n2npslV6pqM2DMoGA+57tNTfs1UpiFy5QZb6aKa0W8mC5pg3u1JZEsNCtUWN5aj\nbA8yer/Tym62zGG1yWFVCfQeuxmj/iijVzpiayQLFa4sRsiX6+znK+r1hwvztaUIzXZXs8B3exLx\nZIEz00qz0tP9PCaDTll4NhQ/GiWQH33++UqDw2qDC3MvJoN/+vQp4XAYt9v9usfu7+/zS7/0S2Qy\nCg327/7dv+MTn/gE73vf+1heXkan0+H1etnd3eXcuXMv5P7eSTgJ8K+DF8UpZst1vvL950iDwOix\nmUkXa5yfDWI1Gej3JRIFhZ4ZZuAeu/kfHI5tH/N4WY562ctViNhMOK3mQYOMhYWwB4tRj1GvI+i2\ncW0pqk4eMhn01Fsden2Jdq9Ps93FbFQGe1QbHcqNFjGfYyLAj5t3TfmcE4Zio0MtZBn6MpoFymY2\n4h7435TqLTZTBfqDGZ+jmPa7VJqh1upwdzPFjeUYAoISbGR4epAjM3ZPoxnsUIny0plpbtrMbKUL\n5AfDUUYXBllWmntcNhPTfichj51HOxl8TtuErUC71yOeLLAS82E26JUseOzX5dlBnl5fGvQwGLm/\nnUEUjmoTw4x+MexhIeJlO3N0X/6BxPTWIKNXxhFqX+Cw2iRxWMVmNnE56lW7YvcG9NRQc//eUzGy\n5YbmM+n3ZZ7sK8ohi1GvNm0BKn+/GPFo6h+yrNBRdrNRNcB7tJtlMezVOFK+GWQyGf7u7/6Ob3zj\nG1y7do2NjQ08Hg9utxud7vjmKb1ez6c//WmuXr1KtVrl2rVr/MRP/ATLy8t86lOf4td//dff0j29\n03ES4P+J8LUfPOfUlA+nxUSr28NuNvLq033VLuDKQlhDi4xzpV67GVlWGnmiPgcRj51pv5P/4V/d\nIOCy4nfa8NjNL3xM2hDtbo98pUG2VB/QE0pWeJCvsJctH+vEOO5EGXBps/V6q0u6WFcLfhajnnMz\nQWUiVMmomo+NWxQDVJotWt2eyn37nVYiHjtBl40ne1l6kkzQZZ0onna6fdY2koiCMMg45QmJ6HDH\nUq632c9XsFuMrMR89CVJ8xmJgvKsh8XSKb8Tq0mPQSeODMVWnsNwRuyU38l8yM33nu5rXtNtN3Mr\nnsCgE7m+FCVZqGjqFd2eQt2cmfZzdTFCtlxXn+VerqwuFE6r4iI5PnGq3VWcKs/NKGMDnx3kVXO1\n4e/ZTMCN2WhAJwqqLHczVSRTrBP1Ooj6HDzYThN0K4X94SIwE3DxLy/PT3xGbxTdbpednR3+5m/+\nBpPJxG/+5m9SLBb5vd/7Pa5cuXLsOZFIRLUOdjgcnDlzhkQiceyx/xxxEuD/ifBn332iMfJaiWrV\nAZIsYzbqmQ+5WQh5uDgfwuewMBt0MxNw4Xda/lGNz14PJoOemM9JzOfkCpNe3JIkkyxU2UgV2EgW\n2MuVubeVHnRAKsFtcvGRNbREs9Oj3VNUJ6AE7dmgC5vZiM1k0DRm7Y9x336XVc3SHRYjp2J+bJZJ\namRYtJRkmYc7GWxmg0qTbGdK5Mp1wh7tjqXW7FBvdciUagP1TZ8n+3lN0xAoFM5hpYHNrCwI6weH\nuOwmzbSrg3yFkMuG267srIb2vEPzMIUKURagxYhX4wQJil/QsOh+aT6EXidqCuSVRpt6u0evL3Nj\nOcZOtkiu3MCgV579kJ5Zjvo0gzpAWSgOqw3Frjno4fFeFo/DwkFeMSdTXChNnIr5aLS66rPcy5WZ\nGrFzeLOYmprip37qp1hbW+Pzn//8Gz5/Z2eHu3fv8p73vIdXX32Vz33uc/zxH/8x169f59Of/jQe\nj+ct3+M7DScB/ofAWw2sz/bzE9JGo0HPv3nfaVZiPpaiXpYjSlHsOJXJOwGiKDDlV7o8P3hhTv15\nt9dnI1Xg4U6W3WyJZrun0hbjgzRAa/87VLDMBFy0u33OTAewmw002x0ejWnyHSN0VbXZYW0jybmZ\nAAGXMps0U6pxkK9MyDanA8qEqly5gSAoJlp+h1VjYAaKnYIsHxUjZwJOXFYTZoNO1eAP3SOHjUBG\nvY6r4TCSJGuK56IoqO/NZlYWl3GLB1mWubWepNXtcW4mgAxUGy3280fP6/52hqsLYQ1VAkqPQLPT\nU8cVXl2MqtTgEPFkgcRhlZjPQcSrzczrra6qb1+Jeen2+ir9VW60KTfaVJtttbluM13k8guyKPiL\nv/iLN6WeqdVqfPSjH+Wzn/0sTqeTX/3VX+W3fuu3EASB3/qt3+LXfu3X+MM//MMXco/vJAjjxbLX\nwRs6+N2CVkuhUd5soH/59gYPdzKsRL2cnvIxH/ZoTKv+uaHV6fFgJ8OzgzzffrjD7ZGJRRfnQmoQ\nhYFFcU9rUXx5IUyh2iTssXNYUWR+41YLoDRwjRYQry6E0elENlPF/7+9Mw+PqsrW/ltDKpXKUEOS\nypxURshICIOAoMwojUjEBkGviH5Ordf2oni97XXqzwvY99G2/ey2sS/S4H3ExhGVQZshDCKEKZAB\nkpB5qFSSqlTmSk37++NUHVIZsDJoSLF+z+Nj6uScnV1Fss4+717rXfzqc1pSBO9Q6WRSbAjq9O2I\nC1WiUteCxtaufmM5U0D9fCRIjgxGrb4VoUo/Pl3RybSkcJwpqUdqtBoAQ2F1E7e677XRKwD4VX9L\nRzcqdEbEBMv7tQqclRwFk9mKixUNvITiHB8AYtRyBAXI0NltxpU61812mbcX70BaWN3Uz8pYLvPG\n1MRw5JU3uFTwTk0Mx/mrWqRr1Oix2HClthlxoUqXOoX0GDU++92qAX10hgJjDLNnz0ZOTg7kcrnb\n11ksFixbtgxLlizBhg0b+n2/srISy5YtQ0FBwYjmd4PhVjCiFfwvwB1TErAoMxZ2u50z8hpDqeVG\nQCoRY3oSlyb44PxJsNsZrtQ24VRxLS5V6FCua+HdL2PU/S2KJWKuybNT41fLfSGTemFCRCB/LtfM\n2nVjWCAU4EwpJ3+kxajhJRLCNoBtsNbQwa+wBQIuiJrMVhR0NvIrHLWCC/CcfS+XfZMcEdzPj73N\ncVMorOaORQcHQOErdemoFBUcgOqmNv4GlRwVjBC5rF+At1htOF/mKL4KVaKoutHlplPV2IrqxjaE\nqvwwPSkCxXXNaO3sQbRjfKc8w/m6Kzm/fcdegXNl3trJrczbunpw1VHkZGeM1/QTwlVQyLxR12v+\nUol4xMEdAIqKihAdHT2k4M4YwyOPPILk5GSX4K7Vanlt/ssvv0RaWtqI5zceoQD/C8AYo+B+HYRC\nAVKi1UiJ5nxMrDY78it1OFFUjZqmVlx1ZNc4ae9jfdze3YMfiqrBGBz54UpIJV5obK1yOc/52dsZ\n44NwUnggpiaEo7XLhNJ6A+S+3v0qSXvMNuRXNvJyT4WupZ8lLmNAfUs7rtQ2I1zlz9ka1DT122gG\nONMwfx8JJsWGotLRmrG31cHlmib4SSMQrgpARKA/Cqt06DJbeTsCXt7x9oLCV+qSLRQdHICqpjZo\nDR2QiEWYmhAOqbfIZfzqplaoFb6QeXthQmSgY++hCy0d3S6NUiZGBvXbNBY5WgU651/b3Dpq+e+f\nf/75kOWZH374AR999BHS09ORmZkJANi0aRN27dqFvLw8CAQCaDQabN26dVTmON4gicYNRirR2Gw2\n2O12CG9iWWYktHf34OTlGhzNr0ROfiXau3tcLIAnRAb2sy2e7iizjwtVoq2rB8V1+n6ZSX3ln8ig\nACSGqxxe510uY/VuliIUCDA7NRotHd0oqLy2qpd5e7nk8MeGKBDoL4O+vYvfKJ2SEOayKSoUCHB7\nuga6lnYX987E8EB+rr5SL6REB6PR2OGyYRujVvCv02KCAXC1EOeuuspEUxPD0WkyQyIW4VKFDgxc\n+qPTI0gkFGCSJhQ9VqtL8Zrz8+I8fFSo1LUiRi13aRAOAO8/9SssyUrASLDb7ZgzZw6OHj2KgAD3\nNmw1Gg38/f0hEokgFotx9uxZGAwGrF69GpWVldBoNNi9e7enbq6SRHMj0Hv1TgwPfx9vLMlKwJKs\nBNgdhUqHL1bg8MVy5FU0IMCnf/51p8nsKAbi9ORQpS9UfjLEhzLedyVarXDRwmub2xCu8kdzWxdS\no4MhEYtQUNXYr/DKzhjOl2nR0W3mV/Ud3T397JWVfj58O8PEcC5PXNjn79LOGGqb21Bab0BUkByh\nSl9cqWlyCeSdJguajF2oamxDWgyX2llQ1cgXPQHgW+7NTonGNIdfkfMmaGjv5jVztdwXmhA5yrXX\nMnNsdoZ2Uw9K6w2IDpYjxOEcqXAUbXEePlxxV0p0ENI1ar7CGuD2TUbCnj170NTUBLlcDp1OB7PZ\nDIVCAbH4p8PTkSNHEBR0rYPUli1bsGDBArz44ovYsmULtmzZgjfffHNE8xvP0AreDYa7gmeMwWaz\ncQ21afX+s9Dc1oUfiqqx70wJjhdV8y6Ycpk3WnsVhnHphteMuCIC/SERC3GiyDUffVJsiEsOua/U\nC+kxIdC3d/Er6oE8dibHcd74IqEA+ZU62BnDtMTwfqvdDE0IvL3EqDe0oU7fDpFQAJFQxKeSAtzN\nQO4rRZOxk9fhpyaE4WyvlX+Y0g8p0cHILalzkaycG6BSLzHSYoLR0tGNqsY2WHt1k0oMV6FSZ0Sa\nRo1OkwUldfp+c/WRiDFzYiQqG428nTHAefDrjJ1Qy2XQhCjQYbLg21fXXvff6Kd499138dVXX8HX\n1xdBQUFoaWnBwoUL8cILL1z3Oo1Gg7Nnz7oE+AkTJiAnJwdhYWHQarWYO3cuiouLRzS/GxS3ghEF\neDcYboB3SjOkvf8ydPdYcLywCieKqvFtbomLDQTXHNw1y2ZyPOcAqZbL+Bz4vrYMXNco7nVkUADC\nVX4QCoBTxa6ZN1w2DhcgVf4+SAhTwmy91kMXQL9gnhwVhEB/H5y6UstbEl+bKzdWUkQgfKVeEELA\nN+F2EhuqQF1zu6M/ag8qGloACPoFc4BrSZhfqXN0ZXIN5jFqOeLDlMgtrkNHL+nLaToXF6qEys+H\ntyHuzZKseLz/1LIB/z3cxW63Y/bs2Th27Jjb8gwAxMbGQqlUQiAQ4PHHH8djjz0GhUIBo5G7ITHG\noFQq+dceBkk0YwltrP7y+Hh7YXFWAhZnJeCVNXORW1KH785fxffnrw54vq6lE/WGdr4heGZcKMQi\nocMUjVv997ZpcLa6m54UjtRotUPC4ZqIGHtZShjau3Gu0wSxSIjkqGD4SMQoqNIhMkjushq+XNOM\nqYnh8PPxRlJEIOr0bQ6bhmvB3ikhpUQFY3pSBH+ORCxEdWMrbHbGb4pOTQwDIMDlXt26FL5SPphz\nG6NB/QrOqhpbYbbYYLHZkRUfhg6TGY2OZh8A5+lTjhZkxoUgTOWHju5rDWUmx/cvehsqBQUFiIuL\nG1JwB4ATJ04gIiICjY2NWLRoESZOnOjyffrbowD/s2F3rKJu9l+wsUIsEmJWchRmJUfh1TVzkVfR\ngANnr2L/uVLU6dvh7yPptxq12RnyyrnWc07DMWcFaG9aO3v4AOcnlWBSXJBLQ2qAWxWXNxj56mU/\nHwk0agUEELg0ZGGM8T71AJe54i1xzVyReolwpbaZL1aaGBkEtUKGHy/XwtbrZiAQCHCmpB5SLzGm\nJHCpjpZe0k97txlnSusRpvTj9wQKqxoh9fLi2ws6bxbTJ4QDjCuIcvohScRi5Dr89iOC/BGh8kdW\n/MgzaIZb3OS0AFar1cjOzkZubi5CQkL4FEmtVgu1enQ6TI1XSKJxg56eniG5STLGYLVaaQVxA8IY\nQ35VI04UVOPTHwpdNjP7ZssAnGYuFglhttpQVN0Ixjjbht49cZ12Apy2H4AKXQti1HKcLXWVVJwZ\nNBq1AsFyGUrq9ZDLpC6plFIvEcxWO2RSL0yMDIKhvQtioRAl9a6FS9McbRgnRgahuY3L0pkcF+rS\n3g8A0jVqSL3EKK0zwNhlgkLGNW1x4iMR45YJkajXt/OtIAFg+oQIvpVfarQaAgBmqxWXe2UriUVC\nXHz3CfgM4JbpLk555vjx4/D3d78bVGdnJ+x2O/z9/dHZ2YlFixbhlVdewaFDhxAYGMhvshoMBvzh\nD38Y9vxuYEiiGQucG6sArd5vRAQCATI0XEenJ381FUXVTdh/7ir2nS1FR59VOMC18HN6vyh8pcjQ\nqKFt6XBJtwwM4JqDOP3RASA1KhhTEsJQVN3EX++UeiobjahsNCJAJoHSTwq5L7eStjNAE6rElZpm\ndHSbeavlOanRkPtKUVyn56Uji83Or8iBgb3vlb5SPttFLBRiUmwIFL7eOFZQza/Uus1WdPVYUFKv\n5/cYyrQtvM+Ozc64ZuLgNlinJYbD0NaNMl0LJkYEjSi4A0B+fj4SEhKGFNwBznkyOzsbAGC1WrF2\n7VrccccdmDZtGlatWoVt27YhJiYGu3fvHtH8xjsU4EcZu91OOe/jBIFAgNQYNVJj1HgueyYu1zRj\n39lS7Dtbikqd0aUFHsClC3b1cBbBzkbeWkP7gF2jyhpaUNPcBqmjIbrNZkNBnwYpkYEBfMaO0k+K\nxHDOdvgKXNMt27p6cLFCBy8RF6RtdgZtH5fMlg4uFdJLLERmXCisjoyelgputW6123GxQofpSRGO\nrldK6Fq4LB3njc25xyBy+ApNjgtFUU0Teiw2aBxPKQ0OT5roYDnmj4KD5BdffIF7773XrXOLi4ux\nevVq/nVFRQV+//vfw2g04i9/+Qs+/fRTAFyh09KlS0c8N0+AJBo3cFeiIWnGM2CM4XJNM04UVeOT\nYwX8JizQv1AJALLiwyAWCXnfGl+pl0shFsBlzDQaOxEfpkJTaycqdMYBJaFJsSFo6+pBkFyGqw79\nOyhA5tJiUeUvBSDgWhM6ip/6evgAwK3JkbDY7HwgB4CU6GAU9brRxIcqEayQobhWz2vtMSHXbmwy\nby8kRwbBTybB0XzXyuC3/88SrJjhurHpLrW1tQCAlStX4scff4Sfn9+QrrfZbIiIiMDp06exfft2\n+Pn53Wze7yTR/NLQxqpnIBAIkBIdjJToYDy6JItf2e89U9Kv8Ymv1MvF5GxCRCDCVH64UN7g4hPj\n7+ONyzXN0DvaCXI2yF79PHNqm7nm1hU6I0RCAaYmhsNms6Oty8R3bIoKkuNihY5vTagJUUAt94XK\nX+rSdMXQYeI3eWNDFQjy9+mXv2+123GqmNPa0zScP4+XWMgH+K4eC86VaZEVH+bwwFGgua0L5Q2c\n5j9cdu/ejQMHDkCr1eL2228HAISGhmLv3r1uXX/o0CHEx8cjJiZm2HO4GaAAP0pQxapn0jvYP5c9\nE4XVjdh/ltPsqxpboVErXMr7i+v0kPtK0dFtRmp0MKQSMa7UNPezA65qbEVbF9f7dGJkEPx8JNC3\ndbl4v9vsDFabHXnlDZB5cwVX3RYr33XJSaXOCKmXGMaOHqRGB8PbS4wrtU0uTx4VDUbYGYO2pQOp\nMY5zqpsQLPdFVROXbun055meFI6s+DB+Y9nOAJ3xmgEbwNkqRwe7bwrWlw0bNsBoNOKZZ57BqlWr\nhnz9J598gjVr1vCvyft9YEiicYOfkmioYvXmgzGGouom/FBUg13H8l20+r6Okpx2Hgqr3Y7LDk07\nTOnHpyY6mRwfCpuNQSQU8Nr3QDJOVnwoREIh9A4LAgH6Z/YkhKngL5PAarPjcnUTrHaGqYnXCqgA\nzrdm1sQo6Nu7+S5YALc3UOvQ+OW+3kiODIaxsxtXemXQLMyMwwdP3zXsz89ut+PWW2/Fjz/+CJlM\nNqRrzWYzwsPDUVhYiJCQEOh0OgQFBfHe71qt9mbwfieJZrQQCAT9mkz3xm63j0pTbmL80HuD9tE7\nsq5l45wpQVWja+VksFzGB1YfiRiT40Mhl3mjua2Lz3UHuLTDC2Wu53mJhRALBXzwFQkFKKxu4q16\nIwL9ER+mRIXO6NLlSuHnzVfuch2uAiHzdv1z77HYUFKvR52+HX6Oc5xOnk5aO3vQaTLjSq0eQQEy\nxIYoYOw0IWuEDpJ5eXlISkoacnAHgP379yMrKwshIZwHjvP/APDoo49i2bKRVdZ6EhTgRwhVrBK9\ng/2GFTNQXKfnZZzyhhaEKv157bvbbMWFsgZMSwyHt5cY6ZpAmK02XKlpQkuvRhvdZivyK3QQiASQ\nSr0wITwQJrMVFqvNJSe+Tt+OcJU/aprboAlVQB0gQ3VTG3o5Hzg6XGkREejP2ym3dfZAa7yW1tnR\nbca5q1qkxagRIJMiIUyFThPXAN7HcWPoLdFkxYeP6DP74osvhiXNAMCuXbtc5Bnyfh8ckmjcwGw2\nD6qvkxUwMRiMMZTU6XGiqBqfHi9yKSSKDVWgopdtQaC/DzQhCvRYrbhc3QybnXF2vVrXAqcZEyJh\ntdnR5Qi+jAGTE0L7dZLKiguFWCRChaMna9+OVABnYCYQCGDsNPF5/X0lIaWfFBmaEDQaO3GlthkM\nIy9wstvtmDVrFk6dOjXkFXxnZyeio6NRXl7ONwb5l3/5l37e786A78GQRDOaDCTB0MYqcT0EAgEm\nRAZhQmQQHlmchfKGFuw/W4rDlypwqcI1pTFILuPNxPx9JEgKD4RcJkGFrsXFiMxksSLPUa2q9JMi\nPlQFMLj0kFX6SnG+V0VrYpgKkcEBKKxqcmlmIhQK+WCulssQo1ZA1Od3ubXThNPFdTBZrPzPC5bL\nRlTgdOHCBSQnJ183uD/88MP49ttvoVar+VZ7Tq93lUqFe++9l/d637lzJ377299i3759qKysdFnR\n3+zQsnOYUMUqMVTiQpV4atl0fP671Ti8aR1+t2oOshxmXXLZNU/79m4zzpVpoWieV6gAABjkSURB\nVO8wQSrxQlZ8GGeZIBTwnZsAoKXDhApdC86W1UPhJ8XUhHCkRAUjRu2a3VKqNaDTZEFjaycSwpSY\nnhSBMJUfXxULAI2tXTh3tR55FQ0ICpBhWmI4kiODEBeq5DdvWzpMOHu1HiGKoeWs98Udeeahhx7C\ngQMHXI45vd5LS0uxYMECbNmyBQCnyZeWlqK0tBQffPABnnzyyRHNz5MgicYNLBYLrFariwxD0gwx\nWuhaOnC0sArfnC7G6ZI6WB0br0o/KV98BABRQQEIDJBBAOBKbTO6zVZkxoXyK3onsyZGosdig9lm\nw5WaZlhs9n5dr0RCAeJClVD6+UDX0oGqptZ+zbQBThKy2GyOfQJurP/3+J341bSkIb/P999/H3v2\n7MHFixexYsUKqNVqKJVKPP300wM6SfZtlj2Y1/vjjz+OuXPn8rp87/M8GJJofi5ImiFGkxClH1bN\nTsWq2akwdphw+FIFTl6uxr5zrjbHQQEy3kzMSyxEeowagQ4vm976enNbN6/3+0jESNeEQCAAZBIx\nuhy+OJoQhYufTkSgP+JCFBAJBS7HeyxW/mf6SMRIjVEjK2F4gfOJJ55ASkoK/vKXv+DZZ59FS0sL\nDAYDvLzck3t0Oh0ftENDQ6HTcTJXXV0doqKi+PMiIyNRV1fn6QHeLSjADwOqWCV+LhR+UtwzKxn3\nzErG/31gPk4UVeP7C2U4fKnCxcfdYrUjv6oRCWFKtHeZMTEyCP4+EtQZ2lChu7YK7zZb0dZlwlVt\nC7xEQqTFcO6SErGQ78kKcNk4arkvSusNCPT3QWyIEt1mC7S9LJW7zVbojB0IUw7NGMyJQCDAd999\nh/Xr12Py5MnDGqP3WPT399NQgB8iTjMx+uUifm58vL2waHI8Fk2Oh9Vmx/myevzzQjn+mVeO6qZW\neHuJUKHjKlSv1HKWBEkRgZAEiaGW+/KeNyo/HwAtsNjsfAFWZlwoEsNVUPpKoW3pQE1zG2qaOX3f\n2cs2WC5DR7cZk2JDIBIKcVVrwJSE4adH2u12HDp0CJs3bx7W9YN5vUdERKCm5lrrxdraWt4r/maH\nBOQhQDnvxFghFgkxPSkSL62+DUc2rcOB1x/ACytvRYZDfnGikHmjUmdEbkkdKnRGqOUy+PlIkBod\nDLHw2ok1Ta0orTcgt7QeNc1tSI4KQlyIEhMjg+A8LTIwAN1mKy5W6Pgm4zMnRg77PZw9exYZGRnw\n8fEZ1vXLly/Hjh07AAA7duzA3XffzR/fuXMnGGM4deoU5HI5yTMOaAU/BJwVq7SxSowlAoEASRGB\nSIoIxPqFk9HU2okj+ZU4fLHCxXUS4LJjzpc1wNhpgszbC2kRgfCRiFFU42pdLPW61q3J30eCBMfq\nvre/vJ0xZGhCMFyGYg28Zs0a5OTkoLm5GZGRkXj99dfx4osvDuj1vnTpUuzbtw8JCQmQyWTYvn37\nsOfoaVAWjRs4s2hsNhut3okbmh6LFaeKa3H4YgUOX6oAAL5a1UlWfBgulGuREKaC0k+KRmMXggJ8\n+jUljw1RoKqxFYkRKshlUrR2mfDNy2v79XR1B7vdjpkzZ+LMmTOQSqUDnjNQ7vvGjRvxzTffQCKR\nID4+Htu3b4dCoUBlZSWSk5MxYcIEAMCMGTPw17/+dcjzGse4FYQowLuBxWKB2Wym1TsxrmCMobRe\nj5z8Khy5VIGzV+thszNMTQjrF8zTY9Tw9hLDbLWipE4PkVCILrPFpZnJ7JRo7NyQPay5nD59Gtu2\nbcP//u//DnrOsWPH4OfnhwcffJAP8N9//z3mz58PsViMf//3fwcAvPnmm/1SKG9CKE1ytMjPz8fp\n06ehUqmgVCqhUqmgUqmgUCjg7c0VqPRd1Xd1dcFkMkGlUo3FlAnCIeUEISkiCI/dMQVtXT04UVSN\nM6V1qGpq5b3t/X0kyO/tfikWYmp8GHosVmhbOlDr2HydMoz0SK1WC61Wi+3bt+POO++8bu3Ibbfd\nhsrKSpdjixcv5r+eMWMGPvvssyHP4WaGArwbSCQSmEwmFBQUwGAw8Pm7LS0tMJuv9fH09/eHUqmE\nUqnElStXEBgYiCVLlvA3BufNQalUwtfXl+Qe4hclQOaNpVMTsXRqIl5efTuKappwNL8SV7UGfHum\nBDaHJYLFaofZauP7vYYqfBEZJMctSUPPTCkrK8OuXbuwZ88e1NTU4O233wZjDO+99x5mzZo1pLE+\n/PDDfi37Jk+ejICAALzxxhuYM2fOkOfn6VCAd4O0tLTrOtQxxsAYQ1tbG/R6PfLz8/HCCy/gqaee\nQmtrKyoqKnDu3DmXm0Nn5zVPEG9vb/4G4LwJyOVylxuC8+uLFy/CZrNh0aJFv8RbJzwUoVCAtBg1\n0mK4VMPX75+HHy5X41hBFY4VVLnYGDQYO9HU1oWM2KFbBM+ePRsikQhWqxUfffTRsOf7X//1XxCL\nxbj//vsBAGFhYaiurkZgYCDOnTuHFStWoLCwcMCK2JsZCvCjgHMlrlAooFAo0NDQgG3btv3kisK5\n/9HV1YWWlhbo9XoYDAYYDAbo9Xo0NzejpKSEvyno9Xrk5uYiJiYGr732GkQiEf8znZJR7xuFu3KS\ncw5CoXDQDTDCswmQeePOKYm4c0oiGGO4Wm/A8aJqHC+swumSOiSGqyAbpsHYl19+iV//+tfDntvf\n//53fPvttzh06BD/u+vt7c3/Pk+ZMgXx8fEoKSnB1KlTXa595ZVXoFKp8OyzzwIAXnrpJajVavz2\nt78d9nzGE7TJOo74+OOPcfHiRd5kyWKxwGg0Qq/XQ6/X8zcJ5w3BXTlJqVTiwoULCA8Px9KlS0lO\nIlzosVjR0NKBGLViyNfabDbMnDkT586d4wPy9ei7eXrgwAFs2LABR48eRXBwMH9eU1MTVCoVRCIR\nysvLMWfOHOTn5/fb86qsrMQ999yD8+fPw263IzExEbm5uQgMDBzye7nBoE1WT2PlypW4++67+UAr\nkUigVqv5ij536CsnGQwGlJeX46uvvkJ2dvaoyklyuRxVVVUoKCjgi1KI8Ye3l3hYwR3gsmeysrLc\nCu4D5b5v3rwZPT09vCTpTIc8duwYXnnlFXh5eUEoFOKvf/3rgAkNGo0GgYGBuHDhAnQ6HSZPnuwJ\nwd1taAVP4OTJk2hubsby5csHPeen5KTeTwrO462traisrOSlo9GSk5yYzWZIJJLR/TCIUeX555/H\n0qVLx7SN3j/+8Q+cPHkSDQ0NWLduHZYuXTpmcxlFKA+eGFvKysqwfv165OTkwGq1jpqcpFQqYTKZ\ncPDgQbz66qskJ92gOOWZ8+fPD3ojHqi46bXXXsPf/vY3XpLZtGkTH5Q3b96Mbdu2QSQS4d1338WS\nJUt+ch5msxnp6emwWCwoLS2FSCQapXc4ppBEQ4wt0dHR+PjjjyEUCkdNTnI+MfzpT39CSkoKDh48\nOGpykkgkgkAgwGeffYa77rrLLVmBGJxTp05hypQp133Keuihh/D000/jwQcfdDn+b//2b3j++edd\njhUVFeGTTz5BYWEh6uvrsXDhQpSUlPxkwJZIJJg3bx4UCoWnBHe3oQBP/Gx4eXkhMnL45lR9s5Pi\n4+MBAFarFTk5Odi6deuAK/WhZic55SS73Q6LxYLKykrs2LGDD/6jISc553UzPFlcunQJBw8exMGD\nB3HrrbciJycHSqUSsbGx/dIYBypuGow9e/bgvvvug7e3N2JjY5GQkIDc3FzMnDnzutfZ7XacOnUK\nn3766XDf0riFAjwx7hCLxfjggw8G/b4ziPr6+sLX19ftmwxjDK+88gpiY2OxbNmyAeWkurq6IctJ\nzn2HI0eOYMKECVi+fLlHy0lKpRLh4eEoKSnBvHnz8PXXX8NgMGDdunWYN2+eW2O899572LlzJ6ZO\nnYq33noLSqUSdXV1mDFjBn+Os7HH9SgqKsKyZcuQnZ2NxMTEEb2v8QgFeIJwIBAIsHz5cmRkZMDb\n23vU5CSDwYCysjJ888036O7uxokTJ0ZNTnKSk5ODuXPnjubHMWyioqIQERGBJUuW4NVXXx3y9U8+\n+SRefvllCAQCvPzyy3juuefw4YcfDmsuKSkpKC8vH9a1ngAFeILoxbRp04Z13WBykpPCwkK0tbXh\nrbfecjk+EjkJAEQiEcRiMaqrq7Fs2bJRk5NGijuNtQcjJOSaJfGjjz7KZ+BQY4+hQ1k0BDEOcf7d\nWiwWPPvss0hJSUFmZuaIs5OccpLz9YkTJxAbG4s777zTbTnJarVi1qxZuHDhglv9VvsWNzm7NgHA\nH//4R5w+fZrfXF27di1yc3NRX1+PBQsWeFJWzFChLBqC8FR6F7vNmzcPK1ascLt59U/JSb2L3fbu\n3YvY2Fhs2rSJv/6n5KSqqipkZma6NZ+BiptycnKQl5cHgUAAjUaDrVu3AgBSU1OxatUqpKSkQCwW\n489//vPNGtzdhlbwBEEMiE6nwwMPPIB//vOfANwvdrt06RKys7Px2GOPjeX0PR0qdCIIYmT09PSM\nej3AQMVNq1evRnFxMQDAaDRCoVAgLy+POjcNDkk0BEGMjJ+j2Gug4qZ//OMf/NfPPfcc5HI5/zo+\nPh55eXmjPo+bAQrwBEH8olyvuIkxht27d+Pw4cO/7KQ8FGowShDEDcPx48cREhLiUpTk7Nx0++23\n4/jx42M4u/EHBfhR5MCBA5gwYQISEhJ4z3aCINxn165dWLNmDf/a2bnpwoULePvtt7F27Vq0tbWN\n4QzHFxTgRwmbzYannnoK+/fvR1FREXbt2oWioqKxnhZBjBusViu++OILl76r3t7evH97785NhHtQ\ngB8lcnNzkZCQgLi4OEgkEtx3333Ys2fPsMaqqanBvHnzkJKSgtTUVPzpT38CwNmoRkREIDMzE5mZ\nmdi3b99ovgWCGFMOHjyIiRMnungHNTU1wWazAQDKy8tRWlqKuLi4sZriuIM2WUeJuro6REVF8a8j\nIyNx+vTpYY0lFovx1ltvISsrC+3t7ZgyZQrf0WYgG9WhoNFo4O/vz5e4nz17FgaDAatXr0ZlZSU0\nGg12794NpVI57J9BENdjoOKmRx55BJ988omLPAPA7c5NxMBQgL8BCQsL40u1/f39kZyc/JOueUPh\nyJEjCAoK4l9v2bIFCxYswIsvvogtW7Zgy5YtePPNN0ft5xFEb3bt2jXg8b///e/9jq1cuRIrV678\nmWfkuZBEM0r8XEZIlZWVuHDhAm655RYAnI1qRkYGHn74YbS0tIx4fIDz2V63bh0AYN26dfjqq6+G\ndH1xcTEvG2VmZiIgIADvvPMOSUoEz2Cyo8FgwKJFi5CYmIhFixbxv9OMMTzzzDNISEhARkYGzp8/\nP5bTH784fSnc/I8YBIvFwmJjY1l5eTnr6elhGRkZrKCgYERjtre3s6ysLPb5558zxhhraGhgVquV\n2Ww29rvf/Y6tX79+yGNqNBo2efJklpWVxbZu3coYY0wul/Pft9vtLq+HitVqZSEhIayyspK9+uqr\n7L//+7+HPMb69etZcHAwS01N5Y/p9Xq2cOFClpCQwBYuXMgMBgM/33/9139l8fHxLD09nZ07d27Y\ncyd+Purr6/l/m7a2NpaYmMgKCwvZxo0b2ebNmxljjG3evJm98MILjDHG9u7dy+644w5mt9vZjz/+\nyKZPnz5mc79BcStmU4AfRfbu3csSExNZXFwce+ONN0Y0ltlsZosXL2ZvvfXWgN+vqKhwCYDuUltb\nyxhjTKfTsYyMDHb06NF+AV2hUAx9wg6+++47NmvWLMYYG3aAP3r0KDt37pzL+6NA4FksX76cff/9\n9ywpKYnV19czxribQFJSEmOMsccee4x9/PHH/Pm9zyMYY27GbJJoRpGlS5eipKQEZWVleOmll4Y9\nDmMMjzzyCJKTk7Fhwwb+uFar5b/+8ssvkZaWNuSxnbKRWq1GdnY2cnNzERISwo+t1WqH1OiiL303\nyoYjKd122239NtIGk5H27NmDBx98EAKBADNmzIDRaHT5nHrz8MMPQ61Wu3xuGzduxMSJE5GRkYHs\n7GwYjUYAnDTm4+PDy0tPPPGE+x8CcV16y446nY7fbwoNDYVOpwMwcNLCaO5D3SxQgL8B+eGHH/DR\nRx/h8OHDLvr1Cy+8gPT0dGRkZODIkSP44x//OKRxOzs70d7ezn/9/fffIy0tDcuXL8eOHTsAADt2\n7MDdd989rHmbzWZ8/fXX+PWvfw2A68xTVlaGvLw8hIWF4bnnnhvWuABGJRA89NBDOHDggMuxRYsW\noaCgAJcuXUJSUhI2b97Mf8/pgZKXl0cGV6NER0cHVq5ciXfeeadff1ZPbF841lAWzQ3I7NmzeWvW\n3ixdunRE4+p0OmRnZwPgikrWrl2LO+64A9OmTcOqVauwbds2xMTEYPfu3cMaf//+/cjKyuI78gzW\nmWekDDcQDOSBsnjxYv7rGTNm4LPPPhvyuAO5I7722mv429/+huDgYADApk2b+H+/zZs3Y9u2bRCJ\nRHj33XexZMmSIf/M8YjFYsHKlStx//3345577gEA/ukxLCzM5emRujeNDrSCv4mIi4vDxYsXcfHi\nRRQWFvIyUmBgIA4dOoTS0lIcPHhw2HnGfcvMR0NScjKYjDSageDDDz/EnXfeyb921wNloCcDgKtZ\ncD4BOIN7UVER353owIED+M1vfsMX8gzEQLLS6tWr+Sc7jUaDzMxMADe2rDSY7DjY0+Py5cuxc+dO\nMMZw6tQpyOVy/gmOGALuivWMNlmJ69DR0cFUKhUzGo38sQceeIClpaWx9PR0dtdddw1pk6zvJvLz\nzz/vssm6ceNGxhhj3377rcsm67Rp04Y0rpM33niDrVixgtntdsYYYyaTiTU3NzPGGDt79iyLjIxk\nra2tbo872Abzpk2b2KZNm/jXixcvZidPnhx03IE2nHuzYcMG9vrrr1/3vd0IHD9+nAFg6enpbNKk\nSWzSpEls7969rLm5mc2fP58lJCSwBQsWML1ezxjjsqN+85vfsLi4OJaWlsbOnDkzxu/ghoOyaIjx\nyX333cdCQ0OZWCxmERER7H/+539GLRAMFAS3b9/OZsyYwTo7Owe97vbbb7/u2AMF+JiYGJaens7W\nr1/Pp3U+9dRT7KOPPuLPe/jhh9mnn3465Dkzxr33yMhIVlJSct3zBqK6uprNnTuXJScns5SUFPbO\nO+8wxigddRxBAZ4g+tI3CO7fv58lJyezxsZGl/MaGxuZ1WpljDFWVlbGwsPD+ZuKO+MOVrMwmgH+\n6NGjbMqUKS7nyWQylpmZyW677TZ27NixQcekvPRxD6VJEkRv1qxZg5kzZ6K4uBiRkZHYtm0bnn76\nabS3t2PRokUuuvWxY8eQkZGBzMxM3HvvvUP2QAkJCYFIJIJQKMSjjz6K3NxcAKO7ZzASa92wsDBk\nZWUBcLXDGI10VOIGwt07AaMVPEEMSt9Vdu/9hrfffputXr2aMcZYQUEBy8jIYCaTiZWXl7PY2Fj+\nScHdsRnjKqfVajWrqakZ9LqfkpV6jx8VFcVaW1sHrWr+1a9+xY4fP85/b/78+aSLjy1uxWxKkySI\nETKQO2JOTg7y8vIgEAig0WiwdetWAEBqaipWrVqFlJQUiMVi/PnPf4ZIJBryzxzMWlelUkEkErlt\nrUt56R6Ou3cCRit4gvjFGWjDmTHG1q1bx95//32Xcz/77DOWkpLCJk2axCZPnsy+/vrr6449kB0G\nWQeMG9yK2QI2QEHN9e4HP9eNhiCIXw7GGNatWweVSoV33nmHP75x40YEBgby1tEGgwF/+MMfsHfv\nXrz33nvYt28fTp8+jWeeeYbfVyDGBLcerSjAE8RNyIkTJzBnzhykp6dDKORyLTZt2oRbbrkFq1at\nQnV1NV/VrFKpwBjD008/jQMHDkAmk2H79u2YOnXqGL+LmxoK8ARBEB6KWwGe0iQJgiA8FArwBEEQ\nHgoFeIIgCA+FAjxxQ3PmzBlkZGTAZDKhs7MTqampvCUvQRDXhzZZiRue//zP/4TJZEJ3dzciIyPx\nH//xH2M9JYIYayiLhvAMzGYzpk2bBqlUipMnTw6r8pMgPAzKoiE8A71ej46ODrS3t8NkMo31dAhi\n3EAreOKGZ/ny5bjvvvtQUVEBrVaL9957b6ynRBBjjVsreDIbI25odu7cCS8vL6xduxY2mw2zZs3C\n4cOHMX/+/LGeGkHc8NAKniAIYvxBGjxBEMTNDAV4giAID4UCPEEQhIdCAZ4gCMJDoQBPEAThoVCA\nJwiC8FAowBMEQXgoFOAJgiA8FArwBEEQHgoFeIIgCA+FAjxBEISHQgGeIAjCQ6EATxAE4aFQgCcI\ngvBQKMATBEF4KBTgCYIgPBQK8ARBEB4KBXiCIAgPhQI8QRCEh0IBniAIwkOhAE8QBOGhUIAnCILw\nUCjAEwRBeCgU4AmCIDwU8RDPF/wssyAIgiBGHVrBEwRBeCgU4AmCIDwUCvAEQRAeCgV4giAID4UC\nPEEQhIdCAZ4gCMJDoQBPEAThoVCAJwiC8FAowBMEQXgoFOAJgiA8lP8Pv+L6FLv6IsUAAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7feff019bac8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "## Surface plot\n", "# http://blog.csdn.net/u011276025/article/details/60883114\n", "plt.rcParams[\"figure.figsize\"] = [14.0, 8.0]\n", "from mpl_toolkits.mplot3d import Axes3D\n", "fig = plt.figure()\n", "ax1 = fig.add_subplot(121, projection='3d')\n", "ax1.plot_surface(X,Y,matcav,facecolor='blue')\n", "ax1.invert_xaxis()\n", "ax1.view_init(elev=15,azim=100)\n", "ax1.grid('off')\n", "ax1.set_xlabel('x')\n", "ax1.set_ylabel('y')\n", "ax1.set_zlabel('z')\n", "# ax1.scatter3D(col,row,height,c='0',s=50)\n", "\n", "#ax2 = fig.add_subplot(122)\n", "#ax2.contourf(X,Y,matcav)\n", "#ax2.invert_yaxis()\n", "#ax2.scatter(col,row,c='r')\n", "# ax2.view_init(elev=30,azim=-45)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x7fefea9dceb8>" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAHICAYAAABEV/HTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4lNXZ+PHveWbLxpqAQAJICKKA7PCCCwIuKCruSG2L\nLVWEavXVagsuqBWXtmp5Fa2+Yl1A5WcVxFcRpSioWFEUEFmjQCBhDQQSksz2POf3x8kiijbAPDPJ\n5P5cl5cQhjknA9xz5j73uY/SWiOEECL5WImegBBCCHdIgBdCiCQlAV4IIZKUBHghhEhSEuCFECJJ\nSYAXQogkJQFeCCGSlAR4IYRIUhLghRAiSXmP8PFy7FUIIRJP1eVBsoIXQogkJQFeCCGSlAR4IYRI\nUhLghRAiSUmAF0KIJCUBXgghkpQEeCGESFIS4IUQIklJgBdCiCQlAV4IIZKUBHghhEhSEuCFECJJ\nSYAXQogkJQFeCCGSlAR4IYRIUhLghRAiSUmAF0KIJCUBXgghkpQEeCGESFIS4IUQIklJgBdCiCQl\nAV4IIZKUBHghhEhSEuCFECJJSYAXQogkJQFeCCGSlAR4IYRIUhLghRAiSUmAF0KIJCUBXgghkpQE\neCGESFIS4IUQIklJgBdCiCQlAV4IIZKUBHghhEhSEuCFECJJSYAXQogkJQFeCCGSlAR4IYRIUhLg\nhRAiSUmAF0KIJCUBXgghkpQEeCGESFIS4IUQIklJgBdCiCQlAV4IIZKUBHghhEhSEuCFECJJSYAX\nQogkJQFeCCGSlAR4IYRIUhLghRAiSUmAF0KIJCUBXgghkpQEeCGESFIS4IUQIklJgBdCiCQlAV4I\nIZKUBHghhEhSEuCFECJJSYAXQogkJQFeCCGSlAR4IYRIUhLghRAiSUmAF0KIJOVN9AQaO601WutE\nT0OIhAkGg6SlpSV6GklJAnwCaa2pqKggEokkeipCJMzQoUNZuXJloqeRlCTAJ5jWGsuyUEoleipC\nxJ18enWX5OATyHEclFIS3IUQrpAAn0CO4yR6CkKIJCYBPoHk46kQwk0S4BNEa12TohFCCDdIgE8g\nrbUEeNGoySLHXRLgE6Q6PSN/uUVjZts2Ho8n0dNIWhLgE8S27URPQYiEkwDvLgnwCSLpGSFMikYC\nvHskwCeIlEgKYVbwliVhyC3yyiaA9J8RwpAA7y55ZRNANliFMCQH7y4J8AkgG6xCGJKDd5cE+AT4\n7garpGpEYyYpGnfJK5sAssEqhCEpGndJgI+z72+wSh5eNGYS4N0lAT7OZINViFqSg3eXBPg4k/SM\nELUcx5EcvIvklY0zCfBC1JIUjbskwMeZdM8TopYEeHdJgI8jOcEqxKEkwLtLAnwcyQarEIeSHLy7\n5JWNI8m/C3EoWcG7SwJ8HEmAF+JQsoJ3l7yycXS4DVZJ14jGTFbw7pIAHyeywSrED8lBJ3dJgI+T\nH9tglaAvGrNoNCopGhfJKxsnkn8X4odkBe8uCfBxIgFeiB+ybZsPPviA1q1b06NHj8M+RmvNjTfe\nSF5eHj179uTLL7+s+TWPx0Pv3r3p3bs3o0aNite0GwxvoifQWMgJ1iMQDuN96y3Uli3orCyIRFCO\nQ3T4cHTnzomenYghx3Ho3r07kyZNYuzYsYd9zDvvvEN+fj75+fksW7aMiRMnsmzZMgBSU1NZuXJl\nPKfcoEiAj4PqDVYJ8D8hHMb3xBN433kHq7AQ7fdDejpq0yZo2hSnXTu8r71G6H/+B+fEExM9WxEj\ntm3ToUMHWrZs+aOPmTdvHmPHjkUpxaBBg9i/fz87duygbdu2cZxpwyQpmjiQE6w/obQU70svkXL1\n1fhefBG0hv37sfbsgQMHwOtFVVSgMzNBa7wvv5zoGYsYuu+++5g1axYXXngh3377Leeee+4PHlNU\nVET79u1rfp6Tk0NRUREAwWCQ/v37M2jQIN544424zbuhkBV8HEj+/UccPEjK+PFYW7eiCgpQjoPj\n9aI8HnAcVEUFKIUGlNY1wV4kjz/+8Y+sXr2a8ePHc8EFF7BgwYIj+v0FBQVkZ2ezadMmhg8fzskn\nn0xnSePVkBV8HEiAPzzPxx9jbduGbtMG0tPRloXatQsdCEA0ik5PR4XDkJKCDodRFRVEzz8/0dMW\nMVSXKprs7Gy2bdtW8/PCwkKys7Nrfg0gNzeXoUOHsmLFCvcm2wBJgI+Dn9pgVUo12lp4FYnU/Njp\n2NF8LRxGZ2XhZGfj9OpF+LLLiA4Zgm7bltDtt2MPHZqg2Qo31CXAjxo1ihdffBGtNZ9++inNmjWj\nbdu2lJSUEAqFACguLmbp0qV069YtHtNuMCRF47K6bLA21ty83a8fOjUVtW8fOiUF3bYt0V69iF5+\nOfaQIZCenugpCpfZts2cOXN4+umnKS4uJicnh3vvvZdI1Zv/hAkTGDlyJPPnzycvL4+0tDSee+45\nANatW8d1112HZVk4jsOkSZMkwH+POsLVY+Ncah4Dx3EIhUI/eVovHA7HcUb1i7VhA77p01F792Kf\ncQaRcePA50v0tEScvPrqq+zcuZM77rgj0VNpaOq0KpQVvMsk//7TnK5dCT3+eKKnIRJEmo25SwK8\nyyTAHx1VUIC1YwdOmzbo446DaBQyMqCRprOSlbQqcJcEeJfJCdY60romeHvefBP/Y4+BUqidO8Hv\nR7dsiT14MOHJkyE1NcGTFbEi/eDdJa+si6RF8H9mffEFqZddRtqwYQR+/3vYvBn/9OnoqpONav9+\nVHExukULvEuX4nv++YTOV8SWpGjcJSt4F8kJ1h+nduzA88kn+P/6V3SLFuisLKzlywnce69Zyfv9\nqLIyqPrHr6JRnGbNsKTvSFKJRqN4vRKG3CKvrIvqmn9vbLXw1hdfEPjDH1AlJaiiIqisRJ9wArRu\njeebb0xbggMH0CkpplY+EDA/Li7G6ds30dMXMaS1lhW8iyRF46LGFLSPROD++8HrRWdmorxerOJi\n1P79EAyimzQh9Oc/o1JSzEq+eXN0u3amVr5VKyLjxyd6+sfGtrE2bMDasAH27cNatQq1e3eiZ5Uw\ntm1LDt5FsoJ3kW3bkp75Pq1NTj0rC5TCadkSa/du2LMH1aIFobvvxjnxRCpffRUOHoSUFKz16yEa\nxTnhhIZ5+Ckaxfv661ibNuGdNw+1axeEw6hQCN28Odg2ofvuI/qLXyR6pnFn27akaFwkr6xLpEXw\nj1AKu08frC+/hNat0R064AQChCdOxD7jDHReXs3jaNIEAOfkkxM44WOgNWrPHgLXX4/ns8/MnkI0\nCikpEAqZXz94EJ2aSmDKFOwhQ9AdOiR61nElm6zuks9GLpEN1h8XmjIF5+STa1ayob/+lehvflMb\n3JOA2rWLtKFDST/5ZLzvvouqrKz9xWCw6kHKBHyPBzwerM2bEzPZBJI6eHfJCt4lcsDpJ2RmEnry\nSQiHTVuC//QmGI3WrnwbiJQJE1AbN5qfKGVW7N9PRVS1QMa2AXA6dYrzLBNPAry7JMC7RDZY68Dv\n/+lf1xrva6/he/55sG3sQYMIjx8PmZkQCMRjhkfNWrECZVlQvYGotfmxZZke92lpJgefkWFy8FOn\nNrr0DMgmq9skwLtENliPnfX55/hmzEC3bg3RKL6ZM/HOnYs+/niTsz/M7T/1hW7Xzlw36PNBWhpU\nVkIgQHTIEMK33AJZWTitWmEVFaHbtjWbzo2QrODdJQHeBbLBGhvW+vUmveHzYX39tbnlybZxmjXD\n//jjBDt3RnfpkuhpHlZw+nRSr7gCHAcsC/v00wm+/PIP0jTOT9xF2hjICt5dEuBdIBush6f27sXz\n5puo0lLs007D6dfvJx+vW7c2+WnHQZWWgmWhU1Nr0jPW1q3Y9TTAO337UvHvf5tqoWbNsP/rv2rT\nNaKG4zhSJukieWVFfJSUkHLddbBrF8rjwff664Tuvhv7zDN/9LfYw4bhvP8+1ldf1XzN6dLFBH2t\nzYnXeky3bl2v00j1gazg3SUBXrhv3z58s2ahtm1Dd+xobo0pL8f/v/9L5U8EeAIBQg88gLVmDSo/\n3zzHwYOwfz/R88/H6dUrXt+Be6pSOI2V1MG7SwK8cJX1+ecEJk9G7dmDtXMnjt+PbtvW1H7X5SYr\nr9cE8l69sM86C6ugAN2kCbpTpwbdG15t2kTquHFY+fk4TZui27cHj4foZZcR+c1vGvT3diQkwLur\n8S4d6pGkzdVHIgTuvBN8PnRODtrnw8rPh717Ufv2EbnwwiN7vubNcXr1QufmNqwAGArhe+YZ/Lff\njnfuXIhESL3yStQ336C9Xqzt2/EsW4a1di3+++/H98QTiZ5x3GitmTZtGq1bt6ZHjx4/+pgbb7yR\nvLw8evbsyZdfflnzay+88AJdunShS5cuvPDCC/GadoMhK3jhGnXgACoYRLdqBYDTvbsJ8E2aEP7N\nb4heeeV/fpJgEM+yZVBZidOtW8OrFY9GSb38cqyVK1HhMMyaRXjJEtTevebgVnm5eZxSNf/5Zs4k\ncsMNiZ13nNi2zYgRI3jggQcYO3bsYR/zzjvvkJ+fT35+PsuWLWPixIksW7aMffv2ce+997J8+XKU\nUvTr149Ro0bRokWLOH8X9ZcEeOEa3bw5umlTKC2Fpk3NSr5jR4JPPYVu0+Y/P0FlJYHJk82bAoBt\nE7niCpwePUzb4Pp8OXcwSGDyZLxvvIEqKTG3UAUC4Dj4X30V7fOZw0/Vqg9CVZ9ubSRs26ZPnz60\n/Ily0Xnz5jF27FiUUgwaNIj9+/ezY8cOFi9ezNlnn13ze88++2wWLFjAz372s3hNv96TFI1wj9dL\n6C9/gUAAVVwMlZWE7ryzbsEd8HzyCdbGjSa9k56OlZ9P4M9/JjB1Kv577qlbDj9BArfdhvef/0RV\nVJiN1IoKU/2jFFgW4ZtuMg+sbtXg85l2DEoRvvnmxE4+Ti655BLmzJnDhAkTuPDCC/n222859zBV\nR0VFRbRv377m5zk5ORQVFf3o10WtxrNUiKOkzakfBeekk6h8/XXUnj2mNe4RtPtV5eU1FSbWhg0m\nCHo86JwcPF99heezz7BPO82tqR8T7/z5qOrVuFJmZR4Og9+PffLJRG6+GXvoUKx168DrNa0NysqI\nXnwx9tlnJ3r6cTF37lxuvPFGrr32Wtq1a8cFF1zAggULEj2tpCIBXrivshK1bx84DvoIArzdrRs+\ny4KyMlQwCJEIzvHH1+arq/PX9VFamlm1e73mTa2yEt2kCfbQoQQfftj0wu/bt/aGqrrsRyShutzo\nlJ2dzbZt22p+XlhYSHZ2NtnZ2SxevPiQrw8dOtSlmTZMkqIRrrLWriX1qqsI3HILKWPH4n322Tr/\nXp2XR+jOOyElBd20KbpZM1NBc/AgWJa5AKSeCt13n/nEEQoB4OTmUr5iBcF//AMaeXuC76rLQadR\no0bx4osvorXm008/pVmzZrRt25YRI0bw3nvvUVJSQklJCe+99x4jRoyI08wbBlnBC/doTWDKFNO6\nITMTolH8s2bhDB6M061bnZ7CGTiQ4MCBUFGB/+9/x/rkE2jShNDtt5ta+HoqevHFVLRti/eDD9DN\nmhH52c+gWbNET6vesW2bu+66i1WrVlFcXExOTg733nsvkUgEgAkTJjBy5Ejmz59PXl4eaWlpPPfc\ncwC0bNmSu+66iwEDBgAwZcqUn9ysbYzUEba1lR64daC1JhgM1vkIdjQaTbr+8dayZfiefRbvu+/i\ndOpUs7Gq9uwhfMcd2MOHJ3iGoj645ppruP322+mVDKeS46tOG32SohExZ61aRcof/oBVUACWhWf9\nenOxdDgMjoNzJLXsWqPy87FWrYIDB9ybdH0QjeL7y19IPeccUq66ymzAJjlpF+wuSdGImPMsXGiq\nX5o1M4ebVq/G2rwZJzeX8M031/1qPq3xPf443kWLTPWM30944kR0167o445rWKdZ68A/ZQq+2bPN\n97V2LWlnnIGTm0v0rLMI33GHqaVPMtJszF0S4EXspaTUXENHWhpOly44ubmEHn0UMjLq/DTWihV4\n//UvnOxsCIXwfPopKRMm4HTrRvScc4iOH59UQd73z3/WHHJS5eWmTXJREb5XXkHt22euOUwy0i7Y\nXfLWKWIuevHFphxyxw7Url0oxyHy298eUXAH0z+++mCQtWGDCXhKodu2xTd/PtZnn7n0HcSI46B2\n7oSysro93us19fKhkPm/UuZrgQDed96pfdNMItJszF0S4OuBZDsYpXNyCM6YQXTsWCKjRxP8+99x\nevc+4udxjj/e/CAUQpWVobQ2h6UsC21ZWDt3xnbiMaR27CDt9NNJ79+fjK5d8T/44H/8PeHf/c6c\neg2Ha1sXpKaaH/t8SdlWWHLw7kq+vzGiXtBt2mAPHIg9YADOcccd3XN06UL4t781vVyUQnu92D16\ngG2jHAenXbsYzzp2UiZMQH37bU2/Gd+TT+J5772f/D2RiRMJPfqo+QTUpo3p41NRAZGIaW2QZAsB\nkBy82yT5JWIvEjFNwr780qw6mzQhOG0aumPHI34qe8QI7GHDYMcOAn/7G1ZhITgOkUsuwenf34XJ\nHxuVn0/gkUfwfPyx6Xlf1apAhUJ4vvoK+5xzfuI3K6IXXUT0oosIlZbie/FF1I4d2Kedhn3eefH7\nJuJIUjTukgDvosZ68bbnX//C+vxzdLt2JrgVF+OfNo3Q3/52dE/o90PHjoQefhi1ezc6EDAHp+oZ\nVVBA2jnnmA3SaBSqDuvg80EggPOdxlj/UdOmjaJlsKRo3CUB3gWNMagDcPAgvqeewvvWW6gdO6BV\nK7Tfj87IQG3ffnTPGQzi+egj1L59OCedhNOzZ2znHEO+114zwb26wVhlJYTD6JQU7FNPJXr55Yme\nYr0jK3h3SYAXsaE1gdtvx7NqFVprrNJS9MqV2H37okpKsI+mR0g4jP/ee/GsX4/2elGVlUSHD8c+\n9VRzjV9KSuy/j2MRjdb2ePd4TA+djAwqZ8826aQjzDWrggJUcTFOXl7StjlwHEdy8C6SV1bEhNqz\nB2v1apw2bdBt22Ln5UF5OdbWrTj9+xM+inSDtXo1no0bcTp0QDdpgtqyBf+TT+J/+GH8U6aYDch6\nJHLppabqJRIxwd7vJ/y73+EMHHjEwd33l7+QduaZpP7856SfcgqeuXNRW7ceeklIErBtW+rgXSSv\nrEsaW5pGe70oQDuOOXWanY32eql87DH0UaZVVDiMrmoNbG3caMojAwF0+/Z4vv0Wz8cf//SmZZzp\nLl2o+L//w//AA6gDB4hefrm5QPsIWcuX43/mGZO71xq1Ywep48ahW7UievbZhB57zHxCSAKSonGX\nBHgRGy1bEjn/fHzz5qH9flQkgj1oEPpHLlKuC7trV3zp6ajdu1Hl5ahgEKeqEkd7vah62JvG6dWL\n4P/7f8f0HFZBQdUPLHPYy3HMyt3vx/vee9ivvko0Sa6lk01Wd0mAFzETueUW03tm/Xp0x45EL7jg\n2A7ntGxJ6E9/wvfcc6iSEnRJCU6XLlBRgbJtnO7dYzf5esSp7tVj2ybdU30zlGVBNIq1Zk1iJxhD\nEuDdJTl4ETuRCFZBAda6dVirVpnV5zHSHTsSvuceKt98k8j48ajSUohGCd94Y517yieE4+B74glS\nzz6blCuuwPrqq7r/1l69CN9yi8njezzmkFerVibQezw4J53k4sTjSw46uUv6wbskGAwCdcvF27aN\nnQR9RvxTp+JZtAjdrJm5bLp5cypnzICmTY/tiffvR5WVmSBX3ypnfoT/wQfxPfEEqqqyRqemUrFo\nEbpz5zo/h9q7F2vDBgKTJ6N27QLHwT7jDIJPPZU0OfjTTz+dL7/8UoL8kavTJp+kaMSx0xr17bd4\n33nH9Hr3eEzt+65dWOvW4fzXfx31U3sWLsT3j3+YYZo0ITx5cr2+yQmtUQUF+J55BmXbtd0hg0G8\nb79N5MYb6/5UmZnYp5xCxXvvYX37rTlT0LlzUrYsEO6Qt01xbEIhApMnk3LttajNm/GsWlVbD16V\nUjhaats2fM8+i87KQrdrh4pE8D/8cP0tFXQcUiZOJP3UU016qqrlL2CC8tG+FoEATrdupo9+Egb3\nxlZxFk8S4MUx8c6Zg/Xpp+g2bXA6dULt24e1Zg3W9u04J5xwTCdP1e7dJqD5/QDoli1RxcVQlf6q\nb7yvv47nrbfM5mh1bXd5OToSQWdkEL300qN7Yq3NG0ZpaewmW48sWLCArl27kpeXx0MPPfSDXy8o\nKODMM8+kZ8+eDB06lMLCwppf83g89O7dm969ezNq1Kh4TrtBkBRNPdCQVzDWN99AIGA2Ajt0wNYa\nUlKIXHcd0QsvrAnOR0O3bl3bPtfvh5ISdFZWvc3DW+vXoyorzVyrv2/LIvqzn5mbrNq2PfInLSsj\n5Te/wfPll6A1kTFjCN999zG9rvWJ1pobbriBhQsXkpOTw4ABAxg1ahTdvrOBfuuttzJ27Fiuvvpq\n3n//fSZPnszMmTMBSE1NZeXKlYmafr0nK3hxTJwuXWovqABUIED00kuJXnklpKUd03Pr9u2JjBuH\nKi5G7diB8ngI//739TZN4XTtiq7u3w7g9WL370/oKDtpAgT+9Cc8X3xh3tQsC/+TT5LRqROpZ56J\nys+P4ewTo6Kigry8PHJzc/H7/YwZM4Z58+Yd8pi1a9cyvOqS9mHDhv3g18WPkxW8OCbRSy81LQU+\n/RQA++STifzqVzF7fnvECOyBA2uraOrxvaTRyy/H+69/4X37bbTXC02bEvz734/pOT3Ll5t0j+PU\nHnoCrK1bSb36aiqWLDEnXhugSy65hK1bt1JSUkL/qtbP4XCYIUOGHPK4Xr16MWfOHG666Sbmzp1L\nWVkZe/fuJTMzk2AwSP/+/fF6vUyaNImLL744Ed9KvSUBXhwbv5/I9dfXXE5hjxp1xFfz/UceT8O4\nzciyCD79NGrzZlRZGc4JJxzzG5LTsSOegoLa06xKof1+SE9HlZSgiorQ1TdfNTBz586lR48enHXW\nWTz77LMAzJw5k2XLlh3yuIcffpgbbriB559/niFDhpCdnV1zOKqgoIDs7Gw2bdrE8OHDOfnkk+l8\nBKWoyU4CvDgmatcuUm64wdw76vHgXbqU8J/+hH3KKTF5fs/HH+N75hkT3FJTCd16K7pLl5g8tyuU\nQufmxuzASOhPfyL18stR+/bVtCugaVNTqeQ46BYtYjRSYvj9/kM2TQsLC8nOzj7kMe3atWPOnDkA\nHDx4kNdff53mzZsD1Dw2NzeXoUOHsmLFCgnw39EAlkUNU0PeOD0SnkWLYP9+dNu26Nat0RkZeF98\nMSbPrfbswff00+gWLdDt2qEtC/+jjzaMy6dtG9/DD5N26qmkjhx51BeE6w4dqFi0iOBzzxEZM8YE\n9FDInOb9wx8adBthrTVpaWnk5+ezefNmwuEws2fP/kE1THFxMU5VaurBBx9k3LhxAJSUlBAKhWoe\ns3Tp0kM2Z4Ws4MWxikYP3fS0LFT1TUbHSO3ZY567umqmWTNUYaH5tFC1gquv/FOnmo6QVSvttMsv\np2LhQpyuXY/8yZo0wT79dOzTTiPy2WdY27bhdOlieuI3cEoppk+fzogRI7Btm3HjxtG9e3emTJlC\n//79GTVqFIsXL2by5MkopRgyZAhPPPEEAOvWreO6667Dsiwcx2HSpEkS4L9HWhW4JBQK1fnKPsdx\niEajcZhV7KlNm0i5/nrTytfrRZWVEf7v/za5+GN97j17CNxyCzoz0wT5qu6RoenT6/VRfbVrF2mn\nnGJud6qeZyRCeNIk02NGAGYFP2TIEClzPDp1ShFIikYcE52bS+iRR7B79kQffzzh227DvvDC2Dx3\nq1amwVhJCWr7dpRtmwBZX4O71gRuvZX03r3NgazKytqTrJZlNkePkfXFF3jnzsVavfqYn0skP1nB\nu6SxrODj4sABVGmpWckfY229m7zz5plPM9UXbkciNSkm3bw5FUuWoNu0Oern9/31r/hnzDDP6ThE\nrrqK6CWXmK6aDbBUUlbwx0RW8CIJ2DbW+vVYK1ZgrV9ff/vQANbXX5tVe3V7har/wr/5DRXvv39M\nwV0VFJjg7vOBz4cqKcE/bRqpV15J6qWXJm0bA3FsZJNVHJ3KSnzPPotnxQqc7GwiEyag27WL7Rha\n450xA++HH5rAFokQvegioqNHx3acGHFyc81egW2bIK8Uds+ehB944JifWxUXmwNPHg+UlNR+OvB6\nsTZswD9tGuEpU2LwXYhkIit4lyR7maT/oYfwzpsHpaV4Pv+cwC23mOqWGFLbt+NduhTdsSM6Jwfd\nvj3et9+ut6vV6OjRRIcNA6/X3B3bsqXp3R4DTufOJsBXVqLCYfNFyzJvfJaFtWFDTMYRyUVW8OLI\nlZfj+fe/zYpdKXR6OmrnTqwNG3CqjpzHRDh86CnWqs1VFYnUz80gj4fgzJlYX3+NKi/H7t4dmjSJ\nzXM3b07lc8+RMnEilJaiLKs25eM42ElQMiliT1bw4sj5fCY9UH3gqLr3e4w7HOp27UxHye3bzT2s\nRUU4eXn1+/SmUjgnn4w9aJBJn6xahfr225jsHTh9+1KxbBnlGzYQvegi8/pXVmIPHkzkd7+LweTj\n6wgLPMRRkBW8i+paRdPg+P1Efv5zfC++aNIGkQhO796xvyM1ECD8hz/gnTULa9s27FNOITJmTIPo\nS6M2byZt1CgoK0NFo0QvuIDgk0/GZu7NmhH8xz9Q27eb6wCzs+tth82fYtu2XLjtMimTdEk4HK7z\nhcJaayIxOv0ZN1rjWboUa+1a9HHHET33XNMX3g1lZaiSErNyj1XKw2Wp551nerh7vSYIezyEpk0j\netllsRuk+uasBlgiCaaU+LzzzuPzzz9P9FQaIrmTVbhIKezTTsM+7TRXh7FWrMD39NMmHeHxEJkw\nAad3b1fHPCb79+N7+WU8K1fWpmWUQlVWxm4j1HHw33cfvlmzQGuiF19M6MEHG1yglxW8+yTAuyQp\nUzMAkQjWmjUQDuOceKLpbOiWgwdNs7GmTc0Bp/JyfE89ReiRRyA93b1xj9b+/aQPGWKuGqysrGnv\ni8cDqanIN6A4AAAgAElEQVTm9YoB78yZ+F56qaYVsXfePJz27YncdFNMnj9eJMC7TwK8qLtgkMAd\nd5gDPR4PumlTQo88YnLALlD795s0RPXp1fR0KClB7d+ProcB3vfKK6ZBGph0VTBoOj9mZBAZNYpo\njC6j8Cxdat48vlNd5PnoIwnw4gfq/26VqDe8CxdiffWVaQ183HGosjKTPnGJbtHCVOYcPGi+cPAg\nBAL1topGlZaaA0hggm8ggG7enPKlSwk98UTMNod1dvahVTnRqGtvsm5yHKdOe1Ti6MmrK+pu506z\naViVftLp6aaSwy1eL5Frr0VVVKAKC1GVlUSuv77e9qOJnnWWWbnbtmky5vMRveiio76P9cdEbrjB\nBPRQCEIhdFYW4T/+MaZjxENdixCOxFNPPUXv3r3p3bs3nTp1YtiwYTF9/oZGUjT1QEOpB9Y9esCr\nr5pVqteL2r8f+4wzYj+QbeOdPRvv++8DED31VOwRI9AtW9brO1mdfv2onDGDwOTJqIMHiV5wAaGH\nHor5ODozk4q33zapGsfBHjy43vfHPxw3UjQTJkxgwoQJRCIRhg8fzi2NvD2zBHhRZ/agQUR+/WtT\nvWHb5gKKqtt1YsmzeDHehQtxOnQwP//wQ3SHDthnnRXzsWLNPu88Ks47r/YL37lLNaYyMrBHjIjt\nc8aZmzn4m266ieHDh3NhjFpXN1QS4EXdKUX0qquIXnGF2fx0aTVtbdhgKmeq//E3bYq1fn2DCPA1\nyspIGT/efAoJBAjdfTeR3/zGnbG0NvsT6ekN4hBYNcdxXAnwzz//PAUFBUyfPj3mz93QNJy/DUms\nQZRUBoOoggLT6MvnczVVoo87ztyGVEWVl6OPO8618dyQcvPNeJcsMQE3HCZw9914Fi+O+Tjqm29I\nGzaM9L59Se/TB8+SJTEfwy3VOfgFCxbQtWtX8vLyeOgwKa2CggLOPPNMevbsydChQw+5pPuFF16g\nS5cudOnShRdeeIEvvviChx9+mFmzZskGLnKS1TWRSIRoNJoUJ1mtjRvx33knqqICtCZ8443upgcO\nHsT/yCNYW7cC4OTkEL711gZzihUg/YQTTFVN9Z9/OEz4v/+b8J13xm4Q2yZt6FDYvRuVnm42XZWi\nYuFCdNu2sRvHJZs2bWLKlCl8/fXXLFy4kJycHAYMGMArr7xyyN2qV1xxBRdccAFXX30177//Ps89\n9xwzZ85k37599O/fn+XLl6OUol+/fgwaNIjFixfTunVrAPr378+MGTMS9S26SU6yihhwHPz33GNK\n8Vq3hlAI/2OPEezeHZ2T486YGRmEf/97PJ98UruJ2ICCO4DOyjJ1/JZV04hNVwWdWFF795q6++oz\nAYEAhMNYGzdiN4AAb9s2Bw4cIC8vj9zcXADGjBnDvHnzDgnwa9eu5dFHHwVg2LBhXFx1nuDdd9/l\n7LPPpmXLlgCcffbZDB06lJdffjnO30n9JZ9hxE87eNAEquoqjUDAHL3fscO9MSsr8T/+OL7XX8c7\ndy7+Rx6B/fvdG88FoUcfNZd/WBZ4vTi5uUR+8YuYjlGzT1H96c9xwLbRrVrFdBy3XH/99Sxfvpwv\nvviC/v37c+6555KTk0NRUdEhj+vVqxdz5swBYO7cuZSVlbF3716Kiopo3759zeMO93sbOwnw4qdl\nZJhAUn3JRjhsgoiLOXHP4sVYmzbhVF3yofbswfvWW66N5wZ70CDKlywh+OCDBKdNo2LhwtjX76ek\nELr/flN3X1UTH7nqqth39XTJtGnT6NWrFxdffDHLly9nwYIFh33cww8/zJIlS+jTpw9LliwhOztb\nTsDWkaRoXNIgNk7rwrII33EHgd/+1nSO9HoJ33YbuqqE0Q1qzx50auqhB6p273ZtPLfoTp2Idurk\n6hjRiy/G7tEDKz8f3aYNTp8+ro4XS7Ztk56ezrZt22q+VlhYSPb3TuW2a9euZgV/8OBBXn/9dZo3\nb052djaLv7NxXVhYyNChQ+Mx9QZDVvDiP7K+/BJSU7E7dUK3a4f3vfdcTZk4J5xgqmiiUXAcVEkJ\nzkknuTZeQ6fz8rDPO69BBXcwAb5169bk5+ezefNmwuEws2fPZtSoUYc8rri4GMdxAHjwwQcZV3X2\nYsSIEbz33nuUlJRQUlLCe++9x4gGfjYg1iTAi5+mNb5588zR+OxsdIcOqH378Hz1lWtDOgMHErnw\nQtTOnaiiIuyhQxtWDXw1xzGtHOK1fxAM4nnnHbyvv476zqq4vnIcB5/Px/Tp0xkxYgQnnXQSo0eP\npnv37kyZMoU333wTgMWLF9O1a1dOOOEEdu3axR133AFAy5YtueuuuxgwYAADBgxgypQpNRuuwpAy\nSZdEo1EikUjDL5PUmtTLL0c3aVJzJZ/avp3wH/+Iffrprg1rrV6N9403IBw2AX748AZ1a5HavZvU\nyy7D2rQJbJvwr39N+IEH3PseystJvfJKMx6Az0flCy/U6975y5cvZ9asWTz77LOJnkpDVKe/SLKC\nd8mR5ODrdb5eKSJjxpjVdHExbN+Obt0a28XAob79Ft+TT0JFBQC+V1/F8+GHro3nhsANN2Bt3Fhz\nb61/5ky88+a5Np739dexNm5Ep6ai09LQVYer6jM3mo2JQ8kmq/iPopdfjs7MxLN8OU5mJtFLLnG1\nLt36+mtzWrZZMwCczEysZcvcaWzmEs/KleYH1W/ewSDWihUQo57w36eKi02ZZPV4fr/5Wj0m/eDd\nJwG+HqjX3ST370dVVmIPGWLSJPGQmlpb2w2oUKheXvDxU5yOHU2Qrz7oFAigqw7zuDLef/0XPPOM\ned08HlQwSHTkSNfGi4VoNCoB3mXy+UgcntZ4X36Z1LFjSZkwgcCNN9beVuSmkhJ0VhakpmJt2WL6\n39g20fPPd3/sGApNn45u3hwdCIDPhz1wIJGrrnJtPPvUUwndeScK07snevbZhGLZFsEFWmsJ8C6T\nFbw4LOurr/C9/DK6TRvT+337dnyPPUb4vvvcG3PDBnx//7vJWx84gOPzQXY29rnnoo8/3rVx3eB0\n7Ur555/jWbECnZ6O07+/650eoz//OdGrrjr0Or96THLw7pMALw5LFRWZkilv1V+RzEyzaegWx8E3\nY4ap1vF48Kxda4J8Sgrel19GZ2Tg9Ozp3vhuaN4cO943Cill/qs6P6DT003LhHpIcvDuk7dPcVi6\ndWtTh1VVBaL276+5gMMVlZWmaiYjA7VrFyoSMU20MjLQLVrgefdd98ZOMqqoiNSRI0k7/XTS+/XD\n+9JLiZ7SYUmAd58EeHFYTr9+RC+4ALVzJ+zciW7ShMh//7d7A6alodu2NS0JtEZHIqAUOiPDpBuq\nTjI2JJ5PPsE/aRL+qVPdbc72PSk33YS1ZQs6IwPt9xN44AGsVaviNn5dSYB3n6RoxOEpReS664he\neCFUVJjWwG7eh6oUkfHj8T32GNbWrahIxLQnqKxE7d9P9Oqr3RvbBd433yRl4kQIBsHjwffCC1R8\n9JHZ03CT1lirV5tUF5hy01AIa906nF693B37CDmOIzl4l8mrWw8opepPqWQ4jPe55whcdx3+22+H\nYBDdpUt8LrsuLUVVVqKPOw67Z0+cZs3QHTsSueYaUwbYgPjvvdd03vT5wLJQBw7gmznT/YGVMm8i\nwaD5edUnH9ffWI6CW1f2iVoS4OuJ+nKa1TdjBr7XXkMFg3i++YbA5MnxKY8EfC+8YNIKnTqhTzoJ\nZdtER4zA6ds3LuPHkgoGD21LYNvwnWsI3RR89NGalbuqrCQ6ciT2kCFxGftI2LaN1ytJBDfJqysO\n4Vm0CN2uHXi96LQ0VFER1po12G63YY1GUQcOoDt2ND+3LLPyPXiwQTZAilxxBf7qg0daQ0qKSXfF\ngdOvH5Xvvou1bh26eXNTfVRPFhDfJWWS7pMA75L6siI/YikpNachUarmFKbrvF6czp2xtm41bzAV\nFSbd0MAu264WvvNOk3t/7TV0Rgahe+7B6dcvPoOXleG/9168ixejmzYl9Kc/YZ99dnzGPgKSonGf\nvH2KQ0R+8QusFSvwvPMOnnfeQQcC2HHqMx755S/RgQDWJ59g5ecT+cUvGsz1cz/g9RK+6y7KV62i\nYunSuAbYwO234124EO33w8GDpqpmzZq4jV9XsoJ3n7y64hCqsBCdlYVz0knY3bqhQiGsb76Jy9jW\npk2o8nJ0hw7o5s3xfPSR2agUR8S7ZIk54OTxmE9f0Sie5csTPa0fkBW8+yRF46KGlKZRW7fie+kl\nvK+9hm7VCicvz6RoCguxNmzA6dHD9Tl4580z1R5VFTvWli1Y+fk43bu7PrYb1N69WJ99Bikp2Ked\nZjY+40A3bWouGfF4atoW6KrOnPWJ1MG7TwK8i7TWDSLIqz17CEyaVHOhtrVhAyiF07kzynHQzZvH\nZyLhcE2LYDMxdUhXyYbEWr+e1JEjUdEoaI1z4olU/N//xaVtQOi++0i54QYoKwPLwjnpJKLnnuv6\nuEdKVvDukwBfTySyFt5atQpVVoZu3x4nNRXP55+bvjMpKdjdu5vVp5siEaw1a9BZWVjr16OPPx5V\nUYFOS8NpYE3GqgVuvBFVWlqzira+/hrfc88RmTjR9bHtYcOonDPHfHpo2pToiBH1sh+Nbdv44vSp\nprGSHLwwQQhqqmfs3r1xTjyR0J13Er73XneraCIRfM88g+/551Hbt6MOHIDSUpzcXCK/+x3E69ND\njFmFhbWliUpBOIy1ZUvcxne6diX6y18Svegikypavdqs6OuR6hTNggUL6Nq1K3l5eTz00EM/eNzW\nrVsZNmwYffr0oWfPnsyfPx+ALVu2kJqaSu/evenduzcTJkyI97dQ78kKXmD362d6cy9caIKRx0Po\n7rvjUtZnbdxo8uydOpm5ZGWhtCZyzTWuj+0me8AAvAsWmBw4mE9DgwbFfR6+6dPx//3v6KoN1+Cz\nz9abrpy2baOU4vrrr2fhwoXk5OQwYMAARo0aRbdu3WoeN3XqVEaPHs3EiRNZu3YtI0eOZEvVm2Xn\nzp1ZWX17lvgBWcELs2q2LJwuXXByc3G6dMHz73/XBic3hcOH9i5PSYnbiU83BadNw+7Vq2YVHx43\njqhL1/X9GGvVKhPcU1LM61pRQcr118d1Dj/FcRy2bt1KXl4eubm5+P1+xowZw7zv3V2rlKK0tBSA\nAwcO0K5du0RMt0GSFbwwnQ79/kPy3da2bRAKuZ671R06gM+H2r0b7fdj7d1LtAHdvfqjWrSg8t13\nzZWHhYWk3ngj/uOPx+7SheD//q+r1/dVswoKaj6RAZCWhtq1y/SpSXBO/pJLLmHdunVEIhEcx6F/\n//5kZWXx85//nGXLlh3y2HvuuYdzzjmHxx9/nPLycv71r3/V/NrmzZvp06cPTZs2ZerUqZx++unx\n/lbqNVnBC3SrVijHqa1Y2b8fJysrLidYdWYm0dNOw1q+HO8HH0B5Oc4pp7g+blwoBX4/aVdcYS4S\nDwbxrFpF2kUX1TYDc5HTqZP5FBaNmi9UVJhTwvVgw3Xu3Llcd911XHnllVx88cUsX76cBQsWHPax\nr7zyCr/61a8oLCxk/vz5/PKXv8RxHNq2bcvWrVtZsWIFjz76KFdddVXNSl8YEuAFulMnwldfjdq9\nG7VjBwoI/+EPcelfonbtwvPhh9jnnEP08svR7drhfe0118eNF2v9enOZSXXrB48HdeAA1qZNro/t\nnHwy4ZtuQoVCpvlZkyYEn3zS9XHryrZtsrKy2LZtW83XCgsLyc7OPuRxzz77LKNHjwZg8ODBBINB\niouLCQQCZGZmAtCvXz86d+7MRjdvHWuAJEXTyKlNm8y9oSkphP7yF6CqtWx6enzGLy42JaJVnxZ0\n69aowkLT5jYJjrHrpk1rauFrevtEIrX92l0WGT+e6KWXovbuNTdyxaPtcx3Ztk3Xrl154YUX2Lx5\nM9nZ2cyePZuXX375kMd16NCBRYsW8atf/Yp169YRDAZp1aoVe/bsoWXLlng8HjZt2kR+fj65cUh9\nNSQS4F3SEA44WatX4//Tn8C2UY6Dc9xxhP7857gFd4JBU7pXWmrSQz4fav9+dFZWUgR3AJ2XR/TC\nC/G+9VZN7jsyejS6ffv4zSErC52ZifeNN/D+85/o1FQi11+f8DbMWmt8Ph/Tp09nxIgR2LbNuHHj\n6N69O1OmTKF///6MGjWKRx55hGuvvZa//e1vKKV4/vnnUUrx4YcfMmXKFHw+H5Zl8dRTT9GyZcuE\nfk/1jTrCwzUNsXNrQmitCQaDdW6mFIlE4n7QKTBpEmr7dnSLFoDZlAtfey32+ee7P/i+ffhmzECV\nlJjNwPJynBNPhPR0ItdcY3LFycJx8L7xBtY33+CceKJpGxznBYD3//0/Avfea8olHQfl9VL58ssJ\nbQNx//33M2DAAC677LKEzaEBq9NfIFnBN2YVFWivF3XwoGnNa1moioq4DO19+21zejYnBzs7G7V+\nPfaZZ2Kffnq9SiPEhGURvfTShE7BN3Mm2uerfW1LSvC++SbhBAZ4ufDDffLqNmL2Kafgv/9+CIdR\nWqPT07Hj0FQMwNq1q7YBllLQtKmp2km24F5Fbd+OtXkzTqdOifl0Ut147Dt0goOrNBtzX3IkOsXR\nqW7u1aQJumVLnFatsPLz4zK03bkz1q5dqH37UHv3okIhdNu2cRk73rwvvUT6gAGk/PznpA8YgPeV\nV+I+h/Bvf4uybXPv7YED6PR0oglOjUizMffJCr6eSESzMaugAPuEE2r6vajiYqzNm7HjMLZ9yil4\nX38dz7JlKCB62mk17QqSidqzh5TbboNIxFTTOA4pv/895WefbTaT48QeMYLg9Ol4X3oJ0tMJ33BD\nXA5b/eSc5MIP10mAb8Sczp3xffUVTnWqpLwcJ07/6D1Ll6Jzc4kOHAiWhVVYiLViBc7AgXEZP17U\ntm1on8+snsH0Zvf5zNfjGOApLcX/5JNY69aZqqlvv8UePhyne3fsc85JyJ2tsoJ3nwT4Rix60UVY\nmzaZToNa4wwejB2nvuHW7t2mFtzvB0CnpKD27o3L2PHkdOxognt1Xb/joGw77m2QA3/5C9bq1eiM\nDNSuXXiXLsWzahU0bUrkF78gPHlyXOcDkoOPBwnwjZDauhX///yPWUV27Eh40iR0dra5/zROKzkn\nNxfvggXo0lIT/CorTV+aZJOZSeUzz5B67bU1Ab5yxgyoKk2NF2v1anNHaySCqm7mZlno9HR8s2YR\nHj8eqk6Fxous4N0nCbDGprIS//33o4qL0Tk5qF278M2YYW5tiuPHdPvkk1F79uD56CM8S5eigkGc\nnJy4jR9P9nnncXDtWioWLuTg2rVx+5T0XU7XrqiqG7tQyvwXCJg3HctCVVbGfU6Sg3efrOAbGbVr\nl6k/r6pY0a1amf4zxcVxLd/zfP45zgknoAcPNgFm5048y5djn3lm3OYQV02b4jRtmrDhQ3/8I9aa\nNbWXjvh8Jl1TWoqTl5eQ0k1J0bhPAnxj06QJhEJYK1aYPvApKTitWqHj1Z6giiotNX3Kq3LwBAJJ\n0Qf+cNSuXQRuugnP2rXYJ55IaNq0+AfUzEwq587F2rgRtXs3vqefxvrmG6KDBhH+858T0hpCUjTu\nk89HLkvUPas/RrdsCX4/1tatqGAQtWeP+dgep0MvqrgY39NP4/n4YzyLF0NxMVRWosrL0V27xmUO\ncRWJkHr++XgXLUJt34538WLSRo40vfbjze/H6dEDbBvP+vWoSATPF1+YVsYJICt490mAd0m9bTZW\nWgpKER02DLtPH6JDh0KzZuaCD7dFInhnzULt24fTty/6+OPxfPopqrKSyGWX4SRhgLc2bsTatavq\nJ1X/3PbuNW2EE6GkhJRbb0UrhU5NBaUI3HwzHDgQ96nICt59kqJpbAIBs8GWkWGajDkOlJXVtOt1\nkzpwwHSLrNpMdfr0QbVqReTXvzYVPElIp6SYT0g1X9DmcpUEXbphFRWZjoHVf96BAKqyEmvHjtrz\nEHEim6zuk1e3sfH5iIwejdq+HbV1K2rbNuzTTkPHoS5bVwe13btNz/cdO0Dr2q8nIZ2bS3TYMPD5\nzM1KPh/RwYNxOndOyHyctm1RWps2FVDzf+e44+I+F0nRuE9W8C6qV2karfG89Ra+f/4TbBuna1fs\ngQPRxx2H069ffEokMzJwOnbEN3NmTU14dNQos/GbrJQi+MIL+J5/Huurr1B79uBdvJiMtm2JnnUW\nwWeegYyM+M0nM5Pggw+SMnkyOhhEaU3wr3+Ne10+SIomHmQF30hYX36J76WX0K1aobOzTTVFaSnO\ngAHxq6AIhbCKioiOHIl95plEL7zQpG2Ki+MzfqJ4vUSuuYboeefh/fBDs5JXCu/ixQT+8Ie4T8c+\n/3wq3n+f4MyZVMybh4pE8L75Ztz/HBzHkXbBLpNXt55we7VvbdxoShJ9PsDc8uNZvZqoq6N+T3Ex\nVFRAdja66vvV5eW16YJkFQrhf+wxvDNnmlLQ6vx3NIr3ww9JQD1NTR+c1CuuMJVUgG7ShMpXXolL\nug4kBx8P8uo2EjorywTSqrJNdfBg/PKujoPn3Xfx/+MfWBs34lmwAMrLUbt3m1bFcT4iH1dak3rV\nVfgffdTcXOU45uo+AMdJ6Oayb8YM1M6d6CZN0E2aoA4cwP/II3Eb37ZtPvroI7p27UpeXh4PPfTQ\nDx6zdetWhg0bRp8+fejZsyfz58+v+bUHH3yQvLw8unbtyrvvvhu3eTcksoJvBNSePeimTXGys005\npGWhmzUj+rOfxWV8a8MGPJ9+iu7QAbt1a6wPP8RauRL79NOJnn9+7Yo2CaktW/B88knNnbM1b7KW\nBenpBOMYUH8wtx07zBV+VbTPh6ou6YyDaDTKlClT+OCDD8jJyWHAgAGMGjWKbt261Txm6tSpjB49\nmokTJ7J27VpGjhzJli1bWLt2LbNnz2bNmjVs376ds846i40bN0pO/3skwCc5a9Uq/NOmmVK9SAS7\nXz/sM8/EycuL2+am2r27tu9JSgrOqaei/X6iY8fGZfyEikZr9ziUMi0CvF4iN9xAZOzYuF6+/X32\nGWfgXbgQXbUnoCIR7KFD4zb+/v376dSpE7lVLarHjBnDvHnzDgnwSilKS0sBOHDgAO2qTgDPmzeP\nMWPGEAgE6NSpE3l5eXz22WcMHjw4bvNvCCTAJzPHwffEE6Ytb3q6OcG4ciXRyy+PT3CvrMTz3nt4\nly5FrVplKjV8PnRKiqmeaQR0bi5O585YGzaYYO/xoNu3JzxhQty7N35f9JJLUAUF+P/+d3AcImPG\nEBk/Pi5jX3LJJXz99dekpqbSv39/AMLhMEOGDDnkcffccw/nnHMOjz/+OOXl5fzrX/8CoKioiEGD\nBtU8Licnh6KiorjMvSGRHHwyCwZRFRWo8nLTaGrzZnPZQ9WKyG2et9/G+uornNatUaWl5vRmWRmq\npKS2B02y83iomDev5qSuk5uLVVBAxoknknruubB/f+LmFgzi/fRT82eRloZ3yRLUzp1xGXru3Ll0\n6tSJkSNHsnz5cpYvX85tt932g8e98sor/OpXv6KwsJD58+fzy1/+Esdx4jLHZCABPplVXWBtLV1q\nDjatX4+1fn3tZdduqup3Qvv2qIoKdIcOOLm52P36ET3nHKxNm9yfQ33RogWhJ58kfPvth7SE8KxY\nQcrvfpewafleeglr1Sp0Who6NRVVXIx/6tS4je/1etmxY0fNzwsLC8nOzj7kMc8++yyjR48GYPDg\nwQSDQYqLi8nOzmbbd17Lw/1eIQE+uSmFTkkxVSq2DampOO3bx2eVZlng95s3lTVrsIqKTAVJ06YQ\nCqHjebinnrA++QQqK2v7sds2ns8+S9x8tmypnQugAwFT6RMnaWlpbNq0ic2bNxMOh5k9ezajvpe6\n69ChA4sWLQJg3bp1BINBWrVqxahRo5g9ezahUIjNmzeTn5/PwCS77jEWJAef5JTPhzN4sOkW6fGg\ntm2rvR/U1YEVdtu2+BctMm8ylZWmQmPfPlRGBtFk7fv+E3THjmazuWpTE63RbdokbD52375458wx\nb7xKoYJB7L594za+1ppHHnmEESNGYNs248aNo3v37kyZMoX+/fszatQoHnnkEa699lr+9re/oZTi\n+eefRylF9+7dGT16NN26dcPr9fLEE09IBc1hqCNsZ1u/et/Wc8Gqeue6HGKybRs7xoFX7dmDZ84c\nvB98gM7KQgWD6ECA0NSpcTma7vvb39Aej7ktyLKwdu4kOnw49imnJORofMJVVpI2ciRWfj7askAp\nKt96C+fkkxMzH8fBP3UqvldeAcAeOJDgE0/ErXXC8OHD+eijj0hJ4l5ELqrTyUhZwScjrfG88Qa+\nefPMSjEcRjdpgtO9O9GLL3Y/uJaV4Vm2zOT727QxJZmWhY5EcE44oXEGd4DUVCrefRfPkiWoigrs\nQYPQCWjyVcOyCE+ZQviWW2D3blIeeID0007DadWK0AMPmDYWLpJmY+6TAO8ipVRCLvxQ33yDb+5c\ndHY2eL2olBTTD2XiRPcHr6zE9/LLcOAATuvWeJYtQ+3bh27bFic726QpGjOPBwIBdCRiflwfZGSQ\nMn48ni+/NCdad+0idfx4Kt5+29WbpxzHkVYFLpMAn4Ss4mJTDpmfjzp4EN2iBVZFhTlB6XLPG1VU\nhCopwak6wGO3bIm1aRPRc8/F6dat8ZRHHk44TOpFF+H56itTD5/oFE21YNAE92bNzN+PtDSoqDCn\njV2+WrBedVxNQhLgk5DTsqU5WFN1sYTatg3nxBPj0xJYKaisxPryy5o3F52Tg9OnT3zGr8d8s2bh\nWbnStCtQCuU4pEycSMXHHyd2Yn6/+a+qXz1a11Y8uUwCvLvk81Eysix069bmx+Xl6ObNzY1NcbjU\nWmdloQoKsL75Bg4exPrqK7TP1+iDO4DautU0Gqt+LZRC1YfTl5ZF6M47UaEQat8+VFkZ9sCB2HLs\nv1DWRXgAACAASURBVMGTAF9PxHQlo5QJ6B4P+HyoSASrvDwuQVaVluKccAJ2377o9u2xhw0zK8NI\nxPWx6ztnwABz+EzrmoZjdt++NR0+E8keOhSnTRtT8RQOmyZw9WWPQBw1CfBJRhUU4Pn3v7Hy882B\nIr/fBNfKShNo3aI11hdf4HnlFTyrVkGTJji9epkqEa83fpeK1GPRkSNNDxrLMjl4v9/c7tS+Pb5n\nn03o3AI33YRVWIjTti26SRMCd9+NtWZNQuckjp38q0si6ptv8N9/P553363No7Zogd2nD07HjqgD\nB1wb21q9Gs/ChZCVhXPccXjffx9r7VqsoiLToVBWg6AU4SlTOFhQQHT4cFT1gafKSgJ33YVnyZLE\nzEtrPCtWmKZ0SoHfj9Ya6+uvEzMfETMS4F0U7w0k7/z5ZpMsM9N0j/T5TP49MxNSUtAtW7o2trVx\nI7pFC5TjoHv0wO7VCyc7m8hVV+HE8XRkg5CWhmfZMtM+Qimzog8G8Xz4YWLmo5S5eCRUdbeU1ihI\n6GUkIjakiiaZVFRgrVuHqr4Gr6QEtXMnKjOTyPXXm6DvEu334/niC1T19XuWhTNypNS9/widlWU+\nUXk85tOW31+7MZ4Aob/8hZQJE0wqz3GInnEG9nfa8YqGSVbwySQ9HbVrF9rvN828mjQheuaZhB5+\n2JRJukinpWGVlKC0RmltqkXczPk3cKFp08yGq88HgQBObi6RX/4yYfOxBw+mYv58gn/+M+Ff/xrv\nJ5+Q3rcvqZdfbi5sibFEHABsjGQFn0yaNEHn5JgugVpjt29vNjhdPlykdu3C2rwZu2dP08fEstBe\nL+rgQVfHbcjsU0+l/MMP8X78MTo93VStVLV3ThSdnY0uK8N/221mc75ZM6y1awncdBPBqn41sSZ1\n8O6SFbzL4rlScVJTUUVFODk5OMcfj7V7N5SUuDqmtXo13pdfNpdpf/EFlJWh27bFCgZdPeaeDDxr\n1+JZtAjP4sWo7dsTPR3A/HnqqpQRSqGbNMGzYkW9KOUUR05W8MmkRQt0u3aosjJQCuf44026xC3h\nMJ4PPkC3aWP63gQCeFauxPZ4sPv3x+nZ072xGzjviy+SMmmSyXlbFr4336T8o48Svmehs7Jqeygp\nBcGg2aSXlXaDJAHeRXH9+BkKQThs6phPOcVUQhw86F4lREkJ1rJlWBs24Pj96KwsnN690c2aEb3s\nMnTVRcri8AIPP2z2KarLR8vL8b3yCuFJkxI6L/uMM4gOHYp38eKaswuh3/0OVVRkPpFJoG9QJMAn\nAbVjB77HH0ft22fuXd23zzT7CgTMBduxduAAvn/+01Tq2DbWokU4p51WU4qp5eq0/+z7J3u1Nq9n\nolkWocceI7psGWzejH/GDAIPPGAqay64gNADD8ihtQZE/qSSgO+551ChEDo7G3voUHRaGtHzziN0\n552ufOS3tmyBigpIT8fp0cPk3NesQbdsSfSSS8ytReInRcaNg5QUcxgtGjW3bRUU4H3pJfO1RLIs\n7MGD8S5ZgrVzJzo9HZ2ejvf//g/vW28ldm7iiMgKvqHTGrVlC6q4GGvPHrMxlplpPk5nZro2pvXt\ntybFYFlg29innkr0iivcGS8JhW+9FZ2Whm/2bHONYmUlvjlz8L3zDtHFiwk+80yip4hn/Xp0dWVP\n1Z+z2rAhpmMsWLCAm266Cdu2ueaaa5j0vRTVzTffzAcf/P/27j0uqjrvA/jnnLnBoHJRQeQug6ig\noqLYRU0NdbPQTBMvqz26+9jlWXfbLbOt7KldX2Ttpj219pRbqfuUrJUbromal7Q1XQUveQ+VUARR\nkYswM8ycc37PHz9mAAUFmTvf9+vlKx3OnPMbGr785ne+v+93FwDAaDTiypUrqKys5ONTqdC/vtRy\ndHQ0Nm7c6NCx+QIK8N5OECDU1vJKhT16AFYrxMJCCNXVTrskU6shlJeDdenCZ543bkCw7YIkrSMI\nsD7zDORRo6AfP57valWrAYsF6n/+E0JxMVhkpFuHKPfuDfX33/OUSUXh9XMSEhx2fsYYnnnmGXzz\nzTeIjIzE0KFDkZGRgX79+tmPWb58uf3v7777Lg4fPmz/t7+/P44cOeKw8fgiWqLxAUrPnkBgIN8Z\naTJBiY932sd84fx5qA4ehBISAta9O1hoKOT77uNBgLSdycRvtDa+ealWQzAa3TemepbXX4fSqRPE\nCxcgFhdDSkuDlJHhsPMbjUYYDAb06tULWq0WmZmZyMnJafH4devWYcaMGQ67fkdAAd6bSRLEvDwI\nFgtYdDRvaJ2eDhYaCuaEvqfiqVNQ//OfQHU1xPJyfjO3vpEIi452+PU6AiUpie86thWHE0UoYWFQ\n4uLcPTSIJ05AvHEDTK8H8/eH+tAhCOfOOeTciqJAkiRE1Xf+AoDIyEhcaqE+flFREQoLCzFmzBj7\nY2azGampqRg+fDi++uorh4zL11CA9xBtTqlUFGhWr+ZlZk0mXrnxxAkIZWVQUlOhDBzo2AHKMsR9\n+3jaZUwM5Pvvh1hRAfH0aSjR0ZDvv9+x1+so9HoYc3Mh33MPWPfukEaMgGnTJl7CwM00H3wAJoo8\nM6prV95v10E7Wh977DGUlJTgq6++QmpqKiZMmHDb47OzszF16tQmTbqLioqQl5eHzz77DL/5zW9w\nzkG/fHwJrcF7KaGoCOKRI3x7e20t5NRUoLYWlt/+Fiw21qGpbMKFC1Bt2wbVvn1gnTpBSUvjGTvD\nh0MeOxZKUpLDrtURschISI89BvHECZ6V5MaiY43Zyxk35qClv3Xr1uGBBx5AVFQUtm7dCgDIyspC\nRAspttnZ2fjLX/7S5DHbsb169cIDDzyAw4cPIz4+3iHj8xU0g/dWkgSxqAhifj7EggKIP/wA8do1\nnj3jyDzlGzd4GeJOnaAMHgzx2jWIe/dCuHwZrHNnKLGxjrtWR8QY/ObMge7FF6FZtQq6xYvh98QT\nHlEawDp3LgRZ5q0eb9wANBrII0c6pDuXLMsIDAxEQUEBCgsLYbFYkJ2djYxm1vhPnz6NiooK3NOo\nhWBFRQXq6m/sX7t2DXv37m1yc5ZwNIP3UszfH8L162CyDCgKBEnibfqMRp5f7QhVVVAdOgSUlvIy\nCJGRkEeOhHDyJOQ+fXiddyeWIO4IhLNnod65k+9EVqmAujqot2+HcP48mJtno9LkyYBKBXV2NoTq\nagjnz8Pv178G8/eHeeVKKKmpd31uRVGgVqvx3nvvYfz48ZBlGfPmzUNSUhKWLFmC1NRUe7DPzs5G\nZmZmk2XMU6dOYcGCBRBFEYqiYPHixRTgmyG0sRiW+6cVXsRqtUKSJIitmFEzxmBtw8xIuHIFuvnz\nIZ4/zz82azRgoaEwr13rmCJf5eXQ/OMfQGUlVHl5/MbfvffydL66OkhPPEHb1h1APHoU+okTeTaN\njb8/jLm5UOpzvN2uogL6MWP4pwo/Pz6J0Gph3L37rn/BV1RUYPbs2djjriYn3q9VP3y0RONEzqxF\nw7p0gWAygYWFQTEY+LotY00DRTuoDh8GrFawgAAo8fEQL1+GeOQIhNpayBMmUHB3ECUxESwoiH8/\n6wt8sZAQKL17u3todmJRUUNwBwC9HoLV2q4KmLIsN7lhSpyDlmg8RJs+SckyhMJCnv8uyxBqaqBE\nRvKNR45SVQXhhx8g1H/6ULRayAMHQs7IAPR6x12no/Pzg3HLFvg9/TQv3NanD8wrV3pUuQfWowcE\nWQaTJL4Zy2oFGAPr1u2uz0kB3jUowHsbSYJmzRqeEllVBaG8HPKIEfwHLijIcYW+ZBlidTWUiAhe\nDqG6mgcdCu4Ox4KCIPftC9TVQYmP53nxHoT16IG6hQuh++//BiQJgloNc1YW0I69FoqiUIB3AQrw\nXkY8fhzi0aP8hmpUFCCKEC9cgJSRAWn8+PbfYK2uhnrHDoj5+fwGrskEdO4MZcgQjws8PkFRoJ88\nGeKxY0BdHVSHD0P173/z9W21h/x4Kgq/EVz/y50B0GRnQ8rMvOtuYbIst+reFGkfD3kH+aa2rMG3\n9lihogLijz/ym531WRdyRASk6dPvdpgNGOMZHDU1YP36QaiogCBJkPv2hXDjhtuzOnyRcO4cxJMn\nealgUeS1hH76CeLx41BSUtw9PACAUFIC1Q8/NLlXIF68yDe53WVTF1qicQ36FeptGAPKywGTCcL1\n6xCqq3lrvvaqrYW4fz+EgwfB6tdXlbQ0AIBgMkEaO5aaeDjLzfdfbGULPIUo3jrG+uJjd4sCvGtQ\ngPcyrFs3QKOBcO0aUFPDf9DM5vZtjDGZoN64EeKxY1BVVED8/nvg8mWwbt0gDxoE6+OPgyUmOu5F\nEDsWHw+5f3++1KEofIZcWwt9ejr8Hn+c/z929xjDwyE98ACfUJSVQbhyBUpICFQHD0IoLLy7czJG\nAd4FKMB7GabV8hmVTsdnUBYLDwx3GwgsFojHjwOXLwMREZDuuQeCWs0baF++zGfxQUGOfRGkgSjC\n9I9/wDJvHi/cVv8YFAXq3bvh95vfuHd8ACAIkO+5h2fPmM0QqqqgKiiANisL+kcfhXj0aJtPSWvw\nrkHfYW/TqRO/+abV8ip/XbtCqK3lOyHbqqoK6g0boP7mG6gOH+bNHLp2hXzPPZAHDoT0+OOOL1pG\nbhUQAEtWFuQHHmiYxQsCb2q+e7e7RwfU1UGXlcUrlAYE2McGPz8wiwXaN95o8ylpicY16Carl2GM\ngQUGAno9mEbDNyOFhPCWfW08l2rvXsBqhdynD1Tl5RCPHYOs00EQRUijR7crDY60nRIezpdqrFb7\nzcz25Jo7jG0pUKPhN/cBPj5Z5suFVVVtPiUFeNegGby3YAyqrVuhff99ntEiimCRkVBSUsBiY8Ha\nkp9+/TrUmzZBvWkThIsXAZUK8vDhULp35/1cx42jNXc3sM6bByU6mlcI1emAgACY33nH3cMCQkKg\nxMTw951eb78JzKxWCGYzpHHj2nxKWqJxDfoOewnx5Emodu4E1Goo8fEQKiqAqipAFCFNnNj62bbJ\nBPXmzWBVVVAiIiCePQvVsWOATgcWHw9l4kSeDkmlCFyvc2cYc3NhnTYN0oQJMK5dC2XYMHePChAE\nmD/+GEq/fryEsJ8fIAi8B7AkQXrooTaf0lZsjDgXfYe9hHDhAsSCAv6xWBT5TKpbN1gXLmx9/fDr\n16Gq78rDkpJ4HXerFeK5cxBDQyGPGOExtcg7pBs3oB8/HmJpKSDLUG/ZAtNnn0EePdrdIwOLiIDp\nH/+AesMG6H7/e77pTRAg1NTA7+WXYVq/vk3nUxTFqbWaCEcB3kPc6c0u1NVBLCuzb4ZhsgxWXX3n\ngFxdDdX+/RCKinhgDw2F+NNPEGpqIKelQRk4EKxnT0hz5jiuzDC5K5q//Q3ipUv8hnn9jUy/Z59F\nrQc1lhaKi/kko/79ynQ6CEVFbT4PrcG7BgV4L6GEhvIffNsPvyhCuFNqpNUKdW4uUFkJ4fx5CFeu\nQPD3h9K3L8RTp6D64QcokZGQx46l4O4BhPLyhv+/NpWV7htQM5S+fRsKjqF+E9zQoW0+DwV416A1\neA9xp2qSLCCgIQderYagKA0BvznV1RD374f4739DdfQoVOfPQ7x6FcJPP0ExGKAMGsSrQ06ZQiUI\nPIQ8ejS/wdpoJ6tw4wYCEhKg/vxzN4+Okx98EPKAAbycwk8/AbW1sC5c2PbzUIB3CQrwTuTQNUa9\nHkyrBRNFwGQC02h4XZoTJ3jpAgCoq+MBff16aN5+G+K+fVDl50O4dAlKWBi/MXbhAnD9OpheD2Xk\nSM9IwyMAAPn++2F+802eBmvLhVcUCNeuwW/hQqi+/97dQ4SYl8c/+UVFgUVHA3o9dH/4Q5vPoygK\nZdG4AH2HvUVQEIT6mTvz9+ct1K5dgyonB9o334Tmz3+G9uWXofr6a4j5+RAKCiBWVYGFh0MwmyFc\nvcpLD0RGAkFBkB9+GKx7d3e/KnIT6ec/R21REVjXrvwBW6A3maDats29gwMgnj7NP11otWAaDVhA\nAK+E2Ua2GfyWLVuQmJgIg8GAN5rZMPXss88iJSUFKSkp6N27N4Ia7apes2YNEhISkJCQgDVr1rTr\ndfkqWoP3Eszfny/RqNWAJAF1dRAsFt50u7YWSnAwb8R94wbfbShJYOB1RBQ/P6BbN94lSK/nTTvu\nsswrcZHOnfknM1unJ5UK4unTUO3eDXnUKLcNi/Xo0aT7FEwmvtHu4kWwyMhWp9fKsgxBEPDMM8/g\nm2++QWRkJIYOHYqMjIwmvVWXL19u//u7776Lw4cPAwCuX7+O1157DXl5eRAEAUOGDEFGRgaCaXNe\nEzSDdzKHLdP4+4PV3wgVamp4gTFF4bnIV65AdeoUVIWFEKqqeK14jQbCpUt8xq7TgYWFAV268HZ7\nFNw9nvmtt/h6vO39I0lQ79wJ/8xMaF9/3W3jkseOhTRhAgSTCYLRCLG8HMK1a9CPGwfdiy+2ugqm\noii4evUqDAYDevXqBa1Wi8zMTOTk5LT4nHXr1mHGjBkAgK1btyI9PR0hISEIDg5Geno6tmzZ4pDX\n6EsowDtZG5uat0ylArp0gaBS8aUVUeQ3WK9fh1BZyWfrnTsDViuEGzegBAfz40JDYV28GNaFCyFN\nn05r7l5CTk9H3auvQomJ4bNlUbQ3PNf+5S8QHFEi+m6IIuqWL4cpOxtKXBzvItalC5i/P9RffcWz\ntlpBlmXU1tYiKirK/lhkZCQuXbrU7PFFRUUoLCzEmDFjAACXLl1q9XM7Mlqi8SKsZ0/IVVUQVCq+\npi5JPA9ZECAoCl+KUanAIiKgDB4MQa+H9Nhj1GbPC6n//nfeIs9obHjQth6v0fBf6u7alCYIUAYO\nhFBe3lAiQxR5O78zZ4CJE+94iqVLl+LChQtQqVQ4cuQIunXrhlmzZrV4fHZ2NqZOnUqZN21EM3gv\nIg8bBhYTA9apE78J16MH0KsXWGgoFIMB8qhRYAYDb8wRGAhpwgQK7l5Km5XF2yU2XuKTZV6ALCCA\nz+zdTOndG4LJxHPiLRY+uUhIaNVzFy1ahMmTJ2PIkCHIy8vDli1bUFxcjIgWegpnZ2fbl2cAICIi\nAhcvXrT/+3bP7choBu8hWrNWL48aBeHqVb4GX7/ZRBk4kD9mNIJFR8P6yCO8rritXjzxSkL9RiJ7\ngK9f6lOio2Fev57//3WzusWLETBuHISrVwHGoCQm8klFK8iyjKioKOzevRuFhYWIiIhAdnY2Pvvs\ns1uOPX36NCoqKnDPPffYHxs/fjx+//vfo6KiAgCwbds2ZGVlOeaF+RAK8N4kOBjSrFl8/fWRRyBc\nvAjx6lXIKSlQhg+n2boPscybB92f/sSXaGz3cQICIF6+DNWePTwjys20H3/Ml2jqe7UKlZVQr18P\n6TZLLTaKokCj0eC9997D+PHjIcsy5s2bh6SkJCxZsgSpqanIyMgAwGfvmZmZTSZBISEheOWVVzC0\nfhftkiVLEBIS4pwX6sWENt4EdNAdw45BURTU1dW1ekOHxWJx8oiI12AMmpUroVmzhjdZt91oZQzQ\n6VB77JjbC8P5jxvHa+fYPk3cuAFpyhTULVt2x+euX78ely9fxksvveTkUfqsVqXn0Ro8IZ5IEGB9\n5hmY33+f58TbJgm2m6wekDGiJCTYa9JAUQCLhW+++/bbO/YIplIFrkEBnhAPpsTF2W+uAuB/r66G\nftw4+M2bx/dDuInl1VehREXxPq1lZRBMJqh274bfk0/esY2foigU4F2AlmicqK1LNGY3/rASz6Xe\nsQP6uXP5bLmujs/mBQHQ6WCZPh3mRrs9Xc5shmrXLuh//Wu+D6M+X18wm1GzaxffYNeMtWvXwmQy\nYdGiRS4esM9o1RIN3WR1orbsYlUUBbKt3yUhjcgPPIC6M2cQ8OtfQ7thQ8NyTV0d1N984973jUYD\nhIfzXda2EgaiCKZSQamshNLCxrpTp06h5k7lrkm7UYD3EIwxaLVaqrBHmufnB6FPn6aNrxkDunWD\nn7tr+ffrB6FTJ6C0lI+JMbC4OGgTElpM55w0adJtyxIQx6Bo4iEYY9TCjNyWtGABX/KwFZ0LCIDV\nncszNgEBkAcPhlBby6ucmky8KNlteq726tULhYWFLhxkx0QBnhBvERICacYMvg5vsUBJSOCZLO52\n9SpUO3aARUaC9eoFFhUF8dgxCCdPtviUHj16oLS01HG1mkizKMB7AMYYvdHJHak2b4bmvfd4SiJj\nEE+cgPapp9w9LAhmc8ONX6ChpWRL3cYA+1Kk0srqk+TuUID3ILREQ25H3LuX72y1FR2zWKDat8/d\nwwLr2ZO3fSwrg3DpEoSSErAuXaA0qut+M0EQEBYWhtLSUheOtOOhAE+Il2AREbw5ev2NTDAGVFTA\nLykJqq+/dt/AVCoosbEQZJmncsoyz+G7w6fSuLg4nDt3ziVD7KgoD96JGGMwm813zIyxpUhSBg25\nLZMJugcfhHjuHK80KUkNyyL+/qjLzYWSmuqWcfn168drITVK4bS8/z6UsWObfcqkSZNw6tQpqNVq\ndKtPpezWrRs17Wg9yoP3FrT+TlrF3x91u3ZB9c030P7Hf/B0SVuAN5uhcleAvxljgMUC8ehRKCkp\ngK2/bCM5OTnIycnByZMn8Ye7aNpNWoemjIR4E60W8sSJYDdXTtRowAID3TMmf3/e59dkAoxGCCUl\nvLLkBx/Ab/RoCMePN/u0uLg4SpV0MgrwHoBy4ElbWd94g6/HKwqgVoN16wZp9mz3jefPf4b07LNg\nUVF8PD178k1OtbXQ/u53zT4nNjYW58+fd/FIOxYK8B6AlmhIW8lpaXwWr9EAigJl6FBel91d1GpI\nv/oV5MxMMH//hk1Ofn4QioubfUrnzp1hNBrp/e9EFOBd4HZvYHpzk7uhW7AAQlkZz1qRJKi2bYPq\nb39z97B4aqRKBVRUAOXlQGUllAEDmj1WEARotVqYTCYXj7LjoADvRG1ZdqElGtIWwvHjDVk0ggAY\njRB37gTcXMBLGToU0OshVFZCqKqCUFsLub7rUnOio6NpHd6JKMAT4oWYwdDQc7f+U6D6n/+Ef1wc\nxM2b3TYu1a5dgNkMFhXF//ToAc3777eYEx8XF0fr8E5EAd7NaImG3A3Lhx+Cde8OBAQ0etACGI3Q\nPfEEXyJxB6OR/1cU+S8gUeQNxFsoSRAbG0ubnZyINjo5ma2JR0tLMLIsQ1EU2uRE2q62FqrsbGhf\nfLEhsDIGdOqEupUroWRk8JuwLiRcugTdAw9AKC/nQV2lgvzII7CsXt3s8SNGjEBxcTGioqIA0Gan\nNqCerIT4tIAAyA89ZC8+Zl8GqamB7qmn4JeaCly+7NIhsYAAnkFjGxMAVFW1uETzt7/9DWlpacjL\ny0NeXh4FdwejAO9mlANP2iU8HJZlywB/f54Xb2M0Qigqgvbpp106HPHQIUCWeQGyiAiw0FCoDh8G\nKiubPT4yMhLFLaRRkvajAO9GVCaYOII8fz7Mhw5BHjnSXqoXggBIEsQTJ1w7GNvmK0XhWT62tXet\nttnDVSqVfZmSOB4FeA9AM3jSXiw6Gkp6Op/J2yYNKhVY794uHYcybBhYWJi9bLBQUgLpwQeb3gxu\nRBAEdOvWDVevXrU/dubMGaSkpNj/dOnSBStWrMD169eRnp6OhIQEpKeno8JdN5K9CAV4QnyE9Mtf\n8o1G9RMGFhAAy8qVrh1EVRXfgBUQAHTqBHTqBNW//nXb/PzY2FicPXvW/u/ExEQcOXIER44cQX5+\nPvR6PR599FG88cYbGDt2LAoKCjB27Fi88cYbrnhFXo0CvBvR8gxxJOHsWYgnT0JQFP7HanX57lbx\np58AUQQLCuJ/AgMBSYJQUNDic25Xk2bHjh2Ij49HTEwMcnJyMHfuXADA3Llz8dVXXznjJfgUCvBu\nRAGeOJL688+B+rRcABCMRmhWrXLpGFjPnnztXZYBxiBcvw7h8mX4ZWRAO29ek/HZ3K6qZHZ2NmbM\nmAEAKCsrQ3h4OADe07WsrMx5L8RHUIAnxEcwtbqhPrzN1avwS0iA6ssvXTOG8HBYX32Vd3eqqeH5\n+cHBYHo9xB07oF627JbnxMTENDuDt1gs2LhxI6ZNm3bL1wRBoHtXrUAB3o0oRZI4kjxrFqDXg9Vv\nmmMAn0WXlED75JMQ9+93zTjmzoV5504oqal8mSYgwJ7do/r++1uOf+WVV/Dll18iNTUVqampmDBh\nAgAgNzcXgwcPRlhYGAA06eFaWlqK0NBQl7web0YBnhAfwWJiYP7uO8iPPw5m28HaqBiZ6osv+PKJ\nK8YSGwtl+HC+3bKmBrhxA7BYwGJibjn266+/Rq9evXDw4MEmm53WrVtnX54BgIyMDKxZswYAsGbN\nGkyaNMkVL8WrUakCJ2upVAFjDJIk0UdN4hR+fftCuHCBB3fbz7hGA+j1qPviCyj33uv8QRQVwX/I\nEKCujo9BFGFZuxby5Mm3HDpy5Ejs3bsXOp0OAFBbW4vo6GicP38egfWdqsrLy/H444/jwoULiImJ\nwfr16xFyc2erjoNKFXiCOwVvCu7EGax/+hPPiW9MkoCqKugee6yhdo0Tqb/+mm98CgkBQkLAAgOh\nfvfdZo+NiopCUVGR/d8BAQEoLy+3B3cA6Nq1K3bs2IGCggJs3769Iwf3VqMAT4gPkidORN3WrZBm\nzuRBtvFEwmLh6ZPO3ihUXg6mKGA6HZifH6DRQKiqavbQ5lIlly9fjqSkJCQnJ2PGjBkwm80oLCxE\nWloaDAYDpk+fDovF4tzX4OUowLsJpUgSZ1OGDIH0wgsNyzS295zZDO2rr8I/JQWCE2uxK2PGAACE\ny5chlJZCqKyEPHp0s8fGxMQ0KRt86dIl/M///A/y8vJw/PhxyLKM7OxsvPDCC3j22Wdx9uxZBAcH\n46OPPnLa+H0BBXg3oQBPXIHFx8P63HOAXt+0HkxtLVBRAe1vfuO8a4eEQLD9YmEMEAQI16839Ba/\ncwAAFSVJREFUe2xzjT8kSYLJZIIkSTAajQgPD8fOnTsxdepUALTZqTUowBPi46TFi2HetQvK4MEN\nxcgAQFH4jVgnUf3rX4BaDRYWBtajB1hgIMRdu5o9NjY2tslmp4iICDz33HOIjo5GeHg4AgMDMWTI\nEAQFBUFd39A7MjISly5dctr4fQEFeDehHHjiSiw5GdKMGfzGq63ao1YL2YnZNKxzZzBB4LtXTSbe\ncaqFomPR0dG40OiXTUVFBXJyclBYWIiSkhLU1tZSrfi7QAHeDahMMHEHec4csODghgcYg/TMM867\n3iOPAEBDA+7KSsgt5K5rtVpIkmT/udi+fTvi4uLQvXt3aDQaTJkyBXv37kVlZSWk+lz+4uJiRERE\nOG38voACvBvRDJ64knr1al4bBvVJ1JIE7bPPOu164qFDfEmovqokunSB6rPPmu3uNHnyZJw7dw6D\nBg1CamoqlixZgr///e8wGo1gjGHHjh3o168fRo8ejS+++AIAbXZqDQrwTkZBnHgK4dQpCCZTw78V\nBWJ+PjRLljiltZ9w9Spf79fr+R+dDoLZ3GzBsZycHDz66KNYtWoV8vLycOrUKfzud7/D4MGD0b9/\nfyiKgv/8z//EsmXL8Pbbb8NgMKC8vBzz5893+Lh9Ce1kdTKLxQJFUZoEekVRIMsyNdomLqVaswba\n556DUL/Jyf7DrFYDwcEwHTwIdO/usOsJ587xBtzV1XzNXxShJCWhrpl6NACwbNky9O3bF5mZmQ4b\ngw+jnayeitbfiTvIP/855IkTwfz8GoK7IPDSvtXVUP/97w69Huvenf/ykOWmTbhbaM/XXFXJd955\nB8nJyUhKSsKKFSsAgDo7tQEFeEI6ClGEZfVqmI8c4WviNowBdXXQLF4Mv6FDITTacNSuy/3wA/8F\n0q0b/2QQHAyxuBhCfUXIm91cF/748eNYtWoVDhw4gKNHj2LTpk04e/YsdXZqAwrwLtDcjJ3W5om7\nsKgoSNOnN+3fCvDSwqdPQ/fQQ46pOqnX87rwFgtfd7dYAEUBu7lGTr2bA/ypU6eQlpYGvV4PtVqN\nUaNGYcOGDdTZqQ0owDtZc4GclmiIu1n//GdIv/wlWGgovxFqKyusKBCuXIH6/feBdnRMEs6fh7h9\nO8+Dr67m5YJv3IDSuzcvPtYMW/Nt289HcnIyvvvuO5SXl8NoNGLz5s24ePEidXZqA7rJ6mRWqxWS\nJNlvqFKZYOJJxEOHoJswgZcuaCwgANBqYf72WzCDoU3nFE6dgu5nP4NQU8M3OAGATsfLFWs0MO/b\nBxYV1exz77vvPhw8eNC+W/Wjjz7CypUrERAQgKSkJOh0OqxevRqVlZX25wQHB3fEdXi6yerJKLgT\nT6AMGgT5oYf4mrwtq0sQeGCuroZm0aI2n1Pz1ls8U0ejaahiyRjg5wem0UC4cqXF50ZERDTZ0Tp/\n/nzk5+djz549CA4ORu/evamzUxtQgCekIxMEWD75BJaPPoKSmNiwVMMYIMtQ7dgB3f33Qzh8uPXn\ntM2uGzcbsViA69cBRYHSwieCSZMm4cCBA5gwYYK9fd+Y+oqUFy5cwIYNGzBz5kzq7NQGtETjZDcv\n0VAOPPFU6g8/hObll3kzkMZxoX43qvngQaCqCqrNmwG9nt+ovTlvXlGg+vBDaH//e97JqTFB4Pn2\n+flAC7PulStXonPnzliwYAEAYMSIESgvL4dGo8Hbb7+NsWPHUmcnrlVLABTgnezmAC/LMhRFoQBP\nPA9j0LzwAtQffNCQRaNS8WCv00EeMwaqb7/ls3G1GiwwEOZ9+3iwNhohHD0K3dy5fAfrzY04dDog\nIABMpYLlgw+gjB/f7BByc3Nx8OBBSn28M1qDJ4S0gSDA+uabMF27xgOyKPLgriiAycRn7rW19uUb\noaICmr/8BZonn4R/ZCT8HnyQ57jL8q3nliSehinLQJcuLQ6huc1O5O5RgHcxKhNMPJ5GA+vixQ2l\nhW1sn/YliT9eVwf1n/4E9f/9X8NxjXesAk1bBQKQ77kHSlpai5eOjY1FUVER5s2bh9DQUCQnJ9u/\n1tIOVsYYFi5cCIPBgAEDBuDQoUPte/0+hAK8i1EOPPEG0qJFsPz1r5BHjuSdoFSqmw6oX8Kx3Ui1\nWhu+1swvBXn8eFiWL4fls88asnWa4e/vD7PZjLlz595S/72lHay5ubkoKChAQUEBPvzwQzz11FN3\n/8J9DAV4F6LgTryJnJEB65tv8noyd/ve9fMD/P0hnjkDedo0fq7bEAQBAQEBGDRo0C03TlvawZqT\nk4M5c+ZAEAQMHz4clZWV9jTKjo4CvBvQEg3xFqx/f1iWL+ezeNv7tvFsvrnA3/j9bWsR2KhM8Z3E\nxsY2uw7f0g7WS5cuIarRxilq5deAAjwh5Lbk2bNhKiuDcu+9TcsaALf+F2ga9GUZUKkgT5nS6uu1\nFOAbo53grUMB3oWUFsqkEuLx1GpY//hH3riDMT6LDwjgjbxFsekMv/54qFRg4eGQfvEL/txWiomJ\nwblmKlq2tIM1IiICFy9etB9HrfwaUIB3MpplEF+hDBsG886dkJ59FtJzz8F84ACsr7/Og76i8KCv\nVgNBQVDS0mDetw/mkydh/cMfeNmCVlq1ahXeeustZGRk4Ny5c5gwYQIAtLiDNSMjA2vXrgVjDPv3\n70dgYKB9Kaejo41OTiZJEqxWK0RRtDcLpqBPfIlq/XpoXn8dMJshT58O62uv3fFm6u2UlJRgxIgR\nAIBr164hLCwMr732GiZPntzsDlbGGP7rv/4LW7ZsgV6vxyeffILU1FRHvTxPRTtZPQEFeELaRpZl\njBgxAocPH6aflZbRTlZPwhijNElCWkEURQiCQPesHIACvJPdPAOhGQkhtycIAkJDQzFz5sxbdrN+\n/vnnSEpKgiiKyMvLa/K8rKwsGAwGJCYmYuvWra4etkeiAE8I8ThxcXG49957b9nNmpycjA0bNmDk\nyJFNHj958iSys7Nx4sQJbNmyBU8//TTk5mridDAU4F2ElmcIab2YmBh07tz5lt2sffv2RWJi4i3H\n5+TkIDMzEzqdDnFxcTAYDDhw4ICrhuuxKMC7CAV4QlovLi6uTVUlb7ebdcmSJVixYoX9ay+99BLe\neecdxw3Wg1GAJ4R4nLi4OBQWFjrkXPPmzcPatWsB8M2G2dnZmD17tkPO7enuPlmVtAmVCSak9WJj\nY9sU4G+3mzU2NhZdu3bF4cOHUVZWhkGDBqFr164OH7Mnohm8i9ASDSGtN3v2bBw5cgSPPPIIzp07\nh9TUVPuO1uZkZGQgOzsbdXV1KCwsREFBAYYNG2b/+i9+8QusXr0an3zyCebNm+eKl+ARaKOTk8my\nDIvFAlmWqUASIW0QFRUFjUaD8vJy+27WkJAQ/OpXv8LVq1cRFBSElJQUe0rk0qVL8fHHH0OtVmPF\nihX42c9+Zj+XxWJB//79YbVaUVBQANXN9e29D+1k9QSNAzz1YSWk9ebOnYtXX321SR58ezz55JMI\nCgrylX6vtJPVU9DyDCFt15qywa2lKAr279+P+fPnO+R83oICPCHEI9lSJZvrz/r888+jT58+GDBg\nAB599FFUVlbav3bzjtaTJ0/CYDBg7NixSEhIcMdLcRtaonEyWZZhNpvBGKMlGkLaYPfu3cjNzcXU\nqVPRqVMnzJkzB8ePHwcAbNu2DWPGjIFarcYLL7wAAFi2bBlOnjyJGTNm4MCBAygpKcGDDz6IH3/8\n0RfW3G9GSzSewHZTlW6uEtI2MTExKCwsxMiRI2/Z0Tpu3Dio60sSDx8+HMXFxQBoR+vNKMATQjxS\nZGSkPXDfzscff2zPmKH+rE1RgHcBuslKSNupVCooinLbssFLly6FWq3GrFmzXDgy70EB3gWckf++\nceNGh56vJaWlpTh48KBLrrVnzx5UVFQ4/TqKomDTpk1Ovw4AnD59GqdPn3bJtTZt2uSSyURFRQX2\n7Nnj9OsIgoDu3bvjypUrzX599erV2LRpEz799FP7zxf1Z22KShW4gDMaF7zxxhuYOHGiw897s/z8\nfOTn52Pw4MFOv9aqVavw8ssvo0uXLk69jsViwVtvvdVkI4yz7Nu3D2az2SXZG++++y7uv/9+dO7c\n2anXqaqqwnvvvYf77rvPqdcBGlIle/bs2eTxLVu24M0338Tu3buh1+vtj2dkZGDmzJn47W9/i5KS\nklt2tHY0lEXjAuPHj0d5ebnDzqcoCn788Uf06dPHYedsSXl5OSRJQlhYmNOvdfbsWURHR0Or1Tr1\nOvT9ax9FUXDmzBn07dvXqdcBeBba5cuXATTtz5qVlYW6ujp7TZnhw4fjf//3fwHcfkerD6GdrL7K\naDRi7969SE9Pd/q1zpw5A8aYS4Lhtm3bMGLECPj7+zv1OrIsIzc3Fw8//LBTrwMAhYWFqKmpQf/+\n/Z1+rd27dyMlJQWBgYFOv1ZOTg4mTZrk9OuQFlGAJ4QQH0V58IQQ39DcbtZXXnkFAwYMQEpKCsaN\nG4eSkhIAPGtt4cKFMBgMGDBgAA4dOuSuYbsdBXhCiMd74oknbunP+vzzz+OHH37AkSNH8PDDD+P1\n118HAOTm5qKgoAAFBQX48MMP8dRTT7ljyB6BAjwhxOM1t5u1cbZVbW2tPVUyJycHc+bMgSAIGD58\nOCorK1FaWurS8XoKSpMkhHitl156CWvXrkVgYCB27doFoOXdrOHh4e4aptvQDJ4Q4rWWLl2Kixcv\nYtasWXjvvffcPRyPQwGeEOL1Zs2ahS+//BIA7WZtjAI8IcQrFRQU2P+ek5Nj36uRkZGBtWvXgjGG\n/fv3IzAwsEMuzwC0Bk8I8QIzZszAt99+i2vXriEyMhKvvfYaNm/ejDNnzkAURcTExNh3sj700EPY\nvHkzDAYD9Ho9PvnkEzeP3n1ooxMhhHgf2uhECCEdGQV4QgjxURTgCSHER1GAJ4QQH0UBnhBCfBQF\neEII8VEU4L3AmTNnkJKSYv/TpUsXrFixAtevX0d6ejoSEhKQnp7ukH6my5cvR1JSEpKTkzFjxgyY\nzWYUFhYiLS0NBoMB06dPh8ViccCrAt555x0kJycjKSkJK1asAACHvabmysu2dO72lpdt7lqff/45\nkpKSIIoi8vLymhyflZUFg8GAxMREbN26td3Xev7559GnTx8MGDAAjz76KCorK9t9LSrP6yMYY235\nQ9xMkiQWFhbGfvrpJ/b888+zrKwsxhhjWVlZbNGiRe06d3FxMYuNjWVGo5Exxti0adPYJ598wqZN\nm8bWrVvHGGNswYIFbOXKle17EYyxY8eOsaSkJFZbW8usVisbO3YsKygocNhr2r17N8vPz2dJSUn2\nx1o699dff80mTJjAFEVh+/btY8OGDWv3tU6ePMlOnz7NRo0axQ4ePGh//MSJE2zAgAHMbDaz8+fP\ns169ejFJktp1ra1btzKr1coYY2zRokX219WeazV3naqqKvvf33nnHbZgwQLGWPu/f+SutCpm0wze\ny+zYsQPx8fGIiYlBTk4O5s6dCwCYO3cuvvrqq3afX5IkmEwmSJIEo9GI8PBw7Ny5E1OnTnXodU6d\nOoW0tDTo9Xqo1WqMGjUKGzZscNhraq68bEvnbm952eau1bdvXyQmJt5ybE5ODjIzM6HT6RAXFweD\nwYADBw6061rjxo2DWs03pQ8fPhzFxcXtvhaV5/UNFOC9THZ2NmbMmAEAKCsrs9fY6NGjB8rKytp1\n7oiICDz33HOIjo5GeHg4AgMDMWTIEAQFBdkDiK30anslJyfju+++Q3l5OYxGIzZv3oyLFy86/DU1\n1tK5Wyov6wzOvtbHH39sbzLtjGu99NJLiIqKwqeffmpvsOHK7x9pGwrwXsRisWDjxo2YNm3aLV8T\nBME+o7pbFRUVyMnJQWFhIUpKSlBbW3tLFx1H6du3L1544QWMGzcOEyZMQEpKClQqVZNjHPGaWuLM\nc7vL0qVLoVarMWvWLKdeg8rzeg8K8F4kNzcXgwcPRlhYGAAgLCzM/lG4tLQUoaGh7Tr/9u3bERcX\nh+7du0Oj0WDKlCnYu3cvKisrIUkSAMeWXp0/fz7y8/OxZ88eBAcHo3fv3g5/TY21dG5Xlpd11rVW\nr16NTZs24dNPP7X/4nLm66LyvN6BArwXWbdunX15BuBlUdesWQMAWLNmDSZNmtSu80dHR2P//v0w\nGo1gjGHHjh3o168fRo8ejS+++MJh17G5cuUKAODChQvYsGEDZs6c6fDX1FhL53ZledmMjAxkZ2ej\nrq4OhYWFKCgowLBhw9p1zi1btuDNN9/Exo0bodfrnXYtKs/rhVp7N5ZRFo1b1dTUsJCQEFZZWWl/\n7Nq1a2zMmDHMYDCwsWPHsvLy8nZfZ8mSJSwxMZElJSWx2bNnM7PZzM6dO8eGDh3K4uPj2dSpU5nZ\nbG73dRhj7P7772d9+/ZlAwYMYNu3b2eMOe41ZWZmsh49ejC1Ws0iIiLYX//61xbPrSgKe/rpp1mv\nXr1YcnJyk6yXu73Whg0bWEREBNNqtSw0NJSNGzfOfvwf//hH1qtXL9a7d2+2efPmdl8rPj6eRUZG\nsoEDB7KBAwfas1vac63mrjNlyhSWlJTE+vfvzx5++GFWXFzMGGv/94/clVbFbCoXTAgh3ofKBRNC\nSEdGAZ4QQnwUBXhCCPFRFOAJIcRHUYAnhBAfRQGeEEJ8FAV4QgjxURTgCSHER1GAJ4QQH0UBnhBC\nfBQFeNIhHTx4EAMGDIDZbEZtbS2SkpJw/Phxdw+LEIeiWjSkw3r55ZdhNpthMpkQGRmJF1980d1D\nIqS1WlWLhgI86bAsFguGDh0KPz8/fP/997c0HCHEg1GxMUJup7y8HDU1Nbhx4wbMZrO7h0OIw9EM\nnnRYGRkZyMzMRGFhIUpLS6kFHfEmrZrBq509CkI80dq1a6HRaDBz5kzIsox7770XO3fuxJgxY9w9\nNEIchmbwhBDifWgNnhBCOjIK8IQQ4qMowBNCiI+iAE8IIT6KAjwhhPgoCvCEEOKjKMATQoiPogBP\nCCE+igI8IYT4KArwhBDioyjAE0KIj6IATwghPooCPCGE+CgK8IQQ4qMowBNCiI+iAE8IIT6KAjwh\nhPgoCvCEEOKjKMATQoiPogBPCCE+igI8IYT4KArwhBDioyjAE0KIj1K38XjBKaMghBDicDSDJ4QQ\nH0UBnhBCfBQFeEII8VEU4AkhxEdRgCeEEB9FAZ4QQnwUBXhCCPFRFOAJIcRHUYAnhBAfRQGeEEJ8\n1P8DfrTnzSdZ56gAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fefeac2d6d8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "ax1 = fig.add_subplot(121, projection='3d')\n", "ax1.scatter3D(col,row,height,c='r')\n", "# ax1.plot_trisurf(col,row,height+0.2)\n", "ax1.view_init(elev=15,azim=90)\n", "ax1.grid('off')\n", "ax1.invert_xaxis()\n", "ax1.set_xlabel('x')\n", "ax1.set_ylabel('y')\n", "ax1.set_zlabel('z')" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from scipy.io import savemat" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [], "source": [ "save_dict = {\"matcav\": matcav,\n", " \"matbkp\": matbkg,\n", " \"row\":row,\n", " \"col\":col,\n", " \"height\":height}\n", "savemat(\"3d_demo.mat\",save_dict)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2+" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
QuLogic/folium
examples/VideoOverlayLayer.ipynb
1
6474
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.5.0+27.g2d457b0.dirty\n" ] } ], "source": [ "import os\n", "import folium\n", "\n", "print(folium.__version__)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><iframe src=\"data:text/html;charset=utf-8;base64,PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgPHNjcmlwdD5MX1BSRUZFUl9DQU5WQVMgPSBmYWxzZTsgTF9OT19UT1VDSCA9IGZhbHNlOyBMX0RJU0FCTEVfM0QgPSBmYWxzZTs8L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS4yLjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2FqYXguZ29vZ2xlYXBpcy5jb20vYWpheC9saWJzL2pxdWVyeS8xLjExLjEvanF1ZXJ5Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS4yLjAvZGlzdC9sZWFmbGV0LmNzcyIgLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC5taW4uY3NzIiAvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLXRoZW1lLm1pbi5jc3MiIC8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIgLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuY3NzIiAvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL3Jhd2dpdC5jb20vcHl0aG9uLXZpc3VhbGl6YXRpb24vZm9saXVtL21hc3Rlci9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUuY3NzIiAvPgogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIAogICAgICAgICAgICA8c3R5bGU+ICNtYXBfYTU5MDAwMzVhYzk0NDg3ZWJhYzJjOTE3ODY1YmI2NmUgewogICAgICAgICAgICAgICAgcG9zaXRpb24gOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgIHdpZHRoIDogMTAwLjAlOwogICAgICAgICAgICAgICAgaGVpZ2h0OiAxMDAuMCU7CiAgICAgICAgICAgICAgICBsZWZ0OiAwLjAlOwogICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwX2E1OTAwMDM1YWM5NDQ4N2ViYWMyYzkxNzg2NWJiNjZlIiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKCiAgICAgICAgICAgIAogICAgICAgICAgICAgICAgdmFyIGJvdW5kcyA9IG51bGw7CiAgICAgICAgICAgIAoKICAgICAgICAgICAgdmFyIG1hcF9hNTkwMDAzNWFjOTQ0ODdlYmFjMmM5MTc4NjViYjY2ZSA9IEwubWFwKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ21hcF9hNTkwMDAzNWFjOTQ0ODdlYmFjMmM5MTc4NjViYjY2ZScsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB7Y2VudGVyOiBbMjIuNSwtMTE1XSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHpvb206IDQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXhCb3VuZHM6IGJvdW5kcywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxheWVyczogW10sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3b3JsZENvcHlKdW1wOiBmYWxzZSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNyczogTC5DUlMuRVBTRzM4NTcKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfSk7CiAgICAgICAgICAgIAogICAgICAgIAogICAgCiAgICAgICAgICAgIHZhciB0aWxlX2xheWVyXzMxZTcxYjAzMGUxMDQ2YzRiNDU5ZGQ2NmRmZWJhMzU0ID0gTC50aWxlTGF5ZXIoCiAgICAgICAgICAgICAgICAnaHR0cHM6Ly97c30udGlsZS5vcGVuc3RyZWV0bWFwLm9yZy97en0ve3h9L3t5fS5wbmcnLAogICAgICAgICAgICAgICAgewogICJhdHRyaWJ1dGlvbiI6IG51bGwsCiAgImRldGVjdFJldGluYSI6IGZhbHNlLAogICJtYXhab29tIjogMTgsCiAgIm1pblpvb20iOiAxLAogICJub1dyYXAiOiBmYWxzZSwKICAic3ViZG9tYWlucyI6ICJhYmMiCn0KICAgICAgICAgICAgICAgICkuYWRkVG8obWFwX2E1OTAwMDM1YWM5NDQ4N2ViYWMyYzkxNzg2NWJiNjZlKTsKICAgICAgICAKICAgIAogICAgICAgICAgICAgICAgdmFyIHZpZGVvX292ZXJsYXlfMzE3YTc2MTYwYzcyNDVlMWI5MDQ3ZTFjYTI2YTc3NzkgPSBMLnZpZGVvT3ZlcmxheSgKICAgICAgICAgICAgICAgICAgICAnaHR0cHM6Ly93d3cubWFwYm94LmNvbS9iaXRlcy8wMDE4OC9wYXRyaWNpYV9uYXNhLndlYm0nLAogICAgICAgICAgICAgICAgICAgIFtbMzIsIC0xMzBdLCBbMTMsIC0xMDBdXSwKICAgICAgICAgICAgICAgICAgICB7Im9wYWNpdHkiOiAwLjY1LCAiYXR0cmlidXRpb24iOiAiVmlkZW8gZnJvbSBwYXRyaWNpYV9uYXNhIiwgImxvb3AiOiBmYWxzZSwgImF1dG9wbGF5IjogdHJ1ZX0KICAgICAgICAgICAgICAgICAgICApLmFkZFRvKG1hcF9hNTkwMDAzNWFjOTQ0ODdlYmFjMmM5MTc4NjViYjY2ZSk7CiAgICAgICAgICAgIAo8L3NjcmlwdD4=\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7fe7055c0d68>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "m = folium.Map(location=[22.5, -115], zoom_start=4)\n", "\n", "video = folium.raster_layers.VideoOverlay(\n", " video_url='https://www.mapbox.com/bites/00188/patricia_nasa.webm',\n", " bounds=[[32, -130], [13, -100]],\n", " opacity=0.65,\n", " attr='Video from patricia_nasa',\n", " autoplay=True,\n", " loop=False,\n", ")\n", "\n", "video.add_to(m)\n", "\n", "m.save(os.path.join('results', 'VideoOverlayLayer.html'))\n", "\n", "m" ] } ], "metadata": { "_draft": { "nbviewer_url": "https://gist.github.com/629da6f621481ed4d513258d2ec64589" }, "gist": { "data": { "description": "folium video test", "public": true }, "id": "629da6f621481ed4d513258d2ec64589" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
superbobry/pymc3
pymc3/examples/profiling.ipynb
1
20583
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#Profiling\n", "Sometimes computing the likelihood is not as fast as we would like. Theano provides handy profiling tools, which pymc3 provides a wrapper `model.profile` which returns a `ProfileStats` object. Here we'll profile the likelihood and gradient for the stochastic volatility example.\n", "\n", "First we build the model." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "from pymc3 import *\n", "from pymc3.distributions.timeseries import *\n", "\n", "n = 400\n", "returns = np.genfromtxt(get_data_file('pymc3.examples', \"data/SP500.csv\"))[-n:]\n", "\n", "model = Model()\n", "with model:\n", " sigma = Exponential('sigma', 1. / .02, testval=.1)\n", "\n", " nu = Exponential('nu', 1. / 10)\n", "\n", " s = GaussianRandomWalk('s', sigma ** -2, shape=n)\n", "\n", " r = StudentT('r', nu, lam=exp(-2 * s), observed=returns)\n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then call profile and summarize it." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Function profiling\n", "==================\n", " Message: /Users/fonnescj/GitHub/pymc3/pymc3/model.py:197\n", " Time in 1000 calls to Function.__call__: 6.456351e-02s\n", " Time in Function.fn.__call__: 3.473592e-02s (53.801%)\n", " Time in thunks: 2.467275e-02s (38.215%)\n", " Total compile time: 3.600923e+00s\n", " Number of Apply nodes: 26\n", " Theano Optimizer time: 9.634581e-01s\n", " Theano validate time: 2.970219e-03s\n", " Theano Linker time (includes C, CUDA code generation/compiling): 2.587607e+00s\n", " Import time 5.669570e-02s\n", "\n", "Time in all call to theano.grad() 2.964401e-02s\n", "Class\n", "---\n", "<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name>\n", " 85.4% 85.4% 0.021s 1.50e-06s C 14000 14 theano.tensor.elemwise.Elemwise\n", " 5.8% 91.2% 0.001s 3.59e-07s C 4000 4 theano.tensor.elemwise.Sum\n", " 3.0% 94.2% 0.001s 3.76e-07s C 2000 2 theano.tensor.subtensor.Subtensor\n", " 2.4% 96.7% 0.001s 3.00e-07s C 2000 2 theano.tensor.elemwise.DimShuffle\n", " 2.1% 98.7% 0.001s 2.54e-07s C 2000 2 theano.tensor.basic.Flatten\n", " 1.3% 100.0% 0.000s 1.58e-07s C 2000 2 theano.compile.ops.ViewOp\n", " ... (remaining 0 Classes account for 0.00%(0.00s) of the runtime)\n", "\n", "Ops\n", "---\n", "<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Op name>\n", " 62.0% 62.0% 0.015s 1.53e-05s C 1000 1 Elemwise{Composite{Switch((GT(Composite{exp((i0 * i1))}(i0, i1), i2) * i3 * GT(inv(sqrt(Composite{exp((i0 * i1))}(i0, i1))), i2)), (((i4 + (i5 * log(((i6 * Composite{exp((i0 * i1))}(i0, i1)) / i7)))) - i8) - (i5 * i9 * log1p(((Composite{exp((i0 * i1))}(i0, i1) * i10) / i7)))), i11)}}\n", " 6.0% 68.0% 0.001s 7.36e-07s C 2000 2 Elemwise{Composite{log(Abs(exp(i0)))}}\n", " 5.8% 73.8% 0.001s 3.59e-07s C 4000 4 Sum{acc_dtype=float64}\n", " 5.0% 78.8% 0.001s 1.23e-06s C 1000 1 Elemwise{Composite{Switch(i0, (i1 * ((-(i2 * sqr((i3 - i4)))) + i5)), i6)}}\n", " 2.6% 81.3% 0.001s 3.18e-07s C 2000 2 Elemwise{exp,no_inplace}\n", " 2.6% 83.9% 0.001s 3.17e-07s C 2000 2 Elemwise{Composite{scalar_gammaln((i0 * i1))}}\n", " 2.4% 86.3% 0.001s 3.00e-07s C 2000 2 InplaceDimShuffle{x}\n", " 2.1% 88.4% 0.001s 2.54e-07s C 2000 2 Flatten{1}\n", " 2.0% 90.4% 0.000s 4.84e-07s C 1000 1 Elemwise{Composite{(Switch(GT(i0, i1), (i2 - (i3 * i0)), i4) + i5 + Switch(GT(i6, i1), (i7 - (i8 * i6)), i4) + i9 + i10 + i11)}}[(0, 0)]\n", " 1.8% 92.2% 0.000s 4.42e-07s C 1000 1 Subtensor{int64::}\n", " 1.3% 93.4% 0.000s 1.58e-07s C 2000 2 ViewOp\n", " 1.3% 94.7% 0.000s 3.10e-07s C 1000 1 Subtensor{:int64:}\n", " 1.2% 95.8% 0.000s 2.85e-07s C 1000 1 Elemwise{Composite{log((i0 * i1))}}\n", " 1.1% 97.0% 0.000s 2.74e-07s C 1000 1 Elemwise{Composite{(GT(i0, i1) * GT(inv(sqrt(i0)), i1))}}\n", " 1.1% 98.0% 0.000s 2.60e-07s C 1000 1 Elemwise{Composite{inv(sqr(i0))}}\n", " 1.1% 99.1% 0.000s 2.60e-07s C 1000 1 Elemwise{add,no_inplace}\n", " 0.9% 100.0% 0.000s 2.32e-07s C 1000 1 Elemwise{gt,no_inplace}\n", " ... (remaining 0 Ops account for 0.00%(0.00s) of the runtime)\n", "\n", "Apply\n", "------\n", "<% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name>\n", " 62.0% 62.0% 0.015s 1.53e-05s 1000 22 Elemwise{Composite{Switch((GT(Composite{exp((i0 * i1))}(i0, i1), i2) * i3 * GT(inv(sqrt(Composite{exp((i0 * i1))}(i0, i1))), i2)), (((i4 + (i5 * log(((i6 * Composite{exp((i0 * i1))}(i0, i1)) / i7)))) - i8) - (i5 * i9 * log1p(((Composite{exp((i0 * i1))}(i0, i1) * i10) / i7)))), i11)}}(TensorConstant{(1,) of -2.0}, s, TensorConstant{(1,) of 0}, Elemwise{gt,no_inplace}.0, Elemwise{Composite{scalar_gammaln((i0 * i1))}}.0, TensorConstant{(1,) of 0.5}, Te\n", " 5.0% 67.0% 0.001s 1.23e-06s 1000 21 Elemwise{Composite{Switch(i0, (i1 * ((-(i2 * sqr((i3 - i4)))) + i5)), i6)}}(Elemwise{Composite{(GT(i0, i1) * GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of 0.5}, Elemwise{Composite{inv(sqr(i0))}}.0, Subtensor{int64::}.0, Subtensor{:int64:}.0, Elemwise{Composite{log((i0 * i1))}}.0, TensorConstant{(1,) of -inf})\n", " 5.0% 71.9% 0.001s 1.22e-06s 1000 7 Elemwise{Composite{log(Abs(exp(i0)))}}(Flatten{1}.0)\n", " 2.3% 74.3% 0.001s 5.76e-07s 1000 24 Sum{acc_dtype=float64}(Elemwise{Composite{Switch((GT(Composite{exp((i0 * i1))}(i0, i1), i2) * i3 * GT(inv(sqrt(Composite{exp((i0 * i1))}(i0, i1))), i2)), (((i4 + (i5 * log(((i6 * Composite{exp((i0 * i1))}(i0, i1)) / i7)))) - i8) - (i5 * i9 * log1p(((Composite{exp((i0 * i1))}(i0, i1) * i10) / i7)))), i11)}}.0)\n", " 2.3% 76.6% 0.001s 5.68e-07s 1000 23 Sum{acc_dtype=float64}(Elemwise{Composite{Switch(i0, (i1 * ((-(i2 * sqr((i3 - i4)))) + i5)), i6)}}.0)\n", " 2.0% 78.5% 0.000s 4.84e-07s 1000 25 Elemwise{Composite{(Switch(GT(i0, i1), (i2 - (i3 * i0)), i4) + i5 + Switch(GT(i6, i1), (i7 - (i8 * i6)), i4) + i9 + i10 + i11)}}[(0, 0)](Elemwise{exp,no_inplace}.0, TensorConstant{0}, TensorConstant{3.9120230674743652}, TensorConstant{50.0}, TensorConstant{-inf}, Sum{acc_dtype=float64}.0, Elemwise{exp,no_inplace}.0, TensorConstant{-2.3025850929940455}, TensorConstant{0.1}, Sum{acc_dtype=float64}.0, Sum{acc_dtype=float64}.0, Sum{acc_dtype=float64}.0)\n", " 1.8% 80.3% 0.000s 4.42e-07s 1000 5 Subtensor{int64::}(s, Constant{1})\n", " 1.5% 81.8% 0.000s 3.74e-07s 1000 10 InplaceDimShuffle{x}(sigma)\n", " 1.5% 83.3% 0.000s 3.60e-07s 1000 0 Elemwise{exp,no_inplace}(sigma_log)\n", " 1.3% 84.6% 0.000s 3.18e-07s 1000 16 Elemwise{Composite{scalar_gammaln((i0 * i1))}}(TensorConstant{(1,) of 0.5}, InplaceDimShuffle{x}.0)\n", " 1.3% 85.9% 0.000s 3.16e-07s 1000 20 Elemwise{Composite{scalar_gammaln((i0 * i1))}}(TensorConstant{(1,) of 0.5}, Elemwise{add,no_inplace}.0)\n", " 1.3% 87.1% 0.000s 3.10e-07s 1000 4 Subtensor{:int64:}(s, Constant{-1})\n", " 1.2% 88.3% 0.000s 3.03e-07s 1000 1 Flatten{1}(sigma_log)\n", " 1.2% 89.5% 0.000s 2.85e-07s 1000 18 Elemwise{Composite{log((i0 * i1))}}(TensorConstant{(1,) of 0...9154943092}, Elemwise{Composite{inv(sqr(i0))}}.0)\n", " 1.1% 90.6% 0.000s 2.77e-07s 1000 2 Elemwise{exp,no_inplace}(nu_log)\n", " 1.1% 91.7% 0.000s 2.74e-07s 1000 19 Elemwise{Composite{(GT(i0, i1) * GT(inv(sqrt(i0)), i1))}}(Elemwise{Composite{inv(sqr(i0))}}.0, TensorConstant{(1,) of 0})\n", " 1.1% 92.8% 0.000s 2.60e-07s 1000 15 Elemwise{add,no_inplace}(TensorConstant{(1,) of 1.0}, InplaceDimShuffle{x}.0)\n", " 1.1% 93.8% 0.000s 2.60e-07s 1000 14 Elemwise{Composite{inv(sqr(i0))}}(InplaceDimShuffle{x}.0)\n", " 1.0% 94.9% 0.000s 2.49e-07s 1000 9 Elemwise{Composite{log(Abs(exp(i0)))}}(Flatten{1}.0)\n", " 0.9% 95.8% 0.000s 2.32e-07s 1000 17 Elemwise{gt,no_inplace}(InplaceDimShuffle{x}.0, TensorConstant{(1,) of 0})\n", " ... (remaining 6 Apply instances account for 4.21%(0.00s) of the runtime)\n", "\n" ] } ], "source": [ "model.profile(model.logpt).summary()\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Function profiling\n", "==================\n", " Message: /Users/fonnescj/GitHub/pymc3/pymc3/model.py:197\n", " Time in 1000 calls to Function.__call__: 1.570358e-01s\n", " Time in Function.fn.__call__: 1.222701e-01s (77.861%)\n", " Time in thunks: 9.528661e-02s (60.678%)\n", " Total compile time: 5.955295e+00s\n", " Number of Apply nodes: 55\n", " Theano Optimizer time: 8.904371e-01s\n", " Theano validate time: 1.370955e-02s\n", " Theano Linker time (includes C, CUDA code generation/compiling): 4.988965e+00s\n", " Import time 1.071918e-01s\n", "\n", "Time in all call to theano.grad() 1.577589e+00s\n", "Class\n", "---\n", "<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name>\n", " 47.2% 47.2% 0.045s 2.25e-05s Py 2000 2 theano.tensor.basic.Split\n", " 31.9% 79.1% 0.030s 1.12e-06s C 27000 27 theano.tensor.elemwise.Elemwise\n", " 4.7% 83.8% 0.005s 6.45e-07s C 7000 7 theano.tensor.elemwise.Sum\n", " 4.5% 88.3% 0.004s 2.14e-06s C 2000 2 theano.tensor.subtensor.IncSubtensor\n", " 3.9% 92.3% 0.004s 3.76e-06s C 1000 1 theano.tensor.basic.Join\n", " 2.6% 94.9% 0.002s 2.49e-06s C 1000 1 theano.tensor.basic.Alloc\n", " 1.3% 96.2% 0.001s 2.55e-07s C 5000 5 theano.tensor.basic.Flatten\n", " 1.2% 97.4% 0.001s 5.80e-07s C 2000 2 theano.tensor.subtensor.Subtensor\n", " 0.9% 98.4% 0.001s 4.49e-07s C 2000 2 theano.tensor.basic.Reshape\n", " 0.9% 99.3% 0.001s 2.94e-07s C 3000 3 theano.tensor.elemwise.DimShuffle\n", " 0.4% 99.7% 0.000s 2.08e-07s C 2000 2 theano.compile.ops.ViewOp\n", " 0.3% 100.0% 0.000s 2.51e-07s C 1000 1 theano.compile.ops.Shape_i\n", " ... (remaining 0 Classes account for 0.00%(0.00s) of the runtime)\n", "\n", "Ops\n", "---\n", "<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Op name>\n", " 47.2% 47.2% 0.045s 2.25e-05s Py 2000 2 Split{1}\n", " 7.4% 54.6% 0.007s 7.04e-06s C 1000 1 Elemwise{Composite{Switch(i0, (-log1p((i1 / i2))), i3)}}\n", " 4.7% 59.4% 0.005s 6.45e-07s C 7000 7 Sum{acc_dtype=float64}\n", " 3.9% 63.3% 0.004s 3.76e-06s C 1000 1 Join\n", " 3.1% 66.4% 0.003s 2.94e-06s C 1000 1 Elemwise{Composite{(GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1))}}\n", " 3.1% 69.5% 0.003s 2.93e-06s C 1000 1 IncSubtensor{InplaceInc;int64::}\n", " 3.0% 72.4% 0.003s 7.03e-07s C 4000 4 Elemwise{Switch}\n", " 2.8% 75.2% 0.003s 2.65e-06s C 1000 1 Elemwise{Composite{Switch(i0, ((i1 * i2 * i3 * i4) / i5), i6)}}\n", " 2.8% 78.0% 0.003s 2.64e-06s C 1000 1 Elemwise{Composite{(i0 * (Switch(i1, i2, i3) + Switch(i1, ((i4 * i5 * i6 * i7) / i8), i3)))}}[(0, 7)]\n", " 2.6% 80.6% 0.002s 2.49e-06s C 1000 1 Alloc\n", " 2.3% 82.9% 0.002s 2.22e-06s C 1000 1 Elemwise{Composite{exp((i0 * i1))}}\n", " 1.4% 84.3% 0.001s 1.34e-06s C 1000 1 IncSubtensor{InplaceInc;:int64:}\n", " 1.3% 85.7% 0.001s 2.55e-07s C 5000 5 Flatten{1}\n", " 1.2% 86.8% 0.001s 1.13e-06s C 1000 1 Elemwise{Composite{Switch(i0, (i1 * sqr(i2)), i3)}}\n", " 1.1% 88.0% 0.001s 1.09e-06s C 1000 1 Elemwise{Composite{((((i0 * i1 * scalar_psi((i0 * i2))) + (i3 * (i4 / sqr(i5))) + (i0 * i6 * scalar_psi((i0 * i5))) + (i0 * i7) + (i8 / i5)) * i9) + Switch(GT(i9, i10), (i11 * i9), i10) + (i12 * i9))}}[(0, 1)]\n", " 1.1% 89.1% 0.001s 1.05e-06s C 1000 1 Elemwise{Composite{Switch(i0, (i1 * i2 * i3), i4)}}\n", " 1.1% 90.2% 0.001s 5.16e-07s C 2000 2 Elemwise{mul,no_inplace}\n", " 0.9% 91.1% 0.001s 4.49e-07s C 2000 2 Reshape{0}\n", " 0.9% 92.0% 0.001s 2.94e-07s C 3000 3 InplaceDimShuffle{x}\n", " 0.9% 93.0% 0.001s 4.41e-07s C 2000 2 Elemwise{exp,no_inplace}\n", " ... (remaining 14 Ops account for 7.03%(0.01s) of the runtime)\n", "\n", "Apply\n", "------\n", "<% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name>\n", " 25.7% 25.7% 0.024s 2.45e-05s 1000 16 Split{1}(Elemwise{Composite{(sgn(exp(i0)) / Abs(exp(i0)))}}.0, TensorConstant{0}, TensorConstant{(1,) of 1})\n", " 21.5% 47.2% 0.021s 2.05e-05s 1000 19 Split{1}(Elemwise{Composite{(sgn(exp(i0)) / Abs(exp(i0)))}}.0, TensorConstant{0}, TensorConstant{(1,) of 1})\n", " 7.4% 54.6% 0.007s 7.04e-06s 1000 31 Elemwise{Composite{Switch(i0, (-log1p((i1 / i2))), i3)}}(Elemwise{Composite{(GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1))}}.0, Elemwise{mul,no_inplace}.0, InplaceDimShuffle{x}.0, TensorConstant{(1,) of 0})\n", " 3.9% 58.6% 0.004s 3.76e-06s 1000 54 Join(TensorConstant{0}, Flatten{1}.0, Flatten{1}.0, Flatten{1}.0)\n", " 3.1% 61.6% 0.003s 2.94e-06s 1000 27 Elemwise{Composite{(GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1))}}(Elemwise{Composite{exp((i0 * i1))}}.0, TensorConstant{(1,) of 0}, Elemwise{gt,no_inplace}.0)\n", " 3.1% 64.7% 0.003s 2.93e-06s 1000 48 IncSubtensor{InplaceInc;int64::}(Elemwise{Composite{(i0 * (Switch(i1, i2, i3) + Switch(i1, ((i4 * i5 * i6 * i7) / i8), i3)))}}[(0, 7)].0, Elemwise{Composite{Switch(i0, (i1 * i2 * i3), i4)}}.0, Constant{1})\n", " 2.8% 67.5% 0.003s 2.65e-06s 1000 43 Elemwise{Composite{Switch(i0, ((i1 * i2 * i3 * i4) / i5), i6)}}(Elemwise{Composite{(GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of 0.5}, InplaceDimShuffle{x}.0, Elemwise{Composite{exp((i0 * i1))}}.0, TensorConstant{[ 4.05769..48400e-06]}, Elemwise{Add}[(0, 1)].0, TensorConstant{(1,) of 0})\n", " 2.8% 70.3% 0.003s 2.64e-06s 1000 45 Elemwise{Composite{(i0 * (Switch(i1, i2, i3) + Switch(i1, ((i4 * i5 * i6 * i7) / i8), i3)))}}[(0, 7)](TensorConstant{(1,) of -2.0}, Elemwise{Composite{(GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of 0.5}, TensorConstant{(1,) of 0}, TensorConstant{(1,) of -0.5}, InplaceDimShuffle{x}.0, TensorConstant{[ 4.05769..48400e-06]}, Elemwise{Composite{exp((i0 * i1))}}.0, Elemwise{Add}[(0, 1)].0)\n", " 2.6% 72.9% 0.002s 2.49e-06s 1000 38 Alloc(Elemwise{Switch}.0, Elemwise{Composite{(i0 - Switch(LT(i1, i0), i1, i0))}}[(0, 0)].0)\n", " 2.3% 75.2% 0.002s 2.22e-06s 1000 7 Elemwise{Composite{exp((i0 * i1))}}(TensorConstant{(1,) of -2.0}, s)\n", " 1.4% 76.6% 0.001s 1.34e-06s 1000 51 IncSubtensor{InplaceInc;:int64:}(IncSubtensor{InplaceInc;int64::}.0, Elemwise{Composite{Switch(i0, (i1 * i2), i3)}}[(0, 2)].0, Constant{-1})\n", " 1.2% 77.8% 0.001s 1.13e-06s 1000 29 Elemwise{Composite{Switch(i0, (i1 * sqr(i2)), i3)}}(Elemwise{Composite{(GT(i0, i1) * GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of 0.5}, Elemwise{sub,no_inplace}.0, TensorConstant{(1,) of 0})\n", " 1.1% 79.0% 0.001s 1.09e-06s 1000 49 Elemwise{Composite{((((i0 * i1 * scalar_psi((i0 * i2))) + (i3 * (i4 / sqr(i5))) + (i0 * i6 * scalar_psi((i0 * i5))) + (i0 * i7) + (i8 / i5)) * i9) + Switch(GT(i9, i10), (i11 * i9), i10) + (i12 * i9))}}[(0, 1)](TensorConstant{0.5}, Sum{acc_dtype=float64}.0, Elemwise{add,no_inplace}.0, TensorConstant{3.141592653589793}, Sum{acc_dtype=float64}.0, nu, Sum{acc_dtype=float64}.0, Sum{acc_dtype=float64}.0, Sum{acc_dtype=float64}.0, Elemwise{exp,no_inplace}.\n", " 1.1% 80.1% 0.001s 1.05e-06s 1000 28 Elemwise{Composite{Switch(i0, (i1 * i2 * i3), i4)}}(Elemwise{Composite{(GT(i0, i1) * GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of -1.0}, InplaceDimShuffle{x}.0, Elemwise{sub,no_inplace}.0, TensorConstant{(1,) of 0})\n", " 1.0% 81.0% 0.001s 9.33e-07s 1000 34 Elemwise{Switch}(Elemwise{Composite{(GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of 1.0}, TensorConstant{(1,) of 0.0})\n", " 0.9% 81.9% 0.001s 8.37e-07s 1000 33 Elemwise{switch,no_inplace}(Elemwise{Composite{(GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1))}}.0, Elemwise{mul,no_inplace}.0, TensorConstant{(1,) of 0})\n", " 0.7% 82.7% 0.001s 7.03e-07s 1000 44 Sum{acc_dtype=float64}(Alloc.0)\n", " 0.7% 83.4% 0.001s 6.97e-07s 1000 46 Sum{acc_dtype=float64}(Elemwise{Composite{Switch(i0, ((i1 * i2 * i3 * i4) / i5), i6)}}.0)\n", " 0.7% 84.1% 0.001s 6.86e-07s 1000 39 Sum{acc_dtype=float64}(Elemwise{Composite{Switch(i0, (-log1p((i1 / i2))), i3)}}.0)\n", " 0.7% 84.8% 0.001s 6.59e-07s 1000 42 Sum{acc_dtype=float64}(Elemwise{Switch}.0)\n", " ... (remaining 35 Apply instances account for 15.20%(0.01s) of the runtime)\n", "\n" ] } ], "source": [ "model.profile(gradient(model.logpt, model.vars)).summary()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
ES-DOC/esdoc-jupyterhub
notebooks/nuist/cmip6/models/sandbox-3/atmos.ipynb
1
208999
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "source": [ "# ES-DOC CMIP6 Model Properties - Atmos \n", "**MIP Era**: CMIP6 \n", "**Institute**: NUIST \n", "**Source ID**: SANDBOX-3 \n", "**Topic**: Atmos \n", "**Sub-Topics**: Dynamical Core, Radiation, Turbulence Convection, Microphysics Precipitation, Cloud Scheme, Observation Simulation, Gravity Waves, Solar, Volcanos. \n", "**Properties**: 156 (127 required) \n", "**Model descriptions**: [Model description details](https://specializations.es-doc.org/cmip6/atmos?client=jupyter-notebook) \n", "**Initialized From**: -- \n", "\n", "**Notebook Help**: [Goto notebook help page](https://es-doc.org/cmip6-models-documenting-with-ipython) \n", "**Notebook Initialised**: 2018-02-15 16:54:34" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### Document Setup \n", "**IMPORTANT: to be executed each time you run the notebook** " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# DO NOT EDIT ! \n", "from pyesdoc.ipython.model_topic import NotebookOutput \n", "\n", "# DO NOT EDIT ! \n", "DOC = NotebookOutput('cmip6', 'nuist', 'sandbox-3', 'atmos')" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Authors \n", "*Set document authors*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_author(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Contributors \n", "*Specify document contributors* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_contributor(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Publication \n", "*Specify document publication status* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set publication status: \n", "# 0=do not publish, 1=publish. \n", "DOC.set_publication_status(0)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Table of Contents \n", "[1. Key Properties --&gt; Overview](#1.-Key-Properties---&gt;-Overview) \n", "[2. Key Properties --&gt; Resolution](#2.-Key-Properties---&gt;-Resolution) \n", "[3. Key Properties --&gt; Timestepping](#3.-Key-Properties---&gt;-Timestepping) \n", "[4. Key Properties --&gt; Orography](#4.-Key-Properties---&gt;-Orography) \n", "[5. Grid --&gt; Discretisation](#5.-Grid---&gt;-Discretisation) \n", "[6. Grid --&gt; Discretisation --&gt; Horizontal](#6.-Grid---&gt;-Discretisation---&gt;-Horizontal) \n", "[7. Grid --&gt; Discretisation --&gt; Vertical](#7.-Grid---&gt;-Discretisation---&gt;-Vertical) \n", "[8. Dynamical Core](#8.-Dynamical-Core) \n", "[9. Dynamical Core --&gt; Top Boundary](#9.-Dynamical-Core---&gt;-Top-Boundary) \n", "[10. Dynamical Core --&gt; Lateral Boundary](#10.-Dynamical-Core---&gt;-Lateral-Boundary) \n", "[11. Dynamical Core --&gt; Diffusion Horizontal](#11.-Dynamical-Core---&gt;-Diffusion-Horizontal) \n", "[12. Dynamical Core --&gt; Advection Tracers](#12.-Dynamical-Core---&gt;-Advection-Tracers) \n", "[13. Dynamical Core --&gt; Advection Momentum](#13.-Dynamical-Core---&gt;-Advection-Momentum) \n", "[14. Radiation](#14.-Radiation) \n", "[15. Radiation --&gt; Shortwave Radiation](#15.-Radiation---&gt;-Shortwave-Radiation) \n", "[16. Radiation --&gt; Shortwave GHG](#16.-Radiation---&gt;-Shortwave-GHG) \n", "[17. Radiation --&gt; Shortwave Cloud Ice](#17.-Radiation---&gt;-Shortwave-Cloud-Ice) \n", "[18. Radiation --&gt; Shortwave Cloud Liquid](#18.-Radiation---&gt;-Shortwave-Cloud-Liquid) \n", "[19. Radiation --&gt; Shortwave Cloud Inhomogeneity](#19.-Radiation---&gt;-Shortwave-Cloud-Inhomogeneity) \n", "[20. Radiation --&gt; Shortwave Aerosols](#20.-Radiation---&gt;-Shortwave-Aerosols) \n", "[21. Radiation --&gt; Shortwave Gases](#21.-Radiation---&gt;-Shortwave-Gases) \n", "[22. Radiation --&gt; Longwave Radiation](#22.-Radiation---&gt;-Longwave-Radiation) \n", "[23. Radiation --&gt; Longwave GHG](#23.-Radiation---&gt;-Longwave-GHG) \n", "[24. Radiation --&gt; Longwave Cloud Ice](#24.-Radiation---&gt;-Longwave-Cloud-Ice) \n", "[25. Radiation --&gt; Longwave Cloud Liquid](#25.-Radiation---&gt;-Longwave-Cloud-Liquid) \n", "[26. Radiation --&gt; Longwave Cloud Inhomogeneity](#26.-Radiation---&gt;-Longwave-Cloud-Inhomogeneity) \n", "[27. Radiation --&gt; Longwave Aerosols](#27.-Radiation---&gt;-Longwave-Aerosols) \n", "[28. Radiation --&gt; Longwave Gases](#28.-Radiation---&gt;-Longwave-Gases) \n", "[29. Turbulence Convection](#29.-Turbulence-Convection) \n", "[30. Turbulence Convection --&gt; Boundary Layer Turbulence](#30.-Turbulence-Convection---&gt;-Boundary-Layer-Turbulence) \n", "[31. Turbulence Convection --&gt; Deep Convection](#31.-Turbulence-Convection---&gt;-Deep-Convection) \n", "[32. Turbulence Convection --&gt; Shallow Convection](#32.-Turbulence-Convection---&gt;-Shallow-Convection) \n", "[33. Microphysics Precipitation](#33.-Microphysics-Precipitation) \n", "[34. Microphysics Precipitation --&gt; Large Scale Precipitation](#34.-Microphysics-Precipitation---&gt;-Large-Scale-Precipitation) \n", "[35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics](#35.-Microphysics-Precipitation---&gt;-Large-Scale-Cloud-Microphysics) \n", "[36. Cloud Scheme](#36.-Cloud-Scheme) \n", "[37. Cloud Scheme --&gt; Optical Cloud Properties](#37.-Cloud-Scheme---&gt;-Optical-Cloud-Properties) \n", "[38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution](#38.-Cloud-Scheme---&gt;-Sub-Grid-Scale-Water-Distribution) \n", "[39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution](#39.-Cloud-Scheme---&gt;-Sub-Grid-Scale-Ice-Distribution) \n", "[40. Observation Simulation](#40.-Observation-Simulation) \n", "[41. Observation Simulation --&gt; Isscp Attributes](#41.-Observation-Simulation---&gt;-Isscp-Attributes) \n", "[42. Observation Simulation --&gt; Cosp Attributes](#42.-Observation-Simulation---&gt;-Cosp-Attributes) \n", "[43. Observation Simulation --&gt; Radar Inputs](#43.-Observation-Simulation---&gt;-Radar-Inputs) \n", "[44. Observation Simulation --&gt; Lidar Inputs](#44.-Observation-Simulation---&gt;-Lidar-Inputs) \n", "[45. Gravity Waves](#45.-Gravity-Waves) \n", "[46. Gravity Waves --&gt; Orographic Gravity Waves](#46.-Gravity-Waves---&gt;-Orographic-Gravity-Waves) \n", "[47. Gravity Waves --&gt; Non Orographic Gravity Waves](#47.-Gravity-Waves---&gt;-Non-Orographic-Gravity-Waves) \n", "[48. Solar](#48.-Solar) \n", "[49. Solar --&gt; Solar Pathways](#49.-Solar---&gt;-Solar-Pathways) \n", "[50. Solar --&gt; Solar Constant](#50.-Solar---&gt;-Solar-Constant) \n", "[51. Solar --&gt; Orbital Parameters](#51.-Solar---&gt;-Orbital-Parameters) \n", "[52. Solar --&gt; Insolation Ozone](#52.-Solar---&gt;-Insolation-Ozone) \n", "[53. Volcanos](#53.-Volcanos) \n", "[54. Volcanos --&gt; Volcanoes Treatment](#54.-Volcanos---&gt;-Volcanoes-Treatment) \n", "\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "# 1. Key Properties --&gt; Overview \n", "*Top level key properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 1.1. Model Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.overview.model_overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.2. Model Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of atmosphere model code (CAM 4.0, ARPEGE 3.2,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.overview.model_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.3. Model Family\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of atmospheric model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.overview.model_family') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"AGCM\" \n", "# \"ARCM\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.4. Basic Approximations\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Basic approximations made in the atmosphere.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.overview.basic_approximations') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"primitive equations\" \n", "# \"non-hydrostatic\" \n", "# \"anelastic\" \n", "# \"Boussinesq\" \n", "# \"hydrostatic\" \n", "# \"quasi-hydrostatic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 2. Key Properties --&gt; Resolution \n", "*Characteristics of the model resolution*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 2.1. Horizontal Resolution Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.horizontal_resolution_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.2. Canonical Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.canonical_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.3. Range Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.range_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.4. Number Of Vertical Levels\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of vertical levels resolved on the computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.number_of_vertical_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.5. High Top\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does the atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top above the stratopause.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.high_top') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 3. Key Properties --&gt; Timestepping \n", "*Characteristics of the atmosphere model time stepping*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 3.1. Timestep Dynamics\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Timestep for the dynamics, e.g. 30 min.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_dynamics') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.2. Timestep Shortwave Radiative Transfer\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Timestep for the shortwave radiative transfer, e.g. 1.5 hours.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_shortwave_radiative_transfer') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.3. Timestep Longwave Radiative Transfer\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Timestep for the longwave radiative transfer, e.g. 3 hours.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_longwave_radiative_transfer') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 4. Key Properties --&gt; Orography \n", "*Characteristics of the model orography*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 4.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Time adaptation of the orography.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.orography.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"present day\" \n", "# \"modified\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.2. Changes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *If the orography type is modified describe the time adaptation changes.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.orography.changes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"related to ice sheets\" \n", "# \"related to tectonics\" \n", "# \"modified mean\" \n", "# \"modified variance if taken into account in model (cf gravity waves)\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 5. Grid --&gt; Discretisation \n", "*Atmosphere grid discretisation*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 5.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of grid discretisation in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 6. Grid --&gt; Discretisation --&gt; Horizontal \n", "*Atmosphere discretisation in the horizontal*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 6.1. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal discretisation type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"spectral\" \n", "# \"fixed grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.2. Scheme Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal discretisation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"finite elements\" \n", "# \"finite volumes\" \n", "# \"finite difference\" \n", "# \"centered finite difference\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.3. Scheme Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal discretisation function order*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"second\" \n", "# \"third\" \n", "# \"fourth\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.4. Horizontal Pole\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Horizontal discretisation pole singularity treatment*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.horizontal_pole') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"filter\" \n", "# \"pole rotation\" \n", "# \"artificial island\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.5. Grid Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal grid type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.grid_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Gaussian\" \n", "# \"Latitude-Longitude\" \n", "# \"Cubed-Sphere\" \n", "# \"Icosahedral\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 7. Grid --&gt; Discretisation --&gt; Vertical \n", "*Atmosphere discretisation in the vertical*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 7.1. Coordinate Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Type of vertical coordinate system*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.vertical.coordinate_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"isobaric\" \n", "# \"sigma\" \n", "# \"hybrid sigma-pressure\" \n", "# \"hybrid pressure\" \n", "# \"vertically lagrangian\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 8. Dynamical Core \n", "*Characteristics of the dynamical core*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 8.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of atmosphere dynamical core*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.2. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the dynamical core of the model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.3. Timestepping Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Timestepping framework type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.timestepping_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Adams-Bashforth\" \n", "# \"explicit\" \n", "# \"implicit\" \n", "# \"semi-implicit\" \n", "# \"leap frog\" \n", "# \"multi-step\" \n", "# \"Runge Kutta fifth order\" \n", "# \"Runge Kutta second order\" \n", "# \"Runge Kutta third order\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.4. Prognostic Variables\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of the model prognostic variables*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.prognostic_variables') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"surface pressure\" \n", "# \"wind components\" \n", "# \"divergence/curl\" \n", "# \"temperature\" \n", "# \"potential temperature\" \n", "# \"total water\" \n", "# \"water vapour\" \n", "# \"water liquid\" \n", "# \"water ice\" \n", "# \"total water moments\" \n", "# \"clouds\" \n", "# \"radiation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 9. Dynamical Core --&gt; Top Boundary \n", "*Type of boundary layer at the top of the model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 9.1. Top Boundary Condition\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Top boundary condition*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_boundary_condition') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"sponge layer\" \n", "# \"radiation boundary condition\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.2. Top Heat\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Top boundary heat treatment*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_heat') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.3. Top Wind\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Top boundary wind treatment*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_wind') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 10. Dynamical Core --&gt; Lateral Boundary \n", "*Type of lateral boundary condition (if the model is a regional model)*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 10.1. Condition\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Type of lateral boundary condition*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.lateral_boundary.condition') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"sponge layer\" \n", "# \"radiation boundary condition\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 11. Dynamical Core --&gt; Diffusion Horizontal \n", "*Horizontal diffusion scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 11.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Horizontal diffusion scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.2. Scheme Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal diffusion scheme method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"iterated Laplacian\" \n", "# \"bi-harmonic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 12. Dynamical Core --&gt; Advection Tracers \n", "*Tracer advection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 12.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Tracer advection scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Heun\" \n", "# \"Roe and VanLeer\" \n", "# \"Roe and Superbee\" \n", "# \"Prather\" \n", "# \"UTOPIA\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.2. Scheme Characteristics\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Tracer advection scheme characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_characteristics') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Eulerian\" \n", "# \"modified Euler\" \n", "# \"Lagrangian\" \n", "# \"semi-Lagrangian\" \n", "# \"cubic semi-Lagrangian\" \n", "# \"quintic semi-Lagrangian\" \n", "# \"mass-conserving\" \n", "# \"finite volume\" \n", "# \"flux-corrected\" \n", "# \"linear\" \n", "# \"quadratic\" \n", "# \"quartic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.3. Conserved Quantities\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Tracer advection scheme conserved quantities*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conserved_quantities') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"dry mass\" \n", "# \"tracer mass\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.4. Conservation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Tracer advection scheme conservation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conservation_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"conservation fixer\" \n", "# \"Priestley algorithm\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 13. Dynamical Core --&gt; Advection Momentum \n", "*Momentum advection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 13.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Momentum advection schemes name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"VanLeer\" \n", "# \"Janjic\" \n", "# \"SUPG (Streamline Upwind Petrov-Galerkin)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.2. Scheme Characteristics\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Momentum advection scheme characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_characteristics') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"2nd order\" \n", "# \"4th order\" \n", "# \"cell-centred\" \n", "# \"staggered grid\" \n", "# \"semi-staggered grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.3. Scheme Staggering Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Momentum advection scheme staggering type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_staggering_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Arakawa B-grid\" \n", "# \"Arakawa C-grid\" \n", "# \"Arakawa D-grid\" \n", "# \"Arakawa E-grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.4. Conserved Quantities\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Momentum advection scheme conserved quantities*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conserved_quantities') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Angular momentum\" \n", "# \"Horizontal momentum\" \n", "# \"Enstrophy\" \n", "# \"Mass\" \n", "# \"Total energy\" \n", "# \"Vorticity\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.5. Conservation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Momentum advection scheme conservation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conservation_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"conservation fixer\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 14. Radiation \n", "*Characteristics of the atmosphere radiation process*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 14.1. Aerosols\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Aerosols whose radiative effect is taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.aerosols') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"sulphate\" \n", "# \"nitrate\" \n", "# \"sea salt\" \n", "# \"dust\" \n", "# \"ice\" \n", "# \"organic\" \n", "# \"BC (black carbon / soot)\" \n", "# \"SOA (secondary organic aerosols)\" \n", "# \"POM (particulate organic matter)\" \n", "# \"polar stratospheric ice\" \n", "# \"NAT (nitric acid trihydrate)\" \n", "# \"NAD (nitric acid dihydrate)\" \n", "# \"STS (supercooled ternary solution aerosol particle)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 15. Radiation --&gt; Shortwave Radiation \n", "*Properties of the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 15.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of shortwave radiation in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.2. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.3. Spectral Integration\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Shortwave radiation scheme spectral integration*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_integration') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"wide-band model\" \n", "# \"correlated-k\" \n", "# \"exponential sum fitting\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.4. Transport Calculation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Shortwave radiation transport calculation methods*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.transport_calculation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"two-stream\" \n", "# \"layer interaction\" \n", "# \"bulk\" \n", "# \"adaptive\" \n", "# \"multi-stream\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.5. Spectral Intervals\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Shortwave radiation scheme number of spectral intervals*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_intervals') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 16. Radiation --&gt; Shortwave GHG \n", "*Representation of greenhouse gases in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 16.1. Greenhouse Gas Complexity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Complexity of greenhouse gases whose shortwave radiative effects are taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.greenhouse_gas_complexity') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CO2\" \n", "# \"CH4\" \n", "# \"N2O\" \n", "# \"CFC-11 eq\" \n", "# \"CFC-12 eq\" \n", "# \"HFC-134a eq\" \n", "# \"Explicit ODSs\" \n", "# \"Explicit other fluorinated gases\" \n", "# \"O3\" \n", "# \"H2O\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.2. ODS\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.ODS') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CFC-12\" \n", "# \"CFC-11\" \n", "# \"CFC-113\" \n", "# \"CFC-114\" \n", "# \"CFC-115\" \n", "# \"HCFC-22\" \n", "# \"HCFC-141b\" \n", "# \"HCFC-142b\" \n", "# \"Halon-1211\" \n", "# \"Halon-1301\" \n", "# \"Halon-2402\" \n", "# \"methyl chloroform\" \n", "# \"carbon tetrachloride\" \n", "# \"methyl chloride\" \n", "# \"methylene chloride\" \n", "# \"chloroform\" \n", "# \"methyl bromide\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.3. Other Flourinated Gases\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Other flourinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.other_flourinated_gases') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"HFC-134a\" \n", "# \"HFC-23\" \n", "# \"HFC-32\" \n", "# \"HFC-125\" \n", "# \"HFC-143a\" \n", "# \"HFC-152a\" \n", "# \"HFC-227ea\" \n", "# \"HFC-236fa\" \n", "# \"HFC-245fa\" \n", "# \"HFC-365mfc\" \n", "# \"HFC-43-10mee\" \n", "# \"CF4\" \n", "# \"C2F6\" \n", "# \"C3F8\" \n", "# \"C4F10\" \n", "# \"C5F12\" \n", "# \"C6F14\" \n", "# \"C7F16\" \n", "# \"C8F18\" \n", "# \"c-C4F8\" \n", "# \"NF3\" \n", "# \"SF6\" \n", "# \"SO2F2\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 17. Radiation --&gt; Shortwave Cloud Ice \n", "*Shortwave radiative properties of ice crystals in clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 17.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General shortwave radiative interactions with cloud ice crystals*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 17.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of cloud ice crystals in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"bi-modal size distribution\" \n", "# \"ensemble of ice crystals\" \n", "# \"mean projected area\" \n", "# \"ice water path\" \n", "# \"crystal asymmetry\" \n", "# \"crystal aspect ratio\" \n", "# \"effective crystal radius\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 17.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to cloud ice crystals in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"T-matrix\" \n", "# \"geometric optics\" \n", "# \"finite difference time domain (FDTD)\" \n", "# \"Mie theory\" \n", "# \"anomalous diffraction approximation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 18. Radiation --&gt; Shortwave Cloud Liquid \n", "*Shortwave radiative properties of liquid droplets in clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 18.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General shortwave radiative interactions with cloud liquid droplets*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of cloud liquid droplets in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"cloud droplet number concentration\" \n", "# \"effective cloud droplet radii\" \n", "# \"droplet size distribution\" \n", "# \"liquid water path\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to cloud liquid droplets in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"geometric optics\" \n", "# \"Mie theory\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 19. Radiation --&gt; Shortwave Cloud Inhomogeneity \n", "*Cloud inhomogeneity in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 19.1. Cloud Inhomogeneity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method for taking into account horizontal cloud inhomogeneity*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_inhomogeneity.cloud_inhomogeneity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Monte Carlo Independent Column Approximation\" \n", "# \"Triplecloud\" \n", "# \"analytic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 20. Radiation --&gt; Shortwave Aerosols \n", "*Shortwave radiative properties of aerosols*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 20.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General shortwave radiative interactions with aerosols*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 20.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of aerosols in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"number concentration\" \n", "# \"effective radii\" \n", "# \"size distribution\" \n", "# \"asymmetry\" \n", "# \"aspect ratio\" \n", "# \"mixing state\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 20.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to aerosols in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"T-matrix\" \n", "# \"geometric optics\" \n", "# \"finite difference time domain (FDTD)\" \n", "# \"Mie theory\" \n", "# \"anomalous diffraction approximation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 21. Radiation --&gt; Shortwave Gases \n", "*Shortwave radiative properties of gases*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 21.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General shortwave radiative interactions with gases*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_gases.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 22. Radiation --&gt; Longwave Radiation \n", "*Properties of the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 22.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of longwave radiation in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.2. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the longwave radiation scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.3. Spectral Integration\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Longwave radiation scheme spectral integration*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_integration') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"wide-band model\" \n", "# \"correlated-k\" \n", "# \"exponential sum fitting\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.4. Transport Calculation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Longwave radiation transport calculation methods*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.transport_calculation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"two-stream\" \n", "# \"layer interaction\" \n", "# \"bulk\" \n", "# \"adaptive\" \n", "# \"multi-stream\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.5. Spectral Intervals\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Longwave radiation scheme number of spectral intervals*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_intervals') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 23. Radiation --&gt; Longwave GHG \n", "*Representation of greenhouse gases in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 23.1. Greenhouse Gas Complexity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Complexity of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_GHG.greenhouse_gas_complexity') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CO2\" \n", "# \"CH4\" \n", "# \"N2O\" \n", "# \"CFC-11 eq\" \n", "# \"CFC-12 eq\" \n", "# \"HFC-134a eq\" \n", "# \"Explicit ODSs\" \n", "# \"Explicit other fluorinated gases\" \n", "# \"O3\" \n", "# \"H2O\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.2. ODS\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Ozone depleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_GHG.ODS') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CFC-12\" \n", "# \"CFC-11\" \n", "# \"CFC-113\" \n", "# \"CFC-114\" \n", "# \"CFC-115\" \n", "# \"HCFC-22\" \n", "# \"HCFC-141b\" \n", "# \"HCFC-142b\" \n", "# \"Halon-1211\" \n", "# \"Halon-1301\" \n", "# \"Halon-2402\" \n", "# \"methyl chloroform\" \n", "# \"carbon tetrachloride\" \n", "# \"methyl chloride\" \n", "# \"methylene chloride\" \n", "# \"chloroform\" \n", "# \"methyl bromide\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.3. Other Flourinated Gases\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Other flourinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_GHG.other_flourinated_gases') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"HFC-134a\" \n", "# \"HFC-23\" \n", "# \"HFC-32\" \n", "# \"HFC-125\" \n", "# \"HFC-143a\" \n", "# \"HFC-152a\" \n", "# \"HFC-227ea\" \n", "# \"HFC-236fa\" \n", "# \"HFC-245fa\" \n", "# \"HFC-365mfc\" \n", "# \"HFC-43-10mee\" \n", "# \"CF4\" \n", "# \"C2F6\" \n", "# \"C3F8\" \n", "# \"C4F10\" \n", "# \"C5F12\" \n", "# \"C6F14\" \n", "# \"C7F16\" \n", "# \"C8F18\" \n", "# \"c-C4F8\" \n", "# \"NF3\" \n", "# \"SF6\" \n", "# \"SO2F2\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 24. Radiation --&gt; Longwave Cloud Ice \n", "*Longwave radiative properties of ice crystals in clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 24.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General longwave radiative interactions with cloud ice crystals*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 24.2. Physical Reprenstation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of cloud ice crystals in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.physical_reprenstation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"bi-modal size distribution\" \n", "# \"ensemble of ice crystals\" \n", "# \"mean projected area\" \n", "# \"ice water path\" \n", "# \"crystal asymmetry\" \n", "# \"crystal aspect ratio\" \n", "# \"effective crystal radius\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 24.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to cloud ice crystals in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"T-matrix\" \n", "# \"geometric optics\" \n", "# \"finite difference time domain (FDTD)\" \n", "# \"Mie theory\" \n", "# \"anomalous diffraction approximation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 25. Radiation --&gt; Longwave Cloud Liquid \n", "*Longwave radiative properties of liquid droplets in clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 25.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General longwave radiative interactions with cloud liquid droplets*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of cloud liquid droplets in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"cloud droplet number concentration\" \n", "# \"effective cloud droplet radii\" \n", "# \"droplet size distribution\" \n", "# \"liquid water path\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to cloud liquid droplets in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"geometric optics\" \n", "# \"Mie theory\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 26. Radiation --&gt; Longwave Cloud Inhomogeneity \n", "*Cloud inhomogeneity in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 26.1. Cloud Inhomogeneity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method for taking into account horizontal cloud inhomogeneity*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_inhomogeneity.cloud_inhomogeneity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Monte Carlo Independent Column Approximation\" \n", "# \"Triplecloud\" \n", "# \"analytic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 27. Radiation --&gt; Longwave Aerosols \n", "*Longwave radiative properties of aerosols*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 27.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General longwave radiative interactions with aerosols*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of aerosols in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"number concentration\" \n", "# \"effective radii\" \n", "# \"size distribution\" \n", "# \"asymmetry\" \n", "# \"aspect ratio\" \n", "# \"mixing state\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to aerosols in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"T-matrix\" \n", "# \"geometric optics\" \n", "# \"finite difference time domain (FDTD)\" \n", "# \"Mie theory\" \n", "# \"anomalous diffraction approximation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 28. Radiation --&gt; Longwave Gases \n", "*Longwave radiative properties of gases*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 28.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General longwave radiative interactions with gases*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_gases.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 29. Turbulence Convection \n", "*Atmosphere Convective Turbulence and Clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 29.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of atmosphere convection and turbulence*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 30. Turbulence Convection --&gt; Boundary Layer Turbulence \n", "*Properties of the boundary layer turbulence scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 30.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Boundary layer turbulence scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Mellor-Yamada\" \n", "# \"Holtslag-Boville\" \n", "# \"EDMF\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.2. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Boundary layer turbulence scheme type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"TKE prognostic\" \n", "# \"TKE diagnostic\" \n", "# \"TKE coupled with water\" \n", "# \"vertical profile of Kz\" \n", "# \"non-local diffusion\" \n", "# \"Monin-Obukhov similarity\" \n", "# \"Coastal Buddy Scheme\" \n", "# \"Coupled with convection\" \n", "# \"Coupled with gravity waves\" \n", "# \"Depth capped at cloud base\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.3. Closure Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Boundary layer turbulence scheme closure order*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.closure_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.4. Counter Gradient\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Uses boundary layer turbulence scheme counter gradient*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.counter_gradient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 31. Turbulence Convection --&gt; Deep Convection \n", "*Properties of the deep convection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 31.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Deep convection scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.2. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Deep convection scheme type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"mass-flux\" \n", "# \"adjustment\" \n", "# \"plume ensemble\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.3. Scheme Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Deep convection scheme method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CAPE\" \n", "# \"bulk\" \n", "# \"ensemble\" \n", "# \"CAPE/WFN based\" \n", "# \"TKE/CIN based\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.4. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical processes taken into account in the parameterisation of deep convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"vertical momentum transport\" \n", "# \"convective momentum transport\" \n", "# \"entrainment\" \n", "# \"detrainment\" \n", "# \"penetrative convection\" \n", "# \"updrafts\" \n", "# \"downdrafts\" \n", "# \"radiative effect of anvils\" \n", "# \"re-evaporation of convective precipitation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.5. Microphysics\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Microphysics scheme for deep convection. Microphysical processes directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.microphysics') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"tuning parameter based\" \n", "# \"single moment\" \n", "# \"two moment\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 32. Turbulence Convection --&gt; Shallow Convection \n", "*Properties of the shallow convection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 32.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Shallow convection scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.2. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *shallow convection scheme type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"mass-flux\" \n", "# \"cumulus-capped boundary layer\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.3. Scheme Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *shallow convection scheme method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"same as deep (unified)\" \n", "# \"included in boundary layer turbulence\" \n", "# \"separate diagnosis\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.4. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical processes taken into account in the parameterisation of shallow convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"convective momentum transport\" \n", "# \"entrainment\" \n", "# \"detrainment\" \n", "# \"penetrative convection\" \n", "# \"re-evaporation of convective precipitation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.5. Microphysics\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Microphysics scheme for shallow convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.microphysics') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"tuning parameter based\" \n", "# \"single moment\" \n", "# \"two moment\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 33. Microphysics Precipitation \n", "*Large Scale Cloud Microphysics and Precipitation*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 33.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of large scale cloud microphysics and precipitation*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 34. Microphysics Precipitation --&gt; Large Scale Precipitation \n", "*Properties of the large scale precipitation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 34.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name of the large scale precipitation parameterisation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.2. Hydrometeors\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Precipitating hydrometeors taken into account in the large scale precipitation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.hydrometeors') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"liquid rain\" \n", "# \"snow\" \n", "# \"hail\" \n", "# \"graupel\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics \n", "*Properties of the large scale cloud microphysics scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 35.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name of the microphysics parameterisation scheme used for large scale clouds.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 35.2. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Large scale cloud microphysics processes*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"mixed phase\" \n", "# \"cloud droplets\" \n", "# \"cloud ice\" \n", "# \"ice nucleation\" \n", "# \"water vapour deposition\" \n", "# \"effect of raindrops\" \n", "# \"effect of snow\" \n", "# \"effect of graupel\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 36. Cloud Scheme \n", "*Characteristics of the cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 36.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of the atmosphere cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.2. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.3. Atmos Coupling\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Atmosphere components that are linked to the cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.atmos_coupling') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"atmosphere_radiation\" \n", "# \"atmosphere_microphysics_precipitation\" \n", "# \"atmosphere_turbulence_convection\" \n", "# \"atmosphere_gravity_waves\" \n", "# \"atmosphere_solar\" \n", "# \"atmosphere_volcano\" \n", "# \"atmosphere_cloud_simulator\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.4. Uses Separate Treatment\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Different cloud schemes for the different types of clouds (convective, stratiform and boundary layer)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.uses_separate_treatment') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.5. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Processes included in the cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"entrainment\" \n", "# \"detrainment\" \n", "# \"bulk cloud\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.6. Prognostic Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the cloud scheme a prognostic scheme?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.7. Diagnostic Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the cloud scheme a diagnostic scheme?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.diagnostic_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.8. Prognostic Variables\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List the prognostic variables used by the cloud scheme, if applicable.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_variables') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"cloud amount\" \n", "# \"liquid\" \n", "# \"ice\" \n", "# \"rain\" \n", "# \"snow\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 37. Cloud Scheme --&gt; Optical Cloud Properties \n", "*Optical cloud properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 37.1. Cloud Overlap Method\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Method for taking into account overlapping of cloud layers*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_overlap_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"random\" \n", "# \"maximum\" \n", "# \"maximum-random\" \n", "# \"exponential\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.2. Cloud Inhomogeneity\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Method for taking into account cloud inhomogeneity*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_inhomogeneity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution \n", "*Sub-grid scale water distribution*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 38.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale water distribution type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"prognostic\" \n", "# \"diagnostic\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 38.2. Function Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale water distribution function name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 38.3. Function Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale water distribution function type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 38.4. Convection Coupling\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Sub-grid scale water distribution coupling with convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.convection_coupling') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"coupled with deep\" \n", "# \"coupled with shallow\" \n", "# \"not coupled with convection\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution \n", "*Sub-grid scale ice distribution*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 39.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale ice distribution type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"prognostic\" \n", "# \"diagnostic\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 39.2. Function Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale ice distribution function name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 39.3. Function Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale ice distribution function type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 39.4. Convection Coupling\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Sub-grid scale ice distribution coupling with convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.convection_coupling') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"coupled with deep\" \n", "# \"coupled with shallow\" \n", "# \"not coupled with convection\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 40. Observation Simulation \n", "*Characteristics of observation simulation*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 40.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of observation simulator characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 41. Observation Simulation --&gt; Isscp Attributes \n", "*ISSCP Characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 41.1. Top Height Estimation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Cloud simulator ISSCP top height estimation methodUo*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_estimation_method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"no adjustment\" \n", "# \"IR brightness\" \n", "# \"visible optical depth\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 41.2. Top Height Direction\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator ISSCP top height direction*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_direction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"lowest altitude level\" \n", "# \"highest altitude level\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 42. Observation Simulation --&gt; Cosp Attributes \n", "*CFMIP Observational Simulator Package attributes*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 42.1. Run Configuration\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator COSP run configuration*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.run_configuration') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Inline\" \n", "# \"Offline\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 42.2. Number Of Grid Points\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator COSP number of grid points*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_grid_points') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 42.3. Number Of Sub Columns\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_sub_columns') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 42.4. Number Of Levels\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator COSP number of levels*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 43. Observation Simulation --&gt; Radar Inputs \n", "*Characteristics of the cloud radar simulator*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 43.1. Frequency\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator radar frequency (Hz)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.frequency') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 43.2. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator radar type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"surface\" \n", "# \"space borne\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 43.3. Gas Absorption\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator radar uses gas absorption*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.gas_absorption') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 43.4. Effective Radius\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator radar uses effective radius*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.effective_radius') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 44. Observation Simulation --&gt; Lidar Inputs \n", "*Characteristics of the cloud lidar simulator*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 44.1. Ice Types\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator lidar ice type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.ice_types') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"ice spheres\" \n", "# \"ice non-spherical\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 44.2. Overlap\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Cloud simulator lidar overlap*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.overlap') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"max\" \n", "# \"random\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 45. Gravity Waves \n", "*Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 45.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of gravity wave parameterisation in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 45.2. Sponge Layer\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.sponge_layer') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Rayleigh friction\" \n", "# \"Diffusive sponge layer\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 45.3. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background wave distribution*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"continuous spectrum\" \n", "# \"discrete spectrum\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 45.4. Subgrid Scale Orography\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Subgrid scale orography effects taken into account.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.subgrid_scale_orography') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"effect on drag\" \n", "# \"effect on lifting\" \n", "# \"enhanced topography\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 46. Gravity Waves --&gt; Orographic Gravity Waves \n", "*Gravity waves generated due to the presence of orography*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 46.1. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the orographic gravity wave scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 46.2. Source Mechanisms\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Orographic gravity wave source mechanisms*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.source_mechanisms') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"linear mountain waves\" \n", "# \"hydraulic jump\" \n", "# \"envelope orography\" \n", "# \"low level flow blocking\" \n", "# \"statistical sub-grid scale variance\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 46.3. Calculation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Orographic gravity wave calculation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.calculation_method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"non-linear calculation\" \n", "# \"more than two cardinal directions\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 46.4. Propagation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Orographic gravity wave propogation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.propagation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"linear theory\" \n", "# \"non-linear theory\" \n", "# \"includes boundary layer ducting\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 46.5. Dissipation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Orographic gravity wave dissipation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.dissipation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"total wave\" \n", "# \"single wave\" \n", "# \"spectral\" \n", "# \"linear\" \n", "# \"wave saturation vs Richardson number\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 47. Gravity Waves --&gt; Non Orographic Gravity Waves \n", "*Gravity waves generated by non-orographic processes.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 47.1. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the non-orographic gravity wave scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 47.2. Source Mechanisms\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Non-orographic gravity wave source mechanisms*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.source_mechanisms') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"convection\" \n", "# \"precipitation\" \n", "# \"background spectrum\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 47.3. Calculation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Non-orographic gravity wave calculation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.calculation_method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"spatially dependent\" \n", "# \"temporally dependent\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 47.4. Propagation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Non-orographic gravity wave propogation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.propagation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"linear theory\" \n", "# \"non-linear theory\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 47.5. Dissipation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Non-orographic gravity wave dissipation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.dissipation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"total wave\" \n", "# \"single wave\" \n", "# \"spectral\" \n", "# \"linear\" \n", "# \"wave saturation vs Richardson number\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 48. Solar \n", "*Top of atmosphere solar insolation characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 48.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of solar insolation of the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 49. Solar --&gt; Solar Pathways \n", "*Pathways for solar forcing of the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 49.1. Pathways\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Pathways for the solar forcing of the atmosphere model domain*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.solar_pathways.pathways') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"SW radiation\" \n", "# \"precipitating energetic particles\" \n", "# \"cosmic rays\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 50. Solar --&gt; Solar Constant \n", "*Solar constant and top of atmosphere insolation characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 50.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Time adaptation of the solar constant.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.solar_constant.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"fixed\" \n", "# \"transient\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 50.2. Fixed Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If the solar constant is fixed, enter the value of the solar constant (W m-2).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.solar_constant.fixed_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 50.3. Transient Characteristics\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *solar constant transient characteristics (W m-2)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.solar_constant.transient_characteristics') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 51. Solar --&gt; Orbital Parameters \n", "*Orbital parameters and top of atmosphere insolation characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 51.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Time adaptation of orbital parameters*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.orbital_parameters.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"fixed\" \n", "# \"transient\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 51.2. Fixed Reference Date\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Reference date for fixed orbital parameters (yyyy)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.orbital_parameters.fixed_reference_date') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 51.3. Transient Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Description of transient orbital parameters*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.orbital_parameters.transient_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 51.4. Computation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method used for computing orbital parameters.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.orbital_parameters.computation_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Berger 1978\" \n", "# \"Laskar 2004\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 52. Solar --&gt; Insolation Ozone \n", "*Impact of solar insolation on stratospheric ozone*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 52.1. Solar Ozone Impact\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does top of atmosphere insolation impact on stratospheric ozone?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.insolation_ozone.solar_ozone_impact') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 53. Volcanos \n", "*Characteristics of the implementation of volcanoes*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 53.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of the implementation of volcanic effects in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.volcanos.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 54. Volcanos --&gt; Volcanoes Treatment \n", "*Treatment of volcanoes in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 54.1. Volcanoes Implementation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How volcanic effects are modeled in the atmosphere.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.volcanos.volcanoes_treatment.volcanoes_implementation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"high frequency solar constant anomaly\" \n", "# \"stratospheric aerosols optical thickness\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### \u00a92017 [ES-DOC](https://es-doc.org) \n" ], "cell_type": "markdown", "metadata": {} } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.10", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
gpl-3.0
ioam/geoviews
examples/Homepage.ipynb
1
3480
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "GeoViews is a [Python](http://python.org) library that makes it easy to explore and visualize geographical, meteorological, and oceanographic datasets, such as those used in weather, climate, and remote sensing research. \n", "\n", "GeoViews is built on the [HoloViews](http://holoviews.org) library for building flexible visualizations of multidimensional data. GeoViews adds a family of geographic plot types based on the [Cartopy](http://scitools.org.uk/cartopy) library, plotted using either the [Matplotlib](http://matplotlib.org) or [Bokeh](http://bokeh.pydata.org) packages. \n", "With GeoViews, you can now work easily and naturally with large, multidimensional geographic datasets, instantly visualizing any subset or combination of them, while always being able to access the raw data underlying any plot. Here's a simple example:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import geoviews as gv\n", "import geoviews.feature as gf\n", "import xarray as xr\n", "from cartopy import crs\n", "\n", "gv.extension('bokeh', 'matplotlib')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "(gf.ocean + gf.land + gf.ocean * gf.land * gf.coastline * gf.borders).opts(\n", " 'Feature', projection=crs.Geostationary(), global_extent=True, height=325).cols(3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "GeoViews is designed to work well with the [Iris](http://scitools.org.uk/iris) and [xarray](http://xarray.pydata.org) libraries for working with multidimensional arrays, such as those stored in netCDF files. GeoViews also accepts data as NumPy arrays and Pandas data frames. In each case, the data can be left stored in its original, native format, wrapped in a HoloViews or GeoViews object that provides instant interactive visualizations.\n", "\n", "The following example loads a dataset originally taken from [iris-sample-data](https://github.com/SciTools/iris-sample-data) and quickly builds an interactive tool for exploring how the data changes over time:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dataset = gv.Dataset(xr.open_dataset('./data/ensemble.nc'))\n", "ensemble = dataset.to(gv.Image, ['longitude', 'latitude'], 'surface_temperature')\n", "\n", "gv.output(ensemble.opts(cmap='viridis', colorbar=True, fig_size=200, backend='matplotlib') * gf.coastline(),\n", " backend='matplotlib')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "GeoViews also natively supports geopandas datastructures allowing us to easily plot shapefiles and choropleths:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import geopandas as gpd\n", "gv.Polygons(gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')), vdims=['pop_est', ('name', 'Country')]).opts(\n", " tools=['hover'], width=600, projection=crs.Robinson()\n", ")" ] } ], "metadata": { "hide_input": false, "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-3-clause
cdtait/simulation
md_processor/md_example.ipynb
1
68047
{ "metadata": { "name": "", "signature": "sha256:b07dd0fa4f107d0cb9d5f84b7bad6d89bb34bf4d7817fa84bf9aa717f5213e57" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Market Data Example" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Quick Notebook example of using panadas and ploting" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load the data from the csv and plot mid price with buy/sell trades" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "pd.options.display.max_columns=40\n", "pd.options.display.max_rows=1000" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "path = 'data/md-test-2.C-M.csv'\n", "book_data = pd.read_csv(path, index_col=False,header=None,nrows=50000,skiprows=10)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [ "ask_trade_prices = book_data[book_data.iloc[:,1]=='S'].iloc[:,3]\n", "bid_trade_prices = book_data[book_data.iloc[:,1]=='B'].iloc[:,3]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 50 }, { "cell_type": "code", "collapsed": false, "input": [ "book=book_data[book_data.iloc[:,1]=='U']\n", "book['mid_price']=(book.iloc[:,6]+book.values[:,7])/2.0" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 51 }, { "cell_type": "code", "collapsed": false, "input": [ "plt.figure(figsize=(10,5))\n", "book['mid_price'].plot(color='g')\n", "plt.scatter(ask_trade_prices.index,ask_trade_prices.values,color='r',s=5)\n", "plt.scatter(bid_trade_prices.index,bid_trade_prices.values,color='b',s=5)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 52, "text": [ "<matplotlib.collections.PathCollection at 0x7677210>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAE1CAYAAAA75J7FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FcXawH+7m5MECKGTQBKpQYiASBcpAQEBEbEhKB2v\n3wVs6LVLFQXBK3pFlCtFsYAoV7AggkAApQkoIBGIAkISWmgJJKTszvfH5rS0c5Kck5yD83uePNmd\nnZ19z+7M7Lsz77yvIoRAIpFIJBKJROI51PIWQCKRSCQSieRaQypYEolEIpFIJB5GKlgSiUQikUgk\nHkYqWBKJRCKRSCQeRipYEolEIpFIJB5GKlgSiUQikUgkHqZIBWv06NGLwsLCTrdo0WK/Ne3pp5+e\n3axZs99vvPHGvXfffff/Ll26VMV6bMaMGc9HR0cnNG3a9ODatWt7W9N3797dpkWLFvujo6MTHn/8\n8be881MkEolEIpFIfIMiFaxRo0YtXrNmTR/HtN69e689cODADXv37r2xSZMmh2fMmPE8QHx8fMxn\nn312f3x8fMyaNWv6jBs3bp4QQgEYO3bsuwsXLhyTkJAQnZCQEJ23TIlEIpFIJJJriSIVrC5dumyp\nVq3aBce0Xr16rVNV1QDo0KHDjsTExEiAVatW3TlkyJClFoslu379+scaN278x44dOzqcPHmyTlpa\nWuX27dvvBBg+fPiSlStXDvTWD5JIJBKJRCIpbwJKc/KiRYtGDxkyZClAcnJy3Y4dO263HouMjExM\nSkqKsFgs2ZGRkYnW9IiIiKSkpKSIvGUpiiJdykskEolEIvEbrDN1BVFiBeuVV155MTAwMOuBBx74\ntKRl5EWG7fFPpkyZwpQpU8pbDEkJkc/Pv5HPz3+Rz86/UZRCdSughArWBx98MHL16tX91q9ff6s1\nLSIiIunEiRNR1v3ExMTIyMjIxIiIiCTrNKI1PSIiIqkk15X4JseOHStvESSlQD4//0Y+P/9FPrtr\nm2K7aVizZk2f2bNnP71q1ao7g4ODr1rTBwwY8NWyZcsGZ2VlBR49erRBQkJCdPv27XeGh4efCg0N\nTd2xY0cHIYTy0UcfDRs4cOBKz/4MiUQikUgkEt+hyBGsIUOGLN20aVO3lJSUmlFRUSemTp06ecaM\nGc9nZWUF9urVax3AzTffvG3evHnjYmJi4gcNGrQ8JiYmPiAgIGfevHnjrHZV8+bNGzdy5MgPMjIy\nKvTr1291nz591pTFj5OUDSNHjixvESSlQD4//0Y+P/9FPrtrG8VX7J4URRG+IotEIpFIJBJJUSiK\nUqSRu/TkLik1cXFx5S2CpBTI5+ffyOfnv8hnd20jFSyJRCKRSCQSDyOnCCUSiUQikUiKiZwilEgk\nEolEIiljpIIlKTXSjsC/kc/Pv5HPz3+Rz+7aRipYEolEIpFIJB5G2mBJJBKJRCKRFBNpgyWRSCQS\niURSxkgFS1JqpB2BfyOfn38jn5//Ip/dtY1UsCQSiUQikUg8jLTBkkgkEolEIikm0gZLIpFIJBKJ\npIyRCpak1Eg7Av9GPj//Rj4//0U+u2sbqWBJJBKJRCKReBhpgyWRSCQSiURSTKQNlkQikUgkEkkZ\nIxUsSamRdgT+jXx+/o18fv6LfHbXNlLBkkgkEolEIvEw0gZLIpFIJBKJpJhIGyyJRCKRSCSSMkYq\nWJJSI+0I/Bv5/Pwb+fz8F/nsrm2kgiWRSCQSiUTiYaQNlkQikUgkEkkxcWWDFVCWwkgkktJz4tIJ\npmyawjv93iE4ILhUZc36aRbBAcE81uExD0knkZQ96/5cx5J9S5zS7rz+Tu6NudfluYt/WcyGYxtQ\nFZXp3acTVSXKW2JKSkFyWjIvrH8BXegANKnehIndJpazVEUjpwglpUbaEZQt8WfjWfTLIs5cOVPq\nsp794VmenP+kB6SSlBey/cHaI2vJ1rPp3bA3vRv2pkJABb4+/LVb534e/zm1K9VmV/IuDqYc9LKk\nzshn5z6HUg6xI2kHvRv2pnV4a97f8355i+QSOYIlkfgZhjCc/peWoIAgj5QjkZQnbeq0YdiNwwAQ\nCH448oNb5xnCoFfDXuw7vc+b4klKiUBQJ6QOw24cxvFLx3lj+xvlLZJL5AiWpNTExsaWtwh/K6yK\nlW7oHinP0tDikXIk5YNsfyCEQFHspjAKCgL3bHoNYaAq5fMqlM/OfRyfsYKCP9hsSwVLIvEzbAqW\n8IyCJZH4OwKBgoOCpShuj/CWp4IlcR9DGLZnXJznW574fq1q1w4Uxfzbvbu8pZEUgLQjKEPuvBPj\nzgEAGC1bwNWrJSsnJwcs5siVvu8SLF7sKQklZYxPtL8XX7T3019+WbbX/vFHxLvvosyaBcnJcOYM\n6vMvIFasgA0bij43MBBjw3rUnr1g3Q9wxx3w119lIzc+8uz8gcOHEf1vR/1hPbz8Mmr7DoiTJ6Fn\nz/KWrEh8X8Hatcu+PXJkuYkhkfgEX32FkfuhrmdnwUcflaycBQtMJcvKk9LQXVIKZs+2bz/xRNle\n+6WXEBkZKGdTYMkSWLoUJTkZIysTnn++8PP27oXsbAwFVAE/NIL/NcyEqVPLTnaJe0yahJGTjSKA\nl19GSUpGKMD69aD77ki+7ytYAQ52+HfeWX5ySApF2hGUISEhWL2u6CrQtWvJyrntNttmwHVAly6l\nFk1SPvhE+2vUyL7dvXvZXrtnT4QlAEXToEMHaN8eVVERARrcemvh511/PYBNwQJ4rx3Qp4/3Zc7F\nJ56dP9C3L4Lc59S0KSrmc6NiRdC08pWtCHx/FeGlSzB0qNlQxo8vb2kkkvIlLQ3jvhuAeIzPl9te\nEsWmQQPYtAk2dkOpWBFWrPComJK/GfHxMHEi1KlT9v30iy8iPtgH1RvZlDtl1mxEwir45yuFnxcc\nDNu2YSzthfryc3DkJTN90KAyEFpSLEaMQFRMQvnjU1jyK8q+bYhVt8HxspvOLQm+P4JVsSL8739S\nufJhpB1B2WJMmQyA3qhh6QrKHf3KTlJt9lgS/8Mn2p+iwPTp5dNPKwoiPBwlLNyeVKcuRo3qplxF\n0bEjRssWqLFlPOqWi088Oz/BuLElSr16oKoo0U0QFYKhRo3yFqtIfF/BkkgkTnh6FaHj6iuJxB8R\nOLtpUBXVL9w0SNxHCGF7Tqqi+sUqQt+fIsS8sY43U1VUp8YkKV+kHUHZYm0L2Xq2bbsonzCKoqAq\nqpPfLMc2FNgo0IvSSrxNWbU/V37XcuOylap/NoThVJcdX6Sa6mxrI4SwKVFC5HfT4K6fJOkHyz9w\ndMWhKKafs7y6gSOaquXzj5YXa5229pGOaZ5Q4vxCwVKn2bVWIQTDbhzGhwM/LGepJJLy4cH/PQhA\nl8VdqBxUmcycTLKN7ALzCiFoXL0x8/vP59Ylt9pePCNbjeSVHkXYp0gkDry/+30e/ubhIhUR68vo\nsQ6P8Vaft4p9jbNXzhLxRoRtZDbvy23FoBXc3exu2/4/v/0n/939XwD6N+lP05pNbccU3POTlK1n\n83Pyz3IEyw8whOHkaPTi1YsETg9EN/R8SpSqqKwdupYeS3qQMzEnn3IO8P0f39Pnkz6oikqgFsjZ\np8/yx/k/aPPfNgA0qdHEFjpJQSnRR4NfKFgAzWo2I358PN8c/ob3dr1X3uJIHIiLi5NfYuXApecu\nETozlMjQSE5MOFFgnpT0FK6fez3nMs5xV7O7WDFoBSsPrmTxr4s5n3EegJwjOQWeK/EPyqL9nc84\nzzO3PMNrPV8rNI8yVbHlLQmXsy4TERrB0cePAlBzVk3OZZzjv/3/y87knZxLP+eU/9jFY7btS1cv\nOY1guTtFaFXCykvBkn2n++SdIgTIMXL47sHv6NPYeeVnq/dacfzSccA0pdDIr2CdyzjHkOZD+PSe\nT6k1uxbp2elcyLhAl+u6YNEsbDy6kcndJjN101T0SfmVOABlctFKV5G1avTo0YvCwsJOt2jRYr81\n7fPPP7/vhhtuOKBpmr5nz57WjvlnzJjxfHR0dELTpk0Prl27trc1fffu3W1atGixPzo6OuHxxx8v\n/qcN2BqLv8y9SiTeJm9nU1geQxhO0yDWtADVb76vJOWMoxdtd/KW9BqOddmxvrrq93OMHOdQOW5O\nEVqvIe0QfZ+8U4RWCur/VEW1jeoXVm8K6hOtaaqimoqZouW7XnEoUsEaNWrU4jVr1jiphi1atNj/\n5Zdf3tW1a9fNjunx8fExn3322f3x8fExa9as6TNu3Lh5Qpgee8aOHfvuwoULxyQkJEQnJCRE5y3T\nHayNRVM0GSLEx5BfYOWDddjb2gkUmEfR0A0d3bB3FtY0i2auHJQ2WP5NWbQ/gXB7lKc0CpajomOr\n36rmst/Xhe5sg+XmFKEVdw3iPY3sO90n7xShlYL6P03VyNaLVrB0Q3fqQ3VDN5Wq3PpmLac0FNli\nunTpsqVatWoXHNOaNm16sEmTJofz5l21atWdQ4YMWWqxWLLr169/rHHjxn/s2LGjw8mTJ+ukpaVV\nbt++/U6A4cOHL1m5cuVAtyVMSjL/p6QA8MM6jd8O6KSnu12CROK7GIYZzuP3393Pn8uFc2bjv5qu\nkZVVcPaEwxpXs3T27tc5l6IhBJxM1jiTopNwyBzBunJFITW1VL9Cci1z+bIZimbdusLz7N1r2zx9\nWjhWU7cRyz9DPXMWMjMhOxvtstnJawd+R1u7Dv3zz+yZ09Nh507bbk7KWZSTJ237iYkqKSmu5RB7\nfwUga5+b7U9S9qxcCXPmII7/hXr2HAjB0aN21SXlrLMSdPkynErW+PZ7s1NMTHKoBImJpqf+339H\n37EN7VAC/PYbWso59HH/RJ//Llr8QbQzZwHQfj9knnfBSQ1yG4/NESQnJ9ft2LHjdut+ZGRkYlJS\nUoTFYsmOjIxMtKZHREQkJSUlRRRUxsiRI6lfvz4AVatWpVWrVsR27w5TIH3fOR5p8yrvXOgIXQ1q\n1oxj9Wr7F4DVn4jcL/t9R18uviCPX+1/+SUsXEhcTg688Qax48YVnf+NN6ANcAya1lsLz8PJZJUu\nXeJ47TXn/BcuwN33t4dnDF6bdAA18iyPHYD3N6hkRZ2jz/M74VlIP5hFVFQcq1b5wP2Q+8Xe93r7\nCw3lzxaC7IOJkHAPrFjhfDwzk7hWrWAkUB82b8phcFwc48YV43qjRnH8yw9QhwF16hAXFUVWk1Ro\nDuprs0iuAKT9Adu7wubNxIWGcr6HDreYv/vitqMkfPQqVO7O1qDuPP6P/ejRKTx1FObMKeT6V67Q\n6c7+MBF6PnASBpjyv/gi9OrlwftXxL41zZfqk0/t79sHjz9OHPBbA1A6aKQefIkb3+0Cw4D6MHyY\nCi/HERZmnt+wIZxtl0biXwfhPmjazOC7lXEEWQxi+/SB7Gzipkzh92hQmwHPtSDrXti65hsq1wG1\nPZzfmQjXgbp2CfSGuMhI+PZbm2zHjh3DLYQQRf4dPXq0fvPmzffnTY+Njd24e/fu1tb9Rx555O2P\nP/74Qev+mDFjFnzxxRf37Nq1q03Pnj3XWdM3b97cpX///l/nLc8UpQBAMAXR5BHErRV/EtSLE4zs\nKgrLLil7Nm7cWN4i+C833SQECBEcLMS8ea7zh4cLpphtIoBMc3t8U1G9ev6s69cLgXZVMNEiaLVI\nMHCEaN5ciMCmPwhGdBeEJJvn31tLKIrnf5qkbPB6+wMxtRtiYneEqFUr//HDh239NFMQ3HevaNeu\nmNfo2FEcqIVoOh4hFEWIkBBR7wmzvE+bIybchvj3zQgRGmqTqfdQ+zVjxiHmt1OFmD1bvP22EJZm\n3wmG3ibati3imtu2iUwtt4yIreb/4bcWfY6HkX2nCwYMMPtHEEubI+6/F/Fb8/sFARm2Z681+FF8\n/739FEURglGdBZ1fNfMEXRR//SWEuHDBVpYA8V4bxMP9ze0GjyP+qIZYdT2i/xDEXfebZb9+s/m/\nMIUjV28pVH9yb1LdDSIiIpJOnDgRZd1PTEyMjIyMTIyIiEhKTEyMdEyPiIhIcrvgKLNIocD8lWGo\nigaqLqMZ+BDWrw5JCXj9dQgPhxYt4P77XeefM8e2+dBd5qoqRYE338yfNTYWrm+igaITGKxTqYLG\n229DdCONgECd2mG5GSNCGD269D9FUj54vf21aYMAM9Duxx/nPx4dDVWrAqBmViI4SHeK/ewW8+cj\nVMWMNTd6NMydaz+mKmgG6Ar2it6rl9PpugrUrQvDhzNkCNSvrxAYJIqWo2NHqF0bgLu1dRA3GU7c\nwvvvF1P2UiD7ThfMnAkVKpje+mtURwkOJubtsTRubLfBat1Kw/E2/vOfgNBAM6cIW7YyTDWialUz\nlJKiQL166IEBaChQpYpZv1SzjmkCtNyArzYbrAcfLJH4pVKwhBC2XzlgwICvli1bNjgrKyvw6NGj\nDRISEqLbt2+/Mzw8/FRoaGjqjh07OgghlI8++mjYwIEDV7p9kePHzf/R0TTq1Ygtm1Vu7mTw2WdF\nnyaR+AU9esDJk6Y9SfXqrvMPHmzbfPd/dQC4vikMG5Y/q6pC/AEVVIO35xoMGaISGwvz3lHpeLPB\nr7+Y+erVN1iwwAO/RXJtsmsXxpRJKJMnQ+/eBefJtVEJCdXo2x+6dSvmNVq2xNi7F7V5c1iwAEaM\ngHr1zGMff4L6zDMYr82EUaPMtLVr4Ta7LDnRjVAmToLatalRA+a+rdC1m4Er/UXkvl9e2n4HU6eo\nTJwoaNWqmLJLvEezZqa9nWFg/Oc/KAPvQontxoHf7ArW3LdVAh3W6cybB91jVV6cZBq5b9hg2CMm\nbdhg2rEeO4bx5hzUsePg4kXUJk0wDv6OseIL1IF3od53HwDav3M/aAv6sHCDIhWsIUOGLO3UqdPW\nQ4cOXR8VFXVi0aJFo1euXDkwKirqxPbt2zvefvvt3/bt2/c7gJiYmPhBgwYtj4mJie/bt+938+bN\nG6coijB/8LxxDz300ILo6OiExo0b/9GnT581JZIWuYrQF3G0J5CUPUUtMXf0F5N3FaGVjD8yvCug\nxKuURfsTwvurCB2X4TuiKIrLfj+vmwarU+riXLs8XADJvtN9HFeyOtbFQlcRunDT4M4qwtL6RyvS\nyH3p0qVDCkovbATqhRdeePWFF154NW96mzZtdu/fv79FyUQ0sS6j1VTNZcgGieTvhKsl5pqikaVn\nOS17d3xZFedFJPl74q4frOK6R8h7jYJeaEIIl/1+QW4aiuN6wXpt6WPRdxEOYW8KcufhiLXPg8L7\nR0c/V9Y+0erOxlpmaRUsj9lgeZI/z//Jwj0LbX9gfwmoisqZK2dYsneJ7QZKyhdpR1By9pzcw8I9\nC/nj/B9u5c/MycyXZlEtRZ6jKio/nfjJ6evv9OXTfLr/UwDO1j5LWmZaMSWX+Apl0f7c9YMVoAa4\nVGzOZ5xn8S+L83lmP5d+jsPn7B6AHD8CVEXl5+SfeWH9CwCkZaaxI3GH7XhyWnI+R6NJqUnEn40v\nUpYLV82pTesIXVJaEpezLrPtxDYXv9QzyL7TNUmpSUzaOIm4v+KK5Wh07ynTdcjlrMtOx9b9uY6F\nexayPXG77dz07HQ+3vcxG45tcB4d86YfrPLi/T3v8+6ud9mauJWtiVsJ0oJssQcbVmtIv+h+TPh+\nAgfOHChnSSWS0jFw2UAe+voh7v7sbteZgd/O/AbAqz3MgeJJ3SYxrt24Is95+panCQ0KpX90fwAa\nV2/MbY1vIz4lnkndJgHw6HePlvQnSP4GOI4eFEbV4Ko81/k5l6NAa/9cy+ivRrM6YbVT+oiVI8jI\nsU9Xz+41mxoVanDLdbfQu2FvUjNTmfHjDAC2HN/CpcxLDG4+mMqBlfONsMXUiiEsJIw3txew+sOB\nLX9tAaB57eZYVAtpmWm8v/t9Oi3qVOR5krLj+rnX8/LmlwG4q+ldgDmC1TGyIw+1foj6VevnO+eB\nFg/QoFoDAFudsfKPr//B939+T+WgyvSL7gdA05pNmb11NscuHuPemHupWbEmAD0a9OClri+VWHaf\njJVhCIP7Yu7j2c7PArBwwELbsarBVXmv/3vsSt4lbbF8hDgZT6vEWL+ujlw44lb+HCOHdnXb8XyX\n5wGYGjvV5Tl5gzpXr1Cd+f3n2/anfTiNnBYyHqG/Uhbtz50pwgvPXmB1wmo2HN3gsizH/1byjjQM\nbj6Ywc3NRR3XVbmOad2n0e2DbhjCIMfIoX+T/iy9ZynPrHuG2VtnOymA4SHhDGs5jG2JRY9EWd81\nFSwVqFe1HlsTt+aTw5vIvtM1V7KvAM56gKIobBtT+LMd2nIoQ1sOZdEvi7iac9XpmC50Xu/9OtdV\nuc6Wdnv07axOWM2EjhPoF93Pdk54SDgvd3+5xLL75AiWO8PRcr5c8nfEEEaph60LIiggyONlSq4d\n3J0idKdfth4vbngaR8XMEEa+cCZ5FUB3ZBHYR+Y0RXMKxyK5NshbLxzrjhXHBUAF/S8pvqlguTEc\nLY3dfQf5BVZ26EIvteFlPupDoCbjEforZWKD5UafDO4ZuVvtaYu7uMJarjW2Zt4VZXnly7tatjBZ\nHMvRDd0tY35PIftO75O3v3SsO3nz5DVuv7aM3GvXhn/+E+M/b6FMmgynTxeY7bPPYPfPGk88qZco\n5pVE4hNUqWLzH5SZbnAm2cU03e7d6F27oP241XRQ6gFq1DD/vzc3kHJfTHjxounnaPRouHSpnIWR\n2HjpJYzXZ5t9ciFBL2fMgJo14dFHVH79VRQeWnPjRowxpldb46UX7c/5jTfs2ytWFHhqv9vNzr5t\nuyz0xQvRdv7Mlv+dYcYr5kvx3XmKTbxTp+AfD2l89InOokWFyJKRgbF4IcpPWzmy4yzjx2ms36Bz\n7p3l5vHc0CiScuTMGfv2998X61SrL7aPliimnpCSAj16YKScRfv8C6dLPP6YWYf+/bpKWhqMHGHu\nv/TitTSCdfas6dE3Jwf1SnqhTu2GDoXsLJWdPxu89VYZyyjJh/TlUgJ+/BFSU7lKMAA5QuGpQceL\nPqdTJ7ZHwpZ6wNNPl1oEXYfz54FjQE4wDRuWusjSMXkyfPKJ6dRvqmvbMomJ19vfK68wvw2cV65C\nz575DmdkwAsvwLlzkJCgcDbFKDwowe23I3TzQ0KcOgljxkB8PPzrX6aneHBypmtl2DDIzDIVrN/i\nIXvdD2jHE+l1bxWEbr4Et2+HDz4w8998s/mOAIOHHipElrlzEZs2oR4/wYDeGSSd0EjPMFiSnOsl\n/t57Xd+bUiL7ThfcdhsVrTr9nXcW69TNm83/Rk4AXboATz4JGzeiCwP18SdsAzi33QYZV8w6tGa1\nRqdOkH7Z3H99lsbVqwWV7h6+pWDlYiiYg7RVqhR4PCAAMMwQINYvcInEr8j12q442KHkRhspHIuF\n53q5yFMMbDMql2tBSjNq1fJc2SWiShXQNPPP5c2QlCWXg+DTFthCyzgS4LhUSqigiMK6bggMxMit\nd4aC+ZxzQ6EUXKBJeDig5E5XKDpCU9BQCdR085rmAUJDza3KlTHfEapOoTOboaEYqoKiKIRWyDbD\nq6g6QSLLJquknKlcmWd/gptOApai3dEUyOUwONrDrD+5fYqhgKaotudbuTLmswcQam42a6VR0Eox\niOVbCtYtt8D77yOqVkG9rh788EOB2bZsgapVNIY8qDN8eBnLKMmHtCMoATEx0Lo1gZh+rSyawazl\nDYo+JznZvr1lS6lFUFUzHBvZt2MJNNi5s9RFlo6XXoJXXzXnm55/vpyF8R+83v6+/BIAEWiBL77I\nd9hiMbN06gS391OpV98obJYP9u5F1DSXwIv27eG996BBA/juO1BzX2oFVMTZsyEqyvwYGTIkB2PE\nUNQWLTl4wKBiBfMNOGyoYhs527MHwsM0LEE627cXIss//oF4YAhKyxtZvacOnW9RqVlb5+H2pisU\ntnnfF5bsO12wfj3Vw+rT6VIo/PprsU59+mngaHdq1hJmfZw1CyZMQLdoqF9/A9WqWS9BvetMVejp\nf2nExWEbzf/ss5LpdVZ8S8H68Ud46CHE8GEoTz5V6BdE27bQrq3KyFHSAEvix+zeDdXMr6qAIIUK\nFV0Y11o/zwE6d/aICNu2wZjRGu/M84EFI4GBMGECPPFE6Xo1iWcZOND8Hx5eZJaffoKn/6VwXT2j\noIEuk3r1MGaYPtzE6FH20areve0zFi0KDvrx7ntmf/+fd8Do2gWt5Y3UbRLCpJdMBatPH8U2WhUQ\nAO/MVbm9v0G7doXIoqqI7t1RW7Skat2KTJui0byFQaV7Td9IxMQU+nslZYTFAk89Zc4RN2pUrFNn\nzYIHH9CY82aunhAcDG+8gVEhGLWj3c+ZxQKvzTDr0N13qWgazMkNQThoUOnE9y0FKxd3lsrKVYS+\ng7Qj8G9OHzgtfcr5MWXV/txxq6Aqqst8hfnBckXeVYR5V3zlXf3nzipCx3eN9Z3i8VW6RSD7Tu9S\nkJ5QkKsbx5iEnsQnFSx3AovKoM+SawFfiAMofcpJPIWiuOGmgVK6aRB6vjhy1ms7kjfmZoGyCHuA\naes7pSzdNEi8S0F6QkGubjwV3DkvPqVgKVMVOi3sxLu73nVZyQO1QO5YegfKVNkYyhtpR1AyLl29\nxKVMc2m641f/2StnaT2/NVtPbC0TOcKbh5Ocluw6YxmwOmE1r2x+xXVGiY3itL9dybsYvWq012Sx\nqBa2nthaZCy/sd+OBex1/sSlE/T+qDcXr14ssuzQIHOKfOCygcz6aRYWzZxGtvpwC1CdjeMDtUBW\nJ6wusm47OlAN1ALZd3ofT659EoAui7vQZXEXun/YnROXThQpW0mRfadrDp87XOK4w4FaIDN+nGF7\nlupU1Qx8n2ekylqHrP+DA4JLJ3QuPhcqZ/iNw9mWuM3lFOHbfd/my4NflpFUEonnOXbxWIHpyWnJ\n/HLqFw6cOUCnKOeYaJ2v68wdTe7wqByVLJV8xtHo7K2ziTsWx4tdXyxvUa5JNh7dyOJfF7PozsKc\nQ5WOtnXb0q5uOw6mHOTmqJuLzGsdkTpy4QjrjqwDYPfDuwvNH1s/lvXD19uCmzet2RSAka1G0iq8\nFe3qOhsQtmWNAAAgAElEQVRbda/fneoVqpOUmkTdynULlcH6rmldpzVrh66l06JOKCi2eJ9jvx3L\nidQTRFWJcvXzJV5AUzXCQwq3/yuKad2n8WCLB237XT/oSv8m/W3KuZVejXqx46Ed3FD7BsCMQXhw\n/MGSC52LzylYbeq0AVwPH0eERpSFOBI3kPG0SkZhSo11SLug6Y2QwBBa1C7YCLiknP/9PJVbVfZo\nmZKyozjtz9v2RZqq2V5SrrD28VaZqgVXo3Wd1oXmVxSFHg165EsPCQyh83X5F31YNAuNqzcucprQ\n0RxFUzWbUtimbhu61OsCmPFvvWXvK/tO1wghqF6heonOrV2pNrUrOa+4aFKjSb58gVog7SPa2/YD\n1ACur3l9ia7piE9NEYJ9Hr24caokEn/DUcFy/KBwNObNiyEMz9sJSBusvw2lqTuethe09vHWPt8b\nyp81vmBRMhRkjuL4W2X7KF+80eeVFT4ntTX0jSjGF4M4e9ZL0kjcQX6BlQxLTgGddlYW+oVzABjZ\nmfkOG5cvoxqefdFd17wRVzN9Y8GI0OWHVXEpTvtTi6skbdoEmWY9dPejV9chx43nmKPnBn1OSQHy\nrwLMixCQnu6WCA4nqWTrhddtQ89BKaA9CYcYbIrQiiyjNMi+0zXG5TRU3XMKblk6H/A5BatbB9Mv\n/dTHz8IffxSa76ZmGbbtEWGr4PrSD+dJJGXG6dNcaWyfDsnMhLlPHYGgIPS+fQDQ//UUrFxpPycw\nEGPbVtQ+fZ1jdJWCBQtg6hSN1/+t8847HimyxGx8ay+bNptdUpuml8tXmGuRfftQn/yXud23r+v8\nigKxsab/IIBTp3NjKxXO11/DJx8rPP44BccjDAqybU58NpMDPR5F3H0XAOJciukDrQByckw/1CEh\nMHKka9HB9Fm77SeNwUN0a8hPZ/btQzz9NOqCBbY4dxNGmRnjf71Kxqdf8vrrsHmTxgNDdc6dc++6\nEg/SqBHGhx+gPjEB9u0rVVHW2IRvvWU6oi0LfE7BuirMxnyWmuR8XrgR+68H7Vb+S9X74fBh89NJ\nUuZIXy4l4KGH+Jn2DgmCWe+adlDWUCK6ghkEF0wNLDsbQwFVAK94ZqXd668DF46BYngqfnSJmfKq\n3fB0z6FK5SiJf+F2+5s3zz76uWZNsa8jhAEurjVnDhg3Libj5hf5/PMCMjgEi74qVD7fWNNW3wF4\n990Cyz10yHTkLQR8+CFkZ7uW9803AaFx8ZLBpk0FZFi6FCPzKopuYA1q++7HZhvMwsLuV783m5+h\nkZpmsGGD62sWF9l3uuDIEXufN21aiYu5csUem1AgeO89z4jnCp9TsAIwlaRKpBLQr+BgzwARtewN\ntauyAWrVolRBgySSsmTWLFrxi1PS8AHmMnXdqmCpYIsFFRQEimLvbB55xCNijByJGctN1RkxwiNF\nlpjxI+2j0vVqZxSRU1IiHnzQPgnXunBj8sJQUMwoykVgC11W+VTBg2QOq8Mtag59bzjuPPFo9Rqf\nh0aNICrKbAa9ernn6H/IEFAww+V07FhAhjvuQARaUFTVJvhdt6YCoCnZtHyoPQ8+CKqiYQnUueUW\n19eUeJgaNTzS51WsCE2b2vcfeKD0ormDzylY6zeaIk17RYMbbyw0X+IZ+1DzV18pznHaJGWKtCMo\nAc2aUf2H5bZdSyBMXxYNf/2FPsMcnTKe/hc89JD9nPR0jIYNUFesgOhoj4jx3HPw7CtNeHCYzpQp\nHimyxAx6rQ0dWptDE8dOVyxfYfwIt9tfly6oM18zt3/+2XX+q1fhwQfNEGYA4WFQp06RpzhO3xUY\nosbBtun5SQF0+G0hxvPPASCqVoVlywosNzgY9u+H335zf/DtzTeh8y0qSz7SC47y06kTYuoU1JGj\nYPBgAD79zlyt1rQphD4xmlmzILabysLFOnUL9vRQKmTf6YLTpzF6dEd9dYY5XV1CFMWsOwAPP1yq\nooqFzylYFSvnfuFUDCo6owN6j9gCI7BLJD6NwyeV7cP+uuswOphTh3punEIbwcEYEXVQa4V5VIyI\nOhrVqvvGKqlKVX3DH9e1ilolt06pbnT9QUHw8cdYh24UD6/kCg7ODZlza67rBU11GuHKS2AgNG7s\nnuhgFhVSUSMwqPC6bVSogFIpxOkc82IB9jIqaQQVUYbEi2gaRoP6qLUKC25ZrKIAqFSG1gc+p2BZ\nl8MWZ0mwjElYvkg7As9irc8F+e/xxpLlP3/5U7YhP6Y47c+XlrvbQuZ40SWPq5i1jp7cC5INvBuW\nTfadrvF0n1eWLqB8btjHpmAV4yacuXKGqsFVXXp/l0jKmiw9iytZV0jNTCXHyHE6lpia6JTv1OVT\n1KpYy+bh/eLVi2RkZziF+riQccHj9VxTNC5cvUBGdgYVLBU8WnZxuZpjriL+8/yf1Klch4oWOVXo\nKU6mneTIhSMA5Bg5ttAyqZmpnL1id3UTEhhCWIg5Snou/RxpWWklut6f5/+0bTeq3ohz6eecwuGk\npKfw5/k/uXTVDBflLT9YSWlJHD53mMjQSFt9EkJwIvUEKekpBbYnR6VMUzXOpcslhOXF5azLfhsf\n0ucUrPpV6wNwY1jh9ld5afpOUw6OP+gRz6uS4iPtCArnuR+eY872OQRqgUSGRjods77srNR7sx5t\n67a1xSD8+vDXqIrKB79+QJXgKpxLP8elzEse7+z79OzDkBVDmBQ3idm9Znu07OJyPsN0A9BxYUfu\njbmXd28veFWZxI477S9bzyZqTpRtJGb+rvmMbz8egBErR7A9cTsVLRURQnA2/Sxpz5tKVc3ZNW1l\nPNLePSPj8JBwTl0+Re+PzUVKRy4cYdPITfzzm39yOcvufmPVoVV8uv9TmwLXs2FPt8ovDs1rN2f2\n1tn2+IeTzQ/3hPMJNJ/XnKgqUTzT6Rmnc+6LuY9mtZrZy6jVnLHfjmXA9QNsiqenkH2na1b8voLI\n0EhGUPpVON3qdeOWqLJbreBTClaTGk0IDwm3NQJXiMmCRv9pxJELR8jU8ztllEjKm+OXjgNmCKit\nY5yDNz+19ine2PaGrb4rUxV+TjKNj7eP2c6j3z1KenY6U2OnMr79eF7a8BKvbHmFK9lXPCpjr0a9\nmNRtEn+cL9zvXFlxfY3rebXHq1zKvETcsbjyFueaIcfIcZrmysixr9JMz07ngzs/4LbGt5Fj5BA8\nveBAt891fs6ta5186qTTvjJVISk1ias5V4kbGUfDag1tx7469BV3fXYX/aL7sfSepcX5SW4xvcd0\npveYjjLVeQQkPTudZrWasfefe/Ods/y+5U77k2Mns+CXBSUOOCwpPWeueMbvX9zIOI+U4y6+MyFf\nQvx16PBaQtoRuEZT87sQyWtnqCka2Ua2Lb8udHSh2861/vd02I64uDgUFJ8IB2L9vd60e7nWcKf9\n5bVjcZwC0w2HOual+y4QZmDlAvrrwtK9iW7oaEr5u/WRfad7+GvoPL9XsCQSf8Ad+xLHPNYYao4v\nRjW3uXpDEVIV1Sc6MeuLT1VUaXjvQfIqWI51SBe67ZjVHsnTdcwQRqEG5VD2xvf+HN/u74in42CW\nFT5Xwx57DKpVg9kuTEF03fRzcuKEub9li/dlkxSMtCMohEWLYMUKALTf4nGKtSGE7Rh//cXRo4Bh\n/6KO/1XnzFmd/b/pHDqooevw9Vfm8b+Oe/bl17VrLIsXK6xcaZCaWsJCTpww1z/XrOnkrbtYzJ6N\nsfZ71Jdf5qtVGtt3lEKevxHutD/jodGoWfZFFt9+m226pPr1V4zdu9EWLTYPbNyIJhSMjRtgr/P0\nmTtxAFNT4YYbTH+kOTmQmLuOIyn+AkZaKsoRZ7vD3/bnumpIPOXkI8uTOIaqzQ2riL58GdrRY3Dq\nlFPew4dNJ5SffGJP++knOH0a3pnn+Ze87DtdYO0jrb7Y/AyfUrDOpF7k7bfh4kV45hmK7FynT4cJ\nE+x9+SMTrhQc+0oiKS/GjOH3XBth7UyKs+Pc7t3huGmfldWoGW3bQnaWXcEaM1ol+ZTOjp915v5H\no3Nn2P2zefzFl4yCY6uVkDvugN27FJJPCho2dJ2/QK67znwDnzsHVau6zp8Xw4BnnmFfLYNPtkWz\nfJnK0WM6bduWUB6JnSeewPjiCzQH/eCn7YbpzbpNG/QraWhLPoZ//xtuvRVNF+i9e0GbNk7F9O/v\n+lJ160J8PGzfbipa1uc3eWYgxsVUlDvugEvmqsGtW2HqFFPp2/Z7uhlnxwvUdnChVLkysHgx+pw3\n0M6egxYtnPK2bAlLl8LQofbQKp07Q3aFRF57PdMpNKikDLj3XgBEUhI8+2w5C1N8fErBaivGOu3n\n+bhwwhYHWuTO3d8yi6Qk78glKRppR1A48bmduypwDpTr8CV/VQ8gLQ0zZE0uqgFgAAbCUPnrL0CY\nCpb4qwsX7avdS83+/XG51xaeGTG6erX45+SYL9qTleFQaCVb+B4PxbS+pnHZ/n75xR5uxIoizD7U\nMNCtx3btAiFQRW6YpjyxXY8dcy1LhkOEo1On7IO2uqKgo6BmZtu+nI8fB72pOUJxvt4B+PPPvMV5\nnOxs4MAB+/3IVfasZDqslTp0KM/JrT7k1189K4/sO90j3YJZP/0Mn1Kw1r04hYq5bm/CwqBJk8Lz\nvvoq1K9v368SeZIePbwqnkRSPBw+nTUUeP99+zGHeB+hz4xl7lwz5pmVu/tkYwnSqVxFp01rjS+/\nhMAA8/j/Da1JgwaeE3PaNAgIUEA1nEQsFo7BvRYuLP75gYFmPFFgkPYp1atpaBadJUtKKI/Ezrff\nYgQGOClYFSpkm/f24YfRVdBCQs0oyvffjyZAv+cuc4rAgUKi2DhhHYRSFFi1ypwlBxjYLgnFoqA8\n/bQZVBC4+26oW8/Bx9bEiaX4kYUz1uG7/Y03gGnT0KMi0FBh3jynvNOmmWF52raFMWPMtPvvN/9X\nrHHOWyJKCuOmmwColKPA6tXlLEzx8SkFC8yo10IUPXoFZhs9ehQa54Zka9rU/RAKEs8i7QgK4fRp\n26bW73YzrpuVmBj7C+y113j4YahWxa5gTZ1Tk6h6On1v13n8UY0OHWDmDLOCu7JPLC4jR8by7jyV\nMWNEyQM+f/KJ2XCFgFGjSlZG7nBVyLzX+GBRAH37GQwYUEJ5/ka4bH8hIRiJiaihVWxJjz8liIkB\n5s/HaNsG7Yf1ppK7bBla5VD0xYtytRE77du7luWxx8wqYBhmvLdhw8z0vmPrIWrWQB1v96UVGAg3\ntXNYyecizmFJcdShJkwAKlZEX/IhWtduzrE+MXW8jAwzVKP1fWJVLIcNF7ZwK55C9p0u2LMHAOO+\ne83QTX7GNaOSSC/uEl+muKsIVUXNt4rQupTeG3VdQfGJVYRgD18iVxF6DndXEYK97nkagfAZtzol\nWUXoK+3j74gvuJApCdeMgiUpP6QdgWvc8bnj6CvLGkPN0V+Pt/z2xMXFoSi+4QfLitUPmMQ17vrB\nciSfHyyHuqUpRcfvKwlC5PrB8pEPYUf/cu7iDVcBsu90D1/qm4qDT3lyLwnFDQ6tGzqzfprFkBZD\nbGF5JNcWW/7awsGUg/yjzT/K5HpXsq7w723/tjkJLYiCOvO8cf+sMdnAHh/wwNkD+RyNegNVUUv9\nAklOS2bzX5sZ3Hxwgcf/s+M/nE0318wPvmEwN9S+wen4uj/XAeZv1xSNTcc2MW3TNKf7emuDW4mt\nH1sqOf2By1mXWbBnAf2i+/HT8Z8YdVMJp11zSUlP4cJV+9LTLce3MHHjRCyqhcTUxHzKfceFHel8\nXWdbmkW1lOr6AoEQ+f1glYd/o88PfM7/Dv6v2B8s64+u95JEksKw1g9/VbD8fgRrXr95rjM5kJKe\nwgsbXmDD0Q1ekujvh6/ZEcz8aSYPf/NwmV0v4XwC836eR6AamO/vnmb38I/W/2Bc23H5znuiwxOs\nfsBuuDm05VAAWtRuQXhIOJO7TWZ4y+F0iuoEwG2NbuPN296kkqWSR+WPjY31iCf3BXsWMGTFkEKP\nT/h+AgFKABuPbuTrw1/nO/7e7veoXqE6D7R4gDZ125CpZzI5brLtXsafjWfxr4tLJaO/cCjlEBO+\nn8DcnXMZ/dXoIvO60/5m/DjDth0eEk7/6P4EqoG88/M7XLh6wUnxmdVzFkcuHGHJ3iX0atiL1Q+s\nZs3QNQUV6za2EaxymiJ89pZn6RDRAYDXfnqNKkFVeKLjE26f36NBD4I0z9sA+Vrf6WtY41T+947/\nlrMkJcPvR7Bua3xbsfJbpx2kfce1S1l34kII6lSuw8RuxVtiVKtSLfpG97Xt3xdzH+/veZ+u9bqi\nqRr/6vQvp/wNqjXg8Y6Pe0TmvChK6W2wXE3pCSGY2G0iGTkZBY5c6IbOgjsWUDmoMgDBAcFczblq\nu68f7/uYNX+U7kXvL9j6KQ9NkzoqUI2rN7bd0xW/r+DMlTMEB9jjD45oNYKRq0YCsHbYWo9cH3Jt\nsPJMEZbVlGGbOm3484LpBkIXOg+3eZjWdVq7ff4rPV7hiTXuK2QSz6AbOlWCqlC7Um3XmX2QIkew\nRo8evSgsLOx0ixYt9lvTzp8/X71Xr17rmjRpcrh3795rL168aPMqOGPGjOejo6MTmjZtenDt2rW9\nrem7d+9u06JFi/3R0dEJjz/++Fve+SnuYVWspH2H5/i72xF46svcOk1T1iE84uLiPDJFWNQ9EELY\njJwLU+Zc2cX8neIT2vopNz4E3Wl/jnXK8Tk7xiD0JoVNEZYVjob7vhKHEGTf6YqS2Mr5EkXW9lGj\nRi1es2ZNH8e0mTNnPterV691hw8fbnLrrbeunzlz5nMA8fHxMZ999tn98fHxMWvWrOkzbty4eUKY\nXkDHjh377sKFC8ckJCREJyQkROctsyyxNjJ/ndOV+B5FxVgrDtZOvzwMgb0d7NlRuSrsWnlXduVV\n+Ly1us0X8XQ/5SoGYFm8xMpzitBxEYeMQ+g/+JIyXBKKrGVdunTZUq1aNaegHF999dWAESNGfAgw\nYsSID1euXDkQYNWqVXcOGTJkqcViya5fv/6xxo0b/7Fjx44OJ0+erJOWlla5ffv2OwGGDx++xHqO\nJ/i//zP///yz4jpWlmGgP2b6YdFfm4HNHfajj5qe8TQNGW+n+PiUHcGkSfDtt+b2m296/3qrVmG0\nb4e6aze8/XaJi0lNhdt6mx3JgvcVMzZhGdG6dSyvv66wZo3gwIGSlSEeHMp3U3cAsPK1PC6wDQOj\nS2dUQ8Bdd6G+/m/E9Omwe7c9z8aN6Fs2o815E3JyWL7c7lX7m29Ml2L//D+NL1boLF9eMhn9huRk\n9K6mgbmxcIGZNnduodldtr/sbNQff7Ltbt8uSEgwnTXv2mnWubfm2F9iuX5AAXsouJJSrZr5///+\nz0BcuYziEA4nKwt2b3Nwne5pN+m57N4NQx9U+eYbwf33w4HfdR58QHM79OGLL0KnTrBzp71r8RQ+\n1Xf6GidPYtQNRzt9Frp2LW9pSkSxbbBOnz4dFhYWdhogLCzs9OnTp8MAkpOT63bs2HG7NV9kZGRi\nUlJShMViyY6MjEy0pkdERCQlJSVFFFT2yJEjqZ/rnr1q1aq0atXKVgGtQ6l59//731iYAsaxLAYM\niOOHH4rIv3cvEd99C4/Aod8TiXv2WWLnz4e5c4kDMAxi+/aFY8cKvZ7c9/H9l1+GB4BjEPfBBGLH\njweLxXvXe+ABRDVIS4a4hU8Q++ijJSqvf/84Mi/+BkD6FZWHHopj4sSyuX8LF8K+rQcxIk/z2GOw\nfn3xy5v36S/sHBkPwIjn6rCqg8Pxb75h47Zt0BBYuRKlOxw5D3H33UdsbsiguMGDSbnxMlrSj/Dd\ndwwbVhkGCWhs+mdt0yaOi4m/Q5TOmDFQu7b37ke57/fpw+5M4BjouVOpcY89BjExxOaGqyhWeV99\nxbmtJ6EpUB90w+Dee+PYtw8YbSpWb8zeTrtm1Rg0KNYM0HwMAAZNMyPmlOT3XL0KFy+a+6T+Qfqx\nANSVr8LwfxCXkMDGjXD6r1pQ3bxe3D33EJsbLseT93PECMhIPQDJZ1i+AXhUZ/+u3UybdoYpU1yf\n/+qrQJ0fIXsHgwdDWpqP1ZdrdX/oUNLD4VRliNuyBeLiyl0+6/Yxd+JGQa5tRBF/R48erd+8efP9\n1v2qVatecDxerVq180IIHnnkkbc//vjjB63pY8aMWfDFF1/cs2vXrjY9e/ZcZ03fvHlzl/79+3+d\n9zqmKMVH04RgRHdB23niP/9xkfmPP8TB2ppgCuLfnRQhvvjCTA8IsPqgFqJv3xLJ8Xdm48aN5S2C\nneBgcfsDCKYgRKVKQhiGd6/XqJHYGonoOAYhqlYtcTEzZwpBxHbBFAS9nxRTp3pQRhdMn75RBLZe\nJrTB94nx40tWxjHqmbJPQdwYfND5YHy8yAhABL1ktrGJ3RGTYxHinnvseXr0ED1GqWJdsyAh9u0T\n0dFC8FKQYAqiZUshXnlFCK5fKRg8QERHl/y3+gWjRokfGpj3cvjA3LpcvXqh2V22v927xcpmFQRP\nRpjPaExHMX68ECEhQjCqs2AKokKNsyI11cwOQvBisGAKRV3WJbqeW9b4poKm/xOWFwPE5eqVhUhL\nE0IIsXOnEEHVf7fVGzFoUMkvVgR33y0ETb4SDOkvFEUIHmskqH5Y7Nvn3vnBwULQ4U3BFERMjGdl\n86m+09e4/35x1/25daOE+oG3ydVbCtWfij0RHRYWdvrUqVPhACdPnqxTu3btM2COTJ04ccI2uJyY\nmBgZGRmZGBERkZSYmBjpmB4REeGxsMzx8VDHcj239zdn+oqkUSP0ZZ8CoA8fCvfcY6afOGGGLhk4\n0C/jHUkcOHoUpUruuos//jCnfr3JwYMYN92IUqkSnDxZ4mKefRZGjzJHE3reqvLSS54S0DW33ALP\nPK3Spq0o8axqveNbbNsbkq53PtisGcaX/0NVNdi7F7XTLYgunXGa61u1Cr1JNNobc6BFC7ZtwxaW\nZNMmeOEFGDNao14DnV9+KZmMfsOiReidTdccRtPcexkfX/LyWrcmaNardKxsrsSKiBS89ZZZZK2a\n5k3+cbNGZXPxJl9+CcoFMwbZ8eMlv6yqmrPm2sWmdG6fgWZRULdth5AQANq1gy+WV7afsHRpyS9W\nBJ9/Dvfeq9KwscFvv0FIZZ3/ztdo0cK983//HW5obm5v3eoVESUFsWwZSli4ub1zZ/nKUkKKrWAN\nGDDgqw8//HAEwIcffjhi4MCBK63py5YtG5yVlRV49OjRBgkJCdHt27ffGR4efio0NDR1x44dHYQQ\nykcffTTMeo4naNIE7rpLpW9f9ybU9Zhm5v8bYuyJ4eFw4IDZs0iKjXUY1ScID0d0vsW27XUCAhBz\n56Le2MqMElsKHhlnvuxuukkp07iasbGx3NhSITLKIKCkjlscDHeqV89/2OjdCzUoGFq2ROnZC9G9\nu3Pw0JAQ9LBaaM1M56M1amCTpWquvnzPXRrNbtCp5Fk3YD6JPtHUsPW2ua4EwsIKzetW+2valCqN\nTQUrMtJUXqOioEVzs841bmS3wRo4EJrnKhSlvdePPAJ3DlB54tkgDE1BadjQ6Xj7jg4OTL1U6VUV\nRo1UaHK9QUwMVKuh07un+4bT9evDQw+ZU7VVqhSdt7j4VN/pgyi35Pbl7dqVryAlpMjudMiQIUs3\nbdrULSUlpWZUVNSJadOmTXruuedmDho0aPnChQvH1K9f/9jy5csHAcTExMQPGjRoeUxMTHxAQEDO\nvHnzximKIgDmzZs3buTIkR9kZGRU6Nev3+o+ffp41JlNcVYXOS7VlVybWF0AlNVqIU9dx1pGea0i\nFF70qu14jxRFwSjAwtjVffw7xSf05mpnRxcZ1vvtzXZi7Z+FyB+LsKxW8zm6ISlJe/27rF71NXwl\ntFJJKVLBWrp0aYFumX/44YeeBaW/8MILr77wwguv5k1v06bN7v3797s5IFt8iqNgWf3oyAbjOeIc\njA99AUcfQqrm/Q5ciPwOFEtCufrBClO9GszW8aWmKgVfy9WSbE3V/jbttjj9VHHbn6Mi7e04l+Cg\nYBXgzqQsFSzbx7UP+Vbytb5T4lnKtif3EhUtFZkcN5moOVHUf7M+8Wfz2yv0/7Q/UXOi6PuJ6Tl7\n9tbZ9Fxi1xOVqQrKVIVfT3lnqbCk5EzfPJ2oOVG2Z1QYf138iwZvNSDuWBxgxsYrC+77/D42/7W5\n1OVYQ+BUCKjgIqfnqWCpwMqDK9l3el+py7qQYffs0nFBR/619l/sSNzBpUwz1mJBo2XnM86zI2kH\nFS0VbWl1K9elegX7fGMlSyW2HN9C1Jwopm2aVmo5fZH1R9YTNSeK0atGA9hCCilTFXKMHFu+QymH\nUKeqXLx60WWZ6dnp/N83/0dwQDChQaFE14i2HasUaNa5ANX5W7tFWAvqVq5b6t8DEKQFMXjFYHKM\nnHwKlTfCzxREhYAKbPprE1Fzojh75Wy5tLGimLtzLs3eaVbeYtjYc3IP9d6sx+S4yeUqh6fDgpU1\nfh8qB2Bq7FRbrLf7v7ifU5dPEVMrxinPvtP7WH7vciJDIwkJDOHYxWPc9nH+MDvJacm0Cm9VJnJf\nK3j7C+zQuUM8dfNTTPh+QpH5zqafJSQwhD8f+5PuH3a3vdC9jTWAcWlpUK0BJ586SY0KNTxSnrvE\nxsYihKBNnTacTDtJy7CWpSovNTOVahVMB0g7knaQpWcREhhiO17QiPOFjAvUqliLG8NvtKXtG7vP\nSRHrGNmRo48f5Yv4L9iZ5J9Gr644fuk4HSM78kbvN7BoFrL1bNKy0rhh3g1k69k2Rej0ldMIBKmZ\nqS7b35WsK6RlpvHJ3Z8gEARqgbZjH931EfP7z8eiOQdzXnznYrL1woOXF4f5/efz0b6PgPwOTSsF\nVuLUU6eoGly1oFM9RufrOnPksSMYwiAoIMhWP93FW9Pn1me3K3kXB1MOeuUaJSEpNYnjl45z+Nzh\ncht4JpgAACAASURBVJWjd6PenMs4V64ylIZrQsEK1AKJqmIa2Va0VCzQTkMXOlFVoogMjbTtFzT8\n/nex8fAndEOnVsVaVAmqUqTSpBs6FQIqEBEaQQVLBa/aFHmL8JAyMMwvAEVRqFWplldC0SiK4jQF\nVVCoHF3oVAl2tiB2VMqs59WtXJdaFb0jpy+gC53QoFBbfwZw6vIpwHm60Fq33anjAkGAGmAbrXKk\noqWi06ihlUAt0EkRKw0VLOZoUd5RMithIYUb8HsKRVGICC3Q/aJbeHP63Bextq/y7kOtsQj9lWti\nitARTS04Xlle+w5VUQvOd4123N7E0QmbN3DXZsIxn7dDv1xLWJ+fpmhe+cAQeWLQFTRFWJyQGJrq\nHTl9gYLug6PtUN40gXDZ/gxh+L2xcHnjLUXD231nSbG2r/LuQ33JXq4k+L2CpeuweDHs3w+GASeT\nVP48kqdSpKdjZF5FvXzFlpSWqpGVZXD1qnPWk6fkS9mnuHQJY/Nm1P2/QU5OkVmNPxJQz6YgDEFW\npsLlK3+vr87ScuGcZq//Tz4J8+aVqJy0y7n3Pfd5GVczUM+fN9N0nctpKqlpzu3MOJWMlp6BO/FL\njvypcuyva1TBungeLf0qmZnw9ddmNK8LF817kp7hMIL19n/MjYwMl2WKA7+hXs00XSmXMYaB6TE+\ndztvf/vDD/DEE5DtmdlIr5GZZf732i1MTTX/675Rr409uwAQly+XrxwXL6ClX3Wd0UfxewWrbl0Y\nPRpatoRatWD/Po1HHtX59NPcDIYBtWujp15CaxYD6elcugSNG6mkX9UJCwMx1W4wO258Dms86kTi\n2serNlhVq5Jz5hTay6/AlVwFuXbt/Pk++QR91Ei0w3/wUMgyDh5UueMOwZkz3hMNsHvDBKjgW4az\n7hIbG0u3brD1J43/G6uzLvB2mDMHxo93OwbYxXp2u622N+Vw8YKADh0AEAcPor7+BgCrKw9i5kyF\nBQsFX32Ve8Kvv6L36ol67LjdAVMhvP02PP+sxs+7da6/vsis/se6dRiTJ6F+8ilh1bMYMMD0B3Zj\nK/OtHn29br7ga9TAWGW6EhQxMcS2bl14mR9/jNGrF8rFS85BBsuIe++FG3PN6gzd2Y/UnDnQqxe8\n9ZZvN52UFJg503wGI0Z4tuzY2FiYOxdh9cGY22bKlfHj0V+biWaAWPMdzJxZPnJs2oT+3LOoX6yA\nTz4pHxlKid8rWI4v0PPnAUMDVWf+/NzE5GS4cgVdBS0zG/bsYetWyMnSQDFITYXLn6yyF6LqfPxx\nWf4CSaHkfi6ubAYnHKfhzxZgVP7+++YzNuDLjNsQhkJWjsGuXV6W0XHEJe/nuR+xbRsgVFB0Psm+\nz37ATdfVvx0PtW1nNv6K334x2xqAoUDD3IWF/8voS062gq4LeyDh5cvRFdAEcLBoQ99FiwBhtt2E\nBPd+m9+wahW6noORA5fSTaNzwwBdN+vY5Su6OdBx/rzNIkgoUGSE7v/+F6GAKoAkjwXQcJu8wZGz\nsuyjQI7xq31k4KZA9uwBPbENAKtWuchcEpYsMZ8jmJGpXYzUe53PP0dXIMAw2659tKKM+fZbdD0b\nLVuHZcvKR4ZS4vcK1k032bebNyf3JWEwfXpuYmQk1KuHoYBavTrcfDO33gpVQs180dFQ+aXHiTrc\nHDIro6gGTz1VHr/Ef/GaHYGD3ch5xy/cVgWs8pw+3XzGAv4VuQyEQliYoEsX74hmw/GTPDKy8Hw+\nTFxcHMOGAYaGoho8GebQoY4c6VYZbTvbH1CFugdp2ykQBg0CTCUgMhU6noCH635LYKBKgMVg7Njc\nE8aOxbAEoBlA375FXmfaNGyKYK9ebv9E/2D0aPQKQQSrCk2izKm/0FAIrWoqWPUbGGZ1i4mxvZBF\nQABxRU3jTJ+OABQB3HyzV8UviCeecN6vWdPerN9+255euTI+yy23QEPLzZBdwePvhri4OJg40Z4w\naBAlD6fgIZ5/HiNXwRK5++XC8OEYFYJNG6wJRa8g91X8XsHas8ecvs7JMe2w7hygsewz3fnFeuwY\nekhFtKN/gaYRGAhnT2sEBOocPgwMH07zvpFUqxLABx8aTkqbpJyxfu5OnGhXZgoKRte5M/p3q9G6\n9+CFE+No107l06WG9zvuiw5+iE6c8PLFvMfChTDoPo2PPtFpeWotnDoF6emwYIFb5wdvWWfbHj5K\nNaMGffYZYE5jiS2boV072id9yYxXFcaOFXTsmHtCVBT6T1tQW7fOP+SRhzvugG++0ujZW+f770vy\nS32Y1q3RX56G9uhjHDpekStX4NIl2LPHVLB+/Cl3mOfAAYzluff24O9gsRRWInTtinHkT5TIyHIJ\npPfaa+aoFYDFojgNPvfrZx47edJuguSLVKoEP+9UCAo2mDTJCxe44w7Egw+a27ltplyZMAF90QIC\nQkIxBtwBQwr0N+59mjdHn/Ua6sP/Bz16lI8MpeSacNPg+BINCtQQinurCJ1WSCiK6SkaHx6r9lHK\nwhOxO8ukdUWgWcyl5aqiwN9saXVJsT6/QIuGYV2pVkTsO1fkXXlkYICmoeR+mWuqkjukYkdHoGlF\nKAoOWAJMM4BrEQNhBsUGKuZ6T7DWfcdVhCK30xNCuGx/QlNtZZYHVv2voDZssZRNyNDSoqr5XYt4\nAtuzU31rlaeuQIBmsU9dlpccGGia/6opfj+ClZfCwuboQndaKu4YH8sx7Vpd/u3vuLNMOm+8u7+b\n75rSUpjrktKS99kV1EaLsxy7OKGx/I2C7kNBcQmtddudOu6pUE5/ZxxjGf4dMIRBgBpQ7n1ocdy3\n+CL+qxoWgoLC1hNbCavk/AWuG84dl6IoKCh8m/AtQVoQKekpaIrG+qPruSfmHq97Fr6W8EQ8rctZ\nl/ntzG90jOzolL71hDmt4djQ1x9ZD0CmnkmWnsXApgMBM1SOtRMsq5fw7uTdXr+Gt7E+P03R+OXU\nL0QfjyY8JJzktGS61LPPtW89sZWM7AxqVqxJzYo1OZhykIjQCGpVrOUUYmr/mf2kZ6fbHFiezzjP\nrmT7agNFUdhyfAs/Hv+RzJxMwIy04G5cOk3ROHvlLN8lfEff6KJttvyNM1fO5HOwaq3HWXpWvjQh\nhMv2ZwgjX5DlskZTNIIDgstVhtLgLb961mdXXspb/Nl4GldvnM+pbHJacrnF/tx3eh9nr5hzyYfO\nHSI0KNTFGb7LNadgqYrKOz+/w8/JPzt1VHc3uzufJnx/8/u5Y+kdAPRs2JNejXrx6pZX+fXUr8SP\nzx/PUOI9lh9YzpivxnDh2Qs25fbU5VN0/7A7AINiBvH72d/58uCXTN00FYtmYcPRDQD/z955h0dR\ntX34nplUEiAQIBDAhN6LdAHpRBQBKdIUgoiooICfUoRXpUgRlWYXUCkqIiCIhSqhI4hI7733mrqZ\nOd8fsz2bsslukg17X1euzOycOXNmTplnTnl+7HppF/XC6/HHiT8oGlQUcOzM0h00mtso/UAeQrOI\nZryw4gVm/T3L/Nv9t+8T7BfMjbgbtPiuBY1KNeLwjcM8XfFp/jr9FyEBIXSq1ImF+yxLb3dd3MXy\nI8vpXaM3oGsKrji6gqhyUeb9fVf30WZ+G5o80sR83hPlUkpXOaJsobLsv7afp354CvFe3upVOHf3\nHNWL2bqqKF1Ad69w9cFVKoZWBKw8uWekB8uByHJ2M6j+oFQ9uXsCqQmUezrVPq/GD11+oFcN23lW\nB68fJNAnZ9QwohZEUSG0gtnoe7Xeq+mckXvx3BKfCtWKVgNgbse5KRoqe37s+iOLDiyiXng91vbR\nJ+lO2jyJwzcOuz2deQlXzMEy6Z5ZfzEZVAPFgopx/g198niziGb8cuQXfu/9O/n985uFn2OTdP9Y\nfoofnSp1ArJviNAkwDup1SS3X8tdmPKvX+1+/O+v/3HxvmU5vyk/DKqBwoGFWdFzBWVmlsGgGniu\nxnMsP7Icg2ZgQJ0BjH58NADRy6PN+VkkXxHW9llrNnwB6pTQ/TYVDy7O+r7rnU5vREgEYx4fw8TN\nEzN1v7kZX8U3hY5qkF8QTUo3sRnms+7BSq/+5QZP7rOenJV+oFyMJLmnBys75q+mR5whLsVvPrIP\nj5V+jBtxN7I9PQbNwC89fqFIviLZfm1XkyfnYAFOjdvmdPe5F8cSRaqwHX835ZO9MK3p5SGEMIfJ\njiFC66+7vPJ1m9p9mHpBTFJUqlDxU/z0bbt5Eopkkaty9HJ3xTzHvPK87bEuw9bYzw915v5Ti9NL\nxnH388tt5VkVKj6yT44MEXr6vCtr8pyBZZpn5Yx+UW4r3J6GK/xgORTodjBvDsBXtjOwjI2f9VBI\ndgwRCiwvLk+edJ2R/DMtIDDpFaqaiq/sq2/bTcy21gq01yE0xeXFMakN59lrrFoPEaaXf7lhiNDT\nsf6IcyW5WYvQR/bJkSFCT9cftCZP1TqDAX5apGfMl1+kfWubNkH79vr2gf2QmGjrjT+3a2PlKUqV\nQh02RN+28oOkrf4T+eYtOHMGIXRfTQALF8gWT/3AgYPAxYuIgweRNm3i7Fk4dUoiZqMbG4fkZLSQ\ngkiafg3t+4U5ovXmSgwGuHLZ9rcNQ5ZCYiJi+FtI164jP/MMWkI82to1+P6xCu3yJbTp05HHjmPh\nPJXQUFg4X+KLt0+QXONRRGws0rbtNnFu3WYcdrx5D86dy1RaZ87U/3uo/0HHHD6Mtvc/pL17bX5u\n2hRi/lJ45VWjYXr7NhdG60NuMfNO65JGAwak1HHcuRNKlECrWwfpxEnYsSM77iJPojuxlnhzuBs+\nDurV4+oP+lD53j3Z+PHx/PP6/8GDdL05U/n56y/UP37jxKIDHD8huBFzABo1gldecX+aAgLQHjxA\n7tDR/dfKBvKUgfXxx/DPTt3Amv6xkqpMyo0b0K4d/PGHvp+QINGqlaW8ISSzfpaX9MnSPIJVq+Di\nRV2SAaBvX13S499/UUcMR7l1B558ko8+gn0H9PlO/fpJNnV98OsGkjo9qztU/PRTnmoey/lzMh9M\n1di1K/NJS5Py5REPHugSJIA4ehTee89NF3MvpvyrWhU0OyOx6w9tuPJENNpPPyEnJqGsWYcqgXrv\nLn4bt6AmxLMxQpCQ8IA+/WRu3YKEeB/23HmEgQdeQzMkIXXrplc69Kx95WW9J+bKg2BE+6edTm+b\nNhBrFPKeMSMLN57baNECceIE0tQP4fRpANavh61bAU3h+AmjjFdUFP+7rc9j+78PixF+yKB/fZjl\nK4w0bQpXrnBNjudIoeQM60p6seX1141qREJi+nTXfkS1+OUXru4+TwzNAWjWODl7ZINOn7b0KCQm\nwbffwtix+n7btlxKLMSW27U5e0bl+TZX4O+/4auv4KOP3JemqlWJ0xKJ8wNlw0b3XScbyVMGVlwc\nuowGgFBSFZpPTrb/2BNmHWHuPALb3syISL0XV3D3LqA7tgOja9CkJEhI0PXpNCA+Xg92qrXDKIQm\no8UlIAAZifhEySjSJtwnD5iQgJAwz8zQJOD+fTddLHtISAB+/8zmN63ySgyxSWjGe1U0UGX9z1fV\n/+8pAdOsVVg0BSSVWIJ0HTxVM+urGQwgJH1byMmIeOcz6N49YJfnrixKlQRjGRaY3Z+bPZwLGWSj\nFmF8PPdaTjMdIBF/fdO+/BkbuZc62O57cQ6zWIOQcbnz4rt3ScbibypJlbOnI9zRC85UfoTAIEug\n+SAkiNMCUoZxBw8e8JUu+ajrkuYB8pSBNXIklCur92B1f1ZOVYeueHFYuFD/YgdQfGDDBqMBf7AH\nSmJR9u/PliTnCbI0j6BHDwgMRDWVxIkToUwZaNwYbdgQ5AIF4NdfGTcOqlUMAmDcOGw0wSaMlwlY\n9gOiRHGknr1YsTqQYsUkol/QaNo080lLkxMn0GTJ7JBcCysGH37opou5F1P+7d8PPvcqwLVq5mPP\nVd5O6fXfIR5rhCwryBUrIiRQA/zwrVELzUevb6oM499Nxs8PZFmmdMAl5hZ5G02RkWbPMbvrjoyE\ncRP0uIv4PUBevszp9G7fDn7JRSHZzzzMnyf480+08OJIL78MlSoB0Lmz/swQCoUKG/Ubf/vNfMrI\n7qe5WewatGwJkyfbxvfzz+Dvj8E0nSU3yLB4IAsWQOHCABJPd3StkRoTHU3J4hqN0Idv//hNZI8U\nYdWq0Lixvi1L0Ly5pf369luKKddo4HuIYsU05n+nQenSEBXl3l76M2fwMT5euUxZ910nG8lTBlZQ\nEIx4S29NZkxLe5Jct24WEfo6j0oUKqSXnZEjZCa8rxIcnObpXlxJXBzqROPwxssvm39We/dCiSgD\nNWuiKPDrCr24vvuubU9182YSVK6MVrsW0rPdqVFTonYtmc6dBW5bnR4cjIiNRQ7Qv+7EwJdyXqQ1\ni4SEwL7/FCpXtYxRNHitARQogLZwAXJEJNKRo0hIJLdqgd/rw1CLhgIgChbknXG+JCbC0NcVhk4u\nSvD104jAAOTOXWyu85TRKPIvVtA4ucU5FAUe3FNQfFVrW8PzadwYUb8+cus2Nj+fPg0dOyh8+52q\nl+fISPOxLmMq64bTX3+lLH+dO0NCApIpfNeu7kx9nubmTfD3k/n5Zxd3rUgSXL5M6Z66sdMyKmNy\nUS5h61b9/9ezISbGUn6io9HatqL5sIZUriqI7NtMnyu5ejXIbjQZZJmAz78GQDl2wn3XyUbylIEF\nFvcMmV1FaL9ax0v6uMKXi0N5I7tVhOkt3c3uVYTWHrI9eWWcdf5ZrwC0xlpuRZEVktQk8ypCSFmH\nrP002btpMB3LytL3nPIy7W5S87pu7frCGkH6frC8uAZ3+MLKrXlnlsrJ5oU7/j76cHdO+21zFXnO\nwDK9YDO7LNm0DN1L9pKaHyx7/UhH2PjBMm67yzGgNdYGXV552aemR2it8yhLsm5gKb7msCk0Pa39\nYNkZDK6oXxK6I9m8pg8ncKwbmJpOakbu3+sDyzVklzpEdmH+CHIwryyn/GDZS/Z4Op49puEAkxyD\nM7IMJYJLmLcVSWHsxrHk881Hm7JtmLZDn0z6RqM3zB6ovdiSFS3Ci/cu8tbat1h0YBEA1+OuE58c\nz5i/xnAt9ppNPqZX+axf5oqk8NH2j1h0UI/XR/bh46iPKRxYmEv3LzF6/WhUoVK3RF2GNRpmjqPj\njx1ZeWwl7Su058C1A7xS7xViDbFMaDkhxfWsDTpP1suyzj8f2YerD66aj03fMZ3XG75u82x9ZB+O\n3jiKv+LPg6QHAJQqUMp8jo/sw9vr32b/tf0YNEMKw9iUp9baes5ieu5bzm2x0Uv0dBz5DQP9mXVf\n0p01AWtoW66tJTyCR99+lKAKQZQpVAaA0MBQZrTTl1e2/6E9p++czp7E53Hik+NZcmgJ0bWjXRZn\nTEwMZR8ty08Hs3d+3JUHVxi5biQASw4tYeNZ21V7MWdiaFu2LUdvHqXPL304f/c8A+oM4PmazzuK\nziXEGeL4bNdn6Qf0IPJcD9bTFZ/mlx6/UNC/YIbC//fyf3zR/gvzfv9H+wMwYt0Itp7fyuX7l7ny\n4Apbz211S3ofdo7cOGI2rgD+PP4nh68fZvel3fSu3psZT1jW4YcFh/HPSxbfG5v6bbKJy7pH6f1W\n79O/dn+iykYRVTaKDac3cPr2afM1/774NxUKV2D+3vk2caw8thLQNeHO3j3LjB0zeH+T3fJ3Iyaj\nY+eAnbzW4LUsPIXcwyMFH+GbTt8wsZUuQ2N6OVs/22XdlzHryVm0LdeWxd0WM+bxMazru84cx8A6\nAwFYc3INv/T4xdztb6JmWE0g873M1gxbPSz9QB5EakOE7zR7B4Dey3qnOPbflf/Yen6ruazP/Hum\nuaflj+N/uDfBDxn9VvRzeZzWOp7ZxdEbR9lxYQdF8xVly7ktxBvizeXHVP66V+vOzHYzCc8fzsaz\nG+nzSx+3puny/cscvXHU5n3s6eS5HqxCgYV4pvIzGQ5fq7itw6vSBUubtzWhUbVo1WwZbvJksjKP\nwP65mubAlSpQij61UlbouuF1zdsmrUmzV2urHqXaxWtTu3htc9hZO2eZr6UJjfD84XSo2IFlhx2v\nYmtbri37r+0nITl1NwImo6N+yfoZudVci3X+yZJM92rdARjz1xjz79aSN0+Ut4gyd67Smc5VOtvE\nFxESAehagx0rpXQYaIrHJOrtxUJqQ4TViukrO+2NUiEEREKAT4C5vkQvj7ZRGfCSe2nRogXbN+uO\neLPT274mNEoEl6Bd+XZ8vftr6paoay4/95Pus2DfAkIDQ+ldozdhQWFM3To1W9JUMKAgr9TLBoem\n2USe68FyJaZJ1qlNMPWSdVIYWJJiM98nLazn+Zj+p/ZSsc5Dk9ZVRhY0pDXZ0tEE7rxKakNX6Z3j\nxTnSe84pDCwH82dSW6jgJXdiysPsrC8mORpZkknWkm3KlWkxkVnXN5tka+y1Z/MCXgMrDUwZ7m2w\n0iYrfrDsDSzTZN6MVGprwwrS1lyzzkNT45KRBQ1pNXppGXSehDNahM6QXq+vK4zTvPD8rUmvTNkf\nE0LAGdvfvR+EnkNMTIyNrmR2YfrIlJBI1pJTaIna/M8moyej7b4n4TWw7Ght5Sx8+AiNjz+S+XSW\nzAcfqib1Ci+uYvJktPZP2fw0eiQkvfwq8uq1upZaKmgaFA/XXyJt2moweDBi0yakp56C69dtws6b\nB3/vkHltiEr8yLGoT7dH+WMVcosWaMeOwte67xXq1bOc9LHRU7bR0zwlS9omoFs3RNEiyLduQ6FC\nTt96bicwwPKCnjX8LFqvnkgHDlr0pdKgYjndU/uRIyoJv62zOZaYiNk32aGDkllT0Fn69tX///ef\nxzvQtxAQgFi/HrltFPYSBL5G90iXL8msG7Xa/HvTxvqzjo+XuHhR9+eamCBTvISK1r2nTRzWWqte\nnKOuZWYCS5a4MOJ79xATLAtoxoxJI6yrOHYMrVMHHqzZwdcz9XJ2e9THcP48f/4JLw3QzYLHmyhc\nvQpPtLK0BX/+4iZpjCVLUGtWRz5wyPZhezheA8uOv/6y2pFU0BQS4hVu3db48sscS1auJtNzsMaN\ns2gQGrlzPYSt1yJREhIt2lgO+O47EAZ9VaEmNJZ8flmXc4mNS6GXNWIEqAaFo8c01n/0L5qky5Eo\n126gCk2XAIiLg927U0/rpUu6kJ6JpUv5+DG4mQ8rLQ3PxD7/kpIgIdHSNLz1cTjLfE+wt6iqP8w0\nUFU4fkr/ChXAtJcP2xy314t9++3MpXmhcV6w6nubTz/NXBy5ilu3IDGRv8pCsowugGeFUWkIhESX\nDyy6REmqBJHAjYq8+SZcvQpoCnfvafzx8z2bOIYPd+cN5G3+/deyPXCg6+JtsXMnSffym/cnT3as\nYuNS3n0XNdnAaa0Cscm6OsbSsDB4/30GDUKXugL+2yMzfjzEJ1kWqYwc5iYDa+BAFlWHA2HYPmwP\nx2tg2eHvD6yaDv9Fg6yCUJDQvUa7TXblYaVaNV0y0ESyP9wtTQXfU8iyYtudaMeTTwLxoXChAUga\nLUqcsOi4PfGETdimTUGWFJBVqkc8QJV1TT1FgKpI8NhjEBiouwhPi7Awy3ZQEFPyjncAG/zsvGHU\nLnWDBdWNX7EtW6Z5rqLoyhsASIKno5Jtjr/4otWOkHj00cylsWhR44YhiDZt0gzqGYRYJvzH+WLp\norNHyLQJt9LxkgRcqgNrPrI4ahd6WW9Y4JjNqU2auDbJDxPWTYNLNbOjomh87R7K9QoAVKosCAhI\n55ys8uSTqBIUFTfxQa+f58sfhHbt9LokLEOEHTpgNrgAWjZ30zBms2bMNbUFHq6IYY3XwLIjIQEq\nRuTnkdIK3Z7V6NJZ5sUXZF4aqOqFzUsKMj0Ha/dutA5Pm3fz+xRi/gJB4alvojRvYSs4aEeJErpy\nQ0G/wkyeolHk9C5EmUikr76CVq1swv70EzxaS2b2HJXIo6tRn+mEElkGefMWXUNw+XKzZIWZx43W\ntKm1O3nStuI/eGDZdpuidPbgKP8OHLBYvltPlkApaVxdm4ExvfMX9HNLFUuk5je2bhSaNsXcExwa\nKrF5c+bSbBqur1Beor5nL+LUkWXYs0fffvP/sBdSPXlS/x8cJLPsosVSmvsNlEg28MlMH559Fo4c\n0SVdNm5SKXr9kE0cixe79Q7yNHFxlu3ly10Xb4ymEfD5DBoW1Q2Xv/92o7yXiehotPFjKVujIL2f\n09s0OcgXOndm9mx4rrduFly7otCuHcydbTl1xjw3TYdYvhwpSO9NIzbWPdfIAbwGlgPeHqXQspVK\n1eoqNasrlC6lEFrUO2nUHWj9XzBvBwdLPBKhoYWHIxcpmsZZOlFR0KSJTI2aGvj7oxUPQ6peI0U4\nHx8oEqpQOFQFX1/U3j1R6tVHKVka1d/X0mVT1OqaDRoAIPz1Y6JMmRTxmid9+/unOObpVLPoPePr\nC7LpGWVAiyw8XP/vV8AHR28Lk9xkeHjmpc3y5dP/B+bL3Pm5ktpGtyJNUnaVlzVq3xYrZvvAKlcW\nFCkCNWvqz7lSJcgfbNSTtOuKfEgWvLoF+15dl1KlCr4RJZGQCArKnonuavVqKOXKE15KN7A02VI4\nnm6vl7HChfXf6tSx3Lxby5BJANitDzt78RpYDjCtwrF20+D1g5U6rvKDJUm6/Im9RE5ayJKc4VWE\n1qsOFSljqwhN5zhalZWdfmvcSUbyLzMridJbdu5dReg8jvxghVS29Sfmba88B+u6Z2r/sgPrVYRg\n2w7b19vsWkWYF13e5J3BThdi8g1i8g9iWsqamaXqrkYIYXYimBsKpCY0s++ezKTHxsBCd+hqMoAy\ngizJGDQDqqbaOMO0x5SHgDlfTZp5aWm8mY4lqUk2Ly5Jkh6al7uqZdzgtSY7XvK5oQ5kJ9YfFKAb\n/vYvZUmSvG5lPAQhhDmvTFqHpjbene8a87tNSl+s3jod7nwH5sX2NG98gruYokFF+fngz3y44ooS\n4wAAIABJREFU7UOKBRVj9r+zmbp1Ksp4hR/2/5CjaXv9z9dRxitU/6J6jqYD4OStkyjjFXxe9EEe\nLzN9+3Sn4+ixpId5OzRfKJrQ6L+iPwv2LcjQ+cWCivHsz8/i974f+67uS1UiSZZknvnpGVRNZdbf\ns0jWkgn2CybOEIff+37mPxP1w/WJPfHJ8RQPLk7wpGDk8TI+E3zwe9+PgPcDMGgGp+83N5LaHLrH\nH9HnAflO8OXwjcMOw6TF2btnUz1WrlA5GpRs4HScDzsSEnW+smiitpzXku2bt9uU+ysPrhBzJoY7\nCZbVrZ0r23rb95I5yhYq69L4BswaQJsFbSgaVBRVqFy6f4lp26ehjHdfr9Ffp/+izy99CAsOMxtL\n1uonxYOL24QP8gsybyvjFXZc2OGWdMUa8s7cKxPeHiwHRJWLIvldy+qnl1a+ZN7eeXEnvWuk1APL\nLkyGxyG7Caw5wb1E22Xg2y5s4w3eyFRc4j1Bm/lt9C86J5wkzu4wm9kdZqcbbnLryaw8thKDZqBg\nQEFeqvMS+f3zc/9tx06UYpP0yh5RMIIzw86w/fx2Gn/TmP6P9mdux7lU+KQCJ26dyHA6PZFNL+ha\nj0sPLaXbz93oWb1nOmdknBND8vazcxeSJHEj7gbnhp0zy3rFxMTYSH71q92PRDWROEMcJYJLcOnN\nSzmV3DzF2OZjXe7A9W7iXaZFTeONx96g6mdVeZD0gJvxNwH3KUXcjr9N5yqdmdluJu9ueBeAQfUG\nmY+3LNMS8Z6lV7RYUDEAZrWbxZBVQzh28xiNSjVyebqerfosDUs2dHm8OUmme7Bmzpw5tEaNGvur\nV69+YObMmUMBbt26Vbht27ZrK1aseCwqKmrNnTt3zJMDJk+e/HaFChWOV65c+ciaNWuiXJH4nCCn\nhwhzUzeqeWgiUv+X1bF6++EPV2IaHtSElqEhL3uZCNO+/f+8QHpzsPLSvXo6pjpinSf2+Wcayk5r\nyNyL88iS7PI5UuE1wm3aGk1o5mu4qy20Vgtwpny428u6JjSvJ3eAAwcOVJ8zZ86AXbt21d+7d2+t\n33777emTJ0+WmzJlyqi2bduuPXbsWMXWrVuvnzJlyiiAQ4cOVf3pp596HDp0qOqqVavaDRo06HNN\n0zyy1c7pBiunr2+NI5mbrOCOBsyEtQ5hRiqyvSFlLxuR1zSz0iI3N3oPm/FnmjeYVp6Y5KaE8Ao+\nuxJ3fABa56Upb83zP90kd2QtKC5nwAQwlSF31zVnFjd5Cpm6myNHjlRu2LDh3wEBAQmKoqjNmzff\nuHTp0q6//vprx+jo6HkA0dHR85YvX/4MwIoVKzr16tXrR19fX0NkZOSZ8uXLn9i5c6dHTsCIi83B\nBuviRaQ7dy37SUk5lxZAnDiub5zR/ymXrzoO2KEDPPKIRXbGATdvwqmTEseOWzVgWtqN2ezZEBQE\nQ4emn9bvf9R7sH79TeXsOY2DBxwX/ZIlITQUtm3T8/n2TYUHD+DqZb0RvHZFISEB4mLzTkPgaA5W\nfDz8+afuvP6/f/V7P3zIyqN4GqhW7wV36deeO6f/P38uDxkQ58/r/y9eSHHIVNXjbiWj3ruLsuc/\n8zHr/BNCL6PnLqiISxeRE5M83k9bbkDT9DbhyFEXGliqyvmFf6DEbCQxEWLvK1y8aEBs3aIfPn4s\nnQgyh1i5EnnPXlBV/vlHrz/WIhX2/LhIr8TffqO3eVeuuLjOzZsHLVuinjyBcvWaa+POYTI1B6t6\n9eoHxowZM/HWrVuFAwICEv7444+n6tWr98/Vq1fDwsLCrgKEhYVdvXr1ahjApUuXwhs1amSeGVeq\nVKkLFy9eLGkfb79+/YiMjAQgJCSE2rVrm7u/TY1Idu+/804LaIPZiJi7O5mJzWHfvhxIT8uWSCal\nkjMQU78+LfbuzdbnYd6fNo3DU96CwZb0nNn4FwR/B/36WcK/8Qb89x8xACEhtDC+cWNiYmDqVDAO\nuZcKW0NCi9sM/UGF3sb7a9qUFtu2Obz+qlUxRsmKFsyaBf7+MTz1lOP0/vknTJuyC9rD8x9o0Ftl\n0Gd7EWOTGTTIEr5VKxBC32/VYjNEw818CpGRcEf+F9rD8p0yNafCuSpxUBh9eHTGDGKMPoxyury6\nar9+/RhOndKfR0IpGZrC3lPXqLsE9u5N+/z8+QHj2oXCheH2bdenLyIiBvrBdT944QWIjs7Z55Xl\n/fXrdQWCd0AMHUrM5AgoUMB8vEyZGIiCU/4BBIdobG/zJAW+/5kW3brZxLdpUwt+363w26nDiIvf\nIPW7Ae3bE/POO7nrfj1sv0aNGA4pZyCsMDMSoXZtF8TfrRtaxZvIx87Q5KP5nGoUR/dZCfSpshdK\nwsYaNWh36x7kz++6+5k/H23XQq6HQqugKWxoKEEr6PPsfyRNEvTrZxu+QoUWvDhAb5N3bjsKvWHU\nSKicGEOBAi5Iz82b+vsCuKyB8uM/ULQNMffuueZ+Xbxv2j5z5gwZwrws1Mm/uXPn9q9bt+4/zZo1\n2/jqq69+PmzYsOkhISG3rcMUKlTolhCC11577ZOFCxc+Z/r9xRdfnLN06dIu1mH1pOQ+goKEoP0r\ngrEIxiLkbr3F7t05lBgQoSMwp0UEB+dQQoQQU6aIHSUtaTGn6fnnbcP5+Qmhf1jrf9ZUqCCqDEaE\njESAJujdXlBxhSWu4sVTvfzff9tG+9hjqSe1Vy8hyHdNjzffNcGABoKSO8SUKbbhrONDStbDv1pd\ngBBKif36fruhwsdHCF6ubUlnly5OPrzcT2Cg/hwURQjKrdbvtWtPERCQ/rkgzM9GktyTPvM1nhok\nSpRwzzWylWvXhEB/ZkurIMTmzTaHfX2N9/v0QOE3KkDcDkCIFStSRNOqlRC0GyLkx6aLt4q8LiKG\nIUSBAtl1F3mW/PmFoMkUQdvhokMHF0Uqy6J/R8TsOoiC8j3BgAYioNR68WxUacFYxF1/hPjvPxdd\nzEi5cuL7GoieXRGPcEbw+Pt6PS0TI378MWXwefOEQE7Sy169L/T/teaJrVtdlJ4ePcyNbvduiEWP\n+goxd66LInc/RrslVTsp0+Mc/fv3/+aff/6pt3HjxuaFChW6XbFixWNhYWFXr1y5Uhzg8uXLJYoV\nK3YNoGTJkhfPnz9f2nTuhQsXSpUsWTKNTsncwxdfAHujzfuPhAeYHS5nOwUL6lp7JnJS5bZfP0Sp\nFJ2QMG6c7b61QnZJu/CzZtHpmMSIHTLdmlwGIRMaYjXsOT11tw8N7AaY165NPanffAPEFYUHxXR9\nSVmlUIjCa6/ZhrNRJxHGqiEUBg6E2jX1YbJAf4UxY+zmJb37buoX91A++kjvfYqKAn9f071KjB+f\n/rldugDn9VVG/fu7J31FigDb3oQ7ZVi50j3XyFaKFjWL3MklS0HjxjaH334b2DIS/7sl8JETUQoW\ngqefThHNpEm6nE5YcZWuj13U57RMm5Ydd5Cn+eADkJDx8RFMmeKiSIcO1XVRBUwbcRkfRaFuhTuU\nRB8iVsuXg1q10onESb78EmEUu5/RdbN5LlaZSMmhFFzfvoDma9zTXz4lwyUauWoR4VdfmeUcVBnk\niDJYRDU9n0wbWNeuXSsGcO7cuUeWLVvWpXfv3j907Njx13nz5kUDzJs3L/qZZ55ZDtCxY8dfFy1a\n1DMpKcnv9OnTZY4fP16hQYMGO11zC+6lTx/YucPyMm3VOvPyHlnmzh2kYsUs+9HRqYd1N2FhaD8b\nxc3OWP1u0vQw8cILlo6hC3ZzS9q1Q4wYARPe5+ct4XTqKDP7OyvDpWfabgGs+5yCglIPFxCghylR\nXOHiJY1H62isWyunOGfTJus49Ybn0doyX30F3y/UM33wYJmxY6HOo1aFwNWNYDZj3f1tYtAgfV7c\nH3/An3/o99qrFwwfnn58S5fCY4/pz2/OHFem1ML16/DWWxIfTNWoW9c918h2Nm4EQPrk0xSNzLhx\nMGqUxLsT/RD5ApDPnTeHsc6/hg3h5YEKb7ypUeS7D5AiI+0Utr1khldfhQ+nygwZplG1qosinTaN\nS3XaIn/zHf0nV6RRQ4XJ3xaF/9MnlWo7/3bRhaxo0wZt/nyk556j85Lnmfi+Xk+//Tb1NtQ0j/Kz\nz/WNKVMk170DCxbUJ20KgdalM8qkyfpveYRM+8Hq1q3bkps3b4b6+voaPv/880EFCxa8O2rUqCnd\nu3dfPHfu3BcjIyPPLF68uDtA1apVD3Xv3n1x1apVD/n4+CR//vnngyRJyh5NABeQ11Y2uArhohnM\npq8od0tFmFZXqULN8CpAU9pSrCLMxSvrXE1m7jU7VrvKkuyyMugJmO43vVWEiqyYV6N52y7XIUmS\ny1cRWq9ozpFVhJkoH+5amepMu+wpZNrA2rRpUzP73woXLnxr3bp1bRyFHz169KTRo0dPyuz1chLr\nxiynlz3npgbT3g9WVnGnHyywvHickXsw5be9YZWb8iGrmCZypkZubfQksk+7LTtJS+7J5MfNOk/s\n88/kB8skqeXFNbjDoC9StYiN6xdVs0gfuUvuyNrwduZDyHTv7vp4Mmn/5iW8ntwzgHVjZipcuy/t\nZu/VvXSr2o0C/gXcct1lh5dRK6wW/j7+nL1zlsKBhbny4Ir5+Nx/55rT1LVKVwoGZG/XakYamzhD\nHAv2LuDKgysE+AQwsulIm+Nbzm3h6Yr6XBIJiXWn1rklraDn46IDi7gZdzPDFTk1R6O51ehwB7np\nK9fmGnY9CkIIfj/+O+0rtM9V/uIyyv1EXVUgtWcnSRK/H/89XX9BsiQzdetU2pVv55HPIbciIXHk\nxhGXxZesJbP1/FazjJEiK2w+t9lcpr/f/z2FAgrRoGQDaoTVyPR1zt89z5qTa7h4/yLvNn+XE7dP\ncD32OuBcPTXrsDpxzvGbx83vr+LBxdl0dhMAESERtCmr98UYVAPvb36fs3fP5qkPV/AaWBkiIiSC\nl+u+zFe7v6J6UV0DcNzGcaw8tpIi+YrQsVJHl18zWUum6+KujGgygj2X97D2lO0s7uYRzdl2QXdh\nsO7UOkIDQ+lUuZPL05EWAkGgTyBdArvw/f3vqRhaMUWYXRd38crvr5j3RzQZYW70DaqBree38nHU\nxwB0r9adb/Z8A0C1otVcnt5X673KkZtH6FS5E6ULlE43/KimoygTUgbQ9blervsyUWV1EYK+tfri\n7+NPsF+wy9OZ3cTExKTZi1UxtCID6w4033tGmPXkLA5fd16/0BnsexTuJt6lw48duD78OkXyFXHr\ntd3BlnO6/6Pmkc0dHpeQ+Pvi37ze4HWbF5F9/j1R7gkmbp7IW2veynMvrJykVIFS7L+232Xxnbx1\nkgv7LlAvuh4Az9d4ngErB9C7Rm9KBJfg8I3DnLh1gg1nNrCwy8JMX2fhvoXM2TOHU7dPMbLJSN7f\n9L75WMsyLen/aH8qhVZKM44P2nxA92rdGbJqiFPXbj2/NaUKlGL7he3UDKsJ6O3Jv5f/5eSQk+b0\njd84nn61+5nD5BW8BlYGKOBfgC+f1lfD+fv4A7oB5CP7uG1Iy9Q9rGqqQ9HcL9p/QZWiVQDo8lMX\nt43Xp4UmNOqXrM+AyAE0DmrMgWsHUoQxSdSYsB62UIWKn+JHw1K6M6zu1boTGRLJ6pOr6V6tu8vT\nO7xJBmZoWzG59WTztr+Pv7kMAAyoM4ABdQa4LG25mdB8oXz19FdOnVOnRB3qlKiTfsAsYBoyM2Eq\na+4aWnE3yVoy7Su0T7VH3PRhMqHlhDR7ph6P0JfDxifHe4cIXUi1YtVc+kGlCY3SBUpTrnA5AKJr\nRzN01VCStWTGPD6GwQ0G8/2+7/n9+O9Zuk6ylkyT0k04dftUinJTL7weczvOTTeOEU1GpBvGEefv\nnSfOEAfo+q69a/Tmhdov0HJeS3MY07vry/Zfmt+veQXv540TWA9JaELDT/FzW2NufZ3U0mLC3XOX\nUkMYpThatGiR4mVnwv43631NaCmG2kwvyYdp8nJOk94crNyK/aKI9OpMbic9CSeTrIl9r1Rq+Sch\neYcIXYhpbpur0IRGcEVbg02WZJK1ZJvFNVm9pqs1KTPbK2oa2rZ/X/nIej+Pr+Kb2qkei9fAcgLr\nIQlVqPjKvu7rwTJp56XSM2X9ZarISo58tduvRnE04dg+/daGkyPRZdN95MXJy15ci/0QobnXNwd6\nc11BenOr7Fe0pockSd4hQhdiWoXsKgQpV3kqsqIbWFb6f1ktz9blyhUfrpk11kwf1KbFRibs57fm\nJfLeHbmJsDD4/FOZ117XaNoU1q1XuXvLl7fHaK6X+kpKQg3RhwnU2V/D8eMpgjRsIPHvv7BkCSxZ\nrDDwFZX7912cjrS4cwcxYADStu18+MZCBr0qM3uOhlG5BwCDAd4aYds4jHnHaJAmJaEWDkG5H4u1\nh7uodnoP1pQPNGJj3X4XmWLnTt3H44wZOZ0S1+DID1ZuZ84cmPi+xMfTNRITgXr1UEuFA6C+kQFx\nytxGYiLq3DkoO/9xKAx3/Dh8/ZX+Yvvzd1sDyz7/TA5zd25LRjp0GBYscEuSHzYWLlC4fFVl+3YX\nRBYbi9ajO3Hrj2CKcOpUuHldYdXqZH5eLPPgAXy/QGHbdo2MKrPY8MknIEmo709AWvQTANqQ1y3H\nT550Kronn9T/DxuWwRNWrwZAunlTv/b5cyizPkFp9xTq5Uvw+usgBGK60RHu/PlOpccT8BpYGeTa\nNXTv3pLG1q1AmQ2AxMlTaobEhp2iVi0uButfGlpiAmgpvzru3pWJitJ9cWqqzL37Ku3buzgdafHC\nC/xtOM2G8ETenhGGpsoIoZmcUQO6hufBg7Y9fB9+aLyXmjW5EKxxLwD47TdAd+aXkKC/RBITXegx\n2cV07Ai//w5jxsCuXTmdmoeTgQNBTZa5f1/Qo94J2L0bzfhhrS1b5vTLI8eZMwf1r3Uo5y/oFcGO\n7t3h4kX9Bnv0kFP9+EhOhi1bjNvChyvJYdCvn5sS/fCwdy9MnqSQkKA59HjuNIMHIw4fRkpW4emn\nSUyEkSNBaDJxCcls2iTxyiuw6k+ZS5fVzPmKHaJPSNckdPV2QMyZbTneqlWGo7p3D1at0rcvX5L4\nKiNTMjsZF10Zm3xVAvnadeR9+/U0ffopzJ6N9J/xq/yFFzKcHk/Ba2A5g9HAMhN0HSSNwoVdfJ0i\nRZhpFEFWU+2N1QgOBh8fQFPck460CAlhTGt9048m5mcTEGAJUqAAujSNNabnFxrKDDu5heLFgbNG\nC00S2Xs/TpA/v+5EOz0P8p6CJ87BkmVASICgSBHjsL2xrqgy2BRETyB/fjRZQkGGkJAUhwsWxCzf\n5Ksoer03Yp1/9qM3viIZm8BeMkW+fCAJGWSVYFfMcw8JQZMgfzgQGIiPjzHvNAUUA5IkUagQIBQk\nWcuSc3NVxiyxZvOp7sSN+PkZNwwBYAiiaFFnTtLRJFA0XRrI/F4LDaXiTeN2HiynXgMrg7RuDQgZ\nxVczfRgA0KKlysSJLr7Y5s1I+fIBoIYXT1FQAWrUhM2b9eGq4CCFipVVli51cTrSYrblS+jQrvvk\nD5YJDNI4dswS5Nln4ekOtgbWt98Zq/jWrRAYqG8bH+B770G1qnqRLF7C9jnnJtauhdGjdUkYl8lm\neHGKLVugYEGJsuU05myoAAMGoAbp5UkdMzql7mVu5/nnUfs+j1y9Bnz2WYrDS5ZAPX01P9u3yfin\nsthKUTD3qOf3SyQsKNYsweMl81SoAN9+oxAUrPLXXy6IcNo0RKeOyMH5Yft2FAVWrAA/X4XQosk8\n10tmxgwY9KpMhYqqrqfqLDt36kOEEkildbc02pefW47v2JHhqAIC9DZPOd+KJk01XW80PXbvBkAy\naQ0qMkqt2ih9+6Eqkj7O37Ur8osDqH83GDZsyHB6PAWvgZVB1q2Dt96SmTxZY+ZMy+99ozW3aBNK\nffsCoD31JJSJTHH8558FpUtDzZrQo7vMW8NVlOz0fWn1tXHmwWE++1SmazfbLy1J0p+PNV27Wval\n557TN0aPNv92wOjpod8LInvvxwkiI2HCBMucBE/HE+dgNWoEI4bL9OhpNNhnz0bb+x8AWp/nczBl\nmUSWUZs9jlKzlt5FakeRItDpGb3u2IvN2+efaW5gzfoByJUq4zpl3oeb1i0VAoO0FHKrmUKW0d59\nh1itBBiNnw4doGS4TLUaKs2aSSgKtG0jU7a85qhTM33q1wdNQ/u/YUhPtANA693bctxBOUuLiRPh\nyXYyI0dmcKJ8hQr6/9BQ/dqFQ5D7RiNPn4GWP9iikfnSS0hVq6YQOM8LeA0sJ3DkDsFdqwitfUU5\nwvq69qsycoLUXEXYp8s6TFo+erxuGrykh71UjsevItTS1mJztk5IktdNgytx9SpCR+4TFFnBoBps\nJLqy+o5RNdV8nayuzk7NHU9GSG0VYV7Ga2A5gSMjwt0FJbUKbV1RXO2fxVlatGiRuoFll/6MVnBP\n9WXkiXjiHCxIKZVjdm3ioY5G0/ODlVqdSCv/vI5GXYerDQMhBAUr206uUiTdTYO164KslmdVqOZy\nkNV21d73XEbPAYvWoElz8WEg780qcyO+si9f7v6SP078AejyKVO3TuXl316mZ/We/Nj1R5dd6+jN\nowCsPrmaG3E3Uhz3Uyzzsu4k3GHwH4MZVH+Qy65v4tejv/Lhtg/N+92qdGPe3nl83eFrm3C+ii9r\nT67l8W8ft/n9Wuw1m/0m3zShXKFyBPsF8+OB1J9XXpCg8eJefGVfvt/3PatOrGLf1X3m3z/Z+Qlz\nOs7JwZRljk3nNpmdLjrCWS/XW85toXHpvDfsklP4yr7EJsXSal4rfur2E0WDMjLTO3UW7l/Izos7\nbX7zU/w4dP2QuRxIksT60+v531//4/1W7zuKJk1azWvFhjMbGFx/MAArj67MUpqdEbz++8LfgOUd\ncD/pPr6yLz6yDwbNYH5X3E+8Tz7ffFlKV27Fa2A5wRuN3qBt2bYA3Ii7QePSjTl28xjNvmvGogOL\nXGpg1Q+vj6/sy/+a/Q+DauD4reO8/NvLNI9ozhftv6B84fI2YdMyVrLCv5f/pXzh8vSv3Z/Fhxaz\n4ugK9lzZYyN6GhMTQ4emHSjes3iqla9gQEFqfVmLyJBIfj/+O36KH38+9ydBvimX4R0ZfISSBTxs\nkrIHk54WYW5lYN2BNCjZgO/2fmc2sIY0HMLuS7tzOGWZI94QT4vIFqkeH1x/MB0qpvQR4Cj/9ry8\nh/uJ9ylVoJSLU/nwEuQXxK6XdtHt525cfnA5ywbWpzs/hTO2vy3rsYzL9y9TL1xf0VC5SGUAJm6e\nmCkDa8MZfeL4czWe47Ndn/HP5X/oWqUrnzz5SabS7MwQ4aHrh6hSpAqfPPkJCckJFPAvQN3wuvgq\nvuweuNssbg7k2XLqNbCcoFBgIbPOl4mw4DC3Xa9FZAuaPtIUgLKF9JmVT5R7wqxBaMKdwraa0Igs\nGMnjEY+z58oe9lzeA6QchvH38TenNS0iCkbgI/uQpCbRLKKZwy+XSkXSFh714gUgv39+Ho94nH8v\n/2v+rV25duy/6jpB3uxElmSKBRVL9Xh+//xUK5YxEfTaxWunH8iL0zxa4lHy++V32xBX+cLlbT6e\n/RXXaPMF+uorbA2qgWrFqlEif4lMxZOaYocjVKHyWOnHaF22dYpjD0v59M7ByqVoQnM4fyKjMhmu\nwlrOQZZkDJrBnD4TzvR+mOQ7NKHlSWkET8QTe6+ssW7w/X38PXb+nrUQujN4ev55Gi7Vfo1M+7Cr\n2ntTepO1ZLOmZWaQJCnDQ4TpLdp4GPC+4bJAQgKobpqrJ5KTkawKsmasz7KDsp2sum/FnXb/HlKy\nLl+jCAlDchIAqmpwKp44XVAdoUnmSvewVz4vrsGQbFX+hYzqQPnAE9Ds6nxWWLfOUue8uJbkJIX4\nxOyZpK2prnlFJ6v6C8SQGIeShfpx66ZEkiFjxqUWH4cWZ+DBA7h1S1cZeNjwGliZ5IcfdE/l1q5E\nVmZt/qCF339HzJqJPHYcHDxIbCxUq6xX6Kkj7sDRo+ag+/ZB//56hXG5I9zHH0fMmoU8bjx8+inK\n/71J0n7d15A6yCLnERMVlWY0e/ZYPJ5/8blE7H3dsMofrJgNRy85hyf6wTKxfTuMGGEpRL3a3mbL\nFsFHH+VgojLDZ58hfl2B/PIrcOWKU6fa558kQdu2ep1btMiFafRCoUKwf5/C481Utm3LQkSvGzUB\nzwCVHE+JOHkSioZaPkLPnnXyGk0tUzZaNtWlcpb+9ADlvXGwbJmTkenl6q/1Ms/3ETaasw6ZMIEt\nby1m7vx85M8vCA3VnZVaO6J+GPAaWJnko490MWOjxBMA06a5KPKZM/UhwoQEWLyY336DeGOH0XUt\nDPWnJeagQ4cCt8sBbuhN27IFTTL2mk2ciJyQiMFYYmy6yNNxbfzss9Z7kvEPEhMkDh1yZYK9PGyM\nGGG7fy85CCSN6dNzJj2ZZto0hBBIsbFmkVxXMHiwy6LyAty5g1kWbOTILEQ0x2qVaypWx+zZgLAY\nWE57c9+61bwZd1dfNBQrB5AsfHH2C8TcsWqUp3rllXROmDWLdVILY/qNbhpU+PzzNM/Kc3gNrEwS\nHQ3+/th4G4+OdlHkffogFAXJxxeeeoo2bUDxSQQgWMSitG9nDvq//wHnmhj3XDw0UqkSApAE8MIL\nKIoPBuP9Wvdct0hHNNTmZSckYyUFWZaoUsXxOV6yD0+ewzN8uNXO1Wr4oiLJApNIgMfQpw+aIiMp\nPtC8uVOnppV/WTICvKTA3x9dL1BWeeutLET01FP6/0hITdivVy/jtYz06OHkNcpbJsv73XsEbpfB\nV44ln2Zw+mVl8YcqgaQxblw6J3TvTj35b2P6hTmO5z1QZCEreA2sTDJ0KJw4ATdvWn5zmWh9nz6I\n/i8gvzcWGjYkNBS27dQL6fhJEtStaw7aujUcOqQbLfEJLh5vO3IErfMzyG++CZMmoUwyYnk9AAAg\nAElEQVSfSVK4vmpSnTLZEm7NmjSj6dABNm3St/v0kQjOr9/L/fvkWjkcL55Bx44wYoTe+teMiGPZ\n6vw8+qjggw9yOGHOMnYsonUr5Lnf6FpMWSA+Hjp3hlWrUvbweckaDx5A+XIK385T6dQpCxFZC8de\nu+YwSK1acP6c5RXttO7p8ePmzZt3fQgvIdO22X3kt0fDyy87GZleriqUl5k4SZDOrBD47DNavF6V\nflFX2b9fYvNmuHTJoqf5sOA1sLJAqVJkSeU8LbR8gUj5LD6iAvMZx//yBaQIW6UK+CgKso/rJ15q\n5csihRUHQM5fAINxlr0WYFk+nJE5PI8bvVuEhkpmoypf3vQt53F48hwsgDCjpxSpYAGCghR8/TQ8\nUSFGBAYgBTpfKezzLyBAn2LzxBMuSpgXMz4+ULqUTOnSLvqYPZP24fASrvkCDQ6GoHwyaoF8KMUy\n51ooIAAaNpQolcF710qXpmiNUlSvrk8HK148U5f1aLwGVi5FIGx0qhy5R7DGXfIDQljcNCiSrpMF\nmZcIkiXZq4/mxW1kRsojt+BIm85L7iM7tfRc6crG5GYnK6u3nfHkrgo1290K5Ta8jkZzAefvnidJ\nTbL57W7CXZvKlazpa1xTq9hJapJLKv3VB1fRhGZ2RBdriLUIj8oKCckJgK0EjlN+sJC8/q9yGZ48\nB8ua+OR4p14AuQ3rjxlnyCv55ykkJifyIOmBzW93Eu4Q5BuEr+Lr8JwbcTfwlX2JM8TZOvmMdF86\nrzywXY0qSzL3E+9nyeiRkLgae5WTt04CekdAoE9gCuWNJDWJ63HXHSp1PEx4Dawc5sK9C5SZWYaI\nkAjzb3GGOK48uELDkg3Nv0UU1I/XDKvpMB6B4NTtU6kezyjFP9b7cQ+8eoBqxarx9e6vqV6sOm88\n9gYRBSMIzx/O3cS7LD2szyHI75c/rehsaBbRjMalG3Pq9inuJt7NUjq9eLEnwCfAKSmP3EZmHY16\nyV42n9vM5nObEe9ZDPlCHxTizcfe5KMox6vzin5omch+ZugZQgJC3J7OyBmRgMVr+qMlHmXHhR2U\nCSmT6TirFKnCV7u/4qvdXwFw6vYpAJtnAfDxto/57r/vmNluZqavlRfwGlg5TEJyApEhkZwYcsL8\n29qTa4laGGUzXBAWHJaiEFvzaPFHzcN3ruB2wm3z9unbpwFoWKqhTTpNZFTLbmO/jQB0qdLFNYn0\n4hI8VYvQnmENhz2UQ4R5Jf88nbN3M+aoKlFNJCE5gaL5irK4/mK3pEUIQaKaiPaupUx93+X7LMc7\nsulIRja1LE197Y/X+GzXZynCxSXH8UajN+hbq2+Wr+nJeMdqchhHjaqpC9eZ4QJXzwuwvranvrC8\nPByYhgRlSX4ohwi95A6cyTt3z08SZtcI7u0RTS1+r0yOjrc25zBCpBwWMFVUZ4YLFElx6dCIM9f2\nfj17Np6ef9Yvk4dxiNDT8y+v4EzeaUJDkRS35Z2j94o7SO0aXq1ZHe8TyCK3LSNpGJwdoVNVRKuW\nyCdOwrlz5p+VnbsAkGbPNrvQXbkSevaEf/5JGc2dO3D9msy+/VnrwRJVKpu3pZ9+gtP60CBJSamc\n4cVLzrN2tV7xTq0/zb59EjdvCu7dy+FEOcvx42g7dyJ9+WVOp8RLGjhs7ydNAkDaf8DK5bkVn35q\nu797N+qM6cjXrsOOHWle7/LlzKVTK1kCSROwdi0Ab72ly/xMmJC5+FJj61bdwLJR5DAYUA/sQzl6\nzPHzeIjwGlhZJMzKpUjJkqmHc0iJEojLl5FUDSKMk9z/+QflLd07oPzPbujYkZMndYeKP/0EDRuS\nQr/vqafg9CmFIcNUDh7M5I00boxmpXEoz5hp0cgyJNu5zLbF0/0oPex4cv59/z2sMSo1jZtXhlcG\nCC5eEnTsmLPpcpqqVRH37yEvXQZjxzp1qifnn6dh3d6XKoVeAMeMAUA+cBAmTrQ94epVi+6gkaQ+\nvVFnTENJSCLmscfSvJ6VM3YGDMhgIosXR1y/rkucRUWxYwd8/LH+If7uu5k32uz58EP4d7fRya/1\n2qrhw1HXrUVZ+D0sds8cM0/Ba2BlEYMBuFQX7jzCXWcXxt25g5Cw7WQ9fx6jL09doubUKevOLTQN\nEhNtozl7FoSqIMkaly45fQs6x4+bFGws17buktu/P5MRe/HiPvbsAQ52N+7pAxYCjTNnci5NmSI5\n2SJL9d9/OZ0aL6lgMAC3ysGVWrou4YED5mOyAI4csT3hwoUUcUxvBJoESgY6dxISjBuHO3P4cAYT\neeuWXpaMu/ZNt6vqxp49mGXPbHRwT5xAU5ORk9VMKFTnLbwGVhaZMAH4ewicbcYPPzh58pIlaJJF\n6w+ADh1QauifA5KiwJIltGwJUVG6DtagQRAYaBvNwoUQHCQT9YRK69aZvJEDB9CsDCw5rDi88w5g\nrEM//pjqqd45IJ6NJ+ffBx9AMUoD0LjIUdq3lwgIECxYkMMJc5YRI/S2IF8+nE28J+efpzF2LLBr\nEJxupXfOvPceFCsGgOTnl1JEuW5deOQRm5/uly+NWqQwsoAW6YjzTZkCUsxYfG5V5+efM5jITZss\n75Vq1XjpJchv9KZTpAik02mWYebMAX9//aUxZIjVgenTUcNLoFSumilJnryE101DFvnf/yCig8Tq\nk4Kuznof6NgR0XAf0tJeMMgole7jgzL3W/i6LvLsOZjUkFevTj2ali2h0QWFwY1V5MyazGFhaAnx\nMFG33qTff4cSdWDcBN2iK1QokxF78eI+FAWu3vJDGgevTq9MnRJ+HFwszNJMHsMHHyC+3Y489n3L\n29BLruO996BAlMTZuxqd2gEE6MOA4ySknj0d68GcPQvjLF+v8mONUUe9i7K4KwxO25gePhziG0gY\nNEF4eAYT2agRIi4WeWqouYfNHXMS8+WDwYMlpm2HmdburipUQO3yDErRau7TkvMQvD1YLkCW5Ey7\nMhCkXJqdU6sIrc935treOSCeTV7Kv4dxFWFeyj9PILX2PqOr5iRJMq8izEjeyZLsdJn2riLMHXif\ngAswVZjMIIRI6QfL6D/EGR8msiRnWYvQ+h68lcOLpyEhPZSORr1kL6m196kZG478sqmamnGDDMlp\n327ZZeCk6gfLq0MIeIcIXUJWnBtqQktRMU0F06keLFlh/r75/HzoZ5qUbsJLdV9yOi3W2lXvxbxH\njbAaAOnKOnjngHg2eSX/JEnXuTx28xgnbp2gfOHy6Z+UTVy6f4kv//kyhfFn6nkWCM7eOev1g+UB\n3Iy/yZqTa8z7l+/ry/JWHlvJuxve5ZV6rxCeP5yYMzGsP73eoTF28vZJ4pPjM5R3jnqwftz/I4du\n6L4RFElhSMMhFA4sbD4uSPnh7g5MnQHvbHiH8oXKE107Gk1o/Hn8TxqVbOT26+d2vN0ULkAi81/N\njipC2UJl+aDNB7Qs0zLD8QxtOJTqRaszb+88Bv42MFNpGb1+tHl7xdEV+Ml+PFHuCdb0WZPGWV68\n5DzfdfqOJ8o9QWRIJKUKlGL1iTQmLeYAW89tZenhpfjJfjZ/4zaOY8KmCfjJfgyqP8j8UeMl9zJ+\n43iO3Txm3n9ppf4xeyPuBh9u+5Bt57cB8M2ebzh0/RABSgAz281kSusp5nPO3T1HZEhkhq7nqFd2\n0pZJ3I6/jZ/sx/y989l7Za/NcUcf7u5g9OOj6VSpEw+SHjBu4zgAbsff5uL9i7Qt19bt18/teHuw\nXEBWhwjtu3IDfAIY0WSEU/G0KduGNmXb8G7Mu5lKhz0l85fknebvZCisVwvNs8kL+RddO9q83bFS\nx1w3TKgKlerFqqeoUzP+nsGt+FsZrmuOyAv558lYl7WC/gXNUzUEgmcqPUOfWn3Mx0etH4WEhKqp\n1ChWI0N552iIUNVUBtUfRNWiVdl4dmMKmbTskl0q4F+A5T2Xc+r2KVYcWaGnTagUyVeERwo+ks7Z\neZ9M58DkyZPfrlat2sEaNWrs79279w+JiYn+t27dKty2bdu1FStWPBYVFbXmzp07IdbhK1SocLxy\n5cpH1qxZE+Wa5OcOsjJEmNmJre7AuifNOxfEi6eSG/UIU9Nmy+q8SS85j3VZ81V8zcaOo/m1oLet\nzsxRcjREqApLeVJkJUU5yq4hQkd4dQgtZMrAOnPmTOTs2bNf+vfff+vs37+/hqqqyqJFi3pOmTJl\nVNu2bdceO3asYuvWrddPmTJlFMChQ4eq/vTTTz0OHTpUddWqVe0GDRr0uaZpeWZ4MitDhLl1YqtX\ni/DhIa/lX25cSZjapGNXpDOv5Z+nYd32+8q+5jxN7ePZVD4zqkXoaIjQujw5MsBychWfJjTvBHcj\nmcqBAgUK3PP19TXExcXlS05O9omLi8sXHh5+6ddff+0YHR09DyA6Onre8uXLnwFYsWJFp169ev3o\n6+triIyMPFO+fPkTO3fubODKG8kpduyA55+X+HWl5rwD5l9/RTRsiLTrH5g1K8tpGT/esv3eexk8\nqVo1kCT979dfzT9fvCBnXnbHi5dsQtOgTh3dCe/w4XDyJCxeLPHZ54Ibf5+E0FAIDoZ163IukVOm\noPbri7Lge/j6a8vv0dFoD+7r20uX5kzavDjF9euW7R/bzoVy5bi7apv5t7On/Jg2XSV2w07E778j\nffKJ2R27SQHpt2XJGEaPQZky1awVmBovvgjD34Jp0zRi5Fbw/vvwyiuoJ0+g9OwFX36JsmoN6gvR\ncN9YliZNQhQtinTzlq6t5ibi4sDPT391VK6sS9e2bZaI2qAe8sVLtmX9ISVTc7AKFy5868033/z4\nkUceORcYGBj/xBNPrG7btu3aq1evhoWFhV0FCAsLu3r16tUwgEuXLoU3atTIrGpZqlSpCxcvXkyh\n3NevXz8iIyMBCAkJoXbt2mYL3+QvJLftDxzYggRFhkvX6do1hpMnnTi/Rw/mPwG7SkLMsGFQs2aW\n0vPee8BYABg/PoaWLTNwvlGlMwa4dCEByunna2cT6do1hiNH0r++tS+XnM4P777z+56cf2fOtNAl\nO4jho4/0/av3Za5dOM7/dZrD/Fu39PA9esDSpTmT3tGjmdweLgXCvEGDYOBA/fj8+cSORQ/fsyes\nXfvQ5Z+n7c+Z0wIqAGeg/7pwenGKfY0bwxndyNICfdl3QGVMty+5Wv0uUuweWLKEmFKlGDcOGAt3\n7xbkt3uVqSQdIqZbN1rcvZvq9b75pgU0UuD2eZ4SbxL3ztMAxHaDXdt3UzZmL0o3jb3nrhMcHU2L\nZctgzBjGV4Gb14CdO932PN5+GwwGfd8Qvw3unmbdZj+SQq5gOAcxMwfRYuDAbM0fd++bts9kVG9I\nCOH034kTJ8pVqVLl0I0bN0INBoPPM88888uCBQueDwkJuW0drlChQreEELz22mufLFy48DnT7y++\n+OKcpUuXdrEOqyfF83jqKSGotFzQq4Po3t3Jk8uXF4xFMBYhChbMclr8/YU5Pj+/DJ6k650LAaJD\nL8znM7SMiI7OWBQbNmzIZIq95AY8Of927rQUYX9/If73PyF82r8hfJt/JBa0+c5y8LHHci6R+fJZ\n6nmhQpbfJcnye0REpqP35PzzNKZOtbSx5TghhCyLon1qWdrNlx8VPg1mi9VNxokePRTxQx1fIbZu\nFUIIERQkBK9WF1T5WfRtESnea4HYUKFCmteTZSFoNE3Qboioyj4h8uUTQlFEqTcQ5wogRJEi4pke\niGWVEWLuXP0kPz9LuXLje3XSJKvXR7F9+jXRxPFCiLJDECIszG3Xzi0Y7ZZUbaVMDRH+888/9Ro3\nbrwtNDT0po+PT3KXLl2Wbd++/bHixYtfuXLlSnGAy5cvlyhWrNg1gJIlS148f/58adP5Fy5cKFWy\nZMmLmbl2buPXX6FLF5nyFURacn2OsVbvdIHEubXYdIalEdavhwIF4PHHkawk0QsXlpgzJ2NRmKx8\nL56JJ+df/fqwbBlER+uqIGPHQrsnJPr0ETy3uq8+bj50KFh9gWY7N29atq9etWxbCQVnReDZk/PP\n0xg+3DI/dc+WWJg9m1rFLG136XA/hgxViVo7HFGvLtLoMdC4MQAHD0JEcCWGDVV5pLIfSpVqtEhH\nwfniRShYQCEsJJaDL0zX3xl79qAGBaIsWAhHjqBElkF9ZSD076+fFBdnicCNqudvvw2vvQYVKkD0\nC/ok+5gNAm3su8gFCtqW74eUTBlYlStXPrJjx45G8fHxgUIIad26dW2qVq16qEOHDivnzZsXDTBv\n3rzoZ555ZjlAx44df120aFHPpKQkv9OnT5c5fvx4hQYNGux05Y3kFIoCL/STqFRJOK8D6GM1Qmuv\n4JwJ/P0db6dJq1a6ZbZpE1JkGfPPhUIkm+R58ZJb6dwZvvsOypfX62PlyjKVKwskWdIFy2fM0CeL\n5BQBAZZtX1/LdtWqlu2QtJ35esl95G9SE/r3R9S0+C6LKO1LuQoqBAYiIiKQKlW2HIuA+vUlHmsq\noXbritKrt15g06B4cZgwXqJbnwD45htdOLpGDdSC+VFatYHQUJR69VFbt7KcZB1nRITL7tcRn3wC\nx47Ba0OSAXi8Oai9eqKEFdeVpR9yMmVg1apVa2/fvn3n16tX75+aNWvuAxg4cODXo0aNmrJ27dq2\nFStWPPbXX3+1GjVq1BSAqlWrHurevfviqlWrHnryySf//PzzzwdJkpS71lFngdy4aikzWK9mdGYF\nSkxO9g54yTJ5Lf/ySn3MKHkt/3I79qu+01xFaBfW5NPKtMovI3nnyM+i/SpCez9Y2U2yphtYmtC8\nqwityHQfxYgRI6aOGDFiqvVvhQsXvrVu3bo2jsKPHj160ujRoydl9nq5mayIPedWcqPrCC9eMoIn\n6xF6yf3Yu16wNn78FD+Lo1EHgssmlwrWfqzSw9H7RdUsfrRMcks5iUE1AJjvzatlq+N9Ci4g0DeQ\nDac3UGra/7d373FR1Pv/wF8zswsIKohyUcAwkJt6gFQ0y1IRTEuzUpT88SWzvpblpYtF5vmeUyeV\n6nTSk3k8lRqZipp5q0RFMyyvKWSJAiokICByF1BgZ35/DLO7wKLA3mffz8djH7KzszOf9b27896Z\nz+fz9gbzDoP6xnq8l/YefD72gc/HPuj/cX8czz9u7maq1TXWQfGuAicKxIGda06vAfsOi10XdwEA\n3BzdENwnuMPboz4g1k1u8dOeF2jatmlg3mHUn0Wfj33AvMOg30f9jN4O1/ddcaH0Ai6XXzbqfuQW\nP0sX6hmq/nvoZ0NxJO+I+v7+y/uxaP8iAO2cwWIY7M3ei7W/roWj0rFDseum6Ia1v65t8T6uaaiB\nPSf2A3Gyc8LClIX45eov+r+4LpLqINq/Z49Thadwo+6G2dpiSaiXjQE8fM/DuLzgMq5WXcWo9aNQ\n11iHrLIsvHb/a3gq+Cm88P0LKKguMElbTj13CvG74u+4Tm1DLVSCCoXV4jiDnPIcCBDgbO+M75/+\nHqGeoVCyyjtugxBLpV1aZMcFcX6pY88eUz/ef2V/FN3Uf1DJ3VTcqkDxzWLYK+zh18sPf8xr2+m3\nOqGjo1GIpVgRuQLLji4DAKQXpSNvYR6c7Jyg4lXw/Mizxbqtz2AxYHCl4op4XBj2Qof2Fx8Wj7Sr\nafgy40v1+9hB4QAnOycAwKpHVqGopshkxxhdBrkPUv9dUV+BB/s/aLa2WBI6g2UADMPAq6cXPLp7\nABDLGKh4Fdwc3eDj7IPudt1Ndo1cwSpgr7hzD3d1KYfm087SwUjJKeHazRXd7brfdRvaqA+IdZNb\n/HRdIvRx9lHfTEH6TAkQxANvd084KBzarNfDvgd62PfQa19yi5+lU7AK9eU9AQL6O/dHH8c+6u9/\niaCjVA7LsGjim+Ds4AyO5ToUO5Zh4eIgDoKQ3sNuTm7qxx0UDiY9xtyNAAHdFPoP2pIDSrAMSLr2\nruJVLWpNcUzbWlHmJLVFuowi/aviVdT3ilg9XaVDTE1K8Fp/FxDrJ3Uql5Lo9r4zdZXKYRgGjXyj\nwWv1ta5HaM4+UJZa/s0cKMEyoN/PiyMprubzqK7mUV8n/vfmX2WRc6n5C18QxHGt2pNWGdDPPwOl\npQJ4HsCffwJLl7bZF3+9WGxKVSXA82i6kgsAUDU1gbl9u9P7pD4g1k1u8aupZlBTY95O7vxflwIA\nVJXl4LOzwJWUtl2HB1JSgPx8/fYlt/hZutqbHOrqePDVVWIio6uwuCBAuHkTjNacVCoVcPkSi/LK\nJpReF48NHY1dVaV6szplZ7FI/03zo4I18aG9slLzd0N5NZjauvZXtiGUYBlIZibw1HTxF8TIUSoc\nSFXhpRc5BAQAP6dxeOcfKnz4IYBXXwVCQwFfX6BvX80GDDBfyZw5wIIFDAqLmtDPo0ncx7Jl4hw7\nfPOH7/JlqIYPAwAIc+cCvr5Yn9IbAFBdK6BywtNAfb3ebSHEHLZsAVavZrBylYApUzTLH3lE/Ff7\nePbqq0ZqREQE+MQVAMQ5gVQvvgDu/AXx86glNBSYOFH86J85Y6S2EIO6eBGY/hSLM+kqLPP+BFDx\n4hcvgA0bNOvNGpwB4fBh4PnngStXAIjTQh0/xqCgUIWvv+LE0jkdsHcvsGGDeEZIVz7m7Q2cOsHh\n45UqzJsHfPAB0NQoHtpfeaXLL7XDKirEkp+S9/8J8Dv2ovMzb8sPJVgG8t57AGrdxTuMCryggqqJ\nw6VLAAQOYFT48ksA27eLxT8bG4HiYs0Grl7Vuw3ffgvA6Trgfh4lN1qdgpa2v3s3VM1nb3kGUOUX\n4PawJHEBq8KJUn+Ije446gNi3eQUv+RkQNXIoknFi/WdS8WJHqWXeEzT1x1btxqpEadPg9f+jLEA\nK0A8o6xFKqYuCMC2bV3fnZziZ+mOHAFUTRwE8FgbAPAsgJ07AQCbN2vW+/6CHwSBB6NSAUePAmg+\nyyMwANsICBw2b+5Y7LS3e1zHYPTCQgC8eIzZvh34+msAigYA4uHG2H7+WfP7HQDqglNQpeohfhht\nHCVYBrJmDcQEq/xegOEBlkfPHiyiogAILMDwYjX1N98UZ9r18ACGDdNsYPRovduweDEAO7Gi+tBw\nrT5fCoXm13N8PHhFcwdNjgP34AOa9Rge4/9yAwju+BQNhFiSRYsAhYKBvb2AF14AcO7/AWlLpJMM\niNcaYLtkiZEaMXu2OsFSsWKSxQkAHnqoxWqTJ4v/KpXASy8ZqS3EoKZMAXr2YAFWhVDfPeLCxYsB\nAG+8oVlv0aM5EBiA6dFTPE0JICAA4rGAbQIEtsPvv9de0/wdF9f28ZEjoT7GLFkilrCRJCR0/LV1\nVXQ00L275j7bOxu9uSrxw2jjKMEyEBcX8ZfoPfewyMpR4ZGJKmxYz2H/fmD2Mxw+/Y8K06cDmD9f\nPIN16RJw+rRmA2lperdhyRJg61bxm/3XswqxQaWl4tkySe/eUJ3/HQAgfLlB/esKABR2Kjhu+xqd\nrZFDfUCsm5ziN3YssHQpg9deF/CvfwF/f0fAG28An34qPv7555p1jZbUrF8P/rpYc1C1YztUu3eB\nmzAR+OmnFqvt3g3U1opfB/37d313coqfpevXD9j3PYf77uMR/L/NP4qbM6WoKM16f987FMKkSWDW\nrQPcxSsbWVlAXByDvt5NWLqEQ3x8x2I3bJgmV1m3ru3jx48Dz87m8MmnKrzyChAbq3ns5Ze78io7\nx94eqKnR3O/ek4PimXjxw2jjKMEyMAc7cTQHDxUUzSOHHOw4CGh1RslIoyyk3Ega4aKrHpRKGj2o\nY3ZgGv1BrJ2CZSFAfI9zHKBUmv49zXcTp2RQCTxUjABOqbsWoqMjOl/DlJgVx3asNI3AAEyr0Xz2\n9gxUQhOUis6NIrzb17Jjt1bHGDNiwIChNzUASrAMjmM59TxY2rWiTDVsXKoJ1cg3truOeh6sVkNS\ndA0r7gjqA2Ld5BY/SyiVoz0FivZ3gTHILX6WjmM7VpqmvVI5TXyT+v1gqNhZQj1CCcMwXTqOyBHN\n5G5gLMPieP5xlNWXqec64VgOZ4o0w4SuVl1FTlmOUfYvJVgHLx9EqGcoLpdfRkDvAFy4cQHO9s6w\nV9iry/boOghRDSli7RgwyK3IxaErh3C54jK8eniZvA21DbUAgBMFJ9BN2Y3mwZIRlmFRfLP4rkl8\ne8WebzXd6vQ8WHe7ssAxHC7euIhDVw51arvGUHmrko4jzSjBMrBHBz6K5PPJcHN0w7297gUAjPIe\nhZk7ZmLtY2vhoHDA6wdex4UbF+Du5A5HpSN8XXwNtv/R/cV+AW+kvgEnpRNOXzuNv3j8BedKzqnX\nkeoM6voV1pVLhNQHxLrJLX5D+w1Fam4qlv8s1pafGjjV5G2Y+91cAMCqk6sAAKsnrjbavuQWP0vX\nr0c/lNaVokHVcMf1dJ3BesDnAeSU52Bov6EAOh67WUNmwVHp2O7j93vfj7Vn1qrf8+5O7uoCzKYy\nJ3wO1qWLncSoq4mIEiwDSxyf2GbZjMEz8MzuZ9SX5BpUDXh3zLt4IvgJg+/fx9kHwt8EbP59s7pe\nVuWtyhbrvPXgW/gx78c2lwiBtrWzCLE20X7RiPaLNmsbrtVcU/89wGUAXoqgYYJy4drNFfacvfpq\nwZ20TjTiQuMQF6pjKOBd3Nf3PtzX9752H58+aDqmD5re6e0a0hdTvsCm3zfhVtMtOo40o/N4ZsAL\nvNEvGXAM1+5pWo4VHzPUJULqA2LdKH6Gp31gNfaveYqf6XWkX21H+rTKLXba/Y4JJVhmoRKM2+kV\nEJMo6cPd+kwVx3BiR2BdZ7Do1C4hetM+sOr6nBHr1rr2ny66ij3LnXRcs7XX3R5KsEwgI0Ociiqt\n12SAYcCfPg027ejdn9gFY8cC3boBH7zP4s888U1+s6DlJcL8HaexZTOD95bxLco7AMAvv1AfLFtj\nS/HLyND83aZgQUUF4OAgznWyf3/XdyLNP9essFCc68pYbCl+lmD5cqC2hsPGTTmWnjgAABidSURB\nVOIlwn/+U1yuPZt51fYDEE6eBL766o7bklPsZs8GblaLKUXqQYYqroESLKNrahIncFYxtzBVlYRS\n9AF/oxTcx6uAX34x6L4SE8VSDrduAadPcqiuEsNbIbhA2aRJnJZsHYramyyu5gt49tmW25gVy7ao\n4EOInNyn1Y0lKKjVgz4+wO3bYlVeqXhhV2zdittFmgrODQ3AhAld3xyxHNXVwNtvAwLPokklnsFq\nnshdLFHTbG5MOYSaajBfbxKLCdqAL7+EOKM8gMzzbIsZ5W0VJVhGJgiaidRVfofRCKWmNpmBU3zt\niuZi/cPmSxMCCwWvSbB4XinOgqejD5YgMC0mfu8IufUjsDW2FD9BAHByPlDmjzZX7pru3mm5Q+rr\nUatsuai21jCb1sWW4mdu6rcIzwFsy0uE9fWA8jvxjFUdHCEA4oXiOwRfdrFrTrAgMEZ9z1sLSrCM\nTKkEvv9e/Hsutxr9UATeyRHc/8QDkZEG3VdiIjBggDjrr+89LBy6iV8A3dkK2Gudv146+mcoFAyc\nXfg29bBWr2bg42PQZhFiMXbsAHBlPHAjSCwGre3sWc3fq1Z1fSdxcWCcndV3OQ44cKDrmyOWw9UV\neO45iD9gmxOsueKMHHj2WSA2chB63Q7Dfz+sgWBvByYyEpgxw3wNNqGHHoI6wfL2ZvDBB+ZtjyWg\nBMsExo0T/4346mVAEKCKGAZ2ZqxRyuVcuSL2BVi7hsMAP/ELoJunPex6u6vXiXgjGnP/l8V7ywQs\nW9by+dOe7PxbQk79CGyRLcXvySeBvXtYPPqY0LZUWkiIeIpLEIAFC7q+E4UCjGtv9d3+/cUDs7HY\nUvwsweefA309WTzxpPj9unatuFypBF5ZxMKnP4++r8+C8MAoMG8tueP3vJxi99NPgLu7ePyIncmi\nVy8zN8gCUIJlQtK0CLzAd3om386SSvYA4rxbSlZzzYJGERJbxoAxeukq+hzJm/b3qzbt6Rt0TTQq\nd7b2eu+GEiwzMHZtMqC5NlXzMOJGvhFKTtnisfYOMlSL0PbYWvxMUavQlPMA2Vr8LAHHcDonGmWg\n+eGqq1ROa3KLnfS5MnctUEtBCZYJ7by4E4p3Fcguyzb6RKMKVoHim+JwwLrGuhZnsBSsAhzLYeO5\njYjb2XJWYZogjsgdy7Dtzk21/fx2OCc646UfXgIv8Pi/H/8PX5z9otP7kD57fRz7wM/VT6/2EsvD\nsRx+yPlB5/L86nzE7YxD2p9pNjcHmruT+91XsiGMpbwBGIYRLKUtxuD+oTtK68S5cTY/uRlPBj8J\ne4W90fZX31iPnRd3Yta3swAAx549hqyyLNhxdpgaNBVFNUU4ln8MAHCl4gru97kfdY11mBpk+rpt\nhJjS/kv78dHxj3Agrm3Pc+Yd8YyDklWiMqESTsudENwnGJkvZXZqH68deA1nrp3BZ5M/Q3e77ujX\no59B2k4sw095P+FyxWXUNdbh5YiX1cub+CbsyNyB0rpSzN83H7+/+DsGuw82Y0tNK+tGFnZe3InY\nwbG4x+UeczfH6Jq72rR7mpJqEZrIBP8J+PqcOFFK7JBYo++vm7Ibnh7ytDrBCvMMw/0+96sf93P1\no1/WxCZ15BKhklOqL6HbcXad3gfHcJg0cBICegd0qY3Esj3s+zAe9n24zXIFq8CMwTNwvfY65u+b\nDyelkxlaZz6BfQKR8GCCuZthMeh6kImY+9KbMS9Jyq0fga2xtfjd6RKhhGPuXgrlTkxRDktia/Gz\nBtIgpru9Byh28kYJlokYe9Tg3Zg7wSPEUnRkFGF7o8Q6SsWrzP6ZJ+Yj/aA1dl9bYtnoqGsCPXoA\nG9ZpPmhHjVOGsI05czR/u/YyXqjlNJeLLbKl+KWkANHRLH48IuDbb1s9qHU2obKCxYB7xSTst9+a\nJyjtqKNHwX/+GbjE94GiIr3bfDe2FD9L9t134pRXDAN49RO/bx979M4JFsVO3ijBMrKaGuDmTYgz\n/zZbutQ0+16/HkC9i9iOalZsByE2bPFigFcxAHi8/rqOByU8h+oazRmshQs7sZO334bqVj3Y66XA\nxo36NJdYEWlGdwCouyl+3/+WzqGw0EwNImZHCZaRde/e/IfAAtcHgbn4hKEr5LTL1RVA8i71fUdH\n4+yH+hFYN1uKX2QkxDqcjIA2Jw+iozV/t6o1J1Vj6JDx46GyU4iXCEeM0KO1HWNL8bNkLb7Xm39Q\nKzgWbm7tP4diJ2+UYBkZwwAXLgCe7hzc3YHJkX3w17+aZt9lZcCgIHEqiPJygKVoExu3ciXw97+z\nCAwUxDO82rTqRvXuzeJgqniJ8J57gA0bOrGTv/4V/KOTwL29FHi47UgzIk9ffQUsXw7MnAn88bv4\nZftbBge7zg9CJTJBh1wTCAoCZsRwcO2jgqcnY4wShO1a94W4M2PWhaJ+BNbN1uIXOY5Bb7c7d3J3\ndOAwMEA8g+XiIhZs7jCGgcq9D9i+ppn7ytbiZ8neegvYsgUIChDfMN79qA+WLaMEy0Q4Vr9h34QQ\nw9AuZ9Ie7VGEXSn7QaMIbZs0aptGb9s2ir6JsAyr17BvS0b9CKybrcVPKsh7p6kaWIbFraZbAMRk\nSbuAr67ntU7YVILKZEP0bS1+1qCjxb4pdvJGCZaJeDh5IK8yD30c+5h0v1QbipCWXBxccLLwJLh3\nOaQXpetcx7O7J4b8ZwgA4FL5Jdi/Z4/C6kKM+2ocXBJdWpyNrm2oBfsui8vll9XLvj73NZztnY37\nQojF60oVACIfVCrHRF4f9TpeH9V6XLjxDeg1AMLfjFvjkfoRWDdbi1+wW7D676rbVS0ei7o3Cq/d\n/xom+E9osTxwdSBuNtxEeX05ahpqxDNUEM9Q1TfVt9mWPWePaL9omIKtxc9adOR7l2Inb106g5WV\nlRUYHh6eLt2cnZ2r/v3vfy8oLy93jYqKOhgQEJAdHR19oLKy0kV6zooVK94aOHBgTlBQ0MUDBw6Y\n5puHEELuoPXlPl7gdV7ak2Z/l9bXPoMlLdPeVnvbIYTYji4lWIGBgVnp6enh6enp4WfOnBnq6OhY\n98QTT+xMTExMiIqKOpidnR0QGRl5KDExMQEAMjMzQ7Zu3TojMzMzJCUl5ZF58+at4XmeLk/KBPUj\nsG62HD9dfad0dUxmGRYCBPX62smUlGxpJ11Ui5B0BMVO3vT+BkhNTR3v7+9/ycfHJ3/Pnj1T4uPj\nkwAgPj4+adeuXVMBYPfu3Y/HxsZuUSqVjb6+vnn+/v6XTp06FaHvvgkhpLP+/FPzt3D5kvhHdDTQ\npw9UJcXgSm+0WL+qCii7wSDjZD2EykoAgCrrgvpxVU6W+O+vp8RtHjsmnsHKvGjEV0EIsXR698FK\nTk6eGRsbuwUASkpKPDw8PEoAwMPDo6SkpMQDAK5du9Zv5MiRJ6TneHt7FxQWFnq13tYzzzwDX19f\nAICLiwvCwsLU16ilTJ/uW979MWPGWFR76D7Fr737DzwwBv5+PBAHAEDVxlcB7l84kp0NAOCzysCt\nfwZH3hEADw+MGTMGAwYAFQ/VYdbKDPjOKgPcgLRhw9F9+26MGT4c/LixwBPAmTULMKqpL4SY6cD/\nAD8NGYIxt28DdnYUP7pP92VwX/o7Ly8PHcHcbT6YO2loaLDz8vIqzMzMDHFzcyvt1atXRUVFhXpK\nS1dX1/Ly8nLX+fPnfzJy5MgTs2bN2gQAzz333BeTJk364cknn1SXW2UYRtCnLYQQcjfXrgFeXgLw\ndxYAsHJjABbmXQZU4uW9++cAHx3thlGrdwNRUQDEagx48S/AtxvhPn0srvepwI33gd4HjgI8j9zH\nH8a9i4AjG4CHh09D47ffwPFtoPEfAPLyxKngCSGywzAMBEFod04OVp+N79u3b+LQoUPPuLm5lQLi\nWavi4mJPACgqKurr7u5+HQC8vLwK8/PzfaTnFRQUeHt5eVEJTJnQzu6J9bGl+PXrBzwwUtNXKsC1\nFPjPf9T3VSzAhYW3KHHzzDMABAaujvVwhniJkA8KAEaNAkaNgqq/t/hcRwfgv/+FytUFrADAx8ck\nyZUtxU9uKHbypleCtWXLlljp8iAATJkyZU9SUlI8ACQlJcVPnTp1l7Q8OTl5ZkNDg11ubu6AnJyc\ngREREaf0azohhHTez8c1PSOETV8Dzz8PCAIgCOCHDQX38SpoF5DbsAEIDWWQ+os9hAA/AIAq7Sex\nuKdCAf7wIQAA/91ewNUV/LVCcA7dgKtXTfvCCCEWpct9sGpra51SU1PHf/75589LyxISEhJjYmK2\nrVu3bo6vr2/etm3bYgAgJCQkMyYmZltISEimQqFoWrNmzTyGYeh6oExI16mJdbLl+BljFKGKN90s\n7oBtx8/aUezkrcsJlpOTU+2NGzdaTEvu6upanpqaOl7X+kuWLFm+ZMmS5V3dHyGEGFrrOoPt1RBs\n7muhXr/1lAyt/6U6hIQQmsmd6O3IkSP0S8yK2XL8pDNRFfUVWH1qNcrqy3SefWpdv3Dz75vVZa8K\nqgsAACmXUlBUU4TaxlqTFvm15fhZO4qdvFGCRQixWdIlv/hd8dibvRdzh85Ff+f+bdZjwKgvEb4w\n7AVkl2cjuzxb/fgIrxGobazFsYJjAICFIxaa5gUQQiwWJVhEb/QLzLrZcvykM1JSHcG1j63VuR7D\naErlJDyQgHtcLGfqBVuOn7Wj2Mmb6c5jE0KIhZH6VLWuSdgay7DqPlgM0+60N4QQokYJFtEbzeVi\n3Ww5frpGBeqifYmQgWUlWLYcP2tHsZM3SrAIITZlwgTNyMHNa8tx+zaQmycmWLoqYGzaBPx6mkHs\n0zyuFfEYPozFpk0maiwhxGrpVSrHkKhUDiHE2CoqAFdXTakcbvvXmDduFlbzgyG4ncfYnwQcPtzy\nOQoFoPqf0cCh5cD0GOCzM1De6ocrVwBvbzO8CEKIRTBqqRxCCLEm9vYt7zOMAFdXANxtAICzc9vn\nKBQAwACMIN4EBizbdluEEKKNEiyiN+pHYN1sKX6OjkBCAgM0/+h8cU49/vY3wN1dvL9hQ9vnpKUB\nzj0ZjIvkoVDyGD2axaFDgJubKVvePluKn9xQ7OSNEixCiE1ZsQKQBgKOjHQCwwDOzuICF5e260dE\nAOHhLJYuFeDSS8A32xk88IAJG0wIsUqUYBG90Vwu1s2W4yf1+7zbyEBLHkVoy/GzdhQ7eaMEixBi\nc6S5rO42PYP2+tJEo6Ysg0MIsV70TUH0Rv0IrJstxs/NUexA9Y+0f2D0htHIKsu64/pKVolFKYtQ\nfbsaCtayCmDYYvzkgmInb5b1TUEIISZw6vlTKKopQoOqAYB4Jqunfc921/9s8mf4s/JPOCod4eyg\nY6ghIYS0QvNgEUIIIYR0Es2DRQghhBBiYpRgEb1RPwLrZovxq6sD5HLC3BbjJxcUO3mjBIsQYlOe\nfx7o3h0YORJobDR3awghckV9sAghNoPnxdI3giDO6v7LL0BYmLlbRQixRtQHixBCmrEsMHGiWEew\nb18gMNDcLSKEyBUlWERv1I/Autla/PbuBc6fF2/dupm7NfqztfjJCcVO3mgeLEKITWFZwM/P3K0g\nhMgd9cEihBBCCOkk6oNFCCGEEGJilGARvVE/AutG8bNuFD/rRbGTN0qwCCGEEEIMjPpgEUIIIYR0\nEvXBIoQQQggxMUqwiN6oH4F1o/hZN4qf9aLYyRslWIQQQgghBkZ9sAghhBBCOon6YBFCCCGEmBgl\nWERv1I/AulH8rBvFz3pR7OSNEixCCCGEEAOjPliEEEIIIZ1EfbAIIYQQQkyMEiyiN+pHYN0oftaN\n4me9KHbyRgkW0VtGRoa5m0D0QPGzbhQ/60Wxk7cuJ1iVlZUu06ZN+yY4OPhCSEhI5smTJ0eUl5e7\nRkVFHQwICMiOjo4+UFlZ6SKtv2LFircGDhyYExQUdPHAgQPRhmk+sQSVlZXmbgLRA8XPulH8rBfF\nTt66nGAtXLhw1aRJk364cOFC8Llz5/4SFBR0MTExMSEqKupgdnZ2QGRk5KHExMQEAMjMzAzZunXr\njMzMzJCUlJRH5s2bt4bneTp7RgghhBBZ6lKSU1VV5Xz06NHRzz777HoAUCgUTc7OzlV79uyZEh8f\nnwQA8fHxSbt27ZoKALt37348NjZ2i1KpbPT19c3z9/e/dOrUqQjDvQxiTnl5eeZuAtEDxc+6Ufys\nF8VO3hRdeVJubu4ANze30tmzZ2/47bffQocOHXpm5cqVi0pKSjw8PDxKAMDDw6OkpKTEAwCuXbvW\nb+TIkSek53t7excUFhZ6td4uw7Q72pFYuKSkJHM3geiB4mfdKH7Wi2InX11KsJqamhRnz569b/Xq\n1S8PHz789KJFi1ZKlwMlDMMIDMO0O7FV68fuNJcEIYQQQog16dIlQm9v7wJvb++C4cOHnwaAadOm\nfXP27Nn7PD09i4uLiz0BoKioqK+7u/t1APDy8irMz8/3kZ5fUFDg7eXlVWiIF0AIIYQQYmm6lGB5\nenoW+/j45GdnZwcAQGpq6vhBgwadnzx58t6kpKR4AEhKSoqfOnXqLgCYMmXKnuTk5JkNDQ12ubm5\nA3JycgZGREScMtzLIIQQQgixHF26RAgAn3zyyfxZs2ZtamhosPPz87u8YcOG2SqViouJidm2bt26\nOb6+vnnbtm2LAYCQkJDMmJiYbSEhIZkKhaJpzZo18+50+ZAQQgghxKoJgmD22759+x4JDAy86O/v\nn5OYmPimudtjq7fZs2evd3d3Lxk8ePDv0rKysjLX8ePHHxw4cGB2VFTUgYqKChfpseXLl7/l7++f\nExgYeHH//v3R0vJff/116ODBg3/39/fPWbBgwSpp+a1bt+xjYmK2+vv754wYMeJEXl7ePeZ+zXK5\nXb161WfMmDE/hoSEnB80aNAfq1atWkDxs55bfX29Q0RExMnQ0NCM4ODgzISEhBUUP+u6NTU1cWFh\nYemPPfbYXood3QRBMH+C1dTUxPn5+V3Kzc31bWhoUIaGhmZkZmYGm7tdtnhLS0sbffbs2XDtBGvx\n4sUfvP/++28IgoDExMQ333zzzURBEHD+/PmQ0NDQjIaGBmVubq6vn5/fJZ7nGUEQMHz48FMnT56M\nEAQBEydO/GHfvn2PCIKATz/9dN6LL764RhAEJCcnz5gxY0ayuV+zXG5FRUWe6enpYYIgoKampntA\nQEBWZmZmMMXPem61tbWOgiCgsbFRMWLEiBNHjx59kOJnPbePPvro1aeffnrT5MmT9wgCfXfSzQIS\nrGPHjt0/YcKEFOn+ihUrElasWJFg7nbZ6i03N9dXO8EKDAy8WFxc7CEI4kE8MDDwoiCIv8C0zzZO\nmDAh5fjx4yOvXbvWNygo6IK0fMuWLTPnzp27VlrnxIkTIwRBPIj06dOn1NyvV663xx9/fNfBgwfH\nU/ys71ZbW+s4bNiw03/88ccgip913PLz870jIyNTDx8+PFY6g0Wxo5vZZ1MvLCz08vHxyZfutzdH\nFjGPO81t5u3tXSCtJ8Wt9XIvL69CKZ7asZYmpy0vL3c17SuSv7y8PN/09PTwESNGnKT4WQ+e59mw\nsLAMDw+PkrFjx/44aNCg8xQ/6/DKK698/OGHHy5mWZaXllHsiNkTLOrsbj3uNrcZMb+bN292f+qp\np3asWrVqYY8ePWq0H6P4WTaWZfmMjIywgoIC77S0tId+/PHHsdqPU/ws03ffffeYu7v79fDw8HSh\nnfkcKXa2yewJVus5svLz8320s3hiXh4eHiUdndvM29u7wMvLq7CgoMC79XLpOVevXu0PiJPVVlVV\nObu6upab9hXJV2Njo/Kpp57aERcXt1GaIoXiZ32cnZ2rHn300e/PnDkzlOJn+Y4dOzZqz549UwYM\nGJAbGxu75fDhw+Pi4uI2UuyI2ROsYcOG/ZqTkzMwLy/Pt6GhwW7r1q0zpkyZssfc7SKiKVOm7OnM\n3Gaenp7FPXv2rD558uQIQRCYjRs3xj3++OO7W2/rm2++mRYZGXnIfK9MXgRBYObMmbMuJCQkc9Gi\nRSul5RQ/63Djxo0+lZWVLgBQX1/f7eDBg1Hh4eHpFD/Lt3z58iX5+fk+ubm5A5KTk2eOGzfu8MaN\nG+ModsTsncAEQcAPP/wwMSAgIMvPz+/S8uXL3zJ3e2z1NnPmzC19+/a9plQqG7y9vfPXr18/u6ys\nzDUyMjJV11DjZcuWLfHz87sUGBh4MSUlZYK0XBpq7Ofnd2n+/Pn/lpbfunXLfvr06dukoca5ubm+\n5n7NcrkdPXr0QYZh+NDQ0IywsLD0sLCw9H379j1C8bOO27lz54aEh4efDQ0NzRgyZMi5Dz74YLEg\niEP9KX7Wczty5MjD0ihCih3dGEGgy8KEEEIIIYZk9kuEhBBCCCFyQwkWIYQQQoiBUYJFCCGEEGJg\nlGARQgghhBgYJViEEEIIIQZGCRYhhBBCiIH9f+Kr2qzmO0vWAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x469a890>" ] } ], "prompt_number": 52 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
gpl-2.0
autism-research-centre/Autism-Gradients
6a-gradient-network-fit.ipynb
1
341932
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## 6a Calculate gradients inside standard networks\n", "\n", "##### written by J. Freyberg for the Autism Gradients project at Brainhack Cambridge 2017\n", "\n", "__Note: This is a matlab notebook!__\n", "\n", "You need to have both a valid matlab installation (2016a or newer) and the python package `matlab_kernel` installed. You also need to have SPM installed.\n", "\n", "In the first cell, we transform all of the gradient files into the same voxel space as the standard network maps from neurosynth." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "% list the correct files:\n", "indivfiles = dir(fullfile(pwd, 'data', 'Outputs', 'individual', '*npy0.nii'));\n", "network_files = dir(fullfile(pwd, 'ROIs_mask', '*FDR_0.01.nii*'));\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%plot native\n", "network_file = fullfile(pwd, 'ROIs_mask', network_files(1).name);\n", "\n", "% transform into different voxel space\n", "MatlabFuncs.progressbar(0);\n", "for i = 1:numel(indivfiles)\n", " gradient_file = fullfile(pwd, 'data', 'Outputs', 'individual', indivfiles(i).name);\n", " if ~exist(fullfile([gradient_file(1:end-4), 'transformed.nii']))\n", " MatlabFuncs.Transform_into_the_same_voxelspace(network_file, gradient_file);\n", " end\n", " MatlabFuncs.progressbar(i/numel(indivfiles));\n", "end" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the next cell, we use the different network files to calculate a goodness-of-fit (ratio between inside-of-the-network to outside-of-the-network)." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%plot native\n", "% define the inputs\n", "mask_file = fullfile(pwd, 'ROIs_mask', 'rbgmask.nii');\n", "network_files = dir(fullfile(pwd, 'ROIs_mask', '*FDR_0.01.nii*'));\n", "\n", "% list the new, transformed files\n", "transformfiles = dir(fullfile(pwd, 'data', 'Outputs', 'individual', '*transformed.nii'));\n", "\n", "% reset the goodness of fit result\n", "ratio = [];\n", "\n", "MatlabFuncs.progressbar(0);\n", "for inetwork = 1:numel(network_files)\n", " \n", " % define network file for this loop\n", " network_file = fullfile(pwd, 'ROIs_mask', network_files(inetwork).name);\n", " \n", " % loop over participants\n", " for i = 1:numel(transformfiles)\n", " % update a progbar\n", " MatlabFuncs.progressbar(((inetwork-1)*numel(transformfiles)+i)/(numel(transformfiles)*numel(network_files)));\n", " % define gradient for this loop\n", " gradient_file = fullfile(pwd, 'data', 'Outputs', 'individual', transformfiles(i).name);\n", " % run the goodness-of-fit analysis\n", " [ratio(inetwork, i)] = MatlabFuncs.gradient_goodness(gradient_file, network_file, mask_file);\n", " end\n", "end\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To avoid having to run everything _again_, we can save the ratio file to disk:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "save(fullfile(pwd, 'data', 'ratios.mat'), 'ratio');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, make one big vector that indexes what group people are in" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Warning: Variable names were modified to make them valid MATLAB identifiers. The original names are saved in the VariableDescriptions property.\n" ] } ], "source": [ "phenodata = readtable(fullfile(pwd, 'data', 'Outputs', 'Phenotypic_V1_0b_preprocessed1.csv'));\n", "for i = 1:numel(transformfiles)\n", " [~, loc] = ismember(transformfiles(i).name(4:end-34), phenodata.FILE_ID(:));\n", " if loc\n", " group(i) = phenodata.DX_GROUP(loc);\n", " else\n", " group(i) = NaN;\n", " end\n", "end\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the next cell, I create a boxplot that ranks the networks by fit" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAPoCAIAAAAJGqdNAAAACXBIWXMAABcSAAAXEgFnn9JSAAAA\nB3RJTUUH4QMGDRAi5H2HbQAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJ\nbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNi1NYXItMjAxNyAxMzoxNjozNO3oDEoAACAA\nSURBVHic7N17XIzp/z/wa6aziiiVSg22khBiDynlFK1DObcSaUn10bJq1/749KlknZclbPqkZHfb\ndbZ0FJqkDysW+10sUTMoS5FSadI0vz/u7/f+zM5M0z3T1HR4PR8e+5i55rqv631dE733uu/7ulki\nkYgAAAAAAKgDW90BAAAAAED3hWQUAAAAANQGySgAAAAAqA2SUQAAAABQGySjAAAAAKA2SEYBAAAA\nQG2QjAIAAACA2iAZBQAAAAC1QTIKAAAAAGqDZBQAAAAA1AbJKAAAAACoDZJRAAAAAFAbJKMAAAAA\noDZIRgEAAABAbZCMAgAAAIDaIBkFAAAAALVBMgoAAAAAaoNkFAAAAADUBskoAAAAAKgNklEAAAAA\nUBskowAAAACgNkhGAQAAAEBtkIwCAAAAgNogGQUAAAAAtUEyCgAAAABqg2QUAAAAANQGySgAAAAA\nqA2SUQAAAABQGySjAAAAAKA2SEYBAAAAQG2QjAIAAACA2iAZBQAAAAC1QTIKAAAAAGqDZBQAAAAA\n1AbJKAAAAACoDZJRAAAAAFAbJKMAAAAAoDZIRgEAAABAbZCMAgAAAIDaIBkFAAAAALVBMgoAAAAA\naoNkFAAAAADUBskoAAAAAKgNklEAAAAAUBskowAAAACgNkhGAQAAAEBtkIwCAAAAgNogGQUAAAAA\ntUEyCgAAAABqg2QUAAAAANQGySgAAAAAqA2SUQAAAABQG011BwAAAB1aVlbWw4cPCSFDhw718PBQ\ndzgA0NUgGQUA6AoOHDjw5s0bQsjUqVOHDh2qwpaTkpKOHTtGCAkKCkIyCgAqh2QUAKAr+Prrr588\neUIIMTY2Vm0yCgDQpnDNKAAAAACoDZJRAIA2UVJS8ujRo8bGRvnV+Hw+j8cTiURM2nzx4sWjR4+a\nmpqUjqq0tPTBgwetDKPFLsrKyjpUSOIeP378/Plz1bYJAK2BZBQAQJX+/PPPqVOnGhkZDRw48L33\n3tPV1fXx8bl+/bpEtfv373/88cdGRkYcDmfAgAG9evXy9PT8448/xOvMnTvXysrKysrql19+OXfu\nnJ2dnZmZ2XvvvWdgYBAYGFhbW0tVc3V1tbKyovO/8PBwKysrHx8fiRZu3rz5/vvvW1lZiV/3ySQM\nhkQi0caNG/v3729lZWVpadm/f/9jx44lJSVRAaxYsUJ6UEqHRDfyzTffiJe7uLhQ5ampqdLd/fvf\n/+7Xr5+NjY25ufnAgQPXr18vFAqVGCkAqJgIAABU5Mcff+zRo4f0v7SampqZmZl0tZSUFF1dXelq\nWlpa3333HV3Nzc2NKp8/f762trZE5dmzZ1PVBg0aJN3URx99JN7Chg0bDA0Nqdf9+vVTKIx58+ZR\n5UFBQXLGPn/+fOlRT5gwgXo9Z84ciUG1JiS6kcjISPEYBgwYQJUnJCRI1KRfiPPy8qqvr1fsOwYA\nVcPKKACAajx79mzFihV1dXWEEHd398OHD+/Zs8fZ2ZkQ0tjYOG/evOrqakLI48ePQ0ND6+vrCSET\nJkw4dOjQ4cOHp0yZQgh59+7d6tWr79+/L9Hy0aNHdXR0QkNDP/vsMwMDA6rw9OnT1B1LiYmJaWlp\nJiYmVPmqVavS0tJ27Ngh3sLWrVupe+1tbGysrKyUC0OOtLS0o0ePUq/nzZt3/Pjx7777ztbW9uLF\ni80d0tYhScjPz3/vvff27Nlz7NixhQsXUoWZmZnJyclKtwkAqqHubBgAoItYtmwZ9e/qyJEj6fW2\nZ8+e6enpUeWnTp0SiUSLFi2i3rq4uDQ0NFDVGhsbJ0+eTJXPnDmTKqQX84yNjV+/fk0V5ubm0v+A\ni6+29u/fnypMSkqiC8WXA2fMmFFeXk5/xDwMJiujdEf0USKRqKKiwsjIiCqXXhltTUhKrIz27Nmz\nrKyMrhkYGEiVczgcoVDY3LgAoB1gZRQAQDXy8vKoF//4xz90dHSo1+bm5rm5uWlpaWlpaY6OjoSQ\nK1euUB+FhoZqaWlRrzU0NFauXEm9pivQPv744169elGvx4wZo6GhQb1mfiOOiYnJkSNH6NVT5cKQ\n49atW9QL+tpQQoixsfGcOXPUFZKEefPm9evXj34bHh5OveDxeKWlpUo3CwCth31GAQBUoKGhobi4\nmHo9YsQI8Y8++OAD+nVdXV1JSQn12sHBQbzakCFDqBfl5eXl5eV9+/alPxLPovT19a2srPh8PtUp\nw/C8vLzoBVqlw2hOeXk5dcKdEGJjYyP+kczrWdshJGkSbQ4ePFhLS+vdu3eEkOLiYnpdGQDaH1ZG\nAQBUoLa2lr41m17Vk9bY2EhvzEQvcEq/pZIkGr3OSmGzFf6n29LSsvVhNKdnz54sFot6XVVVJf4R\nfct/+4Qk51OJNtlsNl0iJ0gAaAdIRgEAVKB37970+qXErpkpKSnh4eHh4eGZmZk9e/akF+GoB77T\n6LdGRkYWFhaqDU8iP1ZtGDo6Oubm5tTr8+fPi3+Uk5PTFiHRx4rXFIlEL168aK47iTbLysqoO6WI\n3OVbAGgHSEYBAFRj9OjR1IukpCS6sLKy8h//+MfOnTt37twpEokIIdT99YSQgwcPih+emJhIvaAr\nKEdOQiZOtWHMnDmTevHNN99cvnyZECIUCqOioq5du8a8EeYhmZqaUi8KCwvpajk5OXKuWzhy5Ai1\nmwGF/o569uxJ3/YEAGqBZBQAQDViY2M1NTUJIZmZmUuXLs3Pz09JSZk2bRp1Ftjc3JzadHPjxo3U\nwl5mZqa/v//Fixe5XO6yZcuorZHYbPbmzZuV6J3es/O7776LjIxMSUmRX1+1YXz55ZfU2Kurq93c\n3Pr379+rV68NGzZIb4+qkpDs7e2pFw8fPpwwYcL333+/dOlSap//5lRUVEyYMOHUqVPXrl2LiYmJ\nioqiyletWqVQkACgeuq+nR8AoOvYsmULffWkOC0trcuXL9PVtm/f3tx1n1FRUXQ15hsYicT2KqJI\nbHov0YJCYTDc9P7ChQvGxsbijUyaNOnrr7+mXktv7dSakJ48eULlvuIsLS2p/QqIrK2dbG1tpb8a\nR0fHyspKOYMCgHaAlVEAAJVZu3Ytl8sdPny4eN4zceLEK1eujB07li6JiIi4dOnSiBEj6GosFmvo\n0KEXL16Mjo5Wrutvvvlm1qxZCi3yqTaMCRMm/PHHHz/88MPq1au//PLLkydPpqen0zd1id843/qQ\nrKysMjMz6QtVCSFOTk4FBQUS9/KL8/X1/fHHH+l9T3V0dObNm3flyhW6BADUhSUSidQdAwBAV/Pm\nzZv/+Z//0dLSsrW1lZPu1NbW3r17t6mpydHRkX60Ums0Nja+evVKKBT26dNH4h58OVofxn/+8x9q\nt04OhzNmzBi6fNy4cfn5+YSQdevW0aukqgpJJBI9fvy4pKTEwcHBzMxMZh06gMjIyA0bNohEoj//\n/PPNmzcjRozA2XmADgL7jAIAqJ6hoaGLi0uL1fT19cVTt9bT1NSkb+5hrvVh5Ofnf/XVV4QQAwOD\n3377zdbWlhBSWFhIbVPPYrF8fX1VHhKLxbKxsZGzGirzEIkNRwFA7XCaHgAAWsvPz4/a2aqmpsbB\nwcHZ2XnMmDFjx45tbGwkhCxbtmzYsGHqjhEAOigkowAA0FpWVlaXLl1ydXUlhAiFwt9+++369evv\n3r3r0aPHd999l5CQoO4AAaDjwjWjAACgMnfv3v3tt9+ePXtmYGBgY2Pj4eHRo0cPNcbD5/Pr6uoI\nISYmJso9RxQA2hqSUQAAAABQG5ymBwAAAAC1QTIKAAAAAGqDrZ2gO6KfJQgAANB27t+/r+4QOgEk\no6AeAQEBV69evXnzJsPnsqgc/oGQYG9vjzkRhwmRgAmRgAmR1to5iYkhUVGqC0f9sPDBEE7Tg3pQ\nj6NVdxQAANBhKPssXOjssDIK0CZ4PJKSou4gFPHy5cqYGHUH0Qo2NiQgQN1BAACA4rAyCu2npqZG\nIBC0WK22tlaipKGh4e3bty023qGWWmNiCI+nygbduTHu3M6cLbaxpUsJl6vuIAAAQHFYGYU2V19f\n/8033+Tl5fH5fA0NjTFjxnz55ZfiFTZt2sTlctPS0uLi4jIzM588eWJqavrJJ5+Ehob+/vvv27dv\nv337tkAg6N+//+effz5t2jTxo9LT0/fv35+RkcHj8fT09FxcXGJiYjrI1tbu7qpfq/Nos+upUlP3\nRkWFtVXrbe/QIXVHAAAASkEyCm2rpqbG39//7t27tra2S5Ysqa+v/89//uPv729kZETXqaio4PP5\n4eHht2/fnjBhgq6u7pkzZ3bv3l1TU/Pzzz8bGhr6+vpWVVWdPXv2iy++4HA4jo6O9FGxsbHZ2dkT\nJ0708PA4d+7chQsXXr58eeTIkRYDi4mJ4fF4ycnJbTj4TmXlypXqDqFjwYRIaHFCDh06lJeX133+\nTuEnRBrmBJSDZBTa1qFDh+7evTt9+vRt27ZpaGgQQt6+ffvZZ59dunRJomZJScmZM2eoJNXLy2v+\n/PkHDx4MDAz84osv2Gw2IcTGxmb37t0FBQVUMkopKChIS0ujlkLXrl07adKkW7duFRUV2drathgb\nl8uNaf4yySipmzrlVJZZv3MJC+vEy6KUlJRDeXn85j5t/ReK+uIl0vXz8vLktN/1dIG/MiqHOQHl\n4JpRaFspKSlaWlrr1q2jMlFCiJ6eXnR0NP2Wtnr1anq51MnJSVtbm8Vi+fn5UZkoIWT06NGEkPLy\ncvGjQkND6ZPybDabOolfVlbWYmBxcXHPnz+P+z+//vqr8oMEAEJ4qr1KGrq2mBjCYkn+IURGYee5\nszIuLs7+79QdUaeBlVFoQ+Xl5dXV1SNHjjQ2NhYvt7S0tLOzu3fvnnihxN9bXV1dc3NzKysrukRH\nR0e6C/FVUkJI7969CSH19fUtxhYWFqboafrOvvbZ5S1ZEuDhoUB9Rb9Q1JdvyZIl3W1xFJQXFSVj\nS1EWi3Sk+1AVFRYWJrE2jHyUISSj0Ib++usvQojM24lMTU0lklEW9b/FYug1UTkMDAykC5ncVo/M\nEkC1AgICArC9FgAoDskotCFTU1NCyKtXr6Q/qqysbPdw2ltKCuE3ewWjwty5hBCCdScAAOhikIxC\nGzI1NTUwMLh79251dXXPnj3p8srKyi7/GL2oKBVvep/Xdrs6dQkBAUShc/QAANBBIBmFNsRisRYu\nXJiQkLBz586oqCjqRLxIJNq5cyeT3e87NQ6niz1jGQAAoE0gGYW2tXz58uzs7J9++onH402YMEEk\nEuXm5t68ebNv374S98UDAABAN4RkFNpWz549jx8/HhkZmZeXd+XKFUJIv379EhMT9+7di2QUAAD+\nKzpa3RGAerA61OO8AdqHvb19l79oFdpPTExbXZOhkpbbLrx2025DkN9R5/o6usD33vnhdw1DSEah\nM3n+/LmGhoaJiUkr28E/EKBKbbc5okpa7uR7NxLSjkOQ31Hn+jq6wPfe+eF3DUN4AhN0Jp6enkuX\nLlV3FAAAAKAyuGYUQGGHDhFVPWiGQ3g8wlFNW4p2jfv9AQCgA0Ay2oK3b9/q6OgweRRQ27VACKmt\nrdXX1xcvaWhoEAqFenp6Mus3NDSIRCKZz89kjknkigbGsNmamhp9fX3pZzLJP4Q080AmlYuJIQEB\nxMZGBU0FxIw/FJBLbDgqaEtBS5ciGQUAgA5ABLI0NTUlJiZOmzZt8ODBzs7OK1asyM/Ppz7auHHj\n5MmT8/LyJA755z//OXnyZB6P12ILTHz99deTJ08WCAQ7duyYOHGinZ2dq6vrvn37RCLR7du3Fy1a\nNGzYMDs7u4kTJ6alpdFHCYXCf//7397e3kOGDHFwcJg+ffqePXsaGxvpCgcOHJg8efLJkyclugsJ\nCZk6deqbN29ajFy5wBg229DQ8O2333p6etrZ2Tk5OYWEhLx48YKqEBwcPHnyZHt7e0dHx8mTJ0+Z\nMoUqb2xs3LNnj6urq52dnZ2d3ahRo9avX//q1Sv502tnZydRUlJSIv8QcRyOSJHq7daWYvC3XyaF\nfhL+V9tNpUpa7gLfdLsNQX5Hnevr6ALfe+cn/bsGZMI1ozI0NTWtWLFi27ZtBgYGy5cvnzJlSmFh\nYXBw8MWLFwkhrq6ufD7/+PHj4ofU1NT88ssvPXr0sLGxabEFJioqKvh8fnh4+C+//OLq6rp06VKh\nULh79+5t27YFBAQ8fvzY19fXx8enrKzsiy++uHPnDiGksbExMDBw+/bt1dXVvr6+fn5+AoFg7969\nfn5+b9++pZodO3Ysn88/efKkeF/Pnj27ePFi//79DQwMWoxcicCYTAjVbGxsbGpqqrOzc0BAQO/e\nvS9cuLBy5Uqqgrm5ubW1NYvF0tLSsra2tra2psojIyP37t1rYmISHBwcGho6aNCgY8eOBQUFiRS8\ncj8mJiYmJkahQ6BLWrp0KZfLVXcUAADdCE7Ty3DkyJG8vLyQkJDVq1dTJStXrlywYEFERERBQYGb\nm5uFhQWXy62pqaFPCl+4cEEgEMyZM4dJC3JOYUsoKSk5c+aMkZERIcTLy2v+/PkHDx4MDAz84osv\nqNPcNjY2u3fvLigocHR0TE1NvXLliqura1xcXI8ePQghERER4eHhOTk5ycnJoaGhhBBHR0dbW9vr\n169XVFTQ96Tn5OSIRCJvb2/mkSsUGPNmCwoK0tLS+vbtSwhZu3btpEmTbt26VVRUZGtrGxUVRQhx\ncnKysrJKTEyk6jc0NKSnp5ubmx8/flxDQ4MQ8tlnnwUHB3O53Pv37w8ePJj5l04I4XK5PB6vuU+T\nk5MVaq1TkHM3mPR45d861vXqyxYTI3srROlLSqKjFbsMQiUtt1147abdhsC8I6XD6IBj6bDfO3Rv\nSEZliI+PNzMzCwsLo0v69eu3atWqdevWZWRkzJkzZ+7cuXv27MnOzqazz/T0dG1t7ZkzZzJsgWEk\nq1evphI+QoiTk5O2tva7d+/8/PzoCy5Hjx5NCKF2jz9w4ICWllZsbCyViRJCdHR0oqOjL1++nJiY\nuGLFCipd8/Hx2b59e3Z2tp+fH1UtKyvLwMBg4sSJzCNXKDDmzYaGhlKZKCGEzWZPmzYtISGhrKzM\n1tZW5vxoaGhoa2tXVlYWFxdTdVgsVmRk5CeffNKnTx/5c2tvby/+9q+//ho1apS7u7v8o7oYhcar\n6OR09vqyRUXJ+F2ukj10VNJy24XXbtptCEp01GG/ji7wvXcJcXFxe/fuVXcUnRKSUUlVVVV//fXX\ngAEDkpKSxMtfvHhBCPn111+pZHTfvn1nzpyhsqiqqqqCggJPT89evXoxbIFhMBIJk66urrm5uZWV\nFV1C36JUWVlZUVExZMgQCwsL8UNMTEyGDh1aWFhYVlbWv39/Qoi3t/fOnTszMzOpZLS8vPzmzZuz\nZs3S1dVlHjnzwBSaEGoZlda7d29CSH19fXPzo6GhMXfu3KSkJB8fn7Fjx7q4uDg7Ozs6OopH0hyJ\nvd+oc/QBAQEtHtiVKDReRSenk9bncDgKNQsAQAkLCxNfcyFSvyuhOUhGJT19+pQQUlJSsmPHDulP\nX758SQgxMzNzd3fncrnPnz83MzPLzs5ubGykMyomLTAkfTt5czehl5aWEkIkMlGKpaVlYWFhaWkp\nlYz27dvXxcWloKCgvLy8b9++OTk5TU1NPj4+CkXOPDCFmpV5L7z8qz/Xrl3r4OBw5MiRy5cv5+Xl\nEUKMjY0DAwOXLVsm5yhpUTh1BYSQLno9BgBAR4ZkVJKZmRkhxMXFZcuWLdKfamlpUS/mz59/8eLF\ntLS0Tz/9NCMjw8LCwsXFRaEWVIs6uy3zae9UoampKV0ya9as/Pz8rKwsf3//rKwsCwuLMWPGtF3k\nbT0hM2fOnDlz5ps3b27dunXhwoXTp09v376dEKJoPqoQVW29H8XjpCwlPNU0BgAA0PkgGZVkYmJi\nZGT0+PHjvn37iq/2PX369Pz588OHD6cuRhw3bly/fv3Onj3r7e197dq14OBgujLDFlTLzMzMwMDg\nwYMHVVVV1NUClLq6ujt37mhqatK3nxNCJk2aZGhomJmZOW3atOvXrwcFBVErnW0UedtNSGlpaW5u\nrpOT07BhwwwNDd3c3Nzc3Nzd3YODg7Ozs9suGc3NJaq635q3JNedELVcqYoVQAAA6AiQjMqwcOHC\n/fv3f//990uWLKELo6KiLl++TJ/Co65WpK5Wbmpqmj17tqItqNyiRYvi4+O3bt26ceNGKucTiUS7\ndu16/fq1v7+/puZ/v2sdHR0vL69jx479+OOPQqGQuo++TSNXVbMsFksoFIq/jY2Nff/991NSUug0\nl0q7jY2NlY62RRwO6WYXlwIAALQVJKMyfPrpp2fPnt20aVNhYeGHH35YX1+fl5d37do1Nze3Dz/8\nkK42Z86c/fv3//TTTx9++KHEHTMMW1CtoKCgc+fOnThxgsfjTZ06lc1m5+TkXL161dLSkt6tkzZr\n1qyjR4/Gx8cPHz58wIABbR25qpo1NTUtLi6OiIjo3bv3+vXrLSwsxo0bd+nSJX9//48//tjIyOjZ\ns2c//fQTIWTGjBlKRwugGJm76nScltsuvHbTbkOQ31Hn+jq6wPcO3QaSURkMDAxOnToVGxubk5OT\nk5NDCNHW1l60aNGaNWvEzzL369fPzc2Ny+XOnTtXuRZUS19f/+TJk5s3b87IyLhx4wZV4u3tHRkZ\naWhoKFF51KhRNjY2fD6funWprSNXVbPh4eFbtmzJyMgghKxfv54Qsnv37i1btpw5c+b69etUnQED\nBmzbtm3atGlKRwugmLa7+00lLXeBm/PabQjyO+pcX0cX+N6h22Ap+qCabkUkEj1+/FgoFFpZWWlr\na0tX8Pf3//PPP/Pz83V1dZVroY08ffpUKBRSjyxSroU2iryNmhUIBM+ePautrTU2NjY3N2+xvr29\nvcTWTgDqFxNDoqL+97/t1iPpzFlLe84VdFgd+McAv2sYQjKqvKKiounTpy9atCgyMlKhA+VfJTli\nxIiRI0e2LrS/2bp1a3Jycmpq6qhRo5jUDw8PT09Pv3DhgqWlJcM2o6Ojf/7551OnTjk4ODAP4/nz\n5xoaGvSDoBSNszXwDwR0RNQu5e25Vzn1P6ud97cA9nUH0qF/DPC7hiGcplfG5cuXqce+a2hoKLFN\nenFxsZxPqafbq5BIJFLofzlE/0ehNpU4xNPT09ra+uzZs8rFCQAAAF0AklFl7Nmz5/bt2xoaGuvW\nraN2kldIbGxsW0TVnMDAQG9vb9U+V0aJNls8pC3ibAtc7v+e21QOh/AIITzCUVE4LYiKIh4e7dMV\nAACAMpCMKuPo0aPqDkEBpqam4jveS6ipqdHX12/u0tKmpqbq6upevXpJVJDfZm1tbY8ePRQ6RH6F\nhoYGkUgk/ohRmeSPRVVSUgiHQ8S2qFIMJ49LuHm8qPbY5DMlheTlIRkFAIAODclo15eQkHD8+PFd\nu3ZRT37ftGkTl8tNT0/fv39/RkYGj8fT09NzcXGJiYmhHuNEqa2t3bBhwy+//FJTUyNdQaJNikgk\n2rFjR0ZGRmlpac+ePYcNGxYeHk5XED8kJCTk0aNHAoGgpKTE09OTzWZnZWVJt9nU1JSUlJSWllZU\nVCQSiQYNGuTp6RkaGqqhoUFVYDgWaXV1da2ZUg6nFRkejxAO4Sh9uCLy8tqjlw6Ly+V6IBMHAOjw\n2mqbIeg4Xr16xefzBQIB9baiooLP58fGxqampjo7OwcEBPTu3fvChQsSe5H+61//Sk9PnzJliswK\nEm1SYmNjDx8+7ODgsGLFCmdn56tXry5cuDA3N1f6EHNzc+pOfy0tLWtra2qbeok2GxsbAwMDt2/f\nXl1d7evr6+fnR12n6+fn9/btW4XGIoHH4z1//rw1UwodH5fLjWnN5RQAANBesDLaTRUUFKSlpVHL\nh2vXrp00adKtW7eKiopsbW2pChUVFfIrSPvzzz+Tk5OdnZ2pt3l5eaGhoRs2bHB1dZV4AH1UVBQh\nxMnJycrKKjExUWZrqampV65ccXV1jYuL69GjByEkIiIiPDw8JycnOTk5NDSU+VhkGj9+fHMf0Qm0\nzMo8XlRAgIecljuUQ4cOcbkpzX0qf6Sduj6Px+vQ1x/HxMjek5y6yET6UpPo6NZuXtNcj23UncrJ\nnzFxHTB4UBX8GHRRSEa7qdDQUPpENpvNnjZtWkJCQllZGZ3AtVhB2oIFC+hMlBDi7u4+Y8aMU6dO\nZWZmzpw5U9EIDxw4oKWlFRsbS2WihBAdHZ3o6OjLly8nJiauWLGCPlmvRKjv3r17+PCheMns2bNn\nzZrVXP0osX/UYmI4io5FjTw8PJYs4TCvH6XgP98dtj6Px0tJaTYLV7+oKBm/Kdt0a6fmeiSdZGsn\nOTMG3UfH/jGgnhCu7ig6JSSj3ZT4tZ6EkN69exNC6uvrmVeQNmHCBImS8ePHnzp1Sold1iorKysq\nKoYMGWJhYSFebmJiMnTo0MLCwrKyMnofAyVC7dmz55MnT5jHI37pYUfOcKRxOBwPDw7z+opeZNlh\n6+OCUQBoZ2FhYWFhYeIl9vb26gqmc8E1o92UgYGBdKH4Np8tVpAmfc8QdXd8WVmZouGVlpYSQiQy\nUQq1FT9VQblQORwOk6c0Qafm4eGh6KoqAACoBVZGQWVevnw5cOBA8ZLKykpCiLGxsaJNUXlteXm5\n9EdUofxdotqUuzuJiSGHDil5OIfH8eCQQwNUGVJzeLxmrxIEAADoIJCMgspcvXp1zJgx4iXXrl0j\nhChxH4mZmZmBgcGDBw+qqqp69epFl9fV1d25c0dTU5O6AV8tAgJI626M8SCEuKskFCadebRXTwAA\nAEpBMgoq88MPP8yYMYNOPXk83okTJ/T19adPny6zPovFEgqFzbW2aNGi+Pj4rVu3bty4kc1mE0JE\nItGuXbtev37t7++vqanOH11keAAAAKqCZBRURkdHZ/78+bNnz7a1tS0uLj55zNLS0gAAIABJREFU\n8mR1dfVXX31lZGQks76pqWlxcXFERETv3r3Xr18v8WlQUNC5c+dOnDjB4/GmTp3KZrNzcnKuXr1q\naWkpfxtRgM6KuqiiPS+t6OyXcXT2+EEl8GPQ+SEZBZXZunXrkSNHDh8+TK13Wlpafvvtt15eXs3V\nDw8P37JlS0ZGBiFEOhnV19c/efLk5s2bMzIybty4QZV4e3tHRkYaGhq25TgA1IS646o977vq7Pd4\ndfb4QSXwY9D5seTfHw3QJdnb2yux4RS0q5gYpr9jmNcEcR1z3tQSVcecitaTOa4OPtgOHp6C8LuG\nISSjndLWrVuTk5NTU1NHjRql7lhU7/nz5xoaGiYmJtRbRQfLpD7+gegEmG9k3WG2vO5kOua8qSWq\njjkVrSdzXB18sB08PAXhdw1D2Ge0UxKJRF34/yI8PT2XLl1Kv1V0sF17cgAAALoYXDPaKQUGBnp7\ne3foR2+rTnsOdkDz2396EC6PcHikPcJoTnIybuQHAICuBslop2Rqaiq963tNTQ1p5nFEzDU0NIhE\nIh0dneYqMOyltra2R48eLOrJ17K8fv1aU1OTSbQyB6toI0zweITHIyUlsj/lxKTwOO5kSYBK+lKC\n2GIxAABA14FktMNJSEg4fvx4SEjIrFmzxMtDQ0NLSkqOHTtmYGBA1dm1a5ejo6NQKNy/f//Ro0df\nvHhBCDEwMPDy8goPD6ce0U4I2bRpE5fLPXz4sPgzMI8fP56QkBAZGenm5kYIaWpqSkpKSktLKyoq\nEolEgwYN8vT0DA0N1dDQoOq32Mvu3bvT09P37dv3yy+/ZGRklJaW9uzZc9iwYeHh4eLPjr979+6+\nffvy8/MFAgEhxMTEZO7cuatWraJ2Eg0JCXn06JFAICgpKfH09GSz2VlZWeKDZdIIE9XV1TLLORx5\nG9pzbIhaF0Y7Oi6Xy+FwusmCPQAAqAqS0Q5n7Nix33zzzcmTJ8WT0WfPnl28eHHcuHHUKuCrV6/4\nfD6VikVGRp44cWLIkCGzZ89ms9kFBQXHjh27f//+0aNHqYXJiooKPp/f2Ngo3kt1dTWfz6+trSWE\nNDY2Llu27MqVK5aWlr6+vmw2Oy8vb+/evQUFBcnJyXp6ekx6qays5PP5kZGRd+/edXNzmz59+oMH\nDy5durRw4cJvv/12/PjxhJCHDx8uXrxYIBCMHj16+PDh9fX1GRkZ8fHxurq6ISEhhBBzc/N37949\nefJES0vL2tqaSi7FB8ukESb++usvHo+HtEm1YmJioqKiMKsAAKAYEXQ806ZNGzx4cHl5OV2SkpJi\nZ2eXlpZGvd28ebOdnd2NGzcEAsHw4cPHjRvX2NhIfdTU1BQUFGRnZ3fv3j2q5PPPP7ezs3vy5Il4\nFwcPHrSzs8vMzKQbDwwMrK2tpT6tr6//xz/+YWdnt2/fPpFIxKSXqKgoOzs7Jyen69ev071wudwh\nQ4Z4eHhQZ/9jY2Pt7Ozi4+PpCnw+387ObuHCheKxDR8+fPr06fRberDU2xYbkagvUzN/GzgcTvPH\nBASIkpPltNnWPDxE1KNEmf9dVvTvfuvr5+bmKjO26GgRISr+Ex2tTCRdFfMZbs95U0tUHXMqWq+V\nf4nUMtiu+l2IsbOzU3cInQNWRjsiHx+f7du3Z2dn+/n5USVZWVkGBgYTJ06UqKmhoaGtrV1ZWVlc\nXGxra0sIYbFYkZGRn3zySZ8+fRh2d+DAAS0trdjY2B49elAlOjo60dHRly9fTkxMXLFiBfNeFixY\n4OzsTL91d3efMWPGqVOnMjMzZ86caWdnFxwc7O/vT1cwMTHR0tKqqKhgPjkqaYQQYmVlpaWlRb+d\nPXv2ypU7xo9XqI32lpycrNANTCXNXQDbNvWXKn1Za1SUjJ0FsbWTCrVyhtuIWqLqmFPReszH1XEG\n2+W+i7i4uL1796o7ik4JyWhH5O3tvXPnzszMTCoZLS8vv3nz5qxZs3R1dSVqamhozJ07NykpycfH\nZ+zYsS4uLs7Ozo6OjlZWVgz7qqysrKioGDJkiIWFhXi5iYnJ0KFDCwsLy8rK+vfvz7CXCRMmSJSM\nHz/+1KlT1EZr8+fPpwqfPHlSVFRUVFSUkZHx7t07hqFSVNKIsbFxfn6+xAllHk+hNtRA0QsyFT1j\n3sr6S5YswTl6AOi2wsLCwsLCxEvs7e3VFUzngmS0I+rbt6+Li0tBQUF5eXnfvn1zcnKampp8fHxk\nVl67dq2Dg8ORI0cuX76cl5dHCDE2Ng4MDFy2bBmTvkpLSwkhEpkoxdLSsrCwsLS0tH///gx76du3\nr0Qj1I3wZWVlhJCampr9+/efPn365cuXLBbLwsLigw8+4CmYA6qkEWNjY6RNKhcQEKDuEAAAoPNB\nMtpBzZo1Kz8/Pysry9/fPysry8LCYsyYMc1Vnjlz5syZM9+8eXPr1q0LFy6cPn16+/bthBA5+Wh9\nfT31gkofy8vLpetQhfS2Skx6efny5cCBA8UbqaysJIQYGxsTQj777LOCgoI5c+b4+vra29tTG0id\nP3+e2ZT8L5U0Ikdzu1F5kCXkEOGqdX+l5GR19g4AANAWkIx2UJMmTTI0NMzMzJw2bdr169eDgoJk\n7tlZWlqam5vr5OQ0bNgwQ0NDNzc3Nzc3d3f34ODg7OxsKk3U1tYmhNTV1Ykf+ODBA+qFmZmZgYHB\ngwcPqqqqevXqRVeoq6u7c+eOpqamtbU1k14oV69elUiar127RgjhcDgVFRUFBQWDBw/etGkT/WlD\nQ0NdXR3zy1tV0khzOBySmyvnc49Wtt9KWMkFAIAuCcloB6Wjo+Pl5XXs2LEff/xRKBR6e3vLrMZi\nsWJjY99///2UlBR6l01ra2vyf4uRhBBqe9Hs7Gw7Ozuq5N69e+fOnaMbWbRoUXx8/NatWzdu3Eg1\nIhKJdu3a9fr1a39/f01NTSa9UH744YcZM2bQZ8B5PN6JEyf09fWnT59OrbNKbFCfmJjY2NjY1NQk\nMSihUChzvNQ6K5NGlIOEDwAAoJ0hGe24Zs2adfTo0fj4+OHDhw9o5jmVFhYW48aNu3Tpkr+//8cf\nf2xkZPTs2bOffvqJEDJjxgyqjpeXV3x8/MGDB0tLS8eMGfPw4cOff/75o48+unz5MlUhKCjo3Llz\nJ06c4PF4U6dOZbPZOTk5V69etbS0XLlyJcNeKDo6OvPnz589e7atrW1xcfHJkyerq6u/+uorIyMj\nQ0PDPn36XL9+fd26dR999NHLly/z8/Nv375tYmLy4sWLY8eOzZs3j2rE1NS0uLg4IiKid+/e69ev\nF29/4MCBDBuBTi86WvU1QVzHnDe1RNUxp6L1ZI6rgw+2g4cHbUTde0uBPJMnT7azs/vhhx8kysW3\n0qytrY2MjHRycrL7P1OmTDl9+rR4/ePHj48aNYr61MXFJTU19ezZs/Q+oyKRqK6uLjIy0tnZmaoz\ncuTIL774orq6mm6hxV6ofUb/85//rFq1ysHBgaozfvz4jIwMus6NGzc8PT2pjxwcHBYtWvTkyZM9\ne/ZQG5TS1bKysjw8PBwcHBwcHERS+4a22AiTfUax9xsAALQ1/K5hCMloB7JlyxZ7e3vxLOqvv/4S\n3/peugKtvr6+pKTkjz/+ePbsmczGhUIhn89//Pix/BiePHnC4/GamppkfiqnFyoZvXPnjkgkqq6u\n/uOPP169eiXdQlNT09OnT+/du1dfX08X8vn8oqIi8ZHK11wjVVVVIrmzRMM/EG2L+Q7VEjWpt220\nwXWn3TdbDbrSXHWlsagK5oQJVcwSftcwxPRZ3tAOqK9EvMTT01N8I3HpCjQdHR0Oh+Po6Cj+AHpx\nbDbb2tq6f//+8mOwsrKysbGRebMUk14ohoaGjo6O9GPrxbFYLEtLy8GDB1N3wVOsra3nzJnDfMv0\n5hrp2bMnkTtL0E6UPsNOvW2j83Q4/cdcV5qrrjQWVcGcMIFZake4ZrQDCQwM9Pb2lrP/ZYsVAAAA\nADoXrIz+19u3bwUCgZwKDQ0N8itQjTBZlqupqZGuZmpq6uDgoKen19xRLVaQH1hr7jdvcXIoDQ0N\nLdaROfYWST9jicnXoSgWq+U/S1mHBrB4TGoq9GfAAMLlqnY0AAAAnQCSUSIUCr/99tvp06c7Ozs7\nOTmNHz8+MTFRPKlqampKTEz08fEZOXLkyJEjZ8yYERcXJ7H3UENDw7Zt22bMmDFq1KgPPvhgzZo1\ntbW106dP/+c//0lV2LRpk6en57t373bv3j1lyhRnZ+eRI0eGhoaK7zafkJDg6el5584dQkhISIin\np6dAICgpKfH09Jw6dapEBer1qVOnJIYTGhrq5eVVU1NDvRWJRAcPHpw+ffqoUaPef//94OBg+iZ6\nlUwOPT+3bt3S1NRcuHCh9PzIH7vMkRJC1q1bR92qn5GRsXjxYnr7UiZfh3KopziJRC38SQ7IK0nm\ntlhN0T8cTid4HikAAIDKdfdkVCAQ+Pv7f/fdd0KhcMGCBbNnz66vr9++fftXX31Frd41NjYGBgZu\n3769urra19fXz89PIBDs3bvXz8/v7du3VCO1tbWffvrpwYMHNTU1AwICJk2adPXq1eXLl5eUlLx4\n8YKqU1FRwefzY2NjU1NTnZ2dAwICevfufeHCBWrvJMqrV6/4fD612mdubm5tbc1isbS0tKytralN\nPcUrjB07ls/nnzx5Unw4z549u3jxYv/+/amdOJuamlasWLFt2zYDA4Ply5dPmTKlsLAwODj44sWL\nKpkchvMjf+wyR0oIef78+ePHj3/99deIiIjCwkLqQVBMumPi5cuXzCt3QzweLyYmRt1RAABAt9Dd\nrxlNTU29ceOGl5fXjh07NDU1CSECgWDq1Knp6emLFy8eMWJEamrqlStXXF1d4+LievToQQiJiIgI\nDw/PyclJTk4ODQ0lhPzwww/Xrl2bN2/ehg0bqD3hy8rK/Pz8GhsbJborKChIS0ujnsC5du3aSZMm\n3bp1q6ioyNbWVqJmVFQUIcTJycnKyioxMVE6ckdHR1tb2+vXr1dUVJiYmFCFOTk5IpGI3iH/yJEj\neXl5ISEhq1evpkpWrly5YMGCiIiIgoKCFk/3tzg5VJ0W50f+2OWM9N27d6tXrw4ICAgLC6OiZd6d\nHDwe7+XLl9KPs+fxCCEcJi20ET5fOqj/kr5WWF7t1tXn8XiHDh2ivhoAAIA21d1XRhMTEzU1Nf/5\nz39SyRYhREdHJyYmxsfH5/Xr14SQAwcOaGlpxcbGUqkPVSE6OlpPTy8xMVEoFIpEou+//75Hjx5f\nfvkl/XQiCwuLoKAg6e5CQ0OpbIwQwmazp02bRggpKytTLngfH5+mpqbs7Gy6JCsry8DAYOLEidTb\n+Ph4MzOzsLAwukK/fv1WrVpVW1ubkZHRYvstTg5hMD+tGbtQKBwzZsyXX35J583Mu2vRACnjx49n\nfnhbiI6OkY6KJl1fTmWV1GckJkbGBbCE2eW30jWptzIPV2illnlUWADuSnPVlcaiKpgTJlQ0S3Fx\ncfZ/107xd37demX09evXFRUVI0eOpFcWKePGjRs3bhwhpLKysqKiYsiQIRYWFuIVTExMhg4dWlhY\nWFZWpqOjU15ePmbMGGpfIdqHH34o3aOjo6P4W2rzo/r6euXi9/b23rlzZ2Zmpp+fHyGkvLz85s2b\ns2bN0tXVJYRUVVX99ddfAwYMSEpKEj+KunLg119/nTNnjpzGW5wcwmx+6M2klBv7ggUL6NcKddci\n6ZuoeDyidEqmEsnJyQEByczrK3ofWJvseBUVRaQXUFkswrAviZrUW+aHt1FU3UpXmquuNBZVwZww\noaJZCgsLE1/9IYQgH2WoWyejT58+JYTQy3XSSktLCSESqQ/F0tKysLCwtLRUX1+fENKnTx+JChK5\nKUXioeoUpVOEvn37uri4FBQUlJeX9+3bNycnp6mpycfHh/qUGl1JScmOHTukj23xoskWJ4cwmx86\nO1Ru7FZWVsp1J5/8fVKBw+EkJyuQFgMAACitWyej1OJcVVVVcxWoVEz8hncaVWhqakotQ7569Uqi\nwvPnz1UYanNmzZqVn5+flZXl7++flZVlYWFB33VuZmZGCHFxcdmyZYv0gVpaWvJbbnFyCLP5YTSM\nlsJQbXccDkfm/ypQWrylnUMIj09IS9U6NQ6HI33JKQAAQFvo1slov379tLW1qadKUjklJTU1dfPm\nzWFhYUFBQQYGBg8ePKiqqurVqxddoa6u7s6dO5qamtbW1hoaGj169Pj999/fvHljaGhI18nNzW2H\nIUyaNMnQ0DAzM3PatGnXr18PCgqiH55kYmJiZGT0+PHjvn370hezEkKePn16/vz54cOHS6/mimMy\nOWZmZi3OjwoH2w7dBQSQFi8c9SBLeITDO9TKrmRA+gcAAN1Qt76Bic1mz5w5s7q6OiEhgS4UCoXU\nVppubm6EkEWLFr19+3br1q30jvEikWjXrl2vX7/+5JNPNDU1WSzWwoULBQLBzp076UaKiooOHz7c\n+ghZLJb8m3J0dHS8vLx+++23H3/8USgU0vfRUxYuXPj06dPvv/9evDAqKmrz5s0tXqzJZHIIg/lR\n1UhV251MHA5JTiYlJS38SS7xyC3htFhNiT8eHq0JHwAAoFPq1iujhJBVq1ZduHBh3759Dx8+/Oij\nj/h8fnZ2dllZma+vr4ODAyEkKCjo3LlzJ06c4PF4U6dOZbPZOTk5V69etbS0pLcIDQoKys3NTU1N\nvXfv3gcffFBaWsrlct3d3cXvc1eOqalpcXFxRERE7969169fL7POrFmzjh49Gh8fP3z4cIl7oj/9\n9NOzZ89u2rSpsLDwww8/rK+vz8vLu3btmpubm8z7qxSdHMJsflQ1UhV2BwAAAB1Ed09GTU1Nz549\n+69//Ss3N5fKHfX09Khz0FQFfX39kydPbt68OSMj48aNG1SJt7d3ZGQkfVK+V69ex44d27p1a35+\nPrWb0owZM8LDw9PS0mTetcNceHj4li1bqG2YmkvRRo0aZWNjw+fz6VuXaAYGBqdOnYqNjc3JycnJ\nySGEaGtrL1q0aM2aNeIn7pvT4uQQZvOjqpGqsDtoW9HRStak3jI/XCFt1GyX1JXmqiuNRVUwJ0xg\nltoRq012e+mEhEJhSUmJjo6OhYWFhoaGzDpPnz4VCoXU44Kaa6euro7aAvPPP//09vZesWLFmjVr\n2ipoxkQi0ePHj4VCoZWVlba2tqKHM5kcwmx+VKg13dnb29+/f78togIAAKDgdw1D3fqaUXEaGhrv\nvfde//795SRbVlZWNjY20qnPpk2bZs+eXVFRQQihN2NPTU0lhAwbNkx+v1u3bh08ePBvv/3GME5F\n61NYLJaNjc3AgQPFM9FkuW7evEnXZDI5pPn5aS7y58+fU5Om3NDkd9fdMd+/usvvdN12A+yMU9cZ\nY5av640I2gh+VDowJKMqYG9vf+fOnZUrV/7666+vX7++d+/epk2bjhw54ujoOGnSJPnHikQihRan\nFa0vR7FclZWVKumFJh25p6fn0qVL5VQA5Sl9orzrabsBdsap64wxy9f1RgRtBD8qHVh3v2ZUJebM\nmfPq1av4+PjFixfThRMmTIiKimpx3S4wMNDb21stezrGxsa2Z3ctjlSNUyGOy1Vla7hBHgAAQD4k\noy2rqakhzTxAiLZkyZLFixfr6OjIqfP27Vs2my1Rx9TUVOZW7a9fv9bU1Gzl/U8t9i6uoaFBJBK1\nOARdXd0WM+yamhp9fX2Jas2NlEkFJrE1169CYmLIoUMyyjmEt4QXE8NR7KFEPB4JCCB4khEAAIAc\nSEabJRQK9+/ff/ToUeph7gYGBl5eXuHh4eLPBGpqakpKSkpLSysqKhKJRIMGDfL09AwNDRW/tlIo\nFMbFxZ0/f764uLipqalfv35+fn6LFy+mLt9MSEg4fvz4rl27qEe33717d9++ffn5+QKBgBBiYmIy\nd+7cVatWMbn5vblRyOmd4RAaGhq+/fbb/Pz8hw8fGhoaurq6xsbGLliwYMSIERs3biSEbNq0icvl\npqen79+/PyMjg8fj6enpubi4xMTE0A8UFR9pSEjIo0ePBAJBSUmJp6cnm83OysqSmAomsTHpV1Ee\nHrLSRy6PLOUGlCjW1KFDJC9PuSgAAAC6CySjzYqMjDxx4sSQIUNmz57NZrMLCgqOHTt2//79o0eP\nUmtvjY2Ny5Ytu3LliqWlpa+vL5vNzsvL27t3b0FBQXJysp6eHiFEIBAsXbr0xo0bAwcOXLBggUAg\nyM3N3b59+927d7/55hsWi/Xq1Ss+n0+lng8fPly8eLFAIBg9evTw4cPr6+szMjLi4+N1dXVDQkKU\nGEKLvTMZQm1tbXBw8LVr14YMGRIQEFBVVcXlcpcvX15SUkI/Jr6iooLP58fGxmZnZ0+cONHDw+Pc\nuXMXLlx4+fLlkSNHqDriIzU3N3/37t2TJ0+0tLSsra2pVFu8AsPpZdKvTC9fvuTxeGq/JEC1uFwu\nj8cLCAhQdyAAAAAKQDIqW0NDQ3p6urm5+fHjx6l1uM8++yw4OJjL5d6/f3/w4MGEkNTU1CtXrri6\nusbFxVE30UdERISHh+fk5CQnJ4eGhlJ1bty44eXltWPHDur5QAKBYOrUqenp6YsXLx4xYoR4pz//\n/PObN2/WrFmzYsUKqsTPz2/y5MmXL19WLhltsXcmQ/jhhx+uXbs2b968DRs2UFljWVmZn59fY2Oj\nRHcFBQVpaWnUkuTatWsnTZp069atoqIiW1tbiZpRUVGEECcnJysrq8TExOaCbzE2RfulVVdXc7lc\n6WSUx+MQIlnYGjwej8vlNfeph9QlpVy5l6zKr5+SkkIIQTIKAACdjAhkaWxsHD169LBhwx48eEAX\nPnnyJDc39/nz59RbFxcXR0fH0tJS8QPLy8udnJxGjhzZ2NhI1RkyZEh5ebl4nby8vC+//DI3N1ck\nEm3evNnOzu7GjRsikejIkSM7d+6sra2la9bW1jo6Onp6etIl4vVb1GLvLQ6hqalp7NixI0aMqKqq\nEq+TmppqZ2e3fPly6u3nn39uZ2d3/Phx8To7duyws7PjcrnNRT58+PDp06c3NzQm08ukX5m0pHA4\nHA6HQ0h0QICsA3JzRRyOnAZlSk4WcTi5nOZJHyKncnP1owkRqfxPdLSig+0QoqPbaoBt13Lb6Ywx\ny9f1RgRtRE0/Knv27LGTosL2uzCsjMqmoaExd+7cpKQkHx+fsWPHuri4ODs7Ozo6WllZURUqKysr\nKiqGDBlCn6qmmJiYDB06tLCwsKyszNDQsKKiYuTIkSYmJuJ1xo0bN27cOOlO58+fT7148uRJUVFR\nUVFRRkbGu3fvlBvC69ev5ffOZAg6Ojrl5eVjxozp2bOneB2ZTxOlr/WkUBfX1tfXKxE8k9j69+/f\nmn4fPHggvTIaE0N4PCXibZaHh0dysgKXmpaUKHZdqnj9mJgYHo+XTF3xymIRhvtkMa/Z8UVFkago\nyUKVDLDtWm47nTFm+breiKCNqOlHJSwsLCwsTLzE3t6+TXvsMpCMNmvt2rUODg5Hjhy5fPlyXl4e\nIcTY2DgwMHDZsmWEkNLSUkKIRKpEsbS0LCwsLC0tpe6FZ34nTU1Nzf79+0+fPv3y5UsWi2VhYfHB\nBx/wlE2Onj59Kr93JkPQ19cnhPTp00eigkRuSpF5779Iqb/8TGKjk1El+jUzM+tiF4wSQpYsWaLu\nEAAAABSGZFSemTNnzpw5882bN7du3bpw4cLp06e3b99OCFm2bBmV5JWXl0sfRRWamppSWxFVVVUx\n7O6zzz4rKCiYM2eOr6+vvb09dfj58+eVC55aIJTTO5Mh6OrqEkJevXolUeH58+fKRcUQk9ha0z79\noCxpPJ6srUbziIfiW5Dy+YrVb6Wul14DAEB3gGRUttLS0tzcXCcnp2HDhhkaGrq5ubm5ubm7uwcH\nB2dnZy9btszMzMzAwODBgwdVVVW9evWiD6yrq7tz546mpiZ1k7i2tva9e/fq6+uprI6Smpq6efPm\nsLCwoKAgurCioqKgoGDw4MGbNm2iCxsaGurq6qQXJpno169fi723OAQNDY0ePXr8/vvvb968MTQ0\npOvk5uYqERJzTKa3LfpdsoRwuTIeGschnBROLk/xh8lhsRIAAEA+PA5UNhaLFRsbu23btqamJrqQ\nSoCMjY2pt4sWLXr79u3WrVvpOiKRaNeuXa9fv/7kk080NTXZbPbMmTOrq6sTEhLoRoRCYWJiYkND\ng5ubm3iP1OM3Jc44JyYmUncRKTEEJr23OAQWi7Vw4UKBQLBz5066kaKiosOHDysRkgQWiyUUCpv7\ntMXYWh+ANA6H5ObK+JOcy0nO5cj8SP4f3NoOAAAgH1ZGZbOwsBg3btylS5f8/f0//vhjIyOjZ8+e\n/fTTT4SQGTNmUHWCgoLOnTt34sQJHo83depUNpudk5Nz9epVS0vLlStXUnVWrVp14cKFffv2PXz4\n8KOPPuLz+dnZ2WVlZb6+vg4ODuI9Dhw4sE+fPtevX1+3bt1HH3308uXL/Pz827dvm5iYvHjx4tix\nY/PmzVN0FC32zmQIQUFBubm5qamp9+7d++CDD0pLS7lcrru7e3Z2dmtmmBBiampaXFwcERHRu3fv\n9evXS3zKJDYAAADo7JCMNmv37t1btmw5c+bM9evXqZIBAwZs27Zt2rRp1Ft9ff2TJ09u3rw5IyPj\nxo0bVIm3t3dkZCR9RtvU1PTs2bP/+te/cnNzqexNT09P4gQ9RUNDY9++ff/v//2/EydOnDhxQkND\nw9nZ+fTp06dOndq7d+/XX3+tRDLaYu9MhtCrV69jx45t3bo1Pz8/Pj7ezMxsxowZ4eHhaWlprXxa\naXh4+JYtWzIyMggh0skok9igWdHRqq/ZSbXdADvj1HXGmOXreiOCNoIflQ6MpdzNzt2HQCB49uxZ\nbW2tsbGxubl5c9WePn0qFAqtra2bezC6UCgsKSnR0dGxsLAQf9KmBJEqq8VKAAAgAElEQVRIVFZW\n9ubNmwEDBtCPYn/8+LGRkZHMG9gZYtJ7i0MghNTV1VG3/vz555/e3t4rVqxYs2aN0lExxyQ2hdjb\n29+/f18lTQEAAMiE3zUMYWW0BTo6OkxuUqb3H22OhobGe++912I7LBbL0tJSolDmzTrJMh6g/l8j\nRowYOXKkQr03N4RNmzZdv349ISHBxMSEvgk9NTWVEDJs2DD5bcrx/PlzDQ0N8T1Qt27dmpycnJqa\nOmrUKIaxgTwxMTJ22qPKCZH9kcr7Uu0hHY1ahtAF5g0A4O+wMtpZRUZGyvl0/PjxEyZMUElHJ06c\nWLdu3ciRIz///HN7e/tnz56dOnUqJSXF0dHxxIkTSi9VOjk5WVtbnz17li7ZsmVLcnLyTz/9JJ2M\nqly3+L/V5nZ4pr4y1f7FV2I36S6wV7lahtAF5g2g2+gWv2tUASujnVVsbGz7dDRnzpxXr17Fx8cv\nXryYLpwwYUJUVJSqTppTAgMDvb291btZpuxNRhWHm+gBAAAYQjIKhBDy9u1bHR0dNlv2Vl/Lly9f\nvnx5bW0t9UAmWkNDg1Ao1NPTa67ZhoYGkUhEX/wqn6mpaXNb2TNsp6amRl9fvzUpckwM4XKJeD68\nhBeTR9x5HA/mjXC5xMODYAd6AAAAJpCMdmsikSgpKenUqVOPHj3S19cfPXr0okWLXF1dqU83bdrE\n5XLT0tLi4uIyMzOfPHliamr6ySefhIaG/v7779u3b799+7ZAIOjfv//nn39ObzJACGlqakpKSkpL\nSysqKhKJRIMGDfL09AwNDaXunQoJCXn06JFAICgpKfH09GSz2VlZWYSQhISE48eP79q1i37WvPx2\n6AjT09P379+fkZHB4/H09PRcXFxiYmKYP4VVQlTU39c1l/IC3G1IQDO1ZRkwQLmeAQAAuiMko91X\nU1NTcHBwXl7eyJEjly9f/vLly6ysrMuXL+/Zs4e63rSiooLP54eHh9++fXvChAm6urpnzpzZvXt3\nTU3Nzz//bGho6OvrW1VVdfbs2S+++ILD4VBJZGNj47Jly65cuWJpaenr68tms/Py8vbu3VtQUJCc\nnKynp2dubv7u3bsnT55oaWlRz6mi4nn16hWfzxcIBNTbFtuhI4yNjc3Ozp44caKHh8e5c+cuXLjw\n8uXLI0eOyB/+gAEDcnNzO/4jNMePH5+cnNzx4wQAAFAOktHu68iRI3l5eSEhIatXr6ZKVq5cuWDB\ngoiIiIKCAvrke0lJyZkzZ4yMjAghXl5e8+fPP3jwYGBg4BdffEHlkTY2Nrt37y4oKKCS0dTU1CtX\nrri6usbFxVF330dERISHh+fk5CQnJ4eGhkZFRRFCnJycrKysEhMTmwuvxXbomgUFBWlpadRS6Nq1\naydNmnTr1q2ioiJbW1s5w+fxeCkpKTY2Nn8v9HB35yg+l5JSUg79veG/CZC6pPTQoUPNVebxeK2P\nBwAAoMPC40C7L2oH+7CwMLqkX79+q1atqq2tpTaip6xevZrKRAkhTk5O2traLBbLz8+PXtEcPXo0\nIaS8vJx6e+DAAS0trdjYWHofKB0dnejoaD09vcTERDnP/5TAvJ3Q0FD6pDybzaYuGCgrK2uxi507\nd676P9u2bcvLy1NV5sfj8fOaJ11fTmVGIcXEEBZL8g8hMgrpC2qly6ktn1TYF92gEod0NGoZQheY\nN4DuJC4uzv7v1B1Rp4GV0W6qqqrqr7/+GjBgQFJSknj5ixcvCCG//vrrnDlzqBKJv066urrm5ubi\nG3+K31dUWVlZUVExZMgQCwsL8aNMTEyGDh1aWFhYVlbWv3//FsNTqB36GlNK7969CSH19fUt9nL7\n9m2J099Ll7Z4ECNRUVEKnVeXs2ssl8nt/VFRMvaebKOtnRTqS+lDOhq1DKELzBtAdxIWFia+vkOk\nfoFCc5CMdlNPnz4lhJSUlOzYsUP605cvX9KvpW9Ob+6me0JIaWkpIUQig6RYWloWFhaWlpYySUYV\nakfmU0lb3EC3pKSkU1yI2SkubAUAAFAaktFuyszMjBDi4uKyZcsW6U+1tLSUa5Y6XU6fshdHFTa3\neVMbtSNHcxmexFl0Dx7hEcJrZWetgEwUAAC6NiSj3ZSJiYmRkdHjx4/79u0rvtL59OnT8+fPDx8+\nvE+fPko0a2ZmZmBg8ODBg6qqql69etHldXV1d+7c0dTUlPlo07ZrR1FRUSQm5m/5KJ8TxSMcIuM6\nz2YFBGCTUQAAAKaQjHZfCxcu3L9///fff79kyRK6MCoq6vLly/IffC/fokWL4uPjt27dunHjRirN\nFYlEu3btev36tb+/v6bm//7IsVgs+TczMWxHtTgcIjV0Tlt0BAAAABQko93Xp59+evbs2U2bNhUW\nFn744Yf19fV5eXnXrl1zc3P78MMPlW42KCjo3LlzJ06c4PF4U6dOZbPZOTk5V69etbS0XLlyJV3N\n1NS0uLg4IiKid+/e69evV7odAAAA6NSQjHZfBgYGp06dio2NzcnJycnJIYRoa2svWrRozZo1cm5R\napG+vv7Jkyc3b96ckZFx48YNqsTb2zsyMtLQ0JCuFh4evmXLFmoPKZnJKMN2oFnR0YqVt0Vfqj2k\no1HLELrAvAEA/B2rxZuOAboee3v7+/fvqzsKAADoyvC7hiFsei/D1q1bBw8e/Ntvv3XhHjuC58+f\nV1RU0G+75yS0K5VvjS7RoHT72IydQs0DZgMAQBYkozKIRKJ2XjBu/x47Ak9Pz6Viu8x3z0loVyo/\nwyvRoHT7OKdMoeYBswEAIAuuGZUhMDDQ29sb+zu2MzVOO49HUlLapGUbGyL1IHoAAAD4LySjMpia\nmkrvqV5TU0OaedgPc69fv9bU1GxlIxJqa2t79Ogh/Zwk2tu3b3V0dFq8J+ndu3cSe92/ffuWzWaL\nP+1TiZZbDI8mc9opDQ0NIpFITiSUmpoafX19Jn1JSEkhhw4RDw8ZHy3hxRAeL8VDyb2uDh1CMgoA\nACBPt0tGExISjh8/HhISMmvWLPHy0NDQkpKSY8eOGRgYUHV27drl6OgoFAr3799/9OhR6qHtBgYG\nXl5e4eHh1APQCSGbNm3icrmHDx82NzenWzt+/HhCQkJkZKSbmxsh5O7du/v27cvPzxcIBIQQExOT\nuXPnrlq1Srmb1nfv3p2enr5v375ffvklIyOjtLS0Z8+ew4YNCw8PF39Ku0gkSkpKOnXq1KNHj/T1\n9UePHr1o0SJXV1e6wrp16/7nf/7n7NmzGRkZP//88++//37r1i1CiFAojIuLO3/+fHFxcVNTU79+\n/fz8/BYvXqytrc2kZSbhhYSEPHr0SCAQlJSUeHp6stnsrKws8WmnqjU1NSUlJaWlpRUVFYlEokGD\nBnl6eoaGhmpoaIhPfnp6+v79+zMyMng8np6enouLS0xMDPUMJ+YCAmQ8BpwQQmII4RHlclEulzB5\nsDwAAEB31u2uGR07diyfzz958qR44bNnzy5evNi/f39qzfLVq1d8Pp9KHCMjI/fu3WtiYhIcHBwa\nGjpo0KBjx44FBQXRVzdWVFTw+fzGxkbxBqurq/l8fm1tLSHk4cOHixcvvnTpkrOzc3BwcEBAAJvN\njo+PP3DggHJDqKys5PP5kZGRhw8fdnBwWLFihbOz89WrVxcuXJibm0vVaWpqWrFixbZt2wwMDJYv\nXz5lypTCwsLg4OCLFy/S7Tx//vzx48e//vprREREYWEhtSopEAj8/f2/++47oVC4YMGC2bNn19fX\nb9++/auvvqKG3GLLTMIzNze3trZmsVhaWlrW1tbU45TEp50Q0tjYGBgYuH379urqal9fXz8/P4FA\nsHfvXj8/v7dv34pPfmxsbGpqqrOzc0BAQO/evS9cuCB/I1Iul1tSUqLc5Hc0S5cujcFtMQAA0Jl1\nu5VRR0dHW1vb69evV1RUmJiYUIU5OTkikcjb21uickNDQ3p6urm5+fHjx6nVuM8++yw4OJjL5d6/\nf3/w4MFMevz555/fvHmzZs2aFStWUCV+fn6TJ0++fPlySEiI0gP5888/k5OTnZ2dqbd5eXmhoaEb\nNmxwdXXV0tI6cuRIXl5eSEjI6tWrqQorV65csGBBREREQUGBnp4eVfju3bvVq1cHBASEhYVRhamp\nqTdu3PDy8tqxYwf1lCOBQDB16tT09PTFixePGDGCYcvyw4uKiiKEODk5WVlZJSYmyhxgamrqlStX\nXF1d4+LievToQQiJiIgIDw/PyclJTk4ODQ2laxYUFKSlpVFLoWvXrp00adKtW7eKiopsbW3lTKB4\nDsflunvIPEmvCnKSxSipxVj5maV0fR6Ph4ubAQCgU+t2K6OEEB8fn6ampuzsbLokKyvLwMBg4sSJ\nEjU1NDS0tbUrKyuLi4upEhaLFRkZeeDAAeaPbrezswsODvb396dLTExMtLS0xHc1UsKCBQvoVI8Q\n4u7uPmPGjLKysszMTEJIfHy8mZlZWFgYXaFfv36rVq2qra2l9pmnCIXCMWPGfPnll3QSmZiYqKmp\n+c9//pN+3qaOjk5MTIyPj8/r16+Ztyw/PCYOHDigpaUVGxtLZaJUJNHR0Xp6eomJieKPEg0NDaVP\nyrPZ7GnTphFCysrK5DT+7t27ODG//nqNYVSK4vF4bdRyC+3HxBAWS/IPITIKGS6sMmlQuv3W9NhJ\nyZko0v1mA6A7iYuLs/87dUfUaXS7lVFCiLe3986dOzMzM/38/Agh5eXlN2/enDVrlq6urkRNDQ2N\nuXPnJv1/9u48rKljfRz4JOwCLWoEAYvBXolLiyKgSAVTxFTrggoKV0FARYEr6lXUb2kpUIS61irC\nQ/khiLYICoKiKYtIUkiVxVbbq1SgkiCgCJFFwEAg+f1x7j1NkxCTsMP7eXh8ksmcmTknWt7OmfNO\nQsK6des++ugjW1tbS0vLuXPnTps2Tf7uNm3ahL149uxZZWVlZWUlnU7n8/n9PAsHBwexko8//jgj\nI+PJkyetra0vXrwwNTVNSEgQrYAtey0uLnZ2dsYLXV1d8dctLS1NTU0WFhb4nDHG3t7e3t4eISR/\nyzKGJ8/ZNTc3NzU1zZkzx8jISLScRCJ98MEHpaWl9fX17733HlYoulIWIYQt5+XxeDLaF/ufgcGL\nB8hksuR0pgwKVUYI9TmhGxIiZQ0sgYCUTp4lT4OS7fenx1FKxoUah1cDgPEkICBAdKYGIQTxqJzG\nYzA6ZcoUW1tbFovV2Ng4ZcqUvLw8gUCwbt06qZUPHz48e/bs1NTUoqIiJpOJEJo8efK2bdt27Ngh\nZ3ft7e0xMTGZmZlcLpdAIBgZGS1atKj/E2aSD+hgiz7r6+tra2sRQtXV1SdPnpQ8kMvlir4VDayx\nA2U8+iN/yzKG11fjourq6hBCYpEoxtjYuLS0tK6uDg9GpWYnkJGylEqlmpqayjOMkS8xUcnH/AEA\nAIARYjwGowih9evXFxYWZmdne3h4ZGdnGxkZWVtb91V57dq1a9euff369YMHD/Lz8zMzM0+cOIEQ\nkhGPik7L7dmzh8ViOTs7u7m5USgULD/R7du3+3kKXC53xowZoiXNzc0IocmTJxsYGCCEbG1tjx49\nKnmgWP4mPC0A/rq1tbWvTuVvWcbwZJwUDotlGxsbJT/CCvtKAqW0vh57X8pAiI2YSk2dDvItegAA\nAGAsGI9rRhFCjo6Ourq6P/7446tXr8rKypycnKQmp6yrq/v+++9///13hJCurq6dnV1oaOjp06cR\nQviSUyzhUWdnp+iBFRUV2IumpiYWizVr1qzIyEhzc3MsEu3u7harr4R79+6JlZSUlCCEyGQyiUTS\n09OrqamZMmWKgQg+n//jjz/KmJQ1NDRUV1cvLy8Xu8ednJz84YcfxsXFyd+yjOHJc3YGBgY6OjoV\nFRVikXFnZ+ejR49UVVWxB/AHSkiI9CSjCCEmNYTppeTsI5mMYOISAAAAkG2czoxqaGisXLny6tWr\nP/zwQ29vr+Rz9BgCgRAeHr5w4cKkpCQ8JygWBuEzfFh60ZycHDMzM6ykvLw8NzcXe41NB4rdR46P\nj+/p6REIBP05he+//37NmjV4bMdms9PT07W1tVevXo0Q2rx5c0xMzKVLlzw9PfFDQkJCioqKZNzY\nJRKJa9euxZKk7tmzByvs7e2Nj4/v7u7GcqbK2bLs4WEIBILoc0hi3N3dY2Njjx07duTIEeziC4XC\n06dPt7S0eHh44M9XDRQF12oCAAAAYGCM02AUIbR+/forV67Exsaam5v3tYLQyMjI3t7+p59+8vDw\n+PTTT/X09J4/f3758mWE0Jo1a7A6K1eujI2NPX/+fF1dnbW1dVVVVUpKyuLFi4uKihBCM2bMmDRp\nUllZWVBQ0OLFi7lcbmFh4cOHD0kk0suXL69evbpx40blxq+hobFp06YNGzbMnDnz6dOn165da2tr\n+7//+z89PT2E0Pbt27OysiIjI0tLS21sbHg8HpPJLCkpsbOzs7GxkdHs3r178/Pzo6Ojq6qqFi9e\nzOFwcnJy6uvr3dzcZs+eLX/LsoeH0dfXf/r0aWBg4MSJEz///HOxkezcuTM3Nzc9PZ3NZq9YsYJI\nJObl5d27d8/Y2Fh2GlEAAAAAjCLjNxhdsGDB9OnTORxOX48uYc6cOXP06NEbN26UlZVhJaampseP\nH8fyByGEKBRKREREZGRkRkZGRkYGiUQ6dOiQrq4uFoyqqKhER0d/9tln6enp6enpKioqlpaWmZmZ\nGRkZ586di4iIUDoYPXbsWGpq6sWLF7HJRWNj42+//XblypXYpzo6OhkZGeHh4Xl5eXl5eQghdXV1\nd3f3/fv3y972SV9fPysr68svvywoKMCWImhpaQUEBOzcuVOhlmUPD3PgwIGjR49iCaEkg1Ftbe1r\n1659/fXXdDr9/v37WImTk1NwcLCurq5yF228Cw0d3AYl2x/wHkcp7DrA1QAAAKmEQA48Hq+6uvo/\n//nP8+fPpVbo7e3lcDg1NTVSPxUIBLW1tdhaTLyQw+G0trYqMZiQkBAzM7NHjx4JhcK2trb//Oc/\nr1696quyQCBgs9nY3psK9dLT01NZWVlTU9PT06NQywoNT07Pnj1js9kCgaCf7eDMzMwGqqlhExo6\n3CMYCIN0FiPw4ig9pBF4LkASfE3jWd/f/lj4XTMkCELIezeSyM7UM3/+fAsLi9DQ0MuXL2dkZMyZ\nM2fIBiY/hYbn5eV17969X3/9VUtL69ixY4mJicnJyQsWLBjsQVIoFDkzno5cYyNp5SCdxQi8OEoP\naQSeC5AEX9N41ve3PxZ+1wyJ8XubfmTCt3qSavr06UM2kqGB/S+R5GsAAAAAjBMQjI4s4eHhwz2E\nYbNt2zYnJ6dh32mdwUBJSVLKyYjNRmR5WvD07DNRFAAAAADEwG160Cc+ny+WIf/NmzcaGhoyHoFq\naWlRVVWVuiUSrr29XU1NDUu56unpee/evQcPHmhpackeTHt7u7a2ttR0sNjANDU1+/pUkoxbJ97e\niM1GInmr/svLm3Ah8e3/WJhMhNCQpBcdG7cF4Tb94B0IhhJ8TeMZ3KbvN5gZBX8JCgr6/fffs7Ky\n6HR6SkrKb7/99uDBA4SQUChMSEjIyMj4888/tbW1rays3N3dlyxZgh/4+PHj6OjowsLCrq4uhBCJ\nRHJxcdm7d69o2Mrj8U6dOsVkMjkcjoqKirW19aFDh0R7j4uLS0tLO336NLbXfGRkJIPBuHXrVkxM\nDJ1OZ7PZWlpatra2YWFh+F6j3d3d3377bWFhYVVVla6u7pIlS8LDw11dXefPn3/kyBHZJ8tms/ua\nhaVSkZeXRKm3tEIJHM4Ab7wkY5wAAADAGADBKPhLQ0NDTU1NcXFxYGCgUCjENn8XCAS+vr5MJtPC\nwsLHx4fL5WZnZxcVFZ09e9bBwQEhVFVVtXXr1q6uLisrK3Nzcx6PR6fTY2NjNTU1/fz8sJbb29s9\nPDweP348c+ZMT09PHo/3888/e3h4iKYdffXqFYfDwcJZhFBTUxOHwwkPD8/JyVm2bBmVSs3Nzc3P\nz+dyuampqQihjo4OX1/fkpKSOXPmeHl5tba2MhgMHx+f6upqqZvai2EwGEwmc+Tv7e7t7R0SEkKF\nG/8AAADGKAhGwd/w+fx9+/Z5eXkFBARgt85TU1OZTKafn9++ffuwOrt373Z1dQ0MDGSxWFpaWikp\nKa9fv96/f/+uXbuwClu2bFm+fHlRUREejF64cOHx48erV68+fvy4iooKQujNmzd79uz56aefZI+H\nxWLdvHkTmwo9fPiwo6PjgwcPKisrZ86c+f3335eUlGzcuPGrr77CpmDr6+u3bNnS09Mj58kyGAxv\nb2+JQk8vL6qcLfTdrLRlpwghaQkTJMcgLiwMffyxlHLJZQmhoSN3L6mwMOmJNvt5FoPUbH8oPaQR\neC5AEnxN4xl8+4MDglHwN729vWI30GNjYw0MDAICAvASQ0PDvXv3BgUF0el0Z2dnMzMzX19fDw8P\nvAKJRFJTU2tqasJLkpKS1NTUgoKCsEgUIaSlpRUaGrp8+XIZO4IihPz9/fGb8kQicdWqVXFxcfX1\n9f/4xz8uXbo0YcKEQ4cO4YsBjIyMdu7cGSpfavHPPvustbU1Ozsbe7tw4cL169cjhNhssjyHy0Am\nk5cuXSp/fdmV2Ww2CglBBQXiH4y6NWohIVL+09z/sxikZvtD6SGNwHMBkuBrGs9kfvtRUVHnzp37\nb2FyMkpOHtrBjWIQjAJxrq6u+OvW1tYXL16YmpomJCSI1nn58iVCqLi42NnZedOmTVjhs2fPKisr\nKysr6XQ6n8/HKzc2Nra1tVlYWEyePFm0EWNjYzMzs/LychmDwdaP4iZOnIgQ4vF4jY2NjY2N1tbW\n77zzjmgF2Zudirp8+XJSUpLkPCX2BFJ/kMlkL3mWl/6P7MrM/g8IAADA4AsICBCduEEIUSiU4RrM\n6ALBKBA3bdo0/HVtbS1CqLq6+uTJk5I1uVwuQqi9vT0mJiYzM5PL5RIIBCMjo0WLFrFFnuJ58eIF\nQgif4BSlr68vOxiV+mC+UChsaGhACE2aNEnsI7HYVAYqlToqFmKO/FWtAAAAQH9AMArEYbOPGAMD\nA4SQra3t0aNHJWtiiZ/27NnDYrGcnZ3d3NwoFAqWs+n27dt4NX19fYTQq1evJFtobm5WbpDYJKtk\nm1iQ2h9kMrpwATEY4uWJiOwtbd2mGDYbkowCAAAACoBgFMhCIpH09PRqamqmTJkimqeptrb29u3b\n5ubmAoGAxWLNmjUrMjIS/7S7u7uzsxOfttTX19fR0Xn8+HFbW5vozGVzc7PSCdgMDQ0nTJjw22+/\nvX79WldXFy8vkFxbqSBPTyR1oyuGZ7VE7lHpFLlFDwAAAIx3EIyCt9i8eXNMTMylS5c8RRLBh4SE\nFBUVJSYmYlObYjfT4+Pje3p6BAIB9pZAIGzevDkuLu6bb74JCQnBUtMLhcJvvvkGT+SkKKzN+Ph4\nrE2ssLKy8uLFi8o1iCOTIZoEAAAAhg4Eo+Attm/fnpWVFRkZWVpaamNjw+PxmExmSUmJnZ2djY2N\nUCicNGlSWVlZUFDQ4sWLuVxuYWHhw4cPSSTSy5cvr169unHjRoSQj49PTk7O5cuX2Wy2g4ODUCgs\nKCj49ddfp0yZ0tjYqNzAdu7cWVBQkJycXF5evmjRorq6OgaDsXTp0pycnAG9ACOVfEkDRrpBOosR\neHGUHtIIPBcgCb6m8Qy+/X7rc19HADA6OjoZGRlOTk4sFis8PPzEiRMPHjxwd3c/c+YMkUhUUVGJ\njo4mk8np6emBgYHHjx/v7u7OzMx0c3Pj8XgRERFYI++8805aWtqKFSsePHgQERERGRnJZrPj4+Pf\nf/99pQf27rvvXr161dXVtaGhITY2tqSkZM2aNWFhYXw+X/Z+pGPE2MhgN0hnMQIvjtJDGoHnAiTB\n1zSewbfff0IA5CMQCNhs9p9//tnV1SX5UW1tbXl5OY/Hwws5HE5ra6tYzZ6ensrKyqampoEdW0dH\nB/aivLzczMzs1KlTsuubmZkN7ACGTWiovG/FPupnRzLqyK7Zz2GMQENwRngXY+/qgTFvfP+lHTu/\nawYZQQh5egfIsWPHEhMTk5OTFyxYMEp7bGhoUFFRIZFIby0cjL4UPZ3IyMiysrK4uDjRRr788svU\n1NRz584tX75cxrEUCkXpZ6dGFrFU2zLe9jMptzyHY3Vk1xx7ucGH4IzwLsbe1QNj3vj+Szt2ftcM\nMrhNP2Cw6H5U90ij0SS3ppRaOBh9KXo6FArl0aNHu3fvLi4ubmlpKS8vj4yMTE1NnTt3rqOj40CP\nFwAAAACDAh5gGjDbtm1zcnIik8nDPZDRStEL6Ozs/OrVq9jY2K1bt+KFDg4O+AP7cvL2RiIZ+v+G\njNhkxGYgqjztJCYi+PIBAAAARUEwOmD09fWx7O6i2tvbUR/bCMmvpaVFVVV1AB/KGagG37x5o6Gh\nIZp/VKr29nZtbe23BohSLyCmu7tbKBRi6fRF+fj4+Pj4KNqRmAsXpGz8jiEzGehC0tJE6lsbwSJa\nCEYBAAAARUEwKpe4uLi0tDQ/P7/169eLlvv7+1dXV1+9elVHRwerc/r06blz5/b29sbExFy5cgXb\nw11HR2flypUHDhzANzeKjIxkMBgXL16cOnUq3lpaWlpcXFxwcLCdnR1C6PHjx9HR0YWFhVgyThKJ\n5OLisnfv3rcGf32R0aCfnx/2ZFJ1dTWNRiMSidnZ2VILEUJCoTAhISEjI+PPP//U1ta2srJyd3df\nsmQJ3hF2drdu3YqJiaHT6Ww2W0tLy9bWNiwsbMqUKX01K3oBsXYEAkFCQsLNmzcrKyuFQuH7779P\no9H8/f1VVFTk6UjGpejs7GSz2fgsbJ97JrERIiNyX58OKGwDVZhZBwAAMN5AMCqXjz766NSpU9eu\nXRMNRp8/f37nzh17e3tsivHVq1ccDgeL84KDg9PT0+fMmbNhwwfluQYAACAASURBVAYikchisa5e\nvfrkyZMrV65g83ZNTU0cDqenp0e0l7a2Ng6H09HRgRCqqqraunVrV1eXlZWVubk5j8ej0+mxsbGa\nmpp+fn5KnILsBqdOncrn8589e6ampmZiYoLFu1ILBQKBr68vk8m0sLDw8fHhcrnZ2dlFRUVnz551\ncHDA+sLOLjw8PCcnZ9myZVQqNTc3Nz8/n8vlpqamSm1W7AIihHp6enbs2HH37l1jY2M3Nzcikchk\nMs+dO8disRITE7W0tN7akYyr0dDQIBqMjgTe3t4hISEjakgAAADAUBj6B/hHqVWrVs2aNauxsREv\nSUpKMjMzu3nzJvb266+/NjMzu3//fldXl7m5ub29fU9PD/aRQCDYuXOnmZlZeXk5VvLvf//bzMzs\n2bNnol2cP3/ezMzsxx9/FAqF4eHhZmZmsbGx+KccDsfMzGzz5s14Cd6jPOOXp0Fzc/PVq1eLHShW\nmJycbGZmdvr0abykvr7ezs7OwsKis7NT9OwcHBxevnyJlfT29n788cdmZmYVFRV99SV2Otjl3bZt\nG562icfj/etf/zIzM4uOjpa/I6nU1NSo/yPrH0FiopBKldEOjkwWUqmh1L5JHiJWASFUUFAgq4/Q\nUCFCA/wjNevKYHSkxDBGIPmvjNJnpMTFHy1XD4x5Q/APZLSB1E5ygplRea1bt+7EiRM5OTlbtmzB\nSrKzs3V0dJYtWyZWU0VFRV1dvbm5+enTpzNnzkQIEQiE4ODgf/7zn/h27W9lZmbm6+vr4eGBl5BI\nJDU1taamJuXGP1ANxsbGGhgYBAQE4CWGhoZ79+4NCgqi0+nOzs54ub+/P36vnEgkrlq1Ki4urr6+\nHrsmb/Xdd9+pqamFh4dPmDABK9HQ0AgNDS0qKoqPj9+1axd+s165jn7//XdsehUhRKFQdu/eLXpS\nSqBSly5dulT++iGK5kkOCZGSWnkwUjvJ05FUYz61k9JXZqC6GNVXD4x5Q/APZGSLioo6d+7ccI9i\nVIJgVF5OTk7ffPPNjz/+iAWjjY2Nv/766/r16zU1NcVqqqiouLi4JCQkrFu37qOPPrK1tbW0tJw7\nd+60adPk727Tpk3Yi2fPnlVWVlZWVtLpdD6fr/T4B6TB1tbWFy9emJqaJiQkiJZjS2OLi4tFg1F8\n6ScGWy/L4/Hk6ai5ubmpqWnOnDlGRkai5SQS6YMPPigtLa2vr3/vvfeU7khLS6usrAy7J04goAHJ\nA7d0KbXPtafSiNVOSkqCe/QAADB6BQQEiE1qUCiU4RrM6ALBqLymTJlia2vLYrEaGxunTJmSl5cn\nEAjWrVsntfLhw4dnz56dmppaVFTEZDIRQpMnT962bduOHTvk7K69vT0mJiYzM5PL5RIIBCMjo0WL\nFrH7SkE0VA3W1tYihKqrq0+ePCn5KZfLFX0r9Wl9oXz/i1xXV4cQEotEMcbGxqWlpXV1dXgwqkRH\nU6dOHWmRX2Ji4nAPAQAAABgGEIwqYP369YWFhdnZ2R4eHtnZ2UZGRtbW1n1VXrt27dq1a1+/fv3g\nwYP8/PzMzMwTJ04ghGTEo6KTeXv27GGxWM7Ozm5ubhQKBctqdPv2baUHPyANGhgYIIRsbW2PHj0q\n+amamprSwxOD3XZvbGyU/Agr7CsJlBLIZGRq2sdHbLInmRrWx6eiIK8TAAAAoBwIRhXg6Oioq6v7\n448/rlq1qqysbOfOnVJTWtbV1RUUFMybN+/DDz/U1dW1s7Ozs7NbunSpr69vTk4OFoyqq6sjhDo7\nO0UPrKiowF40NTWxWKxZs2ZFRkbin3Z3d3d2dsq/6lTUQDVIIpH09PRqamqmTJkimmGqtrb29u3b\n5ubmyg1PkoGBgY6OTkVFRWtr67vvvouXd3Z2Pnr0SFVV1cTEZEA6QggVFPSZ9B4hKkJUeWYsyWQI\nRgEAAABlQDCqAA0NjZUrV169evWHH37o7e11cnKSWo1AIISHhy9cuDApKQmP2LDgafLkydhbLL1o\nTk6OmZkZVlJeXp6bm4u9bm5uRhJ3n+Pj43t6egQCgRIjl7NBAoHQ29sreTqihZs3b46Jibl06ZKn\npydeGBISUlRUpNCNZql9iXJ3d4+NjT127NiRI0ewyygUCk+fPt3S0uLh4aGqOmB/dSGOBAAAAIYR\nBKOKWb9+/ZUrV2JjY83NzU37uLlrZGRkb2//008/eXh4fPrpp3p6es+fP798+TJCaM2aNVidlStX\nxsbGnj9/vq6uztrauqqqKiUlZfHixUVFRQihGTNmTJo0qaysLCgoaPHixVwut7Cw8OHDhyQS6eXL\nl1evXt24caNCw5azQX19/adPnwYGBk6cOPHzzz/HjhUr3L59e1ZWVmRkZGlpqY2NDY/HYzKZJSUl\ndnZ2NjY28g9Jal+idu7cmZubm56ezmazV6xYQSQS8/Ly7t27Z2xsvHv3boVOfywLDZX3rdhH/exI\nRh3ZNfs5jBFoCM4I72LsXT0w5sFfWiCPYU4tNQotX77czMzs+++/FysXTZPZ0dERHBw8b948s//5\n5JNPMjMzReunpaUtWLAA+9TW1jY5OTkrKwvPM3r//n0ajYZ9Onv2bHd392fPnp09e9bMzGzevHmS\nPb6VPA1mZ2dTqdTZs2fPnj0bP1CysK2t7eDBg/Pnz8da++CDD7766qv29nb8kLdmUZXarOTpdHZ2\nBgcHW1paYh1ZWFgcPHiwra1NoY6kgtxvAAAABhv8rpETQThuEoANva6urufPn3d0dEyePFl020+c\nQCCora0lEAj4g+GihEJhfX3969evTU1N8W3Za2pq9PT03nnnHSXGM7ANCoXCmpqa3t7eadOmYUtg\nB09tbW1vb6+JiYmi+873hUKhDEg6p9EnLExKIsDhMjSDGZZTFu10AAcwor4+AMDbjN/fNQqCYHQs\nkL1Yc/78+RYWFkM2GEUdO3YsMTExOTl5wYIFQ9bg+P0PxIhKQD00gxmWU1ZuuwGFmgUAjHjj93eN\ngmDN6Fjw9OlTGZ9Onz59yEaiBGyKfiQ3CAAAAIDBA8HoWBAeHj7cQ1Detm3bnJychj0Fvbc3YjDE\nC6mIwUZkNiIr1FRBATyeDwAAAMgLgtGxrL29XVtbu5/rLDs6OrS1tUVLuru7e3t78Y3dJb1580ZD\nQ0M0EalUfD5fTU1NX19fagb7N2/eEIlEfG2rpJaWFlVVVanbLynhwgVUXS1eSPYOY1M9kaeX/O14\ne0MCfAAAAEABbwkXwOgSGRlJo9H4fP6ZM2c++eQTS0tLCwsLf39/0a2MsDovXrwQPTAtLY1GoxUW\nFuIVuru7T5065ejouGDBAjs7u5iYGITQb7/95uHhYWVlNX/+fEdHx1u3bok2IhQKz58/v3r16gUL\nFixcuNDX1xfLVIULCgrCklvR6fStW7di+1fFxcXRaLRHjx5hdXp7e7/99tvVq1dbWlrOmzfv448/\njo+P7+7uxht5/Pjxv/71L3Nz80WLFllaWn700UenT59WNP1qZ2en5FaoWMJR0R+EEHm6lHIZP4OH\nwWD0Zz9YAAAAYGSCmdExpampicPhhIeH5+TkLFu2jEql5ubm5ufnc7nc1NRU0To9PT2iB7a1tXE4\nnI6ODrzCgQMHHj586ODgoKmpeePGjTNnzrS3t6ekpOjq6rq5ubW2tmZlZR08eJBMJs+dOxchJBAI\nfH19mUymhYWFj48Pl8vNzs4uKio6e/asg4MD1ktDQ0NNTU1xcXFgYKBQKMRyCLx69YrD4XR1dSGE\nurq6vL2979+/P2PGDFdX166uroKCghMnTjx+/PjUqVMEAqGqqmrr1q1dXV1WVlbm5uY8Ho9Op8fG\nxmpqavr5+cl/obhcLpvNHva1AQoJCwsLCQkZXWMGAAAA3gqC0TGIxWLdvHkT29798OHDjo6ODx48\nqKysnDlzpvyNVFdX37hxQ09PDyG0cuXKTZs2nT9/ftu2bQcPHsTuv0+fPv3MmTMsFgsLRlNTU5lM\npp+f3759+7AWdu/e7erqGhgYyGKx8Hv6fD5/3759Xl5eAQEBkjf6k5OT79+/v3LlypMnT2J7LHV1\nda1YseLWrVtbt26dP39+SkrK69ev9+/fv2vXLuyQLVu2LF++vKioSKFgFCHk7e0tdsYKHf62lhl9\nfVotsRqgr90T+qovr7Aw6emmJZdthIYOesKgoRnMsJyyPJ0qMYAR9fUBAMBggmB0DPL398ciUYQQ\nkUhctWpVXFxcfX29QsHovn37sEgUITRv3jx1dXU+n79lyxZ8JaiVlRVCCF8AEBsba2BgEBAQgLdg\naGi4d+/eoKAgOp3u7OyMFfb29lpbWx86dEhqp/Hx8aqqql988QW+26eGhkZYWNitW7daWloQQmZm\nZr6+vh4eHvghJBJJTU2tqalJ/lPD8Hg8Gcte+yMkJIRKVSA4KCgoGIxhoJAQKTHKcOUGGprBDMsp\nv7VT5QYwor4+AIAcoqKizp07N9yjGJUgGB2DsKlK3MSJExFCPB5PoUYoFIroW01NzalTp06bNg0v\nEX20qLW19cWLF6ampgkJCaJHvXz5EiFUXFyMB6MIIVdXV6k9trS0NDU1WVhYkEgk0XJ7e3t7e3vs\n9aZNm7AXz549q6ysrKyspNPpfD5foVNDCE2YMOHu3buit7wHKJs+QgiRyYrdS5ezNpVKhXv0AAAw\nYgUEBIjOyCCJ36SgLxCMjkFSHzBXNPWm5DP4Mp6Or62tRQhVV1efPHlS8lMulyv6VjSilWwEn9OV\nqr29PSYmJjMzk8vlEggEIyOjRYsWKfFYz+TJk0ddYBcCt2IBAACMRRCMAoQUnzcVY2BggBCytbU9\nevSo5Kdqamqib7GZWklYeWtrq4yO9uzZw2KxnJ2d3dzcKBQKNjt7+/ZtpUeOo1KlTI56IU82g8zw\nlnZA32TuhwUAAACAv4FgdNzB9pHv7OwULayoqOhPmyQSSU9Pr6amZsqUKaITqLW1tbdv3zY3N580\nadJbGzE0NFRXVy8vL+fxeJqamnh5cnLy119/HRAQsGHDBhaLNWvWrMjISPzT7u7uzs5OedqXrY8I\n0kvRdkbbfCsAAAAwzCAYHXemTp2KEMrJyTEzM8NKysvLc3Nz+9ns5s2bY2JiLl265OnpiReGhIQU\nFRUlyjdVSCQS165dm5aWFhcXt2fPHqywt7cXyzNqZ2fX3NyMJBYhxMfH9/T0KJpnVBIEkQAAAMCw\ngGB03Fm5cmVsbOz58+fr6uqsra2rqqpSUlIWL14slqBeUdu3b8/KyoqMjCwtLbWxseHxeEwms6Sk\nxM7OzsbGRs5G9u7dm5+fHx0dXVVVtXjxYg6Hk5OTU19f7+bmNnv27N7e3kmTJpWVlQUFBS1evJjL\n5RYWFj58+JBEIr18+fLq1asbN27szymMC1KzBQ2XoRnMsJyyaKcDOIAR9fUBAMAAgWB03KFQKBER\nEZGRkRkZGRkZGSQS6dChQ7q6uv0MRnV0dDIyMsLDw/Py8vLy8hBC6urq7u7u+/fvf+u+oDh9ff2s\nrKwvv/yyoKAgJycHIaSlpRUQELBz506EkIqKSnR09GeffZaenp6enq6iomJpaZmZmZmRkXHu3LmI\niAgIRt9uRD0FNTSDGZZTFu10AAcwor4+AAAYIARFH7IGYKA0NDSoqKjgiZyOHTuWmJiYnJy8YMGC\nwe6aQqE8efJksHsZxcLC+hv3jIQWBs/gjU1GyyP5ggAApIHfNXKCYBQMm3nz5pmYmGRlZWFvjx49\nmpiYePnyZQhGh1//k6uPhBYGz+CNTUbLI/mCAACkgd81coLb9GCk2LZtm5OT06hL/wkAAACA/pB3\nMR8AUrW0tLS3t8uo8ObNm66uLnma0tfXnz17ttQtOru7u+VppL29XYmZfgKhz5+PCQxvwgUZFeT8\nMTVFDIai4wIAAADGBQhGgTIeP378r3/9y9zcfNGiRZaWlh999NHp06dF8yv19vZ+++23q1evtrS0\nnDdv3scff4xlaMI+9fPzo9FoXV1d1dXVNBptxYoVCKG4uDgajfbo0SO8EYFAEB8fv27dOgsLCwsL\nizVr1kRFRfX29uIVIiMjaTQan88/c+bMJ598YmlpaWFh4e/v39jYqNDpCIXSfwoS2YnUpL4+lf8H\nZnsBAACAvsBteqCwqqqqrVu3dnV1WVlZmZub83g8Op0eGxurqanp5+eHEOrq6vL29r5///6MGTNc\nXV27uroKCgpOnDjx+PHjU6dOEQiEqVOn8vn8Z8+eqampmZiYYI/bv3r1isPh4DOgPT09O3bsuHv3\nrrGxsZubG5FIZDKZ586dY7FYiYmJ2ARqU1MTh8MJDw/PyclZtmwZlUrNzc3Nz8/ncrmpqal9jZ/N\nZre1tQ3JpRop2Gx2UlISbCgKAABgBIJgFCgsJSXl9evX+/fv37VrF1ayZcuW5cuXFxUVYcFocnLy\n/fv3V65cefLkSVVVVYRQV1fXihUrbt26tXXr1vnz52NR0bx586ZNmxYfHy+1l+Tk5Lt37y5ZsiQq\nKmrChAkIocDAwAMHDuTl5SUmJvr7++M1WSzWzZs3sU3tDx8+7Ojo+ODBg8rKypkzZ0ptmc1mt7a2\niuxoTx6Iq/IWbLZIhxIkV8rKqq14fTabfeHCBQhGAQAAjEBwmx4ozMzMzNfX18PDAy8hkUhqampN\nTU3Y2/j4eFVV1S+++AKLRBFCGhoaYWFh69ata2lpkbOX7777Tk1NLTw8HItEsUZCQ0O1tLTi4+NF\nb9b7+/tjkShCiEgkrlq1CiFUX18vo/E3b96Y/g9CiEKhREVFyTkw5Xh7e5v2TbK+jMoDUv8vYWFS\nVrkiaWtpw8JGbguDZ/DGJn/LI+qCAAD6EBUVRfm74R7RqAEzo0BhmzZtwl48e/assrKysrKSTqfz\n+XyssKWlpampycLCAk8girG3t7e3t5ezi+bm5qampjlz5hgZGYmWk0ikDz74oLS0tL6+/r333sMK\n586dK1pn4sSJCCEejyejfS0trc7OTuw1gYCGIPVGQUEBlapAfUWfxJJdnyHj+amQECnZKxXKIjQS\nWhg8gzc2RVseIRcEANCHgICAgIAA0RKIR+UEwShQWHt7e0xMTGZmJpfLJRAIRkZGixYtwm8T19bW\nIoTwqUrl1NXVIYTEIlGMsbFxaWlpXV0dHoyK7VaPkRGckcnkyZMn92d4ow6ZTE5MTBzuUQAAAABS\nQDAKFLZnzx4Wi+Xs7Ozm5kahUDQ0NBBCt2/fxj7FJiZbW1v70wUWy0p9KB4r1NfXV7pxMpmM3/rH\n9LXekizz01GETCZDAlcAAAAjEwSjQDFNTU0sFmvWrFmRkZF4YXd3d2dn56RJkxBChoaG6urq5eXl\nPB5PU1MTr5OcnPz111/jG83LZmBgoKOjU1FR0dra+u677+LlnZ2djx49UlVVNTExGagzCg1FH38s\n/SMyopIRmdHHpwqBUBAAAACQCoJRoJjm5mYkcWc8Pj6+p6cHyzNKJBLXrl2blpYWFxe3Z88erEJv\nby+WZ9TOzg4/ikAgiD6HJMbd3T02NvbYsWNHjhzBcj8JhcLTp0+3tLR4eHjgj0b1n9SVe/9DHppn\n7QEAAIBxC4JRoJgZM2ZMmjSprKwsKCho8eLFXC63sLDw4cOHJBLp5cuXV69e3bhx4969e/Pz86Oj\no6uqqhYvXszhcHJycurr693c3GbPno03pa+v//Tp08DAwIkTJ37++ediHe3cuTM3Nzc9PZ3NZq9Y\nsYJIJObl5d27d8/Y2Hj37t1De9IAAAAAGCyQ2gkoRkVFJTo6mkwmp6enBwYGHj9+vLu7OzMz083N\njcfjRUREIIT09fWzsrIcHBwKCgpCQ0MTExObm5sDAgLEIs4DBw4YGhrS6fQffvhBsiNtbe1r1665\nurpWVFRERESEh4f//vvvTk5O169f19PTG6KzHbdCQ8dCC4Nn8MYmo+WRfEEAAKAfCErs5Q3AaEeh\nUIYgnRMAAIDxDH7XyAlmRsegY8eOzZo165dffsHeNjQ04OnopVYAY5ZoRnSp2dEhZfrAGmnXc6SN\nBygHvkcw1kEwOgYJhULRCW8ajebt7S2jAhizRG/sSr3JC3d+B9ZIu54jbTxAOfA9grEOHmAaj7Zt\n2+bk5ASJJ3EDm0kUrisAAAAgPwhGR4qOjg5tbW3Rku7u7t7eXi0trQHvS19fX2rS+Pb2dtTHhkaY\nN2/eaGhoYImW+tLe3q6trU3AttJWvIvu7m6hUIgl0peNz+erqam9tdpbsdnI1PSvCNKLHcYge7KV\nzejEZqPQUBm5ogAAAADwN3CbfthERkbSaLTu7u5Tp045OjouWLDAzs4uJiYGIfTbb795eHhYWVnN\nnz/f0dHx1q1bYke9ePFCtKm0tDQajVZYWCjWhZ+fH41G6+rqqq6uptFoK1aswMrj4uJoNNqjR4+w\nt729vVFRUXZ2dpb/88UXX2D5RDFCofD8+fOrV69esGDBwoULfX19i4qKxIbE5/PPnDnzySefWFpa\nWlhY+Pv7i+6f9NYuBAJBfHz8unXrLCwsLCws1qxZExUVJZaFNCgoaM2aNQghOp2+detWa2vriIgI\nGo32008/iZ14cHAwjUbjcDjyfBFsNiKTUXX1f39CyBcKCv56q+hPaOhY2LEJAAAAGDIwMzpsmpqa\nOBzOgQMHHj586ODgoKmpeePGjTNnzrS3t6ekpOjq6rq5ubW2tmZlZR08eJBMJs+dOxc/qqenR7Sp\ntrY2DofT0dEh1sXUqVP5fP6zZ8/U1NRMTEzwGc1Xr15xOJyuri7sbXBwcHp6+pw5czZs2EAkElks\n1tWrV588eXLlyhUCgSAQCHx9fZlMpoWFhY+PD5fLzc7OLioqOnv2rIODAz6k8PDwnJycZcuWUanU\n3Nzc/Px8LpebmpoqTxc9PT07duy4e/eusbGxm5sbkUhkMpnnzp1jsViJiYn43HBDQ0NNTU1xcXFg\nYKBQKHzvvfeWLFly8eLFtLQ0e3t7/Kzb29uvX78+Y8aM6dOnS73ybDZbLJofpRgMBpPJDIFpWAAA\nAKMZBKPDrLq6+saNG1jizJUrV27atOn8+fPbtm07ePAgFjtOnz79zJkzLBYLC0YVgoUp8+bNmzZt\nWnx8vNQ63d3dt27dmjp1alpamoqKCkJoz549vr6+DAbjyZMns2bNSk1NZTKZfn5++/btww7ZvXu3\nq6trYGAgi8XCI0UWi3Xz5k1sT/nDhw87Ojo+ePCgsrJy5syZb+0iOTn57t27S5YsiYqKwnaNDwwM\nPHDgQF5eXmJior+/Pz5aPp+/b98+Ly+vgIAALS0tgUBgZGTEYDDa29vxW//5+fldXV3Ozs59XRY2\nm/3mzRsGg4G9ZTIRQlRFr60MbDabwWD39SmVKt4XPhJF6zOZTAaDAcEoAACAUQ2C0WG2b98+PIX7\nvHnz1NXV+Xz+li1b8FlMKysrhJDoLe+BpaKioq6u3tzc/PTp05kzZyKECARCcHDwP//5T2yv+djY\nWAMDg4CAAPwQQ0PDvXv3BgUF0el0PObz9/fHIlGEEJFIXLVqVVxcXH19/cyZM9/axXfffaemphYe\nHo5FogghDQ2N0NDQoqKi+Pj4Xbt2YSEsQqi3t9fa2vrQoUN4Ry4uLmfPns3JycFHcuvWLXV19bVr\n18o4az6fT6PR/vduKUIzo6KuiZ5jf7DZbLH0BaKqq6vFSmRUll2fzWb/FaqGhUl/5FZ08a7UhbyS\nhbDoVR7yXHDM0FzPkTYeoBz4HkezqKioc+fODfcoRiUIRocZhUIRfaupqTl16tRp06bhJfI8ytMf\nKioqLi4uCQkJ69at++ijj2xtbS0tLefOnYuNobW19cWLF6ampgkJCaJHvXz5EiFUXFyMh4BiE7cT\nJ05ECPF4vLd20dzc3NTUNGfOHCMjI9EWSCTSBx98UFpaWl9f/9577+Hlrq6uotVcXFyio6Nv3LiB\njaS1tZXFYtFotHfffVfGWaupqXV3d2OvGQzk7Y0GKhJFCFGp1MRE8QhSBslwU876Fy5cSEpK+m9p\nSIiU30wEAsJzeIm+lloBKOStF3yIjbTxAOXA9ziaBQQEiP0qEfsVD/oCwegwk3zqXPaz6oPh8OHD\ns2fPTk1NLSoqYjKZCKHJkydv27Ztx44dtbW1CKHq6uqTJ09KHsjlcvHXUh+Qx7OZyuiirq4OISQW\niWKMjY1LS0vr6upEg1HRSB0hZGBgsHTpUgaD0dDQYGBgkJOT09PTI+MePUKITCaLNTJKUalUyZv4\nAAAAwOgCwehYgE1A9sfatWvXrl37+vXrBw8e5OfnZ2ZmnjhxAiG0bt06hJCtre3Ro0clj1Ios1Jf\nXWAPyEtdh4AVimWhwuZcRW3atOnOnTs3b97cvn07nU43MjKytbWVMRIymSw5cnzdJhV7TZb7xP5u\nKB+lh0yxAAAAxgAIRkcZdXV1hFBnZ6doYUVFhdIN1tXVFRQUzJs378MPP9TV1bWzs7Ozs1u6dKmv\nr29OTs6OHTv09PRqamqmTJkiOmVbW1t7+/Ztc3NzbNFnP7vQ0dGpqKhobW0Vvbfe2dn56NEjVVVV\nExMT2e3b29sbGhpmZWU5OTmVlJT4+voqNLtMJiMq9a/99pjkREYSWf7DJcE6LgAAAEB+EIyOMlOn\nTkUI5eTkmJmZYSXl5eW5ubkyDiEQCGIJO8U+DQ8PX7hwYVJSEh7DYfHf5MmTEUKbN2+OiYm5dOmS\np6cnflRISEhRUVFiYqI8Y35rF+7u7rGxsceOHTty5AhWQSgUnj59uqWlxcPDQ1X1LX9LsTWp2Mpx\ngUCwYcMGeUaFI5PR38+DCsEkAAAAMGQgGB1lVq5cGRsbe/78+bq6Omtr66qqqpSUlMWLF4tmoRej\nr6//9OnTwMDAiRMnfv7552KfGhkZ2dvb//TTTx4eHp9++qment7z588vX76M/ncDffv27VlZWZGR\nkaWlpTY2Njwej8lklpSU2NnZ2djYyDPmt3axc+fO3Nzca4MOKwAAIABJREFU9PR0Npu9YsUKIpGY\nl5d37949Y2Pj3bt3y9OFs7NzTEzM5cuXbWxsxsZ6UAAAAGCcgGB0lKFQKBEREZGRkRkZGRkZGSQS\n6dChQ7q6ujKC0QMHDhw9epROpyOEJINRhNCZM2eOHj1648aNsrIyrMTU1PT48eOrVq1CCOno6GRk\nZISHh+fl5eXl5SGE1NXV3d3d9+/fL//dcNldaGtrX7t27euvv6bT6ffv38dKnJycgoODdXV15Wnf\n0NDQzs6OwWC4uLjIOaRxQTRHjNR8MVILgdJG2vUcaeMByoHvEYx1BCEkjBiFBAJBbW0tgUAQfcy8\nn7q6up4/f97R0TF58mRsMYAYoVBYU1PT29s7bdo0bOnqgHeBEKqtre3t7TUxMelrd/u+eHh4/PHH\nH4WFhZqamm+tTKFQnjx5olD7AAAAgELgd42cYG/6UYlIJJqYmAxgJIoQ0tDQwDYd7StMJBAI06dP\nnzFjhjyRqJeX16xZs968eYMQOnbs2KxZs3755Re8CwKB0NTUJPXAadOmTZ8+XdFItLKysqSkZO3a\ntfJEoiMO/vCUWInon0PW9WD3CAAAAPwdBKNgUAiFQnzSXfQ1hkajyd52SH5FRUX5+fmHDh1SUVHx\n8vIakDaHmuQ9OKxE9M8h63qwewQAAAD+DtaMgkG3bds2JyenQUqKefbs2YcPH6qoqAQFBSk9Vcxm\nI5n7w4ujUhGk+AQAAAAGBASjACGEWlpaVFVVpe6iJL/29nY1NTXJ/Uv19fXFEtfL1t3dLRQK37oP\nKp/PV1NTu3LlisIDlWBqivCdjDwZ3kxqCLvvrPdsNkpKQgUF/e8WAAAAABCMjm+PHz+Ojo4uLCzs\n6upCCJFIJBcXl71792KPyUdGRjIYjIsXL4quIk1LS4uLiwsODrazs8NKeDzeqVOnmEwmh8NRUVGx\ntrY+dOiQaC9xcXFpaWmnT5+eO3eun5/fn3/+2dXVVV1dTaPRiERidnY2Vk0gECQkJNy8ebOyslIo\nFL7//vs0Gs3f319FRQWrEBQU9Pvvv2dlZdHp9JSUlN9++23jxo1MJvOLL76wt7cX7TE4OLi4uPj/\n/b//N336dDkvxV/BpSnDKzFExg5MFy4gfEN4AAAAAPQTBKPjV1VV1datW7u6uqysrMzNzXk8Hp1O\nj42N1dTU9PPzQwg1NTVxOJyenh7Ro9ra2jgcTkdHB/a2vb3dw8Pj8ePHM2fO9PT05PF4P//8s4eH\nh56eHn7Iq1evOBwOFu9OnTqVz+c/e/ZMTU3NxMQETw7V09OzY8eOu3fvGhsbu7m5EYlEJpN57tw5\nFouVmJiopaWFEGpoaKipqSkuLg4MDBQKhe+9996SJUsuXryYlpYmGoy2t7dfv359xowZMiLR6urq\nAbuOSvH29vb09ISd5QEAAAAIRsevlJSU169f79+/f9euXVjJli1bli9fXlRUhAWj8rhw4cLjx49X\nr159/PhxbArzzZs3e/bs+emnn6TWDwkJQQjNmzdv2rRp8fHxeHlycvLdu3eXLFkSFRU1YcIEhFBg\nYOCBAwfy8vISExP9/f2xanw+f9++fV5eXgEBAVpaWgKBwMjIiMFgtLe342sM8vPzu7q6nJ2dZQyb\nz+dfuHBBpMBLzvMVPfG+PpJ8jkqyMoPBEN3RCgAAABi3IBgdv8zMzHx9fT08PPASEomkpqbWV9Il\nqZKSktTU1IKCgvCb6VpaWqGhocuXL5exB6mk7777Tk1NLTw8HItEEUIaGhqhoaFFRUXx8fG7du3C\n2u/t7RVdBkAkEl1cXM6ePZuTk4NHn7du3VJXV1+7dq3sHvfu3SvyzisqKiogIEDO0TIYDDKZ2den\nksEok/nfyp5sNpXBQFjw+/HHf9WQTGWFlYj+KSo0FIUouGtpWJj0x+SlZtEakB4BAGA8wXalHu5R\njEoQjI5fmzZtwl48e/assrKysrKSTqfz+Xz5W2hsbGxra7OwsMC2mMcZGxubmZmVl5fL2U5zc3NT\nU9OcOXOMjIxEy0kk0gcffFBaWlpfX48/Ke/q6ipax8XFJTo6+saNG1gw2traymKxaDTau+++K7vT\n1tZW/DWBgOSPRBFCVCo1MZEqf/3ExESxko8//jgkJOS/t+kJBCS29wRWIvpn/4WESIkmpTY+UD0C\nAMB4EhAQIParhEKhDNdgRhcIRsev9vb2mJiYzMxMLpdLIBCMjIwWLVrEZrPlb+HFixcIoSlTpkh+\npK+vL38wWldXhxASi0QxxsbGpaWldXV1eDAqtvW8gYHB0qVLGQxGQ0ODgYFBTk5OT0+P7Hv0CCFT\nU1M5xzZIEhMTBynXFQAAADC6QDA6fu3Zs4fFYjk7O7u5uVEoFCyV0u3bt2UfxePx8NdYwqZXr15J\nVmtubpZ/JFg429jYKPkRViiaGWrixIlidTZt2nTnzp2bN29u376dTqcbGRnZ2trK7lFNTU2sBF/V\n6YXQhSSE+n4Kn9nn/XkFQCQKAAAAYCAYHaeamppYLNasWbMiIyPxwu7u7s7OzkmTJmFvsW0/Ozs7\nRQ+sqKjAX+vr6+vo6Dx+/Litre2dd97By5ubmxXajdfAwEBHR6eioqK1tVX09npnZ+ejR49UVVVN\nTExkHG5vb29oaJiVleXk5FRSUuLr64s/pC+nxMS/QkwOtYDNJiO2rPqweBIAAAAYKBCMjlPYzKVY\nlvv4+Pienh6BQIC9xdKL5uTkmJmZYSXl5eW5ubl4fQKBsHnz5ri4uG+++SYkJATbUF4oFH7zzTdY\nIqe+EAgEsceb3N3dY2Njjx07duTIESyUFAqFp0+fbmlp8fDwUFWV9RdVRUXFxcUFWzkuEAg2bNgg\n92X4Ly8vJPLQEVnRwwEAAACgNAhGx6kZM2ZMmjSprKwsKCho8eLFXC63sLDw4cOHJBLp5cuXV69e\n3bhx48qVK2NjY8+fP19XV2dtbV1VVZWSkrJ48eKioiK8HR8fn5ycnMuXL7PZbAcHB6FQWFBQ8Ouv\nv06ZMkXqbXeMvr7+06dPAwMDJ06c+PnnnyOEdu7cmZubm56ezmazV6xYQSQS8/Ly7t27Z2xsvHv3\n7reejrOzc0xMzOXLl21sbMQWlQIAAABgJFPsbiYYM1RUVKKjo8lkcnp6emBg4PHjx7u7uzMzM93c\n3Hg8XkREBEKIQqFERESoqKhkZGQEBQXduHHj0KFD69evF23nnXfeSUtLW7FixYMHDyIiIiIjI9ls\ndnx8/Pvvvy+j9wMHDhgaGtLp9B9++AEr0dbWvnbtmqura0VFRURERHh4+O+//+7k5HT9+nXR/Pl9\nMTQ0xHaEcnFxUf6iDBfJjEtYieifQ9b1YPcIAAAA/B1BCDlcxjGhUFhfX//69WtTU1N8L/iamho9\nPT18DahAIKitrSUQCPjz7FL19vZWV1dPnDhRLM2TEmpra3t7e01MTAhSU2D2wcPD448//igsLNTU\n1HxrZQqFotCqVgAAAEBR8LtGTjAzOhSOHTs2a9asX375RekKg4RAIBgbG8+aNQuPRBFCJiYmok8j\nEYlEExMT2ZEoQkhFReUf//hH/yNRhNC0adOmT5+uUCRaWVlZUlKydu1aeSLRES0s7K8/RV/I81ae\nlgfJoDYOAABgTINgdCgIhULZM9BvrQD6UlRUlJ+ff+jQIRUVFcmtj0YfsVvzYnfMZb+Vp+VBAnf2\nAQAAKAseYBoRtm3b5uTkBLknlXD27NmHDx+qqKgEBQW9dfpWEpuNkpIU7nT6dDQG4l4AAABgJIBg\nVEnd3d1CoVD07rZUfD5fMr+6JH19fdG87mLa29u1tbX7um395s0bTU1NhW5qS9XR0aGtrS1a0t3d\n3dvbq6Wl1dchb9680dDQkJ3UU4lmFbq2V65ckV1NtrAwxGAgbFdOXMgF0ySvAnbfOZ5CQxGViuD/\nHQAAAID+G7+36S9evEij0dLT0/GS5uZmGo1Go9Ha2trwwlu3btFotOvXr2NvBQJBfHz8unXrLCws\nLCws1qxZExUVJZoyMygoaM2aNQghOp2+detWa2trqb2XlZV9+umnGzZsePr0KUIoLi6ORqM9evQI\n+zQyMpJGo/H5/DNnznzyySeWlpYWFhb+/v6iyZK6u7uPHz++Zs2aBQsWLFq0aP/+/R0dHatXr/7i\niy/kvAJYL93d3adOnXJ0dFywYIGdnV1MTAxC6LfffvPw8LCyspo/f76jo+OtW7dEDxQKhefPn1+9\nevWCBQsWLlzo6+srmuxJ6WaVuLYRERE0Gu2nn34SO7Xg4GAajcbhcOS5Dl5eKDHxbz9kMgoJES8U\nqwAAAACAATF+Z0YtLCwiIiJycnLwfczLysqw8KWkpMTR0RErvH37NofDsbS0RAj19PTs2LHj7t27\nxsbGbm5uRCKRyWSeO3eOxWIlJiZiU30NDQ01NTXFxcWBgYFCoVDqjeOff/7Z399/woQJ8fHxM2bM\nQAi9evWKw+HgieKbmpo4HE54eHhOTs6yZcuoVGpubm5+fj6Xy01NTUUIdXR0+Pr6lpSUzJkzx8vL\nq7W1lcFg+Pj4VFdXS93hXSqslwMHDjx8+NDBwUFTU/PGjRtnzpxpb29PSUnR1dV1c3NrbW3Nyso6\nePAgmUyeO3cuQkggEPj6+jKZTAsLCx8fHy6Xm52dXVRUdPbsWQcHB6WbVe7aLlmy5OLFi2lpafb2\n9vh5tbe3X79+fcaMGdOn97mnZ0VFBZvNHiHrIggESGoBAABg/Bq/weiHH35oaGhYUlKC30kvKSnR\n09Pj8/nFxcVYMCoQCH7++efZs2djedSTk5Pv3r27ZMmSqKioCRMmIIQCAwMPHDiQl5eXmJjo7++P\ntczn8/ft2+fl5RUQECB5M/rOnTt79+7V19dPSEiQES0hhFgs1s2bN7F92w8fPuzo6PjgwYPKysqZ\nM2d+//33JSUlGzdu/Oqrr7C75PX19Vu2bOnp6VH0OlRXV9+4cQPL5bly5cpNmzadP39+27ZtBw8e\nxFqePn36mTNnWCwWFjWmpqYymUw/P799+/ZhLezevdvV1TUwMJDFYuHnq2izyl1bgUBgZGTEYDDa\n29vx3aTy8/O7urrw/8foS1hYGJlMZrM9lQtJw8LCZBwXIrFhaBg8bw4AAABIM35v0yOEli9f/ubN\nm/v372NvS0tLFy1aZGVldffuXazk0aNHLS0tNBoNe/vdd9+pqamFh4dj0RJCSENDIzQ0VEtLKz4+\nHr+h3Nvba21tfejQIclI9McffwwICCCTySkpKbIjUYSQv78/FokihIhE4qpVqxBC9fX1QqHw0qVL\nEyZMOHToEL5e08jIaOfOnUpchH379uFZ5efNm6eurk4gELZs2YK3bGVlhRDCVwjExsYaGBgEBATg\nLRgaGu7du7ejo4NOpyvdrHLXlkgkuri4dHV15eTk4F3funVLXV197dq1sk88KysrKiqKxWJFRUVR\nKJSoqCiFrhuZ/Jav762WMhghoaEhoaFChBCB8N8f7DVeIvrRW99iP2FhKCxMSnlflRU1qI0DAMCo\nhf02ETXcIxo1xu/MKEKIRqNdvHixsLDQxsamra3tyZMnGzdu5PF4J06cePXq1aRJk7ClkMuXL0cI\nNTc3NzU1zZkzR+w+OIlE+uCDD0pLS+vr6/Gb8q6urpLdZWZmpqWl9fb2Ll68GI8yZcCmDHETJ05E\nCPF4vMbGxsbGRmtra9FsoAghGxsbxc4fIYSQ2L8WTU3NqVOniu6oKfogUWtr64sXL0xNTRMSEkSP\nevnyJUKouLgYn49UqNn+XFsXF5fo6OgbN25gXbe2trJYLBqN9u6778o+8bKyMjKZ7O2NrRANkF1Z\nkqenl0IzqpJzpeh/JX+7TU8gIKHwv3/ib3Gy30prXK7KCgkJGcTGAQBg1AoICBCdqUESvwpBX8Z1\nMGppaTl58uSioqKDBw+WlZUJBIJFixZ1dXUJhcKSkpIVK1awWCwymTxz5kyEUF1dHUJI6opMY2Pj\n0tLSuro6PGCSuj16amoqlUr9z3/+c+nSpRUrVixYsED28PD7zqKEQmFDQwNCaNKkSWIficWmcpJ8\nDF/G0/G1tbUIoerq6pMnT0p+yuVylWu2P9fWwMBg6dKlDAajoaHBwMAgJyenp6fnrffozczMRsiC\nUYQQLBgFAAAwno3rYJRIJC5btuzq1atNTU2lpaWTJ0/+xz/+IRAI3nnnnXv37tnZ2f3666/e3t5Y\nZWwuU/R5dhxWKJqbCZvFFLN27dqjR4/euXNn9+7d//d//3fjxg3ltgvCdjl69eqVWDkWpA4qAwMD\nhJCtre3Ro0clP5UniZVU/by2mzZtunPnzs2bN7dv306n042MjGxtbeXvncEQLwnBdhQiy98GAAAA\nAJQ0rteMIoQ++eQToVDIYrFKSkoWLlyIECISidbW1vfu3SsuLu7p6cEXjBoYGOjo6FRUVLS2toq2\n0NnZ+ejRI1VVVRMTE9l9/fOf/1RRUVm+fPnKlSs5HM4333yj3JgNDQ0nTJjw22+/vX79WrS8oKBA\nuQblRyKR9PT0ampqpkyZYiCCz+f/+OOPbDZbuWb7eW3t7e0NDQ2zsrKamppKSkrWr18vO/WpqJAQ\n8SSjCKEwr2rZ2Zu8vCC7EwAAADAwxvXMKELIxsbmnXfeyc7OLi8vd3FxwQvz8/OvXbs2derUDz/8\nEK/s7u4eGxt77NixI0eOYOGOUCg8ffp0S0uLh4eHqqq8FzM4OPju3buXLl3CcogqOmYCgbB58+b4\n+PhvvvkGX4lYWVl58eJFRZtSwubNm2NiYi5duuTp6YkXhoSEFBUVJSYmKt1sf66tioqKi4tLVFTU\nuXPnBALBhg0b5O8XSykKAAAAgOEy3oNRVVVVKpV648YNJPIAEPYiLy/P3d1ddO3jzp07c3Nz09PT\n2Wz2ihUriERiXl7evXv3jI2Nd+/eLX+nkydP/uKLLwIDAz/77LPr16/L2IuoLzt37iwoKEhOTi4v\nL1+0aFFdXR2DwVi6dKnoQ+WDZPv27VlZWZGRkaWlpTY2Njwej8lklpSU2NnZKfcEFaaf19bZ2Tkm\nJuby5cs2NjZSF+wCAAAAYGQa77fpEULYjfgpU6aYmppiJTNnzsQeD8Lv0WO0tbWvXbvm6upaUVER\nERERHh7++++/Ozk5Xb9+HU9jJKc1a9Y4ODgofbP+3XffvXr1qqura0NDQ2xsbElJyZo1a8LCwvh8\nvtTHngaQjo5ORkaGk5MTi8UKDw8/ceLEgwcP3N3dz5w5I//NcUn9vLaGhoZ2dnYIIXx6e7QKDf3r\nT9EX8ryVp+VBMqiNAwAAGNNg6xcl1dbW9vb2mpiY9H9T+H7q7OzEcnP+8ccfTk5Ou3bt2r9//xD0\nKxQKa2pqent7p02bpq6uPoAtK3dtPTw8/vjjj8LCQnkeC6NQKE+ePOnHGIdQWJi8KwnkrwnGIfjr\nAcCQG02/a4YVBKOjUmRkZFlZWVxcHIlEwgu//PLL1NTUc+fOLV++HF++eefOndLS0i1btojevJ4/\nf76FhcVQD3owVVZWrl692t3dPTg4WJ76o+k/EPKn8IRkn0AG+OsBwJAbTb9rhtV4XzM6SlEolKSk\npN27d//73/+mUCjPnz/PyMhITU2dO3cutpHp06dPsZotLS1CobC+vr67uxs//K2bP40iRUVFXV1d\n586dU1FR8fLyGu7hAAAAAEAxEIyOSs7Ozq9evYqNjd26dSte6ODgEBISgt3aDg8PxwqPHj1aUVHh\n4+Pz1hz7o9TZs2cfPnyooqISFBSEJ8ZXSFgYwnNSkRGb3Xd+0X5kCwAAAACAdBCMjlY+Pj4+Pj79\naaGlpUVVVVX2A0/t7e3a2toy1m6+efNGU1Oznwtn5RlJXx1duXJFtI6Ghoaiz1FduIC8vBA2WUxm\nMjzZTIanlKgzKQkxGFKSkgIAAACgPyAYHXceP34cHR1dWFjY1dWFECKRSC4uLnv37sViuMjISAaD\ncevWrZiYGDqdzmaztbS0bG1tw8LCsH2SMN3d3d9++21hYWFVVZWuru6SJUvCw8NdXV3nz59/5MgR\nvJ2LFy9OnToVPyotLS0uLi44OBh78l32SOTsCCEkFAoTEhIyMjL+/PNPbW1tKysrd3f3JUuWyLgI\nfD5f9K2n59+S2Eu925+UJN/1/Ts2mz1y9h0FAAAARiAIRseXqqqqrVu3dnV1WVlZmZub83g8Op0e\nGxurqanp5+eHEGpqauJwOOHh4Tk5OcuWLaNSqbm5ufn5+VwuNzU1FWuko6PD19e3pKRkzpw5Xl5e\nra2tDAbDx8enuroa318ea6enp0e097a2Ng6H09HRIc9I5OxIIBD4+voymUwLCwsfHx8ul5udnV1U\nVHT27FkHB4e+rgOXy71w4cIQrDFlMBhMJrM/2wEAAAAAYxsEo+NLSkrK69ev9+/fv2vXLqxky5Yt\ny5cvLyoqwkNAhBCLxbp58yY2FXr48GFHR8cHDx5UVlbOnDkTIfT999+XlJRs3Ljxq6++wmYx6+vr\nt2zZIhZ69n8k8nSUmprKZDL9/Pz27duHlezevdvV1TUwMJDFYsnYUCApKYnJZCKE2OwQOfehT0q6\nkJTE7OtTyYjT29tbsZnRsDDpCTvlXwUhWTM0FBL6jDvy/0WCvx4AgBEAgtHxxczMzNfX18PDAy8h\nkUhqampNTU2i1fz9/fGb8kQicdWqVXFxcfX19TNnzhQKhZcuXZowYcKhQ4fw++lGRkY7d+4MVSTz\n+VtHImdHsbGxBgYGAQEBeImhoeHevXuDgoLodLqzs3NfA/jll1/++OMPhJCa2hEHB4d//3u9aCN9\nWbp0qfznqFBlhBAKCZESGUBqJ6Cofv5FAgAoBduVerhHMSpBMDq+bNq0CXvx7NmzysrKyspKOp0u\ntoASITR37lzRtxMnTkQI8Xg8hFBjY2NjY6O1tfU777wjWkfRvUDfOhJ5OmptbX3x4oWpqWlCQoJo\nnZcvXyKEiouL+wpG1dTUTp48id2mNzVFd+7ckWf60tPTS6EHmLy8vMhkcpJyq00BAACMKgEBAWKT\nGhQKZbgGM7pAMDq+tLe3x8TEZGZmcrlcAoFgZGS0aNEiNp7Z6H+kPtiO7Y/Q0NCAEMK2SxUlFjL2\nfyTydFRbW4sQqq6uPnnypGQXXC63r94nT548NElJqVQqFZ7ABwAAAPoGwej4smfPHhaL5ezs7Obm\nRqFQ/j979x3WRLb3AfxAkA4qUkRQESWI2BAQRUFgMeraG7IIFsQuq2t7LauIXlBXXXUV2+KqWNaO\nvaMgooJYV7CgEKQI0qTXJO8fc+/c3ARCqAPk+3l4fGZOzpw5c86J/JhyRklJiRBy79496Uto164d\nISQ7O1sknYodJaPOrUpZE2l2pKenRwixtbXdsmWL+O5atWpVbZUovr7/XjDiGg3hhh2bWUme0FDc\nXAcAAFD/EIzKkMzMzIiIiO7du/v7+9OJZWVlRUVF4icgq6Kvr6+qqvrmzZv8/HwNDQ06/cGDB8LZ\nqLfVFxUVCSd+/PhR+ppIsyNtbe02bdp8+fJFR0dHeEKo5OTke/fu9e7dW5rjevCAhIb+Z2WIA5c4\nVHqn55AhmGQUAACg/iEYlSE5OTlE7BJ8YGBgRUUFn8+XshA5OTk3N7fAwMDff//d5z+nCuPi4oKC\ngoSzUdOL3r59m81mUynv3r27c+eO9DWRckdubm779u07fvz49OnT6UQfH59Hjx5JOaGSkVHlE4sC\nAABAI0AwKkOMjY21tLSio6PXrFkzcODArKys8PDw169fa2trf/v27dy5c5MnT5amnDlz5jx48ODU\nqVPv3r2zsbFJSUkJDQ0dMmTI7du36TwjRow4cODA4cOHU1JSrK2tP336dPr06YEDBz569Ej6mkiz\no1mzZl29etXf3//Zs2cDBgwoKSkJCwuLioqys7Or6TNVTZT0cxTUZDYDkDkYHgDQVNXsxYnQrLFY\nrICAACMjowsXLixfvvy3334rKyu7dOmSq6trSUmJn5+flOW0bt363LlzU6ZMSU9PP3DgQFRU1OjR\no319fcvLy+mTnaampn5+fiwWKzg4eM2aNVeuXFm5cuX48eNrVBNpdqSurh4cHDx27NiIiIhNmzZt\n27bt1atX7u7uu3fvrul7QZso6e9UxT2tIAGGBwA0WQKQMXw+Pzk5+d27dyUlJXRiYmJibm5uLUor\nLCykFt69e8dms3fs2CH8KY/HS0xM/PLlS91rInlHVGlcLvfz58+lpaXVVpvNZlebpwnZsKGumWtU\nQtMkfgjSpNSu5Cau2VUYoIlo9O9OM/tdw5z6DEbT0tIyMjJqupWPj4+pqWlsbKyEPFu2bDE1NX3+\n/HkdatfYli5dampqmpycXFWGej+oRmslPz+/8ePHi/T1unXr2Gz2nTt3msWOmtl/EDX6o7HSzC3g\nz07xQ5AmpXYlN3HNrsIATUSjf3ea2e8a5tTndUwOhzNzZmWT4kh3drYuGZoguoklZ6j3PdZjgVUx\nNTWNiYlZtGhRZGTk9+/f37175+/vf+bMGXNzc2dn5+a4IwAAAGBK83iAydPTc+zYsTV4x3dz0HwP\nauLEidnZ2QcOHJg2bRqd6OTk5OPjIyf9W9Sbxo5CQ/87ySghxIGEhhIH6Td3cMCdeAAAAHUiGox+\n//5dQUGh0hfw1FFZWZlAIKDmNpegsLBQVVVVJNTQ1dXV1dWtdbHFxcXKysrVhi/l5eUi06RL0xqV\nVlgEn8/Py8tr3bq1cDYJB1VcXCwvLy/hoBqimwoLC9XU1IRTysrKeDyeioqKeObZs2fPnj27uLhY\nSUlJ8nNCNSqWzkD3KbWjSrOJ91cthIURIvRoh8PMmUN8HhCp/0JwdEQwCgAAUCf/DiNiY2MXLlzY\nu3dvGxsbS0vLQYMG7dy5k57x0d/fn8PhpKWlCW95/vx5DocTHh5OCJk/fz6HwyktLU1ISOBwOMOH\nD6ez8fn8wMDAcePGWVhYWFhYjB49es+ePTweT6SbZVsxAAAgAElEQVQeAoFg+/btTk5O/fr169+/\nv6enZ0xMDP3poUOHOByOcIo0xZaVlf3222+jR4/u16+fjY3N0qVLCwsLR40a9euvv1IZ1qxZM3r0\naELIjRs3pk2bZm1tLU1r7N69m8PhxMXFSagwrbCwcOPGjdbW1jY2NhYWFgsWLMjIyKjqoHg83q5d\nu0aNGmVpadmnTx9HR8fAwMCysjI6g+SK1RTVrWVlZTt27HB2du7Xr5+dnd2+ffsIIW/evPHw8LCy\nsurbt6+zs/P169eFNxQIBIcPHx41ahR17PPmzaMmbKpjsdX2qXh/+fn5cTichw8fihzaunXrOBxO\nYmJiVccuPBu/kRFxcPj3DyH/Xa72p75OanO5XPE3sgIAAMgIBULIp0+fpk2bVlpaamVl1bt375KS\nkhs3bhw4cEBZWXn+/PmEkMzMzMTExIqKCuEt8/LyEhMTCwsLCSHt27cvLy9PSkpq1apVp06d6FNl\nFRUVXl5eT548MTAwcHV1lZeXDwsL27t3b0RExJEjR4TPjW3atCk2NtbOzm7UqFEfP358+PChm5vb\nrl27HB0dCSHZ2dmJiYmlpaXSF1tYWDhv3ryoqKgePXrMmDEjNzc3NDR09uzZCQkJHTp0oMpJT0//\n8uVLZGTk8uXLBQJBx44dpWmNnJycxMTEdevWSagwbf369Vwud9iwYRoaGnfu3AkJCcnKyjpz5oz4\nQZWWls6cOfP58+fGxsZTpkwpLS198ODBtm3bYmNjd+zYIScnV23Faorq1mXLlr1+/drJyUlZWfnK\nlSu7d+8uKCg4ffq0hoaGq6trbm7u1atXV6xYYWRkZG5uTgjh8/nz5s0LCwuzsLCYPXt2VlbWrVu3\nHj169Mcffzg5OdW6WGn6VLy/Bg8eHBQUdP78eXt7e/q4CgoKLl++bGxs3Llz56qOnXqpfRMRGhoa\nFhYm5RT9AAAALY1AINi0aRObzT5w4AD9zE1iYiKbzXZzc6NWf/nlFzabnZSUJPzo0+HDh9ls9s2b\nN+mU3r17jxo1SjjPsWPH2Gy2p6cnPS9PSUnJwoUL2Wx2QEAAleLj48Nms/v06RMdHU1vGBoa2qNH\nDwcHB+qK7ebNm9lsNv2cuDTFHjhwgM1mr127lsfjUSkpKSkODg5sNnv27NlUiqenp5mZ2YABA7Zu\n3VpUVEQlVtsa0lSYbjQnJ6dv375RKTwez9HRkc1mf/z4Ufyg/vrrLzabvXjx4vLycvqgqAq/fPlS\nmoqJFFgtqoYjR47MycmhUl69esVms9ls9pYtW+h2CwgIYLPZBw8epFZPnTrFZrN37txJl5Oammpn\nZ2dhYUG1Ye2KlaZPxfuLx+M5ODj06tUrPz+frs+lS5fYbHZQUJCEYyeEODg4ODg4GBkdmTFD6AMj\nI0FCgpQNmJAgIETgUDXxTSrNZmRkNIOuxIYNAkKk+tmwoQaZqyqhaarjcUk4zBo1b1PQ7CoM0EQ0\nje8OnqaXkgIhhM1mz5s3z8PDg45QtbW1W7VqlZmZWcdI9+DBg61atdq0aZOqqiqVoqSktGHDhkeP\nHgUGBs6dO5fFYlHpU6ZMsbS0pDccMmTI6NGjg4ODb968OWbMmJoWKy8vf/z4cVVV1ZUrV9KnaTt0\n6DBnzpwN//saEh6PZ21tvXLlSjpFytaQssILFizQ0dGhluXl5UeOHHno0KHU1FQTExORgwoMDFRQ\nUPj1118VFBTog/L19b1+/fr379+lr1hNLVmypE2bNtRynz59FBUVy8vLp06dSreblZUVIYS+u+DA\ngQN6enre3t50Cfr6+osXL16zZs2NGzcmTpxYu2KlHCoi/SUvLz9p0qQ//vjj9u3b9K6vX7+uqKgo\nPmxEfPr0iRCSl5dz8WLw48erFi1aJHxQ0vOpyU2jlWYOCwv772V6H59K7kKVkyNVzZMgZWYJJTRB\nUjaCNCm1K7npaHYVBmgimPju7NmzZ+/evQ1XfgumQAhxcXGhVpKSkuLi4uLi4m7cuFFeXl7HonNy\ncjIzM3v06EFfFqdoa2v37Nnz2bNnqamp1JVxQgh1hVeYo6NjcHDwhw8falGskpJSRkaGtbW1pqam\ncJ5K3w85ZcoU4VUpW0PKClPXoGlt27YlhJSUlIhs+/3798zMTAsLC21tbeF0e3t7+gJ0A3WTqamp\n8KqysnL79u0NDQ3pFOHnqHJzc9PS0rp06fLXX38Jb/Xt2zdCSGRkJB0R1qjYGg0Vkf6aNGlSQEDA\nlStXqF3n5uZGRERwOJzWrVtLOGoVFZWkpCRCiK8v4XLJkSPjJWSWzIG61bQBMgMAQDPi7e0tclJD\n5FchVEWBEFJQULBv375Lly5lZWXJycl16NDBxsam7k9UpKSkEEJEwguKgYHBs2fPUlJS6AiDPn1I\no540T01NrUWx1OPbWlpaIhlEYlOKcIREpG4NKStc6QPvArG/zKhbGMXLrEXFakp8HgAJT8dT9UxI\nSNi+fbv4p1lZWbUrtkZDRaS/9PT0hgwZEhoamp6erqend/v27YqKCjomrgpdWlNAXaxnuhYAAADM\nUCCE/PzzzxERERMnTnR1dTU1NaVOWd27d0/yluKn90RQoRV9HVYYlSg8sVFWVpaxsbFwnpycHEJI\nu3btalGssrIyISQ7O1skQ3p6uvhW1NlKmpStIX2FpUHVITc3V0Ke2nVT/dLT0yOE2NrabtmyRfzT\nWk+0VKOhItJfhBAXF5f79+9fu3Zt1qxZN27c6NChg62trZS77tyZHD1KunT596oP1+GYI+FKty2e\ngAcAAKg7hczMzIiIiO7du/v7+9OpZWVlRUVF9JlFRUVF8r+z4RBCPn78KLloPT09dXX1jx8/5ubm\nCl8zLSoqiomJUVBQ6NSpE5349OlTemYlSlRUFCFEfE54aYplsViqqqpv3rzJz8/X0NCg8zx48EBy\nnaVpjZpWWBr6+vqKiorUW9qpSJpy6tSpzZs3e3t7T5gwQcqKNShtbe02bdp8+fJFR0dH+ExncnLy\nvXv3evfuXbvK1GioiLO3t9fX17969erYsWOjoqLmzZsneepTYTNmiMzQdKRG04Y2w1cWAAAANC3y\n1Pk8kavJgYGBFRUV9ASW7du3J4Tcvn2bzvDu3bs7d+6IlCUnJycy06e7u3txcfHWrVvpogQCwc6d\nO79///7TTz/RT+oQQk6cOCF8xZnL5V64cEFNTW3UqFHila62WDk5OTc3t9LS0t9//53eKi4uLigo\nSHJzSNMatahwteTl5ceMGZOXl3fo0CE6kcfjUfOM2tnZSV+xhubm5pacnHz8+HHhRB8fn82bN1d7\nslwC6YeKOBaLNWnSpHfv3u3du5fP50+YMKFGu5Z+YtGGm2oUAABAZikYGxtraWlFR0evWbNm4MCB\nWVlZ4eHhr1+/1tbW/vbt27lz5yZPnjxixIgDBw4cPnw4JSXF2tr606dPp0+fHjhwoPBU54QQXV3d\n+Pj45cuXt23bdu3atYSQOXPm3Llz58KFC1wud/jw4fLy8nfv3n369KmBgcGiRYuEt1VSUnJxcZkw\nYYKJiUl8fPzFixfz8vJWrVpFP5EtTJpi58yZ8+DBg1OnTr17987GxiYlJSU0NHTIkCHCIbU4aVqj\nFhWWxuLFi0NCQgICAj59+jRw4MDExMTbt2+npqa6urqamZnxeDwpK9bQZs2adfXqVX9//2fPng0Y\nMKCkpCQsLCwqKsrOzq7S58OkJP1QqdTEiRP37dv3999/DxgwQOSm0pbgf6eAqE3mGpXQNIkfgjQp\ntSu5iWt2FQZoIvDdaaoUWCxWQEDA6tWrL1y4cOHCBRaLZWlpeenSpeDg4L179/r5+U2ePNnU1NTP\nz8/f3z84ODg4OFhbW3vlypUaGhoiweiyZcu2bNly48YNQggVjKqpqV28eHHz5s03btx4/vw5lTJ2\n7Nh169YJXz0nhGzduvXMmTNBQUHUuVUDA4Ndu3aNGDGi0kpLU2zr1q3PnTu3devW8PBwajai0aNH\nL1u27Nq1axLeoilNa9SiwtLQ1dW9evXq+vXrHzx4QEXMKioq3t7ec+bMqVHFGpq6unpwcPCmTZvu\n3r179+5dQoiioqK7u/vSpUulvzguTvqhUil9fX07O7vQ0NBJkybVug5NV41eOVpp5hbw0lLxQ5Am\npXYlN3HNrsIATQS+O00WNd0on89PTk6m7lmk5yBNTEzMzc2lV3k8XmJi4pcvX2o3o2lSUhKXy+Xz\n+RLy5OXlvX37Njs7u36LpedRf/fuHZvN3rFjh+QyJbcGNel9TExM7SpcrYqKiri4uC9fvlRUVNSo\nYo2Mz+dzudzPnz+XlpbWb8nS9Kk4d3d3Kyur4uJiaTI3iYmI6ZmWazTlMuY2r52Gazf0CABUoUn8\nrmkO5AQtdPJkf3//6OjoQ4cOCc/cuX79+jNnzuzdu3fo0KG1LnnDhg1///13cHBwjx496qOmDULy\nuyX79u1rYWHRaJWpR1u3bj1y5MipU6f69esnnB4XFzdq1Ch3d/d169ZJU46pqan4FLaNjZ5+uUbz\nMGPC89ppuHZDjwBAFZrE75rmQNJzIc2aqanpsWPHFi1a9Msvv5iamn79+jU4OPjMmTPm5ubOzs5M\n167BxcfHS/hUwkvbmzjqTyjhlEePHpWWlu7du5fFYs2YMYOhegEAAEAttdhgdOLEidnZ2QcOHJg2\nbRqd6OTk5OPjIz4fe8uzadMmpqvQIDw9PceOHSs8f9Yff/zx+vVrFou1Zs2amk5lHxpKZs7897ID\nCeUSIy4xEs7g40MQ3wIAADSoFnuZHpqywsJCVVVVCX8VfP/+XUFBQcKjZuIKCgrU1NSk/EuDunRy\n9Cg5doxQdzQYzXTkOkwn02fQeY4dI6RB73fHZfrGhMv0ANDocJleSrV//BlAert37+ZwOHFxcdu3\nb3dycurXr1///v09PT1jYmKEs8XGxi5cuLB37942NjaWlpaDBg3auXOn8ESqhw4d4nA41Fb+/v4c\nDqe8vHz37t3Dhg2ztLS0sLBYsGBBpW9yEpGXl0ctGBn9+4cQYtT5v6vSTyAaGhoaGhoqbW4AAAD4\nXy32Mj00KTk5OYmJievWrYuNjbWzsxs1atTHjx8fPnzo5ua2a9cuR0dHQsinT5+mTZtWWlpqZWXV\nu3fvkpKSGzduHDhwQFlZef78+VQ52dnZiYmJpaWlhJDMzMzExMRNmzbdvn37hx9+cHBwuHPnTkhI\nSFZW1pkzZyTXJysri8vlkv+9KF87x44dMzIywsvlAQAAagdnRqHxvH///siRIwEBAUuXLj1w4MD+\n/fsrKio2btxYXl5OCDl9+nR+fv6iRYuOHDnyyy+/rF69+uTJk4QQkelsRURERFy7ds3f33/16tUh\nISEGBgavXr2Ki4urtjKOjo4z6TtGq3D06NEuVavBkfv6Ejk50R9CRBeEf3x9q9lKJDPQGq7d0CMA\nAA0AZ0ah8UyZMsXS0pJeHTJkyOjRo4ODg2/evDlmzBg2mz1v3jwPDw86g7a2dqtWrTIzMyWUuWDB\nAh0dHWpZXl5+5MiRhw4dSk1NNTExkVyZioqK9u31Ll4Mfvx4FSHkeFJS/+nTRfI4ODj4+DjU5BCr\n4ONTyc2n0twzKmErqIrk1m6aJQNA87dnz569e/cyXYtmCcEoNB4nJyeRFEdHx+DgYOr+bhcXFyox\nKSkpLi4uLi7uxo0b1ElTCczNzYVX27ZtSwgpKSmRvJWmpmZ4eHhoqFFYGDlyZDxVFfFsRkZG1d48\nOmTIkOozAQBAS+ft7e3t7S2cYmpqylRlmhcEo9B46FOYNF1dXUJIamoqIaSgoGDfvn2XLl3KysqS\nk5Pr0KGDjY0Nl8uVXGalT9xXO0dEu3bt6iuCxOSmAAAAdYFgFBpPVlaWsbGxcEpOTg4hpF27doSQ\nn3/+OSIiYuLEia6urqampkpKSoSQe/fuNVx9HBzIzJnk6FFCCJlBpnNDjUL/9yZSie+xAgAAgHqA\nYBQaz9OnT62trYVToqKiCCFGRkaZmZkRERHdu3f39/enPy0rKysqKtLS0mqg+hgZkYQEem1GpRkA\nAACgQSEYhcZz4sSJ0aNH09fHuVzuhQsX1NTURo0aRU0OKnLNPTAwsKKiQnie0XqHcBMAAIBZCEah\n8SgpKbm4uEyYMMHExCQ+Pv7ixYt5eXmrVq1q06aNhoaGlpZWdHT0mjVrBg4cmJWVFR4e/vr1a21t\n7W/fvp07d27y5MlMV7++bdggulCjraBGGq7d0CMAAHWDYBQaz9atW8+cORMUFMTj8QghBgYGu3bt\nGjFiBCGExWIFBASsXr36woULFy5cYLFYlpaWly5dCg4O3rt3r5+fXwsMRulJgmr0ytEGfD9pi9Zw\n7YYeAQCoG7ybHhrDhg0b/v777+Dg4B49euTn53/58qVDhw7UNEzCBAJBampqfn6+mpqaioqKtrY2\nIeTLly9t2rTR1NSsx/o07/cF+/oSH59//1uLDaVPb0lk4RgBoIlp3r9rGhGCUWgMwsGoNPn79OnT\nqVOnq1evNlB9mvd/ENQs67WYa72qTWRh2nZZOEYAaGKa9++aRoTXgQIAAAAAYxCMQv0oLCwUSSkr\nKysuLpawSVlZWWlpaS32JeWG1b69icsVepe4nG8XOa74O8ZFfrp0IaGhtagyAAAAVA7BKNSSv78/\nh8MpKyvbsWOHs7Nzv3797Ozs9u3bRwh58+aNh4eHlZVV3759nZ2dr1+/vmHDhg8fPlDX6Pl8fmBg\n4Lhx4ywsLCwsLEaPHr1nzx7qkSZCyPz58zkcTmlpaUJCAofDGT58OL1HyRsSQtasWTN69GhCyI0b\nN6ZNmyYyp6k4LpcYGRGBgAgExMfoaMIDLrUs4cfIiFT3TigAAACoATxND7WUmZmZmJi4bNmy169f\nOzk5KSsrX7lyZffu3QUFBadPn9bQ0HB1dc3Nzb169eqKFSuMjIyol8hXVFR4eXk9efLEwMDA1dVV\nXl4+LCxs7969ERERR44cUVFRad++fXl5eVJSUqtWrTp16iQv/++/l6rdkBCSnp7+5cuXyMjI5cuX\nCwSCjh07VlX5rKysxmklEb6+vj54jAYAAEAIglGok4SEhCtXrrRp04YQMmLECBcXl8OHD3t6eq5Y\nsYKKIzt37rx79+6IiAgqGD116tSTJ08GDx68Z88eVVVVQsjy5cuXLVt29+7dI0eOLFiwgIrV+vTp\nY2hoGBgYSO+o2g2pbOXl5UuWLJkxY4a3tzcVoYrjcrl5eXlcLvXee6OaHnJiIlfCyVHxV94L5z56\n9Oj06dPF8wAAAMgsXKaHOlmyZAkViRJC+vTpo6ioKCcnN3XqVPqMppWVFSGEesESIeTgwYOtWrXa\ntGkTFVASQpSUlDZs2KCiohIYGCh8zV2ElBvyeDxra+uVK1dWFYlSysvLu3TpMnPmzJSUFFNTU1NT\n05SUFCkPecMG3y5VE88v/KmkMLZSvr6V3LhKyH//Ffnx9a1+QynT6aKaHemPvfkeIwA0PXv27DH9\nX0zXqNlAMAp1IvJlU1ZW7tixo6GhIZ2ipKREL+fk5GRmZpqYmHTo0EF4K21t7Z49exYWFqampla6\nlxptOGXKlGqr3apVK4FA8ODBAwMDgw8fPnz48MHAwKDarShHjhwRVE08v/CnNT4n6uNTyY2rhPz3\nX5Ef4Yn0q9pQyvTmezuB9MfefI8RAJoeb2/vD/+L6Ro1GwhGoU7kqHNOQuhzouKos48iASWFigWr\nOj1Zow2FQ+Gq6OnpVZunIfj4+OAaPQAAgDAEo9B4dHR0iNAle2FUoq6ubt03FH+xkwgjIyP6Wj8h\nhMv99wPy1ILknzqaMWNGXYtoMHv27GG6Ck0LGkQEGkQEGkQc2gRqB8EoNB49PT11dfWPHz/m5uYK\npxcVFcXExCgoKHTq1Kl+N5TMyIg4OBBHR+LoSHyJj6OvA7Us4YeaDapF2rt3L9NVaFrQICLQICLQ\nIOLQJlA7CEahUbm7uxcXF2/dupXP51MpAoFg586d379//+mnnxQU/j29g5ycnMjDTFJuWCNGRuTI\nEZKQQBISiE/CDGqh2h8Hh9ofPgAAAIjA1E7QqObMmXPnzp0LFy5wudzhw4fLy8vfvXv36dOnBgYG\nixYtorPp6urGx8cvX768bdu2a9eulX5DAAAAaF4QjEKjUlNTu3jx4ubNm2/cuPH8+XMqZezYsevW\nrdPQ0KCzLVu2bMuWLTdu3CCEUMGolBvKhA0b/vtvLTaUPr0lkYVjBABonuQqnYwGoGXD9G8AANAI\nMMGTNBCMAgAAAABj8AATAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAA\nAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwRoHpCgA0\nnnv37l27du3Tp0/q6upsNnvWrFmdO3dmulKN58aNGw8ePBBJbNeu3apVq4RTWnwr5ebmjh8/3tPT\n093dXfzTag+/5bWPhAaRZsy0pAa5dOlSWFjYx48fNTU1e/bs6eXlpaenJ5JH1kZItW0iU4OEx+Od\nPHny8ePHCQkJ2traffr0mTlzpo6Ojkg2WRskdScnEAiYrgNAY/Dz8wsKClJSUurRo0deXl58fLyS\nklJAQMDgwYOZrlojWbhw4f3799XU1IQTO3TocOXKFXpVFlppx44dhw4dWrp06dy5c0U+qvbwW2T7\nSGiQasdMi2kQHo/n7e0dEhKirq5ubm6elpaWmJiorKx8+PBhKysrOptMjRAp20R2BklFRcWMGTOe\nPXvWrl27rl27/vPPP8XFxWpqahcuXOjSpQudTaYGSb0RAMiAp0+fstlsZ2fn5ORkKuXWrVtmZmb2\n9vbFxcXM1q3R/PDDD25ubhIytOBWqqioSEhICA0NXbJkCZvNZrPZBw4cEMlT7eG3pPaRpkEE1Y2Z\nltQgJ0+epE5Q0TU/e/Ysm822s7MrKyujUmRqhAikaxOBLA2So0ePstns//u//ysvLxcIBCUlJZs3\nb2az2dOmTaPzyNogqS+4ZxRkwoULFwghy5cvNzAwoFKGDRs2fPjwtLS0iIgIRqvWSIqKipKTk83M\nzCTkacGtFB8fP2zYsDlz5ty4caOqPNUefktqH2kapNox05Ia5OjRowoKCv7+/srKylTK5MmT7ezs\n0tPTP378SKXI1Agh0rWJTA2Sy5cvq6qq/vrrrwoKCoQQJSWlOXPmKCoqvn79ms/nU3lkbZDUFwSj\nIBMiIyNZLNaQIUOEE3/44QdCyNOnTxmqVKP6+PGjQCDo3r27hDwtuJX09fX/+A8vL69K81R7+C2p\nfaRpkGrHTItpEIFAkJqaampqqqurK5xOXXtNTk6mVmVqhEjZJrIzSPh8flZWloWFhbq6Op2opaWl\nqampqKgo+M8djzI1SOoRHmCClq+8vPzbt2+Ghob03/eUrl27EqH/VVu2Dx8+EELat2+/bdu2t2/f\nqqiomJqaenh4aGtrUxladiupq6sPGzaMWqbOaoio9vBbWPtU2yCkujHTkhqEx+P5+vqKP6v06dMn\nQoiRkRGRvREiTZsQWRok8vLyYWFhIolXr17NzMycOHEii8UisjdI6hGCUWj58vLy+Hx+69atRdKp\nlNzcXCYq1dio3xlLliwpLS01MjJKSkp68ODBqVOndu/ebWtrS2S+lao9fBlsH8ljpiU1iIKCwsSJ\nE0USHz9+/OTJk27dunXr1o3I3giRpk2ILA0SYW/fvg0JCYmJiXn48CGHw/n111+pdFkbJPUIl+mh\n5SsvLyeVnf6hUqhPW7wPHz7Iycl5eXlFR0dfvXr1+fPnS5YsycvLW7VqVUFBAZH5Vqr28GWwfSSP\nmZbdIHfv3l2wYIGSktKmTZvok15EtkeIeJsQWR0kr1+/Pnz4cFhYmEAgaNu2LY/Ho9IxSGoNZ0ah\n5RP+XSKMSqH/V23Zdu3aVV5e3qFDB2qVxWLNnz8/Pj7+ypUrt2/fFr7MJLKhjLRStYcvg+0jeczY\n29uTltggeXl5mzdvvnjxora29u7du/v160ely/IIqapNiKwOkqlTp06dOjUvL+/cuXM7duy4f//+\nlStXtLS0ZHmQ1BHOjELLp6KiQggpLi4WSadSqE9bPB0dHfoXBo3D4RBC4uLiiMy3UrWHL4PtI3nM\ntMgGuX///o8//njx4sWRI0deu3ZNeDZNmR0hEtqEyOQgoWlqas6aNWvmzJkZGRnh4eFEhgdJ3SEY\nhZZPXV1dQ0MjKSmJvphC4XK5hBB9fX1mqtW4+Hy+QOwNF9RjoVlZWUTmW6naw5fB9pE8Zlpegxw5\ncmT+/PmKiorHjh37/fff27ZtK/ypbI4QyW1CZGmQxMbGrl+//t69eyLp1HPxjx8/JrI6SOoFglGQ\nCWZmZmVlZTExMcKJL168IIT06NGDoUo1Hi6Xa2ZmtnTpUpF06uED+lkEGW+lag9fptpHmjHTkhrk\n/v37W7ZssbKyunLlyoABAyrNI2sjpNo2kalBIhAIzpw5ExAQIJKenZ1NCGnXrh21KmuDpL4gGAWZ\nQF022rZtG53y9evXkydPslgsJycn5urVSDp37qylpXX//v3379/Tid+/fz98+LCCgsLQoUOpFBlv\npWoPX6baR5ox02IahMfjbdmyRUND4+DBg8KzSIqQqREiTZvI1CDp2rVr69atY2NjY2Nj6cTS0tI/\n//yTEGJpaUmlyNQgqUd4gAlkgqur6+nTp6OioiZMmDBy5Mj09PTr168XFxfPnj1b/IanlkdOTm7D\nhg0///yzq6vrTz/9ZGpqSv33l5GRsXjxYmNjYyqbjLdStYcvU+0jzZhpMQ3y6dOnxMTETp067dy5\nU/zTmTNnGhoaEhkbIdK0iUwNEmVl5V9//XXFihUeHh7u7u7GxsZpaWlnz55NTk4eMWIENWs9kbFB\nUo/kxO/2AGiRMjMzN27ceO/ePepmHTU1tZhLe1EAACAASURBVHnz5s2aNUt2HmC8f//+9u3bP3/+\nTAiRk5Pr1KnTihUr6NOiFFlopZCQkAULFixdunTu3LkiH1V7+C2yfSQ0SLVjpmU0yLlz5+ipIsWd\nPn3awsKCWpadESJ9m8jIIKHcv39/69at1C2ehJC2bdt6eXl5eHgoKSnReWRnkNQjBKMgW8rLy7lc\nrpqamr6+vpycHNPVYcD379+/fv3aqVMnNTW1qvLIeCtVe/iy1j7VjhlZaxCMEHEyNUjy8vKSk5N1\ndHR0dHSqyoNBUiMIRgEAAACAMXiACQAAAAAYg2AUAAAAABiDYBQAAAAAGINgFAAAAAAYg2AUAAAA\nABiDYBQAAAAAGINgFAAAAAAYg2AUAAAAABiDYBQAAAAAGKPAdAUAZFpGRsbLly/fvHnzzz//sFgs\nAwMDc3PzsWPHqqioNMLer1y5kpeXN3HiRGp3cXFxkZGR5ubm9FunQdzq1au/fv165MgRyW/wY7Zn\nCTqXUeXl5ZGRkREREQYGBu7u7lJu9fLly5iYGGtra1NT0watXouBUd1iIBgFYMzFixc3bNhQWloq\nkr5r164lS5a4uro2dAX27t2bmJg4bNgwKl6Jjo7etGmTl5dXQ/zPfu3atfT09PHjx2tpadV74Y0m\nKSkpODh4xowZkiNRxnuWoHOZ8/nz5ylTpuTn5xNCTExMqgpGxRvt/v37hw4d+vXXX5tFMNoUOr1B\nRzU0JgSjAAzg8Xh+fn4nT55ksVhubm42NjYWFhZ8Pv/z589nz569c+eOj48Pi8WaPHlyY9ZKXl5e\nUVGRxWI1ROEnT5588eLFoEGDmnW8cv78eYFA4OLiUlWGptmzBJ3biE6cOJGfn+/s7Ozt7d2qVauq\nsjX3Rmvu9YcmBcEoAAMuXbp08uRJZWXl33///YcffqDT9fX1Bw8efOrUKV9f3/Xr19va2hoYGDRa\nraZMmTJlypRG212zw+PxLly4YGVlZWxsXFWeptmzBJ3biJKTkwkhbm5u3bt3Z7ouAM0DHmACaGzl\n5eUBAQGEEB8fH+F4hebm5jZw4EA+n3/t2rWqCikoKBBJ+f79e2JiYk5OjoRdl5aWJiUllZWV1bTO\nPB4vPT1dmpxlZWVpaWkCgaCmu2j6QkNDMzIyJJwWrZeeJU21c1twz9aIQCD4+vVrRUVFVRn4fD4h\npO43B2dlZX39+lVyg0v/xRRXbYfWpfBaqLZhRYh/TaD5QjAK0NiCg4NTUlL09PTGjBlTVR4vL68x\nY8ZQv9UIIdu3b7e3t3/9+nVmZubKlSsdHR3XrVtHfZSTk+Pv729tbW1jY8PhcAYMGDB06NDTp0+L\n73TChAn9+vVzdna2trZesWJFRkaGSJ5Lly7Z29vv379fOPHFixc//fRTv3797O3t7ezsli1bFh8f\nL5zh0KFD9vb2jx49evHixdSpU62srIYMGdKvX79ff/21qKiIEDJ37lx7e/t//vmHEOLp6Wlvb09F\nbM3O2bNnNTU1hw8fXlWGWvQsacKdW23PkhbUudKIiopyd3e3tLR0cHCwsLCYMGHChQsXhDMsX77c\n3t4+KiqKELJw4UJ7e/uDBw+Kl1Nto92+fXv48OG2trYODg4iDU6r9ospTpoOlabwSut/6tQpe3t7\neuhSLly4YG9vP2rUKOGQNzMzc8iQIRMmTJC+YYnEr4mIo0ePUjv9/Pmz5AaBpgOX6QEaW3R0NCFk\nwoQJCgpVfgEHDx48ePBgejU/Pz89Pb2goGDRokUvX74khPTv358QUlRUNGvWrJiYGA0NjcGDB3fs\n2DE+Pj4qKsrHx0dDQ2PkyJHU5ps2bTpx4gSLxerZs2e3bt3i4uKuX7/+zz//FBYWCu+0uLiY2gud\nEhQUtGXLFgUFBRsbGx0dnX/++efatWtPnz4NCgrq2rWrcN0iIyNPnjypo6MzbNiw1NTU58+fnzt3\nrqCgYNeuXSoqKhoaGrm5ueXl5aqqqkpKSkpKSvXWmo0lLS0tPDzczc1NQuVr0bOkCXdutT1LCGkZ\nnSuNP//88/fff+fz+T179uzevXtSUlJ0dPSaNWseP368bds2eXl58p/WyMvLo5ZVVFQqbQ3JjRYe\nHh4WFmZkZDRmzBjxBqdI88UUJ02HSlN4pfW3sbHx9fW9ffu2r68v1RrUsaSnp6enp8fFxbHZbCrx\n8ePHaWlpQ4YMkb5hSdVfExH79+/ftWuXjo7O77//LqEpoMkRAEDjcnFxYbPZly9fln6T9evXs9ns\n0aNHW1lZBQcHZ2RkUOnnzp1js9leXl4VFRV05oCAADabvWzZMmr1yZMnbDbbwsIiMjKSzhMdHd2/\nf382m81ms799+0Ylnjp1is1m//bbb9Tqp0+fevTo4eDg8PnzZ3rDY8eOsdnsoUOH8vl8KmX79u1U\nOTt37uTxeFTiy5cv2Wx29+7d09PTqRRXV1c2m/3u3Tvpj7pJ2bt3L5vN/vjxo4Q8tehZQRPuXCl7\nVtD8O7dasbGx3bt3Nzc3v3btGp346tWrQYMGsdls6rE2mqenJ5vNfv78ueQyxRtNygaX8ospTpry\npS9cvP7Dhw9ns9mvXr2iU2xtba2trdls9rFjx+jE5cuXs9ns8PBwQU0attKvicio3rFjB1XP5OTk\nqhsemiJcpgdobFwulxAi8vxKenr68soI30H18ePHEydOjBs3Tltbm0pJS0szMzObPn268FPStra2\nhJDExERqlboCOG/ePOETCZaWlsuWLZNczx07dlRUVKxbt074eZ1p06Y5OzsnJiZGRkYKZ+7evfvi\nxYvp0xh9+/bt0aMHn8//8uWLdK3SpPH5/PPnz/ft29fExERCtlr3LGnCnduye1ZKO3fu5PP5Hh4e\n9AlpQkifPn1Wr15NCNm1axePx6uvfVXb4DX6Yta0/LoUzuFwCCERERHUakJCQmZmpru7u7KyMr2h\nQCB4/PixhobGgAEDSM0bVvxrQhfr5+d38ODBHj16/P333438dCDUHYJRgMZGRSEi/8nm5eVdrYzw\nzYWOjo4iExAuWrTo0qVL9GVfHo/38ePHAwcOCOehbu0aO3asSDXGjRsnYd4ZQsiLFy8UFBR69OiR\n/b9sbGwIITdv3hTOPHjwYJGpN7t160YI+f79u4RdNBcRERGpqakSHl2i1LpnSRPu3Jbds1Kirgv/\n9NNPIuk//vijpqbmt2/fUlJS6mtf1TZ4jb6YNS2/LoVTwWh4eDi1+uzZM0KIvb29hYVFVFQUNeA/\nfPiQmZnp4OBA3cpS04YV/5oQQng83rp164KCglgs1sGDB9u1aye5BaAJwj2jAI3NxMTk5cuXXC5X\n+GxWp06dgoOD6VWBQODi4iJy8qxnz57ipRUXF9+4cSMyMvL9+/dcLre0tFQ4CsnIyCguLlZSUtLT\n0xPZUFFRsUOHDvQ5NhHZ2dnUs9v0rV0iRB6zFS+/JTl79qy6uvqPP/4oOVute5Y04c5t2T0rjays\nrLy8PEVFRUNDQ5GP5OTkjI2NX716xeVyO3XqVC+7k9zgNf1i1qj8OhZubm7eoUOH169f5+fna2ho\nREVFqaqq9urVy8bG5smTJ+/evTM3N3/06BH5T9hai4at9Gty5syZoqIiZWXlkpKSffv2bdiwQUIl\noWlCMArQ2KiQ5e3bt8Jn2pSUlHr06EGvpqWlUfGKQOgp1Pbt24sUFRsbO2vWrOzsbAMDA2tr6xEj\nRnTr1k1XV5cumdq8qudpJEyBTp3GUFRUHDZsWKUZunTpIrwq+Y1EzVpmZmZISIiLi0u1k/XUumdJ\nE+7cFtyzUqL6i8ViVdoUVDtLPyFRtSQ3eE2/mDUqv+6Fczico0ePPnnyhMPhPHv2zNLSksViUVfk\nqfd2RkREKCsr29nZkVo1rPjXhBBSVFTk4uIyderUSZMmnT59etiwYQMHDpRcT2hqEIwCNDZHR8ez\nZ89eunRp4cKFVZ2lqPTeLEVFRZGUpUuXZmdnL1myZP78+XRiXFwcvayrq6uiolJYWJiVlSVy9YrH\n4339+rWqSmpra2tqahYWFm7durWBXtvTXAQHB/N4vGqv0ZM69CxB5zZhenp6qqqqRUVF6enp4sEQ\ndaOwkZFR41SmQfuu7oVTwWhERISZmVlaWpqHhwchpFevXqqqqk+fPnVzc4uOjra3t6f+rqtFw4p/\nTQghw4YN27RpEyFk3rx5e/bsWbNmzbVr19TU1GpRf2AK7hkFaGxOTk62tralpaW//fabyI2DlMLC\nwu3bt1dbTk5OTkJCgpKS0qxZs4TTRWbX69WrFyHk0qVLIpvfuXOnuLhYQvk9e/bk8Xj04wi0EydO\nuLq6ihfYIgkEgnPnzpmbmwuf3axKffUsQec2Mebm5oSQy5cvi6Q/evQoKytLU1Ozvq7RS6NB+66O\nhVtYWGhra4eHh1OTrVJ3miooKFhaWkZHRz958qSsrIy6Rk+pl4bt2LEjtTBv3jxTU9PU1NTffvut\n2q2gSUEwCsCANWvWtGrV6tq1a/Pnzxd5j0hcXJy7u/u3b9+qLYS6vFVWVpaZmUknJicnb9u2jRBS\nXl5OpSxYsIAQcvDgQepZAUpiYmK1/19TG/r5+Qk/N52amrp9+/aXL19SYZD0qKvJ4nN3N3GRkZGJ\niYnSv0izXnqWoHObmJ9//pkQcvDgQeqhHMqXL182btxICFmwYIGEmWWrUutGq9++q3XhldZfXl7e\n2dk5JSXl3Llz6urq9J9wAwYMKCwsPHjwoIKCgqOjI52/fhtWQUFh8+bNLBbr9OnTjx8/rslxA8Nw\nmR6AASYmJqdOnfrll19CQ0Pt7Ox69+7dp0+fwsLCDx8+vHr1Sk5ObuPGjcHBwcIRhjhNTU0LC4sX\nL164urqOHj1aWVn58+fP9+/f79WrV3p6ekJCwvbt25cvXz5w4MBJkyadP39++vTpgwcP7t69e3x8\nfERERNu2bbW0tLKzs6sq39ra2sXF5ezZs+PGjbO3tzc2No6JiYmMjCwuLvby8qrphNIdO3aMior6\n+eefu3XrNnz4cFdXV0LI1KlTeTye+CuFakpyOfn5+VZWVsuXL589e3ZNSz579qyqquqoUaOkzF8v\nPUtaROfWXX5+/vv3701NTTU1NavN3HBjgBDSv3//adOmBQUFTZ8+3dHRkZqb/d69e4WFhf3793d3\nd69FmbVutPrtu1oXXlX9ORzO6dOnX7586eDgQF/rp24bffny5aBBg4R7s94b1tzcfNasWYcOHVq7\ndi0u1jcjCEYBmNG7d+9Lly5t2bIlPDz86dOnT58+JYTIy8ubmpr6+fmZm5tnZWVVG7Ls3Llz9erV\njx8/DgwMJIRoamrOmjVr0aJFv/zyy+3btwMDA5ctWyYnJ+fn59e9e/cjR46EhISEhISwWKy+ffv+\n8ccfbm5uEuIVQsimTZv69u0bEBBAT+mira29dOlS6lawGpk7d258fPz79++fPHlCT85ibGxcLxM0\n1lc5Ir5//3737t2xY8fW6FdavfQsaf6dW3exsbHTpk07fPiwyDurKtVAY4C2du3afv367dq1KyQk\n5N69e4QQXV1dLy+vefPm0XN21khdGq0e+67WhVdVfxsbG01Nzby8POoaPcXMzExDQyM/P3/o0KEi\nu6v3hl20aNG9e/fi4+O3bNlC3UsKTZ+cyBOdAND4MjIyYmJiNDU1zczMqn1kW1xmZmZqaqqOjo6+\nvj6dGBcXp6enJ3JKKTs7++vXr127dlVWVq7RLvLy8rhcrra2dvv27Wv3G4JBtT4r9vXr18jIyP79\n+3fo0KF2u65jzxLZ7tzIyEjpg1HJ6nhmVFhhYWFCQkKHDh20tLTqWFTdNWjfNfLAaFINC40MwSgA\nMMbX15fP5/v6+hJCli5dam5ubmlpGRAQ8OrVq7Zt244bN0747EhGRsbOnTvDwsLy8/P19PRGjRq1\naNEi6jqgcDmEkHfv3v3xxx+vX7+uqKhwcnKaO3fu8OHDhQORtLS0bdu2RUdHs1isgQMHzp07tzEf\nQJEdqampv//+++vXr3Nzc3v27Onu7u7k5ER/unTpUkNDw6VLl9IpO3fuTExMpF6Svnz58vfv38fF\nxXXr1k1DQ2PPnj06OjoYAwAtEi7TAwBjPn78SF9ajYmJycjIOHz4sIODg7u7+61bt3bv3t2uXTvq\n4SGBQODp6ZmSkuLi4qKtrf38+fN9+/YVFRVRrw0ULic6OtrLy0tdXX3kyJFKSkohISFz584V3ml8\nfPzUqVPV1NTGjRtXVlYWHBz8+PHjU6dOCZ96hLr78OHDtGnTysvLx48fr6mpeffu3QULFqxatWrG\njBlUhpiYmLKyMuFNEhIS3r9/Ty1ra2tTZ8i0tLS0tbVZLBbGAECL1ZAvvgcAkMTNzW3KlCnUMofD\nYbPZISEh1GpRUVHfvn2nT59OrX7+/JnNZh86dIjedv78+ba2tuLlTJkyZcCAASkpKXQ5Li4uwtvO\nnj176NChBQUF1GpqaqqVldWaNWsa7jBl08yZM3v37v3p0ydqtaSkZOrUqb179/727RuVwuFwFi5c\nKLyJt7f30KFD6dWnT5+y2ezw8HBqFWMAoKVqQrcHAYCM69q1K30ZV0VFpX///vRESLq6ugoKCjdv\n3qRfcbljx44rV66IlJCUlPTy5cvx48fTd3mqqKgITxqfmZkZFhbm4eFBP5Okr68/adKkmzdvlpaW\nNtyhyZq0tLSIiAgXFxf6+WslJaVffvmlpKTk+vXrtSsTYwCgpcJlegBoKkRu2lNSUqJfBqiurv7z\nzz/v2rWLw+GYmpra2Nj88MMP1HwxwqjJEamZtGm9e/eml+Pj4wkhJ06cEA5isrKyCgsL09LSOnfu\nXK8HJLuoeFFkzktzc3M5OTnqzTq1gDEA0FIhGAWApkLyBNdz584dOnTo7du3Hz9+fPr06aCgICcn\np7179wq/t5C6B1HkuXXhp8upObp1dXWFX9fZuXPnfv36NakHyZu7wsJCItYRioqKLBZLwjTvguoe\nqMUYAGiREIwCQDPA5/P5fL6xsfH8+fPnz5+fnZ29bt26e/fuhYWFCT+gTb0YMCEhQXhb4VNxXbp0\nIYRMmDBh/PjxdCKPxysrK6vd1EtQKer8oshJ0JSUlIqKCvrUo7y8vEj0mZGRIaFMjAGAlgp/BQJA\nM3Dv3j1zc3N6rngtLa3p06cTQnJycoSzdenSxcDA4Pz58/T1fULImTNn6GVDQ8OOHTuK3Gg4e/Zs\nDodT6dvkoXaMjIwMDAzOnDlDv7mUEHL8+HFCiK2tLbXatm3bmJgYOh5NTU19+/atcCFycnLCqxgD\nAC0VglEAaAasra01NTXXrl17//79+Pj46Ojo/fv3Kygo9O/fXzgbi8Xy9vaOj4/38vJ69OjRq1ev\ntmzZcvnyZeEMixcvfvz48eLFi588efL8+XN/f/+IiAgPDw9coq1HLBZr6dKlSUlJ06dPj4iI+Oef\nf7Zs2RIUFMThcCwsLKg8lpaWX79+9fPze/PmTUhIiJeXl46OjnAhGhoahJDLly9fvXq1uLgYYwCg\npcJlegBoBtq2bXvw4MGNGzfSj0UbGxsHBARQ12SFjR8/Xl5efvv27bNmzSKEdOzY8c8//xR+yfXo\n0aNZLNbWrVtv3bolLy/fu3dv4ckvob6MGjVKRUXF39/f09OTEKKurj5z5kzhKe5nz54dGxt7/Pjx\n48ePa2pqLlmy5NOnTxEREXQGNpv9ww8/3Llz58qVKyEhIYaGhhgDAC0S3sAEAM1JVlZWdnZ2mzZt\nRM6iiUtPT1dQUGjXrl1VGbKzswUCgYQMUC9yc3Pz8/MNDAxELrtT8vLycnJyOnXqVOmnlcIYAGhh\nEIwCAAAAAGNwfwwAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAG\nwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbB\nKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEo\nAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgA\nAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAA\nAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAA\nADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAA\nMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAw\nBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAG\nwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbB\nKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEo\nAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgA\nAAAAMAbBKAAAAAAwBsEoAAAAADAGwSgAAAAAMAbBKAAAAAAwBsEoAAAAADBGgekKAABAbdy6devT\np0+EkJ49ezo4ODBdHQCAWkIwCgDQ1B08eDA/P58QMnz48J49e1KJf/3117lz5wghc+bMQTAKAM0X\nglEAgKbOz88vKSmJENKuXTs6GAUAaBkQjAIANEvr1q2bM2cOIcTAwIDpugAA1B6CUQCABsHn8799\n+5aenq6kpNS+ffs2bdrUb/m9evXq1atXpR/l5uZ+/fq1oqJCX1+/Xbt2ksvJysrKz883MjISTszP\nz09OTu7cubOqqqr0VUpJSZGTk+vQoUONNiksLGSz2cKJiYmJAoGgc+fOcnJy0hdVrS9fvigpKenp\n6dVjmQBQd3iaHgCgnmVmZv7yyy/6+vr6+vp9+/Y1MzPT0tKytrY+f/48nWfSpEmGhoaGhoY7duwQ\n3tbW1pZKP3XqFCFk8ODBhoaGqamp1KfLli0zNDQcN24cIWT+/PlUzlWrVtGbX7x40dbWtk2bNmZm\nZr169dLW1jY3Nz9w4ACdgd4qKCgoJCSkV69eOjo6Xbp00dXVPXToECHk5cuXDg4O7dq169Gjh7q6\nuouLS3JysuTjFQgE//rXvzp27GhoaGhgYNCxY8dz58799ddf1I7mzp0rftSXL19++fJl//79DQ0N\n6RteP3z48OOPP7Zp08bIyKhLly6tW7fmcDhv374V2Z2UTSe8rz///FNfX79z587t27c3NjZeu3Yt\nj8eTfFAA0HgEAABQf75+/WpmZkb/Hytybi8oKIjKZmdnR6WsW7dOePMuXbpQ6YcOHRIIBF27dhX/\nf3vgwIECgWDy5MnU6pw5c6htjx8/Tu9OZL9r166l8tBbjRgxQklJSTiPvLy8j4+P+BncAQMGVFRU\nSDhkFxcXkU0UFBScnJyo5YkTJ9I56aPeuHGjhoYGtayvry8QCI4dO6asrCx+sK1atdq/f7/w7qRs\nOjobvSBsxIgRJSUltelgAKhvODMKAFCfAgIC3r17RwjR1tZ+8OBBSUlJamrqkCFDqE+PHz9eo9IC\nAwOvXbumra1NrS5evPjatWvbt2+vNPPu3bsFAgEhZO3atSUlJRkZGdu2baM+2rZtG/U8Pu3mzZvG\nxsZ//PHH2rVrqbiQz+f7+voWFxcvX7589+7dtra2VM6nT5+Gh4dXVcNr166dPXuWWp48efL58+f3\n799vYmJy//59Cce1detWqj6dO3c2NDT88uXLggULSkpKCCFOTk5Hjx4NCgoaNmwYIaS8vHzJkiUf\nPnyotq2qEh4e3q1btz/++OPcuXNubm704R85cqTWZQJAPcI9owAA9enbt2+DBg0ihPz000/UBWh9\nff3JkyeHhYURQt68eVOj0qgSVFRUqNU+ffqMHDmy0pw8Hu/Vq1fUso6OjqKiora29rJly3Jycr5/\n/04ISUlJ6d69O52/bdu2oaGhurq6hBBdXd3FixdT6du3b1+0aBEhxMvLS1dXt7CwkBASGxtb1exR\nv/32G7UwZswY4ai0W7du1H4rVVhYOHr06L/++ouKsz08PKgd2dra3rp1q1WrVoQQNze3ESNG3L17\nt7S0dOXKlZcvX662uSqlqan58OFDfX19QsikSZOUlZX/+usvQsjWrVvnzJkjL4+TMgAMQzAKAFCf\nDh48KLz67du36Oho+q5NPp/fQPtlsVgmJibUSdklS5ZcunRp2LBhtra269evF7kcTxk4cCAViRJC\nLCws6PRRo0ZRC6qqqmZmZtHR0YSQ9PT0qvZLR8DC94a2a9du4sSJhw8frmorbW3tM2fO0EH2kydP\nqIUFCxZQkSh1RIsWLbp7965whlqYPHkyFYlSli1bRgWjXC43JSWlY8eOtS4ZAOoF/iIEAKhnb968\n8fb2tra21tTU1NPTGzlypPhTOA3hzz//bN26NbUcGhq6evXqIUOGaGlp/fTTT+KXuQ0NDellRUVF\nellLS4tervQmTmEZGRn01f/OnTsLf1Tp3a60ESNG0JFoUVFRQkICtSx8uy0hpEePHvSOMjIyJFem\nKiJldu/enY534+Pja1cmANQjnBkFAKhPgYGBs2fPppZVVVX79+9vbm6uoqKyb98+aTYvLy+v9a4H\nDRrE5XKPHTt28+bNhw8fFhcXE0KKiopOnz59+/btJ0+emJqaVrqh8NNONZpNSVNTU05OjrpRNTc3\nV/gj6rJ7VYTnRq2oqKBPGLNYLOFs+ki/aQAAIABJREFUwqvVtkxVGUTKlJeXZ7FYVGbJlQSAxoEz\nowAA9aasrMzb25taXrVqVXZ2dmRk5F9//TVgwAAqkQ716JNz1PvlKQKB4Nu3b3WpQJs2bRYvXnzr\n1q2cnJyQkJD58+dToVhOTs6xY8fqUnKlqClUqeV79+4Jf0RdXq8KffiEEE1NTfpauXBrCK+2adOG\nnr60pk0nUmZqair1pBSp7vQtADQOBKMAAPXm7du3dKCzevVq+mZN+jI9dRKREELfr/ns2TN687t3\n75aVlUkoX0Ko+vr1665du3bt2pV6cl9JScnJyWnfvn1jx46lMmRlZdXiiKo1ZswYamHHjh2PHj0i\nhPB4PB8fn6ioKOkLsbS0pBZEbjMNDAwUyUBq3nRnzpzJy8ujV6kbRgkhmpqa9GxQAMAgBKMAAPWG\nnoOJEHLp0iVCCI/Hu3Xr1v79+6lEeq51+or5p0+fnJycjh8/PnPmTGo2e3H0lJz79+9ft25dpec4\nzc3NMzMz4+PjHz58uG3bNuoy9IcPHyIjI6kM1DP+9W7lypUKCgqEkLy8PDs7u44dO7Zu3Xrjxo3C\n96FW61//+hd1vvPmzZseHh73798PDQ318vKiHs+Xl5ffvHkznblGTUcIyczMdHJyCg4OjoqK8vX1\n9fHxodIXL15co0oCQENhdJZTAICWxsrKiv4PVkdHR01NjQhdWVZQUKCyJSUlUTGcMAMDA3Nzc2qZ\nmrmd4unpKZytqknv9+7dS+dRVVXt0KEDfVeAhYVFbm5upVsJBAI6YCWE5OXl0emDBw+mEtevXy/h\nkENCQkReOurs7Ozn50ctVzrpvch89QKBYNu2bVXNsuTj4yOcU8qmo/dlYmIifiOsubl5Tk6O9N0K\nAA0HZ0YBAOrT+fPnHR0dqeWMjIyioiJ3d3c62quoqKCmGjU0NLx58yZ9wyUhpE+fPhERESLPpFN2\n7Ngxfvz4ak/jLVy48O+//6bmaSoqKkpNTRUIBGpqap6ennfu3NHU1KyXAxTn5OT09u3bEydOLFmy\nZOXKlRcvXrx+/Tp9Dph+al6y5cuXP3z4sG/fvsIvkerZs+f9+/c3bNggnLNGTUcIcXV1PXnyJP1m\nKSUlpcmTJz958kT8XVMAwIh/PwUJAAD1KDExMT4+vk2bNiYmJurq6lVlEwgEX758SUhIMDMz09PT\nk1xmRUVFdnY2j8fT0tKqdOpQWnJycnJyckFBgZ6eXteuXVVVVWt5GFJ4/PhxSkoKIcTIyMja2ppO\nt7e3p97btGbNGvosqTQKCwtjY2P5fL65uXldmo6uwLp16zZu3CgQCN6/f5+fn9+3b19cnQdoUjC1\nEwBA/evcuXNVJ+qEycnJSZmTEKKgoEA/uyOZoaGh8DSiDSo8PHzVqlWEEHV19RcvXpiYmBBCnj17\nRk1TLycn5+rqWqMC1dTUhIPaqtSo6aj8IhOOAkATgcv0AABQe1OnTqXeb1RQUGBmZmZpaWltbT1o\n0KCKigpCiJeXV69evZiuIwA0aQhGAQCg9gwNDR8+fEg96sTj8V68eBEdHV1eXq6qqrp///5Dhw4x\nXUEAaOpwzygAANSD2NjYFy9efP36VV1dvXPnzg4ODg16r2q1EhMTi4qKCCHa2to6OjoM1gQAJEMw\nCgAAAACMwWV6AAAAAGAMglEAAAAAYAymdgJmzJgx4+nTpy9fvpRyQuz6Rb9OEACg7hZlZe3933dQ\n1VdmaO4+fPjAdBWaAQSjwAzqDWAMVgD/QYgwNTVFmwhDg4hAg4j4nwaRk/POzJR2yxplblYwSETg\nxIeUcJkeAAAAABiDYBQaT0FBQWlpabXZCgsLRVLKysqKi4urLbwpTw3h6Ejk5Br8x1fOt9bbfvz4\noRFq2Gg/R48y3eUAACAdBKPQ4EpKSvz8/DgcjqWlpYWFxfTp02NiYoQz+Pv7czicsrKyHTt2ODs7\n9+vXz87Obt++fYSQN2/eeHh4WFlZ9e3b19nZ+fr16yJblZeX7969e9iwYVThCxYsyMjIaOwjlAKX\nSxISiEDQkD8JXB+yodabs9mmDVu9RvzZsIEkJjLd5QAAIB3cMwoNq6CgwMPDIzY21sTEZPr06SUl\nJY8fP/bw8GjTpg2dJzMzMzExcdmyZa9fv3ZyclJWVr5y5cru3bsLCgpOnz6toaHh6uqam5t79erV\nFStWGBkZmZub01tt2rTp9u3bP/zwg4ODw507d0JCQrKyss6cOVPrCoeGhhJCHBwc6nrkzc2iRYuY\nrkLTggYRUesG8fX19fHxqd/KNAUYIeLQJlA7CEahYR09ejQ2NnbUqFG//fYbi8UihBQXF//8888P\nHz4UyZmQkHDlyhUqSB0xYoSLi8vhw4c9PT1XrFghLy9PCOncufPu3bsjIiKoYJQSERFx7do16vUq\n//d//+fs7Pzq1au4uDgTE5PaVZjL5R47dszIyKiqDOIfcblcCQVKKKpJ8fb2ZroK/8/emcc1eWWN\n/yZssqkom4AYdQjiRhGtiiJgLUpdALWKAopU2V5RK7T2p2WA0kERR2tBBnkRRC1WRbEVIohIqDAu\naLV9q1ZRksjiAsgiIAGS/P64M89ksvEkBEjkfD/8kZznPOece4LmcJ97z1UmbLasj4XMh7h8+XJC\n2PcP/T3QF06IXPZjYmI2btyoLv8QyPOe/ZNRCpATQDGgGAX6l6ysLC0trd27d+NKFCGkq6sbExPz\n8ccf83g8Yc0dO3YQ06X29vba2trd3d2+vr64EkUIzZw5EyEk8hQ+LCyMOOiPSqUuXbo0LS2trq6u\n12JUZJPj1q1bif9GmUzm+PHjpd0ovjJVhrJEfWAAOH486/jxGGlX+/4hgn5f9NWb2FgUEyNBTqGI\nSrAaeeX3cf54SJGUlJScnDzYUaglUIwC/Uh9fX1ra6uDg8Po/26qZ2lpSafTHz16JCwUqQ6HDRtm\nbm5uZWVFSHR0dMRdCM+SIoSMjIwQQp2dnb3GJqP/SEBAQGZmZq8WCKDcVEFiYqLlejQs74cI+uT1\nKeKFl1oTHS2haqRQkLQUyaUMqDPh4eEic8PQ2okkUIwC/cjLly8RQsTMpTCmpqYixaj4NxYxJyoD\nAwMDcWFfqkNXV9f373kiAAwimZmZ8G8KAAAZQDEK9COmpqYIoTdv3ohfampqGvBwSEGj0frpi1Pm\nIj2lOEC0AfACAHISEBAw2CEAAKDSQDEK9COmpqYGBgYPHz5sbW0dPnw4IW9qahpqp3QEBKBNm/rX\nBQ0hV1rmcbf+9aIuyLPOAgAAABhMoBgF+hEKhbJ+/fq0tLSDBw9GR0fjB/ECgeDgwYNkut+/T0hc\nZqZsaAgFwA4IAAAAQL2AYhToX7Zs2VJYWHj69Gk2m71w4UKBQFBSUnLv3j0TExPV7E4PAAAAAMBA\nAsUo0L8MHz48JycnKiqqtLT0xo0bCKExY8akp6cnJydDMQoAwHuCxP5NSlEGgCEABbrSAEMQW1vb\nobZoFQAAABhg4LuGJHA2PaBOvHr1qqGhYbCjAACgD8TGKkenP/wCBAqkSxUyLFcMqhAwgBCCmVFA\nvbC3t7e2tr506VIf7cBfqwAwaJBp+d4fbeGh1bxcKJAuVciwXDH0f8DwXUMSWDMKAH2FyRzsCJQN\njYagSTkAAAAwMEAx2gvv3r3T0dEhcxRQ/1lACLW3t+vr6wtLurq6eDyerq6uRP2uri6BQCDx/Ezy\nkIlc3sBImm1ra9PX15frFMG2tjYk5UCmfiU2Fh0/rnjpRkNsF2ZslqtqdcVksxGLNdhBAAAAAEMD\nKEYlIxAIMjIycnNznz17pq+vP3PmTD8/v/nz5yOE/va3v5WWln799dcLFiwQviUqKurWrVv/+7//\nO27cONkWyBAfH89kMvPy8pKSki5fvlxdXW1qarpu3bqwsLDff/89MTHxt99+43K5Y8eO/fzzz5cu\nXYrv4vP5GRkZeXl5lZWVAoFg4sSJ7u7uYWFhGhoaWCEtLS0nJyc0NNTb21vYXVhYGIvFOnfunIGB\ngezIFQus14Rgs/n5+SkpKQwGg81m6+rqOjk5xcbG4tNEQ0NDnz17xuVyWSyWu7s7lUotKChACPF4\nvJSUlLNnz75+/RohZGBg4OHhERERgQ+pHxgCAvrQQ5TJRogdUKLEcPoKm43Gjx/sIAAAAIAhA2xg\nkgCfzw8ODt6/f7+BgcGWLVsWL15cUVEREhJy7do1hND8+fM5HE5OTo7wLW1tbT/99JOenh6uRGVb\nIENDQwOHw4mIiPjpp5/mz5+/adMmHo93+PDh/fv3BwQEPH/+3MfHx8vLq66u7osvvnjw4AFCqKen\nJzAwMDExsbW11cfHx9fXl8vlJicn+/r6vnv3DpudN28eh8O5cOGCsK8XL15cu3Zt7NixBgYGvUau\nQGBkEoLNxsXFZWdnOzo6BgQEGBkZFRcXb926FSuYm5tbW1tTKBQtLS1ra2tra2ssj4qKSk5ONjY2\nDgkJCQsLmzhx4rlz54KCguRaDB0bG8t8/561A8rAzQ2OtAIAAOhfYGZUAmfOnCktLQ0NDd2xYweW\nbN26de3atZGRkeXl5c7OzhYWFkwms62tjXgoXFxczOVyV61aRcaCjEfYIrBYrJ9//nnkyJEIIQ8P\njzVr1hw7diwwMPCLL77Aj7nHjRt3+PDh8vLyKVOmZGdn37hxY/78+UlJSXp6egihyMjIiIiIoqKi\nzMzMsLAwhNCUKVNsbGzu3LnT0NBgbGyMvRQVFQkEAk9PT/KRyxUYebPl5eV5eXl4KnTXrl2LFi26\nf/9+ZWWljY1NdHQ0Qsje3t7Kyio9PR3rd3V15efnm5ub5+Tk4Nnfbdu2hYSEMJnMx48fT5o0iWSe\ncSXKln6su/jh2sePH//3vTRXV1eSjtQIYoDiyMjGe6bP4XDgrxQAAID+BopRCaSmppqZmYWHhxOS\nMWPGbN++fffu3QwGY9WqVatXr/7+++8LCwuJ6jM/P19bW3vFihUkLZCMZMeOHbjgQwjZ29tra2t3\nd3f7+voSCy5nzpyJEMLd448ePaqlpRUXF4crUYSQjo5OTExMWVlZenp6cHAwLte8vLwSExMLCwt9\nfX2xWkFBgYGBwUcffUQ+crkCI282LCwMV6IIISqVunTp0rS0tLq6OhsbG4n50dDQ0NbWbmpqqqqq\nwjoUCiUqKmrdunWjRo2SnVtbW1vidXV1NZvNpklf+ClevmRlZeEXbPZG2Y7UFGKA4sjIxnupDyhO\nbKzkBu9kloOL68TEkF0QQ94veZvvMQqkSxUyLFcMSMpZA0oNOCkpKTk5WbF7hzhQjIrS0tLy8uXL\n8ePHZ2RkCMvxksRbt27hYvTIkSM///wzrqJaWlrKy8vd3d1HjBhB0gLJYIQLJoTQsGHDzM3Nrays\nCAmxRampqamhoWHy5MkWFhbCtxgbG0+dOrWioqKurm7s2LEIIU9Pz4MHD16+fBkXo/X19ffu3fP2\n9h42bBj5yMkHJldC8DQqAV732dnZKS0/Ghoaq1evzsjI8PLymjdvnpOTk6Oj45QpU4QjkYZwuw03\nN7fo6Gi5JjhLSv61zPN9bVRHDFDpymqkz2azx8P62b4QHS3he30AWjsp7HdookC6VCHD8sbQ/wGH\nh4cLz7kgse9KQBpQjIpSU1ODEGKxWAcOHBC/2tjYiBAyMzNzcXFhMpmvXr0yMzMrLCzs6ekhKioy\nFkgivp1c2ib02tpahJBIJYqxtLSsqKiora3FxaiJiYmTk1N5eXl9fb2JiUlRURGfz/fy8pIrcvKB\nyWVW4l542as/d+3aZWdnd+bMmbKystLSUoTQ6NGjAwMDN2/eLOMuETIzM2VMiwJDGRa0FQAAAOhn\noBgVxczMDCHk5OS0b98+8ataWlr4xZo1a65du5aXl/fZZ58xGAwLCwsnJye5LCgX/HRb4mnvWGhq\nakpIvL29r1+/XlBQ4O/vX1BQYGFhMWvWrP6LvL8TsmLFihUrVrx9+/b+/fvFxcUXL15MTExECJGv\nR/tYibLZSOYaRZmUogDUh9v7AQ5nsCNQGeBPFAAAgAEAilFRjI2NR44c+fz5cxMTE+HZvpqamqtX\nr06fPh0vRlywYMGYMWMuXbrk6el5+/btkJAQQpmkBeViZmZmYGDw5MmTlpYWvFoA09HR8eDBA01N\nTWL7OUJo0aJFhoaGly9fXrp06Z07d4KCgvBMZz9F3n8Jqa2tLSkpsbe3nzZtmqGhobOzs7Ozs4uL\nS0hISGFhoVyTowqzcSOKjUWlpQreTkO0TbQSpOjt/YTEtVUAAAAA0B9AMSqB9evXp6SknDx5cuPG\n/+xNiY6OLisry8z8V3NyvFoRr1bm8/krV66U14LS8fPzS01NTUhI+Pbbb3HNJxAIDh061Nzc7O/v\nr6n5n89aR0fHw8Pj3LlzP/zwA4/Hw/vo+zVyZZmlUCg8Hk/4bVxc3IcffpiVlUWUubjsHj16tMLR\nygWNhvr2kdKUFAgAAAAAqCVQjErgs88+u3TpUnx8fEVFxZw5czo7O0tLS2/fvu3s7DxnzhxCbdWq\nVSkpKadPn54zZ47IjhmSFpRLUFDQlStXzp8/z2azlyxZQqVSi4qKbt68aWlpSXTrJPD29j579mxq\naur06dOFt2j0U+TKMmtqalpVVRUZGWlkZLRnzx4LC4sFCxb88ssv/v7+n3zyyciRI1+8eHH69GmE\n0PLlyxWOFgAAAACAAQOKUQkYGBjk5ubGxcUVFRUVFRUhhLS1tf38/Hbu3Cn8lHnMmDHOzs5MJnP1\n6tWKWVAu+vr6Fy5c2Lt3L4PBuHv3LpZ4enpGRUUZGhqKKM+YMWPcuHEcDgdvXervyJVlNiIiYt++\nfQwGAyG0Z88ehNDhw4f37dv3888/37lzB+uMHz9+//79woc/AQCgQpBZBdIfK0Vg9YlcKJAuVciw\nXDGoQsAAQgghilwH1Qw1BALB8+fPeTyelZWVtra2uIK/v/+ff/55/fr1YcOGKWahn6ipqeHxePjI\nIsUs9FPk/WSWy+W+ePGivb199OjR5ubmverb2toKt3YChgSxscrvd9gfNvvPrHJRiyAxahSqAvTr\n6NQ9dYMdP3zXkASKUcWprKxctmyZn59fVFSUXDfKXiX5wQcfODg49C20/yIhISEzMzM7O3vGjBlk\n9CMiIvLz84uLiy0tLUnajImJ+fHHH3Nzc+3s7MiH8erVKw0NDeIgKHnj7AvwH8RQpD+aIPZTY0W1\n6IipFkFi1ChUBejX0al76gY7fviuIQk8pleEsrIyfOy7hoaG+GkuvVJVVSXjKj7dXokIBAK5/uQQ\n/Bu5bCpwi7u7u7W19aVLlxSLEwAAAACA9wAoRhXh+++//+233zQ0NHbv3o07yctFXFxcf0QljcDA\nQE9PT+V2TFTAZq+39EecSofNRmpxcqRaP1gDAAAAhhRQjCrC2bNnBzsEOTA1NRXueC9CW1ubvr6+\ntKWlfD6/tbV1xIgRIgqybba3t+vp6cl1i2yFrq4ugUAgfMSoRGSPRSlkZSEmE8k+N3TjcTe268ZS\nWkD/hSGb48fRuHFI/il7AAAAABgEoBh9/0lLS8vJyTl06BA++T0+Pp7JZObn56ekpDAYDDabraur\n6+TkFBsbi49xwrS3t3/zzTc//fRTW1ubuIKITYxAIDhw4ACDwaitrR0+fPi0adMiIiIIBeFbQkND\nnz17xuVyWSyWu7s7lUotKCgQt8nn8zMyMvLy8iorKwUCwcSJE93d3cPCwjQ0NLACybEoF1fX3uYd\nmYjmglwD+sl/7zCZg+YaAAAAAOSlv9oMAarDmzdvOBwOl8vFbxsaGjgcTlxcXHZ2tqOjY0BAgJGR\nUXFxsUgv0r/+9a/5+fmLFy+WqCBiExMXF3fixAk7O7vg4GBHR8ebN2+uX7++pKRE/BZzc3O8019L\nS8va2hq3qRex2dPTExgYmJiY2Nra6uPj4+vri9fp+vr6vnv3Tq6xiPPkyROF8wmoAuPHj2dC0Q0A\nAPBeADOjQ5Ty8vK8vDw8fbhr165Fixbdv3+/srLSxsYGKzQ0NMhWEOfPP//MzMx0dHTEb0tLS8PC\nwr755pv58+eLHEAfHR2NELK3t7eyskpPT5doLTs7+8aNG/Pnz09KStLT00MIRUZGRkREFBUVZWZm\nhoWFkR+LRDZt2iTtkni7A0KZyXRRYMvawJOVdbxU+hGlMgaopvqixMZK7iAovoQjJobsAtv+sNl/\nZpWLWgSJUaNQFaBfR6fuqVP3+Ic2UIwOUcLCwogH2VQqdenSpWlpaXV1dUQB16uCOGvXriUqUYSQ\ni4vL8uXLc3NzL1++vGLFCnkjPHr0qJaWVlxcHK5EEUI6OjoxMTFlZWXp6enBwcHEw3oFQkUIEbv4\nMR9++OHs2bOlKRPbqlR8fxUBjUaj0Thy6ctrX6X0RYmOlvBl08cmL/1hs//MKhe1CBKjRqEqQL+O\nTt1TpwLx4xPCB8zd+wQUo0MU4bWeCCEjIyOEUGdnJ3kFcRYuXCgicXNzy83NVaDLWlNTU0NDw+TJ\nky0sLITlxsbGU6dOraioqKurI/oYKBCqlpZWQ0MD+Xii1e3PaBcX14AAV/L68g5w0PXV5a8CAACG\nDuHh4eHh4cISW1vbwQpGvYA1o0MUAwMDcaFwm89eFcQR3zOEd8fX1dXJG15tbS1CSKQSxeBW/FhB\n4VDHjx8vb0iASlFSUuIqu6kBAAAAoCbAzCigNBobGydMmCAsaWpqQgiNHj1aXlO4rq2vrxe/hIWy\nu0T1H+PGoawsxGbL0nFh0hBC0lds9jtMJtq4cdC8AwAAAIBcQDEKKI2bN2/OmjVLWHL79m2k0BNV\nMzMzAwODJ0+etLS0jBgxgpB3dHQ8ePBAU1MTb8AfeEhtXnLJRAi59HMksvy7QJNRAAAAQG2AYhRQ\nGqdOnVq+fDlRerLZ7PPnz+vr6y9btkyiPoVC4fF40qz5+fmlpqYmJCR8++23VCoVISQQCA4dOtTc\n3Ozv76+pOWi/ulDnAQAAAIASgWIUUBo6Ojpr1qxZuXKljY1NVVXVhQsXWltbv/rqq5EjR0rUNzU1\nraqqioyMNDIy2rNnj8jVoKCgK1eunD9/ns1mL1myhEqlFhUV3bx509LSstc2ogAgAYltX1TQZv+Z\nVS5qESRGjUJVgH4dnbqnTt3jHzJAMQoojYSEhDNnzpw4cQLPd1paWn733XceHh7S9CMiIvbt28dg\nMBBC4sWovr7+hQsX9u7dy2Aw7t69iyWenp5RUVGGhob9OQ7gPaU/WiL0U5sFtejeoBZBYtQoVAXo\n19Gpe+rUPf6hgwAAhh50On2wQxgCxMQIYmJEJdI0pb1Q2LW8drBmH/0CA4AKfkYqGBKgGsB3DUko\nAnXpZwsIkZCQkJmZmZ2dPWPGjMGORfm8evVKQ0PD2NgYv5V3sGT0bW1tFeh+CsgHPvhE+H8YaQ2o\nCbn4C4Vdy2sHa6pRi+8hiwp+RioYEqAawHcNSaDPqFqC/5IY7Cj6C3d3d+HTIOUd7PudHAAAAAB4\nz4A1o2pJYGCgp6fnEDmEZhAHe/w4ysrqRYeG2AghNqIp0e/GjbBnHwAAABgqQDGqlpiamop3fW9r\na0NSjiMiT1dXl0Ag0NHRkaZA0kt7e7uenh4FP6iVRHNzs6amJploJQ5WXiOKUVqKXF2Ri8yWoa6x\nm5iu0ciFpkSnpaVQjAIAAABDBShGVY60tLScnJzQ0FBvb29heVhYGIvFOnfunIGBAdY5dOjQlClT\neDxeSkrK2bNnX79+jRAyMDDw8PCIiIjAR7QjhOLj45lM5okTJ8zNzQlrOTk5aWlpUVFRzs7OCCE+\nn5+RkZGXl1dZWSkQCCZOnOju7h4WFqahoYH1e/Vy+PDh/Pz8I0eO/PTTTwwGo7a2dvjw4dOmTYuI\niBA+O/7hw4dHjhy5fv06l8tFCBkbG69evXr79u24k2hoaOizZ8+4XC6LxXJ3d6dSqQUFBcKDJWOE\nDN3d3Ww2m8xs67hxqJdTJ2ORqwtCsnXkgc3u5YQnVYPJZMLJnAAAAIDCQDGqcsybN+/vf//7hQsX\nhIvRFy9eXLt2bcGCBXgW8M2bNxwOB5diUVFR58+fnzx58sqVK6lUanl5+blz5x4/fnz27Fk8MdnQ\n0MDhcHp6eoS9tLa2cjic9vZ2hFBPT8/mzZtv3LhhaWnp4+NDpVJLS0uTk5PLy8szMzN1dXXJeGlq\nauJwOFFRUQ8fPnR2dl62bNmTJ09++eWX9evXf/fdd25ubgihp0+fbtiwgcvlzpw5c/r06Z2dnQwG\nIzU1ddiwYaGhoQghc3Pz7u7u6upqLS0ta2trXFwKD5aMETI0NjYymcwAmH5UBm5ubrBIFwAAAFAY\nKEZVjilTptjY2Ny5c6ehoYHYUV5UVCQQCDw9PUWUu7q68vPzzc3Nc3Jy8Czmtm3bQkJCmEzm48eP\nJ02aRMZjdnb2jRs35s+fn5SUpKenhxCKjIyMiIgoKirKzMwMCwsj7+XPP//MzMx0dHTEb0tLS8PC\nwr755pv58+draWn9+OOPb9++3blzZ3BwMFbw9fX9+OOPy8rKcB0ZHR2NELK3t7eyskpPT5cYba9G\nSBIbGxsbGyvtKovFIm9K6TCZzPHjN0m7Kh7b+PHjZVjrb32EEIqNldpcWmSphrSVG4Rc/AVBTIyE\nroHSXMuwIw2sSdIvMAD0+uESDNhnpIIhAYD6A8WoKuLl5ZWYmFhYWOjr64slBQUFBgYGH330kYim\nhoaGtrZ2U1NTVVWVjY0NQohCoURFRa1bt27UqFEk3R09elRLSysuLg5XogghHR2dmJiYsrKy9PT0\n4OBg8l7Wrl1LVKIIIRcXl+XLl+fm5l6+fHnFihV0Oj0kJMTf359QMDY21tLSamhoIJ8cpRhBCL19\n+xZP+mJWrlwpsi5iEKHRaNHRmeT1MzPlUFa6vpubG4qOlvC9OzCtnaS5htZO7wGyP9xBQQVDAlSG\npKSk5OTkwY5CLYFiVBXx9PRpoo6RAAAgAElEQVQ8ePDg5cuXcTFaX19/7949b2/vYcOGiWhqaGis\nXr06IyPDy8tr3rx5Tk5Ojo6OU6ZMsbKyIumrqampoaFh8uTJFhYWwnJjY+OpU6dWVFTU1dWNHTuW\npJeFCxeKSNzc3HJzc3GjtTVr1mBhdXV1ZWVlZWUlg8Ho7u4mGSpGKUb09PROnz6tsisdaTSaqyuN\nvL68A1GuPqx2AAAAQAiFh4eHh4cLS2xtbQcrGPUCilFVxMTExMnJqby8vL6+3sTEpKioiM/ne3l5\nSVTetWuXnZ3dmTNnysrKSktLEUKjR48ODAzcvHkzGV+1tbUIIZFKFGNpaVlRUVFbWzt27FiSXkxM\nTESM4I3wdXV1CKG2traUlJSLFy82NjZSKBQLC4vZs2ez5dytoxQjw4cPV9lKVO2Qd54VAAAAAISB\nYlRF8fb2vn79ekFBgb+/f0FBgYWFxaxZs6Qpr1ixYsWKFW/fvr1//35xcfHFixcTExMRQjLq0c7O\nTvwCl4/19fXiOlhItFUi46WxsXHChAnCRpqamhBCo0ePRght27atvLx81apVPj4+tra2uIHU1atX\nyaXkXyjFCElcXFBsLJK+shQhhALYrkw2ja08p2w29HUCAAAAhhBQjKooixYtMjQ0vHz58tKlS+/c\nuRMUFCSxZ2dtbW1JSYm9vf20adMMDQ2dnZ2dnZ1dXFxCQkIKCwtxmaitrY0Q6ujoEL7xyZMn+IWZ\nmZmBgcGTJ09aWlpGjBhBKHR0dDx48EBTU9Pa2pqMF8zNmzdFiubbt28jhGg0WkNDQ3l5+aRJk+Lj\n44mrXV1dHR0d5Je3KsUIeVxde+vrhBBC0RuV7XdonGYAAAAAAAhBMaqy6OjoeHh4nDt37ocffuDx\neOL76DEUCiUuLu7DDz/MysoiumxaW1ujf09GIoRwe9HCwkI6nY4ljx49unLlCmHEz88vNTU1ISHh\n22+/xUYEAsGhQ4eam5v9/f01NTXJeMGcOnVq+fLlRP9ONpt9/vx5fX39ZcuW4XlWkQb16enpPT09\nfD5fZFA8Hk/iePE8KxkjSgGKQgAAAADob6AYVV28vb3Pnj2bmpo6ffp0ab11LCwsFixY8Msvv/j7\n+3/yyScjR4588eLF6dOnEULLly/HOh4eHqmpqceOHautrZ01a9bTp09//PHHuXPnlpWVYYWgoKAr\nV66cP3+ezWYvWbKESqUWFRXdvHnT0tJy69atJL1gdHR01qxZs3LlShsbm6qqqgsXLrS2tn711Vcj\nR440NDQcNWrUnTt3du/ePXfu3MbGxuvXr//222/GxsavX78+d+7cp59+io2YmppWVVVFRkYaGRnt\n2bNH2P6ECRNIGgEGH/EOONLaPxFy8Rd9dE3eDtbso19gAFDBz0gFQwIA9UIAqDAff/wxnU4/deqU\niHzv3r10Ov3u3bsCgaC9vT0qKsre3p7+bxYvXnzx4kVh/ZycnBkzZuCrTk5O2dnZly5dotPply9f\nxgodHR1RUVGOjo5Yx8HB4YsvvmhtbSUs9OolOjqaTqf/85//3L59u52dHdZxc3NjMBiEzt27d93d\n3fElOzs7Pz+/6urq77//nk6n29vbE2oFBQWurq52dnZ2dnYigyVjRERfInQ6XY6PAQAAAADkB75r\nSALFqAqxb98+W1tb4Srq5cuX9fX1MhQIOjs7WSzWH3/88eLFC4nGeTweh8N5/vy57Biqq6vZbDaf\nz5d4VYYXXIw+ePBAIBC0trb+8ccfb968EbfA5/NramoePXrU2dlJCDkcTmVlpfBIZSPNSEtLi0Bm\nlgjgP4iBICZGEBMjWS7yQtrtA0MfHQ1YnEpHfSMfGOTNj7A+5BYQCATwXUMaigBa9aoM+/bty8zM\nPH369IwZM7DE3t7e2tr60qVL0hRUh5iYmNOnT+fm5k6ePFmB20VG2hfIZMnW1ha3PgX6EfGm94Sc\nTEf6AWsk3kdH6tvwXH0jHxjkzY+wPuQWQAjBdw1pYM2oChEYGOjp6UmTvmumVwUAAAAAAAD1gjrY\nAagQ796943K5MhS6urpkK2AjZCab29raxNVMTU3t7OyEz6iUV0F2YH3Zb95rcjBdXV296kgce6+I\nn7FE5uNQjNhYRKHI+nGjMN0oTNk68v6MH4+YzP4YDQAAAACoNFCMIh6P99133y1btszR0dHe3t7N\nzS09PV24qOLz+enp6V5eXg4ODg4ODsuXL09KShLpPdTV1bV///7ly5fPmDFj9uzZO3fubG9vX7Zs\n2ddff40V4uPj3d3du7u7Dx8+vHjxYkdHRwcHh7CwMOFu82lpae7u7g8ePEAIhYaGuru7c7lcFovl\n7u6+ZMkSEQX8Ojc3V2Q4YWFhHh4ebW1t+K1AIDh27NiyZctmzJjx4YcfhoSEEJvolZIcIj/379/X\n1NRcv369eH5kj13iSBFCu3fvxlv1GQzGhg0biPalZD6OPsJmo5gYJBBI/SmJKS2JKZWhoMAPzHcD\nAAAAQ5OhXoxyuVx/f/9//OMfPB5v7dq1K1eu7OzsTExM/Oqrr/DsXU9PT2BgYGJiYmtrq4+Pj6+v\nL5fLTU5O9vX1fffuHTbS3t7+2WefHTt2TFNTMyAgYNGiRTdv3tyyZQuLxXr9+jXWaWho4HA4cXFx\n2dnZjo6OAQEBRkZGxcXFuHcS5s2bNxwOB8/2mZubW1tbUygULS0ta2tr3NRTWGHevHkcDufChQvC\nw3nx4sW1a9fGjh2LO3Hy+fzg4OD9+/cbGBhs2bJl8eLFFRUVISEh165dU0pySOZH9tgljhQh9OrV\nq+fPn9+6dSsyMrKiogIfBEXGHRkaGxvJKw8Rjh8/Lu+pqgAAAADQd4b6mtHs7Oy7d+96eHgcOHBA\nU1MTIcTlcpcsWZKfn79hw4YPPvggOzv7xo0b8+fPT0pK0tPTQwhFRkZGREQUFRVlZmaGhYUhhE6d\nOnX79u1PP/30m2++wT3h6+rqfH19e3p6RNyVl5fn5eXhEzh37dq1aNGi+/fvV1ZW2tjYiGhGR0cj\nhOzt7a2srNLT08UjnzJlio2NzZ07dxoaGoyNjbGwqKhIIBAQHfLPnDlTWloaGhq6Y8cOLNm6deva\ntWsjIyPLy8t7fdzfa3KwTq/5kT12GSPt7u7esWNHQEBAeHg4jpa8Oxmw2ezW1laZhReNjB2lw2bL\nCkp8rbDs2lFe/aysLBqNBiuSAQAAgAFmqM+Mpqena2pqfv3117jYQgjp6OjExsZ6eXk1NzcjhI4e\nPaqlpRUXF4dLH6wQExOjq6ubnp7O4/EEAsHJkyf19PS+/PJL4nQiCwuLoKAgcXdhYWG4GkMIUanU\npUuXIoTq6uoUC97Ly4vP5xcWFhKSgoICAwODjz76CL9NTU01MzMLDw8nFMaMGbN9+/b29nYGg9Gr\n/V6Tg0jkpy9j5/F4s2bN+vLLL4m6mbw72XR3d4+XDkkjSmfTpk1yRSVDWSn6ciBxmS1GolzkhcQf\niVdjY/slTpKO+nj7IKK+kQ8M8uanV30Z9wLvL0lJSbb/zWBHpDYM6ZnR5ubmhoYGBwcHYmYRs2DB\nggULFiCEmpqaGhoaJk+ebGFhIaxgbGw8derUioqKuro6HR2d+vr6WbNmDR8+XFhnzpw54h6nTJki\n/NbIyAgh1NnZqVj8np6eBw8evHz5sq+vL0Kovr7+3r173t7ew4YNQwi1tLS8fPly/PjxGRkZwnfh\nlQO3bt1atWqVDOO9JgeRy8/YsWOxULGxr127lngtlzvZaGlpydhrtWkTGRvKp6SkxNVVDn1594HJ\n1ndzc5PL2n8RHY2io0WFFNVr7SQtTpKO+nj7IKK+kQ8M8uanV33I7ZAkPDxcePYHIQT1KEmGdDFa\nU1ODECKm68Spra1FCImUPhhLS8uKiora2lp9fX2E0KhRo0QURGpTjMih6hiFW72amJg4OTmVl5fX\n19ebmJgUFRXx+XwvLy98FY+OxWIdOHBA/N5eF032mhxELj9EdajY2K2srBRzJxszMzMyakOKjRs3\nuspVCwMAAACAMhjSxSienGtpaZGmgEsx4Q3vBFhoamqKpyHfvHkjovDq1SslhioNb2/v69evFxQU\n+Pv7FxQUWFhYELvOcb3l5OS0b98+8Ru1tLRkW+41OYhcfkgNo7cwlOuORqMRT/mlwWYjWcs3EWKz\nEZKuoI4EBAQMdggAAADAUGRIF6NjxozR1tbGp0rimhKTnZ29d+/e8PDwoKAgAwODJ0+etLS0jBgx\nglDo6Oh48OCBpqamtbW1hoaGnp7e77///vbtW0NDQ0KnpKRkAIawaNEiQ0PDy5cvL1269M6dO0FB\nQZR/r9UzNjYeOXLk8+fPTUxMiMWsCKGampqrV69Onz5dfDZXGDLJMTMz6zU/ShzsgLnbuBFt2iSr\n66crcmEjGlu6gmLA3iEAAABgCDKkNzBRqdQVK1a0trampaURQh6Ph1tpOjs7I4T8/PzevXuXkJBA\ndIwXCASHDh1qbm5et26dpqYmhUJZv349l8s9ePAgYaSysvLEiRN9j5BCocjelKOjo+Ph4fHrr7/+\n8MMPPB6P2EePWb9+fU1NzcmTJ4WF0dHRe/fu7XWxJpnkIBL5UdZIletONq6uiMWS9ZPJci1h0WTr\nKPADxSgAAAAwBBnSM6MIoe3btxcXFx85cuTp06dz587lcDiFhYV1dXU+Pj52dnYIoaCgoCtXrpw/\nf57NZi9ZsoRKpRYVFd28edPS0pJoERoUFFRSUpKdnf3o0aPZs2fX1tYymUwXFxfhfe6KYWpqWlVV\nFRkZaWRktGfPHok63t7eZ8+eTU1NnT59usie6M8+++zSpUvx8fEVFRVz5szp7OwsLS29ffu2s7Oz\nxP1V8iYHkcuPskaqRHcAAAAAAKgIQ70YNTU1vXTp0l//+teSkhJcO+rq6uJn0FhBX1//woULe/fu\nZTAYd+/exRJPT8+oqCjiofyIESPOnTuXkJBw/fp13E1p+fLlEREReXl5EnftkCciImLfvn24DZO0\nEm3GjBnjxo3jcDjE1iUCAwOD3NzcuLi4oqKioqIihJC2trafn9/OnTuFH9xLo9fkIHL5UdZIlegO\nGAhiYnqRS1Mgc1WJ9NHRgMWpdNQ38oFB3vwI60NuAUAeKApv5X7P4PF4LBZLR0fHwsJCQ0NDok5N\nTQ2Px8PHBUmz09HRgTfH/Pnnn56ensHBwTt37uyvoEkjEAieP3/O4/GsrKy0tbXlvZ1MchC5/CiR\nvriztbV9/Phxf0QFAAAAABj4riHJkF4zKoyGhsZf/vKXsWPHyii2rKysxo0bJ176xMfHr1y5sqGh\nASFEbNPOzs5GCE2bNk2234SEhEmTJv36668k45RXH0OhUMaNGzdhwgThSjRTJvfu3SM0ySQHSc+P\ntMhfvXqFk6bY0GS7G1rIaKatcJ9tuW4c9G7e5AOQpimty70SXffH7f2HeGAqGyoAiAC/q+oGFKNK\nwNbW9sGDB1u3br1161Zzc/OjR4/i4+PPnDkzZcqURYsWyb5XIBDINTktr74MqmTS1NSkFC8E4pG7\nu7tvEuovr8ShDTlkPBNU+HGhXDcO+kNJ8gH0unhAXrPv61N+8cBUNlQAEAF+V9WNob5mVCmsWrXq\nzZs3qampGzZsIIQLFy6Mjo7udd4uMDDQ09NzUA4Ej4uLG0h3vY50EFMhgoymTuSB/vEAAAAAQAYo\nRnunra0NSTlAiGDjxo0bNmzQ0dGRofPu3TsqlSqiY2pqKrFVe3Nzs6amZh/3P/XqXZiuri6BQNDr\nEIYNG9Zrhd3W1qavry+iJm2kZBTIxCbNr7wcP442bZJQStIQeyNzU6wrqfaxbDbKzIR6FAAAAAB6\nB4pRqfB4vJSUlLNnz+LD3A0MDDw8PCIiIoTPBOLz+RkZGXl5eZWVlQKBYOLEie7u7mFhYcJrK3k8\nXlJS0tWrV6uqqvh8/pgxY3x9fTds2ICXb6alpeXk5Bw6dAgf3f7w4cMjR45cv36dy+UihIyNjVev\nXr19+3Yym9+ljUKGd5JD6Orq+u67765fv/706VNDQ8P58+fHxcWtXbv2gw8++PbbbxFC8fHxTCYz\nPz8/JSWFwWCw2WxdXV0nJ6fY2FjiQFHhkYaGhj579ozL5bJYLHd3dyqVWlBQIJIKMrGR8asArq5I\nwpEFTDZis8nVoqgvx7wDAAAAwJACilGpREVFnT9/fvLkyStXrqRSqeXl5efOnXv8+PHZs2fx3FtP\nT8/mzZtv3LhhaWnp4+NDpVJLS0uTk5PLy8szMzN1dXURQlwud9OmTXfv3p0wYcLatWu5XG5JSUli\nYuLDhw///ve/UyiUN2/ecDgcXHo+ffp0w4YNXC535syZ06dP7+zsZDAYqampw4YNCw0NVWAIvXon\nM4T29vaQkJDbt29Pnjw5ICCgpaWFyWRu2bKFxWIRx8Q3NDRwOJy4uLjCwsKPPvrI1dX1ypUrxcXF\njY2NZ86cwTrCIzU3N+/u7q6urtbS0rK2tsaltrACyfSS8SsNNze3gTklq++4ubllZmaqwgIGAAAA\nAFA6UIxKpqurKz8/39zcPCcnB8/Dbdu2LSQkhMlkPn78eNKkSQih7OzsGzduzJ8/PykpCW+ij4yM\njIiIKCoqyszMDAsLwzp379718PA4cOAAPh+Iy+UuWbIkPz9/w4YNH3zwgbDTH3/88e3btzt37gwO\nDsYSX1/fjz/+uKysTLFitFfvZIZw6tSp27dvf/rpp9988w2uGuvq6nx9fXt6ekTclZeX5+Xl4SnJ\nXbt2LVq06P79+5WVlTY2NiKa0dHRCCF7e3srK6v09HRpwfcam7x+hWEymcePHxeXl5bSEHKVcSNJ\nSkuZbOnH24sfBC8xGAxTKYtYAQAAAEAlgWJUMhoaGtra2k1NTVVVVbimoVAoUVFR69atI450P3r0\nqJaWVlxcHNHOSUdHJyYmpqysLD09PTg4WENDIz09XVNT8+uvvyZOqtTR0YmNjc3Pz29ubhZxSqfT\nQ0JC/P39CYmxsbGWlpZw/yO56NV7r0OgUqknT57U09P78ssviaUCFhYWQUFBMWLbFcPCwoiH41Qq\ndenSpWlpaXV1dbKLQmmQSW8f/QpXtFZWVpaWlgghNtuVRnNVIGARjh/PotHY0q6KF6NZWVmk7MbG\nSt4oKmOlrPilmBgUHa2ITaxGXlnYi7JQIAMkNSXKyZglOXa58twfqZMG+cAGPVQAEEGV/lklJSUl\nJyf3q4v3FShGJaOhobF69eqMjAwvL6958+Y5OTk5OjpOmTLFysoKKzQ1NTU0NEyePJl4VI0xNjae\nOnVqRUVFXV2doaFhQ0ODg4ODsbGxsM6CBQsWLFgg7nTNmjX4RXV1dWVlZWVlJYPB6O7uVmwIzc3N\nsr2TGYKOjk59ff2sWbOGDx8urCPxNFFirScGL67t7OxUIHgysY0dO7aPfjs6OsSFx48jkmWhbDIz\nM+XawCRjzcB/bcmKjpbw/ymFgqR1xZJxSWGbcikrHXmjJakpUU7GLHnXfYy8/yAZmCqECgAiqNI/\nq/Dw8PDwcGGJra3twIehjkAxKpVdu3bZ2dmdOXOmrKystLQUITR69OjAwMDNmzcjhGpraxFCIqUS\nxtLSsqKiora2Fu+FJ7+Tpq2tLSUl5eLFi42NjRQKxcLCYvbs2TIe9cqmpqZGtncyQ9DX10cIEZPB\nBCK1KUbi3n/FWoeSiY0oRhXzy2KxFAhsUGCxWLBgFAAAAHhfgWJUFitWrFixYsXbt2/v379fXFx8\n8eLFxMREhNDmzZtxkVdfXy9+FxaampriVkQtLS0k3W3btq28vHzVqlU+Pj62trb49qtXryoWPJ4g\nlOGdzBCGDRuGEHrz5o2IwqtXrxSLiiRkYuujC9nlnYQFnKUoQKJcEor+BSEZqEQBAACA9xgoRiVT\nW1tbUlJib28/bdo0Q0NDZ2dnZ2dnFxeXkJCQwsLCzZs3m5mZGRgYPHnypKWlZcSIEcSNHR0dDx48\n0NTUxJvEtbW1Hz161NnZias6THZ29t69e8PDw4OCgghhQ0NDeXn5pEmT4uPjCWFXV1dHR4f4xCQZ\nxowZ06v3XoegoaGhp6f3+++/v3371tDQkNDp733oZNLbT65dXRGHg0pLReU0RNvkykJicmlGoMko\nAAAAAJABilHJUCiUuLi4Dz/8MCsri9i4gwug0aNH47d+fn6pqakJCQnffvst1hEIBIcOHWpubvb3\n98d7hlasWJGTk5OWlrZt2zZ8F4/HS09P7+rqcnZ2FvaIj98UeeKcnp7e09PD5/MVGAKVSu3VO5kh\nrF+/Pj09/eDBg9H/XpdTWVl54sQJBUISgUKh8Hg8aVfJxNYf0GjS1rjT+skjAAAAAAxloBiVjIWF\nxYIFC3755Rd/f/9PPvlk5MiRL168OH36NEJo+fLlWCcoKOjKlSvnz59ns9lLliyhUqlFRUU3b960\ntLTcunUr1tm+fXtxcfGRI0eePn06d+5cDodTWFhYV1fn4+NjZ2cn7HHChAmjRo26c+fO7t27586d\n29jYeP369d9++83Y2Pj169fnzp379NNP5R1Fr97JDCEoKKikpCQ7O/vRo0ezZ8+ura1lMpkuLi6F\nhYV9yTBCyNTUtKqqKjIy0sjIaM+ePSJXycQGAAAAAIC6A8WoVA4fPrxv376ff/75zp07WDJ+/Pj9\n+/cvXboUv9XX179w4cLevXsZDMbdu3exxNPTMyoqiniibWpqeunSpb/+9a8lJSW4etPV1RV5QI/R\n0NA4cuTI//t//+/8+fPnz5/X0NBwdHS8ePFibm5ucnLy3/72NwWK0V69kxnCiBEjzp07l5CQcP36\n9dTUVDMzs+XLl0dEROTl5fXxtNKIiIh9+/YxGAyEkHgxSiY24F9I7GzS6yWFbSrRi7IgH4A0TYly\nMmb7OPZBT500xANT2VABQAT4XVU7BIBMOjs7WSzWH3/88eLFCxlq1dXVbDabz+dLU+jp6amsrHz+\n/HlPT48MO3w+v6amBi/0JIQcDqelpUWB4OXy3usQBAJBe3s7fvHo0SM6nf73v/+9L1GRh0xsckGn\n05VlSoWIiZEsiYn5zwuSN6oySoxWtqn3I11qjXqlWr2iBQaE9/O7ph+gCKBvnHqSmZkp4+oHH3zg\n4OCgFEfx8fF37txJS0sT7lf617/+9cyZM8nJyR9//LFiZl+9eqWhoSFsMyEhITMzMzs7e8aMGX0N\nujdsbW0fP37c314GGmmNIXGbUvyCfItNlUWJ0co29X6kS61Rr1SrV7TAgPB+ftf0A/CYXl2pqqqS\ncXXcuHHKcmRra5uVlbV169bPP//c1tb2xYsXubm5Z86cmTJlyqJFixQ26+7ubm1tfenSJUKC/zxS\nRsgAAAAAAKgNUIyqK3FxcQPjaNWqVW/evElNTd2wYQMhXLhwYXR0NEX8vLU+EBgY6OnpqQo9NWNj\nlWBk3DgkduQnAAAAAACiQDEKIITQu3fvdHR0iCZWImzZsmXLli3t7e34QCaCrq4uHo+nq6srzWxX\nV5dAIMDd+3vF1NRUWit7knba2tr09fX7WCKz2SgmRsLy943H3Ziu0RzSx9Zv2oRcXZEKlNYAAAAA\noNJAMTqkEQgEGRkZubm5z54909fXnzlzpp+f3/z58/HV+Ph4JpOZl5eXlJR0+fLl6upqU1PTdevW\nhYWF/f7774mJib/99huXyx07duznn39ONBlACPH5/IyMjLy8vMrKSoFAMHHiRHd397CwMA0NDYRQ\naGjos2fPuFwui8Vyd3enUqkFBQUIobS0tJycnEOHDhFnzcu2Q0SYn5+fkpLCYDDYbLaurq6Tk1Ns\nbCz5U1glIqHVKBMFbETIlawFkmc1AQAAAMAQR/JMGDAU4PP5wcHB+/fvNzAw2LJly+LFiysqKkJC\nQq5du4YVGhoaOBxORETETz/9NH/+/E2bNvF4vMOHD+/fvz8gIOD58+c+Pj5eXl51dXVffPHFgwcP\n8F09PT2BgYGJiYmtra0+Pj6+vr5cLjc5OdnX1/fdu3cIIXNzc2trawqFoqWlZW1tTZyl9ObNGw6H\nw+VySdohIoyLi8vOznZ0dAwICDAyMiouLibZiNTNzY3JZCovo0pm06ZNx6GkBQAAAN53YGZ06HLm\nzJnS0tLQ0NAdO3ZgydatW9euXRsZGVleXk48fGexWD///PPIkSMRQh4eHmvWrDl27FhgYOAXX3yB\nH+uPGzfu8OHD5eXleEYzOzv7xo0b8+fPT0pK0tPTQwhFRkZGREQUFRVlZmaGhYXhk5zs7e2trKzS\n09OlhderHUKzvLw8Ly8PT4Xu2rVr0aJF9+/fr6ystLGx6TUJWVlZWVlZwhI2GyEkq1MBeWJjYxFi\nS7sq3g9h06ZNwm/x4QLSTEtupCe+RIGQ4BfS1jCIy2NipB1FNXCQH2av0ZI3ReaqaqZLrVHiZz0A\nqFe0AKDyQDE6dMEd7MPDwwnJmDFjtm/fvnv3bgaDsWrVKizcsWMHrkQRQvb29tra2t3d3b6+vsQC\n05kzZyKE6uvr8dujR49qaWnFxcXhChIhpKOjExMTU1ZWlp6eHhwcTDxklw15O2FhYcRDeSqVunTp\n0rS0tLq6OtnFqK2tbXV19a+//qqlpYUQ+vDDD2fPno0QotHGKWu2lEaTr6eBHJu3oqMlfMO9f62d\nSA6zn0ypXbrUGiV+1gOAekULDBRJSUnJycmDHYVaAsXoEKWlpeXly5fjx4/PyMgQlr9+/RohdOvW\nLaIYtbW1FVYYNmyYubm5lZUVIRHeV9TU1NTQ0DB58mQLCwvhu4yNjadOnVpRUVFXVzd27Nhew5PL\nDrHGFGNkZIQQ6uzslO3i8ePHmzZt2rhxo6urq7Acb2BSChs3Bsi1gSkaZlAAAADUlvDwcOH5HST2\nBQpIA4rRIUpNTQ1CiMViHThwQPxqY2Mj8Vp8c7q0TfcIodraWoSQSAWJsbS0rKioqK2tJVOMymVH\n4qmkZFqWyj44YNCB2g9sB+gAACAASURBVBQAAAAYCkAxOkQxMzNDCDk5Oe3bt0/8Kn5yrQD4cTnx\nyF4YLJTWvKmf7CjMf6/eRAghFyYN0VBpliRtSbDZSg0IAAAAAN5ToBgdohgbG48cOfL58+cmJibC\nM501NTVXr16dPn36qFGjFDBrZmZmYGDw5MmTlpaWESNGEPKOjo4HDx5oamoSe+cHxo4C0GiopERS\nKemSiRCSsp9IAi4u0GQUAAAAAHoHitGhy/r161NSUk6ePLlx40ZCGB0dXVZW1pfn135+fqmpqQkJ\nCd9++y0ucwUCwaFDh5qbm/39/TU1//UrR6FQeDxe3+30B/+9iBQAAAAAgH4EitGhy2effXbp0qX4\n+PiKioo5c+Z0dnaWlpbevn3b2dl5zpw5CpsNCgq6cuXK+fPn2Wz2kiVLqFRqUVHRzZs3LS0thdt/\nmpqaVlVVRUZGGhkZ7dmzR2E7wH8Q33iFJYRc2s4sZe3YGhiUGK1sU+9HutQa9Uq1ekULAKoEFKND\nFwMDg9zc3Li4uKKioqKiIoSQtra2n5/fzp07ZWxR6hV9ff0LFy7s3buXwWDcvXsXSzw9PaOiogwN\nDQm1iIiIffv2MRgMhJDEYpSkHeA/iG94whJCLm1HlHrtlFJitLJNvR/pUmvUK9XqFS0AqBQCABh6\n0On0wQ5BHYiJUXWDAwOZsFVkaCoSBgGOR40SqFyIQb2XoxssBjeZcnqH7xqSUATQpFeMhISEzMzM\n7OzsGTNmvK8eVYFXr15paGgYGxvjtwOZBFtb28ePH/e3F7VH6U281bQrOJmwVWRoKhIGAXHsgrok\nULkQg3ovRzdYDG4y5fQO3zUkgbPpJYDr9Pfboyrg7u4ufADm0EwCAAAAAAxxYM2oBAIDAz09PeU4\nmxFQBqqQ9k2bZPUHpSE2QoiNaH135OoKC8wAAAAAACEoRiViamoq3lO9ra0NSTnshzzNzc2ampp9\nNCJCe3u7np6e+DlJBO/evdPR0el1T1J3d7dIr/t3795RqVTh0z4VsNxreAQS047p6uoSCAQyIsG0\ntbXp6+uT8SWN48dRSYnUq7TYWOTqwnYJUNg+gZsbFKMAAAAAgNAQLEbT0tJycnJCQ0O9vb2F5WFh\nYSwW69y5cwYGBljn0KFDU6ZM4fF4KSkpZ8+exYe2GxgYeHh4RERE4APQEULx8fFMJvPEiRPm5uaE\ntZycnLS0tKioKGdnZ4TQw4cPjxw5cv36dS6XixAyNjZevXr19u3bFdu0fvjw4fz8/CNHjvz0008M\nBqO2tnb48OHTpk2LiIgQPqVdIBBkZGTk5uY+e/ZMX19/5syZfn5+8+fPJxR27979f//3f5cuXWIw\nGD/++OPvv/9+//59hBCPx0tKSrp69WpVVRWfzx8zZoyvr++GDRu0tbXJWCYTXmho6LNnz7hcLovF\ncnd3p1KpBQUFwmnHanw+PyMjIy8vr7KyUiAQTJw40d3dPSwsTENDQzj5+fn5KSkpDAaDzWbr6uo6\nOTnFxsbiM5yk0dHRIe2SrCajWQiNQzQZCuRQ2cOZ2Gw2m812hT6rAAAAwAAy5NaMzps3j8PhXLhw\nQVj44sWLa9eujR07Fs9ZvnnzhsPh4MIxKioqOTnZ2Ng4JCQkLCxs4sSJ586dCwoKIlY3NjQ0cDic\nnp4eYYOtra0cDqe9vR0h9PTp0w0bNvzyyy+Ojo4hISEBAQFUKjU1NfXo0aOKDaGpqYnD4URFRZ04\nccLOzi44ONjR0fHmzZvr168v+fe0Hp/PDw4O3r9/v4GBwZYtWxYvXlxRURESEnLt2jXCzqtXr54/\nf37r1q3IyMiKigo8K8nlcv39/f/xj3/weLy1a9euXLmys7MzMTHxq6++wkPu1TKZ8MzNza2trSkU\nipaWlrW1NT5OSTjtCKGenp7AwMDExMTW1lYfHx9fX18ul5ucnOzr6/vu3Tvh5MfFxWVnZzs6OgYE\nBBgZGRUXF/faiLSmpkax5L/fMJnM2NjYwY4CAAAAGGIM8O59VWDp0qWTJk2qr68nJFlZWXQ6PS8v\nD7/du3cvnU6/e/cul8udPn36ggULenp68CU+nx8UFESn0x89eoQln3/+OZ1Or66uFnZx7NgxOp1+\n+fJlgUAQFxdHp9NTU1OJqxwOh06nr1+/npAQHsnEHx0dTafT7e3t79y5QwiZTObkyZNdXV3xE+3s\n7Gw6nX7o0CFCoa6uztnZ2cHBoaOjA0sCAwPt7OzmzJmTkJBACDMyMuh0+vbt27u7u7Gks7PT1dWV\nTqffu3ePjGUy4WGmT5++bNkyaUnAH0pgYGB7ezsRyf/8z//Q6fQjR44IJ3/hwoWvX7/GEh6P5+bm\nRqfTnzx5IiOHCCGaJHr5BxEQIMjMlKlBChZLgJBAYgAY8VtkKCtFPwYhAckfkp1NYmKUbHBgIB/2\noA9N1TKs3NSp4O+GbBQYvhqNbrAY3F9yZXiH1k4kGXKP6RFCXl5eiYmJhYWFvr6+WFJQUGBgYPDR\nRx+JaGpoaGhrazc1NVVVVdnY2CCEKBRKVFTUunXryB/dTqfTQ0JC/P39CYmxsbGWllZDQ0NfRrF2\n7VpHR0firYuLy/Lly3Nzcy9fvrxixYrU1FQzM7Pw8HBCYcyYMdu3b9+9ezeDwVi1ahUW8ni8WbNm\nffnll4Raenq6pqbm119/TZy3qaOjExsbm5+f39zcjBAiaVl2eGQGePToUS0trbi4OD09PSKSmJiY\nsrKy9PT04OBg4mF9WFgY8VCeSqUuXbo0LS2trq4Of2TSEJnMXrlypbe3t5sbmdCUg1xnrsp7QKu8\n+i4lJUyESktLmUwmMYHdpxYq0dESVsWqfoMbhcMe+KGpWoZlxKOaCVQusj8OdR/dYDG4v+Tye09K\nSkpOTu7fqN5ThmIx6unpefDgwcuXL+NitL6+/t69e97e3sOGDRPR1NDQWL16dUZGhpeX17x585yc\nnBwdHadMmWJlZUXe3Zo1a/CL6urqysrKyspKBoPR3d3dx1EsXLhQROLm5pabm/v48eOWlpaXL1+O\nHz8+IyNDWAEve7116xZRMiKE1q5dS7xubm5uaGhwcHAgen9iFixYsGDBAoQQecsywiMzuqampoaG\nhsmTJ1tYWAjLjY2Np06dWlFRUVdXN3bsWCwUXimLEMLLeTs7O2XYHz58eHV1NZlI+g+5lmbKu45T\nYf1x48bJdSMAAACACQ8PF56pQQjZ2toOVjDqxVAsRk1MTJycnMrLy+vr601MTIqKivh8vpeXl0Tl\nXbt22dnZnTlzpqysrLS0FCE0evTowMDAzZs3k3TX1taWkpJy8eLFxsZGCoViYWExe/Zsdp/3sIhv\n0MGLPuvq6vCCSBaLdeDAAfEbGxsbhd8KF9b4Rhlbf8hblhGeNOPC1NbWIoREKlGMpaVlRUVFbW0t\nUYxK7E4gkPmns/BuM4AAti4BAAAAA89QLEYRQt7e3tevXy8oKPD39y8oKLCwsJg1a5Y05RUrVqxY\nseLt27f3798vLi6+ePFiYmIiQkhGPSo8Lbdt27by8vJVq1b5+PjY2tri/kRXr17t4xAaGxsnTJgg\nLGlqakIIjR492szMDCHk5OS0b98+8RtF+jcRbQGI1y0tLdKckrcsIzwZgyLAtWx9fb34JSyU1gSq\nj7i6ovHjpV9luyAmjdnnHT5sNoImtgAAAACAGaLF6KJFiwwNDS9fvrx06dI7d+4EBQVJbE5ZW1tb\nUlJib28/bdo0Q0NDZ2dnZ2dnFxeXkJCQwsJCXIzihkcirYKePHmCXzQ0NJSXl0+aNCk+Pp642tXV\n1dHRQX7VqURu3rwpUkDfvn0bIUSj0YyNjUeOHPn8+XMTExPh7lE1NTVXr16dPn26NNdjxozR1tZ+\n9OhRZ2en8KKF7OzsvXv3hoeHBwUFkbQsIzwyozMzMzMwMHjy5ElLS8uIESMIeUdHx4MHDzQ1NfEG\nfKXT20rLAISQ2BoiRYBiFAAAAAAwQ661E0ZHR8fDw+PXX3/94YcfeDyep6enRDUKhRIXF7d//34+\nn08IcRlEzPDhB76FhYWEwqNHj65cuYJf4+lAkefI6enpPT09wjYV4NSpU8LP+tls9vnz5/X19Zct\nW4YQWr9+fU1NzcmTJ4VviY6O3rt3r4zFlFQqdcWKFa2trWlpaYSQx+Olp6d3dXXhnqkkLcsOD0Oh\nUHg8nrRg/Pz83r17l5CQQCRKIBAcOnSoubl53bp1xP4q5UKjDdAPAAAAAACYITozihDy9vY+e/Zs\namrq9OnTx0t5NGthYbFgwYJffvnF39//k08+GTly5IsXL06fPo0QWr58Odbx8PBITU09duxYbW3t\nrFmznj59+uOPP86dO7esrAwhNGHChFGjRt25c2f37t1z585tbGy8fv36b7/9Zmxs/Pr163Pnzn36\n6aeKxa+jo7NmzZqVK1fa2NhUVVVduHChtbX1q6++GjlyJELos88+u3TpUnx8fEVFxZw5czo7O0tL\nS2/fvu3s7DxnzhwZZrdv315cXHzkyJGnT5/OnTuXw+EUFhbW1dX5+PjY2dmRtyw7PIypqWlVVVVk\nZKSRkdGePXtEIgkKCrpy5cr58+fZbPaSJUuoVGpRUdHNmzctLS17bSMKKIeYGFU3ODCQCVtFhqYi\nYRDgeNQogcqFGNR7ObrBYnCTCR9lPzHYvaUGk48//phOp586dUpELtzwsr29PSoqyt7env5vFi9e\nfPHiRWH9nJycGTNm4KtOTk7Z2dmXLl0i+ozevXvX3d0dX7Wzs/Pz86uurv7+++9xM05xj72CG3n+\n85//3L59u52dHbbs5ubGYDCE1VpbW7/44osPPvgAK0ydOvWbb75pa2sjFAIDA+l0ektLi4j9169f\nh4SETJ06Fd9ob2+flJTE5XJJWiYZnkAgKCgocHV1tbOzs7Ozk5iEjo6OqKgoR0dHbMTBweGLL75o\nbW0lFHpt8ioN6P0GAAAA9DfwXUOSIV2Mkqezs5PFYv3xxx8vXryQqMDj8TgczvPnzyVe5fP5NTU1\neC0mIeRwOOKFIBlwtffgwQOBQNDa2vrHH3+8efNGmjKfz2ez2fjsTbm89PT0VFZWPn/+nGj4T9Ky\nXOFt3LjR1tYWd8vft2+fra2txIq8urqazWbz+Xy5hiADFfoPguiWjF+Qad38HvfKVsehqWPMAAAM\nCCr0XaPaDN3H9HKho6Mje+cNlUqVsaWGQqFYWlqKCCXqy+5V/sEHHzg4OAhLDA0NRbpsirtWrHOk\nhobGX/7ylz5a7jU8/Fso/loEuRq7qhkxMf/qq4xfEG/J3PL+oY5DU8eYAQAAVAkoRlWLqqoqGVff\n74bkgYGBnp6eJLfbAwAAAADwfgDFqGoRFxc32CH8h+7ubpGmpO/evdPR0RFu6iRCc3Nzr4dLtbW1\naWlp4X6rwpiamsroHtrW1qavry+xAxcObNiwYdKuyoWIDRpiuyLmcRQgrkmjIRar7w4BAAAAYEgz\nRFs7qTUxMTGPHz+ePHmy0i3v3r0bdwlgMBgbNmwgGoUKBIJjx44tW7ZsxowZH374YUhICO4VQPDw\n4cP/+Z//mT59+uzZs3NycoyNjQsLC0V6V3V2dv7tb39zd3d3dHR0cHDYuHHjgwcPhBXS0tLc3d0J\nYXx8vLu7e3d39+HDhxcvXozvCgsLE+6E39XVtX///uXLl8+YMWP27Nk7d+5sb29ftmzZ119/rVgG\ncDt6geA/P6wSdqZrlrDkX3IoQwEAAABAGcDMKPAfXr169fz581u3bkVGRgoEAnzeJp/PDwkJKS0t\ndXBw2LJlS2NjY0FBQVlZ2ffff48PoH/69OmGDRu4XO7MmTOnT5/e2dnJYDBSU1OHDRsWGhqKLbe1\ntfn7+z98+NDGxmbjxo2dnZ3//Oc//f39hTs9vXnzhsPhcLlc/LahoYHD4cTFxRUWFn700Ueurq5X\nrlwpLi5ubGw8c+YMQqi9vT0kJOT27duTJ08OCAhoaWlhMplbtmxhsVgSzxEVRuRM1IGHyWQiOH4T\nAAAAAKAYBUTo7u7esWNHQEBAeHi4rq4uQujMmTOlpaWhoaE7duzAOlu3bl27dm1kZGR5ebmuru6P\nP/749u3bnTt3BgcHYwVfX9+PP/64rKyMKEaPHz/+8OHDZcuW7d+/X0NDAyH07t27bdu2/fLLL7Lj\nKS8vz8vLw6eD7tq1a9GiRffv36+srLSxsTl16tTt27c//fTTb775Bq8cqKur8/X17enpkW2TzWa3\ntrYK9+QXuoQQopFL1b9MSbskvvhVWLm0tBRBMQoAAAAA8JgeEIHH482aNevLL7/ElShCKDU11czM\nLDw8nNAZM2bM9u3b29vbGQwGQohOp4eEhPj7+xMKxsbGWlpaDQ0NhCQrK0tLS2v37t24EkUI6erq\nxsTEEG+lERYWhitRhBCVSl26dClCqK6uTiAQnDx5Uk9P78svvyTWsFpYWAQFBZEZZnd393hJuLm5\nkbkdw2azJRrBiOtnjR9P+/dPdExMdEzMvxaoUij/eUG8lfEjUSc2lnzkKkFsrPoNTR1jBgBgoEhK\nSrL9bwY7IrUBZkYBUdauXUu8bmlpefny5fjx4zMyMoR1Xr9+jRC6devWqlWr1qxZg4XV1dWVlZWV\nlZUMBkN4G1N9fX1ra6uDgwNxhirG0tKSTqc/evRIRjAinaGMjIwQQp2dnfX19fX19bNmzRo+fLiw\nguzzpQi0tLS6urrE5Ww2Il+O0mg0FktyLyqJRAs1roqNjUUIRUdHIwoFYTl+QbyVARkd1Sc6WkJH\nJBUfmjrGDADAQBEeHi48cYMQgnqUJFCMAqIIN/WsqalBCLFYrAMHDohr4pWXbW1tKSkpFy9ebGxs\npFAoFhYWs2fPFn4k/fLlS4QQMcEpjKmpqexi1MDAQFwoEAhevXqFEBo1apTIJZHaVBpmZmZk1PoP\nFxcXaGIFAAAAAAiKUUAcPPuIwUWbk5PTvn37xDVx46dt27aVl5evWrXKx8fH1tYW92y6evUqoYYb\nNr1580bcQlNTk2JB4klWcZu4SJUNjUbT09OTofBfC0HZiCYiEdeRH1gtCgAAAAAYKEYBWRgbG48c\nOfL58+cmJibC7UVramquXr06ffp0Pp9fXl4+adKk+Ph44mpXV1dHRwcxbWlqampgYPDw4cPW1lbh\nmcumpqbHjx8rFtiYMWP09PR+//33t2/fGhoaEvKSkhLFDBK4uv7Xk3oaotFQNFPSs3uoJwEAAACg\n78AGJqAX1q9fX1NTc/LkSWFhdHT03r17Ozs78dSmyMP09PT0np4eos8ohUJZv359R0fHwYMHhQ//\nPHjwINHISV6wTS6Xe/DgQUJYWVl54sQJxQxiaDSUmYlYrP/8lLBomSxXYQnxI/PoVgAAAAAASAEz\no0AvfPbZZ5cuXYqPj6+oqJgzZ05nZ2dpaent27ednZ3nzJkjEAhGjRp1586d3bt3z507t7Gx8fr1\n67/99puxsfHr16/PnTv36aefIoS2bNlSWFh4+vRpNpu9cOFCgUBQUlJy7949ExMT4Sb2chEUFFRS\nUpKdnf3o0aPZs2fX1tYymUwXF5fCwkKlJgAAAAAAgH4EZkaBXjAwMMjNzfX09CwvL4+Li0tMTLx/\n/76fn9/hw4epVKqGhsaRI0doNNr58+cjIyP37///7N17WBNX+jjwk3ARVBQ1goCFQNfES4uCUJSK\nRMRU6wUrKFSBIooCC2oVdZdKgbLgvS6CLPJF8LJLQbEoSCogklSyCmir9qesYCXhVhEQkHBJgOT3\nx2xn0xDCJCAXeT8Pj09y5sw5Z2ZseT0z855jIpHo2rVrbm5u2JJLWCOTJk1KT09fuXLlw4cPIyMj\no6KieDxeYmLi+++/r/LAJk+efOXKFVdX17q6uvj4+OLi4rVr14aHh3d1dcl97WmECgv7wwf8K5Fd\n3j2j8dBG45gBAGAkIUkgKQkgRiKRVFZW9vT0zJw5U1NTU2ZTbW1ta2urqakpvuh8ZWWlrq6uzOvt\nPT09FRUVU6ZMkUnzNEDt7e3YO0n/+c9/nJycdu7cuXfvXgX16XS6yo+rAgAAAETA7xqCYGZ00Bw9\nenT27Nk//fTT6O2xrq5OOlO9TCGJRDIxMTEzM5OJRLFNRkZGs2fPxiNRhJCxsXHvREtqamp/+tOf\npk2b1rsvZQ8nKipqw4YNWCP42/EpKSkIoQ8//JBgI2Cg5GZ3J16ooJx4hcEyWjLVj8xxjpBRqTyM\nETJ+MATgWo88EIwOGolEMsTTzIPeI5PJ3Lp1K5HCt9GXsodDp9OfPHkSEBBQVFTU3NxcWloaFRWV\nlpY2b948R0fHwR4v6IPcm9TECxWUE68wWEbLDfeROc4RMiqVhzFCxg+GAFzrkQdeYBo03t7eTk5O\nkMlcZcqeQGdn59evX8fHx3t6euKFDg4OoaGhJGyRRmJ4vIEmDSUIUkEBAAAAvUEwOmj09PSw7O7S\nBAIB6mMZIeKam5vV1dUH8aWcwWqwo6Nj3Lhx0vlH5RIIBBMmTOg3QJR7AjEikUgikUg/A4Dx8fHx\n8fFRtiMZ4eGIzUYKYuAveOEcZM+jMpRqVgabjSoqFPUCAAAAjE0QjBKSkJCQnp7u5+f32WefSZf7\n+/tXVFRcuXJl4sSJWJ1Tp07Nmzevp6cnLi7u8uXL2BruEydOXLVq1b59+/DFjaKioths9sWLF2fM\nmIG3lp6enpCQEBISYmdnhxB6+vTpmTNn7ty5gyXjpFAoLi4uu3fv7jf464uCBv38/H799VehUFhR\nUcFkMslk8s2bN+UWIoQkEklSUlJGRsavv/46YcIEKysrd3f3JUuW4B1hR5ednR0XF8disXg8nra2\ntq2tbXh4+PTp0/tqVvoEYu2IxeKkpKQbN26Ul5dLJJL333+fyWT6+/urqakR6Yj4mQkNRV5efW9e\nxvYKtUcM5c62DFPTAe0OAAAAvKsgGCXk448/Pnny5Pfffy8djP7222+3b99eunQpNsX4+vVrPp+P\nxXkhISFXr16dO3fuhg0byGQyl8u9cuXKs2fPLl++jM3bNTQ08Pn87u5u6V7evHnD5/Pb2toQQs+f\nP/f09BQKhVZWVubm5p2dnSwWKz4+XktLy8/PT4VDUNzgjBkzurq6qqqqNDQ0jI2NsXhXbqFYLPb1\n9eVwOBYWFj4+Po2NjTdv3iwsLDx9+rSDgwPWF3Z0EREROTk5y5cvZzAYubm5+fn5jY2NaWlpcpuV\nOYEIoe7u7u3bt9+9e9fIyMjNzY1MJnM4nNjYWC6Xm5ycrK2t3W9HfZ0KHo/38uVLFc7haBQeHm5v\nbw+rjwIAABixIBglZN68ebNmzbp//35DQwOFQsEK8/LyJBKJk5OTTGWRSJSdnT1jxoz09HRsDm/X\nrl2+vr5sNvvZs2ezZ88m0mNqampra+vevXt37tyJlWzZsmXFihWFhYWqBaOKGwwNDUUIzZ8/f+bM\nmYmJiVgFuYVpaWkcDsfPz2/Pnj1YSUBAgKura1BQEJfLxWJEDJfLvXHjBjZDefDgQUdHx4cPH5aX\nl8tttreUlJS7d+8uWbIkJiYGe1k+KCho3759eXl5ycnJ/v7+/XY0a9YsuS3zeLyuri42m/37V6q9\nPVXJ06kKNput4DZ973gRH+FA6p8/f97ExITA6AAAAIDhAcEoUevXrz9+/HhOTs6WLVuwkps3b06c\nOHH58uUyNdXU1DQ1NZuaml68eIHFQyQSKSQk5PPPP8eXa+8XjUbz9fX18PDASygUioaGRu/US0Pc\nYHx8vL6+fmBgIF5iYGCwe/fu4OBgFovl7OyMl/v7++P3yslk8urVqxMSEmpra/uKEWWcPXtWQ0Mj\nIiICT9s0bty4sLCwwsLCxMTEnTt34jfrVeioo6Pj008/xT53d//ff/4T39pqJH1Qb8OFCxcQ4vW1\ntXdwGa4w/4iy9QdBeLj8t1DlPqRLvFBBuYIKYWEoNLSfvRQgfiwD7GiARuY4R8ioVB7GCBk/GAJD\ne61jYmJiY2MH2MjYBMEoUU5OTt9+++0PP/yABaP19fU///zzZ599pqWlJVNTTU3NxcUlKSlp/fr1\nH3/8sa2t7cKFC+fNmzdz5kzi3W3atAn7UFVVVV5eXl5ezmKxurq6VB7/oDTY0tLy8uVLU1PTpKQk\n6XLs0diioiLpYBR/9BODPS/b2dlJpKOmpqaGhoa5c+caGhpKl1MolA8++KCkpKS2tva9995TuSNt\nbe329nbs89atyN5e4TOjgyQ5OVmpF5gKCgqUal9u/WXLlinViCKhoXL+Z00iod4JuYgXKignXkEF\nxI9leI3McY6QUak8jBEyfjAEhvZaBwYGykxq0On0t9HRuweCUaKmT59ua2vL5XLr6+unT5+el5cn\nFovXr18vt/LBgwfnzJmTlpZWWFjI4XAQQtOmTfP29t6+fTvB7gQCQVxc3LVr1xobG0kkkqGhoY2N\nDW8AKYgGpcHq6mqEUEVFxYkTJ3pvbWxslP4q9219gplEa2pqEEIykSjGyMiopKSkpqYGD0aV7YhK\npeL7vvOSk5Mh3RgAAICRDIJRJXz22Wd37ty5efOmh4fHzZs3DQ0Nra2t+6q8bt26devWtba2Pnz4\nMD8//9q1a8ePH0cIKYhHpSfzdu3axeVynZ2d3dzc6HQ6ltXo1q1bKg9+UBrU19dHCNna2h45cqT3\nVg0NDZWHJwO77V5fX997E1bYVxIoInoHZxyOovoMHuJxhigX6aCDSBQAAMAIB8GoEhwdHXV0dH74\n4YfVq1ffv39/x44dclNa1tTUFBQUzJ8//8MPP9TR0bGzs7Ozs7O3t/f19c3JycGCUWxFTfxOMaas\nrAz70NDQwOVyZ8+eHRUVhW8ViUTt7e3EnzqVNlgNUigUXV3dysrK6dOnS2eYqq6uvnXrlrm5uWrD\n601fX3/ixIllZWUtLS2TJ0/Gy9vb2588eaKurm5sbDwoHSGEQkNReLiieJTPSObxqH0/7UmIlxck\nGQUAAADkgGBUnaFL6wAAIABJREFUCePGjVu1atWVK1f+9a9/9fT09H6PHkMikSIiIj766KMLFy7g\nERsWPE2bNg37iqUXzcnJodFoWElpaWlubi72uampCfW6+5yYmNjd3S0Wi1UYOcEGSSRST09P78OR\nLty8eXNcXNylS5e++OILvDA0NLSwsDA5OZn4kOT2Jc3d3T0+Pv7o0aN/+9vfsNMokUhOnTrV3Nzs\n4eGhrj5of3WpVNTfwKmD1RcAAAAAZEAwqpzPPvvs8uXL8fHx5ubmpn3kMTc0NFy6dOmPP/7o4eHx\n6aef6urq/vbbb9999x1CaO3atVidVatWxcfHnzt3rqamxtra+vnz56mpqYsXLy4sLEQImZmZTZ06\n9f79+8HBwYsXL25sbLxz586jR48oFMqrV6+uXLmyceNGpYZNsEE9Pb0XL14EBQVNmTLlq6++wvaV\nKdy2bVtWVlZUVFRJScmiRYs6Ozs5HE5xcbGdnd2iRYuID0luX9J27NiRm5t79epVHo+3cuVKMpmc\nl5d37949IyOjgIAApQ4fAAAAACOWimv5jFmWlpYmJibd3d19vbqEiY6OdnV1ffLkyTfffLN3797j\nx49raGgcO3Zs9erVWAU6nR4ZGammppaRkREcHJyZmXngwAE8o76amtqZM2eoVOrVq1eDgoKOHTsm\nEomuXbvm5ubW2dkZGRmp7LAJNrhv3z4DAwMWi/Wvf/0L31emcOLEiRkZGU5OTlwuNyIi4vjx4w8f\nPnR3d4+OjlZqaSi5fUmbMGHC999/7+rqWlZWFhkZGRER8csvvzg5OV2/fl1XV1fZMwDeFrlpU4gX\nKignXmGwDFlHAzQyxzlCRqXyMEbI+MEQgGs98pAIvt0MVCAUCn/77be2trZp06ZJL/uJE4vF1dXV\nJBJJ7svdEomktra2tbXV1NQUX5a9srJSV1d30qRJKoxncBuUSCSVlZU9PT0zZ87EHoF9e6qrq3t6\neoyNjZVdd74vdDr92bNng9IUUF14+OAncRzKNgn2JV3tbQxPqQGMau/MgQAZ7+6Vhd81BEEw+i5Q\n/LDmggULLCwshmwwyjp69GhycnJKSoqlpeWQNQj/gxgR3ka2v6Fsk2Bf0tWGJZnlO5NB8505ECDj\n3b2y8LuGIHhm9F3w4sULBVtH+GqQEolkcP9FNOgNAgAAAODtgWD0XRARETHcQ1Cdt7e3k5PT8KbD\nPH8e8fmD2aCJyVAs6QQAAAC8A+AFpneZQCAY+BxhW1ubTIlIJOro6FCwS0dHB5EUVNhipHp6enPm\nzNHW1u7diFAoVLB7c3OzQCDotxcitm7tc5MJ+/wX55VeUVNBgwAAAACQBjOj75SoqCg2m52dnR0X\nF8disXg8nra2tq2tbXh4OLamEV7n4sWL0u9UpaenJyQkhISE2NnZYRVu3LgRExPzww8/VFVV6enp\nff755/7+/o8fPz5+/PijR4+EQuF777335Zdf4vkBEEISiSQpKSkjI+PXX3+dMGGClZWVu7v7kiVL\n8ArBwcG//PJLVlYWi8VKTU19/Pjxw4cPExIS0tPTT506hS0x39PTExMTc+vWrRcvXojFYgMDgy1b\ntnh6euLvSD19+vTMmTN37tzBQlUKheLi4rJ7926l3uXv7Ysv+khKb4LQBeWerefx4GVNAAAAgCgI\nRt8pDQ0NfD4/IiIiJydn+fLlDAYjNzc3Pz+/sbExLS1Nuk53d7f0jm/evOHz+dgkKFZh3759jx49\ncnBw0NLSyszMjI6OFggEqampOjo6bm5uLS0tWVlZ+/fvp1KpWBApFot9fX05HI6FhYWPj09jY+PN\nmzcLCwtPnz7t4OCA9VJXV1dZWVlUVBQUFCSRSLAcAq9fv+bz+VhkKRQKt27d+uDBAzMzM1dXV6FQ\nWFBQcPz48adPn548eZJEIj1//tzT01MoFFpZWZmbm3d2drJYrPj4eC0tLT8/P+InCl/savRis9lb\nt26tqKgY7oEAAAAAAwLB6DuIy+XeuHEDmwo9ePCgo6Pjw4cPy8vLZ82aRbyRioqKzMxMLKPnqlWr\nNm3adO7cOW9v7/3792NzkCYmJtHR0VwuFwtG09LSOByOn5/fnj17sBYCAgJcXV2DgoK4XC5+F76r\nq2vPnj1eXl6BgYG9b82npKQ8ePBg1apVJ06cwNZYEgqFK1euzM7O9vT0XLBgQWpqamtr6969e3fu\n3IntsmXLlhUrVhQWFioVjCKEwsPDpb4NflaRP7b/B6G9JloVVO6rPo/HU3VowyE8XP50ce9cXWFh\nRCeih7dNxeUKqg1keP16G+dkWLwzBwJkwJUF8sAzo+8gf39//KY8mUzG7qTX1tYq1ciePXvw3PLz\n58/X1NQkkUhbtmzB74ZbWVkhhOrr67Gv8fHx+vr6gYGBeAsGBga7d+9ua2tjsVh4YU9Pj7W19YED\nB3pHogihxMREdXX1Q4cO4at9jhs3Ljw8fP369c3NzQghGo3m6+vr4eGB70KhUDQ0NBoaGpQ6OoRQ\njBSEUEZGhrItACWEhiKJRPYHITmFxH/9DG+bCsoVVBvg8IblnAyLd+ZAgIx3+srGxMTQ/2i4RzRq\nwMzoOwibqsRNmTIFIdTZ2alUIzL/FWlpac2YMWPmzJl4CZ42HyHU0tLy8uVLU1PTpKQk6b1evXqF\nECoqKnJ2dsYLXV1d5fbY3Nzc0NBgYWFBoVCky5cuXbp06VLs86ZNm7APVVVV5eXl5eXlLBYLexFK\nKTLxK4mE8OWvBkvv6czBqozVZ7PZo2xyFAAA3mmBgYHSMzKo129S0BcIRt9BEydO7F2o7Gv1vdc6\nUvCGUHV1NUKooqLixIkTvbc2NjZKf5WOaHs3gs/pyiUQCOLi4q5du9bY2EgikQwNDW1sbFSIyUxN\nTZXdZaRhMBgMBmO4RwEAAAAMFASjACHl501l6OvrI4RsbW2PHDnSe6uGhob0V2ymtjesvKWlRUFH\nu3bt4nK5zs7Obm5udDodm529deuWyiPH9fXQJpVHtedRLyiTqgnmKwEAAADiIBgdc7AcSe3t7dKF\nA3y7nEKh6OrqVlZWTp8+XXoCtbq6+tatW+bm5lOnTu23EQMDA01NzdLS0s7OTi0tLbw8JSXl8OHD\ngYGBGzZs4HK5s2fPjoqKwreKRKL29nYi7StQUYHY7D622TN4iGGvTGv29kjh+qwAAAAA+B8IRscc\nLL1oTk4OjUbDSkpLS3NzcwfY7ObNm+Pi4i5duvTFF1/ghaGhoYWFhcnEQjMymbxu3Tos4+muXbuw\nwp6ensTERJFIZGdn19TUhHo9hJCYmNjd3U0kx74CVCosmAQAAAAMDwhGx5xVq1bFx8efO3eupqbG\n2tr6+fPnqampixcvLiwsHEiz27Zty8rKioqKKikpWbRoUWdnJ4fDKS4utrOzW7RoEcFGdu/enZ+f\nf+bMmefPny9evJjP5+fk5NTW1rq5uc2ZM6enp2fq1Kn3798PDg5evHhxY2PjnTt3Hj16RKFQXr16\ndeXKlY0bNw7kEMBQextrAwxlmwT7kq42LMshvDNrMLwzBwJkwJUd8yAYHXPodHpkZGRUVFRGRkZG\nRgaFQjlw4ICOjs4Ag9GJEydmZGRERETk5eXl5eUhhDQ1Nd3d3ffu3Ut8bSQ9Pb2srKyvv/66oKAg\nJycHIaStrR0YGLhjxw6EkJqa2pkzZ/76179evXr16tWrampqCxcuvHbtWkZGRmxsbGRkJASjo8zb\nSN0ylG0S7Eu62rBkqxmFKXLke2cOBMiAKwskAIw9NBptuIfw9oWFqbKVeLmyLRDXbwtvr2swLODC\ngXfUmPhdMxhIEiUz/gAwWOrq6tTU1PCsokePHk1OTk5JSbG0tHzbXdPp9GfPnr3tXoYZiYQU/Nfd\n11bi5cq2QFy/Lby9rsGwgAsH3lFj4nfNYIAVmMCwYTKZW7f+L2cS9s+jYRwPAAAAAIYePDMKRgpv\nb28nJycqlTr0XW/dKic5KAOx2YihWoMMBjwEBQAAABACwSgYkObmZnV1dblrPmE6OjrIZLL02qF9\n0dPT09PTk7tJJBJJJJJ+GxEIBBMmTOi9dlS/zp9HyclIOgym8tgoPNw+maFsUwghHg9duADBKAAA\nAEAIBKNAFU+fPj1z5sydO3eEQiFCiEKhuLi47N69G39xvqenJyYm5tatWy9evBCLxQYGBlu2bPH0\n9MRS7vv5+f36669CobCiooLJZJLJ5Js3byYkJKSnp586dWrevHlYI2KxOCkp6caNG+Xl5RKJ5P33\n32cymf7+/mpqaliFqKgoNpudnZ0dFxfHYrF4PJ62tratrW14eLjiZUVlcv4jhBiMPwSjiI0QFVEZ\nqpycPvPnDxJs+dNhmUIGAAAABh0Eo0Bpz58/9/T0FAqFVlZW5ubmnZ2dLBYrPj5eS0vLz88PISQU\nCrdu3frgwQMzMzNXV1ehUFhQUHD8+PGnT5+ePHmSRCLNmDGjq6urqqpKQ0PD2NgYC2Ffv37N5/Ox\n6BYh1N3dvX379rt37xoZGbm5uZHJZA6HExsby+Vyk5OTtbW1EUINDQ18Pj8iIiInJ2f58uUMBiM3\nNzc/P7+xsTEtLa2v8bPZ7MbGxiE5VW/FhQsXeDwewaUEAAAAgBEOglGgtNTU1NbW1r179+7cuRMr\n2bJly4oVKwoLC7FgNCUl5cGDB6tWrTpx4oS6ujpCSCgUrly5Mjs729PTc8GCBaGhoQih+fPnz5w5\nMzExUW4vKSkpd+/eXbJkSUxMzPjx4xFCQUFB+/bty8vLS05O9vf3x2tyudwbN25gU6EHDx50dHR8\n+PBheXn5rFmz+jqE7u7uZcuWSRUUDPSk/BGPx1u2rM/17AsKZLv742D6ry8rPFx+1mjFTyz0tZV4\nOfGaYWHyH1xQbeSD0jUYFsSvOFw4AMYMCEaB0mg0mq+vr4eHB15CoVA0NDQaGhqwr4mJierq6ocO\nHcIiUYTQuHHjwsPDs7Ozm5ubCfZy9uxZDQ2NiIgILBLFGgkLCyssLExMTNy5cyd+s97f3x+/KU8m\nk1evXp2QkFBbW6sgGEUIPX/+XPprRkbGl19+RnBsRIQq83tUqcpy95fza3tUpHZSYeSD1TUYFqpd\ncQBGg5iYmNjY2OEexagEwShQ2qZNm7APVVVV5eXl5eXlLBarq6sLK2xubm5oaLCwsMATiGKWLl26\ndOlSgl00NTU1NDTMnTvX0NBQupxCoXzwwQclJSW1tbXvvfceVog/Y4qZMmUKQqizs1NB+9OmTauq\nqsK/kkjos88GMxKlUqkMBpV4fQaDQbyyiYmJiYmJskMCAADwVgUGBgYGBkqX0On04RrM6ALBKFCa\nQCCIi4u7du1aY2MjiUQyNDS0sbHh/Z4bqbq6GiGk+P2hftXU1CCEZCJRjJGRUUlJSU1NDR6Myn2X\nX0HKUgaDMWnSpIEMb3h5eXkN9xAAAACAQQPBKFDarl27uFyus7Ozm5sbnU7HMi7dunUL24pNTLa0\ntAykCyyWra+v770JK+wrCZRqGAwk89AmlYcY1C/Om6rSGo+HIFwEAAAACIJgFCinoaGBy+XOnj07\nKioKLxSJRO3t7VOnTkUIGRgYaGpqlpaWdnZ2amlp4XVSUlIOHz4cGBi4Y8eOfnvR19efOHFiWVlZ\nS0vL5MmT8fL29vYnT56oq6sbGxsP4kHJezGdgRD6QtUGIe0SAAAAQBAEo0A5TU1NqNed8cTExO7u\nbrFYjBAik8nr1q1LT09PSEjYtWsXVqGnpycxMVEkEtnZ2eF7kUiknp6evjpyd3ePj48/evTo3/72\nNyz3k0QiOXXqVHNzs4eHB/5q1KCA2BEAAAAYLhCMAuWYmZlNnTr1/v37wcHBixcvbmxsvHPnzqNH\njygUyqtXr65cubJx48bdu3fn5+efOXPm+fPnixcv5vP5OTk5tbW1bm5uc+bMwZvS09N78eJFUFDQ\nlClTvvrqK5mOduzYkZube/XqVR6Pt3LlSjKZnJeXd+/ePSMjo4CAgKE96NFJbgKdfrcSL1e2BeL6\nbeHtdQ2GBVw4AMY2koL3PACQ66effvrrX/+KvbGkpqa2cOHCw4cPZ2RkxMbGamtrP3z4ECFUX1//\n9ddfFxYWikQihJC2tvb27dt37NiBrcCEycnJOXLkSF1dHULo6dOnR44cSU5O/u677ywtLbEKHR0d\nhw8fZrFYra2tCKEJEyY4OjqGhITo6OhgFfbu3ZudnZ2fnz9z5ky82aSkpKNHj0ZHR69cubKvQ6DT\n6c+ePRvsEwMAAAD8D/yuIUoC3jlHjhyh0+kPHjzAvr58+bK+vl5BhTGIRqMN9xAGLCxM9oOCOips\nVVAzLOwPJSr3QnwAQ0a1IY3AAwFywZUaGnCef/cu/K4ZEjAz+g6SmWKcP3++sbFxVlZWXxXGoHfh\nX6t4nnAFCcNVy3vfb01ssRy8ROVeRmCqc9WGNAIPBMgFV2powHn+3bvwu2ZIwDOjY5G3t7eTkxMV\nXtsBAAAAwHAjD/cAwH+1tbXJlIhEoo6OjrfRl56e3pw5c7S1tWXKBQKBQCBQsGNHRwf2yrwCAoFA\nwXR7v12IRCKhUKi4Cwy+5tMA8XiIRJL9CSeF9y5U8GOqUkZSAAAAAEAwOmyioqKYTKZIJDp58qSj\no6OlpaWdnV1cXBxC6PHjxx4eHlZWVgsWLHB0dMzOzpbZ6+XLl9JNpaenM5nMO3fuyHTh5+fHZDKF\nQmFFRQWTycRf6ElISGAymU+ePMG+9vT0xMTE2NnZLfzdoUOHsBROGIlEcu7cuTVr1lhaWn700Ue+\nvr6FhYUyQ+rq6oqOjv7kk08WLlxoYWHh7+8vnbK+3y7EYnFiYuL69estLCwsLCzWrl0bExMjk/gp\nODh47dq1CCEWi+Xp6WltbR0ZGclkMn/88UeZAw8JCWEymXw+n8iF4PEQlYokkj/8hKIwmRLFP1g7\nAAAAAFAW3KYfNg0NDXw+f9++fY8ePXJwcNDS0srMzIyOjhYIBKmpqTo6Om5ubi0tLVlZWfv376dS\nqdgK7Nhe3d3d0k29efOGz+f3nludMWNGV1dXVVWVhoaGsbExlq0TIfT69Ws+n49PQIaEhFy9enXu\n3LkbNmwgk8lcLvfKlSvPnj27fPkyiUQSi8W+vr4cDsfCwsLHx6exsfHmzZuFhYWnT592cHDAhxQR\nEZGTk7N8+XIGg5Gbm5ufn9/Y2JiWlkaki+7u7u3bt9+9e9fIyMjNzY1MJnM4nNjYWC6Xm5ycjM/g\n1tXVVVZWFhUVBQUFSSSS9957b8mSJRcvXkxPT5de9V4gEFy/ft3MzEzBAu6NjY0DuXZDjM1mIyXX\nrwcAAABGCwhGh1lFRUVmZqauri5CaNWqVZs2bTp37py3t/f+/fux2NHExCQ6OprL5WLBqFJCQ0MR\nQvPnz585c2ZiYqLcOiKRKDs7e8aMGenp6WpqagihXbt2+fr6stnsZ8+ezZ49Oy0tjcPh+Pn57dmz\nB9slICDA1dU1KCiIy+XikSKXy71x4wa2jOfBgwcdHR0fPnxYXl4+a9asfrtISUm5e/fukiVLYmJi\nxo8fjxAKCgrat29fXl5ecnKyv78/Ptqurq49e/Z4eXkFBgZqa2uLxWJDQ0M2my0QCPA8/Pn5+UKh\n0NnZWcGZGV3BKIfDQRCMAgAAeEfBbfphtmfPHiwSRQjNnz9fU1OTRCJt2bIFn8W0srJCfazSPijU\n1NQ0NTWbmppevHiBlZBIpJCQkLNnz2LLe8bHx+vr6wcGBuK7GBgY7N69u62tjcVi4YX+/v5YJIoQ\nIpPJq1evRgjV1tYS6eLs2bMaGhoRERFYJIoQGjduXFhYmLa2dmJiovTN+p6eHmtr6wMHDmBBMJlM\ndnFxEQqFOTk5eJ3s7GxNTc1169YpPnDS75YtW1ZTUxMTE6PS+fsfU1NTUt8UDKDf+qEIhYaFyT6m\nipDsh94/Cjb1u1VBzd8PYKC9yN0UHj7AC0FUeLgqQ1JtLzD04EoNDTjPUmJiYuh/NNwjGjVgZnSY\nyfxl1dLSmjFjhnQK93Hjxr3VAaipqbm4uCQlJa1fv/7jjz+2tbVduHDhvHnzsDG0tLS8fPnS1NQ0\nKSlJeq9Xr14hhIqKivAJSJmJ2ylTpiCEOjs7++2iqampoaFh7ty5hoaG0i1QKJQPPvigpKSktrb2\nvffew8tdXV2lq7m4uJw5cyYzMxMbSUtLC5fLZTKZ0ivay4W/ZcVmo61bkXS0rZqKigql8hMQz6oW\njhAKC8Pmuf+HBKmdBiY0FMmcUkRgSKrtBYYeXKmhAedZSmBgoMyvEohHCYJgdJj1njPD50SHzMGD\nB+fMmZOWllZYWIjdEZ42bZq3t/f27durq6sRQhUVFSdOnOi9o/TNbpnV6jF4vKWgi5qaGoSQTCSK\nMTIyKikpqampkQ5GpSN1hJC+vr69vT2bza6rq9PX18/Jyenu7lZ8jx4hNGPGDMUVRhR7e3sq5OEC\nAADwjoJg9F2ATUAOxLp169atW9fa2vrw4cP8/Pxr164dP34cIbR+/XqEkK2t7ZEjR3rvpaGhMfAu\nsBfk5T6HgBXq6elJF2JzrtI2bdp0+/btGzdubNu2jcViGRoa2traKh7MpEmTZEpk3oWnjqS34+Fp\nUQAAAO8wCEZHGWxt9/b2dunCsrIylRusqakpKCiYP3/+hx9+qKOjY2dnZ2dnZ29v7+vrm5OTs337\ndl1d3crKyunTp0tP2VZXV9+6dcvc3Bx76HOAXUycOLGsrKylpUX63np7e/uTJ0/U1dWNjY0Vt790\n6VIDA4OsrCwnJ6fi4mJfX1+lZpepVMRgoGXL/lDoRU0+v6yPHQAAAAAweOAFplEGu78s/b5OaWlp\nbm6ugl1IJJJMwk6ZrREREceOHZPOZo/Ff9OmTUMIbd68ubq6+tKlS9J7hYaGHj58mOCMbL9duLu7\nd3R0HD16FK8gkUhOnTrV3Nz8+eefq6v3808m7JnU0tLS2NhYsVi8YcMGIqPCUakoORlVVPzhJ7TC\nS6ak3x+4kQ4AAACoAGZGR5lVq1bFx8efO3eupqbG2tr6+fPnqampixcvls5CL0NPT+/FixdBQUFT\npkz56quvZLYaGhouXbr0xx9/9PDw+PTTT3V1dX/77bfvvvsO/X4Dfdu2bVlZWVFRUSUlJYsWLers\n7ORwOMXFxXZ2dosWLSIy5n672LFjR25u7tWrV3k83sqVK8lkcl5e3r1794yMjAICAoh04ezsHBcX\n99133y1atEjmoVIAAAAAjGQQjI4ydDo9MjIyKioqIyMjIyODQqEcOHBAR0dHQTC6b9++I0eOYGmY\negejCKHo6OgjR45kZmbev38fKzE1NT127BiWnmnixIkZGRkRERF5eXl5eXkIIU1NTXd397179xK/\nG664iwkTJnz//feHDx9msVgPHjzASpycnEJCQnR0dIi0b2BgYGdnx2azXVxcCA5p1AsLk/2goI4K\nWxXUVPyVeC/EBzBkVBvSCDwQIBdcqaEB5xkoiUQ8vwwYOcRicXV1NYlEkn7NfICEQuFvv/3W1tY2\nbdo0uS+bSySSysrKnp6emTNnYo+uDnoXCKHq6uqenh5jY2O5uTkV8PDw+M9//nPnzh0tLa1+K9Pp\n9GfPninVPgAAAKAU+F1DEDwzOiqRyWRjY+NBjEQRQuPGjaNSqfPmzesrTCSRSCYmJmZmZkQiUS8v\nr9mzZ3d0dCCEjh49Onv27J9++gnvgkQiNTQ0yN1x5syZJiYmykai5eXlxcXF69atIxKJvjtkkrEr\ntQvxBNQq7DLoVOh6DGTYBgCAdwMEo+CtkEgk+KS79GcMk8ncunXroHRUWFiYn59/4MABNTU1Ly+v\nQWlz1JC+F0bwvhiRm/sD32XQqdA13CgEAIBRAp4ZBW+dt7e3k5PTW0rbfvr06UePHqmpqQUHB6sw\nVczjqZJPFPJ+AgAAAIMFglGAEELNzc3q6upyV1EiTiAQaGho9F6/VE9PTyZxvWIikUgikfS7DmpX\nV5eGhsbly5eVHujveDxkavqHyDKUvSycUdDvXl5echbAAwAAAIAKIBgd054+fXrmzJk7d+4IhUKE\nEIVCcXFx2b17N/aafFRUFJvNvnjxovRTpOnp6QkJCSEhIXZ2dlhJZ2fnyZMnORwOn89XU1OztrY+\ncOCAdC8JCQnp6emnTp2aN2+en5/fr7/+KhQKKyoqmEwmmUy+efMmVk0sFiclJd24caO8vFwikbz/\n/vtMJtPf319NTQ2rEBwc/Msvv2RlZbFYrNTU1MePH2/cuJHD4Rw6dGjp0qXSPYaEhBQVFf3f//2f\niYmJgsPn8RCVigoKpL6bsvuLReFZRAAAAGAwQTA6dj1//tzT01MoFFpZWZmbm3d2drJYrPj4eC0t\nLT8/P4RQQ0MDn8/v7u6W3uvNmzd8Pr+trQ37KhAIPDw8nj59OmvWrC+++KKzs/Pf//63h4eHrq4u\nvsvr16/5fD4W786YMaOrq6uqqkpDQ8PY2BhPDtXd3b19+/a7d+8aGRm5ubmRyWQOhxMbG8vlcpOT\nk7W1tRFCdXV1lZWVRUVFQUFBEonkvffeW7JkycWLF9PT06WDUYFAcP36dTMzMwWRaFVV1aCdxwEI\nDw83MTEZc4+6AgAAAFIgGB27UlNTW1tb9+7du3PnTqxky5YtK1asKCwsxIJRIs6fP//06dM1a9Yc\nO3YMm8Ls6OjYtWvXjz/+KLd+aGgoQmj+/PkzZ85MTEzEy1NSUu7evbtkyZKYmJjx48cjhIKCgvbt\n25eXl5ecnOzv749V6+rq2rNnj5eXV2BgoLa2tlgsNjQ0ZLPZAoEAf8YgPz9fKBQ6Ozv3NWYej9fd\n3c1mszkchBCD4JHKtMBm8/ra2nspeTabLbcmm82GdecBAACMcRCMjl00Gs3X19fDwwMvoVAoGhoa\nfSVdkuvChQsaGhrBwcH4zXRtbe2wsLAVK1YoWIO0t7Nnz2poaERERGCRKEJo3LhxYWFhhYWFiYmJ\nO3fuxNoGCYfwAAAgAElEQVTv6emRfgyATCa7uLicPn06JycHjz6zs7M1NTXXrVunoLuurq5PP/0U\nIUZ39yw63QEhFBAQELh2LcHRstlsHu9CX1t7x5fhfdza5xF/eSo8XP7r4dI5sAjmw8KrEc+fpWCX\nsLBBfn6WyJHKdK3CLgAAMNhiYmJiY2OHexSjEgSjY9emTZuwD1VVVeXl5eXl5SwWq6uri3gL9fX1\nb968sbCwwJaYxxkZGdFotNLSUoLtNDU1NTQ0zJ0719DQULqcQqF88MEHJSUltbW1+Jvyrq6u0nVc\nXFzOnDmTmZmJBaMtLS1cLpfJZE6ePFlBjxoaGu3t7Ww22roV/S8jMeHQ0MvLKzTUi2BlhFBBgfwH\nUZXIbxUaKieKIpEQnjNL+rMCeDWC9VXbZSD6PdJB2QUAAAZbYGBgYGCgdAmdTh+uwYwuEIyOXQKB\nIC4u7tq1a42NjSQSydDQ0MbGRom5OoRevnyJEJo+fXrvTXp6esSD0ZqaGoSQTCSKMTIyKikpqamp\nwYNRmaXn9fX17e3t2Wx2XV2dvr5+Tk5Od3e3gnv0chsZLqEwSwcAAGDMg2B07Nq1axeXy3V2dnZz\nc6PT6VgqpVu3bineq7OzE/+MJWx6/fp172pNTU3ER4KFs/X19b03YYXSmaGmTJkiU2fTpk23b9++\ncePGtm3bWCyWoaGhra2tgu6oVKqGhgb+9fz53z/xkZf01z6w2YOWZ/Qt5V4FAAAARhEIRseohoYG\nLpc7e/bsqKgovFAkErW3t0+dOhX7ii372d7eLr1jWVkZ/llPT2/ixIlPnz598+bNpEmT8PKmpial\nVuPV19efOHFiWVlZS0uL9O319vb2J0+eqKurGxsbK9h96dKlBgYGWVlZTk5OxcXFvr6++Ev6ilGp\nyMsLcTi/f0Uo3KuCx1G0C7aXvT2R5gEAAADQPwhGxyhs5lImy31iYmJ3d7dYLMa+YulFc3JyaDQa\nVlJaWpqbm4vXJ5FImzdvTkhI+Pbbb0NDQ7EF5SUSybfffoslcuoLiUSSeb3J3d09Pj7+6NGjf/vb\n37BQUiKRnDp1qrm52cPDQ11d0V9UNTU1FxcX7MlxsVi8YcMGgieBSpV51JBKcEcAAAAADBYIRsco\nMzOzqVOn3r9/Pzg4ePHixY2NjXfu3Hn06BGFQnn16tWVK1c2bty4atWq+Pj4c+fO1dTUWFtbP3/+\nPDU1dfHixYWFhXg7Pj4+OTk53333HY/Hc3BwkEgkBQUFP//88/Tp0+Xedsfo6em9ePEiKChoypQp\nX331FUJox44dubm5V69e5fF4K1euJJPJeXl59+7dMzIyCggI6PdwnJ2d4+Livvvuu0WLFo2Q50EB\nAAAAQAShu5ng3aOmpnbmzBkqlXr16tWgoKBjx46JRKJr1665ubl1dnZGRkYihOh0emRkpJqaWkZG\nRnBwcGZm5oEDBz777DPpdiZNmpSenr5y5cqHDx9GRkZGRUXxeLzExMT3339fQe/79u0zMDBgsVj/\n+te/sJIJEyZ8//33rq6uZWVlkZGRERERv/zyi5OT0/Xr16Xz5/fFwMAAWxHKxcVF9ZMy6kjnM5Kb\n20jBLgTrq7bLoFOh62EcLQAAAKVIwBgmFourq6tLS0s7OzvxQj6f39LSgn/t6enh8/mVlZWKm+ru\n7i4vL29oaBj4qKqqqng8nlgsVmovd3d3Kyurjo4OIpVpNJpKQxuAsDDZP6U/9FVhUDod+n0BAAAM\ny++a0YkkgVR8b9/Ro0eTk5NTUlIsLS1VqwAUKy8vX7Nmjbu7e0hICJH6dDpdqVesBgGW9lL6TyQv\nUahMhUHpdOj3BQAAMCy/a0YneGZ0KGCB/0AqgL4UFhYKhcLY2Fg1NTVY5B0AAAAYdSAYHRG8vb2d\nnJwg66QKTp8+/ejRIzU1teDgYDwxPnFs9v9SOykG+ekBAACAtwGCURWJRCKJRIIlilegq6tLOr96\nX/T09KTzussQCAQTJkwg9bGSeEdHh5aWVl9biWtra5swYYJ0iUgk6unp0dbW7muXjo6OcePGKU7q\nqUKzSp3by5cvK66m2NatCJ9OtWeHI4Q4DDlR5/nzyMQEwcQrAAAAMOjG7tv0Fy9eZDKZV69exUua\nmpqYTCaTyXzz5g1emJ2dzWQyr1+/jn0Vi8WJiYnr16+3sLCwsLBYu3ZtTEyMdMrM4ODgtWvXIoRY\nLJanp6e1tbXc3u/fv//pp59u2LDhxYsXCKGEhAQmk/nkyRNsa1RUFJPJ7Orqio6O/uSTTxYuXGhh\nYeHv7y+dLEkkEh07dmzt2rWWlpY2NjZ79+5ta2tbs2bNoUOHCJ4BrBeRSHTy5ElHR0dLS0s7O7u4\nuDiE0OPHjz08PKysrBYsWODo6JidnS29o0QiOXfu3Jo1aywtLT/66CNfX1/pZE8qN6vCuY2MjGQy\nmT/++KPMoYWEhDCZTD6fT+Q8fPHFf9c2ZzAQg/HfzzI/g7XkEgAAAABkjN2ZUQsLi8jIyJycHHwd\n8/v372PhS3FxsaOjI1Z469YtPp+/cOFChFB3d/f27dvv3r1rZGTk5uZGJpM5HE5sbCyXy01OTsam\n+urq6iorK4uKioKCgiQSidwbx//+97/9/f3Hjx+fmJhoZmaGEHr9+jWfz8cTxTc0NPD5/IiIiJyc\nnOXLlzMYjNzc3Pz8/MbGxrS0NIRQW1ubr69vcXHx3Llzvby8Wlpa2Gy2j49PRUWF3BXe5cJ62bdv\n36NHjxwcHLS0tDIzM6OjowUCQWpqqo6OjpubW0tLS1ZW1v79+6lU6rx58xBCYrHY19eXw+FYWFj4\n+Pg0NjbevHmzsLDw9OnTDg4OKjer2rldsmTJxYsX09PTly5dih+XQCC4fv26mZmZiYmJ3ANns9kV\nFRUEz9LAkUikiooK6pD1BwAAAIwqYzcY/fDDDw0MDIqLi/E76cXFxbq6ul1dXUVFRVgwKhaL//3v\nf8+ZMwfLo56SknL37t0lS5bExMSMHz8eIRQUFLRv3768vLzk5GR/f3+s5a6urj179nh5eQUGBva+\nGX379u3du3fr6eklJSX1FS1huFzujRs3sHXbDx486Ojo+PDhw/Ly8lmzZv3zn/8sLi7euHHjN998\ng90lr62t3bJlS3d3t7LnoaKiIjMzE8vluWrVqk2bNp07d87b23v//v1YyyYmJtHR0VwuF4sa09LS\nOByOn5/fnj17sBYCAgJcXV2DgoK4XC5+vMo2q9q5FYvFhoaGbDZbIBDgq0nl5+cLhUL83xh9CQ8P\nRwghRPRR0AsXziuYag2VfqQ0PFw6yaUEIWRqihBC2KMU0n9Kf+irAi4sTNGDq3/sVLZNxe0MZF8A\nAABgYMbubXqE0IoVKzo6Oh48eIB9LSkpsbGxsbKyunv3Llby5MmT5uZmJpOJfT179qyGhkZERAQW\nLSGExo0bFxYWpq2tnZiYiN9Q7unpsba2PnDgQO9I9IcffggMDKRSqampqYojUYSQv78/FokihMhk\n8urVqxFCtbW1Eonk0qVL48ePP3DgAP68pqGh4Y4dO1Q4CXv27MGzys+fP19TU5NEIm3ZsgVv2crK\nCiGEPyEQHx+vr68fGBiIt2BgYLB79+62tjYWi6Vys6qdWzKZ7OLiIhQKc3Jy8K6zs7M1NTXXrVun\n4Ki7urpiYmJiYmKwhaPodHpMTIziE6XE62WhoUgiCQ8Lw35ICPGwiVgsYQL+p/QHmU3S5fiP4igw\nNFTOLgTbGci+AAAAEEIIxcTE0P9ouEc0aozdmVGEEJPJvHjx4p07dxYtWvTmzZtnz55t3Lixs7Pz\n+PHjr1+/njp1KvYo5IoVKxBCTU1NDQ0Nc+fOlbkPTqFQPvjgg5KSktraWvymvKura+/url27lp6e\n3tPTs3jxYjzKVACbMsRNmTIFIdTZ2VlfX19fX29tbT1p0iTpCosWLVLu+BFCCMn816KlpTVjxgzp\nFTWlXyRqaWl5+fKlqalpUlKS9F6vXr1CCBUVFeHzkUo1O5Bz6+LicubMmczMTKzrlpYWLpfLZDIn\nT56s4Kg1NDQaGhoQQqam6Pbt2/+NM/87VyqfvT3Dy4uhoIIMfK40DJYCAgCAMSAwMFB6pgb1+lUI\n+jKmg9GFCxdOmzatsLBw//799+/fF4vFNjY2QqFQIpEUFxevXLmSy+VSqdRZs2YhhGpqahBCcp/I\nNDIyKikpqampwQMmucujp6WlMRiM//f//t+lS5dWrlzZb357/L6zNIlEUldXhxCaOnWqzCaZ2JSg\n3q/hK3g7vrq6GiFUUVFx4sSJ3lsbGxtVa3Yg51ZfX9/e3p7NZtfV1enr6+fk5HR3dyu+R89gMEyx\n++ZDAjLIAgAAAAqM6WCUTCYvX778ypUrDQ0NJSUl06ZN+9Of/iQWiydNmnTv3j07O7uff/5569at\nWGVsLlP6fXYcViidmwmbxZSxbt26I0eO3L59OyAg4C9/+UtmZqaWlpYKw542bRpC6PXr1zLlWJD6\nVunr6yOEbG1tjxw50nsrkSRWcg3w3G7atOn27ds3btzYtm0bi8UyNDS0tbUl3js+H0plm9hT+Rd4\ncuqw2cjenniTAAAAACBqTAejCKFPPvnk8uXLXC63uLj4o48+QgiRyWRra+t79+4VFRV1d3fjD4zq\n6+tPnDixrKyspaVF+hZwe3v7kydP1NXVjY2NFff1+eefq6mprVixYtWqVT/88MO3334bHByswpgN\nDAzGjx//+PHj1tZWHR0dvLygoECF1pRCoVB0dXUrKyunT58uPdNZXV1969Ytc3Pz3vO1RAzw3C5d\nutTAwCArK8vJyam4uNjX11dx6lNpBQWIzf79i70XDyG5Mae9PSQZBQAAAN6KMf0CE0Jo0aJFkyZN\nunnzZmlpqY2NDV5YUVHx/fffz5gx48MPP8Qru7u7d3R0HD16VCwWYyUSieTUqVPNzc2ff/65ujrR\nyD4kJERXV/fSpUv4u1NKIZFImzdvFgqF3377LV5YXl5+8eJFFVpT1ubNm6urqy9duiRdGBoaevjw\n4c7OTpWbHci5VVNTc3FxKS0tjY2NFYvFGzZsIN4vlYq8vAj9AAAAAOBtGOszo+rq6gwGIzMzE0m9\nAIR9yMvLc3d3l372cceOHbm5uVevXuXxeCtXriSTyXl5effu3TMyMgoICCDe6bRp0w4dOhQUFPTX\nv/71+vXrCtYi6suOHTsKCgpSUlKwGLqmpobNZtvb20u/VP6WbNu2LSsrKyoqqqSkZNGiRZ2dnRwO\np7i42M7OTrU3qDADPLfOzs5xcXHffffdokWL5D6wO/yw15ik/5T+0FeFQel06PcFAAAACBvrM6MI\nIexG/PTp0/GXWmbNmoXdbsbv0WMmTJjw/fffu7q6lpWVRUZGRkRE/PLLL05OTtevX8fTGBG0du1a\nBwcHPp8vPbtJ3OTJk69cueLq6lpXVxcfH19cXLx27drw8PCuri65rz0NookTJ2ZkZDg5OXG53IiI\niOPHjz98+NDd3T06Opr4zfHeBnhuDQwM7OzsEEIuLi4qj+Htwl6ul/4T/XHBe7kVBqXTod8XAAAA\nIE4CVFJVVcXj8cRi8XAPRNLW1oZ9KC0tpdFoJ0+eHJp+xWIxj8f79ddfsfwDg0i1c+vu7m5lZdXR\n0UGkMo1GU2lob1NYmOxn6RLi+w6kX+wr9jPoHY1xI/PUjcxRAWlwjUazkfi7ZkQiSSDvzCgUFRV1\n//79hIQECoWCF3799ddpaWmxsbErVqxITk7GCm/fvl1SUrJlyxbpm9cLFiywsLAY6kG/TeXl5WvW\nrHF3dw8JCSFSn06nP3v27G2PSjkkEsL/Y8Q+S5cQ33cg/SKpVZfkNjiQjsa4kXnqRuaogDS4RqPZ\nSPxdMyKN9WdGRyk6nX7hwoWAgIAvv/ySTqf/9ttvGRkZaWlp8+bNwxYyffHiBVazublZIpHU1taK\nRCJ8934XfxpFCgsLhUJhbGysmpqaF7xnBAAAAIw2EIyOSs7Ozq9fv46Pj/f09MQLHRwcQkNDsTeu\nIiIisMIjR46UlZX5+Pj0m2N/lDp9+vSjR4/U1NSCg4PxxPjE8Xjo90yyCCFERTyEEA9R5Vb+4gt4\nrR4AAAAYZBCMjlY+Pj4+Pj4DaaG5uVldXV3xC08CgWDChAm9l1PCdXR0aGlpKagwWCPpq6PLly9L\n1xk3bpxS71FhSUbxd3UY4VvZjFBkT+1dk8NBHA4EowAAAMAgg7fpx5ynT5/++c9/Njc3t7GxWbhw\n4ccff3zq1Ck8u2dUVBSTyezq6oqOjv7kk08WLlxoYWHh7+8vszySSCQ6duzY2rVrLS0tbWxs9u7d\n29bWtmbNmkOHDkm38/LlS+m90tPTmUzmnTt3iIyEYEcIIYlEcu7cuTVr1lhaWn700Ue+vr6FhYWK\nT0J7ezv+mUpFDMZ/fxBCDPv/fZX+UeHRBvb/8ukDAAAAQD6YGR1bnj9/7unpKRQKrayszM3NOzs7\nWSxWfHy8lpaWn58fQqihoYHP50dEROTk5CxfvpzBYOTm5ubn5zc2NqalpWGNtLW1+fr6FhcXz507\n18vLq6Wlhc1m+/j4VFRU4OvLY+10d3dL9/7mzRs+n9/W1kZkJAQ7EovFvr6+HA7HwsLCx8ensbHx\n5s2bhYWFp0+fdnBwkHsSsIXs38LZlbV169aCggIqlToEfQEAAACjFASjY0tqampra+vevXt37tyJ\nlWzZsmXFihWFhYV4CIgQ4nK5N27cwJaMP3jwoKOj48OHD8vLy2fNmoUQ+uc//1lcXLxx48ZvvvkG\nuydeW1u7ZcsWmdBz4CMh0lFaWhqHw/Hz89uzZw9WEhAQ4OrqGhQUxOVyFSwosGzZMoQQj8dgMIgm\n1GSz2cuWhfe1tfdyrDweT37V8HD5KeWlH0LAPhN//qF3zbAw2VyhRPpVXEiwozGO+HkeylM3MkcF\npME1AmMVBKNjC41G8/X19fDwwEsoFIqGhkZDQ4N0NX9/fywSRQiRyeTVq1cnJCTU1tbOmjVLIpFc\nunRp/PjxBw4cwJ/ONDQ03LFjR5gya/b0OxKCHcXHx+vr6wcGBuIlBgYGu3fvDg4OZrFYzs7Ocnvv\n6up6/vw5QqijY+H332f8+99/CQgIkG5ELiqVGqrML4A+50RDQ+X8IhmC1E799osgtdNgIHKeh97I\nHBWQBtdolIuJiYmNjR3uUYxKEIyOLZs2bcI+VFVVlZeXl5eXs1isrq4umWrz5s2T/jplyhSEELb0\nfH19fX19vbW19aRJk6TrKLsWaL8jIdJRS0vLy5cvTU1Nk5KSpOu8evUKIVRUVNRXMDpp0qSqqiqE\n0PnziMNBycmfERkzlUplMKhEamIY2FOoAAAAxoDAwECZSQ06nT5cgxldIBgdWwQCQVxc3LVr1xob\nG0kkkqGhoY2NTe+7yXJfbMfWR8CetsSWS5UmEzIOfCREOqqurkYIVVRUnDhxoncXjY2NcrtmMBgz\nZsxQarSqwZceAAAAAEBfIBgdW3bt2sXlcp2dnd3c3Oh0+rhx4xBCt27dIt7CtGnTEEKvX7+WKSfy\nShA2t0pwJEQ60tfXRwjZ2toeOXKkd3caGhr9DolKReHhyNT0v1+9eAw2j8qTV5PHg7xOAAAAwOCD\nYHQMaWho4HK5s2fPjoqKwgtFIlF7e3vvCci+GBgYjB8//vHjx62trTo6Oni5zOs7mpqa6I8ZlBBC\nZWVlxEdCpCMKhaKrq1tZWTl9+nTp9KLV1dW3bt0yNzfv97gYDPTHgYd+0XdleC0eAAAAGHSQZ3QM\naWpqQr1uwScmJnZ3d8tk91SARCJt3rxZKBR+++23eGF5efnFixelq2H3wXNycvCS0tLS3Nxc4iMh\n2NHmzZurq6svXbokXRgaGnr48GHpiVgFqFSiPwAAAAAYdDAzOoaYmZlNnTr1/v37wcHBixcvbmxs\nvHPnzqNHjygUyqtXr65cubJx40Yi7ezYsaOgoCAlJaW0tNTGxqampobNZtvb20uHnqtWrYqPjz93\n7lxNTY21tfXz589TU1MXL16MpaMnOBIiHW3bti0rKysqKqqkpGTRokWdnZ0cDqe4uNjOzk7Zd6qG\nmXQuAuwz8ewEyuQx6GdfxU0NpKMxbmSeupE5KiANrhEYCyTgnXb48GEajfbgwQPs64MHD5hMJo1G\no9Foc+bMcXd3r6qqOn36NI1Gmz9/vkQi+fLLL2k0WlVVlXQj586do9FoP/zwA14iEAhCQkIYDAaN\nRrOzswsLC2ttbaXRaF9++SVeJz093dLSEuvL1tY2JSUlKysLb6ffkRDv6M2bN/v371+wYAHW2gcf\nfPDNN98IBAIFp4VGow3otAIAAAD9gd81BA1mMPry5cv6+npl9woNDaXT6U+fPlVQ58iRI3Q6HY+o\nRoW9e/fS6fTq6uq+Kgz6QRFsUCwWV1dXl5aWdnZ24oV8Pr+lpUWFTtva2rAPpaWlNBrt5MmT0lt7\nenr4fH5lZeXAR6K4I6w1Ho/366+/CoXCfoc9gv4HERY23COQZ1hGFRY2aP2OzLP6loypgx04OF1g\nCI2g3zUj22A+M8pkMrdu3ary7OxAKoxA+ClWXGHQe+y3GolEMjIymj17NvYCO8bY2Jh4bqaoqKgN\nGzZg2enHjx+PFaakpCCEPvzwQ+maZDLZ2Nj4vffeU20kxDvCWjMxMTEzM8PenRo1RuY9uGEZVVjY\noPU7Ms/qWzKmDnbg4HQBMPKMjheYvL29r127NmfOnOEeyGAavQdFp9OfPHkSEBBQVFTU3NxcWloa\nFRWVlpY2b948R0fH0dgRAAAAAIaL7AtMzc3N6urqcnOeD5BIJJJIJNJzYHK1tbWNHz+e9MelePX0\n9PT09FRutqOjQ0tLS6bN3rq6umQyUxI5G3IHLEMsFr9582by5MnS1RQcVEdHB5lMVnBQb+MytbW1\nTZgwQbpEJBL19PT0Xt7d2dn59evX8fHxnp6eeKGDg0NoaGjv80C8WekK2DVV3FHv66UC6bWgvdB5\nNmLwEFXxLlQqqqgYYLcAAAAA+K//zow+ffr0z3/+s7m5uY2NzcKFCz/++ONTp07hSXaioqKYTObL\nly+l90xPT2cymXfu3EEI+fn5MZlMoVBYUVHBZDJXrlyJVxOLxYmJievXr7ewsLCwsFi7dm1MTExP\nT4/MOCQSyYkTJxwcHCwtLT/66CNvb+8nT57gWxMSEphMpnQJkWZFItGxY8fWrl1raWlpY2Ozd+/e\ntra2NWvWHDp0CKsQHBy8du1ahBCLxfL09LS2tiZyNqKjo5lMZnl5uYIB49ra2r755htra2sbGxsL\nCwt/f//6+vq+Dqqnp+fvf//7mjVrFi5cOH/+/GXLliUmJopEIryC4oEpC7usIpHo5MmTjo6OlpaW\ndnZ2cXFxCKHHjx97eHhYWVktWLDA0dExOztbekeJREImkw0MDMhkso6OzrJly86dO/ePf/wDS+ek\ncrNyr6m3t/eDBw+ePXv27NkzZ2dnGo32j3/846effsKuV2RkJJPJ/PHHH2UOLSQkhMlk8vn8fk8C\nj4eSk5FEgiQSlOzFqUhmY58V/PB4qNeSVQAAAABQkTpC6Pnz556enkKh0MrKytzcvLOzk8VixcfH\na2lp+fn5IYQaGhr4fH53d7f0nm/evOHz+W1tbQihGTNmdHV1VVVVaWhoGBsb4+nHu7u7t2/ffvfu\nXSMjIzc3NzKZzOFwYmNjuVxucnKy9NxYRETE06dP7ezs1qxZU1ZW9uOPP27evPnvf//7smXLEEKv\nX7/m8/lCoZB4s21tbb6+vsXFxXPnzvXy8mppaWGz2T4+PhUVFYaGhlg7dXV1lZWVRUVFQUFBEokE\ne7Sx37PR1NTE5/NDQkIUDBj39ddf83i8Tz75REdHJzc3Nz8/v7GxMS0trfdBCYXCrVu3PnjwwMzM\nzNXVVSgUFhQUHD9+/OnTpydPniSRSP0OTFnYZd23b9+jR48cHBy0tLQyMzOjo6MFAkFqaqqOjo6b\nm1tLS0tWVtb+/fupVCq2YL1YLPb19eVwOBYWFj4+Po2NjTdv3iwsLDx9+rSDg4PKzRK5pr2v15Il\nSy5evJienr506VL8uAQCwfXr183MzExMTOQeOI/H62ul0KHEZrMRQoxhHgUAAAAw3CQSSUREBI1G\ni4+Px9+54fP5NBpt8+bN2FeC6X7Mzc3XrFkjXefChQs0Gs3b2xt/Fbqzs/PPf/4zjUY7c+YMVhIa\nGopl87l//z6+I5vNnjt3LoPBwO7YyuQnItJsfHw8jUb76quvenp6sJKamhosQ5CPjw9W4u3tPWfO\nnEWLFh09erS9vR0r7PdsEBkwftIcHBxevXqFlfT09CxbtoxGo5WVlfU+qKSkJBqNtnv37q6uLvyg\nsAH//PPPRAYm02C/sBGuXr26qakJK3n48CGWHenIkSP4eTtz5gyNRjt79iz2NSUlhUajnTp1Cm+n\ntrbWzs7OwsICO4eqNUvkmva+Xj09PQwG48MPP2xtbcXHc+3aNRqNdvHixb4OvKCgQENDA/vs5SVJ\nTv59wx++9AkhSUVFv7X6FxYW5uXlJRmZ6dWGZVQIDVq/I/OsviVj6mAHDk4XGELwNj1BZIQQjUbz\n9fX18PDAI1QKhaKhoYG9xTwQZ8+e1dDQiIiIwF+FHjduXFhYmLa2dmJiovRddVdX14ULF+Jf7e3t\n165dW1tb+8MPP6jQrEQiuXTp0vjx4w8cOIBP0xoaGu7YsUOmqZ6eHmtr6wMHDuDTtATPBsEB+/v7\nT58+HftMJpNXr16NEKqtre19UImJierq6ocOHVJXV8cPKjw8fP369c3NzcQHpqw9e/bo6upin+fP\nn6+pqUkikbZs2YKfNysrK4QQ/nRBfHy8vr5+YGAg3oKBgcHu3bvb2tpYLJbKzRL8qyJzvchksouL\ni1AolE6Dn52drampuW7dOgVH3dXVRSKRSCTS+fPn//rXv9Dp9JiYGOInzdTUlNS33vWx8nASCUn9\nhEY8fzUAACAASURBVIaFJZ8/j22W/QkPJz6YgQoPlzOAtz2qvjpVod9hGf9wGVMHO3BwusDQiomJ\nof/RcI9o1FBHCG3atAn7UlVVVV5eXl5ezmKxurq6Bth0U1NTQ0PD3Llz8dviGAqF8sEHH5SUlNTW\n1uJJf7A7vNKWLVuWkZHx7NkzFZodN25cfX29tbW1TLoiuUvyuLq6Sn8leDYIDhi7B42bMmUKQqj3\nMpXNzc0NDQ0WFhYUCkW6fOnSpfgN6Ld0mWT+a9HS0poxY8bMmTPxEun3qFpaWl6+fGlqapqUlCS9\n16tXrxBCRUVFzs7OKjSr1F8Vmevl4uJy5syZzMxMrOuWlhYul8tkMidPnqzgqDU0NLCHcbduRfb2\nyMvrCMK+EFNRUaHU6qASeSm3wsPDeTxe8vnzaHjTloWGotBQ2UIS6e2Oqq9OEVK632EZ/3AZUwc7\ncHC6wNAKDAyUnqlBvX4Vgr6oI4QEAkFcXNy1a9caGxtJJJKhoaGNjQ1vwO9o1NTUIIRkwguMkZFR\nSUlJTU0NHmHg04c47E3z3pOIRJrFXt+eOnWqTAW5qTSlIyRE+GwQHLDcF957hybV1dVy21RhYMrq\nPZOHT172ho2zoqLixIkTvbdKP4ipVLNK/VWRuV76+vr29vZsNruurk5fXz8nJ6e7uxuPieWiUqnT\npk1TUGFo2Nvbm5iYIGxyFAAAABir1BFCu3bt4nK5zs7Obm5udDodm7K6deuW4j17T+/JwEIr/D6s\nNKxQOrFRY2OjmZmZdJ2mpiaEUO+ggUizWlpaCKHXr1/LVKirq+u9FzZbiSN4NogPmAhsDC0tLQrq\nqHaZBpe+vj5CyNbW9siRI723qpxoSam/KjLXCyG0adOm27dv37hxY9u2bSwWy9DQ0NbWVkF3VCpV\n+p8lfP5/346nIsTjI8RT7SCUxmAwEFJiOhYAAAB4J6k3NDRwudzZs2dHRUXhpSKRqL29HZ9ZxJa0\naW9vl96zrKxMcdP6+voTJ04sKytraWmRvmfa3t7+5MkTdXV1Y2NjvPDevXt4ZiVMcXExQoja624o\nkWbV1NTGjx//+PHj1tZWHR0dvE5BQYHiMRM5G8oOmAgDAwNNTU1sYUwsksakpKQcPnw4MDBww4YN\nBAf2VlEoFF1d3crKyunTp0vPdFZXV9+6dcvc3Fy1wSj1V6W3pUuXGhgYZGVlOTk5FRcX+/r6KpiF\nlfHFF2jr1v/OTjLQFzxE5Z3vZxcqFal0kQEAAAAgBxmbz5O5m5yYmNjd3Y0nsMTyR0q/I1JaWpqb\nmyvTFolEksn06e7u3tHR8f/bu/d4KNP/f+AXI4ccdgkVHaQaRSdJqi2dVdv5JIlUlFI6SPvpuKgP\naTtpY7fa+ipbUq2obG0H4iNCOtjSSTEikUNFyGHM7497P/dvPjPMDIZbM6/noz/mvlz3Nde8r2vy\ndh+ue8+ePXRTPB7v4MGDHz9+XLhwIX2nDiHk9OnT/GecORxOeHi4urr6tGnThDsttlkFBQV7e/uq\nqqoDBw7Qe2VkZISEhIgOhyTRaEKHxVJUVJwxY0ZpaemxY8foQi6XS60zOmrUKMk71tLs7e1zc3N/\n//13/kIvL6/du3eLPVguguRTRRiLxZo3b96zZ88CAwPr6urmzJkj+fuOGUOysv75F5w15naWEb0p\n4h8AAABIi5KxsbGOjk5qaurWrVuHDx9eXFwcHx+flpamq6v7/v37CxcuzJ8/f8qUKUeOHDlx4sTb\nt28tLS1fvXoVFhY2fPjwO3fu8Lelr6+fmZnp6empra29bds2QsiKFStu3LgRHh7O4XAmT56sqKh4\n8+bNpKQkQ0PDNWvW8O+roqJia2s7Z86c3r17Z2ZmXrx4sbS0dPPmzfQd2fwkaXbFihW3b98ODQ19\n9uyZlZXV27dvY2NjR48ezZ9SC5MkGk3osCTWrVsXHR0dFBT06tWr4cOHZ2dnX79+PS8vz87Orm/f\nvlwuV8KOtTRnZ+crV674+fndu3dv2LBhX758iYuLS0lJGTVqVL33h0lI8qlSr7lz5/7yyy9nz54d\nNmyYwEWlAAAA0JYpsVisoKCgLVu2hIeHh4eHs1gsCwuLyMjIiIiIwMBAX1/f+fPnm5iY+Pr6+vn5\nRURERERE6Orq/vDDD5qamgLJ6MaNG/39/an1fahkVF1d/eLFi7t377569er9+/epkpkzZ+7YsYP/\n7DkhZM+ePefOnQsJCaGOrRoaGgYEBEyZMqXeTkvS7DfffHPhwoU9e/bEx8dTqxFNnz5948aNUVFR\nIp6iKUk0mtBhSejr61+5cuXHH3+8ffs2lTGrqam5u7tTy1FJ3rGWpqGhERERsWvXrps3b968eZMQ\noqys7ODg4OHhIfnJcWGST5V6de7cedSoUbGxsfPmzWtyH5hBP420TWGkV1J807YZ1RYiVx+2+RAu\ngLZHgbqzm8fj5eXllZWV9ejRg15z582bN99++y19q0ddXV1ubq6CggJ9X3Oj5Obmcrncbt26iXiM\ne1lZ2Zs3bwwMDIRvUmlOsxUVFdTqlc+fP585c6arq6uHh4eINkVHw9vb++zZsxEREaampk3osFhc\nLjcrK0tFRcXAwIDFYkneMWl1QEI8Hu/NmzdcLrdLly7UVcXSIsmYCnN0dHz+/Hl8fDz/RbcNMTEx\nEV41DAAAQIrwu0ZC/1yKp6CgYGhoKPAzgbtGFBUVRd9HIpokJ081NTUFFuZscrN+fn6pqanHjh3T\n1dWl11EPDQ0lhPTv3190m5JEo8kdFovFYvXq1auZHQsODhbxFoMGDTI3N29yD+nONPS8zWYSMVX2\n7NkTHBwcGho6ePBg/vKMjIyUlBQHBwdJMlGp8fH5n1UMqXWz6RKBTeH6YsulRWz7Ld0BeYAYAgA0\nlUK9y3HLgPDw8K1bt5qbm2/YsMHExOTdu3cRERGnTp0yMzMLDw9v1CE3AfxHRqXYYenasWOHiJ+O\nHTtWeNH+r4K/v39wcPDZs2fpZPTOnTtVVVWBgYEvXry4fv26hIftpfPXqsDq2QJrtgsv4d7Qatst\nvQq32PaxDHjzIYYAIARHRiUk6iblr9rcuXNLSkqOHDmyePFiunDcuHFeXl7NyUS/Frt27WK6Cy1i\n2bJlM2fO5F8/6+eff05LS2OxWFu3bm3sBSQcDmnooQHUGqAAAADQ0mT2yCi0ZeXl5e3btxfxV8HH\njx+VlJRE3Gom7PPnz+rq6hL+pUH9tbp0KYmN/ackmDN2qdE/y9ByOMTbW4KTrjgyCjTEEACE4Mio\nhJp++zOA5A4dOmRjY5ORkbFv375x48YNHjx46NChy5YtS09P56/29OnT1atXDxgwwMrKysLC4rvv\nvjt48CD/QqrHjh2zsbGh9vLz87OxsampqTl06NCkSZMsLCzMzc3d3NzqfZJTvTgc4uX1z9KhY0gs\nvYzokiXS++QAAAAgksyepoc25cOHD9nZ2Tt27Hj69OmoUaOmTZv28uXL//znP/b29gEBAWPHjiWE\nvHr1avHixVVVVUOGDBkwYMCXL1+uXr165MgRVVXVVatWUe2UlJRkZ2dXVVURQoqKirKzs3ft2nX9\n+vXx48ePGTPmxo0b0dHRxcXF586dE9EZDoeTk5PTnI9z8uTJ7Oxs3K4CAADQfEhGofU8f/48ODjY\nwsKC2oyLi3Nzc9u5c+fIkSPbtWsXFhZWVlbm4eHh6upKVVi0aNHEiRPv3LlDJ6PCEhISoqKiqKfb\n/+tf/5owYcKjR48yMjJ69+7d0C4cDqe2tjY2NpbDMSLEqKE6sbGchlrIzs7mNHS1KQAAADQGklFo\nPQsWLKAzUULI6NGjp0+fHhERce3atRkzZrDZ7JUrVzo6OtIVdHV127VrV1RUJKJNNzc3KhMlhCgq\nKk6dOvXYsWN5eXkiklFCSE1Nzffff19be3PLliO7d0cQQgQu6omNjeVwTtGbThzOEr7scwz9SvgS\nVYES0ZsiyiW6alWIj0/9a3qLvZRWWh2QB5IHGTEEkCeHDx8ODAxkuhdfJSSj0HqE15MaO3ZsREQE\ndX23ra0tVZiTk5ORkZGRkXH16tWamhrRbQqs80o9feDLly+i92rXrl1FRcXYscTJ6bslS/wJEcwk\nlixZ4uW1pKHdfXx8OBxO8MmTbe4GJi+verIf3MAkXU0LMgDIOnd3d3d3d/4SExMTpjrzdUEyCq2H\nPoRJ09fXJ4Tk5eURQj5//vzLL79ERkYWFxcrKCgYGBhYWVmJPRte7x33oteIMDIyaubz652cnAgh\n5OTJ5jQCAAAABMkotKbi4mJjY2P+kg8fPhBCOnToQAhZu3ZtQkLC3Llz7ezsTExMqOed3rp1S+rd\nMDIyateuHfU6Lu6fwiV8uSWHQ/hWMq2/Ban3CgAAQD4hGYXWk5SUZGlpyV+SkpJCCDEyMioqKkpI\nSOjTp4+fnx/90+rq6oqKCh0dnRbqT3AwWbr0n3Xv48Zk8V0jSkaPbqH3BAAAgP+BZBRaz+nTp6dP\nn04fVuRwOOHh4erq6tOmTaMWBxU45378+PHa2lr+dUaly8iI3L79/7da6F0AAABABCSj0HpUVFRs\nbW3nzJnTu3fvzMzMixcvlpaWbt68+dtvv9XU1NTR0UlNTd26devw4cOLi4vj4+PT0tJ0dXXfv39/\n4cKF+fPnM919AAAAkD4ko9B69uzZc+7cuZCQEC6XSwgxNDQMCAiYMmUKIYTFYgUFBW3ZsiU8PDw8\nPJzFYllYWERGRkZERAQGBvr6+rbFZFRgfR/Rm/WWiC6XFrHtt3QH5AFiCADQZDyAlufl5cVms9PT\n03k8Xmlp6ZMnT0pKSoSr1dXV5ebmPnv27MuXL3Rhdnb2p0+fpNsfNpst3QYFeXvXUyJcKFxZ+DVd\nIrApyZs2tpNyC6GQc5gA0DJa/HeNrFDgYW08aHne3t5nz56NiIgwNTWVpH5BQQGLxdLV1W2h/piY\nmFCLm7YU4VUnhZcdrbey8Gu6RGBTkjdtbCflFkIh5zABoGW0+O8aWaHIdAcA6mFjY7N06VKmewEA\nAAAtDteMgvzicMipU6IqdO9Olixppc4AAADIJxwZBekoLy8XKKmurq6srKRee3t7v3jxQuAcfXV1\ndVVVVRPeS8IdxT5K1MeHxMYSDocQDsfJuweHQwT++fg0oXcAAADQCDgyCk3k5+cXGxsbFRV1+PDh\na9eu5eTk6OvrL1y40M3N7e+//967d29aWlpVVVXXrl03bNgwdepUese6urr/+7//i4qKysjI4PF4\nPXv2tLGxcXNzY7FYhJBVq1a9fv26qqoqKyvLxsZGUVHxr7/+kmRHQsjWrVsfP3585cqVq1evhoWF\n/f33348ePRL9KZycyJIlhHAIiSXBwf/zo9hYEhsrrWgBAABA/ZCMQhMVFRVlZ2dv3LgxLS1t3Lhx\nqqqqly9fPnTo0OfPn8PCwjQ1Ne3s7D59+nTlypVNmzYZGRmZmZkRQmpra11cXO7evWtoaGhnZ6eo\nqBgXFxcYGJiQkBAcHKymptapU6eampqcnJx27dp169ZNUfGfg/didySEFBQUvHnzJjk52dPTk8fj\nde3atd6eczicrKwsqQTBx8eHEOLl5SWV1gAAAOQQklFolqysrMuXL3/77beEkClTptja2p44cWLZ\nsmWbNm2i8sju3bsfOnQoISGBSkZDQ0Pv3r07cuTIw4cPt2/fnhDi6em5cePGmzdvBgcHu7m5UYnd\nwIEDu3Tpcvz4cfqNxO5IVaupqVm/fv2SJUvc3d2pDLUhPj4+HI7T6NFGoj+gT8On6v/JQb29619j\nkrp9XpJCgXLh13SJwKYk7Xt7Ey8v4uMjaSep+jIMoZBzmAAAbQ+uGYVmWb9+PZWJEkIGDhyorKys\noKCwaNEi+ojmkCFDCCHU0z4JIUePHm3Xrt2uXbuohJIQoqKi4u3traamdvz4cWox/HpJuCOXy7W0\ntPzhhx9EZ6I1NTWHDx9OSEjYsmWziYnJuHHj6q3GoZ5bL5q3N+HxBP8RUk+JcKFwZeHXdInApiRv\nyuP989vUy6tx9WUYQiHnMAGgxRw+fNjkfzHdo68GjoxCswh82VRVVTt16tSlSxe6REVFhX794cOH\noqIiU1NTAwMD/r10dXX79et37969vLy8es+tN2rHBQsWiO12u3btioqKli4lo0eTJUv8CYdDxo4V\nrmZkZIRT8AAAIAl3d3d3d3f+EuSjEsKRUWgWBaFzW/QxUWFv374lhAgklBRDQ0O6QjN35E+F62Vk\nZNSjRw/RdSTk5eUlM9nq4cOHme5C24KACEBABCAgwhATaBoko9B69PT0CN8pe35Uob6+fvN31NbW\nlrA/Rkbk1CmydClZupRwiBH1gv4nb+s6BQYGMt2FtgUBEYCACEBAhCEm0DQ4TQ+tp2PHjhoaGi9f\nvvz06dM333xDl1dUVKSnpyspKXXr1k26O4rm5PTfV0ZGp8hto//9qZERGT26Ca0CAABAIyAZhVbl\n4OBw5MiRPXv2/Pvf/6ZO6PN4vIMHD378+NHR0VFJ6Z8JqaCgIHAzk4Q7NoqREW5RAAAAYBiSUWhV\nK1asuHHjRnh4OIfDmTx5sqKi4s2bN5OSkgwNDdesWUNX09fXz8zM9PT01NbW3rZtm+Q7thXCa8fU\nu5qM8I+EX9MlApuSvKloja0vwxAKOYcJAMAoJKPQqtTV1S9evLh79+6rV6/ev3+fKpk5c+aOHTs0\nNTXpahs3bvT397969SohhEpGJdyxrRA+4iriGCz/j4Rf0yUCm5K8qWg4LExDKOQcJgAAoxR49AqI\nAHIDy20AAEArePHiBdNd+AogGQUAAAAAxmBpJwAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABg\nDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGCM\nEtMdAGg9t27dioqKevXqlYaGBpvNdnZ27t69O9Odaj1Xr169ffu2QGGHDh02b97MXyLzUfr06dPs\n2bOXLVvm4OAg/FOxH1/24iMiIJLMGVkKSGRkZFxc3MuXL7W0tPr16+fi4tKxY0eBOvI2Q8TGRK4m\nCZfLPXPmTGJiYlZWlq6u7sCBA5cuXaqnpydQTd4mSfMp8Hg8pvsA0Bp8fX1DQkJUVFRMTU1LS0sz\nMzNVVFSCgoJGjhzJdNdayerVq2NiYtTV1fkLDQwMLl++TG/KQ5T2799/7NgxDw8PV1dXgR+J/fgy\nGR8RARE7Z2QmIFwu193dPTo6WkNDw8zMLD8/Pzs7W1VV9cSJE0OGDKGrydUMkTAm8jNJamtrlyxZ\ncu/evQ4dOvTs2fPx48eVlZXq6urh4eE9evSgq8nVJJEaHoAcSEpKYrPZEyZMyM3NpUr++uuvvn37\nWltbV1ZWMtu3VjN+/Hh7e3sRFWQ4SrW1tVlZWbGxsevXr2ez2Ww2+8iRIwJ1xH58WYqPJAHhiZsz\nshSQM2fOUAeo6J6fP3+ezWaPGjWqurqaKpGrGcKTLCY8eZokJ0+eZLPZ//rXv2pqang83pcvX3bv\n3s1msxcvXkzXkbdJIi24ZhTkQnh4OCHE09PT0NCQKpk0adLkyZPz8/MTEhIY7VorqaioyM3N7du3\nr4g6MhylzMzMSZMmrVix4urVqw3VEfvxZSk+kgRE7JyRpYCcPHlSSUnJz89PVVWVKpk/f/6oUaMK\nCgpevnxJlcjVDCGSxUSuJsmlS5fat2+/fft2JSUlQoiKisqKFSuUlZXT0tLq6uqoOvI2SaQFySjI\nheTkZBaLNXr0aP7C8ePHE0KSkpIY6lSrevnyJY/H69Onj4g6Mhylzp07//xfLi4u9dYR+/FlKT6S\nBETsnJGZgPB4vLy8PBMTE319ff5y6txrbm4utSlXM0TCmMjPJKmrqysuLjY3N9fQ0KALdXR0tLS0\nlJWVef+94lGuJokU4QYmkH01NTXv37/v0qUL/fc9pWfPnoTvf1XZ9uLFC0JIp06d9u7d++TJEzU1\nNRMTE0dHR11dXaqCbEdJQ0Nj0qRJ1GvqqIYAsR9fxuIjNiBE3JyRpYBwuVwfHx/he5VevXpFCDEy\nMiLyN0MkiQmRp0miqKgYFxcnUHjlypWioqK5c+eyWCwif5NEipCMguwrLS2tq6v75ptvBMqpkk+f\nPjHRqdZG/c5Yv359VVWVkZFRTk7O7du3Q0NDDx06NGLECCL3URL78eUwPqLnjCwFRElJae7cuQKF\niYmJd+/e7dWrV69evYj8zRBJYkLkaZLwe/LkSXR0dHp6+n/+8x8bG5vt27dT5fI2SaQIp+lB9tXU\n1JD6Dv9QJdRPZd6LFy8UFBRcXFxSU1OvXLly//799evXl5aWbt68+fPnz0TuoyT248thfETPGdkO\nyM2bN93c3FRUVHbt2kUf9CLyPUOEY0LkdZKkpaWdOHEiLi6Ox+Npa2tzuVyqHJOkyXBkFGQf/+8S\nflQJ/b+qbAsICKipqTEwMKA2WSzWqlWrMjMzL1++fP36df7TTAI7ykmUxH58OYyP6DljbW1NZDEg\npaWlu3fvvnjxoq6u7qFDhwYPHkyVy/MMaSgmRF4nyaJFixYtWlRaWnrhwoX9+/fHxMRcvnxZR0dH\nnidJM+HIKMg+NTU1QkhlZaVAOVVC/VTm6enp0b8waDY2NoSQjIwMIvdREvvx5TA+oueMTAYkJibm\n+++/v3jx4tSpU6OiovhX05TbGSIiJkQuJwlNS0vL2dl56dKlhYWF8fHxRI4nSfMhGQXZp6Ghoamp\nmZOTQ59MoXA4HEJI586dmelW66qrq+MJPeGCui20uLiYyH2UxH58OYyP6DkjewEJDg5etWqVsrLy\nqVOnDhw4oK2tzf9T+ZwhomNC5GmSPH369Mcff7x165ZAOXVffGJiIpHXSSIVSEZBLvTt27e6ujo9\nPZ2/8MGDB4QQU1NThjrVejgcTt++fT08PATKqZsP6HsR5DxKYj++XMVHkjkjSwGJiYnx9/cfMmTI\n5cuXhw0bVm8deZshYmMiV5OEx+OdO3cuKChIoLykpIQQ0qFDB2pT3iaJtCAZBblAnTbau3cvXfLu\n3bszZ86wWKxx48Yx169W0r17dx0dnZiYmOfPn9OFHz9+PHHihJKS0sSJE6kSOY+S2I8vV/GRZM7I\nTEC4XK6/v7+mpubRo0f5V5EUIFczRJKYyNUk6dmz5zfffPP06dOnT5/ShVVVVb/99hshxMLCgiqR\nq0kiRbiBCeSCnZ1dWFhYSkrKnDlzpk6dWlBQ8Oeff1ZWVi5fvlz4gifZo6Cg4O3tvXbtWjs7u4UL\nF5qYmFD//RUWFq5bt87Y2JiqJudREvvx5So+kswZmQnIq1evsrOzu3XrdvDgQeGfLl26tEuXLkTO\nZogkMZGrSaKqqrp9+/ZNmzY5Ojo6ODgYGxvn5+efP38+Nzd3ypQp1Kr1RM4miRQpCF/tASCTioqK\ndu7ceevWLepiHXV19ZUrVzo7O8vPDYwxMTH79u17/fo1IURBQaFbt26bNm2iD4tS5CFK0dHRbm5u\nHh4erq6uAj8S+/FlMj4iAiJ2zshGQC5cuEAvFSksLCzM3Nycei0/M0TymMjJJKHExMTs2bOHusST\nEKKtre3i4uLo6KiiokLXkZ9JIkVIRkG+1NTUcDgcdXX1zp07KygoMN0dBnz8+PHdu3fdunVTV1dv\nqI6cR0nsx5e3+IidM/IWEMwQYXI1SUpLS3Nzc/X09PT09Bqqg0nSKEhGAQAAAIAxuIEJAAAAABiD\nZBQAAAAAGINkFAAAAAAYg2QUAAAAABiDZBQAAAAAGINkFAAAAAAYg2QUAAAAABiDZBQAAAAAGINk\nFAAAAAAYg2QUAAAAABijxHQHAORaYWHhw4cP//7778ePH7NYLENDQzMzs5kzZ6qpqbXCu1++fLm0\ntHTu3LnU22VkZCQnJ5uZmZmbm7fCu3+ltmzZ8u7du+DgYNGPk2Z2ZAkGl1E1NTXJyckJCQmGhoYO\nDg4S7vXw4cP09HRLS0sTE5MW7Z7MwKyWGUhGARhz8eJFb2/vqqoqgfKAgID169fb2dm1dAcCAwOz\ns7MnTZpE5Supqam7du1ycXFpif/Zo6KiCgoKZs+eraOjI/XGW01OTk5ERMSSJUtEZ6KMjyzB4DLn\n9evXCxYsKCsrI4T07t27oWRUOGgxMTHHjh3bvn37V5GMtoVBb9FZDa0JySgAA7hcrq+v75kzZ1gs\nlr29vZWVlbm5eV1d3evXr8+fP3/jxg0vLy8WizV//vzW7JWioqKysjKLxWqJxs+cOfPgwYPvvvvu\nq85X/vjjDx6PZ2tr21CFtjmyBIPbik6fPl1WVjZhwgR3d/d27do1VO1rD9rX3n9oU5CMAjAgMjLy\nzJkzqqqqBw4cGD9+PF3euXPnkSNHhoaG+vj4/PjjjyNGjDA0NGy1Xi1YsGDBggWt9nZfHS6XGx4e\nPmTIEGNj44bqtM2RJRjcVpSbm0sIsbe379OnD9N9Afg64AYmgNZWU1MTFBRECPHy8uLPV2j29vbD\nhw+vq6uLiopqqJHPnz8LlHz8+DE7O/vDhw8i3rqqqionJ6e6urqxfeZyuQUFBZLUrK6uzs/P5/F4\njX2Lti82NrawsFDEYVGpjCxpq4MrwyPbKDwe7927d7W1tQ1VqKurI4Q0/+Lg4uLid+/eiQ645F9M\nYWIHtDmNN4HYwAoQ/prA1wvJKEBri4iIePv2bceOHWfMmNFQHRcXlxkzZlC/1Qgh+/bts7a2TktL\nKyoq+uGHH8aOHbtjxw7qRx8+fPDz87O0tLSysrKxsRk2bNjEiRPDwsKE33TOnDmDBw+eMGGCpaXl\npk2bCgsLBepERkZaW1v/+uuv/IUPHjxYuHDh4MGDra2tR40atXHjxszMTP4Kx44ds7a2vnPnzoMH\nDxYtWjRkyJDRo0cPHjx4+/btFRUVhBBXV1dra+vHjx8TQpYtW2ZtbU1lbF+d8+fPa2lpTZ489eOM\nHQAAFI9JREFUuaEKTRhZ0oYHV+zIEhkaXEmkpKQ4ODhYWFiMGTPG3Nx8zpw54eHh/BU8PT2tra1T\nUlIIIatXr7a2tj569KhwO2KDdv369cmTJ48YMWLMmDECAaeJ/WIKk2RAJWm83v6HhoZaW1vTU5cS\nHh5ubW09bdo0/pS3qKho9OjRc+bMkTywROTXRMDJkyepN339+rXogEDbgdP0AK0tNTWVEDJnzhwl\npQa/gCNHjhw5ciS9WVZWVlBQ8Pnz5zVr1jx8+JAQMnToUEJIRUWFs7Nzenq6pqbmyJEju3btmpmZ\nmZKS4uXlpampOXXqVGr3Xbt2nT59msVi9evXr1evXhkZGX/++efjx4/Ly8v537SyspJ6F7okJCTE\n399fSUnJyspKT0/v8ePHUVFRSUlJISEhPXv25O9bcnLymTNn9PT0Jk2alJeXd//+/QsXLnz+/Dkg\nIEBNTU1TU/PTp081NTXt27dXUVFRUVGRWjRbS35+fnx8vL29vYjON2FkSRseXLEjSwiRjcGVxG+/\n/XbgwIG6urp+/fr16dMnJycnNTV169atiYmJe/fuVVRUJP+NRmlpKfVaTU2t3miIDlp8fHxcXJyR\nkdGMGTOEA06R5IspTJIBlaTxevtvZWXl4+Nz/fp1Hx8fKhrUZykoKCgoKMjIyGCz2VRhYmJifn7+\n6NGjJQ8safhrIuDXX38NCAjQ09M7cOCAiFBAm8MDgNZla2vLZrMvXbok+S4//vgjm82ePn36kCFD\nIiIiCgsLqfILFy6w2WwXF5fa2lq6clBQEJvN3rhxI7V59+5dNpttbm6enJxM10lNTR06dCibzWaz\n2e/fv6cKQ0ND2Wz2Tz/9RG2+evXK1NR0zJgxr1+/pnc8deoUm82eOHFiXV0dVbJv3z6qnYMHD3K5\nXKrw4cOHbDa7T58+BQUFVImdnR2bzX727Jnkn7pNCQwMZLPZL1++FFGnCSPLa8ODK+HI8r7+wRXr\n6dOnffr0MTMzi4qKogsfPXr03Xffsdls6rY22rJly9hs9v3790W3KRw0CQMu4RdTmCTtS964cP8n\nT57MZrMfPXpEl4wYMcLS0pLNZp86dYou9PT0ZLPZ8fHxvMYEtt6vicCs3r9/P9XP3NzchgMPbRFO\n0wO0Ng6HQwgRuH+loKDAsz78V1C9fPny9OnTs2bN0tXVpUry8/P79u3r5OTEf5f0iBEjCCHZ2dnU\nJnUGcOXKlfwHEiwsLDZu3Ci6n/v376+trd2xYwf//TqLFy+eMGFCdnZ2cnIyf+U+ffqsW7eOPowx\naNAgU1PTurq6N2/eSBaVNq2uru6PP/4YNGhQ7969RVRr8siSNjy4sj2yEjp48GBdXZ2joyN9QJoQ\nMnDgwC1bthBCAgICuFyutN5LbMAb9cVsbPvNadzGxoYQkpCQQG1mZWUVFRU5ODioqqrSO/J4vMTE\nRE1NzWHDhpHGB1b4a0I36+vre/ToUVNT07Nnz7by3YHQfEhGAVoblYUI/CdbWlp6pT78FxeOHTtW\nYAHCNWvWREZG0qd9uVzuy5cvjxw5wl+HurRr5syZAt2YNWuWiHVnCCEPHjxQUlIyNTUt+V9WVlaE\nkGvXrvFXHjlypMDSm7169SKEfPz4UcRbfC0SEhLy8vJE3LpEafLIkjY8uLI9shKizgsvXLhQoPz7\n77/X0tJ6//7927dvpfVeYgPeqC9mY9tvTuNUMhofH09t3rt3jxBibW1tbm6ekpJCTfgXL14UFRWN\nGTOGupSlsYEV/poQQrhc7o4dO0JCQlgs1tGjRzt06CA6AtAG4ZpRgNbWu3fvhw8fcjgc/qNZ3bp1\ni4iIoDd5PJ6tra3AwbN+/foJt1ZZWXn16tXk5OTnz59zOJyqqir+LKSwsLCyslJFRaVjx44COyor\nKxsYGNDH2ASUlJRQ927Tl3YJELjNVrh9WXL+/HkNDY3vv/9edLUmjyxpw4Mr2yMrieLi4tLSUmVl\n5S5dugj8SEFBwdjY+NGjRxwOp1u3blJ5O9EBb+wXs1HtN7NxMzMzAwODtLS0srIyTU3NlJSU9u3b\n9+/f38rK6u7du8+ePTMzM7tz5w75b9rahMDW+zU5d+5cRUWFqqrqly9ffvnlF29vbxGdhLYJyShA\na6NSlidPnvAfaVNRUTE1NaU38/PzqXyFx3cXaqdOnQSaevr0qbOzc0lJiaGhoaWl5ZQpU3r16qWv\nr0+3TO3e0P00IpZApw5jKCsrT5o0qd4KPXr04N8U/USir1pRUVF0dLStra3YxXqaPLKkDQ+uDI+s\nhKjxYrFY9YaCirPkCxKJJTrgjf1iNqr95jduY2Nz8uTJu3fv2tjY3Lt3z8LCgsViUWfkqed2JiQk\nqKqqjho1ijQpsMJfE0JIRUWFra3tokWL5s2bFxYWNmnSpOHDh4vuJ7Q1SEYBWtvYsWPPnz8fGRm5\nevXqho5S1HttlrKyskCJh4dHSUnJ+vXrV61aRRdmZGTQr/X19dXU1MrLy4uLiwXOXnG53Hfv3jXU\nSV1dXS0trfLy8j179rTQY3u+FhEREVwuV+w5etKMkSUY3DasY8eO7du3r6ioKCgoEE6GqAuFjYyM\nWqczLTp2zW+cSkYTEhL69u2bn5/v6OhICOnfv3/79u2TkpLs7e1TU1Otra2pv+uaEFjhrwkhZNKk\nSbt27SKErFy58vDhw1u3bo2KilJXV29C/4EpuGYUoLWNGzduxIgRVVVVP/30k8CFg5Ty8vJ9+/aJ\nbefDhw9ZWVkqKirOzs785QKr6/Xv358QEhkZKbD7jRs3KisrRbTfr18/LpdL345AO336tJ2dnXCD\nMonH4124cMHMzIz/6GZDpDWyBIPbxpiZmRFCLl26JFB+586d4uJiLS0taZ2jl0SLjl0zGzc3N9fV\n1Y2Pj6cWW6WuNFVSUrKwsEhNTb179251dTV1jp4ilcB27dqVerFy5UoTE5O8vLyffvpJ7F7QpiAZ\nBWDA1q1b27VrFxUVtWrVKoHniGRkZDg4OLx//15sI9Tprerq6qKiIrowNzd37969hJCamhqqxM3N\njRBy9OhR6l4BSnZ2ttj/r6kdfX19+e+bzsvL27dv38OHD6k0SHLU2WThtbvbuOTk5OzsbMkfpCmV\nkSUY3DZm7dq1hJCjR49SN+VQ3rx5s3PnTkKIm5ubiJVlG9LkoEl37JrceL39V1RUnDBhwtu3by9c\nuKChoUH/CTds2LDy8vKjR48qKSmNHTuWri/dwCopKe3evZvFYoWFhSUmJjbmcwPDcJoegAG9e/cO\nDQ3dsGFDbGzsqFGjBgwYMHDgwPLy8hcvXjx69EhBQWHnzp0RERH8GYYwLS0tc3PzBw8e2NnZTZ8+\nXVVV9fXr1zExMf379y8oKMjKytq3b5+np+fw4cPnzZv3xx9/ODk5jRw5sk+fPpmZmQkJCdra2jo6\nOiUlJQ21b2lpaWtre/78+VmzZllbWxsbG6enpycnJ1dWVrq4uDR2QemuXbumpKSsXbu2V69ekydP\ntrOzI4QsWrSIy+UKP1KosUS3U1ZWNmTIEE9Pz+XLlze25fPnz7dv337atGkS1pfKyBKZGNzmKysr\ne/78uYmJiZaWltjKLTcHCCFDhw5dvHhxSEiIk5PT2LFjqbXZb926VV5ePnToUAcHhya02eSgSXfs\nmtx4Q/23sbEJCwt7+PDhmDFj6HP91GWjDx8+/O677/hHU+qBNTMzc3Z2Pnbs2LZt23Cy/iuCZBSA\nGQMGDIiMjPT394+Pj09KSkpKSiKEKCoqmpiY+Pr6mpmZFRcXi01ZDh48uGXLlsTExOPHjxNCtLS0\nnJ2d16xZs2HDhuvXrx8/fnzjxo0KCgq+vr59+vQJDg6Ojo6Ojo5msViDBg36+eef7e3tReQrhJBd\nu3YNGjQoKCiIXtJFV1fXw8ODuhSsUVxdXTMzM58/f3737l16cRZjY2OpLNAorXYEfPz48ebNmzNn\nzmzUrzSpjCz5+ge3+Z4+fbp48eITJ04IPLOqXi00B2jbtm0bPHhwQEBAdHT0rVu3CCH6+vouLi4r\nV66k1+xslOYETYpj1+TGG+q/lZWVlpZWaWkpdY6e0rdvX01NzbKysokTJwq8ndQDu2bNmlu3bmVm\nZvr7+1PXkkLbpyBwRycAtL7CwsL09HQtLa2+ffuKvWVbWFFRUV5enp6eXufOnenCjIyMjh07ChxS\nKikpeffuXc+ePVVVVRv1FqWlpRwOR1dXt1OnTk37DcGgJh8Ve/fuXXJy8tChQw0MDJr21s0cWSLf\ng5ucnCx5MipaM4+M8isvL8/KyjIwMNDR0WlmU83XomPXyhOjTQUWWhmSUQBgjI+PT11dnY+PDyHE\nw8PDzMzMwsIiKCjo0aNH2tras2bN4j86UlhYePDgwbi4uLKyso4dO06bNm3NmjXUeUD+dgghz549\n+/nnn9PS0mpra8eNG+fq6jp58mT+RCQ/P3/v3r2pqaksFmv48OGurq6teQOK/MjLyztw4EBaWtqn\nT5/69evn4OAwbtw4+qceHh5dunTx8PCgSw4ePJidnU09JN3T0/P58+cZGRm9evXS1NQ8fPiwnp4e\n5gCATMJpegBgzMuXL+lTq+np6YWFhSdOnBgzZoyDg8Nff/116NChDh06UDcP8Xi8ZcuWvX371tbW\nVldX9/79+7/88ktFRQX12ED+dlJTU11cXDQ0NKZOnaqiohIdHe3q6sr/ppmZmYsWLVJXV581a1Z1\ndXVERERiYmJoaCj/oUdovhcvXixevLimpmb27NlaWlo3b950c3PbvHnzkiVLqArp6enV1dX8u2Rl\nZT1//px6raurSx0h09HR0dXVZbFYmAMAMqslH3wPACCKvb39ggULqNc2NjZsNjs6OprarKioGDRo\nkJOTE7X5+vVrNpt97Ngxet9Vq1aNGDFCuJ0FCxYMGzbs7du3dDu2trb8+y5fvnzixImfP3+mNvPy\n8oYMGbJ169aW+5jyaenSpQMGDHj16hW1+eXLl0WLFg0YMOD9+/dUiY2NzerVq/l3cXd3nzhxIr2Z\nlJTEZrPj4+OpTcwBAFnVhi4PAgA517NnT/o0rpqa2tChQ+mFkPT19ZWUlK5du0Y/4nL//v2XL18W\naCEnJ+fhw4ezZ8+mr/JUU1PjXzS+qKgoLi7O0dGRviepc+fO8+bNu3btWlVVVct9NHmTn5+fkJBg\na2tL33+toqKyYcOGL1++/Pnnn01rE3MAQFbhND0AtBUCF+2pqKjQDwPU0NBYu3ZtQECAjY2NiYmJ\nlZXV+PHjqfVi+FGLI1IradMGDBhAv87MzCSEnD59mj+JKS4uLi8vz8/P7969u1Q/kPyi8kWBNS/N\nzMwUFBSoJ+s0AeYAgKxCMgoAbYXoBa5dXV0nTpx4/fr1xMTEsLCwkJCQcePGBQYG8j+3kLoGUeC+\ndf67y6k1uvX19fkf19m9e/fBgwe3qRvJv3bl5eVEaCCUlZVZLJaIZd554m6oxRwAkElIRgHgK1BX\nV1dXV2dsbLxq1apVq1aVlJTs2LHj1q1bcXFx/DdoUw8GzMrK4t+X/1Bcjx49CCFz5syZPXs2Xcjl\ncqurq5u29BLUizq+KHAQ9O3bt7W1tfShR0VFRYHss7CwUESbmAMAsgp/BQLAV+DWrVtmZmb0WvE6\nOjpOTk6EkA8fPvBX69Gjh6Gh4R9//EGf3yeEnDt3jn7dpUuXrl27ClxouHz5chsbm3qfJg9NY2Rk\nZGhoeO7cOfrJpYSQ33//nRAyYsQIalNbWzs9PZ3OR/Py8p48ecLfiIKCAv8m5gCArEIyCgBfAUtL\nSy0trW3btsXExGRmZqampv76669KSkpDhw7lr8Zisdzd3TMzM11cXO7cufPo0SN/f/9Lly7xV1i3\nbl1iYuK6devu3r17//59Pz+/hIQER0dHnKKVIhaL5eHhkZOT4+TklJCQ8PjxY39//5CQEBsbG3Nz\nc6qOhYXFu3fvfH19//777+joaBcXFz09Pf5GNDU1CSGXLl26cuVKZWUl5gCArMJpegD4Cmhrax89\nenTnzp30bdHGxsZBQUHUOVl+s2fPVlRU3Ldvn7OzMyGka9euv/32G/9DrqdPn85isfbs2fPXX38p\nKioOGDCAf/FLkJZp06apqan5+fktW7aMEKKhobF06VL+Je6XL1/+9OnT33///ffff9fS0lq/fv2r\nV68SEhLoCmw2e/z48Tdu3Lh8+XJ0dHSXLl0wBwBkEp7ABABfk+Li4pKSkm+//VbgKJqwgoICJSWl\nDh06NFShpKSEx+OJqABS8enTp7KyMkNDQ4HT7pTS0tIPHz5069at3p/WC3MAQMYgGQUAAAAAxuD6\nGAAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJR\nAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEA\nAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAA\nAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAA\nAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAA\nYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABg\nDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAM\nklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAyS\nUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJRAAAAAGAMklEAAAAAYAySUQAAAABgDJJR\nAAAAAGAMklEAAAAAYAySUQAAAABgzP8DspVgmakJF/QAAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%plot inline -s 900,1000\n", "network_files = dir(fullfile(pwd, 'ROIs_mask', '*FDR_0.01.nii*'));\n", "[~, sortorder] = sort(median(ratio, 2));\n", "figure;\n", "labels = {network_files(:).name};\n", "for i = 1:numel(labels)\n", " labels{i} = labels{i}(1:end-23);\n", "end\n", "\n", "grouplabels = {'control', 'autism'};\n", "for igroup = 1:2\n", " subplot(2, 1, igroup);\n", " boxplot((ratio(sortorder, group==igroup)'), 'orientation', 'horizontal', 'Label', labels(sortorder));\n", " xlim([0, 300]);\n", " xlabel('Gradient_i_n_s_i_d_e / Gradient_o_u_t_s_i_d_e of the network');\n", " title([grouplabels{igroup}, ' group']);\n", "end\n", "% MatlabFuncs.xticklabel_rotate([1:inetwork],90,{network_files(:).name},'interpreter','none')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also do this for each bin of the gradient. The bin boundaries (in percentiles) can be given as a last argument to the gradient_goodness function. Note that this will roughly take 10x as long as the previous steps." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%plot native\n", "% define the inputs\n", "mask_file = fullfile(pwd, 'ROIs_mask', 'rbgmask.nii');\n", "network_files = dir(fullfile(pwd, 'ROIs_mask', '*FDR_0.01.nii*'));\n", "\n", "% list the new, transformed files\n", "transformfiles = dir(fullfile(pwd, 'data', 'Outputs', 'individual', '*transformed.nii'));\n", "\n", "% reset the goodness of fit result\n", "binned_ratio = [];\n", "\n", "MatlabFuncs.progressbar(0);\n", "a = 0;\n", "for inetwork = 1:numel(network_files)\n", " \n", " % define network file for this loop\n", " network_file = fullfile(pwd, 'ROIs_mask', network_files(inetwork).name);\n", " \n", " % loop over participants\n", " for i = 1:numel(transformfiles)\n", " % update a progbar\n", " a = a+1;\n", " MatlabFuncs.progressbar(a/(numel(network_files)*numel(transformfiles)));\n", " % define gradient for this loop\n", " gradient_file = fullfile(pwd, 'data', 'Outputs', 'individual', transformfiles(i).name);\n", " % run the goodness-of-fit analysis\n", " [binned_ratio(inetwork, i, 1:10)] = MatlabFuncs.gradient_goodness(gradient_file, network_file, mask_file, true);\n", " end\n", "end\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since this takes for-absolutely-ever, we should save this file so that we don't have to repeat anything!" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "save(fullfile(pwd, 'data', 'binned_ratios.mat'), 'binned_ratio');" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "load(fullfile(pwd, 'data', 'binned_ratios.mat'));" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also do the same visualisation as above for these binned results" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAPoCAIAAAAJPPL9AAAACXBIWXMAABcSAAAXEgFnn9JSAAAA\nB3RJTUUH4QMGDwUwI/XEXwAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJ\nbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNi1NYXItMjAxNyAxNTowNTo0OOcaZcIAACAA\nSURBVHic7N15XNTV/vjxMyzigobKIosyWIZKLkTkrmhGcnPNtRQDb7mQpjf9WlczIK+WmpZbmRdF\nrUxzwUpB5CogcC01y25hLj8ZXDAFRAWRbZjfH5/vb35zBxhm4MMMy+v5uH/MfOZ8znl/Dhd5f96d\nOR+FRqMRAAAAAAAAAACgdqwsHQAAAAAAAAAAAI0BBXcAAAAAAAAAAGRAwR0AAAAAAAAAABlQcAcA\nAAAAAAAAQAYU3AEAAAAAAAAAkAEFdwAAAAAAAAAAZEDBHQAAAAAAAAAAGVBwBwAAAAAAAABABhTc\nAQAAAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAAAAAZUHAHAAAAAAAAAEAGFNwBAAAAAAAAAJAB\nBXcAAAAAAAAAAGRAwR0AAAAAAAAAABlQcAcAAAAAAAAAQAYU3AEAAAAAAAAAkAEFdwAAAAAAAAAA\nZEDBHQAAAAAAAAAAGVBwBwAAAAAAAABABhTcAQAAAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAA\nAAAZUHAHAAAAAAAAAEAGFNwBAAAAAAAAAJABBXcAAAAAAAAAAGRAwR0AAAAAAAAAABlQcAcAAAAA\nAAAAQAYU3AEAAAAAAAAAkAEFdwAAAAAAAAAAZEDBHQAAAAAAAAAAGVBwBwAAAAAAAABABhTcAQAA\nAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAAAAAZUHAHAAAAAAAAAEAGFNwBAAAAAAAAAJABBXcA\nAAAAAAAAAGRAwR0AAAAAAAAAABlQcAcAAAAAAAAAQAYU3AEAAAAAAAAAkAEFdwAAAAAAAAAAZEDB\nHQAAAAAAAAAAGVBwBwAAAAAAAABABhTcAQAAAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAAAAAZ\nUHAHAAAAAAAAAEAGFNwBAAAAAAAAAJCBjaUDAADATI4ePXrlyhUhxFNPPRUQEGDpcAAAANAAkEMC\nAExCwR0AUL98/vnn+fn5QogRI0Y89dRTMva8ffv2ffv2CSFmzpzJzRIAAAD0VJqIkkMCAExCwR0A\nUL+sWLHi+vXrQoj27dvLW3AHAAAADCARBQDUHgV3AAAAAACAyi1btmzmzJlCCHd3d0vHAgBoACi4\nAwCqkZGRUV5e7unpaWNj6K9GZmamRqPx9PRUKBTV9nnnzp38/HwvLy8rqxo+vvvmzZsPHz588skn\naxNGtUMoFAo3N7f6E5Kua9eu2dnZubi4yNgnAABAg1NeXn7nzp3bt2/b2dl16NDBwcFB3v579OjR\no0ePSj+6f//+rVu3ysrKXF1d27dvb7if3Nzc/Px8pVKpezA/P//GjRuenp4tW7Y0PiRT01RRRaZK\nmgoAdaGGZQ4AQKP3xx9/jBgxwsHBoXPnzk888UTz5s3Hjh179uxZvWYXL178y1/+4uDgoFQqvby8\nHnvsscDAwN9++023zYQJEzw8PDw8PL799ttjx449+eSTLi4uTzzxhL29/YwZMx4+fCg1GzhwoIeH\nR1ZWlvR24cKFHh4eY8eO1evh559/fvbZZz08PHT30DQmDCNpNJp//OMfHTt29PDwcHd379ix4759\n+7Zv3y4FMGvWrIoXVeOQtJ2sXbtW93j//v2l47t376443D//+U9XV1dPT88OHTp07tx56dKlarW6\nBlcKAADQoOXk5Pztb39zdXV1dXXt3bt3t27d2rVr5+/vv3//fm0bI9MtA4nonDlzpJbvvPOO9vSD\nBw/279/fwcGhW7duPXr0cHR09PHx2bJli7aB9qxdu3YdP368R48eTk5OXl5ezs7OW7duFUL8/PPP\nAQEB7du37969u729/aRJk27cuGH4eo1MU0V1maqRmbORU0eaCgD6NAAAVPDVV19VusrGxsYmLi5O\n22znzp3Nmzev2MzW1vazzz7TNhs0aJB0fNKkSc2aNdNr/NJLL0nNHn/88Ypd9evXT7eH999/v3Xr\n1tJrV1dXk8KYOHGidHzmzJkGrn3SpEkVr3rYsGHS6/Hjx+tdVG1C0naybNky3Ri8vLyk41u3btVr\nqX2hKygoqKioyLSfMQAAQEN269atbt26adMhvTXau3btkpoZmW4ZSEQr5pBffPGFdji9cZcuXSq1\n0Z4VFBRkZ2en28bKyio8PLziSvy+ffuWlZUZuGQj01SNwUzVyDTV+KkjTQUAPaxwBwDou3Xr1qxZ\nswoLC4UQQ4YM2bVr14YNG/z8/IQQZWVlEydOfPDggRDi2rVrYWFhRUVFQohhw4bt2LFj165dL7zw\nghCitLR0wYIFFy9e1Ov5m2++sbOzCwsLe/PNN+3t7aWDhw4dkh5OFRUVdfjwYUdHR+n4/PnzDx8+\n/NFHH+n2sGrVqvz8fCGEp6enh4dHzcIw4PDhw9988430euLEifv37//ss8+6dOly4sSJqk6p65D0\npKSkPPHEExs2bNi3b98rr7wiHYyLi4uOjq5xnwAAAA3O5s2bL1y4IIRwdHRMTEwsKirKysoaMmSI\n9OkXX3xhUm/GJKJa69ev12g0QoilS5cWFRVlZ2evWbNG+mjNmjVSZqgVFxfXuXPnDRs2LF26VKp9\nl5eXR0ZGPnr0aNGiRevXr+/fv7/U8ocffkhJSakqwhqkqaJCpkqaCgBmwB7uAAB97733XkFBgRDC\n19c3Pj5eWpIzceLEzp07P3r0qKCg4MSJE2PHjl26dKm0G0z//v2PHj1qa2srhHjllVeCgoISEhKK\ni4sXL1787bff6vbcvn37//N//s9jjz0mhBg3btzQoUOFEOXl5b///nvHjh2lb7m2aNFCatyrV68X\nX3xRL7aHDx+OGjVq+/bt2tuhGoRhwOrVq6UXo0eP1r2leeKJJ+7du1fpKXUdkp42bdqcPHnS1dVV\nCDFhwoTmzZtv375dCLFq1aqZM2fWeE98AACAhuXOnTsDBgwQQrz88stSGunq6jpx4sTk5GQhxK+/\n/mpSb8YkohK1Wv3LL79Ir52cnJo1a+bo6Lhw4cK8vDwpXbx582bXrl217du2bZuUlOTs7CyEcHZ2\nnj9/vnT8o48+mjt3rhDitddec3Z2lrLH9PR03S0KddUgTRUVMtXg4GDSVACoa/x7BwDQJ92lCCHe\neOMN7RdgO3TokJiYePjw4cOHD/v4+AghTp06JX0UFhYmJetCCGtra+nOQbeB1l/+8hep2i6E8Pf3\nt7a2ll7fvn3byNgcHR337t2rLW3XLAwDtLdPuptgtm/ffvz48ZYKSc/EiROl2xjJwoULpRcqlerm\nzZs17hYAAKBh+fzzz1NTU1NTU9944w0hxJ07d2JjY7W7qJeXl9fRuNbW1l26dJFeL1iwYOjQoR9+\n+GFKSsp77723efPmzZs361bbhRD9+vWTqu1CCF9fX+3xkSNHSi9atmyp3RvHQFZcgzRVVMhUSVMB\nwAxY4Q4A+C8lJSVXr16VXvfu3Vv3oz59+mhfFxYWZmRkSK91d88UQnTv3l16kZ2dnZ2d7eTkpP1I\nNwVv1aqVh4dHZmamNKiR4QUFBWlXHtU4jKpkZ2drvwLs6emp+1Gl23qaIaSK9Prs2rWrra1taWmp\nEOLq1asdO3asQZ8AAAAN0a+//vrPf/7zhx9+uHjxot5GLnXqn//854svvnj//n0hRFJSUlJSkhCi\nZcuWo0ePjoiI8Pb21m0sbTko0X2aUbt27bSvK91UXVfN0lTx35kqaSoAmAcFdwDAf3n48KFarZZe\na5e9VFRWVqZdN6RdqF7xrZRha1V8YJSp4bm7u9c+jKq0adNGoVBIO3JKd1Ba0ndvzRaSgU/1+rSy\nsrK2tpbaGwgSAACgkYmKinr99del1y1btnz22Wd9fHxatGjx6aefGnO6kflhpQYMGKBSqXbu3BkX\nF3fy5MlHjx4JIQoLC/fs2RMfH3/q1Cm9mruW7hNW9Z62aljN0lTx35mqXJlzVQ1IUwFAwpYyAID/\n0rZtW+069EuXLul+tHPnzoULFy5cuDAuLq5NmzbaVSpXrlzRbaZ96+Dg4ObmJm94ev8NQN4w7Ozs\nOnToIL3+17/+pftRQkJCXYSkPVe3pUajuXPnTlXD6fWZlZUlPfZKVLe+CQAAoNEoKSmZN2+e9Pqd\nd965e/fujz/+uH379r59+0oHteXsGqRbxnBwcJg/f/7Ro0fz8vKOHz8+Z84cqdycl5e3c+fO2vRc\nqZqlqeK/M1VTM2dTp440FQAkFNwBAPqeeeYZ6YX0mCNJXl7eG2+8sW7dunXr1kmLa/z8/KSPtm3b\npnt6VFSU9ELboGaMvAuSN4zRo0dLL9auXZuamiqEUKvV4eHhp0+fNr4T40PSbuh55swZbbOEhAQD\ne+zs3bv3wYMH2rfan1GbNm28vLyMDxIAAKDh+u2337TF3L///e/ar1H+9ttv0gspXxU1SreEwUT0\n/Pnzjz/++OOPPz5kyBAhhJ2d3bBhwz799NMxY8ZIDXJzc2twRdUyc5oqTJ860lQAkFBwBwDoW758\nuY2NjRAiLi4uNDQ0JSVl586dL774ovRV0A4dOgwbNkwI8Y9//ENa9hIXFxccHHzixImkpKTXXnvt\nm2++EUJYWVl98MEHNRi9devW0ovPPvts2bJl1S4RkjeMxYsXS9f+4MGDQYMGdezY8bHHHnv//fd1\nN9yslvEhab9ufOXKlWHDhn3xxRehoaFjx4410HlOTs6wYcNiYmJOnz4dGRkZHh4uHZ8/f75JQQIA\nADRcus+rP3TokBBCrVYfPXr0s88+kw5q90g0Kd0yJhH18fHJycm5evXqyZMn16xZI22ZcvHixR9/\n/FFqMGDAgNpfYEVmTlOF6ZkqaSoA/C8NAAAVfPjhh5VuK2lra5uamqpttmbNmqr2YQ8PD9c2GzRo\nkHRw2bJluqNol7ps3bpVe3DGjBm6/fTr189ADyaFMXHiROngzJkzDVz78ePH27dvr9vJ8OHDV6xY\nIb0eP3684YsyKaTr169LN0663N3dfXx89GZGO1yXLl0q/mh8fHzy8vIMXBQAAEAjo/1SphDCycmp\nVatWQmcXFBsbG6mZ8emWpopEtGIOuWnTJm2bli1burm5adMzX1/f+/fvV3qWRqPRFuWFEA8ePNAe\nHzhwoHTwvffeM3DJRqapGoOZqpFpqvFTR5oKAHpY4Q4AqMTbb7+dlJTUs2dP3aT5ueeeO3XqlO6a\nnUWLFp08ebJ3797aZgqF4qmnnjpx4kRERETNhl67du24ceNMWgUjbxjDhg377bffvvzyywULFixe\nvPjgwYNHjhzRLpJq0aKFjCF5eHjExcVpd+QUQvTq1SstLc3T07OqnqdMmfLVV185ODhIb+3s7CZO\nnHjq1CntEQAAgKZg//79Q4cOlV5nZ2cXFhZOmzZNW9EuKyv79ddfhYnplpGJ6BtvvPH111/7+voK\nIQoLC7OysjQaTatWrWbMmHHs2LE2bdrIcoEVmTNNFaZnqqSpACD534dcAwBQqfz8/P/85z+2trZd\nunQxkCs/fPgwPT29vLzcx8fH3t6+9uOWlZXdvXtXrVa3a9dOuylntWofxr///e+bN28KIZRKpb+/\nv/b44MGDU1JShBBLlizRLiOSKySNRnPt2rWMjIxu3bq5uLhU2kYbwLJly95//32NRvPHH3/k5+f3\n7t2br+gCAIAmKzMz8+rVqw4ODl26dDGQ/hmTbmkZn4jeuHHjxo0bBQUFLi4ujz/+eMuWLWt4GUaw\nSJoqjJg60lQA0KP/5SAAAHS1bt26f//+1TZr1aqVbt5fezY2NtrHNBmv9mGkpKS88847Qgh7e/tz\n58516dJFCHHmzJlTp04JIRQKxZQpU2QPSaFQeHp6GljVXukp3bp1MykSAACAxsfIJMqkdMv4RNTD\nw8PDw8OYlrVnkTRVmJ6pkqYCAFvKAADw/02dOtXV1VUIUVBQ0K1bNz8/P39//wEDBpSVlQkhXnvt\ntR49elg6RgAAADQ5pKkA0FBQcAcA4P/z8PA4efKk9NwqtVp97ty5s2fPlpaWtmzZ8rPPPtu6daul\nAwQAAEBTRJoKAA0Fe7gDAFCJ9PT0c+fO3bp1y97e3tPTMyAgoE435axWZmZmYWGhEMLR0dHJycmC\nkQAAAMCCSFMBoJ6j4A4AAAAAAAAAgAzYUgYAAAAAAAAAABlQcAcAAAAAAAAAQAY2lg4AqHe8vb0t\nHQIAAKi5ixcvWjoEoPEjZwYANDhkiTAPCu5AJertP8He3t71Nra60wSvuglesuCqmxKuuumwyFVT\nBATMpj7/s9Y0/9WtMabLVMyYqZgxkzBdpjJyxsgSYTZsKQMAAAAAAAAAgAwouAMAAAAAAAAAIAMK\n7gAAAAAAAAAAyICCOwAAAAAAAAAAMqDgDgAAAAAAAACADCi4AwAAAAAAAAAgAwruQEMyd+5cS4dg\nAU3wqpvgJQuuuinhqpuOpnnVAOoD/v0xCdNlKmbMVMyYSZguUzFjqG8UGo3G0jEA9Yu3t/fFixct\nHQUAAKgJ/o4D5sHvGgCgYeEvF8zGxtIBAECDp1KJ0FBLBqAUKiGESigtGUQVwsNFQIClgwAAAEAT\nY/EUXY/ZMvaAABEeXteDAAAMoeAOALWVlCSEEK++arEAAnZGqoRS9Wq9y6yTk0VyMgV3AAAAmJvF\nU3Q9Ack7VSphhow9NJSCOwBYGAV3AJCBUilCQiw3fLJQKoWwYABVyMy0dAQAAABoqiycouvJNEfG\nrlLVbf8AAGPw0FQAAAAAAAAAAGRAwR0AAAAAAAAAABlQcDfZqlWrunbteu7cuUY8Yn1w+/btnJwc\n7dumOQkAAACoC407t6xlIt24JwcAAKCuUXA3mUaj0Wg0jXvE+iAwMDBU56HyTXMS6iEvLy9LhwA0\nWvx+AYDZNO7cspaJdOOeHOgh/QCMt2PHjsjISEtHAaAB4KGpJpsxY8aYMWOUSqWlA2lamPb6QKVS\nqXgKD1A3+OUCAHNqUrllk7pYmIoMBDBeZmampUMA0DBQcDeZs7Ozs7Oz3sGCggIhhL29fW16vnfv\nno2NTS070fPw4cOWLVsqFIqqGjx69MjOzs7KqprvOpSWltra2uqdaGVlZWdnV5ueqw1Pq9Jpl5SU\nlGg0GgORSAoKClq1amXMWAAAAGjc6i6lrzY1NXKUavNk4+8dDCTSdXEDAgAA0MSxpcx/2bp1a2Bg\nYExMjN7xsLCwoKAgKTmW2vz+++9CCLVavXHjxkGDBvn9P++++25eXp72xJUrVwYGBv7555+6ve3f\nvz8wMDAlJUV6m56e/sYbb/Ts2bNPnz5+fn4DBgz4+OOPy8vLa3YJ69evDwwMvHz58kcffTRs2LCn\nn3762WefnTFjhhSwlkaj2bZt28iRI6UGs2fPTk1N1W2wZMmSUaNGCSFiY2OnT5/u7+8vHVer1Z98\n8snIkSP9/Px69eo1dOjQqKiokpISI3s2Jrw5c+YEBgYWFxdnZGQEBgaOGDFCb9ol5eXlUVFRY8eO\n9fX19fX1HTVq1MaNG9Vqtd7kl5aWrl+//oUXXvDz8/P19Q0LC8vOzq7Z3AIAAKD+s0hKX21qWu0o\nRqbxhu8djEyk5b0BAQAAgC5WuP+XAQMGrF279uDBg+PGjdMevHXr1okTJwYPHiwt/bh7925mZmZx\ncbEQYtmyZQcOHOjevftLL71kZWWVlpa2b9++ixcvfvPNN9JqlJycnMzMzLKyMt1RHjx4kJmZ+fDh\nQyHElStXpk+fXlxc/Mwzz/Ts2bOoqCg2NnbLli3NmzefM2dODS4hLy8vMzNz2bJl6enpgwYNGjly\n5KVLl06ePPnKK6988sknQ4cOFUKUl5fPnj07OTnZ19f39ddfz83NPXr0aGpq6oYNG4YNGyb1c/v2\n7WvXrv3444+LFi3SaDQdO3YUQhQXF4eGhv7000+dO3eePHlycXFxYmLimjVr0tPT165dq1Aoqu3Z\nmPA6dOhQWlp6/fp1W1vbTp06SWvkdaddCFFWVvbaa6+dOnXK3d19ypQpVlZWycnJmzZtSktLi46O\nbtGihXbyly9fHh8f/9xzzwUEBBw7duz48eO5ubl79+6twdwCAACg/jN/Sm9MalrtKMbkydXeOxiT\nSMt+AwIAAABdFNz/i4+PT5cuXc6ePZuTk+Po6CgdTEhI0Gg0Y8aM0WtcUlJy5MiRDh067N+/39ra\nWgjx5ptvzp49Oykp6eLFi127djVmxD179uTn57/11luzZs2SjkydOvX5559PTU2tTb77xx9/REdH\n+/n5SW+Tk5PDwsLef//9gQMH2tra7t27Nzk5ec6cOQsWLJAazJ07d/LkyYsWLUpLS5NuCYQQpaWl\nCxYsCAkJmTdvnnRw9+7dP/30U1BQ0EcffWRjYyOEKC4uHjFixJEjR6ZPn967d28jezYcXnh4uBCi\nV69eHh4eUVFRlV7g7t27T506NXDgwI0bN7Zs2VIIsWjRooULFyYkJERHR4eFhWlbpqWlHT582MnJ\nSQjx9ttvDx8+/Jdffrl8+XKXLl1qPL1NnIGvNld8vpbhPXwaX3tUFBERGRERUdWn9f9nas727K4L\nALIwf0pfbWpq/CiG8+Rq7x2MSaTr6AYEDVfjTe9DQkKiDfTWiDXen6nl2xu4tQEALQru+saOHbtm\nzZr4+PipU6dKR44ePWpvb//cc8/ptbS2tm7WrFleXt7Vq1el6q1CoVi2bNnLL7/crl07I4d78skn\nZ8+eHRwcrD3i6Ohoa2ubk5NTm6uYPHmyNk0XQgwZMmTUqFExMTFxcXGjR4/esmWLi4vLvHnztA1c\nXV3nz5+/ZMmS2NjY8ePHSwfVarW/v//ixYu1zaKiomxsbN59912p2i6EsLOzi4yMPHLkyL1794QQ\nRvZsODxjLvDzzz+3tbVdvny5dEsjRRIREZGamhoVFTVr1izpTkYIERYWJlXbhRBWVlYvvvji1q1b\ns7KyDBfcvb29Kx6cO3eu7qU1WRkZGXXUuBG0R0UhIa+Gh79qfPv69jM1Z3tp9SIAI23cuHHTpk2W\njgL1lJlTemNSUyNHMZwny3LvIOMNCDlz49BY0/ukJGVyskmdNR6N9Wdq8fY7d+406VxYClkiLI6C\nu74xY8asW7cuLi5Oys6zs7N//vnncePGNW/eXK+ltbX1hAkTtm/fPnbs2AEDBvTv39/Pz8/Hx8fD\nw8P44SZNmiS9uH79+uXLly9fvhwbG1taWlrLq9DuDKM1dOjQmJiYixcv3r9//88///Ty8tq+fbtu\ngzt37gghfvzxR21ZXAgxefJk7et79+7l5OT4+vpqFwpJBg8ePHjwYCGE8T0bCM+Yq8vLy8vJyene\nvbubm5vucUdHx6eeeurMmTNZWVnSHjhCCB8fH902bdu2FUIUFRUZHsLISJomkxbhmrpit6G3R0VK\npWmzWN9+pmZrr1KpTDoRwLx58yot6lVaAURTY86U3sjU1MhRDOfJstw7yHgDQs7cODSp9L6JaFI/\n0/rWHvUBWSIsjoK7Picnp/79+6elpWVnZzs5OSUkJJSXl48dO7bSxm+//Xa3bt327t2bmpqanJws\nhGjfvv2MGTNee+01I4crKCj49NNPDx06lJubq1Ao3Nzc+vTpU/uyi3ZNt5azs7MQIisr68aNG0KI\njIyMjz76qOKJubm5um917wGkEyv2rNfAmJ4NhFdV57pu3rwphNC7pZG4u7ufOXPm5s2b2oK7tE2n\nHnYCAQAAaMTMmdIbmZoaOYrhPFmWe4c6ugEBAACAhIJ7JcaNG5eSknL06NHg4OCjR4+6ubn5+/tX\n1Xj06NGjR4/Oz8//5Zdfjh8/fujQoTVr1gghDCTousur33zzzbS0tPHjx0+ZMsXb29vOzk4I8a9/\n/auWl5Cbm9u5c2fdI3l5eUKI9u3bu7i4CCH69+//4YcfVjzR1tZW9620Hlz39f3796sa1PieDYRn\n4KK0pPuQ7Ozsih9JB6XbEgAAADRZZkvpjU9NjRnFcJ4sy71DHd2AAAAAQGJl6QDqo+HDh7du3Tou\nLu7u3btnz54dM2ZMpU/VuHnz5pdffvmf//xHCNG6detBgwZFRER8/PHHQoj4+HipTbNmzYQQhYWF\nuideunRJepGTk5OWlta1a9eVK1f27NlTSnZLSkr02tfADz/8oHfk9OnTQgilUuno6Ojg4HDt2jUn\nJycXHaWlpXFxcQbWtri6ujZr1uzChQt6+7Hs3r27R48eW7duNb5nA+EZc3UuLi729vaXLl3Sq/4X\nFhb+/vvvNjY2nTp1MqYf1ADfpwPqDr9fACAjs6X0xqSmxowiMZAny3LvUHc3IGigSD8A43l6elo6\nBAANAwX3StjZ2QUFBZ07d+6rr75Sq9VjxoyptJlCoVi+fPnq1avLy8u1B6VSr3aldocOHcR/p9EX\nLlw4duyY9FparqK350lUVFRZWZlunzXw5Zdf6ha4VSrVgQMHWrVqNXLkSCHEK6+8cuPGjS+++EL3\nlPDw8A8++MDA5uZWVlajR49+8ODB1q1btQfVanVUVFRJScmgQYOM79lweBKFQqFWq6sKZtq0aY8e\nPVq1apV2ojQazccff3zv3r2XX35Z+0xXyEupVPIQUaCOKJXKxMRES0cBAI2H2VJ6YURqaswoEgN5\nsvH3DgYS6bq7AUEDRXoPGC8kJCQ8PNzSUQBoAKhLVm7cuHHffPPNli1bevbs6eXlVWkbNze3wYMH\nnzx5Mjg4+C9/+YuDg8OtW7e+/vprIcSoUaOkNkFBQVu2bNm2bdvNmzf9/f2vXLmyZ8+efv36paam\nCiE6d+7crl27s2fPLlmypF+/frm5uSkpKefPn3d0dLxz586+ffsmTpxYs/jt7OwmTZr00ksvdenS\n5erVqwcPHnzw4ME777zj4OAghPjrX//6/fffr1y58syZM3379i0qKkpOTj59+vSgQYP69u1roNv5\n8+cfP3588+bNV65c6devX2ZmZnx8fFZW1pQpU7p162Z8z4bDkzg7O1+9enXR8reMBAAAIABJREFU\nokVt27ZdunSpXiQzZ848duzYgQMHVCrViBEjrKysEhISfvjhB3d397lz59Zs0gAAANCYmCelF0ak\npsaMIjGQJ7du3drIewcDiXTd3YAAAABAQsG9ck8//bSnp2dmZmZVz1aSrF+//sMPP/zuu+/Onj0r\nHfHy8lq9evWLL74ovfX29l6xYsXKlStjYmJiYmIcHR0XL17cunVrKTu3trbevHnz3//+9wMHDhw4\ncMDa2trPz+/QoUMxMTGbNm1asWJFjfPdVatW7d27d9euXdLaFnd3908++SQoKEj61N7ePiYmZvny\n5QkJCQkJCUKIZs2aTZs27a233rKyMvSlB2dn5++///69995LTEyU1vi0aNFi3rx5M2fONKlnw+FJ\nFi5c+OGHH8bGxgohKhbcW7VqdfDgwQ8++CA2Nvann36SjowZM2bZsmWtW7eu2aQBAACgMTFPSi+M\nS02rHUViIE82/t7BQCJddzcgAAAAkCg0Go2lY2jwiouLb9269fDhw/bt20tfONVTXl5+48YNhULR\nsWPHip9qNJqsrKz8/HwvLy9pF0UhxLVr1xwcHNq0aWNqMBEREV9//XVMTEz37t3z8/OvXbvm5uam\n++xTvaGvXbumVqs9PDykvSmNpFarMzIy7Ozs3NzcrK2tje/ZpPCMdOPGDbVa3alTp0r35awBb2/v\nixcvytIVmogdO0RysoiOtlwEoaFCqRT17+uNkZFCiHoYF4DGjL/jqJlapvRahlNTA6MYmSfLcu8g\nSyf8rqGes3yKrscsmbFKJby8BGUeoFL85YLZsMJdBnZ2doYfNWNlZWXgMZ4KhcLd3V3vYKXtow0m\nC7179/b19dU90rp1ax8fHwOnKBSKmj30w9ra+oknnqhlz9WGZyQPD4/adwLUkkolkpIsNrpSJYQQ\nKssFUBWVSvAgLgBAg1DLlF7LcGpa7SgSA3my8fcOBsjSCVD/WTZF12OejF3nGRAAAIuh4N6QXL16\n1cCnPC8bsJSAAJGc/L9rVixCKcKFSqgsF4ABr75q6QgAAADQ9Fg8RdejFK8KYY6MPSSkzocAABhG\nwb0hWb58uaVDAFAJpdLiX1ZVWnZ4AAAAoF6pBym6HqWlAwAAmAl7uAP62NULAICGi7/jgHnwuwYA\naFj4ywWzsbJ0AAAAAAAAAAAANAYU3AEAAAAAAAAAkAEFdwAAAAAAAAAAZEDBHQAAAAAAAAAAGVBw\nBwAAAAAAAABABhTcAQAAAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAAAAAZUHAHAAAAAAAAAEAG\nFNwBAAAAAAAAAJABBXcAAAAAAAAAAGRAwR0AAAAAAAAAABlQcAcAAAAAAAAAQAYU3AEAAAAAAAAA\nkAEFdwAAAAAAAAAAZEDBHQAAAAAAAAAAGVBwBwAAAAAAAABABhTcAQAAAAAAAACQgY2lAwCAhicp\nSURGWjKAAJGUJALqepTwcBFQ54MAAAAAdS40VKhUlhlaKVRCCJVQmn/o6GihtMCwANDUUXAHAJNJ\nyXp4uMUCCBg6dEh0Rp2mz5GRFrsnAQAAAGSkUokdO0RiomVGD4gMTQoIF0OUZh43MlIkJYmQEDMP\nCwCg4A4ANaJUWnj1d0CAqNNVMjt31mHnAAAAgDlZMnuPFAFDRN1/PVUf+TwAWAp7uAMAAAAAAAAA\nIAMK7g3GqlWrunbteu7cOe2R27dv5+TkGGjQaOhdaW004lmqnGU3GgcAAECNhISEdO3a9dGjR8KI\nG4EGj5QVQKPBP2gAKLg3IBqNRqPR6B4JDAwMDQ010KDR0LvS2mjEs1S5iAhLRwAAAACT6Wat1d4I\nNHikrAAaDf5BA0DBvQGZMWPGoUOHunXrVuMGgKm8vLwsHQJQH+3YsSOSpSsAAHMhz0cthYaGJiUl\nWToKoMGLjIzcsWOHpaMA0ABQcDfWo0ePiouLDTQoKSkx3EDqxJjl1QUFBRWbOTs7d+vWrUWLFlWd\nVW0Dw4GVl5fX4ETt6dVeuzHzI6q49mqVlpbWbDgYoFKpLB0CUE9lZmZaOgQAQP1y7969goKCWnZS\nUFBQaQZrap5vZCZcMYVGY0ViD8iCXyUARqLgXg21Wv3JJ5+MHDnSz8+vV69eQ4cOjYqKKikp0TYo\nLy+PiooaO3asr6+vr6/vqFGjNm7cqFardTspKSlZvXr1qFGjnn766T59+rz11lsPHz4cOXLku+++\nKzVYuXJlYGBgaWnp+vXrX3jhBT8/P19f37CwsOzsbG0nW7duDQwM/P3334UQc+bMCQwMLC4uzsjI\nCAwMHDFihF4D6XVMTIze5YSFhQUFBWlvBjQazbZt20aOHPn0008/++yzs2fPTk1NlXFyjJkfw9de\n6ZUKIZYsWTJq1CghRGxs7PTp0/39/Y3/cQAAAACySE9Pf+ONN3r27NmnTx8/P78BAwZ8/PHH2oUs\nUqL7559/6p6yf//+wMDAlJQU7ZGioqIVK1YEBgZKmfCrr74qpfRa1d4ISKrNhCum0NK4J0+e1Luu\nZcuWBQYG8h+YAQAAasDG0gHUa8XFxaGhoT/99FPnzp0nT55cXFycmJi4Zs2a9PT0tWvXKhSKsrKy\n11577dSpU+7u7lOmTLGyskpOTt60aVNaWlp0dLS0COXhw4ezZ88+ffp09+7dQ0JC7t+/n5SU9Prr\nr2dkZLi5uUkD5eTkZGZmLl++PD4+/rnnngsICDh27Njx48dzc3P37t0rtbl7925mZqa0VqVDhw6l\npaXXr1+3tbXt1KmTlZWVXoMBAwasXbv24MGD48aN017OrVu3Tpw4MXjwYHt7eyFEeXn57Nmzk5OT\nfX19X3/99dzc3KNHj6ampm7YsGHYsGG1nxwhhDHzY/jaK71SIcTt27evXbv2448/Llq0SKPRdOzY\n0cjhAAAAAFlcuXJl+vTpxcXFzzzzTM+ePYuKimJjY7ds2dK8efM5c+aI/5folpWV6Z714MGDzMzM\nhw8fSm8LCgqCg4PT09O7dOny6quvFhUV/fvf/w4ODnZwcNCeUu2NgDAuE66YQg8cOHDXrl379+8f\nPHiwdriCgoJvv/22c+fOnp6edTyFAAAAjRAFd0N27979008/BQUFffTRRzY2NkKI4uLiESNGHDly\nZPr06b179969e/epU6cGDhy4cePGli1bCiEWLVq0cOHChISE6OjosLAwIcSXX355+vTpiRMnvv/+\n+1JCnJWVNXXqVL3MWwiRlpZ2+PBhJycnIcTbb789fPjwX3755fLly126dNFrGR4eLoTo1auXh4dH\nVFRUxch9fHy6dOly9uzZnJwcR0dH6WBCQoJGoxkzZoz0du/evcnJyXPmzFmwYIF0ZO7cuZMnT160\naFFaWlq15elqJ0dqU+38GL52A1daWlq6YMGCkJCQefPmSdEaPxwAAABQS3v27MnPz3/rrbdmzZol\nHZk6derzzz+fmpoqFdyNsWPHjvT09JEjR65evdra2loI8ejRozfffLPiqnNJVemxkZmwXgpdXl7u\n5uaWlJRUUFAgLcoRQhw/fry4uHj8+PE1mRQAAIAmjy1lDImKirKxsXn33XelgrIQws7OLjIycuzY\nsffu3RNCfP7557a2tsuXL5eSWqlBREREixYtoqKi1Gq1RqP54osvWrZsuXjxYu3yEzc3t5kzZ1Yc\nLiwsTKo4CyGsrKxefPFFIURWVlbNgh87dmx5eXl8fLz2yNGjR+3t7Z977jnp7ZYtW1xcXObNm6dt\n4OrqOn/+/IcPH8bGxlbbf7WTI4yYn9pcu1qt9vf3X7x4sfa/DRg/XLW8K7Nx40bje7CAyEihUOj/\nT4hKDhr9sEeVSqWoWsX2Bho3yvaNXmhoaL2a8PrWHoBlbdy4sdK/15aOC03Ik08+OXv27ODgYO0R\nR0dHW1vbnJwc4zvZuXOnra3tkiVLpGq7EKJFixYRERHat0YyMhPWS6GtrKwmTJhQXFyse9dw5MiR\nZs2ajR49utpBa5Iz10HKCmMMHTq0XuVRZm7v5eVl+pw1BuTz8rbXf2Iq/6DVV2SJsDhWuFfp3r17\nOTk5vr6+2hXiksGDB0vfuMzLy8vJyenevbt2ZxiJo6PjU089debMmaysLDs7u+zsbH9//zZt2ui2\n6du3b8URfXx8dN+2bdtWCFFUVFSz+MeMGbNu3bq4uLipU6cKIbKzs3/++edx48Y1b95cCHH//v0/\n//zTy8tr+/btumfduXNHCPHjjz8aXtJS7eQI4+ZH2gpG1PTaJ0+erH1t0nDVunjxopEt65HwcBEe\nrn9QoRCmP4RWS6lUZmRkGN/e1AfeNvT2jV50dHRISLTx7evbD4j/AwCN27x583TXDWhxNwWzmTRp\nkvTi+vXrly9fvnz5cmxsrElPIs3Ozn7w4IGvr2/79u11j7u7uz/55JMXLlwwsh+TMmHdFFoIMWHC\nhM2bN3/33XdS/n///v20tLTAwMDHHnus2nFrkjPXQcoKYyQmJgYEBBjfvr7lXbVsr1KJoUNN6qCR\nIJ+Xt31ISMh/vecftPqKLBEWR8G9Sjdu3BBCaJddV3Tz5k0hhF5SK3F3dz9z5szNmzdbtWolhGjX\nrp1eA736u0T7LU5dNS4AOTk59e/fPy0tLTs728nJKSEhoby8fOzYsdKn0tVlZGR89NFHFc/Nzc01\n3Hm1kyOMmx9t3l+za/fw8KjZcAAAAEAtFRQUfPrpp4cOHcrNzVUoFG5ubn369FGpVMb3ID1PtdKk\n2tnZ2fiCu0mZsG4KLYRwcXEZMmRIUlLS7du3XVxc4uPjy8rK2E8GAACgxii4V0laZH3//v2qGkiZ\ncXZ2dsWPpIPOzs7ScvK7d+/qNbh9+7aMoVZl3LhxKSkpR48eDQ4OPnr0qJubm7+/v/SRi4uLEKJ/\n//4ffvhhxRNtbW0N91zt5Ajj5seoy6guDLMNBwAAAGi9+eabaWlp48ePnzJlire3t52dnRDiX//6\nl+GzdL/EKSWoFW8WhBB5eXnGR2JSJqybQksmTZp04sSJw4cP//Wvf42NjXVzc+vfv7/xowMAAEAX\ne7hXydXVtVmzZhcuXNDb2GT37t09evTYunWri4uLvb39pUuX9OrOhYWFv//+u42NTadOnVxdXVu2\nbPnrr7/m5+frtklMTDTDJQwfPrx169ZxcXF37949e/bsmDFjtNuQOTo6Ojg4XLt2zcnJyUVHaWlp\nXFxctQtzqp0cIYQx8yPjxZp5OAAAADRlOTk5aWlpXbt2XblyZc+ePaVqe0lJSWFhobZNs2bNhBC6\nR4QQly5d0r52dna2t7dPT09/8OCBbpu8vDyTdmupZSY8ePBgV1fX77//Picn5/Tp0+PGjdM+fQoA\nAACmIpGqkpWV1ejRox88eCCVjyVqtToqKqqkpGTQoEFCiGnTpj169GjVqlXl5eVSA41G8/HHH9+7\nd+/ll1+2sbFRKBSvvPJKcXHxunXrtJ1cvnx5165dtY9QoVAYfhConZ1dUFDQuXPnvvrqK7VaPWbM\nGN1PX3nllRs3bnzxxRe6B8PDwz/44INqN083ZnKEEfMj15XKOxy0lEqlpUMA6iNPT09LhwAAsDBp\nBbrevohRUVFlZWXaXLRDhw5CCN3nkV64cOHYsWPat9LNQmFh4bp167S7KWo0mnXr1hUXFxsYvWJ6\nXJtM2NraesKECRcuXNi0aVN5eflLL71U3dWjgSGrB2TBrxIAI1GCNGT+/PnHjx/fvHnzlStX+vXr\nl5mZGR8fn5WVNWXKlG7dugkhZs6ceezYsQMHDqhUqhEjRlhZWSUkJPzwww/u7u5z586VOpk5c2Zi\nYuLu3bsvXLjQp0+fmzdvJiUlDRkyRDfzrhlnZ+erV68uWrSobdu2S5curbTNuHHjvvnmmy1btvTs\n2VPvyex//etfv//++5UrV545c6Zv375FRUXJycmnT58eNGhQpc90NXVyhHHzI9eVyjgcJEql0jxf\nxQAaHP3HJQEAmp7OnTu3a9fu7NmzS5Ys6devX25ubkpKyvnz5x0dHe/cubNv376JEycGBQVt2bJl\n27ZtN2/e9Pf3v3Llyp49e/r165eamqrt5/XXX4+Pj//6669VKtWwYcM0Gk1iYuLPP//s5ORU6RYx\nkorpcS0z4fHjx3/66adff/1137599TZ5RyMQHW3CYzMBVCW84iNSAaAyFNwNcXZ2/v777997773E\nxESpPt6iRYt58+bNnDlTatCqVauDBw9+8MEHsbGxP/30k3RkzJgxy5Yta926tdTmscce27dv36pV\nq1JSUrZs2eLi4jJq1KiFCxcePny40ieFGm/hwoUffvhhbGysEKKqMvTTTz/t6emZmZmpfVyqlr29\nfUxMzPLlyxMSEhISEoQQzZo1mzZt2ltvvWXMd0irnRxh3PzIdaUyDteoRERYOgIAAIBGyNraevPm\nzX//+98PHDhw4MABa2trPz+/Q4cOxcTEbNq0acWKFRMnTvT29l6xYsXKlStjYmJiYmIcHR0XL17c\nunVr3YJ7mzZt9u/fv2zZsuTk5FOnTgkhXF1do6KiNm3aZKDgXjE9rmUm7OrqOmjQoKSkpAkTJtR+\nckxGygqg0eAfNABCKLRfXYQBarU6IyPDzs7Ozc3N2tq60jY3btxQq9WdOnXS7pNeUWFhYcuWLYUQ\nf/zxx5gxY2bNmvXWW2/VVdBG02g0165dU6vVHh4e0kaTJjFmcoRx8yOj2gzn7e1t0qaZaIJ27BDJ\nycKSS4UUCpGRIeryK42hoWLIEMFKbgANDn/HYU4ajSYrKys/P9/Ly0vaxl0Ice3aNQcHhzZt2khv\ny8vLb9y4oVAoOnbsaKArKalu27Zt+/btaxlVzTLh4ODgP/74IyUlpXnz5sa053cNDYhKJYYOFRkZ\nFhp+6FARHi4CAsw8LPk8oIe/XDAbVrgbxdra+oknnjDcpqqvXq5cufLs2bNbt251dHSUqu1CiN27\ndwshevToIW+cNaNQKCruR2z4W4e9e/f29fWVXhszOaLq+akjfBMWAAAAdU2hULi7u+sd1HtCqZWV\nleFnlkqMTKqNUYNM+PLly6dPn542bZqR1XYAAABUhYJ7nfP29t65c+fcuXP/9re/eXt737p1KyYm\nZu/evT4+PsOHD7d0dFW6evWqgU95YCCgUomkJIuNHiBEUpIQyjocQqUSQ4bUYf8AAKA+SE1NLS4u\n3rRpk7W1NQ8pQeNmqexdqRJCJVRmH518HgAshYJ7nRs/fvzdu3e3bNkyffp07cFhw4aFh4ebZ3OV\nmlm+fLmlQwDqr4AAkZwsIiMtFkByQGLSTmVdj1KXO9YAAIB6YcOGDefPn7e2tl6yZInhTW+ABi0g\nwGLZe4AyPGlngEWGJp8HAItgD3dAH7t6AQDQcPF3HDAPftcAAA0Lf7lgNlaWDgAAAAAAAAAAgMaA\ngjsAAAAAAAAAADKg4A4AAAAAAAAAgAwouAMAAAAAAAAAIAMK7gAAAAAAAAAAyICCOwAAAAAAAAAA\nMqDgDgAAAAAAAACADCi4AwAAAAAAAAAgAwruAAAAAAAAAADIgII7AAAAAAAAAAAyoOAOAAAAAAAA\nAIAMKLgDAAAAAAAAACADCu4AAAAAAAAAAMiAgjsAAAAAAAAAADKg4A4AAAAAAAAAgAwouAMAAAAA\nAAAAIAMK7gAAAAAAAAAAyICCOwAAAAAAAAAAMqDgDgAAAAAAAACADGwsHQAANGk7dojISNNOUQpV\ngEjaIULkiiE6WgQEyNUZAAAAUE8lJYnQULOOGCJ2yJi3GyMgQERHm3NAAIA+Cu4AYEnJySIkRAwZ\nYsIpyuQksWPnkOgQWQKIjBQqlSw9AQAAAPWalPeasx4dMDR0SGKI+cYT5v4vCgCAiii4A4CFeXqa\nuMBcJYRSKE06pWo7d8rTDwAAAFD/KZXm/nKnOYdjJQ0A1Afs4Q4AAAAAAAAAgAwouMMCQkJCunbt\n+ujRIyHEqlWrunbteu7cOe2nt2/fzsnJsVx0ABoyU3fEb6CayGUCAKqmm1EDAMyNhBxA1Si4wwI0\nGo1Go6n4WhIYGBjKtnMAaiYiwtIRmEUTuUwAQNUqZtEAAPMhIQdQNQrusLAZM2YcOnSoW7dulg4E\nDVhoaOiOHTssHQVkoFKpvLy8LB0FAABAQzJ06NCkpCRLRwGYQ1JSEvcLAOo/Cu6o3r179woKCmrZ\nSUFBQXFxccXjzs7O3bp1a9GihZH9lJSUVNqPntLSUtPiAwAAAOq3qjJqPQ8fPtQ7UlJSUu3mMwUF\nBSyZBwAAqD0K7qhSenr6G2+80bNnzz59+vj5+Q0YMODjjz8uLy+XPl25cmVgYOCff/6pe8r+/fsD\nAwNTUlK0R4qKilasWBEYGOjn5+fr6/vqq6/+/vvvuqds3bo1MDBQOjhnzpzAwMDi4uKMjIzAwMAR\nI0Zom5WXl0dFRY0dO9bX19fX13fUqFEbN25Uq9XaBkuWLBk1apQQIjY2dvr06f7+/tK4J0+e1Luu\nZcuWBQYGZmZmyjNNAAAAQF2qNqOWMvOSkpK1a9cOHz786aefHjRo0KeffiqE+PXXX4ODg5955pne\nvXsPHz78yJEjemeVlpauX7/+hRdekDoPCwvLzs429xUCAAA0IjaWDgD11JUrV6ZPn15cXPzMM8/0\n7NmzqKgoNjZ2y5YtzZs3nzNnjhAiJycnMzOzrKxM96wHDx5kZmZq19QUFBQEBwenp6d36dLl1Vdf\nLSoq+ve//x0cHOzg4KA95e7du5mZmdJSnQ4dOpSWll6/ft3W1rZTp05WVv/7H4TKyspee+21U6dO\nubu7T5kyxcrKKjk5edOmTWlpadHR0dLq+Nu3b1+7du3HH39ctGiRRqPp2LHjwIEDd+3atX///sGD\nB2uHKygo+Pbbbzt37uzp6VnHUwgAAADUljEZtZSZL1y48Pz588OGDWvevPl33323fv36goKCPXv2\ntG7desqUKffv3//+++//53/+R6lU+vj4aM9avnx5fHz8c889FxAQcOzYsePHj+fm5u7du9dyVwwA\nANCwUXBH5fbs2ZOfn//WW2/NmjVLOjJ16tTnn38+NTVVKrgbY8eOHenp6SNHjly9erW1tbUQ4tGj\nR2+++WbFVeeS8PBwIUSvXr08PDyioqK0x3fv3n3q1KmBAwdu3LixZcuWQohFixYtXLgwISEhOjo6\nLCxMalZaWrpgwYKQkJB58+a1aNGivLzczc0tKSmpoKDA3t5eanP8+PHi4uLx48fXZFJQj2VmZqpU\nqqo+VSqVekcMNLZIe8syOHlNbjYAAKhXjM+oMzIyvvvuO6kQHxQUNGnSpG3bts2YMeN//ud/pIUs\nnp6e69evT0tLkwrukrS0tMOHDzs5OQkh3n777eHDh//yyy+XL1/u0qWL+S4StaZSqRp0MmzG9vof\nNUqN+P8MANAgUHBH5Z588snZs2cHBwdrjzg6Otra2ubk5Bjfyc6dO21tbZcsWSLdGwghWrRoERER\n8fzzz+vuBlOtzz//3NbWdvny5VK1XQhhZ2cXERGRmpoaFRU1a9YsqX+1Wu3v77948WKpjZWV1YQJ\nEzZs2BAfH6+tsB85cqRZs2ajR482PKK3t3fFg3Pnzp03b57xYcOcIiIiIqp+THzFDUkNP2nH/O0t\nKyIiMiJiR1Wf1t/ZiIwUlf7QFQr9IxERIjy8hqNYXBO5TMB0Gzdu3LRpk6WjAOqc8Rn1ggULtMve\ne/Xq1axZs9LS0qlTp2q/NvrMM88IIfR2jAkLC5Oq7UIIKyurF198cevWrVlZWcYU3MmZ64/Q0FAD\nn9b/ZNiM7UMCAqINnNsIqFQqA/PToH5YlUhMTDTwaV0hIW9oyBJhcRTcUblJkyZJL65fv3758uXL\nly/Hxsaa9CTS7OzsBw8e+Pr6tm/fXve4u7v7k08+eeHCBSP7ycvLy8nJ6d69u5ubm+5xR0fHp556\n6syZM1lZWR07dpQOTp48WbfNhAkTNm/e/N1330kF9/v376elpQUGBj722GOGB7148aKR4aGeiI6O\nDgkJMb69qUXeum5vWdHR0SEhJtx41JfZCA+vJJ1VKESDmvzqNZHLBEw3b968Sot6lVYAgQbKpIxa\n7//8zZs379Chg4eHh/aInZ1dxSF0V7sLIdq2bSuEKCoqMiY8cub6IzExMSAgwPj29S0ZNlv7HTvE\nzp0mndrwKJXKjAwT5qfe/rAqlZSUZFJv8iAhb2jIEmFxPDQVlSsoKFi9enX//v2HDx8eFha2d+/e\n7t27N2/e3PgepOepatfL6HJ2dja+n5s3bwoh9KrtEnd3d20Die4dhRDCxcVlyJAhp0+fvn37thAi\nPj6+rKyM/WQAAADQIJiUUSsqrLXUrm03QLv1oq6GtXQAAACgXqHgjsq9+eab27ZtCwgI2Ldv3/nz\n50+cOPHBBx80a9bM8Fm6a2Gke4C7d+9WbJaXl2d8JNINht5XXyXSQd2bDWlJjq5JkyaVl5cfPnxY\nCBEbG+vm5ta/f3/jRwcAAAAsRa6MGgAAAGZDwR2VyMnJSUtL69q168qVK3v27Cl9+bSkpKSwsFDb\nRiq+6x4RQly6dEn72tnZ2d7ePj09/cGDB7pt8vLyTPryqYuLi729/aVLl+7fv697vLCw8Pfff7ex\nsenUqZOB0wcPHuzq6vr999/n5OScPn163Lhxxqz0AQAAACxOrowaAAAAZkPlEZWQ1svofb00Kiqq\nrKysvLxcetuhQwchRHx8vLbBhQsXjh07pn2rUCheeeWVwsLCdevWab+UqtFo1q1bV1xcbGB0hUKh\n9wCoadOmPXr0aNWqVdrRNRrNxx9/fO/evZdfftnGxtCjCKytrSdMmHDhwoVNmzaVl5e/9NJL1V09\nGh6lUlnx6fZooEzafhQAgMatxhk1mhSSYTQp3C8AqP94aCoq0blz53bt2p09e3bJkiX9+vXLzc1N\nSUk5f/68o6PjnTt39u3bN3HixKCgoC1btmzbtu3mzZv+/v5XrlzZs2d1F7K1AAAgAElEQVRPv379\nUlNTtf28/vrr8fHxX3/9tUqlGjZsmEajSUxM/Pnnn52cnCrdIkbi7Ox89erVRYsWtW3bdunSpUKI\nmTNnHjt27MCBAyqVasSIEVZWVgkJCT/88IO7u/vcuXOrvZzx48d/+umnX3/9dd++ffU2eUfjEM6D\n4BsLpVIZHW3C41sBAGj0apZRo0khfULTERAQQMEdQP3HCndUwtraevPmzUql8sCBA4sWLVq9enVJ\nScmhQ4emTJlSVFS0YsUKIYS3t/eKFSusra1jYmKWLFny3XffLV68eNy4cbr9tGnTZv/+/SNGjPjl\nl19WrFixcuVKlUoVFRX1+OOPGxh94cKFrq6usbGxX331lXSkVatWBw8enDx58qVLl1asWLF8+fL/\n/Oc/Y8aM+fbbbx0cHKq9HFdX10GDBgkhJkyYUPNJAdAgRERYOgKzaCKXCQCoaUYNAKhbJOQAqqbg\nAfSoikajycrKys/P9/LykrZxF0Jcu3bNwcGhTZs20tvy8vIbN24oFIqOHTsa6EqtVmdkZLRt27Z9\n+/a1jOrGjRtqtbpTp04KhcL4s4KDg//444+UlJTmzZtX29jb25s9MWE2oaFiyBAREmLKOTt2iJ07\nRWKixQIAgHqMv+OAefC7hoZI1jzaOAqFMGPVRaUSQ4eKjAyzDQg0JPzlgtmwpQyqpFAo3N3d9Q7q\nPaHUysrK8DNLJdbW1k888YQsUdVgT5jLly+fPn162rRpxlTbAQAAAAAAAKBmKLijMUtNTS0uLt60\naZO1tXUIK3hRXyUnm9ZemSwChNixQ57RVSoxZIg8XQEAAAD1n1yJtDFCzDtcZqb5xgIAVIWCOxqz\nDRs2nD9/3traesmSJYY3vQEsJTxcREaaVnPPFAE7lSHCxDJ9VZRKoVTK0xUAAABQnwUEiMxMk9e7\n1EZmSIbKjMMJIcLDzTocAKAiCu5ozL755htLhwBUQ6kU0dEmn1QHgQAAAACNnFJp/nq00szjAQAs\nzsrSAQAAAAAAAAAA0BhQcAcAAAAAAAAAQAYU3AEAAAAAAAAAkAEFdwAAAAAAAAAAZEDBHQAAAAAA\nAAAAGVBwBwAAAAAAAABABhTcAQAAAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAAAAAZUHAHAAAA\nAAAAAEAGFNwBAAAAAAAAAJABBXcAAAAAAAAAAGRAwR0AAAAAAAAAABlQcAcAAAAAAAAAQAYU3AEA\nAAAAAAAAkAEFdwAAAAAAAAAAZEDBHQAAAAAAAAAAGVBwBwAAAAAAAABABhTcAQAAAAAAAACQgY2l\nAwCABszLq277DxE7doiQOh0iI6NOuwcAAABqIilJhIZaOoiaUgqVUqiSRIClAzFBdLQICLB0EADQ\nKFBwB4AaSkoSKlXdFqyVQyNfjQ4QSmUd9T90qFCp6q57AAAAoIaSk0VAgAgPt3QcNaJMSlLtTA6P\nDrB0IMYKDRUqlaWDAID/y96dR0VxpQ8fvw0ibhg0KIpGG88YXCYqInGJyBLT0V/AJS4YVzBRkWji\nqDEZJgaQI4lbFLfDeDCgcVzGBUcjisbQKLxJUDMxc+KGRxqixAVcQQWEfv+omZ6ebmyqm4Zm+X4O\nf9i3b916qrqUpx5v32ooKLgDgOWUyhqvViuVQtTwLgAAAIA6qBaS7ZpDGg8AjRZruAMAAAAAAAAA\nYAUU3FEXhYSE9OjR48mTJ7YOpP6LjrZ1BAAAoNFZsWJFjx49fvrppwa8x7rg1q1bBQUFupeN8yQA\nAADUNRTcURdptVqtVmvrKBqEqChbRwAAABqd2s/lGmf2qFKpQvWeKdk4TwIAAEBdQ8EdgHX4+/sn\nJSXZOgrAakJDQ7mkAcAyM2fOPHjwYM+ePW0dSOPCaa9HQkNDo/kqKgBr02g07u7uto4CAAV31BlF\nRUUlJSVVdisuLjZoKS0trXLxmaKiIub7AAAA1I727dv37NmzefPm+o1FRUVFRUXVHPn+/fvVH8RA\ncXGx6UTxyZMnFRUVVY5TVlZmvKHp/FbOyFWGp1PpaZeUlpbKybTJmQEAAKqPgjts7OnTp8uXL1ep\nVF5eXp6enjNmzPj111/1O8TGxqpUqtLS0jVr1gwfPrx///4+Pj6bN28WQvzyyy/Tpk0bMGBAv379\nhg8ffuTIEYOtysrK4uLi3nzzTWnw8PDwO3fu1PYRAgAANCBbtmxRqVTJyckG7eHh4SNHjpSq4VIf\nKakrLy/fsGGDj4+P1398+umn9+7d020opW03b97UH23fvn0qler06dPSywsXLrz//vt9+vQZOHCg\nl5fXa6+9tnbtWjlF8ErFxcWpVKrs7OzVq1cHBAT079//1VdfnTlzpkEWqtVqt27dGhgYKHUICwvL\nyMjQ7xAREREUFCSESElJmT59ure3t9ReXl6+bt26wMBALy+vvn37+vv7JyQklJaWyhxZTnhz585V\nqVQlJSU5OTkqlWrEiBEGp11SUVGRkJAwZswYT09PT0/PoKCgDRs2lJeXG5x8cmYAAAAramLrANCo\nFRUVTZs27cKFC927d58xY8bTp0//3//7f9OmTXN2dtb1KSgoyM3NXbRo0fnz5wMCApo1a3bo0KG4\nuLiioqLdu3c7OTlNmjTpwYMHhw8f/uijj5RKZe/evXVbxcTEpKamvv76635+fsePHz958mRhYeGe\nPXtsd8QAAAD122uvvbZmzZoDBw6MHTtW1/j7779/9913w4YNa9WqlRDi7t27ubm50pTqpUuX7t+/\nv1evXm+//badnV1mZubevXsvX77897//XaFQiP+kbc+ePdPfy8OHD3Nzc6WvNl69enX69OklJSUD\nBgzo06fP06dPU1JS4uPjmzVrNnfuXAsO4d69e7m5uUuXLr1w4YKPj09gYOCVK1dOnTo1efLkdevW\n+fv7CyEqKirCwsLS09M9PT1nzZpVWFh47NixjIyM9evXBwQESOPcunUrLy/vxx9/XLx4sVarfeml\nl4QQJSUloaGh586d69atW3BwcElJSVpa2qpVqy5cuLBmzRqFQlHlyHLC69ChQ1lZ2W+//ebg4NCl\nSxc7OzuD0y6EePbs2Xvvvff999936tRp0qRJdnZ26enpGzduzMzMTExMlCbCkzMDAABYHQV32FJS\nUtKFCxcCAwNXrlxpb28vhHjy5MkHH3xw6tQpg545OTmHDh2SCvEjR46cOHHi1q1bZ86c+dFHH0k3\nGF27do2Li8vMzJQK7pLMzMxvvvmmXbt2QoiPP/54+PDhP//8c3Z2dvfu3WvvIBuT3NxcjUbzvHeV\nSqVBi4nO9ae/YWO9UyfPah3qDwAw0Lt37+7du589e7agoMDFxUVqPHHihFarHT16tEHn0tLSI0eO\ndOjQYd++fVKy98EHH4SFhanV6suXL/fo0UPOHnfv3v3o0aOFCxfOmTNHapkyZcobb7yRkZFhWcFd\ncunSpcTERC8vL+llenp6eHj4smXLhg4d6uDgsGfPnvT09Llz5y5YsEDqMG/evODg4MWLF2dmZuqW\nbSkrK1uwYEFISMj8+fOlxp07d547d27kyJGrV69u0qSJEKKkpGTEiBFHjhyZPn16v379ZI5sOrzI\nyEghRN++fTt37pyQkFDpAe7cufP7778fOnTohg0bWrRoIYRYvHjxokWLTpw4kZiYGB4erutJzmwT\nGo2m8WXO5vY3bESNMnkzV1+umcbe3/QgAGoNBXfY0rZt2xwcHCIiIqQbMCFE8+bNo6Ki3njjDf3v\nugohFixYoJv23rdv36ZNm5aVlU2ZMkWqtgshBgwYIIQw+PZreHi4dOcghLCzs3vrrbe2bNmSn59f\n5c2Dh4eHceO8efPmz59v9kHWmuhoERVVSbtCYdgSFSUiI2sihKSkJBMPmczJyTFokaZo1d/+0dHR\nQiSa2KReCA0NFULzvHfr/qdQ0/0B1FkbNmzYuHGjraNopMaMGbNq1arU1NQpU6ZILceOHWvVqtXr\nr79u0NPe3r5p06b37t27du2alIApFIqlS5e+8847bdu2lbm7l19+OSwsbNq0aboWFxcXBweHgoKC\n6hxFcHCwrpwthPD19Q0KCkpOTj569OioUaPi4+NdXV31c7+OHTt++OGHERERKSkp48aNkxrLy8u9\nvb2XLFmi65aQkNCkSZNPP/1UqrYLIRwdHaOjo48cOXL//n0hhMyRTYcn5wD/+te/Ojg4xMTESNV2\nKZKoqKiMjIyEhIQ5c+boMvDGlTPXGWq1Wq1WP+/dup8j1UJ/jSYkKqpGbltQqaSkbY3qbq5h92/k\nyBJhcxTcYTN37tx5+PChp6fniy++qN/eqVOnl19++eLFi/qNBtl8s2bNOnTo0LlzZ12Lo6Oj8S70\nZ7sLIdq0aSOEePr0aZWxXb58WcYR1DGRkZWU0RUKUYtPvoqMjAwJCZHf39ziZl3rn5iYGBpq1hZ1\nUVpamlmzuuvap1DT/QHUWfPnz6+0qFdpBRDWNXr06C+//PLo0aNSwf3OnTv//Oc/x44d26xZM4Oe\n9vb248eP/+qrr8aMGfPaa68NGTLEy8urd+/e+llclSZOnCj94bfffsvOzs7Ozk5JSTF+Qqm5dCvD\n6Pj7+ycnJ1++fPnBgwc3b950d3f/6quv9Dvcvn1bCPHjjz/qyuJCiODgYN2f79+/X1BQ4OnpqZv7\nLxk2bNiwYcOEEPJHNhGenKO7d+9eQUFBr1693Nzc9NtdXFz++Mc/njlzJj8/X1oDRzS2nLnOCAkJ\niTRnEkxdy5FqoX90tFlboLoiIyNDQrgm63d/jUZDIV6QJaIOoOAOm5EejaWbTaOvffv2BgV3hdE0\nbd3cdhOkVUQNaGuxAA0AANDwtGvXbsiQIZmZmXfu3GnXrt2JEycqKirGjBlTaeePP/64Z8+ee/bs\nycjISE9PF0K8+OKLM2fOfO+992TurqioaPPmzQcPHiwsLFQoFG5ubgMHDqz+t+aNs9D27dsLIfLz\n869fvy6EyMnJWb16tfGGhYWF+i/1//NA2rDS/Fa/g5yRTYT3vMH13bhxQwhhUG2XdOrU6cyZMzdu\n3NAV3MmZAQAArIiCO2xGume4e/eu8Vv37t2r9XAAAAAg19ixY0+fPn3s2LFp06YdO3bMzc3N29v7\neZ1HjRo1atSoR48e/fzzzydPnjx48OCqVauEECZq7vrTqz/44IPMzMxx48ZNmjTJw8ND+l7jt99+\nW81DKCws7Natm36LlIK++OKLrq6uQoghQ4Z88cUXxhs6ODjov5Tmg+v/+cGDB8/bqfyRTYRn4qB0\npHq9wXKLEqlRSsUBAABgdVXPEQZqSPv27Vu1anXhwoWHDx/qt9+7d49vpwIAANRlw4cPd3JyOnr0\n6N27d8+ePTt69Gjj7yMKIW7cuLFjx45//etfQggnJycfH5+oqKi1a9cKIVJTU6U+TZs2FUI8fvxY\nf8MrV65IfygoKMjMzOzRo0dsbGyfPn2kantpaalBfwv88MMPBi1ZWVlCCKVS6eLi4uzsnJeX165d\nO1c9ZWVlR48eNTG5vmPHjk2bNr148aLBeiw7d+585ZVXtmzZIn9kE+HJOTpXV9dWrVpduXLFoPr/\n+PHjX3/9tUmTJl26dJEzDgAAAMxFwR02o1AoJk+e/Pjx4y+//FL3lVWtVvvll1+WlJTYNjZYQKlU\nyrwDBOoFLmkAMMHR0XHkyJE//fTT3/72t/Ly8tGjR1faTaFQxMTErFy5sqKiQtcolXp1M7U7dOgg\n9OrvQoiLFy8eP35c+rM0rdtgzZOEhIRnz57pj2mBHTt26Be4NRrN/v37W7ZsGRgYKISYPHny9evX\nv/76a/1NIiMjP//8cxOLm9vZ2Y0aNerhw4dbtmzRNZaXlyckJJSWlvr4+Mgf2XR4EoVCUV5e/rxg\npk6d+uTJkxUrVuhOlFarXbt27f3799955x3dM11hE0qlsmvXrraOAkAD5OfnZ+sQALCkDGxq1qxZ\nqampu3bt0mg0AQEBWq02LS3tn//8Z7t27Sr9AizqssTERFuHAFiTWc8xA4BGaOzYsX//+9/j4+P7\n9Onj7u5eaR83N7dhw4adOnVq2rRp//d//+fs7Pz777/v2rVLCBEUFCT1GTlyZHx8/NatW2/cuOHt\n7X316tXdu3cPHjw4IyNDCNGtW7e2bduePXs2IiJi8ODBhYWFp0+fPn/+vIuLy+3bt/fu3TthwgTL\n4nd0dJw4ceLbb7/dvXv3a9euHThw4OHDh5988omzs7MQ4t133z18+HBsbOyZM2cGDRr09OnT9PT0\nrKwsHx+fQYMGmRj2ww8/PHny5KZNm65evTp48ODc3NzU1NT8/PxJkyb17NlT/simw5O0b9/+2rVr\nixcvbtOmzV/+8heDSGbPnn38+PH9+/drNJoRI0bY2dmdOHHihx9+6NSp07x58yw7abAW0gwANUGp\nVHJjDtQFFNxhS61bt963b9/SpUvT09O///57IUTHjh0TEhI2btxIwd06oqJsHQEAAGiY+vfv37Vr\n19zc3Oc9LlUSFxf3xRdfHDp06OzZs1KLu7v7ypUr33rrLemlh4fH8uXLY2Njk5OTk5OTXVxclixZ\n4uTkJBXc7e3tN23a9Oc//3n//v379++3t7f38vI6ePBgcnLyxo0bly9fbnHBfcWKFXv27Nm+fbs0\nSbxTp07r1q0bOXKk9G6rVq2Sk5NjYmJOnDhx4sQJIUTTpk2nTp26cOFCOztT3xJu37794cOHP/vs\ns7S0NGnafvPmzefPnz979myzRjYdnmTRokVffPFFSkqKEMK44N6yZcsDBw58/vnnKSkp586dk1pG\njx69dOlSJycny04aAAAAqqTg6fOAAQ8PDxaRhxxqtQgNFTk5NbkPd3eRliZqbGGTGh4eAGyA3+N1\nU0lJye+//15cXPziiy9Ka8gYqKiouH79ukKheOmll4zf1Wq1+fn5jx49cnd3l5ZxF0Lk5eU5Ozu3\nbt3a3GCioqJ27dqVnJzcq1evR48e5eXlubm56T/71GDXeXl55eXlnTt3lpabl6m8vDwnJ8fR0dHN\nzc3e3l7+yGaFJ9P169fLy8u7dOlS6VL7luHvGmpadLQQQtTXLwMkJYn0dFF/5hr7+4sZM0RIiK3j\nAGoSv7lQa5jhDgAAAKBmOTo6mn4whp2dnYnHeCoUik6dOhk0Vtrf9Ffp+/Xr5+npqd/i5OTUu3dv\nE5soFArL1tq2t7f/wx/+UM2RqwxPps6dO1d/EAAAAMhBwR0AqiUpqQYHDxEiaZsQPFILAAB5rl27\nZuJdHlMJ1C8aTc0m2zVHmS6UGqFOsnUcsuk9pBkAUF0U3AHAQkqliIwU6ek1uItcvzSNRik0NTV+\nSAjryQAAGpSYmBhbhwDAOmbMENHRNZts15xc4bdNGSLqT/B+fqwnAwBWwxrugCFW9QIAoP7i9zhQ\nO/i7BgCoX/jNhVpjZ+sAAAAAAAAAAABoCCi4AwAAAAAAAABgBRTcAQAAAAAAAACwAgruAAAAAAAA\nAABYAQV3AAAAAAAAAACsgII7AAAAAAAAAABWQMEdAAAAAAAAAAAroOAOAAAAAAAAAIAVUHAHAAAA\nAAAAAMAKKLgDAAAAAAAAAGAFFNwBAAAAAAAAALACCu4AAAAAAAAAAFgBBXcAAAAAAAAAAKyAgjsA\nAAAAAAAAAFZAwR0AAAAAAAAAACug4A4AAAAAAAAAgBVQcAcAAAAAAAAAwAoouAMAAAAAAAAAYAUU\n3AEAAAAAAAAAsAIK7gBQU9RqoVBY+OOu0IQqkizevJIB3YVabeszAgAAANQ91cnbdT/Rimhrpe5J\nSbY+IwCAamhi6wAAoMFKTxchISIy0pJtlRqNJnRbZFqItYKJjhYajbUGAwAAABoOjUb4+YnERMtH\nUAqNxj1pRo5Fqf//Uqv/fR8BAKinKLgDQA1SKoVSadGWGqFUCmHZtgAAAADMYXneLiF7BwD8B0vK\nAAAAAAAAAABgBRTcG7UVK1b06NHjp59+snUgAGA90dG2jgAALHTr1q2CggJzt4qKiurRo8fFixdN\n9KmPWd+iRYt69Ohx48aN53Ww+kHVx7MEAPUGWTqARoOCe6Om1Wq1Wq2towCsScM65fWQlT+1qChr\njgYAtUilUoWGhlqwYZVJXX3M+rT/YbqD1fdoxQGBRohsHJJKrgSydACNBgV3AA1KdHR0NFMn6hWN\nRuPu7m7rKACggZs5c+bBgwd79uxp60CsqUEeFFDf+fv7q9VqW0cB2+O+DEBjRsEdlbt//35RUZHp\nPkVFRaYnAT158qT6s4TkRCJnR0+ePKmoqKhmMAAAAKbJSV0sU1paWlJSUmW34uJi47yoffv2PXv2\nbN68uWXDykzqysrKDFrknI1KAzZQUVFx//59g24mDurJkyemD6omPqbi4mKDltLS0idPnpjYRE6C\nasGwMi8V488LAAAA1UfBHf/jwoUL77//fp8+fQYOHOjl5fXaa6+tXbtWdxsQGxurUqnKysri4uLe\nfPNNLy8vT0/P8PDwO3fu6A9SWlq6cuXKoKCg/v37Dxw4cOHChcXFxYGBgZ9++qn+ODdv3tTfat++\nfSqV6vTp03IikbkjIYRWq926dWtgYGD//v1fffXVsLCwjIwMq583AADQyMlJokwkP3PnzlWpVCUl\nJTk5OSqVasSIEbpuFRUVCQkJY8aM8fT09PT0DAoK2rBhQ3l5uUEAWq129erVAQEBUs4zc+bMX3/9\nVffuli1bVCqVfoucYavMtSIiIoKCgoQQKSkp06dP9/b2lnM24uLiVCpVdna2iYB1iouLly1b5u3t\nPXDgQIPM0/igysvL161bFxgY6OXl1bdvX39//4SEhNLSUpkfk7mkj7W0tHTNmjXDhw/v37+/j4/P\n5s2bhRC//PLLtGnTBgwY0K9fv+HDhx85ckR/Q9MJqsXDVvmZGn9ey5cvV6lUp06dMji0pUuXqlSq\n3Nxcy84MAABAY9bE1gGgDrl69er06dNLSkoGDBjQp0+fp0+fpqSkxMfHN2vWbO7cuUKIgoKC3Nzc\nmJiY1NTU119/3c/P7/jx4ydPniwsLNyzZ480SHFxcVhYWFZWVq9evUJCQh48eKBWq2fNmpWTk+Pm\n5ib1kcZ59uyZ/t4fPnyYm5srTeGpMhKZO6qoqAgLC0tPT/f09Jw1a1ZhYeGxY8cyMjLWr18fEBBQ\nO2cVAAA0eDKTKBPJT4cOHcrKyn777TcHB4cuXbrY2f17WsyzZ8/ee++977//vlOnTpMmTbKzs0tP\nT9+4cWNmZmZiYqL+5O6YmJgLFy74+PgEBgZeuXLl1KlTkydPXrdunb+/vxDi7t27ubm5ulnPcoaV\nk2vdunUrLy/vxx9/XLx4sVarfemll+ScjXv37uXm5i5dutREwDqfffaZRqN58803nZycDDJPg4Mq\nKSkJDQ09d+5ct27dgoODS0pK0tLSVq1adeHChTVr1igUCjkZplmkj3XRokXnz58PCAho1qzZoUOH\n4uLiioqKdu/e7eTkNGnSpAcPHhw+fPijjz5SKpW9e/cWMhJUy4aV85kaf15Dhw7dvn37vn37hg0b\npjuuoqKif/zjH926devatasFpwUAAKCRo+CO/9q9e/ejR48WLlw4Z84cqWXKlClvvPFGRkaG/k1I\nZmbmN998065dOyHExx9/PHz48J9//jk7O7t79+5CiB07dmRlZU2YMGHZsmXSvWJ+fv6UKVMM7jCr\nH4mcHe3Zsyc9PX3u3LkLFiyQWubNmxccHLx48eLMzMxKv4CMBkCj0ZhYONLPz8+gxfQqk9XvX3fk\n5mrUas3z3q39MyP158laABoAmUmUCZGRkUKIvn37du7cOSEhQde+c+fO77//fujQoRs2bGjRooUQ\nYvHixYsWLTpx4kRiYmJ4eLiu56VLlxITE728vKSX6enp4eHhy5YtGzp0qIODg8Hu5AwrM6krKytb\nsGBBSEjI/PnzpeRK5tmQGXBBQYGJzNPgoM6dOzdy5MjVq1c3adJECFFSUjJixIgjR45Mnz69X79+\n1f+YKpWTk3Po0CFnZ2chxMiRIydOnLh169aZM2d+9NFH0nnr2rVrXFxcZmamVBmXmaCaO6zMS8Xg\n86qoqHBzc1Or1UVFRa1atZL6nDx5sqSkZNy4cRafEzRydS0br4/Zu0ZTF/N2s/prNBqlUmliKwBo\nwCi4479efvnlsLCwadOm6VpcXFwcHBwKCgr0u4WHh0v3PEIIOzu7t956a8uWLfn5+d27d9dqtV9/\n/XWLFi2WLFmim5nl5uY2e/bsKHOeSF5lJDJ3FB8f7+rqOn/+fF1Lx44dP/zww4iIiJSUFBN3ER4e\nHsaN8+bN0x8KdZZarTaREebk5Bi0hIaGmhit+v3rjqSkbUlJSc97t/bPjOn+skRHi0r/bVEoDFui\nokRkZHV3B6Au2bBhw8aNG20dxb/JTKIs8Ne//tXBwSEmJkYqoQohHB0do6KiMjIyEhIS5syZY29v\nL7UHBwfritdCCF9f36CgoOTk5KNHj44aNcrcYe3s7GQmdeXl5d7e3kuWLDH3bMgM2ETmaXBQCQkJ\nTZo0+fTTT6Vqu3RQ0dHRR44cuX//vvzAzLVgwQKpLC6E6Nu3b9OmTcvKyqZMmaI7bwMGDBBC6FbC\nkZmgmjuszEvF4POys7MbP378+vXrU1NTdbs+cuRI06ZNjS8bY+TMqJTpR2XWtZyzbmbvGo3GRNh1\n/xym+/unCSHUasNcnSwdtaJOZYlonCi4478mTpwo/eG3337Lzs7Ozs5OSUkxfpiSNIlGp02bNkKI\np0+fCiHu3Llz584db2/v1q1b6/cZNGiQdSORs6MHDx7cvHnT3d39q6++0u9z+/ZtIcSPP/5oouB+\n+fJlswJGnRISEhJpTtJmbpJdN5NyOSIjI0NC6tCZkfprNBp3d3ezNvyvyMhKEnSFQlT7cc0A6r75\n8+dXWtSrtAJY02QmUea6d+9eQUFBr169dEu4SFxcXP74xz+eOWL2NOwAACAASURBVHMmPz9fWsVF\nCGG8XJ6/v39ycrJxViNnWEdHR/lJXXBwsP5LmWdDZsAmMk999+/fLygo8PT0dHFx0W8fNmyYbrGU\nGvqYDC65Zs2adejQoXPnzroWR0dH3Z/lJ6hmDWvWpWLweY0fP37Tpk2HDh2Sdv3gwYPMzEyVSvXC\nCy9UeezkzKhUYmKiWdPGayfnrF/8/PwSE80Iu66dw0itNjQ0VKlU/s99GVk6akudyhLROFFwx38V\nFRVt3rz54MGDhYWFCoXCzc1t4MCBxqs96L5tqk+r1Qohbt26JYRo27atwbsGt2rVj0TOjq5fvy6E\nyMnJWb16tfEuCgsLzQoJAADgeWQmUea6ceOGEMKghCrp1KnTmTNnbty4oaui6qaB67Rv314IkZ+f\nb8GwLVu2FLKTOv0qsJB9NmQGbCLz1CclfsZjWhCYuRRGEzZ1k9CNyU9QzRrWrEvF4PNydXX19fVV\nq9W3bt1ydXVNTU199uwZ68kAAABYjII7/uuDDz7IzMwcN27cpEmTPDw8pFkz3377rfwRXnzxRSHE\n3bt3Ddql+rhp+jOVqoxEzo5cXV2FEEOGDPniiy+Md2e8mCkAAIBlLEuijKdpG5DKx7o1Q/RJjVKF\nWlJYWNitWzf9Pvfu3RP/yZrMHbZZs2ZCdlInzTrXkXk25AcshxTDgwcPTPSpfq5bfTWUoJp1qRh8\nXkKIiRMnfvfdd9988827776bkpLi5uY2ZMgQyyIBAADAc2dJoLEpKCjIzMzs0aNHbGxsnz59pDuQ\n0tLSx48fyx+kY8eOLVq0+OWXXx49eqTfnpaWpv+yadOmQgiDka9cuSI/Ejk7cnFxcXZ2zsvLa9eu\nnauesrKyo0eP8pxGAABgFXJSF9PJz/O4urq2atXqypUrBnXkx48f//rrr02aNOnSpYuu8YcffjDY\nPCsrSwhh/Mw6OcPKTOqMyU8p5QcsR8eOHZs2bXrx4kWD/8bYuXPnK6+8smXLFqvkutVXQwmqWZeK\nsWHDhnXs2PHw4cMFBQVZWVljx441MZseAAAAppFI4d+kKUUGX9pNSEh49uxZRUWFzEEUCsXkyZNL\nSkq+/PJLXWN2dvb27dv1u3Xo0EEIkZqaqmu5ePHi8ePH5Ucic0eTJ0++fv36119/rd8YGRn5+eef\nVzmnDPWUr6+vr6+vraOAeUJCQmwdAgBYTk7qYjr50VEoFOXl5fotU6dOffLkyYoVK3RDabXatWvX\n3r9//5133tE9HVQIsWPHDv1yrUaj2b9/f8uWLQMDA41jrnJYmbmWZWfDgoCrZGdnN2rUqIcPH27Z\nskXXWF5enpCQUFpa6uPjY5Vc1ypqKEGVf6kYs7e3Hz9+/MWLFzdu3FhRUfH2229bHAYQEhJi2X+b\noYHhvgxAY8aSMvi3bt26tW3b9uzZsxEREYMHDy4sLDx9+vT58+ddXFxu3769d+/eCRMmyBln9uzZ\naWlpO3fuvHjx4sCBA2/cuKFWq319ffXvMEeOHBkfH79169YbN254e3tfvXp19+7dgwcPzsjIkB+J\nnB29++67hw8fjo2NPXPmzKBBg54+fZqenp6VleXj42Puc1xRX1C6rXeUSmViYqKtowAAy8lJXUwn\nPzrt27e/du3a4sWL27Rp85e//EUIMXv27OPHj+/fv1+j0YwYMcLOzu7EiRM//PBDp06d5s2bp7+t\no6PjxIkT33777e7du1+7du3AgQMPHz785JNPnJ2djWOWM6ycXMuys2FBwHJ8+OGHJ0+e3LRp09Wr\nVwcPHpybm5uampqfnz9p0qSePXuWl5dbJdetvhpKUOVfKpUaN27c5s2bd+3aNWjQIINF3gGzRBo/\n0B6NEvdlABozZrjj3+zt7Tdt2qRUKvfv37948eKVK1eWlpYePHhw0qRJT58+Xb58ucxxXnjhhb17\n9wYHB9+6dSs+Pj4rKysoKCg6OrqsrEw3pcjDw2P58uX29vbJyckRERGHDh1asmTJ2LFjzYpEzo5a\ntWqVnJw8evTozMzMmJiYVatW/fzzz1OnTo2Li+N7skCDFRVl6wgANC5yUhfTyY/OokWLOnbsmJKS\n8re//U1qadmy5YEDB4KDg69cubJ8+fKYmJh//etfo0eP/sc//mFQmF6xYsWQIUO2b98eERGRkJDQ\nvHnzdevWhYaGVhqznGHl5FqWnQ0LApajffv2hw8fDggISEtLi4qKSkxMvHfv3vz586X/urBWrlt9\nNZSgyr9UKtWxY0cfHx8hxPjx4y2OAQBMIUsH0GgotFqtrWNAHaLVavPz8x89euTu7i4tbSmEyMvL\nc3Z2bt26tbmjPX78uEWLFkKIS5cujR49es6cOQsXLtS9W1FRcf36dYVC8dJLL1UzEtM7kkbLy8sr\nLy/v3LmztIiqCR4eHpcvXzb3YAFj0dFCCGHhLB+1WkRHi6qWypUvNFT4+gommgBo8Gz1e1xO6mI6\n+anS9evXy8vLu3TpolAontfn0aNHeXl5bm5uxg/GrM6wVeZaBkyfjaioqF27diUnJ/fq1cuCgKtU\nXl6ek5Pj6Ojo5uZmb28vPzBrBSCTWQmqWeR8psamTZt26dKl06dPS4/MrRI5MxqSpCSRni6q9a1L\njUb4+4ucnDoRDIDK8JsLtYYlZfA/FApFp06dDBpNP2TJQGxs7NmzZ7ds2eLi4iLdmAkhdu7cKYR4\n5ZVX9Hva2dmZGLnKSOTvSBqta9eu8o8CAADALHKSKNPJT5XkLPTh5OTUu3dvqwxrVq5lQH5KaUHA\nVbK3t//DH/5QzcBML3fWr18/T09PiyPUBVNDCaoFa8JkZ2dnZWVNnTpVZrUdAAAAz0PBHVbm4eGx\nbdu2efPm/elPf/Lw8Pj999+Tk5P37NnTu3fv4cOH18cdAdWhVlu4YVeN8NOIbdFWi0SjETy1CAAg\nXyPPta5du2bi3YY0kyMjI6OkpGTjxo329vasuYzGTPp+qeU0IlJUbwTdSBorDAIAsCEK7rCycePG\n3b17Nz4+fvr06brGgICAyMhIs77TWnd2BFisOo+MylX6bQvxs1ooQvj5sZ4MAMAMjTzXiomJsXUI\ntWT9+vXnz5+3t7ePiIiwbLEjoAGQ8uTc3GoMoVRGh1hhPRkhhFLJRBkAqN9Ywx0wxKpeAADUX/we\nB2oHf9cAAPULv7lQa+xsHQAAAAAAAAAAAA0BBXcAAAAAAAAAAKyAgjsAAAAAAAAAAFZAwR0AAAAA\nAAAAACug4A4AAAAAAAAAgBVQcAcAAAAAAAAAwAoouAMAAAAAAAAAYAUU3AEAAAAAAAAAsAIK7gAA\nAAAAAAAAWAEFdwAAAAAAAAAArICCOwAAAAAAAAAAVkDBHQAAAAAAAAAAK6DgDgAAAAAAAACAFVBw\nBwAAAAAAAADACii4AwAAAAAAAABgBRTcAQAAAAAAAACwAgruAAAAAAAAAABYAQV3AAAAAAAAAACs\ngII7AAAAAAAAAABWQMEdAKzM318oFNX98Veo/RVqc7dyd7f1wQMAAADVoFZbIZeuzZ9QRZK7QmPz\nMOT8+Pvb+tMFgMaBgjsAWJlGI3JyhFZbrZ+0RE1ayDZzt5L2DgAAANRTGo3w86tuLl2bP4l+23LS\nNDYPo+r7izRbf7QA0GhQcAcAAAAAAAAAwAoouAMAAAAAAAAAYAW1V3C/detWQUGBuVtFRUX16NHj\n4sWLJvqsWLGiR48eP/30UzWiq22LFi3q0aPHjRs3ntfB6gdVH88SGq/oaBEdbesg0FAYX0tcXQDQ\nQBlnvAb3IA04JbbsbqtSDfgsAQAA1ILaK7irVKrQ0FALNtRqtVppZWJLO9RB2v8w3cHqe7TigEAN\niooSUVFWHE/DuuaWaginzvhasurVBQCoO4wzXoN7kAacElt8t2WsAZ+lhqEhpGcArIR/EIC6qSEs\nKTNz5syDBw/27NnT1oFYU4M8KMBWoqOjo5nUbJHo6OikpCRbRwEAgCxVptDk2GgAtm3bRmYLQMI/\nCEDdZF7B/f79+0VFRTURR2lpaUlJSZXdiouLjWdbtG/fvmfPns2bN7ds2CdPnsiZwVFWVmbQIuds\nVBqwgYqKivv37xt0M3FQT548MX1QNfExFRcXG7SUlpY+efLExCZPnjypqKiw+rAyLxXjzwsAAAA1\nqso01YrJeVFRkVn3BTI7mA6syuTW9OZVHrvMRLfSY6+ScXosc3cAAAAwi6yC+4ULF95///0+ffoM\nHDjQy8vrtddeW7t2rS7djI2NValUN2/e1N9k3759KpXq9OnTQoi5c+eqVKqSkpKcnByVSjVixAhd\nt4qKioSEhDFjxnh6enp6egYFBW3YsKG8vNwgAK1Wu3r16oCAgP79+7/66qszZ8789ddfde9u2bJF\npVLpt8gZtrS0dOXKlUFBQf379x84cODChQuLi4sDAwM//fRTqUNERERQUJAQIiUlZfr06d7e3nLO\nRlxcnEqlys7ONhGwTnFx8bJly7y9vQcOHOjp6RkeHn7nzp3nHVR5efm6desCAwO9vLz69u3r7++f\nkJBQWloq82Myl/SxlpaWrlmzZvjw4f379/fx8dm8ebMQ4pdffpk2bdqAAQP69es3fPjwI0eO6G+o\n1Wq3bt0aGBgoHXtYWFhGRkb1h63yMzX+vJYvX65SqU6dOmVwaEuXLlWpVLm5uZadGQAAAOirMk21\nSnIupZFlZWVxcXFvvvmml5eXQf4s/jeFrvQeRL+D9Ofk5GSDwwkPDx85cqRu/orp5Lb6J0fO+TF9\n7M+723re7YzMWzAAAABYpkmVPa5evTp9+vSSkpIBAwb06dPn6dOnKSkp8fHxzZo1mzt3rhCioKAg\nNzf32bNn+ls9fPgwNzdXmr/coUOHsrKy3377zcHBoUuXLnZ2/67yP3v27L333vv+++87deo0adIk\nOzu79PT0jRs3ZmZmJiYm6k88iYmJuXDhgo+PT2Bg4JUrV06dOjV58uR169b5+/sLIe7evZubm6ub\nnSFn2OLi4rCwsKysrF69eoWEhDx48ECtVs+aNSsnJ8fNzU0a59atW3l5eT/++OPixYu1Wu1LL70k\n52zcu3cvNzd36dKlJgLW+eyzzzQazZtvvunk5HT8+PGTJ08WFhbu2bPH+KBKSkpCQ0PPnTvXrVu3\n4ODgkpKStLS0VatWXbhwYc2aNQqFosrAzCV9rIsWLTp//nxAQECzZs0OHToUFxdXVFS0e/duJyen\nSZMmPXjw4PDhwx999JFSqezdu7cQoqKiIiwsLD093dPTc9asWYWFhceOHcvIyFi/fn1AQIDFw8r5\nTI0/r6FDh27fvn3fvn3Dhg3THVdRUdE//vGPbt26de3a1YLTAgAAAH1VpqnWSs6lNDImJiY1NfX1\n11/38/MzyJ/F/6bQld6D6Hd47bXX1qxZc+DAgbFjx+oO5/fff//uu++GDRvWqlUrISO5rebJEfIS\nXdPH/ry7rUpvZ+TfggEAAMAyVRfcd+/e/ejRo4ULF86ZM0dqmTJlyhtvvJGRkSGzkhsZGSmE6Nu3\nb+fOnRMSEnTtO3fu/P7774cOHbphw4YWLVoIIRYvXrxo0aITJ04kJiaGh4frel66dCkxMdHLy0t6\nmZ6eHh4evmzZsqFDhzo4OBjsTs6wO3bsyMrKmjBhwrJly6SUND8/f8qUKQb/bVBWVrZgwYKQkJD5\n8+dL2afMsyEz4IKCgm+++aZdu3ZCiI8//nj48OE///xzdnZ29+7djQ/q3LlzI0eOXL16dZMmTYQQ\nJSUlI0aMOHLkyPTp0/v161f9j6lSOTk5hw4dcnZ2FkKMHDly4sSJW7dunTlz5kcffSSdt65du8bF\nxWVmZkqV8T179qSnp8+dO3fBggXSCPPmzQsODl68eHFmZqYugzd3WJmXisHnVVFR4ebmplari4qK\npFsmIcTJkydLSkrGjRtn8TlBPaXRaNRq9fPe9fPzM2gx0VlGf8N3a5NarVYqn/uuuUcKAIBpVaap\nVkzOhRCZmZky8+fn3YPo9O7du3v37mfPni0oKHBxcZEaT5w4odVqR48eLb2UmdxafHKEOfdEzzt2\nE0dqfDsjf3eoy2o3s63t/rbNpRu8Bnzl0B9A3VF1wf3ll18OCwubNm2arsXFxcXBwaGgoKCa+/7r\nX//q4OAQExMjpXpCCEdHx6ioqIyMjISEhDlz5tjb20vtwcHBuuK1EMLX1zcoKCg5Ofno0aOjRo0y\nd1g7O7uvv/66RYsWS5Ys0U0AcXNzmz17dlRUlP5Q5eXl3t7eS5YsMfdsyAw4PDxcypiFEHZ2dm+9\n9daWLVvy8/ONbxgSEhKaNGny6aefSpm6dFDR0dFHjhy5f/++/MDMtWDBAqksLoTo27dv06ZNy8rK\npkyZojtvAwYMEELovskbHx/v6uo6f/583QgdO3b88MMPIyIiUlJSdGVuc4eVeakYfF52dnbjx49f\nv359amqqbtdHjhxp2rSp8WVjwMPDw7hx3rx5+ocG64iOFv/79+6/FArDlqgoERlp2X7UarWJB7gb\nJyumnzxjur9GoxRCaVZ4VrRt2zYhNM9719wjVZoo3tdBz7ucjK8lq15dAGxiw4YNGzdutHUUqDpN\ntWJyLszJn+UYM2bMqlWrUlNTp0yZIrUcO3asVatWr7/+uvRSZnJr8cmRc35090QWHLvx7Yz83clB\nzmwrtZnZ1n7/GTMM+8Na1Gq1EM89+XXtSqC/uf2hQ5YIm6u64D5x4kTpD7/99lt2dnZ2dnZKSkr1\nn0h57969goKCXr166b4lKnFxcfnjH/945syZ/Px86WuPQgjjL2z6+/snJydfvnzZgmEdHR3v3Lnj\n7e3dunVr/T6DBg0yjjM4OFj/pcyzITNgafq2Tps2bYQQT58+Ndj2/v37BQUFnp6euqk3kmHDhukW\nS6mhj8kgh27WrFmHDh06d+6sa3F0dNT9+cGDBzdv3nR3d//qq6/0t7p9+7YQ4scff9Tdk5g1rFmX\nisHnNX78+E2bNh06dEja9YMHDzIzM1Uq1QsvvGD6wI0vLdSUyMhKqpxSMdT8p4GZEBISEmlOOTUt\nLc2s8fX7u7ubtamVJSYmmlUkN32koaGh1YynVj3vcjK4loxbANRD8+fPr7SoV2kFEDWkyjTV6sm5\nzPxZptGjR3/55ZdHjx6VCu537tz55z//OXbs2GbNmglzkttKycnhzUp0LTt2/fTYrN3JQc5sK7WZ\n2dZ+/6QkswaDGfz8/NLS/OT3r19XDv2hQ5YIm6u64F5UVLR58+aDBw8WFhYqFAo3N7eBAwea+O90\nmW7cuCGEMEj1JJ06dTpz5syNGzd02Z5uKodO+/bthRD5+fkWDNuyZUshRNu2bQ06GKT4Ev0qsJB9\nNmQGrFvnRJ/WqAx0/fr1Sse0IDBzKYwmgeqmHRmT4szJyVm9erXxu4WFhZYNa9alYvB5ubq6+vr6\nqtXqW7duubq6pqamPnv2jPVkAAAArKLKNNXqybnM/Fmmdu3aDRkyJDMz886dO+3atTtx4kRFRcWY\nMWOkd+Unt5WSk8Oblehaduz66bFZuwMAAIBlqi64f/DBB5mZmePGjZs0aZKHh4c09fjbb781vVWV\nUy2k1FO3Zog+qVGqUEsKCwu7deum3+fevXtCiBdffNGCYaUZK3fv3jXocOvWLeOtpJkjOjLPhvyA\n5ZBiePDggYk+ln1M1uXq6iqEGDJkyBdffGH8rvFq+zKZdakYfF5CiIkTJ3733XfffPPNu+++m5KS\n4ubmNmTIEMsiAQAAgL4q01SrJ+dWN3bs2NOnTx87dmzatGnHjh1zc3Pz9vaW3qpmcisnhzcr0bWM\nfnpcC7sDAADAc6cVSwoKCjIzM3v06BEbG9unTx+pjFtaWvr48WNdn6ZNmwoh9FuEEFeuXDE9squr\na6tWra5cuWKQgz5+/PjXX39t0qRJly5ddI0//PCDweZZWVmissWF5QzbsWPHFi1a/PLLL48ePdLv\nU+W3deScDXMDlqNjx45Nmza9ePGiwX9j7Ny585VXXtmyZYv8wGqUi4uLs7NzXl5eu3btXPWUlZUd\nPXrU4un2Zl0qxoYNG9axY8fDhw8XFBRkZWWNHTvWxGx6AAAAyFdlmlqjyblVDB8+3MnJ6ejRo3fv\n3j179uzo0aN138WsZnJb5ckR1U50zVXLuwMAAGicqqg8SvOyDb69mJCQ8OzZs4qKCullhw4dhBCp\nqam6DhcvXjx+/LjBUAqFory8XL9l6tSpT548WbFihW4orVa7du3a+/fvv/POO7onCwkhduzYoZ/R\najSa/fv3t2zZMjAw0DjmKodVKBSTJ08uKSn58ssvdVtlZ2dv3769+mfDgoCrZGdnN2rUqIcPH0p5\nuaS8vDwhIaG0tNTHx0d+YDVt8uTJ169f//rrr/UbIyMjP//8c4vX1hTmXCrG7O3tx48ff/HixY0b\nN1ZUVLz99tsWh4H6y9fX19fX19ZR1Eu+vr717LmpAIBaVGWaKmoyOZfD+B7EgKOj48iRI3/66ae/\n/e1v5eXlo0eP1n+3OsmtnJMjqpfomnWk1t0dbKhr165ktgAk/IMA1E1VZFTdunVr27bt2bNnIyIi\nBg8eXFhYePr06fPnz7u4uNy+fXvv3r0TJkwYOXJkfHz81q1bb9y44e3tffXq1d27dw8ePDgjI0N/\nqPbt21+7dm3x4sVt2rT5y1/+IoSYPXv28ePH9+/fr9FoRowYYWdnd+LEiR9++KFTp07z5s3T39bR\n0XHixIlvv/129+7dr127duDAgYcPH37yySfOzs7GMcsZdvbs2WlpaTt37rx48eLAgQNv3LihVqt9\nfX31/9vAsrNhQcByfPjhhydPnty0adPVq1cHDx6cm5ubmpqan58/adKknj17lpeXywyspr377ruH\nDx+OjY09c+bMoEGDnj59mp6enpWV5ePjU+ljr2SSf6lUaty4cZs3b961a9egQYMMFnlHIxESEmLr\nEOorTh0AwDTTaaqoyeRcDuN7EGNjx479+9//Hh8f36dPH/f/ffR5NZPbKk+OqHaia9aRWnF3sCHS\nMwA6/IMA1E1VFNzt7e03bdr05z//ef/+/fv377e3t/fy8jp48GBycvLGjRuXL18+YcIEDw+P5cuX\nx8bGJicnJycnu7i4LFmyxMnJyaDgvmjRoi+++CIlJUUIIaWALVu2PHDgwOeff56SknLu3DmpZfTo\n0UuXLnVyctLfdsWKFXv27Nm+fbs0a6NTp07r1q0bOXJkpTHLGfaFF17Yu3fvihUrTp8+HR8f7+rq\nGhQUtGjRom+++abShxHJPxsWBCxH+/btDx8+/Nlnn6WlpUk3Hs2bN58/f/7s2bPNCqymtWrVKjk5\nOSYm5sSJEydOnBBCNG3adOrUqQsXLqzOQi7yL5VKdezY0cfHR61Wjx8/3uIYUKuiomwdARoQ48uJ\nCwwArMd0mipqMjmXw/gexFj//v27du2am5ure1yqTjWT2ypPjqh2omvWkVpxdwAAAHgeRZXPtRdC\naLXa/Pz8R48eubu7S+uDCyHy8vKcnZ1bt24tvayoqLh+/bpCobDsufbXr18vLy/v0qWLbs1EY48e\nPcrLy3NzczN+MGZ1hn38+HGLFi2EEJcuXRo9evScOXMWLlxoYkzTZyMqKmrXrl3Jycm9evWyIOAq\nlZeX5+TkODo6urm52dvbyw/MWgHIpNVq8/LyysvLO3fuLK3yby1yPlNj06ZNu3Tp0unTp6Wncpnm\n4eFx+fLlasSIxs7dXaSlieouxJKUJNLTRWKiDXYNAPUZv8dtxUSaqlMTyXntqGZyK+fkCEsTXYtV\nc3f8XUMNSUoS27aJWnmIg5X4+4vISOHnZ+s4qqBWi+joenViAWvjNxdqjaxF+hQKRadOnQwaDZ6o\nY2dnV51n7MhZ6MPJyal3795WGTY2Nvbs2bNbtmxxcXGREnohxM6dO4UQr7zyiukx5ZwNiwOukr29\n/R/+8IdqBpZosoTXr18/T09PiyPUBdO1a9dqDlIpC9aEyc7OzsrKmjp1qpxqOwAAACxgIk3VqYnk\nvHZUmtzKT6rlnBxhUaJbHay1CAAAUBMa6VNxPDw8tm3bNm/evD/96U8eHh6///57cnLynj17evfu\nPXz4cFtHV+OuXbtm4t0aKpTbREZGRklJycaNG+3t7VnaDLUpOrq608x9NUKoRXq0VcIBAKBOq6fJ\neeNJqoFaptGI6PqTBs/QCPU2kZtu6ziqotHYOgIAaDQaacF93Lhxd+/ejY+Pnz59uq4xICAgMjKy\ndr6/aVsxMTG2DqGWrF+//vz58/b29hEREZYtdgRYIC1NbNtW3UHSlSHC/P8lCglhPRkAQP1TT5Pz\nxpNUA7VJSoFzc20chnzbQurHKi1KpZgxw9ZBAEDjIGsNd6BRYVUvAADqL36PA7WDv2sAgPqF31yo\nNXa2DgAAAAAAAAAAgIaAgjsAAAAAAAAAAFZAwR0AAAAAAAAAACug4A4AAAAAAAAAgBVQcAcAAAAA\nAAAAwAoouAMAAAAAAAAAYAUU3AEAAAAAAAAAsAIK7gAAAAAAAAAAWAEFdwAAAAAAAAAArICCOwAA\nAAAAAAAAVkDBHQAAAAAAAAAAK6DgDgAAAAAAAACAFVBwBwAAAAAAAADACii4AwAAAAAAAABgBRTc\nAQAAAAAAAACwAgruAAAAAAAAAABYAQV3AAAAAAAAAACsgII7AAAAAAAAAABW0MTWAQBAo6DR1NTI\nSmVNjQwAAAA0DDWXjVsRiT0ANAwU3AGgxiUlidBQuZ0TRWioSJQ/uFIp0tLIzgEAAIDKhYaKpCTr\nDxslotXCVy38rDUgiT0ANAwsKQMANS43V4SECK1Wxk+OJkQkyer5n596MVsHAAAAsBWNRqSlmZFg\ny/yJVCZZd1gAQMNAwR0AAAAAAAAAACug4A4AAAAAAAAAgBVQcEfDsWLFih49evz000+2DgS2EB1t\n6whghA8FAFD/kWECQC2Rc/tg3Mfcmw5uUgDUPAruaDi0E57E2wAAIABJREFUWq2Wde8aragoCzZS\nq9VWDqOhM++MWfShAABQp5BhomHTaDQanggEW/v3dSjn9sG4j7k3HdykAKh5FNzRcMycOfPgwYM9\ne/a0dSCoN/z9/W0dQn2iVqujmQ8CAADQgJDgoS7gOgTQwFBwR51TXFxsehrR/fv3i4qKjNvbt2/f\ns2fP5s2bG79VVFTE1CQAAABY0fOSUn1VZqFPnjypfpoqJxI5O3ry5ElFRUU1gwEAAGjkKLjD9uLi\n4lQqVXZ29urVqwMCAvr37//qq6/OnDnz119/1e924cKF999/v0+fPgMHDvTy8nrttdfWrl2rf0uw\nZcsWlUolbRUbG6tSqcrKyuLi4t58800vLy9PT8/w8PA7d+7U9uEBAACgATGdlMrMQktLS1euXBkU\nFNS/f/+BAwcuXLiwuLg4MDDw008/1R/n5s2b+lvt27dPpVKdPn1aTiQydySE0Gq1W7duDQwMlPLw\nsLCwjIwMq583AACARqKJrQMAxL1793Jzc5cuXXrhwgUfH5/AwMArV66cOnVq8uTJ69atkxb9uHr1\n6vTp00tKSgYMGNCnT5+nT5+mpKTEx8c3a9Zs7ty50jh3797Nzc0tKSkRQhQUFOTm5sbExKSmpr7+\n+ut+fn7Hjx8/efJkYWHhnj17bHm0AAAAqLeqTErlZKHFxcVhYWFZWVm9evUKCQl58OCBWq2eNWtW\nTk6Om5ub1Eca59mzZ/p7f/jwYW5ubnFxsZxIZO6ooqIiLCwsPT3d09Nz1qxZhYWFx44dy8jIWL9+\nfUBAQO2cVQAAgIaEgjvqikuXLiUmJnp5eUkv09PTw8PDly1bNnToUAcHh927dz969GjhwoVz5syR\nOkyZMuWNN97IyMjQ3VEYy8zM/Oabb9q1ayeE+Pjjj4cPH/7zzz9nZ2d37969Fo4I9UJSUpKJd0NC\nQqzSX61WKpV+ZoZmhm3bkrp2NTsqc/unp6dbEBsAAA2JzKTUdBa6Y8eOrKysCRMmLFu2zM7OTgiR\nn58/ZcoUg/J69SORs6M9e/akp6fPnTt3wYIFUsu8efOCg4MXL16cmZlZ6WqNaGA0Go2J5NBamWTd\n6V/H1U5iX9f6c6MBoIGh4I66Ijg4WFdtF0L4+voGBQUlJycfPXp01KhRL7/8clhY2LRp03QdXFxc\nHBwcCgoKTIwZHh4u3ecIIezs7N56660tW7bk5+dXWXD38PAwbpw3b978+fPNOCTUkOjoyp8sr1AY\ntkRFichI04Nt27bNxLvGGaFl/TWaGUql6UCqRa1OF0JjblTW6i+ElT8UAJBjw4YNGzdutHUUaHRk\nJqUmslCtVvv111+3aNFiyZIlUhFcCOHm5jZ79uyoSn+ZWhqJzB3Fx8e7urrqZ7kdO3b88MMPIyIi\nUlJSxo0bZyIGcuaGQaPRmEj2ajqTrP3+dZxtE/va6/+f2wfp9X9HMb59MGbc53k3HdykNFZkibA5\nCu6oK4y/surv75+cnHz58mUhxMSJE6XG3377LTs7Ozs7OyUlpayszPSYvXv31n/Zpk0bIcTTp0+r\nDEbaKeqoyMhKkiGFQlj0wLG0tLRa6B8dLTQas7YzT2JiolkFfcuOQq1WR0dHV97Dqh8KAMgxf/78\nSot6lVYAAWuRmZSayELv3Llz584db2/v1q1b6/cZNGiQdSORs6MHDx7cvHnT3d39q6++0u9z+/Zt\nIcSPP/5ouuBOztww+Pn5JSYmyu9fO/lzzfWv42onsbd9//+9fUhKSkpPT09MSqr69sH4FsPETQc3\nKY0VWSJsjoI76grdJCCd9u3bCyHy8/OFEEVFRZs3bz548GBhYaFCoXBzcxs4cKCmqhJmq1atjBu1\n/HIFAACARWQmpSay0Fu3bgkh2rZta/CuQVm8+pHI2dH169eFEDk5OatXrzbeRWFhoVkhAQAAQFBw\nR91RWFjYrVs3/ZZ79+4JIV588UUhxAcffJCZmTlu3LhJkyZ5eHg4OjoKIb799lubhAoAAIDGqfpJ\nqZTc3r1716Bdqo+bpv9NzSojkbMjV1dXIcSQIUO++OIL4905ODhUGRIAAAAMUHBHXfHDDz94e3vr\nt2RlZQkhlEplQUFBZmZmjx49YmNjde+WlpY+fvzYeM4OAAAAUBOskpR27NixRYsWv/zyy6NHj5yc\nnHTtBuswNG3aVAjx+PFj/cYrV67Ij0TOjlxcXJydnfPy8tq1a6db510Icf369W+//bZPnz4k2wAA\nAOayq7oLUCt27Nih/x1YjUazf//+li1bBgYGSlPdDb6Zm5CQ8OzZs4qKilqOEw2JWY8mg1KpnDFj\nhq2jAADAZqySlCoUismTJ5eUlHz55Ze6xuzs7O3bt+t369ChgxAiNTVV13Lx4sXjx4/Lj0TmjiZP\nnnz9+vWvv/5avzEyMvLzzz+X8+gj1Hd+fn6+vr62jgKNHdchgAaGGe6oKxwdHSdOnPj222937979\n2rVrBw4cePjw4SeffOLs7Ozk5NS2bduzZ89GREQMHjy4sLDw9OnT58+fd3FxuX379t69eydMmGDr\n8FEvRfIkenMolcqQkBBbRwEAgM1069bNKknp7Nmz09LSdu7cefHixYEDB964cUOtVvv6+uqX10eO\nHBkfH79169YbN254e3tfvXp19+7dgwcPzsjIkB+JnB29++67hw8fjo2NPXPmzKBBg54+fZqenp6V\nleXj42Puc1xRH5HgoS7493UYGmrrQADAOpjhjrpixYoVQ4YM2b59e0REREJCQvPmzdetWxcaGiqE\nsLe337Rpk1Kp3L9//+LFi1euXFlaWnrw4MFJkyY9ffp0+fLlto4ddQBz1esgPhQAQMNiraT0hRde\n2Lt3b3Bw8K1bt+Lj47OysoKCgqKjo8vKynST1j08PJYvX25vb5+cnBwREXHo0KElS5aMHTvWrEjk\n7KhVq1bJycmjR4/OzMyMiYlZtWrVzz//PHXq1Li4OP1FZgCgxsm5fTDuY+5NBzcpAGqeQqvV2joG\nNHZRUVG7du1KTk7u1avXo0eP8vLy3Nzc2rRpY9BNq9Xm5+c/evTI3d1deiqUECIvL8/Z2bl169ZW\njMfDw+Py5ctWHBCIjhYajUhMlNFVoxHu7sKcf5kVCpGTI5RKS4MDgIaF3+OoadZNSh8/ftyiRQsh\nxKVLl0aPHj1nzpyFCxfq3q2oqLh+/bpCoXjppZeqGYnpHUmj5eXllZeXd+7cWVpB3jT+rqEe8fcX\nkZHCz8/a47q7i8REK47r7i7S0kjsgZrCby7UGpaUQd3i5OTUu3fvSt9SKBSdOnUyaOzSpUvNBwUA\nAAD8W/WT0tjY2LNnz27ZssXFxUUqggshdu7cKYR45ZVX9Hva2dmZGLnKSOTvSBqta9eu8o8CAAAA\nlaLgDgA1rmtXkZQkb01CjYgUymhWLwQAoOHy8PDYtm3bvHnz/vSnP3l4ePz+++/Jycl79uzp3bv3\n8OHD6+OOgDpOqRTbtolt26w87AyNUrNNpFtvWI3GakMBAGyIgjsA1DgznkTlq1TPyPE1Z/AZM/ja\nKQAA9cm4cePu3r0bHx8/ffp0XWNAQEBkZKRCoaiPOwLquMhIoVZbf1iNb5oQwqzU3TRfXxJ7AGgI\nWMMdMMSqXgAA1F/8HgdqB3/XAAD1C7+5UGt47jwAAAAAAAAAAFZAwR0AAAAAAAAAACug4A4AAAAA\nAAAAgBVQcAcAAAAAAAAAwAoouAMAAAAAAAAAYAUU3AEAAAAAAAAAsAIK7gAAAAAAAAAAWAEFdwAA\nAAAAAAAArICCOwAAAAAAAAAAVkDBHQAAAAAAAAAAK6DgDgAAAAAAAACAFVBwBwAAAAAAAADACii4\nAwAAAAAAAABgBRTcAQAAAAAAAACwAgruAAAAAAAAAABYAQV3AAAAAAAAAACsgII7AAAAAAAAAABW\nQMEdAAAAAAAAAAAraGLrAACgvtJobB2BEaXS1hEAAAAAdUAdzNUF6ToANA4U3AHAQu7uVsuYlRq1\nn1KTJEKqO45SpKVZIyAAAACgPrNirq7jp0kSSqVa+Fk8QloaNXcAaPgouAOA5XJyrDRQdLoQIjKy\nWmOo1SI62jrhAAAAAPWd9avboenCV1g8Scbd3ZqxAADqLNZwBwAAAAAAAADACii4AwAAAAAAAABg\nBRTcG50VK1b06NHjp59+kl7eunWroKDARAeAZUoA1BL+tQGAGkaqDwAAUNMouDc6Wq1Wq9XqXqpU\nqtDQUBMdABEVZesInkutVts6BFSBzwhmqMP/2gBAw0Cqj+rTaDT/n717j4q6zh8//h4Q8ALfMBEQ\nFIa+x/XWV0O0TEXQ2ElSEC/rJSUuuaWslicwdy0WJo7Xao0gj3kwsG29lIh5QZE1B4WjqbVaxwzt\nyGCCmRBe8AII8/vjszs/dsBhBj7DDPB8nN1z4j3v9/vzmhu8Pi/fn/dHq9VaOwrIgLcSACyEgjsM\nxcbG7tmzZ8iQIdYOBGiBRqNRsx7WtvEeAQBgU0j10XZbt27dunWrtaOADGJiYii4A4AlUHDvGO7e\nvWvQUltbe//+fUscy93dfciQIT169DBor66urq6uNjLw/v37DQ0Nxievrq42sqamxUPU1tbW1NQY\nP4Skrq7OlG4AAABAh3P37l3jC9Vv3rzZbF79qFRftJSoAwAAwEQU3G3U6tWrVSpVbW3t+++/HxIS\nMnLkyMDAwI0bNwohvvvuu8jIyFGjRj311FMhISEHDhwwGPXLL780nmrXrl0qler48eMGh1i8eLFK\npaqpqSkpKVGpVJMnT5baN2/erFKpzp8/L/1YX1+flpYWGBgY8B9vv/12VVWVfh6dTrdly5apU6eO\nHDny6aefXrRoUWFhoUFIdXV1qampzz//fEBAgL+/f1xc3I0bN/R9WjxEQ0NDRkZGRESEv7+/v79/\nWFhYWlpafX1946ezcuXKsLAwIURubu5LL700evToVatWqVSqY8eOGTzxxMRElUpVWlpq4nsBAAAA\nWFdqaqpKpbp06dJ77703adIkKfGOjY3VJ+2SH3744U9/+tPw4cOfeeaZgICAcePGbdiwofGamMap\nvimJOgAAAMzVzdoBoHkVFRWlpaXx8fHnzp2bNGlS9+7d9+7dm5qaWl1dvWPHDhcXl7lz5966dWvf\nvn3Lly9XKpXDhg3Tj3r48GHjqW7fvl1aWtp0jbynp2ddXd3PP//s4ODg4+NjZ/fvf3357bffSktL\n9QvJExMTs7Ozhw4dOmPGDDs7u6Kioi+++KK4uPjzzz9XKBQNDQ2LFi0qKCjw9/f/4x//WFlZeejQ\nocLCwg8//HDSpEn6kFJSUvLy8p577rng4ODDhw8fOXKksrJy586dphzi4cOHCxcuPHHihLe399y5\nc+3s7AoKCtLT04uKijIzM/XLc65fv37lypWvv/46ISFBp9MNGDBg/Pjxn3766a5duyZMmKB/1tXV\n1V9++eUTTzzh6+sr/9sGAAAAWEBVVVVpaWliYuIPP/wQGBg4derUixcvHjt27MUXX/zggw8mTpwo\nhPjpp59eeumlmpqaUaNGDR8+/MGDB7m5uZs2berevfvixYuleRqn+qYk6gAAADAXBXebVlJSsnfv\nXldXVyFEaGjo7Nmzt2zZEhsbu3z5cqk+7uvrm5qaWlRUJBXczZKUlCSEGDFiRP/+/TMyMprtU1tb\ne+DAAU9Pz127dtnb2wshXnvttUWLFmk0muLi4sGDB+/cubOgoGDx4sXLli2ThixZsmTOnDkJCQlF\nRUX6anhRUdH+/fv79u0rhFixYkVISMjZs2cvXbo0cODAFg+xbdu2EydOjB8/Pi0trWfPnkKIhISE\n+Pj4/Pz8zMzMuLg4fbR1dXXLli2Ljo5eunRpjx49GhoavLy8NBpNdXW1s7Oz1OfIkSM1NTUzZ840\n9+WCzcrKynrUQ9HR0aZ3bkV/IQz72wIrviBN+7O/JwAAMvrxxx8zMzMDAgKkHwsKCuLi4t55553x\n48c7ODjs2LHjzp07b7zxxquvvip1mD9//u9///vCwkJ9wb0pI4l6OzwjdFBardamcs5H9DfsZgu2\nbs0ysvSr/V86AIAlUHC3acuWLZOq7UKIESNGODo61tXVzZ8/X78afdSoUUIIy131aW9v7+joWFVV\ndfnyZSnnVigUiYmJ8+bNe/zxx4UQmzZt8vDwWLp0qX5Iv379Xn/99ZUrV+bm5urr2nFxcVISL4Sw\ns7ObMmXK5s2by8vLBw4c2OIhPv74YwcHh5SUFKnaLoRwcnJKTk4uLCzMyMh49dVXpTK9EKK+vn70\n6NFvvvmm/kCzZs368MMP8/Ly9JEcOHDA0dExPDzc+BMfNGhQ08YlS5Y0fqadk1otkpObaVcoDFuS\nk0VSkuUDaoFGo1EqlY96tGlCWVBQYGQ2c/vbYBKv0WiUykfGbOkXhAweZuhov21gg9LS0tLT060d\nBdCu5syZo6+2CyGCgoLCwsJycnIOHjwYHh7+u9/9btGiRZGRkfoObm5uDg4OFRUVRuY0kqi3GE/X\nzZm7PI1GY+TR9s85H9HfsJst0GpLjdynlHQdkAVZIqyOgrtNM0hhu3fv7unp2b9/f32Lk5OTRQOw\nt7efNWvWJ598EhERMW7cuLFjxwYEBAwbNkyK4datW7/88oufn98nn3zSeNSvv/4qhPj666/1ZW6D\nBfi9e/cWQjx48KDFQ1RVVVVUVAwdOtTLy6vxDG5ubk8++eTp06fLy8sHDBigb58zZ07jbrNmzfro\no4/27t0rRXLr1q2ioiKVSvXYY48Zf+LFxcVmvVCdR1JSM4UthULY6h20goODMzMzTe9vVucW+7ew\n/N0agoODMzODTe8v7wvSVFRUlFqtNmsIuoqO9tsGNmjp0qXNFvWarQACnYO0Z2NjEydOzMnJkXLX\n2bNnS40///zzpUuXLl26lJubW1dXZ3xOI4l6i7puztzlRUdHJ5nzz+GWzjmb7W+DuboQIikp6dHr\nhZph6ZcO6JTIEmF1FNxtmqLJQj/92vZ2s2LFiiFDhuzcubOwsFD61/I+ffrExsYuXLjw6tWrQoiS\nkpL33nuv6cDKykr9f+t3dGlM95+qipFDlJWVCSEMqu0Sb2/v06dPl5WVNS64N/7XCCGEh4dHUFCQ\nRqO5fv26h4dHXl7ew4cP2U8GAAAAHZF+Kbqeu7u7EKK8vFwIUV1dvXHjxj179lRWVioUCi8vr2ee\necbIWlqJ8UQdAAAA5qLg3vmZuD7FiPDw8PDw8Dt37pw9e/bIkSN79ux59913hRARERFCiLFjx65d\nu7bpKAcHh7YfIiwsTDxizxypUTrH0JOW5DQ2e/bsr776av/+/S+//HJubq6Xl9fYsWNNDwwAAACw\nEZWVlU888UTjlqqqKiFEnz59hBCvvfZaUVHRzJkz586dO2jQIOla2H/+859WCRUAAKDLau/l0rAo\nR0dHIcS9e/caN168eLHVE5aVlX322Wfff/+9EMLFxSUwMDA5OXnDhg1CiLy8PDc3N1dX1ytXrvTt\n29ejkbq6uoMHD7a4msaUQ3h4eDg7O1+8ePHWrVuNR927d+/8+fPdunXz8fExPv+ECRP69eu3b9++\nioqKU6dOTZ8+vf2vEgAAAADa7uTJkwYtp06dEkIolcqKioqioqLBgwevXr16+PDhUrW9trbW4NQA\nAAAAlkblsVPx9PQUQuTl5elbLly4cPjwYSNDFApFfX29kUdTUlLWr1/f0NCgb5Rq3NI6mhdffPHq\n1at///vfG49KSkpas2aNiSvrWzzEggUL7t+/v27dOn0HnU63YcOGmzdvzps3r1u3Fq7SkPaIv3Dh\nQnp6ekNDw4wZM0yJCh2CUqmMioqydhQwhvcIAAAZffbZZ40XtWi12uzs7F69ek2dOlVa6m6wP0xG\nRsbDhw8bp9lA2wUFBQUFBVk7CsggKipKadaO8gAA07ClTKcSGhq6adOmLVu2lJWVjR49+qefftqx\nY8ezzz5bWFj4qCHu7u6XL19OSEjo3bv3W2+9ZfCol5fXhAkTjh07FhkZ+cILL7i6ul67dm379u3i\nP5u9vPzyy/v27Vu9evXp06fHjBnz4MGDgoKCU6dOBQYGjhkzxpSYWzzEK6+8cvjw4ezsbK1WO3ny\nZDs7u/z8/JMnT3p7ey9ZssSUQ8ycOXPjxo3bt28fM2aMwSbv6NCUSmV0dLS1o4AxvEcAAMjIyclp\n9uzZM2bMGDhw4OXLl3fv3n379u0///nPrq6uLi4ujz/++JkzZ1auXPnss89WVlYeP3783Llzbm5u\nv/766xdffPGHP/zB2uGjkwgODrZ2CJAHiToAWAgF905l0KBBq1atWr16dU5OTk5Ojpub25tvvuni\n4mKk4B4fH7927drc3FwhRNOCuxAiNTV17dq1e/fuPXPmjNTi5+e3fv36KVOmCCGcnZ1zcnJSUlLy\n8/Pz8/OFEI6OjgsWLHjjjTdM37nF+CF69eq1e/fuNWvW5ObmfvPNN1LLtGnTEhMTXVxcTJm/X79+\ngYGBGo1m1qxZJoaE/5KcbO0IAHQN/LYBAKPWrVu3c+fOTz/9VLpE1dvb+4MPPggNDRVC2Nvbf/TR\nR3/5y1+ys7Ozs7Pt7e0DAgL27NmTk5OTnp6+atUqCu4AAADtQ8EN6DufhoaGq1evKhSKAQMGyDVn\nTU3NtWvX7t6926dPH2njGgM6ne7KlSv19fX9+/eXtpKX/RBCiKtXr9bX1/v4+CgUCrMmj4yM/PHH\nH48fP969e/cWOw8aNKi4uNis+dE1KRRCtt+garUQQiQltWUOjUao1eLoUXkiAoAOir/j6JSSk5O3\nb9+ek5MzdOjQO3fuXLlyxcvLq3fv3gbddDpdeXn5nTt3/Pz8pG3chRBXrlxxdXX9n//5H3lD4rsG\nG6dQiJISIfOOKTExIihItHZhuJ+fOHpU7pAAmIy/XGg3rHDvhOzs7Fq8lai5nJycjG/uplAofH19\nLXoIIUTrNoS5dOnSqVOnFixYYEq1HQAAALBlLi4uw4YNa/YhhULh7e1t0Cj7qQEAAACMoOCOzqyw\nsLCmpiY9Pd3e3p796WAJMTHyzKPU+AYpS7dq2zRJo5uoAQAAAF2ddBGpjII0SqEVBQWtHE66DgBd\nBAV3dGYffvjhuXPn7O3tV65cKeMGO4Dk6FH5kuagaK0QQW2cI0hwCysAAABAyJur6wUliTYk7VFR\n7CcDAF0Ce7gDhtjVCwCAjou/40D74LsGAOhY+MuFdmNn7QAAAAAAAAAAAOgMKLgDAAAAAAAAACAD\nCu4AAAAAAAAAAMiAgjsAAAAAAAAAADKg4A4AAAAAAAAAgAwouAMAAAAAAAAAIAMK7gAAAAAAAAAA\nyICCOwAAAAAAAAAAMqDgDgAAAAAAAACADCi4AwAAAAAAAAAgAwruAAAAAAAAAADIgII7AAAAAAAA\nAAAyoOAOAAAAAAAAAIAMKLgDAAAAAAAAACADCu4AAAAAAAAAAMiAgjsAAAAAAAAAADKg4A4AAAAA\nAAAAgAwouAMAAAAAAAAAIINu1g4AADohrVZotZaaXKkUSqWlJgcAAABsk0Zj7QhkQj4PAJ0bBXcA\nkJ+fnxk5dJI2ZqsySStMHiBESYn5MQEAAAAdVlaWUKutdvRgbZZSKbJEtCyzKZXi6FFZZgIA2CIK\n7gAgM61WKJXm1MT9NNFHk0yst2u1ws+vlYEBAAAAHVdwsMjMtNKx1aVCiKQkGWbSaKz5LwcAgHbA\nHu4AAAAAAAAAAMiAgjsAAAAAAAAAADKg4I6O5/r16xUVFdaOAnLgWspOibcVANDBrVu3bvDgwd9+\n+630Y9Pk06ADAAAAoEfBHR2PSqWKiYmxdhSQQ3KytSMQQgitVpuVlWXtKKxPo9FoNBoZJrKNtxUA\ngFbT6XQ6nU7/Y9Pk06AD0AloNBqtVmvtKNCBcUoFAHoU3AF0dRqNZuvWrdaOwvq2bt1aUFBg7SgA\nAOgAYmNj9+zZM2TIEGsHAshGrVZTcEdb8BECAD0K7mgPd+/eNWipra29f/++kSG1tbU1NTWtOJaJ\nA+vq6loxOQAAAGxTKxLOVnN3dx8yZEiPHj0M2qurq6urq40MvH//fkNDg/HJq6urjSyfb/EQpmfR\n5MMAAACWQMEdFrF69WqVSlVbW/v++++HhISMHDkyMDBw48aNQojvvvsuMjJy1KhRTz31VEhIyIED\nBxoPbGhoyMjIiIiI8Pf39/f3DwsLS0tLq6+vlx5dvHixSqWqqakpKSlRqVSTJ082caAQYuXKlWFh\nYUKI3Nzcl156afTo0e3xQgAAAMAyWpdwSqN++eWXxlPt2rVLpVIdP37c4BCPSj43b96sUqnOnz8v\n/VhfX5+WlhYYGBjwH2+//XZVVZV+Hp1Ot2XLlqlTp44cOfLpp59etGhRYWGhQUh1dXWpqanPP/98\nQECAv79/XFzcjRs39H1aPESLybBoLh9etWqVSqU6duyYwRNPTExUqVSlpaUmvhcAAADQ62btANA5\nVVRUlJaWxsfHnzt3btKkSd27d9+7d29qamp1dfWOHTtcXFzmzp1769atffv2LV++XKlUDhs2TAjx\n8OHDhQsXnjhxwtvbe+7cuXZ2dgUFBenp6UVFRZmZmT169PD09Kyrq/v5558dHBx8fHzs7P79L0Yt\nDhRCXL9+/cqVK19//XVCQoJOpxswYIA1XyAAAAC0TesSTmnUw4cPG091+/bt0tLSpmvkH5V8/vbb\nb6WlpfqF5ImJidnZ2UOHDp0xY4adnV1RUdEXX3xRXFz8+eefKxSKhoaGRYsWFRQU+Pv7//GPf6ys\nrDx06FBhYeGHH344adIkfUgpKSl5eXnPPfdccHDw4cOHjxw5UllZuXPnTlMOYUoyLJrLh8ePH//p\np5/u2rVrwoQJ+mddXV395ZdfPvHEE76+vvK/bQAAAJ0dBXdYUElJyd69e11dXYUQoaGhs2fP3rJl\nS2xs7PLly6XTFV9f39TU1KKiIun8Z9u2bSdOnBg+uCx8AAAgAElEQVQ/fnxaWlrPnj2FEAkJCfHx\n8fn5+ZmZmXFxcUlJSUKIESNG9O/fPyMjQ3+gFgdK3erq6pYtWxYdHb106dKmlwCjK9NqtWq1+lGP\nSh+8xox0FkJERRn2l52M0TbtDwBAB2JuwmmWRyWfjdXW1h44cMDT03PXrl329vZCiNdee23RokUa\njaa4uHjw4ME7d+4sKChYvHjxsmXLpCFLliyZM2dOQkJCUVGRPiktKirav39/3759hRArVqwICQk5\ne/bspUuXBg4c2OIhTEyGRZN8uKGhwcvLS6PRVFdXOzs7S32OHDlSU1Mzc+ZMc18udHTG7+jT9iSz\njf212iAhgo3M0IFotVq1+pE3kbL6S93G/gAACu6woGXLlkknP0KIESNGODo61tXVzZ8/X784aNSo\nUUII/dWyH3/8sYODQ0pKinSeIIRwcnJKTk4uLCzMyMh49dVXpROMpkwcWF9fP3r06DfffLPFyAcN\nGtS0ccmSJUuXLjX96eO/qNUiObmZdoXCsCU5WbR7CVir1Zp1hx+r3w7IVqK17bcVQOeWlpaWnp5u\n7ShgfeYmnLKzt7d3dHSsqqq6fPnywIEDhRAKhSIxMXHevHmPP/64EGLTpk0eHh6N08h+/fq9/vrr\nK1euzM3N1de14+LipGq7EMLOzm7KlCmbN28uLy8fOHBgi4cwPYs2yIft7OxmzZr14Ycf5uXl6SM5\ncOCAo6NjeHh4i8+dnLmTMTdpbOf+Wq2vUmnWBLbL0mcfVulv9VMkQI8sEVZHwR0WZJCCd+/e3dPT\ns3///voWJycn/X9XVVVVVFQMHTrUy8ur8Sg3N7cnn3zy9OnT5eXlze4DY9bAOXPmmBJ5cXGxKd1g\nhqSkZuqtCoV49D3B2lNwcHBmZqbp/Y13bodUU8Zo28S231YAndvSpUubLeo1WwFEJ2ZWwmkJ9vb2\ns2bN+uSTTyIiIsaNGzd27NiAgIBhw4ZJMdy6deuXX37x8/P75JNPGo/69ddfhRBff/21vsxtsAC/\nd+/eQogHDx60eAhzs2iDfHjWrFkfffTR3r17pUhu3bpVVFSkUqkee+yxFp87OXMnk5SUFBwcbHp/\nc5PMNvbPyhKPXn/fwQQHB2dmBpvev51f6tb112g0Zk0CWA5ZIqyOgjssSNFklat+qVFTZWVlQgiD\n8wSJt7f36dOny8rKmi24mzWw8dkXAAAAOjqzEk4LWbFixZAhQ3bu3FlYWCjtyNGnT5/Y2NiFCxde\nvXpVCFFSUvLee+81HVhZWan/b/2OLo3p/vNv2EYOYW4WbZAPe3h4BAUFaTSa69eve3h45OXlPXz4\nkP1kAAAAWo2CO2yFdAlts1f7So3u7u5tHyitFQIAAAD0pIXkbREeHh4eHn7nzp2zZ88eOXJkz549\n7777rhAiIiJCCDF27Ni1a9c2HeXg4ND2Q4SFhQlzsuim+fDs2bO/+uqr/fv3v/zyy7m5uV5eXmPH\njjU9MAAAADTW3qs/gEfx8PBwdna+ePHirVu3Grffu3fv/Pnz3bp18/HxkXcgAAAAuhpHR0chxL17\n9xo3Xrx4sdUTlpWVffbZZ99//70QwsXFJTAwMDk5ecOGDUKIvLw8Nzc3V1fXK1eu9O3b16ORurq6\ngwcPmrjlsfFDtD0ZnjBhQr9+/fbt21dRUXHq1Knp06e3/1UCAAAAnQaJFGzIggUL7t+/v27duoaG\nBqlFp9Nt2LDh5s2b8+bN69bt3xdkKBSK+vr6VgwEmhUcHJzE/TyFiIqKioqKsnYUAABYlqenpxAi\nLy9P33LhwoXDhw8bGdI0+TR4NCUlZf369fpEVAgh1bj79OkjhHjxxRevXr3697//vfGopKSkNWvW\nmLiyvsVDtDEZlvaIv3DhQnp6ekNDw4wZM0yJCp1MVFSUWRu4AwaSkpKUnea2tgDQNhQiYUNeeeWV\nw4cPZ2dna7XayZMn29nZ5efnnzx50tvbe8mSJfpu7u7uly9fTkhI6N2791tvvWX6QKBZSqWS1FAI\nwSkWAKArCA0N3bRp05YtW8rKykaPHv3TTz/t2LHj2WefLSwsfNSQpslnY15eXhMmTDh27FhkZOQL\nL7zg6up67dq17du3i/9s9vLyyy/v27dv9erVp0+fHjNmzIMHDwoKCk6dOhUYGDhmzBhTYm7xEG1P\nhmfOnLlx48bt27ePGTOGmx51TdHR0dYOAR0bHyEA0KPgDhvSq1ev3bt3r1mzJjc395tvvpFapk2b\nlpiY6OLiou8WHx+/du3a3NxcIYR0zmPiQNic5GRrRwAL4G0FANiwQYMGrVq1avXq1Tk5OTk5OW5u\nbm+++aaLi4uRgnvT5NNAamrq2rVr9+7de+bMGanFz89v/fr1U6ZMEUI4Ozvn5OSkpKTk5+fn5+cL\nIRwdHRcsWPDGG2+YvnOL8UO0PRnu169fYGCgRqOZNWuWiSEBAACgWQr9je8BSAYNGlRcXGztKNCB\nabVi4kRRUmLyAD8/cfSoMG2VvVYr/PwEv7kB4FH4Ow5TNDQ0XL16VaFQDBgwQK45a2pqrl27dvfu\n3T59+kgb1xjQ6XRXrlypr6/v37+/tJW87IcQQly9erW+vt7Hx0ehUJg1eWRk5I8//nj8+PHu3bub\n0p/vGtpZVpYoKBCZmVY6vFothBBybESp0Qi1Whw92vaZAJiHv1xoN6xwBwAAANC12NnZtXgrUXM5\nOTkZ36ROoVD4+vpa9BBCiNZtCHPp0qVTp04tWLDAxGo7AAAAHoWCOwDIT6kUEyea2jlKG1wQI7Sm\nddaa2A8AAMAEhYWFNTU16enp9vb2bMEMW6ZUCrXajBxbXsFaXyGERiPDVFqt4N5JANC5UXAHAJkp\nlSIz05zKeFKm0sz5AQAAZPHhhx+eO3fO3t5+5cqVMm6wA8guONh6+8kIIUS0ECJIprnI5wGgc6Pg\nDgDyUypJowEAQAfw+eefWzsEwFQsDAcAdAh21g4AAAAAAAAAAIDOgII7AAAAAAAAAAAyoOAOAAAA\nAAAAAIAMKLgDAAAAAAAAACADCu4AAAAAAAAAAMiAgjsAAAAAAAAAADKg4A4AAAAAAAAAgAwouAMA\nAAAAAAAAIAMK7gAAAAAAAAAAyICCOwAAAAAAAAAAMqDgDgAAAAAAAACADCi4AwAAAAAAAAAgAwru\nAAAAAAAAAADIgII7AAAAAAAAAAAyoOAOAAAAAAAAAIAMKLgDAAAAAAAAACADCu4AAAAAAAAAAMiA\ngjsAAAAAAAAAADLoZu0AAKAD0GqFVmvtIForONjaEQAAAADtQqOxdgSmIUUHgE6MgjsAtEytFhqN\nUCrln1mp1QSJgq3KJPmnFkIIodWKo0ctEjkAAABgU7KyhFotf+obpVUXiCCtMliuCUnRAaBzo+AO\nAC3TakVSkoiOtsDUWVpRoI3OtMDMQgghFApLzQwAAADYmuBgkSl7ah2jjQ7yFdGyzUeKDgCdG3u4\nAwAAAAAAAAAgAwruAAAIIYRQq60dAQAAAIA2I7EHYFUU3NF5XL9+vaKiwtpRAOiwkpOtHQEAAJZF\nwgygSyCxB2BVFNzReahUqpiYGGtHgUfKysrSarXWjgLWkZWVZe0QAAAACTNMotFoyNthnFar1Wg0\n1o4CAGwUBXcA7UStVpO4d00ajWbr1q3WjgIAAAAmUavV1FJh3NatWwsKCqwdBQDYKArubXL//v2G\nhgbrziCEuHv3rkFLbW3t/fv3H9W/tra2pqamjQc1JXJzAzNx2urqap1OZ0qQjYdUV1ebNQQAAABt\nR8Isb2AmTkvCDAAAYC0U3FtDp9Nt2bJl6tSpI0eOfPrppxctWlRYWCg9tGrVKpVKdezYMYMhiYmJ\nKpWqtLS0xRlMsXr1apVKVVtb+/7774eEhIwcOTIwMHDjxo1CiO+++y4yMnLUqFFPPfVUSEjIgQMH\n9KMaGhoyMjIiIiL8/f39/f3DwsLS0tLq6+v1HTZv3qxSqXJycgwOFxcXFxoaKuXfxiNvXWAmTltX\nV5eamvr8888HBAT4+/vHxcXduHFD6rB48WKVSlVTU1NSUqJSqSZPniy119fXp6WlBQYGBvzH22+/\nXVVVZfpLDQAAgFYgYSZhBgAA6JoouJutoaHh1VdfXb9+vbOz8x//+Mfnn3/+9OnTixYt+uqrr4QQ\n48ePLy0t3bVrV+Mh1dXVX375Zc+ePX19fVucwRQVFRWlpaXx8fFffvnl+PHjY2Ji6uvrU1NT169f\nHx0dfeXKlblz50ZERJSXly9fvvz8+fNCiIcPH8bGxr777ru3b9+eO3fu/Pnza2pq0tPT58+fr19B\nM27cuNLS0t27dzc+1rVr17766qsBAwY4Ozu3GHkrAjPlBZGmTUlJ2bZtW0BAQHR0dO/evY8cObJk\nyRKpg6enp4+Pj0KhcHBw8PHx8fHxkdoTExPT09Pd3NwWLVoUFxf3v//7v1988cUrr7xi7nofAAAA\nmI6EmYQZAACgy+pm7QA6np07dxYUFCxevHjZsmVSy5IlS+bMmZOQkFBUVBQYGOjl5aXRaKqrq52d\nnaUOR44cqampmTlzpikz9OjRw8RISkpK9u7d6+rqKoQIDQ2dPXv2li1bYmNjly9fbmdnJ4Tw9fVN\nTU0tKioaNmzYtm3bTpw4MX78+LS0tJ49ewohEhIS4uPj8/PzMzMz4+LihBDDhg0bOHDgmTNnKioq\n3NzcpKPk5+frdLpp06aZHrlZgZk+bVFR0f79+/v27SuEWLFiRUhIyNmzZy9dujRw4MCkpCQhxIgR\nI/r375+RkSH1r62tPXDggKen565du+zt7YUQr7322qJFizQaTXFx8eDBg01/0yEX4zv9Se9jY2q1\n2shs7d+/g1Kr1UrlIx/toi+jWi2Sk5tpVygMW5KThW0+BQCwYSTMJMzo6LZu3aq/3KQp8va2s7UU\n3dz+Go0mODjYyJD2Q2IPwPawwt1smzZt8vDwWLp0qb6lX79+r7/++t27d3Nzc+3s7GbNmlVTU5OX\nl6fvcODAAUdHx/DwcFNmMD2SZcuWSTm6EGLEiBGOjo4KhWL+/PlSji6EGDVqlBBCuoz0448/dnBw\nSElJkU4ehBBOTk7Jyck9evTIyMjQXycbERHR0NDQOPhDhw45Ozs/99xzpkduVmCmTxsXFyedPAgh\n7OzspkyZIoQoLy9/1Otjb2/v6OhYVVV1+fJlqUWhUCQmJn788cePP/648dd2UHPS0tKMjwJsk1Lp\na+0QbE9SktDpDP8nRDONJOWArUpLS2v277W144IQJMxdI2EW5MydmtJIMRhyIEWXDYk9miBLhNWx\nwt08t27d+uWXX/z8/D755JPG7b/++qsQ4uuvv545c+asWbM++uijvXv3Sit0bt26VVRUpFKpHnvs\nMRNnMDEYg18W3bt39/T07N+/v77FyclJ+o+qqqqKioqhQ4d6eXk1HuLm5vbkk0+ePn26vLx8wIAB\nQohp06b97W9/O3jw4Pz584UQN27c+Ne//jV9+vTu3bubHrnpgZn1gkire/R69+4thHjw4MGjXh97\ne/tZs2Z98sknERER48aNGzt2bEBAwLBhwxpH8ijFxcUt9kErREVFmbUOwty1Kpbu30FFRUWbdcbE\nywigQ1i6dGnj4qMeZ1NWR8LcRRJmQc7cqQUFBUVHR5ven7zdXLaWopvb31aWtwPNIUuE1VFwN8/V\nq1eFECUlJe+9917TRysrK4UQHh4eQUFBGo3m+vXrHh4eeXl5Dx8+1CfBpsxgIkWTK6T0K2IMlJWV\nCSEMTh4k3t7ep0+fLisrk84f+vbtO3bs2KKiohs3bvTt2zc/P7+hoSEiIsKsyE0PzKxp9VccN2Z8\nc8kVK1YMGTJk586dhYWF0k4mffr0iY2NXbhwoZFRAAAAaDUSZhJmAACAroyCu3k8PDyEEGPHjl27\ndm3TRx0cHKT/mD179ldffbV///6XX345NzfXy8tr7NixZs0gL+nCUv0VqY1Jje7u7vqW6dOnHz9+\n/NChQ5GRkYcOHfLy8ho9erTlIrf0CxIeHh4eHn7nzp2zZ88eOXJkz5497777rhCCUwgAAABLIGEm\nYQYAAOjK2MPdPG5ubq6urleuXOnbt69HI3V1dQcPHtRqtVK3CRMm9OvXb9++fRUVFadOnZo+fbp+\nxYqJM8jLw8PD2dn54sWLt27datx+79698+fPd+vWzcfHR98YEhLi4uJy8ODB33777cyZM9OmTZMW\n4Fgocsu9IGVlZZ999tn3338vhHBxcQkMDExOTt6wYYMQovGemwAAAJARCTMJMwAAQFdGwd1sL774\n4tWrV//+9783bkxKSlqzZo1+e0RpM8QLFy6kp6c3NDTMmDHD3Blkt2DBgvv3769bt66hoUFq0el0\nGzZsuHnz5rx587p1+//XOjg5OYWGhn777bf/+Mc/6uvrp02bZunI5ZpWoVDob2Yl/ZiSkrJ+/Xr9\nUxZCSGdKffr0aXW0aLWkpCR2+uualEpl59t2EwBgBAkzCTM6NHNvvIQuKCgoKCoqytpRAICNYksZ\ns7388sv79u1bvXr16dOnx4wZ8+DBg4KCglOnTgUGBo4ZM0bfbebMmRs3bty+ffuYMWMMbjpk4gzy\neuWVVw4fPpydna3VaidPnmxnZ5efn3/y5Elvb+8lS5YYdJ4+ffrnn3++adOm4cOH+/n5WTpyuaZ1\nd3e/fPlyQkJC796933rrLS8vrwkTJhw7diwyMvKFF15wdXW9du3a9u3bhRBhYWGtjhatZtZtl9CZ\nKJVKpVn3hLKW5GRrRwAAnQQJMwkzOjTydrTI1v9JhsQegFVRcDebs7NzTk5OSkpKfn5+fn6+EMLR\n0XHBggVvvPFG4zsd9evXLzAwUKPRzJo1q3UzyKtXr167d+9es2ZNbm7uN998I7VMmzYtMTHRxcXF\noPPIkSN9fX1LS0uluz9ZOnK5po2Pj1+7dm1ubq4Q4q233hJCpKamrl27du/evWfOnJH6+Pn5rV+/\nfsqUKa2OFkCnxTJ8AJAJCTMJMwBYE4k9AKtSGL9nPYzQ6XRXrlypr6/v37+/o6Nj0w6RkZE//vjj\n8ePHu3fv3roZLOTq1av19fU+Pj7SXpOtYKHILTRtTU3NtWvX7t6926dPH09Pzxb7Dxo0qLi4WK6j\no3OYOFFERQmLrPXJyhIFBSIz0wJTCyGEQiFKSkSHWF8OALLg77hNIWHurAmz4LsGm2SpzDomRgQF\nyXgyQIoOWAV/udBuWOHeegqFwtfX91GPXrp06dSpUwsWLHjUycOjZsg0mh089dRT/v7+5oZqwOCK\n3VYw/txtbVonJ6eOsZ0FAABA50LC3MZJ2m1aEmYAAAC5UHCXX2FhYU1NTXp6ur29fSs2v7t8+bKR\nRy2RXgNokVIp1GqxdasFZtYqg0Tp1onyzwwAgM0iYQZgCVLSPlHu1DpKqyzQKLUWOBcAAHRKbCkj\nv9mzZ587d87e3n7lypULFiywdjgwGxcZoSmtVmi11g6iVZRKLlYF0LXwd7xDIGHuBPiuwTZpNNaO\nwASk6IBV8JcL7YYV7vL7/PPPrR0CAJmREwMAICMSZgAWEhxs7QgAAF2eGXe0BwAAAAAAAAAAj0LB\nHQAAAAAAAAAAGVBwBwAAAAAAAABABhTcAQAAAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAAAAAZ\nUHAHAAAAAAAAAEAGFNwBAAAAAAAAAJABBXcAAAAAAAAAAGRAwR0AAAAAAAAAABlQcAcAAAAAAAAA\nQAYU3AEAAAAAAAAAkAEFdwAAAAAAAAAAZEDBHQAAAAAAAAAAGVBwBwAAAAAAAABABhTcAQAAAAAA\nAACQAQV3AAAAAAAAAABkQMEdAAAAAAAAAAAZdLN2AABgfVqt0GisHYQFBAcLpdLaQQAAAAA2ICvL\naoeOjrbaoQEA7Y+COwAItVpoNNapTSdpJm5VJmmVwbLPrNWKggKRmSn7xAAAAEAHk5Ul1OrWJPxJ\nmolbgzO1wvyR/6HRsA4GALoWCu4AIIQQSUlWWnjipw3OFCJY/omzskRBgfzTAgAAAB1RcHCrFqNI\n6bqy9cf182v9WABAR8Qe7gAAAAAAAAAAyICCO9CO1GprRwDAfC1+czvZV7uTPR3YLD5pACALfp0C\nAGBjKLh3devWrRs8ePC3335rYv/4+PjBgweXlZWZPmdycvLgwYMvXLhgVhjXr1+vqKhodZw2KjnZ\n2hEAMF+L39xO9tXuZE8HNotPGmBJBrk0OjN+nQIAYGMouHd1Op1Op9OZ29/4kKYdWjFEpVLFxMS0\nOk60KCsrS6vVWjsKoDU0Gk1WVpa1owAAwHYZ5NKA7VCzJL8j4G0CgLag4N7VxcbG7tmzZ8iQIdad\ns8Uhloizi9u6dSsFd3RQWq1269at1o4CAAAAZktOTuY0xMZptdpkrpwAgDboZu0AYGXu7u7u7u6P\nerS6urpXr14KhaLZRxsaGm7fvv3YY48ZdDA+5927d3v27GnWEOMdamtrdTqdk5OTkeGipecCAAAA\nWNHdu3d79erVuKW2tra+vr5Hjx6PGmJiGtzqgXV1dQ4ODuZODgAA0MWxwr2r27x5s0qlOn/+vPTj\n6tWrVSpVXV1damrq888/HxAQ4O/vHxcXd+PGjcaj7t69+84774wePfqZZ55p2sFgTolOp3vvvfcm\nTZo0cuTIp59+OjY2tnGHxkMWL16sUqlqampKSkpUKtXkyZObnbOhoSEjIyMiIsLf39/f3z8sLCwt\nLa2+vl7fwcTnAgAAALQ/KVmtra19//33Q0JCRo4cGRgYuHHjRiHEd999FxkZOWrUqKeeeiokJOTA\ngQONBxpPg5vNpU0ZKIRYuXJlWFiYECI3N/ell14aPXp0e7wQAAAAnQsr3Lu63377rbS0tKamRvqx\noqKitLQ0JSUlLy/vueeeCw4OPnz48JEjRyorK3fu3Kkf9de//lWr1T7//PMuLi5NOxjMKUlJSfnh\nhx8CAwOnTp168eLFY8eOvfjiix988MHEiRMNhnh6etbV1f38888ODg4+Pj52dnZN53z48OHChQtP\nnDjh7e09d+5cOzu7goKC9PT0oqKizMxMaR2Qic8FAAAAaH9SshofH3/u3LlJkyZ179597969qamp\n1dXVO3bscHFxmTt37q1bt/bt27d8+XKlUjls2DBhQhrcbC5tykAhxPXr169cufL1118nJCTodLoB\nAwZY8wUCAADomCi4oxlFRUX79+/v27evEGLFihUhISFnz569dOnSwIEDpQ4VFRXGOzT1448/ZmZm\nBgQESD8WFBTExcW9884748ePN7hSNSkpSQgxYsSI/v37Z2RkNDvbtm3bTpw4MX78+LS0tJ49ewoh\nEhIS4uPj8/PzMzMz4+LiTH8ulqJWi2a3vWu6p01yskhKsmwwj7B161YjG2FnZmYatBi/9VaH7q/R\nRAUFBRuZrYPSaDQxMZ3wLbbgvp+mf3Nb7GC9r7YZOsJvKnQGfNKARyspKdm7d6+rq6sQIjQ0dPbs\n2Vu2bImNjV2+fLlUK/f19U1NTS0qKpIK7i2mwY/KpU3Mn+vq6pYtWxYdHb106VIju9nAOjrLr1Pj\nN+S0UA6p1QYpldEmxWcBarVaCO2jHrWdNFuSZMMfHgDoECi4oxlxcXFShVoIYWdnN2XKlM2bN5eX\nl+uL1C12aGrOnDn6arsQIigoKCwsLCcn5+DBg+Hh4eZG+PHHHzs4OKSkpEhnC0IIJyen5OTkwsLC\njIyMV1991d7evtWhCiEGDRrUtHHJkiVLly41NcSkpGZyXIVC6HSmztAulEqlhTp3gv6dgFKp7JRv\nsQUL7q375treV9tUHeQ3FTo8y3zS0tLS0tPT2zIDYAuWLVsmVduFECNGjHB0dKyrq5s/f75+Zfqo\nUaOEEPpNEU1Pgw2YOLC+vn706NFvvvmmKcHLkDPDLJ3lD7dVckjr3qhVqfQ1s7/SpvoDHQtZIqyO\ngjuaIS2f0evdu7cQ4sGDB6Z3aGrSpEkGLRMnTszJySkuLjY3vKqqqoqKiqFDh3p5eTVud3Nze/LJ\nJ0+fPl1eXq6/ALYVoQohWhFVRxQVFRUcHGx6f3NXOnSg/tbNvy1HqVSa9Sp1lLfM19fXyMUZALqI\npUuXNlvUa7YCCNgsg09s9+7dPT09+/fvr29pfGtTs9LgxswaOGfOHBOD7yI5M2QXFRVlVsFXlhzS\n11cUFJg1jZyioqLNKnFbNy234OoWoF2QJcLquGkqmuHs7Ny0Uddo3USLHZrSLzPXc3d3F0KUl5eb\nG15ZWZkQwuBsQeLt7a3v0OpQAQAAgPahaLIZiH5te1NmpcGtHti43A8AAABzUXBHO6msrDRoqaqq\nEkL06dPH3Kmk2r3+utrGpEaplA8AAAB0Jq1Og80aKF0SCgAAgNah4I52cvLkSYOWU6dOiVZtHufh\n4eHs7Hzx4sVbt241br9379758+e7devm4+PThkgBAAAAW9TqNJj8GQAAoN1QcEc7+eyzzxrvBKfV\narOzs3v16jV16tRm+ysUivr6+kfNtmDBgvv3769bt66hoUFq0el0GzZsuHnz5rx587p14+YELUtK\nSjJrA3fAdgQHB2dmZlo7CgAArMDENLhpLk3+DBtx9OhR7thp+44ePWrtEACgAyOvQjtxcnKaPXv2\njBkzBg4cePny5d27d9++ffvPf/6zq6trs/3d3d0vX76ckJDQu3fvt956y+DRV1555fDhw9nZ2Vqt\ndvLkyXZ2dvn5+SdPnvT29l6yZInln01rJSdbO4L/j2o7Oq72Pklr8ZtrS19tGXSypwObxScNaBUT\n0+CmuXRHzZ/Roo7265TTENunVCr5RxEAaAsK7mgn69at27lz56effiqttfH29v7ggw9CQ0Mf1T8+\nPn7t2rW5ublCiKYF9169eu3evXvNmjW5ubnffPON1DJt2rTExEQXFxdLPo+2MfPe8QBsQovf3E72\n1e5kTwc2i08a0CompsFNc+mOmj+jRfw6BVwDz/UAACAASURBVADAxih0Op21YwBsy6BBg4qLi60d\nBdpVTIwIChLR0dY4tp+fyMwUFljpk5UlCgoEO68A6Gr4Ow60D75r6Fhanxv7+YmjR0UbVny3eQIA\n8uAvF9oNe7gDAAAAAAAAACADtpQBABEUJNRqoVZb4dDR2mhNjFJrgZm1Wiut2QcAAABsjFIp1Grh\n52f2wGhttGai0Lbh0Nq2DAYAdEAU3AFABAdbYk8XEyVFWWxqLlwFAAAAhBDBweLo0dYNbWu6Tk4O\nAF0NBXcAIAkGAAAAOjlyfgBA+2APdwAAAAAAAAAAZEDBHQAAAAAAAAAAGVBwBwAAAAAAAABABhTc\nAQAAAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAAAAAZUHAHAAAAAAAAAEAGFNwBAAAAAAAAAJAB\nBXcAAAAAAAAAAGRAwR0AAAAAAAAAABlQcAcAAAAAAAAAQAYU3AEAAAAAAAAAkAEFdwAAAAAAAAAA\nZEDBHQAAAAAAAAAAGVBwBwAAAAAAAABABhTcAQAAAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAA\nAAAZdLN2AABgW7RaodFYO4jWio62dgQAAABAu7NiDk8GDgAwQMEdAP7LxIlCqRRKpaXmj9LEaJVB\nBcpo2WfOyhLBwRaMHAAAALBNarXQaERwcCuHB2nUQunbihRdo6HgDgAwRMEdAAwlJbU+WW/ZRK2I\nCrJEXt5xF+YDAAAAbRQdLZKSWjs4RiuCfM1N0Tv0pbEAAMthD3cAAAAAAAAAAGRAwR0AAAAAgI5M\nrZZnYKvnQUfR9C02/qar1f/u0IrPBh8nAF0VBfdOaN26dYMHD/7222+tHYhFXL9+vaKiQv+juU+2\nc784AAAA6DramBijU0lOlmdgq+dBR9H0LTb+picn/7tDKz4bfJwAdFUU3DshnU6n0+msHYWlqFSq\nmJgY/Y/mPtnO/eJ0FBqNRsNmhzCZVqvNysqydhQAANicNibGgInUrFPuyHj7AKD9UXDvhGJjY/fs\n2TNkyBBrB9IeutST7TS0Wu3WrVutHQU6DD4wAACYgsQYFpKVlaXVaq0dBVopOTmZtw8A2lk3awcA\n+bm7u7u7uxs0VldXCyGcnZ3bMnNtba1Op3NycnpUBxOPcvfu3Z49eyoUikd1uHnzZrdu3UyJttkn\na+4kAAAAgFW0mLLev3/fzs7OSAauZyQxbjGNl1RXV/fq1ctIlg4AAIAWscK9g9m8ebNKpcrJyTFo\nj4uLCw0NlerdUp/z588LIerr69PS0gIDAwP+4+23366qqtIPXL16tUql+uWXXxrPtmvXLpVKdfz4\ncenHhoaGjIyMiIgIf39/f3//sLCwtLS0+vp6ff8Wj5KamqpSqS5duvTee+9NmjRp5MiRTz/9dGxs\nrBSk3g8//PCnP/1p+PDhzzzzTEBAwLhx4zZs2NDQ0CA9unjxYpVKVVNTU1JSolKpJk+ebPBkTZkE\nAAAAsLoWU9b6+voPPvhg6tSpAQEBI0aMmDhxYkZGRm1trfSoiYlxi2m8dC5QV1eXmpr6/PPPBwQE\n+Pv7x8XF3bhxo71eCQAAgM6GFe4dzLhx495///3du3dPnz5d33jt2rWvvvpqwoQJ0tKY3377rbS0\ntKamRgiRmJiYnZ09dOjQGTNm2NnZFRUVffHFF8XFxZ9//rm0dKWioqK0tPThw4eNj3L79u3S0tK7\nd+8KIR4+fLhw4cITJ054e3vPnTvXzs6uoKAgPT29qKgoMzOzR48ephylqqqqtLQ0MTHxhx9+CAwM\nnDp16sWLF48dO/biiy9+8MEHEydOFEL89NNPL730Uk1NzahRo4YPH/7gwYPc3NxNmzZ179598eLF\nQghPT8+6urqff/7ZwcHBx8fHzs7O4MmaMgkAAABgXS2mrDU1NTExMd98880TTzwxZ86cmpqao0eP\nvvvuuz/88MP777+vUChMSYxNSeOlc4GUlJS8vLznnnsuODj48OHDR44cqays3LlzpxVfIgAAgI6L\ngnsHM2zYsIEDB545c6aiosLNzU1qzM/P1+l006ZNM+hcW1t74MABT0/PXbt22dvbCyFee+21RYsW\naTSa4uLiwYMHm3LEbdu2nThxYvz48WlpaT179hRCJCQkxMfH5+fnZ2ZmxsXFmX6UH3/8MTMzMyAg\nQPqxoKAgLi7unXfeGT9+vIODw44dO+7cufPGG2+8+uqrUof58+f//ve/LywslE48kpKShBAjRozo\n379/RkZGs9G2OAlshEajaXyPLwOZmZkGLUY6y95fq00SQmlkuC1Tq9VCaB/1qHVf2Fb3Z9NJAEAn\n02LKum3btm+++SY0NPS9997r1q2bEKKmpmby5MkHDhx46aWXnnrqKVMS4xbTeH3PoqKi/fv39+3b\nVwixYsWKkJCQs2fPXrp0aeDAgRZ+JdAqarVITm6mveleQMnJIinJ7IFN5olu6cabtpA0ajRR0dHB\nRiaxHJs9rwnSaKK1Wp0Qws/vvzo1/ai0uJGU1MHIZ6zVH0sA6IwouHc8ERER7777bl5e3vz586WW\nQ4cOOTs7P/fccwY97e3tHR0dq6qqLl++LKXLCoUiMTFx3rx5jz/+uImH+/jjjx0cHFJSUqQ0XQjh\n5OSUnJxcWFiYkZHx6quvmn6UOXPm6KvtQoigoKCwsLCcnJyDBw+Gh4f/7ne/W7RoUWRkpL6Dm5ub\ng4NDRUWF6S+OLJMIIQYNGtS0ccmSJUuXLjVrHjyKUqkMCgoyvb9ZndvYX6NRmjXWpiiVvr6+vqb3\nb88XttX9lUqlRqMxax4AXUFaWlp6erq1owBao8WUNSMjo1u3bm+//bZUbRdCODk5qdXqAwcO3Lx5\n08SjmJLGS+1xcXFStV0IYWdnN2XKlM2bN5eXl7dYcCdnto6kpGbqlQqF0OlkGNjcPFl+ftFKpY0n\nmVqt0qwZ5KLVam32vEYEBWUJERMTU1JSolQq/93Y9C02/uGRKuY6XQvdWv2xBCyALBFWR8G945k2\nbdrf/va3gwcPSgX3Gzdu/Otf/5o+fXr37t0Netrb28+aNeuTTz6JiIgYN27c2LFjAwIChg0b1r9/\nfxOPVVVVVVFRMXToUC8vr8btbm5uTz755OnTp8vLywcMGGDiUSZNmmTQMnHixJycnOLiYiHE7Nmz\npcaff/750qVLly5dys3NraurMzFUiSyTCCGkkGA5SqUyOjra9P5mdW5jf6PLd2xdVFS0Ppc2RXu+\nsK3ur9FoKLgDaGrp0qXNFvWarQACNsV4ynrz5s2Kigp/f3/99aySCRMmTJgwwcRDmJjGS43Dhg1r\n3Kd3795CiAcPHrR4FHLmriMqKkppTpbZ/kljQYFZE8jGls9rJMbXyAOdElkirI6Ce8fTt2/fsWPH\nFhUV3bhxo2/fvvn5+Q0NDREREc12XrFixZAhQ3bu3FlYWFhQUCCE6NOnT2xs7MKFC005VllZmRDC\nIE2XeHt7nz59uqysbMCAASYeRb9wRs/d3V0IUV5eLoSorq7euHHjnj17KisrFQqFl5fXM888Y+5W\nErJMAgAAAFiO8ZT16tWrornM2SwmpvFSi3QjKAM61qUCAAC0CgX3Dmn69OnHjx8/dOhQZGTkoUOH\nvLy8Ro8e/ajO4eHh4eHhd+7cOXv27JEjR/bs2fPuu+8KIYzU3PXrWaRE/8aNG037SI1SxdzEo1RW\nVj7xxBONJ6mqqhJC9OnTRwjx2muvFRUVzZw5c+7cuYMGDXJychJC/POf/zTtJfk3WSYBAAAALMd4\nyiotML9161ZbDmF6Gg8AAAB52Vk7ALRGSEiIi4vLwYMHf/vttzNnzkybNk3R3E1OysrKPvvss++/\n/14I4eLiEhgYmJycvGHDBiFEXl6e1MfR0VEIce/evcYDL168KP2Hh4eHs7PzxYsXDTL+e/funT9/\nvlu3bj4+PqYcRXLy5EmDCE+dOiWEUCqVFRUVRUVFgwcPXr169fDhw6WzjtraWoPAjJNlEgAAAMBy\nWkxZ+/Xr5+joeOHCBYNNXbZt2/Z///d/mzdvNuUopqTxMj0hAAAA/BcK7h2Sk5NTaGjot99++49/\n/KO+vn7atGnNdlMoFCkpKevXr29oaNA3Srm1tKhcCOHp6Sn+uzJ+4cKFw4cP639csGDB/fv3161b\np59Ep9Nt2LDh5s2b8+bN69atmylHkXz22WeNd3fRarXZ2dm9evWaOnWqtNTd4GrWjIyMhw8fNp5W\nelL19fXNPl/TJ4F1BQcHJ3FjephMqVRmZmZaOwoAAOTRYspqZ2cXHh5++/btxrX1+vr6jIyM2tra\nwMBAfaORxFiYkMbL+7zQiWVmZpq1gTtsytGjR3n7AKCdkWZ1VNOnT//88883bdo0fPhwPz+/Zvt4\neXlNmDDh2LFjkZGRL7zwgqur67Vr17Zv3y6ECAsLk/qEhoZu2rRpy5YtZWVlo0eP/umnn3bs2PHs\ns88WFhZKHV555ZXDhw9nZ2drtdrJkyfb2dnl5+efPHnS29t7yZIlJh5F4uTkNHv27BkzZgwcOPDy\n5cu7d+++ffv2n//8Z1dXVxcXl8cff/zMmTMrV6589tlnKysrjx8/fu7cOTc3t19//fWLL774wx/+\nIE3i7u5++fLlhISE3r17v/XWW43nf+KJJ0ycBNZFwgez8IEBAHQmpqSsr7/++pEjRz766KOffvrp\n2WefLS0tzcvLKy8vnzt37pAhQ/RTGUmMhQlpPDqV5GR5BjY3T3BwcCsnhw0wfPuavsXGPzz6R1vx\nGWv1xxIAOjgK7h3VyJEjfX19S0tLH3W7VElqauratWv37t175swZqcXPz2/9+vVTpkyRfhw0aNCq\nVatWr16dk5OTk5Pj5ub25ptvuri46AvuvXr12r1795o1a3Jzc7/55hupZdq0aYmJiS4uLiYeRbJu\n3bqdO3d++umn0kocb2/vDz74IDQ0VAhhb2//0Ucf/eUvf8nOzs7Ozra3tw8ICNizZ09OTk56evqq\nVav0tfL4+Pi1a9fm5uYKIQzOK0yfBAAAALAKU1JWd3f3ffv2/fWvfz169Kh0KWqPHj2WLl36yiuv\nNJ7KSGIsTEvj0Xm0+vpRg4Fch9rpNX2Ljb/p+kdb8dng4wSgq1Jw9/muoKam5tq1a3fv3u3Tp4+0\nh4yBhoaGq1evKhSKAQMGGJnn6tWr9fX1Pj4+zW4Zb+QoycnJ27dvz8nJGTp06J07d65cueLl5SXd\nD6oxnU5XXl5+584dPz8/aTtLIcSVK1dcXV3/53/+x8Qn2/ZJBg0aVFxcbOLh0Pn4+YnMTGHBdTwT\nJ4qoKBEdLfvEfn7i6FHBcnAAXRx/x4H2wXcNNiUmRiiVbSjwxsSIoCBzU3StVkycKEpKWntQAO2L\nv1xoN6xw7xKcnJyM78lgZ2dnyn2T+vfv35ajSFxcXIYNG9bsQwqFwtvb26DR3Bs6yTIJAAAAAAAA\nAJiLgjsA/JfgYBETY8H5o7XBWq1So5Z/5kb3JAYAAAC6kKAgoVaLrKxWDg/WBgmN2Sm6VmvJ62IB\nAB0WBXcA+C9JSZbebDDp3/+XG5vJAAAAoGuKjm5j7TtatCpFJwMHADRFwR3tITk5OZkblKODIGkG\nAAAAOhzSeACAjbCzdgAAAAAAAAAAAHQGFNwBAAAAAAAAAJABBXcAAAAAAAAAAGRAwR0AAAAAAAAA\nABlQcAcAAAAAAAAAQAYU3AEAAAAAAAAAkAEFdwAAAAAAAAAAZEDBHQAAAAAAAAAAGVBwBwAAAAAA\nAABABhTcAQAAAAAAAACQAQV3AAAAAAAAAABkQMEdAAAAAAAAAAAZUHAHAAAAAAAAAEAGFNwBAAAA\nAAAAAJABBXcAAAAAAAAAAGRAwR0A8P/Yu/ewqMr18f/PDCAe0DwgKpgOXhmopSIamilgRroTtdyl\nZiq4PSCpuZXyu003EJfm2QzrIjcFVJskJf2kkkhuZhI+loe21SVmeMmgghkgHlAYEOb3x/rs+c3m\nMMzgGmaA9+sveNY9z3OvBSP33K4DAAAAAAAAZEDDHQAAAAAAAAAAGdBwBwAAAAAAAABABo62TgAA\nWja1Wmg0tk5CCCFE//4iJMTWSQAAAAAPITra1hnIZP58oVLZOgkAgC3QcAeAhxIaKlQqc4vp+epQ\nrcpfowqxRiZRUTTcAQAA0IIlJorERBEQYK35rVqNG9NqhVotMjOtvQ4AwB7RcAeAhxUZafanglAh\n/K3VFk9MtMq0AAAAQLMJCBAJCVab3ZrVuLHERJGUZPVVAAD2iXu4AwAAAAAAAAAgAxruAADUp9Xc\nQBQAADQ/CgkAANoqGu6wUzdu3CguLjZ8u3nzZm9v7x9//NGGKQFoW6KibJ0BALQtzV/vyb5irQrW\nxKA11qJgti8UEgAAtFU03GGngoKCQkNDDd/q9Xq9Xm/DfNDMEhMT1Wq1rbOAbfDTB4C2qfnrPdlX\nrFXBmhi0xloUzC0dJRBaGX6lAbRZNNzRMixYsODgwYODBg2ydSJoJhqNRqvV2joL2EYST5gCgDaJ\neu8hcQBbOkogtDJJSUl8pgPQNjnaOgG0Zrdu3XJ0dHRxcWkooLy8XKlUOjs7NzqVm5ubm5tbvZsq\nKyv1en2jk5SVlXXq1EmhUDS6FgAAAJpfvfVeWVmZEMJEPWmORotSW01YXl7u7OysVDZyFpSZdSwF\nMwAAgD3gDHfILycn5/XXXx86dKifn5+vr+/YsWN37txZU1NjCKiurn7vvfemTJni6+s7bNiwwMDA\n+Pj4yspKaevSpUuDgoJ0Ol1eXl5QUNCkSZOEEHv27AkKCjp//rxhkpqamvj4+OnTp/v4+Pj4+AQH\nB8fGxlZXVxsCNm7cGBQUVFVVtWvXrueff97X19fHxyc8PLyoqKi5jgQAAACE+E8td+DAgVrj4eHh\nkydPlrrqxvVedXV1bGzsuHHjfP9j3bp1paWlhhdKld7vv/9uPNv+/fuDgoJOnDghfdtoUWopExPW\nW8HWOyiE0Ov1H3/88ZQpU0aMGPHUU0+FhYVlZWUZL2S6jm1oWgpmAAAAe8AZ7pDZpUuX5s2bp9Pp\nRo4cOXTo0IqKirS0tLi4uPbt2y9dulQIodPpQkNDz549O2DAgJkzZ+p0uszMzK1bt+bk5Gzfvl2h\nUPTu3buqqurq1atOTk79+vWTTvm5efNmfn6+TqeTVnnw4MHChQtPnjzp4eExa9YspVKp0Wh2796d\nnZ2dkJDQoUMHIURxcXF+fn5MTEx6evqzzz4bEBBw7Nix48ePl5SUpKSk2PAQAQAAtDVjx47dvn37\nV1999eKLLxoGr1+//q9//Wv8+PHSqeLG9d769etTU1MHDx780ksvKZXK7Ozsffv2Xbx48csvv5TO\nv5YqvQcPHhivcufOnfz8/Hv37gkzilJLmZ6w3gq23sGampqwsDCNRuPj47No0aKSkpKjR49mZWW9\n//77EyZMkNYyXcfWO62gYAYAALAPNNwhs7179969e3fVqlVLliyRRubMmfPcc89lZWVJn22Sk5PP\nnj07efLkbdu2OTo6CiF0Ot2kSZOOHDkyb9684cOHR0ZGCiGGDRvWt2/f+Pj4eldJTk4+efLkM888\nExsb27FjRyFERETE6tWrMzIyEhISwsPDDZHZ2dmHDx/u2bOnEGLNmjUTJ048d+5cbm7uwIEDrXwk\n8LCio6NN3MgyMzOz1khgYKCJ2awXr9UmCKEyMVVzstVBkDderVZL/w40n+hoERVVz3jda+qjokQz\n5wYArcKQIUMGDhx45syZ4uJiV1dXaTAjI0Ov10+bNq1WcGVl5ZEjR3r37r1//34HBwchxIoVK8LC\nwtRq9cWLF729vc1ZsdGi1FKmJ6y3gq13MCUlRaPRLF26dOXKldLIsmXLZs6cGRERkZ2dLfXBJQ3V\nseZUy4KCuTnJV0hER0dHR0c3tLWl1HIPE6/VBgQEtJJaS6vVBgY2+MBkezja1o5Xq9Xz5883MQkA\ntFY03CGzxx9/PCwsbO7cuYYRV1dXJyen4uJi6dv4+HhHR8d169ZJ3XYhhLOzc3R09JEjR27dumXm\nKh999JGTk1NMTIz04UGaJCoqKisrKz4+fsmSJdJnMyFEeHi49OFBCKFUKl944YU9e/YUFhaa/vzg\n5eVVd3DZsmXLly83M0M8vICAAH9/f/PjLS3m5IrXalUWzWNVtjoItoqXTWRkPZ9+FQqh19siGwBm\niY2N3b17t62zgAWmT5++devW9PT0OXPmSCNHjx51cXF59tlna0U6ODi0a9eutLT08uXLUs2mUCjW\nr18/e/bs7t27m7lco0WppeSaMC4urlevXsZVZZ8+fd544421a9empaXNmDHDMN60OtbA2gWzoGY2\nkK+QUKlULaIAtl68RqOyaAY7Z9EBsf+fjrzxgPVQJcLmaLhDZq+88or0xdWrV3Nzc3Nzc9PS0qqq\nqqTBW7duFRcX+/j4GM5skowfP378+PFmLlFaWlpcXDx48GB3d3fjcVdX1yeeeOL06dOFhYWPPvqo\nNDhkyBDjmG7dugkhKioqTC9x8eJFM5OB9fj7+4eEhJgfb1GwjPENn4RkA7Y6CPLGm7iyAQAMli9f\nXm9Tr94OIOzBtGnTduzY8c0330gN96Kion//+98vvvhi+/bta0U6ODj8+c9//uSTT6ZPnz527Nin\nn37a19d3yJAhffv2NX8500VpE8gy4e3bt3///XdPT89PPvnEePyPP/4QQvzwww/GDfem1bGSZiiY\nBTWzFcyfPz8gIMD8ePus5R4yXqOxaA77pVKpWsTHGevFU9XDVqgSYXM03CGzsrKyDz/88ODBgyUl\nJQqFwt3d3c/PT6vVSluvXbsmhDCcQdM0BQUFQohaHx4kHh4ep0+fLigoMHx+kG4JWoues1YBAACa\nV8+ePZ9++uns7OyioqKePXtmZGTU1NRMnz693uA1a9YMGjQoJSUlKytLo9EIIXr06LFgwYKFCxea\nuZzporQJZJlQKobz8vK2bdtWd2tJSYnxtw9Tx1IwAwAA2AoNd8hsxYoV2dnZM2bMmDVrlpeXl7Oz\nsxDi22+/lbZK58vcvn37YZaQ+vVFRUV1N0mDbm5uDzM/AAAArOHFF188ceLE0aNH586de/ToUXd3\n91GjRjUUPHXq1KlTp969e/fcuXPHjx8/ePDg1q1bhRAmeu7GJ2WbLkqbQJYJe/XqJYR4+umnN23a\nVHerk5NTk9OrhYIZAADAVpS2TgCtSnFxcXZ2tre398aNG4cOHSp9DqmsrLx//74U0KdPn3bt2l24\ncKHWNarJyclPPvnknj17zFmlV69eLi4uv/32W63G/f3798+fP+/o6NivXz+ZdggAAACymThxYufO\nnb/55pubN2+eOXNm2rRpirpPlRSioKDg888//+WXX4QQnTt3HjduXFRU1M6dO4UQ6enpUky7du2E\nEIYiU/Lbb79JXzRalFpKrgldXV27du165cqVnj179jJSVVX1zTffPMwJ+LVQMAMAANgKDXfIqbS0\nVNS5KDU+Pv7Bgwc1NTVCCKVSOXXq1Dt37hj31qurq+Pj4ysrK8eNG2cYVCgU1dXVDS302muvlZeX\nb968WZpWCKHX63fu3Hnr1q3Zs2cbHseKlisyMtLSmwai1UhISLDo7qUAgJbC2dl58uTJP/744z//\n+c/q6upp06bVG6ZQKGJiYrZs2WKo9IQQUoO4R48e0re9e/cWRv13IcSFCxeOHTsmfd1oUWopMyes\nt4KtNfjqq69eu3bts88+M46JjIx89913zbw/u4m1jFEwtziUQGhlEhIS+EwHoG2izIKcBgwY0L17\n9zNnzqxdu3bMmDElJSUnTpz46aefXF1d//jjj3379r388stvvPHG8ePHP/jgg0uXLo0ZMyY/Pz89\nPb2wsHDWrFmDBg0yTOXm5nb58uWIiIhu3bq9/fbbtRZavHjxsWPHUlNTtVrtpEmTlEplRkbG999/\n7+HhsWzZsubdaViFSqWydQqwGXv56UdF2ToDAGiFXnzxxS+//DIuLm7o0KGenp71xri7u48fP/67\n776bO3fun/70p65du16/fv2LL74QQgQHB0sxkydPjouL+/jjjwsKCkaNGnXp0qW9e/eOGTMmKytL\nmFeUWpS2mRPWW8HWGvzLX/5y6NChjRs3nj59evTo0RUVFRqN5tSpU+PGjRs9erT5KZmulgUFs81Z\nXkjYSwkEyIRfaQBtFme4Q04ODg4ffPCBSqVKTU2NiIjYsmVLZWXlwYMHZ82aVVFRsWHDBiGEm5vb\noUOHJkyYkJmZGRUVlZCQUFpaunz58lqfE1avXt2nT5+0tLR//vOfdRfq1KnTV199NXPmzN9++23D\nhg0xMTG//PLLtGnT/ud//qdr167NtLcAWrfISFtnAACt0IgRI/r37//gwYOGHpcq2bVr18yZM8+f\nP//OO++sWrVq69atTk5OW7ZseeGFF6QALy+vDRs2ODg4HDhwYO3atV9//fVbb7314osvSlvNKUot\nYuaE9VawtQZdXFwOHDgwbdq07OzsmJiYrVu3njt37rXXXtu1a5dSacGnM9PVsqBgtjkKCQAA2ioF\nT58HavHy8rp48aKts0CL4ekpEhKEuZf/hoYKf39hnSsrFQrBv+gAwN/x1kSn012/fv3evXs9evSQ\n7iFTS01NzbVr1xQKxaOPPlp3q16vLywsvHv3rqenp3TXdSHElStXunbt2qVLlybkI++Eer3+ypUr\n1dXVffv2lW5Jbz3Xrl2rrq7u169fvTfNbxrea7CGxESh0YiEBKstYM1q3FhiokhKEpmZ1l4HgAX4\ny4Vmwy1lAAAAANgjZ2dn03ckUCqVJh7+qVAoPDw8ag3WG59gsr03fPhwHx8fiyY0h0Kh6N+/f9Ne\na6m+ffs2z0IAAACg4Q4ADyUkRAQGmhscIOaLRKEOtUom3CMRAICmuXz5somtzdYWBxAQIEJDRWKi\n1ea3ZjVeC48LBYA2i1vKALVxkREA3LctHwAAIABJREFUAC0Xf8eB5sF7DQDQsvCXC82Gh6YCAAAA\nAAAAACADGu4AAAAAAAAAAMiAhjsAAAAAAAAAADKg4Q4AAAAAAAAAgAxouAMAAAAAAAAAIAMa7gAA\nAAAAAAAAyICGOwAAAAAAAAAAMqDhDgAAAAAAAACADGi4AwAAAAAAAAAgAxruAAAAAAAAAADIgIY7\nAAAAAAAAAAAyoOEOAAAAAAAAAIAMaLgDAAAAAAAAACADGu4AAAAAAAAAAMiAhjsAAAAAAAAAADKg\n4Q4AAAAAAAAAgAxouAMAAAAAAAAAIAMa7gAAAAAAAAAAyICGOwAAAAAAAAAAMnC0dQIAYO+io22d\nQR39+4uQEFsnAQAAAJhNrRYaja2TsCfz5wuVytZJAACsgDPcAcAUrVZERVn2kv5a9fzEQKtkI4QQ\nQqsVSUnWmx4AAACQX3S00Gpttrq1S3RLqdWU9ADQanGGOwA0QqUSkZGWvEAthNbCl1g0vdoeT7oH\nAAAATJs/XwQE2GhttXVLdAAADDjDHQAAAAAAAAAAGdBwB2ASp1IDzY/3HQAAAAAALRMNd7u2efNm\nb2/vH3/80Urx9qNu5jdu3CguLjYRgGZi6f3LATw83ncAYE8sLURXr17t7e1dUFBg/pxRUVHe3t4X\nLlywKA0KZgAAADtEw92u6fV6vV5vvXj7UTfzoKCg0NBQEwFoldRqdWJioq2zgM1otdpoTu4GANiZ\nptXkpl9SN6AJL6FgllFiYqJarbZ1FgAeCm9kAHaChrtdW7BgwcGDBwcNGmTrRKyu0T1tO4eijdNq\ntRqNxtZZwGa0Wi0lMgDA3lijEG3CnBTMVpWUlGTrFAA8LN7IAOyEo60TaPHKysqEEC4uLiZiKisr\n9Xq9s7OziZjy8nKlUlkrxs3Nzc3NrW7wrVu3HB0dTS9qkXpXN2bmLrRv316hUJheq6ysrFOnTrXC\nGtpTcwLMya2hdQEAAADTTFeqpovMmpqaO3fuPPLIIxZVv/fu3evYsSMFMwAAQEvEGe5NVF1dHRsb\nO27cON//WLduXWlpqXFMTU1NfHz89OnTfXx8fHx8goODY2Njq6ura83z3nvvTZkyxdfXd9iwYYGB\ngfHx8ZWVldLWPXv2BAUFnT9/Xvo2Jyfn9ddfHzp0qJ+fn6+v79ixY3fu3FlTU/Mwe2FidTN3obKy\ncsuWLcHBwSNGjPDz81u1atW9e/emTJmybt06KWDjxo1BQUFVVVW7du16/vnnfX19fXx8wsPDi4qK\nDJMY7+nSpUuDgoJ0Ol1eXl5QUNCkSZPqHgpzcjNnXQAAAMC0WoWomUXmvXv33nnnnVGjRvn5+Zmu\nfg30ev22bdsmTJgwYsSIp556asGCBcYBFMwAAAAtAme4N9H69etTU1MHDx780ksvKZXK7Ozsffv2\nXbx48csvv5ROCXnw4MHChQtPnjzp4eExa9YspVKp0Wh2796dnZ2dkJDQoUMHIYROpwsNDT179uyA\nAQNmzpyp0+kyMzO3bt2ak5Ozfft2hUJx8+bN/Px8nU4nhLh06dK8efN0Ot3IkSOHDh1aUVGRlpYW\nFxfXvn37pUuXNmEXGl3dnF24d+9eWFjYqVOnBg8eHBIScvv2bbVavWjRory8PHd3d2mh4uLi/Pz8\nmJiY9PT0Z599NiAg4NixY8ePHy8pKUlJSZFijPe0d+/eVVVVV69edXJy6tevn1KprBVg5uE1Z10A\nAADAtFqFqJlF5t///netVvv888937tzZdPVrEBMTk5OTM27cuClTpvz222/ffffdq6+++t577wUG\nBgoKZgAAgBaChntTVFZWHjlypHfv3vv373dwcBBCrFixIiwsTK1WX7x40dvbWwiRnJx88uTJZ555\nJjY2tmPHjkKIiIiI1atXZ2RkJCQkhIeHSzFnz56dPHnytm3bHB0dhRA6nW7SpElHjhyZN2/e8OHD\njRfdu3fv3bt3V61atWTJEmlkzpw5zz33XFZWVtMa7o2ubs4ufP7556dOnXr55ZffeecdqdAvLCyc\nM2fOgwcPai2XnZ19+PDhnj17CiHWrFkzceLEc+fO5ebmDhw4sFZkZGSkEGLYsGF9+/aNj49vKPlG\nc7N0XYjoaBEVVc943cuKo6JEZKSVslCr1dKnynplZmbWGjERLF987UGb02q1gYGhDW210VGSIV6r\n1apUKhNTtUL28b4DAFiq0SKzuLjY0ir0119/TUhI8PX1lb7VaDTh4eHvvPPOM8884+TkZBxJwWwN\n0dHRJh7ebj/1UsuNV6sjIyMDTEzS1iQmJqrVDd5z3B5+ZC0uXq1WR1IwA7ADNNybwsHBoV27dqWl\npZcvX5bKUIVCsX79+tmzZ3fv3l2K+eijj5ycnGJiYqTqVgjh7OwcFRWVlZUVHx+/ZMkSBweH+Ph4\nR0fHdevWSf1uKSY6OvrIkSO3bt2qtejjjz8eFhY2d+5cw4irq6uTk1NxcXHT9qLR1RvdBaVS+dln\nn3Xs2PGtt96Suu1CCHd398WLF0fV6R+Fh4dLRbwQQqlUvvDCC3v27CksLGxaHW/O4X2Ydb28vOoO\nLlu2bPny5U3ItsWIjKynnadQCL2+ObNQqVQWFUmWVlSWxickJIQ22Nm2Jbs6SnLFa7XaNvekI/t4\n3wEtUWxs7O7du22dBdquRovMJlShM2fONHTbhRD+/v7BwcEHDhz45ptvpk6dammG1i6YRaurmQMC\nAvz9/c2Pbyn1lT3FB1g0Q6sXEBAwf77K/PiW8CNuSfFoxagSYXM03JvCwcHhz3/+8yeffDJ9+vSx\nY8c+/fTTvr6+Q4YM6du3rxRQWlpaXFw8ePBgw21VJK6urk888cTp06cLCws7d+5cXFzs4+Pj6upq\nHDN+/Pjx48fXXfSVV16Rvrh69Wpubm5ubm5aWlpVVVXTduHWrVumVzdnF5ydnYuKikaNGtWlSxfj\nmNGjR9ddcciQIcbfduvWTQhRUVHRhOTNye3RRx99mHUvXrzYhMQgC5VKFRAQYH68RcFNiLfPE65V\nKlVAgMr8eGsfJbni1Wq1RfMAaMuWL19eb1Ov3g4gILtGi8wmVKETJkyoNRIYGHjgwIEmlKbNUDCL\nVlcz+/v721UV2vriG75+oI1qrSW9DeNNXKSCNoUqETZHw72J1qxZM2jQoJSUlKysLI1GI4To0aPH\nggULFi5cKIQoKCgQQtSqbiUeHh6nT58uKChwcXERQhjOJWlUWVnZhx9+ePDgwZKSEoVC4e7u7ufn\np9Vqm5b/tWvXTK9uzi506tRJCGE4qd+gVv9dIu1vLfomncJpTm6Gzw8yrgsAAABIGi0ym1CF1i3O\n3dzchBCFhYWWpkfBDAAAYCs03Jtu6tSpU6dOvXv37rlz544fP37w4MGtW7cKIRYuXCjVykVFRXVf\nJQ26ubk5OzsLIW7fvm3mcitWrMjOzp4xY8asWbO8vLykl3/77bdNS146b8XE6ubsQvv27YUQN2/e\nrBVw48aNpmVlJnNys2oCAAAAgOxKSkoGDBhgPFJaWiqE6NGjh6VTUTADAADYitLWCbRIBQUFn3/+\n+S+//CKE6Ny587hx46Kionbu3CmESE9PF0L06tXLxcXlt99+q9XRvn///vnz5x0dHfv169enT592\n7dpduHCh1tWaycnJTz755J49e4wHi4uLs7Ozvb29N27cOHToUKnbXllZef/+/abtQqOrm7kLHTt2\n/Pnnn+/evWscU/fpJfIyJzerJgAAAADI7vvvv681curUKdGkG9xRMAMAANgKDfemUCgUMTExW7Zs\nqampMQxKNavh9JPXXnutvLx88+bNhhi9Xr9z585bt27Nnj3b0dFRqVROnTr1zp07xr316urq+Pj4\nysrKcePGGa8ondtS62LP+Pj4Bw8eGOdgPnNWb3QXFArFq6++qtPpduzYYZgkNzf3008/bUJKtSgU\niurq6oa2NprbwycAmwgICEhISLB1FrAZlUpl7f+xAwDAbn3++efGd4zUarWpqamdOnWaMmVKvfEU\nzDJKSEiw9IbRAOwNb2QAdoIyqync3d3Hjx//3XffzZ07909/+lPXrl2vX7/+xRdfCCGCg4OlmMWL\nFx87diw1NVWr1U6aNEmpVGZkZHz//fceHh7Lli2TYt54443jx49/8MEHly5dGjNmTH5+fnp6emFh\n4axZswYNGmS84oABA7p3737mzJm1a9eOGTOmpKTkxIkTP/30k6ur6x9//LFv376XX37Z0r1odHVz\ndmHx4sWZmZnJyckXLlzw8/MrKChQq9X+/v7Smf4Pw83N7fLlyxEREd26dXv77bdrbTUnN8gjKqo5\nV7PPJ5Si2fAL8H+a930HALATzs7Or7zyyksvvTRw4MDLly9/9dVXd+7c+X//7/917dq13ngKZhlR\nhACtAG9kAHaChnsT7dq1a9OmTV9//fWZM2ekEU9Pzy1btrzwwgvSt506dfrqq6/efffdtLS0s2fP\nSiPTpk1bv359586dpRg3N7dDhw79/e9/z8zMlDrUHTp0WL58+eLFi2st5+Dg8MEHH/ztb39LTU1N\nTU11cHDw9fU9ePDggQMHdu/evWHDhiY03Btd3ZxdeOSRR/bt27d58+YTJ07ExcX16tUrODh49erV\nhw8frvfhS+ZbvXr1pk2b0tLShBB1Pz+YkxvkERlp6wyAtof3HQC0SZs3b05JSfn000+l89Y9PDze\ne++9yZMnNxRPwQwAAGCHFDx9/mHodLrr16/fu3evR48evXv3bijs2rVr1dXV/fr1UygU9QZUV1fn\n5eU5Ozu7u7s7ODg0NI9ery8sLLx7966np6d0G3chxJUrV7p27dqlS5cm74U5qze6C0KI+/fvd+zY\nUQjx66+/Tps2bcmSJatWrWpyVuYzJzeLeHl5Xbx4UZap0ApotSIwUOTlWfIatVpERwur3RrFytMD\nQMvG33GgefBeg6UCA0VkpLDZDT/srIaOjhaCsyyA5sVfLjQbznB/KM7OzuZcstS3b1/TAQ4ODo89\n9lij8ygUCg8Pj1qD9T7vyPRdsIcPH+7j42PR6g3twsaNG8+cObNnzx5XV1ep2y6ESE5OFkI8+eST\npueUS6OHFwAAAAAAAACaAQ331uny5csmtvbv31+uhby8vJKSkpYtW/bXv/7Vy8vr+vXrBw4cSElJ\nGTJkyMSJE+VaBbA5iy6fUAlVgJifKM8VF/ULCbHi5AAAAIDsAgJEYKDNVm+GEt1SdnO2PQBAZtxS\nBg/rH//4R1xcXFlZmWFkwoQJkZGRJu6xY+e4yAgAgJaLv+NA8+C9BgBoWfjLhWbDGe54WIsWLVq0\naJGtswAAAAAAAAAAG1PaOgEAAAAAAAAAAFoDGu4AAAAAAAAAAMiAhjsAAAAAAAAAADKg4Q4AAAAA\nAAAAgAxouAMAAAAAAAAAIAMa7gAAAAAAAAAAyICGOwAAAAAAAAAAMqDhDgAAAAAAAACADGi4AwAA\nAAAAAAAgAxruAAAAAAAAAADIgIY7AAAAAAAAAAAyoOEOAAAAAAAAAIAMaLgDAAAAAAAAACADGu4A\nAAAAAAAAAMiAhjsAAAAAAAAAADKg4Q4AAAAAAAAAgAxouAMAAAAAAAAAIAMa7gAAAAAAAAAAyMDR\n1gkAgN1JTBQaTRNfqxJarVDJmY0QkZFCJfOUAAAAgN3RakV0tFVmVgmtEEL2Qr2WhASrTg8AaBlo\nuANAbdHRIiCgiT1uf3WSvxCagEi5kklMFP7+IiRErvkAAAAAO5WUJLRaERAg/8z91eoAbVJSSKb8\nU/9HYqJQq62SPACgZaHhDgD1mD//oWpl+frtQquVbSoAAADAzqlUIlK+Wvr/11+IJOvM/B9qtRUn\nBwC0INzDHQAAAAAAAAAAGdBwB2A2K91PETAfv4QAAAAAAMCO0XCH/QoJCfH29i4vLxdCbN682dvb\n+8cff7R1Um1bVJStM0Cbxy8hAOC/WVolttyqsm7mN27cKC4uNhEAAACA5kfDHfZLr9fr9fq6X6MV\nCAwMtHUKaA6JiYmJiYm2zgIA0JpZWiW23KqybuZBQUGhoaEmAtBCqdXqaK7qQ8sRHR2t5gb2AGCE\nh6aiZViwYMG0adNUKpWtE4EMtFqtlieBtg35+fm2TgEA0Mq1nSqx0T1tO4ei1aNaRsui1Wr79+9v\n6ywAwI7QcEcTVVVVOTk5GY+Ul5c7OzsrlQ1eNnHr1i1HR0cXFxcT05aVlTk5OTk7O9cad3Nzc3Nz\nM/GqTp06KRSKereWl5e3b9++oa0AAACwqrKyMiGE6SKwsrJSr9fXLQKNlZeXK5XKWjENVYnmVJ4W\nqXd1Y2bugjl1ab3Frel62HSAObk1tC4AAAAswi1lYK61a9cGBwcLIdLS0ubNmzdq1ChpXK/Xf/zx\nx1OmTBkxYsRTTz0VFhaWlZVl/MKcnJzXX3996NChfn5+vr6+Y8eO3blzZ01NjXFMRUXFhg0bgoKC\nfH19fXx85s+ff/78eeOAPXv2BAUFGQY3btwYFBRUVVW1a9eu559/XnpVeHh4UVGR4SWVlZVbtmwJ\nDg4eMWKEn5/fqlWr7t27N2XKlHXr1lnj+AAAAMBYdXV1bGzsuHHjfP9j3bp1paWlxjE1NTXx8fHT\np0/38fHx8fEJDg6OjY2trq6uNc977703ZcoUX1/fYcOGBQYGxsfHV1ZWSltrVYnmVJ6W7oWJ1c3c\nhUbrUnOKW+M9Xbp0aVBQkE6ny8vLCwoKmjRpUt1DYU5u5qwLAAAAi3CGO8x148aNK1eu/PDDDxER\nEXq9/tFHHxVC1NTUhIWFaTQaHx+fRYsWlZSUHD16NCsr6/33358wYYIQ4tKlS/PmzdPpdCNHjhw6\ndGhFRUVaWlpcXFz79u2XLl0qzVxWVjZ37tycnJyBAwfOnz+/oqLif//3f+fOndu1a1fD6jdv3szP\nz9fpdNK3xcXF+fn5MTEx6enpzz77bEBAwLFjx44fP15SUpKSkiKEuHfvXlhY2KlTpwYPHhwSEnL7\n9m21Wr1o0aK8vDx3d/fmPnYAAABtz/r161NTUwcPHvzSSy8plcrs7Ox9+/ZdvHjxyy+/lM6hfvDg\nwcKFC0+ePOnh4TFr1iylUqnRaHbv3p2dnZ2QkNChQwchhE6nCw0NPXv27IABA2bOnKnT6TIzM7du\n3ZqTk7N9+3aFQmFcJZpTeVqk0dXN2QVz6tJGi1vx3/Vw7969q6qqrl696uTk1K9fP+ka01oFszm5\nmbMuAAAALELDHRaoqqpauXJlSEjI8uXLpRo9JSVFo9EsXbp05cqVUsyyZctmzpwZERGRnZ3doUOH\nvXv33r17d9WqVUuWLJEC5syZ89xzz2VlZRk+9iQmJubk5EyZMmXLli0ODg5CiPLy8hUrVnz33Xem\n88nOzj58+HDPnj2FEGvWrJk4ceK5c+dyc3MHDhz4+eefnzp16uWXX37nnXekTyCFhYVz5sx58OCB\ndY5NqxMdLaKi6hmve4lxVJSIjGzCCp6eng1tysvLMz/YGvFabaYQKhMzNLPo6Ojo6MSGttr8cDUa\n30TW/yUEAFhPZWXlkSNHevfuvX//fqnAW7FiRVhYmFqtvnjxore3txAiOTn55MmTzzzzTGxsbMeO\nHYUQERERq1evzsjISEhICA8Pl2LOnj07efLkbdu2OTo6CiF0Ot2kSZOOHDkyb9684cOHGy9qTuVp\nkUZXN2cXzK9LTRS3tSIjIyOFEMOGDevbt298fHxDyTeam6Xrotmo1Wp7rpatF6/VhoSEtOC6LjQ0\nVAh1Q1tb0A/ConitVuvv72/ihQDQ1tBwhwWqq6tHjRr11ltvGUbi4uJ69eq1fPlyw0ifPn3eeOON\ntWvXpqWlzZgx4/HHHw8LC5s7d64hwNXV1cnJqbi42DCSlJTk5OS0du1a6cOYEKJDhw5RUVHPPfdc\nratxawkPD5c+GAghlErlCy+8sGfPnsLCwscee+yzzz7r2LHjW2+9ZbinvLu7++LFi6Pq7d/V4eXl\nVXdw2bJlxnvaykVG1tPBVCiEXi/L9FqtNjMz0/z4hIQEi+Z/yPjQUJVFL7e2kJD5FpWwzXy4rMXK\nv4QAWrrY2Njdu3fbOgs0yMHBoV27dqWlpZcvX5b6tgqFYv369bNnz+7evbsU89FHHzk5OcXExEjt\nYCGEs7NzVFRUVlZWfHz8kiVLHBwc4uPjHR0d161bJ/W7pZjo6OgjR47cunWr1qLmVJ4WaXT1RndB\nqVSaX5c2VNw2rfFtzuF9yHWpma1HpVJFWnI+gb2Vf02OT0pSWfRCexMSMt/ff7758Xb7g7AoPjo6\n2qJXAdZGlQibo+EOy8ycOdPw9e3bt3///XdPT89PPvnEOOaPP/4QQvzwww8zZsx45ZVXpMGrV6/m\n5ubm5uampaVVVVUZgouKiu7cuePj49OjRw/jSTw8PB5//PELFy6YSGbIkCHG33br1k0IUVFRUVRU\nVFRUNGrUqC5duhgHjB492szdvHjxopmRaBqVShUQEGB+vEXBzRDfzPr3VwUEqMyPb+OHC0AbsXz5\n8nqbevV2ANH8HBwc/vznP3/yySfTp08fO3bs008/7evrO2TIkL59+0oBpaWlxcXFgwcPrnW7P1dX\n1yeeeOL06dOFhYWdO3cuLi728fFxdXU1jhk/fvz48ePrLtpo5WmRW7dumV7dnF1wdnY2vy5tqLht\nQvLm5CbdIvJh1qVmtp6WXi03OV6jEVqtRS+1L/7+lu263f4gLIpPSkqy6FWAtVElwuZouMMyhs9I\nQohr164JIfLy8rZt21Y3sqSkRAhRVlb24YcfHjx4sKSkRKFQuLu7+/n5aY1qqN9//10IYTinxpib\nm5vphruLi0vdQb1ef+PGDSGE4eQpg1qfcwAAAGA9a9asGTRoUEpKSlZWlkajEUL06NFjwYIFCxcu\nFEIUFBQIIep9uI6Hh8fp06cLCgqkYq/eQrFejVaeFpFqXROrm7MLnTp1EmbXpQ0Vt5ZkbUFuhoa7\njOsCAACAhjssI53wIunVq5cQ4umnn960aVPdSCcnJyHEihUrsrOzZ8yYMWvWLC8vL2dnZyHEt99+\nawhzc3MTQty8ebPuDKWlpU1LUjpZvu6cUiMeAAAAzWPq1KlTp069e/fuuXPnjh8/fvDgwa1btwoh\nFi5cKDWyi4qK6r5KGnRzc5NKx9u3b5u5XKOVp0WkutfE6ubsQvv27YUt6lJzcrNqAgAAAG2W0tYJ\noAVzdXXt2rXrlStXevbs2ctIVVXVN998o9Vqi4uLs7Ozvb29N27cOHToUOkzT2Vl5f379w2TuLm5\nubi45OTk3Llzx3jy0tLSJl+j2qdPn44dO/7888937941HrfopuEAAABosoKCgs8///yXX34RQnTu\n3HncuHFRUVE7d+4UQqSnpwshevXq5eLi8ttvv9XqaN+/f//8+fOOjo79+vXr06dPu3btLly4UOv2\nJsnJyU8++eSePXuMB82pPC3S6Opm7oJN6lJzcrNqAgAAAG0WDXc8lFdfffXatWufffaZ8WBkZOS7\n775bUVEhnaJe6xrV+Pj4Bw8e1NTUSN8qFIpXX331/v37O3bsMFy4qtfrd+zYodPpmpaVNKdOp9ux\nY4dhMDc399NPP23ahJCXSqWq+4B7tEqRkZEWPe8LANBqKBSKmJiYLVu2GKo+IYTU5DU8uee1114r\nLy/fvHmzIUav1+/cufPWrVuzZ892dHRUKpVTp069c+eOcW+9uro6Pj6+srJy3LhxxiuaU3laxJzV\nG90Fq9alCoWiurq6oa2N5vbwCcBKQkJCmukZ9YAcEhISQkJCbJ0FANgRyiw8lL/85S+HDh3auHHj\n6dOnR48eXVFRodFoTp06NW7cuNGjR+v1+u7du585c2bt2rVjxowpKSk5ceLETz/95Orq+scff+zb\nt+/ll18WQixatCg9Pf2LL77QarUTJkzQ6/WZmZn//ve/e/bsWe9lsOZYvHhxZmZmcnLyhQsX/Pz8\nCgoK1Gq1v7+/dEYVmigqytYZoM3jlxAAWgh3d/fx48d/9913c+fO/dOf/tS1a9fr169/8cUXQojg\n4GApZvHixceOHUtNTdVqtZMmTVIqlRkZGd9//72Hh8eyZcukmDfeeOP48eMffPDBpUuXxowZk5+f\nn56eXlhYOGvWrEGDBhmvOGDAAHMqT4s0uro5u2C9utTNze3y5csRERHdunV7++23a201JzcAAADI\njoY7HoqLi8uBAwdiYmIyMjIyMjKEEO3atXvttddWrVqlVCqFEB988MHf/va31NTU1NRUBwcHX1/f\ngwcPHjhwYPfu3Rs2bJA+9nTp0mX//v3r16/XaDQnT54UQvTp0yc+Pn737t1Nbrg/8sgj+/bt27x5\n84kTJ+Li4nr16hUcHLx69erDhw/X+1QomIVTlWFz/BICQMuxa9euTZs2ff3112fOnJFGPD09t2zZ\n8sILL0jfdurU6auvvnr33XfT0tLOnj0rjUybNm39+vWdO3eWYtzc3A4dOvT3v/89MzNT6lB36NBh\n+fLlixcvrrWcg4ODOZWnRRpd3ZxdsF5dunr16k2bNqWlpQkh6jbczckNAAAAslPw9HnIQq/XX7ly\npbq6um/fvu3atau1qbCw8O7du56entLNNIUQV65c6dq1a5cuXYwjq6ur8/LyunXrZrjQWBb379/v\n2LGjEOLXX3+dNm3akiVLVq1aZSLey8urybePR+vg6SkSEkRAQJNeHB0thJx94dBQ4e8vuEYTAMzE\n33F7o9Pprl+/fu/evR49evTu3buhsGvXrlVXV/fr10+hUNQbIBWKzs7O7u7uDg4ODc1jfuVpEXNW\nb3QXhOV1qVzMyc1SvNdgDdHRQqsVVrmhTmKiSEoS1nx8QmCgiIxs6ocIANbHXy40G85whzwUCkX/\n/v0b2uTh4VFrsN7HNDk4ODz22GOy5LNx48YzZ87s2bPH1dVV+lQjhEhOThZCPPnkk7IsgdZNqxVa\nbVNeqBJCqxWiSa8FAKD1cXYTaHJYAAAgAElEQVR2VqlUjYb17dvXdICZhaL5lafpe2QPHz7cx8fH\notUb2gV7qEsbPbyA/WhyHW6a6j+TAwBgbTTc0Tp5eXklJSUtW7bsr3/9q5eX1/Xr1w8cOJCSkjJk\nyJCJEyfaOjvYu5AQER39f6eqWypA+GuFSquWM5/58+WcDQAACCEuX75sYmtDp5I0AXUpYD5/f5GY\nKAID5Z9ZJQJUQqW2wsz/tYrKuvMDAFoEbimDVusf//hHXFxcWVmZYWTChAmRkZEmrmWWcJERAAAt\nF3/HYYeaXJfaM95rAICWhb9caDY03IHa+CcYAICWi7/jQPPgvQYAaFn4y4Vmo7R1AgAAAAAAAAAA\ntAY03AEAAAAAAAAAkAENdwAAAAAAAAAAZEDDHQAAAAAAAAAAGdBwBwAAAAAAAABABjTcAQAAAAAA\nAACQAQ13AAAAAAAAAABkQMMdAAAAAAAAAAAZ0HAHAAAAAAAAAEAGNNwBAAAAAAAAAJABDXcAAAAA\nAAAAAGRAwx0AAAAAAAAAABnQcAcAAAAAAAAAQAY03AEAAAAAAAAAkAENdwAAAAAAAAAAZEDDHQAA\nAAAAAAAAGdBwBwAAAAAAAABABjTcAQAAAAAAAACQgaOtEwAAmSUmCo2mWVdUCa1WqGSfNjJSqOSf\nFQAAALBT0dFCq5V5Tnlr9fnzRUCAXJMBAFonGu4AWpvoaBEQIPz9m2/FkFDPxKg80V8l45xJSUKr\npeEOAACAtkKrFVFRIiFB5mlDQj0TE/SyTKXRiKQkGu4AgEbQcAfQCjX3iSehImS+kPcc96QkOWcD\nAAAA7J9KJUJC5J40VLY58/PlPwEfAND6cA93AAAAAAAAAABkQMMdAAAAAAAAVhMdbesMAKD50HCH\nPbpx40ZxcbHxyObNm729vX/88UdbpQQAAADYm5CQEG9v7/LyckHBDMCeRUXZOgMAaD403GGPgoKC\nQkNDjUf0er1eL8+Dbtqg0NBQtVpt6yyAh8VvMgAAtRgXyRTM0Gq1tT5GAZYKDAy0dQoA0OLRcEfL\nsGDBgoMHDw4aNMjWibRI9CjROvCbDACACRTM0Gq1Wp7piYfArxAAyIKGOxpXXl5eU1NjOubevXu1\nRiorK6WLWxtSWVmp0+nMzMHNzW3QoEEdOnRo8jxlZWWc8gMAAIBmU1VVVWuk0br61q1bZWVlpqct\nKyurt/o1UTCLxorh8vJySmUAAABZ0HBHg/R6/ccffzxlypQRI0Y89dRTYWFhWVlZhq0bN24MCgqq\nrKzcvn37xIkTR4wYMW7cuA8//FAI8fPPP8+dO3fkyJHDhw+fOHHikSNHjKetqamJj4+fPn26j4+P\nj49PcHBwbGxsdXW1tHXp0qVBQUE6nS4vLy8oKGjSpEnS+J49e4KCgs6fP2/mPIYMq6qqdu3a9fzz\nz/v6+vr4+ISHhxcVFVnvoAEAAKDNWrt2bXBwsBAiLS1t3rx5o0aNksZN19VCiJycnNdff33o0KF+\nfn6+vr5jx47duXNnrdZ8RUXFhg0bgoKCpLJ2/vz5xrWxqFMwm1MMV1ZWbtmyJTg4eMSIEX5+fqtW\nrbp3796UKVPWrVtnjeMDAADQFjjaOgHYqZqamrCwMI1G4+Pjs2jRopKSkqNHj2ZlZb3//vsTJkwQ\nQhQXF+fn569evfqnn36aMGFC+/btv/766127dpWVle3du7dz586zZs26ffv2oUOH3nzzTZVKNWTI\nECHEgwcPFi5cePLkSQ8Pj1mzZimVSo1Gs3v37uzs7ISEhA4dOvTu3buqqurq1atOTk79+vVTKv/v\n/4Ru3ryZn59vOJen0XkMGcbExKSnpz/77LMBAQHHjh07fvx4SUlJSkqKjY4rAAAAWq0bN25cuXLl\nhx9+iIiI0Ov1jz76qDCjrr506dK8efN0Ot3IkSOHDh1aUVGRlpYWFxfXvn37pUuXSjOXlZXNnTs3\nJydn4MCB8+fPr6io+N///d+5c+d27drVsHqtgrnRYvjevXthYWGnTp0aPHhwSEjI7du31Wr1okWL\n8vLy3N3dm/vYAQAAtBY03FG/lJQUjUazdOnSlStXSiPLli2bOXNmREREdna24UrVvLy8r7/+Wir0\nJ0+e/Morr3z88ccLFix48803pV55//79d+3alZ2dLTXck5OTT548+cwzz8TGxnbs2FEIERERsXr1\n6oyMjISEhPDw8MjISCHEsGHD+vbtGx8f31B6jc5jiMzOzj58+HDPnj2FEGvWrJk4ceK5c+dyc3MH\nDhxonSNnp0w/PSkvL6/WiKenZ4uObx1CQ0OFUDe01f5/CvyUAQBtUFVV1cqVK0NCQpYvXy7VzI3W\n1Xv37r179+6qVauWLFkiBcyZM+e5557LysoyNNwTExNzcnKmTJmyZcsWBwcHIUR5efmKFSu+++47\n0/mYKIY///zzU6dOvfzyy++8845UuhcWFs6ZM+fBgwfWOTZoDlqt1kRNRYH38NRqtadng5+t7P8I\nm47PzMw0sdVc0dEiKqqecYWi9khUlIiMlGFFALAzNNxRv7i4uF69ei1fvtww0qdPnzfeeGPt2rVp\naWkzZsyQBleuXGk4rWbYsGHt2rWrqqqaM2eO4cz0kSNHCiEMF65+9NFHTk5OMTExUpdcCOHs7BwV\nFZWVlRUfH79kyRLp80OjzJ8nPDxc+oAhhFAqlS+88MKePXsKCwtNN9y9vLzqDi5btsz4gLQskZGR\nAQEB5sdbWmnZW3zrEBkZGRBgQQFqbz8FfsoArCo2Nnb37t22zgKorbq6etSoUW+99ZZhpNG6+vHH\nHw8LC5s7d64hwNXV1cnJqbi42DCSlJTk5OS0du1aQ5XboUOHqKio5557zvieinU1VAw/9thjn332\nWceOHd966y1D6e7u7r548eKoejtl9Wl9NXPrYFFNRYFnKZVKlZDQgo9wc/xEIiPraaMrFIIHRaC5\nUCXC5mi4ox63b9/+/fffPT09P/nkE+PxP/74Qwjxww8/GBrutYrs9u3b9+7du2/fvoYRZ2dnw9el\npaXFxcWDBw+udY2qq6vrE088cfr06cLCQunCW9Msmkc6s96gW7duQoiKigrTS1y8eLHRNFoWlUql\nUqksird0fruKbx0s/KHZ3U+BnzIAq1q+fHm9Tb16O4BAc5o5c6bha3Pq6ldeeUUavHr1am5ubm5u\nblpamvEDV4uKiu7cuePj49OjRw/jSTw8PB5//PELFy6YSKahYrioqKioqGjUqFFdunQxDhg9erT5\ne9r6auZWoKWX/favdZfoWq3WotkA+0SVCJuj4Y56XLt2TQiRl5e3bdu2ultLSkoMXyvqXBRmOEGm\nroKCAiFEvXeE9PDwOH36dEFBgTkNd4vmcXFxqRum57/WAQAAYB3GZ5+YU1eXlZV9+OGHBw8eLCkp\nUSgU7u7ufn5+xm2v33//XQhhOFHdmJubm+mGe0PF8I0bN4QQ3bt3r7WpVv8dAAAAlqLhjnr06tVL\nCPH0009v2rSp7lYnJ6emTSt9SDDcXsaYNOjm5tac8wAAAACyk84il5hTV69YsSI7O3vGjBmzZs3y\n8vKSrhD99ttvDWFScXvz5s26M5SWljYtSelk+bpzSo14AAAANBkNd9TD1dW1a9euV65c6dmzp/EZ\n69euXfv222+HDh1a91wYc/Tq1cvFxeW33367ffv2I488Yhi/f//++fPnHR0d+/Xr15zzAAAAAFbV\naF1dU1OTnZ3t7e29ceNGw9bKysr79+8bSm43NzcXF5ecnJw7d+4Yn4FeWlra5Ju69OnTp2PHjj//\n/PPdu3c7d+5sGG99d9wGAABoZg3e/QNt3Kuvvnrt2rXPPvvMeDAyMvLdd99t9AboJrz22mvl5eWb\nN2+uqamRRvR6/c6dO2/dujV79mxHx//7HyCFQmH66U9mzgNJXl6eRU9MBewTv8kAgJbIdF0tnaJe\n68Yv8fHxDx48MBS6CoXi1VdfvX///o4dOwy3RtTr9Tt27NDpdE3LSppTp9Pt2LHDMJibm/vpp582\nbULYg4CAAP7LBA9DpVLl5eXZOgsAaPHoS6J+f/nLXw4dOrRx48bTp0+PHj26oqJCo9GcOnVq3Lhx\nFj1JqZbFixcfO3YsNTVVq9VOmjRJqVRmZGR8//33Hh4ey5YtM4S5ubldvnw5IiKiW7dub7/9dpPn\nAQAAAGzLdF2t1+u7d+9+5syZtWvXjhkzpqSk5MSJEz/99JOrq+sff/yxb9++l19+WQixaNGi9PT0\nL774QqvVTpgwQa/XZ2Zm/vvf/+7Zs2e9N1o0x+LFizMzM5OTky9cuODn51dQUKBWq/39/dPT02U9\nAAAgRFSUrTMAgOZDwx31c3FxOXDgQExMTEZGRkZGhhCiXbt2r7322qpVq0w8FrVRnTp1+uqrr959\n9920tLSzZ89KI9OmTVu/fr3xpayrV6/etGlTWlqaEKLehruZ8wAAAAC21Whd/cEHH/ztb39LTU1N\nTU11cHDw9fU9ePDggQMHdu/evWHDBqnh3qVLl/37969fv16j0Zw8eVII0adPn/j4+N27dze54f7I\nI4/s27dv8+bNJ06ciIuL69WrV3Bw8OrVqw8fPlzvo1YBoOkiI22dAQA0H4XhmkQAEi8vrybfDRP2\nwNNTJCSIZr31iEIh8vKESiXjlIGBIjKyefcCAFoF/o7Dbun1+itXrlRXV/ft27ddu3a1NhUWFt69\ne9fT01N6aKoQ4sqVK127djW+absQorq6Oi8vr1u3btJTT+Vy//79jh07CiF+/fXXadOmLVmyZNWq\nVaZfwnsNstNqRWCgkP+OJgqFkKnvER0ttFqRkCDLZACaG3+50Gw4wx1AK6TVCq22+ZZTiWZdDgAA\ntEQKhaJ///4NbfLw8Kg12K9fv7qRDg4Ojz32mCz5bNy48cyZM3v27HF1dZW67UKI5ORkIcSTTz4p\nyxJAE8heV6uo1QEAzYuGO4DWJiREREeL6OhmXFGVkBiqkn1aWc+YBwAA+C9eXl5JSUnLli3761//\n6uXldf369QMHDqSkpAwZMmTixIm2zg5tVECACAyUec4QVUKifHNyZxQAQKO4pQxQGxcZAQDQcvF3\nHDDfP/7xj7i4uLKyMsPIhAkTIiMje/fu3ehrea8BAFoW/nKh2XCGOwAAAAC0RYsWLVq0aJGtswAA\nAGhVlLZOAAAAAAAAAACA1oCGOwAAAAAAAAAAMqDhDgAAAAAAAACADGi4AwAAAAAAAAAgAxruAAAA\nAAAAAADIgIY7AAAAAAAAAAAyoOEOAAAAAAAAAIAMaLgDAAAAAAAAACADGu4AAAAAAAAAAMiAhjsA\nAAAAAAAAADKg4Q4AAAAAAAAAgAxouAMAAAAAAAAAIAMa7gAAAAAAAAAAyICGOwAAAAAAAAAAMqDh\nDgAAAAAAAACADGi4AwAAAAAAAAAgAxruAAAAAAAAAADIgIY7AAAAAAAAAAAycLR1AgBgFaGhQqtt\njoUChFotAqwxc0KCUKmsMTEAAAAgM7VaREfbOgkhVEKrElor1ecPKTJSBATYOgkAgPXRcAfQOiUm\nioQEq6+iElpVaGj/hDzZZ05KElotDXcAAAC0DElJQqUS/v42TkOlUavUSf0jA2ycRx0ajdBoaLgD\nQJtAwx1AqxUSYv01tEKorLJQUpL8cwIAAADW4+/fLBV4o7T2kcZ/y8+3dQYAgObCPdwBAAAAAAAA\nAJABDXcAAAAAAACgNbKHpysAbQwN92ayefNmb2/vH3/8seWueOPGjeLiYnMGrbFW8x9AAAAAwP7J\nXidTeANAqxIVZesMgDaHhnsz0ev1er2+Ra8YFBQUGhpqzqA11mr+A9hGhIaGJiYm2joLoBGenp62\nTgEAADsle51sV4W3VqulDABgvtDQULVabessALR1NNybyYIFCw4ePDho0CBbJ9JScQCtRKvV2joF\noBH8lgIAYELrrpMpAwBYhH80ANgDR1sn0Fa4ubm5ubnVGiwrKxNCuLi4PMzMt27dcnR0fMhJrDFh\neXm5s7OzUtnIf+qUlZV16tRJoVCYDqv3AEoqKyv1er2zs7MsCwEAAAASWQrIe/fuderUyXiksrKy\nurq6Q4cODb3EzEK6qqrKycmpoTq5vLxcqVSaKJJl/xwBAAAAwRnustizZ09QUNCBAwdqjYeHh0+e\nPFnqqksx58+fF0JUV1fHxsaOGzfO9z/WrVtXWlpqeOHGjRuDgoJ+//1349n2798fFBR04sQJ6duc\nnJzXX3996NChfn5+vr6+Y8eO3blzZ01NTZP3wsSES5cuDQoK0ul0eXl5QUFBkyZNamhQCKHX6z/+\n+OMpU6aMGDHiqaeeCgsLy8rKMl5I2ruqqqpdu3Y9//zzvr6+Pj4+4eHhRUVFJqY1PoCSmpqa+Pj4\n6dOn+/j4+Pj4BAcHx8bGVldXm7kQAAAAUIs5BWSjtboUUFlZuX379okTJ44YMWLcuHEffvihEOLn\nn3+eO3fuyJEjhw8fPnHixCNHjhhP0mghvXbt2uDgYCFEWlravHnzRo0aJerUydXV1e+9996UKVN8\nfX2HDRsWGBgYHx9fWVlpmET2zxEAAAAwxhnuMhg7duz27du/+uqrF1980TB4/fr1f/3rX+PHj5fO\nGbl582Z+fr5OpxNCrF+/PjU1dfDgwS+99JJSqczOzt63b9/Fixe//PJL6fSZ4uLi/Pz8Bw8eGK9y\n586d/Pz8e/fuCSEuXbo0b948nU43cuTIoUOHVlRUpKWlxcXFtW/ffunSpU3YBdMT9u7du6qq6urV\nq05OTv369ZPOtal3sKamJiwsTKPR+Pj4LFq0qKSk5OjRo1lZWe+///6ECROktaS9i4mJSU9Pf/bZ\nZwMCAo4dO3b8+PGSkpKUlJR6p611AIUQDx48WLhw4cmTJz08PGbNmqVUKjUaze7du7OzsxMSEqTT\nhUwv1ISjBAAAgNbNnAKy0VpdCli9evVPP/00YcKE9u3bf/3117t27SorK9u7d2/nzp1nzZp1+/bt\nQ4cOvfnmmyqVasiQIcK8QvrGjRtXrlz54YcfIiIi9Hr9o48+Kv67TtbpdKGhoWfPnh0wYMDMmTN1\nOl1mZubWrVtzcnK2b9+uUChk/xwBAACAWmi4y2DIkCEDBw48c+ZMcXGxq6urNJiRkaHX66dNm1Yr\nuLKy8siRI717996/f7+Dg4MQYsWKFWFhYWq1+uLFi97e3uasuHfv3rt3765atWrJkiXSyJw5c557\n7rmsrKymFcqmJ4yMjBRCDBs2rG/fvvHx8VJAvYMpKSkajWbp0qUrV66URpYtWzZz5syIiIjs7Gzj\ny2azs7MPHz7cs2dPIcSaNWsmTpx47ty53NzceqetKzk5+eTJk88880xsbGzHjh2FEBEREatXr87I\nyEhISAgPD290oYEDBzbhQLVKoaGhJp58W/eRWaavqraneHt52FeTBQYGCqFuaKs9HWqrx6tUKhNT\nAQAgL1kKyLy8vK+//rpr165CiMmTJ7/yyisff/zxggUL3nzzTemckv79++/atSs7O1tquJtZSFdV\nVa1cuTIkJGT58uV1b0qTnJx89uzZyZMnb9u2zdHRUQih0+kmTZp05MiRefPmDR8+XPbPEc1Aq9Wa\nKBLsqmIhHqZFRUVHRUU1tNX+f7gtJV7qKrRR0dGi3t+xuscqKkq05QMFWBkNd3lMnz5969at6enp\nc+bMkUaOHj3q4uLy7LPP1op0cHBo165daWnp5cuXpZJdoVCsX79+9uzZ3bt3N3O5xx9/PCwsbO7c\nuYYRV1dXJyen4uLipuUv14RxcXG9evVavny5YaRPnz5vvPHG2rVr09LSZsyYYRgPDw+XPsP8f+zd\neXxM1//48ZNFEkRqScQulETEFjslQglqLyX2tbV8bCX0Q7VJmg9Vu6LFJxoUH7vYBUFKkMVea5AJ\nEUJil0hiMr8/7uc7v/lkMzOZZGYyr+fDH8mZc89933NnMu9znHuvEMLc3Lxbt25r165NSEhQcxiz\nZs2aYsWKBQQESLPtQghra2s/P78zZ84EBgaOHTtW+s8MrXfk4uKSvXDixImqh1Zk+Pn5DR8+XP36\nsbGxGrWvr/o1amjUjCEKCgry9NSgvrGcGi3qt2/fXqOmAJiCFStWrFy5Ut9RoGjKZ6YqmTp1qjTb\nLoRo2LChlZVVRkbG4MGDlVdwNm3aVAihvFmNmom0XC5v1qzZzJkzc9xpYGCgpaXlnDlzpNl2IYS1\ntbW/v//BgwdfvnwpdD2OKLScWaOkwogynCJZH3kYMWK4r28RHHkZVP08FpOZBF/fHKbRzcyEif3f\nGFki9I4Jd93o1avXkiVLDh8+LE24P3v27NKlS3369LGxsclS08LCol+/fn/88Ufv3r0/++yz1q1b\nN2nSxM3NrUqVKurvrn///tIPDx8+jImJiYmJOXToUEZGhtbx66TBV69ePXnypEaNGn/88Ydq+dOn\nT4UQERERqhPu0kIepTJlyggh3r9/r86OXrx4kZSUVLdu3UqVKqmW29vb16tXLyoqKiEhQbrAVusd\n3b59W51Iiobq1atrtHxY07XGhlbfiDg5aXZwhtbVuqovk8k0ageAiZg0aVKOk3o5zgACGslPpqqU\n5a1oY2NToUIF1Zxf9XGmGiXSAwYMyHGPL1++TEpKcnd3V150K/Hw8PDw8JB+1u04onByZicNUyJj\nyXCKan3kgfRev/VhOsgSoXdMuOuGg4ND69atw8PDnz175uDgcOzYsczMzN69e+dY+bvvvnN1dd22\nbduZM2fCwsKEEOXKlRs1atSYMWPU3N3bt29/++234ODg5ORkMzOzSpUqtWjRIj9zUjppMD4+XggR\nGxu7aNGi7K8mJyer/ird2j4LNS9IfPTokRAiy2y7pHLlylFRUY8ePVJOuOdnRwAAADBBOkkgs9/r\nQLm2PTuNEuncVupIjSjX5udI5+MIAAAAZMGEu8706dPn9OnTR44cGTp06JEjRypVqtSsWbPcKvfs\n2bNnz55v3ry5fPlyaGhocHDwwoULhRB5zLmrrqmZPHlyeHh43759vb29XVxcpNUxx48f1zp4nTTo\n6OgohGjduvX8+fOzv1qsWDGtw8tCGkUoL79VJRWWL19eV/sCAAAAPkrT9e9ZaJRISyvus5PKX716\nlceOdD6OAAAAQBa5LrKApjp27FiqVKnDhw8/f/48Ojq6V69eOT7B49GjR5s2bbp27ZoQolSpUm3b\ntvXz81u6dKkQIiQkRKpjZWUlhEhJSVHd8M6dO9IPSUlJ4eHhderUmTdvXoMGDaQsOT09PUt99emq\nQXt7+9KlSz948MDBwcFRRUZGxuHDh3W4cMbR0dHW1vbOnTtZhhMpKSnXr1+3tLSsVq2arvZV5HEV\nHowCb1QAgOHIO1fXjk4S6YoVK1pZWd28eTPL7P+WLVvq16+/du1anY8jCgdpAAD18RcDgCFgwl1n\nrK2tu3btevHixc2bN8vl8l69euVYzczMLCAgYMGCBZmZmcpCaYK4XLly0q8VKlQQKvPvQoibN28e\nPXpU+vnFixci24WugYGBHz58UG1TfWo2aGZmJpfLsx+OauGgQYPi4+P//PNP1Tq+vr4///yzRqt+\nctyXqiFDhqSmpv7yyy/KCBUKxdKlS1++fDlw4EDlQ6LwUUFBQSNGjNB3FEBenJycTp48qe8oAAD4\nr7xzda3lP5E2Nzfv2bPn69ev165dqyyUy+WBgYHp6elt27bV+TiiEHh6epIGAFBfUFCQp6envqMA\nYOqYl9SlPn36bN++ffXq1Q0aNKhRo0aOdSpVquTh4fHXX38NHTr0iy++KF269OPHj//zn/8IIXr0\n6CHV6dq16+rVq9etW/fo0aNmzZrdvXt369atrVq1OnPmjBCiZs2aZcuWjY6Onj17dqtWrZKTk0+f\nPn3lyhV7e/unT5/u2LHjq6++0ihsNRssX778/fv3fXx8ypQp8/3330vbZikcPXr0/v37582bFxUV\n1bJly/fv34eFhUVGRrZt27Zly5bqh5TjvlR98803R48e3bVrl0wm69Kli7m5+bFjx86fP1+5cuWJ\nEydqdPgAAACA+vLO1bWmk0R6ypQpoaGhq1atunv3bqtWreLi4kJCQhISEry9vV1dXeVyuW7HEQAA\nI+Dnp+8IAJPDCnddaty4cfXq1T98+JDb41Ily5cvHzBgwPXr13/66adp06YtXLiwWLFiCxYs6Nat\nm1TBxcVl7ty5FhYWe/bsmT179r59+2bOnNmnTx/pVQsLi1WrVjk5Oe3atcvHx2fBggXp6enBwcHe\n3t7v37+fO3eupmGr2eD06dMrVqx46NChzZs3K7fNUmhra7tnz55evXqFh4cHBAQsXLjw8uXLQ4YM\nWb58eR4Picoux32pKlmy5O7duwcMGHDnzp25c+cGBARcu3atV69ee/fuLV26tKY9AAAAAKgp71xd\nazpJpMuXL79///4OHTqcPHnSz88vKCjoxYsXkyZNkpaw6HwcAQAwAr6++o4AMDlmCoVC3zGYqLS0\ntMePH797965cuXLSdalZZGZmxsfHm5mZVa1aNfurCoUiISHhzZs3NWrUkG6/KIR48OBB6dKl7ezs\ntIhHtw0qFIoHDx7I5fIqVapIt7ksOPHx8XK5vFq1ajneNF8LLi4ut2/f1klT0CMzM1EYf95kMtG+\nvYiN1XnD7dsLX1/B1ZAAoCm+x4HCwWcNWYwcKdq1E/q/XeX69WLDBmF4dyLy9xeCmU9Ar/jmQqHh\nljJ6Y21tnffTPMzNzfN4+KeZmVnlypWzFOZYPygoKI+9NGrUyN3dXaMG1WFmZla9enXtttVUlSpV\nCmdHMDqnThX8PmTCs2B2pLvHDAMAAACFIS6uUDLwPDnFCafCGQhoSCYTPM4TAEwEE+5F3/379/N4\ntdCmxYFC5uf331UkBcpJiA1OJ2UFsCMnJzJyAAAAGA1fXzFypP5nup2EpxCeBZGf59/w4fqOAABQ\nKLilDJAVFxkBAGC8+Jbca7sAACAASURBVB4HCgefNQCAceGbC4WGh6YCAAAAAAAAAKADTLgDAAAA\nAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgD\nAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKAD\nTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAA\nAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADlvoOAAAKT/v2umzNSciEEDLh\npMM2PT2Fr68O2wMAAAAMxfr1YsMG7TcviPT7o8jPAQCaYsIdgKk4dUrIZCIoSGcNOm3YIISQDddl\nAt6+PQk9AAAAiqYNG4Snp2jXTsvNnTZsEDKZzFd3Cf3HyGRiwwbycwCAZphwB2BCnJyEp6fumgsT\nQggn3TUok+msKQAAAMAAtWuXj4Rc1+n3R506VXj7AgAUGdzDHQAAAAAAAAAAHWDCXf9++eWXOnXq\nXLx4UesKAAAAQBFGwgzj4++v7wiAQpTbG54PAgCTxIS7/ikUCoVCkZ8KAAAAQBFGwgzj4+en7wiA\nQpTbG54PAgCTxIS7ERg1alRwcLCrq6u+A0HRNHLkyPXr1+s7ChiTGjVq6DsEAAD+BwkzjAvZFIzI\nqVOnRo4cqe8oAMCYMOFeINLT09PS0j5aLSMjQ53Wypcv7+rqWrx48Rxfffv2bR7LeVJTU3Wy2Ofd\nu3dZStLT01NTU/PYJDU1NTMzU+fN6rZvIYSQ8aROaII3DABAJ0iYBQmzqZLJZCRUMCK8XQFAU0y4\n52zjxo1eXl67du1Slrx48cLLy8vLy+v169fKwoMHD3p5ee3du1f6NTMzMzAwsHfv3u7u7u7u7j16\n9FixYoVcLlfWnz17do8ePYQQhw4dGjZsWLNmzXLce3R09BdffPHll1/ev39fCLF27VovL6/r169L\nr86bN8/LyysjI2P58uWdO3du0qSJu7v7hAkTnj17pmwhPT19wYIFPXr0aNy4cYsWLaZNm/bu3bvu\n3bvPmTNHzR6Q9pKenr548eKOHTs2bty4bdu2v/32mxDi6tWrQ4cObdq0aaNGjTp27Hjw4EHVDRUK\nxbp167p37964cePmzZuPGzfuzJkz+W9Wi76dO3eul5fXX3/9leXQfvjhBy8vr7i4ODW7AgAAANmR\nMJMwAwAAIDtLfQdgoNzd3efOnRsSEtK3b1+pJDo6Wso4IyMjO3bsKBUeP348Li6uSZMmQogPHz6M\nGTPm3LlzlStX9vb2Njc3DwsLW7lyZXh4eFBQkLTcJjEx8cGDBxERET4+PgqFomrVqtl3ffbs2QkT\nJpQoUSIwMLBmzZpCiOfPn8fFxSlXqSQlJcXFxQUEBISEhHz++eeenp5Hjx4NDQ1NTk7etm2bEOLd\nu3fjxo2LjIysW7fuiBEjXr16derUqa+//jo2NrZSpUpq9oC0l+nTp1+5cqVDhw42Njb79u1bvnz5\n27dvt27dWqpUKW9v71evXu3fv3/GjBlOTk5ubm5CiMzMzHHjxoWFhbm7u3/99dfJyclHjhw5c+bM\nr7/+2qFDB62b1a5v27Rps3Hjxp07d3p4eCiP6+3bt3v37q1Zs2b16tU1flsAAADg/5AwkzADAAAg\nOybcc1a/fv2KFStGRkZmZGQUK1ZMCBEZGVm6dOmMjIyIiAhp/JCZmXn27FlXV9cqVaoIIbZs2XLu\n3Lk2bdqsWLGiRIkSQggfH5/p06cfO3YsKChowoQJUssZGRlTp04dMWLEpEmTsl/0euLEiSlTppQv\nX/6PP/7IO8ENDw8/cOCAg4ODEOK7777r2LHj5cuXY2JiateuvWnTpsjIyK+++uqnn34yNzcXQiQk\nJAwePPjDhw+a9kNsbOy+fftKly4thOjatWv//v3XrVs3atSoGTNmSC1Xr159+fLl4eHhUqK/bdu2\nsLCw8ePHT506VWph4sSJAwYM8PHxCQ8PVx6vps1q17eZmZmVKlU6derU27dvbW1tpTqhoaFpaWnK\nYSEAAAC0Q8IsIWEGAACAKm4pk6tOnTqlpqZeuHBB+jUqKqpFixZNmzY9d+6cVHL9+vWXL196eXlJ\nv65Zs6ZYsWIBAQFSgiuEsLa29vPzK168eGBgoPJaTrlc3qxZs5kzZ2YfPBw+fHjSpElOTk5bt279\n6HKSCRMmSIMHIYS5uXm3bt2EEAkJCQqF4s8//yxRosTMmTOlXFwIUalSpW+++UaLTpg6daqU5Qsh\nGjZsaGVlZWZmNnjwYGXLTZs2FUIoL85dvXq1o6PjpEmTlC1UrFhxypQp7969O3TokNbNate35ubm\n/fr1S0tLCwkJUe764MGDVlZWPXv2zPvAXXKyYsUKzbrPeIwcOdIsd9nr51HZKOobOIPqq+x1eMYX\nAAOxYsWKHL+v9R2XaSFhFiacMAvTy5lz5e8vzMyy/hMih0J/f+VGBp7yFVD9U6dOqdurBuPUqVOG\n2ZmFVj/rE1PVf8Or8UEACgJZIvSOFe658vLy2rhx4+nTp1u2bPn69evbt29/9dVX79+/X7hw4fPn\nz8uWLSvdabFTp05CiBcvXiQlJdWtWzfLJaj29vb16tWLiopKSEhQXg87YMCA7LsLDg7euXOnXC5v\n1aqVcmCQB2kli1KZMmWEEO/fv3/27NmzZ8+aNWtmZ2enWqFly5aaHb8QQogsf49sbGwqVKggLVCS\nWFtbK39+9erVkydPatSo8ccff6hu9fTpUyFERESEcpmMRs3mp2/79eu3atWqffv2Sbt+9epVeHi4\nl5fXJ598kveB3759O+8KRUxQUNCIESPUr6/pg8UMrb6B0+hwCr9vZTJZ+/btNWoEAArCpEmTVKcs\nlRhNFSYSZmHCCbMwvZw5V76+wtc3a6GZmcgz7zLwlK+A6htjFunp6XnypCmeLKX169eHhYX9/981\nesN/7IMAFASyROgdE+65atKkSbly5c6cOTNjxozo6OjMzMwWLVqkpaUpFIrIyMguXbqEh4c7OTnV\nrl1bCPHo0SMhRI43fKxcuXJUVNSjR4+UOa5qoqy0bds2T0/Pv//++88//+zSpUvjxo3zDk95yacq\nhUKRmJgohChbtmyWl7IMJ9SU/X+8lWtqsouPjxdCxMbGLlq0KPurycnJ2jWbn751dHRs167dqVOn\nEhMTHR0dQ0JCPnz4wOWxAAAAOkHCLEiYAQAA8L+YcM+Vubn5559/vmPHjqSkpKioqHLlytWqVSsz\nM9POzu78+fNt27a9dOmS8tIqaYmN8opOVVJh+fLllSXS4posevbsOX/+/BMnTkycOPGf//znvn37\nbGxstAi7XLlyQojnz59nKZfGFQXK0dFRCNG6dev58+dnf1W6s6cW8tm3/fv3P3HixIEDB0aPHn3o\n0KFKlSq1bt1au0gAAACgioRZUyTMAAAARR73cM9L586dFQpFeHh4ZGRk8+bNhRDm5ubNmjU7f/58\nRETEhw8flPejdHR0tLW1vXPnzqtXr1RbSElJuX79uqWlZbVq1fLe18CBAy0sLDp16tS1a9e4uLgl\nS5ZoF3PFihVLlChx9erVN2/eqJafPHlSuwbVZ29vX7p06QcPHjg4ODiqyMjIOHz4sEwm067ZfPat\nh4dHxYoV9+/fn5SUFBkZ2adPnzwWBwEAAEAjJMwaIWEGAAAo8kik8tKyZUs7O7sjR47cvHmzRYsW\nysLY2Njdu3dXqFChfv36yspDhgxJTU395ZdfMjMzpRKFQrF06dKXL18OHDjQ0lLdiwl++OGH0qVL\n//nnn8rHT2nEzMxs0KBBaWlpqiOQmJiYjRs3atGapgYNGhQfH//nn3+qFvr6+v7888/v37/Xutn8\n9K2FhUW/fv1u3ry5cuXKzMzML7/8UuswiionJyd9hwAjw3sGAKBEwqwpEmYIsikYFd6uAKApbimT\nF0tLS09Pz3379gmVZyhJPxw7dmzIkCGqt1b85ptvjh49umvXLplM1qVLF3Nz82PHjp0/f75y5coT\nJ05Uf6flypWbM2eOj4/PrFmz9u7dW7x4cU3D/uabb06ePLllyxZp2PPo0aNTp061a9cuJCRE06Y0\nNXr06P3798+bNy8qKqply5bv378PCwuLjIxs27atdg+hkuSzb/v27fvbb7/95z//admyZY73AzVx\nQUFB+g4BxsTJyakQFgACAIwFCbOmSJjh5OQUGxur7ygAdXl6enp6euo7CgAwJqxw/wjpGlgHB4ca\nNWpIJbVr15aesKS8PFZSsmTJ3bt3Dxgw4M6dO3Pnzg0ICLh27VqvXr327t1bunRpjXbao0ePDh06\naH2d7CeffLJjx44BAwYkJiauXr06MjKyR48e/v7+GRkZOT45SodsbW337NnTq1ev8PDwgICAhQsX\nXr58eciQIcuXL8/Pdan57NuKFSu2bdtWCNGvXz+tYwAAAECOSJg1QsJsKvz89B0BUIhye8PzQQBg\nkswUCoW+YyiC4uPj5XJ5tWrVVFf06EVKSkqJEiWEELdu3erVq9fYsWOnTZtWCPtVKBQPHjyQy+VV\nqlSxsrLSYcva9e3QoUNv3bp1+vRpdZ6s5eLicvv27XzECAN16pTw9xe6XJzt7y+EEL6+umpPJhM1\nagj+KgNAfvA9bixImI06YRZ81qCV9u2Fr6/QfrW0v7+QyUQhXqGr+xEEAP3hmwuFhlvKFAj9XoY5\nb9686OjotWvX2tvbS4MHIcSWLVuEENI9NPO+hUijRo3c3d3zGYOZmVn16tXz2UiOtOjbmJiYyMjI\nIUOGqDl4AAAAQEEjYSZhBgAAKJKYcC+CXFxcNmzYMHHixG+//dbFxeXx48d79uzZtm2bm5tbx44d\nhRD379/PY/MCyvv14syZM2lpaStXrrSwsBgxYoS+w4FBOHVKZ005yYQQQqa7BmUynTUFAADyQMKs\nRMKMQiaTaZ+QO8mEkOky/f6osLDC2xcAoMhgwr0I6tu37/Pnz1evXj1s2DBlYYcOHXx9faWrSgMC\nAvQXXaH69ddfr1y5YmFhMXv27KpVq+o7HOiZk5NwcvrvbWB006AYLoSQ6a5BIQTjXAAACgEJsxIJ\nMwrT8OFiwwbtNy+I9Pujhg8v1N0BAIoA7uEOZMVdvQAAMF58jwOFg88aAMC48M2FQmOu7wAAAAAA\nAAAAACgKmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAH\nAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAH\nmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAA\nAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHmHAHAAAAAAAAAEAHLPUdAADk\n4NQpMXKkvoMQYoRYv16M0HcUWcXG6jsCAAAAFHV6TMgNJwk/eVI4Oek7CACAsWHCHYAhksmEk5Pw\n9dVnDE6yU8J/Q7ugEfoMIpuRI//bOQAAAEDB0VdC7iRkTu1Htjs5orB3nI2/P4k3AEAbTLgDMFBO\nTsLTU68RnBLCSTjpNwYAAABAT/STkMuEEPoeCAghhPD313cEAADjxD3cAQAAAAAAAADQASbcYdB+\n+eWXOnXqXLx40WAbBAAAAApfYmJiUlKSaklRSHRZUQwAUOJLAUaLCXcYNIVCoVAoDLlBAAAAoPB5\neXmN/N8nWhaFRNfPT98RAAAMBl8KMFpMuMOgjRo1Kjg42NXVVd+B6F+NGjVkMpm+owCKCH9/f3+W\nSwAAihYy59yQSANGQSaTmZmZ6TsKANABJtxN19u3b/O/BObdu3dZStLT01NTU/PYJDU1NTMz86Mt\nZ2RkCCHKly/v6upavHjx7I2kpaXlsfnLly/fvn370b0AAAAA+adOiqtF5pyenp530qsqt8xZ/XZ0\nMkAAAAAwcUy4m5B58+Z5eXllZGQsX768c+fOTZo0cXd3nzBhwrNnz7LUefLkieqGO3fu9PLyOn36\ntLJCenr64sWLO3bs2Lhx47Zt2/72229CiKtXrw4dOrRp06aNGjXq2LHjwYMHVRtRKBTr1q3r3r17\n48aNmzdvPm7cuDNnzqhWmD17do8ePYQQhw4dGjZsWLNmzYQQa9eu9fLyun79ulRHLpcvW7ase/fu\nTZo0adiwYfv27QMDA9PT05WN3Lhx4x//+EeDBg1atGjRpEmTzz77bOnSperM7wMAAACayjvF1Tpz\nzszMDAwM7N27t7u7u7u7e48ePVasWCGXy6VXx48f7+XllZaWFhsb6+Xl1aVLF6k8S+b80XaEegME\nAAAAaMRS3wGg8CQlJcXFxQUEBISEhHz++eeenp5Hjx4NDQ1NTk7etm2bap0PHz6obvj69eu4uDhp\nSY5UYfr06VeuXOnQoYONjc2+ffuWL1/+9u3brVu3lipVytvb+9WrV/v3758xY4aTk5Obm5sQIjMz\nc9y4cWFhYe7u7l9//XVycvKRI0fOnDnz66+/dujQQdpLYmLigwcPIiIifHx8FApF1apVhRDPnz+P\ni4uT1uOkpaWNHDnywoULNWvWHDBgQFpa2smTJxcuXHjjxo3FixebmZndvXt32LBhaWlpTZs2bdCg\nwfv37w8dOrR69WobG5vx48cXZlcDAACgyPtoiqtd5vzhw4cxY8acO3eucuXK3t7e5ubmYWFhK1eu\nDA8PDwoKKl68eIUKFTIyMh4+fFisWLFq1aqZm/93EZVq5qxOO0K9AQIAAAA0woS7yQkPDz9w4ICD\ng4MQ4rvvvuvYsePly5djYmJq166tfiOxsbH79u0rXbq0EKJr1679+/dft27dqFGjZsyYIWX81atX\nX758eXh4uDRs2LZtW1hY2Pjx46dOnSq1MHHixAEDBvj4+ISHhyuve83IyJg6deqIESMmTZqU/WLY\nLVu2XLhwoWvXrosWLbK0tBRCpKWldenS5eDBg8OGDWvUqNHWrVvfvHkzbdq0sWPHSpsMHjy4U6dO\nZ86cKRoT7nnfetLJyamI1UduDO1MGXt9AAC0o2aKq2nmvGXLlnPnzrVp02bFihUlSpQQQvj4+Eyf\nPv3YsWNBQUETJkzw9fUVQjRs2LBKlSqBgYG5hffRdpQ1dTJAMHCGln4YSf2s1UyQTJZXXxrMmSoi\n9QGgyGDC3eRMmDBBSqaFEObm5t26dVu7dm1CQoJG+fTUqVOlMYMQomHDhlZWVhkZGYMHD1aur2na\ntKkQQnkt6urVqx0dHSdNmqRsoWLFilOmTJk9e/ahQ4f69u0rFcrl8mbNms2cOTPHnQYGBlpaWs6Z\nM0eabRdCWFtb+/v7Hzx48OXLl0IIZ2fncePGDR06VLmJvb19sWLFkpKS1D80iYuLS/bCiRMnqh5C\n4Wvfvn0er2a/4WaNGjWMuj5y0759eyFkub1q+GfW0OoDMFIrVqxYuXKlvqOASVMzxdU0c16zZk2x\nYsUCAgKkWXIhhLW1tZ+f35kzZwIDA8eOHWthYaFOeOq3o/UAIV85s7+/8PPLoTz7IxP9/ISv78cb\nzJOpJdI6qj9ixIigPNoxBSNHjhTiVG6vGsyZKiL1Y2Nj83gVRZxOvxTIEqF3TLibHGnhjFKZMmWE\nEO/fv9eokSy5tY2NTYUKFapUqaIssba2Vv786tWrJ0+e1KhR448//lDd6unTp0KIiIgI5WhECDFg\nwIAc9/jy5cukpCR3d3d7e3vVcg8PDw8PD+nn/v37Sz88fPgwJiYmJibm0KFD0sNXNXX79m0ttipo\nsbGxGi3O1XRi0dDqIzexsbEardI2tDNraPUBGKlJkyblOKmX4wwgoHPqp7gaZc4vXrxISkqqW7du\npUqVVLeyt7evV69eVFRUQkKCdOvFvGnUjtYDhHzlzL6+OcyYmJmJgvkeN7VEWif1168XYWEaNVME\nnTx50tNTg/pGcWYNtj7r302aTr8UyBKhd0y4mxxbW9vshZp+TZpl+z9G5Qqd7OLj44UQsbGxixYt\nyv5qcnKy6q+qY4/sjSiX3uTo7du3v/32W3BwcHJyspmZWaVKlVq0aMF3NgAAAHRO/RRXo8z50aNH\nQogss+SSypUrR0VFPXr0SJ0Jd43a0ckAAQAAABIm3PFxmq5/z8LR0VEI0bp16/nz52d/tVixYqq/\nSgtqspPKX716lceOJk+eHB4e3rdvX29vbxcXF2mt0PHjx7WOHAAAAMiRRimu+qT1Jcrby6iSCsuX\nL1+Y7QAAAEBTua6tgGmysrISQqSkpKgW3rlzJz9t2tvbly5d+sGDBw4ODo4qMjIyDh8+rOYK9IoV\nK1pZWd28eTPL7P+WLVvq16+/du3apKSk8PDwOnXqzJs3r0GDBtJse3p6epZjAQAAAPJPJyludo6O\njra2tnfu3Mmy0CQlJeX69euWlpbVqlUrzHYAAACgKSbc8T8qVKgghAgJCVGW3Lx58+jRo/lsdtCg\nQfHx8X/++adqoa+v788//6zm8nlzc/OePXu+fv167dq1ykK5XB4YGJient62bdsXL16IbNfDBgYG\nfvjwITMzM5/xGwJPje4dCCBP1atXr169ur6jAAAYt/ynuDkaMmRIamrqL7/8okxiFQrF0qVLX758\nOXDgQEvL/16jbGZmJpfL89+OKSCRBowFn1YARYMJpVlQR9euXVevXr1u3bpHjx41a9bs7t27W7du\nbdWq1ZkzZ/LT7OjRo/fv3z9v3ryoqKiWLVu+f/8+LCwsMjKybdu2LVu2VLORKVOmhIaGrlq16u7d\nu61atYqLiwsJCUlISPD29nZ1dZXL5WXLlo2Ojp49e3arVq2Sk5NPnz595coVe3v7p0+f7tix46uv\nvsrPIehdUFCQvkMAio4RI0boOwQAgNHTSYqb3TfffHP06NFdu3bJZLIuXbqYm5sfO3bs/PnzlStX\nnjhxorJa+fLl79+/7+PjU6ZMme+//17rdkwBiTRgFJycnE6ePKnvKABAB5hwx/9wcXGZO3fuvHnz\n9uzZs2fPHnt7+5kzZ5YqVSqfE+62trZ79uwJCAg4duzYsWPHhBBWVlZDhgyZNm1aHs+MyqJ8+fL7\n9+//8ccfT548Ka3BL168+KRJk7755hshhIWFxapVq2bNmrVr165du3ZZWFg0adIkODh4z549K1eu\nnDt3rrFPuAMAAMCg6CTFza5kyZK7d+/++eefDx06dOHCBamkV69eP/zwQ6lSpZTVpk+fPn/+/EOH\nDgkhcpxwV7Mdw+Lnp+8IAAAGgy8FGC0znj4PZOHi4nL79m19R2Hq1q8XYWFCz6uRTp0S/v7CwBZZ\n1KghTp4UTk76jgMADBXf40Dh4LNW5OktIZfJRI0awgBmKtq3F76+gnucAEUG31woNNzDHQAAAAAA\nAAAAHeCWMgAMlEwm1q/XawRhYoTQdwwAAACAnugnIY8zlCRcJtN3BAAA48SEOwBD5Okp4uJEWJg+\nY3ASTiOdTgq9xpDdiBHcTwYAAAAFTl8JuZMQ/iNiZQaQhHt6cj8ZAIA2mHAHYIicnISvr76DEE76\nDgAAAADQD/0l5E562SsAALrCPdwBAAAAAAAAANABJtwBY7JixQp9h6AHJnjUJnjIgqM2JRy16TDN\nowZgCPj7oxG6S1P0mKboMY3QXZqix2BozBQKhb5jAAyLi4vL7du39R1Fzgw5toJjgkdtgocsOGpT\nwlGbDr0ctWl2NVD4DPyzZuDhGRq6S1P0mKboMY3QXZpSs8foWBQaVrgDAAAAAAAAAKADTLgDAAAA\nAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADTLgDAAAAAAAAAKADZgqF\nQt8xAIbFxcVF3yEAAADt3b59W98hAEUfOTMAwOiQJaJwMOEOAAAAAAAAAIAOcEsZAAAAAAAAAAB0\ngAl3AAAAAAAAAAB0gAl3AAAAAAAAAAB0gAl3AAAAAAAAAAB0gAl3AAAAAAAAAAB0gAl3AAAAAAAA\nAAB0gAl3AAAAAAAAAAB0gAl3AAAAAAAAAAB0gAl3AAAAAAAAAAB0gAl3AAAAAAAAAAB0gAl3AAAA\nAAAAAAB0wMLPz0/fMQAQQojjx4//+uuvK1eu3Ldv39WrV2vWrFm6dOm8N1EoFEePHl20aNGqVasO\nHjx45cqV6tWrly1btnAC1gktjloul2/duvX3339fuXLlsWPH7t+/37BhQysrq8IJuBC8evXqiy++\nsLCwaNCggb5j0THtDs3YO0TT+IODg9esWbNixYoDBw7cvn3bxcXF1ta2oIPUOY2OWi6Xb9q06fff\nf1+xYsWRI0fu3bvn7OxcsmTJQohTt7R+r6ampg4cOPD48eM9evQooNgKjkZHfejQobVr1x77Xxcv\nXmzTpk0hhAqgyDDNtFlr5Ns6Z+zZaQExzVRfa6Y5RsgP0xxfwHhZ6jsAAEIIMXfu3I0bN1pbW9et\nW/f169fbt2/fu3fvqlWr8p6D+O677/bu3VuyZMl69erFxcVdvHhx9+7dy5Yt69SpU6FFnh9aHPXb\nt29HjBhx7do1e3v7WrVqyWSy8+fPHzx48I8//nBycirE2AtQYGDgo0eP3r17p+9AdE+7QzP2DlE/\nfrlcPmnSpNDQUFtbWzc3tydPnmzcuHH79u3r1q1r2rRpIYSqQ+of9YcPH0aMGBEVFVWuXLlPP/30\n2rVr0dHRW7du3bVrV40aNQohVB3S+r06b968a9euubm5FURUBU2joz548OCJEyeyjHYqVapUMKEB\nKJpMM23WGvl2QTD27LSAmGaqrzXTHCPkh2mOL2C8mHAH9C8iImLjxo3VqlVbv3595cqVhRAhISHf\nfvvt999/HxIS27APEQAAIABJREFUYmNjk+NWJ06c2Lt3r6ur6/r160uXLq1QKI4cOTJ16lRfX98O\nHTpYWFgU7kFoTLujXrBgwbVr1wYNGvTDDz+Ym5srFIrff/99+fLlS5Ys+fXXXwv3CHRJLpc/fPgw\nLi4uODj40KFD+g5Hl7Q7NGPvEO3i37ZtW2hoaNu2bVeuXCl9BHbs2DFnzpxp06aFhoYWK1asIEPW\nAe2OevPmzVFRUX369PnXv/5laWmZlpa2dOnSoKAgPz+/DRs2FGjAOpH/9+qJEyd2796d2x89w6T1\nUd++fbtx48abN28uuNgAFG2mmTZrjXxbh4w9Oy0gppnqa800xwj5YZrjCxQNTLgD+rdr1y4hhI+P\nj5QHCyE6d+7cpUuXgwcPhoeHf/755zludeHCBSHE6NGjpWtCzczMunbtunLlyrt3796/f7927dqF\nFb6WtDjqtLS0nTt3litXbtasWebm5kIIMzOzCRMm/PXXX0ePHo2JiTH8o87N/fv3u3fvru8oCoR2\nh2bsHaJd/OvXr7e0tJw3b55yAPzVV1+FhIScPn36zp07hr/8Wbuj3rt3b4kSJebMmWNpaSmEsLa2\n/uabbzZv3nzlypXMzEzpk27I8vleTUpK+v7778ePHy/9STQW2h11SkpKfHy8p6dnAUQEwFSYZtqs\nNfJtHTL27LSAmGaqrzXTHCPkh2mOL1A0MOEO6F9ERISFhUW7du1UCz///PODBw+eP38+t5FDjjed\nlMvl5ubm9vb2BRKoTmlx1Hfv3pXL5Y0aNcpyB8nPPvvs0qVLV65cMd4BQMWKFZUrhq5evRoYGKjf\neHRIu0Mz9g7RIn6FQpGQkODi4lK+fHnV8ho1apw+fTo+Pt7wk2ktjjozMzM5Odnd3V31HpRly5a1\ns7PLyMhQKBQFFavu5PO9OmfOnIoVKxrdhLt2R33nzh2FQlGnTp2CDA1AEWeaabPWyLd1yNiz0wJi\nmqm+1kxzjJAfpjm+QNHAhDugZxkZGU+fPq1SpUqWizo//fRTIUR8fHxuG3bs2HHx4sXr16/v0KGD\ndD/co0ePxsbGtmzZskyZMgUddj5pd9TSt2P2i+ak/7hOSEgokFgLha2tbefOnaWfpcMpMrQ7NGPv\nEC3il8vl/v7+jo6OWcrv3r0rhDCKW6ZqcdTm5uZhYWFZCvfv35+UlNS3b1+juMY/P+/VrVu3hoeH\n79692yiOVJV2R3379m0hRIUKFRYuXPj3338XL17cxcVl6NChRXu2C4AOmWbarDXybd0y9uy0gJhm\nqq810xwj5Idpji9QNJjQnzbAML1+/TozM/OTTz7JUi6VvHr1KrcNq1evvn79+smTJ3fo0KFJkyb3\n79+PjY397LPPli1bVrAR64J2Ry3lE5cuXUpPT1dddHP+/HkhxOPHjwsoWqAQWFpa9u3bN0vh2bNn\nz507V6tWrVq1auklqsL0999/h4aGXr9+/a+//vLy8pozZ46+IypYMpls/vz5U6ZMMZ2lgtKE+9Sp\nU9PS0pycnB4+fHjy5MktW7YsX768devW+o4OgBEwzbRZa+TbQBHAGCE/TG18AYPCrYsAPcvIyBA5\n/W+tVCK9mps3b95kZma+fPny1KlTsbGxQoiUlJQXL14UWLA6o91R29radurUKTExMSAgQC6XS4Ub\nNmyIjIwUQrx586YAIwYK3bFjxyZMmGBtbR0QEGAKazGuXLmybt26sLAwhUJRpkwZ5We8SJLL5TNm\nzHB1dR01apS+Yyk8t2/fNjMzGzNmTHR09P79+y9cuDB16tTXr1//85//fPv2rb6jA2AETDNt1hr5\nNlAkmdoYIT9ManwBQ8OEO6Bn0ndk9pRXKsnjG3TTpk0TJkxwcHDYuHHj1atXo6Kivv/++xs3bvTq\n1UtaRWjItD7q7777rkKFCtu3b+/YseOECRO6dOmyYMGCGTNmCCHKlStXkCEDhef169ezZs2aOHFi\nyZIl161b17hxY31HVBgGDx4s/SmbOXPmzp07u3bt+vz5c30HVVBWrVoVExMzf/58k3pq07Jly06c\nODFu3Dhra2shhIWFxfjx43v27JmYmBgSEqLv6AAYAdNMm7VGvg0UMaY5RsgPkxpfwNCY0DAPMEzF\nixcXQqSmpmYpl0qkV3O0a9euYsWKrV27tkWLFpaWlnZ2dsOGDZs2bVpqauqxY8cKNOb80/qoq1at\nun///lGjRjk6Ot68ebNevXqBgYGurq6CAQCKihMnTnzxxRe7d+/u1q3bgQMHmjZtqu+ICpWdnd3o\n0aNHjhz57Nmz06dP6zucAnHt2rXVq1ePHz++bNmyb/5PZmZmZmbmmzdvUlJS9B1gQXFwcKhUqVKW\nQi8vLyFETEyMPiICYGRMM23WGvk2UJSY+BghP0xhfAEDxIQ7oGe2tralSpV6+PBhluubZDKZEKJi\nxYo5bvXixYubN286OztXrlxZtVyauZDusWjItDtqiZ2d3Xfffbd169aTJ08uWrSoVatWcXFxQojs\nT5IBjE5QUND48eOtrKw2bNiwZMmSIvwkN8mNGzd+/PHH48ePZylv166dEOLs2bP6CKrA/f3333K5\nfMmSJU1VPHny5ObNm02bNh04cKC+AywomZmZ0rP4VNna2gohkpOT9RERACNjmmmz1si3gSLD1MYI\n+WGa4wsYIB6aCuifq6trZGTk9evXGzRooCy8ePGiEKJu3bo5blKyZEkLC4vsd1F8+fKlEMIovoC1\nOGohxOLFi9PT02fOnKl6GezRo0fNzc3bt29foAEDBe3EiRPz589v2rTpmjVrpFnIIk+hUGzbtu3a\ntWsdO3ZULZcu9iyqy+jc3NwmTJiQpXDjxo3Fixf/6quv7O3t9RJVQZPJZJ07d/7iiy+WLl2qWi7d\nzIFHfgFQk2mmzVoj3waKABMcI+SHaY4vYICYcAf0z8vLKzIycuHChX/++adU8vjx482bN1tYWHTo\n0EEqef78eVRUlBCiQ4cOxYoVs7Kyqlu37tWrV0NCQjp37izVUSgUq1evFkI0adJEH8ehGS2OWghx\n79690NDQ2rVr9+vXT6pz7ty58+fPt27dunz58vo4DuhA9hNtCrIctVwunz9/fqlSpYp2Jp3lqD/9\n9NNPPvnkxo0bN27cUI7809LS/v3vfwsj+VOmjixH3aBBA9WJD0lwcHCZMmWmTJmijwALRJajrl69\netmyZU+cOHHr1q06depIdV6+fLlu3TpLS8tOnTrpNVgARsM002atkW/DEJhmqq810xwj5Idpji9g\n+JhwB/TP29t769atkZGRX375Zbdu3RITEw8ePJiamvr1118rb3cbExMzefJkIURkZOQnn3wihPDz\n8/P29p48eXK9evW6du1qZWV16NChS5cu1a9ff/Dgwfo8HvVod9Rff/31X3/99a9//evs2bMtW7a8\ne/fu9u3bbW1tp02bps+DQf5kP9GmIMtR3717Ny4urlq1alnW/0pGjhxZpUqVQo9R97IctY2NzZw5\nc2bMmDF06NAhQ4bUrFnzyZMn27dvj4+P79q16+eff67veHWDd/gnn3xiZmbm5+c3efJkb2/vgQMH\nuri4SJM+z549mzJlSs2aNfUdLwDjYJpps9bIt2EITDMR0pppjhHywzTHFzB8TLgD+lesWLENGzb8\n9NNPx48fv379uhCiZMmS06dPHz16dB5bubm5bdq0afHixREREX///bcQwsrKatiwYRMnTjSKhQPa\nHbW7u/vq1asXLFhw8ODBgwcPWlhYuLq6zp07V7leEjBSV69eFUI8ePBg06ZN2V/t3r17UU2me/bs\naWtr+8svv0grDYUQZcqUkVJk/QYGnevcufPvv/++aNGiP/74QwhhZmZWrVq1lStXsrwdgPpMM23W\nGvk2YOxMdoyQH4wvYAjMsj+9CoC+ZGRkyGSykiVLVqxY0czMTM2tUlNT4+Pjra2tK1eurHqnRWOh\n3VEnJyc/ffq0Ro0aNjY2BRoegMLx+vXr+Ph4BwcHBwcHfceCgvXy5cvHjx9Xq1atZMmS+o4FgLEy\nzbRZa+TbAEwQ4wvoERPuAAAAAAAAAADogLm+AwAAAAAAAAAAoChgwh0AAAAAAAAAAB1gwh0AAAAA\nAAAAAB1gwh0AAAAAAAAAAB1gwh0AAAAAAAAAAB1gwh0AAAAAAAAAAB1gwh0AAAAAAAAAAB1gwh0A\nAAAAAAAAAB1gwh0AAAAAAAAAAB1gwh0AAAAAAAAAAB2w1HcAAIqIZ8+eXbp06erVq9euXbOwsKhc\nubKbm1uvXr2KFy9eCHvft2/f69ev+/btK+0uJiYmIiLCzc3N3d29EPZupGbNmvX48eOgoCAzM7M8\nqun3zApOrl5lZGRERESEh4dXrlx5yJAham516dKl69evN2vWzMXFpUDDKzJ4VwNAISBZNTokq/go\nktXCwbsa0BQT7gB0YPfu3X5+fmlpaVnKly1bNnXqVG9v74IOYOXKlXFxcZ07d5bS3Ojo6ICAgDFj\nxhREQnDgwIHExMQ+ffqULVtW540XmocPH+7Zs2fEiBF5D2D0fmYFJ1d/7t27N2DAgDdv3gghateu\nndsYJnunnThxYu3atXPmzDGKMYwhnPQCfVcDAIQBpDTkM5oiWc1R0Ti5ukKyWmhIVgFNMeEOIF/k\ncvncuXM3b95sYWExaNCgFi1auLu7Z2Zm3rt3b/v27UePHvX19bWwsPjqq68KMypzc3MrKysLC4uC\naHzz5s0XL1787LPPjDrN3blzp0Kh6N+/f24VDPPMCk5uIdq0adObN286duw4adKkYsWK5VbN2DvN\n2OMHAOTNMFMa8pmPIlnNUdE4ubpCsgrAYDHhDiBfgoODN2/ebGNjs2TJks8//1xZXrFixTZt2mzZ\nssXf3//HH39s3bp15cqVCy2qAQMGDBgwoNB2Z3TkcvmuXbuaNm1as2bN3OoY5pkVnNxCFB8fL4QY\nNGhQnTp19B0LAABaMsyUhnwmbySrUAfJKgCDxUNTAWgvIyNj1apVQghfX1/VNFdp0KBBrVq1yszM\nPHDgQG6NvH37NkvJy5cv4+LiXrx4kceu09LSHj58mJ6ermnMcrk8MTFRnZrp6elPnjxRKBSa7sLw\nnTp16tmzZ3msGNLJmRWGenKL8JnViEKhePz48YcPH3KrkJmZKYTI//1Pk5OTHz9+nHeHq//BzO6j\nJzQ/jWvhox2bRfaPCQBAV0hWjRTJalE9sxohWS0gJKtAIWDCHYD29uzZ8+jRI0dHx549e+ZWZ8yY\nMT179pSSISHEokWLPDw8rly5kpSUNHPmzPbt2//www/SSy9evJg3b16zZs1atGjh5eXVsmXLTp06\nbd26NftOv/zyy8aNG3fs2LFZs2YzZsx49uxZljrBwcEeHh6///67auHFixcHDhzYuHFjDw+Ptm3b\nTp8+/f79+6oV1q5d6+HhcebMmYsXLw4ePLhp06bt2rVr3LjxnDlzUlJShBBjx4718PC4du2aEGLU\nqFEeHh5Som90tm/fbmdn16VLl9wqaHFmhQGf3I+eWVGETq46IiMjhwwZ0qRJE09PT3d39y+//HLX\nrl2qFXx8fDw8PCIjI4UQ//jHPzw8PNasWZO9nY92WkhISJcuXVq3bu3p6Zmlw5U++sHMTp0Tqk7j\nOca/ZcsWDw8P5VtXsmvXLg8Pj+7du6uOlJKSktq1a/fll1+q37Eiz49JFuvXr5d2eu/evbw7BACQ\nG5JVI81nSFZJVklWc4ufZBUwCtxSBoD2oqOjhRBffvmlpWWuf0zatGnTpk0b5a9v3rxJTEx8+/bt\nxIkTL126JIRo3ry5ECIlJWX06NHXr18vVapUmzZtqlatev/+/cjISF9f31KlSnXr1k3aPCAgYNOm\nTRYWFvXq1atVq1ZMTMzBgwevXbv27t071Z2mpqZKe1GWbNy4cf78+ZaWli1atHBwcLh27dqBAwfO\nnz+/cePGTz/9VDW2iIiIzZs3Ozg4dO7cOSEh4cKFCzt27Hj79u2yZcuKFy9eqlSpV69eZWRklChR\nwtra2traWme9WViePHly+vTpQYMG5RG8FmdWGPDJ/eiZFUIUjZOrjn//+99LlizJzMysV69enTp1\nHj58GB0dPXv27LNnzy5cuNDc3Fz8X2+8fv1a+rl48eI59kbenXb69OmwsDAnJ6eePXtm73CJOh/M\n7NQ5oeo0nmP8LVq08Pf3DwkJ8ff3l3pDOpbExMTExMSYmBhnZ2ep8OzZs0+ePGnXrp36HSty/5hk\n8fvvvy9btszBwWHJkiV5dAUAIG8kq8aYz5CskqySrJKsAkZPAQDa6t+/v7Oz8969e9Xf5Mcff3R2\ndu7Ro0fTpk337Nnz7NkzqXzHjh3Ozs5jxoz58OGDsvKqVaucnZ2nT58u/Xru3DlnZ2d3d/eIiAhl\nnejo6ObNmzs7Ozs7Oz99+lQq3LJli7Oz84IFC6Rf7969W7duXU9Pz3v37ik33LBhg7Ozc6dOnTIz\nM6WSRYsWSe0sXbpULpdLhZcuXXJ2dq5Tp05iYqJU4u3t7ezsfPPmTfWP2qCsXLnS2dn5zp07edTR\n4swqDPjkqnlmFcZ/cj/qxo0bderUcXNzO3DggLLw8uXLn332mbOzs/R0MqVRo0Y5OztfuHAh7zaz\nd5qaHa7mBzM7ddpXv/Hs8Xfp0sXZ2fny5cvKktatWzdr1szZ2XnDhg3KQh8fH2dn59OnTys06dgc\nPyZZ3tWLFy+W4oyPj8+94wEAH0eyaoxIVqU6JKvKQpJVklXA6HBLGQDak8lkQogsjyFKTEz0yYnq\nTeLu3LmzadOm3r1729vbSyVPnjxxdXUdPny4hYWFslrr1q2FEHFxcdKv0gWA48aNU/0/9iZNmkyf\nPj3vOBcvXvzhw4cffvhB9bFLw4YN69ixY1xcXEREhGrlOnXqTJkyRfk//I0aNapbt25mZuaDBw/U\n6xWDlpmZuXPnzkaNGtWuXTuPalqfWWHAJ7don1k1LV26NDMzc+jQocq1WkKIhg0bzpo1SwixbNky\nuVyuq319tMM1+mBq2n5+Gvfy8hJChIeHS7/GxsYmJSUNGTLExsZGuaFCoTh79mypUqVatmwpNO/Y\n7B8TZbNz585ds2ZN3bp1//Of/xTyQ94AoOghWTU6JKtF9cyqiWSVZBUoGphwB6A9KXnN8t38+vXr\n/TlRvX9i+/btXVxcVLeaOHFicHCw8qpPuVx+586d1atXq9aR7l7Xq1evLGH07t27WLFiecR58eJF\nS0vLunXrPv9fLVq0EEIcPnxYtXKbNm3MzMxUS2rVqiWEePnyZR67MBbh4eEJCQl5PIFKovWZFQZ8\ncov2mVWTdFnowIEDs5R/8cUXdnZ2T58+ffToka729dEO1+iDqWn7+WlcGsOcPn1a+jUqKkoI4eHh\n4e7uHhkZKb3hb9++nZSU5OnpKV3JrmnHZv+YCCHkcvkPP/ywceNGCwuLNWvWlCtXLu8eAAB8FMmq\n0SFZVd22KJ1ZNZGskqwCRQP3cAegvdq1a1+6dEkmk6ku9KhWrdqePXuUvyoUiv79+2dZV1KvXr3s\nraWmph46dCgiIuLWrVsymSwtLU01eX327Flqaqq1tbWjo2OWDa2srCpVqqRcfpLF8+fPX7x4IYRQ\n3r0uiyxPhM/eflGyfft2W1vbL774Iu9qWp9ZYcAnt2ifWXUkJye/fv3aysqqSpUqWV4yMzOrWbPm\n5cuXZTJZtWrVdLK7vDtc0w+mRu3ns3E3N7dKlSpduXLlzZs3pUqVioyMLFGiRP369Vu0aHHu3Lmb\nN2+6ubmdOXNG/N9oR4uOzfFjsm3btpSUFBsbm/fv3//2229+fn55BAkAUAfJqtEhWTVlJKtqNk6y\nChg+JtwBaE/KdP/++2/VRSjW1tZ169ZV/vrkyRMpzVWoPDC9QoUKWZq6cePG6NGjnz9/Xrly5WbN\nmnXt2rVWrVrly5dXtixtnttjkVQv/8xC+h9+Kyurzp0751ihRo0aqr9mWYZQlCQlJYWGhvbv3794\n8eJ519T6zAoDPrlF+MyqSTpfFhYWOXaF1M/ZB6Vay7vDNf1gatR+/hv38vJav379uXPnvLy8oqKi\nmjRpYmFhIV2QGxER4ebmFh4ebmNj07ZtW6FVx2b/mAghUlJS+vfvP3jw4H79+m3durVz586tWrXK\nO04AQN5IVo0LyWpu7ZgIklX1GydZBQwcE+4AtNe+ffvt27cHBwf/4x//yO0/8HO8/ZyVlVWWkmnT\npj1//nzq1Knjx49XFsbExCh/Ll++fPHixd+9e5ecnJzl4jW5XP748ePcgrS3t7ezs3v37t0vv/yS\nRzZsCvbs2SOXyz96ia7Ix5kVnFwD5ujoWKJEiZSUlMTExOw5tHQvVCcnp8IJpkDPXf4bl8Yw4eHh\nrq6uT548GTp0qBCifv36JUqUOH/+/KBBg6Kjoz08PKTpAC06NvvHRAjRuXPngIAAIcS4ceNWrFgx\ne/bsAwcOlCxZUov4AQASklXjQrJq4khW1UeyChg47uEOQHsdOnRo3bp1WlraggULstwbUfLu3btF\nixZ9tJ0XL17ExsZaW1uPHj1atfzevXuqv9avX18IERwcnGXzo0ePpqam5tF+vXr15HK58qkySps2\nbfL29s7eYJGkUCh27Njh5uamuvAnN7o6s4KTa2Dc3NyEEHv37s1SfubMmeTkZDs7O11doquOAj13\n+Wzc3d3d3t7+9OnTkZGRQgjpZpqWlpZNmjSJjo4+d+5cenq6dImuRCcdW7VqVemHcePGubi4JCQk\nLFiw4KNbAQDyQLJqREhWIUhWSVaBooIJdwD5Mnv27GLFih04cGD8+PFv375VfSkmJmbIkCFPnz79\naCPS1W3p6elJSUnKwvj4+IULFwohMjIypJIJEyYIIdasWSM98kUSFxf30a95acO5c+cqnzgvhEhI\nSFi0aNGlS5ek7Fl90sWkKSkpGm2ldxEREXFxcQMGDFCzvk7OrODkGpjJkycLIdasWSM9W0ny4MGD\nn376SQgxYcKE3K6VzoPWnabbc6d14znGb25u3rFjx0ePHu3YscPW1lY58m/ZsuW7d+/WrFljaWnZ\nvn17ZX3ddqylpeXPP/9sYWGxdevWs2fPanLcAICsSFaNBcmqOoz05KqPZJVkFSgauKUMgHypXbv2\nli1bvv3221OnTrVt27ZBgwYNGzZ89+7d7du3L1++bGZm9tNPP+3Zs0c1Mc3Ozs7O3d394sWL3t7e\nPXr0sLGxuXfv3okTJ+rXr5+YmBgbG7to0SIfH59WrVr169dv586dw4cPb9OmTZ06de7fvx8eHl6m\nTJmyZcs+f/48t/abNWvWv3//7du39+7d28PDo2bNmtevX4+IiEhNTR0zZsynn36q0SFXrVo1MjJy\n8uTJtWrV6tKli7e3txBi8ODBcrl869atGjWVXd7tvHnzpmnTpj4+Pl9//bWmLW/fvr1EiRLdu3dX\ns75OzqwoEic3/968eXPr1i0XFxc7O7uPVi6494AQonnz5sOGDdu4cePw4cPbt29fp06dhw8fHj9+\n/N27d82bNx8yZIgWbWrdabo9d1o3nlv8Xl5eW7duvXTpkqenp/JSX+nOmJcuXfrss89Uz6bOO9bN\nzW306NFr1679/vvvuVYXAPKDZJVkNe92isDJzT+S1RyRrOaBZBXIGxPuAPKrQYMGwcHB8+fPP336\n9Pnz58+fPy+EMDc3d3FxmTt3rpubW3Jy8kcz3aVLl86aNevs2bOBgYFCCDs7u9GjR0+cOPHbb78N\nCQkJDAycPn26mZnZ3Llz69SpExQUFBoaGhoaamFh0ahRo19//XXQoEF5pLlCiICAgEaNGq1aterw\n4cNSib29/bRp06S73Wlk7Nix9+/fv3Xr1rlz51xcXKTCmjVryuVyTZvKTlftZPHy5ctjx4716tVL\no0xIJ2dWGP/Jzb8bN24MGzZs3bp1bdq0+WjlAnoPKH3//feNGzdetmxZaGjo8ePHhRDly5cfM2bM\nuHHjzM21ue4tP52mw3OndeO5xd+iRQs7O7vXr19Ll+hKXF1dS5Uq9ebNm06dOmXZnc47duLEiceP\nH79///78+fOl22UCALRDsipIVvNk7Cc3/0hWc0OymgeSVSAPZlke2A0A+fHs2bPr16/b2dm5urpK\nT2jRSFJSUkJCgoODQ8WKFZWFMTExjo6OWVZbPH/+/PHjx59++qmNjY1Gu3j9+rVMJrO3t69QoYJ2\niYUeab1g5PHjxxEREc2bN69UqZJ2u87nmRWmfXIjIiLUH8PkLZ+LhlS9e/cuNja2UqVKZcuWzWdT\n+Veg566Q3xgG1bEAgCxIVgsUyWreDPbkkqx+FMkqAI0w4Q4AOuDv75+Zmenv7y+EmDZtmpubW5Mm\nTVatWnX58uUyZcr07t1bdeHAs2fPli5dGhYW9ubNG0dHx+7du0+cOFG6DFC1HSHEzZs3f/311ytX\nrnz48KFDhw5jx47t0qWLav765MmThQsXRkdHW1hYtGrVauzYsYX5HCHTkZCQsGTJkitXrrx69ape\nvXpDhgzp0KGD8tVp06ZVqVJl2rRpypKlS5fGxcUtW7ZMCOHj43Pr1q2YmJhatWqVKlVqxYoVDg4O\nvAcAAEBhIlkt2khWAcCgcEsZANCBO3fuKK+svH79+rNnz9atW+fp6TlkyJAjR44sX768XLly0jOg\nFArFqFGjHj161L9/f3t7+wsXLvz2228pKSmzZs3K0k50dPSYMWNsbW27detmbW0dGho6duxY1Z3e\nv39/8ODBJUuW7N27d3p6+p49e86ePbtlyxbVVTnIv9u3bw8bNiwjI6NPnz52dnbHjh2bMGHCP//5\nzxEjRkgVrl+/np6errpJbGzsrVu3pJ/t7e2lxSNly5a1t7e3sLDgPQAAAAoZyWoRRrIKAAZHAQDI\nt0GDBg0YMED62cvLy9nZOTQ0VPo1JSWlUaNGw4cPl369d++es7Pz2rVrlduOHz++devW2dsZMGBA\ny5YtHz33/cXAAAAGXUlEQVR6pGynf//+qtt+/fXXnTp1+n/t3UtIVdsfB/CtRzKhJG9khJqpYANJ\n6GXRsOiMamBEkxKzjJDo5SiKJkFhUNCgiGimDRKaaIQVFkRpDQqj10jsIZlZKj0sK7M7OHA4ePt3\n4f53dsrPZ7TXcp0Fm7OQ3/6evdd+//59rNnT07No0aK9e/f+vNOcmKqqqkpLSzs7O2PN4eHh9evX\nl5aW9vX1xXqi0ei2bdsSP7J9+/aVK1fGm7du3SouLr5+/XqsaQ0AAONMsfoHU6wCJJsk2jUM4I9R\nVFQUf4ozIyOjrKysr68v1szOzk5LS2tpaXn69Gms5+jRo83NzWNm6O7u7ujoKC8vj29kmZGRUVNT\nEx/w+vXra9euVVRUxF8tNWvWrLVr17a0tHz69OnnndpE09vb29bWtm7duqKiolhPenr67t27h4eH\nL1y48N/mtAYAgF9LsfrHUKwCJCFbygCEb8y+hOnp6SMjI7HjKVOm7Nix49ixY9FodO7cuUuWLFmx\nYsXSpUvHzPDs2bMgCEpKShI7S0tL48ddXV1BEJw5cyax9u3v7x8aGurt7c3Pzw/1hCau2GXGvHnz\nEjtLSkpSUlKePHny3+a0BgCAX0ux+sdQrAIkIYE7QPjS0n7033Xr1q0rV668dOlSe3v72bNn6+vr\nly9ffvz48dhriGJi2yxmZGQkfnDy5Mnx4w8fPgRBkJ2dPXPmzHhnfn7+ggULxuHV9hPH0NBQ8I8v\nYtKkSZFIJPYVfNe3f3shuTUAAPxCitU/hmIVIAkJ3AHG1ejo6OjoaGFhYU1NTU1NzcDAwP79+1tb\nW69duxZ/sDcIgry8vCAIHj9+nPjZxLtUCgoKgiBYs2ZNeXl5vPPr16+fP38eU/Xy/4jdejPm/qDn\nz5+PjIzE78pJTU0dc9Hy6tWrH8xpDQAASUuh8ntRrAIkIT8qAoyr1tbWkpKSjo6OWPOvv/6qrKwM\ngmBwcDBxWEFBQU5Ozrlz5+KP9wZB0NjYGD/Ozc3Ny8sbs5fili1botHo6OjoTzyBCWbOnDk5OTmN\njY1fvnyJdzY0NARBsGzZslgzKyvr4cOH8cuYnp6eBw8eJE6SkpKS2LQGAICkpVD5vShWAZKQwB1g\nXC1evDgzM3Pfvn1Xr17t6uq6ffv2yZMn09LSysrKEodFIpHt27d3dXVVV1ffuHHj7t27dXV1TU1N\niQN27tzZ3t6+c+fOmzdv3rlz59ChQ21tbRUVFZ7QDFEkEqmtre3u7q6srGxra7t//35dXV19fX00\nGp0/f35szMKFC1+8eHHw4MF79+5duXKlurp6xowZiZNMnTo1CIKmpqbz589//PjRGgAAkpZC5fei\nWAVIQraUARhXWVlZp06dOnDgQE1NTaynsLDwxIkTsUcyE5WXl6emph45cmTz5s1BEOTl5Z0+fXrD\nhg3xAatXr45EIocPH7548WJqamppaemePXs2btw4XqcyUaxatSojI+PQoUObNm0KgmDKlClVVVW1\ntbXxAVu2bHn06FFDQ0NDQ0NmZuauXbs6Ozvb2triA4qLi1esWHH58uXm5uYrV67k5uZaAwBAclKs\n/nYUqwDJJuVf35UBwM/Q398/MDAwbdq0MTeY/NPLly/T0tKmT5/+vwYMDAx8+/btBwMIxZs3b969\ne5eTkzPmqduYt2/fDg4Ozp49+7t//S5rAABIWgqV345iFSBJCNwBAAAAACAEts0CAAAAAIAQCNwB\nAAAAACAEAncAAAAAAAiBwB0AAAAAAEIgcAcAAAAAgBAI3AEAAAAAIAQCdwAAAAAACIHAHQAAAAAA\nQiBwBwAAAACAEAjcAQAAAAAgBAJ3AAAAAAAIgcAdAAAAAABCIHAHAAAAAIAQCNwBAAAAACAEAncA\nAAAAAAiBwB0AAAAAAEIgcAcAAAAAgBAI3AEAAAAAIAQCdwAAAAAACIHAHQAAAAAAQiBwBwAAAACA\nEAjcAQAAAAAgBAJ3AAAAAAAIgcAdAAAAAABCIHAHAAAAAIAQCNwBAAAAACAEAncAAAAAAAiBwB0A\nAAAAAEIgcAcAAAAAgBAI3AEAAAAAIAQCdwAAAAAACIHAHQAAAAAAQiBwBwAAAACAEAjcAQAAAAAg\nBAJ3AAAAAAAIgcAdAAAAAABCIHAHAAAAAIAQCNwBAAAAACAEAncAAAAAAAjB32LqDI5fxz9EAAAA\nAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAPoCAIAAAAJPPL9AAAACXBIWXMAABcSAAAXEgFnn9JSAAAA\nB3RJTUUH4QMGDwUxVPL0yQAAACR0RVh0U29mdHdhcmUATUFUTEFCLCBUaGUgTWF0aFdvcmtzLCBJ\nbmMuPFjdGAAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNi1NYXItMjAxNyAxNTowNTo0OZAdVVQAAB/E\nSURBVHic7NjBCQAhEMDA8/rveS3CgCAzFeSdNTMfAAAAAABw5r8dAAAAAAAALzDcAQAAAAAgYLgD\nAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwB\nAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4A\nAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcA\nAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsA\nAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0A\nAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4A\nAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcA\nAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMA\nAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEA\nAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAA\nAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAA\nAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAA\nAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAA\nAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAA\nAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAA\nAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAA\nAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAA\nAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAA\nAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAA\nAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAA\nAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAA\nAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAA\nAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAA\nAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAA\nAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAA\nACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAA\nABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAA\nAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAA\nAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAA\nAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAA\nAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAA\ngIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAA\nQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAA\nIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAA\nEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAA\nCBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAA\nBAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAA\nAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAA\nAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACA\ngOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABA\nwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAg\nYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQ\nMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAI\nGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAE\nDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAC\nhjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAAB\nwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA\n4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDA\ncAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBg\nuAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw\n3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY\n7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQM\ndwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKG\nOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHD\nHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDh\nDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBw\nBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4\nAwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDc\nAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBju\nAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3\nAAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7\nAAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMd\nAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEO\nAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAH\nAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgD\nAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwB\nAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4A\nAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcA\nAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsA\nAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0A\nAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4A\nAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcA\nAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMA\nAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEA\nAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAA\nAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAA\nAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAA\nAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAA\nAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAA\nAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAA\nAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAA\nAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAA\nAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAA\nAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAA\nAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAA\nAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAA\nAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAA\nAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAA\nAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAA\nAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAA\nACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAAAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAA\nABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAAAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAA\nAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAAgIDhDgAAAAAAAcMdAAAAAAAChjsAAAAA\nAAQMdwAAAAAACBjuAAAAAAAQMNwBAAAAACBguAMAAAAAQMBwBwAAAACAgOEOAAAAAAABwx0AAAAA\nAAKGOwAAAAAABAx3AAAAAAAIGO4AAAAAABAw3AEAAAAAIGC4AwAAAABAwHAHAAAAAICA4Q4AAAAA\nAAHDHQAAAAAAAoY7AAAAAAAEDHcAAAAAAAgY7gAAAAAAEDDcAQAAAAAgYLgDAAAAAEDAcAcAAAAA\ngIDhDgAAAAAAAcMdAAAAAAAChjsAAAAAAAQMdwAAAAAACBjuAAAAAAAQMNwBAHY7diwAAAAAMMjf\nehI7CyMAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAY\nCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgI\ndwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3\nAAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcA\nAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAA\nAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAA\nAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAA\nABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAA\nGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAY\nCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgI\ndwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3\nAAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcA\nAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAA\nAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAA\nAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAA\nABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAA\nGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAY\nCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgI\ndwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3\nAAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcA\nAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAA\nAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAA\nAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAA\nABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAA\nGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAY\nCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgI\ndwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3\nAAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcA\nAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAA\nAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAA\nAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAA\nABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAA\nGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAY\nCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgI\ndwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3\nAAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcA\nAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAA\nAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAA\nAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAA\nABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAA\nGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAY\nCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgI\ndwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3\nAAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcA\nAAAAABgIdwAAAAAAGAh3AAAAAAAYCHcAAAAAABgIdwAAAAAAGAQSxArNceuNTgAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Columns 1 through 7\n", "\n", " 0.9410 0.9836 0.9496 0.9452 1.0110 0.9753 1.0224\n", " 0.9590 1.0113 0.9206 0.9472 0.9927 1.0654 0.9856\n", " 0.9481 0.9488 1.0225 1.0494 0.9598 0.9968 1.0671\n", " 0.9843 1.0370 0.9569 0.9854 1.0216 0.9691 1.0070\n", " 1.0390 1.0107 0.9450 0.9092 0.9613 0.9554 0.9536\n", " 0.8369 0.8984 0.8849 0.9142 0.9478 0.9700 0.9328\n", " 1.0112 0.9989 1.0131 0.9479 0.9984 0.9819 1.0193\n", " 0.9198 0.9301 0.9986 0.9637 1.0304 0.9568 1.0220\n", " 0.9307 0.9759 1.0557 0.9670 0.9843 1.0265 1.0684\n", " 1.1448 1.0647 1.0054 0.9934 1.0478 0.9593 0.9548\n", " 0.9015 0.9566 0.9703 1.1139 0.9305 0.9720 0.8967\n", " 0.8437 0.9769 0.9479 0.9984 1.0054 0.9788 1.0115\n", " 0.8234 0.9280 0.9231 1.0750 0.9490 0.9619 0.9827\n", " 1.0364 0.9771 1.0050 0.8957 1.0066 1.0322 0.9931\n", " 0.9294 0.9516 0.9215 0.9893 0.9893 1.0177 1.0111\n", " 0.8307 0.9660 0.9560 0.9694 1.0450 0.9643 0.9910\n", " 0.9537 0.9620 0.9666 0.8263 0.9638 0.9673 1.0018\n", " 0.9397 0.9342 0.8848 0.9832 0.9851 0.8933 0.9782\n", " 1.0364 0.9110 1.0950 0.8231 0.9350 0.9563 1.0485\n", " 0.9282 0.9509 0.9438 1.0222 0.9422 1.0264 1.0028\n", " 0.9065 0.9818 1.0738 1.0051 0.9260 1.0132 1.0523\n", " 0.9663 0.9408 0.8669 0.8849 0.8916 0.9882 0.9601\n", " 0.9774 1.0055 0.9980 0.9028 1.0024 0.9744 0.9812\n", " 1.0673 0.9864 1.0387 1.0038 0.9673 0.9558 0.9434\n", " 0.8585 0.9314 0.9961 0.8764 0.9628 0.9396 0.9327\n", " 1.0027 0.9786 0.9927 0.9498 1.0085 1.0287 1.0179\n", " 0.9456 0.9975 0.9437 1.0511 0.9531 0.9417 0.9284\n", " 1.0109 0.9670 1.0141 0.9228 0.9675 1.2094 1.0524\n", " 0.9901 0.9662 0.9428 0.9673 0.9446 0.9506 0.9810\n", " 0.9398 0.9817 0.9632 0.9706 0.9651 0.9790 0.9743\n", " 0.9864 0.9752 0.9739 0.9215 0.9212 0.9867 1.0845\n", " 1.0856 1.0151 0.9595 1.0653 0.9915 1.0137 0.9665\n", " 0.8366 0.8463 1.1111 0.8905 0.8525 0.9200 1.0680\n", " 0.9259 0.9355 0.9977 1.0026 0.9595 1.0342 1.0263\n", " 1.0224 0.9992 1.0256 1.0142 0.9820 0.9433 0.9521\n", " 0.8903 0.8664 0.8994 1.0226 0.9467 1.0541 0.9161\n", " 0.9937 0.9780 0.9239 0.9716 0.9890 0.9872 0.9679\n", " 0.8776 0.8355 0.9678 0.9999 0.9662 0.9801 0.9079\n", " 0.9232 0.9004 0.9206 0.9655 1.0114 1.0421 0.9811\n", " 0.9188 0.9210 0.9648 0.9209 0.8962 0.9441 1.1041\n", " 1.0446 1.0263 0.9852 0.9161 1.0059 0.9344 1.0113\n", " 0.9472 0.9344 1.0024 0.9798 0.9592 0.9717 1.0277\n", " 1.0732 1.0124 0.8659 1.0145 0.8826 1.0913 0.9994\n", " 0.9472 0.9149 0.9665 0.8282 0.9184 0.9524 0.9739\n", " 0.8617 0.9031 0.9049 0.9922 0.9793 0.9842 0.9829\n", " 1.0207 0.9913 0.8702 0.9634 1.0219 0.9805 0.9358\n", " 1.0021 1.0590 1.0074 1.0848 0.9235 1.0441 1.0269\n", " 0.8298 0.9779 0.8343 0.9967 1.0088 0.9551 1.0416\n", " 0.8970 0.9384 0.9088 0.9489 0.9561 1.0212 0.9734\n", " 0.8717 0.8997 0.9139 0.9909 1.0239 0.9535 0.9797\n", " 0.9794 1.0367 1.0574 0.8976 1.0040 1.1024 1.1589\n", " 1.0408 0.9564 0.9409 1.0016 0.9432 0.9727 0.9318\n", " 0.9847 0.9736 0.9518 1.0781 1.0347 0.9610 0.9661\n", " 0.9825 0.9397 1.0015 0.9499 0.9649 0.9399 0.9916\n", " 0.8983 0.9846 0.9900 0.9905 0.9578 0.9083 1.0255\n", " 1.0493 1.0173 0.9230 0.9971 1.0002 0.9455 0.9564\n", " 1.0147 0.9307 0.9809 0.9270 1.0027 1.0055 0.9815\n", " 0.7987 0.8486 1.0371 0.9449 0.9746 1.0831 0.9711\n", " 0.8844 1.0146 0.8822 1.0517 0.9787 0.9961 0.9667\n", " 0.8912 0.9304 0.9983 1.0403 0.9839 0.9577 1.0587\n", " 0.8439 0.9151 0.9674 0.9737 0.9464 1.0035 1.0140\n", " 1.0400 1.0172 0.9852 0.9171 1.0157 0.9914 0.9903\n", " 1.1116 0.9866 0.9521 0.8748 1.0825 0.9417 0.9214\n", " 0.8354 0.8826 1.0427 0.9228 0.9271 0.9895 1.0804\n", " 0.8960 0.9540 0.9430 0.9685 0.9586 0.9623 0.9875\n", " 0.9784 0.9317 0.9710 0.9000 0.9477 0.8950 0.9829\n", " 1.0377 1.0151 0.9398 0.8755 1.0170 0.9320 0.9794\n", " 1.0578 1.0521 0.8985 0.9501 1.1147 0.9250 0.9002\n", " 0.8934 0.9972 0.9211 0.9450 0.9863 1.0278 1.0189\n", " 0.9610 0.9612 0.9319 0.9227 1.0248 1.0366 1.0367\n", " 0.9248 0.9407 0.8644 0.8410 0.9705 0.8474 0.9016\n", " 0.9968 0.9042 1.0100 0.9051 1.0053 1.0025 1.0118\n", " 0.9546 0.9494 1.0483 0.8804 0.9422 0.9745 1.0433\n", " 0.9338 0.9579 0.9182 0.9554 0.9964 0.9330 0.9514\n", " 1.0140 1.0197 0.9519 0.9824 0.9204 0.9737 0.9539\n", " 1.0481 1.0254 0.9817 1.0583 1.0279 0.9387 0.9970\n", " 0.9746 0.9442 1.0222 1.0770 0.9621 0.9669 0.9698\n", " 0.8555 0.9095 0.9863 1.0677 0.9409 1.0133 0.9836\n", "\n", " Columns 8 through 14\n", "\n", " 0.9812 0.8969 0.9966 1.0085 1.0093 0.9379 1.0339\n", " 1.0038 1.1182 0.9665 0.9733 1.0641 1.0120 1.0269\n", " 1.0922 1.0029 1.0853 0.9983 1.0446 0.9933 1.0374\n", " 0.9945 1.0277 1.0300 1.0212 0.9634 0.9973 0.9575\n", " 0.9371 0.9673 0.9748 0.9769 0.9757 0.9934 0.9892\n", " 0.9919 0.9540 0.9455 1.0175 0.9622 1.0185 1.0012\n", " 1.0219 0.9033 1.0339 0.9900 1.0044 0.9842 1.0043\n", " 1.0089 0.9005 1.0542 1.0052 1.0063 0.9550 1.0125\n", " 1.0407 0.9594 1.0371 0.9882 1.0487 0.9845 0.9644\n", " 0.9530 0.9236 0.9394 0.9569 1.0396 0.9775 1.0234\n", " 1.0930 1.1622 0.9355 0.9410 0.9681 1.0410 0.9291\n", " 0.9653 0.9802 1.0201 0.9866 1.0330 0.9695 1.0142\n", " 0.8823 0.9537 0.9900 1.0768 0.9546 0.9990 0.9571\n", " 0.9736 1.0245 1.0517 0.9784 1.0491 0.9817 1.0224\n", " 0.9214 0.9712 0.9643 0.9896 0.9981 1.0034 1.0023\n", " 0.9589 1.0288 1.0073 0.9822 0.9776 0.9997 1.0076\n", " 1.0359 1.1047 1.0329 0.9924 0.9276 1.0214 1.0236\n", " 1.0106 0.9072 0.9411 1.0378 0.9469 1.0035 0.8963\n", " 0.9811 0.9540 1.0350 1.0463 0.9917 1.0459 0.9942\n", " 0.9877 0.9914 0.9859 0.9841 0.9838 1.0016 0.9733\n", " 1.0401 1.0372 1.0570 1.0190 1.0112 0.9543 0.9926\n", " 0.9689 0.9288 0.9576 0.9988 0.9980 0.9935 0.9796\n", " 1.0120 1.0862 0.9840 0.9760 1.0209 0.9828 1.0030\n", " 1.0854 0.8969 0.9883 0.9686 0.9593 1.0106 1.0567\n", " 0.9298 1.0552 0.8781 0.9702 0.9465 1.0137 0.9643\n", " 1.0645 0.9251 1.0307 0.9909 1.0059 0.9760 1.0135\n", " 0.9407 0.9576 0.9313 0.9729 0.9372 1.0025 0.9919\n", " 0.9367 1.0528 1.0351 1.0171 1.0230 1.0802 1.0289\n", " 0.9838 0.9965 0.9924 0.9829 1.0010 1.0003 0.9709\n", " 1.0125 0.9964 0.9682 0.9993 0.9361 0.9726 1.0148\n", " 1.0169 1.0196 1.0572 1.0084 0.9949 1.0229 0.9870\n", " 1.0728 1.1761 0.9845 0.9722 0.9426 0.9982 1.0299\n", " 1.0680 1.5116 1.1524 0.8856 1.3106 1.0247 0.9523\n", " 1.0213 1.0127 1.0040 0.9958 1.0079 0.9790 1.0116\n", " 1.0308 0.9719 1.0028 0.9699 0.9553 1.0034 1.0134\n", " 0.8956 0.8318 0.8903 0.9579 1.0609 1.0429 1.0295\n", " 0.9771 0.9481 0.9489 0.9523 0.9897 0.9952 1.0018\n", " 0.9974 0.8680 0.9640 0.9852 1.0336 0.9897 1.1355\n", " 1.0015 0.9646 1.0009 1.0131 1.0215 0.9782 1.0462\n", " 1.0088 0.9669 1.0852 1.0264 0.9697 1.0291 0.9928\n", " 1.0080 1.1048 0.9961 0.9948 0.9118 1.0181 0.9915\n", " 1.0499 1.0276 1.0165 0.9905 1.0228 0.9701 1.0190\n", " 0.9647 1.0406 1.0597 1.0215 0.9125 0.9536 1.0234\n", " 0.9658 1.0263 0.9394 0.9980 0.9753 1.0621 1.0209\n", " 0.9465 1.0653 0.9876 0.9648 1.0297 0.9871 0.9536\n", " 0.9412 0.9671 0.9202 0.9886 0.9293 0.9934 1.0248\n", " 1.0339 1.0402 1.0516 0.9998 1.0100 1.0316 0.9730\n", " 0.9704 1.0506 0.9290 1.0333 0.9649 1.0372 0.8944\n", " 0.9086 1.0016 0.9846 1.0093 1.0635 0.9996 0.9864\n", " 0.9311 0.9339 0.9177 1.0219 0.9854 0.9982 0.9822\n", " 1.0416 1.2605 1.0832 1.0472 1.0728 1.0125 0.9840\n", " 0.9600 0.9598 0.9462 0.9602 0.9637 0.9812 1.0257\n", " 1.0688 0.9375 1.0143 0.9673 0.9570 0.9715 1.0074\n", " 1.1109 0.9669 1.0176 0.9526 1.0158 0.9888 0.9981\n", " 0.9646 0.8894 1.0489 1.0101 1.0442 0.9729 0.9768\n", " 0.9394 1.0927 0.9405 0.9899 0.9795 1.0207 0.9848\n", " 1.0309 0.9168 0.9922 0.9995 0.9655 0.9881 1.0203\n", " 0.9298 0.7739 0.9502 0.9437 1.0711 0.9159 1.1428\n", " 0.9127 1.0196 0.9446 1.0042 0.9897 1.0080 1.0086\n", " 0.9374 0.9362 0.9873 1.0029 1.0116 1.0397 0.9336\n", " 0.9066 1.0289 0.9949 0.9935 1.0100 1.0227 1.0031\n", " 1.0013 0.9724 0.9993 0.9936 0.9765 0.9986 1.0466\n", " 0.9430 0.9218 0.9552 0.9578 0.9548 0.9898 0.9557\n", " 0.9726 0.8869 1.0441 1.0482 1.0828 1.0398 1.0478\n", " 0.9127 0.9920 0.9891 1.0323 0.9942 1.0021 0.9361\n", " 0.9703 1.0229 0.9929 0.9742 0.9641 1.0427 0.9717\n", " 0.9636 1.0755 0.9423 0.9907 0.9712 1.0443 0.9655\n", " 0.9139 0.9510 0.9081 0.9865 0.9524 1.0213 0.9405\n", " 0.8945 1.0119 0.9305 1.0200 0.9892 1.0010 1.0267\n", " 1.0149 0.9541 1.0266 1.0213 1.0303 0.9716 0.9751\n", " 0.9505 0.9070 0.9832 1.0411 0.8486 0.9453 0.9285\n", " 1.0839 1.0256 1.0491 0.9535 1.0055 0.9949 1.0180\n", " 1.0221 0.9418 1.0480 1.0122 1.0024 1.0069 1.0348\n", " 0.9895 1.0431 0.9634 1.0186 0.9410 0.9702 1.0350\n", " 1.0504 0.9971 0.9583 1.0028 0.9436 1.0075 0.9904\n", " 0.9730 1.0242 1.0042 0.9442 1.0254 0.9378 0.9733\n", " 1.0618 1.0332 1.0127 1.0033 1.0322 1.0387 0.9637\n", " 1.0103 1.0251 0.9993 0.9869 1.0791 0.9746 1.0169\n", "\n", " Columns 15 through 19\n", "\n", " 1.0094 1.0526 0.9891 0.9429 1.0284\n", " 1.0478 1.0121 1.0478 1.0863 0.9677\n", " 0.9787 0.9837 1.0058 0.8783 1.0368\n", " 1.0230 0.9736 1.0136 1.0088 0.9902\n", " 0.9866 0.9838 0.9777 1.0435 1.0358\n", " 1.0347 1.0204 1.0442 0.8652 0.9625\n", " 0.9920 1.0029 0.9859 0.9709 1.0516\n", " 1.0248 0.9874 1.0337 0.9018 1.0282\n", " 0.9741 1.0288 1.0069 1.0542 1.0682\n", " 1.0606 1.0353 1.0930 0.9807 1.1222\n", " 0.9771 0.9141 1.0126 1.1302 1.0139\n", " 1.0551 1.0587 1.0675 0.9652 1.0641\n", " 0.9905 0.9377 1.0118 0.9440 0.8907\n", " 0.9960 1.0443 1.0062 1.0556 1.1299\n", " 1.0397 0.9839 1.0399 1.0317 0.9560\n", " 1.0370 1.0048 1.0142 1.0606 1.0928\n", " 0.9605 1.0535 0.9608 0.9920 0.8752\n", " 1.0028 0.9102 1.0425 0.8460 1.0263\n", " 1.0277 1.0785 1.0272 0.9110 0.9733\n", " 0.9735 1.0163 0.9919 0.9301 0.9778\n", " 0.9199 1.0911 0.9150 1.0043 1.1557\n", " 0.9685 0.9969 1.0592 1.0150 0.8642\n", " 1.0302 0.9926 1.0206 1.0038 1.0624\n", " 0.9960 1.1402 1.0058 1.0412 0.8712\n", " 0.9396 1.1128 0.9568 0.9936 1.1818\n", " 1.0281 1.0080 0.9811 1.0386 0.9857\n", " 1.0030 1.0445 1.0423 1.1014 0.9695\n", " 0.9406 1.0313 0.9391 0.9700 1.0940\n", " 1.0290 1.0166 1.0317 1.0565 0.9501\n", " 0.9957 0.9906 0.9694 0.9636 1.0201\n", " 0.9775 0.9702 0.9493 1.0237 1.1195\n", " 0.9498 0.9992 0.9427 1.1187 0.9627\n", " 0.9794 1.1593 1.0728 1.1212 1.2051\n", " 0.9895 1.0365 0.9908 1.0194 1.0517\n", " 1.0064 1.0089 0.9936 0.9880 0.9609\n", " 1.0029 0.9722 1.0676 0.9227 1.1359\n", " 1.0484 0.9688 1.0461 1.0267 1.0188\n", " 1.0658 1.1386 1.0445 0.9764 0.9986\n", " 1.0355 1.0635 1.0499 1.0088 1.0198\n", " 0.9615 0.9416 0.9945 0.9278 1.1121\n", " 0.9778 1.0629 0.9511 1.0764 1.0202\n", " 1.0604 0.9835 1.0873 1.0258 1.0659\n", " 0.9538 0.9806 1.0065 1.0468 0.9161\n", " 0.9571 0.9643 1.0101 0.8207 0.9344\n", " 0.9983 0.9316 1.0591 1.0293 1.0525\n", " 1.0365 1.0562 1.0275 1.0121 0.8935\n", " 0.9672 1.0064 1.0137 0.9617 0.9035\n", " 1.0439 0.9599 1.0426 1.1527 0.9774\n", " 1.0977 0.9479 1.1285 1.0884 0.9126\n", " 1.0732 1.0443 1.0850 1.0432 0.9679\n", " 1.0160 1.0526 1.0153 1.1036 1.1472\n", " 0.9856 0.9226 1.0265 0.9985 1.0125\n", " 1.0137 1.0269 1.0364 1.0327 0.9550\n", " 1.0264 1.0217 1.0657 0.9270 0.9975\n", " 0.9938 0.9370 0.9967 0.9751 1.1058\n", " 1.0084 0.8649 1.0122 1.0643 1.0132\n", " 1.0192 0.9917 0.9981 0.9320 0.9688\n", " 1.1301 1.0864 1.2221 1.0704 1.0825\n", " 1.0145 1.0370 1.0210 1.0975 1.0019\n", " 1.0015 0.9336 1.0545 0.9650 1.0909\n", " 0.9628 1.0637 0.9852 1.0331 1.0618\n", " 1.0257 1.0249 1.0166 0.8963 1.0978\n", " 1.0866 0.9142 0.9917 1.0466 0.8534\n", " 0.9746 1.0988 0.9936 0.8947 1.1302\n", " 0.9784 0.9644 0.9606 1.0355 1.0242\n", " 0.9339 1.0124 0.9745 0.9522 1.1098\n", " 1.0210 0.9911 1.0033 1.1704 1.0132\n", " 1.0795 0.9190 1.1025 1.0430 1.0622\n", " 1.0012 0.9883 0.9382 1.0396 1.1538\n", " 1.0749 1.0066 1.0923 0.9619 1.0860\n", " 0.9545 0.8210 0.9524 1.0356 0.8544\n", " 0.9968 1.0430 0.9987 1.1098 1.0365\n", " 0.9787 0.9427 1.0078 0.9151 0.9728\n", " 1.0468 1.0287 1.0475 0.9925 0.8880\n", " 0.9532 0.9331 0.9953 1.0659 0.9703\n", " 1.0683 0.9641 1.0476 1.1023 1.0276\n", " 0.9893 0.9612 0.9961 0.9555 1.0515\n", " 0.9756 0.9991 1.0374 0.9416 1.1405\n", "\n", " Columns 1 through 7\n", "\n", " 0.9954 0.9624 0.9235 0.9626 1.0349 0.9505 0.8431\n", " 1.0403 0.9432 0.9294 0.9168 0.9807 0.8400 1.0028\n", " 0.8737 0.8891 0.9048 0.9100 0.9789 0.9504 1.0487\n", " 0.9768 0.9342 1.0130 1.0267 1.0246 1.0877 0.9461\n", " 1.1135 1.0576 1.0897 0.9933 1.0114 1.0045 0.9229\n", " 0.9890 0.9579 1.0752 1.0095 1.0138 0.9275 0.9158\n", " 0.9302 0.9720 1.1355 1.1005 0.9312 0.8926 0.9960\n", " 0.9278 0.9830 0.9665 0.9437 1.0190 1.1119 0.9700\n", " 0.9315 0.9561 1.0050 0.9883 0.9221 0.9679 1.0466\n", " 0.9474 0.9618 0.9522 0.9760 1.0043 0.9268 0.9661\n", " 0.9237 0.9640 0.9676 0.9730 0.9598 0.9954 0.9940\n", " 1.0212 1.0169 1.0016 1.0094 0.9267 0.9473 0.9218\n", " 0.9103 0.9538 0.9762 0.9417 1.0011 1.0101 0.9670\n", " 0.9723 1.0159 1.0547 1.0645 0.9735 0.9103 1.0324\n", " 0.9691 0.9349 0.9764 0.9295 0.9226 0.9656 0.9785\n", " 0.9487 0.9732 0.9802 0.9616 0.9618 0.9414 1.0160\n", " 0.8784 0.9531 0.9029 0.8821 0.9393 1.0632 0.9460\n", " 0.9543 0.9939 1.0485 1.0076 1.0204 1.1165 0.9263\n", " 0.9163 0.9407 1.0277 0.9514 0.9340 0.9333 1.0293\n", " 0.9906 0.9405 0.8976 0.9077 0.9035 1.0670 1.0100\n", " 0.8746 0.9426 0.9666 0.9818 1.0081 0.9925 1.0185\n", " 0.9580 0.9767 1.0947 0.9712 1.0152 0.9509 1.0114\n", " 0.9534 1.0104 1.0178 0.9805 0.9823 1.0052 1.0079\n", " 1.0985 0.9624 0.8920 0.9989 1.0488 1.0970 0.9574\n", " 0.9102 0.9840 0.9227 0.9896 0.9576 1.0621 1.0640\n", " 0.9242 0.8691 0.8219 0.9355 0.9639 0.9746 0.8600\n", " 1.0173 0.9204 0.9280 1.0325 0.9584 1.0269 0.9310\n", " 0.9463 1.0901 1.2253 1.0721 0.9186 1.1345 0.9368\n", " 0.9471 0.9595 1.0689 0.9693 0.9904 0.9485 0.9876\n", " 0.8727 0.9775 0.9574 0.9743 0.9734 0.8972 0.9799\n", " 0.9180 0.9790 0.8289 1.0442 0.9462 0.9528 0.9462\n", " 0.8568 1.0323 0.9324 0.9554 0.9848 1.0975 0.8915\n", " 0.9125 1.0008 0.9483 0.9394 0.9891 0.9629 0.9630\n", " 1.0303 1.0101 1.0180 0.9742 0.9815 0.9715 0.9457\n", " 0.8895 0.9464 1.0275 0.9389 1.0039 0.9948 0.9743\n", " 0.8047 0.8528 0.9735 0.9096 1.0894 0.8461 0.9513\n", " 0.9248 0.9514 1.0316 0.9644 0.9790 0.8167 0.9492\n", " 0.8868 0.9812 1.0081 1.0038 0.9764 0.8769 1.0162\n", " 0.9744 1.0232 1.0800 1.0521 1.0044 0.8728 1.0682\n", " 1.2871 0.9231 0.9604 0.9138 0.9398 0.9578 0.9786\n", " 0.8621 1.0255 1.1114 0.9997 0.9758 0.9836 1.0126\n", " 0.9354 0.9770 0.9040 0.9552 0.9752 1.0492 0.9216\n", " 0.8770 0.9417 0.9319 0.8955 0.9171 1.0663 1.0132\n", " 0.9482 0.9465 1.0364 0.9341 0.9677 0.9857 1.0169\n", " 1.0257 0.9295 0.9134 0.9972 0.9833 0.8736 0.9373\n", " 0.8493 0.9382 0.9998 1.0111 0.8855 0.9062 1.0510\n", " 0.8744 0.9425 0.9320 0.9548 1.0276 1.0089 0.9459\n", " 1.0413 0.9819 0.9677 1.0115 1.0071 1.0447 0.9702\n", " 1.0340 0.9865 1.0439 0.9780 1.0447 0.9921 1.0203\n", " 0.7759 0.9029 0.9166 0.9900 0.9066 0.9258 0.9442\n", " 0.9660 0.9074 0.9071 0.9747 0.9507 0.9781 0.9458\n", " 1.0376 0.9827 0.9601 0.9033 1.0517 0.9766 0.9716\n", " 0.8992 0.9838 0.9827 0.9660 1.0139 0.9400 0.9360\n", " 0.9416 0.9967 1.0489 0.9590 0.9840 1.0512 1.0057\n", " 1.0332 1.0179 0.9673 0.9880 1.0135 0.9352 1.0387\n", " 1.0018 1.0143 1.0933 0.9853 0.9589 0.9777 1.0562\n", " 1.0087 0.9375 0.8685 0.9459 0.9660 0.9803 0.9539\n", " 0.9930 0.9346 0.9961 1.0040 1.0699 0.9248 1.0043\n", " 0.9506 1.0155 1.0174 0.9755 0.9592 0.9996 1.0001\n", " 0.9039 0.8947 0.9899 1.0020 1.0050 0.9603 0.9942\n", " 0.9491 0.9446 0.9502 0.9277 0.9768 0.9814 0.9152\n", " 0.8832 0.9399 1.0092 1.0051 1.0249 0.9343 0.9975\n", " 0.9591 0.9286 0.8617 0.9227 0.9315 1.0182 0.9601\n", " 0.9468 0.9411 0.9379 0.8932 0.8633 1.0166 1.0972\n", " 0.8726 0.9306 0.9908 0.9288 0.9376 0.9270 0.9593\n", " 0.9112 1.0050 0.9580 0.9607 1.0224 1.1301 0.9615\n", " 1.0608 0.9921 0.9214 0.9449 0.9729 0.9747 0.9446\n", " 0.9615 0.9636 0.8953 0.9728 0.9980 0.9965 0.9998\n", " 0.9193 0.9201 0.9819 0.8934 0.9413 0.9708 1.0259\n", " 0.8955 0.8770 0.8567 0.9662 0.9786 0.8793 0.9920\n", " 0.9705 0.9392 0.9553 1.0286 0.9243 0.9262 0.9581\n", " 0.9673 0.9326 1.0214 0.9650 0.9630 1.0378 0.9985\n", " 0.9228 0.8426 0.7828 0.9252 0.9655 0.9730 0.9655\n", " 1.0677 0.9359 0.8563 1.0097 1.0100 0.8630 0.9386\n", " 1.0181 0.9225 0.9857 1.0382 0.9853 0.9895 1.0375\n", " 0.8391 0.9541 1.0046 1.0169 0.9631 1.0911 0.9624\n", " 1.0286 0.9358 0.9579 1.0062 1.0119 0.9117 0.9323\n", " 0.8821 0.9510 0.9219 0.8954 0.9422 0.9968 1.0350\n", " 0.8770 0.9554 0.9509 0.9579 0.9664 1.0332 1.0836\n", " 0.8709 0.9334 0.9665 0.9629 0.9294 0.9267 0.9361\n", " 0.9649 1.0264 1.0611 0.9582 0.9456 1.0013 1.0056\n", " 0.9051 0.9009 0.9341 0.9534 0.9588 0.9533 0.9831\n", " 0.9431 0.9744 1.0463 1.0397 0.9162 1.0448 1.0025\n", " 0.8203 0.9306 0.9495 0.9456 0.9559 1.0721 0.9696\n", " 0.9379 0.9050 0.9706 0.9811 0.9614 0.8621 0.9884\n", " 0.9668 1.0054 0.9966 0.9904 0.9940 0.9585 1.0125\n", " 1.0126 1.0215 1.0068 0.9138 1.0452 0.9604 1.0790\n", " 1.0036 1.0979 1.0947 0.9857 1.0139 0.9772 0.9708\n", " 0.9364 0.9188 0.9161 0.9885 0.9313 0.9902 0.9526\n", " 0.9195 0.9667 0.9740 0.9935 0.9593 1.0719 0.9885\n", " 1.0609 1.0748 1.0280 0.9816 0.9402 0.9739 1.0842\n", " 0.9845 1.0302 0.9140 0.9600 0.9732 1.0474 0.9843\n", " 0.8842 0.9119 0.9181 0.9581 0.9429 0.9709 0.9126\n", " 0.9238 0.9353 0.9975 0.9219 0.9524 1.0436 0.9760\n", " 1.0276 1.0788 0.8735 0.9903 1.0238 1.0754 0.9460\n", " 1.0362 0.9928 0.9577 0.9841 1.0252 0.8895 0.9101\n", " 0.9270 0.9109 0.8803 0.9568 1.0396 0.9153 0.9260\n", " 0.9578 0.9436 0.9055 0.9593 0.9851 1.0383 0.9584\n", " 0.9709 0.9982 0.9783 0.9783 0.9976 0.8943 1.0087\n", " 0.9481 1.0361 1.0745 1.0610 0.9290 1.0092 1.0654\n", "\n", " Columns 8 through 14\n", "\n", " 0.9893 1.0291 0.9527 0.9314 1.0184 1.0335 0.9825\n", " 0.9601 1.0517 0.9705 0.9997 1.0524 0.9786 0.9321\n", " 0.9738 0.9748 1.0022 1.0169 0.9918 0.9879 0.8942\n", " 0.9708 0.9481 0.9605 1.0417 0.9410 1.1302 1.1311\n", " 0.9768 0.9704 0.9735 0.9273 1.0278 1.0063 1.0190\n", " 0.9991 1.0517 0.9494 1.0045 0.9675 1.0333 0.9146\n", " 0.9281 0.9504 0.9911 1.0256 0.9962 1.1018 0.9490\n", " 0.9804 0.9822 1.0261 0.9527 0.9784 0.9763 1.0935\n", " 0.9873 1.0115 1.0444 1.0267 0.9972 0.9613 0.9093\n", " 0.9749 1.0029 0.9610 0.9754 0.9992 0.9885 1.0218\n", " 0.9713 1.0083 1.0088 0.9525 1.0182 0.9761 1.0701\n", " 1.0273 1.0742 1.0283 0.9933 1.0063 1.0245 0.9741\n", " 0.9854 0.9790 1.0109 0.9367 0.9752 0.9727 1.0027\n", " 0.9254 0.9547 1.0212 0.9569 0.9355 1.0316 0.9955\n", " 0.9686 1.0039 0.9856 0.9864 1.0082 0.9483 1.0116\n", " 0.9966 1.0154 1.0099 0.9966 1.0325 0.9635 1.0743\n", " 1.0009 0.9593 0.9426 0.9943 0.9696 0.9890 1.0301\n", " 1.0470 1.0159 0.9618 0.9969 1.0509 1.0424 1.1972\n", " 1.0781 1.0131 0.9969 1.0244 1.0628 0.9654 0.9929\n", " 0.9540 0.9870 1.0054 1.0191 0.9986 1.0579 0.8730\n", " 0.9661 0.9731 0.9965 1.0911 0.9449 1.0440 1.1309\n", " 1.0969 1.0411 1.0855 1.0202 0.9920 0.9729 0.8891\n", " 0.9951 0.9911 1.0055 0.9996 0.9780 0.9774 1.0369\n", " 0.9631 1.0361 0.9707 0.9678 1.0256 0.9962 1.0101\n", " 0.9530 0.9799 1.0205 1.0287 0.9704 1.0701 1.0107\n", " 0.9397 1.0527 0.9896 1.0146 1.0656 0.9752 0.9182\n", " 0.9263 1.0140 0.9097 0.9672 0.9939 1.0497 0.9585\n", " 0.9679 1.0153 0.9647 0.9260 1.0289 1.0020 1.2145\n", " 0.9974 0.9852 0.9664 1.0305 1.0244 0.9455 0.9105\n", " 0.9724 1.0285 1.0221 1.0389 0.9447 1.0853 1.0826\n", " 0.9354 0.9983 0.9691 0.9790 0.9713 1.1456 1.0904\n", " 0.9101 1.0067 0.9333 0.9013 1.0170 0.9879 1.0933\n", " 1.0069 0.9842 1.0212 0.9401 0.9821 0.9503 0.9963\n", " 0.9781 0.9890 0.9558 0.9823 0.9566 1.0201 1.0264\n", " 0.9946 0.9927 0.9977 1.0165 1.0159 1.0104 1.0602\n", " 0.9688 0.8779 0.9896 1.0050 0.9570 1.1241 0.9359\n", " 0.9725 0.9960 0.9977 0.9291 1.0377 1.0102 0.9899\n", " 0.9366 0.9689 0.9985 1.0256 0.9866 1.0364 0.9716\n", " 1.0035 0.9888 0.9776 0.9416 0.9814 1.0185 1.0604\n", " 0.8791 0.9444 0.9053 1.0118 1.0485 0.9859 1.0008\n", " 1.0497 1.0397 1.0418 0.9490 1.0133 1.0440 1.0292\n", " 0.9799 0.9562 0.9627 0.9405 0.9709 1.0058 1.0575\n", " 0.9796 0.9507 0.9624 1.0143 1.0058 0.9319 1.1173\n", " 0.9658 0.9712 1.0220 1.0181 0.9909 0.9862 1.0959\n", " 0.9560 0.9817 0.9587 0.9779 1.0111 1.0014 1.0100\n", " 0.9892 0.9947 1.0509 1.0391 0.9551 1.0127 0.9845\n", " 0.9383 0.9902 1.0008 1.0527 0.9846 1.0124 0.9728\n", " 0.9748 0.9863 0.9852 0.9988 1.0322 1.0129 1.0946\n", " 1.0011 1.0192 1.0400 1.0107 1.0057 0.9825 0.9998\n", " 1.0207 1.0342 1.0411 0.9371 0.9585 0.9542 1.0066\n", " 0.9860 1.0199 0.9557 0.9402 1.0346 0.9411 0.9949\n", " 0.9443 0.9792 0.9846 0.9097 0.9733 0.9304 1.0092\n", " 1.0544 1.0156 1.0524 1.0642 0.9787 1.0382 1.0338\n", " 0.9594 0.9541 0.9937 1.0343 1.0019 1.0088 1.1454\n", " 1.0566 1.0203 1.0433 1.0227 0.9860 0.9729 0.9577\n", " 1.0671 0.9858 1.0830 1.0758 0.9479 0.9506 0.9884\n", " 0.9837 0.9974 0.9517 1.0059 1.0591 0.9936 1.0249\n", " 1.0767 0.9646 1.1368 1.0799 0.9435 1.0103 0.9366\n", " 0.9685 1.0124 0.9698 0.9889 0.9953 1.0236 0.9451\n", " 1.0259 0.9630 0.9837 1.0215 0.9581 1.1112 0.8913\n", " 1.0802 1.0739 1.0153 0.9750 1.0513 0.9822 0.9024\n", " 0.9873 0.9609 0.9960 1.0368 0.9622 1.0525 0.9239\n", " 1.0617 0.9878 0.9789 0.9834 1.0333 0.9793 1.0599\n", " 1.0065 0.9863 1.0668 0.9298 1.0004 0.8988 0.9414\n", " 0.9912 0.9686 1.0158 0.9521 0.9679 0.9605 1.0411\n", " 1.0534 1.0110 1.0331 1.0471 0.9991 1.0524 1.0311\n", " 0.9600 0.9720 0.9663 0.9595 0.9924 0.9952 0.8969\n", " 1.0018 1.0075 1.0272 0.9880 1.0150 0.9409 1.0261\n", " 0.9950 1.0395 0.9679 0.9595 1.0525 0.8995 1.0082\n", " 1.0001 1.0094 0.9801 1.0615 1.0196 1.0285 0.9853\n", " 1.0329 0.9566 0.9658 1.0775 0.9440 1.0855 0.8988\n", " 1.0031 1.0126 0.9757 1.0112 1.0177 1.0066 0.9375\n", " 0.9989 0.9761 0.9258 1.0053 1.0103 0.9911 0.8918\n", " 1.0335 1.0400 0.9738 0.9758 1.0306 0.9958 0.9625\n", " 0.9298 0.9830 1.0038 0.9475 0.9552 0.9413 1.1557\n", " 0.9031 1.0072 0.9709 1.0002 0.9769 1.1131 1.0812\n", " 0.9884 0.9816 0.9736 0.9901 0.9560 1.1016 0.9317\n", " 0.9843 1.0411 1.0259 1.0224 0.9645 0.9523 0.9761\n", " 0.9847 0.9826 1.0397 0.9954 1.0068 0.9642 0.9702\n", " 0.9356 0.9730 0.9151 0.9752 1.0202 0.9630 0.9327\n", " 0.9664 0.9743 0.9999 0.9722 1.0048 1.0297 1.0936\n", " 0.9905 0.9995 0.9668 0.9404 1.0122 0.9830 0.9893\n", " 0.9550 0.9779 1.0148 1.0360 0.9937 1.0488 0.9754\n", " 1.0063 1.0196 1.0328 1.0058 1.0495 0.9828 1.0094\n", " 0.9755 0.9625 1.0300 1.0021 0.9154 1.0230 1.0101\n", " 1.0240 1.0214 1.0192 1.0151 1.0007 1.0096 1.0107\n", " 1.0286 0.9947 1.0452 1.0277 1.0122 0.9682 1.0358\n", " 1.0461 1.0248 1.0620 0.9946 1.0091 1.0168 1.0747\n", " 0.9993 0.9994 0.9566 0.9690 1.0170 1.0032 0.9909\n", " 0.9962 1.0076 1.0084 0.9782 0.9642 1.0011 1.0820\n", " 0.8983 0.9625 0.9929 0.9315 1.0365 0.9109 1.0811\n", " 1.0041 1.0034 0.9749 0.9979 1.0356 1.0048 1.1366\n", " 0.9525 1.0194 0.9853 0.9327 0.9735 1.0141 0.9246\n", " 0.9480 0.9859 0.9582 0.9018 1.0045 0.9679 0.9149\n", " 0.9857 0.9980 1.0119 0.9776 0.9638 1.0246 1.0920\n", " 0.9987 1.0403 0.9657 0.9358 1.0206 1.0060 0.9068\n", " 0.9035 0.9761 0.9359 0.9088 0.9695 1.0058 1.0734\n", " 0.9727 1.0024 1.0137 0.9527 0.9888 0.9795 0.9862\n", " 1.0102 0.9786 1.0130 1.0185 0.9602 1.0114 0.8841\n", " 0.9782 0.9356 1.0722 1.0536 0.9461 1.0903 1.1214\n", "\n", " Columns 15 through 19\n", "\n", " 1.0499 0.9035 1.0554 1.0677 0.9503\n", " 1.0356 1.0854 1.0070 1.0557 0.9981\n", " 0.9922 0.9006 0.9837 1.0030 1.0683\n", " 1.0396 1.0526 1.0884 1.0950 0.9715\n", " 1.0126 0.8751 0.9845 0.9893 1.0003\n", " 1.0403 0.9043 1.0611 1.0407 0.9166\n", " 0.9498 1.0004 0.8788 1.1467 1.0509\n", " 1.0370 1.0198 0.9574 0.9998 1.0738\n", " 0.9485 1.0552 0.9578 0.9698 1.0448\n", " 0.9926 0.9570 1.0084 0.9660 0.9357\n", " 0.9841 1.0664 0.9885 0.9560 1.0522\n", " 0.9523 0.9475 0.9998 1.0218 1.0529\n", " 1.0308 1.0477 1.0006 1.0024 1.0414\n", " 1.0407 1.0935 0.9760 0.9774 1.0846\n", " 0.9406 1.0674 0.9537 0.9873 0.9556\n", " 1.0149 0.9425 0.9987 0.9582 0.9760\n", " 1.0040 1.1498 1.1252 1.0529 0.9686\n", " 0.9589 0.9238 0.9412 1.0751 0.9735\n", " 0.9650 0.9585 0.9289 0.9801 1.0498\n", " 1.0455 0.9625 0.9759 1.0677 1.1510\n", " 1.0166 0.9906 0.9960 1.1066 0.9796\n", " 1.0627 1.1757 1.0488 0.9522 0.9850\n", " 0.9997 1.0117 1.0071 1.0043 1.0570\n", " 1.0289 1.1213 1.0154 0.9800 0.9321\n", " 0.9478 1.0598 1.0200 1.0974 0.9418\n", " 1.0159 1.1041 1.0020 1.0468 0.8981\n", " 0.9551 0.8967 0.9742 1.0640 0.9477\n", " 0.9943 0.9183 1.0354 0.9896 1.0254\n", " 1.0584 1.0301 1.0302 1.0069 0.9628\n", " 0.9500 1.0442 0.9743 1.1184 1.0423\n", " 0.9929 0.8889 1.0193 1.1249 0.9703\n", " 1.0659 0.9323 0.9801 0.8949 1.0216\n", " 1.0302 0.9771 1.0782 0.9413 1.0287\n", " 1.0465 1.0164 1.0688 1.0202 0.9797\n", " 0.9746 1.0430 1.0696 1.0158 0.9987\n", " 1.0963 1.1277 1.1055 1.1780 1.0808\n", " 1.0365 0.9152 1.0515 0.9855 1.1121\n", " 0.9375 0.9784 1.0304 1.1162 1.0266\n", " 0.9924 1.2008 0.9859 1.0033 1.0327\n", " 1.1017 0.8852 1.0937 1.0214 0.9295\n", " 1.0159 0.9368 0.9618 0.9740 1.1414\n", " 1.0376 0.9094 1.1071 0.9641 0.9788\n", " 0.9731 1.1126 1.0515 1.0357 0.9731\n", " 0.9662 0.9604 0.9927 1.0417 1.1663\n", " 0.9959 1.0722 1.0468 1.0512 0.9451\n", " 1.0138 1.0920 0.9131 1.0316 1.0333\n", " 1.0125 0.9397 0.9703 1.0829 0.9620\n", " 0.9913 0.9925 0.9860 1.0415 1.0240\n", " 0.9924 1.0609 0.9625 0.9470 1.0565\n", " 0.9919 0.9809 0.8787 0.9561 1.0345\n", " 1.0089 1.0230 1.0681 0.9078 0.8993\n", " 1.0720 1.0860 1.0574 0.8930 1.0312\n", " 0.9849 1.1573 1.0059 1.0553 1.0881\n", " 0.9964 1.1160 0.9064 1.0461 0.9913\n", " 0.9523 1.2197 1.0360 0.9564 0.9790\n", " 1.0267 1.0827 1.0259 0.9354 1.0662\n", " 0.9681 0.9531 0.9597 1.0467 0.9708\n", " 0.9894 1.1516 1.0578 1.0988 1.0474\n", " 0.9937 1.0611 0.9964 1.0545 1.0790\n", " 1.0610 0.9858 1.0268 1.0878 1.0780\n", " 1.0161 0.8900 1.0331 0.9860 1.0480\n", " 1.0287 1.0593 1.0131 1.0697 1.0212\n", " 0.9916 0.9017 0.8961 0.9971 0.9913\n", " 1.0247 1.0019 1.1200 0.7734 1.1257\n", " 1.0324 1.0461 1.0326 0.9861 1.0252\n", " 0.9753 1.1022 0.9610 1.0891 0.9837\n", " 1.0547 0.9521 1.0169 0.9488 0.9528\n", " 1.0074 1.0166 1.0493 0.9472 1.0212\n", " 1.0299 0.9285 1.0470 0.9608 0.9419\n", " 0.9929 1.2082 1.0394 1.0622 0.9491\n", " 0.9857 1.0718 0.9966 1.1235 0.9765\n", " 0.9824 0.9914 1.0662 1.0590 0.9651\n", " 0.9948 1.0728 1.0242 1.0513 0.9561\n", " 1.0064 0.9685 1.0847 1.0074 0.9268\n", " 0.9249 1.1630 0.9534 0.9320 1.0647\n", " 0.9302 0.9119 0.9126 1.1661 1.0530\n", " 1.0172 1.0458 1.0023 1.1460 1.0252\n", " 1.0419 0.9639 1.0421 1.0412 1.0235\n", " 0.9749 1.0627 1.0741 0.9914 1.1108\n", " 1.0458 0.9586 1.1696 0.9597 0.9389\n", " 1.0127 1.0362 1.0645 1.0401 0.9940\n", " 1.0392 0.9234 1.0353 0.9445 1.0385\n", " 0.9956 1.0615 0.9879 1.1145 1.0179\n", " 0.9938 1.0485 0.9790 1.0151 0.9637\n", " 1.0112 1.1698 1.0646 1.0405 0.9756\n", " 1.0071 0.9771 0.9733 1.0281 1.0347\n", " 0.9904 1.1132 0.9733 0.9755 1.0604\n", " 0.9670 1.0463 0.9702 1.0347 1.0588\n", " 1.0139 0.9782 1.0032 1.0285 1.0174\n", " 0.9735 1.1312 1.0336 0.9807 0.9863\n", " 1.0279 1.0128 1.0048 0.8895 1.0619\n", " 0.9659 1.0020 0.9914 1.0414 0.9584\n", " 1.0210 0.9121 1.0730 1.0386 1.0042\n", " 1.0715 0.8621 1.1024 0.9583 1.0856\n", " 0.9985 0.8651 1.0527 0.9955 0.9771\n", " 1.0223 0.9709 1.0978 1.0056 0.9970\n", " 1.0355 0.8533 1.0462 1.0059 0.9380\n", " 0.9970 0.9935 0.9634 0.9686 1.0367\n", " 1.0530 1.0121 1.0260 0.9926 0.9940\n", " 1.0092 1.0116 1.0271 1.0183 1.0577\n" ] } ], "source": [ "%plot inline -s 2000,1000\n", "% network_files = dir(fullfile(pwd, 'ROIs_mask', '*FDR_0.01.nii*'));\n", "figure;\n", "labels = {network_files(:).name};\n", "for i = 1:numel(labels)\n", " labels{i} = labels{i}(1:end-23);\n", "end\n", "\n", "grouplabels = {'control', 'autism'};\n", "\n", "for ibin = 1\n", "figure;\n", "for igroup = 1:2\n", " \n", " subplot(1, 2, igroup);\n", " \n", " [~, sortorder] = sort(median(binned_ratio(:, group==igroup, ibin), 2));\n", " disp(binned_ratio(sortorder, group==igroup, ibin)');\n", " \n", " boxplot(squeeze(binned_ratio(sortorder, group==igroup, ibin))', 'orientation', 'horizontal', 'Labels', labels(sortorder));\n", " % xlim([0, 300]);\n", " xlabel('Gradient_i_n_s_i_d_e / Gradient_o_u_t_s_i_d_e of the network');\n", " title([grouplabels{igroup}, ' group']);\n", "end\n", "end\n" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Matlab", "language": "matlab", "name": "matlab" }, "language_info": { "codemirror_mode": "octave", "file_extension": ".m", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-matlab", "name": "matlab", "version": "0.13.1" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
superliaoyong/plist-forsource
python 第五课课件.ipynb
1
218903
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ " 人生苦短,我用python\n", "# 泰坦尼克数据处理与分析" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "<img src='https://timgsa.baidu.com/timg?image&quality=80&size=b9999_10000&sec=1502440065892&di=51db15bf76374068735a690806ad66a2&imgtype=0&src=http%3A%2F%2Fwww.pp3.cn%2Fuploads%2F201607%2F20160708007.jpg'>" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 导入数据" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 如果不知道函数名是什么,可以只敲击函数前几个,然后按tab键,就会有下拉框提示\n", "titanic = pd.read_csv('train.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 快速预览" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PassengerId</th>\n", " <th>Survived</th>\n", " <th>Pclass</th>\n", " <th>Name</th>\n", " <th>Sex</th>\n", " <th>Age</th>\n", " <th>SibSp</th>\n", " <th>Parch</th>\n", " <th>Ticket</th>\n", " <th>Fare</th>\n", " <th>Cabin</th>\n", " <th>Embarked</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Braund, Mr. Owen Harris</td>\n", " <td>male</td>\n", " <td>22.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>A/5 21171</td>\n", " <td>7.2500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n", " <td>female</td>\n", " <td>38.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>PC 17599</td>\n", " <td>71.2833</td>\n", " <td>C85</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Heikkinen, Miss. Laina</td>\n", " <td>female</td>\n", " <td>26.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>STON/O2. 3101282</td>\n", " <td>7.9250</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n", " <td>female</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>113803</td>\n", " <td>53.1000</td>\n", " <td>C123</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Allen, Mr. William Henry</td>\n", " <td>male</td>\n", " <td>35.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>373450</td>\n", " <td>8.0500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PassengerId Survived Pclass \\\n", "0 1 0 3 \n", "1 2 1 1 \n", "2 3 1 3 \n", "3 4 1 1 \n", "4 5 0 3 \n", "\n", " Name Sex Age SibSp \\\n", "0 Braund, Mr. Owen Harris male 22.0 1 \n", "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", "2 Heikkinen, Miss. Laina female 26.0 0 \n", "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", "4 Allen, Mr. William Henry male 35.0 0 \n", "\n", " Parch Ticket Fare Cabin Embarked \n", "0 0 A/5 21171 7.2500 NaN S \n", "1 0 PC 17599 71.2833 C85 C \n", "2 0 STON/O2. 3101282 7.9250 NaN S \n", "3 0 113803 53.1000 C123 S \n", "4 0 373450 8.0500 NaN S " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "titanic.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "| 单词 | 翻译 \n", "| ---: | :--- \n", "| pclass | 社会阶层(1,精英;2,中层;3,船员/劳苦大众) \n", "| survived | 是否幸存 \n", "| name | 名字 \n", "| sex | 性别 \n", "| age | 年龄 \n", "| sibsp | 兄弟姐妹配偶个数 sibling spouse\n", "| parch | 父母儿女个数 \n", "| ticket | 船票号 \n", "| fare | 船票价钱 \n", "| cabin | 船舱 \n", "| embarked| 登船口" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 891 entries, 0 to 890\n", "Data columns (total 12 columns):\n", "PassengerId 891 non-null int64\n", "Survived 891 non-null int64\n", "Pclass 891 non-null int64\n", "Name 891 non-null object\n", "Sex 891 non-null object\n", "Age 714 non-null float64\n", "SibSp 891 non-null int64\n", "Parch 891 non-null int64\n", "Ticket 891 non-null object\n", "Fare 891 non-null float64\n", "Cabin 204 non-null object\n", "Embarked 889 non-null object\n", "dtypes: float64(2), int64(5), object(5)\n", "memory usage: 83.6+ KB\n" ] } ], "source": [ "titanic.info()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PassengerId</th>\n", " <th>Survived</th>\n", " <th>Pclass</th>\n", " <th>Age</th>\n", " <th>SibSp</th>\n", " <th>Parch</th>\n", " <th>Fare</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>891.000000</td>\n", " <td>891.000000</td>\n", " <td>891.000000</td>\n", " <td>714.000000</td>\n", " <td>891.000000</td>\n", " <td>891.000000</td>\n", " <td>891.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>446.000000</td>\n", " <td>0.383838</td>\n", " <td>2.308642</td>\n", " <td>29.699118</td>\n", " <td>0.523008</td>\n", " <td>0.381594</td>\n", " <td>32.204208</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>257.353842</td>\n", " <td>0.486592</td>\n", " <td>0.836071</td>\n", " <td>14.526497</td>\n", " <td>1.102743</td>\n", " <td>0.806057</td>\n", " <td>49.693429</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>1.000000</td>\n", " <td>0.000000</td>\n", " <td>1.000000</td>\n", " <td>0.420000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>223.500000</td>\n", " <td>0.000000</td>\n", " <td>2.000000</td>\n", " <td>20.125000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>7.910400</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>446.000000</td>\n", " <td>0.000000</td>\n", " <td>3.000000</td>\n", " <td>28.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>14.454200</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>668.500000</td>\n", " <td>1.000000</td>\n", " <td>3.000000</td>\n", " <td>38.000000</td>\n", " <td>1.000000</td>\n", " <td>0.000000</td>\n", " <td>31.000000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>891.000000</td>\n", " <td>1.000000</td>\n", " <td>3.000000</td>\n", " <td>80.000000</td>\n", " <td>8.000000</td>\n", " <td>6.000000</td>\n", " <td>512.329200</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PassengerId Survived Pclass Age SibSp \\\n", "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", "\n", " Parch Fare \n", "count 891.000000 891.000000 \n", "mean 0.381594 32.204208 \n", "std 0.806057 49.693429 \n", "min 0.000000 0.000000 \n", "25% 0.000000 7.910400 \n", "50% 0.000000 14.454200 \n", "75% 0.000000 31.000000 \n", "max 6.000000 512.329200 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 把所有数值类型的数据做一个简单的统计\n", "titanic.describe()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PassengerId 0\n", "Survived 0\n", "Pclass 0\n", "Name 0\n", "Sex 0\n", "Age 177\n", "SibSp 0\n", "Parch 0\n", "Ticket 0\n", "Fare 0\n", "Cabin 687\n", "Embarked 2\n", "dtype: int64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 统计None值个数\n", "titanic.isnull().sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 处理空值" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# 可以填充整个datafram里边的空值, 可以取消注释,实验一下\n", "# titanic.fillna(0)\n", "\n", "# 单独选择一列进行控制填充,可以取消注释,实验一下\n", "# titanic.Age.fillna(0)\n", "\n", "# 年龄的中位数\n", "titanic.Age.median()\n", "\n", "# 按年龄的中位数去填充,此时是返回一个新的Series\n", "# titanic.Age.fillna(titanic.Age.median())\n", "\n", "# 直接填充,并不返回新的Series\n", "titanic.Age.fillna(titanic.Age.median(), inplace=True)\n", "\n", "# 再次查看Age的空值\n", "titanic.isnull().sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 尝试从性别进行分析" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "male 577\n", "female 314\n", "Name: Sex, dtype: int64" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 做简单的汇总统计,经常用到\n", "titanic.Sex.value_counts()" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "# 生还者中,男女的人数\n", "survived = titanic[titanic.Survived==1].Sex.value_counts()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "# 未生还者中,男女的人数\n", "dead = titanic[titanic.Survived==0].Sex.value_counts()" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11aaa1b00>" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEdCAYAAAACUaxyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEu5JREFUeJzt3X+QXWV9x/H3NxBZKYGUsKWYpd1tBQIYYjD8limEYQBR\nyYAgmtEgzGRUOpURROTHNAg4tJNiBQoUGgdwsPwQkBSYKYKJQqmExPBLE4YAC2xEiQFiEgZM4Ns/\n7old8oO9y+7m3H3yfs3cuec857nnfO+yfPbkuc85NzITSVK5RtRdgCRpaBn0klQ4g16SCmfQS1Lh\nDHpJKpxBL0mFM+glqXAGvSQVzqCXpMJtXXcBADvttFN2dnbWXYYkDSsLFiz4fWa299WvJYK+s7OT\n+fPn112GJA0rEfFCM/0cupGkwhn0klQ4g16SCtcSY/Qbs2bNGnp6enjzzTfrLqWltLW10dHRwciR\nI+suRdIw0bJB39PTw6hRo+js7CQi6i6nJWQmy5cvp6enh66urrrLkTRMtOzQzZtvvsmYMWMM+V4i\ngjFjxvivHEn90rJBDxjyG+HPRFJ/tXTQS5IGrmXH6NfXec49g7q/7kuP7bPP5ZdfztVXX82+++7L\nTTfdNKjHB5gxYwbbbbcdZ5111qDvW5LWGTZBX4errrqK+++/n46OjrpLkcowY4e6K2jOjBV1VzCo\nHLrZhC9/+cs899xzHHPMMVxyySWceuqp7L///kycOJG77roLgOuvv54pU6Zw5JFH0tnZyZVXXsll\nl13GxIkTOfDAA3n11VcBuO6669hvv/2YMGECJ5xwAm+88cYGx3v22Wc5+uij+djHPsahhx7K4sWL\nN+v7lVQug34TrrnmGj70oQ8xZ84cVq9ezeTJk5k3bx5z5szhG9/4BqtXrwbgqaee4o477uDRRx/l\nvPPOY9ttt2XhwoUcdNBB3HjjjQAcf/zxPProozz++OPsueeezJo1a4PjTZ8+nSuuuIIFCxYwc+ZM\nvvrVr27W9yupXA7dNOG+++5j9uzZzJw5E2hM/XzxxRcBOPzwwxk1ahSjRo1ihx124FOf+hQA48eP\n54knngAafwzOP/98Xn/9dVatWsVRRx31rv2vWrWKhx9+mBNPPPFPbW+99dbmeGuStgAGfRMyk9tv\nv5099tjjXe2PPPII22yzzZ/WR4wY8af1ESNGsHbtWgBOOeUUfvzjHzNhwgSuv/565s6d+679vPPO\nO4wePZrHHntsaN+IpC2SQzdNOOqoo7jiiivITAAWLlzYr9evXLmSXXbZhTVr1mx09s72229PV1cX\nt912G9D4w/L4448PvHBJYhid0TczHXKoXHDBBZxxxhnss88+vPPOO3R1dXH33Xc3/fqLLrqIAw44\ngPb2dg444ABWrly5QZ+bbrqJr3zlK1x88cWsWbOGk08+mQkTJgzm25C0hYp1Z6l1mjRpUq7/xSOL\nFi1izz33rKmi1ubPRsOW0ysHVUQsyMxJffVz6EaSCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVbtjM\nox/0aVlDPH1q7ty5zJw5s1/z7SVpKHhGL0mFM+jfQ3d3N+PGjeOUU05h9913Z+rUqdx///0ccsgh\n7LbbbsybN4958+Zx0EEHMXHiRA4++GCefvrpDfazevXqjd7mWJI2B4O+D0uWLOHMM89k8eLFLF68\nmB/+8Ic89NBDzJw5k+985zuMGzeOBx98kIULF/Ltb3+bc889d4N9XHLJJZu8zbEkDbXhM0Zfk66u\nLsaPHw/A3nvvzRFHHEFEMH78eLq7u1mxYgXTpk3jmWeeISJYs2bNBvvY1G2OvY2BpM3BoO9DX7ch\nvuCCCzj88MO588476e7u5rDDDttgH5u6zbEkbQ4O3QzQihUrGDt2LND4asGNGehtjiVpIIbPGX2L\n3k3u7LPPZtq0aVx88cUce+zGb6U80NscS9JAeJviYcifjYYtb1M8qLxNsSQJMOglqXgtHfStMKzU\navyZSOqvpoM+IraKiIURcXe13hURj0TEkoi4JSI+ULVvU60vqbZ3vp/C2traWL58ucHWS2ayfPly\n2tra6i5F0jDSn1k3XwMWAdtX6/8EfDczb46Ia4DTgKur59cy88MRcXLV77P9Layjo4Oenh6WLVvW\n35cWra2tjY6OjrrLkDSMNBX0EdEBHAtcAnw9IgKYDHy+6nIDMING0B9XLQP8CLgyIiL7eWo+cuRI\nurq6+vMSSdJGNDt086/A2cA71foY4PXMXFut9wBjq+WxwEsA1fYVVX9JUg36DPqI+CTwSmYuGMwD\nR8T0iJgfEfMdnpGkodPMGf0hwKcjohu4mcaQzfeA0RGxbuinA1haLS8FdgWotu8ALF9/p5l5bWZO\nysxJ7e3tA3oTkqRN6zPoM/NbmdmRmZ3AycBPM3MqMAf4TNVtGrDuJuuzq3Wq7T/t7/i8JGnwDGQe\n/TdpfDC7hMYY/KyqfRYwpmr/OnDOwEqUJA1Ev25qlplzgbnV8nPA/hvp8yZw4iDUJkkaBC19Zawk\naeAMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQV\nzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEM\nekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mF6zPoI6ItIuZFxOMR\n8auIuLBq74qIRyJiSUTcEhEfqNq3qdaXVNs7h/YtSJLeSzNn9G8BkzNzAvBR4OiIOBD4J+C7mflh\n4DXgtKr/acBrVft3q36SpJr0GfTZsKpaHVk9EpgM/KhqvwGYUi0fV61TbT8iImLQKpYk9UtTY/QR\nsVVEPAa8AvwEeBZ4PTPXVl16gLHV8ljgJYBq+wpgzGAWLUlqXlNBn5lvZ+ZHgQ5gf2DcQA8cEdMj\nYn5EzF+2bNlAdydJ2oR+zbrJzNeBOcBBwOiI2Lra1AEsrZaXArsCVNt3AJZvZF/XZuakzJzU3t7+\nPsuXJPWlmVk37RExulr+IHAksIhG4H+m6jYNuKtanl2tU23/aWbmYBYtSWre1n13YRfghojYisYf\nhlsz8+6I+DVwc0RcDCwEZlX9ZwE/iIglwKvAyUNQtySpSX0GfWY+AUzcSPtzNMbr129/EzhxUKqT\nJA2YV8ZKUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+gl\nqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIK\nZ9BLUuG2rruA4aTznHvqLqEp3ZceW3cJklqIZ/SSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9\nJBXOoJekwhn0klQ4g16SCtdn0EfErhExJyJ+HRG/ioivVe07RsRPIuKZ6vnPq/aIiMsjYklEPBER\n+w71m5AkbVozZ/RrgTMzcy/gQOD0iNgLOAd4IDN3Ax6o1gGOAXarHtOBqwe9aklS0/oM+sx8OTN/\nWS2vBBYBY4HjgBuqbjcAU6rl44Abs+EXwOiI2GXQK5ckNaVfY/QR0QlMBB4Bds7Ml6tNvwV2rpbH\nAi/1ellP1bb+vqZHxPyImL9s2bJ+li1JalbTQR8R2wG3A2dk5h96b8vMBLI/B87MazNzUmZOam9v\n789LJUn90FTQR8RIGiF/U2beUTX/bt2QTPX8StW+FNi118s7qjZJUg2amXUTwCxgUWZe1mvTbGBa\ntTwNuKtX+xer2TcHAit6DfFIkjazZr5h6hDgC8CTEfFY1XYucClwa0ScBrwAnFRtuxf4BLAEeAP4\n0qBWLEnqlz6DPjMfAmITm4/YSP8ETh9gXZKkQeKVsZJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalw\nBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQ\nS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0k\nFc6gl6TCGfSSVDiDXpIKZ9BLUuG27qtDRHwf+CTwSmZ+pGrbEbgF6AS6gZMy87WICOB7wCeAN4BT\nMvOXQ1O6NmnGDnVX0JwZK+quQNoiNHNGfz1w9Hpt5wAPZOZuwAPVOsAxwG7VYzpw9eCUKUl6v/oM\n+sz8OfDqes3HATdUyzcAU3q135gNvwBGR8Qug1WsJKn/3u8Y/c6Z+XK1/Ftg52p5LPBSr349VZsk\nqSYD/jA2MxPI/r4uIqZHxPyImL9s2bKBliFJ2oT3G/S/WzckUz2/UrUvBXbt1a+jattAZl6bmZMy\nc1J7e/v7LEOS1Jf3G/SzgWnV8jTgrl7tX4yGA4EVvYZ4JEk1aGZ65X8ChwE7RUQP8I/ApcCtEXEa\n8AJwUtX9XhpTK5fQmF75pSGoWZLUD30GfWZ+bhObjthI3wROH2hRkqTB45WxklQ4g16SCmfQS1Lh\n+hyjl9T6Os+5p+4SmtLdVncFWybP6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mF\nM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiD\nXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKtyQBH1EHB0R\nT0fEkog4ZyiOIUlqzqAHfURsBfwbcAywF/C5iNhrsI8jSWrOUJzR7w8sycznMvOPwM3AcUNwHElS\nE4Yi6McCL/Va76naJEk12LquA0fEdGB6tboqIp6uq5bSBOwE/L7uOvp0YdRdgTYzfzcH3V8302ko\ngn4psGuv9Y6q7V0y81rg2iE4/hYvIuZn5qS665DW5+9mPYZi6OZRYLeI6IqIDwAnA7OH4DiSpCYM\n+hl9Zq6NiL8H/hvYCvh+Zv5qsI8jSWrOkIzRZ+a9wL1DsW81xSExtSp/N2sQmVl3DZKkIeQtECSp\ncAa9JBXOoJekwtV2wZSkskXEju+1PTNf3Vy1bOn8MHYYi4iVwCb/A2bm9puxHOldIuJ5Gr+fAfwV\n8Fq1PBp4MTO7aixvi+IZ/TCWmaMAIuIi4GXgBzT+R5oK7FJjaRLrgjwirgPurKZdExHHAFPqrG1L\n4xl9ASLi8cyc0FebVIeIeDIzx/fVpqHjh7FlWB0RUyNiq4gYERFTgdV1FyVVfhMR50dEZ/U4D/hN\n3UVtSQz6MnweOAn4XfU4sWqTWsHngHbgzurxF1WbNhOHbiSpcH4YW4CI2B24Gtg5Mz8SEfsAn87M\ni2suTSIi2oGzgb2BtnXtmTm5tqK2MA7dlOE64FvAGoDMfILG7aGlVnATsBjoAi4EumnczlybiUFf\nhm0zc956bWtrqUTa0JjMnAWsycyfZeapgGfzm5FDN2X4fUT8LdXFUxHxGRrz6qVWsKZ6fjkijqUx\n4+Y9r5rV4PLD2AJExN/QuM/3wTSuPnwemJqZL9RamARExCeBB2l8xegVwPbAhZnpN89tJgZ9ASJi\nq8x8OyL+DBiRmSvrrklS63CMvgzPR8S1wIHAqrqLkXqLiN0j4oGIeKpa3ycizq+7ri2JQV+GccD9\nwOk0Qv/KiPh4zTVJ6zgrrGYGfQEy843MvDUzjwcm0hgD/VnNZUnrOCusZgZ9ISLi7yLiKmABjYtS\nTqq5JGkdZ4XVzA9jCxAR3cBC4FZgdmZ6QzO1DGeF1c+gL0BEbJ+Zf6i7Dqm3iPj6ek0fpDGKsBog\nMy/b7EVtobxgahiLiLMz85+BSyJig7/YmfkPNZQlrTOqet4D2A+4i8YX43wBWH/MXkPIoB/eFlXP\n82utQtqIzLwQICJ+Duy77vqOiJgB3FNjaVscg34Yy8z/qhafzMxf1lqMtGk7A3/stf7Hqk2biUFf\nhn+JiL8EfgTckplP1V2Q1MuNwLyIuLNanwJcX185Wx4/jC1EFfQnAZ+lMY/+Fu9Hr1YREfsCh1ar\nP8/MhXXWs6Ux6AsTEeNpfMnDZzPzA3XXI6l+XjBVgIjYMyJmRMSTNO4O+DDQUXNZklqEZ/QFiIj/\nBW4GbsvM39Rdj6TW4oexw1xEbAU8n5nfq7sWSa3JoZthLjPfBnaNCMfjJW2UZ/RleB74n4iYTXV5\nOXiJuaQGg74Mz1aPEfz/ZeeSBPhhrCQVzzP6AkTEHKp7ffeWmZNrKEdSizHoy3BWr+U24AT8Bh9J\nFYduChUR8zJz/7rrkFQ/z+gLEBE79lodAUwCdqipHEktxqAvwwIaY/QBrAG6gdPqLEhS6/CCqTJ8\nE/hoZnYBP6Axl/6NekuS1CoM+jKcn5l/iIiPA5OB/wCurrkmSS3CoC/D29XzscB1mXkP4C0RJAEG\nfSmWRsS/0/jSkXsjYhv8byup4vTKAkTEtsDRNL479pmI2AUYn5n31VyapBZg0EtS4fznvSQVzqCX\npMIZ9JJUOINekgpn0EtS4f4PCXghPOYVCUMAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1168b9080>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df = pd.DataFrame([survived, dead], index=['survived', 'dead'])\n", "df.plot.bar()" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11abc1940>" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEUCAYAAAAlXv26AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE0BJREFUeJzt3X+QXWV9x/H3lyR2idEkhmgxG9lYoQpCAiwaJTo0WI1G\nNzKTsAklMm2cOPgrFqWmFsZlKlNhnFprOzB0aI2KJBEZBYx0EEWpDNZdCIQEGYOoLEYIAbYECYby\n7R97SJclyd5NdnN2n32/ZnbuOc957jnfe9n9cPLc55wbmYkkqVyH1V2AJGl4GfSSVDiDXpIKZ9BL\nUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwo2vuwCAI444IltaWuouQ5JGla6urkczc/pA/UZE0Le0\ntNDZ2Vl3GZI0qkTErxvp59CNJBXOoJekwhn0klS4ETFGvze7d++mu7ubXbt21V3KqNLU1ERzczMT\nJkyouxRJI8SIDfru7m5e9rKX0dLSQkTUXc6okJns2LGD7u5uZs2aVXc5kkaIETt0s2vXLqZNm2bI\nD0JEMG3aNP8VJOkFRmzQA4b8AfA9k9TfiA56SdLBG7Fj9P21rP7ukO7vV59fOKT7a9R1113Hli1b\nWL169UHva9KkSezcuXMIqpIOkY7JdVfQmI6euisYUqMm6EeTZ599lvHj9/7WtrW10dbWdogrkjSW\nOXSzH0899RQLFy5k9uzZvPGNb2TdunW0tLTw6KOPAtDZ2clpp50GQEdHB8uXL+fUU09l+fLlzJ07\nl82bN+/Z12mnnUZnZydf+cpX+OhHP0pPTw9HHXUUzz333J5jzZw5k927d3P//fezYMECTj75ZN72\ntrfx85//HIAHHniAt7zlLRx//PFccMEFh/bNkDRqGfT7ceONN/LqV7+au+66i3vuuYcFCxbst/+W\nLVv4/ve/z9VXX017ezvr168HYNu2bWzbto3W1tY9fSdPnsycOXP40Y9+BMANN9zAu971LiZMmMDK\nlSv58pe/TFdXF1/4whf48Ic/DMCqVas499xz2bRpE0ceeeQwvWpJpTHo9+P444/npptu4tOf/jS3\n3norkyfvf3yxra2Nww8/HIAzzzyTa665BoD169ezePHiF/Vvb29n3bp1AKxdu5b29nZ27tzJbbfd\nxpIlS5gzZw4f+tCH2LZtGwA/+clPWLZsGQDLly8fstcpqWyO0e/HMcccwx133MGGDRu44IILOP30\n0xk/fvye4Zb+89Vf+tKX7lmeMWMG06ZN4+6772bdunVcfvnlL9p/W1sbn/nMZ3jsscfo6upi/vz5\nPPXUU0yZMoWNGzfutSanT0oaLM/o9+O3v/0tEydO5Oyzz+b888/njjvuoKWlha6uLgC+9a1v7ff5\n7e3tXHrppfT09HDCCSe8aPukSZM45ZRTWLVqFe9973sZN24cL3/5y5k1axbf/OY3gd6rXe+66y4A\nTj31VNauXQvAVVddNZQvVVLBRs0ZfR3TITdt2sT555/PYYcdxoQJE7jssst4+umnWbFiBRdeeOGe\nD2L3ZfHixaxatYoLL7xwn33a29tZsmQJt9xyy562q666inPPPZfPfe5z7N69m6VLlzJ79my+9KUv\ncdZZZ3HJJZewaNGiIXqVkkoXmVl3DbS2tmb/Lx659957ecMb3lBTRaOb751GLOfRD6mI6MrM1oH6\nOXQjSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCjdq5tEP+bSsA5g+1dHRwaRJk/jUpz51UIduaWmh\ns7OTI4444qD2I0mN8Ixekgpn0A/g4osv5phjjmHevHncd999APu8jfD111/Pm9/8Zk488UTe8Y53\n8PDDDwOwY8cO3vnOd3LcccfxwQ9+kJFwkZqkscOg34+uri7Wrl3Lxo0b2bBhAz/72c8A9nkb4Xnz\n5nH77bdz5513snTpUi699FIALrroIubNm8fmzZs544wz+M1vflPba5I09oyeMfoa3HrrrZxxxhlM\nnDgR6L3b5K5du/bcRvh5zzzzDADd3d20t7ezbds2/vCHPzBr1iwAfvzjH3PttdcCsHDhQqZOnXqI\nX4mkscygH6Tnnntun7cR/tjHPsZ5551HW1sbt9xyCx0dHYe+QEnqx6Gb/Xj729/Ot7/9bZ5++mme\nfPJJrr/+eiZOnLjP2wj39PQwY8YMANasWfOC/XzjG98A4Hvf+x6PP/74IX4lksay0XNGX8Pd5E46\n6STa29uZPXs2r3zlKznllFOAfd9GuKOjgyVLljB16lTmz5/PAw88AMBnP/tZli1bxnHHHcdb3/pW\nXvOa1xzy1yJp7PI2xQXyvdOI5W2Kh5S3KZYkAQa9JBVvRAf9SBhWGm18zyT113DQR8S4iLgzIm6o\n1mdFxE8jYmtErIuIl1Ttf1Stb622txxIYU1NTezYscPgGoTMZMeOHTQ1NdVdiqQRZDCzblYB9wIv\nr9YvAb6YmWsj4nJgBXBZ9fh4Zr4uIpZW/doHW1hzczPd3d1s3759sE8d05qammhubq67DEkjSENB\nHxHNwELgYuC8iAhgPnBW1WUN0EFv0C+qlgGuAf4lIiIHeWo+YcKEPVeWSpIOXKNDN/8E/A3wXLU+\nDXgiM5+t1ruBGdXyDOBBgGp7T9X/BSJiZUR0RkSnZ+2SNHwGDPqIeC/wSGZ2DeWBM/OKzGzNzNbp\n06cP5a4lSX00MnRzKtAWEe8Bmugdo/8SMCUixldn7c3AQ1X/h4CZQHdEjAcmAzuGvHJJUkMGPKPP\nzL/NzObMbAGWAj/IzL8AfggsrrqdA3ynWr6uWqfa/oPBjs9LkobOwcyj/zS9H8xupXcM/sqq/Upg\nWtV+HrD64EqUJB2MQd3ULDNvAW6pln8JvGkvfXYBS/q3S5LqMaKvjJUkHTyDXpIKZ9BLUuEMekkq\nnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ\n9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEv\nSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhBgz6iGiKiP+OiLsiYnNEXFS1z4qIn0bE1ohY\nFxEvqdr/qFrfWm1vGd6XIEnan0bO6J8B5mfmbGAOsCAi5gKXAF/MzNcBjwMrqv4rgMer9i9W/SRJ\nNRkw6LPXzmp1QvWTwHzgmqp9DfD+anlRtU61/fSIiCGrWJI0KA2N0UfEuIjYCDwC3ATcDzyRmc9W\nXbqBGdXyDOBBgGp7DzBtKIuWJDWuoaDPzP/NzDlAM/Am4PUHe+CIWBkRnRHRuX379oPdnSRpHwY1\n6yYznwB+CLwFmBIR46tNzcBD1fJDwEyAavtkYMde9nVFZrZmZuv06dMPsHxJ0kAamXUzPSKmVMuH\nA38O3Etv4C+uup0DfKdavq5ap9r+g8zMoSxaktS48QN34UhgTUSMo/d/DOsz84aI2AKsjYjPAXcC\nV1b9rwS+FhFbgceApcNQtySpQQMGfWbeDZy4l/Zf0jte3799F7BkSKqTJB00r4yVpMIZ9JJUOINe\nkgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWp\ncAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVbnzdBYwmLau/W3cJDfnV\n5xfWXYKkEcQzekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+gl\nqXADBn1EzIyIH0bElojYHBGrqvZXRMRNEfGL6nFq1R4R8c8RsTUi7o6Ik4b7RUiS9q2RM/pngU9m\n5rHAXOAjEXEssBq4OTOPBm6u1gHeDRxd/awELhvyqiVJDRsw6DNzW2beUS0/CdwLzAAWAWuqbmuA\n91fLi4CvZq/bgSkRceSQVy5JasigxugjogU4Efgp8KrM3FZt+h3wqmp5BvBgn6d1V23997UyIjoj\nonP79u2DLFuS1KiGgz4iJgHfAj6Rmf/Td1tmJpCDOXBmXpGZrZnZOn369ME8VZI0CA0FfURMoDfk\nr8rMa6vmh58fkqkeH6naHwJm9nl6c9UmSapBI7NuArgSuDcz/7HPpuuAc6rlc4Dv9Gn/QDX7Zi7Q\n02eIR5J0iDXyVYKnAsuBTRGxsWr7DPB5YH1ErAB+DZxZbdsAvAfYCvwe+MshrViSNCgDBn1m/hcQ\n+9h8+l76J/CRg6xLkjREvDJWkgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIK\nZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAG\nvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BL\nUuHG112ApIPXsvq7dZfQkF811V3B2DTgGX1E/HtEPBIR9/Rpe0VE3BQRv6gep1btERH/HBFbI+Lu\niDhpOIuXJA2skaGbrwAL+rWtBm7OzKOBm6t1gHcDR1c/K4HLhqZMSdKBGjDoM/PHwGP9mhcBa6rl\nNcD7+7R/NXvdDkyJiCOHqlhJ0uAd6Iexr8rMbdXy74BXVcszgAf79Ouu2l4kIlZGRGdEdG7fvv0A\ny5AkDeSgZ91kZgJ5AM+7IjNbM7N1+vTpB1uGJGkfDjToH35+SKZ6fKRqfwiY2adfc9UmSarJgQb9\ndcA51fI5wHf6tH+gmn0zF+jpM8QjSarBgPPoI+Jq4DTgiIjoBj4LfB5YHxErgF8DZ1bdNwDvAbYC\nvwf+chhqliQNwoBBn5nL9rHp9L30TeAjB1uUJGnoeAsESSqcQS9JhfNeNyXqmFx3BY3p6Km7AmlM\n8Ixekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz\n6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINe\nkgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVLhhCfqIWBAR90XE1ohYPRzHkCQ1ZsiD\nPiLGAf8KvBs4FlgWEccO9XEkSY0ZjjP6NwFbM/OXmfkHYC2waBiOI0lqwPhh2OcM4ME+693Am/t3\nioiVwMpqdWdE3DcMtYxJAUcAj9Zdx4Auiror0CHm7+aQO6qRTsMR9A3JzCuAK+o6fskiojMzW+uu\nQ+rP3816DMfQzUPAzD7rzVWbJKkGwxH0PwOOjohZEfESYClw3TAcR5LUgCEfusnMZyPio8B/AuOA\nf8/MzUN9HO2XQ2IaqfzdrEFkZt01SJKGkVfGSlLhDHpJKpxBL0mFM+glqXAGvaRhFxGHR8Sf1l3H\nWGXQFyAijomImyPinmr9hIi4oO66JICIeB+wEbixWp8TEV5bcwgZ9GX4N+Bvgd0AmXk3vReqSSNB\nB703O3wCIDM3ArPqLGisMejLMDEz/7tf27O1VCK92O7M7OnX5gU8h1BtNzXTkHo0Iv6E6o8nIhYD\n2+otSdpjc0ScBYyLiKOBjwO31VzTmOKVsQWIiNfSe2n5W4HHgQeAszPzV3XWJQFExETg74B3AkHv\n7VH+PjN31VrYGGLQFyQiXgoclplP1l2LpJHDoB/FIuK8/W3PzH88VLVI/UXE9exnLD4z2w5hOWOa\nY/Sj28vqLkDajy/UXYB6eUYvSYXzjL4AEdEErACOA5qeb8/Mv6qtKKlSzbT5B+BYXvj7+draihpj\nnEdfhq8Bfwy8C/gRvV/f6AeyGin+A7iM3ms7/gz4KvD1WisaYxy6KUBE3JmZJ0bE3Zl5QkRMAG7N\nzLl11yZFRFdmnhwRmzLz+L5tddc2Vjh0U4bd1eMTEfFG4HfAK2usR+rrmYg4DPhF9TWjDwGTaq5p\nTHHopgxXRMRU4EJ6v4h9C3BpvSVJe6wCJtJ7RezJwNnAB2qtaIxx6EbSsIqIVnqvjD0KmFA1Z2ae\nUF9VY4tBX4CImELvGVILfYbjMvPjddUkPS8i7gPOBzYBzz3fnpm/rq2oMcYx+jJsAG6n3x+SNEJs\nz0zvP18jz+gLEBF3ZOZJddch7U1EnA4sA24Gnnm+PTOvra2oMcagL0BE/DWwE7iBF/4hPVZbUVIl\nIr4OvB7YzP//izO9oO/QMegLEBEfAS6m9xt8nv8Pml55qJEgIu7LTL8vtkaO0Zfhk8DrMvPRuguR\n9uK2iDg2M7fUXchYZdCXYSvw+7qLkPZhLrAxIh6gd2gxcHrlIWXQl+Epev+QfsgLx+idXqmRYEHd\nBYx1Bn0Zvl39SCOO8+Xr54exhYiIw4HXZOZ9ddciaWTxXjcFiIj3ARuBG6v1ORHhBSqSAIO+FB3A\nm+idXklmbgScWikJMOhLsTsze/q1eSsESYAfxpZic0ScBYyrvrbt48BtNdckaYTwjH4Ui4ivVYv3\n0/t9sc8AVwP/A3yirrokjSzOuhnFImIL8A7ge/R+F+cLeK8bSeDQzWh3Ob13BHwt0NmnPei9540f\nyEryjL4EEXFZZp5bdx2SRiaDXpIK54exklQ4g16SCmfQS1LhDHpJKtz/AaF0FI+8tzKLAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11aa9a320>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 绘图成功,但是不是我们想要的效果\n", "# 把dataframe转置一下,就是行列替换\n", "df = df.T\n", "df.plot.bar() # df.plot(kind='bar') 等价的" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11ace8e10>" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEUCAYAAAAlXv26AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFZhJREFUeJzt3X+QVeWd5/H3VyCDiAGi6Bia2GSjmfgLVFSMJOVI1hB1\nQKvEVkfiZkiRMmqYdeLKuFohtUmtWqnJmtSWGTbOhGRUIMaJ6BJ3jAmJG8uMjSIISgV/xSaoLWqP\nvzC4fvePe2BahO7b0M3tfvr9quq65zznued+T9P96cNzn3NuZCaSpHLt0+gCJEl9y6CXpMIZ9JJU\nOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwdQV9RIyOiNsj4omIeDwiTo6ID0XEvRHxu+pxTNU3IuI7\nEbEhIlZHxHF9ewiSpK5EPVfGRsQi4P7M/H5EfAAYAVwNvJyZ10XEfGBMZl4VEWcAlwNnACcBN2bm\nSV3t/8ADD8zm5uY9PBRJGlxWrlz5UmaO7a5ft0EfEaOAVcBHs1PniFgPnJqZmyLiEGBFZn48Iv6+\nWr5tx367eo3Jkydna2trXQcmSaqJiJWZObm7fvUM3UwA2oF/jIhHIuL7EbEfcHCn8H4eOLhaHgc8\n1+n5bVXbjgXOjYjWiGhtb2+vowxJ0u6oJ+iHAscBN2XmscAbwPzOHaoz/R7dHS0zF2bm5MycPHZs\nt//zkCTtpnqCvg1oy8zfVuu3Uwv+F6ohG6rHF6vtG4HxnZ7fVLVJkhpgaHcdMvP5iHguIj6emeuB\nacC66uti4Lrq8c7qKcuAyyJiMbU3Yzu6Gp/fla1bt9LW1saWLVt6+tRBbfjw4TQ1NTFs2LBGlyKp\nn+g26CuXA7dUM26eAr5A7X8DSyNiDvAscF7Vdzm1GTcbgDervj3W1tbG/vvvT3NzMxGxO7sYdDKT\nzZs309bWxoQJExpdjqR+oq6gz8xVwM7e2Z22k74JXLqHdbFlyxZDvociggMOOADf3JbUWb++MtaQ\n7zm/Z5J21K+DXpK05+odo2+45vn/u1f398x1Z/bq/uq1bNky1q1bx/z587vv3I2RI0fy+uuv90JV\nGvAWjGp0BWVZ0NHoCnrVgAn6geSdd95h6NCdf2tnzJjBjBkz9nJFkgYzh2668MYbb3DmmWcyceJE\njjrqKJYsWUJzczMvvfQSAK2trZx66qkALFiwgNmzZ3PKKacwe/ZspkyZwtq1a7fv69RTT6W1tZUf\n/OAHXHbZZXR0dHDooYfy7rvvbn+t8ePHs3XrVp588kmmT5/O8ccfz6c+9SmeeOIJAJ5++mlOPvlk\njj76aK655pq9+82QNGAZ9F245557+PCHP8yjjz7KY489xvTp07vsv27dOn7+859z22230dLSwtKl\nSwHYtGkTmzZtYvLkf5+4NGrUKCZNmsSvfvUrAO6++24++9nPMmzYMObOnct3v/tdVq5cybe+9S2+\n/OUvAzBv3jwuueQS1qxZwyGHHNJHRy2pNAZ9F44++mjuvfderrrqKu6//35Gjep6HHTGjBnsu+++\nAJx33nncfvvtACxdupRzzz33ff1bWlpYsmQJAIsXL6alpYXXX3+dBx54gFmzZjFp0iS+9KUvsWlT\n7Xqz3/zmN1xwwQUAzJ49u9eOU1LZHKPvwuGHH87DDz/M8uXLueaaa5g2bRpDhw7dPtyy41W7++23\n3/blcePGccABB7B69WqWLFnC9773vfftf8aMGVx99dW8/PLLrFy5ktNOO4033niD0aNHs2rVqp3W\n5PRJST3lGX0X/vCHPzBixAguuugirrzySh5++GGam5tZuXIlAD/5yU+6fH5LSws33HADHR0dHHPM\nMe/bPnLkSE444QTmzZvHWWedxZAhQ/jgBz/IhAkT+PGPfwzUrnZ99NFHATjllFNYvHgxALfccktv\nHqqkgg2YM/pGTIdcs2YNV155Jfvssw/Dhg3jpptu4q233mLOnDlce+2129+I3ZVzzz2XefPmce21\n1+6yT0tLC7NmzWLFihXb22655RYuueQSvvGNb7B161bOP/98Jk6cyI033siFF17I9ddfz8yZM3vp\nKCWVrq5PmOprO/vgkccff5xPfOITDapoYPN7Nwg5j753DZB59L35wSOSpAHMoJekwhn0klQ4g16S\nCmfQS1LhDHpJKtyAmUff69PHdmP61IIFCxg5ciRf/epX9+ilm5ubaW1t5cADD9yj/UhSPTyjl6TC\nGfTd+OY3v8nhhx/O1KlTWb9+PcAubyN81113cdJJJ3Hsscfymc98hhdeeAGAzZs3c/rpp3PkkUfy\nxS9+kf5wkZqkwcOg78LKlStZvHgxq1atYvny5Tz00EMAu7yN8NSpU3nwwQd55JFHOP/887nhhhsA\n+PrXv87UqVNZu3Yt55xzDr///e8bdkySBp+BM0bfAPfffz/nnHMOI0aMAGp3m9yyZcv22whv8/bb\nbwPQ1tZGS0sLmzZt4o9//CMTJkwA4Ne//jV33HEHAGeeeSZjxozZy0ciaTAz6Hvo3Xff3eVthC+/\n/HKuuOIKZsyYwYoVK1iwYMHeL1CSduDQTRc+/elP89Of/pS33nqL1157jbvuuosRI0bs8jbCHR0d\njBs3DoBFixa9Zz+33norAD/72c945ZVX9vKRSBrMBs4ZfQPuJnfcccfR0tLCxIkTOeiggzjhhBOA\nXd9GeMGCBcyaNYsxY8Zw2mmn8fTTTwPwta99jQsuuIAjjzyST37yk3zkIx/Z68ciafDyNsUF8ns3\nCHmb4t7lbYolSQNJXUEfEc9ExJqIWBURrVXbhyLi3oj4XfU4pmqPiPhORGyIiNURcVxfHoAkqWs9\nOaP/88yc1Om/CfOB+zLzMOC+ah3gc8Bh1ddc4KbdLa4/DCsNNH7PJO1oT4ZuZgLbppYsAs7u1P7D\nrHkQGB0Rh/R058OHD2fz5s0GVw9kJps3b2b48OGNLkVSP1LvrJsE/iUiEvj7zFwIHJyZm6rtzwMH\nV8vjgOc6PbetatvUqY2ImEvtjH+ns1Camppoa2ujvb29zhIFtT+QTU1NjS5DUj9Sb9BPzcyNEXEQ\ncG9EPNF5Y2Zm9UegbtUfi4VQm3Wz4/Zhw4Ztv7JUkrT76hq6ycyN1eOLwD8DJwIvbBuSqR5frLpv\nBMZ3enpT1SZJaoBugz4i9ouI/bctA6cDjwHLgIurbhcDd1bLy4DPV7NvpgAdnYZ4JEl7WT1DNwcD\n/xwR2/rfmpn3RMRDwNKImAM8C5xX9V8OnAFsAN4EvtDrVUuS6tZt0GfmU8DEnbRvBqbtpD2BS3ul\nOknSHvPKWEkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAG\nvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BL\nUuEMekkqnEEvSYUz6CWpcHUHfUQMiYhHIuLuan1CRPw2IjZExJKI+EDV/ifV+oZqe3PflC5JqkdP\nzujnAY93Wr8e+HZmfgx4BZhTtc8BXqnav131kyQ1SF1BHxFNwJnA96v1AE4Dbq+6LALOrpZnVutU\n26dV/SVJDVDvGf3/AP4L8G61fgDwama+U623AeOq5XHAcwDV9o6q/3tExNyIaI2I1vb29t0sX5LU\nnW6DPiLOAl7MzJW9+cKZuTAzJ2fm5LFjx/bmriVJnQyto88pwIyIOAMYDnwQuBEYHRFDq7P2JmBj\n1X8jMB5oi4ihwChgc69XLkmqS7dn9Jn5t5nZlJnNwPnALzLzL4FfAudW3S4G7qyWl1XrVNt/kZnZ\nq1VLkuq2J/PorwKuiIgN1Mbgb67abwYOqNqvAObvWYmSpD1Rz9DNdpm5AlhRLT8FnLiTPluAWb1Q\nmySpF3hlrCQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiD\nXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+gl\nqXAGvSQVbmijCxhQFoxqdAVlWdDR6AqkQaHbM/qIGB4R/xoRj0bE2oj4etU+ISJ+GxEbImJJRHyg\nav+Tan1Dtb25bw9BktSVeoZu3gZOy8yJwCRgekRMAa4Hvp2ZHwNeAeZU/ecAr1Tt3676SZIapNug\nz5rXq9Vh1VcCpwG3V+2LgLOr5ZnVOtX2aRERvVaxJKlH6nozNiKGRMQq4EXgXuBJ4NXMfKfq0gaM\nq5bHAc8BVNs7gAN6s2hJUv3qCvrM/H+ZOQloAk4E/mxPXzgi5kZEa0S0tre37+nuJEm70KPplZn5\nKvBL4GRgdERsm7XTBGysljcC4wGq7aOAzTvZ18LMnJyZk8eOHbub5UuSulPPrJuxETG6Wt4X+I/A\n49QC/9yq28XAndXysmqdavsvMjN7s2hJUv3qmUd/CLAoIoZQ+8OwNDPvjoh1wOKI+AbwCHBz1f9m\n4EcRsQF4GTi/D+qWJNWp26DPzNXAsTtpf4raeP2O7VuAWb1SnSRpj3kLBEkqnEEvSYUz6CWpcAa9\nJBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS\n4Qx6SSqcQS9JhTPoJalw9Xw4uCrNW25tdAlFeabRBUiDhGf0klQ4g16SCmfQS1LhDHpJKpxBL0mF\nM+glqXAGvSQVrtugj4jxEfHLiFgXEWsjYl7V/qGIuDciflc9jqnaIyK+ExEbImJ1RBzX1wchSdq1\nes7o3wH+JjOPAKYAl0bEEcB84L7MPAy4r1oH+BxwWPU1F7ip16uWJNWt26DPzE2Z+XC1/BrwODAO\nmAksqrotAs6ulmcCP8yaB4HREXFIr1cuSapLj8boI6IZOBb4LXBwZm6qNj0PHFwtjwOe6/S0tqpN\nktQAdQd9RIwEfgL8dWb+W+dtmZlA9uSFI2JuRLRGRGt7e3tPnipJ6oG6gj4ihlEL+Vsy846q+YVt\nQzLV44tV+0ZgfKenN1Vt75GZCzNzcmZOHjt27O7WL0nqRj2zbgK4GXg8M/+u06ZlwMXV8sXAnZ3a\nP1/NvpkCdHQa4pEk7WX13Kb4FGA2sCYiVlVtVwPXAUsjYg7wLHBetW05cAawAXgT+EKvVixJ6pFu\ngz4z/y8Qu9g8bSf9E7h0D+uSJPUSr4yVpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0k\nFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1Lh\nDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgo3tLsOEfEPwFnAi5l5VNX2IWAJ0Aw8A5yX\nma9ERAA3AmcAbwL/KTMf7pvSJW3TvOXWRpdQlGcaXUAvq+eM/gfA9B3a5gP3ZeZhwH3VOsDngMOq\nr7nATb1TpiRpd3Ub9Jn5a+DlHZpnAouq5UXA2Z3af5g1DwKjI+KQ3ipWktRzuztGf3BmbqqWnwcO\nrpbHAc916tdWtb1PRMyNiNaIaG1vb9/NMiRJ3dnjN2MzM4HcjectzMzJmTl57Nixe1qGJGkXdjfo\nX9g2JFM9vli1bwTGd+rXVLVJkhpkd4N+GXBxtXwxcGen9s9HzRSgo9MQjySpAeqZXnkbcCpwYES0\nAV8DrgOWRsQc4FngvKr7cmpTKzdQm175hT6oWZLUA90GfWZesItN03bSN4FL97QoSVLv8cpYSSqc\nQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0\nklQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9J\nhTPoJalwfRL0ETE9ItZHxIaImN8XryFJqk+vB31EDAH+J/A54Ajggog4ordfR5JUn744oz8R2JCZ\nT2XmH4HFwMw+eB1JUh2G9sE+xwHPdVpvA07asVNEzAXmVquvR8T6PqhlsDoQeKnRRXQnrm90BWoA\nfzZ716H1dOqLoK9LZi4EFjbq9UsWEa2ZObnRdUg78mezMfpi6GYjML7TelPVJklqgL4I+oeAwyJi\nQkR8ADgfWNYHryNJqkOvD91k5jsRcRnwf4AhwD9k5trefh11ySEx9Vf+bDZAZGaja5Ak9SGvjJWk\nwhn0klQ4g16SCmfQS1LhDHpJfS4i9o2Ijze6jsHKoC9ARBweEfdFxGPV+jERcU2j65IAIuIvgFXA\nPdX6pIjw2pq9yKAvw/8C/hbYCpCZq6ldqCb1Bwuo3ezwVYDMXAVMaGRBg41BX4YRmfmvO7S905BK\npPfbmpkdO7R5Ac9e1LCbmqlXvRQR/4HqlycizgU2NbYkabu1EXEhMCQiDgO+AjzQ4JoGFa+MLUBE\nfJTapeWfBF4BngYuysxnGlmXBBARI4D/CpwOBLXbo/y3zNzS0MIGEYO+IBGxH7BPZr7W6Fok9R8G\n/QAWEVd0tT0z/25v1SLtKCLuooux+MycsRfLGdQcox/Y9m90AVIXvtXoAlTjGb0kFc4z+gJExHBg\nDnAkMHxbe2b+VcOKkirVTJv/DhzBe38+P9qwogYZ59GX4UfAnwKfBX5F7eMbfUNW/cU/AjdRu7bj\nz4EfAv/U0IoGGYduChARj2TmsRGxOjOPiYhhwP2ZOaXRtUkRsTIzj4+INZl5dOe2Rtc2WDh0U4at\n1eOrEXEU8DxwUAPrkTp7OyL2AX5XfczoRmBkg2saVBy6KcPCiBgDXEvtg9jXATc0tiRpu3nACGpX\nxB4PXAR8vqEVDTIO3UjqUxExmdqVsYcCw6rmzMxjGlfV4GLQFyAiRlM7Q2qm03BcZn6lUTVJ20TE\neuBKYA3w7rb2zHy2YUUNMo7Rl2E58CA7/CJJ/UR7Znr/+QbyjL4AEfFwZh7X6DqknYmIacAFwH3A\n29vaM/OOhhU1yBj0BYiI/wy8DtzNe3+RXm5YUVIlIv4J+DNgLf/+P870gr69x6AvQERcCnyT2if4\nbPsHTa88VH8QEesz08+LbSDH6MvwN8DHMvOlRhci7cQDEXFEZq5rdCGDlUFfhg3Am40uQtqFKcCq\niHia2tBi4PTKvcqgL8Mb1H6Rfsl7x+idXqn+YHqjCxjsDPoy/LT6kvod58s3nm/GFiIi9gU+kpnr\nG12LpP7Fe90UICL+AlgF3FOtT4oIL1CRBBj0pVgAnEhteiWZuQpwaqUkwKAvxdbM7NihzVshSAJ8\nM7YUayPiQmBI9bFtXwEeaHBNkvoJz+gHsIj4UbX4JLXPi30buA34N+CvG1WXpP7FWTcDWESsAz4D\n/IzaZ3G+h/e6kQQO3Qx036N2R8CPAq2d2oPaPW98Q1aSZ/QliIibMvOSRtchqX8y6CWpcL4ZK0mF\nM+glqXAGvSQVzqCXpML9f3iQFxwgVtsTAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11a9779b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 仍然不是我们想要的结果\n", "df.plot(kind='bar', stacked=True)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11ae65c88>" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEUCAYAAADQoHYKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFOxJREFUeJzt3X+UldV97/H3V9AQf8TkIqaBwQwmhICKghOqNRouoUVt\nikujINaqSwurWq/m6nXVLKMltvYmJje9iaUa0jRRe40SEhPaEDUxqG3VKviDCISUGKqILpAYqig6\nhO/9Y47TYRiYM8xhzpw979daszzPfvY85zvjzIc9+zx7n8hMJEll2afeBUiSas9wl6QCGe6SVCDD\nXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBVocL2e+JBDDsnm5uZ6Pb0kNaRly5a9nJnDuutXt3Bv\nbm5m6dKl9Xp6SWpIEfEf1fRzWkaSCmS4S1KBDHdJKlDd5twlNa7W1lbWrVvH1q1b611KsYYMGUJT\nUxP77rvvHn2+4S6px9atW8dBBx1Ec3MzEVHvcoqTmWzatIl169YxatSoPbpGt9MyEfH3EbEhIp7Z\nxfmIiK9ExJqIWB4RE/eoEkkNY+vWrQwdOtRg30sigqFDh/bqL6Nq5ty/CZy8m/OnAKMrH3OAm/e4\nGkkNw2Dfu3r7/e023DPzIeBXu+lyGnBbtnkUeHdEvK9XVUmSeqUWc+4jgOc7HK+rtL3YuWNEzKFt\ndM9hhx1Wg6fuA3MPrncFZZm7ud4VlKOeP5vTFsD6/5oyaP7K+ppefu1lw2t6vaoMn9D3z7kX9emt\nkJk5PzNbMrNl2LBuV89KUr+1fv16zjzzzJpca/LkyTVfsV+LcH8BGNnhuKnSJkkNbdu2bbs8N3z4\ncBYuXNiH1fRMLcJ9EXBe5a6Z44DNmbnTlIwk1dLa59fz4ZPO4A8vvYaxHzuDM2dfxetvvNFl36v/\n6iuMm/xJxk+dwf+6/q8BuOBTf87Cf/pxe58DDzwQgAceeIATTzyR6dOnM27cOK6++mrmzZvX3m/u\n3Ll88YtfZO3atRx55JEAHHfccaxYsaK9z9sj8S1btnDhhRcyadIkJkyYwPe//30A3njjDc4++2zG\njh3L6aefzhu7qLs3qrkV8lvAI8CYiFgXERdFxJ9ExJ9UuiwGngXWAF8DLql5lZLUhdW/WMsl55/F\nqge/y7sOOoC/vfXbO/XZ9Ktfc/cPl7BiyUKW/3gBn7n8j7u97hNPPMGXv/xlfv7znzNz5kwWLFjQ\nfm7BggXMnDlzh/4d+7z44ou8+OKLtLS0cMMNNzBlyhQee+wxlixZwlVXXcWWLVu4+eab2X///Vm1\nahWf/exnWbZsWS+/Ezur5m6ZWZn5vszcNzObMvPrmXlLZt5SOZ+Z+aeZ+YHMPCoz3epRUp8YOfy3\nOOEjxwBw7hmn8i+PPbVTn4PfdSBD3rEfF135Wb67+H72f+eQbq87adKk9sVDEyZMYMOGDaxfv56n\nn36a97znPYwcOXKH/jNmzGifolmwYEH7XPx9993H5z73OY455hgmT57M1q1bee6553jooYc499xz\nARg/fjzjx4/f82/CLrhCVVLD6nwreFf3hg8ePJjHfnA79//LYyz8wY/5m2/cxU++PZ/Bgwexfft2\nALZv385bb73V/jkHHHDADtc466yzWLhwIS+99NJOo3aAESNGMHToUJYvX85dd93FLbfcArStNP3O\nd77DmDFjevul9pjhLqnX6nLrIvDcCy/xyNKnOb7laO743j18tDKK7+i1La/z+htbOfXjH+WEjxzN\n4cdPB6C5aTjLfrqKGdN/j0X3PUhra+sun2fmzJnMnj2bl19+mQcffHCXfW688UY2b97cPhKfNm0a\nN910EzfddBMRwZNPPsmECRM46aSTuOOOO5gyZQrPPPMMy5cvr8F3Y0fuCimpYY35QDPzbl3A2I+d\nwSub/5OLz9/51sRXX9vCJ86/nPFTZ/DR0y/iS39+BQCz//B0HnxkGUdPnckjy5bvNFrv6IgjjuDV\nV19lxIgRvO99Xa/RPPPMM7nzzjuZMWNGe9u1115La2sr48eP54gjjuDaa68F4OKLL+a1115j7Nix\nXHfddRx77LG9+TZ0KTKz5hetRktLSzbEOzG5iKm2XMRUO3X82Vw1bQFj339o3Z4f2u6W+cT5l/PM\nT3Z+EXWP9MNFTKtWrWLs2LE7tEXEssxs6e5zHblLUoGcc5fUkJpHDt9p1H76RVfyy+d2XEP5+Wsu\nY9rk3+nL0voFw11SMe7++v+pdwn9htMyklQgw12SCmS4S1KBnHOX1HvzJ9f2enMeqO31BiBH7pIG\nlAceXsonzrusJte64IIL+u22v4a7JBXIcJfUkHqyn/s9S/6VD590BhOnncN3f/iT9vYtr7/BhVfM\nZdLv/9EO+62vXbuWE088kYkTJzJx4kQefvhhoG0jsEsvvZQxY8YwdepUNmzYsPe/0D1kuEtqWNXs\n575165vMvuov+cdv/l+W3fP/eGnDpvZzN3z575hywkd47Ae377Df+qGHHsqPfvQjnnjiCe666y4u\nu6xtGufuu+9m9erVrFy5kttuu6099Psjw11Sw6pmP/efrVnLqMOGM/rww4gIzv3kqe3n7nvoUT43\n75sc87tn77DfemtrK7Nnz+aoo47irLPOYuXKlQA89NBDzJo1i0GDBjF8+HCmTJnSN1/oHvBuGUkN\nq5r93HcnM/nO/C8w5oPNO2wcNnfuXN773vfy9NNPs337doYM6f4NPvobw11S7815oC5PW81+7h/+\nYDNrn3+RX6x9ng80j+Rb37un/dy0jx3PTd+4k5v+8s8IaN9vffPmzTQ1NbHPPvtw66238pvf/AaA\nk046ia9+9aucf/75bNiwgSVLlnDOOef01ZfbI07LSGpY1eznPmTIO5h/4zX8/nmXM3HaORx6yH9r\nP3ftp2bT2rqN8VNn7rDf+iWXXMKtt97K0Ucfzc9+9rP2vd5PP/10Ro8ezbhx4zjvvPM4/vjj++YL\n3QPu594d93OvLfdzrx33c3c/991w5C5JBXLOXVJDcj/33TPcJe2BJDN7fHfK3lbSfu69nTJ3WkZS\njw3Z/CybtmzrdQCpa5nJpk2benULpiN3ST3W9MTnWcefsfHgw4H+NXrfY5tX1buCHQwZMoSmpqY9\n/nzDXVKP7fvWrxn16KfrXUZtFXYnl9MyklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUBVhXtEnBwR\nqyNiTURc3cX5wyJiSUQ8GRHLI+LUrq4jSeob3YZ7RAwC5gGnAOOAWRExrlO3zwALMnMCcDbwt7Uu\nVJJUvWpG7pOANZn5bGa+BdwJnNapTwLvqjw+GFhfuxIlST1VzQrVEcDzHY7XAb/dqc9c4L6I+B/A\nAcDUmlQnSdojtXpBdRbwzcxsAk4Fbo+Ina4dEXMiYmlELN24cWONnlqS1Fk14f4CMLLDcVOlraOL\ngAUAmfkIMAQ4pPOFMnN+ZrZkZsuwYcP2rGJJUreqCffHgdERMSoi9qPtBdNFnfo8B3wcICLG0hbu\nDs0lqU66DffM3AZcCtwLrKLtrpgVEXF9REyvdLsSmB0RTwPfAi5IN3qWpLqpasvfzFwMLO7Udl2H\nxyuBE2pbmiRpT7lCVZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAlV1n/tA1rz1jnqXUJS1\n9S5AGiAcuUtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy\n3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNd\nkgpkuEtSgaoK94g4OSJWR8SaiLh6F31mRMTKiFgREXfUtkxJUk8M7q5DRAwC5gG/C6wDHo+IRZm5\nskOf0cCngRMy85WIOHRvFSxJ6l41I/dJwJrMfDYz3wLuBE7r1Gc2MC8zXwHIzA21LVOS1BPVhPsI\n4PkOx+sqbR19CPhQRPxrRDwaESd3daGImBMRSyNi6caNG/esYklSt2r1gupgYDQwGZgFfC0i3t25\nU2bOz8yWzGwZNmxYjZ5aktRZNeH+AjCyw3FTpa2jdcCizGzNzF8CP6ct7CVJdVBNuD8OjI6IURGx\nH3A2sKhTn+/RNmonIg6hbZrm2RrWKUnqgW7DPTO3AZcC9wKrgAWZuSIiro+I6ZVu9wKbImIlsAS4\nKjM37a2iJUm71+2tkACZuRhY3Kntug6PE7ii8iFJqjNXqEpSgQx3SSqQ4S5JBTLcJalAhrskFchw\nl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJ\nKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QC\nGe6SVCDDXZIKVFW4R8TJEbE6ItZExNW76ffJiMiIaKldiZKknuo23CNiEDAPOAUYB8yKiHFd9DsI\nuBz4t1oXKUnqmWpG7pOANZn5bGa+BdwJnNZFv78APg9srWF9kqQ9UE24jwCe73C8rtLWLiImAiMz\n8we7u1BEzImIpRGxdOPGjT0uVpJUnV6/oBoR+wBfAq7srm9mzs/MlsxsGTZsWG+fWpK0C9WE+wvA\nyA7HTZW2tx0EHAk8EBFrgeOARb6oKkn1U024Pw6MjohREbEfcDaw6O2Tmbk5Mw/JzObMbAYeBaZn\n5tK9UrEkqVvdhntmbgMuBe4FVgELMnNFRFwfEdP3doGSpJ4bXE2nzFwMLO7Udt0u+k7ufVmSpN5w\nhaokFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4\nS1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrsk\nFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBWoqnCPiJMjYnVErImIq7s4f0VE\nrIyI5RFxf0S8v/alSpKq1W24R8QgYB5wCjAOmBUR4zp1exJoyczxwELgxloXKkmqXjUj90nAmsx8\nNjPfAu4ETuvYITOXZObrlcNHgabalilJ6olqwn0E8HyH43WVtl25CPhhVyciYk5ELI2IpRs3bqy+\nSklSj9T0BdWIOBdoAb7Q1fnMnJ+ZLZnZMmzYsFo+tSSpg8FV9HkBGNnhuKnStoOImApcA3wsM9+s\nTXmSdqV56x31LqEoa+tdQI1VM3J/HBgdEaMiYj/gbGBRxw4RMQH4KjA9MzfUvkxJUk90G+6ZuQ24\nFLgXWAUsyMwVEXF9REyvdPsCcCDw7Yh4KiIW7eJykqQ+UM20DJm5GFjcqe26Do+n1rguSVIvuEJV\nkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWp\nQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpk\nuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVKCqwj0iTo6I1RGxJiKu7uL8OyLirsr5f4uI\n5loXKkmqXrfhHhGDgHnAKcA4YFZEjOvU7SLglcz8IPDXwOdrXagkqXrVjNwnAWsy89nMfAu4Ezit\nU5/TgFsrjxcCH4+IqF2ZkqSeGFxFnxHA8x2O1wG/vas+mbktIjYDQ4GXO3aKiDnAnMrhaxGxek+K\nVpcOodP3uz8K/6YbiPzZrK33V9OpmnCvmcycD8zvy+ccKCJiaWa21LsOqTN/NuujmmmZF4CRHY6b\nKm1d9omIwcDBwKZaFChJ6rlqwv1xYHREjIqI/YCzgUWd+iwCzq88PhP4SWZm7cqUJPVEt9MylTn0\nS4F7gUHA32fmioi4HliamYuArwO3R8Qa4Fe0/QOgvuV0l/orfzbrIBxgS1J5XKEqSQUy3CWpQIa7\nJBXIcJekAhnukvaKiHhnRIypdx0DleHeoCLiQxFxf0Q8UzkeHxGfqXddEkBE/AHwFHBP5fiYiOi8\nPkZ7keHeuL4GfBpoBcjM5bi+QP3HXNo2Hfw1QGY+BYyqZ0EDjeHeuPbPzMc6tW2rSyXSzlozc3On\nNhfV9KE+3ThMNfVyRHyAyi9MRJwJvFjfkqR2KyLiHGBQRIwGLgMernNNA4orVBtURBxO27Lu3wFe\nAX4JnJuZa+tZlwQQEfsD1wC/BwRt25f8RWZurWthA4jh3uAi4gBgn8x8td61SOo/DPcGExFX7O58\nZn6pr2qROouIf2Q3c+uZOb0PyxnQnHNvPAfVuwBpN75Y7wLUxpG7JBXIkXuDioghwEXAEcCQt9sz\n88K6FSVVVO6Q+d/AOHb8+Ty8bkUNMN7n3rhuB34LmAY8SNvbH/qiqvqLbwA307b24r8DtwH/UNeK\nBhinZRpURDyZmRMiYnlmjo+IfYF/zszj6l2bFBHLMvPYiPhpZh7Vsa3etQ0UTss0rtbKf38dEUcC\nLwGH1rEeqaM3I2If4N8rb9P5AnBgnWsaUJyWaVzzI+I9wLW0vUH5SuDG+pYktbsc2J+2lanHAucC\n59W1ogHGaRlJNRcRLbStUH0/sG+lOTNzfP2qGlgM9wYVEe+mbSTUTIfptcy8rF41SW+LiNXAVcBP\nge1vt2fmf9StqAHGOffGtRh4lE6/PFI/sTEz3b+9jhy5N6iIeCIzJ9a7DqkrEfFxYBZwP/Dm2+2Z\n+d26FTXAGO4NKiL+J/Aa8E/s+Mvzq7oVJVVExD8AHwZW8F9/WaaL7PqO4d6gIuJPgRtoe6ebt/8n\npisA1R9ExOrM9P1T68g598Z1JfDBzHy53oVIXXg4IsZl5sp6FzJQGe6Naw3wer2LkHbhOOCpiPgl\nbdOGgbdC9inDvXFtoe2XZwk7zrl7K6T6g5PrXcBAZ7g3ru9VPqR+x/vZ688XVBtYRLwTOCwzV9e7\nFkn9i3vLNKiI+APgKeCeyvExEeGiEUmA4d7I5gKTaLsVksx8CvA2SEmA4d7IWjNzc6c2tyGQBPiC\naiNbERHnAIMqb2l2GfBwnWuS1E84cm8wEXF75eEvaHv/1DeBbwH/CXyqXnVJ6l+8W6bBRMRKYCrw\nQ9rem3IH7i0jCZyWaUS30LbT3uHA0g7tQdseM76oKsmRe6OKiJsz8+J61yGpfzLcJalAvqAqSQUy\n3CWpQIa7JBXIcJekAv1/tHLeUX9DZ+IAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11b157e10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 男女中生还者的比例情况\n", "df['p_survived'] = df.survived / (df.survived + df.dead)\n", "df['p_dead'] = df.dead / (df.survived + df.dead)\n", "df[['p_survived', 'p_dead']].plot.bar(stacked=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "通过上面图片可以看出:性别特征对是否生还的影响还是挺大的" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 从年龄进行分析" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": [ "# 简单统计\n", "# titanic.Age.value_counts()" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11b4234e0>" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD8CAYAAABthzNFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGklJREFUeJzt3XuQVeWd7vHvIzIiYgCBeJBGmyQY4w00rdGIGYJJJOqA\nnhIbnDCelBksoxlyknhEj0acilVqOXFMasaEjI6YQQHvaNAZdDSapLx0I3KVIwlEG1tBNChGEPR3\n/thvky0uundDr1676edTtavXetftt3tveHq966aIwMzMbEd7FV2AmZlVJweEmZllckCYmVkmB4SZ\nmWVyQJiZWSYHhJmZZXJAmJlZJgeEmZllckCYmVmmvYsuYHcMHDgwamtriy7DzKxLaWxsfCMiBrU1\nX5cOiNraWhoaGoouw8ysS5H0x0rmcxeTmZllckCYmVkmB4SZmWXK7RiEpF7Ak8A+aTt3R8RVkm4D\n/hrYmGb9XxGxSJKAm4DTgD+n9oV51WdmXcfWrVtpampi8+bNRZfSpfTq1Yuamhp69uy5S8vneZB6\nCzAmIjZJ6gn8RtLDadolEXH3DvN/HRieXl8Abk4/zayba2pqYv/996e2tpbS35LWlohgw4YNNDU1\nMWzYsF1aR25dTFGyKY32TK/Wnk40Hrg9Lfc00E/S4LzqM7OuY/PmzQwYMMDh0A6SGDBgwG7tdeV6\nDEJSD0mLgHXAgoh4Jk26RtJiSTdK2ie1DQFeKVu8KbXtuM4pkhokNaxfvz7P8s2sijgc2m93f2e5\nBkREfBARI4Ea4HhJRwKXAYcBxwEHAJe2c50zIqIuIuoGDWrzOg8zM9tFnXKhXET8SdLjwNiIuCE1\nb5H078AP0vhaYGjZYjWpzczsI2qn/apD17fm2tM7dH2VmjdvHsuXL2fatGm7va4+ffqwadOmtmds\nhzzPYhoEbE3hsC/wVeA6SYMjojmdtXQmsDQtMg+4WNJsSgenN0ZEc171WSeb3reg7W5sex6zHG3b\nto29987+r3bcuHGMGzeukyuqXJ5dTIOBxyUtBp6jdAziIWCWpCXAEmAg8KM0/3zgD8Aq4BfAt3Os\nzcysXd59911OP/10RowYwZFHHsmcOXOora3ljTfeAKChoYHRo0cDMH36dCZPnsxJJ53E5MmTOeGE\nE1i2bNn2dY0ePZqGhgZuu+02Lr74YjZu3MghhxzChx9+uH1bQ4cOZevWrfz+979n7NixfP7zn+fk\nk0/mxRdfBGD16tWceOKJHHXUUVxxxRW5vOc8z2JaHBHHRMTREXFkRPxjah8TEUeltm+0nOmUzl66\nKCI+nab7JktmVjUeeeQRDjroIF544QWWLl3K2LFjW51/+fLlPProo9x5553U19czd+5cAJqbm2lu\nbqaurm77vH379mXkyJH8+te/BuChhx7i1FNPpWfPnkyZMoWf/vSnNDY2csMNN/Dtb5f+dp46dSoX\nXnghS5YsYfDgfE749JXUZmYVOOqoo1iwYAGXXnopTz31FH37tt5tOm7cOPbdd18AzjnnHO6+u3Tp\n19y5czn77LM/Nn99fT1z5swBYPbs2dTX17Np0yZ+97vfMWHCBEaOHMkFF1xAc3Op5/23v/0tkyZN\nAmDy5Mkd9j7Ldem7uZqZdZZDDz2UhQsXMn/+fK644gpOOeUU9t577+3dQjteb7DffvttHx4yZAgD\nBgxg8eLFzJkzh5/97GcfW/+4ceO4/PLLefPNN2lsbGTMmDG8++679OvXj0WLFmXWlPepv96DMDOr\nwKuvvkrv3r35xje+wSWXXMLChQupra2lsbERgHvuuafV5evr67n++uvZuHEjRx999Mem9+nTh+OO\nO46pU6dyxhln0KNHDz7xiU8wbNgw7rrrLqB0dfQLL7wAwEknncTs2bMBmDVrVke+1e28B2FmXU4R\np6UuWbKESy65hL322ouePXty8803895773H++edz5ZVXbj9AvTNnn302U6dO5corr9zpPPX19UyY\nMIEnnnhie9usWbO48MIL+dGPfsTWrVuZOHEiI0aM4KabbuLcc8/luuuuY/z48R30Lj9KEa3d/aK6\n1dXVhR8Y1EX4NFfbDStWrOBzn/tc0WV0SVm/O0mNEVG3k0W2cxeTmZllckCYmVkmB4SZmWVyQJiZ\nWSYHhJmZZXJAmJlZJl8HYWZdT0efNr0Lp0NPnz6dPn368IMf/KDtmVtRW1tLQ0MDAwcO3K315MF7\nEGZmlskBYWZWoWuuuYZDDz2UUaNGsXLlSoCd3o77wQcf5Atf+ALHHHMMX/nKV3j99dcB2LBhA1/7\n2tc44ogj+Na3vkU1X6zsgDAzq0BjYyOzZ89m0aJFzJ8/n+eeew5gp7fjHjVqFE8//TTPP/88EydO\n5Prrrwfg6quvZtSoUSxbtoyzzjqLl19+ubD31BYfgzAzq8BTTz3FWWedRe/evYHS3Vc3b968/Xbc\nLbZs2QJAU1MT9fX1NDc38/777zNs2DAAnnzySe69914ATj/9dPr379/J76RyDggzs1304Ycf7vR2\n3N/5znf43ve+x7hx43jiiSeYPn165xe4m9zFZGZWgS996Uvcf//9vPfee7zzzjs8+OCD9O7de6e3\n4964cSNDhgwBYObMmR9Zzx133AHAww8/zFtvvdXJ76Ry3oMws66ngLv0HnvssdTX1zNixAg++clP\nctxxxwE7vx339OnTmTBhAv3792fMmDGsXr0agKuuuopJkyZxxBFH8MUvfpGDDz64099LpXy7b+sc\nvt237Qbf7nvX+XbfZmbW4XILCEm9JD0r6QVJyyRdndqHSXpG0ipJcyT9VWrfJ42vStNr86rNzMza\nlucexBZgTESMAEYCYyWdAFwH3BgRnwHeAs5P858PvJXab0zzmZkBVPUFZdVqd39nuQVElGxKoz3T\nK4AxwN2pfSZwZhoen8ZJ00+RpLzqM7Ouo1evXmzYsMEh0Q4RwYYNG+jVq9curyPXs5gk9QAagc8A\n/wL8HvhTRGxLszQBQ9LwEOAVgIjYJmkjMAB4Y4d1TgGmAFV99N/MOk5NTQ1NTU2sX7++6FK6lF69\nelFTU7PLy+caEBHxATBSUj/gPuCwDljnDGAGlM5i2t31mVn169mz5/Yrka3zdMpZTBHxJ+Bx4ESg\nn6SWYKoB1qbhtcBQgDS9L7ChM+ozM7OPy/MspkFpzwFJ+wJfBVZQCoqz02znAQ+k4XlpnDT9v8Md\njmZmhcmzi2kwMDMdh9gLmBsRD0laDsyW9CPgeeCWNP8twC8lrQLeBCbmWJuZmbUht4CIiMXAMRnt\nfwCOz2jfDEzYsd3MzIrhK6nNzCyTA8LMzDI5IMzMLJMDwszMMjkgzMwskwPCzMwyOSDMzCyTA8LM\nzDI5IMzMLJMDwszMMjkgzMwskwPCzMwyOSDMzCyTA8LMzDI5IMzMLJMDwszMMjkgzMwskwPCzMwy\nOSDMzCyTA8LMzDI5IMzMLFNuASFpqKTHJS2XtEzS1NQ+XdJaSYvS67SyZS6TtErSSkmn5lWbmZm1\nbe8c170N+H5ELJS0P9AoaUGadmNE3FA+s6TDgYnAEcBBwKOSDo2ID3Ks0czMdiK3PYiIaI6IhWn4\nHWAFMKSVRcYDsyNiS0SsBlYBx+dVn5mZta5TjkFIqgWOAZ5JTRdLWizpVkn9U9sQ4JWyxZrICBRJ\nUyQ1SGpYv359jlWbmXVvuQeEpD7APcB3I+Jt4Gbg08BIoBn4p/asLyJmRERdRNQNGjSow+s1M7OS\nXANCUk9K4TArIu4FiIjXI+KDiPgQ+AV/6UZaCwwtW7wmtZmZWQHyPItJwC3Aioj4cVn74LLZzgKW\npuF5wERJ+0gaBgwHns2rPjMza12eZzGdBEwGlkhalNouByZJGgkEsAa4ACAilkmaCyyndAbURT6D\nycysOLkFRET8BlDGpPmtLHMNcE1eNZmZWeV8JbWZmWVyQJiZWSYHhJmZZXJAmJlZJgeEmZllckCY\nmVkmB4SZmWVyQJiZWSYHhJmZZXJAmJlZJgeEmZllqiggJB2VdyFmZlZdKt2D+FdJz0r6tqS+uVZk\nZmZVoaKAiIiTgb+l9ECfRkl3SPpqrpWZmVmhKj4GEREvAVcAlwJ/DfxE0ouS/mdexZmZWXEqPQZx\ntKQbgRXAGOBvIuJzafjGHOszM7OCVPrAoJ8C/wZcHhHvtTRGxKuSrsilMjMzK1SlAXE68F7LI0Al\n7QX0iog/R8Qvc6vOzMwKU+kxiEeBfcvGe6c2MzPbQ1UaEL0iYlPLSBrunU9JZmZWDSoNiHclHdsy\nIunzwHutzI+koZIel7Rc0jJJU1P7AZIWSHop/eyf2iXpJ5JWSVpcvj0zM+t8lQbEd4G7JD0l6TfA\nHODiNpbZBnw/Ig4HTgAuknQ4MA14LCKGA4+lcYCvA8PTawpwc7veiZmZdaiKDlJHxHOSDgM+m5pW\nRsTWNpZpBprT8DuSVgBDgPHA6DTbTOAJStdWjAduj4gAnpbUT9LgtB4zM+tklZ7FBHAcUJuWOVYS\nEXF7JQtKqgWOAZ4BDiz7T/814MA0PAR4pWyxptTmgDAzK0BFASHpl8CngUXAB6k5gDYDQlIf4B7g\nuxHxtqTt0yIiJEV7CpY0hVIXFAcffHB7FjUzs3aodA+iDjg8df9UTFJPSuEwKyLuTc2vt3QdSRoM\nrEvtaynd66lFTWr7iIiYAcwAqKura1c9ZmZWuUoPUi8F/kd7VqzSrsItwIqI+HHZpHnAeWn4POCB\nsva/S2cznQBs9PEHM7PiVLoHMRBYLulZYEtLY0SMa2WZk4DJwBJJi1Lb5cC1wFxJ5wN/BM5J0+YD\npwGrgD8D36z0TZiZWcerNCCmt3fFEfEbQDuZfErG/AFc1N7tmJlZPio9zfXXkg4BhkfEo5J6Az3y\nLc3MzIpU6e2+/x64G/h5ahoC3J9XUWZmVrxKD1JfROmYwtuw/eFBn8yrKDMzK16lAbElIt5vGZG0\nN6XrIMzMbA9VaUD8WtLlwL7pWdR3AQ/mV5aZmRWt0oCYBqwHlgAXUDol1U+SMzPbg1V6FtOHwC/S\ny8zMuoFK78W0moxjDhHxqQ6vyMzMqkJ77sXUohcwATig48sxM7NqUWkX04Ydmv5ZUiPww44vyXIz\nvW/RFZhZF1JpF1P54z/3orRH0Z5nSZiZWRdT6X/y/1Q2vA1Yw19usmdmZnugSruYvpx3IWZmVl0q\n7WL6XmvTd3jeg5mZ7QHacxbTcZQe6gPwN8CzwEt5FGVmZsWrNCBqgGMj4h0ASdOBX0XEN/IqzMzM\nilXprTYOBN4vG38/tZmZ2R6q0j2I24FnJd2Xxs8EZuZTkpmZVYNKz2K6RtLDwMmp6ZsR8Xx+ZZmZ\nWdEq7WIC6A28HRE3AU2ShuVUk5mZVYFKHzl6FXApcFlq6gn8R15FmZlZ8SrdgzgLGAe8CxARrwL7\nt7aApFslrZO0tKxtuqS1khal12ll0y6TtErSSkmntv+tmJlZR6o0IN6PiCDd8lvSfhUscxswNqP9\nxogYmV7z0/oOByYCR6Rl/lVSjwprMzOzHFQaEHMl/RzoJ+nvgUdp4+FBEfEk8GaF6x8PzI6ILRGx\nGlgFHF/hsmZmloOKAiIibgDuBu4BPgv8MCJ+uovbvFjS4tQF1T+1DQFeKZunKbWZmVlB2gwIST0k\nPR4RCyLikoj4QUQs2MXt3Qx8GhgJNPPRu8RWRNIUSQ2SGtavX7+LZZiZWVvaDIiI+AD4UNJuP20m\nIl6PiA/KnnHd0o20FhhaNmtNastax4yIqIuIukGDBu1uSWZmthOVXkm9CVgiaQHpTCaAiPiH9mxM\n0uCIaE6jZwEtZzjNA+6Q9GPgIGA4pZsBmplZQSoNiHvTq2KS7gRGAwMlNQFXAaMljaR0NtQa4AKA\niFgmaS6wnNIDiS5Key5mZlaQVgNC0sER8XJEtPu+SxExKaP5llbmvwa4pr3bMTOzfLR1DOL+lgFJ\n9+Rci5mZVZG2AkJlw5/KsxAzM6subQVE7GTYzMz2cG0dpB4h6W1KexL7pmHSeETEJ3KtzszMCtNq\nQESE74dkZtZNted5EGZm1o04IMzMLJMDwszMMjkgzMwskwPCzMwyOSDMzCyTA8LMzDI5IMzMLJMD\nwszMMlX6PAizrmn6bj8IcTe2vbG4bZt1AAeEdYrazXcUst01vc4tZLtmewJ3MZmZWSYHhJmZZXJA\nmJlZJgeEmZllckCYmVmm3AJC0q2S1klaWtZ2gKQFkl5KP/undkn6iaRVkhZLOjavuszMrDJ57kHc\nBozdoW0a8FhEDAceS+MAXweGp9cU4OYc6zIzswrkFhAR8STw5g7N44GZaXgmcGZZ++1R8jTQT9Lg\nvGozM7O2dfYxiAMjojkNvwYcmIaHAK+UzdeU2szMrCCFHaSOiACivctJmiKpQVLD+vXrc6jMzMyg\n8wPi9Zauo/RzXWpfCwwtm68mtX1MRMyIiLqIqBs0aFCuxZqZdWedHRDzgPPS8HnAA2Xtf5fOZjoB\n2FjWFWVmZgXI7WZ9ku4ERgMDJTUBVwHXAnMlnQ/8ETgnzT4fOA1YBfwZ+GZedZmZWWVyC4iImLST\nSadkzBvARXnVYmZm7ecrqc3MLJMDwszMMjkgzMwskwPCzMwyOSDMzCyTA8LMzDI5IMzMLJMDwszM\nMjkgzMwskwPCzMwyOSDMzCyTA8LMzDI5IMzMLFNud3M16/am9y1ouxuL2a7tcbwHYWZmmRwQZmaW\nyQFhZmaZfAyiG6ndfEfRJZhZF+I9CDMzy+SAMDOzTA4IMzPLVMgxCElrgHeAD4BtEVEn6QBgDlAL\nrAHOiYi3iqjPzMyKPUj95Yh4o2x8GvBYRFwraVoavzS3rRd1ERP4QiYz6xKqqYtpPDAzDc8Eziyw\nFjOzbq+oPYgA/ktSAD+PiBnAgRHRnKa/BhxYUG22Byny1N41vc4tbNtmHaGogBgVEWslfRJYIOnF\n8okRESk8PkbSFGAKwMEHH5x/pWZm3VQhXUwRsTb9XAfcBxwPvC5pMED6uW4ny86IiLqIqBs0aFBn\nlWxm1u10+h6EpP2AvSLinTT8NeAfgXnAecC16ecDnV1bpynsALmvpDazyhXRxXQgcJ+klu3fERGP\nSHoOmCvpfOCPwDkF1GbW9fk249ZBOj0gIuIPwIiM9g3AKZ1dj5mZZaum01zNzKyKOCDMzCyTA8LM\nzDJ12+dB+AIqM7PWeQ/CzMwyOSDMzCyTA8LMzDI5IMzMLJMDwszMMjkgzMwsU7c9zdUsb0WdSl3Y\nadR+SuMex3sQZmaWyXsQZnuYbrfnYrlxQBSgyKu4zcwq5S4mMzPL5IAwM7NMDggzM8vkgDAzs0wO\nCDMzy+SzmMysQxT6jJWiLtLbwy/Q8x6EmZllqrqAkDRW0kpJqyRNK7oeM7PuqqoCQlIP4F+ArwOH\nA5MkHV5sVWZm3VNVBQRwPLAqIv4QEe8Ds4HxBddkZtYtVdtB6iHAK2XjTcAXCqrFzKxVtdN+Vdi2\n11x7eu7bqLaAaJOkKcCUNLpJ0spdWM1A4I2Oq6rDuK72q9baXFf77FZd6sBCMrRS2xn5brkVum63\nfmeHVDJTtQXEWmBo2XhNatsuImYAM3ZnI5IaIqJud9aRB9fVftVam+tqn2qtC6q3ts6oq9qOQTwH\nDJc0TNJfAROBeQXXZGbWLVXVHkREbJN0MfCfQA/g1ohYVnBZZmbdUlUFBEBEzAfm57yZ3eqiypHr\nar9qrc11tU+11gXVW1vudSki8t6GmZl1QdV2DMLMzKpEtwqIarqNh6RbJa2TtLSs7QBJCyS9lH72\nL6CuoZIel7Rc0jJJU6uhNkm9JD0r6YVU19WpfZikZ9JnOied3NDpJPWQ9Lykh6qsrjWSlkhaJKkh\ntVXD96yfpLslvShphaQTi65L0mfT76nl9bak7xZdV6rtf6fv/VJJd6Z/D7l/x7pNQFThbTxuA8bu\n0DYNeCwihgOPpfHOtg34fkQcDpwAXJR+T0XXtgUYExEjgJHAWEknANcBN0bEZ4C3gPM7ua4WU4EV\nZePVUhfAlyNiZNkpkUV/lgA3AY9ExGHACEq/u0LrioiV6fc0Evg88GfgvqLrkjQE+AegLiKOpHQC\nz0Q64zsWEd3iBZwI/GfZ+GXAZQXXVAssLRtfCQxOw4OBlVXwe3sA+Go11Qb0BhZSusr+DWDvrM+4\nE+upofQfxxjgIUrXbRVeV9r2GmDgDm2FfpZAX2A16RhotdS1Qy1fA35bDXXxlztMHEDpxKKHgFM7\n4zvWbfYgyL6Nx5CCatmZAyOiOQ2/BhxYZDGSaoFjgGeogtpSN84iYB2wAPg98KeI2JZmKeoz/Wfg\n/wAfpvEBVVIXQAD/Jakx3YUAiv8shwHrgX9P3XL/Jmm/Kqir3ETgzjRcaF0RsRa4AXgZaAY2Ao10\nwnesOwVElxKlPwsKO8VMUh/gHuC7EfF2+bSiaouID6K0+19D6caOh3V2DTuSdAawLiIai65lJ0ZF\nxLGUulYvkvSl8okFfZZ7A8cCN0fEMcC77NBtU+T3P/XljwPu2nFaEXWlYx7jKQXrQcB+fLx7Ohfd\nKSDavI1HFXhd0mCA9HNdEUVI6kkpHGZFxL3VVBtARPwJeJzSbnU/SS3X8xTxmZ4EjJO0htLdh8dQ\n6l8vui5g+1+fRMQ6Sv3px1P8Z9kENEXEM2n8bkqBUXRdLb4OLIyI19N40XV9BVgdEesjYitwL6Xv\nXe7fse4UEF3hNh7zgPPS8HmU+v87lSQBtwArIuLH1VKbpEGS+qXhfSkdF1lBKSjOLqquiLgsImoi\nopbSd+q/I+Jvi64LQNJ+kvZvGabUr76Ugj/LiHgNeEXSZ1PTKcDyousqM4m/dC9B8XW9DJwgqXf6\n99ny+8r/O1bUQaAiXsBpwP+j1Hf9fwuu5U5K/YlbKf1FdT6lvuvHgJeAR4EDCqhrFKVd6MXAovQ6\nrejagKOB51NdS4EfpvZPAc8Cqyh1CexT4Gc6GnioWupKNbyQXstavvNFf5aphpFAQ/o87wf6V0ld\n+wEbgL5lbdVQ19XAi+m7/0tgn874jvlKajMzy9SdupjMzKwdHBBmZpbJAWFmZpkcEGZmlskBYWZm\nmRwQZmaWyQFhZmaZHBBmZpbp/wNVy+pJniLCWQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11ae21748>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "survived = titanic[titanic.Survived==1].Age\n", "dead = titanic[titanic.Survived==0].Age\n", "df = pd.DataFrame([survived, dead], index=['survived', 'dead'])\n", "df = df.T\n", "df.plot.hist(stacked=True)" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11b754fd0>" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD8CAYAAABthzNFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGFVJREFUeJzt3X2QXXWd5/H3F8gaQjAEEtmYBDvOggpiAjaKEl0ER6M4\niWwBnThmKAuNheDEVVkDC0OokiqkUAetHRwcXdAFkvAgBow6wIoyWgrdIZAnWHASoSGSEJ3wIIEE\nvvvHPR3bcJKcTvr2uZ1+v6pu9Tm/e8653/vQ/enzO+f8bmQmkiRtb5+6C5AktSYDQpJUyoCQJJUy\nICRJpQwISVIpA0KSVMqAkCSVMiAkSaUMCElSqf2ateGImAh8DzgUSODqzLwyIuYDnwI2FItekJlL\ninXOB84CXgb+PjN/urPHGDNmTLa1tTXnCUjSXqqrq+vpzBy7q+WaFhDAVuALmbk0Ig4EuiLijuK+\nr2fmFb0XjogjgZnAUcDrgTsj4ojMfHlHD9DW1kZnZ2eTypekvVNE/K7Kck3rYsrMdZm5tJh+FlgN\njN/JKjOABZn5YmauAR4F3tGs+iRJOzcgxyAiog04BvhN0XRuRDwYEd+NiNFF23jg8V6rdbPzQJEk\nNVHTAyIiRgI3A5/LzGeAq4C/AqYA64Cv9nF7cyKiMyI6N2zYsOsVJEm7pZnHIIiIYTTC4brMvAUg\nM5/qdf+3gduL2SeAib1Wn1C0/YXMvBq4GqC9vd2xyqUhYMuWLXR3d7N58+a6SxlUhg8fzoQJExg2\nbNhurd/Ms5gC+A6wOjO/1qt9XGauK2ZPBVYU04uB6yPiazQOUh8O3Nus+iQNHt3d3Rx44IG0tbXR\n+NOiXclMNm7cSHd3N5MmTdqtbTRzD+IEYDawPCKWFW0XALMiYgqNU1/XAp8GyMyVEbEIWEXjDKhz\ndnYGk6ShY/PmzYZDH0UEhxxyCHvSFd+0gMjMfwPK3s0lO1nnUuDSZtUkafAyHPpuT18zr6SWJJVq\n6kFqSWqGtnk/6tftrb3slH7dXlWLFy9m1apVzJs3b4+3NXLkSJ577rl+qOrPDAi1lvmjKi63qbl1\nSP1k69at7Ldf+Z/a6dOnM3369AGuqDq7mCSpgueff55TTjmFyZMn89a3vpWFCxfS1tbG008/DUBn\nZycnnngiAPPnz2f27NmccMIJzJ49m+OPP56VK1du29aJJ55IZ2cn11xzDeeeey6bNm3iDW94A6+8\n8sq2x5o4cSJbtmzht7/9LdOmTePtb38773nPe3jooYcAWLNmDe9617s4+uijufDCC5vynA0ISarg\nJz/5Ca9//et54IEHWLFiBdOmTdvp8qtWreLOO+/khhtuoKOjg0WLFgGwbt061q1bR3t7+7ZlR40a\nxZQpU/j5z38OwO23384HP/hBhg0bxpw5c/jmN79JV1cXV1xxBZ/5zGcAmDt3LmeffTbLly9n3Lhx\nTXnOBoQkVXD00Udzxx138KUvfYl77rmHUaN23h06ffp09t9/fwDOOOMMbrrpJgAWLVrEaaed9qrl\nOzo6WLhwIQALFiygo6OD5557jl/96lecfvrpTJkyhU9/+tOsW9e4jOyXv/wls2bNAmD27Nn99jx7\n8xiEJFVwxBFHsHTpUpYsWcKFF17IySefzH777betW2j7q7wPOOCAbdPjx4/nkEMO4cEHH2ThwoV8\n61vfetX2p0+fzgUXXMAf/vAHurq6OOmkk3j++ec56KCDWLZs2auWh+af+usehCRV8OSTTzJixAg+\n/vGPc95557F06VLa2tro6uoC4Oabb97p+h0dHVx++eVs2rSJt73tba+6f+TIkRx33HHMnTuXj3zk\nI+y777689rWvZdKkSdx4441A4+roBx54AIATTjiBBQsWAHDdddf151Pdxj0ISYNOHaelLl++nPPO\nO4999tmHYcOGcdVVV/HCCy9w1llncdFFF207QL0jp512GnPnzuWiiy7a4TIdHR2cfvrp3H333dva\nrrvuOs4++2y+/OUvs2XLFmbOnMnkyZO58sor+djHPsZXvvIVZsyY0U/P8i9F5uAd7669vT39wqC9\njKe5qsTq1at5y1veUncZg1LZaxcRXZnZvoNVtrGLSZJUyoCQJJUyICRJpQwISVIpA0KSVMqAkCSV\n8joISYNP1dOhK2+v76dNz58/n5EjR/LFL35xjx66ra2Nzs5OxowZs0fbaQb3ICRJpQwISaro0ksv\n5YgjjmDq1Kk8/PDDADscjvu2227jne98J8cccwzvf//7eeqppwDYuHEjH/jABzjqqKP45Cc/SStf\nrGxASFIFXV1dLFiwgGXLlrFkyRLuu+8+gB0Oxz116lR+/etfc//99zNz5kwuv/xyAC655BKmTp3K\nypUrOfXUU3nsscdqe0674jEISargnnvu4dRTT2XEiBFAY/TVzZs3bxuOu8eLL74IQHd3Nx0dHaxb\nt46XXnqJSZMmAfCLX/yCW265BYBTTjmF0aNHD/Azqc6AkKTd9Morr+xwOO7PfvazfP7zn2f69Onc\nfffdzJ8/f+AL3EN2MUlSBe9973u59dZbeeGFF3j22We57bbbGDFixA6H4960aRPjx48H4Nprr/2L\n7Vx//fUA/PjHP+aPf/zjAD+T6tyDkDT41DCa77HHHktHRweTJ0/mda97Hccddxyw4+G458+fz+mn\nn87o0aM56aSTWLNmDQAXX3wxs2bN4qijjuLd7343hx122IA/l6oc7lutxeG+VcLhvnefw31Lkvqd\nASFJKmVASBoUBnN3eF329DUzICS1vOHDh7Nx40ZDog8yk40bNzJ8+PDd3oZnMUlqeRMmTKC7u5sN\nGzbUXcqgMnz4cCZMmLDb6xsQklresGHDtl2JrIFjF5MkqZQBIUkqZUBIkko1LSAiYmJE/CwiVkXE\nyoiYW7QfHBF3RMQjxc/RRXtExDci4tGIeDAijm1WbZKkXWvmHsRW4AuZeSRwPHBORBwJzAPuyszD\ngbuKeYAPAYcXtznAVU2sTZK0C00LiMxcl5lLi+lngdXAeGAG0DO04bXAR4vpGcD3suHXwEERMa5Z\n9UmSdm5AjkFERBtwDPAb4NDMXFfc9Xvg0GJ6PPB4r9W6izZJUg2aHhARMRK4GfhcZj7T+75sXBbZ\np0sjI2JORHRGRKcXzUhS8zQ1ICJiGI1wuC4zbyman+rpOip+ri/anwAm9lp9QtH2FzLz6sxsz8z2\nsWPHNq94SRrimnkWUwDfAVZn5td63bUYOLOYPhP4Ya/2vyvOZjoe2NSrK0qSNMCaOdTGCcBsYHlE\n9Hxh6wXAZcCiiDgL+B1wRnHfEuDDwKPAn4BPNLE2SdIuNC0gMvPfgNjB3SeXLJ/AOc2qR5LUN15J\nLUkqZUBIkkoZEJKkUgaEJKmUASFJKmVASJJKGRCSpFIGhCSplAEhSSplQEiSShkQkqRSBoQkqZQB\nIUkqZUBIkkoZEJKkUgaEJKmUASFJKmVASJJKGRCSpFIGhCSplAEhSSplQEiSShkQkqRSBoQkqZQB\nIUkqZUBIkkoZEJKkUgaEJKmUASFJKmVASJJKGRCSpFIGhCSplAEhSSpVKSAi4uhmFyJJai1V9yD+\nKSLujYjPRMSoKitExHcjYn1ErOjVNj8inoiIZcXtw73uOz8iHo2IhyPig318HpKkflYpIDLzPcDf\nAhOBroi4PiL+eherXQNMK2n/emZOKW5LACLiSGAmcFSxzj9FxL4Vn4MkqQkqH4PIzEeAC4EvAf8V\n+EZEPBQR/20Hy/8C+EPFzc8AFmTmi5m5BngUeEfV2iRJ/a/qMYi3RcTXgdXAScDfZOZbiumv9/Ex\nz42IB4suqNFF23jg8V7LdBdtZbXMiYjOiOjcsGFDHx9aklRV1T2IbwJLgcmZeU5mLgXIzCdp7FVU\ndRXwV8AUYB3w1T6sS/GYV2dme2a2jx07tq+rS5Iq2q/icqcAL2TmywARsQ8wPDP/lJnfr/pgmflU\nz3REfBu4vZh9gsbxjR4TijZJUk2q7kHcCezfa35E0dYnETGu1+ypQM8ZTouBmRHxmoiYBBwO3NvX\n7UuS+k/VPYjhmflcz0xmPhcRI3a2QkTcAJwIjImIbuBi4MSImAIksBb4dLG9lRGxCFgFbAXO6dlb\nkSTVo2pAPB8Rx/Yce4iItwMv7GyFzJxV0vydnSx/KXBpxXokSU1WNSA+B9wYEU8CAfxnoKNpVUmS\nalcpIDLzvoh4M/CmounhzNzSvLIkSXWrugcBcBzQVqxzbESQmd9rSlWSpNpVCoiI+D6N6xeWAT0H\njxMwICRpL1V1D6IdODIzs5nFSJJaR9XrIFbQODAtSRoiqu5BjAFWRcS9wIs9jZk5vSlVSZJqVzUg\n5jezCElS66l6muvPI+INwOGZeWdxFbXf1yBJe7Gqw31/CrgJ+OeiaTxwa7OKkiTVr+pB6nOAE4Bn\nYNuXB72uWUVJkupXNSBezMyXemYiYj8a10FIkvZSVQPi5xFxAbB/8V3UNwK3Na8sSVLdqgbEPGAD\nsJzGEN1L6Ns3yUmSBpmqZzG9Any7uEmShoCqYzGtoeSYQ2a+sd8rkiS1hL6MxdRjOHA6cHD/lyNJ\nahWVjkFk5sZetycy8x+BU5pcmySpRlW7mI7tNbsPjT2KvnyXhCRpkKn6R/6rvaa3AmuBM/q9GklS\ny6h6FtP7ml2IJKm1VO1i+vzO7s/Mr/VPOZKkVtGXs5iOAxYX838D3As80oyiJEn1qxoQE4BjM/NZ\ngIiYD/woMz/erMIkSfWqOtTGocBLveZfKtokSXupqnsQ3wPujYgfFPMfBa5tTkmSpFZQ9SymSyPi\nx8B7iqZPZOb9zStLklS3ql1MACOAZzLzSqA7IiY1qSZJUguo+pWjFwNfAs4vmoYB/6dZRUmS6ld1\nD+JUYDrwPEBmPgkc2KyiJEn1qxoQL2VmUgz5HREHNK8kSVIrqBoQiyLin4GDIuJTwJ345UGStFer\nehbTFcV3UT8DvAn4h8y8o6mVSZJqtcuAiIh9gTuLAfsMBUkaInbZxZSZLwOvRMSovmw4Ir4bEesj\nYkWvtoMj4o6IeKT4Obpoj4j4RkQ8GhEPbvf9E5KkGlQ9BvEcsDwivlP8If9GRHxjF+tcA0zbrm0e\ncFdmHg7cVcwDfAg4vLjNAa6qWJckqUmqDrVxS3GrLDN/ERFt2zXPAE4spq8F7qZxfcUM4HvFmVK/\njoiDImJcZq7ry2NKkvrPTgMiIg7LzMcys7/GXTq01x/93/PnAf/GA4/3Wq67aHtVQETEHBp7GRx2\n2GH9VJYkaXu76mK6tWciIm7uzwfufV1FH9e7OjPbM7N97Nix/VmSJKmXXQVE9Jp+Yz883lMRMQ6g\n+Lm+aH8CmNhruQlFmySpJrsKiNzB9O5aDJxZTJ8J/LBX+98VZzMdD2zy+IMk1WtXB6knR8QzNPYk\n9i+mKeYzM1+7oxUj4gYaB6THREQ3cDFwGY2rss8CfgecUSy+BPgw8CjwJ+ATu/d0JEn9ZacBkZn7\n7u6GM3PWDu46uWTZBM7Z3ceSJPW/vnwfhCRpCDEgJEmlDAhJUikDQpJUyoCQJJUyICRJpQwISVIp\nA0KSVMqAkCSVMiAkSaUMCElSKQNCklTKgJAklar6ndTSgGjbfH2l5dY2twxJuAchSdoBA0KSVMqA\nkCSV8hiE9sz8URWX29TcOiT1O/cgJEmlDAhJUikDQpJUyoCQJJUyICRJpQwISVIpT3PVq1U9dVXS\nXs09CElSKQNCklTKLiYNTl7BLTWdexCSpFIGhCSplAEhSSplQEiSShkQkqRStZzFFBFrgWeBl4Gt\nmdkeEQcDC4E2Gl85fEZm/rGO+iRJ9e5BvC8zp2RmezE/D7grMw8H7irmJUk1aaUuphnAtcX0tcBH\na6xFkoa8ugIigX+NiK6ImFO0HZqZ64rp3wOH1lOaJAnqu5J6amY+ERGvA+6IiId635mZGRFZtmIR\nKHMADjvssOZXKklDVC17EJn5RPFzPfAD4B3AUxExDqD4uX4H616dme2Z2T527NiBKlmShpwBD4iI\nOCAiDuyZBj4ArAAWA2cWi50J/HCga5Mk/VkdXUyHAj+IiJ7Hvz4zfxIR9wGLIuIs4HfAGTXUpqHK\nwf+kVxnwgMjMfwcml7RvBE4e6HokSeVa6TRXSVILMSAkSaX8wiANjMrfc319U8uQVJ17EJKkUu5B\nDCWV/4uXJANC6pu+hKynxGqQs4tJklTKgJAklTIgJEmlDAhJUikPUmvv5plb0m4zILRH2jZXu7Bt\n7fCPNbkSSf1t6AaEpytK0k4N3YDYm9iNIqkJDAipbn4XhVqUAaFByWMfUvN5mqskqZQBIUkqZReT\nhF1WUhn3ICRJpdyDkJqlv08/9mwnDbAhGxBVuxQA1javDElqWXYxSZJKDdk9CO1YX/auJO29DAip\nD/rUNVnXGU8eq1A/MSCGEPcMtFsMnCHLgKiiv39B/IVTK3CQR+2CAbEXcM9gx3xtpN1nQFRQ+Srb\n5pYxqPmHWhp8DIj+5C67pL2IASHVrL/HgRoU40p5HG5QMCCkJrFbrR8YJLUyIKRBouUDxy7WvY4B\nIQ1R/R04DoW+92m5gIiIacCVwL7Av2TmZTWXVNmg6PuVBpHKv1Neq9QULRUQEbEv8L+Avwa6gfsi\nYnFmrqq3sv5V+T+3eT9qbiFSPxoUw5CoT1oqIIB3AI9m5r8DRMQCYAawVwWENNS1/PEUAa0XEOOB\nx3vNdwPvrKkWSdq5JnRFtVXsOVh72SmVt7m7Wi0gdiki5gBzitnnIuLh3djMGODp/quq31hX37Vq\nbdbVN3tUV1Rd8JLKS/a256/Z7j3uTsVX9qiuN1RZqNUC4glgYq/5CUXbNpl5NXD1njxIRHRmZvue\nbKMZrKvvWrU26+qbVq0LWre2gair1b5R7j7g8IiYFBH/CZgJLK65JkkaklpqDyIzt0bEucBPaZzm\n+t3MXFlzWZI0JLVUQABk5hJgSZMfZo+6qJrIuvquVWuzrr5p1bqgdWtrel2Rmc1+DEnSINRqxyAk\nSS1iSAVEREyLiIcj4tGImFdzLd+NiPURsaJX28ERcUdEPFL8HF1DXRMj4mcRsSoiVkbE3FaoLSKG\nR8S9EfFAUdclRfukiPhN8Z4uLE5uGHARsW9E3B8Rt7dYXWsjYnlELIuIzqKtFT5nB0XETRHxUESs\njoh31V1XRLypeJ16bs9ExOfqrquo7b8Xn/sVEXFD8fvQ9M/YkAmIXsN4fAg4EpgVEUfWWNI1wLTt\n2uYBd2Xm4cBdxfxA2wp8ITOPBI4Hzilep7prexE4KTMnA1OAaRFxPPAV4OuZ+V+APwJnDXBdPeYC\nq3vNt0pdAO/LzCm9Toms+72ExnhrP8nMNwOTabx2tdaVmQ8Xr9MU4O3An4Af1F1XRIwH/h5oz8y3\n0jiBZyYD8RnLzCFxA94F/LTX/PnA+TXX1Aas6DX/MDCumB4HPNwCr9sPaYyN1TK1ASOApTSusn8a\n2K/sPR7AeibQ+MNxEnA7jeu2aq+reOy1wJjt2mp9L4FRwBqKY6CtUtd2tXwA+GUr1MWfR5g4mMaJ\nRbcDHxyIz9iQ2YOgfBiP8TXVsiOHZua6Yvr3wKF1FhMRbcAxwG9ogdqKbpxlwHrgDuC3wH9k5tZi\nkbre038E/gfwSjF/SIvUBZDAv0ZEVzEKAdT/Xk4CNgD/u+iW+5eIOKAF6uptJnBDMV1rXZn5BHAF\n8BiwDtgEdDEAn7GhFBCDSjb+LajtFLOIGAncDHwuM5/pfV9dtWXmy9nY/Z9AY2DHNw90DduLiI8A\n6zOzq+5admBqZh5Lo2v1nIh4b+87a3ov9wOOBa7KzGOA59mu26bOz3/Rlz8duHH7++qoqzjmMYNG\nsL4eOIBXd083xVAKiF0O49ECnoqIcQDFz/V1FBERw2iEw3WZeUsr1QaQmf8B/IzGbvVBEdFzPU8d\n7+kJwPSIWAssoNHNdGUL1AVs+++TzFxPoz/9HdT/XnYD3Zn5m2L+JhqBUXddPT4ELM3Mp4r5uut6\nP7AmMzdk5hbgFhqfu6Z/xoZSQAyGYTwWA2cW02fS6P8fUBERwHeA1Zn5tVapLSLGRsRBxfT+NI6L\nrKYRFKfVVVdmnp+ZEzKzjcZn6v9m5t/WXRdARBwQEQf2TNPoV19Bze9lZv4eeDwi3lQ0nUxjSP/a\nP/+FWfy5ewnqr+sx4PiIGFH8fva8Xs3/jNV1EKiOG/Bh4P/R6Lv+nzXXcgON/sQtNP6jOotG3/Vd\nwCPAncDBNdQ1lcYu9IPAsuL24bprA94G3F/UtQL4h6L9jcC9wKM0ugReU+N7eiJwe6vUVdTwQHFb\n2fOZr/u9LGqYAnQW7+etwOgWqesAYCMwqldbK9R1CfBQ8dn/PvCagfiMeSW1JKnUUOpikiT1gQEh\nSSplQEiSShkQkqRSBoQkqZQBIUkqZUBIkkoZEJKkUv8fs2wHLkKj2twAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11b6874e0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 直方图柱子显示多一点\n", "df.plot.hist(stacked=True, bins=30)\n", "# 中间很高的柱子,是因为我们把空值都替换为了中位数" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11b8c5eb8>" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAD8CAYAAACGsIhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FOe1+PHv2VUFNVADJIRE71VgY2zHJW4B47gBdlyS\nONeJS64T5+baSXwdnHLj+JfE8U2c2E5wL2Djhntc4o6ppgmBEVUCIYR6Qf38/piVEEJlBVqtpD2f\n5+GZ3Zl3Z84O2j078zZRVYwxxpj2uPwdgDHGmJ7PkoUxxpgOWbIwxhjTIUsWxhhjOmTJwhhjTIcs\nWRhjjOmQJQtjjDEdsmRhjDGmQ5YsjDHGdCjI3wF0lbi4OE1NTfV3GMYY06usW7fusKrGd1SuzySL\n1NRU1q5d6+8wjDGmVxGRvd6Us9tQxhhjOmTJwhhjTId8mixE5EIR2S4iWSJyZyvbQ0VkmWf7KhFJ\n9axPFZEjIrLB8+8hX8ZpjDGmfT6rsxARN/AgcB6QA6wRkRWqurVZsRuAIlUdKSKLgN8DCz3bdqrq\nVF/FZ4zpnWpra8nJyaGqqsrfofQqYWFhJCcnExwcfEKv92UF9ywgS1V3AYjIUuASoHmyuARY7Hm8\nHPiriIgPYzLG9HI5OTlERkaSmpqKfV14R1UpKCggJyeHtLS0E9qHL29DJQHZzZ7neNa1WkZV64AS\nINazLU1EvhSRj0TkDB/GaYzpRaqqqoiNjbVE0QkiQmxs7EldjfXUprO5QIqqFojIDOAVEZmgqqXN\nC4nIjcCNACkpKX4I0xjjD5YoOu9kz5kvryz2A0ObPU/2rGu1jIgEAdFAgapWq2oBgKquA3YCo1se\nQFUfUdV0VU2Pj++wT4kxx6uphC8eggNf+jsSY3o0XyaLNcAoEUkTkRBgEbCiRZkVwPWex1cAH6iq\niki8p4IcERkOjAJ2+TBWE6jeuB3evgMemwtlef6OxgSwFStWcO+993bJviIiIrpkP835LFl46iBu\nBd4BMoHnVTVDRH4lIvM9xZYAsSKSBdwONDavPRPYJCIbcCq+f6Cqhb6K1QSooj2w8TkYOw/qqmDV\n3/0dkenj6urq2tw2f/587rzzuB4GPYZP+1mo6puqOlpVR6jqbz3r7lbVFZ7HVap6paqOVNVZjS2n\nVPVFVZ2gqlNVdbqqvubLOE2A2vKis7zwXkg7E7auAFX/xmR6hYqKCubOncuUKVOYOHEiy5YtIzU1\nlcOHDwOwdu1azjrrLAAWL17Mtddey5w5c7j22ms59dRTycjIaNrXWWedxdq1a3n88ce59dZbKSkp\nYdiwYTQ0NDQda+jQodTW1rJz504uvPBCZsyYwRlnnMG2bdsA2L17N7Nnz2bSpEncddddPnnPPbWC\n2xjf2/URJE6CmKEw5hvw1k+haDcMHO7vyIyX7nktg60HSjsu2Anjh0Txy4sntFvm7bffZsiQIbzx\nxhsAlJSUcMcdd7RZfuvWrXz66aeEh4dz//338/zzz3PPPfeQm5tLbm4u6enpbNmyBYDo6GimTp3K\nRx99xNlnn83rr7/OBRdcQHBwMDfeeCMPPfQQo0aNYtWqVdx888188MEH3Hbbbdx0001cd911PPjg\ng113Mpqx4T5MYKqrhuzVkHq683zYbGeZY4NRmo5NmjSJd999lzvuuINPPvmE6OjodsvPnz+f8PBw\nABYsWMDy5csBeP7557niiiuOK79w4UKWLVsGwNKlS1m4cCHl5eV8/vnnXHnllUydOpXvf//75Obm\nAvDZZ59x1VVXAXDttdd22ftszq4sTGDavx7qjhxNFgnjIbi/k0AmL/BvbMZrHV0B+Mro0aNZv349\nb775JnfddRfnnnsuQUFBTbeOWvZn6N+/f9PjpKQkYmNj2bRpE8uWLeOhh44fzWj+/Pn8/Oc/p7Cw\nkHXr1nHOOedQUVFBTEwMGzZsaDUmXzcntisLE5hyPR+45JnO0uWGwZMhb4v/YjK9xoEDB+jXrx/X\nXHMNP/3pT1m/fj2pqamsW7cOgBdffLHd1y9cuJD77ruPkpISJk+efNz2iIgIZs6cyW233ca8efNw\nu91ERUWRlpbGCy+8ADi9sjdu3AjAnDlzWLp0KQDPPPNMV77VJpYsTGA6uAX6x0Nk4tF18WPgUKZV\ncpsObd68mVmzZjF16lTuuece7rrrLn75y19y2223kZ6ejtvtbvf1V1xxBUuXLmXBgravYhcuXMjT\nTz/NwoULm9Y988wzLFmyhClTpjBhwgReffVVAB544AEefPBBJk2axP79LbuzdQ3RPvLBSE9PV5v8\nyHjt4TMhfABc9+rRdV885PS5+MlXxyYR06NkZmYybtw4f4fRK7V27kRknaqmd/Rau7Iwgae+Dg5t\ng8SJx66PH+Ms87d1f0zG9HCWLEzgKdwF9dXHJ4sEzy8uSxbGHMeShQk8BVnOMm7UsesjEiEkEgp2\ndn9MxvRwlixM4Cn0JIOWne9EYMAwKPZq/npjAoolCxN4CrIgfCD0G3j8tgGpzphRxphjWLIwgadg\nJ8SOaH1bzDAo3mfNZ41pwZKFCTyFu2BgG8liwDCorYSK/O6NyfRqixcv5g9/+MNJ76f5YIQ9jSUL\nE1hqKqF0P8SObH37gFRnWWT1FsY0Z8nCBJZCzxxasW2MLBvjmZ7XKrlNB377298yevRoTj/9dLZv\n3w7Q5hDir732GqeccgrTpk3j61//Onl5zkRbBQUFnH/++UyYMIHvfe979ORO0jaQoAksRbud5YC0\n1rdHJTnL0gPdE485OW/dCQc3d+0+B02Ci9qfsW7dunUsXbqUDRs2UFdXx/Tp05kxY0abQ4iffvrp\nfPHFF4gI//znP7nvvvv44x//yD333MPpp5/O3XffzRtvvMGSJUu69r10IUsWJrAUZzvLmGGtbw+L\ngpAISxamXZ988gmXXnop/fr1A5xRYquqqpqGEG9UXV0NQE5ODgsXLiQ3N5eamhrS0pwfKx9//DEv\nvfQSAHPnzmXAgAHd/E68Z8nCBJaSbAju13qz2UZRQ6DMkkWv0MEVQHdqaGhocwjxH/7wh9x+++3M\nnz+fDz/8kMWLF3d/gCfJ6ixMYCneB9FDnQ54bYkcbFcWpl1nnnkmr7zyCkeOHKGsrIzXXnuNfv36\ntTmEeElJCUlJzi3OJ5544pj9PPvsswC89dZbFBUVdfM78Z4lCxNYSrKdaVTbE5UEpbndE4/plaZP\nn87ChQuZMmUKF110ETNnOvOitDWE+OLFi7nyyiuZMWMGcXFxTfv55S9/yccff8yECRN46aWXSElJ\n8cv78YYNUW4Cy+/TYPwlcPGf2y7z/q/g0z/D/+Q7kyKZHsWGKD9xNkS5Md6oqYAjhV5cWQwBrbeO\necY0Y8nCBI7GllDRHVzqRw5xlqW+mXHMmN7IkoUJHCWNzWa9uLIAq7fowfrK7fPudLLnzJKFCRyN\nySLa22RhLaJ6orCwMAoKCixhdIKqUlBQQFhY2Anvw/pZmMBRnA2uIIgc1H65fnEgbijP6564TKck\nJyeTk5NDfr7VKXVGWFgYycnJJ/x6SxYmcJRkO81iO2rh5HJB/3hLFj1UcHBwUw9o033sNpQJHMXZ\nRwcK7EhEApQf8m08xvQilixM4CjJ7ri+olFEIlRYsjCmkSULExjqa6Est+OWUI3sysKYY1iyMIGh\ndD9oQyeuLDzJoqHBt3EZ00v4NFmIyIUisl1EskTkzla2h4rIMs/2VSKS2mJ7ioiUi8h/+TJOEwCK\nvexj0ah/AjTUQlWx72IyphfxWbIQETfwIHARMB64SkTGtyh2A1CkqiOB+4Hft9j+J+AtX8VoAoi3\nfSwaRSQ4S7sVZQzg2yuLWUCWqu5S1RpgKXBJizKXAI3j9S4HzhVxxo4WkW8Cu4EMH8ZoAkXTUB9e\ntjOPSHSW1nzWGMC3ySIJyG72PMezrtUyqloHlACxIhIB3AHc48P4TCAp2QcRgyAo1LvydmVhzDF6\nagX3YuB+VS1vr5CI3Cgia0VkrfXmNO0q9mIei+Yak4U1nzUG8G0P7v1A809nsmdda2VyRCQIiAYK\ngFOAK0TkPiAGaBCRKlX9a/MXq+ojwCPgzGfhk3dh+oaSHBg82fvyYTHgDrHbUMZ4+DJZrAFGiUga\nTlJYBFzdoswK4HpgJXAF8IE6o4Od0VhARBYD5S0ThTFea2hwksXYud6/RsRpEWW3oYwBfJgsVLVO\nRG4F3gHcwKOqmiEivwLWquoKYAnwlIhkAYU4CcWYrlV5GOqrvW8J1cg65hnTxKcDCarqm8CbLdbd\n3exxFXBlB/tY7JPgTODobB+LRhGJzhWJMabHVnAb03VKOtlstlGEjTxrTCNLFqbv66BDXmZuKS9/\nmUNxZc2xGyISnVtYDfU+DtCYns/mszB9X0kOhERCWPRxm15an8NPXtiIKiRGhfLSzXNIigl3NkYk\nOuNJVRyGyMRuDtqYnsWuLEzf19jHwhkcoMn+4iP8/OXNnJI2kMe/M5OK6nr+e/nGo9N19o93ltbX\nwhhLFiYAlGS3Wl/x9w+zaFD4w5VTOGtMArefN5rPsgr4YlehU8B6cRvTxJKF6ftamfSotKqWl9bv\nZ/6UISQP6AfA1aekEB0ezLOr9zmF+jf24rbRAYyxZGH6tupyOFJ03JXFig0HqKyp5/rZqU3rwoLd\nXDotiXe2HKSoosZpDQV2ZWEMlixMX9fYT6LF3NvvZBxkeFx/JiZFHbP+ihnJ1NQ38F5mHoRGgTvU\n6iyMwZKF6esak0WzK4viyhpW7izg/AmDkBaV3hOGRDE4OsxJFiKeXtx2G8oYSxambyvx1D80q7P4\n6Kt86hqU8ycc3xxWRDh3XAKf7DhMVW290yLKriyMsWRh+riSHBA3RA5qWrVyZwGRYUFMSY5p9SVn\nj0mgsqaeL/cV25WFMR6WLEzfVpwNUUngcjet+nxnAacOj8XtklZfkp46EBFYtbvAc2VhycIYSxam\nbyvJOWYAwZyiSvYVVnLaiNg2XxIdHsz4wVGs3l3oXFlU5DvDnBsTwCxZmL6tRYe8lTsLAJjdTrIA\nOCUtlvX7iqgLjwetd5rfGhPALFmYvqu+DkoPHJMs1uwpJKZfMKMTItt96ay0gVTVNrC3yumwZ5Xc\nJtBZsjB9V+l+56pgQGrTqg3ZxUwdGoOrjfqKRjNTBwCwtSzUWWEd80yAs2Rh+q6iPc7SkyzKqmrZ\ncaicqUNbbwXVXGxEKEkx4WwsDHFWWCW3CXCWLEzf1SJZbM4pQRWvkgXAlKHRfHHI04rKrixMgLNk\nYfquoj3gCnKazgIbcooB75PFpKQYMopcqCvI6ixMwLNkYfquoj3OmFCePhYb9hWTFtefmH4hXr18\nSnI0ioua0FjrmGcCniUL03cV7YGYYQCoalPltrcmJDkz65W4Y+zKwgQ8Sxam7yra01RfcaismkNl\n1UxJPn5q1bZEhwczPK4/efVRVmdhAp4lC9M3VZXCkcKmZLH1QClw9GrBW5OSo9lXHWGtoUzAs2Rh\n+qbivc7SkywyDpQAMHZQ+53xWho/OIrsmgi0Ih8a5+Y2JgBZsjB9U4tms1tzSxkW24/IsOBO7Wbc\n4CjyNQqpr4Gq4q6N0ZhexJKF6ZtaJosDpYwfHNVm8baMHRzJYfXcurIWUSaAWbIwfVPRHgiLgfAY\nyqvr2FNQeULJIiEyjNqwOOeJtYgyAcyShembCnc3XVVsy3Uqt8cP6XyyAIiKdzr1WYsoE8gsWZi+\nqSALYkcCkNHYEmpI51pCNUoc7IxaW19mycIELksWpu+prYLifRA3CnDqKwb2DyExKvSEdjds6FDq\nVSjJ39+VURrTq1iyMH1P0W5Am64stuY6ldsi7Q9L3paxgwdQSBRlBQe6MEhjehefJgsRuVBEtotI\nlojc2cr2UBFZ5tm+SkRSPetnicgGz7+NInKpL+M0fczhHc4ydgS19Q1szys74foKgJEJERwmmprS\nvC4K0Jjex2fJQkTcwIPARcB44CoRGd+i2A1AkaqOBO4Hfu9ZvwVIV9WpwIXAwyIS5KtYTR9TkOUs\nY0eyK7+CmrqGE2oJ1SgkyEVl8EBc1ovbBDBfXlnMArJUdZeq1gBLgUtalLkEeMLzeDlwroiIqlaq\nap1nfRhgXWeN9wp2QsQgCI1s6rl9MlcWANovnn41BV0RnTG9ki+TRRKQ3ex5jmddq2U8yaEEiAUQ\nkVNEJAPYDPygWfIwpn0FO47WVxwoJTTIxfC4/ie1y+DoQQzQYorKq7siQmN6nR5bwa2qq1R1AjAT\n+JmIhLUsIyI3ishaEVmbn2+3CIxHQRbEHa3cHjMokiD3yf2pR8YOIUxq2ZGd2xURGtPr+DJZ7AeG\nNnue7FnXahlPnUQ0cMy1vqpmAuXAxJYHUNVHVDVdVdPj4+O7MHTTa1UWQmUBxI5EVZtaQp2suEFO\nX4vs7D0nvS9jeiNfJos1wCgRSROREGARsKJFmRXA9Z7HVwAfqKp6XhMEICLDgLHAHh/GavqKgp3O\nMnYkB0urKK6sPen6CnCuLADycnNOel/G9EY+a2GkqnUicivwDuAGHlXVDBH5FbBWVVcAS4CnRCQL\nKMRJKACnA3eKSC3QANysqod9FavpQwoam82OaprDYlwXXFlIRAIAJdbXwgQor5KFiLyE88X+lqo2\neLtzVX0TeLPFurubPa4CrmzldU8BT3l7HGOaHMoEdwgMSCVz026g83NYtMqTLGqKD1LfoLhdJ9bB\nz5jeytvbUH8DrgZ2iMi9IjLGhzEZc+Lyt0HcaHAHkZlbRsrAzs9h0ap+cShCdEMR+worT35/xvQy\nXiULVX1PVb8FTMepO3hPRD4Xke+ISBd8Eo3pIoe2QcI4wGkJNW5wF1xVALiDqA8bQBwlTaPYGhNI\nvK7gFpFY4NvA94AvgQdwkse7PonMmM6qLoOSfRA/lorqOvYUVDB+8ImNNNsaV2QC8VJK5sGyLtun\nMb2Ft3UWLwNjcOoRLlbVxsbmy0Rkra+CM6ZT8rc7y4RxbDtYhipdd2UBuCISSQ4+yIt2ZWECkLet\nof7hqaxuIiKhqlqtquk+iMuYzjuU6Szjx5K54+QmPGpV5GAGubaxPc+uLEzg8fY21G9aWbeyKwMx\n5qQdyoSgcKclVG4pUWFBJMWEd93+owYTU1/AvoJyKqpt9BkTWNq9shCRQTjjN4WLyDSgsb1gFNDP\nx7EZ0zn5mRA/GlxuT+X2ic9h0arIwbi1joGUsT2vjOkpA7pu38b0cB3dhroAp1I7GfhTs/VlwM99\nFJMxJ+bQNkg7k/oGZfvBMhakD+34NZ0RORiAQVLEtlxLFiawtJssVPUJ4AkRuVxVX+ymmIzpvCPF\nUHYAEsaxt6CCypr6LhkT6hhRzpAfqSElbDtoldwmsHR0G+oaVX0aSBWR21tuV9U/tfIyY7pf/jZn\nmTCOzFynArpLK7eh6cpiUlQlH+RaJbcJLB1VcDdOAhABRLbyz5ieoXlLqNxS3C5hZEJE1x4jIhHE\nxeh+ZWw7WIqqzcllAkdHt6Ee9izv6Z5wjDlB+dsguD9ED2Vr7jpGxkcQFuzu2mO4g6B/AilBJZRW\n1ZFbUsWQrmxtZUwP5lXTWRG5T0SiRCRYRN4XkXwRucbXwRnjtbwMZ5gPl4uMAyVdfwuqUdRg4tWZ\ncsXqLUwg8bafxfmqWgrMwxkbaiTwU18FZUynqDrJInECh0qryCutZmJS1w3zcYzIIUTUOrMyZlq9\nhQkg3iaLxttVc4EXVLXER/EY03llB+FIISROYPN+509zcrKPkkXUYNxluSQPCGebjRFlAoi3yeJ1\nEdkGzADeF5F4oMp3YRnTCYcynGXiBDbllOASur7ZbKPIwVBVzKSEEBt91gQUb4covxM4DUhX1Vqg\nArjEl4EZ47U8T7JIGM/m/SWMiI+gf6iPJoH09LWYMaCKXYcrqK6r981xjOlhOvOJGovT36L5a57s\n4niM6by8rRA5BA0fwOb9JZwxKs53x4pOBmBCRCn1DaFkHSpnwhAf3fIypgfxdojyp4ARwAag8aeU\nYsnC9AR5GZA4nrzSavLLqpnsq8ptgJgUAIYHFwKD2ZZbZsnCBARvryzSgfFqvZBMT1NfC4e3w8hz\n2JRTDMAkX1VuA0QlgbiIrztIaFCSNZ81AcPbCu4twCBfBmLMCSnIgvoaSJzIlv2Nlds+TBbuYIhK\nwlWSzejESGsRZQKGt1cWccBWEVkNVDeuVNX5PonKGG81q9zetK6E0YmRhId0cc/tlmJSoCSbsYMi\n+WDbIVS1a4dCN6YH8jZZLPZlEMacsLwMcAWhcaPYnPMxZ49N8P0xY1Jgz6dMGhvNC+tybNgPExC8\nbTr7EU7P7WDP4zXAeh/GZYx3Dm2FuNEcKG+goKLGd53xmoseCqX7mTTYmf9rU471UTV9n7djQ/0H\nsBx42LMqCXjFV0EZ4zXPMB+bsj2V275sCdUoJgW0gfH9ywlyCZv3F/v+mMb4mbcV3LcAc4BSAFXd\nAXTD9b4x7agqgZJsSBjPur1FhAS5uqcZq6f5bGh5DmMGRdqVhQkI3iaLalWtaXzi6ZhnzWiNf+Vt\ndZaJE1m/r4hJSdGEBHn7J30SPMmC4n1MTo5mU06JzW1h+jxvP1kficjPgXAROQ94AXjNd2EZ44W8\nLQBUx45hy/5SZgzrpjmxPX0tKN7HpKQYSo7Ukl14pHuObYyfeJss7gTygc3A94E3gbt8FZQxXjm0\nFcKiySiPpKa+gekpMd1z3KAQiEqGwt1NFeqbrN7C9HFeNZ1V1QYReQV4RVXzfRyTMd7Jy4CECazf\n53xRT0/ppisLgNgRULCD0YmRhLhdbM4pYd7kId13fGO6WbtXFuJYLCKHge3Ads8seXd3T3jGtEHV\nqbNInMD6fUUkxYSTEBXWfcePGwUFOwlxC+OGRFklt+nzOroN9WOcVlAzVXWgqg4ETgHmiMiPO9q5\niFwoIttFJEtE7mxle6iILPNsXyUiqZ7154nIOhHZ7Fme0+l3Zvq24n1QUwaJ41m/t7j76isaxY6E\n6lKoyGdyUjRb9pfQ0GCV3Kbv6ihZXAtcpaq7G1eo6i7gGuC69l4oIm7gQeAiYDxwlYiMb1HsBqBI\nVUcC9wO/96w/DFysqpOA64GnvHs7JmAcclpC5fcbxcHSqu6rr2gUO8JZHt7B1KExlFXXseNQeffG\nYEw36ihZBKvq4ZYrPfUWwR28dhaQpaq7PM1ul3L8hEmXAE94Hi8HzhURUdUvVfWAZ30GTius0A6O\nZwKJpyXUmkpnfMvp/riyACjIarqqWbe3qHtjMKYbdZQsak5wGzi9vLObPc/xrGu1jKrWASVAbIsy\nlwPrVbUaYxrlbYWYYazJrSEs2MU4X02j2pbooeAOhYIshsX2Iy4ihLV7C7s3BmO6UUetoaaISGsD\n9gvg89pEEZmAc2vq/Da23wjcCJCSkuLrcExPkpcBiRNZu6eIKckxBLu7oTNecy43DBwOh79CRJie\nMsCuLEyf1u4nTFXdqhrVyr9IVe3oNtR+YGiz58meda2W8fQKjwYKPM+TgZeB61R1ZxvxPaKq6aqa\nHh8f30E4ps+orYKCLKpjx5JxoIRT0gb6J47E8U11J+mpA9hbUEl+mV0Am77Jlz/H1gCjRCRNREKA\nRcCKFmVW4FRgA1wBfKCqKiIxwBvAnar6mQ9jNL3R4e2g9exgGA0KpwxveeeymyROcFplVZUwY5iT\nsOzqwvRVPksWnjqIW4F3gEzgeVXNEJFfiUjjpElLgFgRyQJux+kpjud1I4G7RWSD558NXGgcnjGh\nPitPINgt3dsZr7nEic7yUCYTk6IICXKxfp8lC9M3eTv50QlR1TdxhgZpvu7uZo+rgCtbed1vgN/4\nMjbTix3KAHco7xzoz+TkIN/PjNeWxAnOMm8LoSmnMjkpmjV7rJLb9E3dXCtoTBfI20p93Gg2Hij3\nX30FOAMKhkU3Te06K20gm3NKqKiu819MxviIJQvT+xzK5HD4COob1H/1FQAizq2og5sBOG1EHHUN\nymq7ujB9kCUL07scKYKyA2Q2JON2SfcP89HSkGmQuwnqapgxbAAhbhcrdxb4NyZjfMCSheldDmUC\n8FlpApOSookI9Wm1W8eS06G+GvI2Ex7iZlpKDJ/vPG7QA2N6PUsWpnfx1A+8nT+QU4b7sb6iUfJM\nZ5mzDoA5I+PIOFBKcWVHAxwY07tYsjC9y6Gt1AVHkl0/gFPT/Fhf0SgqCSIHQ84aAE4bEYsqfLHL\n6i1M32LJwvQuhzI5GDYclwgzUv1cXwFOJXdyOmSvAmBycgz9Qtx2K8r0OZYsTO/hmfBoS10SU4bG\nEBXW0Ygz3WTY6VC8F4r2EhLk4tThsXy4PR9Vm9/C9B2WLEzvUXoAqkv4vDSR00fG+Tuao4af5Sx3\n/RuAs8cmsK+wkp35FX4LyZiuZsnC9B6eQfsyG4b2rGQRP8apt9jpJItzxjoj0/x72yF/RmVMl7Jk\nYXoPT7LYFzSMaf4aD6o1IjD8bNj9ETTUkxQTzthBkby/Lc/fkRnTZSxZmN4jbyv5Esu44SmEBPWw\nP91R5zkdBvd9ATi3otbuKaK0qtbPgRnTNXrYJ86YttXmbmFrXVLPugXVaNT5EBQGW18BnFtRdQ3K\nJ19ZqyjTN1iyML1DfR2ugq/YpkM5fVQPTBahEc7VxdYV0NDAtKExDOwfwjsZB/0dmTFdwpKF6R0K\nd+FuqOFASBpjEiP9HU3rxn8Tyg/Cno8Jcru4YMIg3svM40hNvb8jM+akWbIwvYJ6KrcjUiYjIn6O\npg1j50H4AFj3OAAXTx5MZU09H263VlGm97NkYXqFgl1fUq/C8HHT/R1K24LDYMrVkPk6lB9iVtpA\n4iJCeH1Trr8jM+akWbIwvUL5vk3s0UHMHpPs71Dal/4daKiDVQ8R5HZx0cTBvL8tj8oamxDJ9G6W\nLEyvEFq0nf0haQyJCfd3KO2LGwXjL4FVj8CRIuZOHkxVbQP/yrA+F6Z3s2RherzyshISaw8gCeP8\nHYp3zvwp1JTByr8xK3UgQweGs3TNPn9HZcxJsWRherwtX36OS5T40bP8HYp3Bk10WkZ9/hdcpdks\nmpnCF7uzQYWkAAAYlElEQVQK2X3YxooyvZclC9PjHdy+GoARk2f7OZJOOP83zvKdn3PFDGcK2GVr\nsv0bkzEnwZKF6dFUFXI3U+GKJHhAir/D8V7MUDjzvyDzNRKz3+LsMQksX5dDbX2DvyMz5oRYsjA9\nWmZuGal1OykfMN4ZsK83mXMbJM2A137EdycHc7i8mjesGa3ppSxZmB7tw20HGCvZRKb24P4VbXEH\nw2X/gPpaZn95B+MTQnnoo502KZLplSxZmB4tK2M9YVJLv5Rp/g7lxMSOgIsfQPat5C8DlrHtYCkf\n77DBBU3vY8nC9FgF5dXowc3Ok8GT/RvMyZh8Jcz5ESP2Ps8P+3/AX97fYVcXptexZGF6rH9tzWO8\n7KHBHQqxo/wdzsk5924Y8w1ur3+Uwdlv8F6mjRdlehdLFqbHemvLQaaHZCOJE8Ad5O9wTo7LDVc8\nCimzuT/k73zw2jPUWcso04tYsjA9UkllLZ9n5TNe9iK9+RZUc8HhyNVLqYgZw92Vv+OtN1/2d0TG\neM2ShemR3svMI1lzCa8vhSG9sCVUW8Kiifreq5QEJ3DW2lvIzfzC3xEZ4xWfJgsRuVBEtotIlojc\n2cr2UBFZ5tm+SkRSPetjReTfIlIuIn/1ZYymZ3prSy5n9feMp5Sc7t9guphEJCDffpUy+tP/+QXU\n5m3zd0jGdMhnyUJE3MCDwEXAeOAqERnfotgNQJGqjgTuB37vWV8F/A/wX76Kz/RcBeXVfLg9n3kD\n90NIBMSP9XdIXS4xeSQZX3+S6gY48s95ULTX3yEZ0y5fXlnMArJUdZeq1gBLgUtalLkEeMLzeDlw\nroiIqlao6qc4ScMEmFc3HKCuQZmgO2DINKdyuA8674w5vDDu/9CaCkr/MRfKbL5u03P5MlkkAc1H\nTsvxrGu1jKrWASVArA9jMr3Ai+tzmDYkjPCCrX3uFlRL/3HlfP46+F7cFYcofnguVBb6OyRjWtWr\nK7hF5EYRWSsia/Pz8/0djukCmbmlZBwo5YYRZdBQC0l9O1kEu1385IZr+Evirwgv28OBv11MQ80R\nf4dlzHF8mSz2A0ObPU/2rGu1jIgEAdFAgbcHUNVHVDVdVdPj4+NPMlzTEzy5cg+hQS7O6bfLWZE8\n06/xdIewYDc/+f6NvDDslwwp38Ln91/N/qJKf4dlzDF8mSzWAKNEJE1EQoBFwIoWZVYA13seXwF8\noDYOQq9TVVvPy1/msHhFBn/813a+3Fd0QvsprKjhpfX7uWx6Mv0OrIS40RCZ2MXR9kzBbhff+s4P\n2TT6h5x+5AOW//nHPL8224YFMT2Gz7rFqmqdiNwKvAO4gUdVNUNEfgWsVdUVwBLgKRHJAgpxEgoA\nIrIHiAJCROSbwPmqutVX8ZoTk5lbys3PrGf34Qr6hbiprmvgLx9k8fVxCfzussnER4Z6va8nV+6h\nuq6B785OhsdWOmMqBRARYfJVv6biuRxu+2op339pMK9v+ga/u2wSST197nHT50lf+eWSnp6ua9eu\n9XcYAeWrvDKufGglYcEu7r18Ml8bFU9FTR1Pf7GP+9/7ipjwYB77zkwmDInucF+FFTWced+/OW1E\nLI+cI/DPc+CKx2DiZd3wTnqY2iPoY3Opy9vK5bW/YpcM42ffGMvVs1KQ3janh+nxRGSdqnZYOdir\nK7iN/1RU13HT0+sIdrtY/oPTOHtMAi6XEBkWzE1njWDFrXMIcgkLH/6Cz7I6HpL7Lx/soLKmjp9e\nMAb2fOysTD3dx++ihwoORxY9TXBYJC8OeJDZSS5+8fIWrlmyirxSa01u/MOShTkhv3srk92HK/i/\nq6YydGC/47aPHRTFizefRlJMON9+bDWvbmjZtuGoL/cV8cTne1g0K4VRiZGw+2OnviIiwZdvoWeL\nGgILnya4bD+PhP+dey8dz5f7ipn/10/ZlFPs7+hMALJkYTptc04Jz6zax3WzUzltRFyb5QZHh/P8\nD2YzY9gAblu6gb99mHVche3BkipufmY9g6PD+dlFY6G6HPZ8CiO/7uu30fOlnAJz/4DsfJ9FpY/z\n4k2nEeRyseDhlby3Nc/f0ZkAY8nCdIqq8uvXtxLbP4Qfnze6w/LR4cE88d1ZzJs8mPve3s61S1az\nbm8hpVW1vJ+Zx6V/+4zSI7U8ct0MIsOCYdeHUF8Doy/0/ZvpDWZ8G9K/C5/9mXEF7/LqrXMYkxjJ\nD55ex9tbrMe36T6WLEynrNxZwOo9hfzwnFFEhwd79ZrQIDf/t2gav/7mRDZmF3P531cyefG/uOGJ\ntQS7XSz7/uyjleBfvQ2hUTDsNB++i17mwt/D0FPhlVuIK/+Kp753CpOSo7nl2fW8vSXX39GZAGGt\noUynLHh4JXsLKvjop2cTFtz5MZvKq+v4YNshDhQfIS2uP+eMTSDY7fnNUl8HfxwDaWfAlY93beC9\nXVkePHKWMwnUf3xImTuK6x9dzZb9pTzx3VnMHmGj5JgTY62hTJdbvbuQ1bsLuelrI04oUQBEhAYx\nf8oQfvC1EVwwYdDRRAGw699QeRgmBVb/Cq9EJsKip52ksfzbRAYLj357Jimx/bjxybVk5pb6O0LT\nx1myMF577LPdxPQLZuHMFN8cYONSCB8AI8/zzf57u6QZMO9+p7XYu3cT0y+EJ747i/6hQVz/6Gpy\nbIgQ40OWLIxXcooqeSfjIItmphAe4oMhwysLYdsbMOEyCArp+v33FdO+Baf8AL54EDYuJSkmnCe+\nO4sjtfV8+7E1FFfW+DtC00dZsjBeeWrlXkSEa2cP880B1j0GdUdg5vd8s/++5PzfQOoZsOI/Yf96\nxgyK5B/XpbOvoJIbn1xHVW29vyM0fZAlC9Ohypo6nlu9jwsmJPpmjKK6alj1CIw4BxJbTqZojuMO\ndhoARCTAsmugaC+nDo/ljwumsHpPIbc/v4GGhr7RcMX0HJYsTIde/nI/pVV1fGdOmm8O8MXfofwg\nzPmRb/bfF/WPg0XPQk05PO5My3rxlCH84hvjeHPzQX79xlYbsdZ0KUsWpl2qyuOf7WHCkCjShw3o\n+gOU5cEnf3Q64Q3/Wtfvvy8bPBmuexWqS+HxuVCwk++dkcZ35qTy2Gd7WPLpbn9HaPoQSxamXZ/v\nLGDHoXK+fVpq14942tAAL98I9bXOfXjTeUOmOQmjpgL+eS6y9zP+Z+54vjFpEL95I5PXNh7wd4Sm\nj7BkYdr1+Od7GNg/hIunDOnaHavCOz93hve48HcQN6pr9x9IhkyF/3gf+sfDk9/Etepv/OnKycxM\nHcBPnt/I+5k2jpQ5eZYsTJuyCyt5PzOPq2YNPeFOeK2qq4bXboNVf4dTbnLGPzInZ+BwuOFdGHU+\nvPNzwpZeyZL58Ywd7Iwj9a4NPGhOkiUL06anv3Cay15zahc1l1WFrPfgoTNg/RNw+o+dqwqb0Kdr\nhMfAomdg3p8hexVRS+bw/Kj3mTEomJueXmfjSJmT4rNpVU3vdqSmnqVrsrlgQiKDo0+yuWzxPqfD\n3fqn4FAGDEiFq1+A0ed3SaymGRFI/w6MvgDe/SVhK//Ec2GP8kLMRdz1TAn5l5zGtV2V/E1AsWRh\nWvXqhv2UHKnl+tmpnX+xKhzcBNvfhm2vO48BBk2C+X91xn4KDuvSeE0LUUPg8n/AqT9APvkTC7Y9\nxzfDXuS1N2bx9L5rufryBbjcdmPBeM9GnTXHaWhQLnzgY1wivHXbGd63gircDeseh83LoTQHEEie\nCePmwdh5EDvCl2Gb9hzaRsPqR6hZv5SwhgpyQ4YRe+aNhEy/GvoN9Hd0xo+8HXXWkoU5zr8yDnLj\nU+t4YNFULpma1PELivbA+7+CLS+CuGHUeTDuYhh1AUTE+zxe4z2tLufDlx4mJvNZprmyaAgKxzVl\noTPeVMI4f4dn/MCShTkhqso3H/yMospaPvjJ1whq71aFKqx6CN79JYgLTr3JGdsp2osEY/zq/cw8\n/rb0Fa5xvcMlrk9x1VdD2tfgjNudpTU6CBjeJgurszDH+CyrgI05JfzvpZPaTxS1VbD8u7D9Daf3\n9bz7nfvkplc4d1wiw275Fjc+OYb/LVzAIxO3Mi33BXjyEmdWvrPugOFnW9IwTayGyzRRVf7wr+0M\nigrj8hntXB3UVMJzi5xEccH/wlVLLVH0QiMTInj5ljlMGDWcSzedwl3Dnqbuoj9ASTY8dSksOR92\nvOdcQZqAZ8nCNHljcy4bsou5/fzRhAa10QmvpgKeXeD0vL7kQZh9i/367MWiw4NZcv1MbjprBE+v\nPciCdeM5eP1KmPsnKD0Az1wOD58JGS9Dgw19HsgsWRgAqmrrue/t7YwdFMnl05PbKFQKT18Oez+D\nyx6Badd0b5DGJ9wu4Y4Lx/LXq6ex7WAZ8/6+mpUDvwn/+aXT1LmmAl74Njw4C1Y97ExUZQKOJQsD\nwJ/f28G+wkr+Z9543K5WrhSOFMPTl0H2arh8CUxe0P1BGp+aN3kIr94yh6jwYK5ZsopHPs9Gp10D\nt65x5s8IjYK3/hv+OAaev9652qgu83fYpptYayjDxuxiLv3bZyxIH8q9l08+vkBloXMPOy/D+dIY\nN6/bYzTdp6yqlv9evom3thzkoomD+H9XTiEi1NMW5uBm+PIZ2Pw8VBaAO8RpPTV2rtOXxppK9zrW\ndNZ4pbiyhov/+il19co7Pz6TqLDgYwuUH4KnLoPDX8HCp5xhJEyfp6r845Nd/P7t7QyL7ccDC6cx\nKTn6aIH6OsheBdvfdHrpF+1xmk+nngETL4Nx862zXy9hycJ0qKq2nu88toZ1e4tY+v1TmZ7SYnKj\noj3OFUXZQVj4NIw81y9xGv9ZubOAHy37ksPlNdxy1ghuPWcUIUEt7l6rwqGtzm2pLS9B4U5whzpJ\nY+b3IGmGNYLowSxZmHZVVNdx8zPr+XhHPn9aMIVLp7Wo1N7zKbzwHaivgW8th6Ez/ROo8buSylru\neT2Dl9bvZ0xiJL+YO44zR7dxu6lxXLD1T8HGpVBTBoMmO0lj0hUQ0r97gzcd6hHJQkQuBB4A3MA/\nVfXeFttDgSeBGUABsFBV93i2/Qy4AagH/lNV32nvWJYsvJeZW8qPl23gq7wyfnfZJBbOTDm6sfaI\nM83pJ3905khY+AwkjPVfsKbHeG9rHve8nkF24RHOGBXH988cwZyRsW2PHVZdBpuehzVLnNGGQ6Nh\n6lWQ/l2IH9O9wZs2+T1ZiIgb+Ao4D8gB1gBXqerWZmVuBiar6g9EZBFwqaouFJHxwHPALGAI8B4w\nWlXbbOhtyaJjew5XsOTT3Ty7eh/R4cE8sGgqZ4zy/EKsqYCNz8FnDzhDik9eCHP/CKGR/g3a9CjV\ndfU8tXIvD320k8PlNYxKiGDe5CGcPyGRMYmRuFprSacK+76AtUsg4xVoqIWU2U69xthvOEPWG7/p\nCcliNrBYVS/wPP8ZgKr+rlmZdzxlVopIEHAQiAfubF62ebm2jmfJ4qiaugaKj9RwuKyGnfnlZOaW\n8vGOfLbsLyXYDddMi+XHswcQVZ3rtHDa85nTya62wpnT+bxfQ9oZ/n4bpgerqq3ntY0HWLomm/X7\nilCFyLAgJg6JZlhsPxKjwhjYP4QgtxDsclHb0EBldT1ans/oAy8z7vDbJFbtBiDfncA29xgySWN3\nfTw5JFDkGkCVK4JadziR4cFEhQUTHX70X1T4sc+b/4sMC2p/qBpzjJ4wNlQSkN3seQ5wSltlVLVO\nREqAWM/6L1q81iej0207WMqtz35JY9JsSp2eB4uP3EtKQzZHfy85G6TFstEx67X19XrMczpc3/px\n29iuoCjBwGBgCMoZwM0uIShCCNVqZEsNbGkWdHQKTFnk9J0YeopVRpoOhQW7uTJ9KFemD+VQWRUf\nbs9nY3YxWw6U8l7mIQ6XV7f52tCgrxERei6jw/I5S9YzWbcxrnY7Z9R/crRQfePCRVVVP2oJol5d\n1KlQqy7q1EU9LrTZJ7MO5152gee5CAjS9Ofc+Lwj2li+ac3JfR7a+zleJDH8d//fntT+Ac4aE88v\n5o4/6f20p1cPJCgiNwI3AqSkpHRQunVhQW7GJHputbT4IxERag4No6guFOCYP0xPAZq/Qj1/itpi\nPQgInmQgnuXx5dTzh920nzb31/i0xa8nccqHBLkJCXYTFuwmKiyYqPAQglzixBsUCv3ioH+cM55T\nwgRrG29OSkJkGAvSh7IgfWjTupq6BsqqaqlrUGrrGwhxuwgPcdMvJKhFp8+rjz6sKnFugRbthYp8\nqC7FXV1G/6pS59ZVQ73zT+upr6+jtraG2roGausb/znHqqtXGlSpV0UVGlRpUGeeluZa/RLXhlbf\n44nef2n5Y7KlClcUoxIjTnDvRyVG+X4yMV8mi/3A0GbPkz3rWiuT47kNFY3zw8Cb16KqjwCPgHMb\n6kSCTI3rz4Pfmt5OiYdPZLfGBLSQIBexEaGde1FYtDOb4qBJHRZ1e/71hfkWe8sNX1/e2FsDjBKR\nNBEJARYBK1qUWQFc73l8BfCBOveDVgCLRCRURNKAUcBqH8ZqjDGmHT67svDUQdwKvIPzI+BRVc0Q\nkV8Ba1V1BbAEeEpEsoBCnISCp9zzwFacW5G3tNcSyhhjjG9ZpzxjjAlg3raGsvZlxhhjOmTJwhhj\nTIcsWRhjjOmQJQtjjDEdsmRhjDGmQ32mNZSI5AN7T+ClccDhLg6nq/TU2CyuzumpcUHPjc3i6pyT\niWuYqnY4jEOfSRYnSkTWetNszB96amwWV+f01Lig58ZmcXVOd8Rlt6GMMcZ0yJKFMcaYDlmy8AxE\n2EP11Ngsrs7pqXFBz43N4uocn8cV8HUWxhhjOmZXFsYYYzoU8MlCRH4iIioicZ7nIiL/JyJZIrJJ\nRNqb7MIX8fw/EdnmOfbLIhLTbNvPPHFtF5ELujMuz/Ev9Bw7S0Tu7O7jt4hlqIj8W0S2ikiGiNzm\nWT9QRN4VkR2e5QA/xecWkS9F5HXP8zQRWeU5d8s8w/Z3d0wxIrLc8/eVKSKze8L5EpEfe/4Pt4jI\ncyIS5q/zJSKPisghEdnSbF2r56g7vyvaiKtbvysCOlmIyFDgfGBfs9UX4cyfMQpnFr6/d3NY7wIT\nVXUy8BXwMwARGY8zhPsE4ELgbyLi7q6gPMd6EOf8jAeu8sTkL3XAT1R1PHAqcIsnnjuB91V1FPC+\n57k/3AZkNnv+e+B+VR0JFAE3+CGmB4C3VXUsMMUTn1/Pl4gkAf8JpKvqRJzpDBbhv/P1OM7nq7m2\nzlF3fle0Fle3flcEdLIA7gf+m2NnTbwEeFIdXwAxIjK4uwJS1X+pap3n6Rc4swQ2xrVUVatVdTeQ\nBczqrrg8x8pS1V2qWgMs9cTkF6qaq6rrPY/LcL74kjwxPeEp9gTwze6OTUSSgbnAPz3PBTgHWO6v\nuEQkGjgTZw4ZVLVGVYvpAecLZ16dcM9smf2AXPx0vlT1Y5y5dZpr6xx123dFa3F193dFwCYLEbkE\n2K+qG1tsSgKymz3P8azzh+8Cb3ke+zsufx+/TSKSCkwDVgGJqprr2XQQSPRDSH/G+RHSOKFzLFDc\n7IPtj3OXBuQDj3luj/1TRPrj5/OlqvuBP+Bc3ecCJcA6/H++mmvrHPWkz4TPvyt8OQe334nIe8Cg\nVjb9Avg5zi2obtdeXKr6qqfML3ButTzTnbH1NiISAbwI/EhVS50f8Q5VVRHp1uZ+IjIPOKSq60Tk\nrO48dgeCgOnAD1V1lYg8QItbTn46XwNwfgmnAcXACxx/u6XH8Mc56kh3fVf06WShql9vbb2ITML5\n49zo+XJJBtaLyCxgPzC0WfFkzzqfx9Usvm8D84Bz9WjbZp/H1QF/H/84IhKMkyieUdWXPKvzRGSw\nquZ6bgkc6uaw5gDzReQbQBgQhVNXECMiQZ5fy/44dzlAjqqu8jxfjpMs/H2+vg7sVtV8ABF5Cecc\n+vt8NdfWOfL7Z6I7vysC8jaUqm5W1QRVTVXVVJwP0nRVPQisAK7ztHQ4FShpdgnqcyJyIc4tjPmq\nWtls0wpgkYiEikgaTqXa6u6KC1gDjPK0UgnBqUBb0Y3HP4anHmAJkKmqf2q2aQVwvefx9cCr3RmX\nqv5MVZM9f1eLgA9U9VvAv4Er/BjXQSBbRMZ4Vp2LM8e9X88Xzu2nU0Wkn+f/tDEuv56vFto6R4H1\nXaGqAf8P2APEeR4LTqufncBmnFYa3RlLFs79xg2efw812/YLT1zbgYv8cJ6+gdPqYifOLTN//p+d\njtMwYVOzc/UNnPqB94EdwHvAQD/GeBbwuufxcM8HNgvnVkuoH+KZCqz1nLNXgAE94XwB9wDbgC3A\nU0Cov84X8BxO3Uktzo/IG9o6R935XdFGXN36XWE9uI0xxnQoIG9DGWOM6RxLFsYYYzpkycIYY0yH\nLFkYY4zpkCULY4wxHbJkYYwxpkOWLIwxxnTIkoUxxpgO/X/GhqLfBayGuwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11b7dbc18>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 密度图, 更直观一点\n", "df.plot.kde()" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 891.000000\n", "mean 29.361582\n", "std 13.019697\n", "min 0.420000\n", "25% 22.000000\n", "50% 28.000000\n", "75% 35.000000\n", "max 80.000000\n", "Name: Age, dtype: float64" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 可以查看年龄的分布,来绝对我们图片横轴的取值范围\n", "titanic.Age.describe()" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11cfcb630>" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAD8CAYAAABgmUMCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8lfXZ+PHPlb2BDCA7BAibMMIGWQ5cWBXFhdZqXdXa\n2lqt9WfR52kf7dI+rU/VOgsqoKKCojgYIshI2CsQAiEJAZIQsvf5/v64DxCSQBLIyTlJrvfrdV7n\nnPv+nvu+EpJcfLcYY1BKKaWay83ZASillGpfNHEopZRqEU0cSimlWkQTh1JKqRbRxKGUUqpFNHEo\npZRqEU0cSimlWkQTh1JKqRbRxKGUUqpFPJwdQGsJDQ01cXFxzg5DKaXalZSUlDxjTFhLPtNhEkdc\nXBzJycnODkMppdoVEclo6We0qUoppVSLaOJQSinVIg5NHCIyQ0RSRSRNRJ5s5Ly3iCy0n98gInH2\n43EiUi4iW+2PVxwZp1JKqeZzWB+HiLgDLwOXAVnAJhFZYozZXafYPUCBMaaPiNwCvADMtp87YIwZ\n5qj4lFLtU3V1NVlZWVRUVDg7lHbFx8eHqKgoPD09L/pajuwcHw2kGWPSAURkAXAdUDdxXAfMtb/+\nEPiniIgDY1JKtXNZWVkEBgYSFxeH/rloHmMM+fn5ZGVl0atXr4u+niObqiKBzDrvs+zHGi1jjKkB\nCoEQ+7leIrJFRFaLyCQHxqmUakcqKioICQnRpNECIkJISEir1dJcdThuDhBjjMkXkZHAJyIyyBhT\nVLeQiNwH3AcQExPjhDCVUs6gSaPlWvN75sgaRzYQXed9lP1Yo2VExAPoAuQbYyqNMfkAxpgU4ACQ\nUP8GxpjXjDFJxpiksLAWzV9Rrqr4KKx/BX54GQpaPLxcKdUGHJk4NgF9RaSXiHgBtwBL6pVZAtxl\nfz0LWGGMMSISZu9cR0Tigb5AugNjVa4g9Qv43xHw5ROw/Cn45yjYvsjZUSnVJpYsWcLzzz/fKtcK\nCAholeuci8OaqowxNSLyMLAccAfeNMbsEpHngGRjzBLgDWCeiKQBJ7CSC8AlwHMiUg3YgAeMMScc\nFatyAVnJ8MGPofsAuOF18PCCTx6Cj++HoAiIm+jsCJW6aDU1NXh4NP5nd+bMmcycObONI7owDp3H\nYYxZZoxJMMb0Nsb8wX7sGXvSwBhTYYy5yRjTxxgz+tQILGPMR8aYQcaYYcaYEcaYpY6MUzlZVSks\nugsCesDtH0JoH+gaA7cugK6xVgKpLHF2lEqdVlpaytVXX01iYiKDBw9m4cKFxMXFkZeXB0BycjJT\npkwBYO7cucyZM4cJEyYwZ84cxo4dy65du05fa8qUKSQnJ/P222/z8MMPU1hYSGxsLDab7fS9oqOj\nqa6u5sCBA8yYMYORI0cyadIk9u7dC8DBgwcZN24cQ4YM4emnn3b41++qneOqM/n+JSjKgru/AP/Q\nM8e9A+BH/4K3ZsDal2Ca438hVPvy7NJd7D5S1HTBFhgYEcTvrx103jJffvklERERfP755wAUFhby\nxBNPnLP87t27+f777/H19eXFF19k0aJFPPvss+Tk5JCTk0NSUhI7d+4EoEuXLgwbNozVq1czdepU\nPvvsM6644go8PT257777eOWVV+jbty8bNmzgoYceYsWKFTz66KM8+OCD3Hnnnbz88sut9804B11y\nRDlX8VFY+3cYPAtixzc8HzsOBlwLG16DisK2j0+pRgwZMoSvv/6aJ554gjVr1tClS5fzlp85cya+\nvr4A3HzzzXz44YcALFq0iFmzZjUoP3v2bBYuXAjAggULmD17NiUlJaxbt46bbrqJYcOGcf/995OT\nkwPA2rVrufXWWwGYM2dOq32d56I1DuVcG14BWzVM+925y0z6NexZCpteh0m/arvYlMtrqmbgKAkJ\nCWzevJlly5bx9NNPM336dDw8PE43L9WfL+Hv73/6dWRkJCEhIWzfvp2FCxfyyisNV1SaOXMmTz31\nFCdOnCAlJYVp06ZRWlpK165d2bp1a6MxteUQZa1xKOepKIJNb8KAmRAcf+5yEcOg12RIeRvsv5hK\nOdORI0fw8/Pjjjvu4PHHH2fz5s3ExcWRkpICwEcffXTez8+ePZs//elPFBYWMnTo0AbnAwICGDVq\nFI8++ijXXHMN7u7uBAUF0atXLz744APAmg2+bds2ACZMmMCCBQsAePfdd1vzS22UJg7lPDsWQWUh\njP9502VH3AknD0PG946PS6km7Nixg9GjRzNs2DCeffZZnn76aX7/+9/z6KOPkpSUhLu7+3k/P2vW\nLBYsWMDNN998zjKzZ89m/vz5zJ49+/Sxd999lzfeeIPExEQGDRrEp59+CsDf//53Xn75ZYYMGUJ2\ndv3pcq1PjDEOv0lbSEpKMrqRUzvz2hSorYEH1kBT1ezqcvhLP+g3A254rU3CU65pz549DBgwwNlh\ntEuNfe9EJMUYk9SS62iNQznH0Z1wZAsMv6PppAHg6QuDr4e9n0O1roqqlDNp4lDOsX0BuHnCkJua\n/5kB10JVCaSvclhYSqmmaeJQbc8Y2P0p9J4K/iFNlz8l7hLw7gJ7dT6oUs6kiUO1vZytVkf3gBYu\nr+DhBQmXw95lVt+IUsopNHGotrf7UxB36H91yz/b70ooP2H1jyilnEITh2pbp5qpel0CfsEt/3z8\nVEDgwLetHppSqnk0cai2dWwXnEiHgRe4CqhfMESOgAMrWjcupS7C3Llz+ctf/nLR16m7UKIr08Sh\n2tb+r6znfhfQTHVK72nWMuzlJ1snJqVUi2jiUG0rfRV0HwSBPS78Gr2ngamFQ2taLSylWuoPf/gD\nCQkJTJw4kdTUVIBzLnu+dOlSxowZw/Dhw7n00ks5duwYAPn5+Vx++eUMGjSIe++9l/YyIVsXOVRt\np7ocDq+HUfdc3HUiR4KHD2T8YM3tUJ3XF0/C0R2te82eQ+DK8+/El5KSwoIFC9i6dSs1NTWMGDGC\nkSNHnnPZ84kTJ7J+/XpEhNdff50//elP/PWvf+XZZ59l4sSJPPPMM3z++ee88cYbrfu1OIgmDtV2\nMjdAbSXET7m463h4Q2QSZKxtjaiUarE1a9Zw/fXX4+fnB1ir2VZUVJxe9vyUyspKALKyspg9ezY5\nOTlUVVXRq1cvAL777jsWL14MwNVXX023bt3a+Cu5MJo4VNtJXw1uHo3vu9FSseNhzV+gshi8Ay/+\neqp9aqJm0JZsNts5lz1/5JFHeOyxx5g5cyarVq1i7ty5bR9gK9I+DtV20ldZNYXW+EMfOx6MzarF\nKNXGLrnkEj755BPKy8spLi5m6dKl+Pn5nXPZ88LCQiIjIwF45513zrrOe++9B8AXX3xBQUFBG38l\nF0YTh2ob5QXWpL34ya1zvahR1iTCjB9a53pKtcCIESOYPXs2iYmJXHnllYwaNQo497Lnc+fO5aab\nbmLkyJGEhp7ZHvn3v/893333HYMGDWLx4sXExMQ45etpKV1WXbWNPUth4R3WvuKt0VQF8O9p4O4N\nP/mida6n2gVdVv3C6bLqqn1JXwWe/lZTVWuJHQ/ZybrMulJtTBOHahvpq60/9B5erXfN6LFQWwU5\n21rvmkqpJmniUI5XmA35+y9+GG59UfbaS7Y2UXY2HaWJvS215vdME4dyvIOrrefW6hg/JbAnBEVZ\ny4+oTsPHx4f8/HxNHi1gjCE/Px8fH59WuZ7O41COl74K/EKtpUZaW9RIrXF0MlFRUWRlZZGbm+vs\nUNoVHx8foqKiWuVamjiUYxljJY74yeDmgApuZJK1THtJLgSEtf71lcvx9PQ8PfNaOYc2VSnHyk2F\nkmPQq5WbqU7Rfg6l2pwmDuVY6aus5/gpjrl++DBrIqD2cyjVZjRxKMc6uBq6xUG3WMdc38sPegzU\nGodSbUgTh3Kc2ho49L3jahunRCZB9haw2Rx7H6UU4ODEISIzRCRVRNJE5MlGznuLyEL7+Q0iElfv\nfIyIlIjIrx0Zp3KQI1ugsshx/RunRAyHykIoOOjY+yilAAcmDhFxB14GrgQGAreKyMB6xe4BCowx\nfYAXgRfqnf8boAsRtVen+jccnjiGWc86g1ypNuHIGsdoIM0Yk26MqQIWANfVK3MdcGqN4Q+B6SIi\nACLyI+AgsMuBMSpHSl8FPYeCf4hj7xM2ANw8IafhPghKqdbnyMQRCWTWeZ9lP9ZoGWNMDVAIhIhI\nAPAE8KwD41OOVFUKWRtbf7Z4Yzy8rA5yrXEo1SZctXN8LvCiMabkfIVE5D4RSRaRZJ1F6mIO/2At\nQBg/pW3uFz7MShy6DIVSDufIxJENRNd5H2U/1mgZEfEAugD5wBjgTyJyCPgF8JSIPFz/BsaY14wx\nScaYpLAwnTXsUtJXW81HMePa5n7hidZmUScPt839lOrEHLnkyCagr4j0wkoQtwC31SuzBLgL+AGY\nBaww1splk04VEJG5QIkx5p8OjFW1tvRVED0GvPzb5n7hdTrIHTVnRCkFOLDGYe+zeBhYDuwBFhlj\ndonIcyIy017sDaw+jTTgMaDBkF3VDpXmw9EdbddMBdBjkDWDXPs5lHI4hy5yaIxZBiyrd+yZOq8r\ngJuauMZchwSnHOfQd4Bpm47xUzx9oPsAHVmlVBtw1c5x1Z6lrwKvQIgY0bb3DU+EI1u1g1wpB9Nl\n1VXrS18NcRPB/cJ+vPJKKkk+VEBRRTVhAd6MjQ/B18u96Q+GD4Ot70JxDgRFXNC9lVJN08ShWldB\nhrX0x5gHWvzRo4UV/OWrVD7ekk2t7UytwdfTnZ9MjONnU/vg53WeH9nwROv5yFZNHEo5kCYO1bou\ncJvYdWl5PPz+Fkora7hrXBxXDw2ne6A3GfllfJCSycsrD/DlzqO89ePRxIT4NX6RnoNB3KwO8v5X\nXeQXopQ6F00cqnWlr4KAHhDWv9kfWZV6nPv+k0JsiB+L7h9Hn+4Bp89FB/sxsW8oNydF89C7m7nh\nX2tZdP844sMCGl7Iyx9CE3RklVIOpp3jqvXYbFb/RvwUsJYca9LWzJPcNy+Fvj0C+PCB8Wcljbom\n9AnlowfHYwzc+eZGjhdXNH7B8EQdWaWUg2niUK3n+G4oy2v2arh5JZU8OD+F7oHezLtnDF38PM9b\nvk/3AN66exR5JZU8+v7Ws/pBTgtPtDrHS45fyFeglGoGTRyq9ZzeJrbpxGGM4cmPtnOitIpX54wk\n2N+rWbcYGtWV564bzA/p+by8Mq1hgVMd5Dnbmxm0UqqlNHGo1pO+EkL6QpeoJosu3Z7DN3uO8+vL\n+zEookuLbnPTyCiuTYzgHyv2s+9Y8dknew6xnrW5SimH0cShWkdNJRxaC72nNVk0v6SSuUt2kRjd\nlZ9M7NXiW4kIc68dSIC3B79dvANb3SYrny7QrZd2kCvlQJo4VOs4vB5qyqH31CaL/nl5KsUV1fzp\nxqG4uzWvE72+kABvnrpqACkZBSzdfuTsk+GJmjiUciBNHKp1HFgBbh7WjPHz2HesmEXJmcwZG0e/\nnoEXdcsbR0QxIDyIPy9PpbKm9syJ8EQ4mWEts66UanWaOFTrSF9pLaPuff5k8MIXe/H39uCRaX0u\n+pZubsJTV/Unq6CceT9knDkRPtR6Prrjou+hlGpIE4e6eKV5VtNQ/Pmbqdan5/Pt3uM8NKUP3Zo5\niqopk/qGcUlCGP9YkUZxRbV1sOepkVXaXKWUI2jiUBfv1DDcJjrGX/x6Hz2CvLl7Qlyr3v7XlydQ\nWF7NvPX2WkdAGARF6pBcpRxEE4e6eAdWgk9XiBh2ziIbD55gw8ETPDC5Nz6ezVjptgWGRnXlkoQw\n3lhzkPIqe19Hz6Fa41DKQTRxqItjjNUxHj8Z3M6dEP65Mo3QAC9uGRXjkDAentqH/NIq3t9o33M8\nPBHy9kFVqUPup1RnpolDXZy8fVB85Lz9G9syT/LdvlzunRTfvH01LsDoXsGMjgvmte/Sqaqx2WeQ\nGzi60yH3U6oz08ShLs6BFdbzeeZvvPZdOkE+HtwxNtahoTwwJZ6jRRV8sTOnzsgq7edQqrVp4lAX\nZ//XENIHusU1ejqroIwvduZw65gYArwdu4r/lITu9Ar15621h6zOcb8QXXpEKQfQxKEuXGUJHFoD\nCTPOWeSddYcQEe4aF+fwcNzchLvGxbI18yRbMk/qDHKlHEQTh7pwB1dDbRX0vbzR0yWVNSzYmMlV\nQ8KJ6OrbJiHdODKKAG8P3l53yBpZdXyvtY6WUqrVaOJQF27fl+AdBDHjGj39YXImxZU1/KSV522c\nT6CPJzclRfH59hxOdh0Itmo4vqfN7q9UZ6CJQ10YY2DfV9akP4+Gs8BrbYa31h1iRExXhsd0a9PQ\n7hoXR60xLD4SYh3Q5iqlWpUmDnVhcrZByVFIuKLR09/tyyUjv4y7J7R82fSLFRfqz5SEMF7dYcN4\nB2riUKqVaeJQF2bfckCgz2WNnn53QwahAd7MGNyzbeOyu21MLMdKqikI7K9DcpVqZZo41IXZvxyi\nkqx1oeo5crKcFXuPM3tUFJ7uzvkRm9ovjB5B3myqjLYmAdbWOCUOpToiTRyq5YqPQnYK9G28mWrB\npkwMOGx5kebwcHfj5qRolp/oYW0wlb/fabEo1dFo4lAtt2ep9Tzg2ganamptLNx0mMkJYUQH+7Vx\nYGe7OSmaXSbOeqMr5SrVajRxqJbbsxRC+kJYvwanvt17nGNFldw22nm1jVOig/0I751IJV7YjugM\ncqVaiyYO1TJlJ+DQ9zBwJkjD/cLf23CYnkE+TOvf3QnBNXTLmDh222IoTE92dihKdRgOTRwiMkNE\nUkUkTUSebOS8t4gstJ/fICJx9uOjRWSr/bFNRK53ZJyqBVKXgalttJkq80QZ3+3PZfaoaDyc1Cle\n3/QBPTjgHo933k6w2ZwdjlIdgsN+u0XEHXgZuBIYCNwqIgPrFbsHKDDG9AFeBF6wH98JJBljhgEz\ngFdFxLEr5Knm2bMUukRDeMNNm97feBgBbhkd3fZxnYOnuxsBcSPxM2XkZu5zdjhKdQiO/G/haCDN\nGJNujKkCFgDX1StzHfCO/fWHwHQREWNMmTHm1PhJH8A4ME7VXJXF1jLqA65t0ExVVWNjUXIm0/r3\nILxL26xL1VxDR00GIGXDSidHolTH4MjEEQlk1nmfZT/WaBl7oigEQgBEZIyI7AJ2AA/USSTKWfYt\ntxY1HDCzwamvdx8jr6SK28c6v1O8voiEEdTgTt7+Tdhs+n8QpS6WazREN8IYs8EYMwgYBfxWRHzq\nlxGR+0QkWUSSc3Nz2z7IzmbXxxDQE6JHNzj17oYMIrv6cknfhhMCnc7Dm5KgPkRX7Gf9wXxnR6NU\nu+fIxJEN1G3sjrIfa7SMvQ+jC3DWb7YxZg9QAgyufwNjzGvGmCRjTFJYmAv+wepIygtg/1cw+MYG\ne4sfzCtl3YF8bhsTg7tbw5FWriAgbiSD3Q+x6NSe5EqpC+bIxLEJ6CsivUTEC7gFWFKvzBLgLvvr\nWcAKY4yxf8YDQERigf7AIQfGqpqyZ6nVTDVkVoNT7288jIebcFNSlBMCax6PyOGEUMTmXbsoLKt2\ndjhKtWsOSxz2PomHgeXAHmCRMWaXiDwnIqcayd8AQkQkDXgMODVkdyKwTUS2Ah8DDxlj8hwVq2qG\nHR9AcG+IGH7W4YrqWj5IzuTyQT3oHtigNdF1RI4AYKAtjU+31a/4KqVaollDXEVkMdYf+S+MMc0e\nDG+MWQYsq3fsmTqvK4CbGvncPGBec++jHKwoBw6ugclPNBhNtXzXUQrKqrl9TKyTgmumnkPA3YtL\ngw7z5sZM7myDrWyV6qiaW+P4P+A2YL+IPC8iDdeaUB3XrsWAabSZ6t31h4kL8WNcfEjbx9USHt7Q\ncwiTfDPYnVPEzuxCZ0ekVLvVrMRhjPnGGHM7MAKrr+EbEVknIneLiKcjA1QuYMeHEJ4IoX3POpx6\ntJiNh05w25gY3Fy0U/wskUl0L9mDn4dh4abMpssrpRrV7D4OEQkBfgzcC2wB/o6VSL52SGTKNeQf\ngCObYUiDFkXe25CBl4cbs0a6zkzx84oahVSXcXffcj7Zmk1Fda2zI1KqXWpW4hCRj4E1gB9wrTFm\npjFmoTHmESDAkQEqJ9u+CBAYdMNZh0sra1i8OZurh4QT7N9wz3GXFDUSgBu6H6W4ooYvduY4OSCl\n2qfm1jj+bYwZaIz5H2NMDlgLFAIYY5IcFp1yLpsNtr4H8VOgy9mT/pduO0JxZQ13uOBM8XPq1gv8\nQoiv3ENsiB8LNmpzlVIXormJ478bOfZDawaiXNDBVVB4GEbMOeuwMYb5GzLo3zOQETHdnBPbhRCB\nyJFIdgo3J0Wz4eAJDuaVOjsqpdqd8yYOEekpIiMBXxEZLiIj7I8pWM1WqiPbPA98u0H/a846vC2r\nkJ3ZRdw+NhZpZE8OlxY1CnJTuWlwF9wEFiVrrUOplmpqHscVWB3iUcDf6hwvBp5yUEzKFZSdgL2f\nQdJPrKGsdby7PgM/L3d+NCzCScFdhMiRgKF78S6m9e/ORylZ/OqyBJfZP0Sp9uC8vy3GmHeMMVOB\nHxtjptZ5zDTGLG6jGJUzbF9oLTEy/OxmqsKyapZuP8KPhkcS6NMOR2JHWh3kZG3i5qRojhdXsipV\nF8hUqiXOW+MQkTuMMfOBOBF5rP55Y8zfGvmYau+MsZqpIkZAz7PXlvxocxYV1TZuH9OOOsXr8u0K\nof0gcyNTJ/yKsEBvFmzK5NKBPZwdmVLtRlP1c3/7cwAQ2MhDdURHNsPxXY12ir+7IYPhMV0ZFNHF\nScG1gtjxcHg9nmK4cUQUK1OPc7yowtlRKdVunLfGYYx51f78bNuEo1zC5nng4WstoV7HD+n5HMgt\n5S83JTopsFYSOwFS3oJjO5k9qg+vrD7Ah5uzeGhKH2dHplS70NwJgH8SkSAR8RSRb0UkV0TucHRw\nygmqymDnRzDoR+Bzdq3iP+sy6OrnyTVDw50UXCuJHWc9Z6yjV6g/o3sFs2hTJsbo7oBKNUdzh5Jc\nbowpAq7BWquqD/C4o4JSTrT7U6gsatApnnmijK92H+WWUTH4eLqf48PtRJco6BoDGesAuGVUNIfy\ny9hw8ISTA1OqfWhu4jjVpHU18IExRpcW7ag2/8fadyN2/FmH563PQES4c5yLL5/eXLETrMRhDFcO\nDifQ24NFuvChUs3S3MTxmYjsBUYC34pIGKC9iR1NXhocXgfD7zhr342yqhoWbDzMjEE9iejq68QA\nW1HseCjLg7z9+Hq5c93wCJbtzKGwXHcHVKopzV1W/UlgPJBkjKkGSoHrHBmYcoIt80DcYdhtZx3+\naHM2RRU13D0hzjlxOUKMvUaVsRaA2UkxVFTbWLLtiBODUqp9aMl02f7AbBG5E2t/8MsdE5Jyitoa\n2PY+JFwBgT1PH7bZDG+vPciQyC6MjG1H61I1JaQ3+HeHw9aSa4MjgxgYHsTCTYedHJhSrq+5o6rm\nAX/B2gt8lP2hq+J2JPu/gpJjDTrF16TlcSC3lLsnxLW/danOR8RqrrJ3kIsIt46OZmd2EdsyTzo5\nOKVcW3NrHEnABGPMQ8aYR+yPnzsyMNXGtsyDgB7Q9+yK5FtrDxIa4M3V7X0IbmPiJkJhJpxIB+D6\nEVEEeHvwzrpDzo1LKRfX3MSxE+jZZCnVPhUfhX3LIfFWcD8zJzT1aDGrUnOZMzYWb492PgS3MfFT\nrecDKwEI8PZg1sgoPtueQ15JpRMDU8q1NTdxhAK7RWS5iCw59XBkYKoNbX0PTG2DZqpXvzuAr6d7\nxxmCW19Ib+gSAwdWnD40Z1wsVbU23t+gfR1KnUtTy6qfMteRQSgnMga2zLfmNYSeWXLjyMlylmw9\nwh1jY+nWXraGbSkR6D0Fdn1iDQ5w96B3WACT+oYyf0MGD0zpjacut65UA80djrsaa8a4p/31JmCz\nA+NSbSVjHZw40KC28eb3BzHAvZN6OSeuttJ7mjVT/siZH+cfj4/jWFEly3cddWJgSrmu5o6q+inw\nIfCq/VAk8ImjglJtaMs88A6CgWem5RSWVfP+xsNcOzScqG4dfKPHXpMBOau5akq/7sQE+2knuVLn\n0Nx6+M+ACUARgDFmP9DdUUGpNlJRaDXTDL4RvM4kiPkbMiitquW+S3o7Mbg24hcMEcMh7dvTh9zd\nrKVVNh0qYGe2rq6jVH3NTRyVxpiqU29ExAPQpUTbu52Loab8rGaqiupa3lp7iMkJYQyMCHJicG2o\n72WQnQyleacP3ZQUjZ+XO6+vSXdiYEq5puYmjtUi8hTgKyKXAR8ASx0XlmoTW+ZD94EQOeL0oUXJ\nmeSVVPLA5E5Q2zil35VgbNaQZLsuvp7cOjqGpdtzyCooc2JwSrme5iaOJ4FcYAdwP7AMeNpRQak2\ncHyv9b/sOgsaVtbU8q9VBxgdF8zY+GAnB9iGwodBUCSkLjvr8E8m9kKAN74/6Jy4lHJRzR1VZcPq\nDH/IGDPLGPNvo7vetG9b54ObBwydffrQB8lZ5BRW8PPpfTvW8iJNEbFqHQdWQHX56cORXX2ZmRjB\nwk2ZnCyrOs8FlOpczps4xDJXRPKAVCDVvvvfM20TnnKI2mrYtgASZoB/KABVNTb+teoAI2K6MqFP\niJMDdIJ+V0J1GaSvPuvwfZPjKauqZf76DCcFppTraarG8Uus0VSjjDHBxphgYAwwQUR+2dTFRWSG\niKSKSJqIPNnIeW8RWWg/v0FE4uzHLxORFBHZYX+e1uKvTJ3b/q+gNPesTvHFm7PIPlne+Wobp8RN\nAq9ASP38rMP9ewYxpV8Yb687REV1rZOCU8q1NJU45gC3GmNON/IaY9KBO4A7z/dBEXEHXgauBAYC\nt4rIwHrF7gEKjDF9gBeBF+zH84BrjTFDgLuAec37clSzbJlvLWjY51IAqmttvLwqjcSoLkxOCHNy\ncE7i4Q39ZsCepVBzdrPU/Zf0Jq+kig9TspwUnFKupanE4WmMyat/0BiTC3g28dnRQJoxJt0+lHcB\nDTd/ug54x/76Q2C6iIgxZosx5tSOOruwRnN5N3E/1RzFxxosaPjxlmwyT5Tz6KWdtLZxyuBZUF4A\n6SvPOjyTXSe0AAAgAElEQVQ2PpjE6K68svoA1bU2JwWnlOtoKnGcr0ewqd7CSKDuJs5Z9mONljHG\n1ACFQP0G9huBzcYYXa60NWxfYF/Q8A7AGkn192/2MzSqC1P7dfI5nb2ngW832PHBWYdFhF9M70tW\nQTmLN2utQ6mmEkeiiBQ18igGhjg6OBEZhNV8df85zt8nIskikpybm+vocNo/Y2DLuxA9BkL7AvD+\nhsNknyzn8Sv6de7aBoCHFwz8EexdBlWlZ52a0i+MxKgu/GNFmtY6VKd33sRhjHE3xgQ18gg0xjTV\nVJUNRNd5H2U/1mgZ+2z0LkC+/X0U8DFwpzHmwDnie80Yk2SMSQoL66Rt8y2RlQx5qadrG6WVNfxz\nZRrj4kOY2CfUycG5iCGzoLoUUr8467CI8ItLE7TWoRQt23O8pTYBfUWkl4h4AbcA9ffwWILV+Q3W\nPuYrjDFGRLoCnwNPGmPWOjDGzmXLPPD0g0HXA9bufnklVTw+Q2sbp8WMhy7R1gCCeqb0CyMxuqvW\nOlSn57DEYe+zeBhYDuwBFhljdonIcyIy017sDSBERNKAx7BmqGP/XB/gGRHZan908gb4i1RVaq1N\nNeh68A7kZFkVr36XzqUDejAippuzo3Mdbm4w4k6rg/zE2etUWbUOq69jUXLmOS6gVMfn0F1qjDHL\njDEJxpjexpg/2I89Y4xZYn9dYYy5yRjTxxgz2j7UF2PMfxtj/I0xw+o8jjsy1g5v9xKoKoZhtwPw\nyup0Sipr+PUVCU4OzAUNnwPiDinvNDg1JSGMUXHdeOmb/ZRV1TghOKWcT7c36yy2zIfgeIgdz/Gi\nCt5ed5DrEiPo37OTrIDbEkHh1kzyLfMbzOkQEZ68sj+5xZW8vkbXsFKdkyaOzuBEOmR8b9U2RHjp\n2/3U1Bp+eZnWNs5p5N1Qlge7P214KjaYKwb14NXVB8gv0VHiqvPRxNEZbH0PxA0Sb2XfsWIWbDzM\nHWNjiQ3xd3Zkrqv3NAhNgLV/t4Yx1/ObGf2pqLHxjxVpTghOKefSxNHR2WqtxNF7OnSJ5I/L9uDv\n7cHPp/d1dmSuzc0NJjwKx3bAgW8bnO4dFsDsUdHMX59B2vESJwSolPNo4ujo0ldCUTYMv501+3NZ\nlZrLI9P6EOzv5ezIXN+QmyEwAr5/qdHTj12WgK+XO88u3YXuMqA6E00cHd2W+eDbjdq+V/KHz/cQ\nHezLXePjnB1V++DhBeN+BofWQMYPDU6HBnjzy0sTWLM/j693H3NCgEo5hyaOjqzsBOz9HIbO5sNt\nx9l7tJgnZvTH28Pd2ZG1H0l3Q0BP+PqZRvs65oyLJaFHAP/1+W5ddl11Gpo4OrIdH0BtFeWDbuUv\nX+1jRExXrh4S7uyo2hcvf5j6W8jaCHs/a3Da092NudcOIvNEOa+uTm/kAkp1PJo4OrIt86DnUP6V\n6kducSW/u3qgLi1yIYbdAaH94Ju5DeZ1AIzvE8o1Q8N5eWWadpSrTkETR0eVsw2O7qBwwC289t0B\nrh4azshYXVrkgrh7wBV/gPw0WNt4R/nvrx2Er5c7v128HZtNO8pVx6aJo6PaMh/cvflD5hBsBp6c\n0d/ZEbVvfS+DQTfAd3+G3H0NTocFevP01QPYdKiAdzcedkKASrUdTRwdUXUFbF9EXvTlLNpZzAOT\nexMd7OfsqNq/K18AT19Y8og1P6aeWSOjmNgnlBe+2MuRk+VOCFCptqGJoyPa+xlUnOSvuaOJ7OrL\ng5N7OzuijiGgO1z5Z8hcD6v/1OC0iPDH64dgM4Zff7BNm6xUh6WJoyPaMp8SnwgW5Pfi6asH4Oul\nw29bTeJsSLwNVr8AB79rcDomxI9nrhnIugP5vPG9LoKoOiZNHB3NycOY9FX8p2ICE/p0Z8bgns6O\nqOO56s/W1rsf/BhONEwOs0dFc/nAHvx5eSq7jxS1fXxKOZgmjo5m63sYYEHVJObO1OG3DuEdALcu\nAGODd2+C8oKzTosIz984lC5+njy6YIvu26E6HE0cHYnNRlXyPNbZBnH5+FH06R7o7Ig6rpDeMPtd\nKDhkJY+Ks2sWwf5e/O3mRNJyS/jdxzt1LSvVoWji6EBq01fjVZLFMo/LePRSXf3W4eImwE1vQfZm\nK3lUFp91elLfMH55aQIfb8lm/voMJwWpVOvTxNGBHP7mVQqNH2OumkOgj6ezw+kcBlwLs96ErE3w\n1lVQlHPW6Yen9mFqvzCe+2w3mw8XnOMiSrUvmjg6iOPHjhCR8w0bAy9l5sh4Z4fTuQz6Edy2EPIP\nwOuXwrHdp0+5uQkvzh5Gzy4+3D8vhWyd36E6AE0cHcSaRS/hLdUMmvkL7RB3hr6Xwd3LwFYNb1wG\nOz48faqrnxdv3DWKiupafvLWJooqqp0YqFIXTxNHB/DNrhxG5H7CkaBhRCSMdHY4nVfEMPjpSugx\nCD66Bz77JVSVAZDQI5BX7hjJgdwSfvbuZqprbU4OVqkLp4mjnSutrGHpJ+/Ry+0Y3ac96OxwVJdI\n+PHn1razyW/CKxPg0FoAJvQJ5Y83DGHN/jx+tWgbtTqzXLVTmjjaub99vY8ZFV9Q7R2Mx+DrnR2O\nAnD3hMueg7uWWnM93r4KPv8VVBRyc1I0v5nRjyXbjvDkR7qSrmqfNHG0Y8mHTvD52hQud9+MZ9Ic\n8PB2dkiqrl6XwIPrYOzPYNMb8L8jIPktHrqkFz+f3pcPUrL4/ZJdmjxUu6OJo50qq6rh1x9s417/\n73GnFkb+2NkhqcZ4+cOMP8J9qyA0AT77Bbx6Cb+MP8L9l8Qzb30Gv/5wm/Z5qHZFE0c79cIXe8nK\nL2KO1yroPR2CdQiuS4sYZo26uukdqCxC5l3Hk8cf58+jyli8OZsH5qXonuWq3dDE0Q6tS8vjnR8y\neL7/QbzLjsLonzo7JNUcItacj59tghnPI7mp3LTjXtZF/oOCfd9zy2vrOVZU4ewolWqSdJQ1dJKS\nkkxycrKzw3C44opqZry0Bi934dugZ3GrKrb+ELnp/wHanaoySH4Dvn8RyvJZY4bxlsfN/OzOWxkZ\nG+zs6FQnISIpxpiklnxG/9q0I8YYnly8g6NFFfxrcjVuOVtg7IOaNNorLz8Y/wg8uh2m/55xvod5\ns/YpKt64ls+WLNJOc+Wy9C9OO/L+xkw+357DY5cl0P/gf8C3GyTe6uyw1MXyDoBJj+Hx2E7KpzzL\nYM9srtn8U1Kfn0Te9q+gg7QKqI7DoYlDRGaISKqIpInIk42c9xaRhfbzG0Qkzn48RERWikiJiPzT\nkTG2F3uPFvHs0l1M6hvKg0PcYM9nMPJua9SO6hi8/PGd8guCntjNloFPElyZRejimzj20iXUpC7X\nBKJchsMSh4i4Ay8DVwIDgVtFZGC9YvcABcaYPsCLwAv24xXA/wN+7aj42pPC8moeenczgT6e/O3m\nYbit/ye4eWineAclXn4Mv/m3VD60mXeCf071ySN4vH8zRf+YhNn7uSYQ5XSOrHGMBtKMMenGmCpg\nAXBdvTLXAe/YX38ITBcRMcaUGmO+x0ognVqtzfDz97dwOL+Mf942nDBbHmyZB8PvgKAIZ4enHCim\nRzB3PvIcqbNW8YLXQxTkHUMW3EbJ/47D7PoEbDr3QzmHIxNHJJBZ532W/VijZYwxNUAhEOLAmNqd\n/1m2h9X7cnnuusGMjQ+BtX+3lrGY+Etnh6bagIgwfUg0v/jNf/P9jC95zuMRjuWfRD64i5N/S6Ji\nyyKw6fwP1bbadee4iNwnIskikpybm+vscFrd+xsP8/r3B/nx+DhuGxMDxUch5W1IvAW6xTo7PNWG\nvD3cuX18b5548llSrvmCF/wf53hRBT6f/pTcF4Zx4OvXsdXocu2qbTgycWQD0XXeR9mPNVpGRDyA\nLkB+c29gjHnNGJNkjEkKCwu7yHBdy+fbc3jq4x1M6RfG01cPsA6u/V+w1cCkXzk3OOU03h7u3Dy6\nF7/59e8o/sl3vBUxl/wK6L32V2T+91AWzHuVdftzqarRZizlOB4OvPYmoK+I9MJKELcAt9UrswS4\nC/gBmAWsMG0wI/FkWRWbDxdw4HgpR4sqqKm14eYm9AzyITrYj2HRXQnv4uO0DZG+3XOMXyzcQlJs\nN/51+0g83N2gMMuaLDb0Zl1eRCEijIwLZeR9v6S04mdsXLmA6M1/5pYDv2Hdvre53e0uwhJGMa1/\nD6b0CyM0QBfAVK3HoTPHReQq4CXAHXjTGPMHEXkOSDbGLBERH2AeMBw4AdxijEm3f/YQEAR4ASeB\ny40xuxu5DdD0zPGK6lo+2ZLN4s3ZJGec4NTcKj8vd7w83KiusVFadaatOLKrL5cN7MEVg3oyKq6b\n9ce7DXy6NZtfLdrGgPAg5t87hi6+9r3DP34Qdn4IDydrM5VqXG01lRveRFb9Dx5VJ1nmNoX/KruR\n4xJMYlRXLh3QnekDetC/Z6DuEqlOu5CZ4x1+yZGqGhtvrzvIK6vTOVFaRUKPAK4Y1JOJfUJJ6BFI\nN3+v02WLK6o5mFfK1syTrNmfx3f7cqmssdEzyIdbRkcze1Q04V18HRK/MYZ/r0nnf77Yy+i4YF6/\nK4lAH3vSOLoDXpkE4x+Gy//bIfdXHUj5SVjzV8yGVzDizoaIO/lb6eVsyq4ErP8UTbcnkbHxwXh7\nuDs5YOVMmjjqJY51B/L43cc7OZhXyiUJYTw4uTdj44Ob/b+tsqoaVu7NZVFyJt/tz0WA6QN6MGds\nLBP7hOLm1jr/ayuprOGJj7bz+fYcrhzckxdnD8PH0/7LbAz8ZybkbIdHt1qzxZVqjoJD8PUzsPtT\n6BJN4cSn+cI2jm/25vJ9Wi4V1TYCvD2YMbgnPxoWybjeIbi30s+0aj80cdgTR2VNLX/9ah//XpNO\nXIg/z1w7kKn9ul/U9TNPlPHexsMs2pRJfmkVcSF+3DE2llkjo+jq59X0Bc5hxd5j/L9PdpFTWM7j\nV/TngcnxZye27R/A4nvhqr/ohD91YQ59D188Ccd2QMw4mPE8FWFD+OFAPst25PDlzqMUV9bQPdCb\n64ZFcOvoGOLDApwdtWojmjiSk8krqeT+eSmkZBRw+5gYfnf1APy8Wm8MQGVNLV/uPMr89RlsOlSA\nt4cb1yZG8KNhkYyJD8azGX0hxhg2HDzByyvTWLM/j77dA3j+xiENV0QtPwn/HAVdouDeb8BNmxTU\nBbLVWhNHv/0vKMu3JpBOfwYCulNRXcuKvcf5eEs2K/cep8ZmmNQ3lDljY5k+oIfWQjq4Tp843v1s\nJfe8s4nc4kr+enMi1wx17MzqPTlFzF+fwSdbsimtqqWLrydT+oUxMrYbgyK6ENHVh25+XlTX2jhZ\nVs2+Y8UkZxSwfOdR0vNKCQ3w4qeT4rl7Qi+8PBpJOEt+bv2y/3SltRGQUherohBW/wk2vAIevjD5\ncRjzwOlth48XVbBgUybvbTjM0aIKIrv6ct8l8cweFX2m+VR1KJ06cQwYMsy43/ACvl7uvH5nEonR\nXdvs3hXVtXy3L5cvdx3lu3155JVUnrOsu5swLj6Eq4aEc8OIyHP/Mu5dBgtuhQmPwmXPOShy1Wnl\n7Yflv4P9y63h3Vf8ERJmWJtNATW1Nr7Zc4zX1xwkOaOAEH8vfjKxF3PGxRJ0atCG6hA6deLwiehr\nJvzq38y7ZwwRXR0z8qk5jDFknywn9WgxR4sqKCyvxsvdjQBvD/p0DyChZ2DTv3jFx+Bf4yEoHO5d\nAR4X3oei1HmlfQNfPgV5qRA/FWb8D3QfcFaRjfZm1dX7cgn09uCu8XH89JL4M0PFVbvWqRNHl5j+\n5sDube1/olNNFfznOjiyGe5b1eCXWKlWV1sNm96AVX+EyhIYdQ9M+S34nd3ntjO7kP9blcayHUcJ\n8vHggSm9+fH4uFbtQ1Rtr1MnjuEjRpotm1OcHcbF++wxa4b4jW/AkFnOjkZ1JqX5VvJIfhO8g2Dq\n7yDpJ+B+dmLYdaSQv361jxV7jxMa4M3DU3tz65gYnQ/STnXqxNEh9hxf+3dr3L32ayhnOrYLvvwt\nHFwNYQNgxh+h97QGxVIyTvDn5amsTz9BZFdfHp3elxtGRLbZKguqdWjiaM+JY9Mb8PljMOgGuPF1\nHXqrnMsYSF0Gy5+yJhL2mgyTfwNxE+sVM6xNy+fPy/eyLauQ+FB/fnFZAtcMCW+1CbLKsTRxtMfE\nYYxV0/jm99aoltnzwV07HZWLqKmEjf+2fkZLj0PsBLjkcYifcnoEFlgJ5Ovdx/jrV/tIPVZM/56B\nPHZZApcN7KHrYrk4TRztLXHUVFpNAslvWDWN6185PZ5eKZdSXQ6b/wPfvwTFRyBiOIx5EAZdf9ao\nP5vNsHT7EV76Zj8H80pJjO7Kry9PYGKfUE0gLkoTR3tKHPkH4MO7IWcbjP85XPosuGnbsHJxNZWw\nZT6s/xfk74eAHpB0DyTdDQFnlvWpqbXx0eYs/vfbNLJPljO6VzCPX9GPUXHB57m4cgZNHO0hcVSX\nW/9r+/5F8PKD616G/lc7OyqlWsZmg/QVsP4VSPsa3Dyg7+XW7pQJM07XnCtralmwMZN/rEgjr6SS\ncfEhPDS1t9ZAXIgmDldOHBVFVpPUD/9ntRUPnmUtkR4U7uzIlLo4efutZqzti6DkKPh0hcE3wsCZ\nVp+IuyflVbXMX5/Bv9ekc7y4kiGRXXhoSm8uH9RT18JyMk0crpY4amsgYy1sXwi7l0BVsTU795LH\nIW6Cs6NTqnXZaiF9JWxbAHs+g5py8Oli1UT6XQW9p1LpGcTHm7N5ZfUBDuWXER/mz08nxfOjYZH4\neulIQmfQxOHsxFFbA7l7IXMDHFgBB9dAZSF4BcLA66wZuZEjnBujUm2hqhQOrLSG9O770lqRF4Hw\nodDrEmpjJ/FNSTz/WHeUndlFBPl4MHtUNHPGxhET4ufs6DsVTRxtlTiqK+BkBpxItx55++Hodmvi\nVE2FVaZLtDVksc906HuF1Z+hVGdkq4XMjdaEwoNrIGsj1FYBggnrR17QYL4tjuL97DD22KK5pH8E\nc8bFMakVN0tT56aJozUTR3UFFBy0Rj+dShCnHoVZQJ3vm08X6DkUwhMhfJhVqwiOP2ucu1LKrqrM\nSh6ZGyE7BbKSoSwPgBrxItXEsLUmliyfBKIHjWXypMlEhurOl46iieNCEkdNJRzfY+3rfXS71dSU\nnw5F2ZyVHHyDrWQQ0tt6rvvw7aZJQqkLZQwUZlpJJDsF25Ft1GRvxau6CIBq484Rr1gkYhjh/cfg\nGTkceg4GL38nB94xXEji6HzLWlaXW30Qh763qs3ZKWCrts55BUBYf6vjOri3PUn0OpMclFKtTwS6\nxliPQdfjBngZAyczyNu/kQPb12E7spW+h77BM2MxAAaB0L5IeKK9pp9o1fp9224fns6sc9Q4yk/C\nvuWwZwmkfWuN9hB3a1e92AnWLNjwROjWSyfhKeWCam2Gtftz+XL9FvLTNtHfls4Y30yGuGcQWHns\nTMFucWcSyammY/9Qp8XdHmhTVd3EYbPBoe+s8eV7PoPaSggMh/7XWMMDY8aCT5DzAlZKXZDC8mqW\n7chh8eYsNh0qIESKmBVxgmvCjtOfg3ge2271T54SFGklkcgREDUaIkeCd4DzvgAXo4kjOdmqXaS8\nBclvWSOffLrA0Nkw5GbrB0ZrFEp1GIfzy/h4SzaLt2SRkV+Gr6c7VwzqwU2Dgxjrl4370e3Wsj5H\ntlhLpACIG3QfCFGjIHq09RzSp9P2U3buxDE80SQ/fw2kvA1VJRA3CUbcBQOuAU/nbSWrlHI8Ywyb\nD59k8eYslm47QlFFDd0DvfnR8EhuGBFJ/55BUF4AWSnWiK6sTdbrykLrAr7drARy6hE5stO0SHTu\nxBHpYZLvC4LBN8D4R6yqqVKq06msqWXFnuN8tDmbVanHqbEZBoYHccOISGYOi6B7oI9V0Gaz9lrP\n2mQNDc5KtkZVYgCxtm2OGgU9h1ivuw9ssJ1uR9C5E0ffcJO8aYM1MkMppYD8kko+2271h2zLKsTd\nTZjUN5Trh0dy6YAe+HvXG1hafvLM3JIsezKpOHnmfECPM0kkNOHMwz+03TZ1de7E4QpLjiilXFba\n8RI+3pLFx5uzOVJYgY+nG9P6d+eaoRFM7de98bWyjIHiHDi+25rvdXyP9To3FarLzpTz6VonkfQ9\n87pbXIM9212NJg5NHEqpJthshuSMAj7bfoRlO3LIK6nCz8ud6QN6cM3QcCYnhOHj2cSCizYbFGVB\n3j5ryaG6zyV1hge7eVrzwOomk9AECO1jDdxxAZo4NHEopVqg1mbYkJ7P0u05fLkzh4Kyanw93ZnQ\nJ4Sp/bsztV93Irq2cHBN+UnIT7MnkzoJ5UQ62GrOlAvoWS+h9LX6U+psiNUWNHFo4lBKXaDqWhs/\nHMjnmz3HWLH3OFkF5QD07xnIlH7dGRMfzMjYbgT5eF7YDWqroeBQw4SStw8qCs+UC+hhJZCeQ888\nB8c7bCqByyUOEZkB/B1wB143xjxf77w38B9gJJAPzDbGHLKf+y1wD1AL/NwYs/x899LEoZRqLcYY\n0o6XsGLvcVamHif5UAE1NoObwIDwIEbFBTM8pisDw4PoFeqPh/tF/FE3BkrzrBFdx3ZCznZr7bzc\nPWdqKJ7+1vpcdRNK94Hg6XPRX6tLJQ4RcQf2AZcBWcAm4FZjzO46ZR4ChhpjHhCRW4DrjTGzRWQg\n8D4wGogAvgESjDG157qfJg6llKOUVdWw9fBJNhw8waZDJ9h8uICKahsA3h5uJPQIZEB4ILEh/kQH\n+xHdzZfoYD9C/L0ufIvcmkormRzdcSaZHN1hbQgH1rJJYf2s9fWCe1lLJp1aWy+gZ7NrKK62yOFo\nIM0Ykw4gIguA64DddcpcB8y1v/4Q+KdY3+XrgAXGmErgoIik2a/3gwPjVUqpRvl5eTC+Tyjj+1jr\nXlXX2kg7XsKenCL7o5gVe3PJK8k663M+nm6E+HvTzd+TYH9vgv08CfTxxNfLHR9Pd3w93fH1dMPL\nw/0co3m7UWObRHXQBKr8bVTF1OBXlkVw0V5CSvbRo3QfYfvW07X6E9yxnf5UFZ6cdA+mQLpxQrqR\nL13JoysFJpAi40ORzZcSfCmVC9snyJGJIxLIrPM+CxhzrjLGmBoRKQRC7MfX1/tspONCVUqp5vN0\nd2NAeBADws+eXV5aWUNWQTmZJ8rILCjjyMlyTpRWc6K0khOlVaTnllBaWUN5de3pGktLiYCXezxe\nHn3w9rgGT3c3fP1sRLrlE8MxosxRws1xQswJutkKiLblMLhmN4G2wkav9+4FxODaA4ybICL3AfcB\nxMToxD+llHP5e3vQr2cg/XoGNlnWZjNU1door6qlsqbxJGIwuLsJXu5ueHm44eXuduH9KbXV1oiv\nyiKoLD7zePbqFl/KkYkjG4iu8z7KfqyxMlki4gF0weokb85nMca8BrwGVh9Hq0WulFIO5uYm+Li5\nNz1npLW4e0JAmPW4SI5cKnYT0FdEeomIF3ALsKRemSXAXfbXs4AVxuqtXwLcIiLeItIL6AtsdGCs\nSimlmslhNQ57n8XDwHKs4bhvGmN2ichzQLIxZgnwBjDP3vl9Aiu5YC+3CKsjvQb42flGVCmllGo7\nOgFQKaU6sQsZjqu7GimllGoRTRxKKaVaRBOHUkqpFtHEoZRSqkU0cSillGqRDjOqSkSKgVRnx9EM\noUCes4NoBo2zdWmcrac9xAjtJ85+xpimp7rX0a6XHKkntaVDypxBRJI1ztajcbau9hBne4gR2lec\nLf2MNlUppZRqEU0cSimlWqQjJY7XnB1AM2mcrUvjbF3tIc72ECN04Dg7TOe4UkqpttGRahxKKaXa\nQIdIHCIyQ0RSRSRNRJ50djyniMibInJcRHbWORYsIl+LyH77czcnxxgtIitFZLeI7BKRR100Th8R\n2Sgi2+xxPms/3ktENtj/7Rfal/B3OhFxF5EtIvKZ/b3LxSkih0Rkh4hsPTWyxtX+3e0xdRWRD0Vk\nr4jsEZFxrhaniPSzfx9PPYpE5BeuFqc91l/af4d2isj79t+tFv18tvvEISLuwMvAlcBA4FYRGejc\nqE57G5hR79iTwLfGmL7At/b3zlQD/MoYMxAYC/zM/v1ztTgrgWnGmERgGDBDRMYCLwAvGmP6AAXA\nPU6Msa5HgT113rtqnFONMcPqDBt1tX93gL8DXxpj+gOJWN9Xl4rTGJNq/z4OA0YCZcDHuFicIhIJ\n/BxIMsYMxtry4hZa+vNpjGnXD2AcsLzO+98Cv3V2XHXiiQN21nmfCoTbX4djzT9xepx14vsUuMyV\n4wT8gM1Ye9jnAR6N/Sw4Mb4orD8S04DPAHHROA8BofWOudS/O9auoAex98e6apz1YrscWOuKcQKR\nQCYQjDWP7zPgipb+fLb7GgdnvhGnZNmPuaoexpgc++ujQA9nBlOXiMQBw4ENuGCc9uafrcBx4Gvg\nAHDSGFNjL+Iq//YvAb8BTm0kHYJrxmmAr0QkRUTusx9ztX/3XkAu8Ja96e91EfHH9eKs6xbgfftr\nl4rTGJMN/AU4DOQAhUAKLfz57AiJo90yVnp3iWFtIhIAfAT8whhTVPecq8RpjKk1VlNAFDAa6O/k\nkBoQkWuA48aYFGfH0gwTjTEjsJp5fyYil9Q96SL/7h7ACOBfxpjhQCn1mntcJE4A7H0DM4EP6p9z\nhTjtfSzXYSXkCMCfhs3pTeoIiSMbiK7zPsp+zFUdE5FwAPvzcSfHg4h4YiWNd40xi+2HXS7OU4wx\nJ4GVWFXqriJyaukcV/i3nwDMFJFD8P/bu5+WKqIwjuPfZ5OkRBa0axFBuBNX4aJFUJtctwkXLnoV\nIgi+AcHX0KIWIiIuq31/SAtTMSEwF2r0Clz8XDxnaFbCgWgO8vvAwMzcu/hxzxmemefcy+UN2a5a\nob2c3d0nks7IfvxD2hv3Y+BY0odyvEoWktZydp4BXySdluPWcj4Ffkr6LekcWCPnbNX8vAqF4xPw\noN1aaU4AAAElSURBVHwr4Br5mLgxcKbLbABzZX+OXFMYTEQE+d/ve5KWey+1lvNORIyX/evkOswe\nWUCel7cNnlPSvKS7ku6Rc/G9pFkayxkRYxFxo9sn+/I7NDbukk6AXxExUU49AXZpLGfPC/62qaC9\nnEfAdESMlmu/+zzr5ufQC0n/aMFnBjgge94LQ+fp5XpN9hHPyTunl2S/+x3wA3gL3B444yPy8fkb\nsF22mQZzTgJbJecOsFjO3wc+Aodke2Bk6HHvZX4MbLaYs+T5Wrbv3XXT2riXTFPA5zL268CtRnOO\nAX+Am71zLeZcAvbLdfQKGKmdn/7luJmZVbkKrSozM/uPXDjMzKyKC4eZmVVx4TAzsyouHGZmVsWF\nw8zMqrhwmJlZFRcOMzOrcgG45npSWvJftAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11cfe3438>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 限定范围\n", "df.plot.kde(xlim=(0,80))" ] }, { "cell_type": "code", "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11d8a14e0>" ] }, "execution_count": 96, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAERCAYAAAB1k2wJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF8JJREFUeJzt3X+0lmW95/H3V6EILUDcsogfbWbSSjPItoVpjQfK/NGA\nnhE3NiHLRYeWWYczTo5MS5e0Vq2VTmuaas3YYfIUzkqBzBIb+kGW5VR62iBq/lqSP3ITAqJx1ETh\n+J0/9gVuCdjPZu/Ng9d+v9ba67nu677u5/neG9aHm+u5nvuJzESSVK9Dml2AJGlgGfSSVDmDXpIq\nZ9BLUuUMekmqnEEvSZUz6CWpcga9JFXOoJekyg1pdgEARx55ZLa2tja7DEl6TVm9evVTmdnS07iD\nIuhbW1vp6OhodhmS9JoSEY83Ms6pG0mqnEEvSZUz6CWpcg3N0UfEfwI+ASRwL3AhMBZYCowGVgNz\nMvOliHg9cB3wHmAL0J6Zj/W2sO3bt9PZ2cm2bdt6e+igNmzYMMaPH8/QoUObXYqkg0SPQR8R44C/\nB47NzBciYjkwGzgT+EpmLo2IbwDzgGvK4zOZ+daImA1cBbT3trDOzk7e+MY30traSkT09vBBKTPZ\nsmULnZ2dTJo0qdnlSDpINDp1MwR4Q0QMAYYDG4BpwI1l/xLg7NKeWbYp+6fHfiT1tm3bGD16tCHf\nCxHB6NGj/V+QpFfpMegzcz3wZeCPdAX8Vrqmav6cmTvKsE5gXGmPA54ox+4o40fv/rwRMT8iOiKi\nY/PmzXt8bUO+9/ydSdpdj0EfEaPoukqfBLwZOAw4va8vnJmLM7MtM9taWnpc7y9J2k+NvBn7IeDR\nzNwMEBE3AScDIyNiSLlqHw+sL+PXAxOAzjLVM4KuN2X7pHXh/+3rU7zKY186q9fHLFq0iMMPP5zP\nfvazfXrtnR8QO/LII/v0PJLUiEaC/o/A1IgYDrwATAc6gF8A59K18mYucHMZv6Js/7bs/3n6DeTS\nwFo0otkV1GXR1mZX0K8amaO/k643VdfQtbTyEGAxcBlwSUSso2sO/tpyyLXA6NJ/CbBwAOo+YL74\nxS9yzDHHcMopp/DQQw8B8Ic//IHTTz+d97znPXzgAx/gwQcfBOCWW27hfe97H+9+97v50Ic+xMaN\nGwHYsmULp512Gscddxyf+MQn8N89SQdSQ6tuMvPKzHx7Zr4zM+dk5ouZ+Uhmvjcz35qZszLzxTJ2\nW9l+a9n/yMCewsBZvXo1S5cuZe3ataxcuZLf/e53AMyfP5+vf/3rrF69mi9/+ct86lOfAuCUU07h\njjvu4K677mL27NlcffXVAHz+85/nlFNO4b777uOcc87hj3/8Y9POSdLgc1Dc1Oxgdfvtt3POOecw\nfPhwAGbMmMG2bdv4zW9+w6xZs3aNe/HFF4Gutf/t7e1s2LCBl156adda9l/96lfcdNNNAJx11lmM\nGjXqAJ+JpMHMoO+ll19+mZEjR7J27dq/2veZz3yGSy65hBkzZnDbbbexaNGiA1+gJO3Ge93swwc/\n+EF+8IMf8MILL/Dss89yyy23MHz4cCZNmsR3v/tdoOvTqHfffTcAW7duZdy4ro8TLFmy5FXPc/31\n1wPwox/9iGeeeeYAn4mkwew1c0W/P8sh++qEE06gvb2dyZMnc9RRR3HiiScC8J3vfIeLLrqIL3zh\nC2zfvp3Zs2czefJkFi1axKxZsxg1ahTTpk3j0UcfBeDKK6/k/PPP57jjjuP9738/EydOPODnImnw\nioNhBUhbW1vu/sUjDzzwAO94xzuaVNFrm7+7Qcjllf3rNbK8MiJWZ2ZbT+OcupGkyhn0klQ5g16S\nKmfQS1LlDHpJqpxBL0mVe82so+/35WNNWj61YsUK7r//fhYu7Pu93g4//HCee+65fqhKUs1eO0H/\nGrJjxw6GDNnzr3bGjBnMmDHjAFckaTBz6mYfnn/+ec466ywmT57MO9/5TpYtW0ZraytPPfUUAB0d\nHZx66qlA15eSzJkzh5NPPpk5c+YwdepU7rvvvl3Pdeqpp9LR0cG3v/1tPv3pT7N161be8pa38PLL\nL+96rQkTJrB9+/a93gb50Ucf5aSTTuL444/n8ssvP7C/DEmvWQb9Pvz4xz/mzW9+M3fffTe///3v\nOf30fX+D4v3338/PfvYzbrjhBtrb21m+fDkAGzZsYMOGDbS1vfIBthEjRjBlyhR++ctfAvDDH/6Q\nj3zkIwwdOnSvt0FesGABF110Effeey9jx44doLOWVBuDfh+OP/54Vq1axWWXXcbtt9/OiBH7fp9g\nxowZvOENbwDgvPPO48YbbwRg+fLlnHvuuX81vr29nWXLlgGwdOlS2tvbee6553bdBnnKlCl88pOf\nZMOGDQD8+te/5vzzzwdgzpw5/XaekurmHP0+HHPMMaxZs4aVK1dy+eWXM336dIYMGbJrumXbtm2v\nGn/YYYftao8bN47Ro0dzzz33sGzZMr7xjW/81fPPmDGDz33uczz99NOsXr2aadOm8fzzz+/1NsgA\nEdGPZyhpMOjxij4i3hYRa7v9/EtE/ENEHBERqyLi4fI4qoyPiPhaRKyLiHsi4oSBP42B8ac//Ynh\nw4fz8Y9/nEsvvZQ1a9bQ2trK6tWrAfje9763z+Pb29u5+uqr2bp1K+9617v+av/hhx/OiSeeyIIF\nC/joRz/KoYceypve9Ka93gb55JNPZunSpUDXHTQlqRE9XtFn5kPAFICIOBRYD3yfru+CvTUzvxQR\nC8v2ZcAZwNHl533ANeWxb5qwHPLee+/l0ksv5ZBDDmHo0KFcc801vPDCC8ybN48rrrhi1xuxe3Pu\nueeyYMECrrjiir2OaW9vZ9asWdx22227+vZ2G+SvfvWrfOxjH+Oqq65i5syZ/XSWkmrXq9sUR8Rp\nwJWZeXJEPAScmpkbImIscFtmvi0i/rG0byjH7Bq3t+f1NsX9y9/dIORtivvXIL9N8WzghtIe0y28\nnwTGlPY44Ilux3SWPklSEzQc9BHxOmAG8N3d92XXfwt69Q0mETE/IjoiomPz5s29OVSS1Au9uaI/\nA1iTmRvL9sYyZUN53FT61wMTuh03vvS9SmYuzsy2zGxraWnZ4wseDN9+9Vrj70zS7noT9OfzyrQN\nwApgbmnPBW7u1n9BWX0zFdi6r/n5vRk2bBhbtmwxuHohM9myZQvDhg1rdimSDiINraOPiMOADwOf\n7Nb9JWB5RMwDHgfOK/0rgTOBdcBfgAv3p7Dx48fT2dmJ0zq9M2zYMMaPH9/sMiQdRBoK+sx8Hhi9\nW98WYPoexiZwcV8LGzp0KJMmTerr00jSoOctECSpcga9JFXOoJekyhn0klQ5g16SKmfQS1LlDHpJ\nqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYNekipn0EtS5Qx6SaqcQS9JlTPoJalyDQV9RIyMiBsj\n4sGIeCAiToqIIyJiVUQ8XB5HlbEREV+LiHURcU9EnDCwpyBJ2pdGr+i/Cvw4M98OTAYeABYCt2bm\n0cCtZRvgDODo8jMfuKZfK5Yk9UqPQR8RI4APAtcCZOZLmflnYCawpAxbApxd2jOB67LLHcDIiBjb\n75VLkhrSyBX9JGAz8K2IuCsivhkRhwFjMnNDGfMkMKa0xwFPdDu+s/RJkpqgkaAfApwAXJOZ7wae\n55VpGgAyM4HszQtHxPyI6IiIjs2bN/fmUElSLzQS9J1AZ2beWbZvpCv4N+6ckimPm8r+9cCEbseP\nL32vkpmLM7MtM9taWlr2t35JUg96DPrMfBJ4IiLeVrqmA/cDK4C5pW8ucHNprwAuKKtvpgJbu03x\nSJIOsCENjvsM8J2IeB3wCHAhXf9ILI+IecDjwHll7ErgTGAd8JcyVpLUJA0FfWauBdr2sGv6HsYm\ncHEf65Ik9RM/GStJlTPoJalyBr0kVc6gl6TKGfSSVDmDXpIqZ9BLUuUMekmqnEEvSZUz6CWpcga9\nJFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVayjoI+KxiLg3ItZGREfpOyIiVkXEw+VxVOmP\niPhaRKyLiHsi4oSBPAFJ0r715or+bzJzSmbu/ErBhcCtmXk0cGvZBjgDOLr8zAeu6a9iJUm915ep\nm5nAktJeApzdrf+67HIHMDIixvbhdSRJfdDQl4MDCfw0IhL4x8xcDIzJzA1l/5PAmNIeBzzR7djO\n0rcBSQOiddv1zS6hKo81u4B+1mjQn5KZ6yPiKGBVRDzYfWdmZvlHoGERMZ+uqR0mTpzYm0MlSb3Q\n0NRNZq4vj5uA7wPvBTbunJIpj5vK8PXAhG6Hjy99uz/n4sxsy8y2lpaW/T8DSdI+9Rj0EXFYRLxx\nZxs4Dfg9sAKYW4bNBW4u7RXABWX1zVRga7cpHknSAdbI1M0Y4PsRsXP89Zn544j4HbA8IuYBjwPn\nlfErgTOBdcBfgAv7vWpJUsN6DPrMfASYvIf+LcD0PfQncHG/VCdJ6jM/GStJlTPoJalyBr0kVc6g\nl6TKGfSSVDmDXpIqZ9BLUuUMekmqnEEvSZUz6CWpcga9JFXOoJekyhn0klQ5g16SKmfQS1LlDHpJ\nqpxBL0mVazjoI+LQiLgrIn5YtidFxJ0RsS4ilkXE60r/68v2urK/dWBKlyQ1ojdX9AuAB7ptXwV8\nJTPfCjwDzCv984BnSv9XyjhJUpM0FPQRMR44C/hm2Q5gGnBjGbIEOLu0Z5Ztyv7pZbwkqQkavaL/\nH8B/AV4u26OBP2fmjrLdCYwr7XHAEwBl/9YyXpLUBD0GfUR8FNiUmav784UjYn5EdEREx+bNm/vz\nqSVJ3TRyRX8yMCMiHgOW0jVl81VgZEQMKWPGA+tLez0wAaDsHwFs2f1JM3NxZrZlZltLS0ufTkKS\ntHc9Bn1m/tfMHJ+ZrcBs4OeZ+R+BXwDnlmFzgZtLe0XZpuz/eWZmv1YtSWpYX9bRXwZcEhHr6JqD\nv7b0XwuMLv2XAAv7VqIkqS+G9DzkFZl5G3BbaT8CvHcPY7YBs/qhNklSP/CTsZJUOYNekipn0EtS\n5Qx6SaqcQS9JlTPoJalyBr0kVc6gl6TKGfSSVDmDXpIqZ9BLUuUMekmqnEEvSZUz6CWpcga9JFXO\noJekyhn0klQ5g16SKtdj0EfEsIj454i4OyLui4jPl/5JEXFnRKyLiGUR8brS//qyva7sbx3YU5Ak\n7UsjV/QvAtMyczIwBTg9IqYCVwFfycy3As8A88r4ecAzpf8rZZwkqUl6DPrs8lzZHFp+EpgG3Fj6\nlwBnl/bMsk3ZPz0iot8qliT1SkNz9BFxaESsBTYBq4A/AH/OzB1lSCcwrrTHAU8AlP1bgdF7eM75\nEdERER2bN2/u21lIkvaqoaDPzH/NzCnAeOC9wNv7+sKZuTgz2zKzraWlpa9PJ0nai16tusnMPwO/\nAE4CRkbEkLJrPLC+tNcDEwDK/hHAln6pVpLUa42summJiJGl/Qbgw8ADdAX+uWXYXODm0l5Rtin7\nf56Z2Z9FS5IaN6TnIYwFlkTEoXT9w7A8M38YEfcDSyPiC8BdwLVl/LXA/4mIdcDTwOwBqFuS1KAe\ngz4z7wHevYf+R+iar9+9fxswq1+qkyT1mZ+MlaTKGfSSVDmDXpIqZ9BLUuUMekmqnEEvSZUz6CWp\ncga9JFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRVzqCXpMo18p2xEyLiFxFx\nf0TcFxELSv8REbEqIh4uj6NKf0TE1yJiXUTcExEnDPRJSJL2rpEr+h3Af87MY4GpwMURcSywELg1\nM48Gbi3bAGcAR5ef+cA1/V61JKlhPQZ9Zm7IzDWl/SzwADAOmAksKcOWAGeX9kzguuxyBzAyIsb2\ne+WSpIb0ao4+Ilrp+qLwO4Exmbmh7HoSGFPa44Anuh3WWfp2f675EdERER2bN2/uZdmSpEY1HPQR\ncTjwPeAfMvNfuu/LzASyNy+cmYszsy0z21paWnpzqCSpFxoK+ogYSlfIfyczbyrdG3dOyZTHTaV/\nPTCh2+HjS58kqQkaWXUTwLXAA5n537vtWgHMLe25wM3d+i8oq2+mAlu7TfFIkg6wIQ2MORmYA9wb\nEWtL3+eALwHLI2Ie8DhwXtm3EjgTWAf8BbiwXyuWJPVKj0Gfmf8PiL3snr6H8Qlc3Me6JEn9xE/G\nSlLlDHpJqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYNekipn0EtS5Qx6SaqcQS9JlTPoJalyBr0k\nVc6gl6TKGfSSVDmDXpIqZ9BLUuUa+c7Yf4qITRHx+259R0TEqoh4uDyOKv0REV+LiHURcU9EnDCQ\nxUuSetbIFf23gdN361sI3JqZRwO3lm2AM4Cjy8984Jr+KVOStL96DPrM/BXw9G7dM4Elpb0EOLtb\n/3XZ5Q5gZESM7a9iJUm9t79z9GMyc0NpPwmMKe1xwBPdxnWWPklSkwzp6xNkZkZE9va4iJhP1/QO\nEydO7GsZB8aiEc2uoC6Ltja7AmlQ2N8r+o07p2TK46bSvx6Y0G3c+NL3VzJzcWa2ZWZbS0vLfpYh\nSerJ/gb9CmBuac8Fbu7Wf0FZfTMV2NptikeS1AQ9Tt1ExA3AqcCREdEJXAl8CVgeEfOAx4HzyvCV\nwJnAOuAvwIUDULMkqRd6DPrMPH8vu6bvYWwCF/e1KElS//GTsZJUOYNekipn0EtS5Qx6SaqcQS9J\nlTPoJalyBr0kVc6gl6TKGfSSVLk+371yMGnddn2zS6jKY80uQBokvKKXpMoZ9JJUOYNekipn0EtS\n5Qx6SaqcQS9JlTPoJalyAxL0EXF6RDwUEesiYuFAvIYkqTH9HvQRcSjwP4EzgGOB8yPi2P5+HUlS\nYwbiiv69wLrMfCQzXwKWAjMH4HUkSQ0YiKAfBzzRbbuz9EmSmqBp97qJiPnA/LL5XEQ81KxaKnQk\n8FSzi+hJXNXsCtQE/t3sX29pZNBABP16YEK37fGl71UyczGweABef9CLiI7MbGt2HdLu/LvZHAMx\ndfM74OiImBQRrwNmAysG4HUkSQ3o9yv6zNwREZ8GfgIcCvxTZt7X368jSWrMgMzRZ+ZKYOVAPLca\n4pSYDlb+3WyCyMxm1yBJGkDeAkGSKmfQS1LlDHpJqpxfDl6BiDhiD93PZub2A16MVETE3+5rf2be\ndKBqGewM+jqsoetDas8AAYwEnoyIjcDfZebqZhanQevfl8ejgPcDPy/bfwP8BjDoDxCDvg6rgBsz\n8ycAEXEa8B+AbwH/C3hfE2vTIJWZFwJExE+BYzNzQ9keC3y7iaUNOs7R12HqzpAHyMyfAidl5h3A\n65tXlgTAhJ0hX2wEJjarmMHIK/o6bIiIy+i6JTRAO7CxfDfAy80rSwLg1oj4CXBD2W4HftbEegYd\nPzBVgYg4ErgSOKV0/Rr4PLAVmJiZ65pVmwS73pj9QNn8VWZ+v5n1DDYGvSRVzqmbCkTEMcBngVa6\n/Zlm5rRm1SRFxLNA0rUSrPsVZQCZmW9qSmGDkFf0FYiIu4FvAKuBf93Z77JKHSwiYgqvnrq5u5n1\nDDYGfQUiYnVmvqfZdUh7EhF/D/wdXevmAzgb+N+Z+fWmFjaIGPQViIhFwCbg+8CLO/sz8+lm1STt\nFBH30LXc9/myfRjw28x8V3MrGzyco6/D3PJ4abe+BP5NE2qRdhd0m1Is7WhSLYOSQV+BzJzU7Bqk\nffgWcGdE7FxSeTZwbRPrGXScuqlARFywp/7MvO5A1yLtSUScwCuf87g9M+9qZj2DjUFfgYjo/qbW\nMGA6sCYzz21SSZIOIgZ9hSJiJLA0M09vdi2Sms+bmtXpecB5e0mAb8ZWISJu4ZVPHh4KvANY3ryK\nJB1MnLqpQET8u26bO4DHM7OzWfVIOrg4dVOBzPwl8CDwRmAU8FJzK5J0MDHoKxAR5wH/DMwCzqNr\nzbIrbiQBTt1UodzU7MOZualstwA/y8zJza1M0sHAK/o6HLIz5Ist+GcrqXDVTR1+tIevalvZxHok\nHUQM+jp0Ar/llft9L/ar2iTt5H/v63AU8N+A8cBPgR80txxJBxPfjK1ERARwGnAh0EbXB6auzcw/\nNLUwSU3nFX0lsutf7CfLzw661tPfGBFXN7UwSU3nFX0FImIBcAHwFPBN4AeZuT0iDgEezsx/29QC\nJTWVb8bW4QjgbzPz8e6dmflyRHy0STVJOkh4RS9JlXOOXpIqZ9BLUuUMekmqnEEvSZUz6CWpcv8f\neyz5HqYADFYAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11d9f5eb8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "age = 16\n", "young = titanic[titanic.Age<=age]['Survived'].value_counts()\n", "old = titanic[titanic.Age>age]['Survived'].value_counts()\n", "df = pd.DataFrame([young, old], index=['young', 'old'])\n", "df.columns = ['dead', 'survived']\n", "df.plot.bar(stacked=True)" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11dbdc9e8>" ] }, "execution_count": 97, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAERCAYAAACAbee5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFLFJREFUeJzt3X+Y1nWd7/HnW9A4qVkhdoSBhooMTBSaWF1TOUT5oxZX\nQ1DXo24euDaPR/eq9Yq9Wg0927nMPLun5VDGbpvatYZEaeyR0kyUs6kp6MIRkA65pCMYSMZRlIB4\nnz/mZhqGgbln5oab+8PzcV1zcX8/3898v+8Z5nrx4XN/vp+JzESSVJbD6l2AJKn2DHdJKpDhLkkF\nMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgfrX68bHHntsNjc31+v2ktSQli5d+kpmDuquX93C\nvbm5mSVLltTr9pLUkCLil9X0c1pGkgpkuEtSgQx3SSpQ3ebcJTWu7du309raytatW+tdSrEGDBhA\nU1MThx9+eK8+33CX1GOtra0cffTRNDc3ExH1Lqc4mcmmTZtobW1l+PDhvbpGt9MyEfGPEbEhIp7d\ny/mIiL+LiDURsTwixvaqEkkNY+vWrQwcONBg308igoEDB/bpf0bVzLnfAZyzj/PnAiMqH9OBr/e6\nGkkNw2Dfv/r6/e023DNzMfDrfXQ5H7gr2zwBvD0iju9TVZKkPqnFnPsQ4MUOx62VtvU1uLakBtA8\n4/6aXm/tLZ+o6fUORQf0DdWImE7b1A3Dhg07kLfuvZnH1LuCsszcXO8KylHPn82z58G6/bhSZt0z\n++/aezN4TI+6r1u3jmuvvZb58+f3+dbjx4/ntttuo6Wlpc/X2qUW69xfAoZ2OG6qtO0hM+dkZktm\ntgwa1O3WCJJUVzt27NjrucGDB9ck2PeXWoT7AuDyyqqZU4HNmemUjKT9au2L6/jAmRfyJ9d8gZFn\nXcjkadfzxptvdtl3xn/7O0aN/xSjJ07hL27+WwCu/PMvMv9/PdTe56ijjgLgkUce4YwzzmDSpEmM\nGjWKGTNmMHv27PZ+M2fO5LbbbmPt2rV88IMfBODUU09lxYoV7X3Gjx/PkiVL2LJlC5/+9KcZN24c\nY8aM4Qc/+AEAb775JhdffDEjR47kggsu4M291N0X1SyF/A7wOHBCRLRGxFUR8WcR8WeVLguB54E1\nwN8DV9e8SknqwupfrOXqKy5i1aPf521HH8nX7vzuHn02/fo33PvDRaxYNJ/lD83jr677T91e9+mn\nn+arX/0qP//5z5k6dSrz5s1rPzdv3jymTp26W/+OfdavX8/69etpaWnhS1/6EhMmTODJJ59k0aJF\nXH/99WzZsoWvf/3rvPWtb2XVqlXcdNNNLF26tI/fiT1Vs1rmksw8PjMPz8ymzPxmZt6embdXzmdm\n/ufMfG9mnpSZbvUo6YAYOvjfc/qHTwHgsgvP41+e/Nc9+hzztqMY8JYjuOpzN/H9hT/hrf9uQLfX\nHTduXPvDQ2PGjGHDhg2sW7eOZcuW8Y53vIOhQ4fu1n/KlCntUzTz5s1j8uTJADz44IPccsstnHLK\nKYwfP56tW7fywgsvsHjxYi677DIARo8ezejRo3v/TdgLn1CV1LA6LwXvam14//79efL+b/OTf3mS\n+fc/xP/81j08/N059O/fj507dwKwc+dOtm3b1v45Rx555G7XuOiii5g/fz4vv/zyHqN2gCFDhjBw\n4ECWL1/OPffcw+233w60PWn6ve99jxNOOKGvX2qPGe6S+mzttYPrct8XXnqZx5cs47SWk7n7vh/x\nkcoovqPXt7zBG29u5byPfoTTP3wy7zltEgDNTYNZ+n9WMWXSx1nw4KNs3759r/eZOnUq06ZN45VX\nXuHRRx/da59bb72VzZs3t4/Ezz77bGbNmsWsWbOICJ555hnGjBnDmWeeyd13382ECRN49tlnWb58\neQ2+G7tzV0hJDeuE9zYz+855jDzrQl7d/P/4zBWT9+jz2utb+OQV1zF64hQ+csFV/M0XPwvAtD+5\ngEcfX8rJE6fy+NLle4zWOzrxxBN57bXXGDJkCMcf3/UzmpMnT2bu3LlMmTKlve2GG25g+/btjB49\nmhNPPJEbbrgBgM985jO8/vrrjBw5khtvvJEPfehDffk2dCkys+YXrUZLS0s2xG9icp17bbnOvXbq\n+LO56ux5jHz3cXW7P7StlvnkFdfx7MN7vonaKz1c534grFq1ipEjR+7WFhFLM7PbBfGO3CWpQM65\nS2pIzUMH7zFqv+Cqz/FvL+z+DOWXv3AtZ4//wwNZ2kHBcJdUjHu/+d/rXcJBw2kZSSqQ4S5JBTLc\nJalAzrlL6rs542t7vemP1PZ6hyBH7pIOKY88toRPXn5tTa515ZVXHrTb/hruklQgw11SQ+rJfu4/\nWvRTPnDmhYw9+1K+/8OH29u3vPEmn/7sTMZ94j/utt/62rVrOeOMMxg7dixjx47lscceA9o2Arvm\nmms44YQTmDhxIhs2bNj/X2gvGe6SGlY1+7lv3fpbpl3/1/zzHf+DpT/6J17esKn93Je++g9MOP3D\nPHn/t3fbb/24447jxz/+MU8//TT33HMP117bNo1z7733snr1alauXMldd93VHvoHI8NdUsOqZj/3\n59asZfiwwYx4zzAigss+dV77uQcXP8Ets+/glI9dvNt+69u3b2fatGmcdNJJXHTRRaxcuRKAxYsX\nc8kll9CvXz8GDx7MhAkTDswX2guulpHUsKrZz31fMpPvzfkKJ7yvebeNw2bOnMm73vUuli1bxs6d\nOxkwoPtf8HGwMdwl9d30R+py22r2c//A+5pZ++J6frH2Rd7bPJTv3Pej9nNnn3Uas741l1l//XkC\n2vdb37x5M01NTRx22GHceeed/O53vwPgzDPP5Bvf+AZXXHEFGzZsYNGiRVx66aUH6svtEadlJDWs\navZzHzDgLcy59Qt84vLrGHv2pRx37Dvbz93w59PYvn0HoydO3W2/9auvvpo777yTk08+meeee659\nr/cLLriAESNGMGrUKC6//HJOO+20A/OF9oL7uXfH/dxry/3ca8f93N3PfR8cuUtSgZxzl9SQ3M99\n3wx3Sb2QZGaPV6fsbyXt597XKXOnZST12IDNz7Npy44+B5C6lpls2rSpT0swHblL6rGmp79MK59n\n4zHvAQ6u0XuvbV5V7wp2M2DAAJqamnr9+Ya7pB47fNtvGP7EX9a7jNoqbCWX0zKSVCDDXZIKZLhL\nUoEMd0kqkOEuSQUy3CWpQFWFe0ScExGrI2JNRMzo4vywiFgUEc9ExPKIOK+r60iSDoxuwz0i+gGz\ngXOBUcAlETGqU7e/AuZl5hjgYuBrtS5UklS9akbu44A1mfl8Zm4D5gLnd+qTwNsqr48B1tWuRElS\nT1XzhOoQ4MUOx63AH3TqMxN4MCL+C3AkMLEm1UmSeqVWb6heAtyRmU3AecC3I2KPa0fE9IhYEhFL\nNm7cWKNbS5I6qybcXwKGdjhuqrR1dBUwDyAzHwcGAMd2vlBmzsnMlsxsGTRoUO8qliR1q5pwfwoY\nERHDI+II2t4wXdCpzwvARwEiYiRt4e7QXJLqpNtwz8wdwDXAA8Aq2lbFrIiImyNiUqXb54BpEbEM\n+A5wZbrRsyTVTVVb/mbmQmBhp7YbO7xeCZxe29IkSb3lE6qSVCDDXZIKZLhLUoEMd0kqkOEuSQUy\n3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNd\nkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWp\nQIa7JBXIcJekAhnuklSgqsI9Is6JiNURsSYiZuylz5SIWBkRKyLi7tqWKUnqif7ddYiIfsBs4GNA\nK/BURCzIzJUd+owA/hI4PTNfjYjj9lfBkqTuVTNyHwesycznM3MbMBc4v1OfacDszHwVIDM31LZM\nSVJPVBPuQ4AXOxy3Vto6ej/w/oj4aUQ8ERHn1KpASVLPdTst04PrjADGA03A4og4KTN/07FTREwH\npgMMGzasRreWJHVWzcj9JWBoh+OmSltHrcCCzNyemf8G/Jy2sN9NZs7JzJbMbBk0aFBva5YkdaOa\ncH8KGBERwyPiCOBiYEGnPvfRNmonIo6lbZrm+RrWKUnqgW7DPTN3ANcADwCrgHmZuSIibo6ISZVu\nDwCbImIlsAi4PjM37a+iJUn7VtWce2YuBBZ2aruxw+sEPlv5kCTVmU+oSlKBDHdJKpDhLkkFMtwl\nqUCGuyQVqFZPqBareasbXNbS2noXIB0iHLlLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQg\nw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLc\nJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqUFXhHhHnRMTqiFgTETP20e9TEZER0VK7EiVJ\nPdVtuEdEP2A2cC4wCrgkIkZ10e9o4DrgZ7UuUpLUM9WM3McBazLz+czcBswFzu+i338FvgxsrWF9\nkqReqCbchwAvdjhurbS1i4ixwNDMvL+GtUmSeqnPb6hGxGHA3wCfq6Lv9IhYEhFLNm7c2NdbS5L2\noppwfwkY2uG4qdK2y9HAB4FHImItcCqwoKs3VTNzTma2ZGbLoEGDel+1JGmfqgn3p4ARETE8Io4A\nLgYW7DqZmZsz89jMbM7MZuAJYFJmLtkvFUuSutVtuGfmDuAa4AFgFTAvM1dExM0RMWl/FyhJ6rn+\n1XTKzIXAwk5tN+6l7/i+lyVJ6gufUJWkAhnuklQgw12SClTVnLukg0/z1rvrXUJR1ta7gBpz5C5J\nBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQg\nw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLc\nJalAhrskFchwl6QCGe6SVKCqwj0izomI1RGxJiJmdHH+sxGxMiKWR8RPIuLdtS9VklStbsM9IvoB\ns4FzgVHAJRExqlO3Z4CWzBwNzAdurXWhkqTqVTNyHwesycznM3MbMBc4v2OHzFyUmW9UDp8Ammpb\npiSpJ6oJ9yHAix2OWytte3MV8MOuTkTE9IhYEhFLNm7cWH2VkqQeqekbqhFxGdACfKWr85k5JzNb\nMrNl0KBBtby1JKmD/lX0eQkY2uG4qdK2m4iYCHwBOCszf1ub8iRJvVHNyP0pYEREDI+II4CLgQUd\nO0TEGOAbwKTM3FD7MiVJPdFtuGfmDuAa4AFgFTAvM1dExM0RManS7SvAUcB3I+JfI2LBXi4nSToA\nqpmWITMXAgs7td3Y4fXEGtclSeoDn1CVpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrsk\nFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KB\nDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFaiq\ncI+IcyJidUSsiYgZXZx/S0TcUzn/s4hornWhkqTqdRvuEdEPmA2cC4wCLomIUZ26XQW8mpnvA/4W\n+HKtC5UkVa+akfs4YE1mPp+Z24C5wPmd+pwP3Fl5PR/4aERE7cqUJPVENeE+BHixw3Frpa3LPpm5\nA9gMDKxFgZKknut/IG8WEdOB6ZXD1yNi9YG8f+GOBV6pdxHdCSfsDkX+bNbWu6vpVE24vwQM7XDc\nVGnrqk9rRPQHjgE2db5QZs4B5lRTmHomIpZkZku965A682ezPqqZlnkKGBERwyPiCOBiYEGnPguA\nKyqvJwMPZ2bWrkxJUk90O3LPzB0RcQ3wANAP+MfMXBERNwNLMnMB8E3g2xGxBvg1bf8ASJLqJBxg\nlyEiplemvaSDij+b9WG4S1KB3H5AkgpkuEtSgQx3SSrQAX2ISbUTEe/sovm1zNx+wIuRKiLiwn2d\nz8zvH6haDnWGe+N6mrYHx14FAng78HJE/AqYlplL61mcDll/VPnzOOAPgYcrx/8BeAww3A8Qw71x\n/RiYn5kPAETEx4FPAd8Cvgb8QR1r0yEqM/8UICIeBEZl5vrK8fHAHXUs7ZDjnHvjOnVXsANk5oPA\naZn5BPCW+pUlATB0V7BX/AoYVq9iDkWO3BvX+oj4PG1bMANMBX5V2X9/Z/3KkgD4SUQ8AHyncjwV\neKiO9RxyfIipQUXEscAXgY9Umn4K3ETbdsvDMnNNvWqToP3N1TMqh4sz89561nOoMdwlqUBOyzSo\niHg/8BdAMx3+HjNzQr1qkiLiNSBpW8HVceQYQGbm2+pS2CHIkXuDiohlwO3AUuB3u9pdAqmDRUSc\nwu7TMsvqWc+hxnBvUBGxNDM/VO86pK5ExLXANNrWtQfwx8DfZ+asuhZ2CDHcG1REzAQ2APcCv93V\nnpm/rldN0i4RsZy2pblbKsdHAo9n5uj6VnbocM69ce36zVfXd2hL4D11qEXqLOgwXVh5HXWq5ZBk\nuDeozBxe7xqkffgW8LOI2LX88Y9p+41tOkCclmlQEXF5V+2ZedeBrkXqSkSM5ffPYfzvzHymnvUc\nagz3BhURHd+YGgB8FHg6MyfXqSRJBxHDvRAR8XZgbmaeU+9aJNWfG4eVYwvgPLwkwDdUG1ZE/DO/\nfwKwHzASmFe/iiQdTJyWaVARcVaHwx3ALzOztV71SDq4OC3ToDLzUeA54GjgHcC2+lYk6WBiuDeo\niJgCPAlcBEyhbU2xK2UkAU7LNKzKxmEfy8wNleNBwEOZeXJ9K5N0MHDk3rgO2xXsFZvw71NShatl\nGtcPu/g1ZgvrWI+kg4jh3rhagcf5/X7Zc/w1ZpJ28b/xjes44CtAE/AgcF99y5F0MPEN1QYWEQF8\nHPhToIW2h5i+mZm/qGthkurOkXsDy7Z/mV+ufOygbb37/Ii4ta6FSao7R+4NKiKuAy4HXgH+Abgv\nM7dHxGHA/83M99a1QEl15RuqjeudwIWZ+cuOjZm5MyI+WaeaJB0kHLlLUoGcc5ekAhnuklQgw12S\nCmS4S1KBDHdJKtD/B9to3QAAuPPjAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11d9f8c50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 男女中生还者的比例情况\n", "df['p_survived'] = df.survived / (df.survived + df.dead)\n", "df['p_dead'] = df.dead / (df.survived + df.dead)\n", "df[['p_survived', 'p_dead']].plot.bar(stacked=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 分析票价" ] }, { "cell_type": "code", "execution_count": 105, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11de1aa90>" ] }, "execution_count": 105, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAD8CAYAAABdCyJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8VOWd+PHPdy65X4AkgCRAUEDlIggRdb20aqtYLfQC\nom3V3bVLt62tu/62W1utYl/trnXbde2urbXa1toLWLwU76311mqlBEW5iQZECAQIAXIlmczM9/fH\nOQlDyCSTzJyETL7v12teM/Oc55w8Twbyned6RFUxxhhj+ss32AUwxhgztFkgMcYYkxQLJMYYY5Ji\ngcQYY0xSLJAYY4xJigUSY4wxSbFAYowxJikWSIwxxiTFAokxxpikBAa7AAOhuLhYy8vLB7sYxhgz\nZBQXF/Pcc889p6rze8s7LAJJeXk5lZWVg10MY4wZUkSkOJF81rVljDEmKRZIjDHGJMUCiTHGmKQM\nizESY8zw0N7eTnV1Na2trYNdlCElKyuLsrIygsFgv873NJCIyHzgbsAP3K+qd3Q5ngn8EpgL1AFL\nVHW7iMwD7uvIBixT1ccSuaYxZviqrq4mPz+f8vJyRGSwizMkqCp1dXVUV1czadKkfl3Ds64tEfED\n9wCXAtOAq0RkWpds1wEHVXUycBfwPTd9A1ChqrOB+cBPRCSQ4DWNMcNUa2srRUVFFkT6QEQoKipK\nqhXn5RjJPKBKVbepaghYDizskmch8KD7eiVwkYiIqraoathNzwI6buOYyDWNMcOYBZG+S/Z35mUg\nKQV2xryvdtO6zeMGjnqgCEBEzhSRjcB64J/d44lc0xwPdrzuPIwxae+4nbWlqqtVdTpwBvANEcnq\ny/kislREKkWksra21ptCmu5Fo/CzS5yHMSYpq1at4o47UjMUnJeXl5LrdOVlINkFjI95X+amdZtH\nRAJAIc6geydV3Qw0ATMSvGbHefepaoWqVpSUlCRRDdNnzfuOvD58cPDKYcwQEQ6H4x5bsGABN910\n0wCWpu+8DCRrgCkiMklEMoArgVVd8qwCrnVfLwJeUFV1zwkAiMhE4BRge4LXNIOtISa2H9g2eOUw\nZoA1Nzdz2WWXMWvWLGbMmMGKFSsoLy9n//79AFRWVvLhD38YgGXLlnH11VdzzjnncPXVV3PWWWex\ncePGzmt9+MMfprKykl/84hdcf/311NfXM3HiRKLRaOfPGj9+PO3t7WzdupX58+czd+5czjvvPN55\n5x0A3n//fc4++2xmzpzJLbfc4lm9PZv+q6phEbkeeA5nqu7PVHWjiHwbqFTVVcADwEMiUgUcwAkM\nAOcCN4lIOxAFvqSq+wG6u6ZXdTD91LD7yOvm/YNXDjOs3f7ERjbtbkjpNaeNK+C2j0+Pe/zZZ59l\n3LhxPPXUUwDU19fz9a9/PW7+TZs28Ze//IXs7GzuuusuHn74YW6//XZqamqoqamhoqKCDRs2AFBY\nWMjs2bN5+eWXueCCC3jyySe55JJLCAaDLF26lHvvvZcpU6awevVqvvSlL/HCCy9www038MUvfpFr\nrrmGe+65J6W/i1iejpGo6tOqOlVVT1LV77ppt7pBBFVtVdXFqjpZVeep6jY3/SFVna6qs1V1jqo+\n3tM1zXGmJaZ3suXA4JXDmAE2c+ZM/vjHP/L1r3+dP//5zxQWFvaYf8GCBWRnZwNwxRVXsHLlSgAe\nfvhhFi1adEz+JUuWsGLFCgCWL1/OkiVLaGpq4rXXXmPx4sXMnj2bL3zhC9TU1ADw6quvctVVVwFw\n9dVXp6yeXdnKdpN6rTHfAg9bIDGDo6eWg1emTp3KG2+8wdNPP80tt9zCRRddRCAQ6OyO6rpWIzc3\nt/N1aWkpRUVFvP3226xYsYJ77733mOsvWLCAb37zmxw4cIC1a9dy4YUX0tzczIgRI1i3bl23ZRqI\n6dDH7awtM4S1dQQSscF2M6zs3r2bnJwcPve5z/G1r32NN954g/LyctauXQvAI4880uP5S5Ys4c47\n76S+vp7TTjvtmON5eXmcccYZ3HDDDVx++eX4/X4KCgqYNGkSv/vd7wBnpfpbb70FwDnnnMPy5csB\n+PWvf53Kqh7FAolJvdYGyCyE7JHWtWWGlfXr1zNv3jxmz57N7bffzi233MJtt93GDTfcQEVFBX6/\nv8fzFy1axPLly7niiivi5lmyZAm/+tWvWLJkSWfar3/9ax544AFmzZrF9OnT+f3vfw/A3XffzT33\n3MPMmTPZtavbCa4pIarae64hrqKiQu3GVgPosX+G7X+BQCaMPQ0W/3ywS2SGic2bN3PqqacOdjGG\npO5+dyKyVlUrejvXxkhM6rU2QGYBBLOh9dBgl8YY4zELJCb12hogqwD8GRBqGezSGGM8ZmMkJvXa\n3BZJRh6Emge7NMYYj1mLxKReqBkycsAXhFDTYJfGGOMxCyQm9dpbIZjjdm1Zi8SYdGeBxKRee4sz\n0B7IskBizDBgYyQm9cKtThDJyIP2ZmdbeWOGoWXLlvH9738/6evEbvx4PLJAYlJL9UiLJMPd/qHd\nZm4Zk84skJjUCrc5z7GBxLq3zDDy3e9+l6lTp3LuueeyZcsWgLjbvD/xxBOceeaZnH766XzkIx9h\n7969ANTV1XHxxRczffp0Pv/5z3O8Lxy3MRKTWuHDznMg2+naAnfm1phBK5IZpp65CfasT+01x86E\nS+PfrXDt2rUsX76cdevWEQ6HmTNnDnPnzo27zfu5557L66+/johw//33c+edd/KDH/yA22+/nXPP\nPZdbb72Vp556igceeCC19UgxCyQmtdrdQBLMsq4tM+z8+c9/5pOf/CQ5OTmAs1tva2tr5zbvHdra\nnJZ7dXU1S5YsoaamhlAoxKRJkwB45ZVXePTRRwG47LLLGDly5ADXpG8skJjU6gwkOc5aErCuLTM4\nemg5DKRoNBp3m/evfOUr3HjjjSxYsICXXnqJZcuWDXwBU8DGSExqhd37LXTM2gJblGiGjfPPP5/H\nH3+cw4cP09jYyBNPPEFOTk7cbd7r6+spLS0F4MEHHzzqOr/5zW8AeOaZZzh48Pi+HYMFEpNaR7VI\n3K6tNgskZniYM2cOS5YsYdasWVx66aWcccYZQPxt3pctW8bixYuZO3cuxcXFnde57bbbeOWVV5g+\nfTqPPvooEyZMGJT6JMq6tkxqxY6RBJ1biHa2UowZBm6++WZuvvnmY9KfffbZY9IWLlzIwoULj0kv\nKiriD3/4gyfl84K1SExqdXZtZTsPOBJcjDFpyQKJSa2OGVrBbKdVAhZIjElzFkhMarW7LZJgTIsk\nbIHEDJzjffHe8SjZ35kFEpNaHS2SQJZzq13kSHAxxmNZWVnU1dVZMOkDVaWuro6srKx+X8MG201q\nhWNaJCLOs7VIzAApKyujurqa2trawS7KkJKVlUVZWVm/z/c0kIjIfOBuwA/cr6p3dDmeCfwSmAvU\nAUtUdbuIfBS4A8gAQsDXVPUF95yXgBOAjr9OF6vqPi/rYfogdh1Jx7O1SMwACQaDnavDzcDxLJCI\niB+4B/goUA2sEZFVqropJtt1wEFVnSwiVwLfA5YA+4GPq+puEZkBPAeUxpz3WVWt9KrsJgnhkPMc\nyHSeg9k22G5MmvNyjGQeUKWq21Q1BCwHuk6YXgh0LOdcCVwkIqKqb6rqbjd9I5Dttl7M8S4SAvGB\nz++8D2RZ15Yxac7LQFIK7Ix5X83RrYqj8qhqGKgHirrk+TTwhqq2xaT9XETWici3RERSW2yTlEgb\n+GNifjDHuraMSXPH9awtEZmO0931hZjkz6rqTOA893F1nHOXikiliFTawNsAirQ792rvELQWiTHp\nzstAsgsYH/O+zE3rNo+IBIBCnEF3RKQMeAy4RlW3dpygqrvc50bgNzhdaMdQ1ftUtUJVK0pKSlJS\nIZOAcBsEYgJJIMvGSIxJc14GkjXAFBGZJCIZwJXAqi55VgHXuq8XAS+oqorICOAp4CZVfbUjs4gE\nRKTYfR0ELgc2eFgH01eRUJeuLRtsNybdeRZI3DGP63FmXG0GHlbVjSLybRFZ4GZ7ACgSkSrgRuAm\nN/16YDJwqzsWsk5ERgOZwHMi8jawDqdF81Ov6mD6IRICf/DI+0CWbdpoTJrzdB2Jqj4NPN0l7daY\n163A4m7O+w7wnTiXnZvKMpoUC7cdmfoL7mC7tUiMSWfH9WC7GYIioWMH2y2QGJPWLJCY1OoaSALZ\n1rVlTJqzQGJSKxzq0rVlLRJj0p0FEpNaxwy2Z0O0HSLhwSuTMcZTFkhMah2zst3uSWJMurNAYlIr\nHDp6QWJHILFtUoxJWxZITGodM9jubidvLRJj0pYFEpNa3a1sB2uRGJPGLJCY1Oq611ZnIGkZnPIY\nYzxngcSkVtyuLWuRGJOuLJCY1DpmZXtHi8TGSIxJVxZITGpZi8SYYccCiUmdaBSi4S4r222MxJh0\nZ4HEpE7EvRtyt11b1iIxJl1ZIDGpEwk5z103bQRbR2JMGrNAYlIn7AaSrps2gg22G5PGLJCY1Omu\nRRLMcZ6ta8uYtGWBxKROd2Mk/iCI37q2jEljFkhM6nR2bWUcnW632zUmrVkgManTXdcW2M2tjElz\nFkhM6nQGksyj04PZFkiMSWMWSEzqhN0xkq5dW4FsGyMxJo1ZIDGpE7dry1okxqQzCyQmdaxry5hh\nydNAIiLzRWSLiFSJyE3dHM8UkRXu8dUiUu6mf1RE1orIevf5wphz5rrpVSLyQxERL+tg+iASb9aW\nBRJj0plngURE/MA9wKXANOAqEZnWJdt1wEFVnQzcBXzPTd8PfFxVZwLXAg/FnPNj4J+AKe5jvld1\nMH0U7mYdCbhjJLYg0Zh05WWLZB5QparbVDUELAcWdsmzEHjQfb0SuEhERFXfVNXdbvpGINttvZwA\nFKjq66qqwC+BT3hYB9MXPY6R2O6/xqQrLwNJKbAz5n21m9ZtHlUNA/VAUZc8nwbeUNU2N391L9c0\ng6XHdSTWIjEmXQUGuwA9EZHpON1dF/fj3KXAUoAJEyakuGSmW91t2gjuynZrkRiTrrxskewCxse8\nL3PTus0jIgGgEKhz35cBjwHXqOrWmPxlvVwTAFW9T1UrVLWipKQkyaqYhHS31xY4d0m0MRJj0paX\ngWQNMEVEJolIBnAlsKpLnlU4g+kAi4AXVFVFZATwFHCTqr7akVlVa4AGETnLna11DfB7D+tg+iJu\n11aOE0ii0YEvkzHGc54FEnfM43rgOWAz8LCqbhSRb4vIAjfbA0CRiFQBNwIdU4SvByYDt4rIOvcx\n2j32JeB+oArYCjzjVR1MH4V7GCMBa5UYk6Y8HSNR1aeBp7uk3RrzuhVY3M153wG+E+ealcCM1JbU\npEQkBL4g+Lp8P+m8J8lhyMgZ+HIZYzxlK9tN6kRCx7ZGwBkjAdtvy5g0ZYHEpE647dhV7XB0i8QY\nk3YskJjUidcisfu2G5PWLJCY1ImEjt2wEZwtUsACiTFpygKJSZ24XVtuILExEmPSkgUSkzrWtWXM\nsGSBxKRO3EBig+3GpDMLJCZ1IqFj99mCI9N/LZAYk5YskJjUCffSIrExEmPSkgUSkzqRtl7GSGyL\nFGPSkQUSkzo2RmLMsJRQIBGRR0XkMhGxwGPiC4e6n/7rD4L4rWvLmDSVaGD4EfAZ4D0RuUNETvaw\nTGaoitciAffmVhZIjElHCQUSVX1eVT8LzAG2A8+LyGsi8g8iEvSygGYIibeyHdzb7VogMSYdJdxV\nJSJFwN8DnwfeBO7GCSx/9KRkZuiJxOnaAmd1uwUSY9JSQvcjEZHHgJOBh4CPu3cqBFghIpVeFc4M\nMfGm/4Kz35aNkRiTlhK9sdVP3ZtUdRKRTFVtU9UKD8plhqIex0isRWJMukq0a6u7uxX+NZUFMWkg\n3joSsEBiTBrrsUUiImOBUiBbRE4HxD1UANg9U80R0QhotPstUsAJJK0NA1smY8yA6K1r6xKcAfYy\n4L9j0huBb3pUJjMUhducZ3+cSXyBbGjfO3DlMcYMmB4Diao+CDwoIp9W1UcGqExmKIqEnOd4038z\ncqC9ZeDKY4wZML11bX1OVX8FlIvIjV2Pq+p/d3OaGY46A0mcFklGLoSaB648xpgB01vXVq77nOd1\nQcwQ1xFI4o2RZORZIDEmTfXWtfUT9/n2gSmOGbI6x0jizNrKyIP2ZohGwWdbthmTThLdtPFOESkQ\nkaCI/ElEakXkcwmcN19EtohIlYjc1M3xTBFZ4R5fLSLlbnqRiLwoIk0i8n9dznnJveY69zE6saoa\nT0Xanee4gcRt3LZbq8SYdJPoV8OLVbUBuBxnr63JwNd6OkFE/MA9wKXANOAqEZnWJdt1wEFVnQzc\nBXzPTW8FvgX8W5zLf1ZVZ7uPfQnWwXgp0luLxA0k1r1lTNpJNJB0dIFdBvxOVesTOGceUKWq21Q1\nBCwHFnbJsxB40H29ErhIRERVm1X1LzgBxQwFHS2SnsZIwAKJMWko0UDypIi8A8wF/iQiJfT+R74U\n2BnzvtpN6zaPqoaBeqAogfL83O3W+paISO/Zjed6W0fS2SJpGpjyGGMGTKLbyN8E/B1QoartQDPH\nti4GymdVdSZwnvu4urtMIrJURCpFpLK2tnZACzgs9baOJNNaJMakq75MnzkFWCIi1wCLgIt7yb8L\nGB/zvsxN6zaPiASAQqCup4uq6i73uRH4DU4XWnf57lPVClWtKCkp6aWoJmmdgaSHWVtggcSYNJTo\nNvIPAScB64CIm6zAL3s4bQ0wRUQm4QSMK3HushhrFXAtzgaQi4AXVFV7KEcAGKGq+90bal0OPJ9I\nHYzHOteR9DLY3tY4MOUxxgyYRLeRrwCm9fRHvitVDYvI9cBzgB/4mapuFJFvA5Wqugp4AHhIRKqA\nAzjBBgAR2Y6zOWSGiHwCpwX0AfCcG0T8OEHkp4mWyXio13UkNmvLmHSVaCDZAIwFanrLGMu9h8nT\nXdJujXndCiyOc255nMvO7UsZzADpdR2JdW0Zk64SDSTFwCYR+RvQ1pGoqgs8KZUZenpdR9IRSGzW\nljHpJtFAsszLQpg00Ns6kkAG+ILWIjEmDSUUSFT1ZRGZCExR1edFJAdnjMIYR2/rSMB2ADYmTSW6\n19Y/4aw8/4mbVAo87lWhzBDU2zoSsB2AjUlTia4j+TJwDtAAoKrvAbZZojmit3Uk4LZIbPqvMekm\n0UDS5u6XBXSu50h4KrAZBiIh8AV63iLeuraMSUuJBpKXReSbQLaIfBT4HfCEd8UyQ064refWCDjb\npFggMSbtJBpIbgJqgfXAF3DWhtziVaHMEBRp7z2QZOTZ9F9j0lCis7aiIvI48Liq2g6I5liRBFok\n1rVlTFrqsUUijmUish/YAmxx7454a0/nmWEo0h5/DUkHCyTGpKXeurb+FWe21hmqOkpVRwFnAueI\nyL96XjozdITbel5DAk7XVmvDwJTHGDNgegskVwNXqer7HQmqug34HHCNlwUzQ0wk1PMaEoCsERA+\nfGQVvDEmLfQWSIKqur9rojtO0svXTzOsRELdtkjqW9p57M1q9tS3QlaBk2itEmPSSm+D7aF+HjPD\nTSR0zBjJ4VCExT95jXf3NlGcl8kfLsxiFEDrIchN5I7KxpihoLcWySwRaejm0QjMHIgCmiEiHDpm\n1tbPXn2fd/c2cctlp9LcFmbFBndVe5u1SIxJJz22SFTVNmY0iYmEjty8CohElYf++gHnTi7m8+ed\nSF1ziJde2cAXM4DW+sErpzEm5fpyz3Zj4uuyjuSt6kPsaWhlcUUZAJ+ZN4F6dQONjZEYk1YskJjU\niLQfdb/2F9/Zh0/gQ1NLABg/KofSsWOcg9YiMSatWCAxqdFlr60Xt+xj7sSRjMg5klZx8iQAmhoO\nDHjxjDHesUBiUiPS3rmOpLG1nY27GzhncvFRWc6bUU5UhZ27awajhMYYj1ggMakRObKy/e3qelTh\n9Akjj8oybdwImiSbA3W2XZsx6cQCiUmNmHUk63YeAmB22Yijsvh8QsifR1O9dW0Zk04skJjUiFlH\n8uaOQ5xYkkthTjebH2QVIm311DW1DXABjTFesUBiUiPS1tki2bCrnlldWiMdMvNGkM9h1n5wcCBL\nZ4zxkKeBRETmi8gWEakSkZu6OZ4pIivc46tFpNxNLxKRF0WkSUT+r8s5c0VkvXvOD0VEvKyDSUAk\nDNEwBLKob2lnT0MrJ4/N7zZrTkERhb4WKi2QGJM2PAskIuIH7gEuBaYBV4nItC7ZrgMOqupk4C7g\ne256K/At4N+6ufSPgX8CpriP+akvvemTcKvzHMjk3X3ONijxAok/u5BR/lbecsdRjDFDn5ctknlA\nlapuU9UQsBxY2CXPQuBB9/VK4CIREVVtVtW/4ASUTiJyAlCgqq+rqgK/BD7hYR1MIsLueEcgiy17\n3EAypvtAQlYhBdLMhl31RKM6QAU0xnjJy0BSCuyMeV/tpnWbR1XDQD3Q07awpe51erqmGWgxLZIt\nexrJzwxwQmFW93kzC8iKNNMcCrNtv90t0Zh0kLaD7SKyVEQqRaSyttbWLXiqM5BksWVvI1PH5hN3\n6Cp7BD6i5HOYDbtsqxRj0oGXgWQXMD7mfZmb1m0eEQkAhUBdL9cs6+WaAKjqfapaoaoVJSUlfSy6\n6RO3a0v9mby7t5Gp8bq1ALJHATAm2Mzb1RZIjEkHXgaSNcAUEZkkIhnAlcCqLnlWAde6rxcBL7hj\nH91S1RqgQUTOcmdrXQP8PvVFN33itkgawn4OtbQzdUxe/Lw5Ts/lnGJl/S4bcDcmHfR2h8R+U9Ww\niFwPPAf4gZ+p6kYR+TZQqaqrgAeAh0SkCjiAE2wAEJHtQAGQISKfAC5W1U3Al4BfANnAM+7DDCa3\nRbKnxfkOMKk4N37eHKdFctqoKE++10Akqvh9NoPbmKHMs0ACoKpPA093Sbs15nUrsDjOueVx0iuB\nGakrpUma2yLZ1ZhAIHG7tqYWhGgJRdhW28SUnrrCjDHHvbQdbDcDyG2R7GyMEvAJpSOy4+d1WyTl\nOU7wecvGSYwZ8iyQmOS5LZId9REmjMoh4O/hn1XWCBAfxb5msoN+m7llTBqwQGKS57ZIth2KUN5T\ntxaAzwdZI/AdPsCM0gLWWyAxZsizQGKS57ZI3j8Uobyol0ACzsytwweYWTqCjbvrCUeiHhfQGOMl\nCyQmeW6LpL7dx6TinN7z54yClgOcVlZIa3uUqtomjwtojPGSBRKTPLdF0kYGk4p7WEPSIdsJJDPL\nCgFsYaIxQ5wFEpM8t0XSRpDyhFokTtfWpKJc8jIDrLdAYsyQZoHEJC/cShQ//kCQcYU9TP3tkDMS\nWg7g8wkzSgt42wbcjRnSLJCY5IVbCUmQiaNy8CWySj17FIQPQ6iFmaWFbK5poN0G3I0ZsiyQmOSF\n29xurQRmbEHnflscPsDMshGEwlHe3dvoXfmMMZ6yQGKSpuFWDkeDPW+NEstd3U7LAU4rdQbcbZzE\nmKHLAolJWktLM60aTGwNCXTut0VLHROLcsjPCtg4iTFDmAUSk7TDh1sSn7EFkDfaeW7ej4hwWlkh\nb1fblvLGDFUWSEzSWt1AknDXVkcgadoLwOnjR7K5ppHmtrBHJTTGeMkCiUlae2szYQkyJj/Ofdq7\nyiyAQFZnIDlj0igiUeXNHdYqMWYoskBikhYNtaDBBKf+Aog4rZKmfQDMmTACn8Ca7Qc8LKUxxisW\nSEzSpL0FX0aC3Vod8sZ0tkjys4KcekKBBRJjhigLJCYp0ajij7QSzO5/IAE4o3wUb+44ZAsTjRmC\nLJCYpNQ0tJJNG1k5fbxdbt7oYwLJ4fYIG3c3pLiExhivWSAxSdm+v5ks2sjJ7WsgGQMtdRBpB2De\nJGdtyWtb96e6iMYYj1kgMUnZvr+JHNrIzy/s24mda0lqASjJz2TaCQW88m5tiktojPGaBRKTlB21\n9QQkSm5eP1okcFT31odOLqFy+0EaW9tTWEJjjNcskJik7NnvzLTq16wt6JwCDPChqSWEo8prW+tS\nVTxjzACwQGKSsrfuoPMiI8HtUTp0BJLGms6kuRNHkpcZ4IXN++KcZIw5HnkaSERkvohsEZEqEbmp\nm+OZIrLCPb5aRMpjjn3DTd8iIpfEpG8XkfUisk5EKr0sv+lZNKocOOQGkmAfA0n+CSA+qK/uTAr6\nfVx06mie27THpgEbM4R4FkhExA/cA1wKTAOuEpFpXbJdBxxU1cnAXcD33HOnAVcC04H5wI/c63W4\nQFVnq2qFV+U3vdvT0Eog4tyvvc+BxB+A/HFwaOdRyZefNo5DLe28WmWzt4wZKrxskcwDqlR1m6qG\ngOXAwi55FgIPuq9XAheJiLjpy1W1TVXfB6rc65njyPb9zWTj3K+dYAK32O1qxHioPzqQnD+1mPys\nAE++XRPnJGPM8cbLQFIKxP6VqHbTus2jqmGgHijq5VwF/iAia0VkqQflNgnaur+ZbAk5b/o62A5Q\nOP6YFklmwM+lM8byzPoam71lzBAxFAfbz1XVOThdZl8WkfO7yyQiS0WkUkQqa2ttbYIXqvY2MjLg\n/rHvb4ukYRdEjt4+/rNnTqQ5FOHxN3eloJTGGK95GUh2AeNj3pe5ad3mEZEAUAjU9XSuqnY87wMe\nI06Xl6rep6oVqlpRUlKSdGXMsapqmygvcHf8DfazRaKRo2ZuAcwaP4KZpYX86vUdqGoKSmqM8ZKX\ngWQNMEVEJolIBs7g+aoueVYB17qvFwEvqPOXYxVwpTuraxIwBfibiOSKSD6AiOQCFwMbPKyD6UHV\nviYm5EWcN5l5fb/ACPe7QpdxEoBr/66cLXsbeXGLTQU25njnWSBxxzyuB54DNgMPq+pGEfm2iCxw\nsz0AFIlIFXAjcJN77kbgYWAT8CzwZVWNAGOAv4jIW8DfgKdU9Vmv6mDia2htZ29DG2U5brdUZkHf\nLzKi3Hk+8P4xhxbOHsf4Udn8z/PvWavEmONcwMuLq+rTwNNd0m6Ned0KLI5z7neB73ZJ2wbMSn1J\nTV9V7WsCYExmO4i/f2MkI8vBF4T97x5zKOj38ZULpvDvj7zNcxv3MH/GCUmW2BjjlaE42G6OAx2B\npDjYBplft6fPAAARDklEQVT5zl0P+8ofgKKTYP973R7+1JxSThmbz3ee2kxreySZ4hpjPGSBxPRL\n1b4mMgI+8mjpX7dWh+IpsH9Lt4cCfh+3fXw61QcP8+OXtvb/ZxhjPGWBxPRL1b4mTizOxRdqgqxk\nAsnJzhhJONTt4bNPKmLBrHH86KUqNtfYTa+MOR5ZIDH98u7eRiaPzoO2Bqdrq79Gn+pMAa59J26W\nZQumU5gd5MaH3yIUtj24jDneWCAxfVbf0k71wcNMG1cArUkGknGnO8+734ibZVRuBv/5qdPYXNPA\n/77Q/XiKMWbwWCAxfbaxph6A6eMKoa0xuUAy6kTIKoRd8QMJwEenjeHTc8r40UtbWfvBwf7/PGNM\nylkgMX22abczVjF9XIEbSJIYIxFxWiW9BBKA2xZM44TCLG5Y/ib1h20fLmOOFxZITJ9t3N3AmIJM\nivMykx8jAZjwd7B3AzT3fGfEgqwgd195OjX1rXzzsfW2UNGY44QFEtNnG3fXO91a7Ych3ArZI5K7\n4EkXAgrvv9Rr1rkTR3LjR6fy1Ns1PFx57NYqxpiBZ4HE9MnhUISqfU1Ot1aL24LIKU7uoqVzIGsE\nvPfHhLJ/8UMncc7kIm5btZGqfY3J/WxjTNIskJg+WbfzEFGF0yeMgGb3LoY5Rcld1OeHUy6DzU9C\nqKX37D7hritmk5MR4PrfvGmr3o0ZZBZITJ+s2X4AEZg7YRS0uIEkN8kWCcCsqyDUCO88lVD20QVZ\n/GDxLN7Z08h3ntqU/M83xvSbBRLTJ2u2H+DkMfkU5gSh5YCTmGzXFsDEc5xNHF//ESQ4iH7BKaNZ\nev6J/Or1Hfz2bzuSL4Mxpl8skJiEhSNR3vjgIBXlI52Ezq6tUclf3OeDc290FiZu7nrbmvj+/ZKT\nOX9qCd96fAOrt/U868sY4w0LJCZh7+xppDkU4YxyN3C07He2kM9KctZWh9mfgbGnwRP/Ans3JnRK\nwO/jf686nQlFOSx9aC0bd9enpizGmIRZIDEJe/ndWgDOOtEdXG/e77RGfCn6Z+QPwqKfOc8/Pgf+\nexrcPQt+/jH44K9xTyvMDvLgP8wjN8PP5+5fbZs7GjPALJCYhL34zj6mjytgTEGWk9BYAwXjUvtD\niqfAF/4MF9wMJ34YyubBoR3w4Mdhx+q4p40flcNvl55FZsDPFT/5Ky/ZLXqNGTAWSExCDjaHeGPH\nQS48ZfSRxPpqKByf+h+WPwY+9DX4xI/g0z+FL7wChWWw8h8h1Bz3tIlFuaz84tmUjczhH3+xhv94\nejOHQzY12BivWSAxCXlmwx6i6mye2Km+GgpKvf/hOaPgk/dCQzW8+sMes5aNzOGRL57NkjPGc98r\n27jkf17h0TeqCUds+3ljvGKBxCTksTerOakkl5mlhU7C4UPOPluFZQNTgAlnwfRPwqt3Q0NNj1lz\nMgL856dO4zf/dCY5GX5ufPgtLvzBy9z78lbqmtoGprzGDCMWSEyvttY2sWb7QT41pwzpuDd7XZXz\nXDR54Apy0a0QDcNL/5lQ9r87qZinv3oe935uLmMLs7jjmXc46z//xFd++yavb6uzTR+NSZHAYBfA\nHP/u//M2MgI+rqiIGQ/puKNhyckDV5BRJ0LFP8Kan8LZX07oZ/t8wvwZY5k/YyxV+xr5zeqdPPJG\nNU+8tZvJo/P47JkT+NScMgqzgwNQAWPSk7VITI921LXwyNpdLJpbRkl+5pEDezdBIMtZjT6QPvTv\nEMyFP327z6dOHp3PrR+fxupvXsR/LTqN3MwAtz+xiTP/43m+vvJtW4NiTD9Zi8TEpaose2IjAb/w\n1QunHH1wx2tQOtfZcHEg5RbDOTfAi9+BbS/DiR/q8yWygn4WV4xnccV4Nuyq51evf8Dj63axonIn\nZ5SP5Jqzy7lk+lgyAvY9y5hEiJf9xCIyH7gb8AP3q+odXY5nAr8E5gJ1wBJV3e4e+wZwHRABvqqq\nzyVyze5UVFRoZWVlqqo1bPzopSrufHYL37p8GtedO+nIgeY6+P4UOO9GuPCWgS9YqBnuPQ9a6+Hv\nn4LRpyR9yfqWdn63die//OsH7DjQQkl+JksqxvPRaWOYWVqIzye9XkNVaQlFONAcoq45xIHmNg42\nO3dyDPiFgM9HwC9kBnwUZgc7HyNzMhK6vjEDTUTWqmpFr/m8CiQi4gfeBT4KVANrgKtUdVNMni8B\np6nqP4vIlcAnVXWJiEwDfgvMA8YBzwNT3dN6vGZ3LJD0TXskyv88/y73vLiVj88axw+vnH1kkB3g\ntf+DP9wMX3wNxkwfnELWvgu/+JgTTMafCe0tznTk1gYoLIXJH4EZi6Cswrmdb6xoFA5thz3rnS46\n8cHYmTDpfKLBXF5+r5YHX9vOy+/Wogojc4KcMraA8uIcCrKC+HxCS1uYhtZwZ8A40OQEj7ZwhEKa\nCeOnhUy0195jpSAQZvTIEUwsyqW8OJfJo/OYMjqPyaPzGJGT4dVv0JheJRpIvOzamgdUqeo2t0DL\ngYVA7B/9hcAy9/VK4P/E+Yu1EFiuqm3A+yJS5V6PBK5p+khVOdjSzvv7m/jr1jpWVO5k54HDLKkY\nz3c+OeNIEFGFHX+FV+6E8vMGL4gAlEx1VsD/5S7YtRYy8mDKxZBVCHVbofLnsPpeGDEBxp/lrEVp\nbYC692DfO86W9QAI4H6Z8mfim3wRF0xbyAWLL+QAs3jlvf28tnU/W/Y28cdNe2lsDROJKiMylJMy\nDzEts5aP+XcxKXsX44I7KGn9gKyws0WLSoBITgmR3DGEc0bTnjOGiCq+5n34mvcSaKkls20/gWiI\n9sYg1c2l/HXbFNaET+J+PYn39QRG5WUzZXQeU8Y4gWXy6DzGj3QCWn5WYMi3ZA6HIhxsCTmP5nYO\ntITY39jG/qY26ppC7G9qcx8hmtrC+AT8PiEnI0BRXgZFuRkU5WZSnJ9BcZ5z++eSfPc5L5OC7MDR\nX4KMJ7wMJKVA7L1Qq4Ez4+VR1bCI1ANFbvrrXc7tWPnW2zVT5vMPrmF7XUvnNNHOtpse9XTUNNIj\naR3v9ej3XRqAfToXuCP8X5yoOxEUiTkr9r10Po5cueO9oO57Os9zfoAyEShHucYnZBf4CG4V+C/n\nGIoz9ba9GQrKYMH/xv/FDZSCE+Bjd3Z/rLXeubfJplVO8GttgIxcKDoJZi1xWiBjT4PRpwICO1fD\nlmecnYe3PA3AqGAun8jM5xOBTGcsKLcdskIQbnOu36bQsSwlp9iZRVayCEadBCjScoBA014CjXvI\nbNwF+9Y6v+v8sVA4GkpPhbzRkD2SYOshJu1ZT/nO1/lMyLlTpCI0awHNe7Jo2wVhFaL4aEU4DOwF\nfCKIOOEQkSOfawr/dh4miy/nfr/f56tCKBwlHI3SHlHaI1H3oUSi3feIBHziBopMivMzOWl0HvmZ\nAaIKEVWaWsMcaA6x61Arb1XXc6A5FPdaGQEfmQEfmQE/mQEffjf4dv7eAIn53REvfYh68qvnkhnw\ndiwzbQfbRWQpsBRgwoQJ/brGxKLcIx+AHPXU+S2nu/+48fIcuYYcdU7sP1SJl8d9DtScSGMo2zlL\n5Ogw0lkIN2RIzOvO40eHH0Tw+XxkZwTIzQxQkp9FVjAQ80Pl6OeSU5yFgVkF8X9xx4OsQmc34dmf\nSSz/iR9yHpf8h7OVfXUlHPoAQk1O4IiGwZ/pbCjpz3DuCjlyojNrrfhkyE3yLpEuiUagdgvsWosc\n2kFecy157YdRjdIaCtF0OERre5iw+4e4LRJF1fnKoQrRmNep0u7LZNrY/n/eIkLQL2T4nTGioN9H\n0O8j4BPysgKMzMlgZE4Go3IzGJkTpDgvk8LsYJ9aW9GocrAlxP6mELVui6a2sY3GtjBt4QihcJS2\ncJS29qjzO1I96otb7JfC2C+MMe+GrIEIhV4Gkl1A7EZMZW5ad3mqRSQAFOIMuvd0bm/XBEBV7wPu\nA2eMpD8V+Nbl0/pzmsd+PNgFSG8+nzOuUtZrt7BHP98PY6Y5jxgCZLuPweBZsz9FfD6hKC+TorxM\nTh6bP9jFGXa8nN+4BpgiIpNEJAO4Euh6x6JVwLXu60XAC+r09awCrhSRTBGZBEwB/pbgNY0xxgwg\nz1ok7pjH9cBzOFN1f6aqG0Xk20Clqq4CHgAecgfTD+AEBtx8D+MMooeBL6tqBKC7a3pVB2OMMb3z\ndB3J8cKm/xpjTN8lOv3Xlu4aY4xJigUSY4wxSbFAYowxJikWSIwxxiTFAokxxpikDItZWyJSC3ww\niEUoBvYP4s8fSFbX9DWc6juc6grd13c/gKrO7+3kYRFIBpuIVCYyhS4dWF3T13Cq73CqKyRfX+va\nMsYYkxQLJMYYY5JigWRg3DfYBRhAVtf0NZzqO5zqCknW18ZIjDHGJMVaJMYYY5JigSSFROS/ROQd\nEXlbRB4TkRExx74hIlUiskVELolJn++mVYnITYNT8tRIp7oAiMh4EXlRRDaJyEYRucFNHyUifxSR\n99znkW66iMgP3fq/LSJzBrcGfScifhF5U0SedN9PEpHVbp1WuLdvwL3Fwwo3fbWIlA9muftDREaI\nyEr3/+xmETk7XT9bEflX99/wBhH5rYhkpfKztUCSWn8EZqjqacC7wDcARGQazhb504H5wI/c/7B+\n4B7gUmAacJWbd8hJp7rECAP/T1WnAWcBX3brdBPwJ1WdAvzJfQ9O3ae4j6UMzbuQ3QBsjnn/PeAu\nVZ0MHASuc9OvAw666Xe5+Yaau4FnVfUUYBZOvdPusxWRUuCrQIWqzsC5BceVpPCztUCSQqr6B1UN\nu29fx7mDI8BCYLmqtqnq+0AVMM99VKnqNlUNAcvdvENROtUFAFWtUdU33NeNOH9oSnHq9aCb7UHg\nE+7rhcAv1fE6MEJEThjgYvebiJQBlwH3u+8FuBBY6WbpWteO38FK4CKRVN4p3lsiUgicj3NPJFQ1\npKqHSNPPFufeU9nunWhzgBpS+NlaIPHOPwLPuK9LgZ0xx6rdtHjpQ1E61eUYbvP+dGA1MEZVa9xD\ne4Ax7uuh/jv4H+Dfgaj7vgg4FPPlKLY+nXV1j9e7+YeKSUAt8HO3K+9+EcklDT9bVd0FfB/YgRNA\n6oG1pPCztUDSRyLyvNvP2PWxMCbPzTjdIr8evJKaVBGRPOAR4F9UtSH2mHtr6CE/9VFELgf2qera\nwS7LAAkAc4Afq+rpQDNHurGAtPpsR+K0MiYB44BcnC72lPHsVrvpSlU/0tNxEfl74HLgIj0yt3oX\nMD4mW5mbRg/pQ01PdRyyRCSIE0R+raqPusl7ReQEVa1xuzf2uelD+XdwDrBARD4GZAEFOGMII0Qk\n4H4zja1PR12r3e6SQqBu4Ivdb9VAtaqudt+vxAkk6fjZfgR4X1VrAUTkUZzPO2WfrbVIUkhE5uN0\nDSxQ1ZaYQ6uAK93ZEJNwBuz+BqwBprizJzJwBsBWDXS5UySd6gJ0jhE8AGxW1f+OObQKuNZ9fS3w\n+5j0a9wZPmcB9THdJMc1Vf2GqpapajnOZ/eCqn4WeBFY5GbrWteO38EiN/+Q+fauqnuAnSJyspt0\nEbCJNPxscbq0zhKRHPffdEddU/fZqqo9UvTAGUTfCaxzH/fGHLsZ2ApsAS6NSf8YzgyvrcDNg12H\nJOufNnVx63MuTtfG2zGf6cdw+ov/BLwHPA+McvMLzsy1rcB6nFkyg16PftT7w8CT7usTcb70VAG/\nAzLd9Cz3fZV7/MTBLnc/6jkbqHQ/38eBken62QK3A+8AG4CHgMxUfra2st0YY0xSrGvLGGNMUiyQ\nGGOMSYoFEmOMMUmxQGKMMSYpFkiMMcYkxQKJMcaYpFggMcYYkxQLJMYYY5Ly/wFB6ym/WKAzyQAA\nAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11dd413c8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 票价跟年龄特征相似\n", "survived = titanic[titanic.Survived==1].Fare\n", "dead = titanic[titanic.Survived==0].Fare\n", "df = pd.DataFrame([survived, dead], index=['survived', 'dead'])\n", "df = df.T\n", "df.plot.kde()" ] }, { "cell_type": "code", "execution_count": 106, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 891.000000\n", "mean 32.204208\n", "std 49.693429\n", "min 0.000000\n", "25% 7.910400\n", "50% 14.454200\n", "75% 31.000000\n", "max 512.329200\n", "Name: Fare, dtype: float64" ] }, "execution_count": 106, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 设定xlim范围,先查看票价的范围\n", "titanic.Fare.describe()" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11de30518>" ] }, "execution_count": 107, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAD8CAYAAABdCyJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcVNWd///Xp6p6p7uBZl+kUVABEZQWjaJflcQlRhgT\nDDquM2bMJDFjxu/4jcnXuOSXfEezOWZiYhw1McYMuEVxSRiVuEdjY3ABJDaL2oAsDXQ39N71+f1x\nb0PT9lK9VG/1fj4elXvr3HNvnbqGfte5y7nm7oiIiHRVpK8bICIiA5uCREREukVBIiIi3aIgERGR\nblGQiIhItyhIRESkWxQkIiLSLQoSERHpFgWJiIh0S6yvG9AbRowY4YWFhX3dDBGRAWXlypU73X1k\nR/VSIkgKCwspLi7u62aIiAwoZvZBIvV0aEtERLpFQSIiIt2iIBERkW5JiXMkIpIa6uvrKS0tpaam\npq+bMqBkZmYyYcIE0tLSurR+UoPEzM4CbgeiwN3ufkuL5RnAb4A5QBmw2N03mdlc4K6masBN7v77\nRLYpIqmrtLSU3NxcCgsLMbO+bs6A4O6UlZVRWlrK5MmTu7SNpB3aMrMocAdwNjAduNDMpreodgWw\n292nALcBt4bl7wJF7j4bOAv4pZnFEtymiKSompoaCgoKFCKdYGYUFBR0qxeXzHMkc4ESd9/g7nXA\nEmBhizoLgfvC+YeB+WZm7l7l7g1heSbQ9BjHRLYpIilMIdJ53d1nyQyS8cBHzd6XhmWt1gmDoxwo\nADCz481sNfAO8M/h8kS2mZjta6H4VxCPd2l1EREJ9Nurttz9dXefARwHfMvMMjuzvpldaWbFZla8\nY8eOgxfW18Cvz4EnvwHF9/Rco0VEetiyZcu45ZaeORU8ZMiQHtlOS8kMks3AxGbvJ4RlrdYxsxiQ\nT3DSfT93XwvsBY5KcJtN693l7kXuXjRyZIs7/De+AFXhx6x6oBNfSUSk5zU0NLS5bMGCBVx33XW9\n2JrOS2aQvAFMNbPJZpYOXAAsa1FnGXBZOL8IWOHuHq4TAzCzScCRwKYEt9mxD/8MkTSYdw1sWQXV\ne7rw9UREDrZv3z7OOeccZs2axVFHHcXSpUspLCxk586dABQXF3PqqacCcNNNN3HJJZdw0kkncckl\nl3DCCSewevXq/ds69dRTKS4u5te//jVXXXUV5eXlTJo0iXh4OH7fvn1MnDiR+vp61q9fz1lnncWc\nOXM4+eSTee+99wDYuHEjn/rUp5g5cybXX3990r530i7/dfcGM7sKWE5wqe697r7azL4LFLv7MuAe\n4H4zKwF2EQQDwDzgOjOrB+LAV919J0Br2+x047athhGHw6QT4eWfwPY1wbyIDBo3P7GaNVsqenSb\n08flceO5M9pc/sc//pFx48bx1FNPAVBeXs43v/nNNuuvWbOGl19+maysLG677TYefPBBbr75ZrZu\n3crWrVspKiri3XffBSA/P5/Zs2fzwgsvcNppp/Hkk09y5plnkpaWxpVXXsmdd97J1KlTef311/nq\nV7/KihUruPrqq/nKV77CpZdeyh133NGj+6K5pJ4jcfen3f1wdz/M3b8flt0QhgjuXuPu57v7FHef\n6+4bwvL73X2Gu89292Pd/bH2ttlp29bA6BkwKrxyeFvns0hEpKWZM2fyzDPP8M1vfpOXXnqJ/Pz8\ndusvWLCArKwsAL74xS/y8MMPA/Dggw+yaNGiT9RfvHgxS5cuBWDJkiUsXryYvXv38uqrr3L++ecz\ne/ZsvvzlL7N161YAXnnlFS688EIALrnkkh77ni2l3p3t1XugohRGT4e8cZCZH/RIRGRQaa/nkCyH\nH344b775Jk8//TTXX3898+fPJxaL7T8c1fJejZycnP3z48ePp6CggLfffpulS5dy5513fmL7CxYs\n4Nvf/ja7du1i5cqVnH766ezbt4+hQ4eyatWqVtvUG5dD99urtpJm1/pgOuJwMINRM4JLgUVEumnL\nli1kZ2dz8cUXc+211/Lmm29SWFjIypUrAXjkkUfaXX/x4sX84Ac/oLy8nKOPPvoTy4cMGcJxxx3H\n1Vdfzec+9zmi0Sh5eXlMnjyZhx56CAjuVH/rrbcAOOmkk1iyZAkADzyQvAuLUi9IykuDaX548dfw\nQ2F3QkPui4i065133mHu3LnMnj2bm2++meuvv54bb7yRq6++mqKiIqLRaLvrL1q0iCVLlvDFL36x\nzTqLFy/mt7/9LYsXL95f9sADD3DPPfcwa9YsZsyYweOPPw7A7bffzh133MHMmTPZvLnVC1x7hLl7\nx7UGuKKiIt//YKs/3wHLvw3/ZyNkD4fnb4Xn/x2u3waxjL5tqIh0y9q1a5k2bVpfN2NAam3fmdlK\ndy/qaN3U7JGk5UDWsOD90EMAP9BTERGRTknBIPkI8icE50cAhk0Kpnt0eEtEpCtSMEhKgyBpMvSQ\nYLrnw75pj4jIAJd6QVK5DXLHHnifOxYsokNbIiJdlFpB4g5VOyFnxIGySBRyRkLlx33XLhGRASy1\ngqS2AhrrguBobsho2Lutb9okIjLApVaQ7AsGTjuoRwKQO0Y9EhHpcTfddBM/+tGPur2d5gM/9kcK\nElCPRESkG1IsSMIHXGW30iPZtwPijb3fJhEZVL7//e9z+OGHM2/ePNatWwfQ5jDvTzzxBMcffzzH\nHHMMn/70p9m2LfhBW1ZWxhlnnMGMGTP40pe+RH+/cTy1Bm1sCpKW50hyx4DHg+W5Y3q/XSLS8/5w\nHXz8Ts9uc8xMOLvtpxWuXLmSJUuWsGrVKhoaGjj22GOZM2dOm8O8z5s3j9deew0z4+677+YHP/gB\nP/7xj7n55puZN28eN9xwA0899RT33NO/n+SaWkFS1dahrTA8Kj9WkIhIl7300kucd955ZGdnA8Fo\nvTU1NfuHeW9SW1sLQGlpKYsXL2br1q3U1dUxefJkAF588UUeffRRAM455xyGDRvWy9+kc1IrSPbt\nhIy8T46pldssSERkcGin59Cb4vF4m8O8f/3rX+eaa65hwYIFPP/889x0002938AekHrnSFr2RiA4\n2Q6wV0EiIl13yimn8Nhjj1FdXU1lZSVPPPEE2dnZbQ7zXl5ezvjx4wG47777DtrO7373OwD+8Ic/\nsHv37l7+Jp2TYkGy85PnR+BAkFTqyi0R6bpjjz2WxYsXM2vWLM4++2yOO+44oO1h3m+66SbOP/98\n5syZw4gRB37k3njjjbz44ovMmDGDRx99lEMOOaRPvk+iUmsY+Z+fCMMK4cLffbLSvx8CsxbDZ3/Y\n6+0TkZ6hYeS7TsPIJ6qqLHgGSWtyCg7cZyIiIglLrSCp2QNZQ1tflj3iwFVdIiKSsNQJkvoaaKiB\nzDaCJGcE7Cvr3TaJSI9LhcP1Pa27+yx1gqRmTzBts0dSoB6JyACXmZlJWVmZwqQT3J2ysjIyMzO7\nvI3UuY+kOgyS9nokVWXBUPNNT08UkQFlwoQJlJaWsmPHjr5uyoCSmZnJhAkTOq7YhqQGiZmdBdwO\nRIG73f2WFsszgN8Ac4AyYLG7bzKzzwC3AOlAHXCtu68I13keGAtUh5s5w923d9iYDnskIyDeADXl\nbdcRkX4tLS1t/93h0nuSFiRmFgXuAD4DlAJvmNkyd1/TrNoVwG53n2JmFwC3AouBncC57r7FzI4C\nlgPjm613kbsXd6pB+3skbQw10HSjYlWZgkREpBOSeY5kLlDi7hvcvQ5YAixsUWch0HQ758PAfDMz\nd/+ru28Jy1cDWWHvpesS6ZGALgEWEemkZAbJeOCjZu9LObhXcVAdd28AyoGCFnW+ALzp7rXNyn5l\nZqvM7DtmCZ7Q2N8jyW99edP9JTrhLiLSKf36qi0zm0FwuOvLzYovcveZwMnh65I21r3SzIrNrHjH\njh3BuQ9oO0hy1CMREemKZAbJZmBis/cTwrJW65hZDMgnOOmOmU0Afg9c6u7rm1Zw983htBL4HcEh\ntE9w97vcvcjdi0aOHBkc2kofAtG01lvbdGhLPRIRkU5JZpC8AUw1s8lmlg5cACxrUWcZcFk4vwhY\n4e5uZkOBp4Dr3P2VpspmFjOzEeF8GvA54N2EWlO9p+1LfwHSsyEtWzclioh0UtKCJDzncRXBFVdr\ngQfdfbWZfdfMFoTV7gEKzKwEuAa4Liy/CpgC3BCeC1llZqOADGC5mb0NrCLo0fxXQg1qb3iUJtnh\nvSQiIpKwpN5H4u5PA0+3KLuh2XwNcH4r630P+F4bm53TpcZ01COBYOBGHdoSEemUfn2yvUcl2iPR\nyXYRkU5JnSCp3tP2FVtNcnRoS0Sks1InSGorOw6S7AIFiYhIJ6VOkNRVQkZu+3Wyh0N9FdRV9U6b\nREQGgdQIEm8Mph0GSXhTffWu5LZHRGQQSY0giceDaaJBosNbIiIJS40gSbhH0mwEYBERSUhqBEm8\nKUjy2q+3v0eiQ1siIolKjSBxHdoSEUmW1AiSeIKHtrKGAqYgERHphNQIkkTPkUSikDVMQSIi0gkp\nEiQJHtoC3ZQoItJJqREkTYe20hUkIiI9LTWCxBuDZ41EExjsOLtAzyQREemE1AiSeDyxw1oQDJOi\nHomISMJSI0i8sRNBEh7ack9um0REBgkFSUs5IyBeH4wWLCIiHUqNIOnUoS3dlCgi0hmpESTe2PHw\nKE00TIqISKekRpDEO3mOBNQjERFJUGoEiXfyqi1QkIiIJCg1gkQ9EhGRpEmNIMETD5KMPIjEFCQi\nIglKkSAh8SAx0zApIiKdkNQgMbOzzGydmZWY2XWtLM8ws6Xh8tfNrDAs/4yZrTSzd8Lp6c3WmROW\nl5jZT83MEmpMoldtgYJERKQTkhYkZhYF7gDOBqYDF5rZ9BbVrgB2u/sU4Dbg1rB8J3Cuu88ELgPu\nb7bOL4B/AqaGr7MSalCiPRJQkIiIdEIyeyRzgRJ33+DudcASYGGLOguB+8L5h4H5Zmbu/ld33xKW\nrwaywt7LWCDP3V9zdwd+A/xdQq1RkIiIJEUyg2Q88FGz96VhWat13L0BKAcKWtT5AvCmu9eG9Us7\n2GbrFCQiIknRr0+2m9kMgsNdX+7CuleaWbGZFQOdD5Lq3QeeYyIiIm1KZpBsBiY2ez8hLGu1jpnF\ngHygLHw/Afg9cKm7r29Wf0IH2wTA3e9y9yJ3LwI6f7Ld41BTnvg6IiIpKplB8gYw1cwmm1k6cAGw\nrEWdZQQn0wEWASvc3c1sKPAUcJ27v9JU2d23AhVmdkJ4tdalwOMJtaazPRLQ4S0RkQQkLUjCcx5X\nAcuBtcCD7r7azL5rZgvCavcABWZWAlwDNF0ifBUwBbjBzFaFr1Hhsq8CdwMlwHrgDx02xiIQy0i8\n8RomRUQkYQk8e7br3P1p4OkWZTc0m68Bzm9lve8B32tjm8XAUZ1qiHUyL9UjERFJWL8+2d5jItHO\n1VeQiIgkLDWCRD0SEZGkSZEg6WSPJD0b0rIVJCIiCUiNIOnsoS0IeiX7FCQiIh1JjSDpbI8Egiu3\n1CMREelQagRJpAtfU8OkiIgkJDWCpEs9EgWJiEgiUiNIutwj2dXzbRERGWRSI0i62iOpLYfG+p5v\nj4jIIKIgacv+YVLUKxERaU9qBElXL/8FnScREelAQkFiZo+a2Tlmnb1FvJ/oSrMVJCIiCUn0L+zP\ngb8H3jezW8zsiCS2qed1qUcyIpju29GzbRERGWQSChJ3f9bdLwKOBTYBz5rZq2b2D2aWlswG9oiu\nnCMZMjqYKkhERNqV8DEfMysALge+BPwVuJ0gWJ5JSst6Ulcu/80aBpEY7N3W8+0RERlEEnoeiZn9\nHjgCuB84N3xSIcDS/c9E78+60iOJRCBnlIJERKQDiT7Y6r/Ch1TtZ2YZ7l67/5no/VlXrxEYMgr2\nbu/ZtoiIDDKJ/oVt7WmFf+7JhvRLQ0arRyIi0oF2eyRmNgYYD2SZ2TGAhYvygOwkt63vDRkFH7/d\n160QEenXOjq0dSbBCfYJwE+alVcC305Sm/qPIaODQ1vxxq5dQiwikgLaDRJ3vw+4z8y+4O6P9FKb\n+o8ho8Ebg2FShozs69aIiPRLHR3autjdfwsUmtk1LZe7+09aWW3wGDIqmO7dpiAREWlDR4e2csLp\nkGQ3pF9quilx7zbgqD5tiohIf9XRoa1fhtObe6c5/cz+HokuARYRaUuigzb+wMzyzCzNzJ4zsx1m\ndnEC651lZuvMrMTMrmtleYaZLQ2Xv25mhWF5gZn9ycz2mtnPWqzzfLjNVeFrVGJftQsO6pGIiEhr\nEr2P5Ax3rwA+RzDW1hTg2vZWMLMocAdwNjAduNDMpreodgWw292nALcBt4blNcB3gH9rY/MXufvs\n8JW87kLGEEjLUY9ERKQdiQZJ0yGwc4CH3L08gXXmAiXuvsHd64AlwMIWdRYC94XzDwPzzczcfZ+7\nv0wQKH1riIZJERFpT6JB8qSZvQfMAZ4zs5F0/Ed+PPBRs/elYVmrddy9ASgHChJoz6/Cw1rfMTPr\nuHo36O52EZF2JTqM/HXAiUCRu9cD+/hk76K3XOTuM4GTw9clrVUysyvNrNjMinfs6MZQ8BpvS0Sk\nXZ0ZzfBIYLGZXQosAs7ooP5mYGKz9xPCslbrmFkMyAfafSShu28Op5XA7wgOobVW7y53L3L3opEj\nu3EPiHokIiLtSnQY+fuBw4BVQGNY7MBv2lntDWCqmU0mCIwLCJ6y2Nwy4DKCASAXASvc3dtpRwwY\n6u47wwdqfQ54NpHv0GVDRkPNHqivgbTMpH6UiMhAlOgw8kXA9Pb+yLfk7g1mdhWwHIgC97r7ajP7\nLlDs7suAe4D7zawE2EUQNgCY2SaCwSHTzezvCHpAHwDLwxCJEoTIfyXapi7JGxtMK7fC8MlJ/SgR\nkYEo0SB5FxgDbO2oYnPhM0yeblF2Q7P5GuD8NtYtbGOzczrThm7LC68PqNiiIBERaUWiQTICWGNm\nfwFqmwrdfUFSWtWfNA8SERH5hESD5KZkNqJfazq0VVHat+0QEemnEgoSd3/BzCYBU939WTPLJjhH\nMfhl5EJGvnokIiJtSHSsrX8iuPP8l2HReOCxZDWq38kfryAREWlDoveRfA04CagAcPf3geQNltjf\n5I2Dipa3wIiICCQeJLXheFnA/vs5Er4UeMDLG6ceiYhIGxINkhfM7NtAlpl9BngIeCJ5zepn8sYH\nw6Q01HVcV0QkxSQaJNcBO4B3gC8T3BtyfbIa1e/kjQc8uClRREQOkuhVW3Ezewx4zN27MQLiAJU3\nLphWbIFhk/q2LSIi/Uy7PRIL3GRmO4F1wLrw6Yg3tLfeoLP/pkSdcBcRaamjQ1v/SnC11nHuPtzd\nhwPHAyeZ2b8mvXX9Rf6EYLrnw75th4hIP9RRkFwCXOjuG5sK3H0DcDFwaTIb1q9kDIHsAtjzQV+3\nRESk3+noHEmau+9sWejuO8IReAeVD8uqWPnhLqKRCCdMHs6ovGbDxg+dBLsVJCIiLXUUJO1d7zpo\nroWtqW/kxsdXs7T4wJOBYxHjipMnc+0ZRxCLRoKT7Fvf6sNWioj0Tx0FySwzq2il3IBB8ZSnipp6\nLr/3L7z54R6uPOVQzp8zgdqGOL/58yZ++cIG3v6onHsvP46soZNg7ZMQb4RIagwzJiKSiHaDxN0H\n9V/MeNz53w++xdul5fziomM5e+bY/ct+sGgWcycXcO3Db/EvS/7KL6dNIhKvD+4laTr5LiIiCQ8j\nPyjd+8pGnlmzjRvPnX5QiDRZNGcCVXUN3PD4ah7LivF5CM6TKEhERPZL9M72QWfLnmp+8szf+PS0\nUVx+YmGb9S79VCHnHTOeO/5aHxTs3tQr7RMRGShSNki+//RaGuPOjefOwMzarXvTghnUDxlPHCO+\na1PvNFBEZIBIySBZs6WCp97eypf/12FMHJ7dYf38rDSuO3cWH/swNq5f0wstFBEZOFIySP5zxfvk\nZsS4Yt7khNc5+6gxlGeMo3xLCRU19UlsnYjIwJJyQVKyvZI/vPsx/3BSIflZid9TaWaMmXQkY307\nv35lU/IaKCIywKRckPz61U2kxyJcflLivZEmw8ZPZbTt5r6X1lFerV6JiAikWJBU1NTz6JubWTBr\nHMNz0ju/gWGFRHCG1m7h3pc3dlxfRCQFJDVIzOwsM1tnZiVmdl0ryzPMbGm4/HUzKwzLC8zsT2a2\n18x+1mKdOWb2TrjOT62jS66aeWRlKVV1je1e7tuugikAfH5SDfe+vFHnSkRESGKQmFkUuAM4G5gO\nXGhm01tUuwLY7e5TgNuAW8PyGuA7wL+1sulfAP8ETA1fZyXapoeKSzl6Qj5Hjc/vzFc5oOAwAD5/\nSDWVtQ0s/ctHHawgIjL4JbNHMhcocfcN7l4HLAEWtqizELgvnH8YmG9m5u773P1lgkDZz8zGAnnu\n/pq7O/Ab4O8SaczarRWs2VrBF47txl3pWcMgewRjG0o5fvJwfvXKRuob413fnojIIJDMIBkPNP/J\nXhqWtVrH3RuAcqCgg22WdrDNVj2yspS0qHHurHGJVG/biKmws4QrTzmULeU1PP2OnuMuIqlt0J5s\nN7MrzazYzIp37NjBY6u2cNoRo7p2kr25gsOg7H1OO2IUh47M4b9e2kDQORIRSU3JDJLNwMRm7yeE\nZa3WMbMYkA+UdbDN5semWtsmAO5+l7sXuXtRZu4wdu6t5QtzemCwxYKpsG8HkdpyvjTvUN7dXMFr\nG3Z1f7siIgNUMoPkDWCqmU02s3TgAmBZizrLgMvC+UXACm/n5727bwUqzOyE8GqtS4HHO2rInuo6\n8rPSOO2IUV35HgcbMTWYlq3n88eOpyAnnbtf2tD97YqIDFBJC5LwnMdVwHJgLfCgu682s++a2YKw\n2j1AgZmVANcA+y8RNrNNwE+Ay82stNkVX18F7gZKgPXAHzpqS2V1A/OnjSI91gNfN7wEmLISMtOi\nXHzCJJ57bzsbd+7r/rZFRAagpD6PxN2fBp5uUXZDs/ka4Pw21i1so7wYOKoz7Wh058wZYzqzStuG\nTQaLQtn7AFx0wiH84vn1/OqVjXx3YaeaJSIyKAzak+3NmcEpU0f2zMZi6cHz28tKABiVm8m5s8bx\nUHEp5VW6QVFEUk9KBEluRhpZ6T341OCCKbDz/f1v/3FeIdX1jSwt/rDnPkNEZIBIiSDJy+rhI3gj\njwyCpLEBgBnj8jnh0OHc9+oHNOgGRRFJMakRJJmJDxefkFHTobEWdh8YuPEfT5rM5j3VLF+9rWc/\nS0Skn0uJIIlGEh7XMTGjpgXTbav3F82fNppJBdnc+4pGBRaR1JISQdLjRh4BGGxfu78oGjEuP7GQ\nlR/sZtVHe/qubSIivUxB0hVpWTD8UNh+8PPbzy+aSG5GTM8qEZGUoiDpqlHTDuqRAAzJiLH4uIk8\n/c5WtpZX91HDRER6l4Kkq0ZNh13rof6gke657MRC4u785s8f9FHDRER6l4Kkq0ZPB4/DznUHFU8c\nns0Z08fwu9c/pLqusY8aJyLSexQkXTUqHPqrxeEtgCtOnkx5dT2PvFn6iWUiIoONgqSrhh8K0fSD\nLgFuUjRpGDPH53P3Sxt0g6KIDHoKkq6KpgUn3Le+9YlFZsbXTpvCprIqlr21pQ8aJyLSexQk3TF2\ndhAkrTxC5YzpozlyTC4/W1FCY1xPUBSRwUtB0h3jZkPNHti96ROLIhHj6vlT2bBzH0+oVyIig5iC\npDvGzg6mW1e1uvjMGWM4YnQuP13xvnolIjJoKUi6Y/QMiKTBltaDJBIx/mX+VDbsUK9ERAYvBUl3\nxDKC+0m2/LXNKmcfNYbpY/P44fJ11NTrvhIRGXwUJN3Vzgl3CHol158zjc17qvnVK5t6t20iIr1A\nQdJd7Zxwb3LilBHMP3IUP/9TCWV7a3uvbSIivUBB0l3jjgmmm1e2W+1bn51GdX0jt/zhvV5olIhI\n71GQdNfomZCWAx+93m61KaOG8E+nHMpDK0t5tWRnLzVORCT5FCTdFY3BhCL48M8dVr16/lQmFWTz\n7d+/oxPvIjJoKEh6wiGfCsbcqilvt1pmWpTv/91MNpVV8aPl69qtKyIyUCQ1SMzsLDNbZ2YlZnZd\nK8szzGxpuPx1MytstuxbYfk6MzuzWfkmM3vHzFaZWXEy25+wQ04IhpQvfaPDqvOmjuCSEyZx98sb\neX7d9l5onIhIciUtSMwsCtwBnA1MBy40s+ktql0B7Hb3KcBtwK3hutOBC4AZwFnAz8PtNTnN3We7\ne1Gy2t8pE4rAovBh++dJmvzfc6Zx5Jhc/u2ht9heWdPxCiIi/VgyeyRzgRJ33+DudcASYGGLOguB\n+8L5h4H5ZmZh+RJ3r3X3jUBJuL3+KSMXxh4NG19MqHpmWpT/vPAY9tY28JXfvqnzJSIyoCUzSMYD\nHzV7XxqWtVrH3RuAcqCgg3Ud+B8zW2lmVyah3V1z2OnBoa0OzpM0mTo6l598cTYrP9jNNx95G2/j\nhkYRkf5uIJ5sn+fuxxIcMvuamZ3SWiUzu9LMis2seMeOHclv1WHzwRsT7pUAfHbmWK498wgeX7WF\nW/+4TmEiIgNSMoNkMzCx2fsJYVmrdcwsBuQDZe2t6+5N0+3A72njkJe73+XuRe5eNHLkyG5/mQ5N\nnAvpuVDyXKdW++qph/H3xx/CnS+s5z+efT9JjRMRSZ5kBskbwFQzm2xm6QQnz5e1qLMMuCycXwSs\n8OBn+TLggvCqrsnAVOAvZpZjZrkAZpYDnAG8m8TvkLhoGkw+BdY/1+a4W60xM7638CgWzZnA7c+9\nzw+Xv6eeiYgMKLFkbdjdG8zsKmA5EAXudffVZvZdoNjdlwH3APebWQmwiyBsCOs9CKwBGoCvuXuj\nmY0Gfh+cjycG/M7d/5is79BpUz8D654K7ikZc1TCq0Uixq1fOJpYxLjjT+vZuqeGW75wNOmxgXjk\nUURSjaXCr9+ioiIvLu6FW0727YQfHQ7zvgHzb+j06u7Oz1aU8ONn/saJhxVwx98fy7Cc9CQ0VESk\nY2a2MpHbLPSTtyfljAgOb63+facObzUxM74+fyo/Pn8WxZt2c85PX2LlB7uT0FARkZ6jIOlpM86D\nXRuCZ5RCqcMAAAAQAUlEQVR00RfmTOCRr5xINGos/uWfuevF9cT1qF4R6acUJD1t2rkQTYdVD3Rr\nMzMn5PPk109m/rRR/L+n3+OCu17jg7J9PdRIEZGeoyDpadnDg17Jqv+G2spubSo/K407L57DDxcd\nzdqtFZx9+0vc/+dN6p2ISL+iIEmGuVdCXSW8vbTbmzIzzi+ayPJ/PYU5k4bxncdXc/E9r7Npp3on\nItI/KEiSYfyc4MmJf/45NDb0yCbHDc3iN/84l++fdxTvlJZz5n+8yM+fL6G+Md4j2xcR6SoFSTKY\nwSnXwq718NbvenCzxkXHT+KZa/4Xpx0xih/8cR3n/ufLrPpoT499hohIZylIkuWIz8L4Inj+Vqiv\n7tFNj8nP5M5L5vDLS+awp6qe837+Cjc/sZq9tT3T+xER6QwFSbKYwWduhopSeP6WpHzEmTPG8Mw1\np3DJCZP49aubOOMnL/Dc2m1J+SwRkbYoSJKpcB4ceym8+lMoXZmUj8jNTOO7C4/i4X8+kSGZMa64\nr5ivPfAm2yv0wCwR6R0KkmQ743uQOw4eujwYQiVJ5kwaxpNfP5l/O+Nwnlm7jdN+9Dx3vbieugad\njBeR5FKQJFtmPiy+H/ZthyUXQV3yLttNj0W46vSp/M83TuGEQwv4f0+/x9m3v8hL7/fC81hEJGUp\nSHrD+GPhvDuh9C/w20VQndyrrApH5HDP5cdx7+VFNMSdS+75C1++v5iNuvdERJJAQdJbZpwHX7g7\nCJO7ToXNyTln0tzpR45m+TdO4dozj+DFv+3k0z95gW89+jZby3v2KjIRSW0aRr63ffgaPPQPULkF\njloEx1wME4+H9OykfuyOylru+FMJD7z+AWbGhcdN5EsnH8rE4cn9XBEZuBIdRl5B0hdqyuGlH8Mb\n9wZDqWCQXQCxjGB503+TIaNg7NEwbSEcdjpEut+B/GhXFT997n0eW7WZxrhz9lFj+cd5kzn2kKGE\nDwwTEQEUJAfpd0HSpL4a1q+ArW/Dvh3QWAsOGMG0cguUFkNtBYyaAWd+Hw47rUc++uPyGn796iYe\neP0DKmsaOGxkDovmTOS8Y8YzJj+zRz5DRAY2BUkz/TZIEtFQC2uWwZ++D7s3wtwvB5cUx3rmyYl7\naxt46u0tPLyylDc27cYMjpk4lPnTRvPpaaM5fPQQ9VREUpSCpJkBHSRN6qvh2Zvg9Tuh8OTgkuKs\nYT36ERt37mPZqi08u3Yb72wuB2BUbgbHFQ7nuMJhHDd5OEeOySMaUbCIpAIFSTODIkiavLUEln0d\nhh4CFz0Eww9Nysdsq6hhxXvbeW1DGW9s3MWW8uBO+cy0CEeMyWPGuDymj81j+rg8jhyTS3Z6LCnt\nEJG+oyBpZlAFCcAHrwY3N5rBhUtg4tykf+TmPdW8sXEX724uZ/WWCtZsraC8uh4ImjG5IIdpY/OY\nNjaX6ePymDY2jzF5mTosJjKAKUiaGXRBAlC2Hh5YBOWb4fO/DO5T6UXuzpbyGtZsqWD1lnLWbq1g\n7dZKPtxVtb/O0Ow0po0JQiUIl1ymjsolPabbl0QGAgVJM4MySAD2lcGSC+Gj12H+DXDSv/bIJcLd\nUVlTz3sfV4bBUsGaLRW893ElteGYX7GIMWXUEKaPy+OocfnBIbJxeeRmpvVpu0XkkxQkzQzaIAGo\nr4HHvwrvPgKT5sGCn0LBYX3dqoM0xp2NO/explm4rN5Swc69tfvrTCrIZsa4PGaMy2f6uOAczKhc\nXYYs0pf6RZCY2VnA7UAUuNvdb2mxPAP4DTAHKAMWu/umcNm3gCuARuBf3H15IttszaAOEghuYFz1\nAPzhOmiohlkXwDGXwoQiiET7unVt2l5Rw+rw0NjqLRW8u6Wcj3YdGL5lVG4GM8LzLZMKspk4PJtD\nhmczNj8rqVeONcadmvpGauobqQ6nNfXx/fPVdY3UNMSprW/EzIgYRMywcBoJy5qWRSNGeixCRixK\nRiwSzkfISAveZ8Qi5KTHiOhqOOln+jxIzCwK/A34DFAKvAFc6O5rmtX5KnC0u/+zmV0AnOfui81s\nOvDfwFxgHPAscHi4WrvbbM2gD5ImlR8Hd8y/eX8QKOlDYMRUyBoOeHAJcd2+8LU3mMYbIHNocCnx\nsEIYeUTwGnE4FEyBrKGda0M8DtW7gxss9792HrjhMi07aFf+BBg2KfjMZpcxl1fX7z/v0tRzKdmx\nl8b4gf+fpkWNUbmZDMtJY1h2OsOy0xmSGSM9GvyRTosahlHfGKe+0WmIx6lvjFPbPAzqG6muD8Lg\noICoj1PXGByGixAnj31EcOqJUU+UOtKI9/AQdUacLKsjOyOdjIxs8rLTyc2MkZeZRl5WjKFZ6QzL\nTmNodhpDs9MZmh187/ysNIblpJOTHtVFDZIUiQZJMq/ZnAuUuPuGsEFLgIVA8z/6C4GbwvmHgZ9Z\n8C9iIbDE3WuBjWZWEm6PBLaZunLHwGd/GJwv+dvyYFyv3ZugqizomaRlQd644A95ek4wjUSCIVv2\nlQXPmC95FuL1B7Y5ZHQQKNkFQaikD4F4YxBAjbXBSMZVu6B6VzCtKgNvbKVxBtE0aKz75KLsguAz\nCqaQX3AYnxp+GJ+aehgcMw4yp9FgaWwtr+HDXVV8uKuKD8qq2F5Zw56qenbtq+PDXVXsq22kvjFO\nXUMQGnF30qIR0qMRsiINDI3WMDxWQ0GshomRKoZH9jLc9jLUKslP30tuWiW5mZXkNFaQ3VhOZkMF\nGQ2VGJ/8oRWPZuBpOXh6Dh7LJp6WQzwtm3gsm3haNo1pOcRjWXg8jtVXha8gwK2+ikhDNZGGKqIN\n1cQaq4g1NnsIWS3U1mWw13LZYcPZ5sPY3DiU0oZ8PmQo230Y230o230o5eTQQIy0qJGfFQTM0Kzm\nYXNgvimM8sOyzFiEtFiwf9KjEfWGBoB43KmPhz+Owh9JdY1xqmobqKprDF8NLaYH5pt+LDX9iKrZ\nP3+g1+3uOMHFNJ2RzCAZD3zU7H0pcHxbddy9wczKgYKw/LUW644P5zvapmTkwsxFwauzGuuD8Nn5\nN9j5fvDatR52rAsCp25fEEqRKETTg95E1vADPZ+ckeFrRLP5kZA9PFgn3hgM+bLnI9jzAezaEFyB\nVrYeSp4LDtG1EItlMjE9h4mRGCdFYmDRA21wh/RGiMWDAIs3Hjytrw7Cq4Hg1er+ygu+x5DhkDUa\nsqYF7c0aHpRbJAjXxjpoqCXS1KurrzrQs6urguqtUL43LN8XtDM9O+yFZQfhPWRE+D7nwDQ9Jwh5\nd2ioIaO+ioyqXRRUbOHIyq1Q8R7Ulrfa9LhFqY9kUEcmdVVpNO6DRofGeDh1wwlCwgnm9wGtPVDA\nwsNzTZFiB/8PbUVNX3SGOnsgpdKG8PWsf293PW/lR0Min9eVgzrt/aF2oL7RqW+MB4ERD4Ij3sWD\nRxGDnPQYWelRstKjZMaiZKZHyUqLMGJIelCWFiUjFiUadraN4P8LqxL8jEF7F5mZXQlcCXDIIYf0\ncWsGkGhaEAojpiZn+5FoGD7DggEpW6qtDMOlJOjh1OyBmorgD3bzkGjqFZkdCBaLBj2s5u/TMoOg\nyMwPAjYjL+hZZQ0Pw2JY8J37u7oq2LvtwKtyG9SWE6mvJqM+CB8aasK/ar5/2hiPU9/QQF1DI/UN\nceobGqkL/yjF3Ym74/FgvrFZWZOmWd///uC/Zi2Xd1WXsqidlVouqonkcMzY4DBte4cB221Hu5/X\n+sL2Qra9z0qLRUiLGLFohFjUSIuE02iEWCSYpkWDc29Z6TFywpDISY+R3Ww+Kz04D9fVQ5//X4L1\nkhkkm4GJzd5PCMtaq1NqZjEgn+Cke3vrdrRNANz9LuAuCM6RdO0rSK/LyIWxs4KXHJCeDcMnB69O\niIYvXf8GJ/R1AwaxZN508AYw1cwmm1k6cAGwrEWdZcBl4fwiYIUHP3mWAReYWYaZTQamAn9JcJsi\nItKLktYjCc95XAUsJ/hRdK+7rzaz7wLF7r4MuAe4PzyZvosgGAjrPUhwEr0B+Jp7cAa3tW0m6zuI\niEjHdEOiiIi0KtHLfzXokYiIdIuCREREukVBIiIi3aIgERGRblGQiIhIt6TEVVtmVgms6+t29LER\nwM6+bkQf0z7QPmii/ZDYPpjk7iM72tCgHSKlhXWJXMI2mJlZsfaB9oH2QUD7oWf3gQ5tiYhItyhI\nRESkW1IlSO7q6wb0A9oH2gegfdBE+6EH90FKnGwXEZHkSZUeiYiIJMmgDhIzO8vM1plZiZld19ft\nSSYzu9fMtpvZu83KhpvZM2b2fjgdFpabmf003C9vm9mxfdfynmNmE83sT2a2xsxWm9nVYXnK7Acz\nyzSzv5jZW+E+uDksn2xmr4ffdWn4GAbCRzUsDctfN7PCvmx/TzKzqJn91cyeDN+n1D4ws01m9o6Z\nrTKz4rAsKf8WBm2QmFkUuAM4G5gOXGhm0/u2VUn1a+CsFmXXAc+5+1TgufA9BPtkavi6EvhFL7Ux\n2RqA/+3u0wmeY/S18L95Ku2HWuB0d58FzAbOMrMTgFuB29x9CrAbuCKsfwWwOyy/Law3WFwNrG32\nPhX3wWnuPrvZZb7J+bfg7oPyBXwKWN7s/beAb/V1u5L8nQuBd5u9XweMDefHEtxPA/BL4MLW6g2m\nF/A48JlU3Q9ANvAmcDzBjWexsHz/vw2CZ/t8KpyPhfWsr9veA999QviH8nTgSYIn26baPtgEjGhR\nlpR/C4O2RwKMBz5q9r40LEslo919azj/MTA6nB/0+yY8PHEM8Dopth/CQzqrgO3AM8B6YI+7N4RV\nmn/P/fsgXF4OFPRui5PiP4D/A8TD9wWk3j5w4H/MbKWZXRmWJeXfQqrc2Z7y3N3NLCUu0TOzIcAj\nwDfcvcLM9i9Lhf3gwdNEZ5vZUOD3wJF93KReZWafA7a7+0ozO7Wv29OH5rn7ZjMbBTxjZu81X9iT\n/xYGc49kMzCx2fsJYVkq2WZmYwHC6fawfNDuGzNLIwiRB9z90bA45fYDgLvvAf5EcBhnqJk1/XBs\n/j3374NweT5Q1stN7WknAQvMbBOwhODw1u2k1j7A3TeH0+0EPyjmkqR/C4M5SN4ApoZXaqQTPA9+\nWR+3qbctAy4L5y8jOGfQVH5peKXGCUB5s+7ugGVB1+MeYK27/6TZopTZD2Y2MuyJYGZZBOeI1hIE\nyqKwWst90LRvFgErPDxIPlC5+7fcfYK7FxL8u1/h7heRQvvAzHLMLLdpHjgDeJdk/Vvo6xNCST7Z\n9FngbwTHiP9vX7cnyd/1v4GtQD3B8c0rCI7zPge8DzwLDA/rGsEVbeuBd4Civm5/D+2DeQTHhd8G\nVoWvz6bSfgCOBv4a7oN3gRvC8kOBvwAlwENARlieGb4vCZcf2tffoYf3x6nAk6m2D8Lv+lb4Wt30\n9y9Z/xZ0Z7uIiHTLYD60JSIivUBBIiIi3aIgERGRblGQiIhItyhIRESkWxQkIiLSLQoSERHpFgWJ\niIh0y/8P1AkqU6b3WKkAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11da06dd8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot(kind='kde', xlim=(0,513))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "可以看出低票价的人的生还率比较低" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 组合特征" ] }, { "cell_type": "code", "execution_count": 111, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.collections.PathCollection at 0x11e0b2ac8>" ] }, "execution_count": 111, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2MHPWd5/H3d8YNjEmOMcscgsGsDcvZAnHYMAeOHK0C\n0cU8XIJDsknQJYtWObF/EClEaO7sTbSwq0T45MvT6u7QsZtciDZLeIzDBbQOC0irRQpkjG2MAR9O\ngJjBYO/CkByekPH4e3909bimp6qrqru6q7rm85JGM1P9UN+u7v7Wr36P5u6IiEh1DRQdgIiIdJcS\nvYhIxSnRi4hUnBK9iEjFKdGLiFScEr2ISMUp0YuIVJwSvYhIxSnRi4hU3JKiAwA47bTTfMWKFUWH\nISLSV3bs2PHP7j6SdL9SJPoVK1YwMTFRdBgiIn3FzF5Ncz9V3YiIVJwSvYhIxSnRi4hUnBK9iEjF\nKdGLiFRcKXrdSHdt2znJ1u37eH1qmjOHhxjfsIqNa0eLDkukK/R5X0iJvuK27Zxk84N7mJ6ZBWBy\naprND+4BWPQffqkefd6jqeqm4rZu3zf3oW+Ynpll6/Z9BUUk0j36vEdToq+416emM20X6Wf6vEdT\noq+4M4eHMm0X6Wf6vEdToq+48Q2rGKoNzts2VBtkfMOqgiIS6R593qOpMbbiGg1Q6oUgi4E+79HM\n3YuOgbGxMdekZiIi2ZjZDncfS7qfqm5ERCouMdGb2XIze8LMnjezvWb2xWD7bWY2aWa7gp+rQ4/Z\nbGb7zWyfmW3o5gsQEZHW0tTRHwVucfdnzOz9wA4zezS47Zvu/t/Cdzaz84HPABcAZwL/YGb/xt3n\nd24VEZGeSCzRu/tBd38m+Ps3wAtAq5aNa4Efuvt77v4ysB+4NI9gRUQku0x19Ga2AlgLPBVs+oKZ\nPWtm3zWzZcG2UeBA6GGv0frEIH1o285J1m95nJWbHmb9lsfZtnOy6JBEJEbqRG9m7wMeAG52918D\ndwDnAmuAg8DXs+zYzG40swkzmzh8+HCWh0rBGvOJTE5N4xyfT0TJXqScUiV6M6tRT/I/cPcHAdz9\nTXefdfdjwF9zvHpmElgeevhZwbZ53P1Odx9z97GRkcS1baVENJ+ISH9J0+vGgO8AL7j7N0Lbzwjd\n7ePAc8HfDwGfMbMTzWwlcB7wdH4hS9E0n4hIf0nT62Y98Dlgj5ntCrb9GXC9ma0BHHgF+FMAd99r\nZvcCz1PvsXOTetxUy5nDQ0xGJPXFPp+ISFklJnp3/yfAIm56pMVjvgZ8rYO4pMTGN6yaN+c3aD4R\nkTLTXDeSmeYTEekvSvTSlo1rR5XYRfqE5roREak4JXoRkYpTohcRqTglehGRilOiFxGpOCV6EZGK\nU6IXEak49aOXwmzbOalBVyI9oEQvhWhMddyYRqEx1TGgZC+SM1XdSCE01bFI7yjRSyE01bFI7yjR\nSyHipjTWVMci+VOil0Jcvjp6VbG47SLSPiV6KcQTL0avExy3XUTap0QvhVAdvUjvKNFLIVRHL9I7\nSvRSiPENqxiqDc7bpuUIRbpDA6akEFqOUKR3lOilMFqOUKQ3lOilZzS3jUgxlOilJzS3jUhx1Bgr\nPaG5bUSKo0QvPaF+8yLFUaKXnlC/eZHiKNFLT6jfvEhx1BgrPaF+8yLFUaKXnlG/eZFiJFbdmNly\nM3vCzJ43s71m9sVg+6lm9qiZvRT8XhZsNzP7KzPbb2bPmtnF3X4RIiISL00d/VHgFnc/H1gH3GRm\n5wObgMfc/TzgseB/gKuA84KfG4E7co9aRERSS0z07n7Q3Z8J/v4N8AIwClwL3BXc7S5gY/D3tcD3\nve5nwLCZnZF75CIikkqmXjdmtgJYCzwFnO7uB4Ob3gBOD/4eBQ6EHvZasE1ERAqQOtGb2fuAB4Cb\n3f3X4dvc3QHPsmMzu9HMJsxs4vBhrSokItItqRK9mdWoJ/kfuPuDweY3G1Uywe9DwfZJYHno4WcF\n2+Zx9zvdfczdx0ZGtE6oiEi3pOl1Y8B3gBfc/Ruhmx4Cbgj+vgH4cWj7Hwe9b9YB74SqeEREpMfS\n9KNfD3wO2GNmu4JtfwZsAe41s88DrwKfCm57BLga2A8cAf4k14hFRCSTxETv7v8EWMzNH464vwM3\ndRiXiIjkRHPdiIhUnBK9iEjFKdGLiFScEr2ISMUp0YuIVJwSvYhIxSnRi4hUnBK9iEjFKdGLiFSc\nEr2ISMUp0YuIVJwSvYhIxSnRi4hUnBK9iEjFKdGLiFScEr2ISMUp0YuIVJwSvYhIxSnRi4hUnBK9\niEjFKdGLiFScEr2ISMUp0YuIVJwSvYhIxSnRi4hUnBK9iEjFKdGLiFTckqIDECm7bTsn2bp9H69P\nTXPm8BDjG1axce1o0WGJpFapRK8vZHGqeuy37Zxk84N7mJ6ZBWByaprND+4BqMTrk8UhserGzL5r\nZofM7LnQttvMbNLMdgU/V4du22xm+81sn5lt6FbgzRpfyMmpaZzjX8htOyd7FcKiVeVjv3X7vrkk\n3zA9M8vW7fsKikgkuzR19N8DrozY/k13XxP8PAJgZucDnwEuCB7zP81sMK9gW9EXsjhVPvavT01n\n2i5SRomJ3t3/EXgr5fNdC/zQ3d9z95eB/cClHcSXmr6QxanysT9zeCjTdpEy6qTXzRfM7NmgamdZ\nsG0UOBC6z2vBtgXM7EYzmzCzicOHD3cQRp2+kMWp8rEf37CKodr8i9Kh2iDjG1YVFJFIdu0m+juA\nc4E1wEHg61mfwN3vdPcxdx8bGRlpM4zj9IUsTpWP/ca1o9x+3YWMDg9hwOjwELdfd6EaYqWvtNXr\nxt3fbPxtZn8N/CT4dxJYHrrrWcG2rmt88arY86Psqn7sN64drcxrkcWprURvZme4+8Hg348DjR45\nDwF/Z2bfAM4EzgOe7jjKlPSFLI6OvUh5JSZ6M7sb+BBwmpm9BtwKfMjM1gAOvAL8KYC77zWze4Hn\ngaPATe4+G/W8IiLSG+buRcfA2NiYT0xMFB2GiEhfMbMd7j6WdD/NdSMiUnFK9CIiFVepuW4kP1Wd\nu0ZkMVKilwU0kZdItajqRhao8tw1IouREr0sUOW5a0QWIyV6WaDKc9eILEZK9LJAleeuEVmM1Bgr\nC1R97hqRxUaJXiJp7hqR6lDVjYhIxSnRi4hUnBK9iEjFKdGLiFScEr2ISMUp0YuIVJwSvYhIxSnR\ni4hUnBK9iEjFaWSsiPSMFrQphhK9iPSEFrQpjhK9SEWVrfTcakEbJfruUqKvoLJ9waX3ylh61oI2\nxVFjbMU0vuCTU9M4x7/g23ZOFh2a9FAZl4PUgjbFUaKvmDJ+waX34krJk1PTrNz0MOu3PN7zk78W\ntCmOEn3F6PJYoHUpuagrvY1rR7n9ugsZHR7CgNHhIW6/7kJVK/aA6ugr5szhISYjkroujxeX8Q2r\n5tXRRymiIVQL2hRDJfqK0eWxwMLScxxd6S0OiYnezL5rZofM7LnQtlPN7FEzeyn4vSzYbmb2V2a2\n38yeNbOLuxm8LKTLY2nYuHaUJzddwctbrmFUDaGLWpqqm+8B/x34fmjbJuAxd99iZpuC//8LcBVw\nXvBzGXBH8Ft6SJfH0iyqKkdXeotHYone3f8ReKtp87XAXcHfdwEbQ9u/73U/A4bN7Iy8ghWR9uhK\nb3FrtzH2dHc/GPz9BnB68PcocCB0v9eCbQcRkULpSm/x6rgx1t2deo+tTMzsRjObMLOJw4cPdxqG\niIjEaDfRv9mokgl+Hwq2TwLLQ/c7K9i2gLvf6e5j7j42MjLSZhgiIpKk3UT/EHBD8PcNwI9D2/84\n6H2zDngnVMUjIiIFSKyjN7O7gQ8Bp5nZa8CtwBbgXjP7PPAq8Kng7o8AVwP7gSPAn3QhZhERySAx\n0bv79TE3fTjivg7c1GlQIouNZhyVbtIUCCIFK+OUwlItmgJBpGCacVS6TYlepGCacVS6TYlepGBa\nkEO6TYlepGBRM47WBo133zta2CIhUi1qjJXCqKdJXeM1N47F8NIa/++3R5mangHUOCudU4leCqG1\nbecLTym89IQlzBybP6uIGmelEyrRS1s6LY236mmy2EutSeu9duvqR1dY1aVEL5nl0e+7LD1Nypjc\n4paDhPnrvUJ+VTnqy19tqroRoP5FX7/l8VSNf3n0+y5DT5OyVh9FNc42y7sqJ817muUzIuWiRC+Z\nE14epfEyrG1b1oFKRaz3mvSelvWkKOko0UvmhJdHabwMKx6VpfooSq/Xe016T8t6UpR0VEdfQVnr\nnbMmvPENqxi/b/e8niG1ActcGs9jxaNO6tjj6sLLNlCpF+u9Ju2jzCdFSaYSfcW0c4k9VIv+GMRt\nB1hQp9CqjqFLOq1OKEP1URq9uPpJ2kcZ2lSkfSrRV0w73Ranjx7LtH3r9n3MzM7v5z0z6z3vGtlp\nF83mgUpl6XUTpRfrvbbaRy+uKvpJGXtrtaJEXzHtXGJ7zIq/cdvzuoxf/eVH+G3ohHHSoPHi165O\n/fg84tCC2en000mx2/qxK6oSfcW0U+88aMZsRFYftOj6mDzqtpuTPMBvZ53VX34kdbLvlzr2qtBJ\nsa4fB/upjr5i2ql3vv6y5Zm251G33Zzkw9vT9tPulzp2qZZ+bJhWib5i2rnE/urGCwG4+6kDzLoz\naMb1ly2f257HPrJIO/pT1QlShH68kjSPq4jtobGxMZ+YmCg6DOmhFZseTnW/0eEhntx0RZejEUmv\nuY4e6leSvR4HAmBmO9x9LOl+KtFLIU4atNjqm7AyXw5Lf8i7h0w/Xkkq0UshXvza1ZENss3KfDnc\nS93oztdvXQTb0a0eMv3WMK1EL4UJ966JuxxWw2p3klU/dhFsRz/2kOkG9bqRUijD3Ddl1Y15ZhbL\n3DX92EOmG1Sil8J8ZdueBT191PC6UDeS1WJJgP3YQ6YbVKKXQnxl2x7+9me/mhuoNevO3/7sV3xl\n256CIyufvOaZCc8nP9BiMFyVaKxFnRK9FOLupw5k2r6Y5ZGsmieAixoJXcUEqCrBOlXdLAJl7F0R\nlWhabe+lsh2vPLrzRdXJQ32ai2PupXid3dJvPWS6QYm+4srauyLr/DoN3U7C3erh0mnMzcmqUQ3T\n6ZoDx9x5ecs1PXsdUoyOqm7M7BUz22Nmu8xsIth2qpk9amYvBb+X5ROqtKOsvSvWnRP9sYjbDvVE\nM37f7nnzz4/ftzvX5ezyPl7dWIKvnefstJ5fSwn2tzzq6C939zWhYbibgMfc/TzgseB/KUhZe1c8\nf/A3mbYD3PbQ3nmrWgHMHHNue2hvbnHlfbzK0jWy03r+shYYyqLsC6d3ozH2WuCu4O+7gI1d2Iek\nVNaVgd4+MpNpO8DUdPRtcdvbkffxKkvXyE4bJctaYCiDfrja6bSO3oGfmpkD/8vd7wROd/eDwe1v\nAKdHPdDMbgRuBDj77LMz77gs9YVJcbQTZ57PqZWBssn7eMX14z5lqJapjj3NcyadjDpplFR/9Hj9\nMPq20xL9B939YuAq4CYz+8PwjV6fGjOyG4W73+nuY+4+NjIykmmnZTmDJsXRTpx5P2dZu5ctjVmP\nNm47wLKltUzb25H38YqqMqkNGO/+7mhfrXWr/ujx+uFqp6MSvbtPBr8PmdmPgEuBN83sDHc/aGZn\nAIdyiHOespxBk+JoJ85uPGcZu5edsGSQIzML16Q9YclgxL3rbv3oBYzfv3veerW1QePWj16Qa2x5\nHq+orpFHfnd0QRVV2de67ccZG3ulH6522k70ZnYyMODuvwn+/gjwl8BDwA3AluD3j/MINKwsZ9Ck\nONqJsxvPWUbvxNSrx22H/k02zSeOlTFz8Zd9rdsyFhjKoB+qRzsp0Z8O/Mjq/Z6XAH/n7n9vZj8H\n7jWzzwOvAp/qPMz5ynIGTYqjnTi78Zy9kLUt4pShWmQj6ilDrathqpBsyvoeSnv6oQDSdqJ3918C\nF0Vs/xfgw50ElWR8w6rIS/jLV4+03cAVJSl5JZ3J2znTj29Yxfh9u+d1I6wN2LznbHV7EdoZZBQ3\nLiphvFTuipjnvR9KgJJN2Qsg/TsytqmJd3bWuefnB+aSf6cjGtMkr6Qzedtn+uZkl/X/Hmun3aCd\n7pV5K2qe9zxKgGXpdZa3qr6uovXlmrHrtzweeekbpd01R+P20e01TJP2205c3f7yrNz0cGTXKoPY\n4fXnbn4kdgqEX9x+dcQj6vJ8Ld14j3vxuSnTmqV5qurr6qa0a8b25eyVWRqt2m2kLKrRM+/G2F50\nRW1nkFE7k5rl/VrKMpgpSquRllUdpVrV11UGfZnoszRatdvAlTZ55T30OWm/WZNq2i9PJ6+jnT7W\nozHxxm2H/BNBN0YN5/GcSSe0uJPG5NR0aYfgp9HPPcoW4xQIXRc3CKU2OL+yupMGrjTJqxul5aT9\nXr46enBZ3PY0X55OX0c7g4yyvo60ryWLbgwCyuM5k05orXomlXUIfhpxJ8PhpbVSJ9GyDOBspS8b\nY+MasyZefWve0nSfuGTh1K5Zphb4xCWjPPHi4dj7p2mEzFqnnNRQ98SLhyMfF7c9TVe+PAagZe11\n8JPdB2O3f3XjhZG35d0tsd1G0aglEBsx59HQmnRCS9MzqWxD8NOI6o1UGzTeOTIz10jfmLEUyrOI\neVkGcLbSl4keoufnfmDH5Lyl6R7YMcnY75/KxrWjib0hom5/YMdky5JpXINwY3u7vTpaJc2spdo0\nXfmKuGRuNUHZyk0PZ+6W2G4jbdYTVGMJxIbGEojAvGTfyRc86YQ2lbJnUi+qPJqP++WrR1oWjlqJ\nOkm+9e5787pRw/EZS8uSRPuhyqlvE32zTqcOiLv9lnt386V7ds19aBv7SvMmduNMn7VUm6aEWbYB\nPOHLX0julgjk2k2y1Umj1RKIcVciWUWd0ADefe8o23ZOxr5fzaLak/LsfRVVkAmfBKPeh6QYmk+S\nK2JGEec5Y2mnyvb9iVKZRJ9Uuk66PS5xN64Q5i4ZjQUljChxXQ5b7SuNdgbbJJUwyzqAJ+pEG/Va\n1m95vO0TalSJ9IEdk7EnjVa9hVZsenhBVU47Nq4dZeLVt/jBU78ivLup6Rk2P7iHT1wyOi/GKHHt\nSXmOGYhbnjAs/D6UdbWzTpX1+xNWmURvRE+T2ajOHDA4FnGHgeAOaUpJzYtetNLqnp2c6RtJoFVb\nRDvPCfkP4Gl+zvBlfVrhE+3mB/cw8epbC6oGWl06t6paOGWoxru/OzpvkF24RNqQ5SosqionzbFZ\n8XtD/OyXbzPrHvtZbcRy91MHuP6y5fOOQ1KVSR5Xl81tE2nX9228P+20aS2tDUROfgfEnljzrE5K\nox+mQOjLAVNR4i7xAF7Zck3i7VGDNbqh0wEgZRxUEhVTbdDAs50c02g+oQ/VBjlxyUDkpfyypTV+\nO3Mst/c06XMU1hj4FXlsBiz1lWGc2oDxvpOWMHVkJlViaWdQW1hz20QWw0M1dt36kcQY4j5Hs8c8\n9sTX8Nl1Z/PVjRem+h4X/X3JU6UHTHVDcxfBpEWqs8prLviyDCoJ9xu+5d7dC2KamfXckzwsvFKa\nnpnFjMguje7kluQbn4e0n4tGaTfq/Zo55h0l+cZzvH1kpmdrxsa1TaRhoavmVjFEHqtZ55Sh2tz3\nMim+LNVJi0llEn3SohTDMX2Pw9s3rh3lyU1X8PKWa/j6py5K1Vc/bWwvb7mGJzdd0XEpogwt/M39\nhtNewnfL1JGZyH78raY8zircmyuNxgmhV+9Lt9eMbfW6k5Jwo5dQUgxxx2rqyMzc9zIpvrTHu0w9\nYnqhMon+1o9ewODA/I/bgIF7/bLVbOGLrQ0Yt30setGKqEFAW//oIj7975bPfYnNjtfxt5JnHizD\nGrBpSk29dObw0NxJ+pufXgPAl+7ZxUCOV2WNEbtpS/TXX7Z8LrZe6eaasXGve9BsLgnHjWpuHIOk\nGNJ8tlvF0eo5Wj3nYlCZxlioJ/Jw+jnmx7thvX1khtqg8a9OWMI70+nqNZP66rvDkgHjlKF6XWlc\nPs+zZBk3RXNzD4tuNgylKQ0NDtTrVrstXCJsrp/N60ojvI+k5xw0Y905y3jixcOs3PQww0tr1AZs\nwbTSndbRR+nmmrHXX7Y8so6+cUKDdL1PWsWQ5vFJccR1TQ0rW4+YXqhMiX7r9n2JdcIzs87JJy5p\nuxolrr516QlLWpZoBsxyHb7dnEDD/2/bOcn4/bvnDccev393TyYxGzSbK6m9/8TulCHC7SfNPY6y\nXGm0aocxq1e3RZU6W83R80pQ5ffMr96ZO/5vH5kBq1cRhq8Mt37yonkl2/Xnnjrvda0/99R5t392\n3dlz/w8P1XKd7iONr268kM+uO3tejI0G0IZOrxrSPD4pjqjnCB+7sqyZ3GuV6XXTqt96WNpeBln2\n0arXQLNOW/zX/uVPI+dsX7a0xs4//0ji7XmI6x1xcuhqKe000lkNAOHOduHjmfYzAPE9rZLen6TH\n9Gp6a83bLpC+101lqm7aHS2Yxz4aJfbm+XEGIvoadzoyNmnBjnYX9MiSOJr78g9YfeGXRjXZ5NR0\n7LiGTtQGoLlL9fTMLDffs4ub79mV+nkapcF2xiRE9Zm+fPUIW7fv40v37Gp7kFw7cyIpsUtalSnR\n96I0nXUfnfZdjvryt0poScnVIHYyt6SSbTiW5oFG/aZVn+usn5G04y+SFoaJ6mvfqp98q4nVukVX\nEeWTtkRfmUQPvRkRF95HVIkdOlsNKryfqCRkeOxIwbRqg8bWT140dyyS4ty2czJTibkMjPgFyL/1\n6TWZqlmaP1fhUaxpDdUG+O3MscjPYZoV08InoLjBS0trA0zH7CPqdTR/P8Kvq/nk0a2Bejp5dGbR\nVd1Aby5nw/tYGTNKsnGZ3skcGHEDo4aHah0PRpqZdf7i/xyf/S+pb/74ff2V5BviJr7a/OCzbFw7\nmjj/EUTPEdNO+8N0cHKOmt8lTS+mcJVf3OClIy32kWYCsvDrap7Kod0pFFol8qrOfVNGlel1A71f\n5SWp328nvRDivvzvTM/w6UuXdzxyN1xnH7uQhdVPZh1eQOQuzWtvdRqcnjkWe5Ju1o0xA82Dm9K2\nGzU+E2muJJr30e7raJxU2hmot23nJOP3NfUAu+94D7CiRnnnkSfKvqJUs8qU6IsoHXTab7iVuIbf\nU4Zq3P30gVz6iCfN21KCWr1Iebz2pGdYv+VxXg8SVDeEE2Savt9w/ISQdkKx8D7aHQna2E87U/He\n9tDeBVee4bnkixjlnUee6Mcrkcok+iJWeenWrHXbdk7y7ntHI28r0zzcVdat7qENJ9UG5k4mZw4P\ncdayk3jp0LstH9OYj37dOct48hdvJe4jnITb7fLauHpKKtREVdG0WlymVUx5j1pNalfLmidarV0B\n2U4YvWqfqEyiL2oOmLzbBXo1i6YUa3rmWOJaCc0a89GnmXYD5q+/e/nqkbZmn2yMOG1VqGlVwk2K\nLyqm5nWDO0mIaUdLZ8kTrdauSFuy7/VVQWUSfT+s8pJG2eaRkXLJ8tkIryMct6ZwnKgum3GFmrgS\nrll09V9josE06x93mhDTfp+y5IlWV0dprw56XQNRmcbYTmfnK4vFNquedE+7dfSvbLmGX9x+dep+\n+XHP7c6CqRpqg8atH72g5ePC2zttsE3zurPmiahck3Wfva6BqEyi73SejbLotysQ6b20/a2a6+i7\nJe65R4eHFszpEx6/kWa2yk4TYpp5mbLmiUauiev9leZY93oW2q5V3ZjZlcC3gUHgb9x9S7f21VCF\nYeFpe2DI4jRUG+QTl4xyz9MHWo6laC6lpv1cnXxCfEk1TquG2k5nq+y0SjZuH50WAhuPbXecTK/X\nme1Kid7MBoH/AVwFnA9cb2bnd2NfVZNm9r3wTIf5roOVryVNwZ00aHOvo5bTJ695H51af+6pfOvT\na+bNFBm1i0aD6KAZp7//hJbP2fz48/71yQuqNIKZi+c9d7NlS2vcft2F9QFMf3RR4gyNwFxf763b\n9/GJS0bnva7m/QwOGF/7ePZpFNq9mk7zuE6rZLt5pd/Jc/e6BqIrUyCY2QeA29x9Q/D/ZgB3vz3q\n/nlNgbBYNc97cs7IUn55+EjiQtPNwkP/k3o6tJoWIM3cK3+w+WGOxsQVNydPklazak5Nzyzofz4Q\nTA4UNxtm4zmb5/9PkmY916zHN49j0Wr+ojJPP9AvcRah0LluzOyTwJXu/p+C/z8HXObuX4i6vxJ9\n98TNoxK1yHYv2zSSFmtvV5akkGaumzTz0ETJe1rirHo1XbIUq/Rz3ZjZjcCNAGeffXZRYVRebI8I\n6l/6qpWSsrTTpGnoa7cXRNG9p8qwtrCUR7cS/SSwPPT/WcG2Oe5+J3An1Ev0XYpj0YtrzFLJLl1D\nX7sjSovuPVWVcSWSj251r/w5cJ6ZrTSzE4DPAA91aV/SQlnHF8Q1oubduNpKmmOT1Gc6ShmOb1nf\ndylGVxK9ux8FvgBsB14A7nX3vd3Yl7RW1vEF+2+/ZkFSX2L17b2S5tik6QVVxjVJy/q+SzEqtfCI\niMhikrYxtjIjY0VEJJoSvYhIxSnRi4hUnBK9iEjFKdGLiFRcKXrdmNlh4NWUdz8N+OcuhpMXxZmf\nfogRFGee+iFGKD7O33f3kaQ7lSLRZ2FmE2m6ExVNceanH2IExZmnfogR+idOVd2IiFScEr2ISMX1\nY6K/s+gAUlKc+emHGEFx5qkfYoQ+ibPv6uhFRCSbfizRi4hIBn2V6M3sSjPbZ2b7zWxT0fE0mNl3\nzeyQmT0X2naqmT1qZi8Fv5cVHONyM3vCzJ43s71m9sWSxnmSmT1tZruDOP8i2L7SzJ4K3vt7gumv\nC2Vmg2a208x+UuIYXzGzPWa2y8wmgm2les+DmIbN7H4ze9HMXjCzD5QtTjNbFRzHxs+vzezmssUZ\npW8SfckXHP8ecGXTtk3AY+5+HvBY8H+RjgK3uPv5wDrgpuD4lS3O94Ar3P0iYA1wpZmtA/4r8E13\n/wPgbeDzBcbY8EXq03A3lDFGgMvdfU2oG2DZ3nOAbwN/7+6rgYuoH9dSxenu+4LjuAa4BDgC/IiS\nxRnJ3fvbfXohAAACv0lEQVTiB/gAsD30/2Zgc9FxheJZATwX+n8fcEbw9xnAvqJjbIr3x8C/L3Oc\nwFLgGeAy6oNSlkR9FgqK7SzqX+orgJ9QX4a3VDEGcbwCnNa0rVTvOXAK8DJBm2FZ42yK7SPAk2WP\ns/HTNyV6YBQ4EPr/tWBbWZ3u7geDv98ATi8ymDAzWwGsBZ6ihHEGVSK7gEPAo8AvgCmvL2gD5Xjv\nvwX8Z+BY8P/vUb4Yob488E/NbEewTjOU7z1fCRwG/ndQFfY3ZnYy5Ysz7DPA3cHfZY4T6KOqm37m\n9VN9Kbo3mdn7gAeAm9391+HbyhKnu896/fL4LOBSYHXBIc1jZv8BOOTuO4qOJYUPuvvF1Ks8bzKz\nPwzfWJL3fAlwMXCHu68F3qWp+qMkcQIQtL18DLiv+bYyxRnWT4k+ccHxknnTzM4ACH4fKjgezKxG\nPcn/wN0fDDaXLs4Gd58CnqBeDTJsZo3F7It+79cDHzOzV4AfUq+++TblihEAd58Mfh+iXp98KeV7\nz18DXnP3p4L/76ee+MsWZ8NVwDPu/mbwf1njnNNPib7fFhx/CLgh+PsG6nXihTEzA74DvODu3wjd\nVLY4R8xsOPh7iHo7wgvUE/4ng7sVGqe7b3b3s9x9BfXP4ePu/h8pUYwAZnaymb2/8Tf1euXnKNl7\n7u5vAAfMrLFy+YeB5ylZnCHXc7zaBsob53FFNxJkbAC5Gvi/1Otsv1x0PKG47gYOAjPUSyefp15n\n+xjwEvAPwKkFx/hB6peUzwK7gp+rSxjnvwV2BnE+B/x5sP0c4GlgP/VL5hOLft+DuD4E/KSMMQbx\n7A5+9ja+M2V7z4OY1gATwfu+DVhW0jhPBv4FOCW0rXRxNv9oZKyISMX1U9WNiIi0QYleRKTilOhF\nRCpOiV5EpOKU6EVEKk6JXkSk4pToRUQqToleRKTi/j8NXaSLbWrIoQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11e068588>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 比如同时查看年龄和票价对生还率的影响\n", "import matplotlib.pyplot as plt \n", "\n", "plt.scatter(titanic[titanic.Survived==0].Age, titanic[titanic.Survived==0].Fare)" ] }, { "cell_type": "code", "execution_count": 138, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x11e6a9f98>" ] }, "execution_count": 138, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQnOd94Pfv815990zPgcFgBicBkIQokiApilgxpixq\nXbbl2Lsp26uUy5YcVVSVcmo3tZuKtfkjm1SlKrtVqThxUuVYiTfxbrJey7t2pDV9SKYkailRJAGB\nBMADxOAczAXM1dfbb7/Xkz+6p9kz6JnBANOYGczvUzU13W+/887Tb7/9/N7nVlprhBBCiJWMrU6A\nEEKI7UkChBBCiI4kQAghhOhIAoQQQoiOJEAIIYToSAKEEEKIjiRACCGE6EgChBBCiI4kQAghhOjI\n2uoE3I+BgQF96NChrU6GEELsKGfOnJnVWg+ut9+ODhCHDh3i9OnTW50MIYTYUZRS1+9mP6liEkII\n0ZEECCGEEB1JgBBCCNGRBAghhBAdSYAQQgjRkQQIIYQQHUmAEALwfZ/FxUV83wcgiiI8zyOKoi1O\nmRBbZ0ePgxBiM0xNTHDllVdIlcvUcjmGXnoJpqexazWCVIqhkyfJ5fNbnUwhHjgJEGJX832fK6+8\nwlPXr5M1DEqzs/xwepoXH3+cXDJJ3fMYP3uW9IsvYprmVidXiAdKqpjErua6LqlymazR+CoklSJT\nLKK1BiBhmo2SRBBsZTKF2BJdDRBKqWtKqfNKqXeUUqeb2/qUUt9RSl1q/i40tyul1O8qpcaUUueU\nUs90M21CAKTTaWq5HJU4BsDTmmpPD0opAOpRRJBKYdv2ViZTiC3xIEoQP621flpr/Vzz+deAV7XW\nx4BXm88Bfg441vz5KvB7DyBtYpdzHIcjX/gC7x48yE96ezl/+DDH/t7fY2bPHq7bNuOFAkMnT0r1\nktiVtqIN4peAzzYf/yHwfeC3m9v/hW6U7X+slOpVSg1rrae2II1iFxkeGaH/y1/GdV3S6TSO4xAd\nPUoQBNi2LcFB7FrdLkFo4NtKqTNKqa82tw21ZfrTwFDz8Qgw3va3N5vbhOg6x3Ho7e3FcRwATNMk\nmUxKcBC7WrdLEC9qrSeUUnuA7yilPmx/UWutlVJ6IwdsBpqvAhw4cGDzUiqEEGKZrpYgtNYTzd+3\ngD8DngdmlFLDAM3ft5q7TwD72/58tLlt5TG/rrV+Tmv93ODguutdCCGEuEddCxBKqYxSKrf0GPgZ\n4ALwLeBLzd2+BHyz+fhbwG80ezO9ABSl/UEIIbZON6uYhoA/a3YXtIB/pbX+K6XU28A3lFJfAa4D\nv9rc/y+AnwfGABf4zS6mTQghxDq6FiC01leApzpsnwNe7rBdA7/VrfQIIYTYGBlJLYQQoiMJEEII\nITqSACGEEKIjCRBCCCE6kgAhhBCiIwkQQgghOpIAIYQQoiMJEEIIITqSACGEEKIjCRBCCCE6kgAh\nhBCiIwkQQgghOpIAIYQQoiMJEEIIITqSACGEEKIjCRBCCCE6kgAhhBCiIwkQQgghOpIAIYQQoiMJ\nEEIIITqSACGEEKIjCRBCCCE6kgAhhBCiIwkQQgghOpIAIYQQoiMJEEIIITqSACGEEKIjCRBCCCE6\nkgAhhBCiIwkQQgghOup6gFBKmUqps0qpP28+P6yUelMpNaaU+mOllNPcnmg+H2u+fqjbaRNCCLG6\nB1GC+AfAB23P/xnwO1rro8AC8JXm9q8AC83tv9PcTwghxBbpaoBQSo0CXwD+z+ZzBXwO+DfNXf4Q\n+DvNx7/UfE7z9Zeb+wshhNgC3S5B/M/AfwXEzef9wKLWOmw+vwmMNB+PAOMAzdeLzf2XUUp9VSl1\nWil1+vbt291MuxBC7GpdCxBKqV8Abmmtz2zmcbXWX9daP6e1fm5wcHAzDy2EEKKN1cVjfwb4RaXU\nzwNJIA/8L0CvUspqlhJGgYnm/hPAfuCmUsoCeoC5LqZPCCHEGrpWgtBa/2Ot9ajW+hDwReC7Wutf\nA74H/HJzty8B32w+/lbzOc3Xv6u11t1KnxBCiLVtxTiI3wb+oVJqjEYbwx80t/8B0N/c/g+Br21B\n2oQQQjR1s4qpRWv9feD7zcdXgOc77OMBv/Ig0iOEEGJ9MpJaCCFERxIghBBCdCQBQgghREcSIIQQ\nQnQkAUIIIURHEiCEEEJ0JAFCCCFERxIghBBCdCQBQgghREcSIIQQQnQkAUIIIURHEiCEEEJ0JAFC\nCCFERxIghBBCdCQBQgghREcSIIQQQnQkAUIIIURHEiCEEEJ0JAFCCCFERxIghBBCdCQBQgghREcS\nIIQQQnQkAUIIIURHEiCEEEJ0JAFCCCFERxIghBBCdCQBQgghREcSIIQQQnQkAUIIIURHXQsQSqmk\nUuotpdS7Sqn3lFL/XXP7YaXUm0qpMaXUHyulnOb2RPP5WPP1Q91KmxBCiPV1swRRBz6ntX4KeBr4\nWaXUC8A/A35Ha30UWAC+0tz/K8BCc/vvNPcTQgixRboWIHRDpfnUbv5o4HPAv2lu/0Pg7zQf/1Lz\nOc3XX1ZKqW6lTwghxNq62gahlDKVUu8At4DvAJeBRa112NzlJjDSfDwCjAM0Xy8C/R2O+VWl1Gml\n1Onbt293M/lCCLGrdTVAaK0jrfXTwCjwPPDYJhzz61rr57TWzw0ODt53GoUQQnT2QHoxaa0Xge8B\np4BepZTVfGkUmGg+ngD2AzRf7wHmHkT6hBBC3KmbvZgGlVK9zccp4G8DH9AIFL/c3O1LwDebj7/V\nfE7z9e9qrXW30ieEEGJt1vq73LNh4A+VUiaNQPQNrfWfK6XeB/61Uuq/B84Cf9Dc/w+Af6mUGgPm\ngS92MW1CCCHW0bUAobU+B5zssP0KjfaIlds94Fe6lR4hhBAbIyOphRBCdCQBQgghREcSIIQQQnR0\nVwFCKfWiUuo3m48HlVKHu5ssIYQQW23dAKGU+ifAbwP/uLnJBv6fbiZKCCHE1rubEsTfBX4RqAJo\nrSeBXDcTJbZWFEV4nkcURff99/d7LCFWI9dW991NN1dfa62VUhpAKZXpcprEFoiiiCAIqNVqvHdl\nAi9WJA3Nk8cOkM/nO+5r2zamaS57rVwqMXP2LHatRlEpFJDXmiCVYujkSXIrjiXEvSiVSpy7dGPN\n61Tcv7sJEN9QSv0+jSky/lPgPwH+j+4mSzxIS5m6Uanw4VyR8NgzpHsKVAKfc5ducOrpx1uBoD0A\nrMz0oyhi5uxZ9i8sYCmFe/UqKddl9MQJQs9j/OxZ0i++eEdQEWIjoiji3KUbVKweLNvpeJ2KzbFu\nFZPW+n+kMf32vwUeBf4brfX/2u2EiQejPVMf9TwGb8+hr10ijiMs28GLFUEQ3LHvwSBg/8ICM2fP\ntor4QRBg12okTJMgjkn7PmnfJ4oiEqbZCCrNYwlxr4IgwIsVlu0A3HGdis2zZgmiOU3G32itf5rG\ndN3iIdOeqUdAxlBYlTJxGBKriKyhsW37jn2BZZm+aZrYtk2QSlH3PGzDwHUcdBjSb5rUo4ggn28d\nS4h7Zds2SUNTCXws2yEM/GXXqdg8a5YgtNYRECuleh5QesQD1srUowjTNBke6kMlwKgXyYZFnjx2\noFVsb98XaGT6qVTri2maJkMnTzJeKHAzkSB4/HHKzz7LzWSS8UKBoZMnpQpA3DfTNHny2AGyYRGq\ns3dcp2LzqPUmTFVKfZPGnErfodmTCUBr/fe7m7T1Pffcc/r06dNbnYwdb2W7wsCTT5JsZvxrNUKv\n1vDc3ogdRRGu65JOp3Ec50G+LdFmrY4FO9XD+J4eFKXUGa31c+vtdzeN1H/a/BEPqVw+T/rFF+/q\ny3Y3+5qmiWma0tNkm7iboL4TLV1nonvWDRBa6z9cbx+x823ky3Y3+0pPk+2hvWNBwjSpS28ysQHr\nBgil1DHgfwBOAMml7VrrI11Ml9jhOvY08VWrQVs8GOt1LBBiLXczkvr/An4PCIGfBv4FMtWGWMdS\nT5Mw8AEIA5+k9DR54NbrWCDEWu4mQKS01q/SaNC+rrX+b4EvdDdZYqeTnibbQ3vPsuu2Lb3JxIbc\nTSN1XSllAJeUUv85MAFku5ss8TDI5/Ocevpx6WmyxTbSCUGIdquWIJRS/7L58P8D0sDfB54Ffh34\nUveTJh4GpmmSTCYlU9pi8jmIe7FWCeJZpdQ+4NdozL3kAv/ogaRKPHDbsU/5dkwT3F+6tut7EqKT\ntQLE/w68ChwBzgAK0G2/pRfTQ2I79pPfrmMo7udcbcfzLMRaVq1i0lr/rtb6ceCfa62PaK0Pt/9+\ngGkUXbTeBHxblaZzl25QMnL4Tp6SkePcpRtbPu///Zyr7XiehVjP3QyU+88eRELE1tiO/eSDIGCx\n6nGl6OLHCsfQHOkxtrzv/v2cq+14noVYz12tSS0eXtuxn7xhGNyenaOGA8k8NRxuz85hGFt7ud7P\nudqO51mI9UiA2OW2Yz/5OI7ZM9BHgSqJ+hwFquwZ6COO4y1LE9zfudqO51mI9dzNOAixA22kt8x2\n6ie/tI51LpVgNDeIoQxiHZOPKxiGged5W5rG+zlXnf5WejWJ7UwCxEPoXnrLbIeZMdt7LlH3sP06\nykmTNDRH9ha48cYb26IH0P2cq/a/lV5NYruTKqaHzE7tLdM++yuZAcLcMAknwakTh3j+k8dxx8Z2\n3Htay079nMTuIgHiIbNWb5ntrNPsrz6Nu+04jnfke1rLTv2cxO7StQChlNqvlPqeUup9pdR7Sql/\n0Nzep5T6jlLqUvN3obldKaV+Vyk1ppQ6p5R6pltpe5jt1N4ya83+ulPf01oexvckHj7dLEGEwD/S\nWp8AXgB+Syl1Avga8KrW+hiNkdpfa+7/c8Cx5s9XaUwxLjZop/aWWWv21536ntbyML4n8fBZd03q\nTftHjbWt/7fmz2e11lNKqWHg+1rrR5VSv998/EfN/S8u7bfaMWVN6tXt1N4xa6V7p76ntTyM70ls\nf5u5JvVmJOYQcBJ4Exhqy/SngaHm4xFgvO3Pbja3rRogxOq2Q6+ke7FWunfqe1rLw/iexMOj643U\nSqks8G+B/0JrXWp/TTeKLxsqwiilvqqUOq2UOn379u1NTKkQQoh2XQ0QSimbRnD4f7XWf9rcPNOs\nWqL5+1Zz+wSwv+3PR5vbltFaf11r/ZzW+rnBwcHuJV4IIXa5bvZiUsAfAB9orf+ntpe+xccLDn0J\n+Gbb9t9o9mZ6ASiu1f4ghBCiu7rZBvEZGqvPnVdKvdPc9l8D/xT4hlLqK8B14Febr/0F8PPAGI3F\niX6zi2kTQgixjq4FCK316zQWF+rk5Q77a+C3upUeIYQQGyMjqYUQQnQkAUIIIURHEiCEEEJ0JAFC\nCCFERxIghBBCdCQBQjw0oijC87yHak2Fh/E9iZ1DVpQTD4WHcXW2h/E9iZ1FShBix3sYV2d7GN+T\n2HkkQIgd72Fcne1hfE9i55EAIXa8B70623rtApvRbvAwrTgn7Sg7l7RBcOeiLbKIy8Zs5Hx149y2\nVmdbqq/P57u2OlupVOLcpRt4sSJpaJ48doB8W7vAZrUbPMj31E3SjrKz7foAsfICTh89ypXphVUz\nALHcRjKA9TLX+5HL50m/+GJXA3sURZy7dIOK1YNlO1QCn3OXbnDq6cdbNxZL7QYJ06TueYyfPUv6\nxRfvKT0P4j1102afD/Hg7eoqppUNgftmZ3nn1dcoGVnIDFCxejh36YYUjVexkYbU9sz1bs/tRqsm\nTNMkmUx2LfMJggAvVli2A4BlO3ixarULdKPdoNvvqZuWzocF+L6PBdKOssPs6hLEyi+0BRiuB6oR\nNy3bwfMbGcBO/IJ221oZ4srz1TFzXePcbseqCdu2SRqaSuBj2Q5h4JM1dKtdoNVu4HmNO+YoIsjn\nd2S7wWawbZuSUoy//z5p38d1HMrPPsvoLj0fO9GuLkGsbAgMgTidJNZx43ngk2zLAMRyG2lIXcpc\nw8AH1j6327WLp2maPHnsANmwCNVZsmGRJ48daAW4VrtBocB122a8UNiR7QabSQO1dLr1s6H1hcWW\n29UliE4NgU+/0GyDqFbJNuvJd/MXfC0baUhdylzPXbqB56s1z+1GSiYPWj6f59TTj6/aLrDT2w02\nUxAE9GjN6OHDBHGMbRjc1HpbfI7i7uzqAAGdv9BDe/fKF/wu5fJ5EqdO4bou6XQax3FW3Xe9zHXJ\nVlTVbKQnm2mad31d7OYecUufY+h5JC1rR3fV3a12fYCAO7/wG8kAdruN9ky6m3O7VDK5duYMqlpF\n9/Swr4tVNSvbOzJHj1IdG7un9o/2YxWVQgF5rbe8HWUrAtXD0lV3N5MAIe7Zet0+75cCVBzff0LX\nsLIrpuu6nL14kZP9/aQdZ0NdM9uPZSmFe/UqKddl9MQJwi3s4rmVDf5S5baz7epGanF/1uv2ea+W\nMtqDxSLHlOJgsdi1RuqV7R2GUqTK5dad00a6qrYfK4hj0r5P2veJomjLpsrYDg3+O7mr7m4nAULc\ns430TNqIBzkP0cqeWLHW1HI5wubrG6k3bz+WbRi4joPrOJhL7ShbUP8uczqJ+yFVTOKebaRn0kY8\nyEbqTvXkRz79aSaX2iA2UG9+x7Eef5wQGj13mlU7D/ouWsZmiPuhtN65PZOfe+45ffr06a1ORtds\ntGFxq3rMdOP/Puh685XvoVarUSqVyOfzpFKpez4WsOX179tx0KHYWkqpM1rr59bbT0oQ29RGv9Rb\nmQl0o9fXg27cbH8PUxMTXHnlFVLlMmO5HEe+8AWGR0bu6VhLz7eSNBSLeyVtENvQRhsWt0NDZDds\nReOm7/tceeUVnrp+nWcWF3nq+nWuvPIKvu8/sDR0gzQUi3shAWIb2mjD4r00RHZzjv7NOvZGj7MZ\n/9d1XVLlMlmj8dXIGgapchnXdbv6f7thu6Rru6RDbJxUMW1DG21Y3Oj+5VKJqTNnUOUyOpdj+Nln\nSWcym1IFsVlVXVtVxZZOp6nlclTm58kaBpU4ppbLkU6nu/p/N1s3p1bfiekQ90YCxDa00RGoG9k/\niiKuvfEGuTNnWjNsflgsUhs5go95X1/izZr//26Ps9QYbBjGpq074DgOR77wBd5ttkHUmm0QnaYQ\n2a7rHXQawPjOxWs8e+KRB1rN1O2BlKL7JEBsUxttWLzb/T3Pw7t4kceqVWzDoF4uc+HsOeJ9J0hn\ne+7rS7xZk+zdzXHa79xdy4JqddMm9xseGaH/y19ed36p7Tqp4MoBjH4Ycv36NG4QkU3YD+wufqNT\nvIvtp2ttEEqpf66UuqWUutC2rU8p9R2l1KXm70Jzu1JK/a5SakwpdU4p9Uy30rWTbLRh8W73j0yT\nuFnHHgCBYWJZjeqo+xkNvVnrKK93nJWN8geLReZnZnCbad6MQWmO49Db27vm5IPbdd3o9gGMcRxz\ndXyS2E5i5Ice6CJY3RpIKR6cbjZS/9/Az67Y9jXgVa31MeDV5nOAnwOONX++CvxeF9O1qyWTycay\nqv39XM/luD44iBodBaWA+/sSb9Z6COsdZ+Wde9px6B8c5Fo+/0DXYdiu6z+0r1sRF6dJhRUOjIxg\nGOamTYey0XR0Wj9DbH9dHSinlDoE/LnW+onm84vAZ7XWU0qpYeD7WutHlVK/33z8Ryv3W+v4D/tA\nuW4pl0pMLs2UmsmQO358U9fh3qyBc6sdJ4oirr7++sd1/1HEeKHAgVOniOP4oRgouBmWeg+def8y\nrlP4eBW8sPhA2wG26/nZzbbrQLmhtkx/GhhqPh4Bxtv2u9nctmaAEPcml89z9Kd+qmtrYGzWwLnV\njrN05359qSdWTw/DJ0+uWR3UTdt1enjTNMlkMjz96KF1p0PpZia+Xc+PWN+WNVJrrbVSasPFF6XU\nV2lUQ3HgwIFNT9dusdYaGN3MLDbz2BrAMO5qGcv1/u9G0rVTzs+S9RZq2q5ddcXWe9ABYkYpNdxW\nxXSruX0C2N+232hz2x201l8Hvg6NKqZuJnY36mZmsdFjr1XFNHP2LIeKxUYVU7G4ZvfS9f7vRtLV\nzfOz2WMGVp6/1QLjduyqK7aHBz2S+lvAl5qPvwR8s237bzR7M70AFNdrfxAbczejWbs5ZcdGj10u\nlbj6+uvMfP/7XH39dcqlUuu1pUZqi8bUGBasOnJ86f/um5tjqFZj39zcsv+7kXR1+/wsjRkgM3Df\nvY3WOn/tZDpwsZaulSCUUn8EfBYYUErdBP4J8E+BbyilvgJcB361uftfAD8PjAEu8JvdStdudLd3\nvd3o1790FxtF0V0feykj3nvrFoQhlMtMt93V2rZNSSnG33+/Ndiv/OyzjHboeRUEAcHiIpM3b2J7\nHkEySWCarf97R7BZI12rnR/P81rputfztNqYgXs59kZKBZsxHbg0Qj+8uhYgtNb/8SovvdxhXw38\nVrfSstl20hdiI6OSoyjCSyQ2be2A9sDkJRL4SlFvrq621rGDIKA6OcmHb51B1X10wsF+/tllmbYG\nauk0yrKoOc6q7RCGYTA/M8NTMzONqTOKRd5NJnmkOQ5kI8FmKTN1q1UsIASKjoP74x9jVautaUvu\npcppacxAJfBbvY1M3+XM+5c3PMJ9I4F+tQb/u72uu91+sZO+aw8jGUm9QTutQW+jo5J9pbiYStGj\n9apTdvi+v+4o41bVzuxsIzOtVhnLZrne00OiXm8dGxqju9szAK01l6+Nc6zikcKgFnhcujbO8WaX\n7CAI6NGa0cOHCeIY2zAai/J0yADjOKZ/cJDS3BxuvU6YTtM/OEjcttZ1p2DTKWMyTZPM0aOcvXiR\nVLlMNZvFCENGLl9uBZdrvs+Jz3/+nsZ+tC++lCbC17rVPXUj02XcTamg/f1pYDJdoGJkyCYd9nY4\nZqfPfDPaL9YKACu/awNPPkmyORBRgsWDIQFiA3Zig956mcUd7ymKuN7Tw8Dzz3fMiCYnJnjn1dcw\nXI84neTpl19iX4e1EoIgIJyf59qNKXytcJTGOTTCSFs1kVutcvX115cF23QmQ6lUIk6mmHRsUtUK\ntUwWnUpTr9dJNTOIIJUi9DySltVxBHP7PE1WXx+9x4+37vrdvr5li/msDDaXXJcf/uQCkZlYduce\nRRHVsTFODgxgDA5S9n3Ovfsuw1qTsCyCapV3Ll7Ee/FFMpnMhj+r9t5GURTxxvvXWlVOUeDz4fUp\nXD8im+w8XUZ7ZrtWqaA9460nEoxFBvXpeVK+z4Lj8Hbg89lTz7b2X+0zv98qyU6TRi7dbK28Lhfm\n53nv4kWGR0eJM5ltf2P2sJAAsQHbde6dtaw3kV+nOvhEvd6x14vv+7zz6mv0zJYbma0b8M6rrzHw\nxV++oyRhGAZXyjUKODimRTEOWSjXOGLbOI7TMdhefOMNko6DKpeJpibpCWN6UznqQcjlmksikbir\n97Qy48kdP84kLAtES/uuDDau73OlWodDfTiJ1LK5qZbOVXopuDZLIQGQAGLDINqkMSRRFLWqnAzT\n5MbEBL6VxejZSyUK75gva+Xddubo0Y7dgFee9+LiIu9eucGB7B4SpklQ9ZgMPbyTnyCTybQ+874F\nl6SVwFtwW5/5/bRfdJo0sr301f5di6KI2vXrDAH7BgdRvr/tb8weFhIgNmCnru+71kR+S3XwF67c\nQGOiiDA+8WjHOnjXdanfnuPG9RnqsUHCiEnqIVzXvSNAxHFMfe8oF+YvotwyOpVmYO9oq2pnZbC1\nlMIdG+Pw4CAJ0yQk4iNbsxB4WD09HD5yENWcDmSt97SU8cTvXWy9n7rv8+hP/3THUdYrg42bSqEH\ne7Bth9CvY1hWa4K5lW0QcRyjRke57nlkwxDXcUgfPUoymbzvz6y9yqlSDTACj8OHj2EYBoaxfNK7\nlZm+W61y9uJFTg4MkLbtZd2AO93k5ColdLoPTBNDR2TqH6994bouhuuRtBrBOWklMFwP13Xp7e3d\n0KzD7VZOGrmy9NX+XVNRRFyvQ18ftmFgGkbXb8yk7aNBAsQGbHQa7u1krdGstzIFSnv2k/J9ao5D\nPlPgRIf9LMti3PUwVQYjkaIa1ohcD6XUHe0IhmEwM3MLPTtLtlqlkskwM1PAaGscbg+2lTDEjCLS\nzUCzsLjIwkKV24lektVZRm7d4hOGsez/dHpPnucxc+0mBSuLadqEUcDCtZscCYJVq33ag41hGEy+\n9Q6ld94k5ftUHYf8oZHW/2xvg6jlchx4+WWiyUnq1SpGJsPhZ5/dtOthqcrJ8zzSttmYtZbGfFnZ\ntvmy7gi2QKpcxhgcBJaXdFee99gwSI4Mk/CqENexiBh69NFWkEun08TpJN5SCSKsE+fSrfUx7mc5\n0/ZJI1eWvtq/a0alwtS+fTza24tpGF2/MZM1LD4mAWKDHrb1fYMgQCcyZJ7+NHEYkrEsdG2h491Z\nGIaEBx6hYs5ieTXCZD/OnjzXf/QjepRa1mjveR6Fax8xfHkMI4LYhKmExvM8HMe5I9h62SzJbJaw\nVsOrVDhbjZgYOMQto0DkmHw465P60WnsTM+6X9pqIk2P72MCsTKpJtafgqO9amdPdYGBW+Mfl6gG\nG5nhyjaIWGsmp6c5/JnPdG0OqLuZLqNVsnFdDKUImoscxc1G/fYMtdNNzqMvvED5o4+WtQUsHdtx\nHJ5++aWP2yByaZ5++aVlJcZ7mUqjNWlkELSqmFaWvtq/a321GrPnzlHt8o2ZrGGxnASIe/AwzS3T\n6l4ZRVhOgjDwSa8ym2s6naaQyzD1+AG0YaDDkIHrb3OkxySbTLYa7ROnTlGpVEhXKuQiHzsMCLAp\nVirLBmCtDLZutcr42bNM3brF9T37eb3naUJlE2LweHiFiZLPoT0Da35pk8kk2aOPcPPaxMclokMj\nd13tEwQBea0ZPXKAKIowTbPVQwpY1gax9DyO402pVlpLPp/n+U8e79h7rFPJZuill5icnu5Y0s3l\n8yROnVp2rD1rzMW1b2SEgS/+8ro91zbCNE0OnzrFpOOsWfpa+q4lk0ly69yYbUa1kKxhsZwEiF1u\nZffK1SZzg8bd5M98+gm+/eYFKr5BGp+nh/vINjPHhGkSzs8z9oMfYLguvl8jtzhLVoNrmUwkH7lj\n6c72YLvMNOmvAAAgAElEQVQUMJKPPEJ56k+II01gWiSjChkjoG9PY27Htb60pmnyqScf451EEjeI\n6LdNnn700F1/udsbrROOc0cPqa1qg1qr2qNVsunvx+rvJwQmp6dXnd12tWOtdY6WMunNzCQ7TRq5\nlrVuzDarWqjTeJTsLl7DQgLELrHy7qr9+XqTubUbGRnh135hENdt9CqaeOst6kuNo77P3NwcJ7XG\nUIpKocDkwf3kTRM/l2PkxIllDc2d0mWaJqOjo/yHn3oU3v4QLzJJGhFPHRwincoCH9fBGyvaJJaO\nlclk+NQTxyiVSuTzeVKp1F2fp/XamTq9BneO5bhXne6C16v2aPWuat7ZO3BHI257t9+NVqF0c+zP\nZpTGN7NaaCM3TLuBBIhdoFMXyOrY2B1f+Lv9EjiO06pmGDp5kmvNtSX8XI4+yyJtGERxTG9vL/1R\nRO7YMRKJBDN79izL1N1qddWMZ9/wMM/VXsdeKBIUejjx6AtEYbH1pT2yt8CNN97o+J5mfJ/q+Dg9\nnsdYc03p4Q5jNVazVjtTp2qxlWM57jXzXC0jXq/ao1PvupLj4L31Fsl6nZJS3MoU0IkMZuTj+iGJ\ngcGOx1ppJ4z92exqoY3cMD3sJEA85O7oAum6jS6Q/f2kHafjF36jdbkKUHHcuJtNJqk3e9T07t3L\nxWSS4UKBOJslc/RoK1P3Egl83+d4c9/29otSqcRPvvGnHH33fZJBiGdbfKhM/qOv/ZckEgkMw+DG\nG2/c8Z6eKhRQWjP59tscWFzk0J491ObnefeVV+j99V9HKbXqe1o5Urj9zna11+4l81xtFPpax1qt\n2kNrzeLiIul0etnAuDCXQ4chh4pFLODClRuU9uwn8/Sn8YOAW5MfMpQbxEmkVq1CWTmH1t3MVbVV\nulEt9DC1M94PCRAPuZVdIA2lSJXLWP39wJ2D/TZSl7uUqY0uLGAoRVwscjmT4VpPD8nmdBqPfe5z\nmJbVqo5qDdCqVvloYgKruaZHwjQJFhe5/IMfUJ2expm8ia4WscsVdMLBmZ5ifn6ew4cPN0ogK96T\nOTfH5cUKlTBGz9wmFYdEWpM1Tcz5eT567TV6oeNd/tTEBFdeeaXVwNte4lhr5PhGB07e67GSyeQd\n1R57sjbf+5M/ax3r2KefbQ2Mi6IIu1ma8H0fjUnK94nDECeRZHCgn1R9nihMdKxCWTnSetH3WbyL\ncTJb5UFUC+3WcRESIJq26gJY6/9uNE2d9l85uGupC2RIo666vaF1o3W5nWZKtQ4eZLR5B+01uyba\ntVqjD3+12soAs5ZF1Gy3yKVSuEHA/OwsJ/v7qfo+s1OTGEFAYWYWL5kgeCzCao4DWFmlEoQh46Em\nUa6hlUloJXDKLoNaUwpDFnyfT5TL5Np6Wi3d5fu+z5VXXuGp69cbk/k1Sxz9X/4ywKqjiB3H2dDA\nydVGJBd+5e+ilMIwjDWP1V7tobXme3/yZ61j1eYqnP/Tb/K3jx4ml0zilsucnZvDHRggYTYy9Zrj\nkLEswsCnN5Pk+U8e79iA3WnQ3YcLJYLBETJBuOY4ma3UzWqh3TwuQgIEW3cBrPV/N5qmtXqmpI8e\n5fvXJz6+21ylC6TneRuqy111ptTmF/Tmm28uH93bzLTStk2oNemjR5lyHObrdaqpFP1KkbYsqoCt\nNaWeHGPHjxDYNsr8+FJd2ZBcSSSYOXAcXfRJBj7V3n4W529ATwavp4e9fX3k2npatd/lu65Lqlwm\n2xywlTUMUuUyrtsYTbzaKOJOYznW6p/faURyVCzx+unzqGSGpKE5cvQo40ttQx2OtVTtsbi4uOxY\njmGRKJdZWl8+7Tj0Dw5yLZcjE4YYn3iUfKaAri2Qbl4bq3VV7TTozgk11jPPgGGuOU5mq3WjWmi3\nj4vY9QHibi6AbpQu1vq/wIYuyvWOdWV6AT75t0AZoGNmKhWe79AFcqN1uUszpS7MzrLg+5BKtWZK\njeN4WUazlGldyWZJ1Gronh4OP/ss6Uym1bvmxhtvNHpEJRJUsz1EUUzSNzAwqfb0LeuN1N5YXPB9\n7G//mMX+YTwFsYZEdYTR/+BpCoXCsp5WK+/M0+k0tVyOyvx8I8g1S1iJRKJRB5908Ipex1HEK9Ox\n1vWxckRyza8xpyMG0gMkUxkqgc+V6YWOn8t6x/LjkHou1+ohVo8irL6+VjfXUdvmBNzVNbyyVBQC\ncToJSq07TuZhtNvHRez6ALF0AaAUbrWMk0jihppyuUwul+vY02YpU7uf9YvXuvCADV2US8cyTPOO\n+YOWjmXYJmHdw0ok8ULVcXDXRutybdvGT6eJkkmSgJdMEqXTq48ZSKeZyw/iZTRp22Qvy+/6lu7G\nY6UYf/oZ6gtFMpUKtWyO+Pjjd3RXXfpb27Y5Mlzg/dslAuWQ1D5HRwcZGhpa9y7fcRyOfOELvNvW\nBrHnpZc48/7lxnWx/wAz4WUSYdBxFDHceefa/pkvfT62bS8bkRz0JsmPPE4ylVn2Gd/NoLul0c1n\nv/M9qLpQSPPJUy8xNTnJdNvsrZ3SuZ5O5+vpF45yZXoBr1rd9Pr97V63v9vHRez6AGHbNvXSHNfP\nvYHp+QQWmMNDKK1JmFCYn1rW02ZpxtFEvb5ut8ZO1T6ZtjvmtS68jVyUtm1DvcrlyTlCZWHpkGP9\nydb+9eIskxd+hF33CRIO+544jm0/1vFYa43Y7UQBGc8j3ZzaotzcvjKjqWez3LIzBMl+LNvB7VAq\nWrobr1arUPS5kvYIdYClbE5k0qu+f9M0+fQnH8X+8DKlWkg+leaZxx6547irZUTDIyP0f/nLrbEd\nZ96/3CqNmU6eTDbPJ4/uJ5fLrXs+2ht427uXLn3+n2+OSG79n3U+49Uy0GwuR+bxJ6jUfLIph0w2\n2zj3K2ZvvRedztfQGiOt7zWT3wl1+7t9XMSuDxBRFFG7dJE91y7h1ANKOmIu1kRPfppS3cO/dpMT\nQ40eP+0zjuaad8erdRHtNCDp7XMfsj+otoLLkaNHGZucw61EpB2TJ9tG/G70otRK4WuTAJtYa3Sz\nuiGKIsLrV+mfmWv2QikT5q4SRac6Hu9uvrTtXSDzWjN64gRRFNFvmssW7mnPaKIo4kbb+garlYqW\n7sZrNY+RmxdJulW8dAY3/yhBEKyZQRvKxLEbv1da6y7fNM3W2I5O7TChb5PJZNYNDu0NvCu7l1aa\n1YCnnn6c3t5eYP3PeLXPYqlK0XV6sRIGlagx7fpPpWwcwyCs15m8z7EKK8/XavX79zqIbrVq0WdP\nPEK9Xt+0KT02w0Zvmh4muz5AlMtlzJlbPFb3MYOA29Uq9bnblEtFcvkeqok05XqdpOPgNmccTVrW\nsj7hS+sGe7Uat955B1Uu4yeTFJOF1oAkwzSpjF1mOG22gstHFy7gZ/vxanUcY3n1yUYuyiAIUE6a\nR48M49c9nEQSVS82qp48D8OtowyLINZYhoVy6x2n6F760paMLIZpUNLxHXf57ZmWQ0RBKULoOC0F\n3Lm+Qalew1AGsY7JrzIaenFxEfvD9xiZuI4RxsSWwW0jpFL5mVaVUvvI6aVg7DoFrEyjdLK0+ppt\n23fU6a+VqXWqUkgTtZZkXTkKfaknlOu6GM1pqC2gVqsRx6rVvdRyEncExLV63qzVrhQEAcVqjYli\nkbpW2JHP0O05rsQRsWnjqMZ53Ug9+UZKAe3nfeWqgZ0CU6djd6pinZ5Z5F/9+XdxcciaMT/z6ScY\n2cAAx27ZTiWdB10lt+sDhG3bWFGI9usYlo0Z+ATVKh9emyKTmufwYD8Xbl4lXak0lpgcGuL8lesE\ngca2FdHRw7g//jGqXGZyfJx8tY7lpNA6JOzJozN9WKaN73tk6i7JfAHf9zGU4tr7F/lJZggfm4QR\nUy0X+dxnGiu5VavVu74obdtG1avULn60bII627bRWjMXhKQMC9tJUAvr1IKwtfhOu6WMJ5y4SqLm\nEqTSFEf2Llt3oD3TcgOfIONhWVZjTeYO6xm3X9BH9hZ459XXwPUgnWTo0892HA1dHB8nUZrDiHx6\nSkUq2Sx2dYEfnb1AKtdH2jE5uq+fSnMG0pXBOAp8Ft57jytXP2TcC9GHjpFLJXjs4F56e3vXHNy2\nVKXwzsVruJUIFfv4SvHG+9caPY32FnDbRqHHe/fy+vkrlEPIGjGP6grhRx9hVau4NZ9K3yD5ZvfS\nTtODrFayiaKo2a5k4dU9AGpB3MqYb83Os2APYSZSVNwyvuuxJ9NDJpGiFNaZL9c40uyZtfJzWJmx\nbKQU0J5ZmlGdwuQk16bnWqsGrgxMq2WuKwOxV3MZu34T9hzHSmZw/RrffvMCv/YLg1t6x76dejFt\nxXLHuz5AxFFEor+X+SuXsaoht9MO89kst6YmSBkxI3aNJ4f6MfJ5YsPglVvzXHcNjHpInDAZvTrO\nZ6pFDN9H3Zykni1gHv9EYzGZSoWpjy7gKoesEXO8N8uFq+PEkSaMAi65AdPGCIGZxAkq/PDcGCqZ\nI59y8OseYW74ri/K1aaoVkrR88QnmXv/IkatRtyTof/Eo3fMiQSNbqvq2iUGbi9iRprIVBSDMsYL\nTwGrNKzHqnFn3aHuu31ltzCTIQhDPpO0CAwHwzb54LXXeKpQwDEM/HKZdy9e5MlCAaNYpG9xnhPn\nz9OzUMJzHH74uZd4b2oOp2RhEXPr9Js84rooZTWCcW8PUaqXWGvCD89x5PYMsY4p2Fkm9XVcpXFP\nv8nI4f1Y9Toqjin5PknLarQXlEr4vt8Kwr7vU1pcZL5UYnD/cTJ2jsVmVc5nMwnSjkOlXOaP33qH\ny4UjRIaDGYfUpq9xa2Yeyw8IHIugugDVObKW4vDeAj86+z4VzyebdHjm8SOtNqmlaTtuvv02FIvo\nXI66keD82E3mFspoZXCsYPLJQ3vI5XIMDvRTWvDwKy5JIoIDjzCpIpyaR9zbj7N/lCAIiOOYWq3G\n+bFx3CAi3Zy8sL0t7G5Gg/u+T7lc5vzYOF6zHalaq3J9ap5jWCRN5+NVA5uBab0SaSsQVyOsoE4y\nnSVMNhrtTSdFxTNYXFzEcZyOpei15hfbrMx7u/Ri2qopT3Z1gIiiiNlz53hmeJjbzzxNbWGBaxUP\nW8MT1z6gkk4xbcbML9wmrTWuUsy7cOPYZ7CUSRgHDL7zVwymDCzbZjyK0QuzRGFIbJhM+5reWo3h\nqEo94XAujBgIIrJVlwXHYdzOMGcU0IaDE7qU/AQVUkTaYWZ6ikO9o8Dd9WJabYpq27bJpZNM7X+E\neqxJGIpcOtmxMdR1XXK1MvEPv4vtVgnSGfI/+zOtVeBW3vX59Rrq2iWONDPM9pXLAK698QbZt98m\n4XlUbZtriQTzZRerXqeeSGBYiitFl9i0MaIAXStxueJxa3GRhOth6ZhaTwa0xvbrZD76gEH/AsV0\nmul6lX0DezEtC2U46Lk5Zl/7S1TNxy7OggVhyUWlc8Rz02QNk6xbQlcWuWyaTMwu4NRqhKkUtWNH\n8H7v90lWqnjZDJX9BzHPncO5PUucSvP2oRkGjzxGxlKMFEtYmUZJJfZ93NlFZuyIuhHjxCE9txao\nZ4aIBnPoMECXqjx9eIje3l7+5gdvUD79E7LVKjOZDK/OztC/ZxgfE4cIdeUDqu98SBArLBUz05si\nOT3HIxWPWibFzYNH+bN//y6PHxiCwMWJY7Rh4sQBceQRzUxhVKt42SyqN83EW29huS4Xpm7hmWny\nGuYch9eLCxw1YxL1+h0DGDuNBp+YmOCv3zhHsR5SrVR57BNP0Ns3iGHZzPcP88F8Y32QKJWkb8Wq\ngWuVSFs0OAmHjBkz79cwnRSRX8Osl/h333+7cYO1osppZcnk8N4CV6cXNr0aaLv0YtroqP3NsqsD\nxNJJz9s28cgIC/k8idPvcPDKbUxMIiJuDyYwsikKqRRxrUakEjzy0Y/JVF2q6RQ1y8DTmpRhkE0k\nuJjvJZNKUnNs8Mocqrg4pk2tMs/C7Sn29u/F6c+TCwOuzi0wnSmjDYcwCDAxuDa9QCphYwQhfs0l\nmcmt28NlaRTualNUa6XwVYLANFDErQbsJUt3+v7sLJPvvsuLC3PsrddZrLm89tFHhGEI3NmjIxXV\nGc6lSDdHOLdftFEUUbpwgdTVG5SUSRwHlGyTvZFFj5WgXHQ5m7aws3tIWinq2mCsHvFIJoHnQ6kn\nx+T+UXoXFij29FDNZth/eYwhkngq5nJfisuVOpGyMY0YL2VwvH8viWSK2thtKkozalqUvYAgbTNS\nh1zo0m/CBzUPu1wlUangpTLcKpV4xq2TUiblm9OcvzzGkY+ukPIiRogINYz1PcLegT6SQYQfxzhA\noDVlw2SxHhMaMUYQUrGdRlUlBpFlU7QtqtUqhmFQfetNnrg+SUoZ1G7d5q3SIvziF8nl+5gvLTBz\n7iP6jB7MZIJKrUw8dpkjtypYOHjRLKEyWRw5TlGlmbl9g7rTT2g66Chm3/hlnrwxTgKDOjGXa0WG\nn3gCG5i88B61fB/9e0YJKjVu3LjE0JED9GQydwxgXDlOxPd9/uLfn6F2q0gmCHFrNS5ceI8X/tZn\niMMQ3/e5fegZLCdBFAYYldutVQOXSqRDS6PHy2XmmyXSjxvaG+1GfuCzd7CKuTBF1bNIq4A6MJsa\nwXRSy6qcTNNcVu1Tqnt8+80LDB1+FCeV2tRqoO3Si2mrljve1QHCtm2mfZ8PT5+GhQWCKCJZDwhC\nlygwsAjI1jUXBvdwOfAJUhnyC4sMXRnHjiEyYsYPDPGuk6bguiz296IOHsH4xOP0EpGrzGM2612M\nOCZXWWRWJ1CGgxkH7DMCzMoVTC+gGvkURx/DzPfjBXUKKiIdlvAXy6Tt5T2coPMMrZ1G4XqeRz1S\naNMgqEfYCZN6tHw942tvvEFw/n0qpQqDExNcGRqi7vvEiQQ5ralWq2Szjam22xtWG4Pbyh0Hofm+\nz1S5SqAVSa9GOWETRppqNksQRoTpLPVslneViV2pESYdSvuP4dbq1H2fXtsmXS6TrtWIDAPH9wlq\nPmWvik2Izu9jJp8i6wWUE0mMoIY9PQl+HSfwKWUylEf2MlcPsBcXcYtFkskEU5MzGAYYJY9yGBPF\nVTK+izlzG8IQ07LIFfL42sK0TJTn0VNcwPIWSZEj/8STjBt10mFIaXCQ+lAdv2ZQ14qEsigVBphK\nZclgUIoCrNocH/zF31BLmCTmZ0noGJSBHYakKxXMpR5XSlF00hSi5hKcponlBySimMjQqBAylSq1\n2Me2HOpmiqOHRzEMg9CrYf7E55GBAsowiIDblUpjZLVSZIM6sVcj0jE6DslVSncMYFwadb1ynEi5\nXCaamGC4EmNi0BP43JwZx5+9SS6d4NjBESbqMX7okTY0g4X+VgkijmOO5FLEc/P49Tp5penN9bcG\nUq6surHyffzyp54ijmN83+ePX3sX02l03liqcnJdl2QyuexvMQwqkcGwMlrH2sxqoO0wu+tGRu1v\npl0dIKIoYvbKFYzxcfZPTVFzHJRtE6RTZGsRKINbPb2ksdAKahik4oi91TkIIrAtAj3A3mSSXtum\n13EYODDCIycfw7ZtLlYXiN+7iA5N7DiA/gKWH2GoEK1Cso7ihBNSJ2S+WGU2nMXz5kiaioG+XtAa\n9J1tBR3rI8fGOHDq1Mcrn9k2nuehtWZyaoprlRShkcQqV8l4NbT+BJ7n4fs+Vz/4iIWrcwRxzL4Q\nUouL5Hp6UHFM2NNDJpPpuN7BahctNNZHcGONnpnEKpcw8j24hw4yZWcwU0liHVIDYmyUAV5sUqpU\nCQ48QT3yGb32PqPXruOlMwzPzXP98GEq6RSYBlUdoA2TXGCgrRT5ICb2K9RvF3EMG7/uEWUzDB48\nyD7b5ruXr+ElcxSDkJKKma83qmccw6IahbgZRapSoS/SzFom5QMjFOZKGPUabsamUuhjeLDAsQN7\n6aXKI815jAq+z5651/ikZ1GPDBJmkgLDpBIGJT/GvHGZE5gUAkXN87mpIAhrJJRJRIyxZwTDak5p\nYdlEe/YwWY9JBRFuNoFTG8CpThJ4NXwVEfVkOHhoBBRkzRgdhgQoNJowl8MrLZC3LGphSLWnpzV7\nbXrPAPN+iOlXsIhIjgy31oJeOep65Wds2zZ53wXfRJsWhoa9ZszJYyMMDAxw5v3LpIwcGAbEMfm4\n3LqrtW0bq6+PfXHc6OUETPb1rTnWJ5PJtHqGZc0Yt63KKWvGpNNpTNNc9rfEMVkzJtaNwNSNaqBu\nTOOxUVux3PGuDhBTk5MEV69y7OZN+m7dwjBN5g4fpjQ0RJTN4efzVIOI7NXLZGs1dCpFMZNguCdL\nNo4pWxbjpsmBxx5DK8WgZXETWjNwHjp1iinHafW0cUjC7AJGtdEmoW9PUJu9henVMcOYgmWQGhkC\nw+D29TGSgwcbI7ubRealCdaWpmBeWR85Pz/PB9cmqXoBxo3LHMmliDIZPM8nazqE1LHMCLce8vqZ\n80SGDUGNj+YqOH6AiuF6/34m7DpTShH0FTj4+c8zfeZMq6SSXhq70dbgebjtoq1Wq7z6ozPMzEyj\nJsYZunqZhB+Snr3N+PBebh/oxapHRMkMqlqk5+IF/Ngib0Swtw/9wY9ILSyy0NPDB089SU+xSDl3\nmJm+PmI7Tcqrs1go4IUxCc8nVmChcYBb+4ZI+BE1o4eipZi5PgOZJDxyHG7eJFEqUUlnmKvWILiF\n7dfxkmlsM+DSY8dJex5uOoXf08vC3gCvWKKcy+IVChzbk6OXaqt6YWnE8/GDe/EmXephRMIyOZS2\nsKYnqd6eozozzVRsMzVbpi+bQO0d4ca+YRKVCvT38/TLLzNTqeFVPXoNzc++8AR/9faH3A4VWUvz\n2Oc/y7XXf4xZruCnUww+/zy9liYZVxg+vIe/Pv025cgkZ0a89NKLnDt/HmdxEb+3l2Of/Swzzfm2\n6i+8QG8YkqrXoaeHvY89xs2lNaibPc+gEdQNw1iW8WQyGfYfGWXy9dN4kYFNQKF3mOD8eSYyGY4c\nbY6yDj+u+186lm3bDJ08yWRbSXfgySdb18paVTfLVi/0jFYbxFJDdfvf5g3NU59+otEG0YXR3tvJ\ngw5UuzZARFHE4sWL9C8ukiyVyFcqlNNpzFjjp1LYI4dQSYfCxQsMmQ5OPkUm9Jk2FG+OjpKtVKjl\n80RDQ1wbHycfx8wbBgvpNGjNbDbL0MmTPNJcUtEwDBbOf0Rp8ACGMjDqVbyL5xmcLZExbXrqNd6Z\nmSDjV0iZGgb6cRKNKRcs26FYrHH5Bz8gHYaNtRSUoh5Fraqdomly469fRdfBW5xjHybx3Dz7hvrI\nzC6QOfQ8URRgWA6V6dvMfnCRZK1G1XKYNAx67ZiU5+Flkoz3H2Bk/yFSuR6SH3zEEdugVi6Tz+V4\n49IVbuRH8WNIWAZ+3eNTn3yUYrFIT08P/+4vv8PVs+9BpcbBWg2CkESlgk4msapVxuI0tVSSJAGj\nxZt4TgFMGy8KsG5P0zdfwq5WSMQ1ytksuXKZWCmsKGIxsPESNmkjTY0F+uauki1XqOSyzI7uZ08u\nh+W6lMoVSulBUmYGc7GEdf1HRFiUkjmcoAaqTt0Gyw8JzARhKsuTuSyGUviGwVypSlQLqCkbVY8Y\ndkyef+wAAwMDeJ7HD3/yXitADqQtgoVJKqEBZkjt5hz9s4vEt+eo113qkYk/sAe3WiPO+6gwwClV\nCQ2LEVhWXffW+Y/45LPPQxwTo7l5+UN6jp3AcV3CTIaewSFOnTiEYRj867/8AXrgKD2GIoo1529M\ncuSJZ1kMY7JJhz3Dw2SOHm10YKjVOPvhVW5Ua+TTKfLAdLYfN9FL2jbRU1P86L1rVCKj4/gDf+Qw\n1qdMEpUK9eIcfRgc9H1C32d8bGzZ/FHVanXZ+Wm/gajValy4MrGsIXmtqpuRkRG++HN9rZUBlwYy\nrrYK4t4Vo73vp1fTdp8C5EHZtQEiCALSQYB35AilGzeoGQaldJq5PYP03ZpBkyBtRPiGxjQijDjC\nMDWWYTASRWRtm1oUccV1Sds2iTDEmJuj/8ABDoYh4cIC42fPcvjFF1tz67TuemJFxq+g+wao1mN8\nv06QHaB/cIhnj+6jUCjw1vmP7ugtdHCpt5DncTGV4kouh1mrEeVyhJ7HnplZIidDffY2hBHzfb2M\n0Efer/LO+2/h6UZvmaO1W6irV4lqdcykw57+PjLFKtmaSzWZxFAB8eICbi7LuFdi4tY8nnJIxnWi\noX4mkjOoWh2dSrIwVODb3/sRXhyTRJMpLVCfqpPEI7u4wNVDhxiamsHNpKnZNrfq4BAzHyTIKQur\ndAu0JjYMclQ5cuUiKa9R+TS9Zw+O6/L4lSsUe3vR6ZDszCJhwiHd18PeqSmylSqVSoa5QoHqwjyZ\nmocNOKFB+tYUvaUykRWTLFaZHBrG1Yq+RMzA+C0SXp2ehMPE44/wvWwvyVIZL5ehUqxwfGYOxw/w\nLZMPJqd5/d1L7OmfoVoqca0UU4/A1iHluRniwf+/vXONkSO77vvv1Kurq989w3lwyOFrZ4fkrrjU\ncrUPryLbimxvBMOGEX+QbBhGoEBIIFu2YcCwECCxPiRxgCC2gDgGEkcOYCTrwA85C8GwZEubOLuR\nVkvug+Jy+RySMyTnPdPv7qquqpsP3TPb5A6fy53uBe8PaEzXa+rfVbfr9D33nHOnSBtC26/TeOcN\nJq8vY9YaiMC1iTGqXkyYyDK8usjE5VmsWBGZJm/FipEvfwmluvkR3ZpZgd8CQ4iuXWMnIGGMavms\nqjYc+xi+71Nutqm317rJj9CqVRna7ZLKZWn0hJPats13X3mN6vETeNUay+kU53btYezRxwCTRqj4\nf3//JmrkUezU+/MP2u02KpEi8+SPEDTrOCdP4JZXiaIIyzRR5fLmNK9RFPGDk2c4v9raLPkS+Gf4\n8eeOYds2x9+5QMXIgGUQxO9p7K091ftg7q2DtiSCAnJK3dUsiB8kue3mZNCDe8YYGhr6UJIOB52H\n1qGt51MAABUfSURBVEC0mk2Wrl8nZRhc3buXHbUa9aEhRuoNbMPG2bkTQbi+epX69Ai5IKDuOKRW\nVth5/Tpeu03FtllyXcYefxwVRfDuu/h05lzYiK+/VeasUoqXL11EGQkwLFQcYhbTFAoFHMe5c7RQ\nq0WcTGLFMXEUoSoVKuslSrRoNRpklq6RmBNenZvhUrbA/tIs2WqVSiaLHfnkLs9hhjF1z2XEgalz\n50nV67Q8lwuPTuGWagRJl2sjY3hKkamVaKVcan6L8cULePUmzVSSxcYwj5QWyZXKlPM5Fr0s49Rx\nWk1iy6JuJZgfHyewbVqGxZ7yRaQRo5ImtYTFcCIkValSzmWxGm12rC6TbDQo53OsjoyAYTB74AAr\n+TxOo0mq1WQtmSBdq7Hj2gIxBnazRaFaIb2yjtsKcCUimDRJNpo0bZvAMFGxgWq2qaRSjDXWGVpc\nxohiDIkpjxZ4ubiLVn4Ml4An/WssDA9hB21C2yT0Q84sN5mtQeX6Ra6rHC1cvLhGolllePVtTN9H\nHItWq02jUqLdVpiqTUsZnC/sJmcpJmbPUFkr08bElpjW3FVefOnvaLtZUhLihHWWL8xitNpEjkm6\nvs712UXilk9kWwTT+6lWq+RyORqVEleDLKHhYoYNRts1FpdWicwKCVFM5DoP9yAIqH7vVSZOX8SI\nICcxaysrvLZUpmYkSasmbcNi2O4kTvYOBm/MeeEailoU4SRT1BMJhIggCLg4v8zl4g7mT1/kaDeI\nYmZhnVpyArFsWmGbmYVrPNetNFCqt5gpNwhiwTEU+3O3TqpziDbroFnA3OnTND2PXfv2EW6RA3Dz\nsfeaR7RBb2JcEIa8M3edM1fmObhnnKPTe+9oZAYp6/pBMFAGQkReAL4GmMAfKaV+98M4z0b+w+F0\nmtriIqIUs7t3M57LMb9WohgJlmERGybRnn1Yu8eIwhDTtimcOsWQCAbgxDGWaeIDuWSSFdel6TjY\nhnHLMLReH2Jvdc/YS99QKfR20UK9k+t4jkOtXObbl+cYzg+RLFdoVdZJVGqMu0nKy2vkg4A971zB\n8SMCG64fmiQOFOIrwoQi1WgxevU6RjtmxApZGhsjc2WBZOQTeC7ZywuYzZAoabM+Nc7o6RnMVkTg\n2WRNn4//3++TrLao51K89fzThNerhIFBPl5jaWKcdhUiFYNpUrvWph65pMwWj2TWcC8sEUQWTrWE\nUTAo5/I0Eg7XJycZXVjgkQsXCByH9eefZ9fMDKMrFTKra1w8cohywiPbaLHupECBu1LFi9rk/TKN\nTJZd52dw2m2Of/JZrhcKlPI7WMzkyK41CQ0DJ46pWw5Ny+GcmuhmI0RMJS+Q81eo4yJ+QD2ZgmSe\npmlwvdyilNkFbpp2S5heO0XBd7ATGdrra4SWcLU4ilX3aVuKpWwBEQvbaLOWSGJZWYhNMCIWrAQN\ne5hUdoxKvYx58jj5SoQyk6ioRtRexy2tI7FNbLWZazQ4dfEqT3/Mw02niVYN2lEEGIRYlGIXx8vT\nCJrYK4ubWdvGyioSG2BZSOBjrK5yZeJpAncU0y+xo3qRsFnDSudvGAzeaK83+Pv3TkAxwffn5qmO\n7MY5eISG7XDy/CxHpiZRCEoEoRNeregEWRiGwfLKKk17FNNN0gyaLHc1bnwnbwhdrVc366BFUYQX\nBIhlbfnj6+Zjy40a8/eQR9TLe5WRLS7PzuM7eQxDqODd0cgMUtb1g2JgDISImMAfAD8BXAVeF5GX\nlFKnH/S5NvIfCpkM6cceQwEJw2DH1BTty1eZjYVM2sNPJMjvneDg00eJ4xjDMDgLzJ84gRcENByH\n3OHDLOdyVH2f6rHOtI9Xe7rBt2sYOycmGO5W99wqU7TXmPRGC/VOrgPgGAZ2OstyYRRJeRjLV/Ey\nQyRyWTy/QXF9HTOKAcFt+TitJvN7d5OstmhkbRIO1FJpvFaTuuMQG0IiahMYDtlKhQYO1WSWJAG5\ncgXbAksiIjdJvlQiVW8SIySaAdlKmcVsGhXASjRE03BY2bGTyDKQtsKPO1FLYJKqVFERgIGEgqiY\n0DKpF4qYYUiuWiURBOQqFQrr67QzafylBl6tiYpiTh57kmK5xGo2T+g6JDM5zFaFupGCOMZPJLEV\nJJotTu89xjveAUIUxbiGNx3g1htUvTSX82PUJUWKCGVYnC9OEk8ncOstakmXK2P7OGBbRFGIawkJ\n8YmDGFe1SIcRw3GVsNXEViFzVpJLhw9hVErULJvF1CiH9k6CX+V8aR8VM7OZQzM/NMRuu+NeUUoQ\nP2Qol0esToHAteVllicncdpCy03SSmSoNX3a7TbpZJLHD4wRxiBxm9Z8DZc2catC0lDsGB7ajGiL\nhoZgaRUrbBMRUksXiQwXQh8sl3Q6w1DrOmFced9gMLw/zLPVajH/9jlS2VEMo9M+W4Fgmma37HqJ\ntjgkVMD+8QKu69JutxkZLtIu1/H9BglRjAwXb0iq6w1ddZIe9YRHIwjwHIeG49zyx9fNxyZcD4Xc\nMY9oKzZ6TOutTk9HDEVCFE7So9W99rf6Tg9K1vWDZGAMBPA0cEEpNQMgIn8K/CzwwA3EDUkntk3m\nwAHmajWcdJr0E49RTOaIrARD3UG23i/LRmRSu1pFZTJM90x6s8u+sf7/3TSKjSqid6I3xO2GyXXM\nzqQuZi5L4tAR4iikOX8Vqc5gmyZiO1QLeYavLuPEIWHCpJ7OUQ8tWrZLaBnUU8Lpg4dI1RvgmQSG\nhZ9I0kwlWM8XyJYXsdstDFuxnh/GXK3hxeBbBrV8nlbKxas28N0k5Vye5TBPENtEzSVM26IWJ4hi\nwfFsJvwq4ofECYtaJkN6qYkZxlhhRC2ZY31kFKNZp1QoMLy0xND6Ouv5PKVCgUK5SjvrUkknWckN\ncSY5ylChyYKVJi8BzT0OQ0GFTLuO2fCpGR61nMdqcYi59DgGBhl81nLDXMyP4darLNspVkyTrKrj\nIphxjGMZXNj9BJFhEjR9Jrw2qbiJKW1iz8amjK8cEuJjZZJ4bYVgoIgwHYu55BA1q4AdtkglbayE\ni6N8CmmXC+mjKMNGojYjwTxGN2lRRIFrE6qYhGF0QldTHmbs0UplUHGIJBNkU0kymQz7xwqcXy13\nfP0EWMU043snMCwL4hi7scSJ0xfxIyjte5TYsMg0W9RSSVZNj0Lag4QHQZN8wuUXfvrTKKVuWRiy\n98eK67qkEza1KMIwzM0HsOu6PPOxaRJnL9MIIjwnsel6Asilkkhmx3vFGuPaDSGxvaGrcRSRfuQA\n893qx7f78fX+Y0P2jxdI0CCo+/cU1dRbAiTTXiemycTEBHEU3XGipEHJun6QyMY0hf1GRH4eeEEp\n9U+7y78EPKOU+pVbHfPUU0+p48eP39f5bk40Gz5yBLcn+/h2D/lBGIS6Wb+3EW4YC9Wlq4RvnsBr\nNPEzGayDU6y9/Pd4pRKNfJ70888yd+YS1HxIJ3CKaeqnz+M0W4SujRWHZCo1Guk0S+PjZFdLJGt1\n6qkU68U8xbVVkrUGzbRHs5Bn4tosuVKFcj7LytSjJCKDoFSnbUEctjEDReg6pGizY+ZS111lsf7o\nPqKaT6LawM94FI4exj13Hnt9nUu2xXC9TnFtjVKhwJmJCUYrTbxGCz+bwfvYNG/NN2iFClNi8l6S\n1NoS6SgmlDbJSolsuUo9m6F1+DGuRFnqkUHKjHl81GW53qbmRxD6DKVdLi2uEUin3MPB0SxLsUsz\nMnGUz4hnsnf/fjzbZGVlmdevtWgqk6QKGTUrJKtNrCAidGz8jEOFBPW2Ac0SnmMzMjbGIzuLDHsW\n33r9DJXQIGvFfOrxPZxdqG5GDx0cy3D2+29C04dkgj1HDzFz4oc016uEboLJY0/wmX/wLNlslkql\n0qlj1I0WOrBzaLPUxM0++GqlxNrsBXbsGCLrueQcxbeOn90Mkf25T32c6enpe2p/t/O13+r7cSf/\n/O3mT7nT9/JOx95PFNPq6ipnriwQYN71eMJHZQxCRE4opZ66434fNQMhIl8EvggwOTl57MqVK/d9\nzkF40H8QblesLAiCzfDAZDJJuVxmaWmJkZERcrkctVqNtbU1isUi6XSa2dlZzp07x1pgEXtZSvNz\n5Md3kzEiQr9BpVKlWMjziccfZWVlhZmZGaamppienubkyZOcOXOGgwcPcuTIEWq1GsvLy2QyGZRS\nLC0tkcvlaL7xBqn5eZaWlhgbH8fftQsOHWJxcZHJyUnGxsao1Wq88sor/Mmr5yiFIY+oKhckQ95K\n8E9+dJrx8XHGx8cpFousra0xPz/P0NAQrusSxzG1Wo1isUitVmN2dpbJyUk8z+P46fOUaj75dIKn\nDk9h2zaVSoVUKoVlWTQaDVZXV8lms/xwdoUwkd2cgc9srPOJg5PYts33Tl8mTOTxfR8xhCszF9i3\nbz+xUmAYXJm5yL59+0ApDNuG2irPHNpLPp/vznPRvOG+bJQK3/jlfvP2ZrPJ+vo6yWRyc47xO93/\nKIr43unLkBre3FdVFvnEwUkymcyWOh5E+3sQxwxaaOqH8RkHgY+igXgO+B2l1E91l78CoJT6t7c6\n5oP0IDTvJ4oivvfWu5uDbGE7IB2WNxP0PkiDj6KIS6+88l72dxQxVyiwb4tqlAsLC/yrP3yRE9Ek\nTcMjGTc4Zs7y1X/+ecbGxu77/Hfzpb3VNdiY37t3W+C3WLx0plMDKJF833Lvsdtd+fNWn2FQH1ia\n7eVuDYRxpx22kdeBKRHZJyIO8DngpT5reqjY8L+mwzLUV0iHZY5MTeI4Dq7rfqCHy2ZZjkKBK7bN\nXKFwy0H8sbExXji6l2PmLEfVDMfMWV44uve+jcPG+e/mM9zqGvTOFbGxLRtX+clnHicb17Zc7j12\nO7ndZ9Bo7oWB6UEAiMhngd+nE+b6daXUv77d/roH8eHwYXaR7+V/LywsbLqJPohxuB9up/NO8xAM\niothUHRoBo+77UEMUhQTSqm/Bv663zoedj7Mei/38r/Hxsa23TBscDudN2+703K/GBQdmo8ug+Ri\n0mg0Gs0AoQ2ERqPRaLZEGwiNRqPRbIk2EBqNRqPZEm0gNBqNRrMl2kBoNBqNZksGKg/iXhGRZeD+\na23AMLDygOQ8KAZRE2hd98og6hpETaB13SsPQtcepdSOO+30kTYQHxQROX43ySLbySBqAq3rXhlE\nXYOoCbSue2U7dWkXk0aj0Wi2RBsIjUaj0WzJw24g/nO/BWzBIGoCreteGURdg6gJtK57Zdt0PdRj\nEBqNRqO5NQ97D0Kj0Wg0t+ChNBAi8oKInBWRCyLy233U8XURWRKRUz3riiLytyJyvvu30Addu0Xk\nZRE5LSLviMiv9VubiLgi8gMRebur6avd9ftE5LXuvfyf3blEth0RMUXkTRH55qDoEpHLIvJDEXlL\nRI531w1C+8qLyJ+LyBkReVdEnutz25ruXqONV0VEfn1ArtVvdNv7KRF5sfs92La29dAZCBExgT8A\n/hFwGPi8iBzuk5z/Brxw07rfBr6jlJoCvtNd3m5C4DeVUoeBZ4Evda9RP7X5wKeVUk8AR4EXRORZ\n4N8Bv6eUegRYB76wjZp6+TXg3Z7lQdH140qpoz1hkYPQvr4G/I1S6iDwBJ3r1jddSqmz3Wt0FDgG\nNIBv9FMTgIhMAF8GnlJKPU5nnpzPsZ1tSyn1UL2A54Bv9Sx/BfhKH/XsBU71LJ8Fxrvvx4GzA3DN\n/hfwE4OiDfCAN4Bn6CQMWVvd223Us4vOA+TTwDcBGRBdl4Hhm9b19R4COeAS3fHPQdHVo+MngVcH\nQRMwAcwBRTpz93wT+KntbFsPXQ+C9y76Ble76waFUaXUfPf9AjDaTzEishf4OPAafdbWdeO8BSwB\nfwtcBEpKqbC7S7/u5e8DvwXE3eWhAdGlgG+LyAkR+WJ3Xb/b1z5gGfjjrkvuj0QkNQC6Nvgc8GL3\nfV81KaWuAf8emAXmgTJwgm1sWw+jgfjIoDo/EfoWZiYiaeAvgF9XSlV6t/VDm1IqUh03wC7gaeDg\ndp5/K0Tkp4ElpdSJfmvZgk8qpZ6k4079koh8qndjn9qXBTwJ/KFS6uNAnZtcN/1q911f/s8Af3bz\ntn5o6o55/Cwdo7oTSPF+l/SHysNoIK4Bu3uWd3XXDQqLIjIO0P271A8RImLTMQ7/XSn1l4OkTSlV\nAl6m073Oi8jG1Ln9uJfPAz8jIpeBP6XjZvraAOja+AWKUmqJjk/9afp/D68CV5VSr3WX/5yOwei3\nLugY0jeUUovd5X5r+gxwSSm1rJRqA39Jp71tW9t6GA3E68BUNxLAodOlfKnPmnp5Cfjl7vtfpuP/\n31ZERID/CryrlPoPg6BNRHaISL77PklnTORdOobi5/uhCUAp9RWl1C6l1F46bem7Sqlf7LcuEUmJ\nSGbjPR3f+in63L6UUgvAnIhMd1f9Q+B0v3V1+TzvuZeg/5pmgWdFxOt+Jzeu1fa1rX4MBPX7BXwW\nOEfHh/0v+qjjRTq+xTadX1ZfoOO//g5wHvg7oNgHXZ+k050+CbzVfX22n9qAI8CbXU2ngH/ZXb8f\n+AFwgY5rINHH+/ljwDcHQVf3/G93X+9stPMBaV9HgePde/lXQKHfuui4b1aBXM+6QbhWXwXOdNv8\nnwCJ7WxbOpNao9FoNFvyMLqYNBqNRnMXaAOh0Wg0mi3RBkKj0Wg0W6INhEaj0Wi2RBsIjUaj0WyJ\nNhAajUaj2RJtIDQajUazJdpAaDT3iYj8VbcQ3jsbxfBE5Asicq47d8V/EZH/2F2/Q0T+QkRe776e\n7696jebO6EQ5jeY+EZGiUmqtW/rjdTqlmF+lU1uoCnwXeFsp9Ssi8j+A/6SUekVEJumUaD7UN/Ea\nzV1g3XkXjUZzC74sIj/Xfb8b+CXg/yil1gBE5M+AR7vbPwMc7pTUASArImmlVG07BWs094I2EBrN\nfSAiP0bnof+cUqohIv+bTs2cW/UKDOBZpVRrexRqNB8cPQah0dwfOWC9axwO0pmaNQX8qIgUuuWY\n/3HP/t8GfnVjQUSObqtajeY+0AZCo7k//gawRORd4HeB79Opy/9v6FTafJXOlJ/l7v5fBp4SkZMi\nchr4Z9uuWKO5R/QgtUbzANkYV+j2IL4BfF0p9Y1+69Jo7gfdg9BoHiy/0503+xRwic58BxrNRxLd\ng9BoNBrNlugehEaj0Wi2RBsIjUaj0WyJNhAajUaj2RJtIDQajUazJdpAaDQajWZLtIHQaDQazZb8\nf0dLjWOXoAXrAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11fa53eb8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 不美观\n", "ax = plt.subplot()\n", "\n", "# 未生还者\n", "age = titanic[titanic.Survived==0].Age\n", "fare = titanic[titanic.Survived==0].Fare\n", "plt.scatter(age, fare, s=20, marker='o', alpha=0.3, linewidths=1, edgecolors='gray')\n", "\n", "# 生还者\n", "age = titanic[titanic.Survived==1].Age\n", "fare = titanic[titanic.Survived==1].Fare\n", "plt.scatter(age, fare, s=20, marker='o', alpha=0.3, linewidths=1, edgecolors='gray', c='red')\n", "\n", "ax.set_xlabel('age')\n", "ax.set_ylabel('fare')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 隐含特征" ] }, { "cell_type": "code", "execution_count": 141, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 891\n", "unique 891\n", "top Williams, Mr. Howard Hugh \"Harry\"\n", "freq 1\n", "Name: Name, dtype: object" ] }, "execution_count": 141, "metadata": {}, "output_type": "execute_result" } ], "source": [ "titanic.Name.describe()" ] }, { "cell_type": "code", "execution_count": 147, "metadata": { "collapsed": true }, "outputs": [], "source": [ "titanic['title'] = titanic.Name.apply(lambda name: name.split(',')[1].split('.')[0].strip())" ] }, { "cell_type": "code", "execution_count": 146, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Mr'" ] }, "execution_count": 146, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s = 'Williams, Mr. Howard Hugh \"Harry\"'\n", "s.split(',')[-1].split('.')[0].strip()" ] }, { "cell_type": "code", "execution_count": 149, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "Mr 517\n", "Miss 182\n", "Mrs 125\n", "Master 40\n", "Dr 7\n", "Rev 6\n", "Col 2\n", "Major 2\n", "Mlle 2\n", "Mme 1\n", "Lady 1\n", "Ms 1\n", "Jonkheer 1\n", "Sir 1\n", "Don 1\n", "Capt 1\n", "the Countess 1\n", "Name: title, dtype: int64" ] }, "execution_count": 149, "metadata": {}, "output_type": "execute_result" } ], "source": [ "titanic.title.value_counts()\n", "# 比如有一个人被称为 Mr,而年龄是不知道的,这个时候可以用 所有 Mr 的年龄平均值来替代,而不是用我们之前最简单的所有数据的中位数" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### gdp" ] }, { "cell_type": "code", "execution_count": 151, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 夜光图,简单用灯光图的亮度来模拟gdp" ] }, { "cell_type": "code", "execution_count": 152, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PassengerId</th>\n", " <th>Survived</th>\n", " <th>Pclass</th>\n", " <th>Name</th>\n", " <th>Sex</th>\n", " <th>Age</th>\n", " <th>SibSp</th>\n", " <th>Parch</th>\n", " <th>Ticket</th>\n", " <th>Fare</th>\n", " <th>Cabin</th>\n", " <th>Embarked</th>\n", " <th>title</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Braund, Mr. Owen Harris</td>\n", " <td>male</td>\n", " <td>22.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>A/5 21171</td>\n", " <td>7.2500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " <td>Mr</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n", " <td>female</td>\n", " <td>38.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>PC 17599</td>\n", " <td>71.2833</td>\n", " <td>C85</td>\n", " <td>C</td>\n", " <td>Mrs</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Heikkinen, Miss. Laina</td>\n", " <td>female</td>\n", " <td>26.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>STON/O2. 3101282</td>\n", " <td>7.9250</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " <td>Miss</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n", " <td>female</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>113803</td>\n", " <td>53.1000</td>\n", " <td>C123</td>\n", " <td>S</td>\n", " <td>Mrs</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Allen, Mr. William Henry</td>\n", " <td>male</td>\n", " <td>35.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>373450</td>\n", " <td>8.0500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " <td>Mr</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PassengerId Survived Pclass \\\n", "0 1 0 3 \n", "1 2 1 1 \n", "2 3 1 3 \n", "3 4 1 1 \n", "4 5 0 3 \n", "\n", " Name Sex Age SibSp \\\n", "0 Braund, Mr. Owen Harris male 22.0 1 \n", "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", "2 Heikkinen, Miss. Laina female 26.0 0 \n", "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", "4 Allen, Mr. William Henry male 35.0 0 \n", "\n", " Parch Ticket Fare Cabin Embarked title \n", "0 0 A/5 21171 7.2500 NaN S Mr \n", "1 0 PC 17599 71.2833 C85 C Mrs \n", "2 0 STON/O2. 3101282 7.9250 NaN S Miss \n", "3 0 113803 53.1000 C123 S Mrs \n", "4 0 373450 8.0500 NaN S Mr " ] }, "execution_count": 152, "metadata": {}, "output_type": "execute_result" } ], "source": [ "titanic.head()" ] }, { "cell_type": "code", "execution_count": 153, "metadata": { "collapsed": true }, "outputs": [], "source": [ "titanic['family_size'] = titanic.SibSp + titanic.Parch + 1" ] }, { "cell_type": "code", "execution_count": 155, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 537\n", "2 161\n", "3 102\n", "4 29\n", "6 22\n", "5 15\n", "7 12\n", "11 7\n", "8 6\n", "Name: family_size, dtype: int64" ] }, "execution_count": 155, "metadata": {}, "output_type": "execute_result" } ], "source": [ "titanic.family_size.value_counts()" ] }, { "cell_type": "code", "execution_count": 156, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def func(family_size):\n", " if family_size == 1:\n", " return 'Singleton'\n", " if family_size<=4 and family_size>=2:\n", " return 'SmallFamily'\n", " if family_size > 4:\n", " return 'LargeFamily'\n", " \n", "titanic['family_type'] = titanic.family_size.apply(func)" ] }, { "cell_type": "code", "execution_count": 158, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Singleton 537\n", "SmallFamily 292\n", "LargeFamily 62\n", "Name: family_type, dtype: int64" ] }, "execution_count": 158, "metadata": {}, "output_type": "execute_result" } ], "source": [ "titanic.family_type.value_counts()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
bbglab/adventofcode
2020/ferran/18/18.ipynb
1
5564
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Day 18" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! cat README.md" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "with open('input.txt', 'rt') as f:\n", " lines = f.read().splitlines()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import re\n", "from functools import reduce\n", "import numpy as np\n", "\n", "od = {'+': lambda x,y: x+y, '*': lambda x,y: x*y}\n", "\n", "def split(expr):\n", " \"\"\"splits expression into left, operator and reminder\"\"\"\n", " c = expr[0]\n", " if re.match(r'\\d', c):\n", " if len(expr) == 1:\n", " return c, None, None\n", " else:\n", " return c, expr[2], expr[4:]\n", " elif c == '(':\n", " cs = np.cumsum(list(map(lambda x: dict(zip('()', [1, -1])).get(x, 0), expr)))\n", " close = min([i for i, val in enumerate(cs) if val == 0])\n", " if len(expr) == close + 1:\n", " return expr[1: close], None, None\n", " else:\n", " return expr[1: close], expr[close + 2], expr[close + 4:]\n", "\n", " \n", "def fold(queue):\n", " acc = queue[0]\n", " for i, operator in enumerate(queue[1::2]):\n", " value = queue[2*i+2]\n", " acc = od[operator](acc, value)\n", " return acc\n", " \n", " \n", "def evaluate(expr):\n", " if len(expr) == 1:\n", " return int(expr)\n", " queue = [expr]\n", " while True:\n", " s = queue.pop()\n", " left, op, right = split(s)\n", " queue.append(evaluate(left))\n", " if op is None:\n", " return fold(queue)\n", " else:\n", " queue.append(op)\n", " queue.append(right)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# test\n", "\n", "assert(evaluate('2 * 3 + (4 * 5)') == 26)\n", "assert(evaluate('5 + (8 * 3 + 9 + 3 * 4 * 3)') == 437)\n", "assert(evaluate('5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4))') == 12240)\n", "assert(evaluate('((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2') == 13632)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# solution\n", "\n", "reduce(lambda x,y:x+y, list(map(evaluate, lines)), 0)" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "--- Part Two ---\n", "You manage to answer the child's questions and they finish part 1 of their homework, but get stuck when they reach the next section: advanced math.\n", "\n", "Now, addition and multiplication have different precedence levels, but they're not the ones you're familiar with. Instead, addition is evaluated before multiplication.\n", "\n", "For example, the steps to evaluate the expression 1 + 2 * 3 + 4 * 5 + 6 are now as follows:\n", "\n", "1 + 2 * 3 + 4 * 5 + 6\n", " 3 * 3 + 4 * 5 + 6\n", " 3 * 7 * 5 + 6\n", " 3 * 7 * 11\n", " 21 * 11\n", " 231\n", "Here are the other examples from above:\n", "\n", "1 + (2 * 3) + (4 * (5 + 6)) still becomes 51.\n", "2 * 3 + (4 * 5) becomes 46.\n", "5 + (8 * 3 + 9 + 3 * 4 * 3) becomes 1445.\n", "5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4)) becomes 669060.\n", "((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2 becomes 23340.\n", "What do you get if you add up the results of evaluating the homework problems using these new rules?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def fold(queue):\n", " if '*' not in queue:\n", " return reduce(lambda x,y: x+y, queue[::2])\n", " else:\n", " chunks = [list(g[1]) for g in itertools.groupby(queue, key=lambda x: x != '*') if g[0]]\n", " return reduce(lambda x,y: x*y, list(map(fold, chunks)))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# test\n", "\n", "assert(evaluate('1 + (2 * 3) + (4 * (5 + 6))') == 51)\n", "assert(evaluate('2 * 3 + (4 * 5)') == 46)\n", "assert(evaluate('5 + (8 * 3 + 9 + 3 * 4 * 3)') == 1445)\n", "assert(evaluate('5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4))') == 669060)\n", "assert(evaluate('((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2') == 23340)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# solution\n", "\n", "reduce(lambda x,y:x+y, list(map(evaluate, lines)), 0)" ] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:stats_env]", "language": "python", "name": "conda-env-stats_env-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
CompPhysics/ComputationalPhysics2
doc/pub/intro/html/intro.ipynb
1
19175
{ "metadata": {}, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Slides from FYS4411/9411 Computational Physics II Lectures\n", "**Spring 2015**\n", "\n", "### Aims\n", "* Be able to apply two central methods, Variational Monte Carlo and Hartree-Fock (and density functional theory) to properties of atoms and molecules.\n", "\n", "* Understand how to simulate qauntum mechanical systems with many interacting particles. The methods are relevant for atomic, molecular, solid state, materials science, nanotechnology, quantum chemistry and nuclear physics.\n", "\n", "\n", "\n", "\n", "\n", "### Overview of first week\n", "\n", " * Monday 9.15am-12pm: First lecture: Presentation of the course, aims and content\n", "\n", " * Monday 9.15am-12pm: Introduction to Monte Carlo methods and basic many-body physics\n", "\n", " * Tuesday 9.15am-12pm: Basic many-body physics and variational Monte Carlo methods\n", "\n", " * Wednesday 9.15am-12pm: Variational Monte Carlo methods and presentation of project 1\n", "\n", " * Thursday 2.15pm-4pm: Continued discussion of first project, variational Monte Carlo methods and codes\n", "\n", " * Computer lab: Thursday 4pm-7pm. First time: Thursday this week at room FV329.\n", "\n", "\n", "\n", "### Lectures and ComputerLab\n", "\n", " * Lectures: Thursday (2.15pm-4pm), remotely via adove connect every second week.\n", "\n", " * Computerlab: Thursday (2.15pm-7pm), first time January 22, last lab session May 14.\n", "\n", " * Weekly plans and all other information are on the webpage, see URL: ''\n", "\n", " * Second intensive week starts April 7 and ends April 10.\n", "\n", " * First project to be handed in February 27 at noon.\n", "\n", " * Second project to be handed in March 27 at noon.\n", "\n", " * Third and final project to be handed in June 1 at noon.\n", "\n", "\n", "\n", "### Course Format\n", "\n", " * Three compulsory projects. Electronic reports only. You are free to choose your format.\n", "\n", " * Evaluation and grading: The first two projects count 25% while the last project counts 50% of the final grade. There is no oral or written exam.\n", "\n", " * The computer lab (room FV329) consists of 16 Linux PCs, but many prefer own laptops. C/C++ is the default programming language, but Fortran2008 and Python are also used. All source codes discussed during the lectures can be found at the webpage of the course. We recommend either C/C++, Fortran2008 or Python as languages.\n", "\n", "\n", "\n", "\n", "### Topics covered in this course\n", " * Parallelization (MPI and OpenMP), high-performance computing topics. Choose between Fortran2008 and/or C++ as programming languages. Python also possible as programming language. \n", "\n", " * Algorithms for Monte Carlo Simulations (multidimensional integrals), Metropolis-Hastings and importance sampling algorithms. Improved Monte Carlo methods.\n", "\n", " * Statistical analysis of data from Monte Carlo calculations, blocking method. (exercise 1 of part 1)\n", "\n", " * Eigenvalue solvers, efficient computations of integrals\n", "\n", "\n", "\n", "### Topics covered in this course\n", " * Search for minima in multidimensional spaces (conjugate gradient method, steepest descent method, quasi-Newton-Raphson, Broyden-Jacobian).\n", "\n", " * Iterative methods for solutions of non-linear equations.\n", "\n", " * Object orientation\n", "\n", " * Variational Monte Carlo for 'ab initio' studies of quantum mechanical many-body systems.\n", "\n", " * Simulation of three-dimensional systems like atoms or molecules.\n", "\n", " * Hartree-Fock method to study atoms and molecules\n", "\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "Most quantum mechanical problems of interest in for example atomic, molecular, nuclear and solid state \n", "physics consist of a large number of interacting electrons and ions or nucleons. \n", "\n", "The total number of particles $N$ is usually sufficiently large\n", "that an exact solution cannot be found. \n", "\n", "Typically, \n", "the expectation value for a chosen hamiltonian for a system of $N$ particles is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle H \\rangle =\n", " \\frac{\\int d\\boldsymbol{R}_1d\\boldsymbol{R}_2\\dots d\\boldsymbol{R}_N\n", " \\Psi^{\\ast}(\\boldsymbol{R_1},\\boldsymbol{R}_2,\\dots,\\boldsymbol{R}_N)\n", " H(\\boldsymbol{R_1},\\boldsymbol{R}_2,\\dots,\\boldsymbol{R}_N)\n", " \\Psi(\\boldsymbol{R_1},\\boldsymbol{R}_2,\\dots,\\boldsymbol{R}_N)}\n", " {\\int d\\boldsymbol{R}_1d\\boldsymbol{R}_2\\dots d\\boldsymbol{R}_N\n", " \\Psi^{\\ast}(\\boldsymbol{R_1},\\boldsymbol{R}_2,\\dots,\\boldsymbol{R}_N)\n", " \\Psi(\\boldsymbol{R_1},\\boldsymbol{R}_2,\\dots,\\boldsymbol{R}_N)},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "an in general intractable problem.\n", "\n", " This integral is actually the starting point in a Variational Monte Carlo calculation. **Gaussian quadrature: Forget it**! Given 10 particles and 10 mesh points for each degree of freedom\n", "and an\n", " ideal 1 Tflops machine (all operations take the same time), how long will it take to compute the above integral? The lifetime of the universe is of the order of $10^{17}$ s.\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "As an example from the nuclear many-body problem, we have Schroedinger's equation as a differential equation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{H}\\Psi(\\boldsymbol{r}_1,..,\\boldsymbol{r}_A,\\alpha_1,..,\\alpha_A)=E\\Psi(\\boldsymbol{r}_1,..,\\boldsymbol{r}_A,\\alpha_1,..,\\alpha_A)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{r}_1,..,\\boldsymbol{r}_A,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "are the coordinates and" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\alpha_1,..,\\alpha_A,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "are sets of relevant quantum numbers such as spin and isospin for a system of $A$ nucleons ($A=N+Z$, $N$ being the number of neutrons and $Z$ the number of protons).\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "There are" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "2^A\\times \\left(\\begin{array}{c} A\\\\ Z\\end{array}\\right)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "coupled second-order differential equations in $3A$ dimensions.\n", "\n", "For a nucleus like ${}^{10}\\mbox{Be}$ this number is **215040**.\n", "This is a truely challenging many-body problem.\n", "\n", "Methods like partial differential equations can at most be used for 2-3 particles.\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "* Monte-Carlo methods\n", "\n", "* Renormalization group (RG) methods, in particular density matrix RG\n", "\n", "* Large-scale diagonalization (Iterative methods, Lanczo's method, dimensionalities $10^{10}$ states)\n", "\n", "* Coupled cluster theory, favoured method in quantum chemistry, molecular and atomic physics. Applications to ab initio calculations in nuclear physics as well for large nuclei.\n", "\n", "* Perturbative many-body methods \n", "\n", "* Green's function methods\n", "\n", "* Density functional theory/Mean-field theory and Hartree-Fock theory\n", "\n", "The physics of the system hints at which many-body methods to use.\n", "\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "**Pros and Cons of Monte Carlo.**\n", "\n", "* Is physically intuitive.\n", "\n", "* Allows one to study systems with many degrees of freedom. Diffusion Monte Carlo (DMC) and Green's function Monte Carlo (GFMC) yield in principle the exact solution to Schroedinger's equation.\n", "\n", "* Variational Monte Carlo (VMC) is easy to implement but needs a reliable trial wave function, can be difficult to obtain. This is where we will use Hartree-Fock theory to construct an optimal basis.\n", "\n", "* DMC/GFMC for fermions (spin with half-integer values, electrons, baryons, neutrinos, quarks) has a sign problem. Nature prefers an anti-symmetric wave function. PDF in this case given distribution of random walkers ($p\\ge 0$).\n", "\n", "* The solution has a statistical error, which can be large. \n", "\n", "* There is a limit for how large systems one can study, DMC needs a huge number of random walkers in order to achieve stable results. \n", "\n", "* Obtain only the lowest-lying states with a given symmetry. Can get excited states.\n", "\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "**Where and why do we use Monte Carlo Methods in Quantum Physics.**\n", "\n", "* Quantum systems with many particles at finite temperature: Path Integral Monte Carlo with applications to dense matter and quantum liquids (phase transitions from normal fluid to superfluid). Strong correlations.\n", "\n", "* Bose-Einstein condensation of dilute gases, method transition from non-linear PDE to Diffusion Monte Carlo as density increases.\n", "\n", "* Light atoms, molecules, solids and nuclei. \n", "\n", "* Lattice Quantum-Chromo Dynamics. Impossible to solve without MC calculations. \n", "\n", "* Simulations of systems in solid state physics, from semiconductors to spin systems. Many electrons active and possibly strong correlations.\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "Given a hamiltonian $H$ and a trial wave function $\\Psi_T$, the variational principle states that the expectation value of $\\langle H \\rangle$, defined through" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E[H]= \\langle H \\rangle =\n", " \\frac{\\int d\\boldsymbol{R}\\Psi^{\\ast}_T(\\boldsymbol{R})H(\\boldsymbol{R})\\Psi_T(\\boldsymbol{R})}\n", " {\\int d\\boldsymbol{R}\\Psi^{\\ast}_T(\\boldsymbol{R})\\Psi_T(\\boldsymbol{R})},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "is an upper bound to the ground state energy $E_0$ of the hamiltonian $H$, that is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E_0 \\le \\langle H \\rangle .\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In general, the integrals involved in the calculation of various expectation values are multi-dimensional ones. Traditional integration methods such as the Gauss-Legendre will not be adequate for say the computation of the energy of a many-body system.\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "The trial wave function can be expanded in the eigenstates of the hamiltonian since they form a complete set, viz.," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Psi_T(\\boldsymbol{R})=\\sum_i a_i\\Psi_i(\\boldsymbol{R}),\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and assuming the set of eigenfunctions to be normalized one obtains" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\sum_{nm}a^*_ma_n \\int d\\boldsymbol{R}\\Psi^{\\ast}_m(\\boldsymbol{R})H(\\boldsymbol{R})\\Psi_n(\\boldsymbol{R})}\n", " {\\sum_{nm}a^*_ma_n \\int d\\boldsymbol{R}\\Psi^{\\ast}_m(\\boldsymbol{R})\\Psi_n(\\boldsymbol{R})} =\\frac{\\sum_{n}a^2_n E_n}\n", " {\\sum_{n}a^2_n} \\ge E_0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where we used that $H(\\boldsymbol{R})\\Psi_n(\\boldsymbol{R})=E_n\\Psi_n(\\boldsymbol{R})$.\n", "In general, the integrals involved in the calculation of various expectation\n", "values are multi-dimensional ones. \n", "The variational principle yields the lowest state of a given symmetry.\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "In most cases, a wave function has only small values in large parts of \n", "configuration space, and a straightforward procedure which uses\n", "homogenously distributed random points in configuration space \n", "will most likely lead to poor results. This may suggest that some kind\n", "of importance sampling combined with e.g., the Metropolis algorithm \n", "may be a more efficient way of obtaining the ground state energy.\n", "The hope is then that those regions of configurations space where\n", "the wave function assumes appreciable values are sampled more \n", "efficiently.\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "The tedious part in a VMC calculation is the search for the variational\n", "minimum. A good knowledge of the system is required in order to carry out\n", "reasonable VMC calculations. This is not always the case, \n", "and often VMC calculations \n", "serve rather as the starting\n", "point for so-called diffusion Monte Carlo calculations (DMC). DMC is a way of\n", "solving exactly the many-body Schroedinger equation by means of \n", "a stochastic procedure. A good guess on the binding energy\n", "and its wave function is however necessary. \n", "A carefully performed VMC calculation can aid in this context.\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "* Construct first a trial wave function $\\psi_T(\\boldsymbol{R},\\boldsymbol{\\alpha})$, for a many-body system consisting of $N$ particles located at positions \n", "\n", "$\\boldsymbol{R}=(\\boldsymbol{R}_1,\\dots ,\\boldsymbol{R}_N)$. The trial wave function depends on $\\alpha$ variational parameters $\\boldsymbol{\\alpha}=(\\alpha_1,\\dots ,\\alpha_M)$.\n", "* Then we evaluate the expectation value of the hamiltonian $H$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E[H]=\\langle H \\rangle =\n", " \\frac{\\int d\\boldsymbol{R}\\Psi^{\\ast}_{T}(\\boldsymbol{R},\\boldsymbol{\\alpha})H(\\boldsymbol{R})\\Psi_{T}(\\boldsymbol{R},\\boldsymbol{\\alpha})}\n", " {\\int d\\boldsymbol{R}\\Psi^{\\ast}_{T}(\\boldsymbol{R},\\boldsymbol{\\alpha})\\Psi_{T}(\\boldsymbol{R},\\boldsymbol{\\alpha})}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Thereafter we vary $\\alpha$ according to some minimization algorithm and return to the first step.\n", "\n", "\n", "\n", "\n", "### Quantum Monte Carlo Motivation\n", "**Basic steps.**\n", "\n", "Choose a trial wave function\n", "$\\psi_T(\\boldsymbol{R})$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "P(\\boldsymbol{R})= \\frac{\\left|\\psi_T(\\boldsymbol{R})\\right|^2}{\\int \\left|\\psi_T(\\boldsymbol{R})\\right|^2d\\boldsymbol{R}}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is our new probability distribution function (PDF).\n", "The approximation to the expectation value of the Hamiltonian is now" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E[H(\\boldsymbol{\\alpha})] = \n", " \\frac{\\int d\\boldsymbol{R}\\Psi^{\\ast}_T(\\boldsymbol{R},\\boldsymbol{\\alpha})H(\\boldsymbol{R})\\Psi_T(\\boldsymbol{R},\\boldsymbol{\\alpha})}\n", " {\\int d\\boldsymbol{R}\\Psi^{\\ast}_T(\\boldsymbol{R},\\boldsymbol{\\alpha})\\Psi_T(\\boldsymbol{R},\\boldsymbol{\\alpha})}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Quantum Monte Carlo Motivation\n", "Define a new quantity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"eq:locale1\"></div>\n", "\n", "$$\n", "E_L(\\boldsymbol{R},\\boldsymbol{\\alpha})=\\frac{1}{\\psi_T(\\boldsymbol{R},\\boldsymbol{\\alpha})}H\\psi_T(\\boldsymbol{R},\\boldsymbol{\\alpha}),\n", " \\label{eq:locale1} \\tag{1}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "called the local energy, which, together with our trial PDF yields" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"eq:vmc1\"></div>\n", "\n", "$$\n", "E[H(\\boldsymbol{\\alpha})]= = \\int P(\\boldsymbol{R})E_L(\\boldsymbol{R}) d\\boldsymbol{R}\\approx \\frac{1}{N}\\sum_{i=1}^NP(\\boldsymbol{R_i},\\boldsymbol{\\alpha})E_L(\\boldsymbol{R_i},\\boldsymbol{\\alpha})\n", " \\label{eq:vmc1} \\tag{2}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with $N$ being the number of Monte Carlo samples." ] } ], "metadata": {} } ] }
cc0-1.0
google/or-tools
examples/notebook/contrib/magic_square_mip.ipynb
1
8461
{ "cells": [ { "cell_type": "markdown", "id": "google", "metadata": {}, "source": [ "##### Copyright 2021 Google LLC." ] }, { "cell_type": "markdown", "id": "apache", "metadata": {}, "source": [ "Licensed under the Apache License, Version 2.0 (the \"License\");\n", "you may not use this file except in compliance with the License.\n", "You may obtain a copy of the License at\n", "\n", " http://www.apache.org/licenses/LICENSE-2.0\n", "\n", "Unless required by applicable law or agreed to in writing, software\n", "distributed under the License is distributed on an \"AS IS\" BASIS,\n", "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "See the License for the specific language governing permissions and\n", "limitations under the License.\n" ] }, { "cell_type": "markdown", "id": "basename", "metadata": {}, "source": [ "# magic_square_mip" ] }, { "cell_type": "markdown", "id": "link", "metadata": {}, "source": [ "<table align=\"left\">\n", "<td>\n", "<a href=\"https://colab.research.google.com/github/google/or-tools/blob/master/examples/notebook/contrib/magic_square_mip.ipynb\"><img src=\"https://raw.githubusercontent.com/google/or-tools/master/tools/colab_32px.png\"/>Run in Google Colab</a>\n", "</td>\n", "<td>\n", "<a href=\"https://github.com/google/or-tools/blob/master/examples/contrib/magic_square_mip.py\"><img src=\"https://raw.githubusercontent.com/google/or-tools/master/tools/github_32px.png\"/>View source on GitHub</a>\n", "</td>\n", "</table>" ] }, { "cell_type": "markdown", "id": "doc", "metadata": {}, "source": [ "First, you must install [ortools](https://pypi.org/project/ortools/) package in this colab." ] }, { "cell_type": "code", "execution_count": null, "id": "install", "metadata": {}, "outputs": [], "source": [ "!pip install ortools" ] }, { "cell_type": "code", "execution_count": null, "id": "code", "metadata": {}, "outputs": [], "source": [ "# Copyright 2011 Hakan Kjellerstrand [email protected]\n", "#\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# http://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License.\n", "\"\"\"\n", "\n", " Magic square (integer programming) in Google or-tools.\n", "\n", " Translated from GLPK:s example magic.mod\n", " '''\n", " MAGIC, Magic Square\n", "\n", " Written in GNU MathProg by Andrew Makhorin <[email protected]>\n", "\n", " In recreational mathematics, a magic square of order n is an\n", " arrangement of n^2 numbers, usually distinct integers, in a square,\n", " such that n numbers in all rows, all columns, and both diagonals sum\n", " to the same constant. A normal magic square contains the integers\n", " from 1 to n^2.\n", "\n", " (From Wikipedia, the free encyclopedia.)\n", " '''\n", "\n", " Compare to the CP version:\n", " http://www.hakank.org/google_or_tools/magic_square.py\n", "\n", " Here we also experiment with how long it takes when\n", " using an output_matrix (much longer).\n", "\n", "\n", " This model was created by Hakan Kjellerstrand ([email protected])\n", " Also see my other Google CP Solver models:\n", " http://www.hakank.org/google_or_tools/\n", "\"\"\"\n", "import sys\n", "from ortools.linear_solver import pywraplp\n", "\n", "#\n", "# main(n, use_output_matrix)\n", "# n: size of matrix\n", "# use_output_matrix: use the output_matrix\n", "#\n", "\n", "\n", "\n", "# Create the solver.\n", "\n", "print('Solver: ', sol)\n", "\n", "# using GLPK\n", "if sol == 'GLPK':\n", " solver = pywraplp.Solver('CoinsGridGLPK',\n", " pywraplp.Solver.GLPK_MIXED_INTEGER_PROGRAMMING)\n", "else:\n", " # Using CLP\n", " solver = pywraplp.Solver('CoinsGridCLP',\n", " pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)\n", "\n", "#\n", "# data\n", "#\n", "print('n = ', n)\n", "\n", "# range_n = range(1, n+1)\n", "range_n = list(range(0, n))\n", "\n", "N = n * n\n", "range_N = list(range(1, N + 1))\n", "\n", "#\n", "# variables\n", "#\n", "\n", "# x[i,j,k] = 1 means that cell (i,j) contains integer k\n", "x = {}\n", "for i in range_n:\n", " for j in range_n:\n", " for k in range_N:\n", " x[i, j, k] = solver.IntVar(0, 1, 'x[%i,%i,%i]' % (i, j, k))\n", "\n", "# For output. Much slower....\n", "if use_output_matrix == 1:\n", " print('Using an output matrix')\n", " square = {}\n", " for i in range_n:\n", " for j in range_n:\n", " square[i, j] = solver.IntVar(1, n * n, 'square[%i,%i]' % (i, j))\n", "\n", "# the magic sum\n", "s = solver.IntVar(1, n * n * n, 's')\n", "\n", "#\n", "# constraints\n", "#\n", "\n", "# each cell must be assigned exactly one integer\n", "for i in range_n:\n", " for j in range_n:\n", " solver.Add(solver.Sum([x[i, j, k] for k in range_N]) == 1)\n", "\n", "# each integer must be assigned exactly to one cell\n", "for k in range_N:\n", " solver.Add(solver.Sum([x[i, j, k] for i in range_n for j in range_n]) == 1)\n", "\n", "# # the sum in each row must be the magic sum\n", "for i in range_n:\n", " solver.Add(\n", " solver.Sum([k * x[i, j, k] for j in range_n for k in range_N]) == s)\n", "\n", "# # the sum in each column must be the magic sum\n", "for j in range_n:\n", " solver.Add(\n", " solver.Sum([k * x[i, j, k] for i in range_n for k in range_N]) == s)\n", "\n", "# # the sum in the diagonal must be the magic sum\n", "solver.Add(\n", " solver.Sum([k * x[i, i, k] for i in range_n for k in range_N]) == s)\n", "\n", "# # the sum in the co-diagonal must be the magic sum\n", "if range_n[0] == 1:\n", " # for range_n = 1..n\n", " solver.Add(\n", " solver.Sum([k * x[i, n - i + 1, k]\n", " for i in range_n\n", " for k in range_N]) == s)\n", "else:\n", " # for range_n = 0..n-1\n", " solver.Add(\n", " solver.Sum([k * x[i, n - i - 1, k]\n", " for i in range_n\n", " for k in range_N]) == s)\n", "\n", "# for output\n", "if use_output_matrix == 1:\n", " for i in range_n:\n", " for j in range_n:\n", " solver.Add(\n", " square[i, j] == solver.Sum([k * x[i, j, k] for k in range_N]))\n", "\n", "#\n", "# solution and search\n", "#\n", "solver.Solve()\n", "\n", "print()\n", "\n", "print('s: ', int(s.SolutionValue()))\n", "if use_output_matrix == 1:\n", " for i in range_n:\n", " for j in range_n:\n", " print(int(square[i, j].SolutionValue()), end=' ')\n", " print()\n", " print()\n", "else:\n", " for i in range_n:\n", " for j in range_n:\n", " print(\n", " sum([int(k * x[i, j, k].SolutionValue()) for k in range_N]),\n", " ' ',\n", " end=' ')\n", " print()\n", "\n", "print('\\nx:')\n", "for i in range_n:\n", " for j in range_n:\n", " for k in range_N:\n", " print(int(x[i, j, k].SolutionValue()), end=' ')\n", " print()\n", "\n", "print()\n", "print('walltime :', solver.WallTime(), 'ms')\n", "if sol == 'CBC':\n", " print('iterations:', solver.Iterations())\n", "\n" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }
apache-2.0
colour-science/colour-hdri
colour_hdri/examples/examples_absolute_luminance_calibration_and_photometric_exposure_conversion.ipynb
1
3165424
null
bsd-3-clause
james-prior/cohpy
20160527-cohpy-set-order.ipynb
1
151914
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook explores the order of items in sets.\n", "It seems that when Jupyter prints out the value of a set,\n", "if the set has less than 1000 items\n", "the output is sorted.\n", "Sets with 1000 or more items seem to not be sorted.\n", "\n", "This seems to be just Jupyter behavior, not of Python itself.\n", "str(b), repr(b), print(b), print(str(b)), and print(repr(b))\n", "are seem to always be unordered." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'city': None, 'hello': 324, 'world': 98743}" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "{'hello': 324, 'world': 98743, 'city': None}" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "b = {'hello', 'world', 'city', 'zebra', 'aardvark', 'Aaron', 'aaa', 'foo', 'xray', 'alex', 'jim', 'chris'}" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(set, 99171)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "words = set(open('/usr/share/dict/american-english').read().split())\n", "type(words), len(words)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from itertools import islice" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{\"AB's\",\n", " \"Abe's\",\n", " 'Adela',\n", " \"Adolf's\",\n", " 'Ahriman',\n", " 'Alicia',\n", " \"Allison's\",\n", " 'Alyce',\n", " 'Anubis',\n", " 'Arcadia',\n", " 'Armando',\n", " 'Aurora',\n", " 'Avalon',\n", " 'Barclay',\n", " 'Blucher',\n", " 'Brahmans',\n", " 'Brits',\n", " \"Bundesbank's\",\n", " \"Byers's\",\n", " \"CPA's\",\n", " \"Cancun's\",\n", " 'Carlene',\n", " 'Casals',\n", " 'Cheetos',\n", " 'Chou',\n", " 'Christina',\n", " 'Confucians',\n", " 'Cormack',\n", " \"Cr's\",\n", " 'Croats',\n", " \"Cupid's\",\n", " 'Cyrano',\n", " \"Danielle's\",\n", " 'Delgado',\n", " 'Delphic',\n", " \"Descartes's\",\n", " 'Dexter',\n", " 'Drano',\n", " 'Duncan',\n", " \"Dunkirk's\",\n", " \"Earle's\",\n", " \"Emacs's\",\n", " \"Eniwetok's\",\n", " \"Eocene's\",\n", " \"Eurasia's\",\n", " 'Fafnir',\n", " \"Felice's\",\n", " 'Francisco',\n", " 'Freud',\n", " 'Gadsden',\n", " 'Gandhian',\n", " 'Gantry',\n", " \"Gertrude's\",\n", " 'Getty',\n", " 'Gillette',\n", " 'Ginny',\n", " 'Godiva',\n", " 'Gorey',\n", " \"HP's\",\n", " 'Hangzhou',\n", " \"Hitler's\",\n", " 'Ingres',\n", " 'Innocent',\n", " 'Iroquois',\n", " 'Joaquin',\n", " 'Joplin',\n", " \"Juanita's\",\n", " \"Judaism's\",\n", " 'June',\n", " \"Kara's\",\n", " \"Khwarizmi's\",\n", " \"Knesset's\",\n", " 'Knickerbocker',\n", " 'Kurosawa',\n", " \"Laocoon's\",\n", " 'Lawson',\n", " 'Leeds',\n", " 'Lela',\n", " \"Lew's\",\n", " \"Liege's\",\n", " 'Long',\n", " 'Luann',\n", " 'Lucile',\n", " \"Mackinac's\",\n", " \"Maidenform's\",\n", " 'Mancini',\n", " 'Maracaibo',\n", " \"Mark's\",\n", " 'Mather',\n", " 'Melville',\n", " \"Merriam's\",\n", " 'Midwest',\n", " 'Mississippian',\n", " 'Mitterrand',\n", " 'Mohammedans',\n", " \"Mohorovicic's\",\n", " \"Morpheus's\",\n", " \"Naphtali's\",\n", " \"Naziism's\",\n", " 'Niger',\n", " \"Nobelist's\",\n", " \"Oise's\",\n", " 'Otto',\n", " \"Patterson's\",\n", " 'Paula',\n", " 'Perseid',\n", " \"Persia's\",\n", " 'Petersen',\n", " 'Piaget',\n", " \"Podhoretz's\",\n", " 'Polanski',\n", " 'Ponce',\n", " 'Popocatepetl',\n", " 'Prut',\n", " \"Psalter's\",\n", " 'Ringo',\n", " 'Roosevelt',\n", " \"Rosalyn's\",\n", " 'Rosie',\n", " \"Rostov's\",\n", " 'Rover',\n", " 'Sakhalin',\n", " 'Scripture',\n", " 'Siberia',\n", " \"Snyder's\",\n", " 'Sq',\n", " 'Stamford',\n", " \"Starr's\",\n", " \"Stephan's\",\n", " 'Sterno',\n", " 'Subaru',\n", " 'Sumerian',\n", " 'Teri',\n", " \"Tibetan's\",\n", " \"Trey's\",\n", " \"Trojan's\",\n", " 'Trujillo',\n", " 'Tubman',\n", " 'Turner',\n", " \"Valentine's\",\n", " \"Vulcan's\",\n", " \"Walmart's\",\n", " 'Westinghouse',\n", " 'Xanthippe',\n", " \"Xingu's\",\n", " \"Yamagata's\",\n", " 'Yaobang',\n", " 'Yellowstone',\n", " \"Yuletide's\",\n", " 'Zamora',\n", " 'abscessing',\n", " 'accessing',\n", " 'aches',\n", " 'addle',\n", " 'adjurations',\n", " 'advents',\n", " 'advertisement',\n", " 'advertisers',\n", " 'airbrushing',\n", " 'alleluia',\n", " 'alms',\n", " \"ambrosia's\",\n", " \"amiability's\",\n", " \"anaemia's\",\n", " 'anaesthetic',\n", " 'analogues',\n", " \"analogy's\",\n", " \"aneurism's\",\n", " 'annoyances',\n", " 'anonymity',\n", " 'anorexic',\n", " 'antiquaries',\n", " 'anxiously',\n", " 'appertain',\n", " 'applicable',\n", " 'appreciate',\n", " 'armistice',\n", " 'armlet',\n", " \"armlet's\",\n", " 'astrophysicist',\n", " 'athletically',\n", " 'aureolas',\n", " 'authorship',\n", " 'automatons',\n", " 'avenge',\n", " 'avows',\n", " 'awoke',\n", " 'babysat',\n", " \"backstroke's\",\n", " 'bailiff',\n", " 'barbarity',\n", " 'barber',\n", " 'barrener',\n", " 'battlements',\n", " 'benign',\n", " 'berates',\n", " 'betrothals',\n", " 'biassed',\n", " 'bib',\n", " 'big',\n", " 'bills',\n", " \"birch's\",\n", " 'blazed',\n", " \"bleach's\",\n", " 'blindfolding',\n", " 'blinding',\n", " \"blotter's\",\n", " 'blowtorch',\n", " 'bold',\n", " 'bolted',\n", " 'bookend',\n", " 'born',\n", " 'boroughs',\n", " 'bounces',\n", " 'boundless',\n", " 'bounds',\n", " 'bourgeois',\n", " 'boxing',\n", " 'brainy',\n", " \"brat's\",\n", " \"bronchitis's\",\n", " 'broth',\n", " \"browse's\",\n", " 'bulkier',\n", " 'bushwhackers',\n", " 'bussing',\n", " 'buttoned',\n", " 'caliphate',\n", " 'canoeing',\n", " \"cantaloup's\",\n", " 'capacitance',\n", " 'castigation',\n", " 'catalogers',\n", " 'caucused',\n", " 'cedes',\n", " 'celibates',\n", " 'cemeteries',\n", " 'chagrining',\n", " 'cheapening',\n", " 'checklist',\n", " \"chemical's\",\n", " \"cherry's\",\n", " \"chill's\",\n", " 'chillers',\n", " 'chiropractors',\n", " 'chlorine',\n", " \"chock's\",\n", " 'chokers',\n", " 'chorale',\n", " \"chromosome's\",\n", " \"cigarillo's\",\n", " 'cinema',\n", " 'circlets',\n", " 'circularizing',\n", " 'civics',\n", " 'clapboard',\n", " 'clarified',\n", " 'clasping',\n", " 'classes',\n", " \"classification's\",\n", " 'classmate',\n", " \"clime's\",\n", " 'clitoral',\n", " 'close',\n", " \"clothespin's\",\n", " 'clothespins',\n", " 'coding',\n", " 'coeducational',\n", " 'cognac',\n", " \"collation's\",\n", " 'collectable',\n", " \"colonialism's\",\n", " 'comediennes',\n", " 'commencing',\n", " 'commendable',\n", " 'commissariats',\n", " 'commitments',\n", " 'communicator',\n", " 'compelled',\n", " 'competences',\n", " \"competitiveness's\",\n", " \"confine's\",\n", " 'confiscating',\n", " 'consider',\n", " 'constable',\n", " 'constitution',\n", " \"consumerism's\",\n", " 'consummate',\n", " 'converses',\n", " 'cookouts',\n", " 'cooky',\n", " 'coordinating',\n", " \"corespondent's\",\n", " 'corpses',\n", " 'corroded',\n", " 'cosmically',\n", " \"counselor's\",\n", " 'county',\n", " 'couriers',\n", " 'crave',\n", " 'creamed',\n", " 'crisps',\n", " 'crunchier',\n", " 'crypt',\n", " 'customized',\n", " 'daiquiris',\n", " 'damages',\n", " 'dashboards',\n", " \"dateline's\",\n", " 'daughter',\n", " 'daze',\n", " 'deadest',\n", " 'debarment',\n", " 'deceived',\n", " 'decencies',\n", " 'decentralizing',\n", " \"decompression's\",\n", " 'decriminalized',\n", " 'dedications',\n", " 'defiled',\n", " 'deformities',\n", " \"deism's\",\n", " \"delinquent's\",\n", " 'denounces',\n", " \"dentist's\",\n", " 'depressingly',\n", " \"desecration's\",\n", " 'despoiling',\n", " 'destabilize',\n", " 'destructive',\n", " 'detraction',\n", " 'devaluations',\n", " \"deviance's\",\n", " 'devilries',\n", " 'devises',\n", " \"dick's\",\n", " 'different',\n", " 'dire',\n", " 'dis',\n", " 'disadvantageously',\n", " \"disaster's\",\n", " 'discounts',\n", " 'disease',\n", " 'disestablishing',\n", " 'disfigured',\n", " 'disillusioned',\n", " 'disillusioning',\n", " 'dislocating',\n", " \"disposable's\",\n", " \"distillery's\",\n", " 'distinction',\n", " 'district',\n", " 'dithers',\n", " 'dominoes',\n", " 'dormice',\n", " 'drams',\n", " 'drank',\n", " 'dress',\n", " 'drown',\n", " 'drudged',\n", " 'dryads',\n", " 'ducats',\n", " 'duelling',\n", " 'dumbness',\n", " 'durability',\n", " 'dwarfed',\n", " 'dwelling',\n", " \"dying's\",\n", " 'dynastic',\n", " 'earthward',\n", " \"easel's\",\n", " \"easterner's\",\n", " 'eclipsed',\n", " 'ecstatically',\n", " 'eddying',\n", " \"edit's\",\n", " 'editorializes',\n", " 'eighteen',\n", " 'eighth',\n", " 'elapsed',\n", " 'electrocution',\n", " \"elf's\",\n", " 'elks',\n", " 'embedding',\n", " 'embolden',\n", " 'emolument',\n", " \"empire's\",\n", " 'emporium',\n", " \"emulsion's\",\n", " 'encores',\n", " 'enfolded',\n", " \"enlightenment's\",\n", " 'enmeshed',\n", " 'entrails',\n", " 'errs',\n", " \"euphemism's\",\n", " 'evinces',\n", " 'exact',\n", " 'exalts',\n", " 'excess',\n", " 'excruciatingly',\n", " 'execrating',\n", " 'exercising',\n", " 'exorcised',\n", " 'exorcize',\n", " 'expanding',\n", " 'expelling',\n", " 'explorers',\n", " 'extendable',\n", " 'extenuate',\n", " 'eyeliners',\n", " 'eyestrain',\n", " 'failure',\n", " \"falconer's\",\n", " 'fallowing',\n", " \"farewell's\",\n", " 'fasted',\n", " 'fate',\n", " 'fathomed',\n", " 'feds',\n", " 'ferocity',\n", " \"fetus's\",\n", " \"figurehead's\",\n", " \"file's\",\n", " 'findings',\n", " 'fireman',\n", " 'flabbergasting',\n", " 'flatted',\n", " 'flatulence',\n", " 'floggings',\n", " 'floodlight',\n", " 'floras',\n", " \"flounder's\",\n", " 'flouting',\n", " 'fluids',\n", " 'flyspecked',\n", " \"fondness's\",\n", " 'footbridge',\n", " \"footman's\",\n", " 'fora',\n", " 'forbids',\n", " 'freedoms',\n", " 'frizzle',\n", " \"frog's\",\n", " \"frustration's\",\n", " 'fumigation',\n", " 'funniest',\n", " 'furors',\n", " \"furze's\",\n", " 'gabbier',\n", " \"gallantry's\",\n", " \"gamekeeper's\",\n", " 'gamekeepers',\n", " 'gantries',\n", " 'gazing',\n", " 'genetic',\n", " 'gibbeting',\n", " 'girdling',\n", " \"goalpost's\",\n", " \"gobbledygook's\",\n", " \"golf's\",\n", " 'gooier',\n", " \"gosling's\",\n", " 'gougers',\n", " 'graves',\n", " \"gravity's\",\n", " 'greasier',\n", " 'griddlecakes',\n", " 'griped',\n", " 'gritting',\n", " 'grotto',\n", " 'grout',\n", " 'gulped',\n", " 'halitosis',\n", " 'handled',\n", " 'hangmen',\n", " 'hardy',\n", " \"hastiness's\",\n", " 'have',\n", " 'haw',\n", " 'hawkish',\n", " 'hayseeds',\n", " 'healers',\n", " 'heckled',\n", " 'heckling',\n", " 'herbivorous',\n", " 'herded',\n", " \"hermitage's\",\n", " 'homeopathy',\n", " 'homesteader',\n", " \"hooter's\",\n", " 'hose',\n", " \"housetop's\",\n", " 'humbugged',\n", " 'humiliated',\n", " 'hunger',\n", " \"hush's\",\n", " 'hydrangeas',\n", " 'hydroplaning',\n", " \"hyperbola's\",\n", " 'hyphening',\n", " \"idea's\",\n", " 'iffiest',\n", " 'impinge',\n", " 'impressionistic',\n", " 'inadvertent',\n", " \"incantation's\",\n", " 'incarnation',\n", " 'incorporate',\n", " 'incremental',\n", " 'increments',\n", " 'incurable',\n", " 'indict',\n", " 'indoctrinating',\n", " 'inducements',\n", " 'indulged',\n", " 'industrialists',\n", " \"inertia's\",\n", " 'infielders',\n", " 'ingenuous',\n", " 'inhabit',\n", " 'initials',\n", " \"inmate's\",\n", " 'insincerely',\n", " 'instigate',\n", " 'instills',\n", " 'institutionalize',\n", " 'insurer',\n", " 'intelligible',\n", " 'intending',\n", " 'interments',\n", " 'into',\n", " \"intransigence's\",\n", " 'intrudes',\n", " 'invaders',\n", " 'inveigled',\n", " 'inventions',\n", " 'investigation',\n", " 'invincibility',\n", " 'invokes',\n", " 'island',\n", " 'jejune',\n", " \"jeopardy's\",\n", " \"jet's\",\n", " 'joggles',\n", " 'joiners',\n", " 'junking',\n", " 'keels',\n", " \"killdeer's\",\n", " 'kilter',\n", " 'kinking',\n", " 'kinky',\n", " 'kleptomaniacs',\n", " 'knacker',\n", " \"knitwear's\",\n", " 'knobbier',\n", " 'labels',\n", " 'laburnums',\n", " 'ladybirds',\n", " 'lamed',\n", " 'lamentations',\n", " \"landlubber's\",\n", " 'lapwing',\n", " 'larboard',\n", " 'lariat',\n", " \"lassie's\",\n", " 'leafier',\n", " 'leak',\n", " \"leapfrog's\",\n", " 'led',\n", " 'lees',\n", " \"leitmotif's\",\n", " 'lepers',\n", " \"lichee's\",\n", " \"lightning's\",\n", " 'likelier',\n", " \"linoleum's\",\n", " 'liter',\n", " 'loges',\n", " 'loosened',\n", " 'lopsidedness',\n", " \"lube's\",\n", " 'lustily',\n", " 'luxuries',\n", " 'luxurious',\n", " \"madder's\",\n", " \"mahatma's\",\n", " 'mailer',\n", " 'maligned',\n", " 'manageable',\n", " 'maneuvered',\n", " 'manifest',\n", " \"manufacture's\",\n", " 'marches',\n", " 'materialistic',\n", " \"melon's\",\n", " 'messiah',\n", " 'metamorphism',\n", " 'mewls',\n", " 'miasmata',\n", " 'midyear',\n", " \"militiaman's\",\n", " \"milkmaid's\",\n", " 'miniscule',\n", " 'minuter',\n", " 'mirrors',\n", " 'miscellaneous',\n", " 'misdoings',\n", " 'misdone',\n", " \"mishmash's\",\n", " \"mistake's\",\n", " 'moan',\n", " 'mobilized',\n", " 'modelings',\n", " \"mommy's\",\n", " \"monologue's\",\n", " \"monstrance's\",\n", " 'mortal',\n", " 'moth',\n", " 'motormouth',\n", " 'mountaineers',\n", " \"mukluk's\",\n", " 'multitasking',\n", " \"municipal's\",\n", " \"mush's\",\n", " 'musketeers',\n", " 'mutilated',\n", " \"mutilation's\",\n", " 'mysterious',\n", " 'narcissistic',\n", " \"native's\",\n", " 'necklaces',\n", " \"neglig's\",\n", " 'negligee',\n", " 'nerving',\n", " 'never',\n", " \"nickel's\",\n", " 'nightclothes',\n", " 'nincompoops',\n", " 'nonprofessional',\n", " 'nonwhites',\n", " 'northbound',\n", " \"nuke's\",\n", " 'objectors',\n", " 'obstructive',\n", " 'obtainable',\n", " 'occludes',\n", " 'oftener',\n", " 'opaques',\n", " 'operations',\n", " 'opposes',\n", " 'orgasm',\n", " 'orphan',\n", " 'orthopaedists',\n", " 'otiose',\n", " 'outstripping',\n", " 'outtakes',\n", " \"overachiever's\",\n", " 'overbore',\n", " 'packet',\n", " \"packet's\",\n", " 'painted',\n", " 'palisades',\n", " 'palsied',\n", " \"panderer's\",\n", " \"parabola's\",\n", " 'parading',\n", " 'parentheses',\n", " \"paring's\",\n", " 'participating',\n", " 'passenger',\n", " 'pauses',\n", " 'payroll',\n", " 'peculiar',\n", " 'pedestals',\n", " 'pediatrician',\n", " 'pediatrics',\n", " 'pellucid',\n", " 'pelt',\n", " 'pelvis',\n", " 'peony',\n", " \"pepsin's\",\n", " 'perceptive',\n", " 'peritoneums',\n", " 'permissible',\n", " \"pertness's\",\n", " 'perturb',\n", " 'petioles',\n", " \"petrel's\",\n", " 'petting',\n", " \"phallus's\",\n", " 'phantasmagorias',\n", " \"phenomenon's\",\n", " 'phial',\n", " 'philologists',\n", " \"phobia's\",\n", " 'phosphors',\n", " 'physiognomy',\n", " \"physiotherapist's\",\n", " \"pictograph's\",\n", " \"pine's\",\n", " 'piranha',\n", " 'piston',\n", " 'placidity',\n", " 'plague',\n", " 'plaice',\n", " 'platooning',\n", " 'pleads',\n", " 'plenary',\n", " \"plenary's\",\n", " \"plow's\",\n", " 'plunge',\n", " 'pluralistic',\n", " 'policies',\n", " 'pompadour',\n", " \"poncho's\",\n", " \"pornography's\",\n", " 'possibilities',\n", " 'postmark',\n", " \"potluck's\",\n", " \"powerlessness's\",\n", " 'pragmatists',\n", " 'preaching',\n", " 'preeminently',\n", " \"presence's\",\n", " \"presumption's\",\n", " 'preteen',\n", " 'prettier',\n", " 'privateers',\n", " \"profession's\",\n", " 'professorship',\n", " \"projectionist's\",\n", " 'proletariat',\n", " 'prolongation',\n", " 'prolonging',\n", " 'promptest',\n", " 'propagandizes',\n", " 'prophylactics',\n", " 'prosperous',\n", " 'protective',\n", " 'provides',\n", " \"puberty's\",\n", " 'pudgy',\n", " 'pulse',\n", " 'pumped',\n", " 'purpose',\n", " 'puttied',\n", " 'qua',\n", " \"quadruped's\",\n", " 'quarantining',\n", " 'quickened',\n", " 'quid',\n", " 'racetrack',\n", " \"ragout's\",\n", " 'railroaded',\n", " \"ramble's\",\n", " 'ratcheted',\n", " 'ration',\n", " 'rawest',\n", " 'reapportionment',\n", " 'reasonableness',\n", " 'recall',\n", " 'recites',\n", " 'reckons',\n", " \"reconnaissance's\",\n", " 'reddish',\n", " \"referee's\",\n", " 'refill',\n", " 'refit',\n", " 'reformulating',\n", " \"refreshment's\",\n", " 'refueled',\n", " 'regenerate',\n", " 'regrettable',\n", " 'relishing',\n", " 'remake',\n", " 'remakes',\n", " 'remedying',\n", " 'repeals',\n", " \"reprint's\",\n", " 'reprobates',\n", " 'rescind',\n", " 'researches',\n", " 'resenting',\n", " 'resigned',\n", " 'respect',\n", " 'respell',\n", " 'respires',\n", " 'restfulness',\n", " \"retardant's\",\n", " 'retrieves',\n", " 'revues',\n", " 'rewriting',\n", " 'rickshas',\n", " \"riddle's\",\n", " 'ridiculously',\n", " \"rifleman's\",\n", " 'rigidness',\n", " 'ringers',\n", " 'roping',\n", " \"roughneck's\",\n", " 'rowdiness',\n", " 'sailcloth',\n", " 'sailors',\n", " 'salve',\n", " 'sancta',\n", " 'sanded',\n", " 'schematically',\n", " \"scholarship's\",\n", " \"scratchiness's\",\n", " 'scripts',\n", " 'scrotums',\n", " 'sealer',\n", " 'searing',\n", " 'secedes',\n", " \"secret's\",\n", " 'semipermeable',\n", " 'sensitives',\n", " 'sensuously',\n", " 'sermonize',\n", " 'sermons',\n", " 'servility',\n", " 'sesame',\n", " \"settle's\",\n", " 'seventeens',\n", " 'sexiest',\n", " \"shirtwaist's\",\n", " \"shiver's\",\n", " \"showgirl's\",\n", " 'shrinks',\n", " 'sidelight',\n", " \"sidewall's\",\n", " 'siesta',\n", " \"simplification's\",\n", " 'sinkholes',\n", " \"sirup's\",\n", " 'situated',\n", " \"skim's\",\n", " 'skylines',\n", " \"slack's\",\n", " \"slanderer's\",\n", " 'slashed',\n", " 'slavered',\n", " \"sled's\",\n", " 'sledgehammers',\n", " 'slewing',\n", " 'slides',\n", " 'slithering',\n", " 'sloshes',\n", " 'slovenliness',\n", " 'slue',\n", " 'smelliest',\n", " 'sniffed',\n", " \"snip's\",\n", " 'snivels',\n", " 'snored',\n", " 'soda',\n", " \"something's\",\n", " \"sonnet's\",\n", " 'sorely',\n", " 'sovereign',\n", " 'soy',\n", " 'spanners',\n", " 'spans',\n", " 'spared',\n", " \"sparkler's\",\n", " \"spear's\",\n", " 'spider',\n", " 'spillages',\n", " 'spireas',\n", " \"spleen's\",\n", " \"split's\",\n", " \"spokesperson's\",\n", " \"spreadsheet's\",\n", " 'spreadsheets',\n", " 'springtime',\n", " 'staggers',\n", " \"stipend's\",\n", " 'stoning',\n", " 'storms',\n", " 'stormy',\n", " 'strait',\n", " \"stream's\",\n", " 'strumpet',\n", " 'sublimating',\n", " 'submission',\n", " 'subterranean',\n", " 'suitable',\n", " \"summer's\",\n", " 'superscript',\n", " 'suspenseful',\n", " 'swankest',\n", " \"sweetbrier's\",\n", " 'swiping',\n", " 'swooned',\n", " 'syllabication',\n", " \"synchronization's\",\n", " 'tameness',\n", " 'tamper',\n", " 'tango',\n", " 'tankers',\n", " \"tanner's\",\n", " 'tap',\n", " \"tare's\",\n", " 'tarring',\n", " \"tautology's\",\n", " \"teacher's\",\n", " \"teacup's\",\n", " 'technocracy',\n", " 'telecommuted',\n", " 'telekinesis',\n", " \"tetrahedron's\",\n", " 'thirds',\n", " \"thong's\",\n", " \"tidbit's\",\n", " 'tier',\n", " \"tillage's\",\n", " 'tinnier',\n", " \"tiptop's\",\n", " 'tomboys',\n", " \"torpedo's\",\n", " 'torts',\n", " 'totters',\n", " 'toughened',\n", " 'toxicity',\n", " 'transceivers',\n", " 'transferal',\n", " 'transmigrated',\n", " 'transmissions',\n", " 'transposes',\n", " 'trenches',\n", " \"trial's\",\n", " 'trifle',\n", " 'trimly',\n", " 'trisects',\n", " 'trochee',\n", " \"troublemaker's\",\n", " 'trustworthiness',\n", " 'tuckers',\n", " \"turbojet's\",\n", " 'turd',\n", " 'turnabouts',\n", " \"turner's\",\n", " \"turquoise's\",\n", " \"tweet's\",\n", " \"twitch's\",\n", " 'type',\n", " 'umber',\n", " 'umping',\n", " 'umpired',\n", " 'uncompromisingly',\n", " 'underlain',\n", " 'underrated',\n", " 'undersell',\n", " \"undesirable's\",\n", " 'uneconomical',\n", " 'unexceptionable',\n", " 'unfit',\n", " \"unhappiness's\",\n", " 'unimaginative',\n", " 'unkindness',\n", " 'unloosing',\n", " 'uprising',\n", " \"urge's\",\n", " 'utterance',\n", " 'valises',\n", " 'vantages',\n", " 'variables',\n", " 'ventriloquist',\n", " \"venue's\",\n", " 'vibration',\n", " 'victims',\n", " 'vindicated',\n", " 'visions',\n", " 'vitality',\n", " 'vivaciousness',\n", " 'vocalize',\n", " \"vowel's\",\n", " 'vulcanizing',\n", " 'waking',\n", " \"walkway's\",\n", " \"washable's\",\n", " 'weapon',\n", " \"weaver's\",\n", " 'westerns',\n", " 'whites',\n", " 'whizzed',\n", " 'wicker',\n", " \"willpower's\",\n", " 'wish',\n", " \"wisher's\",\n", " 'wobblier',\n", " \"wordiness's\",\n", " 'wormwood',\n", " \"yen's\",\n", " 'yews',\n", " 'yield',\n", " 'yuletide',\n", " 'zoologists'}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b = set()\n", "for word in islice(words, 999):\n", " b |= set([word])\n", " # print(word)\n", " \n", "b" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'{\\'armlet\\', \"figurehead\\'s\", \"deviance\\'s\", \\'palisades\\', \"monstrance\\'s\", \\'nightclothes\\', \\'packet\\', \\'miniscule\\', \\'evinces\\', \\'orphan\\', \"torpedo\\'s\", \\'drank\\', \\'denounces\\', \"leapfrog\\'s\", \\'Mancini\\', \\'intending\\', \\'yield\\', \"classification\\'s\", \\'gougers\\', \\'Ponce\\', \\'circularizing\\', \\'pulse\\', \"delinquent\\'s\", \\'errs\\', \\'quickened\\', \\'operations\\', \\'sublimating\\', \\'exact\\', \\'gantries\\', \"sweetbrier\\'s\", \\'exercising\\', \\'midyear\\', \\'dislocating\\', \\'phantasmagorias\\', \\'classes\\', \\'resigned\\', \\'slewing\\', \"knitwear\\'s\", \\'reasonableness\\', \\'Yellowstone\\', \"euphemism\\'s\", \\'floggings\\', \\'respect\\', \\'underlain\\', \"split\\'s\", \\'aureolas\\', \\'destructive\\', \\'nincompoops\\', \\'wobblier\\', \\'daughter\\', \\'piranha\\', \\'lamed\\', \\'torts\\', \\'overbore\\', \\'plague\\', \\'ferocity\\', \"dying\\'s\", \\'blinding\\', \\'labels\\', \\'plenary\\', \"browse\\'s\", \\'feds\\', \\'extenuate\\', \\'purpose\\', \\'flabbergasting\\', \\'rewriting\\', \\'annoyances\\', \\'appreciate\\', \\'babysat\\', \"troublemaker\\'s\", \\'spreadsheets\\', \\'insurer\\', \"clime\\'s\", \"Dunkirk\\'s\", \\'classmate\\', \\'consummate\\', \\'utterance\\', \\'lapwing\\', \\'confiscating\\', \"melon\\'s\", \"venue\\'s\", \"spleen\\'s\", \\'salve\\', \\'handled\\', \\'snored\\', \\'preaching\\', \\'inventions\\', \\'devilries\\', \\'Polanski\\', \"gosling\\'s\", \\'westerns\\', \\'bold\\', \"cigarillo\\'s\", \\'protective\\', \\'discounts\\', \"phallus\\'s\", \\'marches\\', \"thong\\'s\", \"Knesset\\'s\", \\'palsied\\', \"presumption\\'s\", \"Persia\\'s\", \\'ducats\\', \\'sermons\\', \"enlightenment\\'s\", \\'greasier\\', \"turbojet\\'s\", \\'whites\\', \"gravity\\'s\", \"backstroke\\'s\", \\'incorporate\\', \\'customized\\', \"Cupid\\'s\", \\'Mitterrand\\', \\'decentralizing\\', \"distillery\\'s\", \"Oise\\'s\", \\'strait\\', \\'abscessing\\', \\'retrieves\\', \\'haw\\', \\'eclipsed\\', \"collation\\'s\", \"blotter\\'s\", \\'narcissistic\\', \\'possibilities\\', \\'spireas\\', \\'vulcanizing\\', \\'bourgeois\\', \\'tomboys\\', \\'Cheetos\\', \\'manifest\\', \"lassie\\'s\", \"ramble\\'s\", \"wordiness\\'s\", \"Felice\\'s\", \\'dire\\', \\'disfigured\\', \\'damages\\', \\'provides\\', \\'regenerate\\', \\'parentheses\\', \\'reddish\\', \\'jejune\\', \"nuke\\'s\", \"tanner\\'s\", \\'puttied\\', \\'smelliest\\', \"plow\\'s\", \\'metamorphism\\', \\'liter\\', \\'deformities\\', \\'sidelight\\', \\'initials\\', \\'Cormack\\', \"mahatma\\'s\", \\'yuletide\\', \"jet\\'s\", \\'Zamora\\', \\'instills\\', \\'griped\\', \\'sesame\\', \"skim\\'s\", \\'misdone\\', \\'fireman\\', \\'materialistic\\', \\'rawest\\', \"tare\\'s\", \\'Melville\\', \\'county\\', \\'floodlight\\', \"clothespin\\'s\", \\'humbugged\\', \"edit\\'s\", \\'swooned\\', \\'Lawson\\', \\'ecstatically\\', \\'eddying\\', \\'phial\\', \\'mirrors\\', \"mistake\\'s\", \\'fumigation\\', \\'trenches\\', \\'different\\', \\'suspenseful\\', \\'orgasm\\', \\'corpses\\', \\'never\\', \\'prettier\\', \\'submission\\', \\'indoctrinating\\', \\'pumped\\', \\'pedestals\\', \\'pellucid\\', \\'bailiff\\', \\'devises\\', \"Snyder\\'s\", \"footman\\'s\", \"confine\\'s\", \"militiaman\\'s\", \\'civics\\', \"profession\\'s\", \\'aches\\', \"lichee\\'s\", \\'Ahriman\\', \"sirup\\'s\", \\'superscript\\', \\'Mohammedans\\', \\'antiquaries\\', \\'rigidness\\', \\'knacker\\', \\'skylines\\', \\'keels\\', \\'defiled\\', \"mommy\\'s\", \"easel\\'s\", \\'tap\\', \"urge\\'s\", \\'Mather\\', \"pertness\\'s\", \\'distinction\\', \\'sensuously\\', \\'catalogers\\', \\'Long\\', \\'telecommuted\\', \\'enmeshed\\', \"flounder\\'s\", \\'island\\', \\'anorexic\\', \"spreadsheet\\'s\", \"trial\\'s\", \\'clapboard\\', \\'Croats\\', \"simplification\\'s\", \"linoleum\\'s\", \\'Lela\\', \\'Hangzhou\\', \"potluck\\'s\", \\'impressionistic\\', \\'prolonging\\', \\'dedications\\', \\'tameness\\', \\'transceivers\\', \"physiotherapist\\'s\", \\'Sakhalin\\', \\'fate\\', \\'Iroquois\\', \\'unimaginative\\', \\'blindfolding\\', \\'destabilize\\', \"dick\\'s\", \\'accessing\\', \\'institutionalize\\', \\'Adela\\', \\'staggers\\', \"disposable\\'s\", \"cherry\\'s\", \"Mark\\'s\", \\'impinge\\', \"Descartes\\'s\", \\'decriminalized\\', \"gallantry\\'s\", \\'larboard\\', \\'weapon\\', \\'dwarfed\\', \\'excruciatingly\\', \\'Godiva\\', \"mishmash\\'s\", \\'slue\\', \\'adjurations\\', \\'indict\\', \\'trustworthiness\\', \\'Gantry\\', \\'gooier\\', \"elf\\'s\", \\'inhabit\\', \\'disadvantageously\\', \\'deceived\\', \"sled\\'s\", \"Bundesbank\\'s\", \\'ventriloquist\\', \"Hitler\\'s\", \"gamekeeper\\'s\", \\'inveigled\\', \\'motormouth\\', \"monologue\\'s\", \\'undersell\\', \\'dominoes\\', \\'slovenliness\\', \\'bounds\\', \\'stoning\\', \\'tankers\\', \\'blazed\\', \\'athletically\\', \\'semipermeable\\', \\'Fafnir\\', \"sparkler\\'s\", \"madder\\'s\", \\'advertisement\\', \\'detraction\\', \\'leak\\', \\'musketeers\\', \"phobia\\'s\", \\'occludes\\', \\'knobbier\\', \\'umping\\', \\'dashboards\\', \\'sensitives\\', \\'flouting\\', \\'intrudes\\', \\'pragmatists\\', \\'led\\', \\'Stamford\\', \\'physiognomy\\', \\'Chou\\', \\'pauses\\', \\'pluralistic\\', \"Eocene\\'s\", \\'Brits\\', \\'preeminently\\', \\'funniest\\', \\'miasmata\\', \\'rowdiness\\', \"summer\\'s\", \\'spans\\', \\'eyeliners\\', \\'umpired\\', \\'Gandhian\\', \\'laburnums\\', \\'lariat\\', \\'Xanthippe\\', \\'racetrack\\', \"Merriam\\'s\", \\'dynastic\\', \\'recall\\', \\'lees\\', \\'reapportionment\\', \"puberty\\'s\", \\'permissible\\', \\'inducements\\', \\'pediatrics\\', \\'biassed\\', \\'capacitance\\', \\'chillers\\', \\'Alyce\\', \\'maligned\\', \\'healers\\', \"goalpost\\'s\", \"spokesperson\\'s\", \\'barbarity\\', \\'embolden\\', \\'nerving\\', \\'have\\', \\'cemeteries\\', \\'oftener\\', \\'moth\\', \\'born\\', \\'Kurosawa\\', \\'competences\\', \"housetop\\'s\", \\'Trujillo\\', \\'petting\\', \\'Tubman\\', \\'mysterious\\', \\'relishing\\', \\'appertain\\', \\'cedes\\', \\'vibration\\', \\'gibbeting\\', \\'anxiously\\', \\'intelligible\\', \"idea\\'s\", \\'industrialists\\', \"quadruped\\'s\", \"furze\\'s\", \\'participating\\', \\'proletariat\\', \"landlubber\\'s\", \"Allison\\'s\", \\'addle\\', \\'dress\\', \"lightning\\'s\", \\'barrener\\', \\'sailors\\', \\'multitasking\\', \\'Carlene\\', \\'collectable\\', \"amiability\\'s\", \\'floras\\', \"twitch\\'s\", \\'vitality\\', \"disaster\\'s\", \\'Alicia\\', \\'Ingres\\', \\'hydrangeas\\', \\'bills\\', \"manufacture\\'s\", \\'celibates\\', \\'commitments\\', \\'Luann\\', \\'unloosing\\', \\'cooky\\', \\'clothespins\\', \\'perturb\\', \\'trochee\\', \"walkway\\'s\", \\'Leeds\\', \\'victims\\', \\'Westinghouse\\', \\'springtime\\', \\'platooning\\', \\'benign\\', \\'emporium\\', \\'hardy\\', \\'pudgy\\', \\'dithers\\', \\'heckled\\', \\'rescind\\', \\'umber\\', \\'turnabouts\\', \"HP\\'s\", \"stream\\'s\", \\'Casals\\', \\'extendable\\', \\'Prut\\', \"hermitage\\'s\", \\'leafier\\', \\'consider\\', \\'exorcize\\', \"weaver\\'s\", \\'execrating\\', \\'heckling\\', \\'elks\\', \\'sermonize\\', \"chromosome\\'s\", \\'kinking\\', \\'philologists\\', \"brat\\'s\", \\'lopsidedness\\', \\'communicator\\', \\'chagrining\\', \\'ingenuous\\', \\'pediatrician\\', \"nickel\\'s\", \\'Mississippian\\', \\'anonymity\\', \\'clitoral\\', \\'professorship\\', \\'caucused\\', \"mutilation\\'s\", \"riddle\\'s\", \"pepsin\\'s\", \\'bookend\\', \\'mailer\\', \\'sovereign\\', \\'explorers\\', \"retardant\\'s\", \\'drudged\\', \\'wicker\\', \\'sniffed\\', \"falconer\\'s\", \\'findings\\', \\'Christina\\', \\'researches\\', \\'objectors\\', \\'valises\\', \\'humiliated\\', \\'pompadour\\', \\'homeopathy\\', \\'toughened\\', \\'Blucher\\', \\'necklaces\\', \\'close\\', \\'siesta\\', \\'analogues\\', \\'exorcised\\', \\'remake\\', \\'minuter\\', \\'Duncan\\', \\'dis\\', \\'repeals\\', \\'infielders\\', \"emulsion\\'s\", \"showgirl\\'s\", \\'slashed\\', \\'duelling\\', \\'trimly\\', \\'technocracy\\', \"overachiever\\'s\", \\'outstripping\\', \"dentist\\'s\", \"Judaism\\'s\", \\'insincerely\\', \\'pleads\\', \"Rostov\\'s\", \\'privateers\\', \\'boroughs\\', \\'Barclay\\', \\'slithering\\', \\'lamentations\\', \\'Delgado\\', \\'incurable\\', \\'obstructive\\', \"Adolf\\'s\", \\'avows\\', \"mush\\'s\", \\'tier\\', \"chock\\'s\", \\'district\\', \\'enfolded\\', \\'soda\\', \\'big\\', \\'cinema\\', \"Morpheus\\'s\", \\'junking\\', \\'subterranean\\', \"turner\\'s\", \\'hayseeds\\', \"desecration\\'s\", \\'fallowing\\', \\'clarified\\', \\'ratcheted\\', \\'negligee\\', \\'Perseid\\', \\'crunchier\\', \\'slavered\\', \"birch\\'s\", \\'suitable\\', \\'miscellaneous\\', \\'ladybirds\\', \"hastiness\\'s\", \"turquoise\\'s\", \"CPA\\'s\", \\'refit\\', \\'servility\\', \\'Scripture\\', \\'hunger\\', \"phenomenon\\'s\", \"Yamagata\\'s\", \"Xingu\\'s\", \\'Anubis\\', \"consumerism\\'s\", \\'dumbness\\', \"Liege\\'s\", \"sidewall\\'s\", \\'kinky\\', \\'cognac\\', \\'luxurious\\', \"milkmaid\\'s\", \\'stormy\\', \"frog\\'s\", \"panderer\\'s\", \\'brainy\\', \\'incremental\\', \\'Ginny\\', \\'prosperous\\', \\'instigate\\', \\'scripts\\', \\'joiners\\', \\'furors\\', \\'policies\\', \\'elapsed\\', \\'authorship\\', \\'bushwhackers\\', \"reconnaissance\\'s\", \\'quid\\', \"inmate\\'s\", \\'messiah\\', \\'misdoings\\', \"Psalter\\'s\", \"teacher\\'s\", \\'Cyrano\\', \\'bib\\', \\'thirds\\', \"yen\\'s\", \\'berates\\', \"undesirable\\'s\", \\'Delphic\\', \\'bulkier\\', \"bronchitis\\'s\", \\'commissariats\\', \\'underrated\\', \\'armistice\\', \"washable\\'s\", \\'astrophysicist\\', \\'syllabication\\', \"ambrosia\\'s\", \"colonialism\\'s\", \\'placidity\\', \\'Gillette\\', \"municipal\\'s\", \\'Lucile\\', \"spear\\'s\", \\'Gadsden\\', \\'fora\\', \"Naphtali\\'s\", \"chemical\\'s\", \\'dwelling\\', \\'invaders\\', \\'debarment\\', \\'qua\\', \\'drown\\', \\'hydroplaning\\', \\'Armando\\', \\'waking\\', \\'gamekeepers\\', \\'Arcadia\\', \"jeopardy\\'s\", \\'situated\\', \\'propagandizes\\', \"armlet\\'s\", \\'promptest\\', \"Kara\\'s\", \\'Otto\\', \"Naziism\\'s\", \\'fasted\\', \\'scrotums\\', \\'bolted\\', \\'chokers\\', \\'prophylactics\\', \\'interments\\', \\'Maracaibo\\', \\'opaques\\', \"referee\\'s\", \\'invincibility\\', \"Podhoretz\\'s\", \\'earthward\\', \"tiptop\\'s\", \\'gritting\\', \\'Subaru\\', \\'respell\\', \\'daiquiris\\', \\'lustily\\', \"decompression\\'s\", \"bleach\\'s\", \\'postmark\\', \\'commendable\\', \\'couriers\\', \\'advents\\', \\'railroaded\\', \\'mortal\\', \\'creamed\\', \\'iffiest\\', \\'seventeens\\', \"analogy\\'s\", \"refreshment\\'s\", \\'visions\\', \\'hangmen\\', \"Nobelist\\'s\", \\'revues\\', \"Cancun\\'s\", \\'halitosis\\', \\'herded\\', \\'dormice\\', \\'snivels\\', \"projectionist\\'s\", \"wisher\\'s\", \\'blowtorch\\', \"packet\\'s\", \\'reckons\\', \\'cosmically\\', \\'genetic\\', \\'spider\\', \\'cookouts\\', \\'indulged\\', \\'tinnier\\', \\'barber\\', \"scratchiness\\'s\", \"dateline\\'s\", \\'plaice\\', \\'strumpet\\', \\'Joplin\\', \\'tuckers\\', \\'joggles\\', \"Maidenform\\'s\", \"Trojan\\'s\", \"empire\\'s\", \\'flatted\\', \"unhappiness\\'s\", \"Valentine\\'s\", \"plenary\\'s\", \"Mohorovicic\\'s\", \\'cheapening\\', \\'electrocution\\', \\'modelings\\', \\'refueled\\', \\'betrothals\\', \\'uprising\\', \\'restfulness\\', \"teacup\\'s\", \\'disease\\', \\'dryads\\', \\'incarnation\\', \\'tango\\', \"file\\'s\", \"cantaloup\\'s\", \"tautology\\'s\", \\'nonprofessional\\', \"killdeer\\'s\", \\'hawkish\\', \\'devaluations\\', \\'grout\\', \\'bussing\\', \"slack\\'s\", \"fondness\\'s\", \"tetrahedron\\'s\", \\'crisps\\', \\'vivaciousness\\', \\'transmissions\\', \\'sorely\\', \\'telekinesis\\', \\'homesteader\\', \\'parading\\', \"tillage\\'s\", \\'frizzle\\', \\'comediennes\\', \"tweet\\'s\", \\'gabbier\\', \\'grotto\\', \\'flyspecked\\', \"hooter\\'s\", \\'footbridge\\', \\'boundless\\', \"Danielle\\'s\", \\'mutilated\\', \\'regrettable\\', \"pine\\'s\", \\'zoologists\\', \"easterner\\'s\", \\'bounces\\', \\'girdling\\', \\'circlets\\', \\'otiose\\', \"poncho\\'s\", \\'maneuvered\\', \\'Knickerbocker\\', \\'Innocent\\', \"Eniwetok\\'s\", \\'graves\\', \\'hyphening\\', \\'outtakes\\', \\'broth\\', \"pictograph\\'s\", \\'griddlecakes\\', \\'sancta\\', \\'anaesthetic\\', \\'corroded\\', \\'piston\\', \"synchronization\\'s\", \\'transmigrated\\', \\'Roosevelt\\', \"neglig\\'s\", \\'expanding\\', \"shirtwaist\\'s\", \\'variables\\', \\'Sq\\', \"Vulcan\\'s\", \\'respires\\', \\'soy\\', \\'Teri\\', \\'orthopaedists\\', \"competitiveness\\'s\", \"Trey\\'s\", \\'castigation\\', \\'gazing\\', \"Earle\\'s\", \"inertia\\'s\", \\'herbivorous\\', \\'obtainable\\', \\'battlements\\', \\'sanded\\', \\'June\\', \"stipend\\'s\", \\'refill\\', \\'quarantining\\', \\'storms\\', \\'commencing\\', \"Emacs\\'s\", \"frustration\\'s\", \\'fluids\\', \"leitmotif\\'s\", \"hush\\'s\", \\'Yaobang\\', \"golf\\'s\", \\'Turner\\', \"intransigence\\'s\", \\'opposes\\', \"parabola\\'s\", \\'crypt\\', \\'depressingly\\', \\'unexceptionable\\', \"vowel\\'s\", \\'vantages\\', \\'Brahmans\\', \\'drams\\', \\'reformulating\\', \\'boxing\\', \\'vocalize\\', \"Eurasia\\'s\", \"Laocoon\\'s\", \"aneurism\\'s\", \\'kilter\\', \"something\\'s\", \\'flatulence\\', \\'entrails\\', \\'likelier\\', \\'moan\\', \"slanderer\\'s\", \\'investigation\\', \\'shrinks\\', \"snip\\'s\", \\'loosened\\', \"petrel\\'s\", \\'swiping\\', \"Patterson\\'s\", \\'advertisers\\', \\'remakes\\', \\'Dexter\\', \\'pelt\\', \\'Francisco\\', \\'Paula\\', \\'alleluia\\', \"mukluk\\'s\", \\'gulped\\', \"anaemia\\'s\", \\'tarring\\', \\'searing\\', \\'slides\\', \"Abe\\'s\", \"shiver\\'s\", \\'coordinating\\', \\'Getty\\', \\'constable\\', \"Rosalyn\\'s\", \\'Rosie\\', \\'luxuries\\', \\'whizzed\\', \\'disestablishing\\', \"counselor\\'s\", \"native\\'s\", \\'sloshes\\', \\'phosphors\\', \\'wormwood\\', \"chill\\'s\", \\'avenge\\', \\'mobilized\\', \\'encores\\', \\'kleptomaniacs\\', \\'totters\\', \\'chlorine\\', \\'clasping\\', \\'into\\', \\'manageable\\', \\'type\\', \\'Drano\\', \\'peculiar\\', \\'rickshas\\', \\'deadest\\', \"pornography\\'s\", \\'yews\\', \\'Siberia\\', \"AB\\'s\", \\'nonwhites\\', \"Byers\\'s\", \\'hose\\', \"Starr\\'s\", \\'perceptive\\', \\'Popocatepetl\\', \"Juanita\\'s\", \"sonnet\\'s\", \\'emolument\\', \"incantation\\'s\", \\'failure\\', \\'Sterno\\', \"Lew\\'s\", \\'payroll\\', \\'peony\\', \\'embedding\\', \\'unkindness\\', \\'tamper\\', \"reprint\\'s\", \\'chorale\\', \"paring\\'s\", \\'trisects\\', \\'uncompromisingly\\', \\'buttoned\\', \\'peritoneums\\', \\'freedoms\\', \\'eighteen\\', \\'Ringo\\', \"Khwarizmi\\'s\", \\'exalts\\', \\'wish\\', \\'resenting\\', \\'vindicated\\', \\'invokes\\', \\'mewls\\', \\'eyestrain\\', \\'decencies\\', \\'preteen\\', \\'Piaget\\', \\'alms\\', \\'caliphate\\', \\'excess\\', \\'transferal\\', \\'plunge\\', \\'reprobates\\', \\'coeducational\\', \\'eighth\\', \"rifleman\\'s\", \\'transposes\\', \\'spanners\\', \\'awoke\\', \\'pelvis\\', \\'disillusioned\\', \"deism\\'s\", \\'trifle\\', \\'Confucians\\', \\'Petersen\\', \\'inadvertent\\', \\'sexiest\\', \"farewell\\'s\", \"fetus\\'s\", \\'northbound\\', \\'loges\\', \"hyperbola\\'s\", \\'ration\\', \\'ridiculously\\', \\'sailcloth\\', \\'Niger\\', \\'Midwest\\', \\'Avalon\\', \"Gertrude\\'s\", \\'mountaineers\\', \"scholarship\\'s\", \"lube\\'s\", \\'secedes\\', \\'editorializes\\', \\'swankest\\', \\'lepers\\', \\'airbrushing\\', \\'spillages\\', \"Tibetan\\'s\", \"powerlessness\\'s\", \"secret\\'s\", \\'constitution\\', \"Stephan\\'s\", \\'prolongation\\', \\'Rover\\', \\'roping\\', \\'chiropractors\\', \\'recites\\', \"settle\\'s\", \\'applicable\\', \\'coding\\', \\'Joaquin\\', \\'sledgehammers\\', \\'toxicity\\', \\'daze\\', \"gobbledygook\\'s\", \\'unfit\\', \\'forbids\\', \"ragout\\'s\", \\'fathomed\\', \\'ringers\\', \\'spared\\', \\'durability\\', \\'checklist\\', \\'remedying\\', \"presence\\'s\", \"Cr\\'s\", \"Yuletide\\'s\", \\'disillusioning\\', \\'automatons\\', \\'compelled\\', \\'passenger\\', \"roughneck\\'s\", \\'Aurora\\', \\'expelling\\', \\'crave\\', \\'Sumerian\\', \"Walmart\\'s\", \\'canoeing\\', \\'sealer\\', \\'petioles\\', \\'sinkholes\\', \\'uneconomical\\', \\'painted\\', \"corespondent\\'s\", \"tidbit\\'s\", \\'increments\\', \"willpower\\'s\", \\'converses\\', \\'schematically\\', \\'Freud\\', \\'despoiling\\', \"Mackinac\\'s\", \\'turd\\', \\'Gorey\\'}'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "str(b)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'{\\'armlet\\', \"figurehead\\'s\", \"deviance\\'s\", \\'palisades\\', \"monstrance\\'s\", \\'nightclothes\\', \\'packet\\', \\'miniscule\\', \\'evinces\\', \\'orphan\\', \"torpedo\\'s\", \\'drank\\', \\'denounces\\', \"leapfrog\\'s\", \\'Mancini\\', \\'intending\\', \\'yield\\', \"classification\\'s\", \\'gougers\\', \\'Ponce\\', \\'circularizing\\', \\'pulse\\', \"delinquent\\'s\", \\'errs\\', \\'quickened\\', \\'operations\\', \\'sublimating\\', \\'exact\\', \\'gantries\\', \"sweetbrier\\'s\", \\'exercising\\', \\'midyear\\', \\'dislocating\\', \\'phantasmagorias\\', \\'classes\\', \\'resigned\\', \\'slewing\\', \"knitwear\\'s\", \\'reasonableness\\', \\'Yellowstone\\', \"euphemism\\'s\", \\'floggings\\', \\'respect\\', \\'underlain\\', \"split\\'s\", \\'aureolas\\', \\'destructive\\', \\'nincompoops\\', \\'wobblier\\', \\'daughter\\', \\'piranha\\', \\'lamed\\', \\'torts\\', \\'overbore\\', \\'plague\\', \\'ferocity\\', \"dying\\'s\", \\'blinding\\', \\'labels\\', \\'plenary\\', \"browse\\'s\", \\'feds\\', \\'extenuate\\', \\'purpose\\', \\'flabbergasting\\', \\'rewriting\\', \\'annoyances\\', \\'appreciate\\', \\'babysat\\', \"troublemaker\\'s\", \\'spreadsheets\\', \\'insurer\\', \"clime\\'s\", \"Dunkirk\\'s\", \\'classmate\\', \\'consummate\\', \\'utterance\\', \\'lapwing\\', \\'confiscating\\', \"melon\\'s\", \"venue\\'s\", \"spleen\\'s\", \\'salve\\', \\'handled\\', \\'snored\\', \\'preaching\\', \\'inventions\\', \\'devilries\\', \\'Polanski\\', \"gosling\\'s\", \\'westerns\\', \\'bold\\', \"cigarillo\\'s\", \\'protective\\', \\'discounts\\', \"phallus\\'s\", \\'marches\\', \"thong\\'s\", \"Knesset\\'s\", \\'palsied\\', \"presumption\\'s\", \"Persia\\'s\", \\'ducats\\', \\'sermons\\', \"enlightenment\\'s\", \\'greasier\\', \"turbojet\\'s\", \\'whites\\', \"gravity\\'s\", \"backstroke\\'s\", \\'incorporate\\', \\'customized\\', \"Cupid\\'s\", \\'Mitterrand\\', \\'decentralizing\\', \"distillery\\'s\", \"Oise\\'s\", \\'strait\\', \\'abscessing\\', \\'retrieves\\', \\'haw\\', \\'eclipsed\\', \"collation\\'s\", \"blotter\\'s\", \\'narcissistic\\', \\'possibilities\\', \\'spireas\\', \\'vulcanizing\\', \\'bourgeois\\', \\'tomboys\\', \\'Cheetos\\', \\'manifest\\', \"lassie\\'s\", \"ramble\\'s\", \"wordiness\\'s\", \"Felice\\'s\", \\'dire\\', \\'disfigured\\', \\'damages\\', \\'provides\\', \\'regenerate\\', \\'parentheses\\', \\'reddish\\', \\'jejune\\', \"nuke\\'s\", \"tanner\\'s\", \\'puttied\\', \\'smelliest\\', \"plow\\'s\", \\'metamorphism\\', \\'liter\\', \\'deformities\\', \\'sidelight\\', \\'initials\\', \\'Cormack\\', \"mahatma\\'s\", \\'yuletide\\', \"jet\\'s\", \\'Zamora\\', \\'instills\\', \\'griped\\', \\'sesame\\', \"skim\\'s\", \\'misdone\\', \\'fireman\\', \\'materialistic\\', \\'rawest\\', \"tare\\'s\", \\'Melville\\', \\'county\\', \\'floodlight\\', \"clothespin\\'s\", \\'humbugged\\', \"edit\\'s\", \\'swooned\\', \\'Lawson\\', \\'ecstatically\\', \\'eddying\\', \\'phial\\', \\'mirrors\\', \"mistake\\'s\", \\'fumigation\\', \\'trenches\\', \\'different\\', \\'suspenseful\\', \\'orgasm\\', \\'corpses\\', \\'never\\', \\'prettier\\', \\'submission\\', \\'indoctrinating\\', \\'pumped\\', \\'pedestals\\', \\'pellucid\\', \\'bailiff\\', \\'devises\\', \"Snyder\\'s\", \"footman\\'s\", \"confine\\'s\", \"militiaman\\'s\", \\'civics\\', \"profession\\'s\", \\'aches\\', \"lichee\\'s\", \\'Ahriman\\', \"sirup\\'s\", \\'superscript\\', \\'Mohammedans\\', \\'antiquaries\\', \\'rigidness\\', \\'knacker\\', \\'skylines\\', \\'keels\\', \\'defiled\\', \"mommy\\'s\", \"easel\\'s\", \\'tap\\', \"urge\\'s\", \\'Mather\\', \"pertness\\'s\", \\'distinction\\', \\'sensuously\\', \\'catalogers\\', \\'Long\\', \\'telecommuted\\', \\'enmeshed\\', \"flounder\\'s\", \\'island\\', \\'anorexic\\', \"spreadsheet\\'s\", \"trial\\'s\", \\'clapboard\\', \\'Croats\\', \"simplification\\'s\", \"linoleum\\'s\", \\'Lela\\', \\'Hangzhou\\', \"potluck\\'s\", \\'impressionistic\\', \\'prolonging\\', \\'dedications\\', \\'tameness\\', \\'transceivers\\', \"physiotherapist\\'s\", \\'Sakhalin\\', \\'fate\\', \\'Iroquois\\', \\'unimaginative\\', \\'blindfolding\\', \\'destabilize\\', \"dick\\'s\", \\'accessing\\', \\'institutionalize\\', \\'Adela\\', \\'staggers\\', \"disposable\\'s\", \"cherry\\'s\", \"Mark\\'s\", \\'impinge\\', \"Descartes\\'s\", \\'decriminalized\\', \"gallantry\\'s\", \\'larboard\\', \\'weapon\\', \\'dwarfed\\', \\'excruciatingly\\', \\'Godiva\\', \"mishmash\\'s\", \\'slue\\', \\'adjurations\\', \\'indict\\', \\'trustworthiness\\', \\'Gantry\\', \\'gooier\\', \"elf\\'s\", \\'inhabit\\', \\'disadvantageously\\', \\'deceived\\', \"sled\\'s\", \"Bundesbank\\'s\", \\'ventriloquist\\', \"Hitler\\'s\", \"gamekeeper\\'s\", \\'inveigled\\', \\'motormouth\\', \"monologue\\'s\", \\'undersell\\', \\'dominoes\\', \\'slovenliness\\', \\'bounds\\', \\'stoning\\', \\'tankers\\', \\'blazed\\', \\'athletically\\', \\'semipermeable\\', \\'Fafnir\\', \"sparkler\\'s\", \"madder\\'s\", \\'advertisement\\', \\'detraction\\', \\'leak\\', \\'musketeers\\', \"phobia\\'s\", \\'occludes\\', \\'knobbier\\', \\'umping\\', \\'dashboards\\', \\'sensitives\\', \\'flouting\\', \\'intrudes\\', \\'pragmatists\\', \\'led\\', \\'Stamford\\', \\'physiognomy\\', \\'Chou\\', \\'pauses\\', \\'pluralistic\\', \"Eocene\\'s\", \\'Brits\\', \\'preeminently\\', \\'funniest\\', \\'miasmata\\', \\'rowdiness\\', \"summer\\'s\", \\'spans\\', \\'eyeliners\\', \\'umpired\\', \\'Gandhian\\', \\'laburnums\\', \\'lariat\\', \\'Xanthippe\\', \\'racetrack\\', \"Merriam\\'s\", \\'dynastic\\', \\'recall\\', \\'lees\\', \\'reapportionment\\', \"puberty\\'s\", \\'permissible\\', \\'inducements\\', \\'pediatrics\\', \\'biassed\\', \\'capacitance\\', \\'chillers\\', \\'Alyce\\', \\'maligned\\', \\'healers\\', \"goalpost\\'s\", \"spokesperson\\'s\", \\'barbarity\\', \\'embolden\\', \\'nerving\\', \\'have\\', \\'cemeteries\\', \\'oftener\\', \\'moth\\', \\'born\\', \\'Kurosawa\\', \\'competences\\', \"housetop\\'s\", \\'Trujillo\\', \\'petting\\', \\'Tubman\\', \\'mysterious\\', \\'relishing\\', \\'appertain\\', \\'cedes\\', \\'vibration\\', \\'gibbeting\\', \\'anxiously\\', \\'intelligible\\', \"idea\\'s\", \\'industrialists\\', \"quadruped\\'s\", \"furze\\'s\", \\'participating\\', \\'proletariat\\', \"landlubber\\'s\", \"Allison\\'s\", \\'addle\\', \\'dress\\', \"lightning\\'s\", \\'barrener\\', \\'sailors\\', \\'multitasking\\', \\'Carlene\\', \\'collectable\\', \"amiability\\'s\", \\'floras\\', \"twitch\\'s\", \\'vitality\\', \"disaster\\'s\", \\'Alicia\\', \\'Ingres\\', \\'hydrangeas\\', \\'bills\\', \"manufacture\\'s\", \\'celibates\\', \\'commitments\\', \\'Luann\\', \\'unloosing\\', \\'cooky\\', \\'clothespins\\', \\'perturb\\', \\'trochee\\', \"walkway\\'s\", \\'Leeds\\', \\'victims\\', \\'Westinghouse\\', \\'springtime\\', \\'platooning\\', \\'benign\\', \\'emporium\\', \\'hardy\\', \\'pudgy\\', \\'dithers\\', \\'heckled\\', \\'rescind\\', \\'umber\\', \\'turnabouts\\', \"HP\\'s\", \"stream\\'s\", \\'Casals\\', \\'extendable\\', \\'Prut\\', \"hermitage\\'s\", \\'leafier\\', \\'consider\\', \\'exorcize\\', \"weaver\\'s\", \\'execrating\\', \\'heckling\\', \\'elks\\', \\'sermonize\\', \"chromosome\\'s\", \\'kinking\\', \\'philologists\\', \"brat\\'s\", \\'lopsidedness\\', \\'communicator\\', \\'chagrining\\', \\'ingenuous\\', \\'pediatrician\\', \"nickel\\'s\", \\'Mississippian\\', \\'anonymity\\', \\'clitoral\\', \\'professorship\\', \\'caucused\\', \"mutilation\\'s\", \"riddle\\'s\", \"pepsin\\'s\", \\'bookend\\', \\'mailer\\', \\'sovereign\\', \\'explorers\\', \"retardant\\'s\", \\'drudged\\', \\'wicker\\', \\'sniffed\\', \"falconer\\'s\", \\'findings\\', \\'Christina\\', \\'researches\\', \\'objectors\\', \\'valises\\', \\'humiliated\\', \\'pompadour\\', \\'homeopathy\\', \\'toughened\\', \\'Blucher\\', \\'necklaces\\', \\'close\\', \\'siesta\\', \\'analogues\\', \\'exorcised\\', \\'remake\\', \\'minuter\\', \\'Duncan\\', \\'dis\\', \\'repeals\\', \\'infielders\\', \"emulsion\\'s\", \"showgirl\\'s\", \\'slashed\\', \\'duelling\\', \\'trimly\\', \\'technocracy\\', \"overachiever\\'s\", \\'outstripping\\', \"dentist\\'s\", \"Judaism\\'s\", \\'insincerely\\', \\'pleads\\', \"Rostov\\'s\", \\'privateers\\', \\'boroughs\\', \\'Barclay\\', \\'slithering\\', \\'lamentations\\', \\'Delgado\\', \\'incurable\\', \\'obstructive\\', \"Adolf\\'s\", \\'avows\\', \"mush\\'s\", \\'tier\\', \"chock\\'s\", \\'district\\', \\'enfolded\\', \\'soda\\', \\'big\\', \\'cinema\\', \"Morpheus\\'s\", \\'junking\\', \\'subterranean\\', \"turner\\'s\", \\'hayseeds\\', \"desecration\\'s\", \\'fallowing\\', \\'clarified\\', \\'ratcheted\\', \\'negligee\\', \\'Perseid\\', \\'crunchier\\', \\'slavered\\', \"birch\\'s\", \\'suitable\\', \\'miscellaneous\\', \\'ladybirds\\', \"hastiness\\'s\", \"turquoise\\'s\", \"CPA\\'s\", \\'refit\\', \\'servility\\', \\'Scripture\\', \\'hunger\\', \"phenomenon\\'s\", \"Yamagata\\'s\", \"Xingu\\'s\", \\'Anubis\\', \"consumerism\\'s\", \\'dumbness\\', \"Liege\\'s\", \"sidewall\\'s\", \\'kinky\\', \\'cognac\\', \\'luxurious\\', \"milkmaid\\'s\", \\'stormy\\', \"frog\\'s\", \"panderer\\'s\", \\'brainy\\', \\'incremental\\', \\'Ginny\\', \\'prosperous\\', \\'instigate\\', \\'scripts\\', \\'joiners\\', \\'furors\\', \\'policies\\', \\'elapsed\\', \\'authorship\\', \\'bushwhackers\\', \"reconnaissance\\'s\", \\'quid\\', \"inmate\\'s\", \\'messiah\\', \\'misdoings\\', \"Psalter\\'s\", \"teacher\\'s\", \\'Cyrano\\', \\'bib\\', \\'thirds\\', \"yen\\'s\", \\'berates\\', \"undesirable\\'s\", \\'Delphic\\', \\'bulkier\\', \"bronchitis\\'s\", \\'commissariats\\', \\'underrated\\', \\'armistice\\', \"washable\\'s\", \\'astrophysicist\\', \\'syllabication\\', \"ambrosia\\'s\", \"colonialism\\'s\", \\'placidity\\', \\'Gillette\\', \"municipal\\'s\", \\'Lucile\\', \"spear\\'s\", \\'Gadsden\\', \\'fora\\', \"Naphtali\\'s\", \"chemical\\'s\", \\'dwelling\\', \\'invaders\\', \\'debarment\\', \\'qua\\', \\'drown\\', \\'hydroplaning\\', \\'Armando\\', \\'waking\\', \\'gamekeepers\\', \\'Arcadia\\', \"jeopardy\\'s\", \\'situated\\', \\'propagandizes\\', \"armlet\\'s\", \\'promptest\\', \"Kara\\'s\", \\'Otto\\', \"Naziism\\'s\", \\'fasted\\', \\'scrotums\\', \\'bolted\\', \\'chokers\\', \\'prophylactics\\', \\'interments\\', \\'Maracaibo\\', \\'opaques\\', \"referee\\'s\", \\'invincibility\\', \"Podhoretz\\'s\", \\'earthward\\', \"tiptop\\'s\", \\'gritting\\', \\'Subaru\\', \\'respell\\', \\'daiquiris\\', \\'lustily\\', \"decompression\\'s\", \"bleach\\'s\", \\'postmark\\', \\'commendable\\', \\'couriers\\', \\'advents\\', \\'railroaded\\', \\'mortal\\', \\'creamed\\', \\'iffiest\\', \\'seventeens\\', \"analogy\\'s\", \"refreshment\\'s\", \\'visions\\', \\'hangmen\\', \"Nobelist\\'s\", \\'revues\\', \"Cancun\\'s\", \\'halitosis\\', \\'herded\\', \\'dormice\\', \\'snivels\\', \"projectionist\\'s\", \"wisher\\'s\", \\'blowtorch\\', \"packet\\'s\", \\'reckons\\', \\'cosmically\\', \\'genetic\\', \\'spider\\', \\'cookouts\\', \\'indulged\\', \\'tinnier\\', \\'barber\\', \"scratchiness\\'s\", \"dateline\\'s\", \\'plaice\\', \\'strumpet\\', \\'Joplin\\', \\'tuckers\\', \\'joggles\\', \"Maidenform\\'s\", \"Trojan\\'s\", \"empire\\'s\", \\'flatted\\', \"unhappiness\\'s\", \"Valentine\\'s\", \"plenary\\'s\", \"Mohorovicic\\'s\", \\'cheapening\\', \\'electrocution\\', \\'modelings\\', \\'refueled\\', \\'betrothals\\', \\'uprising\\', \\'restfulness\\', \"teacup\\'s\", \\'disease\\', \\'dryads\\', \\'incarnation\\', \\'tango\\', \"file\\'s\", \"cantaloup\\'s\", \"tautology\\'s\", \\'nonprofessional\\', \"killdeer\\'s\", \\'hawkish\\', \\'devaluations\\', \\'grout\\', \\'bussing\\', \"slack\\'s\", \"fondness\\'s\", \"tetrahedron\\'s\", \\'crisps\\', \\'vivaciousness\\', \\'transmissions\\', \\'sorely\\', \\'telekinesis\\', \\'homesteader\\', \\'parading\\', \"tillage\\'s\", \\'frizzle\\', \\'comediennes\\', \"tweet\\'s\", \\'gabbier\\', \\'grotto\\', \\'flyspecked\\', \"hooter\\'s\", \\'footbridge\\', \\'boundless\\', \"Danielle\\'s\", \\'mutilated\\', \\'regrettable\\', \"pine\\'s\", \\'zoologists\\', \"easterner\\'s\", \\'bounces\\', \\'girdling\\', \\'circlets\\', \\'otiose\\', \"poncho\\'s\", \\'maneuvered\\', \\'Knickerbocker\\', \\'Innocent\\', \"Eniwetok\\'s\", \\'graves\\', \\'hyphening\\', \\'outtakes\\', \\'broth\\', \"pictograph\\'s\", \\'griddlecakes\\', \\'sancta\\', \\'anaesthetic\\', \\'corroded\\', \\'piston\\', \"synchronization\\'s\", \\'transmigrated\\', \\'Roosevelt\\', \"neglig\\'s\", \\'expanding\\', \"shirtwaist\\'s\", \\'variables\\', \\'Sq\\', \"Vulcan\\'s\", \\'respires\\', \\'soy\\', \\'Teri\\', \\'orthopaedists\\', \"competitiveness\\'s\", \"Trey\\'s\", \\'castigation\\', \\'gazing\\', \"Earle\\'s\", \"inertia\\'s\", \\'herbivorous\\', \\'obtainable\\', \\'battlements\\', \\'sanded\\', \\'June\\', \"stipend\\'s\", \\'refill\\', \\'quarantining\\', \\'storms\\', \\'commencing\\', \"Emacs\\'s\", \"frustration\\'s\", \\'fluids\\', \"leitmotif\\'s\", \"hush\\'s\", \\'Yaobang\\', \"golf\\'s\", \\'Turner\\', \"intransigence\\'s\", \\'opposes\\', \"parabola\\'s\", \\'crypt\\', \\'depressingly\\', \\'unexceptionable\\', \"vowel\\'s\", \\'vantages\\', \\'Brahmans\\', \\'drams\\', \\'reformulating\\', \\'boxing\\', \\'vocalize\\', \"Eurasia\\'s\", \"Laocoon\\'s\", \"aneurism\\'s\", \\'kilter\\', \"something\\'s\", \\'flatulence\\', \\'entrails\\', \\'likelier\\', \\'moan\\', \"slanderer\\'s\", \\'investigation\\', \\'shrinks\\', \"snip\\'s\", \\'loosened\\', \"petrel\\'s\", \\'swiping\\', \"Patterson\\'s\", \\'advertisers\\', \\'remakes\\', \\'Dexter\\', \\'pelt\\', \\'Francisco\\', \\'Paula\\', \\'alleluia\\', \"mukluk\\'s\", \\'gulped\\', \"anaemia\\'s\", \\'tarring\\', \\'searing\\', \\'slides\\', \"Abe\\'s\", \"shiver\\'s\", \\'coordinating\\', \\'Getty\\', \\'constable\\', \"Rosalyn\\'s\", \\'Rosie\\', \\'luxuries\\', \\'whizzed\\', \\'disestablishing\\', \"counselor\\'s\", \"native\\'s\", \\'sloshes\\', \\'phosphors\\', \\'wormwood\\', \"chill\\'s\", \\'avenge\\', \\'mobilized\\', \\'encores\\', \\'kleptomaniacs\\', \\'totters\\', \\'chlorine\\', \\'clasping\\', \\'into\\', \\'manageable\\', \\'type\\', \\'Drano\\', \\'peculiar\\', \\'rickshas\\', \\'deadest\\', \"pornography\\'s\", \\'yews\\', \\'Siberia\\', \"AB\\'s\", \\'nonwhites\\', \"Byers\\'s\", \\'hose\\', \"Starr\\'s\", \\'perceptive\\', \\'Popocatepetl\\', \"Juanita\\'s\", \"sonnet\\'s\", \\'emolument\\', \"incantation\\'s\", \\'failure\\', \\'Sterno\\', \"Lew\\'s\", \\'payroll\\', \\'peony\\', \\'embedding\\', \\'unkindness\\', \\'tamper\\', \"reprint\\'s\", \\'chorale\\', \"paring\\'s\", \\'trisects\\', \\'uncompromisingly\\', \\'buttoned\\', \\'peritoneums\\', \\'freedoms\\', \\'eighteen\\', \\'Ringo\\', \"Khwarizmi\\'s\", \\'exalts\\', \\'wish\\', \\'resenting\\', \\'vindicated\\', \\'invokes\\', \\'mewls\\', \\'eyestrain\\', \\'decencies\\', \\'preteen\\', \\'Piaget\\', \\'alms\\', \\'caliphate\\', \\'excess\\', \\'transferal\\', \\'plunge\\', \\'reprobates\\', \\'coeducational\\', \\'eighth\\', \"rifleman\\'s\", \\'transposes\\', \\'spanners\\', \\'awoke\\', \\'pelvis\\', \\'disillusioned\\', \"deism\\'s\", \\'trifle\\', \\'Confucians\\', \\'Petersen\\', \\'inadvertent\\', \\'sexiest\\', \"farewell\\'s\", \"fetus\\'s\", \\'northbound\\', \\'loges\\', \"hyperbola\\'s\", \\'ration\\', \\'ridiculously\\', \\'sailcloth\\', \\'Niger\\', \\'Midwest\\', \\'Avalon\\', \"Gertrude\\'s\", \\'mountaineers\\', \"scholarship\\'s\", \"lube\\'s\", \\'secedes\\', \\'editorializes\\', \\'swankest\\', \\'lepers\\', \\'airbrushing\\', \\'spillages\\', \"Tibetan\\'s\", \"powerlessness\\'s\", \"secret\\'s\", \\'constitution\\', \"Stephan\\'s\", \\'prolongation\\', \\'Rover\\', \\'roping\\', \\'chiropractors\\', \\'recites\\', \"settle\\'s\", \\'applicable\\', \\'coding\\', \\'Joaquin\\', \\'sledgehammers\\', \\'toxicity\\', \\'daze\\', \"gobbledygook\\'s\", \\'unfit\\', \\'forbids\\', \"ragout\\'s\", \\'fathomed\\', \\'ringers\\', \\'spared\\', \\'durability\\', \\'checklist\\', \\'remedying\\', \"presence\\'s\", \"Cr\\'s\", \"Yuletide\\'s\", \\'disillusioning\\', \\'automatons\\', \\'compelled\\', \\'passenger\\', \"roughneck\\'s\", \\'Aurora\\', \\'expelling\\', \\'crave\\', \\'Sumerian\\', \"Walmart\\'s\", \\'canoeing\\', \\'sealer\\', \\'petioles\\', \\'sinkholes\\', \\'uneconomical\\', \\'painted\\', \"corespondent\\'s\", \"tidbit\\'s\", \\'increments\\', \"willpower\\'s\", \\'converses\\', \\'schematically\\', \\'Freud\\', \\'despoiling\\', \"Mackinac\\'s\", \\'turd\\', \\'Gorey\\'}'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "repr(b)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'armlet', \"figurehead's\", \"deviance's\", 'palisades', \"monstrance's\", 'nightclothes', 'packet', 'miniscule', 'evinces', 'orphan', \"torpedo's\", 'drank', 'denounces', \"leapfrog's\", 'Mancini', 'intending', 'yield', \"classification's\", 'gougers', 'Ponce', 'circularizing', 'pulse', \"delinquent's\", 'errs', 'quickened', 'operations', 'sublimating', 'exact', 'gantries', \"sweetbrier's\", 'exercising', 'midyear', 'dislocating', 'phantasmagorias', 'classes', 'resigned', 'slewing', \"knitwear's\", 'reasonableness', 'Yellowstone', \"euphemism's\", 'floggings', 'respect', 'underlain', \"split's\", 'aureolas', 'destructive', 'nincompoops', 'wobblier', 'daughter', 'piranha', 'lamed', 'torts', 'overbore', 'plague', 'ferocity', \"dying's\", 'blinding', 'labels', 'plenary', \"browse's\", 'feds', 'extenuate', 'purpose', 'flabbergasting', 'rewriting', 'annoyances', 'appreciate', 'babysat', \"troublemaker's\", 'spreadsheets', 'insurer', \"clime's\", \"Dunkirk's\", 'classmate', 'consummate', 'utterance', 'lapwing', 'confiscating', \"melon's\", \"venue's\", \"spleen's\", 'salve', 'handled', 'snored', 'preaching', 'inventions', 'devilries', 'Polanski', \"gosling's\", 'westerns', 'bold', \"cigarillo's\", 'protective', 'discounts', \"phallus's\", 'marches', \"thong's\", \"Knesset's\", 'palsied', \"presumption's\", \"Persia's\", 'ducats', 'sermons', \"enlightenment's\", 'greasier', \"turbojet's\", 'whites', \"gravity's\", \"backstroke's\", 'incorporate', 'customized', \"Cupid's\", 'Mitterrand', 'decentralizing', \"distillery's\", \"Oise's\", 'strait', 'abscessing', 'retrieves', 'haw', 'eclipsed', \"collation's\", \"blotter's\", 'narcissistic', 'possibilities', 'spireas', 'vulcanizing', 'bourgeois', 'tomboys', 'Cheetos', 'manifest', \"lassie's\", \"ramble's\", \"wordiness's\", \"Felice's\", 'dire', 'disfigured', 'damages', 'provides', 'regenerate', 'parentheses', 'reddish', 'jejune', \"nuke's\", \"tanner's\", 'puttied', 'smelliest', \"plow's\", 'metamorphism', 'liter', 'deformities', 'sidelight', 'initials', 'Cormack', \"mahatma's\", 'yuletide', \"jet's\", 'Zamora', 'instills', 'griped', 'sesame', \"skim's\", 'misdone', 'fireman', 'materialistic', 'rawest', \"tare's\", 'Melville', 'county', 'floodlight', \"clothespin's\", 'humbugged', \"edit's\", 'swooned', 'Lawson', 'ecstatically', 'eddying', 'phial', 'mirrors', \"mistake's\", 'fumigation', 'trenches', 'different', 'suspenseful', 'orgasm', 'corpses', 'never', 'prettier', 'submission', 'indoctrinating', 'pumped', 'pedestals', 'pellucid', 'bailiff', 'devises', \"Snyder's\", \"footman's\", \"confine's\", \"militiaman's\", 'civics', \"profession's\", 'aches', \"lichee's\", 'Ahriman', \"sirup's\", 'superscript', 'Mohammedans', 'antiquaries', 'rigidness', 'knacker', 'skylines', 'keels', 'defiled', \"mommy's\", \"easel's\", 'tap', \"urge's\", 'Mather', \"pertness's\", 'distinction', 'sensuously', 'catalogers', 'Long', 'telecommuted', 'enmeshed', \"flounder's\", 'island', 'anorexic', \"spreadsheet's\", \"trial's\", 'clapboard', 'Croats', \"simplification's\", \"linoleum's\", 'Lela', 'Hangzhou', \"potluck's\", 'impressionistic', 'prolonging', 'dedications', 'tameness', 'transceivers', \"physiotherapist's\", 'Sakhalin', 'fate', 'Iroquois', 'unimaginative', 'blindfolding', 'destabilize', \"dick's\", 'accessing', 'institutionalize', 'Adela', 'staggers', \"disposable's\", \"cherry's\", \"Mark's\", 'impinge', \"Descartes's\", 'decriminalized', \"gallantry's\", 'larboard', 'weapon', 'dwarfed', 'excruciatingly', 'Godiva', \"mishmash's\", 'slue', 'adjurations', 'indict', 'trustworthiness', 'Gantry', 'gooier', \"elf's\", 'inhabit', 'disadvantageously', 'deceived', \"sled's\", \"Bundesbank's\", 'ventriloquist', \"Hitler's\", \"gamekeeper's\", 'inveigled', 'motormouth', \"monologue's\", 'undersell', 'dominoes', 'slovenliness', 'bounds', 'stoning', 'tankers', 'blazed', 'athletically', 'semipermeable', 'Fafnir', \"sparkler's\", \"madder's\", 'advertisement', 'detraction', 'leak', 'musketeers', \"phobia's\", 'occludes', 'knobbier', 'umping', 'dashboards', 'sensitives', 'flouting', 'intrudes', 'pragmatists', 'led', 'Stamford', 'physiognomy', 'Chou', 'pauses', 'pluralistic', \"Eocene's\", 'Brits', 'preeminently', 'funniest', 'miasmata', 'rowdiness', \"summer's\", 'spans', 'eyeliners', 'umpired', 'Gandhian', 'laburnums', 'lariat', 'Xanthippe', 'racetrack', \"Merriam's\", 'dynastic', 'recall', 'lees', 'reapportionment', \"puberty's\", 'permissible', 'inducements', 'pediatrics', 'biassed', 'capacitance', 'chillers', 'Alyce', 'maligned', 'healers', \"goalpost's\", \"spokesperson's\", 'barbarity', 'embolden', 'nerving', 'have', 'cemeteries', 'oftener', 'moth', 'born', 'Kurosawa', 'competences', \"housetop's\", 'Trujillo', 'petting', 'Tubman', 'mysterious', 'relishing', 'appertain', 'cedes', 'vibration', 'gibbeting', 'anxiously', 'intelligible', \"idea's\", 'industrialists', \"quadruped's\", \"furze's\", 'participating', 'proletariat', \"landlubber's\", \"Allison's\", 'addle', 'dress', \"lightning's\", 'barrener', 'sailors', 'multitasking', 'Carlene', 'collectable', \"amiability's\", 'floras', \"twitch's\", 'vitality', \"disaster's\", 'Alicia', 'Ingres', 'hydrangeas', 'bills', \"manufacture's\", 'celibates', 'commitments', 'Luann', 'unloosing', 'cooky', 'clothespins', 'perturb', 'trochee', \"walkway's\", 'Leeds', 'victims', 'Westinghouse', 'springtime', 'platooning', 'benign', 'emporium', 'hardy', 'pudgy', 'dithers', 'heckled', 'rescind', 'umber', 'turnabouts', \"HP's\", \"stream's\", 'Casals', 'extendable', 'Prut', \"hermitage's\", 'leafier', 'consider', 'exorcize', \"weaver's\", 'execrating', 'heckling', 'elks', 'sermonize', \"chromosome's\", 'kinking', 'philologists', \"brat's\", 'lopsidedness', 'communicator', 'chagrining', 'ingenuous', 'pediatrician', \"nickel's\", 'Mississippian', 'anonymity', 'clitoral', 'professorship', 'caucused', \"mutilation's\", \"riddle's\", \"pepsin's\", 'bookend', 'mailer', 'sovereign', 'explorers', \"retardant's\", 'drudged', 'wicker', 'sniffed', \"falconer's\", 'findings', 'Christina', 'researches', 'objectors', 'valises', 'humiliated', 'pompadour', 'homeopathy', 'toughened', 'Blucher', 'necklaces', 'close', 'siesta', 'analogues', 'exorcised', 'remake', 'minuter', 'Duncan', 'dis', 'repeals', 'infielders', \"emulsion's\", \"showgirl's\", 'slashed', 'duelling', 'trimly', 'technocracy', \"overachiever's\", 'outstripping', \"dentist's\", \"Judaism's\", 'insincerely', 'pleads', \"Rostov's\", 'privateers', 'boroughs', 'Barclay', 'slithering', 'lamentations', 'Delgado', 'incurable', 'obstructive', \"Adolf's\", 'avows', \"mush's\", 'tier', \"chock's\", 'district', 'enfolded', 'soda', 'big', 'cinema', \"Morpheus's\", 'junking', 'subterranean', \"turner's\", 'hayseeds', \"desecration's\", 'fallowing', 'clarified', 'ratcheted', 'negligee', 'Perseid', 'crunchier', 'slavered', \"birch's\", 'suitable', 'miscellaneous', 'ladybirds', \"hastiness's\", \"turquoise's\", \"CPA's\", 'refit', 'servility', 'Scripture', 'hunger', \"phenomenon's\", \"Yamagata's\", \"Xingu's\", 'Anubis', \"consumerism's\", 'dumbness', \"Liege's\", \"sidewall's\", 'kinky', 'cognac', 'luxurious', \"milkmaid's\", 'stormy', \"frog's\", \"panderer's\", 'brainy', 'incremental', 'Ginny', 'prosperous', 'instigate', 'scripts', 'joiners', 'furors', 'policies', 'elapsed', 'authorship', 'bushwhackers', \"reconnaissance's\", 'quid', \"inmate's\", 'messiah', 'misdoings', \"Psalter's\", \"teacher's\", 'Cyrano', 'bib', 'thirds', \"yen's\", 'berates', \"undesirable's\", 'Delphic', 'bulkier', \"bronchitis's\", 'commissariats', 'underrated', 'armistice', \"washable's\", 'astrophysicist', 'syllabication', \"ambrosia's\", \"colonialism's\", 'placidity', 'Gillette', \"municipal's\", 'Lucile', \"spear's\", 'Gadsden', 'fora', \"Naphtali's\", \"chemical's\", 'dwelling', 'invaders', 'debarment', 'qua', 'drown', 'hydroplaning', 'Armando', 'waking', 'gamekeepers', 'Arcadia', \"jeopardy's\", 'situated', 'propagandizes', \"armlet's\", 'promptest', \"Kara's\", 'Otto', \"Naziism's\", 'fasted', 'scrotums', 'bolted', 'chokers', 'prophylactics', 'interments', 'Maracaibo', 'opaques', \"referee's\", 'invincibility', \"Podhoretz's\", 'earthward', \"tiptop's\", 'gritting', 'Subaru', 'respell', 'daiquiris', 'lustily', \"decompression's\", \"bleach's\", 'postmark', 'commendable', 'couriers', 'advents', 'railroaded', 'mortal', 'creamed', 'iffiest', 'seventeens', \"analogy's\", \"refreshment's\", 'visions', 'hangmen', \"Nobelist's\", 'revues', \"Cancun's\", 'halitosis', 'herded', 'dormice', 'snivels', \"projectionist's\", \"wisher's\", 'blowtorch', \"packet's\", 'reckons', 'cosmically', 'genetic', 'spider', 'cookouts', 'indulged', 'tinnier', 'barber', \"scratchiness's\", \"dateline's\", 'plaice', 'strumpet', 'Joplin', 'tuckers', 'joggles', \"Maidenform's\", \"Trojan's\", \"empire's\", 'flatted', \"unhappiness's\", \"Valentine's\", \"plenary's\", \"Mohorovicic's\", 'cheapening', 'electrocution', 'modelings', 'refueled', 'betrothals', 'uprising', 'restfulness', \"teacup's\", 'disease', 'dryads', 'incarnation', 'tango', \"file's\", \"cantaloup's\", \"tautology's\", 'nonprofessional', \"killdeer's\", 'hawkish', 'devaluations', 'grout', 'bussing', \"slack's\", \"fondness's\", \"tetrahedron's\", 'crisps', 'vivaciousness', 'transmissions', 'sorely', 'telekinesis', 'homesteader', 'parading', \"tillage's\", 'frizzle', 'comediennes', \"tweet's\", 'gabbier', 'grotto', 'flyspecked', \"hooter's\", 'footbridge', 'boundless', \"Danielle's\", 'mutilated', 'regrettable', \"pine's\", 'zoologists', \"easterner's\", 'bounces', 'girdling', 'circlets', 'otiose', \"poncho's\", 'maneuvered', 'Knickerbocker', 'Innocent', \"Eniwetok's\", 'graves', 'hyphening', 'outtakes', 'broth', \"pictograph's\", 'griddlecakes', 'sancta', 'anaesthetic', 'corroded', 'piston', \"synchronization's\", 'transmigrated', 'Roosevelt', \"neglig's\", 'expanding', \"shirtwaist's\", 'variables', 'Sq', \"Vulcan's\", 'respires', 'soy', 'Teri', 'orthopaedists', \"competitiveness's\", \"Trey's\", 'castigation', 'gazing', \"Earle's\", \"inertia's\", 'herbivorous', 'obtainable', 'battlements', 'sanded', 'June', \"stipend's\", 'refill', 'quarantining', 'storms', 'commencing', \"Emacs's\", \"frustration's\", 'fluids', \"leitmotif's\", \"hush's\", 'Yaobang', \"golf's\", 'Turner', \"intransigence's\", 'opposes', \"parabola's\", 'crypt', 'depressingly', 'unexceptionable', \"vowel's\", 'vantages', 'Brahmans', 'drams', 'reformulating', 'boxing', 'vocalize', \"Eurasia's\", \"Laocoon's\", \"aneurism's\", 'kilter', \"something's\", 'flatulence', 'entrails', 'likelier', 'moan', \"slanderer's\", 'investigation', 'shrinks', \"snip's\", 'loosened', \"petrel's\", 'swiping', \"Patterson's\", 'advertisers', 'remakes', 'Dexter', 'pelt', 'Francisco', 'Paula', 'alleluia', \"mukluk's\", 'gulped', \"anaemia's\", 'tarring', 'searing', 'slides', \"Abe's\", \"shiver's\", 'coordinating', 'Getty', 'constable', \"Rosalyn's\", 'Rosie', 'luxuries', 'whizzed', 'disestablishing', \"counselor's\", \"native's\", 'sloshes', 'phosphors', 'wormwood', \"chill's\", 'avenge', 'mobilized', 'encores', 'kleptomaniacs', 'totters', 'chlorine', 'clasping', 'into', 'manageable', 'type', 'Drano', 'peculiar', 'rickshas', 'deadest', \"pornography's\", 'yews', 'Siberia', \"AB's\", 'nonwhites', \"Byers's\", 'hose', \"Starr's\", 'perceptive', 'Popocatepetl', \"Juanita's\", \"sonnet's\", 'emolument', \"incantation's\", 'failure', 'Sterno', \"Lew's\", 'payroll', 'peony', 'embedding', 'unkindness', 'tamper', \"reprint's\", 'chorale', \"paring's\", 'trisects', 'uncompromisingly', 'buttoned', 'peritoneums', 'freedoms', 'eighteen', 'Ringo', \"Khwarizmi's\", 'exalts', 'wish', 'resenting', 'vindicated', 'invokes', 'mewls', 'eyestrain', 'decencies', 'preteen', 'Piaget', 'alms', 'caliphate', 'excess', 'transferal', 'plunge', 'reprobates', 'coeducational', 'eighth', \"rifleman's\", 'transposes', 'spanners', 'awoke', 'pelvis', 'disillusioned', \"deism's\", 'trifle', 'Confucians', 'Petersen', 'inadvertent', 'sexiest', \"farewell's\", \"fetus's\", 'northbound', 'loges', \"hyperbola's\", 'ration', 'ridiculously', 'sailcloth', 'Niger', 'Midwest', 'Avalon', \"Gertrude's\", 'mountaineers', \"scholarship's\", \"lube's\", 'secedes', 'editorializes', 'swankest', 'lepers', 'airbrushing', 'spillages', \"Tibetan's\", \"powerlessness's\", \"secret's\", 'constitution', \"Stephan's\", 'prolongation', 'Rover', 'roping', 'chiropractors', 'recites', \"settle's\", 'applicable', 'coding', 'Joaquin', 'sledgehammers', 'toxicity', 'daze', \"gobbledygook's\", 'unfit', 'forbids', \"ragout's\", 'fathomed', 'ringers', 'spared', 'durability', 'checklist', 'remedying', \"presence's\", \"Cr's\", \"Yuletide's\", 'disillusioning', 'automatons', 'compelled', 'passenger', \"roughneck's\", 'Aurora', 'expelling', 'crave', 'Sumerian', \"Walmart's\", 'canoeing', 'sealer', 'petioles', 'sinkholes', 'uneconomical', 'painted', \"corespondent's\", \"tidbit's\", 'increments', \"willpower's\", 'converses', 'schematically', 'Freud', 'despoiling', \"Mackinac's\", 'turd', 'Gorey'}\n" ] } ], "source": [ "print(b)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'armlet', \"figurehead's\", \"deviance's\", 'palisades', \"monstrance's\", 'nightclothes', 'packet', 'miniscule', 'evinces', 'orphan', \"torpedo's\", 'drank', 'denounces', \"leapfrog's\", 'Mancini', 'intending', 'yield', \"classification's\", 'gougers', 'Ponce', 'circularizing', 'pulse', \"delinquent's\", 'errs', 'quickened', 'operations', 'sublimating', 'exact', 'gantries', \"sweetbrier's\", 'exercising', 'midyear', 'dislocating', 'phantasmagorias', 'classes', 'resigned', 'slewing', \"knitwear's\", 'reasonableness', 'Yellowstone', \"euphemism's\", 'floggings', 'respect', 'underlain', \"split's\", 'aureolas', 'destructive', 'nincompoops', 'wobblier', 'daughter', 'piranha', 'lamed', 'torts', 'overbore', 'plague', 'ferocity', \"dying's\", 'blinding', 'labels', 'plenary', \"browse's\", 'feds', 'extenuate', 'purpose', 'flabbergasting', 'rewriting', 'annoyances', 'appreciate', 'babysat', \"troublemaker's\", 'spreadsheets', 'insurer', \"clime's\", \"Dunkirk's\", 'classmate', 'consummate', 'utterance', 'lapwing', 'confiscating', \"melon's\", \"venue's\", \"spleen's\", 'salve', 'handled', 'snored', 'preaching', 'inventions', 'devilries', 'Polanski', \"gosling's\", 'westerns', 'bold', \"cigarillo's\", 'protective', 'discounts', \"phallus's\", 'marches', \"thong's\", \"Knesset's\", 'palsied', \"presumption's\", \"Persia's\", 'ducats', 'sermons', \"enlightenment's\", 'greasier', \"turbojet's\", 'whites', \"gravity's\", \"backstroke's\", 'incorporate', 'customized', \"Cupid's\", 'Mitterrand', 'decentralizing', \"distillery's\", \"Oise's\", 'strait', 'abscessing', 'retrieves', 'haw', 'eclipsed', \"collation's\", \"blotter's\", 'narcissistic', 'possibilities', 'spireas', 'vulcanizing', 'bourgeois', 'tomboys', 'Cheetos', 'manifest', \"lassie's\", \"ramble's\", \"wordiness's\", \"Felice's\", 'dire', 'disfigured', 'damages', 'provides', 'regenerate', 'parentheses', 'reddish', 'jejune', \"nuke's\", \"tanner's\", 'puttied', 'smelliest', \"plow's\", 'metamorphism', 'liter', 'deformities', 'sidelight', 'initials', 'Cormack', \"mahatma's\", 'yuletide', \"jet's\", 'Zamora', 'instills', 'griped', 'sesame', \"skim's\", 'misdone', 'fireman', 'materialistic', 'rawest', \"tare's\", 'Melville', 'county', 'floodlight', \"clothespin's\", 'humbugged', \"edit's\", 'swooned', 'Lawson', 'ecstatically', 'eddying', 'phial', 'mirrors', \"mistake's\", 'fumigation', 'trenches', 'different', 'suspenseful', 'orgasm', 'corpses', 'never', 'prettier', 'submission', 'indoctrinating', 'pumped', 'pedestals', 'pellucid', 'bailiff', 'devises', \"Snyder's\", \"footman's\", \"confine's\", \"militiaman's\", 'civics', \"profession's\", 'aches', \"lichee's\", 'Ahriman', \"sirup's\", 'superscript', 'Mohammedans', 'antiquaries', 'rigidness', 'knacker', 'skylines', 'keels', 'defiled', \"mommy's\", \"easel's\", 'tap', \"urge's\", 'Mather', \"pertness's\", 'distinction', 'sensuously', 'catalogers', 'Long', 'telecommuted', 'enmeshed', \"flounder's\", 'island', 'anorexic', \"spreadsheet's\", \"trial's\", 'clapboard', 'Croats', \"simplification's\", \"linoleum's\", 'Lela', 'Hangzhou', \"potluck's\", 'impressionistic', 'prolonging', 'dedications', 'tameness', 'transceivers', \"physiotherapist's\", 'Sakhalin', 'fate', 'Iroquois', 'unimaginative', 'blindfolding', 'destabilize', \"dick's\", 'accessing', 'institutionalize', 'Adela', 'staggers', \"disposable's\", \"cherry's\", \"Mark's\", 'impinge', \"Descartes's\", 'decriminalized', \"gallantry's\", 'larboard', 'weapon', 'dwarfed', 'excruciatingly', 'Godiva', \"mishmash's\", 'slue', 'adjurations', 'indict', 'trustworthiness', 'Gantry', 'gooier', \"elf's\", 'inhabit', 'disadvantageously', 'deceived', \"sled's\", \"Bundesbank's\", 'ventriloquist', \"Hitler's\", \"gamekeeper's\", 'inveigled', 'motormouth', \"monologue's\", 'undersell', 'dominoes', 'slovenliness', 'bounds', 'stoning', 'tankers', 'blazed', 'athletically', 'semipermeable', 'Fafnir', \"sparkler's\", \"madder's\", 'advertisement', 'detraction', 'leak', 'musketeers', \"phobia's\", 'occludes', 'knobbier', 'umping', 'dashboards', 'sensitives', 'flouting', 'intrudes', 'pragmatists', 'led', 'Stamford', 'physiognomy', 'Chou', 'pauses', 'pluralistic', \"Eocene's\", 'Brits', 'preeminently', 'funniest', 'miasmata', 'rowdiness', \"summer's\", 'spans', 'eyeliners', 'umpired', 'Gandhian', 'laburnums', 'lariat', 'Xanthippe', 'racetrack', \"Merriam's\", 'dynastic', 'recall', 'lees', 'reapportionment', \"puberty's\", 'permissible', 'inducements', 'pediatrics', 'biassed', 'capacitance', 'chillers', 'Alyce', 'maligned', 'healers', \"goalpost's\", \"spokesperson's\", 'barbarity', 'embolden', 'nerving', 'have', 'cemeteries', 'oftener', 'moth', 'born', 'Kurosawa', 'competences', \"housetop's\", 'Trujillo', 'petting', 'Tubman', 'mysterious', 'relishing', 'appertain', 'cedes', 'vibration', 'gibbeting', 'anxiously', 'intelligible', \"idea's\", 'industrialists', \"quadruped's\", \"furze's\", 'participating', 'proletariat', \"landlubber's\", \"Allison's\", 'addle', 'dress', \"lightning's\", 'barrener', 'sailors', 'multitasking', 'Carlene', 'collectable', \"amiability's\", 'floras', \"twitch's\", 'vitality', \"disaster's\", 'Alicia', 'Ingres', 'hydrangeas', 'bills', \"manufacture's\", 'celibates', 'commitments', 'Luann', 'unloosing', 'cooky', 'clothespins', 'perturb', 'trochee', \"walkway's\", 'Leeds', 'victims', 'Westinghouse', 'springtime', 'platooning', 'benign', 'emporium', 'hardy', 'pudgy', 'dithers', 'heckled', 'rescind', 'umber', 'turnabouts', \"HP's\", \"stream's\", 'Casals', 'extendable', 'Prut', \"hermitage's\", 'leafier', 'consider', 'exorcize', \"weaver's\", 'execrating', 'heckling', 'elks', 'sermonize', \"chromosome's\", 'kinking', 'philologists', \"brat's\", 'lopsidedness', 'communicator', 'chagrining', 'ingenuous', 'pediatrician', \"nickel's\", 'Mississippian', 'anonymity', 'clitoral', 'professorship', 'caucused', \"mutilation's\", \"riddle's\", \"pepsin's\", 'bookend', 'mailer', 'sovereign', 'explorers', \"retardant's\", 'drudged', 'wicker', 'sniffed', \"falconer's\", 'findings', 'Christina', 'researches', 'objectors', 'valises', 'humiliated', 'pompadour', 'homeopathy', 'toughened', 'Blucher', 'necklaces', 'close', 'siesta', 'analogues', 'exorcised', 'remake', 'minuter', 'Duncan', 'dis', 'repeals', 'infielders', \"emulsion's\", \"showgirl's\", 'slashed', 'duelling', 'trimly', 'technocracy', \"overachiever's\", 'outstripping', \"dentist's\", \"Judaism's\", 'insincerely', 'pleads', \"Rostov's\", 'privateers', 'boroughs', 'Barclay', 'slithering', 'lamentations', 'Delgado', 'incurable', 'obstructive', \"Adolf's\", 'avows', \"mush's\", 'tier', \"chock's\", 'district', 'enfolded', 'soda', 'big', 'cinema', \"Morpheus's\", 'junking', 'subterranean', \"turner's\", 'hayseeds', \"desecration's\", 'fallowing', 'clarified', 'ratcheted', 'negligee', 'Perseid', 'crunchier', 'slavered', \"birch's\", 'suitable', 'miscellaneous', 'ladybirds', \"hastiness's\", \"turquoise's\", \"CPA's\", 'refit', 'servility', 'Scripture', 'hunger', \"phenomenon's\", \"Yamagata's\", \"Xingu's\", 'Anubis', \"consumerism's\", 'dumbness', \"Liege's\", \"sidewall's\", 'kinky', 'cognac', 'luxurious', \"milkmaid's\", 'stormy', \"frog's\", \"panderer's\", 'brainy', 'incremental', 'Ginny', 'prosperous', 'instigate', 'scripts', 'joiners', 'furors', 'policies', 'elapsed', 'authorship', 'bushwhackers', \"reconnaissance's\", 'quid', \"inmate's\", 'messiah', 'misdoings', \"Psalter's\", \"teacher's\", 'Cyrano', 'bib', 'thirds', \"yen's\", 'berates', \"undesirable's\", 'Delphic', 'bulkier', \"bronchitis's\", 'commissariats', 'underrated', 'armistice', \"washable's\", 'astrophysicist', 'syllabication', \"ambrosia's\", \"colonialism's\", 'placidity', 'Gillette', \"municipal's\", 'Lucile', \"spear's\", 'Gadsden', 'fora', \"Naphtali's\", \"chemical's\", 'dwelling', 'invaders', 'debarment', 'qua', 'drown', 'hydroplaning', 'Armando', 'waking', 'gamekeepers', 'Arcadia', \"jeopardy's\", 'situated', 'propagandizes', \"armlet's\", 'promptest', \"Kara's\", 'Otto', \"Naziism's\", 'fasted', 'scrotums', 'bolted', 'chokers', 'prophylactics', 'interments', 'Maracaibo', 'opaques', \"referee's\", 'invincibility', \"Podhoretz's\", 'earthward', \"tiptop's\", 'gritting', 'Subaru', 'respell', 'daiquiris', 'lustily', \"decompression's\", \"bleach's\", 'postmark', 'commendable', 'couriers', 'advents', 'railroaded', 'mortal', 'creamed', 'iffiest', 'seventeens', \"analogy's\", \"refreshment's\", 'visions', 'hangmen', \"Nobelist's\", 'revues', \"Cancun's\", 'halitosis', 'herded', 'dormice', 'snivels', \"projectionist's\", \"wisher's\", 'blowtorch', \"packet's\", 'reckons', 'cosmically', 'genetic', 'spider', 'cookouts', 'indulged', 'tinnier', 'barber', \"scratchiness's\", \"dateline's\", 'plaice', 'strumpet', 'Joplin', 'tuckers', 'joggles', \"Maidenform's\", \"Trojan's\", \"empire's\", 'flatted', \"unhappiness's\", \"Valentine's\", \"plenary's\", \"Mohorovicic's\", 'cheapening', 'electrocution', 'modelings', 'refueled', 'betrothals', 'uprising', 'restfulness', \"teacup's\", 'disease', 'dryads', 'incarnation', 'tango', \"file's\", \"cantaloup's\", \"tautology's\", 'nonprofessional', \"killdeer's\", 'hawkish', 'devaluations', 'grout', 'bussing', \"slack's\", \"fondness's\", \"tetrahedron's\", 'crisps', 'vivaciousness', 'transmissions', 'sorely', 'telekinesis', 'homesteader', 'parading', \"tillage's\", 'frizzle', 'comediennes', \"tweet's\", 'gabbier', 'grotto', 'flyspecked', \"hooter's\", 'footbridge', 'boundless', \"Danielle's\", 'mutilated', 'regrettable', \"pine's\", 'zoologists', \"easterner's\", 'bounces', 'girdling', 'circlets', 'otiose', \"poncho's\", 'maneuvered', 'Knickerbocker', 'Innocent', \"Eniwetok's\", 'graves', 'hyphening', 'outtakes', 'broth', \"pictograph's\", 'griddlecakes', 'sancta', 'anaesthetic', 'corroded', 'piston', \"synchronization's\", 'transmigrated', 'Roosevelt', \"neglig's\", 'expanding', \"shirtwaist's\", 'variables', 'Sq', \"Vulcan's\", 'respires', 'soy', 'Teri', 'orthopaedists', \"competitiveness's\", \"Trey's\", 'castigation', 'gazing', \"Earle's\", \"inertia's\", 'herbivorous', 'obtainable', 'battlements', 'sanded', 'June', \"stipend's\", 'refill', 'quarantining', 'storms', 'commencing', \"Emacs's\", \"frustration's\", 'fluids', \"leitmotif's\", \"hush's\", 'Yaobang', \"golf's\", 'Turner', \"intransigence's\", 'opposes', \"parabola's\", 'crypt', 'depressingly', 'unexceptionable', \"vowel's\", 'vantages', 'Brahmans', 'drams', 'reformulating', 'boxing', 'vocalize', \"Eurasia's\", \"Laocoon's\", \"aneurism's\", 'kilter', \"something's\", 'flatulence', 'entrails', 'likelier', 'moan', \"slanderer's\", 'investigation', 'shrinks', \"snip's\", 'loosened', \"petrel's\", 'swiping', \"Patterson's\", 'advertisers', 'remakes', 'Dexter', 'pelt', 'Francisco', 'Paula', 'alleluia', \"mukluk's\", 'gulped', \"anaemia's\", 'tarring', 'searing', 'slides', \"Abe's\", \"shiver's\", 'coordinating', 'Getty', 'constable', \"Rosalyn's\", 'Rosie', 'luxuries', 'whizzed', 'disestablishing', \"counselor's\", \"native's\", 'sloshes', 'phosphors', 'wormwood', \"chill's\", 'avenge', 'mobilized', 'encores', 'kleptomaniacs', 'totters', 'chlorine', 'clasping', 'into', 'manageable', 'type', 'Drano', 'peculiar', 'rickshas', 'deadest', \"pornography's\", 'yews', 'Siberia', \"AB's\", 'nonwhites', \"Byers's\", 'hose', \"Starr's\", 'perceptive', 'Popocatepetl', \"Juanita's\", \"sonnet's\", 'emolument', \"incantation's\", 'failure', 'Sterno', \"Lew's\", 'payroll', 'peony', 'embedding', 'unkindness', 'tamper', \"reprint's\", 'chorale', \"paring's\", 'trisects', 'uncompromisingly', 'buttoned', 'peritoneums', 'freedoms', 'eighteen', 'Ringo', \"Khwarizmi's\", 'exalts', 'wish', 'resenting', 'vindicated', 'invokes', 'mewls', 'eyestrain', 'decencies', 'preteen', 'Piaget', 'alms', 'caliphate', 'excess', 'transferal', 'plunge', 'reprobates', 'coeducational', 'eighth', \"rifleman's\", 'transposes', 'spanners', 'awoke', 'pelvis', 'disillusioned', \"deism's\", 'trifle', 'Confucians', 'Petersen', 'inadvertent', 'sexiest', \"farewell's\", \"fetus's\", 'northbound', 'loges', \"hyperbola's\", 'ration', 'ridiculously', 'sailcloth', 'Niger', 'Midwest', 'Avalon', \"Gertrude's\", 'mountaineers', \"scholarship's\", \"lube's\", 'secedes', 'editorializes', 'swankest', 'lepers', 'airbrushing', 'spillages', \"Tibetan's\", \"powerlessness's\", \"secret's\", 'constitution', \"Stephan's\", 'prolongation', 'Rover', 'roping', 'chiropractors', 'recites', \"settle's\", 'applicable', 'coding', 'Joaquin', 'sledgehammers', 'toxicity', 'daze', \"gobbledygook's\", 'unfit', 'forbids', \"ragout's\", 'fathomed', 'ringers', 'spared', 'durability', 'checklist', 'remedying', \"presence's\", \"Cr's\", \"Yuletide's\", 'disillusioning', 'automatons', 'compelled', 'passenger', \"roughneck's\", 'Aurora', 'expelling', 'crave', 'Sumerian', \"Walmart's\", 'canoeing', 'sealer', 'petioles', 'sinkholes', 'uneconomical', 'painted', \"corespondent's\", \"tidbit's\", 'increments', \"willpower's\", 'converses', 'schematically', 'Freud', 'despoiling', \"Mackinac's\", 'turd', 'Gorey'}\n" ] } ], "source": [ "print(str(b))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'armlet', \"figurehead's\", \"deviance's\", 'palisades', \"monstrance's\", 'nightclothes', 'packet', 'miniscule', 'evinces', 'orphan', \"torpedo's\", 'drank', 'denounces', \"leapfrog's\", 'Mancini', 'intending', 'yield', \"classification's\", 'gougers', 'Ponce', 'circularizing', 'pulse', \"delinquent's\", 'errs', 'quickened', 'operations', 'sublimating', 'exact', 'gantries', \"sweetbrier's\", 'exercising', 'midyear', 'dislocating', 'phantasmagorias', 'classes', 'resigned', 'slewing', \"knitwear's\", 'reasonableness', 'Yellowstone', \"euphemism's\", 'floggings', 'respect', 'underlain', \"split's\", 'aureolas', 'destructive', 'nincompoops', 'wobblier', 'daughter', 'piranha', 'lamed', 'torts', 'overbore', 'plague', 'ferocity', \"dying's\", 'blinding', 'labels', 'plenary', \"browse's\", 'feds', 'extenuate', 'purpose', 'flabbergasting', 'rewriting', 'annoyances', 'appreciate', 'babysat', \"troublemaker's\", 'spreadsheets', 'insurer', \"clime's\", \"Dunkirk's\", 'classmate', 'consummate', 'utterance', 'lapwing', 'confiscating', \"melon's\", \"venue's\", \"spleen's\", 'salve', 'handled', 'snored', 'preaching', 'inventions', 'devilries', 'Polanski', \"gosling's\", 'westerns', 'bold', \"cigarillo's\", 'protective', 'discounts', \"phallus's\", 'marches', \"thong's\", \"Knesset's\", 'palsied', \"presumption's\", \"Persia's\", 'ducats', 'sermons', \"enlightenment's\", 'greasier', \"turbojet's\", 'whites', \"gravity's\", \"backstroke's\", 'incorporate', 'customized', \"Cupid's\", 'Mitterrand', 'decentralizing', \"distillery's\", \"Oise's\", 'strait', 'abscessing', 'retrieves', 'haw', 'eclipsed', \"collation's\", \"blotter's\", 'narcissistic', 'possibilities', 'spireas', 'vulcanizing', 'bourgeois', 'tomboys', 'Cheetos', 'manifest', \"lassie's\", \"ramble's\", \"wordiness's\", \"Felice's\", 'dire', 'disfigured', 'damages', 'provides', 'regenerate', 'parentheses', 'reddish', 'jejune', \"nuke's\", \"tanner's\", 'puttied', 'smelliest', \"plow's\", 'metamorphism', 'liter', 'deformities', 'sidelight', 'initials', 'Cormack', \"mahatma's\", 'yuletide', \"jet's\", 'Zamora', 'instills', 'griped', 'sesame', \"skim's\", 'misdone', 'fireman', 'materialistic', 'rawest', \"tare's\", 'Melville', 'county', 'floodlight', \"clothespin's\", 'humbugged', \"edit's\", 'swooned', 'Lawson', 'ecstatically', 'eddying', 'phial', 'mirrors', \"mistake's\", 'fumigation', 'trenches', 'different', 'suspenseful', 'orgasm', 'corpses', 'never', 'prettier', 'submission', 'indoctrinating', 'pumped', 'pedestals', 'pellucid', 'bailiff', 'devises', \"Snyder's\", \"footman's\", \"confine's\", \"militiaman's\", 'civics', \"profession's\", 'aches', \"lichee's\", 'Ahriman', \"sirup's\", 'superscript', 'Mohammedans', 'antiquaries', 'rigidness', 'knacker', 'skylines', 'keels', 'defiled', \"mommy's\", \"easel's\", 'tap', \"urge's\", 'Mather', \"pertness's\", 'distinction', 'sensuously', 'catalogers', 'Long', 'telecommuted', 'enmeshed', \"flounder's\", 'island', 'anorexic', \"spreadsheet's\", \"trial's\", 'clapboard', 'Croats', \"simplification's\", \"linoleum's\", 'Lela', 'Hangzhou', \"potluck's\", 'impressionistic', 'prolonging', 'dedications', 'tameness', 'transceivers', \"physiotherapist's\", 'Sakhalin', 'fate', 'Iroquois', 'unimaginative', 'blindfolding', 'destabilize', \"dick's\", 'accessing', 'institutionalize', 'Adela', 'staggers', \"disposable's\", \"cherry's\", \"Mark's\", 'impinge', \"Descartes's\", 'decriminalized', \"gallantry's\", 'larboard', 'weapon', 'dwarfed', 'excruciatingly', 'Godiva', \"mishmash's\", 'slue', 'adjurations', 'indict', 'trustworthiness', 'Gantry', 'gooier', \"elf's\", 'inhabit', 'disadvantageously', 'deceived', \"sled's\", \"Bundesbank's\", 'ventriloquist', \"Hitler's\", \"gamekeeper's\", 'inveigled', 'motormouth', \"monologue's\", 'undersell', 'dominoes', 'slovenliness', 'bounds', 'stoning', 'tankers', 'blazed', 'athletically', 'semipermeable', 'Fafnir', \"sparkler's\", \"madder's\", 'advertisement', 'detraction', 'leak', 'musketeers', \"phobia's\", 'occludes', 'knobbier', 'umping', 'dashboards', 'sensitives', 'flouting', 'intrudes', 'pragmatists', 'led', 'Stamford', 'physiognomy', 'Chou', 'pauses', 'pluralistic', \"Eocene's\", 'Brits', 'preeminently', 'funniest', 'miasmata', 'rowdiness', \"summer's\", 'spans', 'eyeliners', 'umpired', 'Gandhian', 'laburnums', 'lariat', 'Xanthippe', 'racetrack', \"Merriam's\", 'dynastic', 'recall', 'lees', 'reapportionment', \"puberty's\", 'permissible', 'inducements', 'pediatrics', 'biassed', 'capacitance', 'chillers', 'Alyce', 'maligned', 'healers', \"goalpost's\", \"spokesperson's\", 'barbarity', 'embolden', 'nerving', 'have', 'cemeteries', 'oftener', 'moth', 'born', 'Kurosawa', 'competences', \"housetop's\", 'Trujillo', 'petting', 'Tubman', 'mysterious', 'relishing', 'appertain', 'cedes', 'vibration', 'gibbeting', 'anxiously', 'intelligible', \"idea's\", 'industrialists', \"quadruped's\", \"furze's\", 'participating', 'proletariat', \"landlubber's\", \"Allison's\", 'addle', 'dress', \"lightning's\", 'barrener', 'sailors', 'multitasking', 'Carlene', 'collectable', \"amiability's\", 'floras', \"twitch's\", 'vitality', \"disaster's\", 'Alicia', 'Ingres', 'hydrangeas', 'bills', \"manufacture's\", 'celibates', 'commitments', 'Luann', 'unloosing', 'cooky', 'clothespins', 'perturb', 'trochee', \"walkway's\", 'Leeds', 'victims', 'Westinghouse', 'springtime', 'platooning', 'benign', 'emporium', 'hardy', 'pudgy', 'dithers', 'heckled', 'rescind', 'umber', 'turnabouts', \"HP's\", \"stream's\", 'Casals', 'extendable', 'Prut', \"hermitage's\", 'leafier', 'consider', 'exorcize', \"weaver's\", 'execrating', 'heckling', 'elks', 'sermonize', \"chromosome's\", 'kinking', 'philologists', \"brat's\", 'lopsidedness', 'communicator', 'chagrining', 'ingenuous', 'pediatrician', \"nickel's\", 'Mississippian', 'anonymity', 'clitoral', 'professorship', 'caucused', \"mutilation's\", \"riddle's\", \"pepsin's\", 'bookend', 'mailer', 'sovereign', 'explorers', \"retardant's\", 'drudged', 'wicker', 'sniffed', \"falconer's\", 'findings', 'Christina', 'researches', 'objectors', 'valises', 'humiliated', 'pompadour', 'homeopathy', 'toughened', 'Blucher', 'necklaces', 'close', 'siesta', 'analogues', 'exorcised', 'remake', 'minuter', 'Duncan', 'dis', 'repeals', 'infielders', \"emulsion's\", \"showgirl's\", 'slashed', 'duelling', 'trimly', 'technocracy', \"overachiever's\", 'outstripping', \"dentist's\", \"Judaism's\", 'insincerely', 'pleads', \"Rostov's\", 'privateers', 'boroughs', 'Barclay', 'slithering', 'lamentations', 'Delgado', 'incurable', 'obstructive', \"Adolf's\", 'avows', \"mush's\", 'tier', \"chock's\", 'district', 'enfolded', 'soda', 'big', 'cinema', \"Morpheus's\", 'junking', 'subterranean', \"turner's\", 'hayseeds', \"desecration's\", 'fallowing', 'clarified', 'ratcheted', 'negligee', 'Perseid', 'crunchier', 'slavered', \"birch's\", 'suitable', 'miscellaneous', 'ladybirds', \"hastiness's\", \"turquoise's\", \"CPA's\", 'refit', 'servility', 'Scripture', 'hunger', \"phenomenon's\", \"Yamagata's\", \"Xingu's\", 'Anubis', \"consumerism's\", 'dumbness', \"Liege's\", \"sidewall's\", 'kinky', 'cognac', 'luxurious', \"milkmaid's\", 'stormy', \"frog's\", \"panderer's\", 'brainy', 'incremental', 'Ginny', 'prosperous', 'instigate', 'scripts', 'joiners', 'furors', 'policies', 'elapsed', 'authorship', 'bushwhackers', \"reconnaissance's\", 'quid', \"inmate's\", 'messiah', 'misdoings', \"Psalter's\", \"teacher's\", 'Cyrano', 'bib', 'thirds', \"yen's\", 'berates', \"undesirable's\", 'Delphic', 'bulkier', \"bronchitis's\", 'commissariats', 'underrated', 'armistice', \"washable's\", 'astrophysicist', 'syllabication', \"ambrosia's\", \"colonialism's\", 'placidity', 'Gillette', \"municipal's\", 'Lucile', \"spear's\", 'Gadsden', 'fora', \"Naphtali's\", \"chemical's\", 'dwelling', 'invaders', 'debarment', 'qua', 'drown', 'hydroplaning', 'Armando', 'waking', 'gamekeepers', 'Arcadia', \"jeopardy's\", 'situated', 'propagandizes', \"armlet's\", 'promptest', \"Kara's\", 'Otto', \"Naziism's\", 'fasted', 'scrotums', 'bolted', 'chokers', 'prophylactics', 'interments', 'Maracaibo', 'opaques', \"referee's\", 'invincibility', \"Podhoretz's\", 'earthward', \"tiptop's\", 'gritting', 'Subaru', 'respell', 'daiquiris', 'lustily', \"decompression's\", \"bleach's\", 'postmark', 'commendable', 'couriers', 'advents', 'railroaded', 'mortal', 'creamed', 'iffiest', 'seventeens', \"analogy's\", \"refreshment's\", 'visions', 'hangmen', \"Nobelist's\", 'revues', \"Cancun's\", 'halitosis', 'herded', 'dormice', 'snivels', \"projectionist's\", \"wisher's\", 'blowtorch', \"packet's\", 'reckons', 'cosmically', 'genetic', 'spider', 'cookouts', 'indulged', 'tinnier', 'barber', \"scratchiness's\", \"dateline's\", 'plaice', 'strumpet', 'Joplin', 'tuckers', 'joggles', \"Maidenform's\", \"Trojan's\", \"empire's\", 'flatted', \"unhappiness's\", \"Valentine's\", \"plenary's\", \"Mohorovicic's\", 'cheapening', 'electrocution', 'modelings', 'refueled', 'betrothals', 'uprising', 'restfulness', \"teacup's\", 'disease', 'dryads', 'incarnation', 'tango', \"file's\", \"cantaloup's\", \"tautology's\", 'nonprofessional', \"killdeer's\", 'hawkish', 'devaluations', 'grout', 'bussing', \"slack's\", \"fondness's\", \"tetrahedron's\", 'crisps', 'vivaciousness', 'transmissions', 'sorely', 'telekinesis', 'homesteader', 'parading', \"tillage's\", 'frizzle', 'comediennes', \"tweet's\", 'gabbier', 'grotto', 'flyspecked', \"hooter's\", 'footbridge', 'boundless', \"Danielle's\", 'mutilated', 'regrettable', \"pine's\", 'zoologists', \"easterner's\", 'bounces', 'girdling', 'circlets', 'otiose', \"poncho's\", 'maneuvered', 'Knickerbocker', 'Innocent', \"Eniwetok's\", 'graves', 'hyphening', 'outtakes', 'broth', \"pictograph's\", 'griddlecakes', 'sancta', 'anaesthetic', 'corroded', 'piston', \"synchronization's\", 'transmigrated', 'Roosevelt', \"neglig's\", 'expanding', \"shirtwaist's\", 'variables', 'Sq', \"Vulcan's\", 'respires', 'soy', 'Teri', 'orthopaedists', \"competitiveness's\", \"Trey's\", 'castigation', 'gazing', \"Earle's\", \"inertia's\", 'herbivorous', 'obtainable', 'battlements', 'sanded', 'June', \"stipend's\", 'refill', 'quarantining', 'storms', 'commencing', \"Emacs's\", \"frustration's\", 'fluids', \"leitmotif's\", \"hush's\", 'Yaobang', \"golf's\", 'Turner', \"intransigence's\", 'opposes', \"parabola's\", 'crypt', 'depressingly', 'unexceptionable', \"vowel's\", 'vantages', 'Brahmans', 'drams', 'reformulating', 'boxing', 'vocalize', \"Eurasia's\", \"Laocoon's\", \"aneurism's\", 'kilter', \"something's\", 'flatulence', 'entrails', 'likelier', 'moan', \"slanderer's\", 'investigation', 'shrinks', \"snip's\", 'loosened', \"petrel's\", 'swiping', \"Patterson's\", 'advertisers', 'remakes', 'Dexter', 'pelt', 'Francisco', 'Paula', 'alleluia', \"mukluk's\", 'gulped', \"anaemia's\", 'tarring', 'searing', 'slides', \"Abe's\", \"shiver's\", 'coordinating', 'Getty', 'constable', \"Rosalyn's\", 'Rosie', 'luxuries', 'whizzed', 'disestablishing', \"counselor's\", \"native's\", 'sloshes', 'phosphors', 'wormwood', \"chill's\", 'avenge', 'mobilized', 'encores', 'kleptomaniacs', 'totters', 'chlorine', 'clasping', 'into', 'manageable', 'type', 'Drano', 'peculiar', 'rickshas', 'deadest', \"pornography's\", 'yews', 'Siberia', \"AB's\", 'nonwhites', \"Byers's\", 'hose', \"Starr's\", 'perceptive', 'Popocatepetl', \"Juanita's\", \"sonnet's\", 'emolument', \"incantation's\", 'failure', 'Sterno', \"Lew's\", 'payroll', 'peony', 'embedding', 'unkindness', 'tamper', \"reprint's\", 'chorale', \"paring's\", 'trisects', 'uncompromisingly', 'buttoned', 'peritoneums', 'freedoms', 'eighteen', 'Ringo', \"Khwarizmi's\", 'exalts', 'wish', 'resenting', 'vindicated', 'invokes', 'mewls', 'eyestrain', 'decencies', 'preteen', 'Piaget', 'alms', 'caliphate', 'excess', 'transferal', 'plunge', 'reprobates', 'coeducational', 'eighth', \"rifleman's\", 'transposes', 'spanners', 'awoke', 'pelvis', 'disillusioned', \"deism's\", 'trifle', 'Confucians', 'Petersen', 'inadvertent', 'sexiest', \"farewell's\", \"fetus's\", 'northbound', 'loges', \"hyperbola's\", 'ration', 'ridiculously', 'sailcloth', 'Niger', 'Midwest', 'Avalon', \"Gertrude's\", 'mountaineers', \"scholarship's\", \"lube's\", 'secedes', 'editorializes', 'swankest', 'lepers', 'airbrushing', 'spillages', \"Tibetan's\", \"powerlessness's\", \"secret's\", 'constitution', \"Stephan's\", 'prolongation', 'Rover', 'roping', 'chiropractors', 'recites', \"settle's\", 'applicable', 'coding', 'Joaquin', 'sledgehammers', 'toxicity', 'daze', \"gobbledygook's\", 'unfit', 'forbids', \"ragout's\", 'fathomed', 'ringers', 'spared', 'durability', 'checklist', 'remedying', \"presence's\", \"Cr's\", \"Yuletide's\", 'disillusioning', 'automatons', 'compelled', 'passenger', \"roughneck's\", 'Aurora', 'expelling', 'crave', 'Sumerian', \"Walmart's\", 'canoeing', 'sealer', 'petioles', 'sinkholes', 'uneconomical', 'painted', \"corespondent's\", \"tidbit's\", 'increments', \"willpower's\", 'converses', 'schematically', 'Freud', 'despoiling', \"Mackinac's\", 'turd', 'Gorey'}\n" ] } ], "source": [ "print(repr(b))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "'armlet'\n", "\"figurehead's\"\n", "\"deviance's\"\n", "'palisades'\n", "\"monstrance's\"\n", "'nightclothes'\n", "'packet'\n", "'miniscule'\n", "'evinces'\n", "'orphan'\n", "\"torpedo's\"\n", "'drank'\n", "'denounces'\n", "\"leapfrog's\"\n", "'Mancini'\n", "'intending'\n", "'yield'\n", "\"classification's\"\n", "'gougers'\n", "'Ponce'\n", "'circularizing'\n", "'pulse'\n", "\"delinquent's\"\n", "'errs'\n", "'quickened'\n", "'operations'\n", "'sublimating'\n", "'exact'\n", "'gantries'\n", "\"sweetbrier's\"\n", "'exercising'\n", "'midyear'\n", "'dislocating'\n", "'phantasmagorias'\n", "'classes'\n", "'resigned'\n", "'slewing'\n", "\"knitwear's\"\n", "'reasonableness'\n", "'Yellowstone'\n", "\"euphemism's\"\n", "'floggings'\n", "'respect'\n", "'underlain'\n", "\"split's\"\n", "'aureolas'\n", "'destructive'\n", "'nincompoops'\n", "'wobblier'\n", "'daughter'\n", "'piranha'\n", "'lamed'\n", "'torts'\n", "'overbore'\n", "'plague'\n", "'ferocity'\n", "\"dying's\"\n", "'blinding'\n", "'labels'\n", "'plenary'\n", "\"browse's\"\n", "'feds'\n", "'extenuate'\n", "'purpose'\n", "'flabbergasting'\n", "'rewriting'\n", "'annoyances'\n", "'appreciate'\n", "'babysat'\n", "\"troublemaker's\"\n", "'spreadsheets'\n", "'insurer'\n", "\"clime's\"\n", "\"Dunkirk's\"\n", "'classmate'\n", "'consummate'\n", "'utterance'\n", "'lapwing'\n", "'confiscating'\n", "\"melon's\"\n", "\"venue's\"\n", "\"spleen's\"\n", "'salve'\n", "'handled'\n", "'snored'\n", "'preaching'\n", "'inventions'\n", "'devilries'\n", "'Polanski'\n", "\"gosling's\"\n", "'westerns'\n", "'bold'\n", "\"cigarillo's\"\n", "'protective'\n", "'discounts'\n", "\"phallus's\"\n", "'marches'\n", "\"thong's\"\n", "\"Knesset's\"\n", "'palsied'\n", "\"presumption's\"\n", "\"Persia's\"\n", "'ducats'\n", "'sermons'\n", "\"enlightenment's\"\n", "'greasier'\n", "\"turbojet's\"\n", "'whites'\n", "\"gravity's\"\n", "\"backstroke's\"\n", "'incorporate'\n", "'customized'\n", "\"Cupid's\"\n", "'Mitterrand'\n", "'decentralizing'\n", "\"distillery's\"\n", "\"Oise's\"\n", "'strait'\n", "'abscessing'\n", "'retrieves'\n", "'haw'\n", "'eclipsed'\n", "\"collation's\"\n", "\"blotter's\"\n", "'narcissistic'\n", "'possibilities'\n", "'spireas'\n", "'vulcanizing'\n", "'bourgeois'\n", "'tomboys'\n", "'Cheetos'\n", "'manifest'\n", "\"lassie's\"\n", "\"ramble's\"\n", "\"wordiness's\"\n", "\"Felice's\"\n", "'dire'\n", "'disfigured'\n", "'damages'\n", "'provides'\n", "'regenerate'\n", "'parentheses'\n", "'reddish'\n", "'jejune'\n", "\"nuke's\"\n", "\"tanner's\"\n", "'puttied'\n", "'smelliest'\n", "\"plow's\"\n", "'metamorphism'\n", "'liter'\n", "'deformities'\n", "'sidelight'\n", "'initials'\n", "'Cormack'\n", "\"mahatma's\"\n", "'yuletide'\n", "\"jet's\"\n", "'Zamora'\n", "'instills'\n", "'griped'\n", "'sesame'\n", "\"skim's\"\n", "'misdone'\n", "'fireman'\n", "'materialistic'\n", "'rawest'\n", "\"tare's\"\n", "'Melville'\n", "'county'\n", "'floodlight'\n", "\"clothespin's\"\n", "'humbugged'\n", "\"edit's\"\n", "'swooned'\n", "'Lawson'\n", "'ecstatically'\n", "'eddying'\n", "'phial'\n", "'mirrors'\n", "\"mistake's\"\n", "'fumigation'\n", "'trenches'\n", "'different'\n", "'suspenseful'\n", "'orgasm'\n", "'corpses'\n", "'never'\n", "'prettier'\n", "'submission'\n", "'indoctrinating'\n", "'pumped'\n", "'pedestals'\n", "'pellucid'\n", "'bailiff'\n", "'devises'\n", "\"Snyder's\"\n", "\"footman's\"\n", "\"confine's\"\n", "\"militiaman's\"\n", "'civics'\n", "\"profession's\"\n", "'aches'\n", "\"lichee's\"\n", "'Ahriman'\n", "\"sirup's\"\n", "'superscript'\n", "'Mohammedans'\n", "'antiquaries'\n", "'rigidness'\n", "'knacker'\n", "'skylines'\n", "'keels'\n", "'defiled'\n", "\"mommy's\"\n", "\"easel's\"\n", "'tap'\n", "\"urge's\"\n", "'Mather'\n", "\"pertness's\"\n", "'distinction'\n", "'sensuously'\n", "'catalogers'\n", "'Long'\n", "'telecommuted'\n", "'enmeshed'\n", "\"flounder's\"\n", "'island'\n", "'anorexic'\n", "\"spreadsheet's\"\n", "\"trial's\"\n", "'clapboard'\n", "'Croats'\n", "\"simplification's\"\n", "\"linoleum's\"\n", "'Lela'\n", "'Hangzhou'\n", "\"potluck's\"\n", "'impressionistic'\n", "'prolonging'\n", "'dedications'\n", "'tameness'\n", "'transceivers'\n", "\"physiotherapist's\"\n", "'Sakhalin'\n", "'fate'\n", "'Iroquois'\n", "'unimaginative'\n", "'blindfolding'\n", "'destabilize'\n", "\"dick's\"\n", "'accessing'\n", "'institutionalize'\n", "'Adela'\n", "'staggers'\n", "\"disposable's\"\n", "\"cherry's\"\n", "\"Mark's\"\n", "'impinge'\n", "\"Descartes's\"\n", "'decriminalized'\n", "\"gallantry's\"\n", "'larboard'\n", "'weapon'\n", "'dwarfed'\n", "'excruciatingly'\n", "'Godiva'\n", "\"mishmash's\"\n", "'slue'\n", "'adjurations'\n", "'indict'\n", "'trustworthiness'\n", "'Gantry'\n", "'gooier'\n", "\"elf's\"\n", "'inhabit'\n", "'disadvantageously'\n", "'deceived'\n", "\"sled's\"\n", "\"Bundesbank's\"\n", "'ventriloquist'\n", "\"Hitler's\"\n", "\"gamekeeper's\"\n", "'inveigled'\n", "'motormouth'\n", "\"monologue's\"\n", "'undersell'\n", "'dominoes'\n", "'slovenliness'\n", "'bounds'\n", "'stoning'\n", "'tankers'\n", "'blazed'\n", "'athletically'\n", "'semipermeable'\n", "'Fafnir'\n", "\"sparkler's\"\n", "\"madder's\"\n", "'advertisement'\n", "'detraction'\n", "'leak'\n", "'musketeers'\n", "\"phobia's\"\n", "'occludes'\n", "'knobbier'\n", "'umping'\n", "'dashboards'\n", "'sensitives'\n", "'flouting'\n", "'intrudes'\n", "'pragmatists'\n", "'led'\n", "'Stamford'\n", "'physiognomy'\n", "'Chou'\n", "'pauses'\n", "'pluralistic'\n", "\"Eocene's\"\n", "'Brits'\n", "'preeminently'\n", "'funniest'\n", "'miasmata'\n", "'rowdiness'\n", "\"summer's\"\n", "'spans'\n", "'eyeliners'\n", "'umpired'\n", "'Gandhian'\n", "'laburnums'\n", "'lariat'\n", "'Xanthippe'\n", "'racetrack'\n", "\"Merriam's\"\n", "'dynastic'\n", "'recall'\n", "'lees'\n", "'reapportionment'\n", "\"puberty's\"\n", "'permissible'\n", "'inducements'\n", "'pediatrics'\n", "'biassed'\n", "'capacitance'\n", "'chillers'\n", "'Alyce'\n", "'maligned'\n", "'healers'\n", "\"goalpost's\"\n", "\"spokesperson's\"\n", "'barbarity'\n", "'embolden'\n", "'nerving'\n", "'have'\n", "'cemeteries'\n", "'oftener'\n", "'moth'\n", "'born'\n", "'Kurosawa'\n", "'competences'\n", "\"housetop's\"\n", "'Trujillo'\n", "'petting'\n", "'Tubman'\n", "'mysterious'\n", "'relishing'\n", "'appertain'\n", "'cedes'\n", "'vibration'\n", "'gibbeting'\n", "'anxiously'\n", "'intelligible'\n", "\"idea's\"\n", "'industrialists'\n", "\"quadruped's\"\n", "\"furze's\"\n", "'participating'\n", "'proletariat'\n", "\"landlubber's\"\n", "\"Allison's\"\n", "'addle'\n", "'dress'\n", "\"lightning's\"\n", "'barrener'\n", "'sailors'\n", "'multitasking'\n", "'Carlene'\n", "'collectable'\n", "\"amiability's\"\n", "'floras'\n", "\"twitch's\"\n", "'vitality'\n", "\"disaster's\"\n", "'Alicia'\n", "'Ingres'\n", "'hydrangeas'\n", "'bills'\n", "\"manufacture's\"\n", "'celibates'\n", "'commitments'\n", "'Luann'\n", "'unloosing'\n", "'cooky'\n", "'clothespins'\n", "'perturb'\n", "'trochee'\n", "\"walkway's\"\n", "'Leeds'\n", "'victims'\n", "'Westinghouse'\n", "'springtime'\n", "'platooning'\n", "'benign'\n", "'emporium'\n", "'hardy'\n", "'pudgy'\n", "'dithers'\n", "'heckled'\n", "'rescind'\n", "'umber'\n", "'turnabouts'\n", "\"HP's\"\n", "\"stream's\"\n", "'Casals'\n", "'extendable'\n", "'Prut'\n", "\"hermitage's\"\n", "'leafier'\n", "'consider'\n", "'exorcize'\n", "\"weaver's\"\n", "'execrating'\n", "'heckling'\n", "'elks'\n", "'sermonize'\n", "\"chromosome's\"\n", "'kinking'\n", "'philologists'\n", "\"brat's\"\n", "'lopsidedness'\n", "'communicator'\n", "'chagrining'\n", "'ingenuous'\n", "'pediatrician'\n", "\"nickel's\"\n", "'Mississippian'\n", "'anonymity'\n", "'clitoral'\n", "'professorship'\n", "'caucused'\n", "\"mutilation's\"\n", "\"riddle's\"\n", "\"pepsin's\"\n", "'bookend'\n", "'mailer'\n", "'sovereign'\n", "'explorers'\n", "\"retardant's\"\n", "'drudged'\n", "'wicker'\n", "'sniffed'\n", "\"falconer's\"\n", "'findings'\n", "'Christina'\n", "'researches'\n", "'objectors'\n", "'valises'\n", "'humiliated'\n", "'pompadour'\n", "'homeopathy'\n", "'toughened'\n", "'Blucher'\n", "'necklaces'\n", "'close'\n", "'siesta'\n", "'analogues'\n", "'exorcised'\n", "'remake'\n", "'minuter'\n", "'Duncan'\n", "'dis'\n", "'repeals'\n", "'infielders'\n", "\"emulsion's\"\n", "\"showgirl's\"\n", "'slashed'\n", "'duelling'\n", "'trimly'\n", "'technocracy'\n", "\"overachiever's\"\n", "'outstripping'\n", "\"dentist's\"\n", "\"Judaism's\"\n", "'insincerely'\n", "'pleads'\n", "\"Rostov's\"\n", "'privateers'\n", "'boroughs'\n", "'Barclay'\n", "'slithering'\n", "'lamentations'\n", "'Delgado'\n", "'incurable'\n", "'obstructive'\n", "\"Adolf's\"\n", "'avows'\n", "\"mush's\"\n", "'tier'\n", "\"chock's\"\n", "'district'\n", "'enfolded'\n", "'soda'\n", "'big'\n", "'cinema'\n", "\"Morpheus's\"\n", "'junking'\n", "'subterranean'\n", "\"turner's\"\n", "'hayseeds'\n", "\"desecration's\"\n", "'fallowing'\n", "'clarified'\n", "'ratcheted'\n", "'negligee'\n", "'Perseid'\n", "'crunchier'\n", "'slavered'\n", "\"birch's\"\n", "'suitable'\n", "'miscellaneous'\n", "'ladybirds'\n", "\"hastiness's\"\n", "\"turquoise's\"\n", "\"CPA's\"\n", "'refit'\n", "'servility'\n", "'Scripture'\n", "'hunger'\n", "\"phenomenon's\"\n", "\"Yamagata's\"\n", "\"Xingu's\"\n", "'Anubis'\n", "\"consumerism's\"\n", "'dumbness'\n", "\"Liege's\"\n", "\"sidewall's\"\n", "'kinky'\n", "'cognac'\n", "'luxurious'\n", "\"milkmaid's\"\n", "'stormy'\n", "\"frog's\"\n", "\"panderer's\"\n", "'brainy'\n", "'incremental'\n", "'Ginny'\n", "'prosperous'\n", "'instigate'\n", "'scripts'\n", "'joiners'\n", "'furors'\n", "'policies'\n", "'elapsed'\n", "'authorship'\n", "'bushwhackers'\n", "\"reconnaissance's\"\n", "'quid'\n", "\"inmate's\"\n", "'messiah'\n", "'misdoings'\n", "\"Psalter's\"\n", "\"teacher's\"\n", "'Cyrano'\n", "'bib'\n", "'thirds'\n", "\"yen's\"\n", "'berates'\n", "\"undesirable's\"\n", "'Delphic'\n", "'bulkier'\n", "\"bronchitis's\"\n", "'commissariats'\n", "'underrated'\n", "'armistice'\n", "\"washable's\"\n", "'astrophysicist'\n", "'syllabication'\n", "\"ambrosia's\"\n", "\"colonialism's\"\n", "'placidity'\n", "'Gillette'\n", "\"municipal's\"\n", "'Lucile'\n", "\"spear's\"\n", "'Gadsden'\n", "'fora'\n", "\"Naphtali's\"\n", "\"chemical's\"\n", "'dwelling'\n", "'invaders'\n", "'debarment'\n", "'qua'\n", "'drown'\n", "'hydroplaning'\n", "'Armando'\n", "'waking'\n", "'gamekeepers'\n", "'Arcadia'\n", "\"jeopardy's\"\n", "'situated'\n", "'propagandizes'\n", "\"armlet's\"\n", "'promptest'\n", "\"Kara's\"\n", "'Otto'\n", "\"Naziism's\"\n", "'fasted'\n", "'scrotums'\n", "'bolted'\n", "'chokers'\n", "'prophylactics'\n", "'interments'\n", "'Maracaibo'\n", "'opaques'\n", "\"referee's\"\n", "'invincibility'\n", "\"Podhoretz's\"\n", "'earthward'\n", "\"tiptop's\"\n", "'gritting'\n", "'Subaru'\n", "'respell'\n", "'daiquiris'\n", "'lustily'\n", "\"decompression's\"\n", "\"bleach's\"\n", "'postmark'\n", "'commendable'\n", "'couriers'\n", "'advents'\n", "'railroaded'\n", "'mortal'\n", "'creamed'\n", "'iffiest'\n", "'seventeens'\n", "\"analogy's\"\n", "\"refreshment's\"\n", "'visions'\n", "'hangmen'\n", "\"Nobelist's\"\n", "'revues'\n", "\"Cancun's\"\n", "'halitosis'\n", "'herded'\n", "'dormice'\n", "'snivels'\n", "\"projectionist's\"\n", "\"wisher's\"\n", "'blowtorch'\n", "\"packet's\"\n", "'reckons'\n", "'cosmically'\n", "'genetic'\n", "'spider'\n", "'cookouts'\n", "'indulged'\n", "'tinnier'\n", "'barber'\n", "\"scratchiness's\"\n", "\"dateline's\"\n", "'plaice'\n", "'strumpet'\n", "'Joplin'\n", "'tuckers'\n", "'joggles'\n", "\"Maidenform's\"\n", "\"Trojan's\"\n", "\"empire's\"\n", "'flatted'\n", "\"unhappiness's\"\n", "\"Valentine's\"\n", "\"plenary's\"\n", "\"Mohorovicic's\"\n", "'cheapening'\n", "'electrocution'\n", "'modelings'\n", "'refueled'\n", "'betrothals'\n", "'uprising'\n", "'restfulness'\n", "\"teacup's\"\n", "'disease'\n", "'dryads'\n", "'incarnation'\n", "'tango'\n", "\"file's\"\n", "\"cantaloup's\"\n", "\"tautology's\"\n", "'nonprofessional'\n", "\"killdeer's\"\n", "'hawkish'\n", "'devaluations'\n", "'grout'\n", "'bussing'\n", "\"slack's\"\n", "\"fondness's\"\n", "\"tetrahedron's\"\n", "'crisps'\n", "'vivaciousness'\n", "'transmissions'\n", "'sorely'\n", "'telekinesis'\n", "'homesteader'\n", "'parading'\n", "\"tillage's\"\n", "'frizzle'\n", "'comediennes'\n", "\"tweet's\"\n", "'gabbier'\n", "'grotto'\n", "'flyspecked'\n", "\"hooter's\"\n", "'footbridge'\n", "'boundless'\n", "\"Danielle's\"\n", "'mutilated'\n", "'regrettable'\n", "\"pine's\"\n", "'zoologists'\n", "\"easterner's\"\n", "'bounces'\n", "'girdling'\n", "'circlets'\n", "'otiose'\n", "\"poncho's\"\n", "'maneuvered'\n", "'Knickerbocker'\n", "'Innocent'\n", "\"Eniwetok's\"\n", "'graves'\n", "'hyphening'\n", "'outtakes'\n", "'broth'\n", "\"pictograph's\"\n", "'griddlecakes'\n", "'sancta'\n", "'anaesthetic'\n", "'corroded'\n", "'piston'\n", "\"synchronization's\"\n", "'transmigrated'\n", "'Roosevelt'\n", "\"neglig's\"\n", "'expanding'\n", "\"shirtwaist's\"\n", "'variables'\n", "'Sq'\n", "\"Vulcan's\"\n", "'respires'\n", "'soy'\n", "'Teri'\n", "'orthopaedists'\n", "\"competitiveness's\"\n", "\"Trey's\"\n", "'castigation'\n", "'gazing'\n", "\"Earle's\"\n", "\"inertia's\"\n", "'herbivorous'\n", "'obtainable'\n", "'battlements'\n", "'sanded'\n", "'June'\n", "\"stipend's\"\n", "'refill'\n", "'quarantining'\n", "'storms'\n", "'commencing'\n", "\"Emacs's\"\n", "\"frustration's\"\n", "'fluids'\n", "\"leitmotif's\"\n", "\"hush's\"\n", "'Yaobang'\n", "\"golf's\"\n", "'Turner'\n", "\"intransigence's\"\n", "'opposes'\n", "\"parabola's\"\n", "'crypt'\n", "'depressingly'\n", "'unexceptionable'\n", "\"vowel's\"\n", "'vantages'\n", "'Brahmans'\n", "'drams'\n", "'reformulating'\n", "'boxing'\n", "'vocalize'\n", "\"Eurasia's\"\n", "\"Laocoon's\"\n", "\"aneurism's\"\n", "'kilter'\n", "\"something's\"\n", "'flatulence'\n", "'entrails'\n", "'likelier'\n", "'moan'\n", "\"slanderer's\"\n", "'investigation'\n", "'shrinks'\n", "\"snip's\"\n", "'loosened'\n", "\"petrel's\"\n", "'swiping'\n", "\"Patterson's\"\n", "'advertisers'\n", "'remakes'\n", "'Dexter'\n", "'pelt'\n", "'Francisco'\n", "'Paula'\n", "'alleluia'\n", "\"mukluk's\"\n", "'gulped'\n", "\"anaemia's\"\n", "'tarring'\n", "'searing'\n", "'slides'\n", "\"Abe's\"\n", "\"shiver's\"\n", "'coordinating'\n", "'Getty'\n", "'constable'\n", "\"Rosalyn's\"\n", "'Rosie'\n", "'luxuries'\n", "'whizzed'\n", "'disestablishing'\n", "\"counselor's\"\n", "\"native's\"\n", "'sloshes'\n", "'phosphors'\n", "'wormwood'\n", "\"chill's\"\n", "'avenge'\n", "'mobilized'\n", "'encores'\n", "'kleptomaniacs'\n", "'totters'\n", "'chlorine'\n", "'clasping'\n", "'into'\n", "'manageable'\n", "'type'\n", "'Drano'\n", "'peculiar'\n", "'rickshas'\n", "'deadest'\n", "\"pornography's\"\n", "'yews'\n", "'Siberia'\n", "\"AB's\"\n", "'nonwhites'\n", "\"Byers's\"\n", "'hose'\n", "\"Starr's\"\n", "'perceptive'\n", "'Popocatepetl'\n", "\"Juanita's\"\n", "\"sonnet's\"\n", "'emolument'\n", "\"incantation's\"\n", "'failure'\n", "'Sterno'\n", "\"Lew's\"\n", "'payroll'\n", "'peony'\n", "'embedding'\n", "'unkindness'\n", "'tamper'\n", "\"reprint's\"\n", "'chorale'\n", "\"paring's\"\n", "'trisects'\n", "'uncompromisingly'\n", "'buttoned'\n", "'peritoneums'\n", "'freedoms'\n", "'eighteen'\n", "'Ringo'\n", "\"Khwarizmi's\"\n", "'exalts'\n", "'wish'\n", "'resenting'\n", "'vindicated'\n", "'invokes'\n", "'mewls'\n", "'eyestrain'\n", "'decencies'\n", "'preteen'\n", "'Piaget'\n", "'alms'\n", "'caliphate'\n", "'excess'\n", "'transferal'\n", "'plunge'\n", "'reprobates'\n", "'coeducational'\n", "'eighth'\n", "\"rifleman's\"\n", "'transposes'\n", "'spanners'\n", "'awoke'\n", "'pelvis'\n", "'disillusioned'\n", "\"deism's\"\n", "'trifle'\n", "'Confucians'\n", "'Petersen'\n", "'inadvertent'\n", "'sexiest'\n", "\"farewell's\"\n", "\"fetus's\"\n", "'northbound'\n", "'loges'\n", "\"hyperbola's\"\n", "'ration'\n", "'ridiculously'\n", "'sailcloth'\n", "'Niger'\n", "'Midwest'\n", "'Avalon'\n", "\"Gertrude's\"\n", "'mountaineers'\n", "\"scholarship's\"\n", "\"lube's\"\n", "'secedes'\n", "'editorializes'\n", "'swankest'\n", "'lepers'\n", "'airbrushing'\n", "'spillages'\n", "\"Tibetan's\"\n", "\"powerlessness's\"\n", "\"secret's\"\n", "'constitution'\n", "\"Stephan's\"\n", "'prolongation'\n", "'Rover'\n", "'roping'\n", "'chiropractors'\n", "'recites'\n", "\"settle's\"\n", "'applicable'\n", "'coding'\n", "'Joaquin'\n", "'sledgehammers'\n", "'toxicity'\n", "'daze'\n", "\"gobbledygook's\"\n", "'unfit'\n", "'forbids'\n", "\"ragout's\"\n", "'fathomed'\n", "'ringers'\n", "'spared'\n", "'durability'\n", "'checklist'\n", "'remedying'\n", "\"presence's\"\n", "\"Cr's\"\n", "\"Yuletide's\"\n", "'disillusioning'\n", "'automatons'\n", "'compelled'\n", "'passenger'\n", "\"roughneck's\"\n", "'Aurora'\n", "'expelling'\n", "'crave'\n", "'Sumerian'\n", "\"Walmart's\"\n", "'canoeing'\n", "'sealer'\n", "'petioles'\n", "'sinkholes'\n", "'uneconomical'\n", "'painted'\n", "\"corespondent's\"\n", "\"tidbit's\"\n", "'increments'\n", "\"willpower's\"\n", "'converses'\n", "'schematically'\n", "'Freud'\n", "'despoiling'\n", "\"Mackinac's\"\n", "'turd'\n", "'Gorey'\n" ] } ], "source": [ "for word in b:\n", " print(repr(word))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'armlet',\n", " \"figurehead's\",\n", " \"deviance's\",\n", " 'palisades',\n", " \"monstrance's\",\n", " 'nightclothes',\n", " 'packet',\n", " 'miniscule',\n", " 'evinces',\n", " 'orphan',\n", " \"torpedo's\",\n", " 'drank',\n", " 'denounces',\n", " \"leapfrog's\",\n", " 'Mancini',\n", " 'intending',\n", " 'yield',\n", " \"classification's\",\n", " 'gougers',\n", " 'Ponce',\n", " 'circularizing',\n", " 'pulse',\n", " \"delinquent's\",\n", " 'errs',\n", " 'quickened',\n", " 'operations',\n", " 'sublimating',\n", " 'exact',\n", " 'gantries',\n", " \"sweetbrier's\",\n", " 'exercising',\n", " 'midyear',\n", " 'dislocating',\n", " 'phantasmagorias',\n", " 'classes',\n", " 'resigned',\n", " 'slewing',\n", " \"knitwear's\",\n", " 'reasonableness',\n", " 'Yellowstone',\n", " \"euphemism's\",\n", " 'floggings',\n", " 'respect',\n", " 'underlain',\n", " \"split's\",\n", " 'aureolas',\n", " 'destructive',\n", " 'nincompoops',\n", " 'wobblier',\n", " 'daughter',\n", " 'piranha',\n", " 'lamed',\n", " 'torts',\n", " 'overbore',\n", " 'plague',\n", " 'ferocity',\n", " \"dying's\",\n", " 'blinding',\n", " 'labels',\n", " 'plenary',\n", " \"browse's\",\n", " 'feds',\n", " 'extenuate',\n", " 'purpose',\n", " 'flabbergasting',\n", " 'rewriting',\n", " 'annoyances',\n", " 'appreciate',\n", " 'babysat',\n", " \"troublemaker's\",\n", " 'spreadsheets',\n", " 'insurer',\n", " \"clime's\",\n", " \"Dunkirk's\",\n", " 'classmate',\n", " 'consummate',\n", " 'utterance',\n", " 'lapwing',\n", " 'confiscating',\n", " \"melon's\",\n", " \"venue's\",\n", " \"spleen's\",\n", " 'salve',\n", " 'handled',\n", " 'snored',\n", " 'preaching',\n", " 'inventions',\n", " 'devilries',\n", " 'Polanski',\n", " \"gosling's\",\n", " 'westerns',\n", " 'bold',\n", " \"cigarillo's\",\n", " 'protective',\n", " 'discounts',\n", " \"phallus's\",\n", " 'marches',\n", " \"thong's\",\n", " \"Knesset's\",\n", " 'palsied',\n", " \"presumption's\",\n", " \"Persia's\",\n", " 'ducats',\n", " 'sermons',\n", " \"enlightenment's\",\n", " 'greasier',\n", " \"turbojet's\",\n", " 'whites',\n", " \"gravity's\",\n", " \"backstroke's\",\n", " 'incorporate',\n", " 'customized',\n", " \"Cupid's\",\n", " 'Mitterrand',\n", " 'decentralizing',\n", " \"distillery's\",\n", " \"Oise's\",\n", " 'strait',\n", " 'abscessing',\n", " 'retrieves',\n", " 'haw',\n", " 'eclipsed',\n", " \"collation's\",\n", " \"blotter's\",\n", " 'narcissistic',\n", " 'possibilities',\n", " 'spireas',\n", " 'vulcanizing',\n", " 'bourgeois',\n", " 'tomboys',\n", " 'Cheetos',\n", " 'manifest',\n", " \"lassie's\",\n", " \"ramble's\",\n", " \"wordiness's\",\n", " \"Felice's\",\n", " 'dire',\n", " 'disfigured',\n", " 'damages',\n", " 'provides',\n", " 'regenerate',\n", " 'parentheses',\n", " 'reddish',\n", " 'jejune',\n", " \"nuke's\",\n", " \"tanner's\",\n", " 'puttied',\n", " 'smelliest',\n", " \"plow's\",\n", " 'metamorphism',\n", " 'liter',\n", " 'deformities',\n", " 'sidelight',\n", " 'initials',\n", " 'Cormack',\n", " \"mahatma's\",\n", " 'yuletide',\n", " \"jet's\",\n", " 'Zamora',\n", " 'instills',\n", " 'griped',\n", " 'sesame',\n", " \"skim's\",\n", " 'misdone',\n", " 'fireman',\n", " 'materialistic',\n", " 'rawest',\n", " \"tare's\",\n", " 'Melville',\n", " 'county',\n", " 'floodlight',\n", " \"clothespin's\",\n", " 'humbugged',\n", " \"edit's\",\n", " 'swooned',\n", " 'Lawson',\n", " 'ecstatically',\n", " 'eddying',\n", " 'phial',\n", " 'mirrors',\n", " \"mistake's\",\n", " 'fumigation',\n", " 'trenches',\n", " 'different',\n", " 'suspenseful',\n", " 'orgasm',\n", " 'corpses',\n", " 'never',\n", " 'prettier',\n", " 'submission',\n", " 'indoctrinating',\n", " 'pumped',\n", " 'pedestals',\n", " 'pellucid',\n", " 'bailiff',\n", " 'devises',\n", " \"Snyder's\",\n", " \"footman's\",\n", " \"confine's\",\n", " \"militiaman's\",\n", " 'civics',\n", " \"profession's\",\n", " 'aches',\n", " \"lichee's\",\n", " 'Ahriman',\n", " \"sirup's\",\n", " 'superscript',\n", " 'Mohammedans',\n", " 'antiquaries',\n", " 'rigidness',\n", " 'knacker',\n", " 'skylines',\n", " 'keels',\n", " 'defiled',\n", " \"mommy's\",\n", " \"easel's\",\n", " 'tap',\n", " \"urge's\",\n", " 'Mather',\n", " \"pertness's\",\n", " 'distinction',\n", " 'sensuously',\n", " 'catalogers',\n", " 'Long',\n", " 'telecommuted',\n", " 'enmeshed',\n", " \"flounder's\",\n", " 'island',\n", " 'anorexic',\n", " \"spreadsheet's\",\n", " \"trial's\",\n", " 'clapboard',\n", " 'Croats',\n", " \"simplification's\",\n", " \"linoleum's\",\n", " 'Lela',\n", " 'Hangzhou',\n", " \"potluck's\",\n", " 'impressionistic',\n", " 'prolonging',\n", " 'dedications',\n", " 'tameness',\n", " 'transceivers',\n", " \"physiotherapist's\",\n", " 'Sakhalin',\n", " 'fate',\n", " 'Iroquois',\n", " 'unimaginative',\n", " 'blindfolding',\n", " 'destabilize',\n", " \"dick's\",\n", " 'accessing',\n", " 'institutionalize',\n", " 'Adela',\n", " 'staggers',\n", " \"disposable's\",\n", " \"cherry's\",\n", " \"Mark's\",\n", " 'impinge',\n", " \"Descartes's\",\n", " 'decriminalized',\n", " \"gallantry's\",\n", " 'larboard',\n", " 'weapon',\n", " 'dwarfed',\n", " 'excruciatingly',\n", " 'Godiva',\n", " \"mishmash's\",\n", " 'slue',\n", " 'adjurations',\n", " 'indict',\n", " 'trustworthiness',\n", " 'Gantry',\n", " 'gooier',\n", " \"elf's\",\n", " 'inhabit',\n", " 'disadvantageously',\n", " 'deceived',\n", " \"sled's\",\n", " \"Bundesbank's\",\n", " 'ventriloquist',\n", " \"Hitler's\",\n", " \"gamekeeper's\",\n", " 'inveigled',\n", " 'motormouth',\n", " \"monologue's\",\n", " 'undersell',\n", " 'dominoes',\n", " 'slovenliness',\n", " 'bounds',\n", " 'stoning',\n", " 'tankers',\n", " 'blazed',\n", " 'athletically',\n", " 'semipermeable',\n", " 'Fafnir',\n", " \"sparkler's\",\n", " \"madder's\",\n", " 'advertisement',\n", " 'detraction',\n", " 'leak',\n", " 'musketeers',\n", " \"phobia's\",\n", " 'occludes',\n", " 'knobbier',\n", " 'umping',\n", " 'dashboards',\n", " 'sensitives',\n", " 'flouting',\n", " 'intrudes',\n", " 'pragmatists',\n", " 'led',\n", " 'Stamford',\n", " 'physiognomy',\n", " 'Chou',\n", " 'pauses',\n", " 'pluralistic',\n", " \"Eocene's\",\n", " 'Brits',\n", " 'preeminently',\n", " 'funniest',\n", " 'miasmata',\n", " 'rowdiness',\n", " \"summer's\",\n", " 'spans',\n", " 'eyeliners',\n", " 'umpired',\n", " 'Gandhian',\n", " 'laburnums',\n", " 'lariat',\n", " 'Xanthippe',\n", " 'racetrack',\n", " \"Merriam's\",\n", " 'dynastic',\n", " 'recall',\n", " 'lees',\n", " 'reapportionment',\n", " \"puberty's\",\n", " 'permissible',\n", " 'inducements',\n", " 'pediatrics',\n", " 'biassed',\n", " 'capacitance',\n", " 'chillers',\n", " 'Alyce',\n", " 'maligned',\n", " 'healers',\n", " \"goalpost's\",\n", " \"spokesperson's\",\n", " 'barbarity',\n", " 'embolden',\n", " 'nerving',\n", " 'have',\n", " 'cemeteries',\n", " 'oftener',\n", " 'moth',\n", " 'born',\n", " 'Kurosawa',\n", " 'competences',\n", " \"housetop's\",\n", " 'Trujillo',\n", " 'petting',\n", " 'Tubman',\n", " 'mysterious',\n", " 'relishing',\n", " 'appertain',\n", " 'cedes',\n", " 'vibration',\n", " 'gibbeting',\n", " 'anxiously',\n", " 'intelligible',\n", " \"idea's\",\n", " 'industrialists',\n", " \"quadruped's\",\n", " \"furze's\",\n", " 'participating',\n", " 'proletariat',\n", " \"landlubber's\",\n", " \"Allison's\",\n", " 'addle',\n", " 'dress',\n", " \"lightning's\",\n", " 'barrener',\n", " 'sailors',\n", " 'multitasking',\n", " 'Carlene',\n", " 'collectable',\n", " \"amiability's\",\n", " 'floras',\n", " \"twitch's\",\n", " 'vitality',\n", " \"disaster's\",\n", " 'Alicia',\n", " 'Ingres',\n", " 'hydrangeas',\n", " 'bills',\n", " \"manufacture's\",\n", " 'celibates',\n", " 'commitments',\n", " 'Luann',\n", " 'unloosing',\n", " 'trajectory',\n", " 'cooky',\n", " 'clothespins',\n", " 'perturb',\n", " 'trochee',\n", " \"walkway's\",\n", " 'Leeds',\n", " 'victims',\n", " 'Westinghouse',\n", " 'springtime',\n", " 'platooning',\n", " 'benign',\n", " 'emporium',\n", " 'hardy',\n", " 'pudgy',\n", " 'dithers',\n", " 'heckled',\n", " 'rescind',\n", " 'umber',\n", " 'turnabouts',\n", " \"HP's\",\n", " \"stream's\",\n", " 'Casals',\n", " 'extendable',\n", " 'Prut',\n", " \"hermitage's\",\n", " 'leafier',\n", " 'consider',\n", " 'exorcize',\n", " \"weaver's\",\n", " 'execrating',\n", " 'heckling',\n", " 'elks',\n", " 'sermonize',\n", " \"chromosome's\",\n", " 'kinking',\n", " 'philologists',\n", " \"brat's\",\n", " 'lopsidedness',\n", " 'communicator',\n", " 'chagrining',\n", " 'ingenuous',\n", " 'pediatrician',\n", " \"nickel's\",\n", " 'Mississippian',\n", " 'anonymity',\n", " 'clitoral',\n", " 'professorship',\n", " 'caucused',\n", " \"mutilation's\",\n", " \"riddle's\",\n", " \"pepsin's\",\n", " 'bookend',\n", " 'mailer',\n", " 'sovereign',\n", " 'explorers',\n", " \"retardant's\",\n", " 'drudged',\n", " 'wicker',\n", " 'sniffed',\n", " \"falconer's\",\n", " 'findings',\n", " 'Christina',\n", " 'researches',\n", " 'objectors',\n", " 'valises',\n", " 'humiliated',\n", " 'pompadour',\n", " 'homeopathy',\n", " 'toughened',\n", " 'Blucher',\n", " 'necklaces',\n", " 'close',\n", " 'siesta',\n", " 'analogues',\n", " 'exorcised',\n", " 'remake',\n", " 'minuter',\n", " 'Duncan',\n", " 'dis',\n", " 'repeals',\n", " 'infielders',\n", " \"emulsion's\",\n", " \"showgirl's\",\n", " 'slashed',\n", " 'duelling',\n", " 'trimly',\n", " 'technocracy',\n", " \"overachiever's\",\n", " 'outstripping',\n", " \"dentist's\",\n", " \"Judaism's\",\n", " 'insincerely',\n", " 'pleads',\n", " \"Rostov's\",\n", " 'privateers',\n", " 'boroughs',\n", " 'Barclay',\n", " 'slithering',\n", " 'lamentations',\n", " 'Delgado',\n", " 'incurable',\n", " 'obstructive',\n", " \"Adolf's\",\n", " 'avows',\n", " \"mush's\",\n", " 'tier',\n", " \"chock's\",\n", " 'district',\n", " 'enfolded',\n", " 'soda',\n", " 'big',\n", " 'cinema',\n", " \"Morpheus's\",\n", " 'junking',\n", " 'subterranean',\n", " \"turner's\",\n", " 'hayseeds',\n", " \"desecration's\",\n", " 'fallowing',\n", " 'clarified',\n", " 'ratcheted',\n", " 'negligee',\n", " 'Perseid',\n", " 'crunchier',\n", " 'slavered',\n", " \"birch's\",\n", " 'suitable',\n", " 'miscellaneous',\n", " 'ladybirds',\n", " \"hastiness's\",\n", " \"turquoise's\",\n", " \"CPA's\",\n", " 'refit',\n", " 'servility',\n", " 'Scripture',\n", " 'hunger',\n", " \"phenomenon's\",\n", " \"Yamagata's\",\n", " \"Xingu's\",\n", " 'Anubis',\n", " \"consumerism's\",\n", " 'dumbness',\n", " \"Liege's\",\n", " \"sidewall's\",\n", " 'kinky',\n", " 'cognac',\n", " 'luxurious',\n", " \"milkmaid's\",\n", " 'stormy',\n", " \"frog's\",\n", " \"panderer's\",\n", " 'brainy',\n", " 'incremental',\n", " 'Ginny',\n", " 'prosperous',\n", " 'instigate',\n", " 'scripts',\n", " 'joiners',\n", " 'furors',\n", " 'policies',\n", " 'elapsed',\n", " 'authorship',\n", " 'bushwhackers',\n", " \"reconnaissance's\",\n", " 'quid',\n", " \"inmate's\",\n", " 'messiah',\n", " 'misdoings',\n", " \"Psalter's\",\n", " \"teacher's\",\n", " 'Cyrano',\n", " 'bib',\n", " 'thirds',\n", " \"yen's\",\n", " 'berates',\n", " \"undesirable's\",\n", " 'Delphic',\n", " 'bulkier',\n", " \"bronchitis's\",\n", " 'commissariats',\n", " 'underrated',\n", " 'armistice',\n", " \"washable's\",\n", " 'astrophysicist',\n", " 'syllabication',\n", " \"ambrosia's\",\n", " \"colonialism's\",\n", " 'placidity',\n", " 'Gillette',\n", " \"municipal's\",\n", " 'Lucile',\n", " \"spear's\",\n", " 'Gadsden',\n", " 'fora',\n", " \"Naphtali's\",\n", " \"chemical's\",\n", " 'dwelling',\n", " 'invaders',\n", " 'debarment',\n", " 'qua',\n", " 'drown',\n", " 'hydroplaning',\n", " 'Armando',\n", " 'waking',\n", " 'gamekeepers',\n", " 'Arcadia',\n", " \"jeopardy's\",\n", " 'situated',\n", " 'propagandizes',\n", " \"armlet's\",\n", " 'promptest',\n", " \"Kara's\",\n", " 'Otto',\n", " \"Naziism's\",\n", " 'fasted',\n", " 'scrotums',\n", " 'bolted',\n", " 'chokers',\n", " 'prophylactics',\n", " 'interments',\n", " 'Maracaibo',\n", " 'opaques',\n", " \"referee's\",\n", " 'invincibility',\n", " \"Podhoretz's\",\n", " 'earthward',\n", " \"tiptop's\",\n", " 'gritting',\n", " 'Subaru',\n", " 'respell',\n", " 'daiquiris',\n", " 'lustily',\n", " \"decompression's\",\n", " \"bleach's\",\n", " 'postmark',\n", " 'commendable',\n", " 'couriers',\n", " 'advents',\n", " 'railroaded',\n", " 'mortal',\n", " 'creamed',\n", " 'iffiest',\n", " 'seventeens',\n", " \"analogy's\",\n", " \"refreshment's\",\n", " 'visions',\n", " 'hangmen',\n", " \"Nobelist's\",\n", " 'revues',\n", " \"Cancun's\",\n", " 'halitosis',\n", " 'herded',\n", " 'dormice',\n", " 'snivels',\n", " \"projectionist's\",\n", " \"wisher's\",\n", " 'blowtorch',\n", " \"packet's\",\n", " 'reckons',\n", " 'cosmically',\n", " 'genetic',\n", " 'spider',\n", " 'cookouts',\n", " 'indulged',\n", " 'tinnier',\n", " 'barber',\n", " \"scratchiness's\",\n", " \"dateline's\",\n", " 'plaice',\n", " 'strumpet',\n", " 'Joplin',\n", " 'tuckers',\n", " 'joggles',\n", " \"Maidenform's\",\n", " \"Trojan's\",\n", " \"empire's\",\n", " 'flatted',\n", " \"unhappiness's\",\n", " \"Valentine's\",\n", " \"plenary's\",\n", " \"Mohorovicic's\",\n", " 'cheapening',\n", " 'electrocution',\n", " 'modelings',\n", " 'refueled',\n", " 'betrothals',\n", " 'uprising',\n", " 'restfulness',\n", " \"teacup's\",\n", " 'disease',\n", " 'dryads',\n", " 'incarnation',\n", " 'tango',\n", " \"file's\",\n", " \"cantaloup's\",\n", " \"tautology's\",\n", " 'nonprofessional',\n", " \"killdeer's\",\n", " 'hawkish',\n", " 'devaluations',\n", " 'grout',\n", " 'bussing',\n", " \"slack's\",\n", " \"fondness's\",\n", " \"tetrahedron's\",\n", " 'crisps',\n", " 'vivaciousness',\n", " 'transmissions',\n", " 'sorely',\n", " 'telekinesis',\n", " 'homesteader',\n", " 'parading',\n", " \"tillage's\",\n", " 'frizzle',\n", " 'comediennes',\n", " \"tweet's\",\n", " 'gabbier',\n", " 'grotto',\n", " 'flyspecked',\n", " \"hooter's\",\n", " 'footbridge',\n", " 'boundless',\n", " \"Danielle's\",\n", " 'mutilated',\n", " 'regrettable',\n", " \"pine's\",\n", " 'zoologists',\n", " \"easterner's\",\n", " 'bounces',\n", " 'girdling',\n", " 'circlets',\n", " 'otiose',\n", " \"poncho's\",\n", " 'maneuvered',\n", " 'Knickerbocker',\n", " 'Innocent',\n", " \"Eniwetok's\",\n", " 'graves',\n", " 'hyphening',\n", " 'outtakes',\n", " 'broth',\n", " \"pictograph's\",\n", " 'griddlecakes',\n", " 'sancta',\n", " 'anaesthetic',\n", " 'corroded',\n", " 'piston',\n", " \"synchronization's\",\n", " 'transmigrated',\n", " 'Roosevelt',\n", " \"neglig's\",\n", " 'expanding',\n", " \"shirtwaist's\",\n", " 'variables',\n", " 'Sq',\n", " \"Vulcan's\",\n", " 'respires',\n", " 'soy',\n", " 'Teri',\n", " 'orthopaedists',\n", " \"competitiveness's\",\n", " \"Trey's\",\n", " 'castigation',\n", " 'gazing',\n", " \"Earle's\",\n", " \"inertia's\",\n", " 'herbivorous',\n", " 'obtainable',\n", " 'battlements',\n", " 'sanded',\n", " 'June',\n", " \"stipend's\",\n", " 'refill',\n", " 'quarantining',\n", " 'storms',\n", " 'commencing',\n", " \"Emacs's\",\n", " \"frustration's\",\n", " 'fluids',\n", " \"leitmotif's\",\n", " \"hush's\",\n", " 'Yaobang',\n", " \"golf's\",\n", " 'Turner',\n", " \"intransigence's\",\n", " 'opposes',\n", " \"parabola's\",\n", " 'crypt',\n", " 'depressingly',\n", " 'unexceptionable',\n", " \"vowel's\",\n", " 'vantages',\n", " 'Brahmans',\n", " 'drams',\n", " 'reformulating',\n", " 'boxing',\n", " 'vocalize',\n", " \"Eurasia's\",\n", " \"Laocoon's\",\n", " \"aneurism's\",\n", " 'kilter',\n", " \"something's\",\n", " 'flatulence',\n", " 'entrails',\n", " 'likelier',\n", " 'moan',\n", " \"slanderer's\",\n", " 'investigation',\n", " 'shrinks',\n", " \"snip's\",\n", " 'loosened',\n", " \"petrel's\",\n", " 'swiping',\n", " \"Patterson's\",\n", " 'advertisers',\n", " 'remakes',\n", " 'Dexter',\n", " 'pelt',\n", " 'Francisco',\n", " 'Paula',\n", " 'alleluia',\n", " \"mukluk's\",\n", " 'gulped',\n", " \"anaemia's\",\n", " 'tarring',\n", " 'searing',\n", " 'slides',\n", " \"Abe's\",\n", " \"shiver's\",\n", " 'coordinating',\n", " 'Getty',\n", " 'constable',\n", " \"Rosalyn's\",\n", " 'Rosie',\n", " 'luxuries',\n", " 'whizzed',\n", " 'disestablishing',\n", " \"counselor's\",\n", " \"native's\",\n", " 'sloshes',\n", " 'phosphors',\n", " 'wormwood',\n", " \"chill's\",\n", " 'avenge',\n", " 'mobilized',\n", " 'encores',\n", " 'kleptomaniacs',\n", " 'totters',\n", " 'chlorine',\n", " 'clasping',\n", " 'into',\n", " 'manageable',\n", " 'type',\n", " 'Drano',\n", " 'peculiar',\n", " 'rickshas',\n", " 'deadest',\n", " \"pornography's\",\n", " 'yews',\n", " 'Siberia',\n", " \"AB's\",\n", " 'nonwhites',\n", " \"Byers's\",\n", " 'hose',\n", " \"Starr's\",\n", " 'perceptive',\n", " 'Popocatepetl',\n", " \"Juanita's\",\n", " \"sonnet's\",\n", " 'emolument',\n", " \"incantation's\",\n", " 'failure',\n", " 'Sterno',\n", " \"Lew's\",\n", " 'payroll',\n", " 'peony',\n", " 'embedding',\n", " 'unkindness',\n", " 'tamper',\n", " \"reprint's\",\n", " 'chorale',\n", " \"paring's\",\n", " 'trisects',\n", " 'uncompromisingly',\n", " 'buttoned',\n", " 'peritoneums',\n", " 'freedoms',\n", " 'eighteen',\n", " 'Ringo',\n", " \"Khwarizmi's\",\n", " 'exalts',\n", " 'wish',\n", " 'resenting',\n", " 'vindicated',\n", " 'invokes',\n", " 'mewls',\n", " 'eyestrain',\n", " 'decencies',\n", " 'preteen',\n", " 'Piaget',\n", " 'alms',\n", " 'caliphate',\n", " 'excess',\n", " 'transferal',\n", " 'plunge',\n", " 'reprobates',\n", " 'coeducational',\n", " 'eighth',\n", " \"rifleman's\",\n", " 'transposes',\n", " 'spanners',\n", " 'awoke',\n", " 'pelvis',\n", " 'disillusioned',\n", " \"deism's\",\n", " 'trifle',\n", " 'Confucians',\n", " 'Petersen',\n", " 'inadvertent',\n", " 'sexiest',\n", " \"farewell's\",\n", " \"fetus's\",\n", " 'northbound',\n", " 'loges',\n", " \"hyperbola's\",\n", " 'ration',\n", " 'ridiculously',\n", " 'sailcloth',\n", " 'Niger',\n", " 'Midwest',\n", " 'Avalon',\n", " \"Gertrude's\",\n", " 'mountaineers',\n", " \"scholarship's\",\n", " \"lube's\",\n", " 'secedes',\n", " 'editorializes',\n", " 'swankest',\n", " 'lepers',\n", " 'airbrushing',\n", " 'spillages',\n", " \"Tibetan's\",\n", " \"powerlessness's\",\n", " \"secret's\",\n", " 'constitution',\n", " \"Stephan's\",\n", " 'prolongation',\n", " 'Rover',\n", " 'roping',\n", " 'chiropractors',\n", " 'recites',\n", " \"settle's\",\n", " 'applicable',\n", " 'coding',\n", " 'Joaquin',\n", " 'sledgehammers',\n", " 'toxicity',\n", " 'daze',\n", " \"gobbledygook's\",\n", " 'unfit',\n", " 'forbids',\n", " \"ragout's\",\n", " 'fathomed',\n", " 'ringers',\n", " 'spared',\n", " 'durability',\n", " 'checklist',\n", " 'remedying',\n", " \"presence's\",\n", " \"Cr's\",\n", " \"Yuletide's\",\n", " 'disillusioning',\n", " 'automatons',\n", " 'compelled',\n", " 'passenger',\n", " \"roughneck's\",\n", " 'Aurora',\n", " 'expelling',\n", " 'crave',\n", " 'Sumerian',\n", " \"Walmart's\",\n", " 'canoeing',\n", " 'sealer',\n", " 'petioles',\n", " 'sinkholes',\n", " 'uneconomical',\n", " 'painted',\n", " \"corespondent's\",\n", " \"tidbit's\",\n", " 'increments',\n", " \"willpower's\",\n", " 'converses',\n", " 'schematically',\n", " 'Freud',\n", " 'despoiling',\n", " \"Mackinac's\",\n", " 'turd',\n", " 'Gorey'}" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b = set()\n", "for word in islice(words, 1000):\n", " b |= set([word])\n", " # print(word)\n", " \n", "b" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
queirozfcom/python-sandbox
python3/notebooks/apply.ipynb
1
21823
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'3.6.9'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from platform import python_version\n", "\n", "python_version()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "('1.0.5', '1.19.0')" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "pd.__version__, np.__version__" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>age</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>alice</td>\n", " <td>25</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>bob</td>\n", " <td>26</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>charlie</td>\n", " <td>27</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>david</td>\n", " <td>22</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name age\n", "0 alice 25\n", "1 bob 26\n", "2 charlie 27\n", "3 david 22" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame({\n", " 'name': ['alice','bob','charlie','david'],\n", " 'age': [25,26,27,22],\n", "})[['name', 'age']]\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## apply example" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>age</th>\n", " <th>name_uppercase</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>alice</td>\n", " <td>25</td>\n", " <td>ALICE</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>bob</td>\n", " <td>26</td>\n", " <td>BOB</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>charlie</td>\n", " <td>27</td>\n", " <td>CHARLIE</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>david</td>\n", " <td>22</td>\n", " <td>DAVID</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name age name_uppercase\n", "0 alice 25 ALICE\n", "1 bob 26 BOB\n", "2 charlie 27 CHARLIE\n", "3 david 22 DAVID" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "df = pd.DataFrame({\n", " 'name': ['alice','bob','charlie','david'],\n", " 'age': [25,26,27,22],\n", "})[['name', 'age']]\n", "\n", "# each element of the age column is a string\n", "# so you can call .upper() on it\n", "df['name_uppercase'] = df['name'].apply(lambda element: element.upper())\n", "\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## custom function" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>age</th>\n", " <th>first_letter</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>alice</td>\n", " <td>25</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>bob</td>\n", " <td>26</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>charlie</td>\n", " <td>27</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>david</td>\n", " <td>22</td>\n", " <td>d</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name age first_letter\n", "0 alice 25 a\n", "1 bob 26 b\n", "2 charlie 27 c\n", "3 david 22 d" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "df = pd.DataFrame({\n", " 'name': ['alice','bob','charlie','david'],\n", " 'age': [25,26,27,22],\n", "})[['name', 'age']]\n", "\n", "\n", "def first_letter(input_str):\n", " return input_str[:1]\n", "\n", "# each element of the age column is a string\n", "# so you can call .upper() on it\n", "df['first_letter'] = df['name'].apply(first_letter)\n", "\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Take multiple columns as parameters" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>age</th>\n", " <th>concatenated</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>alice</td>\n", " <td>25</td>\n", " <td>alice--25</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>bob</td>\n", " <td>26</td>\n", " <td>bob--26</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>charlie</td>\n", " <td>27</td>\n", " <td>charlie--27</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>david</td>\n", " <td>22</td>\n", " <td>david--22</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name age concatenated\n", "0 alice 25 alice--25\n", "1 bob 26 bob--26\n", "2 charlie 27 charlie--27\n", "3 david 22 david--22" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "df = pd.DataFrame({\n", " 'name': ['alice','bob','charlie','david'],\n", " 'age': [25,26,27,22],\n", "})[['name', 'age']]\n", "\n", "\n", "def concatenate(value_1, value_2):\n", " return str(value_1)+ \"--\" + str(value_2) \n", "\n", "# note the use of DOUBLE SQUARE BRACKETS!\n", "df['concatenated'] = df[['name','age']].apply(lambda row: concatenate(row['name'], row['age']) , axis=1)\n", "\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Apply function to row" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>value1</th>\n", " <th>value2</th>\n", " <th>value3</th>\n", " <th>value4</th>\n", " <th>sum_all</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>5</td>\n", " <td>10</td>\n", " <td>99.0</td>\n", " <td>115.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>4</td>\n", " <td>20</td>\n", " <td>99.0</td>\n", " <td>125.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>99.0</td>\n", " <td>135.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>2</td>\n", " <td>40</td>\n", " <td>99.0</td>\n", " <td>145.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>50</td>\n", " <td>NaN</td>\n", " <td>56.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " value1 value2 value3 value4 sum_all\n", "0 1 5 10 99.0 115.0\n", "1 2 4 20 99.0 125.0\n", "2 3 3 30 99.0 135.0\n", "3 4 2 40 99.0 145.0\n", "4 5 1 50 NaN 56.0" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "df = pd.DataFrame({\n", " 'value1': [1,2,3,4,5],\n", " 'value2': [5,4,3,2,1],\n", " 'value3': [10,20,30,40,50],\n", " 'value4': [99,99,99,99,np.nan],\n", "})\n", "\n", "def sum_all(row):\n", " return np.sum(row)\n", "\n", "# note that apply was called on the dataframe itself, not on columns\n", "df['sum_all'] = df.apply(lambda row: sum_all(row), axis=1)\n", "\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## return multiple values" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>age</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>alice</td>\n", " <td>25.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>bob</td>\n", " <td>26.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>charlie</td>\n", " <td>27.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>david</td>\n", " <td>22.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>edward</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name age\n", "0 alice 25.0\n", "1 bob 26.0\n", "2 charlie 27.0\n", "3 david 22.0\n", "4 edward NaN" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame({\n", " 'name': ['alice','bob','charlie','david','edward'],\n", " 'age': [25,26,27,22,np.nan],\n", "})[['name', 'age']]\n", "df" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>age</th>\n", " <th>times_2</th>\n", " <th>times_3</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>alice</td>\n", " <td>25.0</td>\n", " <td>50.0</td>\n", " <td>75.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>bob</td>\n", " <td>26.0</td>\n", " <td>52.0</td>\n", " <td>78.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>charlie</td>\n", " <td>27.0</td>\n", " <td>54.0</td>\n", " <td>81.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>david</td>\n", " <td>22.0</td>\n", " <td>44.0</td>\n", " <td>66.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>edward</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name age times_2 times_3\n", "0 alice 25.0 50.0 75.0\n", "1 bob 26.0 52.0 78.0\n", "2 charlie 27.0 54.0 81.0\n", "3 david 22.0 44.0 66.0\n", "4 edward NaN NaN NaN" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "df = pd.DataFrame({\n", " 'name': ['alice','bob','charlie','david','edward'],\n", " 'age': [25,26,27,22,np.nan],\n", "})[['name', 'age']]\n", "\n", "def times_two_times_three(value):\n", " value_times_2 = value*2\n", " value_times_3 = value*3\n", "\n", " return pd.Series([value_times_2,value_times_3])\n", "\n", "# note that apply was called on age column\n", "df[['times_2','times_3']]= df['age'].apply(times_two_times_three)\n", "df" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>name</th>\n", " <th>age</th>\n", " <th>times_2</th>\n", " <th>times_3</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>alice</td>\n", " <td>25.0</td>\n", " <td>50.0</td>\n", " <td>75.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>bob</td>\n", " <td>26.0</td>\n", " <td>52.0</td>\n", " <td>78.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>charlie</td>\n", " <td>27.0</td>\n", " <td>54.0</td>\n", " <td>81.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>david</td>\n", " <td>22.0</td>\n", " <td>44.0</td>\n", " <td>66.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>edward</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " name age times_2 times_3\n", "0 alice 25.0 50.0 75.0\n", "1 bob 26.0 52.0 78.0\n", "2 charlie 27.0 54.0 81.0\n", "3 david 22.0 44.0 66.0\n", "4 edward NaN NaN NaN" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }
mit
geoffbacon/semrep
semrep/data/training/phonological/phonological.ipynb
1
1263
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Phonological training corpus\n", "\n", "This notebook prepares the phonological training corpus for learning phonological representations. For the time being, I'm just including preprocessed corpora." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import glob\n", "\n", "for f in glob.glob('*.txt'):\n", " with open(f, 'r') as g:\n", " contents = g.read()\n", " contents = ''.join([c.lower() for c in contents])\n", " with open(f, 'w') as g:\n", " g.write(contents)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ES-DOC/esdoc-jupyterhub
notebooks/awi/cmip6/models/awi-cm-1-0-hr/atmos.ipynb
1
209003
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "source": [ "# ES-DOC CMIP6 Model Properties - Atmos \n", "**MIP Era**: CMIP6 \n", "**Institute**: AWI \n", "**Source ID**: AWI-CM-1-0-HR \n", "**Topic**: Atmos \n", "**Sub-Topics**: Dynamical Core, Radiation, Turbulence Convection, Microphysics Precipitation, Cloud Scheme, Observation Simulation, Gravity Waves, Solar, Volcanos. \n", "**Properties**: 156 (127 required) \n", "**Model descriptions**: [Model description details](https://specializations.es-doc.org/cmip6/atmos?client=jupyter-notebook) \n", "**Initialized From**: -- \n", "\n", "**Notebook Help**: [Goto notebook help page](https://es-doc.org/cmip6-models-documenting-with-ipython) \n", "**Notebook Initialised**: 2018-02-15 16:53:37" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### Document Setup \n", "**IMPORTANT: to be executed each time you run the notebook** " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# DO NOT EDIT ! \n", "from pyesdoc.ipython.model_topic import NotebookOutput \n", "\n", "# DO NOT EDIT ! \n", "DOC = NotebookOutput('cmip6', 'awi', 'awi-cm-1-0-hr', 'atmos')" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Authors \n", "*Set document authors*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_author(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Contributors \n", "*Specify document contributors* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_contributor(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Publication \n", "*Specify document publication status* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set publication status: \n", "# 0=do not publish, 1=publish. \n", "DOC.set_publication_status(0)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Table of Contents \n", "[1. Key Properties --&gt; Overview](#1.-Key-Properties---&gt;-Overview) \n", "[2. Key Properties --&gt; Resolution](#2.-Key-Properties---&gt;-Resolution) \n", "[3. Key Properties --&gt; Timestepping](#3.-Key-Properties---&gt;-Timestepping) \n", "[4. Key Properties --&gt; Orography](#4.-Key-Properties---&gt;-Orography) \n", "[5. Grid --&gt; Discretisation](#5.-Grid---&gt;-Discretisation) \n", "[6. Grid --&gt; Discretisation --&gt; Horizontal](#6.-Grid---&gt;-Discretisation---&gt;-Horizontal) \n", "[7. Grid --&gt; Discretisation --&gt; Vertical](#7.-Grid---&gt;-Discretisation---&gt;-Vertical) \n", "[8. Dynamical Core](#8.-Dynamical-Core) \n", "[9. Dynamical Core --&gt; Top Boundary](#9.-Dynamical-Core---&gt;-Top-Boundary) \n", "[10. Dynamical Core --&gt; Lateral Boundary](#10.-Dynamical-Core---&gt;-Lateral-Boundary) \n", "[11. Dynamical Core --&gt; Diffusion Horizontal](#11.-Dynamical-Core---&gt;-Diffusion-Horizontal) \n", "[12. Dynamical Core --&gt; Advection Tracers](#12.-Dynamical-Core---&gt;-Advection-Tracers) \n", "[13. Dynamical Core --&gt; Advection Momentum](#13.-Dynamical-Core---&gt;-Advection-Momentum) \n", "[14. Radiation](#14.-Radiation) \n", "[15. Radiation --&gt; Shortwave Radiation](#15.-Radiation---&gt;-Shortwave-Radiation) \n", "[16. Radiation --&gt; Shortwave GHG](#16.-Radiation---&gt;-Shortwave-GHG) \n", "[17. Radiation --&gt; Shortwave Cloud Ice](#17.-Radiation---&gt;-Shortwave-Cloud-Ice) \n", "[18. Radiation --&gt; Shortwave Cloud Liquid](#18.-Radiation---&gt;-Shortwave-Cloud-Liquid) \n", "[19. Radiation --&gt; Shortwave Cloud Inhomogeneity](#19.-Radiation---&gt;-Shortwave-Cloud-Inhomogeneity) \n", "[20. Radiation --&gt; Shortwave Aerosols](#20.-Radiation---&gt;-Shortwave-Aerosols) \n", "[21. Radiation --&gt; Shortwave Gases](#21.-Radiation---&gt;-Shortwave-Gases) \n", "[22. Radiation --&gt; Longwave Radiation](#22.-Radiation---&gt;-Longwave-Radiation) \n", "[23. Radiation --&gt; Longwave GHG](#23.-Radiation---&gt;-Longwave-GHG) \n", "[24. Radiation --&gt; Longwave Cloud Ice](#24.-Radiation---&gt;-Longwave-Cloud-Ice) \n", "[25. Radiation --&gt; Longwave Cloud Liquid](#25.-Radiation---&gt;-Longwave-Cloud-Liquid) \n", "[26. Radiation --&gt; Longwave Cloud Inhomogeneity](#26.-Radiation---&gt;-Longwave-Cloud-Inhomogeneity) \n", "[27. Radiation --&gt; Longwave Aerosols](#27.-Radiation---&gt;-Longwave-Aerosols) \n", "[28. Radiation --&gt; Longwave Gases](#28.-Radiation---&gt;-Longwave-Gases) \n", "[29. Turbulence Convection](#29.-Turbulence-Convection) \n", "[30. Turbulence Convection --&gt; Boundary Layer Turbulence](#30.-Turbulence-Convection---&gt;-Boundary-Layer-Turbulence) \n", "[31. Turbulence Convection --&gt; Deep Convection](#31.-Turbulence-Convection---&gt;-Deep-Convection) \n", "[32. Turbulence Convection --&gt; Shallow Convection](#32.-Turbulence-Convection---&gt;-Shallow-Convection) \n", "[33. Microphysics Precipitation](#33.-Microphysics-Precipitation) \n", "[34. Microphysics Precipitation --&gt; Large Scale Precipitation](#34.-Microphysics-Precipitation---&gt;-Large-Scale-Precipitation) \n", "[35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics](#35.-Microphysics-Precipitation---&gt;-Large-Scale-Cloud-Microphysics) \n", "[36. Cloud Scheme](#36.-Cloud-Scheme) \n", "[37. Cloud Scheme --&gt; Optical Cloud Properties](#37.-Cloud-Scheme---&gt;-Optical-Cloud-Properties) \n", "[38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution](#38.-Cloud-Scheme---&gt;-Sub-Grid-Scale-Water-Distribution) \n", "[39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution](#39.-Cloud-Scheme---&gt;-Sub-Grid-Scale-Ice-Distribution) \n", "[40. Observation Simulation](#40.-Observation-Simulation) \n", "[41. Observation Simulation --&gt; Isscp Attributes](#41.-Observation-Simulation---&gt;-Isscp-Attributes) \n", "[42. Observation Simulation --&gt; Cosp Attributes](#42.-Observation-Simulation---&gt;-Cosp-Attributes) \n", "[43. Observation Simulation --&gt; Radar Inputs](#43.-Observation-Simulation---&gt;-Radar-Inputs) \n", "[44. Observation Simulation --&gt; Lidar Inputs](#44.-Observation-Simulation---&gt;-Lidar-Inputs) \n", "[45. Gravity Waves](#45.-Gravity-Waves) \n", "[46. Gravity Waves --&gt; Orographic Gravity Waves](#46.-Gravity-Waves---&gt;-Orographic-Gravity-Waves) \n", "[47. Gravity Waves --&gt; Non Orographic Gravity Waves](#47.-Gravity-Waves---&gt;-Non-Orographic-Gravity-Waves) \n", "[48. Solar](#48.-Solar) \n", "[49. Solar --&gt; Solar Pathways](#49.-Solar---&gt;-Solar-Pathways) \n", "[50. Solar --&gt; Solar Constant](#50.-Solar---&gt;-Solar-Constant) \n", "[51. Solar --&gt; Orbital Parameters](#51.-Solar---&gt;-Orbital-Parameters) \n", "[52. Solar --&gt; Insolation Ozone](#52.-Solar---&gt;-Insolation-Ozone) \n", "[53. Volcanos](#53.-Volcanos) \n", "[54. Volcanos --&gt; Volcanoes Treatment](#54.-Volcanos---&gt;-Volcanoes-Treatment) \n", "\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "# 1. Key Properties --&gt; Overview \n", "*Top level key properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 1.1. Model Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.overview.model_overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.2. Model Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of atmosphere model code (CAM 4.0, ARPEGE 3.2,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.overview.model_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.3. Model Family\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of atmospheric model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.overview.model_family') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"AGCM\" \n", "# \"ARCM\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.4. Basic Approximations\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Basic approximations made in the atmosphere.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.overview.basic_approximations') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"primitive equations\" \n", "# \"non-hydrostatic\" \n", "# \"anelastic\" \n", "# \"Boussinesq\" \n", "# \"hydrostatic\" \n", "# \"quasi-hydrostatic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 2. Key Properties --&gt; Resolution \n", "*Characteristics of the model resolution*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 2.1. Horizontal Resolution Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.horizontal_resolution_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.2. Canonical Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.canonical_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.3. Range Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.range_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.4. Number Of Vertical Levels\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of vertical levels resolved on the computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.number_of_vertical_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.5. High Top\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does the atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top above the stratopause.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.resolution.high_top') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 3. Key Properties --&gt; Timestepping \n", "*Characteristics of the atmosphere model time stepping*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 3.1. Timestep Dynamics\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Timestep for the dynamics, e.g. 30 min.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_dynamics') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.2. Timestep Shortwave Radiative Transfer\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Timestep for the shortwave radiative transfer, e.g. 1.5 hours.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_shortwave_radiative_transfer') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.3. Timestep Longwave Radiative Transfer\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Timestep for the longwave radiative transfer, e.g. 3 hours.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_longwave_radiative_transfer') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 4. Key Properties --&gt; Orography \n", "*Characteristics of the model orography*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 4.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Time adaptation of the orography.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.orography.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"present day\" \n", "# \"modified\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.2. Changes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *If the orography type is modified describe the time adaptation changes.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.key_properties.orography.changes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"related to ice sheets\" \n", "# \"related to tectonics\" \n", "# \"modified mean\" \n", "# \"modified variance if taken into account in model (cf gravity waves)\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 5. Grid --&gt; Discretisation \n", "*Atmosphere grid discretisation*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 5.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of grid discretisation in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 6. Grid --&gt; Discretisation --&gt; Horizontal \n", "*Atmosphere discretisation in the horizontal*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 6.1. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal discretisation type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"spectral\" \n", "# \"fixed grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.2. Scheme Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal discretisation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"finite elements\" \n", "# \"finite volumes\" \n", "# \"finite difference\" \n", "# \"centered finite difference\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.3. Scheme Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal discretisation function order*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"second\" \n", "# \"third\" \n", "# \"fourth\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.4. Horizontal Pole\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Horizontal discretisation pole singularity treatment*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.horizontal_pole') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"filter\" \n", "# \"pole rotation\" \n", "# \"artificial island\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.5. Grid Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal grid type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.grid_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Gaussian\" \n", "# \"Latitude-Longitude\" \n", "# \"Cubed-Sphere\" \n", "# \"Icosahedral\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 7. Grid --&gt; Discretisation --&gt; Vertical \n", "*Atmosphere discretisation in the vertical*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 7.1. Coordinate Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Type of vertical coordinate system*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.grid.discretisation.vertical.coordinate_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"isobaric\" \n", "# \"sigma\" \n", "# \"hybrid sigma-pressure\" \n", "# \"hybrid pressure\" \n", "# \"vertically lagrangian\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 8. Dynamical Core \n", "*Characteristics of the dynamical core*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 8.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of atmosphere dynamical core*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.2. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the dynamical core of the model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.3. Timestepping Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Timestepping framework type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.timestepping_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Adams-Bashforth\" \n", "# \"explicit\" \n", "# \"implicit\" \n", "# \"semi-implicit\" \n", "# \"leap frog\" \n", "# \"multi-step\" \n", "# \"Runge Kutta fifth order\" \n", "# \"Runge Kutta second order\" \n", "# \"Runge Kutta third order\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.4. Prognostic Variables\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of the model prognostic variables*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.prognostic_variables') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"surface pressure\" \n", "# \"wind components\" \n", "# \"divergence/curl\" \n", "# \"temperature\" \n", "# \"potential temperature\" \n", "# \"total water\" \n", "# \"water vapour\" \n", "# \"water liquid\" \n", "# \"water ice\" \n", "# \"total water moments\" \n", "# \"clouds\" \n", "# \"radiation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 9. Dynamical Core --&gt; Top Boundary \n", "*Type of boundary layer at the top of the model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 9.1. Top Boundary Condition\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Top boundary condition*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_boundary_condition') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"sponge layer\" \n", "# \"radiation boundary condition\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.2. Top Heat\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Top boundary heat treatment*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_heat') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.3. Top Wind\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Top boundary wind treatment*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_wind') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 10. Dynamical Core --&gt; Lateral Boundary \n", "*Type of lateral boundary condition (if the model is a regional model)*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 10.1. Condition\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Type of lateral boundary condition*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.lateral_boundary.condition') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"sponge layer\" \n", "# \"radiation boundary condition\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 11. Dynamical Core --&gt; Diffusion Horizontal \n", "*Horizontal diffusion scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 11.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Horizontal diffusion scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.2. Scheme Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal diffusion scheme method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"iterated Laplacian\" \n", "# \"bi-harmonic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 12. Dynamical Core --&gt; Advection Tracers \n", "*Tracer advection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 12.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Tracer advection scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Heun\" \n", "# \"Roe and VanLeer\" \n", "# \"Roe and Superbee\" \n", "# \"Prather\" \n", "# \"UTOPIA\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.2. Scheme Characteristics\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Tracer advection scheme characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_characteristics') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Eulerian\" \n", "# \"modified Euler\" \n", "# \"Lagrangian\" \n", "# \"semi-Lagrangian\" \n", "# \"cubic semi-Lagrangian\" \n", "# \"quintic semi-Lagrangian\" \n", "# \"mass-conserving\" \n", "# \"finite volume\" \n", "# \"flux-corrected\" \n", "# \"linear\" \n", "# \"quadratic\" \n", "# \"quartic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.3. Conserved Quantities\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Tracer advection scheme conserved quantities*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conserved_quantities') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"dry mass\" \n", "# \"tracer mass\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.4. Conservation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Tracer advection scheme conservation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conservation_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"conservation fixer\" \n", "# \"Priestley algorithm\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 13. Dynamical Core --&gt; Advection Momentum \n", "*Momentum advection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 13.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Momentum advection schemes name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"VanLeer\" \n", "# \"Janjic\" \n", "# \"SUPG (Streamline Upwind Petrov-Galerkin)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.2. Scheme Characteristics\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Momentum advection scheme characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_characteristics') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"2nd order\" \n", "# \"4th order\" \n", "# \"cell-centred\" \n", "# \"staggered grid\" \n", "# \"semi-staggered grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.3. Scheme Staggering Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Momentum advection scheme staggering type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_staggering_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Arakawa B-grid\" \n", "# \"Arakawa C-grid\" \n", "# \"Arakawa D-grid\" \n", "# \"Arakawa E-grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.4. Conserved Quantities\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Momentum advection scheme conserved quantities*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conserved_quantities') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Angular momentum\" \n", "# \"Horizontal momentum\" \n", "# \"Enstrophy\" \n", "# \"Mass\" \n", "# \"Total energy\" \n", "# \"Vorticity\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.5. Conservation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Momentum advection scheme conservation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conservation_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"conservation fixer\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 14. Radiation \n", "*Characteristics of the atmosphere radiation process*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 14.1. Aerosols\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Aerosols whose radiative effect is taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.aerosols') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"sulphate\" \n", "# \"nitrate\" \n", "# \"sea salt\" \n", "# \"dust\" \n", "# \"ice\" \n", "# \"organic\" \n", "# \"BC (black carbon / soot)\" \n", "# \"SOA (secondary organic aerosols)\" \n", "# \"POM (particulate organic matter)\" \n", "# \"polar stratospheric ice\" \n", "# \"NAT (nitric acid trihydrate)\" \n", "# \"NAD (nitric acid dihydrate)\" \n", "# \"STS (supercooled ternary solution aerosol particle)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 15. Radiation --&gt; Shortwave Radiation \n", "*Properties of the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 15.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of shortwave radiation in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.2. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.3. Spectral Integration\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Shortwave radiation scheme spectral integration*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_integration') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"wide-band model\" \n", "# \"correlated-k\" \n", "# \"exponential sum fitting\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.4. Transport Calculation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Shortwave radiation transport calculation methods*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.transport_calculation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"two-stream\" \n", "# \"layer interaction\" \n", "# \"bulk\" \n", "# \"adaptive\" \n", "# \"multi-stream\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.5. Spectral Intervals\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Shortwave radiation scheme number of spectral intervals*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_intervals') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 16. Radiation --&gt; Shortwave GHG \n", "*Representation of greenhouse gases in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 16.1. Greenhouse Gas Complexity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Complexity of greenhouse gases whose shortwave radiative effects are taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.greenhouse_gas_complexity') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CO2\" \n", "# \"CH4\" \n", "# \"N2O\" \n", "# \"CFC-11 eq\" \n", "# \"CFC-12 eq\" \n", "# \"HFC-134a eq\" \n", "# \"Explicit ODSs\" \n", "# \"Explicit other fluorinated gases\" \n", "# \"O3\" \n", "# \"H2O\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.2. ODS\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.ODS') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CFC-12\" \n", "# \"CFC-11\" \n", "# \"CFC-113\" \n", "# \"CFC-114\" \n", "# \"CFC-115\" \n", "# \"HCFC-22\" \n", "# \"HCFC-141b\" \n", "# \"HCFC-142b\" \n", "# \"Halon-1211\" \n", "# \"Halon-1301\" \n", "# \"Halon-2402\" \n", "# \"methyl chloroform\" \n", "# \"carbon tetrachloride\" \n", "# \"methyl chloride\" \n", "# \"methylene chloride\" \n", "# \"chloroform\" \n", "# \"methyl bromide\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.3. Other Flourinated Gases\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Other flourinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.other_flourinated_gases') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"HFC-134a\" \n", "# \"HFC-23\" \n", "# \"HFC-32\" \n", "# \"HFC-125\" \n", "# \"HFC-143a\" \n", "# \"HFC-152a\" \n", "# \"HFC-227ea\" \n", "# \"HFC-236fa\" \n", "# \"HFC-245fa\" \n", "# \"HFC-365mfc\" \n", "# \"HFC-43-10mee\" \n", "# \"CF4\" \n", "# \"C2F6\" \n", "# \"C3F8\" \n", "# \"C4F10\" \n", "# \"C5F12\" \n", "# \"C6F14\" \n", "# \"C7F16\" \n", "# \"C8F18\" \n", "# \"c-C4F8\" \n", "# \"NF3\" \n", "# \"SF6\" \n", "# \"SO2F2\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 17. Radiation --&gt; Shortwave Cloud Ice \n", "*Shortwave radiative properties of ice crystals in clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 17.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General shortwave radiative interactions with cloud ice crystals*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 17.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of cloud ice crystals in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"bi-modal size distribution\" \n", "# \"ensemble of ice crystals\" \n", "# \"mean projected area\" \n", "# \"ice water path\" \n", "# \"crystal asymmetry\" \n", "# \"crystal aspect ratio\" \n", "# \"effective crystal radius\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 17.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to cloud ice crystals in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"T-matrix\" \n", "# \"geometric optics\" \n", "# \"finite difference time domain (FDTD)\" \n", "# \"Mie theory\" \n", "# \"anomalous diffraction approximation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 18. Radiation --&gt; Shortwave Cloud Liquid \n", "*Shortwave radiative properties of liquid droplets in clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 18.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General shortwave radiative interactions with cloud liquid droplets*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of cloud liquid droplets in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"cloud droplet number concentration\" \n", "# \"effective cloud droplet radii\" \n", "# \"droplet size distribution\" \n", "# \"liquid water path\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to cloud liquid droplets in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"geometric optics\" \n", "# \"Mie theory\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 19. Radiation --&gt; Shortwave Cloud Inhomogeneity \n", "*Cloud inhomogeneity in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 19.1. Cloud Inhomogeneity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method for taking into account horizontal cloud inhomogeneity*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_inhomogeneity.cloud_inhomogeneity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Monte Carlo Independent Column Approximation\" \n", "# \"Triplecloud\" \n", "# \"analytic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 20. Radiation --&gt; Shortwave Aerosols \n", "*Shortwave radiative properties of aerosols*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 20.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General shortwave radiative interactions with aerosols*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 20.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of aerosols in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"number concentration\" \n", "# \"effective radii\" \n", "# \"size distribution\" \n", "# \"asymmetry\" \n", "# \"aspect ratio\" \n", "# \"mixing state\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 20.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to aerosols in the shortwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"T-matrix\" \n", "# \"geometric optics\" \n", "# \"finite difference time domain (FDTD)\" \n", "# \"Mie theory\" \n", "# \"anomalous diffraction approximation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 21. Radiation --&gt; Shortwave Gases \n", "*Shortwave radiative properties of gases*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 21.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General shortwave radiative interactions with gases*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.shortwave_gases.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 22. Radiation --&gt; Longwave Radiation \n", "*Properties of the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 22.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of longwave radiation in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.2. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the longwave radiation scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.3. Spectral Integration\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Longwave radiation scheme spectral integration*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_integration') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"wide-band model\" \n", "# \"correlated-k\" \n", "# \"exponential sum fitting\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.4. Transport Calculation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Longwave radiation transport calculation methods*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.transport_calculation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"two-stream\" \n", "# \"layer interaction\" \n", "# \"bulk\" \n", "# \"adaptive\" \n", "# \"multi-stream\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.5. Spectral Intervals\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Longwave radiation scheme number of spectral intervals*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_intervals') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 23. Radiation --&gt; Longwave GHG \n", "*Representation of greenhouse gases in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 23.1. Greenhouse Gas Complexity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Complexity of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_GHG.greenhouse_gas_complexity') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CO2\" \n", "# \"CH4\" \n", "# \"N2O\" \n", "# \"CFC-11 eq\" \n", "# \"CFC-12 eq\" \n", "# \"HFC-134a eq\" \n", "# \"Explicit ODSs\" \n", "# \"Explicit other fluorinated gases\" \n", "# \"O3\" \n", "# \"H2O\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.2. ODS\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Ozone depleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_GHG.ODS') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CFC-12\" \n", "# \"CFC-11\" \n", "# \"CFC-113\" \n", "# \"CFC-114\" \n", "# \"CFC-115\" \n", "# \"HCFC-22\" \n", "# \"HCFC-141b\" \n", "# \"HCFC-142b\" \n", "# \"Halon-1211\" \n", "# \"Halon-1301\" \n", "# \"Halon-2402\" \n", "# \"methyl chloroform\" \n", "# \"carbon tetrachloride\" \n", "# \"methyl chloride\" \n", "# \"methylene chloride\" \n", "# \"chloroform\" \n", "# \"methyl bromide\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.3. Other Flourinated Gases\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Other flourinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_GHG.other_flourinated_gases') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"HFC-134a\" \n", "# \"HFC-23\" \n", "# \"HFC-32\" \n", "# \"HFC-125\" \n", "# \"HFC-143a\" \n", "# \"HFC-152a\" \n", "# \"HFC-227ea\" \n", "# \"HFC-236fa\" \n", "# \"HFC-245fa\" \n", "# \"HFC-365mfc\" \n", "# \"HFC-43-10mee\" \n", "# \"CF4\" \n", "# \"C2F6\" \n", "# \"C3F8\" \n", "# \"C4F10\" \n", "# \"C5F12\" \n", "# \"C6F14\" \n", "# \"C7F16\" \n", "# \"C8F18\" \n", "# \"c-C4F8\" \n", "# \"NF3\" \n", "# \"SF6\" \n", "# \"SO2F2\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 24. Radiation --&gt; Longwave Cloud Ice \n", "*Longwave radiative properties of ice crystals in clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 24.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General longwave radiative interactions with cloud ice crystals*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 24.2. Physical Reprenstation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of cloud ice crystals in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.physical_reprenstation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"bi-modal size distribution\" \n", "# \"ensemble of ice crystals\" \n", "# \"mean projected area\" \n", "# \"ice water path\" \n", "# \"crystal asymmetry\" \n", "# \"crystal aspect ratio\" \n", "# \"effective crystal radius\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 24.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to cloud ice crystals in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"T-matrix\" \n", "# \"geometric optics\" \n", "# \"finite difference time domain (FDTD)\" \n", "# \"Mie theory\" \n", "# \"anomalous diffraction approximation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 25. Radiation --&gt; Longwave Cloud Liquid \n", "*Longwave radiative properties of liquid droplets in clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 25.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General longwave radiative interactions with cloud liquid droplets*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of cloud liquid droplets in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"cloud droplet number concentration\" \n", "# \"effective cloud droplet radii\" \n", "# \"droplet size distribution\" \n", "# \"liquid water path\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to cloud liquid droplets in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"geometric optics\" \n", "# \"Mie theory\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 26. Radiation --&gt; Longwave Cloud Inhomogeneity \n", "*Cloud inhomogeneity in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 26.1. Cloud Inhomogeneity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method for taking into account horizontal cloud inhomogeneity*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_cloud_inhomogeneity.cloud_inhomogeneity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Monte Carlo Independent Column Approximation\" \n", "# \"Triplecloud\" \n", "# \"analytic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 27. Radiation --&gt; Longwave Aerosols \n", "*Longwave radiative properties of aerosols*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 27.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General longwave radiative interactions with aerosols*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.2. Physical Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical representation of aerosols in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.physical_representation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"number concentration\" \n", "# \"effective radii\" \n", "# \"size distribution\" \n", "# \"asymmetry\" \n", "# \"aspect ratio\" \n", "# \"mixing state\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.3. Optical Methods\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Optical methods applicable to aerosols in the longwave radiation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.optical_methods') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"T-matrix\" \n", "# \"geometric optics\" \n", "# \"finite difference time domain (FDTD)\" \n", "# \"Mie theory\" \n", "# \"anomalous diffraction approximation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 28. Radiation --&gt; Longwave Gases \n", "*Longwave radiative properties of gases*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 28.1. General Interactions\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General longwave radiative interactions with gases*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.radiation.longwave_gases.general_interactions') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"scattering\" \n", "# \"emission/absorption\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 29. Turbulence Convection \n", "*Atmosphere Convective Turbulence and Clouds*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 29.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of atmosphere convection and turbulence*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 30. Turbulence Convection --&gt; Boundary Layer Turbulence \n", "*Properties of the boundary layer turbulence scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 30.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Boundary layer turbulence scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Mellor-Yamada\" \n", "# \"Holtslag-Boville\" \n", "# \"EDMF\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.2. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Boundary layer turbulence scheme type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"TKE prognostic\" \n", "# \"TKE diagnostic\" \n", "# \"TKE coupled with water\" \n", "# \"vertical profile of Kz\" \n", "# \"non-local diffusion\" \n", "# \"Monin-Obukhov similarity\" \n", "# \"Coastal Buddy Scheme\" \n", "# \"Coupled with convection\" \n", "# \"Coupled with gravity waves\" \n", "# \"Depth capped at cloud base\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.3. Closure Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Boundary layer turbulence scheme closure order*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.closure_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.4. Counter Gradient\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Uses boundary layer turbulence scheme counter gradient*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.counter_gradient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 31. Turbulence Convection --&gt; Deep Convection \n", "*Properties of the deep convection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 31.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Deep convection scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.2. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Deep convection scheme type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"mass-flux\" \n", "# \"adjustment\" \n", "# \"plume ensemble\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.3. Scheme Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Deep convection scheme method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"CAPE\" \n", "# \"bulk\" \n", "# \"ensemble\" \n", "# \"CAPE/WFN based\" \n", "# \"TKE/CIN based\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.4. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical processes taken into account in the parameterisation of deep convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"vertical momentum transport\" \n", "# \"convective momentum transport\" \n", "# \"entrainment\" \n", "# \"detrainment\" \n", "# \"penetrative convection\" \n", "# \"updrafts\" \n", "# \"downdrafts\" \n", "# \"radiative effect of anvils\" \n", "# \"re-evaporation of convective precipitation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.5. Microphysics\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Microphysics scheme for deep convection. Microphysical processes directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.microphysics') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"tuning parameter based\" \n", "# \"single moment\" \n", "# \"two moment\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 32. Turbulence Convection --&gt; Shallow Convection \n", "*Properties of the shallow convection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 32.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Shallow convection scheme name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.2. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *shallow convection scheme type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"mass-flux\" \n", "# \"cumulus-capped boundary layer\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.3. Scheme Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *shallow convection scheme method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"same as deep (unified)\" \n", "# \"included in boundary layer turbulence\" \n", "# \"separate diagnosis\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.4. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Physical processes taken into account in the parameterisation of shallow convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"convective momentum transport\" \n", "# \"entrainment\" \n", "# \"detrainment\" \n", "# \"penetrative convection\" \n", "# \"re-evaporation of convective precipitation\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.5. Microphysics\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Microphysics scheme for shallow convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.microphysics') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"tuning parameter based\" \n", "# \"single moment\" \n", "# \"two moment\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 33. Microphysics Precipitation \n", "*Large Scale Cloud Microphysics and Precipitation*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 33.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of large scale cloud microphysics and precipitation*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 34. Microphysics Precipitation --&gt; Large Scale Precipitation \n", "*Properties of the large scale precipitation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 34.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name of the large scale precipitation parameterisation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.2. Hydrometeors\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Precipitating hydrometeors taken into account in the large scale precipitation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.hydrometeors') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"liquid rain\" \n", "# \"snow\" \n", "# \"hail\" \n", "# \"graupel\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics \n", "*Properties of the large scale cloud microphysics scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 35.1. Scheme Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name of the microphysics parameterisation scheme used for large scale clouds.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 35.2. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Large scale cloud microphysics processes*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"mixed phase\" \n", "# \"cloud droplets\" \n", "# \"cloud ice\" \n", "# \"ice nucleation\" \n", "# \"water vapour deposition\" \n", "# \"effect of raindrops\" \n", "# \"effect of snow\" \n", "# \"effect of graupel\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 36. Cloud Scheme \n", "*Characteristics of the cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 36.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of the atmosphere cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.2. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.3. Atmos Coupling\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Atmosphere components that are linked to the cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.atmos_coupling') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"atmosphere_radiation\" \n", "# \"atmosphere_microphysics_precipitation\" \n", "# \"atmosphere_turbulence_convection\" \n", "# \"atmosphere_gravity_waves\" \n", "# \"atmosphere_solar\" \n", "# \"atmosphere_volcano\" \n", "# \"atmosphere_cloud_simulator\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.4. Uses Separate Treatment\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Different cloud schemes for the different types of clouds (convective, stratiform and boundary layer)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.uses_separate_treatment') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.5. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Processes included in the cloud scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"entrainment\" \n", "# \"detrainment\" \n", "# \"bulk cloud\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.6. Prognostic Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the cloud scheme a prognostic scheme?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.7. Diagnostic Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the cloud scheme a diagnostic scheme?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.diagnostic_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.8. Prognostic Variables\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List the prognostic variables used by the cloud scheme, if applicable.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_variables') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"cloud amount\" \n", "# \"liquid\" \n", "# \"ice\" \n", "# \"rain\" \n", "# \"snow\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 37. Cloud Scheme --&gt; Optical Cloud Properties \n", "*Optical cloud properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 37.1. Cloud Overlap Method\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Method for taking into account overlapping of cloud layers*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_overlap_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"random\" \n", "# \"maximum\" \n", "# \"maximum-random\" \n", "# \"exponential\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.2. Cloud Inhomogeneity\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Method for taking into account cloud inhomogeneity*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_inhomogeneity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution \n", "*Sub-grid scale water distribution*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 38.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale water distribution type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"prognostic\" \n", "# \"diagnostic\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 38.2. Function Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale water distribution function name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 38.3. Function Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale water distribution function type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 38.4. Convection Coupling\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Sub-grid scale water distribution coupling with convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.convection_coupling') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"coupled with deep\" \n", "# \"coupled with shallow\" \n", "# \"not coupled with convection\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution \n", "*Sub-grid scale ice distribution*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 39.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale ice distribution type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"prognostic\" \n", "# \"diagnostic\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 39.2. Function Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale ice distribution function name*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 39.3. Function Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sub-grid scale ice distribution function type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 39.4. Convection Coupling\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Sub-grid scale ice distribution coupling with convection*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.convection_coupling') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"coupled with deep\" \n", "# \"coupled with shallow\" \n", "# \"not coupled with convection\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 40. Observation Simulation \n", "*Characteristics of observation simulation*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 40.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of observation simulator characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 41. Observation Simulation --&gt; Isscp Attributes \n", "*ISSCP Characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 41.1. Top Height Estimation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Cloud simulator ISSCP top height estimation methodUo*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_estimation_method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"no adjustment\" \n", "# \"IR brightness\" \n", "# \"visible optical depth\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 41.2. Top Height Direction\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator ISSCP top height direction*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_direction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"lowest altitude level\" \n", "# \"highest altitude level\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 42. Observation Simulation --&gt; Cosp Attributes \n", "*CFMIP Observational Simulator Package attributes*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 42.1. Run Configuration\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator COSP run configuration*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.run_configuration') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Inline\" \n", "# \"Offline\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 42.2. Number Of Grid Points\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator COSP number of grid points*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_grid_points') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 42.3. Number Of Sub Columns\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_sub_columns') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 42.4. Number Of Levels\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator COSP number of levels*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 43. Observation Simulation --&gt; Radar Inputs \n", "*Characteristics of the cloud radar simulator*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 43.1. Frequency\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator radar frequency (Hz)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.frequency') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 43.2. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator radar type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"surface\" \n", "# \"space borne\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 43.3. Gas Absorption\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator radar uses gas absorption*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.gas_absorption') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 43.4. Effective Radius\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator radar uses effective radius*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.effective_radius') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 44. Observation Simulation --&gt; Lidar Inputs \n", "*Characteristics of the cloud lidar simulator*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 44.1. Ice Types\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Cloud simulator lidar ice type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.ice_types') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"ice spheres\" \n", "# \"ice non-spherical\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 44.2. Overlap\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Cloud simulator lidar overlap*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.overlap') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"max\" \n", "# \"random\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 45. Gravity Waves \n", "*Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 45.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of gravity wave parameterisation in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 45.2. Sponge Layer\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.sponge_layer') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Rayleigh friction\" \n", "# \"Diffusive sponge layer\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 45.3. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background wave distribution*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"continuous spectrum\" \n", "# \"discrete spectrum\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 45.4. Subgrid Scale Orography\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Subgrid scale orography effects taken into account.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.subgrid_scale_orography') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"effect on drag\" \n", "# \"effect on lifting\" \n", "# \"enhanced topography\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 46. Gravity Waves --&gt; Orographic Gravity Waves \n", "*Gravity waves generated due to the presence of orography*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 46.1. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the orographic gravity wave scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 46.2. Source Mechanisms\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Orographic gravity wave source mechanisms*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.source_mechanisms') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"linear mountain waves\" \n", "# \"hydraulic jump\" \n", "# \"envelope orography\" \n", "# \"low level flow blocking\" \n", "# \"statistical sub-grid scale variance\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 46.3. Calculation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Orographic gravity wave calculation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.calculation_method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"non-linear calculation\" \n", "# \"more than two cardinal directions\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 46.4. Propagation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Orographic gravity wave propogation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.propagation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"linear theory\" \n", "# \"non-linear theory\" \n", "# \"includes boundary layer ducting\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 46.5. Dissipation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Orographic gravity wave dissipation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.dissipation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"total wave\" \n", "# \"single wave\" \n", "# \"spectral\" \n", "# \"linear\" \n", "# \"wave saturation vs Richardson number\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 47. Gravity Waves --&gt; Non Orographic Gravity Waves \n", "*Gravity waves generated by non-orographic processes.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 47.1. Name\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Commonly used name for the non-orographic gravity wave scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 47.2. Source Mechanisms\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Non-orographic gravity wave source mechanisms*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.source_mechanisms') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"convection\" \n", "# \"precipitation\" \n", "# \"background spectrum\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 47.3. Calculation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Non-orographic gravity wave calculation method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.calculation_method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"spatially dependent\" \n", "# \"temporally dependent\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 47.4. Propagation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Non-orographic gravity wave propogation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.propagation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"linear theory\" \n", "# \"non-linear theory\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 47.5. Dissipation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Non-orographic gravity wave dissipation scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.dissipation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"total wave\" \n", "# \"single wave\" \n", "# \"spectral\" \n", "# \"linear\" \n", "# \"wave saturation vs Richardson number\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 48. Solar \n", "*Top of atmosphere solar insolation characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 48.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of solar insolation of the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 49. Solar --&gt; Solar Pathways \n", "*Pathways for solar forcing of the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 49.1. Pathways\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Pathways for the solar forcing of the atmosphere model domain*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.solar_pathways.pathways') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"SW radiation\" \n", "# \"precipitating energetic particles\" \n", "# \"cosmic rays\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 50. Solar --&gt; Solar Constant \n", "*Solar constant and top of atmosphere insolation characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 50.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Time adaptation of the solar constant.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.solar_constant.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"fixed\" \n", "# \"transient\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 50.2. Fixed Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If the solar constant is fixed, enter the value of the solar constant (W m-2).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.solar_constant.fixed_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 50.3. Transient Characteristics\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *solar constant transient characteristics (W m-2)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.solar_constant.transient_characteristics') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 51. Solar --&gt; Orbital Parameters \n", "*Orbital parameters and top of atmosphere insolation characteristics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 51.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Time adaptation of orbital parameters*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.orbital_parameters.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"fixed\" \n", "# \"transient\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 51.2. Fixed Reference Date\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Reference date for fixed orbital parameters (yyyy)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.orbital_parameters.fixed_reference_date') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 51.3. Transient Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Description of transient orbital parameters*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.orbital_parameters.transient_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 51.4. Computation Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method used for computing orbital parameters.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.orbital_parameters.computation_method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Berger 1978\" \n", "# \"Laskar 2004\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 52. Solar --&gt; Insolation Ozone \n", "*Impact of solar insolation on stratospheric ozone*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 52.1. Solar Ozone Impact\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does top of atmosphere insolation impact on stratospheric ozone?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.solar.insolation_ozone.solar_ozone_impact') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 53. Volcanos \n", "*Characteristics of the implementation of volcanoes*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 53.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview description of the implementation of volcanic effects in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.volcanos.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 54. Volcanos --&gt; Volcanoes Treatment \n", "*Treatment of volcanoes in the atmosphere*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 54.1. Volcanoes Implementation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How volcanic effects are modeled in the atmosphere.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.atmos.volcanos.volcanoes_treatment.volcanoes_implementation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"high frequency solar constant anomaly\" \n", "# \"stratospheric aerosols optical thickness\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### \u00a92017 [ES-DOC](https://es-doc.org) \n" ], "cell_type": "markdown", "metadata": {} } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.10", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
gpl-3.0
timzhangau/ml_nano
practice_projects/cnn/cifar10-classification/cifar10_cnn.ipynb
1
393595
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "\n", "\n", "## Convolutional Neural Networks\n", "\n", "---\n", "\n", "In this notebook, we train a CNN to classify images from the CIFAR-10 database.\n", "\n", "### 1. Load CIFAR-10 Database" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using TensorFlow backend.\n" ] } ], "source": [ "import keras\n", "from keras.datasets import cifar10\n", "\n", "# load the pre-shuffled train and test data\n", "(x_train, y_train), (x_test, y_test) = cifar10.load_data()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### 2. Visualize the First 24 Training Images" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHEAAAEjCAYAAAC1lp0aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmMZdl1Jbbv+OYp4sWckRmZWZVZWSOrOFaRFKkS2KIt\nNURQtmyg3YB/3AYacH804E8DhtHu//ZPt9uybLjdbUhgS4SapkSRlEiRNbAm1lw5Z2RExjy8+d35\nXn/sfe7eryK6WBmRbSkbZ/1k5Hnv3XvuGfY59+y11zayLAMNDQ0NDQ0NDQ0NDQ0NDQ0Njb/dMP+m\nK6ChoaGhoaGhoaGhoaGhoaGh8auhD3E0NDQ0NDQ0NDQ0NDQ0NDQ0HgLoQxwNDQ0NDQ0NDQ0NDQ0N\nDQ2NhwD6EEdDQ0NDQ0NDQ0NDQ0NDQ0PjIYA+xNHQ0NDQ0NDQ0NDQ0NDQ0NB4CKAPcTQ0NDQ0NDQ0\nNDQ0NDQ0NDQeAuhDHA0NDQ0NDQ0NDQ0NDQ0NDY2HAPoQR0NDQ0NDQ0NDQ0NDQ0NDQ+MhgD7E0dDQ\n0NDQ0NDQ0NDQ0NDQ0HgIYN/Plx3HyQrFIiRJkpeZkAEAgGXw91wbz4Ycm8+IbMsCAADD4C8aBn0u\nfhvHeO1M3NdSv824NM1S/F6KZYYpLqK+k3I91TUmPqdrGKIC6m9TfN8yzSN1T6kuGRy9bybqmQHA\nYXcAw7F/9IufErV6I5uenYPQH+dlcejTvfiyjlsEAAC3UOS6Oy4+j2gf3xsCAEAYeFxP6lPZFqoN\nDJP7sVKtAQBAge6RJXH+meep+h3tJ9/jeyX0m4l2oj/jOOXfUt9mGZfZtk3/cv9kkExcA3+L//a6\n/f0sy2bgBGi329nKyspJfvofHGnKbRLH2J4TbUJtZ4q+4znCfZwdKXkwePPNN0/c7gAApmlktm2C\nKeYc0N+TdVX/y+DjiKWdIlsjT63VHAYxN9T9ZLtZFo45NW7VuJTIZJkxWTOsukHXEvOVxnIURXlZ\nQnVS9wTgcS3tmesctUmGYcBoHEIQxifuznqjmc3MLoBsT2WnpQ3JqCVlSyjbYRxtislvUp3lb/Nx\nmE1eEYCff6LVj3vC7Gi/HIdP+tbkJY7p5+M+oR/dvfXhicd8rVjM2rXa5NhS48h18qKYxmVZjKNw\njHa3OxI2Vl1HTh/1rxzbNAYtMTGKdL9atQwAk3Y6TmjNNNnWeEEIAACDweho3cX9LTW3RFl6XOeq\nqsv1lgrF8pCPs95odCpbU2sWspnFCgwHPA9NA9c3SzynkdsGrpdtYVvZppuXqb1GFId5WRBjH1mO\nWMtcWnMNueapMppLhtiiqT1HJvc1an0Xdp7WwyQR/RYZdH1+njQ96sOLk4g+E3VK1J6Mr5ckKYy6\nAfij6MS2xrSszHYcMMQeRg0Ot8hjXo2l0Of+Ufsuy5J22pSXAAAAx8HrJHK9TNR6yW2b0sBKo+TI\ndR0X2zgFvkZCa26ScJmR2yvZTgk9K19PtePk/ueorcnHm5gHWZZBGIQQRye38ZXGVNaaOzPRn9lR\ncyHa8agVT0R980/FPk3NEUuMy3wdO8YAfzrLfVqodj/Jb/F5tm6+d2JbUy6XsmazAYlY79U8Mwzx\nfkINWigU8iL5t0IYon3xR2x3gyCYuAZdHAA+tqchu6ZslXw/ytcEUWaax5TRmJbridpngfnJ/IBj\nuyA75lOq+9UPPziVjbddOysUC5OXVncTZeqZJt4X6QvShuRrqZybeV8e3U/K7lVtpNZ6uebLdx2u\nkzVxLfzeURui+iGOeH1Q7wYTC7Hapx17PflekUASx5Cm6cltTbWaTU1PgyveTQyyo6boDJf2HGqc\nAQCox+gPxb4mVvaZr9eL8TdGscbfGx8CAEDd4Hfm6alpAABI8zX9aH/Kttvb28drifeI+fk5AJic\njyOaf8Uiv3cbuf3jeqq+kGurWoPkPVS/fHT16qca8/d1iJMBgFMswmh/Py+bonqfn+IHeHS+AgAA\nK+dm87JigTb9YmORGbg4jn3e7Iw9NEKRWBxt2rAWbbEpoUXXok6XjTr2sVHjlK/bbmMHijaFiAxe\nyea6B7QhTcThRLmMz2OYvLEwaPMmjdWYNhmxMNKWXYA/+It34TRoTrfhv/sf/gk4QS8v2793EwAA\nMruely2uXMEqiQ3D7PwCAADYBj/P+2+9BAAA2/du5WVzzSkAADi7/EhetvzIObzu0hm+3iwOYsfB\n9o7FRlW1mSzzfZyA3/nOd/Kyd999EwAALNmfEXZMGHCZR7/t9Tt52fR0EwAAiiUeuraNY+HgoJuX\nqev84M9+dhdOiJWVFXjjjTdO+vP/oOjsbOZ/r928BgAAowGPj14f58CXX/yNvKzebtNfYiOvDi0f\ncP0MwzhxuwPgAfDSXGXicDYlm1Bw+YVJGUbLlpugoy9b9QrO4VC8aO53sb2qrUZe1qRDynK5nJfV\nqGx1dQ0AAKIkyD8rFnEe1Ot8jU4Hx2uxxHZlcQFtoSUWroVZnHOd3jAvu7O+eeT+5Qr+7Y/5e/Nt\nvJ88dB2NR/Cjl2/CaTAzuwD/9J/9wbEHglHENtmpoN2xnFJeZmW02RAvZepQJvGO2gS3yDY7oQV1\n6PEzmgZ+Xq3gs2YmL3Qff9kFEAcsx7xgyI1S+rHDIfw8PfJbtbAed5ggX2LUb//Bt5858ZhvFl34\nR1/8DNhi3SuRfdyYWsjLbni4tvz9KxfystX16wAA8Mbdvbys76k1SB7G4XOMAx6/sdpsGNy201M4\n3v/ef/mfAwBANO7nn+3u4z3mlhbzso9u3AAAgFfffD8vU2082+D16ckLuLbs7W7kZZ43AACA4ZD7\nHWidLYjdSW0e6xS5vKe4+eEqAAD80Q9PbuMBAGbOVOCf/tFvwJuv83r4/ps4Xpfnn+M6VHCsV0s8\nNyo2zuF2U6yRcy38Xpvbvm+9AwAAXvFaXuanuF6lHtuzQoJjvlKjTbU4aLGtKgAA1Ks8Hssufj8a\nzedl3gi/1z/gfrt5HZvIKrT4wWnu3tvY5mesYl26nUFeFubrOY+bbq8HP/iXp9vX2LYDs3PnAMTB\nUmjh+G8tNfOy2Tba7r2tw7zMNLDMddmGGIBjfn6GbednnnsaAAA6fV4bb9zCfi6V2XZdPLeEv23h\nfasl8QJdxb8DsZ9UL8v9LreTQwdue5s8D+/cXcd6TvE8sIr4vInB1yvVca0oFngs1Ir4jI48bEoz\n+L//2XfhNGjOL8M//Offzw+zANhKxAGXqbXFFQ4F9aIYJLzHNVL6DTkWAQDKJXwOx+E5YNF+3wdu\nW3XIE5H9T+Uh7X26lo4e/wNY0kFDh5uReFGLjr4zH3vAoGzn//jNcye2NdPtNvzj//4fgy2cMWfP\n4B67NdXOy0ID7Z9h81hQ65JaOwF4rMRDHtu3r+Na0OvwXOke4t9rd+/kZXvb+Bg2NU9JOAqSEF98\nHbEHKBbRbtjCQVys4fgs1ap5WXMa3zmbU7w+NJpkD8VaUKO/S1V+8bYKOG8tMd5d2ut97qkrp7Lx\nruvAI0+fg4Icy4lymPGzO0W0CerwF/9W/cAjIyAHeEnsYSw1X8RBBJDNKJfZjjcauGbsbKOdkOMx\no/odMyzztsDrYT3DkG0yZDQ3xRxevaP2rNJxc/TgXx0IysOE0WgEO5tbx9Tk0+PM0hL8r//iX4Jj\n8hPtbmJXLi3wWl6jxb5S4fHgmzhGRhG358493B/f2+Q162d9HH/D9qN5mbnxCt5j60d52eVHLgMA\nQKmNa/Wli8v5Z1MtfK/9wZ/9ZV72T/6n/xkAAByD2+lbv/VbAADw7d/9Nte9ivNAEhVKJeyfVovX\nW3XYIw/KKhWseyD2ZFGEfXH56Wc/1ZjX4VQaGhoaGhoaGhoaGhoaGhoaDwH0IY6GhoaGhoaGhoaG\nhoaGhobGQ4D7CqcyAaBkGyDYkHBuGul1K3McTjA7g3SxEoUhATAd0QuYculHSCHKBF3dJRoSxCLs\nKsXvNaaYJhtH+LlLlGDBAgOLKLaBoHeqEOKyoN/aRI8uirLYQMqTKWMDVfy1YHdWKcRhOOKYuyhG\niqmMyR70e3lM+YmRZQBRBGHAFNbxGClXK5eW8rIh0bXCiJ97isIubIfP6x599BIAALzwpc/lZUtz\nSDFrNDgEL7Kx3mVBGVQRUAaFsXgjpsEHFEZWLnE/tZpImbt44fG87KOPiFJu8PMEAbZjo870M8Vi\n7PV38rIM8LlleESng8/tjZmSdrK45+NxXLz6/99QdTBJCGJ7namx777y1wAAEHk8Fp0qtqMnaOT1\nKZyXqYxxN45qm/xtgGEY4Nom62YBQItCIkfyOROk/Oaxv8AhPAvzTNecn8Hf3rnJIRNtG+fG/CKH\nIpix0lUQoVgUFjXdQKpnZjENv9HAa6iQJwAAy8S6zMwxRVrpjAxEf8QZjv9Gk23nEtk9wfoFmyjp\nBYvnYRri3KzXmKKcRemkhtAJkKQJ9EfDCZ2e/b0DAAC4t7Gbl1lE9a/WeL4WTKyflLgIySamEffP\neIA2o+SIhYTotoNQhHGEeKEL55Em+8jFc/lnJYo/ntDuUH+L+yvtjFQK9SgZll+hSaEwEeOurncs\n4fnkCFMT7vgFGHs8PlyD7HjC48OkkIT9u2wT39y8BwAAV3c57DQjSrWsu4rZjmKxHhGluijCR7oe\nPttr72GY1MI03z/IpTi4vVTYk+NIsRv85/LFi3nRylnsv2aN58r21ip+XaxZ1RaGjyUiVK9cwDGz\n2Gbq/rrF1zkNoiiGjd0DWDzPY9mycK5PVS/IbwIAwMad23nJnQ2kmy8tsk0aZfjbls39EdevAgCA\nWT3Iy4KIbEKX58aUjc/kuti+9QY/b610hn7HczOMKWRKiAX1dnAN79xmI3L9jbcBAKCyzPdaegTt\nY7HCoQP9AV4v8Pl7QOEd+wccJhRG/oRGxElgGAYUXBuyhMdNruMTcyjHbAvtqH/IbewNsX5FYYtV\nCOqVyxwS/uilFQAA6A1F2FNR6XbwGH78Kfze+RUMAwkDDrvNyJ7LUHybwi2UHQYAiEa4NwlFaNuX\nfAxxNxwOQzHLFE7lCg0mGsqmmEMutfvHtTC++3/+OZwGWZZBFKcT0gbqDqZ4yEjpBKWinmreSxEt\nCgGVoW0xrVVjYfdLtAc1bR43uabkMeGsQnlEVP6YBzKU3pPQuMj1hKQmj9KxPKoFJHHcWvAg9oDF\nYgkuXb4CN67dyMv2ezguyzW2sYUS9rvv895ahdKkIYdsjGjPjBp2iOeXVgAAYGNtNS8b9zBs8/kv\nfyUv29rBkFaX1uCmCGt6/93XAQDgpz/+fl6W7KLNm9DFUzp/IgRQ1dMSMipKU8oWkhdlevdqTM/l\nZbUptG+t1lReNj09DQ8GGWSQgIhWhphCWIpFsXdLse1LJba79TrusYZCeyiMcb0qlHleq/2MJYZK\n4JEmlth/9LoY3pZSSKIM3VIKY5NaXzgnZYi7erdNRVhjmqh5wPcvqJA7j+dheozdPk6vxTjlXhIA\nwLVtWJ5tT8iTxB7W3TC53ZUpMgxuiwrV3RBt17iAY+TsIu/tH3Fw3b56wO9/rbNPAABAdY/LtrZw\n/RofohxMdobtdKGA43H53Pm87NzZswAAEIh33KeewvBcX+jTlmgDVBNjIY7xvut3WN5A6cnKsLiI\npF8sYePiVKy9nwKaiaOhoaGhoaGhoaGhoaGhoaHxEOC+mDiGkUHRiKFW459dWsJTsGkh9uekeNI2\nPBSityTQ5435lEkldKg3+dTTptP8bo89J0rnakp48AYk3BrSSZZ3TOaCaoWZQBGdYJsJ192hk+FE\nnGYqEeVAsF5cleFJnJAFQ/KyCW9GgZogFqeZvVHAmUJOiCxNIfY9MIQHteDiyWFPiExPz9Mp5RPs\niZpdRs8Si3MBAHnHo5i9n1e30EM4vs3etsjE/rv23jt52eevIKPm177weayb8FD0iWWwdpdFd13y\nQLkuMwbaM8geWltnj4RLp+FDj0+7+318Nlt4p+p1/J4n2BjqkFdmtioI78Bp8SBOpE+LjFzbEXlf\nNtdZ86pOImflJntTdkmY8mCLRUTnlvFkWboU86xAx2R3+5uEZZnQqNcmxIFnZ/H0ffeAvdlFmsO9\nDotaz7XRE10o8HOWyLu1tMyn7xWyD1HI89oFHDcF4VUck2DZMp3+ZyLDjEvjTAnDAQC0iblgCzG3\ngDy7tTrbMI/E8Qa9jvgezvHpNvdlqUIZ2YT4rB2SSKTISBQH0ak9hsPRCF5+9RUYCu+DCQ7Vl6/t\nJ9gHjst9YZGNF4518DPK4iK8KRXKolcSmXeK1FeJye04GqGdeuPdXwIAwO4+25UL59Fj0m4z26lE\nnniZKUwJ9aWCWWkosdhPm81K2HPlfcyOETY+DVIDwLMMOBTizQYJaE8LoccqMRX9ETN2ugMSWZVr\noKkyFIlMRvS5LX03xGgdCYHEKj3ba++gcO2lR3g9eewi2hDb5XG8soJsm1HKXrQd8nr1Bzw+gdhb\nn/u1p/Oit1//KQAAeIJJN4jw2gcjZsZMkfduyeJ9gT98MDbL9xO4fn0AKxeYhXr+Mj7n7RvsSRuR\nsHhF7kOIOfX+tffysuoiMsemazyWY7IF927zfIEMr9NyWQQ0A2KYuFiXqQZ7qoc9nPNXP+K2alXQ\nntXq3KfRNM6l0Qbbuu0dFOw9f4ZtYrlK2UxSfp6QvP+2y9frHGKbj0e8XzAsODV907IMqDRtsIV4\ncy0h2yAEVJX+b1kkoPB9ZAyNh7z/yUg8dHeTv/fLBNdLX4zvaVpHFoQndmER7UipSfsVUU+1lSi6\nYt2kfV80EsKiJOYbiLbLAsrEIvadUMBxW5pl9kVcwusFQuw4M1T2GsE2zFIwrdOP+yzLfuVaobKm\nTXyPWAET4vFkEyOR7dQlxrQr+kzkG8uhBI3zfchxjzZBzvl0z67aLDpO5D6byFF55LfH7fceBFPZ\nskxo1Wpw4REWYL1H+7jDQ2ZW1omVUygyy8wlekdFjC2PEsJIJpsyo40G206VhTZOeGwtE0OyVCQh\n7zILibeXcW0di7b7iz/5Q3wGESHhkiCwIwS/U0pgYIp3Kt9UbFiu557q95v8DgDErJQZfY7LynUS\nGKYJpWIZIp/nq8qENNnflDBHZFZOM5XggJ+9VMFxHYokLq5DosRi/1EjlrVtsc3eJCH5Agk5m0JY\n2VCZB8Uct4jBJrMdjigRgCvaSiWbkXVXTM4wFhETYUrf5/uqLElSYLdWq8HeMVmd7wdZlkEcejAe\nC9FfYgTb8j2ExppMHhTSu2DvkPfHc2S7i2X+7XQR675U4t8WFcGvdikvO9NGIeMe7SXSQKzP1CZP\nPMl7k69+9asAANBu8bvrb37zNwEA4PZt3hco8edamceqN8I187DDdVcC35KVZNtYZxlJMBZ7708D\nzcTR0NDQ0NDQ0NDQ0NDQ0NDQeAigD3E0NDQ0NDQ0NDQ0NDQ0NDQ0HgLcVziVbRjQKthQEhS3BglU\nzdSZypSkROUWv7WUKJPITR+QYJot6OI20d4TQc3MSORpd5dDJpIIrz4YI112LKiC1RLRnwJBJSea\nnBSYsoiy6wmacNmpUz1E6ADRFj0h0pYSwbI75N92x/g8QxEy5kcmhPHp6PZZmkIwHkFVhJbUp5Bu\n/dwzn8nLli8gTXMgqFnXbq8DAEB/zOFHwy6240GXqd1b20j7qgthYzCRWve9P/y3eZHze9gXX3se\nRdIch2mT8/NEC8+Y4tylsJ63fvluXmYT7a8iRFljoieHQ+5jpe01M8NCZwn188Eh38MEpCXKcdQU\nYrEPKyRlWY3bvUPss9XVtfyzgMpqRSaBj4dIN7/6zi/zsnkKe2jOsxi2CimRjOm/DeFjtm1Duz09\nQSUPfZxrc0KwuEyU44KgfS7M4BiOIh7zB/soylurc5iSEvtOQ76HY5MgohC99MYkHkrNYhalwJxH\n/zINVVGAh30O/ahUcYzK8JYDookWHCkAT88qrjcg6qwpxM/CfkLf4/lXrVQmQolOgiRJoTv0IBPq\nxAbZOttlG1+mUCjL5DmnQtF8Yflj8hMMxhwm6ZFAYMHgdqxmigrMdXFIbM4nG3trnUMD724hJblZ\n53m+fAbDSWfaLIbYbCGFVVJ3rew4EU2EiI7NBcAnBZBJ7HMinOr0ZHsDYigYh7BQZtvdpACEqRbT\n6u9kOKYqJRE6SrahLMLTogq2pxLbBwDwiSqdCN+NCkFzC9y388solLl4BunH+2KN2+7jeP/iF7+Q\nlx3uYF98+3e/nJd9/3s/AACAV15+NS87++RzAADw4tOfzctubaBg5p2XXs/LeiHO0aFYN698Hn/r\nRUxPbrd5PTwNwjCD9bUEMuA9R38a183Q5LC1xMa2bArhzUcvY+jBzi5/b0Qize9+wOtrTOFtzTaH\nUgD1pVPg9m2R+Hy1jOE9gz7Pw/0d7L80FGGIZM/6IYdPvOejGHMwxfPAnMWwjXKR69Qhgc2tTbZT\nMQliRyIBxXCE9k9Svotu4VOHtvz74JZsWHliDgq+SCIxwLG8scH7gGvvYp3NjJ876KNtN2LuM5NC\nl+68wX2x5uJvYhFO2Z7D9aMjwqkqKdLoZ+soRDy/wJ+VCyQsL/aOIYUJDkUobtjHvclwlUPS+yQ2\nHg64PT0SyG5fWua60xwvzrK0gNFEmyVDnR1TSmCeDBkARJDlCQAAjpUQzgWVI7HvVSKrhtjHJ2Tv\npdZxmULgK2y6IKY9aCAETQOYDNeQ98/yPjt5SMeE7T6m7NPj9Hsif+zBR++9A/Vp3r+UKPSlc8BJ\nAzwKSZqV+zSyH5EIBQsptMkQ649JfzsOz5UWhYO89NJf5WU1ErJ//Am044EQiVda3fUZngORjR3Z\nEeEhZRKoLotwoALtwQ2b3xFV7eQyqbYXmZiXQEkNZP8Mxg8m5YZhmODYJRCRm1Cp4zN5QsLBoz3m\ngATeAXj/I0OylfhsRQzwjOZBSQjcWtQPcs2ttVX/42eDPofPZBR264jJFKmQ9Iz3VW1KmuGKuZEm\nSohc/JbskwzhSUl0Wtpz9e4kZQHK5TKY5ul4Hp43grffews8EfavRPhLQvKiXsNwvqnmM/zbPq5P\n67eu52UGSYBUyjxeSw6FOZe5Lywam3aT10CHwof9NUwKs7l1L/+s3MK51hny81++fBkAAL75ja9z\nPRtYz+lpDuPfuYfvYt09Dvev07gwRZ+N+7imlUQ9Qw/XdEPYF0MLG2toaGhoaGhoaGhoaGhoaGj8\nx4f7Y+JYBsw0i1Bz+PSvSF5pU+RVK1GacJnKlL2afNKlTpIT4U1OKe1uJpg1mY0ndoOQT0wTSi08\nptPHWOSOG5Ag5sYhf9+hE866EEOMtpHN4fXYY3+2jSKOs7Nn8jKjhp6doMNerOGQRJeEh2W/h6eN\nq+vCe2fZEIT3d7L2cRimAYWCA5HFLAKPUuDd6fMJ59s/fw0AAA4P+GR3YxMF0xxLenOwLQIhlKXY\nRgszPCR2t9F7VxcnpoMunlBfv4OnmQsLfCKpTv8XhHjsIv29tr2el117D/+eXWDWz+oaMWsiIeJH\nDInE5nGk0sEXbD7993xKt1xnZo9tPxhBtL9ZSAYAPuPGPTw9vrPGp8jrN9Gb3a6xF+9MG9kdW2ss\ngPzeG+jt/tzXWcSurJgMf/PkmwkYAGBCCqHwCCfETomlYDCl+rOF56JPHmZDMEIyYsBsbG3lZQ1K\n+Ve2eXz3A5y70hvkknCaYjVEgiWjPJKptHUW/l0QzBXVlWOPf+uSsJ0rUm2XSZFNCnP3iDnX67Jd\nqRax3wzBQCrXG2CeUoguzTLwwnTCk6cGR5ZI8fiI7i+EeOkZQ5EuOqLL1Mo8NgfkRe+LdKlBqtLU\n8nPXKM2yZWHZKOa2UyLKwb4Q+O2SR6bKno6FBWQHXjzPqaKryobIVI+UtlmYH8jIyyU9cNkxzLXk\nATgLDdMAt2LDhRp7ac8T86DhCsZJD+d9ucljZuRie6YO98XnPoPMFSUECABw+yaK8a2vMaNJiSpm\nQuS+SF7f57+I19jj5RFe++lPAADg2rWzeVmiROYrzAbpkuDrMOJ5eZPE80cpj9FRTCzbLvdtUMSx\n8ug57rPmHPbjnhA1f/FFTCP6z7/7+3AaZJkBceBAd5fXw2hMLLkKd25rHlkyWYHX89lHsK79lNfc\nIXnSS8CMnYMDbN+ay8yxxTNohyNgL3yPkkKMiGlatPj7Q5outbpI5exiPXdH3M/f/xO8f5qxZ/Ci\ni59bGbf9/iau5aEv2MnERPRFGnMl5l0VaZCNzADjlD7ARrMG3/zWV2G0ys//yp8hc8sSKb7HfSXS\nLRhkZFAbZZGSlsb/tGAVNMtUZ5GeFyLas26wt/3t770EAAB33/4QAAC+/ndeyD978rEVuj5fw+3h\nGDD2BbNyDdcd/yqvMaNtZOX4glm+SR7Zuzd4T2STGH75LM+hx7/xFAAAOEIwM0pSyE5H7AYAZELI\nXAaK3yMImHl6blmm0nPbYn1QDFFLvANE5Pn3RWr3IQmAti89yd8DJa6N/5esRnVfQ6SrVnZXblc+\nSQt5kkV5XD7xY3583IcPIMV4nERw2N2D99/+RV7m0IPPnz+XlynmfrnKDN1yeYFqxHNAtdnY4zZW\nhFO5R7n6zpsAAPDWT/4iL1NJHRZm8Lpzy0JEmfr2qceZFWH//X8IAAAbIqFGr4s2akCMCQCAIY3t\nkUjH7VFiiEjaFGpbQ6SAd4nt4wrB3bJiXNxh5v3JYAAYDlSrPJeK9A4xkeI7xbXMEeLAYURtKZiH\nSuy4WGJbo0STR55IA+/jb8pV3v+kxF4ekUEvCTbxeHSobpCXKfZ4IFgyijEjGdMu7WsCX6zlxLhK\nUxGVQmu+ZOeo30oh6Sg6faKMIAxh7d6diWQKZdrvBiOuk6nmmmA7Kqa83NIya0rs7R1si0ZR2g7a\n1xQEO4dYmcvncK6VxfsiFKmN99h2P/ccMoZrdX5fSuhdfnGBEw74/RWsrzDMKqdKJmxISO8IjliL\ncma+bOf7NPCaiaOhoaGhoaGhoaGhoaGhoaHxEEAf4mhoaGhoaGhoaGhoaGhoaGg8BLivcCrHtmBx\npgJ1l2mrD1VNAAAgAElEQVRY1TJS0o0sEt8kqpygBQVEuZbinNNEz61UmC7e7yFtriGoTgMfr313\ngyl1wwApSS7dYqksxJEdCms6YHG8gGjEjqBrNYim9sLjn+P7byG9KROCWo02UrOCMd9jOMTzr4Kg\n4i3P4/VmZ5lqtdP34eD6NpwGpmlDuTwHu11u95vrSMX98IP3+XtKRCvgvvAGSD+zRAiKFyCNuCvE\nuwaUm3713kd5WaWEz3P54mWuDIVgvfSznwAAwLnz5/OPLl2+BAAA09NMDyxQKEpDUMDNGEMgRgGf\nIXpjpCJ6XaaGJgnSAoslbmMlFlsXosgFCumTIq9jIeR8ekh623Hk3U+IRZIsOfUfSZcjiubx1HRB\n3ySxKxXSMxgzZfLeDlIwd3aY1pokSJ8/M8vXvfo6htvNzi/kZZc+rwRKBT2aKJqGZFLSZSS12ngQ\nvO5/LzIwIAPX5XopamcswnoCH+d6q8TUY4d44rbJ48YPyV4U2NaEAY7lsM/UX5dCcWRYj0E0+oTC\neUpFpmhGNOYk5bJYxHsYBlM+lThxFIrwI6KVqu/jF/B6wZjp0EmIje/aTMmtkwCqFJ3sj8aQpKfr\nkzTLwAt8CEQYjBK6lvXM6epiPKQ0YFIxcEZkV4ol/mJBtWfEZSrcIDZE6BJdx1Uc8YkpQrR+QU1V\n3x+MObSldwPt2f4Brx01CkU7s8Qhsy0SQHYF/VbNv1QIACoKeywqIwUHT4o0M2AYOtCweBxH+xgq\ns97l8KevPPMYAAB4IrR4iepULHO7f6mJ13l8hsNdx0TR3heU6XEP7yGil8EmgclzJABYEuvO1AyF\nAL3PgukqJOuVD3ntuLaJoTy+CIHboBDQ3QMWfv3Cs1/CezVZ5PV/+TffBQCA0ON1883Xsf92dm7l\nZc/9xmPwIGCCAQXDgcgTAsPzGAa8sbOTl/V97IfMZKHFZ57ENe/53xQiuS6um9GYw5+vX8fx3e/w\ns5eI6p64PH7u9VEkcbqGdmCxJcILp8g2ibE3opD0W/c4zOH2z3F9DQfcVsYylo13ec1fOIehAKUm\n3wNMbAPT4rIyhSyFHg8SxyxPhEKcBKWyA09+ZgluihDTXgfX7ekyt11MNnF/wOvbAtX5kaYQqieK\nvSMEvlt1tFmuWB+UyGhR2PFKBed6bxfvce17LALb3CbR45ZIxEDh52kowtQ9EkAWoRBjCjmRW4iE\nwve7+7zXKe/hfI7E/id4FsMJrRV+nkRus0+IKAhh484aWMLWKoq/IUKADUvtcXksmBSW4Yi9W0qi\nqEURsg8UOhBn/NvC/AoAAHTE2jaiMWTTeMvE2qHCWOXeKBdanVDJVX+LsCsVHiae+7jAEBaNljFj\nFEYmfpEap294y7Kg3mjAHbE+7W+jffFSvr4SvpUJJkq09k7PLOZlNoUDqXcrAIBSCdvxxnW2xa/8\n/GcAAGCKpArdfRyXm/fwPaJQYwFYl0Kfmw0O7fvq11/Ea4gYPM/HMTse85gdDdDO7Ah7tErSCzco\nnBeAw7nOnGG7Pz09R8/A83KK9jl/+cZ/C6dBlmEoosjDAD6FEJvi3TWlUPBA7G1VggVL7AmrFB5l\ngAyNoYuL/YDan/TEvDYSHP8+7QlrQgZhqkph8inbWksJEYttxpj2/yOxN2k2KEzUEcLGdJ2SCCMb\nDykUXvSlEjmW0yr9hNeaT4tKuQSfffqJiXcJixJaSGH1QqFCdeJ2b0xhWzxC75UAADa9bzsixqpI\nnSpD2zJ6FzZEhzs0rw2SUTAqItx5gJ89cYn38TPT2C+ekEMJPKxftc73v/gISrAkYxGyRvYiE+8A\nSXb0XCTfW4oyI9PCxhoaGhoaGhoaGhoaGhoaGhr/0eG+hY2naiWwQ2a4FOjEq1wQaQM9JRIpTgmb\neKorhZJCEqqLhBCmEoDa3OPT+lt38XR3b8DXU1m8z5XwROxbX+VU22cW8BrfefN2XvbKTfTqxeKE\n06Y0woMue8fGQ7xvrSZESRPlieYyl9gfZYPLYhKKOrvMp+W1wwG8e4evfxJYlg3NqTbcXGcP4NYq\nnm6XHeHFGqFXddhnoUCDPPPdAZ/+d8njaIu0sirtZkmIFy6toLDZskipfOedV7BOBrZjJE739/ZR\ndPKpp67kZY88it6kZSFiXP3SswAA8O5VkSbbR09D4IhTSkDPVypOJre30cPryjT3LSXqeFRM7cHg\nk8W9suOYOKysx0VKFBX4eXIvk/C6qHRzk1fF/51dWQEAgLJgIvVV+j7hGX1/HcdASQg82+Q9/ODl\nn+Zl00vo/WidYRFRQ6WuzI56tlKRetv85GY5JQwwTXMiZXaJ0vb5woPokkcnGQXip2iT5ueYERcf\n0HWEmHdFCcGJudEg8dLjmFztORzDgUhDaBlKHE8I5qnU2B5ft+BSykGXvS49qnMUiRN8JQjpC88f\nCcGWBBPGJq+QH3Fd9vb3IIpPJ6KeZRmEWQqGEIpXad5T85hxXhBjhDy3qSlTV+K/kRAxdm18jmqJ\nPVvjEG1SLOZGQF0W0HgsCK+KRR4wKfSo1ptYiN4pz+32IdvEzQDt1M27bH9miLGyuMiewSp5bIqC\nvZURK0imepVp408KG0yYsYqwJDx7dWKKvt1hEfMOCW+fE2y6/2wX2ZCOYJRN38DfFG6xUF9C3t4V\n0Y0OrW2mzc+Y0JgOXnsLAAAagk2TkmB6ItJ/AwnP1i0e2wEJW04JUcJyRmyUbfbSLl1BL1tNsHG/\ncBHTfe72eGxvD3E+jsfMxrh94wY8CCRJCoPOEOpttjUHfWy3YpUbazhSbEju76sf4jq8tcFjqVbD\nZ5mb47E0u4JjfXyX+2h9D5kypRq35fQM2vVWnbzEJve9TQLXrslrdBziuE0Fqw1S3AdceYpFvx87\nj3/XytyXrRm873jMLJUwpCQSB8xASijBQMnlPR4k2a9aFn8lLMuARsOB/X0Wq3ZMrEvV4vHQScl2\nZLxPdGltOlvjupdITTIUrsmA7M5AJK9wiWGcOdxmZQPvN9um1L22YNOs495xa5f3cTFR10xTMPeI\n7W0Lm6jYU0Gf271M9uRwyP0zJhZto8bXqxrE1BL2NMwmGSInwSiM4K21rQnGgLKTjthD2LTm2yKJ\nhGKyC41nIO1WmG3wnmRlCv+eL7LNrpaxrzwhvGrQ2tbpY1t4oUhkQGuZJZhASoBVtoFFi0zgi4QD\nVHdT7KuUMGwiUyuTZ1+ya03aP8hWjh+Eu9swAewCNFvMANi5vQoAAEXBpulTyuIdwQJ88y20xY8L\nseFyBdtYJn9QS/S7b72Wl/VIbDiWyRcSxXJCyPcyxS4eZmyrlL5wweF2KtH9ef8NUCQmlytY0H2a\ney++eDEvm6O9WVXsY+0i3iQVbOIJlvKpkEGWZRCEch5iHWVq6sTBdjBF2nRVr+09ZvOOSXi9Uub6\nFx2saxx5oozGv3gXVkyMEtmfRLz/VolNIlmPIY1rS7COi8RWkmNZtVq5wnbap7FRr/PaPBric5SK\nbDszShSRiP12apx+g190C3Dl/CMTdVdjTaYvT/P9lEjUQW1htoVNovnq2iJyQKVWF/VVlzOlnVDv\nkZTIJDK5neIDtD+VCjM7C6rODo/Bg0NiUQl73qT3ktTgfjfUWiXsRqr2WoZkFlLyDJEdI83ujwKl\nmTgaGhoaGhoaGhoaGhoaGhoaDwH0IY6GhoaGhoaGhoaGhoaGhobGQ4D7C6eybZidmgbvUNL38BLD\nsRDTJSEg22Bq1JhCBuSpkUehAE0hGBcSrej2vc287JDo2pnNtEqLqPv1In42a7NwVJEoT4/WWWxw\nawq/v9NlWn0wxvv/8jqHKZlEE48qIod8g8IyBJ2/0UAqVk3Qz3yiIWYhiweuzFSg4JzurCwIRnDr\n1mtw9RYLg21uIRU7GTDlsdZAetzlR1fysievPAkAAFt7TPW6SyJ6M/McbnLuIlLya9NMjdzp4Pey\n/Tt52RqFIOx1kQJ95XGu5zcuYRjVaMj3Ih08yEKmB37wKoZkPXqZQ+DmllBQ6tXX/jov297BdpTi\nrT7RDDsd7u9SFX+bCnGo0Zjb5fT45P47jnWY01MlPZHoy5EI6VECusbERY6K8gHNpVYL6d5f+bWv\n5x+99/ZVAABYvcNhCglRZ29aLA5aXMEwv+QahyG899OXAADgi3+Xw91KJGyXSBFjQ9YMER9D6zY+\nSeT5PhDFCWzs9SZovpWARMUaTAP1SShY0u+XFjB0s1DmulgYYQCtMtuQZhl/U5tn8deAYsSub7P9\naTbRFgQUruiPeTw6dN+oL8ZogPYnFfbPIv75cMjjNqZpEgoq5UwT7cpUnUUFbwwwLHS6xWXq0vUK\nU4HTqAa2xaEJJ0EGAPHHBKsTogL7ou420VnlGLFNHNeSDeoQZdiWS42iS4sxXyUatqStE8MXIvp+\nLNR3FSU1E2E9CYVRJZYYl8r+iCKDwoXiiH/b38S+vbu1mpcVKHylXGbaraJ3F4TIoSPE7U+KomXC\nY7UyVIQAsxKjv3SGBZgHOxTSIRp5idqx7IrxTmFHhrA/qvUCQWMGCk9wRAPZ1KaOSWHRNUGFJlHS\nOODvJzTn50zunxdJSDY0uJ2SRVxviquredlYfVxnGvMTj6FQ4MKYr7dAa8Clixyq/EhbUcT/DZwK\nGYCRGmDaInTKwxCEuTleDy3AMKbNTd7r9DMcD/2OCNMuYh8djDj8plHDuVus8nytT2O/lgo8N+Za\nC1Sm2pzvpcIuo4jneEZ7i36H7bfKCfH1b7BYaQFw37Mwz7R6l+5x/T2eB4ckLOz3eQ3PaC1ptPm3\nSZycOpzKMEwouQUwRJjHoIPtbgp7biuRSGEc4hjrEkU89yplGrcWf29A+yNXhMvUqnhtx+VxrQTY\ngcRJp5pijSF7LqMmo4DaacThfYMBlpUrPOZbJA+w2+fxUaTwjCxle6r2jutrvF6fX8fxM7vC8z9J\ng4k18SQwTAuMSnMy1Jv+FdM6txfJRHYGnIdlYVciUluuiGQLGQmpNqd4bC/UcH5ZTR5H+z3sn1u7\n2HY3D3jfZuTipRxqpPZJBRHu4lBIggwrOm6/osKpoojnlArpKE6EU1GorlgHxVA5MbIsAz9OwS3y\neqJCwWIRFp1RGMf2Jr+r3LqDAsSvvPIq15PawLa4jWemSJhVhOjYNB0GfR5v0ySm6xZo/ynWhIQ2\n7alIwuBQSFujyXsQFZLli/C469dQUPmln/xlXra6ivuXxcWlvGy/gzZMShHYFN5ji/U0jh6Akjdg\nP5dKJUhEuJ5F48sSIrklmq+2y+HxESn8ynU+I2Og7BUAgJ2pUDJutwoldLGE2LpHiWdm27ie+GIu\nqaQdsg1USFRJhHXbFDwlwwVjSnrSE2HIqm8cEZJoqQEh9l82rSOWCBOP0uQTc7Z8GgS+Dzc/uAau\nCJ2vNnCtb4ukC6ZJST6ELEu+Z5xQCFCSFGL/QSFlhhRWpzbNRMio6mWL2tE2ud8bFM7tWiKxBl33\n3h7bpGv3cF1cXhLrOK3pli2yQ+ThityelqkEnUVYY57rRrwnxvdn3zUTR0NDQ0NDQ0NDQ0NDQ0ND\nQ+MhwH0ycRxotWegJbxJJglYdfudvCwir4ZMaZfSyaFK/QUAUCWPSAR8wvjRbWTFjAI+/SoW6ZRO\npBsukXhTy8LTsjdvsghYHJLQWYOZODMtSvsLzLCJKMXcWIhujii1eCgEowx1Si49zKQglonTPEed\nqgcsepQlGZzScQKjYR9e/esfgj3Hqb4vXnkKAABKIZ8cXnn8UQAAuHxJeG588iqY4hkBvb22EGyy\nLEodG/MJ9IhSejZEirWYWANru9jfxSqnv20Qe+DCxZW8TAmPel32plz9xdv4mcd1f/I3vwkAAE89\nzQK73hvIxLl1czUvKxNLpNFkL6Nyt/fFGAyCB5hifCKv9nGfHz0dVl+LhSjzjZvIgPE8HtuPXUH2\nUqHA40ieriukJJqY0pR94ctfzT9bu4N98Pv/4vfzspgYS2t7QoS8jH376BSf3V772RsAADAjhI0f\n+zKmHR+LI3CHaBGuqNvhGMXApFhcEp9e5BUAvVZBnMLhIXs6y+TpmxJeK4fao1gVntMxjpuhYMyo\nDrHEvA4GWO8ZkeLx2g1knVWFt6xKInIBpcFuLbAwoZEQq0OkTVVajgOf26JAp//bO8zwgRSvW21w\nWkOfBA6lB6pEwuI14eE9JDFmX3gfa9UqmNbpXIZZlkEQhRPpTdPcqyE8RtQWnphnDrFpLCHcViBR\nzEyIURtqLAsBw0x5/4StHJPIc6i8TsLWhlQ/R4pvE3MlEp4wVeWJdjGUaKx47vxZuTAkYer+SIxp\nxQYKWLTaOGa+3i+SKIDDzdsQxCKFK3mFxg0enyVivPofcfroxKJ0vhUh9mdhPQuCqWTQOhuLNlMp\n6TPpZfzYv/Ys24ZaF9vHF3qT4Tm0+62Y26RCIuqxSE8+3KU015sv5WVbb7wDAAD1JziN6ME2MhDC\nMs8zxVobH7CN7zvC83UKpGkKw8EArBH3fY32KZEQODeJEVAq8Fw3SRC31uI5nNCexAtFwoQdrOv5\npSfyskaJ2DORYDX0sK9bSpxSPOOYUvqCLcQsyQt/+yb3X2sO7fxzn+U1sgS4N4gS7iN/RKlrI947\nhR566wsW7wNKFfImyylkph9jj54AWQYQxeCI6eXQfqHZYGZWOcU2XhfC3QExZqSNdRzsH1skPVAM\nhzPLvCdqTOO42j9gRlNE34tzIXZud5Vi2xep0BOy02MhcNk/xHUni4U48UyLri/mwQjn8Djgukfk\nffVF2vE715F90X5epJV2rFPbmyzLIAuCCe+vumY6Qa9SdBZ5P2JFCnteJM+yKcRbt3s4YVNRtkp7\nwCDlgdSltujRWj0WrNQ+tZkpfM2qzvZEVoXoyPeUeOzE3pvSnacp28lM3S+Wa8ZR+uYDMPFg2Q40\n27Owc4PTf9s0qXwhbAz0nuMIZqBi6w3FPkPtEVIRodCnlPaJz3Ol0UTbFMqoAXpHGVKaa8nmGZKQ\nbl2IDqfEWlUp0QEARiMcq9dEOvM3Xv8FAADcvn2Nv0f3uHOX1yyH7KsUcTUpzbxkxsSnTNSQX9s0\noVwuQ1e0SxyrfY1ImGApFhb/djz2jtSrqJg6gs2bhNiHhkjOMtfAuXtnk/d9bWJ2t4hZ3fd47I1V\nUqCY93827askP1qt23IPpZK5FIT9U+yhNBHiwMTESVPBUqEok1hECaRgnJpteXjYgT/8o+/A5cce\nzcue/SyKc1fKvImolLFtY8HqUoy0ghBFVkkk5H7u2Fcy2isWRMKRzg4y2wbb+E5UWzyff9anxBd/\n9lc/zMt6Hj78QcbnCKUmJitYnH8yL7NosMTiPSilfaLcMye0zqcJj+mM/pbsnOxjTPhfBc3E0dDQ\n0NDQ0NDQ0NDQ0NDQ0HgIoA9xNDQ0NDQ0NDQ0NDQ0NDQ0NB4C3Fc4FYABYDpgHCPkWChyWRlIoEqc\nESkBsUiQwgolFHba32YK6Xgf6dIXpphqpSIGihUOcbh8EUWyTPowFkJnKqzGtnp5Wc3FOk23LuZl\nFx89CwAAd9Zez8uuXsfQFNcWIVEZ0gHjWNDVicKoQggAmNqWCoKXYZinlnqNwhh21/fh2Wd+Ky8r\nFJCKPSUozguLSNM77HJ7rt/EcJQwZVqZaSB1y7IFFTCj5xXPmFDIRJbw96oNFKM6GCIt0XQ5jCXN\nPk7Eh5wDWC0yNXNlESlpRSFAagK28VNPMsWtSTTQP/X+Ii/b3sK+XZplinFiKPEurnu/r8Slmep5\nUqSSVquEqKQooKLEySNR4t+ub6zlRf/u+9+juvG4fGEfaXy//rUX8zJFh5T3VT0QU19Ua0w3/+3f\n+W0AALh5jQW6f/RnSAvsCxr31Q0UTWwZTPcu+ljpV/+c29ieRkq/OcchAqMu1tkRFMyt/j0AAOgN\n+HmkyN1pYNsWzE7VIPaZ/l8jscRMUD6VSFtJCKepZht7/L2QRDELRR4jVy6jgOq2oAgHpOzYnmGh\nUCU2lwLO9bII3QrH2B9WSYjKUjjP6JDbpUehZ406z4MhhW4mKVNnC2RbI0EjXjq7TPfne3T62C6S\nTtucmsnt7EmRpimMfR9seR1FP5fU3RG2mevyGJ2aI6FWER5h0tywZP+QYG6vw+EM3hDn67nzHDI6\niLCdOx1su4IQvVPhDwZIkThFjYcjZYKlD66i31siTDTCtk1EOJWa0JkI7U27GOJwsHGbv5ed3hcS\nJwkcDLuwPuL5E1MogmswnbdMwuYHHtv4eQp9KflCnLKPzxiEQhiyjb+tXHokL/IpBGq4z2L8BRJy\ntIhyH+zxvaCAFHBDiJPaZBTTPte99ASFYLn8vfIuriejDQ7B7V5Fsf50jedgbQpt22GTx9vBNtZz\na/deXnbeXYAHAcMAsAomeD631fAuPnOwz2HIs4v4nJUSr6U9EkCuif3C1Bwuynt7/D0rIbH4gBds\nf4j0+4LB9sSksObDfQoNqvD4PqDwT2/INhFs/P76hhCQPYPzpVjlPrUpvM3zeA5lAf72zBLbyQbt\nsbbv8pivVEmIVwhXGw6LYZ4UaRxD/6ADIxEi1ypj3xeFsGgYqLAREXZgYL90AhECV0fb6YjYFyX8\n3mzwc9eqaIt6XdG2tCZbgP00M8Xrq4Lvcx9DSGH3Ipx9OMTxPxxx/xRIODYxuU77AxxbHXE9n8Iy\n/IjLNjcwNEY9PwBAamcTYdsnQpaRGKjY11D95HqiFlIpeqsSF8QilK5G611RDId9Gtu+EJ42KRRz\nHPJviyRGmlKfVUQobEhC3kkiwkPonSKTdl9dQ4QhqPDdicgECt2RoTLpcVoHxtF97H1GOBwL13Vh\neXkFrr/+cl520MNx53W438+s4HuJDKtX67oM61JhF6kI2Y9JjLhS4venPo23wYjvUaLrvfnWWwAA\nsLor3pUaaOMrZbZLLiUDuH79al7W6WK46OrqDVGGa3oiw0NUGJeouwqLke2apap/xHvBKfcz+bWz\nDOI4nghFVCGTfSE6btXRThhiHKpxUCrxvlmF2banWOjZojBXJ+HQuJDEpL0BryMVwPG8t4nt1xVJ\ngUwKu3eKvF9S4zoRIVYevfe6IsS8SqLMlQr3W5/u7zpc9zHtMXo9tlNKFNkRCRvi8PShbGPfg7c+\n+gAqwp5+JnsaAACGQv4CKOzbMngPUS6TYLAI9VNtEGfcFga9E4moZNjp4bq8u8/3GFMfVEvYx7Mm\nt8m//lf/FwAAvPwSz82keg4AAJoXv5KXPVvGPZR3yHuYqIHhueMDDp8OI1w/01SE4FJ7JiJUN6O9\nfyZDrO5Tf0UzcTQ0NDQ0NDQ0NDQ0NDQ0NDQeAtwXEyfNMvD8CIzIE6V4gjQasdcnjPBsKDb5NHg4\nxhPB/pi9ekvLePss5rJzbTwpvbjIJ/hjH8uWLj2Tl7kZnth1eniSVZJCtwd4Ork8z5667ghPxi4I\ngaV6q0z/XsnLOuR17PT4ZNohtomZybRzJMQpTpITJcQ2cVp+ar8JmKYN5eoUOOJCXUqVXphitsQ4\nVin/+HulFp6AKu8qfkGlbBdFEZ4eF0uCbWTgiWEqUqtXp5EB42bI8LFKfBKdUR7G1BApIRNqO3Ga\n6pBAa6kqTn0DbPeDDfbITleQDfE7/+lv5mVvvLMKAABDwbLwAzwBDTwel80at8vpIU7lyTvfESyC\nXofS+YoUd9t72D+vvPFaXvbmByji2T9kseGAGAVPPMVCWbOUek+eQPcpfWm3i79dEWmHF89gGtz/\n+r/5r/Ky9Q0UkfvFO+/yvUbYPzfucRrT8jyWHbz/fl42/mP89+KXn8vLOpReejzmeR4YWJdQeA/T\n9LSjHWEaBlQLFly5eDYvK1GqZzmWtte3AAAgjrkOlSq2R3co0klSqmOZAn3Qw2fa2+W0zqwnzPZH\nif+ldPo/Funrh8Q+qJfZ0xAS0yMz+HTdIo9SXTCoSmV8DlsIt9VqRfo+lynv6J219bzMICagKwTe\nBmMfklO2fwbkpRWXaRXQY1EXTEiP6g6GEJke4vwrilTAs7PYF77wDIbkTSnJVKvkdSkLplKzgvZ7\nvk0p24Wx9clbMRZl23toO6IRzy+H+syOxVhIVapZkTLdwrqkQmQ/t3uC9dLfXAUAgKDDdmo4FB76\nEyLOUuj4PmyP2TsWkZBre45ZYdkytmehxeOoQOnt7U3hCSJP+FAwXxNKSOCc4zllEyuz0mSbHV1H\n9mBELB7fZK9X7dceBwCAcZfnDFwj76zMD7+Fnwep6It5XDvmv/YlrnsJx+/hdRa9bI6xrHGO19s1\nYsuVBHtTpk09HTIwshgyIZI7Uycb7Akv94BEIkVK8NDHsbG/zzYhc4hV4LBHdIaYo7PTnFZ1pknp\nyyORHIHEPSNLiWpzn97bQdH17Xs89g7pzzh4Oi+rNfE32/sf5mUNA8d32X08L5tdRDHpxSUeS0aM\n439whb2UIbG1ErGujwMPiqVfwGmQZRmkYQTRgK87VcW69Lq8zux5uBdrn+O9RquCfbEt1rK6j/ZC\niakDAEzT/qgqRDRtEgyv17lscw3tw2h0lJEyVKwSIXJNJgQ6gn3WHdB+KRPp5rdxHrg1HgtDYtj1\npMg+sUQCsU/zSQA4FjY9iUI4daYMA8A0jUmBZPpblimP8OT31D+C9UdMxIIp2szG8dMXwq8VYqva\ngr1ZIPZ0jwRdK45gFpDA72pHiHvTfR2x11J1mWBCZ0fZH/maJsrM/OuSdfNgkjN8HKZhQtkqwsLy\nSl4WEasvFmyrgJhKXTG2IhofjlhHFQMhEYyumBLNZEKY3C5QKnIhpB1Qn71/A1k0B2++nX9WLlH6\ncVsIQNP9PSHAnBLbRgqxWnlEhAgRMI8mRsj3cNbEy9KR7506x/XHIFkqwVhFWHA7h7QfF9svfsez\neIA16hhFEom2L9KPMp/baJv2bM0mv4v6Q1wTez1KwCEoJPU5EhgWc0kl2bELvN6p1PC+EHuv095p\nLOAXp0QAACAASURBVOyUik6wRN0LNB6k6Lh6Z3VFZEmSmacWUU8BwDMyiMTcbJBNnqoLppelnk2k\n5Ka9ybB/lOkva2URezoSady//+OfAADAj//6lbzMIVbws3QG4BZezT979933AABg9sy5vKx47nkA\nAMgafGawv4HM4Vd//GZeZj+N0T0DkUSmQuLV9ZpI7U6sGylsDMnRsgk25KeAZuJoaGhoaGhoaGho\naGhoaGhoPATQhzgaGhoaGhoaGhoaGhoaGhoaDwHuK5wqgwwSIzlWhKdUZPpttYbU3c09Dm+5cw8p\nvraICXJ3NgEAwN9hyvCjs0jn+o2vM4Xp1gaGq9SWmFbenkaxx12i0DebQhwwxWtI0afdPRQisotM\nedrrYijGxhZT2B0H696sCxFPyhef2ULgLReCY4qiEiKTQnDJA4gucd0CLJw9P3Fd30cq3k6fu9Bt\nIlU7ipnCpUSopRhiRFRK22bKZUz0SxnOMDuNbZUdcj+GFDJmpEpQlvtdNbcUWlMCZqagyWZE7RuO\nOEzBIApZQTxjn/q2VJ7Ky37teaSNX7t1Ny97/0OkVA8FtdB1mHZ6cmQAEEz0seLx9focTvCzl38O\nAAB3N1l0c7+PbdcRz2hSGFkx4LG6e7BP1/hZXraygkK2SuAYAGCD5o8SY/PGPI6HA/xb6DrDlc+j\nsOjbN9/Ly8IBDsZ7gqpeJgHJMw1urztvoNidVRDC5IvYB72YqZp5j2Y83oLg9KElAMiyrbrWhLie\nEhFvNHk8KD3hzgGHt33wEQo8x0KktkBUyqkKU/I3SWD1YJ/70qdwgn5PiLkqgVsyCd0ui6UR+xbC\ngCnf5TK2zNR0gy9B1wjio4J/ns/zKwNsv1hS7alNEzEOS6JdFGzHPTX9FbIMIA6hIcLDmhQ6tbHF\nIt0ejZtArAXGNs7J89OzednsMgrQX93c5FtQyEB5xM/dqGC7v7f+Tl5Wncf5XCX6753rHB6SUD82\nH+UwkuoiCvaO7rKYuUWCyfWM7d+Y6MzjwW5e5jo4Pvo+26lSE9ebaSFaPaRQOcnnZbt8cvVLFL08\nA+YdFswrUfMkQgi0QAKTHRG+/PI62p1Fn8fsY4A/lsLGHo338C1uR49iDIylpbzMv4Rr6zjGtfDp\nixyCMzKxnTwKKwMAcHuUXKDOdiBco5CsHbbJziy293iOx4czhXOk9RscutmlEMlmm/viORIZ/OHP\nee4VmrwfOBWyDCDywRVhOFUa307CRlWJhhoFIb5YxO8d7HI7J/TxlQvLednSNAr22za3kT8iIV7g\nNVSF5A6pz6/d4Tm31cW/zUiIunbxGlMZz6VLLQpnH4swAZvCNCO2dWrcuiX+3lwb913tOofc9UfY\n5oEIm63Y01By/xBOAwMMsMEER9DgQw/v0R/wfPUoJPIr33ghL3vicQxP+Pm//n5etr+BbbDQ4D1M\no4bjNQz5GQOyrWkiQliU/aYQlYPDQ64oiVPKMJvREL/X7fF1EwPHginG0fYBztOFJtcJKHR0kPJ8\nDWitig0e81aZxLAnop4eTLgygDERBqNwnKhmNqkETHUSYV/UZvGQx1Zm4Lx2CixsPkf2oSRCO86R\n2Pr5WbQ1FaGOTFFv8LObHDL3kxt4j8NQJBKAo2FfcaxCc7jq+ecydCo7ul4eF5F82mUVACBNUvAH\nY1haZLtQpb2Mt8Pz95CE/EdjESal9gNCqyE9JhQjpLbo9Hl9UCEyhvitR+N9SAK5cm7HtEexhI9f\nNZN8B1HvOzL8Q7Wdecw4TZLj1sdPHm8Pot3z+6cxiFc4sOidxBShZxGFNpXE+0qRwvosscHOKExw\nIETMUwoRa4gEDGOPZD/Wef9jU1hNkULp1BoCANBs45q2c8Ahs7kgh7D7ql1sUU8V5m+LepaKaPeH\nIvmITfOvIESMlUB7IPaxBbc0MWZOAtMyoVArQnuB5U5UKKQtZDoy2h8bE8lcKEHImOsejCi0dcjv\nIRu7uD5Fwu6+/hqGSq3dYtHt/THOsQ+v4R7TEbZ2bgn3FwtzHE6142NdGtNcp6vX3gAAgJ7Jtvt8\nC/czb9F7EwDAoY97zDkh6PzEI/hO9pmneT+VJbS2JNzuUsD600AzcTQ0NDQ0NDQ0NDQ0NDQ0NDQe\nAtwXE8eyTGg2qxDbfPKr0ipm4pRQpRy+uybFH/HEsiRO2rfu4GnxnEintkQnYs1FTjXtDOgEV6Qx\nP/PMF7BoG72LpZjZPAkokTr2kiyU8YQzFKfBRgW9BGcqnK661kQv5OCAT/93d9DLHxl8fz+kk2uT\nT+kqlB4u9ASzx3VO7R3PDIDMsCAS6aLHlDawIJgwgz6lExdiW2NKMeeIKtQqePI702JGQ30KPfsz\nTb5eYqM3xSvwfQ/PYVsFCXpLIeIT0YRSP6dCnC8hgS5DnBg3KS1fKlLxKVHoRoPv79JpfnfArJMs\nwrb9zBVOu9us4fN873ucJntvRwhvnhCeP4YPPnoHbHHCq5gwnS7XqTvE8b62xV70xiyePE+J55mm\nU/a9W1t52UfvI1Pmhz/6If+2Tqn1hOCtErsLyXPy5z/gsa0yvSqBYwCAchvr/MxnHsvLfvnzawAA\nMBaMget04l9KmNnRivH0+OarLN7VncGxfSgE15wQy2I5LoWo2mngOg6cmZ+dYJ+0mjhuLHGC7rSx\nbH6GT/p//Fc/BQCANBVjroZjcntLeJ1bWP9mg72FXUqDvL/L87/ZQi9qhZhUjRZ7VWsVnEO1BrNu\nKlVs+1gIbd++iSwVS3jix+T1CEXKwZDEB6UQnUH9VRIem4RsUcRKzBAFPmT3KYp2BFkGZhLBfJXb\nZKeDDIqoxvPaJoFmU/RFHKFH5NxzT+RlHap72BIixuR5N4WwaJfs1ECwklJimwU+2Qbx/XVaT0Z7\nzMA610TBvMXLzM7pfkhrwQYz9zo7+Hd/xL9NSJS35/Ezllo4X2vLIt08CXv7HttYU6ognhCOY8P8\n4hwMNthulVvK/SlS7JJnbGuf6/7773wAAACXp7nP/lER53NZuGky8hoevsdMnMMZHLe3RRp15c1d\nvIS2/myLx3a4hfaius42zFAqrwNuuwKl7+wLIczkNqZlzzZ5bnXIdlcuC6H28ygU6G/z/mGGmGfP\nPsnp0ZfP829OA8syod4oQ7HCtjqzSZxYpFKPE8WSE8LmPXw+ayjYUiTqCh6vG+Ah48CweSwlMV67\n4PA9IvKu94hwlPU56UIpQltTyvi6BQsZVNvdN/KyFRvXgTNFFsuPSJzaE8LZvRD7MD1kT6eR4vhu\nVtiTn5rYR4M+22K30noA+romFLIyzM9czMveTLDPO8DjZvEJfJ4Xvs4ezMeu4NicLvMW9s//nx8D\nAEC/K1h3Ixw3h/sy8QZ5P4VbfhAoBhS2U0vM7wJ5hBPBjuySGHMYC6FtF+2TL2xyx0f75wg2nWcR\nmw3knMPvjWOuu0Vzo1xhu5dk2am941mWQZREEx5cU7FNj025fYz4rPixIqs5wHX/XBPr/sxnP5eX\nzdbxi6n4sWLLL8/gmDbFeh/H+Jl9eS4v63v4+Q9uiT0hCewaYm9v07qUmZJNopg4MhsJpf2VjHr1\nfckSOYaxc7/IshQC3wNbJGZo1XH/Eot1T912LPYPLu0FPZG1JKVxZkuRZ/rTFO8lPgntmlL5mb4o\n9x5cT/xtKtOEqwuL/cVx8s/5b0XbmeZR0ezjkI89yZT6xF98emRZCnHoQyaFlKk50kxECVAbeYKR\nMtNAG1IV4uQblIAlES9WCTFb4hLvddwSrp2HHzEjxCSmxRwx8qpTbP/VXHLLfI0oZwnK1sB+qFTF\n+x+9E9pC8D+ihB+JYFoZCT6vJcaDSmIQC0aIY5dO3QGWZcF0qwEzMyIBTqiYjeKLJKJtSoozdYtk\nQLnUf6547/3rNWTWvHn1Wl52dxWTADjieVJat3eIPdkqcfKbgw5FnawxY6pAkT+uyfPwKrF47DPM\nXPYMfB9oneF17C/+5F/hHxHP16tXMXnD8gp/b24WfxsFImLDuj9ujWbiaGhoaGhoaGhoaGhoaGho\naDwE0Ic4GhoaGhoaGhoaGhoaGhoaGg8B7iucKk1iGHQPwA6Z+uMoSpZglNsW/mc8ZJpui6hoTUEN\n9TpIcZ1d5FCIpae/BgAA799jGtT1m/j3Cwsc/tPtYtncxWcAAMAU9NswwNCqpuBr9XeRfl4SQo8L\nU3i9biLo6k8j7cvrMl38pe//KQAA3FvnkC3LVZRmIRam9KfE2ZgZRcdTVO8HJDZqp9wmSod2ucH3\nf+wC0sOqQmRaUeZGfaaf+iQUVapwW1x+FNti+RxT1E0HQ9uGInRoeQEFBS/fwRCL+hT35xSFmUjx\nRiV0JhiLUKwgVTD2mZ6s2J+OFG8mkdfpNtMNhxSuM+oyJX9pBmlv3/q7fycv++7/+yM4LUajIbz8\n2svgCcHkCoUp/PZv/05eFmc4ft5872pe1qjROEqZTrc4i7TgSIjY9Uioa3yDqYAtEhSuNJi+WaXQ\njmIFx3SjyQ3aIDHqep3bqVTFNv76i1/ke+1jv7///u28LIlw/Kx1RXgWiWHb29w/gw7+HdeEkHUJ\nQwQ2RGhFX7TVaZBBBlmWQsHl0AEVYhSN+B4FoldmktZKIpGmyb/NR1XKY/7cOQzZbM9wiMMZEjkv\nFPi3deoHi+61u8thcy98EcM65xc5JDPOsC37B2wvOvsYH3HQ5brbFg76mTaHq6Q0YdKEycoNCm3q\nCLHljCjKoSeENaP4WLHK+4FtWTBVr0G7yoJs3UOkDk+JcNYCtbcMpZu9eBkAAC4ssHDjB2s41poF\ntgkxqUHPzjOd1aQ5PhIhDmYNf9PZw7l+bpZt09ilsMaE2/Owg+1tLrAo65nHvwQAABv3eG76FOLj\nCGp1RlRlS4yPoIs2bg+43WOyP5LymhzHK79PJFkCvaQDdsZrpkMU49Di9aMbo+049LgszvB7fYfn\n5oYS6Bci86GJf2cZU6t7KT7PvV1ux7qJNr1Dl/vTjT/NP7tMAsgXhd2fLmBo62iV50Xi4fVkEoQO\n9U8maOEhhQhGPQ4jC99F6nlZcLkDGnvnHudQvWiTQ+ROhSwDK8ggMbiuEYnpjsXSPR7iMzkuF9YN\nbOeCCKlzYwq/tFgk0QqQQp16HBpScmj8JyJ0kgbTQg1/O9/8Uv6Zl+A4HIlEA3d2sQ1a9gd5WSPD\nOp2dZdr2R9tI5TYNprU7Bj6jCuEEAPApXMWr/iIvS1wKjfO5zwfdLQgiDp85CdIkg3E/ArPA4akB\njbnFc2xDvvlfYBs8crmdl7kl7IMnvsIhVjHtZn/+v/27vOztW2h/jIC3uklMNtLlPjuk8KkpCrG1\nS2yvPBXq2ePnHdFWzBKhMQGFk/dEyMuYxsVHG7wWrO3j9waJFITF5wnEfrJO60K1wqEVh8MRnDrG\nIQPIkpRDZAAgM49eU+1bZYiuQfXLREi2pUSzayv8PYrjDEZszw5tXEdrZR5HN/bwHeD1q7jHHB1w\nOEN5HtdnUyg7R2Mcs1UR1u1T+H4mBLLzEZ0JwXH1HFI8lUJbpDivCk+SwT9Zdl+vSsciTRMYjztw\nd5VDa0okJdGs83obUJiUydtumJnG/bkMf/JoLQpF+F5I7ze2CMXP901irVbixce1iQojm4jMVkLF\ncsxkRwWl1Vg5SchfPt4mC+/7OsdeO00h8T0AS4Tii7AjBTUOpOj5aKjaWYg/q8YR14upjUYR91Fb\n7dsLvJfPKDxHzSFLJPsJArQxUSiSXdAaasuwbWoXuf8rUjiXLcKkVF/GIjwMSGZAhi7lIX7iHr7n\nnTo83zINKBeKEIl6KlMjpjD4KnRQjJuE9rLdoUiAQ2GH81MiecY8vpO++8ffzctUAojFeV5HDldp\nLaDxWi2xHcqovWebbGsr09hnr/+M3yUHXdynbFa4nf7oz78DAABf/yKHjl6k9+TVO7fysrVN3B99\ncJUTb8zPP0+PLYTa7fuzNZqJo6GhoaGhoaGhoaGhoaGhofEQ4L6Ply0DIBHCvRmd5pkg0kqTqFhH\nZMrq9+mUVZwILpCH+/O//ut52ZnL6HX54//jD/KyeRIgtsTp5MZtPOGav4CemOI0Cx5WMjy5Gx9y\nCtlSih6oUAgt7pM4XXOGRZSn51cAAMAbsnfIpD8Tl08T1UlzJE5dDTrdNjIpzmafmolTq5Tha89/\nFi48/kxeptIjLy0yO+nSo+h5m5/hU0qLBNkGQhw4IDFieVperZB4V5VPJy3ywDmCAeSN0KP03JPo\nKVy5tJJ/FpEXOxNng3FK3l/h9VZCVZEvPCLkJTBlGveiyqPHZUEu5sasgCTEZ5sRjJ2vfPXzAADw\nR/+WBYPvF0EQwu3V29Db5bS2j57HFKylEp+sb27iOLsr0sFWSSQzEMLPRh/Hr9fluaJOnh+5eCEv\nukhiozUhoLu7ix6t1hS2xcIy33/Qx3u44mS7SKft9RlmeXzjmzjPDjss8rhzD+u+H/CPyz1iyIl0\n8zZ5GZZqPN4qc+iB31hdzcvCsUjNfQqEYQRr6/fycQkAMBigJ1yyOkJK+ZwI8ekyie6GnmCJkLBa\nQYiUXbyArIKCuJ5JbAZXMHFKJRJdpL7KPJEatk+ekwZfd3oB29yMuezcMrJICkVu+/4Ix63rshm2\nyZsYC++aErhOhO20iBGWxewdqlamoOCcjp3gOhacm5+Cb/8nL+Zld2+vAADAwGe7H/hYlzjgNl5Z\nRAZMJnK0Zm0cIz1hJ0ckrnqmzXYqJq/LUIjRZ8TSqGYkaC3EJ+dIMHy0yx7u4QbOg0iM5coctvvi\nE1/Ny9II59LuJntJxsrbI+5RJ2+LDcIrRl0VjYXoI9y/1/HjMCADN0vz9KMAAG1ikoUWt7FN7Tj2\n+RkVE/HMefY6bQypzmLtcYnNYsQipTOlT16YZpaDylvQJwZUdsg2bPMA52CvzHPmbECe431m4gDN\nPTM2RRH+dizEBjNi/ZSFoPTWBqZMLwvv1IhEZZtivLWfvgQPBBFAuptBWuI2DU0ch65gZLgOMobN\nkL+XKTF/0aazi58BAAAnuZyX7W3SWiq8bHGJRFVDnsOeh9crkpdQZGGFRhO9e25dMEhmsC6uYGv0\nfVyvdrz387LqPPZDMWEmTuDTviphFqEay9uHv8zLCg7a06kpFgw3o+qEt/8kiOII7h1sw8vvvZyX\nzVxE2/l7/+DbedmFx5UoNM/DgIS4w5Dn4ZOfRRHou2/xvP7RH/4lAAC4Ia8jETGPUsFSa9BeY3mB\nBCtFiuQh9U9HzLluQOnExfM45FEfONyfDnl21++xEPn2AD9vn2X7t3kP7VgccZuaBo69fofXGz8O\ncrbmSWEAgAXGxL5UMRCyifTb2ZGy49J0GynalfUxr5lXe2gTPjxYz8salG43FUy8bg/7NLqHYut2\nZzX/7Ft/D/flexvMzrlI7wxmkZkrL9/F8S4Ii9CgNbVW4PZUKZUNwZ4IQiX4LdjRPo6PveD07BuJ\n0WgAr73+U9hYu5OXOTaxN4a8P7eJSV8VyQXOkGe/d8jf6xBrr1TiSAKVcEMQ2iEmxpfnMdvSArJr\nn/BuMqFDrP5zDBNH4pNGpnHMb3/Vu9Gpoxj4QmDEEcSBeClVIsIF7menRKK/Yj+pntkQ4SZNSg2/\nt3+Yl5VrONdd8ZwVYq5PNXnfPCKGb0yit8M+24bmHK7l3YD3WgViyTgyvTyxCWXynqVFFttV2N9D\nu+KK6IgCsXR9XwjaE2MtZykCgOmczr4DYFr54WAAe2KfFtOcGw7Yrr3y9tsAAGCJfbdiNsqInmcf\nQxsfC8b5FCXKAcFAGtB8nqmK/Q+lki+SoHSrxjbEpz1p2OUzg66HKcMP11fzMoP2Z4ddTrqwtYf3\nHfSZeVtQbDYhhj+k84uNHY5cSGgOT4iO3yebXjNxNDQ0NDQ0NDQ0NDQ0NDQ0NB4C3NdRswHooEiE\nl9igI19bHiR5+LkhDpSmpvH0b77MJ1PPfQ49aVde4Ljvzi5pUsR8+nbhDHpTU3HB+Vk8sVS6KuOu\nSNNLp1+RJ2Nk8VT7Fnn5AADeex/Tcr7wJf7t9Dx62/oDPpGjg0tor7A3J6XnToQnSMUd9vYE62VQ\nhvSUOhXlcgk++/Rj8MSzzMTxnkTWTaXBbAl1FxnrbBJjZarCKblVhkd5gqc8MVLjAqifg0CwFx5B\nb3vJxbbwRMxzptyGIjY5M1S6Qj4RTah+0qMUUkxkknIbm7ZieYkT1gP0Ct+9wx6eL3/lWQAAGEd8\nslsunt47niYJjHo9GIv0jwWK5+4N+Lnv0kltU/RFQifkhkj3vrV9E//dZP0Hw8TPf+932fOYDvF0\n/y9//hO+x7vo5Z5u4In69g1+viViQPQiPh0GB8fv1DRrMDx1GVPOht/i/vmD/x1T4XkDPtHfVCla\nxel9QN7noUhtvEjP65b49Lw9izoPa6twKqRpCmMvgFSwHEJiuk3NTInv4Xj1fbZJy8vISPjwfdYZ\ncmgsLcyz/o1Ke2gJu0JyQBPemTL1udLEAY/nktdHZs3hHtuLjLz4JTEG1TXqNR7z/TH2cybir0vk\nhTNE2yu2X12krkzoeeqCEeFYH/OenQCWkUHd8uH551hX5gtPoIdnMOaxHJERiUSK3Zi8H54Y8+dD\n/O1Y6G4MR/g9R6SO7FA7Fs8LLYqAUlE2SXtpmz0YN4j19niLvdlre+QVE6nlE/LYVs89l5d99eIK\nAAAcrrPH/tpbbwIAwO42j5mKQQw8kX7bp/SchtRQII+VHx9N1/ppYaYmlLwybMbMnJulcdTyhJd2\nF9sgHjA78Mrj6LE+e/nRvOzwHXyOBZECHogp4IgUvyXSebGFD7VMnqrrt1YBAKA94u9fWMG5d8/l\nMbtzE+tUGrBX0qBxodKZAgD4xCgKhZs4HGHZYSJsdxntykAwVEYBXu9wg22cfZbn4WlQdCvw+JnP\nQlJmj3ZChmChyQylItk7I+VJtreH4/BwxOumVURWsO+z5pNHXtdiideNMMQyb8RMpxHpfSkPXSI0\nherkOSyJtLIbNOZ9i23DFrFlqwfcp1YLfxP1V/OysolzrVVa+f/Ye7Ngya4rO2zfMed881jzAICY\nQRIgSHBustliiz2rJTtkW7bsP0c4wg5/yf7xj8NflkOSZYeliI6wWg7ZlsQWu9mtHjiAAzgBBIgZ\nVYUaX72h3pQv57yjP/Y+d6/ES4Ko90pBl+KsD9TDycx7zz3DPvues/baRZkfitbVSOdhrcQ+0cll\nHV8BnaBSqKzdoyAohbR84SQldZ03Tz3NPs7FJ7Vv01zYjqmuUZGxmcDwDetsT04/rvXsfvVbRETk\nx2B3ezyuQnBan/oQM2HPnuN/D3qgf3OH7dVmH8Z8X/QsPLVrns9juL6sY/6Tv/4cf/+Pf1yUrcfM\nLPmtv/3Fouw73/wBERH98HllUt4Wdk48UlvsOB7RPWD+eXk+lgY6lNN+POEeJUZDC9kQRuQQGNOi\nQDOCebErrKUQ+qcxlLENLmZ9yL7QMGf7H8P9k322K5u31CYnwp76xOf/WlE2L6y1xbr6IafmZK6A\n3khZGLc+sOGMJkwyUltzbZPt7T/93vWibGN4fOGz0XBA777zOu3tqP93/jyf3pdAn2MYiZ2MQKdQ\nxqoDib09Wew7wCLKRdOkBLqYSY/HZQ7ibZH4TeqCHx5T2OuGRYNsml+UMvyD4BcxbVz33vAMXMeh\nMAgpA+2nIh16pgMyAA1GA6MfVC6pjTWsj/kFXR9MNEpYBv9Dohh8uO/cDK8L+z32GVv7av/rssa4\n0Fd10SdMQc/VEAVroIPXa3E/l0q6jpGswyWIXOgc8PiOhmp3TRrzFOa15/nHTvGe5RkN44gOQNem\nI9Ewa2vqz/3s9deIiCgAvaz+UCJGILLlgbNnub5gROoVo3+jffHyK6wRtwZirIn096yw+xdmlJW6\nL6z59h2NptjoMmNuBO9GvvRxFdozlGiLq2/8rCjbExZzAtph3RFfpw+2xuj++GO6UnfX6paJY2Fh\nYWFhYWFhYWFhYWFhYXEfwG7iWFhYWFhYWFhYWFhYWFhYWNwHuKtwqjwnypKUBiAcGYrosA9CUJ7L\n1KyLy0pXKld4v+gspI588lMstLrykArmvfKDPyAiotOn9LfLjz7O91rQlJl+lWnnfRHbNGkgiYi2\n1jnUZn9LQ6dSoTxVGkrXmp8XQbZ1FfFbEmG7pA/izZJ+0ukphT3NJU0cCOBVRJQpXNa2aJecMXHC\no8B1XarUalQvK02uVpWLgrigYWEhzdGkLsOQriyWNHooTie0RaR/GR2tHESX6iLQZcTSUghdIJPq\nESifRgyWIE2kEaHNkawnoQgOCIuW5NoBpGCtDbkshzTd21eZYn/yIU1BvOMeL/0pEbdZNBpQH8Ip\nrlzjkKiv/tG/Ksq+9/zzXPdcn3FLBG+3b2jYVyBNG8Mzhss8jr//ne8WZaM2023fvHypKOttMY2v\ntc2/nZ7TcbwtqcDbB1rPmWmmWUapXuPb32ahrkpzTr8n4rI7sYZJ9UU89DbQCPMSP1sV7uFJCNH0\nnIaAmJSrP/3xK3QcOI5DrhcUArpERCUJMRpBmEWpLOnEYx23qQiIdfY1DKXfZbr2udNqQyryTPWq\nCpxNmbCDBFKTihCrSdU5P6/fvyNU+41tDSV56fVXiYjo4kWlwd+RVKrrGyDwRvwcmF40kPlXKmn/\nJjLHR5C61jDXq7MastHudo9NtM+ShLp7+7R2TUVRT57gcJ0TKxqa50ubZRA62RaaeKuldnJulsda\nb6Dt2Rfx1l5Xx1Kny2PoIRD4NqElJv3kAgg4BiJQ+NFnnyvK9iTc4fomhKyIcG4KKS5J0n6uPqGC\n9gtP/CoRESX7Gq6z9xanWb72+k+Ksp13eT65odbd9WXsjY4eTpVmOR30Yvr2AaSBlWn6SRCWr9xh\nmm4ZBNM//FEWoV49peL+f/xjpicfjCAFvc/tE0OIVUVs1nBtsyjzZtnGn59hevIw1fb0azwHl0DJ\nZwAAIABJREFUn/jUx4qyPZmOey9pSOFIFqPM1z4byL1qNbU/JALxA0j3nM3x2j8EIclNmV8HLQ1F\n2H9bU/UeB9VKnZ548nPkTuk8dOtcr+myUug9oal7pOv7G+9wSPbuTR031zYlhb2vbV+p87OEEPKb\nx9yWvQNdyxJJ/x4Krb8PNPSr1zn8r17WUKc04/nXBeHw7Q7b8gvx2aJs7zb3/c3rmt40iLhO03Wt\n++pZnocHidqzTMR5ZwO1XfVSg/Jjhol7gUfTK7P0X/zX/2lRFoqfGLv63K74Ey64q5UK91WOSSRE\npHv1jIZiPfgwh1atvaZ1z9OR3F9DESJJk/3KuxzOdKelY35zW9byA23jtswh19O+q5e5jZ/9vIqo\nf+zLzxIR0Q9+pmK2/SvsE9SmtR9/43c/Q0REl974alH2yotsgz/3Gxoetnx2hrxjhpg4jkNh4JPj\nattNiW3tQ3is8anxbpOiX0JZF1Hg3Zexcbqp8/+RJV6r9mBdPpDkIsYnutNWv+3b4lc99vQnirKS\nhDnP1HVenhIx2AUIp5qW0EgXQqWrMm9cD8I5JUSl1VV7+s4tDndLY0hkgn7uEZFEMe2s3aYMfGGS\n+Vup6jp+Z5vfW+oVFTbudHlNDUL97VD8gQEsOxUJRT040DU4F1+mCsk42gMR95b+dsdVjPl34J+b\nT39RCNWk8ChXQrwmiWZPwr0O2SIiclyPgnKdPHgXG0p4XwwJKAbSLq6rY8m464O+NnRZkn6snFBb\nMxqwzehDAgjzzlaGyNPOriS3kKHppFqpg12ec1Ff/YB2wmUVSInuu2Z9UD/kYMjzagbChEou37+1\nr/Z8d4/HRrUG35NrD2MMGzy+qHRORLGTUxdCA3dkbL719ttF2fo2r0FzSxoeb8Kpdrd1fXpXdBpq\ngdqVZQlB+xu/pSGWaxssP5FCIgRPQqRNQp8UwpoSSchScfT7FVlbUnjvdyX0btZR+2MSwRxgggIJ\nh+tjUiBZo4PwcGp7TOV+t2LeloljYWFhYWFhYWFhYWFhYWFhcR/g7oSNHYcCz6f9ju5ap0Pe1apU\n9VTDExGnxTndrbq1wbuEFz6iu2UnHzd/645gLGmEpxp6ur/wIKfs7PkqaPrGy3w6OpK0ee227u7v\n3GZxIg9SmZbL/Kgnzmkatice5JPLxNMd6sDjHfEAhBt92fHu39AUqpmIXUEGVepK6sLqnF5vaXWO\nguB4e2We51FjapZyEFPqy6lvDruJo9HhE+5Idv9GkFovkTRyMQhUG/HUfl/7ti+CaAnsEjZmJf31\nFLfTdAOEH2WHMYXdR5KdTUxB3xA21O4d/d5Q0tZnmY4FR9IgZqk+Y7PBO7BnTisrYNDn581BoGyq\noX1wVHi+R1OzUxRD97WF0fHmK8o02brGp2x4UlgVtlHo6q5rHkXyPT1dOCnMr9kGiGyJUN35s5qi\n9kbKu8GtPT5lTUt6crMlIsp9SHvc2uPda0ynORSh1lZfBV1dSSOfeVBPORXvAyvLpB6shTrP61Mi\nDAwnW1l+fAFAIqLAD2h5fplKMHeqIkxYqWr7JTLHAxADa5Z5HFw4oWNkWuzT6qK2W13SjzZrICro\nSorxTNujLeyIsqSND6o6D80p7S1Iw/zOFW77zTt6+tA+EHHOWE9pHnmY04bWy3q91IgHw8mf2Zkv\ng+heKvbHgaOlJE3G2W1HgOd6NF2pUWdXmRkbMv/nl7Xdp+S+tYa2JwmTwXPUrkiGTZqqK8shlzmR\nAHvgrTf5VGZhQYWnq1VmMpnTpifPqu3+7NMsVDyAk2NzePXAKR2DW7s8l9Y39SRqU0TRb0Kq26Ew\niyrTyuabfozXp6ce0pPgE9eYZfXqC39alG1vmlN2TR9/t8jTmKL2Ol3Z1VOngTA1pk+qjX0y4LZt\n+GrrzomQd7Ou6+NI5sUITg/DgNtlmEOZ9EUY6fUGe9xWrgiAZpC7d0vGxf5bbxZlVRFy7JTh5FhE\nuEfQ74ZZVZ3Xeu7JCV0nAfZmLOy2TZ0rbpnteRvGTK2tbInjoFSt0cUnnqE8UDtgWEu+B8zDlD93\nKjo3+69zvW/fUibj3pD/bkCK4GRTTsNLWrY4y6eOc031dbp9kzqb2yUGJmK3xeNrCOucK2ttd6iM\nz6583s6UzeKITxY4ahPfvMLrwNS8fm/f5/4KajqHu8Ie2t3X/ji39DSNEm2boyDLM+qNOlSb1XbP\niO+LDBtH1pdkhKeVZl2A5AjCnJhe0jH3G7/3ZSIi+hebXyvK+i1zHe3HXWGPzy9yX3QhscZI0n77\nkMa9IiLdiwvans9+4hEiIvr4Fz+qdZ/meq6eQzF+tuNXrig75zf+OjPbHnpopSh76acs6Lt2XQVA\nz1xcJcc5pj/pulSrVcmDeb0np+P9CBJQGPsIzB9NMQ6MbaEqpDAuP3KS14XPPADPLafiB/DWkZo0\nwpIoog5z4cmPPk1ERE9//FNFWV0YNhGwHovMy8CENi5WCCKvxt9du64M/e+8yGKkL27oHHirxc9z\nEB1OsnEcpFlG7cGQqmBn2pIS3Adh46r8Dbr/NJJkAfWq1mkoCTdy8O1jse05iOybg/0UTvgNk940\nFI6p92MCfFCWAH7PMMfGkpukH8xPzLLjsf0KuC555QZ1+8rIc0Px6yrQ0OLnhtD4qbTNAGzx3j7P\nFyeA5BXCCj9oq6+xssis0wceXC3KXn+JP+93+F5DEF2PE0nsA357R/yfJNT5ZVj/PXhfMyLQTqZ9\nGQj7JEZRZOlzz9V7GNcySrB/782Yb/W6dHNzvSi7ts7zb6er/tLaFvsVPggbX3iA3893dpTh60m7\nwCsHlQNul6c/rIzFT32abfDaTWXRbOzxHD8QJmBpCPsYst4mIFRvSDmzTa1TJO9wpVTHZVnePfba\nWs+OjKkDmJtGxLhW1zls7CnOh/wDzg0Dy8SxsLCwsLCwsLCwsLCwsLCwuA9gN3EsLCwsLCwsLCws\nLCwsLCws7gPcnbBxltFoMKRqSX/mCJU6cJXqlUsOdyPmR0T0m3/rN4mI6Lkvf6Eoa84zFXXrqort\neXKdVkfprNvXmVa63lGa0bf/6I+ISHPED0dK9V1eYkpmE0Jqrq0x3TiCes6uniUiogcfV/orpUy/\n3Gsp5bIvIWP7A6SzcRsMB5AHXuiCeVfDKB6eVsHho6LVatMffe3PKA1U/HZfBDi7Byr0KIzpIqyK\niGhri7+XQiVmF5jGPTOvApMlCY/o7WlY2qXL3C/trrbtqXNniEhFopoNvca5cxz+cPKUin2dOy/h\nQiWl5jUkfCQTQSq+II+VOAUhKp/3GD347dJZDi0og2BeLNRriAii2Vm49hHheR7VZ6fIh3EU7TK1\nceeS0tdP1Xm8ORA61REh1SGMN0dosiUQFt3eYmrlSz/6WVG21GA6+C4KAIq4a1eG22AHQze4fXxo\ngErA/T2MQPBSqLsp0CirfkXqrvu5btl8DlTWnGmBvZ6KwLXb/PfMHITUZPdGiC53iHLXpXJFKeyB\njIegpHUddphmHIMg21SD+/6ppzQMxbRHgOJwvgn/g+d0ud9Kodq4uggmhjIO80w/C6Td3nz7naKs\nJwK7lGq4gQlnDCEk0hXRuRzE+zIRm2wPtJ07fa4T9m8k4S8JCNdGo9GYQNpREHgercxOkQP0270t\npon+7NUrRdnLr/PzLp1QofpPf5bFOU8sKCV+uM+UVc/XMDySeeL72o6nVzk0rwKhZaWQ27YZyhho\n6PPHKX+/A4LJAxGMfOvy9aJsf8T06Y+c1zCt7iLf99qGhoy9dYPDuX52VZ+xIyGL800dg48ssT17\n+jO/WpS9/IO/JCKidkvptHeLZsmlL52p0faehtv85Bq33V9e17Wwcp5tUbWu9q/hcf1iECJPHR5H\nPRgfZbHxKXKRhSqewfzf67G9z4c8xsKeXiNuCV3/3ZtFWVXOgqKq2tzXEp6X14EKXZahGWY6tgMJ\nc3ZiEOxssU3s5RoW48scTIG+fmYG7M4x4HoeVaemKAEaeqE9Gqj9znLujzL4NXGPx9fWZQ0vy4Uu\nvbD8aFF25R2mkw8cnQdOj9vIP4ECovz3hgg49vpq5/uSbMEDurWTi40p61qRy9p8a1PXqJkprtOp\n0xouOBpxXQaRru+R+FGNWZ2HQwljiiB8rUTvUpxomPNRkOcZJUlEGR4lylrux9rGifGrwF3Nxf+K\nExDfd7meSaD1OvXEWSIiqizr2Dx4i8PiHUjGcepZFjn/zb/5JSIi2tjSEKY7d7htOz0ISReu/YkV\nXWNOn2a/KvL1e/sDDq07eUbDinyX++LqJQ3Pr/0+1/3pj6g4+cs/ZeHuQU/X8DTOjq03mmYptdtt\nvpYgMmK2YAfCCW8HJlwXu8yT5B4Xl9RP+tuf5bF/ALZj/0CEV+H94XaXx9QTj3Eo2rOf+pXis5lZ\nWROgn0rih8xAiENZKhqCr7W7w/PyDViXv/uDHxIR0fe/+32tk882ZPa5rxRl/UT8UwfCGiBU7KjI\n8pwGUUweSAvs7bBdWFhSn/nEKo+jcknXu71d9vN3tjVsM0slRNPV8RaKb7e4qtfb3OE23gfR6MPh\nVIf9tkkCw0cJpzL+lTshLA/DSNwJgt33StiYyKHU9agEsh/lmkiBQMj+/rq0UQz9LVWEHDJFWM2o\no/a5IrIcCbx/9WQtnQLR7XKF+9UR/zkB8V1XwqRrU+pzbEuo31RdbdhA/PAYwqADGS+dnoYGViUE\nNIHQqEzW/BzmdygJKhJ416PYnaxkfjfIifI0pxCEiIMq16kDIX9DCTXa39P2dMXPXpoGyQ4ZLxVP\nbfxai8OC07ras4UFfsaXXtTrDUT7xIij456BScaTJdpOe+JP+TX1QxZX2I/cg3puiw86iCDEVPz4\nQaJllZBtVhNCIh0JWR3FOF+ssLGFhYWFhYWFhYWFhYWFhYXFv3e4OyYO5ZTlkeZcIyJHdpqSHIST\nZGe+XNKdw6c+ymyXUqA7km++wqm999dVaHUkJ4cdSIl26wqfcnVz3UUNUv5eXbZHm2Xd3VqY4ZPg\njS09aU1E1Kzf0d23W9fMaeIbRVlXUnqWfRABK/HO+G6iz1MRVkW1oXWqSDrVDpyeJVly7ERt7U6X\n/vJbL9D0SRW6zVN+jpdf+FZRduYkn7LNzyk75rakjk2gz0xa4sjVXcItYSp94WMq4vnUE3ya0ofT\nXFcEv67d5FScly5r3732Ovfn9JSeJv/e3/gdIiL65KMPFmWhiBKeXNFT/EiYOI4LO8ayCxxjynKf\n/y5N60lMxQinebqzq6Ps6Mgdoix0KYeUkCadZgDMj9NNSbsODJeOMCm8praFKzuxgy0QTWzx6W5n\nV3fPd+RosjVS4a2zH3mCiIg25SSmta/XqMvJ77CvzI9YxPOGsMs/iM2JiD5PWeqUgxhtKgwcD5gS\nrgieodDcnW0+WQNNUvLDe8TEyYiiOKFOD4TbGryDP2hpW8VF+kzdLfeE6dHahXYWJs5BV1kAhs2R\nQxsFImAYQF/2jbC2PGc00FMAw0rc3NST21HObTry4IRMWD9eGa4rQtQJsKVKIg5+MNR6bu6yOFsO\nQpxGxNGB08JKySc65snVoN+jV1/+CeW7N4qyqTk+fXjpDU0J+bawXT75eWVW/uE//2dERPQbX1Ah\nypmyrAXQP34g/QjCcgtzbGOzktrx/dH4Sb8DDJJYzh8cEIm8coPZk3//f/77RdnOHV5HngVxzK/8\n/n9MRESLy8rOqUma0VU4iXlDBFAzOOG9I3bvARBWP/8QnyJfeu1HdFSUA4ceXPXp71Y1Lf2pEp/U\nf/MdXbO+cZ3H1FNnVCix+y4LpLbgTMaTedqKoI1FvDnNgUmS8fW2Qah0p8o2ayingg1II18T8eoM\nTgBJUqaWoO/WZPzugnj0sqz91ZraxEaNf5NDCvidiH/re1p3T4TDH8v1dLre0fl1XLieMoiJVOg/\nSbVeWcjjMYP7Ol22x0lXBalnFpjVMYLUqL07vL4mwFSMRdgRU6h6IrY+GHTkX/UlOn2+l+eC2+Zx\n/U6e07LFFfZTqnr4WZyM92L1ic6d5bHmpyoY3o/YF3J9ZSJHKfs4tbqyeLL4+Ie0LLHpFL4ZEZEv\n/hwSCvsi9p7j0bGsUWmivw2ExRfB0WRlmq9XX1XW1qacVE8BE3jxAq8FU2d5bJZXzxSfXXT47xhy\nOXdFaDaDMWNOXx2YSyWPO2F+QX2yhrBIwkDnS1USeTz5MRXnnPkqp9jOYJhXSv6x2Ql5nlOUpmMp\n4n1Z9xxPr220pROwK6FhZMCiv1TnOfk7HztflJ2U9Ol9YH8sTbPtmCmp/Zmvsb/58EMPExFRc0oZ\nS5Gk7C2B2Kgr7xl7d3S9vXGdfdAfv/jTouwnP2Vm85V3rxZlHZlvKayjM8/+NhERDVJdRxxhCATI\nWMyPf96dZyklgwPK8Ow8lXUs13Hk+9wvyyvKplmUqIU/e1cF9VdXeA2ogLPbF/HdHviniZzs431d\noe1PmsNmfE0aZ9mEVMjj38vhv+O/mcS0wTLz9wdNRX5XcIj8wKFBF5j+4tCVgOlVk/dIF1gV5n3X\nDXTcNIR1GkCyiZKMl/lpHcPVMvs6/aGuIz1JXOLLfYG4R9Uqz5s5YDO3JNFADgwuM0+jFPtDIhLA\nJ3REKD6D9+5Y/H/D+uZri9gxCHhnSXoP2j8nh1IiSEgQCMu7CiyVacnB3oP07Dv7zKYrV3Qh68u6\n2Buqb39pl+e/O9TrZbIuxiC+397lazsZ25UGMN2E5E8dYA6OpH6Nmr7jnznFwvOjBU2F/upr7Bf7\nDV1PVlbZt2y9c7koqwkDZ7YJUSKTRIwhUuODwDJxLCwsLCwsLCwsLCwsLCwsLO4D2E0cCwsLCwsL\nCwsLCwsLCwsLi/sAdxVOxSS5jDIQJDLU+BTolZHQvpamZoqyP//anxAR0eyShi4tSjhN1FdqVCAC\nSPWaUo58CW2oASVseZHpqYMOhxpUPKVc7W6zCFgcaZ0aZaZERSDcdPnlF4mIaOPtS0XZSGj1BNQ5\nIwRbO6n0V6pxG7glEI4U8bMZUvrVw4+eo0pZKZ1HwczsHP3+f/ifUGlRqbb9DtOiL7+mgrgry9ye\nSFGslLkdIxCTfPAxvs7MilLC+vPcV1/58heLMhMqhuKYhg2eCBV3CMKCdyR04ca1db2G0A4311SQ\n7fobTDFzgWJ4dZMFMD/2paeLsjNnmS6KYsduWShwAVAGjegc0AhD53gCr0REaZpRq9WhUV/Hey3i\nsbCwrOEMuze47leuawjKdszPNjur1EpXxmAv29d7iKBn0tfQkeFIwmwcpTJub/KY7nU5rCAHIaxq\niedgBCEJTonnQzLU64YmdAEomEMRYctcvV4k87sEIsBhWeZlVUMhKvJ3DHWZRJk9CpI0oZ39Fq0u\nKg3dhFYlmT7n7By3b6etoRdJwn+PIEzJaIW9feWa1lXGSAi06dMy5lwQjh32uD9SuV4S6VwyFFoM\nb7t0m8fBuYUVrafQ5X0Q3O6JUOZ+or/1RaSxA325L39nQOl2xHQHjs6NXn9ESTKBnnkXiNOMtlt9\nejvYLsq8Ozx3b24ohf0zX/gcERH9vf/+vyvK/uE/+sdERPT1P/5aUfahE9x/Qaj2tCa0UxQ1nBUa\n/cKshikZ4eNQQsxcCOvpik2IfG2T/+1//wMiInrz7deKMjOGv/q1/7coO/nQ40RE9PgDGuJZKYno\nHNDaV2WoJ3CPnoRW5pHOqzMnNATqqMjyjEZRn2bLSmf+xIMs6LfT0/n60m0eK29tqQ15QEKXIlAi\nzSUkswPzPx9xWxgxYf5ebipQlJm26OQ87toQOjb36IeIiMgD8/ran3PYxym418kZCVUDkceyhAkc\nxDp/ers8V5fBrqyK4H4IYUPBHj/3GQiHPjV9b4SN8zynQTSkaKDjcShzPM21rknC61tC+kz9A6Z3\nuyC+79e43i0Qn9/Z4PCkKNd5naT87PVptRPJUMKJJAyuP9B5OEx5nXGAwu9LmOj8Sb3GxQc5nGtz\nV8O0QjE7jqtlUY+fZ3nm8aKMXLZ/eV3r/s7bPNZWFnQc1EpV8t0f03HAQq85eWB/Q5nzGITelzE0\nGGoYra4z+r2ax2ModTBEg9t7ekV90UTE5V0Q25wVEV3ja0SkMQ6uCDg7UEYSihBBmIAjIa451CkU\nMfp6U9exmXm+/8oJ9SFSETueO62/PX2Bf4Ph3L7j0PGCqaSulBNheEZuxIF1zk1JaMcI7pgk/BsP\nwnVO1rm9H4I2HkhYj5OqTTChKmfOaaiaK4kvSiH3RQpra2eHfdyXrqjY/Btv8PvDyz9Tv/fdq+xf\nd0BkNpV6ZrDGeNK05Tkdx40Fvn+egIC5+JNj4ct0fH8y9F06PV+luVkVrZ2e4boEIAo/TLnttkEU\n/syJC0REdArWmoV5tn9JquNy/Q1ORrIDIecmMsgZExY24+znh8tMCqUZD50yYVd0uGysvX5+eBb6\ni55IKiTQF/cKTp6TlwypDLYhafPYGMIcTkRyoOLBGilthJ6V8UmaTQ0TN+8fM9Pal6Fcpw+JejJ5\ndzL+jQ/i+ams2+0DsD+SAGNhUcO/TVKO9b2Xi7JApBE8iK+LxD+sgaxDTcSOo1h95n6H/y6Vwe/t\nH3/MOy6RX3GoPK3XbUfSFh6EEDalnaCVt1KWa3Ac7Z/1lOf4fKZ1v9zmkKmNq+qfuiPul/MPa6hw\n/BqHXW1sigwE2LXZelnKtE7TIstyGsIaqzJvPv2JZ4qyuoTFfe+HGk5fLXHocbWsYZpL4tesQD96\nZiwcw6hbJo6FhYWFhYWFhYWFhYWFhYXFfYC7Y+LkDmWZQyHkWjOnawRiqbmkWssgTe2O7Kp3t1VY\nrxLzrloGO96zM7xbNb2qu1WJ7ObfXtffFqkO5eQggt1bz+GdsVpZd7yNhpIHYkoku2pppLukrlBN\n2n096YxKfDrQWNVThV5F0k5mkCatx3tic00VeJtfnCM/uEvC03vgOJxu99Lbrxdl7QNuC9wtj4Up\n0O324Lf8POUSCFv1eZf+YFt/u3WThRf/7M//rCjb78j3uto+DRFlmprhk/MapPpeW2MGzuK87n6W\nm8z2+e7X9bp7l18lIqIUxseVTT4hXIP0eA88zIyhKUjxOyW7o5Wq7nBO1fjZAhCNraKq41GROUSD\ngAj0VROHd8B7cEizIUJUGzC2uub4A8R1vUBOV1EcTsbbAMavESgLgQlzW9hlJjUknsdt78tYhZOO\nXE6ggoqywppyeoCsOTN+PGAbVEQW2oUTUpOa2wm1TiadNQrOIlviOIjimG6tr1MAjDjDgDkFKex7\nwmBqd5GJI8+E4sTCLnrrirLiDMNv/Zbu4M/LiezUlJ7yX77MJ4HG5vzmX1fx71LO82FmWk9kKm0e\n17stTfubyXjA52l3eVz3Rjpf+/KMbggnIrFpZ21bIxa4D3NzHkTWj4qwVKITZy9SSiAeLayyEARp\nV07JCSawxU6t8unDX/2bf1WUdTa5PasgTlcqxqSOVyMuiEyvqqSXN/OgHOrz5XJitD3Qer7xFgvg\nf/GLKrb85FNPEhHRP/mnf1CU/eA7bIvOL2sfh1Xul51NXWN+dpkZmgEI2y01+TcpsDYq4fHPQhxy\nyPF8ciBt84qItz93TkUO2xH3xfUWnKKJyOHiKRWK9yQt+zDR/hmKPffhFD0M+Nn0DkTJFrM/msJK\nGAHLbU/G4vSMnrpPy+lmAELVJ4T1F8I5kVPjPnNA0NXt8rxc8tXGGzKSO9J69qXuUyB2fOG0rgHH\nQU5EaeYgGYnKIc/nGOZm1GI7sRfrvK7O8Xj47Jc+XZSti+9wa09TSC9c4GfP4CQ4lZPQiJRdVGsy\nO+OO2KRhpEycB54SVmdFK7p7wCy56UWY++L/DLpw0rgg6W9z9Wvml7jXTTpWIiLXZfZXa6D9sTAt\nqVk9LbuzPihOrY+KPCcaxkQurIexsJziWOeBYQ2EIERp1rAMOs2wSocgShqLyWxAsgVPWIFBWdus\nFPBzj+T0OXH1/pkkGPAztd0mT0SOLBVJS9wf6Bgdicj+3p6Oo4GwrKpgV3aEaZbA3KwJe7PXg3nQ\nj8ee+ShwHIdKXkBINHlQ0lpfWFG/+8wsz68W+JMH8ncIDOxGzGMqGmo9R5IsoNHQMWMYw0iSrtX4\nHvv7zDr51re+W3z2wgt8sv3W25o8Y0dE/iOwkyaFNaXYLuIDwJppbGIwp2wWR8pc8OPNOovCz3l+\nfHZIKfTpwql5qjZ0LAY1th831neKsl1hFPUhtfz2aWHNnVDG3ba8S129fqsou725bR5C6y5/5zBu\n7lYc2/iJmBSjYJzB/C0uC9fPxJ/Nx8ShTV2gHpOqdK8yjGcp5YMuuSCibhjpPUhU4Yl/WwHbkMo4\naI+UJWbe6VDoORMG1R4wwqaFleNCexjWXxRxG0T6deoOeZy1IYV2RVJyt9q67qTGb6+oTXSFgTOi\nw2PVz+D9Qt41HPDd6nV+3v3dIfzq+I3vhz7Nrc7TXqDP86Nt9qcTWLLSc9wmLkRd3Ep4zQ8DSHUv\na+/uuxrRc/k2z52rVyC5gM/P8dlnPlOUrS6yf/r//Ev2/zARjenFZySBDBHRudPMGFwC5gwN2P5d\nXNK059VnPkxERD984YWi7OoVsVnwfr6ywNeZn1G/05N5EMC8ouzu2t0ycSwsLCwsLCwsLCwsLCws\nLCzuA9hNHAsLCwsLCwsLCwsLCwsLC4v7AHcZ++CQ65SoXAJau1C3ahWlTdYaTDXqx0rNmmuEckOl\nS0UHTH/KXKWE9QMmNi0tnSvKMgkTeuiJk0XZC9/6Bl8jZ2pqAHS1gYRWNCFvuxHM84DL2RVh3Wsb\nSjFutYRC7iiFdOFB3us6Ma3PHeVc5/0dpc6GQwnjOqEidoN+imzDIyFLYursbtI3/83Xi7JbmyyU\n6IJI5KuvCi8P2qIQCYPn/ss/+SbXF4T9nvrwR4iIKAo1LKQtNOKrN1VgbXeXhdOiIV/Mi4amAAAg\nAElEQVRvffN68dm16/zZ0x/+aFH2X/2X/w0REf34hz/QOgkFvD1Sit1AaGVXX1Rq6HdfYkp5zVcK\npBFI9Upa94aEU508c7Yo+63f+w/ouHAch3wnoBgocV2hXu61lQO5JyKnCYTN5QnXc4hiw0L3joGm\n6xrR7Ckdq0bgzfPherLdWoQ/ed6h7yPV1ejFZSAc5xbX1funwgvP8bfF9VAITz6HcIBMfos6dPdK\nlC4noiTPafdAw4WaEkKHoVOmjTAksyd0dtRYzkXYu1HR793Z4++98poKUtcqTEceDUHEUsiWoYTr\nvXVZv79UZVtnxiAR0fIyl+3e0NAcR5TL7mxreMTJk2wnUqBPjiT8pQ9hhYl8noI4eUOE6iKgSPei\nbJxRfgTklFNCKaVw3VBo8KA1X/TB1h19np09tqNrmypinifcjrhmxBIygFUtydypQdinJ2G7FRGH\nK0N4bCYhRDe3lUJLIiz627/zO0XRc889R0REt26tFWVf/dofExHRyz9Tgc1UhDj3t3S8RbscDuOn\nahP7CYe+XN1XO1WFMI+jIieiPHcozyDUKWO78sis2oHtFe73HtjORGzM/JzSfst1DsVoQT/GEr6a\nQBjryOPfukC/b8q8McFKUVvbhGTNzDd1TTgptOsAhAobA/7Noqf9vi8hYKWGhmJlMd8s6StV3Kw7\nEE1FmYQ1rTyiYvznTgPN+RjIs5yiKCvEwomIHBGYpBTElSWErwyhk/Ue/925quPh6Ue5XhcehXgV\nlwVMo4EapZ98h3+zs6NjvtLg6/UHPM6mZvWzJ57h8Xrtzjt63Qa3/eppDTGdmeGQi3pNhXMHCc+T\nDgjoZzlfe21Hw7Rnp01YkQbYTVVE9BdCCEfDEWUThE/vBmlG1IsSSkBY1A9EkLuj46EhITcLc+pX\n5SLojOHkRkx30Fc7mYoCdwrhBG7Ibdbq6hp+4xrbrpkVbn+voiFuuQjHZrH2Z0fExIcgcG7qEkPI\nRiL1vAkhuwcSbuEGOhbaknDDzdWWDIb828tXNCzvoB2P2eajoFEp0WefeICmq3qdCwts3GsgBDzl\nc5vFIJ8wkHUu6al/POrLc+CCK6EaVQg1DSR5QndHE19017ktvvEjFmj9w3+pPu6OrC3oP2dy7pyB\nvXJzbu8cxHQd8W3N2kVEFIoguL+o4f7ki5UDu5tJ/PxYyFF+vIQBRESe51JtqkZuScMp+qk8D4Sk\n+xKyXynBeOuxPe2BGO3V65ykYW9Px3GSHQ5TMqH340LF7lgZfjYx1Er6M4ePfPEZM1jJTYh9hvcX\nnxETlJgQJYwiccn4cofD4o6NPCdKRmNhK7Uq2zXQDadRzjakP1AbEsi4qdUgDFh8ZBQxr0gI/EJT\nHaWyhJHv7ek7pie+S1WEw0+COPLbkhylDHIR8YhtwwBEvws/D54nc4yMAEGZ9AeM3+JzbHt5nlJZ\n15tedzBR3PpuUC6V6aEHHqRLrZtFWUdscjilz704zaHCYyHUA+4LD8eSjP/r76o/NxIR6KlI14dK\nxs/hwfvXyRle25bn2Ie4fUd9x4Um3/+xs7rHMCcyHg1P28A3IbAd7c8FeS/4wsc1Kc+f/fAn/DVI\n7NAQGYGoj+G2Zr6A/bnL5DCWiWNhYWFhYWFhYWFhYWFhYWFxH+CumDiuw2ny+nAK6EnawAxSfPeF\nHeIFuoNVElHKAEQNwyqf9kw1tWxTTlb7J3RHbPHURSIiun1Hxb8efeaTRETU3eZd/auXVOio1+VT\nHN/TncspYTpg6ruN2/zbmzdA2LjEdWkugbCfpAV2ICW2s8ffm9nXJjyxyLt5J6e17lfe3KTRAE/1\n7x5BENLK0go9cFbZSebUwXf1eTzZQUdBWiNmFpYhPXrAu7yrq3oi8blf+zUiImpUQUS4zDvVb76u\n6RwviWDT8omzREQ0BLEyT9hYr196uyh78xKLg1bPPlyUra/zdWem9UR2UQTFqnU9ud3b5F3p3dua\nYnJ7h8fHECgHsTAVNlraF8994fiiXFmaUrfTpXZbT516XR5TvR6MBblVE1ILliqHhZVNiseKr6dt\ngezeI7MmEFYCMnGMeJ/ujMPph/zpTTgJwzTOhiUzJoYtZSlczzAgfGQCyW/KkDLPsCeQPVAq3QNB\naSLyPZ9m5uapCbahLPfbaytLpSJjLo60DpGIXvpw0mlEMSNIx3lnj68zTPR7sw0+JTt5XoXLYhGs\nbMvp8PU1ZZ+ECyICDcKHdTlhcRZ1fDcrPDa6LT01u37jOhERXXhQhRYjOeqKUhCYkymO7JzTYpMq\nZR1Lo0FExxWjS5KUdlq7FINwpS/jKgdB7Jdf5dP7x5/8KJRxau8YzgYiX04f4BR7Y4Pt+HCk9zBM\nSdB9Lp7EnIQFwHQzJ3ndodr42XlmO8zDiX1HGHPLkCZyb5/77y/+4k+LsqEIdu7u6gl8T04QfZjL\nnvTPzJKyQBaX9NpHh0OZ41KKaqPCYpqC/JMfPiUsr85eURZt8Sl/DKfjoZwYDYE5F4utdjOdA6mw\nohw4jkzkN1EhKAipiGUMpB6wj+Q0MEVxdlkry6me7OXCuNgsK8silnmZgdkI5LS/39dTrFD6ewEY\nJ2X/+AwoIrafaZRSCuu777O9c3xkv3GbpgOt/+2bzD69/LquUY0yp2EfzioTbyDPPlfRue5mfL+F\nGU11X6qwvRuJaPDUvJ7axyLO3umoH3TiJI9DB+zF899kQdigqr7B4mkRywc/bXOd50GUKnNur8vs\nndmy+gZTdbY1CYjfJ1k2JoZ/FGRZSp1ud0zA3wichyDsbsTyHRDNj0Tguw+nmobhh4f35s8Y7LNX\n5nq3Wnqa+vU//SsiImrO/ToREZ09r+KzqaQWT4BJ0BdGbqer9sKsrwGkgHflRHhjS9u4WJ9K/qGy\nFJg9iaz56zeVubK726UkOR4rZKZWor/5zDkKS9pQNzZ4LLzwvAoLPypi2Q70TyR+xbvvKHvr4gM8\nfl2wE63b7Cf29tW33txg9t7ld1Wo+NYOt0tS5Xk9ewJ8XM+kHdfrmqV6hGmhJVFHBQRQXWEeDPtq\nE9My287KjLL5DMsqAR8ml1NxZKSk6fEZxp4f0NT8Mt3c0HXctHsK94oGfK/hQJ+xJf6mA2vgSMY7\nErOMz5aBPTfiu2MRAc54eAD6hOZvJOT48k6RodizvD46wOg3YsEeChuLD5qkeA9JOw7vD04xzzH5\nzPEZUHy/nOI4oVoTGcE81zIQuB2JOHEFmF7Gh05ByH0k46ZZVf90Shg1JbheLr4jzlnjIxtfugMi\n7rGwrZ1Qx1tT3skiYFH222x3miAcHogv6JVgLKUm2Y3OwxOLPNe6wH6NZO0Lw3uzphrkSUbZ3oDO\n1dRfqknblhN4lxDzWEp0fJeEAepDeyYj9ueSqtrYTNrKnVd/uywMQGekz21+8aEVZqp2QSj6uace\nJyKiR06pcLgrQtYV2CVxPL5KBd4tzPj/3Cc/VpT9TBhVnevKGJoWQfMBrBmO2EwXfLzcv6ttGcvE\nsbCwsLCwsLCwsLCwsLCwsLgfYDdxLCwsLCwsLCwsLCwsLCwsLO4D3BVvx/cdWlpwKd5VauhA6HPA\n5KbcFboo0IKaTaa4h4HSoAY9pkZVgCJIEf/9IuRcP/8Qh9CsrSk92Yi4VkUI0wOacEUoySb0hYho\nIEJVSaIUxbrQ5J/7sNKZyyKGnIBIYypiSoNbSll2O0wFW6yqONOHH3yUy6aXirKXNq5REh+Pipkk\nCe1t79HHn32uKHvus58lIqISiJ8ZyiMK0hr6owc0fRN6MoiUiry7JiJpIOi6t8OU/SLnPRGt3+E+\nqC+KaGJJKXFOKLS/RGl/f/n894iI6MyFx4uyU7NM1S672u9VoaSNhko1vdrmELk6CFSnQove3FdK\n2vz8WSIi6gPd8ZvP/5iOiyRJaGd3dyxUZyjiiVGk4ygQMbAAQlvMeMPQNiNiTEi3FFopUrVdoalX\nqjqmTSiWiZ1KJ6hlI/3XmRBWY6jnGGLlm5AoEEgz98LrKd0Wxf74n3JZKar3KpwqzTLq9PuUQejH\n6hLToEMQUe+LcFitqmPE8YUODYJkQcjt5UDoVF+EOsOKjuH6HFMeYxco3CLwWJ7m+2a+2rCOCPw+\ncF5FcpNNHptJT+3PQZfn0gMXHyjK1m5d5nsB1daIq3bbOjeNmGMdQh1NyFavByLP1cbY2DoKcien\n1MnIgXCZrowbpIFubvMa8L/8w39UlN24whTSLsyXK7eZLp4D59uMvzgFIcqUbYYH5wpmDDvST7kD\nYT1FhUFYsMbX2IX1qST04PaBhrGNRnyd60B1NWFCYEIoFyFllPYzoR+1koZb9HvHp3w7rkthpUYe\niDdHLW5vE/JERLQqY/DxA12L3mrx+ri5ruKB7QE/bxfsxFDmdQB9kUjYgZurLe7JvO+LbfKhT7KR\nUPMhFM4xtgOuO5Q5mEGIVU8+H5Z0fSDxFcpAyc+EAl7L9HsXl3idnQn1Hv1dpUMfB46TUxDEFINg\nui8C+sNUQ5fWt14lIqK3X3ytKGt4PA5qsdqQt779ChERlc6qrdwVunr1goZHnT3Jfbm2pc9pQkd8\nGbdLp0HwMOfxkPV1blZdbrdr71wuyl74EY/rk49on2YN6ftEQw2TNl9ndkG/d/0ar/VvH2i43pc+\n/2kiIlo+qXa+l+yS4x5eg+4GruNQpRRSGdbNUGjq5RkVVi5J2NwARCoPWgdSpn1Wl7AvDO8twq3g\nuLI2xe3+4Wc+UpRdF1v8T/7Xf0ZERJ/9jFLjP/TEKSIimlqCsJFcQo498H8kDCeB8J/tAx6jV969\nDg/O/6QQ4mXE7QfgV1Tq0mcdmJuDiLJjChvnuUOD3Kc9CAl/W0J8vv/6m0XZmoTjzUGI+1TAdW42\n1O+tNLiv1jZ0rly+wTb4pVd+qmVrHBbWGcK48blNf+XDjxAR0a8/fL74qGwE1iG07vYdDslaA2mF\ntvj5l97QEK93XuL3hwx8nXCF116Ufkj7Ms5RKFls/Hg41fFtfEZEo4RobV1F4dc2JaQR+1RE1XEc\nVUVU108gKUUsYsPwWyOWDVFPRTgVjhqHDr8r6PcPh1M55tf54XXcA5/D+I4hTLjcOyysXIR4gQ+Q\nSSihi4k/vOONda2YQ+QHlLmw9mVGEFv9OV9kDUII1Y1i4/PrbyPx1wMIV/Zn2Lan8L5npAlK+J7k\n8n1rdS5r7eo7z6mzHHaEz10TXw87dXiH7Vq9iXZSEpJAmGtZ3g+TEoQmSwhzOdM6mfeusXcD358s\ncn0X8LOcZvspOTE8j9yj6kDyDHk/DWDc1BsiTg6+Qdzn+pRDDZ0K61zmOeqTmSGJoUmOw3bsRYnZ\nD+HdbGmW+24RJDG8mL/veTo+UtPfoPDty57GxbNap/NnJAnBmgranzvN60izriF4Tsq2C8W8R7AG\nfBBYJo6FhYWFhYWFhYWFhYWFhYXFfYC7YuKEoUOnT4U05egO3pVbkmp2G3cpeeesXocThD6fnKSZ\nnuaaU9e9bT057XRF1CtWQSIv578bdd3p2trkHfQ1OU3IYGdsaYFPmxw4xd8XEbtSTXf1piXFGe7I\njcwpMpy290Yi9NjVsprsll88pUKLq8t831trmrpsd7tPSXLMEyvXoVq1RLttPTl5+dWXiIhoEcRT\nlxZZuA1TXO7vy2klijZKu5w4pylIT81wW9y+pDuHvS7vjKNwZ3WOdyy9Mu9Y9uF0bGWFRRs31/WE\ne2eX+25lValajuzId0cg+CwnMjGK5AqjqoSib7siKutqXyyJyHIE6dyOmRmPiIiyPKc4jjS/NxH5\nMi6QcFKS1HFIUjEajChYbA5M0vzwCQ+eZnhyCowpSEO5rznNwB3zSWkATTPiScv0NPcdjg+z65vC\nrrjZfcfrGtHGJIE+K0SCD5/OHBeu51K1VqUUmHMjqbcfoAi0iLl5yECRUyYdIuQHh+fgSOaBAylU\nq1N8vU4HxZO5f7e32eb4vp5CzlT4XlXYwa+XeXd9aUFPSXZytj9VEGRbXGR70YF09cb8YOrN5hT3\nWwNE+dpywruzoyeSuVs/dop33/dpdm6WCJh7AxH9HdXgpENOJFr7yoaYW2Cm1NSsitiZlKdZDkKU\nIuSHQrhGlDSLD4+lkczrsZTGJkUpnEO0pB2//8L3i7LPf/7zRET0xptvwXX5Xzz9NEzFDIWA5ZQw\nRTslp3G3bmhKaa+k4+FYcD1yHDgVlO4eunr/QJgop1eUsXNtTU4KRyDimXFZC+bPjhilBswVpxCx\n1AF3IFNlUwajC23i5YdP5synAYyZLZlbB5A6syvXPQGDe1r63dvT+bYkaX8/CmvrhVPcGNWB+g9G\nhPK4SPOI9uNbFI2UOWcIblstZd2s7z9PREQ7mzrmlwNm387BSX5bhI+DTbUJoYiVrqWXirKHfoVP\n63Yzvd7+OvfRwgq3yxPPwKmqpNre2VFxZGOTanUdgw8/zIkVmieVpZLLiV8aq0+2eZvHS28PBHaF\nYdUCIczbD7NfUWuoIOzGzqsUJ9peR4FDRAGl5EI/liUlfT4pbTEIo5qTbRTiNAzsTkfHSJpyG2DK\n3kTEJC88pOzJBx9n9vTX/2/u46/+X2pDvtRjxs7TX9DvZ8IiToAlZ1Ip5zBH7txh37bTVT/p1JnT\nUqZjflPSafvATp6a47/dQNu92+sVLIajohsn9MP1fRoNlQG2scV1AbIn7Ylg8LVNZY6sijjn7/72\np4uyRx5/koiIwoqOwbkVPnVe/NBDRdnnhVmyOKvr4rSohk4Ju7YEiRNq8ncAPkxXkqrsgej5Rovb\n9jsLmoxgILZ9HViZubAb+nsqFG30fytVXdty8cUmM5GPjizNaNDrj/lfxramMdoySVriod3l+/tQ\njVAczgyc0ahg9aKdzsf+IVKWjYlomDSkXGRnk2H063h35YIuiKp78psKMCB837QnCNTGRiwcb2za\nBZK1eMdPUELEjx5lRK6HrHFea/G9oSxtWQF2dkeSHTjgd5ZNu0FihUQiEDzw22MRYJ8Ghu2+pArv\niYhxY1HHXjASoX9w40YSMWEiXIiI5iSJTgx1Ny8Y8UDndVAWNjMIRAfCHBntI+348FaA5+d0TCIO\nha5LZ8LS2HuBGSMB2LrAMKDQj0/4uT0P3glrRvxav2ZSciPz3jjQHvjqroy/TBikQ2C8GOHyxpTa\nJkolsUVJx0zBogT2lmgokxfCu5bsLdSq+ttFYZfikO6Kn4S+bX6X+wWWiWNhYWFhYWFhYWFhYWFh\nYWFxH8Bu4lhYWFhYWFhYWFhYWFhYWFjcB7ircCrPd6g5E9BgW2m6M4tCf6opXWxHhPqQruSHTC1G\nzZ4sNgKXSv86GHDYQa2iFMFhnylpg6GGDkTyWyP6aITmiFQUtAnhB00RgEIhvJ1dvlcdhYYMNSsB\n0SXhtYM2FYUS8nL24tmibNDn33znOyoO9+qlOzQYHi/EwXWISkFGo6HSrl944RtERJTHSmVsCnUr\nBmGtoQjsojjlmbNMdX3s448UZRdOc2hV65aGQm3uc3uH0BcX5pjivr3NFMPHH3qs+OzRx5k6+y/+\n8P8synxiemAMInqRUAxzEHSlMtfZA2ro2XMscnfn1jv6PaG6ViAs7uGHWZh62Fca9akVpSAfFb7v\n09zcHLlAnUuF0h2jwJyEIg2BWul4hsYIoqDCWY2AQuplh4VoTWhQlmv7mPtNEiw21EIUPEykbZGC\nbkTWMOQmlr9j4G+63s+nE2PYkqHTIlXyuFTv4tqOQ+VKSK4DYtEifFeCNquISJtDWv/Q0F6Bt9ic\nYvrpsK1hApHPxsgvaZ0HMjY9EPaV6B+KBvy8G2CHZk+wSHe8oZTzioyHckPruTDF43FnV8VnZ6ck\n3ALivrpCyX1oRUMdM7Ft/b7SsPu9WK6hQqlxolTVoyKnnFLKxvrRlzYuldTGG9H6mRmlsJMZcyi0\nKOMlARF1I1yboqihEV8ERqwRhO/2eF6PRrpOxEI/T8GGmM//5OtfL8pef5Nt8YsvqcCmI+2dwlxK\nTJgiiAcaWmsGouPmLxfCH8s5hFsdGQ5R5tII1icTuuRAn+YR36te0zVrvsltsbetY7AjIRAHQMl/\nQai7M9DGTQnfqsFcj0X8sS1r4BAo9OZbHoQ4GAp0dcw2ifCro+1ZletmsD5FEs9QgXtM1eXzWMMM\nu0L9bjd1rjjJvWh3Frjc725Qr62JE9IBhxq1uirqb6jzU1UQVz64QkREtVmwiyKwG5SVJt+M2f9w\nl3QOzSywQ9Gc0na7+Q6v8Y60394WhHonbHeWlk8WZbdu83jZ3dFQujzg8bAI/kqpZNYjvddIRKo3\nLmk71wL+0YNPnSvKuhJatbMPQvGllBzneCEmeZ5REg0pAcFQE9laBRp6ETIL9HsjMI5hLiY8KANh\ndTfl8ZKMYC0Vg763r6E2n/jMw0RE9OynniYioh8+/0bx2bUb7BMt31Kfo1Tnvp2SdYVIBVDbbe2L\nQvj+kQtF2fQ0+1DNGR0zLRFex7Dq0w/w2jLsgxh/dPxwqjRNaX9vnzDy1pHQ6BDW20hEs5dntY1P\nXnyKiIjOP/lMUdaY5tABDN1uitjo0pyGU4UmhAdsrBHMNX5NiguAvBdE4GuZkIhqCOH0Uzwunn36\n6aKsVOd18U+++Y2i7OY6C++nGYTAyHh3QbzU+Kxo448r8ErEgtvDboeSAfiJqQlTwjDiRO4JCTBk\nzPq4vsufObyYJLlpM+3cfILPaBJjmDCOSdFiGBaYyTXw1L/q8zWqAfhZkoyjCuGLxgfARDdmrOQ4\nFuQyGEYWSIjK2zfVbzsKsjynUZaQ62u9fFnNMSTJhBfH0H5hWeY9tL0JZavAOPSk3jmEU3UPOCQx\nQF9HBM1vbrI9n1lVHyoaSgg5JKwwiTpS8OWLELVM72X8+ghCqE3CktFIrzeQkGQffHnzvhCE2j5Z\n3hsLaz0KHHIo8DxyYQwWcwn62QgQZ5D4KJS2LVfV1wkkfNaDZEiZCanFcWNkL8pqs827y7ktHkun\ntveLz/yQ15upWe2LWN7bPWwT8VOGCfhk2WE/JBM9i3pDfYCyhIdmIBniGjFqaB/PuattGcvEsbCw\nsLCwsLCwsLCwsLCwsLgfcFdbPo7jkF/2qdzU3fpZSYPoo5hSRU7N9uHyIhJUKStDIg2McKQyTMIq\n/yaAFG+ex6dXI9i1NaceZrcYD4VyOU0Hva1iZ44gXWFrn3fiBpHupE2JQKkPpwqu1KUPp/1bO7zD\nut/Vsk6Pd/j+6ttv6/f6RMPoeEycLMuoP+gTQZ1+7ctf4c8iPfXx5IQT0/blsvvoQXuWhTW12dIT\ngU6LBRf3BpDGV3YO33nlalG2+wMW4Dt/jk9YnoGUyZGIHFegjXMRMEMBZNeTXVc4IBjIyYAPp95n\nTjITZ9jVE7NHmrwr++OXXi7K1m8wU2cAee7zvu6yHhWe51Gz2aQshYqKyPEIxkxbGEAouOvJ32NC\nv/InCvUlhWgjppKVv4HF45hTkQnpRc1pyli/y/5shnNmwHMGhfWK1HZ42m8+y/B6XFoF4cHQ7CLD\nKRWethwHjuNQ6LlUBaXFQgQaTu2N8F2a6jMlchKRw858p8N1HYCIsLlOuQzCnjKHYpgH/QO2bYaR\n15hV9ouxJ3Ff55In4rMmlSMRUS4nByhObFJCToMQcN5moVIHROyGHR7Xg76WlaVdxk4I87w4DToq\nHHLIcTwK4DTJsMoI5oERx8ODmlzqUkJxOikLYVg4xGMoAUaGORnEI0Fzgjc3LyJ+8H1zgjfO5uH2\nwbTrm1ssMn/2rDILOj1jk1CYle+bYApVuUcO88DUCU+djQBkv6126ihIs3wsXawjfYnpTvNBjNUl\nIqLFGn/+09c0xe7uOtvpBE51tuW0pw0ndVVpvyoMo5I5UQzNiTSMBelPH4T/TTu1x+agYchq2xW6\nf9CPmdzLBcXOTAQuW131Czw5vSy5KlToZPfG1mRpTIPOJjnedlEWNHi9moKGGV3lOddY0OeM52W+\nBsrIWJ1ldurabWX2HFxm3+CRE8p+rdf5mU+d1P7YXefrXX2TPxu0YU2p8rgOKzpul1b5vptryg4c\nZbIOwlg2wqTNaV2bz13gpAjbV1SkO5FU6e099ec2N9hmjlIQMZ+fJgeYCkdBmuXU68cUA6MqTiSJ\nRKTtXq0cZnyaFK+ep2MgFQZOPADGovhnW7d1bi6JAO4MsBj7wnQ48zjb4v2h2uRQUvZ2demg2OXr\nhhWwYcJc84GxuHSCWVNnz4P4rPiDsLxTFHNbHgBTtCapvStlOIGvBuPKmEdA4Lm0MlWjGNozdrgt\nSjVtk5syBMIpPZ3+9Gc+SkREs3DCbFjCyBw2IuYhpDtuqBkr4Es/umIHxpikpoHg5DrPDiddMLZw\nuqm24aELbO/ffGelKLt9m5k4CVzPMJ+QdVLoAI/5P8dHnueUJUOaBTahL2yWEbwi5Bk3VADsIJPY\nIoQ5l2ZcdgCskbL4GUkZkoFEfI8EkgaYR0sLBizaCjO3MBqB22yqpv7fkghUT1V0DpZNUg7/8JqB\nc9WsH+i/OO5htrf6M8DGPwJc16VytULtvr4jGHHiEFh/hl2YQN+XRJR4hH6ztFcJGLHmF1Ffbaex\nWZmDNo7tfbPBcy1PtF1G8v4zAh93RhJrTEM9uwf8HAex3iuKDrOwSjX+zeyMrk9DSXKDfW5+G8fA\nwPa8CRyuu4Pne9SYnR0zdqGM0XJZn8eXCAwXhOrNu0QZ3jkMe8hBFpGxGWA7vAl+mhlr9Sa/4y/O\nq40fynOP4KU0Ld6rtO9S6ZcEhKDNu5sDvrdpxRqMD/Mug+1u3s+Qve5MiM54P1gmjoWFhYWFhYWF\nhYWFhYWFhcV9ALuJY2FhYWFhYWFhYWFhYWFhYXEf4K74yFnmULcbEHlKpazXmJoVVJQOVBOhrakp\npWZ12wP5d0vLJDwgHip1rBHOERFRGQSOEhGs9IGiZ6jZQcmIsOpn1To/FujgUZpcK7gAACAASURB\nVJIa+qsWNqeZ3rS31ynKOkJvas7OFWV9ob9dvq6U3LdfYwry0myzKFs6KTRaV597fqpBW53jCTC6\nrkO1ekhTwOlsLLCYL4p9lmVPDsXpcqHilapalg05/KfTgdCSqlDMLiid9kKVKdqXr6m4I4nYWiAC\nZrc3VKh1bn5m7F8iokgEIkcjpQn3ROR4BELEsQhv+WWgIq8y3e3Gho6ZrZtcl2FXr/fuG6/wfecg\nLAXog8eBQ+6YgGMk9MXhSCntRmTVBYqfCcfLIdzD0BxHIMZqREsdDM8Q2h9SATOhapuaIM3R3CEH\nampBkwVhUdfnz5GmazDGJjYirynS/syHKDLoHipLYqC8HwOu41AtLJEPT2paA+mV3S6PIaTghkLN\nrIDYelEG29aDAw4PWFo8XZQZEddpoA0HCyKiKY8Zk845Y1cqII4emLkGbRpL38wvqO0MJRzEg9CU\nktjOPNd7VKv8mwrMYZLnHUBI0GAwGKeZHwE5OZTnXkFb58cwoqj6PRNqF4CdNqqkSJF2Va1Qqy7j\nOgAKqQnxGwuZMMKN8j3PgTVB2h0jt0yYYqWhNuzE6VDqq/camLALDOuR50FKrGlLDCs04wzraWzw\n7RvX6MhwHHKDgALoPmN2HA/DkkXksKe2c6XB43wu0DoFIsLbhH4cynx1Ya1MhM7fg2ccmDoIjdhL\nDlPtXRRPNOKYYGvMXQMQ5wzkOSpwf4nGppoDdS/+hDaWdQQem6quzu/jIE+GNNh7m7ySzrmRPEvY\nUDuw8iiLjcdg45KShK0eqB/QvsNrWbcFYpIb3B+v/eRSUTbXFD8lUJvw8c/xM509t0RERLMLWqfm\notiwORANdVkkd+e2hgve2WOx5aykazPFMncytSGh2BNHI32oUTf0bvWJuhKSlLgQtlGujIXvHgVp\nmlHrYPCeMh5X/QGskSK6P4LEASY0o4ThvRLa2u1r6HYsY7cxq6E2n/gshwSdPquhNm6QyPfYjj/1\njIa9VUPuk2ZT+3hEXBcUW3bEPy1hmJlMnWEEdRJbV65oOEGjwfULIbGDJzGoEfh4Yak0Nn+PgpLv\n0fn5JqWZzuGW2IE+hJg9MMN+3IWPPlmUnTjBa2UEoSUmpHls5ZH/Qbtrko+gcK0nq7qKt+P38/cW\nFUCbbO5RgjWmKcK6F0/r2v7uVZYFWNtTvzcXoVsX1han8L9QvPT4AVUO5eRQTAuzOgcX5gJ5BhA7\nJR4DOLYMxp9b3lX62o9BqXao7iN5v4p0GB0Ko0K/wQg6hxBSXQlFUL+q47Na4XmBIdxmbXch5M88\nh+ui3yn+MXaue+iPe9LuRNynge+PDSUTHd6HkKSqhPPUGmovBib8EUSEUxGz7Y90HgQSPp+CX2HG\nUgkSsQQSPmoSVjip9nN/yH05FoovbVAua/v1jLQAhLwV0gIjHSMmPAoTBfW7A7kuJl0RGYEYQw1L\n407fERCEJTpx9vxYPwf+4fcP02IpzjljO3FsSlu4pM+Yj8bF0YmIHNkgSEECxXgl3RavbYO+rs9b\n2xzGvA5ix7WSjFt418vEKcs99T1K4ivkYPcbkrQkgPAwDS1/f7tytyLqloljYWFhYWFhYWFhYWFh\nYWFhcR/grpg4UUS0doNo1NLTj8YC73SVKyAOLAdLs7N6+a6ITbbgdGp/N5R/9R4m5XKGApPm1HNs\nt5phdvA9EFQdiIhyDptwgeycJv09va6kc01hZ7AlKSEhSyXtCYvo+hWtaGuXTwajnn5xeYpPxR4+\nc6Ioaw+ILm+CIt4RkGVD6ncuEcHOaeBwI29tKSPl8pvXiYio7OsJTygnK/OLyo5ZnWdBMhRvnpti\n5hEerg0l3fviop5AnRAhxY1NFm28dOmt4rOzEZ8GIjuo0+H69fvKpmlLOk1k4qSRnGyVlNHwxuss\nqBdBCsDFRT6hPPGEpjZfXOCy+YXloqwM1zkycj7tGMH9DesmgpM1U78IT/bzwynBzSl+GU7bTIq5\nFFNCTmAAGBHJ4iR8QopfhBEvw3Ti5pQEWSvmXthnfRHpxR1hw37B1MKJHO3gyWAZUvodBw4RBXlO\nLghdh3L6im1q2gHbKhR2CD67OWkoQ/2nRJwRtRTLcuqKaWqrdS4zqSiHkAbasKqqoNwbyIlwD3b6\nyw2eQwMQOR/I9YIc0lRKP7ue2lgxZ9Qf6DO2WvuHnjEMQ6JjStHlWU7RMB3re3PQhoLcpr3R7joy\nlvHUxQhnI1PSnHoGFX3u3GP7XJoozHxYzNI8dxzp3DRzDtukHxkBZBCKlpOwsRMPc5oM3zPCluEE\nsT0Eim8fB67vk5fD85uTmzEmDrcZppqtO9wGn3lU09IfyOnsyzdV8HZH1DOHcPozkrbN4B6ZrK6p\nOfUCJqJpMtc9fILkQR8bneIKnCZX5SS24WvdG8JanYNHrMpNAjhFC+V+OdiD4XCcxXFUBK5DyxWf\n+iUQaBfx7RzZvzN8v2hfT2n7ktV9/y31DcIu25XmSNm8iZxqj3IYrymPm/0tXUs6sr6cP8dr3wjW\nlL1bfA+3q6nky0JlOndO2RJLJ3j93x+qLd7e5tPHLFK74knO5yefPatlKduVjIBFlMh6QPpbx82P\na2qIz1PD8ZNZGSPdnvZtKutMrwtJHKRfZqaB4WfSB8P6Wq7y9ZbBPtfm2e+oNPBkXRJ0ZPxbf0br\nVBNfIoC5H0siDxfE3g0Ltd1Rn2wkdXdgHPlSFyCwFqlwfWA29kQg1XX1ebqd4ZiY+1Hguy7NNyoU\nR+Cf93mcVR/7aFF2ap7XrIfOg8iz2AYXUvyaDNOQ16EgXuJa7TvGnuj31J7IdSewX3Jg5BmfPgbn\n3qRR9kgrYJgHTzz+cFE2krXoL773YlF252AodcIUv8XbBdTz+CnGubL5WESB+TsIgPnrmf5GVsJh\ncW8jkI2MnUZT/BewM07RLpAyXRInKMv88LNimxQtMtZ3hqE7ScR4gk/jItvJsHNQ2NgwunANvDft\n7hCLaCMLzIi9o79i5imQ0CmXupZBWDgn8QUhdTdJAgoClqpJud4BseNMnmk45LIAXsPzItEJVEDW\nDvRrEvFn5xc04qA24nYerem7lnllxt9G8q4VwHtitWb8e0z8A9Sto8JxKA+8MdZzKnXH97qe/J1C\nfw9kfR9AUpxA7I4HrJdEhOxzYAwbJlM+to/AbXtHIjt2t3XNvlPh71+7dbsomxKmap5qO5ix4gT6\nflkXe16GKJ+eMOSH8F7VlfUrBTZbJmMQ7UuSInvoF8MycSwsLCwsLCwsLCwsLCwsLCzuA9hNHAsL\nCwsLCwsLCwsLCwsLC4v7AHcVTpU7PqXBPMXh00XZKBPKZ6K07fIUU4OmF5QiOCOieLN9CAnYYzpX\na0epUYMeVylNQMRTKOZZor8dCsXKUN09EDXrDPl7gy7QsIRe2HCVCp25HNYTx9oMpZqISAVKeZoO\nheJMKvr2+JNMp3roCaUxn714kYiIPvZxpditrXfp++9q2xwJWU5ZNCQX9tz8mJ+3GWibvPTD54mI\naHNL7+fIc3zsY0qT/dQnuP8ODpT2++pPf0RERL2httmlmyzefPX69aLMiEHlQnsrN5Vq224zZbuz\nr/fvtZmejaRIX0IXphoahrB6jkOxZuZUbHBxlcOjVj/8eFE22+R2xxCiIjzIQUHB4+9P5nlOcRwX\nIVREQEsEml4RYgEUP/O8GLpkKMM5UEhjuR6GaRjKrAM0T0NPNaJzSL8rxOkwpEjmBYZdTQqxMsK0\nk+qJ1F3zmxDCpaql6tizvrdex4HrOFQJg7E65JkRc1NarhGbHAs9kzqYkCP+Ldd/CsQk6wWtHezP\nSNoeQk6ymMdzo8ZhEqgdbGrXA9XAQEREBwMQQHaZXrlzAIKhu2x/pqfni7LdHte5DArMec713N9T\nu9KReViB56lUKmPtcFTw3AaRbCPEDeKzJQlZiEHgMhUh3CDU/jH18UnLjPBfgpRlE0IIY95QrQva\nNoxlI2jvBbpOmO/hmDH3jxOtpytjIcPxbYQCgc6byZhHSu4k4WicY0eG6xKFZSIIIXLMvcA2JEYU\nESnYQr9dgaiurzzJIb1LsD5c2eLxttXTtthPhNoNc0B0Ailx5PkxFE7sBNqLQsQY5ozopFINwrRK\ncp0SCCA3PW73GQixqgnlvQwhG2Z5x/HWh/F4HPi5R/PJDI1WNGz4zlpL/lVqelKVBAvRVFHm3uY6\nlPeAAm0o6Yler3ZRxKcvgE0317nTKso2r/L90n2e34vn4F7SR5WRrpF7B0zRDlJIMLDE4cXLsyrO\nmw6ZJn7rtj5PRcJEZxbUpidD9tn8AOz4joTcHmh7x8Pk2KKjeZ5TFOeUQJ8OhBrf66mtKwXGx1MK\nuxlWOaz5JrR1BOFGccTtgyE5JRGUThwIiRbxVyMKOuqp7Y48CXuFsK+dPQ5pm51Rn9BIAOxsbBdl\nQwn3nF/RUO9U7NReW9cno97rwnzZWJfQNmjnNEspSY457vOM8mQ0RvWvSMjGoxdVCHh1hsdCxQUZ\nA/HdPAeNt3wGttF8jCE5xp7lUP3MhEnKZ0kKIW5ik2MILelJeGx3qHUfSJ+lOUgqSBul4CusnDxD\nRERzM9eLst32rUPP45hQ+LFQnnsU1uO640kYZK1E0Vpf6oyhaGYdSyeE+1YD9QEC6Z8EvudIyCpG\nKrvvSaiB9yr+HFuf5SP4mvFF3bEYK7mJ60343oQyWDuNMC/67s494hm45FDV8ceeqQjfAh/CCNdG\nCYb/mNAvkCGQZ3FDECw2oT4Ymiy2qNVSW+NK3GGlXJF6aJ1C084w5k3fjEBOxBHftQKCxbv7/D5X\nraidLEnoTpqqPfWLWEf0FbP3/HtvRnyWZ9QfRWPj0YRBdyE8diCCzilIhphwqiG8k5oxn9PhuZlO\nsIvjwsLcpn6J59f5s2eLzy6cZ9swv6Qh6SXPxG5CaK/0Qe7pnEtjrt+lK5oAqCcZGE6dUmmV27fX\niIgo2tU1eOSIHYM5FNBh4ef3g2XiWFhYWFhYWFhYWFhYWFhYWNwHcO4mJa3jONtEdOPfXXX+vcWZ\nPM8XfvHXJsO2+7Fw5La37X4s2DH/y4Ft918erK355cCO+V8ObLv/cmDb/ZcHa+N/ObBj/pcD2+6/\nPHygtr+rTRwLCwsLCwsLCwsLCwsLCwsLi18ObDiVhYWFhYWFhYWFhYWFhYWFxX0Au4ljYWFhYWFh\nYWFhYWFhYWFhcR/AbuJYWFhYWFhYWFhYWFhYWFhY3AewmzgWFhYWFhYWFhYWFhYWFhYW9wHsJo6F\nhYWFhYWFhYWFhYWFhYXFfQC7iWNhYWFhYWFhYWFhYWFhYWFxH8Bu4lhYWFhYWFhYWFhYWFhYWFjc\nB7CbOBYWFhYWFhYWFhYWFhYWFhb3AewmjoWFhYWFhYWFhYWFhYWFhcV9ALuJY2FhYWFhYWFhYWFh\nYWFhYXEfwG7iWFhYWFhYWFhYWFhYWFhYWNwHsJs4FhYWFhYWFhYWFhYWFhYWFvcB7CaOhYWFhYWF\nhYWFhYWFhYWFxX0Au4ljYWFhYWFhYWFhYWFhYWFhcR/AbuJYWFhYWFhYWFhYWFhYWFhY3AewmzgW\nFhYWFhYWFhYWFhYWFhYW9wH8u/lyY2Y+XzhxmvI8P/SZ4+jf5lOHnEPf+/8VJjzHXV9i7O/8UBnl\nRLvrt6jb2j1yY7iOk3+g3bYJd/h31gfOz7/+cVrVOUJ1J3WjGaNpnu/keb5wlLqU61N5Y3Z57Hm0\nejn85Rz61DGfZ3FR5srf1XJYlKVJQkRE3V5Xr5dlRETk+zo9HWkY86/r6ogol8tc5sAoueuG1Odx\nJvx20pyfVGZw7dq1I7c7EVG5OZs3Fk79vCoqnMMfOrkjJdBbzgSb9T4D9X3HMDbP8U3IPUV3+xYN\nO3tHnvRzc3P5qVOnxwsnzXVn7J/3FL5vR71Pyd0jxw6YZAfe57PxOfy+Hx8qzN5r5InotVdfPfKY\nr1TKebNRpzDUOe+63EJJqjfr94dERBTHalcyqcz4vJ3Uuu8zWN/PXsDPim85kybB+9sN01djv8zH\nPxsrnHAdfEZTNhqNjmVrpqem8uWl5Z/TBGDT36eJJs2NMUx4zolrs/Pe/510/w82c/JjGCfn/acV\nERHd3lin/Vbr6H6N6+ae71GA6xzx2lcOvKKsUuH1slatFGWDEY//3Va7KDPrZSmAOeSYtUBh7jc2\nlmQOlct8jwTG4CiODn0/DAK5VqBlIa/DUZQUZe2urusGpVKJiHTtJyLqD/r8DJ7WPQy5DarVuv42\nrNHt9Vu0v390G19vNPK5uTkKglJRlqRclzRNi7L3+hxERJl8Pnn6H7Y/WZYeKsN7ZBnfN8+530Oo\nk+ceXmR8aW8HfJ1I+idN1SY6cr0M7pUUf+sFfenHMZMjz+FBXwyHAyIi2t3ZPbKtmXf8/KwT0Jgz\nbxaSsQrk7/mXKCOuuzt27i5zxJvwduD+guHxHpM99v5m6pRN+t1hw+BMsBC5r/OXvAl1ifniDoyP\nnA73j3nGn1J0LBtfCoO8VikXayoRkS/zazQEH92MqwntkUJdPfkelpm2qYg/TkRUKrHtikbDoixJ\n+dkjmf9xotcw9spztf1M63pYdxmbuD7ECc8Dd8L3SlCnTq9H74XpfxfGUpKkNBhGNIqSI9uaajnM\npxuVMX/F87xD9SzeoLDM2B+4Xj7B/3Le830iIk/ej4xdwWv7nmnbw292KVzY9BOWpVJm3tHwevhO\nNsmeukWdYF7L9TyYL+bz7f3+Bxrzd7WJs3jyNP2P//p7Y4axwAQPx5nwOZa5k4zEvdxzmOjU/yKn\n/+c7Pjhhig0b6JA053YxnU9ElCU5/Q//0Rc/aI0nwiWiKTSKP69+xmEZW0vNQuy+t2jyZhw8ozfR\na3XMh2P3fE9F3reek+5bTADwHictDub+OTykud7YC4P8fafbv/G+lXkfNGaX6Xf+2388NmGL+o4t\nsJ78q20cyJ9hul+UVZJNIiK69daLRdm7b/yMiIh6PXVQHcc4mYcX5yRhY5jlOgdXV1aJiOgLX/jV\nouyxR58kInVwTE2J1BAREWXybB4Yb2P4EnAyJ/aZ1AHHWyK//c/+zn9+5HYnImosnKLf+5/+LRG0\nvXHwc/CCUoedMLCfhTPgwgIbGl8JxlciP0pJ51Yi13ZzffbD4/CDvsD+gnlgnucXvmy9zxYuLFLk\nuvS1v/flX3Ct98fJk6fo3/75X4zNazM3cZHyJixchf1xcQ4XHx4q836BsS+uMuFrE+d85hwqM+P7\ng25CTirLYAyaRTlKtCxJ+b4Xziwdecw363X6W7/7FTp7er4oqzXZDrzx1lpR9vz3X+V6Ovry6Pvs\nKOJLWdEW0HjphE0U41yF8OJrHKBinYDnN+1Tqai9Mu2DL6VmXKKTaxwWrIC5/3CgL7vmZWx8w8Y8\nK8xVud+VK1eOZWuWl5bo//gH/2Di+EYUG+i4Rsr38Pum2pPsLN7j/eaV+dfHeeiYfjns6I75IXKv\nDPeVzD0mrJH4W1MT3MQxYx7tVJ7l9Pt/9+/QcRAEHq2uzNPcbFPLiPt0aUY3Lh576AQRET33zGNF\n2bW1DSIi+qvvv1SUrSywvzvr6wuLGXPrre2ibPEsr5fLZ04UZa3hiIh4zSci2msNis8Gff5sdXGu\nKDu/skJERFOlRlF27vzDRER06dpGUfaN7/6QiIhGka7DFy+c53vs7hZlr7/2GhH9f+y9V6xtV3Yl\nNnc4Od2c3r0v8PE9kkWySFYgq4qqoJataMjuttxW6m4LMPrDMPzlb8Mw/Gfrx3a7YTUMw26jpVar\nJbXUVS25JJWKVSKLxZzTy+Hme3I+O/hjzrXn2LynHt8NAvoBawLkPW+dfXZYYa611xxjTKKFBR3/\nTz95joiInvvat5KyTOki/drf+1k6iS0uLtJ//z/8j+TnaklZW17sRpNRUlarcLtUSlqfccDfl2FD\nzRX/E9Phftxo6PonEJ85HGld9Lq7RETUbdWJiGiupu8sZh+v09WNukptLnVNIiLHZd816bSSsvrm\nJ0REFAXqV5rdDhER7Te0LJfnfpYrlJKylTPrRES0vLaelL306utERPR//K//5Ni+5ryToVezFynM\nw/iVsepA/3BMG8AaZELd5JMxl7jvednZpCyekbYqwOCXU6c2Zs3LqNmIgTfBeCLXxYlC3vvdnl4/\nOSGsRSnHJ4rXdEw7eS91H0RE8R1uK2fUhPPJRWKYx3zuo25w/UQ+fn52lv7LX/1PafPuraTszi7P\nq1s7u0lZscD9AX1sVzZi8X1oZZHH6bCtfW5Nxu7zzz6r19jbJCKiv3r1xaRspjZDRERLJe7LdzZ3\nku8KJe6Hmaz271aP+/+gp/1h0OXKrNbUTy6vVuU+dd5pN/nea3M61m/e4Xtys7qGWFjlvlTMa91n\nyKVv/9V7dBKbqxXov/7Pn6fdHfW/+Tz3kUoV3nlkKyKXU18ThqYfasfNyT0XCnqfgz7XxXis/XBx\nies2o49Ieembrjdl40HW/YOhnqPR4Y23BvT5Zpv76MGuPs/GMl+rWlEfclv61EFdfdfSHPu2aknb\nrN1i/6gbmESOtN9v/4tX7qvPWzqVNWvWrFmzZs2aNWvWrFmzZs3aA2B2E8eaNWvWrFmzZs2aNWvW\nrFmzZu0BsCPRqYiIfNehKD4M5z2OTWGLnCqdavqpkBI1xZJnuzfFIYGpIzcvQX8BnN91/lZ2yu63\n3qeqPkyhWH3qK/4sdz7tStEUrrn+7v50BKZZ+vh7iZbc+8Qn6ZfJOYj7e3yoNA1N9YQW4zqKF23v\nMhLu6rV3krKDOx8TEVHQVvhmRfRxyiWFZY8nAl+HfhQIbzaB7QNN4dr1K0RE1P03ChMeCjz8ySc/\nn5QZzYAIdHpMPSH0P44PXz85Hug7Q9Hx2W/Uk7LdZv3Qb45jjuOQ73sptpDpHJGj1IWM9INc0Ncy\nlwfifEXhp3MZhr3ubCsM8pNt/j6/cC4py1WW+IOrOMxpdLr7MaRTTdO/iAydyonueZyeL/Uv+Qs0\nDtc9NfeZ4hffg1qC3G3lM0eHjksPxylc56nUTvluCv1T78859IPPoptMu+a9KJn4/NG0vnAKlR7H\nMQWTSYq6Z/pdBqhOJfET/bEeZ7Q4PFch2KbORiMd66FQJhGy7Ho81lFHxFCcDGfdaAcQEY3G7Fcm\ngKB3ZDw6QMk0NAGjecHnO1x3jjhS39PxpjTOw30QdcJOQdIuOU8cx1Pb3plCA0zNkVN0Q/ReD1N+\np9GpsH+Z50uoVlM0KKIp9LY0/dE5dC1PzjuNaoi8fUOzoGlj7bCEwInMdRwqZJ1Eh4ZIqTF7Q733\nV68xten6rlKn4pCh7q2O1kU1x/3Gy6j+xFj6a62sdIKyx+Nk//ptPZ9cN+MKXWdPz+GJDlW5pNeq\nSH8tlYpJ2XDA91ktK6y+VOCxNgRNDL3o4TrGduzJdYdAE4hLTooieRwLJgHt79cpB5SbntzfQV3n\nx+EsP080D3QdoVPhGte4Ey+j/sdQUFpNpct05XlC6L+u0IPGQrEaDJTGFkgXaLWUkmD8Trk6k5R5\nopNTANpXUdqgeaB0F1NvmaweNxbq0Pa+UlYHotfSHYFm0Qhp6ce3KI4pwsVjSdq9rHVHY6HTA33G\nnfBxQax6JpOY69MHSpI75rZySko3cTKiIwJMKMNIN/43Bt2ayNCvhkCzHMlx6af51F+iKCfvDHlc\nM8hvgapCiY8PDx2H2ILIzEvA1D2OhWFInVaLum1dI3eaXJcF8D+jUT853li5zPSXxXmlOuaFp1MD\nWmG1yH3uyrWrSdlmkymTTk79RE80szI1fs5zZ9b0+lIHnaGuZyMpc32QayhyH+6DX+mN+J7KFb3W\n2OPfDknH1fpDTBntgxZQSahNMVCih6PhPXUv78eiKKLBqEsl6I9mXlxZ1vrs9MTXwXrF6PO4sMY0\nYycDc+tQ+t8EqKC+0K7yBV1XOEJPxDWJmlknal/OiiZGATRMewMeHB7wtLKie1SqaF8odMTvb+m7\n3mDAz7g0D5RRucbBgR4X0xS5mnuYReJYs2bNmjVr1qxZs2bNmjVr1qw9AHYkJI5DLISeTj5y/J26\nfy93kI4Y5IgwsiW7mG5K4f+zBYnv6zrkTL23tIbx4WiOCovqzmGiQA4/jkLTGhhZlygp7AzGGu6W\n+4KoimMyF2Ck8PBNqyr5NEQXIoYO95CkulPR0MM/jaOT7SCbS/gOo6n0xCbKqUW+w7vHV999OSm7\n9vYPiYioX1fRsnjIu7iLINq4vMQCiT5EAzKi6NfpaATKZFYwoqPjie6sG6HxBmTq+NNv/wkREd3Z\nvJuUPfUkix3XahrFMlk2Uo+YCBvrznajyRGtPRAo291mgbQG3OcQMkScxByHyPV9olBvzI/5flwQ\nK/QmjPyZdRQBlB/xvT6yosKVeZ/vq3/tRlKW3WNRsWFH28id5d/klx7W40pcX5HDO+5pZXzT16ep\npEMk3jnccd1EoBkQCtMQZPHhKFg8ZSC4rntiBJrj/OTzpFAE4kMwm4AZ14g9dKf4JIXMaMm9BIin\nIWwSBAIcFruHUTfTkDjTUDef/u4nWSI8i4gc7zQgITG5FFEAQuTBWMSjoeUnMscEkDBiLBDQHERT\nQ4kwj4caqYskYp0FNEs+yxEyRMJ0O+xbCkXu7zmMVI5FiHio95kxPgSexpfoWQyil0FwGI3iyHzj\nQxTfGQ/lt/rcpt5PC32D5jjcT/C+zDOlUGhm2vQBBSWoDi/S3/Z7HEVFUdd2mz83GypmO5CMRPic\nJRG2rFZZpLJcUoHQSoXRJEtLy0lZocBR18l4WraylMdInlXNjLkpKMzPmD89zz1x5ss4jikMIsoX\nNSI7u3yRiIjgccjNcZ28e/WtpKy+zQKlk74iLXY2eR5aAIHJmVmOiJ6FOdcAwtwxiJNLm446/ExD\niFKPs9y2e2Odc4sHPGdUQIh30Of2RDSda0T2Y/T74pNAeTrWHyQ2HAjqnlK4IAAAIABJREFUbaBj\neH41l8rqchzzfJ9mZ+fJz+o6oCynLBQ1Yl4UlIETp2B3fL9ThLQxit8ToeQAUV5T0GieKOqOBf3X\n7ysCYUbaEY83CJ8I1qkhmXWntk/WlQQQ4Fco5N+UAHVo0EEeAG16E77P/FCfJzgVFx+TE47J7UH7\nDUXYGMSO41lBUlQUMeT0uV28kfZt4ycJ1oLUkbUR9pFq5tA1HJPx0KAcYA5zxoKAGEByB2nbFFJ0\nytrHNcgHfO0xldeH9yJBkjupdwvzF+aHnJwPHvE4FkzGtL+3RaOB9q+cJAJwfH3OpXn2E4jOmZnl\ncZLxdGzsbu8TkSJTiYh2DUoN6sNklpzJw5pbkK2NHvuuc8sqoL0jyLVmV/1aXtB8MzXIMNXuy3MB\nSsWg9QElUpzj/pItASp9jtG8hY7WvVknICJ/EsUJCui45rguebkixTFkp/KND9H+mBHR4VGgxxWL\nPA4yuDaQ+xmOIduX+J/5hbmkLCvvUDG8j8SfSraAftS4MxfmzLxkCo3h+j1BRfogPG3eU8eA1jPn\nRhTPRPpHF5I4ZMw1YJ3Rbuv71P3Yv5f7KNasWbNmzZo1a9asWbNmzZo1a9bSZjdxrFmzZs2aNWvW\nrFmzZs2aNWvWHgA7mrCx45DruBQ7AItL4FZT4PLTTgGfDZopLdQ2jZbwk78zkN74M2Ff9wdBncpG\nmPKI5noxCMyGRvQRBNEcP3ticShyHOaxYdGUGzbUARcpXEKjcjIKxfN8EcKsKIx55amvERFRaely\nUna3zpC1Doi+uTsfEBGR37jO5x0r7E+01ygKQZAt6St4n9Og3YeebLoZIbYpKospeLczRYD0qOaw\ncGuEYleCE/VCxXd+9OYLRET07o/+Iikbdpl2BAhj8knawtW2mF9kaHxlToWNsyJg1mordNZA9Esi\n2BdCHRcEFordrClw5v6gk5S98caP+fi8Cp/5AlVemFcoYkFE03aBCra5xfDRRkshg0PZA/Z8hZnm\nCyogeRJzKaaiP6RSpEJ+QYf7XH6iNIV8xNDDMyt6/yMRBJwpqHtz5DmzBYXJrq4x1DEGQdhW7yYR\nEXWubyVlwzILzxVWeGxkKwqhN9BfZNeYfogw9EjElp0YoMLyOU7RBuPUH/6e7mE4rrxTEPR2iBwP\nCV5k5JLxNhPYKYoyywEeUgemUCIN/B6FcLMCTzWiukQgLmguNU2wGE8cH/Yrxk+gb4in1JGhc02j\nbKEZaL+B6xIRhfHJfU0URdTrdoni+aRsItQqvFsjJJ1iVIhQnwOQ+AWB5Pd62gebbfYFo5aOqSjL\nx4VAB4rFx/W7Yzm9tsloNEruNzle2ikEZ2ea1giyE6lAszkHWhhMUd3Eeo3NONMyhH6fht26dSv5\nfPcu01BRkDYn1LM8wKtjEVMc9BUC3Wqzr2yP1PeOB/x8kwH2b77/LECzjZj1UOqoN9C6KpWZWrUK\nNNHHH3+ciIieeeaLSVltRuifhDQpQ5EFioihSECf930jnH9YABnN970Tixs7jkuel6NyWSljht4x\nGmp9DoSKFiEkX2gWwQSoMXLPeRBVrc4wPSLwdc7reiz+GswojaEgNDYqs28fREq7MHSQyUTbaSyU\nk1ZP58OcQOMHQLsaDPkz+sEEsZ9iux2mmGfz3N9cVw9s7m+lx8oxrFgs0TNf+BKNJyleMBEp1YCI\nKEooL0iZN38PUxEi6DOzM3OHzmeGq+Nj0gDu36NHPif/1nNkDI0K/LARIsakHEbsNI6BExWKAKmD\n8gDcfo6HIu58f6n5zjUUTxBbl/XW7/6zf0bHNoeIsh4RCNQ6XmRuRI+TMe/OKwUwLsk9N/V5XJ/7\nrIPcw30ZN3X1PXEstLQZXXeSUHoi864CIsbOwDQo3rxZdyP9SY5D6lReRJmxfxiXg8LG4o+mi7jC\nXJTxpnx/dAujkJrtBtUq6mtyIiadBeF+s/bFCfZgn/357rZSYY0bPbOhosShzMP9vs6v59bPEhHR\nsKt+fBSwT+gLvaYFx+fyfH2kZFWE1gjdhiZFvmeYHigjvx2OYY0eCmUX30k7LD0wADqVG4jfBTp3\nSHFqTB/HYnIooCx5kEwhFoXt7V0V5Pbz3B8MnZhNkiPEh+d8D3zI4sqs+TIpm8h7jwcUczPulQYI\n/UyeE9dVZg0TTbTuDMXLAYrn7p5Q6/r6jL0Rt/HMrL7XFURQPYiR+iz3C36/PKPv5fdjFoljzZo1\na9asWbNmzZo1a9asWbP2ANiRU4yT66XECn2T+y0VOf7Je0Op1MwSfQhh1/ZeQkoYEdC4xeGIrDnH\ntMitczj4MN3gOFeeN5WYzDOoF9j9G7FgEWguUS6fPYn2M9xPPDXKPvUZMO2vL8KLORCsEyTBIz/z\n95Oy2jM/TUREByLYRUSUz0iUsaIir6MFFscdCSInf/tvku/8PiN2Qke3h91YUqbCjm4sQsDRVLRM\nKozOJc7h76cDpiCa4J58f9Ihh1zHpxJcLRwyOuW9115Iyt559SUiIhp0dKfeRFSdDKTWy/GOeg52\nmy88dIGIiGYXIGWmRI9wF9yk3hxLhPb2XUVH9bv83RkQvMwJOmZcgraQzt8CIeIPJB3iww8/lpTV\nZnkneGtHES97De7b5aqiUGbLvANerSn6piaCnN+hk1nOndAj2U0qhtofu1lGfblapRRPeEc+B2Kt\nTp7rtwxRl4lEP7IQEXBcrhsT/eDPfJ4aROCb0q971zkNYFjTCG5x4SEiIsoAqi1wRCwWRR1NGuZU\n2nG20MWIefIJfks/2fB8rvuT4G33bTHFIhQ3BTmXghtJWQqtYlAv4H8iEznR9nFFxK3d1Wjh5iaL\nZC8saD1WKhzF8KelR5a6jadcHy15ihTYyYiT39tHhFOukYgiw9hEMeLjWhRFNBj0aQJCibkC++48\n+O6MSV8NvtOVyM7ZtaWk7Dd//VeIiKi+p2i6f/HP/18iIuoBGmQwZl8Qx3qNUJYFJhIfg8C58UmI\n6DDzkg+CoZHU/GSi48gEm7HeDcoDBQVNe2Oa1yARdNbrxnS6SBxsZ4MWunlD0TnDPkcws7H6pKyk\naB9DtK4rgqgBCGH2Ovzwu5v6W/Ms65BidnGR/at5thHUX9jj++te08jtO++/S0REP3rlx0nZr/zK\nf0ZERA8/rPM2ItyMGdHmVHp0WTs4gP4w7fDp9dTJhY05on0AfXQgwvkuRCtzcpkKpIZdWeM663Y1\n/fVAwtIrK1rvqxfYh8yCAPFehufhUQBio9LF81m+flQB4e6BIGxKWtYR5Np+S8dGPm/S/uq99yQC\n7ruAPkn+HkYTk6NjqD3g3+x3tJ5XS6el7O2QQ4iYNul8EbEoqD+492lC8aZ/oAa4L5HytPC8IE89\nHP9cZ5Uat2OqTgKZO+Asxjek1ndyL4jMM0jlaWvmlPD9FLTP35plPXI2KilEayzjzB3D24URSAWh\nVMekrS+kXqD47yygnw2qb1vXbiSptCNUZzYpmvvSV2NoY9N9Uwi8aXQE+T4H833eTx1NREQG8TXB\n8xnffhhyjCirOHv0V9Rp5rouFSoFWlhWf2HQtMOejtcbd7eJiOigp2tks7bsDrQ9Zub4PLmCruX3\nd9iPBROdt9oivJ4vqE8aNdmnO+Jrd1qKSDGJS0q4XjLrC0AlzS0z0m27ob81TIgJpCcPJF98FpgY\nBqgTgY+fCIqtD30uX8ifArLbJc/PpRBxFPAzdnsq8LtU5T5crugaZvegI8cpstGsRf2M9pFA7j3s\n63oy73MbYCryrCQB8DOHfZgmitF6H0mFNtvwQi/IZWxPR/r3BMZLRtoP0bBGgH0IQuQBvGcY2zhz\n9lDZvcwicaxZs2bNmjVr1qxZs2bNmjVr1h4As5s41qxZs2bNmjVr1qxZs2bNmjVrD4AdCavmEMPn\nHUKRtsP7QPcCJoLOEI0FTu94CHliqGuIEHbHCIBOgUZOuZp71L2paajWKV+nBJiNKGmsYneDHkPn\nhn2FS+Uy2bRA4zEsjmOKougz4f9KGQOYrAjH+Y7eZ7XAxy0MN5Oy7AdMDxoAPPhyjukoHU8hg7dF\nlGorYDhfd/FbyXf5MVOssvUPk7KMiDtGAJcPIkO7QIKaqVvku8WfLtHnmgLJT9lJUYByipxLNG7U\nk7IXvvcHRETU2buelBUF713IryRlpTLDuAtlrTtXoHUVoB0sCwWqUFJ4XiHLv8kD9acmlKWJiBrO\nX7uWfHfrKn+enVX6UHbE8NhWW6GVY4HmN9oqRl1vcvs8fPlzSdnG2fNERPTSy68mZTMLDPFb31Co\n39wMQ9TLZRXv8r3TEaLLUkCrXp2CPIhZOiIqFinkcyDC3SnhSKE4etBHYt+IFQJM1TlMgzFjPJ9X\nAeRFaZqyCAh2RPyYiKjZZYpVdn4jKSstniMiogyIPAeugRkDJUH8QgZFd5POjrD2Q7cJUNA0nerE\n6FdyiHwvRb8w1CFgM5DRY0SXZIahC7BfI9raQQrfh+wffvCDHyRlV65cISKi1dXVpMzQQS5fZkHp\nCxcuJN/Nzs7K9fUGxoITRhpOUk9IxYoPw2kTmtQUWH2KxiUPOQbxwFdefeXQb45qURTRcDCkbkch\nwY7H4z/F1ooOC+rHQj1ZP6OUkbPrLJBc9HT8/+w3niEios1t9Wef3GD6yOa+UnRCEQD1PPNXO5Wh\nAE2gnxl6HI4tT+DOiKI2VNBsFgRDjbguPGIoYsjTpjsPREmjKDh8wLHMId/3U/Qj0+cmQJMaDpii\n0O/q+D/Y5c83wR9fu8ai6KMAeJ85rstqVdvDPEttRgVMSXzXcMTHTSKg5nTZf2d8nct9+Xzl+idJ\n2b/8/d8jIqK/+5/8vaTs0UceJaK0SOT09cRhKnoGBF6To+L4xHOs57lUqRYpDBVS3u0YIU6F2s9V\nRMAVlqsDmcJGQ+wD/H22qvWeC/jcy209X/8Rnkf+Zlfb0ZV2fk5Elte39HhPWNLxiq6NOg779uIY\n/I/4+D4g5ANZJ2ZSdW0yeoD/0asln7oR94urO7qeLNZGiTD88Y3Xk1P935SjkcJoDPuO+fxZ54sC\ndmT7+0opXJhnnzWUdnRBCiAj42MCSRym3Yux+6Z+4H2G04R1D5/vxMlJiDhknndTVDBH6GtOXsc0\nCUU8Hg7hOPk7p2uKuClU2ABkJha5/8Yovn7Ag8UZwPkMbcY46BTH69AHiqdJH5ivfXyNPNy3DZ0K\nEz0YcQoU8DVJIlCOw/FPB2eQzWXowvk16rV1LNX3eB5cmAMhWfGP4yFQXugwXdjQDjtAhapWREQd\nJuxGneeMYknXk4Z2uX/AjgV9sifnXQB5hYHQjpbWVS6hPuL5OlMAPy1/uw29vidJVHIZfQ8ZiOgv\nJijKyDotM1Ffn8+WUtS2Y1kcEY1HVKzqOwKZ9xpX6yQj75rdofru1oDvr90HsfWYfbATqy++eo3f\nYx2gHj9ygcX/sxmtn7z4kbyMtWxenzWSw7p9nW/36iKPAskZvKxIgQDFvFjg5ykgnVx+0wPR6rG8\nl7swf6/NM30sADplzj/aO5RF4lizZs2aNWvWrFmzZs2aNWvWrD0AdkQkTkwZGlMUgYhoEmqDdGVJ\n+jg1s1vfAhG7v/wjRjVUyhqJuvzoI0REVACxrpKI/RXLmkY4NNFU2SFOxTkSdBCKZh1+nuQ30yLd\nsAsfuofP5yaRW62LxgFH4G5cfTcp+9pXf4Eo/sm7/fdjjvkPd7dNOnE8Lok6Y/pX3pWdDDQSfrDD\nu34HH+px33r6SSIiWq+eS8o6E46YbO6/l5T1JfWyF/Du4+CxryffNZd+hoiIxtfeTsqKn3ybiIiy\nnatJmWuEzgBikCCqYHc4UaFOPfbhKPpnidcd16JwTP36dXrpr/4kKWvVuU48X3eRVyTNYLaoomll\nESONCdL9SXRxuaqIGZO6EvRMqb7D6I5nnnkmKZupSYpUedZ84ZHkO5Neuz/RKP61HY4yDh1t93aL\nIw9RUY9b3eAd8suXFEnyzFNf5nsPtXf5slPvw86255oUqHpceI/I1lHMdV0q5gvUCQClJxHICeyM\nRxK5xDSARlQae4CJJuO9xoCxU+PrRYAwjKQvGVRJDfpbRa7Vqisyq1nn9MSl5fN63NpFPnte2z4Z\nptFn9OVDJXDvODZc58RInOFoSB989CGdOaNpjHPy3C40rRFATQGvxM9tbd5Nij76kNF5H3/8cVLW\nbHJksAbj4KmnWDAdEUDXBN3w/vvvE5GmdyQiOnuWEWEPPfRQUmbueWZGo1im3bFeIxHAnIbYmYa6\nSaXTnnJcAdLWH9fCKKRGt0Uv/I2iI/0kn6+eP3Y4opYramRrKGiAECLWUZejfLfeV5RQpnubiIiW\nIBV5ZpkbcL6qdbbV4us1xxJBhTZ2BAmIaYJN+tAJ1Gfkyr1A1MmVsRpj2l8jgIr+WtCjmN3URD5d\nDyLCp+NqyHEOC/UaFF8W+lxFUBrxwvmkbGWF/evCwpWkzM9wne/u7iVlJmV4raYR0YmguVwcRAad\nJ+Kv1aKiMbsibo9pz00deSCgf0NE7//0O3+alBUkEryxrn7ejIkMtKVBUk7F6HxqbJxU9DJXKNDl\nx5+gFiAzdrdZWHR9TaPj5TK3we1dRZD2uhzh7LU10lmucB0MxzpedkT0f5DZTcru9PgZ73oabffm\n+bd7LrdJ9Yb6sGpdzrGsYySeY6SbV9G6K+R5HTsEBEVkahJz14rTxgj8NGRlR5YOt3Z1Dp+vtWk8\nOSESJ+brTfN197tuQp84rR/o+bTszl1ek3z08TtJ2Ze/9BwREe1KuuGlRUViLizM06dPoske7o2Y\nnJoExJShQPeho6af73TMYcRLCjVs0CfgA3Ii3ozPY9Kz59UfjXzuZ72Rnq8i6bI9SE9OVf6N24C0\n4w0ZN11GvjmhIgSNuDYyLpLFCq7ZZUEQQupwp8l+zluEOcv01wghpYl6MpS5qT9ERLF3wgWNuUoY\nULtVp83b+v7pC0plbVkR9Jcu8LrChzlye5d9R21Ox7+5yQwghSKZG3uApg3lfaYLotulJUHsCPoC\nm74oaJ4B+PhYxHk7ofqr3TbPLX4EqGcR0kekZrPBv3FBTNzo7Wfz+tu8QVvCens0mKQSOBzHnDgm\nJxgTgZhvJsv3srKoPn6nxXUxgHeYrvSr8VjXhEaMegz1udfguhr1tQ/nywO5vt5LIOceSd2WSjqW\nlld4j6EL4shtYdbMzel73UQQWvm8vvePBdVWyeuYc2RxEmZ0TTZbZX+WzWlbzFT5N5OJ3uh4fLQ6\nt0gca9asWbNmzZo1a9asWbNmzZq1B8DsJo41a9asWbNmzZo1a9asWbNmzdoDYEeiU1Eckhu1yXeU\n6uQkfwEaSoch554IkDb3t5Oyt3/013zcUGF2199muG/1jIo4nX/y80RE9NWv/5xe12EoXCg4Q4Qe\nulNhkEZMdxqUEj/JvaOomUAew7FCd3c2Gfa+vKTw5HDM8KsbV95IyqrFUiIkdRJz45hchIjG5nng\nmETYeMrvEeo+YFrPjVs3krLOKn/vj15Pynp1EXECePCjQiOqigDp3oJCnF8UiNvdjFIcnJkv8N9h\nIynzAq47hJAacc4UvHLKc9wvxPU0oLC9botefvH/I3IVCnjpcaadTcYIaWfIXABUkK7wo4KxCiRG\nIZdVgapSEkrJ/q6Oi48/YPrIjU2l6JSLDLsz9L2dbYWFDscMI4xy2saf7DC8f+28jqNzGwwHLQBE\nnwYMveyNbiVFscM0rkUUVxPof4paIhDcENzIaQGQPd+n+cUlig60XtoijhsG2Ef4ikaYjYgodg+L\npfpeRv5inzMYZT3STdDa8aHjzLPXr2i7+AI/Lc0q1bMstIv2roqd1psMyS0tKV2xtMqfnYJSLMiM\nU4SQJzBwPcyZgip3XO/EFIft7R36n3/7t+nXfvVXk7Lnn39ebk37VygVlYHrfSKUqX/3b/+N3pPc\n4Llz+tyPfY5FtEsgHm3OnRLClPru9djv7u0pPcVQrT78UEXUy0LLnZ+fT8qMWO2FC+qT5uYZxutB\nXzDUluAzKFbmswP0iMcff5xOalEU0XDUp0pOaTH5LH/2s1pPzS7XyQDgxIGo8t24opSeGx8yRHzv\nlvZV11BqQRv0whkW1vvF5386KfvDv2T/89bHAtnO6j0NBU6cgyFYrrGfaDZV5NER2L0P4uxhIPUZ\nan0aoXYUJu8KLSwGepj5RUrE/uQq3snJnZjS3I+EmYzrGqGSQeirUOKxe/HS55Oycpnr4803X07K\ntreYnhOgULLMq6Z/o5WK3OZI/8wJ5L0BFKLINeKvep+TkO/zvY/eT8r+5R+w2PE/+I1/lJRtnOG1\niwvzcEKThP5t+vzUBAInsDCOqR1E1O7o8yzNc90hndOT597vAV2QeC5dX1Sh/Ug65VZHx3Bnif3y\nlZr24eaQ54q56preTI6h9ddkbdR9dF3vKSOC9oHW01KP287raB2vzsp6KdI2m4xlfZo7TONFcfLk\nGaAPLszwvZ85q4LbM9Ua+d7Rlu2ftpikLacKK9/b7nd+MfRHFEa9cYN99tVPlJ5v5rtigZ91fVnr\nfSI0ChcoNXr5e1PozeeUeHfCQJ7izz9DxPik82pirpdWbDdCzkipTL4HQfkpdLtJgfvsX5/R97Ev\nNrj/PhTqO9U4w78N50BovSrrpbt83X5d6YYu8XjMg8i245jEDEofdIjPF4AWgCevOh7QUMnQrWJd\nHyeyCbh+kb8xvMCcVrUHYUSNdp/ml5Wu15GkHteuq9TDuTPsEy6f1fe6jTVeQ++19F1nb5fpyjtN\nfa8pyDyJ75hzc9yvK5j8Q4SgN9b4Gp2+viOE4hM6PX1ndIVO1byja35XKEkBUNnikiQYgLWwKwLA\n4RjnTf6TQSFeKex39F0nCtwT+/zYcSj28xR7ek/dIT9ve6D+vD7kexmDYHEgNLww0H5jlg6TQPtI\nbZbXMBGw3baEYuUBjczQnsYj8StAe9vpSMKGIJVFgoiIduEdJCtVtraia0wjjj5GypgsslZX9KbO\nPsSJOUCRgra3WJ4kk9V1UuaIyWEsEseaNWvWrFmzZs2aNWvWrFmzZu0BsCNt6U8mQ9q8/T6tbnw5\nKTPibJgqzpmyN2SiaiGk5qpJamYXInO9XRblO2hvJWV7TY4IFnwVwvz8Fzg67OZMKkMQ17rHY6G+\nnCa1xgiciZKAyKGIV925+VFS9qPv/zkRET377E8lZbeucoRhb1NTV77SH1Gvd3Ikzqe3pJN04tME\n3KZ8xt1hsxMYQ/rS2XmO/D1W1Z32F95gxEyxoPXuSl1N+rw7mXvrD5Pvnii8yceTpgK+TfzbfuWp\npKwgAlPeRHe2zd1FqXzKh8X2pj33vdIDn8SCIKD6/g6dXdfd+0aLd97LsJ3al53aCaS/rFb4uZdn\nNEqScbiOQ0iFd9uIwILIoT/Dvz1wVKjrylVGOVy/wddq7qgYpBElyxRhBzfD11jdUPGwhRZHDxAZ\nZtIX3nr/+0mZJxHHTkufpzbD4l7joe6oF6r8PD6I9VJ8OvvCDhE5TkQx9IeRCBqHgHgyQbpcQSM/\n4YDrLS36ffga7pRC85uIDkcpzeG5kfqwnEQ4WiMQVVvhKHJtRVFQwZBREL27HyRl3Q5Hv+bWzidl\nxTnpazlE55i+AePg0zdFROS6J44YTiZj2rpzl/71H+q4zpQ4ivTYo5qGXjImp6JmZUmV/PjnVHT7\n7EUWdK7OKFIpkCgKxqFzch4fIjZtQW26gvoplTXqnpWQyATaotfmft3tqV/5y+9+h4iIZhd0HJy/\ncImIiFZWNBI/L9+XS5juWaJdMUajZM6C+cGZEhU+qlUrZfo733ieCiCUaARdMcXl93/E/afR1LEp\ngToatfW5X/n+C0REVAEEQCHD43QUaZ2tbnB/y1f1GVbOc3u/c0VE7B1FAvmmTmDuoKGkO4Xor0HW\nYPpbgwaNMc21nCd2AM0nXQqj6CYtOQx98rxT8vcibIwoiAQZlppT+H68ael4oWxpkVFQyxD1HQ64\njlpNbSOTLhlTeH96DnM9+G5g0JCA0ovNugpGk/GZEIV8911OtvDHf/xHSdk/+PV/SEREczA2x2M+\nT8bHKPw9RGJPYHEc0zAYUw4EzqMRR7Ov3dX5bSiNnoH2Xipxf5kDhE0rx/e8P6knZVvXGZ1Wq+i4\nrpUYMeataFsUz7PPys6yj+nOaNu9Qzznr4y0385keGzeeFej+K0ej6tlQPh4gsrxHVyTGmTTFEQI\nHDVo8PxwG5DqK7VnUuPnuOY4ThrZOSUz9P0mjLg3cgX6qiBrlmBNFAccvS4WuZ/f2VZh97UNRipU\nKjAX3nOtNwWxMy1FMmqoy9yaArmTQfEAQvdU4t0OxbGTrmP38Fg1CHXH1T7jiz+a9DXa/8GA+9tL\nkDilI36mCOLXpTyfu4I+QvxyXJb0yGNFFrT6/L51EClCriAInCrUZ9vh9tx2FUlyfsQP5+3rGpdG\nBhmNM76phCmJJjA5RnAYrXYcG41Dun7ngHIZRYvOyTq7VlYUhCfMjhzU/UTWH+2Wom4MOuT8OUXs\nnJH1RBHWorv77IuygI65I8LzrqCw1lb0HHsNXqM3u5CaWnwyVl8pZL9XKahf223wGjMLIvdVM3bA\nd5pe7cZ6T77Dn0sFnW9Go1Ga/XEMi8mliVOgOAdrCKnuW7e0LSKP79PNwG9lbotCnfQNAgcArck7\nQgho1NggSnP6jGb+cET8ezDQsdQVsWODLiMiMkDgAby/GyTOcKhzx0yN+/CFCyqQPVvmA2eq6rtc\nYQjMS1pxIkpQlVev3UnKGk0QGb8Ps0gca9asWbNmzZo1a9asWbNmzZq1B8DsJo41a9asWbNmzZo1\na9asWbNmzdoDYEeiU42Gfbr68Tu0dkapMa4IFiMeMaHGAEQwGDL07+O3XtPfThg2tFRWSNiNXaFR\nOQpDiloME/urP/njpKyU4e8/9wwLzQYIDRWIIjJzQoGuhgA99AV9LDR4AAAgAElEQVSujeJrBgbu\nAeYyGPH1P3rzpaTs/Td+QERE3dbdpGzzFovDNgF2N4lCClNiSccwh0WLU9C2KbQi8zlGUULzjAjX\nFKj0AOCnH29z+/yHX9S2/YLDokx39hV2dmuHYWQHIpI5DhQSN+sw3ewrBRVJWywvEhHRNV/pDK7L\nbRbvqwB0FNSTZ1Xje54mrjVNxC4lunsK1CqHYsrGIdVvKGTaVHexpn12bY4/V6sKE15c5OcuFEAU\ndMT1uHtwkJS98w6LlRXK2t9vt7msB7Sn3jZDXLfqDDP3PYWAdut8nLuvz5z1uZ//sPluUlYS4ceZ\nmv62IBD08raKd733xr8iIqJ+T/vtGREaP6grjnGU4ed+7vmvJWWrqyAWeQKLKaYoDmkM/AnTvtlM\nNnUcUVrY2B0BlDcxocGk/FSc+mvO+OkyPU7Oj3QQob+Uq9ofRkKTQCFgI0rqw/WHPR4nzY9UsLcz\nz9DaubOXk7JqTegOQC8JDawc7tx1Ty4EWMhm6PPnVqneVkrC7/7f/w8RET3/3DeTsl/+j36BiIiy\nILI5K8J+6/NKzygVuK91etom/QHX3ySr9VgTemKhoLDbg33u6/mCUDtcpXiUK3xcBwTGYyOEWdDj\n8gKPjiYKUb179zYREX0kQsxERBm596VFpcBdECrY4rqKbRqqsA/QXe80fI3jUN53KQ80zShkf4Fi\ny6a6PaQaSS+YL2rd9cXHlGZUUHEgUzUC1Ls9vka92U7KhlKPPYEbOwO91kgEoCcwxtoi+Iii4a7g\nosdAdzPUu9g5LLKINGcjRohUSjP24xTlCTDVJzTHcVLnvregI8ylyU/0t75A8WdqOg52BWIfA4XG\n0MVKpdKhspasee4AbbY74Dp3fR1zGflcLgPtSio1gMnU0K1ef00TFxSyfE+/9vdVxLxWY4pBANRg\nIwCOaw33lKibO1t3KQc+pCZ1kUOdV1mv+EA1FCY+9YdK5ah3uc4urGkP37jIfnnxrI7r+RrPzb0D\nrdvNgx8SEVEzZEh8paDQ+OU8t1kt0D7/8V2mO6xcVMH2+SxTjsOWzptmSCDr1dCopvZfqNLmPq8t\n9w5UPPny5Q0KTqXfO6mLmTVwOnfGT6ZJTWt7HDPmexSPXxex6rufvJmUjWRNdGeb58ILl7+QfPfQ\no0xxSxFq5Lyp0Zms/2DONu8A4Dv1nmF9LH/R/5ikJnGad0UnNtchJ1eAJB56ffR15sVl3NPjrooI\n+ntwT//W589bbR0/79X5/enNgfbBL+R5DDziArUk4aNI3RX0HHser2NvRyB4Ln9rkR63M2HfPgHh\n2Z8Xqu6lMVBrDz0tUSKVQGiJmryWjE/Lx8cURBEVIElAo8u+o9PGduYnzcCArVTZTz7/VZURWVxk\nSsxjjz6dlL32Cr/bXrvySVLW3Od3wRLQtPc2eb1nEjD0mkqdau2zDyvn9Pj9BvupAiQJcIQut3FW\nBeBdWRfv7ev7hStVOQr1Hc4XyYPMUPtcrsDrhDAH81jGIdc7Ic4jjikYjwlfgS88zHV354auMQ1l\nPuvrPRnh6QBoT0Wpg1xW++FY2pHA/6xK3TowZwwm3LbdLq8Fh0Oczzy5vr6vBVMe3dCXuyAUPTjg\n9ru9re/9Dz/P/cJ31G+M5Df1ls4jV6/xnsHVKyrBMhwAZ/w+zCJxrFmzZs2aNWvWrFmzZs2aNWvW\nHgA7EhInDAJq7e9SONSonV+Q9F6pzJ+87RaDSlF9n3far779SlJWkd20GqRVPdjnXcqgBQJUfT75\n7ILunH30KkdOrn3wFhERlUV4lYjoqS/ybn6moDuXkYlcwob3RHbXR7BrPehIismm7mbevsmCxe+/\n+gM9n6Akdu/eSMo68tt8SYWtXD+alg3xSOaQQ77vT0XdOC6iiExYE1MYHo6IeBLZcn3dlX7jFu+E\nvp9R8dJnf+u3iIhoY1PrIve6IDtu3iAiomCsEe5A6iTqKBLn6RwLNp0raUT2DeKd/u5Qd5u9Lkdz\nJ6HeZxQfDcH0WWkij2q+QzSbc2m2CKibVY7QlQA9trDAEVcUxjTRIT8LKa1F3HAMUeyPPpK0wBCN\nvNvgXdnLZ7QfPbPGSKb1RS77ZFNROnubsqMNABRfohm7e9o+kezZOqSiXK6kzXVdQKiJmCYKbhY+\nvC7fAUJOIka3byuiwURyT8XimFLRQoM+gfFkIteITJiSkTuJLE8m0KeMKDug8zTEFx86zhQ54OyG\nkl4zW1D/M5IUwO0dTQm5LGKnkM03QRR5IHo5aTMiqv6BRok7i4wEWdrQqG9xhlFyKATuxDE50xSc\nj2B5n+jyXESdgkbtrm4ycuUvvvOvkrLHH2UB0K9+9bmkbNDnNhiDuHW7JT6xrPWT8bj+Sq5GHIwn\nunnjelLWavAcsORxn/JB9K4mz99rYipOiUTtaIRnVhCdfqRzzOwcjyXH0TkmLwJ4dwB1N5EocXlW\nEXa5JEIG9e6eRiwkJorDNCpUEB25PAhcGhQaCAs7Eh0qQhQrK5G6UU+RCo0JP28IqWM77/B4+MrZ\nx5Kyj9/nPhiFXOEYzYpEeHpCIC4uAyMHgoq+x5+HEx1bBkHgw3xvkLEeoKzygi4ZpARcJd0oRNaj\n6GgRq8+yaXNGKrpvUF0xRIeNwDXqi8vf0Ujvr99n54z3b3wXCjibdOPtjohUQl1tLDCCJOXXDFIR\nfFJfUM+tnvr+jAyeCfz4e9/7Ht8TiIf+xq//GhERzc3peDWCkbiGiOP4/vNS/wQLJgEd7Gyn0pkH\nszzWV5dU/LGY43vvQzrd9lDSvUNbZCv8fW5D5+bWGfYsrRm9xlaOx/WlJ1Qo/csi+p2s+/oqNFnO\n8Pz+nVduJ2Uf7HAdn//yV5Kyhy/wGDp4R+fDnVuSdhzipQaxEoDot+lm2Laew88WAIrQ906OtnQc\nhzzPpSg6vF6atsa8n/MRpftxPAUds7rKqAEfRE7feJvR2KsbnAzjc49cSr4z8yJOzwnCJ3UHIqYL\nhcafOJlpz4g+ScTCAVnpJOukk4t3p8xxiTLZNLQoWVvAYBLEHTV1zfxCn333783oO00oc1HUVR+/\nK+L2H0OihddFgPgMpP3OC5TNjP0RoGmoyPUeZHWt55iFC9zmeCQoQEBq9kV4+ZcDfUd8zOHrRi4m\nZpA2m4YjwAXe8HR8vO/7tLA4mxKzbbb5HoddXRPu7XL9bawqc+DnfolRx88+pyyF3T1+x3kPxvpr\nr3Ffrh8osnquxGsHnIcXZT0xU2X0yx4cP5Z04/MlvX5Z0k/Pz6hfGwhydgxpsmelvW4e3EjKYkl1\nXV3WMWeQRS68a7XE7w0gXXy+VDzxe5TrxFRyR5QBKE5zi5/RDyCdOcm6AtKOjyRBBaZRL4rvmKno\n80xGXAc4j1VkmHjwDtOXudUVsfk8vP8aoJ1Z8xER5YRFkc3rmGt2+J4QDdvrcX995fVrev0it/HD\n5xUptbfHSJ3t7feSsu0tmWfAF8+UFD19P2aRONasWbNmzZo1a9asWbNmzZo1aw+A2U0ca9asWbNm\nzZo1a9asWbNmzZq1B8CORKcKgjHVD+7Q9WtvJ2WPPP51IiJyXIUmZYw4MECxbt+4QUREzaZC2M8a\nyBoIeJmfxCDeNhBY1SxAfEcthrO9+8qPiYgom9X9qMYVpljlQTCwUJb7A3hnc08gZB0Vlroj4sRd\ngKlRVoToAoUougKtDly9z3KOYVCDEAUSB2mo5DEsXyzTpc8/m6LrTASKGwKM2kBCpwn8pu9A4K+e\nUia6Auf6599W4WmaZYjrF554Min62hyXXWgwZaHfUepCZ3+Tz7W/pddvMVQwW9S2qwwZYvbdv9FL\nDW8zni0zVBpJEBu4H0JiDwtcTjP3FCgOpWKenn36Mm2sqchhJFSjTlv7R7HI/SwE8TvTFi5QERyB\nvvf7Ci28cZ3FC2vzKrzoCS3ki08qjeOJJa6/v3iNIXmVqtKWKgsMv510QTRTukAuxj4rH1AFPOLf\njglgjBHDLYvVmaTs0hMsuPvYZe0LO7eZetJrqChXqXxyGhsRt7jruilKVybD7ioFfZ4C5TbmAr66\n2eZ629rcTMoMXSQ1Pk3/whN9qs+h6LEZaxGK8YnvajaUhmhEzQplhUoWigLXBMpERig0MYzhYIch\nl1sgNjyzwgLSc2dUdDdXmUmLnx/DnDgkL2rRLAgMP7bG/eCjfYVIb33Ic0BjfTUp++Qu9+Uff6IQ\n40DaygEu1GjE/b8WAcS4xn29sHgxKSuK/x4LBS4l4mzaFuqpKJSo7ABogBkD5Qbha8dQkvSMNaHA\ntqAb3bnOAoW3d1X0uyyiqIswXksgKHxSi1EGUiDsflZh8JWK+NFNpaxmPW7zSlGfcTXPwn4ZoHNu\nilD03h6IGEut/uj76vfrd9lnFAUyHHnqG2Lpn0GgS4e8UEEzUHeGClLIaX8cCpfHz4AAslDvXIDQ\nh0J9dFMUSRFjBH9wT+3hY1j6ekJXRkqFYSt7IGwu3AgXCB5bO+xj3n5XBVzbTa77KEUHi1LXIlIf\nUxE/UYM52lAn0TcMjd8GGp4j1/BQWF2E3+McUPOEVv3SK5qwoSNCwb/1j/6LpGxtlcd4OIZ1muOm\nhV+PYb7v0/zsSup58iKwOYkVwl7Kc/+fq4Cgs6y/+l2tu8EsrztKZ7XMn2Pf2ol1jdeJ2J9cA3HK\nPaF2Lq7w+FoqqSh1t8NtNz/Ue7q8xGO+GcLaUWD/tSX1B+VV+U0fBodUG3bfUL6OYR7JZbmvP3Re\naV97m7coAMrDSQz7u6H54bpqmqC1sWnrL6TbTQzND+i9YxnXA6BY5vJcV4U8txMKWmfkuiGKhss1\n0tQtrrNeT9dku7I+7cA6fjQ0wuB6fZOwYXZW6XtRaNYU2t/i0xA2JiIih8jPw7+N8iwkcGix/821\ntW/lRVS7AxQYT+ghg7oKqoYiJJ/19bhA/O0OrEUN/Xwoz9UHmlFJZDBKQKfKTKl3R9Zjnaz65Bek\nvfttndt/U66xmqLgslWASp7Q2wkMKKEnsSiOaDQaUaulUgKGiloG+Qsjst6GfvPJxyx50G7peu7W\nHaZWvveuihh74qvPn1fauxdxn9/dVcpUscTHOfLuOB7ptQzVfDzStr/40HkiIpqZVTpVXgSH+3U9\nLhQl3kfOnU/KbuzeICKiUknfF/o97iMlTAZi1EYcbaPJeHJiOlUm49Ha+hz1htqOHXn/8Yu67u1P\nRNg41n5bkf41grmtUee1y/62ruMrQjMOQL7l+nVes22c0XFdyvA1ArnWGPqymZdHI13rTGRt4vlI\ntZQ1GdC/IzluMNH6/M53XyUiosU5FaU367NaWY/Li6SMD/c+Cwly7scsEseaNWvWrFmzZs2aNWvW\nrFmzZu0BsCMhceIopPGgQZt3dXfp0iOcSqvX1Z3cQFAyiELo7rPI5wiiCCPZoW3sa1SxJcJOBt1A\nROSLYKMDQrehoHMWS7yD5UV63sbVd/j8AxDdlXR4uLFYkLRvcxXdiY0OWJwoALTEpUcfJyKifFZ3\n9bpy7pt7Gh1vTvjenZLu5uUr7omFjc+eO0v/5Hf+t5RI3ETQPuOJXmssaf1CSA9qIiwpdE5kROf0\nGmYnsl7X5zGRv30QeY5D3qktZvm73Y7uuJsUaxUQAo7meMfStCsR0UqZj3vqMY26vyb1Odr7KCnz\nRtKPQIguTCK2p4P4uJf5vkcLcxWq1rR/DEZ8L2OIPuQkijSCtIoGCjPByKv5DCgzhw5HSAcS8Xzm\nSUUA/fTjDxMR0f/1p39ERERtR5FNxTJHDfuQRtAR0c+QFPkRmshSConD9+mDeqAvqKwKiDc/fJ7b\n6tyGphBvNBkhEsTzSVkN0AAnsSiOaTwZpzS6M1JHkxEKXhvkzOGwvANlRoisVNIoWF/GTgxKg0n6\n4xQ4R64hX02yGkGYiCi601P/4wkywgPhyrYIonW7ioLISoRseU3rNFcwqC69fiHH/c/4MCKi1k1G\nQXnwjBtPzZ5Y9HISx7QzjihfwDrhzw9VNcI8vsLX/5v9P0zKXrzOosTvAmLI+BqMtkcSJcwOtb8u\n1bivfflb6veXqhKxio04u44R4898EEVNojMg8OuJSNwA2jgIDaJKj+tJhO7WVY2s9cd8f7eb6rti\nEfbO5XVcuYAsOb45RI5HMSKGMiJcSTimRAwbnrsg46JaVT81a8QLEQkoUW/fU38eeFwXLUlnTERU\nFpHXqsd1lgWR66ZEsRqIgJJoUg5S5/oO99UoD0gciRSChh91zfjx9N6HBqECB5oxFYb6PK4DStd/\nS4ZoE8dECSEa7ku0cBMSHLz6CiddaDVU2DwQ4dAwOJxifFpqZpPyFIU4Wy2O2PogqpiVaCpGmM09\nT8BfZKSNxmNVvzfuKQ+ou1deeZmIiLa3FE37m7/+m0RE9JVnn03KGMV2MmczP7dI//A3/nGqzKSX\nR//rmKgnisJLeuUBiPl/2Pk+ERFV1zTqHZakD2d0vGZEKLmc036dJY5ohzHX2djXue8g5PGy9oie\no+XxeuXue68mZRNJMDA3p+jI/Dz7i0oJ/KlE5+NI5zEzV3VApNZEe3MgrHn1k/doBIkRTmKIsDF9\nCstMv8RofHzog64x63Vdx5dl7VCpKAKgLkL1W7vqf/Kyzu+L8OuPX1J49s/+vKxrBtqP7wrac29P\n23hL/P6t2ypKvyfIB0TiJCndHUTiMCr8W9/82aTsK899g4jSaYxTOciPa1FM0WhMlNf1AxkxeBCF\nN/MdeerfLu5zW6y0FHmxWeTnQIScSa2Oa5/QvCvAYDFrVvNUIbTxQBBqXgbOISgaRCAY8egQqiaQ\nMfVSUes4L6Lu34D+fl5+U4mhjhMUCKLXTwd1FkcxjUajFFrMoDp9QHpkTappyEDxve+xXzl/ThFx\n45Cf6fwFLTt/jtfIiwsqSjzqcp/HdWxXxrip8gsXNpLv9gVVhULoDUE13bypPv7hc+xjPveYIqGH\ncq1HS3q+zAf8HDe2FE08MP0A5uasIHYLBXh3oziVaOE4ls36dHZjgfbqysDpSn/AcT1ocd9wwU8v\nrXPddtr620KO++T+vvbNUcx9LgNp3PcNQmlT/cTZdX5PGQZmPsGEAlzHOUfnhEmy/gCkrFy219a9\nhaG8u+I8Xs6xX7t1V5kl1SJfd+EJRWotCMPChWQgF89qn7ofs0gca9asWbNmzZo1a9asWbNmzZq1\nB8DsJo41a9asWbNmzZo1a9asWbNmzdoDYEeiU0VRSONBh25d1zzn1z75gIiIct5iUnblx39NRESV\ngsIBXaEuBCAO/PLbbxAR0WJZqSEDoXWEACtdWOJzhxOF4/UEOjY/w78Nx4DpM4J1kHO+6DJ2zc+D\n+ON5pqt4gUIU7+YZ0tdGoTGhyVTKCvVfX2Bo1lxFxV9/78++S0RES5eUdjVzppaIsR3XgsmA6nfe\nothF+BtDoOfnFbrnVQwkFsVg+Z691D3weVAoOQiEdhXOwXH8m91toLs1DS2E2zEcKdzbCDa5Wb3P\nN95ietpbb76jZxVYaxb6RyFiyHBUVHjgKMdtGw8U2u0NGIobA8Rtmr7lSQW5iBhanMvmKAaqkSdQ\nXBdFjAUqHwFNKoyNyDTyckRwEsT+jODkKATKhssww3xG+yBFTMPJZuS5garjezk5r44PV4RFwwig\nqVJTCO00FC+E08ZCRxlE2radsdDdIh0rjgh+HQC08KlLp0OniqOYBoMhTWDMZ4XCNh4pDDOaom7q\nSF92J0DvEJhsPqP354goaBQj1P1wvzFUoEjglZkFHSNxkfvtCGDonggVb+R1bA6la/T7Wn8DgZUG\nAIf2XC4bASVSoe56Txl5tnyoEOmSF5J3QtR3pz+k773+Ic3UQJxToN6ZnMJVP94Temyg9Vk6x5S/\nlUWlAe7fYvh7BG0RCE1nCHSZrtAU/+k//d+Tsm999QtERPQf/Mw3+XeBnsOVbpGBsTQjwnV9pJEI\nvS8EgcTQjFcQ2AykvpdBMPz2DreVg35SeAQdoOrGOkxOZLHjEbkKq2+2+Dk+uXktKbu7yX7AA5hz\nTqDQPgpX5vhzB557MOR+vL5xRo/Lc1kbxsDCmNs5L889gb54q8EVPwt051pZhGeLOsfkxIdFABOe\nRCKKTOr3t3dFcLyjfeFABD3R72aEshaB3z0NhgPaNF+SMukGSOvb2WKByx//6IWk7M5toWRDPzRd\naBKAqKv4iQmMDQO1r9V4XTEa6/GNBtcVUl6KRRHkBjpV8jVM+b0e95sx9Pn+UO4P5oO8UHe2AH7/\nO7/zO0REdFPokkREv/QLv5hqi+NYGAbUbu2mqDmuQNzxGQ2kP4ADPRGnbfbU//VzTGea8cHXyC3O\nzemarCDiyTnom7MFHvfF/ECudUev5XJ/7LZ0rReF3AcGfYXrxzW+Rqas/aPVE/h/X2H1GyL2HcQg\nGC59D8daVmiSDtLtKKLToJI7jjOVxoeTjPkW1zUZmWB8mGg+ucYU1Lub2meefe5rREQ0hjHw5lss\n9G1oVUREFy/yeq8o9J535J2AiGhTKH37daVf3ZAEKT3wa2ZecIAmZWh5eaCimTIUKb4p9/4nDaU5\nry6xf3ziiS8mZYPxKQjsOg7FmQyFXe2zybtHHqjCQkt1FnQO/kKO7+m/21Gq8qvSBN/Pavu8ETB9\nDNcPjgg+Z4CGORafY/pdrqB01on43R7Q9nKxoR6pU8kKlRS7o+kzIYjmvhDynHF7qP3tl+TjCszf\neRmPEQhKO0JvPGmXN8LG08Trh/AOUxJR2ee+pNTRliTAwaQR1Rwfd/aszqX7B9z/79y+rdeVfrMw\np2vGfp/LskI9C8YwvkTgNgt07f1dnhOufKIJRC49xJScjQtKxfdd8XFZ/e2Lb3OSiVZT++/sHPu6\nxXn1Zw2hO01gvskVC1NFzY9ivufSQi1LhayK9bY63AY+vEsM+zy39UL1F+UZpoydW9L73LvJ1MlO\nX8dG0k9RqFko+2OYbwcD/ry9w77Yz+s5qlVe8/R6ek/x2Ii9w7pAPk9AxsT0es+FhCfSYf2M+p9u\nn/tZu6vP+OUvPUJERHkQIj+7ep6OYhaJY82aNWvWrFmzZs2aNWvWrFmz9gDYkZA4DhG5cUzNuu64\nb29ypPXrX/xcUvbYt54nIqKr77+VlHVF4Md3dWesKZHwGuQVXL3IO4y3P1CRspGEsTNzkIo3xztc\nBjUwDvQcjqRkHZHurnsiyJuHlJ1lESj1SHfGFmd4x3Cvo7v/+02JgMEuYTzic6/OKwKpZgRu+3pc\nIZ878W5mv9elN3/8IhWrFSjlcy7A9U1UDncJSyL2VADxwkQaGHYYDVLHh1TAuRz/ZrasdVvwuN7v\nDDgisLSuu6TZzKKcFyKoEm366ENtzx2J2MR1CGHLjnzG1/t0syKYW9TnDgKOOAYTFLc1D3S46CTm\nkEOu66YipSaIkxKOk3uJQjjOiHPCPqkpwyhJGIiw5wCimjIqR54+d2fM7TKUvuUV9GFLVe530UQj\nJ65ECjOAdohl7OUzOuxLEg1wQVivKVEuIx5JRNST6FEXEHIZEWGtFXSX/ad+Svrj/0QnsphiiqKI\nAkyTK5EkRJWZyApGWFwTYYQIiysRpBAUg1W0FKO+8t0UJJf5rg3pEsfS5rVZFXc2aB4HhK4LMq7c\noka8iiIAjkKlRnwRUQbhhJ8jAgSSJ30yC2Ot6HsnRyfEDrlRhkZtPe/yWW7f5YsamTzYZgHy3r5G\nLlY3OHLi5RWxY8Sb4wEgquR5Q0zVLM33wScqbH7QYh87EgG8WUCa5KUxxjA2vYDrqVZTZGdskFdj\nQCqY6B4EWEzKcg8E7YuSntx1QVBfBJIzIG6dO6maNF+FYjdHW/s6vq7dYrRTow3tLv4xlYo3J30G\nBZ3lAAcQqiZVJqYRXZcU9R0Qncy0eKxPJGIE+n/0uUsc+ds4/1BSFkn622Cg82004ucIY7y+RKVg\nDl5fYkTPO9d1vm1JYoQJHJcV9ASez40AqXjKNm3ONn3UpJwmInr9NRZivX5d+23zQKLloPi5ssaI\ng52dG3gRIiKq1dR/jmSMDyRaG2AQ0ET3wP9lBc2DArKtNq9XBoAW80XE06ybuEySDjQ1RbFjIsEw\nD3c63K6/+7u/m5Tt7+3RwYG22bEsjikKJyn0Y2zQMeB/HVkbROinpW5bTUV19Mvsi/KoRytzXtjD\ntQb3pawPqFFJD26QY76nPuzsvKCdPPXxfUnUsKOgQ+pLWy2VtV/26lzHW6H6i7DL9e3CetJEbl14\nRl8QCQBWoHASprNzHMvin4g6Q0RuKP0zD0kXwj770fc/VGT1zVuMEHjmyz+VlOWy3M86QxUWzpW4\nDp7/qa8nZctLXLe7Ik58AEiT995lVE6ri+LEfH8eoDXysj70YMy6ItieAdH5rAgVe4AmiURkOlfQ\nsq4kTXEhOj7pY+T9mOY65OZyFEK/i/fEZ97RfhxJnY0mOrdmRSj62Vkd55+Xtfh/7Coq8l8P+Ln/\nz0jf0Roi0J8Zg4Cvz/6+IOu+2oq+R3RlfTNsalsY/4GJaSaCgML6DMRhZWDSCAQN+14EiJMRX+NJ\n0jXrRcqbiyVlZMTypyz3j2IsbDymEqQTLxkUI6yrzFq/2dD1QiHPx/UB/VU36cZhLq3K+xkmzwgF\nsVat6ppkV5Lh7F7jcYMondlZbodCUd+rnn6K545zj1xKyr7+jaeIiOg8pNDe3uF7fuGHryVl168x\norBa0evPSBIJk+qciKjV4jbs9dVPNtvt1LvPccxzHaqWCpSDcWj8cyWnfWQk76wfben1YjM/zuh7\n0EKe9wc6kMK+LajRrDYtuRMeVzh/Dsfi92UObEBSHuNO8nnteyVJeGTSmhMp6yILvoEcg/rRTtoV\noeQ4xZjg+r4FY317m9vsicsXkrLxEXXrLRLHmjVr1qxZs2bNmjVr1qxZs2btAbCjpRiPHQrHHo1g\n59WTqH4A+hlZ0Z2pFvX0q2XeIb6wqNtlJrVlpqIptZ56mqi5lBgAACAASURBVHcdo6HuL42HvDXl\nQ7Q9FvTDfpOjdlv7umtsItyY8tRE5fMT2H2sM5/ZmegOay7D9zQGnYr+WHbEfd3xbjQ4GtcFVFJW\ndmXdgh5XnS+Q559sr8x1XCrmSxTipqhEr4bAry1IpLOQ1Z3gkeweF2D3v2h2o1PRLkltClzn2ERY\nJ5hDUFAGEhEt5DRid+YMR2k7LY3QlU36WYyOiSaGg3oJgiKZAJrEGciOJXJuzW6+c5iniCGr04iN\nh1FInU6H+gM973DI/W4y1MbIeHKfEH0YGd0NiBwHcp9D0FsKZNt1EVKWb7f5er/3B5ru+OUZ5tk6\nWe5by+c0KriwxFHx6x99mJQ1hMcbdDASztdwyqALdfkyERE9eunRpOzF7/2AiIj2djaTshs3eEe/\n29EIxVjSCPvQjo32yXQSjDlE5LpOiods0DEYJUcEjrFQePgO7IyHohPVgzSbRg/InxJ1T6dVlTTZ\n0pZZ0NXZE35tG1J/FmSnvwqwmEhgH+OMjpehiFZ4Pg4O0RyA9Leu3EvQgcic+JRuQ/WqouYOxeHJ\nIie+59JcKU8zFfVhK3Os7VMF3nwskaVwpM+zK2jLzkTTVQeSDj7o6vxgEFVzwHWeEW2z555TLvqa\noBdiSUVeBYRPLNox9ZHW8V5bIo4zy0lZXvr8CNxFT+oRtZAmEim6A6iEuTXmu5+vaCTo7h6P9QXQ\n2KhkT+5tJkFAd3cbdP2WpqUeTiTtZwk0mCTu4gP/OpeXfu5Cqlnx47MLWseuBOMQgWAQSDlX54wZ\nqeZGwOdYXFTe/9oGpy+tQP8Y9rlOGvuAUPOLcr9qBek/Y0AiBhLpu7CqSIX9Oh93ZVsjpMMJN6BJ\nD09E5MfT0QTHsTiOU37FoP0c8C++PM2V6x8nZbfusI9utLXfuI6M50jroyLpXGcq2odv3rlFRESz\nc4rEcaRP9sXPlma0/SqiU+WA2E1HUAp9QJrMCToXs8PWG7w+wiozXcgDXzcWfYEAtVkkWo/pZr/9\n539GrbbOBcexMAyo2TxI+VpzjZRLlhvNInpEdOC26zpe+nLvxUhRBWtzgiCFazR6gvTCFNsV9hm+\nzOE5V9tkpsRwm2JW+/zNLs/H3bFGVTc32f+tL6lORUF0FyagL7IjdVsDDalsgZ8nxunTIGEwJTXF\nU+e8o5hDDvm+/6l6P6yJYz4f1FX35+1XXyQiom5L19uPP83aZatnH07Kgkh8V0b778//4i8TEVEO\n1m5jQUh+9999hy8JCJvZWf5tBhaPZv0Vg9ZfTvQh4wA1caTPwG9LJT4uBB9ikJznL+q9nz3PUfEI\nBssI0BonMcdJ63LShkC51hXS5cj85Gxp3yap71FL9VZ8QV6uVbSv/mOZl6ot7TP/y5jXcQ1Afhkf\nXBJts2xJ+zbJGmkIKaAzojeCQ7Ajczv27YqgW/KA/PekHl1H1w8fCkL/RUArn3PEv+F6KDwdnIHj\nupTLFVLIiFCez4G+1Bf0aacDKMaqtBekfPfE/wwHer5zZ3md8NAFbcvZIvuiSlXXJI89+jgREW3e\nuUFEoC1EqpeSr6ieYqnK46AyA2wK0X96+XV9R/iLv/4hERG9/77OT4UCz+uolWjadbOnSJSRtMME\ndAeDyeTEqL+YHBqFDpWruoYpi46s0WkjIlqV99jNA/Urs3lul3ZD/U9Obudh0AIaj9iHPHxpPSm7\nU+A63dtT/+xLPfvSl11P+21T1u9FQOLMzLAPm6kp+m0kexE43xpIdwB6c8MR9+8U6k/WD/WWXvf2\nbX621Tn1k80jIowtEseaNWvWrFmzZs2aNWvWrFmzZu0BMLuJY82aNWvWrFmzZs2aNWvWrFmz9gDY\nkehURA7FlKV+TyFWAxHh2t3X9Ge+wD/zZYV/PfMYUz627mp68r23GU688bCmlT63yjAy7/MqnPjq\niy8TEVGnpYKCvsAAQxFTbAD1Y18eqwYprPMi0loqKpSxKXCuQUeF03qCIu4BzC/oi0gSKUw3LzDZ\n3oFSB0IjrAnQuULZoROiX2k0GtHVq1cpdLS5CiJo2Aeh2Z1tpnaVIRV6RiBkmJZ5RsSbQ0i1mBWh\nzgxA+4KAfwPaslQSwS2T1vEjoPCEQnVqQxrlNz/mfrF/oNDQYMj1GYHwoxHaS9FYkjTdCJs/TJ1S\n0D6UnQafKuZrxyAUndQjQHINYwrpGa4RKgSKlcnUGaC4rhQu14CqIud++eUbSVn0NNOeli9z3+pU\nFKb3pW8+QUREaxf0+ps3hT5UV1hoVyhgXaicuw6n8dy5oWOrX+bPEdAzWkIp9HI6LjyPx00VIIiv\n6fA+mTkO+X4mJfprqDkR9BF/irBxRqhIMWBIDVx8bl5hnY0uw+pTXUWOS5XJ5Ux/zIKobVZSmPZh\nfOWlzSMQ3zbUreFQ+1JDIJcEImmfhnwSEflz7HdQZM4XCPntT6DChzs0aCt89DjmukSVYkylotZA\nRtLa50FdsCw+fv6Ri0lZdob9eC9QuGhGUrsj1N1QNopVnR8yQidcXlbfWRMRx+0tnicqgfaFVz5i\n0fxOSc/x5MM8Dq4fKLWlG/PnpSX13bFQa8+dVdhzbpbHX6eptMKHLvKzHQDFavTqu0RENBlpO774\nzgd0UhuOJnTl+ibBaalQ5uePwNeZtNQFoNsVs/w8/f6Wnk+E0vMwF5j5GFOrj4SqNoD5riK/mb3A\n7bm4pnNxRvp7vaH+ImtS9wKtsiiC+jguDUWnD2k8RyKiWQTK8aMCld4F6kA/NGmEk6KUSPlJLI5j\nCsNwqpgxUi0D8dV1EPSNJH1uAIKfsxWmNDgo3Cj1jAKPZmrwQZB6bZX7/40rnAgAdOmpILQ+FMsv\nSmrsTkvHfUNSMp89f16fQ2iFN2/qOs1QRFZXdf3VkFTl6M+iyKQjRn8Kwo7HNNdzqVQuTaV1IxfM\nUNryBD5E6LGdTR0w25KK985NvbeZKvuMsrIFqbTIvEIXrmEEhWNx7WFWzzEQv28oQkREZY/9RW6i\n59ivc7++sqs0gYtrPA4mrvbVoMhU6IVl9UnVAsPqm9c0jTsZiqMDQrhxfHr5G6BvGfpgStBfnrsF\n6+PqPPftp7+otNeSiLF2IFVyQdRLI0hZnBFangv+rCiCuc98kZOhtNtINWCqiOOojzcprsdwraoI\nyXooCi3+pFjEZCh8Tw0QRS3mefw89bQ+z/IaU0a7IAxeQrrRcS2OicIwEWwlAvkCpBDN8/o8AzRL\nksQA4b76nniH1/vDfV1bu1Uet7+2rkKp9X2ui9/p3knKwokRJebvei2lRrbElwyBjl4QOmsV6KDd\nLvf3yRhEa2VeyoCPiqVdvJw+90DEgl+ANdK35O8ZV88Xn4KeNBG7E7/o0rij/cusJwnmLeNbOyBi\nbJJiLMN4dSQpwwj6yHUZu8bnEBHVityG166p8H1XqFqXL/O8iu9cV67ye2xxRoWISXyRkTQgItoS\nqt2rb7ySlB20mYqUAxkTT+YWD+aYsTy3SXVORJSVNXwW1p3FYok8T+f549hwNKFPbu7QIqy7S3nz\nrqnjemIEsWHtmJPkQWPSde+tbX7GWkXlJNbNPAdrjfIsX28YgGSH9OeRrD/zeR3TxiMFoCrc2Odx\nUK5qn58RrnkE1MSm0PgnwNl3JUFACB04Fr+Xz+j70tIyP0cBqLVXP7pGRzGLxLFmzZo1a9asWbNm\nzZo1a9asWXsA7EhInHwhT5cev0yNpu7gDVq8I/ju27pj9+NdjnBnBir+89/+N/8VERH93arufs3M\nf5+IiHr7GkEs7fLu++Wy7ohdlYDEnVsaRfI2zhMR0USEdkewm9ptc+Rg0NPdx7KgclxPQzIdSRtY\nb+q990TQuNnT62dlM+3qTd0J3TC75RBZG0lk0E/tJAd00tzXjUaLfv/3v52k+SPSSIMH4qkmmuJB\nij5fRFhTKcZNVcEWnp+kb4bCyCBh9P6NOKVJhVxvadTJFcFMJwtCUJEgFbTL0NCk8Z2amhejqzH8\nP102NXoHkZg4nnbuo5nnuTRbqxJFsDssu+ZDEDbOi5A0IpvMZ4y6xK4IqTmQYlyinB6gXp5cl6jp\nlh5Xr98gIqJGneundEERA3OCIrg0rxHV4cNyXhAq26zz+f7oz3W8nb3A6AW3AJETieIUPY1iffgB\np/u8qMAL+vLD3M7hSKMpN2+cTpzQcRzyPD9JWcmFco+o0uYZJA4gR0Rcbwg7/bHswmO6VNPXMaZs\nxMfuheTKF7Re1jcYNTABdIOJ5qSQODKW8oB4WJLnCaCvOgmyCNJ2CsJtjKqkIo4dAwLgw3ffpeEA\nBdeObp7nUGXGJzcHaMuQz+nsapQ4EnHyrV29/n6bo00ORHNMBBOfx6R6rYw0wlEsGkF5rZ/NTY5K\nvfnqq0RE9IKvvrs+FMRUSQXhcuEjRET07kdXkjJXBABnAbn22AVGOzxxWVE/uTLX+1e++gUty/E4\nLJe13j/8mM9zfVv93ohOAxHiUOjkKQ+QgXKNn60LzjMnUawiiEx3RUg+LoIAe599FopEZvN875iG\nftA/LGJpvp9d4nSe/SGIPIrfHQOyqmjmFkBnmDSeXgqGKgkKYI4xiKIRRD6Xa4w4WV9QQekbu/y9\nk9O5LfJOB4lD9Gm0p1oIMFQnNmKpIH4o6KZgUSOnB5ImPl/UtuzLeA0h0lctiwgoIPFqgoJaEeRY\no4eioTxeuoC+Nal8Lz6koo77gkTb3lJ08tw8I5xXVhR9trXF8wA++7okJ2i1tX93RWgVfbHve1OR\nS0cxhxzK+Nmp2pkoomyEnB1X58OB3HML7mnkcv1cva19aXWV63NmFhG+7GM8yEkbiW/pyxztOooW\na/V4PVkg9TXnytw38wCdG8mkcbetv/V8XltmXO3LTZf9TvzYl5Ky4pkbRETU3tI1phMcRiefhkVx\nTMPhMIXszAvCbgRlgSCLV1ZVRHR1TUXOjQ1GkqgCBIsHIdeBC+itUNpxCM/jxjyW5hcY/XLhoqZR\nbjW4/w4BuRNPTDICQN6Kw6qVtY7NHJPNAfJN0Ah9mDOzRR63a+t63Uhei2JX56LTAHYTEVEYkYvw\nEuNfPL1Px6y7PJ1HHRGodde1/mNBrWZAADmQVO2FrNbZzwla7897er5r4jvN0iMHPuXSUOZ2WBmN\nQ5M6HOpTflsEP2cQtehNHfMbKAxlPfABtOMVSUSznsN1vPjak+pKOzHFmTGFMGf40s7DPsx9snbb\nA7TljMzDmSyKZHNdNuuaWMKgusJA68MR5Gy7reN6eZnX6Rcu8WJ6v6koKLfAvnvt3EZS9vrbrxMR\n0Xf+7LtJWV18/HCsKLlSVcTRobcOB4KgT73p8zNi8p5A3lfKkMShNjObvFMe14bDEb3//lVy6GpS\nZpBHZ87o+mu/zqgXF9pnIkgcgnrPF0zdav+uClKmBX341ta+XF/Pl5N3ZvM+62UAiSmC6qlVgIzT\nETAxDGhqeVmRQIEgcOII3uvkTMMxvidy+5xZ0HXvxiqfBxPG7DZA0Pw+zCJxrFmzZs2aNWvWrFmz\nZs2aNWvWHgCzmzjWrFmzZs2aNWvWrFmzZs2aNWsPgB2JTuX5Hs2vzNESCDwZ5b12S8Uf99oM0+3c\n1bJbWww7W1tQaObPfvNniIjo9luvJWX1TRasdBcVurq6wJDHK1dVQNKgaAOBjnWBRuAIbGoMkKuW\nwMUHO0qdMqJenZFCmXwRQnNAFLkh9KxeV68xEpja2qJCo/oC9cwVFLbo+S45JwZjuhQ7BZqkRL74\nnL2h3lMoEGOEPY/lnmKgYmSFYuUAVC6T0Kkgr31s6ExIp2L4uCew/jHSlgQKV6gpjaVYZHie52pf\niES414XepwhbFCc+Glwe4d0OnQwGSEQ0CULa2j2gWgkg/HINFJyM5D5DEDY2Ipj4OJ78o5BXGLcR\nq761rRDwns8QvEpeoY2Oz99n83zh1kT78avvvc+X2lX4/O5NFgWNiyDsVeU66YIAV7hpqBgg4CmN\nkQeBNCOu+LGIzBIRDboCO+5px2wOtO+fxOI4piAIEhE2IqKC0JjcCUCPjRAxtP1YxkEPBkws8Eak\npiQwdYSrG11NpAp8ijYQAOR8KOMPRT9DGX8BKoLLOVCwOCc0CmCm0EAEGw1NlIgoFDh5CHSVkVwj\nGugzLs8skOcdyaUfsigOaRD1KAc0mO5EoPEh0DhEUPigrrSLH770Nn8AGl6txr671dXjTN1+62e+\nkZQ99xwLS169prDbYVfoNyN+pjt1hTh3elxp60vqa156meeOEVCyhj32O3c9vfeHznAbHOyogNyZ\nEosM5lwQER1z27qx/jZX4XrffPtj/a1Qa9+m41tMDgWxTx5MySPpC0WgCZj+E8GcYig/BaBY5bNc\nNhoqHWdWaK5BX8vajbrcgLb3IBkXRkRe77Mtc2G1pvOz7/HxxZLepxmrjoO0V/5bLul9ZuT7bARt\nJnDnJZhHNoWiBKzFU7M4jimYTMgD6pmp00mg48sIOOdB2DwS8f/VRRVu7He5Tg/aQDsXumwF3KPR\nmgxBQHQs1DWzvhj2FOo/ljVMD6hOnsw9a2tADRS6143be0lZs8lw9fV1pV3NzzOU+/ZtFZDe39+T\n45S2URZK5O6Onm88Gmr/OIFFEVEcHaYLYb8xQrghiAN3A6nbkrZFIct1cGtLk03cusVtNgG6YGGe\n+19UgaQDGW7n3pDXgkFUT75bKvP4zk5AkFb8jwPUnOIM94EuJGy4vcnrXldZD+QW+LjWhyp2ulDg\n42ZmdWxQh/tjal3jnHw16ThOippPpKLjDixY8kIFQUq4WVu6MM9kTD+I1E9u3mT/2D7QtfVFEZ7P\n1JSK4JHQhGIeGJcuK0381rV3iIhobwQCw+JXBgMYM0JRnATaF4xg6Nz8/8/em8VqdmXnYetM/zzc\neai5WCySxeLQE9XqSWpFkdSxYAUKZMOQlAAyYMiBk6fAQQwkDwKC5MUvAYI8BHkIFCtGEllqybYs\n2ZJaUo9qqsVmszkWyZrrVt35n4cz5WGtfdb38/5Nsu4toFHA+l7qr33P2WefPay9z97f+pbaqUzc\nHSbwPn1xtxgNdR2dJM49rEh6BGt4zoWCcPboXOZ0zD3P3PoCg2c4V3JtN2+B7bnfVgHkcEECj4BQ\n/KK4u62C69K2SAAsS19dA5fOX1lkN9p3IZDM78Tcjj34BnJrswj6UjGWwZbm8k0xBeN9Sdr7Slm/\nJdvy98wHe+DGt3atY8HzfCqXypSVQGh/yM9LwMY7t28UtZ6IJMHWfXVzqYgdP31GJQwiEbMdjbT8\nf/3X/G37S1/5SpFWr3G73bnP9vQuuG7tDflFX/nXXy3S3niLx8FdsL/JVOZNeB/nul6paN13nSh5\nDq5xIjZege+Qgax1UuiJh90eJT/CzfjjIs9zSifTGRvS7fE7dnogMN7gdi5BoIruhOfAiHRc1+Xb\nejrUe4fSPq2GjoONDRZgv/a+ttm0z9eNx2I7wNWp0eK1S6uta5iJ9O/uUOfbg0Ouz81ldZ9uNXgP\nYJLodSPpUy0ILFGSsf6pKyo6XheXrjeva9vehnb+ODAmjsFgMBgMBoPBYDAYDAbDY4CHO7b1ciIv\noRxCzeYiHFlt6E7b+mneBav6utMXi3BSHxg7nohWvfRzv1KkXXudT1MmMYiPvXxTngFCpbKzdyjh\n8BIQFSrCT8+ES+TfIZyieyKIVl2BUOiffYGIiFaXVoq0v/j3HOL8Ppxs3d3n/PpjLWcsSl/1ZRDM\nC1Q87NjwfQpqrZlwy044sgJSTNOxnFZCeNCqsBFy0t3ycpN36z0QmPTdDn+kR4WOiZPBSWFZdpF9\nJ7oG7RSKkGx1UcUTScKCJlAHWh8z5w9H04rT4Y+4bm7aydHpdOnf/vGf02JTd4JbS7wD24ATwAUR\n1qqAeLQ7nSiHcPQqbI0UWBYeiUAa7Pxvl0W8D3abl+XEKhJWxItXQESww+PjzZt6evjgBp+c5G0V\nWSuL6NziaS37IOFnjLvAMpO0/lRP0ZK2iC2P9TTlnff5njoI1E5A6PokyLOcJuPJjLCoC1eMbLEi\nhDHs9LvwuCgi7C7DcKlZwTT48L70QdlsDHHufqZwYlGMGzA/rpw5nIblsoeOgmiZ7OBj9GQnPJoB\nZWcsdqf3QE8adm/0CkHb4yLNMjro9Wm1qm1aCo+WPU759zIwEM5fZDbLAGxiSfocEFyKulhfVRvr\nToCfv3q1SHvvGgsUd1bY5uwNUWyV7f5+WYUFAxlrCdirjsw3n3xBTz8unOIxfB9ECVfPPsXl8PTe\noZxEJhnY0yWpixqEci89AhH1MKTF5RXy8ZRYQnHjSacLbz+AMN1lOeGpQNjxSoX7SoRsRvk5AVaC\n+x14wAAaz4bibC6pPfciYemBrQsk45XVtSLNtUEMQr6BnPYutFX4PpYjzXGo5TzoyklhqANoOua2\nH05h/DxCwdfcI4pBBN7ZhHxmXHP5yy0tfyihrhdAfPHSJvev0Q0d1zsiRJm34VRR8ukcqt1eFGHh\ni+f5hLe6A6eAB7z+2L6rY75Z4TFXDTXfvRGf7IKmKw2GbPeGfbXpp07xswYDPcG8c5fZnO9cU0bc\nsogitxaV1TAejck/oehlTswQntuOwMRx9i8Adq1jXo8g6ECpwfXZ39L117tvS2h6sAn1Cdf3gr4O\nlYVtG4XC/gPGV9YXFjeEq715jYVKt7d0PvEknHAV+tGSnJTfeKAM1kaF84sCbfftIYeLDoF5VRMh\n5QmEMY+i6MQhxrMspeFgQOWy9hnH9omA6eEY2Ei4KuZbSPRk7I6BFT5NZG2woCfbFTmVDrHfiHho\nJvP84pLakOde+CQREX0DAp+U3ZoVFtXdEdf35edfKNJeeukzs+Uloqmwpmo3VPj+e3/Na/s//cN/\nUaT9wt/l75Ennn6uSOvDuuHY8DxmqMysNyS0+zxxfAyQIsFKPAhakjkFerjO22RmSxhrL9mRMb0H\n/fJTi8xU+ooIbt8Z6Xyytsn9+DM1tQs3JbDG13IdR4kwRSNgZTnR2BQ6aVlYUz+R6vz0y6ts356F\nMM8VEbfPB8DaDcAmnwBZmtHwcEreFBjOwlJF++PLHIVBSjpdtpnL5y8UaRNnT4HZvSnz386ujuve\niO+9f0/XGutr/Iz/53f/kIiIbu7dL/7mmB4jELSv1rl+wyraP16je5n2h8N9Tltb13Y7e47reX8P\nAjEIqzWFRWa5zPN5DOz16TT5kYL/HxeB79FiqzLj9TGe8vtUgJHrBNUTKNNI6nYK3+wLizwXjYGV\n6dZE2we6t3DnvnjPYD36/C3UFO+QHPIIhf1VralNrAizaTjFNTXX986O2oOyhGevwL2jQ6lHWLM/\ncYn3Np59WkWr7z1g1ui7d5X1Nhw/XJ0bE8dgMBgMBoPBYDAYDAaD4TGAbeIYDAaDwWAwGAwGg8Fg\nMDwGeCh3Ki8n8rOEpqlSPqMy7wMNB+r6kQjVMqgofe6rf/h7RET0ySdUgG97m6lma1e+VKRVF/nv\nf/OtPy/Sbu0y1ajWVOrdRMRZ6zWmSCWkNLBlETVDum8gNMQSpJ0+zTTxM1eVLr6yyZTcMtDLD4Xi\n9ifbXy/S4ozz6U2UGrl2nvNZO6cuBl5pemIvH88PKaotUQSuTtUyU9F8ENOdiOjYBCiDvrgklatK\na20ssLhhBu/oPHy8EtDk5c/JWKmWobhTUSF6rPTszCvLfZpHJoKV2YwbiVDV59LhvR/x+2HTTo44\njunB1halI+13jm5OQNMNhOLbBjcBJzK2AAKg9RanOTc+IqKyuAw8sanXffFnmBJ7/7bS5g92uR6T\nhBvlUy2l3O1UuH32n4Tnn+LxMJrouOiJOhywE6knInoJtEXo3HzAVS4WtwyvrPTN2pqIIXb0GXF3\nRn372PADn+r1GnXBbcRRo1Ho0aXN0D6FyxuAEHAp4npbB5eP/kAprg5F3jMuU7PuUWVwW3E2ZjLR\nSnXCxjTVsZkKNR1Fd52eXgKCf6lQN53AKZG6QHQO1IVnb4ddK/pdHX/tdm3GDfU4SBKig52cIk/L\nFK3w+w6gz3c6XM6lNRVK/dwXLxMR0STWucCJTqJL0LgQ29U6PhQq7KCv9/7+7/OcsSzU7ynUnXPN\nmWZa7/6Yf5dKKHzNz3CuhEREmYiOx0Dd9Z2/l4/KuXzvqK91ulhlV5kWuBOFwcnVdj0i8r1ZV8GS\no9BD1w58J4atidXCxUGvC8V4g74lJeJ2kE3BRUgMf5Jq3Tp6fixU4Gmsf/N8tvE43CIpJ7pn9Afc\nLz0Yg4W9Bz9D50YXgBuHH7jxCy41MfeZyRjnjEd3BpXl+UdTx6XcSysq+nvpErtw9LZUJHt1kfvG\nWkdt196hBGCAuq80+J3DSF1e92WtsSrBHE5fUAHF9oCvW1lTO++qNCxpH1xZYVfIak3p6lOxiR64\nXkzE/eX+faXzp/KOKKY9lgkjAnfuSq0646pyHPieT6WwObsOmCMs73k8XoNInz8VQdawqnXnXE5S\n6BfvX2ObGaX63pev8DotgYEV9djelsU1yLnJERFlYlMPYY27e4NdJrxM26Ipwpqby2ob1qQ+b4/U\nPa2f8nr2bQhmUB3zO14saX4NGU8pLtOzgPIT+ufnOQt3j0H03Lnqz7ofTWf+hr9R3N+55dequoZ5\n4cWf5OKmml8mbeDDWtA9byLrFA/WpFee/QQREb368l8XaTVZA+eeujNUxGX85//OLxdpVekXMZTT\n2ScP3H/efo1FY6cjrYuDXV535U+pO9WtLV2LHR85UZZR7h+dnwjsZCEKDALqzo0KrV8uLmg+Luic\nOwzUe0XG1+cj7VtfbLEN+3yb3VNu39GgGC5ASwZC9aeG4goHc3AqbYcBHEbiSn0KPFC+UuP5+xc2\n1G6eWeCxEoTal/OE0/IDHT90qG4mJ0GWZNTdG1AEfS+Y8/lR2CKwPw9E7L0O31DLstZvNLQvLa7w\nd1+zpd9/b11jge9XX9OgPD/9U+vyLP5/51BdnQbiA3m28gAAIABJREFUDt8FWYJOn21SCfpDXaRF\n2g11e3fu9ve2dF0bik9tE1yA++KyCfEnKJF+GOPa4BG4K3teToEXU5brd0Eoa6w0VvsXiTvwBKRA\nYnF/DEB02wn0P9iBYBPi+t/ta6frdfheD9YalTK3VUnEkUsVzffJp9gt+dr717XwstbBWc6X/w1B\nCJ3kGy6ItM9E0n+q0L+feZLdl6dTLfvWHr/P+/fUBe8MSBR8HBgTx2AwGAwGg8FgMBgMBoPhMcBD\nMXHSLKX+sEdDOCV2G8j9AexM5ZytC9tIRPTH/+FrRES09aaGGN8W5kj2up5SOEbNBMJ+l5Z413F6\nX4WLhn3ezRvJDt8qsF/+7j/4eS5bBU7sA8mjp2XakNOuUQChweQUuQbhWi9fuURERN/8y5eLtElP\nBDsrumv81NWniYhobUnLMop7M4yA48D3Q6rWVyiEE2aK+STi9k0Nddvt8m5emuo7ug3lCE6RMtnp\nX9l8Up8RyPtW9GSrIqceEw/EjoVl43ZWfdLTxlxYPz6cprjwyD50tdAVCjWMRQDZmyts/FGYI2z8\nCMg5URjSxvIiXX3miSLtUJgPY1BqfvtdFha+fl1DhpYkFHAJws3XFriOmxAK7+wp/t0gCCV7m8fF\nP/yVTxVp/+fvfIOIiO7d55OQhbKevmz7fO9+rs8aSvEyEM1Npty29ame7jakjqfQZ/yUT12q2GYS\nPi+d6Dh3wodxqmN1kJ8wFqTLO89pGic0gRCu7lQtB1HFstRzD8LuuiOOABhPpYjHDjLxHAsAT4Jd\niEwUEXZ1mMkJ6BhYN8WOPBxauL8jg8GNSdC0plpVbAiI901SGdfQlzr7bPdSOC3s9/h9fTidzvwG\nnbTjJ1lGD6YTOtjRML0HxOVbaOppTip10d++UaRdPMd/X19RwWIXsvipp54u0u7d47zv39fTv1UJ\nd3z39p0irSri7Qfy/gSn4w5T6B9e5sLf6hFTIGLz/SEIAQvLoAbqixLpkcbASAmlz1RCtYkLUoan\nzqiI5tQNNtL54WGRpAkd7O9SvYaC0vzcIIOwqHJKimdkToxwPNI+e5ByX0HxehIhvxbMbSWpqx7U\njwvx2u3wuF46f0mvr7jyoTgpXz+E/umEtxM4WRsLqw7Dg07k9xjsSk9++lD2SE7jAg9EwOnRwfO8\nGRaUMkGwpp0IqZbr4lNso28AO+L6e28QEVG9rNed2WB25W5X63kkbGIf6nIqDKvxNo/vSk3z8OS6\nqALjUPrwg12t00aT23dtXdcmsVzX6ena7YGEMo2gf4ci0u1C2RMpOwxZDZPJ5MSil1me0zSLZ/Ip\nROTBdssQpimwAwdin5sghBtJeNj8UBmLbZ/nsltvqDju9bd+QERETz2t954XdtOqsGUbIFKZTSRM\n+VD7QkkYOKUSCvdyWhXYQfvvcfj2yT6sv5yYN4oYN9lmbpzRsbYkY22GqOR5FIZH7eDDIAgCarfb\nM6GVXQABPAl3LJnZEMzChgXGTrHuI+1v48H0SNnLZcf20TTX9o5ljpq/k4TTglBt4vIat9nu4c0i\n7ROfeImIiBpNnXecSHlY0rYYik1aWFBvgLKI99bqcIou7deDYBNxfrI1PMMnCkozdVeIEmN9CtPX\nw6AYYhdyEOj2HetmhpwoLGoQWj93mtmy/6ipfbUtorIuyEkJ1n9fPWRm3hs7yj46lOcuYwho+QaY\npiCYHHFb/eqSBhJ4cY3ruxEA68Yxc0FA2DW+twBMBHfPDTo5co8iYNA60foyiOqnjn0K4add/7+z\npWuiSGxiraFl7Uso989/8sUi7dZdXs+8+Z5+477waRbs/oWf/SIREYUVHc+vvv4WERHVS8r+rze5\nTm/dul2khdJvaiAOnEo7DEdqa25c5zZstDW/9iLnF0Eo8gfC7AZiM/lhRCddT3qeT6VSmSZgQ8ry\n3CkwuBzrxq3TiYjOnWHmFjKm728LY7unBd0/4LkygDpr1bld/Jo+oyaLvLDkhJXVNsQSzjwAdmYq\nHkdN8D7wpK0wYIQnKvhY9tIC97PzZ9XWdLs8L718R/vCXZnn81zbYnPTeQa9Rh8HxsQxGAwGg8Fg\nMBgMBoPBYHgMYJs4BoPBYDAYDAaDwWAwGAyPAR5O2NjzKIxCyocgfpS6vwH1ucK/q0Bdu/zcU0RE\n9MSSilv5XRZgOvSVIri+zJTI2rLS8WIRezq4p2JmvX2mJiXi/tDpKIWsJ0K8AbARp1OmLXmpUqMe\niCBrUlIauPN8OgD3sFSEi2pNpa51tvkZwPSig10uUx7rOwZpMEt3PAYa9Sp94bPPU54o1fW73/pL\nLvtEKZ9OCBM0zQp6KtJUxx2u92lD32fh1DNc9opSV0OhNAeJUosnQp1NSEQ3A82jIa5D60tK25wK\nDTM/ADHGPv/OgLuXZtIGWFfZUUq7+zUrijzPPevkCAKfFtotai+q+5Ojzk1AtPa5Z1jQ9esH2j8n\nQsvMx9pmQZc712iwV6Q9K0LfK22tsztbImI81vr5hS+z69tX/y3TLe/vaDkfiPDqtAtU0Z48v6Gd\nwemihb7mm3v83HIGApHiTjEtaYWKPjWFY6ByS0c7E6wWSaOAC/YWgXvTMZBlOY1GY6qAmJujuOZA\nvx+PxCUT6a9CK00STeuL6Fmvo1T7sbhyeOAal8ac94wrlIiH50KpHo/0b0NxQ5mCOHFXxHkHPXX/\n7B6yq+OTV1Qs8Sc/9TwREd25oS6Rb28z1XLaV6Gzeo3H1SG4vMTSwettrfvq+pPkX9e8joOgElDr\ncpOCQOt4kEsdA+W6JFPHYF+FB9987XUiIsqn2pc8OSf4s//wp0VaJpMG2qS/fflviIhocVFd/RZa\nPO62BiK8CoKQzl0HRWFDzwlQazmdmya6C5aqTLtdr6utS8WNIM7BxUHcjoJMn3tbKNUHQx2AyQRE\ngY+JPM8piRPywC3H9V8/0jHs3B7K4O4S9/m9U1/HZiJueflI+0wgLgv1JXU7SFt87+EQBLdlLo9q\nTLWv1pUy7uo7g4kvFGpxZ6j2zx0P5eAWk0n7ZT4I1MqFOI+6tcRwrHNwIh0+BFHS5BEIL+ozvZk5\nxblTBfA89+wZ9xKxn+eeUdfXROatLXGrIiK6eYfn3N19tYtOELoEbenK4Hlsr5oN7d+J2KbDAxWu\ndC5WZQgi0WpyORfa4B4mbhZ7e7pO6nS4fkcgZum6XwCu2+59Ubi62WrNrPmOgzzPaTIdz7pTOZeK\nOeL1U6j33pR/RzW1f7GIHTcitSGffY5doXsraqf+5C//hIiIvvkNFbF8Q8RxF2SN16yBXXFap9BJ\nezIOE6DLr4joeWms4+DOLbYXvR2ddwJx1Wqu671PPcnr4zOb5/S6kYj9Qr8MgnDG7e+48Dxvpo5d\nnpi3q3d0o0Nxec2M/4kiWDuKfAGYbPJ8Z/c10QklF4LJ0MauvT0QNp1IWdogWfDJz3yGiIiG4Frr\nxhEK6jtbVAfh2fYCu2eB7j0Fcg/KF2xuaD87EbxwVtjYuVFF+CkmbptjrevCjQrqpwgugnZQ8s5h\nbJZb3KdXI3Bdcu0osgwNcAEMhzIGutqPL4mMwrdi/VaqRNyPf3n9fJH29zZ4vF0E1+tM3iMfqtu9\nX2L36RzsqyfzXY7zSFnLdRL4QUCtVmtGpNv16xSC4kxkXdECIeCKSEzE4Gr41ju81tneVTHvL69+\nmYiIdvf0PaviHj2K9Rm37rBNuPIMu5i/8Nzzxd/OXeR1/re+/d0ibWtbgliAK6wLcICulbG0zXik\n49W9796erkWbi7z+6XZ1LujLN0Tgw3o7Gc1IFxwLnkdeVKERtL0nrr0ovN+S/lcFV29P1glD+Iaa\niN3va1XQQVdcMnEezfieDIJslGT+2tzk9Y8Pdbe9w/PDInyHjUacx/nVzSLNBXAaTXVtUpIgNhkE\nFSn7XM5lsFNvX+P5Zu+B9u9dcYNeWNZ+1IB6+TgwJo7BYDAYDAaDwWAwGAwGw2OAh2Li5HlGyWRC\nDdgtczt9YxBQTeVU2ocTt0UREe6N9CTq0ot86pC2lEFQlh3GAxA/jER8rH1Kheju3eCdvbNrLAK0\n1dEwmVv3mOmwWobwa7Lb2m5r2V1o6BDEJN2pe7mk10UV3sE7c0nD6d59T068QXTyzi0WzxtNntF7\n6+VZIbNjYGmxTb/6K79I40M9nR/ssmAWhmAeu1PXDMQ+5dQDw37XhW3zuatPFWmf+xkW2erGWhe+\n3BuDUFZHWAipnOL0QTD5zAbvOl59WkVMp7Jj+bU/1zr45jck1DWcnKQiKOpCkhMRUe76EYro8a4r\nnthkciqWzWHsEOkO9MOiXCrR+fNnZ0LtrazwicxopDuxrSbv6C60te62JRx0o65iW89f4X6BYVGz\nEe+ynz6tO7Yvf493bN97S5/x3FXeIV4RIe333wGx6VU+Nfjps8ryeOXGK0REdHPnRpH21ItXiYio\nXdFTpW0RPutOdac8WOH+XgdBQW/Czztd0VMXXw5lfvb5LxRpWw0+oXjr6xpy9zjI84zS6ZQIWA6R\njNcu1H0u4byby8ouGIvA6sqi1un7N24QEdHduypwubfNu+/lBgiBy7HiBAT3YulrsbAVuns6Dnck\nHOn2rqa5MMHjrqZN5JSk0oQ6zTmE6qkVLefhkti6lz5ZpDlW4A8yFXP0VrkdNp5UEb3G8im68/2/\npJPAyz0qZwHlCYaGFSFOsHXulDRIQPRNxvoDCMe6eZpZiXU4XXBMqgHY+IHYMQwxvr7Btt2dmDWA\nCelOyvBUM5Zw5gEwq9yYnMIpyTvvM9tp+ZmrRVoqzxgAs/FQ6t2HWKSv3fg+53Hv9SKtHkGszmPC\n93wqRVUiH06TRLp3mmrZm3IqHcLUvS+HZUMQoG9LmMr8ANhbcsLrwalvKqeMY3iHFz/D4YEvSZhg\nv6KnU65mazWt9+GAbew0B2FjmedDONmvSDhUH9h1lRavC8KplvP2Xc5ve1f70XjqGBpa9gBOUE+K\n/GOxeo4Kpjuhch/WEE8/x2O3DAyTnrAqwqrahAdiRw4xKISsmQZD7of7HbXLTZlLSmUUZ8+kTNpH\n6sKIDWAWHPRd/WpaU04dvaGe3Hb63G6dA32uiyefAxNl1O9TEp+QgeZ55AUlCqFMkWNrgf11J7Kd\nqfavjpySjreVYRPL2mANwol3ulyPO8AYDMs8h0aJXpdGnHbbjZcdXac6wXS3HiEiikWU/sJTOjZq\nIqKbTfTentRRsKpsXifWWoZ1b3OF88mAJVucTpf1uiAIZsbUcZHnOaXQP/MiGACIqDsmDDB23Gl3\nDnUxnXIddzpa9qYIvvb7ykAajrlelheVgfRBkWYMZDAc81ywcVrX/cttrseopvaiVOX+kZH2R7cW\nzGIUqudnZRlQQIW92FrQdnRsnzCEMN2PQteYiF0XwH7kzp6h+SlYMvHsfUSUQ1j43LVLBUKRi/B7\nPsHgJiJGDVR1N1enff5WWgQW1X9V5bk13VB2wPsdtlUJqV14+hR/D/3yqgarKVVl/KJArrRpDt+I\nFAiTH9rHcyyiWJkK3slJroyc1x0zTC+p5zLMfc57BPu8gw/hot2vMawrvv8qC9Hevafz1to6r0uD\nko7hd97ndZwTm69CoJOCQQbUsJ4EsUAmpPNSODhQW+NEyaF7UavJ4zUCkex98WLBsUY5P28M/Yu8\npFiDHBeBH1Ct0aJd8JTpi7h/e2G5SFtc4L7WbOk4vC/uBkP4xnRz27kz2jejHbY/cQIMfVlb5qHa\niUZd3nHEc0GlqvVeKfEY6QB7vt/jPEoQCt0Xcf0yOiSI/YsCZO5x+Q462pc7Ax4U/SGsieS7fA2E\np3Wu/ngwJo7BYDAYDAaDwWAwGAwGw2MA28QxGAwGg8FgMBgMBoPBYHgM8FDuVETM+qsBNd5R9ZA2\n6Si+IdCmay2mCy0tqCtJTVwgDoEGGYt4XwCClT2hiS2fUVpl1GSXkxdfZNed6Q+UGhaLUN/KstK1\n8oCpTDWIJe/obBmIn4XisoH06oq4sDx55Yki7fW/vk1ERI2a5ufeO811b2xhoU3+CemvnudTEFVo\ndWOjSPvFX/h5IiLqj5QeeGPrHhERTYDi5wtPs1VXoa7nn2I3ql//pa8UaeeucNqU9LqavHcaK71r\n+5CpY1Oh843A1SoQBcBz57SehkJr235wpUjrCDVzNBrDvUKJBdcBp6aLwo/OPSwGobBEfs8TSLx2\n6/fpuIhKEW2eWqe7d+8UaZMJt20dXApJxLWXF7UvHHY78j7ajxKhLz55ScULd0Ws+8G2PsMTQeEH\ne0pZfl7cKJbbXBed5ELxt6nH46gBNL1QqHuTfa2TgdAJ/aq2WXefqZ2dAxVbfqrOrjol0uffu3aL\nfwBV/XyLx/fh298p0jYXHtqkzMVkNKZrb7xBUxCTy4Te3O2DQJ4QWzv7Wv5uhymmNaA8emKLULjx\ncJcFQquxtpETzH2wo+Khe0KJHIibVBf+1hP3A4qULru0ynTxUaqc4kjKfnigdnJnm127njqv9PIX\nf+LTRET0/l19n3tvcBstXXi2SCsvsJtSCSihvh/QURLwwyHyyrThXyrGIxFRGLItRntekr8HuV53\n0GIqarVyrUjb2GSbVYp0DA9HbEPKZS3tRNzm+n0QNZQ/n15liu1PXFWx+3fHbNtvDtQODHe5zkqB\n1vulVXHJLCkl9gfvc38d9LQtGt4lIiKKMxDP74v9WdT83t1lN6pyXcsegzfM8eFR6Pszpypx4b6i\n7zgQcesEqMPu59aeUquvbIhgZ0vnjJ0DroOap3NrIC5OL31JXTEvP8P9bCBC0bmndqAl149BfDKT\nvzebav/ClG17igLI4jqx2NA5xlHEBz2dY969K255+/qMVOw+uiZ72Ul7+yzmUehR1DURUcUAlk2J\nCICje0lNuNbr558s0rqH3DeboNN5eonr4f17ak92hGp+9iyva0J43/1dppe36zqWNsRNp1HRMlXL\n4uI+0j5fkfHqgTjmQVHn2kb1OhcwADFZ564cgutirVajIAB1/WMgSzPqD/oUg+j4SOacfgJrQmnn\nu4fav3fEHSQHF6uSuCk9gAAQt99mcekcRFo9ET7PA22zTNaMVZkfxmDX0ojzData74sbLHaZgCvG\n1i7T9NeamrZw+gLnUVF77tp0BVyA336X3Y9Xn1AXz9UmU/J9sJ2eH8wqwh8DORFN85ymcwIEoOu6\ncyOecYkU90ucaCaSD3rLHIjLxlvvvVKkrZ3i98H3zsWN4/CwI89UO5BLsIv1DQ0U8tyz7IL8xhtv\nFmmvvfq3RET09FUViHXCr+gK795ie1v77fIyu301W+pOdCjuKxGMC3SBPxk8ytGtyfm+oIuVBM3I\nQb3VcxIVDV1nOJ8OXPc6ZXJ0mfWk/VCYOy+LaL58K+QDtUFByHY8bKnLyuVFbrP/LlR3+tC5x4J8\nQz7mZ/jh0UAZVNf8XB9G0e5c/u7hLAgBHk6CLMtoOBpp/yWitrjmoV3r946KRbsx0QJB7ExszASE\nvrf3uA7vPlCX/dI73F7OdhMRrYn7/I1bvOafTjHQCNfL4rJ+666t8e8d6LdlWYu121qnHVmnTkEI\nOBc3vJT0GQOZA2JwWXVuTE1w8ZxORzPulcdBrV6nT730ErVXbxRp115nm7wAY6ouLqOdQx3/Q/dt\nC/N8SVxrp5m2Tz0Q4f26lnUoa43I17VGs8b3uvVM6Ov4CisiVA/u9Enk3J80bSwi3RGsXfsTtlOt\npvaPScx/v3dP2+z6DZZ8WQZX9GevsCtiAPndh++LjwNj4hgMBoPBYDAYDAaDwWAwPAZ4OGFjIkp8\nohR2jUM5sSmB0s9ERCorEKZxaY1PTitAtAjkFCOH8LxVYX8EsK3vWBdnLuip4o0LvDPcXudnXH1R\nRXprdc6jCWHihhL2cQonN6k8w4PdulSYE6OBnvY7Rkq1oScipy7y88+d11OCe3d4p21nF+7dqM+c\nBhwHnu9RVCtTBKFmL17i9/0vf10ZIU4ocasDwnrCFDi/qXV39SIzQdZXdbc3jXj33SNtR1/adAIx\ny12YRsdySjOtu10RopxMtI4TOSWYYHhQYec4wS4iokzCC8YTONaW9olmmDj8fBdqlwvlYoDCjm00\nK5h3HERRRGfPnqYUTgrfeYcFrQ8zCBkq7K0mnJCWHGsETj7feIdP26o1vW5lgdsvhjGwvsJtMU00\nrdFgEbkrz3I/7sPx//V93u09ONBd389/gu/9Ulv759f+lE+strpa71/5JT75W6jodXU5OWktqsjY\n+wucdvumnoz8g1+WU5mxmpHOBNrlBMizjNLRmAYQIjlscF1VQOBtIrvkuzsqJnd4wGV8ZaSnn0ub\nXH+DAZzui6jerRsaanZP2Bw3r2ta2BS2i+z+93s6vp04ZB0E06t1rrdBTU81xjImxiA42DngtPdz\nLedbt3kX/vaBGsqpz2Ottgah7gN+ng+nSHxidLJT2lq1Tp+6+vkZxkNJRPaiEAQUHQOqq3XRqLEt\nWF7TE4mpEzWEUJVL+QKUl+EEB3GsjaUvVT3u6zGIt45K/CwgiVDiy7yzrPXu1ZjFVGrovd2A+//1\n/XtFWnnAZRp0VSA/FEHfEE6HJyn3N98D+3LC0yrOj6gU+TNi70WNQfaJMENyYHumOfcBx+IgIrq5\nz9c9eUbZS08/zWN8eVWZXwcinHv+ol7XE1ZUKELSpYr27ZsiDN7vqv0jYdI2Qf0zHvNYGYJobxiK\nAH1D6+5QxsA9YBG98hafUO71QNVSBEB97N8nDHGN8H1/holTzDNwWlnMOYE+13eioRA22dmEBoRy\nv3yF2U2vv6wCu9v3uP9d3tCQ2E8/ye3Qnzrxb6g/EV+tgLBxKOWsQCjehoQlX1rQuTmRsq/DKe2B\nhJh9AOLAO/vcv9GMT8bcl8aenub24ynF6clsfaVSpavPPE97wPR9Uxip24c6l01FPfogQ+Yuv3ez\nomM9lXertLU+N07xWmcVmDW52JgeqKbmws7ZFaHQQxh0Y5lvljZ13Dz71GUiItraVVbrjTtc9pan\n9X56icfcZFfbsR5w+zQ8ZX/sdvh9cwjGsX72LBERlaCfh2E0sx46HnLKKacMbLIv6/gZEWP/6BrK\n9SO8N5K5KCyr7X7jtb8hIqJmXfvlmU1eLwyRgU2O+c7/1oDZPh4xs7Ne13kvzbhM585fKtK+98rL\nRET07W98q0j73E9+jssGArEu4MrtWxogYOPUpjxXbdwdGZcTGHt+8OiYOIjMjccR2LoB108ewLWL\n3C+86GjbzzSTY93AdbmkzYSLrspcLqK63kjXRbnMMRlkHAjzI4S+lwkLMQWxeccl9WAez8oioF7V\n9SQJgx+msULAnNpqNwnG90ngeR6FYViIGRNBWHuw3Y6Bg+PArU0wJHcR3h0YLnnOvwP49tiWb7IK\niJP3hty+vqw1Q3jW7j5ff3dL2RjpnF+nTvN6tgcM1kTYQcjMioXlU4Fv16aICPcGOueG4kWBovmN\nxjIF4V06CfwwotrqafrsBfXOWFnh9eyNt98q0jp9HmsQHZ16IrifgNdFyec6CKAultrC8AVPiOmU\n05YX1RvncJ/tSd8JB+eabySvvbmqc0elzNf5vo790YifOxiqDfMCYb5OtPDX32c2eg++/yolfkij\nqXVcrso6aay2JoE9io8DY+IYDAaDwWAwGAwGg8FgMDwGsE0cg8FgMBgMBoPBYDAYDIbHAA/lTuX5\nPgXVEg1TpaSVhdbaaCuFNBAx3RiEPT1xBRr2lLZXz5jiVVGWPlEsVDOg/q0tMeUvAUGgq59md6JA\nWGJPLJ4t/nZrhynxnQON+R6V+cIYhFITEV+slcGdSlxYmlUQLJay1Ota0NOXVomI6NxldUnqigtW\nF0T0hqPRrPDYMeD5PpVLpRkmZkmoiWcuqtDYk8+z6BswSOn6e+zC02wpJXWxIe8R6oUloVdOwXXK\nUVEnE33vRp3bti1C1QlQqg+lvpG2GYlLVm+k9X5LhBz7HW2fqbhY5YnSzxw9EeHojkjnzefULwqz\nHhe+71OtWqXLT6pA5aJQtW/euFGkjcXl52JD2yL3ub+98Za65ex3+B3/5vuvF2nPPcv0+fUVpfHV\nfKZe3gNK5f/1Oz/gZ1zg9/qNX1URvzdvcMd49111bXnxGa6nZz+hNM5f+/IFIiKaJkoPbC5y2/7V\nN28VaTuHTO27dFrb/Vd+/pNERDQ41PbxK2wH3v6hulh1hidzHXQISyVaOHWWDm9q/S20mRp5+pS6\nBh6KK1kOtuZmxr/fe0vreUVcoqogQJo7OwUufM069+uopHV07gy3q9NSe7evtNpUaMh+oO89GrNd\n8cDlxhNXAHg8ff9ddgELIh0HiScCzFW1K1Un8g6uUyQuNL6H7lTRXHHWh0EQhLS4tDgjAO3cngIf\nxBKF4j8B959IaMQ1T21ntcr9D8XJXd4TsMUjEdaME23HNOZ6DkO+9x5pmxzI76SrrmhTcc/MN7Te\npw3ur6MQ2kyE8CpAVw+Jy9nd1uvqMme1QMTccwxksHv+I+jyaZpSr3NA9abSf51ZQ2H8JHa2Th86\nlTTf1zp+9T22HcNM6+J8lUX0/vb6G0Wacy34uf9Y7cTly+wqEovo6L/7N39R/O2V77FLZgTCt1Vx\no2o3NY+BiNfHINoYBJxfuYziidwWd7Z1DOx2pC/A+HEiz4GPIp70SJDnTJnPP8Lt2f11DO7CqdCr\ny+Di6csYjGEs1tbYzj/9Sc1vmnydiIi2br9XpC0Jnb1S4j53+ED7d1nGYQPEOVNxfdjbVxvcH3I/\naDbVfaHR4DHZnOP22WyoC8/SCr/bfkdt4qG43O0d6DO6vR5RfrJ1TaNRp89//idpEut68nNSt92p\nPn8k7zgFseOOiJKPwU27LGu2RkPXOg3pQ95A22ws7jx5RftXN2Y78f59WTvC+eZ9WbO2FzTflRr/\nvrF3o0g7K+Kgz2+cKtKev8Dr1OilnyrSqtKJPGjCAAAgAElEQVQvSuBum4ktWoEAFJtN/l2BBV2l\nWqXaCUV20zSl3uH+TJ/1sqT4W3GdGKAknrcO099VEcK99u7LRVr3kNedL1z4cpEWEddPEGIACunv\n0qfTTNt474DrfXVF3dhymQOrII7+2c99noiIbt7UNYxzg6xDIJOhuF7fB4HYcxcu8DNWV4u05Xvs\nMrqzp/391CkNRnF8eESeT14Oc7QTb++DzsQqv5vf1rI7wdsZF1Jx6/TAvbPotuh1WvwN3IZkvZKX\nxZ0NBLo9GWc+iMe6nxm4+PvOuxTmAncHuvsW85c3xxU2BhsiQrN54B+97qTw+DsqxO8CmY9iLIOI\n6JZKPiSJeD2U34kh4xrGrSfLoX8krVpXu1uRb9GO2JVmQ+vePSuBdZUnn+mrm+pmNhLReny+LzZk\nCt9QzvUSNK0pELf45oLOD3nEbd4Z6DxMoxIl4BZ3HBx2evQH/+Zr9KUvfbpIWzvFLqbfe1ntxXjK\nZT77xNNFWj3l934H1vEtsdlVWArX6vyflWW1CbEIdlcruiba35X1vkSCSGAxHsgacx2DIYkbVxfq\npCTfzH2wiXWZCw63VNKhc8i2A7uym4PL0N4dJygP7bMEguIfB8bEMRgMBoPBYDAYDAaDwWB4DPBw\ndAWPRbQmY90tT0R8KAVh40DCXXqwvRSIclBY012msZy6lnAXWJg9QXpUYM2LdGf4qedFiNGdHCR6\n/TBnZoQ31ee3W7wTugdiZfGU8/Ph9CGQnccowKrh65xgMhFRXUI9r6zr6czpsyzoiSG+y96JI0KS\n73lUKpUoAkHpscfPQCGoeMzvUYOQbFEoZfa0jssinhdVYQfYvW/wgXCWNBtuz4WJnYjyYZyguCHn\nUQEhzEQEqGZFTN09Wk53Op9lsIstbIMM2qfQMJ4jcInlTJOTiS4SsWhlOapSCKFIz5/j3dSz5/Vk\nxoUZRNG0T3ySd5YvnH21SHv5FT4Bv/tAhSSvXeeTvwh27yuhiBd3tXGv3eL8tnrcZj9xXZ/VkwOj\nPNY87m5zPx9/W3fSXfjEHggLXoiYvfUzP/fZIs0J4b37jobx/B/+Rw7VXgWG2hNX+MS+cwB9K9Kd\n7BPB8ymo1qkCJ25OQNaxO4iIYjlN/oOv/p6miUjYoKMnEjfe41O6GJgrBxLWFEM8ptL/ak3Y1Zd2\nTaXPlcvav6euLjM4GhBxcA/GUiJjI4v03k7C17VqEHK5IgKGICqYFdv5R0+ogplTuJOdjBOpAOAQ\nwiq606sGMBEd4ycCEb+qMFbC+KjIKzJx3DhFpl1J2EY+vrd0tTDg+t8hFFXkMoWeCvsFIrCbgwBr\nEnD7xB4ILcpJjBNmJCKayOnVlPS9qwH3sxhO+50QJ9ofFJc+LpJkSrvb9ygnzatUc3MLtjs/N4Oj\ntUxOPVOw8Qcj/vvLb6ow4bfkN9riUE7vXuyqjVsecPv80R//OyIieu0HKkAYy5waeHBKK2LPnq9i\nx6kLiw6nzp6oUI/Hyhh04WSR0ZmSBDzwwe7LfIcUgEcVYDyJY7p//37BBiPS0OLLcDI3FhFSrPtI\nBERRSN+JEVfraitPnWKmcOvclSLtBRm7S3Ai+t41trnlOtffhdPKQjjsMUsMTxc9n+sqA6HHkdiz\n+yAWHRS28OgcOYVT37G8NwrtBzJ2lhvKAFmpleguiPoeBx7lFHnpzPusL4pgeYDrALE1wJzLhG2J\n649YrvPnhHDG1YBjEfowrhxzY+hYP/C3WIS+CeZ3Zzu+fEFZuo6xfQEYO2t1ZthWy/qOkVD3MHy9\nCxcdItFMyrRzoGysr//pt6l7eLKwy0kc0+72FjVhjtveZuaeD4vVhUUu+96ePt+xnmt1ZW811tnu\nD0baH8pl7vvVagvudWwSLYsn4tKJsPuHIBjalRDbp87qnJkWQsgoysx1e+mStoVjFOGYHgtD9uy5\nC1rOGr9Hf6hj4OwFEU0GW4PhnY8Nj3gNk0D4aidAvKn1SW6ceUf78Qwb141lYMwUZcbQ3cLu8JBo\nKHOaC/HtoYiyY0rCN5An64FgoDbehS7PMwgk4L7VoJFzxxbBbyq3jgQ7kztGXoKW/dFYea76nJog\n9u7E8jt7Oh/5wuiegLJ7lvF1SNjxpM5TZAIKs63f1z7swn13IZjIVFhnzkPjAALR1GUNlYzVNjjh\n44NdZYQ40WtkFo1l3VsHO+3mp05Xy7R1n/syDE1qrEq7lTW/ySD+SHbqR2E4GNIPvvMKrULQg2zK\n3zd3b2gQiYvPfYaIiFY21KNmV8KNb++ovVuQ764o0nKmwhwrRSAUv8Nterur31qRhL0fiFeIB/0x\nGUvACtLrHX2pDt/Jw6kLeKDtPhTvhO0dbZ/DA35+uaLPOHuB5/L2iu6BpLKXUoO1wv7ew82rxsQx\nGAwGg8FgMBgMBoPBYHgMYJs4BoPBYDAYDAaDwWAwGAyPAR5S/TUnyhPygJfnqOaTKdBv51C9UqH0\nxSBUNRU66QgoaamjMIEQlKOdhiDwWG4KjdipPybKdTvzBAufVqpKYXUs/WodqGaiqDwaKn0pkbKE\nvtKbfCm7HyhleuMU06xrNaVaPXGJqWDbO0q9LEf+DEX1OMjJo5xCCoD+FZT4uaCRREOhIXpA915a\n4XKG4LIRSb0grX4irjgJlDUXGjWwPylzoo250DFDoHzK71kCHufraH1ERL4TrATxM9enkL3n6LfO\nrYqIyCMRGaMPd5c6qcCrZEJeGFJI2u6uLTN4y1DcActl7cfOpexLX/xSkfbsVVa1vHbzZpH23e98\ni4iIdrdVDNsJhTaa2lfPXmTXpTu3WDzrn/w3f1z8bSh0+AzqyReBQBQqnEhD+qH27Z/+WaYgbmwq\n3bLfZ3rnu9fUnerl79wgIqJPf1oFlVsbIr4L7RiF6hpwInjsibGyqmJuFRH9zEj7dyrN8NoP1eXD\nia42ampD/vw73yMioo3TZ/QRcwTexhMZ/121Cd0B/3bCrBEITTqa8xTEtSOhPEdtLfvZM08QEdHy\neRVuW1ja5OtQnNiJjYOIsPMwxHHlOzsKNjEl78Ts4zRN6ODgYGb81IXq6YM7Zyyib+gmtSj0e/c3\nIqKkECpGVwjukzm4fTq7i64dk1DuFbtSjsFNUwSly1Vtp8CXeQLqzpfK8zMdS86txwMaeink51er\nOl6iiqPOghCn3OJDawSPwNZEYUSbG6v0YEddF1bL3C+9VJ/lhIBRLN/NCx60Tyq//ZljGjf+j7p/\n/dlfqsjgN7/DIuq7QjP3YEw7scsZd9ac2wzdn5xAYwZ1nMs9ia9t4eYgj0DIUSjtPlD8PV/mG0J3\nqpO7sRGxSP5kMpmZDx01fmdbxeUbIhT85FPqthHIPQm4ZLrfOO9XQulzkNbavEBERKfAhTBss8Dq\nrZtvExFRp6PzQqkINKAuIq02l6kK4tsNcVHoAK0/k7r3wF5Mpb2czSMiGg3UPdFhZYnXEMuLKr5f\nr5bpezd2j1z7MBiPx/T2Wz+kGgj8OvdMz8c5hW1MCC5rrt5DCM7g1psoyu7cTtFmu3s8WEP4svBo\nyAAvRZpHUOM6huFVzKso/NkR4ecSuNOH4gYYQL998w2eV//iL/6iSLv4BMsDXH7ycpE2ETv6ANaT\nBwf7M3P6ceB7HlVLEY366sbRrImLB6wdY3ExaIA7QbXCbZXj+qfG92ye13HRF5eAcl0FgxPn0ppp\n/QyGXGf37t4jIqIzpzWP557ntUYE7su551x49H0ScW3wM2jPon/oXOCEvp+5elXzk3GB9rTh+hu4\n9KHI77GRE+VJRjl8q5AT1waR7eJJOO8UbrwQ0MNVAlZGoTdwVOw4R1vsfjq3FHTLdm7gHq67xY1t\nDDZF3Ay9ZXCVdmLZGEDCuYChG12Z+1teB+FcccfzYD2ZP4p1PBGFoU+ryw0ajtW+DSeyXoCv4HrN\nCQGDDIHIVKQg8eHL+6GtKdyu4SOmLiLkGPxgJIExnBt2DG6angSWacJ3aibzIQZzGUuZsHZcH14A\nd85O5/CDRSrcUycjbaN6zM8LcpAAmAzohN5UVIkieur0GnW27hRpOzs8pyaxlr7TY1uzu6+ubXfv\nsbtVCN+9TlpjAGX3Re7i7XduF2l9ccVMYG9heUlsh+vLMGzK8r122NX+UZG1bXNxs0jbH7DNRHdb\nX/r8laufKNKef+Elvrelc9vGJs+fZZBlIelT2UQLU73r1hzfo48DY+IYDAaDwWAwGAwGg8FgMDwG\neDgmTp5TmsSUp0jNEAExEDt2244+7Aa7nXEUMOyLKOiMwJtk3RyDcFqNT4LrcLLuTlPGcupRhpOW\nWE5H0kzzlYM8qkIY1LrHO23jkVaDKwueOpck3LAH1XXuIodJw1ORapPLt1nREMgE4pnHhUce+V6Z\nEqDEhCJOXK1oPeXuHUEA2u1EpqHu7Cay6x7ATrsc8FKMW68ilDqGMHYl2XX0XXhDDLsnW9p4SuPa\nvd1WMScX/nvmhPvIWytmN+PlRBH6lgql5kfSToI8J4qTfOb5TlBrRjxRLvDhpDASlketAowGCX26\nvLZUpK0t8e7sK3+tu65x5oQxNb8bN3mX+a3XmYkzhfefiJDrONZT20BCC0cz/A05zYaDyv/vX/2B\nvCyKTHtSdr3w7FkOm+rC5BERTeUZ5QoIfyUQKvMEyPKcJkk8E9bViUMm0G8cq+Dv/OIvFmldCXV/\nC0KOrm8yA+f8E3rS9+Y1Du07GIFgpYidp8BqSuR00rFkzl64WPytL6dHeVnHV22ZGUoLy7qDvyxh\nUkM4VQzkxAvHoedYEnASneaO4Ya2RBhpuZ40RL73CGQAPfK9gFptZe45+4cMGxfact6pcAhMDxUs\n17IniROILtEHgfk5lo8n4yrugzj6gMPANtvadpGIgy7AXBDF/Dvw4Pnu9BWYI+Mhn7DEvp40enJP\nkH+A7UREIbTPFEJOHx85UZZQs6n2vBB0h/nWsdDwhKkiLMcc6jjzjp7IOjZA4Ok85nI+6Go9+nJi\n7sJueiCm6U4U8bTUnQ77wIByB7vTiebrTr1LeOor+QXA6By794C+7ZgZKM7pP6rws+SR7/szc5lb\nB9Qh/Lbryz/84Q+LtIaw1DbXVIC4WnbrBUUheg+JJWH2La2fLtIGwgpuCUvCK+vzD/bZrmXAQNrZ\n5ZPWIbCJ63LSVwLxx8KOQhuNJcxwo67z0bqILmIY5LoI4HYHKvp97dZWIeh/fOSU5xn1+0eFHLEt\n3Ik1phVzLpyEO6b23G6Bgtj+0bWLY7g5xgG2u2Mi4vVOdDiBOtjfY8ZMHUKAjwY8J+Na5/4OM5gW\nVpSl4slYe7AHIX5lnJRB9PK5Fz8xw7o6LnLyi/FNpPY5ngLTQux9HZ5fhOcFpsJgwKfnPgRnaAp7\nazTRPuPEt8vAyu51HatM2KuwhirLuh/DVRdCsnPYJ3ivW/8hE8e9Y4pi686O42m/tC3al1Lp5Ky/\nPEkpOeiRD7bOL7nngmFz8yLSKHM338Pa2tVBhusCWQvDe+uqAK5zbeDWbpBH7thYyD6SgAze6nlN\nc/MTUtTEQwDXmCThsHNg2VJVAjgAk85xCjxk8QyPMgOPg0qlTM8+/QT1R1qGofy+f09DQ+fyzTiA\nADiOZFmBcPVursMQ366vRVD3rhrQdiSyRnb9q17Rb1IXujwGhp9jDqPYchTxPSlcp4xprfyhvMc0\ngW9sWZ9tLOh3am9PxikwEPMpfdCt4qHh+zk16hlVq1onjUWeY/q51vEdYeKNYvjGlf6/uqTBBZKU\n7VMFxJtdz93vquh2nnO/miLLVESmSzI/o/2bCnu1BEF52ks8p9fbOj+fqXOZzjyt3zytFjP8Lp7T\n74JMbMzBvrJVJ/FgprxERM6MnlrTZ1y+wnXwP/1vv00fB8bEMRgMBoPBYDAYDAaDwWB4DGCbOAaD\nwWAwGAwGg8FgMBgMjwEeWtjYyxIKkSsnNLHdA43lTuKO0WwpJT+Q/aK9A6U89QZMjULKoxPA7faV\nRudo4nGi1NVWm+nBY6HoJeA6lYioaw6U85IIh5V9JTOVS04kDeji4v6UgsCbyzuno9TwKYiUOeHj\nEGjMCU1OLDaa5TmNJhOqV5T+5Ql1Nayp6GRD6Ko+uAnEXa6fCtDEooq4UwG1OhR/s/FAKW6+CPqG\nAbg9ZE5gTWh/4GIxFpe6pK7Pr1Q5D6T9OdGwHLjx7ncObg/kBEjn1t/RxEftTuV5HgWl0owriHuz\nEtC4nYClN8PjlueDeGvgXNDA3e3F554jIqKzq2eLtDu77ObTH6h7VJrdJSKiy88yja9SUzphLHU2\nHCu1MxUBuihAgXB+7hDydaVbANHKJ0VccR1EhZeEjt+A51bq3H/CCF3bQKjuBPDIo8D3aTBUOnZP\nRD5xbO7vMA1zDLTtUOi9G5vqznTu4iUiIvrWd1XAdWubRWRrdbVTqbiuxLE+IywJdVXsxH5P33H1\n7LP873kVpKwtsutWqaL024JqC9RjR7vNoC87mnoOdHHnbhUCXb3V5LzPr6ub4sXNZXrtd0E07Rjw\nfZ9qtXrhVsCF+dHXI024oKvPcbFC0Vjnkojj2rmqICXeiYv6Yrtv9rXeF3ym8Nfrmm9HaMkNsGul\nrCWvoGMjp6MUbSfmnYZoQ8Sewus4Yc0p2L3h4Kg7yMMiz3OaTKdUqar7oPOe9cGWxcLtDlB0U+o2\nQ1c0mUdRWNjpBKM7VeJcEYBa7O7IcplHIQ/3E+eOXHysUOzdCYEG0N/VRUevK9xMQPnR9SkUNCz6\nFEwPvv9ozqDyPKPpdDozZzj3p2pVx5MrF7qyuetGI503nfs3il5OY1k7ANU9ztx7qk09fZGFzytC\n0b5x7ZoW1HOuzDj3cb1s76hLgKuWOggGOxsTglt1JPkF4NLg+tcOiOne3uLfOcxvg/GU0hOKvfq+\nT9VqdWZ+dcA3dPWONtEZD39mGSAuJyleN5uHZIT/EBFRJOPJuSKkIE7c63DbZfPcv8H1o1J2gsl6\nXb/Ldgqrqr3ANml5Wd3Y3LtluIaRcYJpgZ/N+hQeAzkRTZMcROdhLPm4Fpe6APejkVtXgMvszffY\nbXkfXAfOnmG3m3evqXtYJv291dL3PiPXra24a0BYeZTMlo203gNIc0KlOO+435jmxMrRncsJOeOY\nLgSNod7n9dGHRZql1O33ZkVrZb3tNXWdVgwzsH+5syXYaaVMHoyL3NULpsmaxoPvEvc7d8FacnC3\nkbqYEUIWwV0PZBFcwAECUfdCXB/W+4VBGoHbsXNDgm+/3H2jQFt4w5PPrUREURDS2uISNWpa1u1d\nXv+9cPU5TdtjMd1c/iUi8gJuowmsRV2wFew3xbyF85L7roG6dHbCzW8LTZ3znRvvEMTrc7H3wYyI\nu1svaf25wBJ9+Ha+dInlA6ap5ucEnUsl7XN7O/L9DusKL/dO7E4VJzHd2b5LYQm+VxIu80HnEK7k\nB/X2dR9hdZ3X740GfLvKtw5KpfTkfYfgAudcwOsgyu5cMRMJwjQaaT0d9rk/noXAI088/RkiImq2\nTxVpfondAPcO1a7t7fP8OBxpmUayt3Hj9r0irS5r9p09DZbgyTfF4qK6U/XhG/zjwJg4BoPBYDAY\nDAaDwWAwGAyPAbyHYSx4nrdDRDc/8kLDB3E+z/PVj75sPqzeT4Rj173V+4lgff7HA6v3Hx/M1vx4\nYH3+xwOr9x8PrN5/fDAb/+OB9fkfD6zef3z4WHX/UJs4BoPBYDAYDAaDwWAwGAyGHw/MncpgMBgM\nBoPBYDAYDAaD4TGAbeIYDAaDwWAwGAwGg8FgMDwGsE0cg8FgMBgMBoPBYDAYDIbHALaJYzAYDAaD\nwWAwGAwGg8HwGMA2cQwGg8FgMBgMBoPBYDAYHgPYJo7BYDAYDAaDwWAwGAwGw2MA28QxGAwGg8Fg\nMBgMBoPBYHgMYJs4BoPBYDAYDAaDwWAwGAyPAWwTx2AwGAwGg8FgMBgMBoPhMYBt4hgMBoPBYDAY\nDAaDwWAwPAawTRyDwWAwGAwGg8FgMBgMhscAtoljMBgMBoPBYDAYDAaDwfAYwDZxDAaDwWAwGAwG\ng8FgMBgeA9gmjsFgMBgMBoPBYDAYDAbDYwDbxDEYDAaDwWAwGAwGg8FgeAxgmzgGg8FgMBgMBoPB\nYDAYDI8Bwoe5uFSK8mqtTJTlRZpHGRERVWsVTfN4b6gURUVa5vF1aZoWacmEf2dpRnAhERFNpkmR\nNJqOiYgo8HXPKQi46GHAadXK0ecn8Cz33CTVfOUy8j3N1yN+PuWeFkneNwiDIi2K+HejVSvS/Ion\nt+r7eL5HD+7sU2e/rxk+JJrNer6yukAeQb17nJ3ve5Dmz/yN/340bV5BcnnHLNeyZxn/znN4ruRX\ntMXczOCn3JtDvppdfuQefFaW5x+8oXiPmfdxadA//IDb5623buzmeb46p5QfiXo5yBdq4dwy+fD8\nIJS+CP3D9/m3BxXk+fPK7tpHn5tI35toVyVf6i+S/u57UHdFZvDTZTjT7t68C+WH5ufeN02PpkEV\nF2WfV4hrt+4fu96JiELfz0uBjz1E+xI+TcqAY9OVAfuca4+ZviyvjuPf5RMEml8mtiNOEvmbXh+J\njXP5ExGlSczPyo72eeyjUanE+cN108mUPghXFh+e6/rheDzW52YZxXFCaZoe29bU6rV8Yak9U0/u\n+UkcF2lqf/S9Y/k7vo97RxzDqdjgMMTpR9oMbDZJW/iuv0K+7he2exonUiawA/L3NIF859SOuyef\n7VxzbuALplOtC/ce9+/cO3afX1hYyDdPbc6kFU/9CNt9tLx4HY71OffkH/K3D3vUvKyw8pxNnvt3\nsCtHfswr3Idf9+abb53I1tRq1Xyh1aJ8zvyKmFtF3py/FoMdL3M26egL4LOONMfHnF8/uqBz7v2w\nC+b8MZ+ZI4g63R6NRuNj25rl5eX87PlzHxh0mr9Dv98jIqJqtVqklcWuzAzXOc/4sO6N97o1qLN1\nKawT3Tqy5GzZTI6aSyI2pt/vH3mKN68E2GXEtiVJcvQ6mr1u/+CQBoPBses9jIK8XIlmCuCW9GGo\ntrNSKRMR0WQ6KdLGQ56fcjCn89Z4bv2Fc4HOGfqMUoltZ61RlrLpnODqJI31Yf0+l6VSber7yBSQ\nJTp3juXbYjrV+VFtyFE7tdRuFUm9wVDu1fzcHVmaHdvWeJ6XH7Er84bvvK7iuXXf0e8SXLMX1/lH\n12a4fghlLaprG61jVyT8tnDr/SyftQFcpqOFj0plvVfmRx/WVEk8xcv5uqJ8mui+23rd3olsfKtd\nz1fXF2YT59jpeTbRjV1vZrzKuM7h21HW7bjuc2vGZGYtKPdKhriGazTqUg693q1x/ADmiXl2/0Ne\nYmZum3NLNie/LM9pf6dH/d7o2LZmZWUlP3/+/I+abBRHzenDX3fsUgI+Yh3y8A+ZM7fB3JKOD4mI\nKKho3/RkTf233//+x+rzD7WJU62W6AtfuEL+VAdjIB8sm6fUCD7Yuk1ERC8+/7zeu7hERERRuV6k\n9XcOiIioe7hbpCXTARcs0glzp8cdOtN1M3X3eaKsVzi/J86fKf7mbK8X6gZLUOLKX1hT43/+CV40\nv//etSLt3XduERHR5aeuFGlZmSeOzSeXirRoiRtn9YKmpQ1unNFoWKT5WUb/9D/73+kkWFpq0T/7\nb/9ziiLtQKUyN10Ek15ZDGcEm2elMtdjpab1WYl4wyvK9d7xmN9xOFGDUmx4gfUqSbuUSvyMckWN\ntTN2SaoNFcec72SiCwE3OWYxLFjEKMbwoejumZlMZUy45xMRVWu8uKs3G0Vao9UmIqLPfv4f3qRj\nol0N6B99cZVSMHBjWdBUYNNwYZEH4NKS9oWWPD8KtX7cxFauadn9nH/n8DG6nfB1t7rafyd9HuyX\nl7iOn17XfLOE22wKw3kqc4BbzBARJfJtX6roGAylfL6v10WRLJ4mWqahLN6SXNvRLW4D+Bh3C92f\n/8f//Nj1TkRUCgK6vLRACR39cA/L2pfzgOuvUtW6chM/tsfGxgYREe3uPijSYlngra+pnTx75jTn\nB8/Yvr9FREQHB/tERNRsq8FdXVsnotlFi5vghz1dzI9kcyaG/er9Dn+c3Lx1q0jrDfge3FhqNbhf\nn97Uj/wNee7bb72l+XUP6e0bt+kkWFxeoH/yT39zZmFRr3N/2d/dK9KmI/57e6FdpLmPl8FI711a\n4bqdjtUmHuxsExHRwqLe215cISKi3TtbRVqwxLZ6pcFzSzwYFX/bHXLdrayv6fN3eT5pNtXG19r8\ne29Py+76aK2mH4Vus2mIm2heJH/T62KZ77a2tJyrq/yOv/Vf/7Nj9/lTp0/R7/zfvz2TNm+jbO6m\n/Jzr5n0wzVvYw9PgXvdRdnTTZd7mhrsum3NognORywcPcuYdFOhHYX7kOvwodL8/9cnPnsjWtFtN\n+o1f/3sz5fKLwwp9X3dwM68OEK5cuBEczPmo/eCzZp7rNm7hb658WE43X8491JhTTlysu4+/mU0k\n15ZQTvc8TIvjmH77X/7BkfwfBucvnKe/+vY3CntJROTJh1wGmxl/9bW/ICKiZ555pkg7c+bMTNnw\nPT6qz7vrBoNBkTYcsn1aF7v65ltvFn97+513iIjo0lNPF2lubYLrFZff++++W6S5j+VWS9fH7vk4\nNrKE63YMtnNeW2RZRr/1W7915J0eBq3FOv3c3/8JKgVq14ZiW9NMbWy9yvMcrsVjWSfGQ22zXrfL\n+bY0v7r8ThOt/6WlRSIi8kv6PqfPcNpY1oJ3798p/uYTz+nv/kDntFde5t8/9Z/8p0VaOb1HRERn\nFnW8vX2d2/Pa228Uad2RrF1gWGRT7j+/9KUvFmnf/MHrRER0+97dIm0q5Rv0h8e2NR55FAXlmQIU\nh2O4mSGbAdmcg5RaTdc5I+krE+iDdVmbLK/rWmFlg+fWZ69cLNKeOMVz1g+//7dERPTOO+9pmWQe\nWV/V9VO7we3pRbrOKZW5LL3DTpHWG9BdumUAACAASURBVPP8+cKnP1ukLciY6hzuF2nvvP59/pFo\nf3ebtJ6v68l4zP3x97/6xyey8avrLfqf/9ffmLE17rsmgOe5jTE8YCoOePBQcyxjE/Y3RnsyhgZq\nu8q+rPlXtd3u9XgNekfWfd/+9veKv33mpS8QEVGloX35/BWuv+aSrtsDj8uXwjeUezd3iEhEFMdS\nphQ3hSJ5R7U/acbtNoX8JnFK//y//3/pJDh//jx9+1vfohQ3p+fuZ//oTe7Zvx099KbC7s85sJ65\nMJ+9DogabuMNz8aLv2Zzdnbm7rTO+XsGayIZV5NrXy/S+ls8/hY++etFWiDf52Gr/bH6vLlTGQwG\ng8FgMBgMBoPBYDA8BrBNHIPBYDAYDAaDwWAwGAyGxwAP5U7lkU9h1qDFltLgo5xpWM2ycolOX2Ha\n6XJDae2DkVCJgK2+fJopf5vn1J0hnjI1MxmqK8JLVX5eyVO6ZkmollnKlLB9cM3e6zKF6ead+/qw\ngClRh73tIqmXDKW8+j6fe+kqERFdevpSkeaHfG91QelnY6FY3bmnrmC1hKtzeXG9SJsmQ/I91Ot4\neHhEFJJHAfK1hB6Xkeadh+ImUNH3abWZrlqtqQtInjDFrt/RuoiF1oi+mKFQONEXPIwcFU9ctwKk\n5Dka/FG/bqQnFporwFJz9Ol5dPN8Rk/D0dOApl/ojSDt/2g+D4s8zylJE8rQR1fKFwM9cCA+1OWy\nuliFgfh4h1qOmvOthVHnOQpkqnU8dK9Y1naMxQ/n5vYNIiI6J+4nRER1ca0LwHWrJe0yHOmAu7/L\nLllTqJokEv/cELmAXAA0DqVI9nsz0GWRtiiH6NL3aPaFc8oppXyGUlyp85iPwJUtE7cjpNU76rFz\nAyLSPrwolG4iojhhenUV3fDENa5S1rp0LjalOl/XALu20OY2Qo0UR8nd76nr1oOdvZl/iYhu3mEa\neAI+7a0lfn4OtNbdm0wx73fVJakccB3US1oX46g84zN/HPi+T5VqZcb90dH+Gw2tp3uH3JeqU7XJ\nzu0R26LIB9rRUcKdGyIR0WjENmkwVBeHqCr6FDV+LtqGD3cNUriyoJ6Gs0Uz7jrpUbcep4uRkdaF\n61voTvmh/ukfE56Ua55e1qyblEub5z6DbiRzNF0+RE9sfn1+iDsVuj+5f6F95ml7FDphMB/Ot/cy\ntwEF3GnqZf5Rd6pHhbmuN1CP89pZtZQ+vA+opthRV5957eEwT1ME59JZXamj93zw3hlNC/rRrlNY\nznnubdxXjzzmIeGR7/uUgsCKs18HHXXR2N7mdYpziSUiOnfu3JHcPswNb55r2f37uj507pY72ztE\nRHTr9q0jf9v77neLNGfrZrTT5Fm7O7quWhWX3nmuerP6bKH8C67CRb1An89Tyk8o/jAaxfT6q1tE\nCcytVafthi4JPKf1ezrvPP0suxv3R2qnF8UdudHUNdmwz+vJzmG3SLt1h+ulDK79P3yN3aMy4mcs\nLevcmiX8DVBqqP2ti5vJq9/7tr7PHru2funz6m5HHs/9fqTtU0rd2lX7dn/Kz8V2dLZrMomPpJ0E\nORHFaTaznnb9HedtN7d4c9yuauAq3BY3XtSaufLcc0REFMH6pSr1/elPPaeFGfH4Oi06Me3qU8Wf\nDsQtOQC3nHDIbYDfG2GT1z5nNnVNNZQ+tXVfPUHa68tERLTQ1vXYUpvXAEGmfcbpBWbALRgmj0Lo\nhMd/FAUUw7rKVXkAWjNBYZNRPEzkBeC7xquIFmsNtH/KvMZ4cAO+MXe4/9d9dac8d/ksZ0u85vlC\n+BPF3179/vtERLR6StdG60/ybx9ct1pVXhOhTo5bR6bw7eO+54II7LnckuA3koz7FGyNF/jz3YYe\nAgcHO/R7/+r/+IA0jPeBf4m8OZqb2q9hziSnDYVpjAjWFb5o5iJNxZP/FN+1hC5znIa6pm7PAL//\ngpLTzITvTxXX1evkGR7Mz64N1u+/VqQdynfd4T2dbwIfXdA/GsbEMRgMBoPBYDAYDAaDwWB4DPBQ\nTJwgiKjZ3KAIdn4rksN40ivSnGBtGXarqiXeQT7s65bc+7JLubCi+bUXeYfxEJg4Z0Ssa3igrIIH\nPT4dcdq8/VhPRis1ZinUm7pLurPDJyxrF1QAuSmCmdMBnE4Jc+L6D1W4crTHpw4o7Hk44rLf21Nh\nrt/8x7/G7wCntLvdXSI6GROHKKeUMvJJ36dW4bJvrKtY2alTfEqyCIKhNTnFDnwtU1/qbgt2R90u\ncwa7gE4gK810B9qxL4qTCxSJS7kuMEpA7k5TQRyq0JUiPO3j/CI8ZZRdZoxY4JgweAIZiQgtCnVh\npIRjI88pTRLyAtixlV3XeaeXuMs/EfZGDur1YxF9y0hP5coivh1WgO0kYmheAqd8ks/1e3xKEiV6\nEvaZFy4TEdEqiCcGUqY6nHo1m9wGuwc6tg73+NSgvax9ZnmRx2o+0vfp90XwECxGq8Flr1YxEgE9\nEuQ50TRNKAQB60B+exBlwR0c4EmnY3pgmhOdTFMUruX+tbOvtqu6xH3ehx353aHs/gv7bwD2YnGD\n661R17S332RRzFd/qKLDu/vcbjmI6JVrXM81OJmrSXSC9VVlJ+7d5zbqgoDgW+/yic1aW9kx0QeY\nHMfGB0gFyZyoXO60EMU5XRoKG7vIJosQ/aNZFeG2GUYBPxTFqEfCDuv1uH0CODmuSxuj6LkTY46g\nPgMZV8iccc/tdrU+o4j7ymFX+4ITBV9YWjlyL+aHp7jHhseshNnIgk7cNoTLjkYfcb9nI8cdZd18\nGGtjvjAuzfz7wesURyPwuHxxDOa5h5fPXDdPsDjz5qShUKB38tNxB8/z5kZ1xCiAH4wqQgRMHTzU\ndOLEeKrn2KJwr6ubWQaVnBaGR9u5YG7MaHN6s38jIl/uzefMUQhX9pkoTfMiUv5IttajOyX/IGo1\nPbVfWOD1HwqWfxgTD/vSPIaURl/UOrl7l0VsnWD5/r6KsE6mTpT+KCMY2YkLi8xIwLdx+aCwsbMX\nWDTHusmRaSZrGEzzPf/ENj6exrR1+wHVQLyflvk9kO3pHoNRCW+9L5G6QmU2vv36D/g6X0WRI+K8\nsZ06HV4zf+Izl4u07S22wQ1Zqw9h7ihJgIXDAy2Tm4tuyTOJiFJpn6+R2oPTa8zaCqGNVyoixDvR\n9U8hFj4nkiS2T5YfHT8Pi1K5TKfPX6KzwCJzgUKw0/RlvjsUtisR0dIys1lwDIxljVmGNdLKKo+V\n3W39fvnE1ReJiKgV6Av98PVXiYgolqAyk8MDff4DTqtD0JJmk8fjCKIG7+wz07jfVdbI2SfZCyOD\ngBr3b/Na5fxZ/fZaWeTxkMfaZxy7fQhhWbP80dgYhl+wMYjU7s6L3OvNYbK6gDBERJlYzRwCgoQS\nPOd0SxmDO9e4Lu/eVFZ2J+U10d6Av0m/+B+pCPTOLrdpta5jc3VJ6grsgJc6QXstX+C7MmlaKNHf\n8MI4d4wnhYtEO1M/ef7R0aI+Avt72/Qv/8X/Qj4UyrGdfBDJTmXcZ9BHQ7fWAXH0kgzKCAKwhhLR\nugptFsuHSg/WC47hVZZ1LHq2OEZTvQXfYRV+1gTYYEFN5lbkvxTR1/R9XDThFDwTTi3zOPkvnr9Q\npL36Ls87r33z+0VaOXq49aQxcQwGg8FgMBgMBoPBYDAYHgPYJo7BYDAYDAaDwWAwGAwGw2OAh3J+\nyHOfsrREMSm90rknbGwo5fz6O9eIiCiJlRK73hL6ZV4r0oKEKZz72yoOPBgyDalU0nuHGdPJ9vvq\nznR3i2mq5SWmEvamKqC2f/s6EalLCxFR95AplAep0uU7r/A9GdAwayJUdfeuCnMFGadVK0qr2rjM\n7/Frv/mbRdqaiFF1R1rOr/3BN6h3qPTN48APQmq2luncWRUfO3eGhZdXVzaLtLKjzhFS2MWtZ6pl\nqIvo2cWLKnTmiRtVOiPsyff2B+p2cHjI7zaecN1NE6VDjqd8XYLq1ansEyItXShuear1ngutNQqQ\n0i5CdEA3d28WAE3XuVGBDiaNx9pHj4ucmG6LwqKOgTdDX3eiWOA+6BWCu0cp2AnQ8yoidpXFWme7\nu1yPe1MV9BsOuP1ub3P/ffsdFU/rx5zH515UYb+RXA/MVDoccJ3c39Mx4Dsx7CUU1uP+0etqn/GE\nfFkBgdiStFUAbg158ojERj0iP/CpDM8LxHUnAwqpCkwfFRVD8bN+X+oDBBmrIlA8AjfF195nW+RV\nVawvCfk6R6nO93U8TDwWx4zA/vztd/+GiIiuiyAxEdHCErtHLa+saTnF7aff1zJNh9wPxiPtv57Q\nThvLamP3Oky19nK9bnlpYS4N+Dgog0uSc6Fsg6B9vcRlQtE3V989eJ+2uBFUwf1o1OO6QpeFWoNt\nJ4pGhyK63RbBQB/G0t6I2zMBAebJhCm5Cz66k7KdjsElwIkoz7hzSd+a51bk3LSIVCDZuXjxc7UM\nx4VH3G/nufTMuts4ceB516FNEqFCMIo7O9y3W0DJr9Z0fP2o/GZdV2ZdrYhwnH0499p5LOTgluLs\n6Dz3VHRxSGWco8Conz2aMyjP88gL/Bl3MOc6OENXl39DpJzLPSkUpaDkgyl09Hu0joG4CiAl33N0\n8jl15ezejJuZo/WjO9cc4cjiXhQ9To4KAbt5dca9Tf6OboMf7KvHgedxP83zo2OuAaL0zoUEXRjn\niwO7fyHYwxyx43kC0c4tdCRj/d333iv+1pe5NJtz5rkKbq8usAGuFyYjdgWaJ1CNLt+ZjLUc51L/\nqKshkQpSHxceeeR7wcwaqSLzTg/cqTZEsDZNdC548IDtXqul6xW37myD7d7t8HVernVRE1eF6zdu\nFGlRyO08kcAk7bLmsShu3SXo75fWxX3tqqbd3eI5eHFDXXGfefZ5IiKqgq27epoFZf/oT/6oSPur\nb36Ty4FCtiIfgL37UbgpV+s1euHTn6KVleUizfXBBNy+tkRw+/LVZ4u09XVeNwxHut4+2GMXqGFP\n3a6ymPvqMxc1uEqNuE+/9u2/KtLyAd+7KEvWBNYRC+LahqK9zSa3XSvQcbmYtqW8uhY92GKh6oVT\nF4q04Yj7wt6De1pO+bbwoW2d3nQF3MP24HvtJMhzoniazASZKaQRYI4MPLemxWACcj2Of5l7Ugh6\n4OyyV9F7166ya9XtB7pm/KM//DMiIvrUl58kIqKooc9fXOb6xcAaCy1xHYc1TCaBNFKwIZFzE0IX\nXHFFmsbgViR9bQJr9VhsQQqSEBnlMy65x0NGWTaiLMV5TFyiPHVFLY24HseRXjeWiq+MQH5C2mAB\n2icQ181mGaQriPtXF9ztu/KOUcT5lqCdfHnGBNbPziYkQ7ANU3HFhe8qz+O1ax9kFgL57o4j/YY6\n9QJ/s5cCdad89503iIjo9e27RVoYPZytMSaOwWAwGAwGg8FgMBgMBsNjgIdi4qRpQoedPYoC3X1c\nXuBdwvNPnirSrt9iQc/uRE+n6zGfyELUOjocipiRryedu/v8u9fT09xP//3PExHRINL8Jj3e2XSi\nQ/6anr7uDllEagvCf48lbnOqG16UCPuhAcKsZzZ5xzsd6u7fRE7DKot6IvGFn/sMERE9/byerO8O\neAf96//+G0Xa13/3m9Q/OBkTp1lv0c/85M/T0pKybkInQAwiwsmY6yzLNc0T7ooTwiIiCkSgK4Tw\nxLn8PZrqTv90yvkFPRU9W5Ldy17E7X73vtZxf8inOCnkEUjdIUsl+P/Ze7Mgy7LrOmzf6c1Tvpyz\nsrLmqau7qwd0o9ENNEA0QBCkKJKCLJEyFQrRdNgRDjsU4Qj/+c+WHPaPLX+YYQVlSUQwSIikQIIE\nCJDdjaHnuWses6oyK+d8L9/87nz9sfe5e2dXAujKTH6U4uyfyjrvvXvPPcM+55691tok1BkJRFds\n4dGmKVJsRnTGGIqTciViLKOCKsomo+37ln42AQgDeexKxTselopIuErTLeqpdC4z4qTVokjMnaWN\ntOwapSgsTQmkAKFAVBrxlsfX/c4rHwAAwNvvXkrLSiXsW0v0cWUUx+rkwWOiTqov2IaELJBp1DMU\nHbGl8BghcWJxLL2TgOZuzLIsqNRqkEhkSSqwyWUKGSFP+rs9jN5khTCfSusp/UqP0C7rAz7L9km4\n7OBjHAULsxgx6FDEyxat9e5FQh02OEVgnxAmhhCkLRQxIlgsscBlSINpdEyIE9NjbDR4XnVdiuaK\naKCjxIHzImJkm7BXsdEkSSAMfQgEuqRew4hsQaRmnaG0oT2Pyy40STza5TY2Y/RFYczzWqXCDERa\n9galpC2IsMKhSYysHjuA49YXwsZvnccIhmkJ4W4S2s4JIfQsRcVD6WuUyKyYmwFFX8fGGO20tUXr\njWh3hbrZnjFz71FawzAobaVE0+yExFH/SvSC+ot/61B0/OIHl9Oy3/t/fh8AAP7er/69tOw3fuNX\n8JdCuFMhGVTqVYksUL5bPrOKBhoyFTlBScxtopFKSFe23v3CvOpPiSIKo/uROGG4P74GK2pu71PV\n0FIYmsQZ8yJRgUK4eOY2FVT8vvBJSqM+EmOuQOKwA+AobUyoHEOhjHZAkMh+jikhQSLGiEI/GDv8\ndlvLx0rMkm2nTOk7iSfvl5kGbEPpGqlI9ja5ZQAAiOLgvu8lcuVKxTPvn487IewSMb5OHkex3cYW\n7nVyQjDepQh76PP33QHucXzhw9RjyDH/aYWVVXpliQZLrydTTe/4dA9mCSSQGFGaehoAYIPQvxKd\n1GzivlVmvFXDsiPSb1eL6Ke7bUaEKD9hCL9bL2DE+szJx9Oyo7QXOXwI/338DK+7CiFx6ep8WnZ3\n8Q4AANxbZeFes0yptsUcWFjC53n+aywa+0t//2sAADAyzsKzU9P43lKXWqJ0ncTY3/Ee+D6sLN7d\ntv/LqIQWQvi1QnuFXpffdwr0jjI1zQibxjIifVViCwCAQzP4HmSFjKhaJlSZMRT7+Br6Hp/27ApF\nBgBQpbFYEOK6tTJ+Py8QcmGMfVwQrIk7q/juVa3z/R3aY3Y3V/m5KVVzIvaTMa07gZgX2cz+4Qww\nyYhAS1A3SLS82tfHAqWi5qu5bX0jJI4YIx75p57L73tqy+KIAbZIyUQeD1EEOhJrb7ZMKHLhN1xq\nD18MR8fANvVCfnc2iFFiiEQ0PvmpoUw2QaicbahQeu8KPP4emHtPEGMYAE42gcS/H70q4SxZGgfV\nmP1Pm+aJ2EaDRQtpLcsI4p6HdXQEUjOfw2ccxhJtQ4yJAv5bKvGF/RXcp/pZ7gsnT+wD4Vd8i5Dy\nwikOO7jvbHX4vVsN23KNEf1PHz8LAAB9l9+P1/s4xwsiBbxKY/5pTSNxtGnTpk2bNm3atGnTpk2b\nNm3aHgLThzjatGnTpk2bNm3atGnTpk2bNm0PgT2gsLEPfrS8TdSn1ULY3FqT4Y2hg7CylfW1tMwb\nEDQKGPLUJJHc2GLIpevjxQ8fPpOWjY6iINnVd99NywyqRIeEXvNlxprNzSEkfiCoE22CsAUCXlUi\n0UtD5JIvEdUoJ2D6LYJ11meZOnX4FIoTXb50MS37yU+uAwDABy+/n5aFmwYkor12Y46dgcmRGUiE\nSm0UIOzNELBJhtMxFSIkupWkvDhZEpe2BBSPEG5WxFAvI8C/c4ID12gi7SckakVJ0KTaBGsLA4bg\nKSh+EDGEtNFGuGGvz/1TJPpPtcrjwyb+kZMR9Agh+KVM0ai2CTRaDwZJ28kMMMAybYhE2xmp4KWA\nPRO1wRIClRkbf5PJSvFUKrOE4K6LfXXpNtNn1lpYZtVY1C32SFyWKCOuoH2skTD4rQb3e45g4aUK\nt+djs4cAAKA+weNYCaRZwBDQAdEcTVtS4JTgJY8FP1TizZKKsT/CuqZpQraYB19Q2VQ7KxFaAIAM\nzddEgMw7BFEMRX/4Ec6Te1sMKTbo42HEc704joKI2fpRrgsNK3uIdeltseilR2KxJaG27NhYp27C\nc1MJ5pmCihES5W/m4IG0bDSHMH5HPOM6+S434P49cABh1VNVng9R4IFt7+1c3jAMsO0MSL1bRTso\nCWiz7WE79ptSlBU/zwphwj4JSudNHoeKBSP7ERStTwiljxaxEicOzQIAQLPD/ipLbeyK9syQiGVk\n8ZxzyReZDvexQ74hFn7fTue1oMDlca5ZYi0IqM8kyjgrrr1rM4z7fJaR0gclnUqJsjqiTIm8CoFG\nula3y/P6AlHQyiWG+H7lpS8BAEC1xgkHlCm6UqPBVM/1NRzvGQFnPnEa4fxZR1D7FBVECv4aO/jO\nnfyFojNIhpJq923C+/tDmU3ouvLayutIakxIcHpPiO9H1B+STqWYbrEQJfbIz5s5bueQqKB1m8dP\nl0RA+2o8mgJyTj4uE3Cj5nyL6iFoCaaiJIl2JsqALXjAgXm/r0jbQIoy07iKRfvEcbwz9+oBzYTk\nE/wgmq+ibgrNLsd3AvF9Zekm5udUSz1jKEQv1VVs2ms8eo4pP9U6zpeFW0yZ3VzHOXH8CK8THVpb\nJF1wJ3rxTlTvlDIlaDWpkxHPY+zM435ASyCO/W3+N5fHv6XQuTvAMZvPs08slZESFYgEAUYqRC6F\nV7Fsdob3Gv/FP/1fAACgUGXphQEJSTeIdnVhg9trYx1Fcm/f4wQBMYnWG1VeWycP4F68WmYK3Fvf\n+z4AANx58+20bPS3/xEAAPzyr/xKWvb0o08CAMBf/If/Ly2jqqeJBwCYShP4u6dwRmEM7a0eLMzz\n82SpvZtN3pesLOF70+kznMjkhc99HgAAXnnlb9OykMSJn/jGV9Myr4uUpXaTk6vYJFpczol9k3LV\n5LOrVRaAtnpIRctlZL9ju0vKSreLfTAiqIcWyR1MHGTKWp/WkbVNTmTACyiP94D2er6gLWYcpmrt\n1UzT2Db3AqJMWYIuvBPVUc0/U/j9VLVeUlZp7lrimZRg9fgk0+iPnTkCAAD3lrCvpMB4tYb9MOjw\nXm9jE+daIt4bCrTIxKIM6F6WcKgO0eQiUafYJL9nSP+Pz1HJcXtbtgWWvbf3KAMAHAMg2dbGJtWN\n6+nTffJD/t4USaW0RB2UtAV7H4BNei8uO+K9s0D+Z4rph5O0j4sULbrI8+HiJr67B0Me82ds6ruI\nfeKA5sk9QX96/w6uBZZYx48cwnetSpm/d2oOyy5f53OMnoNzKCeulxiaTqVNmzZt2rRp06ZNmzZt\n2rRp0/afnT0QEiebd+DEI+OwcIsFqjokvrW6wWnmIhIpWm/xaXAzIkFIkX1aRfVl6kiVVfncmafT\nMq+PZ01uh4W+YhLdHZKw03iJI1z5Op6W9btCdI5OHZfvMWIoIqRJIKMbdDo7JkRRn3wCUUGTZzk1\n2OUPMV3ee699kJYt3KDUtR6f8GUNJxXB2rVFESSdDkSxFJDFZzOEiDBQe0YxN/KQUlxuS0lLz+iI\naLs6lR4MOXLr07UTIU5nEeKgtYjPH4noKwzxGpsbQuCOTj+7bT5ZvnkTIywDIR6dK2CbTc3wifXn\nXngC6yvEz8wdoofmDqKA5n4gcQyM0EtB1TTlnkyxS/eXkXR1fykKGhNqoOfxjy/cuAMAANcXxPyh\n0/CmEAq0Y5W+NEPX53aojmKbWTJlKkU6qhUxLyjyO+wzwqdI0bhKVggwU+TGlifg1FVSWNQiAc1t\nKRr3od0BMJoZRBE4AtWhoiQyhaJqB9sRKRnpWfpCpO3u4gKVcV2rFKWIxTNllRBZkaNLNo35godR\nyI6MHtG8sQVCrDiKQotLG+xr2m30XTKydOgR9CtSVLBDqatrtZq4BwnACwG8EYo6imAheJG/LyK7\npmlCLKI0ET1jpSD8GkVQE4E28mmQeAH7H7dDkfUcP0+G+koMV1DTxBPR8SKtC3mFXtjk/izYhEgT\n4raJTemvhZi3EqWXYzmhKJotEDQFupfn8liwSURc9k+WxmBe9Lec43sxwzB2TB0ufZ6aX5cusYh5\nu42R089+9nNpWalEQpR5dvJKtPTChStp2Z07qPT/5NOnxX2xDu+9h4jS3/u9/zf9rLHZouuyX/kX\n/+O/AACAF1/8fFqWhPfDIX4WSs+QyIsdIlHsV7Yl/v2p13sgS+5HR+yE/AkI4SVTfBtUlhGoBhUt\nTARyTaEvZWRz6S72Q1nsUyYPYAQ7ruOYC+V4oAhiKJZAk5CeiUhcEFKaapmBXQkBm9uAK/e3345C\nvDt83zCMfWv+3ZhK9yvnhkrHnmxDqxAqaQf0VyoqCwADEnjdXMd1uOuxX1NI3FD4tTOnECVx8tjx\ntOzN1zBddQyfQCx9wnZqYx5vPw9dtnf0k2WZUKlkIRDIbpvGqitEWbOE3CgWRLr3PO6tTSFmq9De\n4HD7DDzcnz/+1d9Oy9z6YQAAuLVyl3+rkMAe/vaHt/mzPiXUyGfZ7586+wIAALzwZUZKzVRxbTk2\nywifA2WcF3/4x3+alv3HP8O/n3r6M2mZQh4kwHXP0fyxBfLCjfdhsCcJREEMS4v8/uTQOjIYChQ1\nte25x/gd6LUfvwkAAB9/cD4t+4e/9mUAAOg0+Hp+G8fvsMti6QpnVhFoG9tUYvRUNYGUd2qUJCbD\na5xVGqMr8Xpr2pQWusP3Gq3j9w7NMgJiSPPSFAv+PUoLD4KloJCLlmx3IaC9V4vjCDxfjHla1x3h\nyPjW9/sQAawEm/ZHMnGJ2sTYApFhETJaCoY//RkUuH3tdezTQV/sqcmf9QTquLdFiNgO7ydrxFgo\n1bhPFVrMFlW3KcmDU+S+jIkRMBTJK8zU77D/iU1zzz7etAByRVNq10Pcx+cxsyLF+DjWT6KISj1i\nwPBrP1RO4ruOUeH3xPl3ENlmn+S9TnkSr5Ovsp8adNAndRtYNox4zZ4o4n6mdIXRYp+nd4ADE5xQ\nqPbkFwEAYNXie60t/ScAAOjleM342peexeuJd9erN3Gv1ReJN86dQ+S/bJ/QV2PqNnwa00gcbdq0\nadOmTZs2bdq0adOmTZu2h8D01Rs/FwAAIABJREFUIY42bdq0adOmTZs2bdq0adOmTdtDYA9EpxoO\nXbhw8SZYIpd7xkZY0ZwQeJs+grSjxdt/nZa1GwjT7G4x5MixEEKVGzCE6vCBYwAAUK+OpmXvvP8T\nAACw6tW07LFzCGta6yBlqxcJOGQJ4VKj0+NpmZ8gPK1WYtzS2j2sSyxgVZUCQqheOMPCygWCF15Y\nZDjb2nmEEPqbDJ0rE7wwsYWgqtuHBHYvhgYAkMQRRF4PfCHEGYR4r0jAfpNYCcwxPE8JKjoSFhfg\nb7ZaLKZ7cwVh8neXuayxRRQfg683M4PQss0GQl07A5aYUiJ199aYGqTQkEosF+tJ9JQCw+lWCGLq\nC2HT55/H8eHIUUqwP4kEV1B7E7gfjX2iOICRpPQCAIBICZ8JGoeiGAWizCdBValTSPrLcG+T8YEf\nXkeInZgWEAZIqYlsHqulHMIHbZoz22D+BPMulhniN1YdoeoL4Vn6yfoyC+uVCe756KMsRJe31PeF\nCKYSGBbtniMRO+PvAFcfxzEMBgMYHWU/oChGUtS10bxfTFIh2JeXBO2zjeO0VKqnZWq+bGN+EITc\nF1SIhATWrBL6gZPPvJB+tpojGuLiTf4+we8lMr5F1Lh6nZ9HQXevXmV6S43g3VJUsFjEsn6foe7z\nN1FceXyEaS3lYj6lFOzeDACw0jkKAGBRe4dCZFrBecfF9xYGOK6fevzRtGxjA/tnU1BhrSxeb3qM\n/fm5s6fwGncYQlqvIFQ4Q5RMt8G+abJIVCsxz1t9bOOCgLCWSTC9J6DDSiy7UGYoshLIBjFfEqIL\nOoKq53nonwo5nmvxPgi87mQ7CRsrX7d4bzEt+9Yf/0cAAHj1lZ+kZd/4h78BAAC2EHnO0HzdWGeh\n4rfefAsAAJ56+pG0TP1mfh774sJ5Fu/P59Fnt1rcn3/0R98CAIBTJ0+lZdOTCKtP4k+39iWCdpKk\nzl1SYNJPxa/2JwZlGPfTQFOKrhSuVPQ2AY3PUB2myuxXfHL0jT63kU3UBFPsBSZqWNZc5XHtDXBO\n5IhOFYTcBuqulhAxTog6bYk1qk+LTlfMA7UOOYKdoJYXuZaov3ei/PxcQeoHNGOH6+x0XbW+SLFR\nj0TeQ5F0QM3hnSi9KvkBAEBjE9tbSQEAADRJCDYmWpoj6KSdTfzMEf3uu7hg37xxNS1TDOcolmvR\nT6dTyTb+tM25H54mjhIY9hKoVoQovqJRODKZAd4ta/Iet5LD8SnFjttqH2mwPz8+g2LnR069mJZ1\ne/g9K+a94Ab9NkeU3cCTlCzsi4kppuIW8tjIS0KqYWsL90sjZb7/s88jtfOb5JsAAP7g978JAADD\nDaZMfOHZp/C5MqLPaAzEPq8ZDvlO1+W6P6gZBkDWMaDf52dUY7Uk6KmmiW37N9//G/E9HCBf/tKX\n07Knn0a5gbDPCWRaDRqrkuVD9B7fF5Ofrpeh5C62w/dXtPzCOCdcOHgK1/T5a0zn8vr4DmQL/o5D\nVPaSoPEHfVwzJ6Y4Gcd6E/ug1xPJVei+Tkbst3tCLmIPliQJhFG8nSZOfqUg6NIR7aXldIxpXy+l\nBEKio0nZBkWZkr9NaUoiu82x4/gO9fobOOa6LR5nHVpXpSRFroh7f1e8G5UP0voq7mXQfiUR8gZ9\nSoADQn4hpn19IDe+yrWKF5bEi+FTLt8/1UqlInzxi89sq2iWhIIb87zu5cex7pUZnsMZSobRn+d3\nzOwAx3D11GxatrCM7TIzw5TwqUOU8ET0mZfFh+kRdXLjDr+nBku4tz4u5BZMwH7p9Pj+1QF+752b\nTGe/Scl+Pvvs4bQsl6P3xPU7adn1NZybR84+lpbN0dCTSTYgUb71L+HTmEbiaNOmTZs2bdq0adOm\nTZs2bdq0PQT2QEicQT+AD99dhLoQCzp8EMXEJHJm7iim0vr+X7yalrl5POFyG3wK7VEUd2ziYFo2\nOoOnv2+89wZXMk+pDo89kZadefELAADw0lFEHHz7T/8k/ayxeQ0AAGYmOb2hisQMRWTSIBHfyBWp\n20js0hLimAskwjU/fyMtUxELx+Ejxumjefotf23om3BleY+okCSG0B+AJ1J9ez6esLo9jkioqKEU\nT1SnyEMR4WiREN3r5zmK9NrFebxGhtExPTppD0M+LTfPI2ogTylmR0Y4Xe3sLPbdWMJtd3sBBZC7\nA76/OtEeSBFTSrU4Nc1jYWUZT+s/97kn0zKFHhoMWZxXnfI6QqjQfMA0bTuagZmPTSH65pMYYCJC\nZy4J6A6GAm1Ep915gyP2AUVYFoRAa8vF7/niPFUJydaqLN6VxDhWCxQBiyIex8MEx2LW4MhaQCfw\niYhUtigA1W2zEB3p/8HgMPd7nqK6GRnOobGl0DcALPwn0R87RXB3Y4ZhQjabhUKBIzoTlBpd3mMw\nxFP4xhZHLtYocqpEWAEAsiSOa1si/TUJ8kUyjaWCfWWFUCmdkmdLhNwwue3Lc4g+aKxyNKxHc9Kw\nue4qIitFx+/eRvSOO+SyTA39qBT3e+kXMJp5/Rojdi6ex+fOCvFBmR57t2aZFpSKFQhMvq4Sex/4\nIkpj4RyvV/meR6awzY7McARvk8QUL99kwUqHnu3QOI/vOt3OFilpJ8cw2uSSOPv6ncvpZ2VSZS8X\n+RrTVRybOaHe2utjlMQAfp5SBVEThkj3rJBciUDi5LL4eVak086TknRWzAOZDn5PZnwCFbFD3F19\n/uIXOMLtUKT1z/7kO2nZ//av/g8AAJg9yGKfEfldidR8/Q1cZ1/6Kl9vdBTb/R6J10skUiajkIBC\nnJ2QOq+++sO07J/8Jqbz3Y4wUP3y83zETs/96b63OzPuE8zfSVQ6Ib9oiYdyhtiWm5dupWXj04hq\nLIi9hkd1DUX0066g+KdxjNfQQQ3bfoTmTdjjaGGOkHjxdUb9WYuIyLJqjKS0TyKa2ajxGHUp1Lr9\nKX9G+0nUDf27U7rsvZhK7S7RKjslLlD3feutt9Iy9bdEaj5KEU6J8PVpj9Fo8D7p/fdRsHtxkVF/\nWZrXJRKMrwvh8jytQRJho1CJgx6jIy1DCaAKVNmnREYyOufnfvNTXe9nmWEakM1ZkAg/YDv3J2dQ\nCtrjAj164igibN67/OO0LGeif0wESGXuDO7PLZt9pz/ENVIK9GcNQnnGuJ4NDYEcDrBtpyc41fa5\nI+jPciWu5zVCsv7fIk24RYq5gUCfDCo4H1e7vHf817//b7HuInV4WEAEv9UUiVTM+xFVD2q5fAZO\nn5mDm7cYRenSfeU4GZLIdlbsQU6cwn3GYMDjrdXD5/jsWUZRXiBUQF8kr6jWcU1dcRmBPSBfkiGU\nbSwQf3Oz6D8OnXsuLatNI7ti/vZ8WpahOWOWZIpxtZCz7zNprazm+XkmJ9H3NZt8PbW2yszXhTxf\ney+WAIrER2LshbRvdyRKhVBYpqiE8veGeKaQ5rj0VpFCU4gpqnwCCOH52gi2w4mjuE+6fpH9kPJ/\n5TLva4bUV488digtGyEUcyiHJd3C7zOsP0t13ia2Th7dEQyLKCLfFQmEv3g/261lrALMVs5BLCqq\nxJtrJ5m901hARoK9IhKUHEc2zOg53p8vvfMDAAAYLm6lZZ+j65SEcHchwnHjJYxy6hLycmsZ+335\nCjNrWnfx5WhGJFlqUzKm/iZ/r//yjwAA4LYQgF/fwDl39w6P7wtFHMvHSnz/TJXeAWyehwb5O0ug\nZh90ldVIHG3atGnTpk2bNm3atGnTpk2btofA9CGONm3atGnTpk2bNm3atGnTpk3bQ2APiL83AJIc\n9LoMs1pbQ8rC+Q8Y6n70CMLxqlUWJPNI6PWcEFCcnUBxIrfHsK52C2FVhQzDwOsEp7yxzpCjuTbC\nKY9ECI3PjrBYUKaPlJs4YDpFHON5VUXkfO81ENZYEPynFkHX/uKVv+XfkthTpshQKyVYtdpikciR\niHLN1xnWlS1X9iyyG8URDPpb4Ak485CE9cBnsSslIukN+XsKFtgbMKzr/RsLAABwcZnbxxlBCGm7\nzWURwcHbPSH2SZSuiTGEvWXyDJcdEGVrKEREWy2EvUnIdJYglzlBfzpwAOHgi4tL/IwEVf7qL3w1\nLYMytmUcCMrEAO/hG9wW+yFsbACAaSTbKAHxDrBnJWQZiP6xIvUvn5M2u1i/lSZD8ToeflEKRI/U\nEEo5McrC3BNq3JII983rDPErTeIcGBHjbmMLKYDukGGcMVHBtrYYJhyQiFzP5TlYKmC/mwJCrMaR\nKR48JnqGpIDsBIffjVmWBZVKBUoCquvRuNoU0PiQxmO/z+23ScKFhqA9OSTcFwjYtEvXCwUNzSBY\nsyVR62ooEZ2iE/Izlg6imNqcEH8cLl7H722ysHLg4bxqCTFxlyD55ZHJtCyme5w4zSKxL76IVJfl\nBaYk2dQfUjw5CKJPAcf/2WZZFlSrI+BZQmmbhPIMh5+7S88jx8jRGZzDsYByF01s7888cpwvRzDd\nSp6v12tgWyWCEmZTW6yRQHXR4jHab+P4Twbsr8ZHcN7kQ16fXBIIvHOPKYSHnkZR/KkDTEFxCTqb\nz7HvSmLseCUsDQBgEhxbipxmc4J6tkszwAADzG2qiCbFWKTYq+rfSoXh1l//+tcBAODwoRNp2Te/\n+QcAAPDqqy+nZd0u9mm+wM9z4yaO1X/1L//3tKxEUO61VWxjKSSeijsKuLkSzPzOd5jO9YUXnqc6\nMT1W0ige1Hamae4XnSohNXRuZ+XGDDHBlNC70KiEmPrm7mWmWm98iKKHc5/nPUlYRz/WF+7RJlH5\npni2q/O4nyis4k1On2IIfcZHv+Y1+F6THu5JOpe4LCGaaP0Zvv9WFddpwRwHg6DzO/nsRFKndlDd\njeN4z80fRxF0u13Iiz3ETmLeOYK4S0qUojBKsVHXVSLPPF49okxsbrLfVVTInKBMNRpEuyT6Q2OD\naWwOUexB0OOKNIdsUU+T6i4pSYpi8fNoxurjeBv96u9GMN2yDKjUshBHXM8qCeoHMa+jijJuCj3c\nEs2RY3UWFo2peQYZvl557iwAAHhd9s8+CfqaHu9/nAh9UkB77LJoz9Uu1uX2+0wj3lpCKkIYMJ2i\nv4V/31llH59QIojsJFM2YhLb/euLTOFpEyXJsfm+B86iiK/b5eu5fb7fbs0yTSgVcvDkE7y2bxDl\ne3mlue17AAC+y2vRa6+haP2hOd4rnHsU/3Y9pi/PHsN3JSXUDQAwTrISsaAN9ahfRmtI5Qx8nkcj\nM+hzxmd5zU6IshuJ+ZbL47wsjLNgsUf7q36H+9hQ+/0i7+VKJeyfUAiORwFRu4Tr8fbO6MFrJrjf\ncsTczBF1PjEE1Yf8iinWgiiI6Br8PZ/oUYYp3o2o4tt8F/mOjBB/tk1sw888iXPkD7/JCYDOnEUK\n0ZHDh9OyDIlu16v8/mkQ6cYRe9we7YG9Lu/dRieRdmWJuZnQvmIoRLoTqrOkm0WBDba1t/28aRiQ\nNx2I5H7SxPsWJ0RCIUo4sr64kJb55O+rB5huPH56lD5j/wybODdzNj9ProxjfvEW78EvfoDvls1l\nrMviItMaDxVxDZIJa/oko+ELStbyHaxfKJIL1GkveGeZ5/DxUXy2j0BIhhzD+ToR8/44pPfizLbk\nFQ+2T9JIHG3atGnTpk2bNm3atGnTpk2btofAHgiJ49gWTI6VoZTnSJ5BwqnriyzsOaCTwIkJPqHd\nJFXV0VH+7amjiLa5e5NPxA6P4amyQvgAAPzg+3hSadb4RG7011F0a6GFJ76XF/nkOaFIfN4X0ZQE\n7zsUqcjNCp6Wrdzk07pcHk+NDSHe3KJT8ukKn4RWKnhy1+rwCaffws8X1vlEruk2oN/dW5q8OAqh\n32lCICIzHqU/zArRSZUyznOFeDQJIJ+fZ4TLyx9gZGPkwFxa9uUXsT3n56+nZTdu3KLr8SnqKkU9\nlKCgjJzfvotREhm5VVFsmUJtSALAjhBgnr+F95KpPWtF7O/5G8tp2ewBRKeU8pyKLvDwBLrTY4SJ\n6ewdiZNAAgnE2wKRaTptUWhRhE5G0VRfJB4/99omjtW+x9GHLJ0Al6UQHJ2tdgViJ09Cs00S2cqJ\nqGCtjn8fmOWIZjaL7XP7Ns+BTgtPgD2BRsmTgHejw6fYY3Vsdz8QCBvql1CgHFRcwpJi4fuYbdww\ntiO4VCr1gUDdKBHvREZJKLpjO4yOsQgp4wWi/gpVJU7fDWoby5URCZy/iUKO5dg3JCX8e/bAkbRs\nSOnd599mYXdvgH6y1xNIN0IH1uqMDgzIn05OMUpERZ0XFzhK0WvjWDeA6zI2NrpnJJRt2zA+Wgdf\noE+U6GLG4X4OfPI7AUcVsjRGnAIjwooljH72GowcixIcp7YQDI5IANzM8QBaXsF1oXUL/ekWB0bh\ntbcR+Tk9ye0ER9EnTpWEsnxMbXebEZO+jf7v+AkWzBynaGIghP1cQvvZItqVPqO9dxHpT5qRmNvT\nOCsImBARVmmuZWBf+Z3TZzjq/N//D/8tAABMTHLq63/zb34fAABabUYllCLsq/MXOI14mVKvq7FU\nKPFYCJVQ/pDXNIdStM7f5fH53b/+HgAA/Nf/1T9Py1Qq2u0+YieHkXzi359m+ySiDgZYhrmtTZUe\npWlKH6jqL6K0tF84/QKLgPpLuNYaAs5n0DqcJLw2Hjt9DgAApuZ4rbq3jvPp1iL67dU2rxUZG5HN\nlTNPpWXjI3j/E8Dz8N33KSmEiBKriKoh/KkR39/2O/oP8/7nDoJg5657ABu4Lpy/fAWmJ3gOFwvY\nPuUSi44XqI0rJfYrStB+MOQoqWniPsUSexIlVKqEXAEAalUSnhYIoIaKZxKC1xLIDIjxHpaISiuf\nHAtkgqlEKmW7UGTbFnsdi/xoEMgoPo4VQzTqTuCdJNlJ7vzBzAALMkkZooTncCYhlEQsUoxTM7Z7\n3MZX5nGOlyosQF8tYJ1PHeH9ZM5QAq3cZuMlbPd+Wwgbx9i3XoQ+ZnCA/VXnOAkqe/zENwmJ4w25\nnu0M3nf8mNxDYZ36Xd6Le5T8wPfF/oEQCr5I+z06gnun3/2d30zL8tR//9P//L/Cbi0IQthY24RD\nh3m9P3UM33dsh/u918Mx67Z5T9YgRPvcAUZnGx7O+XtLLJQ6TXv6alas3+SHxmeY3TCRYF/UKjin\nWluMNDJySrxfIDAJtREJYWUF7siLdOI+vbf5QjxavQNYIpV3luaeBeyPVDroQMyBoSdgj3sww0jA\nMqMU3QsAEIc4rtU+DAAgoXtLHevYVTA5nsMuQYRMkZreTeg9SSApaoTYE7rGEJIfqU/gZ2PTzFhZ\nWcH32NMn+b0uCUnQXswDi/zU9Wu85q6v4bp+5swxfm56HtcVjA2VHl34ep9UkT1Z0TjaMbnCg5jt\nmDA6VQBXoH6UUL0tkN1QJmSlwz554x7u//y73O6Ghc8RV4QYNT1jY4H3eDkL/dPFt/nd/voV/HuO\n+uRIntv4GKHEkk0+R1Dd3hVtUKSqjAkBdovW1KHPY6voYDu+eZX3Wo9OYD9bhthP0TiLxLocPmAC\nAY3E0aZNmzZt2rRp06ZNmzZt2rRpewhMH+Jo06ZNmzZt2rRp06ZNmzZt2rQ9BPZAmPCcY8Pp6TEI\nfUF5GUEYUlnQenyCuE5MMTTy+i2EJEU+w7Xeef9dAACoF1msq72FMLygx/CvcoBQrPnbLJ782psf\nAwBAhlCd1xdu8UMtIyXoMaL8AACUywjTGuQEfI9oKP5BrvvcARRs6zEaEBpNpC4UygKmT2JYdkaI\n8lkICbNshl899/xpaHz7POzF4iiEQWsTPIGvjQjyOEy4C9tdbPeGEK5d20Q46QfXWMxthShoQYap\nNq/8DVLWDh1kqGdI0MlQQCgdgiMGJMq6vsHwMyXoVxW0N5++t7rCdAqFTpNif0pky8ozZPrqjdsA\nAPA3L/8wLftnv/0NAAAo5hjCOcwh/LUrIIO+EFfetSUAcWRspzMosT8hkJaluhhCIDshOHHf5/G2\n1sH6RWLajVRx/vhiXhjULo6gpTWWEZZ36/pVAACYm2Mxuw5B7jM5vu4Y0RI7Ha77+gaOASn4axDN\n6JaAIpYJZljL8/eUMJvFVQJmW0kRTNgXM00TCoUSBAKu3u3iOOwJOtU4UTbVeAQACEmIV9IJlBBr\nUQglRy7OXU8IPJokJugIypvXx/lUraGf6uQYFuzZdI0sC81GNB7tHPuGYc+i5xKwesLdr6ww1bHk\nIyRXwliVEPjUBPvJq+fR/9kW33dsbAzsPdJ8LNOCSrECkfSTNB5jkPB/HDeGz+1pBgQnTgT8lSDG\nRsxw9XYD58GP3n43LdvcxPauzbDvODFL/nsTx+bbH7B46901gjMLwbzpEeyn8TJDzpfWlMg1+/hh\nB7/XWOZ2H6FxJCkTaqxLWkOW5oG5jWO5XxxCA7ZPIOMT/8pPuJ58e+6zgwdx/k9OMu0hIJphKOaK\ngtFnhcir8p2q3ycnedwpCLYr6VRUl5ERprj+1V8hnWpyjPvi1379lwFgO7XkZ5mxrV134pZ8qst8\nihshjXAngXbTuv8mcg4rX31jIPYrpx4HAIBHjrOoc2PxDgAA9O6yn13bQlj14089mpZlCkj1OzCD\n6+D4BPv5InXvxk1BeSHqYH6W91pQwDr1hO9UFJ+CGEsBUYYkZVX9LUU84afSrvY27t3hEC5fvgKX\nPmYq32gNfathsL/Y2iIBeuHOh0QZtzOCfkQ0qkSs10okNp8VVNAhbu4inyH+IeHaLdrPlSsMec8A\nCfiLdVtRQwYiIYFJ600sK0rtmMkIv0yORVI3E1qzzB3GvOwfuRfZrZlgQCbJgJnn/UoQYv3sPNc9\n7GL75MU6miNRzoks12N8GgVajz7/Ylo2MYeUjpzNa6VFFBo/ZsFtR+2jY2zjYcTPukUU5A8+5r19\nQHXaGvJ+0hsiz9Zv8aY9UsKzormyBiUSKPD8GSiRfbGmF2kNPTbGvhNAbHx2bQYkYMHVqywfcewE\n7rePHOF9t0/P3WnwvntdiZVP8PqYpf3eYMhroBKIro0zdcpSa2+Zx3Qug8/jk1RCJsf+K0v7P6/H\nFKsBrZmuoIMnBv5WyggYal8sZBHUnsuN2B95NG+2CcfTvxmx781m9oe2bIEJZSiBIdhZRlptITpM\n9c6Jja5qD7/P86BDVDbXlYK9+E9GvCdGQ2x7X6zNSqjdMNGvfeHLT6afvfLX7wAAwIfvf5CWHZzG\nd9KCw3u9jQZKTCyvcR/NHsY+l9IVWyQO7iXC11EjSFFkn9aKSPw2CaOU+rRbi+IQel4Thi6ve2GE\n49oQfjKmNSYwuT2LlPgo7nI9G+s4DjOjPNdLEzjmslXea0QL2LndeX4/HSE/eljRuqv8rqn2/ZaQ\nDAAfr1EUW4A8rTc54YeH5ENGRnm/3+thextl3h8fmsN+H8bcF2pplWtWIHzgpzGNxNGmTZs2bdq0\nadOmTZs2bdq0aXsI7IGOOZMkBj/wIC/QEgkdZ/Y8Pl1qE3KjUmMkjBHjKdWwL9KJk8Di1jojR0aL\neJp46hBHpw7M4IndYXFAtXoNI6zrH38EAAC1LJ9+ei08GXMOcJlLB6texCdeJRLO7WT5VG99A8WP\nxut8qnfmJEZpywL9sbqBJ+OhOLksj+Pp/4tf/oW0rHgwD6+8zJGE3VgSRhA0t2AgztyGdYx6NruM\npnnvY4zirQuR2plDGBGxyxwlnaQIULnMz9NsYHsu3eYogUenk/VRjvKp4J5Ln+UL3J/ZDKXdFIKy\n6u+BiFT2O9TeCV+3TsKid26zSFu3g6eynR+zQOzkJNb5qy9+Ni0bqWBfhWJ8NNsiBd0uLUkAPDeC\nUJySpogZSwjpErKpIKJYdgY/Xx9yX6w08Xn8mKM+QYAn5dUaz6lRau9EiGpmCdUxOYHPurHGQuIt\nOu1PbI7SVEbw/o0Gn9S3qd1rVf6eCvItiRP9HEXKZ+ocuVEad4aIUAQRug/j7wCVYBgm2FYOGi0W\nJuwNKPIjkB4DUh/rDoQgmxJhjrnMDbCPxko85twsnpJ3uwLF08aIgb92My3bIqHSXIBzPnNYCMcV\nsF8MAQtICM1hVfgUPhNgVC8jIpi1UYpQhYwayxMCplrmU32VxvagECacmkTfenCWURKjtfI2JMlu\nLAwjaGx2t6XuVagEIyPzE+PnhogmWyT8ZwoBwIwS+DbYJ2w2sD194RPWrmNk6eN3GG1jvfQEAADE\nLvZFs8PrRC6DbRcLxF2R4AahJ3wNoajKJZ5zDkWWb91gEfeOqrMtfBcJLydSbNi6XxQwCMXY+zuw\nZIf/SaSWQuVIgfE2CV//+Mevp2UuIWQzAjWrUDmu6IthnwRiyQ9sQzUm2/4BAIDJIvqufo9RCUsL\nuI7823//B2nZ44/jmn7qlEg3T+vnTm5DImOMHb7wc7I2f2ozwADDMLb1KQvMCtFzqoOslxIMXtvk\n9vv2TzCa+txneY147lkUIz5ygOfGzbt3AACg/RbvP47OYER+bgL/rY+wH1CutzzGwsYJ1e/65Utp\nme/Z9H1+nhAIXSUUO43k/hT26VwX+yQlung/YmdvHeC5LsxfugSJENNskVBzX6B/zQz67Nm5w2nZ\nKKUoTsSeKKBodyie0SFh4cDn/lF+LInFuE7RJoSCtdhf2NTGphA7jqmd4h3QW4ZIWazadhtaIV3X\nxZhO59XfTVpxaUkCEAYJlMTuf6KCfuD4GD/34Scw1XTtyCNp2exjiBqozXKa7C4JFnuJEKp30Rf4\nYr+gUBcZISitxOOvXEcf/+qP304/u3TpGgAADFqMunFM3OtkhbBoQgLwiRSgz+F9SwJNXKBkF1Ek\n5jmNs7JIwQw0L+oRowKeEuvsbi3wI7i31IHhgPs4jHGfevgo70vmaG0viPl7wkfB4mMnDqdlhSy2\nhRStVaL09VGubzDEZ/T6YlyqPYqD/T06yqgjhdQOBoy6aWzgmh2HvJ81SYxZgvYc1bcCERwTssAQ\nQ9ujvVwifK7a4/aG7A+hddc0AAAgAElEQVTMfcIZFDIlePrQc9uEwxXqzRTCxgYhT0KBsBm00T9v\nuZxZwaF3gvaAx6FqZ9MV85pQOU5BoN/VT6hBJsYZYXP2LM65Kx/y/n51Ae/7XnwlLYsp7fXx05zM\noENorY4QES6OUip3Ibas9sWJ2LYUCInrSFX2ONkz2jUMXdhoXIUwknsI/NsUfjIhgfNEoD7zRRyb\nlXHeL/ghvh8O1jjZTb6Mn58a/3xatnIZzwXmAp4bSkg5S/tDX+SvTwaUbEf481i9UFrcUDH5jltC\ncLtL6+K5GfadGz0cP5U6vwNMTeG1BRAaMjTXJDY5Ez5YUh6NxNGmTZs2bdq0adOmTZs2bdq0aXsI\nTB/iaNOmTZs2bdq0adOmTZs2bdq0PQT2QHQqy7ahOlaDfl9AlBKEQa2uMX1lYR0pSdkiX17phg1d\nhg5nCgg16zYYpnZsFCHXz73wUlr25jsIsfQaDMnqtgjipLB8JaYGDTpYNhAwwyF9LzAFdYGgY/WR\nsbRsdQnrbjsMafqlX/0SAABc+ojFgS/dRTiXVWdo6Eu//qsAAFAZY7rKnY1liKK9UUziOIZ+34WO\nEFdb6iLc7tL8Qlp2bw3pafkq09hWlrGezQYLPClhyZUV7rMxovD4EppJnXboKEP2krsIk28SxFBC\n0gp57ANPUOuUQKKEoBcK+L28gNUqqHY2y5C0qIjt1mozTP/1Nz4EAIDZEW7jY3MI560L4TZ3yONh\nt5YkCSRxBK7PUESP4L+moPS49LySdWCSAFajx8/t+wTfFNBdk0TcanXus5H6CH2fLzgziZDBoydR\nRPD6NRaDnKPhZQgam0tiW52uEAAjgTkpWqnoYUFWUJRIsdgTzxjECnoqRCPpMnJ0m+b+0KniOIbh\n0AVDAA0VIj0U0PSFezi+Wy32IUrcNxJY0AGJWfrCT1gZ9F2FEtNLeps4vm8LOO3mOs6r1XsoKl1b\nY6rnyee/BAAAxVmmw9k0NrP1qbTMpDFS4VtBeQTnXDUvKGoE7753j+f1hx+iMHpXUF6OHENKl5nw\nGFlfXoYw2Bu1Z2urBX/8R9+GwYCfP5vBcZUp89yEVMST53+eOHeOwc/zwjn0HXOVmrgHtqNtMq70\npS/g87z8KlNP3/0RzvXHziGFcGJUCFKSSxitcp3GRspUXyHITQLwIzbDWkn/FBbv3k7LXr+E7S2p\nkxnyZ4nJ9/VDokxsE6jev1iI9JPKJ0qx0yidbfeL30nB4GYTofCrqwzLVtNe+uyfVQdFter6TGNT\n9BDb4TZpbyHlUUzLtH1WVlnQ8PwFTExw8uRJcTMcR9voYenjCtHaHblT++NrEkggiiKwtomCJ/fd\nQdFlJH3g9m0cQ4emmGJZriH95P3LTMlc3MQ2fOIZpqY8chznRjjkOXztJsLFl7K4Xtdr7NOLRK2q\njPFYBqIJNRZYpLtMDeiLNnUNRWsUT0TLmqRJqXaW1DLVCvcLP++t/UPfg43FeajX2XdurODYzBWE\n6GQW6yIFH0Nat3IFbgu1rsUCpm8qcWAh0OnRHscXFCvHUZREHLdSS1gJ5dtibesP0QENhU+2aQLE\nO4zVSIi6qrkhaWxq/OfE/idDfrfXY2pZEAR7pjiMV/Pw3/3K4zA7zj65NIdj0Zjh8ZmlPUdO7Cdj\nopsOO6LtyE+aAbdxT31P9tkQ2+Ct1z9My15/Demeq7SvjDz2NY6t1kx+YCfB9jFN3js6ROup5QR1\niwZ3VlBMgepy8TInSAkCnHvnTrNPMogqPP4c0zMuvMOU/t1aGCfQ6oTQ67L/NWmtanX53cJ8BJ/7\niXO8z6hRwpW6WO8CSrgiWGRQoPUuEhTtmESjPbGPDYnTo2i0+Rz7GZpu26hTUYR/21luY8dWdHqx\nn6W9bSDGaI+oJYUCSzqoYdEdclt4Mc6pUAp+7xM93zEzMF2cg6F4v1HUKll/18c69Lv8va0NrL87\nEH6Fkpg4JvupYIB70IUFpvpUJ3GOjU3xHLIKtIegpuwH3FcrCyhrYIk9x+3buCdqNjfTsl/6tS8B\nAED9IPu/AGi+jDGVzgf0k0OxT/N9EjH2JSUbn8cUyVFMMCDZ6xobJwADH7KJEDiP1dzl9vTSfaug\n/FETWILiPnYA98yrQyHkfxvf+5rvMxWzdQ3pxdNCqLhD5xb+kGi3QjLAJkq8G3A7qXeeomiDq0RF\ne6fL+2PDQf93YII392Mz2N/2mJBFSGjM2KJN1Z4ikXQ3LWysTZs2bdq0adOmTZs2bdq0adP2n509\nEBLHti2oj41AX6Bp7i5h5KgrBH43SIx0qsjIiIPH8MRwdZFPE8MEj9q+cO6FtGx2BE+fv/3dv0zL\n3vzoPQAAcAqMCKlPPQMAAKOUgtMdcsQvIGGgYZuFufp0cmqNiKgmncAaIFAbMZ6c9vt80vfam3g6\n2moK8dlZPKWfPcNpRPshikhdfYuF2DbXe+D2H+xk7ZMWA0AvAVjockTm40W8x4Y4EcyVsO6xTNPY\nxEhsLMS7+pT+bHV1NS1rE5KhWOQT4GPHMboYytS1h1BgLabIn4wSKaXJfIHbs1TEfi+IMpOi3WPj\njIBqdbCNZcRq9gD2bbfN0ZmlNYxQXrvDp93TFFGqlVkgrFZkpM5uzTAATOsTopsU9nADGR0nYT0j\nK8oonZwQWVWIrEKe54VDqR5l2tr6KLZLX0T54gyOvYii/k89/+X0sx4JhN+9w9GcfBFPgLtdRjHl\nJ7APVGQEAMCnVK2GEDvt00m9J854HZorlohGmiT4JVMaRsb+nAsnSQJRGEAoIgibG4gc6wmUiE+p\nwGU69nFCwjTF/Fcn7EOBElMCfqUin/R3W+jPogaPr5jEGQeUwjT4WKBUKGqUeYnbr0T3rx88m5at\nLt8FAIDQ5f4YGX8aAACOPv54Wvbuj9Dv/flf/jWXvY2oq3KB71EnwTxDCKy5g/62ub8b6/UG8Nab\nH+yYWtK0RUSUxEHluFXW6QhRUh/bbPzz3BZbW1hmZbnuR47g+P5qzCJ2N26if6o4OJaPTPG88Wn+\nZYTYaIHEoD1fjHlKDyoyYkMCPv2Wx8zaBo4VX6ijZ4skGC6QRWDk6P6MeJLpuffTEkIWyK4wkp+G\nitj+PZcinIEvf6xCrPePEYVAAODITkgX3ElgOPBFBJXmo5PjqFOBEBKGxXPr3XcwbepXhPB/tYZ9\nmmxDFu1XyvZPbwYAhAKh5BCq0ZaRfJUOVIy5Wh199eHTh/m3VVy3TpzmvQGQf5WR4Pdfw2jhyZNH\n0rLjZ07QXyRa2mN/tUYph9c3WYR+nNCVziivfT3ye4lQULSpV8Xymka5Zf+qeW8IJI5Pfb1N+Nkw\n9txLxWIOPvfsWSiKdN4m+doYOHK7TIkqIpmGNU0xzuMmStFGQtCZxnq+xO2z1STxehGJLdJ4jSjt\n7SBkH6LSXzsJj4WQ1vJARG6HffRrsUASBIFaI7meKmv9Tqi7apXRClNTiOS8du1aWoYi43uD4uTy\nFpw4V4ZGV6BHp58HAIBTZzjdsUXRYUcKRVPTmjURYaZukXqcayT4ev0KI4ZfefcCAAD81ZucPrlK\nc6lskVB+jvvOsrHPCiJynVNzENj/GtSOGdHuQ+ozX/RPosa2EKjtUeIH6yyjXlwP+/7VH76Vln1x\nVKDfdmmZjAOzRyZhcZGTh/Q9Elau8X51cRn3uLMHGD0/fhB9iSkQNm1iP4xNHUjLQhevl82INqM2\ndUxGgziE2uz3OvSZmFu0RxoKgdwaocNlPVur+A5gFXiuVEYRNTvw7k80IdMob9IewJVJKoYqBbxI\nCGH/bNTop7UgCGFtZQMGYiPQ2ML27fW5TdP3DyF6rhK8yLVAoWI2W9xHIaG/+qFIiU17mNu3+J1Q\nCUJH9P1hyOP2DiFxtpo8Rl3aMxbKvM/wInyO+qQYl7ky1YPnUOTRO5nF8zWXwb8d4LU5VH5P7Gsc\nc+8y6wkk4BkBZAVMN0f7OVvcP0f7D8sRSSTyhOoSiMmMjWP4dMLvju0PEFl3c5XR60ow2JTvaYSi\nGZKIcSSTciTY70Xhky1a4ZbFuvc+/VZcFo7P4fMcnOB+nzmM9Yvz/N4b+vjb2OAxbdh43zAW64ik\ndHwK00gcbdq0adOmTZs2bdq0adOmTZu2h8AeLMW4GUOSGcCJx1nrIVpApMfRCT4Zi008RWy2+ITW\nKOBp/tw5Pg0GwAjMF7/4i2nJRxR1Xk/4tH7sCJ6ODbocpSgWkcM6NXkOAABW5t9IP1MaE6WYT/oS\nKFOdOIrepsOvKOLTYMNGtM96h6NDKrIzItKOj2Tx85APTOHDJYzex55IRelWIInuj1Y/iIUA0Ewi\nuLLGaKOba4h2cgSCYmQc26e1xWmZFa/aECgRpWkkT8bHx5FHWSwLrQNKST07y1GsThtP+lXkqF5n\nxJIqyxf41Feluq0LDZscaZH0+9wXFULRbGZFWkPS8Tl+mFMrb1Gdbm3yM86s4veeFFzQYn7vkRNl\nTvb+9IC+x20Xgzrt5rZzKVIngBJg0ecFgVDLku6Q5J56FEHNiMh2Jl/Z9v2hQBt0KYIxItJEKnTA\nQKQ4b7WwLyIRgVT8fU9EbQce6UcJrm6WxplpyMh0jq5xfxrevZphoAaB1GhSWie2zRFEd4B1nJzk\nvrdpzHe6PDlzWSwLRTrbIMC2KWS5nbMU4QsEAig28dmjEPuv7PJp/dYV5PffrLO+wCnS85o6cS4t\nWzv/GgAA9FqMYkzyWOdDjzD3fm0Zo3Tf+0/fScvabWzfIwe5f4E4xjNCp6ZYymzT8tqNxVEMva67\nI6Iny+4UIldpowguPY1XT7TPBvH2pTaKilQfPsiom0we+3R2lsfS4YOIBFxcxIhfuSBSPZoY4bi7\nxJovPR/bIpfheZgjJI67xWi+CqGYKjZHSQJKHy/nq4riZARPPIEhPSOPrXyO+34v9sm4l6XST9r3\n96krEGXz86jLcusm6wltbaEf7Xb5uVO9E+Fr1HRNBFLApPUuS2MpkDpLKYqAizyKHCmNKawz1j0j\nyl750U8AAOCpp59Iy/7xb/4DvN4eEWR7MdMwIO9YEIgqKN0bQ+wh/AR9QnmC9wHnnkMU8cV19sfr\nNCZfPHo4LSuO4lgridTVN2ZwPt9aZD2bC+cxwlufwhTjh2d5X3XQxvk1aHNF//QHeC9H+IETkziX\nqgaP0Zj8XhQJVBmlUjYtgU5MBwSPuQxpEkg/L1Nm79ZyuQycOjMDA4+va1q4h4kSXr+HFratF/L3\nspR+FkR0PCFNlkh0ZIoeEnN9aRPbpVpkvz9BqGCFzraAHYG5A3JNaUIVxVruhugb2jvos4Wi7glp\ngcWJnIekoSe0C7ukZyf1yfaj3TuuBz+4egsmTUaArV7+EwAAmD/CuhIF0sKx5PNTewfieZRmkCc0\nVO7exaj4UCKBCY19krfx4GSxbKtF6DGD+6RGyE/H5vsPCVkTCv0dhUDsizVbTWBb6qPRUJieYeTK\n+jqiWa5cvZSWnahin8Y3PkrLRo99FfZqCSQQxSHUx3j/4rk4L6emeI9rhNjf73xwIy37+hQiceJI\n6HySfl5OIEGVxmFJIGR71AelHM+pMULU+DS25LDKFrF+Eg+gkJLFKu/j25voe0JRp5D2jHaG+1FJ\nryQuz6kWvYeVKuxLhz71s9BAaQn91b1YEPiwvLYMgRA0u6eQREJ/xk5RrUK3iNrSFPtxt4PvHwOx\nbvVpryqyjkNrgP3R7wlkn9ISov83tthfNAiBI7UsY9JmKRe47a98iGu+YfLa/OIvP4fXtwSamPRa\n5N7CJ2SREfAY2aS6B8LvjdbKe97PGyZAPguQEehI21T7RO7nIMY+6Hf4/h16x3W7b6ZlBxYQ0TS+\nwUh5i9DeWXGcsUQMFUPsXXwawwGtY77ou4g+88W7ugIFve4zsrzl4m/HhRbRi19BvaqaQBEOaL0N\nh/zbiPy+RGAqBFAi2t0yHszHaySONm3atGnTpk2bNm3atGnTpk3bQ2D6EEebNm3atGnTpk2bNm3a\ntGnTpu0hsAejU0ECnuXD7BGGA36B0uBVx5hW01hFGFS/wfDKDIlDHpw+lJY5BYQTr20yhcYsIpSo\nOM7nS0tNvM7M4dNp2akzCB1LiNJhGQw/syld3rWmoLwQLCzKMKy2XEE6Q02kGB+6lH5s25MT1EqI\niilxXilUGCYEofL5vo5p71mncRhEcHmjA0tbDM3yhnivXk+I3xLEdWSE8ap1Sl09HDA8cGUloO8x\nDeDoMaQ2bDSZ9rC8jCKvJZEeuNdHWKBBEP8zj7Jg6Z07KmUvw8HyREXomFxWrSEUbWmZYYQVB+lC\nEhra2iKqhMmQy2qVxHkFFeuja0gjqFQY4nb29CnYDzMgBkuk001IAM4UNLaE+h0sSXug34gUd5aa\nbgJaWCyruSTSZiv6SJnnWbmK8PrxCfy312Vxy0EP23G0wnSbZgNhwq4Qp1O0BynuZpPwaCAULyPK\nDxkMmYph2vi8lsxnSRDIRELFYX/MAADbBJie5L4fG0cfY4k2Jf3CFEYMAHBvBaGWtsUTb4zmgaKj\nAQCsrWIbjZQYJjtC7bx6jykOmyTercROKw5D6PsRzof2EosVNteQElGqcX9Mnf0MAADc/oDn4cU7\n+L3Wd3+SlnkkXpqpMD2sUsO5kRHQ8EEffWZQZd9lOCEkDwjF/KQlkIAfBtvGTUJYa1s8t0qtG0U8\nDwtFEvYTUGBQ1EBBu+r5OA6/+xNO9fr1X/gsAACMCIpBgfxuTHDmqwssih9lsB+DRIiYkk8aEZRQ\ni2ivuRJf9/RpHAs31tif2yRaam8TeMQxJWf1MMT+8VwhmLkPTKAkSSCKI5Az6MqV6wCwXYBefX7j\nBqevvnjxwn1lqv+aTaadJiRA/vMkhJWgsknUCVP4NZWWUwq1pnQqR0D9SeRVQoddoi/+/h/8h7Qs\nk8dx8fWvfSUtU7RJY8exbPyUv/diCcQQQ5gTfU9TLbTYL86MIP1kcopFUF9+G+f9ooB3f+kQztdi\nLHx0FseSUeDxeuwozt2ZWaaYr1Pq5ss30P9870fr6WdnjuOYPzzBdPZrF/C+jSb7BucruMeaqN5N\ny8aL2PaWIdIGG7SWizmnaL0JsE9XqesVrB8AIIgFxW6XliQxBMEQ2iKdr0vw92abaZJvvIOJLboi\nicLR47i+P/bEU2mZZWToGlx3n9KNWwnXd3IC15GcmOs2jWfFvpJimgHRpAxBl85TumRJ3bx6B8fC\n9atX0rLDJ7CekpXQp+eQFEKbrh0K+H+3J/womQHbqYy7sYLhwJPmAVhq81iYPYyCxtdvMyUTojtU\nJ76hTZxaSZmPacw4GSFLQH7q2MkTadn0NK6tV/7iL/gWbfRtKmXzvTVed/0y7vUKgk4a0j5FMEZS\n+qcjBMcdosjIphoStX8o6HtnDiMV4qXnWND5+cfOAABApcZr683B3sd7FMaw1RhAVqRCV+NtfY3H\ne0Ci9M0O+4+nSOy4BPyuVKoSbVK8eykB70yW3wFMSiCzfJvHZa+BvsQmKnm2xHt8g+g+c1PsZ9Zo\nT2U5vH/K0b6pKBJD+EPcD+SqvHcdEke52ePn6XZI5NURe68a1nlESC+88wGv+XsxPwjg7vI9GBHy\nDxV6r7Hl+CI6WBjyhFV7y96Q52N3iL4zk+f6m1lsG7fBa64bYQcPhHixQZRAtTZ2BGVsSNIIritS\nbVNVfEFHUzS8t37ENMCDRN89dY77LeuodyKeG60Ax5IU0y2XKDmL8HG284mkLrswyzCg5Djgi+f/\n8Uc4589fYbHnraaijvKebOYAzr/TdZ6H1oco8m5kRcpySvYSi+fJEWVqU8hEhOQNLCWELvYXDaIP\nN4QcQT9H36/yvvcQ0T9njot3bEqW1BdnAWDi84jX3pT2aVnifYnuG8svmg+2odRIHG3atGnTpk2b\nNm3atGnTpk2btofAHgiJ4/kx3L7bh/HjfNK3fh0FzJ6fEgJVLp549zp8qmYMSSQy4BPaxjKe2ras\nO2nZyBiedG0IcbiVJl5nYoqrm6/iSZwCmAwHfEq6dQdP+triVM2iCFi9LATz6OQuBI4mK9EpGWnM\npOKzfILW6eFp5gqhVQAAMiU8kTYtRvv0wjCNHuzW/DCEO2sNaGzwSbZCdUzPskjbygqebB48OMvf\noyiqFGq1SbHp7COPcD0pcnr7Nqdpm5rGPq2PcqSw1cFIQL2OJ5EFkfZ4iwSVbXHCWSYBwrZIxWcQ\nzqnX5RPrMUqR+ujZY2nZ555DAcxcnvvxxjVE+wz7IvUqpVq8cYtTbB88wGN0b5ZsGwsqDWIUC0FF\ng9JZirS7LvVPKH4bkyrytrFFwp9xzGNkOMTxLqPYN2/gCXSLUA4VkU69VMbIRSbLx+aNJo4VGb1U\nImVSbFRF27eJVpIol9fnOTikKGxBiNsaFI01Yhk12L/oOMRhGmUDQFQUAEfqAQBKVWwHJcINAFAt\n48n52gZHtybGcQyfOHI0LVuqYOR0dpZTAc8exCj2xfOMEnn9LRRWS5SoYsL+YhBg/Yo+959BTqlj\nsf8bfRyRg32LT/U37+K43Xz/QlpmAvbXgUM8N6MO+jMpWHfuNEU4HR4jm515iIWP2p0ZYNtmmpob\ngIVt7SxHaVR6TEOkaQxpPBSL7P+WlzCSdunK7bRstY0Ri/cvM8ogSlBQ8598hRF0AbXtahPv1Yp4\nzA9JdHi0zr7JzGNkzQsZQXZvA/+OMyJ17xz28WbMUb4kRBFJ1+fnyVK0J0y4HxUYwQQhJunuAxQH\nEJkghYi/9a1vAQDAm2+w2GiOIn89gXZSfiIUPl4JHzsCRagQM3EshGRNlf71/vB+mOYsF4hWmuty\nnqu/XYHwMyi5gSXSuNcI+bm0zKiV//P/+tcAADBDUXoAgOeefYruJeZUej953/2JQSUJih06AqNU\nDHEsmxcZ3ZQ7guvQ927y2tONcD5/fYIjvIMf/BkAACydYF/zyG99AwAAPCEmWSTU6fgYz5cD5IpO\nnUQU32sfMprmz//2YwAAOHKIo+bPfg7H8pt/y1HNO4soknr5FvupZ4/ieJkR6JzQJqH7gKPJSuQz\nTkQaVEJRyyGy03h5YEsAksgAy+a55JJw5Pf+5vtp2fvvvEN14/5Wqat9l5/xs899geom1msV9e6L\nZA8DSgqR48VseR59bJ/Wd0f4OpOEddVaAwAwJCRwKCLMFy/gGr2yxHuoiSlEVIYyIkwouVjUHUg0\ntVDlvlXLaigSESRxArBHtGWz48EfvnwdFlxu99/5pyiuf/QQI+Vv3sX1MfQEIoiQBZFAItqElDSE\nOu6BEdw7HhIiwgH5nZwUrvWxbG0R1+rrb7ySfjZ9FNe4U48x2lvNfkcgoBRS2hZIsfUm7jfXxb5T\n3bUsUNS/+1/+FgAAPCfusdzENbjRY1/sSFX/PVicGFAs8Vqk3GNzg9fCCUrTPTLBa9uFizjezx7i\n3546OQcAAJGYi56H/aKSOwAAmCQ83NrkcblBa/qZx9DXlmsiWQT1iSfQuCrtuEI9AACU6DnMhMdn\nnxC6BZ4qAJTk46Z4t+gOEMkSAAv+lgq4rxsbYX/00hdx3/TWy+wPdmNRHEGv30kFmgF4fkXb3s/U\n5zyW+n0cD1ttkfabxrKTYUSIep02DPbxPqF5B4IxEdLaMqT10vXYD0S0D5dLm00IMycj9tmEIuwN\nuZ9f+S4KcVsZThwwNYv3kj4x1by2GV1WzCi/L9b6ZK97SQAwDEhsB9odvtdr7+F+d7Mp9guEhioW\nuO3OnsV1rCretWCa9mQCraKYA/GAGy1Xxt+UMsInkA9WiWhCsYcZ0vlAYZTPB8ZncBxOTIjkITVc\nq9fXeG4MtvA5ipNcd9vBexkCKW6lyE+RoIPaOBS+K44ezL9rJI42bdq0adOmTZs2bdq0adOmTdtD\nYPoQR5s2bdq0adOmTZs2bdq0adOm7SGwB6JTWaYJtWIRZqfn0rLWBtJrNm8xXLW3irDt9gbDpbZI\n7EmKfbYol/sgYEjdvXWEdQVCiO6xs4gxLmYFbJDEoEwbqSRHpp5JP/v7NYQM/+Xl76RlH7QIEm/P\npGUZkyBxLsOgShmEUwUhw7U6CjorYG+hi3XutBmumXTxTKxUYWrZIPQhivYBlmYaYAmI3xiJjlVH\nGLeoYLd5IbalYM99QTcbHUXI7rHjR9Kyd99D8UDX474AQIh4bYShlmMd/O3qEkLiz3/E3w99bJ9h\nXwjckZjl1BhDQ6tVhGGePc1w8yLRropFppsoaltvyPeISAyw0eR2J0YQrE8ypP32zRuwV0uSBAI/\nAXCEUDXBEvMZCU/EMeuGPGbbfYTiJiZD5ROCWUYBQ/HcLkI0swLaPT2OQl65HP92jYS/GhsI+44D\nIU5M1ZvfYnpI4GP9JiaZWucR3WvQ5/bsdREqGovxnlBdZo+wKOGJaRwDJTEHQwWjFbDETIbG3r/7\nGPZkCUASxzAciDlH0MNEyBW2m9h+IyM8vo4dQ0reRoPHiEOD5PhhhosXqT8Mi9s+IMHwSoXH0nQd\nfdb6BlInB6Lthyb+ti6Ee7OK3pJj2HY3xHlz6Plf5Ho+in0abLHvzOVpMHcZXn3nHZxrTz3OFKsj\nMzhPri0zhXAI3T3TqSzTgFIht03Y2KB2D1ymFQXe/ZS/LAnBZbPsf67P43MsLzCdauCRUHzE0PBB\nD6+XKQkoMkFwM3n08QqqDQBwbRmh/vlVpgsenMAxOn2KqTl3N/B7W0MeR1/7ZaRdHD3Na9HoGI7X\n7ipD6LNEdynmeJnMknhq3+B2zjoPtIzuaIZhgG07sLnJc/jmTaTydARVUFEtJU1KQcANQTdxqE6W\nECVW68Kwfz/FUtKj1HrFXSvhvQl9n0sUwj4WkO0h+ZiaEKlUwsqSCtrt4vf+5M/+PC179BFMYFAs\n5MRvVX1lTfZLRh3ASgBGNhku71zG8Zq/wlTHrZ+cBwCAwuHH07Iv/ON/BAAAR8a4rhsJinSXDrP/\nrDpIq8kIKsXQxd4ybVoAACAASURBVHl/8yr7SqUbP01U5m88y1TPQyTy/nt/8n5aViPewjd+50xa\n9urL6PeW7rI4+r08fm+swuPWImF6yxIi3Sqlg4CBqzV3XyhUn7A4jiEQNOT33sG2+Oi9D9KyEq2D\nObE36JMA5it/y/SbY9TeIyP83MMuXjsraAJq7yjpMq6Pz9vrod8zxJ7QIkh+u8vrpkt0IiUwCgBQ\nILHf0VH2Kw0aU6++/GpapqiqRSEEnCM61aSgHxVovnYFddLzw23ix7uxyMlDf/px+PUneD2pk3jn\ntdtizSTacs7hMRsSZSoS8V/VtKGkfy/hWnlrnWl+T507BwAA5Sw/d5sEbgNKYjE7zutuaxWvYT7K\nY9smimskEhl0Wkgd7w24f3JU96PjTKvfWMW6RAmvbXdXMJFHFF9NyxTdXya0iPu8lu/WTMuCcqUC\nk1M8Pk0b26zXYd+j9raf/9IX0jKLxGiLeV6DS+RH8wWmgCjx7USMdyUanXP4e3GIbVCpYvvYWabx\n2SR+3u/wWNjaxHXcFnSqcgV9+0DsO7sdXFvqU0IYmNb7e8ss0J/LYz2zgt5kEO2rscFjZlbQ3/di\nYRjARmMV1oVOshqu+TzvszNEQ8sKyQHPx/ZwPd5/tGmsxcJPFklU2hMCt6pfm02+cUxzyKMxHISC\nTkXvcFEkRNdVEgdB+4opOUQSC0roAs6D8+/yXmvqIPWrEOhPFFdL1D2gd5dIvAdIyuKuLTHB8AtQ\nEO9QT9L7vGNynfJlbG9fiL2Xq1inrQ3eH8en0E8ZYs0KBtg/2YTbwnKwTy0h9VAj8eAtkr/ICfHq\nGUqwMFbid93CJH7fXRJzifZG+Qr7ukEL71EREgSGegcQVEPFTpM08CH5cjfge1hCcP/TmEbiaNOm\nTZs2bdq0adOmTZs2bdq0PQT2YCnGowiCVhvWb7IwoUGnk++8+VZa5nZJaEiILvUojeRgjk/BT57E\nE7nr9zitoUEnaE+d+0xatkkoBBEAh5ZCE+QxSjB94LH0s0e7mKbwB1d+mJZVSAj51BxHx5ISoW5E\nijd1qh9HfNK3vHaXyjiKlSFFskSIRCpxJnFYDVnH3rPYq2GakMnloFLkU8JsHp9HRmTrFPWUKWnz\n6fe4DqUSnmYORArpGiF6viRO/w/OYVSoXOGT6gKlRzxK4skySjxKwpWWiJAW6WRbopFMUtZyhADY\nsIen0WvitL7fwz72BSproITTChyVmzuE6KqcaB+V4nYvliQAXpiA7dwfzc7kOKoBFOlotTgS1Kd0\ngJFE7FDUJQ44mtIl4b0gL8SzSFSxLYRCVXrXzVWMHIUCMVUuYf94IlKQdXAQKqFKAABT9UvM91IR\n81D0D2njwb0VRoPkE4ywZIWorycQRek9zH0SGzUMiM0sRCG3lUkn1FLgsh9RSkghxJmzsT1GRWrC\n5UUcVwtLLHas0qX2RIS13cE54Yh2O0JpSF0X28AV6QArhNaoj/McGQ6xT+0et3OWorR+JCJpVfzt\naIGjYF4TfdeViz9My4o2RiKyWT7VX6MU8pttTm1umMNU/Hm3ZpomFHM52FjhaJgSdbQE2ghIfE36\nlWoJn3dljQXYlRu1yvzbhFAiXTFfZmaOAwBAZYxRjPMbKIQYk/DpoojQ3V7ZonvyEra6he2TCBHj\nNUrZfOseo0+uzOMceuYFTit79hFEaN1bY1TEJIlhP/H4ybTs3fOY9rvX5VSvgZjPuzbDANuyoFRi\nvzJG6MUNET4cEkKq12ffraJ3ln3/3JNrj0LlWCb7M7WmyTTiylf/7GVLCI4rmIwQNjVoEex1uJ7q\nemaV+ydDKIuLlzkSvriIc+CRMyxyrVCmEgyycwryBzcjScAMIti4xGLm9fcxHW9O3GOSxBTHrryb\nlrX+Pc6/wW/9Zlp2/Bu/AQAAUZ3HstvA9eit936Qln3/298GAIAP32NkjVrPD5HA+tmTp9PPTj2L\ne5xffIbXuW/+MYr+TlcYVfG1r2B0/a/aHJGtz+B1Njq8buZc7KPRWU7OEMYUYY4ZLRXHCnUnRUHj\nfUFCGWBsW/N/8uqP8Q+RJvzICUQMHzvNqd0XSBz7KgkcAwBcuoRz95nnXhTXxzomYq8BhOYY9HjN\nWNvE+WxaKomFQAhQNDefY4RhgXxdpcbrRLmGfvzKRb7unds4lj8+z6mAY4rOOmJfUSOEVk7cQ5nc\nO1m2DVvN5n3feRA7MD4C//K/+QaMiLTSayQeevnunbTs4Byue2tr7OsMipSXBCrKIAFyV4j7mwQp\na7a4ruUazodNXyBcCF0+M4W+Ln+A6/Tq6zjPumKPGdAYHApUaIX2PydmGOHS28I637jISDq1Lz58\nipNn/N6/+wMAAEiA+8IkBHguz7647+9dvD6OIxi4XRBbCzh27DAAAIQipf2Vi+gLX3mVUWZf/zK+\nDx05JpKWKAi28OceRfbbXV7vSrR+j04fT8tq9N6SLdTpd+zsEwOfXyLkVOrtnEAX++SMY1PsC2gd\n8QUCQjEuyiKpzEgF548v1k6TBKc7Hu/3FxbZN+zF/MCDxaU729DtKqlHp8coqBz5hkyWn1MhEAOx\ndxvSXrDd4T2M2m3KZCYKuSRF/9U8Uag2iXCMQvx+RggmK/H0ltjfBzRe7Az3kUL4ZCxGm2doPYmF\n/4tjEkoW+7nYJAF4Z3vSA3OP764RBNA1NiAU7vexJ9B3xCHfa0jixHeXGP21tIm+Q2wrwCW0d9MW\n9cri8+RyvCep0PiyJdqR2mKSfLvdZ3+lUKmOEBgOC5TIxOKy1WX8bWaMr6uQTe6QnyciYeNAIIvM\nHTAzHvn2KBZzOA7v+97PMo3E0aZNmzZt2rRp06ZNmzZt2rRpewhMH+Jo06ZNmzZt2rRp06ZNmzZt\n2rQ9BPZgdKrEhCAuwkcfMP0pV0Oo3NgUC5KNEuTv5ocM9ff6CCtaX2Fo+JnHES79zDPPpWVdEqKb\nv873UGKOnRbTuIIIofaRg5+1DIZczo4jvcYdYWqQ4SKsdbXJ0FDYQijcsM9wumEX4d8S3himkD+B\n61IUA8GdypKoWOAzzSSMY4B4j1DMJIEkjiGXFdQYum8gsGb9Id53dXVd/BTvffz4ofvKRkdZdPLR\nRxGObZg8JBTUsdHc4N8S1EsxWkLxrBZBz5XoKQBA1yPRqRzDAzMkmOUIQVCH4KwbHsPplLi00J+C\ngOBnPSF4qwRPC+IeG819gL8mAAM/ToXuAABWm/hsUkDWo2nUEiKHA4InWwm3RZngfImgCPVJ2M8b\ncN+GLj5bRkCrh9Q+Q+rjpriuZeDcywg6RRLiPPIFZLGnxnbIz5MlWGIgjnN94lPNz9/hZ9zA9iwY\nQmQ6wO/JOWA7+3MubIABhu2AJ8QKLQvHV77A7TJKlBNJK4xpvjk2l/VIHPLaDRa8HqkjdHusxvMg\nAnwmRzzTLFEHGy30E6sNpmRV6khtePQYUye6MY6D1WW+l1HB7zkFQTElv9NYX0rL1m4i7H715odp\n2WQJn+fOPNPDqiMITe502Z9WxwGMPTZ/HMfgDvrwxBMs3tpqoc/sdXjOlYjOODbOtItyBSHIUcDj\nyyVRw1MnWQy/TkLRb7z2dlr2maeR7nF7kX3x+xfRx584geKGQczQ4YhE+QYu32uJKFZ2liHT+SLW\nL4i47j96DWH6Tz53Li179jNP0GfX07JeG3+zuc7+r0Wik1IIfNjfm9AoAAAkCcRJDNPTLMr8u7/7\nuwAAsLC4kJbdvYsUmStXrqRlC3fx8/V19p1D8olyriv6iy38ru+RaLUQS2V49yf/ZTqTKcT3FK3J\nEN9Tfwc++ylFrcoXuH+KJI7ZaHK/f/gR0mJOnmDag7qvpIftp86ukRgAY7yH6RxCakbY4jFXHZJo\nZ8x7DXMe23nhW99NywYkFno74DH3xvf+CgAAzl/leV3M4dicHGV6WY/g+dcuIU3ow/NMtTL+FMf8\n2CgnZ7CJTn7hdR4jX/2F5wEA4Ou/yL5/tY9jePEGt189wn7Ij7GfVGuyKUQvlWB1nPD1kiSBvbKp\nEkhI2JjHntvD9swLUU1Fqxs7yCLPAUHcG5u8x7x6HakzM0d43JSL2Kc9TyQTIBHPgaD/tIlSH9Da\n7IXc7xZRRmsV7qeUGijmQZeEkh1BjX7k0bN4/SbvyTZo/fAFTapUw3Ws3+f50m7jnBgOJY3CB8/j\nuu3K4hBgsAEfLPEeu59HH3v2MU4QUqzhmnXoMX7GbAb9fjHLPkQlHxgKQdc87Stk2SDB9WHmGEsf\nrFzFubR8DyULggyv7Q7tRTeWeX0cncR5eaDOazYQrfvjj1gM+84dvJ4vxpZJ/Xh7nmmGPlF3bCFu\naxGtp9vn+Ts1SckNYPeWy+fg1NkTEMbcxyNj6AOee/6z/D1qg/kFTlrg0p66UOR6OrQfMgWdyiWa\nmSf24AkJ4no291mBkg80SLw4U+R1XAnottv8rqSo+JJSGNIamJUyD7R39YTMRJPocK0tXp9qBRzv\nhqCOZEl8/dAsi3u32nsc62RxFEO339v2flMsUpICscfsEk3Zsvh7an87EIkVXFovpXqAR4lvEoGN\nKBXz9D2eQ/9/e1/WY9eVnbfOcOehhltzsYqkSIqkZqmlluWW1LDd8BS3hwRG8uAASYAgL/kPeUmA\nPAR58YOBIMmDgXQSN2AkHmKnE9vdlt1Wt1qDNYsUKQ5FsorFGu48nCkPa+2zvhLpVheLgUBgfS+8\n3HXvGfaw9j5nf9+3nCTayeDQhDoTqVMKk5uTs6I58dlneLyePavrKpcw5aVXdO3WkP6SwjnUHxke\nrORGsgzXMtkXSKq/GHEa053BJvWHYEQs0qnhQO9nMpbnmwGc38VYeP7K1wGQjCQIXf/Xeh+Pxc4C\n5qyRyAPd18ExhUryABSA6frWlhwD1nqbIsHtbOj3Tq3K88YtPdcVuY9Jov1oVZSQngdyKbdgh4V7\nD+xdfhIYE8dgMBgMBoPBYDAYDAaD4SHAoZg4pWqVHnnmK9Tr6O7H8iq/B1o7oaZiJZ93uLevq6lh\nX94mTnxgKwjD5iYwPbp7/DazvaW/vXmN38RDpkUqiZmtH/C/H93Qt/ALX+fdhOef+ZW8bP9vvk1E\nRLf3dfchk7S2KaQBm4h7chKBOZUYfaFxZCq77YWCGmCVC7wDM4Y3+ON0TCm8lb4fZGlKSW9AI0i1\nfeszNn2aZNqEkewslYCB4NLEdTta76fP8NvbCBghr7/+PSIi8sHgrV6rHzgGEVFRjM0y+VoBdmSc\nGbQPqd5CYUigYadLHY5vlkMxjWzM6PeKYqi8u6cNn4jBbg9SBm/v8I6VD6ZUG1cegLExEaXk0yTS\nt+I7ba7HIbIN5O1+Cn0hklfGlVD7USK70gmYJjpT0tjX18IT2c0og3lz0OBdwFLJvbFW47q2GO0W\nYKfFpUKPYUex0+YxhSZrxZIzvtbfJsIo8kLtC0UxCCuHeo+JlGEfKOVvsnVM3xc8j8JCgap1qAM5\ndKOpOz+eM9LD3VzZ6Zie1p3TEye4zzvzbSLenSEiatS0z0Uh11cddrxS6eyhpF7H3ZeVWb6+k9Na\nVx23sxOrqWNHTHmLkDaZRtxHBzd0ZzDZYbZh8cDOMV/T7rYaBherPK5qDR2bYfggdq2417dgpzOR\nnes2jMOxXF+3o2PDsW6WFvW3A9lZjiGN5u0tnj+OH9P2OXued9l/77/+UV7W73Kdzi7y9zJP788Z\n9jVgF9Cdq1LRPqNminqdFz5hhtTbbyorYn6O2RPlov520OXjXf5U26co42RqUfsR7pTfLzKSHR/Y\n+XrySd6xfuppNXQdyc72zo7ual67zvX56UXdub14kdOTX76sZVtbzAAY9LQd+2KAOQBmo2NeKOsG\nTD999y+w/uR7mM7cl9iRQFrUWHa79na1HztDUTTN/jMxt33l5ZfzstUVZihlB+bSI24TumvwPIqC\nAt0o6pj/SHbGnl3TFMXnZF7f3dfr35Ndunev6rriwr/+V0REdDvVMdyY5l3mF57ThA2PnuLd1DIw\nSB0Lsi+G8/ttbZe9XY7fO9va9v0hM/FKI22Pjctitr6ojJ3pBrfDsVfV3HR5ltdJJTDC/OyT7/N1\nRHoOX1LBYmIHz6MjV7/v+VQslagQAItSDGRrVS0rC7uzP9R+u9vm60tSHXsFT4zqt3TuaYjhfDrQ\ntti4wuMlAGZzJm6zboed4JpIdtFdWnMiTV6Ba6j+gK+v2dTYUJH1UrXYysummsJmgVTox04zK3AI\nBroDmUd2dnQe2drapPd+9BodBX46pnL/Kp2E9vydb7HJ9rync/nxc8yObMcaO997mxliGawxn3vp\na0REVEETUTGGLcHacSCxoNVRg/q/ucTMR2fsWYAd6VDW23Mw31eF9ffpe2pAf1NMriewJsuZUsCo\n9YSNkMI6sTbFbYUGpFVps1e/+lxe9mu/8A0iIvrH/+Jf0v3C94nKlYBeeUXj2ljYzEsLGmfm5nn+\nfOMNMNKWui0BYyaUHf0irPuSIa+FJ11wkpX40ukps+bd99nMfEHYhwsLOmfnTGY4xJSsm+II1hhS\ntwVYP4XCRhlCiuzdNo+9jZtocs+/nZrS2OePuL+vVrXNKiVt+6MgSVPq94fke5BgQdiGmJjAGZoX\nMYeD9P8hPHN40v+rsJ5zz3mdrt7nRNZJGagxIleHEmNCYP14nqzbga11+lGe+849dTIve/IFjuML\n81A/0v1LJa1795yaglG8W/em91CIfL4sOyLdNcsymkRp/pxDRJTG8jwNz5qVIl9zoal1Ecq6I07h\nGdfn+4AhTJk8n+H4d0wmb4LJiPhHsSSYKYDBennE7dgPtd4vXODvz8/os8XcmsSf6zoXTW/wHDPy\n9HvvfcJ9wGvoerJY5vtpTuv3XJIJZF5Norvb5cfBmDgGg8FgMBgMBoPBYDAYDA8B7CWOwWAwGAwG\ng8FgMBgMBsNDgEPJqeI4pq2dO1SGnObRDr8H6taU1joWhhmaHY8KTCErVZQieOnSFSIiqjSUkvbe\nG+8QEdF0SU08F2piKgZGX3GLaZ2zDaYeeTtqIvrJ60y1Hc6ey8uKHlPhAqAU9oRKTgXlZk3EPLOI\nlDSREySxVlexNCNlYPYnlLXQA6OxZEREh6NHfR5hEFBrukm7t9XEdG+TKcOtZTW2KomhXgbSgZVj\nTMUL0YCvz1Sw8VWlhBWEOzkzq202PaW0YAdHo3eUwKSsNGXfGRGDZC7//lj7RyK0+qyg15mISdss\nyDju7DMlLQE6L4l8rFRQmtr2FtONm0BL94Haf7/wyKPAD3LqJ5GaHBaB/p8KRRM9uSLpFx7IYkKh\nSgbgFpYItRFpmU5uFgBluV7j+02E7hiB/CEWGuFkpOci6bNIAXWyD6Q2OuPjBpg2+iIPQ7b8bIv7\nwuI0hgy+7xho2SpN/IyOgiAIqNqo07ETx/KySKSO9TpInYS2Ox4pzdeZKZZL2iChyDtQcublchFt\n3wUxMGw2lbZ8Q4zC74gx3wQkastiTFgBQ+6BGAHPgISonMg5+lB/E/57fUrPP7rJ9dcHiu+CjMki\nGtJGTD0uTWtsybyJ3tR9IgwDmp1tULujkpHt23z/K6sLedmnFz8mooPm0SeOsTygUtIY/+Ftlpmg\nZPXmLa6rZgNkbOSkajoOlle4bleOMXU4Tf4q/1vd5z6g4j6i3TbHs3aq/cMLuW+WCxp/VtdOEBHR\nBTDPr1a4jlGSWQr5WopwktD1Fajm5aW74+RhkaUZTSbRAYNhIr5mD2K3Oy1KxtbXWA4zPaWxe22d\n54UTJ1Qq48yQN29qggAno0I51UCkPM6AEeNFImM9BpmUM6b1keLsJFlAz65Wub0jGKubGyxtacJc\nc/X6JhER/e37ajK9usJmlx7IqbIHtAWVZRlN4oguXL2al70rMrQrUzofnZtiSUwZmuhqh9cQu4Fe\nV6vOv3nhma/kZefPnSciotm60t9jWWskED/dPOBi3NISSrgz+T5IecXI9PYdlRBdu8r11h2q5Hb1\nBJv9OlNxIqKTj50gIqKVucfzslqDx9Cbr/+lXqeEIjTHTNMHYGycZZQmE5ppal9++aVn+R6uq+Rm\nOOb+2L+jFX/hIhvAL7c0/jy1doaIiDY/+jgva18Uw9xIpejbbe5fS2fO5GUlMWy9c4fXHGWQ8YYi\ne/BgRvRFzlnBhA1luRbo80MnAYN1gO9zrCsW9LfH1nmcNmbUIN/Fgh74CNza3KLPPn6HjoLQ92m+\nViFvRue4Vfk8m6JMUvobSJWPr/IYaIPEfNhlaU4KkrE7Iv0NPO3bFanT//3dP9f7EYnnSZl3y4HW\nnXhX04VPPsnLumKOjmsOr3B3khESQ1O/qHVclnE5AfNWJx95+lHtC//gV3+JiIiefUplrGNcW90n\nSsUiPXJinfa2N/OyU2f5GWV3VyVzzTpPOC+/rAlf3vr+D4mIaAjykOUl6SuYvKLNx/Five+SSOBD\niM83NngOyCS2zzZ0kmvW+bchrHF3xeYiBMuAQpljWZTq94YTPv8WyH2vX+X1w+0dnYNDmVQnMN86\nv+4s1bVjZVr76FEQxylt3+lRt6ttP9WQpCsVXVc5030P+A2pPOsUQP5TkutPIQgO5AYGfR2vzpzc\nxWmGL+e4h2G8SOROn9cEB7/2mz9HREQnTqnkjnxZG8D5CxKLMCmHe+5KUnwmk3P5+ttAjIInYPbu\nhx75R3Q2TtOMRsOIKNM4HUgcTX0d606xXQZrhiySc4/1e6ksMvCJ2q3pB0NIKCTPoiEut6UKQjcQ\nIK5NxHj51kjbbjgU+dWy1klRjnfuMa2XirxSiC7q8U6KfUkf1nMbG9wHjpf0eHVZx6GdxXQTV7Vf\nDGPiGAwGg8FgMBgMBoPBYDA8BDgUEyeJI+reuUm1iu7a73T5TV9/rClCT57jndOtLTD2FDPFpYru\nvt6QHcEnJNU4EdHSCr+Rj/se/JaPHQ0h1fUev63ty9vbQX9Dr+kW7+Lc6WjazcGAjxGDIaxLEx3D\n27KSGOr9/C/rW/DGFL/he+tH7+dld27xcULSN6Zj2W0vgXdp+QGkafM9jyrFkGbhrXR7h1//9eGN\n90TeytbB0HVODMuQveAM49aPa8pOX3bwBz1tx+QeW209acdxT1IJQtq9TFglPuxEJcJawB1mlyY2\nLuk7xBlJdz41pde+1+3LcfXNpSNNVcB1bU9SAF/5TN92z0O62KMgIDUxJCIqiMmi52FKa76WPqR1\ndLt22PRux3UIb7vdDmAZDFoL4qpWBHc1X84XJ2LGDf6eJdnRCytaJy6d4xDTng9dSnD9XuJSJfZ1\nXJTlrTyeoyIpOFeWtA+69OTIVIrg3o4Ez6OwWKAasDXiWFLTg4Fie4f7owe7JG7X/vJnyrSYSPrF\nEFg3LUnrOj+nrL9EGAS3d5T19va7bIB7Y4vj1fSUttW0jMmdDd096rR5F7Jc0bqqimEuGsXFMk72\nMXVln8d1Ea5zXXITNhvKcEk9bq9CSVkNo6hPlB2N9ed7HpXLIZWLOjWkiaRhDbVDrB7jujt7Wpke\ns9PcR2ZndEf2+nWusz70Q2cG34O0k2+/x0a8pySdOBHR7jbv4PVGwj6DvrU6x7uQpbKOkXKF67Y9\n0Tqu1fhczz2jO61zc4tyX2iSy9fy6BllKmSy6zO7AMazQ76W0VBHdlg4eorxJE2o0+kcMCx2u7O4\nS9vrcbvjGHafsW+5FLOOVUOkZtBVSPFdEgPS6Wkw/HZsP4kNGLtdTOr2NF44o3T8XlfYA2j6PMrZ\nCFp37jcZ9NsNMWr+zne+k5c9/zSzRRYgrjtmylGREVFGCZ0/r+uQconv883LGkP++hZf1zSYv06t\n8+7oU2fVdPKxR3henZvWaw0TMV+E9siKd++hubp3/+IOaiDUBGSZ1up8ncframLcmOH4dPW6Mq4u\nvP8jIiLqdZVhF0+4Db3HlXFw+hybuU5ind/efP0viIgoirUtfTpasgYiZhS127tUhXnrV7/5KhER\n/fGffC8vuyT9wQej/2TM137m1KN52XRFmMAtjSvjmONpCRIMHH+CY0wv1nFw66YYwnZ4rM0DS2W2\nJemQobuNhZUUwy66T8LYhgQUjpWYBBhP+Vo2wdD++9/5fSIimltQs2M31nANMRiNKY2OxgpJs5S6\n8Yj6Ex3Dv/lNbvc01l3gb//pG0RE9Lt/rEbKLz7NTKmwqXX313/MbVUDE+NpSU/ePpCWme/7009h\nXpYY3BcD0AjMSSMZ33t7yp53bJt7sm6A2VSucr1nUHtuufnVx5R59uLzfN8vPPtMXtYQxlC/p+zE\n5AGEmkIY0kqrRe+89cO8bCL1U65rf3vzh8ykm53VeXRa1iqdrtbn2gleG3kwj1Wkb7QhnbdLSz4L\nSR1WVjhurS5xf8OEDwVhSOzu6rNASdKe+5ACfuMmx5LkQNznOtvb0TjTEXbQ6dOqGnDJVUYDZT44\nNkhvqJXdmDvUI+rfidFkQheuXzvAsKlWuL9OQTKVgiTmKOL8KnNTCEzEY0titA/98M5uV65f+01f\n2NbuXyKiTAKJU0xA1nZ69gVmZv3SN1/Ky06f5fVsHOu4zyR1NfoOx8K+J1DKeDKGSkhJcfeGGToy\n97wCbMPQy5/V7hdZmtFoOKYYaLNVaecSPkPJqwhMXODUHvB4QZVQGNvIWJbYDoSwnImDSWlcPOnu\nCIsbWPFnZaqOgaXXmub6DkgbaKctaooSHHeV2zbe0t+uC1fozljnoqsdiZlggJw/n3nYZodbTxoT\nx2AwGAwGg8FgMBgMBoPhIYC9xDEYDAaDwWAwGAwGg8FgeAhwKK5a4Hk0XSxR946azrXmRf4CdKBO\nh2lIE2US0fIsSwJmakox3vOYfnYLaL/zi0wb/Nu3PszLuj0+XhXokitiqJl5bHQ2HN7O/zaO+Voq\nQBd19OQRSIRSMXZKQf7jTGJDkGx8/ZdeJCKip7+mJqvvvMHGh3/5ZyrZcn5WWar0qyCtHNmBMQwD\nas1M0cKcMYzDCAAAIABJREFUUv3PrjEl+M0P1PRtRyQxU0AF3t7heinWVPZVkzYIQfflKKR+oPWz\nv8+UyAFQYgcdkVOJiWgCEodM6i4Cum+c3E39rdWYvlgFuYkz8x2N0Jwqlu8BfbzE/a3bUXpiKWRK\n6O6u0m6PashFxKZhPiUUAI0yECpkAFT4OBFaYKZyqsB3tF8w0vWc7EHP4SQQA5AdhHLfKcojpJ4L\nIokIURIlNMEQeYdyLh+MZ51MqxDqb52MAWUPqc/nqtSUn3hzm6m1rSmlW09X+ThoIZ1GD0hORURx\nltK1GyqTbAiFuwy8yes3OHY0qipxarVmD/xLpAzSaKBBKRaq496uUn8zkSx8CGaKH37MJpqJGJEu\nrOhYWlzhmJB1tvIyX0xOyy2lxoc+9/nA0/rb3Wea8R2QeAZCAy+C/KhcERO9VNuIiMdfAcyb+5Mx\nZUc0US+EAS3NTVOnrZKA46t8HwvLWp+nXn6aiIiadW2LPZkXZme07MnHWW4VJ1rWH3P9YNtevnqF\niIh+5qeez8uiiGP7OOL6WT+msjeSMefqhojo7Hk+V0BaJzUxG106o3KX8UhkjSOgi4c8hh47p20b\nCe315Ck1G/UnfL6PP9S4Xygevc9naUqj0Sg3QiQiuipGux+LITER0eYmm2LinOWMuZH6fC8atJMu\nYYx18QfNvd1v3b/z83r/zvDbybCIVM7VaOgYdFIQlFj1etx/O91OXtZu8+ftbZVKl53ZH9zC3h6P\n0YV5lRigafKRkGWUJBFNgUzyhRfZlHjxmN77jSvcX+cbeg0nT7EsoNrS3zpHVqR8D0WaMQGTaE/k\nJ1iXLr5re+gc4KaDNL1bypTBftx0g9uoeV6v6do1liRdfOftvOzOBksuRns6bz39FabxP/H0y3nZ\nSIyF3/yBGot72b3E1odDRkRx5tEYbmc0dO6TWifvf8BGvjPQDz2RJPX3dR3gzXKfe+QFve/+mOul\nALJLJxPZ+EDXsb1tvohFkVZMQHa2KWaXs5D0oSAm3QmsdSY9Md0FE+OyrFnLoJlwffnWzRt6TSLf\n/eTD9/KyJLm7ncejMXU67bvKD4MoTWizu0cDOHynw+uUa1eu5GUfXOXru3lb4/R/+0OOSafmVPb+\nb/7JbxIR0RDu8a8+YMnUe++pOfmV2zxHFkCy4fp7IPFiRUzniYjefZ+fATyITU5BiQkKas4qIFSJ\n12jCffrYgo7Vf/irv0xERN/42tfyskBk+R2QOfb60n6wdkoegJ5qNBrRxY8/oKm61tNbb/xAzq9j\nsCF2CG+/9W5etjjD8qfgxfN52fQcx8xluMeWyIx3QQ5+8wa3Y+prne1u89/n5Vz9nsqakhGPqQxk\no40pjskbWyrT2pZz1OsgL53lNiiUte5a82Lp0NRxWalye8PSi+5s8/iZmYb59sEoZqlWL9PzL5+l\nTy5eycsSiaOrj+mcv7rK565CTE7FEmJ7Q9d47W1+1ohiSFIizwlDsFVoSH2cqqkpca/P9dsU64gz\nj6kU9qsvcfsuL4MB/pgrKQP5sDsXqueHAz4vjo2CzJFoUj0c8xzkQ1kiUqx4otee+ek955rDwCOf\nCn6VwgQm89QZO8N6xUm4Y5ASyTw6iMEU2pkdw3w3iZ2JMFy7xM5KqGPN5SO58SmvJ7OxyuiKcrzy\njNaxizsZJNZxzwfDSJ8jEpGJ7lT0fnoi50pjHVdjWTt6ntb7WNb5PsptD7msMSaOwWAwGAwGg8Fg\nMBgMBsNDgEMxcbI0o8kgomJVfxaW+a3eyUfUJHfjNr+tLdcgbd0cvy1uNnQ3Y7bCbyQ3Lmvq8Ede\nZgPKekHTfWYBv5WsNnQXa0l23kN5k08jeJM+cm/B9M2c+x4a8uVpssE415Ptrte+qzsipx5j87xz\nz5zOy178Br9Fba7ojsRr/5d/c+MT3SkJxlMHGBX3g2q1Rs89+yI1Yadw5xa/FXZmh0REb37Eux6T\nWF/ljYWxcvlDreP1k/z3FjB7CsIsGY+1Hp1h5QRYAbEYRfVlt2LQ152w9j7fdxEMixtNfhM6B7to\nDdkpzICl0xEjzPEYjM7E9CyAXbF6md+e1iEV3XM/zbum0/P6RtuxXn7/f2k6y/uBT0Qh9Bm38Q/Z\n5vOU6Qm8Qc29xXxkzMiuIBw/kz44TND4lQ+eTJR54Zg9VTF3LMEukXt7PoG36I7FVERDM5dmG3IB\nu5SRQ3xRLmksY0j/eP22pJgsK2tkZZbbtgRpRAveg9kdzyijNE0pgrfrd9w1FIA1IDsS1bLuwt2W\nlNhViD/VGl9rH1J0+lIPNyTNMRHRzAKzPVJoc2fIGkj9rRxTRl5V+jJsalBZTB3jKqTQHvI19yEP\n/bFTHE8S2CW+dov7ehFCc1VYcmGgDIawJDsN+PZ/SEc2US8WQzqxNkv+cd05qkms7Q10HD4lDJsr\nl3WntSbGonMzeu0vyc7hhx9qHZfE0PjEyafyMk92IiplrffnX2Cj2aYYPL7wFTUxbe9yP8TY+vg5\nHv8BaQxLxHC/BenRu5Kec+uG7ioWMm6DGWCTXNng3eRaYVW/Jylwa0Xtl2vrwBC6T6RZRuPx+ABL\nJk//DTHWmfDHkFbW7dijObAz/U2hzO3kZcChcIyPezFxHMNmDDuLjinUaunur2PdlCHd8uoq19ny\nsu5yzkg7orGyQxfSKLu09YsL2mYLMn8kGGQfANuSkVFGyYG06Z7svp0A1t3xZWbdFGHHvyQmoM5w\nnojymB/i9VW4jhJI4ezLGA/Du5dhjiGVQQxWtrN31/fiGNcYsvsKppsnV3l91qrpeuWKMC1e+z//\nIy+7dJnTc3/15VfzsjNneRzu7Spb6rOP3qWj5hiPkpQ29/u0cU1ZA5u3XIpi7Q+h1NPWDd0JL5e5\nDj762yt5WRazOeviusb9SObBcllj8YWPmYHz2QVl7tZ8HvcFWTMOIP1sR8bhnVu6q1uu8GdkxA1k\nvTINhrTNJq934xjZenzt3a7GqeFQdtELOq93hR2BBuxZkn7OkP3wGI5Seu/CgN6/pEykt99nY/mN\nmxqnn5M5YG1OGaVXtrgPzC1rTPxsj2PCDz/TueAv3+K18H4P1jDC2U1hveDG3I0NZvt02sAIka3z\nAkyuRYkxIaQOd12/Dmb8v/DyC0RE9M1f/Pm87JjEpAHE2LGw/HEn3JkmD4BRNR6BrOB+kWWUphGV\nKnrtTzzB8+PmtvbF/X2ug2Zdx+qWPFNtb+scPJHru72lKcsL88JCXtC4VZX7vXpVjbSdgWws68/L\nn16Ey+S/hUVgNl1j5ukI1k9lMQHuD3VNGEmbpWDOOtV0iTJ0/eJ8fmtljVF9MYvttDXOFIs6BxwF\nrVaTfuu3fo6uXNM+H8vcuHZc+/eMMPECWCO7R6w7m/pc959/+w+JiOj2lt5Tucbtmqbal178aTYC\nby1pmw/F+Lwpa8dSDZQGNT5ZZ1+TGRQ8Z2gPpsMSJ8qw7q0KEy6AZ45YnuFG0H/7wkAvluF48hHn\n1yxN6YiPrkQeke8HuVqAiCiWvudBcpqxrPNjH2KbqB5SeKZwl4frlcgFAGBFuXjqw3Niv8PfO9d2\nxs56qmu7HIcemdbCoUuFDinOx2ks93D3umoIkoRUlpFJWwtHxJ3eIzXoJ3LsaIiTIT4hfjGMiWMw\nGAwGg8FgMBgMBoPB8BDAXuIYDAaDwWAwGAwGg8FgMDwEOJScyi94VFsqUAgUOL/IVKJaUw/l3xEa\nZFVpQ+0xU4lmF5R6PrvAnKOPLijVq91hetHqsRN52YbQ3see0sodDW9BJAvNklKQ9rtMTQyBhpWK\n/gVpWM6kFiljqciFdm8qrfN3f+cPiIjoH/2zX8zLvvp1lgL81E+pxOrE8VNERPQH3/6LvOzt1y5R\nSkC1vg+EYYHmFleIQB5WE+re8cXpvOzSJaZ/XdnTa5+IyXS7rTTMq1eZGulMj4mITp1ieUQDjEIz\nMWzygJIfCu/O0fiuXVPTO2eOe2xKpRjOcDaLtJJvbTClMZ1oezq6ajpS2vGJae4/Jx/ROm6JWWyz\noffdWmeq+DRQSNP0wVDt08w7QAV0hmL9ofbZwZgpcxFQEWP5jRfo/YRO+gNyoIAcbV5phM7ky4Pz\nekJFHoh5YhFMBGM57wScxItCvSwVdVxk0t8joO6VRBowP6V0856YcKJJ7nAiNE+QA802ua9UKnqO\nwDsa1dshTVIadvsUHJCZSb0BlbEqUoQiNHdXzFJv3waKohiVV6DeBmLgV4KYMGhzrAlCvY+mGIXX\nq/xvMlGa9dXPWHLTBCM/z1HiQU6xd4clA9cuX8rLfmaWzUPPH1cZYPcMSzbGfT3/+hr3+aAAVGoJ\nt0mg9GDPP7rBbrkc0tkzc7n5LxHHHyIiuq3HTyOmFi+0lCbsi4H7lPqVU7vDVOvxQCUTtYr0uRml\nmhaL3P9qBY0Ji7N8oOGE22SmqfVZlX6L8XxxjvvjJFLas5NYtVo6F90QWvfKol6ol3Jsna5r/JuS\n+auzq5TpeoXH0OlTKqmbX9Sxc7/wyGP5EvRjJ8FIQIrhy75LAHNbJv0MlUaZ/AeNCZ30JkVzfxdr\ncF6Uz06mhRIvJ51CGcnMDBtXokFvp8N1htIpJ7eq1bTMmSafP3dWvyfjB8/hYnAKMZEelJqKiIh8\n8sH4sxDyfSKbPBE508SD+pM6DeG3vlwjUq5TMZ0vggwklOOhga0zglZpGpi65lRylFPxv2OI/UrH\nRlNk/nEVTFXPP8Zm39v72r9vbLKh+7f/ywd52dmzjxMR0elHjus5fJ+O2gCDwYjeeudj6vc1xo+H\nUhdg0r+2wpKKbXBBHYkkob+nMf6DNzl23NrQcV2RuJxEGlc2b3JMisY6rkYh18HOUOY+aE/PyWt6\nKnnp7YvkAzqI876dmVHpuMrd9FwFkRHMzc3oNW2yVKzf1wM6uT/+1vO8I8vzN+/s0b/7T79Hu/sa\nJ+erPHZ/46UX8rJvvsIGwP/xu6/nZZ/+zz8hIqIfvKeJR/LPkNzED8UcHbaJA+nLGTx2ZNKX98Vs\nutdRiVmhxH01C4vwfZF/whj86jNPEBHR3/vZn83LnjjH0lscg50ut20SwvOLSLU8uNC+JAjBeq/X\n75aAHhZBGFBzZoqisfbFhSVes77w0it52cVP2PrgR2+rpcPNDTa3v7Gp82g05nET9XX8dnf5780Z\nfc6qiRwbTeaXllwfFUNZiEFOSt7tan8vl7l/zMxo/HLJNnbbsC6I3RoNLDfEIHkM50/l2SKEBCHL\nC/zc0O3D8R7McpJ8P6NqJaEzkKSgIHKwFNaY3oSfneIM1j8SQ8ol7XNDkTO3+xp3R5LYJIUkDptb\n3B5nH388L6vIM2sqx4ign2VSFhCYDru5HMa9swUZpSjz43rOYBxGiTybQN0H7u8gH3btf2B+DY4+\nwWZZRpNkRO2xXmdJxlwKzxedmON4FoLVgzwv+TDP5L/I7g68Bbjv0C/J12D+FJuRmqz1pkAaeGnI\nbdKBOBC5eXyo52oPnbWCfs/N47UqzLfnOHbt3dJ7rE87mxeYC+T5xfVFvvbD1bsxcQwGg8FgMBgM\nBoPBYDAYHgIckolDVFlKaQRv8Opi4haHsDMoOxeNphq8BfL2cWNbU7MeX+W3xWtn1CTtgphvPfG4\nmlhe2WeT42oNdrFk978ihmSnjulu9q2PeOc2AVPUVHY1Akiv7NI/l2F3zFVJCG8he2Im9q3/8Ed6\n3yVm3Zx78sm8bK7JOyu//hu6E7R361u0D6Zl9wXPY+cpePtYEUPauSk1Pzu5yKZmF6/pLlo34Hpv\nzauh9NYWGxpeuahplK9fYmO7qbp+ryVpU13KZCLKt3vTkRgct3UXoCdpGvfBmGkiu9iYOi6VYxxg\nenR5J2Z9Wuvu0XNscr28vp6XNReYlTA1qzsNFTGAw51ULzz6+8mM+CXvCNJL9uW+98HseSymqCkw\nL0ZijIgsrKq8gUYD0qLsOkeQmtuX3aNSoPXoy5hyux99SDPqGEC4o1sVQ2lM55lJ9Yx6ek2jAf92\nqq5joCpsrD3YoXUmp1Gk1+527F3qcj7fA2LipAn1el0KwcA1Z/zA7k21xP27XMHYIIyMHTXIi2XL\ndBfqLZFd1zkws00j2QkBRtGZU7xjPVXneFYB1t9IDFn7u7ATLvEkqIBJrfRvD8bBYJ/jSjrS460s\nMMOss6/Hc7vyXqBsknHMv4kjbd9CoXDP1NKHQeBn1GykRA3oe7I7USpqbOi2mcW3fkyNBx2bhTxI\n9djg366v6Q7YnBjWVprab8KU26waKIuQZPcmSLjjLrZ0N3QiTYasBMq4PYd9bfe1Na5PNGw/tsox\nZqqh8SKOOVU9mvMuLghrIYX7kV2XYkV/i5/vF0EQ0PT0DE3AULUvxqf7O2py6Azw4iGk4pQq8KHt\nHTsHt8LR5Dj/nvv3AIvQsXjSg1/SU1EfUvJWpM7QANl9RhbPUD47xiYeJwzAjFFMYwto8HePNOpH\nd1108Min4EAaVre/lcE5Qtn99zKte1fPmBbUkQQOeA1LzfkZpKRN3e6n/vjz4xfnih+XYhzXNc6l\nErO6un4Q3cMYenZO12kzs7yG2dvXNcvWVV4bjMFwtFyuHLn+s5RoPMwOmMaOxpJMAUz6XWKB1rSy\niHpiMB51lNUwEvP4j8GwuBDwNc4iPTDj41Tr2r8qwvL0JJ5O0IjTrVPQWFTWBGgEmkg2g94AGNPS\n17EpHMMDmWtuBxzZtI79UIT5NY4j8kZHY1zOlIr0G2ceoZOndN195tnniIhoal4Zhn2ZH5979GRe\ntv9zbHh9Y1NZ3L0uM1d2oc/0ZcfarVeI6MevDFwFpdAmNZ7vWpCgYHGB55Ff+flv5GWvvvQSEQFj\nlJQBGkM7urUWpq1246vd1XWBY3fW6sqwPOq8SkRUqVbpyeeepclQY+LWFtdjr6Mss+efO0dERFOz\n2mdDMW2eDNRE+MIH/Fy0vqbrgkgYDSNgmZVlPZSlWlapcl/1hHFcrgMrVVieRUiQQpmLH7COFxPa\nWWBxOwaEHyDbgOu9N9CK7wijPII5Y39PkhWA8ev2nq5Bj4IkzagzHFMGa/mCY3DAOtut25FBlmXC\ngoc45cnz7vKaPoece5yfQd94XVlq77/DzOv1dY2x5x+TtZDUbxlMtWNZwwdgdp/lSVKAHXSP9bgz\nPA8wXbUs+n1g/xckniWg7HAJfZDtk0TxgfnvfsDPUB6NIjAzJ65HZAy5ceonsJaSRhjBmijJ50pg\nr0qfTKDRKpJIAOcol9m7I6et9nQcjrr8292e1mezKUxZqIKCrP0LwBiqyrM4TsHeLN9HaV7XOo0G\nX0AxAGahPGek8E7FP7AO+WIYE8dgMBgMBoPBYDAYDAaD4SGAvcQxGAwGg8FgMBgMBoPBYHgIcCge\neJZlNJpMcgNLIpUi7QG9u5cwXXWp9UhetrjMFPrv/OlHedlshWlzTz+j0qnXvvcaX1hZj3f6PFM8\ntz5SOm9dqJa1MV/LU8sqp7q5yyZxV3d28jLPaUmQziw0qQhoZQVh00cZyCOEcpkB9e+3f/vfEhHR\nwrJKfZaPMd3/1//+1/Kyn371Kfr0vet0VGSeml4REQVidFttqkzhlBj8PnJFz/f+FlMUk0yb+vx5\nliktttRY79JFpkxfFVkVf+YKKpWV3lUt8edQjIMzkPDUxIhuNFCaWuRxPSJd3lGG9/tKhfYnTKtf\nPa3midNigFkvKo26UuIGKpaVYuvIkB6YdzkzwqPBo4Q8Gk1A9iV06+5I+1Es1G6k3TlTrAxMrJyh\nV+ZDXYiMKoZrD+XvBw2lD36IgG7u+oUH1MFUpISdvspTKmIyWgSzY0fj3tlVKrRX4PpuAy3cnX84\n1DInARuDZCIoPJj3wmmaUX8ypjr2GzGbQzp0JNqFW3sw1qXtA+i3mdAwu3e28rKi1Nc40rHu6NUR\nSDFnGiwjmm6wbK9W1b7nZFI+SlWE/jmeKEU7k3Msggxw2GOq5Y3rV/OykZh993sgI5PzBSBZvXGT\n26u8pmV+qUpER6Mf+4FH9VpIEVCp+x2W80w3wMB3husiKIIURCizI5DLLMyz/LFe01gTOlo7zD7l\nIuujhl2gzibcBgWRMUxPaRwYipyxWtWyspjDeVMqj3PSoDGYUbdEsllEerJIolD2Gfgck5KJdrh6\nlSUIo1j7jJMdHAWB71O9WqdwSSulKgbQ9YbKyGpTPO99evFiXrazy+2T3MOUEOU7Tj6DDGk3Lg6Q\npuU/TkaHSgJPdA8JyD9dPEc5lZNMoXTK9QuMF9HkbvNWp1DBa88/w8VnR1c4KDzvgKwpPy8YPudn\nRoPJ/O93m0UjHC39XrIMPIcD1sfdl3r3MbBNncw1REq+fCGAefFesixHp2/N6rqi2eCxixK60Wh0\nZKp9mmY0HkYUQX9w8qdiTeeoRK65CMtVZ/54c1tjbCDjPkYpR5m/F5X1XvsiwWqVVELSFFl6IlKl\nEGRSYW5OrP3bSaziCOSCImHZ2LiZl+3s8rzkQ71HEicjkBr1Zc2E7eNMwQ8YfMcF2uujmenhMTfX\non/+T3+L+hW9/4HEjk5P5ToFn8/76nPP5GVflc/gZUu7Il3avK3r8/5AZD0gD+sOxIwa1n2ZnHcg\npsMxSH6efPwxIiI6va5rwsY0t/FMU+eTWHSLPZizvYIkPLiHpDEG6cJQ5KmFAsi4RB6K/TtN7h7T\nh0USTah9+zq191QeOxlzu+8NNUFIKkuZ6YbKl7/+DMuCh10dA4HIUgjMbadFRt9ogvRa5soMpCrl\nikikZc7MMNaKqW7oo80Eowfm3qNI1iA1iIeyHtvv6nqsEHKbNWCubotJ+faWysg+vsT1cmNb72dn\nR/vjUZBmGQ3HEZUKup7M5BlmAnOZm48yMM520jw0YHfz4My01tsrr7LB9uy83udr32Vrix9+XyVW\ni/Mv8vdmeV3X6+ocGcm6olyF54uMrw9jg3sOIkzgImMngudEt8hC2flYzoHyayfXG0PSk/FkfHQ5\nVZZRPEmoCBIvz3NJCuB5VrROXgYJQmShj9Ymbko7sF5w8RkewOJUZHGoCJS5YCxt1gGXk75I98sx\nzMUiewL3BAo9/k8Ac3ZJ2uXAPC7jqaZuJ1RyCaH8uxM24LVHw8PFd2PiGAwGg8FgMBgMBoPBYDA8\nBDgUEydNPRoNQipAKtv2Hr9dL1WALSGMgyuXPs7L3n/3B3yMgb7p27nKOxZzkF70kWPMJvHgbeLZ\nVX4Tv/+WptON9vntaHOOvz8Du69LLd7tboMB3B1JtY1vJF2qR9zRi+TV3fqJE3nZr/36LxAR0d5I\njYB3+rwT2u5cycu2ZCPiW//9Ql52an2N0vRoOyee51EYFmgIbI1MPmcFfeM+K7v8Lz51Pi9r//Bd\nIiKqLi3mZY89yenROztanyuLvPNWARO9njAFbt4AE7uE670hZnNTYKxclT4AL7FzI6reQHdfuj3u\nM21gdaw3eddpoaWpw0PZTQnxDaccLwazq5GkQw7BKCt4QMbGKRFBJjrqy678OIE3xuJo5d7+Eqnh\n5QT68dgxV+Ctq9u9DuHtbFlSMg5gh7/mUtk6Ng8wBtw2LKaucymiMT2xM9rEDXvHuOhBCsCBMCCG\nsLNel7bIwKLRjaUDO1YPKidkfn2QXlXqKARTsaHsvt2+rbufzgjyxMkTeVlBWAUri0tQJh/gmkeS\nXtSD/pXv5sluXL+t7CbXDgEwhgaS8tMP7zYoqzbBRFmavFTS2DmOeWxMJtr2t28zewh3JDZv8ffq\nRUj5vlQ8Mj0hDAJqzcxQAnGy7pgzYBw3kV2SGqQszkbO0RX6pmBmRtlLzoDbA0ZaSXYGPdJ44ssO\n1ETMTj3YkZ6a5niBbIO872FaSemb1brGSccimZnSWJNJn3Exj4ioNSu78+BQ686Gxo3Jg+jznkee\n5x0wO10QA2hk4sxL2draWl72/vu823ftqiYN6IrhfIIMMamLDFNPf+5vfCnC4nH/Qvz1ciNfPe5E\n5iI0ZXUMnAHEffcZzY7dZ2TxuDTcPvSP/9/IsuwAw8XFtHvtRGb3YOJgH/CEMYjH87y7Y6UD1uWP\nY+y4sntdp/cFdZWnl0fDXon9B8/F94MG227X86i7sp+H57HhZjnTGBJLPMeU6W7+DcGAtCgMguqM\nskl6cs0JsMIjSXXcGWtZV9aC9YrGmoKwfUOSdWKCDEMx+gamh0tdW4B1r/hW0hjWnansbI+hf0xi\nt2Ou5yhI+5VLGs8q8nm/o2yE8Xh8MA3wfWAS+HSlUaPJCOKWqzNYvA0l7u/HOL/ztXtQtiiszLVl\nnVtTWSdg0oOisLhxAZI4I1mp7wPm7DKOBpn27bGcvw0Mv9zQGA3Y3VwJscutpzD+OLYTmqg7djn2\n9wfR9z2PqBgQzQKjtN0WdtsYElXsSnuPlKUSy5qiWYQ1bomZOrhObNSZKVoEZtHeDlMOLn6gzyVf\neZ5ZThNhheESO5I6nnjYTjweRyPtixMZD1lRWVHutMhMjoX5UYi1zWoe3/ewo4wdx3i5vaPtM9XQ\nOfooSNOUxsM+ZZAIIhWmRQILfFnm0iTR+OOYXhF8L/T5t+Uyjg2+7ieeUSPwyYQr9q/+/N28bH+P\n66E1J8oFSJLiWCXIBMw8Z0SsZU4pUgAT3ETarQvxIs0c40r7nJtvMO4HUi/INvQoPbJ5fZoRDaLk\ngFG07+ZHgrTajsEP1Bn3CIeZzouy3ptMtDCS5Cwxmm4782aIHa5PZuvcSTf6OkYGYja+XIa1TkHY\nq7AWnozvNiIueq7Tw4UGTk2h8TxKHLMIWDdynBiyEOB9/CQwJo7BYDAYDAaDwWAwGAwGw0MAe4lj\nMBgMBoPBYDAYDAaDwfAQ4FByqkKhSCtLJ6jfV9r2SAxpKdX3Qf1dpvftg+ygIaaYKC2KR0w52ttV\n2uCJU2yG/N5FNYJqrrMU6LFXns/Lbl5mM9DKItPPt4Z6jKKwz0+tKr1z2Gez3xFQlSKhvXpAyXeG\nVQXlVONEAAAFgElEQVSgPBUr/JtGCSjndb7fmSWluscnmbK2cVGv5fXXPqZeV+mB94MsyyiNMkpR\nzjDhus18pd97daYWzy8fy8ueXGMpxi2g7F3ZYHqln6hRYUVkHt09vfa1ZaZrriwqXfKTi1zv+86M\nq6wUyYLQnZ3BKRHRQIzbumB2rHIipZAtVrh/1EOl/Tlm3QHpkBj6pmiOJ/T7BBxvs/QBvJ/MmE04\nAfnTKBKava9UPCdxIjA7zXLZgf7WSav2QbLhiQRruq4mchNH347B8FHqyhlqeaS0QyejQnPkiVxf\nqaTHjURqk0E/6g65Dwwivc59oRamGZgyN2X8gpF1boCKcosH+Fo4yIgSlHnJeK16Ko0JhSZaA7lM\nIBfR21eT31DMx+pAf3cmd6hECOSmoq7GroKYww2l790EI+K5Wab7NmoaB1Khi8YTbWdnYDaOVE6V\nyJgoFHUMu5AcQEwajqSvg1SqXGQKe3tXz+EX4wMGafeLLMsIVTgVMSSMYVyXhdaNhpBJJGaSJaDQ\nC50+CMFQMJcG6m9jkTgVgX7vaM7uHCmc38mosO9F0v/xuOTotEAdHk96d//2Xtck3b8AUrmSGKpn\nMHUGwaGm0XsiyzJK0/QAbd/RnatV7dvra2ykPz2lMXllmSn0n1xQs+OLF5g6f+vGjbys3+X7RrN1\n7wvkQj8JnGQT5VROHoXSBSexQumU+4xlpSJ/DmBg3lNedKir/LuR0d1mxE4eea/2QOTU9ANu0XdL\notxxEoif7u/3KrvXuRyi6G6pU1AAuWJ68NoQB5o2c+e/W86VHpDh8T841r/oGn8ieDxP+iBlITH7\n9X2NA6WqxERo8aHM/yHID6tO2pagrFiMSiHGL7VaRERUhrlxOOI+54lRMcrJRpEzu9f+7Uv/QBmt\n72RnaCwqdZzCfF0QnUAIJqsNmZdKEDudyWiCMoE0pc/ZkB8eCRH1iXxYV/lOphPA3Cqy7gP92MnZ\nC+BsLDKCCRg1u340BvsEutcYcP+6ZAtovE1urQXrOjH3z0Cq7KRbWXp3n+0PVVrixkqtpvfoDKfR\n7DhwYxD624OQiRfLFVo98wSVi3qPwwGvUfZuajKSiSRp2Ovq+iUOuJ/H0Af3bt8hIqJCVeuiO+J1\ny9VbGvc9WUj7Ze3v12+ylUI05nNU4G8NsTbYa6vUaSzjAyXVfoG/V4K161SBn0Giida7S+CQjXVN\nNR7xunMW5JAry3yc6rTGg6ef4qQ3//6979JR4BFRIQwPxIaJrG9Rwuecc1EOVszXOjpeCjJOV4+p\n+bRbTwx6+lw1L8ljWnM6Xzuz85W+1BsmMBHtUHhgHLikPCBvk/vA2B1L3MG4P5YxiUND11h6PGf2\nnsAzjB/6ufH4/cIjj/ygeMAC4V4e4e6SBrDed8szH7gmicRRUMxTKL4IITzzxcR1G4113Poiewrn\nxJLivF5Ta0fmUVjKuXk2w/M7mTUYsEe+s5pA2T1/9mEdH8g4DDyw4ig6/R6YHR9y/WVMHIPBYDAY\nDAaDwWAwGAyGhwDeYXbdPM/bJqKrX/hFw+dxPMuy+S/+2r1h9X4k3HfdW70fCdbnvxxYvX95sFjz\n5cD6/JcDq/cvB1bvXx4sxn85sD7/5cDq/cvDT1T3h3qJYzAYDAaDwWAwGAwGg8Fg+HJgciqDwWAw\nGAwGg8FgMBgMhocA9hLHYDAYDAaDwWAwGAwGg+EhgL3EMRgMBoPBYDAYDAaDwWB4CGAvcQwGg8Fg\nMBgMBoPBYDAYHgLYSxyDwWAwGAwGg8FgMBgMhocA9hLHYDAYDAaDwWAwGAwGg+EhgL3EMRgMBoPB\nYDAYDAaDwWB4CGAvcQwGg8FgMBgMBoPBYDAYHgLYSxyDwWAwGAwGg8FgMBgMhocA/w+j4KOVq/E3\nOwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11b76c940>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "fig = plt.figure(figsize=(20,5))\n", "for i in range(36):\n", " ax = fig.add_subplot(3, 12, i + 1, xticks=[], yticks=[])\n", " ax.imshow(np.squeeze(x_train[i]))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### 3. Rescale the Images by Dividing Every Pixel in Every Image by 255" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# rescale [0,255] --> [0,1]\n", "x_train = x_train.astype('float32')/255\n", "x_test = x_test.astype('float32')/255" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### 4. Break Dataset into Training, Testing, and Validation Sets" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x_train shape: (45000, 32, 32, 3)\n", "45000 train samples\n", "10000 test samples\n", "5000 validation samples\n" ] } ], "source": [ "from keras.utils import np_utils\n", "\n", "# one-hot encode the labels\n", "num_classes = len(np.unique(y_train))\n", "y_train = keras.utils.to_categorical(y_train, num_classes)\n", "y_test = keras.utils.to_categorical(y_test, num_classes)\n", "\n", "# break training set into training and validation sets\n", "(x_train, x_valid) = x_train[5000:], x_train[:5000]\n", "(y_train, y_valid) = y_train[5000:], y_train[:5000]\n", "\n", "# print shape of training set\n", "print('x_train shape:', x_train.shape)\n", "\n", "# print number of training, validation, and test images\n", "print(x_train.shape[0], 'train samples')\n", "print(x_test.shape[0], 'test samples')\n", "print(x_valid.shape[0], 'validation samples')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### 5. Define the Model Architecture " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "conv2d_1 (Conv2D) (None, 32, 32, 16) 208 \n", "_________________________________________________________________\n", "max_pooling2d_1 (MaxPooling2 (None, 16, 16, 16) 0 \n", "_________________________________________________________________\n", "conv2d_2 (Conv2D) (None, 16, 16, 32) 2080 \n", "_________________________________________________________________\n", "max_pooling2d_2 (MaxPooling2 (None, 8, 8, 32) 0 \n", "_________________________________________________________________\n", "conv2d_3 (Conv2D) (None, 8, 8, 64) 8256 \n", "_________________________________________________________________\n", "max_pooling2d_3 (MaxPooling2 (None, 4, 4, 64) 0 \n", "_________________________________________________________________\n", "dropout_1 (Dropout) (None, 4, 4, 64) 0 \n", "_________________________________________________________________\n", "flatten_1 (Flatten) (None, 1024) 0 \n", "_________________________________________________________________\n", "dense_1 (Dense) (None, 500) 512500 \n", "_________________________________________________________________\n", "dropout_2 (Dropout) (None, 500) 0 \n", "_________________________________________________________________\n", "dense_2 (Dense) (None, 10) 5010 \n", "=================================================================\n", "Total params: 528,054\n", "Trainable params: 528,054\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "from keras.models import Sequential\n", "from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout\n", "\n", "model = Sequential()\n", "model.add(Conv2D(filters=16, kernel_size=2, padding='same', activation='relu', \n", " input_shape=(32, 32, 3)))\n", "model.add(MaxPooling2D(pool_size=2))\n", "model.add(Conv2D(filters=32, kernel_size=2, padding='same', activation='relu'))\n", "model.add(MaxPooling2D(pool_size=2))\n", "model.add(Conv2D(filters=64, kernel_size=2, padding='same', activation='relu'))\n", "model.add(MaxPooling2D(pool_size=2))\n", "model.add(Dropout(0.3))\n", "model.add(Flatten())\n", "model.add(Dense(500, activation='relu'))\n", "model.add(Dropout(0.4))\n", "model.add(Dense(10, activation='softmax'))\n", "\n", "model.summary()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### 6. Compile the Model " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# compile the model\n", "model.compile(loss='categorical_crossentropy', optimizer='rmsprop', \n", " metrics=['accuracy'])" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### 7. Train the Model " ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": true, "editable": true, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 45000 samples, validate on 5000 samples\n", "Epoch 1/100\n", "Epoch 00000: val_loss improved from inf to 1.35820, saving model to model.weights.best.hdf5\n", "46s - loss: 1.6192 - acc: 0.4140 - val_loss: 1.3582 - val_acc: 0.5166\n", "Epoch 2/100\n", "Epoch 00001: val_loss improved from 1.35820 to 1.22245, saving model to model.weights.best.hdf5\n", "53s - loss: 1.2881 - acc: 0.5402 - val_loss: 1.2224 - val_acc: 0.5644\n", "Epoch 3/100\n", "Epoch 00002: val_loss improved from 1.22245 to 1.12096, saving model to model.weights.best.hdf5\n", "49s - loss: 1.1630 - acc: 0.5879 - val_loss: 1.1210 - val_acc: 0.6046\n", "Epoch 4/100\n", "Epoch 00003: val_loss improved from 1.12096 to 1.10724, saving model to model.weights.best.hdf5\n", "56s - loss: 1.0928 - acc: 0.6160 - val_loss: 1.1072 - val_acc: 0.6134\n", "Epoch 5/100\n", "Epoch 00004: val_loss improved from 1.10724 to 0.97377, saving model to model.weights.best.hdf5\n", "52s - loss: 1.0413 - acc: 0.6382 - val_loss: 0.9738 - val_acc: 0.6596\n", "Epoch 6/100\n", "Epoch 00005: val_loss improved from 0.97377 to 0.95501, saving model to model.weights.best.hdf5\n", "50s - loss: 1.0090 - acc: 0.6484 - val_loss: 0.9550 - val_acc: 0.6768\n", "Epoch 7/100\n", "Epoch 00006: val_loss improved from 0.95501 to 0.94448, saving model to model.weights.best.hdf5\n", "49s - loss: 0.9967 - acc: 0.6561 - val_loss: 0.9445 - val_acc: 0.6828\n", "Epoch 8/100\n", "Epoch 00007: val_loss did not improve\n", "61s - loss: 0.9934 - acc: 0.6604 - val_loss: 1.1300 - val_acc: 0.6376\n", "Epoch 9/100\n", "Epoch 00008: val_loss improved from 0.94448 to 0.91779, saving model to model.weights.best.hdf5\n", "49s - loss: 0.9858 - acc: 0.6672 - val_loss: 0.9178 - val_acc: 0.6882\n", "Epoch 10/100\n", "Epoch 00009: val_loss did not improve\n", "50s - loss: 0.9839 - acc: 0.6658 - val_loss: 0.9669 - val_acc: 0.6748\n", "Epoch 11/100\n", "Epoch 00010: val_loss improved from 0.91779 to 0.91570, saving model to model.weights.best.hdf5\n", "49s - loss: 1.0002 - acc: 0.6624 - val_loss: 0.9157 - val_acc: 0.6936\n", "Epoch 12/100\n", "Epoch 00011: val_loss did not improve\n", "54s - loss: 1.0001 - acc: 0.6659 - val_loss: 1.1442 - val_acc: 0.6646\n", "Epoch 13/100\n", "Epoch 00012: val_loss did not improve\n", "56s - loss: 1.0161 - acc: 0.6633 - val_loss: 0.9702 - val_acc: 0.6788\n", "Epoch 14/100\n", "Epoch 00013: val_loss did not improve\n", "46s - loss: 1.0316 - acc: 0.6568 - val_loss: 0.9937 - val_acc: 0.6766\n", "Epoch 15/100\n", "Epoch 00014: val_loss did not improve\n", "54s - loss: 1.0412 - acc: 0.6525 - val_loss: 1.1574 - val_acc: 0.6190\n", "Epoch 16/100\n", "Epoch 00015: val_loss did not improve\n", "55s - loss: 1.0726 - acc: 0.6462 - val_loss: 1.0492 - val_acc: 0.6790\n", "Epoch 17/100\n", "Epoch 00016: val_loss did not improve\n", "48s - loss: 1.0891 - acc: 0.6387 - val_loss: 1.0739 - val_acc: 0.6528\n", "Epoch 18/100\n", "Epoch 00017: val_loss did not improve\n", "46s - loss: 1.1152 - acc: 0.6337 - val_loss: 1.0672 - val_acc: 0.6610\n", "Epoch 19/100\n", "Epoch 00018: val_loss did not improve\n", "47s - loss: 1.1392 - acc: 0.6258 - val_loss: 1.5400 - val_acc: 0.5742\n", "Epoch 20/100\n", "Epoch 00019: val_loss did not improve\n", "47s - loss: 1.1565 - acc: 0.6207 - val_loss: 1.0309 - val_acc: 0.6636\n", "Epoch 21/100\n", "Epoch 00020: val_loss did not improve\n", "44s - loss: 1.1711 - acc: 0.6159 - val_loss: 1.4559 - val_acc: 0.5736\n", "Epoch 22/100\n", "Epoch 00021: val_loss did not improve\n", "44s - loss: 1.1802 - acc: 0.6132 - val_loss: 1.1716 - val_acc: 0.6288\n", "Epoch 23/100\n", "Epoch 00022: val_loss did not improve\n", "44s - loss: 1.2012 - acc: 0.6033 - val_loss: 1.3916 - val_acc: 0.6222\n", "Epoch 24/100\n", "Epoch 00023: val_loss did not improve\n", "47s - loss: 1.2319 - acc: 0.5964 - val_loss: 1.5698 - val_acc: 0.5688\n", "Epoch 25/100\n", "Epoch 00024: val_loss did not improve\n", "50s - loss: 1.2479 - acc: 0.5914 - val_loss: 1.2740 - val_acc: 0.6038\n", "Epoch 26/100\n", "Epoch 00025: val_loss did not improve\n", "58s - loss: 1.2616 - acc: 0.5870 - val_loss: 1.2803 - val_acc: 0.5496\n", "Epoch 27/100\n", "Epoch 00026: val_loss did not improve\n", "57s - loss: 1.2908 - acc: 0.5792 - val_loss: 1.0756 - val_acc: 0.6432\n", "Epoch 28/100\n", "Epoch 00027: val_loss did not improve\n", "55s - loss: 1.3248 - acc: 0.5667 - val_loss: 1.2289 - val_acc: 0.5800\n", "Epoch 29/100\n", "Epoch 00028: val_loss did not improve\n", "57s - loss: 1.3258 - acc: 0.5633 - val_loss: 1.3088 - val_acc: 0.5756\n", "Epoch 30/100\n", "Epoch 00029: val_loss did not improve\n", "46s - loss: 1.3381 - acc: 0.5586 - val_loss: 1.2569 - val_acc: 0.6044\n", "Epoch 31/100\n", "Epoch 00030: val_loss did not improve\n", "55s - loss: 1.3507 - acc: 0.5545 - val_loss: 1.3436 - val_acc: 0.5562\n", "Epoch 32/100\n", "Epoch 00031: val_loss did not improve\n", "61s - loss: 1.3643 - acc: 0.5513 - val_loss: 1.2951 - val_acc: 0.5646\n", "Epoch 33/100\n", "Epoch 00032: val_loss did not improve\n", "69s - loss: 1.3873 - acc: 0.5426 - val_loss: 1.4049 - val_acc: 0.6066\n", "Epoch 34/100\n", "Epoch 00033: val_loss did not improve\n", "53s - loss: 1.3842 - acc: 0.5415 - val_loss: 1.8164 - val_acc: 0.5640\n", "Epoch 35/100\n", "Epoch 00034: val_loss did not improve\n", "48s - loss: 1.4187 - acc: 0.5303 - val_loss: 1.7554 - val_acc: 0.5616\n", "Epoch 36/100\n", "Epoch 00035: val_loss did not improve\n", "57s - loss: 1.4278 - acc: 0.5268 - val_loss: 1.9956 - val_acc: 0.5072\n", "Epoch 37/100\n", "Epoch 00036: val_loss did not improve\n", "58s - loss: 1.4365 - acc: 0.5216 - val_loss: 1.8344 - val_acc: 0.4748\n", "Epoch 38/100\n", "Epoch 00037: val_loss did not improve\n", "64s - loss: 1.4529 - acc: 0.5205 - val_loss: 1.2752 - val_acc: 0.5690\n", "Epoch 39/100\n", "Epoch 00038: val_loss did not improve\n", "62s - loss: 1.4726 - acc: 0.5111 - val_loss: 1.7092 - val_acc: 0.5600\n", "Epoch 40/100\n", "Epoch 00039: val_loss did not improve\n", "70s - loss: 1.4673 - acc: 0.5107 - val_loss: 1.2288 - val_acc: 0.5698\n", "Epoch 41/100\n", "Epoch 00040: val_loss did not improve\n", "68s - loss: 1.4872 - acc: 0.5083 - val_loss: 1.4082 - val_acc: 0.5162\n", "Epoch 42/100\n", "Epoch 00041: val_loss did not improve\n", "69s - loss: 1.4983 - acc: 0.5003 - val_loss: 1.5808 - val_acc: 0.4818\n", "Epoch 43/100\n", "Epoch 00042: val_loss did not improve\n", "79s - loss: 1.5211 - acc: 0.4957 - val_loss: 1.2271 - val_acc: 0.5882\n", "Epoch 44/100\n", "Epoch 00043: val_loss did not improve\n", "95s - loss: 1.5474 - acc: 0.4867 - val_loss: 3.7681 - val_acc: 0.3394\n", "Epoch 45/100\n", "Epoch 00044: val_loss did not improve\n", "80s - loss: 1.5432 - acc: 0.4854 - val_loss: 1.3349 - val_acc: 0.5830\n", "Epoch 46/100\n", "Epoch 00045: val_loss did not improve\n", "63s - loss: 1.5615 - acc: 0.4785 - val_loss: 1.4494 - val_acc: 0.5332\n", "Epoch 47/100\n", "Epoch 00046: val_loss did not improve\n", "47s - loss: 1.5731 - acc: 0.4752 - val_loss: 1.4689 - val_acc: 0.4648\n", "Epoch 48/100\n", "Epoch 00047: val_loss did not improve\n", "49s - loss: 1.5832 - acc: 0.4694 - val_loss: 1.6045 - val_acc: 0.3992\n", "Epoch 49/100\n", "Epoch 00048: val_loss did not improve\n", "50s - loss: 1.6000 - acc: 0.4670 - val_loss: 3.0627 - val_acc: 0.3648\n", "Epoch 50/100\n", "Epoch 00049: val_loss did not improve\n", "73s - loss: 1.5988 - acc: 0.4655 - val_loss: 1.4299 - val_acc: 0.5020\n", "Epoch 51/100\n", "Epoch 00050: val_loss did not improve\n", "52s - loss: 1.6025 - acc: 0.4623 - val_loss: 1.6269 - val_acc: 0.4766\n", "Epoch 52/100\n", "Epoch 00051: val_loss did not improve\n", "53s - loss: 1.6104 - acc: 0.4601 - val_loss: 1.4260 - val_acc: 0.5390\n", "Epoch 53/100\n", "Epoch 00052: val_loss did not improve\n", "51s - loss: 1.6203 - acc: 0.4569 - val_loss: 1.3396 - val_acc: 0.5366\n", "Epoch 54/100\n", "Epoch 00053: val_loss did not improve\n", "50s - loss: 1.6354 - acc: 0.4500 - val_loss: 1.6159 - val_acc: 0.4512\n", "Epoch 55/100\n", "Epoch 00054: val_loss did not improve\n", "53s - loss: 1.6552 - acc: 0.4433 - val_loss: 1.7258 - val_acc: 0.4468\n", "Epoch 56/100\n", "Epoch 00055: val_loss did not improve\n", "47s - loss: 1.6696 - acc: 0.4363 - val_loss: 1.4365 - val_acc: 0.4938\n", "Epoch 57/100\n", "Epoch 00056: val_loss did not improve\n", "46s - loss: 1.6605 - acc: 0.4368 - val_loss: 2.5907 - val_acc: 0.3732\n", "Epoch 58/100\n", "Epoch 00057: val_loss did not improve\n", "50s - loss: 1.6720 - acc: 0.4336 - val_loss: 1.5503 - val_acc: 0.4274\n", "Epoch 59/100\n", "Epoch 00058: val_loss did not improve\n", "68s - loss: 1.6897 - acc: 0.4281 - val_loss: 1.5233 - val_acc: 0.4362\n", "Epoch 60/100\n", "Epoch 00059: val_loss did not improve\n", "73s - loss: 1.7099 - acc: 0.4201 - val_loss: 1.4141 - val_acc: 0.5124\n", "Epoch 61/100\n", "Epoch 00060: val_loss did not improve\n", "71s - loss: 1.7182 - acc: 0.4182 - val_loss: 1.5190 - val_acc: 0.4486\n", "Epoch 62/100\n", "Epoch 00061: val_loss did not improve\n", "72s - loss: 1.7177 - acc: 0.4179 - val_loss: 1.4966 - val_acc: 0.4860\n", "Epoch 63/100\n", "Epoch 00062: val_loss did not improve\n", "59s - loss: 1.7079 - acc: 0.4228 - val_loss: 1.6089 - val_acc: 0.4384\n", "Epoch 64/100\n", "Epoch 00063: val_loss did not improve\n", "50s - loss: 1.7101 - acc: 0.4147 - val_loss: 1.6014 - val_acc: 0.4430\n", "Epoch 65/100\n", "Epoch 00064: val_loss did not improve\n", "49s - loss: 1.7180 - acc: 0.4144 - val_loss: 2.2502 - val_acc: 0.3712\n", "Epoch 66/100\n", "Epoch 00065: val_loss did not improve\n", "50s - loss: 1.7190 - acc: 0.4140 - val_loss: 1.3967 - val_acc: 0.4964\n", "Epoch 67/100\n", "Epoch 00066: val_loss did not improve\n", "50s - loss: 1.7262 - acc: 0.4082 - val_loss: 1.5334 - val_acc: 0.4650\n", "Epoch 68/100\n", "Epoch 00067: val_loss did not improve\n", "50s - loss: 1.7432 - acc: 0.4032 - val_loss: 1.7911 - val_acc: 0.3588\n", "Epoch 69/100\n", "Epoch 00068: val_loss did not improve\n", "50s - loss: 1.7309 - acc: 0.4054 - val_loss: 1.6592 - val_acc: 0.3892\n", "Epoch 70/100\n", "Epoch 00069: val_loss did not improve\n", "50s - loss: 1.7581 - acc: 0.3977 - val_loss: 1.6551 - val_acc: 0.4056\n", "Epoch 71/100\n", "Epoch 00070: val_loss did not improve\n", "50s - loss: 1.7619 - acc: 0.3930 - val_loss: 1.5855 - val_acc: 0.4670\n", "Epoch 72/100\n", "Epoch 00071: val_loss did not improve\n", "55s - loss: 1.7690 - acc: 0.3918 - val_loss: 1.5534 - val_acc: 0.4350\n", "Epoch 73/100\n", "Epoch 00072: val_loss did not improve\n", "77s - loss: 1.7910 - acc: 0.3890 - val_loss: 1.5390 - val_acc: 0.4692\n", "Epoch 74/100\n", "Epoch 00073: val_loss did not improve\n", "68s - loss: 1.7941 - acc: 0.3853 - val_loss: 1.4875 - val_acc: 0.4764\n", "Epoch 75/100\n", "Epoch 00074: val_loss did not improve\n", "71s - loss: 1.8069 - acc: 0.3816 - val_loss: 1.6594 - val_acc: 0.3990\n", "Epoch 76/100\n", "Epoch 00075: val_loss did not improve\n", "63s - loss: 1.8160 - acc: 0.3776 - val_loss: 1.6119 - val_acc: 0.3804\n", "Epoch 77/100\n", "Epoch 00076: val_loss did not improve\n", "52s - loss: 1.8073 - acc: 0.3793 - val_loss: 1.5836 - val_acc: 0.4578\n", "Epoch 78/100\n", "Epoch 00077: val_loss did not improve\n", "72s - loss: 1.8185 - acc: 0.3731 - val_loss: 1.6415 - val_acc: 0.4004\n", "Epoch 79/100\n", "Epoch 00078: val_loss did not improve\n", "78s - loss: 1.8229 - acc: 0.3724 - val_loss: 1.7005 - val_acc: 0.3834\n", "Epoch 80/100\n", "Epoch 00079: val_loss did not improve\n", "61s - loss: 1.8316 - acc: 0.3664 - val_loss: 1.8900 - val_acc: 0.2996\n", "Epoch 81/100\n", "Epoch 00080: val_loss did not improve\n", "50s - loss: 1.8274 - acc: 0.3656 - val_loss: 1.6902 - val_acc: 0.3794\n", "Epoch 82/100\n", "Epoch 00081: val_loss did not improve\n", "50s - loss: 1.8448 - acc: 0.3609 - val_loss: 1.9591 - val_acc: 0.3094\n", "Epoch 83/100\n", "Epoch 00082: val_loss did not improve\n", "48s - loss: 1.8468 - acc: 0.3566 - val_loss: 1.6827 - val_acc: 0.4108\n", "Epoch 84/100\n", "Epoch 00083: val_loss did not improve\n", "48s - loss: 1.9039 - acc: 0.3516 - val_loss: 1.5814 - val_acc: 0.4456\n", "Epoch 85/100\n", "Epoch 00084: val_loss did not improve\n", "68s - loss: 1.8499 - acc: 0.3550 - val_loss: 1.8199 - val_acc: 0.3736\n", "Epoch 86/100\n", "Epoch 00085: val_loss did not improve\n", "77s - loss: 1.8404 - acc: 0.3556 - val_loss: 1.7326 - val_acc: 0.3518\n", "Epoch 87/100\n", "Epoch 00086: val_loss did not improve\n", "59s - loss: 1.8509 - acc: 0.3513 - val_loss: 1.6321 - val_acc: 0.4042\n", "Epoch 88/100\n", "Epoch 00087: val_loss did not improve\n", "51s - loss: 1.8580 - acc: 0.3502 - val_loss: 2.8168 - val_acc: 0.3208\n", "Epoch 89/100\n", "Epoch 00088: val_loss did not improve\n", "60s - loss: 1.8760 - acc: 0.3392 - val_loss: 1.6616 - val_acc: 0.4156\n", "Epoch 90/100\n", "Epoch 00089: val_loss did not improve\n", "61s - loss: 1.8682 - acc: 0.3462 - val_loss: 1.6725 - val_acc: 0.3900\n", "Epoch 91/100\n", "Epoch 00090: val_loss did not improve\n", "57s - loss: 1.8900 - acc: 0.3312 - val_loss: 1.6851 - val_acc: 0.3424\n", "Epoch 92/100\n", "Epoch 00091: val_loss did not improve\n", "54s - loss: 1.8889 - acc: 0.3363 - val_loss: 1.6296 - val_acc: 0.4230\n", "Epoch 93/100\n", "Epoch 00092: val_loss did not improve\n", "56s - loss: 1.9040 - acc: 0.3343 - val_loss: 1.7510 - val_acc: 0.3306\n", "Epoch 94/100\n", "Epoch 00093: val_loss did not improve\n", "50s - loss: 1.9041 - acc: 0.3266 - val_loss: 1.7218 - val_acc: 0.3582\n", "Epoch 95/100\n", "Epoch 00094: val_loss did not improve\n", "48s - loss: 1.8978 - acc: 0.3224 - val_loss: 1.6739 - val_acc: 0.3970\n", "Epoch 96/100\n", "Epoch 00095: val_loss did not improve\n", "48s - loss: 1.9173 - acc: 0.3180 - val_loss: 1.7337 - val_acc: 0.3526\n", "Epoch 97/100\n", "Epoch 00096: val_loss did not improve\n", "48s - loss: 1.9016 - acc: 0.3204 - val_loss: 1.7351 - val_acc: 0.3452\n", "Epoch 98/100\n", "Epoch 00097: val_loss did not improve\n", "48s - loss: 1.9117 - acc: 0.3170 - val_loss: 2.2827 - val_acc: 0.2592\n", "Epoch 99/100\n", "Epoch 00098: val_loss did not improve\n", "48s - loss: 1.9319 - acc: 0.3049 - val_loss: 2.9560 - val_acc: 0.3060\n", "Epoch 100/100\n", "Epoch 00099: val_loss did not improve\n", "48s - loss: 1.9390 - acc: 0.3070 - val_loss: 1.9106 - val_acc: 0.3102\n" ] } ], "source": [ "from keras.callbacks import ModelCheckpoint \n", "\n", "# train the model\n", "checkpointer = ModelCheckpoint(filepath='model.weights.best.hdf5', verbose=1, \n", " save_best_only=True)\n", "hist = model.fit(x_train, y_train, batch_size=32, epochs=100,\n", " validation_data=(x_valid, y_valid), callbacks=[checkpointer], \n", " verbose=2, shuffle=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### 8. Load the Model with the Best Validation Accuracy" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# load the weights that yielded the best validation accuracy\n", "model.load_weights('model.weights.best.hdf5')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### 9. Calculate Classification Accuracy on Test Set" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Test accuracy: 0.68\n" ] } ], "source": [ "# evaluate and print test accuracy\n", "score = model.evaluate(x_test, y_test, verbose=0)\n", "print('\\n', 'Test accuracy:', score[1])" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### 10. Visualize Some Predictions\n", "\n", "This may give you some insight into why the network is misclassifying certain objects." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# get predictions on the test set\n", "y_hat = model.predict(x_test)\n", "\n", "# define text labels (source: https://www.cs.toronto.edu/~kriz/cifar.html)\n", "cifar10_labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGMAAAHUCAYAAACeWuVuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWmgJVlVJbxOxJ3fPObwcqwcqHmAogqZRRAQ68NGULAB\n0VYabRpoZ1H6cT8FbVsckK9bGwcUhUZwQBBUZgQKasyaq7Jynl/mm++7871xvh8nbuwVL+/NfFmZ\n9TLvY68/eTJe3IgT5+yzz4kTa+1trLVQKBQKhUKhUCgUCoVCoVCsDrzLXQGFQqFQKBQKhUKhUCgU\niu8m6GaMQqFQKBQKhUKhUCgUCsUqQjdjFAqFQqFQKBQKhUKhUChWEboZo1AoFAqFQqFQKBQKhUKx\nitDNGIVCoVAoFAqFQqFQKBSKVYRuxigUCoVCoVAoFAqFQqFQrCJWdzPGmEMw5qWres+VwJgxGPM4\njMl2+Pt7YcxfP033vgPGfOJpufZ3A4x5BozZA2MKMOYdq3TP34Ix7wrLL4Yxx85x7h/DmPdc4PUt\njNkZlj8AY37mqVdWcT6YvPmqyZuf6vC3LSZvlkze+Oc7d4X3+qbJm1ue6u+vBJi8eYvJm2+c4++f\nN3nz4ys5d9nvPmDy3x22bvLGmnw4xld2/qrZjcmbj5i8+c0Of/uu6aOnE+pzLgzqc1YXJm/SJm8e\nNXmz4Wm49l0mb6671NdVtMe5/PnTdL+Xm7z5x3P8/aL82XnureP5EkHtZnWhzBiHXwHwEVhbXvU7\nW/sZANfBmBtX/d5rA78E4Cuwtg/WfvBpv5sxYwDeDOBPVnS+tW+Dtb9xEXf8XQDvhjGpi7jGFY+n\n09FeDOykPWInba+dtM2LvZbJmzsAFOykvf8SXGvFLxyrDTtpX2kn7V8+hZ/+LoB3m/zlt3WTN4dM\n/sr4cLDcbkzevNfkn6aPA+fHFdNHFwv1ORd8LfU5awAr9G1vBfB1O2lPXuS92r3Q/S6A//dirqu4\novE+AL99me79XTee1xC+q+2mOzdjjElcwmulAfw4gNVf3MpzfBxu8lNcOLYCeKTjX437ungJ8RYA\nn7skG3crsWNrTwJ4HMD/c9H3U1xuvA3ARy93Ja5UhAv/rrB1k7+Ec9D5cUF2Y/LGmLx5Wub2buoj\nBQD1OeeE2nNHPJ12808Avtfkzfqn6fqKVUC7OdDkzbMBDNhJ++3LUB9fx/OVD7Wb9ljNBWULN8OY\n34N7if4XAD8OaysAAGN+GsAvAxgG8A0Ab4O1J8K/WQBvB/AuAAkYcxWA3wPwHwFkABwG8AZY+3C4\nwfI+AD8CIA3gHwD8tw4v0LcDmIe1IjUxZjuAjwB4JoBvA3gi9gtjnhPe+9rwvu+EtV8N/zYQ/u0H\nAAQA/gLAJKxtwpi3APhpAHfBsSv+N4BfB/BVuM2gt6+0ERUAjPkygBcBeD6M+QO4/no3gDKcfb0I\nwKthzN0A/gjAKwGUAHwYwPthbRBu1vwO3IZcAcAHwnOTsLbR5q6vBPDnberybgA/B2AJwK/B2r8J\nj38EwDFY++sw5sVw/fxHAP4bgC8AeBOM+cXwtxbOHpbjqwBeBeBTK26bywCTN78CZ9/jAI4C+DU7\naf8h/Nt7Aey0k/aN4f+3ATgIIAkgD+AFAJ5j8uYPAHzETtq3m7x5LoA/BLAbwF4A77ST9lvh778K\n5yNeAuBGAF+B2yj7IIA74Mbs6+ykPRSe3/FaIXaYvLkLwNXhtX7CTtpZrqedPNseTN78JIBfBLAe\nbly/1U7aw23OS4V1/c907LawTtfA2ezfAfg5O2lr7e4bPvNfA/gmgD8GkDR5swSgYSftoMmbAbSx\ncztpA5OP+Z6fADAL4I1he/wGnJ/8xdbX5XNdq1V9kzcfAvAmACcB/Bc7ab/E9bST9k/btMPV4XWf\nBeAMgPfYSfu3dMpXcZlt3eTNRwFsAfAZkzdNuK+4fwvXHz8FYBLAIZM3/x3uOTfRbw8B+Ck7ab8Y\nykx+GcB/ghsTewH8kJ20R5fd7/lwG/JvspPhPCJ/i9mNyZtXwPk4Y/LmhwDst5P2prDNvwngxXB+\n8AaTN19s1SX87XsRH4PPh/N918L5vvfYSfuRZffvg3t5eghuzFhcAX3Ugvoc9Tlcz271OU8FJm82\nw/XlC+A+rH48tOEdcG13E9ya4l/h2mq+nW+zk/Z3ll13C4CrAHyHjmUB/CaA1wIYhPMHL7OTtmzy\n5pNhHbIAHgDwM3bSPmLy5q1w63Nr8uZdAL5iJ+0ddtJWTN7cC+DlAJ4Km0lxDhgnSfwzALsAfA7O\nBvjvPwjXl9sAPArgbXbSPhj+bSPcWHkh3Fr29+2kY5yH/vR6ABW4l9afA7B8vL0SwNeW3e9l4TU3\nwG3wmWV/7+jPzjV2Td58BMvX+sAX0aXj+XJD7eby2s3lYMb8CIBXANgOt6B5CwDAmJcA+K3w7xvg\nNjn+77Lf/hDc5sm1AL4fruN3AxgIfzcTnvfb4fGbAewEMAHgv3eozw1YvtkCfAzAvQBG4RYNPx79\nxZgJAP8MZ5TDAH4BwN+F8hXAbeI0wvveEtaTqdC3AzgAYB3chhEAPAZgG4zp71BHRTtY+xIA/w7g\n7bC2F9buDf/yY3Bt2we3eP4jOBu5Cm7wvRlucQi4xeIr4WzlmXA2di60s5f1cLYyAWcr/wfGPKPD\n79fD2c1WAG+FMa+As6GXwTnBdvThx+AWVlc69sMtygbgXnb+2qxAc24n7a8h7MeQnv92kzfDcOPs\ngwBG4DY4/9nkzQj99PVwC/MJADsA3Am3+TkM12aTALDCa70ZwE/C+Z5GeO45YfLm1XAvxq8BMBY+\nw8c7nL4LQGAnadMXaMJtyo0C+B4A3wfgZ893XztpH4P7cnln2F6D4Z/OZeeA8z0PwrXBx+D867Ph\nfNUbAXzI5E3vBVxrf1j3SQB/H7ZzR5i86YHbgPwY3Mvz6wH8L5M319Jpl93W7aR9E4AjAO4I25df\nVl4E9yL78hVc6ucAvAFuY74fzr5KfEK4ufJxAD+8fCMmRMxu7KT9FwDvB/CJsG7cVm+CY1j2wc2f\nHWHyZiuAz8P18xic/9uz7JwRAF8C8E07ad8RbsQAV0AfEdTnqM/piG7xOReKcKP3s3DjfBucPbbW\nywZuLb0RzldtBvBe4Ly+rYUbABxYthH4u3AvNs+Fs/VfgvvYCDg/sguufe8D8Dfhvf5PWP6d8F53\n0PW6rs27AeEG7D/CvbwOA/gkgB+mv98C9zHxP8ONyT8B8E/GxQjyAHwGbkNtAs43vMvkDc91r4Z7\nWR1E2M/LEFsfm7wZBfD3cB8ZR+HG7/Po7x392QrH7vK1PqC2dcFQuwFwme3mcjBjPkhsl8/ALQIB\nt4P+57D2vvBvvwpgDsZsg3VfmgD8FqydDf9eh2vIqwHcBWsfC48buAXpjXTu++E65lfb1GcQ7qsg\nwnO3wC0WXgprqwC+HtazhTfCyVQ+F/7/CzDmHgA/AGP+BW7hPRiycIow5vfD+rRijJyAtX8UlluT\nXev+gwAWO7SbYuX4NKz9JoCWnbwewM2wtgCgAGM+ALeg/jO4Tbw/jJhRxvw2nDPphLi9CN4T2svX\nYMw/h9dtFysmgGNKVcP7/QiAv4C1D4f/fy/cCxyjEN73ioadtJ+k/37C5M2vArgNwKefwuVeBeBJ\nO2lbVOmPm7x5B9wX6I+Ex/7CTtr9AGDy5vMAriUWwCch7b+Sa33UTro+MHnzHgB7TBgQ8hx4G4Df\nCl9UYPLm/XC6061tvlSfZTd20t5L/z1k8uZP4F5C/uA89z0L4eL89QButpPOzk0+ZucAcNBO2r8I\nz/8EgF+D+zJaBfBvJm9qAHaavHloBdc6DeAPwhf0T5i8+Xm4dj4Xtf0HARxq1QHA/SZv/g7A6+Be\npIEr39bfaydtEQBM3pzv3J8C8Et20rYWGQ8s+/vr4GzolS3ba4NO/qYdPmInbSTZPE/9fgzAF+2k\nbb3Iz0A+ZgDuRe5rAP7STtr/uey3V0wfqc9Rn4O173Pa4Ta4MfqLtGnyDQCwk3YfgH3hsTMmb34P\n4SbhChGzm/Bl6ycBPMdO2uPh4YjhZSftn9O57wUwZ/JmwE7ahXPcowC3Cam4tHgOHPOvNU4+ZfLm\n5+jvbwXwJ3bStlhPf2ny5t3h7yoAxuykbcXzOWDy5sNw4/Jfw2N32knbCrLaTmmw3Of8AIBH7KT9\nFAAYx0L8efp7R38W1ul8Y/fTdjJc67v6A905ni831G4us91cjs2YU1QuwU0oCP+9L/qLtUswZgZu\np+1QePQo/f3LMOZDAP4/AFthzN/DMQwyAHIA7oWJFqMGQKfYIXNwmzotbAQwB+sW3CEOw31dAByj\n4XUwhnf5k3A0461h+STd24vVO15uoXX/+Q51VFwYuI1H4fqEF6qH4ewKcP19vv5hLLcXd+xse9mI\n9jgTyfLk/rxAbvdFuw9dYBsmb94MxwbYFh7qhWv/p4KNOLstuN8AYIrK5Tb/b31xXcm1ji77WxLn\nr/tWAH8YvjS0YMLrLr/fWXZj8mY33BfzW+F8VgJxW7gQnM/OgbPbB3bStmuzlVzrODElWn/vZPMt\nbAVwu8kbtuUE4i9TV7qtn88/MDbDfdHphHcB+KtzbMQA7f1NJ1zKur0Kjm78x23+dsX0kfocAOpz\nzoW14HPaYTOAwx1kbOsg8qU+uDXo3AVce7ndjMKtq8/yF+GG3PvgXnTGIGyZUQDn2ozpxjbvBmxE\n+3HSwlYAP27y5r/SsVT4uyaAjcvGig/HOmjhQtfHsfW1nbTW5A1f41z+bCVjt9P7lNrWhUHt5jLb\nzeXYjOmEE3CN6GBMDxwd6jidE9OwhdlzPghjxuE0/b8I9wWgDOA6WHsc58eDcLTdFk4CGIIxPfSC\nvYXufRTAR2HtT591JWM2AKgCGO0Qb+TsZ3C4BsAhWKusmEsDbuNpAHU423o0PLYFYlcnAWyi8zfj\n3HgQTgJ3Nx1rZy+dXrCW9//JZffc0uY31+Dsr+pXFMId6Q/DsYrutJO2afJmD0TnWYRb/LewPHjf\n8naJ+wOHLXBxpi4UK7nW8j6ow9nOuezhKID32Unbjna5HPvgYh5M0NfF/w3gfgBvsJO2YJyu/rXh\n31q2lIOw5bjNlrfX+ez8QrCSa02YvDE0eW+Biy1yLhwF8DU7aV92jnOuFFtv56eXH4/ZdPhiMkZ/\nPwonZenkC14H4M9M3hyzk/YPO5zTzm5WUrez6oe4/RyF+7reCR8GMATgcyZvXtFiA4W4IvpIfc55\noT6nu3zOheAogC0mbxJtNmTeD9dXN1gXg+iHAHyI/t7Jf7TwIIDtdO1puK/HO3B2O/0YnAThpXAf\nTQfgXqxaY7DTva7B5UiasfZxEu3HSWsjreU/3rf8hyZvvgeOybbrHNdfie3sXlafyJ+ZvDGI+7eO\n/iz07+cbu53ep7ptPF9uqN1cZru5krIpfRzAT8CYm8MAvO8H8B2SKMVhzLNhzO0wJgm3iKgACGBt\nALdA+/1wk8bFeTGmk8b/LgCDYSwYwNrDAO4BkIcxKRjzfDhqcQt/DeAOGPNyGOPDmAyMeTGM2RRm\nvvk3AB+AMf0wxoMxO2DMi87z7C+C090qLjWsbcJt1L0PxvTBmK1wX1JbC4G/BfDO0EYG4QJunguf\ng+uv5WjZywvgqNGfbHNOO/wtgLfAmGthTA7t6cTdYB89cA7uDACYvPkJuKBdLewB8EKTN1uMC9S4\nXDI4BRcroIXPAdht8ubHTN4kTN78KFysqM8+hbqt5FpvNHlzrcmbHFzA1k/Z86eW/WMAv2ry5jrA\nBaA0efO6difaSVuDCxLGttMH99KzZFzAsZ+h88/AvYi80eSNb1ywsh302ykAm0yYii+s698CeJ/J\nm75wQmI7XzFWeK1xAO8weZMMn/kauHY+Fz4L1w9vCn+XNHnzbJM319A5V4qtL7fHdtgLIGPy5lUm\nb5Jw+uY0/f1PAfyGyZtdxmU4utHEY4acgNtIeKfJm59BG3SwmykA28z5MybtAfD6sJ1vhbx0A063\n/VKTNz8SjokRkzc3L/v92+F03J8xLoBnC1dKH6nPUZ+zlnzOheAuuBeW3zZ502PyJmPyphVToQ+O\n1bZg8mYC7iMl45y+LYwxtA/hZq11AZT/HMDvmbzZGNrG95i8SYf3qsJJHHNw6/Zz3svkTQYu/swX\nLvCZFefHnXDhD1rj5DWIb7p/GMDbTN7cHs5JPeH81QdnUwWTN79s8iYb9vP1xmW6WSmWr4//GcB1\nJm9eY1wWnXcgvsF7Ln+2krHbDt04ni831G4us91cOZsx1n4RwHvgovufhFsEvP4cv+iHM5A5ODrV\nDICWtv2X4SaTb8OYRbgFSfuAqtbW4DTcb6SjPwYXLG4W7uX4r+j8o3BfAt4Ntwg8CjfZtdryzXD0\nrUfDun0K59fGvgESU0Zx6fFf4TbsDsDpqj8GyYj0YbgNtAfhvhh+Ds4pdVoU/xVcfCB+OTkF19cn\n4F5y3gZrH19Rzaz9PJxe/8twNvvl2N8d2+pauOBaVyzspH0ULhPVnXALsBvgMnC0/v4FAJ+Aa+d7\ncfYLzh8CeK3JmzmTNx+0k3YGblPr5+HG9i8B+EE7aaefQt1Wcq2PwvmBU3CU7Hes4Lr/AOB/APi/\nJm8W4RgQrzzHT/4ELgZCC78A52sKcHb4iWXn/zScb5kBcB1Ipw9nJ48AOGXypvUc57LzC8X5rvUd\nuKCN03A09deG7dwRYSyI74fz6yfg2vp/INzAMPkrytZ/C8Cvm7yZN3nzC+1OCGMi/CzcpstxuPbi\nYKm/B/eC+W9wL8B/BpdxhK9xBG5D5ldM3nCgd8Zyu2lt9M6YvLmvzfktvAduHp2D00p/bNl9fwBu\nTMzCbVzEgteFX8jeGj7Tp8MXviumj9TnqM9ZYz5nxQg3r+6AC4R8BG6M/mj45zxcMoIFuJeav1/2\n8/P6NrS3m4fgGMGzcG3owa2HDsP5v0fhso8y/gzAteG9Wm18B4Cv2skwdqTikiHcgH0NXGKUWTib\n+Hv6+z1wY/xDcPPCvvDclk39IFwcz4Nw4+xP4dhOK73/fXCbgLeH/5+GY4D+NpxP2YW4j+7oz843\ndtuhW8fz5YbazeW3G2Pt+dhD3wVwmZD+HcAtHdJfP533vgPAm2Dtj6zqfRXtYcwrAfwxrF1OMedz\n3g/gNKy94KCHT6E+HwCwH9b+r6f9XoqnHSZvvgmXweX+y12XKw3G6X/320m19eW4UuxG+6j7cKXY\nzpUItef2CFkv9wP4PjtpT17ia38HwH86T6wsRZfC5M33A/hZO2nPl5n06bi3jucuxXe73ehmjOK7\nG47h8r1wX6/XwTGzvg1r33VZ66VQKBQKhUKhUCgUijUL3YxRfHfDxWn5GlyK9DIcrfedGkxZoVAo\nFAqFQqFQKBRPF3QzRqFQKBQKhUKhUCgUCoViFXHlBPBVKBQKhUKhUCgUCoVCofguQOJiL5DJJGxf\n79lBig1l3QyCICq7zNMteHS+obKwdZi3wySeeo2uQltKyRRdJ/ZrOR7Y1n3oGlxfyi7JzCF+Jv4t\nl2P3afJzy/EmtYFHdfT8Dntj9BgmfNhCoYJyuW7a/+DKR9/QqB2d2AIAMNRm7XvsHHhaWsC0KQEW\nQavQ/ldkH7bTSatJRItVXm588JH7p621Y6tYk0uK0dG03bYlF/6vkwFQQ9sVWJXt8J9O/bWi40+x\ns1dybfInsefj43yKYSfCPo1vEHOIWH7SoaMlTM9Wu9fnDI7akY1bwv9dYN/ETl9JE/Acdn5f0Kk2\nJvQ5sf6jPjb2/HWJ3T/u0Nrfv8M56Hi4c+1bOL73oa72OalMyub6XCKsgObvIJBnD3gcGprjacnD\nCy6fFi6WxlvA8whd33boJK6PoeskEomz70N1aQQNOd6Uss91pDVJgyrQ4GVcJ3Y1+x86zOs10+FZ\nXUJDoLJUR73a7Fqf059I2LFkCkB8WMXdrvzP63Ccz/c6HI+tSXkN0+H82K2obJf9u7zM/c2+JYhN\nMe3HBZsNVnBOp+PNTudTfabq9a72Ob5nbGv45TLJ6Dg/e73Zfm3D7y3sowwNvtgU38GHJxNyX55q\n6vW6/JbsK+H5Z92f3/liLrLDEoafKWg2256zkvcEvn4yJV7NT0ob+AnyduEDVko11GqNrvU5nudZ\n3/fPOt6aDwAgmUye9XcAKJfb56/h3zYaMlc0qX887/zcDrYLrmPrOF+P7crj+ZHsme/ZDDgB7vl9\nXicDjN+X5qcOfo+LzWbzKfuci96M6etN4z/ccfVZl0ukUlG5WJQOrteps4NMVMxk5XzP58WONHCj\nLg1z8pick+2RS27cItdJoCp/MFSfumu9hBFjyGWkLuXKktyzKU7HT8o10knpsBQbFV2zuCTPWqW6\nF8tSr5SR6/cPStZTG7BjlcdIZ9zDfuKT96CbMTqxBflPukxlHrcfbdytZHB3WrB0PJ1GTsfXeE/s\nmKtgG67fGrTJxovJRELsg1+e+JlM8PT6+NjmIVWe7fhN1+QOP62VeJqxbUsO93zjxeH/OrgwetEA\nL1gsT750Pr+l8PkBv73Q+U2v/Tk8WLkOrZtZ76xDDmQXsVUnlflyNZqc6rzw4Q0VmkhS9GNfdrI9\n8mOGFl5I0cZz2tn1ra/4CroZIxu3YPJvvgEACJqN85xNm69AfCXKr0y2/QKYOyv2AcLyoiKgs9vb\nRcoWAADVhPSZDeTjR6omfebxtT25SNPQHEqbBLHHI/tr8Cqd6uLRuGiSYTbRfrHNfv1XvndbV/uc\nXF8Wz/8PzwUAlKql6HilLP1SbtIXIr8SFTMlac8Ratr+nlxUbtDLVjkl64CgIu1cLZPN0lxTqsk6\nI5EWfzgyOuLuk+uV+9Skr+YW5+U5Cmei8gDZTn+vrItmanJ8muvS4I9LUt8gKf0f0DxNSy2kkvKs\n9ZLMUTbMAH7/v3a12WAsmcLvbN8FIL5BkiTfnKDxlkrwcZ/OlzKvN8lNx85J0jkJP9H2uE9zC6+0\nWhsaFdpF5JcP25Af1hvSZ2Vee1TFPqr08lbmF+26XKcYyNgp0QtZrEz+skg+tUjvCEXyRb97/FhX\nG4/vAesHXN/dfPW66PhCRdrz1IKMfZOQeaFSozYpyftGJivjLUdLJ9/wGlV+u2H9+qjcpI3Z4yeO\nR+U0rRuG+1024wZt1jRqcv8a2Q7PD3XyIWfmxBYWFwtynQa/F0rdeVx5PHfSWFq3WbIs968XBzQy\nOiw/CFyDfPtrT6Cb4fs+hoaGzjo+Pj4elTdu3BiVeR3y0EMPtb0m/3Z6ejoqLywsROV0WuwvtklC\nY5g3cvr7+6Nya3OPr5ehiSKTkfmuUpG5tadHXv4XFinMJ72XtduYAuIEDH5H440nvn6d6s5+j9d9\nczOzT9nnqExJoVAoFAqFQqFQKBQKhWIVcdHMGAAIbHgZ+upfp93bRpl2xpqy21Uoy47qwmFho2yZ\nkC9GyazsWKXoS9L6TbLbZYzslBWXZMcq4fHWrxQbtlUX2bFN0O5ZJiv3qdflHC8pdU/RLrGhXXqm\nEKZzsqvWLEl7mEqt7TmJtOxal+mLW5o+f9Qb7vhaCLwcfTGOsQXaM0o6wlwo06Q91Yxbs7QgXwlL\nJ/ZG5aVj+wEAC7Rbz9TcwfWbovL4zhujcs/YZqkuS/O4WvQcF9WzHXR9a8FeWrDGoOGHu/DEeIu1\nIe9cMwWAO4zpu+QgvER7ijcytJNuOu1jU5vTZ5oWacHERADtr8GKFPapzJLx6Au3rTOVl+yLvpSC\nGTDMUCUGI39ttwm6fsuPEjOwG+F5Btm0e/igyX0c/y7cQiIQ329iFFWWiDBDiijgDWkrZqbUPfpi\nGPtgQ+yCssxngwXna0xC5o8aMUeNT8ZClOuAynXDZZkTffpKyWOhTl+1ArJXeowYGyZAeyq5n7gk\ny4srAs1mHQtzJwAAhubjFI0fS+zXFH3JK1VlLp9idslp+cLIg7t/VL5qkuoaS1WxiwRkLTKQka/X\nQ76Ur+nbDgC4eveO6Nj6bduicoWe41A4twHAsX33RuWZmQNRef7MrNyfpNzZlPRzX1K+jgbc/Un5\nT5W+mifIfgdH5ZnqlQ0AAN87gW6GAeCH/iLOrSNpR0zmQcwYOsePnQ8q0zkxuROdT9Nfmlg4TZZr\nEKsuE84nHg3mCt2UOYUZUnM0rfjLJn919nnekL73GiyNa89uiLUZ1Yc9drzcteqSs2AM0HLXrJrp\n6xuJypVA2G0e9We5Su1Mc06KHIpPLGG2qTQx2s6ckbXwmQV5Rxse7pPrU5unQzZDYUnOrZASgNdi\nMQkIrZtSSSn35KQulYr8tsqiB/4t+ZxajGElttZH65wEsXoatbWxRvY8D729jg1ZpYZaoj7h9wE+\nXioJ6zNLLCruK2aOMHuFGSjMgImHIKE9ApoHmmH/8N+ZUdNJDsXns/Qq6NCV/Fuf18de+zmdn7XZ\nQbURrOQ9dQVQZoxCoVAoFAqFQqFQKBQKxSpCN2MUCoVCoVAoFAqFQqFQKFYRF80jtlbitwVEe25y\nxGWOwk9BmBbOzETlIBbNWKiuwyMSOGicZCCLc0Kfm1kgOlpBaFl8TY5An0w5OlMiJbSmFJWtbbQ9\nniAaYJYovjmi71dqQr2qElcqSUHUshyYqEeoYNW63LdY4+jV0mZJL3y+NcCoa8kDmGpmO6epagtv\nJVGzY2AZiRxtzklAsvk7/0mueUpkSl4YkDlBtPMk0ayrp4TefejQfVF543N/OCoPb79B7hmzT6rh\nSkLFx9Ah/Uksm84aou/CR8K4gGyWXViMLUhSjiQ3aPtgtw20D+zLweFiMqhYc3YK1mzPKhuSjLBk\niW0xFpSazydpZJNkK/x0PlPCSZJirZQNSQZMgoKGk/SBJTcm+i39vQvhAUiHjxVLQhEL6t1+zujo\ncDnuMmeN8EkmQNR8NIQSHJQkWF29OBeVKyeORuXmYVfu7xfprL9RZI81koU0WV6Xkr6yKQqsR7Ts\nBAfcJ+q278n5dZCmjWzR6yDxZI1dp+SA3YpE+O1qYUHkQinSgGQpGG0vtefQuASPnJ2Rfq6TNKlW\nkuucPC7YWIkTAAAgAElEQVTypb5+6Yv+pATiHU2L9OjwvEgGHl4UG/i3B+4EAKxPfi06duOG0aj8\nzBt2R+Vn3Cjz0i0vfE1UrpCfOXhK5sg9jz4QlU8cfDwqL81PRWUOcogaB5OX8kKR5NgkA22573iG\njO5E66k6BRplP8NyHT8W5Jfo9TQOOfhvp4C/ST6fJZkdEiR4TXf+ACXrTNKipMgUfZJM9tC6eYET\nG2zfEpVtVXxe+cDBqMwSyE7t4cXK5Gc4WCcujWTgSoDne+gL/X6lQe9QBfE/jTq9G/B6j94lWN7V\npDS0pG5GgtYi9SqFWkjLRTesl2C3BZLqD/SI/zHh+qdG70EVkpiA5I0e9VUmTfOPkTpmUlKXvl6Z\nAwuL0gZJkuQODYmvPTUttmZpbkyS/MbQPF0NZaDdLuk3xkRSm07P0ik7Ekt0WILEx7nMwXQ7JVzp\nJFmKZ9xy/7LUic8NOkiE4nUhWXnbmsTvyW3AWbs61SGW/Yn8D8utLgZrbLmkUCgUCoVCoVAoFAqF\nQnFlQzdjFAqFQqFQKBQKhUKhUChWEZdEplSvORpSOiP0r2RaKE6x6PkUzbtcEsrult0TUblnVKhm\nAVHtSwWJHD6/IFTe2UI5KqeIpdisCYUq2y9Zi9Jpd02mcjKbq1IVWlWuV6jBKaa3EcW4ShlPKhyB\nvkY05Ircq0pRwRfmi1IHSnNy/Lg8k0dR6vsy7l71endT6S4XTKxM9N3Cqag8unRMjkuXY6ro+mEd\nZfgqUgT2k9Nib1NHH43K03ZdVH7uyNaonBqQrBk2YCqf3NNeYHaATgonsxZ0bS0YH/D7XZkyAsRk\nRERrDCzTZEneQxH2PZICxrMZ0XXoD3zbGN07Rr2U+7YT07HPibFJYxnFKHcFJ7+hbAnMzLZE8WVK\nZtMQzZPop152UGpG0hZ44oOBFhW0u7PjGGOQCbUzTRsfHS1Y+j5hPWoPltGSTXAyoyAhHVRpihyp\nvihy3OppyQ6zdOJwVF6YFp9jZ0UOkjrp5LiZ3buiY+uvJpkSyTiSxDsPaA5r1CRDQkCShSLNf/X+\nfrlnmjJYkI/k38a9SXubXksyJd946A0lYUvk83kNMZAmuQQ1RHVeKP1pokNPjIpkaG5Jxu3+KVnb\njFsZhwNpkRXtOS5rhZmq1KFJUvFCwdWhUBFb3H9Q7O9Ld90flbcO/WNUvuZquc8tN0lWwN03SvmH\nv/e1UXnxdnm+ex8Xqe4De+X6SzPyfJzFYsBjGjjJ6UJb842Mi26EgchrmPK+EilOTH4TkynxdSiD\nW6ffkozDozGcovMbNFZLodtLk+TVp/kxY2XuKfnkc2geKo+IpGX9y18q9yF5W2n/oajM2Xxided5\nC+3bL5ZNyV7YeulKhrVANZR4TM3Iu481NH9TWwWUno+U9LBN9uHt1yc16t+gIT/esEFCQwyPSRan\nY0dlvdxHoRYaYfaeVIYy26Rl3VAuii8aHJT1r0/1GhqiTE1k94ODslZZWBAJUkBrpJ4euWYiI/5k\nqroodSBpjSH5byvz0IqyuF7BMMZEmQzTdJylPuWyvF+m03IWS3fqJGmr1Wptj3O2Jr4O91suJ/bB\nsiKWbdbCa8befWKSIvJhHeRQsaxNdJzlRV4HmRTPm0GSsiM32b/J8VxO7IYzUF0M1tBySaFQKBQK\nhUKhUCgUCoXiyoduxigUCoVCoVAoFAqFQqFQrCIumnduPA/ptJMApSirUCxacyDUtBLR69NDQinb\nfu3VUdlWhUY2PSuU3YWCUNNqFaFKVUj2k/SFHpelTBO+z1R0d76hc2s1uUYlkN81ykTZDijyvye/\nbQbyTD5R8ixd/8yc0AxnT4s0qbwgdLGgKb9dIhpZ/4BQopp1t3/WaK4F2cnFP4NdwTXiiVMo44lt\nT0dboujfx6ek36pld3x7L0Vv7xObr5HNp+tyztzRPXK9PSIx2H77y6KySbLcJpZah+reQYREFM+4\nHMm2O6X7YS1sKMloUh8aw+6MyiT/46RJHmVHM5azxpBUJZZZSa7po/35vL8dQPxFYJztBCxNiomX\n2kudYFmOJHaZTJF8iWSgNmAaMsmwDMse6bc1oe9aooQHCbqm1xPWl37XheBsSo3YZ4j246oRy35C\nlNmmzE9BUSQaxUXJ8FecOxSVCyeOyPlTQu/2F8S3DFblOtmm0F5N3R0fGhSq7/pNG6UuvTKHDmSF\nvp5Iin02iIJbWpK5Z7og9wx6RaZUoGxKJxekz+sx+vb5M015a0gaGQRBlG3DI01Fs0mS1ZKMpaYM\nNxTOkB+ga942Ln2UoaxJ64lqPz0vMul7TorzWmAZQkLssVY4LX8IM9f4gfy9Wpa12GkaztPzYnOP\nHvtGVP7mnd+Jyjs3iZT8+uuvj8q3PvuZUfkF22+Kyi+8/nlR+dic3PeBRx6T+86KDVrKstTKIpf0\nv4huR2vu9VmSRVR7lpqYmNSoUyahDtmX6HzOvsRZ+CwdzzZJXk91K4649WaZ7NA7ISEFcrQOZxnR\nHGXewS3XyD1vlLLZtz8q9wdi/3Ujxujz0qaDNImlTIYzbq0dl4PAWlRDuaml7Gz1hkhDfMhxnvub\ntNBpUqM0m+I4OJtRQLZgSOq1VBCftmu3ZHCzNKcUCzK2/XAdO7aOJEj0/jJ1/GRUnhjfEJVnpsRv\nDVFIif4+kSzFZOjUBqUKyUToHa0nK/aVC6g9qnJ+tSr3amVD7HYTMsYgGWVNpDETy94q44ezUQ0O\nyHxTIzmS5XfflJyfozYmBWQsA3CWZErDwyJfbFLGrcUFZ2dJelGpkASKr8E+IUnPkfF4cU/+IeZ3\n5ZwGZ1CijJN+LOMp+x/QOVLOUiawi4EyYxQKhUKhUCgUCoVCoVAoVhG6GaNQKBQKhUKhUCgUCoVC\nsYq4eJkSJFpxhaJUc/RlP0UpaQKS3FihPs4vCq1p30MHonIqLdfZuFGuY4l2lqUoztkkUzhJPpQQ\nulsijNpfJxmBSQvdqlSVuvQQ3S9HWSZ6MkRvI/lAlSQApbJQcP2G8JZ7U7IHlh6Qei1SVqjhHqGc\nU+DmiMa1ljJVXAwxkGVKna4Sk+h4JCMrSaaGjcHBqHzTTZLBYv8hoWAilMFcs0miuqeoL/ceEUpn\nw5d+nVmUaxw58JWoPL9ufVQeuvrWqByQTIopdnHY9kXO+sLlDlfpTvgwnpNVGJL2sYyIZT9xEQrT\ncZle2EtlOh6TPomPsJbuFU+tRCUq2zYDNtYpLGCgjE+UHQm+HA96KLONaS9rCjj9EreN5bZpn2nB\nj7VfT1hdjs3fjbCStSEm7eOOIBkj0Zkr8yKXnT8lsqMyZUGqz0immuS80LF7SMqUogx/aaIBG5Lb\nJYgmPh1Kg+aYmtuQcqou/VTPSl/2U2asBuSes3T/BM2VuWyCyjIWyjRvzRUoswBLIBHT8kVYS3NU\nowmcmXMPlxwQ/++TXDmRJBkjzTNbrpIsJEIfB8rzItkYykgbzk5Lwz1cFvlYifyPZ2WuqS1I2VRI\n9lxxdtdYoswjdbFF7jfOHFYkV3SYOvT4UVmvfeeEzGPfuPubUfkNz7stKr/09T8dlTc891lReWKD\nyBP+7cvy27lZkjuEmXw6Zc7oKrRz/bF0HyxZkjGcpDkm0UGuk6SLp8mX8y1jMwvT90nW4tEcNhuG\nD6hddVV0LNsrfX+GpEazJEc43SsL1d033yw37aPxQpVJUzYfUqjBI9+cYOkVPQdLbDyzNtc5BgbG\nC8dBUsZnQBpISyESOGkkS7BHx0QaskS+oLIk443tji1mkaWs9J4zMSFS2T33Soas8RHX1yPbxuWe\nntS3WKR5iere2yvr5aAu8hTOvsTvl4yAsmIWSvJ8Dco4O5AR6+FMT4uL4jsrYegLDl/QvXDPzm3D\nmYwylO24sCRy6UTCo7Kck6S5LQjkOrmc9LNHfqxG0vkmywhpzmF5VC7MfBWkeI3NY1xGdpayNrNf\nbFDoEpZm8hzi0/FGQM9E1+GQFXxfdtpNekeLh4946lgDM51CoVAoFAqFQqFQKBQKRfdAN2MUCoVC\noVAoFAqFQqFQKFYRFy1TagQWc0uOVmaIxtOoCpUolxEq046rt0fl+x/8p6j8lX+5Oyp7RihON9wo\nUblBsiLOopJICE2oERANiWi9AUmPcuHh4UGhY4+NCu3uhn7JGrBhWKiX6wYpyxJR/WcWhMrXpPvP\nzwtlbm/ukah8ZN9ROWdGqHc9vdId4+tFBtXXT88URqBmeYzi3GA6dq4iUoL+2W9H5e0DQjsb3yo2\n2psUW0yE2bHWbRF7Llbkd+vKYv91okj2ZMWGPCvZTE48+iWpJNE0hzdLZrGgyRS/p07C7fYI8TGY\nNJByfeSx1MhQZgHaZza2g6QrJnEj+ZJJ03GW5nDWC5bxcPYlzpDEGbKYBtwGlJUCRvo8lsGIeMis\nTDKccYmyJhmSaSKW/Yki4LP0gY5b5Kjcoqte9HRxWWFgoiwCAWXvCIiKXTgl/mHxjMhla1MiTfKm\nRYLklYXm3NegTA5VGecxpSGXPelzUiwhwX0VygBK5E/miI6bskLjzlKWgxTJlIoFkVsdOno8Ki/O\nSAaL8Y0iHSmSTC/ZL74uSfWqcNYwznISkz6sHdFAOtWHq7a/AADgE8U7S5mnUpy1gejWCRr7PSQB\nW79ld1Q+cJ/MRQ8++nBUPp0UCnkzIJp0keRIi2K/CY/suu76PWiwH6Dsc7Se8posbyT6ts80cHnW\nAmV3OTkr90xborxvFImV6ZPyxm3y21ufJePn7u+I3KERpjszpvttqJXwIyZ/IJuIZ0TijFKUPYam\nj4DWu02PJDpkf5xlJMn+nqUHCcomUuf5yfVzcVjW3s2sSI1O01y1d1b8SWVA5DDP3CaZd0yV7kPh\nAJoZ6ts62yXLZQWxLEu2/flrSadkAQThewYLZxLk5xskl0jmyOfQsmVoXPp8YETGXmlWfNH0SZmv\nGpRZtqcnS2V5J5nYuCkq332n+K5qxZ3fQ1lGF6siceulrHGzx2eicn1JnqOPlhm2KfcvsqzKJ5l2\ngt+PyKfRO1qWxkZPRuo2VxRJVEuecolUJ5cRNsq8SU3TMetPQHO270vjN0nixNIdLucohkY2K30V\nkDSpVuNsn5TBi9azLQkV+7yAOqJJa4lYJjrKjuSRb+k4b5DdUBGW5j9+X0jSe3ajQfeiOgTBpZG1\n6Ru9QqFQKBQKhUKhUCgUCsUqQjdjFAqFQqFQKBQKhUKhUChWERcvU2oA03OO1nPDjddGx4vzQnH6\n8tfvicpbdgm9tlITOtBSSY7n+oRW10wIlc4SrbLSFDosUxlTPXL+xo0iPRpbPxaVBwYcZfaqzULN\nHhoUGmZfVuiW8zNCw3zsycej8pOHKWo3ySMyGaFtLZWlvnMNoekOb90VlWtWsvg06yRZomwpHOE6\nyq6yhuiYFwPOJJMkSUedIn77RKsdLEsmgI0Qmr6fkIwXR49PReU5kpH5XkhlSwtdsmdEqLwTO0Te\ntrgo0oDyydmo7BGtODUnff/kFz8ZlW957Tvknv1iN7Ymz+dxVqgYr5IMg6h9dk0ZTAMIzoRlageW\ndyBDZXr22PYz82FJmsRNGMtIxOOQT6KLGi63z7LEV5cSu2Ki4LI0iq8dE57xdViCxFRuoSEHHezF\nY3lCQBLPMKOUJVlDV8IGMKF86MwBkUQUj8g4bJwSCVKyfCoqD1TE32crJEHirB4k3Zij+SyWwSRD\nUo8loUiXyjK2h1IkNQkla5x5IEsZAZoV8UVzp6Vep0+IrKpEGSn27dsXlRfnxC8VKlKXJw9LhqhU\nr/i3rTtFPjkwsSUqw+MsP3S4y2VtDM/zkcu4NQJLA4Km9P9SlSStSemLraPShtdvFNlXb0p8y0hD\n1k5DCemLex9/MCo/dFL6caos9tAkGnidM+h5rbrTPBCwbyHJCASG/mc5c0uVMq8V5fm2jMv1b94u\na670ZrGRHEkDUsQP371jc1Te/6SMw+PHnbTBdr9mgJ6h/RycJGk7ZyBrkH34lPksRfNDMyVj7BgN\ntwpR570aZ6GR9swkxI77aaxmwsuzn5kln5SgUANmH2UeIclAgTKJjq2XrJGLNBZqlN3FNKSOPM8Z\nlmGxkRJiKtDuN5cYWs/TbJAt0PhJZKStcjmZWyqcBW9W/PzggLR/lt6VUhkZzwmWg1G2rIlh8V3X\nP0P81WcSIk/Z/6R7X/KzJJkbI5kmyWfPBFKvWlN8HihbDq/F0iSDqdfk/DRVONErNpWmLL7VgCTE\nvpyTpTAUhaRrs6O+SCe7EQYG6dY7Y5IyLFK2M16+8vzA2YYSpHVbiSzHo5FYpznJ0BzJ10lTVqt6\nmH2JbTuWGZbXxFT5OsmhWBrMYGmUoXWUR76QqohEgtuD5s5YRlQOa3Bp3q2UGaNQKBQKhUKhUCgU\nCoVCsYrQzRiFQqFQKBQKhUKhUCgUilXExfOIjQ/jDQAAHnpE6M21AtHOkkIHmioKHTG3XiJyb+wX\nytyZU2ei8uP7hJr77FufEZWvuYEo0/JT3HK9HGfW0sZxoUr29jrpR4KypgREk3zgMcl89LVv3BeV\nH35EKN5HDgmtr0L0Xc6KUuMkBkS93LRlICo/4zqRSo32CJVuYVqocidPkiQrjKTfbF6aCM7dDj+W\n1YajaUv79JX2RuX0yXuj8tyMZE5BirICVEViFFAE7XqYLaVeF/mC3S/lNEWeN0R1yxHVbWJE+r6/\nV6LTzx6Qujz+jS9G5Rte8Wq5l8fhv5nCx1S69pkF1pJICZU6gn1OTmKpnQ1lGQC3VYLcHEv+YgJH\noc8aTtvgU/R3ijrPGZc8n7IQMZWaMze1oU8bn+nY7SVNhqVOdI1mVf7DlN0E1Z1VTZYyLnlEbQ6a\n4vdiUfXTYpvJUFpjOLNTN6JRg511mewW7/l6dDi5KHLFAerADKU4ynAWALpkkXjxRZKvzFL6kxJl\nCpmZlwwSVcrExvz6ckLu2x8yqodz4ltSZB+JNGU/CKSPe+j8UcqKsm7duqjs0bP2UqaMZz1b6rVY\nJtsiCW62T/zYYlHqWyhJ2a6hKarZbKKw6KRqnHGiQZKeiX5pn6tGRqPyGGW/ScyLfGyJ7CtF9O2r\nr7kpKm/fJLKf7z0t66t9lBXrkaOyXto7LeuS6VCpEMQy9FBGNp43yKq5DJYPUJm91Y3rROI7cvX1\n8kwZWZhlyXelqP02jYt8/Lpd26Lywqx7Ds6csZYQm4853RrJcjzyCdmAs97J2H6iIHKUr5fFDvY1\npK94DTM2ynJ9mcMGaT05vjANAJiYk3Vner1IVLweyfw4UBB7O3Va5N2HjogcfIh+mxiVEAAVkiml\nSlLfmISiQ3YpjxNTrc1kSvCMQSoZSoRj0hBqBxofdZJJBpR9r0S2YCnLH+i3flp+m6E1la3KXHDy\ngMgIr94t72LDw+LrDj7ufNTiYcmgtKNHfNgCyR6H+mXNNbpV5IoFyk5bK1PoBnrRSydlTkv5UvdG\nneyeM0WSrDPVJKkMrx/DU7wuNyLP85ALM7g2GpzJSGyCs7SmU/QeTNmRyiV5D2I/zBmUErS2jsnn\nyMcnSY6UIalZqcjSeWffPN65XoYkQg1aCFfI5lMkAffIV9SqlGErNp/YtsdTtHHA71NxCZVcxbtE\nc9TanOkUCoVCoVAoFAqFQqFQKK5Q6GaMQqFQKBQKhUKhUCgUCsUq4qJlSs0gwEJIZ3rywYP0B6EJ\nbbtGouqvu0rKXlJoaiWShmwYkQwyxVmhSj56WGiQYxt3ROWfeNXtUfn4KYnQ7Ru5zkCfyJRyIYW7\nUZVr3/+ISFn+7rP/HpUfeVQo7NNHhXpXWhD6XLVG0iSSO1niUgaWIoGTfOlZL3m+PJMkdMITj/yr\n/IeoZi35TdDs/rDx7diAF8wQJGp+kBSaWroosh/vcWnL8mnp50RS6Gg9REHry0lHMA3OhJmskvS7\n/iGhTg5MCB3TGhlaxVmxG9+nbGJExxwfEMrug4+JlGrn7S+IyplBsWFL0eEN0+Q6mEWwBrJStFBf\nCnDq3x0d1SYoUjtlnPCJa+oRldIkOfsScw1JgkQc/HJJ+qjRkDbvGxG6dYrsztLgNgHdq+ku6pGM\nyEtRv/mcyYhkDWSXS4siXVw8JfZdXBA/lkpLXRIknzKe+Np0L1FFS5IlyJJsZXCL0IaHt7ksYbbS\nIZ1Fl8CgiUzDUWOHF4TSP9CQdi3VZXxOl8S20jTmi2U5Z4qyJpUC6du+nMh+yiQNWaTo/5YyHQRV\nuY6h6/ghVbdG2TQqFTl3hLIAemSHDB75WaIJJ0nKCapXOil22UPyiGHKhNKblec73pA5t2nk/Jpd\nO9mUABtlkWCpzxD55M09Mg57T+6JygXy1X5aJB6NulwnkWLZo9DAfU/mhXXrZEyODYo06PqtIn2b\nOi3ypf3HnYT20SmReh9YFNlBoc7f4kgOQkdZ7uuRJCtHEsubNolMYWDbVVE5Q/4nR5o169F1MmIj\n2zaIT23cuhMA8PGe9jbdTWi1J8tsuNygdSJnskmQ1DHwZNzeW5I15iemRbp2wJDMnWSv9TLJHgNZ\ni/RXxc7W0Zywec75wyGSDk30i5+ZrbWX160bFZuskRzmM5//TFS+bUBkkgH5SDsv82y8ndAWXiwL\nIM3da2eZA2M8ZML5nDO4cbmTjCKVFL9Rp/eHltQSiGelGSTJUDZB4zYt69veEemvuYKsP7ZtE9s4\necj99rrd0s9LC/IOtW6djPGBjFxvoF/GuXhRYJb8Rpp8RQ9lBioV5BdDJJmanqHwDmQYi/MyBtjZ\n1Wzr3aq71zmeAVLh+O/plX7lbGcNem9iuXKO5qFmRcZ5ljJTGbKzgFcXZE+5PrEbljWxjTZJetfK\nhFSn9XOS5hhLa6I6yY5it6exkE7Lc7M8iyVFfizLINlZWp6Vwa9QMdGgZlNSKBQKhUKhUCgUCoVC\noeg+6GaMQqFQKBQKhUKhUCgUCsUq4qJ5xL19fXjOS18CAPDtN6LjhUWhHZaIVlmi6Otjm4Te5pN8\noNFDdCPKClEqCL1s35OHo/KhI9dE5TPzcq/rr5OI34msUKVqgaP5Tc8Jffdbe+R6jx0WyVQzK7S6\nngmpi58VCpy3RNl3ikJZapJkKaizrESoWEcOS3aFhVlpg7miUBFHs5Qxw3Z5RpMQBkIpNZZpXpwl\nqBPnlGlncjRgydLRh6JyYl7kbf29QhNnWptH1MQqRfnmqOCZkPrWpHOHR8SGe8eFRt7IStYCPyHy\nvaAm5dPTQnYzJF3LNYRKemL/o1F5xzMlKwE3WUBUzvYtiTXF3/W8BLJpR0cNKMOPR41iGhRJn6Ln\nE5MbhtMNee2zNqSDcTpH+t1foujrHlMi5ZwgllrJnW84m1OtfZ/EZAJEiOyri61l+sWObT+d38EA\nDFHeeVwN9m+k86kti3Lf+gHny221u+m7Biai6vZSQ/VQnxWpz/aRdKhepkwEJE3yKKtWLiV2gLLM\nVeUlGc+D2fYU2CTxXnf4cp0WI70vK7TfDFGAl2pSl8JpmZPOnBEZVplkVdPT01H5ofslU2CtKnNV\nhubKgWGRHmRJVjBAmeDKRPft2Sg+cPfOG7BWEAQWxbDf+3LS56MTkhHy8YeEur9rUTIyrhsUeVdl\n4WRUrlEGm4Bo4H5S+rfpi9zAepxRh/wC9dfgJpEJ7Rpzc9BzaN10gLI0PnZS5E2PTUv/n1kiSZyV\newYkmdrQJ35s63rxS/NVOWcz+WZL0orSosjantgrsuFsv0gbbr31FgBxins3whgDL6Tmm1gWHM7A\nKcUE+WZL8tq7SfbzSZJ97CN58+iQZObc2S821yCp9ZOPSXvXZqSfS5TZ6Fgo46gmSPZC66D7v/Vl\nubYv9b31tudE5XpF1taPH5E1bnVI5htDPo0Ro/13WLfEMi7RvO+3Obd7YSMZEss7GIbk1b5hWYf4\nh2Zdxl69KtKzLGX/TJLEtVyjLHuDss647YXPi8qnpw5F5Ztv3hmV50+6jLPP2CljeeaM1KtEUsck\nZ3Mryhw51CP+JKAMbpbtMSvlak3q7tMcnCW/WCzIfNiTk3M42kNLouP7UpfuhImyH/XSnJ0lX1qp\ncpgNWRTH5HApylREc0+zw7sHp+/s7aP3LBqsKfIzfQMk1Qzvu0hS/DJl0kpnpM9qVMeBfln8drpP\nksMU0DkcbiKTofm3w1hr0jqRy753abyOMmMUCoVCoVAoFAqFQqFQKFYRuhmjUCgUCoVCoVAoFAqF\nQrGKuGiZUiqbxebrrwcApIeFXpYk2v+Rx56MymeIJm0pQ0SaIidz5GufosinILSp6cOnovIn//HO\nqHz7826R83uFBnl6VmhqjZqjvu0/IXTPJ44LdbZIkZsHKcJ/guRWfQNCjxqiLa0mS2WWRKq1MC3X\nzxLlqjQjVOEaSVU2TEhbpiE0slLYZqYDlaqb0KLtXnAsaqIWMnUbZaEXNqYORGW/IVRHjzKY9HAW\nHJIspWhUJCmyfC2kzeVYIrIkEoAm0cEDyiThQezGb0q5l1In5DiDSU7qcugukf5NXCVyvPSQyAds\nLLNW+9b0graHuxJ+wkd/mHqMMwBZevYgIFkOZ2egfjaccYmyHPH5TY64To3YLMtgffwBsbX5gtCz\nS0b6OpF2tMlMTmxneEQkUKODQifty4nt+CRr8oga6XHaDY46zyHf+VljCiOiwhNt2GO5G0koGqE8\nKybr6kJYAI3w0S21a6NGdFnKglYhiViD7CxNEpFe6oZRoowPUv+MJ4UeXCe/PU1zwvYRyspDWYiO\nzjvaLks5mzQ/1mvi2+655562Zc4gkKZsW0/sE7tlejJnXjOx7zUkHybKeHKAJMA0Xt755p/CWkEQ\nBKhWXFsP98j8vWWr0PFNUmj8tW+JTHYsSRKggsz3HvntepWkyCQJsb70l/FovqJzOIMVjNCzvYRb\nO40Oy+82DA5E5dtojTG1IH7r4VNCFX/8jBw/XhCf94INROum+fAr3xa7+75ZkdjahtjRaSMS3r5N\n2/b/uGQAACAASURBVKPyM3aI5Gv6kQdcoSZt161oyUc89s3kKzwqJ0loc5zWx9+yss44SgmmUnTO\nCNHubVX6LU2yjF27KUter/T/gwdljX4izBR6hDLOjZySLF1pWiAVSiKNpNuj1xebuOWGm6OyVxM7\nSJA0AEz1J4mNoTnJJx/I2ZRiqiasHVhrUQslJIkOUos6yU1YZszyPl7zZDgTKElNeWqv09z/xJOH\novJDj8t8sWOLZC2qF8UGnnnLjQCA8QGxrRtukneymifP8fDDD0blE0clTERxTubFBM0nOZK+lEi+\nxDLcdIIkpJTdq16Rdhobk3XXLGU0DcI0mjxfdiM8zyATyqE9mqfZJtJZ8QksyykUpD04G2eTbKJO\n47MnI+0d0Hqpt1fejwM6P0cybc7ytbTkZJg9PXJuXDpEdtsn17YdssTyOqdK0jweRwy2IT6f2yZB\na0bOaOldonVxd1udQqFQKBQKhUKhUCgUCkWXQTdjFAqFQqFQKBQKhUKhUChWERctU7IGCELa3EC/\nyIKYUrjrOonw339C9n9mF4Q6VqNsHxzZO5mScrEgdLhaWSh59zywPyqPbxPa6445oVzVl4R6e+qU\ny2iw/+DR6NiJA5LloDonNKVaVqLY5yiLQnJY6MBBRpoxSXTvag/Rw7NEzySKMWdxSTdFjjRM59ea\ncq9MwoY/635Cpl327/JyxyekP7A0pbogFPD+mvT3UL/Q3fqIpmbrQpOrEo0xRVHmbSD92Ypcn8pQ\nhgli1zbqYm+NktDtbEL6NTEkVMFcTa7dt0hSKkOUueljUXnqoGRC2DIomQuYtsqsvY6ZlbodxgAp\n93Q2kP5keqlHUg6m9AdEA2e6JRrSRz7JBwKO+A8+LrjvccmccnpKqN0vfNmLpMqhzTz6uNDBN5OP\nHBgR6uUsRZHvIVvMpYlaSrKZWD93yj5BLsfGat9+xAUpzr4UtmuX+xxjLRKBG2c1yBgDZb3zSaK6\niyiqjUDO6e+nDGvUlkNJkjoG4iOKJBGr0lgdGhIJrE8U83mSMrbUKznO8EX27JM/Ky6JNGGG5K9M\nT+Yx0tNP2QwpC0VMmER2liKK+0S/1L1J8mHblDpsKogkudthjEgZbxqh7FsP/mtU9kauj8oDG2TN\nUy3sicrfPCRzxDWjMq8PZ6X/myQ9a1hZc7BPSxDd36OMS0GCMoU0w/7yxYeYhJQTfULX30b9uWO9\n+MJXkQRhnjJkPmOrSI1qo+K77vrix6LyjSelndaTrGH3S98RlUdGREpQ+eyHovLRu5zMqzYrUvJu\nhAHghT7FI19hecxwDiDq75MJ6dfFQenvDbTOvv7q66Lyjh07ovL9e8TmHnlM5qeJDZLNaInWmwsk\nT7DhOufklIQCGB+S7EzD60WaN2xEXnl4/76oPOBLHTdfK1nVCvtlre41OBMLT1DSNqQIhW9ZXkun\nx4539xy1HK21HT9jkjLPWlqAZuhdibPo2Ca3M2d7FZ/D80gmI3Z38qRI/z//ua9H5Te85uVyPvml\nm2+6DQAQ0LWtL/PPk/tEjmQo4+jwOvJt0zLmC1XJVOtRr5fIXgvzImsaGxA7ZYlJg9Z0c/PybrBU\nlHVAOYwTwZLdbkQimcTIOte2dcqklaB+Bb378FwyROPcp+P8Tl4nuXy2T+ysSFkmB0imFgQsexb0\n9Mi8kQvl+7FzOcscya1YgjQ3J6EheIz0UoiSImXH5SxLfH6pJHbGMiU+P5uW9U+5JOucOscXuQgo\nM0ahUCgUCoVCoVAoFAqFYhWhmzEKhUKhUCgUCoVCoVAoFKuIi5YpNasVLBx5DABQnRdKm20KPapG\nWW6CqtDLOJtNHRLl3yM6dIqomvNVuebAqNCpRrcIVfLJk0KNXvinL8u96ElPz7pzZk4IvW32hNC6\nK1W5/5InlLbEZqljjJpUIFlTVaif1SJRnyjrDnMsa31Ssb6NQiFmenKT0/tE9+1uOqaFk7iB/gU6\ny2wYneQ3CV/+158WWls2KzaUrMs5FaLqZUhqFlSkDytlKWcGHZWuQpKmNGVBahJ9z1IWiEpdjjeI\n9ublpFynrAFLS2JPSTq/TFHmOTuO5ejvsWw6LLFZQzAAki36rjx7mfqtXJCxd+y0+J89T4rs69iU\n+Aq/Iuevo+w3TcpWwZKN9dskK0XPll1RuXhQKLZ7H3oiKr/k1S91v9sg1NxkWvo23SP3rFTEdmeX\nhGJZp17sI6mcMUwDbZ/9hiVW8YRLJL0iTrilsly/260ogA2zMMwsib+3RDkd65N5ZSf5E/blfZQR\noEaZ2gxF5K/UpP3KJDsJiG6bIHlClWRQtYTYWTnM5tZP2ZkSNK59w/JX8kXk2yrlEp1PmaNIphcQ\nlT2Z4ExkUrZ0X/Y/aU6jUpI/TH1Tshx2O4wNkAnc2uXWPlmHNKYka9K3Hr4rKmeFgY0Fkh3+5R6R\nfgyQ7PmF2yRTyO0bheK9KSV9Zz1p2wr1XaJGEu+q2GYzPMwZBNNZyrLSlH6rUj8nSDLST7a+bVCo\n37tecG1UfvyY+Lmbt4lUprhdJDT7p+6Lylu+9PGonJ3+aFQuP/FAVF7ynX8N6peGAn65YAE0Q79J\nCkikmzSeyX8v+tKvc70iOZutyxzWT1mQtm4XWf6p0zL33Hv//VGZ5Sh794qUqH9IrrNhnUiPZkPq\nP69x63SNM9MyJ+26SvobEMnCLGUnvW5U5HDNU1NReZF8Tg/7mUDm8SbNT40OC79OkqVuh2c8ZMLM\nqyydYClHiiQbLCNtZWECEGuggNYwNL3FJHSNuvzW0HVqNI+MDIrssCdB6+5Bt745dVr6+Zt33h2V\nP/WP/xKVd+0SKedLX/jMqFyYk7l5iGRHM4syBlI0d470iV+qluT9cpbWbktlab+5gszTqbYhI7r7\n3SqRTGLdhg0AgPkFkZnyWEqT5J2zHbG8h4dSNiNjO0WZmAxJ5obp/CS9t7M0upMErHUOtzxndfTI\nWDksQyxrWIfjLNnmumQy7TNKsayp2RQbytC7XnGJ3s853MFFQJkxCoVCoVAoFAqFQqFQKBSrCN2M\nUSgUCoVCoVAoFAqFQqFYRVy0TKleLeLUk/e4/zSIPse0aghFzKcMMo26UJ+SvcLrrQdCj0yRXCdJ\nEb+vv+VmKd8m5W/dJVHk91N096WTki2pFQG6StS1pDCWYBclQnNhiqJOU0T7nhRJQOaEPlcgKp8l\n+lJlVqjwScq6MbxBaHheUq7Jkqy0R9TjkHO4FqLGXxihtEOeJZKpBE3pz1xK2i9JEoBGVSiKPUQT\n56jjINpwlvRtXtL1Z8MIdTNIiA2XG2IrNaJ6FinzV0wiQhRJQ9KA8SEaC/NiT0wftbhACdIaou8i\n4cEfd+3enBca4cPfeiwqL5wUuupj+49E5T1PSDT/Qln6Kxejh5MckSQGhaJcs3zX43KcJHG5mrTz\nsaMnpMohxX9sq0gqBym6PaldMDou5/T3i335xNP2UiRTYhv1iDLpcUYvOdyk457P/pXGFUvfPHcv\nQ9KobkQAg1pIhz9ImUJmFmV8XmOkPXb7lEGJ2cxEtV1ckvHZbHBWlPZ6S5+kjD5JwTIkMUpR2xfD\nezU5wwhJGkE0Wu6+pUWhJ6eSYmfjI5I1Z5GkVwDJ8YgGH5B34WwWBfKjdaKM58iN9gaUvaHb0awh\nWHTjeXq/zPe3bRFfkUpKm0zNyHxfJWnsj94i2Wy+elAk0F+dkj6dXy+yDu/Aoai8k9YoN40IDbsv\nLb+tB9LvOc/9IJsk+XNd6mWJxp8jmUiKZNFjPSKrnLhRskWlxjdF5W2UxfDq170sKvuLIlWpHRbD\nqD8oGXUKZIO1Hmmb+UEnv2kmH0U3Iy5TkgGaacoYt0T1P+pJO33npMxbD1KGmXHKfLVUkP587DGZ\n/06cEP+2ffvWqMwS6527RV47PSt9mAxtgTMDzm0Qm99BGUtTJHeg5QkqJEF68gmRsfm0zgpyYpfs\nZwxn9aPjdVqXBR0yKwVdL6UlGINE+M7D2V7qJN1LU9bDgNafCZJdsESZs8MMDIg00qc17TD1S2YL\nZXwckr4+fVIy0ebovaUUZhT1yYcM9Mt9XvTCF0flG6/dLddIkYwoI76Ns+UENfJXlDkq2yvP59NY\nmluirISkEewbkAxuPmUUa4bchG7PVOv7PvoG3XtlkmSmvA4IeN2QkHVdb6+sN3MLMj/5ntgTt3GC\nszlSZqp77hZZKmd5u/baa+R8koe3stnyuG5SqJMUrXdZ6sSyxEwmTWV51lpNninL7UHX9OldjDOY\nNqgOhsZRmqRanOnpYqDMGIVCoVAoFAqFQqFQKBSKVYRuxigUCoVCoVAoFAqFQqFQrCIuWqZkgib8\nMFtSoyHUxCZF8I9F8IbQh6pEU/IglNZ0VqK8cyT4MaLVpej6d3/7nqhcK8sj+XWhEpULRMsK6efV\ngkRNbhB9M0XyotlZoWpmh4S+1Dsm1KeF00INtsQVD3yi7wVCw9u5fSIqj45J9OoGUTs5PnO5JHXz\nQvrhWogab1rP0DGDUnu6YIzGSrT/HMkv+tNyvEmU+t5+oaYxDY6jbPsk+whIPpDIuT4nNi7KVMXy\nvND6jCf3mVuUX3gJodIN9QsdM91DtMsscf3F/JAkmiE3DdPnApIbBJRpxSQvDZXuSkCtVsehQ04y\nUJmSMTx9QKjZ5WnxLYNN6c/nbdkWlTnjW6Uu47NBUkpLtN4S0SDnm0IJrlL0f1a7DZLcac+nXUaB\n3nXi267fILT8kRGRphXXy3g3/XI8kyNK+Bnyc71ia4k0ZdrJUIYUsvvEoFynSVHqKyQZiNuO81HB\nJYoaf7lggwCV0JfWyd8fOCx2kyM/fdVmaXv2D5YyTKSZomo4C5Ec9ohe78fo+DJWPZIGZchek605\nNWBaMdGEMzInDZKtGJofqhXxf4UFkRvwl5gEUY9ZYhXEphm6JkmJK3w+0Z+nizIGux2BtahUnc3c\nTbLHdFOyilw9LvKRdeMiPz44Iz7qZdvERm4aF99ysCS9cYKyT/77KRmTX56Xdca2fhnDL94sa5G3\n3CY2kFhyfXFsQeSVdRrXWZoTBsW1YZxkB6MT4q+GNm+Jyt7GnVE5VxA5pv3C30Tl4NBBOU6y6wLN\njVVKljRP66JDi86mqt2+zLGIxhNn/qsR7X+W1hh76tLf8xmW+UmfHDks9nf0CMluC9LP7CN6KEMK\nZ9/ZsF7ksEuLsnYZH3YyjiZngaQQBD7138H9dP8luT8oI9ehg4ei8rb1Muf5ozJeapbTQ7KPZLSX\nT8bLawfWBqhW3HzUaLKMlGSJJN1JUtZQfj/guau3V96hkiRPSVB6vLFBOUdWqEDfiNjR8aN7o/Lw\noKxzDpxyEkTO7DQ+KOP6jT/62qhMCUxRmBPZ00aSaZ6hDGGz07LO8umZCosSgqJK67Jyg6RdgZTP\nzIp/HUzLdVqy3QbJN7sRvu+jr9/1Sa4pfcaZkjjbFmcV4ixE/YMyh9mYfKjZ9vjgoIxn9lH79z8Z\nlYeHZT7ZsVOyaVXDuTWW3ZMl3SQjimUKI/jkRznD6CDZZ5oymBpe49KCLX6OHGd5YH+/XPNSrYuV\nGaNQKBQKhUKhUCgUCoVCsYq4eGaMMUiFu/yWdqPqNQoyRfm5mxRkir8SNkqy62mIYdOgvdl9FHzz\nzq9LYKeeYdmRC+irYoOCP5WKlKPec0HpghJ96ZuX3bY65aG3FJWsNCXXWMrIrl2aojuWpuULw/yc\n7MYOb5bd3hQFyFpckC+02RzvQ1PdqA7Z7BrZP7OIHpG/4nYi/JhYwFr+SiPtkaQvT5WC9FVfv7R3\nLSCWCgU/A33tadJuKDMEWl8nLAVELJTFDopVuXYyQcEuKchntldsZXZR+n6Kvp7Ol+TrvE3JDuzg\negma6NGXjMBSsGxDX9MaFHz26CNYK6hX6ji517EZFg7LV9nGvPiQQerzxQIFBKcv+kMZ8TMzJfrS\nX5H27++RrwkglkydvsFtTJPt0NfEXl/q0DJ2vyR9Vdwn9W0eEXbGFHOvmG1BX5uSVM4SqyHVI1/J\nE330RbRX6p6jr91juzbIcQoK6g3L15JGGGjWEuunG1GvVTF12H2tH6I2M2UZe35TmAX0YQYBzUmG\nfEiWiTGWx6QctxRw1yO78eh8jyIse9TnXsiWtGRXNZ5D6dPxM66+Oiq/9GUSSPWRhx+Oyv3EnhnK\niq0Uab7moKC1Kvki+gLkZYhRRcERaxVpy9O5tfOd2lqLSvhFbi+N4dmGzDPTxLS9mphux2rypbmX\n/MmWjDAJNvWLTc0SO+KqrPj/J07IGH50Sn47NCH32rxT5og797k+vZMICzzn+FbWObsHxOZ+gHzC\n4PO/JyonbpRyuUpswPskWKN5WNZo1UZ7G1kkBnCFmILfOSO2dtcJV89itbu/UhtYmKZrB4/WMAvE\nPtrrSTvtJbbStuuui8rj2yUI5je+9rWonKGAlEViNvoUwHVsVNhbNWKae7TOGaGv2hvWrQMAlIk9\nyF+sT5wQJgIz7RIJmTN6hsXOh+gLe53WKn6/nBPwWqwiY8Hn82ktZnmNRj6Vj3c7rAVq4bzTlxNf\nbSjwO7Mr+/pk/g5iQU7pnYiYaItzMv49K31dmhOHkSam/8CQXH98VN5neoklsDNkPk1NHadryFql\nVBAFBDLyTPDEh1kKVj8yLmy8TZuFjddsiI0cOSzXP3zkkBzfL2vDGgXXr1Pw7DlavxfCALTNZnfP\nW76fwHD4Tlyl+ZtZLxwEN0c+xND7FAd7ZnYVM0TqdJ0eus627dJvx08I62nPAzJXNCh48q5dLpg4\nM/qYccL+rKeHn4PZM1LHJWLpcd0DWpglEu19hY29j9IeBT0r1+1SuZw18mavUCgUCoVCoVAoFAqF\nQtEd0M0YhUKhUCgUCoVCoVAoFIpVxEXLlGANgqajEDFdsE5ygARRVBPMqyYqd534c0FNAtX19Mk1\nN28Sum95Uc4ZGxSq68lDEvH0zFGhU/b3SeCyIJQk1EtC06uTNIGlJIOjFKiXKG0+Ue9G1wnF7iAF\nyytQoKFRXyhfSwW5F6ycQywoVKtElSNJSk9INTMdgtt2PZgixofjJ0UlQxKAZiANyPQ1itMKS42c\nTlJAVGpPQ1S5aj2gcj28p/x9YZECuVL01lRKfpekIJ9LFGSPlAE4PiXSgNMFsYnx7TdG5ZGJ7fIc\nFNDK1IRiWj4lwbIWHrk7KhePCVWw2+H7HoYGHCVy/wkZ7zNPCi21TMG+9zwpQeB2jQhleoMv7TYz\nTbRG2qMuFkV2mKSgiz71aToh56ez4hdMgmiWIRXdJzsr0xBfJGkkOMhqnSmzNOYDol6Sf7BE50yS\nxMFS8LZSVsZPakSopRO7hFo6MCG09WQY5LfMdexCNGo1zJxwgeV6qf96iI7LwenmC0L7zxFdPskB\nJjkIOM1zAUkmQT7KkjTJdqDXN+l4S/lrqV779u2TczkIvifX2L5tW1ROkE1s3y4+ZISCaR49KXPl\nZz7z2ahcLMq46O+TMZVIE524JvPZPAXtTe+WOnQ7rLURTblIUuiTM0zfFn/y2Gnpw8dz10fl5z/v\nGVF5vHIoKvctSMDD9bXpqDxGEu9nDgo9u3qNrEtue5bIiu4/SvZ77asBAIlN4pN2pGWtUqnIGmq+\nLLaevEPmnMStIkcAxI5Kn/6O1GWv2A4qMjaWSNdYpAm8mBI7ao6PRWU7sC0qm1AyAF/q3pWwIrvn\nYJBTtD7eS3P5LEk3Fg4ciso37BSZ0k03inzJozVMjiSqhw+JXKyPxu2Ro7IOmJqSeXFkQOaKiY0b\nzzrXcoDxrNxz/ToJAtzXJ3Nr//p1UXn+jNxnakpse7xX6huw1JbkBj6t3TyeCnmd2OWB5TvBWpHM\nDI2L1KxIIRc8w7IOaawMrUMaDbG7pSWaL0j2NUjJJIKmnOOn5DqphMyTvb3iR3bsEHnsxBYXlHVw\nYCQ6tjAvfe6TPxug8BJzc/JMPSQfaVJihV5KYDA3I+u+qTPyW+NJHSc2iA2Wjomva9A6igMjt4JU\nd3tuFM8zSIeBulnOzv4nFtSZ/APLb1iOFJflULBbWjv19sl4npmRMd9oSB9OTEjQXl6vtOZWvjbX\nfSWIPx8neeH1F4W4oHURg+VZFZJqNmLSPw40rAF8FQqFQqFQKBQKhUKhUCi6DroZo1AoFAqFQqFQ\nKBQKhUKxirhomVKj0cTMjKMym5RQd2pETUoQfbJJmShKLAGpUhTnNFGMyhJ9e5joVNdcK9TcJZID\nVYtCJUoQrY5zk0+dcplLLOlEhtYJZW5su1DserIib3rsYckgUKYMBScbQuur1+U5vKT81hIlsFah\n7C4Zomem5fxmU87J5OR4JuueyXhrU6bEDEHT8S9ELaSzfKIoligjSa1GUeM9ylffpOxfRHHjO9Wa\nLB9wv61WKAJ7mSRCUkQ2S3Q7or3NzIjspVKXOi4syVjIDG6Nyttf9Iqo7BOVuDolNOT5h0SOVD4q\nMqXk2ERUHn/Ja6Vy//M30c0olSu4b497zpkZodcvkozwO6ekfSpEb/XmhDLLkdXrZZLgkAEwkdHw\n/2g8c3aDBGXDyNLYHki740NjQvt/4IRQOY8QTXcd7ZFvIQp7itL7GMo+0XOtyE2WquKYju2fisrz\n5JuPzou/WjpKGcAePxCVx8aFhnzz1ZsBAEU28G6EDdCsOnvxSTqUpXnlxLxkxNk5INIumxE5V52o\n002ygyb5ojr5GbA0ibIy+aa9PXnk32ohjTpJGR54LltaEH+SyYifYartzp2SheKqq4QmPDQmEpH+\nIZH6fvmLX4jKhUWmsks79fRQpjCaC2tEa/dGxV91O+oBcCocNsWytP/IgKxtSgV59i/9/+y9eYAl\nWVklfm7E21/uVZm1d1V1d3X1Qi9Ib6ziiODWbqOgOAjuGz9F1GFEneSNguiAAi6j46i4sCgoAoqC\nINA0NDQ0W3fT1UttXXtV7ttbI+7vjxsvvhNZLzKzKrOy6iXf+aduRca7ES/iu9/9It4598zJWOnf\nL2NvoSzU+ZmdN0u7JrT7gRmRoW06+WjcHp4T2UhIzn2PfFZy/kRVzmH85D8BAMpDu+Jttz7/nrgd\nFCUWdg1L/bPvNhn7MCL9vPeDn47bX3rbe+L2C7IyZkD1XZXqn8agxFqVxsBTU+TMsUtkktk+V2sZ\nf/VK+ssJCyCItIZ1I7Xpl8jt4+Onpa4c3i1z//CA1KEPfEFcSHI09rJ5uZZ33HVX3L72apE1ZUiS\nwDLZGsnqchSXxR43XzbJsebsmMwlBaqJt+2QOrxnUMY7OzVNkOx2cLN8p5PnpM+enIyjrSWJibZE\nFgC8luS0rCfXso+WOCAfwg0AGz8HnCWpl0/uW4W8xMICuVAlNV3UI8Wg8eU+Zkk+lC2Sy1UgMcKu\nMSHJe3iuabubjoxITeKT1LBMz4Kk+kapTMs4LEhNZ6nmmSeJ/7nTEjv1ulyPIJRj3XCTyEMbGcmd\nB544LAfuKDfpbp1SGFpUo3o2n+d7LNe4Sg6SBw7IHNOgeaWvX+aBErl5ValWbpFM+/gxqbmfeOJx\n6YccHG+77Tbpk5wF58iJsA2WUrGkiCVIfsIpiepwWmqiSC5PvA/LoFh2xHInPi7vwzXYhcqp0qDM\nGIVCoVAoFAqFQqFQKBSKdYS+jFEoFAqFQqFQKBQKhUKhWEesmgMahiHq0YrDluQ3TNc3ITtIdHai\nKBCVzYdsD0lKNEerO+dKsvo3uzUtLAhte/M2oSc1WtL/1JijGLUaQlnaTHS/mWk5/uQYOQJMEU1/\nRmhVmTJJXEjWks+LPGITuTKNbJV2qST7tyVIABCG5NYi3cDz3bX0MxtTppT6rQxRB0liwK5SjYxc\n19N1uZb9Rmh1uYLEwTzRG5skDWCKJ7vTILrmLaKxEeM64YLik2RgklxojpwUquU4xZnJCpXvxjue\nLdtrEs/n/vMLcXvhpFAtM4Oy0v7As78zbvfsEnkCyM2r29FsWZwac7mgRSlsIRDq4MCAUKZzu2jV\n/seESjlJTlibaZAxNZFXUA8DdnBAx3aT6IuNuny2WXB9HmwIvfb+syLBDDku2SGMqJG7yHHCluQ9\n+r47xM1gYvx03D51TmLtmCXnKHI5WaiTWwHF7yDRW7dtdhT2bKa7nU2CIMDMjJME5BfkPtU8+a5P\nnRG5yM3bZFzVKU83SDIUkvOH58n1afDUSjI20P7sBMek8gyIdh99tkjz5lW7Rc5xlhLmU8eOxO1b\nbxU6MNNuuc2xWiSq+TOISnz6jMQTU54NnfFQj4y17dtEhpfbtHFkSoCHwHc1wlNTci/ma+QeRY4k\n7LDmHxV5z/0fkPyz55bnxO1nPktyvj8s0o8nB3bG7W3Hviz7Tz8Ut4u+HHee7un8gqPmz86K21Hz\nY4/Ica7fF7dL13xH3J48IGNg+imRTP3vt35G+n5U5Et33irytZ5BybXTJFM6Qu6X1XnJRZk9Iq2p\nkVQ9TlHdrRhAAIsp48bzBMlpvkASnZNNqQ+uJjnA3JzINQ4dl+tdKpED3g6Rf83PTMbtLZvF2eiJ\nx0TG1kN186mT0icpX1CI5JM+yQECkvTOkcPaF74oNUm5R465/3pxfNq3T+Jsfl7q5gmSRm6+4/a4\nnf28OHXlaV7stdIeoHowpCAJ+eflxx9Fd8PCRN+zQY51pQLJ/xokXaYpZ3JOxhvLpckUEIYkHpms\n/CFHcpbZGclv7FBaq8sYnpqSuOuP5IjFktSzV10l939mRmqesQnJMw1yBJ2j/JCl+TJL9zlLz5d3\nPeu5cfvsOZGhFwpS0x0+LXV0i1yn+FrmomdNY7rcNTJoYXLa3ZP+PhljY+MiF/zC5++L28cOHozb\n1QUZ28U+mb97STLJMiV255qflpjL0L268WaRiyXclGmfTCSTy2TYsZSeq2nZk1aTxjvVUB7r3kiO\nxI5PAdXzOTqWR+fVSjjukoMgxSI8XoZCZUoKhUKhUCgUCoVCoVAoFF0HfRmjUCgUCoVCoVAoBqyk\nOQAAIABJREFUFAqFQrGOWLVMyfMM8pFTSED0Lz9DlLJc55WKPaL9tPsAAGJzwlqhGNVIBlUnZ49i\nhmQaQ0LD3HejUKaZ7jZ+3PVz5qzQqk6eFvociI5XImencq/0MbxF6F8e0aBOHJU+80RnL5fJuamX\nKFRElWqG8p1KRC0slYQG1YwcqDbqW7Skm5Lt+AdSbsCnKxEUhCY7Fgh1eqQuVDpSG6BB0qQ63asm\nUXI9cnPIRPekaeWeBS3qkLafGROK8aMHhep/7IRQBXsLspr4tozQ8JoP/EvcPrpAq9YPCN1z153f\nLN9pn8hUPJIjsQywTu5c3Q7P81DsdRRU68nYnzwrFNXNOaGoNom/O9Mj13x8SlwsekgnwmPS5OWz\nWab4slSO4iVoyjUPiCrZiuLrsQly06K+r9st0oS+ksTuiQOyKv1mcnMq1yUuDv+HuGk1ZoRmOjAj\nJ7yrJtt3k5wmSxIHMmjCNtbNjEc5jeib3YjQhqjVIjclkjfOENW7lRPacpPu98S8jGeee3gfS2Os\nTk5JnKs9otez0jQ0cg4FmjubEfX2zFlx02gdOxG3Tx17Km4//NDDcfvmm2+J2z0U88eOiavE2ITM\neRmawyxJkOo1oSQXidJdLkrcZAsUOOSKMU+uU90OzzMxpb3WJ9KQ0+Mi9ZhckNw+RJLjrT0kiTsi\nlPCJo3Ivjnz5U3F7xzUiLx3eI7m9RY575eMiPbquV2Qrg31yj9pyaDNAc8Jm+XvpdnJN2i/t8LNf\nidvHnhRZyeAWcejJnpE6Z5bi6yBJf8cmRYawhSR/83mhv5/MSh1Vrcn1qzbdnB2SE1k3IjTAQjTm\nJ1tybWbYyXNE4mmcXPWefFLc7bj2LZIE+iqaN544JLF16oTkiO1bZJ8hkjRPkkzp5EmRTZ054XLN\nLbfcGG/L09hnGn+JZE8jm6XvXdvlmGzDc2Jc5ugG5Zlwn0gvc0ckp4XkGpmles0PZe4MOAebjSPf\n9zwPxchJNUcSjKAp14FrjAGShS5Q7ddHOcHWSQJN5ksLVB/YgJdLkH14iYmAnpEaFMttGVqpLHLF\nAtW5Z85KLXzg8QNx+/hxuc/5vEj1yuSE41O8WHrW7ActQTEt32MTOepMz0rdxe43Pu2Ti+Qmpstj\nyPNM7HiWJ6nWvfeK/O+RR6RW2ET7hCTXqc3LNWuS5J4didg1rUDXskD5YmREnsN7yLkyS0sDFCPp\nZVrfvAQEO3k1SbJkKeY9Xl6Ckeks2eOclpTvUc1N85y/Rg5KjI36TK9QKBQKhUKhUCgUCoVCcUVC\nX8YoFAqFQqFQKBQKhUKhUKwj1kSmVIhkNHWiMrH7TbVKqxPnyWWAHAfYPSggyYhPtCneXiIHh2ly\npcmSlmD33l3Uj1DvvvbVTwIAxidpxfFeoSDdcLNQg4mNjRrJY5pV+c/xx4VW6YVC692zSyhZQ30k\nd/CFH5jJCFXLkstJlhw1WjWi0Vsv2rfLbQYALGeVEIYpfyc5UGjIzYSocXNZocw+ekykHrvJ1cqj\nWJkneUmV6MTFouzjB06eMDMn92aCHLam5uS+Ts2TY01V7l+/T6u3E0/03IRQ+sPC3rjdS84p2+7+\ntrhdGJbtlui7LZJK+ERt9cIU2l4XIrQhqpGDW4bkh1v2Xx23x2mV92KvUGZnpuU6P2VF+lGsigwl\nu0Btel+dYK9SXsoQrdGneMzQiut+5CjXJHnT0LCsUO9RHy1yjRsid5rGtEhG/HmJnYWj8j0y4HiV\nnDMYyPcO6LxatH+zIe1DB6XP6Ui2Va93t9StWCzixki+89X7xAECgcwDVw3JPektyxzT4lX7SYJU\nYOp2QupItFrbuV0nuq1HNiBZX+aEyWhOvfcfPxBvm/2IuNq0mLpNeeDw4SNx+7bbbo3bDXLbqRM1\nt4+cTbZs2Rq3meb81BGhkp89KTIZS3xfU5SYu36PyC+6HdZatNo0aJZak8NYrSXX9tScjLepmtzb\ngRJJvTJy/c8eEknK6aNynbcPiINSb172/0pN+n9av8TAtX1yDlf3u9jcE8icN7BJ7nM4Jscx7/0L\nOZfPybmc2ffiuH3T7VJDPXxEaO6HJkTumdss4+eqbbvj9hMTcl7/+qjIl559i8gQjpO0ph7Rzy1b\n1XUjLGAit888ldtbM/K9T1HeOPy41CrVBaoJqMsqSVSfOCJSt8lJyWmzUyLXyJVFgrZnz564nS/L\n2D5DTij1qC5/8rA4NnqUW+bnZR569rOfFbfvvGO7nC/JSObm5Fweefircl79Uh/f8F3fGrcXTpDj\nzrjkmYKVGPJs53l5I1TFbfi+j8FBd+8s1aR8b3lpiDlydsvQkgpbdkgNMdwr4//wEzL+56jPsWmR\np7ActcXyKJq7ajWpgevR/NKkerrRlOitUt6aJ1cen5wiDdUndXLRmSK3sAbVuQ/de3/cfskPSL7a\nskPmsZlZkmHRsxNLYdr1cperlJDNZDEy7ObeXI5k6OT6UyBnRJYgZnP0TM6d0vODSfG8DajPUp+M\n7RufJpLpYpmkPj4/87t44lhiuZDxKD6YQ0IOp7w/JwKuuYyfIlOifTJU39Up5jMkTeqj78rSqtVA\nmTEKhUKhUCgUCoVCoVAoFOsIfRmjUCgUCoVCoVAoFAqFQrGOWLVMyUKo7i1DKwyTTMkSu93zZHve\nE6pPtSrvhRokd/KZskY6oVpTaJUHHxdKfWlQJAmlHqHkfeI/Phm3z5xz+2dJMtLbK5TNa/YJve3A\no0LVnJwU+l7GF2rSVXvlONuG5bO9RTnfXJ7dpeImAqLM5X2hrlpyEahaua71lrtOoe1yLh2ELsi0\nwZXIr3i1c3Yw8cmdxusTidpDT4nshFdPZ8nIDMk+mKC3fRvJiiL62iQ51pyaEPeD+Yb03ZMVeuDW\notAxm9T3zJCcY3ZkpxynLJ8tkXzAkgQmSKwcTrT5FArhRoINLZoN9/2rJLXgN8sNpiYSrfrsuFCg\nJ2mf4TytsN8iSUqLHRykf49MPviac9unWM4aF6eW7tV1V+2J233kkHH2rDhb7LxWpFdzB47E7dok\nUZIpplgm1SJq+XEj12miKddjgVajZ1lgjmjDd+ScJC7ocv5uNpvD1h3uuzy+RcZena7r2CmJjw+R\nO06WrrGhmCjTdcrQ9cmRfIXpwRmiyfKK/xm69mWKradmXV46ek5cSGoLkvNqFP8FssP6wAfeH7fH\nycGEpQwsU9q5WyQl9TrJI4iOPjhEc2uW5m6S1VUDoRk/+eQRbBQYz4vdH0o9IvsJm0K7blRFosxu\nIwt0DauzMvbYfaKXxn+fR1K2eYnHxgy5/7VknNcbcr8O+SJJGY72uW1czut5p2QuHHlQ3HQaNYmF\n6SGRtQX7bo/bV1H+m9mzI27vGdgSt8dCGQN/8wWRmHzsa5LTWjQGtpE8a7pKc3nOXeNul2MbiNR1\nE5XbzxsWt6FHW1LLjpN7zAy5AFbJYjRfkvgbIeeZ46HkqwWSF+K01MeWnE16af7rofnv0GHnyrSZ\n4nzPLqlP+kiCkCMXtidIYnXrLbfF7TOnxEHn6JEjcfv7XvJf43apV2qeOsmN7YNfiNsejQWT6SwN\nDjeQUMnaEM1IpmPC8yUdAFClnDMLGcNXbZMx2QjJiYtkkvtvkOs8dU5iZ/KcPOfMTEqty3mG5a4s\nQ1uIJN5BKOc4OS1zTobkHddff1PcPnlS5HZzM3IuoU/OgpI6cfic5JaeLRKnp0h6+e6//9u4feas\nXCearpChMZCL8rsx3c1R8DwPpbK7JiG5vQYJOQ3VrLScQUixkiNZTpHkTgsk6W/UJQ5CkveUemQe\nGtoscuUQ/OxGyytENyVMOUdejsKQ2ylI4mnoezRJDuen1FyhZYcoibMFcstskdyOnwvzFMecA1eD\n7o46hUKhUCgUCoVCoVAoFIoug76MUSgUCoVCoVAoFAqFQqFYR6xapuR7Bn0lR9OZJRpPjZw3iJkP\nj+hAfsI9iHYiWtH0jFCiWiTNaIREtx0WOtU1Nwr17tGvPhG3Z84IVXPP9oGoP6FeTY4JNe6D7/l3\n6Xu7ULNvu1mo3L29Qnfq6xVqaYtW/24Src8n+mRIkoHqQsrK1EaoT/VAjlWNrmvQ5SYDgFCQwxSZ\nUkKOxHRl2h4SLdpSOPfvvCZu9+zZF7dbJZF3HD9KjiBNeS/JBg5zLYmznrK7b0F+MN6WJ7rxAK32\nXmoKfS/ok7jJ7BCnrm033xm3ezeJ+9MCOVVYkq5l+8idxGMLAbp+6IyNQ951lMJaJD1q1ug6kzRg\nivJGLZR7PjsvdFVetX+KnLWY6tyiHGVIPuKTTNCneMywmxLTNiP3hzrJV2YX5Nz780Irv/pqcdN6\n9NCTcbtOjgAjFPcZyg90ipgnucMpcp+YoH1YQrNrq8Rgz4CcT6Evou/63f3u3s9msWmrc/y46Rl3\nxNu/9JjME1M0lg6QdJEdg3y69qUsyWsX5mkfufbsXDA4SLmDpAFM2W1MiTvNVES3Dcjtr0rSzJDm\n3Ca5Vhw4cCBuP/yw5BN27WLKeL4kc+FVu8Sp7aabbpRjhUzpls9yP71ZkTCcOCTyqG5HJpPBps1O\n4lHvkZxcLMk4mSVXIabaBy3h14ckN0nIu6g9RfdolqS3vVkZ5yM90u7plTg6Oi3x+3g0Xk+T5LlE\nk9vNs3KcGp3X43vl/u+7SnLRybPH47ZfkHi575x87488Ie0zVNsMbhfZRJMcKh47KDKlkW0ifTKW\n6eFdDGNgIiljqSH3Zk9Grk1/VmQWzazEE8vb6lQ3s2tIgbZXSUZYCxJrA8hnz0qNwtKneZo4era7\n+/C0W54Wb8uSHJMd1sqUN8bHxCXrwc8/ELf3Xi01+e3f8PS43ZoTOczYUyIvaW0VR67ckMiqgmmS\nKdGKCJYd7bABCuMIQRhgdtZdI17CIE+1gmW9NLmqlQdkvpikXPQoyZuvu0bqUp/icXBApPFjZyRe\nuL5iKesCuU/OR/VVvS5SjxrNS/mczBVDg1JvcN90Kjg1Jc9th05L/imMiNPh7FmaZ8ihrlqX80o+\nS8juXBiXI2kPz5HdCAsgjB4Q6bImnNROn5CaxyNJ2ebNVAP2i9SoSPl+lurQI+TaOEC1zXXX3xC3\nWT7UYNkPHbc9LzZoHsyQjDeTkbhheOSyVOf5tCHtQoFkTfwYSZ9tUX03Mydxw05MoPcPTTpWO25W\ni+6OOoVCoVAoFAqFQqFQKBSKLoO+jFEoFAqFQqFQKBQKhUKhWEesWqZkPKBYdFSeDFG26zWiddM7\nnyzLK8hZyTNCByqSTClfFkpei2ibzabIeJgqWcgIhcpriQzlWc8W94xS1OfMtBzn/s8INanYL8e8\n8Xr53MigUON8j+RIRNObqwq1vUpSrVYg12B6gVYlD5kzd/7q0u5Ycp4mumbBBtApxXTBC3RTSrgv\nEaUwINptbkDodluvE6r9wuHPxG2+J5Nzct9m6rRa/Qmh3m7b71wm7rz7W+SYR0QOMDdODjd7xU1g\n8M7nx+3isMRTi2l6RN8r7XtW3LYkDbC0f+IaJBRLRGfma9nlrhQMay1akZuSYfo2UTKLOaH1Nlpy\nb7dskjGMAZFU8HDi+8K0SW7PU7tJlEgbMg2T6LlR7pql25CZFfrwzmGhZs/MSj4ZGhF6/8NHJRbn\nIN8pn+n8Tr1G7MypQA5cJ+rlUJ/kzr3bRQbnkUzAVuvnfZ+uhDGwvuO3z9F4CwpEnd4hriGt0zKe\ns57MNyyhGCJnEaZFN32JoUJR5pNNRAMuknOKRzTqBZI7TR9yziYZktdZckTqIYpsuSj3cp7255X/\nCyQx2EW0ZT6vGjkRnDsrNPGpSXF9CSj+PZLe9Q/J+GIacLcjk8li87CTTCwsEGWaZIk5kg/kyB2p\nSjKB6rzUJwHlDc7PpGbBGXIYOleVuDs2L8c9OS2x05eVvNBTcNd/riDj9qFpknqT+x/LbUtPf07c\nDkniOUZygE8eEIeciXmRm/h9Eke7Nst1yhZknFifJJA09jyq+9pugd3uphTYEFORTC1D6bNJlPcM\nzU9FGjO9XNuQO2lC2E45J6A/BLQ2ADt2NqoimZPsA4yQPGpbn5OpLJwUt60T4yI/u+ZpJF/qk/Fe\n6hFpzNSsxM0CzT3bN8k8d+QBcUrqIYvRGXpe8PtIEkXythLVeixBCTur/rsTVqShs1XJIX1lcqoZ\nlJwfFMhZz5fr6ZXlHi2MydzxEElZ+wsyj2QCGZM+xSA7yzSb7D4qOHniRHTqEse33/lM/koCKtjq\nTZE1HT4mEpqzMyJN23mNSCar7LJUkzGw0JR5b/MIS4JJhjItx8rn5PvFTr9dHkNhaLEQuePxPD00\nQC6tOXY7lvtw/a3ipLd1l1zvvCVJT0Ou39zMh+L2Xc+WeePq/SJTqlNx7ZELY1CVuXA+kj41yeGx\nh/KJR/HMrrIhSaBAdXC2KNvZHSskp1SWQRnWPVLstijOedmBVovir7E2dbEyYxQKhUKhUCgUCoVC\noVAo1hH6MkahUCgUCoVCoVAoFAqFYh2xah6x5xmUyo7iQwwj+L7Qe8KW8L4aJAEJiDLU7gMAcjly\nIaFVlJsNcrcg6lOGXAYyOaFQ7dgmn62SlKhVi95BhdLf0DBR1UeEUlvMCa2zNsdyGjn+QkMomSFp\nRuZmhSJ25pycV5X5pER/LxaEOMqrkfPq3m3aLq8+/vUMjyhoHtF9/Yxcy94RcVY6/sj9cXtshuh2\nc3I/w4YEcl9RqI7XDjuXgdZD4hTQJPpe3zd9b9wuXH1T3M7lhGobEO2N5UUZku+x40aCAJdwlEJH\ndDnDckUwEOphi8YhD6tcQeJiE2Rs9+XJ/aYu95ldudg1htsBkWzrvLI6ySdZ4lQnF4F62wWNHNbG\nz4mM8jCN/RbluQbR008RrTMkpySWuDAsb6cV5Yu+tEPq/+gZkR70sYtL6OiiQbfLlABxIaPx1tcn\ntO9Zmif6++XaZH2Zn04cF+cPC8rrdZkrWnR/eq30X6oLVZidutgtoBXItW+HQm1W+i5Q4tgyKA4q\nW3eKxIrdlFimxJT+eZIS9PbInMeSydqCHDeXlWuQIXnJQlVi+rFHH5fzlKmt62EMkM24cZMlSUWB\npGYlkqOxNG2hT+aQ+VmR9FTnuC33AkQDZ2kqc/zrNBaPzEubKdmFGRc8w2WSwNG8+DjlgVuuuSVu\nX9WQY5754pfj9tFTIlWZbMlx8v0ib8yR60aGpEkZkrKRMiA579FsZ6KZrNvns8BazEY5n136eF7x\n+HuT1N+ne+mzRJ8KbZ7zkFAl0xIA7BhjpbYYIIp/hq60PXLEfY4kt9eQBK/+xa/G7fEzIl3bfNP+\nuL11uzj1LJA0qpf6HHtMcsWBoshksnv3xO09zyCJ+cGDco7HnorbfobnM2wY+L6Pvv5oDLFsuCX5\nYahPpBxZkv/58zTmqZ4skEPO1deKy1VrQmqRTTlxU5odJzlSimSef9FvRbH+2AFx8NuxQ1zStmyV\nuDg7cSZuf+xTH4nbT44di9tDW8hZi5zrpsZFjrRpROa98TmRc+XLkqcnx0TuVCDnzEKJJikbXVfb\n3XVOGISoTrvr06D55smvSC7ftWlr3GZp/ZZNIldFSHVDXq5TluaNItUN7KbEY7JA8yWVxJit8ZIe\n7hzCRI0pffgkKbIkF6IyCx4lwJ4SScBpKYMm1SrsENdL349XDqnVJHc16ZmcXZbOjMm8uBooM0ah\nUCgUCoVCoVAoFAqFYh2hL2MUCoVCoVAoFAqFQqFQKNYRq7c7sEArkhtVaeX/TEYoZQ1aebhK0qRC\nTqhBvs+rH3P/JNkgWZFPK+/TR+ER7TVPzhEhWRQEEc0zV5R3USPbhZI1S/KVM2eF5tVTFKqtsdIm\n5hM8+t5TY0Llmzwj9Hdk+AuSc4sn3zUgrlSWrlMr4nmFre52GQBsLLu5UMME3p3pYr4hKifdn57N\nQmMsDG6P26e+IKu2j/TI/d+/eyRu863KnnsMAFDbL6uGb7rz2+N2vkdWrW8SNTQgirFJoRUHSPkD\nw3RsJvVOadu7PVwIFiLBYeq38YnWTTTJBGWbLolPdMcgYAo5t/neSf99LB2kV9otolmyfKke5ZyE\nIxPRt8fGhbLLCW1yTqRJpV5ylqDV5X2mmLObFtHQfZKYFIieWaDrlCMHDvqqqEWuL2GXO5tYa9Fs\nuGu+e4fQcb//nu+M20eOC0X6w58S57UZcieqZiTh9wwQ7XuL0LFRIxkbu+aQvM0ELD+VdrPGicG1\nSU2GLFF26zWZq1okX8jS/T5LjkgsU5qelrltjmQyIUmAJ8i5aWhIaMg7d0oenZ2Tue3saTlWXz/7\ntXQ3rBVqfobGFTtYBXRvPXLFKZAEo7df5ogGUaDnyVmtStTyhXm5L03aPyBJbprEsmrdeR4jycLc\nmPy9r09yyNxROWYwLJKF/s0yF37qvnvjdj7X+ftlqC5jOZJPbpnZDOUunqIo6bSHRooCs6vQiuYo\nzp+WcrbHslH+IM9bPN/QLj7nBfptlen7GbqIPmmWMtSnR7VCLsovWzwZv02aE8dnaLxPiRzy8KkT\ncXv/M58Xt3uuJkr/hEhhx08el+9E42LLdsnNxWuujdu9z3iG9HPosJw75b1wIwRMBC/jo3fQSYaG\nN0nuZTmG36TnE5JmjE1L3sjTMg5X79sTt0e2iFNj/3aRuzamJLf09kr+zxly4iJ5pk91F6Kail1o\nHn300bh96pT01/Jk7jrwuOxzpi6ufWFW7u0Octbto3a9xe60ciplcr/dQQ5RjTlyuaVnShu672G6\nPIYsLOrRs1AjkGtTKMtc1TMgMqWTJ0Tyl++ReqZGMqHZloz5EumPB8iBs5Uh1za6rizBZneuQkkk\ndmGU+7n2tjmSblOINUnq36AlJTinWpoTF6hGatBni75cj2yeJdjyvbPkskSPC1ggObvJro1rpDJj\nFAqFQqFQKBQKhUKhUCjWEfoyRqFQKBQKhUKhUCgUCoViHbFqfk0zCHFq0lF/ggWhf5WKQtGvsqTG\nCsWJKa1Msc4Qdb5FtP4WuTw0SD7Akp4MUYWzOaEYFXulPVdzfdZ5lfGSnEtIEpdanSQLTdk+T/Th\n6WmiRC0InZ2Xdre07H3WyrnPzwslz4a0ojNRxPIFOYda1VGu2ImqG2HBdFu76C9tdKYL8lamFNJl\nhUe06LAq9+QMrf6fI2ruNqJd8uriR6pyH2563osBAAM33S7HoZXCWxRPhiUdpI2xKXqhtO1pSFyl\n1I/ajs2NgPbdzZAcgyVFLNdhmViTcgjLjvgCebyZ9uHrzPI1pp+3WKpA51OMwmioV6izxbzQhJsB\n90FtXtmfjhkQPTNgGzv+3pQXW9RmaUAuQ9IuilOWe8bbTJe/u7dh7KBXpO/dt1kcG4Z7hTp7/LhI\nxz5x331xO1ggB6UpkZf07dkbtzNE5Z2cEGr2qVMiAcmQ3KhcluPm80Kf9SN3lVyP0LLnFsh5h+Qi\nLDVq0rw5NCQUdJY7zM+TwyBJqep1ofJWaZ9xksAsUE7NZuXcsuSaE6bJJ7sSNq5ROLVns0TBTkin\n2e1QPpAnVxqUxYmip0fuf32T3C+WKbGUqUGyuRbdrzrRsFuRK1LAsrOpasd2uVdi/YUvEpnIUZKS\nTJD0oadXHFe4zmKnDc4WTE9n97eENCnhFkic8C6GBRBGiTtIkXmyRHmBxiG7IPksNQK3BeyIlKfr\nmvU4x5MLaUKmRMdq/53mshzfGsqdoNp+akoktZOf/lzcPvuQOOvMzJNMZZKkeeRI0qL8dmxKXHD2\n7RK5OVXZCOokNfE3Ts7xfB/FSAY7OCJjct81++J2UJPrFjTlqgyS1LFUJlllLznktMgplp1qyUVn\naHhz3J4dFxfBpHybZdIuvtiphp+Jms1zcXtgWOSNAwOST44dkTmyTO6Xs1MigfV8qdfZtS2Xl/Od\nWjgZt+dI4hmSlilPrpGNrl/6wWGuNo9Pfe0LAAA2NGx6MjeEs9Keacl4+/zRr8n+VuKmSnMPS9tr\ndRnzXz4on80cfTJu58jlq7csMijjsUOS+5drjwI5Njaq/FwtTUtOzTl+FrMSzydOSRw0KKcNDoj0\nj50iZ2flOzHYRfFSOIt2eXWtUCgUCoVCoVAoFAqFQtFd0JcxCoVCoVAoFAqFQqFQKBTriNXLlBoh\nzhx3FLCAbIXKZenaFKRdKtDK/rNCPWIqXZZW/2baEktzPHITCVpCmWsRfW6OKL65LNHa8o4SPD8l\nVL6wJf01iPZYX5BjztO5NJsksiE5kp+h1Z2JqVwsS//8XT1faOCe4e8k59Cg1aCLkT6iyxf8hkGK\nCImp7QkzoM6iJmaDWyLtssxi+sTBuJ07JzTJWweF3jhLEqOvHSWaWkGobNc13L3KkF6FqccmYXfE\nJ88cX6wNWIGUoD9zu7MMp9vRCgJMTDm6c4lo/0w1tCmUcHaZYfkSS5PyeZIesCsTSX0451iKB3Zt\na9YlF/T2uFjbRNRIS32w1Imd5RJqN4rphGsTO3dxLkzIs0i2Z5lizE5T5KZEsdN2LOt2lwEAQHTd\neAz7lu4Trar/grvvjNubiiQTmifnGaK9sjBlYookQ0S7D2oy581VaZV/onKP7NgVtzcPO8lKsSrH\nnzwolGF2H1gg6cocUW2vvVYcSfbs2SPn1ZQzXiBnr0lyUJqbkz7ZQYAdv3bsFHkWq+p4XDwGccvo\nThh4kXTGcLKgIeF5KTUJjUPLHOuQ8w/JSgpSqxRL5MTUKxTvJtciJE2qUkw1a+5+tWpy3xok06yT\nNIFdxP7wT/84bpu8fKc+kiYZqr+8xDzD14bbLAOn7ZTfmlzfRXm322ctC6BdKoZcBiSkHSQPpe3J\n2buz26JHA65FsZX4lZWOy/kioHmA3ZRMtD0gqTfXNg12hSJZUD89TvgkaZsgyYwld5cMyULGT4gT\nUy/F4rZdkgtrNKYmWiyr6ZyDux35Qh57rrsGADDYK9JFn2SsXoaWhvCkbtmxW2RNQVPOcwYkAAAg\nAElEQVTmgvqCtH2SQz9xUKRB3/T8e+J2tXYobn/1tEhPqlV6tqI504ueTxqU886eEXnRtu0ix5yh\nOapIkpQd2yXP7NwhEuKxSZGsPfGkSKYyveL4xm5aW/qlvp9ZkJgKZuXcNmfIATWaD9Nqx25Bo97A\n8cNHAACBJ9/VJ0mzpXtvmjI/PPjF++N2i55HDc33JbrfLB+yGZ7DJEbDmpxDb1HuCcu020uTcE3O\ndXhIsvyevMyJeV/2yZC0tWVlHuR6rRbIeDlzTpzdLB83x9JjkmQ1eO4kOam/NpJaZcYoFAqFQqFQ\nKBQKhUKhUKwj9GWMQqFQKBQKhUKhUCgUCsU6Yk1kSmePOLpZoyXUoKEtQjUboBWrW0QT8n2i9xNN\nslYTOlAYdKbAhkRxbDBNkaix1gpVamaOHW3cOZw9K1THKlHJC1l2HpG+C0RVL5SkHRJ9sliU7zpP\n9Kw60cIKvUw5lX56yF0hm5N9zp4SOl8rkkH4Z7tbMpB0UxKYxTt1aCfcg4gmW68KHa36wH/G7blH\nPivdVIWSd4roiFVPqHdNWgn+7hd+Z9zecu11AICAnEpMRihtqXIk23mX1XCwUx2lEjZLHPMbB8aY\n2MEjQ04enid0QaYXJqjfJAdgB7eEBIeavseSIZIg0WdZMlSk8+kZJMcR321nNyfOGybLB6VcSLKD\nRNZgKRWxJPl7++TgxrkWHtOK5XrwavR1kpzGss3uTjkR3JfwEpZZYcf2lhGRhfyX598Vtxsk72g2\naQ6psVxEts/OkvPejEiMpqbESW+K9pmnGGk7JHmhxMEAyX5rM9LHPLtw1cnxaY5o6iTd9el+s5NW\nnmI4R7kwmxV68LXX7Y/bW7YSJZ7lexsq6wBhVH+wUwhLJPj7ssOQT+6MVXb1YIezDN0LkodYonJn\naZ9GnqSJlH8KLXZZa0bnSFT1RC6U79aimM6QI1apT8ZAwgWJpH0t1oZwMqI8wxLiBJ2czpfdqLJR\nfut2BzcLi2Z0fxLlAad7lv1Qm7MSy5QScz/JlCyN4SZLmUi8k6E62we7KZ3vYlkPO9cVfF7NxO2R\nv2RDcm6hDzfofOt0b2uUox77rEgltm0SmUp4RiQR45TfPLKCCoKNk3P8jI/+Ta6GCMk1Jt8jzzUJ\n7Vso1/Doiafi9uZ+kT1uGRZJT5WWaSgWpVY58JhIgD5536fjdq9HzrYkjbZ0T9s1GDvisuPl9LTM\nf8Gc3MNZcuuxtk7bxS2qt49cnobkO50m+dL4DLn8GZmXcr3ynJWh+ipDS2IUbHsJiO4vdOJyjySh\nvSTvqc1zXSnXEk3ZniU5UqYk8rJiQfrhpTWY2lEsyj6GlibJ0xxWIIlRPooRj+tUiqsGZH7q65E5\nqTonz3PnJiVWNm+SeL5qq0gdEwaPNAGyHLta5TmaJVby0Ro7uK1RuHT3TKdQKBQKhUKhUCgUCoVC\n0WXQlzEKhUKhUCgUCoVCoVAoFOuIVcuUMr6PoSFHGwosuQD0SdsnKnwYkkwpRyvyE93JErWqaYkO\nR/zIeXJ2aNIqx7Yp1Ko8OSidOytUtnKP26fo07uoHNG5SnJZ+gaESuURpS2w1CaKbz/R4Wbm5ITn\nqszlpRXQe4hO6pNDAtE8S/1E+cs4imLmSJe/R7NCyU1Sc+WaZUKSnJFcJMwQ1fXk43G7+vH3xu2J\nxx6O24/OyrWsl0QKtvfqnXE7PyEra49PCn2zZ0Qobv7I1QCAGlFkfaIDM2U4VdOxRpy2BBk3heZs\nmFu8cdi78D0PfWVHm+SvyKuzM9jNpECU2SI5hSR1cNQkympIFOgM5S6m2mdIwsC0+/Yq8Uwlz5Ul\nP/GK7HVyR2k12flIzqtKVN4MHYdXoC8WO8sBWhSnhj7LVPjQE6qm9TZO8LTjJUhQq0kCQG3OsAVy\njykUSC5Cub+PJR0e33tyvmqyxEnuSTOQ7fNNdjBy7ZlpyUmnz1wft0+cGIvbp04JTXdiQua7Rl2k\nSU8eeEi+FMkEAqK78zjas31z3B4cEkePYZImFcjxJ8sOCTTWuh8mdpQg9UYirXK+ZbkEO5bxHMHO\nEWHIMUjSE87nvlzPLMl+fJIpZTM0l0YUa5YM+HR/vAQdn3JCCk2fZVWwTE8n6SeNH0tyJLaWDCgX\ncb7atk1iqp3s0nJ698AgQNsZiuOAci27IKUonQPwdaU4SxyJ95HtHEMsU/IS58Pn7P7TSJEp8Ymx\nRK1p2M1J2gt0nFk+94R7n7Srp8Xx8v5/en/c3tSS+OcxxdeVJXvdDmstGk03z28dpnxLSyEYI5Il\nlmzwVXjwy5Lzv+X5z4/bh4+Kg9K5KZl/PvmZj8ftE0+Jy9UdN8pcEJA8c57canKRU229ITUyu82e\nPSvOSmGmQZ8jub+UNpieExnuxAmZ30plcUEaHpA6qpeeO89RTY+q5KKRgjwDBC05WNuhM6ClNLoR\nnuchX3Zzcqko12OgX5w8cyOSv2v0LM2uRTmqczJFibNiQeocQ25NHo1/liMlVmbg8RnQc21UhxaK\nMsZnZsTVMSyS21FWYsXQnDQ7LbESkHtojpz82J257fwFAIN9dG2o1mvLxIGkg+EgLSmSISew1aDL\nn+gVCoVCoVAoFAqFQqFQKLoL+jJGoVAoFAqFQqFQKBQKhWIdsWoOqJ8B+oeidzqGVuHvlXaLKG0Z\notomSbLyXqjB3EtakX9+Tqjzxw7JyuElojYND5FzU1Oo2qW8fHZk2NGjGpZptEK96u2VlaPzRTn3\nRrOzE0JAq0VnyRWltyzn0lMiWlidqcR0C+iCeBmhl403hUaWL7nrxHT6bkV7FXaWpTHtjKmrrQWh\n49cffSBuT31WKJV+n6ygXb/9+XF77LOy/93PeVHcvvbpT4/bxw/ICv5Bv6xEXywKHc3GkpHO9khp\n0iEknBBWIvlYwb1dwXHDhPxrI0lNbOwyxFKILLXZVSiTIp3g7cyoTxhh8XWmfXgvPi5T/FmG4EdU\nfj/lfEOib7KDSC5F6tHTw6vbS64wJBlokNyJeehZjyRWLE2iEMmSnC+bd+fGUqpuRBCGmInchPib\n5EhG6ydyMMs7eK6gfeh6ewnnLTpuIHMII08yuQLJmsokJciOOPosx8T8wl5pz8k9np8XevXklFB8\nz50bo32EdsuMYUP9FwoitS2VhJ7M46XYKzTxUo/ESo7ke9zuepik7LCNkIQiNiXFcq2QJQerDLXD\ngOsMcophKYfHcm8+Qmdti9+utRJyEHKZo/GcZiASkJsEyGWJzyXNtc+SDNwy9Z8lguRGOD0rdU5b\nWsoS025EaEXu00EJ5Jpc86TcB64bfMrlPt9w6ictFj2kyHg61BNhQkrF95jrVz48yx5l/wbtX0uR\npPPXztGzQHNC8tVEQj/M4275792dsLFT1OlT4nBUztMcXyPZa0PGzxy5ME7PybV61z/8R9x+7l1S\n/5577GDcfvzQ8bjdl2c3PZ7f5N6xbD8bOfZw7l8gZ0aeQ/yCfI98XuaTs2NynMkZeeaqk5Q3qMrz\nn0cOqYZyVB+5SPVvFhep+mlahqBIOdi6c/Az0nc3Ip/N4eodewAk60qWguVztKRIVub7xPMXfban\nV56PSyRTmlsQaRDnFpZ1N8l9luW4LNkvRFIfljmXyLWpQQ5HLHUqUe07PDwct7OGY7VzUlggeVYx\npbZl6Xk9I+fA8c3z3GqgzBiFQqFQKBQKhUKhUCgUinWEvoxRKBQKhUKhUCgUCoVCoVhHmDQKz4o7\nMOYcgKPL7qhYa+y21g4vv9uVCY2bywqNHcXFQONGcbHQ2FFcDDRuFBcLjR3FxUDjRnGxuOjYWfXL\nGIVCoVAoFAqFQqFQKBQKxcqhMiWFQqFQKBQKhUKhUCgUinWEvoxRKBQKhUKhUCgUCoVCoVhHXNEv\nY0zFvM5UzN8t8fdHTMU8fxX9v8tUzPesYD9rKubalL/9sKmYj6zwePeYivn7Cz1PxYVB40aRCmOO\nwJgXXO7TOA/GDMOYAzCmuPzOF9RvPuq3azXQX+8wFZM3FfM1UzHbLkHfD5iKuWmt+/26hTGvg0mf\ne2DMIzAXP/fAmHfBLD/3rNGxLn2u1Py0YpiKebupmN9ex+O9yFTMPy/x90+YivmJS3TsN5uK+dlL\n0Xc34ELqw5TPv8JUzH1reU4XcOwl42bRvq81FfP/VnGsJWv9tcLXVTwulfeNeS6MeewC+3s7zBJ5\na7nad7k5dTUw5h6YK+PZ6op+GbMc7Ki9yY7aT1zMZ03F3ALgVgDvX+U5vMOO2heucN8PArgpOrbi\nMkHjRnEF4n8AeDusra6qF2M+AUMFsrV1AH8Z9a+4wmAq5oipLPvA+1MA7rWj9tQqj9XpYe5NAP7X\navpVXACsvQn24uYemAuce1ZzrPWC5qcrGa8H8MbLdOw3AXitqZjcZTr+ZcWF1IdXIFYcN3bUvsGO\n2kvyQm+N8XUdjzGs/RSs3b/Gva5N7XsxsO7ZKppbLyu6+mXMKvHTAN5hR9d9BeN3wRXXiu6Exo0C\nMCazhn3lAbwcwKX6heedAF4eHUfRffgZAH97ifr+AIBvMhWz9RL1r1g7/DSAd2AtXBfWMn+tHpqf\nLiNM5fxYMBVzB4B+O2o/exnOx49ePB8A8F3rffwrHZ3u15WCtYybK+l7ajyuABczp1z62nepY7fP\n94p4troigt1UzGsA/AKAPgAnAfycHbUfi/6cMxXzNwC+F8BTAF5uR+0Xos8dAfATdtR+1FTM6wA8\nDUAA4NsBPAHgR+2o/UrKYb8NwI/QOVwL4C8A3AagCeBjdtS+hPZ/gamYfwMwDOAdAF5pR601FfOK\n6ByeE/VjAfwigFdF3+evALzGjtow6ucTcIH3ygu8TIpF0LhRXCRugzG/D2A3gH8H8HJYWwMAGPOT\nAF4DYAjAfQB+BtaejP5m4a7/qwBkYMzVAH4fwA8DKMDZCf4QrH04mmReD+DFAPIA3gfgl1Le/t8F\nYArWHo+3GDME4M0AXgSgCOCTsPZ7YMwg3IP5XXD5+9PROR6HMa8H8FwAd8OYt8D92vDK6G+TAO4G\n8MlVXz3FeTAVswvAW+GuvwfgXXbUvtJUzDUA/hyO0WABfBjAz9tRO2Uq5m8BXAXgg6ZiAgD/y47a\n31vU71UArgbwOdpWBPDbAL4fwACAhwB8ix21VVMx74nOoQjgKwB+1o7aR0zF/BRcnFpTMa8C8HE7\nau+xo7ZmKuZBuDj760tzdTYgzPlzD6zMPTDJuQfWzT0wbu6BtR+F6Tz3wK5s7oHpHFuwdmqJY9Xg\nHiheDWN2rvj4xtwJF983AKgC+EcAr4a1jejvFsDPAvhl0FwXvzgy5scA/CqArQAeAPBTsNbZr2p+\n6ghTMU+Hqy32AfgQ3D3mv38nXB7YA+BrAH7GjtqvRn/bDuAPATwPwByAP7Cj9m3R316HxbEALJaK\nfBsW3QtTMd8S9bkNbg4yi/5+3j22o+4em4q5PvrsMwCcA/CbdtT+Q/S3t8PF1G4A3wjguwF8FK7m\n+Q4A713RBesymIr5HwB+EsAIgGMAft2O2vdFf3sFzq8PpfYA9q6gZuRjvRXA9wHohxvnr7Kj9lPR\n314H4Ea4eOhUL6fGUgd0ipvljn2tHbX/zVTMHgCHAfwEgFEAR0zF/Ei07acBvA4u5t5sR+2bUq5p\nx/kv+tvbAczDjZfnwY2Zl9pRezD6e2qMRvgENnA8LsIdMOZtcGP9nwH8LKytRbLXv4O1OwG055j/\nA1db7IcxZQA3Y4m8tQidat+9AN4O4BsAfBZAUhZlzN1wdfeNcDX3L8YMUGP6o799O4AQbkyMwtoA\nxrwCbrw9ADeP/h8Av4Er5NnqsjNjTMXsh7sId9hR2wtXFB6hXb4LwLvhis4PAPijJbr7bgDvgXuQ\neieAfzYVk+1wzDKAvUje5N8C8BEAgwB2wg1KxncCuAPALXAPWC9a4jy+F8DtcMH03QB+jP72KIA9\npmL6lvi8Yhlo3ChWgRcD+Fa4e3kLgFcAAIz5LwB+J/r7NrhE/+5Fn/0euAnkRgAvhJvUr4MrNF4M\nYDza743R9tsAXAtgB4D/mXI+N2PxhOOK3RKAm+CKtT+ItntwE8xuuAf5Ktqxbe2vA/gU3ENQD6zl\nyeVRuIc2xRrDVIwP4F/g4mUP3L1ux42Bi6ntcA+yu+CKSthR+zK4wvceO2p7Fr+IiXAzgEN21LZo\n25vgCsZnweWs/w5XeADAv8EVQSMAvgj3UAw7av9v1P696Fj3UH8aGxcCI3MP7NrPPTDnzz1Rkbt4\n7kmNrSWO9d7ovN5xQcd3L2x+CcBmAM8E8M0Afm7RPp3nOmO+G8Br4R7IhuFy1LsWfVZjkBDJIf4Z\nbh4YgrtH/5X+/nQ4eddPA9gE4M8AfCBaX8oD8EG4h9EdcPfqVaZiuPboFAuMxJxkKmYzgH+Ce3jZ\nDOAggGfT31PvcVQ3/QdcfI0A+EEAf2Iq5kY63kvhfrzohfsRBNj4MXEQ7sVBP4AKgL9bZl0wrj3a\nWKpmZHwerhZpj/P3mIop0N875qwVxhKjUy2z3LEX4xvh8hkf45vg5rUXAnjNEtLejvMf4QfhrvUg\ngCfhYm6lMbrR45Hxw3DX/xq4OvY3ltj3h+BeUg3A1aepeasDOsXLOwE8CJdnfguOOeNgzA4A/wr3\nEnoIwK8A+Edac+ztAFpwNffT4eKFZXB3ATgEYAuie4/o2Qrm8j5bXQnMmADul+MbTcWcs6P2yKK/\n32dH7YcAIPol8VVL9PWgHbXvjfb9fbhfae6GmxgYA9G/s7StCfeAs92O2uOQCaGNN9pROwVgylTM\nx+GSy7+nnMfv2lE7AWDCVMxb4IK1/ctD+5gDAGaW+C6KpaFxo7hYvI3YLh+EuyeAm4D+EtZ+Mfrb\nrwGYhDF7YOP4+h1YOxH9vQlXPF4P4AFY+2i03cDRHm+hfd8AN8n8WofzGQDHlDHb4H5h2gRrJ6Ot\n7tcma8fhfpVu7/t6AB9fwXeehcSvYm1xJ9wD8a/SS5P7AMCO2ifhij4AOBfll9EL6DsRG1Fx/GMA\n7raj9kS0+TPtv9tR+5e07+sATJqK6bejdnqJY8zCvXxUrAzx3ANjzlFuaOM+WDf3wCw/98C6uSdi\n66187rHJ2Io+v1Rs3Q9r2wtrVmHMyo9v7YP0vyMw5s/gHpreQtvfGLFypmASc93PwOXNdn58A4DX\nwpjdMTtG89Ni3A0gC+AtkST6vaZiXk1//ykAf2ZHbZsx99emYl4bfa4GYNiO2vZaUIdMxfw53APm\nh6Nt99tRioXzkZyT3C/Nj1Cd9Ba4WGnjZwD8jh1199hU3D02FbM7OqcjdtT+VbTvl0zF/COAH4B7\nMAaA99tR++moXYv+3dAxYUfte+i/f28q5tfg5pK0NaF+J6oPGUvVjHwsloG82VTMbwDYD/eSBUiv\nl+/A8rHEWBw3Kzn2YrzOjtr56Fza2yrRtodMxfxV9D0/2uF7Ljf/vc+O2geiv78DjkUBuBfJy8Xo\nho7HRfgjWHsMQLvG/EOkv5B5G+37PER5K2JFvhcmkbcWY3HtexVczL0gWk/s3qhGb+O/AfhQPL8C\n/wFjvgDg22HMv8PlqYGIgT4PY/4AUa6M9j8Ja9s/mLdrtSvi2eqyv4yxo/bJiDb9OrhFSj8M4NV2\nNHpYAk7T7gsACqZiMot+KWzjGPUbmoo5DlckL8ZU9G8vJPH/d7i3cA+YipmEo8L9JX1m8Xn0LPG1\njlH76KJz6F10DoqLgMaNYhVYfE/a13k73K8pDtbOwZhxuF+EjkRbj9Hf/xPG/BGAPwawG8b8E9yb\n+gIcq+XB6IEHcL9i+ynnMwm5v4D7hXuCXsQIjCnBsWS+Fe7XHQDohTE+rA3SvnDUv8bOpcEuAEc7\n5RZTMVsg8qVeuF+Ozr+v6VgcG5vh4utgh2P5cL/2/ADcr9MhfWaplzEaGxcCa5+EkbkHxs098Qve\nDnMPjMnALj33wNoQ5gLmHnPBsXVsyW1LHd+Y6+AeXG6Hy20ZuF8vGWlz3W4Ab4Uxb+Ye4fJq+2WM\nxmAS2wGcWLQ23VFq7wbwclMx/x9ty0WfCwBsNxXD19NH8gVbp1hgLM4725Gsk6ypGO5jN4C3mkrH\ne7wbwF2LzieD5DpYnc5nQ8dEJMF5NRybEnDjZfMSH1l6/J5fM/KxfgXAj0d/t3CyJj5Wx3oZ0Q+N\ny8QSY3HcrOTYS32nTtuOwjEqEljh/LdUjlouRjd0PC7CiuKqw77bAZxYtK7ZUaSjU56ZhHUv4+jz\nu6L2bgA/AGOY2ZuF+0Fyd9Q+RXW3t+j80vIMcJnv7WV/GQMAdtS+E8A7IwnGnwH4XQAvu4iu2jes\n/QviTjg99+LjzZuKOQhHvzoXbTsNpyeDqZjnAPioqZh7o182L+Y8HonaVy06hxvg3sAqu2GV0LhR\nrDFOwiV0BycN2ATgBO2T1L9a+zYAb4MxIwD+AU4zPwr3a+NNsPYElsdX4SQAbRwDMARjBuL1HwS/\nDPer0l2w9jSMuQ3AlyD6/TR97g1wa9Ao1h7HAFyV8rL3DXD35GY7aidMxXwPkrKV5RZj/Src+gDt\nvsfgHsavwfm/LL4Ujqr+AriXh/1wxc5KYmP9F9DrZlg390TU5jWZe2DS5x5YOw+TnHtAsQVrJyLL\n66UkUZ3u/8qO7/T1X4JbE2s2ehn1/Usci3EMwOthbSc5TBuan5I4BWCHqRhDL2SugryEPQbg9XbU\nvn7xB03FPBPAYTtq9y3R/0ryznWLzofrJMP/p/M57x5H7JhP2lH7LRd4PjcgnT3R1YiuyZ/DyX7u\nt6M2MBXzZSxah2cR0sZvWs3YPtZz4X40/GY4dlMY/XC41LHaOIblY4mRiJuLPHba9zwQtTt+Tyw/\n/y2FY1g+RjdsPHYAj+20690G369TAHbAGEMvZDhvLcbi2vcUgEEYU6YXMlfRMY4B+FtY+5Pn9eQY\n5XUAm1N++Fh8rm3cAOAI7OV9trrsL2OitT92wC1EWYN7iEn7BXk5PMNUzPfBaR5/Ae7GpK3q/SE4\nmu2no/P4AbikeBxuAFvIm9ULxa+aivkc3FvXX4RQ4RAd898usl9FBI0bxSXAuwC8C8a8E05H+gYA\nn+sgQ3Aw5g64N+9fhFsYrgYgjH5h/nMAfwBjXglrz0Za16fB2k7U3gcADMCYHbD2BKw9BWP+DcCf\nwJifh1s075mw9l64t/hVOCnAEM6XJZyBW/CVz3MHnL523Z0xvk7wAFwR8UZTMaNwv0w/I6Ld98L9\nKjdtKmYH3Ms6xvn3i2BH7XFTMU/C0dc/ExWzfwng903FvCz6/J1wMdgLl7vG4dgLb1juWJF2/xlg\nXbZiaZi1nXtgLm7uAcVWNMYXx9ZaHr8XjsI9B2Ouh1us91yH/TrhTwH8Foz5Mqx9JFpk8YWwkUxD\n81Mn3A9Ho/8FUzF/AuAeuHHelqT+OYD3mYr5KFz+KQF4PoB7o//PGmdw8DYADbgHjqIdtZ9f4fE/\nhOR6af8K4I+oTvp5uIV62/hTAL9lKubL0YLh/QBeGElx/gUuN76M+rwNwFxb1pSCb0QHyc0GQRmu\nVjwHAKZifhRuUeULxVI1Yxu9cLF0DkDGuIWDV7o+xoXG0uK4Wc2xGb9pKuYn4dbN+lE4ucpiLDf/\nLYWVxOhGjsfF+HkY8y9w7KFfB/D3K/xcnLdgOuatxVhc+x6NZEcVGPPa6LP3wOUcwP1o9HkY8yI4\nmVoWTgb5ZLQQ/EcAvBnG/CZc3bwXwE5Yu9TC8FfEs9VlX8AXTnv9Rrhf/E7DLZ7UaV2FleD9AF4C\n91D8MgDfZ0dtM2Xf/wvgh6M3/IDTqX3OVMwc3I3/RTtqD63iPB4E8GW4Sewv6G8/BNGvKS4eGjeK\ntYW1HwXwm3BrspyCYx/84BKf6IMriifhqJTjAP539LfXwK3n8FkYMwM3cexPOW4DbuExLjBeBrce\n0QEAZyEa7rfAOQWMwT28LF5/6K0Avh/GTEar4QPuF6O/jjS4ijWGHbUBXMFwLdyCvMfh8gng9Obf\nAPfQ/K9wi2AyfgfAb5iKmYro3J3wZ0iyLn4FzkHp8wAm4FgZHoC/gYvDE3BOEYsfbv8Cbo2tKVMx\n7fUi7gHwCZJ3KpbHJZ17YJeee6I1qYDlY2stj/8rcHlkFi7nrbQ4B6x9H1yMvjvKhQ/DrYnVhuan\nRbCjtgG3GO4r4Mb4S0D3N3K6+Uk4JtQk3FzziuhvAdwaGLfBOdGMwT1E9l/A8b8I9wL5ruj/Y3Dy\njzfCzXP7IC8FEbkA/S6Ad5tK8h7bUTsLt5DmD8L9wn462jfVyjxayPZGuMVANxzsqP0aHBPsfriX\n5DeDrucFYKmasY0Pw9UJj8PNDzUsL1Nrn+cFxdLiuFnNsRfhk3Ax/jEAb7Kj9iMd9llu/kvFcjG6\n0eOxA94JZ0xyCI7V8tsr+pRdOm+l7P92JGvfl8IttDsB92Pj39D+x+DYT6+Fe8F3DO5HiPa7jB+B\nk2t+DS4vvhfLr4d3RTxbmaS0q3thyCLtAj7zTgD/QAuZrcV5WAD7OslUTMXcA+BldtS+eK2Op1gd\nNG4UVwTcavCfAvD0FPvri+03D0etfR6sPbtm/SrWDaZi8nASkW+2o/bUGvf9OQA/bkftw2vZr2IF\ncHbT18KufO6JWHv/QAvxru/x1xqan65YmIp5IYCfs6P2ey7Dsd8M4KAdtX+y3sfuFixVM15OrGXc\nGLG7zqas97gu0Hi8hLhUte/Kjn0PgJfBXv5nq8suU7qcsKP2pet8vA/C2cQpuhgaN4o1h7Xn4FyZ\n1rrf+iXpV7FusKO2jqSd6Vr2fdfyeymuGNj1nXsuOTQ/XbGI2AedGAjrcexfXn4vxZWIyxk3lwoa\nj5cQl6r2Xdmxr5hnqytBpqRQKBQKhUKhUCgUCoVC8XWDDSNTUigUCoVCoVAoFAqFQqHoBigzRqFQ\nKBQKhUKhUCgUCoViHbHqNWPypX5bHtjS4S/LW7ubxC4Xun/qXmvUz8qPw/2lEpPXYwwAACAASURB\nVI3W5JjSz+z4KdTmJteq13VHsdxn+wZHAAArY2fxPma5ZhJ0g1ZywZaNj5RTuTSQg3l0Yhnf77hP\nGEqbryuf8smnDo5Za4fX9DTXEcYYa9ZmEC+LC+UNrvlZJeK7c+8XGo5peZevqelw3FbQQhCEXZtz\nCsWy7ekbWHIf/nKekd8qcnkx/shmc7IPjUPaHZbGYbMpJjET52SN0lpV1qrL5qR/P5Oldua8vhP3\nj25+oyHrG2Yzcl6FPJ2vR+dLHXmeHIDTcSIm6OpwzIVhKNup7fnS5/HjR7o65wwN9tsd21ydY9E5\nx6JzM3XcMlotuXcBtRP9pOQ8jrXO+YrPt/M5pp37apA82+WzFG9tf9dzExOYnZvv2pxTzGRtX64A\nAKhRtc0xxD+J8jj0PBqfNJY4njz6MOciHuch3XSP833KnTbRZzkmOXC4xuCb5vucQzrHXOI4KXOb\nTTsvPhjlGTSDuOnNS6490Zjv6pxTLBZsX3+5w186z9Op+6zkYObiR32i/2W6sUv8r+P+aUkqZTPv\nkXyuWD5Pt+NubraKWq3RtTnnwuvjtH3l6hQKUp/0lItxO8NxE0q+4MN72ULc5jqHMTszAwBoNsXI\nL0f7Npo8J0rnTdpeq8vYT9YzKfP1JYC19qJzzqpfxpQHtuAFP95eYFq+qKHqMVHQ8QSTtk9if5ps\nktmb9ud2WqI6v38+lxU86yf+w+fON54LU0ZIx7Ip58uwKRnOGDdRvu93u3sdv77BEbzklW8CALSa\njXh7WvI1Hl+Dzg8Rie3c9qXte52farzUB1F60Dj/tJIxxOdLW01K3DJsSpFkaAH5Uk4e0gb7e+Wz\nLbl+tbq06y0pUkIr3/s3fva7j3Y+i+6AMQb5XCZud0Lai6g0JCdlGqsXmLzT8tiFfC5tO8c6g8/Q\nS3l5l3Ze3GcuK/GVycjU4EdF/unT3W120tM3gO966c8BWPQCge5xzpPvXcpJ0bFr79Vxe+v2nXG7\nb6Avbmdz8gBUb0hhcPbY4bj9jv/3h3H7wENfidvbd1wTt/s3b4/bA8NDAACvKH3nMxSfgZz70RNy\nf7ZuGozbN1yzO273lCRv+L7c71KxFLeDIKR95EWOT9cmoOPWajVqL8Tt3j55kPilV7+8q3POjm1b\n8M/v/GMAQJMeUps0d/FDamh5bqFagfM87T8+Pk7tibjNYztDL+lg5R7V6CUcpXzZlfZtJeYE2Sew\nXMNwJ53zhk0UKLQPHctPzIeyPTkfdn5ozES56H/+3lvQzejLFfBD+54OAHhiWK5HHXLPEmO7LA8g\nxRI9APVILspCxmQ+I+O23CO5qFjukWPV5QGnQGM+a+ie0P3MFty4HR+fjLcFgZzvwoK8RPYzEjf9\n9OKg2ZJjtuhlCT2vIZuVfJKhfjhGOVYy9LInnJeckzku51l8QHLta566v6tzTl9/GT/0w99x3vbE\nCzu/81y+sjqEa2pu8z6dn2f4GTxRlXQsl1J+IEx5Ycf5iufptDnbprwoTOS6oPNnW4Hs04yO+8H3\nX4zD+JUDYwzy0Y9Hqfc+cb35eZt3kWt23X6pT551u3gJDBcojy3IHMbP/+Vt8tltu6+j48qxPvnR\nDwMAzpw6GW+7as++uH3kxLm4HVD+O35WjvnEwUNxO5+TffgFT9rz+VqhVqtddM5ZEzclL35Qth22\nAfy8mnhA8DongGS7c2JOdJoSb6kveNovY9IewFfwEGV4IjP8XTs/vHmJlzHcPwdH5xc2HLXtj3bt\na9sIxhhko4KLXz6k/SripbyMSX/I5Jcx0o/P/0m5515KgdiO78Qvxx7vmxbPnQvX83s+vx+AfuGi\nfmar8rDHhXmTiAtNK5+1hpk03Y9OY3iVPa74mCvuscP+K3m5s7L80zlG0z65kj6t7TzG2i9j1ohS\nePlgLYLo4TmtsGsa+qWFblWtJg8grYAeNOihg1NLgulADzKNhuy/wH3S+QwMCnunf8i9VDk3Oyvn\nOCMFyPyRR+N2uca/DEkB1Gxsi9uhPNMhz3MSfadmU86FalUU8vIFs/TibmFBXsAUi3KAvl558bMR\nEC76FwAMvaBKvCtNsIv4ZQz1Rw+pBbpug5s2xW1+KcrXvF6Xh9Gp6Zm4zcS19rhtUTFarcrnWsyo\noS/l+fydOr+YtvTyhq9Bhn/r4E7pBU+Q9lAF2j36bFo90C2o+hYPD7icM0fXO1uj6wGKg5K8XPHo\nGjdqcg+ZOVdvyMtA2Pm42WzJNeaXeF5efqVutfj+UzvKXcyuCyjPZRIsHUGdf5lmZh7FNr/EzWQ6\ns/TyRXosoQMU6HtMl+V7TJVlezAmeRJPYcODc0ty+4W9jEll2/AP5okfCdGx3eltzEp+z1oJW/fC\n0fmZK/HDW0LWsIpDdRlsCtXW8+jlF9Ut+3dvjdu7BmS8nTosL0BKeRm3/IPSqTNSH9z7+X+N21u2\nyDw3NTvnjknPKbP00rdJ+WnrDun7q48dlK8h3yhRf3XLuri6ZoxCoVAoFAqFQqFQKBQKxTpCX8Yo\nFAqFQqFQKBQKhUKhUKwjVi1TcnKT8yUQLPXwE5S5zguUrUQylFxLJnESqefW6VidyPwJuUmq7Il7\nWH4nkyY7SqPGpTLmeO0Ub8lz7BoYIJN1X4I1i2nL/CXXGuocT4n7ndDSSj++35kay2sT+YlrmxBX\ntj9IfaAjjEn7JhcGY2SI8lomjRRdf0iUcf7ixttYMqVlkbKq9srkOmnbUxYWXMG6NcvJqlYjgTJp\n3xWdv7eXsg5X2tgI2lqVLqF7psMCEfWWJRSsJ28l6Ne0xkNdqLYBLXxgaRyGIUkKaTtTZpnKzxID\nlicMbhb6LtoylYacy+Tjj8XtbbOyRsLOktyzk6dEjtLcvSNu+/0igWqQ1KU6T+uOkDwimyWJAV2c\nDC1iXKWFiLdskbXrcqTb7naEFqg13D1tpaw/kFgbIZHzWZLSWV6Yp/ufJVkHI7FmC82HpYCFU+ev\nX1eluShn6Z7Q4ocezcEsjcrnOy+4WOfFommhxVyms6yBZUq85k5iTYjg/HVl0tbJ6haE1mI+kvgE\nszLeA861gdyTVl2uQcOnxbBZZkwFCkvQeP2iTFUkSzxWQ5JJ5kiyxP0vzDipT39J4pAXAZ+cnKS2\nrG8UTMl9zfGCn3390vcCrfVCMqX+PlnvhmOCc0iL5FEIKc5p7ZnCdbtkn09gw2Bl6750XrQ0vR+u\nIVJqJK5jeW5MlTVFNX3YYfGq845PXafUaGnrcabtn9RP8Xa+Np3Xr5JFr7v94UqQKtFJLBRO+zdl\nfO4kGdHeLSI5bkzKui5+KPVM/6AY+diM5I7ZOakP+HnmscefiNvN6hSApMx1YFikUXuv3iv91eT+\njY+PUd/Lx/+VjO6e6RQKhUKhUCgUCoVCoVAougz6MkahUCgUCoVCoVAoFAqFYh2xJjKlTEQTZHJX\ngv6e2D9FVsJuOfSKyCN5RWI7vUfyViAZ6iRtSVUOkYNTUpLCEoA0up/ptHmRdXHn4zLZOI1l1ZbT\npH7nLkFC3mY5QlLolXzv06zPvc70Rr7GLMVI24fps0xpbN+UdMroxdumpSwmjxApjkhMtQzJuo3o\n5iHL5Lw1MU67ImCM3Lu0exHaFLpql9EXV+KKkKDspn12BTkyDe3+u+vKnQ9rbewQwJT+JKWV5FlE\nta5WRabUIit5dlbyAnIfIckF06tZssS3pNwrtrCGclSr6WjAg83T8bahvMgEBknKkClIH/0kjTGT\nx2SfXWLRzRaRHCvlovTDjisBWStZSxKrgsgdSiS3aZCEYiOg7UCRcPihmiBhz8pmFdxHwoc+pSZI\nWMESNZ/2ypIMpI9kRZz32paemZz8neOPbV25LuM5ku9thlyW+N76tJ2VJH6iFOrs3MNjrEmyKT/q\niO2PuxFhGKK+4MawoftQImlX0CSrXWo363Jt+NqjQHVLRvbhPtlWfPOQSBPnqnLfpiam5RyodGlL\nzYKaSJ127twpfftD8v3YWa4hkgWuhBYipxS3Xc69d0DkSwWSI50+LbmO81KYExeX5rTkY0vLJEyE\n3V0Xn4/zHTwZPLesRNKXJqvkNttDm9Q8tnQ1sFZlVpocKSHZTCRe+nDi5BMaq45tE82ZGy2C2kjW\nj5I3PCvt/VfLOH/hN94Rt7cMSG6ZJjvpbdvEqTHbI1LDQt9mOVROckR5oCduHzsm+f7kUddnPi9j\nHIHUGL09Mg99+aEvxm2Wwxm/sxStW0p+ZcYoFAqFQqFQKBQKhUKhUKwj9GWMQqFQKBQKhUKhUCgU\nCsU6YvUyJVhkI4mRl6C6smMHUVRJasEHZ7MjS++ImGnGTM2sL30yNTbNcSlByIulHEQZt3w23GbJ\nitCtjCef5RWiE6t2e0ShIvkIU0ir80Lh9Hl1e6JkJql6bakMuhqeMchH1FQvheqd2D8hY0uTI6VJ\nlqSfVDclamdZpkQ0uCCihKbRQZcx7FoaTKtjai7FX0Bjh91gfJZEsIFFws1rI713NctScpOGWJ0l\nSxe+4nqCqNtxexqVtx1fNtUvrHPXeXKxCOmet4jSz1I9m5A4cN6VNks8+dpQNkxAxkaX8D1TYK2N\n3UfqNaHUJ4ZtYt4iZxOWKREdv9UimRJ9ti2HcgeWfliWwdKNfCDzgBl7Uj5bnQEA5KYOxptKRaHv\n5stCK0aPOBmN5MXNID8o20G09mJRqMfsZNOkc+R8yXmJ5S5bh6X/pJxrI8mUDGyUi1NHgdd5vKV+\nIkU9mZRBdZYasjueTxMPlUWx3LZQlLqCZQ180LR8mjZH5gt0fNrfY3cXdD4W10h8OmGOHJ0i6Ynv\nd3ehYwE0o++YJzlNrkQuQQ12lKIYIrV8qyH/maWaMZuTaznSKzKBHpKuZSkuJ6vilnLujMgdPV/q\nzaEB55zSU5AcUl2QcZ2hnLBpaDBum5acY7EkUsexKZFDVclBjvvPk0xpkN2XyKnNUp1dm5ccnB8R\nGdYCucF0O6wVKWHSvYhqmJQaIinl5xySIt1J5CiqRWl8JpU+tvN2c35vaXVOWh5N1C0peTFZ54Qp\n29GxnaZTsov+3QhIe07sKcvY+7Zvfm7cvmmvzOWmKk5F85Pn4naT8lJQk/E8My0uS/1UcrAT5fQE\n1TnkxLQtcmEcIhnTArk9PnHg4bhtW7LdS30QTqvVr1xspCc0hUKhUCgUCoVCoVAoFIorHvoyRqFQ\nKBQKhUKhUCgUCoViHbFqmZJnLMoZRyW0tJK5DYg6Syvimwy7IHV2RCr3SHvTJvmsZ4UaHQZCcQqI\n7sQuFux0UeftEbG2aYXuZCAuEFkjFK5cVtp9fb1xm904qlWWspBTAMutSKaUI0pwdZZo60TzzBVJ\nntBhdfNulykZzyDTXjnbMJ2Z9mEatc/OD7wEOkvayCmJXZOI6uyzlC7Rpn2Id50hrnCj7s7TUkwY\nEnd46EzFRhqtNMGW7LzaO8dTwtmJP+qT3CBMoZ5uKJmSIM1hyFygBClBaU3YmvGxOm5OaMPSKMHt\n25vqakTH7KU8c92+a+P24SOH4/bE1ASdWOfzSqMV85dNoz+vxMWp62BFBsAyL3YJMolcIYmgQfT+\nZp3nG5ljgpbXcXuTqPktmjd8cguw5HjkQ9wKSpGznzF0fJpnqy2ZHzcXRaawe/+N0l+fcIbHhCWc\nkDqWi5LTJsn9xHqyT64gUoZiSfZnSWiNZAUJSUy3w0ByqNd5/CSkSezImKZMtDzG0mSPKfmN/+Ox\nyx417fmfNUbuoZfi5sT3jdt8Lhmas/N0+CzJY1jiy7I9LyGrJOkt9x9JrPwVOMRcyfA9Dz29rrb0\nSf68UJexn83y/ZPrVJ2XHDI/LTc21yO1YYbqokG69gNbR+L21OyM9Ek15tBmkfck5wF3rDkayzzH\n5WjfHLmcDPaJNGn3Xpm3zNGjcbtG0oMSSZM8cnvcukOkl02Ks4UZyUvlrBzXH5DavToxhY0Ca0M0\nY9kV16dU29IYt63OTqHIsESZZKee5AKe4xOyQ5oPQ9tZYrvorKN/KJ7IWi5McW3ywE59JJ2mz5qQ\n5VMpz1zUDlluRd8qIY3sQtedCwF/p5Cu2Q1Pk/pg7/59cfvwwUfjdtnI+J86Jw5njRQnSo/c3Ork\ntlcgh0Wf6olSWeKv1O9yQZmk094C1VYNkTrmQMuFpNXkXYjunukUCoVCoVAoFAqFQqFQKLoM+jJG\noVAoFAqFQqFQKBQKhWIdsXo3JdtEpn7WdZbJ01+IihoIHSmTJfpuRuhLCSeaUKiGj3z1S3F7/Cmh\n6eczQlMs0MrtTM+bmpLV4mdn5+P2XNXRrBpW6Obl/k1xu0grTff2imRgx/Ydsn/PUNy2Rr53Li/n\nUsrLytCWztcnOumWovTDC8EHrFsgqmCbWtztygFjDHI5dx18omizYollP75P7iTsNpSQKZEcjqic\nLDvyE1RrkilRvLJrV4ko6UHkljKfoHcy1ZIdkdhhi6nsKSu5Jyju0s6kUDMT48uy41dnBwvT5XTv\nC4W5YNcklh7wVqaxnj8OgSSV3jIHlhVpUffZhAsKu39J+/Zbbo3be/bujtvHj4uUJSVcEok0oeZj\nSSi7jhn+Tp3PR65ldyedIAwwG1H2WX7RJEptSBczS/mkTtIk3p/lTrkMOeC1yEGJJVHUzxC5x+wc\nlDln65DMG/mM2yckCvr8vLgTNEPp+8zhA3F7bkEo/dfcenfcLpc3x+0xki94WTn3gX5xM6k1iCpM\nuWWApHRzMzK3sssSX7ONABPNBSYxxjtLfZKSVd7O6KyN5DmF+8zwmGTXEJam0tjORBNZkrrfWT6b\n0GYmrC0pJ1C7nJd46S2SEyHNtQY0HijvGaoTvYTESua3+tzseafSjbDWIojyBUvoWUGWJel+Nic5\npzon46dK7kFNkhr1lOT6FanGbJDlyeSCjM8zEzLmOfyuvfoa6Sdy9azWZSyzNKFFDipZcoXqHyTZ\nEy1NMF+XHJIlKcNcU2QQxpd+fKqduC7i54vyJpJq5eQatLKkw+xy2DBELXL9MynzNM/rGR57VMSG\noVwrZLgf2Z7PisQ1aEqc9pKUpNqQOGrUyeUq4ewZ/ZtwUqvTvhILSYli51zY5BqWJfvUfcCKUJZt\n0cMEl868f0jzZyyh2oh6JSRj6MQpkR29+73vj9vPueOWuB1kZbyNzR+P21maQjZvlufmkRFp91B9\nUGvIcadPynFzNIcUC67TFtUbPD+VqVbKsWXgFfAgfOGurJ3x9fWEplAoFAqFQqFQKBQKhUJxmaEv\nYxQKhUKhUCgUCoVCoVAo1hGrliktzM7gwXs/CgBotYS+mCGaYrlHaM/5stCXhrbLius79uyP282G\n0C2DqlAfr90mqz7v27M9bm8alpXjBwbkWIcOHYrbZ4iW9dhjbrtHq4wfOyHuJCceF0rW4JDIjo5/\n+eG4XeoVWp/JCd2KebX9A+JikS8L9byPqF2AfNctw3vjdrlfvhOv+N2mKF4B7Kz/n733jrIsu877\n9rkvh8pVnXu6e7p7IsIkBIIgCVpMgBUgLa4li5RFapFmsChKlpclil5ezZKoYC1Jlmwv2ZIlm5YI\n0aJkiSIpkJQFAgwAOQgzgwnA5E7T06G64nv18r3Xf7xX9/s9oAqYmZppzGvu758+feu+m84+++z7\n3vedb18IIVh5RMmNjVIf7AP6V47satA095YpUYqB4+zloMTjgO5ZxPZ0xG9MQCtOA6nYWBEeB4nG\nqOygWuo0lo7fubZzNfQ9XHDGpDRJtPv+pIPfBvh6Dj97UQdfi/vS2Mr+2Cefp/RN7RIkHsePH8/a\nZ84ov83PDeWIMSjen//s57L26qocdHqklSNvkV875pYwFki7x9debl3jUoXbk567gzhObGtrSNOv\nwD2IbkrdvijVA+STFvqkR3ckyHLG5EhoDyBriiBxOTKt3H9kTvNMEXkkP5K0JpH2nS/r2jst0cXL\nCImN1Vez9vmnFGd3P/yBrJ1AyvDsc9e1z2nNxZWKpMTJWO7UuegsWCqJ2ry9rWc26QiWWnHkBBHg\nCDGO3Z3vmIvGnQAhmQX3e1xWK0xBjp0MIB+jKwmkBzvzaxuuOI2O4pISgFxZ/TbmJgdJTBUSk4VZ\nxWMhljQklyDWIZVIITGJ4f6Xh6POoCP5XWdMkju5SFOzQX/4nMtVyJtRJ5Kav9GWa0gecugcnmUf\nsp8IEh06f95clxwphnRjblb19/VrGvMrK1e1z/ScmZmVSqpx07L6u7mp/g5rut7cqZNZu7Gl7QPk\n1HW4AG5uq12ATKmM5Qs2NnScCuK/NqtrKyJ2Nxu3T85JUrPeaB4Zcze03WWEFuk5J6h/c1Utr9Dq\n6/2oXNPzPDQ1l7W31m9k7WpN7ypbXcXajQ2N1TqXdRjVmf2O4q/f03Xt6bzGuoVyvrGcCnc25ofd\nlfljOZj7Uy7I7TvnerNkJ28H7OWKuX5D9ebxY4ey9unTqlnb21rm48w7JZ3vbMPZCLLKTeSxlavK\nLZZqn3xJeWTHZc7MLB7lPdYMsSknsD4vlXbPo3uYzU4MnBnjcDgcDofD4XA4HA6Hw3EL4V/GOBwO\nh8PhcDgcDofD4XDcQuxbplQpl+wddw1XYn/u+S9l21984ZmsffDAwax94LDkRbNlreBeyoviVK2K\nyrRw131Zuz4AlXJKFKZ6WbSlgwui1V2/qv1zoO2dvnPoUHL27J3ZtvMvX8za65ui2L3nEVG2V27I\nzeTKDVGz63VR/D7z6d/O2ltN7V8rQULTFM0rzotueedBOacUc1hRnMZKO1TpCZcp5UJqtZFMLAYr\nkN8OFkHNrddFqaSbQBuyD/K7I8qUxgwkdnOJ+QrZB50OUkjvRiEXwTKiR7kQj0FnGvAo86DVRfhs\nHJOOqc8OuGo89h93HwN9E5cQk8Ka2/dQf9sg2O5yo9ciTdpLpjT2rfSYfEDPjTFCeUqrIxu0A8g/\nP/rDP5y1T548aWZmTz7+RLbti48/hmtXH144L3ll4dUrOmdP56QT2GDMQYvytXTX9ph+Key+eU9p\nxQQjTZPMCYluSgXIzOga0kvUbrfVx3RTipGLEkiT2B5A1kQnnvma5rkK4gyXY8ko5tI8HQm1bw4x\nMTul7cW8rvfGtRey9vkndezjD31r1r5242bWfu7LmsfvPCNpcH1G89wAz2mc9m3YfntITczM8rnI\nDkwP5RD9AR2A4LYHudCAbl3IFcwbZUi66NoYBe1DOVgxpxiIYS6YKyqOorzqoqQ3jAHKXSjpGBS0\nb6GuOmRzS32bQnY0P63jlHCNnZsYD3BZoWuk5TlHSbZQrkIGRyeukYQumXDJQBQFK47kXfWa7pWu\nex24Fg0QQznIodGFloN4rV7WMfvIBddvSAKUQso0vyDZ/wLadLLaHLmQTk0hLxYUiIzn9RuNrN1a\nk7xlsyFH1AHq6VnIQ2fh1FNCrNDRLoUTSztGDh4o5pMua6fJjpevxG53M7aN8h5Kd1D/1upaIiEf\nSaYUoV7uQEpUgByshUOuNijhVT8GxGDPhn20ibo8Laiv+onyTxl1xQBWsjnIg2M4bsWp9mFJEkNu\nGxLWyJBBYbzFSJ7xLm6lk55z9gLHBkxirbmpMfw7v/t7WfvAIdWyeTgY9fpqF7kEBN4xujGklDjv\n3JKOWcDktrEylOO3m5AZ5uHSBVluHgUSa3KWGyHcuj58s+pjZ8Y4HA6Hw+FwOBwOh8PhcNxC+Jcx\nDofD4XA4HA6Hw+FwOBy3EPuXKVUr9uCD95uZ2dIB0R5P3ylnoKV50ZsXD8xn7VxV7VZX0h3riWIE\nAxM7c6dWBV9aEK03TUl3E5Xu+DFJoubmdK71tSGFk44a735AcqhCUbS7qbKOd3BW1zU9qwu746gc\nVNqrkkZtdUSzOn7scNY+cc8DWft6U/tMg6q83RXNL4khldihX004la6Qi+zY/PD5c/V0uhrVQWEu\nY9XuZksruXf7olr3QFfsgLKbgo4ZxmyZQC+LdpcblaD7Ke488xwlHAhQfC6H4+VALC1D4jRd1/0N\nerr2FiieLTgn9CE7ytMdCZT1AcKizxDJ3UbfuwZRA8eol9HuEjRKUogxtc5YKMAtC9TfAWnAY85W\nwhc+//ms/eyXv5y177/vXjMzWwBN810PKQ80PyN6ZgeyJ7ZT8DDLcDbpwMVukDJ3QrZHiRtjkzEL\nqnge7Z1nOelqpXy+YIuLi2Zmdv78+Wz7zIyo21AdWYxn3++h3QVdG/TuAZ53DJouZZV5OHXNTYk+\nTteiSl207vXG0Llkak5za3db+Y9SxAGkBgHt2ZI6buuq7vvmJc1J77pPbglPPvVi1r50UfvfeVYx\n14d+stVW7HJMxbeJI46ZWT4ym68N+3fQp1OS9hlgfPbhIBHH6qN+X31Rg2wlD0p2H8+zCNkR5a4J\nZGKMTUwFloxqoUpddcUUarE+5ADbUPvmg85ZqatGyudUo22trug42zp/twOZEmjr+YLGQwHukz3E\naa+n+9tqDo+zV+6eFIQQMseREmoYS9BTsfJGvqKxX0Z92oXUESnEpiBBoYNbHzVEu8N5S8+zBJka\nc3+lNDxvocCagXWqzrnRkrPSS89qvpur6Xin5hR/B5ZUh5cxz3ZR060gnsqHlfdutjFGcGXNbcmg\nuu3bx00pRMEKI/eZdI96Y8ycLVW8ULLfa8s5J1/R85mdVi1SKiovdGPJlJC67MgRLTcx5jKZg0yx\nOYyH3BLcvzAPFBNdI13erCyZJOfOqKj9SyXkPzogIl4i1OsRJEuDgfbpDZrYjuca77gp2W2DvWR7\n23CHLJaUBzYaGofMzXm8P5Qge6zDTbYKuWyxjloB77Jt1A1N9Nv6yP2tiMiik2AMaaSleJ8bK0op\nV7SJw230huZwOBwOh8PhcDgcDofD8faHfxnjcDgcDofD4XA4HA6Hw3ELsX+LlTS1QTykIR0FjY3t\nImipURD1aauhVZxLA1KsIQeaEU1takqUpApoUOWSaHWNTa0iP1uDlOjYouQXagAAIABJREFUGZ13\nRIFtd0Ax73Klbn1H1WmKtpUznadQwGr4PdHqvvN7PqJr6cAVAfKUBiQpGzfluHRoVu5SRAfXmZRG\nx5lEHhZQzOfs+OKQ7tqDU4klpGPqviOsqj4LmlwOLktd9EMbUjeuCN8DvTEhw40yJVA8c2P07eFn\nq3TGCmxjlXF8zVmEpCiXKiYKA91fDZTgKujjLWxvIp6KcFQpGlazx71id+u/CUP97YQdd6AAaiK/\nWU7Zn/xLQkkcXJbQRyko5JQe7GFCZEVQvLexGvyXnpGj3B//6B8zM7O775Y7zY/8yA9l7TJcTn7j\n1/8/XIuutwh5XIxYGyCQx+jMlCAhp1GCVIBLDx3IchwDo/akuyqVisXM1eratWvZ9rU1zRmFqujS\nCRwe0kRjNY4hIcUq/31s78P5g/K2MoQk03RXobNbXnTfwkjeEeAAQaljbloSK7rtbMPNpAb5awG5\n9tXnn8raMwuSLN19t1wGH330C1l7dv5A1l44eCxrdyCZ4Sgpwy1q4pEmZt0hvT3GPBOh3+j+F5Bz\n6CxRQ9+V4JgYg8o9gPQjYHwW6JqEMU93my4ki9EOzTzR57ot1Vzrm5pTO12cpyRpSKUId6aO5CDt\nTUmW+l3IAWjoglgIyF1F0N/XbkrutNnAmBlR0elQNYkIIWRyH9a+ebgTVctw0mLe5RxfhvwCNP0C\nCo0C8vcMpESDbc1JbejREnWthRLk2COXy3ZHnyugH+I2ndQUe6vrivN6XvcUIPeMG4qbHtzE2rjG\njauKidWBntP0HSez9jqkotWSnkcSTXa8EFEUZfLVMbkJpUmIqSjZPd8OYr3DpE31xXZHeaaRk2tj\nExqwfFXzS626mLUpVVtf11zauj48V2FK11I/gCUlkLfiko7di7G9qxw1XdN8XIZkaR4Sqx7kLltr\nmvfoSJsvqv3KFTnnbkPym45cElkL3q5IMG9t4D08vaD30VJJc0Iur/3nFyRpq+PZc59yme8bevZV\nvJcdgvPowsKwtkjR91yWobON5QK4FsPtM9ydGeNwOBwOh8PhcDgcDofDcSvhX8Y4HA6Hw+FwOBwO\nh8PhcNxC7Fu70Ov37NWrQ4pbrSzeYwE2SLmSKGuVCqhPEWQ8oBpGXIW/rP2TsmhqCSiOCWQrm11R\nb/uUIRVFlWuPpAekmwesMt+P1N4EPbOc1/krc6CyQWJQmhHFNwfKLr/1uvbc8zpvF6u/90WZa2JV\n62YTq1H3htsHoNBPIqKQWmnkIEFniASOCm1IAJI8KYeKsxolAKCsFQqKmzJkGQ3Q5ChNKkPS0Q9w\ny6A0pDN89kXT6vShvzvVfAZOCLMzonSmVcVKC1RBUv1T8FDpiFMBlThnXKFe18BxV8qBPp5OtisF\nkaapJaN+H2Ml00FpzE0JdHm2x5i/lMeBEo6BO8BzTrA/V/bP4wNd5J8dh6ZCXn8/dEC03z/zfd+f\ntRurkgP8/qc/nbWnp0XZ3YDcAGE8JmvivaZ4UAkozzHiIqS7y50yR5MJp4SS9r0jVzIze/zxx7N2\nui0afc12nx96cGzoxXooBUhE+sjPMbbnEXTTY041uzux1UeOa33Ma/mwe35IIf8olCGBgkymgDlp\nJtV1rV1+IWuffPehrH3vPXdn7VJNeYxjpAL6+AA6lUIEHcSkI03lZoYxxiExbl4HiQlVkuiLuItx\nCKlRHvXPAE6DdA0Zo2pjfhtgzO+ctoXPdbaUkxoNXcv6TdUhUf7VrF05I6fIpKeaJOnCOQpSkgRx\nQTOtuEU3Ml1jEzKBLnS1STScv/dyA5kk7EwJlDSW4KRYRu0bMPYLqHNacESahjSb4znAY2h+Rvuw\ndooRT1GCuIG+uT3SZk/V4E4IaV5rS/MT50GYOVkDNWuAw+l2Q3msBhc75siNTc1tN9a0f4T9p+BK\nSMfBpHL75Jwo5KxcGfUj6zc6PzLrjI0V7M88nCDWsHuCmrc/UC7o39Sz3YwlHwvTmAuwf+PSK2Zm\n1snp7+848KGs3cXyDj3I9JO+ruvQIUjsupBgtuG8Bplf3FMc9+A+OrMkOc2Bw6q1Ykg/X70uiVVv\n9GBD4faJob1AWTRl1Gtr61k7jEne9dnVm9qnWtW7PWVN9Snlt/qsclFqerZL92opk6Q23P7KS1/K\nttHNMoJkM6WxEutd1sGvad54e8nunRnjcDgcDofD4XA4HA6Hw3EL4V/GOBwOh8PhcDgcDofD4XDc\nQuxbprS5uWkf/7VfNTOzg/OS6MyjTSr3zJLoYncckyPDdF0yohlQOKfQ5kr96y1IkJqiMjZBw1vD\nsuBfvvZs1s6NeMM3z7+UbWvclPRk+q6TOhHkLlNFXUsFMpRCU1Spmy3RbqOwO/20C+lLdVHP6RU4\nQW1BvnT56tWs/cKTQ3eLJtwyJhFJmlp3RF/tQd7TbYCuCnprQjcTSC5mcpL90CUmgQtRCbTDIvoz\n9CH1gYNFbVNtQ/vqy+fNzGxrVf2UA728UtN5GqmudxOUuYPvuF/thx/J2iuQ4DXwPCJwSXXl4/S8\nTg9uJmDn5SB9oFRr8hEs2M7Y0g1XKqBmg4G42RStukJ5I3jVCWUC1P3g++oUfUG69470xczsu7/r\nu7P2Rz/60ay948pUwPH6OP9B5MWf/Ikfz9qHD4iOffGyVrr/zOc+m7VzcNHJg3pZn5KsKYaUiiiX\nRTPttJVH5+fns3ZxRJe/eu3GrseYJOxQWZeWlrJthw5JlnP5ZUlIDy+pX4uQlw3AAGc7wTjskzrf\nhzyBzoK4rhRU4UGPDgXDcduH/GQAt68YObKQo3wJkmHIi6pTGiN2Q3KUtauaC1vH5ep3790P6Fx5\nzVWrkNINeroeOm4lg9tHGmlRZKE4zB055oQxlxPmDUgEIR9LITegs0ge8tIBOOGUGLUge7xyVWOx\nBEna9IzqqNxIetDuQBoAJ57+QHPCFnJkmtd5VtZ0jaXAz2p7D/1PVxQ+g1yqMVCGGyGvvVjW8bsj\neUIUJvv3whDMciOdEmOF83cesokypP4RXF2K+fqu+9T4WfTPRkv1YwU6uWpJdUa/rWtottSHO7ko\nj7hNkM8KmDN6PdRoyH8bkCN127rvLcTWFM5fqykm2pDg9ZD3rq1cz9qHIZMZDHSuQUxnt8lGGHNT\ngtvsmJvS2Cyi1ljOQT9C4xEZxjNyRLcpmVgH7zOU/ufwXkbHtdLo+G24Zr34BcmApw6qnikvqj0/\nK8lKJa9zbiAvJSnz0iu6FrjuLB5SzbOJmO2s6npWO3pOnRzkNJVhDEbRZOec14JxeZuaY/G0h4qn\n2+nv2iYOB8XE6buOZu3CHhLcysjxMSrAEaylvi9WVLf3t7F8RcIaY6/5d/clCMaxu1fquIHoW1vP\n3P5R53A4HA6Hw+FwOBwOh8PxNoJ/GeNwOBwOh8PhcDgcDofDcQuxb+1CFEVWrQ4pg5WqKLIxKMpb\nDUk9nv6y5EKXjmul/hvXrmTtaTjOLMxqBfUOdErVedH606Db6NMFBPtHBUqMhvS8m69czLat3dRK\n4dUndezZpQNZe35e1PYaHKL6WPE7KujaqatauXIpaxdrotLNHzqrzxZ1zDZkSkkCKurUkPIVTbhT\nRZwkttEY0gh7kIh0enDDgvvAPOhr26BabrW0f8CK222s/l+vavtMX88tviz5V/6aVlXfglxsBc4B\n29tDCmwSi965taV+KppiLAmiVL7w/HNZu3T5xay9+NyXs/aD3/ERbT90JGsP8GyIhCvhQ6ZCOQoZ\nfEn8WlYXnwyUy2W7666hy8sc3Mu+70/+F1n75csXsva/+NjPZ+0//D0fztpPPPZY1n7yMVFpA+je\nfNBjjEU8znvvuy9r//mf/PNZ+8wZje3ByC1ibV2x1QaVPI/+ObSge/rO7/j2rP2zf/t/xDXqaqqQ\nSeXR/x/+sO6121U8vvTyy1n7I9jn539ez+mHfuiHsvYdd9xhZmZ/6b/97+x2QQ4uRAchU7r0osZk\nr6PcUoFTABRLlsIFpIe8RHeQAHprFc57lBW1tzVHkiVdKA3zVQ704VweThJwRErgTsFzhkQ5j3In\nSmaSlmSvG1fOZ+3DpyRTyhV17fWaYm5jQzEdx3wGu+euiURqFo/G6CD9ij+MMC47oySFtGe6X0HG\nA1lZjDgKiNPYtL3Z1vy21pDEuoekP1UdStLoeEOxIlVkGx3lovq09m91JVmII8hAB5RsMqZ0zHpN\nc3bA/pRsT88q19FFars5vB5KbScRwcwKowFdhHR6/L70PIqoASm7ZjvgswO4OeYh+aohGnuYE+pV\nzBV1SLnhatUazRXNzZv6+wDuaWXVr+tbio8uZEotuIZBfTbmuNrr0+1PsdWF4+V2R8ecn9a7QA6S\nmQTSu1xhsuOFiKIAGfHubkp03hygnweonfuIkQFyESVIl17Su9CFl5T/+326eGmsTj2ivsDridVn\nhg5GlVltfPZl1b/PP61z1hf1PrW4JCnL2bvVzkNWnkKmxNxZiHSujXXlwg3EUXddss4c3iUKWMJg\nsT48Tn7Cc85rwh6vA2OSnrCHTmlMxkMHzt0Pf+edkj3Xyhrntbr6trM96je6yWGM83iM7YBiKYXs\njvKlEO1xH5QMjw2q3aXH4S1+hfoDEHUOh8PhcDgcDofD4XA4HG8f+JcxDofD4XA4HA6Hw+FwOBy3\nEPuWKdXrdXv/+95vZmYzcO8ogtPz/ItyaqATwf33it7/yrToS61tUabByLYaVu3evCHa2cXzkgAN\nQDGar+uYlRmt1t0qDA96/mVJRnp01lmB+8pZrGhfEk2vsa6Vuq9c1yrvZ++9O2tPY9X55+GEUp2V\n9GnQ14riaSTa1nZL1O8ank1lekj5iuAiNIlIErNOb0gTI/1rBu4Afci84gKcqegmkIp2WwJdsRbg\nYAKabBl0tMoR9cPUAUnsXoF87fpToj1e6wylBGsbos4+84xi6IF3viNrzy8pVjZKkr1t35T04eLm\nC1n7joe12vv8ocNZOyaVjm4MBkDCQAeGsf1vH5WShRBZsTh0hfjgN39rtv07v1NORr/88V/O2kuL\nev4PPvRQ1v7i40/ooHg+pMun6e5Si9N3iXr5fX/qT2Xt43CIIzlyemZI6/3CE1/QsSFluefkyaz9\n6kXRhCtF9efMLJxSruoa771HDl2XXpVDzsGDynlV0NMvXlR8P/jgg1n73/3bf5u1j+E+Hn74YTMz\nq+EYk4p0l4EwPQUnP8hfNzclYyxAJlAKEHv0NQ+QJk6JDn/xqJaQu6qQJECy1O/DEWREmS5CxpJC\njjSANKDZXNexi3JNYSQW6pqjFxaV/+jK1AKlu7GFY1a0fw6OgNN1Xdv5C4rdLUg8Jx1Jmlp75BoU\nMGGRAZ3A5SqAMp2izAoQCg0g5QjQDI39Qob8c/685otrN9QvedDuE8gZknQ4HxZLGrd0hGujz7cg\nU5mH9NMgT+maYi2FgwnjvoRxcmBOjjch0f4x4rE6rThN4a5h8fA4ub0o5hOCKASrjtyjanXda7mM\nmMA90lWL0pQ8CuEy6tpmQ/22BdlrQJ6r0mUQwTXIq9+m4Bw3nQ777caLOt7MtPJGC85LfThpNbch\nGWccwj2LcrUUeTRqKo+uN9TeRFyeQA1YrijnBNR9dHabdIQQWWkk09nLTSkek5Voe4IxSZlkDzL9\nTeTnNpYHKFUVJMWBYvbs2Xuz9p133pO1sTqAFc4Or6dYRf9MfT5rP/H5L2bt9VdVh2xc1/tRvfzO\nrH3oEN+VFBdbm7r2KpxIa3B5moPjbYwYiQqUpwjlkYtYlL61rjm3E3arp8zMWhi39ZrqqwOoOaKg\nsdpuDt+zipClRQP1ZRMOXxHmxISyaMwrlIHGY+s1YJ6lcRTlSJQ+JbvHylsxKzkzxuFwOBwOh8Ph\ncDgcDofjFsK/jHE4HA6Hw+FwOBwOh8PhuIXYt0wpn8vZwtyQ1jpdEx2yWhHd6MaKnIpuXBf1++hh\nuVikcIVYX9N3RNM4jgVRzepw0em2RV8jhfih+0SrK1RFvS2PqFDbq5Kg3FyTTGQWq7Z/4JH3Zu0H\nHn4ka798Qe5PMzXR7b7jW79N1w7HiTLckQZwf7p0Da4/oNhNl3WvTa5SP6KwJxNOpUuSxLYbw2dS\nRV92npHTS9wU1S15RPKvZhAFstDTc2jA2YgOD9WS6IptUNDClOjdOa7yffJM1j6Rap+XfuO3hsfu\n6xjvPK0Ye9+SqLyVae1zdEHHW2uIbpemIrsdP6aV5fMlfEcaceVyOGuAPkdHBVLfc5DbFAv7Hupv\nG6RJYp3OkGJ/9qziYgCq/zPPfClrL0KmFKH/r8FBi24VOdIU4WYS0F/bcJF4/vnns/bKTTlQHIJL\nT3ska7x8+ZVs2+ULivW7R45FZmZLi3NZO8a1PPLIw1l7dkHHfv8H5bj0L3/xX2XtGzeUd9/1LlF/\nG4jBCBI3Ogvws/3+kAq6FyV1ojC6BdJMS7jvY8fUD8+t6xlEkeKjHMGxr6e5px8rT3djjlu44YGG\nm4PstgQJWBtM+yQd0dQhKYkGkEZB6lYqKYdFuKcUkgFKnOi8FpHj3pOz02Bb8WwDyJQgA127qfnv\nsc/9dtZegUPhpCNOUmuO3PSqFfVnrrC7LJRudzFkAlCR2gA5vNPU3FWulLEPZEoXlGe24aZUqape\n6VP6FIbHmZnVSSuQd7S3O2grFgo5yCFN10LJLLXFCaRX+TzmZlDFI8iPDe5/lFP04YC4424x6Rkn\nn8/Z4vxQ9lNDvREoF4I8K0YOKZYoddO4TRK4LBUhmcMx+3AhSlA3JJjDWHNPVdTnYbS5VFDd1IDs\n4PoNLSPQg+yo29M1sufosMZxQUe7Do6zDakRVHJWqcM1MlXNSAPTEsbmpCOEkDnKJGOObHpWeeT2\nIsZYCfUe57c86uVcpLoI5Y8du+NE1r77TkmgjxyQ+223rb6enYGLrg3HcFpUbJ2662TWfuF5LVmx\nsSap0amzchBdnEcdDSmdIY6jmmKzA9fD7S2dN9/VPEb3rR7ev8oVSSnb7eFzpfTlDxr2dlB6fZ/t\n9Shp1fYSXIgtxVISIxe5Kt6Z2z3lnAhTz0xN8fzg/XIsffWm4qkBCd7c3HzWjpFrm3CwzCMXNZqo\nfxLG3+4OeG9WXezMGIfD4XA4HA6Hw+FwOByOW4h9/1zebrfsmS8+bmZm83P6RjPgJ6AX4Ft/Hr8G\nH/iSvpk9eUK/SDa2xFLZwmJhl17VQrmrYEGkPX1LNT2rbzrnDmgRyhIWMZudHu7znveJ9dLq6Fu6\n6Rndx+kz8EjHr5dpqkd39xktZnVgVp/lIo4f+pB+vb6+LkZOo/Ns1v6eD38ga4eyvpH7rd/7ctZ+\n7Knhwr7JhP9kNOj37eb1ITOhdllsqcGv6JfVyrr6uIgFzK6U1FfPvaBfC9fBdIrxy0wB3zlyscOF\nw1o8+Xu//09k7XvfpYV46wtaBPXG+eEiY5svit2wiIUaj2+KLTU1rWPXD+lb/8N3igFTq+IXSDCn\n1i7pm9kSfj3nr038hauIBbLy+DWy09ZxQB6beOTzeVtcHD7fY3cczbYPECNra1rg8hSYTjkshMpf\nDAckBuA4KX4N5i+3aytiDPzSL/2/WXvpgHLafe94V9b+3BeGC/d++Tkxdq5d0aJ1h5cUF+99lz63\ntS0Wy0MPabHd93/wD2XtqXkt+Pz0c1rkcxGLSM/OKh4feug9WZu/DD3wbjFvFubFggjZNDHZi2ma\nWbaSNe+EbKmlJd33xapyeYJfP+K+4qCDmMjh55uQ11yRw8+OqWlOSHFexiK37/yQ08evRPkEv5Lj\nl54pLLLZw6/LpTIX89V9cLHLAhgNg4RPB8fhj854HgcP6JenD3yTYutVLCb9zEuKy0lEkqTW7gyf\nBefeek3zSbmsPt9uKPd2u+wLsGTwS/agg1/swHrJFfWzf6Wq9vq68g8Xfc0XdQ29Ucy0moqnUk4x\n0sYvgL0OGTW4LsQCmVRF3Ee5ggVaMf+sb+EXxp7mtx5itgvjhAHaO6zOPsbaJCKXCzYzPey36TnV\noD0w2gZghUT4hbaERX6nptWvXDC5jIWUmQtsRp/tNrR/r632PBijLCcvnx+O23ZTcXvlVbFIWx2w\n63DKCIzBwUD9Nhg7uj5QAvOnUNR9tMA2rOC+D9+h6231lQ+5uHoy2eEyhhA0trkgeIJf68fmHDxn\n/lhfKYIxg34hM8pS1bl3nrwray/AlCWPOYr5og2WTDq6hgL6uQJWyhzmqJfaYlSurSpXXL8q5lXl\nuOqiMha8r5NpB9ZqH4v8FmlmgWcWI0gYy2F0yWTrOd4YwhjjGnMY3sPb25v8hJmZJWO1t/5KBvdM\nXXHwvver3nj2eRn5dLuKg7NnVf9fBDN9gCqQZhdPP/1M1r5xU+8RL1xQPZOgCNgHmWgMzoxxOBwO\nh8PhcDgcDofD4biF8C9jHA6Hw+FwOBwOh8PhcDhuIfYtU2o2m/Z7n/m0mZk9+G7JOwagW7ZBC5ua\nF3U+FLXPH/rO78raX/jsY1n7sSdE689Pi+5UL4pCOYPFVyuzomSv9XX8ak60otkRVep9H8Jiu/Na\nNJNU0V5XVL4GFk58pSkqXXlKVMrjPckKmtuQ2WDhojVQC9NZtS+sS7LUAMV3bVOLEZVH1NVowhUD\njY0N+81//ytmZnboVS30eO+Lol8v9dQPV379U1n76UTUsetFPb8eeG1ctDIXsMgZZEpprGecQscz\nQJ/3+1ocbIeO3c4hnnPwti9ILrSJa+92QaOtgqqcKJ4vPfFE1n4F9P75eUkAAuQLd5wR9e7MESwU\ni0WpGo21rP0YxtSko1gs2onjQ1njEuQ9Ay4UCBrhnafuzNoRqKunTkGCiEUzX7kkKSVlX1zkqwhq\ndKslyvQv/utfzNpHf/+zWfvK1aEUb31DfRIggfrnH/uXWbuJxcc+8pHvydrT85IadRNICUxx9Mgj\nom2WyrpeLib8nvdInlnDouvcPj8vSnhGOZ3wnGOWYrE1yEUwrqqQ/M0t6Hk3sJh4Dgsi5pDX85hj\ncsgz11Ylw6wUA/ZHjhiMcXJ1xaP8M2hrXqEEMypigVVoBvJYwLGANhfNTLgI+AB5sY/FIiHr47zI\nUFhYUKxMY/H7M8hRP/eL/9omHfFIKrABiXQPMrWDhyD7gNSnH0NWhrmlWlWtkgOVu4v9i5CpHj8h\n2fWVVy/omJCtFQqK5UF/eJ2rK5ovW1vq5zbk3SXMo9duSG7b6yruElwXVQKkpCdYcbW9rbnzwKLq\nvplZLFA+JnNBfi2MaOuT7VNguVxkMzPDfq7V1ccJSm94DYyNVcp4xhaNxsL8lCvzOD0s/LxhitfG\nqtrtdcwhkGbsSOauQYrbaKk+2mqoX/N5nb9aVayyVulDrh/jOAny2HpDc97VFdXWpxe1fEG9hjzW\nx6K0kMGk3dvn9+VgIZNnfOlpLVXw0gtaBPfYUUmU3/3AfVmbC3VTdhNB0tit6FnN1pW3p4uaA195\n+YL2h3ysWNLx77hDC/u2R7VQ6CpXLM5ICj0/pzFQLCsubsIwYOWGlqN4eVH13eEjqoWXFiV3KuR1\n7XkkplpZ5x1AkpUfW1Aac+1IZvdmyU7+QADPigvZct4akxEmlDJSOjbczoV/+330GaVoseLw6kUt\nUzGDXJQraf/GVS2TUoA89B3veiBrl8uaF+85/d1Ze0eabGb2z37+32XtFzAumOv2g9snczkcDofD\n4XA4HA6Hw+FwTAD8yxiHw+FwOBwOh8PhcDgcjluIfcuUQgiZW0SuLrnO3FHR4tNV0WTLDVHHEqwQ\n/pu/+5msvYKV24ug3R7AytppWXS0Jvzqc3Oi/nZn4EqRE92oMz387Fpbn8tv0m5GVKoeVvMnJTkS\ng91aPd3fo099Pmtvr4tu2WmJ2tlpiCp6eE6yhdWn9Axuronmd+yw7vv0vUNa4mNlrIQ+gUj6A2tf\nHVITC6C6FY5rVevQV3geOKS4OYMVuWcW1C4V1S6A9k/a9anTkqzccfpU1p6aEdWxB4plqa5j3vfN\n32RmZun9crtZyiveimWd8+q6qJZpF3EDmVIBLiezB0VxP3vP3VmbK8iX63oGiwdFT718Ted69inJ\nkc5ChvPSF5+y2wWzc7P20T/+UTMbl9nQ7eN7vkfynnvukdsZ8WM/9qNZu9nQWP3bf+OvZ+2Nm3Lo\nKkFWwBhJejrv5ctySHr12o2s3d/h40OCQplSr638UJoSTfhOXHsPbiMr65KjlUEJfeSRh7J2o6nV\n6o8dk8Rh3D1IueWd7xTNuYzYLI7kpGHi+bshuwc+A8p1yFGemVOSv3FTNOomqPb1ivpqkIKO39E+\n69eVf5aqkBtQ6tZX7qBkbkdq0ulIJgWDQStCIpsvKw5mKnRhE5pw0KFTDeUioai+p8vTOIUYn8WH\nSVUm9XfSkaSptUcSoxj06hokI42m5vVWS/nh/Hm5hhQgr6b7zeYGpLQVyIcwp7zw4otZuw03kxL2\nD0Hbt7aGdUljXTVGvwMXn1Sx2I51jEc/p/nkwJLmxSMHJRPYhgS7AlfAJNbzePT3NRd99I+K+n34\nuCRL23hOSIc2SIdxN+GmkRZFkZVrw/EEFZZVK3DmhKS6WpOMIzLFWQkUfEpQul1Q/aEZ6OFkvT7G\nZ1E176WLkiHduK55rt0duXDBEWy7jfzT0jmrNcVQL1ZsMQ80WoqVAbRUs0H1zMIB5dpNSAOKsHAr\nYu7M4/lBJWf94qTPUUIcx7Y1Wq7gymWNyae+KGnGU088l7VvQlb27X/og1l7blbjbe2a+rnVVH/d\ncVSOnzevSyafmvIJXdOuX4ez7ZrmxoXFYZ/eddeJbNvGhuqQzW1Jdg+eUN7otiBvbEkaud3WsZ9+\nXO36jMbA/EFdewS55z2p3kGnplUn5gqa3/IB7oY7TosTX+fcOvBJ0WWwkFd/bjcVc5dfVTzRBTAe\n1WCsJehGHO0hh0p7ylELeIdrNJSvLp6Xg9KBI3JfvfmKliPoBx3GMQNCAAAgAElEQVTznXAzvbmq\n2u2+I4rX1qbyz6vrqt33A2fGOBwOh8PhcDgcDofD4XDcQviXMQ6Hw+FwOBwOh8PhcDgctxD7likV\nC3k7duyAmZltw2GodV0Uo2uboikmTVF6LrysVY6ffEoyiqNzWm3/rtNwPJkTNW3pnpNZ+9HPfC5r\nTy1on8NHRH3cWBVVqtkc0nZvgGq32RR9sw0KbheuRn1QnwaQFSSQoRTAmWxs6Hl0u2vYX89m/kHR\n504cg1tUHStTp6LVbd0c0fwGOuckYunAkv34n/sxMzObKYiaNguq2xIkADmspP8wqP5rkT4ws3Ag\na3c31W+/+5/+U9a++35JMU7fKznQAFThAY4ZQSZ08MxJMzOrQF5XhLwgwX0c6EpuNdfnavZwJ8F3\noUXQ3aentVJ8rqSYMKxgb1hp/DOf/q2sffSwqJmFEuKmDW3DhKNardnDDz9sZl9Bl6/ofj/0oQ/t\nup3yilOnJFNrNkSl/at/9aey9i/9m3+btR/9vd/P2qRKxuDXl+A4c9fdiq9jI/enC5dFmXzuOTkk\nRJB05CFla/bUb03IIFLyQ+EWdgTOWtstjR8+g7Nnz2btYlFj6dixo9iuWNuRf91O9N297oVU2/qU\nxuG1K+q36yuiS+drosZCUWsJZEX9Lc0Ddbivtba1T3FW/cbz9nrDuKwvKbetkBVb0VyZwkFgo6H5\nLpcq/9BNiS4HPdx4uTKNtui4dD8gbXiwhzSJY2TSkSSJtUZ9urgouc7Mgvq/hRzyzJdfyNr/4Vd/\nPWt/9E98e9a+fFmU/f/wK5/O2g8/pJrnrnvkJnPhomIwyuk5F0rKF124OW5uDo+fDiQFajXg9tiG\ng05e/dxALbR0QDLGY8d0XSmkfTlIdaNIeaPRVK7NQfrWhrSm19Nx6LSxMzzTZLJjKDGz7mgcDHCv\nUFMYzTgCXd5QS9JNJKBuSOEOEjAoC6gnanA5mj+geH3i83LvvHhe0pSdwV2HHKo+BXcUuKB2OkpG\nJ06p5lmCs9iFi5LurkOycua0XHje/83vy9rt3ieydgKpFuODskpDvdbtTLZ8n+j3+3b1leGSDafu\nUC0xV5cs5z98/Fey9m9/SvVJF65tDzzycNb+/Oe+mLWn4aB0dFGy94sXlbvmIVNcWFSfbreUI557\nVlKpqdlhHnn6KbngXrkimWa1rus6clzS6WZDdU4haE5rQxK8vkG3TMXgKtxmG029Z928pvfL+pSk\nWkeP6V5PndC8Wh65ct1Odc43ChFyUQI35esreueegawoGtXQeThVtpELAwSrdC9COWMtyPLTAR3+\nlEMC2mt4/8/XNT9dfUX56urlS1n7KMbC9NL7s/ZvPvpM1n4RkqjXC2fGOBwOh8PhcDgcDofD4XDc\nQviXMQ6Hw+FwOBwOh8PhcDgctxD7linFSWrN5pAGu7EqOnZlTlTnFCsr50HVLMH9ZBZ0+RIkI+sr\nclb60tNPZO0Dr57M2lsrcjNaefmlrN2+Q3S+JlxRturTo+OJXkS5wwBUx6S/u/tBCtpUBOp5AfR+\n0qli8FLzNVF/n13X/lt5SBXy2r+xIlr0wIafbQ1+1yYZg0Hfrm8M3WZu5ERFrILmvlTDB7p43i21\nN9ZETZs+oHYHbjfFmiho12/K4Wb7SZ23ADkQJUspKIu53LA/sfC2RaDOUqIWIVZKkCZVijrPNqRu\nBheFwlk9g2JOxwy4rs62qJnTZXH1Tp+Q9Obp50QPzU+J+jn5SDMHHEohKMHow/mMjktjzjmgQZbQ\n/3RiOnlcMoF/EP/9rP3ZRx/N2gPkiA5cdM6eOZO1//xf+G/MzOz8JVEgH3/icV1KpOs6fa8clALy\nSW1a91cuS1awDelnLmK85r5+mxx5OHakpnvKF3bclGzisRMtYyovxFAEyVkNEh3SZzfWNN8cOSyp\nkaGv2hiftUixWJ0WXboNCn4R/VmswHGwNJSalfL63Dvu1hjfNs2bATEU+pJpdjY198VwNskFnb9b\nUH9X5iQ3mJ2HDApxkyZ6gh2OqRzcoiCPmngEzfNT0+qfYlEl1DZ2byMP9EHTnoazyfuOqR/PvyTp\n27EjeuYPPfhA1qbUZ21L8xsp4TW4LHa2h9fWjRWjdbjfVKqQo81JoviOB1Q3FYu61+kpyb5zESUj\nOj/Mcuw973mv/oPY3EK+ooNSmlKiM9pmk40kTW17RI2n0c90pH7o9tU/CaSLU1XlhBak7TDvG5My\nJTH2gRMJ56duX1G6BclalPvqurWJ+uTdj8iFstvROV9+STXGw++7P2sfOSb5x4PvuRfnhztPSQ+k\nXFNuOXGnJJubq3II6rQV21C6WYzxtb6me5p8BMuF4RjudzRQGlg6IUb9ybH01FOSoF14Vc9w7abm\npTsoacZ8lcJh6Pqq8tI1vItdg+NSu6NnvvbyUCbUbOg9bH1V0qEjR5VzDt2BWh/uoJWS4qtZUrxO\nHVO8bOiWrDDQjZ+tSEpy5ZreRzfhBlaFhPeOWLk2KkM76NgXKCnMFzRHVpBnKO9PdqTwXMYBtcQA\nS4GMuRBColZgVQenwFwBy1qsKSbyWPbhENxGt7HERYQlKTqQ/nWQa++8Q591mZLD4XA4HA6Hw+Fw\nOBwOx4TAv4xxOBwOh8PhcDgcDofD4biF2LdMqd8f2CuvDqlsOdC9lwJomD3RfqqgHhVANyqAsrTd\nwv5ws3n6C49p/6dFwzt5ULTaC1e0+nH/Fa3W3gc9Oz483H/l0pVsWxuyFq5cT4cKw+ryOVCcpqdF\njavURC2tlEUrLmF1+9hACc2JGtc23WtvW89ya6DjhNG1kRo8kYiC5SpDCljahSwINNYNrLxvFcjY\n4GBUJF11S3TJYkXP9cRpUWwLkMPl4CaS36NdgjyhsEPT52reJR0vAh2Pko4cuNvlPNxMcGyDlG/M\nqgRUf9Lz4i5cDI6KYh6B/vwyKHOD6Db63jWFPGlMb4I21TfozxR5pgCJAVfnLxTUfveDD2btn/nZ\nv561//d/9I+y9v/zr34ha/dBD7/8ip5/pTocw+99r6j7H/jgB7N2D44neZw/5NWfKejYFrAP4iWP\n+M5jLFE+mSBPc/8ccwr2KYxonqTETyJSSy0hl3uEMdcSaBADns0Mcvx2Q9TYQUdzlUVyr+q0tX2m\njOda0vyQw7mKReV+Sn3S0lAmEkG2WqvqWvrIAxHmm9pBSWFzmB8bV0Uv73WVX5ubonHPLkqaV61J\nItvF9cZwcZmJ4LIUQ+KLeX/SkYuCTY9c/HKpxni/rXhqIi6OHdPz/97v/WNZu5CTZLIG17Q/+2e/\nN2vHHUjcyurrRx7+5qy9Dbl3DzFQK6iP2mffaWZmjXXJBFoN9UmuqHgdRLqWFLVbjLyYR1y2cc5B\nQvm2EKHmoba3n0C+DXcLSk6j0QSapJNd56Rpat3RnJDSSQ1uiJwzihHyOmjxvbZkb/Wa+q2AuqEL\nKUapzDqUsjq4vMGpj9eQH8lETp0R/f7kmRNZ+3c+9fmsncNcRVejjU3FXEA9Xavr2rtd1Wu9Zhf7\nwx2J9SBcWS1gPjO6c90+rpG5KMpyxAB13fUbyuGttnL4/Iz6uVRU/2/B1SzFGG7B8e/S5QtZe4BR\n3B0bnzrOwqLklovzyh07MbV2U/3/4nM6T3NdffhKV25ya9e1vY/zHMDcdXha0rfCvGJqqg65eVF5\nN60hpnLKV9MlODdxGYBdSkrH18Zehol95DdKJjsDfaC1oT6fqw/rn6iAOgiSpcFAuYJSfDrUUUq+\nenMD++uYi3ClfPnll7P20lHF6AZckLch5aSs6cIV6eTSvMbdfjDZ1bXD4XA4HA6Hw+FwOBwOx4TB\nv4xxOBwOh8PhcDgcDofD4biF2LdMyYJojfOzWin7OJyMvvyMXItWISVpbImO2wBNv7Gtfe49czZr\n91vaJ+2JqtSfFiVqbOV4rLK9gZXhV1960czMoilR+UqHF7N2AY4+06BVlkEDT0Dfu+OYaN0Gh6gu\nXJlaTTj99OC0EFMaICp6B/TMPqQKlYzGOtlkuvpU3b7lW77JzMwa17VKe7sh6loJdNzKvNo59KuB\nlloEjSyFZKgPzRCfWgkOV/U6aNqgwdE5KfSHfRuDlt3LYTX7oii7MeRFAQcB69u2Worz5IZochGu\nMoKUplhR/LU3FU8JJCsXLor6+dxzWtG+D1nBpCO11AYjyc5goHESx6RdkyapvMGxVx5onPfx2Rzo\n5HRfWjyqnPbhj0p68IlPfCJrX7txPWtfuSKZ0oUL583M7K575ThBp65BH3I0xPcAkrweqJ9Jqu/R\nW6Cz57q6v+2Ocl4AnZ2OT3GiMUA3joBr25FEJntxUicFqaR+IflquZKZWYBkKQTtMwsXnJUbcpho\nYF6pwpGrjznMNuW+dGNbz/UE3Lb6HcXo+VXRZ+dGc2pEp5RtHS8fY04c6NoHpu1gBluK/ENXlvyU\n5u7Z45I9FiDxK8LNJIf5b6Mlyu7mhpwq0r7ibNIRRZFVR+42jSbcTDDfo2k50K1LsNFpNhVTrbae\n1YElzW9zC3I5WV9XfPXgppeH80eA48NWA85qNpwvFpZOZtsWF3SR213WSrr2NvKJoZ8jSFIS0MNj\njBM6OzFfJJDqcowlgftDEpHd62TnnNRSS+LhHAWRqTUhY0zgNBUnqmGacArJ43dTKHQsbmmMRQnm\nMJWM1mupPzcgDWh3dEWsUY6fGEo9Pvihh7NtXDpghQ6W04rbJqRGbeQzg/Sqg7o9xtxdqirPDJCw\ncnBfoYMbHVIKcCEtFHDeCcdWo2mf+OTvmJlZuwkJ2IYcQfOsD+HU2UFyrx+R3KwE6e3hWe0fFfRs\nq3Btm0WeqWGpgHpZ5y0jv0XpMB63G5Ip3XlCtfXlC5orrl9THK1vaf9VuNlcuyLJyNo1zXsLBxV3\npdN6d+v2MY/NaZ8Q6by1HOaxMffJ0Rib7Ferbxi4NMOA8yKk4Ry3fM9KR8so5CDXTvD1RICTY4Rc\n1UMdN+a+BDenRlO1WL+Pdzcs+/Dl517QtWDOWZqXg2B9VnKkk0HXGZUUZ59+Ssd5vXBmjMPhcDgc\nDofD4XA4HA7HLYR/GeNwOBwOh8PhcDgcDofDcQuxf5mSmWVMIdD7N1qilN1sixpZgKSiBQbqQTgL\nBFDtr10X7b9al6woX9P+vbwOVF+S+8P8UVGMorooTKurw2s7dFzyokIVjkWgW506on2aG6I73bgh\n2lu/JbplBIpTGzKstZuiJPfBMx1g5fh8njIXyApiyhaG1x4nk71q/Nbmpv3Gx/+jmZl1sPJ+c1sU\nxWJFfXz4kKjbBw5pRexiWc+S3yxGoMYWQbXMQ/JVAmVuAPlKVAV9k/S4kSSK2/p0BAN1O4fjra5K\n1rByQzKiLiQOvcbuq3lzTC0skI4pquWFS1pdfxN01nWcNxlMdrwQKysr9o9GbkaU3FQg42q19Dxr\nyBVtPPMy5IiUOJG6SoePLhzXbkKq0oOkMAcHkZUbohP/k3/yj83M7NiJU9k2xiLPk0d8kZ4ZJ6J+\nFhC7lErwGfRxXdw+QCzwGRgon3T62jnX6qpy2CQiSRPr9oZ9mKMU8DV8dnpa9Of1NeUrSlZKiLME\nMqXNVcVBD65MMVb5Rzfb0qHDWXt2cSgZWIUz1yqP19Q8RMesQydPZ+0+edeYY7qg/R87qJw6DTef\nDZyrgfuO4ChUmNGzQbqyCNcz6UjSYO3+8OY2N3aXKXE8d7p4zn2MYcwXlIaEHKTLKZ0o4cCD3JVu\nqaZK4GCV4nqKI1kRKdsRpE50QYqxvVDS9aaoECn9pONNfg9LuxTHtDEXM+ZaOijh2WT7TLZMyVKz\nndvqQLY3gDNeAfVJA65JBdDu+YzjpuY2g6S1CFehfl/7dOFedfGSxnMHcrT6lOaHO+8aylq6A8Xb\nM888l7VnZubUnlZN3trGPEjXSOSBFFIXTLnW7ega+5DmzszqXEaXU0jzKD3YQ306kRjEsd0cvXOs\nwG2IJpzTM3rf6dN9CzJ9OviVaoq146eU848fU21ZrmtemipDDoY5KsX7R7+vOEl6wxioltSfp08d\nzNrHjuh6V29qjrx0WbXFCy9q2YLr1zmPqnZubOq98Oorqn9r04qXoyclLZ6bg2sk7i8Pt9xifjjG\nKNF2vDFQ3s8X6kpVsThAAohGhUOxoBqqPq3+225DaoQcSeV8ikquAMles6FxcWNFcVaZkuxoak5x\n02hqrB07pXq9BalmexsyvCMn7c2AM2McDofD4XA4HA6Hw+FwOG4h/MsYh8PhcDgcDofD4XA4HI5b\niH3LlKIQZRR4Ut43sBJ8AdTELhwZEjh8BNDu86A1xqCpzsyLSlRZVJvHnJ4T3S6AYlfpix51YGRp\nE29j5XWsPp7SoWVWVL4WqMFbcLOp1nTsPqQM3Y6ooh1QjA0rl8eQRFgiipaBhpkMtE93RA9MJ5yO\nubnZsF/9tU+amVke9N086LtlUC2fBu2sCnpZsaLtOTh/lEvo+xK3K7ZKiLM6+rAyrX4oQ75WGtGG\ny+CJko7bG6i/B6RuwimnSQkSpSmQVZkpnmNIn9Zvir7ZhDxi9dUrWbtveh5zkObFW7ePTGl1ddU+\n9rGPmdlXyHvQ/5QP5KAB4f5RROccHT8g53B/HrO1rVwwwNjOVuS3cWe3Rz/ze2Zm9sUvPokT7U6H\nzY3JlHb/vjzg2iMcJ488mozJjrSdZy3CASgPl5MixsbOc93cROxOINIkzWRtBYy3PJ4lEyv7ns+v\nPqXV89vbyOtwzytA0tHPI99PKbc8t6Ln+cC9d2Xt06clMYpKw/0HA13v6vOPZe0cnJUGuMbWqqRD\n04dEEx9E2Af0/qsvX87aL3728ax9YUN03BstXe/CgnLwO07cmbX7PeXvLch0Jx2DQWwrq8P76aCf\nOcZCYI5FbkGdE0XcX9vpbLXagO8OJCYD1AHxgK4xdCGCE+COZgzzTwHXYpCM9+BKSPcL6ufo/paD\ni2AOciTmLjrhjLtOwaEJl0NqeTKSVtHZbhKRJKm1RjT5QYCkDfqvGFKjBuaVHHQhJdRCpRz1PZC6\nwfnKgmqRGLL461c1JiPIXQ6fOIDtwz+srqB+7UIuvajcwthqoj6mHCGPOSyhOyCutwnpVR+yu1JF\n7xRNOjRhjqYLYKt1+zi4Vcolu//+YW59vCuZWCGnmrS5IblOgucztSSp68y0cvXxRX32wXtPZO1D\nC9oeI07jHuQhPUjfupr3KIcOo3EbIbeVy4qFakXb5xckWbrj1PGsffqs5rQXnr+UtS9dkjR8YwOx\n2VSfd7Ylw0tiSVKm7tNyE+UZPY8S8uFOKT/ZGWd/SPdwzIzI24CcNKXUFvLaAuaQAt6n83AZzOfh\n9rkznpGUilOSdHfgztVpwk0Scwyl+LUqHVQRz5A6NpBzTkPuNwUZZgP13eUXL2TtNmLupRflWrsf\nODPG4XA4HA6Hw+FwOBwOh+MWwr+McTgcDofD4XA4HA6Hw+G4hdi3TCmEYMURv6uHVY4jkL1OLC1l\n7bUVUYw22pADQd4zRnWFDIROASlotWU6D21KvtGHhIWOR63RPpvrkFIVQeMH9WphVrKntQ1Jk3p9\nXW+/p3ajAacFup9AwpVGdFGB0wJomz04XZCGmabF0b820UgtWLxD1U0UhhEou324QKSgpfYbirOA\nGMqByktHGjolVYvap1bOYztkYaB954ukCg/jKQYtky5F3QHokqBxzs2LAkf5R4GyKlC0Ccojirje\nUrmCvRQrdBcKkfapgjY86RgMBrayMqSs7mfle352L5nSnp9Fm0rDlPRMSA3j3pB63YALVh/5bPxa\naEkDd5Kxa8T+e8itxq937MMZcpTrBMop1N6hrnbak00Bj5PYmo1hzi/B+aaQx9ijo0vKtnapluma\no2eStJX7K5ASJHCnOXj8SNbeiEWXfvL5l7N2bVbz5cLScJ+lI0ezbfm+6NcXn5J0sQBZXAftyph8\nAW5fcBa4ALembqIYrcEdbAHuLnPb2ufqM5JNDTDnpaAkTzrSNLV+Njft/htWDMlSFDRHlJC36VKW\nxHQzwnyPeobuS9yfcwelib0BXSyGx+ljjup0NC9FgbJOnZ8OgWM0dDoU4hFEOe1f2kXeODw+ZUqQ\nOEHCV4PTy04O5DEmEWmSWmdUo5QhT4+Q13spZTYaV5UpzdkdUOqjFPT+WB1RCagrUTs1W5KaVKsa\nk2fvklPI0mHVueloookhKaqUJc2sVXWexppq6FZbdXCzo/hfyus+4jXV0O0BHZ90rhpk4vky3Fd7\ncA3DHB1DBkHn0UlHsZS3UyeHteMFKCFuXJNkgw5rlapkHdNLmmdKkLvNldRH9RykRpDH9WK8l0Ey\nZnRcQy4oVTBGRzmHuSUYJfiUPSonlKs6dq0uGdyRo5LPrVyXTPbCBTkoXbykOXADTnfTFeWiKTiW\n1bCEQRFOvDuSSDdT2gVjxSeKIdRLNM+bxtIQJcRTAmlsHrXFzvIeSAOWq2I5ilk5K/XgZBTwPQAl\n0gPIeA8dk2SP70QbN5WLXn7pQtZepFtvQXFz41VJ4KYhZdrA9wL7gTNjHA6Hw+FwOBwOh8PhcDhu\nIfzLGIfD4XA4HA6Hw+FwOByOW4h9c0DjuG/ra0PJQJyIMjQ3LVpRHrTu9z/4UNaug4bZgCPSF598\nJmsXQYkqYFVu0uBy0Ow0NiWD2iRvKhLdqNcd0pka26JJhg5W1dbl2ksXz+ueFkQff//73pe1r8LN\nJuLK8bsrA6xLtybQKjtBtMFuCicC0JZTG7kpTbidUpqa7bDnI4PrD/bpg2qfA7UwBTW3AOo8nYf6\nkJHFoLJNlxUr1ZIou7WKqLH9gfphAIrdIBkek3K8fhfUWcgBinn1X2NNFNB8RddSglNTo6nrJcV4\ncVH04QLcNHIlUfjK05JBNWKsft+H+0Yy4bq2r8Beq76/Ocd+nWOLqiIeh3KnTOEA6V2yuwsKKex7\n3iZlTWm06/bxC8P+2E7pZxIoidBHd571pOecJB5YqzGU5iSgyPYKmlfSHJ8TnLfwPJIE+aGt+aZ5\nVW4Px8vKESk0Hc1rolSfX9M+z70o14hyVZKAD753mJdCC9RcSFEqU5qTKkXdR9vgZtLR/purondf\nvShpVBHP4yDcJqZx48WYchc4viHPRAXltO2c8tKkIwrByiPJaoyqKU13/z0rUOoKecqY6oaOOpAr\nU2rBOQUljxUg3+bxKSXacVnjfBJSuohBHgyJbxfzbp+SIkh/S5D75uAQNe5cp+sltT3CNXKMJZD/\nlkauh5OuGEiD2WBUE5bgXNdC3dBF3ZxH3VBHDb2yIoo86f1Vuj3CiWTQUj1RRT9MnzqEcyH+KAMf\n9QNlqX1IhDpd9TclcgG1WJ+SPVD9u6jLul24hiGe63D/aUNusA53thLqH0rpWFtPOmrVsj38wH1m\nZpZD//zGr/1u1m60IO9akmve7AHNC2lLjksVvBP125pTLIYEEXFaKUkylGO+QJuy6mQkPWI9Y2M5\nknJMtlGHQFZZQuxM11WvHzkqmcjZuyThvXFD90Qp5/y84qUK+RJl2pFTE/ZEukciHkvx+N/CvGqY\nUlkf3oQjVwfuX2l3FDdwWMrlIYur43hwTI5aOl5vW+8+fN05eFDjog9XylpZMVFvKM6vIde2cfxi\nFVK3eeVm6785dbGHn8PhcDgcDofD4XA4HA7HLYR/GeNwOBwOh8PhcDgcDofDcQvxJsiUEms0hytY\nkxbW3IazDBxemk9+MWsvLooaVKupPcCK/waHj3pFtKIWjtnY1v4duDJFUodYDiv+D0YUSrLnBoHU\nS9HY+gOsJo5V7y0RHXL15k19tgTaKCicedDfu1uiPg1AyeuDEt4HxzdOQHkPw+uZdMlAauoH0hJT\n0N8TSCiiCC5BoLRGlDLheTNucnD16IMOuYW4yYG+WeEK/qD77kg6yoiPfE7UtcGY/Ez9vYWV6lNQ\nc3NwH8gjGMtwpMghVm6ui4a3M+bMzFbWtMp8hHtNIP9qd12m9LUPiPbrXE6fLiq8rFzua19jQrcw\nUK1J3w22u1MS7z9NmAt2d4iKjHRcyJRw43s90/04Vr2dUMhFdmB2OF5TOIz02ho/vYDcH0G+hKmS\nT7uHFfxzsY6zMAXZCT7x+Wdki/EkHCE6feWl61flbLR6fUixHTRENc9t6jyltj7X6CtHLh48pvuA\n/OPGlYtZ+2Bd9zQ9I9pt0qPLoXJkC3naypJ1Ts3qOQVsrx64R/t/XNT6iURILTean+meFgLHJ/6Q\nQD6LGqKPOSKi+w1ligbZCmqUBHN+jHmMZcmYc0m6czxIGeAwWYXDI0d4b6CT9hCXCfJDPs/zQA5L\nx0vmkz1yC8sYumHsPMq3Uo56K5Aaaku4RVVAee81JL9ZmBYdnzLtMuZ1KOGtADcqSrMTSJ8OLkrS\nQUfGNqRSBtlJb1RDr1+X21qE+rVSVo6szWi8l+u6pxm4Q5Yhpepso17LMaei/kZoFSDlo6sonw2d\nUAdtuv9MNnJRzmamhu883/TeB7PtFTh8/vKvfjJrd5A34pYks4eKmuvOHD+etfMFyP3hNlSBJKRY\n2H1piHQP6dFOPcFclSS75wTKqyPIJ1m7p5A9sqbmMgBTuN7jd8hFii63fTidjtVdMWWbo9PfHuXO\nmwpm4XFXT7xnYXutRrc/SCAhO+zACSw/GucD5C0ej/mvDqew3LZy5xacv6oppbO6xudf1LIjbTjX\n1acUQ0sLWBpibALGMadUL5W4tsY+4MwYh8PhcDgcDofD4XA4HI5bCP8yxuFwOBwOh8PhcDgcDofj\nFmLfMqUQIisUhlTFHOhlcYLveSBfWt0UrejSK3Ihmgc9M4dlraOi6EkRZCUNUDu3O5Jy9EGTzfVF\nQculosC2d1aJhzRgBlS3ak3nXJjR9gLkQs1NSZMoTyngepugk1NC04b0JeYq5nAo6HOFZlJ1R6uV\n24TLlCxNLE6GNDFS00iHjWBrVQKlOgfnh35M2iuojgQdkaGaKKUAACAASURBVLD/ZgurdePZ5ys6\nVw8ORq3tYb81UvUfQmhMIhejzwbcCU4ocRPyM0gAalVRf7c7kHCBLNgBpXsT1NyIqjrQVpP9D/W3\nDdI0/br09b2kNWPyntcgy9mrPU7c3H0rV3RPdqi8Ya99x9elz1pjtN49rnHs2tmmy9LujktRtPv2\nsRw8aocJtxsoFQt2+sTQeaF983K2vbmhcbuG3NyAXKMfROPm2O6mylHXm5p77luCK0pRz7WQQEab\n0z7YxZ56+qmsnUuGc1sy0FxS3pRjRI22V4flGnCwdn/WDnDcSLrKOdNQdXbXNZ9RJpeHDCJfEmV9\nal5U3gXIOns5SRJ685JHTDqChWzMjY9VSnF2H9wppEPMCayRSOu3sLvsMRmTI2IegW1jBGlkYTTm\nYeBmJfRnFS4XlD0XIYOAmZPFcFbKY27mPtstOPAMKE/guXZ/fuOOfyN3jQl3AcxHkS1MDefzFupH\nGIXY0gG5jpUgUW40JG8uQP5eLrC/dZxuosm/NitJ/2xd47YbU5qEPi8hR0XDvi3ABW66pJpkdl7t\nmepM1o6hl4tQr1GiT8keXaHyJd1IoaTthb76v9XW84jwO3La1XlbN+RudztgZ84vQGrxrnecztpF\nDO5P/s5jWXuwJTnsA++/O2vPz2s5CEOslSvaTqeqMRkmpZSUEo2pEUe1Qsp99fd43KZRTY5zlvGs\nQ4LimHJIStxCgIsdTlzAexZl5YM+66tkdIzbR6f0emvcPY9DOfteMiXKJ7EsyDTc0VZa2qnV1lIL\nudFcGHCQnNGxS/PNdBVOzbiuYlU5hy5IGxuqnQ7AWeniRX3/cA0ul0cOynGukNMx3/OBb9E+d707\na1+9qXrs3/+6ZIOvF5NdXTscDofD4XA4HA6Hw+FwTBj8yxiHw+FwOBwOh8PhcDgcjluIfWsXUgvW\nG62EnCelDaugDyC1CHnRvQ+eFN0OzEvrNCVB6sSgoNGtBkuuF7BaexE0J1LsijjvjkypUtHnZiCT\nqmFV+DxWU6aEpt0WDYoSk7UV0b37pITiutpd0uqwWnlO94fF4sekBEE2AzbRCGa5EfMMXTxGAed9\n97qk+IJfj+faaYnGGkOaBNartXCcGPHUwcrrW024H6Ej+iMHL5L6Ivyv3YPsiOoPxCo/WyzB2WJK\nVL58Tve33lCcJXhQ5RqcXoKO3wRNPI51EfmCznW74rXQLffa57VsH99nDynTmDuR9u6PckQB1GzK\n6ugUsedy/nsM+dciq6KDUrSLBOm1ticZUZSzyoiOXcGK/LOU3Gj42PVN/efaphwpBi24/YGan5RF\nn23PHNb2gfr52CH1w/VYc84m5siNjsb5s5dumJnZgYK23TWt88xDUtIHFbtzU9TcAdyUuqD0d+Gm\nUiornxw9rGfTaWMuhoPPoK9nMEBgDjCHFYPak47UzOIRP5tynbGETp8tuh1RmkTnob2czOjOMCYB\noGtJbrddxmRQudG8UIYEt1T6aimQmVmfdZbtnjfG8xycDllnwdmmj+dEIy5KolK6L+HK0mxfm2jk\nUrO50TBYwRgmpZ/ujeurcsHpQX5cz6tWXZoFTR+lUAvy7VpFUiJKo7fgYLKxJXo9JfI78ra5ORwD\nTjq1qk5ar0vq0utBMlDRdvZ3YF1WgpSJriWIiQpeUdq4j0Z7U9eD2n77iurvSUewoaOSmVmK58aa\n8+zdJ7L2woL6q9VQ/l+cUW0ZQe5WgYNttap2LmLf7S4pDHvlvdE+43//+o6QyR77j++D87N2guwo\nYm7BO2ge8ig6jcV5bo9H13h71Dtmr7/e3QvjMqWvL6mvY6mPek1SxnxPz7vT1XtWGElaS3k438bq\nvyhSrTRAnivCtS2HuaeHmufipUtZ+x3vek/WvnpduaK7orzb2FLNs3ZTjnK1A3Ko/Lb75W52X1XX\nZj/10/ZGcftEncPhcDgcDofD4XA4HA7HBMC/jHE4HA6Hw+FwOBwOh8PhuIV4E2RKZoOMYwZq+wCr\n5GMF9QqoifXZhaw9gBNNBcfpbIiOGEBDqtVFyUtBQStD+sEVuvORbrXRGFLOZ2fl9kDJ0qCn600g\nU2n0tf3qNVCcIDvqgAYeg8pbqYkqmNJpCmyxBPRMMsESuBLsOJpMOHvXLDWLe8NnRRp9IaKkhzEE\n+RLpiqAo9juQecWKpy5chSLoh8qQ7lRLomay/3O4nmJlGEMp+qOEY6RwwaDLE11oBuBrg9Vrg1iB\n0O1plfEOaMU9OCilpvhL4YqQg0NLhJXABzG575OP3VaJ32vl+Neyovxr2T6+E/ff3fEoMcoKRvTd\neHe5UIL4puwxGpMG7H5d4y4rAo//9dynzL7+89jrPJOCKJe3an3JzMxiuN51QQE/uKDxs3RUz2N2\n5XrWbq/cyNq5lvaZXpTcaemsaKx9uP3NNUV7faim+a8dkH9Ak54duaJUoWvI90Xv7axfzdoXvvRs\n1t7u6bpWrut6+zhPfUrPYG5e11KCmxvlSAlyUQSnlU7QcRqYC2ej28nBTfIkunHsPWZ2dwkaMD9A\ndpSM2yzhxDzmHg5xKCcSSIOSkdNKHk6OdMeKIS/oYk6js1NuN4m0jc/Z47Kt3WWYdLlMsf9eWSke\nPYN0wiudtNW1zufOm5nZ9LecyrbXD4ransfzWIDkPo9xWEO+milrH9ZCNcibI0ijt/qqhUoF9efi\nlK5h3FVvtG8RsiPEUAXtOcj744Fq3A5qqBjxfGhBEqsCaqdxF0D9pwcpZa+DeILEfPOSJAbFi8qN\ntxM48kuIhQJc/qbvlBwkRZ8PIJ/Pw0GpSKfawFy912/0Xy1HGu4OyeQod4w7LGHXPWoS9vle2xPU\n18ypY3LslMdHfRXtvj0H158dmVL0OiU8b2e8ac5QHJ9jKl04cMIFa3pKuSsPd65CEe9omEN2XB4T\n2MwVDUsxcI6BRLdYhvMXlgBgQmlvq/66dOlC1j548EDW3lyXC1sPuaWJz25tqd1s4r2sAdn6PuDM\nGIfD4XA4HA6Hw+FwOByOWwj/MsbhcDgcDofD4XA4HA6H4xZi/zzi1CyMKGO5iLRbyiIg3YHD0M1r\non5HcIQpklmFVfiLBdHqKqBzUqoyBTlQHvS5Nlx0eiMKZZ6OTFiWfmNLzhmtNih+oEG1Iavq9LGa\nN2QiKb7r6g/4vRfOi1Xs40TPhlS6sfXMk69sTCZCCJYfPasxhiTohxFo7rn87qFKejdX569gVe44\ngQwKJytG+ux0TfHEWCDFtjNawT+Gg0q+oL6cKYomSpkSKbuDrihtHcRQ0kN/QqZQqoiqVyzrevuQ\nzOULHHeQteQoobp9JAPEa5HfvDXnRZsUzvG9slY8Gq+9HvtNfcLPxXvc05v1zXlxjKqsdvJ15BfR\nZvOrtk0SUjNLdvoEYyMP1wU6n/HZzM5IglTHZ6cGyhsHDh/M2rlDJ3Vi8Hc5DMtV5QvOZ3Ttq1SG\nuahYoLMA7gl54J0fUm6hvOTmypWs3d64lrU3Lr6UtRvXXs3acaJ+LuaZTyCBNDor0eUQ83K4naSR\nqe2M571o9OOuY7tT+jnG9nIRtL2m9rGkgyanjjx3Hz7/HmKkTZc0xGUX8sl4TBaNY+NeY8i34z76\neazP6RaHeEGb8hdivH6cXIROYqUXhtKZdbuYbe8cFI2/H+0eH0VKpFELXcHzizjH0KkGtXgbUh8q\nTRnHBfTDznzWhsMka+k8ZqtrqLnGpAEdOEvipHnUcXQHo4NNAbmOsu7OtvJSuyE50vZ5Sbbv7OJ6\nJh0hZG5mATUpJUVJ4HsC3kMgIy3AcWbMVRHjM+LyAGNuQozNvVzk6Ar31XXDWGoby227yzT3yq+8\nroDkme4hfRpvIxeluzsr7ewTosmXKe1WF+9HskRpUn4PuXxA3VJAn/TxNUMV7+cF1AqbW8PxHKeo\nj8sYy3u4esWo3WIuk4JaJaDvW9tySqpPqf7iLfURpBtN5ZwSrmdpXu5jT31Z8vD9wJkxDofD4XA4\nHA6Hw+FwOBy3EP5ljMPhcDgcDofD4XA4HA7HLUTYL80/hLBiBv6l41bhRJqmS9/oi3ij8Lj5hsJj\nx/FG4HHjeKPw2HG8EXjcON4oPHYcbwQeN443ijccO/v+MsbhcDgcDofD4XA4HA6Hw/Ha4TIlh8Ph\ncDgcDofD4XA4HI5bCP8yxuFwOBwOh8PhcDgcDofjFmJfX8aE5fD9YTn8x318/gfDcvjd/VzDPs79\n3WE5/NJr3Penw3L4p/s418+E5fDzb/Tzr+M8fy8shx9/q8/zliGEuy2EJyyEhoXwk7fonH/LQviL\nr3HfX7MQfmAf5/qUhfDDb/jzr/08n7UQ7n/Lz+N4XQjLoRSWw5fCcjj8Fhz7s2HZ+/wbha+X48Ny\neCYshw/t4/i/EJbDR1/DfmlYDmf2+Ntrnq/DcvgjYTn8q9d7nY63Fzzn3B4Iy+HusByeCMuhEZZv\nTW0UlsPfCsuqjcJy+PGwHK6H5dAMy2HhTT7XwbAcvhyWQ+nr7+14Qwjh5yyEn72F5/tuC3jHCiG1\nsPvcZCF8v4XX+S7JejqEP2LB56s3BSFcsBC+Y4+/fYuF8NzrPN7XjrsQliyEZy2Eyh5//xkLb9H7\n89sobvb1ZUx6Lv1Yei79rjfrYm4x/oaZ/e3XsmN6Lv2b6bn0rX+J3j/+rpn9dFgOxa+759sTf9nM\nPmlpOmVp+j+/5WcLYcnM/oyZ/ePXtH+aftjS9P9+S6/pzcHfNbO/9o2+iD9ICMvhQljeYwITfsTM\nfjs9l17d57l+Lix/1eTmff42RnouvT89l37qjXw2LId3mdm7zezf7/MaXvN8nZ5Lf8XM7h+d2/E2\nhOecP1D4y2b2yfRcOpWee+tro7A8XhuF5VAws79vZt+Vnkvr6bl09c08X3ouvW5mn7RhvDpuD7zm\ndyxL049Zuo93yXQ4X1nw+eotRZr+jqXp3W/yUX/KzH7O0rT9Jh/36+NtFDdvmUwpLIf8W3Xs/SIs\nh/eY2Ux6Lv39N+FYb5v7HBVcz5rZH/1GX8sbxAkze2bPv4aQe5PP94Nm9vE3JQmEt08cmNkvm9m3\nWwiHvtEX4hjDj5nZv3iLjv3LZvbtYdn7/DbEj5rZx9Jzt3y1/V8wfzmadHjOuT3wNWujsPzW1Ebp\nuaw2Omhm5b2u4U2qgz9mw1znmCTsVvuG4TuWpft/x3odtbXPV99IvJF3oBBKZvYDZvaWK0d2OffO\n9b4t4ubrPrywHH7KzP4rMztgZpfN7L9Pz6X/bvS3HzSzH07PpR8c/T81s58ws784Ovap0ba/MNo2\nbWb/l5n9lfRcmuxyrn9oZn/CzGbM7AUz+4vpufR3Rn/7GTO7z8w6ZvbHzeySmf1Aei79/OjvR8zs\nfzGzbzWzppn9T1/jF4QPm9lvvc5zn0nPpX86LIeTZnbezH7YzM6Z2YWwHP7MaNuPmtnPmFkws7+X\nnkv/7h7P9F+b2beYWcXMvmhmP56eS58Z/e3nzGzbzE6O7uVLZvZ96bn0pdHf7xnd58NmtmJm/0N6\nLv1FHP5TZvafm9m/2ePe354I4TfN7NvM7IMWwj8ws4fM7KfNrG3DQuTbzOyPWQifs+H9f9jMWmb2\nf5jZ37Q0TUZf1vwdGw7uhpn9vdG+BUvTwS5n/bCZ/Z+4hjkbFq7vs2H8ftrMfszS9JXR3z9lZj9v\nafpPLYQftOG4+KwNf0H63yyEF0fbHjez/9LMrprZn7M0/cQu93t6dO3vNrPUzH5jtO/G6O8XzOx/\nHR37hJn9upn9gKVpZ/T3P2xmP2vDOPnS6DqfNDOzNO1YCF8ws+82s0lg8rxtEJbDcTP7hzYcn5GZ\n/UJ6Lv2JsLx7f6Xn0o2wHP6Fmd1hZr8SlkNsZn8tPZf+na847h1mdqeZPYptFRv24fea2ayZPWVm\n35meS9t75YiwHH7EzL7fzNIRhfyT6bn0j6Tn0k5Y9j5/qxGWw18xs5+04Vz2qpn91+m5bHwXw3L4\n57b7/HTBhnPlfxrNJ+8ws9jMPmLD+ebPpufSL+5x2g/bMA/sXMMZM/tnZvaAmfXN7BPpufRPYv/v\nCMvh18xsyYYvOD+RnkvTPebrrzU3f8qGRdJPvM7H5Hgd8Jzj+FoIy6qNwvLetVFY3r02Ss+lyejL\nml1ro/Tc166NwnK4y4Y1jZnZRlgOn03Ppf/ZHvX+B2wYy3eZ2fNm9hfSc+lnRsc5ZcM4edCGMfmc\nDX8U/dOjYz9qZneG5XAiPZe6Ne9+EcKDNpwnzprZx22YQ/j3vWvI8NXvUxlbPWTzV8eGP/z+JTP7\nymUcvuoda4SPjJYFyOabUe3+g2b2w/8/e28aZVeWVgd+5943TzGHFBGSQkpJqcrMyqGGrKyiqAGw\nCwwuaDBDMxkMy8tNtw1eBswyTTuIBZii22Aa2zQGg/HQhRmbwlAGajBVRRWZWVmZylGZSs0hKeb5\nzcM9/ePcd/d+ofckZSoyUi/49lpVefTivjud73znu/ftfbZYNzeJuTG2xJi/GZ7ThLg63ezY91+I\nzle7hUfFmF8Sd6//UER+IHyu+KC4Z6BDItJ+Tvl/xM0Pp8SYrIg8KDeLu048JiIb0TOW2+cxEflN\ncXnucXF5Qujv7xbH0rtfnIX3D4kNWcfGDIR/+1oRCcTF2IxY2+r6zCbyE3KXxM3tMGPOi5ugB0Rk\nVkT+yy30x/+TuBt8P332jSLyTnE39xtE5Pt6fPeL4grMYRH5qIj8rpk1Kfr714vIfxVXRPyRuIdV\nMbPGE5H/Jq6AmBKRrxKRf2xmzVf3OM6DsrODb33snfiAiNwnrhBp4yvEBeCHROTHbkIh/u/hduMi\n8rS4gpnxP4u710Mick4c3U/MrMmKyCfC8xsPt/tlM2v4Xp8RV7z1F6z9ShH5nIj8Q7E2J9aeDf/y\nHeKuPy8ifykuGQ+IKzI/IG5Q/b1w278vbhJ4RFys3WqNhZ1x4IkbvNPiCt2KhDHWA4+JyAVxvxr9\nDH12XkRGxb2s+wMxZrjLd42I/KyITIqLo8PiXuQxvlVEvkZEjonIQ+J+rWpPsr8h7uXfiDgq8R+F\nb5nb6M84eBMRFqx/LC7BHxWXS/5r+8/So7/sjP1ucQ/fHw4p3B0PRSEeFJELOwrffynupeqXics7\n/1TcBCLSI0fYGfurYfv/DI/1Ydqf9vkbCDNrTombsB+1MzYvLvdfok26zk898A0i8ruC+eYPQynA\nzmNmxY1/zlM/JSJ/Lm5+OCQuJzL+tog8Ki5nfKt0zlE7cbO5+YyIHDWzpnCT7yvuAJpzFLeCnUFt\nFN7/Pa2NwuO11wYaDM+njajeN7NmWET+RER+SVxd8gsi8ie0vsxHxT0IjYiL4+/ecZ1NcfWuxtOd\nwpiEuIfo/yxunP+uiPwd+nvvGtJ0f54S0/E89Q3ifvAdlBufX0S6P2OJ3P6zoAg/SxozKiJ/IO7h\neVRcjf3eHdufEZGjYnS+2gV8p7i64bi4F6s/cZNtv10cAWBQ3DNU77i7Ed3i5KMi8iVx/fxT4l4g\nOxgzJS7H/HS4/x8Rkd8Pl5wQcS9xmiJyQtxL3w+JI0600e2Z7a6Im1syY+yM/V3652+bWfPPRORd\n0lu//rN2xq7t+Oznws/Wwjf73y43vkkVO2OZqvTzZtb8hIicEpcURET+0s7Yj4uIhL8MtRcXe1RE\nxuyMbeuXL5hZ82viXlb8WZdzHBT368BrOfZO/KSdsaXwXNqfzYafPW9mzX8Ir/OTXa4zYmOEv5Ku\nm1kzYGfsZvjx/2dn7JPh3/9fcZOaiCuyL9kZ+x/Cfz9jZs3vi8i3iHt5I+F1DfY4537Ex8Taz4uI\niDENcX36iFi7LSLbYszPi5vUf13cg8f/TUyWj4ibSHqhMw6sXRWR34/+bczPiNMx98J1sbb9INQU\nY0RElkTkF8VaKyK/Lcb8sLhE1UkVt/acuMJDRGRZjPkFcS9vGL8k1l4Pz+W/iSukRByl7t+Jte1f\nPP+jGPPjIvJuwa8R2+LeaituH+8S9+Dzo/QA85ciInams7/MbNf+uhk6Yi18gfx9IvJuO2OvhR9/\nof3328gR3aB9/saiJSJJcQ8ey3bGXtrx917zUzd8yc7Y3wu3/QUR+WFx4/dzO7Zr53KerxriXhhP\n2hl7VcIYJXzEztgNcb9i/w9xeeNPe5zHzebm9jEHRWTrJteieP3QnKN4vfiYnXG1kZlFbWRnXG1k\nZm+sjcJ8IWb2NdZGvRHV+2bWfLOIvGpnbLvW+a1wseEPh+yeR0Xkq+yMrYvIX5pZ80dd9rff6tc3\nC+8WkbigFv09Meaf0N9vVkNWRWRMLJ6nxNzwPPVXYm17cd5uMv9e8fNzYt18EzLguz4LhvjZcFsR\nY75FRF4U6+bM8Ls/vGN7na92D/9GrJ0TkfZz0L+W3i9kfom2fb/cPO52ojNOjDkiLk/8DbG2JiKf\nDZ992vgucUtLfDz89yfEmKfEMa7+VBwjZjBceqIkxvwrace6Q+czm8NdETe3I1P6u+JoaEfDj3Li\n3lj1wtwtPrssrvjodqwfEZHvD/9uxVHZ+FgL1C6LSCrUqk6LyKSZNRv0d19uLGzbWBf3a8JrOfbN\nrqnbZ5fFvfXrQPhL2M+Ie4EyJvhValRE2kXPzuvMhe1pEXlsx3XGpPNBPy8i/Pd+B9/TUXEDnSms\nl8W9vRdxfcfbd+sjRmccGJMRkX8ljo0yFH6aF2N8sbZ1i3Nr41qYhPj8box3Yw4IqOl5cW+U13ds\ntTMO2vuZFpHvEWP+Ef09seM4+y0O9gKHReRyN9q2mb2t/roZduacUXEa/PNdjnU7OaIbtM/fQNgZ\ney6UafykuMVt/0xE/omdCV+Y9pifesgAotwRygiuSvd5sd2feXFFsohjM/yUiDxpZs26OEnsb9B3\nes0f3XCzubkdrxpTbxw05yheL/auNrq9c5jccXw+h0kRWbMztrzju4d3bK/xtDuYlO61aBs3qyFb\nIjIp5qbPU683fm7rWbDLtp3xa60VY3aeg85Xu4c76aebxd1O7IyTSRFZF+uIDvT9dp6YFpFvEWOY\nnRkX96P5dNieD38YF3Fz5q3y3l0RNzeVKZlZMy1Od/oPRWTEzthBEXlBbtTqMbrpwzjhHhGntd95\nrPeJKzK/VUSGwmNt3uJYbcyJyEU7Ywfpf3k7Y7+2x/bPiaNe3cmxX9d1iqOWfoOI/A1xlNKj7dO4\nybHamBORz+y4zpydsWxnfZ/0ZvP0I/g+rwh+FW7jiIi0f+WbF0fbb2PnRL8THXEg7k37KRF5TKwt\niNPLivTum24xMCXG8Pa94uBfhN9/MDzWd93kODsxJyI/I9YO0v8yYu1v0Tb7LQ72AnMicqTHYoRR\nf9mZrv11q8VVnxOnqW/ve0Xcw/XxLtveKkf0Opb2+RsMO2M/Gq65Mi2uH37ude4qyk0hY+GQdMkT\nIdPyvFCesjN2wc7Yv29n7KQ4mvkvmx521q/lPOTGXHWfOCam/sr4xkFzjuL1Yi9ro9s5h+s7js/n\nMC8iw2bWZHqdQxinJ0TjaTcwL91r0TZuVkPOicjFHX/Li+14nrqd3NMtfm7nGanbMeY7vuuua2cM\n3ycil8TqfLULuJN+ulnc7cTOOJkXkaFw7Zlu358Tkf+8IzazYu1Hwr/VRGSU/lYQax+g73eL27si\nbm61ZkxW3Mkvi4iYWfP3xC3c9Frxo2bWDIUL1f2QiHTz9c6Low0ti0jMzJp/Lo6dcjt4Uhwt88fM\nrEmbWeObWfNW41yTuuHj4jS1u3Fsxv9hZk3GzJoHxGl1e11nTURWRSQjruC6XfyxiNxrZs13m1kT\nD//3qJk199E2HxCn/d5/cOyU3xGRnxFj8mLMtDjWVlti9jsi8kNizJQYMygiP3aLPXaLg4qIbITr\nvLwWSngb4yLyg2JMPKRW3hceZyfy4hZG2wx1kD/6Go7xayLyv4gxj4kxRozJijFfJ8a4N7zGpMSt\nC/CJ13H+f53xpLjJ4CNm1mTNrEmZWdPWJUf9ZWa79teiOK1+V4T08HPiZAkSLpL6GyLyC2bWTIY5\n6z1m1iTl1jnihmOF61tpn7+BMLPmlJk1Xxn2UVVcrrhhIfrbxDvMrPmm8AHkH4vr717OEx15ysya\nbzGzpv1gtS5ujn6953GzuXn/ziV3DzTnKO4Ydga1kZk1+fCH1BtqIzNrpszs66qNbgcfF1effoeZ\nNTEza75N3NqRfxwuyPuUiPykmTUJM2veIyIf3vH9d4l7+auL9945/krcM027Fv0mCfNAiJvVkE+K\nWwLgx8SYtBjjizFvDR2Sbhe94udHxZghMTd9FuyGPxFnQfxNoQvOD4rIThc3na92D/+bGHMofA76\n3+X2++lWcbcTT4rIYPgMJGKjPDErxiTEmC+XzjzxX0Tkw2LMV4dxmRJjPijGHBJr58WtpffzYkxB\njPHEmONizK3y2F0RNzd9GWNn7EviVl3/K3GT8YPiHGZeKz4mbkGe0+IG1a932ebPxOnaz4qjJVXl\n1lS49nm2xK2n8og4V6MVcTrEgR7bPy2uwHnsTo+9A58RV/x8SkT+pZ2xf95lm/8UHuOauBXMb9v6\nLdQCf0icdvO6ODr6z4lbx0CMW1j5fnELKO1X/CNxblMXxGnrPypwRPo1cYPxOXGr/39cXGLoJjES\ncX3xtWJMOvz3L4pzklgR1y+91lm4GZ4Qtwjiijja9zeHa9HsxKy4Rcw2xY2JP7jtI1j7lLgF+f6N\nuIexc9Je3NfhwyLyF9F6M4rbQphHPizu17krInJVRNouNbfqr58VkZ8ws2YjlDx2w7+TzkULf0Sc\nm8kXRWRN3Fj25NY54tfFrVuyYWZNe6x/WET+giQzit1HUkQ+Im5sL4h78frPXue+PiYuttbFxcQ3\n2Rnb6LHtr4rId5rZ6NemR0XkCTNriuIWCv4hO2Mv3MF59Jqbv12gtVa8AdCco9hF7HptZGaj2uiW\nsDN2VVwd/sPiXur9UxH523bGroSbfKeIvCf820+LvxKHKgAAIABJREFUe8Cr0S6+U0R+5XaPp7gJ\nrK2Lc4f9XnHj/NuE88fNakj72p6nehz/aXE/ND624y+38yzYbX8r4iSUHxEXPyflxmdRna92Dx8V\nly8uiGPm/vRtfetWcdd9+98Ux/ps4zvELbS7Ju4H8f9E28+JY3D+uDjyxJy4Hyna7zL+rji53Uvi\n4vr35NZrmt0VcWM6pV1vwAGc/d3JcDG6uwZm1nxInC3prVaVv519HRWXtHrZBO4JwgXbztsZ+8tv\n1jncVTDmb4nIr4i1O6mzvM2/EJElsfYXd+F43ytsz/dmwZgnROT7xdoX3tTzUHQg/AX6GXGLGM7v\n8r6fEJHvtzPa53c7wsVRT5Cl6+1856Mi8jt2xu7ai/abzc1m1nxYRL7bzthv3a3jKfYemnMU3WBm\nXW1kZ3rXRmbW1UZ2Zhdqo+77/20RednO2Bkza8bF/Zj5Njtjq7f4qqIfYNwzltg7f8a6jWN9WES+\nW6zOV30H54T0ORF5W7jw7l4e+66Jm7+2L2N2E3fLy5i/9nAMl68Q90b3gDhnpMfF2pu5muzm8b9X\n7oaXMQqF4q7F63kZ8wadx76fmxUKhUjIcLmhNrIze1QbuXN4VNyv3RfFMbz/UETeY2fsM3t1DgqF\nQnE34lZrxigU/QQjjtq9Lu7XwDMi8s/f1DNSKBQKhUKhePNwN9RGB0XkL8Stg/RLIvID+iJGoVAo\n9oAZo1AoFAqFQqFQKBQKhUKhAJQZo1AoFAqFQqFQKBQKhUKxh4jd6Q5yhQE7PHYg/JeybPYKa8tL\nUtzaNLfe8u6E78dtPJ4SEZFYj1eCbFVvDMcWfe51/3KHzX0H+8t2/9z02GeX7/KuPcPH794dzD7r\nOC/6bq/PO84rCOhjPndudj+HgM5heXVlxVo71nXDPsDo6Kg9evToru7TWtzbIMCyT9y/xkO67IzG\n15v3eg3fXvu7neF+O+eC/fS+jhvH26VLl2VlZaVvc87g0LCdmAgdFOn6bNB9fNbqMPqoVspROx6P\nR+1kMhW1Pd/HPrunFgloDHNe4DjjWIzFYjec12uG6fmPrrgttmzH+dx6+5dffKGvc85wJmUPDeRE\npHOceHQ/A+rDYhMmNavbiJ1mE4ZZnJN7zREcF17HXIftg4AMcW7RvZ3zA/aXy+Wi9ugousnQ8atV\nrK1Yr2GN1Vq1+5qLHCLZ/GDUHhgaxXdpXBWLW1G7PT5XNzZku1zu25wT941NxtzpxyhvtMe1iIht\nYbw3G/Wo7dENTMSpVKdYaVHfd+QTr3vc8I3siDPKXZ7v7TxMR97ibXmPvE3QUatIV3TOub3OnWtA\ntBtNzNHVGi3TaHBu25V6X+ecVCZhs4WMiIh4Hq6r0ei+LCXfH763nbUl5Zwe8z33Be1GAt4nH5f7\nKNxPLIbzbbVs17bXcV4cR91jgT/nY/p0bzyea1s0NoIeEzKhPX6qpZrUa42+zTnJRNxmM0kREbE+\nLiNO00ec+ocvlMeVT+M8YZB/qnXkqAbFRDqVidqVEs956AcvhhyYSiSjdpgipUH5r9rA9wzlS0PH\n5BhKpWD8Zin/JOK4Dp/iv1Qu4To6POW65596vUGfY+uA7uBmsfy6c84dv4wZHjsgP/aRf+1Oim6A\n4o3F//XjP/hmn8IdIR5PyfThR0REZBh1oJgAAyeeRMTHYlys8jZ4GLI0KFIJDHppIcFYKl6CBgaX\nT4M9lsGg5gdzCVyiSMZxnGSCnR9xTCtUaNDxeVI18QLON4njN31KUj7279dQrPrxBm2D7/p0b+gU\npELn8G9/81cvSx/j6NGj8tRTT4nIneUcLlJaTTxclEvLUTuVzEZtP4EHCssv5G7rBYgN/58LF7Pz\nzzf+o+eDdK9a4db3g8+BaxTPIEYMOZ7acHJ67F3vveW+72ZMTEzJf/yoMyNq0ENxgyZZnx6YLl56\nNWqfeel01D40MRm1p4/eG7WzhaGo3aJCkB+8SsUitmmi8EhTIVGngmRkZEREOl8A9Xro4rAJKA5M\njwczRosCodlRjPd4SeDzQxK/VOC94h+PPXC8r3POoYGcfPx7v05EROJ0bxNUQlWpGP3swkbU/q3P\nPh21F5YXsT297GtZKjxpjsim8lE7n0EuagbIV5XqdtT2vBsfgq2l/jeJqO17mDvf/dj7ovb3f/8/\niNqJJOaiV15+MWpfuXg2ap8/i889QQ5JUIy884NfH7W/7pu/L2pfeBFLhnzuM5+I2o0wpn7637/p\njqN3hGTMyEMH3dgdO3Qo+rw9rkVE6tt4KFi5eilq51K491Pj41HbUu7aKq5H7WaAzzOUT3JpxGWc\nHrD4ASdXQC2Szrs4a1CtVK4gVrNZzIOcW8r8Yo0edGIxfnBGu0ov9Oo17D9N55vO4B7EaT8Ly6tR\n+5WLK1HbxnAdn3r2Sl/nnGwhI3/rez4gIiKpJIrk5aW1qG2pEOF5ptHAvY3Tw6j46NOWwUtUaxE7\nlQrGcL1G/VXFPo2hh/A05iYv3P/IMHLV1jq23drEPlJp5CKhH7pq9HItSfVXrUo1L42NgTzuTYou\ntb6NvFgp4bh+HHmP56haGINf/GR/m8NlM0n5mx94UEREGgX0zcEsbs7BEdyzJM3Z11ZQ+44MDUft\nqTjG/NnL16L2AsXZ/fc9ErWf/wLy+voGnluSg3hPcerYPVF7PHw5dP06huzLi5tROzV8IGrHAuSZ\nND3v3HvqwajdrGObo+O41oEkYuiJp5+K2vMbNG/6FE/0wmju+lV8Ts+mdTqHj332S68756hMSaFQ\nKBQKhUKhUCgUCoViD3HHzBgR/FKniwHvIfr8VifiVqYn3Vv0I+P0tjxGTBBifKTTuGCf3vTHUnif\n6NNbzGwKb9Qb/CsNvdFP0K+EAVGFbRznkKZfIz3jztdafnOP46fptXwqjnNhqucm/QpmEngDOzI4\ngOvI4o20l8AvPbaKX4N8H7+OJGO4jkyMfgWjXxs2azjPf/ubsm/QKWV7/czSFv0y9OLpz0TtsSzu\n/7H73x+1ffp1UCxzHHudgxf+/+1Ik0zXZgerxnbfj/WIEkzbePTenamavsWvY5Wt61F7fR2/kAyM\nul8wOlhifYlArHW5xtKvyKUSfoGZmMSv11OT+DV6bQW/ZA/Sr8hDA2hzFPg+7jdTgreI9ZLPgfUw\nPIwxzyyYdkz3kgD0mnNbtvv2t8Mk81nCRSyQFuXIKv1K2SHJol/K+Tr2A5phXzQtSUw85Pk1omY/\n/vjjUXvuAn5RY2lSR5uOY4ldUqzQL9abyPmsFDHEhmEZgrE3yk1EwEDwPDrfz386ag/lMZ+84yH8\n2jh/Fddx5QLc0DfXwUwYKCCmLTF8Uin6NTqB/TeInco5EPKovlULiIiIb4wMJN04mBhGrqjWiblA\nrN9cgeZv0m8bqnOapKDIJXC/43Rf8yQLMyQTsHTcGNVLg6OQjkk4bgt57NvbBKMvQXVLnPKclwQT\nwZCsiuUODcohnsXnmRTuTZKuI0OsC/7puNTCsVZJxbaxhTHS7wiCQMolNz+XiiQLJEZROo0+arUw\nlrI53MN4AvG1sYUxbylXJ5LYPtagvESTGkvoGk3kkXwBbAc/rEWrNWKcMAuV5t2kQfwxY5MZPsyY\nKpVQq8TpxHJZYqd3SIVxDiy/YVYhb9Nms/b7c2xgRWp1NyYWl/G8ce5FMFryNJjumzoSta+towZc\nmKRnlUMYt/e/81TULl+4FLVXS2DpFcaQf5J55LRmHccdTmNOKK25OWRgBAyY8Sb68voy5p4xyqPZ\nAo6TpVosnwZLOW2RK3xihiVzOH6cmH9bG6gHY1mMrwTloloZbJ+R8QnZDSgzRqFQKBQKhUKhUCgU\nCoViD6EvYxQKhUKhUCgUCoVCoVAo9hB3LFMyAopZL3rX7cgH7uS7t4N+p57dgP5m74qxVmIhrTIW\nYLFDPyAqYgwSoaDG9FZQKo1Pi44a0MgaHi3aS9KNZgt0NJ/o3SmiadaJStmogqrnh8uR8+KVTDdu\nEB3YZECfW1sHTe7JZ7HY4Tve9faonanSKuZENY/TgnceyaOCGlHlaSnwIAaKXTLOq9/TYmn7CLuV\nH2Ikj1tbANV57urno3acZHPjb3ln1E5nQK1kdBWE9EpD1M8dLhYUCyxx6nnZvKAfOaGws0AQ4PqW\nLz4ftZ/67J9F7etLC1H7a77lfxWRTppyP8LzjGRSrg9fPP9K9HmRFtUdHAItlSmtA0S1XVqYxz4p\n5xw6DLpvjin+7IhDkrahAWyTStB4JolRewFdQ0Hhc9/3cjVq2e6bCNOy2XEAx2dJCcuaauSiUKVz\nbAY9HNyara6f9yOa4sm65/orSbR8E8cctTh/JWpfXaOFmum+sVNe0MPhI8aLrLJ0h92XWt3bjLbL\nEstkeYHfFi3YvUHShz/+2O9G7fXrkCPlspCnLFxj6RUthE7U8xblrlic5h+6VpYhdN6PLhfUh/CM\nlazv+t8WkXcPDIBGX9xGvbFeQdykcoitSoVzFOj4XkCSRh/3vkpmAsks9lMnOW6tidom2MDC0kEo\nH8pWaMFWkjy3LM6lShKUGOWQsYOYEytlksaUcMzhQdRImQzya5IWja6WUTtdX4EMYrOKMTJ4AHn3\n0iIWlu53BNZKreZip0KLI/OzzBAtsloqI8+ws8w2xd3mJkk2SN6eSGJ7nhfYrSuZQv8mad4TWiB8\nfc3JNxIpWnCe8k8syXGE66hQXPD+KnRNtTrV9CSPY3epFtELOLewVC5O8rw65Wa+1n6GH1jJhPfN\nrGJpgzTJe1IktS7XkWynDpyI2qsVSHGeeRWy9XMV3OTCAZgZbK6jD7lWPTQKiff8VZxPvYLty+LO\n9x1ve3f0WZ5kscNztOwD1VBbdZyjSaIvfTI+ETL7u359k9qIjyY9H42PoC4LyNhjYAjz33oN46jV\nw03wtUKZMQqFQqFQKBQKhUKhUCgUewh9GaNQKBQKhUKhUCgUCoVCsYfYFTelXccuSQ8Udy+sGKk3\nHTWs1SIHhgzoZTWiUabJJahFviVNomgniDqZTJCbEpnAGJKj1Gn1eUsU6VwG8eeT00G17uhoLaaU\nJ7A/Y+GIVLegtD3+PCQRS3VsPzh1T9SON8mJwMd18yrztTrON+3j+thdKvDpfEnC5QX63vVm8D3E\nztgYaM9nn/hU1H76ryDjOUH0yOGD90XtTA4xYGLYZyLpKOTsamQM+o3j2CM3gSa5FpS2IOdj+Vwy\njn2Skk2Y9Z9K4h9zr3wxar/w+Oei9so8VtK37GoWUk77PSvHY3E5OO4cki6eg/yCLSPKRdBY565e\njNp1oqKOjkBicJAouKND6Ps0yTXqNG6HChi34+Q40CIZme3ieMR5wBgey+R8EXToUdAkNyeW9fH2\nhno3TvHHx2Xnmzol1VqTpExEDWdXjH6H9eNSzzvpxfCJt0Wfx4jePDIA962JE6ej9otXlqK2R25+\n3MvcdR0Ocb7tuk3HuXWolOwNn/PfvV46SRrcm+Ra8vwZzF3Hjx2O2hWimPs+8lxAspWA9HSJFGjm\nfELVKmjgzRZP1GHc9bm6PBmPybFJ51RkDY3xbXL92cBccpDkqoZlGVvok02SbgQk19ioYX7YJpnS\n2ATislmCxGiyQNJskok0QjedzWXIgjif+AmabyhWk2nUPAMtuDNVipDYVFmOwp07hFxY3ESgX7sO\nueyzZ+EGU/LIZTJG0rgmu3P1N2xgpVp1fc3OdCxTKwyiLt4kt7WFBeThchmxY4UcbEia6McRa3WS\n3jcpt2dzVIOTomebHEKLRXfcQaq/01nMP9VqjbbFcQKaTxLkRBrY7nMU54rtbdTOAUloGhVct08y\nu14ef/wM0M8IrEg9dFwzpNsayKNPHjh1PGqPBujXBuWcKW8qapdpKl+l9kCaXNvq6OcWuWkND6BG\nOjyO2np9FdInL+3OIUa9k6JnvloJcdMg6VCFHOeSJHUsrSIXlsktc3WDpJktckeisdCq41i5DGIx\nQ89l+anpqM2xdSfQJzSFQqFQKBQKhUKhUCgUij2EvoxRKBQKhUKhUCgUCoVCodhD7CqPuKfBRwfX\n9NZkd8OL6hMNsvd+bk0v63ZUK93p3ju3Uuw+6o2WXF1wNNhjh7Ei9+Ak2jUPXEiP6HZxQ/KiBii+\ntRZoiVkKIkNuD0zZ9v3uq6rXiqCp8Sr/XssNF5aUNGhlbxNHu0ir3794AXKHU+95F64jS9TtDVCC\nk3TdcYNzEQM6prRwvs06qKd+ClIJ32Op1n597/rackvHNykYOM8Mjx+M2oGHe3vp7PmonUjhfq4u\nvBq16yQlGDsImmcy5fqi1SRJmQVNslxBn7fITUCIklktYSV6YxHr6SS2X1sGPdOQPCWXBsXy4tNw\nUArIiSuRAOW0MHo0aueH3HX4fn87cvm+L4MDbny85z3viT5fX8c9e/7Ms1F7cQG0+JEhSJMmJyei\n9tgY6PhpcmQbLEB6WSEphg2wn2Fanb9B9HqWBrXbHNkse6qTw1Wths+T5GaRSrM7UveY7xhGQfd8\nSYxgiZEExadzbxGtPZ+j/NbnCGwgpZobc9sNXGOcaPTxNKR973gnpEyX55D/r82Dml0qEU2ferjG\nTljcMR3pjTqjo0ThjUI3JRJEmR7bsuMJ7+/yIualLXLXyafRt0PkHNYkincqybJhigXSOLBMqTMf\n33CKfYlUOi33PfCgiIi0SqgJikWqW7IkoaCxtFJB/j63hO+WWepGuWKFqPyJAcz9xevIb7Ea8sX9\nUyej9oE8ybdDmco21TAV0shVSa5YJflmhaUEdUjzUkmcSzKOnNeyOJdVysFLS5jnri/gPl1foVih\n+KuVIc8Zpnu5RZKLfoS1kAkdPw5JeyKJuFhYgIyrRvIiseSsVSIHN3bTM+xEym5W+G4sRksCUGyW\nOvqaXUldX8cTJGkKSFZSQ7zU6jiXpN9dPMSS3FiMlw/A9s0GSyO71yiFAupiMovqkOq2nwG6yYT7\nCZlsRh56zDm13kNzzKFDkCuO5TAOayQjZCfFBtUZRXKYnaKu8tlBluRlpTS5Ty5hDI8OkayIHLzK\nq+4cVsn9qUmTUm4QdRPL8aaPQm5V2kY8X3oJrmrDBVzTJuWrJNUnlpajSNMzX0DBsrFMeWYY0qvC\nAGLrTrBfn9AUCoVCoVAoFAqFQqFQKO5K6MsYhUKhUCgUCoVCoVAoFIo9xK7IlNrUV17tmtmlAdFP\nmTLr9di+A5a36bVVx9FuY5v2lj79i+nAu0VTu9HZ4Hbh3Wr7PldP1et1uTLnZABPJrDC/wmScRw5\nATlAYRgSimwKYWsC0M5K26BUb1Nop5Jo+w1Q8qQJmmycJB0NcrnZLCMWXnjJObCsbOOYJx8AfXR0\nlFZyJzpcgzpr6sghHJ4owz7JRWya45JWs6frJlad2IAtdHB9xCyUVqvXGvL9jg59BbX5PXN3OUav\nfFIYBZ0zM4T20sUzUfvi+QtR+2QC93+DKJSmAcplOqRttpo4JrFD5coiqJxLq6AAD2UQC9OToOAa\nov7WE+RWQPThdBr0ydOncb61dRw4lxmO2otbkMEdevho1M4MOCmO5/e3O461QUTlvnr1SvT59euL\n2IhCaPrw0ahdJxeIGrWZur26AglKNgcKbpNc29JZkhT6fte2x/KhsMkfVcpwBFhbWcE5kkRkZHQs\naueJksyOLpvkzlUsIgenU9h+kJwQ2EWOTlfWN3DdF88hzo6fPCX7BUGzKZV1d6/nz8IpKR4jqSvl\nXpaXftljD0Xt51+Ei9ezL6DNeaHVQ1YrHc4iJGXrcGhjWbfp+K9IZ2nDEgA2EmnRcVh21lhH3LHc\nqZBllxVctyXHm0SSZEoNbFOpYZ9Nki/FwsO+1rrpboMVkXooJSoMcg2DXN5qYbxVaZw/+9xc1H5x\nBY4ghhw+YuTkkc9jrApJBpj6b8jt7HNPQ3Z7chrfPXbISQLGxlGr5HKoxZokUSyVycmGZEdLy/NR\nu1zGuLDkDlYnOcjKBvLP1UXkpdUNfLdeJxl4EXkvnUIyiif6W0rLMJ4XOVTVGrhvl+YuRe1iCXXD\nELn5NUmymkrhuyVy4vJjPOeQ7KvZ/fmnWqF5r0PeTDkwdEXiOogURdKk6/B8rtGwUYPkS02ShPJx\nuL5r0LnUBNeXTWCuTZOb29Iy5iv+rt92rOpzN1/jiSST7rrGcxjXwTpi4vw5jP0tGkutAH18/B7M\n39k0crm3ibG6vo3ckslTbUNS54kDkP2nScrLTrW1sPCqGTw3FZsY+zWS1E0eO4r2cciUPvcXcAbd\nuEbOoAa5q+Uh5us+7keNJjSf3DUNTUAJyi3FIvJeLgcZ5p1AmTEKhUKhUCgUCoVCoVAoFHsIfRmj\nUCgUCoVCoVAoFAqFQrGH2B2Z0o7/3nAQpsZ2mJ90d0IJOowCbl929FrhdUgcWPfRXVbVKXfo8R6r\nQxHBlOFbw/Q6n32IeCwmE6OODru+DpnAk0+Ajnv2LOhfE4cOR+0j00fw+eSBqJ3L4XNWoFmi3pkm\nhTxJDOpN0OBa1I4TDXh0wtHtyoLzXV6GNIqdbBI+6Hhvve+tUXswj1XBK8RJNpZp3Gi24kTTJOpf\nPIb9k4lLh8ShSpTxOl3r/kX3nNDTbKSHE1NhEBKPySPHonZxGdTHSpWkSST7YSr65hpiww64fiyX\niaJfRQ7ZWAPdcwvMY8nHIQEoF8l9hVx0hscQU2MH4O5z5oVLOPctkg8EGBzLK3SORJ0/fO+JqO23\nKe99Tt9tNpuytuYouaeffSr6fHkJ4/YD739/1F5aAtX+7FWszm9pgmIXtu0t0HenyCGOqfwDtPI+\nSwya5ErQ6pC3urgxPA9R2K6vgQ7OcoAYuUpYyhuNBmLoU5/6RNReXkFOO/UW5KsPvO9DUTsg57hS\nGfH6+Oc/E7UvXcEYSafhstPvsNZKM5R42GW4I1VIr1Wl37aqdZYsdXdHYicPSxNW0NH/3WsCQ33B\n2jqf64/2eCU5EsuffTpfMiuUJjlIWMvyKZKYEL2fr4MleZb0CUly12jViH5ew5hptJBTveb+0CnV\nGg25MO/yyBQ5gkwPorbxKZ+sVnG9qxug7HvkQpTJ4rubG5gsWoL7mqe4PDCOGml5ARKNc+SUtVjE\neF7cdtLV97/9y6LPJvKQszYF/ZQmx6ytInJRKoHPS0XKkSSx5PbKJtolktjUKLZSadyn8YO4lzEK\n6tI2OU72OVqtQDbDOWVzG3VxQPrzdAZ1YC6PGDE5bJPwkfNb5MLpUx9t030zVE+yC5pnsH2a3BnZ\n/a9SdfHokwRpoACpDB+nXEJ8s0yyUefcQp83EHcsk+KcF6Mv5EhWsrxEUmRCh6yzv02UIgStlhRL\nLm4Cn2rTGGrTVA6SosVN5JBMDvdju4bxvL6NPM31zOgY8kKKYjGfoKUhSMpbbaDPTRwxMjLlzq1I\nS0csb8ORLTmA+SNRQP47/fyTdO5RU9JHUAdXWoh/n+YhQ9I4SxJZdnGy5NR18CDkVjWSe1YquKY7\ngTJjFAqFQqFQKBQKhUKhUCj2EPoyRqFQKBQKhUKhUCgUCoViD7En9hgdsiOmo5EcxOtY2ZtptSTl\n6CEx6KTy3j6VvkMWZLtrqXyP94fzYvpuLzCt13TauNB+butU9x2SyZgcnx4P26ATrm0ThZlorHMv\nvoDP1yEraFXfgja5IB2+B5Kl/AAoeWwDYtL0MZ2bR7QzwzS1Q46mNjgKqUGxiG2vXgYVcp5WGb/v\nXY9hfz6t6k6uTIMkJUh7GBd1ipushxiN+eSsQdedZGo4bU8Mz/0FHofmtckCO6xzaD8xolgenICb\n0lVakb9FEpMtotumaUX5VAp0yq2wr+eXQPFsVEleQLKDDLkP2Bb2PTeH8eALjhNLIkYDYXcSUD5T\n5OJT3sTnHlNFJ0BnnzwMWeB+Qb1ekytXnNtPnK77/gfujdos17l2DW4mU4cgO0qncS831kHlXSGX\nhloVtN4EhWiK5jlD9HqPXEZYbjQfShyYGvzc889FbUv87lNvgftBuUrONzT/VkkisrIGGnCdZG+D\nJLULLGKLz/fKFUh1vvilL+B8LIL32rWrsl9gxUojlGcEJPNrkFy5RuWUlwB9e2AM88XACO5/I4D0\nLSDphzXdpUFccXDbdtQxXZq0D9+y8xLtr0fuZCdMVpWzTInlA3Vqe5QjUyR3aFToHtA4MZSvpC2n\n6/MCyYpIMxyjX3oObnxy71TUPHWEHE+2cQ8qVYy9rSJJp9O4l3xfS3RfA5o36kTNHxiAK0oshbFa\nq4HKf/a665N06mVsS/WG10RuYeligySbQQXbZMi1pGVwnJJFu0H5qkn7SWdRG6YoAI9Ns0wpasrS\nIu7TmeX+lmZba6UR1p8sL4rFKT+0cE+Wl1Fz5khGxI5vhQFeDgL3qlhFX2TIHa1J45mHYjKJOTAe\nJ7lHWEfFyMmI3d5S9Hmzhtgpb+P4LEHqAOWoBkkp+dkxS1oVdiis1nEdsQRLeHFRrXCf/Z1xRBKp\nhNxzalpERIobiIlGE/c4NoI+PnQY9U8mh5wd0DIKrW3cy4KHfJXMkNSV3BwTHn+OsT2/CBlzi2qw\nchjfceqzVZKWxWKYQ7c3kdu2m6i/AlqKwZDUrUFus8MpPPR1uOx65H5JjmPsLBZkyMWX5biV3ckz\nyoxRKBQKhUKhUCgUCoVCodhD6MsYhUKhUCgUCoVCoVAoFIo9xJ7IlJq03PVWEbTU008/HbULBdAn\nH3jLfVE7TZSyBklG/BhOPeajzbQ9RgcNt823I2kSr/5NDCspEz28TRkXEdki54wEnePwMOiTo6NY\n0bnzrRfOhVciZ+lTcAu5lelzZxPPiLQXcx8dAnUxm6XV21uQedSqoI5Zorc1a1hlfmEV8qVMGtTJ\nlA/JRaIAGmPALhTUQfE8KGs+UWODhqPh1YiaW6U4OHw/6H7vPQ7JQGHyUNTeINrn8pVrUfu5F09H\n7UMH4OYzNAhHksQQrqmZoBXsmyTlI1ldkihKIhjPAAAgAElEQVR/KaIk7yfYHv/oOTp6OLgxhbNS\nAz3ywARicGiUdG005hMZtKt1UCgTlPdW11ycLq/i70mSl42OoZ+bdeScGO2jSv28WQQlNJXDaviJ\nNOL7wYfvj9rXLq9E7astyGmKG6CQDo4id+UH0N4v2NzakI//94+JiMj6Buit73oUriEjQ8jZS8sL\nUXtsHNTciQmsqs/OFlevXqT25agdMzzN0jxE9GqWgxRpjlxccVKitQ04nzz7wotRm+eeGrnRVMm1\n69AUJFa1OuJ8cxtxk06BtryygvioNxAfNYrtZ07Djery5fNRO0auLyyJ6ndYsdI0Lu+32Ekxhrnr\nwMHjUXvoIGQoLF1sGtznzz2Be7hBbhWWclQvdSnXEz5nu26Jz3ZPjJ1OIt3rpmCHIKqNOtG3a+QE\n1qA2yxPiNAbqJMMzFI+5OMmpjLtyz/S3aMD3fBkouFxaGkSueOECasmDw5hjUkncs8Ig5ptBuvcN\nkg4ODWC81UgmUK8gcipF1EVDw9j/0Aio/xsoo6RaduP8mbMY15wHHjqK+iQTY10czisWI3c4qrNj\nVLux7ISNbGIkHyg2aCyQ40mNZDXJDMu29uSRZk9gPCPxsEj26bnGj3UXLLIjX0dtQ5INdoEZOYD+\nT2TpnldRf1RZKreF/L+xTg485KLjR89i2F9pG7HD8xVLlrYayAn8DMePOXU69wbltAQ5ixqWx7S6\n34+APmaJZTV08eqVC/sFVgKptFz/pHIYGzWSus1vo8b16ZmoTnk6Q88MWVpegRTV4uUxcuvF7tJV\nlhtVqIbwfeS9wbyruwokS8xnEB+f/vSzUbswjFr53oewHEWFnhFZspQaxfYpcn+zWyTbCnDcwgHU\nS4sk/dv0EH++R9IkqzIlhUKhUCgUCoVCoVAoFIq+g76MUSgUCoVCoVAoFAqFQqHYQ7xhnD6mwMaJ\nOpYmtxevBFrRxsKVqL1EtLPcOJwdnnv++ajNFLSHH34kao+NgkLeVZpE8Ij6WdwElfOFF+FWMTd3\nKWovLoJamiZq3hjJkQ4chCOJtKajZsLHdfMq30z9TWdBp/JSkG31uaFADxhpvwts0crUTaZUlkCX\n9EmuERB1uVoBv/YAuVZcvvhq1F5ahiThgYcQK+Nj6Lc6uToERM9r0LESId18OI/j5A6C0sayg+Qw\nqH+VAPS2GK08PzyKPn55HVS+YBOSkiVyS6hN4Xzvux9SPiGXn1Kdl7xH8zWYjPUZmOBMkjKKKeal\nNsg1hqVvV6+Bkp3Og1Y7gPQjqQKtvk5yoOl7jkbtONGzX3oW1EobUrUtUbbzJM0cHsLY39xE3OeI\nqjk4CKnMxUuQkjQoFyZT2P7wUcTmkWnkoutXMR6efQouZVNHQflMkgPHfkk/5XJZTj/npCElyi0L\nC5AjjY9h/thYhzTo2jXMT4kkuzGgP1tEzf3C449H7UIekq/D06BjZ0l65JFOMqB9mnD8N+l3k21a\n7X9lDu4Ez79E7jzkVJhNk4MAuWxkiN4/Norc9cwzz0Tt4RHE+ZU5yLA+/T8+GbXZ/SmXxz7XN+DW\ntB/QtOE9JTnxKDlPHaYxFqf8UCOJxyb1ebPJLmjStd2ivM3s+RjVNobtsjoUSbbjvzds0IHun7N0\nml2bmkH3NsuUfA9zXZyclVrk+uMHiOVsjOI+/Nzr9+xjRWzDXdfUMcjYzr9yIWp//ksYV29/8J6o\nzRLlIbpPG1uoeSzJJAdp+1KRYqtjisQ/1lcxDxQKqGmS4RIAS0uYY770CvLM2hqOf2IKue3AEHKL\nISfHKi0vUKzhOoqVHq4l9LzQlumIiAxQHiuXsc96BXID2+rhxNOPsFaaYR6Px0nmR1IPIeehBLks\neQO4b9uUn1epz8cOop7gscrSJGFJJrW5jlpdRU5LJcM+suzshb5lpyZeXoLlSy3avknzGLd5LQnf\nw9xVq9ZoG5I70TYNumcsiSqH0t6gY8D0HwJrpRo6CBl63mg2cM8mcniW8MlLduUa1Z7DqB8TtOzD\neg15obWFOBgdhYNgjOakeAA50kCexzPq32rJ3XufZEQHxrG8Q/7gJeybHJxSlB8OjePZe6WC56ki\nDi+JNElCheRt5OyWTCBGh6j+r3kYdzXKabE4YvdOoMwYhUKhUCgUCoVCoVAoFIo9hL6MUSgUCoVC\noVAoFAqFQqHYQ+yKTMlE/+VVu0Hp2ZoHDXzhCiiZ1dVLUTsogyZ05WXQIKd9OIKkyEHp6TPnovby\nOqhV73zkrVH75IkTUTtG322GdPJ1kiYt04rP6xtYQXlgCPTN/CBoVXx9uTSo2XVauf6VZ0HnqhBV\nsFgBlS5JdOZ3v/cDUXskjeO2iAYcERH7n70rQUiPqzdACyyRC0ijQpRnojHGiFIpASh2xW3c47US\n2tUi+ip1YDxqHzwKl6XxQfRDjrhpc6vow8V1184mIQXJkQtJitwgSkXEcKMFCZTxiNJGDj5Hj4Bi\nt0XSg415xOKZJcjkSrQS+L1vRcwPjYE2XCGpjm328uXob1jBNdbquM/NMqRe25vow6tzcLBamAe9\ntlZFvHzZBx+g/SM2t0geMjIIuuPkEUhbbBP7Gaa+8EO66FYJuTBJzhmxGLuqkdyKxv7gMNEni6BY\nZtJE96XY3KYYPH7iZNQen0Cs1eu4f/lB5ByWPvQ3aRcwxooX0udpOpD1DcRHqYi5ZGoSjjjVGmLr\n0mXMFZkk+iGbgkxggxwk3vHlXxm1x6ZAvQ1IguIRjdojR7S2HPfPP/mZ6DOWI7EUN5tFTMYN5qTt\nbeSKNXLBSKZwE8bHcK3zi5Bk/ftf/5WoXa7gu2WSGPs+Yo7dOk4/90XZP7CRxMMzGBHWsoMD5pn1\nJeTtpflLUfvSK5Ba16kO4Om8ya6KLFNiGSbpTlvS3ZWmLfFhSRO7drHLDbvwdbjc0LkYPibtp0FU\nf3ZZisURg3FyjquVWWaBexC35FZh/fCY/Z19arWqnD/rxuvgEUiQJIN64/IVci97CfPTdoNcSLcw\n9oby5DJJDkqDI6htcuRysrmB76aoVt0uoR+uL6C2GBt3+xkjV8cNsls6v4wcuUlS30OjmJ8ODCEv\neh451tRJdkJykBRJP9NZfDeZw5zEzqOb65DbFEvs1rN/XCNtYKURzs/1GkmHDNXFMc695KBFz1Ps\nsmQM7s/VOchIvSRiLZ3GPFanfbJDVpLmPc757fNtUlwkk/R8xNI0QZtNcGt1ck6lPBNnKRPnPJKh\nN8lRsGNJDOkuA2a5lR8tJdHnmn5jxIT3yqSRd0uriInhLDlnkpSpFkdOqNRRH89tYvznCuTwammJ\nBKoz6oK2oX5LUvyNUL7ajrkxnCwM0fdoqZM4OS+Ry1w6D7lViWIrwct/VBETnk/PQTmqmz1cR5lk\ngGlyOa2Rg2nhIPJS3NsdaaQyYxQKhUKhUCgUCoVCoVAo9hD6MkahUCgUCoVCoVAoFAqFYg+xKzKl\nNu2rQbKLJ5/8fNR++gufjtrNIqhP7HjiE/U3dhXUqovXXona2cGjUXuAqIzNGmiKVy6cidpJD7Ql\npt4Wtx3NcnMDkqIyrfDfJOpaqcirc9OK5kTN21oiCdIG6JPVEqjtPq24PDmNVfXf8tDbo3ZhFPKB\noNVFmrTP0O7xIsk/1onqZqkfGrR6/sAoqGPDJMvIkpNW6wSkRqXaHD4/hO03h3Bn334QcrgaOQE0\nSdIRD920ah0UWVCA2Z0nnQRlN0N0SSE5QquFeJo6juOnaZXxxDwkS+VVSG/OnX0xaq/P4/re+nbE\n0/RD2Gcrxg5e+wfsgnXtCu7J1jqkFucvQhp56RJkQo0q6IXHjmDl+IE8UX9JSnDyrbi3B6YQa76P\n/VwliRlTZr24u/+FAvadJzcbMdg2RZ+XK0xPRnv6KJwQtjZBqyzXcC5r5AY0vAZKcjwBivwmSZkG\nJ/h89l+8WGul2XJjtMESPtKCGA/9E0tgfK6TFNaywxrR6/0Y2sfvxdgbGEMO2SB5T4vo1UGru4zw\n8qVLIiLyxSdPR595hmi/RAG3Af22Qu5M2SzySSaL60umsB928FpcQAxvFTFe/BhRxkmaxMetkOxt\neRGSi76HtWJCyRg7X22vY1ydOwsXxgbVJOWNeWpD4sbzuu2QHdEcQXRrSzJwFu8Y271WaFP8MyTd\nSJHUo17j+gjHvJ16g11ISkXUP3lyIkxQzRMn2eMW1VpBg6VJuL72yOv32iefzcj73+McHJ94GePh\nwGHUgEenQNf//GeeiNrLVAsZdnCjvipXkDfqJI0rDIDW79H8xK6UMYqLGo3/a9fd+M9mMU+MT2C+\nq1Cds7qOmmRrDvPN8gb2Nz2BWiwgFxKO+YcffjBqT0zC1W9pHfPT9XmSaW8jnpLkOGj20bxlBUsU\nNGmuYJcgn+TnPuWKDZKmDRfgcrO5gby0eJ1ckHKIhcFxkmaQDK49d4qIxKimzdA8st52xaE616fn\npi2Kszg5hVYbqGH4OdL3UEd7JEk3pDNuNUkmybJ1eubjbchMqUPulAxdSVkO15fwPDGhq2aTJIIJ\ncl29toxx26gjHxcoDjIIA0lRLbS1iDF5cvLeqM21eJnG+WAWterKNuJybhnP360wzCZzeK63VZID\n1xBPY3lIqk0csb1VRv6bHIR8KbGG47ALcj2LQODYyg4gnpsUl5kmPh+kmqpaxf24E/R51CkUCoVC\noVAoFAqFQqFQ9Bf0ZYxCoVAoFAqFQqFQKBQKxR5iV2RKbTKpTy439977lqi9vgBq7pnnvhS1601Q\ng2I+KEnVKj7funoVR7kOapXn41jxJNrlZdCQzp/BsSq0gn+16mhwQYOo4bSadyyO25JOYX8+UfOa\nRNNtEAVuYAC0qQfeDurliVO4H1OHj+JY5KbEzgUS9Lld0i1gLVZB3yIpyNIaKHMtWtWaXYgyBbxD\nNNT393/oPVF7jt0ewFKTBtFY50sXonYyex/OrYzvZqj/p6ePioiIR5TdVXLqWb56OWpvLIO61iSH\nqDzR24aGQKUzI6DepUfw+fg9x6J2ZQ3yqK0FyAdKKxhfz70Et47rtAL60ROIv/2E1WXIBE4/8dmo\nfX0eMqWXL2KbVgtxVCB684MPoJ1OIb58H6umv/sDH4zaATlkLV15KWo3SFZUJWmdhPnKkMTk3nvh\n9lYso2/nl0AlXqPxUKH9nTp1NGq/sI1rZXcFdn0pk7tPixxgzl24FLUHxyGtYR2E5+2PXBQEVqoh\nxb5cIgkA0Zl9yjNtur6ISJ0cHtiNISBpRY2cZJ59AY5HL15E/9SriK0mudkEHc5nJANYcXNecQvx\nZmluaNH3BgfgRHDsCDnFjcEVhZ0n1teRGLc2MLemSWrSIGpunSi7TN/12NmC5FalbXLN6XNYsdKy\n7l5b1giRg1t1ie4JSV2t4J4Ykon08rczXIzYXm5CtmuT0Z7p0gnMeQWSFGxQnNU65A44R4/kRZwG\n8uTSkSVXrqBFTpEJ5CKfpH2tGualOM3THskZ9kv9E4/HZOKAo+mPXAWNvlnBPZg6CZeltz4MZ8RP\nfPapqJ1NQXZUZPfJGjliVRF/rQD9GSeJcqWCvFerIxcwfT8I5XiVGrZdILelgwchu4yNQ2K1toIc\nslZCXsqR82Muhdg6eHAiao8MQ8pw7Og02scREy+fRU5dWkT9w1ItdiXsdwRBIKXQhdVPkoyQ3c5o\n3LJr0lAezyEnTqKGnJ9Dvbq+AslIlvL89D2oRQOqIeZbqDNTaXoWqrBk0cVgjpz96uSgVaN4TZDL\nTiLO2RB5KZ9BXOQHEKPbNcidfJ9kJSSlKrFTEsmmOKOms5DuNNtzvOnv3NNstWR5K8wvNN5H6dnj\n8DSeMc6ehTPxBo3bTAHb58i1ttLAvZ+bOx+1pycxnpdXsc0lksMakuBvrCGeti86yVytiG2LdXZB\nwvdGRiDxvHYN+0gWIIesZMj5iJzdtpfweZ1cdg+MQJPVaHKtRUtWWOxnnVxut8hp806wfzKXQqFQ\nKBQKhUKhUCgUCkUfQF/GKBQKhUKhUCgUCoVCoVDsIXZFpoTVp0Fdm5o8GrW/4ZvgVHLwIOjTf/WF\nT0btrU3QII3BafnkLGADctohmlqVaXJYIFwCoroSs0+8kLKWjINGGycJUozcEoIGjlkpgtZ3YOJQ\n1H7bO98btY/dC5rp8BjkLJZocnVazrvZIsmNx94BtOT3fkXoYrK2DinG1hZRC2nTVBoxwSuprzYg\nv1gtQw4wNgz6bGsbNMYK0b63q3DZeXUVLgZjFvIRiUFGZjOOehnQ8bPDoLfFU4iJNWI6nv70F6L2\nMDklLccha7Jp0PAO3QOabpZWBc8O4pqGJkA9LRdBmautg4a6dRkuS09/9nOyH7EwD7ryy2chO7s+\nD2nS8iqoiePjWJ2/UUPcDQ+DVmtJynH5AqQqyTRkHTEfcWeINp7LZKkNWuPYhHOIePlFnG+M3EZG\nhkErblRxzO0tUDVbDYyIeAzXESPJ5rHDiMFKkWjFtJJ+PImYPkaxVq7imppN3LMYyQ36GUGrJdsb\njr5bJ9cfpksHJJ0tbtFkQnIKJjEvL5MbTJwo3Vtw9mqyCwRRXS25NnhEjTYBtl9fdWOb56c4yWjX\nVtmdELlzeAh5KZ3u3n81onGzK9ToKGKxWod8LrAku6ObEKf4a5HUthn0EuL0J2w4d1i6eI9I7z5P\n30RvjlE/jwyBSp2O4/Nag2VNTKTv7pTU6TLE25gbtmmQfKFBMjJWRTdZLuQjz8RoFub5eJiuY2gQ\nuaVSRo2UplzI94nzLu+zU0rQ6riGfkXLimyHdejAIMb+4hrGbYPy7qkTkIhcvoa54tIC6t1kAWPV\nS1IOCTAOA/qdNUVS+LaTqEjnPJemHBhPhHUOBUiFJFBLS6gxJiZxvsdPwlnlPEmKrq4hz0yN41yO\nDEI+yXljYwv3Y2gENfTkJJ4dpiZQC736KublbBL3uN9hrZVWOy/Qz+bJODno9RA7cn+98vLLUbtc\ngaQiR841hUF23+oupZ2axv2XAH16/QpqrUKYF4xlqSPmq6FhnHuC6oo8SUxYSvvQfR+M2o0A5/6l\nM6ipW5YklpRQWKadoeScTOJ8EiT/8mNuzrzQ586jvieSD+WANVpyobqO3FxsoDYcG8TYz+VQN7TI\njThZQL05EoNMsVJETdDMUn06huecwYOoJ/wUORjl0Q+50IXr3Hm4IV9bQ6567N3vj9r5Qew7tYVr\nkgD7K9KLgISHuEmT1K1VwXWvbGKbWJNk64J4LZYwphIF5LFka3dkbcqMUSgUCoVCoVAoFAqFQqHY\nQ+jLGIVCoVAoFAqFQqFQKBSKPcSuyJRsm+JK1LRGHRQxj1yWHvty0I1GDkCC8alP/knUXiYXiyat\n6G7ZfYJotcyG9uj9ktdBA7+R5Fu3+HujRbQ6233F79FJyK3e9d4PRO2H3/YunKMH6l2D6EtBi1a9\nZ/cOOqvezgn7D9ZaaYRyrSK5xNDi8JJhujRR92s5bJSZAtU1u3Etah9Pg2J3/H7QZ88tgAL7zBpo\nZ5eL6LcksforJVByg7jrT5+GTVAFTa65Bbrs2lVIhHItUPM2L0OaNHcNcV4lWvulQ4izQychmTp8\nAquIT5JbSmaAJDY50AmHqpBQPHHhGdk3sFZaoYzmyhW4rc1dg5vD0jKo8MaAaihE0x8hadLUFFbt\n394ExfGVM69EbT+GcTt9GDTFsQFQOzMZkrBlkfeGBt32mSz6RwziIhGn/ER5oN5A3DfIradep9Xi\n89jn4CDazRr2mR/A58k02vfdj5i6ch37rBDNM58ALbSfYa2IDZ3v0j0kqrbZ3YVESELKU0mTpLCk\nNBHPZ6ktSUBozrGU31ihyi5/Gxsup/g8l9FPKKtryE+Xr+B7L74IVzVDX8hm0Pf33AMXl0ff/kjU\nvnIZFGaWuLDBjSGXHWtxrR5dSCK5P+RtN4Pt4WrEzkPElpdpklecnIb7xNMkh+TaxvJ+XuO5tcJv\nlMiVokVzEcu4W9SfzLoODEnsKO6adIFlitcaqavTWeRIj25OnSQUxrLEqnu7n1FrtuTCoqPAZ8k9\nMUmOoWvkdJdM0fxAY+naHCRLY5OoeYaHIAGolNk9huSCNIZzOfQJS9YSKYzVWs2dG9fPI+TwuEau\njpcvQxp+hGqSHDmxLC1CxhKQ1CSbwXzN133mVUicEpdR0x07BkntyCjuwdwVbJOI0Vzf76D5ylDt\nYakOaNFzRZz6q0V9zjVElqRJOZK7TR1BLmrS9jRdSbxDzovjFgbQ19mEmwsCck2q18hNjpegoOfC\nJF1fjBwNPYt2kdxBRzOYOzMUu4UsuWLS+RbSaKe4TfNhLJTqPv0ZxF8/wvO9qN4bI1erxhZkP6UK\n+qdGrodNkv2kqK71Kd+ncxhjJoZ7uWWxn8IoXEgHaGwvWdQW5Rz2Ofg25+R5cpTcsJ6BS2luAOOd\nn7FHR/D5U0+fjtoPvA31/HCOHCFJnt6gQi5J+apWJkktOc7FMth+aAjbJyq7Y0qtzBiFQqFQKBQK\nhUKhUCgUij2EvoxRKBQKhUKhUCgUCoVCodhD7Aq/pk3esbySvwGNrEXOQOwYdOQoKPLv+8DXRO2t\nFbjDnH7iL6P29UW43xgf1CNr6VhEz2MngPwAVuueCOVGWaJeJkk+kIjz6tKgdR4+DAeb4RGsKN0g\nmrbtWFmZ5EiG6cxMx+0uTQr63kfg5rAiUm/fBnJRMC3I0phqK0SvZvqsSYIutjoPyv5ggH0WUtjn\ngQJovQNV9PnVbfTDAK0UHw9A22uvvp0SouadxUr1FXI/2DoH+cwaUXmL66AKpomKPUKOJ40VXMcl\nkiHMvwzpwYkHIL2aOACK6do1HHfj4rmobVr7RwIX2EDqoXzx/Dk4KC0uo6+2iWqYz4BW6Qv69u0P\nPxS1D4wNRe3N7VX6HHmjRvT6JMmKCiQNalnQQit1xF17nB8laUKNZGQNpgaTOiZGbhlb5IRx8QLk\nbkzxLhZxzCxROwfHcNzyFui+42Ogk9YbkHbVSqCi54fasrn+lg4kk0k5Fs45TN1naU2DXKR8cmDw\nSVJkKX83KfeXmuj7Ks8D5PZgApojiYLNVjwcC+3jNpuI22oRsgaWUmVprkqSRIjlKNUq4qNaw7Vm\n88ijmRxi/vAo3FIaDcQ/GV6IRwHr0bw8SPPrZz4Jt7q+hEW/s1ya5VoM/pxlz4MZ9Mv9x3Fvzy1A\nslEsol96Oyjduj5o9zqHYp3i3u+Q3pGsheI77pEkguJouwi5yVaRtqd4TKUgiQho/m42aIxRXdTh\nRtW+fX1eBlWqDTn9ipPRFNK4lyW6f43rkDdXiBZfJFlBOoE8s3wduVkM5q3CIGQFCeqHJs1DHs8t\nJBnh/k+HLoAeyTd5juH812hAgnTp0qWofeTIkag9OgZp3toiySrn0B4mN0EvRhKbdchl6ZFC5q7i\nuEtLuE/ZzP5ycJNw+YQ4SXrSCYyrShVxxM9WfozlQLhxBw+iJjgwATl8hVxj55cQjz657K2RixbL\nqjNxloa5/BZP4nyLJIPxSYLEObJRx5wmcZxvg5apOHIYsf6OB1G75cgdicdJls7dT5Csll3saCIL\nwgSUSPS3m1IQBLJVcfetRs9T+RzLUql+TWF8praRm0vkZjRMtYVHc1g+i75f28ZYrVB/1mgZim0f\nNWYmjuMOJ5xk2h/C8U+9BXGeSCA/ZLP4Hkte2VjsynnkyFgT/TkyhBotn0aMCsXzNrk2V2I8F6MG\n26D7lGntjhxbmTEKhUKhUCgUCoVCoVAoFHuI3Vl5Jvx1gxc2NPSLB791Z8ZMk5grE5N4k/7W+94a\ntW0Tb9Lm/xQMg7jBW8+BAi3WcwBve48exwKF99x7MmqPHXCslmSSFiKit7R8vh0sDNqmSUwD2/GD\nMbNeANPzH/QxtT36F+8++lXO9Pev1K1WIFsl9/a0XscbxwF6W1mgxVCXtxEHdhGvQNOCt6SrWfRJ\nuYX9nCeWyle/G78eTU7izevlC3irW4vRosBx7LNZdm9Da8RWWXn6WZzjWbAVNhbBrmhWcb78C7uX\nQB/Hfbyhz/iIs4B+LmzV8YvFwnOP41g+LeDbwPZBC29vA2Lz9DuazaasrrhfkudoAd9yFfewRr/E\nZgVvukeG8av/yRPIFUzCitOvSocO4Y381jp+hUrRLy3Gx5vxVArxFYvjuBfOuQU6K5tg7zxzEYs8\nxynWa/QmP55A3xaLuKYzLyDWEgn8ajk3h18kxg9hbLQ8/KqUpx8EhO7N5AGwI2IWn0sUR/2dcwJr\npRIu4MYLr/Ki75ZyPDNKAto+4IXkeWFdWhTY0Dhs0cq+Pk0WLaaX0JzQoEXm2gv3Jog5F7SQLw0t\nrJfNIVZ8WkCYfw63PBfTr+fJFL47Poa5+IEHwV4dGkZ8VEqIj1oZbebf5QpDsl9gBdHfuagu3U9K\nIrQeu7ToH0GAnHyIWGknaCH6lVeQ09DT0hEjt0MY8aL/4oQHcswARoysbiJv8NhI0lxkaDxw/5Nv\ng3gZxFGCfjEPiNnFv3Z3mBbQeGgzCft+IV9jRML7UGti/lhYRL2xsora5iixpU4cAbPMQ9jI82fB\nwG3RIrxpWpg0mUCSXy1t0udUK1ANuUULdxZCFjkv9syMugItdsnbzM/PR21etHfqMBb23d6ie0BM\n1sefAOs3necFx1GjXbmCuqtI8ZpM45ruewB1/hfO9TcbzwZWmuHi29UKxk+M+pbnKB7nMaozuY9a\nHvbjefi8XAYLolwB26C6jpozTQyUBs07CYO5qW1m4DVw/ESKF4LFuTeJsrfRwHmtrfAxkQsffpQM\nLA6hzwNi2iWoXiYCjARNnmvpc3J/aYVfMP1NjBEJrJhwTg4CnpOQ+zNkHpEuUJ6m9cNjxNKLjyG3\nVLg+oRk/naJF2mu04G8SfZVukgJgDe1WLDRH8TDeD5ESpVhEjnzlDHJFLovOqtF5Bav4fDmLe5Aq\nUL1GuTNDi/PmMthm8ypyZ6xJNV0Lx6VnA+0AACAASURBVIpTfN8JlBmjUCgUCoVCoVAoFAqFQrGH\n0JcxCoVCoVAoFAqFQqFQKBR7iN2RKbVhOvi73ZodnNYYLRCWIXqrEMXu8HHQDu9/6O1R+wAtoHv8\n2H1Re2QClMh0AYsOMSW7Taxi2m0v2i8x/ESk1WOrHrgNaZL0kCP12o3tc9ZuG61GQzavOc/5iRze\nCY6MQkaSTNJCcURnXqCF375uGBSx1FvQx6+sgTJ7bQG03qdeAd32xMm3RO0jA6CsxX0cN5+EBG79\nqqNMnv/c56PP1mgB3/ImLSZFseV7LIPAJjHmQ/JaxZYWFyUWdycFkxdoI6olnTsvNGnt7g71NxP1\nWl0uXXIyncVlyMHqDZaA8EDB/Rks0EKEtFBzuQQaJFPnc2lanLsBqmaTaLVnz1yK2q9eXIzaZ16+\nHrWvXHIxGKd9x2gxu2oTsTMwAnlRJgNK+OIC9s2LYK7QIocbVUg5BwZBA33u9EtR+92PnIrak1MY\nP0PDiLtkArTloBlSwu1rzH93GVqtQDbDfmYpGi/SnqcFvvnzgGSpHi88SIvXrmySjJXoux5JBGMB\n5rwWzXO88Ol6GbHYDKm0LA2o1fF3lgOz7ITlVj7NswMDkMZk0qAEt4gyHrTw3SItVDc1hdwsAeI1\nEaP9YAvxYvtHGtmBDjk2S4eIxswU+RgtrEk3qEBGAfcdhTzl1atYzHee5EAM26taoPNpR1SSYmRk\nAHVWhqRvRVoU2muRycJBSGUaJFVZWqWF7bmmo0VhUwnQ31sNlimR5oZlSrwwcvv6+r7esWLCvMlr\nPaeo7zMxzE+njhyM2ukY7plfx9hb20Ru9mmhVC4xE7x4KeWFVhPH8nx8l6Xi7XmGDTl4Md+hIcgP\nMyQj4hy1SXLcxWVIlgpDZLhA0htScovfxPluLUCyQuugiyXp38RB3JvA9PccxbAiUg+le5bGT7yB\nvmjQ534qTt+lPrcUeB7G/CrJrlmbMzqK/mVJ7sAAxvPQAPo9RkYYjdVwe6pPGxRzlQpJWmlObdaR\nEzZJGtVsII7Ew3xs0zhmM0HyLJJwVfnhjSU3dDuSVAc02tLIPqcoxPyYjAw62Wuzins8PAgp7FoR\n9zieR1/WSQKdiKEW2rCQ5VRoIf9BWvg/Swv/1xYxh6XouaWyjlj4849/FtvEz4uIyJF78Lzf2Q/0\nnGxZXkmGFVmSrrUQz2urOGYQI/OKacRzsYaxwM/YEwcglRIy3NjYQi1uMruja+vzsFMoFAqFQqFQ\nKBQKhUKh6C/oyxiFQqFQKBQKhUKhUCgUij3Em6BdoNW/Sb7BzkbsyDA5jRW0v3ESEqRUEnS7eAzf\nbTRAR2vSasnCNPPQ9aCTAcv/MjdsK9JJX7L7RS/0JiERi8mh0NlmDCy5DlebFNGrJwro700DOtra\n5dNR+9FTR6P2CqneSgXEQYnkK4eGHoraBQEdsrgOynaDpEcLLzpJ0tVnn8P5UryxU5hHXEhezZ4l\nZz47cdCq58Y3Xbc3RAdvNkmSY4mqSmMqFuNzuB3/jf6A5/uSG3AUyiw5ttSuQY5mPabro1/yJIcs\nkTSpVCKaIkmADLmfLCyBbs1OAM0q2s99CXKgJ1/A+ZQajlbrk6vIoQkEfrOOfaRyiJeRIZz7PLlF\nVchxabFE50LOBq0NxLFvkP8KtHr++gbivkLymJgPmnt6xLnSseytH5EvDMhXfNXXi4jI2hpotJks\n7tnwGGQZLJ1lhwdLY2lri2KoCrmYpbhpeaBU+/T7B0tckglyKyC67XA+H54j+ixPrkkd+TKF68iQ\nTIElIqxl8Ki9dPnVqF0tQQaxMIfv3jN9KGqzzMujdoxdp4L9M0caETHtvrPdawJ2tuI/sGsN5yWW\n5RwaA8X7gSOgk2+dJbc42j2PxA4XFdp9O0OwfGVjG+O9XMXc1qD6yGeJATlUVIim3VEX0Szld7i4\nYN6t1mhObfZwU9rhJ3njZ/0H3xgphLXANnXg+AHI7G3jGtpEl4+R88xwAX3yvndiHL48x5IOjNW6\nRb7w4iRHKmKbGkljeTwHTdfnjTr6L0F5q7QNqn+5jPP1yXkrQzlscxPbj4xC9l0gifn2Bskm6shd\nDZrnPJJgD43iu0lyIrx2FQ6F/Q7jGYll3L1gRTvL2NnBLU2OeB7N34b6Np4mx0SSuJEhleQHSdY6\nBGnQ6BTmsZFB1C4rz2E8X1t10uxWHH21XVyL2qUqSWzpua1SwTZbm6ibHn77/VH7yFGSKcWRlwy5\ntjG/ICB5lmUHSaqvg4Cl/JFfnvQzuD5eqOFeXtum+jiBGOJaJUb3r0rzN4v/eDmATXJSjCfoXpIE\nem4effv0k+ej9sIS8k8u4/JI48KF6LMDBzAPDg8jb7Cz2xZJNmMU50Lx7xucy+I11PBxkhdNTONY\niSyCJZHEd6uU9wo5LCXA7zHuBMqMUSgUCoVCoVAoFAqFQqHYQ+jLGIVCoVAoFAqFQqFQKBSKPcSb\narFiejgMsVOAz3Qjcm1oElWPV+tm6rUf6355bdaw7Tj8remwHc4JPd2RAJYyMR3udvbD2+9HGCOS\niDuaWMxn6jbdsya5u/igIv7AP/ieqF1rwjXplSdAcatNgHfpk5tJaRs03flX4XZTqOG95NxzT0Xt\nSxfORu1MuFJ/nGlpREFnqjdLOlg6xP3ts2SAF7xnKR/Tzj2WGNAXeNV4lkQRZTwW2z/xlEql5ORJ\nt+r6w488En3+yln0VTOge0L3qtYgyVoF9MxyBZTJ8ibkJtUiaJAVom1ncqBJZ7O4z0ytjL0ESmTQ\ndPffkoxoq4z95UhiMjQIOu6BcRxn7iIuaXmDJAY1lg9gn4UBorkPYj/is3MYcuTyIlzKCnmcw8Ck\nO5bt85yUTKbl+HHnvDc8AheugFy1cgXcpyaN5yrFSoJcSITiLJsiiaBhiSByV4xlhDTOWaYbt6Dk\ntqelEkmH4mmaE2mMb29DMkDMfSltgyYcJ8kCty9dpDyXwblkyGlhZQ33LD9IjhvsIkT5Z7fou3cH\njETlUodMyXZtex3yG9YykRyEaph0HPu87zCkcueuQ043R5LZwO8uN2PnpETogMMOIy2SK64XKYfQ\n6XLuvL6E2GGwJMVjOWwA+cDSMsk0y5DWBIJtpEPaxVqC/pYntdFsNGRt0dUodZIdVSnvNulSyzVQ\n8BN+dynBUJ5cbbLYzzzJTItFqjPIuanchFysSXWzpRiqhnI0y3HO9St1WZ0kAwH9tstubglyVSuS\ny1I2A9lLimQNVZrPDI2XcoeMFrnu0BDm3KCB6+t3xHxfRkIZdrlC+Z80SwMjyMNJmhfS5AKZSJJ8\nLIfOGxzC9iOj6IuxAzn6HPLJkXGSvlEtNLeOOqcVuiUFCXLk20A95ZN8NkE5r1SBTO3kA8h/3/ht\nXx61h0ZQ0xcbkIy0KO9yvMTJ6ZBzSxBQ3HfJ36bP7ZSaQVPWiq5P4gUa1y3k+xq5V40lJvBdej5i\naVKDJEuFOPphZBRynY0yYrTRQj8vLSBHxMyRqP3Od+K47fSTTKLPBgfh/Mi1CueteBx1c62O4xhy\nUG3UeCkJbH/pVeSKPI2jyQmMhe0KuXnROEokMUZ4LrwT9HfUKRQKhUKhUCgUCoVCoVD0GfRljEKh\nUCgUCoVCoVAoFArFHmJXZEqmTUfeJRo7yzTYNoDp0KzrsD7TzphaSZvbG9sdROI9ZMV292366wcT\nEuHiRPNi2n2tCjpzfnQqan/5V39t1F5fwercH/116DiuPn8lao8dA+0/kQeV7fT5T0RtuwI6+MbC\nYtReXgUF8/AhR6vLkpNXuQ66bDyGc+/lPBNjejd1vmFZk8+yJpYs4QsxD8fy2cGEotrS+ZCvWN/D\n8zzJhm4N73vf+6LPn3766aj90pkzUbtBHPzAA32yWicZCjmF1IgqvkjSHS8GemaOHIkuXkYMWqLp\nv+UEKJmnX3IuD9UW/r65Ddr1YA60x0ceAqX/nmOgYFe2QfddWXk5at9/ElTRQh6xOTWGuI+TE8Ur\nL1+K2tNHcKwar4xPsWNsO3r622XAGBOtuJ8ltw9rid5Nq+fXKrRq/xriYHEe7icd8rYKuRYROKex\na0k2heNuBbbr9m3JbmkLNO58Ho4YPk3haTKV8GhOzA/gmjocl0gmkKH4Gx5FzB0+cjRq5wqgrLOD\njqVzZ2nSvpIpGeRf00N22ik5ps+puOj8LuXnBuKoWUccxQ3L2gCeXog9LQMJ7DMRUrtTJDnM5tD/\n89cxz/nkfMTnlUmjXShgP7VavWu7RfT3pUVIiCsV5LomOcrxPMlzl/S5VKCNVtCUYtHl7SCO+8cy\n1wxJI/MjcFkayYGaX1pHX6VJdnaQHIk2G6hFDNUoAUs3MuiHoIz7XauR1D+sLVjC0Wjw3xHP9Qbm\nMz9GUhCSwyUp51XJwYvd+4aGhqP2CtViTZLDDAyRJCdO7qg0Ld07DcdV+RJklf2ImO/LaCjVqGVw\nb5PkgpQqUA4nx9FcgRwkBzDPDA5hLhgeQTwODmM+zOexfSqF/aRi6OvSEiQp1XVytAk7o0R1Mbv5\n5Qo4zkYR/XPgEPr273zX+6P21AnEd7nK8kbcA88jaSw5ZyYSuFaunVtN7IeXuAhCeebtLEFxN8Mz\nRlKhlLpB+XUkTS59cYzDZJ4cSbcg/+KHhokJ5KVaBeNzk1ywyhsYiKtz6JP56yQHKqBWzQ1Q3gvl\n0NkU4rlI9fE2uVaKYQEVSTkpX7VIilYhB694nOq7OmLl3Glcx8ERyOSGC9h+S7CfukFtWGJ3wDvA\n/pjxFAqFQqFQKBQKhUKhUCj6BPoyRqFQKBQKhUKhUCgUCoViD3HHMiUjIOTanjT2XrSvXoId2/XT\n/5+9Nw+w5Lqrg8+tt7/X+3T37JtGq+Xdkm1swIAxDhATwwckLA5mCUvgIywhkATSPD4gkM+QQAj5\n8rE5wUsCIYTV2MSxwatkW5IlS5ZkaTSa0ew9vb9+e938UdV1Ts280vQsas1r/c4/85vqqlu36v7q\n3lv1zrlHJRtOHWeUs+sHU4WfW3HQ4LKzz5JRFz/4urcjHIANJYQTSmvgVK7DuzC1cxePLZHelsuT\nsr9/hpKL4/c8kcQ9cZ5pj5Ji15L7jR5Xzc71+I1ypCBOPOsR3U5pwoFKrAKVKQ3+zhmkJAuaK4Od\nmIJUPsnK71Km5oqW35IqjO3cLXt9bmDdhhG33nprEn/N11C+1miQGrm+yjbvhCK/Ecqiisq6Qr3u\n93mn8yIBWFhkvrTa3H9CqJe72uxebz8SUUQLVZ7z2NFnknj/HlKGX/Uy5vH0LLc3VyjVO/bEiSS+\n7WU3J/GRm/ckcVEcyJaWSBteWSQVtbVGmmdRqL9VkbPo8znMcCDFXuVC6WeJT1O1QspsTdw+IC44\nYV/kbeJ4oa5CfXGnUflXIG4BitlZ0okLsRPK7AwlQiWRIDRFJuU9KeCQvjOUK1RXgopc07hQcyd3\nkEpcG2cd8wXmU0qFKbRvxbDTvRUOLnFnzJJfpa9XxgU3WNak6Aa8h4HIhGqSp0XZv69OXOrQJ/1V\nGDvwNCT/ApEj3Xr4piRurJFqffIU5UWaIyMirQnA/iQnvWe3w+tYEVe6ZpP9cV+kmi7V8wr9fLgV\nkQmCIIdyLIk8t8BnVa97YoLP7fkLpMIfmDmcxKMF5sGUSM1cnvT6E4ssvyX9WE+dkEospxqwf3MQ\nF6fY5UaluzpVUve+vEiTUvtrnouToxNJY0f2X1tnPlVGeD9WL1DKEhRlLiTjU1vm/BXJ0WGHC4Bi\nJbpfEzvY/4+Mst1GRKY2tZP7VGtyT8Rxa3xCJEhVXR5A5IKOsqJuONiJprPGZ7jdYDv2fJRHrZ5I\nl8qSIz3uWxrh+V/3FXcn8ew+zulXmiKbCXndlSLnRUFusNxufZ119HIdMgSnnJMSx7Ah73uCXA61\neB66KBKyfkcltbzuC2uUQBfFgbMm7xINfT+S5zCQOePqIvuus8fYzgsXWIeVFW4fGWXuFkuRTLEp\nMsa1NfYJKkFqd8U1rsH86MiyAz1x4u3LmNdrs8y8jKgrZ3g/7v0wXXlf92W3JXFB5sFi7IzV1vVx\ncDNmjMFgMBgMBoPBYDAYDAbDFsI+xhgMBoPBYDAYDAaDwWAwbCGui5sSSf5Z/K7N8L5UgiFODSlW\nr6zorrxJlYT4wVImRegu3T5g01VicEGZjO0M151txPAeCOfoLFQsaPsxLAj9sOBlRWyhHFbkPvUW\nSK/eMS7UfKFM5hbEcSAg7RIlkb0VhPad5/ZWJ6LQVapl2Zc0PZUphbJKe9odSdwx5LJzOT6KvVCd\nLeS50JwQqmUgbgkdoT/vPXwoiV/zVW9N4p//bbpIDTvUEeZNb3pTEpdKpCD+7w++P4lbXWnPrj57\nbIypHXQhajWYd622tgsbY3ycspKWUCtHq6Rc3nlzJP0YH6XsI1whvXGywvoWQSpnpUTJSKlA2u30\nBCUjBekXy0XmQrMlK82LtGJEaO5hl+dSeURTZF7N9YiiGoa6iv3wwTmHfPy8+tQq/ErXzqf238Dt\nd744iW+9jdTVjty/xWVKBhYWKdFQyZw+wvmMvr9YZC5suO/0xJGiLzKpgjhrqLwxJ1LKXEGdJ3it\nFaH6l8vk3RaKJdmf9yOQ+xSGlx8wlVo89HCaD0rTHjxQu5Qb0GDHJb0/5RL7sb27KUc8NM8+5Owy\n+5a1nj6LLLMrm3Oxs4mXjbM7KFf9xrd+cxKr29G73vueJD51/kwSN6QvdDoGy3hZFSnnSJV5rA5K\n2o8UVaqrzpnbJHWcC5ArRHT8nbvY96uksVjkc7i4TNr98dO89y/awzFpvMZyymX2LaE4+YXiflQs\niwuWyApUvlgUOVprPZ7nlMX5rSJjhrRNX+Y5ZZFA9eTVoi2OSCWRPjRF7tRcY57P7qJzS1nmhuqy\nNFUQl8GO9OW9wY52w4hiqYB9R6Lxv1rj/Z+YoLyjNML7XKrp69xgK1knc9G2uLbpeFgoiJS+xNwp\nlCmD6rWZp+02j12LXZT6JW5ry4PdWmfef+VXvDaJb3s5XbD6TvKio7J+1r3Xkz64L3MekU81RD5V\nLnP/kRGxHdR3zYylBYYN3X4Xp1ci98eSSMtcRZ73gPcglDGpKU5F7b64BzX4fNYK4j4pfYsos7Gw\nSPfJhkjNwnW2yfwi5YgbcqOlCzxudIT5NjPNZSouLMoSBOusVxiKy5vmtrostSjHHCuL7Fbm38eO\nU7bV/NvHkvjIS8W5LGBO96/Ty/r2yD6DwWAwGAwGg8FgMBgMhiGBfYwxGAwGg8FgMBgMBoPBYNhC\nXCeZ0lbh8tzVba7u2TZwziWOJiqt6IWD6d3r544l8RMf/6skLjhSYBuLpPWWihmSto5Q1rpKZeMu\nBZEs1US2sNSKylzqso6vf8s3JfF4mVS3D/7xu5M4LzISJzThYp7btQK5EinDPaGYbrhjAEBJ3FI6\ncs9Gd5Pu+fqv/fokHttFh57tisnJyST+yjd+ZRLv2U3a84Of/WgSd9ps/107DyVxvk/q4/ypU0nc\nElr12DhX/M+BbbqSP5fEzXWhecaSqIJITPZOk27eWCQF+8IZSlx27Too5bG+Vcm1EZE4PPkkaZ7L\nq6Rk1srMo6kJkeJIn9oSKurCWdanMB7RNsPecMuUACRDiBeuvY4qfaFrq0SnWBWXDnlsqyKzqE1S\nSlAZpQvI6iqp2annXKnksr0rEoMNJ4BOh23TFxmjXodKZkoqOxJasUqgVMpXqpAyXBTXpEC0ka4n\n55LzpqQ3w25F8SxIREqBypSyfs8a7KykCFLlkI4/NcV+7NUvpVscZJz8xCN0C2y0xDVE5FHFOKfG\nq2zbw4dvT+I9e48k8a5dlH0cPU6ntg986ANJXBMqd0OcknKe569Kfu2YIs08VAcyL/mrDpkSB5cq\nwoYWGy2ydy8lYsUy+/XlJaHxg33FwhpljwjYPsqKP7PAfVo9lSkyVxprHIf60od31XlLthdiqdlI\nmf1Ac10cQ4ocb8ZGOQ6uST/XbUnfphWWnNem7YuUaV3keKOTlEHs28+5zZ69jDsXTrLu4faRKeXy\nAcZjN0Ux04Ioh5Ar8np7PY73PZEmBrmixNxerrLPGR1lH1ES6Wso0p1Gg20U5riPq3Gfauz0tPsI\npZbtB44l8VRJZLKjMi6VxP3PsS79PvfviCROnbgC6V9VMqV115lLT916ZbhyiUx7yDud0KHfjq69\ntSJyRZkHNIp8ntsiM9W1EGZr7L/h2Becm+dyEHmxptoxyyR9ySvYX+1dY670PPu6ktTh1PFzl5xn\nfJw55GX8UNe2gsxVVlZknpUBJ/Vt6fuUuMk5cV86+ggdT4+d5LN28528vj2H5D5dA4wZYzAYDAaD\nwWAwGAwGg8GwhbCPMQaDwWAwGAwGg8FgMBgMW4ghkykZtpNDRRBTxlJuQ3mmZC4nK/gLTf99f/DO\nJJ6ZmU7icomUtVqJx3ZaIkeSjBfzmBQ9zwsdMq8U/Jh5u+vIi5JtX/u2703i3tLZJL7vo+9L4vYF\nofWJs4mXCgRCL8+J9KFY1O+llB60m8yDkVnS+e56w1cncXmUtOj11jaQmAxCBqO0ViWX9xWvvCuJ\nC0VS6uefeSCJ15a5gjrapE9eOEPZT0tWa99zgO3YbYqjzgXSME+eZry0FiXP7hm22969pOM++Sjl\nTefmSZkcf+pYEq+TvY1qRZ1KuP9nH6VUrycrxx/axfsxWWO+LCzxWtfO8h6URcIytid6HjbjoHOj\nY0NSk8uz/eDVmiy1N3cRmixSshzG+Tzv2cQ4pSbqUtXtdmU7i1T5UFvkcxsuSt0un3114NN9005J\n3L8kZeekf9VzqoNSUa4jdQ9Szm4q85J4G41PCgeHfJwzm5MpDZbbbgrSvrtnKAN5w+QrknhBZB33\nfO4LSdwRdUg1ztMDkxwja2NTSXx+nv3Tzt17kvi1X/S6JF5rk/r9zNNHk7i1wr7ChzxpVVx3Dhxg\nP9MT17F1cRcr1TTXVLKEbYFiIY99sRNSLs/7NDkmskDJp1ZbaPcNts+8SIAO7GN7LjfYx/f78gyL\nvHp8nH1dRyTWXuTNDaH4j9WicopC6V8Xx6KJWUqei+KOtNxgX5TLMS5LX1ETyVxe5n2Li8ynVotz\nPUc1XMot6PR5ygcgEt/eJF1Xhh1BLsBoLPspFpg7taq4fYp+qSt2NiWdZ0o7q5OZ9tVO3GFKZRkP\n1YmmJ8/tNM+75+WUaUxMHIjqOE7Jblfaec9OzkPWRRZdciplYV3CvjgxNTl2rohrZVFkVVVxcIO4\nsbbk+lSeXhRb0nzcT4dDPoYFuVwiH1xYoFxa+wc4dQZV11rOG0ZyjANxyetNsL07Msesybxh9iV8\nDpcaIjtzlOZXa5Q7HrotqsPSMnOl1OW+T3+e8+PVVba9z7BB7suzoLHmf1BWl1t95+NYVZR3wZUn\neZ8eeJIy4cdHBrtiXimMGWMwGAwGg8FgMBgMBoPBsIWwjzEGg8FgMBgMBoPBYDAYDFsIkykNGRJq\n4XAz6eCcQz6meOdSK+wL7V8omKHIeNQBptshpQxCRyvIsV6ojuom4FWaJPczCEhNUyeSoBvF+w7d\nlmyrjZCyd/LEY9xeFYpfQ2QCRVIq+560Qa8WLY50TMhq8qUqKeazh29K4jtfdXcSj8ySHjgxMZvE\n55bEmWEbwW1CApAXScrYGOmzH3vseBI/c5TUxyP7uVJ6t8vE6Ig04MxJSs964n5z8jTp1seOrSTx\n+aWoTVdXSPXddfeBJJ6e4Tnv/eSjPO4JkS+Jg8nsflLVT8+Tpn3qBK+pKpKU9VHKB84vMr9OnON1\nt1e4PbfA5+r20ahuLjfkw4WjTMnJ7xBeYnVeU6lEsZB17YPzQzsUlQkVhT6uMiGF5murFdGDq2W2\nX04q1pe+TeVCOZEP6HlSshqpY0Eoxnp+/bkmFEpwKE5Qvj9YpuS2i9YE0bVQ2qYyJb3GDPmSytq8\nyrv0SJXDCoVcKPsTVebAG+56aRIvC2370WPsl4pxzhw4SOeZm2+7OYnzJebIokg9ahWOS/v2cTx5\n4P7PcP8VSgwqeV5JscJxb2mBTnTrkkihjrtOclO2b+w97BmUz+cwE7tKqSzZieqxJNsLIvNaafIe\n3/cwJWIF6YcXV0QOJI5v5SolAGvihJSXc3npI9QpK9jIP5GOzO6m5KwlLpSLqxwnllbFcUn2Kcg4\n1OuzzIbUy4vfTbcn1xSIPLNJKZVvc5ydHeG1jk9Q1jfsCAKHUuyaWCqwTyiL85BKt/Rh8SK9LYn7\nlUrz++B4X5HxJTWOSKLq8D8yxYJe/Gr2L4XYZWn+POu7aw/nrQf2U3ryyEOPJ/HiefYV45PM41GR\ntRVl7twLma/rzcGuqK02JTQFkV71Q3F/EzeeXHwD+0Muxw6DEI1ydO3+gEgNK/IeJK5TO0f5DlMI\neT9EVYlWXy0kmSuFIp/PcXHBWpc8WxUZVODkvUik8JWR6N7n9zGJlx/n/Hl5ifPgRpPucKHkakXa\nUucePV12QiRzupRFQdwMvfRXLcdzBYG40jU55vY618fBzZgxBoPBYDAYDAaDwWAwGAxbCPsYYzAY\nDAaDwWAwGAwGg8GwhRhy3rlhaOE9EK9s7YTyns8Npn3ni0zVmjiFqGSp3SatVx0pSkJv7Ch9rSsr\nawvdPJdTujmL3Chnzx46T6BPmu6pp+lq0RNHgA2qKQD0A6GACpVXaf8tWeF9z6GXJPHL7v5iljlB\nit2OGTq3jO+gNOnsPKVJzXWRc70Q4NIigA3kxaGr0eB9ntyzM4kLNdI2Ryd538IFUqOfeepkEotK\nCcsLpDL2WmzTjVX7O23Wa2GRbhl3vOiWJP7AX30qiR88RfruxCzz+KDIB+aXSWG/aTe3t8VFbL3L\na73v4adZR5HhTSlddYw5VYudgYKc2o8NN5TGmlbTDKYo6/4qQdHV+VUapNTYWo30XT1WV/nX/bWc\nDYc4LzThUI7zGCwL0jgUtxstSR0SowAAIABJREFUW9tTHe1SyGBsa5kqvdHt2wrOIYipzFn3ORVn\nyZT0vmnx0keFKqHrS3JKDuwWKv8bX/OyJC7J2HXmbNT/Hz9J55kPffRDSTxSo2TgVS/lOFMqsoyj\nTz2VxBcWxNpGKr9zhmPOzYcOJ/EzT/PYqVGea+cOSkXT92/7uSk5OORjiXWlSglNucK4sUo6/uo6\n3U/yRfYbZ8SR8fGjHNfX20K7HxeZUo3j3Pw8y1wV97xRkfSMi6tVdz2qz7yMZV1w7CmEHFfyJdax\nIP1JqUTXHJ2Lra1RatTpUEZSkvldIH1Rq899bprivO8Vezlej42zDpWxwdLPYYT3Ht1uNI/M5+SB\ncypN4lhQrlKmEQQqU+L91LlKKcf7ltNxqUcZT1dksKGUmZMOQOfOvbC9UUiyrVjg38uSZ+Ua67u2\nzLwcH2Nf0VUnVJWBiqzN91nfRovnXW9we6dHWUmpLH3OKJ+BUjwXGnZHQA+PVrzUgRdJW2FUlkXI\nixS2yL6i31QnV5FGB8y5tTb7n3xJclHyoyH3u1eT/qLPfaoiQcv5KP+aAefElSl5LxxnW4YioQ97\nzNuOyFy1n3GyxEVRlo/QuYq6XLbbLF8lbcUi3+nGK+wPJ6WfvofKuyuGMWMMBoPBYDAYDAaDwWAw\nGLYQ9jHGYDAYDAaDwWAwGAwGg2ELcZ1kSv6if5/HVfCHmd6qjj66ObV9uCl0G3BOaMlKbRfapUqQ\nUhIJob32ZMV0pVf2RQKkbiJFocMqRVpdlnTJeTXLKBei+oxzcXoEXaEMXzjBP4h8KRAHldI46bsT\n45SClCpccX73La9M4jvu+tIk7oYss7FyLIlzJVIOj598MonDPiu6d88RvKCQIVOamdmdxG/8qrcm\n8fIipTvHTz+RxL4lLl4FUlq9pEtjkZTI1jpzcKwqcpNylLNjM6TorzVIA291SIHcc4DOFU8+TonB\nninSd5fnzyZxxbP9R9R1p0D65Ollln9e4lGmICb2MQf37ycNvLkWybNUHjOsuKzDT8r5JpTNg2U/\nCpUgaZ+TRXvO2j9VfrxdZUp9kTSp1EmPK0ifkxd3AD1nWiIi0phNyI6yZEqKYad7X4zkfmVI1lL3\nVo7zqTjrL3oiaYtgsFtKSfq32/ZRJrSj9qok/sznon7s3keOJdseOUrpUCAOWsurlGBW8jzRJ++j\ng9J6i+PPHYfpoPJlr+F4dXA3Xd7yUk5R5JBlyUeIxCAn+RIkt3qYJ3SR/PB8LBeemuJ1q1y22aFE\nY0EclC6c4xxmdhc76tkD7KfPNihxGhlhmZqjfdGmnDtP16xzImOenuLYNjsTxYUi22NtmfkRaiKK\nk1pFJNglkcwURCZeaopkXFyTxkY4L/I9ltOSezNe4z24eT/luJ02x9Ht1OM4B5RiF6DaCPuE6og4\nhQac/wYiZcpJ3OmKdLrHOUnY4djREElPX2RoTuRp1RJlzMWcSO+7zNlc7NDUkyUDfMi6r4gkL5A+\n4cwZtnOjyRztSP/QlXlOz/O6i+LKUy5Rqlcts+41cC40KnIdl1ep7qUy1KGE9wjiOULK3VCkOJA+\neLHFe1nrsw9pi+NSSdpwl7yrHD8t7zwh+wiMSR8vSzaIUSDakosbLm9hmecpiNRybLc4gh2nZDNs\n8TwNub5QHLFKpcHzH5VsqzSp0WAudiSPayLfnZliX6RSumuBMWMMBoPBYDAYDAaDwWAwGLYQ9jHG\nYDAYDAaDwWAwGAwGg2ELcR1kSj6Rk7htRRLceig7zqlyR/YJvb9k21DCAxusVpVeqatI4NIE7w00\nm6SRqWmFF5mSML1TjidBTqjChcHOIr3eYJelSiFqlKcfpdvNeJUUtbNPPZrERaHsCjkQt79E3JFe\n/xWso5tJ4plZOus01kklPv8Ml+rOe563La4E5TKlLLM7b0viNd6yFwSy5ADlCldTf8krSK8/eYIU\n3CeO0p3o3Ck6UZQkFxpLlCatLHHl+HYqd0TCEKfX/AU6kvh10mifOnomiXN5Um2LY6TXilEATp9i\nXiyvsv1XmqTsrvRY/kpXtY7cZ4c4cOycZe5UazwWCT14yPt3T1lPP0NypY4uKnVTum9WrMemHZcG\ny53S5xVZwaC6yWHqfKHn177TpeRW3EfLzpTYZBybFWdJmbadTGnj3wwHJR3A1R0pJ7HPbSaPxNlE\nnVOg7mwSy7GHp9mPzXzxqwEAzT7L+9iDHKNaIhP57EMP8jQdbj+5yP5qShwk7nrFi5P4tiMHk7gg\n+s1qRWUzkrOSp6HXiY48Jxv3bMgnOv3QJw4vFZFOt+ZJtV9epSzD5XmP24uk/R+8g/ODnTOUFH3h\nCc5bCjLnWFxhu6m8edd+Stqc5zjQWOZ4dvzpaCyaHGP71SQPe+Ja0m7ymjpC15ehCmVxMOnKHG1E\n9N41yZXmAh1VJqVvqYkc5eFTlO9WRXJxoEKJ77AjCBzKsUwpn9e+VB1emC9ZsvtuV2Pun1P5ao7b\n1aGvKxK3Tq8l20US5aW/iuUsQciy2+Lk+dQxzqeWltUFKQnR8pxP5cT5SN2XxkXWW6syd6oVkbPI\nmFariFOkyCfXO6xbK87NYVcphQ5Yy0dtXirx2Vty8n4kEqFcR5xc9X44ytvyVcoIlzssJxhnX9QT\nGdlaTqRuOZH0NFnmUk4kqqUon8KuOoKx/co72a6ju3lNZx5jHxl4blfZd1BgOW3J4XZHlxHgsavi\nxFQpsz5SXTTFKdWXZJy7BhgzxmAwGAwGg8FgMBgMBoNhC2EfYwwGg8FgMBgMBoPBYDAYthDXyU3J\nYLhy+Hgl/pxQV9EndcwL7Vapk7oKvDBmk/IAIKeGDUJ/7oc8l7Loc7qqupyrLxKncrw6+7HP3pts\nWz7xhSR2bWqBRmQF7yWhdFZqdJvoh6TSTe7ck8TzyyxnVSi7lSLpfi7Pa5raQQqhy6krSxLCB0PO\nvbwmDJZL5IXKePjmO5J49kFS9j/8Nx9J4hxEPpKi1ysNUr5vizzgRbdE0rOeSABWT1NqdGGeZecK\npHLmJMF9j5TJpsjq1gPGtVm6TJw6cS6JnznHc40KJXNykvTd3XtI8W73eH3tflQH74c/hzao3C7D\nESctbxTXotTDpLIfJeRze77A519X7VdJj8qKVKaiTkgbsqKUekrqrmVorOfUOFMag8FQR6ks2VFa\nhqV/Gf58SWFA7qRi2TXQ/Mq4D3o7fZZ8LS9SslSZKhOQ3Owz3jEaSRxfecetybaHnzyWxItNjoV3\n3nZ7Es+MkHr+2BMqvWV+7dvFcSwXsO8q6HWIo0UuJ25kOXnIUs6F6kblk2iYUSgUsHtX1Cc7ue5V\ncUE6t0Cqvc4JciX298trvJf3PXgsiRdWKCtoOs4bVtY5hkzMUJo0MsH+vtNm+184w7p116J7XhVZ\nUEdcngrSn6jUrSfzuFJH5FYQtyPJg5EqJbhBl9dxeDfnObfP0Lml5bnPI6cp86rkRJ5QEnvAbYCN\nx6ktrqFlyYuczPdUjuTl2SvkeX/6Mkd2Ii/K6XMrk2cv0pZ+II5aMqf1HZazMS3tinxtdY25Uxzl\nvpPTdJac3kOph6io4Qo8T7HKehVlnlUt8H5A+qhQ5Hnq+FTKU/KSy/Ge5eP3hJRUeRjhHYJYjtYP\nRG4uU5UdPUrSy2IGFPbYhyyKfDI/zXuv70Rra8yPyg7e1768b7RyHJOq0t+POHFuigfDtYDyyn6O\n7z6lgzzugKeT3/oSK984w3pN7GBuaQ75kHnQa8l7Z07k+nvYX164cDKJZ/eJHFeWuNh9y74k/pO/\n/GtcLYwZYzAYDAaDwWAwGAwGg8GwhbCPMQaDwWAwGAwGg8FgMBgMW4jnVaa0GbeFLPeJ7YgUbXmb\nOVFcDO88wpjT2BcHgTCvFEzS25RGWRAeo7odQWRNociR8vLNMYuyr1T7QGQCuk8udhSoKHW6KyuU\nl0m7E4UDciWWVx4l7fbcSVLgGi2Wecer3sC6HBLpSINSk7UO3Xd6PdKA1XGjWiJtMF8bwQsJLkVv\ndwNDZDxjgThHrDVIfey0hG4rVOG+3PPVBmmeBw8cSuI3vuUbAAAFkcS8/0/+lMctnEriqnwiHxE3\npXxNVm2vkVb54pffmcQvvfv1SXz63Pkkfvd7/2sSf+7Bh5L43AJXjv/M/XTryoE5++bddwMAwu0g\nU4oTQCUfTvMgHBznU7ZtDNXZKOUmKOVr35ITSZmOvilHogESKv3VRN3hspyaVHaZckdStZU8DH09\nfV/L1CmCOj4pHVydgPQyhj9fNuCcS8YOlbXpeJK6/xluSinkBm/WXklMSeBkrAu85q/G3D+IKeG3\n7CON+vV335XEtendSfy1X/5VSbxrhFKP5WWOOU8+8dkkHq0xRwoFqZcLBsY6fmv/qn2nVj55loY8\nhfrdDhbOHgcALDc4fnR17uHZ115YFUc0L5Lq8xL3KVkpyXPeXBLnP5FEjYmMpyLHFmpsh5n9bPO1\nWCmQl86iU2J9ld1fqXIu1hc3laLUq1TlPKQpLj/9dUoMSuIOecdtzNdxkUo9dY4uO4WSuLjIg3Ri\nefvYRnrv0Y1dWwLH+3DhPO9zeVWkYaNsz8oo5yfdtjxjXZG4iuxLn8nQsY3W1yXXytJhidypL/K0\nfCGqZzDGfcfFwbIiOZeXtu33tV79gfuIwiXlwtYG6+g7ItWVvqOQZzltcYhqi7SrH/dXwy7HDlwO\n1WIkQ+p2xGHtGc4HJ3KcS66vs/0KnG7Ci4xo+QKfz6Atz7YMUMWytIk43paq7N9GxLWr1Nf5VXTP\ne57ldZwuRyHyxmm+Q7mXsZ/7XPtYEuv8ZKzEd5+JHZQgoaBzN+KWWylHOnqC/czuW7mURFH61137\nOY5eC4wZYzAYDAaDwWAwGAwGg8GwhbCPMQaDwWAwGAwGg8FgMBgMW4gbxk0p5eywjejNV4vtLlNq\ndwMcPR/R4BaKTMOe0L6DgNQ458UdRKj+gdDF9J4FIWma+sUx5ZySoukLXVHNHoJLyy8LdbJQ4d9D\nJxTjUGiXUoOT/SeTuFIR1xR3LInH/teJJB4fpfvB+hpphusiU1L3lUpZXC5AOt/qGqmchgjpfoa5\n86pXviKJ29/+HUl84sTxJD72NONTZ88m8egY7/mXf/mXJ/Fdr341gHT+lcvMo0fu/0wSL83TBako\n1OC9B0iH3HfwliQ+fPPLk3hkgnTzAzdxnx3TpGe+613vSuL5c7yOtXXegxfdTneVPfsPR3UR96lh\nRTCIgpzhnuBTbjAib5T9e93Bzm6aT141QCo10b4unyWfjP7dcFWKYulnVBqjddTzSz/nU/2ZSGyk\nj+rLdXuRFSj6ck0qU0r1wdvqpx6HIIjGqXxenbIGX2TaGYhIj+uD807HJZeS7qQ0YFKmxLo93r8m\nMpGveyP7pANH6LI0UaHs0QnVf7JM142KO5zES0uUVTqx6UiZ9omEzkt+ZTlu+ZTKz13y92FEEPRR\nLURS0FBo/M0u78fECMd4D5G57mVfPlkWWWyDrjboU/qUF41BXlxUUm4zOs+Re1sYJZW/Nxr38yIF\naYm04/gipa3zIsv1Xel/pN/oimTBt1hmWeZxd95Eh5SD07zuxQbPNbljJol3VHitSyqJUCnvkKPX\nDXHhbHT92t8qJsbYhpPSziVxHlpdonPXSJHt7EUGok9ZqSDyIXFe1H1yIk3M5eUvcT3LE+Ks0+c8\nviuuRmrvkxP5ig/V0lDGWokrMnfSHjgnSx6o9rYnY2Y+p32zaJ+GXJ5E+ES+nBOJ2p4q+3IvcshW\nV5yvVvmeEMh878IinY3KIZ+xqb2cV+YKstSDGo/2KYNS97WGSODGxqO6aTt15X0KXZY9XmYOv/a1\ndEHNi+zp+BfoylSR6yjX2G9Upngdt93O/mfnLvY/s7eKHJJDJIpyfSV1rLoGbKvpksFgMBgMBoPB\nYDAYDAbDjQ77GGMwGAwGg8FgMBgMBoPBsIVw1yqHcc6dB/D09amO4Qpw0Hs/c/ndbkxY3jyvsNwx\nXA0sbwxXC8sdw9XA8sZwtbDcMVwNLG8MV4urzp1r/hhjMBgMBoPBYDAYDAaDwWDYPEymZDAYDAaD\nwWAwGAwGg8GwhbCPMQaDwWAwGAwGg8FgMBgMW4gb42OMc8fg3Fdm/O1L4NxjV1jeO+Hczz/L32fg\n3KNwrpK5T7Tf2+HcR5/l7++Dc9+R+ff0vn8E5756U/u+AODq7ttc3X3gGo5/u6s/S9s8h3B192ZX\nd/9zk/v+C1d3v30N5/pZV3fvuvye1wZXd7/i6u4HnuvzXCssbzZ9Lsubi2C5s+lzWe5cIVzdHXP1\njDnM8whXdzOu7h519Wiu4+ruw67uvud5rtNOV3efd3VXuvzeBuDZ88vV3Ze4+pXNkV3dvdPVs+fI\nV5I3ru4OuLpbc3WXG/T3jGOSPsbyYXvB1V3J1d0jru52Pwdl3+vq7s7rXe52gc1xNn2uG26Ok7/8\nLs8zvP8IgNuuc6k/BeCd8L552T2fDd5fyceVXwbwHwG875rOuU3g5/y7Abz7+a7HVeIXAPzQZnb0\nc/4Xn+O6XC+8A8C9ru5+x8/5zvNdmSxY3txwGIq8ASx3bkAMTe4MMX4KwDv93DXOda4j/Jw/6+ru\nQwC+F8C/f77rM+zwc8/dHHkzeePn/HEAI1d7IsuH4YGru2MAvsfP+f/1LLt9L4C/9XP+9DWe650A\nnvFz/qdl8zsA/ByA/+tayt6usDnODYdNz3FuDGbM1cK5K/+Y5FwJwHcAeM6/iqXg/b0AxuDcXVt6\n3iGEq19Fu24RXN3dDWDcz/lPXoeybpjrjAfORwF83fNdl6vFjXQ/L4blzY2NG+meXgzLnRcOrmf7\nxEyD52Sucx3q+W4A33c96mLIxtW00/XMG1d3ztXdZt4zLB+2D74fwO8/R2X/KYAvd3W36zkqf9vi\nRhr7L4bNcW4sZszdcO7XAewG8D8B/AC8b8G5LwPwLni/D0AkaYoYJt8G4DY4VwPwEgC/A+AWAH8J\n4Nksol4DYAneP5Nsce7tAP4VgBkA8wB+Gt6/W/7+DgDfDWAJwD+G9++Lt384rttvx2X8IwD3A3gb\ngNMAfhDef1DO/WEAXwvg05u/LcMLV3c/heiezAI4AeBf+jn/x/Hf3o7oC/sXx//3iL6K/giivDwc\nb/sn8bYxAL8H4Cf9nA8HnOvXAHwDgHEAXwDwI/EvRnB197MAXgSgBeDrARwH8B1+zn86/vseRL/I\nfCmANQD/1s/5X8+4rK8G8DdXeO6b/Zz/dld3hwA8BeB7AMwBOObq7h/G274PwM8CcAB+xc/5d2Tc\n0z8E8CUAKgA+C+AH/Jx/OP7bOwE0AByKr+URAN/q5/yT8d9vj6/zVQDOA/gZP+f/QIr/MKL8/O8Z\n174lsLyxvLlaWO5Y7jyPeLmru18FcBDAXyFq7xYAuLr7RwB+EsAUgI8C+H4/50/Ff0vloau7mwD8\nKqI5ThmRTem3+Dn/ufhF+RcAfDOAEoA/BvCjGQyG1wBY8nMy14lw0NXdxwC8FMAnELXXfFyXrwPw\nrwHsBfAAorb+fPy3Y5C5l6u7GoAfB/DDiJ6VUwD+sZ/zH4xfwP8ZomdxAsAH42teiOtwD4CbXN0d\n9HPebFg3h7tdPT1H9nO+5erRHNnPRXPkjHa64jnygLw54uruXgC3A/gQgO/0c35B+piCn/M9V3cf\nBvAxAF8G4JUAXuLqrg/gnfH/PwngYlmV5cMWwtXdfgC/hqhfDwC818/5H3J1dwTAbwF4GaIceT+A\nH/RzfsnV3e8DOADgz+L2/Dk/5//NReUeAHATovbc2FYB8PMAvhFRX/AQgDf5Od/MGltc3X0vovz1\nru5+BMCH/Jx/S5zvnwHwZgD/+bm5Ozc2bI6zPec4NxIz5tsQPWBHANwK4KefZd9vQXRxE4iu4X8i\n+hI7BeAP8ewUtpdAB4LoY86vA/hqeD8K4HWIJiEbeE28/zSAfwPgd+Ccyyj7NQCejPedA/A/4NyU\n/P3ziDq5FwqeRJTg4wDqAN7lnl1H+lZE9/BFsu3rAdyFaBD/ewC+K+PYTwF4OaIceA+AP3R1V5a/\nfx2A/4ooZ/4UwG8AQDxp/DNED+BeAG8E8COu7t6ccZ50/mzu3BfjDQDuQJTvG/hyRBOlrwLwky57\n/YH3xfvNArgPl1IS/wGiez0J4AlEE3fEE7K/jus3G+/3m67u9F7fKPlpeTMYljeXh+XOYFjuPPf4\nZgB/B8BhRB863g4Aru6+AtEHjm9G9CL9NKK8UGgefhWiSd+tiPL4mwFciPf7pXj7ywHcjCh//lVG\nfQblDQB8K4DvRNQmRQD/NK7nrQDei2iSPoPopf3PXN0V5Videx1BNNG/28/5UUS5dSze7/+Or+kN\nAPYAWATwHzYK8XO+hyhXtkvbbwWenzky8Q8R9YW7AfQQzZuz8DZEcpVRRPn+HgCfQTQ3/n8QMW8S\nWD5sHVy0ts+fI2qXQ4j6kI3+yCHqq/YgGi/2I3qZhZ/zb0P0wv0WP+dHLv4QE+MlAI7G7bmBdyB6\nUX0dovz7ZwA2XvwHji1+zv//cfxv4nO9RcrbTmPG1cDmOIMx1HOcG4kZ8xvw/gQAwLlfQPSlKWuw\n+XXZ90sBFAD8O3jvAfx3OPdjz3KeCQCrF20LAbwYzh2H96cRsVo28DS8/634XP8ZwG8C2AngzICy\nz0k9/huc+3FEA+IGZW81Pv8LAn7O/6H897+5uvvnAF4N4E8yDvnX8svZBn453rbg6u7fIZpkXLJw\nk5/zSqn9FVd3P41IR/3ZeNtH/Zz/SwCIv/D/SLz9bgAzfs7/XPz/o67ufgvRQ/X+AXW8JH82ce6L\n8bN+zjfiumxsq8fbHnJ193vxdV6iy/Vz/nc34vjr8KKru3E/55fjzX/s5/y98d/fjegXVgD4uwCO\n+Tn/e/H/73d190cAvglRJwPcIPlpeWN5c7Ww3LHceR7x68J2+TNEE0kgeon+XT/n74v/9s8R3cND\nfs4fi/dJ8tDVXRfRS+ztAO4VZopD9IL7Utn3FxFNBP/5gPoMmusAwO/5Of94fPwfgBTqvw/gL/yc\n/+v4b+9A9Avq6xD9urdxjSfiv/cRsXNe5OruvFwLEEkVfmiDXRHnzXFXd2+TF7Xt1PZbgd+Qe3/Z\nObLsm8yR/Vw0R3b1K54jA8Dv+zn/ubjMnwHwgKtnGli8U35ZPoCoz/tKP+fbAP42fj4uhuXD1uDV\niD62/IQ8ix8FAD/nn0D0sgkA513E9Ju7grJTuRO/lH8XgNf6OX8y3vzxjb9vYmwZhFVEHwRfkLA5\nzvac49xIH2NOSPw0os5iM/vuAXAy/gCix2dhEdFEJ4L3DTj39xH9OvQ7cO5jAH4c3j8a73FG9l1H\nRIrJWqxsUD30OkYRSZ1eEIipYj+G6Os7EN236Wc55MRltmXmhau7f4pISrYHEb1y7KJz6cezdQBl\nF2kLDwLY4+pO2yUH4CMZdUznz+bO/WzXNGjb04i+FKcQ/6LxC4ge9Bnw14VpABudxsXXuZGrBwG8\n5qLrzCOt7b0h8tPyJhOWN5eB5U4mLHeee1x8HzbyZg+iX9sAAH7Or7m6u4DoF8Nj8eYT8vf/7eru\nNxAxSQ66uvsfiOYnZQBVAJ+RyaZDlDuDcEneZNRzo732QOZOfs6Hru5OxPXcgNbzCRdJCH4WwJ2u\n7t4P4MfiD1IHAfyxqzulvvcR/ZC18VK2ndp+K3BNc+T4Q4wen4WsvLn4/AVk9zkXn39x40VJjt9/\n0TGWD1uD/QCevoi9AgBwdbcTlC+NImJVLV5B2RfnzjSifuvJAefazNgyCC/oPLE5TiaGeo5zI32M\n0Y75ACL9cRZ0UDkNYC+cc/Ih5AAGPPwxHgTwo+nS/PsBvD+2uv55RJrJL9l81RMMqsefyt/vQPZX\nvW0FV3cHEd3HNwL4hJ/zfVd3DyCaPGZhkI55P4CH43hgXri6+xJE1Mc3Ang4nkQuXuZcGzgB4Ck/\n52/ZxL5AlD+3XuO5s65z4wNgVv5/KyJK4VcimsSPI+rENnudf+Pn/JueZZ/nPT8tbyxvrhaWO5Y7\nNyg2Pk4ASKjNO8CPEsBF7RNr63/d1d0sgD8A8BOIfqFuArhTfmV+Nlw617l8PZPJaszE2X+Zer4H\nwHtc3Y0B+E+IXCPfhqjtv8vP+Y8NOlE8Yb8Z27/tryeuaY7s6s7JB5krmyMPPn8X0RqLF39UGXT+\nSVd3Nfkgc0D3sXzYUpwAcMDVXX7AB5lfRNQuL/HRekBvRSw9ifFsaw0BUe4clrLnEa0pcgSXtu3l\nxpasc92BrTZguUFgc5ztO8e5kT7G/CCc+3NEX53+JYD/tsnjPoFIv/rDcO43AbwFEWXrQxn73wtg\nAs7thfcn4dxOAK9FRF1qIlpo6JKFjDaJWanHWxE1wl/K398A4NuvsuxhQw3Rw3EeAFzdfSeAF19F\nOT/h6u4eRF8i/wlID1OMIsqB84gWQPwpRF9RN4N7Aay6uvtJRBroDqJ2q/g5/6kB+/8l0nr/azm3\n4mdctMjjYUR6/kF5MgqgjWj9gCqigXOz+HMAv+Tq7m1g/V8OYG2DBo8oPy+hKm4xLG+uDJY3hOXO\nlcFyZ2vwXgDvdXX3HkT68V8EcM9Fsp4ELnKWCBCxaRqIXmbCeEL6WwD+rau7H/Jz/pyru70AXuzn\n/CDq970AJlzd7d3kx5s/APBTru7eCOBvEeV+GyIruKietyFizXwsrmMTZOn8fwB+wdXdd/g5/7Sr\nuxkAr/NzfoNK/2pE9G5brHXz+EFXv7Y5sqtvfo48IG++3dXdf0H0wvJzAP57/DL4rCeP2//TAOqu\n7v5FfO63IP1DpeXD1uFeRB/IfsnV3Rwixtqr4g+no4jYAMtx3/ITFx17FtECvQPh5/wzru6eQNSe\nH4/7rN8F8KvxOHA2/tt9uPzYcsm5XLRmyKtw0ZpDLyDYHOfKMDRznBtpAd/3APgAgKOIvtj//KaO\n8r6DaMXltwNYQKR7/h9TLsz6AAAgAElEQVSX2f+dYKMEiChfp+Lj3wDgB6649hHuQbQI0Dwi2tM3\nwvto4T3n7gawFltcb3v4Of8IgF9BNBE4i+gXt4G/kl0Gf4Jo4bcHAPwFIkeAi/F+RO4VjyOiorUw\nmLI2qJ59RLq/lyNafXse0YMznrH/fYgGqtdc67kvwt8g0up+EMA7/Jz/wIB9/kt8jpOIVvTetA2c\nn/OriBax+geIcv0Mol8xSwDgogXAXoRoob/nDZY3VwzLmxiWO1cMy50tgJ/z/wvAzwD4I0QvQUcQ\n3ZMsjCH69XMR0b2/AOD/jf/2k4ja7JOu7lYQ/Yh0W8Z5L57rXK6ej8X7/ntEOfkWRIt1djIOKSFa\nUHgeUdvOgmvX/Bqil+0PuLpbRZQ3r5Fjvw3RBxvD5nFVc+S4/TY9R36WvPn9ePsZRNKTH76Cun8r\novZfQMTw+i8X/d3yYYsQjz9vQcREOg7gGUQ5AUTrXLwS0QeZv8ClefKvAfy0q7ulWEYyCP8JETtu\nA/8UkYPSpxC1/y8jeu+63NjyO4jWo1pydbcxRrwFwIc31uZ6ocHmOFeMoZnjuPQSJy8QODeDSLv2\nCviBlpBXU+bbAXwPfGQpNuDvfwTgd+D9Xw78u+ESuMiC7ZZ4UbEbBq7uvgqRhedbr0NZhyC2kNda\n3jXU41cAPOnn/G8+X3W4XrC82Tpsp7wBLHe2Etstd25ExIyUjwB4hR9sf73liKVXf4OoTq3nuz6G\nS7GVeWP5sL3g6q4E4H4Ab/Rz/vTl9r/Csu8B8N0bC0kbrhw2x9k6XMkc54X5Mea5wOU+xhiuGDdq\np3E9caN0GtsJljeGq4XljsFgMBgMhu0Im+PcmLiRZEoGg8FgMBgMBoPBYDAYDNsexowxGAwGg8Fg\nMBgMBoPBYNhCGDPGYDAYDAaDwWAwGAwGg2ELcc3W1kEQ+Fz+0m86zg22u/OertFBjscFLpB9yNbx\nobpMX972O5+XS0rVQcuJyg+1bKch/+O9/oH1CuSSc/Kffr/PM6aKZzn9UK5PiEn5fC6JcxKHfRbU\n60Vxr9tDv9/fjA/6DYnx8XG/a+dOAECvJzchdY95eaHcM80tjXt9P3B/bVzvtG25T0/2D2SfYl5z\ndOM4LXpwXZxcR85p2/PQriSIHlsusO31eVFoPmkuuoxnJJRKP/ro5+e99zMDdxwC5AsVXyiPXrI9\nm+N3pew/NyDaLK7kXFn7+svu4lP7DN5pM/tgM+XE23vdNsJ+d2j7HCcPpctxnKiOTzIem0rioFBM\n4rDDdSV7rfUk9hj8/IchxwEdH7TPcU7HTT8w3nietb4o1VhH2bffWmMs9cqFlEy7gOVon9DrdZM4\nny+w/NRAx+1hj2UG0td1e23u7tiPLZx5Zqj7nOnpaX/o0KEtOZfmyPLqUhK3WlxHNT3P0PkBt0/E\neT05wfzWsvsyGOncY2V1JYnX1plTI9URxjX2vzpOX28cO3YM8/PzQ9vnjI+M+l1T09F/MuYeqTHb\nZYw9+p+svjyr/NT2wXOO1HN+lXAZ589k3+u0L3X6jPrK9jA1bOm9JB47/tRQ9zmlctnXalFf31zn\nmKPvBgUZo/RdqdVkX5F1/7Pe0S7ai1GguekG7XLZ+VK6LpcvI11HHWsHl5l+T5B9tA5yn9LvCfE8\np9dDPwyHts8ZGZv0UzN7Nr1/dhrcOLdgU6nqB+/kr3j+f/U4/uTDV93nXPPHmFw+wORsZP+tD0Wp\nVJK9mPztDjuV0VEO6JVKJYm7HToptqUTCpy+pEK2syffMT2bxE4/aLiGHBtNPNfXOXFMf8PhpLPX\nZdku4ESnVmPDj42w7osLnMi0WzJhDXg/Vtd4ffoBYWrH+MB4bZX3YP5c1MmeOn5dFynfcuzauRO/\n+Zv/AQAwP88XnXyOuVKtsR3Wm3xZKMjEIVfgPgtr3Ge1ybYCuE9fcqjdZfsstXhsqcQBbv+OahKP\nFKI2b3XlA4m83BRLPE8x4D5jRZ5zuc32Pr3C6y6VWM4tu8dY3y5zVD/uVeSFqVocPKnSZ6Td48Gv\nee0rnsYQo1AexaG7vjH6T2rSh8HxJj56uIyX6vQgkDUiaDnhgK38j764wjNHvawxlpqAZkxq9WXf\nycu2bu+HXdku9fJ6rNQhI9449uyxBzDs2JhQlsenk20vffM3JvHL/s43JfHYrkNJ3Dj+aBLPf4H3\noee1L2K/sb62ynJqHB86MrYVC+xbvIwtkPYsxR9AcrWJZFtw0xclcSXH8lYf+2gSL4flJB5ZP8f9\nRzlPaHR57Pz82SSenuIYWpIX8Nw4tzcWzrNM6etOX3gqiSfyHMPe/Us/OtR9zqFDh3Dvpz8N4Lmn\nE7d7HBfe98E/T+JHH/9sEi/LB5OGzJEunOHHm7d+TZTX3/QNfz/Z1mkzt9bWeNzUDo45f/XBv07i\ne+7/eBJ/0V2vT+IvvvtLkrha07ne9cVdd931nJW9Fdg1NY3/+JM/ByA9rujHtCBgv5EL5EMopw0I\nAvmIJv1D+oMGM1P7+3xO5zx8SS/I3KlaYV+U1DPjhTf9siw/VmWcXz/06pioH3SLBc5/9MewjvRR\nOZlr6Rys19WPzazDG77vW4a6z6nVanjzV/8dAMAD99+fbJ+c4g8Gu3ftTuKejC2ff4hmQ90u778i\nJ3mh9y3rY0ixyDzVH72zfhwdBM37rOM0jwpyziBjH72+drs9cB/N36Z8qNL9N+Zdp85yLBxGTM3s\nwT/75fcC2NwHt6x22NzHusHlXMs+V3acdlJZBJDr8zFmM+V8/9ffftV9zjV/jIm616gzzAnTpVhk\nXC5zQre+Li+sBU4YW+vS6cqLZqXMjsfLV8zUQyQN0mrJCwXkBb4og0k8yvkeO6Nun/tWKtJJyTXp\nwNBck5ekDicjpTwn+T3Hh77TZr1Kct0bH4YAYMckO9awzwGmscYJVrkYnSu4yqS+UdAPgcZKdE+0\nw12VX/86TQ64BUhbCZNGvnNgRNpYbh9abDZAPvbUyjw4r5MKmTIUJO7ERCRl0eTlRQSpX3GIZfko\np0ybO3fxuXDyASgvE69AZmRdmYR19GV5XZk3fC6qVb4EapnDDg/tCy5/XfpBI/tj/+V/vcv6qJP6\n0TKrDhvPa2oHmQDJR8L0L4ODWWOZg5NsTv/YKfmSGrQyBjP9qXIjx4e8zwmCPMrV6KPGa7/hO5Lt\nr/zm70riTokfHDpePuJKW/XWLrBMuSXyvROhMAoqZX4AKcpzuCqTyKLjmNCTsa08GhWaD/lxp9/m\ni3hXxpJAmRPyop0v8eW+mGM5Z07zg0q+wWMnZncksWsvJPHSabkmSF+kPzq09UMfr2PYEXqg0Yra\nIkixe7mPk7bVF8esj7v6NDVW+GPRWofx0ydPJPGZ82wvnQv5kJUoC2vq0KEjl1xHp8OcW5c2Hx/n\nx5gR+Xi4sjKfxA9//tNJfNPBQ0m8d8+BJC7JDxJBVs+Y+miuN2Twi9owwwUByuX4GZVL6veUOScM\nPGnXUD7QF0u6j44Pci45QU8nQKl5ieYo98/n9UU3yiedz6dYxPIRZV1/LJUBR3/QKhQyXjOUdSx1\n15drneeGch1a90Bybgt/BH/OUSmX8eLb7gAA3PtRfhQ91+QPsSePHU9il/GMZSH1wS4Y/FEtq92z\nXkyv5MVXz5PFqtIfL3T/5JlC+jo0dzI/GG26hsOLjevdLv3oCwG2ZozBYDAYDAaDwWAwGAwGwxbC\nPsYYDAaDwWAwGAwGg8FgMGwhroNMKUAuiGito6Okuio1MSeLD4aywF+rqWuqkGroZI0P70Xv2iZl\nzUNokLI2THNd1h8R6mVNdM3lchT3Zf2aVdFgl/Msu1QkZXf37P4kPnOaVMG1FdLk9uwmxXv/XqG8\nC31uaZnnurC4yPJ3ke77uYcfSuK2SK+mxiNpy/VYcO35hPcezVjrW5D1UkqyeK0TWqpKbkoFXrvm\nUE8oz82QZUrzwEk8xmZGtSprv8itbTSZc41uvPCzUGSrJRY4KutHFGosfK3HMiYkJ4uy1ksoa420\n2syVlRXKCnaMcY2liXHm83qDOd9ukOK5tkYaeqk03PmicCCVOpsWq42+qdW/ZPcM3WzWQngZsqLU\nWePcTNdE20T/omsSXf76UtVKxYNlUEGodGOpezC4DnwOh5vyWhoZxW2v/TIAwBf9vbcl27tVykNz\nsiZ6Rejv50XSsSKyR11/py/yIog2/tjxU0mslPpwlGPFqI5zDcpUlmONpXb30xO3JXGzyHVZzjzJ\n9Vranv1Du8xxrrjO8aaxwjzI9XjdT5ykHKbk2beca7GPHJG1alpt7jNz8GASr8h1DDt6vR4uLEX3\nrpjXtRPkuZI2WjpL+UBOaPQdkUOfPsO1fD5z34NJPDLONr1wjnOFvqw3trq+nMQFqU+xRPr+9HQk\nmdb+oSYSJKX66/rQ0zu44G9HJFOnzh1L4nvv/1gSf5GM36IwR6PBsWt2ilK9isjWi0WuVZLqr4a8\nr9mAA8cQHRt0vQ6VU3Rl/ZNQ5ToyP9a1XlQ6omWWZN1DXUesLFP+9Bzy0oV9M3wKUnLZVpt9y9Ii\n5fS7du9K4t27GKvUf12klOnFWS+/DkQo/a7eA12TZNgxMTGBt37d3wMA3PcpSgQ//8gjSexyg2VE\nWev9hKnFawcv5py1+LJKgK52UeAsaVLWcVl11GUqUiYecg+yZFVZOXK91hZ5vuHc4PuZbaozzNed\nsSD0EGL7vKEZDAaDwWAwGAwGg8FgMAwB7GOMwWAwGAwGg8FgMBgMBsMW4tqtrYM8apWIbj0xTuej\nrqza32wJHdHJCtfyLahYJK1a1Clod4R6JxS3iXFKNspVtQaUFdcdj53dSWvQ8fEoPnWSrhhtce7p\ntkn3rJRF3lSkDCsX0FlicoLnd3J9R47QzWBpmfTwclWouSINOHP2DMuXleZHR8VeeTQqP8gNNyUr\nhEcndngJ+rzf1Yq6bZGCti6rqved2ISLs1Krx3t/fImygqZQ8GdHhdJd4f5lkfGMlLn99KLQyi9E\nbZ4XKVVb6q52iy2hSO6eJB18tCRSqhbp/YUS6eNHjx5N4nvuvTeJv/ZNb0riWnUnCHGIUnspQb+7\nfei7cA5BzKtPU2rlGn2Kpzu4mLQvqBSf4TaUwmBb7It0Qs9yVNoWNL2r0HezKKRaR5EyudTpxZ1E\n5UhZNcwoc4PmPuwr89fGJ/DKr41o3+XJvcn2fJ/P+7jjM6m/VEzsoMwCt78qCdVlCW32OY1lykhy\noo3six4kP03Zqz9P2Wug+4xG/UJrmdIh16YcoFRmvzE6wn6xWKFENieucY2+uBCOqSMb5ShujH1L\ne+VkEo/tpgTJNVjfvNyD2sSeJO6XKLEZdvTDEGvrUfuGXY79G9sAYGqCc4wzJyhN+9j735fE6+Ky\nJcZTePIEx36Iu86OaZZZnZR5jswzfOr5Fzv7ZiOuu1jbpvo5bm5Kvq4uSR1FGrXeZHs+9TTHqP2H\nmRf3fuoTSXx+njKsQ/sPJfHNR25N4vExSqLUVWhmKsqjToYt77DAe5/IJbKk5TpuOekrSmVxcxN3\npHxhcBtqb66n0vPqvFK3q2tNN66vSkRKJXEMFVmazk217rt2sb/U61hvMrdSw19/8DgXyvhXlXlz\nT56jvkj/VMI17KiUy7jjRZGb0t99y99Ntuv8sNvgfcjL0hAqxdmMDEUlPdl5Oli+pLici0+W7Ggz\nyJJMDTr/xefSOOveDLdc5/K4Xtd3LfbXV4vsul9+nn9t5W8djBljMBgMBoPBYDAYDAaDwbCFsI8x\nBoPBYDAYDAaDwWAwGAxbiGuWKbkAKMY06G6XlF2lF5ZE9uEC0qorFcZKO2s1SRX3jpSyotAjK2NC\nlRxTKZGsuN1YYDm4lHobOFK2d0xR9qTcTw9KrJ544uEk7ovrRkHkS+qE84l7PiTl8DqqNe6PgPsv\nr5B+PjMr9GSR7oxUou9nDz4wWI4yLPAeaMfUwWVxKvENXte4XPf0OONWm5TKp+dJna4KRVXzL+94\nj/fsINV1rMRzqRPBmMiXji8yFxv9qL63TTPfJsTlSamQExXZRyRQXmjkKqVZXSFN/P4H7kvidZEP\njI7UkljJgfmcOlBxey6nlOThlphcDBdTaVVqlKaccl+VPaaUSdK36A3VW5VFXkyVKdhweYrqoDuF\nl9Qr1YjK2Q6FBppxfVnnRCj7S/kqpQr1+uS82tcqdT5I+sPhzqFCuYK9t78UANAP+IxXwf6kGApd\nH7yvB2+6OYn3H6K8qBtQglhQKViPz3k+9ZMH/7N07mwSnzp7fxKPTbDPqeyL5BrNNseDxdOP8/xr\nlBHdcZD9w7LmjV7rxL4k7ixRSlMQNXDuEGUkjac4/gU7KUHqnKfEt3mOzkFY5Bg5I7KaYUev38eF\nhUhqrHLi5jrvz6w4yIyOcYw/L+P6sUc/n8QTk9NJ3OlwLtL2jDsnmY+VJbbjjj2cr7RFNjVeFHeV\ns/MAAH+YuasS2+4SpdOf/+RHkvhPP06p0Zkz8zy/jMd9cej5+Cc/msQPPSBzJOn+1pZ5n06fYc5W\nRGIeiNxqx2R0L1dWWcdhhHMu5Za0AZWC6DihDqDlCucqOn/UsbyQIUvWMp1MCtKyApVuXOrEUyqp\n5GewHLgi85xqtTxw/7U1ztE6HZWBsu46X9N7k3Kakj61ITKlHTvoSqfzuGGHB9CNn7NX3H1Xsv3w\nrXye7xUZe0GuPeyr9G2wrCRLoqPz2OuNK5E6XRxnlXOl583e/vxLVQxXCnNTMhgMBoPBYDAYDAaD\nwWAwXAXsY4zBYDAYDAaDwWAwGAwGwxbimmVKhWKAfQdjOqUwhpaWSc3tyIr8XVm1u7silEVdwVto\nlfmSFFogZTcoMs6LDGpsnFTJ6gyp3bncpRKGSnk82bZrp0g9cuo+wLgjVPEw5HnWm7ym0Mv19Si/\nabUoN+mKlKDR5HalG682eH0TE3S3KBZjeYYbbkpdL/RYbERUyjMrvGfCWoYTPcXsBOVAG45SALCb\njG4EIrMIc4xnRnjsTbtHknh5mfm3uCKuGBXmxQ5xXzoYt/OL94mkTVeHl8dJHQdCae9mi/sX86T4\nzl94JomPn+Bq+bccviWJqxWhAUuZOaFy9uUe9ISqXNhGMiXnHIJ8RKFWOnbgVerD+6OONz5F2VY6\n7mC3qdRtk3OFKSqtuFuoPCrlYBS7DPjBNOEUHXdweNH+cs6Ui4bKpORg2T+Q+xHq/dBv8z64ZPuw\nuynlcjmMj0aOf2tQ94jBbjPqapMX9nsgz3w+J1R+xzjn2Od4kQCUZf9+l8/5nXtE1ih9znwzkol0\nGszPW2f593Wh/d+6n3T9J05zLCmAY4kLKRepTPGidtYoiXhw6akk3lWl1He18zSvw1O+snOUfScq\nLH+6sn0c3MJ+D6sr0TU3G5TOqFxncZnypdUl7fPZFq0O79XyGqWpoTx7fXGW6ctDvCrmVNrPT04w\nd2498qIknondr4KAf++usC5PP0zJlM9TVqWOXyoNKUs5TiTB8wvMEe1/CvIstcU5cHFRHBBbLMeJ\nE+biYnRv2m0eN5RwdDYqFOVapWfvh+KUJLKclLmdSA1dhpxC59D9/uCxTZRg6EsfHxSkr8tHx6rk\np98TSZP0fzlp70Aq3GqyH1CnHh1Bel32SzrelMTBVO/TyirLLMj9UCcmt43mOd57dOLcmJhm3/7y\nV9HN7/4HP5vEoTjYpmVwV+YYtJl9rnYukCo7Q2GSnvPo7imN+cDys9gFPkMGl3ZfyjjYcANj6573\n59pxyZgxBoPBYDAYDAaDwWAwGAxbCPsYYzAYDAaDwWAwGAwGg8GwhbhmmVI+7zA1HVGFlMVTFOnQ\n4gLpiCvLjFstoU8L3TEnVM2CuCOFfe7fWNOV4FeTuJSjxKQ6QeqlE2paLqbP5kSmEOapd/GOdEiV\nHZUClZ6wvGK5KvsLJTRHumWvJ7R1MJ6YpPRpZYX0555c67pImQqxG9VzzJjaEmzc2WaP96wgtMGu\nOJtcWGf7TI3x4g/sIPVXbhMKQs3dKTRuLy5YOZEhdMXNYuGCrNQ/ymOLM5FMKGyz7JExnr9cYE50\nhF4tu6NW4TnV7ej4cUoAVldJZZ9WpwCh4HpZLT9XYF4G8rwozdhvp5XiRaaUcg2A8kx5H/IpaRKp\nvF6dh0RSWBCavloPpUyZpC+AUoJlr5RMKczFfx8sTUpLkPQqLu8s4LxoaDJYm2mKb4bESfIxVMul\npNDhpoAHzqEcSwV6XT7vOaf9D5/3vGx3KYa0UPqlv/ep/bURtQ25T7nKscWPUPoYTs0m8VjsVJQr\nUdKy88CRJO5iMonbIV1qZvbfkcQjXTofrYlrYU9yrlLk9nHP8W/vDOPFPjvY1RYlk7VRjrkqK54u\nclwceoQ9+MZ5AMBMTV3qRHpSYDv3muxPqiJDmRaHnL70Fb0287GWZ34VBhvaoLXCtlhpc5xcO8Bz\nPXw0GlNO3Ecpw/HHKE16yc10ZTn00pcncSfHsWvPPubX+DhztNulDL0yyuvecwvHq76M2Q2RAavh\nTU/HMX+pVGvY5znOAbnYIUmV+GGobjcqodBjda4iMnrth0Vb0RWZSk7GMC0TMp+FuBmlJNCxg2hX\nZEQ5zXP5Dbcl8rNQ5nHViso0Za4ukqW25HyxqK5ajHsik1O51fT0DGvbYB/VWh9yWZvABQ7FcnTf\nR8b5nrBjlq5ttQpl980edYxe8kLdkTbnTnR5vU72cxnnRkrmTDid52SVkaqiugLqPjJ3yrC/DK5Q\nbpVaKuOFiu1jTnTdYTIlg8FgMBgMBoPBYDAYDIZtBPsYYzAYDAaDwWAwGAwGg8GwhbhmmRLgE7eI\nfl9pikJ7FLnQhXlSE/tCk2x1ZIX9JveZyPHYSoll5vpCw+xyn05DVvAvsfywx/2LxYiKrivEK30z\nJ44X3vOcrRbr2BO5S7erFFyeP59XZxOVxLCcjsR5X0vifpfHLjVI1Vy+0L3kuGFE6IF2N7r/k9JO\nSrsdrbEddoocqNFhnvVFJlAUmuFISfYXB6OmUKdbbaHsqlOO0NEaDe7fi6nFy12ec72p52cZlYrk\nnspkJOVWW8ybxx99LIlVjlQbJ+17vcVz5QPGFaET5vNC61SJS7h9vrtGbkrR8+xTy/BnuCp0SWPu\nNs8l8drSqSReXz2bxDMT00k8OUVKcChU7bbIeLo9ubciTUxJGDZyM/XYqkxJqbZK5R3soJQqR/YJ\nM+ROuns/wzZAZV5pVwp3aYFDCOccyoX4uVRpgOyjA6Lz6rKULmcDPqVf0vEkxanmuQrsFzrSR3RD\ncRbMqztXJBUY8ZTi9leZw9URjhkNyfNKQIlBuMw8r5U4DvVVErFOivuEdItuhfdgrKhjpMh089ze\nF7lf2N8+fU6z1cCjj98DACjJPKSYZ+wc27Oo0rSezHlEDhtURMYsjks5KbPfYzuOjFDiVBAp92qD\n9/wjH7snie+N3ZKeeIoS2FaLbfX6131xEn/37ZS13X7gQBK3F9mHFaRvWV+jTCqYYH2XChyX2lSq\noFqhW1NTpCTdLmPvL30Sh19e65CPdVnZji7MG3VT0n1S+0vpOudWOUpBJHN5cUrqizQ3kHlUoSs9\nn8tvFJhsUslzqNLW1BgzeDxTJyiVwJRLTJBSmTmk7pNaTlmWA2i3xEZToPXcDti4v+Uqr318jJKl\nguTOusjEtGE2I01Ky6RTk4srq3DSXoNdkwaJny85jdZr8LQos6D0NWVUMeMPwy6JJFzaGfNy0Gc1\n9c6gOaSl66n0fUMlkFeGjXlUqom18RFkbL+0jEtqqTmRWYPBSwY819IkxfaZLRkMBoPBYDAYDAaD\nwWAwDAHsY4zBYDAYDAaDwWAwGAwGwxbimmVKPgS6rYgq1xbZR6GotCJSXcdlVXC3Qlq1F+ecnEhP\nchCabEBab6VA2l4gVL3mGmlFi0Iz957lFwpRPXviLNHvkS47UuMK5Tt370vi0wtnknhZ6t4RNwOl\nBBbECqEjK9OvrZLi25Zjw4wV0FOqglwlPufVU8JuBPT6HvPL0f3fXWMa3rSPzhwjZXF3kZX3ux2h\noMnnxIKU01vnTVu4wPvdbMvK/uJoUKqyrfpCg+uINK0fuwL0hQrbkhwrirzNFYWyLpRhbcynjh9P\n4jPnKJMpyQr5S21eU1dkL+Wi0JmFnlcQSrJKr9zQ070VLnFfC/JCsUzRW9XJiHG/RblHHswLUQwg\nH7BNCyrBECecojzbrQ736XRYflecIxLqtcjFnNC3vVPbFKVhKt1XaKMYTCEVonJaKpOi9WodmC8q\nEwjUxeB6qFlvAAQANhSRYZ/Xl5PnJy9uW7lgME1f5WJpQrdQ5PXea7uJdNXlSNNXVxJ/4mgS9+Ox\nwnc4Tvgqc6zVo4NSMc8ymh2OVa3lhSQu1cThSJ6dxdXTPGeLMqh2TvKgxH2aS+e5f07kSyIP7VdS\n2TjUcIFDfjRqr8VV3v+cSE31ISuqw12Nbd73IpMVyVBT3L264sSUFzl0uM5ndWSGUkrNzcU1ys3Q\nifKhK/OciUk6dT36+JNJ/EfvfW8Sv1IclPKLrKM61dTkmSmKc8/ew4eTeC3H52dllfXqV0RiIi5B\nzY442sX3T+/jMMI5h2CAdEbbLO0YlD52A/2UayCh/Y/ON/VYla72ZP5RlHlzIP1hb0OmlGd5XZEg\n9PtSX5ErFmQMCzNcK4sFlWeJw6nkQV/cl/Jynzr9wXPl7SZNIhw2HK/0HWB1lZLGtQbnMClJhYYZ\nUgu9h1lujtcDKalRxj4pGczgKU/alTB9tByg702DnSsz67l9dEq4Iiuk1K7h4O0pOfYmyvRZvVSW\n3snHm7KEbJtpm8H7b07q+vxL8I0ZYzAYDAaDwWAwGAwGg8GwhbCPMQaDwWAwGAwGg8FgMBgMW4hr\n5oB2On2cPL4cxUKHDYQWVqlyJf1eh99/eiIZETUAqkVxTRJphroZQaRMHXEzarcZpymRPHRjZXov\nNL2u0MRHR5SSSSampVgAACAASURBVDnSieOk2p47d0HqolIW1mtiQiRZUoFOR84rK6Cn6ZZChVeW\nVXjpqtPDiGLe4eBM1M67xpiGNWmzWpFtf2qJdMyCUFpbPd6J1XWh8veVAs7zhrrKfJ702bbQdCup\nb5RKh422Cys7JVfRo7xQJMMu/3JGHJE+cf+DSTy/zOubKVKqNVqhlGF8hCcuCGW3IOKUsJVF3x32\njCGcc8jHFGql2jqhqPZTbg6UfVVGZ5K44HjPQ8k7dXlQKVtb+rdigfdzokZHm2Cc511ZXk7ixcVI\nKtJpyjnVBSm1ir24VahBj2TYhiMcAAQiTUsZksgzAMlvL3LPYmWK20U201XJTUInf/6pnNcCB49i\nPG70xfmoIH1CIchwJMmr7EjkZym5mMjO5HFTSZQTqVu5xnHxZJvbV+cpMZqY2R2df5Kuarkax8dz\nC5TMFEVW0JMcmth1UxKvNLh/o8GxLR+yzKDEvmVsz61JfPrciSReA5+FqSqlL06chh6fX8R2QbUy\nipfdGbkPLS0tJdv7Mn576SvKoyIHu8DtC0/R2Wqpyfs8NU3ZUUmOPfuFY0ncFAcZvyztXuV4URMX\ny3NL0T7Fiki6pZ9ri8Tq45/4RBJXbzuYxPvHWV6nqVJh5k7Q5NwpdNy/tJvXVOxx++gI50V5cdEp\nSO5syJTKRbmPQwjvfWqM2oC6I+k4rVKJnshcdXs+Q5aTJcVIjTMptYHMQ2XsbOaidnhmhePXuXPM\n250To0m8byfbWOfwaqwSpJx9Bs9r+6k+cvA+7Tb7nNFR1qGjEs5tJTUBEpmSSMOaImNU+Xl6aYMs\np6TLu8Zci2Rpw/0xJRhxl491eqrvjj6tt2KsEiSVpGTIs7ZfXlwG7kquV8awlBzJD9zuUrH0XaFI\n7dOWSxJnWVzlLj7lxTtsIh7u+akxYwwGg8FgMBgMBoPBYDAYthD2McZgMBgMBoPBYDAYDAaDYQtx\nzTKlbqePZ47HtN2UgwkpczumST9td2QlfVlx/UW33ZnEu2ZJe84VSZ13wWB65toaVxdvrJM+W6tS\nPpDLXUp9rAilt9fmcefE2caLm1O1Rjpwp0fHCa2VUiaVStkUKq/S2ZUqGmTS3ElRbMcOCX4A9XWY\nUAgcZqpR+48WmQdrmh59/icndLiOSJNOL3EfWYQfO2oqRyINr9vlPR4RGcKqOFuot0G1LO5EMfJy\nnDBwU20cCgdzpc8yPv34F5L4occeZ92FYjc5wbw9spv570Xi4vVZEAlFp8vrKCmFz20jxwHnkIsl\nGYE6AsizlKJjC32yUNuVxL3mfBLn+qT+Lov7TFXKqYrLWqfNtla6f17cckZGuP/BAy8HACxdoLzx\n2FN0M+mK1DIUGYz2eQVx6xobY46gRKlRV/Ku3aCcoheyf9PnRP9TEOcSp/KobULxDZxLZJD6NMjQ\ngJzkUCmnjiCD+1sncoNUZ6B6MXHz8lJmt0aK/5E3f3USF0L2adWxaJ9Cj9Iylc4dkFyByH7VZUzp\n4Jq36vCn9OBqTuSbefY/O0Sa0u+zHHVL8dKP7etxXMbP/2cMM8J+iNZCdM21HJ+9Qk0kfyIdLI9y\nbvH5/qdYjjjOVMYowRndxVyY2sl5xsJJOu45zzJVsljoMV9CzewNmaKMP+vixLJjiv1GpUQZ3PlV\nlrdnTBwsZZxurbO/urBC+fb5BfadtTN0ZVoocFRd74msvCPSdvBcI7Gj4IpIZYYRzjnk4j6iL2OV\nzhN37GA7qASlN8iND4CTZzuX1znjYLm8uhPlZHxSF8aubP/bhx4BAHzgc59Ltr3iZS9O4nMn6aR2\nYZn5dHiKOTwmUl91k1L5tiItzxrswlYu8XkZJP0CgHx+uN23FN4DvV50nceOsR84evRYEvf6uqSC\nymcHQ2VK6VjPe/Xyng03nJR0KMPtMVVHGTvzMoaEkrsqQglS8nQ5f4b7UkrOnqG92rjW4Z/teFzR\nVaSsrGS7tInPdFnKLPSy2zW3gni+lHJTUplUKlsGu6Zm1iRDmnejwZgxBoPBYDAYDAaDwWAwGAxb\nCPsYYzAYDAaDwWAwGAwGg8GwhbhmTp/3DmE/ot6mHYtITcwLjbklFNW9e/cn8Xd/9/cn8Z7de1m+\nUumE7piT8pWet7pKKUde3HKaQqtda0TUyulpUnN7HboT3HPvx5J4dIIU0gceeiiJnzj2WBJ3m6Rq\nKp2q71mX9RYlA6vL4oogdPYsOlWKihgT/bJomsOCXuixuBZRlIuiE1jpsJ36ImMbE8eajtB3a2Xm\nwVpH5B1KVxXdUVfou6fPPJ3E4xN7kjjsscxucCk9r9dh2doMq21eRyCnb7coh3noQeZWR9xMukLX\nfvTRzyfxB/43pW5v+NKvSeJKibnt8syVdofXNzVKqvBIdfvQd51zyMeSHR8Mlik5kXIo8zGo8n72\nRiiH7C2Rap8rsZz1JtuoIM5ZhQIp9UqtXF1jOaurjNuxPGRslNT9iUk6Oy0tMEda4uDWUxmWfDpv\nqhytom5KlDjkRtl3uZrISlJMTV6TSuucU2uM7QEHj0Ksv+oH4k4i+VGUMaYkfUiQ03568G8YTiRI\nQcoRRGj66n4h0gC/+7YkVplSIqgSeWUg0qRyjnkedJgHvb64Jkk/6vLM/6L0ox2RiHS7LGe5IC52\nju5PSg5ue/bZ2iH2isM9Rim6nRZOPfMoACRObkDaqaa9zmesWOX9XFqi7LkjOVUc5bN64PDhJM6V\n2KYVkTo3RJJbDEXmIvKodZE6n4qdw5aXxdVK6rt7lzh0iURxqUFpULPJ7dWiPAOSx+sN9nPa7eYL\nzK/qEfZ7kDrmZWxuiUa5Fdc9xGDJyrAgCFwih1cJMUTeqPO7MNR+l/e4UBC5qrSVFxmHypFCaQjt\nc3ReXpBJyrw4FX3iqaMAgOIhzs/bFdb3/k/ck8SHKszPsbvuTuLq7t08v8iOWuJaqo5SY6OU9Lbb\n7YH7VMRZcl0k2zouqzxr2NFud3D0aORg95GPfDLZ/vjjlLd3VWqqeh1/efnGVkGnG311vJS2LZbY\nhuMjHGfaMkduSqyXGqisKiWtyajPDSxVuV7YyIWsS02re9QpUuYKqfmg3GN96VFnJZUPSf+jMsXU\nNwKZI7kwdjhW10+pobpWepWGbyPHLGPGGAwGg8FgMBgMBoPBYDBsIexjjMFgMBgMBoPBYDAYDAbD\nFuKatQsOpB4pTShUOlqPFMhehzTFlMNQiTTF6f/T3ps1S3adZ3pr751z5pnHmk+hUCiMxEACVINk\nC60WKYkiW9GS3R0dYf8Bh8P3vnOEb/wH7PCNHWFf2BHuYKgpUhIJShRAEhQFElNhqhE1D6fOPOS4\nJ19knv0+SWRKVajSAbL0vTf4kLXPzj2svdbKzPdZ79ETOsBUdqcICEuxqGSBQkEWt1Zbtr06bMNr\nq0ox2bP7T0zJOhu2dSnmFmSxrE3ISvzYKVnJPzrzYVZ/+N5bWU3b1Mam0IMmUp6IkriUVnjauQav\ndB7sWUvvYhXpL7KiOHWr9e51WAPaUS7Lcl2c1H2tIzEi8HG/gfcksL01YN/s7Mqyn6vIgu/XhD7F\nuPbNWH8btgfY5lLeP92HDtx7y8uXs/qj9/4+qz85p4SC5iaQrFD73IEN8I2/fzOr276ekaOHDmf1\n4SPC+pJEz0WO/IU/2hY+yvM8l+tZk5nOkOK++ET+PK6kr+etNKFkpZ2GUAKfKAnSZ7Y3Zfen3btU\n0jUvl9R+2RfdudNNX9sEMjBek8V7ckpI0eaGzmN9TaltIdpogvQl9gX5mp6NNKihRrIc7ZwRY5OI\nWA5CEka7z/E9z5Xze+ela4wwMleE7baIZ4Zk0rDkCR+YXOATU8J7Yfugpdc7eWCHA6zCKQ4gHDK2\n0ibs8X1oWUfN5J2+4SRQuy0EQnC9CHiO0/EmSIti6p2P5KBRV7vTdpeudtPPZqaF99QwhsxO6XkL\nkfg3AdS5NtfH8WTl0aNCQupNjYcTkws6hi0lqsxXdZ3nkOi00gEq1xtH2kAty8BV2x29TwS8I486\nwri7DZSlEzJzEMk9wGx2N5WsNN1S0k4KfHxp/mhWVw4rLSffex5+/F+EZ4ykUqc5IfqTONX1C6PB\n14+IDsMTI8xPfPTJHpBdDBV9c/EQqFRc0Pjzq/eFRq/nuuNZirnP//d//Z9ZPQaU4A/+/X+b1UtH\ndS8T9HmlAtK82hq3UuCWxFScp/GU6BWvTQH7JNbEBKpRV6PRcL/59TvOOecuXlDy4p1lzQlinO/9\n5WUOTlkaOmscgoT8UzME/tXYhHCkY8eXsvrgjPDtT87rvK9eujzwfbx7nNoOw1my10ccd6GGfUzk\nNQiIC/WlQPIvkNSIzijAxfd9LhOhv+wghXG3LrxwdQVofr3bpz3xuFKVvRznJ5xPDUaZRl3mjDGZ\nTCaTyWQymUwmk8lk2kfZlzEmk8lkMplMJpPJZDKZTPuo+8aUkjRxnbBrQ0qADDDtZzuQfSlsyaZ0\n9vz5rP5/vvfnWf1fFYQGfeXJR7K6NiZLcLsla2IY6n0LWHW+ndd3TfWW7NbnLnSTkBpIQZqfkR04\niWWT3NqSJbTd0f5eevHr2r6lbc6d10rnLkFyQl7H7iq0UspHVkQqQg4rxLPeW1W63RB6M4ryfM/l\nC917deGWrKtzVd3Lg5O6fi3YMTfralsrDdlhETDkgkgW7O1d2eHmJpeyerwGTA24RiPW8fgxrHI9\ne14AW3YaD8borl0SxnZnWQhMpaJ2MFadzOo8bLdJKDQmxXtt7t7QecSyeO7UkZBSAOKyDYtvqCSC\nUVcXU+q2jQTXH25sFwSDbY3so4oV3f9oWhbr9uoneq9Q/UwCyzRXi6/Xdb92Gmov5bLudbnSvf7t\nliyb6yuyG1crQhympmTpZ8LR8u3r+tu1FW3f1LMxfUBtoTiJe05shmTSEHzNTz99/UYbUuomlTTr\nXUwsQKpNpSQ8oozfJwrwfXsYSzzYdJmk5bzBVm8P176xrX67CctuUNUxjCFBZ88FnCRIeUrUV8TA\nYUIfOBRsvQVYibG5i3BcJdR5WJInUiADRZ1TE22o46n9M12o5D88mFK5XHFPPvUV51x/H078mLhJ\nsazr1o5vZvUukIoxtK8L5zVeBGhrTIcpISlkuqL9+9g+YMpaz8SdJEJigkD3pAMEM0U/Mwa8tQWU\nvI3ESab4VPEspaibHZ3rxoraemFc/VJnG9hWoPFzrNo7pxEP5Eqd56IeQOIj1jFAnQs073NISsrh\nWhK/YZsoA9fvC9jEzD5GymQANO6jZSGzf/mmkkIvh91tmkjvWjmrNNDpWY2bHy8reevkYWFpTx4X\ndkfUaFtT7r54wIi4JfpOJhJWKuoji0VcMygI7g/W+SKp0267K5cvO+ecu3L+TPb61urtrCY+m/Th\nqP/0/jkv8gaTrH1pjn2plB5xSGIjyaf2EePf8yW1v1de+UZWz88Dx9xWn3rhI6XWcv7RT94OxqrS\nu0jauZttRlOfPhc+V0wg83B/ct7gDjeK9Bm3sauHeGtLz/z6msa5jXUtC7KGmmjS9jZS+KLuse3u\nan8vffVlHDsTDOkh6WsVA499VGTOGJPJZDKZTCaTyWQymUymfZR9GWMymUwmk8lkMplMJpPJtI+6\nb0wpTVPX6SUkcdV2Wvq3dmRBpL01hAXuH95Saow/cyyrm7BnvvzcYzpwYAgebLglWHYnyrLDrm3K\nKrX3XqsrS9lr33j597K6Nqb0g+UVISY3rskeODUtTOSPv/Pvszr5wQ+yutVCWk4M+zDQByZtFGC9\nZM3kqD1M6daN0bZj5gPPHZjoWs8aDTXDibLsaD4wryauXwdJMrNIlSg6WarHarr3kxNKG9rc0D3M\nLyzpvWAPjpEOwlSApJcgsduU5frmFdlHV1eEjmxtaxuuGj9/QAk+UUfWP4d0hUpFFt9SSW3x6JJQ\nmtKYsJYdpFzkQ1mPm4GOYbymfY66PM/LEtTiGPcKfUufeTEdjE+6VG1nbELXJ6wLH4rasmHDSd2X\nBEE0g29MDGVvBfoAqEGIpJILF67oWMaEr1UrQlYOzCnlrdGQVTxfVV0Ceud8tWlaVPuStfqcnYPT\neLyHxL6bJomLeslqDTx7q0BHjhxUX6G759zqrv4vpC0aeE+M65QDDsD2d/WKEnE6SLkplIUeHUMf\n8czJ7piHwEDnA5GLYSsOPOCvDHwLgCmhbyMsywSxPBqxH6sNJbnBOEwr0bWkrT1JR3uMosIocivr\n3f49tyVko1xmApBuUrmo6zZzUNjhQlvW7JkJPdudjqzflZIwKB8JMh6SKPOeUO6QaFhB92h+rNum\nrm3qnnTAqbVaxGaAbyLtiKlQYYAkOmIiQC/ZtazX9Xp9V/XJJT1jLSQAeUAYdnr9JJrxSCqME3dz\noztfOTSN+V2MOSCe5yAYPCVnslKeWFgfajIYmSzn9b5eXvOiv/34o6y+BjR/fb17r/JAtE89+7Ws\n3qkLVzv7ySUd40taUqBSVRtaRvpPnii5N7iP5LkyNSlEghcRLtZEuEZdURS51R7KfP0T4TpJGwl3\nfTiQ6mFI8TAsh3iXj6UecphDtJFQGgPrL4OVyrDxgOgSD0B/d3BR49yzzz6b1a/+xY+yevWO2g7P\nqX/ONXg+83BhR/eq7rnzGnQw59nd1bhS3wI6tK7PMKurqjeBI20gJW8LdYxlGogdMvHUw/y3L7Wr\nh2G//tqr2WtMWPvS81/Nah9RTXHf1Hu077c5Y0wmk8lkMplMJpPJZDKZ9lH2ZYzJZDKZTCaTyWQy\nmUwm0z7qvjGlrrp2Iw92NaaZuIC2Sr3MrIVWS9bfizeUGvODX2mV903gPa8893hWL1SRLMBEA0+v\nT03Kvj/fs8dNjsvqGwEZKFdl6xxryzK8tCSUoYK0hAOLc1kdAqc5ffq9rL5+XRhCm1EUqa4NURnW\nCb2/e76sEbfg+S51xZ5R/sScrLMlWL2ZVNQMkTpV0rWfKek6TVWEA+0iberCx7oPExO6n+GWELRN\n2Kg3N2UlD3zad7sI0PWrsuZur2sfATy4M7PzWX3woPAS2is3t4TOTU9pNfmjR5/QfqYOZnWlAMso\nPJtXbutca2NquxPjqvPFEY+lgDzPyyyMcUSrYzq4pjWXGAVtvYH6h3FgkpuwBEeRLJkpLNN59nWw\nXtIynfbs/pE/eEX7alXY2dqKULqV9FpWT06qTc0uyBJemlD7ypWFOEUeEroQS8Lnqj8NiJgX6/RT\n5zaKyvu+m+/hfXeQZPXWr4XI/u+/+nVWN4Bo7LI9IfloHEgRDfIl9FH9tfq6PvwL2MLkhxrzyr22\n9dIzT2avJU3gjZ7aIZGlBDbxBDbufns32i3s474jhgXECWNbioTEQl7bd0hKjfgYRTWbDff+R285\n55wLO7rTIU6YCY/zC3pWifSkuF/lqhDUfFHjUg44WBnjWwD0lshGB9Eivqdjm6x2+5cyZnlMJfRx\n/8cDJGgVcX7wga9jbhXj/RdL2k+IhMrVHY2pO7Hw2aee1fWYndMcrAwk0/ndvosIyihqc7vufvi3\n/+Ccc+4bLzyavf7EMaFrHlP6PCJLwcCaSTYJ7skwLIPJcdfXNbd577rGs3ZlJqsPner2aae+tJS9\n9pXHjmf126+pj5zZ1vznyJza88am5vNN4Po+kuiIW+WR8sVxc3xcc7pmU/shbszXh6UsjaJarbY7\n30ucXVvTXDHlchB9hA4QkLvYfx+mlNN9eeLpp7J6bEbPZx1Y7fmPhU3VV/Vs733uG9rz4z1/+pOf\nZPWHpzXmXfzoQla3WkIzvSHzD85tiLiNOLVyX9r7LB5GejZ++aufZfXZsx9ndXtXfUIKlMnHvLaI\nqNoW2gGX2fA9/W0ux3uF+cQQjCztjT8Rkmz/7u9+nNV5JA0/9fSL2jNQ6AR9S5oMfn/XN6/FEhSM\nGL3H3NAH1czMGWMymUwmk8lkMplMJpPJtI+6758dfN9zxVL3W7O+BXnwdVEBC7NFcDgk+FUpwS+D\nTXzzdntL9Wtv6du8BAsIvvKCnASHsSheiv2fWtI3+5Vvf9s551wb39i3sW0ZTpuDJf3yOTuLX7Lw\nq3aCRfaee+75rJ6bl2Pm9Om3s/rMh1o4rdXUN78Ov4gV4Lzhom7R3jfFI/8rtXOLvcV3PR+Z9/im\nc72hX9+2d7HwV03bH53RL4pl/LrS3NYvCdWcGuOddTmUzrz+11md4DYsr+ob3jSn/a9tdH8BiBO1\n1UNH5ZY6dORwVk9P6ZemMfy6k+J71Kk5/TpWrmLRRiz+2IrV/j2nNhGlaivVMbiosECehza6taNf\nL0Zdvu+5Uu+b+ijg4nH4hZHms3SwYyZhjeVMx6bljGltaxGzqK1FXKMYbQTfsKdwD/gOv2zu/fLE\nBczwDfzUpJxR1aL6sOWVm1kd+vp1IBjT9sWq2lrsaRsfi+8F/EUAv4inWIiP58E18R6WBXwL+Zw7\nutC9VvMTciItwdl48+atrP7eX2oxuc2W7vf4ktrHkTn9bYy2uN3QcxvvyLnGX24rcEMVsJBpgH7s\n9Pnur4SnDsn9dHhS7ic/ofsJTsK2OrQQC9zHfe0Tvwzx13a0Uf5c4+Gh8ny4ZDBulXANOtHD48ar\nlEvuS0923UkdLl7cwLyloWteRHhAs615RivUNc/h1z7euxZ+zSyWsZhmRe2igV+MG3DblDDWxb0F\n8AtYkDPAr4cF9HnzZfwK6mOhx5b2d3OL7lE5YIIF9Vcl7LOB+7++pvHn2mW5/UKcR6WsfZYK3bEu\nCrnM9OipHUbuXM+BUm+8m73eSZ7L6uce1xwiiDERgfiLP8c5ukjoIupzEcBV8+E1jSdrO7q3cyc1\nP/7aK912/uyzWmh5OtD85P23L2b1DNpnEYsDNxoaK5MYnUiC4I0hrie6vjjP7bsGyWA3BB1Eo65O\n2HHXrnWflRCOBd7aPgdw31//058P2EZ4zRPsqVSRC/SZ59Vmx2p65l/7K42TGjqGuHRwvDewmP2F\nM+eyuhBgwekhn3N4z4e1i3vVw7Pgr+f2Bu4iFsF9DO627R05g3Op5jDzU3T0y5U/gc8w77yrfuzt\nt+SSSzEniBkG0bdQ7+D2uuf24vrlbYRn/OTV72d1AfOjx049k9WthN4SzYs4D0/739UN0ufVDMwZ\nYzKZTCaTyWQymUwmk8m0j7IvY0wmk8lkMplMJpPJZDKZ9lH3jSl5nudKpa6tzIe9mQhAsSzLUEQb\nEhaeSwJYmSJarPX6Khycv/xIuEkYa5tXvvJ0Vh/EYqa1nBCPJ492bebXN7RQ5q0VWaIcjou2Ry7E\n2LdQFC5jHgvvnjihBduIOC3MCX16++13snqnLmtnuQYLe0G2rJ20uzDaMPveqCgIfDc91rW1Fngu\nsJpVsXjkuNySLoeVn1s7umb0uFUC2TqTULboc28LEWvuyJp5Z0XW8JVNWPlx//fswQdPHM1eO3lK\n95iL55ZLwBHGZOnMFcAREZ/pW9lK79/Ewta7dVowYfeFETQKtc1OootWLTw8C9v5vu9qPftsJySC\nQVwIi9zhb+liJV6IP3VpXpbMyUXd305TfYQfYwFNYAgJXicmVKh00ZICFnnmYqpxzP5SiwkXa1iQ\nF/bd8TlZyJ2vviLBebCH4oK8SV+/C1QF27M97u1n1PsczzmX7y1ym2DB0iMHZM39n/+n/zGrn3/+\n2az+3l8IabwNdCKsY/E7oKVFPOdF2vHBf7VhPU+Akmx2dGzvXb7unHNu/q3T2WtPH1X/E9aFjkxM\nqZ+pjQkrqFWED1SAEaVo/2GowTXConxbu2rbefSFBdAAeNT6MJjUH+32QrWaLXf+o+7Y4eHJqlXV\nVxw4IFt3vqi2UK6pH/aw2HE5p+e2E2oc225qYVV3WO3l+qqs5Vi31bWBOueAr7Z785Iy2uL0rCzp\nVVjP83XNhRot7bzTz6nhnLAQvrZwBXRAO239Swso8tJjJ7Ka18zj4urtLv7VFwQxgkqd58IeOnp1\nVRjWD19/K6vHx9RWnjou/LQNhCuKgJHg5hMv4ZyU/XcbuNg/fKzFUcOOtj8wqb5j5mC3XRY6ev+b\n14Vahk7jU6uiMem9iwreWAK+6aEfyGF+XEffVatgTOJg3KfBiPGoL/I8TGmSuE5vjOA1dH2oB5mK\ne+tv2V64/3NnzmT1+o7mn2xrVy5dzuqA7a53bJwq9B0VUXK00RLQk38aJPkt9DwdjMR4Q8IUiDI9\nPGjSYCX4PHX4kDClhQWMVZinlnIaK/ovjf7nG78rLL7Z1hzm/dNCljyMFSUs/ht57Mc0/wiywAF8\n9kLX32oKc3311T/P6hzG06XH9Nk/xjw8xjyH7Zxr/KbDupx91GiPdCaTyWQymUwmk8lkMplMIyb7\nMsZkMplMJpPJZDKZTCaTaR/1QDClfP7TK5jTptS3wDlsU52Aq/xrk7QjO2cuoO1WlsjVtv727z/U\nqtwNWOmYsvTE+ERWF3tpIuMTsul2UtnkOrDpRrBS0d7mDVnlnbnrMVIsKliVfG5WmNLiolbS/827\nSlza2pUtlDbMTs++249JjZ7S1LmolywRhsin92VpC2CfWyzo2m80tH29qde3Y2Ekr7/xV1l99abQ\npMkxWeyWb8uCubKBJBlwUCly7/3ePV88pPtXhR29uaYEp9nDsnFXPLWh3/zqVzp2pKzUkKzy6KNC\nYz755JOs3m3oWE6eUtvO5/VcTMyrnZ+7tJrVX3/+JfewKBf4bnqie32bLaWZRLDARsB+Yth6uU1C\n63eCdDT4M/PzQkJaWIF+qyU8JQC2kkOf5nva5/hUNzmrNieLfgfdL63nDrZyD6lNEbaJfdnKA9z/\nwAeq1ZcihfYdDLP16hBSpi/tWTtHnjpJ3Z4NlohOp6PnqlpS//Pf/Nl3svqlLwlZeuPjs1n983Oy\ndH+yovbR3lVfFA3B0XJVPasxEVinseJqbyz8f3/6M50G0MzdVaV9zcwKHzh2TBjb0YNCHw4uzA6s\nD8/pbyeQiuiiXgAAIABJREFUBLS5o7F4CkmFZeBIxN5SpmikI99gMuXzOXfwQPc6dpC8uLOt63P9\nxhX8hZ4fPJ6uVtN1jkNgjMBIZxd1Xw4d1fY3zgsx2d1S6tdUVX+bA7J9favbBsdhE1+cF5JXArLk\nrah/OHAEqEyk/mf7HY2jJWBKpTEkV2yqPTaBzDZgP1+5I2x4fkH4to+Utzizs482RpA45zq9c8gB\nxVjeEgL0/b97M6vrbfUzByfVD8xUmB6jZy+fZ2oI0Fm814dAjN6/qr6O6XnbF4QYfPxq9/5cA4tY\njU5m9eSu5s3rO2qHf/WRUpaOHxIG8cgjSplcwP2uldWfhBjnYsy5PcyhSerk8byE0YCx6mGQ52Xj\n8zCahmf7oJ6UDlLhrl28lNVXgSZ5uOZF8B57U610MN3YjylhykPUnn/bN54w8Q+fxbiURAFIZjgE\nYf8XpZTLLAAXZIItrjeRxmH4V1DQ/OB3f+8PsrpYUH+Vy2F5kbXlrL58WWOYh8/2e2WK7weSVH1C\ngP1t7+hz1o9f/UFWfxuf244u6TNUyrkKTpZYvvcFmNyO9id6k8lkMplMJpPJZDKZTKYRk30ZYzKZ\nTCaTyWQymUwmk8m0j3oAmJJzuVz3Ox260QJYnIgaJRFXAseBIE0pbsninYayVZanhIe0YYG9vqok\ngGZLtuEmLFfBc89k9cnFXrJJRUkls0g2CNuytLXbwiBojet0iDjoTCpI1Kg3hDLQqzd9UKjMzOyB\nrM6VZfP62Ru/0HsB4/H3Vrse8WQTl6Qu6dm9iYL5QLJKJZ3jVl33IXCyo81NypZ4ZlmW2cvLQnRu\nL2ub68uyYLZSpBwVkVDQkq03hr26Wu0l+NSFNy1f1XF5sMAVH9W93N1Wez77vlJRJiqyej/zDdmA\nA9iNtzeEPhw+8oiOBWjg+LRs7Vc3geTkhSpstR8em2Y+F7hDs12rdB3oVht9S6uDRBD0AyFRn0jt\niDbWGFbaGBb/A0dOaZ9bsuPDQdmXWtRoKi1it5dKUFlQ+66N69lP4sEoSwK8qIAV4nGqfekTxBfZ\nX8WwqDINxue50iqcAufq7eeLYOW8b3m/9V/nnN+XMKRrzJSBZ07p2Tt2QqkEX115IatPX5AF9+Ll\ny1l9c1nj09auEKPVhvqWtS31KR2k4/i9IbqxpvbW2dK4ErXU/jsrSjOZv6H3f2xB2MnRw8JUHj+5\nlNXlp4E9YvsdtOH5aSEGSUqTL+zMfPUhsob7QeCK493xoujp3A/DDl301eeHkfr8diRbNRG09VW1\nhXpd288lGpe2NtQuAtiww1DXtghMiNOCsekuBlfFfQswbjBh77lvfSurpxfURtYwpl46LWQ29oBY\n1YTbpUwXSzUXi2O19RYwiN1tjbUprmvaS/eKk9FuQ16aOj/pnotHhLUIFPGOnrHv/fUbWf3iE0tZ\n/Qdfez6rS5gjxR3NP2JgtylQwwtXhQlsbeu9ChXdk/Yd3Yfb7e59mysIY0tiJXyVE82VHz+utuUW\n9P6XrwpFuwp8bxZ9y+FF1fPjmgtN1zSHHkcqpUPfXAQe7vkYFxmXOOLyPc+Ve/extYVxve+RuLcx\neVgKkQ+k1Ed/nvbND7D0BBNnBwQ6RZ9+ae9N9Xf4F85bIqIkXA6Cuxny+aeDhEJiSslD1C7uRfxM\n4lJ83Mf949zX4/IXfdj6YJUr6vt//5vfzWouTbK2pvnPz994DfsH3t/Dqc589GH2WhTqAApFzJur\n6itaDfV/P/rrH2b1t7/z77L60DEsDdCXRNafN/rpan9lzhiTyWQymUwmk8lkMplMpn2UfRljMplM\nJpPJZDKZTCaTybSPum9MyXnOeX66V2bqs8B5tIjBioo/YJpS1JRlcmflelYfOCCreL4AK++mkJTl\nddl9P8Aq8kmi1ItvfbmLG5w6KItlMS/L1PrqTb1PXtbgqSklG1y9Ihvm7q6sn1OwsG9syp7MdKlS\nGTYruerckSP624VFrWJ++crlrA56mFKf/WwU5Tksoa1zyZXUJOmEzxd0H/wccKAZoWaHZmXlffya\nrv2dbSUYbawhqQv3JAlld3OR6olp7X++Z6tNkabhSjrIJ18QsjB+QBbcN177aVYvHdc9fuXlr2X1\nCy9+Javf+UAo0ze/Kft4EdbM2RlZiPNlYUq3zm1kdQ629tVt4QyjrkIucAdnupjSblnnSDSpDRt/\nhzUwpUZbNtYQ2GEE22YEW2O1cEz731b7unERqBQQNvaBzR6GsHVD/VCtpH4gV1I7ayMRKXLye6Y4\nFq8vFYqW08GJA+wv+nAA1Oy/PY+IU7z3ohtpebI303YbEQVjMh7GqgToYBWD1XNHhAKeWhR2tvG8\n+qI7GAfOAV/6xdsfZPWZm7LyXl1RG6r38EwvHozLFiZlE54eV5/wO08/ndV//OLvZPXJR5VsUgEB\nMJVXv3sbWGUDtu9SQWhAJ9KYF8GS7CGhJfaGmZtHT0kSu3qze11aSNhjmk0VCUOVivr/TljD68JT\n4kgIUAIctQRL9tgh3a+dVaT/XdUcZRsIbx7Tgpd+9xvOOefKc8KiN1eEEVUKSsXZaGhcXLuKeRNe\nzxV0P4mv1eaEuN28qXlRiH40H+icDh9UQt2RQ0tZvdvU2BX02k4eY9goyvcSN+Z1789uyLSoGrZR\nm9ioq219cFHz2sV51Y8extgfCfmqFLX/3brmKGfOCJ9MO7rG+bLabj5RZ5Bvd19fSNX2xmK1lUZT\nyOTBcR37iceXsnrpgM7vo/Oaw5+9pPrcRbX/CfRjR5G49MxJjbkHZnQMLeCePpNbRzxllApyeTfe\nm+dFHSDPSCyLOrr/HiOX7masxjZ9yTnYDa8ng6r6P+uhzgrgRZh7ENVjChKTxjg6x0PwohSvE0dK\nh8RODUsGMv3WZ8l7HLN5uWOkavG+TU4Le/3DPxI+xMSltNc3Tk4ohS3EEiWHDmuJkrlZja3XripJ\n+Sd/owTdH/7wL7L6O3/yp1m9cFj9CZcG8O+iTQxrWw9KD0/PZTKZTCaTyWQymUwmk8k0ArIvY0wm\nk8lkMplMJpPJZDKZ9lH3jymlSN7os/og1SXiqtbYBGkVHjxwOR82+rZssg2gAcVx4EOTsi+u3ZFt\nb72l/Z++A3zgra493A8fz147hZQJB9tWDivX0x5exYrOvi+7Z6ctW3exoBXtk1SW3a0tnVMbyMv4\nBJCbw7LyXrkma2euh02NutUudc6FPQyghaQF19b9C2DrdbDR78S6futXdV8v3JK9/qMzSH7A/l94\nWqjbxrIsbjdaskwuPf6lrH72eaFH+V6yzjawg8Xjsr2VxmW1/eXrP8tqr6X3/6//+E+y+tTjSue5\ns659jpfHUKsNHZqVfTcXqM0leIxfPKrn7oNbsvlt1/UMjroC33fTPXt0uah+oBPqOjM1qYVnrAVk\nqYnX20NW4e8gtQ27d8ceEwayviZkoN2QfbrPzJt0/3h3Tc/ycl5W7oMnhakVCrq3uYSWXb0eA5tJ\nvMFpSkwpG4YpJURIYVH1Elqeo94+RrzPSdWHp7RCA6dImfznaGOlRZV4o+5DCVbrxWkhrQvzwkSY\nMHT5imz6G0Bdr1xRewp67Q8hOC4/r36gjTG0iCS/lV31o298/HFWt+AGfwoIQCHVP1xaVp/aTtBu\ncH4tJpQBLW0j3WDUSVoql8u7xcmuhXp9R6gP6DEXltSH5ALND8pFYSWMQkliXbfAZ7KbLtzklCzZ\nx5/U62c/eD+rd7d1PGXMo6Z786KDR4/o/Q8jiSdWo2ogzamdIKGroG0OP6rEv3O/fCur3/3oXFbn\ngEz1mbrBHN+8rnY/NqZnY2pO497cTPe8czn1eaOociHvnjzebTe/PH0+e93zhQXFmD+mntrNnU1d\ny1d/8V5Wt778ZFa/eErtI/F1xS9cUYLSex/r/uRzSDnlceb1vs0e0rzlaSzrxLpnXlGYzPzhp/R6\nona4OKHzW/y6MMnxCeH3f/PLd7J685YwrLUNtcULlzVeLh3SuT75iPDQIwc0dy8URxtrowqlkjv2\nWPczSq0mHOzyWWDXKxoriCmlQ/Jv+nAd/gORJW8Ij+QGv57kPj0vQDiuy2M+w6RKRu54WA7CZ7Jl\nMgCXdneHjPzLRZNSNzD/yBuMfPWnXd3rW6Hd9I33mIfiHvqB5igxPhPn8t3+4uV//XvZawFjujD/\nihElOoGE5RDfM/zNT1/N6h/84PtZ/d1/92dZvbCocTHpO/HPp608RNMlk8lkMplMJpPJZDKZTKYv\nvuzLGJPJZDKZTCaTyWQymUymfdT9Y0rOuaRn6/Fg7+kzdSeDX/cD+P592STTgmzYLid73vaWbJB5\nWHzHcBaFEmxQSMhpbCoh4ErYrX+CfdzelTU33ZYNcyInK10ZNvAObfywTa2vy+KdJDo/ojLxTVky\n+2x4qFPgFEUkCmw3u1asf+6Vnf/5lbq9ZC1aCGnjj2Ft3m3p/ly6IwTp9Tf+Iatv3ZHV/+DCUlZ/\n+etfz+oXYfE9e/btrF7fUPs4cUzW28MLWt177/4HsOV/eOVKVv/85z/P6iNTSjj6t9/9RlYfOqjE\nlSs3ZcGFw9g9c/REVoeRrO+dtjbaBh5RKOn1w/NCX0KndnP6pp6dUVcu8N1MD1PqR430vEewwzbx\nfBJTYoJS2JGtOiKCgf20gDK1xmS9bT39Yla/u8MENaBhe9gU2/QdpVxsTqjPWzj+jP4MmEgAl2mK\nfol9C9EkIku0+MZIa/LgJ05xndJ4QBrCiFt90zTNrg/7T9a8lh4QVfZFTIdgwkQaq33EWKk/5yG1\nBPv/q//8n7P66qas+dU59Tlbq+vOOeeiUPs+fFK4SHNCiG68I6xgDUzduV/8Mqt/+JMfZ/VLzwq1\nOzopXGQNqN3klNDZ1avqr2pTwAGAskyOaftaXojlqCtwOTcedJ/RKq6VwzNWKGp+4HsBam3uAfWK\ngSx5QFXKSFYLMYfJFZE+MgY0GylLXgnIS+/YOkilSGPgAE5zrjxwN+drzjVR07k2jqkNNn8mTKmC\nfrdUFWrkBRqPq0UdV6WqMaqBNruDFK/l6905UrM52imAY7Wa+zc9TMcv6bzfPad5QxPzRB/tI8G8\n+faqUpA+vngxq598RPOMCrD49y4KwV5rahwan2BanN63UNLrmzvd+/DGmR9lry1hHvStbykprjqh\n40072kcJKWMO481LzwgTxxDm3jytlMFVYEqrbe1/fVfndO22rsdxJK2cOg4kb8RVKBTcoSPd5QoK\nQExuX9X81xuyNMSwTwecE/SnLWo/3l0kUnF7H7jR3lja//kE+/YGfxZkgmU8pB79zzyfhwajSX3I\nEvgiP723OV5KpGdou+H9xzZ436SHIaVIY2xjzuP37Vt9ggc/ybMvvJTVHfSpv/jF61n9+t/+TVZ/\n97tKWSrVhJWnhimZTCaTyWQymUwmk8lkMj38si9jTCaTyWQymUwmk8lkMpn2UfePKXkus6/TEEUL\nXBAIAfC58nYsNCRKdCgp7LPOye7otZQQEaZY/R+RBu226so47J+RrLyr9e4+Q6BRnyzf1r9/8Ous\nPlqV9fjYscNZnavKyuuASoRMZcHqziFs4+227Lsd2JCjiKuII3Uh5D67dZoOsZ+NiDznXL5nlaNd\ntdPSeUUl2dHOX1YSwWuvCQfa2ZCN+cXHlXz0whNCPRbnhIDESGh68pi2qT2t+9lG+lEVSFI+3/3b\nDSBtm8tKLfijr38tq5cWhCNNz8gC12wqCaqM856e1DYerIKVihKaNjb1ty7VMZZKer7Y5vxUddkf\n7fZC5QLfTY93n0smKCUpEqbgaK23dR36k5V0TTp4PQLKxLSzMNJ17gBfmnxO6Vu7a9ey+sN3hIc4\n1+jtQ20nl+i53rihxJuJKbXX8UUhaxHQoTRUHUZAmWAZZk18iWlRSTJkhf0BSNLoJxKk2fn2jU/o\ngELYomm7pb2WyXhBX8rS4OSHuKH7fOrE8az+02//YVb/L//r/6b3QlJaoTcmhCuy5S+fFd429hW1\nvTZwgJIP63jEsUf3frel40qA1TTRtscD9X83N3QMpxaU9tdEmk+hJmzCxQ/Pbz1pkrhWD6kpAYXO\nsXZEkzjP0fVsALuJ0Bf4HqZiSE2LWpojlYrapjqphKaN1mXtB8hYodxFmSLYuuNIx1XgMfpMPNGc\npIPxJF9ByiTST+amhVVFdc3RaPeenxJW9fgTwuyqFaE1TSQxJb0OPAhGuw0lSezq9e49PHpQqT/o\nZdybp4UdtRLdv4Nzuq5zR5GalGr+eBt4YxHzxGsbeiZrQIw6DaUiuZyubTvWPrebXUx/6gDwopf1\n/l9+XvPgPMbKBOOjA27VriPtq6x29q+e1n7mJ9QO/v69szgPJEK21Nfe2NS5Lm/o+l26ivMbcfl+\n4MbGutjfGsaiNj4HkfXpw3juYqgm+pHH8zwMB+KY2f/5Dv1eb5/cB+ceTKfl33F/3N7QpM8iz6kB\nDE6B7N+cjeje5nieRzRu2L3CvBX7J2K0hydxbuWjf+r/uDsEx/PUhr/yoj6LHVsSGukBjcoXNHb3\npY3eY5N7ULPi0R7pTCaTyWQymUwmk8lkMplGTPZljMlkMplMJpPJZDKZTCbTPuq+MaU0VQpQ2meZ\nw0rdqOFCchEQgzy+F6J9jlRTihWSE6A+UVsr8jcbep0rM4dtWax3evvfdbJVVhF5cP3qjazeCGUT\nfuddJffESCHJMVgJqBFxAF6PYSuE87ynp4UqHDz86UQf/y5WPP8iy/d9V+6lTyROltN6LFvqux8K\n3fjwjOoj00tZ/exXT2X1oQOHsrpU1PWplNXMG0jQSVKsyo1gL9q3Y+Ir7W6dNPXay088m9XlcbWn\nBPc4imQrzcHWN12TdbuA20lyZGtd7ZZuwomyjr1AZAlP9JEpWX/jdLTbC+V5zpV7dvwCI4aACXh4\nnifHgHEBGdhtDcY3+tKUiDLBkt1sI+WqBuv1v3o5q29fu5TVK7cuO+ecix3RFx1vq65+ZvWmkjZm\nDghrKVaE0kVIrsjB1jus/xlkJXauvy8a9voenjT6mJLUd97EvDDgENHopyX0PyGMsrjEDre2z4Jd\nAI7yH/7sT7L6vbPq3z6+Jqt9s9G9tzstHUsHqYLxLWGS5RLSdkLgIqtKB1yY1bjy1efUd331KSGb\nb58XJhDjOSI83EBa1NOPK5WpkNezdu7iJfewKEkS12h25xbNtsaoWqz0oDF/MO7WZgpbrPvIMccD\nV5m0MS9CClEJyZIT47qPm+i78h1Owrr3opzTtu1UKFCrBXykpPMoox9NnJIfcwXtu1zW9lNIDtyO\nhc0wXXNhZhqv69osr2uuVSkobaha7mK7oz7P2ak33E/f7CZPxR31A4+eEKp1/ICuzftnhdxs5XRf\nv/SIkJ5HF49ldR1JSa9/opSdygnNi148JJv+m6/+ZVYfnFEK0fyEntsvLXZxqq99Sc/1oTnd4yqT\nkjCfyvF1DBU5zJWDvhQX/e2ReWHatZe/nNVX76g9/eaDc1l9ZUXIdgf9681Nzf9HXWmauE5vnrG1\nqWUWdnZ17gk/W/UlBA5OSuI2fH1YshI1bD8cS/cwpGH7JoI0DHtiPex4qWHJiJ8VcXo4wKi9axUM\n/ud0YOmS+5jjeXcF7AzBmnr4kg+ktm/dk2H3Em+ZJBwrgNEuPOIGaXg7G/xW/9wa7ZHOZDKZTCaT\nyWQymUwmk2nEZF/GmEwmk8lkMplMJpPJZDLto+4/TckNtoMNtYtxAX94ufOw+FbAWpQK+oMIiTAR\n0AzPB+oDp2Q+p+3zRBh6PqSwIevfdgM28KYs3puN9aze2r6T1SF4Kw9YA61atGHRYuc5rijOtB5Z\nqypAEkKskh/sRfCMODKQps7FvXSYMKbtX/d1sihj/Le/+kpWz0woZYBpDGhCLsV+YkfkQu/VAuq2\nvi7rZxVJWfk8LOP57r2amtAq3Ex7iGEXD3AvC7Cat1tIqmjruArYT0CLr0qXcEV92INbQGaIWaRA\nCRYrD+RR/8Io6T1be/fEOec8XJ9+262uQx7JOXms1t4pcmV/vU+KBKMI15MpS01gCJPVJ7N6/Xd/\nP6t/9vO/7R0MkIKC2lm1Kqt6oaoErWIe6ScVtbsO+g2iSbQBE00isnQ3mBL387BgSmnqXNg7r4io\nKLYJ8PtEG89VCsyviFX4HcYkPwCyhGvJ+1BHmtpYTX3X//Df/3dZffGWsKLv/ZcfOuec++mGkrmK\n6NtaQIH+9E//OKtnZmX7b514LKs3G8Lhnjgu3MGPO6jVR23uqt4FVtyJhAZPl5BEB5Tv7I2r7mGR\n53uuXO7erwZQ6N1tXc9OU9eqUEA6EZIRPfTz0zWNYxyXfMwtioHaSAg8dmZS/YVDX+CQVpJEvT4S\n55EGwDFzmucwqa0IHIpYb33I+eXQp/L8piaF4R5bUlsrFfU6U7yKeYzNne5zMiztbVRUb7fdb85d\nds45N5ZDGl9H13t8Uv395OQYttG1X75+Pau/8fTjWf3GGaFJv76hZ/Krvy/U58yP/jyrl2aFG/2H\nb/5RVk8XdZ0rQbedzUzouBKMfR3MRznHzWNs43oEJczRmIrSl5CC7efG1b8eXlA/dmRW7fInb36Y\n1ecu38zqRjwEyxhBpWmapWNuI7GOibF9sZH8nIWf2YfhRcNQI78vRXDImE+UP+aNjP7R90yGvOfd\nHGPfZ6ghGJSlL3X1Wedq9zPH+zzmh31fLfS9P9sns+sGb38/x/6g2pw5Y0wmk8lkMplMJpPJZDKZ\n9lH2ZYzJZDKZTCaTyWQymUwm0z7qgbALe7a2frsObD+MgcH3Pzk/jxo2Wdi9q0CNHJClTkL7mjaZ\nLMsSWZrQ6vypnJWZrS3EYTW3Zf0rI9omD5twkgqbiWCrhFPdlUqyWNLKS6t6BUkEMzNzWZ2Dxbhv\nhXKgGEyIGmmliUt6dvhGpJtTLup6P3LoSFbnE6TBIEEnhTXW89SeolCNotlU+gVRn2pF9zNuyuLr\nw5LrA1/ZQ5L8vmgVoAlAGaIGcCSgc2E0OOGG95sIBU7DlUqwvsOqyvSfRh02dCADcfrw2Hdbncid\nvdRFOWanZF2eBD5WKdKcj/YCS2sfAsQoHDcYWWLdCvE8J7ovUUfH8Af/9t9k9aOPHO2+P/o5F8i2\nzvvTidSmGh3dw12krLTzer0DZKoFlMQDshZ00I6HpL4wAsgL0GH6DwemVG+33K8vXHDOORd29PyM\nFXXP8uiDeS2JL5VLHBOwDZpcPqf/KRV1n3O49iVgCwdmZ7J6cV4pJ+dPv++cc25rS4hsbUyYRxXv\n802kkHSQ2pNbUj/66o9+nNUfv/PrrD5+fCmrJ8tqzxPjGkPbwBM8X/jABlCdZgJkb1aYw6griWO3\nvdVLdqGlHvMQ4khttC8+NgW0Bc4PyMo1doUktIBExZhTeUiWLBDP7MMNettjfC1izhVhPsNxKUHM\nU87X/V9fV8pbGGpMzRd1XHkkej362NGsPvboPM5DeFS5AMwU7xt6e9dvxLEDL3BeoTvf66S6TpeX\nlZJY3tX1CAGVTc7qmpWnNU/8P76vZ/j0jbWsfuR3Xsrq5bPvZ3W0fDmrv/v7v5fVQVuY/lYD/X21\n27+16kp1mwSyxHkLkZkY6WDEt1tIH+NHjhww4ZCJkxiXOYeZm9Sz851//UJWv7cgZO+tM2qjD4P2\nxtxmS9eHzzg/NyVDPhr4Q/DtYXjFXWEXQ5Kb4t7ceRgC0lffxXENQ6YMRxouz/uXgyn91hEMfvVz\nP667kzljTCaTyWQymUwmk8lkMpn2UfZljMlkMplMJpPJZDKZTCbTPuoBYEpphlgMtb3BaprQS9e3\nCLdeDxJZHyeKwEqmhPd4eVnLSwwTQLJSeULbJ/BQtnuWvyAH7GNONs3tGVgpPdmEOy2hLDHQkDLS\ncqpVWX/700l0ftNTsqSPjcn+WW9o/9evafX8jS1ZWsNecks64ikDzjnn9VZhL3i0WQ/elulVAZIf\niAY1W7Jah1jh3cd9ZlKWg9V6siYLLPGE3W0mYXT373vaxzhQuAB4XQ5W3s012fh9WHOjvtXkdVjl\nMrAJponByuvBGoom7wp5JDfBHjwaRr27UyeM3ZXbXWRgdXMre31hRs/e9JjwpVpVWEm1rPtczBFN\nYt9FyyxqfHftB7wvqkO05bmZMdRdW3UdyUv1JmrYxBtox3Uk+lSwfQPIUrOp7RvYf76NtChgRyFQ\nmVaHmB+eK5yT33vdHxG75zClnu9aveeDuFgT957oahIQD8X97rNaAy0Fjksyt42xooO21UH6Wquu\nZ7WYV3td6KWr/Kdv/2H2Wh1I5QcfK1VkdlbpPCurSmSaGFMflff0/lfOn83qF154LqvHgWnyOtXR\nn7B/9VL2xzqnwmg3lz510/+6/TVRozISsTj/YeIS5wE7u0rTipFYVkGCHxMWiSASj23sCGXy2Hdh\nPIx7fUSIFKQYx7i1pXbExDk3pn2k6Odu3xISEyF9q1pBshJwu/ExXZuxSSLY6rMrZaX7NJFuuHeq\nI97lOM/znZ+rfur1GM/YToi5XKCxfwcJnx9f0Xzw/Y+EIOVrwgWPVnWxbl04ndX/8ZXns/qpY8Kd\n3vrN21ldqqqPmHj0pHNOc03nhqMjrIMca93v9R3Nf+JUGNZYDdcFbb4JZC6PZhlgLJ4uaAz7yuNL\nWT03J7Tr//6+G3ntIUltfDZgDBWRYyKT9/rg9CUY9f3DwLJvPCxX1HbGxrufZ3x/8NyK/czWupJq\nU2CdTJW9m8QbonLD0pdMwzXK14mH/nmRaw/q+pkzxmQymUwmk8lkMplMJpNpH2VfxphMJpPJZDKZ\nTCaTyWQy7aMeAKbkZTYdrohN604MRIgYisfvgmCxyyOeyI9lQSsksi9OwJ45BTts3tMb1LECOR1M\n4z17ZBU4SKDduduebLTtNhJXprVRMYdEDVh2JyZlFeeq80z0IYYSwaqcMqEJ7Antn41m1Nt2tFcT\n9zzjqRmQAAAMmklEQVTnir3UqgDW+RToSLMFKy+t1ki7IS6WQ4IOE0/aLf2tG5Z+AQt4jDStEGhI\npZd+kXAfuH9E1JhO0Woi+YLpEbCAhziPfKDjKhW1fYgEjRySo7gqPdtQAGQpjh6SFC7nXJwkbreX\nVhUSEYLde30dzxtSqCZqwgFmp3W/pib1TBaLRHR4bXUMPvquFO2lg/grhKBlSUw+7NsFpEZUS7qf\nTSBI9RZwAOJIQFwaSO7aaerZ2G0AR0L7bgewgeeRHNfBNkCc9prpKNtZnev2OXvPH5zeLkVKUKsD\nFJCYEtsBhi1ibPxlow9BpMUf9m62oQT3x0M/dmOtm6L085/9LHvtD7/9R1k9PbeQ1WsbSkdpIYUk\nAiZQmxUWstYSFrKxI3zG+Txvvdxh4hvOu0N3PPClFH32qCtN0+yeprDFMz2R4z3xDW7TBvrBxKUG\n5wcl9VFMXOKYTyt/EdiUh/a1fPu2c865ONR9TvEMcx85tPXGjo5lbUsowdXLN7I6wBjsxRg7cX5j\nZaV+JaH2z7G5XNR8qQEUo1rq/m0/7jCCSj3nkt71YQojku5Spld5SHPb1X04d/FiVm/uCBd7+oCw\nsNLO7aw+Oa42cWQCOBDm4idOPJLVl6/p3q6ude/5LJLU6nWkTfbh98Do0G8kwFGaHfUJ5y9dyuoi\n0iwXF4VPzU7qfXn/I2BsKRLCmMp6bP7hSXBzaerS3rwwbmtc8jFv5fPs+uYqXBpi8JIGxI65BTf3\n0KdVa7q2M/Madw4fVWra/PxB55xzEXbSxnIA16+oHa+vqW/xU865cFw4j7gP67dkpX9Mn0ea0uet\nYcc+Ku3DnDEmk8lkMplMJpPJZDKZTPso+zLGZDKZTCaTyWQymUwmk2kfdd+YUpqm2Yrfw1Zcj2Cr\ni2Cfzqew+CK1YXdHduvJCdmn047sbs1tJQzNVHUaRJyq+KqJC9b7PQtdAJtwFGnfcAY7Pyjj75BU\n09R5xDESJBqyE+aAiYQdGgH1vmGoutls4HUkA8FGH/QwnlG2kznXXfm9vYdg0AoPRCOXk9U2n4f9\nHcQNEyYcLPIJUmiKxA1g6WYiVY7WfEBtU0jEKeS7176J5JsQNt16Xfc+7DApQ+/J9g/qzuXR/kOm\n6eyoTeRgK+exd9pAk/qQGe0n9Ubc7g2lSepavVSsKIJFHtezhfZSwLO6i3oT92t8Q8/q1Lie+UnU\ntSpSQ/KDnz+mLOXx/O9RHUVgVZ0OavQ5FSBLNSSVVJuDE5caQNnKQFxKefQtRWJQwCNaTF9Cihzs\nybneObFPH0Wlaeo6vf6WaTAO/WvUZrqUrkGpoGc4AIqWQ/8T9KUKOWyjaz+B1JLJmjCOzS2l41zv\noUnOObfVw3TvwKK/m9dx5Rdk7//xm7/SexaZqqb7vdsWblCv6Jx+efYj/K3G5RywUY+pd2jnDdjH\nyxjnNs5ccA+LUpdmSAZxpA6wHD4fudzgqRWxo6oTpsF9Et+mNZ/qw5tRJ2DoNje7GMA4kgKZgtJu\naM7j85zwnpcuX8nqxpba4OyUkO1yDlhJGQl+SAwK67oeRR+YNq5ZHtcjafeOZ+RDI1OX682Lfc6P\n8fwQl05wLz0MaClSyvIYh0Jg/JcvCgGan9S1fO8TYU2nHkFq0pjmNhX0S5VSt70UicgxjXRIek0L\nOLiP8WwXY9WlG8tZff2OlgMYm5zO6pNHD2b1E48c1vGW1EYn0b/lgDLFLeCWI67UaZ7XBsZIjijB\n80wYI0C/zb6lLzWJNfHSQNd27sChrD71xFNZfejIsawen8TyDYXusx33Ia3qI/f6JOecCzEXzjG1\niX+LetixPyhl+xwNquUfkfdQYEp3lYzFe/XPcOz7mc412rNrk8lkMplMJpPJZDKZTKYRk30ZYzKZ\nTCaTyWQymUwmk8m0j3oAaUrOJXtJMECEQGm4/sW8YSmEx6gNXMdrySbXbMgau7MtWyMtwfUd2XBz\nY7JbxolsRX2rvvdWem/BmkcUaHdblkCiITGOsQUcKZ8D+rAFVqIv9UfnWqnoGOEg7LM8032VB67T\n7ux+6t9HUalzLty7P7CCRSFsuoijSYEDEAHK00aPq9JXe7R9sx0wMQZYBu5nvqjXG7vdv20jpas8\nJst1iMSiTkftgO2cKFOpgEQMpNrUkUJSyGmbMWAFO8BLtoGvFBIkGiD1qVR5II/6F0JpkrhOL10g\njgY/Yx3gSwH6ijZSq5rYnvjSzo7q1TXdrwkkVIzXdD2rsI2XS7DjF4F19Oy2xD4KuOdo9q7TQfuD\nnd0HylZE22E7yuWBTaBN54G2FAqDX8/nH3JMyaUu6SWSdYAABGAhfOBc7B8ck8/IFwKBZD9TCJia\npWtZQbJODWkiDfT9Vy+czepmrw0d/vKz2Wunb1/P6hipJSEs3Ry3PLQ5prwFaAfbDWFSIeo8zoNJ\nUDm0uQDXxq1ojP7Naz91D41SWe9pXea8gmgSn5X+cR0pM02i0Ui+w7wk8Afvc2NDmHaI8ahY1X1p\n9/pIuqsDIB1hH+qqfbRxTrWy2ugTJ09m9eS4Xi8g2e+Jp5SssrWptrC7A4S3BQxhDM8J2uPaWhdV\nj0Y9BTBNXRp2zz1NOFYhPQ3piUx7LGEsOXJI6E4LiaHlguaSW0j+3L6j57yItL21nU+y+vCiktUW\nZpXK5OW7fVTKvg1tLyQOjvlUhLTHpO+50HEdPjSf1Z1U12NjV9u/++G5rL52/WZWHz9yIKuffVSY\nTK2Ca5mOPNeWKU3SDP3aQSJeP66D7fGcM2Ft2LjdwTINRXzGmDv2WFYffUT1ycefyOrauFLQEmKV\nvb6OY0s+p75t8aCwpwJS1cK6zi8genUXaNKDQkmyv/3ikDqfWQ8DpnTviVlfnGP/LBrt2bXJZDKZ\nTCaTyWQymUwm04jJvowxmUwmk8lkMplMJpPJZNpHPRB2Yc/OHadAQGB76//ORxZL36cNUhajCaRM\n5GBxo02/UsaK8kCMNrdgd0OKRX9SUfc4azWkAMA+TDtp0pd+ovdph0h2amgF96kp2T1pYc7nZU/f\nWJcNHBSK8wNZLMex0n2hKDtfOenW+SFpDaOiJEndbs8+68NaOjWh8yYCsL2t+0orqu8TLwLzBc/m\n7q4SRDrgQao1pFmgufYnWySo096/a9tOpDbhwXbL1ezbTGihpR9YQwqrN+3J1bLaTRloQJTob9cS\ntG2ExOSAnfwWKzjSSlLn2llqC54xWNrDzuBkkwiYUhvPcwfXNgRiVm/qPu7UZestI/Goir5ovAas\nDHW1hw8QWQlyQKnySMRCd+nDqpmgTUfAbHzspwisrlBEYgeQyQCNnYhTuajrwUSn7R2v93ejbQON\n49htb3fxhxRpWOxP8hgzch7GJ0S4EdcJgAml6CtyuCcFJlsQMIX1dnJaaSJHT57I6reWrznnnEvq\n6sNaaM8N4CW0qTsknvixtg+QQpJH/9MheoAOLmECDHbv4VmLNzSenXn9jay+ceGie1gUBIGb6iUI\ncXwgDjDMSd1qaa4QAuvgfra2hPSUMN7XkX7FsS5FAs/hA4tZfefOSlbfunXDOefcwpzaFpO9+qzf\naMfFktrIzLRwhKkJ4tVAQptqg1ubev82UNqEqXd4Thq7wq0ioA3+yIPYXaVp7Dqd7tyFuLmP+0DU\nhzhkhOeTbaKEMcHHXBV7caR12tu6Pzs72urGquZUMxO3snq6lyC4iCTJyfFKVldLWBYAnQIJhxT/\nQxT2xDG1xQOLSuFZ3tAxXrh0Natvrqxm9a111Tev38jqpUeELx1d1GeHUVccx25np9u3toA09qMk\nfXEyWcXPKsSPmfDI/qRa070+fkI4YnFMz3/IZR+Q2pZiP37v8xqn4o6faya0v/lF3bcbn6ifY7/E\neXQcDU5WGobW3GviktKUHo6+5271RUKT7ll9nc6wTe4Vd3owf3uvMmeMyWQymUwmk8lkMplMJtM+\nyr6MMZlMJpPJZDKZTCaTyWTaR3n3a73xPG/FOXflwRyO6R50LE3Tuc/7ID6rrN18rrK2Y/ossnZj\n+qyytmP6LLJ2Y/qssrZj+iyydmP6rPrMbee+v4wxmUwmk8lkMplMJpPJZDLdvQxTMplMJpPJZDKZ\nTCaTyWTaR9mXMSaTyWQymUwmk8lkMplM+yj7MsZkMplMJpPJZDKZTCaTaR9lX8aYTCaTyWQymUwm\nk8lkMu2j7MsYk8lkMplMJpPJZDKZTKZ9lH0ZYzKZTCaTyWQymUwmk8m0j7IvY0wmk8lkMplMJpPJ\nZDKZ9lH2ZYzJZDKZTCaTyWQymUwm0z7KvowxmUwmk8lkMplMJpPJZNpH/f931L53FZA0igAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x123907eb8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot a random sample of test images, their predicted labels, and ground truth\n", "fig = plt.figure(figsize=(20, 8))\n", "for i, idx in enumerate(np.random.choice(x_test.shape[0], size=32, replace=False)):\n", " ax = fig.add_subplot(4, 8, i + 1, xticks=[], yticks=[])\n", " ax.imshow(np.squeeze(x_test[idx]))\n", " pred_idx = np.argmax(y_hat[idx])\n", " true_idx = np.argmax(y_test[idx])\n", " ax.set_title(\"{} ({})\".format(cifar10_labels[pred_idx], cifar10_labels[true_idx]),\n", " color=(\"green\" if pred_idx == true_idx else \"red\"))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
chengts95/homeworkOfPowerSystem
power_system/第4题-三绕组变压器.ipynb
1
2628
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "4.\t三绕组变压器型号为$SFPS_{7}-120000/220$ ,容量比为100/100/100 \n", "1)\t作变压器等值电路图,并将参数(归算至高压侧)注在图上。 \n", "2)\t计算额定电压下变压器的空载损耗。(有功和无功) \n", "3)\t设变压器低压绕组开路,高压及中压绕组承担额定负荷,计算变压器的有功功率损耗和无功功率损耗。\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "960.0\n", "0.8066666666666666 54.45 34.28333333333333 -6.05 2.747933884297521e-06 1.9834710743801653e-05\n" ] } ], "source": [ "import math\n", "Un=220#kv\n", "Sn=120#MVA\n", "I0p=0.8#%\n", "P0=133#kw\n", "Pkmax=480#kw\n", "Uk12=22#%\n", "Uk13=12\n", "Uk23=7\n", "Rt100=Pkmax*Un**2/(2000*Sn**2)\n", "Uk1=0.5*(Uk12+Uk13-Uk23)\n", "Uk2=0.5*(Uk12+Uk23-Uk13)\n", "Uk3=0.5*(Uk13+Uk23-Uk12)\n", "Xt1=Uk1*(Un**2)/(100*Sn)\n", "Xt2=Uk2*Un**2/(100*Sn)\n", "Xt3=Uk3*Un**2/(100*Sn)\n", "Gt=P0/(1000*Un**2)#空载损耗是有功,认为由电导Gt消耗\n", "Bt=I0p*Sn/(100*Un**2)#空载时认为电流主要通过Bt,Ib约等于I0\n", "R0=1/Gt\n", "X0=1/Bt\n", "Z0=complex(R0,X0)\n", "Q0=10*I0p*Sn #kw\n", "print(Q0)\n", "print(Rt100,Xt1,Xt2,Xt3,Gt,Bt)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "613 3600.0 0.97\n" ] } ], "source": [ "#低压空载,高中压额定运行,求有功和无功损耗\n", "\n", "P=Pkmax+P0\n", "\n", "Q=Q0+(Uk1+Uk2)*Sn\n", "PF=(120000-Q)/120000\n", "print(P,Q,PF)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
akihirosasaki/MyMatchingA.jl
src/Untitled.ipynb
1
7505
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "deferred_acceptance (generic function with 2 methods)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function deferred_acceptance(prop_prefs,resp_prefs,caps)\n", "\n", " m = size(prop_prefs,2)\n", " n = size(resp_prefs,2)\n", " prop_matches = zeros(Int64,m)\n", " L = sum(caps)\n", " resp_matches = zeros(Int64,L)\n", " unchanged_counter = 0\n", " next_m_approach = ones(Int64,m)\n", " \n", " indptr = Array(Int,n+1)\n", " indptr[1] = 1\n", " for i in 1:n\n", " indptr[i+1] = indptr[i] + caps[i]\n", " end\n", " \n", " while unchanged_counter < m\n", " unchanged_counter = 0\n", " for i in 1:m\n", " if prop_matches[i] == 0\n", " j = prop_prefs[next_m_approach[i],i]\n", " if j == 0\n", " prop_matches[i] = 0\n", " unchanged_counter += 1\n", " \n", " else\n", " a=resp_matches[indptr[j]:indptr[j+1]-1]\n", " b=zeros(Int64,caps[j])\n", " for k in 1:caps[j]\n", " b[k] = findfirst(resp_prefs[:,j],a[k])\n", " end\n", " c = maximum(b)\n", " if c > findfirst(resp_prefs[:,j],i)\n", " prop_matches[i] = j\n", " r = findfirst(a,resp_prefs[c,d])\n", " if resp_matches[indptr[j]-1+r] != 0\n", " prop_matches[resp_prefs[c,d]] = 0\n", " next_m_approach[resp_prefs[c,d]] += 1\n", " end\n", " resp_matches[indptr[j]-1+r] = i\n", " else #Žó‚¯“ü‚ê‚È‚¢‚Æ‚«\n", " next_m_approach[i] += 1\n", " end\n", " end\n", " else unchanged_counter += 1 \n", " end\n", " end\n", " end\n", " return prop_matches,resp_matches,indptr\n", "end\n", "\n", "function deferred_acceptance(prop_prefs,resp_prefs)\n", " caps = ones(Int, size(resp_prefs, 2))\n", " prop_matches, resp_matches, indptr =\n", " deferred_acceptance(prop_prefs, resp_prefs, caps)\n", " return prop_matches, resp_matches\n", "end" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "module MyMatchingA\n", "export deferred_acceptanceA\n", "\n", "# 多対一のケース\n", "function deferred_acceptanceA(prop_prefs::Array{Int64,2}, resp_prefs::Array{Int64,2}, caps::Array{Int64,1})\n", " m = size(prop_prefs, 1)\n", " n = size(resp_prefs, 1)\n", " \n", " prop_matches = fill(-1, m)\n", " \n", " prop_next_to_propose = ones(Int64, m)\n", " L = sum(caps)\n", " resp_matches = zeros(Int64, L)\n", " \n", " indptr = Array(Int,n+1)\n", " indptr[1] = 1\n", " for i in 1:n\n", " indptr[i+1] = indptr[i] + caps[i]\n", " end \n", " \n", " resp_rankings = (m+1)*ones(Int, m, n) \n", " \n", " for j in 1:n \n", " for i in 1:length(resp_prefs[j,:])\n", " @show b = length(resp_prefs[j,:]) \n", " @show a = resp_prefs[j,i]\n", " resp_rankings[a,j] = i\n", " end\n", " end\n", " \n", " @show q = resp_rankings\n", " \n", " while true\n", " @show i = get_single(prop_matches)\n", " if i == 0\n", " break\n", " end\n", " if prop_next_to_propose[i] > length(prop_prefs[i])\n", " prop_matches[i] = 0\n", " continue\n", " end \n", " \n", "\n", " #学生iが入りたい大学jを探す.\n", " @show j = prop_prefs[i][prop_next_to_propose[i]]\n", " if j == 0\n", " prop_matches[i] = 0\n", " continue\n", " end\n", " \n", " #大学jのリストを探す\n", " #要修正?\n", " @show p = resp_matches[indptr[j]:indptr[j+1]-1]\n", " \n", " if resp_rankings[i,j] >= m+1\n", " prop_next_to_propose[i] += 1\n", " continue\n", " end\n", "\n", " #大学jが受け入れ可能なら受け入れる.\n", " @show a = findfirst(p,0)\n", " if a != 0\n", " resp_matches[indptr[j]-1+a] = i\n", " prop_matches[i] = j\n", "\n", " #大学jが定員オーバーしている場合\n", " else\n", " #大学jがiの方を選好していれば,受け入れる.\n", " list_comp = Array(Int, length(p))\n", " for k in 1:length(p)\n", " b = resp_rankings[p[k],j]\n", " list_comp[k] = b\n", " end\n", " b_max = maximum(list_comp)\n", " c = findfirst(resp_rankings[:,j], b_max)\n", " \n", " if resp_rankings[i,j] < resp_rankings[c,j]\n", " d = findfirst(resp_matches, c)\n", " resp_matches[d] = i\n", " prop_matches[i] = j\n", " prop_matches[c] = -1\n", " end\n", " end\n", " prop_next_to_propose[i] += 1\n", " end\n", " \n", " return prop_matches, resp_matches, indptr \n", "end\n", "\n", "#どこにも決まってない学生を返す.(存在しなければ0)\n", "function get_single(partners)\n", " m = size(partners, 1)\n", " for i in 1:m\n", " if partners[i] == -1\n", " return i\n", " end \n", " end\n", " return 0 \n", "end\n", "\n", "\n", "end\n", "\n", "\n", "\n", "# 一対一のケース\n", "function deferred_acceptanceB(prop_prefs::Array{Int64,2},resp_prefs::Array{Int64,2})\n", " caps = ones(Int, size(resp_prefs, 1))\n", " prop_matches, resp_matches, indptr =\n", " my_deferred_acceptance(prop_prefs, resp_prefs, caps)\n", " return prop_matches, resp_matches\n", "end" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 0.5.1", "language": "julia", "name": "julia-0.5" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "0.5.1" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
RaoUmer/python-fundamentals
cheat-sheets/10-Comprehensions.ipynb
1
3968
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Bonus material: List comprehensions\n", "\n", "Materials by: [John Blischak](https://github.com/jdblischak \"GitHub\") and other Software Carpentry instructors (Joshua R. Smith, Milad Fatenejad, Katy Huff, Tommy Guy and many more)\n", "\n", "Note - this stuff confuses most people. If you are feeling confident, please proceed! Otherwise, this is really \"bonus\" material, so please focus on the core material." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introducing comprehensions\n", "\n", "Python has another way to perform iteration called list comprehensions. First, let's look at how we would create a \"transformed\" version of a list with loops. (If you don't understand loops already, you should probably review that material!)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Multiply every number in a list by 2 using a for loop\n", "nums1 = [5, 1, 3, 10]\n", "nums2 = []\n", "for i in range(len(nums1)):\n", " nums2.append(nums1[i] * 2)\n", " \n", "print nums2" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can see that doing the same thing with a list comprehension is very clear and compact (as long as it makes sense ;)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Multiply every number in a list by 2 using a list comprehension\n", "nums2 = [x * 2 for x in nums1]\n", "\n", "print nums2" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What if we also have some conditional logic?" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Multiply every number in a list by 2, but only if the number is greater than 4\n", "nums1 = [5, 1, 3, 10]\n", "nums2 = []\n", "for i in range(len(nums1)):\n", " if nums1[i] > 4:\n", " nums2.append(nums1[i] * 2)\n", " \n", "print nums2" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "# And using a list comprehension\n", "nums2 = [x * 2 for x in nums1 if x > 4]\n", "\n", "print nums2" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Repeated Exercise: Convert genotypes\n", "This is the same material from 08-Loops. See if you can use list comprehensions to do the following exercises with more compact code.\n", "\n", "Again, create a new list which has the converted genotype for each subject ('AA' -> 0, 'AG' -> 1, 'GG' -> 2). Use the Dictionary provided below as a lookup table to do the conversion." ] }, { "cell_type": "code", "collapsed": true, "input": [ "converted = {'AA': 0, 'AG': 1, 'GG': 2}\n", "\n", "genos = ['AA', 'GG', 'AG', 'AG', 'GG']\n", "genos_new = [] # Use a comprehension here" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check your work:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "genos_new == [0, 2, 1, 1, 2]" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
apache-2.0
legacysurvey/obiwan
doc/nb/GaussianMixtures.ipynb
1
2096031
null
bsd-3-clause
guillermodeandajauregui/enrichmentator
lib/infomap/examples/python/infomap-examples.ipynb
3
62768
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Infomap\n", "Multi-level network clustering based on the [Map equation](http://www.mapequation.org/publications.html#Rosvall-Axelsson-Bergstrom-2009-Map-equation).\n", "\n", "\n", "### The Map Equation\n", "\n", "\\begin{equation*}\n", " L(M) = q_\\curvearrowright H(\\mathcal{Q}) + \\sum_{i = 1}^{m}{p_{\\circlearrowright}^i H(\\mathcal{P}^i)}\n", "\\end{equation*}\n", "\n", "$L(M)$ measures the amount of information it takes to describe a random walk on a network given a partition of the network into modules $M$. It is a sum of the amount of information needed to describe the movements _between_ and _within_ the modules, which balances the goodness of fit with the complexity of the model. For more information, see [www.mapequation.org](http://www.mapequation.org)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import Infomap\n", "Infomap includes an `examples/python` folder with some examples, including this notebook. Run `make` in that directory to build the python interface to a local folder.\n", "\n", "The `infomap` package exposes two classes, `Infomap` and `MemInfomap`, that wraps an input `network`, an output `tree`, and a `run` method to run Infomap on the input network. The classes takes a string of [options](http://www.mapequation.org/code.html#Options) as input." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from infomap import infomap" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Simple example" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 2 modules with codelength: 2.320730\n", "\n", "#node module\n", "0 0\n", "1 0\n", "2 0\n", "3 1\n", "4 1\n", "5 1\n" ] } ], "source": [ "infomapWrapper = infomap.Infomap(\"--two-level\")\n", "\n", "# Add link weight as an optional third argument\n", "infomapWrapper.addLink(0, 1)\n", "infomapWrapper.addLink(0, 2)\n", "infomapWrapper.addLink(0, 3)\n", "infomapWrapper.addLink(1, 0)\n", "infomapWrapper.addLink(1, 2)\n", "infomapWrapper.addLink(2, 1)\n", "infomapWrapper.addLink(2, 0)\n", "infomapWrapper.addLink(3, 0)\n", "infomapWrapper.addLink(3, 4)\n", "infomapWrapper.addLink(3, 5)\n", "infomapWrapper.addLink(4, 3)\n", "infomapWrapper.addLink(4, 5)\n", "infomapWrapper.addLink(5, 4)\n", "infomapWrapper.addLink(5, 3)\n", "\n", "infomapWrapper.run()\n", "\n", "tree = infomapWrapper.tree\n", "\n", "print(\"Found %d modules with codelength: %f\" % (tree.numTopModules(), tree.codelength()))\n", "\n", "print(\"\\n#node module\")\n", "for node in tree.leafIter():\n", " print(\"%d %d\" % (node.physIndex, node.moduleIndex()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Memory networks\n", "\n", "With memory networks, the flow between two nodes depends on how you arrived at the first node. This higher-order relationships can be described by trigrams as in the example below:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Trigrams" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 3 modules with codelength: 1.227078\n", "\n", "#node module\n", "4 0\n", "3 0\n", "2 0\n", "1 1\n", "2 1\n", "0 2\n" ] } ], "source": [ "infomapWrapper = infomap.MemInfomap(\"--two-level\")\n", "\n", "# Trigrams represents a path from node A through B to C.\n", "# Add link weight as an optional fourth argument\n", "infomapWrapper.addTrigram(0, 2, 0)\n", "infomapWrapper.addTrigram(0, 2, 1)\n", "infomapWrapper.addTrigram(1, 2, 1)\n", "infomapWrapper.addTrigram(1, 2, 0)\n", "infomapWrapper.addTrigram(1, 2, 3)\n", "infomapWrapper.addTrigram(3, 2, 3)\n", "infomapWrapper.addTrigram(2, 3, 4)\n", "infomapWrapper.addTrigram(3, 2, 4)\n", "infomapWrapper.addTrigram(4, 2, 4)\n", "infomapWrapper.addTrigram(4, 2, 3)\n", "infomapWrapper.addTrigram(4, 3, 3)\n", "\n", "infomapWrapper.run()\n", "\n", "tree = infomapWrapper.tree\n", "\n", "print(\"Found %d modules with codelength: %f\" % (tree.numTopModules(), tree.codelength()))\n", "\n", "print(\"\\n#node module\")\n", "for node in tree.leafIter():\n", " print(\"%d %d\" % (node.physIndex, node.moduleIndex()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Overlapping modules\n", "\n", "Notice that node `2` in the example below exists in both module `0` and `1`. This is because `MemInfomap` partitions the higher-order state network which can include multiple state nodes for each physical node. For trigrams, a state node is a pair of `previousNode node`. To keep the state network in the output tree, add the `--expanded` flag to configure `MemInfomap`:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 3 modules with codelength: 1.227078\n", "\n", "#previousNode node module\n", "2 3 0\n", "3 4 0\n", "2 4 0\n", "3 2 0\n", "4 2 0\n", "2 1 1\n", "0 2 1\n", "1 2 1\n", "2 0 2\n" ] } ], "source": [ "# Store expanded state network\n", "infomapWrapper = infomap.MemInfomap(\"--two-level --expanded\")\n", "\n", "infomapWrapper.addTrigram(0, 2, 0)\n", "infomapWrapper.addTrigram(0, 2, 1)\n", "infomapWrapper.addTrigram(1, 2, 1)\n", "infomapWrapper.addTrigram(1, 2, 0)\n", "infomapWrapper.addTrigram(1, 2, 3)\n", "infomapWrapper.addTrigram(3, 2, 3)\n", "infomapWrapper.addTrigram(2, 3, 4)\n", "infomapWrapper.addTrigram(3, 2, 4)\n", "infomapWrapper.addTrigram(4, 2, 4)\n", "infomapWrapper.addTrigram(4, 2, 3)\n", "infomapWrapper.addTrigram(4, 3, 3)\n", "\n", "infomapWrapper.run()\n", "\n", "tree = infomapWrapper.tree\n", "\n", "print(\"Found %d modules with codelength: %f\" % (tree.numTopModules(), tree.codelength()))\n", "\n", "print(\"\\n#previousNode node module\")\n", "for node in tree.leafIter():\n", " print(\"%d %d %d\" % (node.stateIndex, node.physIndex, node.moduleIndex()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As seen in the expanded output above, node `2` is represented by four state nodes partitioned into two modules depending on where you come from; if you go to node `2` from node `0` or `1` you are still considered to be in module `1`, but if you go to node `2` from node `3` and `4` you are still considered to be in module `0`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Multi-layer networks" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 3 modules with codelength: 0.865437\n", "\n", "#layer node module:\n", "2 1 0\n", "1 2 0\n", "2 3 1\n", "3 2 1\n", "0 0 2\n" ] } ], "source": [ "infomapWrapper = infomap.MemInfomap(\"--two-level --expanded\")\n", "\n", "# from (layer, node) to (layer, node) weight\n", "infomapWrapper.addMultiplexLink(2, 1, 1, 2, 1.0)\n", "infomapWrapper.addMultiplexLink(1, 2, 2, 1, 1.0)\n", "infomapWrapper.addMultiplexLink(3, 2, 2, 3, 1.0)\n", "\n", "infomapWrapper.run()\n", "\n", "tree = infomapWrapper.tree\n", "\n", "print(\"Found %d modules with codelength: %f\" % (tree.numTopModules(), tree.codelength()))\n", "\n", "print(\"\\n#layer node module:\")\n", "for node in tree.leafIter():\n", " print(\"%d %d %d\" % (node.stateIndex, node.physIndex, node.moduleIndex()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Infomap + NetworkX\n", "Generate and draw a network with NetworkX, colored\n", "according to the community structure found by Infomap." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import networkx as nx\n", "import matplotlib.pyplot as plt\n", "import matplotlib.colors as colors\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def findCommunities(G):\n", " \"\"\"\n", " Partition network with the Infomap algorithm.\n", " Annotates nodes with 'community' id and return number of communities found.\n", " \"\"\"\n", " infomapWrapper = infomap.Infomap(\"--two-level --silent\")\n", "\n", " print(\"Building Infomap network from a NetworkX graph...\")\n", " for e in G.edges_iter():\n", " infomapWrapper.addLink(*e)\n", "\n", " print(\"Find communities with Infomap...\")\n", " infomapWrapper.run();\n", "\n", " tree = infomapWrapper.tree\n", "\n", " print(\"Found %d modules with codelength: %f\" % (tree.numTopModules(), tree.codelength()))\n", "\n", " communities = {}\n", " for node in tree.leafIter():\n", " communities[node.originalLeafIndex] = node.moduleIndex()\n", "\n", " nx.set_node_attributes(G, 'community', communities)\n", " return tree.numTopModules()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def drawNetwork(G):\n", " # position map\n", " pos = nx.spring_layout(G)\n", " # community ids\n", " communities = [v for k,v in nx.get_node_attributes(G, 'community').items()]\n", " numCommunities = max(communities) + 1\n", " # color map from http://colorbrewer2.org/\n", " cmapLight = colors.ListedColormap(['#a6cee3', '#b2df8a', '#fb9a99', '#fdbf6f', '#cab2d6'], 'indexed', numCommunities)\n", " cmapDark = colors.ListedColormap(['#1f78b4', '#33a02c', '#e31a1c', '#ff7f00', '#6a3d9a'], 'indexed', numCommunities)\n", "\n", " # Draw edges\n", " nx.draw_networkx_edges(G, pos)\n", "\n", " # Draw nodes\n", " nodeCollection = nx.draw_networkx_nodes(G,\n", " pos = pos,\n", " node_color = communities,\n", " cmap = cmapLight\n", " )\n", " # Set node border color to the darker shade\n", " darkColors = [cmapDark(v) for v in communities]\n", " nodeCollection.set_edgecolor(darkColors)\n", "\n", " # Draw node labels\n", " for n in G.nodes_iter():\n", " plt.annotate(n,\n", " xy = pos[n],\n", " textcoords = 'offset points',\n", " horizontalalignment = 'center',\n", " verticalalignment = 'center',\n", " xytext = [0, 0],\n", " color = cmapDark(communities[n])\n", " )\n", "\n", " plt.axis('off')\n", " # plt.savefig(\"karate.png\")\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Building Infomap network from a NetworkX graph...\n", "Find communities with Infomap...\n", "Found 3 modules with codelength: 4.311793\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8FGX+xz/fmdma3jvZdFqooUgRVAQxgsr9PBuId3Ke\nnop6np6xnd6dRk9Pz3Zn92JBT0VRWfCw0JQaaoBQkrDpvZetM8/vj9kNKZsQMIBenvfrNa9dZp6d\neWbJPp95vs+3EGMMHA6HwxmaCOe6AxwOh8M5d3AR4HA4nCEMFwEOh8MZwnAR4HA4nCEMFwEOh8MZ\nwnAR4HA4nCEMFwEOh8MZwnAR4HA4nCEMFwEOh8MZwnAR4HA4nCEMFwEOh8MZwnAR4HA4nCEMFwEO\nh8MZwnAR4HA4nCEMFwEOh8MZwnAR4HA4nCEMFwEOh8MZwnAR4HA4nCEMFwEOh8MZwnAR4HA4nCEM\nFwEOh8MZwnAR4HA4nCEMFwEOh8MZwnAR4HA4nCEMFwEOh8MZwnAR4HA4nCEMFwEOh8MZwnAR4HA4\nnCEMFwEOh8MZwnAR4HA4nCEMFwEOh8MZwnAR4HA4nCEMFwEOh8MZwkjnugMczlDDlGU2iQL9SisK\nw4ngpzDWaHcqOxmQY8nObDzX/eMMLYgxdq77wOEMCUxZ5jl6jfCgomDqBFOQEB1k0GokAXangoLq\n1o7DFS2CKNCndpeSbcnOPHCu+8sZGnAR4HDOMKYsM0kiPa6XxOVz0yN9xg4LglbqbYltszmxs6hB\n3pBfY3fKyo3HszM/Pgfd5Qwx+JoAh3OG0YiUHWTULl8+L9VnUmKIVwEAAF+9BheMjBB/e2GyUacR\nc0xZ5kVnuaucIQifCXA4ZxBTlnmBn176YPncNB9f/cCX4MobOvDq+oIOp8zSLdmZRWewi5whDl8Y\n5nDOIHqN+OiC8TE+vnoJzR0OfLSjFG02J4gIkxKCMT01rLPt5iM1WLuvEg9dPgoxwUZMTgqRdhTW\nLwdw17m7A87/OtwcxOGcIUxZ5lEARoyMCQAACETIHBuNuy8ZjlsvTMa2wnrUtNgAAM0dDhyrbkOg\nj7bz8+clh2oZcJMpy2w4F/3nDA34TIDDOUNoROF35yWHaESBAAB+Bg38DBoAgE4jItxPhxarE+H+\neqzeW4FLx0ThnR8snZ8P8dUhNsjILHXtVwJYMVj9MmWZCcBIAJEAtAAaARywZGe2DdY1OD8fuAhw\nOGcIjUjpscFGr7+xxnYHKpqsiAs24lB5MwKMGkQG9n7gN4X5+Frq2pMHoz+mLLMfgMU6SbhPEiks\nyKh1iaKADrsLje0OberDa99zuJR/WLIzDw3G9Tg/D7gIcDhnDj+dRuy10+6U8f4WCxaMj4FAhA35\nNbhpVmLn8a6uGnpJJEmgoB/bEVOW+UpJoPeSInzZjNQwn6RwXxBR5/GmDgd2FNb/amtB3eK0h9ea\n7S5lsSU70/5jr8v56cPXBDicM0er3Sl32yErDO9vLcb4+CCMjAlAfbsdjR0OPL/uKP5mzkdzhwMv\nfX0UbTYnAMDmlBWnrDT8mE4kPmD+tUEjvn/LhcnGG2cm+iRH+HUTAAAINGoxNz1KemDBKENCmG+m\nThI2mLLM+h9zXc7PAy4CHM4ZwimzvSX1Hc6u+1buLEW4v67TKygywIAHF47CfZkjcF/mCAQYtVg+\nNxW+enXtoKC8lupXP/sHIlpFRPcS0XlEpBtoH0xZ5jkaSXjp1jkphphg40nbayQBS2aYDInhvmN1\nkjBo6xCcny7cHMThnCGcsvLP7YV1y+aMitBIogBLXTv2ljQiMkCPF9YdAYEwNz0SaVH+3T7nCd2p\nbbWjqgNtrqbKCQAyAEwH8DKAVCLaA+B7AD8A2MIY8zpb0GuEl/5v8jBDmJ+ul4vq5MRgTEsJwzcH\nq7CzqAG+OnU4mJseiWvPizc8tfrQPFOWebwlO3PPGfqKOD8BeLAYh3MGGf7I2u1XTIydPHbYqZv1\nv9hdbt95vP7lgr9eek/X/UTkB2AKgBlQhWEKgFKogvADVHEoir9/dYavTlqftWCkjyAQWq1OtNpc\niA4ywO6U8dI3x7Bkugn7S5ugk0TMTAvrdv3vDlXLmw7XrDjyl/k3nNbNc34WcHMQh3OGMGWZRZtT\nyVm1q8y2v7QJlU1WKMrAHrpK6tuRe7ze5ZLZiz2PMcZaGWPfMMYeZYxdDCAYwBIAeQAuBbARQKVc\nlvfp9NRQo9DFRTU6SPVA6uqi6j5rrz5MSgwWZYVdZcoyB57yzXN+NnBzEIczyJiyzOEC0TKtJNyt\n14h6X51EGw/XwOFS4JIVTE4MQUZiMPzcdv+elDZ04K2NRVanzK6xZGdaTnY9xpgLwG739iKpq77D\n9LEj8kbHBpK3z3R1UbXUtWNrQT32FDciJsiIzLHR0GtF+Ok1iAjQ28sbrZMBrDvtL4Tzk4aLAGdI\n4w6cCgIQAMAGoOF0XSNNWWaSBLpXEuix9LhANj0ltNdibEVjB7YV1OPZtUcwa3gYZg0P7/TUae5w\nYkdRvWvzkVq7U1aus2Rnrj6dfjDVxluc9OAajY+ufxdVnUbE1KRQXDQyAkSEdXmVMO+rwC8mxQEA\nfPWS5/vh/I/CRYAzJDFlmUMEwk1aSfi9orAgnUZwumQmuGQmpj289gu7S/k7gO2W7MwBL5ppJeE5\nP720bNnsJH2gUeu1TXSQEYsmGXHRqEi8vakIx2vbkRLhi4KatvbC6jZBEOh9p6w8Y8nOPPJj75EA\nWVa67+vpogoAXRPbTUoMwTvfH+/WHoATnP9ZuAhwhhSmLLOolYRnJYFuHhkToExPDTXGBRtBRFoA\naLe7sOt4w6LNR2vnO11KiSnLfOVABuTkB9fc6WfQLLttToqPQXvyn1WAUYNbLkzGi18flYtq23Jd\nMnsbwArL45e2/vi7VBFFamzscHTLXtrTRRUAWq3OznQWB8uaERFwIjygsd0BADWD1SfOTw/uHcQZ\nMpiyzBqdJHwZEaCfuWS6yejbh00eABTGsLOoXjHvrWhzyuwiS3Zmbj/n9ZEEqrlzXppRI5JXN8wP\nthajrlW1MlmdMgwaEXfMTUVDmx3PfXXE6lJYhCU7c9AEAACSH1zz+HhT0D2LMuJ0AGCpa8dr6wsQ\n6R7kPS6q+0rURWsiIMioxRUZsfDTa1DRaMUr3xU0OGUlwpKd6RrMvnF+OvCZAGdIYMoyk1YS3ooN\nNs68cWaCURL7d4wTiDAlKVTw1Wv8/7Ot+GtTlnmCJTvzeB/NrzWF+Sihfjq0Wp3IHBvdzQ0zOcIP\n154X39l4zd4K6LWqrT7YV4ekCF/lSGXrYgD/GqTbBQC4FPavvcWN92SOjYZOI8IU6oMnrhrbq13P\nOAUPW47V2hTGXuAC8L8NdxHlDBUma0XhyiXTTScVgK6MignArOHhfnqN8Hdvx01ZZtJrhPtmpIb5\nAidzw1TZX9aEscNOeF3OTA3z0UnCfe5F6kHDkp1ZxtobDm7Krzrlz9a32bGvpAmywl4dzD5xfnrw\nmQBnSKDTCH+YkRZm0GlErNxZisMVLfDVS7hzXhoAeI2a9TwhT0sJFTccrplvyjKHW7Ize9rH/Z0y\nM6VE+vW6Zlc3TA/Ha9vgp5cQ4nsi80NiuC8UxqIAhAKoHYz7JSIjgKelgIjwTb97vTUswOg7Lj5o\nQCLTanXi1XWHmK26+OmyN24/dQXh/KzgMwHO/zymLHOoLLMFGQnBAgBMNAXhV+cn9mo3IzUMd8xN\nxR1zU7uZSAxaCemxgUwgWubl9EE6SXAIPRKy9XTD9LCvpAlj47p7XBIR9BrRgUFyxSSicQByAQS5\nmqvTXUyY8WluaeP6/GrZ6VL6/BxjDMV17Xhh3dGOhsL9q8rfvONmIpo0GH3i/HThMwHOUOAiU5iP\nw0cn6QDAFObr8XrpQd9OEhNNQYbDlS3XAXiixyGXwtBNAby5YQKAojAcLG/GHRen9jq/LMuSvfLY\nj/o9EpEA4PcA/gjgLsbY++5DTaYs8/hNh2tyNuTXTM1ICBYmJ4Zog320EAVCh0PG4YpmbDpS29ps\ndXY4ZeX35SseXEEfPLQQgJmIrmWMfdv1WqYssy+A641acTFTZzACAfU2p/yRwvBvS3Zm04+5F87Z\ng4sAZygQEmg8ud+mt6hZD756DRTGvD2p1ztcstbhkqGV1Pbe3DAB4Fh1K8L9dPA3dPdKcsoKbA6X\nvvrDB3Mp5+5KAAcAHOyyHWaM2frrOxHFAMgBoAcwmTHWbRHbkp1ZAuACU5Y5YWdR/e25xxuWOmUl\nkDEIokA2jUjbbU7lKQDrLNmZCgAwxr4goqsAfExEtzDGPjVlmSO0kvAXSaDFieG+yqTEYB8/vQZE\nQJvNhd2WxrFHKluy0x5e+4ndpTzovi7nJwwXAc5Q4KS28P6iZgGA+jiDJTvTOvyRtd/vK2maPSkx\npN9MoXmlTfCWSC6vtAlarXYLs3fMBpAEYDSAUQAWAsgCkEREJTghCh6ROMoYcxDRLwD8E8BLALLd\naST66u9xAPcAuMe9EE2Fj1/ap42IMbaRiOYBMBvTpg2Puerh5RNNQcHnDw/XeAuIGxkTYGy1ObHl\naN21PxyrzTRlmedYsjN393V+zrmHiwBnKFDf3OHs182xv6hZAGi1uSAQeTVx2JzK3zYdqZ2YkRDs\n15cbJgD83+Rhne+tDhfKG62wOmR8faDKanPKn8ffv5q5A9OOAFjpaesOZEuBKgyjAPzS/RpPRDao\nv+MPAeQDSCaigv6EwIM7GvqkgUKMsT0BUxZdHTrzmg2XjYuiyUmh/Yqqn16DeWOixJhgQ9BH20vW\nm7LMkyzZmUdPdh3OuYGLAGco8O3xujZNh90Fo+7En3zX0a+/qFkA2G1psDpcyod9nP+/LR3O9iNV\nrX7D+/C591Duzh10oKwZUYF66DUigny0eiJ6uN3uui/xgTXPKYy90dULiTHmwIlZAACAiCZDLT6f\nB+BLqDOIxVBnETFEdAzdZw0HARQxxrqXOhsgUfN+88z5aeHK5KTQAY8Zo2MD0W6XfdfuqzCbssyp\np5KCg3P24BHDnCFB2sNrP71oVMTlM9PChQ+3FaOopg0dDhm+eglzRkWiqKbNa9QsAFgdMp748qDN\nJTOTJTuz2tv5TVnm87WSsPbmC5KMMUG9K3g5XQo+3lmCkvoOTOkji2hpQwe2HK21HihrJoWx24ue\nyHyz53mISARwP4A7AdzGGPvYSxsjgOFQZwse09IoABEADqO3WamYMdanSciUZR5t0IjbH7x8lLHN\n5vQaEf31gSocKm8Gkbp+ctWkOPgZNGCM4anV+W3NVmemJTtzU1/X4Jw7uAhwhgSmLPM0P7207g+X\nDvfxLOAOlO8OVrKNB8vXHc2+4pL+2sXe8vpSQ2DY21dNS6ZRsQHwuI06XQre3lwEP70GV02Ow8mC\n1WpbbHh9Q2GH1SE/VvD4pX/z7CeieADvQU3odgNjrOxU7oOIfAGMxAlR8IhEEFRTUs8F6VLGGEt9\neO0bM1LDll48OlLqqzBNgEHT6Qq75VgtalrsuGJiLADgh6O17JuDVasP/3n+wlPpL+fswOMEOEOF\nrXaXYn5vS3GHPMDCLgBwuKIF3+WVycdfu308EfUpAkSkKX/15qWVq194b+XO0mPZXx5q35BfzVqs\nTnyyswR+eglXTx12UgEAgDB/PW6bk2LUSsKjCVnmRe7zXwfV9/8LAHNOVQAAgDHWxhjbwRh7mzH2\nB8bYfMZYHIAYAMuhViWLhepmug1AEwniVpfTeePkxBAJ6DsiumsshMOldFuJn2AKJqfM5pmyzL0j\n6jjnHL4mwBkSWLIzmSnLvKSkrn3tmxsLpy6eZjJ2XR/oCWMMuyyN7ItdpdbyFQ9ZXQ3lbwF4jYhW\nArifMdaz5sDTAGztB9f/yr7gHsXuUiabV69d83X8OF+dVtJmLRiJVmt3U8qkhGBMTw1DZZMVn+0q\ng0tWIAqEyyfEIjbYiOvOize88/3xF4iERVBrDM9jjA26pw1jrBnAVvfWCREF62JGTBUE4fMAY+9k\nez0jotflVWJ3cSMMGhHLZid1tjNoRRg0oqPN7ooAMKhJ8jg/Hi4CnCGDJTvTYcoyz6totL6UvfrQ\n0jHuwi/RXWz4VoeM3ZYGtvlobbvNIVc7FSy0lx2SoVbW+hfUwXi7O4AqHwCIaCnUso6TPQuvRNQG\nwJbyoHn19JTQ6zSiIAlE3ZLLvfzNMaRE+mHtvgrMGRWJ1Eg/HKlswdp9FfjNBclIDPeFQZCjfUbN\n9ms/uH4CY6zjbH5fjLEGU5Z5vyQJDvQYK7xFRM9Nj8Lc9ChszK/B1mN1mDM6srO9RiQFgM/Z7D9n\nYHAR4Awp3BkxbzFlmf+0r6Tp5rzS5jsFglErCS5ZYYLdpWg0In1lcyrPAPjekp3JkM1AROcD+Bqq\nTf4rAJuI6EEAewA8A2AWY6yrC+lS0TfkPwrDLV1NKR4PJJ1GRJjblEJEsDtVpx2rU+4MJiMizBod\nCzvu1R4+8N1ZFYAuNDtlpmGMdVZA6ysi2sPY+ED8e/PxbiJgdykiAB5F/BOEiwBnSOL28vmLKcv8\nBIAwu0sJBGAFUFf4+KXtPdszxoqJaCbUGcG3AGYC+Biqa+ZvGWOHPG2JSAKwJPji394b6qdz+Bk0\nhp7n62pKyRwXjbc3FcG8rwJgwC0XJXe2GxkTQGv3V04b3Ls/JdpEgepLGzoih4WoD/LeIqLrWu0I\n9VOT4h0qb0a434kEebUtNjhlRQFQeVZ7zhkQXAQ4QxpLdqYMoMq99QtjrJqIZgNYA9WjphnAPgCP\nE1EpY2yDu+k8AMeNadNafbysO/Q0pWw/UIXLxsdgVEwA8kqbsHJnKW6apdrUjVoJLoWdMzOKJTuT\nJT5gfu6Ho3V/Gnaej7GviOjc4w2obbVDICDQqO30DAKArQX1dgCvWbIzvSVs4pxjuAhwOKcAY6yR\niC6G6lIpAkgEMBvACiJ6C8BjAG4E8G8ATlcPTyRvppTdlgYsGB8DAEiPC8TK3NJu7QWic1rURWF4\n81B582NtNtcpF6ZxuGTkHq+HU2Yvnel+ck4P7iLK4Zw6VwPoALALwCoAmwCMBzARqofNPAAfAahq\nbHeIXWNxvJlS/A0aFNW0AQAKqlsR2qXWQEO7A5JAjWf6hvrDkp1ZLwr09ootx62n4l6rMIYPfyhy\ndRTscBU/eVnMGewi50fARYDDOQWIaCqAbKjJ3a4EUA3gvwBsADIBWABo3e/32p1yS3G9uqbrMaUU\n1bThhXVH8OK6ozhS2YJFGXFYs68CL6w7gnUHqrAo44QpZUdRvV1W2L/P4i16pfD5G/5emLcb72wq\ncPZXk8CDrDB8vKPEVlRvy6ta/cJSACuJ6DH3egnnJwSPGOZwBggRRQHYCeAWxthq9z4BwD8AzABw\nCdT1gjegpnXIHXb3fw6lJ0U/dP00U+9cEifB7pTx+BcH7U6ZpViyM0tP/okzAxElAviOdD7Pp9z7\n8XSdoCy8YHS0Znx8cLcgMUCNjt5X2oSN+TVtrTbnDrtLWWjJzmx3f3c5AHwBXN8z1XVPTFlmAUA6\ngDCoZusGAHmW7EzrmbjHoQwXAQ5nABCRDsB6AGvi71/9HIDrDFpxCYBQMAjOpipj7Y7VPm17v3Io\n9vZYADoAzwkGv7kJd62I+t3FabqowF5OQv3yzYEq1w/Hatcf/vP8uYN+QwOEiFIBfAPgCcbYKyRp\nTfpho/fFXf3ILiZqzxse7S8HGrU6AqjF6rQfqmgRBKLtNqf8NwBfeWoTuM8lALgLanrsuxlj7/W8\nninLHESEX2lE4R6dJPgHGDWyQIR2u4uarU6BgDecMnvRkp1ZdLa+g/91uAhwOCeBVAf510T/sOiE\nO/5dyhiWJIb7KhkJwb4en/42uws7j1bJBdWtIlz2z2St752W7MxSIrrNOOL8F4dd+Xu6/ZLRCO5i\n7++P3ZYGtmpXeYNTVsZZsjNPOUXEYEBEI6DGRjzCGHvLve8DAEcYY4+asswxUIPkQqCalhsA/Ndd\ns6C/846HmgF1N4DfuSOWkfiA+dcC0UvDo/3ZjNQw47AQY2dsAqC6oW4rrHPsLGpQALzjcCm3ueM+\nOD8CLgIczkkgols0YfH3xN/8T/+JCcFBs/ooqAKoKak3H67CtoL6luqvX/9Ta+4XTwGo8594WXjk\n3GXiNTNSKDXSDz1rEnuwO2VsOlLr2nykttkpK7Ms2ZkHvTY8wxBROtS1jvs8T+xENAXApwBSGWO9\nYilO8fxGAM8CmAtgcdKD5pl6jfjIb2YnGcP99f1+1uaQkfP98Y7KJutGu0tZ4Hbz5ZwmXAQ4nH4g\nohmif9hnCbe/JV42IS5gcmLIgJwp9pU04uPvj6D07d+XOetLGYBf+U9etCRkyoLFPsERzpnDI7Wj\nYvwFo1aCzBga2x3YdrRK2VfcKIiS9F+7jGXncAYwDmpU9F2MsQ/d+wjAZgBveWYFg3StK4wjZ70d\nv+hen+WXjNAE9CGuPXHJCt7YWNhR2WR79+hf5t8yWP0ZinAR4HD6gIhiAWxP/sN/WmePS0q6cGTE\nKXm2bD1ag9VbDlgtr9wao9jbGwGARGmKLmbEyog5v3bootMCZAU+RJBFgRpt9RVflr/7x1/LbfV3\nMsZeOSM3dRKIKAOAGaqZpmt1s18AeATAhNMtTOMNU5ZZ0Aqo/tXs5NAgo6bPBHurdpXB4VIQ5KPF\n1VOGQacRYXXIyP7ykM0pKyMs2ZmWwerTUIO7a3E4XiAiPYBPDclTPhIN/r+dNTxccskKXl1fCFlR\noDBgdGwA5oyKRF5pE749WI2aVhtum5MCT1GZqSlhWH8gUO8/+YpboLqVgsmu7UQ0suTt378MNRnd\ntYyxvZ3X/dey0QAeJaLX+iv0cobu+TwAnwNYxhj7ost+LYCnoHpFDbbpZV6gr05nCvVBq9XpNcHe\np7mlyBwbDVOYL3Ydb8CmI7W4eHQkDFoRGQnBtLOo/ncA7hvkfg0ZeJwAh9MDt+njFQCW2Ksf8Tsv\nOUQjCgRJFPCb2UlYPjcNyy9OxdHKVpTWdyAyQI/F001ICPPteR6cPyoWvnHD/0RESzz7GWMtjLEl\nAB4H8DUR3UUnVkDvAhAM4PKzc7edfZ0BVQCWdhUAN7dBXQz+ZrCvq9eI981MC/cDetcq8CTYq2t1\nwOT+bpMjfHGg7EQeuvOSQ3REuMWUZR7YijunF1wEOJze3A5ggjYq9SaZ4fopXerqaiX1J+NSGBTG\nAFKLwIT66QAvptWJCSGkM00QSGvMJqLbux5zL7hOAXANADMRRTDGdgE4BOBvvU52hnDnQ/oUwHWM\nsbU9jgUDeABn6Enb4VKmjfKSibRrgr2IAB0OlTcDAPaXNqPZ6uxsF+avhzs/08gz0b+hABcBDqcL\n7gHxQQBXRC19ViMQqGtBFYUxvLDuCJ744iCSI/w6C6r0hUErwqCV7IEzr1sM4C4ierDLUz8YY0VQ\nM5LuBrDHXb3sLgAmd9bSM4o7D9JHAH7Zx5P+wwBWMsYG3UvJlGXWMMY0ek33Yahngr1fZMRhW0Ed\nXvr6KBwuBZLQ3bPKRycpUBP6cU4DvibAGTAZOekGAP8nCeIkkYRQBtbqkF3HALyfuzTvZ58mmIiG\nAfgAwGLGWJEpyxwrCkI3G7hAhOVz02Bzynj3Bwuqm22ICOjfpVEjkuI/6YqGxm/f8KSiDiSi+5jb\nK4Mx5gTwEBF9DeBdAJ8AKIbqQjlp0G/UDRFdCjXR3SLG2PdejicDWAK1FvGZQGFQJ1AeWfSWYC/M\nX49fu7Oq1rXacaSypdtJ3PmMnOCcFlwEOCclIyc9XiOId0uCeFOMXyhLCYnx04taOBUZ1W0NtgO1\nlr9Of2/Ct3bZ+WTu0rzN57q/p4Pbb30VgGe6PBE3O2VF27Wgige9RkRimC+OVrWeVATcBVWaGWOV\nRDQLwFqopSq7LbQyxja63TNfhzpLH09EIzwVzAYTIrrcfZ2FjLFtfTR7CsCzjLHqwb4+oKbxTn5w\nTUez1ekT5KO6hnpLsNdmc8FXL0FhDN8dqsaUpJDOYwpjaLE6NQBqzkQfhwJcBDj9kpGTfqEkiJ9P\njErVTooZrg029KoVrr8keRL2VRfN32DZN3vqu+OedinyY7lL8342vseeiGCo6aGf7XKoTRSovqzB\nGhEXYkS73QWRCHqtCKdLQUF1K2aNCO9+sh53Xdtq71ZQhTHWQERzoC7Cvk9ENzDGOvPsu4//H4Bl\nUBenVxLRKM+sYZDu9xcA/gngUsZYbh9tZkKdhSwerOt2OXcigAUAFkYsuFu7IyUY88bGoq9aBWqk\ncD0IwKiYAExMCO48V1FNG2SFVQM4Otj9HCrwOAFOn2TkpM/SCNKa69IvNJoCI0/avtXegZx969pb\n7O0vbV2y9/6z0MVBgYh+D3Wwm9Gzjm/iA+Y/pscFPnLN1HhjVZMVH+8oBQMDY8CYuEBcMDICB8ub\n8eXucrQ7XDBoREQFGvCr8xMBAKt2HMeG1Z8V16x+7m4AXzLGXO5r6qHa4kUAV3mrH0xEfwTwJNSk\ndEsYYw2DcK/XAHgOwPyurqk92ggAtgF4wVt+n9O4pgBgMtTMqwsAhEONRnZoIhIvSbjpuaiHF40X\nRMF7FHV/vL2pqP1oVeufABRAXReQAdQC2MiTzQ0MLgIcr2TkpIdLglhw7egL/RKDogb8uXaHFa/s\nWt3R5rBen7s0b9UZ7OKg4H4qfxfAVMZYcc/jpixzqCRQ6f0LRuq9VQnrD4dLwV8/3cNK3r5nhaO6\n0ATABNUE8wZjrJyINADeBhAHYAFjrJux2z141gKoA2CAKgQbT/kmT5zvBqiiMpcxdqCfdtcBuBvA\nlNONVXCb1+ZAHfgvg3oPX0DNwjoDauGdbwE8l/bwmpfmpUeNn5ocekoqUNFoxb++PSYzxlzDQn3s\nvnqNyBhjDe0OpabFJhDwljvZXMHp3MNQgZuDOF4RSfjtqLB4KTEoCp8f2YJj9WXw0epxa8ZCAEB1\nWyNWH9sGp+xCoN4Hi0bMhFbUwEdrwKUpU4xfHNnyGFQb+08WIkqAWjj+Gm8CAADFT14WHLHwHuv7\ngVrppgvFNvtgAAAgAElEQVTTpIE+rSqM4aPtJVZma9vqqC5Mce++H8A0AHlEtAHAvwAsBfAigO+I\n6BLGWJ3nHIwxhYj+AuBpqG6kH3iql7kXk0/lXm+CWvXsQsbY4X7aGaAGti05VQEgokioA/5CqNXW\ncqEO/NlQn/7vBvBbqIvRExljFgAwZZkXr9lXsT3IR+vXV4WynjS02fHmxkKMjg0QLhsfo/PRSbqe\nx7cV1N+yvaj+N8kPrXnaJbNHLdmZ/InXC3wmwOlFRk66pBGkql+NmxcS5ReCkuZqaEUNPjv8facI\nvL7bjHlJGRgWEIG9VQVotLbhgoRxAACFKXhmy8cdVpd9Wu7SvH3n8l7ceenn6jXi7URIZowZiahF\ndjr2FufcN8lRceRlxtgL3j7rdtd8hzT6P8Uve/H+lOSEuMUzU0gj9e9ZLSsMn+wsseWXt+TbXcr0\n4icvswO4HupguBHAX6AOkrcCMEK1/cdCrUh2MWOsvEsfJACNUHPx/wXqABoINSf/gNIpE9EtUH39\nL2KMHTtJ2/uhzgCuHMB5Carn0EL3lgbVzPMF1MXvVgCLAPweqgg8DzX3UGvPc5myzNM0In01f0y0\n76TEYJJE798xYwwF1W34YFsx5oyKwLSUMK/tPLRYnXhjQ2F7s9XpyTrKB7we8DgBjjfmBRl8tVF+\nqhfGsIAI6KXuib0arK0YFhABAEgMikJ+3YkHaYEETI4ZrtWK0p1nr8vdMWWZhcQHzHdrJaEi1E/3\n0fwxUZk3zkxIu/mC5Lgl002jZo6IvC7xV08npT285jemLPPCrp8llXsBvAVgEXPaQopf+13b8dq2\ntc9+dbhte2E9szt7Z09wuhTsOt6Af3x1pC2/vGWr3aWcb8nOtDLGFMbYuwCGAygC8AOACADnAbgB\nwFio5hErgJ1u10wAgHsN4R8AboIqBpkA/gNgOxFdf7LvgYiWQ52BzB6AAIQD+AOAP/bTRkNEFxLR\nPwAUAlgNIBLAQwAiGGPXQF3DuMl9/A6ogW8pjLHnvQkAAFiyM7c4ZTZl3YHKnY9/cdD61f5KZ12r\nHS5ZgawwtFqd2Hqsjv3NnO/6cFsx/i8j7qQCAKilO2+9KMXHVyctlQS646QfGILwmQCnFxk56fdM\njh7+xPyUyZ0jf5OtDR8c+K5zJvDWnrWYHjcaaaFx2Fp6CBuL9+H+Gdd2nqOwoQIr8zfv2nx9bsbZ\n7r8py6zXSsLKMD/d7IUTYoxxwcZeLp6A+sR+uLIFn+WWddhd8t9cMvtz8ZOX6aFWBhsO4AoA/wf1\niX1W/P2rqwDM0WuEe2WFzRwRHaAEGjU6IlBzh9N+qKKFBKKd7oIqa/tKcUxE8VAHxvOgDrgfQs3J\nfyPUyNxAqLOGpxljbe6CNs0APRF//5dfEZBJHQ2jrSV5FzodjhJtZMryijdv67VWQET3APgdVBOQ\nV3NXj/b/BOBkjN3ZY38g1KppC92vBVCf9r8AkOfxXCKiJADLocYWrAXwXF/eR/1hyjKP0IrCcgZ2\njUtmfgBIFMgqCrRLUdjUBy8fpdVpRKzcWYrDFS3w1Uu4c15at3NsPlKDtfsq8dDlo2DUSahutuHl\nb462OGUWZsnOdHi/8tCErwlwvOGnl7T95vS9PG061hZsx6aS/UgNiYModJ9U6iQNZIcc7q5MVQPV\nT/6MP3GYssyCThI+MoX5XLB4msnQl1kBAESBMComAHHBRuMr3xXc21BVLkEtknIYahTvYqhlIs9n\njHmC4b4G8LUpyxy3v7RpProXVFlnyc4sPFkf3QPy1W43zH9ATVNxF2PsGSJ6FmpOoT9CjTB+TwqM\nesMn/aItwWNm/8mok+6bmBBk8NNHC5g2Gi0djoCdBdXrU7NWFTugeQzACkt2poOIHoAqKrMYY2Xu\n78ZjvomAWvmsCWrJxlZ3AZmroIqfZ71kAdSBfzJUM9aXAP7AGKvw3It71jQTqr3/fKgCOsZzzdPB\nkp2ZD1V4b3X3GQWPX8pSHlr74tSU0KmekpYTTUE4LzkUH+8o6fb55g4HjlW3IdDnxJ9wRIAekYEG\nKq3vWARVdDluuAhwvNFml51OAJq+GoQY/bF4zMUAgPqOFhyr7/6bd8guOOocwVCfCMMA6ImoDqog\n1HbZavp433SaorEs2Fd74fUnEYCu+Bs0uHl2ks9z5o4HjcNnPN9x+PvfQ7XhPwLVjFLS8zPumr+v\nnUb/OmGMbSaiyVAXhz8nonUAHmCMZRHRFgD/Fv1Cg2N++dD2GFOiOGfsMCE1ws9H6L44TfPGRONI\nVavp27yyV2vbXbdJARHfQk1AN4sxVmnKMvsBWKyThPskUQgLMmpcoiigw+5CY7tDm/rw2hW6mBEp\n9vL8FQB+T0QLodrwV0NdtP6mZxEZt2fTVVDt/QFQxewGxljbj/lOeuKx4ZuyzAZJpBunJoV0juym\nMF80tvd+qF+9twKXjonCOz9Yuu0/Py3Mb+XOMs/Mi+OGiwDHG4WlLTU29CMC7Q4bfLR6MMawuWQ/\nMqJTux2vbK1XtFG6VYyxxUCnX3xYjy3c/ZrQ5b1nv0c0eopDX8LRFH//augkIStzXIyPRhTQV+pn\nq8OFFVuL0dThRJBRg+vOMyHQR4vzR8Uom6UHQo7+9dIroXrkXMQYO6Puhe6I4beI6BOoi7f73bOB\nZzVh8Ytjrnrky6njR7DLJsQKfVUjEwTCiGh/pEWO0K7aaZnoXJI9pmb9O8PbD26oNGWZL5cEej8p\nwhczUsN8ksJ9u5nGmjuc2Has5te0JJvai/PGV6zMfoU5Om4GsMNb2mh3Qrmboc5ejkH1ODKfhbTX\nqb46STlZec5D5c0IMGoQ6aWec1qUP+xOOd2UZSa+QHwCLgIcb5hr25uU2vYmhPkEYmX+JliaqmF1\n2vHctk8w2zQODpcTOyuOAABGhA7DuMjOtUwwxrCtPN/qkJ0vdtlnA1Dq3k6KWzRC0V0sPO8ne9lv\nqF7xQEvyDX8NSgzzAYDO1M9aSYCiMLzyXQHSIv1xoKwJyRF+mDU8HBvza7DhcDUuGRONyYkh4oZD\nVVcLet/5iq1tHmPs0I/8HgeMO0bgfiJ6HaoA5cdd+1jDuBHJ8oIJsVpvaxo9EQTClZNN5HC6tAeE\nGz9IfMD8il4j/vOmWYmG2D4S3QUYNZg3NoYuHB2FD7cGSz5JE2fbXcqfeq5nuM16dwK4DupawALG\n2J4fedsDgoi0kTf8PUE/PL3fL8HpUrAhvwY3zUrs3Nd1pNeIAojAGIMBQK/gvKEKFwFOL3KX5jmm\nvjvuXzvKD9+dmTpV94sR53ttNyV2hNf9hY0VcMquCgA7TrcPbtEoc28nhYh0sVc/8uHMUTGXdx0w\nvaV+zq9owW8uUBOSTTAF4fUNhbhkTDT8DBokBGu19VOvym3a8LbJHfDkmXE0no01DcZYIYBFvmMu\nvl4wBr17eUYcyQrDq+sLes1ovj5QhUPlzSACfPUaXDUpDn4GDRZNTcTByrYpAlMm/u6iNCnsJDV7\nAXWAvH66ybBiS/HogurW/wBY6HYBnQ3V3j8VqvlrZJf1kQHjPpcRaq2EnltQl/chUL2Nwtz7/QBo\nGr55XY6Kf7LPmSkA1Lfb0djhwPPr1AwSzR0OvPT1Udw2JwW+eg0UxsAYRAB8YbgLXAQGiYyc9DSN\nIC0XBeFSRVH8QZAFEuocsvNthbG3cpfm1Z/rPp4KLkV+eW914fJxkcmI8Q8d8OdsLgfWHNvebped\nZzV/EGPMPvJPX0WF++u7PS0qjOGlr4+ioc2BqcmhiAs2otXmgp9eHU/8DBq02V2d7WPDg7DH6B8O\n1XWz60zDpw/zVF+mqqYfYyKJWnh3xuTEEKdGFLQAvM5ozk8Lw8Wj1XQeW47V4ttD1bhiYiy0koiJ\niaFot7ukMH99n2axtfsqkF/RAkkkBPvo8H+T43DN1GGGJ1cfushvQuajUNcV9FDt/dcwxjqISHSb\nhLwN4Cfb74S6GN0OdSCWARBUs6MR6oDvB6AZaq6lnVBdaotEg6+1XdE8JytM1zNgz/NHFhlgwIML\nTyQ8/Zs5H3dcnAKDVh3mmtodEEVqK/jrpS5wOuEi8CPJyEmfope0/9CJmrEZ0WnSyLBhGqNGD4Up\naLa1h+2qPPbokfrSP09/b8Lndtl5V+7SvKpz3eeBkLs0rywjJ/2ad/d//Z+lY+caPDED/WFzOfDu\n/q872hy2DwCsOPO97A4DDJoei8FdUz+/50793J9lRSsJYE7rSADRAGxQzQbHcGLgcgBwQR0c4wDE\nA9BCTevgjxODn7GLaAxEODpFw5Rl1kgiLTsvJbRzEdTbjMbjJQOoKSq63tb0lDC8ur4QisL6NIul\nRPph3pgoCET4an8FNuTX4JIxUZiWHGxsSppwb9ueNTvdfVsG4F734O8PoAVqzEJDj80KdWBvcH9v\nTe73Ye5j0e7vqhonTIM9t4quCfW6MvyRtbccrmgZMypWTTH94bZiFNW0ocMh48nVhzBnVCQyuiSX\nA7rX+dleWO8k0Lvezj2U4SLwI5iUk75IK0jvzkvKMI4OT4AkiN2OBxv8kRAUZexw2vB9yYFFuRVH\nL8jIST8/d2nekXPU5VMid2nelxk56de/tfurD2YOS9dNjEmFj7a3aUFWZOTXleCbot3tHU77u07F\ndfu5yCJKQJPNSxAXoKZ+TgjzxdGqFvjqJLTanPDTa9BqdcK3S06gdrtLEYyBGwDsgzqgB0Ad+Pzd\n732gDvh6qG6WWqhPsgIABeqDKbm3CKjrGqlQB0fP1rWN6D6HREQdAJpF//D2xNteN4Z0WQT1NqMB\ngHV5ldhd3AiDRsSy2Umd7cP81UX7DocLvnqNVxFJjjiRETYuxAcHytTqXZOTwrE+ZbJGE2Z6z1lr\nKYM6kNuhPq0HAoiBKoCebbz71YXuA/qxHv8u85Yob6DYnMpTm47UvDIqNsAPAK6ZGt9v+/syT5gr\nXbKC7YX1LqeseI0OH8pwEThNMnLSL9KKmvduHMBTslGjx9ykDE2oMSDsq4KdmzNy0sflLs2r6PdD\nPxF23XjgK0O8vta53Fm4uSxvSmpIrJIcHGPUixpPPQHnrspjLiI6YHM5njgbSeMyctIJqtlAB6A5\nd2meAwAcLmXzkcqWKSNjAnQA+kz9PCLaH7uPN2LWiHDstjRiZIyar4YxhsOVrR0+I85/vnbVU1+d\nSp+ISATgixOC4Q91wAyDKgQhUEUlEKqYBLjb+7g3PVRxiSZJCw0p3eYrfRWzmZsehbnpUdiYX4Ot\nx+owZ/SJbK86jQibU4Gvvm8R8bDreAPGxAUCAHz1EiJ8Nawq3PRbZ63FM+PRAShB90F9K9RMqKUA\nSnsmwDsDrKxssr5cWN2KpIheKc375YdjdTIR9lqyM38WD2BnEy4Cp0FGTrpBEsRPrx19wYDMJB4m\nRKVQs609aHt5/jtQMyz2dX4R6oJcLNSnr2YAe3OX5p01b5UuPGQttm3d9fuDv8zISQ/Ory25saix\n8jwCBTcdbMkQg8XPpTDpidyleX0mJRssMnLSx2pF6W6BhGsIEAQSZJfi0k5/b8Lxmj0NX5Z9yNKw\n5AXdpWOjodOIaLU6e6V+Hh7lj2HBRqzYWoxcSwMC3S6iAFDa0IEWq7MdavWvU8LtTtns3k4JItIC\nSASQAiCFRHG8iwnXwUtal76K2YyND8S/Nx/vJgIOlwKdewbQX0W09YeqIRBhXPyJCo2+Bq2iT5i4\nsf3ghvehDvL1Z2NhvD8s2Zl2U5Z50Ts/WMw3z04yxJyktCegJpJbvbcCRbVtpChsdMpDaxtFAc2y\nwj52yuwlS3bmSSOp/9fhInB6/DLGL1Tw5Nj3lmXz68JdONpQBpEEBBv8cHnaNOgkLaYPGyVtLTs0\nPSMn3ZS7NM/S9aQZOekRAtFvNIJ0p7/OqI3wDRK0giRaXXZXcXONNOO9Cfk22fkUgFWep98zCRGN\nhOoTPhYAcpfmNaBL0RUi+hLAp/1lpRwMMnLSk3Si5mODpE2bHDNCOzEqRfLTGQFAwxhDUWNl0mbd\n/uXB6XVyc2FV9W5LQ8R5KWGIDDTgjrmpvc5n1EndTCcefjhaZ3XJyrOW7MxB93l3D/QJUAf6ZPer\nZ4vCCfPJMVdL3W4XhF+2WJ1af4OmzxlNXatdLXAP1T8+3O+E+aip3QGFMRh7pL/uKSK7jjfgSGVL\nr+9DESSH7+gLttd9+cxZcQMdKJbszPWmLPN1r64vfH/hhBjjuGGB8BYUWN1sg3lvBUob2jEuPgjL\nZiUJfnrJDwBabK7A3ZaG5buON94+/JGvttqc8u8s2Zln/CHmpwrPHXQazHhvwqErR8wckRoSCwBe\ns2wWNVYgITAKRIRvinYBIMxJnAAAWHNsu2NPVcEL25bsvddzzoyc9EWSIL47MiyepsSMMET3mGHI\nioLD9SXYUnqwta6juc4huy7IXZp3xp5i3LnsNwD4iDH2Uh9tXgZwmDH2orfjg0FGTvp4jSCuvzBh\ngt/kmDRBoL6jgJtsbXh900FWXbaU3XrhCOFkZR+7sr+kiX2ys6TBKbNUS3bmaRVvcUfRmtB9gPcM\n+DFQ3V0L4B7s3VsBAIsnNbT7ew9NuPPd12ZPSL3s4vRosa9iNu9vsaCu1Q4iINCoxRUTY+FvUL2e\n/ptXCYdLwYLxMb1E5K1NRZg1IhwEYM2+Ctx8QTJ61kp4etVu5L/zaJXNsucwgOMALD22cm/BZGcL\nU5Z5sl4jvsgYS5+SHCKNiQvU+OgkMAbklzdj3YEqXDw6EpMSQzrXQ3ricMnYUdTA1uVVtjlllmnJ\nzvxZlkb9sXAROEUyctJT9JJ2773TfmnsOiD1TLDWlcN1JcivLcGVI2YAAGram/DG7jX1W5fsCQWA\nSTljlugkzSs3jLnYOBDz0tayQ/L643uanIqc0XM2MVgQ0a+h5m+Z2teP3V35KpQxdm9GTvpwjSDe\nIgnSaKj28Gan4trrUuR/5S7NG1DK4564axvvuWL4jKCRYf0vAnpwyE48u65UaaicLyybPRzRQSc3\nGewtbmSf5pa2O2U2w5Kd2W/qa3dqZxO8P9HHAShH9wHe894CdQE4GqogeF5jeuyLAtCmjUypT/j1\n35MeWjTulCtuuWQFT3x5CLdcmIxwfz36EpFn1uRDVhiMbhfKuBAjrpgYi6omK/75zdGW4y/cMElu\naxjmvt+eWxhUUbP02DyCUXk2RMKUZR6uEYU7RQGXygr8GRgICFg6I4EGum5wrKoV7/5wvM0ps+mW\n7Mz9Z7jLPzm4CJwiGTnpsyJ8gj6/JWNBQNf9/YnABwe+w+gwE9Ij1EhGlyLjic3vK0w1x52nFaWv\nl42/1BjmEzjgfmwrOySvP763zKG4RuQuzRvUMnpEFAbgAIBL+osKJaJrQ2YE3jr8lgQdYxgzMTpV\njPEL1WhFCQ7ZhZLmasfuygJFFISdNpfjsdyled+eSj+mvzdh1ZSYEZddkDBOPHnrE1iddjy57qij\ntfJqZXx8MKalhOl7zgoYYyiqbcemg+WuwqomWRb1kz0DgHugj0fvQT4ZwDCoPuxdB/hCqO6QCtTB\nsa9BXgtVJCrcr13fd766A+WQfPf7BdPHJCZdMi7uVG4f5t2lbMfxRspaMAp67Sl9dQCAT7Ydl9d/\n9KajcUOOGWoNgB96rge4M5v2FIiELu9DoJq4LOguDp6tcrBTTZiyzKSVBMuijNi4scOCTkk5d1sa\n2Be7y4/bXUryUEspwdcETh2dRhj4D2tT8X6IJHQKAACIJIC53QP1kjZ7buLEXgLgUmT8e+9/ITMZ\nCmMYERqP2aaxncenxo4UD9eVhhQ3V18NtdDIYPIMgPf7E4CMnHQa80TafP9o3+nzUyYLI0KH9XKR\nHRkWr70oYQIO1lpmrivc9cXUd8f9eduSvU+d7OJEFKGP0d2R/ue0hefFjez1Y26xt+Ozwz+g3WEF\nEWFCZEq36GWDRofZI2Vhs+6FlbuP33l8T3HjbSF6+MaE+MKg1zGrQ3YUVLcpVrujufnI9tW1X/79\nl8xhfYSehB7qYB8P1Zf9GFSPmHoA26HWAZCgRrRGQ01fcSVU759a9B7QN6D7gD+gpHjuSOWXRd8Q\nF93x7zofgy5oZlr4Sf/oGGPYcKgKWw+VOBSHtWBjfsioeWNjTvaxbjS02bG/vNUpBceNhZo2+m0A\nLUT0PID/MMbs7mvZcUIEvd2DHidEwiMOl+GESAQRUQl6zyQsUAWj+jRE4gJfnRQ8Ji6Qmjsc+GhH\nKdpsThARJiUEY3qqWn9gy7FabCuohyAQhkf54ZIx0RgfH0Tr8qrC7S5lBoAhZRbiInDqNFldA1uT\n3VtVgIKGctwwdm63/XbZCQHkdNpc8YqPMnl0eEKvz0qCiKVj50IjSlCYgrf2fIWU4Jhu0bvT4kb5\nVrU1/BGDKAJEdAGACwCM7K+dJIh/DU3y/8WN4+YJPtreybo8aEQJ4yKTkRAYZXx771ePTHlnrGv7\nDfv+7uW6AoCLoC5EXxw5L6xwdKTJoZe0vTKGCSRgXlIGIn2D4ZCdeG2XGUnB0Qg1npicTYxOlbaU\nHryi9ourz2s5ZLuoIm1a6NHotBIwJVJuawi2VxwNspcdJACToA708wF8B/UJvwbqID8dQAZ6D+4H\noHoQefZVeQrI/1iIaDiAjwHskdvqJzoZhX5zsHpjWYM1YvaIcH2Ul8RogFpv99u8MiW/oIRVmV+4\nM+LqP5t/KKjfGxZgCJlgCvb6mZ602px4dd0htBXuzalZ+ZdjwF+Oudd95gO4C8BTRPQqgFcYY/0G\nPbpnM0fdm7f7NEAVW1OXbSFOCIZ/D5HoOZOo7imoeo1w78y0MB8igkCEzLHRiA4ywO6U8dI3x5AS\n6Yc2mwv5FS24c14aRIHQ7o4WJyLMTAvz+eZg1R/ARYBzEvKb7e3aVnsH3B4qXiloKMeW0oO4cdy8\nXk/IxxrK4ShzsuYjrXlTr5+q1Yje/xs8+9Vw/94PkMnB0ZAEcVhGTnpG7tK8Uy7e0RP3FP8VAMv7\nSwmckZN+sY9Gf9fScfOM/QlAVwL0Prhx3Dzjq7tW/zkjJ/373KV5293XjISa9/43UMsRvgpgWcyF\n4dsnRKd4TRnpqzXA131drahBqDEALfaObiLgrzMiVPQ3CFrKheJyduRvKu3I3xSNE4FegJrGwAZ1\nIDdAjT14HScG94rBTo3cH0R0DdTUzVkA3nQPcu2mLPO4g+XNd+VXtCwP9dNJkxKD/fz06t9Gq9WF\nbUcqXI1WpV0h4dnKVU9vsJcdXFn85GXb4+9fPWvVrrKNDW32wPOHR4h9LZAyxlBS34H3vi+0V+9Y\nU1237pWb6cNHxkKdEZoZY2YAZiIaBbVSWL7bM+x5xtiu07lXxpgVat0Gr1457tmQRyQ8wjABJwTD\nj4iK4RYHwRhQHn/nexePj1fNQH4GDfzci+Q6jYhwPx1arE7sKKrH7OHh8KyzdF0Qn2AKpjX7Kueb\nssx6S3am7XTu6+cIF4FTJHdpXuu098avyK08uvQC0zgJgNcsm9+X5EFWFLy7/xsAQKx/KDJTpgIA\ntpQebJVipRujY8P/PDx82Ki+rsUYw2u7V6PB2oZJ0Wm9cvgIJCAlOIb2VhdOhlrU+5RxJ/byRK4+\nAPXJ7Rsi8nfvE3q+Tn1z3F8uSptg9NUavLrHrj++F0fqS0EE+GgMuGL4dPhqDQjU++L8YemGdbtz\n/05Ea6A+YY6HGnT0GtQ8MQKATJdDju5PZD002dpQ1daAWC/5jQKNvkwTqGkD8DKAYnR/mq/vam5w\nl1bMg+rtdFoD2+niFt/nAFwMtcbw3q7HLdmZTQAeNWWZ/1pSeHRx8Y7iN7X+IS5Ba2gSfINzXVr/\n1wAyW5641IXHLwUR3Q5gVfGTl02Ov3/1uB+O1eVsPlI7bfywAM3U1HAx2EcHUSBYHTIOVzRjw4Ey\nV7PVYZUF7a21//3X+0SvnA/gcwB/BfA6EX0O4H0A6xljt7gL1iwD8Jn7af15AJ8N1mwIANyRxfnu\nzdt35oMuswjJP3yMjpRuqTQ8NLY7UNFkRVywEWv2VeB4bTv+m1cFjUiYPzYangyrBq0IrUQum5MF\nQ/07GRJwETgNHLLrHzvKD187c1i6JAkivGXZHN8ltXJXqtoaUNvcJBW/W742bVnC04YetXu7QkT4\n7cQFsLsc+PDgBnhSO3fFIOoMFZ/XPEE3UlaX3QK8DN797GNQFzVFqOkBqqGmN1B6vuoitMRIiRgd\nZnLfZxKmxAzHZ4e/77z49GGjOovOby/PxwbLPlyWqgrguMhk+sZv93TJXxzrapEtUKfedgBTAMyA\n6lkUrNgVn5Ot7DlkJz46uBGXJE+CVuydYFIQBBb9i4iHa76t9+ri2hXGWA0R/QHAm0Q0yeOyeaYh\nokSoUbcWABmMMa/BZm5Rvh1qDeAWADMYYwe9tWWM/YeI0gF8UvzkZXMYYxeZssym3SXNt+22NPzG\npSCAEUESyCqJ4vb6/ZtX1n3xtz+CsU/wBANjbBMRTYJaNP4NqAvh2QBiieg/UAXhaagxI1dATTH9\nd7fp6HXG2Gm52J4K7iI3B90bTFnmNEkrXQt1NteJ3Snj/S0WLBgfA51GhMIAq1PG7+akoLShAyu2\nFndLLyEKggwoA/ct/h+Ai8BpkLs078D09yZ8t+rw9xf9YsT5hoHkegdUr5UP89Zby76sKqjb0Lgz\nZUm86FJO7kWnk7QwBUaioKGilwg4XE4GhbVDHUj9oA6iElTTSitORLF23ZrcW6P7tRnqU993UDNG\nNgOweVvEnPLO2L9OiEq9VyOq6jUsIAJNtu4Wk64DslN2dStiYtDoMCJ8mKv6irrckncqbVCn+pHu\nvhNUQWphdia3O21CkMG7m5/CFHx0cCPGRCRieOgwr206mL1d8hFPJe3xe1Ariv0B6qB3RiGiy6Ga\nnx4H8IK379td33c5VDPMWqi1idP7EoAuPALgMwAvEtEtjDELgHuhJoLzASgbYIsAPMMYMxM9dRnU\nzABLxSAAACAASURBVKmvAwBjrICIpruvuQVqKukkqPUEPMkBVwBYwRibSUQT3f0sJKKP3Pdzsj4O\nJk12l6JhjHX+vckKw/tbizE+PggjY1RTYYBBg1Hu92rtaTW9iBpjwGB3ylqov4khw8Dq73F6YZed\nVx9rKD/y6eHvbfIABvJWewfe2rO2vcNlf6NiVc1YAH9uLWyPrLe2em3f4bTB5l6AdsouFDVWINTo\n36tdvaO1LfrKiHsYY8mMsQjGmAFqqolUABdCtbf/CcCbUOvjHoEqGJFQf9hXA/g7gNEAFkFNnNYI\nwE5EtUR0jIhyiehbIvrUVmRbHOUX3G/9YQD47vgePLftE+TVHMcFXbyaACA2MEzS6KTJUFM174X6\nVDkfak3bHAAdNdvqNXvL+i7q9fmRLQgzBmBqHzUNOpw2lLXWaqDWxh0Q7kH4twDuIaK0k7U/XYhI\nQ0TPAHgBwELG2PNeXDCDiegxqAvVCQCmMcZugJqh9KSDq9vUtQTq4vatPY61M6Ysh1pD+UUiehuq\nSed+t3usp10VgFkARkAtyVjMGHsU6t/WdVAfODYQUa67XZa7bSWAb4noayK6zL3of6apBdBU2nAi\nP93KnaUI99d1egUBwKiYABTWqA8tta12KArrXBew1LVDFKgO6t//kIGLwGmSuzSvwyG7ZhytL/v+\nhR2ftW0vy2c2L15DjdZWrCvMdby0c5W1yd7+N6fiupOpfIQgWrb1+EGvZodWuxU5+9bhldwv8cae\nNUgKikaKO0LZQ7OtHWUttSLUWrCdMMb+n73zDq+izP7498zcmptOGikQeg01dBQUFCS2tStirGvZ\nXcuuq+K6uu5vlV37Wtdu7A0LiCgqINIJNUAogfQEQnq5dWbO7493AiG5SW4KWJjP8+TR3Jl5572X\nm/fMe8r3+Ji5nJkPMPMWZl7OzJ8z81v6gvMwM/+ZmW+AyMaJguilO1A3JDaIP/DhANIgFpEFAN63\nRlgaWgtkN+XMPqNx18RLkBLTFxuLj4/9WWQz4qZFL4LQq18DsfgvhuhYdQ6AHxpK3BftqMh1+9SW\nbuaCmjJkHc5FbvUhvLx5MV7e/BVyKouPO2dLyX74ynzbNl+7s0OuCRZN4P8J4Qvv9r8PIkoEsAJi\nsRzDzOubHY8iokcgUi8TAIxn5uuYuTEVczhEdlK76IJuFwB4UM/6an58JYAREDLPr0DIP1/uZ4xz\n9F+XElGo/v3dxMx3Qehb3dtkXo1aQyMAvAPRfnIvEd1ORB1TfesAeQvSNEXVnl6zr9wJiAV9W0EV\nDpbV49lle/Hcsn3YW1qLsX0iUdngxTPf7sVH6/Nx6fhju8g1+444far2+KlWJ2AUi3URXdHyNKts\nvltl7ayk0BhvsMUmq6xxtbteK2uolgl43aepz2emZ+1vdq3JLJkO3zD6nMjY4IhW7tA6Pxzc4ttQ\nvOeNdfO23tLZ+RPRKwB8zPyHQM6f+t7Yj8/uO/bS0T0HHH2trUK5GncD3t/5w3HH1hXuxodvfe/M\nfaPIAuH+yQLwAURtwlH3zZR3x6w4s8/oaeMTBneo8MenKnj6p09566N76hr2O4shAt5fBiqApiuC\nrgaQwcz/68i92xn3bIidzrMA/uMnMP0XiIDrJwD+rbtwmo+RD+BMFh3IAr3vDIjFeRIz57ZyzkwI\nd5gFQJ/msQn9M3kWwGQA5/hLEdVrA9IgdgkzAfwA4TKqgHiQmAngbQDPdWT+/kiev2QgRFJBGESG\nVxGAnSaJ8u89d4gt2NZmE7IW1Lp8eHxJtlvRuKceiD9lMGICXUTXzV8FYFVqRkrP3OrSyRCSwQrE\nFnV5axW9melZyoS3R/532cHM++amzLC3pYvTnGp3PTYUZEtul7dV3R5djfQcAOPMkilGY61BZa0A\nwMeZ6VmHdJ9vGtqpCWiKV/VlHqw+dO7ongNazQ2tdNUi0i5cV3sqCo5L3QSAfaWFcJd7dkO4qZY3\nVsg2x6P6bv/+4OZ1sY4IR+/w2IDmp7GGT3b/6FRI/a4hx7kdojXiSwAeIqIHAXzVnjFgZpWIboRw\ndXzFzAG1uGwNfQF9EGKBv4KZf2xyLA4iBnE9hCEcxcx++zDrweEoiLTIgGHmH/TdxSIimszMLXyQ\nzPy93kf4AID9RDSXmb9rclzVs44eALCGiGYxc06zMdwAFgJYqMcyLgJwC0Rq55cQge1RADYQ0VqI\n+NOKQI1z8vwlJgDn2czSPVaTNDI52qEEWUyyT9W0wzVurcbp8zJ4c8bq3NE3n9E/yJ+wnD98ioaM\nn3IbJImez3tkzillAABjJ/Czk5qRYrXIplXDopNHnjdwkjWQIHO914XXMr/27H73oOnQ0iP7IJ4M\njz6ZpWak9JBIulkm6a5wm8M6JLp3sN1kIUVTUdZQ7c4uLyAZ0vdZ/9k3pG5Xw/3M/FEgcyWiIFuC\n9a6Ufw78192nXQa72XpceqzDYsP05FHYX1GEClctCIRwmwNpAyYeramo9TTguY1fOBVNjc1Mz2o3\nBz81I2WmmeRFFw09zd5aALgRj+LDx7tXOotqyzd7Vd9ZmelZHj375imI7CMPhGF+EMA37S0+RPQQ\ngLEALmBmTp6/pD+EUW2svqoA8HXegrRWtZGIKBbiKZwAXMXMh/XX4wHcAxGMfQfAY8xc3No4+jUT\nATzPzKltfhD+ryUIl08UgItbq8YloosgXH92AF8D+Gtzo0FEvwfwDwDnMvOWAO4dD+AyiKB7IoSh\nqIMoDtMgdhjv6rUDfkmevyTeYpKWRzos8dMGx4QMTwxroR5aXOXEmn1HXLuKai1x4TblutP6WtuT\nzXB5Vby56qCzrNb9jUfRLj0RCrK/dAwj8AsgNSMl3CKbv+sVFjNsdr9x9h5+AsCAqBs4UFWCL/as\ncXpU32Mbrtn+CUTg0w7gd8z8XWpGykizJP8wKKqXY1LiEFt8SMv8ebfixbbSHP7x4A5NIfUphdV7\n2+oERkQDADwK8UdLw+b3rzx39uToKb2Gd9hnvjx3q7KhOPuNtVdvvTmQ84lIDhns2DT4L30H9AgL\n48lJw0KGRfdG07jEkYZqbCze49l++CBLRB95VN9NmelZvmbjzIJYbOoh4h3lEDuR71ozBkRkBUlb\nIs68YUnM5IsmM/OYYYlhCLObbQBQ7fS5dxXXkETY6PZpjwFY2nQRIaLTIdwhbwB4WH+abvShXwVR\n6f0EB9i4nYhuAHA6M6cHcr6f6y0QGWA/MPNDrZwjQbjn/gYRqzkTwA3MvLzZeb+DKOy7kpkD1oTS\ndxtX6T8EYD2EYRgOkY76QvOdV/L8JQlmWdo8fUhMjzOGxJjae1AqqnTitZUHFCLSJg+Ikib062Fq\nVFdtpMbpxYYDFcq6nAqvxpzhVbQ/5S1I+9lUUX9ODCPwCyE1I8VqkuR/Ari1Z3APTEwcEhIdFAaz\nbIJb8eJAZYm2vjjb5VOVUo/quzczPesz4KiL4BsAqaHDg98Zck+/Sy8YNDl4eEyfdrcUDV433t6x\nzFnlqn9z3bytf2x6THdhXAng7xDCaeUQ1azPJt+cOC1uUo+FN6ammWM6IHpXXFuOjO3fOn2aOjoz\nPcuvnEBzdBfO9J4XxsyKvzBmls1kuUfR1PF2yaKSj+yKSXX7WPEy8JKiqS9mpmf5daXoY1kgctrv\nhfD5D8GxnUELt0Ty/CUOk69hZWhw0NgZI3tRSlI4mvcw9ikadhRWY0X24fp6t7Lao2gX5f/7XA9E\nOuZdAK5l5m+IqBdE9sxlEJlaTzBzWWCf3NH5PwUhUfFYR65rNkYsgI0A7mbmT1o552oANzHzNCKa\nA7GD+ALAfdykglo3cp8A+BMzf9zBeRDELmsugCsgvl9VAFIgJDn+C2Bd7/u+MltM0s7pg2P6nDE0\nNmD39ZFaN577bp8bwA/MOLNnuN0XajdLALjW5ePSapdZkuhdr6I9k7cg7edo1vSLwTACvzBSM1Ks\nAC5Ri9VX7QnWOkiQ2cta9a664EOrypfWZddfrzSozYN2kuyQnxz1n8F3XjhmKkb2bNkwpTVcPg9e\n2fyVs8bjvG1T+o4MEgqij0I8qVkhsnf+BSG1MAvAHACRUdMi1IHpyZHXjZuNQILaxbXleGfHd06P\n6rsyMz1rUSBzI6KpAD4FMLapqyQsJWSWr0b5IHxs6Pz4C2N+AJDf/Mm/nXHjAfwHonvbIgBnQ1QR\nP9Tor0+ev8RmNUlrhsSHDr1kfC9be3LOiqrh4w0Frr0lVbtzHrvkMCvecIjFzQSx+F8M8eT8NDMf\nCXSuzea9DMAzzPx1Z65vMs5oiIW2RXWyftwEUTl+DTOvJqIICP/9VADXMfOqJueOgHAb/Ztb6TsR\nwHwaO+nNhSg+K4dow1kUOeu2tUPOvDj9tpkDgmtdPr+icC6vgvfX5aPa6UOE3inOZpGxNb8Ki7YU\nb3D71LMAnI7j3Xir8haknTRJkF8yhhH4BUJCN6UcQDgze/XXIiAWrjkQT16fN70mNSPl+t4hsS9c\nO2ZWi2pHf9IOTcmrPoT3tvxQtuGG7UUQgbtqiMUxH+KPcxxEFbEZwpWyBMBXI54aFBQUZf/vuJ6D\nbOMTB0thNkeLsatcddhYste3uWSvz6epV2SmZy0O8DOIALBVf6+Lm7w+GqKS9dpuWAynAHgeogJ3\nGURwNg/AQ4P+/vUf+sYEXzB3crJdCrAYUNMYb67Yw3uztu4uevveSyB8/udDBKafYeaKLs63GKJe\noMvNhIjoMojCs/H+diREdDNELGROk9ca38snAO5nvWk8EfWB+Df5CMCDgQZ6W5mXDeI7PhfA7OSb\nX7RclXaaaXhiOOpcPtS5leNE4eZNScbm3EoEWU2YNjgGP2aXweVTMHtEPBRVw78W7XJ5fNpoo7dw\n6xjZQb9MhgPY22gAAICZqwD8Xt+Cv0JE1wD4IzMXp2akkFU23zul9zC/5e7+pB2a0jssFjbJHBMy\nLFip21W/AiLHeyZE5XBj68PFEPUIa7mJpEJqRspPP6zc/M6GftmjknvEeZLCYoItsglexce51Yfq\ni+vKSU+RfTbQ5jK6q+BVAIuaGYAhEE+dt3XVAAAAM68holQI8bqHIXYde+SwmA8Uny/+svG9pOYG\nYPXeI8jMrQQREBtmwyXjko4GKCWJcNVpA+nRCvcQOThytVpf+RyAAfq/XZfQjWIohOJpl2Hmj0lI\nSywkohlNv2s6bwH4OxGNaQz+MvMiIloDEVvZTkTXMvMaZs7VDerXAOKI6FbupI6QnmH0GYDP4uY9\nPska1WvlkHiRXdaaKFx2SS1uOkPsfsckR+DVlQcwe0Q8TLKEif2iTGv3l98OIKAU6FMRo1jsl8ko\niEraFuhb8VEAdgDYRkS3aj5trEmSE/pFxvsdrFdYLGztaBRN7ZeCXufHOQDEQgSa90EE6iYw82Bm\n/isz/8jNNHUy07P27n4k5/nNf9r12YGqktuXbdj4+sfvLq/4MX/Ho/k1h29TNDVm3bxtd3awu9iN\nELr+9zSZYz+Iiud7mPnTDozVJsys6rUAQyH+Hv4WM+eOXWP69NCai5HVunxYm1OOP541AHfMGgSN\nGTsKj88otFtkpCSFa0k3v/wKi6K87qo+HQZgV1eesv3wEIRr5HlqFm1l0S/gSYgai6avVzDzXIh/\nm0+I6EkisusurjMgegh8QkIqukvYEocOGRgf7vPnimsqClfnVhCi1wWE2M2o9xyzP4N7hphNMk3v\n6lx+yxg7gZ8ZvdhsskU2XSeTnAzANvKfgxNqC+u3pGakhGWmZ7UQFNOflh4iodHyatFHh+46+/YJ\n1JE6g+b0joiFI8kuQ1TLLmteLNQOBWqDGp+ZnvUmEWUBGMX/4wc6Mw8Sze0XADitsX6AiJIAfA/g\nX8z8TmfGbQ/dVXOrHBT6uj1x8Popg2L95hYyM3yqBiKCT2E0zzoBgKmD40w7S+pvTp6/5IFuTDkc\nhgDkIjoCM2tENA9CxfU2CLXVprwCISUxhJmzm137ORH9BOFO20ZE6cy8nojOg9hFfEtE5zNzV/Lu\nwx1WU4sPuLkoXFveOrvFBGb2n25nAMAwAj8beiHXDVbZfK9FNseOTxhkj7SHSiZJhqufB7vK8uNy\na0pLJ787+hOvqvyrebUxADDzLiKa6ugb9IEF5gF+bhMwVtkMOUR2t5Yx0g4FEE+AgPhOdcoVoPuD\nP4TIQsnWX4uDqDx9nruxerc1ku74oMRsljwxobYWOtahdjOmDozGv7/KhkWW0D8uBP399LGNj7AD\nYAdEcLO7FDW73QgAADPX6b7+tUSU3TQVlJkbiOhZAPcBaJGWyszlAK4goksBfEFEGRC7i6shdhE/\n6UVlnZVl9viaCXP5E4ULtppQ5/YhxGZGncuH4CY9AhRVA0CBdYE6RTHcQT8DqRkpQRbZtLRncORT\nlw2b1veuiRc7pvZKkYZG98bAHokYGdcPV40403b7+N/ZJyYOnWuS5C2pGSln+huLmbUek8OXKpLa\n0JU5eVUFBOpsr+JiAPF6lkenjQCEkNxeiBRKEFEPCBfQu8zcohvZCSLMYpL85ou7vCqyS2pxb9oQ\nzD9vKLyKim35/r09FpOkQEgadBcBawZ1FGY+CF0dVC+ua8oLAM7Vg7+tXf8JRBypH4AtEKmff4aQ\noVhDnRfjKymrdR/nfvQnCjckPhRbcsW/w5a8KgxNOPbgX1HvARHaLMI71TGMwEkmNSPFZJHNS/pH\nJJx2w+hzHH0j4kGt7GdDrEE4I3mUfNXwGcFmybQ4NSNlUivD5pbWVXTJXXyooRJE1Ck9F91/XA4R\nRDajE0ZAfxo9D8DvmZmJKAwi42QpgP/rzLw6idOnst+/i5zDdYh0WBBkNUGSCMMSwpBf4d/2+lSW\nIQTZuosTshNoRN8B/AvAl9RE6E1357yMJvGZVq4vA3AphDvxKwh57Gf031cS0fhOTOubkiqXXFHv\nAdC6KNy0wTHYf7gOTy7dg5yyOkwbfExiZM3+8jqXV32pE/c+ZTDcQScZkyQ/1DM4cvxFQ06zyVJg\nNrhPRBwuHTot6OPdK5emZqQkNsotHNVnIcwb++xwR1FtOZLColtc76/zWfOmN+sKd9e5Fe8zXXhr\nBQCSIL5THWrIQkQJENlAFzFzFYmuUUsgmrvf283B0PYo8yqaqVFjvinhQRYUVDrhUzWYJMKBsnok\nRrTsflbr8kHVmNBNriC9dsOKE9/t6gXo6p9EdFETaYmnIZRA/68t147+7/QhEa2EaFOaiWOtQ78i\nonnM/G3Ta5LnL+llkug2Waa5qsbhYEiyRHUsjP/TRHh9fU7FrWmj4s3JUQ48eulI+OPG6S1rY8pq\n3SitdjFEtpFBKxhG4CSiVwXffu7AiUHNDUCFsxafZv+Ixr4qVa56nJE8ChN0vfwBPRLQOyxW3n+o\nKJ2IyiAkoKcC8IARUvz1IXVt4k66fNQZLQKa/jqfNeVQfSUqXXVeiIW3sxRCxAVq0YGdgO5CehfC\n579Gjwt8AaGj/6eTaQB0SYer4i//h3vTgRjr9KFxxx1P6hGE4YlheG7ZPsgSoWe4HeP79WgxzqaD\nFYpJoo8OPDKnu7qTDQOw80R/FvoO7I8QMZh/QFRSg5mPENHbECqnfwlgnEO6rMRciMX8fwAugcga\n+jMzv5c8f0k/m1l62SxLU8YmR1Bqn0hraJAZEhHq3UpQVmH11Wtzyi9TNS1/w4EKbVL/HogM9tty\n2i8aM77ZUepm4KW8BWmejn4WpxKGETi5XNQzOJKaq2oCQI+gUNw89jwAIgPlqfWftuiYNSlxaHDO\ngaLnIPTfNYgFVwXw96D+QQtz6kr25lUfCk4Oj0OgqJqKxdnrvKqmPpmZntWVHrGNweG96Jg76D4I\nt+SjRGSGaLVYBeBGbkXkrDvRXR8XQzRgGQ1gobP04D1r9lc8dfqQWEfzOoGZw+Iwc1jrn6+qMdbs\nL/d6FO3pbpzmCXUFNYWZvUR0MYBNRJTVJFHgCQA7iOjRQIredIP1LhEth3AnnQ8hJ/1M8PAzx/a8\n8O7rpw+ODZk0oIdkMR3/3OKwmhAbFmc6Y2isKauwesjCTYXeV1Yc8Nw6Y4A1LKh9iWhmxpJtJd6D\nZfV7FZUf7tgncOphxAROIjaT5a6JiUPbbaxxsKoUkbYQNK/A7RvRE45Iu+bob6+CWGz/CCCJmZ87\n8Gx+iaKpv/tg53JnUW1gqgSKpuLD7Su0A5uL5E3XZ40i0fC8szQagYDdQUQ0GaIl4Vz9pXcgtkJX\nd7bYKMD7mojoHCJ6H2IHcxHE02o8M98UNvmyV32qdnDtvvIOC4r9tLdM0TTOzluQ5rfOo5MMwwkK\nCvtD9+9fAOBFvUIbLETdFkJoL3VkrBIIA/A0gJetiUOXxc754x2XT+gdNm1ITAsD0BRZIozqHYFb\nZwywOL2K9OyyvZ49pbXQ2tgQVdZ78N7afPfm3Mo9HkWbkbcgrbPJDqcMhhE4iWisJccFR7Z73s4j\neRgek9zidSJCTFAEx5wV9TqAccz8CTMfXagy07O+96rKZRnblrlW5e6A0+dXpl+okVaW4LUtXzcU\n1Jct3fts7qPQcD6Ajbr/uTM0NQLtLuB6PON9iHaOJRCFadEALvVTvdplSDCWiJ6GaEDyEIQuUn9m\nPl//LN0AkLcgjT2Kdv6ynaW1W/MqA3bBbDxwBN9vL1Cq9myY2/7ZHWI4TtJOoBFdU+g2AJ+TaHgD\nCNmS23TRwo6MxcycAWB0/Pl3Xjp7TG9pWGLgiVPxEXZce1pfs1tR1Y/W5+csWLy7YdWeMq202oWq\nBi/Kat3YXVyDV1ccqH/6m70N+w/VvexRtEl5C9K6JNNxqmC4g04iGrPN0k5rRlXTsK+iEDP7jPF7\n3OGweSInhOUdfLHA7+KUmZ61JGSQ43vnVa4BP/XNSh7UI0kbFJUUZJMtUFhFhbNW21iU7a6vdHH+\nopL68hVVT2g+bSURrYPQhMkmojOYOauDby9gI6BXp74CEYP4EkKGYCCAWdxKg5nOoqt3zoVw99gg\n4g+nM3ObKqZ5C9LykucvOe3zzUUriqpc4acNijaHB/mvuq5q8GLVnjLf5tyK6uL3/rbaU5y9nOjh\neyE6pXXJj69/VifNHdQUZv5EF4hrlJbIIaJvIYzDvzs6Xu/7vgq3mmXTpAHCpizcVIg9JbUItplw\nxyyRRVpa7cLnm4ugqBpkiXDBmEQkRgahb0wwEiOC1IIK54PwaQeXZx++e0V22XiNOYQAj0RU4vKp\nzwP4MG/BHOPpvwMYRqAbSM1IGQYgGYADwk+fnZme1ULkSyLJ6VF8IcGW1ivqcyqL0TO4BxwWvzJA\ncCteVb+HX3RtodFZ/9g3ZOxbw63Z5fnXH6wqOQOgSABOldU8r6q8ihCsP/Jd5QUQfttvIKSPR0L0\nv91EorPUwgA/AuBYdlAgKaLXQ8g4p0NUB0+GaIzTLaqOenppo59/BIQm0O8BrOnIopy3IG1X8vwl\nIzNzKx/eeKBibt+YYG1sn8jgEJsJzEC924dNuZX1eUcaJCLK8Gl42F20+zARTYKQ3b6FiP7EzFu7\n8HZiIeI/HZKd7kYegsiueV4XlVsA4HsierZRQC5QLCbprkkDoiyNMhBjkyMwqX8UPtl4TA5p6fYS\nzBwWh4FxIdhbWoul20tw0xkik+20QdEhCzcV3rfnn+eMhEhHNegGDCPQSVIzUuwALrfK5nvtJmuv\naEeYzyKbya14+XB9lXXKu2M2elTfYwC+yUzPUgFAItpdWFsW21rTGADYWZaL4TH+63JUTUNhZVlw\nzn/zx9O1tBvAnqaLmh5YfQHAn/UFtR6iAOtxvwOm4wsiWgEhHb0LwJ0QGjqfA/iAiJ4A8LcAF85y\nAEH6T6sxAV0E7j8ApkFkmpwL0eS+IzIV/sY1Q0hdzwMwG6J5ynMAluh1DJ0ib0FaKYDfJ89f8ud9\nh+rmFlU6rwDQAwAYKHd51fcBfJC3YM7RggFmXkdEEyCM3VIi+hzAA4EEVFMzUmIkkm6yyuYZAMIn\nvjzSVrO/Xgsabp+empGysq3mPyeC5tISzPyCvmu8IXn+kgwIf388xC6rGqJXwQZ/zdpVja8Y1zfy\n6JqTHB2MqobjPX9EBI9PeDhdPvU4WY4h8WFgLhyQPH9Jr7wFad0ipGdgGIFOkZqRMsEkyUsTQqJM\nk5OGhfSPjEdT3R6fqmDnkbzT1xbuGlPraShNzUiZkZmeVehWvE+uLdydOiquv9/gsE9VcLC6FOcO\n9F8TtreiEJpHy6/ZVhcOUUil6k/xX0MsejcDKIV48g0IffH9AxG9B5GrPw/ADfpY9wAYS0QXtOem\n0dMLiyD8+n53Anr65wcQXavOhmitOE2XH+gwuqskVZ/zFRBppe9ALFbd6g/Wtedf1n/aRY/VvEpE\nn0IUTO0m0a7y1aZxnEZSM1JGWGXzwyZJnj00ujcP6pFkt5ssUDQVFUNqsaFkzyKnz1M9LiPlMQZe\n6mImV4doLi0RNvWqD+1RCa+bJPpPcrRDjQuzWc2yZKr3KN49JbWKT9VKk+cv+Q+A9/MWpDkBIHn+\nEisBtjA/WktNSRsVjzdXHcSS7SUAA7fMOFbPIkuEEJvJ66n3xqKb1FQNjH4CHSY1I+UMsyR/dcnQ\naUEDeyS2eS4zY23hLuXH/O3VPk0dB6DQIptK00eeHe2v7WN7vL7l67qiuvLfZ6ZnfagvgEMhtNfP\nATAegAVCs+VtNNslBIKeHXQvRMbOPyH6CXwEYVgmcZM+xq1c/z2APRDfqxbSvUT0X4hWgt9CqFOe\nzswd/mMmomQIfZqrIR5k3oGQluhUxfPJQPetPwcgBKL+YU3jsdSMlPPNkvzB9ORRttFx/SW7uWWS\nFjOjoKYM3x3c7DzirFnnVX0XZKZndUkqpKOQJJ8ZPuXyL2KmX22e1K+HdeKAGGqesqkxY/+hOvy0\n90hDYaWz0qto0/MWpB1Mnr8kRJao8l+XjDjuwbOqwYu3V+cejQks3lqMvjHBGJYQhqzCamw8NNqk\nxgAAIABJREFUWIEbph0rBHvm2701h2vcaXkL0tbAoFswdgIdIDUjZYBJkhddOfzMoD4RPds9n4gw\npddwk0mSI37I3fqjT1OGeZ2+fy/c+dOCm8efa7HI7ec8N7KldL92uKG6Hnr1o77A79J/HtcVRSWI\n7knfAtCIaClEsc7yQPztutvkn/pYr0BUqV4E0SM3Rw8Obmh+XWpGSrRE0k2pTw4fSVaaQBIpp703\ndpRL8WYAeD8zPaueiM6F6Br1KEQR0vSOGAASevqXQDz1D4WoJ7gOwPqTXFHcKZh5BxFNB3A5jlXV\n3jP2reEpFtn84TUjzrInhLb+YEBE6B0ei+tGzQ76bM9PU3IqS5akZqTMPJk7gv73Lz4z2ELW388Y\nZGktSC4RYVDPUAzqGepYu7/c9s2Okk3J85eMBZCvaSwpqtaiQXxTtuRV4rzRCQCAlKRwLMw8vluo\ny6tKEG4ng27CMAIdwCKbH5qcONTeJ6Inaj0N+HzPGjR4XSAijIkbgAmJQ7D7SD5W5m1HubMGN42Z\ng54hPTAhcYi8v7I4av2nOz8seKdk/JB7+h3KMC+LmTfqLFtbOv+NbD90gJfmbKxXNHV6ZnpWi/RJ\nIjoDwAQAQ3Xlx8ZdwjkQed3vEdEGCIOwFEB2WwsnM+/RF6wbAGRASANPAbCaiP7AzK8AwihaZfO/\nTZI8Z0hUL04Z1tfusNjAzKj1NEzeXLp/RH7N4afHvzxioSlEnqXUqc9CVKLOZOac9t43iZ7A50As\n/GdBiMk9CWDpiUgjPdE0kVX4CsD9crC8U9ak4LmjzrS0ZQCaIksSLhp8mu2dHd+NK64rfwDi8zzh\n9Jm/5FKHzXTXrWcNtDRq97fH5AFRMjOHLdt5aKVX0QZazfKOPaW1o4YnHt+XuukXMdRuxsGyevSN\nCUbO4TpENakSPlLrhsurAMLtZ9BNGO6gAEnNSIkwSXLJnRMusjksdtR7Xaj3uhAXHAmv6sMrm5fg\niuFnAAAIhK/2r8fZfceiZ4iQFcitOoR3139Xn3n7ztQxrw3LMUum520m87xpvUcGpcT2IX+7guLa\ncqwv2u3aW1FU79OU6ZnpWS0aYusL5TaIAO7nLQbB0arYMyEW1HMg/u6+gTAIP7S1SyCinhApnKMA\nbAfwOwBvjnl92Ftms+nr03qlOMbFD/LrwgCAGnc9fszdwdvyc9xZD+9zeQ55z2K9U1Ur9yMIgzYP\noin7Hgh3zyfcfQ1afhGMeGzQv1MG9rv7Cj9SH+uLsrH1kFAPb3zAaEpZQzVe27Kk2qepMR3pr9wZ\nkucvIatJyrlqcnLfgXEhqHF6j+v1O75vJCYPiMbS7SXILqmFSSZEOqy4ZHwSbGYZL3y/v66o0nkT\nAEqKDHrltpkDQgDgw/X5OFhWD6dXRbDNhJnD4hAdYsXircXQmGGSJVw4JgHxuj7Toi3Fnk0HK57N\neWROm2J2Bh3D2AkECIGuHRCZoDn09M5gix2NqZ4W2YyooDDUepzo2+gmamZck8NjERwRhDGvDYvN\nTM/aC+DW1IyUhd/nbv7rtwcyTx8ek0w9gkKtJpLhUry860hefa2nwaVo6tMa8yuZ6VmtiZHdAeG7\n/6K1uTNzHUQ+/pfNdgm3Q6SItrpLYOZSAJfqgcEXAKyy97Klyyxdd/mw6VL/yIQ2P7cwWzDOHzKZ\nYhwRdnmB7FZI9StARqJzWKOfX4NY+Mczc26bN/iVkpqRIgXHB10zpc/wFgagrKEaWw/tx01j0iAR\n4b2sHzCwRyIi7MfyCWIc4Yh2hMsldRUXQtR3nEgmW81ybP/YYADC5ZM2Mv64Xr/9Y0MwIC4Es0b0\nhESEb3aUYGV2GWaP6InTB0WHfJZZdK/bp048VOP636EaF+LC7LhiYm+/N/vjWQNbvOb2qdicW8mK\nxs0b3xh0EaNiOEBsJss5Q6N7t5SMBFDtrseh+koktuPTHR6dbIcQfQMgKnxXz90yy6cpA7ceyvnb\nyrzt/12et/XVVfk7Hi131lzhVZX4jdfs+HdrBkAXPLsXwO2B+sX16s1dzPwEM8+ASO97DqKd41IA\neUT0PyK6gIiCm1y3CMAwkrFr6F/7SRcMm9KuAWjKxF5DMKn30GCrbH6/yfwjiegWEn1r1wGIgijs\nGszM//qtGgCdqQ6zLdjfd6bcWYOEkCiYJBkSSegdFovs8pbhk0mJQ0NsJkuHZBw6g9Us/XnqwGh7\no45SiN2sN845vtdv/9gQNJ6T1MOBGpfYoOjNXwYDGKAx7s/4Kdfp9AQeylA1xjtr8pxE+CBvQVqL\n+huDrmHsBAInwm5q6fLwqj58vOtHzO4/Du0Feu1mq6wcUYYR0UCIgq86AE5mLoTwdXeUpwC8yMwt\nuo4Fip9dwhCIXcKfIHYJG3Fsl7B7zOvDl/awhV43Iq5vC4OYU1mMb3I2gcEYHTcAU3sNP+74ab1S\nzBuKsidFjAu7tTqz9mwIF9W3ENWn33Cz/sW/cZLjgnvoH/nxxDjCsTx3K1w+D0ySjP2VxYgPaalW\nGuuIADMnn+iJEpDaPzbY7wNj016/TdmcW4kRScL3L0uE5GiHsqekdsSBR+a8OPDvSwe++MP+G2+a\n3t/RniCcV1Hxzpo8Z3Glc4NH0W7uprdk0ATDCASOT20maqmxho93/YgRsX1bKH76Q2UNVTtqzwQw\nDkAoRLqglYjqcMwo1Db5aev3gRDB2odIdOCq62qwVN9N7NZ/nmwWS/gaALTDqnnK6cNbGABmxtf7\nN+KakWchxBKEV7csweCoJDRVTDXLJoyM7mcrG1N5f3Vm7T8AXNvVIrFfMQ6LbPK7sEYFhWFKr+F4\nZ8f3sMgmxAVHQkJLY2GWTWBwlxu6t4fGCLaZWwq9Ne/128iK3YchkRB/a8RhkWXonda8inZXjdN3\n5Mml2Q+MTY6kSQOirDGhx1fI17p82HigQlmbU+5VNf7Cq2jX5i1IO5UeEk4ahhEIEI21omr38fHT\nL/euRXRQGCY2C9o10tw/U+msdUXPiFyQ/3bxs42vEZEJwhiENvlvqJ/f45v8Hg7gdACHIRbnUACh\nRNQoKRGIEWnr93pm1prvEnpMDZ9qiTUvHx6d3OK9FteVo4c9BOE24UEaHpOMPeWFmNrreKGwib2H\nYOvUnLCcl/Nf9/uhnTrUuhVPqyqlo+P6H23880PuVoRZW3oiPYoPBDrhtQJEcPvU4x+A/PX6BcQO\nYG9pbYsmLx5F06B3WtOriR9Jnr/kncy8yts251XeGuGwIDzIAomAOrfCh2vcFkmij7yK9nTegrQd\nJ/o9nsoYRiBAPKrvjQ3F2eeMix8UTEQoqClD1uFcxDjC8fLmxQAIM/qMhqKpWJqzEU6fBx/sXI44\nRwTmjpgJj+JFdnk+oVk1ry6ZXKX/BAQR3QfAx8znNXmNIPL6WzMiTX+Paee4g4ga0MxIeCt8UpBk\nY7MfEbxajxOhTaSvQ60OFNe1LASOsIVA1VRHakaKNTM961Ru9pFVWHNE1lg7rtq8kQavGw6LDTXu\neuwpL8CNo89pcU5+zWGGyNg6oUigwrJad3zTp3V/vX73ltZi1d4y/P6M/i1qAQ7VuBlCtvsouvTD\nfcnzlzxYVuuZUlbriQIgQ/wtrM97ZM6puks8qRhGIHCW1XtdDcV15cGJodHoFRaDB6fN83uiP9fQ\njsMHWSJpRWb6ti61CNRVMe+GqBA+iu7Kces/XRIbIyIJQDCaGQpHv6BxZpNpIoRIXGfHhkSSorJm\nB3DKGoHM9KwdU98be3BfRdFwf9+Xj3evhMvnhSwR0gZMgLVZPYlejd7gUX1PnOi5unzqc6v3HRk6\nPDE8BDjW6zcuzIZnl+0FgXB2ShwWby2GqjHe+PEgANGJ7cKxiSisdKLW5XMDWOVv/LwFaV4I4UKD\nnwHDCARIZnqWNv7tEU/9kLvloXkjzgry9/TWGm7Fi1UFWU6P6vMv5NYxngbwHDMf7Iax/MKio1fj\nDuAoqRkppT5S7vN3Tag1CDXuY56JWk8DQiwtXRgaa1BZM0PsMk5p3Ir3P+uKdr84OKpXCy2p60bN\nbvPa/JrDcCveSrSysHYzn5ZUuV46UudBdIgVrfX6HdTTvzDi2n1HXIrKT+ctSOtwkx6DE4+RItoB\nNOZnSuoqs5bs3+AJtMjOq/rw3o7vnV7V9y6AlV25PxHNhijaeqwr43SWqsyaggaP21LjbllbFh/S\nA5WuOlS766FqKnaW5WGQH22lvOpDsMrmg43Kqqc4n5bWVdZvKd3foTaaLp8HX+xZ4/Sqyt9Phqqo\n3qP3hcVbi12a1rHbFVY6sbOohjXm107M7Ay6imEEOkBmepbXq/pm7yzL2/XRrpWuWk/bMbnD9VV4\nbcvXzjJn9ZdeVflDV/5gdQXO5yBqAk5a0wwikohoGhH97+DzhQeqNtZUbyza22IBl0jCnAHj8e6O\n7/Fi5iIMj0lGtCO8xXhrC3fX6xLbpzyZ6Vlun6ZM/yZnY922QzkBfTfqvS68ue3bBqfP89qm9B1v\nn+g5NuJT+aGC8oYdn2UWegI1BIeqXXjjx4MuReMr8xakBdbz1OCkY8hGdILUjBSbRTY9oTFflxwe\nq01MGBocGxwBs2SCR/Uhv+Yw1hbuqqtw1ioMfkTR1Ke6+sRGRA8ASGXmC7vpbbR1r0aJ5ishBM+O\nQEhAfzT2reE2q2zeevfky2wmqfX+sP6ocTfg+U1fOBVNjc1Mz+qWBjK/BVIzUoaYJdOKfhE9QyYl\nDQ1KCo1B8/oBp8+NbYcOaKsLdrp9mvKMoqkPnOzeAsnzl4RZTdLSxMigUeeM7GlPiPBbOwmvomJb\nfjWWbC9xeRXthrwFaR+czHkadAzDCHSB1IyUYABzbSbLnYqmJmjMVpnIJUtytlvxPg5gcXfouujS\nyZsBjGXmvK6O18Z9hkEs/FdASDd8AOBDZs5uet6Ud8d8NaBH4oyLBk+1+St28oeiqXgt82tvpafu\niXXztv6tu+f+ayc1IyWcQNeZZfluh9kWOiSqt91utsiKpuJIQ41zX2WRLJO02KP6nsxMz1r/c80z\nef4SiyzRX2WiOyODLdYpA6JCeoRYYZIkuHwKsktqvZtzqzRZorVun3p/3oK0FqqzBr8sDCPwK4CI\nvgCwiZkfOQFj94VY9K+EqD/4EGLx39qaFEVqRorDIpvWD4nqPeD8QZOs7QXJPYoX7+9Y7t6zId+X\n/cSB16Dhbj34bNCM1IwUCaJAb7xMUpTG3MDgYgALM9OzfjEuleT5S2QAc2xm+VYiJIFhI0K1V9GW\nKxq/aMg7/HowjMAvHCJKA/AMgOFdaZPYbMx4CIXOKyF6I38KsfCvDXRxHnhPnwh7qLUgtl+k+bQ+\nKdZh0cloXj/g8nmw7VAO/5STRUeyqooLFpaOchW4PwNQDFEtfMqmiBoY/FIwjMDPTGpGSj8CXWWW\n5WSJpCBFU8sUTV0N4IvN1+40AdgJ4A/M/E1X7qNLS1wMsfCPhKgE/gCi4UyHG5MQ0aOQMHLMa8Ne\ntFus92qsjRsQmaiGWIOsqqJKVa56Ja/ukCaTtHT30zlB1VvqRkI0lHkVwHsAIgD87hSWjTAw+EVg\nGIGfgdSMFAIwx2ay3Kexljoytp8UFRRmkSUJbp8Xu8vz6440VKsVm2t25L9fXOcp857bmfvo2j8X\nQCz8UyF6CHwAIdbWZs/gdsadpo8zipnL9PfUD8KNEVG5sWaSu8QTFn9hzBWZ6VllRBQDIBsAAZgO\n0Q3tWX1O5zBzlwroDAwMOo9hBE4yqRkpJotketlutl4+PXmUY1h07xZuFEBoyq/J3Yndlfk1Cqtn\nZqZntdqIpSlEZIcQfLsSopn7KogFe1EgLSYDGD8CQqrgZmZe2so5aRB9dGc3ee1miEpnL4SAngvA\nfAA3QRiCPV2dm4GBQccxjMBJJDUjhSyy6f1YR8T5c1NmBDWXAvBH9pF8fLZndb2iqVMy07P8CmkR\nkRnATIgA7/kAtkAs/J8xc2vNaDqMnjr6EYBDzHx7G+cN1e89uMlrEoA1ELuBrcx8q/76tRBS0r9j\n5nXdNVcDA4PAMIrFTiIySX8Kswafd/WImQEZAAAYEt0bFwya7DBL8vepGSlHZYObFHG9BBFofRAi\njXQoM89g5te60wDopEP0G2ivvV8+gN76wg/gqBTFLQD6ATiHiH6nv/4WRMP4RXr3MgMDg5OIoR10\nkkjNSJEtkumBCwZNdlhkM77cuxb7K4rgsNhwa6pY+z7dvQoVLiHX41a8sJksuHnsuRge04c2l+63\n51aWXk5EO3GsiKsC4ol/wonuwkVE/QE8DuDM9uIJerP7WgBxAEqavL6diN6G6DL1PyLaxMxFzLyU\niOZAGIJYZn71BL4VAwODJhhG4OQxO9TmsCXo7QRHx/XDhITB+HzP6qMnXDL09KP/v+xAJmxNdguT\nEocG5+aUvALxlP0BgLOZuUXj+ROB7m56D8D/MXNWgJflQqSfNg/6/gMiMLwYwDtENJOZVWbeRESn\nAfiWiBIAPBxoy0wDA4POY7iDThI2k+XPkxOHHlWL7BUWe9wi35xdR/IwPKbP0d/7R8bDEWtXxrw+\n7DJmfvBkGQCdBwFUQmgXBUoegD7NX9Qb1dwB0RVNguiR3HgsB8BkAOcBeFlvuGNgYHACMYzASYKZ\nhySGRrd/IoD86sMIttgRaT+mMCyRhMTwaIVkGnSi5ugP/en8RgDXdfDJPBd+jIDOFwAOAFgP4A4i\nmtB4gJkPQ6SR9gbwGRH5F6gxMDDoFgwjcJLQWAuymgLrxbLzSO5xu4BGbLJFhmjwclIgonAA7wC4\niZkPdfDyPAh3UAt0Y/InCOPyEID3iSi0yfE6iN1ANYAfiCiqw5M3MDAICMMInCQkklxetf3CXI01\nZB8pgL8+vm7Vq+IkNWPR00FfAvAVM3/ViSHa2glAD2Q/DpHS+h2AF5sd90JkI/0IYLUuomdgYNDN\nGEbgJEFEOSV1Fe2ed7CqFNFBYQhp1licmVFaV0EAck7QFJtzNYARAP7ayesbA8Nt8RSE2+dHAGOI\n6OqmB1lwH4AXIAzBqE7OxcDAoBUMI3CScCvep9YV7T76FL8wexVe37oUFc5aPL3+U2w9JNb2XWV5\nfl1BudWl8KpKGYDMEz1XXVn0KQBXdaGBTQGARCJqtemA/rR/K0SntBsAPE1E/fyc9xyAuwAsI6Iz\nOzkfAwMDPxgVwyeJ1IwUk1kyHb5+9OzIuODIDl//Xtb39TmVJX/JTM965QRM7yh6Rs4qAJ8w89Nd\nHKsIwBRmblNWmIjeAFADEUe4CsBUZm7Rh4GIpgP4GKK72oddmZuBgYHA2AmcJDLTsxSNtccX71vn\nVLSOtdfdV1GEvOrDCoD3T8zsjuMBiLjDf7thrEBcQoCoQL4KwviUA3jY30nMvBLADACPE9Fd3TA/\nA4NTHsMInERU1h4rd9au+GjnCpcvgCAxAByoLMGnu390Kpo6+0S3ZCSiKRDSDtd2U9OXPLQRHG6E\nmcshxORehnALpbfm9tGL1aYAuImInmgqTWFgYNBxDHfQSSY1I8VqkU3vh1kds87sM9oxsEci/HXm\nqnHXY1PJXt/G4j1un6amZaZn/XQi50VEYQC2AbiDmRd105j/hIjvPhTAuRLETuA9iBqC1yGkqv1G\n04koEsAiiArq6/T4goGBQQcxjMDPgN5C8EqbyXKfBOqbGj/QGhkUKpskGW6fF9nlBfX5NYclAr3t\n05THMtOzTqguEAAQ0bsA6hrVPbtpzOsBTGPm9ADPTwGwHEAKhOx0fwh1Ub9fUl02+30AwQAuZuba\nbpm4gcEphGEEfmZSM1JGmyT5WpMkJxPIzqyVu1XfCgDvZ6ZnNZyMORDRXIhYwFhmdnbjuGdAaACd\n3u7Jx675D4BECGXRdQBeY+aX2jhfhpCzmATRl6CjRW0GBqc0hhE4xSGiPgA2QgjSbe3msZMB/MTM\nSR24xgEhMHcDgCIAqwFMZ+ZdbVxDAO7Xr5nNzPu6MG0Dg1MKwwicwujpoCsBfMHMT5yg8RsAhHTE\nZ09E5wF4EqJY7SoAdwIY356Ete5+egTAhcy8odMTNzA4hTCMwG+Y1IyUcADxABwAagEUZKZnHS3+\nIqIHAZwOsQvojmygFhBRLoCzdIXQjlz3OYCtAP4PwIcAypj5TwFclwbgLYhgcWfkLgwMTikMI/Ab\nQ29if5pVNv9V0dSzHBab1yTJmldVJLfilSWid72q8szma3eGQ6h5jmHm4hM1HyJaDuBRZv6+g9f1\ngmiTOQnAEYjMpT8GsrDrqqRfAvgbM7/e8VkbGJw6GEbgN0RqRko/i2z62m6yxk9OGuYYEduXmvYs\nqHE3YHPpPmVj8R5f7Z567H89/0Z3qeeEFqDp1cDrOtMtjIjuBnA2gFkQfQY+hTBapQFcOxDANwDe\nBPAvo0GNgYF/DCPwGyE1IyXFLMk/zew7NmRc/CBJxEr9o2oqFu9Zr2ZX5h/0qsrEzPSs7u5FfBQi\n+jsAOzPf34lrzRB9kx9l5g+J6CEAUwHMCsR9RURxAL6GCHz/gZk7VqptYHAKYFRb/gZIzUjpaZbk\n5ecNnBQ6PmFwmwYAAGRJxgVDJsuj4/r3ssimZakZKYF1ve8cgUpHtEDXD7oFwFN6MdsjAOwA/hLg\n9YcgGtT0A7BQryswMDBogmEEfgOYJdMDY3oOCEuJ7dv26t8EIsKsfuOsPexhgwBcciLmVZSQlLws\ntufM93vGzyruP/Db4n4DPipK6v3XooSkgJvEMPNaAF9BuHQUAHMB/JWIUgO8vhZAGkSW0vd6pbGB\ngYGO4Q76lZOakeIwSfLhP4y7wBFuC8aXe9dif0URHBYbbk09HwCw+0g+VuZtR7mzBjeNmYOeIT2O\nXp9dXoBFe9fsWD13y8jumlNRQtIMstkegKpOtI0aKZnje1rIbAZ7vfAezHW69+yVSJa/Yo/n0cTi\nwnZrE/SFezeAcwvjE0s3KMqzCTbreYmSXEsAQ5Kq2Of7BKr6UmJxYVErY0gA/gPgXIhagjaVTQ0M\nThUMI/ArJzUj5Ya+ET2fmTfirGAAKKg5DItsxud7Vh81AuXOGhAIX+1fj7P7jj3OCGis4Ym1nzhd\nimdyZnrW9q7MpSghiWAy/VOyWv4cPGNGkH34MJClZUtNzemEa+s2rf7Hn9zs892cWFTwbntjz7bb\n//r7iMgHxlssFntKCuyjRtqkYAcAglZfD9f2HW7Xjh0gSV7FHs/ticWFe/2NQ0R3QriT0ph5R1fe\nr4HBbwHTzz0Bg65hN1kuHRnbL7jx915hsah2Hy82GhUUJv7Hj8GXSMLwmGTzppK9swB0yQjAZPqX\nHBZ2R+S11wTJIcGtniYFBcExZbJk6d8/qPKtt18uSkjyJRYXftTa+UUJSZNfi417wDHt9FDHuFRI\nVuvxJ0RGwNIryRZy9ky4Nm+ZWbdi5aaihKQ5icWFq5uPxczPEFEphGvoMl2e2sDglMWICfzqoSiH\n2dalEUIsQWaZpC41cy9KSJoj2ax3Rl53jaMtA9AUc2wMItPnBZHZ/EZRQtKgVsYdBrP5m4jLLg0N\nmTqlpQFogmS1wjF5khRx+WUhMJuXFiUkpfg7j5k/AnA5gI+J6LKAJmtg8BvFMAK/frpc6ctgaCLo\n2mnIZn0w5OyzguTgYNR8uRhljz+F8hdfPjZJlwuVb7+HI8+9gMp33oPmFgoQ5rhYBE0Ybyaz+c7m\nYxYlJBFZLF+EzpkdbB3QP+C5WPv3Q9i5cxxksXxZlJDkN1jOzCsAnAWReXRHB9+ugcFvBsMI/Mph\n8OFab9eEP6vd9R4Gl3f2+qKEpMFgjLANHQIAsI8aiYirrzrunIbVa2Dp2wfRf/oDLH2S0fDTmqPH\nglLHmpn5mqKEJEezoaeQzRZnHzXS/0KuMcr/9yqq3m/ZadI2IoXIbouGkMXwCzNvh2hQcysRPWY0\nqDE4FTG+9L9y3Ir33c0l++raP1PQPCrgUxXsOpLHEA1aOofJdHPQ2DEmMokQk6V3L0j2411U7j37\nYB81AgBgHzkS7j3H4rZyeBgsvXppAC5teg1ZrXc7Jk8Maq3uwblhA0zR/r1YRATH5EkOslrvbmvq\nepbQFIgitLeJ6ETWTBgY/OIwjMCvn8/LGqq0Iw3VAICF2avw+talqHDW4un1n2LroRzsKS/A0+s/\nRVFdOT7YuRzv7Tgm47P7SD4kkjZnpmd1SOCtKWQ2p5gTE1qmATVBa2iAHCxiBXJIMLSG41slWHon\nOUA0oPH3ooQkG/t859hHjvT7HVVrauHZnwP7mNGt3tM+cgSx4jvbzw7jOPTuZTMBhAD4iohC2jrf\nwOC3hJEd9CsnMz3LO/GdUS+tKsi666LBU60XD/Hv/Rgc1avFa4qmYlXBjnq34n28i9MIIUsHH6Cb\nPd2TxUJfez1zbxaGwDnIZJK+SeotNd9RNFL77TKEnDUT7PG0egvJZgNZrD52uaIgisVahZmdRHQx\ngBcArCSiNKNBjcGpgLET+A2gaOq/91UUlqwt3BWwNo7GGhZm/+Sq97pWAVjcxSnUtrUYA4AU7IBa\nL1JX1bp6SI6g4+fj8XCs0PhZCODHWFnOgSz7DXq79+2H7HDA3DMO7dW5kBgjoPQpvSL5FggF0jXU\nZGdiYPBbxdgJ/AbITM+qSc1Imf5j/o61DT539BnJoyxmufV/WqfPjYXZPzmLasu3elXlksz0rC5l\nGLHPt81bWHi6bdjQo9sBsTYfW6BtgwbCtW07gqdOgWv7dtgGHZ8R6s7Ld441Wxbr6ZsoSkiKgtd7\nPzOjeUzAV1AI99598OzPASsK2ONB9WdfIPyiC4+fFzPY47EAqA74vQir8k8iKgGwioguYOaNTc8p\nSkiSAcwhm/VmkNQLYCtANezzrYCivJhYXPizViPr8+sDIAIie+wIgMLE4kKjMtSgBUbF8G+I1IyU\nKKts/kBjnjqmZ39pfMJgS6Q9FIBYEIvryrG+KNu5t6JQkkh626v6/piZnuXr6n2LEpKxH4bsAAAM\n60lEQVT6kcWyM+avf7aR2YzqTz+DNy8fmssFyeFA8BnTYBs8CNUfL4RaWwM5LBzhl158NHisVFah\n4IWXeFRRwRYX8zsAPiyMTywji6UkYt7cOEtSYqv39ublo2HtOkRcdUXLY0XFyHsrwzOyIP8PZqKv\n9vVMCAHQAwABqABwILG4sFUDqHc4ewNAOjN/XZSQZIEk/YVk+c9yeLg1aOKEEFOPSMBkArtc8Ozb\n73Ft286QpLXs8dyfWFx4UrubFSUkRUGSbiST6S6YTA7JblfAGmkNTjOAQvZ4/gPgw8Tiwm7rI23w\n68cwAr9BUjNS+pok+Y8AbtKYbSZJUnyqajHL8mFFU5/WmN/ITM+q6M57Fvfr/1Po7FlT7aM6LkFU\n++133vpNmS/3LshbDGAegPMBrHurR1TlnDFjfhdx6cWtqn+2ZQTKPvlUWbVl26IdPm+fi8PCR0WY\nTSwFObxmIgVOJ0FVa9jnewLMbyUWF1b5G5+IJgL4opcsP7w2qfc8c3zPkSFnnxVkju/pdz6a1wv3\njiyuW/a9m73eGxKLCz/o8AfSQXS5jgcBzLcNGaw5Jk6wmxPijx5njeE9cAANa9fVewuLCIpyfWJx\n4ccnel4Gvw4MI/AbRu8yFgTRXrImMz2rbcd9FyhKSJpBdvuiqFt+HySHhQZ8na+4BJVvvd3APt+I\nxOLCg8DRZvMXxErSdWsSkmYm3nX70cyiQNEaGlDy5DOQiLz2Af19jkkTHeZeSUddS8wMX0Ehatet\ndyv7cwDgvsSCvP/6G6u3yTT85di4zNEjRsiRF55vIqn9UJrv8GFUvvm2k93uKxOLCzufftsOekHd\nm1JY6CWR8652yKFtJzb5SktR+fZ7TvZ670ksyHvhRM3L4NeDYQQMuo2iXsnz5ZDgv0Vem+6Qw8Pa\nPd9XXILKt991scdzRWsL5a7eyS+FxcRcH3v9tZbGOoT2YEXFkede8DGz1OPaebIpsm31aKWyCofe\nelvdVl299HeHSq5h5uN2BUW9+zxq7pV0Z+TVV9kDMQCN+IpLUPFmhhOKkpxYXHgk4As7QFFyn4dN\n4eF/ibzxBodkDSxDS6mqRsXLr7p0A/XliZiXwa8HwwgYdBtFCUkEWb6bzOZ/BE87zWYfNVKS7C09\nOWpNLZybNyvOdRu87PPNTSwu/KKNMSWyWL40xcWdGXHVFUGSrXXtIADQPB6Uv/K6F16vHHXLTbLk\naLNE4Nh1TieKX3pFfaS4yPd6fd06iOK5xYXxiUUwmcqibrkp1BTVsjBNc7tRs+grKGVlICKEXnA+\nLIkJR49XL/zc5d61+/8SC/MXBDSRDlCUkBQDk6kg+o4/WuWQjpU2ePPyUfX+h4fZ641vKy5i8NvH\nMAIG3U5RQtJEslrvY1WdbRs6hM3xPW1ksYA9HngP5jZ4cvMkkqT32et9IrG4cE8A45nIYn4ZsukK\nx8QJVvvY0XJz95BaXw/n5q1qw/r1HvgUS9TNN5pM0dEdmrdSXoHy/73SMLm48LpCVZ0F4NwrgxzK\nv4cNi46/6Qa/j9nVn38JS3JvBI0eBVY1sM+HpobKV1yCyoy3j7DX1zOxuLBb21sW9Up+wDZs6P3h\nF11oB4CaLxfDs28/JIcDUbfdfPS8hg0b4dyUCZIkWAcMQMhZM8DMKH/+pTq1ouKyxOLCb7pzXga/\nLowUUYNuJ7G4cD2AC4sSkmLdWTvnefbsHQhJCoOqVrLPtxXABwnFhQFLXSQWFyoAbihKSHq+Yc3a\nu+p/Wn2pOT7eK4eGyADgqa0lb3GJbanbpdV4vPnpw4Ymm6Kj/X63y55+VizSRCBJRo/f33D0mCmq\nByy9e/FaRQlNLC68kYikB2Nit0dOnpTgbyzN7YGvoBDhv7sAAECyBJKP36mYE+IhhYTa1IqKaQCW\nB/qe26MoIUkms/kOx8QJR7da9lEjETR+HGo+P+bh8eTmwbN3P6JuvQUkS9AaRGIQEcExZVJI3bLv\n7wFgGIFTGMMIGJwwEosLDwN4ohvH2wrgmqKEpNt9BQXTfSLdEwAqzcCKPxwpw87efXaHTpncajYR\nESHy2mvgz00FAI5JE4N9RcX3FSUkvcHMWnHf/hGt7SjU6ipIQXbUfLEIvkOHYY7vidBzZoHMxyto\nmGJjyF1e3ouIiLtv6z2QLBZb0ywlS+9eUKuPL4lwZW6GY+pkkCxiGU2L9GzDhqJ28ZLTixKSyKgh\nOHUxjIDBr47E4sJqAC3iCIUJSWHQtChr/35tD9DGOmzp2xeaqiSnHTk8L4vItr9XcgTMrfyZaAxf\n6SGEzjkH5oR41C79FvWr1yDkjOnHneaR5eCHaqrfAPAmEakA1P9v795inKjiMIB/Z9qZdrtuWXaX\nFW0LQU0UIl7YREUxGq8xPph4RU28omKiUR9EXwzxwQcVbw+i8RIURU2QS4jExOuDYRc0UdG4CAlb\nsa3iwi7dwEzn0p2/D+3idrcg6KLQ8/2SZtpOO5l5mS+ZOecbAOXqMqwuR7+XUZ+l3nKeFYsva2+r\nnXZdR3lgAP6OX7Hv8y+hzChaLr8MI8NHjVgMUEog0gSAcwc0xRCgRjJZxSxfGcZBy+wGl68ADIVE\n1xwkuubUrFOGgmtaUUfkRQB+EYil3Poja41kCyLJ5P6TanzWTNgbusf9LiiVpCSyD5X+ogC1ITCy\nHP0Kq9+HB3pFlZqkBBn8XfVLGEJcF+333IWg8BuKK1dhysMPAqgMk4WIgQl4JgUduxgC1EhChFK/\nd7qq7e47EGlpQWjbGFy+AtGODljTa8v1YoA7x7Qe2F4u5yKQJ71s9iLzhKnjTraR446DMSmJ8u4B\nRDva4Wez46qtZXgYVr5QemFy29yVjv3TBBwjACCfypyiSs5mEYkeqGobAIzkJMRnngagcn8CSiF0\nHBiJBMRxAKXK6fyv7kTtFx17WCBHjWRAfN+S4MAPSRsZSmk0NyM+81QEhd9q1ku5DMP3I89Pblsv\nIl9NKQ8/4fRsciSsfwkpedWVKK5eg92vvIZg5x9ovnBezXpv6zYA2JYu5CYsAKq2I5R+P/tL7f6P\n7Ww67VR42SyAyugnCUMYicpVpNLmH0JlmkdsIhsdGxgC1DDShZytLGuT29tbd734AULPB1Cpd/C2\n9yHaWXvT193yM5Rpfpsu5IaqX3WL7/f7fX11t2lOnYqOexeg4/57MXn+jTDitYWl9oaeveK6T/+7\nIxsvXciJeN4zTs+m/RXZxQ9XY/DNZSgPDKL/+ZfgfPc9ms4+C8N7iti99FUUV63ZP5JJQoHds7Ek\nnvfcRO8bHVt4OYgairjuM/aG7nebzjxj3OypYXsfih+srNTHhSHis2dj7E3ksSftdCEn+VTm8aG1\n695qX3hP4nDqK+yNXw+X+/v3AFj9z4/ooN71stklQX8/zM5OtF5/bd0fjW1XBQC3txfiB78D+E9L\n7ujow8li1FCq4+d3tt58U0fspBmH9V//lx0YXPH+IILg+OrchL+2O33GU5GWlofa7rit+VC6keyv\nvwn3fvrZEIJyV7qQyx7eURy6fHra7UYisbT9vgWJSPLQOpv8fAF73n7HkSC45L9uOqWjD0OAGk4+\nlblCWdbatgV3NpmdnYf0n/KuXRh4Y1lJPO+6dCH3cZ1tKkQji1Qkujhx3jlmoqsrOrasTUKB39cH\nu7vHDnL5PRIEF42U4h1J+ekzFhmWtbj1lvmJ0ZUVY4kIvN4tGFq7zpEguDFdyK0/0vtGRz+GADWk\nfHrarco0X2+94bom65STxz2YZoSIwN/eh+LKVSUJgoXp3I7lB91uKjNbWdYjEobzrenThqOdU2LK\nNKOh43je1m3D4gc7q73976ULuYM+0nIi5VOZm5Rpvhxpa7Oazz+vJT5rFlR1fkNYKqG0+YfQ7u5x\nxPV2ie/fUp3VTcQQoMaVT2UuVZb1lpFItDZfMLc5Pvt0NXLjNnQ9uD/+KHb3Rju07SHx/bvShdwn\nh7HtJIBrAJyIyuMri6hcX9/0f82+zacyUQBXq3j8MXHdcxGJlAFRCEUpy/pIPG8JgG7ODqbRGALU\n0PKpjAJwsYrHHhXPv3z/A+5FlIpZn4nrPQvgi0Y7MeZTGQNAEpXJZ/sa7fho4jAESBvVQBipWnB4\nYiRiCBARaY2TxYiINMYQICLSGEOAiEhjDAEiIo0xBIiINMYQICLSGEOAiEhjDAEiIo0xBIiINMYQ\nICLSGEOAiEhjDAEiIo0xBIiINMYQICLSGEOAiEhjDAEiIo0xBIiINMYQICLSGEOAiEhjDAEiIo0x\nBIiINMYQICLSGEOAiEhjDAEiIo0xBIiINMYQICLSGEOAiEhjDAEiIo0xBIiINMYQICLSGEOAiEhj\nDAEiIo0xBIiINMYQICLSGEOAiEhjDAEiIo0xBIiINMYQICLSGEOAiEhjDAEiIo0xBIiINMYQICLS\n2J9MjQqKUl8WXQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10e8d6790>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "G=nx.karate_club_graph()\n", "\n", "findCommunities(G)\n", "\n", "drawNetwork(G)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
openp2pdesign/Labs-Survey---Analysis
000-Export-Final-Anonymized-Data.ipynb
1
9512
{ "metadata": { "name": "", "signature": "sha256:67fc0cae934bb53011c544c74a0cf8206ca4cba9858be6803be790d6675e92f3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "000 - Export final anonymized data" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# -*- coding: UTF-8 -*-\n", "\n", "import pandas as pd\n", "import numpy as np" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "# Load csv file first\n", "data = pd.read_csv(\"data/lab-survey.csv\", encoding=\"utf-8\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "# Check data\n", "#data[0:4] # Equals to data.head()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "#\u00a0Data to be exported with the name:\n", "\n", "data_full_codes = [ \"D1\", \n", " \"D4[SQ001]\",\"D4[SQ002]\",\n", " \"D8\", \"D9\", \"D12\", \"D13\", \"D15\", \n", " \"D16[SQ001]\",\"D16[SQ002]\",\"D16[SQ004]\",\"D16[SQ012]\",\"D16[SQ013]\",\"D16[SQ003]\",\"D16[SQ005]\",\n", " \"D16[SQ006]\",\"D16[SQ007]\",\"D16[SQ008]\",\"D16[SQ009]\",\"D16[SQ010]\",\"D16[SQ011]\",\"D16[other]\",\n", " \"D17\", \"D18\", \"D19\"]\n", "\n", "#\u00a0Data to be exported in an anonymized version:\n", "\n", "data_anonymized_codes = [\"D2[SQ001]\",\"D2[SQ002]\",\"D2[SQ003]\",\"D2[SQ004]\",\"D2[SQ005]\",\"D2[SQ006]\",\"D2[SQ007]\",\"D2[SQ008]\",\n", " \"D2[SQ009]\",\"D2[SQ010]\",\"D2[SQ011]\",\"D2[other]\",\n", " \"D3\",\"D3[other]\", \n", " \"D5\", \n", " \"D6\",\"D6[other]\",\n", " \"D7\",\"D7[other]\",\n", " \"D10[SQ001]\",\"D10[SQ002]\",\"D10[SQ003]\",\"D10[SQ004]\",\"D10[SQ005]\",\"D10[SQ006]\",\"D10[SQ007]\",\n", " \"D10[SQ008]\",\"D10[other]\",\n", " \"D11[SQ001]\",\"D11[SQ002]\",\"D11[SQ003]\",\"D11[SQ004]\",\"D11[SQ005]\",\"D11[other]\",\n", " \"D14[SQ001]\",\"D14[SQ002]\",\"D14[SQ004]\",\"D14[SQ010]\",\"D14[SQ011]\",\"D14[SQ003]\",\"D14[SQ005]\",\n", " \"D14[SQ006]\",\"D14[SQ007]\",\"D14[SQ008]\",\"D14[SQ009]\",\"D14[SQ012]\",\"D14[other]\",\n", " \"D20[SQ001]\", \n", " \"D21[SQ001]\",\"D21[SQ002]\",\"D21[SQ003]\",\"D21[SQ004]\",\"D21[SQ005]\",\"D21[SQ006]\",\"D21[SQ007]\",\n", " \"D21[SQ008]\",\"D21[other]\",\n", " \"D22\", \"D23\", \"D24\", \"D25\",\n", " \"D26[SQ001]\",\"D26[SQ002]\",\"D26[SQ003]\",\"D26[SQ004]\",\"D26[SQ005]\",\"D26[SQ006]\",\"D26[SQ007]\",\n", " \"D26[SQ008]\",\"D26[other]\",\n", " \"D27[SQ001_SQ001]\",\"D27[SQ001_SQ002]\",\"D27[SQ001_SQ003]\",\"D27[SQ001_SQ004]\",\"D27[SQ001_SQ005]\",\n", " \"D27[SQ001_SQ006]\",\"D27[SQ001_SQ007]\",\"D27[SQ002_SQ001]\",\"D27[SQ002_SQ002]\",\"D27[SQ002_SQ003]\",\n", " \"D27[SQ002_SQ004]\",\"D27[SQ002_SQ005]\",\"D27[SQ002_SQ006]\",\"D27[SQ002_SQ007]\",\n", " \"D28[SQ001]\",\"D28[SQ002]\",\"D28[SQ003]\",\"D28[SQ004]\",\"D28[SQ005]\",\"D28[SQ006]\",\"D28[SQ007]\",\n", " \"D28[SQ008]\",\"D28[SQ009]\",\"D28[SQ010]\",\"D28[SQ011]\",\"D28[SQ012]\",\"D28[SQ013]\",\"D28[SQ016]\",\n", " \"D28[SQ014]\",\"D28[SQ015]\",\n", " \"D29[SQ001_SQ002]\",\"D29[SQ001_SQ001]\",\"D29[SQ002_SQ002]\",\"D29[SQ002_SQ001]\",\"D29[SQ003_SQ002]\",\n", " \"D29[SQ003_SQ001]\",\"D29[SQ004_SQ002]\",\"D29[SQ004_SQ001]\",\"D29[SQ005_SQ002]\",\"D29[SQ005_SQ001]\",\n", " \"D29[SQ006_SQ002]\",\"D29[SQ006_SQ001]\",\"D29[SQ007_SQ002]\",\"D29[SQ007_SQ001]\",\"D29[SQ008_SQ002]\",\n", " \"D29[SQ008_SQ001]\",\"D29[SQ009_SQ002]\",\"D29[SQ009_SQ001]\",\"D29[SQ010_SQ002]\",\"D29[SQ010_SQ001]\",\n", " \"D30[SQ002]\",\"D30[SQ003]\",\"D30[SQ004]\",\"D30[SQ005]\",\"D30[SQ006]\",\"D30[SQ007]\",\"D30[SQ008]\",\n", " \"D30[SQ009]\",\"D30[SQ010]\",\"D30[SQ011]\",\"D30[SQ012]\",\"D30[SQ013]\",\"D30[SQ014]\",\n", " \"D31[SQ001_SQ001]\",\"D31[SQ001_SQ002]\",\"D31[SQ002_SQ001]\",\"D31[SQ002_SQ002]\",\"D31[SQ003_SQ001]\",\n", " \"D31[SQ003_SQ002]\",\"D31[SQ004_SQ001]\",\"D31[SQ004_SQ002]\",\"D31[SQ005_SQ001]\",\"D31[SQ005_SQ002]\",\n", " \"D31[SQ006_SQ001]\",\"D31[SQ006_SQ002]\",\"D31[SQ007_SQ001]\",\"D31[SQ007_SQ002]\",\"D31[SQ008_SQ001]\",\n", " \"D31[SQ008_SQ002]\",\"D31[SQ009_SQ001]\",\"D31[SQ009_SQ002]\",\"D31[SQ010_SQ001]\",\"D31[SQ010_SQ002]\",\n", " \"D32[SQ001]\",\"D32[SQ002]\",\"D32[SQ003]\",\"D32[SQ004]\",\"D32[SQ005]\",\n", " \"D33\", \n", " \"D34[SQ001]\",\"D34[SQ002]\",\n", " \"D35\", \"D36\", \"D37\", \n", " \"D38[SQ001]\",\"D38[SQ002]\",\"D38[SQ003]\",\"D38[SQ004]\",\"D38[SQ005]\",\"D38[SQ006]\",\"D38[SQ007]\",\n", " \"D39[SQ001]\",\"D39[SQ002]\",\"D39[SQ003]\",\"D39[SQ004]\",\n", " \"D40[SQ001]\",\"D40[SQ002]\",\"D40[SQ003]\",\"D40[SQ004]\",\"D40[SQ005]\",\"D40[SQ006]\",\"D40[SQ007]\",\n", " \"D41[SQ001]\",\"D41[SQ002]\",\"D41[SQ003]\",\"D41[SQ004]\",\"D41[SQ005]\",\"D41[SQ006]\",\"D41[SQ007]\",\n", " \"D41[SQ008]\",\"D41[SQ009]\",\"D41[SQ010]\",\n", " ]\n", "\n", "#\u00a0Load data from these selections\n", "\n", "data_full = data[data_full_codes]\n", "data_anonymized = data[data_anonymized_codes]\n", "data_business_models = data[\"D42\"]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "# Shuffle the anonymized data in order to change the order of the rows\n", "#\u00a0Learnt here: http://stackoverflow.com/a/15772330/2237113\n", "sorted_data_anonymized = data_anonymized.reindex(np.random.permutation(data_anonymized.index))\n", "sorted_data_business_models = data_business_models.reindex(np.random.permutation(data_business_models.index))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "#\u00a0Rename the index, for more anonymization... for all the anonymized data except business models data\n", "new_index = {}\n", "for k,i in enumerate(sorted_data_anonymized.index):\n", " new_index[i] = k\n", "sorted_data_anonymized_final = sorted_data_anonymized.rename(index=new_index)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "#\u00a0Rename the index, for more anonymization... for the business models data\n", "new_index = {}\n", "for k,i in enumerate(sorted_data_business_models.index):\n", " new_index[i] = k\n", "sorted_data_business_models_final = sorted_data_business_models.rename(index=new_index)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "#\u00a0Debug\n", "#data_full" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "#\u00a0Debug\n", "#data_anonymized" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "#\u00a0Export datasets\n", "data_full.to_csv('data/italian-labs_final_data_with_names.csv', encoding='utf-8')\n", "sorted_data_anonymized_final.to_csv('data/italian-labs_final_data_anonymized.csv', encoding='utf-8')\n", "sorted_data_business_models_final.to_csv('data/italian-labs_final_data_business_models_anonymized.csv', encoding='utf-8')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 10 } ], "metadata": {} } ] }
gpl-3.0
GoogleCloudPlatform/ml-on-gcp
tutorials/sklearn/hpsearch/gke_bayes_search.ipynb
1
19444
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Train locally" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import training data\n", "\n", "For illustration purposes we will use the MNIST dataset. The following code downloads the dataset and puts it in `./mnist_data`.\n", "\n", "The first 60000 images and targets are the original training set, while the last 10000 are the testing set. The training set is ordered by the labels so we shuffle them since we will use a very small portion of the data to shorten training time." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import fetch_mldata\n", "from sklearn.utils import shuffle\n", "\n", "mnist = fetch_mldata('MNIST original', data_home='./mnist_data')\n", "X, y = shuffle(mnist.data[:60000], mnist.target[:60000])\n", "\n", "X_small = X[:100]\n", "y_small = y[:100]\n", "\n", "# Note: using only 10% of the training data\n", "X_large = X[:6000]\n", "y_large = y[:6000]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Instantiate the estimator and the SearchCV objects\n", "\n", "For illustration purposes we will use the `RandomForestClassifier` with `scikit-optimize`'s `BayesSearchCV`:\n", "\n", "http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html\n", "\n", "https://scikit-optimize.github.io/#skopt.BayesSearchCV" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "from skopt import BayesSearchCV\n", "from skopt.space import Integer, Real\n", "\n", "rfc = RandomForestClassifier(n_jobs=-1)\n", "search_spaces = {\n", " 'max_features': Real(0.5, 1.0),\n", " 'n_estimators': Integer(10, 200),\n", " 'max_depth': Integer(5, 45),\n", " 'min_samples_split': Real(0.01, 0.1)\n", "}\n", "search = BayesSearchCV(estimator=rfc, search_spaces=search_spaces, n_jobs=-1, verbose=3, n_iter=100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fit the BayesSearchCV object locally\n", "\n", "After fitting we can examine the best score (accuracy) and the best parameters that achieve that score." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%time search.fit(X_small, y_small)\n", "\n", "print(search.best_score_, search.best_params_)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Everything up to this point is what you would do when training locally. With larger amount of data it would take much longer." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train on Google Container Engine" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set up for training on Google Container Engine\n", "\n", "Before we can start training on the Container Engine we need to:\n", "\n", "- Build the Docker image which will be handling the workloads.\n", "- Create a cluster.\n", "\n", "For these we will first set up some configuration variables." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Your Google Cloud Platform project id." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "project_id = 'YOUR-PROJECT-ID'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A Google Cloud Storage bucket belonging to your project created through either:\n", "- gsutil mb gs://YOUR-BUCKET-NAME; or\n", "- https://console.cloud.google.com/storage\n", "\n", "This bucket will be used for storing temporary data during Docker image building, for storing training data, and for storing trained models.\n", "\n", "This can be an existing bucket, but we recommend you create a new one." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bucket_name = 'YOUR-BUCKET-NAME'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pick a cluster id for the cluster on Google Container Engine we will create. Preferably not an existing cluster to avoid affecting its workload." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cluster_id = 'YOUR-CLUSTER-ID'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Choose a name for the image that will be running on the container." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "image_name = 'YOUR-IMAGE-NAME'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Choose a zone to host the cluster.\n", "\n", "List of zones: https://cloud.google.com/compute/docs/regions-zones/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "zone = 'us-central1-b'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Change this only if you have customized the source." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "source_dir = 'source'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Build a Docker image\n", "\n", "This step builds a Docker image using the content in the `source/` folder. The image will be tagged with the provided `image_name` so the workers can pull it. The main script `source/worker.py` would retrieve a pickled `BayesSearchCV` object from Cloud Storage and fit it to data on GCS.\n", "\n", "Note: This step only needs to be run once the first time you follow these steps,\n", "and each time you modify the codes in `source/`. If you have not modified `source/` then\n", "you can just re-use the same image.\n", "\n", "Note: This could take a couple minutes.\n", "To monitor the build process: https://console.cloud.google.com/gcr/builds" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from helpers.cloudbuild_helper import build\n", "\n", "build(project_id, source_dir, bucket_name, image_name)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a cluster\n", "\n", "This step creates a cluster on the Container Engine.\n", "\n", "You can alternatively create the cluster with the gcloud command line tool or through the console, but\n", "you must add the additional scope of write access to Google Clous Storage: `'https://www.googleapis.com/auth/devstorage.read_write'`\n", "\n", "Note: This could take several minutes.\n", "To monitor the cluster creation process: https://console.cloud.google.com/kubernetes/list\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from helpers.gke_helper import create_cluster\n", "\n", "create_cluster(project_id, zone, cluster_id, n_nodes=1, machine_type='n1-standard-64')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For GCE instance pricing: https://cloud.google.com/compute/pricing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Instantiate the GKEParallel object\n", "\n", "The `GKEParallel` class is a helper wrapper around a `BayesSearchCV` object that manages deploying fitting jobs to the Container Engine cluster created above.\n", "\n", "We pass in the `BayesSearchCV` object, which will be pickled and stored on Cloud Storage with\n", "uri of the form: \n", "\n", "```gs://YOUR-BUCKET-NAME/YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME/search.pkl```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "from skopt import BayesSearchCV\n", "from skopt.space import Integer, Real\n", "\n", "rfc = RandomForestClassifier(n_jobs=-1)\n", "search_spaces = {\n", " 'max_features': Real(0.5, 1.0),\n", " 'n_estimators': Integer(10, 200),\n", " 'max_depth': Integer(5, 45),\n", " 'min_samples_split': Real(0.01, 0.1)\n", "}\n", "search = BayesSearchCV(estimator=rfc, search_spaces=search_spaces, n_jobs=-1, verbose=3, n_iter=100)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from gke_parallel import GKEParallel\n", "\n", "gke_search = GKEParallel(search, project_id, zone, cluster_id, bucket_name, image_name)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Refresh access token to the cluster\n", "\n", "To make it easy to gain access to the cluster through the [Kubernetes client library](https://github.com/kubernetes-incubator/client-python), included in this sample is a script that retrieves credentials for the cluster with gcloud\n", "and refreshes access token with kubectl." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! bash get_cluster_credentials.sh $cluster_id $zone" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Deploy the fitting task\n", "\n", "`GKEParallel` instances implement a similar (but different!) interface as `BayesSearchCV`.\n", "\n", "Calling `fit(X, y)` first uploads the training data to Cloud Storage as:\n", "\n", "```\n", "gs://YOUR-BUCKET-NAME/YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME/X.pkl\n", "gs://YOUR-BUCKET-NAME/YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME/y.pkl\n", "```\n", "\n", "This allows reusing the same uploaded datasets for future training tasks.\n", "\n", "For instance, if you already have pickled data on Cloud Storage:\n", "\n", "```\n", "gs://DATA-BUCKET/X.pkl\n", "gs://DATA-BUCKET/y.pkl\n", "```\n", "\n", "then you can deploy the fitting task with:\n", "\n", "```\n", "gke_search.fit(X='gs://DATA-BUCKET/X.pkl', y='gs://DATA-BUCKET/y.pkl')\n", "```\n", "\n", "Calling `fit(X, y)` also pickles the wrapped `search` and `gke_search`, stores them on Cloud Storage as:\n", "\n", "```\n", "gs://YOUR-BUCKET-NAME/YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME/search.pkl\n", "gs://YOUR-BUCKET-NAME/YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME/gke_search.pkl\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gke_search.fit(X_large, y_large)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Inspect the GKEParallel object\n", "\n", "In the background, the `GKEParallel` instance splits the `search_spaces` into smaller `search_spaces`\n", "\n", "Each smaller `search_spaces` is pickled and stored on GCS within each worker's workspace:\n", "\n", "```gs://YOUR-BUCKET-NAME/YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME/WORKER-ID/search_spaces.pkl```\n", "\n", "The `search_spaces` can be accessed as follows, showing how they are assigned to each worker.\n", "\n", "The keys of this dictionary are the `worker_ids`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gke_search.search_spaces" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "You could optionally specify a `task_name` when creating a `GKEParallel` instance.\n", "\n", "If you did not specify a `task_name`, when you call `fit(X, y)` the task_name will be set to:\n", "\n", "```YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME``` " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gke_search.task_name" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, each job is given a `job_name`. The dictionary of `job_names` can be accessed as follows. Each worker pod handles one job processing one of the smaller `search_spaces`. \n", "\n", "To monitor the jobs: https://console.cloud.google.com/kubernetes/workload" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gke_search.job_names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cancel the task\n", "\n", "To cancel the task, run `cancel()`. This will delete all the deployed worker pods and jobs,\n", "but will NOT delete the cluster, nor delete any data already persisted to Cloud Storage." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#gke_search.cancel()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Monitor the progress\n", "\n", "\n", "`GKEParallel` instances implement a similar (but different!) interface as Future instances.\n", "Calling `done()` checks whether each worker has completed the job and persisted its outcome\n", "on GCS with uri:\n", "\n", "```gs://YOUR-BUCKET-NAME/YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME/WORKER-ID/fitted_search.pkl```\n", "\n", "To monitor the jobs: https://console.cloud.google.com/kubernetes/workload\n", "\n", "To access the persisted data directly: https://console.cloud.google.com/storage/browser/YOUR-BUCKET-NAME/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gke_search.done(), gke_search.dones" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When all the jobs are finished, the pods will stop running (but the cluster will remain), and we can retrieve the fitted model.\n", "\n", "Calling `result()` will populate the `gke_search.results` attribute which is returned.\n", "This attribute records all the fitted `BayesSearchCV` from the jobs. The fitted model is downloaded only if the `download` argument is set to `True`.\n", "\n", "Calling `result()` also updates the pickled `gke_search` object on Cloud Storage:\n", "\n", "`gs://YOUR-BUCKET-NAME/YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME/gke_search.pkl`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "result = gke_search.result(download=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also get the logs from the pods:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from helpers.kubernetes_helper import get_pod_logs\n", "\n", "for pod_name, log in get_pod_logs().items():\n", " print('=' * 20)\n", " print('\\t{}\\n'.format(pod_name))\n", " print(log)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once the jobs are finished, the cluster can be deleted. All the fitted models are stored on GCS.\n", "\n", "The cluster can also be deleted from the console: https://console.cloud.google.com/kubernetes/list" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from helpers.gke_helper import delete_cluster\n", "\n", "#delete_cluster(project_id, zone, cluster_id)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The next cell continues to poll the jobs until they are all finished, downloads the results, and deletes the cluster." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import time\n", "from helpers.gke_helper import delete_cluster\n", "\n", "while not gke_search.done():\n", " n_done = len([d for d in gke_search.dones.values() if d])\n", " print('{}/{} finished'.format(n_done, len(gke_search.job_names)))\n", " time.sleep(60)\n", "\n", "delete_cluster(project_id, zone, cluster_id)\n", "result = gke_search.result(download=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Restore the GKEParallel object\n", "\n", "To restore the fitted `gke_search object` (for example from a different notebook), you can use the helper function included in this sample." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from helpers.gcs_helper import download_uri_and_unpickle\n", "gcs_uri = 'gs://YOUR-BUCKET-NAME/YOUR-CLUSTER-ID.YOUR-IMAGE-NAME.UNIX-TIME/gke_search.pkl'\n", "gke_search_restored = download_uri_and_unpickle(gcs_uri)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Inspect the result\n", "\n", "`GKEParallel` also implements part of the interface of `BayesSearchCV` to allow easy access to `best_score+`, `best_param_`, and `beat_estimator_`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gke_search.best_score_, gke_search.best_params_, gke_search.best_estimator_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also call `predict()`, which deligates the call to the `best_estimator_`.\n", "\n", "Below we calculate the accuracy on the 10000 test images." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "predicted = gke_search.predict(mnist.data[60000:])\n", "\n", "print(len([p for i, p in enumerate(predicted) if p == mnist.target[60000:][i]]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Clean up\n", "\n", "To clean up, delete the cluster so your project will no longer be charged for VM instance usage. The simplest way to delete the cluster is through the console:\n", "https://console.cloud.google.com/kubernetes/list\n", "\n", "This will not delete any data persisted on Cloud Storage." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
james-prior/euler
euler-003-largest-prime-factor-20150227.ipynb
1
12511
{ "metadata": { "name": "euler-003-largest-prime-factor-20150227" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "!factor 600851475143 | rev | awk '{print $1}' | rev" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "6857\r\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "!factor 600851475143 | awk '{print $NF}'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "6857\r\n" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "def get_factors(x):\n", " '''Returns of prime factors of x in ascending order.'''\n", " factors = []\n", " factor = 2\n", " while factor <= math.sqrt(x):\n", " while x % factor == 0:\n", " factors.append(factor)\n", " x /= factor\n", " factor += 1\n", " if x != 1:\n", " factors.append(x)\n", " return factors" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "n = 600851475143" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "get_factors(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 5, "text": [ "[71, 839, 1471, 6857L]" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "def foo(x):\n", " return get_factors(x)[-1]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000 loops, best of 3: 1.34 ms per loop\n" ] }, { "output_type": "pyout", "prompt_number": 7, "text": [ "6857L" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "def get_factors(x):\n", " '''Returns of prime factors of x in ascending order.'''\n", " factors = []\n", " factor = 2\n", " while factor * factor <= x:\n", " while x % factor == 0:\n", " factors.append(factor)\n", " x /= factor\n", " factor += 1\n", " if x != 1:\n", " factors.append(x)\n", " return factors" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000 loops, best of 3: 973 us per loop\n" ] }, { "output_type": "pyout", "prompt_number": 9, "text": [ "6857L" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "get_factors(1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 10, "text": [ "[2, 2, 2, 5, 5, 5]" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "get_factors(600851475143)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 11, "text": [ "[71, 839, 1471, 6857L]" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "get_factors(600851475143)[-1]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 12, "text": [ "6857L" ] } ], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "def get_factors(x):\n", " '''Returns of prime factors of x in ascending order.'''\n", " factors = []\n", " factor = 2\n", " while factor * factor <= x:\n", " while x % factor == 0:\n", " factors.append(factor)\n", " x /= factor\n", " factor += 1\n", " if x != 1:\n", " factors.append(x)\n", " return factors" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import get_factors2\n", "get_factors = get_factors2" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "10000 loops, best of 3: 188 us per loop\n" ] }, { "output_type": "pyout", "prompt_number": 15, "text": [ "6857L" ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import get_factors3\n", "get_factors = get_factors3" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000 loops, best of 3: 229 us per loop\n" ] }, { "output_type": "pyout", "prompt_number": 17, "text": [ "6857L" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import get_factors4\n", "get_factors = get_factors4" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000000 loops, best of 3: 661 ns per loop\n" ] }, { "output_type": "pyout", "prompt_number": 19, "text": [ "6857L" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import get_factors" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 20 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000000 loops, best of 3: 661 ns per loop\n" ] }, { "output_type": "pyout", "prompt_number": 21, "text": [ "6857L" ] } ], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import get_factors5\n", "get_factors = get_factors5" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 22 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000000 loops, best of 3: 661 ns per loop\n" ] }, { "output_type": "pyout", "prompt_number": 23, "text": [ "6857L" ] } ], "prompt_number": 23 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import canonical_decomposition2\n", "foo = canonical_decomposition2\n", "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "10000 loops, best of 3: 197 us per loop\n" ] }, { "output_type": "pyout", "prompt_number": 24, "text": [ "{71: 1, 839: 1, 1471: 1, 6857L: 1}" ] } ], "prompt_number": 24 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import canonical_decomposition3\n", "foo = canonical_decomposition3\n", "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "10000 loops, best of 3: 192 us per loop\n" ] }, { "output_type": "pyout", "prompt_number": 25, "text": [ "{71: 1, 839: 1, 1471: 1, 6857L: 1}" ] } ], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import canonical_decomposition4\n", "foo = canonical_decomposition4\n", "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "10000 loops, best of 3: 197 us per loop\n" ] }, { "output_type": "pyout", "prompt_number": 26, "text": [ "Counter({6857L: 1, 839: 1, 1471: 1, 71: 1})" ] } ], "prompt_number": 26 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import canonical_decomposition5\n", "foo = canonical_decomposition5\n", "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000 loops, best of 3: 235 us per loop\n" ] }, { "output_type": "pyout", "prompt_number": 27, "text": [ "Counter({6857L: 1, 839: 1, 1471: 1, 71: 1})" ] } ], "prompt_number": 27 }, { "cell_type": "code", "collapsed": false, "input": [ "from euler import canonical_decomposition\n", "foo = canonical_decomposition\n", "%timeit foo(n)\n", "foo(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000 loops, best of 3: 230 us per loop\n" ] }, { "output_type": "pyout", "prompt_number": 28, "text": [ "{71: 1, 839: 1, 1471: 1, 6857L: 1}" ] } ], "prompt_number": 28 } ], "metadata": {} } ] }
mit
XENON1T/pax
examples/parse_s1_corrmap/Parse S1 xyz correction map.ipynb
1
573125
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "from numpy.lib.recfunctions import rec_append_fields\n", "import csv\n", "from pax import core, units" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Load the map text file\n", "with open('s1xyzmap-20111215.dat') as lymapfile:\n", " \n", " tuples = []\n", " for i, row in enumerate(lymapfile):\n", " if i == 0:\n", " continue\n", " tuples.append(tuple(map(float, row.split())))\n", " \n", " data = np.array(tuples, dtype=[('z', int), \n", " ('t', int),\n", " ('r', int),\n", " ('zmid', float),\n", " ('tmid', float),\n", " ('rmid', float),\n", " ('ly', float),\n", " ('errly', float),])\n", "\n", "# Convert to pax units\n", "for field in ('z', 'r', 'zmid', 'rmid'):\n", " data[field] = data[field].astype(np.float) * units.mm\n", " \n", "# Convert (r, theta) to (x, y)\n", "data = rec_append_fields(data, 'xmid', data['rmid'] * np.cos(data['tmid']))\n", "data = rec_append_fields(data, 'ymid', data['rmid'] * np.sin(data['tmid']))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Normalize the average correction to 0\n", "data['ly'] /= data['ly'].mean()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Write the map to JSON\n", "import textwrap\n", "desc = textwrap.dedent(\"\"\"\n", " The XENON100 S1 mean light yield map used in Xerawdp 0.4.5.\n", " Extracted from data by Cecilia in 2011,\n", " see xenon:xenon100:analysis:cecilia:s13dcorrectionmap.\n", " Ripped from s1xyzmap-20111215.dat by Jelle, October 2015.\n", " \"\"\"[1:])\n", "import time\n", "mapd = dict(name='XENON100 S1(x,y,z) relative light yield map',\n", " description=desc,\n", " coordinate_system=np.vstack((data['xmid'], data['ymid'], data['zmid'])).T.tolist(),\n", " map=(data['ly']).tolist(),\n", " irregular=True,\n", " timestamp=time.time())\n", "\n", "import json\n", "with open('s1_xyz_XENON100_xerawdp045.json', mode='w') as outfile:\n", " json.dump(mapd, outfile)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 3d Scatter" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Anaconda3\\lib\\site-packages\\matplotlib\\collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", " if self._edgecolors == str('face'):\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAKsCAYAAABrgZynAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYVOXZx/HvmT6zBbZRtgHSpAcUNAqCHRREjbGbiL4m\nsSWWxCRqxIJGjb3XWKKisRKiErsgKlJE6VKkLnWXbdPnnPP+sZxxZndmZ8vM7uzu/bkurgT3cObM\nYZj5zfM893Mruq4jhBBCCCFEfab2vgAhhBBCCJGeJCgKIYQQQoiYJCgKIYQQQoiYJCgKIYQQQoiY\nJCgKIYQQQoiYJCgKIYQQQoiYLAl+LnvnCCGEECLZlHa/AEVJm4yj63q73494EgVFIYQQQohO6eb2\nvgDS4xoaI1PPQgghhBAiJhlRFEIIIUSXJCEoMRlRFEIIIYQQMUlQFEIIIYQQMcmoqxBCCCG6JGt7\nX0AHICOKQgghhBAiJgmKQgghhBAiJpl6FkIIIUSXJCEoMRlRFEIIIYQQMUmYFkIIIUSXJMUsicmI\nohBCCCGEiEmCohBCCCGEiEmmnoUQQgjRJUkISkxGFIUQQgghREwSpoUQQgjRJaVjMYuiKCXAi0AP\nQAee0nX9oRjHPQRMATzAhbquf5uK65GgKIQQQgiRPoLA1bquL1cUJRNYqijKh7qurzEOUBTlJGCA\nrusDFUU5DHgcODwVFyNTz0IIIYQQaULX9V26ri8/8P9rgTVAYb3DTgFeOHDMIqC7oig9U3E9MqIo\nhBBCiC4p3UOQoih9gdHAono/KgK2Rfx+O1AM7E72NciIohBCCCFEmjkw7fwG8IcDI4sNDqn3ez0V\n15HuYVoIIYQQotNYe+BXYxRFsQJvAi/puv5OjEN2ACURvy8+8N+SToKiEEIIIbqk9qh6HnHgl2FO\nvZ8riqIAzwKrdV1/IM5p/gNcAbyqKMrhQKWu60mfdgYJikIIIYQQ6eRI4Hzge0VRjC1vrgdKAXRd\nf1LX9fcURTlJUZQNgBuYkaqLkaAohBBCiC4pHUOQrutf0IQaEl3Xr2iDy5FiFiGEEEIIEZsERSGE\nEEIIEVM6jroKIYQQQqRcOrbwSzcyoiiEEEIIIWKSEUUhhBBCdEkyopiYjCgKIYQQQoiYJCgKIYQQ\nQoiYZOpZCCGEEF2ShKDEZERRCCGEEELEJEFRCCGEEELEJKOuQgghhOiSpOo5MRlRFEIIIYQQMcmI\nohBCCCG6JAlBicmIohBCCCGEiEmCohBCCCGEiElGXYUQQgjRJUkxS2IyoiiEEEIIIWKSoChEmtF1\nvb0vQQghhABk6lmItKKqKsFgEJvNhskk3+OEECKVJAQlJvdIiDQRCoXw+/34/X58Ph8WiwWr1YrV\napXQKIQQol1IUBQiDYRCIYLBIIqiYDabURQFVVUJhULU1tZiNptxOBzh0KgoSntfshBCdHhSzJKY\nBEUh2pGu6/h8PlRVxWKxhNcnKooSDoOhUIhQKITP58Pn82EymbDZbFgslnCoFEIIIVJBgqIQ7UTX\ndUKhEF6vF0VRsFqtcUOfMdKo63o4XOq6jslkwmq1YrPZJDQKIYRIOgmKQrQDXdcJBoOoqho1ephI\n/WN1XScQCBAIBMJh02q1YrFYJDQKIUQCEoISk3skRBszwp2maeEw19iWOIqixP25MdIYed5AIACA\nxWIJT1FLMYwQQoiWkKAoRBuqHxKNX8aUssfjIRgMYrFYmh3w6odGVVXxeDwAmM1mbDabVFALIUQE\nKWZJTIKiEG1E0zQCgUB4bWEkXdepra1F13VsNhuapuHz+QCiwmRLpqh1XUfTNLxeL16vF7PZHLXt\njkxRCyGEiEeCohBtIFFIDAQCWK1WXC4XwWAwXKBi/DljdNBsNje72jlWaJQKaiGEEE0hQVGIFNM0\nDb/fj6IoDUKi8TOTyURGRkbUWkRjKtlsNoerm0OhUHjq2gh3zSlcqR8agaiRS6mgFkJ0JRKCEpN7\nJEQKRW6kXT94qapKTU1NVNhrrKjFGP2z2WzhrXWMbi6RI41NXYNoXE+sYhipoBZCCAESFIVImcZC\nYigUoqamBpfLhaZpjQbEWCKDnBEaVVUNj04moxjG6/VSW1sbnpqWdoJCCNH1SFAUIskiR/tihcRg\nMEhtbS0ZGRnYbDZ8Ph+aprX48eqHRqP1n7GRtzHa2JzCFWOaXFXV8P9GthiMXNcohBAdlVQ9JyZB\nUYgkShQS/X4/Ho+HzMxMrNbkv0UpihIeTTQKV4z2f0DUSGNz1zWaTKaoCmr4aTpcKqiFEKJzkqAo\nRJIk6rbi8/nwer1kZWVhsaT+n15kMYxRQW1MT+u6npQKamOK2ufzoShKODRKMYwQoiOQEcXEJCgK\nkQSxNtKO/JnX6yUQCJCdnd0u07WxQmOyKqiNNYu6ruP3+8MV3lIMI4QQHZ8ERSFaKVFI9Hg8hEIh\nsrOzW1QIoihKq9YwxhJZQW2MNNavoG7JdcZrJ2hsuyOhUQghOhYJikK0QqKQ6Ha70TSN7OzsZo3U\ntSWTyRTepzGygjoUCgEQCARaXUEdDAYJBoMAUkEthEgbEoISk3skRAsl6rZSU1ODoihkZWV1mFG0\nyCljI9wZxStGoYyxV2Nzgm/9HtSxKqilGEYIIdKPBEUhWkDTNCorK8PFG/V/VlNTg8ViweVyJQw/\niTbabi/GCKnD4Uh5BbVRXCMV1EKItmRNhxQUau8LaFw63CIhOhRjI+1YG2Ub3VZsNhtOp7PThJ14\nxTCpqqDWNA273Y7dbpcKaiGEaEcSFIVohshuK7F+Vltbi8PhwOFwtMPVtY3I0AikpILa7/cDhO+1\nVFALIUT7kKAoRBPE20jbGFE0uq24XC7sdnurH6sjhaGmVFC3JOCZTCbMZnPcCurm9LUWQohY2mBL\n28Rk6lmIji1eSDT+NxAI4Ha7wy35WqsjhcT6YlVQG6ExWT2oIyuo669rFEIIkVwSFIVoRKJuK8aU\na7K6rXTkkFhfvB7UHo8nHBpbW0FtFMN4vV7MZnPUtjud6V4KIUR7kaAoRByN7ZEIdYUrxh6Jrem2\nkq5Vz8mUyh7U8FNo9Pl8+Hy+8HR4cwtshBBdi7XtG2V1OBIUhYihKS35VFXF6XS2S0u+jqwpFdRG\nFXRzzlm/gtrn84X3uIxc1yihUQghmk6CohD1NLUln81ma7PQ0VlHHONVUBujjcZIY0u33YHodoJS\nQS2EiJQWxSxpTm6REBESdVupra1F13Wys7PxeDxtck1dKcwYU8ZGEDfWiPp8vhZXUDfWg9pisUR1\nhhFCCBFNgqIQBzQWEjVNo7a2FpPJRGZmZpcKb+3FWNcYq4LaGIVsbQW1qqq43e6odoJSQS2EED+R\noCgEdYUpxtRkrJDYnJZ8IvmaUkFtjDS2tp1gVVUVDodD2gkK0QWkRQu/NCe3SHR5kd1WYlU219TU\nYLfbcTgcKQsMnXUNYirUr6BWVRVVVfF6vUDrK6iNanapoBZCCAmKogszQka8kBgKhaipqcHpdMZs\nyZesbW0keLRcZGiMrKCO3HbHmKZuzn02Qqbx92uczxjZlApqIURXIUFRdEnxuq0YjJZ8yeq2IlIv\nsoLabrfH7EHdkgpqIGYxjFRQC9EJyO5mCUlQFF1OopBotOTLzMzEarW201WK1qrfg9pYYpDKCurI\nzjBCCNEZSFAUXUqilnx+vx+Px5O0lnwiPRihEUhpBbWxjMGooG7uWkkhRBuTt/mE5BaJLsPYLNsI\ngvU3Zfb5fPj9/la35BPpLVEFNdRVujfnNRCvgtroNCMV1EKIjkqCougSIrut6LoesyVfMBgkOzu7\nyaNKXaFHc3s9v7Z63FgV1Ea1MySnB7Xx+vL5fCiKEg6NUgwjhOgIJCiKTi9RtxW3242maWRlZbXL\n2rKuEDhboq1DVORUssvlSkoFdeRII9S93vx+P36/X4phhEgHkoISklskOrX6IVHTtPDPjJZ8QIOp\n6HQiQbLtpaKCOvK88NMod2RoNLbdkWIYIUS6kKAoOi1N08IfwsYHrxG6IlvyZWRkpG1IbE9yT37S\nFhXUwWAQt9sd3hNSKqiFaAOSghKSWyQ6pca6rei6Tk1NDVarFafT2apAJCN9XU+iCmpjpLElFdTG\n+lmpoBZCpAsJiqLTSdSST9d1bDZbq1vyyQe2iFdB7ff7o3pQNzc0mkwmqaAWQqQFCYqi00i0kXYo\nFMLtdgPgdDrb4xJFJxargjoUCuH1esMjg1JBLUSakZ3QEpKgKDqFprbkc7lceDyedrrK+GQKu3Op\nHxqbWkFdf+um+ueUCmohRFuToCg6vETdViJb8qXjRtryod65RVZQG8UwqqrGrKBuyXmhYTtBqaAW\nQiSLBEXRoUVupB0rJPp8Prxeb7glX+T2OEK0tVihMXLbHahbImG1WltdQR0MBgEarGsUQkSQFJSQ\n3CLRYTUWEuO15EvmnoSyv6Forchtd4zN343g2NoKaiCqGMbr9WI2m6O23ZHRbCFEIhIURYcUuZF2\nrJDo8XgIhULNasknRHsyXsdGNX6yKqgji2E0TQu3KDRCaks2Dhei05AUlJDcItHhpHtLPtFxNVZM\n0pbaqoLa5/OF/x1FrmtMh3sghEgPEhRFhxKr24rB2EhbUZS0bsmXSP2wIlPcXVtTKqhbExqB8LY7\ntbW12O12qaAWQoRJUBQdRmMbaWuaRk1NDRaLBZfLlfDDLVkjR8kIcEYQjNwjz2QyhUeNRNeR6PUU\nr4La7/eHN+RuaQ9qk8kU3jkgsoLaaCnY3GlvITqE9NsII+3Ip5DoEBJ1W6mpqcFmsyVsyZfM0ZFk\nnityXaXL5QrvC2mMGhnTj1KA0Pk1Z1SwsQpqIzC2tge1qqq43e6odoJSQS1E1yFBUaQ1Y6uP6upq\nMjMz44ZEh8OBw+Fop6tsHWMUSVVVsrKyCAaD4RFFm82GqqrhAgRo2VSj6PwiK6iNkcbm9KCONZoZ\nucm3VFCLTklSUEJyi0Taiuy2YowmRgqFQtTU1OByubDb7e10la1jFN8AZGVlAdEjSsaHtKIoZGRk\nhEeNWjvVKDo3o1e00YM6FAqFp6gbq6BONBpfv4I6cqmEVFAL0TlJUBRpqX63lfqMbisZGRnYbLZm\nndtYE9jeH2aRxTeR19WY+qNG9aca5YNa1BfZ3q+xCurmrLeN1U7QGPGWdoJCdC4SFEXaqb+Rdn1+\nvx+Px0NmZiZWq7UdrvAnLS1miSy+cTgcVFdXN/scEhpFczVWQW18eWrJWth47QQlNIq0JykoIblF\nIq3E6rZihDFd1/H7/fh8vnBLvvbU0g89IyRarVacTifQ+urpWOvTgsEgPp8vPGIkH9QiUv1imEAg\nkJRlDY31oLZYLFHrGoUQ6U+Cokgb8VryGf/r9XoJBAJkZWWFP4g6GqP4xm63hztwJHuPxFjr0+oX\nNUhoFJGMaWSz2YzD4UhpBbWx3tgIqFKYJUR6k6Ao0kKibisAwWAwKS352msD66ZWaCdz/WT99Wmx\nQmNzewmL1DBek+0VmCJfd62toI4lXgW1MXoZue2OhEbRZjrmmEObkqAo2l2ibiu1tbUAHbolXzpU\naMcramhNL2HR+bW0groxsdoJ1tbWout6OKBarVZZYytEGpCgKNqVqqrhRe/1PxCMquB0Di5NGZkM\nBoPU1ta2qEIbUjMCGq+XsMfjCX/4d8UPaGmV2LhEFdSRI43NbScYudTE7/eHvzxKMYxIKUlBCckt\nEu2mOS35gsFgO11lfE350DK28UmHCu144oXGUCgE1D2H5n74d2Rd4TkmQyp6UBvnrV8MExkabTab\nLJcQog1JUBRtrv6i9ta05GuJtlqjaGzj09QK7XQYzYr88I+sgJWuMKIx8doJNqeCOl5nmMjQGAwG\nw18apYJadFaKovwTOBnYo+v6iBg/zwdeAnpRl+Pu0XX9+VRdjwRF0aYiCypihURjLZ/T6Ywq+Giv\nApSW8vl8eL3eJoXEdA1cxt+P3W6P+vCX0Ng5JauIKjI0As3a4zNRZxipoBZJl54p6DngYeDFOD+/\nAvhW1/W/HgiN6xRFeUnX9VAqLiY9b5HolBKFRGMtX0duyQd12/j4/X6ys7ObvY1P5AL/dPqwSzRi\nZHzwS/GBqK+pe3w2h1RQi85M1/UFiqL0beSQncDIA/8/GyhPVUgECYqijcTbI9HQEdby1Vd/lFPX\n9fBej63ZxifdR08bGzGS/tMtl25fDlKhsT0+jeCnaVqrK6iNHtSKokgFteiMngY+URSlDMgCzkzl\ng0lQFCmXKCQ2ZS1fMsNTKoKYrut4PB5CoVBS9nrsSKSVoGiJ+hXUxohgZOV9SyuoI3tQSwW1aFTH\nTEHXA8t1XZ+kKEp/4ENFUUbpul6TigfrmLdIdBiJQmJrpmnTha7ruN1uNE3r0Hs9xtLcQB0rNBrT\njC3t7iE6v8jOMBaLBVVVUVU1JRXURjtBqaAW7eWzirpfrXAEcDuArusbFUX5ERgMLGn91TUkQVGk\nTKJuK8mYpm1v9TcE70wBqLXPxQiNQINpRmklmH5i/TttD5GV9y2toI533ngV1PXXNYoupB3GJyYV\n1P0y3LKx2adYCxwHLFQUpSd1IXFTki6vAQmKIiUiO37EColutxtVVZsVEtNt3Z6xHkpRFDIyMloV\neIzp8M4amprSSlBCo6ivNRXUTTkvEC6GMd6THA5H1LY78poUbU1RlNnARCBfUZRtwEzACqDr+pPA\nHcBziqJ8B5iA63Rdb90YZSMkKIqk0zQNj8cTnlKOFDkCl52d3ay1R8mSjDWKxgcL0OqQ2NXECo1G\nSzgjFKTblwKRek35otTUCurmhkZFUdA0LfzL5/Ph8/nCjyfrbEVb0nX9nAQ/3wdMa6PLkaAokiuy\n20p9mqZRW1uLyWTq0OEqsmuMqqpt9jw644hjvJZwQHhdo/SfFrE0VkFtfOFoSQ/qyEIYY7N5Y1o+\ncl1jZ/u32GVJCkpIbpFIikTdVuq35GvJm2w6jDIZXWOMTaiNhfGp1FU+kCLXptXW1mK1WlFVNaqP\ncGcOjenw+u6o4n3hiKygbklojPy3F1kMIxXUoiuRoChaLdZG2pHTu5HhyuFwtOhNNR3eiI3n4XA4\ncDgcaJrW3pfUaRlryCI/+CNDY+RoUTJfG+0d1trzdd5ZRqwjv1TUf+1A/ArqRM+/sQpqo/CmM3+R\n6bQkBSUkt0i0Sktb8rWnlqxRNJ5HR+8ak0pVVVUsWbKEQCDIyJEjKCoqinmcpmksWbKEPXv2Ulxc\nxKhRoxJ+QMeqgk1VK8HOEJY6olSE9Ka8diKLZZpz3vrtBN1ud1Q7QamgFp2FBEXRYsYWE8Y6vfof\nsLquU1NTQ0ZGRniblI7IaC1Y/3mkeweVZAgGg7zyyussWLAMp9PBeedN5ZBDDmlwXGVlJTfffD+7\nd+dgMtmxWj/lhhv+j4EDB0Ydp+s6Tz31Ip99VobZXIiqLuaMM7ZwxhnTG5zT6/Xy8stvsHTpGnJy\nsrjool8yaNCgmK0Epf9055DKv7PICmq73d6ggjpybWJLimHqtxP0er3hUXGpoBYdmXzdES1iTL3E\nC4mhUAhN08jMzExKSGyvUBYIBKitrU3a84inrZ+fpml88sln3Hvvkzz//GzKy8tjHvff/85jzpx1\n2O0n4vMdwn33vcaGDRsaHPfFF1+yZ08BffpMpKTkcCyWsbz++nsNjtuxYwdffLGB0tJplJSMo7h4\nOu+88wU1NQ0bCjz//Gw+/XQfLtcUKiqGcMcdT7Nnz57wzyNHb1atWs2TT77Es8++zI8//ojH48Hn\n8xEKhTp9mBctY1Q0u1yu8LppY+sur9dLMBhs9msncuNwox2h1+ulpqaGmpoaeU2mI3Ma/EpzEhRF\nsyXqtuLz+cJrydK1b3NT3qj9fj9ut5usrKy0fR4t9fbb/+WJJz5n9eqefPihm1tueTBmWPv665X0\n6DEOuz2TrKxe6PpBrFmzrsFxHo8Pszkj/Hu7PRO329fguLq9NV2YTHXvjmazDUWxNigK0nWdr776\nnqKiI7DZMsjJKSUY7M3GjQ13pl2wYCH33vs2K1fm8dVXZu6882lqamowmUzhHuLyAS0aE9kVJiMj\nA4vFQigUCodG4/2uOYzQaExvQ917Y21tLdXV1Xg8nhaFUSHamkw9i2ZJ1G3F5/Ph9/vJyMgI7zOY\nbpoy/WOE3cb6T6ejUCjEm2/O5bPPluJ02jjvvJMbTBXrus7cuZ9TVHQmVqsL6M+2bVWsXr2aww47\nLOrYrCwn+/ZV43LlAqCq1WRkOBs87ujRI5gz5xmqqnpgtdopL1/E1Kk/b3BcUVER+flBdu36ju7d\n+1Jevob+/XPJycmJOk5RFDIzXfh81WRk5B3YqqQ25jrXuXM/Izf3KLKyegGwdaubZcuWc9JJk6Om\np6uqqpg9+y2WL19Pfn43Lr74zAZT411ZexeztPfjG1JRQW2cN1YxjLGO0iiGSYd7IEQkGVEUTZYo\nJHo8nnBLvmSHq7acmvV6vfh8viY/j3QaEXjnnXd54421mM1Tqa09kn/8I/ZUMTS87lgfUGeddTKB\nwCK2bfuSrVs/pl+/AIcffniD4wYOHMi1155F9+7fYzYv5Pzzx3Hiicc1OM7hcPDXv17G8OH70bT/\ncdhhGldffUnM19OMGaezf//HbNv2NVu3fsDw4VkMHz68wTmbuknz7NlvM39+DXb7KezceTA33/wY\nW7duTZtRnXS4hq4s1v03QpzD4QivUTbaj7rdbvx+P6qqtmiK2lgvqSgKwWAQt9tNRUUF1dXV+P1+\n2VWhrVjS4Fea6wCXKNKBpmn4/f6oDWkNxroeTdPIysoKr83paJrbfzpV3/zjheJgMMg333xDVVU1\nBx3UjyFDhjQ4ZuHC7ygoOAaHozsOR3eqq4eycuVqBgwYEHX+adMm8tpr/yMrayQ+Xzk9elQxdOjQ\nBucbOHAgf//71axduxa73c7o0aNxuVwxr3vMmDGMGTMm4fMrKCjgj3+8LOFx48aNZdasAjZt2kRm\nZiZjxoyJuQRg2rRJPProu/j9owkG3WRmbuHQQ8+IOkbXdRYu/J7i4hmYTBaczm7s2LGNLVu2UFBQ\nEN6kWVEUPB4PixYtwu32cPDBg+nfv3/Ca00WGU1qX62tvo8Mf815TGOk0RhhNNZ+G+fz+Xzk5ua2\n7skJ0UISFEVCkd1WYlU2Gy35srKywj9P94rg+tdmjIiGQqFm9Z9uK6FQiAcffJply3yYzT3R9fn8\n5jcncPzxx0Qdl5nppKqqCpcrHwBNqyYjo+E2NaefPo28vG58++068vKymTr1KjIzM2M+dmFhIYWF\nhcl/Uk3Qr18/+vXr1+gx48cfgcNh56uvvsXlcnLSSX+gR48eDY7LyLDj89VNo9dVp9aQmZmJ0+kM\nb/NUXV3NrFkPsHmzE7O5G2bzR1x33XkxK71F1xUZ4oxRxmT0oDam3409IDVNY/Pmzdx+++28+uqr\nKXxGXZikoITkFolGNRYSjW4rZrO5TVryJSt4xgq79UdE21qiYL1+/Xq++66a0tJfoigKfv8wXnhh\nNsceOynqes8//xRuu+1Ztm7dga57KCmp5Oc/b7hWUFEUJk2ayKRJE1PyfNqSoiiMHXsoY8ce2ugx\nF110Og899Dbl5f3RtApGjswIT2Ub69JWrlzJ5s12+vY9EU3Tqaoq5tln32DEiBGymXKKpcsaxeYy\n3hsje1Ab75st6UEd+WXbmJaWvVtFe5KgKGJKtJG2ERKtVitOpzPlb/CpOn+8EdG25na7+fTTz6iq\ncjNs2CBGjBgR9fO6af+fwrjNlkkwqKGqalR4GTx4MHfe+XvWrFmDzWbjkEMOiTtS2NUcccTP6dGj\ngI0bN5KZOZxx48Y1mMr2+XwoSiaKYsJshszMXNzuulGiyGIGv9/P/PkLqKioZuTIIYwaNaqdnlXy\ndNSgliyx1l63hLEm1jhn/R7UxkhjUx/L5/PhdDYsIBOirUhQFA0kComRLfnivYEZfyadP3yMDcFN\nJlObjIjG4/P5mDXrAbZuzcZmK+D111/kd7+bzAkn/FQM0q9fP1yu/7Bv3xoyMwvZu3cx48YNjrlm\nr7i4mOLi4rZ8Ch3GgAEDotZr1jd48GCs1vfYv78PTmd39uz5kqlTD8HhcIQrYGtra5k5825+/NGB\nzZbHW289x6WXTo36+xIC4ldQ120T1bCCOtb7pc/nS5uuVp1SB9jHsL3JPIqIYnRbaawlX3V1NU6n\ns82/5SZzzaOmaVRXV7d62jwZazG//fZbNm+2UFp6PIWFYygoOJmXXvpv1Hm7d+/O3/72O/r23Yim\nzeWYYzK57LILW/W4oqHi4mL+/Odf06PHanT9Q6ZP78955/0S+KmYYd26dWzfbqVv32Pp3XsUubnH\n8sIL77S4AlZ0DbEqqI0NuT0eD36//8A2UNGvn1QFxXnz5nHwwQczcOBA7rrrrqSfX3QeMqIowhJt\npB2vlV1bSHZxTCAQCI+ItsVIoqZpVFZWxgzYwWAQk+mnDwKr1UllZaD+Kejbty+33vqnlF9rshib\nFefk5DS7l2570XWdoUOHctdd8au36/6+7JhMCqDgcGRSWxsK7yMKhEeJjC9V8SrFRZ10CNdtOfsR\nWUFtFK2EQiGgLhhaLBb2799PXl5eSoKiqqpcccUVfPTRRxQVFTF27FhOOeWUmDspdHqSghKSWySA\nn9bqGWtn6r9h+v1+PB4PmZmZTe5SYoS7dJp6VlU1vFaorUJieXk5s2bdz8aN5ZhMQWbMOJXp06eG\nfz506FBcrtns2bOSzMye7N37NVOmjEur+xYIBFi+fDl+v59BgwbRs2fPRo+fO/ddnn/+v4Cd4uJM\nbrzxDxQUFMQ9ft++fbz88puUlZUzYkR/pkw5joyMjLjHt6chQ4bgcr3Bnj1rcLnyKS9fysknHxGe\nntY0jb1793L33Y+wceNeTCaN8847iV/84tRG/07T7d9Ke+iKzz+ygjoYDOJwOFBVlXvvvZfXX3+d\n8ePHk5+fn9TA+M033zBgwAD69u0LwNlnn82cOXO6ZlAUCcnUs0DX9XAQjLdGxuPxdPhWdsbayuZU\nICbDww9AfPhdAAAgAElEQVQ/y6ZNBRQWXkBe3tk888w8Vq1aFf55fn4+f/vbZQwbVk529iLOPHMo\nF154bptcW1P4/X5uueUe7rjjXe6//xuuuuoOfvjhh7jHr1u3jn/+8yPy88+hsPACysr68OCDz8Q9\n3u12c8MN9/DFF3Z27TqMN97YwjPPvNToNWmaxpo1a1iyZEncPtWpkpeXx623Xs2wYdVkZy/jzDNH\n8OtfnwP89KH/3HOz2bIlh+Lic8jPP40XXviYxYsXp3UrQQmq6cEohvnHP/7Bp59+SlFREfPnz6dX\nr1788pe/5JVXXqGqqqpVj7Fjxw5KSkrCvy8uLmbHjh2tvXTRScmIYhcX2W0l1rYxkRtQt2T6MJlb\n2rRmE+9QKERNTQ0ulyu8qDxZEj3H1as3UVBw5oEtNDLQ9VK2bdvGsGHDwsf06dOHG2+8GqvVSjAY\nTPmG5YFAgPff/4Bt23YzYEApxx9/TNy/36+//pqVKzVKSn6BoihUVGzgqade5Z57bop5/Pbt24Fi\nbLa6EcGCguGsW/dC3GtZv349+/ZlUVhYt41PZmYvFi58KG61p6qq3HffE3zxxU7M5lzs9le49dZL\n27QdX58+fbjhhqvj/nz16k3k55+MyWTC4cjEbC5lz5494f7TrdlrT6RGewflWO8j/fr1Y+TIkYwa\nNYrTTz+duXPnMnv2bG688UY2bNjQ4ipteb1FkBSUkIwodmFGtxUgbku+YDDY4pCYLm9GwWCQmpoa\nMjIykr4fmfEcNU1j9+7dlJeXN3jDLynpSWXllgPHqej6LvLy8pJ6Hc2haRp33fUwzz67is8/78aj\nj37Nww8/HTfwVlfXoCi54eeakdGDiorquOfPz89H13ehqkEA9u//kdLS+FPVZrMZXQ+EH1/TQiiK\nFvdDcOnSpSxYUEFh4W/p3ftsFGUaDz/c+AhkWysu7klV1TbA+DvfQ0FBATabDZfLhcvlIhQKsW3b\nNnbv3o3P5+vShTDtHdLSSf374PV6cTqdFBQUcNFFFzF37lx++OGHVm3lU1RUxLZt28K/37Ztm+yU\nIOKSLN1FxdtI26i6Mzagzs7O7tBv4IFAALfb3ay1lc1VU1PD7bffz6pVZSiKygknjOWKK34TDtdX\nXjmDG2+8h50716GqtUyePIJDD42/OXSqbd26laVLd1Fc/H8oiglNG8Znnz3OBRdUxAywBx88GEX5\nCI/nYOz27uzevZDJkxu2+zOMHDmSqVNH8N57szGbs8jIcPP7318V9/jBgwczaJCNNWvexeEowedb\nwSmnjI9bMFVZWYmiFGIy1d3fzMwSdu+uiHv+mpoannnmFVas2ERhYR6/+925Kf9QvOyyXzNz5r3s\n3LkJVXVz7LFDGTt2bPjn27Zt4+ab76eyUkPXvfzmN79g4sQJ4VH8tl4eIdKX3+9vsDaxKT3oG3Po\noYeyfv16Nm/eTGFhIa+99hqzZ89u1TlF5yVBsQuKFxKN4pOamhoURWn1BtTJrFRuybmMdZdZWVmt\nfmNtzAsvzGbVKhOFheeiaSHeffddhg37jOOOOxaoq1Z+/PG/s3XrVlwuF3379k1JANi6dSv//Oe/\n2bOnirFjD+bcc8+IOYJat0m3FTA6QJhRFHPc6e6BAwdyzTW/5JlnXqeqysfRR/+MCy88J+51KIrC\nxRdfwOTJx+B2uykqKmp002+bzcbMmdfwv/99yM6dFQwdejxjxoyOe3y/fv1QlA/x+Q7Hbu/Onj0L\nGTs29t6Iuq5z992P8d13+eTl/Zo1azZyww3388gjN5OVlRX3MVqrpKSEhx6axdatW3E4HAeu+ae9\nRe+442Hc7lH06jUYv7+Gp556h4MPHkTv3r2xWCwNNmiW0Jh67T2qGe/xU1H1bLFYeOSRRzjxxBNR\nVZWLL7646xaySApKSG5RF5JoI21jutlqteJyuTr0B5PP58Pr9cYMicneamft2s106zb6QCGDFbu9\nHxs2bOG4iP2Xs7KyotYkJltFRQV//et9eL0Tycgo5PXX51NV9TxXXfXbBseWlpbSt6+VTZs+IStr\nAFVVKxg9ujf5+flxzz9hwpFMmHBkkz9MFUVp1qid0+nk1FNPCf/e6JYTy8CBA7nyypN44onHCQZ1\nhg8v5Yorfhfz2NraWr77bjuFhb9CURQcjlx27VrNpk2bUt5NJTMzk6FDG468+v1+ysrKKS4eDIDd\nngX0pKysjMLCwqgNmkOhUFSlvhEck91KsKtOeXcEqerMMmXKFKZMmZL084rOR4JiF9GUbiuqqnaK\nkOj1evH7/S1eW9lcffsWMn/+j2Rm9kLTVAKBbZSWHtuic2mahtvtBojq2pAo3K5du5ba2lJ6966b\n0nY4TueTT+7iyivVBvfAarVy883X8vLLb7J582KOPrqUs88+rVl9aNvbsccezaRJRxEIBBr9ELXZ\nbJjNGqGQG6s1E13XUNWauCM0wWCQZcuWoaoqgwcPplevXkm/drvdTl5eFlVVW+jWrQ/BoBdN20t+\nfn6DEf5YXT0iWwkmOzS2199ve4/mpTPpzJJiHWOL13YlQbELMLqtqKoat9tKbW0tJpMJu92etDfs\ntp56rl+lncwPUE3T+M9/3uWrr74lJyeb888/g+LiYhRFYcaMc9i8+W62bXsTTQswYcIATjjh+Gad\nX1EUVFXF7XaH11KqqhoOBYFA3Qbc8TZutlqtaJo3/IGrql6s1vj9ZLOzs7n00hnNusZ0Y+yF2Ri7\n3c555x3P88//E0UZga5v4ec/z4vZxi8YDHLrrffz/fc6ZnMBVutb3H7775I+JacoCtdffwU33/wg\nu3YtQ9Nq+PWvJ3PQQQeF1wh/8MGHfP75YrKyXJxzzmn07ds3aoPmtgiNXU17h9V4j+/3+5NehCdE\nc0hQ7OSa2m3F5XIRDAY77BSUMW0eCoWSHhIBXnppNi+8sJDs7DH4fOUsXXoLTzxxJxaLhdzcXB58\n8A62bduG2WymtLS02Y9vhFyn04nVaiUUCmG1WlFVlaef/hdz5ixA1+HEEw/lt7/9NQ6HI+oxRo4c\nycCB77Ju3ZtYLIWEQsv4zW9OllEa4Be/mM5BB5WyceOPFBQczvjx42OONH/11Vd8952V3r0vwmKx\nUFm5hkceeYVHH70t6dc0aNAgnnzyTnbt2kV2djY9e/YMfxmYM2cuTzzxPllZo/H7q1m6dBYPP3wb\nvXv3Bhp29TBmA7xeb3gfx8iRaNGx+Xw+6ewj2pUExU4sUUg0KoKNlnzBYLCdrrR1mlul3ZKRzrfe\n+pBevaZjs2UCfSgrq2TZsmWMGzcOqJvi7N+/f4uu31gSYLfbcTgc4VZeAP/730fMmbOdHj1mYjKZ\nmTfvX/Tq9R7Tpk2OGkmy2+3MmnUdH3/8KeXllQwbdkZSKqs76heHSIqiMGbMGMaMid+WD6C6uhpF\nKQy/flyuIsrL428D1FpZWVkxC2rmzPmIvLwJuFx1Fejbt1ezZMkSpk2b1uDYyNBo9A4OhUJRrQQl\nNHYM8f6txap6FkkkKSghuUWdVKKQ2BYVwckuGol1LqP1INDqKu3GmM0mNO2nTbo1LZSUUUtjI3Cz\n2Rxz+57vvluP03kEZrMDk8lMVtZ4Vq1axNlnZ8Scfjz55ClJG03tasFi8ODBKMpjeL1jcLkK2Lt3\nHsceG3/aORgMpqQa2WQyoeuRG8KrTfo7jWwF19zQ2N5fCNJh2jcdxKt6TkUxixBNJQtaOiFjI21N\n02J+KBgVwdnZ2VEhMdnBLplivYFGbuWTmZmZ0g+ac889hb17/8fevWvYsWMhPXvWhvfFa+k9i9wI\nPF4Q6NUrB79/S/j3fv9WevfOCY8kORyO8Iiwpml4PB48Hk/4S0I6cbvdfPDBB8yZM4cff/yxvS+n\ngYEDB3LttdMIhR5j9+4bmTDBz29/e0GD42pra5k5826mTfsNp556Cf/734dJvY5zzplGZeV89u5d\nQ1nZYnJzyzn88MObdQ4jNNrtdlwuFw6HA0VRwl8QY7US7GpfDGJJx3sgxSyivcmIYidjtOSD2N1W\njGKPrKysNqkITlXw1DQt3Lc5mVXamzZt4p57HmPHjt2MGDGYa665jNzcXE4/fTr5+bksWvQtubl9\nOO20K8nOzqa6umVTk8baUK/Xy4oVK9A0jbFjxzbYZPr006fyzTd3sXnz05jNFnr1Kufss/8cdUys\nNWuhUCi8Zi0ZhQ67d+9m+fLlWK1Wxo0b1+i+iLG43W6uuWYmmzd3R9ezsdneY9asS/nZz37W4mtK\nhfHjx3PkkUdis9nivqYeffQ5Fi1y0bv3zQQCVdx//zMUFxcmbfuj4447lqysTBYuXEJmZiHTp18S\n3gj9yy+/5KmnXsHj8XHssT/noot+lXAj+XgjjZGtBOu646Tnl8SuorFiFhlRTCFJQQnJLepEVFUl\nEAg0ukdiY8UeyR5RTNW3cyMkWq1WnE5nsx8n3vOsqqrij3+8Fa93ON26jeXrr79n5sw7eeihu1AU\nhYkTj2LixKNaff3G2tBdu3bx5z8/gNc7kECgghEjPuDee2dGBfhu3bpx331/Y+nSpdhsNoYPH97o\nwvZUhMYNGzbwpz/9A7d7MOCjqGguDzxwM926dWvyOebPn8+PP+ZSVHQ6AFVVB/HEE7N54onmBcVA\nIMDixYvxer0MHTqUwsLCZv35pmrsNbV06Try83+Hopix23PR9VGsX7++1UEx8jV52GGHcdhhh0X9\nfM2aNdx66xNkZh6FzZbJG298gcVi5eKLf9WsxzGZTNhstqjQaKxP9vl80n86zUjVs2hvEhQ7iXjd\nVuCndXy6rnfYlnxGuFNVlZqamnDhRzKfy8aNG6mtzaBnz4MB6NXrcNaseZmqqiq6d++elMcwQmJW\nVhY33XQ/weBp9Op1KIFAkBUrnuOTTz7h+OOPjxpdcDqdjBkzBrvd3qxR4GSFxqeffpXa2kPJyxuN\n3Z7D9u1zmTfvA84665dRx61fv5633/4Mny/IhAnDmTRpQvg5uN0eFKX7gXtQRVnZt/z44xpefvkt\nTjttctzw6/f72bdvH5mZmTgcDv7yl1msWqWhKN2xWl/jzjv/wPDhw5t8T5KhZ88ctm3bTm5u9wPh\nbgfdu7eskKm+xl7Py5d/h6YdRFZWXfVzXt5hzJ//dbODYiQjNFosFjweD2azmWAwiM/na9OuMOmw\nRjGd3xfT+do6PNlHMSEJih2cEQDihURN08J7JCZax5eKEcVkF7PU1NRtlpyKNTsulwtNc6PrKopi\nJhj0YDJpSZv2qV9AtGfPfjIzSwEO/N0VU16+PymPVV+80JhoHz63282CBcvYt28QO3ZsJT8/H5cr\nl/37ozunbN26lbvvfhOH40Rstgyef/4jdF3nmGMmAjBq1EhMpnuorCxh06bPqK4uYPDgC/nooyB7\n977CH/5wcYPX5tatW7n//peprc0Aqhk6NJuVK00UFl6AoihUVv7AQw+9yFNP3Q203Yf9lVdewF/+\ncj+7d69AVfdz6KFZHHnkkSl/3MzMDOCn++7zVVFQ0LwlAI2pv8G3UY0vrQTbRrzXb7qHWNH5SVDs\nwBJ1W0nVOr72oKoqmqaRkZGRsmmYwYMHM2nSUD755L9AAYqynUsvPbvRx2tqGI5VZT5u3FD++995\nFBaei99fDnzDsGEXJ+nZRNu/fz/ff/89ZrOZ0aNHY7VamT17DgsXrsbptHHWWZMYPfpnUYFSURTm\nzPkQh+No4CBstgHs2jWHnJz/MnZs9DrJFSvWoGmHkJc36MB/OYHPP58XDooDBw7kllsu5p57nsLv\nVxk5chojRw7HZFJYseIJqquro6aydV3nkUdmo6rHUVQ0gECglvffvwu/vyhi+5qe7N9fg9vt5oUX\n3mDZsvVkZ7uYMWMaI0aMSMl9hLo9EJ966jZ++OEHnE4nI0eObDDSu2TJEp577i08Hj8nnTSeX/xi\nequr0SdNmsR//vMRW7d+jK47sNt38Nvf/qlV5zTUDyNNCY1mc/wN3YUQnYcExQ5K1/VGK5tTOUXb\n1oLBIB6PB0VRkhISjXC3cOFC3n33M2w2K2edNY0hQ4bw179ey8SJX7Jv3z4OOuispPQD9vl8+Hy+\nBi0FL7vsQtzux/j88z9hNsOVV/6C0aNHR+2jGKmpo7O6rrN/f93IZE5ODjt37uQPf7iVyspidD1E\nUdG/mTBhHPPnmygpuQq/v5pnnnmNG2/sSb9+/cLT0wBbt+5jxIgTycraz6ZN32MyKRxzzEgOOeSQ\nqMe02cxomif8+1DIi90e/fYybtw4/vGPntxyy1uUlAxHUUyEQn5AbbBFUyAQYN8+L6WlAw6cP5Oc\nnCGUlX2OxzMeuz2XPXs+YvLkYbz44pssWuSkuPhKPJ59PPDAW8yalR/eoLr+eauqqsjKymrVqHR+\nfn7c3thr167lhhsex26fitWawRNPvI+iwBlnnNbix4O67Z8eeOAOFi5ciN/vZ9SoUZSWlhIKhXjz\nzbf59ts19O5dwAUXnEVubm6rHitSvFaCfr+/03SFSYdRu3jbf7X3dXV6koISklvUARkt+aqrq3G5\nXA1GM4y9+ZxOZ7M+DBVFSeqWKsmYejbW9LlcrnB4SYaFC7/kzjtfxeGYiKb5Wbjwdh57bCYDBw5k\nwoQJSXkMTdN45pkXeOONj7DZrPzqV9P45S9Pj1p7eNNN14Zb9dWveI7U1A+LYDDIU0+9zOLFZQCM\nHVtIefk+qqsPp1evuue1fftc3nrrM4YNm4nZbMPlykdRRrJx448MGDAgXB2rqiqlpfl88cVqhg6d\nxLBhg9m+/W1OPrnh3oJjxx7KvHlPsWWLgtnsApZw6qkNN4guKSlhzJjuLF78H+z2Evz+dUydOoqM\njIyo42w2GwUFLioqNpCbWzeimJlZw9VXn8Orr77Cvn0ejj32EC677CL+8Ie/U1x8OWazlays3lRW\nDmLLli0NguL69eu54YaHqK42k5Nj5s9//hU/+1nrvwjU9+WXi9G0Q+ne3Rhdncy8eR+1OigCZGRk\ncMIJJ0T9twcffJx33/2BjIzhLF1axrJlN/L44/ekpJtHS5cwJCKBqE68eyD3RrQnCYodTORG2rEY\n264Ye+t1ZJHTtcl+o3znnY/JyDg+/GG+c6ePefM+YeDAgUk5v67r/Pvfb/LPfy6jV69rAJWHH36B\nnJzuHH/8sVHHJrPC9IMPPuWrr0z06XMlAF9//Ta1tStxOM4JH2Oz9Qa+w+PZi9OZe2BqcS9ZWT8V\nZBhbqkyffjx7977Oxo3Po6p+DjusN6NGjcTv94enHwG6d+/OjTdewqJFS/D5/IwadSb9+vVrcH0m\nk4nf/e4CRo36mt27K+jb9/AGo5PG419++dk88MArbN/+JYpSw69+NYlJkybwi1+cHhUsunXLwO3e\nS3Z2Ebquo2n7cDoPjjqf3+9nxowbKSs7FotlEKq6nuuvf4JXXvl70gqVDA6HDU1zh38fDLpxOlOz\nXMLn8/H++wvo3XsGJpMV6M/OnXNYtWpVeJ/PVGmLbZlE+mwG3mlJCkpIblEH0tSWfJmZmQn3Vosl\nnTbcNjYFN9b0aZqW0kIbXddIVhY19qtcsOBbunU7EYejbhrQ4TiahQu/bRAUY11PLD6fj/fe+5iN\nG3fTp08+06ef2GAkbuPGnWRljUBR6j6cMzOHY7F8x+bN83G5itD1EH7/V1x88XEsWDCPbds2omnV\nDBnii9nyLyMjg7/85VL27t0b7mttrFmr3/Gje/fuTJ58fML7Y7FYmDBhfMLjSktLufPOa8JVz5Fr\nGCNf+zNmTOP++9+mqqo/mlbBIYc4GlRCL168mO3bFbp3n46iKKhqP9aunc/u3bsbBMV169bx8ceL\n0TSd448fx8iRIxNea6QTTzyOOXOuZ/t2HZMpA4tlKTNmXN6sczSVcR+iXzttPzpXPzQa2+4YswDp\n3kowHUY0dV2XUC3SkgTFDsLYSLv+m4nxAdEWLfmaq6XB0+v14vf7G6zpS+Z1nX76cdxxx0uoqhdV\nDWC3f8uUKbe06FzRgfOn/Sp79sxj9eo9QN3+esHgHnJzG/b2bQpd13nssX/x3Xd5dOt2FKtXr2Xj\nxme5/vrLo+5RcXEeS5ZsIDe3bqTU7d7AtGlHsXv3HubOvROTycTFF5/MueeeyeTJFWzYsCG8P2O8\nLxdms5levXo1+G9t0VvYbrdTVFTU6DHDhg1j1qw8tmzZgtM5jGHDhjV43ei6jtmsoqp7sFh6AkFU\ntbxBRfv69eu56643yMg4DjDx7bdz+POflWYVx+Tl5fHYY3fw0Uef4PX6OeKIPzNo0KCEf64lQcFu\nt3PKKUfzzjvv4nQOxe/fRZ8+pmbv6ZjMoNSaVoIiWigUSpv3c9F1ySuwA4gXEo2Qkqxg1d4jipGd\nY+JtCt4a5eXlVFRU0LNnTw477DDuuSeXd9/9DLvdyhlnzKR//9bthafrOm63G03TyMrKYsaMM1m8\n+CbKyvYAKvn5P3L22Xe06Nz79u1jxYr9lJZehKIodOvWj/XrH6OsrIySkpLwcVOmHMu6dc+xdu3T\nAAwZYmfq1Bk4nU4uu6yuotq4r3l5eeGOHy2RToGgV69eDcJspKFDh1JSorB9+zOYzX3w+1dx6KG9\nou4dwIIFS7FajyQ/v24d5r59Oh9/vLjZVdR5eXkN9pmEutfI7Nn/Zvbs9wE4++zJnHvuWa26P5df\n/htKSv7L8uVrKSzsy9lnn4HD4WDnzp14vV6Ki4vbbRlKU14jZrM5XJQnokn7vjYgKSghuUVpzujb\nrChKzJZ8xlR0KoJVMjSnUrexzjGtDbHvvPMf7rvvORQlC4fDx803X83Pf/7zpK3jqh8SFUWhpKSE\n5577B9988w0mk4nDD7887no4t9vN22/PY+vWcvr2LeC00yaTnZ0d/rnRYk3XNbZvL2Pz5jJ8vrXs\n2LEjKuw4nU6uu+637NixA4CioqLwl4dUvj7SKTTGkpeXx6OPzuS22x6jrGwhI0cO4pZb/tjgWsxm\nE7quhn+vaUEslob3beXKlcyduwBVhRNOOJRx45r2Onr//Xk8+eTn5ObOAODJJ18jJ6cbJ500pcXP\nzWw2c9pp0znttOkHrlnjvvse5r//XYjZ7KRXLzv33nsrPXv2bPFjJEPka8RutzdoJWgymTCZTO3S\nFSZdpp7rX4Pf75egKNqdBMU0lqjbilHQkq4hsalvvJEhKxWdY7Zs2cJ9971I9+5nYrNlU1W1mVtu\nuZf33vt3Uu5bTU0NjzzyLMuXr6dv395cc80llJbWbaSdn5/PSSed1Oif1zSNBx74Jz/8UEhu7jGs\nX7+KjRufYebMP4RDXk5ODocfXsjbbz/M+vVZKIofp9PBLbc8yTPPlERNz5rN5vDjtwVd11mzZg1V\nVVX079+fHj16NCk0Ql1bupqaGgYNGtSq0c2mGDZsGK+++mijx0yadBgLF/6LsjIFRTGh619x4onn\nRR2zbt06/v73t3A6T8JksnD//e9z7bVKzDWe9S1YsAyHYwJ2e926VadzAgsWLGtVUGz4GAv4z3+W\n06PHeZjNVnbuXMy99z7G3Xc3f2lFKkW2EvT5fFFffI3XSFdvJej1eqV9n2h3EhTTVFNb8jmdzqSF\nxPaYejaeC5CS6maAsrIyTKYe2Gx1I3TZ2X0pK/NTU1PTrH7FsWiaxk033c2SJXnk5f2OpUvXc9ll\nM3nllQejRgQbs3v3bn74wUNR0WSsVisZGUVs3PgYu3btCgdARVH4v/87hzlzLiQv7xC6dTuYgoJf\ns3v3O3z++QLOPffsVj2PltJ1nbvvfoT33luPxVKM2fw0d911JaNHjw5fd6zQ6PF4uOuuh5k/fxsW\nSwE22+Pce++fW90vubVKS0v5299+zcKFS1FVnaOOuqDBkoQFC5ZhsUwiL69uelrXNT75ZEmTgmJu\nbhaBwL7w7wOBfS1etxrPtm3bgWLM5ro1p9nZg9iwYV5SHyPZjBmTyNdIVwuNsd57ZUSxDUgLv4TS\nbxiqizP2SGysJV9NTU14E9x0lih4Gi35FEVJ2F4w8s80V2FhIZq2m0CgGoDq6s1062YnK6t1H9C6\nrlNVVcXSpZsoKjofp7OYgoKjqa7uzdq1a6OODYVCbNiwgR9++IFAIBD1s7pp5RC6bmx5pKPrwQbr\nTS0WCz17FlJUdCI9ex6DyWQLX0d7WbZsGe+9t5mCglnk5f0es/n33HbbE+i6zubNm1m1ahXV1XX3\n3QiNdrud77//nvnz95Cffy05OTNQ1bO47bZHUFW13SvvS0pK+NWvzqRv355cddVtTJp0BjNn3hn+\nQmO1mtE0f/h4VfVhtTb8tCkvL2fNmjXs3bs3/N/OP/+XdOu2jF273mbXrrfp1m0Z55/fcC1ja5SW\nlgDbUdUgAFVV6xgwoE+jf6a9p14jH98IjC6XK7xPbDAYxO124/V6CQaDSX+NtPfzN9S/Bp/Pl7QW\nokK0lIwoppGmtuSzWq04nU48Hk+cM7VMW44oNre9YGvexPv06cM11/ya++57DpMpC4fDz8yZ17Zq\nJNa4fpvNhtmso6peLJZMdF1DVWuipou8Xi933PEoa9YEMJks9OkT4m9/uyI84lhQUMARR5SwYMGr\nZGaOwONZwxFH9I65puycc47nrrueIRA4nWCwkoyMBUyceGuLn0csxlKAyA8ot9vN/PlfUFXlZsSI\nweGRv/LyckymfuHQmpk5iF27KnnmmVf4+OMdmM15OJ1vcP31F3DQQQeFz1dRUYGi9MFiqftzJpOF\nxYvXcuGFNzJyZCkXXHAaDocj5iiS3+9H1/WUjrSsXbuWm2/+JxkZl5CTk8/HH7+F2fw4N930J447\n7kjmz3+aHTvqeoIrykKmTo2env7qq0U88sgcoBewm9/+dgpHHTWe3r178+yz9/DNN9+g6zqHHXZ5\n0qfcx48fz/Tp3zF37kuYTE6Kipz88Y/JfY20FWPdYlftPy0jim1AUlBCcovShDGSqKpqzJAYqyVf\ne75enggAACAASURBVFcpt1T9wJuqN/kdO3awfPly7HY7kyefwFFHjaeiooJevXo1GNVrjsiQm5GR\nwfnnT+HFF+/DZBqHpm1k7NisqCnU9977kNWrcykpqdvDb/Pm//Hmm+8yY0bdJtiKovCb35zPkCFf\nUFa2i5KSwRx55M9j3peTTpqM02nnww8XkZXl4Jxz/kZxcXGLn0t969at4y9/uZN9+9zk5Di48cYr\nGDFiBDff/DCbN/fFYunFm2++w5VXVnDUURMOTMu+js+3C7u9J/v2zaOoKJuPPtpHUdG1mExWKipW\n8dhjr3PPPT/1hx4wYACK8jZ+/0RAYc2af5GXdyl5eSezZMmH+P3/5uqr66q0I9c0PvzwU7z55ieo\naojhw4s47bSpjBo1ksLCwqTdA6grVlHVQ3C56u5tXt5UvvzyHqCuQOjWWy9hwYJFhEIaRx7566jN\nxWtra3nssXfo3n0GTmcePl8lTz31LCNHDqd79+7k5eUxZUr0mkSfz8cHH3yAz+dj9OjRrdr43WQy\ncfXVV3DOOWfg8/koKipi+/btfPPNN2RnZ3PEEUd0yC1XYvWfVlU1HBqN4JiO67WbItaopsfjkaAo\n2l3He7fohBJtpG205HO5XB1qYXOsIBsZeFM5pbJy5Uouv/wW/P7B6HoVgwa9yZNP3suAAQPC97sl\nYo3qzphxHsOHD2LlynUUFh7CSSedFPVBvGPHPpzOg8J/rxkZ/dm69euo85rNZo4+ehJOpxNVVQkG\ng1E/N+6loigcc8wxHHPMMS26foPX6+XNN99l3boyiovzOOusk7Hb7Vx77e34fKfRo8dwqqvXcsMN\n9/PXv17C5s09KS2tmyL1eAbx0ktPhoPiDTeczV133UhVlYn+/QuYPn0qr77KgU4h0K3bQHbtqox6\n/CFDhvCnP/2S++67m6qqKjIyRnPkkdOwWBwUF09j+fLrsFqtmM3mcCHM3Lnv8e9/byQn5zY2bfoX\n777rZMWK7fTv/xU33XRek/YqbKq69bK7wvfc6y0jL++nNadFRUWcffbpMf9sVVUVqpqF01k3Uuhw\ndEfXc6isrIxZ9e7z+bjyyj+zcqWOouRhtb7J7bdfyfjxiTclj0dRlHALw4ULF3L99fejaQeh6xWM\nGzePu+++Na3CYnO/8MbrP93SVoLp+oVbRhRFOkifd4ouKlFIbKwlX7JHFFM9QmmERIfD0aI3v8iw\nlMg//vEUmjaVHj3qevmuXfsS8+bN4/TTY3+4N4Vx/WazmbKyMhRFCVf4TpgwgeLiYvx+P8FgMOrv\natCgEj799Dtyc4egKCaqqpYxZEhJI4+UWrqu8+CDz7F0aQHdup3K+vVr2LDhSS655DTcbie5uXVd\nTbKzD2bv3u7s3LkTkykz/Oet1gw8np+C7HHHHcukSRPxer1kZmayadMmdP01/P6jsdm6sWfPQoYM\nabhp9sknT+HEE49n6dKl3HffovCXIJ+vHKfzpw96oxBmxYpN2GwTqar6Dq93JE7nsQSD2zGbj+Jf\n/3qf225rPCg2Zx3apEmTeOedj1m58nEUJR+LZQV/+tM1TfqzeXl5uFweqqo2061bX2pqtmOzVZKf\nnx91XFlZGZWVlaxbt441a6BHj3MwmUx4PMO4775nWxUUI91552M4HNPJyChC1zW++eZVvv7666Sd\nP1laOrOQrP7T6Th9LWsU24CkoITkFrWjeBtpG1rbki+dtPWoaHl5JU5n7/DvFaUn+/dXtfh8Rkj0\n+/1cd90s1q2rBjR+9rMe3H779TzxxIt8/vkOTKZsunXbx623Xh6eEj7uuKP58ccdfPLJveg6jB9/\nEKeeenJrn2KL7d+/n2+/3Utx8RUoions7IPYtu0Hampq0PUqAoH92Gw5BIPVaFoFY8aM4cMPZ7N3\nbz+czh7s2/c/pk//WdQ5LRZLuDiof//+XHLJkTz33F2oqo2+fTO49NIZMa/FYrEwduxYxo37jkWL\nnsJkKkJRvuP//u/EqA/uun0pCwiFNqHruZhMhahqFU6nDau1G5WVblRVjblP45YtW3jwwVfYtq2c\nfv16cNVV5yecqrbb7Tz44Cy++uorPB4Pw4ad0+QthxwOB9dd9yvuuedFyspMuFwq1113PpmZP4Xt\nN96Yw2uvfYnFksfu3d/h9eaEr9tuz6O6urZJj5WIrutUVlaRl9cDAEUxoSi51NTUNDguHYNSc8UK\njaqqhvtPR05Pp9vzlX0URbqSoNhOEoXE+r2OY1EUJbyXYjKkaoSysVHRVDnqqEN4440PKCg4g0Cg\nEpNpKaNHXxd1TFM/HCNHQp9++kVWr+5Jjx5/AHQWL36Wu+++lzVrcigpuQqTycKePYt5/PFXuf32\nPwJ1YejSSy/k/PNrGt0rMhAI8MADj/Puu5/jcNi5/PLzOPnkpu+vt3PnTh599BW2bNnLgAG9ufTS\nc+jRo0eD436qslYP7BWoo2kBcnNzueqqc7nvvocwm/uhqpu55JJTGDJkCDfffBEvvfQulZVujjtu\nMKee2vjekMceO5EJE36O1+tNuDemyWTiqqsuZtmyZdTU1NC377kxr/vcc8/gyy9vYN26AIGAm4yM\nXzBo0FFUVLzDGWcMDhe5RI4geb1eZs16Dp/vLAoLR7B9+2Juv/0ZHnjgrwm/fNlsNiZOnNjoMfEM\nGjSIRx+dSXV1NdnZ2VGP9eOPP/Laa1/Tq9cMLBYnqjqSjRtvpXv3I3A6e1BR8QFTpiRnI3hFUTj8\n8DF8+eWnFBQcjde7G7P5Rw4++NKknD+dRYbGRJvApyvpzNIGZHuchCQotoNE3VZ8Pl9Kex23JU3T\nqK2tTcqoaHOC7O9//1u83gf54IPbcbmc/O1vFzJmzJjweZqq/kjoDz9sw+mceOAcClbrCNavfw9F\nOQSTqe6fU7dug9i27X8NztXYdjyKovDUU8/zxhtbyM39K8FgFbff/k969MhvUvcYn8/HLbc8QXX1\nZHJyRrB69VJuv/1J7r33r1FfNILBIHa7neOPP5h5857G6TwUn28to0fbKS0tpV+/fowaNYIdO3ZE\ntcXr27cvN954eZPvGxDeTLkpzGZz1PM0tqKJlJ2dzZNP3s2KFStYtWoV33yzAlX9njPOGMGZZ56C\nxWKJCgNut5vy8nKqq3Pp3ftnKAr07Hk4ZWUfsm/fvvAavlSxWq0xK5orKiowmXphsdRNKRYVDWHQ\noEFkZMzD7fZx0kljueaa5t3rxtx447XMmnUvixY9Sk5ONjNnXh1VfJMOUr1GMFHnICA8CtkeI43x\nnr/X6yUnJ6eNr0aIaBIU21iijbQba2NXX7qvUQwGg+ERtLZaOB8Khfj888+pqKjgjDOmctNN17X4\njT/WdPnQof1YvnwxWVmD0XWNYHAZI0YM5ttvVxD8f/bOMzyK6u3D92wv6b1C6IQQugREqqB0UFGx\nghWkqHRpUpQaBVHAAoiiIhZEEFGK9CICUgIECC2Q3uv23Xk/hF0S0iFA/L+5r4sPZGfOnDkzO/Pb\n55zn95gfRCbTkpb2N23bVr4yyr59x3F1fQ653BmZzInc3PYcOXKiQkIxISGBzEwX/P3bAeDv34mE\nhAOkpqbi7++PzWZj2bIVrF37G6Io8vDD7Xj99XbExkYTGOhJjx6DHD9K6tSpQ506dRw2OdUJtVpN\n27Ztadu2LS+VMJstkUg4f/48kyYtJCNDh7OzBIkkGHf3XBQKDRZLPpCNVqstsf3MzExOnDiBVCql\nZcuWxdYVVgUF095x6PXpqNWepKaepkmT2sybNwmFQlHl3xVXV1ciI2cjiiJGo5G9e/fyyy+/0Lx5\n8zuub16V3CuBVpJoNBqNDusd+/T0/TD4vvV4JpMJjUZzT/tQQw23UiMU7yHlicTCtYKr83RIRbBH\nRe2Lye8FVquVsWOncuBAAqLoi0SyhlmzhtOnT+XXA5Y0XX706FFiY9MwmQ5z5cohnJ096NAhhLff\nHs3Onfv47rtIRFFBw4ZuDB8+vNLHdHNzJi0tCZWqYP2cKKbg4VFQ/cNuNOzt7V3iy0ur1WK1ZmO1\nGpFKlVgsOkQxz7EQ/o8//uS77/7Bw2MSEomCHTvW4e9/hVGjXq90P+8Vt/OSzs3NZezY+ZjNw/Hx\naU529jHy8hag0XyARNIIm+0szz8fgVKpdIgC+3FSUlKYNGkJWVltEAQZrq6LmTdvZInrGU0mE2vW\nrOPEiQvUru3Lq68+X+HIj7+/P2+//QRLl35LRoYCb285EyfevF8yMjJ4990FREVdpnZtL+bNm1ak\nROPtYjQaGTFiHGfPmhBFV2Syr/nww8m0a9fujtv+r2IXjfakKXuWfXWpCmMwGP5TThf/SWpUULnU\nDNE9wJ7ZnJ+fX6K5dOEKJZUpY3e3spTvdPpFr9djNBrRarXo9foq61d553vkyBEOHryGl9crCIIE\ng6Etc+YspVevXsWEd1kZ1HaRWHi6PDo6mlmzvkerfYywsJ4kJf3Ia689wIAB/QB44on+9OrVHYPB\ngLu7+22N35tvDmHMmHmkpl7CZsshJCSDPn3GsWnTH3z55XZARb36TkydMhwPD48i+/r4+NCnTxN+\n++0TBKERoniWwYPbOuxY/v33DDJZG2SyguiEVtuBI0f2VrqP94I7uafj4uIwGDxxdy/Idnd1bY3V\nGsLIkW1RqVT4+TWnbt26DjEgiqIjgrRx43ZycroTHNwTiURCUpI369dvZfTo4qHLWbMi2b7dgFrd\nhaNHozl27B2++mpJhdeTtW/fjlatWpKXl4ebmxtSqdQxm/DCC6P5998ApNJBnD9/khMnXuDAgY13\nXElo165dnD1rxsvrKQRBIC+vEQsWLGfDhnb/M8kst4v9/AvXn76XpQRLG/+arOcaqgM1QvEuYzeG\nLVyWrzB2Xz6pVIpWq72vD+s7PbYoiuj1ekwmEy4uLoiieE/9yXJzc5FIPBCEAlGoVHqQk2NyrMur\nCKVlmu/ZcxiDoTVOTj44Obng5zeIEyf2MHDgTfFqLzl2uzRp0oS1az/iyJEjDsud2NhYVn15DG+v\n95HLXbh6ZSvLln3H9Omji+wrCAJDhz5Ny5YnSUlJISCgbxHT74AAbyyW84jiAzd8AWMJDPS+7b5W\nhOPHj7Nq1XoMBjOPPdaF3r173vX728PDA6s1BbM5C7ncDZMpHVEsyNwuLK5LEgMZGbnI5WGIIogi\nKJXeZGefLHaMnJwcduz4F2/v5Te8Iltx7dp7nDlzhtatW1e4r0qlsth9WWASn4VWOx6JRIkoNiU1\n9Sxbt25l0KBBtz0uUPD9sNlu/ohRqXzIzs4tZ697Q3UUqreKRru/qcFguGdVYWqSWWqoDtQIxbtI\n4WorEomkVPNphUJxWxVKqlNllpLWV1qt1nvah7CwMGSyJeTkXECjCSYzcy+tWzettEi8NdPcbDbz\n66+/8e+/9VAo5Gi10KSJBpWq6i2LgoODCQwMxGQyIZFIuH79OgKtkMsLMoe9vDoRHb2txH0FQaBF\nixYlfvbUU0+we/dELl1aiSAo8PJKZ9SoyCrps9VqJS0tDa1W67CAOXv2LKNGLQReRip1Ytas1dhs\nVvr164vVauXTT1eyYcM25HI5w4c/w8CBA6qkL76+vowY8RjLl09DImmIKJ7n7befKRaBtVNYDDz0\nUHP2799CXl4AgiCQlbWRiIhWpYgYEas1D0FwBQQEoWrcB6RSex1p+/EsCELVfI9atGiBTLaW/PxQ\nlEoPMjL+omfPNlXS9v8696uUYI09zj2gRgWVS80Q3SVuNdK+lXtVoaSyVMbU2k7h9ZXlWaHcKWUJ\n44CAAJYunc2sWYtISUmjQ4fmzJo1s0LtGo1GdDpdiXZEGzb8yvXrWlSqVKzWVDIzc7hwYS8LFnx4\nJ6dSjJLOzdPTE1E8gM1mQSqVk50dTXBwyaKnLJydnVmxYjEnT57EbDbTrFkzR63p0qjIdUxISGD0\n6CnEx+cCBkaNep7nn3+GP//cjdk8AG/vjjfakvHdd18hl8v4/fft7NkTh4/PKxiNBubO/RYvL88q\nM4B+/vmniYhoRXx8PMHBz1Q4YePBB9sxbFgWv/66FFGEl15qw4MPRpCfn19k2jEjIwOwcuLEGORy\nVzw8/Gna1EzTpk3vuO9BQUG0bu3N0aMfI5NFYLOdwsMjm06dOt1x2w0bNmT+/LFERn5GTk4ejzwS\nwcSJb99xu/8LVOaZV1IpwVtFo33d450ev2bquYbqQI1QvAuUVm3FLgSqyny6OkQURVF0WJncur7y\nbmRll0V2dja5ublMmjSCNm3alGnNUrhvds9KFxcXTCYTS5Z8wYEDUbi4aBk1ajCXLl1HoWhN/frN\nyMo6gdGYQ3CwmtDQUPR6/R2do06n48SJE+h0OkJDQ4tl47Zp04YePU6zfftspFJPXFwSbjsBRaVS\nERERUen9RFEkLS2N48ePI5FIaNOmjWPt49Sp84iPb467exfM5mw+/ngZ4eFNkMuliKLR0YbZnMmZ\nM5dZujSLs2drYTSm4+aWjpNTA3S6B9m793CVVgpp0KBBpeslC4JA9+5defTR7kWWHRSenjaZTMyc\n+SnBwdNwdfUgKekMSuW3zJ//YZUkHQiCwI8/rmLy5Hc5cmQTgYFezJ27Ch8fHwwGAytXfsu+fSdx\nclLz+utPVPp6durUiU6dOhEfH09MTAyXL1+uEoH7/5XSSgkWTuS7E6/GmojiPeC/7UB3T6gRilVM\neSX57NOb99J8+m5hT8KRSCT3fX3l9evXGTLkTbKzPRFFAw0bKlm16uNSbVDsGAwGDAaDw7Ny+fLV\nbN9uws9vDHp9KjNnfkX//s2w2Q4jk3XA27sbaWm/8MADBVO8d3LOubm5jB8/j2vXfLHZFLi4bOKj\njyYV8fcTBIGRI4fSo8cFDAYDdevWrXBSQ0JCAleuXMHHx6fSoqkw169fZ9KkJeTmtgKseHnN5YMP\nJuLl5UV0dAwuLs8BIJM5YTT6snfvXrp378769bNITZUhkTiRk7MUD48nCA4eSnz8UZKSvLl+/Q/q\n1/fGak1DLvfkjTcmEhV1geBgfyZNGlbiNLpOp+PYsWOYzQURvJKMuUtCp9MRFRWFVCqlWbNmlfru\nFZ6ezsnJITNThq9vC9zdRerUqU1q6qVilU7uBI1Gw5IlHxT7++rV3/Pnn1n4+Q3HaMxk3ry1fPCB\nJ/Xr169U+/v27WPixIWIYjA2WwoDB7ZjzJiR97X2c3Vco1hZ7qSUYFk+ijURxRruNzVCsQopq9qK\n/SFY1SX5qjqiWNEooD0JRyaTlZjJfa+JjFxGZmYbPDw6IYoiZ8/+wA8//MTLLw8tdR+j0YjJZMLZ\n2dnhIXjgQBR+fmOQy7XI5VpycsIJCgpiwIA0Nm+eiSAoaNLEiwkTFtxxnzdu/J3du53Izm6AIAj4\n+qpYvfoXpkwparYsCAIhISEIglBhgbNr1y6mTFmOKDbGZrvCSy915Y03Xrmtfi5dupqYGDdcXGT4\n+z9AUpKaMWOm0qBBA1QqKXl553B2DiMhYSuZmUb27JESF7edyMhx7Nr1NwZDEhpNL/buLTB5dne/\nxrVrZzEa3YmO/pa6dTM5eNCT69fb4er6MpcvR/H22+/x88+fc/ToKS5dSsbPz5WOHdswa9YyYmOD\nEQRn1OpI5s9/g7p165bZ/9TUVF5+eTwpKV6Ioon69S188UVkkZJ6FcXV1RW5XI/FkolS6YXJlIvZ\nnIBSqcRgMFRpVqzJZGLXrl1kZWXRvHlzDh48hY/PUMe9mZUVzrlz5yolFG02G9OmLUSheBa1OgCb\nzcSvv35O9+6daNmy5R33+b9KVQvV0kSjvZRgSaKxpOPXRBRrqA7UCMUqoqxqK4CjAkBZJfkqy/0S\nZ3aRKJfLy0zCuZeG4HFxyahU4Y7tJJJaxMUll7htQck6myM7u/D1cnHRotenIJfXuZG1nYazcxNm\nzZrMiBHJmEwmAgMDq6Rizm+//UVKSis0mnaIooXr1//k+PEzd9yuyWRi+vRPUCgWoFLVwWrNZfXq\n0XTv3qlIZDE9PZ3z588jlUpp0qRJiZHKmJgYdu9ORq9/AZvNlbS038nIyEMmsxEdHYrReAKJZBX5\n+b5kZgYSFvYSrVp1ICXlFH//fZKJEwuysy9dusT+/StJTnYlJSUGL6+++Pqa8PfXotFs4vTpKDw8\nBiAIAm5uHcjM3MPSpatJSGiIq+tDnD59mU2bFpKc3ILatV8FIDW1IatX/8p7743l0qVLJCQk4OLi\nQnh4eJFrunTpapKSOuHh8RyiKHL+/FLWrPmeESNeq/TYqtVq3nzzcT76aBGiWBdRvMrQoZ2oU6fO\nHVupFBYrZrOZESMmcfy4CAQhlf5MUJALKlUaSqXrje3T0WorZ5it1+vJyzPg5VUQtZZIFEgkfqSn\np1eqnRoqzq2i0b6UwW4dZk+CKenZZjQa76rh9syZM1m5ciXe3gUOCPPmzaNnz5537XjVkhoVVC41\nQ1QFlGekbbeMAarcSPteRxSraxJOREQ4a9ceQK0OxGo1IIr/0rr1kGLb2a8HFEzx3Xo9Ro0azMyZ\nX5GTE44ophEebiUiIgKr1YqLi0uVPrRTU9OQSM4BOgRBgc0WDRjK261ccnNzMZlkuLsXRPCkUmcE\nIYg9e/aQlpZGaGgoOp2OyMgfyM8PRxTN+PisZuLEIbi6uhZpa//+KIKDH+fcOQGZrC5ZWeHo9R/T\noME7uLi0x2AIQxAm8OST3fj773o0adIBEHB2DiIlZZ+jnXr16jFz5tMsXrwGqVRNeLgXYWGNkUgk\nXL68B5tNj9Wag0zmis1mwmJJ4fx5b8LCHkcikeLuXo+dO/cgCDcjqhpNABkZ+ezbd4g1a44jCE2w\n2aJ48MFzDB36pOPaxsYmo1B0Aewv7aZcv378tse3U6eHaNCgHvHx8Xh7P0rt2rWBm5Y7FouFX3/d\nzPbtR1Gp5Dz/fG9atmxZKdG4f/9+Tpyw4OEx7YadUSfi46cRFLSR+PjGiGI2jRoZad++faX6rtFo\nqFs3kNjYv/HwaI/BkARcrfT0dQ23R2mlBO3vB6PR6BCOEokEo9F4Vw23BUFg7NixjB079q4do4b/\nPjVC8Q6pTEm+nJyce5rcUdXYRaJKparUdMi9WH/05ptvkJQ0m507ZyEI8PLLg+jdu1exftivh0Qi\nITMzk/XrfyclJYs2bULp3ftR2rRpw9KlXpw/fx6NpgkRERGsXfsDH320GoulQJAuXvxekYzh272m\nDRs24OpVEZ1uJqJoQ6PR89BDHe5oHKDgOoliDrGxkXh798dmM5GQsJ9163xQKs/g7r6Bli3rYzZ3\np1atgunG69f/Yt++v+nb99EibQmCQHBwEGq1jHPnDiKKUajVSpydC6p5SKUarFaR7t27cvLkPkym\nfORyDSkph+naNahIWy1atGDJkhBmzPgajcYViURCSsopgoPVREQ8xSefzCAlpR5W6xnq1dOj0aiB\ngrEVRRFPTxdSUw+g1/dAJnMmPX0DPXo0YN26vfj5jUKpdEYUbfz99wq6do111DNu1aohUVF/oFLV\nJSvrINnZa9FommOz2W77h5u/v79jLenRo0f5559jeHi40q9fP7Zt28nKladwd3+atLQ8Zs/+lvnz\nNdSuXbvCkcYCA35/xzZKZQA6ncBHH00gOjoajUZDmzZtUKlUpKSk8NNPv5GRkUf79k15+OFuZUb5\nFy9+nzFjpnHlyi7Uahnz5o0nODj4tsahKrjfCXn2PtyPcn120SgIgsNO7Pr16/Ts2ZPevXuj0Wiw\n2WxVMoNRGtVh/Guo3tQIxduksC1CaSIxLy8PURTvumVMVVJaRPF2MrWr+pzLinaq1Wrmzn2X2NhY\nvL298fT0LPL5rRY+iYmJTJq0gOTkpqhUoezbt4+UlHRefvl5QkJCCAkJAQoiOx9+uBEXl0hkMhcO\nH17De+99SGTkrAqd48mTJ/n44x/IysrjoYeaMnz4C45I7IQJwzh1aix5eS0RRR3+/lcZMuTZOxqj\njIwMFiz4jgYNxnHkyHkuX56NSnWRoKBhhIS8CUBy8lZ2715Ho0a9HfvJ5R7k5l4p1l6nTs05c2Yb\nHh7daN/ek/x8A2fO6ElO/hKD4Spm87+8+GIHGjVqxDPPpPLLL0uxWiW0bh3AgAGPFWvPzc2NUaN6\ns2LFd1y7ZiMwUMOwYU8AsGzZd7i4NEWjeZX8/Ktcv34IieRHnJ1bkp9/hQcecCEsrA/ffjuP/HwT\nAwe2ZuDAXhw8uAKFomC9oSBIkErdMBpvZly//voQrl6dwy+/PIHB0Apf3+5ER0v46afNPP10/zsa\n702bfmPmzK+wWjsiCJf4+eetuLr64eHxAlptgfiKj+/EqVNnCQ0NrfD0dLNmzZBKvyI/vz0qVW0y\nM3+kY8fWBAcHFxF1mZmZjBs3l4yMliiVjdi/fweZmTk8+WTxsbcTFBTEunWruHz5Mmq1msDAQAwG\nw31/Rt3v499P7O8QpVJJSEgIGzZs4Ndff2Xz5s0EBQUxcOBAnnjiCbp27Vpl69vtfPLJJ6xZs4Y2\nbdrw4YcfOhwN/t9Qo4LKpWaIboOKiMSSSvLdyzV7VUlJdY+rG8ePH+eNNyai18uRSPJ5//1J9OlT\nIIRuraMtCAKnT58mKcmbwMCCqKOzc11++mkeQ4c+WyTKFBV1Bqu1PXJ5QR1fF5feHDlSPCO1JK5d\nu8Y776xEqRyBSuXH5s0/YrN9zbhxBXV969Wrxy+/fM7hw4cRRZGIiDF4eHhgs5Vu3mw0GklNTUWj\n0ZRoIn38+Emys1sRGtqDxo17k5LSh9jYSAThZgaxWh2CIEjIzNyFUjkAm82M0XiAZs2Ke/XVrVuX\n8eO1HDwYhUQi0LHjc5w4EcbIkXMxm3uhVrdj+/bDDB16lW7dOtK584NYrdYy75MGDRqwYMFbjmk1\nQRDYvn07cnk3goPfp8DM2kxKSg8mTvTk2rUT+Pm50rXrM6jVanr1esTRliiKhIZ6Eh29E1/f31U/\nfgAAIABJREFUCHJyrqHRxBEYeHOdlUql4o03XmT37jx0uuewWJyIiorDat1Nv37diy0nMJvNpKam\nolAo8PT0LFPAfPjhKtTqcahUBdHTy5c/IiQkDak0r1Af81EqncstD1e4klFISAhLlkxi9uylZGRk\n0aVLC2bMmFTC9T5OenoIAQHdAdBoAvnpp8/LFIo6nY4xY6Zw5MhFQKRDhya8997UKhcgNVScWyOa\noaGhhIaGsnfvXr766is2bNjAu+++S0xMDKtWrWLgwIEVbrtHjx4kJSUV+/ucOXN44403ePfddwGY\nPn0648aNY9WqVXd+QjX8T1EjFCtJ4WorJYnE+5ENfDenTUoraVdRbsfAu7KYTCZGjnwHk6k3rq71\nMRpTmDo1khYtmhMQEFCqzyMUzjgseQrSx8cLieQUomhDECTodDHUrl2x0ndnz57FYmmHj08TAHx9\nn2f37nGMG3dzGz8/PwYMGIDRaMRsNpfZXmJiIsuW/UJWljOimMNjj4XTu3ePIttYrTbHOj5BENBo\nnPDx8SA+fgdmcwskEiU5OVt47rlO+Ph4s3PnV8hkEl55pS1hYU1KPG7dunWLmFbPm7cUH58xuLoW\nmGmnp3uydu16pk4d75hKKw9BEFCpVA5/xosXL2KxJN4YZwGLJQ2ZTELXrp3KbE8QBF599UnWrdtM\ndPTn+Ps78/zzTxVLzDl69ChZWVq8vArEsMHgR3T0mmKiPDMzk08//YmkJDWiqKdz5yCefXZgqVPU\ner0Bjca90F/c6NChFrt2fY9O1xmbLRcvrxN07jy1yH4licaC9vSOSGPbtm35/fdvyhzHAnFZOe/S\nzz9fzeHDIu7uBQJh376v+O67Hxg27Pay4v/rVNepV3u/6tWrx4QJE5gwYQLXr1+v9I/17du3V2i7\nV199lX79+lW6n/95alRQudQMUSUozyOxvJJ899qA+nbbtPexrGol94PSxi8tLY28PBtubgUL8pVK\nH0wmX2JjYx3i0MnJqch4FXjw/UZCwjbU6kDy8vYxeHCXYoKgX79+bNq0k+PHZyOReKDRXGLGjIqV\nvlOpVIhiikMoG40pODmVnwxjryt76z321Veb0et7ExQUjtmsZ/36FTRqVFTENWsWxqZN35Oc7I5C\n4UxW1jb6948gJSWNzZvHYLWK9O7disGDH0cul/Poo90qdC6Fyc83IpXeFGJSqSv5+Zls376dU6fO\nERzsy4ABA8pdohATE8NLL41Hr2+M1ZqJwRCFzTYOaIog/MHEiUMqJDqdnJx49dXBpX5uNBrJzs5B\nLs9Fp/sLmawuZvPfuLjkFfPZ/OmnrSQmtiU4uBM2m4W//vqasLCTpVrHPPLIQ2ze/BVOTk9gMsWj\nUBznySeX0revnsOHj6NWa+jWbWqxpRCFsYtGs9mMSqXCZrNhNpvJzs4mNjYWpVJJo0aNSvwOFtSw\n3kRi4i5UKh/y8/fw0ktlX9PTp2NQKFojCAVjK5O15PTpC2XuczepLh6K97MPZY1B4b9X9VrSxMRE\nx1rbDRs2EB4eXqXt1/C/wf1/+/9HKE8k2tfwqdXq/wnfK3u1kuoiEsvC09MThcKKXh+HWh2E2ZyN\n1ZqCq6trETNwm81Geno6Go0GJycnIiMn89NPm0lJOUXbthH069enWNsKhYJVq5bwzz//oNfradas\nmcNKAsoW/+3btyc09C/Onv0E8Ecm28+MGU+Xeh5Go5H09HQsFguenp6ODEiZTIbNZuPatXSCg0MB\nkMvVSCT1SEtLKyIU/fz8mDjxCf744yDZ2flcvLidGTN0CIJIt27NmTt32h3fn4891o1Zs75Dp1Pf\nqEu8AZOpIePHr8Nm64EgnODPPw+wYsUipFIpubm5LF/+JRcvxhEeXo/XXhuCWq1mzpxPyM9/GlfX\nh294zS2iRw8TjRvrqF//Zbp06XJH/QQ4c+YMb7wxlcxMExkZZvz9j6NWX0ImO8fAgV2LfY+vX8/E\nw6NgjCUSGTJZQ5KT04q1azabSU5OZtiwISiV69i7dwmBgS5MnjybWrVqAdCoUaNi++n1elasWMvh\nw+fx9nZm5MjBDssiu/+qVColJyeHl19+i+vXLdhsRlq08GfJknlotdoiaxrd3d1ZtGgK69ZtJCMj\nivbtu/Doo92x2WxkZGSgVquLieH69YM5duwMotgEELFYztKgQZ07Husaqp67He2cNGkSJ06cQBAE\n6tSpw+eff35Xj1fDf5PqrQCqCeWJRPsavvISPe7GmsKqntotiHwZHXYwd5ptdy/WUSqVShYtmsnb\nb88kJ8cDmy2N0aNfICQkxDH9n56ezuTJC7h0KRtRNPDss90YMuRZ3nqr/HJ4MpmMBx988Lb6FRk5\nlf3795OXl09Y2MhSK6QkJSURGfktmZnOCEIe/fo1oX//R7FarY57LzjYg5SUU6hU9bh4MYasrK3o\ndMXFba1atRg2rBbz5i3m6tVQ3NxGIYpWduyYS4sW63nxxecqfS6FGTiwP1arle+/X4tMJuXFF19m\n6tSPcXb+AanUFVF8kuPHh3HixAmaN2/Oa6+N48yZEBSK3hw+vIuoqKl88cWHJCamoVI1BOyL+evj\n72/glVdeJj8//476CAUR/pEjp5Kf/yoeHg8Am0lJWUVoaAN6927Jm2++XGyfWrU8OHXqDFptF6xW\nMxbLOfz8mhfZJj09nUWLviEpSYUo5vPww/WYNm18hb6DS5asYscONZ6ek7l8+RoTJnzCF19MK1Zh\n5sMPl3HlSkPc3AYBNv7993N+/PFnnn/+WYextz0RxtfXt8h9nJaWxrRpkVy5kg0YeeWVfjz11OOO\nz0eMeJWTJ8dy8WIkoigSHu7BCy88U6mxreF/gzVr1tzvLtx/akr4lUuNUCyHsqqtwJ2v4atO2JN0\nRFF0ROOqG6WJzk6dOrF9+09cvXoVJycngoKCiqwR/eCDL7h4MRw/vz5YLPl8/fVCwsMbV7hW7qFD\nh1i4cAU5Obn07duF0aOHFYm07t27j40b9yOXS3j22V40a9YMKJh+7t69e5lt5+bm8tJL73DtWidq\n1XqA5s1D+fXXlYSFXaJhw4YoFAqMRiNDh/Zl3rwv2bQpDqvVFU9PfyIj1+Pn50doaGixdk+ejEGp\nfAZBkCIIUiSSzpw6dbJC51sWgiAwaNDjDBpUID6ysrIwmz/CZEpEoZAilTohkbhjMBiIiYnh/Hk9\n7u5jbvxoaMuRIy8QHx9PREQ4P//8Lc7OTyCVOiOR7KF168qbYJdGVlYWWVlmXF0fAMDDoy8KRRTv\nvjuArl27lrjPk08+SkbGz8TFncJm09OzZ12aNy8qFL/7bjOpqe0ICnoQq9XMtm1fERZ2ssSSg4Wx\n2Wzs3n2SgIBVSCQK1Gp/EhP/5ezZs8WEYkzMNZTKfjfuXykSSTiXL8ejVqsd31Oz2YzBYEAqlTqE\noyAIfPDBZ1y5Eoqv78NYLHmsWPEpjRvXd9yTrq6ufPPNZ1y4cAGJREKDBg0wmUzVYvr3flAdpr5L\ner9Yrda7aotTQw0VpUYolkF5IrGya/juZkTxTrF7DIqiiEqlqpYisbyH+aVLlxg3biYpKam0bNmM\njz6ag5+fHwCnT1/G0/MZBEFALndCFJtz5cqVCgnF6OhoXnvtXQThDWQybz7/fDUWy3ImTCiwm9m3\n7wALFmxDo3kRq9XAkSOfsnTpmyWKt1uxWCwMHTqaEyfykcs7c/p0GmlphwgPL5hWbtjwZsTN39+f\nBg38OX8+DD+/nkilLqSl7WXt2t+ZObMhEomkyBg1aBBEdPRR1OqmgIjNdoz69UPK7VNl2bJlBzqd\ngpSUj5HJzLi7t8LL6xJhYWEkJiaWsEfB/erm5obReITU1I+RSmMZN24wnTt3rrJ+ubq6olaDXn8e\ntboRFksmNtsVgoKCytxn0qRXyc7ORi6X4+7uXuy+u3o1DXf3gqxTqVSORNKA1NTi09O3UmB/IsNk\nykSl8r2RiJKJSlX8PmnatAHnz/+NWl0fUbRisx0jLKyLox25XI5cLi/iwGA0GpFKpTfu9UE3tnNG\nFEOJjY11CMVNmzaxYMEy8vPz6dGjM7NmTS12/HtJdRBq1ZGa8n33iBoVVC7VTw1UE6xWq8OLrSTR\npNfr0ev1uLi4VPs1fOVht4+xWq3I5fIqfWjfKwuf+Ph4Xn11PBkZvXB1fZ8TJ3x47bW3HceuVcuX\nnJyC8ng2mwVBiMHX17dCbe/Zsw+TqTtOTm1Rqeqg1Q7n1193OD7/7beDaLUv4e7eBi+vhxDFx9m6\ndX+RNrKzs/n++w188ska9uzZ7+jXuXPnOHs2E2fnCAQhFZWqJUlJqeTlnSiyFtKOxWJDowlEqXRH\nJpOiUDhjMlkdP1rsywZEUeTtt4dRp84J8vLGkpv7Ji1bZjFkyJ1NO9/KhQsXWL36MG3a/ERQ0ESk\n0p7YbL/w0UfT+G3zX2zd9g9e3vlkZi4iL+8QmZnzadu2DvHx8fz+ewrt2v3CI49spEWLxZw9e42o\nqCgyMjKqpG8ymYxFi6YBC8nPn4FON4GRIx8vdfq/8H6+vr4cPfovL788haFD32HLlj8d16xuXR8y\nMk4DYLWasNnO4+tbNCKYnp7O2rUb+PTT7zh06LBDDA0f/hgZGXOJj/+V+PiPCQ3NoVWrVsX6MGbM\nGzRvnklu7mRyc9+hRw8vBg9+sth2dtFoX4sok8kICPAiMzP6Rn1hI3DVcS8dO3aM6dM/wWx+Eo1m\nDH/8Ec+8eR/exujWcLfR6/U1QrGGasF/W+HcJSwWC1lZWSWWeCtcks/Z2blSUwPVMaJoNwaHAvsY\nnU5XVV27K5R0rlarlWPHjmG11sbZuSkArq49iImZTnZ2Nm5ubkyY8Cpjx84nOfkfrNYMunULqnD5\nM41GhSBkO/5vsWSiVt98gEulEmy2m9Y2omhBJrsptnU6He+99xlJSS1RqRqwf/9+0tKyGDCgJzqd\nDkEAT8/upKT8hsl0AKt1N717P1uioHn00QfZuXMNWVmuCIIUvX4d/foNQKPR3BAGFkddcScnJ9au\n/ZSYmBhkMhmNGze+7ams8+fPs2LVb2Rk5tE8vDYvvzQIZ2dnkpOTkUgaoVZ7EB7ugSg2Ji7uN77+\nZhs5uodQqVvg4aMnOOg0UukWwsPr8frrQ9m6dSvQDKlUhSiK5ORe5cLlHERpNHLZZka90afYlO/t\n0L59e/7442uuXr2Kj49PhbNG9+07wPz523FxGQlIiIxchkqlolu3Lgwe3Itjx+Zz8OBGXF0VPP10\nRJFs0ZycHObMWUlGRjtUqkYcOLCHnJw8Hn30YXr1eoSAAF/OnDmHu3stunYdUqLdiYuLC199tYyE\nhARkMhl+fn7l/oCzi8Z33hnOxImRpKUdw2LJpFu3gmlns9nMP/8cwWIJx8WlINPVyelh9uxZx+TJ\nFR3R/z2qQ0SzpD4YDIa7Wr6vhhoqSo1QLERB5qXV4ZNY0uf2yJuLi0u1nJ6tDHZj8MKZwXdDzFZV\neyX1zW5J5O3tjSimIYoWBEGGxZKBRGIjISGBy5cvU7duXb7+OpIrV66g0Wjw9fWt8Muhb9++rFr1\nM4mJnwNeyGR/MGHCGEefBg3qwqxZq0hJycFqNaBUbqR374mO/c+dO0diYgC1ahWUx3Nzq8fGjXPo\n2vVBmjZtSosWvhw79gNOTs2xWPYRERHCCy88VWJfWrZsyXvvmVi3biNWq8jjj/d1lP0rqYasKIrU\nr1/fEfUu/EKyWCxkZGSg1WodmbHp6elERn5BVNQVAgM9GTlyMAEBASxc9Atq9xfxqRPEsbN/YVnx\nI+PGvkJAQACiuAGTKQOFwoPMzMM4OdnIym1EcJ2HAXByCSI37QM+XTbFceygoCAE4Vcslv7odFdI\nSL5MYMgIAkM6kJkRw+qv1/LRoqJC0Waz8d13P7L+l33k5KTj6eVL7dq16PlIax5+uLPjetyKp6dn\nmfY0JbFz51GUyqdwciqY+jebn2XHjq106dKJWbMWcuRIPDabDwkJx1Cp2hc57tmzZ0lLa0CtWgXr\nIJ2cAtm4cSmPPlowHs2bNy8mgvPy8jh27BhOTk6EhoY6fuDcjh1K3bp1Wb16IVeuXEGr1RISEsLF\nixfJzMykoJupNxLzJBiNKfj6upbXZA33AaPR6KjiVMNdpEYFlUvNEN2gpGorhUVJ4cjb7Zbkq04R\nxXtlDH43f6kXLisYERFBjx7N2LZtKaIYhCBE06pVGMOHL0Iq9UStTmbx4smOdVr2a1kRPDw8WL/+\nS9av30Buro4uXd6nTZs2js9btWrFRx+588cf+1EoZAwcOJG6des6Pi+4PpIi/zeZTGg0GlQqFStW\nLGbZshVER/9Lq1ateeWVsv0DIyIiylxbWbiGbGHRaI80ymQykpKSePaFiVy8pEdCHs89246FC95n\n+vRFXLjwAB4eb3P9+hmmTl3GuHHPYCEUV/eCcwoKeZSTUVOwWq3Uq1ePUaN6sHz5eMAVNzc9zzwz\niPW/Ff+hVZhWrVrx3HPn+f770eTm5qPWhtK2bUEyiItbCHEXc4tFWTZt2sKqL2NQKJ4nNn4vV5Kb\nIKjrsXzFVubPX0J8fApeXl588MGUCicplYZWq8RiyXT832zOwMlJxeHDh9m9OxZn59kIggyTKY4Z\nM2bSp0+vW344FjXBLoukpCTeeut9UlP9MRpziIv7Cycnd+RyM3PmTKJPn15l7l8Szs7ONGvWDFEU\nWbp0JRs2/ItU6oNMdh1//0ySk9ciis4oFDFMnjzP4ehwP6gOEb37TWkRxZqp5xqqAzVCsRBlVVvJ\ny8srEnm7XapDFQC7SLSvbSp8PvdqTeGdYheJhcsKLl48j927d5OSkoLF0p7PP/8bX9/RSCQKMjNP\n8t57S/n2209u63heXl4MG3YzI9dqtWIwGByZ7k2aNCExMYWrV1O4cOESwcHBjs8aN26Mj8924uJ2\nolT6kZGxk0GDIhwvAa1Wy9tvj8BgMODi4uIQklVBaaLx1demEXO1F2rnF7Da0vnmuzeoV/cLzp9P\nx9e3IBHCw6M9SUl/kZaWhs2ScbM6TX4KWq3cIYz69+9F584PkpOTg4+PDyaTib37PiPu2g7U6gBy\nMncyeFDrYvfZSy89y4ABPYmJiWHpp3sQBAOiqCExbi+NG/kX+57t3n0CJ5enyMw8i1zTF1HwJyMz\niWtXvdBl+BEU+DU5OVEMHz6D33//koCAAKDgO3fp0iXy8vIICgrCy8ur3HF76qne7N07n/j4bARB\ngla7ncGDx3Pu3DkkkgAEoeDRKZcHkp1txmQyOa5naGgo7u67iY/fi1rtQ3b2bp55pk2R9uPi4ti9\n+zAWi40TJ06QltYDT89HOXToHwwGLWq1MypVGFOmLCQ8PMzhzVhZTp48yYYNZ/D2noZUqiQ7+wwe\nHusYO7Yf+fn5tGw5kcDAQMea7MLZ0/9fqK5CtUYo1lBdqBGKNxAEAYlE4hBJdsFUlZG36hBRtE/V\nKpXKezKtUZXnbDfNLq32tEQioVu3bkRFRTF8+FucO1ePzMzLNGrUABeXxsTFfVcl/ViyZCnz53+D\nxSIlNNSXlSsX8PvvezhwQIFWG8aOHWeIjv6Kt99+FUEQ0Gq1TJ/+Ohs2bCUx8SxPPNHQMQ1Z+Nyq\ngqysLJKSknBzc3NkfBc+hlQqLRBOV9KRK/sjSOTIBD9Mks7s338UicSG2ZyFQuGOzWbBZkulSZO+\npKQe5eDRT5HKA5FYo3hzRJ8ifXZ1dcXVtWAKU6lUMnXKK/zxx24ysmJp2bwpHTq0K7G/Hh4eRERE\nIIoCq75cRLpZQv16bgwdUryWrbu7FlN0ElKpAtGWhU1wQSqVkJ2dgouqDYIgR6NphV7fnDNnztyY\nFhf5+usf2b4rEaksAAm/M37MQJo2DStzHGvVqsVnn01j374DiKKVhx6aQlBQ0A0RtRi9Phqlsj45\nOb8SFtagyAvd1dWV6dNf5bffdpKdfYlWrcLo2PGmD2dcXBwzZnyFydQFiUTO0aMb8PPrgNlsxmy2\nIZW2wGI5jkIRhNVaj0uXLt22UExNTUUiqXNDJOZw7pyO/Px/aNq0FhMnjnH0Oy8vD6lUWiR7+v+j\naKxO1CSz3CNqHIjKpUYoloHVaiU/Px+lUolKpbrjB6Zd6NwvKlo9pjpHFO3R3dJ8K+Pi4nj22eHk\n5LTBYrnM9euJWCwWfH2TCQ+v79judgXsli1bmD59HRLJ5whCICdOfMWLL75F7doPERIyCUGQIIot\nOHx4IcnJyQ6x5uzszOOP9yzXb/P48eOsXr0Rvd5E//4deOSR7hW+76Kjo1m48BvMZk9EMYOnn36I\n/v2LT1vKZDJcXWQkpp9EIe+OiB5sZwkO9qd373BWrJgOtEMQLtCxow+NGzcmNDSUjqdPk5eXR+3a\nzxEYGFhmXzw8PHjuucfL3KYw7dq15YEHWmMymVAqlSUmVQ0Z8hjH/l2IXt8cU97PSFWhOGuaIrFs\nRu0yCwBRNGO1xuLuXlB/OSYmhm07kwmsMxapVE5uzjWWffoFy5c2KXFcC98TAQEBPP100UzjWrVq\nsWzZTN55Zx7p6Rm0bBnO4sULirXj5eXFSy+VvM509+7DmExdCAwsqDvt6ZlEfPx6wsI6IggGrNbt\nqFQtsVrzsFpjHSXWboeQkBBEcT3Z2fH8++9lzOZYFIoQvv/+NPn5c1iw4D2g4Psgk8lQKBQlWu7U\niMa7S0lRzZo1ijVUF2qEYhno9fpqX5KvooKn8Hq+8qrHVFfsiUbOzs6liq2///4bo7Ehnp59kMkO\nkZGxjoSEFNq27cj06dPuuA+//LIRUeyBTGb3vhvCuXNrqF1bys11aQIgc/wosEdAyxOJ586dY/z4\nz5FKX0ciUTNnzipEUeSBB1pz7do1/P39i0UJ7dhsNj766BvU6n74+ARgNutZt+47WrZsWmJCxKIP\nxvDi0NnosjeBmEyQXxITJ87F3d2dJk0acPHiRdzc2hEREYHVanVkTefk5DhEWFUjlUodhtJQkC2u\n1+vx8PBAEARCQkJYuWLmjXKKvVEolKjVcnp3e5HFixeSm/sgcI4ePerRunVroMCWSCoLQiotGHcn\n52CuJxuxWCylXovyvgMdOnRg377Ntz1labHYkEhuRsIbNKiPRmMlLW0EQUG5pKdfRybTodf/wGuv\nDaRx48aVPsbNthswduxApk+fjNlsRKn0wtf3cSQSFVu2fOAQioUpz6exqkXj/Z76vd/HL42aqed7\nRI0KKpeaISqEXXSZzWYsFosjkljV7d9rSpuqvRdU1TmbTCbHGqqyxJZarcZmy8JguIJaXQd//1rY\nbMtYvfqjKqly4OSkwWaLwmbTI5GosdnOo1YradJEzZkzG3Fza0ZW1inCwpT4+vpWqnLPzp2HsNkG\n4e3d4YbIfJ2PP57DtWvzEAQ/BCGJxYun8fDDDxfbV6/Xk5dnJSioYF2eXK5GKvUhIyPDIRSPHz/O\n0qU/kJurp1u3luzY9hk7d+7ExaUN/fv3x9nZGSjIrG7ZsqUjy99ms/HLLxuYMWMxNpsSb28Nq1Yt\nKteP8E747LMvWbXqJ0RRQWhoMCtXfoinpyc+Pj707du32PYREW1vVDjpQFBQEG++OYPExEwaNfLD\nZraiy09CrfElMW4vDRv4lngtbDYb27bt5NDhC2i1KgY/1d1heF4StysuHnqoJTt3/khamgaJRI5e\nv4U5c0ZTq1YtXF1dSU9PJyoqCnd3d4fgvRP69OmJwZDPlClrcXZ+CrM5FZMpEaXy5rOgNLF0r0Vj\nDTepMdyuobpQIxRvwf5itz8A/wuUJcQqW2KwOiaz2M2kVSpVuVP3derUIS/vCvn5WxHFPDSaJObN\nG1uiSKzsef7zzxFiY61IJKno9f2QSkORSI4zfvxgRox4jZ9/3szly3/y0EM+PPHEq46lCxUde7lc\niigaCp13LtHRZ/H2XoEo6tDroxg9ehqHD7d1iDo7BZY/WtLSzuHl1Ri9PgNBSHJMW16+fJnx45cj\nlb6FQuHHt99+idW6n5Ej3yi1P/aXf0JCAjNmLEciWYZKVYfk5D955ZWx7NixvlyDdpvNxuHDh8nM\nzCQ8PLxCdi+7d+9m5cq9qNVbkEg8OHt2Ce+8M5cVK0o3hg4LCyMsLIyMjAxefHESOt1LaLWN2bv3\nV+rV+xd91sekJ9qoX9eD0SOfL7GN33/fxprvr+IV8AwpOTm8N3cdc2YPLXF9oMViYdeuXaSmptGo\nUcNKCbr69eszZcrj/P77QcxmK2FhoY7vqZeXF3/9dYC1a/diMomEh29h9uyxxa53ZenZsyeffLKC\nM2c+wGarAyTw6KMNsNlsFbb5qhGNd4+ShHrNGsUaqgv/DSV0jzAYDOTn5+Ps7IzRaLzviScVbbM0\nKltisDpiMBgcFXAsFku5QnHhwhXUrfseBkN9jMY84DMaNapfbLvKvszS0tJYvPhXfHzG8/TTGg4d\n+g2r9Rvmzp3Mww8/jEaj4cUXb65Js7/4KzP2vXp1488/I0lMFBAENTrdVzg5+WAwHCM39yzgg9Wq\nZP36DQwd+mKx8xk37hUiI1cSH78PudzCqFFPOGoIHzv2LyZTD/z8CuoeSyTD2bp1IiNHvlJuv2Ji\nYhCE5iiVBfY4zs69SE7+xGFKX5pIsFqtjB49kd27LyIIgQjCAr74Yh4PPvhgaYcC4MyZaMzmnjg5\nFXgfqtVPc+JExSrKnDt3jvz8Jnh5FURdfX3f4PLlp/jjjwVIpdIyX7x/7TqFV8BQbDYncnJt5GaF\ncfLk6WJC0Wq1MnnyPA4dkiKKoUil3zBq1DWeeuqxCvURCjLhGzduzPLlXzBx4gfIZP6IYhyjRj3H\nF19cIDNzIILgxfnzGxGESBYtml3htktCq9VSr14YaWlhyOWtcHXVcv36F+zfv59OnTpVur3/JdFY\n3X4Y2zEYDI4EsRruIv/NV+M9pWaICmE30pZKpY7yff8FSnrQ2QVWZUViVYvZO2nPYDDA/o3wAAAg\nAElEQVQ4LGOkUqmjNF1ZxMYm4eHRBpmsIAJz5Upzxo6djESiomPHCGbOnOwwl64MKSkp2GyBqNU+\nCILAI488S1zcFTp27OjoU35+PgByubzSIhEgMDCQlStn8uuvf6LTGWnT5mWGDZtKZuYh5PLnEcU8\nJJJ0tmz5m6eeGoRGoym2/4cfTiM7OxsnJ6ciywwKKsnEOf5vNmfg6lqxaIWfnx822wVstjwkEieM\nxvOo1VI8PT2RSCSlioRNmzbx++/RyOXT0GicsVpjGD9+NgcP/lnm8QIC/JDJ/nKYpxuNxwgJqVhC\nh1KpxGa7aeVjseQglYoolcpyr4VSISP6/EVOnc4CfLAaTvHNN5fo27dXEcETFRXFP//o8PVdhCBI\nMJkeZfny13jssb4VihzbuXDhAp988j1K5WykUlf0+hjmz5+JxTIMF5duCIIUqdSVTZteJzLSeltL\nJ44dO8bs2R+QkZFNerqBevVGo1R6AJCUFEpSUlKl27yVW0WjvUJQRUVjdVgjeL/XSJaE3Wu1hv9/\nCILwJdAHSBFFMbyUbboAiwE5kCaKYpe71Z//dmmRKkar1ToextXByqaibd6KXq93CKz/aiTRfg6V\nLZMYGhpCRsYeAPLy0rhy5Rfi4xuTkfEUP/0Uw9tvv3Nb/cnIyODQoS388MPP/PnnHhITz6FWFyTW\nmEwmRo4cT1hYR5o06cBbb72DSqWqtEAHqF27Nm+++Tpjxw6jc+fOjBkzBLiKKB4A/qZjxw5IpVr0\nen2J7UilUjw8PIqtRe3UqRNBQWdJTPyEpKSf0OkWMHLkoAr1rVmzZjz/fFcMhlcxGicjipNYtOhd\npFKpQyQUrjVssViIjY1l7rxl5OaFkJWtICkpHQgmLS0NURQ5cOAgU6Yu5L33F3Px4sUix+vbty/t\n2oFe/xRG4wi02g9ZsKBi162g6gkkJc0jKWk96elTef31ARW6Fk8O6szxw7OxmkA0JyDHxMmTGRw9\nerTIdjqdDpNJICfnKEZjMnK5O1Zr5X9cxsXFIZOFIJXabYXqYbFYEcUE7IlRongNqVQs9XqXxZUr\nVxgyZDTnzjUhI6M/6ek6zp79EQCLJQ9BOE7t2rWr/IehTCZDpVKh1WqRy+WOJRh6vR6z2XxfnR+q\nMzUl/O4T0mrwrzirgZ6ldVkQBDdgGdBPFMWmQMUe5rfJf1NF3CX+i8bTcPMXqb0OtdlsrlYlBisz\njoVrad/OObz77lu89dZM4uK2k5ERh0Zjw919AABy+WC2bZuGxWIps1+iKJKYmIjZbCYwMBC9Xs+s\nWV/g6tqXrKxzZGZe4ODBQ/zyyzzkcjkrVnzNli1pqNXrEEUbf/zxPuHhaxgxYlil+l4Szz33DAcO\nnCY31wtf34bk5l7Gz0+Lm5tbpdpxcXHh88/fZ9u27eTmZtG27SjCwsr2EizMlCnjGDiwF8nJyTRs\n2NBhj2M0Gln+6Wp27TqOq6uWMW8/T6tWrdixYw8WeiCVbkMQcrHZ3ElJWUpgkDfPPT+OU6ev4uE7\nAZs1jz175rByxQxCQkKAgojsxx/PJSYmhvz8fJo2nV7hEnwymYzIyGls376d5OQ0wsIG0a5dyR6O\nt9K4cSM0imRkslQkEgVq9StYLJ+Qlpbm2EYURY4ePUNC8jVsyXuRSRLwcHWmQ4cQnJycKjyeAPXq\n1cNqvYTZnIBcHoBO9y/e3l4Yjf+Sn/8uMpkvNlsUDzxQ3xEFz8rKIisrCy8vr3KPd+DAAUymULTa\ngmpEXl5DSEtbSlraRURRx5Ahj9K2bVvH9lUdVbOLRplMVmqksSoSzP5Xsbtu1PD/D1EU9wmCEFLG\nJs8C60VRjLuxfVoZ294xNULxHnI3o5SiKKLT6bBYLDg7O9+2SLwbU88VpSJCt7y+eXp6smzZ++j1\neg4fPsw773ztmNqyWnORy2WOSFhJbVmtVj755Et2776GIKgICRF58slu6HT+hISMxmRKwWzOIC/v\numP939GjpxGEPgiCAqlUgkTSm0OHDjBiRPnnnJ2dzaZNW0lMyqJRwwD69+9T5HMnJydmzx7DkiWr\niY8/TmhoHUaNGnlbL1gXFxcGDXqi0vsBnD59ms1bDmATwd3dwyEUlyxZwS+/6XH3nk98ahxvj4nk\n0+WTyMs3oHVuSYOwcC6enYrNlocgdaNu6AccP5dCTm4UTq7p+AU9QUpCPn9u3cnwYS87jieVSouU\nSawMSqWyxMzo8tBqtTRoUJfYWB1abS9MpgvAKZo0GevY5sKFC+w5kEWXRz8lKuoSOVnXEKRfM3v2\nqkofr3bt2sydO56pU9/DYtHi7Gzlyy+XYTAYmDp1EVlZ/xIe3pC5cycgCAL79h1g2bLfEEUPFIos\nJk16lqZNm5Y5DoJQtFRlUJAn338/q9z1mlVNWaLRXg2rMok1Vcn9nvou7fg1Wc81lEEDQC4Iwi7A\nGVgiiuI3d+tgNUKxFO63OXZlKGxjcrt1qO83FRG65Z3XX3/tZMaM5ZjNUgIDnZk/fyJ16ki4cOFb\nRDEAmewokyaNLrOdffv2sWOHgVq1piMIUq5e3cK2bQexWpOxWvNRKHwQBDlSaUGCDUBwsC/Hjp1G\nImkHCNhsp6ldu2S/w8LodDqmTvuI68ktUKrbsnPvdvLyDDz7bFExFxISwsKFBZHQ8iIMZrOZXbt2\nkZWVRevWrQkMDEShUNzRC/jIkSNMnbEKhfPDOLuFcGzBRmZMFmjWrBnbdxzB0/cz5AoP8nMvci3e\njSnT19C0iSc20484ub9Dqwd/5lrMGNy8+1Er5CHORn+PyQxXrm5Bp0tFqZBgNpv57rsfiI6OpW5d\nf/r1KzAnj4mJIT09HQ8PDxo2bEhMTAx/bD2AzSrySI8ImjRpUuHzMBgMZY6FIAgsWzaPt96aRkzM\nlzg7a/ngg+nUrl3bsU1WVhYyeRAeHl507uyFKLYl/tKB215LNnBgf7p370ZaWhouLi54eBSsH9y2\n7XuHfyVAeno6S5duxs3tTdRqL3JzY4mM/JIvvphZ6vRkz549Wb78K+LifsZm80ImO8rEiW+yZ89+\nli5dh80mJSwsmPnzp9zTKc5bRaPBYHB8/yUSieOz6jIjcr+oMdy+R/w3VZAcaAU8DGiAQ4Ig/C2K\nYszdONh/c4j+o9yt6Wyz2YxUKsXZ2blKqsfc62SWqhC6sbGxTJu2ArV6Dq6utUhI2M6UKR+wYcN3\nrF37PcnJqbRvP4Pu3bs7yjKWlNQSG5uEQtEUiaTgq+Hm1pz09FO88MJDrFnzFoLQFDjOW28Nws3N\nDb1ez6hRr3L06GhSUy8CIrVq5TJmzNfl9vns2bNcuOxCtq4eZrMFH+8BrN+wnMGDS86eLW9czGYz\nL774BseO5WGzBZKb+x4+Pj54enozYcIQ+vQpWqVFFEVSUlIQRRFvb+8So5Q5OTnMnrOGhMzuaIz+\nZGacJKB2N77+ZhMD+2cjk4mYTKmYTKkkp15CphmEX60gdJZkuncVuHR5GUajhT696nHpugsmYyZS\nyXVE5cNIpDnkmWQY8j/g5Im6nDrli0LRmR07jvD33wt5/PFe/P5nAhJpPayWozQL+5u/9sQgaAYg\nCDL2//0jM6Y8QXh4OHl5eWRlZeHq6lrMSiYnJ4fp0yP555/zyGT/x955hkdRvX34ntm+2U3vCSQh\nDQKhN5GugCiiiCAgiAVFUGkiCoqAiiBgF9A/CjZAREWlCghIlU6oIZAQSCe9bp95P8SshCRElKZv\n7uviA9mZs+ecnZ39zXPO83tg3Lgh9O9ftUQgQHBwMGvWLMdms/0Rkas85yEhIQjSOkpL0tC7BJKZ\nto2IcJ9a/UmPHz/O5MlvkpmZTfv2LZg58xXng4bBYECv11fah1hRUjQlJQWlUklhYSEQgE5XXqfa\naAwhPV1LUVERPj4+ld7LarU6H7hWrVrKihXfkpdXSKdOs9DpdDz33ALc3WejVLpx4sRK3nprPq++\nOoGbQcU4K/a6VkQa60RjneH2f5ltB2HboX/URArlCSwmwCQIwnagGVAnFK83/7Y9irIsOzfQGwyG\nf20ksUIk/hOhm5iYiCw3QacrtzLx9LyT5OQliKLIU0896Txu27ZtPP30BEpKTPj5ebF06aeVKl+E\nhgZgs8UhSR0QBCX5+Ydo3tyf0aMfp2PHNqSnpxMS0o2YmBhnVra3tzebNv3A3r17EQSBtm3b/qXM\n6szMTOLiziJqBiCKWtLSjtEgMOtvX3cbN27k4EEzGs375OUVYrV2ITt7PkFBC3nzzRcIDa3v3Jdo\ns9n44stVHDtRBoJIRJjAiCcerBLB2LXrIBZ7O3SuXTC4hVBa6Mnh/cs5Yj7K3j0aysqKQByHTWqD\n2RyAn38ZYWENkBwB2MtOsPTrFwDIz8/nxcnvk3QmGxRGfDzzcXWV8HA34K5txfHjifj4vI8gKJGk\njhw5MgKL7Xcaxb6ISqXD4ejAyh8mYvDpSf2g2wHIyVSybsNulEoVny3Zgt3hiULM49FHuhAbWz7O\n+Ph4XnttHqdOhVOv3k/YbDnMm/cCYWH1admyZY1zWdMPtL+/PxMn9OXD+e+QlyEREe7F8xMeq3Jc\nRaRMq9WSlZXF4MFPYzINR6WKYt26VeTnv8DXX39S4/sXFxfz/POvc+JEAbJsp127QGTZjsmUjU7n\nQ1HROfR6SyX7FFmWeffdD5k/fxGSJHP77e1ZuPBdRo58ynnM8uXLkaQ2qFTle1zd3Xtw5MiMGvtx\nI6lpefp6i0ZZlm+qEK1p6blOKP536dqq/F8FM65+58pPwEeCICgADdAOeOcada8KdUKxBm71rOeK\nqFjF0/i/VSSWlJTvoforIvFK8+fr64skJeFwmFAodJhMSRgMyko32szMTEaMGI/d/jB6fRhZWQcY\nMuQJ9u7d5rQ16dSpE8eOJbJp0wxEUUtkpIpHHx2NIAh/ZNQ2A/607jEYDM6qN927d6/Sr/z8fCZN\nmsa+fYcJDg5k3rzpNGpUXv4vLS0D7LmI6ngEIQTZchCLucBpBXS15ObmIkkNAAGzOQlR1GCzXUSj\nCSQvrw2ff7GU6OjGtG0TS25uEYdPuBLa4GEEQeBM8iY2bd5B33t7VmqztMxKg4hGHDp6iuICieKC\nPAqz99O00XwMhiaoVEcQxGnceYfA7gP5dOg0DLVaTVbmaRoEuTrb8fDwYPabY1i1ajXf/5xA4xb3\nEBBYn+KiTPIzdnAhSY1CoUQQxD+uAxGHpEGWFdjtdkRRgSC4IEm2Sy8ILBYrSz7fgtHjYVxcfCgr\ny+WLL79i+rQQli79lnnzlpCf74ssr0GhCMPDoxNlZVEcOHDwikLxSrRu3YrPF7escQ9ZWloas2d/\nQmpqPq6uatq1C8dmi0Gv7wqAUjmS3buHVBICl4uFhQu/4OjRSHx8nkWWHeze/Rp9+gicPPkhBQVu\naDTFTJ48rFIkc8OGDSxY8AMazQuIop49e1bx6qszeffd2c5jfHx8EIRDyLIDQVBQUpJAgwY+t9z9\n42aJxlsJs9lct/R8I7gFVZAgCMuBLoC3IAgpwDTKl5uRZfkTWZbjBUHYABwFJGCRLMsnr1d/bsEp\n+u9yrYRihUhUqVROH7trxfVYeq5ur6csy06h6+Li8o9/qBo3bsygQa1YseJ5RDEEUYxn7tzxlX5I\n4uPjgUA0mgbIsoxW24SUlJ8YOHAcwcG+PPvsIKKjo3nmmccYODAbm82Gn58fFouFuXM/4sSJ80RH\nB/H444PRaDS1iltZlnnkkVEcOuSFUvkcOTnJ9O//KNu3r8Xb2xuNRoOvT0cgE4vtNK4e7gQFBv3t\nOWjZsiWC8CmFhe5IogJJLkKjiqao6AAZWWvYe2gA59LCWb32R5o1dcFguN/Zf1e3SNLSdlZpM6ZR\nffYfOkWnDl1ITk4mufhHFB6RGAzlSRQuLo3JybXy4osvsPybn9l/eBmiaMDdmM0D/SovoXt6evLE\nE8MJC9vBz+vXknrOB5WQweiR92G35LNv37uYzS0oK9tLgwaFxDRyJSc7Dk/PaHJyEoiOUpGWsZ3M\nNH9EUYmtaBWdH+rCT6tTcHEpX37V673Iy/YgISGBuXP/h0q1EIVCxGYrJjFxDF5+Jqw2M5u2ZNGj\nxznCwsKqfGZ/5VoUBMEp8nJzc8nKysLf3x83NzdmzlxIXt5tBAe3oKjoAqtWLcThKLgkqaoAhUK4\noufiqVMX0Ouf+kM4i6hUXXA4fud//3uZgoICvLy80Ov12O12vvlmFZs3HyI+/hQmkz86XfnSu0rV\nkb17f6jUbteuXenUaRe7ds1AofBCq01m8uSptY73elJbRO+/LhqvlMxSJxT/fyLL8uC/cMw8YN4N\n6E6dUKyJW3Xp2eFwUFxcjEajQafTYbVab8l+XolrLRKh/PMaP34Ud99dnhgQHj7SWb6uAn9/f+z2\nLATBhCBoKSjYgNXaBYNhKpmZ6UyZ8gkLF76Er6+vM6NZkiTGjJnK4cOhaLWPcOTITg4dmspXX32A\nQqFAkqQa57+wsJADBw5jtnVCtuxAwIxY7Mnhw4fp0aMHd9zRjcWLX8BkGoqLSwRm82KGD68+W/ev\nXI9NmjRh4sShTH9jC0pdFxACcNE350zi8xg9uhDbYgSCIFBSHMrRuGkEhZ7C2ycaBIHC/JN0aOWF\nw+EgKysLV1dXDAYDjRvH8PBDEhs3b6BJlMwDvduwYMEGTKZz2O3FFBRuoFWrBigUCh4ecj9du6Rh\ntVoJCAio8Ueue/dOxMY2pKioCG/vLri5uTF9+gR69x5Kbu5vaLVBZGfr8fNR4+UZz/kLu4kMc2fA\ng0+RlZXFuvW7cEgSvXrcS3R0NOt/OUFxcQZGYwAlJVmolPlYLBZUqgAUCm/c3W1kZyciKWIosWrw\n8mqEl38ky5Zv5uUpT1bbx7/Kpk2bmTFjERAIpDNp0sNkZVkIDGwBgKtrfUpKYggJ2Uly8izs9ghU\nqt94/vnRV8xcj4wM4tSp3bi4NAFkbLY9REQEYTQaK+3B/O67n1mxIg1f3+dQqY5iNn+I1ZqKWh2M\nzXaewMDK3wGlUsns2VM5fvw4ZWVlREVFOffa/hu4HqLxZmc910Td0vMNok4F1UrdFN0E/u6NyW63\nU1xcjE6nu243kOstkCuioUqlEr1ef1XzUFvfNmzYyGef/YAkSQwdeg/9+t1Xqf2GDRvy+OP9Wbz4\nfSAYqzWJtm2Xodd7odd7kZ7ehISEBKdIhHJT5Li4PLy93/8jChlLcvJIzp8/T3R0dK0RxVKzFtEw\nAoUqBsl+jqKSUc4x1KtXjyVLZrJkyUoKC8vo0uUu+ve/74pzt3HTVrZuP4lapaDvPW1p1ary8mm7\ndm0ZMLABQSF3UVpaysWLWZw+FojBPcbZV6VSj7uHN+1bWdl/aAGCIBLb0EB4gxZ06nQ3Fy+akOUS\nJk8ew+DBA2jfvg0dOrRzvodOp2LcuL6YzUFoNAqKi7wpKSnBYDAQHBxcY/8vxcfHp1ISRlxcHApF\nR1q0mIksg9mcypdfjmbLlmVIkuSMvvn4+NC4cWMkSXJWhBk6pDNffrWMglxXNKpSRjx+J35+voji\nRSyWw2g0LdDpDlJq98XVszUKrQt79p3EEpNapV9lZWV8u3Idp+Iz8fUxMOihHjWOKS8vjxkzFqHR\nvIVWG4zJdI6ZMycQGBiMyZSDTueN3W5GlnP5+ON3+f3338nIuEjr1pPp1q3bFedn9OjhnDr1KklJ\nB5FlK+3bezNgwHNVjtu58zheXkPRar2IienMhQtHKCv7GkGoh8GQzsyZS6qcU1BQwPLlP3PqVDIR\nEcFMnPj0P64lfTP4r0ca6+xx6rhVqBOKl3C9k1n+yVNrhUjU6/WVrCxu1chnBZf275+IxNrYvn07\nkyd/ik73BIKg4LXXlqDRqLnnnrsrHffqq5Pp06cXSUlJfPLJagICypMBzp8/z/nz+/nttwzat2/v\ntCUp/5GxI0k2ZFmBUikiy/a/5GNYUlJCSFgrUvKKsNmSEcVCjO6hlWoHh4eH88YbLzkjxVf6PHfs\n/J1Va3MICHkMu93Moi++x2g0EBUV5TwmMDAQQd5DWVkbDEYfCvOP0qtHW+KO/k52VgharTd52asY\nNrgNAwfcT5978pEkCU9PT3r27E96+gB0uoE4HJnMnv0kjRpFctttt1XqR3JyBv7+T+LhUR4VS0p6\nl8WLlzJmzN8zGLfZbJjNZgThz8QMhcKNlJRkIiNb4nDY6d69Gx9+ONuZtKVQKFAoFKjVamJiYpj6\nSgj5+fkYDAYMBgMqlYrFi9/hyScnUFpqR6k04el6D17e9VEoPcjLPExhQXaVvixdtoaE5HD8A+8j\nsyCN9z9cxdSXhzszlC+lPGPcD602mJKS45w69Sw2Wy5paQmEh5fh49MKSUpn4MD2REREEBFRteZ4\nTbi7u7N48dskJycjiiJhYWFVBE9SUhJnzsSTn7+fRo3cMBgMxMYG0qFDP1q0aEabNm3w9vaudI7d\nbue5517hzJkmGAz3sWPHfpKSpvDpp/P+VmnLW4V/s2isKXBws3wl66jjcuqEYg1cLwFW0e7ViCSb\nzeZMmKjNhuOfcr3Gfem+Sp1Od82Xen7+eStKZT8MhnJfPbt9AD//vK2KUITyvXyNGzdGrzcwf/4H\nnD3rTXr6UQQhkwULEjl5MomvvlqEKIoEBgbSrl0wO3a8jlbbDZttD23betGgQYNa++Th4UF4Azf8\nwgIoKVGgVhlxU/lVsTPJz89n9+7dSJJEz549a/yM446ex8v/HrS68ozVYsNtHDuRWEko+vr68uTj\nnflq6RfkZTqIivRh+LAh5OTksHTZOoqKzTxwdwx9+vRy9hHKP5/Tp+PR6xcBoFD443DcTkJCQhWh\nmJSUhUbzgFNMq9VtSUxcTUlJCWlpaZw5c4ZZs+aTn59H584dmDv3tWojViUlJUydOocdOw4himCx\nmBGE5mi1YaSnT6OoSI3R+AUqlTtbt77JtGmzefvtNyq1USEaXV1dMRqNzkijyWQiNjaWvXs3U1pa\nyopv17JqrZLCws8wOxy4ukBEeEiltiwWCyfjswmNfhJRFPH2iSY1+RhpaWnVCkU/Pz9EMYvS0oQ/\nROJgRLExKlU+KSkzmDRpIA0b3kN4eHil82RZxmq11updqFKpiIyMrPa1U6dO0a/fUIqLozCZlpCU\ntJ/mzUOJjMzi2WdfqLa/UJ5ok5RUhpfXkD/2WdYnI2Mf58+fd3o43miu9dLv1YrGW3XpGW5uDer/\nN9QVB6qVOqF4i2O1WiktLXVGSS7n3xBRlCSJoqIi577Kf9JWTWM1GLTY7YXO/zscReh0lX+IZVkm\nKSkJk8lEQEAAnTt3xMvLgz59BmA0PolW+xAAO3e+wdGjR2nWrBlms5np059nzZoNnDq1g6ioYIYO\nHfuXnvQNBgMTxvTnnfe/RO9aDxypPDfq3krl6BITE7n33sGUlgZhNqfj4vo2Ax68n7vvas1tt7Wt\n1J6Li5qsjAJc3esBYLXmYXSpKjaaNGnMW7MaY7PZOHjwIOPGvY7ZbOXBB7vTr1/fan98RFHE3z+Q\nnJz9aDQdkGUTgnCUwMAu1bQfyr59m5DltoCM1boJT0819947gsJCNefO7UarfQUXlyjWr/8Si+VF\nXnppLGlpaYSGhjpF9pw589m+3Rsvr7XY7blYLGMICloCuKBW53H8+EAUCj8AlMpH2LFjyhXn+/JI\noyRJZGVl8d57nxEXd4rMTIGo2JfQaHSU5H1Dn3u6VjpfpVKhUoHVUoxW51YuMuwFVYR7cXExK1du\nIOFMFi1bxrBr1wTs9nxEsTFubgbUak9kuSF6vb6KSDx+/DizZy+koKCM0FB/pkx5jsDAwCpjyc3N\n5Y03PuDYsURCQvx55ZVnKiXevPPOAsrKemA0dkevz6G4+EeMxhTmzv0Mg8FAamoq+fn5BAUFVRKA\nWq0WSTIhy1YEQYMk2ZCk0v9sTeGaRKPJZHK+dqveP+tEYh23CnVCsQaud0Txr2CxWCgrK8NoNDqj\nNzeKa/WUXRHh0ev113W/zbBhD7Jx4/NkZZkQBAVa7RaefPJN5+sOh4O5cxeybVsmouiB0ZjKjBkj\nCQoKQqfzQqls7RyvQuFGSUmJs1KMl5cXjz027IrvX9N8de7ckYYNo7h48SI+Pj74+flVev2ll14n\nP/8uBLEBZjkDszmIA/G+ZGbHYTDoiY39s0Rb7163seCTdZyIO0ti4lmU0iG6tr2vxiWqEydOMHbs\nB4ji84iinpkzP0AQBPr161vtGD766E2GDx+HJEXicKRw//0duP3226sc99hjQzh9eiZ79gwAZDp1\nimTHjtNYLJOR5RMIgjsWSyP0eiNq9SjWr+/P8eMliMoYZOlTXnpxEA880Jfffz+Bm9s7iKIKtdof\npbIvPXuW8MQTj/LRR/OJjz/tnFe7PR5/f98qfamJ8uxiB2PGTOfcuc7o9UORbEtIOjmZrl078Pig\n27j99sqRUlEUebBfe779/isEVRMkexptWmgqCTRZllm06DsSzkbg69OHMlMSHTvpyMn5AoWiCJXK\nE0kqQpLOVxGA5XsaP0Kl6kVgYBDp6ceYMeNdFi58q9L1U55ANY3Tp9tjNE7g+PEDPPXUK/zww8fO\nyGxRUSmiWL53UqHwRqttjtF4AYPBwLJl37F8+V5E0Q+VKpVXX32cpk3L6z37+vpy992tWLNmFoLQ\nBkk6Qrdu4ZWqz/xXqUk0VnheqlSqm7I8Xd2941YVr3X8/6ROKF7CrfQEZzabMZlMtYrEm1mbuTYc\nDgcmkwlRFK/7puzw8HCWLXuPdet+weGQ6N377Up7wnbv3s2vv5oICpqJKCrIyvqNBQtW8O67rxAW\n5s+ZM6tQqTpitZ7A0zOf8PDwSuUEZVlmz549nDt3jnr16tGpU6dK/pVHjx5lwcLvKCgspXPHJowY\n8bAzSnNpFvXlpKSko1T2xGRJQlZ1QZbBZLbj4tGFQ0dOVBKKgYGBjHjsTsaMn0dR9MYAACAASURB\nVIlGdyeefpP4/JsNyPKPDHrogSptr1u3DYdjKO7uHf/4y3N8//2iGoVi27Zt2b79J06dOoWnpyeN\nGzemrKysynFarZZ3332N7OxsZ0WNTp0G4uJiQpKsQBayXO4F6XCkYrXKuHosQql0x2rNZM6cJ7jj\nji74+Lhx4sQa9PoYtNoo4DQ+PrEADBr0EKtXj+TcuecQBE90uv28+eantV0GlUhMTCQlRY2XV3m2\nt043h4KCQYx9bjABAQHOa/PSpci2bVsREhJMRkYGBkMUsbGxiKKI2WymqKgIlUrFmTPFBNfrjiAI\n+GlbkJZynClTxjFnzmvIchQOxzlGjhxIdHT0ZZ91ClarF56e5QLPx6cpGRn7KSgoqLRUnJOTw5kz\n+Xh6lvdbre5DYeEmEhISaNWq3KW3X79eHDiwEJvNE5ARxfXcf/8EkpKSWLZsH76+L6JU6ikuPses\nWYtYuvQdp+fqK688T+vWG0hIOE9YWAd69+79t3w7rxU3QxRdKhpLSkpQq9XO+9Wlr92KRtx1XGPq\nVFCt1E1RDdzMiKLJZMJiseDq6vqXkiZuRSqSbzQazTX1ebzS3IWGhtKmTUu2bt3Fpk1bcHNzc+4H\nzM7OQRAaIYrl8+nq2pi0tBUoFAq+/fZzxo+fwpEjH9GkSQizZn2KXq/HaDSSmprK4cOH2bp1F1u2\nXESSOiKKXzNw4H5efnkCgiCQmprKlFcWozaOQufiz6q1K7A7vmTsmMrWK9nZ2WRnZ+Pu7u6MNnXo\n0Iqvv15DaUkDZF0OgqqAggJ3LGYlLvqqexXPnz+Pyu1+wiKGAuDiWp/V696oVihqtSpkudT5f0kq\nQ62+8lf+8mzkmhAEAV9fX2RZZsGCz8nL8yAn5xAKRSJK5UWs1tcwm4NQKnfh4xuDUlm+r1Kt9seE\nO9nZ2bi6u5BV9BtyyXkEy3Q6tvfnrrvKK7m4uLiwevVytm7ditlspn37KVXsjmqjPHJkotyPVoEs\n25BlK1qtFq1WW+3+NVmWCQkJcS6Py7LMihXf8uKL0wE1np4uxMTcid1uQqXSI0kOJLmIu+/uTa9e\nPTl9+jTBwcGEh4dz5kx5Na2QkBDUajVubm5IUj4OhxWFQo3JlIdS6cBgMFTqd3nfTDgcxSiVrlit\n6RQWxnH8eCOaNm2KSqXioYcGUlRUzKefLkMQBEaNGkG/fvezf/9+FIoQlMry2tNGYxjp6eXjq3if\n33//nRMnzuLt7Ua3bt1QKpU3VSjCzX1Ir9iyoFKpalyevp6isU4Q1nGrUycUa+FGfollWcZkMmGz\n2XB1df1LN6brWUHm7467QiRWeCReK6FYW39++WUjL7ywEEnqiyzn8O23T7Ny5Sd4e3sTGhoC/ITN\ndgdKpYG8vG20aVMe2fHz82PZss+QZZmysjIcDgdGo5Ht27czbNgoJCmC/PwE3NxuJzJyJLL8KCtX\nDmHo0POEhoYSHx+PTe6Ar2d59M8/eBhbt01i7Jg/+3bw4GEWLtoMyvo4rOkM6t+MXr2689prL/PN\nN20Q2A2WdWg0Q8lOT6E4J59uXSc5z3c4HHzxxVesXfsrF9K0+NW/H5XagMNuRqmo/jrp378PP/44\niexsCUFwQaFYxsiRY//W3FssFvbs2Ut2bhENQgNp2bJFeUWXM2dYty6Z9u3/x8GDCdhs0QjCHtrf\n5kmZ5IKHz9PE7VtHXu7PeHr1pahwB0ajiaSkJJKz6tP9/jcpLCzgYkoYFzLXM37Se7RqHsb9fe/A\n29ub3r171965GggPD6d9e3927ZqKKN6GJP1Gr16N8ff3B6pfiqyI5FutVj5ZtJSNm3dz9PABNOqp\n6HQhXLy4DYtlHXp9fURFYxyOZG6/3Z2goCAEQSAkJITi4mLemvMZKRlugExovV8ZN2YYoaGh9O9/\nO99//w2i6ANk8Pzzj6BWqyt9R1xdXXn00btZsmQ8ZWXhZGTMR60OZ8aML1m5cjXfffc1Wq2Wp54a\nwVNPjag05uDgYGR5OSbTRXQ6X3JyDhIQYHRmNK9c+T2zZn2HLN+JLJ/np5+e44svPvjP7lG8Wi6/\nJi5NjrrRkcY68XiDqFNBtVI3RTVwvb6kNQm7CpFy6XLnv5HLM7RtNlvtJ10j3nvvSzSa53FxKa/z\ne/GihfXr1zNs2DBatGjB448n88UXEwEtUVEGnnrqCee51dWcHjXqeazWJ1AoopHlAoqKPqagYAMe\nHnejVHpTXFwM/BEBklKcbZnN2RgNfybtWCwWFi35BY+gkehdvLFZy1jxw0e0aNEEHx8fvLyCCAv7\nHru9FKs1meLiFdzVo1mlpJeJE6fw00+nsNu7YLEcYNO33WjZZTb24k2MG3VntfMREhLCV1/NYdWq\ntZjNWfTu/aKzBGFtWCwWZxKH3W5n/sdLOZ7mg8ZQn/U7DtMvI5t7+/SioKAAhaIenp5+dOvmSVmZ\nibS0UPzCuhHW9GlEUYGrbwd+Xz8J2bEQHx8X3nvvVU6dikdQh6HX68GRx7mSbJQug/BteB97jm/A\n4fiFkU8+XG3fbDYbBQUFxMefRqEQady4caWaxxWIosi8edP47rsfOHs2jkaNmlfx1qygQgRUVFz5\n9LNlbD1gBNf+CKKMxeKJSmVHre5CQcHXjBrVktzcfLy9G9K0adNKbf6ycTupFxtTL7wHAMnnNrBp\n83buv683w4cPoUOHNuTm5hIcHEy9evWqHePo0U8QG7uDsWMno1YPwmDoiixLHDu2gG+++YZHH320\n2vMCAwOZOLE/7733NoWFWry9BaZOfdbZvw8++BIXl6loNOUR7dTUd9mxYwd33ln9NfT/meqSo26U\naKyzxqnjVqJOKF6BfxpZ+6tcKlJcXV2vqQn13+HvtlkhEi/N0L4e/avpMzGbrSiVrpcc50p6egZb\ntmzB3d2dhx7qR9++dzlrNJvNZmd7l4tEWZbJyclCo4kERBQKJQ5HABbLOQoK1uHunu1cnmzdujVR\nDfZzOmk+guiPKP3G81MHOvtRWlqKza5F71LuaadS6xGUvhQVFeHr60vz5o04cmQtrq5DEEUFspxO\nq1aPO88vKCjgxx/XoVD8D61Wj1rdHat1ApG+63no2b60bVs5O/pSQkJCGDdudJW/S5LE9h272X/k\nDK4uWu69uwuBgYHk5uYyc9YCTp5OR69X8uzIB6hXL5hTFxSENH2gPEIcFMuaTXO5q1f3P/z9VlBS\nkoiLSwNMpt8JDjaidglxLvOHR7ZEb+3K3Defdc6v3W4H83LMZR0pLkjELHnRsH4ECqWawLA7iDvx\ndpU+m0wm3n1vEZu3HCTtYiH1Y/tRL9gfr3WLmTxheLX2Lmq1miFDBtU4P3Z7uSfm5R6q+w+dxTdk\nKsX5Z4ELyFQkPpxDEASefHIKDofMPfd0plGjRpUicllZheiNf+4t1RlCuHjxgLPtS+2MKoiPjycp\nKYnAwEBatWqFIAh07twZSZLR6Rr+ca6I1RpGSkp6jeOB8gSqdu3aUFJSgru7OwUFBezYsQO1Wo3J\nZMZovPQ7YsRisVyxvevNzU7c+Cv3+OspGqsrYWg2m+uivHXcMtQJxUu4EaH+y4WTLMuUlJQA1Fo7\n+FamNhufa0Ftc/PAA3fw8ccLMBgex2bLxuFYyZo1kWze7I7DkcIdd2xnypSx6PV6Z6SzOpFY8V5N\nmzbn2LENqNV9cHEppazsAApFFpGRMcyePdu5nKfT6Zjz1kv89ttvpKSkEhv7IO3b/1nJxNXVFU93\nBzlZJ/H2i6GoMBW1mOlMcJk37xWefXYqJ058iU4nMmPGKBo2bOg83263IwhKoDzCJ4oiOp07fe/t\ncUWReCU2bt7KZz+cplCKwGouZPeBj3ln5lhmzfmY+Mx2BDS7F1NJKnPff4NJ4+5HVPzpfalQqJEQ\ncTgc+Pj4MH36MObMeYf0dBPR0QE8+uho5n/2G6bS29DqPck4v5tG0YGVEjYaN27MuKe7sXDRFApy\nLuJtaEyL5sMBKC25iJuxavLTks9X8Nt+V+y6vijrh5JaZKeBRzj5JQbmvfMRXh6ehIcHc++999a6\nt7eoqIinnhrL9u3bUavVvPrqizz++KPO76aXp4HUklS8AttTv2Evkk9MRaGojywnotNFodF8iUJh\nZPXqmXh6fsaECX+K8eioQA4e3Y+7R1j59zv/AJERlTOgzWYzmZmZ6PV69u49wEcfrUWSIrDbf0Wv\nn0dISDjdurWiTZuW/PLLJkRxCLJcgkazj9atX6n189VoNGg0GpKTk5k48R1KS5sgy0VoNFry8j7C\nYHgIiyUVne4Qbds+Wmt715t/032vNtGoUChQKpX/aH95Xfm+G8i/Mw3ghlInFK/A9fYovJY1j2/m\nhugKkXgzbHwuZfToESiVn7N27QIMBh1ZWcF4eLyKi0t9ZNnBli0zuPvuI7RoUV6HtzaR/vnnCxk0\n6HHOnn0OhUJgwYI3GDq0fDnUZrPx448/smfPPlxcdDz4YH+2bDtFTr4ru/f+ztmzaQwb9qAz2jDu\nuUF8OH8FKfE/YXCRGffs/U7h5Ofnx7fffkJKSgpBQUGIoojVanX2w8vLi9atm7J//wIcjh7I8nH8\n/Apo2bJy+b4KLly4wLhxUzh9+iyNGkXx3ntvVilD9/3qnew/G4VdCAFEzhQeZ+3atRw/cZ6A5jMQ\nBAG9sR756uZYLBa8dJlknNuNwSOEvLR9tGsa7Pwha968OUuXNsNmszmXq0cOd7Bk6QJyLAKRDTx5\n7JEBVfrZs+cd9OjRHbPZzCeffsOxs9+gUHujsB5j+ON3VDn+4OGzeASMpfj8r6h0/lglBTk5+aSf\nS+XXuBMYXQYjsJsdOw4xb94M5+d5+PARlq7cQpnJyu1toxjQvw8TJkxh504RlWo5DkcOM2ZMJyKi\nAS1btkQQBEaPHMjkVz8hq7AVfn5uxIZ3ZuCDvdm2bS+bN7dHo/H/o6Tjw/z221uMHm12ioOuXTuS\nmfkTv+2cjSBAj25RdO7cwTmOzMxM5r27jMJST2zWXE4c2Yq7W18uXjxGRkYhkmTlwoVm7Nr1Kw8/\nHEFOzj4OHhyLIMiMGTOKu+66q4ZvQFX+979vsVgG4O/fEVmWsdtdadQojuzsz/D2duP5598kMDDw\nhm4RuZX4p/f3mkRjxWrFpZHGq7k/1wnFOm4l6oTiZVwqDq/nsu61Kmd3PcThtfR6vJGG4AqFglGj\nnmDUqCc4e/YsDz44HrVag14vIwgKRDGYwsJLTbkdiKLoLAt3OcHBwezcuZHCwkJcXFyc4zt79iwD\nB47g9OmzSFIXNJoiFn6ykjvvWUhIg85Ikp2NWz+jadM4mjdvDkBQUBCzZo6ntLQUvV5f7RKVwWBA\noVBUmS9BEFiyZAHTpr1JXNy3hIYG88Yb31SpdmK32/nuh9W8MPltykrroxaeYffuM/TrN5SdO3+p\ntJR1+vRZbPZ70HuUi82S/J2sWbsVd3d3SguTMLhHIEl2ZOsF/Pya8/yYNqxa/StZ2Udo3z6QPnc/\nUKWPlxpTt2rVkhYtmmO1Wq/4g1duW6Pj2VHDOHXqFGVlZYSEDKm2koufrzvHLiTh5RlFQcpmbNpI\nbGZIPraaIK+pGAxtkaQH2bJ1AElJSYSHh3Pu3Dk+XLwVjwbDcNe588u+1SgU69m1ay+C8AaCoEah\nCMRs7sqePb87xXfDhg1Z+MGLxMfHo9VG0LLlaNRqNWlpWWzcmODsu812lsBAbxQKhbMUoVKpZNCg\n++jf34YoilWWEBd//hNlwl0ERTanpLSItE2HSDz7Ng5HF2S5EEE4jVodik53FytXDmLfvrWUlpai\nVquvujJTdnYROl15yUiLxUxxsREPD0/mz3/F2S+bzfaviuhdD67F+P+uaKzuIb+uzvMNpE4F1Urd\nFN1gKoyAKwxer0c5uxtFRYbojbTx+Sv7Rnfs2MEzz7xOVpZIcvIS/Px60KiRB6J4jIiIPs7scqBG\nkXgplyZKSJLEkCFjOXUqDVl+CgjFarVil77iYrZASBiIohJRFUFOTk6Vvl9uhXI5SUlJfLhgKZlZ\n+bRpFcUTjw1Gp9NhMBh4881p5ckfNbDqp/UsW3sRi+sIcGmGLe8HdEIvcnK2kpiYSExMjPPYIB89\nZ46swaYwINvyUBQdw2qVeHHcQ8ya9zal2bFI1lS63uZB06ZNUSgUjHh0YI3vXR1X45+pVCqJjS33\nUJQkyfn5XMrTTw3khZfeo9gajavjGIJpIwFCFO6KQvT61hQV/MKF8y9ht11gzJgX+frrRSQmJoGh\nNQb3IAACwnty4MgifHy8KSxMQqHwQ5ZlVKpkfH0bVXo/f39/Z4Z0BYMGPcj69eM4f/4FBMGIwXCA\niRPf+qOqiwpJknA4HFitViRJcu7HvHQfZGpaPp4h5VsLXFxcKbN5g9QLUeyIw+FAlj/FZDqOThfj\nfGio7bqpiTZtovjuu3VYrQ+wf/8+bLbVFBaaSE19lsWLP/hHlZKuFf9Fe5irEY3VcT0iiitXrmT6\n9OnEx8ezf//+SisSs2bNYvHixSgUCj744AN69ux5Td+7jn83dULxClyvRIyKKMu1uklf66SbvzJu\ns9mM2WyuVSTeyIhiBZMnz0UUXyYkJJD09M/IzByDn1895s2bSFBQkHO5+WqXgwASEhJISMih/Kvj\ngSCokCQbgqSgIPc40Am73YxkPUlAQNXyd1ciLy+P8ZPexqwfiotrGKt+/ZGiokVMeWlM7ScDO3+P\nJyByKPKJbYhiAyRDa+yFCQhCcRWB+dSIwRx59m0cOf6UFv5Ocf6v7Cvx5YknnuXjj99BqVTi6tqW\n0NDQm/ojfml0v379+nyy4FXi4+NRq9sQGxuLIAgMGPAUp8/MICPtKyRpMqIYxOHDK3jyybFMmPA0\nDkuWs72ykhx8jFrmzp3O4MFPIUn7EMVsIiNFHnroITIzM8nLy8PNzY2IiIgqY3d1dWXp0o/YvXs3\nNpuNNm1G4O3t7XxdFEVEUXSKRrvd7hSNFeKgQZgPZ9IPE1DvNuzWMkTpDIKiA5JkQRAkwAOrNYni\n4pcZPrzPP5r/4cMfoqhoMR9+OBCbzQN///txd+/G8ePvsnr1agYOvDrxX8fVU5tolGXZacdT8Vlf\nD6EYGxvLqlWrGDlyZKW/nzx5khUrVnDy5EnS0tK48847SUhIqMu6rsNJnVC8gVT8aFREEv+tVBiC\nG43GW84QvDxbOQetVsZqTSEoaCRFRVpGj25ImzZtnHtCtVpttVVHamt716492CUbghiC7FiGLPcH\n0tFpz9KyyQVSzs5DwMSD97egXr16HDhwAA8Pjyo1f6sjPj6eMpriF9wFWZYIjB7J1u2P4u76Kbt3\nH8fX15WJE5+utjYwgF6nATWEhQVzLmk7DusxBGEdffp0JyQkhPj4eN557yuycwpp1SKS6a8O5+OP\nlxKXEo9W8zkKhR95eRuZOHEa+/ZtBcoztqH8M1+6dAXnzmUQGxuOWq1k69bdBAb68vTTT+Lh4VHr\n+LKyssjIyCA0NBR3d/crHnvhwgXGj5/MgQMHUShEhg4dwltvvY67uzvt27evdOyiRXMYNuxJMtJa\nolLFoFKpMJuH8+uv/WjXvh1hXg6Sj36NoPZAZT7CkOf6ERERwdatP7N7926MRiN33nkn8fGneWf+\nWkRdDA7LXnp2jmPokP5VhJper/9LdjKiKDqXi4uLi4mLi0On0zGg/518sugHLsTvQpRNdG7rxoED\nu5FlD+z2DOz2vXh62mjZMopBg/rV+j5XQqPRMHHiKFav3oTF8iJgo6zsOHa7D9nZef+o7f8CNzqa\nWZ1orPDttFqtnDx5EqVSSVlZ2TUXipcmyF3KTz/9xODBg1GpVISGhhIREcG+ffuqfM/+s9SpoFqp\nm6IrcC2jYRUm1BX1RK8l1yvyWd3fKm5qf9UQ/FpT21glSUKn05GY+AkqVQywCG/vTJo2HVgpcUiS\npKues7VrN7J2QyFaw1DKykyIrEZyvItKBV9+uYhevXqRl5eHVqvl/PnzNGvWDpvNiNWay8MP9+ed\nd96q8UepYo+fZCtw9stmLSItNZUPPzyKyeKN2X6On9YN47vl85wJOZcyqH9X3v1kGTEN2uMipyB6\nH+exYaMZMmQIOTk5vDD5Q2T9KFx8wtm690fKyhJ57LF+vPzyDqC8BrVS2Z3k5HdxOBzOhwC73c7I\nkS9w6JAfotiOL7+ci8l0EUHoi1J5jO++68PWresrZTVfzqJFi5kx4y1UKh9kOZevvvofnTp1qvbY\ntLQ07rvvEbIuapDlL8AqsXTpHAIC5jNxYlXDcG9vb0aOHM6JE59it6sxmS1AFgqVD+t/U9C7Kzz7\ncAOsVisREcOd2eYhISHOGseSJPHJZ6txrT8SN48gZIeDzTvep0P7pGpFfl5eHlu3bsVkstK+fZtK\n5SIvJykpib59H6KkRIPdXkivXp344IO55ObmotVq0Wg0zJgxi19//RqlUoWX1+PoXLpzIbWQadMW\nMXv2s5U8Nf8Ot9/egmXL5mI2+wD+SNKvGI0jaj2vjutHhWiseKAQBIH4+HjmzJkDQFhYGIcOHaJF\nixbXVcymp6dXEoXBwcGkpaVdt/er499HXWz5Mi73U7sWAsxmszkrlVQsMdzKVHdTqjAEv5qqMRVt\n3cjxbt++Ha22I97ek5Dl7shyFyIi6hMcHPyPs8t/+nkv9Rs8wb19H8HDKwa1viXh4cH88stKevXq\nhUKhwMfHB6PRyPDhIykouBuL5QUkaRrLl//Cpk2brth+06ZNiQktJe3UB6QnriY7/g1MJdlYpSgc\n7j3RhSzFpH+OqW8sJj8/v8r5zZo1ZdoLD/BQt1KmP9eE1asWM3ToUERR5PTp01jkpnj4tEat8SAg\nbDj7DiQQHByMIBxDlsuX4+32vQQEBFeKFJ84cYKjR8twd5+Jq+t9FBefw2qdgkrVG1EczcWLnvzy\nyy/VjikuLo7evQcxadJrmEwzsFjexGQaw/DhI2vMtF21ajUFhW7AIETRD1H0wWzuz+bNO2ucu969\ne9OokQpZnoQsL0YUp9G0w5v4hjzKzt0naN26NR06dKix5rbVaqXMLKNzKS9fKCqUiGp/5zaFS8nN\nzWXUqFf56KNiFi/W8Mwz73DkyJEa+zZ69PNkZ3fFZnsNSZrDxo0nWbduHfXr1ychIYHRo1/hwoUC\nJk+eQLt2PUnLbMXJ076cTYpm63Yd27Ztq7Htv8rAgfeiUIAsD0QQehEWNpcfftjjfGC6WdsLbvV7\n4Y2gwkdRoVAwbNgw4uLiGDduHJIkMXDgQCIiInjxxRc5cOBArfPVo0cPYmNjq/xbvXr1VfXpv7Zn\ntI5/Rl1E8Tpzub9gdZv0/yk3wsbn31I1Jjs7B6WyKW3btkGSZGy2WIqKdrNt2zb8/Pxo06bN374J\nysjIMvj6+jH04f4kJpgZ/9zDlZJEKkhOTkKheBoAQdBht0dx5syZK24SV6vVzJk9mTVr1pJ1MYXo\nqJ4888xuiix5qAzdEQCFJhCHKoLU1NRql3vDwsIICwur8nedTodsv4gsS+XGzeYc1GqBLl26MGxY\nb7788ilUqgA0mkwWL15c6dxyH0c9giAiyxJgA1yQZRCEmk2b4+LiGDBgDKWlvZDlYux2b8CKVtsE\nq1UgOzu72mV0q9WGqHADOQmEboAAJOHrW3NUTaPR8PPP3/DGG2/ww5qzhMUuxcOnFcUFpzEYat/m\nodFoCA/14Gj8ZhJTNeTnnMdVWo32mdeqHLtx469cvNiOoKDyetsFBSF89tmPfPhh82rbTkxMRBTL\nTb8FQYPJ1ISEhDMcOHCAZ56ZC7wIaHn99blotCZM5t4Y3VqCAAU5+9i4cQf9+/evdQzVkZOTQ1xc\nHImJiTRo0A0fnx4IgoAgQEbGImeW9s3mZgrVW00UiaKIh4cH9913H+PHj+fIkSOsXLmSyZMns3Hj\nxiueW9vDaHUEBQWRkvJnZanU1FSCgoKuup1/LTf/8r/lqZuiK/BPBVh11jGCICBJ0rXq4nXh0nH/\nk6oxl3Ktbsi1fSbh4Q0QhOXYbHehULiSnLySjIxjTJ7sicORyh13NOCDD2Zd9fuWlJSQn5fEmrXP\noNbdRmSEB40izxEbe4/TD/OHH1aRlZVH+/YtiYiIIiFhP0plJ2S5FKUynujoypvIZVlm27ZtnDt3\njpiYGKKiopBlmd6973IuRQ0d2pf3P96KVHYEFBIGlzzcDdIVs5+ro1mzZrSM/YUDR2eDMgzBupPn\nxwxEoVAwc+Y0Hn10CLm5uURHR1cRoI0aNcLXN5f09P+h0dyGVhuO1foRsjwEmy0ZF5cjdO06p9I5\nOTk5jH52CnkF3RHEfkjSV0AhdrsLVmsCGo2FjxZ8jdGg56GBdzur3AD06tWdJZ+vIcO8CUlKRZbt\nGI0nmD59/RXHqNFoePnll8nJe53TF7ZRVnQalf03XnplSK3zIwgCjz1yH917DKWoNAqVMgCTqhkv\nvDCTH35YXElMxcefITXzIrlFWfh4NEWn9SU+/jhLly6lW7duVcRvdHQ0+/fvQRT7IssmdLqjNGrU\nnR9/3ITd/iTu7nf+8T2DkpKxSI4N2KweOBz5qFTHERV6LBbLVfvxxcfHM3z4WCyWcCyWNEwmCwbD\ng7i4BJObu53gYDd0Ot3/Ww/FW5mKZBZBEGjRokW1W03+CZfeQ/v27cuQIUOYMGECaWlpnDlz5m8b\n+dfx36ROKF4nKqxjboQJ9fWKKNZUteRq+3YjadWqFU8/ncSiRc9gsynIzo7Dze1V9Po7kGUbmzeP\nZcuWLdxxxx01zpnJZOLHnzaQnJxNeAM/7rvvLt5+ez4Z6d5ERwaTl5tA6rk4pk2ZjqurK5mZmTz2\n2HjOnIlElhuyZMlHPPbYPSxe/BWlpb9htxfyxBPDqyRAPP/8ZL7+eg2y3AhZnsXTTz/MpEkTMBgM\nTm+7l14aj8NhZcXPM9G6NSM0UKRzG08CAwOrLT9XE0qlkjdee4EdO3aQKbvfJgAAIABJREFUn19A\ndPRjNGnyZ5m5yMhIIiMjqz1Xr9fz+efvMH36HJKT1/5hkl3Mzp1L8PHxomXrIYx7YQ5Gg46nRzxA\nkyZNWLvuF0qlZihUJpTK1kiO8dgsE5BldxyOQmSC2BnXCKVCz47dc/hk/svOuseNGzdm4YKpLFi4\nnAsXkmjZIpqpUxfi5+dX6zi1Wi3vzHuFHTt2UFpaRpMmz9Y4rsvJyclBp47C2+MzKso1JCf3JT09\nnfr1y70IExISOHTKhMOjMxZVMxIzv6U4YxFKZTCTJi1HpXqNNWu+rzS3Cxa8Td++D5Gfvxu7vYh+\n/frQr18/jh2biyz/mVAlSWbqBftSVJoK4jaUSi0KQcGdd5RX+Tl16hQbN+1FckD37i1qNFyvYOrU\nuZSVDcZo7IROJ2GxTCQ1dSTu7sH4+al4/fXxt1w07f8j1T1EVzhKXEtWrVrFmDFjyMnJ4Z577qFF\nixasX7+emJgYBg4cSExMDEqlkgULFvy/ui7kWysf85ZEqEVg/L/bQGK323E4HACUlZU5DYGvhitl\nBVssFmw229/2RauOoqIidDrdNSudV1paiiiK5fV4+Wteg1ciLy8PDw+Pa3Lzudz8ujqKi4spLCxE\nEAS6deuP0fgToqj74/wPmDYtjMGDB1NYWFgleuZwOJj55nyOxQdjdGtCUcFhWjfL47dt21GrB6BW\nl9+809N/47nnGjNo0CC+//57pkzZhsGw8A8T5jRstgc5cGADSUlJeHh4VFnKOX36NB073oPVOg+7\nXYMk5yMKY/nhh6X07NkDq9Vaab7OnTtHcnIyvr6+NGrUCIfDgc1mq2S78ldF49VQWlqKzWZj5uz3\nOZlcisHNl4hAkRfHj8DV1ZUFCxfzzdp8PEMfJztlCxfPf8sd3dpTVphCcs7tpJ5ZQ0lBBDabBdme\nTKtWD5CWkU1+WTIagxX/gFaoRCtPD1UybFh55K8iE9TFxYWzZ89SWFiIl5cXoaGhSJJEdnY2giDg\n4+NzTcd7+vRp+vd/GaPxewRBhcNRQmlpX7Zt+9ppgbPi2x9ZuzcQQRvBieNJZJ6eT0lmFhrNMAAc\njl20a5fB2rXfV2rbYrGQlJSEwWBwCuIzZ84wePB4ysoeQRB0KBSLWLBgEufOpbF8xWZkSeKBB7ry\nxOMPk5KSwqvTvgJFH0RRTUnRT4wb04U2bVrX6Md3++19sFpfRqUq35eZl/c9o0bpGDp0CGq1Gp1O\nh1KpxGq1IsvyTaktfOlnfTOw2+3YbLab6kJRUlJSZe/0woULqV+/PoMG1Vyn/D/ATVejgiDIUu7N\n7gWIXiDL8k2fj5qoiyjWwtVE6iqygq824eOfcq0jirIsO5e6/mlpwetBTWMtKChgypQ5HDyYhEol\nM3bsIFq2bMrBgytxcxuG3Z6JKO6iSZN7a2w7PT2dk/FW6oeVl9/z8Izm0JE3cHPTkZOTgVrt+sf7\n5+Dp6Qnwx/48L+c8KRSelJXZ0Gg0lSJLl3Lx4kVUKj/KyjQgKBFFX0TRm/mf/kzr1q0qPUiUmzDL\nNGjQwJmlW51XX4Uf26VLlA6HA0EQarwW8/PzsdvteHp6Vmt1VFZWxtTXP2TX2QCM/i0oKU3Aka/n\n2x/WMuLRwWzaehCvsDdx2EspMkuIwS/hcNOg1lyg8PgSolu9RG7mbrLOrcDHYyixsZ1ISF2IwudJ\nBE06Nn0gRakfY7PHsOLb7zmbmE5Eg0B69bqD9Ru28Ou+PBTaekim3+nR4Rz7D5/k5LkyJMnObc38\nGfXkUFQqFaWlpZSUlODm5lajrUhtEdioqCg6dQpj+/bncDjaoVRu5cEHu1FUVIQoinh6eqLTabBb\nC6kfFkBAQADrsxZQklnP2YYg1CMr62iVtjUaDY0aVTb0joyMZPnyd1m2bBUmk4X77pvMbbfdRseO\nMHTowD/aK+/rrt0HcXAnQQHl0UWVSsuWrRtp3bqVs8bw5SbOrVvHsmnTOtzcHsHhKESp3E1ExJO8\n+uq7nDiRhlIpMXbsIHr27F7tfNRx/anpXmY2m2+KcK+jjuqoE4pX4GoE2F9N+LgZBtRXgyzL2Gy2\na1J/uoJraQh+pTZmz17AwYOR+Pu/hiQV8d57U5kxYyClpZ9z+vS3KJUS06ePoVmzZsiyXO3nIAgC\nMpfvIZV55pnHeO21j7h48SySVEyrVl507doVKF/u1mqXUFS0Bo2mESbTIu66q8sVPSZjYmKQ5XQk\n+SDIrUH+DYXWgdoQTU5OjlMoZmZm0rfvQFJTL2K3m3j44UG8885s5zxc6tUnSRKJiYlMm/Yu58+n\nI4gOZFGLVqvj8eF9GDJ4gPM8WZb58edf2H0wE0GhJdjHzmPD7qtSOu9I3DFSisNxbXA3Rs/6lOX6\nUVS0nbjjF9i3bx9KhUyZOQebpRh0UQh2GyqVivDobqhMB7BbvsOnno0He93PoYMmiosv4OHbiMzi\nZNR6JVZJQJaS2bffzomkINSG9qzftodde+agdW9IvcaPoFCqsFlbs2DJK6h8WhDafiiyLLHr8BdE\nb/kNPz9fVvy0D0l0Q6cs5PGHezqXiqFclE977T1OnEzG3c2FqVOeok2bNtV+LrNmvcy2bds4fz4V\no7ED8+Z9yKJFX2C3FzNx4nhGjHiMzds+5vwpK6JCj7e7lYu6gzgczQA9SuVmunbtWKVds9nM4cOH\nkSSJ5s2bOyNokZGRTJs2ySn0L70OLRYLubm5f3pOXvJ6eaasgEajQa1W43A4sNvtlUTjtGkvkJc3\nhUOHRiAIEmPGPMb27XGcONEcX995WK05vP32FIKD/WncuHGN12od15/qlp7/zV67/yYcdSqoVuqm\n6Ar81cSTa5Xw8Xe5VuKzov50RbTqVoskXglJkjhw4BReXk+hVKoALySpIzk5ufz881cUF5dXJ1Eq\nlcTHx7Njxw5kWWbQoEGV9gIFBgbSrIkLh44tx2BsTElxHLe18aVjx4589X/snWdgFFXbhq/ZvptN\n70A6CaGG3ov0qoACFhQRERVEURRFsCCCKGBvCAqCoKgogkoXQ1F6DyWhJKT3bLK9zHw/QhZCQlPQ\n+L25/hFmz5wye+be5zxlWSxJSUl4eHjQunVr9/F3aGgoX345l1mzPiY3t5A77mjJtGlTr9pfPz8/\nPv/8I4aPGIPLZUWuikZT9wVOH99MQMB97jV9/PGnOXcuDlF8CTCzcuVsOnVaxbBhw6q0aTQaeeih\nyRQWPoTZHEpp2Sq8/DNp1uUDPvliNiHB/rRv3x6dTkdSUhLbDliJaPwQcrmCzHO7+WV9IvcMH1Sp\nTZPJjp9/KPkFmYi+dZGrfTl7cD9ZjgySzmowFxYhuV5E8uiCyWAkOKwxMTEtMRSeo2XzeB55qLyf\nkiSxdu16li5diuBy0bBhPzRaPTIpifCIeE6cKiQk7nkEmRxXcBf27L+f1l0aIleUu1MoVRoMJonw\nhg0vRO3K0QYkcOzkH2z98zz+sSPRaL0wFGeyZMUapj33kFuoT3tpPim53QiKf4ui3G08/ex8vvpy\nDpGRkVXmUKFQMGTIEADatetGTk4nZLKeSFIJ77wzl44d2/HaS4+zb99+HA47TZ57gxUrVvLOO2/g\ncrno23cQL7/8Ajt27KC4uJTY2GhCQ0MZOXI8qak6BEFFYODbfPPNJ1dM1QPlgShTprxBWRnI5TbG\njbsLpWIL2VlK5HINNssvDBrYH6CSNfHgwYPs3bsXvV5P7969WbDgbffRrkajoW/fMfj7T0EQBNTq\nQCSpE6dPn/6fFYo19Ue7zWarFYq11BhqheLfRJIkd6616wn4qKkWxQqReGl09s3iVo9ZFEVKS0up\nUyeA9PQUtNrAC2lcThEQ0BlBENxicPv27YwdOw2brTeQy9Klq5kz50W0Wi0NGjRAr9cz+Zmx/PLL\nJlLT9lA/JpR+/cotcdXV/q2gcePGfPfdZ9X+n8lk4vDhwyiVSpo3b45CocBkMuHr60tc3ACKjPVA\nGYJkO4tTKKnkf3n0aBKiOOXCenhgsbTmwIHD1QrF1atXk55eCkISZa5s8OqFwfQRxpLjWMUYXnz9\nM8IitxAR6kmHVg1R6aORy8vv5RsYS3rm8SptxtYPI3D/AWx+OlJTfqI0ayeO4iQaD1yLSuuPuugE\n9jMvMnqkL0knirDJS8g/tw4vZT5DRgx0tyMIAnfc0Z9+/XqyaUsiibtzkasFFGIOfbr25OVZq0GQ\nXbhWjkKpx1NZRH7WSXwDo8jPPkFYoIStJBUpvBVIEpaCo/iHackz+aLRlq+vt29d0tPLK1sYDAbe\neOMDfv01keCocMyWbzC7FFhtTZkyfT7NG4USEhLCiBEjqvgMS5LE6dPHEYTxF/rkg8vVhGPHjtGp\nUyd69erpvvb5559lypTJ7pyEb879lIPHPZGrIpBsa/DTZ5KS0hxPz5cRBIGsrPeZO/dj5s59tdrn\nxel08vzzb2C19iMgIB6LJY8FC75k7txn2X/gFE6HSNeug9ziLjU1lfz8fI4ePca8ectxOLoil6fz\n3XfrWLbsEzw8PHA6nZjNZoKCfMnNPYGvb1skyQWcwt+/qgX0n6ImpKf5t0tUVnd/m8120yuz1FI9\ntRbFa1M7RZdxIwm3K9Ki3Ogx7c0WTX9XiFUIrQoHd6vVWiPFLFQda0Xf1Wo106c/zsSJb5Cfvx2X\nK48uXbzdx8MVzJjxPqL4HN7e7XA4jBw/OYGnp/xKeER9/L3X8PprEwgKCuLOOytb1hITt/Hrr4l4\neGgYOfLO6yrJB+VVRgYOvJeCAi0SFlo0r8sXX7znrvXtoQuhXt2p2O35iKIWo3FyJSt2ZGQExcWH\ngRAkyYlGc4LY2Aeq3GfNmjU899yrWCwdQLMPvHshV3ZD0KaQnbmTMtNRmvR+nvDm7cg+vZ1fNqzE\nI9CJ3d4UpUpFUX4yLSKrltWLiopi5GAHGxMPEetjRtNEz+YDQ1Bpy3MaevjGY3QKjBgxDJVKRXZ2\nNjabjeDg4GpT+KhUKgb2702bVnkYjUYCAjqh0+mIi/qFpLMLsEkNMRf/QaMIG5PG38Pqn7eRdfo3\n6ocFMOG1p1i45HtO7X4TQXLSNt6HgQOHcPKjtVgtpW6Lol5THqBw992PUVBwD3ZrP84dX4ymXjx1\nmr6CMd3Kpn35bFy/FY3CxUcfLSQxcVOlgIryHwbhZGcfQxBaIkk2FIoUIiMfrjKm4uJijEYjISEh\nnDp1iiMn5ITHPVJ+fGxty9a1dyMIQ9z7g0LRhrS0/ZXauFQwlJSUYDC4CAwsL7mm1QZhNocgiiKP\njL230ud++WUjS5fuRZDFkJj4PTrtQHx9hyJJEqdOvca2bdsYMGAAkiThcrmYPPkBnn/+XfLyGiOK\nuXTp4ve/U6rtP8StqPVcSy1/lVqh+Be51AKn0+muWyT+27+eL8flclFWVoZarf7PHXVc3ve4uDhW\nrJjHqVOn0Ol0NGvWrIqvqMFQilJZnufObN6BU7gND99B1ItOIDt9Cyu+XsukpyqLgQ0bNvLyy1+i\nUvXB6Sxj69YXWbLkLXdgydWYMOE5zuXVR+E/CslRwM49n7No0WKmTp1Cw4YNCQ8vIzV1FRpNAqWl\nK+nRIxYfHx93brtPPnmb/v2HYrfvwekspkmTCAxmFfPeX0bH1nF06NAWQRCYMuUV7PZpQADIswAP\nJNdiPLyCMJdtROcfRIMmrREEGX71WrB/+2wa4yJpZyrevoHUCxTp03NwtRaO5s2b0qpVeTLp1NRU\nftv5BpayDECiKCOR+uFBbsf7K9WhvpygoKBKR68zZzzDHUPGkFugRa0NISPHyfHjJ3j04eGVPjf9\n+Qnk5OS4LbwymYx7hrRh5U/Lccm8yDizjwZRHixZsoSSkng8Pcchl1vIzsvHZDnI+ZTFOEyZiEJX\nBEGB3d6UzMwvWblyJWPGjMFgMLD65y1k5hgYOWoUn3z4ATLZNhyOXAYP7lslYfoXi5ezZOlGBLkX\noUESo0cNQqbwcc+hSu2Nt7c3hbmrEMXuCIISp/M7WrWqvu4ugJeXFxqNC5MpAw+PejgcZYhiTpX0\nQIWFhSxb9gdBodNQKvVICJjMf+LlVYZc7okkhVBaWgpcPJ5u3rw5y5e/ycmTJ9FoNO7cnRUBUzVt\nf/pfpVYo1lKTqBWKV+FKlroKkahUKtFqtTe0ud6KY9i/2maF0NJoNFU2pZvZx1sx5ur6bjAYWLhw\nOSkpWTRsGE79+vWrHCn269eV5cs/QxAmYrWlIFP4UKdOKAA6z0hy8w5UudeyZWvw8BiOp2d5Pd/s\nbAsbN27hkUfGuK+50vgOJmUhD34Pha5l+XGp4zwHDx684COm5qOPXmPhwuWkpn5HXFwIjz76RKXn\nKTY2lv37d3Lw4EGKiorYfqCYEmUPFDoN36zbhEwuo327NpSVGYC6yOUaROdhJFFDo6bBxMUE4cjz\nxqLwRyZI2C0GVs3ugLXMh9NJuchkq1mw4H369euHJEns3r2bXbv24OPjxZAhQ1AqlRQVFaHVatHr\n9URGRjLlyTt5cvJQSi0eKFUK4jpHYzKZ/laKk4MHD6Lw6kGbVtNAkigrSea9D2fTvfttiKJIYWEh\nXl5eqNXqKqmGmjdvSv36Udx//0Ps2pXKRmc8grALjSYcrRZ0Oi16j0xKJRMRTe8gZfcCsJ4HpwoE\ncDj8MBgMOBwOFi//mVJFO3wCYyjMPs7EZ3S0ToghMDCQJk2aVFqb/fv388XSvfiFf45C6Ul29hq+\n/X4dWoU3BbmH0HuFkZ+5mTuHdCE/N5uffroNEOjevTVPPVU5+fqlqFQqZsyYxPTp71FYGIAoFjBh\nwnB3Wp0KysrKEGR+KJXlz3jdejGcT92A05mF3W5BLt9FmzZV6zmnp6ezatVWHA4Xgwd3plOnjm4/\na7lc7vZ3/F8Qjf+2OL7S/WuDWf45nPKaUGmsZhfhqBWKV6E6gfNftsBdisvlcudfvFwk1uQXREXK\nF7PZXEkkOhwOJk58mZMnm6HTPcjRo7+TnPwan346p5JVcfr0Z3E45vDrrxPw9bHhE3gbPr4euFwO\nivN/o3+3quXvRLHqZn55hOqV8PXzptReUO4zKbkQFBaioy8KHV9fX6ZMeQIoP3JUqVRV2vD29qZr\n166sXrMOpV87fALKLZliZHf2HNxM+3Zt6NmzJxs2LMRuH4fg0KIwfUBs0DDiQww8+MyzbP5tBz9v\ne5Nzp49hMYQAE3GIIEmNef31+QwZMoTNm7cwceKb2GzDkclSWbToPuRyB0lJx5AkF6NHP8S8eXPI\nKygkIHIwcXHPolQqST71IZ8vXsHA/j3YsWMHXl5eDBgw4KrpPVJSUti5cyc+Pj4MHDgQq9WKIA90\n/79SE0BZbhkLFy5k1qx5mEwmwMXcuXMYPfrBKu0dOXKEPXtOYrG8iSAokaSB2O1PoNW+gkzWGqe0\nmbr1+qDIX4neuZ8yQzqS6y4k+VnU6gN06zaVvLw88sr0RLcsr0qhi+3C+UMnaN68uTsV0qWcP38e\nSdEWhdITUXRgs5WxZ89u3pj1Anv3byS/sIweHSMZdf8D6HQ6pk8vQxRFvL29rzgvFbRr145vvvmA\nzMxMAgMDCQ0NrXJNcHAweo8iiouO4+PbkPgGWkRnIZI4m8BAP15/fVYVF4njx48zadIHCMLjyOVa\nDhxYwLRpdvr06Y1CocDpdOJ0OrHZbP+IaPy3hVpNpTaYpZaaRK1QvAGcTidlZWXViqvr5VZWUble\nKsah0+n+c7m6JEly/9q+dA1SU1NJTnYRFPQogiCg1zfhyJGHyMzMrGSJUavVzJnzCnPmvEJhYSFb\ntmznu1XTSDl9lqL8c6Qle2MyGnjooVHuF9jIkYN47bUVOBx9cTqN6HR76dVrznX196nxI3h5/veU\nmc+Dq5R6nvt54on3qr02KyuLxD8OY7E6ad4ogo4d21Z6iarVSpx2k/vfdqsJnUe5sPz443cYP/5p\ntmx5HL3eizfffJU+ffq4Ld733zeMzh1TmT37LKf21eNis3UpLi4G4PXXPwbewdu7XCidOpWAy+WF\n0/kmYGX58o9p2rQhKWfzUPt3R6Uun39tQBcSE+cy+/WZSFICMlk+devO4623ZpKQkIC/f+UazVu2\nbOG++0YDjXE6s1GpnqNZs/ZYDAYMXi3QaOuSd+4jSrPOMmXKLlyuQUAfIJsXXphBq1Ytadq0aaU2\ni4uLkclCEYSKpPN+qNU6RoywYzBswWCKwe7TmuDILjTvcDdblo2gNP9tfHz8eOutd2jVqhW5ubmI\nTguiKCKTyXA5HSDaqySyLy4u5tf129h38ASlRSfwCbmTk/ueoSTfjkwYzLPPfsorr4zitfueqvQ5\nT09PzGYzO3fuxOl00qhRIwIDA7kS/v7+Veaugry8PCZPfoX9+w/gcCRSP7YxcXGhrP7x/au6RKxf\nn4jLdQ+BgV0v/EXOqlVf0qdPeQ1opVKJUqlEkqQqolGpVN6SpO7/y1zNolh79FxLTaFWKF7GlYJZ\narK4uhHxWTEODw+Paq1XN9reze7f1aioRqJSqapsouVWQyflxYSEC1HPzkq5DJ1OJ7/+uomk42nU\nq+tH9+4dGTbsDgyGIvbsSkGtXojR6GDmzBn4+/syePAdAAwY0A+1WsWvv25Dq1Xx4IOvV6pNfCUk\nSeKuobcjl8vZsesE3p46HnloTpUjxKSkJN588yP2HssmruPDNGnWim82bMVmt9OzR1f3dS2bN+XA\n0V9IO+XCKcpxFf/Bg4+WB93o9XqWLl1YpQ9ZWVl8uex7ioqMdO/WknvvHcHatY9hsbSkXEx9R+/e\n5QmXjUYTCsVFH0OHowBRvB1BkAE6zOZW7Ny5h1atW2PbvxMppBMIMqyFf7B7/3bM5oeBFoBEcvIb\njB79Ot7eEkuWzCMiIoLc3FxCQ0MZP/5pLJaRQDwg4nItJCe3BQrFXryc7+IyKAjWF1PoGILL9Rbl\nIhEgFEFoxsGDB6sIxVatWiGKKUjSXqAxcvkG6tatw6RJj/Pll99y5kw6Z09/gWhOQXJZGX5nL16a\n+mMlq01gYCBtGntz4OgqVJ5R2EuT6dUhqlJuSYvFwocLvqOEdnhFdcQ//CtO7OmHocAXufxLAgMD\nEISxzJx5O/fcM7ySNbusrIzpr75LenEEyPV4iO/y+svjqhV2KSkpfPLp1xQVG+lxWwtGjhzhfpZF\nUWT06CdITm6CRvMxoniY7KzFfLVsBv7+/iQlJbF5yx5kgkD//p2pX7++u12FQo4k2S95Ru0olVXz\nfVYnGh0OB1ar9ZZWAvqnqakWzVqh+M/husUldq8P+7Uv+RepCTNU43E4HO4yS1cSV9fLv2lRvJnj\n+KepOCqveEldTlRUFG3aBPDnn3NQq9tjt2+ne/foSkd2H3+yhA2/O9D7dOaPAyfZtWcB8+dO4+ef\ntyGTjUWpLE/SbDKN5Oeft7qFoiAI9OrVs1JKlOrIz88nJyeHwMBAgoODMZvL6/g+MPJuRt1f/cvo\n9OnTDB06DkNpb2y+ncjfW4Tet5CYuH7s2PN1JaHo5eXFk48O5+tvvuO7tdvw8A9n9rtf8uKkB6ut\nZ1xQUMDD46ZR4hiCSlOX7btWMHFcO+bMmcbLL7+O1WqmX78BvP12uXW0X78ufPvtLGAaTmcGCoUL\nh+M0EIYkiWg0qcTF9WfUA/dw7PgsDh4ciyDIaRit5ripDIi8cGcBiMXlaozV2pXRo5/Bxy8cQV4P\nGRkUFuYBFWJZhiiGIggKlKrB3D1MYPjw4Tz55DROHG+KIHghSclAA8AKnKFevXpVxhoSEsIPP3zN\nmDETyMt7n8aNE1iwYAmPPvoiWVmdUakGY7GsommDFB544G7i4+OrfAcEQWDoHX1pfu4c+QXFhIY0\npFGjRpWuSU9Pp9ASQljD8oTdA4ZN5rfvTnP6mA4Pj2AEQYYk1cFqLRdWl/6o/G3rNs4bmhDepLws\nW156NF99/QvTXhhf6R5ZWVk8Nn4mNulh1Nq6fPzZUozGJYwfXx5kVVhYyOnTWeh0b16wnvfA4Ujk\n2LFj+Pn58eqM71FqhiCJTnbsXMKs10e7xeLtt/dmzZrXyMuTIZPpgOWMHFk1iv7yeakQjaIo4nK5\nsNvtt7x85P8yoiheNWF/LbX8k9QKxatQkXDbaDSi1+tvWi3lm831bNAVIvF6xnErxOzfae9Sa25F\n/enLkclkzJv3Et988z2nT+8iPj6GESPudM+N0Whk89aThNWfi0yuxC+wOedOnubMmTP4+upxubIu\n6Wsmfn6eVe5RUlLC0aNHUavVtGjRotI8/vHHbt777GckZRiSLZ0x93Wl+21dKuXWdLlcFBQUoFKp\n3DWmV636CZPpbnTa9jgoQZKasmv370TU80epuPiiqFgTu93Olj2pRA/6AK1XECVZJ5jz3hcsePfV\nKgJ6586dFFvaExxVLkxsHtEsWzGZ9b8srtbP76WXnkUQ5rN+/X3o9R68+OKrTJ/+Gk5nMpJkIirK\nhwkTxqPT6Xj/nZmkpqbicrmQyWSs/uFHXK4fgAeBfOAPZLK7kcnCSM/IoE7sajTaOlhMZ1Cr9yJJ\nG3A4BgP5CMJeBFl/JCkDvb68zF3nzs3ZtOkrAgPfIz9/IhCOQpHNoEF96d69e7XPQPv27Tl+/GLa\nmW3btpGTE0ZQ0GgAPD0T2LnzAd54o9EVa4XLZDISEhKq/T8AuVyO6LK5/y2JTsLD6pKesgmrNRGV\nqhlW66e0bNmUkpISNBqN2yfRUGpCqb1oTdZ5hlBUUu5KcKlla8+ePZjs3Qiu1w8AlXoKP64e7xaK\nWq0WSbIhigbkch8kyYHLVV7NZ+3PO1HrRhAQ2BKA7CwXmzf/6RaKUVFRfPbZS/zwwzrsdhf9+48n\nPj7+ukWeTCartnzkXxWNNdWi909xpfGXJ5X/352XfxJXrSC/JrVC8So4HA4kScLLy+uKL5Yb5dIS\nav/URmC32zGZTP+a2P0747z8yP9KQhHK/Q/vu28Ev//+O6WlpaSL3f0dAAAgAElEQVSlpVU6dhME\ngQrnvPKNuPxY8PnnJ7Br18OUlaUjCA68vf9gwoTlldpOS0vj4XEvUmqNQ3KW0LTh13z84RtoNBos\nFgvvffoD3vHT0XoEYSrLZ+GyWXTs0Nad6NtgMPDRopVkFMuQnFZ6toviriED3KUEDYYQrMXbkWyF\nuMxHyU8u4pG721YZY25uLnhEoPUqTy3jU6chWSfllJaWVgm4KBfnl0T0XeMHgFqtZubMF5k58+Lf\nevTowYEDB9BqtQQHB3PkyBGCgoKIjo4mOjoai8XCsy++iTrmIcT0RJxlYwA5yIbj0J+nUL4fuWew\n+xnQesQQHtUJXGdISpoMggpV2FiyjDsJ8Mxm33FPlOpEBgzoT3Z2AQsWzMHf348WLcJ4+uk36NSp\n0w0+T5dGNN7Yc5iVlUV6ejpqtZozZ85gs9no0KEDcfVsnDz+C1rPeliKDzNscEceGdWb559/k/z8\nAtq2bUB4TGNmvbceyVXGkL7N6NmjKwlNG/Dj+l8xB8SjVHlQmPYzfQfFXeydu1a4HAGz+++iy4xS\neXH/0ev1TJz4EB99NBWTqSNK5XG6do2hRYsWrF+/p6r7zCVjcjqdpKamEhNTh8aNGxMXF4fFYrmh\neang8vKRl9YcrwiEqemWxvJSiDUh6rWWWmoutULxMio2NavV6t5Ab5ZIvFVczQJYIRI9PT1r/Dgu\n50r+lFcaq8PhYPz4qezfrwQiUCheYt68x+natSt6vZ5uXWL5bftC9H6dMZedJLxOGdHR0Wi1Wtav\nX8HGjRuRyWQMGvS0uwLL0aNH+eSTL9m2bQ8uzUAiGk1HkiQOnpjJ6tU/cc89d2MwGHDihdYjCKfT\niUrjg0Jbh5KSEnewwvc/bSCTZoS174TL6WDDvhU0qH+MYcOG8O67Q7HZdMiEaKT8uWi99IT7eJKQ\n0KzKGAMCApBM57GZS1DrfCjLP4tOYa9UhrCCTp064f3Zc+Rn1EGlqYu1eDmPjel9Q2vg6+vLgAED\n+HHNelbtPIzMMxKpZCvDe2bRvVtnzpw5Q7YxgM6DHmTP3t64XBqM+x4EnwyE2A54e/jiMPqQlvkl\nsTEvYC5LwkNr59FxE1n6uwaf8J7kZCaTemI1msh+OOv3ZdXuzZgtO3j66QlMmjS+2mM4k8nE+fPn\nUSgUREdHV3tM16JFC4KClpKbuwKVqj5W61qGDbvtur4Hf/yxi/mfrsWuDOfAxoUIUks0mlDU6k/5\n8su3SbDYKSw+T1REI/c6/fbb9wDMf38x2faO1KvXFIfdwg8blhATHU5CQgITHy7hq2/exmx3MKRn\nc+4cOrDKvbt06ULQFz+Rm7EQmSyAvIy3iIzwZf7895kwYRwajYYnnxxPQkJjjh8/Tmjo3QwaNOjC\ns9uR/TO/pUByIYpOJNfP9Oo5Cij/Pj399Mvs3QsQiSDMZPbsh2nfvt0NPRPVcTXRWGFplMlkNVo0\n1hSuVIe+llr+Lf5byuEfwmKxYLPZ8PT0dCesvZlUCLtbvWnabDbMZvMNi8SaEMxyJZF4tTlLTEzk\nwAEFAQFzEQQBk6kXM2e+yqZN5X5+Eyc8RHjYOpKObyGsrh99+jzmbjsyMpJx48ZVai8pKYkhQx7C\nbL4fo7EOCCvx8GlBQJ2ByNRNyMw8D5TXbfZQGynMPoZXQAOsxgyUUm6lBMmpGYX4R5cfJcoVShQ+\n9cnJzad3rx506tSWXbu2IwhagoKeQan0oaTkj0p9MZlMTJ78EomJfwICgRmnCYltj8qey9QnR1a7\nvoGBgSxaMJMvFn9Lccl+unXpypAhFyvOpKWlcejICVQqBW1bt3BH2Obn55OcnIxWqyU2NpacnBy2\nHsgivOOjyOQKHLb2/LjpI9q3bYVcLkcSHQT4+9Oze1tKigvIsjSgce9RhDTpiU7nQerZc2z44HEK\nzp9CrTIwZ/aT5OUVIMOFt7c3lgIrmogOeATo0fsGI2vaj92HlzDk9vL1vlQE5ufns2fPHn7ctBtV\nnRbgsNAoaBePjr6nirXc09OThQvnsHDhCrKzT9K2bSPuvbdq6cMKKr6TTqeT9xZ8j3fTaZw78C12\n5yAEcTJ6vR6LpTWzZ3/EDz8svmI75zOKCW1e7tuoVGmRaaMpKCggMjKSHt270aN7tyt+FsDHx4cv\nFr3JNyt/4LMFs7BZG3P27G18/PHvHDjwJF99tQBBEOjWrRvdulVuKyEhgVdegg0bd6GQyxg48H63\n/+quXbvYu9eJv/9bCIIMi6U3s2ZNY+3avy8UL6U60Wiz2WpFYzVc7T1QOz//DC5qj56vRa1QvAyH\nw4HdXm6h+TeOif8K1Qkxq9WK1WrFy8vrP+cU/VeDbsrKyoAI91ppNJHk5GTz+usfYrU56Ne3LXfd\neTvD7rpYKu1qLF26ErN5BHr9cESxFKPJj4zkJfgEdkEybyAhYQhQniB5ylMjeevdheRkKNGqbEx/\nbkwlK194XT8OZ5+kbmwHRJcTZ8lpgoPKLVEdOrTg3Dk7vr7jkMtlFBTMo0GDypHR06fPZuNGJWr1\nFlyuTLJOP8Kz4yPp0WNMpajcywkLC+OVlydX+XtKSgrvfrkRWUgnRKeV3/d8zZTx95Kfn8/LbyzG\nrm2Gy5pHQuRmRt03BJnGC9mFutBKtQ5JpsFqtVK/fn0a1HFw/MgytD5x2HJ3MqR/J9JM2WiU5UeP\nXiobY0fdzsg7++Ln54dKpSIvLw+vNZ+QcUKLsSQTmyGfpl3LLV8Oqwm1qurWdPLkSV6es5gzuU6M\nAa2I9A+jW+f2HN37I/v27adDh6ql6AICApg69cmrrvPlmEwm7KKSAM8QzGWFSFIsgkx+wQ8vjlOn\nznLnnY+g0aiZOHEkHTp0qPT5enV8yc0+SVDdxjgdVkTLOfz9K/tViqKIxWJBp9ORmZnJ50tWUVxi\npkPbeO6683b8/f3p0b0z7737HZ6er14IkunC7t33kpaWRmRk5BX7n5CQ4PazLCsrY+Gi5aSm5WG3\nFiFJoW6XC7U6nMJCU6WSkTeb6kSj1WoFyk9q/m3LWU3d22tin2r536VWKF6GUqmsJBJvBbcq8rmC\nCpHo6en5l0Tire7f1fg7kdnNmjVDLl+JydQTjSaS7Ow5OJwe7D3UBoXCg337v+WFKS5uu63rtRsD\nnE4XFV8RT09P7HYZdtMhSs7ewyOj76Bnz57u8mdRUVGMGNqDnzbsR6HwZc/+JOLjG7ijXocP7kvu\nopVk7E5CdFro3TrMneLlscdGc+LESxw69DiCINKpU0QVy9dvv/2BUvktcrkfcrkfRuMIzp9Pv6pI\nvBrrftuDJrIfZlGLU+aiQGFl3/5DrN2wE1nEWEJDmiJJEgd2z6NbWhpeFJJ3Pgm/kBjyUg9Rz1+B\nt7c3MpmMV16cyK/rNpGde5j4Xo3o0f02Erf/wY+/fQoqT/xVFsY9eGelkn3h4eHMeXUi69b/RmGx\nkdSsMlz5R8kwpePK2cuY26v6Z3686DtkkWNRO3eiiL2drOIzZGRkoPKuy76DezEYSoiJiakSAZ6c\nnMzGxH24XCK3dWjmPirOzMzk5MmThISE0LhxY/f1Xl5e1A3QkHtuB6H1O3J2/5tIrgQEIYKysvmo\nVHKKix/B6TTw9NPvsnChvlK6nlH3DuDjhT+QeWw3oqOUwb0bERV1MZH72bNnWfDFWkpNEjq1g3Nn\nUxE9R6LzDGPhilVs3jKZnt07XKhAo+Cib6UcQVDgcrmua42dTievvvYBKecaovceTH7O7xQULkWj\n6YNOF0Nh4TI6dGj2jwVOVIjGSwNhKnyObTbb/6SlsaYK1VpquZRaoVgN1eVSrMlf5kuF3aXH5jXF\nkni9wvN6IrOv1lZMTAzz5z/BzJkzKSkpJSxMgygfT1BwJwDkcg0/rfneLRSv1a+RI+9i1apHMZu9\nEQQdnp6LmD17GiNGDKekpISNGzficDho2rQpmZlZrN1WQGS7F5HLVexKWkPA+t8YOrg/UH6c+MKk\nh8nPz0elUlVKpKzX61m4cD7Hjh1zl8lzOp2V+ubj401GxjmUyrALYzmLr2+LKn1OSUnhj73HkEQn\n9SNDadKkCT4+PlWuM1us/LZ/DwZHXZBpkYr30y4ogMIiI/q6Ee75EXTh2Gw2nhx7F8u/X0fm3l+J\nDw/k3rvucgcBaLVa7rrzjkrtd+/WmVYtmmGxWPDz86uynoIgULduXcY+/ACiKGIwGNi3bz9may7x\nPXpQt27dKt+7/KIy9GERePumkp2xB8k7ClNpMWe3fcu2M2fR+HQE63KmPnu3+4j9zJkzvLNkE7qY\nAciUCj5auY4nBIG8vFzGj58ONMLlOsMDD/Tn5ZenuPs2bco45ry9iNTcYhrEq8jNeAiXS8THR0Ng\n4By02kgA8vJ6k5j4RyWhGBwczLQpD1NYWIhWq600/yaTiQ8XrkUZOIKw+hEcPbiVk+fO0bFvR4wm\nCyk5CRw7uJP9Rwz46tdQt66ctLT3EISOSNJWEhLqVBKdVyMtLY0zZ2XUibwHQRDw8onHYT2AWjEb\ng8FC587NeLkaa/OtpsKdoGJ/qnjOL7U0VgTC/C9SG2Dzz+KsPXq+JrVC8TL+CUF4q9LPmM1mHA4H\nXl5ef2uj+TcsijeSvudqdOnSmY0bOyNJEu+//yk/rjW7K22IogOZ7PrXt2XLlnz99fu8994X2GwO\nRo16hqFDh3D+/HmemfI2KecVZJ7Zjhwj3bq3xb/RkyiU5Uly/eq14Xjyzwy9pD2FQlFtKTYot7ZE\nRETg4eGB3W4nNzcXLy8vd/3kmTOfYezYyVgsdyCTZRAdncHQoa9VauPUqVO8s2QzJs8WbNmciDP9\nc7T2bGbOnMKoUSMrXSuaC8g7mY9HfC8QLVgLStj6Wwqt2rQg8eRa6jS5B5spH8Gwm/r1RxEcHMwz\nE0Zf99xBuWWuuiCb6sbu6+tL7969EEURh8OBw+HAbDZX8mlrnVCfrafWULfhnZj2LiMn6QvKCoIp\nSj5NnWY/IVfosFuymTNvDH379kSr1bL7QBLKerfhX7dB+bjFPmzb/Qcfzn8Xl+s9lMrGQBnLlj3A\nHXf0oUGD8utCQ0N5b+5L2Gw2VCqV+zvxwANPkZp6MSJZkgx4eARUGZNKpap2rQsKCrCJAQT4lYtx\nn4D6WJ1ytv00iqL884iKWDx0dQiq9xQF2d4M7Z9OWZmZkye/p2nT+kyZ8up1f7dlMhkSF62PVosZ\nhULGZ5/NrpTkuyLf579BxX6rVqurHE8LglBp/W8FNdEIYLVa/3N5bmv5/02tULwGNaHk3vVQ8YL1\n9PT8z/0avVkisQJRFHn11bdYtWoHuXlmkpPP06xZCwRpHSMm3XlDbXXo0KGKD9qnn61g234lZVnr\nkKTJyGR6Nqx/i4bGjYRGtUIQBMqK0mgQfuPHwklJSbw29wvMTg8UYikvPHUvbdq0oWvXrnz77Qcc\nOnQIvT6KAQMGuEVkBZu3H0Ab3Z/16/bgVD2IEHoHzrSjzJjxMW3btiI+Pt59rd7TGx+FCiFzCzKZ\nAr+QQRhNC3ls7EhsHy1m9/bH0GlUPDmmf7XJvG8VFTn6nE4nGo2mkk/b6PvvwrpoBbt3PkUdjYpX\nXhuLTqfhmenrkCt0F9wATFgsTgoKCggLC0Mhl+FyXqx64HLacbrsWK1ONJrGF+7pCcSTmZlJeHg4\nRqMRb29vNBpNpYTZgiAwceJIJk16m7y8XkhSKYGB+xk0qPqSjNXh6emJ5CjEbjOiUuvRaWWU5B5A\nsg5ElB5CsvyEXUwCJOTKEOz2DObMeeUvzWV4eDjNGqs5eOxzDGVBpJz8GQ91Mg88MJn3359O8+bN\n/1K7N5NLhdqllsZLRaPFYvlHROO/QXXWw9qqLP8srloZdE1qZ6gabrVF7Wb+gq2ofSxJUo0VideT\nvud6RWJFEvSrsWHDBlavziYg4Ce8vfPIyJiNybCNDz985arJlK+HsrIyvl/1E6ZCTyRxIIK8E6Jk\nAWkSOSc/4PyhYGQKNQHaPIbecf8NtW2z2Zjx5ufIYp4iJCAWY8l53njvLT7/oD4+Pj7ExsbSokXV\n4+YKJEnC4XRgNltRKOJwsQeZzB+ZrC3JycnEx8djMBgoLCykYXwMWtn3eNd5BJnCi/QjjxMeZ+PU\nqVNMe36iO5H2X82xdzO4XDQoFAomPTEGURTdvm7FxcUoxPcoK9pLzukvKcpMRCZTMmTIKD7+eA4d\n2iTwx8EfyJRcCDIFUvY2bn94IF8v+YqcnF/QagfidJ4DDiLIBvHS3M+R1H5oKGPCA7dXEcnt2rVj\n0aKX2bbtD7TaQAYOfO+q9Zovx8/Pj7uHtOab1YsQ1HXIS9+Pp0qPKB+J3W7HYh2H3XovWakfgmMj\nPXpM/FvzN+3FJ1i8eDlz580h2P8hggLfwmQ6xjPPzGLTpm9q7PFudaLR4XD8vxaNFdQKxVpqGrVC\n8RrcCtF4s9qUJAmTqTxqURCEm7Zp/lNHz7cqEfjp06kYjX7YHStQKf2pU+dZlMqpVUTijY6zpKSE\nGbMXUCC2RPTSgusUkjMbRB2CYCK8TgBTx3fB6XQSHh5eqY7w9VBcXIxF1BMa1ABJFPHwCcOoDGXP\nnj1s2/EHqdnFtGzejBGD+1apFw3Qo1MLjn61BbnDiMO0HlnuEZRCX0TxIOHh97Nt+07mf/odkjoI\npbOAoQOiWfPLSDIzzmO3+rO7sBvDhj3DtGljGDu2auWWI0eOkJ6eTnh4eJVayzcbs9nMtm3bOHfu\nHE2bNqVDhw7u40mXy4XT6cRsNqPVapn7xiQenzCewgxP5PI1KBUenE39jLvvf5bBg3sx/pF7OJF8\nFpdLos3gIYSHh7N06Ufcf//jFBV9gCBYmTHjWdbtPIGuxRh8AutSWpDOR8uW8+a0CVVquzdu3LhS\n8MuN0q1rRxrERVNcXExmpp5Du/YgKJVoNGokYTU2eTRGoYC4mKYUG0x/ax41Gg3NmsUTFNgRpbIN\nefnfIyDHYrFRUlKCv79/jTx+vZRLRWNF8FjF+stksv93orFWKNZS06gVitfg34wAvhqSJGE0GpEk\nCQ8PD4xG47/dpaty+RzeykTgaWnpFJVkotR0BTEFufA1g++o+7falCSJDZu2ku9oTnh8AufTzZgF\nJeTNQ6AxavXPvPTSO8TExLg/k5eXx88//4wkSfTt27faGsWX4u3tjVIqxVSSjs6rLjZTAWUFyUx6\nZjUl2g4Idbrz59ZMTpxbxuznx1aKIgZo1Kghkx4Q8FWu5qtlT6MWwpFYwaOPDicsLIwxT81C3+5V\ntF4hGAvPcfDIW7wz73lGjnwZtedvCIIWlyuDmTO7cd99w9HpdO62P12wmEVfJIKiOS77CsLqSORk\nF+Hn583Mmc/Spk2bq45NFEU2btxIVlYWTZs2ver1JSUl3D/qCQ4eOI3D4YnAUlq2DOWnn77Cw8PD\nLQwqREPz5s0Z0K8HixeHoFB4Y7K4kCuHYnf+QoqpOes2bmfSxLGV7tGgQQN27dpEQUEB3t7e5Obm\nsv3MNjx8yufUKyCMTPQYDIYq8yxJEj//sp51m/aiVil44N5+tGzZ8orjkSSJrVu3kpycTExMDL16\n9SIkJISQkBDi4uJo3nwZ+/ZNxeFoiKjaTWSThwkKDkOpFvjx11+5rWuHagOSrpd69ephNu+nsNgA\nqsG4XAUoRAMmk6lSUNV/gUutiTdDNP7bIrm6+9cKxX+W2jyK1+b/x0+w/xh/V3xWiETAfdz8byfI\nvlZ7l/J3ROK1+ma32zl8JI/wqKdA0IK8JQgSw4f3/Ut9h4uBQqWlZrReQXS7rRO+vhLevuHo9Odp\n0WI3K1d+SO/eF6uepKen06VLf6ZN28H06bvp2nUgp06duup9dDodzz95H5akN8nZO4uSAzNQO0sw\n0xqPBk+hDxiIU92RZHMoR48lVdtGw4bxzJnxAof2rGP58ufYtOlLpkx5ioKCAkRNHbRe5RVn9P5R\n2PAkIyMDhSIaQSi3fsrl9ZDJdBdyUpaTk5PDos9/RR+yEJ/QFzGU1WNbImRnf8CxY2O4994JnD59\nutr+FBcX8/4Hn9K+Q18efvgDXn01ixEjnmHRoiVXnIevln9L0gkbDsedIOxFlPZw+HA93n3340rX\nVYiGcqtZQ9Tq33E4TSBTIonr8AqKw6tOG1LOZVV7H7lcTnBwMBqNBh8fHwRLPlZjEQDG4hxUorHa\nYJxffl3Ph18eoFA9hvPOu3jpja85efLkFcczY8YbPPzwLGbNSmXcuDd54YWLPoeHDh3ittva06eP\nhkGDMqkXFoydOuQaozib48P+Q2cpKiq6YtvXQ0REBA3iI3EpWiMoglFrY4iKm8imzdv/Vrs3g78j\n1C5d/4p0WqIoYjabsVgs7hKs/zVqhWItNY1ai+I1qGkWRUmSKCsrQyaT4eHhUeP6dy3+arWY66U8\nx5ychOataGC14nKJGEtaodVqKS0txdPT84ZeTJIkYbFYcDqdtG3dhHXbfsUZPpQB/Tpy7vDXjHj6\nee66c3AVC8bbb39EcXFPNJoxABiNP/Daa/NZvvyzq96vbds2fPlJQzIyMvD39+fRR6cil+lAdJRf\nIOhw2KzXtJgEBAQQEBBQ6d8yaxYWQzZa71CM+WdQU0a7du0QhLex2bagVHbGZltCeLhvJb+74uJi\n5MoQFEpvAEoKNgNrkMvDkcubYLfvITExsVJdbYCdO3fy0CNTMdiaYS2yI0ir0On0yGTjmDmzJyNH\n3l3t8XxObgkOuxPoV75WMhUuVx9OnFh3xfEOGzaMbdv2snp1PxB1aH10JAz6kuL0HbRqGIjT6bxq\n3WFvb2/G3HUbHy77kN25FhyGTB4e1rXaF/a3P2zC6GqClH+CoHrtsfgMZOef+ysFC1WQnZ3N4sXf\nIpMtQ6XyQpLMrFw5ikcfHc2JE6d46dVlOOVDwBVFZJ0T2IxFyP1kqDV6rLZzOF0imZmZREdHX3Hs\nV8PpdFJaWkpYeARtZe1Qa6LR6bQU5tmxWlP+Ups1kStZGm02m7vutEKhqHFH7FeyKN6o20otf51a\ni+K1qRWK1fBPBLP8lfarE4l/p73rud/N2FgrAlButUiE8px+nTo1YPvORfj698VsPEVx0e888shP\nCIKaVq1i+eCDWXh7e1913nJzc0lOTkaSJOLj4/H29ua7HzaQfuYkhw7OQKu0MHXyvdx3z3B3VG5W\nVhZnz54lJCSE/Pxi4KIfn0wWRkHBwesag6+vL3q9HlEU6devE8ePr8d0+isIbY/Lto+YqGKaJ9xz\nQ/Pi7+/Ps48NY94nMyhTBaAUi3jp6dFERESwbNl7jB8/ldzcTOLjm/D5559WEqJhYWFo1bkYCrfi\n6VuRg7IQmSzqwtgKcDqDKC0txWQyYbPZMBgMPDP9bQxSNwSfbkhFdhA8MZkt2B2+iC47fQbdT3Bw\nKBMeGU73S8ratWvTmKXL1mG3rkKSOiG5ylCp19KsWaMrjk8ul/Phh3OZPPkcHy9YQtJZM6aTHxFf\nR8GYUROw2+3ugJiKHH2XP9v1Y6I4f+Qg+blNUCp78cEHG1GrPbj//otzfexYEsfSjBj9oylxaMjb\n9zn+PoFo1dX72BoMBhQKP8DrwrzpUCgCMBgMzHt7CRq/+Wg84hBFkbTM59F7GFBIB7BkJeLtGYg2\nvJH7u5KRkUFqaio6nY5mzZpd8zuUmJjI88+/hc0mR6m0oNEbCAl7DGOpFdG2mtu6jb7q5/+rXC4a\nKxJ7Vyca/+2j5+qw2Wy1FsVaahS1QvEa1BSLnSiKlJWVoVAo0Ol0t7xyzM3G5XK5SyP+3UjLa63H\n81MeJ2jxNxw8tAAPtYFzKWr8/FYjl3uzb9+7vPba28yfP+OKnz9z5gyz3/kWs6IJosNAXPABWjWL\nYschBQ26LUWQyck59wsnTx1xC6rff/+dqVPnA2E4nVm0bh2OQvEdLldDQIFM9hUDBlROSi1JEqtW\nreKzRSsos9po3qo1Y+8bTKtWF/3dxox5ALvdzvLlP2HN2cHAAV2YNHEKvr6+NzxvXTp3JKFZE4qK\niggICECv1wPlkbz79/92xZemw+GgfacmLP/xBdLSLfgHCFhNE7BaxyIIKcjkW/n2FwcLV2wmrGFz\nElq35eSeTdh1cchVfig822IRpiCJv4GiPQ5egcA4snXdMdrUzJj7NUFBAe4AkYED+3Mq+Qzz5i3A\nav8JpUZNs4RInnhiXJW+XYogCERHRzN3zgxyc3NxOBzUqVPH/bxVpFux2+3V1h1OTEykqKgxwcHl\nibft9rZ88smUSkJx7cY/adRjPAeTjYjqcAyGsyjOLWb79iacPHmKRx4ZXSnQKDIyEi8vB/n5a1Aq\ne+BwbMfX10BsbCxmswV1YEU9cAlBHkLblkZO5xQRGjEAq/EcwarDNG3alMOHj/D+Z5sQ1c2RHOdJ\niD3ExPGjrigWs7OzefbZ+SgUs/DxqU9JyVYwvkeglxa1Ssl9k+52z3dNFEs3C0EQUCqVKJXKakUj\n1LzxWyyWWqFYS42iViheg5oQ9VwhEpVKJVqt9oqbWk3b8Cqo2Jy9vb3/tki81vgkSSI9PZ0OHZoz\ncuSdLF78FXt2t0OhKBdWev1w9u175qptfLVyA7LAIdQNikWtUnH26HdY/9yDQt8NQVbef6+ABNLS\nt7jHN3XqmygUE9FownG5TOzd+wajRnXh22+fxuVyMXr0vTzxxGOV7vP22+8ze/YyrLahyBRpnE1d\nR5EF5gYGuJM1y+VyJkwYx4QJ49ylDf/OGl+aBFsURVJTU7HZbISEhFQrPktLS5n76QoS8yKpf/8C\nXLlH8HFl0jLIjNOaxpFjKRg9n8U7vBtF2UmkCHIa+sQjj3TiOJ+IwvUnTmMj5H59cJY+h0w0INRp\ng0ePj5GMmWiCG5O/O4PDR465hYsgCDz26Bh8g+tyJF+Ph289ZJZstm77E5vNyu/7ktColNw9oBut\nWrVEkiRSU1OxWq0EBQXh7+9PSEhIlbFcq+5wuYDUXnK9DsUbpT8AACAASURBVJvNUakNh9NFUHAw\nPUNjycrK4UzGETJSc8hI7YMgFPHtt0PYsmXNhfJ75VHH3323mMcee5bTpxcQGxvFp58uRq/X06d3\nR9asfwvPgMexms+iYhPPPD2XEyeT2X9wM4EBXtw9fAp6vZ4vV2zEJ2I0eu86SJLE4eOLOX78OM2a\nNat2nc+cOQM0QKMpdwfw8emOwfA5M14ZT2lpqTtN0r8dzPJP7lnViUaXy4XZbEYul6NUKq/qnnAr\nqG78tRbFf5bao+drUysUaziiKFJaWopKpbqiSLwVG9vNOpaxWq04HA73JnwrEUWROW9+yObf0pEp\nAvHQpNK7ZyME4TCSdB+CIMNiOURsbNAV25AkiaLiMlRBvqgvVOSQqwMJDPDDeXwXLkd3ZAoNxZlb\nadu2vLpFaWkpDocMvT4cALncA4WiHv369WLOnNeveJ/58z/A4fwUhSYcQZBhMz5PdqlEcnLyFSu4\n3Oh8pKWlIYoiERERlaxPoijy3ep1HMmWkGl8UBj389DQroSHh1dqI+X0aTJd9fCI7YRXaAx272Bs\nKWuwy+TMfv0JRo6Zgi7qDixlWci96uFS6MgvKKR56/ac/O0rIlv2IuvUSnAeIaT7ENoPGMn6rfux\nSU4UCg1Kj2CczjIcdhvTXp1LanoecdF1GNi3C+llWpp1KrfCulxOlq94BSkgkrAuE7FbjLz//VdM\n89STlHyOfal25Do/ZGUHeGBQ+0rR5wBFRUXk5+cTGBiIn59ftXWHW7VqhU73FSUl9VGpwrFav+G+\n+yoHQfXo2IyFP63FN7Y/wV5OdidtQhBeRaVqDYDBYOPrr7/h2WcvlsarX78+mzevrrI+016chFr9\nMVt/n0iQvwdTX5hKTEwMMTExDBrY332dJEmUllkIiSj3GxUEAZki4Ko5LoOCgnA6U3G5jMjlemy2\nVORyG999v5YffzqOQlEHhfwss2aOu+6SgP+fqDiettlseHh44HQ6cTgcWK3Wq7on/BPU+ijWUtOo\nFYrVUF2t55vd/vW06XK5KCsrQ61WX9fGUdMsilar1R3BVx5kcmv5888/2bilmNDIuchkCgrz/+TQ\n4VW0a2dj376xyGT+eHqe4rXX3gaqrkNF4EqLphFs3LcVD48h2KwGpNLd3DXuTjy9tvH9T08gyNQ0\na+DH44+WWyZ9fHzw89NgMOzDy6s1NlsWkFZFrFxKuUXDAehxOpxICIAOU1FOlbW2Wq3s2bMHo9FI\n586dr1oWT5IkNmzYwNbfd7DvwEEs8hD0XqHE1RGYPeM592fPnDnDkRyB8DaDEQQBQ0EWqzdt4cmH\nwy9rD9QaNS5LafkfBBlWk4EiMYuvv16JWmEjO/cInoENEXN24NJ44ONdH3NBGhNGD0Ejl7D26Em7\nNpNZv3UX+4/9imdJOnZDHsqQNuQf/Zw6Hvms+20fxd5D8I5pwY60RJI/XEJ0m4tiSUAgK6+EhJ59\nUet9UOt9MER0JHH7H6RZ/AlrMwSZTIaxJJ8fNvzMc+Mvzv227Tt584MV2OV+WIqSGT28L3ffPdwd\n2FSRoy8iIoIFC2by8cdfUVCwiW7dWtK9e2fWrVtH/fr1iY2NpVOn9sjkMnbs2YxaJcfHU0Ox8+J6\niKIXFoud7OxsXC4XoaGh7h9IlwfUaDQapk97hunTyvNGXpqvURRFjh49islkIjY2lrYtYtiZ9Ct1\nY3pjKstB4ThGVNSoKz4HcXFxPPhgT5YufRK5PBpJOsHjjw9j5XcpBNV9C7lCS6nhBK/PepdFC6v/\nMfO/QnWWxn9TNFqtVrdbSC211ARqhWINpUIkajSa6zqGuNmb2N8VyBUi0dPT033Ec6v7VVBQgCRv\niExW/lh7+TQhK+sz1q75lAMHDmCxWGjadCq+vr7k5eWRk5NDVFQUKpUKi8Xifknce/dQlMpf2L77\nHXQaFZPG9iQmJobHY2IYee9d2O12/P393XMul8t5//1ZPPXUSxQV/YhS6eCtt6ZWmxS7AplMxuDB\nd/DNytdxOR8AIQ1BvoOSzAgiIyPd1xkMBgYOHE5GhgAo8fGZxbp131/R4vjWvA9YtGw7Bk0z7Jru\n6GSFNIjqyrGibCZOfon6DRtRPzyY+hF1kekC3GPw8A6g8JS1Snv1Y6KJ3pdCdvpBcvan4cg7hitt\nG0cDm5Pi8Pw/9s46sKry/+Ovczt21x1sjI0YGzG6u0MQEVFEBTsQxURF/RqAAgYCAoqiKFLSAykp\nERgxYjDYWLLuu7h9z++PuStzoyR/3+9e/233POc8z3PqfT7PJzDnyZFUfI5Q0hF1QRKeLnLUuR1p\n6OfMqHtqlhls2rQpycnJnE9M4vfD58gr3o53Iyn39H+Sj77eg0/jwQD4NL+frF2/08qew8WEg2jd\n/SnNOkuItwKz8e8E1NaKImTuIGjcHL6iGmcPsipNjvreer2emXN/Qtb8RXJTjmIK7cfsjfvILFnO\ni4/fXyM/oSAIhIeHs3Dhp4iiyKJFSxg8+CGk0mbYbGd5/fVnee65p+jcqQOdO3UAwFxexNy5s7Fa\nn8duL0SlWkuF+T5en7UCiUROqJfIhAdH8M60WcTGnkCj0TDtnecZOvRvEfxPbDYbH03/gr1HS5Gq\nfFGYf+K9qROQyBI5dmIWri4annthuCO/Y/X9pVQqKSwspLi4mMDAQCZPfpqBA3uSl5dHaOjzJCcn\nI5EJSGVVHyI656Zkp1ZgsVgu25dbzd3g/30pl4rGS31arxYI9W+53NLz9VT7qefGsNYvPV+VeqF4\nFW6VRfFKZehsNht6vR61Wn1dvip3y0PXYDBgMpnQ6XRIpVJsNttt6VvDhg2R2JZiNg9GLnehIHc7\nbSJDkEqljgTPoijy6adzWbJkE4LggpNTCU2iWmGyKfB0lfH6S48RHBzMQ2Pv5aGxtY9RlzVPEAQa\nN27M77+vp6CgAFdX11rWoYyMDGw2G0FBQY4qNLNmfcj23X0pN81DqlAS0vVDVJYsUlJSHCJg9uwv\nSU4ORSJ5A4Dc3EVMmzadhQs/r5Uip6SkhGU/b8bmNgZZg7HYccJUsoycvGQoTaYoMAxdg2GcSzlO\no/N7Qe1LRWlT1Do3ss/H0rKhD//E1dWVp8YOIvLwCS6kpCILlLLR0JSAvjMQJBIs4b0p2PUMH77c\nF51uJCEhIVit1jot4FKplPDwcMLDwxk4oD9msxmVSkVqaip2sx67zYpEKsNuNSKIJh4aNYjTZ5Mo\nKImja0sPvPo8waffriE9LxW7qZwgawr9+o3mm9W7KSvOQ+viSdb5IzQN8UYikWA0GlmzZg25eYUo\nnY8j+nTA2TuKcizky2QcPnKC/n171Opn1Tzn8sEHsxDFHwB/bLYcZswYx4ABfQgMDHSIhilTJiGX\ny1i1aj5arYbBQyYSm+dLcI+HQBBIOrGJx56YQnZOL1z95mM2pfHWO8/RsGGDy1Z3OXToEHuOGfFr\n9TGCREpJ7nHmfv0d3y/+pMZ2oiiyYeNWft10ELsoILUXcSw2AanUE52uksWLZ9K0aVNH2h6r1Ypo\n+xWjIReV2oeCvN9p2NALxV8uFneKO3Xsq63A1OXTeitFYzVGo7FWNaB66rmT1AvFq3AttYVvJlar\nlbKyMjQazXU9LO6WJedqkejs7HzbS2q1aNGCZ5/qxsLFL2IXlYSFuvD6a1NqbLN//36WLPkTJ6d1\n2GxwIfMFinQtGDpyLPqCBGZ9+RNzZrxaq6Tg8ePH+XLBckrLKunTvTVPTHwYhUJRY5vqBM6XYjab\nefL5V4g5mIHVLhDuYWX9ikX4+vri5OREo2YRuHT/EqXWA7PZTP7+aTVE1oULF7HZopFKqz5YbHZ/\n9sVt4q1Zi2kW4suoIX0dVruDBw9SkJ+NzXYIRYOhiHYlgtQJm70Yg6WMFm0H4uLbEGefEFI3TefZ\nPuHsObKeYoOZyEZ+DOnfq8559fT0ZNTwKl+92NhYfjt1AOGvcytTOiNIVYSFhTlE9LWUY5RKpY5x\nBgcH06NtAFv2vk+hNRBrwUEGtNXh5+eHv79/jXYfvPQo586dQy73oWXL/mg0GsYP78yvWzeRVWmm\naYg39wzqjcFg4JFHnuPMGRl5+e7YUubj2uN1xOIc0GeQlCpnzs7NHDtymOeeexqdTgdAYmISm/Yc\nJTUjC5vMHanV7a/++iKXB6LX65HJZI7IWZPJRIcObejcuT2RkZH8smYTaiHCMT/O/pHsTskmMPBJ\nBEGGUtUIQ3l/Tpw4cVmhWFxcjKAOcwROObk3Ie9kca3tjh49xoqYNAKiplFSWsbG5R/jyli8XB5A\nr9/NpEnT+O23FY7tQ0JCeHXKcOZ8/jolNhV+fnKmvfPiVc9VPZcXjXVFz18rl/t4NplM9T6KtxFb\nvQy6KvUzdAe4nJWyWiRWVxm4Xu50dZYricSb1ber9Wv06BEMHToAg8GAm5tbrQf3hQsXsNu7IZU6\nYzKdR6JpTblJg0IhxyugBRePxFBcXFyjbFtKSgpT3lqAPOgFVH6+LN+yFJt1KZNeeOKq/V246BvW\nH7ehbPYVaomG8+mLmPDUy8Ss/xmpVMrzE+7j86Xvg08PrCXnaBss1KhJ3bFjK/bu3YIo9sBm02Nz\n3U9QvycJ6DuahLOHWLdlJw/dN5w9e/bw+OOvUKF/GEyJGBXvI/cdiqg/CKYE3DzciWgaDoBotyHa\nrYSHh9GhQ/vr8m0NDw/HyfID+ed2YLNb0Kf9QbsQd4fQ+jdIJBIeHXcfW7c9h0JuxK1hB06kJbBu\n/SZGjhhWY1sfH59aYjw0NJRXng2tMY41a9Zw5owGF5dXUSgMpGR8QsHZDWiixyEYjfy5OQZpUTgn\nj8YTEzOa7dvXU1xczLKtsXi3u48m0RrWH87GkrgMtfQJrNZjyGQ5hIaGOpYmi4qKePGVD8iq8EMU\nRQKcfmLUiD4Yzp7EHtIKQZBQejEOdyclJsNZNE7tEEU7gj0Bd/eBNcZwad/Dw8OhfAHGigEoNd7k\nJ6+nXVTNZOYA55PSUbq1R67QUFaWg1TbG4u+qkKMk1MPLl6cgclkqvHB2bdvb7p160J5ebnj/qio\nuLF60v9r1CUaTSbTvxaN9Qm367nbqReKdXAnglksFosj/cm/EYl3ul5pdcmsukTi7eqbzWbj2yXL\nWLdxP3K5jCceG17LF6xBgwZIJEux259AKnXGajiDq1MwgiBgrChCIpbXciQ/duw4Fk0vvHxaA+DV\n5Am2/f7aNQnFQ8dOgXMXZLKqqiYKjz6cStjo+H3kiGEENwggIeE8Gk1j+vTpg0wmc/h0PvPME8TH\nJ7Bhw3BE0YZ/1FiGjhiJRCLBv2l7zuxaAMCnny7EbH4NrXYIJlMJ1pRP0FbOYOL4exk1dCw79h0i\n9s+VqP2boU/8EyEzno8++pQ+fboxePDgGnOYmZmJUqnE29u71rlzdXXlg6nP8NDEKRRYgtE6uXJR\nXkxOTs4NRWofPhyLNGQska0fQRRFKopSWLF+Vi2heCWKi4v59tsl5OYWYbcbsdsDEQQBjUaD1tsN\nq58XTVQXOB77NaLhTeTyVoiihNTUp/nzzz9xdXVFdA9D61pV0ebh515h2dsPgmEtGo2d776bVyOF\n0E+//EqW2BXf9uMQRbh4aikXLmTQPlBF7I6PkMjkRAZpmPDpVKa8+iZ6Uzewp9IuWk7fvn0vO47G\njRvz6nND+HzeFIqsAi2bB/Hayy/U2s7b0wVzeSqi2BGdTofNfBapUPXsqKg4hLe3R61VieLiYmbN\nXszxuPP4+nrw2iuPXbUG+X8rNyP472opl/6NpbE+PU49dxv1QvEuoFokOjk5XdOy3e3gWgXypSKx\nuu70neKXX9bw/YpUPBvOxGo1MH3OTNzcXOjSpbNjm169ejF69GFWrhyBVOqJr/MFwtzcuHhKD8YU\nnn1kIBqNpsZ+1WoVoiXT8bepMh+d5trcAhoGeiMeO4zdawiCRIal4CB+upofAtHR0URHR5OcnMy3\nP6+lUG8gxM+dewb2wtnZma+//oIZM97n9OnTbDiej/SvNDcVJfm4aKteKEajCXBCEEClcsViaU3f\njgrefaNqabFJkybs2befpNQ4vly/iKKiKKxWLStWvM9rr6UwadJzFBcX88STr3IusQjRbmTwwPa8\n9dZLXLhwAaVSSaNGjZBIJBw7fhLnRvfTNPoZAPLObeDrb37m/XdqLvNfC9XVhqxWKwKXRqCDRBCw\nWCyUlpaSmZmJn59fDUvvpej1evr2HU5WVnOs1lDk8t9QKkGr7Yxc7o3Vkkxw8yG07tKBU8s/wib8\nnbNRELSYzWbUajVixQWHgPBy1fLyi08x/t7+eHp6Ou7N+PgzbP79CDHbDmFUd0W02xAkUmROgVzM\nTmDW9LfIz8/HbDbj7u6OQqFgzaoQTp48iYtLO1q2bInNZrtiZZUB/fvSr2/vKy5DduvWhUNHvyXh\n1HwEqZpIvxNkp2dSWRmHSpXDF198VKvNe+9/zsnzkXj4vEhW8TmmvPY5C76aeseibO+2TA03Ql0p\nl64kGi839vqE27eX+jyKV6deKF6FW21RNJvNVFRU3LBIvBMVZK5VJN7Mvl1pX7v2xuHs9xhKdZWY\nKHe5hz8PnqghFM1mM8OH96V16yZ4eHgQERGBwWAgMzOTI0eKOHDgECaTgd69ezva9OjRg+WrtpF8\nci4ShS/Ssm28OfWha+rTa6++wsaY4aQfeQQEDSrLBb78YXat7YxGI0tWbsUa1BvPJqGcuRCHftUm\nnp0wFkEQcHV1pWXLlmTm7+H4n2uQat2RlKTy2PBuADz22H28/vqnmM1ywIRS+TUPP/yZY/9yuZy+\nvXtRvGoVZWUNEIS3kMvBYunOJ59M4IUXnmXGjLmcSWqFs/eriKKJjTFPEhPTj5ISG6JoJTq6CStX\nLiUnrwSFy9/lCTXujcnJ38+BAwdYu3YdXl6ePPnkkzUiiv/JoUOH2Lp1K3v/OIJZ6o4gWrCYKshV\nuSPXeFGRuBwnbSlNmrSlsLAAhcIPubyE99+fyhNPTKi1v40bN5KXF4ggTEMuB7u9C2bzo8jlMygv\nr6Bry2AE8yn0ub64BjSiOH06ongfVmscrq5ZdOjQAY1GQyu/eE4fWI3MyR1ZaQqPjehRw1KalpbG\n9xuP4hE5jOCekezbtgV18k4Kk3aTeXozF7QqSgoKmPfVDLRaLXa7HYvFgre3Nx07duTrJStYtHwv\nAhbG3tOVIYP6X1YoSSSSy4rEkpIS1q5di1Jq4p5e3jRt2pSGDUdQUlLC+fPnUSqVuLu712hTUVHB\nyVMZ+DSagSAIuHm2Jy9jN0lJSbXyZ9bz77k05dKVLI2XO+8326K4atUq3nvvPRISEoiNjSU6uqry\nU2pqKs2aNXMEO3Xq1In58+fftOPW899DvVC8Bm6VALsdtY9vhCuNWxRFKisrsVqtd9ySWI2bi4bk\ngmx0bs0AsJlycHX52zqo1+t554MvSC92RSaT4a87TdOmTfH19WXy5Hc5ccIDmy0SmWw+L7+czDPP\nPA6AVqtlwdwP2blzF+XlFURHT6JZs2bX1CedTseBvZvZsGEDZWVl9O79UZ35Fffu3cvZLAPNIryR\nK9UENm1P+u9xlJeXO/z/JBIJ9w0fRIvz51m3aSu5JQZiduxl7CgXHnpoLKJoZ/HixchkUl55ZTq9\nevUiIyODLxf8QGZOEdEtGuGilWO3/718KgiuWCxVTvknT19A6TT+LyubiuKSYsyVLZDJpgEiR468\nwWefzaV9+zZs3Pcb1sD2SKRK9Ckb8dBkM2TIg9jt94BwmBkz5hES2oRu3drxwfuvk5WVRU5ODkFB\nQcTGHmHKlA+oqBgEEgVazyzaPPIzhQem0dr5D5RqZyobCWyJESguNiGKczGbW2Oz5fDeexPp2bNb\nlR/fJRiNRux290vG5YEo2vj66xl8vWQ1pWUVhDmX48Mxur40nkMHDnPixNcEBwcwc+YaXFxcsNls\njBzSny55eRiNRnx9I2uJrQsp6Ui9W+Lk6k10W0+Ki4qIW/suFcX+uAZsxcPTh8Nx7zN7znymvfMq\nEokEpVKJQqHgux9XcbYkHN9Og7FZKvlhw3yCAnxr+KRCla/yt9/9xKaYAygUcp6ccA8DBvSrcR2P\nGjWRzMwW2O0BKBTfM3Pms0RGRnLy5Gm+/WE/ojwUu2k348a0Zcjg/gAolUpkMhGzqQClygtRtGO3\n5KDVdrima/m/jdvxYX010SiKoiOVUzVGo7HWqsaNEBUVxdq1a3nqqadq/RYWFsbx49dWg/6/lXqL\n4tW5+9TJXcA/fRRvxf6rS0fdLJF4sy2KVxr33SgSAZ5+8gGenTSdrMRkEA34Op9k5Mi/kwmvXLOR\nNEMLGna4F0GA1BO/smnLDkKD/Tl9WkCn+wxBELBa72HOnEE88cSjjnPj5OTEPfcMv9yhsVqt/Pjz\nKnYfOo1GreSR+wbQtm0bADQaDQ888AB2u53MzExSU1Px9/d3+KJ+PH0O3y6JoVQdwh9pK7hneB8C\n/b2xmSvrrJCzcdtejhtCcI/szIHs81z4bBHT336JceMeYty4vy2der2eSa9+RKnb/WgCm7P+yEai\n3M8jlx+komIrEkkYEslSBg4cjEQiIaxRAGn796LSRCCKVizG84jiWwiCBBAwm/tw4sQB3nzzVdIv\n5vDTqsexi9C/R2u+nLMbm/gfJNKO2K0WrOLH5Fc0YvMuM3EnxiG4NETi2hR78UqSjuzEbP4KaIQo\nyqgsnERewhaUfj3o1knDkCFDmDhxCqLYA1H8A0FoD9gRRV9ksuYkJSXVEoq9evVCJpuNwRCNRNII\nqXQhPXr05KW35yIJfw5loDe7Ti3h0Qbw2PgHeWz8g7XOoSiKSCQSQkNDL3ueNSoFFkMpAFKJhOio\ncEyngsnIeghnj6qyfXLtSA4f+pjk5GTc3d1xdXVFEATOJmXh3WQ0CrkcUe4Crq1JupBMeHg4oig6\n7t+fl69m2epM3INnYbKW8/GsGXh4uNG2bVX1l5iYGLKymuHiMhUAo7ENn3zyAb1792LBN5txbfAK\naq0XFnMFP62cQbu2rfD29kYmk/HCc6P5bO47iNIuYE+kSwcXIiIiLjveW82dTul1O5e9/ykaLRYL\nZrMZg8GAIAgsW7aMPn363HSLYrXFsJ56/i31QvEq3Iol3eq0Cjej9vHtplok2my2axaJt2vpOSws\njO+/+YDY2FhkMi+6dBnrWP40GAxkZhfh7BVN9btB4xpKdt5+/H3ckUguTaDtht0uYrFYaoh4o9HI\nvn37qKiooGXLljVKn63duIX1xyrxb/cKlZWlTF/8DTNdXQgLq4pWtVgsfLd8DfE5VgS5El+ZnmfG\n38fFixf5/oedaIM2YSrYQWXWRdZ8v4DRfSMY1aMVMpmMiooKpFJpVSk3vZ5jiTkEDX8eQSLByasB\nWbvOkpaWRpMmTWrMx9mzZymVhOHZeAgA6tbPEr9jLD//vJhp0z4hP/8XevfuykcfTQPgnbcnc278\nJHLz9yDaKggM0JKT8zui2AGwI5PtwknnwunTp3nskQcZP24Mdrud1es2YrRYgADsNisgATGASnsi\nYvA44s7spdODn+HsF4m5PJ/y3eHI5QGIIojYsdn9SD3+AxpXL9a5NkaiUOPr6wZkIwh27PajCEJL\nIBer9UydFtnQ0FDWrFnKG298RGFhEX36dKV16+Ys3KXAr0EnACQtn2XzjmlMfGzcFa+vK9GyZQsO\nxq0m9fhWBLkGpf4MPTpGsGzlIURxOIIgUF68igKtkvm/xiM15TJueCeioprj5+1KUt4FVA3bgd2O\nUJlGgH8zFAoFRqMRg8GAVCplx66jOPtN+suFwpty3T0c+PO4QyhWVlZit3s6+iSTeWEwGCgvL8dq\n16LWViVrliu0CHIfSktLHb6dw4cPJjS0AYmJibi7d6FTp053NOE23D2pvW4n1aKx2r3AaDQSHx/P\njBkz0Ol0LFy4kPHjxxMcHHxL+5GSkkLr1q1xcXHhww8/pGvXrrf0ePX8/6ReKN5mjEYjJpPJ8aC4\nWdwKi+I/9/dPkXg3PuD9/f3x9fXleNxptm/fwZAhgxEEAZPJRHSLME5s/AM33yYgipRlHyCiTSDR\n0dEolbMpK9uAUtkCg2EpXbq0qeEfZjQaeXbSVM5keYLCF3n5e8z56HlHIu8/j5/Hp+XzKJ3cUDq5\nUeLfjVPxZx1CMfbIUU6VOBPSfSiCIHDxzEG27NiLp4saiaIxBYVGyk0doSIVe8Fs+rzYha5dOiKR\nSBwVY2w2GxaLBbvVjNViRK7UVC1dmSrrtEorFArsplKHRdJmqUTATtu2beusPezt7c36td+RmJiI\nQqHAy8uLoUPv5+LF+zBbDDj7uuE8YDLf/pFEz4xMRgweSGZmJuv/TEDbrBvlCfPA9iKImSBZi6rd\nLwiezRCkceSm/YGzXyQKJy+cPYKoLJ0OkkkgJiNIt2P2641bZGeaPjiWbbE7aNeqGbGxv2CzRZKf\n/wKC4I1KVcpbb71K48aNKSwsJD09HZVKRXh4ODKZjHbt2rFz59/jWr9+PVgKHH9bjXqclNfmB5yS\nksJX364kK7eIpo0CeOrR+/Hy8kKtVvP0o6M5f/48FouFkJARqNVq4uJe5Oz5MYiiFImqiAETvsXd\n0wdDeTE/rV/Ge+GNmDBuBB/OXkJW4TFsphI6RzjTrl07x3NArVYjiiLOOjUZ2VmodI2QCAJWU1YN\nF4quXbvy+ecvUFHRCrk8AKNxPmPG9KwqJelsoTD3FB4+UeiLU1AK2TXSCSUkJHDo0DHUagWRkZHI\nZLI7LhT/V6m+LwVBQK1W88UXXzBr1iyGDh1KWloabdu2JSwsjDFjxjBmzJgrZhXo168fOTk5tf7/\n8ccfM2xY3ZkD/P39ycjIwM3NjWPHjjFixAji4+NvKNXV/0fqK7NcnXqheBVupgCrzjPo5OT0/y53\nmSiKVFRUYLfb71qRCLBmzXo++WwrqAZhN19g/YbXTuRqHAAAIABJREFUmT3rbby8vBg8qD85ucvZ\ntvctAPp3akzfPj3R6XT8/PMXvP32bLKzv6Zfvyjef3+6Y58ZGRmsWbOGuBQtQR3fQRAE9Hkd+PSL\nBaxc1g5BENBplBSUFaBxrXopi5UFOGn+9m/LL9Kj8mjgmDdnn2CyL56jS/tWGPTvUCZJROHaGWvZ\nERSu/mzY9gdDhw4F/i4rVl06cHDXKDbsXICiQVss+Um08ZfVaXmIiooiKngNxw99gsw1AlvuTh4b\nM9Cx5J2ens7B46exiyKdWkcSHByMWq2mRYsWjmv+t9/WcuzYMZZu/YPI8VORKRTYrFb2xXxLj07F\nlJWVIXXxYdCbLxAz/Tkqk55ENFYiDesBOilixTrcAwKoyEjFbrdTkvoHrdu2pKwghxNnxqFy8SKg\n9+MYgjvhrZWh1Drh3aILaUdWs27dUg4dOkRZ2UN4eHgQFhaGv78/Fy5cYNG6XVi8m2CvSCfiyEkm\njB1VSyz36NGDZaveIvvoIiRqb4TsDbz28pirXkN6vZ4PP1+KrfFDeEQGs2rBMyz4cjGuLjqefeZh\nXnjhaVq0aFGjzU/L5nPq1CmysrLYebIcd8+q60Dt5EaRrOp+9/f355P3J5Oeno5SqayqJHSJRb46\nIvb5Zx9k0suzyEu+gM1ajJOwF1/fiej1enQ6HY0bN2bRovf5+OOvKS0t4777OvPqqy8gl8t5bcp4\nZn3+Ixfjl6PTwmsvj3EkQj98+DCvvroYq3UYUMyqVVNZtOjDGmUW/5e4GyOu5XI5EomERYsWsWDB\nAnbt2sWKFSsICAhg9OjRl223ffv26z5WdVofqMq80KhRIxITEx3BLvXUU029ULwN/DPPYPX/bia3\n0qJ4oyLxZvftcvsSRZG583/BLXAuSrUvVquNcynvsG/fPho1aoSXlxdPTBzH+HEmoKq0XvW+IiIi\n+PXXb2vtc+nSn/jgg0WYTL6UlCeh8umBd+hAVLpAii+WObZ7cGQ/Zn3zEylZ0djK8wjV5tG580uO\n34MDfNh+9gy2kAgkUhlFKSdoG+pDUFAQY8f0Yv6SJ7EaXFA66Wg2ZjY557+q1ZeMjAx2796DKMK4\nrgGUGdLxbOxJ505DMJlM2Gw2x4sGqqIrP/34bbZs2UpWbhpREYPo1q0qSjo9PZ0vV/6GtFl3AGJX\nbWPS6P74+fnx3U8r2R17CqVcxpjBPWgZFYlHfDayv14qUpkMQaHEZrPh5+eHsuwiVBYxZuZyMk7s\nxSl+NXrUSCPLaBjel+LUM8SdWU/eptEE+Xvw4YypVWJs+Q58hj5L0YXTxMXFEdCxatnLqC/BS6NC\np9PVyDeo1+uZPmc+q7ftQ97uXnq2aY6vrx9n9v7K2bNniYqKunS6cHV1ZeGXH7B16zb0FVl07vBU\nLYFXFxcvXsSgDMQ3KJIjq2dSkOEDqr0otDLmLXiKhg2DGDZsaI02crmc6OhomjZtyp+nllFWlI3O\n3Y+SvDS0UqPjvndyciIiIoLKykrKyspwdnamoqKC48ePo9FoiIiIoGnTpny78F0OHTrEokW7yEgX\nefnl5bi7z2PJktkEBgbStm1b1q//rta92KBBA76YPZWKigo0Gg1Wq5UzZ85gt9uZN28FCuVLeHpV\n+c7mZMNvv23n3ntHXHVObgV32j/xbqb643DAgAEMGDDgpu330jkvKCjAzc0NqVRKcnIyiYmJV/TP\nred/l3qhWAc3M+F2XYEft7Mk4I1yt1kSrxZkYzKa0SncsNnsf829ni8Wbcc7sBTRlMqT43swcECV\n+DAYDFc8Vnp6Oh9+uBiFYjUymScl+sPE//YiLg+3pijpJ4Z2buXYtnHjxkwY1YOFv2xBptCh0blR\nWlrqsNa0bNmCgTl57Ng1H1GQ0jrUi369hyGKIoMGDWBnXCG6Dq+hcWtIwclldIysGayRmJjI/Q88\nR6V9BAgCWsk8Vq9c4AiEqI6mrHaMr07BoVKpGDmythD449gpZBE98AmLBCBXkHDg2CmspsNsTbMT\neP8MLJVlLNz8Je94ehCgtJB58iBuDcIpSjtPA7XoeMlMffohPl/yI9m/lxPu78Xkaa+Rm5fPL9v2\nY4lLIMpNxadrltQqS/l4Xj7LVn+A2WSiudWKa2kAaUeKUOTEM2hYz1p9nrv4R+JMjVCEyaBRb3Yd\nPMWwPk5IdJ6XPZdubm6EhDbkj1Pn+P3oKVQqFY0bN77ieddqtdgqC7FbLWQnHEOQvwNWJTKFB5UV\nY5jxydd88fVK/Hw9mPrKkzUi4DUaDRPH9GXp6l/JOCfDRWXnsbEDa6S++m3772w9kAASBb46G0kX\n0ikUQ5FKRIK0v/Hem88TFBTE77/vIS0tBK12LoIgIzf3a2bOXMC8edOvWD5OEATHqsV/Pp5HSrYW\nBDnxcQn4+1ziUyy4YzD8vTR/p7jTz5Q7xe2yaK5du5ZJkyZRUFDAkCFDaN26NVu2bGHPnj28++67\njo/LhQsXXjGl1X8r9SX8rk79DF2FGxGKl4sOvl3VXm4UURQpLy8HuGGReDusBxKJhH79OhCz83Oc\nvUZjKE+gqDie6AE/4uoRiNlYyuIfPqJ9u2jc3d2vWsc7MzMTqTQMmayq3rCPVxsKCqH46ASG9OvO\nlMnPOPy7iouL2XQggaj73kHj7E7hxUQW/7yBaVOecvghDR3Yj749u2Gz2dBqtY75bdOmDS8/mseX\ni1+nQpAT3TyEVyfXTF49b/5SKoUncfZ7DBAoy/dl7rzv+PLzj2tEU+bm5rLzQCxGi4U2TRoRGdkc\nuVxeO2+bKGK320hKSsJkMiE3liAqRY7EX8Cr/RPIFCpkChXSsG6cv5DC42NGsnHHbi4ejaeNjztD\n7r/H4VsXHh7OvOnvYLVaHcu/vr6+NI9ohslkQqPR1HntDOjXl/59+zhE7rlz57BYLAT1G1ErAbTd\nbuf42RQC75uMyb6ZnIvx2Jw8yUw5j/riKdLlbmRmZhIREVEjqOdQ7BF+PpKMZ/shlJqMzNsYw0uj\nFISEhFz2vDdo0ID+7YLYumcOgt2AteIQHp7jEASBMv1BJC7+NGnzFRcL4pn02if88v0sPDw8HO1D\nQ0OZNmUiFRUVaLXaGr7IZ8+eZdPhHII6PY1MrmTrmsWU5zsTPehxZDIZx3Yu4oWXpjJ0YC8SElKw\n27shCFVzqlD0IDk55prLx22O2U5SfmOCIu9HEAQy8hVkJP2H0JA5WKxFyGQb6dRp0mXn4b+du3Hp\n+dLo95vFyJEjGTlyZK3/jxo1ilGjRt3UY9Xz30m9ULxGrvehcqklztnZuc62d+OD6lJMJhNSqRQn\nJ6cb6uetGOPl5m7ypMeRyZZw7Ph0/LwlODu1x9WjqkSZQuWCIPegpKSkVn68uggJCUEUEzGbE1Eo\nwhGEkwQFqtj92wqOHj3GhEnvUGmyERUewKDenUAXgMa5ar8egeGkn93iSKZeTXXai0tFuFarZewD\noxk4oC8WiwUvLy9sNhtWq9XRTq+vRCr/25ldKvejtLSyRn+zs7P5YlUMkqjeyJQqTv+xk4kyGRF/\nCTapVIpcLkcqldI2sgmzXp1BUYPeCHId4vFf6P3Mvbg7a0ksyELrUSWOrcVZuIS7otPpeHDklcvp\n/dNHsFq4XIlLRW71srDNZsNkMtXazlmrorI4i5DW/bEfiSF1x49IWwRTlJvNnD+8QBuKpOhT3n/l\nQfr0qUqYfig+Efc2fdB5Vc2dQd+J0+cSkclkvDl1OklJ6UREhDH94zcd14QgCEwYP5b20ac53dGH\n6TMWYbUlUFFSisBeGvc/jEzlgmtgZ4ryd3Lu3Dk6d+5co79SqdSx3HwpObn5yNybIJNXWVYFXQjW\n3Cqr3ukzCSTlKMkqcuF8Zhqu0jgkkkzs9pEIggqzeT1Rl9R8vrR8XPX1cmlS5+zcYtTO7Rz3SePm\nPajQHEYqzkCrVfLUUxNp1qxZrbmu585zN78X/tuoz6N4deqF4lX4NzdstQgQRbFOS9ytys14s75E\nRVF0WMpuVCTebK7UF4PBgEQi4e2pLyORSMjKyuKZSR+SlXoE/5C2lBScRy0trBEFeiX8/PyYM+cN\nXn55HEajGypVGd98M5OsrCw+/XYzqtaTsRWksz1uMxfTf8a5QUvMxkoUKg1lhdloZfY6E+deKhIv\nnV+lUolSqWTn77v548hpXJxUjBo2EB8fH4YN7cH+g3MxKxsAEsSKuQwbUjMw4/ipeGxhHfBt3Jz4\n02c4VaTg3AefsXDWu4SGhmK1WrFYLBiNRpKSksDugpfEHewCyrbP8OOaH/hyxlu8+/m3XMxOQDSW\nE0423brWrjN8uxEEgWcfHsmn382jxLsVSv1FJgxsT/tWzXh91ha8Ok9HECQYSgYw8/NX6d27F4Ig\noFLIsRj/Xpa2GSoQnOyMHfsM2QUPoFBNY8/+9Tw07jk2rP8BvV5PaWkp7u7uVcFAUVH069ePgwcP\nIpFImD47F9FedW+Idht2Q851JUf2cHfFWpKE3d4eiUSCTlJGYXkqqXEbiD92AplNhm/IcNz8ulMQ\n/wKdOxv4888+SCRKmjb1YNq0z+vcb11JnUNDfNh1aC8uXhEIgoSc5C0M696KZ56e6LByXvoxcru5\n2z+UbzWXG///8pzUc3dSLxTr4EaXWG/Wcu2doLr/1X5uN7P/t/LFUB1R7uzsjEQi4eDBQ7zy+mdU\nmpzJjp1Eg5BQIpr48+brj15XlOeQIYPo0aMbeXl5VYEbSiWLFy8mLrmY4iPvYM5IQSK0JsF+gKee\n9iB3/7eg8UBhKuCZBwbXyjNZbWmGukX4xs1bWLo7CW3UIIzFucR+/CWz353CiBHDKSgoZOkPk0GA\nCS/fy6hRNX0Pqz4WbBw9cpy9+xOwlYeSleDLvaMeZ/OmHwkMDHTUoa2srEThE4Vn5D1V7cyVlJ6e\nT0hICHPemcy5c+eQyWQ0bjzysmXkbjdt27Zhtq8PKSkp6HQhtGjRgu3btyPRBP2VFByUzoEUVFRi\nt9uRSqUM6NKOL1dvJaOkELvFhGvWSVzaRlJY7IzW+UkAZPLJXLy4iRWrf+VwciEyrSvukkqeHXcv\n3t7eeHp6OiLQTWYbs75+FdGtO0JFAt1auV1TgEw1kZGRdD6XwsE/v0Ei19JUk8PZjGMcPJKLxaJG\nqjiL2TOSkpw/sItSnn32UWbODMZkMuHv73/VlFqXWmgHDxpAXt4vbNg6hfj4RCQ2KT+lBxB/+i3m\nzHnXcV7/vz2jbhb/60K1nnqulXqheA3UVR2jLkRRpKysDIlEglarveL217rP6+njjQbJXNr/G6k7\n/U9u9cP4nyLRYrHwxtTPwHkqHk6NcGtgoTT9Gd554/EaUX3XaoV1cnLCyckJURRZunw1P/yZSb7W\nH1vuUZC+id3eE8F2ntUrHmfHjuVIpVI8PT1r+dldS2DQuh1/4tP/LZQ6D+x2kYvl+cTFxREYGEiF\nRMb9E0bTu10rIiOb12rbtlULdv+wmgOnihAlA5BeOI2z+jnKKlcTE7OFRx4Zz68bNnMmOQONFCQX\nYzGG9kDuEkRh7Lf0iG6OyWTCzc3NsZR6tYCf201gYCCBgYGOv5s3b460ZDllOScwV+SS8vunaCSF\nPPH8yzRq0pR7+nbj1YfuIT7hHHKplJb9HyAvLw+7rRRRNCMICkTRgMlUyO7zRTQc9BRqjY78lHiW\nrt7Mq88+VuP4I0cMo1FoMOfPn8fDoyfdu3e/rspEEomEB+4bTq/cXCwWCytXrsFo6I+P938oLs6h\nQnyPpPyDaD2jUFemolQqHcmyrxepVMrECQ+Rm5NPTloEHp5PYbUWc+TItyxd+jMTJ47/V/ut5+ZQ\n1/O/XrzefuqXnq9OvVC8Bq5FUFyPSLzWfd5O/tn/6nQrdyOXiux/ikSgKhlzZh4GyVIQJLjognFR\nh5GXl3dD6R/S09M5mKrHtfVQFMfSMUgCoTwOilshlfkilXogimKdgRLVgU3XEj1edV0IgAiInDt3\njk9WbEGI7EGDBkEkbD3A8xIJERE16017eXnx8rh7WdfvPgQxGI2iP3JVOObKqvn64usl7C92wrnp\nMCoyzhIcmETFiY/Jz89Hn1PIequVU8fi+fSTtwgNDUUmk9W4Rk+fPk1qaiq+vr60adPmlr7QSktL\n2bdvHwDt27fHzc2tzu0CAwOZ/cELvPbWVM4cTUJQTcMgKNi4+TOidJEcXbCCj55/kL69ejrauLi4\n0LNnU3b+PhGbvQcyyXa6d4vEKSgCmaLKh9SjQVMyTmys85gtWrTAx8eHtLQ0Lly4QHh4+HXNhSAI\n+Pr6ApCTU4IotvzrvkvF6NoVwc1AYCMPWgx8m+37j12XxbIu0tIKkEjCSLjwBnYU2MxZHDum45FH\nrI57vLoKUb1IubOYTCZHbsN66rlbqBeKl+F6hJzdbqesrAyZTHbZCM9bzY1GZ1+PyP033GwLKtS2\nJFZz9GgcFbIwZMFvIlf5UJz2NbbcPwgKevqGjmexWJCqdXh5uaPVlmCuKMYuK0EiEZEIe9BqDTWs\nXdVcT0Wbe/t34btdi9BGDsJYkoMm6yBfbztDUdsnkJWHk3T8HF0jWnLgRHwtoQjg4+PD5GceYc4X\nm7AKoZgr9+Ok3EjXrl/x9txlBI77FIlUimtwM7LyE/nP87148qnXMYmvoHYewrnUGCZMnMKO7asc\nqZzMZjM//bySBT/sAuf2UL6VoT13065NFE5OTnTo0OGm1CuvJi8vj8eeeZ20Ijml2ekoKWPB3PcY\nOHBgndu3adOGpmHhpKQ/goXBmCUqRIsruSd/wWPUo2zfe7BGChtBEPhq7gzWrFnzVzDLMFq2bMmn\nv+zCYjIgl8kpSDtLkHfd4vTYseN8vGgFdu9m2IoyGNwmmCcfHfevru3OnVuxfv0KbLa+iFQgKPJR\nab2owJlDJ5NRuNeutnG9NG7sy8bflqIK/AKFqhHlpetJuPADoiiiVCoxm82O6OnqACSpVHrLn2N3\n2npWXdv7bsJgMNw1rh711FNNvVC8Bq4kwqpFolwuR61WX/OD726xKFaLRKlUesdE7r/BaDRiNptr\niUSAxJRMojrdz/nMBMzlSaDS0qppBAEBATd0TH9/f3SmLcilJhr5wdm0VCrK1yEVVhEcHMRPP81z\nRDUD7N+/nxdffI/8/Dxat27J4sWz64yEvZQhgwbg5enBgaN/4OSmoCw8iCPnFKhdmqDwbIVR78bJ\nU1vpEXX5MltPPz0RFxcdmzf/jKurE5MnL8LHxwdRtINoB6rqRot2K1lZWejLnNA6PwSA1vlBysqW\nkZ6eTmRkJJWVlZSXlzN/yTp0bZYgV3tQnnOIz+Y8iJtbbwQhj7ZtXFm69KtalhCr1UpsbCybYraR\nm1/EsdjTVFZW0qJFc+Z++dFlg4q+/3ElKWXeFKScB9X7GCz5THj8LbZs9qNly5Z1tpFIANFK1eUr\ngmgBQYJosyKR1r6mZTIZY8bUDAYa0T6V9TsWOXwUHxl3b612drudd2Z+QWWjfrh4hOLVcSwxWz6l\nZ+fztWptV7N5cwzTps2hrExPz55dmT37fXQ6HVarFblcRouWMg4f6lKV4qY0BO+eX6F09qPk1FnO\n5Z65YUE1eHAfFi8/gUHIxGq6SFBIAzyUkeTn5xMQEOCoN1wdBGM2m7Hb7bdVNP4vUpdQNZlMNXKN\n1nPrqV96vjr1QvEGsNvt6PV6FArFdYnEW8X1Cs8rWULvFiF7Ocxmc43clJcS5OeJ4mgm/fo+gslo\npDA1h64tW1FSUoJOp3MEBFxpjGazmTNnzmAymQgNDcXLywuLxYJOsHDo50/QaDW81Lc5gz9eQWBg\nIDKZDBcXF0f7tLQ0xo+fgsUyG7k8iiNHFjNhwmQ2bfr5qmPr2aM73bp2wWKxMPvz+ejcWlAevw+T\nzYLNosd8ahu9Hv/osu0FQeDBB8fw4IM1hVDfNk3YFrMATeNOVF48S6SrSLNmzbBaCpDYypBIddht\nZVgtBQ5BKwgClZWVSGTOyBRV0b3J+2di52OQjkYml3A49hHWrVtHv379OHDsBOVGM6G+nqzaEMOK\ndb9j1HbHmLQPQf4fpOq27PpzCZ37jGD0AyMJD/Bh7JjRNSKH8wpLKc04D5oPEJQdEOR6TOW5rFq9\n4bJC8bFHR7N9xxSsFhtWow0JX+HT/EGEkxsY+PKEq845QO8e3XB30RGzdQcyuZLc3Nxa/oGbtm7j\nnNUZ56BoiooyKdy9HHdnf0pKSurc54kTJ5g8+VNgETJZQ3bs+A+vvfYf5s2bydS3P+b3WAuidhSe\nIS50b6PhTJEbFXl7sGWaaRTcGCHdg8rKSjQaDQkJCej1evz9/QkKCrqmMVVWVuLm5kbzxm4oA0NQ\naTzBXkbZhWJcXV1riNBL0+1cKhovl9i7npuPwWCo8bFZTz13A/VC8RqoS1DYbDbKyspQKpX/aqng\nVpTcux5u93L5zRqv0WhEFEWcnJwuGwE6ZMgAYuM+5/Tx6QgSOe6SDNavzeL772LQqOGTma/QpUvn\nOttC1Vf9Z18v5XyFCxKVC8qNP/Di+GF89c1yEq1RePUYgT7tEMVFKURFRWG326moqMBgMHDmzBnk\ncjnnz5/Hbu+CUtkFQZCgVk/h+PFIjEZjrRfBocOxbNp/GJPFQp/oKPr37e34rVf3jqzZvADPwImU\nnzmDMXszT47rVmdt56vx9ITxhO7YSULKEQIj3Bk2+HnUajVjH+jP8pVjsIrdkQn7GPtAPxo0aOBo\nl52bR5G1gOTDzyKzy6goPINU2uqv5WYBo7EVK1avZdPBEzQceD9eQf7ExPzK8eNJ2H0HoHDvhDE1\nB1EzGKvMhMy5Ofk+2aws80YdV8S2P15h6VdzHPPSuX0UPy/fil2eBNoL2JU2ZLYELBany4ysqlbt\nz8tms2TJKoqLi/EL7kloIy0Dek6kUaNG1zQ/ycnJvDx1NkbP+xFkKjZtn8HcmS/Rtm1boOqe3xZ7\nGr+eoyjTuaMNjaZo2wI0GQdp0KDuZfGDBw9isYxEq62q4qNQvMHu3f1ITExkz6GLeLb4DkEiw2wc\nzJ4Dowho3Iygji+i1LpTnHECrV6NWq3mp5Vr2Xu2AokuEIo2MmFEe9q3a3vZsZjNZj74YA5bfzsM\niLRsGUTRxTmYlMGIpjRefGoYLi4ujjRY/6Qu0Xhpjsb/BtF4p5e+68JkMtULxduMtd6ieFXqheJl\nuFTY/FPkVItElUp1V93UN9On8m60KBqNRoxGI4IgXNG3SKVS8eG7r5CcnIzJZGLySx+it7yIR4Ne\nVJafZcorb7BxQ3gNC+ClHD9+nHOVnoR0vQ9BECi8GM7in1ZzIV/Av+9oBEFA5xPO6a2vkZubi5eX\nF/n5+Ux+5QOy9e6I1ko8NXnYbHZksqo5tNnSUCjktZZnT506zbzfDuDRYwQSuZJle9bh4qyjXduq\nerxt27blo6kPsfC75RgkRu59ehCPjH/wX82fTCZj8MABDP7r7+LiYmJ27yMoqjlPe7mgkUkID3+S\nPn36ONpkZWWxOjYBr1FPYHEOpDw1AUleHPLi5UiE/2A0XsRoXkGatjsGpwiS4pJ4YFgjpCGRGI6c\nAosGicIZ7OmIMgHBno3VS43g7oO8QWN8W3YnfuFL7N+/31HXecTwocTEbOXXg4sQG09DoZCjNB5D\n5+vLus1bOHw2GSe1ktH9exAeHk52dja7Y+OoNFkY9+h9tI9u/a98z9asjcHg+QDezccCUKJy57tl\n6xxC0W63YxOha8f2HDh2guKcM4h555kwojcajQa73V7ruK6urkil+x2ixGpNwsvLFYPBgFTuhiCp\negRLZFqUag8eHtaBFTHvgsINnayMN6c8Tnp6Ovviiwjq8hQSqRRjRQeWrVtAm+jWl/1YWrp0OVu2\nWfHwXY8o2og7OY3HHwuia9dOeHvfe12R1NWisTq1UrVovLRU5L+Z77tRqN1O6hq/0Wis91Gs566j\nXiheJ1arlbKyMtRq9Q2JxDtlUfy3PpU3gxsZb7VI1Ol0lJWVXXZfFouFFavWcTQuCV8fVwb160KJ\nXoZbQC8ANE7NKK0IJyUlhVatWtW5j4rKSqQ6b8fcaFy8KDFYEG0mEEUQBES7DdFucQRxfLVgKRet\n/fBo9Rg2q5XMk+/jH7CPnOxx2GyRSKVbmD79zRovVJPJxItT3uHo8TMIXy0kYuhIWt0/jkPxRxxC\nEaBPn9706dObyspKlErlTXHANxqNLIvZgSE0GqcwbyoS4wmTljvEWjXFxcWUKlxRBTWnbVhTbNEt\n0ctLyVz5Ewb9Wioq9TQaMZ7QAWNJKyzEpFRxLjERd50Wuc2IpfwAVm0YghrEktFIFE2xG7PRNB+F\nQqUFuw2JWkdZeQXJyckUFhbi7+/PlJdeQLrzBCnGPJQKGd27v8zpX+aRLPfCr88jFJQU8dnKX5k0\naiDr/zyJvFlXVFontsYfxm47SucO7a57TswWGxL530vgUrkGk/nvhNRyuZxOEQ3Zf3Q7nZp3RJ+d\nhj1PyuzZi3n99U9Qq+XMnz+dXr16OdoMHz6c77//lcTEx7DbQ5DJNvLRR+8RFhaGqzqX4rR1qD3a\nUZq5iYgQZ+4bNYJBA/uh1+vx9PREpVJx9uxZJGp3JH+JQqXGBbNNcJRHrIvYI+dQaR5AIqn6MFGo\nhpKY+BtNmhSybMVvKJUyHhjVn7CwsDrb18WlORovtTT+s7743RYg8v+JulYc6qnnTlMvFK+BalFX\nLRI1Gs3/S4fj6xWJd3Jp/FIuFYlXc6z/asF3xBw049Lgfs4lXiDu1HcglmI0pKNSN8Bq0WMzp+Lp\n6XlZsR7asCHs3Eh5g6aotC7knNpF//aRJJy7wJ/756PybYUpK5bebRri6emJ3W4nLSMXtefDjlyW\nCvcO9I2U0aFtJHl5eURHf0F0dHSN48ye/RWnjusQpLEIUoH4TU8glf9Mmx5Rlx3ftZwTi8XCrj/+\n5OCZ8ySeP0+gqyuDe3enW7cujrnLycmh1MkzW5lAAAAgAElEQVSboLCmAGjaduXUxh8YbLHUyKGp\n1WqRlhdiL9eDCKaCLFRqFQ89NY7nxo7mjRmfoe/0CBqvAFRJpyi32tGbZPg4wbjOzdh15DQZyXPw\n8pXh5GxA8MgkW2+g4sJRNAEhlOxbjWtpBilp7ny76RAS94aI+b/wyNAuhHjo6NJtOFK5HH1BLnn5\nhXR4eBhKJ2fULu6kZ7Xm0KFDWHxa4htQtRTv27ILR49sriEUS0tLWfHrBg4dP41ErSG6RSQDOrWu\nlSpp8IDuxPz+JaUaDyRSFabE+dz7cs2k5mNHDsdt5++cid9MIycN87fvo6joNdTqkZhMx3nqqYns\n2rUKlUqFUqlEp9Oxdu1SNm/eTFlZGR07LqJp06o5X/jVB3z8yXxS036he7Mg3p76rqP036VBT/7+\n/qiN2yjOvoCzZxC5SYcIC3C9ouUpuIEXx0+eQufSAQCz6SRGUwmffr0Hp5AHsZZXcOL9Jcx8//F/\n5cbwT9FYXUKwsrLSkYf1bk+3c6dXTOqyKNYvPd9+bPUy6KrUz9A1YrPZqKysRKvV3pQ8V7fConil\n/VUH3iiVSlQq1TXlebwb+KdIvBIWi4Xfdh3Fv9MCpDIFzl5NyI5L5OGHGrLs50kYZVHYzed5fGJf\nQkNDa/hnXepm0LBhQ569rzvLN/5IodFMn5bhjBpeVZkjZus2UjNOE9YujIED+jnmKSoilKT9G1E4\nhSEINmyFO2jdohPDhw+/bH/37TuGVPoklZVWRJkS0TqKhJiP6f163cEX13pOvvnxJ2Kyy0kyCcgj\nhnEqIY7Y7zfS5+BBXHz98Xd3JSK8EZiNjjZWswkJtaMwg4ODGdwsg8Xb1pFxYi8KUxl+dj3xZeWM\nO3gUlUSkJGY+XgOewMXDF/G3BfS7bwid27QmLGwoU0wmLBYLCoUCk8lEUlIS5eXlrNy4hVMbZ+Du\npOHhB4bw7aaDeN3zETKVlsrCTH5c/y4vPfkgf+xZi8TJBUV5IZENAzBX6FE6VYkosbIUlbMK26Xj\nMBlRyv9+rBmNRt74YDYn9M6Ue7RHcHKmTG+ncPdRntBqa0Ret27dmk+mPc6ylauwWmyMfukeBg0c\nUGM+5HI5wwb2ZxhVtbVnvjcPtXokAApFa2y2SN775DOkfmGIpkqGtm/OsEEDGDXq/9g77/AoqraN\n/2b7bja990YooQcSIPQqRURAQZpYsYAo+OpnQ30FRcXeC4INEJGOghTpvZfQAoT0bOqmbC/z/bFk\nIZAgKM3X3NflJbs5Z+bMmbNn7nnK/Qy95D5FRkby+cfTcTqdmEwmd8UgURRZvWYdv63biVwuY9TQ\nPjz5wJ189/OvFB6tJDEulNHDhrrXQ22E45FHxrB79/+hKzqGKDqIjSpFlIbiFTcWrwBXdnaeqZQt\nW3fXqvt5NbjQmiiKops0VtcXr/7brbKnXIhbbUz1ySz1uBVRTxSvAKIoYjab0Wq1/0gx1AtJ4s2K\nf/krxPhqSCJwLrgenA4rUpnrPolOKx07dmLIkDs5c+YMoaHDadSoEQ6Hg8LCQkRRZOHyVWzdfwKV\nQs7oO3rQvn0KSa1bkdT6Utf0necI48UY99BosrLf5sCeuwEHQ/p3YPDgQe6/V1VVUVVVhb+/v9ti\nFx0dwvYdO5Aq2iMIEhziITSB4ezdf7BGMsmpU6eYPv1jCgqKue22TgwZMpCqqip8fX0vkZhZufJ3\n3v5qKdaUSZgcerQyHSHNO6Df9js/ZlTQO3Uo+7PPkLZqHXFRkZzcsR6VXzCW7JP0a9XkknkWBIEB\nvXuQ3LIZaWlpOJ1Ovpi/DOG28QTFN6do33rUG78j9NBPeKiUjPjvMyQmJrr7V9evBlAoFLRq1Qq7\n3U6bNm3cEizHjh1D4pOLTOUiSmq/MMokSlokNqZ5k0aYTCb8/Pw4cyaDj5fOR9+gDY7KMmJMedx2\n9z2Ur/yDzAPbkWs8sWenMaLTeYHq48ePk233RxYcjW/rAQhKDem759I4OYGcnNxL5q9NmzZERES4\n4hEdDsaNm0xBQQk9eqTwxBOP1tCL9PHxAYzY7WeQyeJwOiswGI9QFTORxDvGYreYWfLrbOTCKmZ9\nt5SzmTk0ahjH9GnPXDZrefWadbw/Zzteze7FYTUy5Z1ZvDPlQV5+pqYOqMFg4Pv5S9h/LBMvDxVj\nh/YhLCwUmUxGQEAAc+Z8xOHDhxEEgRYtWvDy1I8ptlvc/UWHBZns2rqJLyaNdru9BmmUy+Vur8C/\nPUaxNtRbFG886uVx/hz1RLEOVG9gVqvVbRG5liTxRlkU/2p29s1OZrkcSaxrbFKplBFDuvP98vdQ\nBffAWnGGeP8SmjdvjkqlcpOvU6dO8chjL1Jc4qDCkEf8baNpN/gFLMYKPl/6HQEBfrXGbuXn55OX\nl0dgYGANIme1WtFoNMz88j3KysqQy+XnSIQLG7ds5fuVm3CqPfEVzUy+/x4iIiKYMmUyi5f2xuw4\niiBxoPUvJLbP4xQWl9U458CBo6msfBhBaMCBI2+x5Ohpug4ZinP3YQY1b0hSq/OSMW/PmIVC0R9B\n3hSrwheT/ncqzfuxVRbj02cI/nGN8IttSObCHO5ObEgzi5VyQylhyY0vmx0cFhZGWFgYaWlpOIIT\nCGrkcqMHp/ShYP9vvDDhIQICAv7stiIIAnK5vEZiREBAAJSkU5l/GqVfBEUndhCokeDt7V3j3jdr\n1pQXvTxJP3Uaj2h/WrbsgVqtZsyd/Th27Dgmq56Y3u3ceplGo5G9e/dSlncaSXwYFZmHsUtl2CrL\nsZSXooyumdBhNpv5cemvFKgCMVlt/PT2GziK7kIqvZvDh7+goKCYt9561d1erVbzxhvP88ILw3E4\nUnA6D9OgWRjxPVwWRplShTOkAS+9Og0h+GU8EztzvOA3Hp3wIosXzKxzP1m1fjdeTUfjFeyy/BVU\nDmTj1t1ul3U1vp+/hD1loUT2GYO+KJfRE5+BMj1SqYzBd3bihRcm0b59e3f74UN68OqM2ViMg3DY\nqvCwrKVb1yf+9J79VVx4r6tJo81mw2w2uwn3zXb/3kzUJ7PUoy4IgjALGAAUiqJYZyySIAjJwHZg\nmCiKi+po43e5c4miWPpn46knipeB1WrFYDCgUCiuyKJ1q+HvSvjcLFytJfFCjBk9nLDQ9RxMO0xI\noDeD7niuxhu6KIo8PmEKJZZH8YnpTfGZV0gr8aSpwYS3TwBCeFtOnc64hChu2LiJNz9ZgOjZALEy\ng0dH9mTI4IFYLJYasiGBgYE1+uXm5vLJ4nUc90ui0mzHw16O9fNZfDxtCuHh4bzw0kS+W3sC/5b9\n8IltRdGGz2jW77w8zrp16zCZuqJSjcPh0GMIHMoxmY5R7btgNRlZ8dvPNG6Y4E5qqKoy4KvpROmx\nDeATgr3yMKIyE4epgkZxNavGyOXyOkWi64JWq8Wu1+GwWpAqlFgr9QgWQ51JFZdDdTZtREQEU8aP\nZsILT5KjN6HARnByIhUVFZeU7ouKiqpB0sFF2JKSWtf4rqKigvsensTZsgAKS0Us+95C0rIzNE5B\na6/i9JYVhPebUqPPwSNHyPGMIq5dV/bt24ulwd3Iq5qhoDtOZ2t++imZ6dNfdrvnHQ4HglRG597t\nsJurGHH3JNLzijh59gTBzZJx2u1UpB/ETiiBoS4Xtk/EXRQeXUB+fn6dsYFKpRy7xej+7LAZUClr\nbtWiKHLweBYRvUYjkco4fqaQIiGFSG1nPLRJLFryHxITlzF06GB3n7Zt2/LmFBUbNu9BpZTT77ZJ\nBAYG3hCyVtsLgs1mc3tr5HL5DZfbuRUtmmaz+S/9lurxP4fZwMfA93U1EARBCrwFrMJV87Uu7MNV\nD1YAooBqS4QvkAnE/tlg6oliHTCbzRgMBjw9Pd0b2rXE9bYo/l0JnxsdQ1mNv0MSqxEZGY6Hh5rY\n2Fi02prae5WVleQXVOAf38dVwkwRgsEioUxfhpe3F46KArw8w2r0MRqNvP3JPDzbvYbaOxSrUc8X\nc18guW0rtFotWq2WqqqqWseSnZ3NjoxSHD6JyH0jKa06w/KV83nTYECr1fLIg/dRafySjbsXok/7\nmaHdk4mKiqKkpAQvL69zD7Lqmttm0GiRyFwvgAq1BlQatxXi3Xc/4mxGGlZbP7x8uhDk2xND+VL6\nDu+FRhVG/sm9FEucGHMziJear1i0+UJERUUxKKUJcz9+Al25Cae+kNG3dfhbLyKCIGCxmPFKaEWX\nvhORefqRs2ken37zPZMff/gvJUb8MOcnzhiT8E95Bq3FwLEdj6BpmUSTKH80Zhmb3phJk0VLiI6O\n47vvPqFx48ZUGs0ofMLOjUmCoNbilJvBBmBHEAQEQcBms6HT6fhl8TJWHDDi3XwCZn0+s37+mWnP\nPYpu2WryzuzHYaqia7iKsxIbDrsRqUyD3arHaXMJv9eFkUP68MLbs8mvKsRpN+FVuo4+Pf9zyZz5\neGowlBXgFRhJfkEJUqscqcwTiVSNRN6Xgwf3cnFoZHUpQ6PReNNeHqtfEFxyQXYkEgkWi6Ve2BvX\n/ufv73+zh/Gvwq3oehZFcbMgCDF/0uwJ4BfgshIPoijGAAiC8DWwWBTF38597gcMvkxXN+qJ4mXg\n6emJTCarU5T27+J6vcnfqjqPf4YrJYl1kU5RFPnsy9ksWnUMqSYawfQjrz03lnbtUtxtPDw88NBI\nMVamodYm4qPtRFXaJCobO8nKEGiiraRt25oJKHq9HofUC7V3KAAKjQ+oQ8jNzaVt27aXlQOpqqrC\noitAo4lEIvdAbldhqbJSWFiIVqtFpVLx0jNP8h+zmTNnzjBv4za+2XsMe1kJPROi6Nu3L2+99Tll\nZe/idMYgFH9HUuP7EUWR4ozT+DpdZQyXL1/OJ5+sQKNZjWCSU1X+Il4eX7Fg/gckJydjt9vZsHkL\n6Zm7CPXzoc+gMTWymy++D4IguGMLL5xrQRDo2TmVucs34t96JFrfIDYfWcRvK39nQP/aRaevBKfP\nZiGNT0XlG4Qoivg07cqpzR+gUCj+UmJEvq4MqZdr/5RKJSi1AXiHRNAsJYkfBvbCZn4dD1VncnJW\nMnz4w+zevY6okGA27T6KNSqOBvHxKPQfYavywoIEqfRrHnhgNFVVVfywZCU6tCzaeBTfiO5ogxLw\nCm1CXlkGWVlZvPLkI+h0OpRKJYGBgRjKDCz87XFEVRKCcTsP3z8QP7/z3qCLLVstWrTg/VceYdPW\nXSgVMnr3fLbWcodj77qND76fQ7lvItKsP5CX2lDHPIUoOnHa9xITE1KjvcPh4LVp77PzsBGJPAA1\nc5j28qNXLEh+rVFdwu5CYe9q1zS4LPTVlsb/RdSV9fxPVNSox42FIAjhwCCgBy6ieCVkooMoig9X\nfxBFcaUgCDOu5Hz1RLEOqFQqHA6XJUcQBLfsybXC9bLY/a+TxMvhxIkTLFp1nOA2byKVKTHozzLt\n7aks+yXZvSFLpVJee3UC/3n2CSz6pjismTw5pjd9ejdGoVCQmJh4CYEKCAjAU26kLHs/vpGtqdCd\nRDBk0qBBA2Qy2WXXRlxcHNryYiy/v4vgGQD6InwkXGLpVCqVLNq0HVXnfgSER2I1m1m9Yj6N4mL5\n7befeP/9LygoOEG7dgOQeYvkzP+aMG8vhvbthUwmY9OmXVitd6FSBaPVgt0+EU/PV0lOdpElmUxG\nr+7d6AXs27eP7t0HkZ+fQ2JiM7766l2ioqKw2Wy8OnUGK1ZtAmDwwO48M3nCJde0dcculK2GEZsy\nAIBKL2+W/zHrLxHF9PR0jh8/TrEuH1u2DrHNbSCRUJlxkMTQgDoTI2qrQ/zDD3N4/fWPMJuNNG/e\nFHtlJo6wLghSJfKybDRn9pAlLcdhDUcmaYdMJkUmG0hl5Zfk5OTQsGECA8rL2bhmHk5R5O37+7Nn\n2150umX07DmIe+8dxa9r11Po35iIpm3QnLVSbtKgzz6IX0wbRJsJiUSCUqms4R5//rmn6NplG2lp\naew/GcrOk1nkz/iYcSOH1Fl/PCEhgYSEhMvOXZMmjZk6yY/MzEzMHQYy/c2vKCqegM2mp1FDgbvu\nqpn8smXLFrYdlhDWYhqCIKEkdweffPET78948arv2/VA9dzdKI3GetdzPf7B+AB4ThRFUXAt4itZ\nyHmCILwE/Hiu/Ugg90pOVk8U68D1rnt8PcgnuGKzroXO4410PV8LkghQUlKCRB2NVOa6do13NHlm\nl/RI9ea7ees25qzaReOefbCVZHL/kLFuCZv09HQWL16Mr68v3bt3dwfcKxQKpr88kZde/4S8NCdK\niYVpz427ouSN2NhYhg/qypK1p7CZlSit6YwaMeCSyhhWq5VKu4PwQJflSKZUIvUPorKykgYNGvDu\nu9MwmUzurNFdu3dzIP0Mqzdtpk+XzoSGBiCVHnU//ByONEJDXfGS5eXlFBYWEhgYiN1uZ/jwcRgM\nryKXp3L48FyGDXuQrVtXMfu7OazYbsC722pAZNGGZ1DKP8VucyCKInfddSeJiYnIpFJE+3lJGqfN\njFwmYePGTew9cpwAH08G3d6/zso31diyZStTv/wFZ3QnnHoptjNbyPvxaWQaH/ytOhRR4aR2G0yF\nXkeDmCgGD+7HqFGjUCqVl9Qh3rJlCy+99AVO588IQhAHDkwmsWkBRVvuwGq10Te1Bd3bNWRP2jGk\n9kwUShugweEoAMrw8/NDFEWS2yTRsYMrAUQQBO4ZUlNHUaevwiveFQ/ZrnUiq9dspiD/JGmLX6cq\n7xj/tzeY/ystZ9iw8z5fQRBISUlh2fqdOJKGEdagNbqMo8z4ag5vPj+xVstuQUEBOTk5BAcH1xoi\nkJ2dzZ49e1CpVHTr1g21Wk3r1q354OMv2X1Sjco/hBkfz2by4/e64zxLSkoRVA0RBBfZ8vRvRMHp\nskuOfbNRm7C3zWZzazT+Lwh717UX1mc933jcjBJ+RzaUkLbhT3NILoc2wE/neEoA0E8QBJsoissu\n02cE8Aqw+NznTee++1PUE8X/EVRbP9Vq9T/KdfFXSGJdpDM2NhbBNBdjeRYa7yiKzq4jNtLPHYul\n0+n4etFGAno+iUrrQ2nuKZZvmM2AAQPYuHEjT056H6e0Bzg2k5y0nJlfv+cmiwkJCXz3xVvk5+cT\nEhJSI76rejynT59m8Zr1mCx2uiY1o3Mnl8D161NfpFuXNZw6dRq7M4n4xk1ISztK06bnZWRsNhtC\nVQWZaYdo2LotpopyKMzDL7UlF2P9xk3M2pOGR7seWMqK2PXlNzx970iWLHmY3NzHAB+02t288cb3\nbN+xk9c/+x67NhhplY7bkpvgdDZCoXAlV8hk48jP/x6dTsfOPUeRR4xAInM9qJyebXjvvSlIJY8g\ninJmzx7NwoUz6dWjG4vXvEHeDhlSjTfikSV4RXvwwFOvUlFqQEDk1akziIiMoVHjeO4dNoh9R46R\nkVtI0wZRDL69H6+9NoP5Py9H5hdBk4S+hNw2iZzFeu5KCSMlJYUt23by5U9plFdEUJED2Rkd2bnz\nV9as2coPP3x5SR3itWs3YTY/iFrtmlOH4wV0BWPpe2dv9pwq4kylAvmOfbwx5RmUFgc//jgGaIUg\n7OS5557Ex8cHq9Xqvp91ITbEnw0Zx9D6B9GkUQIVRzaTfvA3HI72xPWai+goZdo7j1JWoSc6Lp6G\nMVHExcVRWlpKkU1BeCOXhTewQQty0zej0+mIiKiZZLRhwybe/HwBeCbgrDjDoyN7MeTO87JMBw4c\nYNy4V7E6u4NYSIPYhXz33YecOHGC42W+NL3jGaQyOXnH1jP3lxWMf3gMAA0axEPVXKymHshVvpRk\n/kpqs5g6r/VWwIWk8UKNRqPReMtrNF4Jast6rieK//to1s2fZt3Ox6L+/N9TV9VfFEV3tQBBEGYD\ny/+EJCKKYgkw8epG6kI9UbwCXC+L4rU6ZnXFGOCakcTrcc0XH+9aWRKrERYWxqvPjuaNd/9LmUUk\nNtyHqS8/5d6Mi4uLwTsSldYlXeMTFk+GTYrBYGDKyx8i93oXtUdTRNHJ7n2Ps379enr37g24iJzJ\nZCIiIqJWC1Bubi7vzF2KtN0dKDw8+XTdcuwOBz26dUUikdCzZ08yS8s5qw6iRBPChj1p3F5WRrdO\nHdm/fz/jxk/BYNGin7uMdr260LJhHMM7tK0Ry1aNZdt2EXT3I2j8XRbDzIpysrKy+P33haxfvx6z\n2UzHji+j0Wj4z/SPUQ98FU1QFKbiHH75dgJ2ey5gRhBUiGIRoliFp6cnkeGB7N17CEI7AlCa9gNO\nxyQ06qcAkcqqAMZNfJGnnnmUac8+xpYdezBZdPjc1ppnp7+LURcFzncR7QWYyydjSOzCGZM3v0/7\nmtCYREI7DOfIsU188dkwdHlNMJvnIhacYc8nT+Kb3B5FVBhbDJVY0o6wYdNeJMHDqTz6LLAJQSbH\nZh/N5s23c/z4cXdSRnWMW3CwPzLZyXPrDByOk677WOJD2LBXQBA4tvlbvpu7gKlTX6R//x5kZmbS\nuPF9dZZyrA2d26dQvHItaau+Q3A6GdU+gamrNYQ2fRK5UoPDLlImi2a5TkLb+DA2rN3FqFQT0VGR\niOZKbCYDcrUHdqsZp6HMLbJdDYPBwNufzcMz9XXU3mFYjXq+nPssqe3bEhLiijl8440vsUuex9u3\nO6IocuL0SyxfvhxPLx/k/olIZa716RvRgjPHd7iP3aJFC8Y/kMNXsydjd0ho2TSCxx95mJuFq3X9\n1ibsbbPZ/pKw94UC+7cS6onijcetWJlFEIR5QFcgQBCEbFyWQDmAKIpfXuWxll/mz6IoinVXhTiH\nW2+G6nFVuLCsoNFovCXjbqD2N+drSRKrkZragWXt27ndzReeNyAgAMqzMVfpUWl90OedwkvhRKPR\noNeX4xUaf26sEpDGodfrAdccV1VV4XQ6effDL0hLzyIuMoQJj9zrlsM5eCQNW+NOhDZxuSUl8qGs\n3rmAHt26ApCVlcVph5LYji7pG3t0PKsXzaJT+3aMf/JlTP4vYxUaQVUOu5c9ziu/3EXjRg0vuT5R\nFHGKItIL3W7nrC0ajYYBAwa4v87IyMCpCUQT5IqXUwdEoI5oQgcPDTt2jMRub4tUupbJk8fj6enJ\n+EfvY+eDT6LbexycDlROHU55GCBisdoQJcE4vHzJiIulaPduxo8cTlVVFc9++QkWMwjyN8ERg+hI\nAB4CixlVk0mUWIoJ1AbgGdUUbUQT9n79CkrFAgS5GmTNEMUtVHmV4tM8kpajhlGcfgrT0lVYqzJB\nogWnGkQLUokSmcwHg8HAtl27SC/IxU/tQZeUdtx3373MnTsUne5+nM4glMqldOjSjbMRbXCKIgIC\nmthk0jPnA9ChQwc6dOhQ5zrKyMhgwe/rqDCa6dC0IX179XS7QocP6o/BYEAqlaJSqfji8x/JKD+O\nXB2Kufw4YmQQES1TCEloSpV/EGv3rGRSs6YM75XCvN8/QxLUEGfRaQZ3bEZAQIDbGwCuMAGH1BO1\ntyv7WqHxQeIRRmlpqZsoFpfoUaqq16qASANKS/UkJCRg23AQhz0VqUxOWc4hkiJryjUNuqM/A/r3\ncWt/Vicu/dNwOWHv2uJXbzXUtU9bLJZ/lJRZPa4PRFG8Ipfwubb3/0mTdy/X/UrOUU8U68CNiFH8\nu8esJonVZQWNRuOfd7pKXA/iWa09+HdI4uXmbtOmzXw2cyEms5UBfdrx0ANjkMlkBAcH8/CQrnyz\n6EOcSh80dj2PjRqETCYjNbUNW3Z9jk/Q41hMp5A4/qBVq/fcc6xWq5n8/FSOGJrgHXsnm3L3cfr5\n15n5yZsolUpX3J7N6h6Dw2pBLjt/baIoIlwgsCyRyRAFAb1eT1m5hQpVDCYRBHUCdkkz3v3wM776\n7MMa11V9H/qmtGbO8nl4p/bCUlaM96mDJPZ95JJ5CAgIQGYsxlCQgUdILMbCTOSGQj7//F22b9/O\n1m3bKLSlUqKWsWLNGvr16MEv875m3759CIJAfn4KTz/9LjZbBHaHgEz9Jm1H3EdIs2Zkp5+iuLgY\nk8mEJDgQtZcnVRW5CJJYQARJATJ1NKLTCoLEfb9EpwNBIsPh1CGVJ+AQnYjObGThscTEhOPt440Q\nHUmb1LaULlpKoaQKu+11BG5HItmCt3cVucVF7HaaCEhpQU5hEelLF/PY3cNZu3YxK1aswGg00q3b\nfPYfPMzn63dD41ScDjsV6VuJaxCE3W6/LInQ6XS88e1P0HUwKh8/fty0Eqvtdwbf3t/d5kJL4Msv\njOfh8a9QUbEJc/khApITada0KQBSuQK7wxWL3Ld3TxLiYigsLCQgoE+tou4BAQF4Kyzos/fjE9ma\nqsJ0ZOYcQkND3W26dE5i0dKvkPo/j92mQ8YS2radRFJSEn3Tz7J209tI5BrCvW2MvOted7+zZ8/y\nzvuzyc4rolmTGCY/+eAlFs1/ImoT9rZare7KP7c6abwQ9YLb9bjWEEVxQ/W/BUHQAJGiKJ64mmPU\nE8UrwM2uUlIbLiaJcG3HeT02VVEUsVgsmEymv0USLze2Q4cO8cpbP6ONfxq50ocfln6BTDaPwYP6\nI5VK6ZTagZbNm7nFnKvj0t5+6yWe/b9pbNvWAx8fb955fxKxsbFua+3Zs2c5crqY0NvHIggCHgGx\n5K7bzdmzZ2nUqBFtk1qz8dv5nDRUYrOYEDMOMO6hke5xhYeH479hK3lH9qMNDKHk+CE6xEXh5+eH\nSiGSX7YfZeTtOC2FyMjhRK6KsrKyWhNm+vXqhadmO7sPb8RLrWLguPsvEaYGl7zTSxPGMu3TaRhU\n/shMxbz4+Fh8fX1JSEhgo76MZgMGIFOp2LxuHZpt2+jeqRMSmZzVu/YhlQqMG9eXpUtfoEhfRpen\nHyJ51D04HQ4cJiMKhQIPDw8EXTFdnr+f1ZOexm4eA85MBOlK0L6KNf1bgoxnobCY0mPbMJ/cQs9e\nXdi66X6MlpFIlel4hBfiH9CW6CCXNLZy0H4AACAASURBVE7JsRO0adiQR+fdzYoVK5g3bzklJatp\n2DCezj1H8MGiRcQ8OJwwPx98I8M5oysmOzubhg0bMnLk+TmPioriyImP2PbzRBxOB82jvBkzYlKN\n6iC1kYijR49hatSWqCYtsRqqyDyZweSvZ/LTvOW8/MIEmp4jgdVo2bIlS37+jP379+N0NmZvdjGl\n2WdQaj0pPbyTgYnnCWF8fDwBAQFkZWVx/Phx4uPjsVqt5OfnExQUhLe3N9NeHM+UNz5FdwRUUitP\nPzK8Bnl49tnxmEzvsHpNX9RqNa+8fD8pKS4JqFHDh9CvdylWq9Utpl1YWAjA08+9g0E1Gs/oluw4\nuZoXX36X92a89I8sJlAXahP2vjDpqToJ5lb1vNQns9x43Io6itcDgiDcAcwAlECMIAitgf9eietZ\n+BNicWuxoxuI6kw7cJEyg8Hwp1mcV4PqmDcvL6+/1LeqqqoGSQSX3t+1dOWWlpbi6+t7TTZUo9GI\nw+HA4XD87TFe6Pa7GDO/+Y7v1wYQmuCqs1xZcoL8A0/RsGUKiA56JMfz0NiRSKVSnE4n5eXlNUhW\n9QOkmoibzWYeH/8CR9IyKSzSkdD3KRp0fwzR6UC3ZhLfvDWeuLg4ysrKOHr0GO8s/g1bRByBEie3\nRQdzz6CB7vnT6/Ws3bqDosoqGoWH0KVDe2QyGQsXLuShia8j8W2FaMknod8YVLkbmfvRyzUqvVRV\nVbFv3z7MZjOtWrW6JHP6QjidTndWaFVVFUVFRS6Zn3NCz6s3bGCrny9hzV3VoaqKilCt30CbmBg+\nWLcd37534bTbKF/xEy8NG0hhWRlrCgqQxcZiy8mmg1rDoNtcCTEHDh3ki+VLKNSXoTt0gg7Nm6P1\n9OLY2XzCIsMZ2LMTeXn5ZBcU0yg2kjtu78/GjRv59KvZ6CxGIlsloaksI7BRQ+RqFQ3UHtzRo8cl\nWoMffDWLXYIfWboM1AN7oC3N5vbuXcj6fT1j4pvWKidTXl7OZ3PnkWu146lQMLBNK1JTUtwkwm63\nu0lE9V64Z88ePj9RTHT/4ax7+T9kHfdA7jcEX3khyoIZfP3pNCQSCeHh4bXGkOp0Otbv2EuVxUqL\nuEiS2yS514BOp+OLhb9iDE1ANBvQFpwmO78Qg8oXqbmCsf260qt7VxwOB+np6Tz3/JucOq1DIrHx\n9KT7GTt21CVrtS5kZWUx49MfKTMrqCrNpSDPTnyHr919Cw+O47svnyMoKKhOTc3rCbPZ7K7/fL1x\n8f2WSqXY7XbXi85NIIwOhwOLxXKJFM7QoUNZsGDBNX3W3MK46UxdEARxnnjnnze8zhghLEEUxes6\nH4Ig7MOlu7heFMXW5747Iopisz/rW29RvALcShbFukgiXD9Jm2uxkVZv0hfX773W0Go1OMw69+fs\nk4uw+LUjos/LOB12Vm+bRcKmzfTo3g241IXtkpZxuC2Jzzw7lbTT7fCJ+gGLIp2Ta8YhOgyoZTY6\nJwa4Mq3Pzc/qA0doN/4ZPPz8EUWR3Uvn0S4jg7g4V4Kaj48Pdw24VGtw4MCB3LlmC4eqAvCIG4lY\neJSOLWJqkBCbzcb4J55j3zEzElU4CutHfPPFG7Ro0aLGsY4eO8riLRsw2a00Do1kSJ9+7uoxF8JT\nrcZaXOL+bCguJlilYsP+w3j1vAPvaFcMnKljH7YfPMzDo0YQmZ5OUUkJvo0a16g73KpFS95PaEhF\nRQU+Pj5XlFDVs2dPevTo4YrJczjw9fXFZDLhcDhQq9XY7fYa7Y1GI3sycol6/FGk+7eScySdYrmV\nQ6vW0qjMRHSP2svhLf1jPZWt29E4qQ1Wo5ElSxcSERJCVFTUJULP1edMTEwkdONMzv6+iMzNG5C2\nWI6/jx8emiTy837n/idewj++PVJDNlOfedCtVVmN4OBg7hnUv7bhsGrLDhwtuhLZoDGI8P37bxEW\n0pL4XnfjtBiZveh9GifEExERwfQ3PyM9uxfeEQ/jsBXxzvsPkJjY0H2+y/0uRVHkvc/nYAq/m/DI\nZuhyTrN/9n8IrcxB4xmB3VoJ4r8ncaI66ana0lhtBDAaje7KP7eC3E59jOKNx7/FogjYRFHUX7Rv\nXJFG383/ZfxL8VdIXTVJ1Gq1l5DEWxkWiwW73X7NamZfbu769e1DpMc+cg59TN7RHzAW/UGLzi6r\nnlQmRxPWmlNn89zHuRgOh6OGFuW+/UfR+t6DIAgEhzbE0+cOGsr28cQdMUTGhDNp6gze+exrCgsL\nMdhsaHz93MeW+vi7q0xcDgqFgo9mvMa9qYG0smzlwY4BTHn2qRrj++2339h9XI5H4vd4NJiBxf8F\nprz6fo3jFBQUMG/XZoLu6UfjCWPICPFg2bo1tZ6zdcuW+KSn8/NrrzP71Wkc+nIm3dq0QSmTYjeZ\n3O3sJgOqCySCUtu3p0mTJpfMnVqtJjg4+Kqy7gVBwMfHB39/fyQSCR4eHheULawJmUyGIDpwWC2E\nJ3UiPqQ5ik17Samw0blZC15+830e/79XWbRkWQ190jOFxQQmulzFCo0GISaOoqKiGseuFnqu1qj0\n8PDgmYfGMtTHhofESaDajodGg8VqoaLkLN4p4wnoORVF+5f47ztfXVXlprIqIxo/lyyGzW7DovJC\n6edKUqkwWdmXa2D0Q5N4c8bHHDh4FE9/19qTKYJwynpy/PjxKzqPwWCgUG/DP9JlLAiKiCMoJpG8\nQ1PJO/kTRcde5r5RvS9J+PpfR7XcjlwuRxAEVCoVoihiMpkwGo3u2MbrjbpewB0Oh1uSqx71uMZI\nEwRhFCATBCFBEISPgW1X0rF+RdaB653McrW4kCRezlVzM+ozXw4WiwWj0YhSqbwhDyRvb2+++uwN\nNm3ahMVi5dTZ/uyvzAdcc2MqPE5EYmCtfastiRdqUUaEh3Aydw9efv1AtKNVHuOeYUM5eCqTQ+po\n/Hv2Y+/ZE5yY9SNJzRM5vXsr4UntqSrSIcvLILRrmysat6enJ489dB8WiwWLxcKmTZtxOh20bt0a\nPz8/CguLcCpb4KoDDyrvFhRk1CQ8eXl5KBpG4eHnkv+JSmnFia9/qfV8drudPTsOYvRrhSoomvyS\nI8ye+zMjhtzBwR/mk1NZjmizod63kW6P/FlS3fWHUqlkUIc2LPzlK5SJyVhzT9OncQKd23fg0Rfe\nwNZuLIqYQD74bQ4ms5lR9wwDIMhLiy47i8CEhq7YyvxcvNq0pLi4mK9mfke+rpTOqUncfdcQzGYz\n6enpSCQSYmNjGXT77ZTrK3jv8ycp8RuErfwgalk+gU37AeAR1IBCp5KKioorrs/bPCaClQd3ourY\nG7vJhDLnKEJ0AwwGAxs3bseud6JpO42VRza7KpNU7UHr0wPRaUPiPEhw8JW5yTQaDd4aqCjKwCsw\nFrvZQEKYgqGjuuB02omNvYu2bdtiuuCl4N+Gi4W9L9RovJnC3v8m4l6PG4ongBcBCzAP+B2YeiUd\n64niFeBmZz1brVYMBsOfksRbbYOpJoleXl7ugPIbAS8vL26//Xby8vIoLV2JcdcCTuYfRK2U0jbW\ng149776kT12lD9+c/ixjxj6NsXglDls+ndoHIVUoWbZtL/I2fpSfyUCtUFPuUPF4syZozpzl6I+f\n4euhYVy/XrUmmVwOBQUFvDHrB/QJrV01jzd8wtQJj9CiRXNkX76D1TQIhTqMqpzv6ZZUM7TEw8MD\nW04ZoihSXlHBgS3bsZ1Mp7Cw8JJ4xrS0NEq94oge5NJfdSb3Z92nY/jPE4/x2oNj2LnvADK5hKSH\nx7plWW427ho0kJjwPZzMzCSkUSCdO93JsmXLMTboSWgrl+yQXDuBxb+95iaKd/Xswczlv5J7/CiO\nqgq6hAYRFBTE4LsfIJ/eSDySWLfjRzIyssDPk4LgUOQeGlQLFjB+0CAeuO9eEuJj2bV7P0pFOL+s\nicFcrkPjH0lF9n58lM6riifr1ikV07r17FjyNUqZjClDe7Fs0waOrP8Fc6ae8JjelJaeQKIOQu2p\nQmKfhqFoCU57Lj27RtGzZ88rOo9EIuGpccOZ8cUs8tKDKcxKo1mUy2Lbo0ePWyKB5VZKKKlNo/Fm\nCHvfbIPEvxE3ozLLzYAoigbghXP/XRXqieItjislidW4VTaaC0lidVbptXLpXAnJzszM5OEJr1Kh\n6IlIN2QnlzL9vxPp1KnTJRaCy9XHTkxMZPWqHzl8+DCenp7kF5ewPEtPXkIKBpsK61v/B2UypBYd\ncwQTM2ZM+1sPk1/Xb8SY0pvoDt1wOB3ke/mwYu0ftG3ejPjGwezePwyZw0jHNs14/bW3avRNSEig\nyfGjbPvyR9bu2o/xtAx5eRB37HyAhfO/JDw8nJMnT5J+6jQF+Xk4TAb3w9ppt4LoSoCJiopy1yq+\nEtf5jYIgCCQnJ9eICZRKpYg2g/uz02rGZjaxctUqlAoFKSkpTBp5D0VFRSiVSoKDg/n1118ptDbC\nu8VkAOyB7fn6uy4M/PBNYjp3QSqToQsK5vdt27h38GA6d+5M586dAWjabCPTP36eKoknHlIjr7ww\n4apieaVSKbf36cXtfXoBrlJ8777zNbnZZgyVeeQFxOLfbgLW8nzE014s+WQqOp0OT09PWrZseVXW\nrUaNGvHefyfy9jsfkl4iY7ezE7ve38mOXYd56YVJtwxJuxm43P5xOY3Ga0Uaa1svt8reXY//LQiC\n8KEoik/WIbxdL7h9rXEt34CvhOxUk0RPT88rilu51hv/X7WkXkwSbwZmzp5LerEnEvUpPDxC0QSM\nYM0fO+nSpYu7TfV8VVZWolQq6wzs9/f3p1u3bgA8++7H+PUahpi1Cnu5HjH6TiRVHRAFbxYve4l+\n/f64YqtPbag0mVH6uSRxBAQUfgHkntrN0SwLbUdMo9OD3mQf2UBqmOESa6VEImH4wEH8et94bOnJ\nBMY+iDTCF33GZ3z9zY/07NmZj9f+AUntsNsETLn7yF/xCYrIptjS1jK8X7d/VPlHgC5dOvPDsikU\nbNRis9kp/O1T1J5KPs+uQiERWLb5Q6ZOnugmvuDKgEVy/joFiRynIEHu7eP+Tu3rS4XFcsn5unfr\nSruUZIqLi1EoFHh7e2OxWGrIr1zNmn/6P1PRVYzCP2Y0lYXvUaEVkJaeRE0Fze8YQWFxSY01e7Ww\nWq1s3pmFJuRBdPlbcTpk/LJ8K2NGDSEmJuYvH/d/AVeyX9am0Xg9hb0FQfhXE/h6XBd8f+7/tQlv\n1wtu/x1cHKN4PY5/ORJ2tSTxVsHlSOKNemO2Wq2s3rIHc4PRaGJ7oc/bQ8XRpZRH1iRW1RZOhUJx\nxZmGgiBgNpnw8A6lsuw0EmcYcokSQe6Pje6kp5/6W0QxpUkj9m1cico3AKfTgWHTKlRKB7+mV0HR\nDqLDg0lq3oG0A9/V2l8ikWB3SFAHpCJVuK5XooqktPQUs1b8iv/jk1EHuvQKMZtpbSxGYtlNrryM\n7dtKKMidzpNPjLsk5s5ut/PLoiXsP3aKyOAA7h057C9JO10p9u3bx6oN25FJpQwb1Nddsu9i+Pv7\n88Vbr/LxZ1/y3dxfMSsHU+50Uv7Nt/Sb9T3ZO6Vs276d2/r0cfdJTU3Fc8aXlJ/6FplXY+w5s7m9\nVxeshw5ijIxEqdFQvGsHHSMjaz1nevop3v/hZ0wSBb4ykWcfGkN0dDR2u91d6eRK49tOnDyN2teV\nbOWlDUAv1eCsOIEyKBSj0fi39UPMZjNmk5mi3E0oGt+PIFVSsu9FNmzazH0xMbeU+/dWR10ajf9E\nYe96nMetWMLvWkIUxb3n/ukFrBBF8apde/VZz1eIG5nQYrFY/hJJvF7yOFeKy5HEa7l5/tm48vLy\nUIclIA0IximRIItsh9FeRErS+ZJ4TqfTXR/7auQo+qe0xrx3I9Ki4wi6swindoIsBqnUgkKyg+jo\nqD8/yGXQvl0Kj3RojrDgcyQLvmBE01hWrN1OkUlOVVAn9mdbWLd2Fb5emjqP0bdPKo6CT7EZs7FW\nnYLimfTp1QGTzYbSx0UeBUFAERBAr+7d0OUW8MceKXtLRjJ/vZYRox+7JMnhrQ8+4eM/TrEn4DZ+\nOqtgwrNT0Ol0NaoBOZ1OsrKySE9Pr1H+sNp9LYoi+fn5ZGZmcubMGdLT0ykrK7tk/Lt27eL/3v2O\n1cXhzN9VwPAHJrBnz546rzcoKIizZ4vwiH4dVcREFHGvYhbu4Pj8OUh9/DCYarrP/f39mf/jZ/Ru\nfJDG0i+YMLop770znXuaN8O2dDHl8+Zwm48PnWsp8ZeVlcUTb75Lulco5iYdqGo/hLdn/oAoiiiV\nSne2vNPpxGg0YjQasdlsda7XmJhITJUbAZCY4xHT5uIZEIHcM5is3dsoLCyqtd+VIiQkBJXSjM2v\nCagDsTpNaBt0Jz2z5M87X2f8k0lqtdyORqNBo9EgkUiwWq0YjUYsFgsOh+Oye9Q/+drr8Y/FcOCU\nIAhvC4LQ+E9bX4D/bSr9D8DFG0Y12fqnWhKvde3mvwKVSoWfVklS03DSMw7htFlpEKahb9/ewHmS\nKJfL3Rv6xZu2w+Fg+85dZBcVE+rnS8f27ZDL5USFh5F44AAqSSH7Ko9zuPwkMnk6HmoTgwa047Zz\nItTgylT/7LOZbN9xmNjYEJ6e/HitlVbARahMJhOCINC3d2969+iBzWZj/fr1iJFdCdSGUXF2LTK5\nljObvmXI4x/Uef33jhlBRUUFc34ai1Qq4amJwxkwoD8ZOh2blvxCYK/bMObnoTh+hODUtvy+bjse\nbTcjkSohqDu5Rw6zf/9+UlNTARfxXrBmPaoej+Bw2PBuO5g/Xp5Jhy5Dkcvg4QeHM+nJx/l98yZO\nYEfq5QVHj6DRl7N443rST+UidwrIHTacKi2aQDWBrVrRvFUS2t17GNO5E5EXWO/mL1uLObQdmSu+\nxuHdDqczlmFjHmXP1tW1ClwD6MurkKnC0EiVlFdVgjSUypzNBNv1NL/vnkvaR0VF8eF7r9f4rnXL\nliS1alWn9JTVauXjuXOp6NoV3+53UHgsDXPWcWxOKXq9noCAgBqZtNVJEWvXrmXeTytRKuU89OAw\nkpOTEQSB/fv34+mrpXLf81grvsVq1RGWEEkDtQKZ04Sy/0MczdzJECA/P5+dBw4hiiLJLZoRERFR\n5/2/EDKZjNEjBvLJmjzs5l34emoIDw/HW3vzieLNxLUkatWk8UJNzuqXo6sJR6gnjzcH/xYdRVEU\nRwmC4A2MAL4VBEEEZgPzRFGsvFzffw4TuQm40HJ1Pax1F+PvksSbZVG8knHfSItscHAw/VIS+PXw\nUhoHNcFZcIQBg7qQkZHBmTNniI6ORqvVolarsdQShwYwd8lStpnBo2ETDBmnSF+wkLZNGjF19gLs\nTTqDjxet2ipZ8P3X5OTk4HQ6adWqVQ1X4+Snp7BiVSUS1Qh27t/Dli33s2rlT5fU192zZx8//roB\ni1NKhI+C8fePQCqVntfnsxkITxmKj+4U1godDl8l0dG1C0yD68E18YnHmPjEYzW+f2jkCBQLF7Hv\nyw8J1XrwwNgxmEwmbFYTdmMuCs84d9vq9WkymVi2fSvGlg0wBRbjzD1E5Y9TsNIdr5avoZBa+PqH\n+7CYKqhoEEObu4cgl8k5LMAPvy5DX+GEoa+R+/kLiLKeyIlHsO8kR6LkbGYOWqmMzJnf8MWrr9T4\nTeRuWYIjajCSDncgyNVUHPqQ9z7+hGmvvIzJZEKpVLrn2mKxkNImgWPz/4sm+nXUViPG3A9okJjA\ns0PuqbViS21wOBzM+WkBqzbuRq1S8Ni9d9GxY6r77wUFBRiCAlEFRyDx8sKzczeKP/0AH4PeXfHm\nQgiCwB9//MFTkz9BlE/G6TSzZcvzfDNzGhqNhienfISk6QQSRj5I6c4PSGrQkKrEO4lo75Lfyd+3\nlgBvLXl5ebw/dxnOhh0Bgc0//cqTd/e97BoAyM3NJTs7mzatmtH+yHJK1DoEqQJ1/jbufvq+K5qT\nelwdqjU5q0ljXeEItZFCq9V6zfVxn3nmGVasWIFCoSA+Pp7Zs2e7s/SnT5/OrFmzkEqlfPTRR/S5\nIDyjHv+bEEWxXBCEXwA18BQwGHhWEISPRFH8qK5+9UTxCnE9JXIEQbglEkD+Cm6GBfTP7oUgCDw0\ndhQtd+8mP1+HZ3JLPv/6Z2bNPYrT6SAyQM/ML966hLBVQ6/XszOngOixjyGRShEbJXLgx6/Z+cPP\nePR9GO9olws7Y/ksDh8+TM+ePdHr9RiNRtatW0dFZRWJTRqzYsUfaEK2I5GogB7oitPYtWsX3bt3\nd58rJyeH2at2EdR1HHKNlswDW/hm7kIeHn03arWa5ORkouYu4cz6j5H6xeM89RsTxt71lywParWa\nR0afLwG3ZedOdleW0ODBOzixYyqyjHbI7OXE+JXTqlUrwGXJKvbxwK9VA2yJkUi7JVP620oE38Go\nVCqcTgVlkh7M37YID18l2b//zqA+fdBbLFhUCpxxHRAQgVgkcVNwGk8gCYvGWLCSgFZt8GvThT0v\nPcWBAwdo3bo1AEP7d2fOjwugfUPwiUawGVE06UaabgkffvsNWZVlKEQY3q03jRIaMn/1WhRdu9NM\n60PakqcIcYhMens8d9895KrmZ+78X/hmzSl8Ok6h3KTn/96ewefTPGl+rsyhXC5HKUhIahDFvv0b\nEeUabCf3MeHRh+tMAvp65iJQTMHD0yXfU1FqYsmS1UREh2CLGExgdAcEAaTKVzBmvEeQbic5a4pB\nIsVPf4KhzzzOxh17EBt1JqyJa34KFUo27jrAvZchiqtXr2Xa23MQlE1wmtMZMzyV2FgVdruDVq0e\nJTQ09Krmph5Xh4s1GqtJY7XXALhknzeZTNe8Uk6fPn146623kEgkPPfcc0yfPp0333yTo0ePMn/+\nfI4ePUpubi69evXi5MmTt0R1mnpcHwiCMAi4D0jAleCSLIpioSAIGuAoUE8Ub2WYzWbMZvPfJok3\nWhj8VnWTV1ZWsnv3bux2O+3aJTNn3iLOlqfg3+RBBEEgK30ms76dx9OTHq+1v9PpRJBIEc5tmoIg\nIEjlVBrNeHqfT/IQvAMxm10WSaPRyJP/91/O2BPAIxzh+/exWKxcHEl4McErKCiAgARUWm8cDgfB\njZJIX7XZpYlos+Hl5cWXH05n8ZJl5Bceo1WPfqSmdsBqtV42WaKkpITM7CxkUinxcfGXkGK9Xs/e\nojxiBvbh0d5dWbN6HYe+W0i32AY8Pelzd9ymRCKhqryCBm2bY/NSU1yYhdZHg6X0KIKQir6yAhwH\niBnaF0dwELkyJ4cPH8GanYPCbMFg1UFYU0RBClYrEkUgzpxDiMFGFCoPzCePoomIo6CgAFEUsdls\npKZ2oGen1qwrXYfcnoRCZkIw7cDqtFPaMppm7QZjKNUzd85yeheXUBwWRXSr1kS3T6VoQH9icjIY\neK5E44XIzs6moLAQrUZDQkLCJWt2zeY9eLV/BnVAjOueJgxm647dbqIYEhJCK09P9h09RtsAPyoO\nH6DfkEF07tSp1ntQJwQBjVoNDhNSqcRFIqxVKJVKXvvPeE6cOIEgCCQm9sPb2xu7w4lEeV4aSyKV\n4biM1JTBYOCNt79FE/0hKo8IbBY9P8x/jHnfvUZhYSEHDx6kuLiYZs2a3VR357/l3LUJe1ssFmw2\nGw6HA4PBgEQiwWazXXOi2Lt3b/e/27Vrx8KFCwFYunQpI0aMQC6XExMTQ4MGDdi1axft27e/puf/\nJ+Df4noGhgDvi6K46cIvRVE0CoLw0OU63jpP91sc18uiaDabsVqtt0Rs38W43DVfLUm8USS2vLyc\nZ16dQZ6yIcg98Fj4Hmq7FZnnCARAKpGg9GlBVs6KOsfl6+tLoo+WI3/8jnejRCrOnCJeLpLUKZlF\nf/xMSI9hmPXFSI9tJrHvwwBs3ryZM7Y4Qno8D4AhKhlNziiMxRORqIbjtO4lMrjwkrrABQUFrJ35\nGcIPs4hv35H45K6EB/nVkMnQarWMGT3S7SaXyWQ1rBPVtWqr2+fn5/PLzs1IG0WTl50Da1Zx7+13\n0rDh+WQem82GRKNGcm7N9e3Xh8Z2kftSu9UQkA4LCyNsq5lj2/cT0S0FVXE5scN6s37GR1jTd2Et\nySCouQfNHhiFUVfEgflLyNq4m7u798QztiGL12+lsrQCwXIUMt9D4tMWe+EiFMVFeJxqjzYgGEQ7\n5eUV3Pfs81RYLMQFBfLqK89jf+8jDpyaitLLm47RgVjzy4hOcVnVPPx8kMdHkFtQgDz0vGVN5emJ\nwWqtMcd2u53FS5eyUacjuE1bFEXFNMjK4s5evWr85jRqJYWGUvdn0VSCRn2BjI4gMHrwYJru30+R\nXk9E5y54eXnxyKP/ISeniNTUFjw9eTxVVVUUFxfj6+vLuIeH8sSTUzGUG3CKJpTC54wc8S5BQUEs\nWP4iun0yBIUWzvzMw8/dh1arpWXLlm5XpdPpJKVFE7YvWkexXIEgkWA49AcdB3au8zeg1+txCl6o\nPFxxjHKlD4I8gpmz57A/T4bELxGx+FdG9jnDgL696jxOPa49qu+r3W5HIpEgkUhYuXIlEydOpE2b\nNigUCiorK2sNZfi7mDVrFiNGjABccccXksKIiAhyc3Ov+TnrcetAFMWxl/nb2sv1rSeKl8HFJOJa\nEx1RFLFYLNfM3XyjyNitYEms6zpXr/2DPM8kIju4KnMUHo+kdMfnWIpWIQQn43Q6MReuJKlvwxr9\nDAYDFosFHx8fJBIJ9989lDUbN3Nmz0ba+vnR955hyOVyJAsWsmnxO/hpVDzz4HBiY2MBl9sI9fnq\nJwrPYMLjYhnatzk7ds4nJiaEyZNm1bDsZWRk8PQzb1JkegyzGELW9x9xbM0cVv0yu05rR7V1ojqA\nvrqCRLUYsFwuZ/uRg3i1b8H+06dJs9gx+niz/fW36d+2GRaFBC+1B/07dUdbZabwTAa+4WGUnM0i\nUJRe8oBSKBSMG3YP8rlz2D1zV7BcXwAAIABJREFUId7BfgQKSiZNHMvxM6cpK/bD2jUZiUyGOsCP\nYCc8dvsddGjfgX5du3FXn4Ns27YNW4dw0o6epqIyg0a9Eil02NDrcnGeOUaX6DAW7T2Ax4MTCY+I\nInPLer6Yv4AfP3qPo8ePU2W1EhUUxJzff6UsOw+/qHAcdjvW/GIS4pqxNf04xsBApDI5pUcO0fYC\nt6rdbmfahx+zLD0D5cDByE+dZUi3Tpw+mkZeXl6NJJpHxgzl2ekfkF84EMFSTlD5Ngb0e7PGfEil\nUtq2bQtAaWkpt/UdQZnhPmSKlpz8YTaHD08gpGNLCI/AkZ/HXS1b8dknk5k77zcUchkPPfQ2LVu2\nBP6fvfMMjKLa+/Az23s22fRGKoHQQu9dUIqAoKgoXuxY8FVRsV71YlesCGJBAQuKdOm9E+kQICGU\nkF5Iskk223fn/RCzEhOagnCveb5AdmfOnDkze+Y3//Mv8NUnk1n8y0oslgL6jH2QTp06ATVL3Pv3\n7ycr6zT+/kY6derE+CE92LpvNyLQa0h3n+i32+1UV1djNBp9c0hQUBAGrYOK4h34BXel2pyO157B\nnuPxRA16E6lMgdsxkLnLXqBnt06XFPXfyOWjVjSOGjWKgQMHMmfOHD777DMiIyMZOHAgt99+O4MH\nD76glXHAgAE1KxN/4I033uDGG28E4PXXX0ehUDBmzJjz9qeRRhqiUSheJJf7R2Sz2RBFEZ1Od81Z\nEmtpSHjWpoC4miLxfNeiwmJFpq+1MInIdIGERMeQ0lzFirU14nHowE6Muf33Mn4r1q7jl92HQKEi\nRqvgoTtG4+fnx43XD6jX/rgxtzGugbk2JSUFxQ/vUpndHqUxgvJdn3Nz36489th4HqNmKbi4uBiH\nw0FERAQAa9eupdJ1A179cFQaLV5nU8pKhrJhR+o5AzAsFgsbdu3kdPkZ9AoVgzp1IzIy0pcM2OVy\nsXv/fvadOEKe3U70sNHIK6spyyxicelx/jXxQSrPlPHVsvncN+Rm9h3LpGhPGhEGf/r16tPgUrZK\npeKxB8dTWlqKxWJh5k9z2RqmRj/2Rpy/HsC9KZWMtGNIgVHde9Olc42lQiaT0b59e9q3r1/v2uFw\nUFBQgFqtJicnh02iDF1UzXUL6dGHUysWIYoi7X/zWwQYM3AwXy5YTFl0KM4z5XQNjqZ79+4EZWay\nZdsmbF4PfZs0IaXV76UNU1NT2eNWouvYC13X/liL81m3M5XewSbcbnedPrVu3Zq7bx3Amn2pyFVS\nxo2567w1nFNTU7HYWqI11qzaeBWt2LCpOQ+/Pxl9aAhOq5X5M2fyyh13kpKSgsPhqFNKMSIigocf\nvLdeecsFi39hzuYjCNFt8aYepN/R4zww7g6ioqJ8LwOiKLJ3335mr9iER64lQObmodtHEBYWhkKh\nYMrbz/D0s+9wJu1DNCovE//vNr5bfxqprCZYQqbUIJHrrqnKO38n11qEsV6vp1u3bmRnZzN58mTm\nz5/P1KlTefTRR8nKyjpvkMuaNWvO2/Y333zD8uXLWbdune+ziIgIcnJyfH/n5ub65qV/Gv+gpec/\nTaNQvEgup7XOZrPhcDh8Sw+Xi8tZJq8h/koS8L/L2tmhTQsWTVtIdWg8olRB+b5FjB7QllE3DeOZ\npyxAzVKu0+lk7969HDp0iA0ldmLHPIZMqeL0rq38sGQZ48c2/OZ9rgdMbGwsH7w6gfenz6DyiJXR\n3dvx+KMPAJCWdphpi1fjNUXjLSvkpg5JDBp4HXK5HLe7CkGhQqpQInjcSAxG9mSeqHfMHTt2cPz4\ncXLMpfgP7E7C4B5UlpSyYMNWxhkGYzAYkMvlbNq0mV9W7cXergfO2Jakf/ctIaYIPDjx65iMyk+H\n1mSk4ngOZrOZkdddfKSjyWSiurqadGc1ifc8iCAIBLdtRebpfN6772HCwsIuqswkgFKp9FUGqays\nxFuYj8fpRKpQYC0sQI1Yz5ISFxfHM2PupqioCE0bjc8a2DQxkabnENaVlZVII2IxKBRk//Q13sAA\nSg4fpH/TRELat6uz7e4DB8kNCuWGyaPxOJ1sXL2SzM8/x2g00rNnz3oBIDKZDMSz80hWg0RAY6pJ\n4aPQaBACAvh42gxWbTqERKEhLlTDh++8fE4BWl1dzfcrtxB6+xvI1Tq8nsFs+vEVRhQX+5J6u1wu\ncnJy+HLZFoKuvw+Nnz9nsjJ4/8tvuXlgL8LCwkhKSmLR/C8wm80YDAZcLhfLN75J8fHt+Ee2pvTk\nTiKM4jnTDf0dXGti7e+koXO32+01qb0CArj//vu5//77qaio+EuR0CtXruTdd99l06ZNdX5Pw4YN\nY8yYMTz55JPk5eWRmZnps2g38r+JIAj/J4riRxf6rCEaheLfTK1INBgMWCyWa76+Z23//lsqxaSk\npPDEbWa++flDHC43d/XrzIhhQ4AagQg1wS4PPjKJzHwFFeZ8PF3bEen1IgOCmrfhxKLUeu26XC6+\nnP0dK7ftQiGXc/eIQQwedH2dbTp06MBPs+o6g3s8Hj5fuAK/geOQ643g9bBwyRe0aZnMgAEDMLw2\nleIzAYi6Zgj2z4ke0otQo1+dNl5/Ywqz52zBQwdcpq0MbxVHVMvm+AUHUh5uorS01FclZc78Ffj3\nfwW3VyTr4B7sZgiKLcddZUYvjYTfBLur0ooi/NIfQKIoguSsqkUSCUgElErlRYvEP5KQkMDghBh+\nfO15CpUavBlp3NerW4Miwmg0YjQaG2ilPidOnGDfgYPkbUtFaNEGebQB26nT6KuLcZYb6y25nigu\nxtShC1KZDJvdzg9b9uJYno2CGNTqafz88+d1/Dy7d++Ov9/75BZMQqJoh5x5tOqQTHlWFoGJiVTk\n5lJy8BDb06wEDfoWiVxD5v5ZvDVlGu++8VKDfbbb7SBXI1PVuChIpDIkWn9fipXayiDV1dVIgmOQ\na/S4XC5K7AIblm1n62YLgusUEyeMYtSo4T4hKJPJeHXSeKZ+8T2nt/xEi5hwHn36ocZKItcQtULx\nbM72F/4zTJgwAafT6Qtq6dq1K9OmTSM5OZnRo0eTnJyMTCZj2rRp/9j7wP3PsSiOA/4oCu9u4LN6\nXLtP/GuMv2oRE0URm82G0+nEYDBckTQEVyrX4+USiZerb+c7T1EU6dypAx3at8VgMDQ4+c2aM5ej\nZ5oR1P5JpEX7OJX3MztT99C3T0/Ks4+TEOhfb5+5Py9k0alqwh54H7etmo8XfERwkMnnr3YubDYb\nZpuLrVv3UFJWiUQQaeZyUFZWRkREBKtX/ci4B/+PfNtmApMTMJw5hbZ1BLMWz6dr81YIgsCs2ctR\nGNYiF7R4+Iw1yzfStWsntBoNLnMVqpi6DxdBEAiIbY8iqBnHNnyJI3UR7Vo1R3vsDJnGPdgKywgt\n9xAbG3vJVp3IyEgSZGoyZ8/DI5NQcSiDdjJtnSXVS0UQBHp17MCPGzYR3r0N2r4DWLNlLS3XrWfg\ndX+uHGJaWhoPPfcG9mbDqTCK2NI3kdDzFlqHJ9GpbQqZM36krKysjmXPT6XiTHkpfiHBbN60ncrC\nAAzSsSjl7bBYvmXy5I+YOfNDNv+aSmZRERlpR1A3TcI/MBd7wU4Gdktm0lOP89WSJZxavgKDREIb\nUyDHwxKRKmqEnyH+eo7sXX3Ofvv7+xMfpOFk6jJMLXtQcfoIfvbCOr6UQI0ANG8Hrxu3FzavWodS\n3RW/2BfwuMp4/5Px9OrVjaCgIN8+4eHhvPHyU3WuucVi+VPj+9+OKIpXNRXM+SyKl5PMzMxzfvf8\n88/z/PPPX9bjNXLtIQjC7cAYIFYQhKVnfaUHLirzfqNQPA+X6w2rViTWpjuRnJV25Vq3KHo8Hux2\n+18WiX/H26ooipSUlPDpl7PZffAEWo2SR8eNolevuhGiWdmFyP37IAgCGlMrjPnryZ/3JbnmkwTY\ny7n9zlvrtb0zLYOAHncjV2uRq7XI2vRj/5H0OkKxoWup1Wo5umcXBa2ao283BlfxCQ7MnUNu3xY0\na9YMf39/1q9YyOHDh9l7YD/HVR4iB/XDabMxf/122hiCkcnDkUj1NWXirAOw7/qZjA3bMAhSUvSB\nviXR/Px8nOYyMlffi1+bQRgSOhNftYWvPvuYxMRETp48yemcbLThUbQY0AJBEKiurr6kOrVSqZQn\n7r6Pu56YyGlTJJqgKDKLssjMzKxjbbtUtu3Zg27kHYT1uQ6vV6QiMJDVqxf+aaH4+Zyf8HR9mODW\nAzCaCzm1uZDYkGC6d+5EWXYuOxau59FNxxh0Qw/Gjh2DIAh0a9OavE2byS0rI2/rFiQH5ChkLQCQ\nyZpTXPwza7Zu4YBChq57F7ZkF6BukUjHbqMQpDKyZz2HUqnk3w/VlEBUq9WsXLmSBTt34PXcjEQq\npypnO61CA84p0CUSCc9NeIAZs+dydMkGEkJMPDzxoXrpjcLDwxnVpTnzl32GRVQg7l1FVOInvwU6\nBSJKQ8jJycHPz8+XRqm6upqPp3/Dzn3p6NQqHr57JG3atPpT4/tXudbnvauBw+FoDCxq5EqwHSgA\ngoD3wFdCvgo4cDENNArFi+TPirqzRaJer7+ib7GXW3h6vV6fBfRaXm6GmnG2Wq18MesHdpaEEHHT\nROxVJbz5xXuEhobUETHNm0azbPN3KLWRSDWRqLEyunMyYwb3qKmN28BbvcmgI7c4F114DADukjwC\nmv0eIXy+KGVXVTXa3Gwcee8icXvxM7XHbDb7xlQul5OSksKukxnEdk1Ga/RDazRQ3jwWSbETpSwP\nS9VylNrrcDkOElBVzS1RzTAajT4H9LKyMm68cSylpTcjuG/jzLapRFj3M/WjN3yBMXFxccTFxdXp\nX20i4NqAColEQn5+PqIonrPyx969e6FTX3qOHV9z7IN7+eLnhbz7/KSLuVT1jm82m5EAHtvv/n5u\nqxXlXwjystgcyCNrrIVyvxBkdj9yVm7hmNPL9+NexeO8i0J1a37dNYP8gmKenfQERqORu264npKS\nEkxJMby5YBkeoRSJRI/H8yl9+rTnYF4uUWNuw2w2owyPRpCYsJUWYIhqikQXgMViISgoCI2mJoPm\nwIED2bJjHxtX34vV4cQmK8HevTNTvvyS+0ePbnBpMSAggOcebzjH59n0692TNi2TKS4u5vT6dXic\nZrzuasxFG8B1iiZNmvhqTkulUqbOmMXWnCAirn8Me2UR73z+Pq89paNly5YXPNaV4p+63NkQV8Ki\n2MiF8fyPyyBRFE8Dp4E/nSTzf3uELiN/RoTVihe3292gSLyWLYpOp9NXUupyiMTLea4NpS2qHef9\nR7MI6XMvEpkcjX84ZRHdSU/P8AnFvLw8DhYXoe1kJCNjEuq8Qm4a0IsnH3/xvJP0PbfexDPvfEJe\n3jFEezWx9nwGDrg4YRQdFUlxdA80IS1wu9yY108kIKBbve00cgXl1Tbf3267HX+jP3PmfMzDjzxP\nTs5jxMTE8fmMz7DarCxavwqpREK/jt04ePAgFRXt0WifAsDj6c6p470btPK53W6+/34uh9IyaZYU\nw9ixd6DRaLDb7Tzz4mR2HMlDkCqID5TxwZv/rhd4UVFlQRL6e61hdVgEZVUWLBYLOTk56HQ6IiMj\nsVqtvkTyDfkvFhYW8sonn5DvcOKpqsRZVU2uKCKo1LBhBbfdPRaLxVJTEeUclU/OJiMjgx9+mI/X\nK9IqPpxDW2YgVT2F12XDYM7m5pDuZP6yHcHTB2NQzZKbx92BmTP7M+mZx2uugUZDQkIC8fHx2Gwu\npk69HpfLzciRg5k48VGm/jwPp9WKn58fOsFJSdYxxMRIivZuQl6WjcFgQBRFKisrEQQBg8HA668+\nx8aNG/ls61aaPvwOWn9/Tm/dxvdLl/LQnXf+pd+FyWTCZDLx8fvPM+GJlzhy0o4kLJa2nTuzdM16\n7ho9CqVSidvtZtf+YwR2G4eIBLVfOKWmLhw/fvyqCsWrxdUOpPm7lp4baaQWQRBGAW8BIfxuVRRF\nUTRcaN9GoXiFuJBIhCsjFC9He7U+iSqV6poVsrXUWmxrxznQ30BxaQ4KrRFRFBErszEYfl9em7V0\nGa7rBjM0uSV2q5UT337NHd07oVKpKCgoYMnSZTicbq7r14vk5GTffjExMXz66rOkpaUhl8tp335c\nvWWikpIS5i1bTW5JOU2jQrltxFD0ej2Tn3+M8U9N5owiBov9GHHNQ9lTeJrI9KMkN2vu279nm/bM\nWr8Cd7UNt82O9mQxzQZ3QaPRsGXzUl9AQ3pGOrO2ryR6SFecHi8zfplPLHrq/pylQM09OOvHeezL\nPElYgJH7b7uFN9/8iJVry/FIBiPxrmfDhp3Mnj2dn+cvZHuBGtMd3yMi4djmT/nks5nceetNeL1e\n/Pz8qKysxN/PgLBqI9ZWbVH4+XNm5ULaKOXc9shjeCKbIHXaSfHXERAXgkyrRGn10ja2OW63m4iI\nCJ+l8s3p08lq1pyAtu1xVlRQ8tkHRKeuJDY4igG3juLzWXPZvvsIotvBkOu6MvHxCecMZDl8+DAj\nRz2A1XYvIEGl/IK77xnGsgWPU1ZZSfPEaNq2aY3RoGfhgkN1xqmhTAGCIDBhwngeffTBOv5sA1JS\nWLpmPbLEONqpFRw5upOCbas5fSIX/6BYhtxyH9cP6o40Khq8XtoGBTK4X1+USiWmLl3Q/RZcEtKh\nPRk7U+scr5bdu3cz/buFVFls9OjQggf+dUcdAeF2u/nll2Vknc4jqWks119/Pa1bt+b6EQPJiuhK\nRPO2gMjWFbNof/gwrVq1Qi6XExRoxFxViFJrxO3x4KnMQq9PxuPxNAa1XAPY7Xb8/ev7RzdyZfkH\npcd5BxgqiuLRS92xUSieh7MnzktJPXMxIvFKcDkm+rMDV9xuNx6P5zL07MrQ0LL+hHtv5fm3vyAv\nJwXReoa2IQ66d+/u26ew3IwxOgYAlUaDMiaOqqoqCgoKuHXsBMqU14PcyKy5LzH9/Ul1UkYEBQXV\nqdN8Nna7nfdnfk9l0z4YWyayI30vpd98zzOP3E+LFi2Y9ekbTJ07B9PgR2nZsR12SzWLF68jPDQM\no9FIRUUFp06doqVfMKF2JSqVgZhBnXxLmFDjvyaKIjsO7SPqhs6EJNQILke1DeXeInS67ZjN05FI\nmyEwnTvvHMWHn3/FVmkAAbc+xsHTJ3j81TfZu+EgStMOBIkKUbydnbv6kZ6eTmZWHtImPWrKFwLq\nuO78PPsefpi9Ao9Xgdpg5f6370Pqgr5Ngtj7+TuUOewkGrVsykvHHtcEy+H9SOV+pKVlEatoT/Pm\n8ag0IjOnfkBI9wGICxYyYdAgVHIZSxcvRN+jLVVlx6jOLSR4ZE8SI8KR5FcyZ+58tpdEQnJXsha9\nytRP1zP7mwV8PfN9+vXri8Vioby8HJ1Oh7+/P9Onz8Fun4BOfy8A1moTGzfMRt+hHdE3jcNjt/Gf\n779g0qgh6FTTqaicjkTWDME1jTvHjDyv68DZ37VKboG/wY+CokK0cQlEfzSFobfcS9gNM9BFtKf4\n8E/MObGJx+99EJ1Oy56NG4g8lIafnx+ejAy8Hg8SqZSK7GyCG1h2PnnyJK9+9iPa/hNQG0NYseV7\nhNnfM+GBe4CapfpJz01mwy4RQdMJFqxn7/50XnjuCYrNVYT2bo5E+psPdGAUlZWVvrYfvfcW/v3u\nZxTmtcNrK6JDlJP27dv73A7O9lW90lzrL6BXA4fD0WhRbORKUvhnRCI0CsXLTq1I9Hg854y6reVa\nsyj+Mbr5jwmJ/wpXYunZbrfX8/1MTk5m+ltPk5GRgVqdRLt27eosezaLDGfP7lQie/fDabEgHjtK\n2I2DmDd/MWXqwQS3ehCAipxopn7+A7P/kFuspKSEQ4cOIZfL6dChg8+qWFBQQKk8gOiWnQGI7NSf\nYz/to6ysDKlUSlBQEGEJsSR1qkk+rdbrkAUHYDabqaio4F8PPkWZJBZ7ZTGto6XM+WrqOV8wZFIp\nbqfL97fb4STA35/Fi2fx9tufUli4meuu68a//jWGW56YRPjLM5BIpWhCIzm1Yy1e8SgIyt+SdIPH\no6SgoICkuCiWLd2MmDwAJFIKV71H1ZlYDH5zsdvcuCreZevSVB76eAIH5m/hzeGPotVqmfz1xyhM\nkRybvhWPbRRuSxZS/0o8j4zkcNUpXAV7UfXoRsjYu3GWl/HivePIP1xKtTiGylUZaA5vJ+G5G3EX\nlhIe2wVplMiirxahbHM7x75+GJRLQBGJw7uHhx4ez/z5X7L24E6kgTqcpVX0adYeq82BIPnd2iiR\n+JNXXErLoWPQRdf4Zdp6DeXIyVMsXvQN77wzjcKizQy4rgcPPHB3nfEVRZFtO3ewcncqIDKgbUd6\nde/h+y1HRkYSGVmz9J6bm4vNq8UY8VtScbUaaVAy5eXlGAx6tDEx5OflMKh3L3ocPcq2L79C6u+P\nOi+fu0aPrndtjx49iju2J/qIGpeB4B63s23Ji0z47fsTJ06wOTWXwOazESQyPO6hLFo6mvEP3EWz\n6DD2HUolokMfXFYLYs4RQrv/niezRYsWTH3zCTIzM1Gr431JwDUaja/CT63VulY0Xmmf6n8q51p6\nbgxmaeRy89uSM8BuQRB+BBYBtXVORVEUF1yojUaheJFcjNARRZHq6mq8Xi96vf5vnwj/yvEaSoFz\nLftQnl3+8I8Ps9DQUPLy8jh9Ohun00n37t1924wdMRzL93PJ+HgPUo+bMR3aER8fz+Klq5AoQnxt\nyNQmqi2OOu2ePHmSia99QHVoO0R7FbELlvP+5BfQ6XSoVCq8NovPYuRxOsDlwOFwYDKZUCgUqEWB\niqIS/EKCcFhtuEvK8Wvvx7P/fosi02jK9Z3xSOWs2/UGj018hk/ef7fBa9qvU3emLfkBp9WG1+2h\neutRut92D2FhYUyb9o5vO7fbjQzw2KqR6Gp85xRyGZHhKvLOvIZLuAGPay3+xjPsLTjCjR0G0Pvg\nEbZ8PwZBKkdjPo5dMQFQIAgeJLLhZKU9jlqtRhdo9JVylPqpyZ55CI/jDQTZQJC58FhepmzdaiLG\n3EPZ3rWEprRDkEhQBJg4uf8YCsNKVOo4XKIHy8lRlG/dS1JKC0LDwsg/nkWAn46sE5tAmoggTUR0\nVCFXt8PrNfLTqiWk3DsEQ6A/DpudjfM3M2RwDzZtmoLDHgSCHAlvkNwmFpelyjceHksFGqWCmJiY\nOuP0R/Yd2M+cA6lEjRmCIJHw/c/LUavUdGogFVJAQAAybyW20uOoTQlI3CLugmP4+Y2qmQ9ycgg2\n1tyjd44aRe+cHGw2G+GDhzRYz1ej0UDl7ylN7OWFGLS/iwe73Y5UZkCQ1PxGJVIVglSN3W5nzE1D\nsXw3j2NzU5F5Pdw1oDvx8fG+fYuLi9mzZy+AL39ebf1wqVSKVCpFoVDg9XpxuVxYrVYkEkm9WuL/\nC1xtH8WGaLQoXh3+AUvPNwK1D3Ib8McqC41C8XJxIdH0Z0TitWJR/DuTaV+OCdrhcCCKIn5+fg1a\nPL6dO4+vVxyA8E5wZgsDdx1g/D13+iJSn37gPqxWKwqFwlfCbED/nvy45B2q/GKRKQzYMj5mxP11\n0+p8/u087G1vJ6xVLwBOrPqKlavXcPPImwgLC6NLtJElX71KhcSLt6KIoUnxmEwm3+Q/qtd1/LR6\nLcV+GrwVFga17oi/vz/ZecWUqcMQAsNRKFWI8f3ZnDaDY8eO0axZs3rnFxcXx4Sb7mRP2gEkgpzO\nv4nEPyKTyRg76Dq++vJtZO164c4+TopK5PGfv+bJJ//N3vRFNO2ZwP1vvIMgEdi+fhfvvfEKS3/5\nhY37d3Ei3UpZ8XLgNgQEXM5lRDWLoCSnEG+JlbAuYTXWJ7MDbG4kROF1OUH0IgiJVB1YyRnjSso2\nHiJu0P016Yt2bkd0u1CoYrG7vajUKtzKBIS0fUS068zpQxlU7j/Js+PH88Jr75NnywT3AeTyJkg5\njtWWx+6sdIQT8bRTt0ar1aI06ejYtCNT3pPz6afv4hW93H/fOFq3bsmz074iY38qzopijFkZ9Hnz\ntQveX3uPpRPQryv6sJoXh8D+3dizM71BoajRaHj9hcd4/vUnqNTFIjGfZFjPFlRu3kCV10tLrZq2\nbXoANb93f39/th86yIKd2wnWGxjWsxdOpxOLxUJERARdu3al2dotZCz7CPQhyE5v49mHf68SlJCQ\nQJBfOYWnf0Bj6kp18UqSYvWEhoYilUqZOP4e370tl8spKyvDbrfjcDh45pWPqTB0Q0Bkzvw3eP+1\nifWirmtriUulUkRRrFdLvNbSeK2JrP8mzjVH22y2RqHYyGVHFMVxf7WNRqF4GbjalsRa/sxxzycS\nL/dy8eWg9qEHNCgSLRYLcxatJ+SmD5GrdHg9w5n3xZ3szs1HFx6JwV7FxLG3+QIqaoVi+/bt+eC1\nh/hkxgwcFS4evKcPd4ypyacoiiKFhYWcys5FHR/uO5YsMIpSc47v/FJaJnHIXYpfh5YoFQocR05y\nMuuUL2AlKiqKR0bdjtlsRqvV+ixK7VolsnP1UtRJvfA6KhHyV6FPTKKkpKRBoQjQpEmTBtPXeL1e\nMjIyqKyqIjgoiJtHDCc6PIz0EycJbhFOv353olQqeeaZh9nrPUFS55qIV3u1DbvLzqG0Q6zMPkLM\nAyMI8Xg4fvMzVOV2RaXwQ60tp0OrG6nYeoqRvYf4cvs9OGosv67fzaGC15DzNoKkBI84HYW+D+7N\n63j6znHs/WUheXO/JTrQRPduXTlw9HXk8oexlx5A4ljBqK530DOoFdJKGbG9B+Pv78+SH7/mww+n\nMnPmaJTqeKosR+n35DCkgTpy3RYqf91Oj5YdcJVUYexkZMSIYYwYMazOeNzepzMrco7g37UJgX3i\n2bB7J2PCws77QqRTqLCX1/j2nck8yaIJb+DMLWHz6h289eoz9ca9T59eLGmZTE5ODqGhoYSEhFBW\nVlaT+DwgwHfvi6LIT6uDakibAAAgAElEQVRXUdI0lpDr+2LOy+fF6Z9iFyTIQ0PRlJt5/OabefOl\nZ0hNTcVqtRIxbCwajQar1YpGo0GtVvPF9Ld4851pnDi5lC7tYpn09H98foWCIKDVahFFkZ8X/8Ly\nPekIaj05+1MRQ4YT1b7mni5MC2D+4hXcc9dt5xyHs5ega2uJ14rGS8m92RDXokXv7+aP599oUWzk\nSiIIwifUWBZ9Ec9ABbBbFMXF59u3USiehz8GszQkmmpFoiiKlywSr3Rt5gvx31KWrxa73Y7dbken\n052zooTNZkOUqZEpa0SMvbyAYoWCNmMeJrxJE0ozj/LJdz/x7nNP1btWffr0oU+fPnU+83q9/PvV\nt1i8IpVKqwfH9nH0ePl7pEoV7iNraTf+Jt+2xwvyaDmoP7oQE1KJlDKNjswT2XUim1UqFaGhoXWO\n8exTE1i04kYKfuqLRCGnyXUD8C/PrleNQxRFtm3bRllZGYmJibRp06be97+sWkauUIgu3I8d+3bR\npaQ9XTp3oXPnznW2jYqKYtPqnZSEF6Lx03Fi51GaRzVlb/oRQvp3wj+qxkJ589f/xrtoB7cOGUZi\nYmKDaWpiY2NZsXAeL7wwmeXLR6NUKhk0aABJSYkkJd1Ey5YtfRYqtVqN2Wzm8SdeYufOQUSGBvDm\nG1PrjHttPWM/Pz9efvkFxo+/j8OHD/Pj7g10nXQPVcVlHFy7mYx9RzAeNHPH9cN9JQzPxu12k2Up\n46bH70P2W73co4vWkZ+fT3R0dL3ta7muR092f/MlR4rPsObtb3CFjafJyKEcy9nInfc+TtuubbE5\nXfTrmMLom0YglUoJDAwkMDDQ18bZ/6+lurqaPIedmDatAZAaDRxApNPNozAlNqXi9Gmm//wz7zz9\nNL1792bp0uXc+9C/QR6IUlLOJ1NepG3btoSGhvLR+/85Z/8Bjhw5wtLD+UTePBGZQkmaVYcj4yi1\nd5RcG0RF1dGLnq/OLh/4x9ybZ/sz/reIv2tRqDYm3L46/INK+KmAJGAeNWJxFHAKaCMIQl9RFB8/\n147Xvjq4hhFF0SdYdDrdVZ94LsUCeLEi8Uosjf+ZcXI4HL4KMefb32QykRCi5fiuhQQk96Fw/woU\nYSEEhtdYAk2Jzcle9gMulwuFQnHBMVu+fDkL1+Xj33UBBomCrF+nsPe1W2iZ0pqezaOZt3kDi7dv\nYVCHzugUSnJLSjCEBSNXKLBXVKJVXthCoNfrWbXgW555/R3ybS40JZk8OfbWOpYrURR59fX3WL4j\nByGgDULJQp56YDhjbvs9IKKoqIgsaw4dR9f4ZDpbxLFtzlbapbRDoahb19lkMjGyxxAWLF/CmbJS\nUhJb0nNId4qXLcVe8bsId1VbiYuKumCuPaVSyXvvvcZ779X/rlZYuN1un2Xs65kfX3SgREhICCqV\nioV7N+NxuTGEmOh8yxD2nCrjvuG3ERwczIEDB3C73TRr1sxn6fR6vYiCgOSs+1sil13w5SwwMJAX\n7n2QJUuXsE0Whandrcjkcoi5gczUj1DHdMGvaSu+WvEdXu8C7hh9y0Wdh0KhQOJy4bRaUWg0VFVW\nIQgCKj8jCKAMCWF/VhbLly8nNjaWV9+aiar5TBTaSKrP7Ob/nnqJdSvnXlRN7TNnziAJT0KmqBH2\nCR26krplKTZzHqLoxXZ8IT3uaziC/0JIJBIUCoXPn7E2CAZq3B3kcvlVLY93rXOuObAxj2IjV5jW\nQHdRFN0AgiBMA7YCPYBD59uxUSheJA0lef6rIvFqBYtcrEi83ML3z7ZXGzRhMBiQShvOe1eLRCLh\n9Ref5INpMzm8Zg3N9CpCAnTgsINcTmnmUYK1mot62AJkHDuFaOyFRFYzgUcm34ImeydjRw7g5+NH\niL9zJE6Hg2nfLuDeLr0Q9meSbbWDR0Sbc4bOw0dd4Ag1REZGMuvjKWRnZ2MymThw4ACr1q6hWWJT\nYmJiOHr0KCu2pmMY+C1ShRqXZSxTpt7KiGFDfSl0nE4nCq3S95BWqJQIMglut7ueUATYc+AgK/ae\nRNIkgd2rtqDTGOjXrQe7Z31BRnU1SCS4Uo8y4LZxF3UO56JWWJxtjbLZbJcUXevn50efpLZsnrkY\nffMmWDJz6R7bEn9/f576z+ukexVIVGoCZ3/PlBcmERwcjEKhoHV4DEfX7SCkRQKVRWfQldkb9Of0\ner1s2bmd/VkZKGRyerfuSN8+ffl45goEXICcyrICvIILU9tuKP0DkQy/hxU/vH1JQnFQmxSWLl2B\nLCaa8szj+BefQaJQUFVZycq583EU2Hl71TGUWd8gKhNRaGuiq7WBHajIqvE5DAkJOf+BqBG73m3b\ncDt7IVMo0TrM9GoTjevIOwjAY7f3oVfPHj6B92e5HNe2kRoao56vDv/rlVnOwgjoAPNvf+uAAFEU\n3YIgnHci+MeM0F/lbFF3rVkSa7kY4fnfttz8R5EIFz7PgIAAJr9YW6HEw7KVq5j/zQcIen8M9ioe\nu+v2i75m8XFRCAs34fXcgkSqwJK/Hj+dly93rsOd2ATPlq20HjYEVY+OZOcV8sgtY8jKykIQBOI6\n9quTB/FCSKVS1Go1U776nMImAUj89CyYN4dHbxiOpcqCR9BgKzqIXBeM0j8Wq1RDdXW17xjBwcGI\nWz1kp2cRGBFE9uEswvUhDfahpKSEGb+sIuCZd1AYjDhKS/jovUnM7dyJZ+9+kAMHDyB6RZLuuJfg\n4OCLPofzcXaghEKh8AVK1JaYqxUW52Lk0GHEHzhAYXExQS3iaNu2LfMWLORwQBMixoxHEASK1i7l\ni+9/5IXHaxLK3NC3P367f+X0zuPEanT0GjICpVLJ0aNH+WLWj1TbHAy/oTcBgQGkVpym6a19ET1e\nlq3Yzq1t+zB6aDd+XPUgoqk9jqy1BCfHo/SvWVZ2WSrQKy7uhaOW9iltCQ0K5syZM+i79CA/NpFv\npn9GWk4e1hIXhmYdqQ6LIt+cjTNjK5qEYuTqYKxlh1DJnRedkDk5OZlhJ7JY9vMUBJUOk2jhkScf\nqWOlvpxuLxd7bc/217zWKqP8nTRaFBu5CrwD7BMEYdNvf/cG3hAEQQusPd+O175SuIo09GMWRZGq\nqiokEglarfYvTTZXyqJ4rknwUkXi5e7fpbbndDqxWq3o9fo/lQR4//79vPTWdCxO8FN6mfhwLzp1\n6nRR5eBqufHGG9m0dTfrtt2GRK5HL+TR7sHbKfJXkaFTkHMok72vvEWEXsfApino9XpatWp14YbP\nwcGDBymM8qfZrcPweDyYm8bx00+raRkZhSYyD1XEBmzFMoq2WkkM0dUpr6dSqRh9/SjWbVvP3vU7\nKDhVQEx4DMeOHfOV8svJyeFoejpnSkrw+vmjMNTkHlSagsAvgIqKCqKioujXtx+AL3DocnO+QIla\nf8Y/3seCIJCSklKnnYLSchRxLXzbaeKTSN+xnFWrV6PTaunQoQM9u3Tj7Pj1zMxM/vXwcziSxyPV\nGNk5ZTr9e0TRevxw1DotEokEU0oCJ3KzeWbiBHp220Fubi6BgeP5etEycpfMRupnQkhdwdN33XzJ\n5x4REeGr0R0XF0d4SAiTXn2Lqoh41CPuQGY04Y6LwWAtxHLwDuTaGKTuHN5/Z1KDluFzje+oYUPo\n070L38yZy4pN6dy39026tk3g2ScfvqQXmEvlj9fW4/Hgcrl811Yul1+zabf+Ds517rU5LRtp5Eog\niuJXgiCsADpRE8jyvCiK+b99/fT59m0UihdJbeDJ5RKJV4Lz9adWJOp0uv8KS+JftXyWlZVx/5Mv\nUx7QAqUhEIc6lA8+/4G5fwjquJB4lUqlvP/uZE6ePIndbift1HGKmodx8kga5afMOIvMlC5OpahC\nwcfx++jfu0+DgQwXi8PpQGb8PTBDZTRwurSU3BAVE958mGVrNmOWlqM8lceHb39Sb1nPZDLRp0tv\nbrnrIUr9+kK2jq/nPcOMKS+i1WqZuvg79F0SsSoqKD60A9WhPfi3ao/58D50Nstlsx5eCn8MlHA6\nnXg8HqxW6wWrhbRKiOOX9Rtwp3RGqlCS/+MX6EUzq1VlOHIz2bxvFxMfeLiOwFqxag3W2NGYWo8E\nwKr2J3XXM8Tf1hdTRE2gkb28Cq2yJmK5W7ff63K3bduWNevWU1GVQ8o9t9KhgZQ5l8LSpcv59+Rp\nVNlVlAYWIzUXoFHI8JqzadujG0/2640gCERGRv6p8m6HDqWxNLUAZ0g/qiry+WnTcRSy6bz47MS/\nxarW0AuBy+XC4/EgCAJut7uxfOBvuN3u/4q5+X+N//U8ioIgNBdF8aggCO2pEYg5v30VKghCqCiK\ney/URuNdeZHUionLKRL/Lh/Fs0XixfrmwbXrQ3kxy1c/L1pMXngshtufwu20U7hsDuIZK2fOnCE8\nPLzBfc6FIAi+xMVV1moyjmdRUlGFWhdO+YYTSCNeRprUhezCmbz+1kd88N7kSzzjs44TF49r8U+c\niW+C0mjg9LINtGkShxkLHq+Xm4ffQFBQEDu/XndOQfrTvAWU+t+Aqev/1fTZlMiHn82mWUoTYm7v\nS3DTmuVHm83GiU9ewR4YQoBSxn8ef+S81lar1UpBQQFGo7GOJfNsSktLcTqdGI3G8/pb1W7n7+9f\nZ7lNIpEgk8lwuVwUFxcjkUgIDAz0ff5Hn7d+/fpyKi+fea88hMVspqLwNDF3DiaqYytUfnrSvlpI\nWloa7dq1+0MPzrqvRRGjyo+q7ekcK61E9HjQ5FTRdkS/ev329/fHg5c1B/ezKeskzVNTmXDXXQ1G\nXV+IwsJCXn59BorEmYSoQ6jOepOc5d+iaRJOsFqB3mEnISHhL1mZ0jJOcMYKrnATypSReAsO89Oa\nt5jwUAU6ne5Pt/tnOPuFwOVy4XQ6r0rk9NW2Zp5v3moUzI1cAZ4E7gemUGfi83HBqLZGoXgR1KbA\nAS67JfFyT1q14q62jy6X60+JxCvBxQjPs/v7V96uj+YXIW3XGYneiESuxNm2K9XHNtdLMHwhzk40\nDNCxXXtyVxTyy+qdlNjBnhuPsun1uMylqEL6c/TYlD/dZ4Dw8HCeGjWG739ZRnl1NQOSmuOVe/jq\n28WE2ypQylw01fjRVBl+zgd9VbUNQfN7RQ6ZLgRLkQ2rw47R+Hs1kMAm4Yx88F46d+zEwsW/8Nq7\n0wgJ8uexh+7xlaiDGuG+au0aPpj9HW6dCaXXzQM3Xs8tN42oc9zUvXtIK89Hptci2V/FoI7dCQgI\nwOPxIJfLKSoqYs/+XzlyPANvkImwmCiE/RYGdepZR3iazWYmvf42p2xerOUltGkSyjMPPkhERESD\nPm/33XUnEUGBTHptBmUBd7F1jZnDa17inrmvIffX11s+Hzr4Br5d8CTlSgNStRHxwAzGP347nTp1\nID8/H7lcTnzH+HpCVxRFPvv6S344shNjj47YLV4Oa0zMXriAR/817pKvdW5uLhJVHAptNAgCWsVw\nnDsnEhkXjcxipaCgmKqqKp9QtNlsKBSKS3LDCA7wo8qcjX/r4QgSCYIxEkVUK7Kysi4YyX6lkUql\nNRWNfqsEUxtYU1sJ5koHwTSKskbgf9+iKIri/b/92+fPttEoFC+A1+vFYrFckUnrSk9ULpcLi8Vy\nTYjEi+Fy9jc00ESi3sCp7C0ISiOOk9sYd30PX+qUs2lIvDocDuav+IVDBTkIXi8DWnegb89eOBwO\njCoNo1u356sfF1Fh0eAqzUcjlyOp3EHzlPpJsC+EKIocO3aMkjNnkMtkdOrUiVeTknA6nVRUVHDL\nY5OIeOhTKk+kUlqWx+nUDYyfOvWc90+/3t2Yu2wK1qAkpEoDtj0fMfiW7gSHmli/ZDNJI3pjM1dR\nuSODqCFtefu9D1mysxhVqwdwnT7GzrsnsHDul5hMJjweD6u2bWRG6hqcw/rhrbKDEMb0VRuJi44i\nKSkJnU5HYWEhaVVFxF3XFalUSllhCR/PmUlhaRFniooJ1RoJa2Igpr0/ZyKqwaTHFKhBH25i075f\nGXndIF//P5v9Hcej22Lz2rBqvGwsOo1k2UImDhlBfFx8vcTPAG9/OAOh9ZP4+7fFJpVQfuBddn7x\nI4EWkYT7bqwzPnFxcXz72Tt8/e08qm0Ohj13N9dd1x+bzYbJZDrnC8qxY8c4aMkhevwoTMlJmI+e\npHL7adJzCy/5mkONddJWcRR3+XH0/glYbRXokNDx+mFogoIpWL2UrKwslEol3y1bRk51NUpRZHTP\nnrRITr6oYwwZfANvzPiB6uNrkWiMKL0VxIb6XVNBExKJBKVSWSfdzj8tcvpqWzkb+d/lt1rP57zB\nGms9/0VqA1dkMhkajQan03nhnS6BK7G0W9vm5RBdf+fS86X294+W0z9y84B+HJ31PdqEltgLTxIp\nq+Kxh+v7655r/zWbN5KhF0geOQa3w8Hq+asw7NEya8kKsv2bIA9IokXX7jQ5eYLjWfehUBuICZXy\nwrMf12ln7dq1zJ23EpVKwQP33kbr1q3rHWvVutUcLD2MMS6AovQCyirLuOG6G4AaX0vBGIQ+Nglt\nTFNEUaS8xHzeIJPOnTvz9nP38smXb2F3OLhrRD/uHTcWAO8KkV8/W4laqWJoSndSczJYkZ2GsuMd\nSAUD2rb3YN6cyY4dOxg6dCglJSUUy1zYtF6iWspQaoxkfLmcE3tOcOuO/agUMkaPGEjXTm2pkDmp\nTfpvtlrYmZOOKjCAk8ZQdhUUEpC5g+BdwYT2b4FfRDkLN/6CwWAi7ER1HaGYmVtAtRryCtORNB+B\niJTNeYfpcvQwMqmMoqIi9Ho9SUlJVFdXs2TzJgqCjIhBNhTm3Wi0bTG79bh/3cMTr/yHoKCgemPU\ntGlT3vzPC/U+Lygo4PTp0xiNRlq0aFHn/qioqMA/IYKqCjOiV0TXJIycnzbRwVg/3U4tbrebmV/P\nIXXXYSIjApnwyH0EBgZy+vRpnnntfVRREWT/OgqNLgqpK49Ok19CHxmF6PXiLSlC0zKWH1asoKhl\nC2Jat8ZabubbhQuZGBx8Ub6wWq2Wd559iE8WrkfUpKDxlNMlWktCQsIF9/27udTI6T/L1Y54blx6\nbuRv5uxazw3RKBT/CoIgoFQqUSqVCIJwQXFyrVA7uV5rlsRzCU+3243FYkGr1V62/sbHx/PG+Hs5\nlHYYWYSBJoN68v7ULzmdW0yb5DjG33dXg9bFWk4WFRA6uEuNX5VKhT45nuXLV3M6OJGEG8cgCHAm\nMpZWRzby2YihmM1m4uPj0ev1eL1eJBIJy5at4MkXZiAJfwyv28LGcU/z07cfkHyWNchsNrPn1D66\n39sbmUxGZPMo9s7dRefyzmi1WkJDQ9FUl1GRsR990zZUHk9DWVXSYC7As+nXry/Nm9eU/6utAww1\nKWZGDh2G2+3m21WLienfHt2OTcjatKdqdxoeRwyInjp+oJZqCyGRcgIitcj9/HGUlWOVtyV02AdI\nRCczFv2L1Ky9EOZPVnUpwwbfSPqBQ0i1Sk5aFOgef4ai226jIHgkJZomZC5fQpzLQXTntmj1JjJ3\nLiE9Pd1XrjAxMowVX/6IbPQryKIG4qmqwHbKypr16yiqOE5A00AqMytIP5lBRHgTLLFN6HrzcLYd\nLcKhi0OatpLgyo1MnvK2z7cUavwiKyoq0Ov1DYrHPXv28OqXcxATWuMtyGZQ82ieeuRh31gEBQWh\nOeklMhDytmzFfLIA7alcxr380Dmvw8uvvs2iteXIgm5lZ+ZBtu98hIXzvmLKZ19T2WYMTdv0J6Ks\ngMJ5r3Jn997szjhArgDeonw6aWU0a9aMbzdvJva3FwyNvxGioyguLj6vUDx48CBffbcIq93JoD6d\nePuRmzmdnYO/MYkOHToglUpxu93X7Fx2JcsHNtLI2fwDlp7H/dU2GoXieRAEAbVafcWsalfKYne5\nROLfYVF0u91UVVWh1WovOvXHxZCZmUlBQQExTaKJjIxk3ENPU6S/Hk3kzSzYt4bc/7zD+2+9cs79\nA/UGsvMK0QfV+M5VZRcgd3lQBYZR+2xS+QdSZXMQExNDdXU1ubm5vP7RZxw/nUuTiFBKc88ga/IC\n2qCaqNkyl4Wffl7KK//+XSg6nU7kGjkyuQxEkMllyDUKnE4nWq0WjUbDW08/xotTPqHI4cEghdef\nmnDeQASbzcayTWuwBdRYX+RH9jGk53V19rHb7XgVElQ6Lb17dGTDnh9wOYzYMz4lzJVG9+411ZxM\nJhOykmpCjDpc+/dRnFeB+VAWmmZPo1RrKCt3QMJwtHG76HZnX9bPXsmKzCICpCrkTg9CkxhsB/fj\n1iQga/8IUokDd1k0R2c9iUkdjDFOSkyv9uTn59OsWTNEUWT8XXcwbeo3uI4UgGI/Kp0BCsops2TR\n4a1bUWnVeL1edny3GXuuBE2nDgxPSkIiWcWeHavQlx3htdeeJCoqCqvVilwuJ/14JpuyTyENMeE5\nkUGPsEhSWv6exkgURd76chaqe15CF9sUr9PJ8g8nMfDgQV+pxNjYWPoUtWHDgV8Jc1hJcsu57z9v\n1SvJePYYL1qyFkPbjUikagjqTXHGUXbt2kVOQQn6zjXiT2UMQZ3cj8BAK2+OHElWVha6pAhf6UM/\npZLKwkIMoaF43G48xcXokhquAQ419/7E/0xD0upBZCY/PvzpayaM8jDohgEcPnyY3bt3k5ycfFVT\nsVzKC/fZQTC1otHpdOL1eutUgvlvEo3nSr3WSCPXIo1C8RK4WlHAF4vL5cLr9aLRXHzlkb+bs8fv\nr4rEc12LJctXMmvLXoToZogrt9MlSE2xM4jg1jVVUrSB8ez6ZRxmsxmlUtlgOzf07MOXi+Zx7FQe\nTks1kU4pPYfdyGs//oIlNhG5VkfJ5mVcl1yTn9DlcvH05Peo7DiWkFG9KExPJXP9Y+ibe87uMX98\nPgQEBKB3azm2O4PIplGcOHQcrVOFyWTyJURu1qwZP834hPLyctRq9QUf8GnpR3A30dO0VVPKy8rI\nsB5m/dZN3NBvAEVFRSgUCgIDA9F6ZJTkFjDkhutRCWtI/WE1Hdo049GHpmE01uRXVCgUjL7hRj6a\n+T5+8RLahwRSGhpEVlUmAv1xuV1IzAcIiDASkhBFp8FdCU1zMnb0GF56czKHVy1H7A2CIAVBgdfu\nQlDFI1ZBj1sGodRq2P/JPCojw5j0+guYq8wkNUlk1PDrWbk3DVlGKF7XIYT0jSSPaodKWxNgIpFI\nUOnVBMjVZJ48iV9QEMOH3EA7kz/9776D5k2TfDn8ysrK+GHjekzX9SA6Jga5RMr2VRtIiIn1iWeX\ny0Wl1UZYdM2SrEShQBoRS1lZWZ2x7dGlGx1S2uFwODAYDPUe+Gazmc07t1FpryY6qOHoekEQaNU0\nlq0HVhPccwxuWxWc2k789TfVybFYy+39+zPzl2VUhIfhLiujd1j4eWtVb9/xK87IIYTFda05F9l4\n5i97m20Hj1KgjUGQyghYsoaXJtznu87/LTRUc9rhcFxS5PTVnsMbOv5/w0pVI/9cGoXiJXC1E1Cf\nj1ofv1ofn8vJ5ZrEzm7D4/H4Ijr/jEg8V38qKiqYs3YLYXe/hFyrw223se6jSTgsTkSvF0Eiwet2\ngNfl83cSRZH09HQKi4sJMBpp2bIlAQEBPDbmX5w6dQqXy0VSUhJKpZKJNjvfLv8aq9PJze3bcNPQ\nwUBNneUyUU1Im5qUKgEtuhMQH0v1qclUup/A67agrpzNLaM+qNNfi8XCnm2HWfX6dmQaNykpzZny\n7zeQyWR1fGIlEgkGgwG3283Bw4c4kX8KhUxB++Yp9SxaVocNbZieg2lp7Dh2EI9UYNXivWzduY4m\nLYNx2tw08UtiQI/+bNi9nYw9GSQKWsa/+U6D5eGCgoKY9PDzbNy2hqqyCh68fRxvfziTwiVbcVaX\nYTSW03nM67idLor3nqRn094olUpef+Flkn/4ga8WLsV68jgSzWcEJPXEdehH/MNNZM5ZjbPcQtug\nGNbs30ir+3piig4mbeVuQqx+3GqA9Vs+w0+v48VP/sOJvBMc3ZZGbEo8JXkluAod9Li1G34Z6exf\nthyADhGRNEts6rtHXC4XH371OdtcFfgVRqA8fIghvfvhUSmwWq2+LAYKhYLE8FAOffsRqvgEPJZq\nZIdSiR9zQ73xUKlUvmCQ3bt3M/2LH3A4Xdw0tC9Z5nzk7SLRB4eyedcR2rVryr6MiUhNt+C2HCRC\nn0OHDh1o3bo1Z96YQvoX6xBdNv417Do6deoE1LxAHThwAJvNRnx8PLGxsTw1ejQlJSVoNBpfeqey\nsjIyjmUA0CypmS/PokIuQ3RV+/rrcVgoKS2GjjcS1X0oAAV71rNoxVrG3X7pCcOvFc6uOV3rz2i3\n2y8qCOZaE2W1tecb+ftx/48vPV8OGoXi/wBnB4LYbLbL1u6Vmkw9Hg+VlZVoNJpLqpJyMVRXVyNo\nDMi1NZYimUqNPiyKEPEEx7ZOQR7UGnfeJm4Z1B29Xo/NZmP9lk1sLjmNJqkJ9mPHaXMyk9uGj0Qq\nlRIaGlonn2OXLp3p0qVzvePqdDrE/2fvPAOjKNc2fM1s301PSO+FhE5ICL33IiooClgQxWPDxvEc\n68HeC1ZEBURRUAQV6b23QIBAaCEkpJDes73M92PJQiA0pX2a+0+yO/uWeafd85T70Vdi1Vej0Hli\nM+nxcNfxwku3snrdCozGOloP68ehrMN4e3sTFBSE1Wpl9JiJpObEI4+YilC9iv25O5gxfx6vPfNs\no/u3P+MAhww5RHZujslgZHnqWm7qMqiBvEyQXwCp2zaSps8l+vY+VOw9jqFFEHW6ErqM6odCoWDT\ngjTy8pozauBwrFbrRS3Qvr6+jBpxJ5IkMWPObJLGdsahkVFzQoa8SMv2N35Gckj0apVCj27dAafM\nyfh77uHeu++msLCQz7/6lvyiH+h0UyvG3fmii/jk5eWR51FOQIyTALUeksyy1XP46s3Pef2MDOT2\n+vYsX7ucPd/txFQVcsEAACAASURBVMfdm3HDx+Dm5kaXpGRS2icCnPOStHb9eopjfInwjsIeFUyN\nRxUb16+jm8wZD1sv6q1QKBjStwfHd22ntqgamdlM944t8fHxOe+apKenM+Hhl7AF/xtR4caO196i\n28gYbn/ISS69Av2w5lXRq3sAO1IXEBrix6MPf+6yYn727mtUVlYiSRJeXl4uYvvel1+yV5Qh+jVD\ntmIFL4wZQ8uWLRtIO5WWlvLZr79gah0PgGb+PCaNGo2vry/9+/flpz9eojBVjqj2hqxf6dC2JWV+\npy2cat8gKnL2X/CY/3/CmUkw9XI7BoMBURRdcjs3Cjls7MXbaDTeUJnoTfj74VSpvqeBcEmSJgqC\nEAfES5K0+GJtm4jiZeBqWBThr1nszs4WNplM1921cj4IguCquHE1SCI4rV9+kpmSfdvxa5VM+dH9\neJmqeO/d11m5ag25BUdpNagbgwYNAJw36HWH9tHqsbEoVCocKQ72zlpI9/x83NzcLlnP0dvbm/tH\nDmLmnP9AeHvIP8DdQ3pwxx13kNAigV93LSWoZxzlBhPf/Dqbf902gZKSEo7l2lBEP4Pa1wspsDu1\n+wZxIPc4er3+HAuDIAhkFh4nqm8L3Dzdcff2oLaqhoLCky6iaLPZ+HHBb/y2YTNVUi1ZWw7TZ+Jt\nGH21eAf5YDabUalU+EV6UlldCXBZYQoVFRXsyD5A15fvQqaQ47Db2fb6j/x71AOEhIQ06hYXBIHg\n4GDeePn5Bt/XE5/Kykr0RdWuJKCa4irUCvU5pE+n0zHqplGNzut8VvTiqgo8EyKwGAykfz4Ns81G\nWV4l/33lQ7y8vBrIseQb63jkxWcQTxGO/F17KS4uPm886MLfl2H2m4BXuFN+x+aQsXfDFG4/tV1y\nOJDJRbp26YhVsqNSKLDbT4ciiKKIr68vBoPB9V1aWhp75UoiJk5EEASqEhP56pefmXqWHM6G1J04\nuiYRleiMn8zXadmUmsotg52C7NM/eoXFy1ZiMFbRc9xEaur0fLJ8LZaQGARRRs3eNbRLibpu5Olq\nuVrPzJyuDz04szTkjUQYz0RTnefrB/s/hwbNAnYD9aWmTgK/AE1E8a/iRo5LvBY6iVcy01uSJEwm\nExqN5i+TxPMdF4VCwYuPPsDHs37g+Oq5hAc044lH7sfLy4vRt58mGdXV1Xw1aw4HM7MpFKppLTqJ\nhiiKyNQqKisrCQwMbLCuBw8eZOai36gxGujaohXjRt3m2i4IAnfeNpJOSYnk5uYSHJziSoLYum8H\nCYPb0yzM6dY1G8ykZ+wnOCAIsCPZbc59kRzYzQZqysrYlpZK84hol5sxNzeX9PR08nJyCTDFwCnj\nks1kRa48TZIW/r6I1ZUSER8uwpCdRdnWBeSnZyNziJQfLkU3SIvVYqXoSAVt2pzrZr4YrFYrMpUC\nUe4cUxBFZGolKpXqTydHtGjRgvgdESx7cz4GjY3yvfnc1WvUFTnnmkdEsmLFUgQ/K8NfGUJ15nE8\nCsys2bqS+Pj4BpYohSjDYjKj0mqxWm1UlZaxZX8m+fn5dO7cGZVKhc1mY//BA5TX1lBWXoLVHIDJ\naEKhVCATQW5xcHTzHtz8vSnafZRApSePvDIVe+JIJFMNC59+gW8+eP2ccIH6fdXr9QhBga7PusBA\nKurqztkvo9WC0v00gdVbLcyZ/zsbNuxieP+u9O3bxyWJBM5rr6KymoW/vI5DkritR0cG9O19w97b\nrgTOlzl9I5YPbCKKTbgGiJEkabQgCHcCSJKkv9Rzv4koXgaupu7h5d6sLkQSb8Sbf707SKlUXvUb\nYnBwMO+88Mx519VisfDov1/imCoRZeg4CjZ+xA8fTeP2iXdTlpOPvLiKqGFRDdY1Pz+fV+d8i/vd\no9H4+/HHb0twzP+ZCWPHNei7VatWtGrV6pwxDXo9GQcOOMmywQCCU8svqU0zNu1/E31lN6TqxXgF\nmBkwYSi14SJL9qxlsL0Xx45lMWnyG+DeBXPVXnYeOsBdT92N1WRByDcR1TfKNc7B4zkok3qjUKuJ\nCY8kM78d6fM+okdya6ID2rHym1TsFgcdmnehRYsWl722/v7+hCq92P/bBlRebhQdyKZZnXBRuZ4L\nQRRFBvTox6oPt6Pt2Jzo0Yms3LaPNvva0L5d+z/Vp8Fg4N1Pv2Dd9t1UlBYT2U1D5VaBUJ9mpAzu\nxLKP1jeorSsIAt3iW7B+Syqa5tEUHMvipykfIUrJCPZNxIZ9w4/fT2P9jq0UeEh4RgdSFqxEv2wq\ndXYBAQ1e1bP536uPoNJrqD1YS1JsZ6bPWYBiwCT84p3xh0XA0hWrmHDv3Y3OOyYmBmHmTOoSO6Dx\n96dg2TJ6xsWd87u20THs27wTtbs7lRWVLJ06Aw/FACrFNqR+OguzxcLQIafjKwVB4ObhQxgxbLDr\nc33N5X8CbpTygeC8P58dO2k2m5uIYhOuNsyCILjKTQmCEAOcX5D3DDQRxf+HuBBJvNI3uitBjh0O\nBzU1NQ1K4V1NZGRkMGPhH9QYjPRo25Kxt41ssE6ZmZkcr1XiP+ABJIeENvBzcmbdzgnRnWBvP0aN\nHoe7u3uDPg8dOoSUkohvK6csSfjoW9nw5lQm0JAoNoa44Giee+ldvPp1xW62UrFkCwPe+BC5XM7s\nmZ/y5fQZbN2+BLnSStI9D9F9YG8AZHIZ+zIymPLcBwix01B6t0VhM5Gx/VZqthWQlJREbN+GpeYi\ngwJYfWg3UlIPtFotQbXlDB4wkOefdsrdVFdXo1AoLqgheSGIoshj9/2LSc89w3GZHg9/XySDjIKC\nAiIjI/9UnwCbUncQNX4o0T2TcTgcnAwJYOWmTX+aKE6d9jUrq7U0e/ZHxKN7KF/xXzrGtiQqOpKT\nx4vw0nmfcy42j43D19uH4vIylnw5H1RPoAsZh8Ph4HDWM3z55Vco44Np0b83J0+exJ4YTfKzd6I/\nvA9jZR2RBDJiRMMqMOaZ85BpnOeSzVCLsaqMrOOlrvCLsxEREcG/b7qJb2Z+Q6HBSLf45tw3Zsw5\nv2vXpi0Wi4X1f6wma/cetNYOhPecCECd0o2ffp/egCgCnDhxgq/nLaSkqpb2cZGMHTniH0lOBEFA\nFEU0Go0r9KC+fOCZcjvXEk0WxeuHv7uO4hl4GVgOhAqC8CPQDRh/KQ2biOJl4GpaFC8Vl+JuvpEs\nivUkUaVSueRergTOt255eXlM+eYHVMPuRe3rz/xVv2D7aT733zXW9Zvq6mqqyk5g2/crbr4JqP2j\n8XJrxgM3305ISEijbnGlUomjoNr12VRRiVZ5ae7zXfsOYvUdRm1pCKKgRN6mBb8tX0OHDh3QarU8\n/dQknga27tzOUVUpEhICAoIoYrVZqamtw8PLWZdXlKmQeyTi7elFXEwsNpvNNY7FYsFiMGJfu4ij\nW1fiExNPjMzCo6/+z/UCcSXkUI4cOYKibQSjH78TURQpSDvIjF/m8tq/n/tT/bmO4xnH86+GO2zZ\nux+f+6ciU2vxbtuN4zt6sviTNbTr2IayrEokvYpXXnuH4UP7k5SU5GoXHBxMWFgYdXorKs9kwEmO\n0SRSWraXsJYh2Gw2qqqqkTXzxs0uo9PY25Fr1Byc/O458x7epwtTF03H2nk0ZXt/RutZgim+JZ99\n/zUPj51wzgsJQHJyMsnJyRddg45JyXRMSuYbu0h+qgd2q4nK3K3UlGSgMpQ2aF9ZWcmUT77B2mk0\n7kGRrN61mupv5/DUQw/86TX+K2jMqnYtx65fl/rM6TPldq52+cDGjmsTUWzC1YYkSSsFQUgDOp/6\n6glJkkovpW0TUbwMXO94xUshiTeSRdHhcFBbW4tSqUSj0aDX6y/e6C/i4MGDWFp2JjDO6f4NGjKG\nDbPf5P67nNurq6tZtnsrfoPiqFJnU3lwK8o1dQxpH0NQUNB5YydTUlII37SRY7N/RN7MD/uWVJ4Z\nces5v7NarZSXl6PRaFzJGhU1dbjF9cG7RTdqjm1DX7iP3UcOcTTzKM1PSbkAxEXFsHPlXk56OI9v\n/u5M+iV0ISE+lqM5s9FFjsdaewxqNlNRHcI7019HlIuE+URy202jeXTSf9mWoUHS/QtH0R+khOn5\n4rP3LysetKSkhF8XLabOZKJ3l060bt3atc1ms1FTU0NhYSGamBDXA9Q3NpxjVRtwOBwurceqqiq2\n7FqDwVRDkF8UPbr0aWD5BCd5+fL7mRzMyUSy2Cn+o4yyrFw8QwOpWruXcaPuveR5nw1vD3eKik+g\n9G6GJElo1VqGdLyJiIgI/vXO89QqbweZJz8teJ5pHz9Pr169GrTvnNKGBau+RaF9FYetFrF2IT17\njMEqF8lPP4JKLaNsxTaatWiJoFaTvXoLLcIjsVgsrNu+lWOlxbirNPTrmMyTwJc/vk1U32gGjrqb\n0NAQDq3fzZYd2xjcf+B59+FSr+WB/fvw0+9TOFSUiq19C4TmZhTKtixasYKbBzutillZWRj8mxPc\nwkl+w/qOJnXaEw1eNP7JuFD5wGuROd1EFJtwtSEIwh/AXOB3SZIu62HcRBQvgqsds3KpROxyEldu\nBItiPUlUKBQugnAtiLZKpUKqKXR9NldXoD2DKKXvT8faOpK7eo5mb/oB8gOVKNfu5n/PPn0OkTkT\nGo2G156ezNatWzGYjLS89/4G9XIFQaC4uJgfl/yMWWPHWmuhX7se9Ovdl75dOrJ+1lzKDJUoPQoI\njDfTp00/VmdsQqfVuQSWmzVrxtCOfcnOzcXusNAvoQvRUdFM+/QtHnzkPxzb+hlKhcCjE8dQJstj\n4KRuKFUKdq9MZ9b3M9m5rwhdy8UIohxH8Eg2b+9DVVUVRzKPsvPgfjw1WkYMHEJAQADbt28nPT2d\nZs2aMXz4cBQKBWVlZUx4+lnK2gxA9Axj4YfT+d+9t9Ondy/Ky8tZvfE35BojeUUlnMwsJKJHImpP\nd7JXb0eoMzL2X2OokyTctO7EBrlz+8TeePuFcHT/CRav+JXE1in4+/vj4eEBwFsfv0+2phqfLmFU\n5eUREqkixJJP6bIj3DdwLJ6envz2229oNBp69ux5zvE5M8YQ4Pjx46xbtw6lUskDt9/Mq19+wPGw\nRAyF2YTUnqDT47czd94CalWj8Yh6CgBDaRQfffrVOUTxheeeorjkBTZt7oQoSDz04FiGDh2K1Wol\nLX0fZcVVjA5szaaNe9m/cS+UVqFsm8inM75G6NSesB5D0JdXsXDTVsb3H0yVpRa6h+Ef6jzWbs08\nqT187r1akiTWrF3P6o17UKnk3HFL/wYlHxtDeHg4L02+j5cWL8etexRxMeEEBwSw5ssvGNynDyqV\nCrVajb2uymXNsuhrUMiEK665+nfA2Ukwdrsdq9XqypxWKBRXPAmmPsmvCdce/yDX8wfAHcBbgiCk\nAvOAxZIkmS7WsIkoXgauFtG5WJ+XQxJvhAy+s0ni1ZLBaGzdOnXqRMy6zWT9OgvRuxli+mYm3XmL\na7skgSgXUSiVJCclEhkQQG2hAQ8PD7Kzs/nfm1PJOpFPfHQEr77wFGFhYa62Wq2W/v37n3dOvyz7\nFd/eEUS2jcVsNLNu9lqiI6IYNLA/1TU1fPT9Z3j3iaVX1yS6du5E9sEsCgoLGlTiaNasGbGxsc6H\n+SnB7dDQUJYu+pGqqirkcjlbtm+hrBmo1E75nNgOkazYsA2Z3B1BPJWcIaoRZSqWr1rJqsIjBA7r\nzvGSClI/eZ92IbF88vVirN7DkOlX8uNPi5j59SesXLWKsoSeBNw0AYC64ChmLviYbl27sGz1Atr2\n1BESFobJGEHdZ6tJ++8XyHUapIpy3CMMxHYJwGxSkn8Ycqozyc4LQe3WAkFjZtYfP7Hk+FEoqeap\nsePx8vRi99HN9Hq2F0WHTuARYMAnIJTe8R2hp4wj6w7xypezsbTpjVRxiIifFzLzkw/R6XSUlZWx\ncstKak3VuKs8GNBtIAUFBdx179MY5SMQpVp81T8ybtww/ti7iaD+rfEKiefN6R/j6XAH2en1FhVe\nmEynhc3roVKpePO157DZbPj7+7uuO6VSSefkjq7f3WUw8PDk5zjs3p6cuiiqNs3llpTWhEiga+ZL\nVUgAJSUlJETEsHJbGh7+Pjjsdgp3HKV7297njLt6zTo+m7sbz/jR2Mx6prz/I2+/cF+DmtULFv7G\nV9//ht1u55YhvXj4wfsICQkhMak94b27AeCw2+GMayQhIYH2XmtJWzQdsVkE0rEdTBjW77q5f68n\nLrd84NmZ01arFZPJ9KdrTjc2flMySxOuNiRJWg+sFwRBDvQBJgIzAY+LtW0iipeJqxGjeCFcCwmc\nC+FyybEkSdTW1iKXyxsliVfboqjRaHjzv0+zZcsWDEYTrR4e38Dy1yIhgaVzt5Pv5YmgVlG8IZWb\nWrbFYDDwyL9fpjL6Xjw6dOPg0bU8+szL/PLdtAZ6hpIkkZubi9FoJDw8vEFCQmFFMS1bOR/UKo0K\njyg/ysrKiIqK4o7bR6H0UCC2dCcwwil5Y6oxoNI4rZ2ZmZnM/mkhRSWl3DqoL4MGDcRkMrkSgERR\nxM3NDavVireHN4dzqpCSnQ+cohNlJMQlsMM9k5O501B69cJS9istY/zYejiduMljcAv0AyCjtIL3\nnv8St+7rEUUfzFY9O/eN4f1PXsXHPQLUp2VbZBodmQcP0z65LyazheQuEXw4/V48vd1I6daC0cP6\nolarmbvsS4gtxqtDFNm78klfsgVdoIpF+7NYtX03MtFOs75daDPhPqpyCpg69Vs6x8Wh8wOL3oRP\nlDdylZqS/UWo26lxiPDb6rWIt7+MWF1J5txZHKmpo0v3Ifz043RSD+0kpEsQ7cJaUZxfzLJNS1ky\nfytm3fO4N7sZgLL8t/j5jz+4ed6LuAc4NSb3VeuJKtOiWDoDQ1kkotwTe8FrjH68ofu3qqqKb3+e\nhUGhx2KwkBiVxIghIxq9VtPS0jhm8ybgjhec5F6qYc2GbXRKScFmt2OqqMTuFUhy+w7U1tWxbdpS\nRFFkUIeutGvbznVO1fe9fO0uvBLG4tHMSQwLakvYvjPNRRQ3bNjI+7NW49HtfRQKDXNWv4O720/c\nOXoU/mvWkL91K26hoVSm76NzeLiLfMjlcp59/GG2bdtGZVUNsd1HEBcXd928D/8fS9Y1Vj7wSmVO\nN7merx/+SZVZTmU9jwBGAx2A2ZfS7p/3OvkXcC0tY/DnSOL1jKM8kyRqtdpz1utaPRi0Wi09evQg\nIjwMvV7vymgEp8XusZFjaLY3H7cthxndMoXOKZ3Izc2lUvLGp+Ug5Go3fNuOoMSgID8/v8H+fT5z\nBo9/PY3n//iVh1+Z0mB7oLc/x3Yd5sCWvexcsZnj2w43qJjStX0ninZkczQ1gwMb96AqcpAQn0BW\nVhb3PPkCs0v8WSRPZPyrHzNp8tOA0zprMBgwGo3Y7XYkSaJDhw74mIJZM2MbG3/YSdG2GkYMvoW5\nc6bRu0U6Aab/MqxTGbO++fgci5HdZsfuABR+WGwmtG5q1F4RBMYoEVV6VKmLqUzbSPXRdPI/fpqS\nYjmq1utQtUtlb1ZHXn9+AWaThcpiCz4+Pmi1WmQyAXOVnXf6zmXOf43kHwvj2AElJ61xFHq2Y9Pi\nLEJ6OksbekWGUFBcxBtvz2bP5tbMvH8366bu4MjyIyhNIkpRzfG0AkwmEUQZRz94GSlyDmL73VRo\nnmb8/U9SY6/GL9hJfANCA0DnoKy8Crn6dP1jSR6OyejUy6srqaA0MxdzrYG4uDi+/OR54nVfEia9\nxn8mDeS+8Q2lahat+B2PJB19/tWLfo/14WDVfjIyMho914xGI7j5us5t39he1G3dRW7aPvI2bKG1\nQkd0dDQAPTp35fGxD9ArsSs1ZjMHDx8651pVKuXYrafPV4fdhFJ5+trfunMvsujbUHuFodT5oWt9\nD+u27kWlUvHYnXfSpboS/21bGO7uxuibGmZg11fCad+uTaMSTk24dNQnwWi1WpfL2GQyYTAYMJvN\nl52411SZpQlXG4Ig/AwcBvoCnwGxkiRNupS2TRbFi+BMciMIwhXN3L0Q6kmiTqe7LpbEelwq8awn\niaIoNkoSr+W8qqurefbN98lTOElamG0Bk+65k/LyctRqNdHR0dx16yh0Op0r9sjNzQ2Hvhy7xYhM\nqcFmqsVhqmqQlbpz505WlhURMeVZZAoFRVu28+mc73nnWWe277Deg3lt2lu4JfuhUCnw8NZSUV1J\n9Kn2AQEB3DlgFCdPnkTuISciJQKlUsmylWsoiuqP2GkwPgE+mONiWfHz89yyYzt9evdp4PKqt2Tc\ncesYCgsLsdvtBAcHux4yX017H4PBQE1NDQqFguFdezN3xq8EDuuOsbQC1YF8khLbsO/wu8jCx2Aq\nPISybgfd+j7FrjUFfPifSUz5YCrFVcW41VVR4T4BUemLVgG1PnexdcMdrF+UTZvmvfDz88PhcOCj\nCmfB9M3oFY8jeY1E8lIglb1F3iE7vn1HUXTyd8RTsYRlR7LZvy4dXcvfsMjDUSmt5O4dRYBCRmyv\nJApTa0mJ6cXJ7mbm/vIZaNuDOg6htgJ1wM3kpr3Kli2rqXYvpmunPni6e2CpszJoQFe+mfMBNsXb\nOOy1yPUzuXVkPza9/i3a5m6o3GVU7slGGdeLHt17nBOTeCYKKwrp0MJp7ZMr5PjG+lJa1nhyYNu2\nbVFPn0Pl/o1og2Oo272YoXEtGaT0RB0eQGRkpCsZwmQy8ev6NdRGB6IO9mHfoQxy8/OR7HZUShVt\nWrfmjlv68urH32GqG4zDUoenfiO9ejzpGs/b0w3b4dMvJ+bqAny9neeoh4cHtw8f7tpWVFREVlYW\nSqWS6ppavvh1NVJgHFLxce4Z2JlhA/v/v7PqXQlcaWumKIqoVCpX+cCLZU6fz/V8JRQJmtCEC2AG\nMEaSpMsWT20iitcZjRGeM0ni5RaKv5Zkth5nkkSdTnfem/C1mtvPv/9BbkgSIf1vA+DAd+/z+LRP\naDFyGMbMEmJStzP5gX81mGdoaCijh3Rm3pInkQKSEAt3Mn5kf5o1a+b6TVlZGWJ8LLJTxN2nTUty\nFy527ZvZbKb/7QMJbx/lPG4O2L1oD8mJp+VXPD09G9TsBXBIEmarFZ2Xs9KGIJOh9PEgKz+X3qce\nKvXabiaTCVEUsdls+Pn5uXTf6pGdk83m1D/QeQnUVdnp2GYAE3U6UjcdwF2t4eZJk1EoFDzx9Ets\n3TGUkEhfpsy8F5PRgpdbAJIkMWBEKAPGDGfl/J28/2oqekMd7m6eKCxHiY6I4eZBE1w6jKIoMvb2\ne/n0019QuCUhyjTYbRYkbTskUyaOimJaRUVyYuo8cr3dEMtrUcpVaLzbobTZMFlMCMpW9EuJ4dEJ\njwLO8//RB0IoLnqLHzZtQvTMw8vTH2NNBjp3B2Me7MGutEx+mT2XdhEd6RzflZY3t8Rm+5j5C0aj\nVCp56sV7GTZsCG9NfwOvOC/cdDpaDhjEobUZdNB3uKCOZKBPEPmH80nonIDVYuXQxiO4h3hRUVFx\nTu3ngIAAPn/9Od6bNpPSHVXc3L4VTz78XKMaiQUFBdQFehGT0gGQUHm488mUN0m+pRtyUc7qH7by\n6O3jeevZcWzZkYZGpaRfnyfx9/d39XH7qJtZvva/FG+uQJJp0VVu5OEP/3fOWJmZmXy+bBFC+5ZY\nCirZNnM+bSZNRxcQjtVQx3dz/kdS29Z/SSi9CQ1xoczp+hCS8+nIXukYxWeeeYbFixejVCqJiYlh\n1qxZeHp6kpOTQ4sWLUhIcOrBdunShS+++OKKjfv/EX/3En6CIPSTJGkN4AbcfMZzTwAkSZIWXqyP\nv/cKXWFcC7euzWb70yTxekCSJOrq6i5KEq8lTpZVook6LdRcUVdM+NA+hPXsgkOSODH/Dw4dOuQq\nsVePyU88QteUbeTn5xMRMZ6UFGc1DYfDwdq1a0ndtZuS40cJ7tsLpYcHJVt3EO8fQGVlJWq1GkmS\nkMllLsuAyWACLn6+DBvUn49nT6TW2wd1YCCODTOJjPAm2O/cEnuCIKBUKhs8iOqtFwCbdiymy9Bg\nvHzc0NeZ2LhoFbcOvp9ePXo26GfO7C84fOQgO/atoTjHQoVkZ0CvYWzZvpGIlj4oFHIG3pbCknnf\ncGj/SKw+ceise/ngs8/OIVlqtZohA3vx88qf0QS8g6JOT+XRbxAUDvwN2Xz4/tv4+flRVVWFr68v\nt2SM51jBLLQh96Eyn0Rp38ugQY+c0+cn77+Dn9d7/DD/fqS65ggVG3j2s2G0ah9JUIgvCz5PpXer\nvjRv7pQYev65yTz/3GRXH2VlZTRvHUfH/h1c32XrcjGZTBckiiMGjuDb+d+ybu8G1izdwckaHTvD\nj/D1z4v598Rx5JYWI5fJGNCjFxERESQkJDDj43cvepwlSQLX9SGQnZ+LKtKPFv1SkMtlHPfQsmLD\nGu667U7i4uIoLy9n7dq1WK02evbsQXh4OL6+vnz75fts2bIFm81GSso7jZK9BRvW4nXrYHxjIqnT\n67HuPYihpABdQDgKrRuiVyA1NTXXjSj+f4xRvBycr3yg2ewshFFfRrB+Da50jOLAgQN55513EEWR\nZ599lrfeeou3334bgNjYWPbs2XPFxmrCDY+ewBrgJhp/IDURxRsdZ5JPm81GbW3tXyKJV5rMXqi/\nepIIXBeSeL55tY+LZlvqOjyjnbIi5qIcAkOHIEkSKpUKua+XK27xzP0TBIGuXbs26EuSJN58dyq/\nbM7BEdiJupzjbBhxNzGd2yMvKaUqwpc3Z3+In9yL24bcgv2YheP7j6HzciMv/QTJcRevLBIdHc3X\nb73IM6+/TZ0cQkJ86BPejv59+zb4ndFo5MsZ33Ig6wQRQQFMmjgePz8/F2msqKjAIRrRuSlx2O3o\ndCrcvETq6uoaFXZOiG9JWGgEJSUlBAYGotFo8PPxZ3fmTlp0cKBQyrnn8R4c32ilS0oPOnR4Dj8/\nv0b34YXnlX/OjgAAIABJREFUnqK4+HnWb0xEEODfD4/mgfvvwdfX1yXB4ubmtJh+/eV73P/gZI7v\n/hC1Ss67b7/YIOHoTPzvxWe4+aaBZGZmsmO/nuSeTlLosDtw13gRERGBJElUVVUhiiIeHh6u89DD\nwwPqRIryigkMC6AwtwiZUe6S5zkbx7KOUVJeiJvGnQl3TGDjxo0slJUS+fRniAolxXvW8Nirz9L3\no6exW22s/fwj3nzkyUuuSBMaGopbehp56RnofLzJ35JKZGQwoiggijKUOjUFxccpLCzEZrPx4JMv\nUeXXC2Rqvvrxv3z90cvEx8fj5eXFsGHDLjhWndmEh4/zhUWr0aDxdqPi2H6atelCTV4myuqCc+pN\n/1NwrcW+z0yCkSQJvV7vCnn55ZdfiIyMxGg0XlF5nAEDBrj+79SpEwsWLLhiff/d8HeXx5Ekacqp\nf1+VJOn4mdsEQYhupMk5aCKKl4GraVG8EiTxWqL+hgdOAnApJPFKrt+Fxhs2ZBB5hbNZ+vHjIEAX\nf29kmTlIsbFUFBTCgWNEjut2SeOcPHmShat24jNqDjKlBr8Od1Dyw600V4kc1tbhldyGxP5dOLYj\ng2XrV3H3bWPYtW83hpMGuoen0Lpl6wv2X7+OHTt2ZMvSRezfvx+ZTMahzAy++v5zQvzCGTxwKGq1\nmhdfe5v15Qrcut7NwdxD7Hvyv/z41adotVrkcjk+Pj7IJDfKS2vx8XOnuqqa6jIbOp2uUQvOsWPH\nePurT9HLJUSjlSfHTiA5qSPHso/w2xe7UKpkoPfgkX893MAF3xh0Oh0zvv4Yo9F4jjv8bISHh7Nq\n+Xzq6urQarUXfWi3a9eOdu3aERkVwZKv5+Php6S2zM7IIfcgCALvff4JqTlHQJLo1rw1j054EIVC\ngVKpZFiv4azcvJyj67PwUHsytNfwRue2d98eUrPWEJsYQmlVPlmrjiCzaRDD2yEqnNejwSscm1pF\neJ8uAGQDKzeu58HI8Recfz3UajV3DhhCavpeagpPMCIknm1Fh6goKKGmpoafXp6Brc6dXzelEyCz\nUx00gmad7kOSJCoPhvLFjB+Z+s7Ll3StJUc3Z83KDYQP6YupuobWRivmwt0UfDEJD6XISw/dc17C\n3ISrh/pjp9FonHXfTSaee+45ysrKKCgowNfXl3bt2l3Rl+6ZM2cy5owykNnZ2SQmJuLp6cnrr79O\n9+7dr9hYTbih8QvOTOczMR9IauS3DdBEFC+Cs5NZroY8jt1ux2g0XhGSeC0sivXkxuFw4O7ufsO5\nkORyOY89eD8T7zVjMBiwWq2s2ryRvV/+gLtGw+M33UpAwLlu3cag1+uRaTyRKU+97Ut2JDcLHsk+\ndIgORDLBnjXbadOzA2lbVuPp6Um/nn0v3OkpSJKEwWBosI4RERHMmvsV3m0cxHfx4+ju/cz5qZRu\nKT3ZtmcVEcNHYSxdjTz+Forz9pGRkUHHjh1d+92v+y2s2fAbMlUpVoNI16RhyGQyF4GrD6y32Wy8\n/dWn+EzoT6v28VTnFfHRO7P4NDqacXfcS1FRETabDR8fn8uqz305VpF6C+OlIjmpI7ExcVRXV+Pj\n44O7uzvzFsxnv9ZE0sdPIzkcpH7+M0tWLOOW4SMAZ5b7uFvvPkecG5zuPwCZTEba4e10GNwcbx9P\nBFFgl/4gqgpfhKxVWGvuQO7uizF9Jd6Rp121MpUS22XG3Lq7u9O3Ww/X54i0MJYuXMeiJauxhXQk\n5P4HQaXk6PcvoNSX4i+KIIHKI4iqIj16vb5BPeLzXXvD+vfHsWolqV/PRatQMnnESFq2aIler3eR\n8/p41yZcO5x5LxVFkYceeoiHHnqIRx99FIVCwa233opWq2Xs2LGMGzfugtbqAQMGUFRUdM73b775\nJjedynh/4403UCqVjB3rLGEaHBxMXl4e3t7epKWlccstt5CRkdGox6EJfw8IgtACaAl4CYIwklOx\niTj1Ey8p3qGJKF5nOBwOLBYLbm5u/68siTcqSTwTNpuN+b/9zrqde/Hw8OD+UTeRktLx4g3PQERE\nBP5qE4V7fsY9tg/lafMIitXRon1LNmWmIkZ4cHBZGnqLmWAP34t3eAaMRiM2m62Bu7SwsBCrpork\nfp0QBIHAcD9+eXsz6zeV06mPimZDo7BZ7Oxc8it6fc05lTWCg4O585aJLkKgVCqRJAmHw4HVamVn\n6k72H9yOyWShuLaKVu3jAfAMC0QZ6c/Jkyfx9fV1xa7V68TdKPDy8mqQHXokLwf/oe0RZTKQyfDt\n3Ipl3y2ntCwbb88ABvQdgqenZwOSaLPZeG/qZyxYtgZRELhr5DA0njZk8tOkSSYXad68OU+PGcrU\nr+9FkqtpLrejjPKmZN8hHDYb1b+upc+9//pL+5PUIYmQ4BDWLNuPe59hKH2cLzA+iZ0oW7AIQ/Gt\niAo1pn0zGDqmK1qt1hXrVq/fV08az4RCoWDk0GEMNfVj5px5vDPtO7w9tEy6b9x53fzXEn/3GMWL\n4ex9F0WRyZMn880337Bt2zZ++OEHFi9ezGOPPXbePlatWnXBMb799luWLl3KmjVrXN/VxzcDdOjQ\ngZiYGDIzM+nQ4WxD0z8Hf3fXM9AcZ3yi56m/9ajFKbp9UTQRxcvAlbbW1Qu21rvJrgSuhtWzvr/G\nLGDXa24X68tkMvH2hx8yZ1caqthWyGttHP1kBtNedHdl/F1KPyqViq8+fpOX35rK0VXzaBfgQ5su\nXVAoFJzILMJeUcuJ9AIO/n6QuwYMu+QHoNFoxGKxNCCJ9bFTFrMNySEhyAQcdgdWiw25r5XOyfEc\n2LkIMawVmso0QmVa4uPjsdvtDQijQqGgsLCQ96fNpKK6ll4p7Xlk4gSOZh5lfeoPdBkcgNlkYcmm\nQxzfsIvIHkmYa/SY8krPG4N4KZAkiZKSEpfUx/lcm5IkUVxcjMXi1GK8XMvimQj182dLxjH82zjF\now/PWUhylIUW/R0UZGcw8/ssHpn47wb1rmfPmcsvByrwfup3JLuN2fOe446kAPZuOEpCciS11Xpq\nch2Etg4lISGBEcOHYjAY8Pb2ZmfqTv5YtJ666mru7d7/L5OuqqoqVq9ejbnmJOZje9DGtsRcW4rC\nZqB/cgJFe17FZndw9y39uP22W136fWeKPl9IiuWT6TNZcKCQWpUaW6WZjU88w8LPPiQqKuovzfv/\nM25EklqfzFIfJ312rPTlYvny5bz33nts2LChQZJMWVkZ3t7eyGQyjh8/TmZmpkvnswl/T0iS9Dvw\nuyAIXSVJ2vpn+mgiitcJ9TGJSqXyhnb/nEliDAYDdrv9hrckmkwmcnJy+P1gOgGvvow2NIK6fXsp\n/G4h23elNSCKl4KQkBC+/uw9wLkOi1cu4Y/vl2ENCyVv+V5K8oMQosYxc+kSwiNm8Mi/Hrjo/Mxm\nMx4eHq5jX2/1i46OxndzOKt/2klwrC+5+8toG5OC3nCStgltCQ4sJDv3KEZBzlPvvI5arcbhcLiy\nKGUyGYWFhUx8ZgqWnpNQJUXy3fqZ1Ok/IzRYRbehQcQkOJMYxt2fzHcffkf1tkMY80oZ02twoy55\ns9lMxpFDVBvr8PPwpmXzhHMsmZIksWX3bg6bbIhuHghHjjG4dYsGWbU2m43c3Fx2pu/B6OeO1tsD\nR1YG/VsnNxoDWVlZyYGs41jsdmIDA4mICD/nN6NvHsnBD98lPXMGNpMJTUke9757F2q1irBoP37P\nTSc3N5e4uDhXm617DqDudDcytTPzWZ48ipKqNXT37kbR7pNoVX7cPGC4i8BqNBqXS91sNpOTtw+7\n2sGSfdUczj3CI+MfblQO52KoqKjg7geeoEDeHmvISEp/nkn1yS2ogn3xyi1h/ITH6Nat8VjaS5Fi\nEQSB5Ru2om/TCY9x9yHq3Cj/dSafffcdH0yZ0mi/Tbi6OB9JvdK1nidNmoTFYnEltdTL4GzYsIEp\nU6a4rNDTp09v0m/852CPIAiP4XRDaziVAS1J0oSLNWwiihfB1YhRPDNxpf4hf6VwtSyKBoMBm832\nl0ni1XZjms1mjEYjtbW1qOOjEbXOt2ld23aUGmegUlz6KV9eXs6OtB0YLEZiw2Jo18YZZD5swFAO\nZRxld1ohRYdFdKN/xG6yIg/uzVffT+auMaPPa02rn9/ZJNFqtVJVVYVarebB8Q+zafNGSrOK6Rja\ngfCwCF7/+EN+WpmOrw8khLTi/nFPERERATjDF+olOOx2O9u3b8cY3QvfRGdpOsXNz7Fk2h08dM8g\nbLbTMXXeXr7cPqAlkeHN8evpR0JCAgaDwSUQLZfLsdvtbEzdijFQxaZjO8nYcwBduZ2XJ/27gbuq\npKSEQ0YrISldEQQBQ00Y69N20OvUvvn4+LB65S/oa/ZxRJSj9W1Hckxr7CFB7EhPZ3izfg3W6LNv\nprNozz6U8W3pndKVLEMe/e12oqMbWsLc3d156YnJ7Nixg18XL2VzjoPX/rOCh57oQmi0Hw7buQ/m\nQD9v0k8ehThnGIKt8AjBkb60a9sejabLeV/cMg4e4Pddv9D2wZYEx4VwePVRSopLWbthLcOHDG+0\nzYXw2+9/cFLbDd/OT+Cw26lRBOBdNpvRk25FcjhYunItXbp0Qa/Xs3X3LioNdUQHBJGc2KHBHM8n\nxWKz2bBZTBATjczNGYOmjI7hZHbjVWaacP1wpYliZmZmo9+PGjWKUaNGXbFx/g74B7ie6/E9cAgY\nDLwC3HXq80XRRBQvA1eChJ2d3XxmebkbFVarFXA+lP+K9fNKWiEbOxYWiwWDwYCHhwc+Pj6ECzJO\nHNmFJTgOS24O7rVlDOzf7zw9NkRNTQ0/LpmHb1IgWk831qduxmw2065NO1avX4NMI8DuXdjFKKy1\nBqTKSoL9w3AodOj1+kaJYv383N3dXRY5SZIoLy9n8dI5CPJyzCZo22ow/fr2d1mIXp36PvbhKST1\neYyqY3nsmjafu1SnLVj1x0Qmk+FwOJxuVkPVadklfRUqpZKuKf34afGnmI1WbDYHGxeVENq+FfkB\nbnz+81wy16fi7eHNv/81niGDB2E2m6moqKBGZWPLnl1UOQpoMzKaQ0sO8eJn7zP9lXcICwtz7ZvM\n7bQbXalzY+WWDeQe/gW5XCLroIFRQwJIbhOAyq7GrKhmy5Y1tEhIxHHWNfD9z/PYVJNH0OQHUPr7\ns/a3TYxM6cGB/JNERIS7dEblcjlVVVUs2bGbudvTyRCDELp2YAt2Mu6fxYT7O6C0RJyTEPDo/few\na9J/qCw5gmSzEGLI5t7nPrjoOXE8/zi+8V74Rfii9dQQmhhM1qp8KmorLumcOhtVNXUI2lDAeY0p\n/SJRlLoT1aEFAFtWplNZWclPq5ZhaBmBe0IcK9MPUb2plgG9+jTa59n1iG8b3IePNy+HuBgw63Er\nPUGLU27n6+mCbRq7Icxm8xUlik1oQiOIlSTpNkEQbpYkabYgCD8Cmy+lYRNRvIZoTALnWuoe/hnY\nbDYcDgeenp43tIvcYrGg1+tdJCw6OpqxyV34efc2qvccQHaylFdff6NB7WU4/3plZ2ejinEjqo0z\nBs3Ny42dC3axdfd2KvxNBPYOpYuUTPEna5EfWY5vXA/MRxbQPNC9QSWNelitVtf8zkyscDgcrF77\nK22S60hoFYXRaGHpwqX4NwvC29sbtVrN4RPZdHh5PKJcjqZ9C6pTWnH48GGCgoJc8Wr1x0YURfr2\n7cvXPy7g+I8vglcQssz1PHvv7URGRjJmxBPs3Z+KTBSJbGUlenBfFixZxomoDqijh2K3B/L6N28Q\nER5GYmIi1dXV1FTXUF5ygL4Tk1GoFCjz3DhQXsT8+fPp1KkTkZGRZGRkkHX8BDJvX5oFBbFzzSp0\nquOEJXgy9/djlBVVELhrL61a3knVwRyKtUYKyjTkZe8hrMwTR/8hrn1IPbyf0Js7snfHfmoMAjaD\ngYyMDLzdlfz4/fso5HVYrBp69B5DdnEJ1qgEMldtx/uuV7BmH0SssaAvyMRwwpMnHn/EZWk7efKk\nK9bwpxmfkZqaiiiKdOo0GTc3N1eSVm1tbaMvRRqlBrVNQ3lOGR6+nugr9VTmVBDZL/Kyz9esrCw2\npO2gYPevlDp8CQiMxJz2FfG3xQBQkpWPDiWVlZVU+7kTm+QUh/cM8mfHzF/o16PXRa9HURSZ9Ogj\n1H70Eet++Rq1ry8RDgdj77zzhktS+qfDarVelrpAE64cbP8ci6Ll1N9qQRDaAEXAhXXPTqHpzLwM\n/BUSdj6dxGtR7eXPwmg0YrfbG82q/DO4WvtaT8Lc3NxcN1tBEBg57CY6JyZRV1dHYGAgxcXF/PTz\nfLQaNb179764JITj9Fwddgd1dXWU2avpddswBEEgpEU4tdlV1J1cScHGH2gTG8G7773ZIH5v6dLl\nvPnRV9TU1jKgdxde+9+zrjna7XYcDgcVlbnExjvj7zQaJUFhIgUFBS4i6O/tQ/nh4zRr3RyHzYYl\n+yShN/VGo9FgsVgwmUzI5XKUSiVyuRy1Ws0994xiQ+4hTI4yQhOS6N+3N6IoEh4eTnh4OA6Hgx/X\nrkTjpuNwVg66vo9iyclFKQVgajOUPXv30aFDB3x9fdHoJcTaOqrzyjFXW/DVCRzYmkt2eT6zd+Qh\n5e/g8WcSCfK2suKjVDp3G4Km6ASh0QrmrSmg9Qf3c3xlOt+9/Qfzlv5MRCBEJ7rjExRFl46hHNtV\nSEZGBm3atAHAQ+fGzvlrOVEsRxx6DxZ7MavnzSWqSxgP3B1ESFAopWV1/LHyBzQhXVFHuCEKAg6z\nEUHnjtpUg0Iu0CmlsyuQf0vqbvZX25B5eOM4eoB+8WENRIkBjhw5wnvffkOdZMdTruClhyYRHx/v\n2p7cviPHFmeSV5LN8jUrqDhUzS29RtG96/l16Pbs2cOLb0yluLSMxDYteOvlZ9HpdLz46ceonnyI\njiVlpH/wIcU7iri5X1cUBhu7Pl+EWG1h4si7AJDOkOCRHA4uxRZ28OBB9mdk4OnuzlMPPcS9FRUY\njUYCAwPRarWuuuH1hLE+prEJ1wc3YoJNE/52+FoQBB/gRWARzpJ+L11Kwyai+CdwuRf1tRTTvlJk\nzGg0uuqPXuva0ZeC+rrR9SUP3dzcGggp5+bmsnPvHmSiSNeOKRw9epRnP/kWW+v+UFvC/OVT+Pzt\nV86bhBAbG8vmhds46nYIrYeO/D0naBfTlrXHtjSYg5efFx8++yweHh4YDAZ2paWx9tvZuGnUtI+N\n5b9vfY2ix9vovEJZvu1D1O9O5Y2Xn3eRREEQ8PIM5kR2OTFx/lgsNvJyjHRL8XedK5Pve5Apn31C\neXwY5pNl9ImIJzEx0RWbVh/jWB//mJubizHYg7E3PYAgCFQUlbD7UAZDe/bF4XC44mJD3D3IPXgE\nnUZNac4hpBIrYqQXQskxfFKcpE0URfp3603GjkVU/LSegAR/lszPxZr8AM1u+w8VFWWY1n9IUXE2\n9z/ehaDQLIRyO+FdezL75/XoEmOxW2xs+3w71ps/wKBuRmXaIszpK5n9SgoKhRxDmZna2loMBgMG\ng4G7h4/kp/ETUUyZh72iGK3SD21AHPq6XEKCnIlIzfzc8PaoRquSk5lznP7dOrFi+ZfYbAqk8mIS\npDI6deoEOGNNMyoMhKb0QRAELOExbExdTXRUpIvU6/V63pw5HZ+n7iayVXPK0g/z8hefMPOt910u\nQS8vL+665R6ys7OxWq1E3hN5Tu1nq9VKfn4+DocDuVzOI/95DXuPKehC27Fr1w88/p8pvPHSv9F7\nuhPa0RnjGTyoL0WvvMPTd42nWbNm1NTUOAn6qRcBv107yN62C62/L1UHjtK9ecsLvritW7+Bt79f\njCOhD1LFCZasf5v3Xn6e/fv3szvjAP5eXnTv2g1RFJHJZC65nfo4R5lMdlVJy/V+Mb4RXc9wZUNz\nmtCEsyFJ0ten/t0AXJbsQRNRvAjOTma5XFyMJN6IFsUzs3ItFsvFG1wn1LsJdTpdA5KYlZXFm/O+\nR9YrBclmZ8XX06jOLUcz7DE8o52VUk78/iXr169n6NChrna1tbWumtU6nY67bx7Lrj270JcZGdKm\nP3GxcWRkHSRt0XYCE0Io2JtDvF80Pj4+2Gw2lq9cxbTtO9GMGIm1spx577yHMegOPANaIIoi7skP\ns27dxAYkURAE+vS6hSXLZ7N7ewb6Oon42IayK61ateLL/71BTk6O0yUql7Fo7RIkoGVEPM1j41z6\naA6HA6vNBkoZJpOJoqJiigtPYj+ah7/GjaMHNyMIIq0T+9KrY2e2pO2im0rHT9+8jSy0CzU7VtJa\nrWfIkCGu8f38/Ljv/v+xatkMTMdKqSzzJKhPP+RyGQgSiog2FBRmYLPZ8fBRUXqyjqSkJDZu6s7O\ntZsot6mwh3ZE06YHUlkN2iGTyJ26BKvFjr7WwvEDRsSQHJas/R61TkC0euHn5YNc6Y48IRo3Nzeq\nD27AalNQWWXA20tLba2JqhqBHv3a4ZFzApXCiru3HXN5ES27xTJ61JMugldcXMyx3Hyq3A4SGRWJ\nTqvDjpMg1RPFwsJCLN5uGCrrKFm8Ca27Br1GSUlJiStpCJwi4fWWz7NhNBqZv2guZl0NMpnI4S0n\nsPi1wzPaWcnFq8sDHPxmHqIoYq+oxFJdg9LTA2tNLfbyCpek0JnxrUqlkrtvuoWde9KoPFJE97B4\n2rV2jm+326mtrXXpZdbjix8W4jniBbT+4U7JoIXv8cGnn3LUQ4cmsT2mnBPsnjWLh8eNQ6lUolKp\nXEkwZ1oY66V2rhaBaSJGp9G0FtcP9r85DRIEYXIjX0ucEt6WJOnDi/Xx916hq4B6YncpF/b1Ksv3\nV4inyWTCZDK5YrSupfbh5aBeQLoxofLFGzegvak/QYnOB+oJuYwT73xN0BmC2IKHHwajCUEQMJvN\nzP31J3Kq8pDsDtqFt2JI/yF4eHjQt1fDKiuP3vcwy1Yv5+TGIjoGtWbwiIGuc2Hhxo14P/wEuohI\nZ0zcymVYDh85td9QV3wUf5UCg8GARqNxtTObzRzJLaXSWI5ok5GSdK5wt5+fH35+fuTm5bLx2E4i\nU5ojCAKpu9NRyOVERTpfEEVRJCw0lH17t7K3ZheZhXsQTZVU7zuG/uhvPP5AP0BgxabvUSkfYED3\nngzo3pPxQ28mLS0NjUZDt27dXIkx9WjRshVR0W9iMBgQ3H9g+qbvMbn5Y7WYsWxZSPO73CkrrmPn\nmmL6JA/FYrHwxOOTYbqG31esw1Ekx1pcTlhQKNSWU2wRmPH2QWSiisRWA9ifvYq7/9MCnbuatK3Z\ntNjvS+a813H0HE1V/lGCKzIZO/Epfl26CD+fSsoroH3SKDw9PUlu15bkdm1h2OBz1i0/P5/ZC76k\nXGWl9GQ1+zJ0dEpoT6yHuoG2opeXF8WZeZjtHrglJVF2PJvqnCJ0Ot0ln5O79uxCHmGmYw+npbC8\nsgz91kw87DYEmRxrdSFyHISEhHDfgEHMeuVtZAnNMWcc4oF+A1zxszk5Oew5kI5cJqNrSmd8fX3p\n1bWhTE5JSQk/LP+DWjmIJisju/aiZYIzCcZgNOLt4dTDFAQBNB5syd5B8kfvIVerkVI6cnDaV+Tk\n5Likos5OgrHZbK5Eu/oM+Bs5Rvn/M86sNd+EJlwFuHNKCufPookoXgL+DMG5VJJ4NZJZ/izMZrOL\nJJ6tk3cjwW63YzabXRpyZ8Nss6LQnBaZlWs0xEeHc3zVbPwG3Iulphz5gdV0uPUJALalbqfcq45u\no/rhcDhI+2MHAXvTSO6QfE7fWq2WUSNG/h975x0eVbl18d+ZnplJJr2TXiAJkEDovTcBQVDArmDv\nvX12vXot2CsKIogoiAhKr9I7hBJIJyG9J9PL+f4IMySQUBQk996s5+GPMOe8p79nnb3XXvuc/2/s\nN+mMznh17IzHkcVUrXmCOtEd4eQyJt2cxPyfPue6cbfj7e1NVVUVk26+jZLaGrwDdEx5uD8LVs4j\nrF14s96CeUX5BLQPxd2zIeoU2CGMvOx8F1GEBlLZPyqJJ999mm6jQ4mL86NEVY972VEs5lr8/fzo\nlqQmK/swcac1eBEREURERLisdux2u+ufM82vUjWQK43aRrx8D1nfjMdhsRGu01JX0JVVc6sZ0ONm\nunfvjt1ux2QycfetdzB68DBe/fdMjqx5D31IEtL09bz1/FOMHTMahULBjh07qFG6oXFvuGZJXUNp\nF1bGzb1Gs3XfVgKDPLnlsQ/x9vYmOiaW6upqPDw80Ol0F7xXVm/4na7jAtF4uLFyyQ5yMqvIzEpj\nxsuvNFlOqVSSktyLQ7uOY8yvwFZURs8+Q8/7PJnNZl7913usWr8FNzcVg/ok0eeWDq7fuw7syJ+/\nZVKw5D5E3w4IJzfx/MMzkMlkTBo3ns4dEigsLETXpSfJyckAnDhxgg9/mYtuQBI2k4UNX37Ic3c9\n1MQIXRRFFqxcjmxQF+KjwjFU17Bo8RoeDAjEy8uLQT26sGrNN/j0vR5j+SnkuTvxCPdC2qiATqJS\nYrPZmj2+5ky9z7ZN+k8mNa0x9dzaskpt+O+BKIov/90x2ojiJeJiiN3ViiQ2xqVOhmaz2WUt05gk\ntrbUuDPd1jjVfDb6d07m0+VrkSrk2K029Gu38Pj06Wzfs591S99E56bi3gdvJTY2FofDQXFVCSGp\nES4TY//4IIrzSlocv7m+wQAT+/fn82++QD9mPLbqKrz27+HjOZ+zbNkysoo2M+3DSUREB3IsrYBN\nW1YxYdxUHnvmZfLkffG74QEMlTl8/dqT9O4bwh/rVtIrtSdxMbFNtqGUK6gxGVx/mwwmvGRN77HD\nhw/z+Y/zyc0voafRn/Ydg6k9VYqjXIJUIkEikVBZo8dua4ggy+Vy1zVvbLXjTEU6/RSd576o4hif\n/zQJq6WBRC768iiTht3fpMODs7jGbrcTERHB5zP/zebNm6muriZx6mNNPBh9fHwo2m/CYrahUMrI\nOV7o9Ts9AAAgAElEQVSGn3cgY68Zw9hrxjQ5Nnd390vqS2s063GXSDi6aTs3jhHR11jZtSadI0cO\n0a1bT9dycrmcDjHRdOnci3q9Hl1XHZZj+8+5znq9nrT04+gtVn5fuow1WXJ0U5ZirS/jp6X3YXev\n44ZHrkGQSMg9XMiTD91DVXk1GRkZJE+9kyFDztgzxcbGEhMTg16vd/3f73+uI/i6vgQnNVz3dImE\nLTu3c+2YM523TCYTVQ4zHaIaUuJqTx2yQB8qKyvx8vLigRm3ofxuPtuWv0aoh5b7nnmA9bt2sm/p\nb/h270ZdTh4+5ZUua6OW0JKpt/MjzXnf/CeTxja04X/FR1EQhHjgMyBQFMVEQRA6AeNEUXz9Quu2\nEcXLjEslia0hotgSSbzc+LvH6tQkOltdOf0dz0aPbt0RHQ5WL9+EVCLh1lHj6NixIx07duSu229x\nLVdSUkJaWhrlhWWI2Up8Q/wRRZHKvDKiPTqdM25hYSFf/jCLwooivLVe3DXlTqKjo12/Dx86BK1G\nw5+7tuLl7s7UF54nLCyMTsmJJPSrIyI6AEGAoBBPsg+UNZhj7z6ActA8RIkbSv/21HlGUq3U49HF\njz3FBzEY9CR3SnZto0NMe3K3riHLZGkozMitpW+vM+Tj5MmTPP3JTHR3TcZ7TAoLly2nvm47sbG+\nrN0qISpYT9ZJC+kFXlwzYYCrd3fjKJIzgmg0GlEqlSiVSldkSRRF7DYHNqsdpVKGCDhsYrNpycZG\n0EqlkpEjR2K1WhFF0VU8IZE09FRunz6ID5/7GbOjjPICO1PG339ZIj+JcSn8tPArRgzVExTsSUah\nhYnjOrDn4NYmRFGlUtE1NIADOemo/YIxZqeT4tc0amkymfh10xZq20Wh9PFgRV4p9uDJGOxS3Lwi\nkHa8kfr87az7Zvdp/WgnFFIVXyxYiV0bxspdv1JZU8/kieNb3F+z1YqiUTRcrlFhqWqqE1YqlahF\nKTXFpegC/bEYTVRmn+RgvUB5eTmpqak8ePedPNhonejoaJasXEH6L78R7eXF5DvuvCTfvuZMva1W\nq6vi3umMcDHX63+5wre5Y3e27mxDG64wvgaeBL44/XcasABoI4qXG+cjO06SeLa4vDWjORPoxmgt\nEUUnSVQqlahUKsxmc4vLCoJAr5696NG9R4sT8PHjx3notXcxR3XBWKJHt+9XavMqkQgSQuT+pA7s\n2mR5m83Gx3M+xX9UJF26DqDweD4fz/uM1x9/Ba1W60o5D+jfj9GjRjZJRft6B7AjrZ6IaD0O0c6R\ngyUE+KZgsVhwd9ciFQzUl6sQDQVoPPV069GTmA4xWKOtpP1+gOROyRw7dox16zeiVCoYOmQwFosF\nh+igXd+eTXol796zG9ngbgT0TMHHZiPbXcuvT77FrddE88STX2A0GBAEgQm941wkSKVSuaKHRqPR\nFUGUy+UuHZ+TSPr4+JAY05cls7ehcLOTl1GNTtaekJCQ816/szVwTpLhJCBh7aJwPwjXDI/Dx8+N\nVb8uY+++aFK7npv+vxg0+FOu48DxdPRFKjJ35+Jhh/YRKbi5+SKRnHuvJyclElFdTU1tHe6xIeTm\n5vLhx58S6O/L+PHjKSwspNI7gHZx7amvr8ccEIi+fD9CZDdqyqpRVmbSrW9Xpky5wUUIJt7yAIre\nL6ANiMFqqObLhU/RIzWFsLBz2xEC9O7YhQVLNyJMHIDVaKJi3QFSJt7aZBmJRMINg0cwf9lKSn09\nOHUsgwNbjnCgow5x7WF6rd3EK8883uR5VqlUTL12QpMiKoPBcPbmLwrN6RnNZrOrCOZy2WldCbSG\nuexstJShaMM/g/+ViCKgFkVxZ6N3kygIQvPRlrPQdnf+BTQ32TQmiY1F8hfClSBiF1tw09ik+p+Y\nqP7qsTpJolwud/ninW+syspKPp03l6P5efi4u3P/5Kl06NChyTL//uIbTD0n4tNtMA6JnLKfZxJk\n9WHYsGEEBASc86KrqqqiXmKiV2ocACHtw8gOSKe4uJjo6GiX8F+j0TQhiXa7nfj4eH5Z6satU2Yh\nVSmQWtz58M1J2Gw2Xn32YZ56/WnUQUMwF+0hJlXJmNGN28GJ7Nq1ixmPvoIp7HoEaw1zFjzC4vlf\nEhgYeM6xq5Qq7JUNqUyZTEaAuzfeHZJ57P5nWzy/Z7/46+vrgTMdeRQKhYt0SKVSrp90I8//304U\n7ieIaqemOC+PtMNpJCUmuVKR5yMKEokEpVJ5pkrbamXfvk2MnuhPx5RAEEUsI+0c3rvjLxPFuQvm\nszDjIJ4j+lIrN7BtQw79eidiNKrYtLWS5C43N7teSEgIoaECs+fM4/25K3FEjoOKIyxdsZGXnn3E\ndW3TjqTRaUAY+z9eiLgf7JWnUNccYfz4Ja5nqbKyEqNdTkBADDZTHZXHf6XeXsDn333E9Gn3Eh0d\nfc5z2q93HxBFNi/Zg1wi5YFrpjbpU+1EeHg4D0++icrKSh5etAm/aW+jDYnDXFPGpl/+zc6dO+nd\nu7dreZvNxvzFi1l38AAyicDkAYPo3+j3v4rm9IxGo7FJBLI1ksbWFNE0Go2uea0NbbiCKBMEwWWn\nIQjCJKDoYlZsI4oXgcakpLkJ5q+SxKuJf5ok/lWIokh9fT0ymaxJpfD5lv9gzrcUdo2jw8M3U52b\nz9vffs+7Dz7mKgjIysriUO5B5ME+nFp9GPe4EUiCYhAk9QQFBTU7rkajwa63oK+uR+OpxWKyoC9r\nkBgYDIYmkRrnftjtdkRR5MSJE6xJK8H79pVYqkspObiEh954hbeeeIrhw4cSFhbKwYMH0WonYZJa\nKMg8iVanpSjjFInhHXj7/a9xpDyPT3RDBXbFdgVz5y2gW5cEjPVVBIfF07lzMoIg0K9fPxb83x9k\nfrMQeYAv+uWbeG7StIs+186Iopubm4vE6fV6l17NbDZz9OhRotsbuPXuwQiCwMncGn7+bh7Jnd91\n9S0/deoUaUc2Y7bU4+sdQbfUAee8DJ2EsiE6KuPIoVIQRNqF6airMyOTKv9SmtJms/HjmpXEz3oN\nuVZDyKBeHC2p5MCRdkRFhtGjd0IT+6GzYbfb+fDL79BctwS5tkGOcGT5DPLz89GZbRRnnqCypBB3\nawUPvzgEfVUNdRUiAeYR2O12lq1fSWV9Lf7uXngobFTn7sVUdYjg+GISOwXRr3dHlq79idu87sbT\n0/Occ9K/bz/69+13weN02jjVGcx4eYdQsHUBFqESg5uBX9esIDU11ZXZWLZ6FavNdUS8+ix2k5nv\nZ32Hu1pN7169LunctoSW9IwGgwGpVOoijZfiGvHfiOaO3WQytRHFNvwTeAD4CogXBKEQyAFuvJgV\nWy9DaKU4O5L1d0nilYwotoTmOpn8k/t3sRBF0eVtqFarL+rlYjKZyCwvof2gOxAEAa+ocCpjwsnP\nz8fX1xer1crCNb/S684h5Cm9UIUlkPHdYlR5JXR88p4Wx1Wr1Vw/7DoWfbQUzzhfanIqGZ4yCJ1O\nh9VqRaPRUF9fT1ZWFnsP/IkoinRM6EFcXBx5eXkIoclgt2MwpBF2wzjq/ywlzVCA/IiC5I6dSEhI\nAMBgMHA4/TD1ZQa6+HUkPjYOvd6ILLBRBbSbH7t2/kDf6Hzaebuxf/d2amvG0b1HH774ejZ1pSaE\npTvoM6AHQ++8j86dO1/UuTaZTDgcjoboaX094eHhaDQalEollZWV/LlpCRKhnOPHTyLR1sDp6+EX\noKa2Np+ioiKXPOBg2gpSe7nh7e3NifQMtm+3MmjQNU22WVhYyMdfvEV1bRG19SVExILSo5q1K63U\nl4dx952DMBgMLaYzHQ5Hs9EqURRxABLFmYInuc6dpKQu9O7dmxUrVvLK2x8jk0q569bJ9DqLLNls\nNqx2O1q3BjNtQRCQqH2x2+1MGNCXQ+nHcRhqOZCVQdyYoUhlUrbM20mn9sms3LYBTXII0YHxlOae\nYujwVNas/pSKugx8OsUwpG9XIqPaUZZVTXFx8TlE8a8gNSmeNYvewq1/It5dB6I5bMchk7N11w4G\n9e0PwIHsLPyuHYVMqUSmVKLp04Njx7MvG1FsjOb0jI1NvSUSyVWdU1obTCZTW5/nq4j/lRZ+oihm\nAUMEQdDS4KFYD1wP5F5o3Tai+DdwOSOJ/9RXttVqbbaTyT+JizlWZyTRaYB99vItEVilUokSAUNZ\nBRp/Xxw2G9biMtx7NVTK1tfXY1fBiFFD2bhlG5m7lyMvOcL0oRNdFiUtYWD/gURFRFFUVIRvF1+C\ng4NdxuSiKJKXl8fGnT/QbaAXgkRg9frZSKXTCQwMRCxeQ31JApqoIOymKvz9fAjtGEPO7jySO54p\nnFGr1XTv0r3JdseO7M+HP76HpMfz2M21OI5+S+8xnvTv1qBzCw/x5Kulq/lh8Qo2FrghT3oEa8Fu\n6lb8zl233cGWrX+yc98GZFIZQ/qPIykpyTW2Xq9Hr9e70suzf5jPbwd2Iff1xq20iveeeYHIyEj2\n7llPSpKFyIgoCpLdeOeDPezedpIOHf35YXY6NSfrefe5SdQ67JiV/vTrE0hQ0FhEUSQhKZjvv92P\ndncAoaGhBAQEYLPZeOGFewgPL0OndZDQS4VE4k5IQBeU6FHH9SIqKorq6mpXStOZIq+srGTbnvUY\nTDV4eQTQt8eQJibVcrmcYak92PD+bKS9EqhMz4R1Wwm8ZhorVqzkiTe/QdbtKRw2E3ueeJPZH75E\nauqZFLdSqaRfz1S2bP4XmuRbMRUfRlW+h5SUe9BqtfRO7Uqvrl1YvzGEtZ+uxm63kxzbhUD/QIqq\nsokMa9BrhsRFUpNRzKwPX+ez7z6k//Ak/AJ9GqQU5UbUUed2BaqqquL7XxaSXZhPsG8At068gYCA\ngPPel08/dA/pTzxOSYUNjhYzvFcqGgcU7S9wLeOj0VJ4qhBdeMM9Yy4sxlOjbWnIy4bm9IxnFzT9\n01ZcrS2aaTab/2MyUW34z8NpYng3EA0cpqGYZTzwBpAJLLzQGG1E8RLhJCiXiyReiUmrJRL1V0ji\n5Tbcvhg4K3GBZkni+SCRSLj72uv45JM5yBNjseQXMTAo3FWdrNVqkZmgtryaYYMH0LOyhr0Vblw3\ncQIAR44cYevOXaiVSkaOGN7Evw5w9Up2tstzGpPb7XaOpO+lSz8dUXEBIAg47CJpR3dx7dipXN83\ngdlLZuLWLQzfQA2TJo7GWG/ATX7hlNP022/BZrWxaPkTuCmVTLx7AiGqY67fpRIBo8HExu2H8Zix\nEUEqh/BulP+6n3nzvqfIsIsh14VjNpn5fuF73Kl4lpycHH5a8gfWukLGDkjAIXNH7RfPb1lHiP7k\nFWRuKoo37+D1Tz/im3dnUl9bRERYAAIC7UKCGTFkEEsXlrB80Sn0RUZGdbQTl+yB2kvL13/UkJWf\nTl5eJyIjI9m5Yzfb9m6hTlJA0e8Wrh0xg9raKiK88nj83ji27SmnXmKkxKggODiEkCAVGQcc3Pfc\n02SUlSCx2rj/+qlcM3IUdXV1rPlzCUl9/fAPjKcgr4yNW1cyduRk1q5dx5pN2/DSabnxhkkcf/s1\ncvZtIinOk5TpUcz54RNOZJqRdXsKTeQAAGpMtSxaurIJUbTZbEwaO4jyWXPIXr6K2MgIXvvsbfz9\n/V3LCILAkEFDGNBvAK+/P5Ov1m7CvnoD3p4ij/RMQK1WYzFbcFhsaDQaJo+Zxh+/LcYnqojaUgNh\n2njCw8ObPFsOh4MPv/0SQ5dAoqdOoORoNu/M+pTXH3+uSWpy586d7E87ip+XjpEjR+Dp6clDt93K\nZnMJ7Uc0pKzTV20m0fuMhnXyyFEc/+ZrcnPzEc0mQkorGXjr7Re89y4nnHpGqVTq0vQ2LmhqrXrG\ny4nmKpzbUs9XF//tnVmAuUAtsB0YDtwGmIBpoigeuJgB/uvP0OXA2W387HY7BoPhP0qT6OyJfHa7\nu9YGJ0l0OBy4u7v/JSLds3sPQoKCGzRlHbqRkJDgGkculzNlxEQWLFlMjrscW62J0d0aIlI7duzg\niZlfY08dj1hfyU+rnmX2zLdcHTOcyMvLIycnh4iIiCapQ4kgxWSycvxYIdXVBqrL6lCLIdjtdm66\nYRKD+/VmxZ/r0HYIwlhagyW3kmsaWdtkZGSQmZlJcHAwiYmJLlmAVCrl/ntncP+9M4AG8fsPc2ay\n+1Ah/j5u7DlaTXyn/rD0EKLdhiCVN1RhW82kZx3i2vvCCI9tILw1VQY++uQj1uwpwdhuEkpzAZlz\nFjPvXzcwf+UfyJM6IDttz+LbLZnsT+dz6tQpKqqsZGaVEhcbiNVqQyIL4OknHkUmk/HH3DdxYxc+\nAZ7IFRJUDhOr99STU/AdHduHcCqvnJseGUB8UhDlJfXMe2823RN6ER6gpK7aREiAG9sO1lJWX4ul\nk4O8jBp+W7uXkkGpxN3wLNVHT/DOix/QLiiY4OBgvAIVBAR5Y7PbCQr1IutQJnO+m8u7c/5A7Hw7\njlP5/HbbfXRO9uCLLydRW2XEZLBQWZSNKc2Gw3amYt5hMze0ImyEVSt+BfNmPnw5noIiPUezA5rY\nIDXGr78tY51FJOD9LxEkEnJef5b5H3zL0GuGYSisoltUIkqlkvi4eLy9ZnD8+HGKFBV4+QZQUVHR\npFd0ZWUlhZYauo+YgCAIRPZJZt/uDAoKClyayiVLlzFz8QaEpJE4TuTwx6aX+fTfr9Gne08Klv/K\nkW+XABCr9aHv2DNp5aCgIN588GGOHz+OVCol8fpEl570n4Yzo+AsaDqfnvF/AW3FLG24wogRRbET\ngCAIs2goYAkXRdF4sQO0EcVLhDN9cjlJ4uUWeLeko/wrBuBXwufxfN0JnIUhFyKJF9qv0NBQ9Ho9\n5eXl5ObmEhkZ6dpGZGQkj932gKvDh9Pa47P5i1COewRdXAoAhctEVq1ew7SpU1zjrtu4nrkrF+IV\nH0T9xkom9BrJ6OGjEEWRzh2789E3K/BPdcMn3JsT2bV09bWh1+tRq9W0b9+eqKgoTp48id1uJ3hg\nT5d59KfffMPHy//A6OuNNCeDIR1ieOe1d5vVsLm5uTFp2v1s37KOnJxKguOH0b1nb7bvO8Yvyx5C\n0n48tvzdxGr0hEckYDLWu9Y1m+ys2bwf2fD5aJU+qFUyKrZWsvtQDgE+aow7D6GfOAK9zUzxyk3o\n84oZMuF2JG4+fPhVHs8+OBSdzpvQiP4EBgY22Cs5VDgkWg4dLGP7UT3frq7F/Ym7qIvvxPJVm1Dl\nbSQ+qaFIyDdAi9LNQWFJNelHVOSX5DKonycndhvRyzpTlOVDXERH8sq3ETVuKOmfziP969+wi1pu\nmvEID945iTLDMXRBNmLj4jHoTdgtAl99vxj5iE9QBsQjCALVqyopyFnFgR3Z1FSVovGUkpedz9B+\n48le8G9qzHU4rEbcTnzDjU++6zo/FouF3KxtPHhHGDKZlMhwL4pKT3Ly5MlmC2DS8/NRdO+D5DSp\n9510M5bvvyRFGoIuKaFJZbpEIiGtsgRZUjQ1gsChbZu4rnufBl/E0/OJ3WTBajKjcFNht9mw1Ohd\nJEIURb744Re8bvoQpVcAoiiS+dOr7N69m379+nHThMlUVlYC4O3t3eRZM5vNZGZm4nA4iImJQaVS\nUV9ff9XImHO7F9IzOlPTl2s/r3YhTXPbN5vNbUSxDU0gCMK3wBigVBTFc5rLC4JwI/AUDVrDOuBe\nURQPtTCc64tQFEW7IAinLoUkQhtRvCTY7XasVmsTf7nLgStZMNIausRcDJwVtzabDQ8Pj781mYui\nyLyff2JZVjryqHZY1/zBgOAwykyVWG1WUmI7Mn7UWNdL3OnJaDSbkWvPEDNB44nRVOv6u7q6mu+W\nLaDP8xPw8PfCVG/kl9d/oWvnLvj4+BAcHEx0Ujc8YzWIIoyePJSc7TkYDAaXZ6FCoTiHcBw7doyv\n12+GF14gvH0I5qxstj73DD8smsd90x9o9hh1Oh0jxzRtJfjq/z1D2Lez+WPFFwTrJPTvmYw2oD0b\nFy2nrsaI2eTg8CYLSqUKFBpMDhBFQKamorqYkLge3OAl4dNJd6HzVSM5VUxJtS+6Gxah9vSnLm0x\n3y+Zx8/ff+UiuAqFgqHX3sFXH+Tz/fJcTGETsHmYMX29hs5LryUwNZmtg9dz/HAhMR0COHG4hKMH\nyjhW8Cf1ARMhczcrdmZy85TbuPXOB5HL5VitVgK9fchb/Dvp321Act1SHHV2anM38u3cV3np7o6s\n+/E3DkUl4KeLoWfnIXwsLkeibNDcORwOHDI1wbpoNi3bz5jbwqittNC1ZzgedgWzZr7Aot9WoZDJ\nuPHJd5tYJwmCAAI4HGeeR7udFlOiUUGBrDq4B7F3PxAEjAf30Ck+lvjTrREbIy3jOIpOcQTFNHSw\nyXPYeX/Wx7hrrCjlakYOmMCoLn1Z/fFiPDpHUn/iFN1D4lwelaIoYrFa0Wp0rn2VaDxd968gCK7o\nd35+Pj+uWkZZXQ0hOh/y8os45R+I4K5F/fvvvDxjRpNoZmtAYz2jKIpYrVYsFovLn9GZmv5vizS2\nFbNcXbRSH8XZwMc0pI2bQzbQXxTFGkEQRtJQzdyzhWU7CYJQ1+hvt0Z/i6IoejS3UmO0EcWLhN1u\np7a21tXrtDXjbB1layeJ0DBZWq3Wv5xuboyCggKWHT1E9P89hEyppHjPAX74bCYPvfUwWk8PDq7Y\nweoNaxgzfHST9a4Z0JvPf/8ScfQMrLWVyPYtp88rTwINhLu4uBiVtwYPfy8AVFo3VH5aqqqq8PX1\nRRRFvLw86dol1SXWPyk/idFoxGAwtNgnt6ysDFtoO9z8dAiCgCommjqVitzC3Es6bplMRpivG58+\nPICIYF/MFiur9mVy3ah7yD2ZgUYq59F7++OpWcC3f7yAJOluyjJPoMz+FcXwifQcOJ6cnBzeNsbT\nJT6A1TsyeG1vEmY7qAFN3AhO7n77nBZ6MTExFOjdUQ9+H/fwYVQY6rFnzSX7u1+IuWMy/p4BrJhT\niUNyCjkepKWXo5m6Aq0uCJvVQuWSqSSn9ker1bqiSU/PuIc7n3gUm6obkhobKokEVUw/6vZbGT8o\nge6ldXy+5BSTHnsCf39/plw7iq9XPI+954NYq/JR5/7O1Nee5njRSmxlcvw1OgaOS2T90mySk5Pp\n3r17s+dQLpcT22EgS1asJTlBS0GREb01osV2dxPHjWPPW2+z/7mHQSYnRnAw/f9eaHZZu8OBtNHc\ncezEETyD65l8Rz+Megurf1jEtDH3EhMeyamiQvySE0hNTXXdLxKJhGF9urFi+Ud49rkBQ3EObvm7\n6dTp2ibbqa+v55vli/Ed15vk8BC2LVvF7oOl9H3uBSQSCSV79jD3t9945LbbLvLO+uchCAIKhaKJ\n16ZT1+h8jv5b9IxtEcU2nA1RFP8UBCHiPL9vb/TnTiD0PMv+bSbcuhlPK4HNZqO2tha1Wo3D4fjH\n7Wz+ChwOhyvl+XdI4pVKPTeG0Wh0VQ9fyuTf0n7V19cj9/dBdjrqa6quxjslDIVGhUwuI7Z3EumL\nDzLmrPVunnoDgvATf6yaiVqp5N4n7qF9+/aujwSdTodcD/mHsmjXKZrCYycpPJDFwaCdlFeU0S21\nOwFuARzbdQzPYE+qS6rwk/nSrl07HA6HqwBGLpc3MbGOjIxEkXWC+syTuHsnUP/nVtwEO5EhUVwK\nRFGkrrKI8MSGCJRSISfQQ4KHlxfduzfYZTkcDu6efivu2p9Zu/kzPHUa7p/9GSkpKchkMnKys3FX\nK2kXoCOmnQ+SZVuxJt4B+GM4sYq46Mhmt11Tp8ctIhKluxaDyUi96E3Ztq2oMrN5+s4ZjBs9Br1e\njyiKLPl9DFKNPw6HA6lUjswzvKEavZH2Nzk5mXee+z/ufPLfqFQCMjdPao7+SqS/BqlUQpC/O77e\nHq7U/EP334NG8z0rN3yAl4eWx796n9DQUEo3HCMxPhCNu5K87GJUUs9mP/QcDgfZ2dlYLAbatYul\nVufLkbw8jqTnsivtBEvXP8qkMQMIDPTlSOYRdGodo4ePxsfHh3df/D+ys7MRRZGIiIgWNcAdIqI4\nsm8H0tMfCwVbtzHxngaZg4eXhuA4DcXFxXTp0oXk5GREUaS6urrJh97jD9yD++zv2b7mLSK9PXjo\nlaebFNkAlJaWQpAnvpEN5NYjuh2i1zFs9fUoPDzQhoRQsaGeq4VLTf82Z9BuMBiQSCQtfnxdrm1f\nbjS3/TaNYhv+Ju4E/riSG2gjihcBi8Xi0hAZjcZW6cV1NoxG439EsY3JZPpLJPF8k31ISAjyUyWU\nHz2OT/tYqrNyESqNrvROdUklOvWZaLuTvEqlUm6ZNoVbpp3RJNrtdgoLC3n9/Y85kHUSq9HA8WNZ\nuHnKqK4opHOCDs/gg+SV7qHg10zGjb2B7bu2U3WwimCvYFIHprqIg1KpxG63u8zOnS+60NBQ3r7n\nbh751xvk4kArWhic3Im+3ftRUVHRpJimqKiIzMxM3N3d6dSpU5NzJggCWq9A8osrCQvywWK1UVzr\nIPS0dYzz40Gj0fDAfXfzwH13Y7VaKS8vx2QyodVqiYuPZ+EWdzzTiwj2dSclyMLu5dMweYfgLall\n5lcfNHvORw3uw0eLP0SqfRNPapFmL2DqNalcd90Z2yGnhU1yUnsO7PwQTfJtGAr3oyjZRXT0ndTX\n16NUKl1EbvDgwTx2ZyaffjsZhzYARdlxZkyPJ+tkBfvTqwmPH4hMJsPhcFBRUcHkieO5687bmuxX\nz5Qx7Fi/GiQWlFIv+vYa5uoc0phk7Nm1lYqCdcRGulOUY8Hu1hmdVzt+274Nba9nkEgVvPHNS8RE\nlDD6kUEUnsrhXx+/yUuPv4y7u/t5DbydCA4OZqKjO/uPnwAgReeDRNpw/ew2O7s3p3NYZuRw7nES\nwmL58NvvySmtRuaw8uT0mxkzehRKpZIH75nepI/z2VCr1Vgqa7FZrcjkcjwUbtjy8rEaDUhVKlrG\n9k4AACAASURBVMrWrmF8C8U5rRmNTb2dhvZWqxWz2YxUKkUul19WPeM/hbaq56uLVpp6vigIgjAI\nuAPoc0W3cwHS0/oZ0T8AZ1UeNDzUdrsdjUZz2cavra3Fzc3tslQj2+12ampqUCgUTXoA/1WIokhV\nVRVeXl6XZQKuqalBo9Egk8maWMxcqpea3W6nrq6uRcPizMxMPpg/l+LqKiJ8/PDVuWELUiDXKDFn\nVTN94i0EBwcDDdrD5vbB4XBQW1vLO598zhqTL/7j7sFmqKPgvZuZOD4KdUAdHRI1FO+v4JqRiSz+\n/iSjhz5MQEDABbvIOKUBVqvVpXt1OBwNFcYVFezZuhh/TwsVNSKduk8ktVsvFn43i8WLvsPk7UuN\n0pP+Me156/kXmkTIKioq2LJqMWpq0ZshMnkQnVO6uqrJpVKpizCfOnWKL794BZm0nLp6gREjZzB0\n6EhKS0vZuWUdFqOeqIQu+PsHUFNTQ2RkZItaKpvNxjvvf8TPS1ehkMt5+O6bmTr1hmaXraio4Mnn\nX2PPgTQC/f3496vPEBUVhUQicXW4cbaFk0gkFBUVUVlZiY+PDwf2bqe2uhT/4Gi6de+FXq/ns1kz\nqTSdwmZx0C1hIDdPu63JuXdGoZwfTU6S4SycsFgsrPvjK8YN9kWjVSOKIsvXnWLTfgvbbYPxiW+o\nTD+w5WeS3H/i4c8mA7Dx262MjBhLnz5/bY7Oyclh8Yo5eLaTsnH1LvKREDO6O7bSevI3ZmCIvo6g\nsXdiriim7usn+eaVJ4iLi7uosX9fvZKtJdmoQnwxZRcRYlexMycXq81G/45J3H7DDdhstssyR1wq\nrFYrdrv9spGjxs+Sw+FoYtB+9jPoXO5qaQINBgNKpbLJXPP111/j7+/PTTfddFX26SriqjN6QRDE\ngeKKf3y7VRsPUb3xTO1J3ivzEUWxyfk4nXpe1lwxy+nfOwG/ACNFUcy8cnvbFlG8ZFzNTiUXgpM8\nOYXflwNX6uvcbDZjMBjw8PD4y4a757sOMTExfPLSq67uHVarlYyMDKxWKxG9I1zFJS3B2V9aoVBw\n6EQOuil3IEgkyNw0yNoF4h7qjsrNQrtYH6oL9ZSX1iMIDbKEi2k1eLZw32Kx4HA4CAwMZMXSb5k0\nREZEO3+MJivfLlpMWWEhuVsXM+i2oagiIth1uIjNxytYt24dI0aMcI3r4+PD6Mm3U1NTg0qlQqvV\nuqrJnSm8kpISHA4H38x6m3Gja+jRPZjqajPvzPyS6Oh4IiMjGTtxapP9dRZUtASZTMazTz3Gs089\ndt7lnPv47RcNkcnGBNZJHJxRV5PJhEwmw9fXl8DAQARBYOSYCU3G+n7BbDwT6xh3bU+sFjtLPt7C\n2rWhJCQk4OnpiUajcR1343PfuNLWarUiwY5MJsVmtSGRSlHIQaNWYC8qc61nN1SiCjxzrwqSv/ds\nREZGcseUh9mwYQNFxv0MeOcmPIJ9qT5VypEDmWjDG0ih0ieQuvgeZGZmXjRRHDN8JAk5OdTU1BDQ\noR9BQUHcJ4ouHz8nufpvQHOm3k4949ldfVpj6rnNcPvq4mp0ZnEfmIL7wBTX33mvzL+k9QVBCKOB\nJN50pUkitBHFVoHLQT6dxEalUl01f7SLhVOY/lciiU5c7GS/bt06vv75RwwWCyP69mfGTTdfMJJx\ndn/p0ABfDmYdROUfgkMUcVSU4KOLQ2+0sXb1fvLTiknfnI6feiBhYWGX/CJyesoplUr0ej02SzVB\nfsFYzGYUMinBfgIns9NRy2y4BQcjU8oJ95ByONCfsvLyc8aTy+Uuo3BnNbnz/39a8C01RXuRSET2\n7drOU482FMp5eippH9fQVs9pJXSl0ZjAqlQq13k7m8Q11naenV4sKM5h4PgGKxupVIraW+S3+TMp\nSoqkyihj6IQZJDbqROPEgQMH2LZ7NzqNhtGjRqH1iWdfWjqxUb4UFFZTbfBm6uTB7Hj2XxRvqwGp\nAp9Ti3GP9SLv8EkqT1VTf8xI0uhzx74U6HQ6PD090UUEIdocAHgE+YHVhrn4JHQCh9WCI/8YvqOb\nDSy0iMjISDIyMnj1o4/ILyoiMTyMpx56+Bxf0H8aV5KsOU29G5NGp9SgtRYhtqWe23A2BEFYAAwA\nfAVByAdeAuQAoih+CbwIeAGfn36WrKIoNl+hdxnQOp+cVoazDbdbW0TRmSJVKpWoVCpX0cDlwuX0\neXT2FHZ3d7/iE/eq1at4deFHBEzui8TgYM6qjZgsFp687/4myzW+ps31l376/ru4++mXKE/fjqO+\nikSNJ6YCB4cKcik32zAUuSOTaunkZf/b7cg0Gg1aXQjZ+TXER/lQWaMnq8CCn18QkkJP6g4cQten\nJyWVekjLo/2QUS2OlZaWRkFBAe3atSMxMZFtW7egMu5k2vWRSCQCdSXbmDv3GPfe2wmDwUZmtkhq\nT78Wx/u7EEWRyspK7HY73t7erlZuLfXxPrvy1WKxNCG9CoWCQL92ZB3Kxz/Ek/paIydWHeDJ0Z1I\nSQqlpLKeuUtm0S7sVVeHH4lEwrp163hx/nwkY0ZjLynhl6ee4tPXXuPwISVbD1Wgce/I0JF9USqV\nfPLvF9iydSsCdno/OZNVa5az8fVfcVjMdOsxHKPReMHo9IXOSUBAAPIqK5lL96AIVFFdUIZHiQWx\neAmVxZk4ygsY0ymabt26XdLYJSUlPPL2v6kI98bnjhHsSD/O3c8/yZx3P7qs0pnWiMZ6xsam3s5W\nkFar9aqYejc3j7bZ47ThbIiiOPUCv08Hpv9Du9NGFP8KWlPVszOSqFQqXZNNaxVzOzVEbm5u/8jX\n/c+rlxB52yD8BzZEzRx2gRWLN/PEvfe1aPjtNCF2vkiPHjtKWXkRz99/B6II7u7uJCUlsWnTJlZt\nP0Dc5DFsX7CJgrQi9pX8Qef4jky+7rq/tL8OR0NEafykGSz56TM27i5Eb5bSf/gMgoJDWVZdzqlt\na9n+x15OiVoeuev+Jq3nGuPjr75i3vYdCDExCPPm838334TdVE1chAbJ6ZTpqCG9ef2rfejNRZSX\nO0jtNuW8qU273e56qV2qNYndbmfdit8wFhxBJgiY1IH0GzEWPz+/i7pfnVFHZ0GQsx3luFET+eyb\n98ndv5OKkjpC3DxJ6dgeiURCkJ8OL1UtdXV1rmfDbrfz6U8/4fHUE2hPex0WfvAh27dvZ9iwYedo\n9iIiIggNDcVms7Fr51Zk1p3cPtFCoL+KdVvWMffbUmbc+wpeXl6XdD4A6urqePFf77D1QBomgx52\n7SRpiD++cgUJKZFMGHoroig2RMYE2LZrF+1jYi46Ipienk6ZRkbk7WPRhAXj17cLuW99RFpaGj17\ntmS59t+HxlIDs9nsijReKVPvS0UbUby6+B9o4fe30XaGLhGtiYQ5SaJcLj8ndXGlLW0uFc4WghKJ\n5LKQxIvZJxEHEuG0q7QgIJULyKXNExynVk4URZeX48bNaykyHCQ4SkdxQS0qY7ircMHb2xu1Vsvu\nX3ZwStcb7cs3Yd59gHfmfUFSQkITE+cLweFwsG3TenIP7QRBIDa1HzPue5Ha2lpXJOzLbz9nd146\nBq0vvXuP5dabbkOtVmM2m5tosACysrKYt2UL3u99gMLDA3NREW8+8ShvPHA/6RkGEmMdSKUSTlXA\ndTc8QlLnVDw8PJp0ETkbGRkZfPb6M1SV5GJVarnl/ucYMXxEi8tDQ0Rr55YNWM1GJAotPjXHGNkl\nDIfdwc5juaQfPoD/4OHnrGc0Gvlu/rfsP7oLjdqdaRNuI7VrAyF2RopkMhkqlQo3NzeeevhFTp48\nSXFxMb//PIudhwvo1SmMovI6aq1K/Pz8UCgULl2ewWRC7uHREN0BBC8vzBbzOfvh3J4z5V1afJQQ\nvwoG9PZGoZBhNtex+3ApGRkZLfoyng/vfPIF22Qh+L7xBuUnM6mb8zjjxqSS0rs9uceLSN91iFFD\nxvP9xjVIOjYQ+J3rV3HzwGH4+V048qtUKnEYDUjVp7WfJhNKrRqLzXrVtXpXC86oslKpdBHGs029\n/25W4FLR5qPYhtaONqJ4ibgSqee/MmZjknh28URrS483Nv52tsv7JzCy73DmrVmKxWzHanOQ/+Nm\nXrrxgXNekE5z7MatAw0GAxkF+xl6fQekUgmRscFsWHKUnJwcVq1bQnldLvrMNI4crsf91eepLSjH\nP6I9QtIAjh07dklE8eD+vViOb+HGrmE4HCLrDqwjQ+dNQmIiAPMXzqfILYebPxuPzWJjxczNHDt2\nlN69+7j0njKZDIVCgUwmo7S0FGlIKIrTHW5UwcHUqNyIb9+BP4t78+nCnUgloPLqwPXTJuDm5kZu\nbi7z5s1HoZAzZMiQJlErg8HAV68/Q5+gEnpMiSM7t5rPPnmBqMgoYmNjmz2m8vJyfvjsLfoHmpDL\nJMz+PYNJvRJwOEIb7gF9BSsXzqEo/yQDR44lICDAte7cH2ZTqjrK1Ld6UVlSx6xPP8LX51XUajVb\n1v5KXXUJnn7t6D90PF5eXnh7e7N9505en/sd5vBo/pi7mwF+OXSMb8/o6+9pEq2RSqWM7duX+V98\niedtt2IuKka6dh1dX3rpgtdJJpNjtwo4HAJSiQSzRcRqsbsq1y81lbkr7Ri6e2YiyGRIvfyg6wjy\nM9Pp0qcDUpkEh8PO3qOHUaR2JCiuwX6nSKFg/7EjDPcbeMHxU1JSiJWoyP5sHr7De2LLyia4xEp8\n7MUVxFwptBaS6tQzNk5Nm0ymJhHIy2nq3dK816ZRvLr4T7bH+afQRhT/A+HU0TmLLVpKo14u/B3i\n6azEdhp/O9uN/ROYcM21KOVKVq1ZDQ6B++96msGDBze77NmtA+12OxIJSCTCmSILhZTfVy4hqFMl\nw3olcZ25AxOGzMZxIoPgTr3RuXtQXpiJ95DzR9rORunJbDqHeCGTSkEK8QHu5BTkuIji8ZyjJN4Y\nh1QmRSqTEtM/jMz0DAYMGNikatpZ9BEQEIA0Oxv9sWNoOnSgcsN6/BVy/Pz8mDzlNioqxuJwOPDx\n8UEikXD48GHufuINjMEjESzVzP7xUeZ++Z4ralVdXY2t6iTdJkejUMppH+9H1KFqDhw8QExMDFv/\n3MS+TQ0WE10GjKJPvwEcPLCPrt711JkdzN+aRnltPfOW5RAXHkJRQS7p+3bRKySGdrUHWPD5cW5/\n9AWX1m//0d1c/0Z3rBY79VUGvKNlpKWlYSjPpE+Mg7DuoWTmlbL+j4VcO2UGJpOJN7/5Bs/330EV\nEoK5soqD993PA9fcQkhoAzFVKBSu63jvnXci//571r4/kyA3Nfc/9hhhYWGuwhm73Y5arT7nOiV1\nGsKaPw6yaFkanh4S0o4rUGji6dixI3a7/ZL8/DZu3kReQTa1W9fik9IfX29vSk4cxRhoIS+jmH2r\n8xjVcxp55eVI5WemaalCjtVxcc+iUqlk1nvv88XXX5K+eDshAUHcOv1hAgMDXTKH/zW0RFKb0zMa\nDAZX9Ppy6hmb0yi2EcU2tGa0EcWLwJWO1l3KmI1J4vmKAFoDGpPEK2X/cL7ohEwm45pRYxg3ZizQ\nMCGvX78eo9FIhw4diIqKwmQy4XA4XDYqzjHd3NzwVodxcEc2YbF+lJyqQmL2pLruEAM7h6NQKFCp\nJNxxRycWLPwQR1EaFeX59AnW0q9fvyb7t2PHDgoKCggPD6dbt27n7K9a5015URYhvg2ekOV1BtTB\nZzRvvp5+FGeWEhTtjyiKlGZUEO6V6PrdWTUtk8mor68nICCA1++7l1fefI1Ci4UwPz/ee/FFV0rt\nbI3bJ7N+wJ50PwFxDX6BpTu+YvGS37jnrjuBhgIbPSrKy/SEhiuorjOxL6OGraUL+XLRLyRKqnj1\nuhREERatmotarQURiirq2Vyaw80vJ4Bc5O1n93LbO/MIUEmZmBrD6G7xKOUyTtWeJCsriy5dugDg\nrvFgz5pj/DjvMI7wCKoOZlKTsJ6xXX0ID27oVBUb4c/BkwXU1dU1SAbctahOW/govb1QRzUYSiuV\nSqxWq6v9ptNk+9477uDeO+4AGqLz9fX17D+wn9mLZmO2m4kMjODB6Q/h5+fnui9i4+JwU7/A1i0b\nyCopJLFLB/r1H+RqaeiMTBcXF6NQKNDpdOj1erZu3Yrdbqdnz54EBgZy/Phxvlz9C8PfuYvV7y2g\nKncvpqoKenvJCFN3oWg7jOo5jU4dO+GRm8uRPTuRKxqen5rdh0jqcn59oc1mY+fOndTU1BAdHc3j\njzzm2r/WlGlojTjbOslZAHMl9Yxms7lNo9iGVo02othKcDETeHMVua0Vje16zvawuxwvqwsde2Zm\nJnOWLqRKX0tMUBhTrpnIW19+QYavF5KAAISPP+LZydeTkJCAVCptQhIdDgcOh4MRQ8eya892Mrad\nQqcNZ+TgXhQVnqI4vwYvbw/sdgduKg/efWYqoiji4dGLoKAgvpk3B6PZRL9uvdiwZTsLth9BjOqK\nsGgWdww9zH0z7miyrynde7Hq5yzKD+fjcIjUaoIZkdzF9fuUidN444PXKE3fjMVow8Pkw4hHRzYZ\nw9l1xc3NDYVCQf/+/VnZqxe1tbUuL7mCggLS9+7BYbMRk9KFqKiGFoG19UYU7c7oEyWaQKpq011/\n63Q6Rtz0IB/PeYvYyHK2n6jlsCKSyGdfpriijJLP/s2EnFKGdY5gQLQ7+47sY+DI8bz6vQWfFBWi\nXGTmu+nk+iRQFxnMse37GCuRozwdKTPbGmxw/ty8GaNRT9+ug3n49ZdRv/0y0qgoPKot7HjrXeJy\nHQxPDUIul2I0WTBZBFQqFRqNBp3NTtW2bXj17k19ejpCXh7h4eHneFWe3UZRIpGg1+spKSlhzvI5\nDHlxEJ5Bnuxfvp/P53zG84+9cDq63GDeHBoayg1Tbm72nqurq2PNigVIHSUYzSJa7458/sOvlPp3\nQlCq0Xz3GLPeeZXjJ47j0TeByAHdmBYXQd7W/ZT9lM3sT74/x3Q/IiKCSXYbe/cdA2BQ51TCw8Nb\nvO/tdjtvfPQxu+xShHYRMOs7Hhs9HI1Ww6KNqzDbrHSJas/1Y8e3OEYbGtCcP+PZesbmTL1bQksf\ntW3FLFcXbannC6ONKF4irlZEsTFJdBY4/FP7eKnjnW3X80+jqqqKz5fMI2xKf+LDgsjedpBXZ75N\nbrtwou67u2GZpEQ+nzWHOT3eQa/Xk5eXx4Zd66kz1BEeEMHwgcNRq9X06zMQaHgB6/V6rh0zjR+X\nfEXmwSPU11oJ8+nK4MGDXR1EnnnnJfzGdEDprua1We9y4oSB4JcWI1WpsehvYtZbN3LduDFNNHla\nrZaUAcPZvn0rCrmSYcOHN3lx+Pv78+bzb3HixAmkUint27dv0r/bSRKd/XDhDJHe9uc6so7twmqT\nIK80MdzPC5VCwZ5DB7DfeAuxcXEM75/Kx798jcztCezmeshYyKAb72pyTq+7/nraJyZy8OBB9hjW\nEjr1VlSxcah8fLBeP43fN/zEsM4RVNWbUQW5ExAQwPib7mbu8rdw22Mg0xqM93vPIS8H95tv4tlb\nphPt70mp3kKBLJCTG5YR634KH3cpB9LNuHn44JvYE4lEgkeQBxUJCSi8PPltWwGBOgmnqkQSe451\n3V8fvPACj73xBoUff4ZGEHj38cfx8fHBZrOxasVSMo7tQKnSMGj4FGJjY7Fara7iJalUSkFBAYHJ\n/niHeAOQMiaFBb/+6IosOb1JnaSxuYKHrZtXkBRRQVKHUCwWG/e/MJ9TYSMJnvAQouigcnssH349\nh/HDBmLKLkMURTQBPnhFhuIZF9eEJDYmFTHRMcREN20RmJOTw7IdO6gzmUgMCWFk//6oVCoOHz7M\nboOVkEeeRBAETL368c6LjxKb2p7Yeyag0rlz5PeN/Lrid64ddXa3838GTtPvq7Xtv/KB3VjP6Oz0\nc7n0jG0RxTa0drQRxUvElSKK59MMOW1bLoYkXm007mjS3OR3Oc9fS/6OhYWFyMN98Y1oSEVG90nm\n4A+r4HS7P4fDgdzLC73FglQqpaamhmVbl5E4Mh4Pbw9O7M1g1cZVTBg9wbW8k4iFh4fzwIznKCoq\nQqVSERIS4tr+pi2b8RoSQ+KoHgAYKuvYO3MXUpUag9FIbU01RquVH7/5mCl3Pugii8ePH2f5z+/R\nvYONWoODOV8fYPq9zzWxatFoNKSknHHyd8JZrS2Xy89J7//+2yIoWc2MYUGs3pxB1fZ8wmOvR6PR\nIBXK2bt5E2Hh4dw07QbMFiu//P4EarmMZx6+vln7lMTERBITE9l68CAHsk5gDA3AahepL6miqKKW\n5fvyOGr05OZpwwAYOnQoJ7KPsu7XZZgCoqkutRMaHIabyo0qT19O+PbAM96fZDc1FQdmc23/CACi\nQmqZtyUT8cgRdP36Yi4qwn7kCCPf/BdKpZLa2loiPD2bVGnHx8ezbM4camtrm/QNX7ViKYaS37hu\nsDf7DqXzxQdPcef9b5CUlITdbnd17pHL5ZRlVWC1NLRTLMkuwdPd01Wh3ziq5HA4sNvtrgps57Zq\nqgqI6tZANBUKGRKZA7xDEAQQBAluQRFUZv5Bt27dWLtzC3vf/h6lnw7jvmxeuuthoKG94c9L51NQ\nnI23zp9JY28iLCysyXUoLy9n/vbteA4bSpCnJ4d270b480/GDxvWYGDu7eu6J5XevtTU1qJOiUHj\n0yBniBjYg8Nf/sq151zh/w383fnTWTXdmDRejJ6xJZLqdC5oQxtaK9qIYiuHkyQCF00Sr1ZE8ewi\nm6sFtVqNqawau82GVCZDX1mDt9aDot37qOqagtzbm5IlvzGqU2egwcbFI1yDt783CAIderRn06wt\nLk2XXq9HoVC4iJhGoyEmJuac7TocDoRG9jve4QEoqgsp3/4HVv9IZJk7iFUaGNdBw/qlC7hh+kNI\nJBJ+XzoXb3UpJos7g3qGIuwsZO+ePQwYOPC8x+ncN5lM1qwGNOPwNh69NhS1m5xQfw/kOgcVFRV4\n6jxRKBo0jU5vxJumTuaOW2+8oGjf4XDgYa7AZ/EmHNYaJHY71p8WMfiue3Fv357bT7fOcxqr33bT\ndFI6duPBt97Es8aEqp2UknkLSU1IYNK0WwDYunUrWtWZ86bTqhidEs+BWd9SOuc7qKnl+enTXR1j\nnD26z4ZEIjmn9/fxo9u4fog3f645QpLWikxXx2/fzMT9kRfx9fVFq9UiCAK9e/dmb9pelr30O7oQ\nDyqOVvLwzQ83ebk7o0oOh8OlXzt8+DAZGRkEBgaicQ8gLz+fDnEB2Gx2Qvx0CLt+wZzQHYlKjX79\nXAb374pOp+OVJ55l37591NXVEfvAdQQHB2Oz2Zj749e06ynSf3oP8jNLmLvocx656/n/Z++8w6Mo\n9y/+me2b3U3vjfRACL2G3hFQmoiCioooFgSvYMHe9VqvvSt2EEFQRBFReu8QIISE9EBC+mbr7O7v\njzBrNiQQMAj3d3OeJ48m7M68804777ec47FoOHHiBK7YGAyn3XciunXj0MJFjAMSExNRf7eE8gN7\n0beJpXT1SlJjYrCeKHcfS1VxCX5e/7zH8/831Bf1lqLOUkPU+dYzXs6L///vaE09nxutRLEZaNjM\nAi0r8dAUEatPEqUX2uWK5jTZ/FOIiYmhZ2gS2z/8EW1EAKaMQu64Zho4Xbz56ZeYbDZGd+zE7Tfc\nAIBKpaK23HQ6JSZQXV6DVlVHdE0mk1uzD6C6upqsrCwUCgXJyckeKeC+vfuw8o1nOOanR2Pw4sii\nLTxxz0y+//Urjh09TKfYIF64YzhtQv3ZmpeP2WymoqKCj5b+ibpzGvKjDkIWbeCeq9tgtZnPeoyS\n/Z0gCB72dwClpaUs+mERG9MP4aswcPv4TiQnBrHcKmCoqMR5soQdtWa6jZmIl5dXo1Z5KpWq0fSq\nyWQiQOdi2b96s2rHZgCsIxLp3bs3KSkp7s9JckM6nY6+ffvy4RNP8cTrb1BYVkaXdu159pHH3J9N\nSEjgq99UxBwvRatwsWbPKdIGTeSZKydSUlLi9my+EGg0OrbvPEQXHwed2vggmEW8HAr2bt3A2MnX\ne5DA2XfM5tChQ1RVVRF5RSR+fn4YjUaPekbpswBLl//Ii58vwZXcG1fuHwxPCsVY48uhrDzMVoH+\ng28kNqWC9z+5m1qrletGDeOmqdcBdU02aWlp2Gw2d1q7pKSESksxo3rVpdxj24ZzJKyEEydOeCxM\n1Go1Yl7FX+ekshLv09dnYGAgz915O299s5DSyioGJMYz47FH+XLZ96R/vhylrx7nkULuHH/tBc1n\nKxpHY00wkn+71EDV1GJbEIQWfV4+9thj/PjjjwiCQEBAAAsWLCAqKgqAF154gU8//RS5XM6bb77J\niBFn6pi2ohUNIZwjUtTaInca9WVdysvL8fPza7Gb22q1YrfbPaIG9QWgz5ck2u12zGYz3t7eLTI+\nyfmlPimqj4aOJmcbq0RuWiLiWFFRgbe3d6OExuVykZmZSVVVFREREYSEhFBdXe3Rge1yuThy5Ajl\n5eUcyT5CjVcVhkA91blGRvUaTVhoGDKZzC1BVFxczCdfvUpYvB2LyYGjOoLbp//Low4zMzOTH1b9\nhMVuZVD3vvTv15+Kigp++/INru4WglatorTSyIqjFqbecT+PPPsiP4jRaHoMwN9XSelPXxKf+Stv\nvrGgyaYFKVrncDjOmO/a2lruf3IewUMC8ArRsnXRWmIqrPTvFMexqgg6p/ZEBsR37ERMTMwZ25ai\nIjabzZ2SrS/o7XA4eO2ZudzYW0ZUiDe1Zhvv/HKSKXc/504FW61WbDabRyd5/bE3dn0cOnSI/zx/\nP2JtMV4Gf7r0GcO0W2f97ZTcofR0PnxtHmMjygjRqymv9SckthOZumTGXHP9Wb9bP0pkt9s9fIRr\na2vpPuIqXHe8hdI/BG+tAes7d/DJ4/cSEBDg7nr+5bdVfP3bDyj99KhrHTx611wPL227qR56RgAA\nIABJREFU3Y7D4UCj0WCxWHjuPw8xdlYqWoMGp+hi+bt7mD5xLhGnO7qh7hws+fVXDgkg9/VFOH6c\ngdFt0Ol0tGnTplHnFlEUycjIwGKxEBsbi4+PD1artVEZoIsNaTFyKbyX/+l9S+UKdrvd/beGzkaj\nRo1iw4YNLfY+qampcXfiv/XWW+zbt4+PP/6YQ4cOMXXqVHbs2EFhYWFdacjRo5esXhS45JEPQRBc\nqa7tl3oYHBR64nK5Lvl8NIXWiGIzUT/q15Lexw23DX+RxPoC0JcSZ0s9X0hqvCXH1RTsdjuiKKLR\naPD29nbbuEkk0eFw8OKbb7CxtABlgB/K7AJuHzsRP60ffml+BJ5O69WP1v3y21J6jFDRsXs8LpeL\nVUuPsHnLJoYMHureb2JiIg8k3ucxFn9/f5L7XcniDSswKB1UO7UMGHsDcrmck+WV+HYbg0MbSEl5\nNRafeAKiOp+1s9VqtSKKYqMLiMOHD6OIktF9XF3XdETbSL6c/jXjO0xndK9e55QpklJparXa/YJr\nKOg9bupdvPv+C5TnbKemykKHIWPd5ESKTOr1+kZfQE2ds2MZB5nQN5Cr+tXJ7Cxas5v16/5g6LDz\n06SU4HK52Lx5M7n5uSR1u4qdhzcz0M+XiMRAdp2w0qFX13Nuo6ELjBQlMpvNLFv2PTaZSHhCIKLD\nTllZKTrfECwWCxEREe6FylfrfqL7Czchk8k58PlSHnrsDmbdNo9eaQPPWHhpNBpGDriaVQt+ICxJ\nT0mOkaSw7m5SJzVMyOVyJo0aRXZ2NhaLhTXVtTy/bCXy0EhkOZ/zzO3T6dSpk8e2FQoFvr6+nDp1\nCovF4qEZ2oqLh/qLC2nBYTabsVgsLFmyhIkTJ7b4PiWSCGA0Gt3PsuXLlzNlyhSUSiUxMTEkJCSw\nffv2/yk7x1ZcGC7ZUuK/GRfT+URKKf4dkvhPObNIhBYur9S4yWTilfff5KOty1iw9xeeeP15amtr\n3ZE/p9PJu++/zYr9vyGL80I/sAfKmyby44Z1dO3alZCQEPexGI1GzGYzoihSbSwjJLwuSisIAsHh\nWmqMlc0ak39gML9ln+DtLYf56VAW1dXVAAzo1gnrn99iUMoJMhjwPryO8SOGenzX5XLx5TffknbF\neLoOHsVzL7+GUqkkLy+PvXv3kpeX5/6sTCZDtInu37VqNb4+fqSlpZ2XlqUkDeLl5YW3tzdKpRKr\n1UpNTQ3e3t4oLEquDY7k6Z7diMzNYPmihYiiiNlsbjSSeC6cOpFDSozhtMWaQEobHaXFuee1jfr4\n+POP+fzPj8jy288B406q/KLI1rdltz2E9qNuoO05nHMyMjIYd8N0ugwayeTpM8nNzUWpVKLT6TAY\nDOQX7SchEoybVqJWupAV7kPM3kdCQoKbzJWWluLTPhq13oucpT8xKKWWPqkVOCp+57dff2h0v/36\n9OfGq+aQ6jOGiQNnMvnqKe6on8ViwWw2Y7PZgLqUvVKp5NfsPPzuehBTZBT5ERHc/tyz5Ofne2z3\nj/VreWHRx3ydtZUXFn7E+k0bLnhuW3H+kKwDJWkzs9nMxo0b6dSpE6WlpSxZsgSLxdJi+3vkkUeI\njo5mwYIFzJ8/H6hr8ouMjHR/JjIyksLCwhbbZyv+/6KVKF4GkIidRBIdDsdlEUmU0BjxrE9oz4ck\n/hMkdu2GdVTHqOkx40o6TBmCtn88v63/w/3v23dspdh+gD6zupN2YztceZsR5FBcXobFYnGn+6Uf\nQRAwm82EhySw9c88bDaRmmoLB7dXERfjaYcmiiL79+9n25Yt7pe13W7nqTdewmfaAEZ89yQx88bz\n3EdvUFlZybTrp3B950iMz03C/NJUZg7uwlVXesqW/Pnnn7yyeDXCzI/Q3v89y7NrefjRx9n8/rvU\nfP8dm957l83r1gF1ncnaKh0bPt/EkU1HWfXK74zse8XfSuEKgoBKpUKv16PT6cjKyqKtaKRfXDSx\ngf5MTozi4Lo1GI1GvLy8zssrNzc3l82bN2N1qNifVX1ax9LFwRwjweGx595AIygrK2Ptrt+58uFh\n9LiqC6MfHEKu8Tg9h4xi0i13uh1vmkJNTQ233f8oBf2m4/v8bxzrMJGZ8x52E7Q69QEDDz/QhaSs\nb6mYPx7Nkqe4e8oEDAaD+/oODQ3FmFFI2bECwjUVhAVAZIgPg9KiKC3cS3V1daNqB23atKFXr14k\nJyd7eBNLZRNOpxOTyYTZbObkyZPIouMp3LQGe7togubdizisHwt+X+WO9FdWVrJ0yx90mHUNKdeN\nJOWuq1m6+Q9qamouaH7/m3Ep7QOlfUt6nF988QXp6emo1Wree+89wsPDue2221i3bt05nXOGDx9O\nhw4dzvj56aefAHjuuefIy8vjlltu4d57721yO5fLO+ZSwoHikv9c7rj8R3gZ4mKQHYl4iaL4t0ni\nxSZj9cd6KVNYTR1nWXUlPonB2O02ZDKB4LhwTh3NBOrGfrwwk64D2rKlMANZx7ZEdgxk+8JV9I2K\nPiOlK5PJ3KLhV42ZwOIlJt5+fDMKuZKh/SbSvh7pcDgcLF/0BfpThwnSyVm/wUnHK24gKDiYarlI\n+z4dAQhqF0t+pD8FBQWkpqZy/5x7mDd7lvuYGmLD9l3QaxJK/zBkMjnqwTex8f2ZPH/DRFQKBVZR\nZOHqVXTo2hWNRsOtU2awftN6rLssTOxyDcOHDcdoNDY7Si1FDv38/M4gfXK5HJ1Oh12mON017SS3\nvILjx7J55+H5WIDOQ4cycuQVHjW3DeFyufjwnbfZsOQzggwC8gA/0hVBZJUW4HRBQJs0BgwcfNZx\nNgWbzYbKS4VSrXDLl2gMKnfTiN1up6ioCJ1O507L1Ud2djZmn3B8utVFdn37jaVs47cUFRW56zoH\nD5jEL2veYsbNSVSW28g9HMTkyZNxOBxukfOYmBgm9RrOF/9eTJg6l/gKNVf0H4qAHIQ6EXRJZsdu\nt7uldsrKyjCZTISEhHikpxt22YqiSHh4OLavFlGT0o6g1HEYj2cSGhUBCg0lJSXo9fq6hhw/PWp9\nXWRS661H7uuF0WgkODj4gub47+By8Xq+HODj44OPjw9r1qyhoKCAb775htmzZ/Pzzz97RP8aYvXq\n1c3a/tSpUxk9ejQAERERHpHmgoICj9rXVrSiKbQSxWbiYpMvqejZYDBcyuLiRtHw2KVU7IUS2osd\nUYyPjGHLpl8ITIxC66Uhd9NBBkaluJsTvNR65EoTfWIT2bJ0FQVHywjOCeD2x2Y3WWcpNeBMu2EG\nonizu8mhflfs8ePHUZUeYUyPukhYcq2Zb1cvY+qd83AarRhLytEH+2OrNWMurmuIqr/9phDgY8CZ\nkXXaBQKsRccIVSpQnS7IVysUeAkCx48f56FnX6LYAk5jJTdfPYahQ4ayeOHnHN33BzLBRXh8T6ZO\nm9lkGnrNH2v4cOGHyLUyvOXePPKvR90dkxLatWvH+vBYlmVmE6JR8PG2gwwJDCIoaxdqtY3fPt5K\nxu5NzHn4WXQ6HVarlXV/rqHiVBHh0Yn07def3Tt3sufrT3ioVwAajYL1J6o5LGgYMO5+oqKiCAwM\nvGAyERwcjL8ykLVfb0QT7uDE4RMc25aP7RobRUVFzLj3AYrN4Kyt5KYJo/nXrDs99uXj44PpRC6u\nUyWo9D4o7CYc1eUetV+dO3dGr59PxtF0AtReDJ9eV0sok8k8XGCuGDaCXt16sPLHhQT6lXCqwsHG\n3XkkpY5ApVK5fX4l4rf8pyUcOLYOL4MCp8mbGdPubZTMSaUBCQkJzJ9yDfe++zblQWr8vA0M7d+X\nqtXr3SnrgIAAFJUWTh49TkhSLCeOZKOqsePv739B89uKC0NjBFkURfdiLDIykgceeIAHHnjgb+0n\nMzOTxMREoK4uUdJfHTt2LFOnTuW+++6jsLCQzMxMevbs+bf21Yr/DbQSxQtAS5NGq9WKy+VqMZJ4\nMUmt2WzGbrdf8FgvdiTB5XLRITWV/oX5rH9pCS4grV0Xrhg6HIfDgcvlom+vgSxe8SWGSDntDe2J\nCpJx9S1TCQkJQRRFtm/fTm1tLe3bt290VS/JYKjVajdhrK2tpbKyEi/FXy8EvUaN016ORqPhzkk3\n8P6TX6JPicKYWcSkPsObtZp3OByMHTOan/98mBNfPopLo0d/bCPD+3Qjo6SEuIAAsk6dwuYfwMvv\nfERh6kR8B0/BUVvNZ+/NROVyoKvdxGM3RiGXy1i0eiurV0Vw5dirEUXRHaUCyMvL4+MfPmL0v6/A\nJ8SHw+sP8+KbL/LOy+94jEmtVjNj3oNs3rCB9JzjJFS5aFN9gs4ROvwNARhPVHPCeowNGzYwYMAA\nFnzwBiH2A6SEadm1dg1F+cdxmkXi1XICvOsIa4q3hoyKWry8vAgKCqKqqoq3P3qL/RkH8PP25c5p\nd53RoNEYbDYbSqWSuXfdz+13Tcbf30K7GF/unNeB5Yvf4nCxksKUCfgOnorDVM2CD+6kR+eNHv7c\nRw/up7vOxvZXplER2wVlfjr3Tb36jG7ihIQEQkNDeeXdN/jPVx+jkMm5ddL1XDlqDGq12n19qFQq\nJk+dwcGD+8mtMRLXMYbktm3d9ZzS/B84cIBjJRu4/v6OqFQK9m/PY+GSBcyaOc99rzmdTnbs2EFl\nZSUJCQnEx8czZPAgvgjwY+HObXj5BVK+ej3dDX54e3vXRVM1Gu6ePI0Pv/+aXOvv+Gt03Dnphkvi\nmnSpcblFM00mU4ufh/nz55ORkYFcLic+Pp733nsPgJSUFCZPrrMtVSgUvPvuu5fVXFwqtOoonhut\nRPEC0JJETIrOSbVIlzMsFgtWq9XD+eJSorFucZOpTg/xuquv4ZrxE92+rJJ/syAI+Pn5cf3EW8nL\ny8PpdBLcNRh/f39EUeSB557joFqNPCQY2Q8/8OKdd55BUA4dOsSeAztQq7T07zOQkJAQ1Go1MTEx\nLF2j4vDxIoL9Dew+forItr2QyWQMHzqM5MQkCgoKCB4S3Khgt8lkYs2aNTidDpKSkklOTqa2tpbQ\n0FC+++Q91q9fjyiK9Jxf17n4x9KlbCgswC8qmtETJvDmdTehH/8SAHKdN87k/hxK38ydI71QKuse\nhj1TfPhx30HmPrKf39ZtRCaTcddNU7l9+s3k5uYSnBqMd7A3NcYaQjuGsuW9be6oV31otVrS+vWj\na48eLMnPx1Sai0alwOGCIovIzuMnWLfkc/Yc2IOyZBcTx7VBoVDQId7FM0t+p0OvsdiUOrILqogJ\n8+Z4iZFKWbBbTPu1d1/DFGdk/JxxlGaX8OIbL/LKI69gNpsxmUyEhYURFBTkHk9xcTFzHn6S9KPH\nMOi8mHPL9QzrGc28GdF/2RnuLeLQ+jz0Y/9dN0de3jiS+pOdne0miiUlJZTu3cjnt1zBjmP5ZJ/M\n45DKwI3XTW70Gnzvs4/IDbUzbP4cTOU1fPr0IqLCI93XTP0u8r59+2Oz2dxOHmq12uM+OnXqFNFt\ndWi91LhcLhJSQ9j+81EcDoc7Rf3iW2+zrqIKIToG4aefmX/NJAYNHEDnjp0IDw2jtLQUfVQi0dHR\nHgLQoaGhPDXnAbcSgCiK7lR8Ky4drFZrixPF77//vsl/e/jhh3n44YdbdH+t+P+PVqJ4CWE2m7Fa\nreh0Onf3cEvgYjiz2O12d43b3yGJFyva6XK53KRb0o/cvXcP2w/sQaNQMrB3P3LyczhZeZIg7yD6\npfUjMTERk8nkbsBYu3YtB3VeRN33LwRBoLJ7N17/6isW1COKu/fsZvFvH9J5eCg1RhtvfLSZf818\nhKCgIAIDA7lq2t1sWLUcY2YZwW1607vfICwWC0qlkujo6DPs2CQcOnSI2x64G3xEVOZaUoICGDP2\nHoYOG+n2mB0zxrPJZfLtnn7MsZERHD24AZ/eV+G0WZAd30F09wSO5h+gc9u6SEpmnpEtB46zTxWH\n73NrcJqNvP3BbGKjIoiOjqbsWBk5R4+hstVSkVtOZW4hr7/xJk6ZnF5dOjF0aF3dntT04+fnR7ex\n4/j56BHyDxxF8FGxrNpE+IR29BjcgfRfDmPMLECuiD9NeJzgctCpRw9y0wfzy5b1GA8XU+kfwNwX\nX8Tb2xtRFNmXsY8bH70ec7WZwxuPUlBRyjOPPsqwIH8C5HJ2IGPgrTPchHv2/Cc40mYo/jd/ijn/\nCM9/OJsRqVoqqqz4+2oor7RQXiUQFx3JsfRNdXNktyLP3k7kyEnuObTZbOgVchRyOWnJMaQlx/DZ\n3nxsNluj2p/7MtNJfXYyMrkcfZAvAQOSyTiaccbiQhJklslkiKKIQqGgqqqKzRt+x2w8RXBEAv4B\nYWzcVEvPwXbUGiXHDpYQERKDUqmsm5N9+1hbUkrYI08jKORYho/k1WcfZ0D/fshkMoKDg91p6pyc\nHHal78LlctG5bWdy8vPYdywDP52B0UOG4efn948oIzSGyy2q90+hseNubBHWin8WrRHFc6OVKF4A\nWoLs1I/OwcWv2/s7EEURURTx8fE5r47WfxIWi8WdEhcEgQ2bNvLF5p+JHNkNc1UNS59+gCGT+hDf\nPZ6c49nk/5DP+CvGYzAY3OK7NTU1CJGR7oe5V2QkFadlbCT8sWklA69NIDqx7oUs2tLZvnMbY0Zd\nCUBYWBiTb77D/XmHw4HNZqO2ttZDU63+C0MURR7691NEzupPzysSqC6qZM8jC1m18nNGjBzd7Dl4\n4dEHuPVfD1GzazliZQnj+3fjnntms+Cj//DG4kMoFQJGoigzF+A16kZkKjUylRp6TWDbnv2MGDGC\nTuGd+fW+JcTFB1F5tAJXjYL3dpZhSEnj2/98yZy8Am6cep1H00/Xnj0JePk1Hn/8Cdbt3o9DpaZj\nVDQJXeKITonkldUHWbk1n/Yxvmw/WoEhrD2vv/sRuw4ewd8vijvmzGPw4MHumjq5XI6XWktRRjGf\nPfQjZbGDqI3ryPHVixjWVcngzh1Iqanh58XfkTD/YSwWC4cys/GfvgAQUEcmIyb3ITrBi7e+2ktE\nMBSWwPAxM5kaHMr0OQ9Ss3s5YlUp4/p2YfDgv5pmgoKCqFT7criwhDaBvhwqLEUZHO1Rn1gfAT7+\nlB0rRBfoU9eNnF2Cb/szPbnhr4i35Hqz+peFtA0tIiJex4Gjqzhyoj0pEUP4/IU16LyVyGy+3HbT\nLe6opMViQREWgXC6mUUVGES5XcRqtXqQ2NzcXL5f/z1x/WORy2S8uuBVypV+xF1zBblFJRz85H0e\nnHEnOp0Om83mJrD/C7jcSOrFiCi2ohUtjVai2Ey05MPFYrFgsVjc0TlJGqel0RIPRSlVplQqLzuS\nKBH2xlLiq7auI+m6wQREh2KuNnIgTot/sj+hbUIJiQpm7efrMBqNHg0l7dq1Q3jrLWp790ITEsLJ\nJUsZkprqsU+HQ0Spktf73UFBQQG5ublERUWd8cKVy+VotdozBJvr2+RVVFRgVriI6VBXs2gI80Gf\nGIoly+yOPjUH8fHx/PztArKystDr9cTGxiIIAjNnPUhubi5Op5Po6GgOP/AIRbmH0US3rZOjKThM\nWJe6NO7wwcOJOX6Mdt5+ZMeU84hDRHPlPPwiI7F3GsKbr07gmonjz+h237x1Gzur5OjmfEV5eRFL\n3nuVwBA/4rvHEBQcQbn/EH4+Xkx4wiB2/rKOPYpkvK6dzfHju3jmP+/TuXNnt2OGIAjcNuV2nrj3\nCYoCu6AcPgMvUYYuvhuvf3Avkzp3IFCnw5xfjMvlQq1Wo9OosBYeQxkWBw4R18ks0qbfQVzcjZw6\ndYrAwEB3h/PPC8+cIwlqtZoxN97KuhXL2JBVTGB0CmPGjGuSSN11w6089sbzlG7PxFJaTSz+DGrE\no1uKeEtSN4WFhXgJhfTuWtcoFBHmy4eLMxl+xYP06F5n7RcWFubhnJKUlITi628xHstAFxNHyc8/\n0r5NFHK53IPw7T+8n5g+bYhOisIFOGIV6H2jCU1NhtRkjpwsJzs7m06dOrmldiRh8XN5fbeiZWE2\nm1uJYisue7QSxQvA34ko1ieJF4t4tdSDXoqESV2ZLYGWTj1Lbgf1U+J1WnzOOn8oARAEXC7chNxq\ntSITZGdoCyYnJ/Po5Mm88cprFJtqGdCpM7MbpHfTug7h98Xf0vuqWE7ml7Pug02M71nLtu+PsjOs\nI+Mm39AosZO6VJVKpVuyxWyu83NWq9XoUHDiaAXeegHBYqVgbyFjug4/75eITqejY8eOHn+Ty+XE\nxcW5f3/onjuYds88qrN34jJVk+Qs57pr7wIgPDycPd5+hPl4k1deiVWlR6WtIysyjQFRFM+wIANY\nvmY9qjGz8UrsjLEoEFPXqaz6bCExq7MYO3QsU6fNAKCqqoqHX/8M3wc/RJDJUAe3wXhsPRkZGfj4\n+LhJ9ID+A5iwZwJvHrfhYwhArdZQbqyk1mbD4XSytaCQyNSO7mv9uflzmffCLKzJfaA4k5Ed2tCj\nRw8EQThDAqexOaqPwMBArr55Bi6Xi7Xr1vLK+2+iU2sZ1Lsfmzb9xMmT2QQHxzBlyiySk5N556lX\nOHLkCFqtls6dOzd6/ut7X0sNRDa7y72YczqduFwyt2SPtKiorq52LypCQkJ44c6Z/PvTDyiprKRr\nUiIP3nsvKpXKXcfocDhwupw4xL/qD11OF0IjVopS7aTUcS2KotsBRrJtbCWNLYc6L3nP89Caer70\nEFtTz+dEK1G8QFwI2bFarW4P5qb8iVvywfx3tid18ur1ejexudwgSQo1nE+n08nwHv35euGvRI/q\niaXaiCzXSsnBUtRONeX55YRrIhqVHRkwYAADBgw4Y+62bN3Cu98tosZUS3xAIBm/OMg5mMd9I7uS\n1ikJl8vF8m17SU/vcs7uXCmqJL3g7XY7/7ppJs9/9CZrFzkwFZSQpAlBXW7hw6efotfYcXTq3Bmo\nO6dlZWUIgoC/v/8Fnd/4+HiWff4hu3btora2Fj8/P44ePUqHDh0IDg6m3023snzJYk6hQl6wB1fG\nesxR7TCtXcCIQf0aldbRa7WIVaUIgkBEWAQFW4zoyrVMnjiVEcNHuD+nVqsRnCIOczUKnS8upxOn\nsQyDwYBer/foIh85ciRfzrkf8UAvHGFtEFa8R3xUOO/nFxOZ2pHhE+rsz4qLixFw8fhdN6FQKAgJ\nGUTPnj3/9r20ctUvfPTH98Re25/ismoWPXoPT8+JZNbd0ezbn88nnzzH/fe/SlBQkEdjTUNIUfn6\n0kshISEovdvz67oDRIdp2JVeRqkxiDV//k7P7r2oqanhpY8/oejUKTrGxXH3TdMwGAy0bduWr15/\n7QwSJ5fL3Q1bXdp3YeHqhXWLJZkMebaDqpP5nGx7lNqiEnTZJ2k77K+6zIaLGIkwSo1g9b2+WwKX\nKv17OZb3WCyWFvG9b0UrLiaEc9w8l9+ddYlQv0vQZDK5dfWaC6vVislkapIklpfX6eq11AO0oqLC\nret2vhBFkZqaGvR6vdu6zW63n1VAubmQ9OWaqvlqLux2OzU1NWg0Go/0nMPhcLsa7Ny9i53p+9Aq\nVQztN4hj2ccoqy4jLDCMnt17nuG12xSOHj3K3a+/hN99M9EEBVD46TdM8AlFV3uSySkKfPR1EYHt\nh/MxJ4yjbz2plebCYrFQUlLCyZMnyTyUjnbXDkbERGMWHfx0opRB98wmIiKC519/iZ3Z6QD0iE9l\n/r33N/s4Gjuubz55ho5xNsqqnJgVHbhj1kPu7Ul+xc//510KS07Rr1tHHrj3nsabOvbt4+b7HsHS\n4xqwmfE5uJLvPn670eadN9/7gA9WbMWZOgohfy89vGv45O3XPSJxkubl7t27efXDT6msMTKsT09m\n3+GpAZmens7Cj5+hY7RIhVGG3dCZ2+++/2850UiYMW8WobOHEpAQgdliYf07C7g5+BRTrq1z43n9\n9WKunvTiGTqT9SGKIiaTyUMGR4LdbmfP7p1kHTvMbxt/pdfENoDAoTXlHC6yw823YUhuS/mqX+iY\nfZTXn3rSTTplMpmb3DV2jxcUFLD7wG4cDgepyalk5+aQnpOFv96bMUOHo9fr3Wn7xiBF5aVIo0Qm\nWyI1bTQa/3FfePjLcrQlnmMXAilaXv86X716NQcOHOCJJ564JGO6xLjk4WpBEFyRrsxLPQwKhERc\nLtcln4+m0BpRvACcb/rUZrNhMpnOmm6WttnSEcXzhUQSdTpdi7xsG6IlUs+iKGI0GlEoFB7zKZFE\nySarZ/ce9OjWnaKiIoqKimjfrj3BwcHnPce79+xBNqwfvu2TAQi/+Tr+fOwVZowczq6sTfRrF4bV\n7uJQiUjagPDzPh6bzYbNZiMyMpLo6GgOrf2ToaHBKACDQk6KHHKPHWPj1s0c1lYy8KPZAOx8fQnf\nLf2eG66b2ux9HT16lM3Ll2GrrWVf7iHuuV5Ph6QQXC4Xn3y/nx07dtC3b1+g7lwlJCTw1r+fQaVS\nndUrulOnTix67zV+W/MHSrmcq+a975a6aYh77ridlMR49qcfJqJrJ8aPH39GulbqEu7ZsycLe/TA\nbre7FxlOp9Nd37ls4QfcNERNu7gIXC7499dbePXRh/HTaglNSmbYuPHodLpmz09TkMtliCLYbHWL\nRbNZpLLK4bFIaQiHw+HRVd8QSqWSnr3SOHBkP0NuSaZz37oO7qKcdZywBdE+re48hFw7lX13TMds\nNqPX6931rna7va7BRaFApVJ5kLjIyEgiIyPrnIiOHyciNIxunbu4Cdq5LOLqu8DUj3xLqWnp3mtN\nTf89tKaeW/HfgFai2Exc6ANRqvOr3137T+BCxutwONwksaF12OWStqlPZCXvXahXl3iaJEJdCvqT\nLz9h+Y6VONQC5kIT86bdw5WjxzS1+Uah8/LCUVDg/t1ScgqDVkvnHn14/OFveO/H33E4FQwffxvx\n8fHntW3pZa/T6dyRIa2PD1WFVQT7+OByOimz2dDIZBw8doTwsanIFTJAIHxAKhkJqK6FAAAgAElE\nQVS/ZTV7X0VFRaz98H1G+xjw1qkpzDhKVmYMHZICEASB8CCZ2x8Y/urSVSqVZyWJEpKSkkhKSjrn\n5wRBYNiwYQwbNqxZ45a8pusTFklOqrrqFJGhAYBArdlOSXoOVwR5k9YhlV37drLCVMu1M24/Y5sF\nBQVkZ2cTEBBASkpKo/fLhGGj+fCt74m7th+mihrsGwvJTFHzwYdHOJRuJaX9uDNEuCU4nU53fe+5\n7nubaMHPoKG2xsKpoipcLieOslJcp1PH9qpK5E6H+xzUTxW7XC43gWvYJGU0Grn/6cfZdSoPpb+e\nSJeWp2+/l5iYGLcuoyiKyGSys2YeJNKuUCjc9Yw2m82dmpaaaJrzzLlcniOXC1qJYiv+G9BKFC8A\nzVmRw/mRxEtNxiSS6OXldcGpzObiQo+z4Rgloii9vOqTRIC9e/fye/ZaOjw4nKCEaHI2HuaNdz+l\nQ/tU2rRp0+z9Dh48mCWP/c7x1z9AFhyA8/dNPDDjDhYt/YK0G2PoPmgI1ZVmfnxnJzk5OW4/4HNB\nFEXMZvMZEad+V17FinffoSA3H5PDSXl8Etf06cPhrEw27TpGaOcEBJmM0r1ZtAtpel82m42ysjJ8\nfX3RarXkHD9OKk4ifX0AGBobz7JfjzF6eBxllRa2HRGY2i/RPacmk8ldT3m5QIpyyWQyzGYz8W27\ns2LDBsYNjGTXoVI05U66945Hr1YzoE0kbx45fMbLeP2G9by44F0MHdtgzDrBFam9mXXbHWcQndEj\nR6HTerF27WbC1Vrmv/oBm9evJW/dCoYE+FOdd4Tff/mZYaM8Fx71ZXCacy9169ibz795E72qlOgA\nO6d2lxFljKPo5ecR4pMQtm/mnklXNxrhb4pEC4LAews+ZZ+8hs7vP4hcoyJ/xTpe//oTXnvoSXfa\nWUrxOxwON9k7F2ls2JRlsVg8yGRzyl0uVY3ipYyANqWj2FqjeGnRqqN4brQSxQtAc0id9MD+pyOJ\nEs6HeEoETKPRNEoKWpLEXuiD2ul0UlNTg1ar9YisNEUSXS4XxSeLEYIUBMbX1ZAFt4vkaKCWgoKC\n8yKKer2et595jnXr1mEym+hy/3wSEhL4/Lt3mHl3Lw5uz2X5j8coyK4g8PvvuX/u3HMep5SW1Gq1\nZ1wf4eHhXDN3Hjk5OQQrlYxISkKhUNCvVxpb3n2DLRmf1R2P3YuxD4zBarWeUat28OBBHnv9RWxa\nGYLRyoO33YOXRkuJ468FTkR8Mo5MgfnvnESj0TF6/L+Ii4tzS7lAnQOLdCwOh4PS0lLUarWHrNDZ\njjE3Nxe73U5kZOR5pYDtdjunTp1Cp9O5tUbrb1eKwt5w8x18+6WMRz7dgtkObaJT0Om8cDld1Npt\nuOQKD4LlcDh46aO36fDSTfi2CUW0WFk15wOGZwymbdu2HvsRBIFBAwcxaOAgoK62rjJjL/OGd0ej\nUmITRT7e+BtlPXu7I4sNZXDOhoqKCt5Z8BlHCwsoyjjB1H5mEgO8GXvLANbvc2H3ikKrgqTpN7v9\nes+G+i4wDoeDQ8ez8O6egEKnQRAEDB0TKV+fSUVFBaGhoe7FidPpdJNFaY4kMn42NGzKkuoxW6V2\nmo+WqNduRSsuNlqJ4kWA3W7HaDSi1+ubTRIvVURRImBqtfqyTYGcbYwOh6PRF5LVaiUoIAjLWhPV\nhaX4RAZTvDcXahz4+/uf9xj0er3bGSUnJ4fFX39EdWER37yxlt8PWtDMmEF5qYVFP6yi0++/M3L4\n8LMej5SWbKoO1M/Pz03G7HY7b7/7IrWWvXRNFTieqWTKdXfRvXt3t2uO5P6iVCpxOBw8+toLRN0/\njpDOSVQeL+LFR97mo+de40B0DL9k52CQy0gX5Mx+9iXi4uI85q+hlAtAZWUlH779AraqbKw2F+17\nXcm1U25qkgiIosjXH39M2cGDaORyzD4+3DhrlrvTvLi4mKKiIry8vEhOTvYgJcXFxXz49jOonKeo\nMbkYOOomRl5xpcfcSQRboVBw68x7cbnmIIoi33z8EYsPHyBcLuOI6KTLNVM8xmgymbDLXPi2CQVA\noVGjiwmmvLz87BcAddEfnUJAo6o7ZyqFAm+VHKvVeta5a2p+5j77NDld2uMz7hZOLF3CxswtTL9u\nCAqFnOMn8tHFdKBbt27nHFdDSNG9hOg2ZGVkYy2vRuVnoGJPBhEOGb6+vh7zLaWe5aeFvOtL7UgR\nxvNNTbdK7TQPrYLbrfhvQCtRbCbqP+TORurqk8SL0QzSXDSHeNYnYOdKf1wqHUWXy0VNTQ1KpdJj\njJImmcViQRRFD8cTqUu7W7dujD0yiq/uX4zSX4e9zM4NwyeeETk6HxQWFrLy2/8wvL2K5KviuePd\nPyi/6R4MPhH4BvpiCI7hx59+apIoSkRHisQ0B+vWrUVj2M3Me+sI3do1BaQf2kafPn0A3LVqUrNH\nYWEhVo1AcKe6NLJvbDjqNkGUlpYy5a67SU9Px2azMS4mhtDQOsIkiiKZmZlYrVaio6Px9fX1uOaX\nLFpAp8AsxoyLwGZ38tbSZezYkULPnj0pKyvjwL59AKSkphIcHMzevXsx7t/PsJgYiisrOZyfz7Jv\nv+X2OXNIT09n9fvvEwuUOxzs79GDa266yU1Gvvzkda7sUknvTuFUG228unAB8QltiY+Pd89dw3tr\n9+7dPPnmy1hlTgSznZvHTWZQ9+5ERERQU1PjbvjQ6XSEeQeQ9et24kb2oCK7COPBfGKnxJ7zPPj6\n+mL3DmZvbjHtwoM4drKcao2vW6exMRmcppCdnU2GqZbwyRPRaNSEXH8tBx/cRX5xNQF+WjLzXYzs\nFdKMq6Np3DblBjKefYr0eW+BWkGAycW8uY/idDoxGo3uekZp3qX/1pfakQijKIru5pXzSU03lNq5\nFNkVCZdj6tlsNl9WpR3/i2hNPZ8brUSxBfF3SOI/HVGsT8DOtaK9VA9XaYwKheIMkihFEg0Gg1t0\n22KxIJPJcDgc6PV65HI506dNZ9TwUeTl5REWFkZUVNTfOp5DB/bSO8ZFu9ggIIihXfL4rlYkMiQB\nnc6Lsrx81MrGb6vzbQ6RUFZeTGKSxj3uxGRfdm/J9/iMIAio1WrUajURERG4aiyUZ+XjGxOOtaIG\nU14JwcHBqNVqunbt6vFdo9HIvKceJc9RjQsX0YKBV558ziMlVpx3lIkj65pe1Co5nWMVFBXkUhIT\nw5evvkpsbS0y4IuVK7l+7lwqy8rwUyj4Zf8Oys2Z+OqdbP5lP0PGjGH1V19xlb8/gaclWpbs3Mmx\nvn1JSqrTozxRlE2PSXUd0zqtgnZRdY04oaGhKBSKM+auoqKCx996mfgnphDYLoaibel899bPTJw4\n0V2HJzV8OJ1OHptzP8+88TJ/fvIbXgoNj94xh7CwMFwuF/n5+YiiSGRk5BlEXqFQMPGWmaxaspA/\n03PwC4tk/HXXoVKpEEXxjKakplBdXc2HC96luCgbU/YhvA3+hAaFcLIWvlx5AoPBj75DbiAyMrLZ\n10hjCAkJ4cOXXiUzM5OamhpSU1PdaXypntFoNDZqLSlFERUKhQdhlJ5RzalFrL9diTRKJQ12u701\nNQ1n2C+2ohWXI1qJ4gWgMVInSbZcLFmZ88XZiGdDAnY5PqxdLpf7Jebl5eUeo0QS67scSMX8VqvV\nXVhvMpnIzs4mKy8LnVZH7x69MRgMrPp9NYdzsgj1C+DKkaPOuz5IJpdjq+d6cUXXNqxYtJKqoFCq\n1WrkK37ipnvneHzHarVSUFCAIAiEhYWddwQhKiqBLduX062niFotZ8vGUqIiRzT5eb1ez8Mz5/Dv\nJ95B1SaI2pyT3DRyAj4+Ph6RIQlfLvqG0iRvus68AblcTvp7y/hi4dfcfdtfntWBoW04kLWbof5a\nRNHJxoNGqr328Pufa+lUU0vP9u0B8CouZvOaNbTv3p1fSkrwch3hwat9qbDU0qFGy3tvPoOfqMP/\ndI2oIAj4nW5Mqaqqwmaz4R8YweotBXy7qZijRSZqa508FHISQRAaXdTk5+ejjA4ksF0MAOG92pP3\n8a+cOnWKiIgIj4YPSVrnjWf+jcViwdvbG7VajSiKfPjR65SUbUXrJcNaG849s548oxbT39+fKbfd\n5fG3s8ng2Gw2CgsL0Wq17ujtdz98S0QfOUP9QtizZBGlMYlU78/h6l79uHfWPajV6r/l2nTgwAHW\n7tyOUibnioGDSExM5GD6QVZvWIteo6VPz954e3ujUCjOai3ZkDRKZQ31f4Bz1jPWl9pRKBSYzWaP\n1PT/itROazPL5QmHszWieC60EsULRH0SVl+y5UI7hv+piKJEEhsSsH9qbM3ZliSMC3ik8RojiRKk\niJFer0cmk7F9+3ZW7FlJZK9o8qqK2P3Fbny0/my3nySkX0cyjhWw981XeXre/PMibp26dGfRJ38i\nl+WhUSk4UCzn9Qcf5nBWFqKxmi63TuePjav4dvlnxEYmMSBtMPNffY1ShRJHVSXThg7lzlunN7rt\n6upqnE4nPj4+HuclrXcaBQUTePbRH5ErXISFdGbG9LNrJw7o1592yW05ePAgVZ2qCAoKwmw2u+dP\nIk4ymYyc4kJ8r0hALlcgkwkEdE8m96cjHtu7+rrpvP9GAbuzisg7WcO6fBOxt/pSbZSz64tdxAcG\nkhQSgpdKRbnFQtu2bYlJS6P2yF4KLbVszpGx+KCJk/ajGKwqQmtqGN++PaVGI/kKBeKBA6z+8EPU\ngoDLy4u5n2YTfPtwwvukIBaY+OTj7xg6dGijDTFBQUGYC09hqaxB42ugpqgUR5UJH5+67u6srCwK\n8vMxeHvTsWNHd9OWJLFUU1PDxo0bcMo2Mv+JOGQygVUrC1my9HNm3HrvWef5bDI4xcXFzH7qSU4q\nFDirq5mU1oc5d9xB4ck8eoyIpM9V7dm44gA7Nqwh3BXHY/fN/dup2T179vDCsoX4jB2GaLGy/r03\nuaprT3bXFBCc1h5zeQW7vv6UOTfOQK/XN2ktKV0jDT3eJcJXZznoWc/Y3K5pyaygKamdi2VteqlT\nz42htUaxFf8NaCWKF4D6D5uWIIkXA40RsvpRukvhjNAcSOlZp9OJwWDwIInSy6nhuBuTmVm3Zz09\nJvfCN9gXh8PB1uot/LBwFSM/fwKVVkNk1xT2vPat27quuQgMDGTy9Hns2bUVp93OyOu6EBsby6BB\ngzCZTDzx4kMkj/CiQ0oM+9dncMvc5chnzMZ/+AhcZgtfPjmf7h130LNnT/c2nU4nPy5aRPaGDcgB\n/9RUrpk+3f0CEQSBydfcwJjRE9yWhc05d2azmT3Ll5NitXLK5eKb4GCmzZ2LTqfzSDvGhERweO1+\nInu1x+mEE3/uoXeM55wEBQXxwGOvUFhYyMdffU7oECX6fu3wcrlwyVx8vXgHd2m17KqqYnCPHgCM\nueoqPs9di92gZGl2AYn/nkyMVwjkG/niqYWUnwhA5+dH8siRHF+2jKnR0ajkctZkZiIPCKDj1KsR\nBBnKJAXpa4+Qk5PTaCNSWFgYN4+ayII576JPCKf2SAFzb5qJXq9n2+bN7F/8BaleMnIsIod3dWHK\nrTPdaVWpAaOi4iTJKUocDhGXS0ZKqjf7dh4/6/yeSwbnubffpmTkCELHXoXDZOK7x56k+6ZNRIRE\nc3R3Jv2i/Oh3ZQeqCs0MSrgShUKByWRix/atmE01xMa3JTk5+ZznuT5+2riWgGuvIrhTCi6XkyyL\nhR9++JXhz9yFd1Dd3KXXruPIkSN0797d47tSF7PUNS3JezXmAtOwnlESu5f+vynSWP+Z1FJSO//N\nMJvNrUSxFZc9WoliM9FYM0tLag9e7IhiU1G65uCfrJ+U0lL1yZBEEhsKakPTMjMOh4hCpQQE5HIF\nGi81MkFAkMkQRREEAWQXdlxBQUGMuOKqM/6em5uLOtBKtyF1vsyDrunIG//eRFKPHsjlCgS9Hjp3\nIz8/34Mo7ti+nZq1a7mtTRvkgsDv+/fz5y+/MGrCBI/tn6/DyPoVKxgkl5N8Os27LieHXTt2MGTY\nMHetn9Fo5JoJE8l+63U23fgCgiCje1w7pt517RnbU6vVxMXFcTznOPbYNqitVmwOBxi0FMhl7NLr\n6TduHB1Pe13HxcUx+KpZvPTms9QkhGPVBBIZ2QZlrJIsw3Jmv/giGo2GdevWES2ToTpN8juEhWE7\nuh9XtRlVoA9Omx1z0Sl8fX2bPNYpkyaT1r0nJ06cIOr6qLo6TZeLjT8s4s7EMLy1dbWKnx/aT1ZW\nFomJie7vCoJAVHQCu/eK9OlXd01s23yKQP/+jUoPQfN0JjPz8/Cbcw8Aci8vhG5dyc3LY/KEKfzn\nvZf5dv9G7BYHKVHdGDhwEBaLhS8+eZ14nzxCfJSsW/4z1YOm06Nn72afc6fLhSCX4XLV1QQqVUqs\nuE7fC3WQqZTutHFTkMvlaLXaZrnA1O+KlmoRJZ3ZxqR2Gnv2/H+X2pGeM42pM7QSxUsLUWxNPZ8L\nrUTxAuFyuaiursbLy6tFutZamozV355EEhtG6S4FznacZrMZm83WbJJ4NpmZnu17suXH7SQPbIex\nsgbj4RpGpA0gfcEKwvt3piwzD/2JWkJDQ921WedTJ9VYZFOlUmEy2nA4nMjlMsy1FnQqBabdu9EP\nH4nDZEI4sJeI66d4fK8kN5couZwKs5kALy/a+/uzITu7WeM4G6xGI4Z616a3SoXx9GKhfmONwWDg\nxcefpqioCLvd7u7idTqdZxAkURRRV9VSs3gTNSEByORySr9Yw6xx1zNj+q1njGHQ4KH4+gUw7+3n\nCA+qaxAp3pWBn97Hfd/4+/tzxOmkm9OJQiajuKaGYR26s3fee/h0S8SUUcCVXfsTFxd31uONiYnx\nEDsXRRFEOwZN3SJOEAR8lHIPRx8J/fv1Jzcng6cfWYVaJaDXpXDbjFvcmo0NCZLFYnFfAydPniQw\nMPCMtHF8ZCSHtm0jePQoHBYL7N1H1LhxeHt78/DcJzh58iRyuZyQkBAEQWD//v2Ea/IY1a/uGGIj\nTXyx5ofzIoqj0/rxysJl2MYOwSWK2H7dyLi+Q0j/cT1RA7pgqqjCkV5A0g2jmrW95rjA1Je+kRpY\npOi/KIpu4ieTyc75jLuYUjuXa+r5bDaQrWjF5YBWongBkB6CLUUSLyaaSuVebrBYLFitVry9vd3k\npDkksSmZmSEDh6DZqiF97SF0ai9mTLqVoKAgVvy6kkOrjxDrE8DVc+fj7e3tLuQH3HVZTaW89u7d\nw58rvsZmMRGX0oOrJk5xRwRiY2Np45PKj+9uJyzJm8xtJ7nz2imsXr6YU3+swlFezuS+afTq1cu9\nPZfLxaaDB1m+azc+Pj7EOZ1c3SYav44dL3guS0pK+OqbdzlwZAsbCiqY06E/erWaXTYbV6amekTD\nNBqNu9kgKirKHSm32WyNEiRBEIgMDaWL1Ze1b/yMCxfd5Hr6pvVpcjydO3fmxsFj+eqOt/EK98dZ\nVMXzcx91n8/U1FSODxnCm999h7nkJLXeBqbMvZ8ZwcHk5+cTkhZC586dz3selEolER26sOroLtKi\nQymqrCFH5sXAqKgzPiuTyZg27XYqKq7BZrMRFBTkcR3WJ0gymQyn08mSZct4e9FCZD4GwtRa/vPY\n4x5k9pG7Z3H3449z/KcVOCqruLp3b/r16wfUdQ1HRER4jMHhcKBR/3WNe2mUiHYj54Me3Xswy2Jh\n3cbd6DQarrzpNhITE9m4ZRMH1mYQotZyw6QbmyWY3hBnc4FpeN+cLTUtXWMXIrVjsVgAPEjjfzNa\nLfwuPRxiKw06F4RzrPBajTlPQ9Kpk9LNTqfzgoSbm4LJZHIXebfU9iTY7XYMBsMFP1TrargqWuR4\npW35+fm5iYLVasVkMuHt7e1RyC69XJoiic2R9jkXjhw5Qm5uLv7+/nTu3NkttdNYii0vL48fP3uO\n6/sH4GfQsHJbHtbgQUyYfIN7e6IosnbdWgqL8kmMTyYtLQ2LxUJ+fj4Gg4GwsDCP/W/dupXZn36G\n6+576mpIV/5M1OaNLP322wtybLDb7Tz1zGz6DSuja7cA/lh9lMUfGxncYzQDJkygQ4cOWCwWHA7H\nOUsQJIJks9lwOp3uCNLvv/3GzqVL0drtnKytxadtW+Y99tg5yy+KioooLy8nOjr6DLeVHVu3sunj\nt+gf4I1aLvB7lZ1x8x4mNvbc+oZng9lsZtWypRRlpKPzD2L4pGsJDw+/4O1JnfUrflzGU59+RMiL\nj+AKDMRy8BjRP/3Oko8+ds+p0Wjk2ZefpELMRa1VoTT78fB9TzXpD11RUcEXHzzLiE4OAv29WLer\nFF30aEZdOaHRz0soKytj7969CIJAamoqOp2u2Y1qfxf1FxbSfSORu4b7r6/fWD+zcD61iNLiUUqH\nS/WTzUlN2+32OjJ+CYiZ0+nEbDafUT4yfvx4VqxY8b/a+XzJoxaCILj0taWXehgYdUG4XK5LPh9N\noZVKNxOCIHgIVEsRqMsZoijicrn+FklsaTR8mNtsNkwmEwaDoVkkUYqGNaanVx8lJSUs+fl7isuL\nCA+IYNKV17hTqhJ++W0VX2z8BX2XBEz7C+m9bzezbr0drVbrEUGSoiW5OTl0jHAR7Ff3sB/SJZz3\n/9wL/EUUBUGgZ4+eeHkNcqcitVotSUlJiKJIUVERKpXKPZasrCxkffsS2rYtNpsN3+tvwHlw/wXb\nep04cQKFuoTBw+qiZhMmd+Do4Xyumnozbdq0cQuUSx2vZ0NTEaTeffqwa9s2Dm3YQKBWS+2JE2Rk\nZJyzKSg8PLxJknZoy0YmxYYRodchyATszhIO7919wUSxtraWn1f8QHlZPtFtUrj90af/dkexw+HA\narUil8vZtHIZIb06ER4XidPppKB9ArmffUttbS16vR6Alb+uwDfFzKQbhiMIApuWH2LJj99x+y13\nNrp9Pz8/rpk2l3W/L8OcW0VM0gAGDm7a4QfqyPf8/7yM2CURh82GduWPvPzQo2cQki3btrJq2zpE\nh4O+qd0YOXR4izwTGqaK62uaSost6b6WSh20Wm2jXdPNdYGROq/rX5fNkdq5XFPPl1MTZCta0Rha\niWIz4XQ6qa6udtvISRISLfXgaekaRak2yMfHp8VIYks/aJvywz4XSayfMm0MNpuNTxd9TNjAIAa1\n60PuwTw+XfQJ9838S37EarXy+cqldHpuBlo/bxyiyNYnP2VUVhYJCQkeBEnq/kQQKK4Q3bV7J8tr\n8TL8FWV1OBwe9nL1UVZWxitvvYBRKMNSayOt/WBumXYrISEhuH5dhWuSWNdccvgQCQ2ijgDl5eV8\n9d1iTlZWktahA2NGj2r0+DUaDbU1DqxWB2q1HKvVgbG6Lopis9mw2WzNIokNUd9HODMzE2tuLjf2\n6oVSoaDaYmHJp5+S+tprF1w7JlMqMZqtCIY620uTw4FceWFlHTabjddfe4yE6AzSumjYuHU9C4py\nmXHb7GZvo7S0lK8WL6aspob+XbowbOhQdz1sbW0tAV5qXFnHcZrMyHVeOLJz0PBXB75SqeRUZQnh\nXf9yuIlI8ifj8Mmz7jc8PJwp0+4662fqY+FPy1GM7UfMoN44RAe5K/7g59W/cdOUv+STDqYfZMne\nP0iZNhiFSsHaHzag3aRlUP8Bzd5Pc9BQr7J+SYc0B1I0rzEXmPrC3s2V2mlYz/hPSe2cL8727Lzc\nyOv/GhytzSznRCtRbCYEQWiR7uZ/AlJqsb49199BSz/IBEFwk8SGfthN1SRKJBE4p0h4aWkpos5O\nYrd4AJJ7JpG/cx2nTp1yix6bzWZQKdD41kXu5AoF6kBfd2e4hPrdn926dePw3q18tiqdAIOCjFNq\nxk27zj3us/k3f/7tJwT1ERh75SBsVjvLXtnE1q3tGTJkCMO2bePPe2cjDwz8P/bOOzqKsv/in+2b\nTe8hjUBCh9BBIIAiRRQUEAWRbgMriKKiIFXBiqIggoDYRUWQFymCYKNIkU5ogZBCettsts/vjzDr\nZrNJNg3yvr+953iOWXZmnin7zH2+5V48U1J4Zd7cMttqtVomz3iOq516oGjXje3/2UhqZiaPTZpY\n7jjBwcF0jL+H99/YSOt4GWdOWIhvczf+/v4uO4dUBrGRI+C67aPVYsFLpaI4M5PCwkIEQUCtVruU\n3svKyuLHL9aQmXwBI3ISs/O5x2TCYBE4JPNm7C2uN3HY48KFC6hk5xk3qlRsu31bC9Nf3oFWO9kW\n7asM+fn5TJwxg+zefZG3j2P7DxtJTktj3HUXFrlcTnjz1tx6Yh+/TnsFa1gohacvsWrhYlvNq06n\nIyK0MX/sOURc+whkCinHdicTH1N5hLC6yNdp8QhpjcVc6lTk0SiYvGspZb5z+uI5wnq1wie4tC4x\n5tYOnPjlbJ0TRXuIizmVSoXBYMBgMCCRSCguLq7QBQYoQxYBG2msivC5IrXTUOEmim40dDTcX08D\ng0QisdmBiX/XdURRlJSoDcQaKvuxNjSIXdiOLjb2Re6OJFGMTLhSe6VWqzFoDZiMJhRKBUa9EUOR\nsUwdkK+vL9E+QZz/+U9ibu1M1tnLWJMyiXkwxuk+xYXC5KnTOX36NMXFxYxo1IjAwED0ej1Go7FC\nPT2A5PTLDBzbGgClSkF0x0BS01KQSnuw4KWXOHfuHDqdjri4uHL1e/v37yctMoaQSY8BYIrvyLon\nJvLIhPFOSd8DD0zkyJF40tLTGNSvEREREfzw5ZdgNtGqazfi4+MrvYY5OTnk5uYSGhpabiwAERER\n5MpkZBUVEeTtzbmMDMLi4lizYgUpZ84gSCT0Gz6cO4cOtY2vuLiYwsJC/P39UavVWCwWvlm9jN7e\n2bS7NZRzqbl8Y/EktUs/PL28GNu1W7lSAVchCAIyqQSLxUJGWho6bQkF+aYqJWFE/PXXX+S0bE3o\nhIkgCOhatOSz55/l4QkTgFJic//DT7DpC09MJ44iU3gyetkK4q83IIkEaUrbRRQAACAASURBVPCg\nwWRlX+Ojp3YilUro3KYXdw8ZVum4jxw+xIlje5HLVfRIuJPY2NhKx9q1RWvWbtqF52OjMVqt5G77\nky633VXmO54qD3TZ/9ZhFecWEKi6MZ22YkReFMKvjguMvdSOOC9U5QIj7sOZ1I4YoWyIKWg33GjI\ncBPF/yGIkQwfHx9b4XZdoa6IsTgmDw+PMqRKTB05I4l6vR6r1eqy/mNgYCDdmt3C3rV/EtDUn5wL\nuSS07WNz6hDP54WpT/Ph+k849p+PCPULYvaUaWW+4wxyudxGCMQxi2UIYr2Us8L6yNBoLhxNoeug\nVphNFlKO59K1W2mKWSqV0rJly8qvmfLfNKxUqcLqpM9MEAQ2btrM1zt2opDLeWTEcGJiYlg1by69\nzSX4e6jZu/9P9JMfpXtP513Ku3fvZNOWDwgOlZCVIWfS+FfKdRwHBgbywFNP8d2aNWivXqVxy5Z4\nK5WU/PMP98TEoDeZ+HXDBoJCQ4mPj+fk8eNsXbsWT6sVg0bDA08/jb+/P0LBNTrGN8JsMtO2cSh/\nZ6QR37mLrXNYvPeVlRk4Q1xcHF9rI3l/2V7ah5k4esKCIiOIvTu202/wnby/ahWHzp4hKiSU5x59\nlCiHLmiLxYJwvf7VarUiVSpL9QntxhAYGMjkp2fYnoG8vDwMBoOtblZMwz486THGPjABo9GIVCq1\nRfudyTEd+vsAh//8iMF9/CjRm/nx2xPc9+ArREdHOz1PQRDom9CbvIJ8ds5fiUQiYUK/geU60Hv3\n6MWRT1dyrHgvMoUc46lrPDjauTtQXcJqtdo0TsWIYHVcYCqS2qlOPaN9alqcR4qLi2sttVNdOJs7\nBUFosIv5/09wp56rhrvruRoQ61+gND3l2IBRGxgMBkwmk0upsYrGZl/vZ9+0UBfIy8urdb2jWOcp\nCEKZDueKSCKUptHF61KdCV0QBBITE8nJySEoKIjmzZu7tL0gCBw6dIikK5cJCQqmd+/eTu9xfn4+\ner0ejUZTzjPXvkNY3DYrK4sl7y/E7KFFrzXSMbYHj0ya4lTIWYxOiuPNzc1l1JNPUzDkXlRNYtFt\n/Jb7woN50cFTetNPW5j3wxY0D03DatBjXPkW4xO6EXf8MEOalZKv9CIt36LkqYWLyp3TtWvXWPzm\no8x8NYTAIDWXLxXx4Vs63nrjC6eRUrEDVSaTsXDmTDpJpXhfj9oeT04mduRI2nfowPJZsxji70+A\npyfXtFp+k0h4et48Ppw3g6mdfQnw8cRsEVj2Zyr3T19IWFgY6enpvL98ITm5ySjknjw0cSadOnaq\n8v6JOHToEOvmTqeFr4JoryDuiG3GO0kZXPUJ4O/gYHyGDkV38gTe329kw4oVZRYIGRkZjJk2jeJ7\n70MZEYnu+w2Mi4vlmSlTyh0nMTGRpSuXYFXqMeskPDbuGbp17VbueyLE2j2TyQSUlWP65OPFDOqW\nQZPoUmHxv/5OIct0J3fadT2np6ez/+ABJEDHDh0JCgpyKcqu1Wo5c+YMFouF5s2b16ligzOILlBK\npbJKCTH7rmlnLjD2sJfaEediV+oZAVv6Wy6X27qm4cZI7YjHs89qCILA4MGD+fPPP+vtuA0cNz2s\nK5FIBGVOwc0eBsZAX3fX8/8i6rr5pDZw1hRSH3WFtTlf+45xg8Fg+1yMxInHsIdInmtiNyiRSGjZ\nsiVZWVk2IW9XNC+//n4D358+gHf3VhQfPc7+Y0d44enpZQTAt27ZyKmjP6FUWrHKIpj40HO2+lXH\nDmExKhIUFMRrs98kNTUVtVpNWFhYuXO6cuUKnyx9E31eJoGh4Yx4+AmaNWtGQEAAa99YzIefrufa\nkb/oFd+OiWPKez3/+Ote1OOm4tkqHgHIvudBDv+xhdb2URqJBMFi5cSJE2zYug0BgfsG30F8fDxZ\nWVlERskIDCqtL4xp6o1KnUt+fj4hISFOr7FIhIMjIkhPTMTbw4NrBQX8knSEfzZmcvhoPL5AsLc3\nFquVYA8PTOnpFBcX06n/cNbt2kCLgHySC63E9byLsLAwBEFg6QfzSRhSxC19WnH1chFr3lpIZMRH\nTscBpQulrzZs4OSlS8SGh9O9Uyd6xrRgQvPSaKHZYsVgNHLgzFkazZ+HRCZDE9uU7EOHOXXqFD3t\nIqyhoaF8NH8+H65fT+GBfdzauRMP3n+/02MuXbmYPo81pmm7cDKS8/h4yVJimy6rUALHvnbPUa9S\nEMBg/DcLYDQJSKX/3rvLly/z4ntvIOvbHovRxNfvbOedF2a75NhjMBgIDQ0lJCSk3uVhxHpisTO5\nKtTGBcaxntHV1LRI0MX0ttgk56rUTl3BnQK/+TCb3BHFquAmitVAfZLDmu5b9Ox1bAoBGgyRFQSB\noqIim+6hSBRFkigIQrnJ3Wg0YjAYbLVNNTnmj1u38MuZwyh8PfEoMPL0g5PL6RjaQ6fTsWHPdjq8\n8wxKLw3WOy0ceeUjLly4YLN8O3HiBGmXNjFtUhgKhZT9RzLZsvlLxk980rYf+w5hx5qsqKgop/Id\naWlpPDx1DBFREmQI+Kbn8cOKd5g6dwk+Pj5ERkby+suzKj1ntVKJpagIgetNQcVFNI6K5J/MdPxS\n0/FTKdmVW4hPz948NHc+lvvHg0TC9vkLWfnyS0RERHA12UrGNR2hYRrOnc3HaPTEYrFw5swZIiMj\nK5TtGf7AA3z01ltcSUri4OV9jJ/qTd9+vmzbeoDNuwq4PTQUPw8PMouLkXh5oVAo6N6jJ42bNCUv\nL4/YwEDi4uKA0uhXoTaVHn1bXe9gleDpV8LFixedEkVBEHj5tdf41WxC2bcvvx46xL41a+gYEMYv\nSSk09tbwd3YBzXv1RbJxIxadDrm3d2lE9PrixR4Wi4XQ0FDeevXVSpsgcnNzQW2kabtSyZ/QaH/8\no9Skp6dXSBRFOJOV6dhlAD9sfY/b8nUYTbDvhAfjH/q3oWfD1p/wvLcvUbd2x2KxcMXXm03bf2bq\npPKOOPb4z/ZtbD2+D6W/N8p8PU+NnkhkZGSl29QGBoPBZkhQHSJUExcYsdHFFakdx3mmNlI71YW7\nLtKN/2a4iWIN0RAiimazGa1WW64pBBpORFEkiXK53NatLDbuiDU6jkRQjCjUpkP33Llz7Lpykvhn\nx6BQKUn55yyf/vgtL059psJt9Ho9EpUChWdpekgqk6Hw8y4TAc3KyqRZNCjkpdGH9q2D+OuEc7s9\nZ52YYlOO/YsPYPmaD2gxrBHDhzTHbLKw5YPDBKSncu3aNacNJc7w6KiRTFm4mIysa2AowWf3Fia/\nvQSVSsXvP/+MUVdMp3u78u2OnVjHPETgwDsByFUo+XzzT7z96hzuu/c53pz/Dr5+2RQVehATk8DQ\nKU8gDQlDmZPJstkv07Fjx3LHDgkJYeyUKXz00UcECxpuH9iKoGAPJkxuwp5dp/kuM5MAmQydWs2w\nhx/mzJkzXL58mcDAQHr06IFMJrNpymk0GgSrktTkIj5ff4ntBwzk6pQcOvEuny+LKUf2MzMz+fXU\nKULWr0OqUCD07cOZx5/kyfHjSb14nuSsTMJ7taTv7f3JNppYP3sOsn79sJw6RTvZvzWnULZ7vapO\nWT8/P4xagcyreYRE+VOUpyMvtaTaTThiPWPnzp3x8ZnNsX/2A1JGjOqBr6+vTY5Ja9Cj8vPBYrne\n4RzkR3FSSqX7vnTpEj+fO0z76aNReqhJO3WBNT98zZynn6vWGF1FbSSY7FEbFxj7SKPZbHaJ7N0M\nqR1xbG640dDhJooNBNUlYmazmaKiIjw9PStM79xsIivWKUml0nLRBfHl58xLuKSkBI1GU6tJNCcn\nB01sOApV6bUJa92U4z/8Xuk2/v7+xPqFkrhhJ1G3dSHr1EVUqfnE2PkH+/r6cfiYib49SiMbZ87n\nEhjUusrxOHZiGo1GG4FWKpVk5mYQ3ScYg8mCSiEjpE0ASWdzqyW83bFjR1bOfontv/6KxsODYUvf\nsjVq3D/53+aFr7ftQGK3sJAqlZivp+8SevWmQ/uO5OXlodPpGDNrDl5vr0YRFIL2xFGmLZjH7g3f\nlLs3ly5dYuLM58nv1pkiWQIPTPmT9cta4+mlQOPpx/QFb1BSUoJarWbjli18tHs3Qs8EJPsP0P/g\nQRbNmoXJZLJdkwdHPc2rT8ziqCoc2YuvEuAXRu7vu1nw3vssX/x6mWNbrVYkUikS8VmSSJAoSutG\nh40um6J/6rHHaLFjB/+cPUtkXDNGPPe8bZElpkwr6l43m80cP34crVZLTEwM0dHRPDr2GVYtfo+A\naA9yU3SMHDjeJsFUEzRr1oxmzZo5tVK8pXU7VmzYjjrAFwTI/HEPE+8qnxK3R05ODpqmYSg9StPN\nYa2a8vdXu5z6eNcWoi92bSWYHGEfoXe8Jo4uMOKcIpfLyxBGsZ7WlXG5IrVT3fNzFlEUfw9u3FxY\nLW4aVBXcV6iGqI+Ioqv7E20EK9N1vNlpDlECByhTYyieo9iwYT/hWiwWdDqdrUGkNggJCUF3ZA9G\nXQlKjQepxxKJDq78BS6RSHj56WdZ+dk6ziz6goigEKZOf8HWEGQymWjWrBmXkwazdO2veGkkFJtC\nGDtxbKX7dTyGY8rRYDAQGRpNQUo653z1qC0WDu5Nof9tIypNlTvCYDAQGxvL8/Hxlb7I7h88iD1v\nLyVfoUQilWJZ/zGjpz1l+3cvLy+8vLz4/fffkca1RBFUmu71ateRXEFCfn5+udTq8s/WY3xwFNHD\nhpKamkzyhgBmz/uJyKBgBg6YTFBQECUlJWi1WlZ+9z3+q9egCAjAajKx64kpjE9MpO11H2qTyUTH\nDp3o0OEOTvlFEBzZHI2HB8aefUncsbHc+YSGhtI5OppDS9/Ds18/Sv4+SBOrlRYtWji9/oMGDWLQ\noEFlPrcXcxdT0QaDge9++JYzF08Q5B8CBToCss4RrpHyTaGU/pOepnu37sTFLiM9PZ2goKAak0RB\nEGwRVTG9av+cGI1GenS/hcKiIra/twG5XM7UfnfR45Yele43ODiYkr/S0Gt1qL00pB1LJCootM5J\nohiJte9wrmu46gLjTGpHjHSK2wG1ktqRyWS2sdR0rjUYDP9frfvc+C+DmyjWEHVNFF2dbESS6OHh\n4VJzRl2hOucrvnStVive3t5lSKLVakWtVmMymWwvZvHlKEpp1IU4blxcHENaduWnt79C5u2Bn1HK\nxAcnVbmdr68vM58sn56+evUqSz5aRnLGNRqHhTNx+BOEhIQQGhpaYxF2+/TalElTWbz0NQ4eTEWb\nX0yf+GE8Ne1Zp9tlZWWh1+sJCwuzRcNEwulKTWf37t15/5kn+eynLaQkJxMtMfHXj98hk0joZidy\nHRUVhfX8GYxZGSiDQ9EeP4K3RMDPz6/cPnOLtCgjw5FIJESER3O1SVvyjl7g8YnT6NKlCwaDAbPZ\nXPpltQq5f6n4s1ShQBEahlarLXdNunXuxMZN25CPGFP63P/xKz0aNy5z3OLiYjZ+8RnhugJiDlxA\nmnSZ9s2b8/jiJdW6L3q9vlxd3Ycr3yNDcYYODzTl3JEzHNj4NxvH3IGXWknHgmJWfbWWjp06ERgY\nWGVNYmXIycnhq/UfkJtxEalcw5CRUzifdIkNu35GEGBo79sYftdQlEolI4eP4J4hQ21kx2AwVNqx\nGxMTwz3tE/jx3W+QeXvgpYcnx0ys8VidwT4S60xsvj7g6AJTWVmHSMLFucWxnrGmLjBms9lWz1gT\nqR1R79YNNxo63ESxGqjPKJ0rREzsHHbF+eJm1lCWlJRgNpudkkRRTsVeUsZgMNg6FutSyPyO/gPo\n2a07Op2OoKCgGhNQvV7PrDdfR3ZvL9olTCLj8CmWfr6Gj197q86cekJCQnhzwdtkZmYil8vRaDS2\nBiB7mZ1V61ax58gu1N4qvCw+vDJjDgEBAZSUlFQr5derVy9Kigq5+t1njGwSTYnZzOerPsDLx4fW\nrUtT6TExMbw49gGWPPcIJYHBqPNzWDr7ZacRo/7dunJs/ZeoIyOwmszIftrKo2PG0bVr1zIk1tPT\nk9iAQC5+9SX+d91F0T//oLp4wWn074477uDgiZNsfno8Ui9vwi1Gps15xebuIZfL+Xr1SiLP/8PI\nxqEk+0r5vgimTJqE/3Ui6gpEEmtfV1dSUsKhU/uYumogMrkMrxAFSb+dJvFaLp1jwgjy8kCvS6+T\nZ/Xrzz6ka/Rlet0TSUaOjhffnUVqZCxtF01BIpPx3dIvUO9Qcd+IEbYGDFfSsLZ7c+ttdO/cpdR6\nMDCwTsmcKIYvGhLcDDhG/cQGPzGaKGqb2v9WxXpGUWpH/H9XSaN9atpsNqPX6wFsXdPOZK+cqTq4\nU88NAG4dxSrhJoo1xI0mYvbyMjdjcnH1fEUpGh8fnzIremfWfOJLTxAE20tGjAo4FqzXFKL4+NYd\n2zCazXRqG28TdHYFVquVpKQkijRSOgwolVCJTOjMye0HuHr1KoGBgRw5chir1UL79h1rVZ8mk8nK\npJodIyVHjhzh4NU/GPXeEJRqBYd+OsaKtcuZPvXZGqX8zh3cz/CIQAI0pc9TH59Czp88YSOKAPeN\nGE6/vn3IyckhPDy8Ql3O0SPvo1Cr5cunnkMmk/Hs8BEMHjTIVnNqT2I/WLSQ2W++yYkfNxIVEsLC\nRYucEjupVMqrM5/nkbQ0SkpKiI6Otr34DQYDBQUFXD56iEfiGyOTSWkTGsixwhSuXLniMlG0J7H2\nL3KpVAqCBLPJgkwuQ6PRUFBiJTVPS8tGJn5JTKdp++61Jokmk4mstPP0ujsKiURCWJAnBokOnwFd\n0QQHYLVaCb27D0d/Ps79dseqLA1r3zn8519/ci03h8aNwunerXudp5yNRiMWi6XWzSt1AftrIi5C\nRZFtqVRaTgzfUWpHdIGBGyO1U9c1irNnz2bz5s1IJBICAwNZt24dUVFRXL58mVatWtlE/Xv06MHy\n5cvr7Lhu/O/DTRQbCCojYiJJVCgULte03IyIoujp6u3tXWaCrcy/ubi42CabA5SLlDiz+aoOcnJy\nWPjxMugWhyLAg53fruOZu0eXIUMVQay7CggIwFpUgrGoGKW3J6YSPcacQgwGAx9/OIdOLfOQy+CT\nj75n3OQ5FTppVBeOkZKU1BRC2wcilUsQrFaa92jK1s17K/SXrgpqHx9yUtOI9ivtqs7Rm1B5lieC\nrqRWpVIpUyY/xJTJ/0q1iDWnjiQ2JCSElW++6dIYJRIJERERZT4TU44qlQqpUkWWVkuAxgMJEnKN\nFpdevomJiaSmphIQEEDbtm3LEQKVSkX/Xnex8c3dtL4tkrTEPEI923JKHcjR4wU0btuLkQ+Mc+kc\nKoNcLkep9iE1Q0tkmDcmkwWzHowZuddTpFb017IJ9K64890xDSuK76/+Yj3nvc34toxhz7E/uHQ1\nmQfvG1XrMYuoiGQ3BIjznyAIeHqWSjyJUjvVcYExm802QllVlLEyqR1n6g56vb5OaxRnzpzJggUL\nAFi2bBnz5s1j9erVQGkpztGjR+vsWP9TcEcUq4SbKNYQN4qIiZ3DorzMzUJV52tvH2g/AYupnYpI\nolwuL5OyclbEb2/z5dgAUxX+PLAPusXR8o7eAFwL9OOnXbuqJIpi3ZVCoSA0NJRRfQfy7dyVaDo0\nQ3fyEkM79uD8ueMkdCykX0Jp3VyA3zX27vmJceOfcHl8rkC8JjGNY9jz6w4sQyyggMT9F4kMi6ow\nkmgymcjKysLLy8upxM7tw0fy5RuLSDufjM5i5bx/OI/17l0nYxbt22pKYl2BQqFg0LjJfLr+Y+KV\neVzRm7C27ERkZGSlsijfbPiS3fu/IryZiuTTeoYNeoShd91T7nsTx03il11RnPvnDK39O/DCa3e7\nJG5dHUgkEu65fyprvnmXuEaFpOdaGNB/FLv/OsGJgq+QyeXI/0niwZdedWl/oqB3ZmYm5wy5tJky\nBiTQqH1Ldi/+lCEFd1RpU+kKLBaLTZ2gPh1Nagr7Dmyx1MV+ESqK4Tu6wDhK7Yjzl6PUTnXrGcXy\nGiidW9Rqtc2esq5gr5Cg1Wpr7JXuhhuOcBPFGqI+mlkc9ydqEMpkshqJ196oiKK9faCrJFFMz1Tm\n4yvWPdlP8Fqt1rZqd6Xj0GQ2I/f/dzJWajwwWsyVbuOsA/bB+0fRrmUrUlNTCRvRmw4dOvDNV6vx\nDVSQdk3Lh99d5MxVHQqLnntHTkKj0VR53aqD7OxsLp87hf5sEasf+pKQiGAUOg9eeublMi890frv\n6tWrzH97HjpZCYZCA2PvHsuwocPK7LNx48ZMnrOAs2fP4imX0799+0otHy9cuMCxg/uRK5Tc0qcv\noaGhTr9nT7JrUsMpCAJ/HzjA5XNn8QkMom+/2ytcJPXs3ZuQRo1ITk6mvY8P7du3x2q1Vri4uHbt\nGtv2fMXjb7TG21eNNt/Ishmr6ZNwazkCJZVKGThgIAMZWO1zcAUnT55k3cYNaPU6OsX2omn79nT2\n9ycmJoaB6ekcP34cuVxOp3sernazjMViQe6hRqVSIgAWqQxBLiUvL69MRK0mkUDx/rqiNXkzYK+F\n6biIqgsXGHFedUUmR6xnFEXAAd599102b95Mv3796nyeePnll/nss8/QaDTs37/f9nlSUhIdO3bE\n19eXhQsXkpCQUKfHdeN/G26v52pAXFUCthdRXf3QBUEgLy/P5sEqRhIlEkmNLOysVisFBQXVKuqv\nDFqtFoVCUa5g3d4Zxj5yJE6szkii/bWr7nmJ9VgVeSo7IikpiSXfrKXRvX1RajxI+nEPY9r14tY+\nfSvcv6vjO378OFu+W8DB5GuY7x2K1j8M899X6GdSMH/mi9U6r8qg1Wp5f9EsevvlEuHnwcajaUhj\nezP1qWmo1Wpb1EKsU1MoFLw47wVC7g6hzW2tKc4r5j8vb2Xu1HlOm0ZcwalTp/jxndfo7y2hxGLl\nd6sXj85ZUI4siiRCIpHYBNari//8uJHLP35FDz81l4sNJEe24PGXXqmSdIqizGJ9rKOHsFKp5OLF\ni6z8ehaPLWxXSpSQsHT6UV588n2b5uSNwJUrV3hq8VxCHx6KR7A/l9dvYWRsJ8aNHuPSIqoqGI1G\nFix7h5KuMQS3bEraoVNEJmt59pHHbc8JlO8Qrgr2i6iGKO0iZipEQujqNs7mFGddzGJqWlwEA05d\nYBwhusvI5XIsFgt79+5l1apV7Nq1i379+jF+/HjuueeeKiOMAwYM4Nq1a+U+f+211xg6dKjt78WL\nF5OYmMjatWttC3l/f3+OHDnCsGHDOHXqVLU0WusJN71eQSKRCCQ2AJrTQuL2ev5fhOguUpf7g391\nBkW5kJqQRHF/9R3xFJ1hHEmiOJE6I4licXltzqsyT2XHrs8mTZrwzD0P8NPuXRjMJh6MT6BPgvP0\nanXHFx8fz5Ejd3Kl6A9C2vUg1D+UgL53sW/iszY9yLpAYmIiMdJs+rWJxGwx82S/WOb/etJGnBy7\nMA0GA5dSkujZswcWqwWNv4awDqEkJydXSBTFph2j0UjTpk3LLQh+/+lH7gtV0ya0NLJlPX+Vg3/+\nwdAR99q+I14/e5KdmZnJjs0/oMvPIza+E7f1H1DpC9VisfDXpu+Y2yICjVJBN0FgxZnznDt3jrZt\n21a43Z69e1i5/j2QWwn0CmXWjLmEh4eXiR4ZjUZ8fX3JvyYh8VgWrTqGcmxfKpYSTYXR0fqA1Wpl\n/fr1FHeMQNokGJ+QUJpNGcn2heu5b9gIW2qyNnV/SqWSGQ9NYcOWTaQe+53OoRGMHD/KqXi1GKWv\nqGvaHmJ3b0Pt1hWFsaszvtq6wNhHG13pmpbJZPTr14/c3Fx69+5NeHg4q1atYurUqTz55JPMnz+/\nwm137tzp0jmNGTOGO+8sdV6yF5Dv1KkTsbGxnD9/nk6dOrm0LzfccBPFBgZxxQ40yCJxEaKeo6N9\noBjdciSJ4FyGpDaozFPZvgGmVatWtGrVyradKATuGDGsyfg6dOhI2JVzNGnWFolEgklbjMQq1GlK\nTiqVYraKUQwBiVQGFYxPjPREhkaQcjyFmE4xFBcWc+1kBgHtApzKdBiNRha9tYiLuYkoNUqUWg8W\nzlpUpsbJYjKitjsnD5mUAqOx3H7sr19BQQEfvz6X29QFhHl7sGvjEbSFBdwzsmI3EavVClYryusR\nYkEoPZZNg9EJkpOTWf3NezywuAtBEb4c3nmeJUsX8N4bK4B/ibTVasXLy4tnn5jL+8tf50vtBYID\nInj+mfkolUpOnz7NkX17kckV9LptYJ01JTliw4b1XLu2A6V/K8ymZJIu5eNvVqOUKerk9yH+Nr29\nvXlk7ASn33Gla9oxNS3e35ou8uobdTG+mrjAQNnUNGAjjZUpERgMBvz8/Bg3bhzjxo3j6tWrXLrk\n3A7UFZw/f97mSb9p0yab1WZ2djb+/v7IZDIuXbrE+fPnq6X88D+PyiuR3MBNFGuM+qoBdCZUXRvU\nlSah/flW5AxTFUk0mUz18pJxjKjZS8rYRwQsFgvrvv6SvYknESTQo0kLHnlwHAqFosbja9OmDS02\nyjj7/ieoWjSlZM9+hif04fLly3h5eREeHo4gCGRkZCAIAqGh1XfFaNWqFdtk4fx46ApNgr35/XIx\nPQaOrnQ/z06Zwfyl8zkbfg5tRhG3d+pPixYtymgzitGPrdu2kqFJYeScoUilUvZ/e4g1n69h5rSZ\ntv11vG0AP6xZxjBBoMRkZlOWgdCMa6xbv5aEnr1p3LhxuQ7YM2fO0Nyax61xkQD4eahY8OMGBt89\nrMI0skKhoGXCrby/awvHctNI0hVhUXqzrJIXblJSEtHtfQmKKK0x7NQ/jr1rt5VpFrDv0I2Pj+fj\nD76wRcfMZjMHDhxgx/q3GdpShcFkYe3bvzH5uUW1TkfrdDpycnIICAjA09MTnU7HyePbmT87nmcW\nHqdot4Yck5r0P67y/IhxNSrHsMfFixd574u1aCUWPCzw1OgJNlmUF204xAAAIABJREFUiuCsa9pR\nvNpqtdaLPV9doa7tAysj0lW5wNhL7YiZlYos/OxrT6Oiomr1vL300kskJiYik8mIjY1lxYrShdJv\nv/3GnDlzbPPgypUrnYrmu+FGRXATxWrA/ode10TRnoT5+PjUmkzV14rfXvTbPj0pppudHdtoNLrs\nGlJbOPNUFqMke//4nd8MObSa/wwSqZS/P99I+M7t3DVgEAaDoUYvGYVCweKXXmHrtp+5djmHgDad\nOXtyB3t0u8nKsRDX8k5OJafz5+WLSKQSOgQ3Yv7zL1QrLS2TyZjw+AwO/vU7xwpy6TCiHT169ap0\nm+bNm7NiyQqSk5Px9fUlMrKUrNnLp4gEISX9KhEdwmznHtMpipMHLpTZn3i8n/fuQouRs9IsrGEX\nyfZQ8J83fmLG5Jl07dq1zPWTSqVYrj/XW04lsfL0WXLkUqZMm8ycmQuJsfPQtsew0WMYve1b4h9q\nSsIt0RSmCby94nWWv7Xa6XULCgri2oUijHoTSrWC1PPZaFRetufTWYeu6D8Opc/ukd93MLy1ijZR\n/kilMkyWdPb/sYeoWkjgHD5ymHnLlyL4ekK+llmPPkm7Nm2RSgWCAj348NUObN15ma17chjcfyoD\n+vevlf2dwWDgnc8/IXDcIJq1aEJuUgpLV6/jredeqbRJyR5ibaQYURP9t4FqKw7cKNS3faAjka7M\nBQbKS+2YTCYbeRRlcqRSaZ0Lbn/33XdOPx8xYgQjRoyos+O48f8PbqLYQCBOPHUZcatoJVtTiCRR\nqVSWmeBEkuhMK0xchd/oSIQzmZ3Tly/h070NSKVIpFKCu3fgzI7D9LsuCF3Tl4xarWbEsOEAvL5o\nOmOGCbRpGY7BYGHStDVcaNmHVh8tQSKVcuzDtXz6zVdMnfRQFXsthUhyQkJCGDayehp43t7etGnT\npsxnjkTAaDTSKDicQ78foGWfZiiUChL3XiAuulmZ7SQSCT0TEuiZkMCqtR/TulMxPUd1QRAEvII8\n2bTjR26xs/+D0mjrL+owPtl/lh8ykug3J56wVs3IOKtlyXuLWPHuKqfjzsnJISwukDvG3Vb6QTM4\n+Z80UlNTbak1e7Ru3ZoerQawbsYOAqO9yEgs5tnHXrbVEYskoqJyAIlEgkQqQaVUoFAosVotCFYL\n+pKSKi3yKkJxcTHzli8l6pUJ+DePoSAphUWvfsjnby2jcUwPvv72L7p39SU4wIPmMR0ZOnRorcsV\ncnNzMXqpCG7RBICAJpGkBfvaJJKqA/H3I5PJbELV9nqutemarkvcaPvAylxgHGukpVKpbW60z3iI\nKWqdTue28GsIcKeeq4SbKNYQdRlRFN1MnKVsGxKMRiNKpbJMN2FlJNHelaM+VvquQpTZaRzWiNOX\nUrC2b4PFYiH7zAViNZ51FokQBIG83DRaNisViFapZJgUFlTd2iO9TgL8+tzC2W+3ubQ/i8VSJcmp\nKeyJ9LB7hnE5JYmvHt2ITCkj2j+GCTMnVrit3qBH46dGoPTeewd4kmPOKvc9T09PHp81l2XvvoN/\npJmo+NYEBAQSEiKw68OfbM+TI7y9vdHm6NEV6tH4qCnRGijMLqmwS1MikfDwpMe49cLt5OXl0WRs\nE4KDg20dsCqVqkoS0a3vYL7/9A3utlgxma38mqLkgRG32VKazuRTKkNWVhYEeOPfPAYA3yaRyBoF\nkJGRwYNjp7Dt5zC27jyDhyaIRx4dWScdqD4+PlgLiinOzsMzyB99QRGmrPwa6yaKCgCihqtIvJ2l\npm9WpFFsXrnRhMv+92PfLCXWSIsdzgaDoZyCghhd3Lp1K02aNLmh43bDjZrATRRvMvR6PQaDAR8f\nH4qKiuq9U7kmECNyYrrOvkO7MpIodv7eTJJojzv7D+TkyuVc+PBzBAkE5ZYwdPIjNm/qymR2XIFE\nIqFReDMOHLpMz+5hFBQasOgkmE8kItzRHyQSCv/+hz7hEeW2FSNfYo2fKFjtCslxhry8PNLS0sqk\nnSuCTCZjxtPPMTFnks1+0WKxoNVqnXaSJ3TvzeurF+IT6o3SQ8n+T/9hdG/nKVo/Pz9G3D+KxatO\noFGVRrWSjqfj5+1f4XkFBgYyfNADfPniBqLa+5NyIo87E4ZXao8okUjKRBvFSJOouVkVOnXujET6\nIvv+/AWZXMGYZ4YQFxdn25dY4+jYLCVa2DlKsQQGBmLJLqAwOR2f6EZo0zIxpecQHByMSqXi7nvu\nr3OJLU9PTx66czifvPc1yugQDFczGXvbYJvkVnVhMBjKKQA4S01Xp2u6LuHYPHWz4KxGWnxWnMls\nSaVS1qxZQ58+fZgwwXmzkRtuNCS4dRSrAXESgFIiVFxcXCuXA3EyEYWqCwoK0Gg0dZZCyc/PLyeC\nXV2Ieo5WqxWZTGZLYVXk3wxlI2E3Ih1UHZhMJi5evEhxcTEtWrTAy8vLFiURybAzcuQqMjIyWLN6\nCYI5DV2JlN63jmX7vv2c0OaBTEZTiYI3X55dxinl6NGjzF72HkUWEyEeXrw24zkaNWpki1ZUF6dP\nn+arD18jWmMiXWsh/vaRDBs5ulr7EBuTRCJkn24E2LV7Fz9u/wGrYGVg70HcM3RYpddr3Wdr2L5v\nE/6NPCm4auSlp+dWKncDpYLUKSkphIeHEx8fX63xl5SUYLVaa90c4gh7a7bPv/2G73ZvB5mUnq3j\neWX6c2UI497ffuPlD97CFKDCmp7P8+Mf4/57RwKlv32j0VgvJCczM5PMzEyCgoJq7D0u1uG5Ulds\n3+xhsVicNnvUNcSF6M3OVlQE+zS92WwmOTmZPXv2MGrUKM6fP8+SJUvYunVrg5sfbzBuevpMIpEI\nHG4ANKdzw9ZRdBPFakCMrMG/nb817R4zGAzlLO8KCwvrlFwVFBTg6elZ47SlmLoTRWjF6EJlJNFq\ntaLValGr1TVy5ahviMRXFA//468/2frXXiQSKUN69aVrl662SEVNfaYtFgt5eXloNBo0Gg0Wi4Wk\npCQEQaBJkyZl7kd+fj6jn30GzYtP4dumJdn7DiL56DPWv/Uuvr6+NRIknzPtER6NF2ga6oPeaGbJ\nrnRGPbuE2NjYau1LhEikxUWSGKmuLsm5evUqeXl5NG7cuE5s5CqCSMI0Gg1ms7le0pK7du/i9e3f\n03zuVKQqJReWf81AaSDTpz5huyZbf97M30dX0S5eARIph/f7MmP6m3h7e7tMwqqCVqvli++/5Vxq\nMpFBIYwdfh/BwcG12qe40NNoNNWeOxyflfpITYtzTENciMK/c4zoRy4IAmfOnOH111/nl19+wd/f\nn7lz5zJmzJgGOUfeQNx0YuQmiq6h4bWw/T+A6IvsGO2rL8mdmkBM3YlSPWJhdlUkUawJa4gToKO/\n9IG/D7Lyt/8gG9UHycieLN+9meMnjuPp6Wm7NyUlJWi1WlsazhXIZDKCgoJsKUWZTEZcXBwBAQHs\n2L6NzZt+IDk5GSjVALQ2jsS3TUtAwL9bZ4pUCltXcnVhMBgwFefTJKS05k2tlNPYV0ZeXl619yVC\nTDd6eXnZnCXE1LjJZHL5mY2KiiI+Pr5eSaIY7Tt+7Bizpoxn9qMP8M6C2bU6f2c4ef4cfgNuwcPP\nB6VaTcTQWzly7gxFRUXo9fpS4fB9m3j08cYMHR7L0GFNaNehkKNHj9aZR7IgCLyzagX/+Bnwf2QQ\nSS18WLT8PZvsT01gb39XkwWm/bPi4eFhI03FxcUYjcZaz283unmluhDrOu1LHiQSCa1bt+aTTz6h\ne/fujB49mk8++YTIyEieeeYZDh8+3GDm/f+XMDWA/xo43ESxhqgpqRNV/729vW+IT2pNJyC9Xu+0\n/qcqkujM5q8hwJm/9O9HDxF+d18CY6MJahZD6JAE/vznMPBvd6P4whMjyMXFxdUiRyKys7NZ+s5M\nTLrVeMg+Y+WK50lMTCQoKAhTShqmwqJSrbprGUiListFqi0WCz9v+5kPV69i689bbVJEjlCpVPiE\nRvP3hdLmksyCEs7lCURElK+LrC7E9KK3tzc+Pj42/Ul7cnQzIXaIZ2ZmsmPdUl7s7Mk7AyNpqzvD\nF6s+rNa+0tLSWPfZej75dC0XL14s9+9hgUHoziZdVxWAwsTLRIeE2SLuxcXF17tb/11cWKyCTdux\nLn77eXl5nM+/Rst7B+ATHkJc/x5oA5RcuXKlRvuzJ2G1XeiJzR4eHh54e3ujUChsUjs6nc4mFVNd\n3KzmFVdhX7Pq6Eo1e/Zshg4dyuLFi/n999/Zt28f/v7+TJs2rU5dvtxwo67hbma5gbD3RXb2oqgP\n272awL7Bxj7qIUYTnVnz6XQ6W6SuoUFc5QNlJnAPpQqDttj2PUNRMR6KsuN3Jrwr1paKL1RXIkO/\n/7abHl1yuWdIqdtHWGg2O7Z9xVPPzOWh/newevoryOKaYE28yAtjJ+Dp6Vlm/K+9+w67izLx6NEe\n/f49HD51ildmPFfuHkskEiY9+Tyr33uNHxNTMAgKhk2YRqNGjWp28a7DbDaXkzmytz0TtRlrW+NZ\nU9jL4KSmptLeTyDEp7RecGCrRmzbfcxlqaiUlBSmvDIT2eAuSJQKvl3wCu88/0oZqaG77xrCb/MP\ncuaFd5F5eaK+dI0n5iyweQyr1WoSeo3g09Wf0G+gFznZJo4f8WL6M53rLNquVCoRjCbMBiMKtaq0\nm1anr9H+RfvF+iBh1dUhrAgNpXmlIpjNZpseq+P4vvvuO/Lz83niiSdsn8XGxjJ37lzmzp17g0fq\nhhvVg5soVgO1EdyuyBe5vlFd4mkwGNDr9bZ0sz3E5galUlmm89kxUtfQ4Kx7E2DIbf2Zv2oZiYXF\nIAiY9h5n8NTpFe7H0RNW9Ml1hRwZTSWEBP1bZuDrq8RoLLVqHDViBG1btKCwsJCY+8eXs45LS0tj\n97mTxK5ahEypxDL4VnY/8jKT09KcRgobNWrEy6+9Z6tRrQ5xsFgs/PnHH1xLSya0URQJvUt9sXU6\nXYUyQvbkqDIrxfqCowyOj48PR4sFLFYrMqmUpOwifAOCXR7Dd1s2oxzei9j77wAgJSSQ9Rs3sMSO\nKHp4eLB0/mscP34ck8lE66mtyzQoSSQS7hw8FD+/AE4cPoBcpuaxRwbj6emJXq+vk7o9Ly8vBnXo\nwS8ffItf5+YUJSbTziecxo0bV3tfN4qEVaRDWFXXtP1CpSHOMWIphrPfyKlTp/j444/ZuXNngxQs\n/3+Pm5sI+a+AmyjWEq5EKcxms1NfZEfc7IiiWDtp32AD2GyoNBoNRqORoqIim/epqP/omGppKKjM\nmi8mJoYFjz/Lvr8PIpFAzyefcznyZk+OHH1yncnsxMd34+svNtGoUT4aDznf/5hLfMfRNq3Jdu3a\nVdi9aTAYkHp4ILtO+GRKJVIPDwwGQ7nvnj59mq+2bEZvMjG0T1/69O7j0vlA6bO8/pMVFJ/dTodI\nBccPmTh36ij3j53sUuOAo0yIvd6evZWiq7h8+TKpqakEBwfTvHnzCscsRrNFQty+fXuOtOvLG7/v\nJUwj40yxnLHTXwBKmz8+/epzLqWl0ComlrGjHijXWV5i0KPw/dfnWuXnjc5Y/lorFArat2/PoUOH\n2LdvH7GxsTZJHfF69OqZQOdOXTCbzWg0GltEra4kZcbeP5pmBw6QlJJMaNNu9Ondp9pkRIyE3chI\nnaMOYWUWeZWRsIaAyuomCwoKeOKJJ/jiiy/qTAbJDTduNNxEsYZwdUKtyBe5ocG+dtKRJFqtVpsv\nsL3TiV6vRxCE0hRYHTrA1BVcsQ6MiIhgZMRw29+CILD9l1/Yuv8P5DIZ997Wn149elZ4DGc+uWIK\nViSNEomEVq1acfewWXz301eYzUY6dR7Bbbf1d+kFGBUVRYQgI/mLTQQkdCb3j8NECLJyvrDnz5/n\niSWLUIy/F7m3F/vXrONVo4n+t9/u0vXKysri0pFdLBwehUIupXcbC7O+203eXcOr3YCi1WopKCgg\nKCjItqCojnD17l928uuXH9A6QMrufCut+4/i3tFjynxHTJcCZaLZUqmUyVOf5uzZgRQXF3NHTExp\nLajJxHNzXyazmQ9B97Rm855/OPv6fN6cu6jMWG7vkcCuNcvQNApGplKQ8slmpg0YjiMsFgvLly9G\nYj1IdJSEdWvgjsEzSLAj5yaTySaDI1q3OSNHrridaLVa1n37LSeuXCYiIJCH77uP8PBwbrnlFm7h\nFqfbVAXRIaQummtqiqpS0yaTqcE2r0DFdZNWq5WpU6cye/Zsp45CbjQQuJ1ZqoSbKFYT9lG/qizy\n7EmiK3U/9RFRdGV/FdVOVlSTCNjIo/jCEyMk1XGvqE/U1Drw19/28smRP4h8eBgWk5mla75Do/ag\nY8eOVW5rL0YspmDto4ydOnemc5cuQFkZIfEFmJGRwb79f2CxWOja5RZbClqhUPDOnHksXf0x5/eu\nonNEFNPmzCv34vx59y4k995BoztLiaHc04Ov1292ShSzs7PZsXMneqORhB49aN68OSaTCZUM5LLr\nz40goFFKq30v9+7ZzZb1HxDgIZBv9eSh6XNo3rx5pcLV9tDpdGz9/CPm9gkmwEtFidHM3B3f0qPP\nrYSHh9u+Z58utVgs7Nixg9SMdJo1iaVv3760atWqzH4vXbrEFXMBXZ+ahEQiIbRLS/ZPWMK1a9fK\nRJK7devGy7rJfLbqR0xWC0/cOoS77hhc7jxPnDiBSX+Q55+NvB49LOH1N5fTK6E3EomkjDOR4zPo\nbIFRWfRVEATe+vhjjoc3ImjKY5w+f57ZHyzjvVkvV9uez36foqj7jWiscwWOqWlRD1P8Pd3o2teq\nIEoBOUZjBUHgnXfeIT4+niFDhtzEEbrhRu3RMGaH/0GIgqsicWioEGsnHdPiouCyM5JoMBgwm822\nF6B9hKQqEnAjIL6ga+IKs/efI4SOGIhv41I3k+K7bmXf8X9cIooinDk12JMAuVxue0GLUeb09HTe\nXjqTrr0NyD0kvLf8B6Y+vNCWygwKCmLhi7OqdS4IziPfWVlZTJ45g8KeHZD6efPpwld5d9rzxMfH\nIw2IZdPBi3SM8eZoUj6Cb1PCwsIoKChwWrfqiPT0dLZ/sYzZ/f0J8lFzOiWf1e8tYtH7a2wLiaoa\nYLRaLZ5yKwFequvXE3wVVgoLC21EUXzWvLy8SrUjFy/ib1M2np2ao93yBSfPneXJR6eUuy+OyrAV\nLaRuu/U2brv1tkrPtaSkhODgfyOAQYEqzOZcLBYLUqnU5XSpM/9tx+irVqvlWFoq0U8/WVoGEhJC\nyrHjXLp0qdpi5OJ5N+QGNIlEYuui9/b2xmw2235HN6r2tSqI9o7OFgK//vorBw8eZNOmTQ2K2Lrh\nRk3gJoq1QEURO6u19KWmUqmq5axxoyOKFaXFqyKJYs2f/eTorNHjZnTBiqm0mvoje6nUpBUU2f42\n5Rfioah5yYBjhEQkAeK1FSPSu3ZvpddAM/0Hl3q/+geks23ndzwZ96LLx7qr/wB+nD+HNA8P5J4a\ntJ9uYPoD48t976etWym6tSsxj44FILtpDCu++ZJVnTrx+IxX+Hr9ag4cPkdEk74k9OrMkEmTKLJY\nCFSpeHvWLFq2bOn0+MXFxezcuROhJB9Pdanoc+tIP/g7Fa1WWyZ9nZqayuXLlwkNDaVp06ZlGmB8\nfHwQvEL483wGh1ILWHMyixyTlJTPP+W1WbNRqVRltAjPnTvHgdQLdPj4JaRyOaa7+rBh3FzGjXqg\nzDGbNm1KE5U/x5duIKh7KzL3HqNz4xY1di+JjY1l00Ylp8/kER3lxbYdGTSN7YJMJkOr1VbbfrGy\nDnur1YrEbMFcXIzCywvBasVSVFRjkid6ENfE+edGwL6DWJxDats1XZcQibZarS63EEhOTmbevHls\n27atQdZUuuEAd+q5SriJYi3hSMTESKJSqSzn/9qQIJJEDw+PMi8b0b/ZGUl0peYPnHfBVtboUVew\nFwuuaT3TvQPvYPbHH3IxKxeryYTir+MMnvZ8rccmkUiQyWQIgmAjA+J1USqVGAzFhHn/+3P08lFi\nut4V7SpiY2NZMWsOX/+0Gb3ZxJAJD9OrZ69y3ys26JGF/6vTqAoKoFhf+uLVaDSMmfgoXl5eFBYW\nMvzxx5E99wKN2rYl/+ABpi1axI+rVpUjGDk5OTz20gukBviQJQ3g3Np/+GxsPJkFJQgqnzLp0W07\ndrDoszXI2zbHdC6JiX0H8PD48TYSYDQaGfv4DBbMnsk+FESsWEizuGYc/+hrlq/5hEfHTyizECgp\nKUHp7430+t9yjRqZRymZtCeKcrmcN19dyGfffEnSz+fp1bgdY54YVekCRpRWctasFRISwsTJ8/jm\nmw8oKsomNrYXkyZNqZbHdEVwXHiZTCaGde/Ot+8tQ9mlM+akJLp5epVpnnEVol1lQ5WZqax5paKu\n6Ru5IHXWQCVCr9fzyCOPsHLlSgIDA+t1HG64caPgJorVhGONoj0EQbD5e9aEJIodfnWFyiKeRdej\nEfYvfJEkCoJQjgjWpObPWRdsfUUZ68oVpmnTpix5cjoHDx9CLpPRY8aLNks0g8FAcnIyKpWKqKio\nao1dbLwQBMHWgW2famzRohObNv2Cf6AKlVLOf77Lpl/C2GqPv0WLFrzaonJi27tbd759/23y45qi\n8PUmc+XnPNK9VzmtxOTkZMzhEfhd92T269adzPXryMzMLCfhs+rzz8jq05WYSWPwyc3h+LsfMmbt\n77SIacLEZ16xvfBLSkp4/ZOVhH24AI+IRpiKtKx75AUG9O1L48aNbfevadOmtOiWQGabYCLbd0Aq\nkRJ8d3/+fms9TzlE6po1a4ZHhpbLm38luEsbUrfvI8YniJCQkHLn7unpyZTJj7h0LU+ePMnala9h\nMRbi6duIx56cXe68W7ZsyZxXP7D9LQrV19ZjWqvVkpqaio+PD40aNUImkzF21CiaHzzI+aQk/BvH\n0KdPnzKNZq7AmR5mQ4J93WRVChH2XdM3UpapomisIAg899xzTJ48mU6dOtX5cd1w42bBTRRrAXsi\nJpJE0Y2gIa7UoeKIZ2UksTY1fyKcNXrU1aQuvlzqyhUmMjKSyMjIMp9lZ2fz6tI3yfWSYS7W0y0s\nhmenPOHy9ahIp06MvpZG/mby05ffYrGYuKXbQ/TqmVBuP1arlb///pvc3FxiYmLKNWy4gg4dOrBw\n4sOsXP4leqORyb36MOa++2zdr+I5BQUFYUlLw1SQj8LXD0NGBuTnO/U3T8nJxqPPAAACAgIx9+9H\nSJHA7Ffnlokm5ufnY/XS4BFR2jyi8PZCGR1BTk6OTf9PJAGNG4Wz++w5GCLBKljJO3aGNgFB5a65\nRqPh/Xmv8eZHH3Blw5+0bdqMGXPm14oI5efns27lPJ4ZqSAuOoIDx7P56P15LFjycYX3XGxsqK3W\n34ULF5j70QcYwwIwZeYwslsCD468D6lUWtrhfMsttuirvfi72DVdEf4bZGZKSkpsC0lXUVlNcF2n\npu272B3v8aeffopSqWTixIl1ciw3bhDcqecq4SaKdQCRJEql0lpFEuq7RlH0XRXJrP3nFZFEe/mM\nuuiMrKrRo7pae/aC3/VZlL/mmy/R921Nu7tuxWqxcGjp5+zZs4fbXZCesU/ZV/RsSCQSEnolkNAr\nwRZ91el0ZVKQAB98tJQU3VHC4rz46fN87u4znjsGle/IrQp9+/Slb5++QNkObPt7HB4ezpS7h7Ji\nxrPImjXDevYsL06YUEZYWkTn5i05umUnPu3bgCBQsm0Pt3btWq4jNygoCF+zQNbefQT37UHhmfMI\nl5LLReoA7h02jD0vv8SlGa8j1ahRXUjlqXmLbPfbPiodGRnJewsXV/s6VISUlBSiQ0zERQcA0D0+\niO9+TSc3N9cWYbZHXUbq3lizCo/JI4ju0AaTroTvFyyjc9t2ZWpDxefdPipdWbS+oXskw7/2d7VJ\niddnatpqtVbo03348GG++eYbduzY0WCDBG64UVO4iWItIKaKtVotEomk1pGEuiaK9hBJoiOZFSVw\nnMn8WCwWmy1afchnVNTo4WqUsSJrvvrA5cx0gu/rXjpumQzv+DhS0q5VuV1NUvaO0VeTyURhYSFJ\nSUlczDrM+Hm3IJPL6NJfx6cvfcrt/frX+OUvuppU5O87fvRoenbpQlpaGo3Hj6vQ9WPsqFFcXfou\nW+97GASBuxP6cP+Ie8t9T6FQ8O4rr/L86wu5sHQNnhIZbzz7HEFBQeW+q9FoWLHkTQ4dOkRJSQld\npnXB19fX1mxVn6lGf39/0rMsFOvMeGrkZObo0RnkeHt7l/tuXUbqLBYL1/JyaNO+NQAKjQfK5jFk\nZmZW2ERUlTOOVCpFr9fX+2KqNqhr0e+6Tk3bu/84zoXZ2dlMnz6djRs3Ntjr60YlcEcUq4SbKNYC\ngiBgMBiQSCQNsjBcJLLiJAeUIbMiSXSmlVgXjSHVGac4qbsaZRRr/pxZ89UHmkdEc/Svf/C+bxAW\no4nCv0/TtPugSrcRdeBqmrJ3jL7q9Xq8AhRYBStYwNtPjUQu2Mh1dSFGmWQyWaUvuLi4uCqbJhQK\nBXOen8nzJSVIJJJKu2mbNWvGxk/WUVhYWKXkjkQioW3btmUaqGqbaiwsLGTbzz9RmJ9J85ad6N2n\nT7nnJyIigm59H2Teqs9pGi4j8arAvWOec1qXZm8fWFvIZDIah4SSvu8w4T27YMgvwHDqPBG3DKxy\n24qui7j4bOj2d/Ul+l3b50VckDprUDKbzTz66KMsWbKknAC+G278r0BSRQSrfsJb/8Uwm822NG1B\nQQEAvr6+dTIBixOYs9ReTSAW1ouaZN7e3tUiiUql8qatkMV0uFj35ejoodfrnQrd1hcKCgpYtOxd\nLpfkY9EbGdCuC49NmFTmetrLZdhHY+uKaOfn5/PSgmfoM6ERUc2COLjzAjlHvHh11mtOU2pZWVmc\nPn0alUpFx44dy3W3iySito0X9QWz2YxOp8PT07NKoi0+L6IWvOpjAAAgAElEQVTbSUXi7zqdjoWv\nTqNDVDIxjRTsOGig9S0PMeLeUU73e+nSJbKzs4mMjCwj9i0eU0yD11ThQK/X26z8RFy9epV5y98n\nXynFWljM5EFDGHLHHTXav30UzWw214ltYF1CzHTc6LnG8XmpLDVtMBic1iUKgsC8efMICgpi5syZ\nN2zs/0O46Q+gRCIR+E8DoDl3SRAE4aZfj4rgJorVhNlstr3AjEYjarW6zmRw6oMoipp9Pj4+5Uii\nKAzsOPkVFxfbUjYNAaKmnNFoxGq12ohYVTI9dQ2LxUJWVhZKpZKAgADb5xkZGSz48AMuZuegBp4d\nM4YO7dvXy8vvwoULrPl8OVl5GcQ1bsWksY/aPITtGxouXbrE4vfnENVBRXG+EVl+KK+8sMD2rN5o\nol1diCUdNSHajs+Lfapx3759HNk5n+ljS0lfQZGRGe/n8+HqzdW+DqK+YU2IdklJCUs/+oBD546D\nAPf1H8qoe++z7cdkMpGdnY2Xl5fTdLcrEBcrYn2xeF1MJhMWi8Ul28D6xI0sHalqHGJq2mw2l3le\nxBptZ4uVLVu2sGHDBr755psG2UH+X4CbPvFIJBKBTQ2A5tzTsImiO/VcA5SUlNgmlLqc3Oq6RtFk\nMiEIQhmSCNgiiRWRxKpSkTca9g0dBoPB5u8rdnveKMtAmUzmVJz5tRUrSO7Rg8YDB6BLT+e1xW+w\nLCysRhp3VSEuLo7X5r5T7nPHhoZPv/6YhLFhtOsZgyAIbProML/u+ZU7B9/Z4HX0apLOFQSBs2fP\notPpiI2Nxc/Pr0xDg3hd9Ho9KsW/56xSyiqs0a0MojtRTa/hZ99+yaUALf0/noqpxMjmxRuIDo+k\nZ89SX3GFQlHGVrC6ENO59g1K1bUNrG+IRP5mp8QrS9mLMjiOJPH8+fO8++67bNu2zU0S3ahzSCSS\nNcBdQKYgCO0q+M77wGBAB0wUBOFofY3H/YRXEzqdDpPJZKutqq/mk9pCTDvLZLIyE5nFYnGabrZP\no6nV6gZJIOwL3n18fFAoFBgMBoqKiigpKbFZft1ImEwmElNSaDSgPwDK4GAk7dqQlpZ2Q8chNjR4\ne3ujUqnIy88mKMIbi6W0UjuksSf5BbkVdueWlJTwyy+/sGXLFi5fvnxDx26PysSMK4LFYuG9pYv4\nau0z/PXLK8x9+SEuXrwIlF4XtVptuy6tWrXi+BVPfv49jdOXClj+bRrde91VrZe9+BzWJmV/4uJZ\nYgd1RiqTofLyILRPK85ePF+jfTnClWso/s69vLzw8PCwCfAXFxfbFpj1CVHap6GVPYgNPyJ5lUql\nGAwGCgsL+fLLLykqKkKr1TJlyhRWr15dRtDdDTfqEGuBCutNJBLJnUCcIAjNgEeBFfU5GDdRrCaU\nSqVLnrc1QV1FFMWom2M6pzKS2BBSQJXBXqZHTJUplUq8vLzw9PQESi3ktFotRqPxhhF4uVyOn0ZD\n0aUkLGYzFqMR4WpKmdT0jYQYHWnfphsH/pOE2WghO72AY79co2lMnC0VaR8h0el0vLroBX67sJZE\nw/csWvo8R4/W2+K0QogNSgBqtZqCggIuXrxIUVFRpdvt27cPY8FeFs1sxIxHQ5kwwsj6tW//H3vn\nHR5Ftb/xd7ZkN2UJkRoBCe3SRAUERQURCUgQQfAH0juIgnjBAioiCIKX6wVFpYOgSFOaIAnlChcE\nL3gRCwiCgoQQwFCS7WV2fn/EM052ZzdbZnfO4vk8D89jknX3ZDLlPd/yfsu8hhyX6tWr46Up83D8\n6v34ZF91ZNTti/97clDIRve+52GkVMuojKLTBQBKf+/i04WocosykzxIuUkopSOkkSwlJSVumy9p\nkxet0Tin0wmNRiOm/h0OBzZs2ICGDRuiW7du6Ny5c0QepgwK8VDwzwdBEPYDuB5k1Y8BWPnHa/8L\noCLHcdUi+fVDgaWew4QUhQOxtbOJFOK/V6FCBbHpBgguEuPZPRwJ5dn0qDUyECg9B14aOhSvvfsu\nbjRoAFy+jK5166Fp06biawRBwPfff4/i4mLUr1/frykiFvTvMwhLllvw/tNfQafVo2fOIPHB5nK5\nAEAU3Pv370fKbdfQa2xLAEC9ZpfxyaplaN78vYDv/+OPP2Lr9tVwux1o07ozsrM7l2tldOLECRQX\nF6Nu3bqyKXypKfl/9u/DuvX/ROWqAoqu6DB82Gto2aKl7Htfu3YNf6sDaLWln9+4QQUs/7Qw4Fpq\n1KiBZye8KtbqulwuWCyWchs95NK5weB5Ht9//z0sFgsaNGhQ5nce1mcgprw9A4e/Pw+32YEaHhM6\nDcou9z3LI5CxeyhIU9PSlD35vhKpaenklVhYbikBaaCTHsOqVati06ZNmDdvHv7zn//gs88+w6pV\nqzB48GAMGjQIderUUXnVjL8YNQDkS76+AKAmgMux+DA6r9QEIV4j90KF3NhNJhO0Wq24NvJA9BWJ\nQPS1VrGGPJxDqVfzrTWK5chAKU2aNME7Eybi8uXLyMjIQMOGDcs0Dr313vvYfeEKtDVqQ/PJBkwb\nNgitW7dSfB1SjEYjxj09AV7vcwBKo61EOEtrsJKSkmC1WVGx2p8pykrV02CxBRZaZ86cwXuLX8bj\ng00wVUjCpo/ehYd3I6dLN9nXC4KAhYvm4rcLO1GjlhYfr+EwYuj0MmPOSCoyLS0NV69exfoNczB5\nWgaqZybj3K8WzJ39Bpo0XiPbOFanTh2s/pJDx7YuZFTUI29vEerUu7fcY8RxXJlNBmn0kNtkhJsS\n53keM//1Fk45CpBSPR3m9cvw6ujncfsf4xBvvfVWzJ06Gz///DP0ej2aNGkSdXe8tKwg2vNcq9WK\ntcrEy5McF71eH1FdsNSOKZoxm7GE5/mAvqcHDhzA3r17sX37duh0Onz77bf48MMP0bp1a+zdu7fM\n5pCRQLjVXkDE+F6AMYtaMaF4k+DxeGCxWJCWllZmp046+gKJRCVGjsUK0tQQyWi+WI4MlEIETlZW\nFurWrev382PHjmHPhd+R+cIb0Oh0sPz2K95a+BY+bXV3XI45x3GiwDEYDOA4zm9yRd06dbFt+TXU\nb3YFt1Q3Ydfqn9CyWbuA73no6/1ol6NDyzalEbL/G6bB5uVfBBSK33//PfIv5uHVmbWg12vw6xkz\n3pszG82brwPHceKISPJwvnLlCjJrANUzS0VhVt00pJmKce3aNdSoUcPv/Zs1a4Z2HZ/BxJkLodd5\nUTWzCcaNfy7s4+Tb6CGNppFrKFQngEOHDuFn7yW0ndYXGo0GF7//Fe+vWIwFb70rvqZChQq4++67\nw1pnIGI1nk+6+RIEQZwyFOrYQClkRjJtdYkEX4srKYWFhXjllVewbds2UdC3aNECLVq0wJw5cxQX\nvvn5+Rg0aBCuXLkCjuMwatQoPPvss7h27Rr69OmD3377DVlZWVi/fr3sSE0G5RzfC5zYG807FACQ\nGnfW/ON7MYEJxShQOvUc6ft5PB6YzWakpqb6RSW8Xq/YoS1FOlaOxjohqU1PNB3YclFGaadnUlJS\nxA8tX4EjR3FxMTQ1a0Pzh3hPrZWFizYbeJ6PeepNWnvq26AkNTm/8847MazP81jz/jLY7L/i7jvu\nR78+gwK+r16nh93xZyTd6eCh0wZ+UN64cQO1snTQ60uPUZ16abBaz4n2TL4Cp1q1aigs4FB40YbM\nW1Pw6xkzLGZD0LrPnK7dkd0pp9SUPMrouHSTQerpvF4vdDodPB5PSNG04uJipNWpIp4Xlepl4viN\naxGvKRhKm34HgmwyQh0bKCXYjGQaCBYxdrlcGDlyJN555x1Uq+ZfBhYLhwi9Xo+5c+firrvugsVi\nQcuWLZGdnY0VK1YgOzsbL774It566y3Mnj0bs2crN7qSESeati/9R/hsWrjvsBXAWABrOY67F8AN\nQRBiknYGmFAMm3jc5MKx6iDdiikpKWVucERwGgwGsWZPWn+k1FzaWBCrDmxfAeByuVBSUhJRlJE0\nNZQXwalXrx64dRthzT+HlJq1cSl3C5rVyfITiWazGfn5+ahYsaJiNYxOpzOk2lOO+3PONIkykro9\nOQHQvn1HTJu5BRrtWZgq6LB7sxWDnnwq4PvXrVsXGzYKKLhgw601kpG3vRC31WoMrVYLi8XiJ3Aq\nVaqEJ/u8iNmvz0FGpRu4cU2PkcOnlutXSjYESkE2boIgIC0tTUztkpS91+tFfn4+kpKSULt27TLX\nUoMGDXB1wQYUP3wXTNUycGLzQdzxN+VTk2qlc8sbGyi9lhKleYVY4UgRBAGvvPIKevbsKVoXxYPq\n1auLNa1paWlo3LgxCgoKsHXrVuzbtw8AMHjwYLRv354JxWiJv1lGuXActwbAgwAqcxyXD2AqAD0A\nCIKwSBCELziOy+E47gwAK4ChMV0PM9wOD+KzBfwZlYvUEFeOa9euISMjIyTB4vV6UVJSAqPRWOYG\nR6YOCIIg3piJMCKNDEajMapoWqyI98QQ8vckxyWUon1iBk2OYXl8/fV/8dbylTA7nbg96za8Ou6Z\nMrONT548iZf+NR/2SpnwXr2MAe3vw5B+faP6vcjmINKIsdSEWM6cubCwEDt3bYfb7UDrVu1wxx13\nBH2/A18dwKqP5oDnbcjMbIhxz0wR1xZIABYXl6abq1SpgrS0tLB/h2jxNayWfr+goACv//MNONIF\neOwu3FG9MSY990KZ132590ssWLMcTo8bd9RvjOeffk5xOxVig0VD+Yj0WiJiWq/XizXGtNYlkppd\nuWtl3bp1+PLLL/Hhhx+qJnLPnTuHBx98ED/++CNuu+02XL9e2gwrCAJuueUW8esERPWHD8dxAlZT\nIHP60224zYRimEiFotKTVIBSoVixYsVyb0perxdmsxlJSUllHrRyIpHg8XjE0XykC5pEGWnZ6av1\n4CtvZKD0dZGMHCPCSy7i1W/s31HSfTgq3t4CHpsVv899GfOfHoomTZpE9LuEM/ouFEjKnpz3kXbA\ner1eOJ1OGI1G6scHlrcZmPmvWbjayIvbH2sFt9uN/XO24f8aPYKuOV3LRNOC/d2jJdrNQKwgzXOk\nBprUdtIyNlAK+Tv7bgaA0s7+v//979i1axdSUlJUWZ/FYsGDDz6IKVOmoEePHsjIyCgjDG+55RZc\nuxabkoY4oPrJwHGcgJUUyJzBdAtFeu4uDAChpbYFQYDZbIZerw9ZJEr935KTk0X/QSJ84mW0Gwzy\nYFFDPPj6yel0OtFPjtgHSesmw42OkFpJXzweDwqvXUd60+YAAF1KKrg6jXDp0qWIfg+lfP6kBDJn\nJubzoZ4zJHpIopS0ikSSziWbKDnyLxegZou6okFz9Za34eKVS7DZbLBYLGLaP9DfPVpoLh8h3eQa\njUY8d9xut+jN6PF4qLAVk9Z2+orEGzduYOzYsVi1apVqItHtdqNXr14YOHAgevToAaC0fpfcGwoL\nC1G1alVV1sb4a0HXHSYB8G0IUPqGV957EpGo0+n8RGKgUWRerxdWq1Xc1ROk0zykRrsOhyPuU05I\nGp+GBx8p2vcV08T4mXQPK4FOp0NW9aq4euQAAMB14xqE0z+gVq1aZV7H8zw+27wFz8+YhTnvfYDL\nl/3rlqV/51g0yviKaa1WC4fDUUZMlwfpEqchVSoHEYn/ObAfM9+ZjVnz3hKnvEhpUKsefv3PidL5\nyQ4XLn19Dg3rNoDJZIr5pBPyd1a6w1lJSAo6NTUVSUlJSE1NFRtZ7HZ7GTGtBqTERa62k+d5jBkz\nBlOnTkW9evVUW9/w4cPRpEkTPPfcnx38jz32GFauXAkAWLlypSggGYxYwlLPYUIsIoA/U7lK1h3d\nuHFD9EGU+2yLxQKO48o8aIlIlPNKJA+VUFOl0vRrrP0HCSSFr1SqVGnIQ8Xj8UCj0Ygp+3CsQYLx\n22+/YdI/5qJIowfMxXjmie7o8WjXMq9ZsGwF1vxSgNTs7nDmn0Olg3lY+tZM8dyLNCWuBNJzhjx4\n5TqDlU6JxwKHw4EvcndgzVeb0LjfPbAXW3FuzTG8/cps3HbbbeLriouLMf3tmcg3XwLvcKND87YY\nM+KpMpsccq9wu92KnTPSqHaoVj3xJlBtJyHUMo9Y4nQ6ZbuwBUHAnDlzAABTp05VbTNz4MABtGtX\nWvtL1jBr1iy0bt0avXv3xvnz528GexzVd4ocxwlYRoHMGU536pkJxTCRCkUSNVDyQi0uLkZqaqrf\nDZY8IEgHZigikYgHvV4f9kNFEAQxKuD1emM25YSIh0APFRrwfajEQky7XC78/vvvMJlMfjWvXq8X\nnQYOQ8abi6FLLW3quLTkbUxt0wzt27enZk53sHOG1IIlJyfH1MIlGkjN34szXkbW03ej6t9KPRv/\nt3Y/2jj+hgH9BpR5vdfrxeXLl5GUlIRKlYKP31PinIl3o1ckkHtOqM0r8brPSAm2Ydm9ezeWLl2K\nTZs2UbuZuYlQ/QRmQjE06HwyJwjxGuFHhIDX64XJZPITicSPzlckRuND6DvOKxZTTqQWM7SKRKnf\nJPl9Q53mEQ5JSUmyZtJSBGma7o+Nga9X4qlTpzD/wzW4XmLGAy2aYcSg/nHrNg00As43CqsmZ86c\nwfyPPsKV4mK0adIEowYNEi1epDV/Xu+f13Xpcfc/1zUaDTIzM0P63GBjJqXd5MEgtZ2J6EUYiHiM\nDZQSzJj83LlzmDFjBnJzc5lIZDAksBpFypATnyTtKRWJAMRIopxIVDLCJK1lJCPgSGF6pLWMgeom\naYIIwEB1k+RhJq2/slqtsFgsokWIEmg0GjzZqQMuL5yNa/87hEtb1qBawS9o0aKFWOeVkpKCwsJC\njH/jbfzc6FFYur2INSdvYP7iZYqsIVy0Wq3YAEOOg9PphM1mU62Z4cqVKxg/ezZ+evAhOMY9h88s\nNvxzwQI/8fB4x8fwv/m7cebAcfzw+WEU7TqLDu0fUmQNpLkl3Jo92ms7gcBehKFCzplY1XlKm5R8\n7zl2ux2jRo3CokWLghq7M25CPBT8oxyWeo4Ap9MJoPTGc/36dUVvLCUlJWXSc3a7HU6nExUqVCgj\nVoi9jVy6OR7pKakxc7hRxnDrJtWgvDqrQEj9Bz0eT5m6tGj+Fl6vF1/k5uG/P55A1Yx09Ov5OEwm\nUxl7lC+++AKzj1xBZrdRAAC3tQSW95/CzrUf+r3flStXsH7LVlw3W/BA87vQvv2Dip8rvueiNM0I\nRG6zI0dxcTHWfrYJl68Xo2WThujSuZPf++7ZswczfzyOzDHPAAC8LhcujRqBzQs+EI3YCfu/OoD9\nR75CcpIRPbv2QO3ataNeYyDKq9mL9FyMJ8G8CKNByTpPMmHH974oCAKeeeYZPPTQQxg8eLBia2eU\ni+o7Ho7jBCyiQOaMZqnnm55wJqmUhzSi6HA4IhKJoUzjiBatVgutVltmlnIo6VdpeopWkSjtKg33\nwSw3MtBms5VJsUXyd9FoNHg0pwsezekCoGwDEDk3kpKSAGux+P94LDdkj/H169cx+uXXUNTqYejq\nNEbehk147sYNPPG4fAel1WpFUVERKlWqFJbxtdPpLJMq9Z0zTc6ZYM0MgiDg0qVLEAQB1atXlxUh\nNpsNT0+egvNZraCv2Rp5X3yBi5cvY+SQsg99g8EAobhYvF7dxTeg4SCbKm17/wNoe/8DIf+u0SAd\np0jENJmnrNfr4Xa7Y9bJrgRk8kosHAuiGRsohWzc5O6LK1asQEpKCgYNCjy2knETkwARPbWh885D\nOUTMxVKIkQdFqCIRgGhREs/0lJwwCnQj902J0wgRiUrMzVVyZKAU6Ug0qSBv06YNsjZtx68b34O2\nci0I3+7A5H49/f7/Q4cO4fcGdyGzR38AgKPu3/DhvJdlheKRI9/glbffhyslAzrrNUwdNxJtH7hf\ndl03btzAf//7XwBA8+bNxdSz7+/IcRxOnDiB8+fPo1q1amjWrJl4vksN4F0uF16f8xb+m/8roNHg\njiqZmPnSy36+dkePHsUFUw1Uf3w4AMDTpAVWzxiGYQMHlDk+rVq1QoOtW3Hyg/ehq1MH7j27MaZ7\nd6oaQ6QbCtJ0IW2go820mqTtjUZjzOv6whkbKCWY5+Q333yDTz/9FHl5eVQdVwaDJphQVAClI4ok\nPedrk0OaV+REotPpVH2Ul1QYyRXsk4ddcnIylTdlImT1er2i0U5pxIhM9iENKOGmX4NFO1NTU/H+\n7OnYuXMXrpZcwd3jh6BFixay7wH9nxE0Tp8Ej0xtnNVqxStvvw9Nn6mofFtD2ArP4fX3XsanTZsg\nIyOjzGsvX76M0a++ghtNG0EAh7Q1n2DxzDdlpxat3rAei7/cA23LO8H/Ow+9vr0dz44aLYppi8UC\nrVaLTzdvxpEUAQ2WvgmO43B8/iqsXPsJxgwbEfz30ergBfxq2gwGA+a9/jry8vJwqeh3NO7VE+3a\ntaPyXAQg2g2Rer1QhVG8IBmMSAzoo8F3c0quJzI2UDppilzTckL2999/x8SJE7Fp0yZqsxsMBg0w\noRglSt+ovV4vPB6POB2EQGrfAolEYm6rtlk14H8jdzqdsFqtAEBtJFEa7YzlQ4O8fzjpV+kay4t2\nmkwm9OrlH0WU0qpVK5g+fQVXMm+DMbMGrNvWYujD7f1eV1RUBFdKBirf1hAAkJKZBXtGTRQWFvoJ\nxVWfbkBxdgfU+L+e8Hg8+H3L5/h440a8NG5cmdcVFxdj8dYtyHz/n0iqmA7ebsdn415Ej0e64Lbb\nbivTTX7i3K9I6XAXBHDgOA0y2rXCqQ17/dZ555134pYPP8GVPZtgrFUPln1b0OPB+2RTtSkpKejW\nrZtoj0LD9SKHNFVKJpz4CiNA2TrPcHE4HFE1ryiB9HoiGQ2LxSIeL2nNpxSPx4NRo0bhrbfeQs2a\nNVVaPYMKWOq5XOi8SyYQSlrkeDweeDwev5FSwUQisW9JSUmh8qFHOrI5jkNycjI8Hk/UHdNKI7WY\niVe0U25kYLApJ9GMD/SlWrVqWDhtCh48fwz1d6/F+PvuwtAB/f1eV6lSJeis12ArPAcAcBRdBK5d\nQLVq1fxeW2Q2w1CrpmjVZKhdC0XmEr/XWSwWaExpSKpYahSuTU6GvloVlJT8+VqSfm1UOwu2//0I\n4Q9xdP3gUdSuUtXvektPT8cHM6fiYcsp1D+4BqPuug1/HzNa9neXWjLRaoFCrHrkrmkijHzHKcZ7\nBCdpMKElbU/GBhJ3BoPBINoJkfsnuaYEQcAbb7yB7OxsdOjQQeWVMxj0wyKKlEBu+Dqdzi/dTASV\n7w1Zat9C60PP5XKJZtWkbrG8WsZ4Q2xJ1ErbyxXsk/QrSTE6HA5wHKeYoXbt2rUx/aXng74mLS0N\nrz87ClPnvwx7Rk3g2gVMHjlA1lz6vttvx/6Nm5Fary40Oi0smz7HfW38axmrVauGqtDgUt5uVGnf\nFtf/dwzGwiuyXcVP9noC382agR/HTQe0GtTTJaPfxBdl6zwzMzPx2vMTgv4+JGqsRP1prAjm8yel\nvAaYWJpW0zxnGvjzPikIAlJTU+HxeHDy5EkMGDAAffv2Ra1atfDbb7/hrbfeUnmlDCpgEcVyYfY4\nEUCsGoDAk1TCgYhEEiEg0TciEgVB8LshJ8JEk/JG80mtZHiej8tUBl9oS9sTpFYy5JxQa0Nw/fp1\nXLp0CVWrVpUViSTa+dG6dfjsy38DHNCnYycMHzhQ9pgWFBRg2jvzcOq3c6hVPRNTx45DgwYNZD+b\n53n89ttv8Hq9yMrKKlPnGY7NjrS0QDojnSaUGMMYjW1VKJAJO0ajMa51ieFA1ii9N3q9Xhw6dAhL\nly7F1q1b0bZtW4wcORKPPfYYq09UD9VD0RzHCXibApkzkW57HCYUI8BXKKakpEQcofB6vSgpKYHR\naITRaBSLsololBOJxFeN5nFo4c71JVHGWD3g5IiV95uSSGsYyaxptSOwvjgcDlUaqcKZGRzIQ48W\nlC5/8PXzVKIBJhHmTAcT2xaLBY899hjef/99HD9+HB9++CF++OEHPPnkk5gyZQqqVq2q0qr/sqh+\nITKhGBp0hqISiGhNlM1mMwwGQ5kbb7BIYiKIRFIH5mvfEgy5jmmpXUosZkzHyvtNKXxLC6RRxmhH\nBiqFtLQg3gIsWPpV2v1KHAFoHX0HKF/+EKgzGIB43oR73pPyB1ojcERsk5INKV6vF2PHjsXEiRPR\nsmVLtGzZEoMGDcLZs2exatUqaoUvIw641V4A/dD5hEwgIm1mEQQBZrMZer3e7yYlCIKs5U4ijL2L\nxqwaKDvijIwstFqtMJvN4oiwaEmEhgY5r0TS5JGWliYKiliMDAwV3/nIauJ7bEhkiTQH0WrJBEAU\n/7GKdvo2wJBjE04DDIlM0hqRBf6chS33t/7ggw+QlZWFJ554osz369Spg6lTp8raOEXDsGHDRI9Q\nwuuvv46aNWuiefPmaN68OXJzcxX9TAYjVrCIYgQokRYijSvSmxqJIEo9wUiqSGoETXNtkFJm1UBw\nX8ZI02g3i9iOdDKOUtAstkn3q16vh9VqhVarFf0x1Y7A+iLdEMRabEsjsMSCKJQGGOmGgFaR6PF4\nAs7C3r9/P/bs2YPt27fHbf1Dhw7FuHHjykx74TgOEyZMwIQJwZuuGAzaYEIxSsKNKJLdvEajKbM7\nJ2baGo0GaWlpYmoUKC3Wd7lcihtBKwmpX4rFGuWmv0iPTahj8aQ+hLSK7VC8EqUEmowT7cjAYJDO\nXNq7h+12O5KTk2U77YkwUlP4SDct8W5Ik54fpAFG7tiE2oWtJsHWWFhYiFdffRXbt2+P6zFu27Yt\nzp075/f9eEf9GSFAh0sb1bDUcxwhIgBAmZ0vEYmku5VEitLS0mA0GsX6JWLGTdvNRlrkHmshS6KM\nUh+5kpIS2Gy2oMdGSR/CWBHtcSTHxmQyiWPOQjk24a6R9lnd0jWSv7X02BAbIqWPTSRrJGJNTbRa\nbZljIz1vyOaP1g2B9Dj6rtHlcmHEiBF49913qWlUmbOXkroAACAASURBVD9/Pu68804MHz4cN27c\nUHs5DEZIMKEYJaFGFMkNzev1limqJyKRRBPlDLV1Op3YmWuz2WCxWBSr14sW3/nN8ZwxTQyryahD\nu90ue2xIkbuSPoRK47vGaPCt8/Q9Nr5m3mqsMVaUt0ZybAKdN5Eem3DXSGNjiO95Q+5LpKkqHscm\nXAIdR0EQMHnyZPTu3Rtt2rRRaXVlGTNmDM6ePYtjx44hMzMTEydOVHtJDKDUR1Htf5TDUs9REqpQ\ntNvt8Hg8YoMGgdyMfaeuyNll+NakOZ1OVeuu1JhoIofcWDxiykzGeKlpqB0KsTL9DjQyMJI6T7WN\nyUOBNDSE0uEczTjFaNdIexc2ibISweh2u0UTeHJdqb32YMdx7dq1sNvteOqpp1RanT/SqOaIESPQ\nrVs3FVfDYIQOE4oREO4N0m63w+VyoUKFCmUK1nmeDygSyQ7e96EcqCZNDX892oSDtFhfagkiCAIM\nBoNsJzkNOJ1OuN3umB5HXysZUudJmqbKs0tR0wYnVEhzRrhrLM9mR6/XK7YRI00XNB9H3252jUZT\npgGGBnsm6XQY3+P4ww8/YMWKFdi1axdVx7iwsBCZmZkAgE2bNpXpiGYwaIYJxSgpL6LocDjgdDph\nMplCEokAQvZ9C6UrOFbEQ9xEA0njE/NyMmNaCeNhJSGiJJ4WMyRVJ21kIF34cpE0mmxwAqFU97Bv\nk4eSGzGpvyitxzFYY4j02MSrcUoOUu5iNBr91nj9+nWMGzcOa9euVXUCT9++fbFv3z4UFRWhVq1a\nmDZtGvbu3Ytjx46B4zjUqVMHixYtUm19DAkJkPpVGzaZJQJ4nofHU3p2kYkPqampfq9zOp2w2Wyo\nUKGC3/xmj8cTUCRGM1IuHhNOiCCleaKJ3PjASEa/xRKaxjBKzby9Xq/44CcNNjQbvMd6rJwSoyaV\nGM8XayKZvEKOjdvthtvtjvlGLNgoRp7n0a9fP4wZMwY5OTmKfzZDcVTfqXMcJ2AKBTLnDTaZ5aYm\n0M3Q5XLBZrOJBfOEYCKR1B1GI8BiHWWUTguhVSTKmVUDytbrRYs0cqO2SATkI2kWiwWCIECv11Ox\nRjni0T0crQVRInSKA5FNXgk0ASbUkoZwIY1qckMK5syZg1atWqFLly6KfR6DwWBCMSJ8awZ9o7LE\nkywtLa3MAzaYSFRagMWilpF4O4Yzmi/ehGJWHaiWEYhPlFFpY3KlIXYpZLY0GTVJm2E1aaYiG4B4\n4LsRc7vdYuNUoM1GIHFDE0qMOSR/B2I/RDYbSmU2SMRbbo27d+/Gd999h40bN1JRUsJIIFjquVyY\nUFQYj8cDi8WCtLS0MiKAzG+WE4nSucOxeAgrEWWUTuKgNboUiQCLd5QxEaJLUgFGTOF9TZnj3Tgl\nh5rNVIEiaUDZWcqJ0AQUbKpJpJDpOKQBhmyEpccmnM8iBupy9Z1nz57FzJkzkZeXR80mhsG4maDz\niZ9ASCOKPM/DbDYjNTVVViSSEX1SpHVqsb7JRRplTISxd0SARToZJlBXMKBclFEqwGiPLvkKMLVH\nBvpCkwDz3WwQKxmNRgOe56ku04j15JXyGmBCua6k04p8N6l2ux2jR4/G4sWLkZGRofj6GX8B3Gov\ngH6YUFQIIhJTUlLK1EoFE4lqRumkUcZglheJMGNaWuCuRJTOtytYKX+9QJZHNFGeAAu22YjXWDxa\nu7Clm42kpCRRLNI6ZzrYVJNYIL3n+EbvSR2s77lDNldardbv/iMIAiZMmIDRo0fjrrvuivn6GYy/\nKkwoRgmZh2o2m8WbICGYSKQlShfIDoQY6zqdzoRIkwLKm37LRRkdDkdEhfqkBoxmkRiuAAulpCFW\nc6Zpnj1MzkmDwQCj0ai4zY6Sa4xnfSdB7rqS+lZKr6tgBurLly+HyWTCgAED4rp+BuOvBhOKEeB7\nw+J5XqzHIZDRfHImz7RG6XzriogAAyCOGKSNeNWpyUUZg3kPSpEaQdN4DIGyHn/hCrBg9XpKNgdJ\nU5A0l0D4CjDpdeUrqImZd7xFYzgTbGIJua7kGmB0Ol1Ac/IjR45g48aNyMvLo3bjxUgQeLUXQD9M\nKEYBSd34zpWVzm+Wm7pitVojrqWLFx6PR4wkSsd3xXK0WbioYfpd3hQP3yijtFOcVpFIonRGozHq\nEohYNQeRa00uBUkTwQSYXNo+nt32BFqnw0gFNTlvAIjensnJydBoNLhy5Qqef/55bN68mepzgcG4\nWWBCMUIEQYDZbBbtQ8gNNxSRSHsq17eWTjq+K5goiic0ROnk0vbSKCPHcdR3ikubgJR86AZrDpJ2\nvoYKSfmTLmwaCWeEYLB6vVh6ekpT97RuXIDSY0k2HC6XC//4xz+wbds29O/fH/v378ecOXNQo0YN\ntZfJuBlg9jjlQufTi3LIlAWO45CcnAyLxSJ+3+v1gud5P/sHacOF0Wik9mHncrlk/dQCGTKrEWWU\n2gnR8rDzTdsTsa3T6aivpYt1nVo0aXvgz3OS5vrOSEcIBptPrvRmLBFS90BZ42+SrXnttdfQvn17\nzJs3D1999RXS0tJgs9nQqVMnajdhDMbNAh1P2QSDRAtJNEsQhDKRRDmRGKuGCyUhReXlPZCJKDKZ\nTGLDi9lsFsVRLJF2itMowEh6kQgAjUYDi8UCq9UKt9sddC54vCH1nfE6J8kxSUlJQYUKFUI6d0iD\nzV8hdU8Ee1paGlJTU8UNqRLnTrDuYZogmwLfyLFWq0VxcTEqV66MgoICdO7cGdOnT0ft2rUxffp0\nFVfMYNz8sFnPEeJ0OgGU3oCvX7+O9PT0gOlmh8Mh+qnRKhLlZiOHA4kUud3umEUZYz3TVwmkdatE\ngAWao6ym8KFpXnegc4c0fdEwCzsQJEpHNk+xeH/puROpzQ6ZIU9bXaIUnudhtVpl70GnTp3CM888\ng7y8PJhMJvH7x48fx7fffqt45/OwYcOwfft2VK1aFT/88AMA4Nq1a+jTpw9+++03ZGVlYf369ahY\nsaKin/sXQ/UTkeM4AWMokDkL6J71TOcWPQEJNHXF6XRSLxKVGM3nG2V0OByKRhmlaTNaRSLwZy2d\nNEpH0vaxiBRFAm0+hIEi1BaLheo508CfadJYGaj7njscx8FqtcJiscDlcoV07sRi8orSkA2W0Wj0\nuweZzWaMGTNGtMOR0rRp05jY4wwdOhS5ubllvjd79mxkZ2fj559/xsMPP4zZs2cr/rkMBo2wiGKE\nkJs0MdoGIEaKyM2Y7OJpeSDLQXbxsYjaECsQt9stNvBEUqQvjdrQXN8Zzt9brShjLP/eSkH+3qSk\ngxbvQV9IqUa8o3RkZjzpsCa1nnLXFonC0/73JvXbvlFZr9eLIUOGoG/fvujVq1dc13Xu3Dl069ZN\njCg2atQI+/btQ7Vq1XDp0iW0b98eJ0+ejOuabjJUv5hZRDE06LxzJAikLjE1NVW0uygpKRFtLkiq\nh1aRKDX9jsVDRImReKS2ikRtaBIKUsLtwlajOUhJG5xYQqJ0qampAEDFyEBfpFFZtedMB7q2go2+\nowmn0wlBEGSjsvPnz0f9+vXRs2dPFVZWlsuXL6NatWoAgGrVquHy5csqr4ihCGyEX7nQe/egHLKr\nJ+lmYhBLhtc7nU5oNBp4PB7qIiFAfE2/A43EK88KRM6qh0ai7cL27ZiOhQVRrGxwlIZMsJFG6SKZ\nTx5LaJoOE8hmh2zQyHGiFRJVl4vK/uc//8G+ffuwbds26q59uTIjBuNmhQnFCLh8+TKWLVuG/v37\no0qVKmV+du3aNSQlJYm1aLRFQgD1TL+DeevJRRkDWfXQhJJd2LGKMqo5ri0cyvMhlBsZaLfbY+49\nKIVWixnfa8tms4l1006nU/XmKTmCWQpdvHgRU6ZMwRdffEFNNJSknKtXr47CwkJUrVpV7SUxlIBN\nZikXuu4cCUJ6ejqqV6+OwYMHY/jw4Th06BC8Xi8OHDiAe++9V6zJ0+v1SE1NFR984RahxwJaTL9J\nlDEtLQ3JyclirafNZhOL72kvwJemcpUWDYEaPOx2O3g+vDtbvG1wIiEcH0KSek1NTYXJZIJWq4Xd\nbofFYhF/11iQKNNhPB4PeJ6HyWSionlKDnIs5dLiTqcTI0aMwHvvvee3EVeTxx57DCtXrgQArFy5\nEj169FB5RQxGfGDNLFEgCAKOHj2KBQsW4OjRo/jtt9/w3nvvoXv37gFfr6ZNCrk5A6BywgUxHCY1\nS0lJSdTWJUoFd6w6Xn2R2siEmnqVemPSFlEiKFEGQRrLyPGJRZTR4XAkhPG3XLOSUjY7ShDMV1YQ\nBEycOBEtWrTAqFGj4r42Qt++fbFv3z4UFRWhWrVqmD59Orp3747evXvj/PnzzB5HGVS/iDiOEzCU\nApmzgu5mFiYUFeD06dNo164dHn30URw/fhxNmzbFiBEjcPvttwd8oMTDd1BKovg58jwveiXyPB+z\nh340yHklxvvzQ3noezwe2Gy2iL0x40EsBDfZcLhcLgDKzFEmPqM0N6eRyGFSUlLQbAG5rlwulyq1\nnsE8HVevXo1Dhw5h2bJlVFzrjJii+h+Y4zgBAymQOR/RLRTpKP5IYC5cuIBOnTph+vTpGDlyJLxe\nL/bv34958+ahsLAQ/fv3R8+ePf1sH+LRwCAlEfwcpQbLJJUrHWsG+FsQqYHac4d9axndbrdfgwdJ\ni0fjjRlrpB3tSpZBkFpM3+apUEcG+kLS4jRHZcNJi2u1Wmi1WlVqPYN5On7//fdYtWoVdu7cSe09\nisH4K8IiilHgcrnQokULDB48GC+88ILfz69cuYJly5Zh48aNuP/++zFs2DDUq1cvaJTR6XQqHkVL\nBD9HIhIDRUMCpRbjXehO64QLX289QRBgMBjilhaPhHgey0jLPogPYXJyMlXNK75EmxaPRRRW7jMC\nHcvr16/j8ccfx7p161CnTh3FPpNBNarfQDmOE9CXApmzhu6IIhOKUXLs2DHcddddQV/D8zzy8vKw\nePFi2O12DBkyBDk5OQEfPKQjWImbNk2j2gIRbvqR2KS4XC4xGhWP1FkipR85jhPnjtNoVq3msQy1\n7EONOtRIUPJY+m7IIo3Cyr1voGPJ8zz69u2LsWPH4pFHHolq/YyEQvUbEhOKocGEYhwRBAHnz5/H\nkiVLkJeXh+zsbAwdOhS33nprQB/BaAr0o53fHA+iqffzjaLFskA/Uer9pE0CAOJ2fMKBlukwwWo9\nybFUs8QgFGJ5LMmG1e12R918Z7fb4fV6/Y6lIAiYNWsWjEYjXnnlFWqPMyMmqP7HZkIxNJhQVAmX\ny4XNmzdj2bJlSE5OxrBhw/DQQw8FfIj7pobKi6IRYaP2wzgYSj6MpVFGpaNo5GGcyOnHWB6fcKA1\nlevbUU7M8k0mE7XihUSP42Ga7xuFJSbooRybYKMO8/LysGrVKnz22WfURukZMUP1C4vjOAFPUCBz\nPmVCkREEQRBw6tQpLFy4EAcPHkSPHj0wYMAAVK5cOeDry4sS3QzCJlKUjjLGc4JNNIRqgxPPKKzc\nZ9OeyiXuAKSsgZYorC/B5iPH+nPdbjfcbndI5w+5F8lF4n/99VcMGzYMeXl5yMjIiMfyGXShujBi\nQjE0mFCkCKvVivXr12PlypXIzMzEiBEjcM899wR88MtFibRarTi/mWZhE48Gm2ijaIkgbIDI0+Lx\njDIG886jCWkql8xrVzsKKwcNno6+5w8RjWQ9wSKeNpsNPXr0wAcffIA77rhDjeUz1Ef1C4kJxdBg\nQpFCpEbeJ06cQJ8+fdCnTx9UqFAh4OuJ7QTP86L1Dm1REEK8aycjiaKp7ZUYKkrUqMUjykiDsCmP\nQMJGenzI7HY1fT1pa6qSOz5kmhC5F0nxer0YM2YMHnnkEfTv31+lVTMoQPUbAcdxAh6nQOZsYkKR\nEQU3btzARx99hDVr1gQ18ibRL41GA47j4mbkHS5q106GEkVLFHNyUu+nZPQ4FlHGROm8DyWVS46P\n2+0GEH9fT1oagQLhO12JiG7p333p0qU4c+YM3nnnHWqvLUZcUP2Pz4RiaDChmCAQI++FCxf6GXm7\nXC489dRTmDBhApo2bQqO41QfFygHTbWTwaJotHolSol1WlypKGMidIsDEGdoh7oxiMfIQLnPjFfz\nSjS43W5xM+h2u3HmzBlMnz4dQ4YMwS233II333wTubm5VP8OjLig+s2V4zgB3SiQOZ8zochQGKmR\n93333Yf8/HyYzWZs2LBB9uYb73GBcsQi+qUU0uND/AfT0tKoFTbxTotHGmWktcPZl2jnYcfDrFqt\n5pVwkYt4ms1mrFu3DitXrsSZM2cwZMgQjB8/HnXr1lV5tQyVUV0YMaEYGnTmgRhBqVq1KiZPnoxD\nhw4hPz8fR44cgV6vx44dO8SUmBRSJ2QymaDX6+FwOGCxWOB0OuH1emO+XhL9IlFN2iDHJzk5GV6v\nV2wIcjgccTk+4UJGCMardlKj0cBoNMJkMsFgMMDtdqOkpAQ2mw0ejwdym03yNyc2TrTi8XjgcDjE\n5pVIICMD09LSkJycDJ7nYTabYbVa4Xa7ZY9PuJBULs1NVUTMGgyGMmlxk8mEwYMHIyMjA++++y60\nWi3uuecedOjQAZ988gkcDoeKq2YwGOXBIooJzD/+8Q+sWrUK+/btg8ViiZuRdzgQwaDVamE0GqlN\n5fqmxWmIwsoRbfRLKXyn40hr9RKlESiWEU8lzappa16RI1hXuyAImDJlCm677TY899xzAEqF79at\nW7F06VK8//77qF+/virrZqiK6jcGjuMEdKFA5uygO6LIhGKCsmLFCkybNg1fffUVatSoIX4/WiNv\nJYvzE2W6RbC0OE21njRO2pHreBUEQUzf0/o3J/V+gWaLK0k0m45gPoQ0Eayud9OmTdi+fTs+/vhj\n1YRuVlYWKlSoIJqFHz58WJV1MMqg+s2BCcXQYEIxQZk5cyaeeOIJNGzYUPbnkRh5+0YZDQZDxA+n\nROkcDqcpRM0oI+3drkCp4Lbb7fB4PGItYzw7gkNFLU9HuU2HXq8PuolLBLN30rAkF/H86aefMG7c\nOOzcuRNpaWkqrRCoU6cO/ve//+GWW25RbQ0MP1S/MTChGBpMKP4FUMLIO1yLlETpHI4kRRrvKCPN\njUBSpNZHAOLaERwONHg6+o4M9L3GEqV5JVj6vqSkBN27d8eqVasCbmjjRZ06dfDNN9+gUqVKqq6D\nUQbVbwYcxwnoSIHM2c2EIoMSIjXyDtciJVF880izSjRp8VhHGRNlOkygiGcsSxsigbZ6v0Aj8cgm\nhOaSjWDnptfrxeDBgzFgwAA8/vjjKq3wT+rWrYv09HRotVqMHj0aI0eOVHtJDCYU/4QJRQaNhGrk\nTQg1ypgovnlKRzxjEWVMlKaQUOr91PAd9IX29D25xpxOJwCIEWRa/+52uz2gmJ03bx4sFgtmzpxJ\nxfoLCwuRmZmJ33//HdnZ2Zg/fz7atm2r9rL+6qh+YnAcJ+AhCmTOl0woMijG6/XiwIEDWLBggZ+R\ntxzBBBHtD2JCrCOeSkUZwzWBVgNpV3uoKdJ4+A7KfWYipO95nhfX6fF4xCgjqWWk5TwgglZuo7Vv\n3z68++67+Pzzz6m8D0ybNg1paWmYOHGi2kv5q6P6ycyEYmgwocgQkRp533///Rg2bBjq1asX8OHk\nW2fF8zySk5OpfhDHM+JJLFJcLhcEQQgrykginmrb4AQj2vR9vKKMiZK+l6v3C2ZDpBbBOrELCgrQ\nr18/7NixI2DjXLyx2WzgeR4mkwlWqxWdOnXC1KlT0alTJ7WX9ldHdWHEhGJoMKHI8IPneeTl5WHx\n4sWw2+0YMmQIcnJyAnrNkQcHgYZxgXKoFfEMVxDRaIMjh5Lp+1hFGZWqRY015YlZGlL3ZB2Bxgg6\nnU706NEDc+bMQevWreO2pvI4e/asWCfp8XjQv39/TJ48WeVVMUCLUGxLgczZz4QiI0ERBAHnz58P\nauRtsVhw6tQpNG3aFEajETzPw+l0UtftSkvqURplBPwFUaKk72PVFKK0IEqE7nsgeL2fL2qk7oHg\nndiCIODvf/87WrdujREjRsR0HYybBtUvSCYUQ4MJRUZIyBl5P/DAA3jyySdRs2ZNzJ8/328ag68g\nUitlRqIger2emtSjnCDS6XSw2+3Up+/jJWbLE9XlkSiNVcHq/YLhew7pdLqYensGsxX6+OOPcfjw\nYSxZsoRqQc6gCtVPFI7jBLShQOYcYkKRcRNBjLwXLFiA7du3o0qVKvj444+RmZkZ8PVqpswSoXNY\nEAQ4nU44nU5wHCfOR6YtdQ+oE5mN5BxKlMisUmI2mnrYUAgWQT527BgmTZqEnTt3UrMRYyQEqt+M\nmVAMDXrvoAwq4TgOjRo1Qnp6OtLT0zFo0CAMHz48oJE3x3HQ6XTQ6XRiyowINyKIYiXe1JrAEQk8\nz4sRIbfbDYfDQVXqHvhTdBMREi+k5xARROTvSo6R9Jwj6zQYDFSLRK/XC5vNhuTk5KgjnuR6MhgM\noqi2WCyKeHvyPA+73Y6UlBQ/kXjt2jWMHz8eGzZsYCKRwbhJYRFFRtgsWrQIc+bMwcGDB1G1atW4\nGXmHi8PhgNvtToj6NF8bHNqMqmmb2x0o7arVamG326HRaGA0GlVfZyDi0Ykd7sjAQO8RyCOT53k8\n+eSTGD9+POsgZkSC6hcnx3EC7qZA5nxDd0SRCcVyeOGFF7Bt2zYkJSWhXr16WLFiBdLT0wEAs2bN\nwvLly6HVavHuu+/+JW6W3333Hbp06YL9+/ejXr16fj+PlZF3uCTCdBig/GYLtVP3BJpFtzTt6vV6\nwXEc9XWJ4TSvKEF5IwPlCBaRFwQBb775JlJTUzF58mTqzglGQqD6ScOEYmgwoVgOu3btwsMPPwyN\nRoNJkyYBAGbPno0TJ06gX79+OHLkCAoKCtCxY0f8/PPPVIsSJRAEAYWFhbj11luDvi4SI2+looyJ\n0sQQrg2OWlFG2sbeBYKkpPV6fVyaOyIl0uYVJfCNMga7zoJtYnJzc/Hxxx/j008/pfqcYFCN6hcl\nE4qhwa7wcsjOzhZvhPfccw8uXLgAANiyZQv69u0LvV6PrKws1K9fH4cPH1ZzqXGB47hyRSIAaDQa\ntGvXDmvWrMH69etRVFSERx55BC+//DLOnDkD3w0Kx3HQ6/VITU1FamoqAMBqtcJqtcLtdvu9PhA8\nz8NmsyElJYVqkSit+wp1nRqNBgaDAWlpaUhOTobH40FJSYloKBzLddJs/A2Ubg5IBDklJQUVKlSA\nXq+H0+mE2WwWvRTVhqxTrfQ9Me1OS0sTBaDVaoXFYhEbYcg6nU6nbIfzL7/8grfeegvLly+n+pxg\nMEKCp+Af5bCrPAyWL1+OnJwcAMDFixdRs2ZN8Wc1a9ZEQUGBWkujmqpVq2Ly5Mn4+uuv0alTJ7z2\n2mvo2bMntmzZArfb7fd6Mg7OZDKF9bD3er2wWq0wGo3UNzFEs07S3JGamgqTyQSNRiP7sFdqnUo0\nW8QSuaYQqSBKTU0Va+3C3XjEep1qQuo4TSYTDAYD3G43zGYzbDab+Hf3FYJWqxVPPfUUli5diooV\nK6q0cgaDEU/ofZrGkezsbFy6dMnv+2+++Sa6desGAJg5cyaSkpLQr1+/gO9DU3qLRrRaLXJyctCl\nSxfRyPtf//qXrJE38OfDPikpqdxOTtIcEO+O3HBRep3kYW8wGMTUvW/HdKTrJB3OgSby0EAo6yQb\nD6PRCLfbDafTCbvdHtcJQjQfTxLN1+v1ZaYsORwO8DwPh8OBihUrwuv14rnnnsPYsWPRrFkzlVfN\nYCiER+0F0A8TiiitQwzGhx9+iC+++AJ79uwRv1ejRg3k5+eLX1+4cAE1atSI2RpvJjiOQ+3atTFj\nxgy89tpr2Lx5M8aOHSsaeT/00EN+Akf6sCdiCIAoGB0OB3Q6nV9nJk0QsaDVahVfp/RhTxqErFZr\nRA1C0gkctB9P0uEcyjrD2XjEYp3EwoZmXC6XeK3xPI8ff/wRXbt2RZcuXVC3bl1UrlwZTz75pNrL\nZDAYcYQ1s5RDbm4uJk6ciH379pUZck+aWQ4fPiw2s5w5c4ZFFSOEGHkvXLgQBw8eRI8ePTBgwIAy\nx9z39dJOTmKoTVvjghQ5G5xYEmmDULAJHDShxHg+OQsZpaOMiTJGMFCTzeXLlzF//nysXLkS1apV\nw8iRIzFw4MCA1yaDESKqXwwcxwloRoHM+YHuZhYmFMuhQYMGcLlcuOWWWwAAbdq0wQcffACgNDW9\nfPly6HQ6vPPOO+jcubOaS71psNlsWLduHVauXBnQyJvgcDjgcrlEo2pAfc9BOdQWC6HaECWKrVAs\nOrGlGw+looyJ0oFPUs5y67x8+TJ69+6NLVu24JdffsGSJUuwdetWPPLII3jzzTdRt25dlVbNSHBU\nv0FzHCegMQUy5ycmFBmMiCjPyHvVqlXQaDTo168fNBqNGGV0Op3weDyiYFT7AU2TvUywKGOiiZpY\njedTKspIxh0mJydTV5cohTT6GAwGv7pZt9uNXr16YerUqWjbtq34/Rs3bmD16tXo1asXqlevHtP1\n5ebm4rnnngPP8xgxYgReeumlmH4eI26oLoyYUAwNJhQZCYGvkXfLli0xZcoU7NixA02aNPF7fayM\nvMOF5pnDvseI53kkJydT3QxEOrHlRE0siDTKSJqW9Ho91XWJ0npUX49TQRDwyiuvoG7dunj22WdV\nWR/P82jYsCF2796NGjVqoFWrVlizZg0aN26synoYiqK6MOI4TkB9CmTOGbqFIr25JQZDQsWKFTFu\n3DgcOHAA9913HyZMmIA2bdrg22+/FadHSAlk/UHqBOOB1F6GNpEI/HmM0tLS4PV6odFo4HA44nqM\nwoGIGmKkHQ+CWTUFOkbSJhuaRTdQWhIhCILsGMGNGzeiqKgIY8eOVWFlpRw+fBj169dHVlYW9Ho9\nnnzySWzZskW19TAY8YLjuEc4jjvJcdxpjuP8L+yx+gAAIABJREFUwugcx1XmOC6X47hjHMf9yHHc\nkFithQlFRkJx8eJFTJ06FcuWLcPSpUtx9epVdOnSBZMnTy7XyNvXYDiWfnokomQwGKhPO5JpJsRz\nEEBMfBmjxeFwgOO4mM1GDoacL2OgY0TS+r5j72iDpNflzL9PnDiBBQsWYNGiRaqWSxQUFKBWrVri\n18yvlvFXgOM4LYD3ADwCoAmAvhzH+YbRxwL4VhCEuwC0B/A2x3ExiUgwochIGIqLi5GTk4NnnnkG\nffv2RdWqVTFp0iQcOnQInTt3LtfIWxplTEpKitnUDqkNDu0RJYfDIUaUOI4rE0FLSkqCy+WiYrKJ\ny+WCx+NRbaKJlEDHyG63i53DtHeMSycD+QrBkpISPPPMM/jwww/FjYNa0HwMGTcJak9lkU9MtAZw\nRhCEc4IguAGsBdDd5zWFACr88d8VAFwVBCEmrpBMKFLKhg0b0LRpU2i1Whw9elT8/rlz55CcnIzm\nzZujefPmePrpp1VcZXw5fPgwOnTogBdffLHM94mR96ZNm7B48WIcP34cHTt2xIwZM1BQUCAbZYzl\n1A4ivmiPKBHxJSdqaJpsovbYu0DIHSPil+jxeKiJxPpCNjIGg8GvJMLr9eLpp5/Gyy+/jL/97W8q\nrfBPfP1q8/Pzy0zEYjBuUmoAyJd8feGP70lZAqApx3EXAXwHYHysFsOaWSjl5MmT0Gg0GD16NN5+\n+220aNECQKlQ7NatG3744QeVV0g3LpcLmzdvxrJly4IaeROU6nRV2wYnVCLpcI6H56AvidY5rNfr\nodFoxGMU7YQcpSFiFoDsRmbu3Lmw2+144403qDh/PR4PGjZsiD179uDWW29F69atWTPLzYPqJxjH\ncQLqUCBzzpZtZuE4rheARwRBGPnH1wMA3CMIwjjJa14FUFkQhOc4jqsHYBeAOwVBMCu9PPoq7BkA\ngEaNGqm9hIQmKSkJvXv3xv/93/+JRt4zZswIaOQtndpB7GPMZnOZB315D04yHo52kcjzPGw2G1JS\nUsISMPGebJJodZ5k4g45TjzPw+12RzwhJxaQ+km5c3Tv3r04ePAgtm7dSs35q9Pp8N5776Fz587g\neR7Dhw9nIpGhLGqM8HPsBZx7g72iAEAtyde1UBpVlHIfgJkAIAjCLxzHnQXQEMA3iq3zD1hEkXIe\neughv4ji7bffjgYNGiA9PR0zZszAAw88oPIqE4NwjLyBUgFA7GOA4EbeNNvgSAnmmRfp+8UiykjS\no2TiDi3CRY7yosiRTshRGhJFlvPzvHDhAvr3748dO3awiSuMeKH6Rc1xnIBaFMicfL+Iog7AKQAP\nA7gI4DCAvoIg/CR5zb8AFAuCMI3juGoA/gfgDkEQrim9PCYUVSQ7OxuXLl3y+/6bb76Jbt26AfAX\nimSGb0ZGBo4ePYoePXrg+PHjMJlMcV17IkOMvBcuXIjjx4/7GXnLvV7qp+cbZUyk9KjVahWbMZRG\nyckmiTJGMFwzdbX8PYOdow6HA48//jj++c9/olWrVjFdB4MhQfULm+M4AZkUyJxCfx9FjuO6AJgH\nQAtgmSAIsziOGw0AgiAs4jiuMoAVAG5Dab/JLEEQPonF8phQpBxfoRjuzxnB8TXyHjFiBG6//faA\nD26v1yummEmK0el0wmAwUG+sTDqXY90UEm2UkaZJNsEg4iuSKHI8o4xkg6DT6fyshQRBwPjx43Hf\nffdh2LBhin82gxEEJhQJMkKRJui9CzNEpGK+qKhINPr99ddfcfr0aTZrNQqkRt4DBw7EvHnz0LVr\nV6xevTqgkbfBYIDJZILRaBQNi3mep9KkmhBPexm5bmCz2RxSxzSxbUlNTaVaJErrJyMpNQjm76m0\ndyXxn5TbyHz88cfQaDQYOnSoYp/HYDBuLlhEkVI2bdqEZ599FkVFRUhPT0fz5s2xY8cOfPbZZ5g6\ndarYXTl9+nR07dpV7eXeVFy5cgXLly/Hxo0b0aZNGwwfPhz16tUrI7DI1BXizUgiaLQ0LUihIUIn\nV+9JzmFCIqXwg3UOR/O+SkcZia+jXP3kt99+i5dffhk7d+6kOhrOuGlR/QbJcZyAyhTInCK6I4pM\nKDIYAeB5Hnl5eVi8eDHsdjuGDBmCnJwc6PV6zJs3DydPnsSCBQvEBzAtTQu+vwNNTTaB6j01Go04\nnk+NySvhEI/6SSVqGcnfXs4C6erVq+jVqxc2bNiA2rVrK718BiMUVBdGTCiGBhOKDEY5CIKA8+fP\nY8mSJcjLy0Pz5s2xdetW7NmzB3Xq1JH9f5Rs7IgUEqEzGo1UToiRRhnJrOlwLXviTbyjs5FuPkjE\nW667ned59OnTBxMmTEDHjh1juXwGIxiqCyMmFEODCUUGIwy+/vprdOrUCffffz8MBkPcjLzDJVgD\nA204HA64XC7odDrZrnJaUDs6G2qUkVgLaTQav+52QRAwY8YMpKen46WXXqLq+DL+cqh+8nEcJyCD\nAplznQlFBuOm4Pz587jvvvswf/589OjRQzTyPnjwYEAjbykkykhEUayijKSGThAE6sbe+eIboSNd\n5cFqGdWA+E8mJSWpXs8njTJ6PB5x80E2K8FS49u3b8e6deuwfv161Y8p4y+P6jcmJhRDgwlFBiME\nSkpK8MADD2Dw4MGYOHFimZ8pYeStpBhKFA/CYBG68rwr40mwCJ3aSKOMHMdBq9XC7XbDZDL5nU9n\nzpzB6NGjkZubi/T0dJVWzGCIqH5z4jhOgIkCmWOmWyiyLSXDjw0bNqBp06bQarU4evRomZ/NmjUL\nDRo0QKNGjbBz506VVhh/7HY7Bg0ahAkTJvj9LCUlBUOHDsWXX36J559/HmvXrkWnTp2wZMkSlJSU\n+L2eWJWkpaUhOTkZPM/DbDbDZrPB4/FEZY1ConG0RxKJ+DIajbJpXI7joNPpkJKSApPJBK1WC7vd\nDovFIloSxQvyeTSm8EnXvclkQlJSEtxuN4DSzYLNZoPX6wUAWK1WPPXUU1i6dCkTiQwGIyxYRJHh\nx8mTJ6HRaDB69OgyZt4nTpxAv379cOTIERQUFKBjx474+eefWQpLhkiNvEMZFxgIMqJNrsuVJiKN\n0KkRZaTBWigUpKlxvV4Pl8uFOXPm4PPPP8fgwYPx7bffonv37ujTp4/aS2UwCKrvZFlEMTTU98tg\nUEejRo1kv79lyxb07dsXer0eWVlZqF+/Pg4fPox77703ziukH2Lk/cwzz+DAgQOYN28eCgsL0b9/\nf/Ts2dNPIBEj76SkJPA8D6fTCYfD4Vd/Fgiv1wubzYbk5GSqRSJQGu2KJEJHoow6nU4U1sTPMBJh\nXR7E/DslJYV6kWi328Xueo7jYDQa8fLLL+Pee+/F/PnzceDAARgMBtSuXRv33HMP1dFmBiOueNRe\nAP3Qe/djUMfFixdRs2ZN8euaNWuioKBAxRXRj0ajQbt27bBmzRqsX78eV69eRZcuXTB58mScOXPG\nL4VKxFBqaipMJlNIEztIhzOJJtGMUhNiiLBOS0uD0WiEx+NBSUkJ7Ha7IhNyykuN0wSxzvE1/9Zq\ntaLR9pkzZ9C4cWMMHDgQd9xxB+bPny+mqRkMBiMYTCj+RcnOzkazZs38/n3++edhvQ+LTIRO1apV\nMWnSJBw6dAidO3fGa6+9hp49e2LLli2yD21p/ZnBYIDb7YbZbC4jhoig0Wq1qnfjlofH44HD4VA0\nQicdhReqsC4PckxJZzrNeDweOJ1O2calS5cuYdKkSfjoo49Qs2ZNvPjiizh16hTeeecd/PLLL3EX\nwK+//jpq1qyJ5s2bo3nz5sjNzY3r5zMYsrgp+Ec5dG+VGTFj165dYf8/NWrUQH5+vvj1hQsXUKNG\nDSWX9ZdAq9UiJycHXbp0EY28//WvfyE7OxtDhw7FrbfeWuahT8SQXq8Xu1zJ+ECO4+D1emVHtNFE\nPFLjRFgbDAbRPsbhcIQ9IYfm5hUp0mPqK7zdbjdGjhyJuXPnonr16uL3NRoNOnTogA4dOsR7ueA4\nDhMmTJBtCGMwGPTCIoqMoEgjMo899hjWrl0Ll8uFs2fP4vTp02jdurWKq0tsOI5D7dq1MWPGDHz1\n1Ve46667MHbsWPTv3x+7d++WTaFKo4wajUbsknY6nWKHK22Q1LjBYIhLalwaZSQCOtQoY6J1jcuV\nGwiCgClTpuDxxx/HAw88oNIK5YlntzqDwVAGJhQZfmzatAm1atXC119/ja5du6JLly4AgCZNmqB3\n795o0qQJunTpgg8++IDqh2kikZSUhN69eyM3NxezZ8/Gv//9bzz88MOYN28eioqK/F5/9epVeDwe\npKWlITU1Vex6tVqtcLvd1DyQfRst4k0o6XsCaV5JTU2lunkFKG0IIjZLvnz66ae4fv06nn76aRVW\nFpz58+fjzjvvxPDhw3Hjxg21l8NgADwF/yiH2eMwGJQSyMj73LlzyM7ORl5eHurXry++Xq1xgcGg\n0fxbbhSeTqcLOBuZNlwuF5xOp2y5wYkTJzB+/Hjs2rULKSkpcV9bdnY2Ll265Pf9mTNn4t5770WV\nKlUAAFOmTEFhYSGWLVsW7yUy6EH1GwLHcQI4CmSOQLc9DhOKDAblCIKAo0ePYuHChfjuu+9w7do1\n2QkxUkiNnppTTWj3ICSj8JxOJ3ieh0ajQUpKCtX2QmSajZxXZnFxMXr06IHVq1eX2UDQyLlz59Ct\nWzf88MMPai+FoR6qCyMmFEODCUUGI0HgeR45OTlwOBxwuVy4/fbbyzXylhsXqLTfYKC1BhrPRxsO\nhwNutxs6nQ5ut1uMMur1emqioEBpJNRiscBoNPpFPb1eLwYOHIhhw4ahW7duKq0wOIWFhcjMzAQA\nzJ07F0eOHMEnn3yi8qoYKqL6xcVxnECHzKFbKNJ9B2cwGCLPP/88eJ7H7t27odVqQzLyJnVsxMjb\n5XKhpKREjDLGQsR5vV5YrdaE8SB0uVxi1JN4MhLD83A7pmMFqfUk6/H92dy5c9GsWTM8+uijKq2w\nfF566SUcO3YMHMehTp06WLRokdpLYjAYIcAiigxqef3117F06VKxrmnWrFl45JFHVF6VOixevBhv\nv/02vv76a2RkZJT52ZUrV7B8+XJs3LgRbdq0wfDhw1GvXr2g4wJ9a/SUip6RDmedTke9vUywNC75\nOUnfE4NvnU6nSpQxWK3nv//9byxatAibN29WXdAyGGGgegSNRRRDgwlFBrVMmzYNJpOJ+a4B2Lp1\nKxo3bowGDRoEfA3P88jLy8PixYtht9sxZMgQ5OTkBLSkITV6ZLKHEtEzu90Or9dLvb1MsDSuL2o3\nCQWr9czPz8fAgQOxY8cOVKpUKS7rYTAUQvUbBBOKocGEIoNapk2bhrS0tKBNGwx/BEEQjbzz8vIC\nGnlLUSLK6HQ6xTQuzSKRRD21Wq1fqr48pFFGYvkTyyhjsFpPh8OBHj16YN68eWjRokVMPp/BiCGq\n3ySYUAwNJhQZ1DJt2jSsWLEC6enpuPvuu/H222+jYsWKai8roXC5XNi8eTOWLVuG5ORkDBs2DA89\n9FDAqKG0Ezic6JnH44HNZguYxqUJJaKe8YgyEm/MpKQkP79EQRDw7LPPom3bthgyZIhin8lgxBHV\nhRETiqHBhCJDVZjvWnwQBAGnTp3CwoULcfDgQfTo0QMDBgxA5cqVA/4/oUbPEqnDmXgQKmmqHYso\nI2leAYDk5GS/91q5ciW+++47LFiwgOroLYMRBNVPXCYUQ4MJRUZCwHzXlCOQkXcg4RQsehYs6kUb\n5TWvRIuSUcZgafyjR4/i1VdfRV5eHvXHnMEIgurCiAnF0GBCkUEtzHcttkiNvI8fP44+ffqgT58+\nqFChQsD/h0TPXC4XdDodvF6vWOtHc2SLNK8kJyfHZd50NFFGksaXa14pKipCr169sHHjRtSqVStW\ny2cw4oHqNwwmFEODCUUGtQwaNMjPd61atWpqL+umpLi4GKtWrcKaNWvQtGnTkIy8bTYbPB5PmeYX\nWiewqGXZE26UMZig9Xg86N27N1544QU8/PDD8Vg+gxFLVBdGTCiGBhOKDAZDxOv14sCBA1iwYEFQ\nI++rV69Cr9cjNTVVnP6i5rjAYNBi2cPzPJxOpzgFxjfKGEzQCoKA6dOno1KlSnjxxRfVWD6DoTSq\n3yBKhaJL7WUASGJCkcFgJB6BjLwPHz6MgQMH4ptvvimTpvZ6vWL0DIjfuMBgkOYVmix75MYq6vV6\nsdNcTtBu27YNGzZswLp166iM2jIYEaD6BcmEYmgwochgMIIiNfIuKSnBTz/9hH/84x/o1auX7OsF\nQRCjZx6PRxSM8bbNod2yhxwnEo0FIHaOS4Xi6dOn8dRTTyEvLy9o/SiDkWCoLoyYUAwNJhQZDEZI\n2O12tGnTBlWqVMGNGzfiZuQdCfFuXokGnufFznEibj/55BMMGDAAKSkp6N69O5YuXYomTZqovVQG\nQ0lUF0alQtGm9jIApFAtFOk2PWMwGFQgCAJGjx6Nhg0bYu3atXC73diyZQvGjRsHo9EY0Mhbo9HA\naDTCYDCI4wIdDoci4wKDrdVms4milGa8Xi+sViuSk5ORlJQEQRBQUlKC77//HnfccQcaNmyIRx99\nFI0bN1Z7qQwG4y8KiygyGBJyc3Px3HPPged5jBgxAi+99JLaS6KCOXPmYM2aNThw4ABSUlLE70di\n5O0bZTQYDIqOwaOleaU8iKDVaDSyowTfffdd7Nu3D2fPnoVWq8WoUaMwaNAgZGRkqLBaBkNxVL84\nSyOKxWovA0A61RFFVhXNYPwBz/MYO3YscnNzceLECaxZswY//fST2suiguTkZGzZsqWMSAQAjuPQ\nqFEjzJs3D3v37kVmZiYGDRqE4cOH49ChQ/B6vX7vRaKMJpMJSUlJcDqdMJvNcDgcsq8PB5fLBY/H\nQ71IBEpNtQVBkLXs+eqrr/Dll19i69at+Omnn/DBBx/gv//9L+rUqYNt27bFfG0bNmxA06ZNodVq\ncfTo0TI/mzVrFho0aIBGjRph586dMV8Lg8FQFxZRZDD+4NChQ5g2bRpyc3MBALNnzwYATJo0Sc1l\nJRzRGHlHMwaP9uYVKW63G3a7XdZU+9KlS+jTpw+2bdvm5xv6+++/Q6/Xx3zm+cmTJ6HRaDB69Gi8\n/fbbaNGiBQDgxIkT6NevH44cOYKCggJ07NgRP//8M+vEZkSC6js5FlEMDXZ1Mxh/UFBQUGbaRc2a\nNVFQUKDiihITjuPQsmVLLFmyBDt27IBGo0HPnj0xfvx4/PDDD5DbnJLpLiaTSbSKCSfK6PV6YbPZ\nkJycTL1I5HkedrsdKSkpfgLL5XJhxIgReOedd2TN5atUqRJzkQgAjRo1wt/+9je/72/ZsgV9+/aF\nXq9HVlYW6tevj8OHD8d8PQxG7PBQ8I9umFBkMP6A9lRlIpKeno5x48bhwIEDGDhwIObNm4euXbti\n9erVsNvtfq/nOA5JSUlIS0tDSkoKvF4vzGazOAVGTmQmUvMKWSupy/T92auvvopevXrhvvvuU2mF\nwbl48SJq1qwpfs02UwzGzQ/remYw/qBGjRrIz88Xv87Pzy/zUGREjkajQbt27dCuXTvRyLtLly5l\njLx9hbpOp4NOpxMNqomwlBp5C4IAu90OjuNgMBjU+NVChqyVpNZ92bBhA8xmM8aMGROX9WRnZ+PS\npUt+33/zzTfRrVu3kN+HbbAYjJsbJhQZjD+4++67cfr0aZw7dw633nor1q1bhzVr1qi9rJuOqlWr\nYtKkSXjhhReQl5eH1157DXa7HUOGDEFOTo5fVJCIwKSkJLGWsaSkRPRj5HmeqskrgXC5XAHXevz4\ncSxduhQ7d+6MW73frl27wv5/fDdTFy5cQI0aNZRcFoMRZ9xqL4B6WOqZwfgDnU6H9957D507d0aT\nJk3Qp08f5l8XQ7RaLXJycrBp0yYsXrwYx48fR8eOHTFjxgwUFBT4pZk5joNOp0NKSgpMJhMAiGPw\n3G63bFqaFjweD5xOJ1JTU/1E4o0bNzB27FisXLnSr6ucBqTH9bHHHsPatWvhcrlw9uxZnD59Gq1b\nt1ZxdQwGI9awrmcGg0ENLpcLW7ZswbJly4IaefM8D6vVCqPRCI7jxGhdLI28IyXYlBie5zFgwACM\nGjUKXbt2VWmF/mzatAnPPvssioqKkJ6ejubNm2PHjh0ASlPTy5cvh06nwzvvvIPOnTurvFpGgqJ6\nCqC06zm//BfGnFpUdz0zochgMKgjmJG3zWbDo48+irlz5+LOO+8U/x+1xgWW93tYrVbodDo/v0RB\nEPDPf/4TgiBg6tSp1KfOGQyFUf2EZ0IxNJhQZDAYVGOz2bBu3TqsXLkS1atXh91uh06nw8qVK2Xr\n+QRBEFO9Xq9XbH5Rw+sv2JSYPXv2YMmSJdi0aRNVEVAGI06oLoyYUAwNJhQZDEZCIAgCXnjhBaxe\nvRr169fHE088ERcj70hxuVxwOp2yzSvnz5/HoEGDkJubi1tuuSXma2EwKER1YVQqFM+qvQwAdagW\niqyZhcFgJARffvklPv74Yxw6dAjbtm2Li5F3pPA8D4fDIRtJtNvtGDlyJBYtWsREIoPBoB4WUWQw\nKCErKwsVKlSAVquFXq9nEy8knDt3Dvfeey8++eQTdOjQQfy+1+vFgQMHsGDB/7d39zFR3Xsex9+/\nQfEhGk27YcCHBJ8VRTJuo1uzGiwdH1NEKTZiqEFtTAk2jdaoaba1TVu56bVqXd1qt1TaNBJ0S7AP\nd9TY20lINK1C76Y+FDaFghao1mjVUgU5+wcwARmEXoVzYD6vZBLmnDPDdybRfPn+zvf7+y+qqqpY\nsWIFS5cuZcCAAe2+V3OV8c6dO/Tp04d+/foRFhb20KqM92tesSyLzMxM4uPjWbly5UP5fSI9lO0V\ntMaKYondYQDjHV1RVKIo4hCjRo3izJkzqjIFceDAAX777TdeeOGFdq9pHuT96aef3neQd7PmQd7N\nI3aam18e5F7G5p1XXC5X0GT1ww8/5OzZs+zZs0fNKxLqbP8HoESxc5QoijjEqFGjOH36NI8++qjd\nofRod+/e5ejRo+zfv/++g7ybWZbV6l7GliN2/mwy98cff1BfXx90XuLp06d59dVX8fl8jt9FRqQb\n2J4YKVHsHCWKIg4xevRohgwZQlhYGGvXruW5556zO6QezbIsKioqeP/99zl69Cher5f09HSGDRvW\nbgLY0NBAXV1dqypj83aBHamrq6O2tpZBgwa1qUpevnyZp59+mvz8fG0LKdLI9sSoMVE8Z3cYQIwS\nRRHpWFVVFVFRUVy+fBmv18vu3buZNWuW3WH1Cp0d5N2sucp4+/btTg3ybh4APnDgQPr0ab0zan19\nPSkpKWzevJk5c+Y89M8m0kPZnhgpUewcJYoiDvTaa68xaNAgNmzYYHcovcr9Bnm3p6NB3pZlcfPm\nTcLDw9ssKVuWxdatW3G73bz00ktd+tlEehjbEyMlip2j8TgiDvD7779z48YNAG7dusWxY8eIjY21\nOarexxjDxIkT2blzJ19//TVRUVE8++yzrF69mpMnTwYdmeNyuejfvz+DBw+mX79+1NXVcePGDWpr\na6mvr6e2tjYwo/Fen3/+OT/99BPr16/vjo8nIn9anQMezqaKoogDlJWVsWTJEqBxqXLFihVs2bLF\n5qhCg2VZFBUV8d5773H27FmeeeaZDgd5NzQ0cPv27cC9jM2jcFrey1hSUkJGRgY+n+++7yUSomyv\noDVWFP9hdxhAnKMrikoURUSaXL9+nY8++oiDBw8yefJk1qxZw5QpU4I2s9TX13Pr1i369+8fqDLu\n37+f9PR0HnnkERYvXkx2djaTJk2y4ZOIOJ7tiVFjonjG7jCAf3V0oqilZxGRJkOGDGHdunUUFhaS\nlpbGzp07WbRoEZ988gm1tbWB6yorK9m+fTsDBw6kX79+DBo0iLCwMK5evcrMmTOZO3cuTzzxBBMm\nTLDx04iIPDgliiIi93C5XMyePZuDBw+Sl5fHr7/+yoIFC9iyZQvnzp0jNTWVhoaGVrMZIyIi2LVr\nFxs3biQ6Ohqfz8eYMWPIysril19+sfHTiIj885QoiojcR0REBJs3b+bkyZPMmzePFStW0NDQwKRJ\nk6ira30jemFhIX6/n8OHD3PmzBkOHTpEaWkpEyZMIDc3t1viPXToEJMnTyYsLIyioqLA8fLycgYM\nGIDH48Hj8ZCRkdEt8Yg4m92NLM5vZunT8SUiIhIWFhaoDH788cfk5uayY8eOwCBvl8vFyy+/zBdf\nfBGYpfjYY4/xwQcfsH379qAd1V0hNjaW/Px81q5d2+bc2LFjKS4u7pY4RKR3UKIoItIJRUVFbNy4\nEb/fT0xMDG+88QavvPIKBQUFZGZm8v3333P48GEiIiLavHbo0KHdFufEiRO77XeJ9Hz1dgfgeFp6\nFglRq1atwu12t5rXePXqVbxeL+PHj2fu3Llcu3bNxgido6GhgbS0NPbu3UtMTEzgeHh4OCkpKfh8\nPr766isef/xxG6PsWFlZGR6Ph/j4eAoLC+0OR0R6ACWKIiEqPT0dn8/X6lhWVhZer5eSkhISEhLI\nysqyKTpncblcnDhxgpSUlKDnjTHd2uHs9XqJjY1t8/jss8/afc2wYcOorKykuLiYd955h9TU1MCQ\ndxGR9mjpWSREzZo1i/Ly8lbHjhw5gt/vB2DlypXEx8crWWwSGRlpdwgBx48f/9OvCQ8PD+weM23a\nNMaMGUNpaSnTpk172OGJ9CDObyaxmyqKIhJQU1OD2+0GwO12U1NTY3NE8iBabqhw5coV7t69C8CP\nP/5IaWkpo0ePtis0EekhlCiKSFDGmKA7koiz5efnM3LkSE6dOsWiRYtYsGABAH6/n7i4ODweDykp\nKezbt69bm2xEpGfS0rOIBLjdbqqrq4mMjKSqqipoB68425IlSwL7hreUnJxMcnKyDRGJOJm6njui\niqKIBCQmJpKTkwNATk4OSUlJNkckIiLA0iD7AAAF30lEQVR2Mi3vYQnividFpOdavnw5fr+fK1eu\n4Ha7ef3111m8eDHLli2joqKC6Oho8vLytDwpIl3B9vtajDEWfGl3GMBCLMuy/ftojxJFERER6W62\nJ0ZKFDtHS88iIiIiEpSaWURERCREqZmlI6ooioiIiEhQShRFREREJCgliiJii1WrVuF2u4mNjQ0c\n27p1KyNGjMDj8eDxeNrsRS0i8nDVOeDhbEoURcQW6enpbRJBYwzr16+nuLiY4uJi5s+fb1N0IiIC\namYREZvMmjWL8vLyNsc7GNklIvIQOb+iZzdVFEXEUXbv3k1cXByrV6/m2rVrdocjIhLSlCiKiGM8\n//zzlJWV8d133xEVFcWGDRvsDklEJKRp6VlEHCMiIiLw85o1a3jqqadsjEZEej/NUeyIKooi4hhV\nVVWBn/Pz81t1RIuISPdToigitli+fDkzZ87khx9+YOTIkWRnZ7Np0yamTp1KXFwcfr+fHTt22B1m\nt9m4cSOTJk0iLi6OpUuXcv369cC5bdu2MW7cOCZOnMixY8dsjFKkt7F7NI7zm2lMBx2Gaj8UEekG\nx48fJyEhAZfLxebNmwHIysri3LlzpKam8u2333Lp0iWefPJJSkpKcLn0d770aMb2AIyx4EO7wwDS\nsSzL9u+jPfqfRkTEAbxebyD5mzFjBhcvXgSgoKCA5cuX07dvX6Kjoxk7dizffPONnaGKSAhRoigi\n4jDZ2dksXLgQgJ9//pkRI0YEzo0YMYJLly7ZFZpIL1PvgEdbxpj5xpgLxphSY8ymdq6JN8YUG2O+\nN8Z8/SDfwv2o61lEpJt4vV6qq6vbHH/rrbcCHd5vvvkm4eHhpKamtvs+xjh2lUpEHpAxJgz4T+BJ\n4BLwrTHmiGVZ51tcMxTYA8yzLOuiMeZfuioeJYoiIt3k+PHj9z1/4MABvvzyS06cOBE4Nnz4cCor\nKwPPL168yPDhw7ssRhGx3XTg/yzLKgcwxuQCi4HzLa5JBf7HsqyLAJZlXemqYLT0LCIhq7Kykjlz\n5jB58mSmTJnCu+++C8DVq1fxer2MHz+euXPndssOMT6fj7fffpuCggL69+8fOJ6YmEhubi537tyh\nrKyM0tJSpk+f3uXxiIQGuzueg3Y9DwcqWzy/2HSspXHAI8aYvxtjThtj0v7JL6BDShRFJGT17duX\nHTt2cPbsWU6dOsWePXs4f/48WVlZeL1eSkpKSEhIICsrq8tjWbduHTdv3sTr9eLxeMjIyAAgJiaG\nZcuWERMTw4IFC9i7d6+WnkV6t85MnOkLTAMWAvOA/zDGjOuKYDQeR0SkSVJSEpmZmWRmZuL3+3G7\n3VRXVxMfH8+FCxfsDk+kN7H9r53G8Tjv2vCbS5sezXytxuMYY/4N2GpZ1vym51uABsuy/tLimk3A\nAMuytjY9/2/AZ1nW4YcdrSqKIiJAeXk5xcXFzJgxg5qaGtxuNwBut5uamhqboxOR3mMcjYXA5kcb\np4FxxphoY0w48Axw5J5rCoB/N8aEGWMGAjOAc10RrZpZRCTk3bx5k+TkZHbt2sXgwYNbnTPGaKlX\nRLqNZVn1xphM4CgQBnxgWdZ5Y8zapvP7LMu6YIzxAf8LNADvW5alRFFE5GGrq6sjOTmZtLQ0kpKS\nAAJLzpGRkVRVVREREWFzlCLSNZy5hZ5lWX8D/nbPsX33PP8r8NeujkVLzyISsizLYvXq1cTExPDi\niy8GjicmJpKTkwNATk5OIIEUEQk1amYRkZBVWFjI7NmzmTp1amB5edu2bUyfPp1ly5ZRUVFBdHQ0\neXl5DB061OZoRXoV2+/naGxm+UvHF3a5TY7e61mJooiIiHQ32xMjJYqdo6VnEREREQlKzSwiIiIS\nopzZzOIkqiiKiIiISFBKFEVEREQkKC09i4iISIiqtzsAx1NFUURERESC6mg8joiIiEiv0zgexxmc\nPB5HiaKIiIiIBKWlZxEREREJSomiiIiIiASlRFFEREREglKiKCIiIiJBKVEUERERkaD+Hw1CwARl\n+qrNAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1554e9e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "from mpl_toolkits.mplot3d import Axes3D\n", "%matplotlib inline\n", "fig = plt.figure(figsize=(12, 12))\n", "ax = fig.add_subplot(111, projection='3d')\n", "sc = ax.scatter(data['xmid'], data['ymid'], data['zmid'],\n", " c=data['ly'])\n", "plt.colorbar(sc, label='Relative light yield')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we'll plot the map using pax, to verify everything went correctly. Note this picks up the version of the map we just placed in the current directory, rather than the versionin pax/data!" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [], "source": [ "mypax = core.Processor(config_names='XENON100', config_dict=dict(pax=dict(output='Dummy.DummyOutput')))\n", "s1map = mypax.simulator.s1_light_yield_map" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Anaconda3\\lib\\site-packages\\matplotlib\\collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", " if self._edgecolors == str('face'):\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAKsCAYAAABrgZynAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYVOXZx/HvmT6zBbZRtgHSpAcUNAqCHRREjbGbiL4m\nsSWWxCRqxIJGjb3XWKKisRKiErsgKlJE6VKkLnWXbdPnnPP+sZxxZndmZ8vM7uzu/bkurgT3cObM\nYZj5zfM893Mruq4jhBBCCCFEfab2vgAhhBBCCJGeJCgKIYQQQoiYJCgKIYQQQoiYJCgKIYQQQoiY\nJCgKIYQQQoiYJCgKIYQQQoiYLAl+LnvnCCGEECLZlHa/AEVJm4yj63q73494EgVFIYQQQohO6eb2\nvgDS4xoaI1PPQgghhBAiJhlRFEIIIUSXJCEoMRlRFEIIIYQQMUlQFEIIIYQQMcmoqxBCCCG6JGt7\nX0AHICOKQgghhBAiJgmKQgghhBAiJpl6FkIIIUSXJCEoMRlRFEIIIYQQMUmYFkIIIUSXJMUsicmI\nohBCCCGEiEmCohBCCCGEiEmmnoUQQgjRJUkISkxGFIUQQgghREwSpoUQQgjRJaVjMYuiKCXAi0AP\nQAee0nX9oRjHPQRMATzAhbquf5uK65GgKIQQQgiRPoLA1bquL1cUJRNYqijKh7qurzEOUBTlJGCA\nrusDFUU5DHgcODwVFyNTz0IIIYQQaULX9V26ri8/8P9rgTVAYb3DTgFeOHDMIqC7oig9U3E9MqIo\nhBBCiC4p3UOQoih9gdHAono/KgK2Rfx+O1AM7E72NciIohBCCCFEmjkw7fwG8IcDI4sNDqn3ez0V\n15HuYVoIIYQQotNYe+BXYxRFsQJvAi/puv5OjEN2ACURvy8+8N+SToKiEEIIIbqk9qh6HnHgl2FO\nvZ8riqIAzwKrdV1/IM5p/gNcAbyqKMrhQKWu60mfdgYJikIIIYQQ6eRI4Hzge0VRjC1vrgdKAXRd\nf1LX9fcURTlJUZQNgBuYkaqLkaAohBBCiC4pHUOQrutf0IQaEl3Xr2iDy5FiFiGEEEIIEZsERSGE\nEEIIEVM6jroKIYQQQqRcOrbwSzcyoiiEEEIIIWKSEUUhhBBCdEkyopiYjCgKIYQQQoiYJCgKIYQQ\nQoiYZOpZCCGEEF2ShKDEZERRCCGEEELEJEFRCCGEEELEJKOuQgghhOiSpOo5MRlRFEIIIYQQMcmI\nohBCCCG6JAlBicmIohBCCCGEiEmCohBCCCGEiElGXYUQQgjRJUkxS2IyoiiEEEIIIWKSoChEmtF1\nvb0vQQghhABk6lmItKKqKsFgEJvNhskk3+OEECKVJAQlJvdIiDQRCoXw+/34/X58Ph8WiwWr1YrV\napXQKIQQol1IUBQiDYRCIYLBIIqiYDabURQFVVUJhULU1tZiNptxOBzh0KgoSntfshBCdHhSzJKY\nBEUh2pGu6/h8PlRVxWKxhNcnKooSDoOhUIhQKITP58Pn82EymbDZbFgslnCoFEIIIVJBgqIQ7UTX\ndUKhEF6vF0VRsFqtcUOfMdKo63o4XOq6jslkwmq1YrPZJDQKIYRIOgmKQrQDXdcJBoOoqho1ephI\n/WN1XScQCBAIBMJh02q1YrFYJDQKIUQCEoISk3skRBszwp2maeEw19iWOIqixP25MdIYed5AIACA\nxWIJT1FLMYwQQoiWkKAoRBuqHxKNX8aUssfjIRgMYrFYmh3w6odGVVXxeDwAmM1mbDabVFALIUQE\nKWZJTIKiEG1E0zQCgUB4bWEkXdepra1F13VsNhuapuHz+QCiwmRLpqh1XUfTNLxeL16vF7PZHLXt\njkxRCyGEiEeCohBtIFFIDAQCWK1WXC4XwWAwXKBi/DljdNBsNje72jlWaJQKaiGEEE0hQVGIFNM0\nDb/fj6IoDUKi8TOTyURGRkbUWkRjKtlsNoerm0OhUHjq2gh3zSlcqR8agaiRS6mgFkJ0JRKCEpN7\nJEQKRW6kXT94qapKTU1NVNhrrKjFGP2z2WzhrXWMbi6RI41NXYNoXE+sYhipoBZCCAESFIVImcZC\nYigUoqamBpfLhaZpjQbEWCKDnBEaVVUNj04moxjG6/VSW1sbnpqWdoJCCNH1SFAUIskiR/tihcRg\nMEhtbS0ZGRnYbDZ8Ph+aprX48eqHRqP1n7GRtzHa2JzCFWOaXFXV8P9GthiMXNcohBAdlVQ9JyZB\nUYgkShQS/X4/Ho+HzMxMrNbkv0UpihIeTTQKV4z2f0DUSGNz1zWaTKaoCmr4aTpcKqiFEKJzkqAo\nRJIk6rbi8/nwer1kZWVhsaT+n15kMYxRQW1MT+u6npQKamOK2ufzoShKODRKMYwQoiOQEcXEJCgK\nkQSxNtKO/JnX6yUQCJCdnd0u07WxQmOyKqiNNYu6ruP3+8MV3lIMI4QQHZ8ERSFaKVFI9Hg8hEIh\nsrOzW1QIoihKq9YwxhJZQW2MNNavoG7JdcZrJ2hsuyOhUQghOhYJikK0QqKQ6Ha70TSN7OzsZo3U\ntSWTyRTepzGygjoUCgEQCARaXUEdDAYJBoMAUkEthEgbEoISk3skRAsl6rZSU1ODoihkZWV1mFG0\nyCljI9wZxStGoYyxV2Nzgm/9HtSxKqilGEYIIdKPBEUhWkDTNCorK8PFG/V/VlNTg8ViweVyJQw/\niTbabi/GCKnD4Uh5BbVRXCMV1EKItmRNhxQUau8LaFw63CIhOhRjI+1YG2Ub3VZsNhtOp7PThJ14\nxTCpqqDWNA273Y7dbpcKaiGEaEcSFIVohshuK7F+Vltbi8PhwOFwtMPVtY3I0AikpILa7/cDhO+1\nVFALIUT7kKAoRBPE20jbGFE0uq24XC7sdnurH6sjhaGmVFC3JOCZTCbMZnPcCurm9LUWQohY2mBL\n28Rk6lmIji1eSDT+NxAI4Ha7wy35WqsjhcT6YlVQG6ExWT2oIyuo669rFEIIkVwSFIVoRKJuK8aU\na7K6rXTkkFhfvB7UHo8nHBpbW0FtFMN4vV7MZnPUtjud6V4KIUR7kaAoRByN7ZEIdYUrxh6Jrem2\nkq5Vz8mUyh7U8FNo9Pl8+Hy+8HR4cwtshBBdi7XtG2V1OBIUhYihKS35VFXF6XS2S0u+jqwpFdRG\nFXRzzlm/gtrn84X3uIxc1yihUQghmk6CohD1NLUln81ma7PQ0VlHHONVUBujjcZIY0u33YHodoJS\nQS2EiJQWxSxpTm6REBESdVupra1F13Wys7PxeDxtck1dKcwYU8ZGEDfWiPp8vhZXUDfWg9pisUR1\nhhFCCBFNgqIQBzQWEjVNo7a2FpPJRGZmZpcKb+3FWNcYq4LaGIVsbQW1qqq43e6odoJSQS2EED+R\noCgEdYUpxtRkrJDYnJZ8IvmaUkFtjDS2tp1gVVUVDodD2gkK0QWkRQu/NCe3SHR5kd1WYlU219TU\nYLfbcTgcKQsMnXUNYirUr6BWVRVVVfF6vUDrK6iNanapoBZCCAmKogszQka8kBgKhaipqcHpdMZs\nyZesbW0keLRcZGiMrKCO3HbHmKZuzn02Qqbx92uczxjZlApqIURXIUFRdEnxuq0YjJZ8yeq2IlIv\nsoLabrfH7EHdkgpqIGYxjFRQC9EJyO5mCUlQFF1OopBotOTLzMzEarW201WK1qrfg9pYYpDKCurI\nzjBCCNEZSFAUXUqilnx+vx+Px5O0lnwiPRihEUhpBbWxjMGooG7uWkkhRBuTt/mE5BaJLsPYLNsI\ngvU3Zfb5fPj9/la35BPpLVEFNdRVujfnNRCvgtroNCMV1EKIjkqCougSIrut6LoesyVfMBgkOzu7\nyaNKXaFHc3s9v7Z63FgV1Ea1MySnB7Xx+vL5fCiKEg6NUgwjhOgIJCiKTi9RtxW3242maWRlZbXL\n2rKuEDhboq1DVORUssvlSkoFdeRII9S93vx+P36/X4phhEgHkoISklskOrX6IVHTtPDPjJZ8QIOp\n6HQiQbLtpaKCOvK88NMod2RoNLbdkWIYIUS6kKAoOi1N08IfwsYHrxG6IlvyZWRkpG1IbE9yT37S\nFhXUwWAQt9sd3hNSKqiFaAOSghKSWyQ6pca6rei6Tk1NDVarFafT2apAJCN9XU+iCmpjpLElFdTG\n+lmpoBZCpAsJiqLTSdSST9d1bDZbq1vyyQe2iFdB7ff7o3pQNzc0mkwmqaAWQqQFCYqi00i0kXYo\nFMLtdgPgdDrb4xJFJxargjoUCuH1esMjg1JBLUSakZ3QEpKgKDqFprbkc7lceDyedrrK+GQKu3Op\nHxqbWkFdf+um+ueUCmohRFuToCg6vETdViJb8qXjRtryod65RVZQG8UwqqrGrKBuyXmhYTtBqaAW\nQiSLBEXRoUVupB0rJPp8Prxeb7glX+T2OEK0tVihMXLbHahbImG1WltdQR0MBgEarGsUQkSQFJSQ\n3CLRYTUWEuO15EvmnoSyv6Forchtd4zN343g2NoKaiCqGMbr9WI2m6O23ZHRbCFEIhIURYcUuZF2\nrJDo8XgIhULNasknRHsyXsdGNX6yKqgji2E0TQu3KDRCaks2Dhei05AUlJDcItHhpHtLPtFxNVZM\n0pbaqoLa5/OF/x1FrmtMh3sghEgPEhRFhxKr24rB2EhbUZS0bsmXSP2wIlPcXVtTKqhbExqB8LY7\ntbW12O12qaAWQoRJUBQdRmMbaWuaRk1NDRaLBZfLlfDDLVkjR8kIcEYQjNwjz2QyhUeNRNeR6PUU\nr4La7/eHN+RuaQ9qk8kU3jkgsoLaaCnY3GlvITqE9NsII+3Ip5DoEBJ1W6mpqcFmsyVsyZfM0ZFk\nnityXaXL5QrvC2mMGhnTj1KA0Pk1Z1SwsQpqIzC2tge1qqq43e6odoJSQS1E1yFBUaQ1Y6uP6upq\nMjMz44ZEh8OBw+Fop6tsHWMUSVVVsrKyCAaD4RFFm82GqqrhAgRo2VSj6PwiK6iNkcbm9KCONZoZ\nucm3VFCLTklSUEJyi0Taiuy2YowmRgqFQtTU1OByubDb7e10la1jFN8AZGVlAdEjSsaHtKIoZGRk\nhEeNWjvVKDo3o1e00YM6FAqFp6gbq6BONBpfv4I6cqmEVFAL0TlJUBRpqX63lfqMbisZGRnYbLZm\nndtYE9jeH2aRxTeR19WY+qNG9aca5YNa1BfZ3q+xCurmrLeN1U7QGPGWdoJCdC4SFEXaqb+Rdn1+\nvx+Px0NmZiZWq7UdrvAnLS1miSy+cTgcVFdXN/scEhpFczVWQW18eWrJWth47QQlNIq0JykoIblF\nIq3E6rZihDFd1/H7/fh8vnBLvvbU0g89IyRarVacTifQ+urpWOvTgsEgPp8vPGIkH9QiUv1imEAg\nkJRlDY31oLZYLFHrGoUQ6U+Cokgb8VryGf/r9XoJBAJkZWWFP4g6GqP4xm63hztwJHuPxFjr0+oX\nNUhoFJGMaWSz2YzD4UhpBbWx3tgIqFKYJUR6k6Ao0kKibisAwWAwKS352msD66ZWaCdz/WT99Wmx\nQmNzewmL1DBek+0VmCJfd62toI4lXgW1MXoZue2OhEbRZjrmmEObkqAo2l2ibiu1tbUAHbolXzpU\naMcramhNL2HR+bW0groxsdoJ1tbWout6OKBarVZZYytEGpCgKNqVqqrhRe/1PxCMquB0Di5NGZkM\nBoPU1ta2qEIbUjMCGq+XsMfjCX/4d8UPaGmV2LhEFdSRI43NbScYudTE7/eHvzxKMYxIKUlBCckt\nEu2mOS35gsFgO11lfE350DK28UmHCu144oXGUCgE1D2H5n74d2Rd4TkmQyp6UBvnrV8MExkabTab\nLJcQog1JUBRtrv6i9ta05GuJtlqjaGzj09QK7XQYzYr88I+sgJWuMKIx8doJNqeCOl5nmMjQGAwG\nw18apYJadFaKovwTOBnYo+v6iBg/zwdeAnpRl+Pu0XX9+VRdjwRF0aYiCypihURjLZ/T6Ywq+Giv\nApSW8vl8eL3eJoXEdA1cxt+P3W6P+vCX0Ng5JauIKjI0As3a4zNRZxipoBZJl54p6DngYeDFOD+/\nAvhW1/W/HgiN6xRFeUnX9VAqLiY9b5HolBKFRGMtX0duyQd12/j4/X6ys7ObvY1P5AL/dPqwSzRi\nZHzwS/GBqK+pe3w2h1RQi85M1/UFiqL0beSQncDIA/8/GyhPVUgECYqijcTbI9HQEdby1Vd/lFPX\n9fBej63ZxifdR08bGzGS/tMtl25fDlKhsT0+jeCnaVqrK6iNHtSKokgFteiMngY+URSlDMgCzkzl\ng0lQFCmXKCQ2ZS1fMsNTKoKYrut4PB5CoVBS9nrsSKSVoGiJ+hXUxohgZOV9SyuoI3tQSwW1aFTH\nTEHXA8t1XZ+kKEp/4ENFUUbpul6TigfrmLdIdBiJQmJrpmnTha7ruN1uNE3r0Hs9xtLcQB0rNBrT\njC3t7iE6v8jOMBaLBVVVUVU1JRXURjtBqaAW7eWzirpfrXAEcDuArusbFUX5ERgMLGn91TUkQVGk\nTKJuK8mYpm1v9TcE70wBqLXPxQiNQINpRmklmH5i/TttD5GV9y2toI533ngV1PXXNYoupB3GJyYV\n1P0y3LKx2adYCxwHLFQUpSd1IXFTki6vAQmKIiUiO37EColutxtVVZsVEtNt3Z6xHkpRFDIyMloV\neIzp8M4amprSSlBCo6ivNRXUTTkvEC6GMd6THA5H1LY78poUbU1RlNnARCBfUZRtwEzACqDr+pPA\nHcBziqJ8B5iA63Rdb90YZSMkKIqk0zQNj8cTnlKOFDkCl52d3ay1R8mSjDWKxgcL0OqQ2NXECo1G\nSzgjFKTblwKRek35otTUCurmhkZFUdA0LfzL5/Ph8/nCjyfrbEVb0nX9nAQ/3wdMa6PLkaAokiuy\n20p9mqZRW1uLyWTq0OEqsmuMqqpt9jw644hjvJZwQHhdo/SfFrE0VkFtfOFoSQ/qyEIYY7N5Y1o+\ncl1jZ/u32GVJCkpIbpFIikTdVuq35GvJm2w6jDIZXWOMTaiNhfGp1FU+kCLXptXW1mK1WlFVNaqP\ncGcOjenw+u6o4n3hiKygbklojPy3F1kMIxXUoiuRoChaLdZG2pHTu5HhyuFwtOhNNR3eiI3n4XA4\ncDgcaJrW3pfUaRlryCI/+CNDY+RoUTJfG+0d1trzdd5ZRqwjv1TUf+1A/ArqRM+/sQpqo/CmM3+R\n6bQkBSUkt0i0Sktb8rWnlqxRNJ5HR+8ak0pVVVUsWbKEQCDIyJEjKCoqinmcpmksWbKEPXv2Ulxc\nxKhRoxJ+QMeqgk1VK8HOEJY6olSE9Ka8diKLZZpz3vrtBN1ud1Q7QamgFp2FBEXRYsYWE8Y6vfof\nsLquU1NTQ0ZGRniblI7IaC1Y/3mkeweVZAgGg7zyyussWLAMp9PBeedN5ZBDDmlwXGVlJTfffD+7\nd+dgMtmxWj/lhhv+j4EDB0Ydp+s6Tz31Ip99VobZXIiqLuaMM7ZwxhnTG5zT6/Xy8stvsHTpGnJy\nsrjool8yaNCgmK0Epf9055DKv7PICmq73d6ggjpybWJLimHqtxP0er3hUXGpoBYdmXzdES1iTL3E\nC4mhUAhN08jMzExKSGyvUBYIBKitrU3a84inrZ+fpml88sln3Hvvkzz//GzKy8tjHvff/85jzpx1\n2O0n4vMdwn33vcaGDRsaHPfFF1+yZ08BffpMpKTkcCyWsbz++nsNjtuxYwdffLGB0tJplJSMo7h4\nOu+88wU1NQ0bCjz//Gw+/XQfLtcUKiqGcMcdT7Nnz57wzyNHb1atWs2TT77Es8++zI8//ojH48Hn\n8xEKhTp9mBctY1Q0u1yu8LppY+sur9dLMBhs9msncuNwox2h1+ulpqaGmpoaeU2mI3Ma/EpzEhRF\nsyXqtuLz+cJrydK1b3NT3qj9fj9ut5usrKy0fR4t9fbb/+WJJz5n9eqefPihm1tueTBmWPv665X0\n6DEOuz2TrKxe6PpBrFmzrsFxHo8Pszkj/Hu7PRO329fguLq9NV2YTHXvjmazDUWxNigK0nWdr776\nnqKiI7DZMsjJKSUY7M3GjQ13pl2wYCH33vs2K1fm8dVXZu6882lqamowmUzhHuLyAS0aE9kVJiMj\nA4vFQigUCodG4/2uOYzQaExvQ917Y21tLdXV1Xg8nhaFUSHamkw9i2ZJ1G3F5/Ph9/vJyMgI7zOY\nbpoy/WOE3cb6T6ejUCjEm2/O5bPPluJ02jjvvJMbTBXrus7cuZ9TVHQmVqsL6M+2bVWsXr2aww47\nLOrYrCwn+/ZV43LlAqCq1WRkOBs87ujRI5gz5xmqqnpgtdopL1/E1Kk/b3BcUVER+flBdu36ju7d\n+1Jevob+/XPJycmJOk5RFDIzXfh81WRk5B3YqqQ25jrXuXM/Izf3KLKyegGwdaubZcuWc9JJk6Om\np6uqqpg9+y2WL19Pfn43Lr74zAZT411ZexeztPfjG1JRQW2cN1YxjLGO0iiGSYd7IEQkGVEUTZYo\nJHo8nnBLvmSHq7acmvV6vfh8viY/j3QaEXjnnXd54421mM1Tqa09kn/8I/ZUMTS87lgfUGeddTKB\nwCK2bfuSrVs/pl+/AIcffniD4wYOHMi1155F9+7fYzYv5Pzzx3Hiicc1OM7hcPDXv17G8OH70bT/\ncdhhGldffUnM19OMGaezf//HbNv2NVu3fsDw4VkMHz68wTmbuknz7NlvM39+DXb7KezceTA33/wY\nW7duTZtRnXS4hq4s1v03QpzD4QivUTbaj7rdbvx+P6qqtmiK2lgvqSgKwWAQt9tNRUUF1dXV+P1+\n2VWhrVjS4Fea6wCXKNKBpmn4/f6oDWkNxroeTdPIysoKr83paJrbfzpV3/zjheJgMMg333xDVVU1\nBx3UjyFDhjQ4ZuHC7ygoOAaHozsOR3eqq4eycuVqBgwYEHX+adMm8tpr/yMrayQ+Xzk9elQxdOjQ\nBucbOHAgf//71axduxa73c7o0aNxuVwxr3vMmDGMGTMm4fMrKCjgj3+8LOFx48aNZdasAjZt2kRm\nZiZjxoyJuQRg2rRJPProu/j9owkG3WRmbuHQQ8+IOkbXdRYu/J7i4hmYTBaczm7s2LGNLVu2UFBQ\nEN6kWVEUPB4PixYtwu32cPDBg+nfv3/Ca00WGU1qX62tvo8Mf815TGOk0RhhNNZ+G+fz+Xzk5ua2\n7skJ0UISFEVCkd1WYlU2Gy35srKywj9P94rg+tdmjIiGQqFm9Z9uK6FQiAcffJply3yYzT3R9fn8\n5jcncPzxx0Qdl5nppKqqCpcrHwBNqyYjo+E2NaefPo28vG58++068vKymTr1KjIzM2M+dmFhIYWF\nhcl/Uk3Qr18/+vXr1+gx48cfgcNh56uvvsXlcnLSSX+gR48eDY7LyLDj89VNo9dVp9aQmZmJ0+kM\nb/NUXV3NrFkPsHmzE7O5G2bzR1x33XkxK71F1xUZ4oxRxmT0oDam3409IDVNY/Pmzdx+++28+uqr\nKXxGXZikoITkFolGNRYSjW4rZrO5TVryJSt4xgq79UdE21qiYL1+/Xq++66a0tJfoigKfv8wXnhh\nNsceOynqes8//xRuu+1Ztm7dga57KCmp5Oc/b7hWUFEUJk2ayKRJE1PyfNqSoiiMHXsoY8ce2ugx\nF110Og899Dbl5f3RtApGjswIT2Ub69JWrlzJ5s12+vY9EU3Tqaoq5tln32DEiBGymXKKpcsaxeYy\n3hsje1Ab75st6UEd+WXbmJaWvVtFe5KgKGJKtJG2ERKtVitOpzPlb/CpOn+8EdG25na7+fTTz6iq\ncjNs2CBGjBgR9fO6af+fwrjNlkkwqKGqalR4GTx4MHfe+XvWrFmDzWbjkEMOiTtS2NUcccTP6dGj\ngI0bN5KZOZxx48Y1mMr2+XwoSiaKYsJshszMXNzuulGiyGIGv9/P/PkLqKioZuTIIYwaNaqdnlXy\ndNSgliyx1l63hLEm1jhn/R7UxkhjUx/L5/PhdDYsIBOirUhQFA0kComRLfnivYEZfyadP3yMDcFN\nJlObjIjG4/P5mDXrAbZuzcZmK+D111/kd7+bzAkn/FQM0q9fP1yu/7Bv3xoyMwvZu3cx48YNjrlm\nr7i4mOLi4rZ8Ch3GgAEDotZr1jd48GCs1vfYv78PTmd39uz5kqlTD8HhcIQrYGtra5k5825+/NGB\nzZbHW289x6WXTo36+xIC4ldQ120T1bCCOtb7pc/nS5uuVp1SB9jHsL3JPIqIYnRbaawlX3V1NU6n\ns82/5SZzzaOmaVRXV7d62jwZazG//fZbNm+2UFp6PIWFYygoOJmXXvpv1Hm7d+/O3/72O/r23Yim\nzeWYYzK57LILW/W4oqHi4mL+/Odf06PHanT9Q6ZP78955/0S+KmYYd26dWzfbqVv32Pp3XsUubnH\n8sIL77S4AlZ0DbEqqI0NuT0eD36//8A2UNGvn1QFxXnz5nHwwQczcOBA7rrrrqSfX3QeMqIowhJt\npB2vlV1bSHZxTCAQCI+ItsVIoqZpVFZWxgzYwWAQk+mnDwKr1UllZaD+Kejbty+33vqnlF9rshib\nFefk5DS7l2570XWdoUOHctdd8au36/6+7JhMCqDgcGRSWxsK7yMKhEeJjC9V8SrFRZ10CNdtOfsR\nWUFtFK2EQiGgLhhaLBb2799PXl5eSoKiqqpcccUVfPTRRxQVFTF27FhOOeWUmDspdHqSghKSWySA\nn9bqGWtn6r9h+v1+PB4PmZmZTe5SYoS7dJp6VlU1vFaorUJieXk5s2bdz8aN5ZhMQWbMOJXp06eG\nfz506FBcrtns2bOSzMye7N37NVOmjEur+xYIBFi+fDl+v59BgwbRs2fPRo+fO/ddnn/+v4Cd4uJM\nbrzxDxQUFMQ9ft++fbz88puUlZUzYkR/pkw5joyMjLjHt6chQ4bgcr3Bnj1rcLnyKS9fysknHxGe\nntY0jb1793L33Y+wceNeTCaN8847iV/84tRG/07T7d9Ke+iKzz+ygjoYDOJwOFBVlXvvvZfXX3+d\n8ePHk5+fn9TA+M033zBgwAD69u0LwNlnn82cOXO6ZlAUCcnUs0DX9XAQjLdGxuPxdPhWdsbayuZU\nICbDww9AfPhdAAAgAElEQVQ/y6ZNBRQWXkBe3tk888w8Vq1aFf55fn4+f/vbZQwbVk529iLOPHMo\nF154bptcW1P4/X5uueUe7rjjXe6//xuuuuoOfvjhh7jHr1u3jn/+8yPy88+hsPACysr68OCDz8Q9\n3u12c8MN9/DFF3Z27TqMN97YwjPPvNToNWmaxpo1a1iyZEncPtWpkpeXx623Xs2wYdVkZy/jzDNH\n8OtfnwP89KH/3HOz2bIlh+Lic8jPP40XXviYxYsXp3UrQQmq6cEohvnHP/7Bp59+SlFREfPnz6dX\nr1788pe/5JVXXqGqqqpVj7Fjxw5KSkrCvy8uLmbHjh2tvXTRScmIYhcX2W0l1rYxkRtQt2T6MJlb\n2rRmE+9QKERNTQ0ulyu8qDxZEj3H1as3UVBw5oEtNDLQ9VK2bdvGsGHDwsf06dOHG2+8GqvVSjAY\nTPmG5YFAgPff/4Bt23YzYEApxx9/TNy/36+//pqVKzVKSn6BoihUVGzgqade5Z57bop5/Pbt24Fi\nbLa6EcGCguGsW/dC3GtZv349+/ZlUVhYt41PZmYvFi58KG61p6qq3HffE3zxxU7M5lzs9le49dZL\n27QdX58+fbjhhqvj/nz16k3k55+MyWTC4cjEbC5lz5494f7TrdlrT6RGewflWO8j/fr1Y+TIkYwa\nNYrTTz+duXPnMnv2bG688UY2bNjQ4ipteb1FkBSUkIwodmFGtxUgbku+YDDY4pCYLm9GwWCQmpoa\nMjIykr4fmfEcNU1j9+7dlJeXN3jDLynpSWXllgPHqej6LvLy8pJ6Hc2haRp33fUwzz67is8/78aj\nj37Nww8/HTfwVlfXoCi54eeakdGDiorquOfPz89H13ehqkEA9u//kdLS+FPVZrMZXQ+EH1/TQiiK\nFvdDcOnSpSxYUEFh4W/p3ftsFGUaDz/c+AhkWysu7klV1TbA+DvfQ0FBATabDZfLhcvlIhQKsW3b\nNnbv3o3P5+vShTDtHdLSSf374PV6cTqdFBQUcNFFFzF37lx++OGHVm3lU1RUxLZt28K/37Ztm+yU\nIOKSLN1FxdtI26i6Mzagzs7O7tBv4IFAALfb3ay1lc1VU1PD7bffz6pVZSiKygknjOWKK34TDtdX\nXjmDG2+8h50716GqtUyePIJDD42/OXSqbd26laVLd1Fc/H8oiglNG8Znnz3OBRdUxAywBx88GEX5\nCI/nYOz27uzevZDJkxu2+zOMHDmSqVNH8N57szGbs8jIcPP7318V9/jBgwczaJCNNWvexeEowedb\nwSmnjI9bMFVZWYmiFGIy1d3fzMwSdu+uiHv+mpoannnmFVas2ERhYR6/+925Kf9QvOyyXzNz5r3s\n3LkJVXVz7LFDGTt2bPjn27Zt4+ab76eyUkPXvfzmN79g4sQJ4VH8tl4eIdKX3+9vsDaxKT3oG3Po\noYeyfv16Nm/eTGFhIa+99hqzZ89u1TlF5yVBsQuKFxKN4pOamhoURWn1BtTJrFRuybmMdZdZWVmt\nfmNtzAsvzGbVKhOFheeiaSHeffddhg37jOOOOxaoq1Z+/PG/s3XrVlwuF3379k1JANi6dSv//Oe/\n2bOnirFjD+bcc8+IOYJat0m3FTA6QJhRFHPc6e6BAwdyzTW/5JlnXqeqysfRR/+MCy88J+51KIrC\nxRdfwOTJx+B2uykqKmp002+bzcbMmdfwv/99yM6dFQwdejxjxoyOe3y/fv1QlA/x+Q7Hbu/Onj0L\nGTs29t6Iuq5z992P8d13+eTl/Zo1azZyww3388gjN5OVlRX3MVqrpKSEhx6axdatW3E4HAeu+ae9\nRe+442Hc7lH06jUYv7+Gp556h4MPHkTv3r2xWCwNNmiW0Jh67T2qGe/xU1H1bLFYeOSRRzjxxBNR\nVZWLL7646xaySApKSG5RF5JoI21jutlqteJyuTr0B5PP58Pr9cYMicneamft2s106zb6QCGDFbu9\nHxs2bOG4iP2Xs7KyotYkJltFRQV//et9eL0Tycgo5PXX51NV9TxXXfXbBseWlpbSt6+VTZs+IStr\nAFVVKxg9ujf5+flxzz9hwpFMmHBkkz9MFUVp1qid0+nk1FNPCf/e6JYTy8CBA7nyypN44onHCQZ1\nhg8v5Yorfhfz2NraWr77bjuFhb9CURQcjlx27VrNpk2bUt5NJTMzk6FDG468+v1+ysrKKS4eDIDd\nngX0pKysjMLCwqgNmkOhUFSlvhEck91KsKtOeXcEqerMMmXKFKZMmZL084rOR4JiF9GUbiuqqnaK\nkOj1evH7/S1eW9lcffsWMn/+j2Rm9kLTVAKBbZSWHtuic2mahtvtBojq2pAo3K5du5ba2lJ6966b\n0nY4TueTT+7iyivVBvfAarVy883X8vLLb7J582KOPrqUs88+rVl9aNvbsccezaRJRxEIBBr9ELXZ\nbJjNGqGQG6s1E13XUNWauCM0wWCQZcuWoaoqgwcPplevXkm/drvdTl5eFlVVW+jWrQ/BoBdN20t+\nfn6DEf5YXT0iWwkmOzS2199ve4/mpTPpzJJiHWOL13YlQbELMLqtqKoat9tKbW0tJpMJu92etDfs\ntp56rl+lncwPUE3T+M9/3uWrr74lJyeb888/g+LiYhRFYcaMc9i8+W62bXsTTQswYcIATjjh+Gad\nX1EUVFXF7XaH11KqqhoOBYFA3Qbc8TZutlqtaJo3/IGrql6s1vj9ZLOzs7n00hnNusZ0Y+yF2Ri7\n3c555x3P88//E0UZga5v4ec/z4vZxi8YDHLrrffz/fc6ZnMBVutb3H7775I+JacoCtdffwU33/wg\nu3YtQ9Nq+PWvJ3PQQQeF1wh/8MGHfP75YrKyXJxzzmn07ds3aoPmtgiNXU17h9V4j+/3+5NehCdE\nc0hQ7OSa2m3F5XIRDAY77BSUMW0eCoWSHhIBXnppNi+8sJDs7DH4fOUsXXoLTzxxJxaLhdzcXB58\n8A62bduG2WymtLS02Y9vhFyn04nVaiUUCmG1WlFVlaef/hdz5ixA1+HEEw/lt7/9NQ6HI+oxRo4c\nycCB77Ju3ZtYLIWEQsv4zW9OllEa4Be/mM5BB5WyceOPFBQczvjx42OONH/11Vd8952V3r0vwmKx\nUFm5hkceeYVHH70t6dc0aNAgnnzyTnbt2kV2djY9e/YMfxmYM2cuTzzxPllZo/H7q1m6dBYPP3wb\nvXv3Bhp29TBmA7xeb3gfx8iRaNGx+Xw+6ewj2pUExU4sUUg0KoKNlnzBYLCdrrR1mlul3ZKRzrfe\n+pBevaZjs2UCfSgrq2TZsmWMGzcOqJvi7N+/f4uu31gSYLfbcTgc4VZeAP/730fMmbOdHj1mYjKZ\nmTfvX/Tq9R7Tpk2OGkmy2+3MmnUdH3/8KeXllQwbdkZSKqs76heHSIqiMGbMGMaMid+WD6C6uhpF\nKQy/flyuIsrL428D1FpZWVkxC2rmzPmIvLwJuFx1Fejbt1ezZMkSpk2b1uDYyNBo9A4OhUJRrQQl\nNHYM8f6txap6FkkkKSghuUWdVKKQ2BYVwckuGol1LqP1INDqKu3GmM0mNO2nTbo1LZSUUUtjI3Cz\n2Rxz+57vvluP03kEZrMDk8lMVtZ4Vq1axNlnZ8Scfjz55ClJG03tasFi8ODBKMpjeL1jcLkK2Lt3\nHsceG3/aORgMpqQa2WQyoeuRG8KrTfo7jWwF19zQ2N5fCNJh2jcdxKt6TkUxixBNJQtaOiFjI21N\n02J+KBgVwdnZ2VEhMdnBLplivYFGbuWTmZmZ0g+ac889hb17/8fevWvYsWMhPXvWhvfFa+k9i9wI\nPF4Q6NUrB79/S/j3fv9WevfOCY8kORyO8Iiwpml4PB48Hk/4S0I6cbvdfPDBB8yZM4cff/yxvS+n\ngYEDB3LttdMIhR5j9+4bmTDBz29/e0GD42pra5k5826mTfsNp556Cf/734dJvY5zzplGZeV89u5d\nQ1nZYnJzyzn88MObdQ4jNNrtdlwuFw6HA0VRwl8QY7US7GpfDGJJx3sgxSyivcmIYidjtOSD2N1W\njGKPrKysNqkITlXw1DQt3Lc5mVXamzZt4p57HmPHjt2MGDGYa665jNzcXE4/fTr5+bksWvQtubl9\nOO20K8nOzqa6umVTk8baUK/Xy4oVK9A0jbFjxzbYZPr006fyzTd3sXnz05jNFnr1Kufss/8cdUys\nNWuhUCi8Zi0ZhQ67d+9m+fLlWK1Wxo0b1+i+iLG43W6uuWYmmzd3R9ezsdneY9asS/nZz37W4mtK\nhfHjx3PkkUdis9nivqYeffQ5Fi1y0bv3zQQCVdx//zMUFxcmbfuj4447lqysTBYuXEJmZiHTp18S\n3gj9yy+/5KmnXsHj8XHssT/noot+lXAj+XgjjZGtBOu646Tnl8SuorFiFhlRTCFJQQnJLepEVFUl\nEAg0ukdiY8UeyR5RTNW3cyMkWq1WnE5nsx8n3vOsqqrij3+8Fa93ON26jeXrr79n5sw7eeihu1AU\nhYkTj2LixKNaff3G2tBdu3bx5z8/gNc7kECgghEjPuDee2dGBfhu3bpx331/Y+nSpdhsNoYPH97o\nwvZUhMYNGzbwpz/9A7d7MOCjqGguDzxwM926dWvyOebPn8+PP+ZSVHQ6AFVVB/HEE7N54onmBcVA\nIMDixYvxer0MHTqUwsLCZv35pmrsNbV06Try83+Hopix23PR9VGsX7++1UEx8jV52GGHcdhhh0X9\nfM2aNdx66xNkZh6FzZbJG298gcVi5eKLf9WsxzGZTNhstqjQaKxP9vl80n86zUjVs2hvEhQ7iXjd\nVuCndXy6rnfYlnxGuFNVlZqamnDhRzKfy8aNG6mtzaBnz4MB6NXrcNaseZmqqiq6d++elMcwQmJW\nVhY33XQ/weBp9Op1KIFAkBUrnuOTTz7h+OOPjxpdcDqdjBkzBrvd3qxR4GSFxqeffpXa2kPJyxuN\n3Z7D9u1zmTfvA84665dRx61fv5633/4Mny/IhAnDmTRpQvg5uN0eFKX7gXtQRVnZt/z44xpefvkt\nTjttctzw6/f72bdvH5mZmTgcDv7yl1msWqWhKN2xWl/jzjv/wPDhw5t8T5KhZ88ctm3bTm5u9wPh\nbgfdu7eskKm+xl7Py5d/h6YdRFZWXfVzXt5hzJ//dbODYiQjNFosFjweD2azmWAwiM/na9OuMOmw\nRjGd3xfT+do6PNlHMSEJih2cEQDihURN08J7JCZax5eKEcVkF7PU1NRtlpyKNTsulwtNc6PrKopi\nJhj0YDJpSZv2qV9AtGfPfjIzSwEO/N0VU16+PymPVV+80JhoHz63282CBcvYt28QO3ZsJT8/H5cr\nl/37ozunbN26lbvvfhOH40Rstgyef/4jdF3nmGMmAjBq1EhMpnuorCxh06bPqK4uYPDgC/nooyB7\n977CH/5wcYPX5tatW7n//peprc0Aqhk6NJuVK00UFl6AoihUVv7AQw+9yFNP3Q203Yf9lVdewF/+\ncj+7d69AVfdz6KFZHHnkkSl/3MzMDOCn++7zVVFQ0LwlAI2pv8G3UY0vrQTbRrzXb7qHWNH5SVDs\nwBJ1W0nVOr72oKoqmqaRkZGRsmmYwYMHM2nSUD755L9AAYqynUsvPbvRx2tqGI5VZT5u3FD++995\nFBaei99fDnzDsGEXJ+nZRNu/fz/ff/89ZrOZ0aNHY7VamT17DgsXrsbptHHWWZMYPfpnUYFSURTm\nzPkQh+No4CBstgHs2jWHnJz/MnZs9DrJFSvWoGmHkJc36MB/OYHPP58XDooDBw7kllsu5p57nsLv\nVxk5chojRw7HZFJYseIJqquro6aydV3nkUdmo6rHUVQ0gECglvffvwu/vyhi+5qe7N9fg9vt5oUX\n3mDZsvVkZ7uYMWMaI0aMSMl9hLo9EJ966jZ++OEHnE4nI0eObDDSu2TJEp577i08Hj8nnTSeX/xi\nequr0SdNmsR//vMRW7d+jK47sNt38Nvf/qlV5zTUDyNNCY1mc/wN3YUQnYcExQ5K1/VGK5tTOUXb\n1oLBIB6PB0VRkhISjXC3cOFC3n33M2w2K2edNY0hQ4bw179ey8SJX7Jv3z4OOuispPQD9vl8+Hy+\nBi0FL7vsQtzux/j88z9hNsOVV/6C0aNHR+2jGKmpo7O6rrN/f93IZE5ODjt37uQPf7iVyspidD1E\nUdG/mTBhHPPnmygpuQq/v5pnnnmNG2/sSb9+/cLT0wBbt+5jxIgTycraz6ZN32MyKRxzzEgOOeSQ\nqMe02cxomif8+1DIi90e/fYybtw4/vGPntxyy1uUlAxHUUyEQn5AbbBFUyAQYN8+L6WlAw6cP5Oc\nnCGUlX2OxzMeuz2XPXs+YvLkYbz44pssWuSkuPhKPJ59PPDAW8yalR/eoLr+eauqqsjKymrVqHR+\nfn7c3thr167lhhsex26fitWawRNPvI+iwBlnnNbix4O67Z8eeOAOFi5ciN/vZ9SoUZSWlhIKhXjz\nzbf59ts19O5dwAUXnEVubm6rHitSvFaCfr+/03SFSYdRu3jbf7X3dXV6koISklvUARkt+aqrq3G5\nXA1GM4y9+ZxOZ7M+DBVFSeqWKsmYejbW9LlcrnB4SYaFC7/kzjtfxeGYiKb5Wbjwdh57bCYDBw5k\nwoQJSXkMTdN45pkXeOONj7DZrPzqV9P45S9Pj1p7eNNN14Zb9dWveI7U1A+LYDDIU0+9zOLFZQCM\nHVtIefk+qqsPp1evuue1fftc3nrrM4YNm4nZbMPlykdRRrJx448MGDAgXB2rqiqlpfl88cVqhg6d\nxLBhg9m+/W1OPrnh3oJjxx7KvHlPsWWLgtnsApZw6qkNN4guKSlhzJjuLF78H+z2Evz+dUydOoqM\njIyo42w2GwUFLioqNpCbWzeimJlZw9VXn8Orr77Cvn0ejj32EC677CL+8Ie/U1x8OWazlays3lRW\nDmLLli0NguL69eu54YaHqK42k5Nj5s9//hU/+1nrvwjU9+WXi9G0Q+ne3Rhdncy8eR+1OigCZGRk\ncMIJJ0T9twcffJx33/2BjIzhLF1axrJlN/L44/ekpJtHS5cwJCKBqE68eyD3RrQnCYodTORG2rEY\n264Ye+t1ZJHTtcl+o3znnY/JyDg+/GG+c6ePefM+YeDAgUk5v67r/Pvfb/LPfy6jV69rAJWHH36B\nnJzuHH/8sVHHJrPC9IMPPuWrr0z06XMlAF9//Ta1tStxOM4JH2Oz9Qa+w+PZi9OZe2BqcS9ZWT8V\nZBhbqkyffjx7977Oxo3Po6p+DjusN6NGjcTv94enHwG6d+/OjTdewqJFS/D5/IwadSb9+vVrcH0m\nk4nf/e4CRo36mt27K+jb9/AGo5PG419++dk88MArbN/+JYpSw69+NYlJkybwi1+cHhUsunXLwO3e\nS3Z2Ebquo2n7cDoPjjqf3+9nxowbKSs7FotlEKq6nuuvf4JXXvl70gqVDA6HDU1zh38fDLpxOlOz\nXMLn8/H++wvo3XsGJpMV6M/OnXNYtWpVeJ/PVGmLbZlE+mwG3mlJCkpIblEH0tSWfJmZmQn3Vosl\nnTbcNjYFN9b0aZqW0kIbXddIVhY19qtcsOBbunU7EYejbhrQ4TiahQu/bRAUY11PLD6fj/fe+5iN\nG3fTp08+06ef2GAkbuPGnWRljUBR6j6cMzOHY7F8x+bN83G5itD1EH7/V1x88XEsWDCPbds2omnV\nDBnii9nyLyMjg7/85VL27t0b7mttrFmr3/Gje/fuTJ58fML7Y7FYmDBhfMLjSktLufPOa8JVz5Fr\nGCNf+zNmTOP++9+mqqo/mlbBIYc4GlRCL168mO3bFbp3n46iKKhqP9aunc/u3bsbBMV169bx8ceL\n0TSd448fx8iRIxNea6QTTzyOOXOuZ/t2HZMpA4tlKTNmXN6sczSVcR+iXzttPzpXPzQa2+4YswDp\n3kowHUY0dV2XUC3SkgTFDsLYSLv+m4nxAdEWLfmaq6XB0+v14vf7G6zpS+Z1nX76cdxxx0uoqhdV\nDWC3f8uUKbe06FzRgfOn/Sp79sxj9eo9QN3+esHgHnJzG/b2bQpd13nssX/x3Xd5dOt2FKtXr2Xj\nxme5/vrLo+5RcXEeS5ZsIDe3bqTU7d7AtGlHsXv3HubOvROTycTFF5/MueeeyeTJFWzYsCG8P2O8\nLxdms5levXo1+G9t0VvYbrdTVFTU6DHDhg1j1qw8tmzZgtM5jGHDhjV43ei6jtmsoqp7sFh6AkFU\ntbxBRfv69eu56643yMg4DjDx7bdz+POflWYVx+Tl5fHYY3fw0Uef4PX6OeKIPzNo0KCEf64lQcFu\nt3PKKUfzzjvv4nQOxe/fRZ8+pmbv6ZjMoNSaVoIiWigUSpv3c9F1ySuwA4gXEo2Qkqxg1d4jipGd\nY+JtCt4a5eXlVFRU0LNnTw477DDuuSeXd9/9DLvdyhlnzKR//9bthafrOm63G03TyMrKYsaMM1m8\n+CbKyvYAKvn5P3L22Xe06Nz79u1jxYr9lJZehKIodOvWj/XrH6OsrIySkpLwcVOmHMu6dc+xdu3T\nAAwZYmfq1Bk4nU4uu6yuotq4r3l5eeGOHy2RToGgV69eDcJspKFDh1JSorB9+zOYzX3w+1dx6KG9\nou4dwIIFS7FajyQ/v24d5r59Oh9/vLjZVdR5eXkN9pmEutfI7Nn/Zvbs9wE4++zJnHvuWa26P5df\n/htKSv7L8uVrKSzsy9lnn4HD4WDnzp14vV6Ki4vbbRlKU14jZrM5XJQnokn7vjYgKSghuUVpzujb\nrChKzJZ8xlR0KoJVMjSnUrexzjGtDbHvvPMf7rvvORQlC4fDx803X83Pf/7zpK3jqh8SFUWhpKSE\n5577B9988w0mk4nDD7887no4t9vN22/PY+vWcvr2LeC00yaTnZ0d/rnRYk3XNbZvL2Pz5jJ8vrXs\n2LEjKuw4nU6uu+637NixA4CioqLwl4dUvj7SKTTGkpeXx6OPzuS22x6jrGwhI0cO4pZb/tjgWsxm\nE7quhn+vaUEslob3beXKlcyduwBVhRNOOJRx45r2Onr//Xk8+eTn5ObOAODJJ18jJ6cbJ500pcXP\nzWw2c9pp0znttOkHrlnjvvse5r//XYjZ7KRXLzv33nsrPXv2bPFjJEPka8RutzdoJWgymTCZTO3S\nFSZdpp7rX4Pf75egKNqdBMU0lqjbilHQkq4hsalvvJEhKxWdY7Zs2cJ9971I9+5nYrNlU1W1mVtu\nuZf33vt3Uu5bTU0NjzzyLMuXr6dv395cc80llJbWbaSdn5/PSSed1Oif1zSNBx74Jz/8UEhu7jGs\nX7+KjRufYebMP4RDXk5ODocfXsjbbz/M+vVZKIofp9PBLbc8yTPPlERNz5rN5vDjtwVd11mzZg1V\nVVX079+fHj16NCk0Ql1bupqaGgYNGtSq0c2mGDZsGK+++mijx0yadBgLF/6LsjIFRTGh619x4onn\nRR2zbt06/v73t3A6T8JksnD//e9z7bVKzDWe9S1YsAyHYwJ2e926VadzAgsWLGtVUGz4GAv4z3+W\n06PHeZjNVnbuXMy99z7G3Xc3f2lFKkW2EvT5fFFffI3XSFdvJej1eqV9n2h3EhTTVFNb8jmdzqSF\nxPaYejaeC5CS6maAsrIyTKYe2Gx1I3TZ2X0pK/NTU1PTrH7FsWiaxk033c2SJXnk5f2OpUvXc9ll\nM3nllQejRgQbs3v3bn74wUNR0WSsVisZGUVs3PgYu3btCgdARVH4v/87hzlzLiQv7xC6dTuYgoJf\ns3v3O3z++QLOPffsVj2PltJ1nbvvfoT33luPxVKM2fw0d911JaNHjw5fd6zQ6PF4uOuuh5k/fxsW\nSwE22+Pce++fW90vubVKS0v5299+zcKFS1FVnaOOuqDBkoQFC5ZhsUwiL69uelrXNT75ZEmTgmJu\nbhaBwL7w7wOBfS1etxrPtm3bgWLM5ro1p9nZg9iwYV5SHyPZjBmTyNdIVwuNsd57ZUSxDUgLv4TS\nbxiqizP2SGysJV9NTU14E9x0lih4Gi35FEVJ2F4w8s80V2FhIZq2m0CgGoDq6s1062YnK6t1H9C6\nrlNVVcXSpZsoKjofp7OYgoKjqa7uzdq1a6OODYVCbNiwgR9++IFAIBD1s7pp5RC6bmx5pKPrwQbr\nTS0WCz17FlJUdCI9ex6DyWQLX0d7WbZsGe+9t5mCglnk5f0es/n33HbbE+i6zubNm1m1ahXV1XX3\n3QiNdrud77//nvnz95Cffy05OTNQ1bO47bZHUFW13SvvS0pK+NWvzqRv355cddVtTJp0BjNn3hn+\nQmO1mtE0f/h4VfVhtTb8tCkvL2fNmjXs3bs3/N/OP/+XdOu2jF273mbXrrfp1m0Z55/fcC1ja5SW\nlgDbUdUgAFVV6xgwoE+jf6a9p14jH98IjC6XK7xPbDAYxO124/V6CQaDSX+NtPfzN9S/Bp/Pl7QW\nokK0lIwoppGmtuSzWq04nU48Hk+cM7VMW44oNre9YGvexPv06cM11/ya++57DpMpC4fDz8yZ17Zq\nJNa4fpvNhtmso6peLJZMdF1DVWuipou8Xi933PEoa9YEMJks9OkT4m9/uyI84lhQUMARR5SwYMGr\nZGaOwONZwxFH9I65puycc47nrrueIRA4nWCwkoyMBUyceGuLn0csxlKAyA8ot9vN/PlfUFXlZsSI\nweGRv/LyckymfuHQmpk5iF27KnnmmVf4+OMdmM15OJ1vcP31F3DQQQeFz1dRUYGi9MFiqftzJpOF\nxYvXcuGFNzJyZCkXXHAaDocj5iiS3+9H1/WUjrSsXbuWm2/+JxkZl5CTk8/HH7+F2fw4N930J447\n7kjmz3+aHTvqeoIrykKmTo2env7qq0U88sgcoBewm9/+dgpHHTWe3r178+yz9/DNN9+g6zqHHXZ5\n0qfcx48fz/Tp3zF37kuYTE6Kipz88Y/JfY20FWPdYlftPy0jim1AUlBCcovShDGSqKpqzJAYqyVf\ne75enggAACAASURBVFcpt1T9wJuqN/kdO3awfPly7HY7kyefwFFHjaeiooJevXo1GNVrjsiQm5GR\nwfnnT+HFF+/DZBqHpm1k7NisqCnU9977kNWrcykpqdvDb/Pm//Hmm+8yY0bdJtiKovCb35zPkCFf\nUFa2i5KSwRx55M9j3peTTpqM02nnww8XkZXl4Jxz/kZxcXGLn0t969at4y9/uZN9+9zk5Di48cYr\nGDFiBDff/DCbN/fFYunFm2++w5VXVnDUURMOTMu+js+3C7u9J/v2zaOoKJuPPtpHUdG1mExWKipW\n8dhjr3PPPT/1hx4wYACK8jZ+/0RAYc2af5GXdyl5eSezZMmH+P3/5uqr66q0I9c0PvzwU7z55ieo\naojhw4s47bSpjBo1ksLCwqTdA6grVlHVQ3C56u5tXt5UvvzyHqCuQOjWWy9hwYJFhEIaRx7566jN\nxWtra3nssXfo3n0GTmcePl8lTz31LCNHDqd79+7k5eUxZUr0mkSfz8cHH3yAz+dj9OjRrdr43WQy\ncfXVV3DOOWfg8/koKipi+/btfPPNN2RnZ3PEEUd0yC1XYvWfVlU1HBqN4JiO67WbItaopsfjkaAo\n2l3He7fohBJtpG205HO5XB1qYXOsIBsZeFM5pbJy5Uouv/wW/P7B6HoVgwa9yZNP3suAAQPC97sl\nYo3qzphxHsOHD2LlynUUFh7CSSedFPVBvGPHPpzOg8J/rxkZ/dm69euo85rNZo4+ehJOpxNVVQkG\ng1E/N+6loigcc8wxHHPMMS26foPX6+XNN99l3boyiovzOOusk7Hb7Vx77e34fKfRo8dwqqvXcsMN\n9/PXv17C5s09KS2tmyL1eAbx0ktPhoPiDTeczV133UhVlYn+/QuYPn0qr77KgU4h0K3bQHbtqox6\n/CFDhvCnP/2S++67m6qqKjIyRnPkkdOwWBwUF09j+fLrsFqtmM3mcCHM3Lnv8e9/byQn5zY2bfoX\n777rZMWK7fTv/xU33XRek/YqbKq69bK7wvfc6y0jL++nNadFRUWcffbpMf9sVVUVqpqF01k3Uuhw\ndEfXc6isrIxZ9e7z+bjyyj+zcqWOouRhtb7J7bdfyfjxiTclj0dRlHALw4ULF3L99fejaQeh6xWM\nGzePu+++Na3CYnO/8MbrP93SVoLp+oVbRhRFOkifd4ouKlFIbKwlX7JHFFM9QmmERIfD0aI3v8iw\nlMg//vEUmjaVHj3qevmuXfsS8+bN4/TTY3+4N4Vx/WazmbKyMhRFCVf4TpgwgeLiYvx+P8FgMOrv\natCgEj799Dtyc4egKCaqqpYxZEhJI4+UWrqu8+CDz7F0aQHdup3K+vVr2LDhSS655DTcbie5uXVd\nTbKzD2bv3u7s3LkTkykz/Oet1gw8np+C7HHHHcukSRPxer1kZmayadMmdP01/P6jsdm6sWfPQoYM\nabhp9sknT+HEE49n6dKl3HffovCXIJ+vHKfzpw96oxBmxYpN2GwTqar6Dq93JE7nsQSD2zGbj+Jf\n/3qf225rPCg2Zx3apEmTeOedj1m58nEUJR+LZQV/+tM1TfqzeXl5uFweqqo2061bX2pqtmOzVZKf\nnx91XFlZGZWVlaxbt441a6BHj3MwmUx4PMO4775nWxUUI91552M4HNPJyChC1zW++eZVvv7666Sd\nP1laOrOQrP7T6Th9LWsU24CkoITkFrWjeBtpG1rbki+dtPWoaHl5JU5n7/DvFaUn+/dXtfh8Rkj0\n+/1cd90s1q2rBjR+9rMe3H779TzxxIt8/vkOTKZsunXbx623Xh6eEj7uuKP58ccdfPLJveg6jB9/\nEKeeenJrn2KL7d+/n2+/3Utx8RUoions7IPYtu0Hampq0PUqAoH92Gw5BIPVaFoFY8aM4cMPZ7N3\nbz+czh7s2/c/pk//WdQ5LRZLuDiof//+XHLJkTz33F2oqo2+fTO49NIZMa/FYrEwduxYxo37jkWL\nnsJkKkJRvuP//u/EqA/uun0pCwiFNqHruZhMhahqFU6nDau1G5WVblRVjblP45YtW3jwwVfYtq2c\nfv16cNVV5yecqrbb7Tz44Cy++uorPB4Pw4ad0+QthxwOB9dd9yvuuedFyspMuFwq1113PpmZP4Xt\nN96Yw2uvfYnFksfu3d/h9eaEr9tuz6O6urZJj5WIrutUVlaRl9cDAEUxoSi51NTUNDguHYNSc8UK\njaqqhvtPR05Pp9vzlX0URbqSoNhOEoXE+r2OY1EUJbyXYjKkaoSysVHRVDnqqEN4440PKCg4g0Cg\nEpNpKaNHXxd1TFM/HCNHQp9++kVWr+5Jjx5/AHQWL36Wu+++lzVrcigpuQqTycKePYt5/PFXuf32\nPwJ1YejSSy/k/PNrGt0rMhAI8MADj/Puu5/jcNi5/PLzOPnkpu+vt3PnTh599BW2bNnLgAG9ufTS\nc+jRo0eD436qslYP7BWoo2kBcnNzueqqc7nvvocwm/uhqpu55JJTGDJkCDfffBEvvfQulZVujjtu\nMKee2vjekMceO5EJE36O1+tNuDemyWTiqqsuZtmyZdTU1NC377kxr/vcc8/gyy9vYN26AIGAm4yM\nXzBo0FFUVLzDGWcMDhe5RI4geb1eZs16Dp/vLAoLR7B9+2Juv/0ZHnjgrwm/fNlsNiZOnNjoMfEM\nGjSIRx+dSXV1NdnZ2VGP9eOPP/Laa1/Tq9cMLBYnqjqSjRtvpXv3I3A6e1BR8QFTpiRnI3hFUTj8\n8DF8+eWnFBQcjde7G7P5Rw4++NKknD+dRYbGRJvApyvpzNIGZHuchCQotoNE3VZ8Pl9Kex23JU3T\nqK2tTcqoaHOC7O9//1u83gf54IPbcbmc/O1vFzJmzJjweZqq/kjoDz9sw+mceOAcClbrCNavfw9F\nOQSTqe6fU7dug9i27X8NztXYdjyKovDUU8/zxhtbyM39K8FgFbff/k969MhvUvcYn8/HLbc8QXX1\nZHJyRrB69VJuv/1J7r33r1FfNILBIHa7neOPP5h5857G6TwUn28to0fbKS0tpV+/fowaNYIdO3ZE\ntcXr27cvN954eZPvGxDeTLkpzGZz1PM0tqKJlJ2dzZNP3s2KFStYtWoV33yzAlX9njPOGMGZZ56C\nxWKJCgNut5vy8nKqq3Pp3ftnKAr07Hk4ZWUfsm/fvvAavlSxWq0xK5orKiowmXphsdRNKRYVDWHQ\noEFkZMzD7fZx0kljueaa5t3rxtx447XMmnUvixY9Sk5ONjNnXh1VfJMOUr1GMFHnICA8CtkeI43x\nnr/X6yUnJ6eNr0aIaBIU21iijbQba2NXX7qvUQwGg+ERtLZaOB8Khfj888+pqKjgjDOmctNN17X4\njT/WdPnQof1YvnwxWVmD0XWNYHAZI0YM5ttvVxD8f/bOMzyK6u3D92wv6b1C6IQQugREqqB0UFGx\nghWkqHRpUpQaBVHAAoiiIhZEEFGK9CICUgIECC2Q3uv23Xk/hF0S0iFA/L+5r4sPZGfOnDkzO/Pb\n55zn95gfRCbTkpb2N23bVr4yyr59x3F1fQ653BmZzInc3PYcOXKiQkIxISGBzEwX/P3bAeDv34mE\nhAOkpqbi7++PzWZj2bIVrF37G6Io8vDD7Xj99XbExkYTGOhJjx6DHD9K6tSpQ506dRw2OdUJtVpN\n27Ztadu2LS+VMJstkUg4f/48kyYtJCNDh7OzBIkkGHf3XBQKDRZLPpCNVqstsf3MzExOnDiBVCql\nZcuWxdYVVgUF095x6PXpqNWepKaepkmT2sybNwmFQlHl3xVXV1ciI2cjiiJGo5G9e/fyyy+/0Lx5\n8zuub16V3CuBVpJoNBqNDusd+/T0/TD4vvV4JpMJjUZzT/tQQw23UiMU7yHlicTCtYKr83RIRbBH\nRe2Lye8FVquVsWOncuBAAqLoi0SyhlmzhtOnT+XXA5Y0XX706FFiY9MwmQ5z5cohnJ096NAhhLff\nHs3Onfv47rtIRFFBw4ZuDB8+vNLHdHNzJi0tCZWqYP2cKKbg4VFQ/cNuNOzt7V3iy0ur1WK1ZmO1\nGpFKlVgsOkQxz7EQ/o8//uS77/7Bw2MSEomCHTvW4e9/hVGjXq90P+8Vt/OSzs3NZezY+ZjNw/Hx\naU529jHy8hag0XyARNIIm+0szz8fgVKpdIgC+3FSUlKYNGkJWVltEAQZrq6LmTdvZInrGU0mE2vW\nrOPEiQvUru3Lq68+X+HIj7+/P2+//QRLl35LRoYCb285EyfevF8yMjJ4990FREVdpnZtL+bNm1ak\nROPtYjQaGTFiHGfPmhBFV2Syr/nww8m0a9fujtv+r2IXjfakKXuWfXWpCmMwGP5TThf/SWpUULnU\nDNE9wJ7ZnJ+fX6K5dOEKJZUpY3e3spTvdPpFr9djNBrRarXo9foq61d553vkyBEOHryGl9crCIIE\ng6Etc+YspVevXsWEd1kZ1HaRWHi6PDo6mlmzvkerfYywsJ4kJf3Ia689wIAB/QB44on+9OrVHYPB\ngLu7+22N35tvDmHMmHmkpl7CZsshJCSDPn3GsWnTH3z55XZARb36TkydMhwPD48i+/r4+NCnTxN+\n++0TBKERoniWwYPbOuxY/v33DDJZG2SyguiEVtuBI0f2VrqP94I7uafj4uIwGDxxdy/Idnd1bY3V\nGsLIkW1RqVT4+TWnbt26DjEgiqIjgrRx43ZycroTHNwTiURCUpI369dvZfTo4qHLWbMi2b7dgFrd\nhaNHozl27B2++mpJhdeTtW/fjlatWpKXl4ebmxtSqdQxm/DCC6P5998ApNJBnD9/khMnXuDAgY13\nXElo165dnD1rxsvrKQRBIC+vEQsWLGfDhnb/M8kst4v9/AvXn76XpQRLG/+arOcaqgM1QvEuYzeG\nLVyWrzB2Xz6pVIpWq72vD+s7PbYoiuj1ekwmEy4uLoiieE/9yXJzc5FIPBCEAlGoVHqQk2NyrMur\nCKVlmu/ZcxiDoTVOTj44Obng5zeIEyf2MHDgTfFqLzl2uzRp0oS1az/iyJEjDsud2NhYVn15DG+v\n95HLXbh6ZSvLln3H9Omji+wrCAJDhz5Ny5YnSUlJISCgbxHT74AAbyyW84jiAzd8AWMJDPS+7b5W\nhOPHj7Nq1XoMBjOPPdaF3r173vX728PDA6s1BbM5C7ncDZMpHVEsyNwuLK5LEgMZGbnI5WGIIogi\nKJXeZGefLHaMnJwcduz4F2/v5Te8Iltx7dp7nDlzhtatW1e4r0qlsth9WWASn4VWOx6JRIkoNiU1\n9Sxbt25l0KBBtz0uUPD9sNlu/ohRqXzIzs4tZ697Q3UUqreKRru/qcFguGdVYWqSWWqoDtQIxbtI\n4WorEomkVPNphUJxWxVKqlNllpLWV1qt1nvah7CwMGSyJeTkXECjCSYzcy+tWzettEi8NdPcbDbz\n66+/8e+/9VAo5Gi10KSJBpWq6i2LgoODCQwMxGQyIZFIuH79OgKtkMsLMoe9vDoRHb2txH0FQaBF\nixYlfvbUU0+we/dELl1aiSAo8PJKZ9SoyCrps9VqJS0tDa1W67CAOXv2LKNGLQReRip1Ytas1dhs\nVvr164vVauXTT1eyYcM25HI5w4c/w8CBA6qkL76+vowY8RjLl09DImmIKJ7n7befKRaBtVNYDDz0\nUHP2799CXl4AgiCQlbWRiIhWpYgYEas1D0FwBQQEoWrcB6RSex1p+/EsCELVfI9atGiBTLaW/PxQ\nlEoPMjL+omfPNlXS9v8696uUYI09zj2gRgWVS80Q3SVuNdK+lXtVoaSyVMbU2k7h9ZXlWaHcKWUJ\n44CAAJYunc2sWYtISUmjQ4fmzJo1s0LtGo1GdDpdiXZEGzb8yvXrWlSqVKzWVDIzc7hwYS8LFnx4\nJ6dSjJLOzdPTE1E8gM1mQSqVk50dTXBwyaKnLJydnVmxYjEnT57EbDbTrFkzR63p0qjIdUxISGD0\n6CnEx+cCBkaNep7nn3+GP//cjdk8AG/vjjfakvHdd18hl8v4/fft7NkTh4/PKxiNBubO/RYvL88q\nM4B+/vmniYhoRXx8PMHBz1Q4YePBB9sxbFgWv/66FFGEl15qw4MPRpCfn19k2jEjIwOwcuLEGORy\nVzw8/Gna1EzTpk3vuO9BQUG0bu3N0aMfI5NFYLOdwsMjm06dOt1x2w0bNmT+/LFERn5GTk4ejzwS\nwcSJb99xu/8LVOaZV1IpwVtFo33d450ev2bquYbqQI1QvAuUVm3FLgSqyny6OkQURVF0WJncur7y\nbmRll0V2dja5ublMmjSCNm3alGnNUrhvds9KFxcXTCYTS5Z8wYEDUbi4aBk1ajCXLl1HoWhN/frN\nyMo6gdGYQ3CwmtDQUPR6/R2do06n48SJE+h0OkJDQ4tl47Zp04YePU6zfftspFJPXFwSbjsBRaVS\nERERUen9RFEkLS2N48ePI5FIaNOmjWPt49Sp84iPb467exfM5mw+/ngZ4eFNkMuliKLR0YbZnMmZ\nM5dZujSLs2drYTSm4+aWjpNTA3S6B9m793CVVgpp0KBBpeslC4JA9+5defTR7kWWHRSenjaZTMyc\n+SnBwdNwdfUgKekMSuW3zJ//YZUkHQiCwI8/rmLy5Hc5cmQTgYFezJ27Ch8fHwwGAytXfsu+fSdx\nclLz+utPVPp6durUiU6dOhEfH09MTAyXL1+uEoH7/5XSSgkWTuS7E6/GmojiPeC/7UB3T6gRilVM\neSX57NOb99J8+m5hT8KRSCT3fX3l9evXGTLkTbKzPRFFAw0bKlm16uNSbVDsGAwGDAaDw7Ny+fLV\nbN9uws9vDHp9KjNnfkX//s2w2Q4jk3XA27sbaWm/8MADBVO8d3LOubm5jB8/j2vXfLHZFLi4bOKj\njyYV8fcTBIGRI4fSo8cFDAYDdevWrXBSQ0JCAleuXMHHx6fSoqkw169fZ9KkJeTmtgKseHnN5YMP\nJuLl5UV0dAwuLs8BIJM5YTT6snfvXrp378769bNITZUhkTiRk7MUD48nCA4eSnz8UZKSvLl+/Q/q\n1/fGak1DLvfkjTcmEhV1geBgfyZNGlbiNLpOp+PYsWOYzQURvJKMuUtCp9MRFRWFVCqlWbNmlfru\nFZ6ezsnJITNThq9vC9zdRerUqU1q6qVilU7uBI1Gw5IlHxT7++rV3/Pnn1n4+Q3HaMxk3ry1fPCB\nJ/Xr169U+/v27WPixIWIYjA2WwoDB7ZjzJiR97X2c3Vco1hZ7qSUYFk+ijURxRruNzVCsQopq9qK\n/SFY1SX5qjqiWNEooD0JRyaTlZjJfa+JjFxGZmYbPDw6IYoiZ8/+wA8//MTLLw8tdR+j0YjJZMLZ\n2dnhIXjgQBR+fmOQy7XI5VpycsIJCgpiwIA0Nm+eiSAoaNLEiwkTFtxxnzdu/J3du53Izm6AIAj4\n+qpYvfoXpkwparYsCAIhISEIglBhgbNr1y6mTFmOKDbGZrvCSy915Y03Xrmtfi5dupqYGDdcXGT4\n+z9AUpKaMWOm0qBBA1QqKXl553B2DiMhYSuZmUb27JESF7edyMhx7Nr1NwZDEhpNL/buLTB5dne/\nxrVrZzEa3YmO/pa6dTM5eNCT69fb4er6MpcvR/H22+/x88+fc/ToKS5dSsbPz5WOHdswa9YyYmOD\nEQRn1OpI5s9/g7p165bZ/9TUVF5+eTwpKV6Ioon69S188UVkkZJ6FcXV1RW5XI/FkolS6YXJlIvZ\nnIBSqcRgMFRpVqzJZGLXrl1kZWXRvHlzDh48hY/PUMe9mZUVzrlz5yolFG02G9OmLUSheBa1OgCb\nzcSvv35O9+6daNmy5R33+b9KVQvV0kSjvZRgSaKxpOPXRBRrqA7UCMUqoqxqK4CjAkBZJfkqy/0S\nZ3aRKJfLy0zCuZeG4HFxyahU4Y7tJJJaxMUll7htQck6myM7u/D1cnHRotenIJfXuZG1nYazcxNm\nzZrMiBHJmEwmAgMDq6Rizm+//UVKSis0mnaIooXr1//k+PEzd9yuyWRi+vRPUCgWoFLVwWrNZfXq\n0XTv3qlIZDE9PZ3z588jlUpp0qRJiZHKmJgYdu9ORq9/AZvNlbS038nIyEMmsxEdHYrReAKJZBX5\n+b5kZgYSFvYSrVp1ICXlFH//fZKJEwuysy9dusT+/StJTnYlJSUGL6+++Pqa8PfXotFs4vTpKDw8\nBiAIAm5uHcjM3MPSpatJSGiIq+tDnD59mU2bFpKc3ILatV8FIDW1IatX/8p7743l0qVLJCQk4OLi\nQnh4eJFrunTpapKSOuHh8RyiKHL+/FLWrPmeESNeq/TYqtVq3nzzcT76aBGiWBdRvMrQoZ2oU6fO\nHVupFBYrZrOZESMmcfy4CAQhlf5MUJALKlUaSqXrje3T0WorZ5it1+vJyzPg5VUQtZZIFEgkfqSn\np1eqnRoqzq2i0b6UwW4dZk+CKenZZjQa76rh9syZM1m5ciXe3gUOCPPmzaNnz5537XjVkhoVVC41\nQ1QFlGekbbeMAarcSPteRxSraxJOREQ4a9ceQK0OxGo1IIr/0rr1kGLb2a8HFEzx3Xo9Ro0azMyZ\nX5GTE44ophEebiUiIgKr1YqLi0uVPrRTU9OQSM4BOgRBgc0WDRjK261ccnNzMZlkuLsXRPCkUmcE\nIYg9e/aQlpZGaGgoOp2OyMgfyM8PRxTN+PisZuLEIbi6uhZpa//+KIKDH+fcOQGZrC5ZWeHo9R/T\noME7uLi0x2AIQxAm8OST3fj773o0adIBEHB2DiIlZZ+jnXr16jFz5tMsXrwGqVRNeLgXYWGNkUgk\nXL68B5tNj9Wag0zmis1mwmJJ4fx5b8LCHkcikeLuXo+dO/cgCDcjqhpNABkZ+ezbd4g1a44jCE2w\n2aJ48MFzDB36pOPaxsYmo1B0Aewv7aZcv378tse3U6eHaNCgHvHx8Xh7P0rt2rWBm5Y7FouFX3/d\nzPbtR1Gp5Dz/fG9atmxZKdG4f/9+Tpyw4OEx7YadUSfi46cRFLSR+PjGiGI2jRoZad++faX6rtFo\nqFs3kNjYv/HwaI/BkARcrfT0dQ23R2mlBO3vB6PR6BCOEokEo9F4Vw23BUFg7NixjB079q4do4b/\nPjVC8Q6pTEm+nJyce5rcUdXYRaJKparUdMi9WH/05ptvkJQ0m507ZyEI8PLLg+jdu1exftivh0Qi\nITMzk/XrfyclJYs2bULp3ftR2rRpw9KlXpw/fx6NpgkRERGsXfsDH320GoulQJAuXvxekYzh272m\nDRs24OpVEZ1uJqJoQ6PR89BDHe5oHKDgOoliDrGxkXh798dmM5GQsJ9163xQKs/g7r6Bli3rYzZ3\np1atgunG69f/Yt++v+nb99EibQmCQHBwEGq1jHPnDiKKUajVSpydC6p5SKUarFaR7t27cvLkPkym\nfORyDSkph+naNahIWy1atGDJkhBmzPgajcYViURCSsopgoPVREQ8xSefzCAlpR5W6xnq1dOj0aiB\ngrEVRRFPTxdSUw+g1/dAJnMmPX0DPXo0YN26vfj5jUKpdEYUbfz99wq6do111DNu1aohUVF/oFLV\nJSvrINnZa9FommOz2W77h5u/v79jLenRo0f5559jeHi40q9fP7Zt28nKladwd3+atLQ8Zs/+lvnz\nNdSuXbvCkcYCA35/xzZKZQA6ncBHH00gOjoajUZDmzZtUKlUpKSk8NNPv5GRkUf79k15+OFuZUb5\nFy9+nzFjpnHlyi7Uahnz5o0nODj4tsahKrjfCXn2PtyPcn120SgIgsNO7Pr16/Ts2ZPevXuj0Wiw\n2WxVMoNRGtVh/Guo3tQIxduksC1CaSIxLy8PURTvumVMVVJaRPF2MrWr+pzLinaq1Wrmzn2X2NhY\nvL298fT0LPL5rRY+iYmJTJq0gOTkpqhUoezbt4+UlHRefvl5QkJCCAkJAQoiOx9+uBEXl0hkMhcO\nH17De+99SGTkrAqd48mTJ/n44x/IysrjoYeaMnz4C45I7IQJwzh1aix5eS0RRR3+/lcZMuTZOxqj\njIwMFiz4jgYNxnHkyHkuX56NSnWRoKBhhIS8CUBy8lZ2715Ho0a9HfvJ5R7k5l4p1l6nTs05c2Yb\nHh7daN/ek/x8A2fO6ElO/hKD4Spm87+8+GIHGjVqxDPPpPLLL0uxWiW0bh3AgAGPFWvPzc2NUaN6\ns2LFd1y7ZiMwUMOwYU8AsGzZd7i4NEWjeZX8/Ktcv34IieRHnJ1bkp9/hQcecCEsrA/ffjuP/HwT\nAwe2ZuDAXhw8uAKFomC9oSBIkErdMBpvZly//voQrl6dwy+/PIHB0Apf3+5ER0v46afNPP10/zsa\n702bfmPmzK+wWjsiCJf4+eetuLr64eHxAlptgfiKj+/EqVNnCQ0NrfD0dLNmzZBKvyI/vz0qVW0y\nM3+kY8fWBAcHFxF1mZmZjBs3l4yMliiVjdi/fweZmTk8+WTxsbcTFBTEunWruHz5Mmq1msDAQAwG\nw31/Rt3v499P7O8QpVJJSEgIGzZs4Ndff2Xz5s0EBQUxcOBAnnjiCbp27Vpl69vtfPLJJ6xZs4Y2\nbdrw4YcfOhwN/t9Qo4LKpWaIboOKiMSSSvLdyzV7VUlJdY+rG8ePH+eNNyai18uRSPJ5//1J9OlT\nIIRuraMtCAKnT58mKcmbwMCCqKOzc11++mkeQ4c+WyTKFBV1Bqu1PXJ5QR1fF5feHDlSPCO1JK5d\nu8Y776xEqRyBSuXH5s0/YrN9zbhxBXV969Wrxy+/fM7hw4cRRZGIiDF4eHhgs5Vu3mw0GklNTUWj\n0ZRoIn38+Emys1sRGtqDxo17k5LSh9jYSAThZgaxWh2CIEjIzNyFUjkAm82M0XiAZs2Ke/XVrVuX\n8eO1HDwYhUQi0LHjc5w4EcbIkXMxm3uhVrdj+/bDDB16lW7dOtK584NYrdYy75MGDRqwYMFbjmk1\nQRDYvn07cnk3goPfp8DM2kxKSg8mTvTk2rUT+Pm50rXrM6jVanr1esTRliiKhIZ6Eh29E1/f31U/\nfgAAIABJREFUCHJyrqHRxBEYeHOdlUql4o03XmT37jx0uuewWJyIiorDat1Nv37diy0nMJvNpKam\nolAo8PT0LFPAfPjhKtTqcahUBdHTy5c/IiQkDak0r1Af81EqncstD1e4klFISAhLlkxi9uylZGRk\n0aVLC2bMmFTC9T5OenoIAQHdAdBoAvnpp8/LFIo6nY4xY6Zw5MhFQKRDhya8997UKhcgNVScWyOa\noaGhhIaGsnfvXr766is2bNjAu+++S0xMDKtWrWLgwIEVbrtHjx4kJSUV+/ucOXN44403ePfddwGY\nPn0648aNY9WqVXd+QjX8T1EjFCtJ4WorJYnE+5ENfDenTUoraVdRbsfAu7KYTCZGjnwHk6k3rq71\nMRpTmDo1khYtmhMQEFCqzyMUzjgseQrSx8cLieQUomhDECTodDHUrl2x0ndnz57FYmmHj08TAHx9\nn2f37nGMG3dzGz8/PwYMGIDRaMRsNpfZXmJiIsuW/UJWljOimMNjj4XTu3ePIttYrTbHOj5BENBo\nnPDx8SA+fgdmcwskEiU5OVt47rlO+Ph4s3PnV8hkEl55pS1hYU1KPG7dunWLmFbPm7cUH58xuLoW\nmGmnp3uydu16pk4d75hKKw9BEFCpVA5/xosXL2KxJN4YZwGLJQ2ZTELXrp3KbE8QBF599UnWrdtM\ndPTn+Ps78/zzTxVLzDl69ChZWVq8vArEsMHgR3T0mmKiPDMzk08//YmkJDWiqKdz5yCefXZgqVPU\ner0Bjca90F/c6NChFrt2fY9O1xmbLRcvrxN07jy1yH4licaC9vSOSGPbtm35/fdvyhzHAnFZOe/S\nzz9fzeHDIu7uBQJh376v+O67Hxg27Pay4v/rVNepV3u/6tWrx4QJE5gwYQLXr1+v9I/17du3V2i7\nV199lX79+lW6n/95alRQudQMUSUozyOxvJJ899qA+nbbtPexrGol94PSxi8tLY28PBtubgUL8pVK\nH0wmX2JjYx3i0MnJqch4FXjw/UZCwjbU6kDy8vYxeHCXYoKgX79+bNq0k+PHZyOReKDRXGLGjIqV\nvlOpVIhiikMoG40pODmVnwxjryt76z321Veb0et7ExQUjtmsZ/36FTRqVFTENWsWxqZN35Oc7I5C\n4UxW1jb6948gJSWNzZvHYLWK9O7disGDH0cul/Poo90qdC6Fyc83IpXeFGJSqSv5+Zls376dU6fO\nERzsy4ABA8pdohATE8NLL41Hr2+M1ZqJwRCFzTYOaIog/MHEiUMqJDqdnJx49dXBpX5uNBrJzs5B\nLs9Fp/sLmawuZvPfuLjkFfPZ/OmnrSQmtiU4uBM2m4W//vqasLCTpVrHPPLIQ2ze/BVOTk9gMsWj\nUBznySeX0revnsOHj6NWa+jWbWqxpRCFsYtGs9mMSqXCZrNhNpvJzs4mNjYWpVJJo0aNSvwOFtSw\n3kRi4i5UKh/y8/fw0ktlX9PTp2NQKFojCAVjK5O15PTpC2XuczepLh6K97MPZY1B4b9X9VrSxMRE\nx1rbDRs2EB4eXqXt1/C/wf1/+/9HKE8k2tfwqdXq/wnfK3u1kuoiEsvC09MThcKKXh+HWh2E2ZyN\n1ZqCq6trETNwm81Geno6Go0GJycnIiMn89NPm0lJOUXbthH069enWNsKhYJVq5bwzz//oNfradas\nmcNKAsoW/+3btyc09C/Onv0E8Ecm28+MGU+Xeh5Go5H09HQsFguenp6ODEiZTIbNZuPatXSCg0MB\nkMvVSCT1SEtLKyIU/fz8mDjxCf744yDZ2flcvLidGTN0CIJIt27NmTt32h3fn4891o1Zs75Dp1Pf\nqEu8AZOpIePHr8Nm64EgnODPPw+wYsUipFIpubm5LF/+JRcvxhEeXo/XXhuCWq1mzpxPyM9/GlfX\nh294zS2iRw8TjRvrqF//Zbp06XJH/QQ4c+YMb7wxlcxMExkZZvz9j6NWX0ImO8fAgV2LfY+vX8/E\nw6NgjCUSGTJZQ5KT04q1azabSU5OZtiwISiV69i7dwmBgS5MnjybWrVqAdCoUaNi++n1elasWMvh\nw+fx9nZm5MjBDssiu/+qVColJyeHl19+i+vXLdhsRlq08GfJknlotdoiaxrd3d1ZtGgK69ZtJCMj\nivbtu/Doo92x2WxkZGSgVquLieH69YM5duwMotgEELFYztKgQZ07Husaqp67He2cNGkSJ06cQBAE\n6tSpw+eff35Xj1fDf5PqrQCqCeWJRPsavvISPe7GmsKqntotiHwZHXYwd5ptdy/WUSqVShYtmsnb\nb88kJ8cDmy2N0aNfICQkxDH9n56ezuTJC7h0KRtRNPDss90YMuRZ3nqr/HJ4MpmMBx988Lb6FRk5\nlf3795OXl09Y2MhSK6QkJSURGfktmZnOCEIe/fo1oX//R7FarY57LzjYg5SUU6hU9bh4MYasrK3o\ndMXFba1atRg2rBbz5i3m6tVQ3NxGIYpWduyYS4sW63nxxecqfS6FGTiwP1arle+/X4tMJuXFF19m\n6tSPcXb+AanUFVF8kuPHh3HixAmaN2/Oa6+N48yZEBSK3hw+vIuoqKl88cWHJCamoVI1BOyL+evj\n72/glVdeJj8//476CAUR/pEjp5Kf/yoeHg8Am0lJWUVoaAN6927Jm2++XGyfWrU8OHXqDFptF6xW\nMxbLOfz8mhfZJj09nUWLviEpSYUo5vPww/WYNm18hb6DS5asYscONZ6ek7l8+RoTJnzCF19MK1Zh\n5sMPl3HlSkPc3AYBNv7993N+/PFnnn/+WYextz0RxtfXt8h9nJaWxrRpkVy5kg0YeeWVfjz11OOO\nz0eMeJWTJ8dy8WIkoigSHu7BCy88U6mxreF/gzVr1tzvLtx/akr4lUuNUCyHsqqtwJ2v4atO2JN0\nRFF0ROOqG6WJzk6dOrF9+09cvXoVJycngoKCiqwR/eCDL7h4MRw/vz5YLPl8/fVCwsMbV7hW7qFD\nh1i4cAU5Obn07duF0aOHFYm07t27j40b9yOXS3j22V40a9YMKJh+7t69e5lt5+bm8tJL73DtWidq\n1XqA5s1D+fXXlYSFXaJhw4YoFAqMRiNDh/Zl3rwv2bQpDqvVFU9PfyIj1+Pn50doaGixdk+ejEGp\nfAZBkCIIUiSSzpw6dbJC51sWgiAwaNDjDBpUID6ysrIwmz/CZEpEoZAilTohkbhjMBiIiYnh/Hk9\n7u5jbvxoaMuRIy8QHx9PREQ4P//8Lc7OTyCVOiOR7KF168qbYJdGVlYWWVlmXF0fAMDDoy8KRRTv\nvjuArl27lrjPk08+SkbGz8TFncJm09OzZ12aNy8qFL/7bjOpqe0ICnoQq9XMtm1fERZ2ssSSg4Wx\n2Wzs3n2SgIBVSCQK1Gp/EhP/5ezZs8WEYkzMNZTKfjfuXykSSTiXL8ejVqsd31Oz2YzBYEAqlTqE\noyAIfPDBZ1y5Eoqv78NYLHmsWPEpjRvXd9yTrq6ufPPNZ1y4cAGJREKDBg0wmUzVYvr3flAdpr5L\ner9Yrda7aotTQw0VpUYolkF5IrGya/juZkTxTrF7DIqiiEqlqpYisbyH+aVLlxg3biYpKam0bNmM\njz6ag5+fHwCnT1/G0/MZBEFALndCFJtz5cqVCgnF6OhoXnvtXQThDWQybz7/fDUWy3ImTCiwm9m3\n7wALFmxDo3kRq9XAkSOfsnTpmyWKt1uxWCwMHTqaEyfykcs7c/p0GmlphwgPL5hWbtjwZsTN39+f\nBg38OX8+DD+/nkilLqSl7WXt2t+ZObMhEomkyBg1aBBEdPRR1OqmgIjNdoz69UPK7VNl2bJlBzqd\ngpSUj5HJzLi7t8LL6xJhYWEkJiaWsEfB/erm5obReITU1I+RSmMZN24wnTt3rrJ+ubq6olaDXn8e\ntboRFksmNtsVgoKCytxn0qRXyc7ORi6X4+7uXuy+u3o1DXf3gqxTqVSORNKA1NTi09O3UmB/IsNk\nykSl8r2RiJKJSlX8PmnatAHnz/+NWl0fUbRisx0jLKyLox25XI5cLi/iwGA0GpFKpTfu9UE3tnNG\nFEOJjY11CMVNmzaxYMEy8vPz6dGjM7NmTS12/HtJdRBq1ZGa8n33iBoVVC7VTw1UE6xWq8OLrSTR\npNfr0ev1uLi4VPs1fOVht4+xWq3I5fIqfWjfKwuf+Ph4Xn11PBkZvXB1fZ8TJ3x47bW3HceuVcuX\nnJyC8ng2mwVBiMHX17dCbe/Zsw+TqTtOTm1Rqeqg1Q7n1193OD7/7beDaLUv4e7eBi+vhxDFx9m6\ndX+RNrKzs/n++w188ska9uzZ7+jXuXPnOHs2E2fnCAQhFZWqJUlJqeTlnSiyFtKOxWJDowlEqXRH\nJpOiUDhjMlkdP1rsywZEUeTtt4dRp84J8vLGkpv7Ji1bZjFkyJ1NO9/KhQsXWL36MG3a/ERQ0ESk\n0p7YbL/w0UfT+G3zX2zd9g9e3vlkZi4iL+8QmZnzadu2DvHx8fz+ewrt2v3CI49spEWLxZw9e42o\nqCgyMjKqpG8ymYxFi6YBC8nPn4FON4GRIx8vdfq/8H6+vr4cPfovL788haFD32HLlj8d16xuXR8y\nMk4DYLWasNnO4+tbNCKYnp7O2rUb+PTT7zh06LBDDA0f/hgZGXOJj/+V+PiPCQ3NoVWrVsX6MGbM\nGzRvnklu7mRyc9+hRw8vBg9+sth2dtFoX4sok8kICPAiMzP6Rn1hI3DVcS8dO3aM6dM/wWx+Eo1m\nDH/8Ec+8eR/exujWcLfR6/U1QrGGasF/W+HcJSwWC1lZWSWWeCtcks/Z2blSUwPVMaJoNwaHAvsY\nnU5XVV27K5R0rlarlWPHjmG11sbZuSkArq49iImZTnZ2Nm5ubkyY8Cpjx84nOfkfrNYMunULqnD5\nM41GhSBkO/5vsWSiVt98gEulEmy2m9Y2omhBJrsptnU6He+99xlJSS1RqRqwf/9+0tKyGDCgJzqd\nDkEAT8/upKT8hsl0AKt1N717P1uioHn00QfZuXMNWVmuCIIUvX4d/foNQKPR3BAGFkddcScnJ9au\n/ZSYmBhkMhmNGze+7ams8+fPs2LVb2Rk5tE8vDYvvzQIZ2dnkpOTkUgaoVZ7EB7ugSg2Ji7uN77+\nZhs5uodQqVvg4aMnOOg0UukWwsPr8frrQ9m6dSvQDKlUhSiK5ORe5cLlHERpNHLZZka90afYlO/t\n0L59e/7442uuXr2Kj49PhbNG9+07wPz523FxGQlIiIxchkqlolu3Lgwe3Itjx+Zz8OBGXF0VPP10\nRJFs0ZycHObMWUlGRjtUqkYcOLCHnJw8Hn30YXr1eoSAAF/OnDmHu3stunYdUqLdiYuLC199tYyE\nhARkMhl+fn7l/oCzi8Z33hnOxImRpKUdw2LJpFu3gmlns9nMP/8cwWIJx8WlINPVyelh9uxZx+TJ\nFR3R/z2qQ0SzpD4YDIa7Wr6vhhoqSo1QLERB5qXV4ZNY0uf2yJuLi0u1nJ6tDHZj8MKZwXdDzFZV\neyX1zW5J5O3tjSimIYoWBEGGxZKBRGIjISGBy5cvU7duXb7+OpIrV66g0Wjw9fWt8Muhb9++rFr1\nM4mJnwNeyGR/MGHCGEefBg3qwqxZq0hJycFqNaBUbqR374mO/c+dO0diYgC1ahWUx3Nzq8fGjXPo\n2vVBmjZtSosWvhw79gNOTs2xWPYRERHCCy88VWJfWrZsyXvvmVi3biNWq8jjj/d1lP0rqYasKIrU\nr1/fEfUu/EKyWCxkZGSg1WodmbHp6elERn5BVNQVAgM9GTlyMAEBASxc9Atq9xfxqRPEsbN/YVnx\nI+PGvkJAQACiuAGTKQOFwoPMzMM4OdnIym1EcJ2HAXByCSI37QM+XTbFceygoCAE4Vcslv7odFdI\nSL5MYMgIAkM6kJkRw+qv1/LRoqJC0Waz8d13P7L+l33k5KTj6eVL7dq16PlIax5+uLPjetyKp6dn\nmfY0JbFz51GUyqdwciqY+jebn2XHjq106dKJWbMWcuRIPDabDwkJx1Cp2hc57tmzZ0lLa0CtWgXr\nIJ2cAtm4cSmPPlowHs2bNy8mgvPy8jh27BhOTk6EhoY6fuDcjh1K3bp1Wb16IVeuXEGr1RISEsLF\nixfJzMykoJupNxLzJBiNKfj6upbXZA33AaPR6KjiVMNdpEYFlUvNEN2gpGorhUVJ4cjb7Zbkq04R\nxXtlDH43f6kXLisYERFBjx7N2LZtKaIYhCBE06pVGMOHL0Iq9UStTmbx4smOdVr2a1kRPDw8WL/+\nS9av30Buro4uXd6nTZs2js9btWrFRx+588cf+1EoZAwcOJG6des6Pi+4PpIi/zeZTGg0GlQqFStW\nLGbZshVER/9Lq1ateeWVsv0DIyIiylxbWbiGbGHRaI80ymQykpKSePaFiVy8pEdCHs89246FC95n\n+vRFXLjwAB4eb3P9+hmmTl3GuHHPYCEUV/eCcwoKeZSTUVOwWq3Uq1ePUaN6sHz5eMAVNzc9zzwz\niPW/Ff+hVZhWrVrx3HPn+f770eTm5qPWhtK2bUEyiItbCHEXc4tFWTZt2sKqL2NQKJ4nNn4vV5Kb\nIKjrsXzFVubPX0J8fApeXl588MGUCicplYZWq8RiyXT832zOwMlJxeHDh9m9OxZn59kIggyTKY4Z\nM2bSp0+vW344FjXBLoukpCTeeut9UlP9MRpziIv7Cycnd+RyM3PmTKJPn15l7l8Szs7ONGvWDFEU\nWbp0JRs2/ItU6oNMdh1//0ySk9ciis4oFDFMnjzP4ehwP6gOEb37TWkRxZqp5xqqAzVCsRBlVVvJ\ny8srEnm7XapDFQC7SLSvbSp8PvdqTeGdYheJhcsKLl48j927d5OSkoLF0p7PP/8bX9/RSCQKMjNP\n8t57S/n2209u63heXl4MG3YzI9dqtWIwGByZ7k2aNCExMYWrV1O4cOESwcHBjs8aN26Mj8924uJ2\nolT6kZGxk0GDIhwvAa1Wy9tvj8BgMODi4uIQklVBaaLx1demEXO1F2rnF7Da0vnmuzeoV/cLzp9P\nx9e3IBHCw6M9SUl/kZaWhs2ScbM6TX4KWq3cIYz69+9F584PkpOTg4+PDyaTib37PiPu2g7U6gBy\nMncyeFDrYvfZSy89y4ABPYmJiWHpp3sQBAOiqCExbi+NG/kX+57t3n0CJ5enyMw8i1zTF1HwJyMz\niWtXvdBl+BEU+DU5OVEMHz6D33//koCAAKDgO3fp0iXy8vIICgrCy8ur3HF76qne7N07n/j4bARB\ngla7ncGDx3Pu3DkkkgAEoeDRKZcHkp1txmQyOa5naGgo7u67iY/fi1rtQ3b2bp55pk2R9uPi4ti9\n+zAWi40TJ06QltYDT89HOXToHwwGLWq1MypVGFOmLCQ8PMzhzVhZTp48yYYNZ/D2noZUqiQ7+wwe\nHusYO7Yf+fn5tGw5kcDAQMea7MLZ0/9fqK5CtUYo1lBdqBGKNxAEAYlE4hBJdsFUlZG36hBRtE/V\nKpXKezKtUZXnbDfNLq32tEQioVu3bkRFRTF8+FucO1ePzMzLNGrUABeXxsTFfVcl/ViyZCnz53+D\nxSIlNNSXlSsX8PvvezhwQIFWG8aOHWeIjv6Kt99+FUEQ0Gq1TJ/+Ohs2bCUx8SxPPNHQMQ1Z+Nyq\ngqysLJKSknBzc3NkfBc+hlQqLRBOV9KRK/sjSOTIBD9Mks7s338UicSG2ZyFQuGOzWbBZkulSZO+\npKQe5eDRT5HKA5FYo3hzRJ8ifXZ1dcXVtWAKU6lUMnXKK/zxx24ysmJp2bwpHTq0K7G/Hh4eRERE\nIIoCq75cRLpZQv16bgwdUryWrbu7FlN0ElKpAtGWhU1wQSqVkJ2dgouqDYIgR6NphV7fnDNnztyY\nFhf5+usf2b4rEaksAAm/M37MQJo2DStzHGvVqsVnn01j374DiKKVhx6aQlBQ0A0RtRi9Phqlsj45\nOb8SFtagyAvd1dWV6dNf5bffdpKdfYlWrcLo2PGmD2dcXBwzZnyFydQFiUTO0aMb8PPrgNlsxmy2\nIZW2wGI5jkIRhNVaj0uXLt22UExNTUUiqXNDJOZw7pyO/Px/aNq0FhMnjnH0Oy8vD6lUWiR7+v+j\naKxO1CSz3CNqHIjKpUYoloHVaiU/Px+lUolKpbrjB6Zd6NwvKlo9pjpHFO3R3dJ8K+Pi4nj22eHk\n5LTBYrnM9euJWCwWfH2TCQ+v79judgXsli1bmD59HRLJ5whCICdOfMWLL75F7doPERIyCUGQIIot\nOHx4IcnJyQ6x5uzszOOP9yzXb/P48eOsXr0Rvd5E//4deOSR7hW+76Kjo1m48BvMZk9EMYOnn36I\n/v2LT1vKZDJcXWQkpp9EIe+OiB5sZwkO9qd373BWrJgOtEMQLtCxow+NGzcmNDSUjqdPk5eXR+3a\nzxEYGFhmXzw8PHjuucfL3KYw7dq15YEHWmMymVAqlSUmVQ0Z8hjH/l2IXt8cU97PSFWhOGuaIrFs\nRu0yCwBRNGO1xuLuXlB/OSYmhm07kwmsMxapVE5uzjWWffoFy5c2KXFcC98TAQEBPP100UzjWrVq\nsWzZTN55Zx7p6Rm0bBnO4sULirXj5eXFSy+VvM509+7DmExdCAwsqDvt6ZlEfPx6wsI6IggGrNbt\nqFQtsVrzsFpjHSXWboeQkBBEcT3Z2fH8++9lzOZYFIoQvv/+NPn5c1iw4D2g4Psgk8lQKBQlWu7U\niMa7S0lRzZo1ijVUF2qEYhno9fpqX5KvooKn8Hq+8qrHVFfsiUbOzs6liq2///4bo7Ehnp59kMkO\nkZGxjoSEFNq27cj06dPuuA+//LIRUeyBTGb3vhvCuXNrqF1bys11aQIgc/wosEdAyxOJ586dY/z4\nz5FKX0ciUTNnzipEUeSBB1pz7do1/P39i0UJ7dhsNj766BvU6n74+ARgNutZt+47WrZsWmJCxKIP\nxvDi0NnosjeBmEyQXxITJ87F3d2dJk0acPHiRdzc2hEREYHVanVkTefk5DhEWFUjlUodhtJQkC2u\n1+vx8PBAEARCQkJYuWLmjXKKvVEolKjVcnp3e5HFixeSm/sgcI4ePerRunVroMCWSCoLQiotGHcn\n52CuJxuxWCylXovyvgMdOnRg377Ntz1labHYkEhuRsIbNKiPRmMlLW0EQUG5pKdfRybTodf/wGuv\nDaRx48aVPsbNthswduxApk+fjNlsRKn0wtf3cSQSFVu2fOAQioUpz6exqkXj/Z76vd/HL42aqed7\nRI0KKpeaISqEXXSZzWYsFosjkljV7d9rSpuqvRdU1TmbTCbHGqqyxJZarcZmy8JguIJaXQd//1rY\nbMtYvfqjKqly4OSkwWaLwmbTI5GosdnOo1YradJEzZkzG3Fza0ZW1inCwpT4+vpWqnLPzp2HsNkG\n4e3d4YbIfJ2PP57DtWvzEAQ/BCGJxYun8fDDDxfbV6/Xk5dnJSioYF2eXK5GKvUhIyPDIRSPHz/O\n0qU/kJurp1u3luzY9hk7d+7ExaUN/fv3x9nZGSjIrG7ZsqUjy99ms/HLLxuYMWMxNpsSb28Nq1Yt\nKteP8E747LMvWbXqJ0RRQWhoMCtXfoinpyc+Pj707du32PYREW1vVDjpQFBQEG++OYPExEwaNfLD\nZraiy09CrfElMW4vDRv4lngtbDYb27bt5NDhC2i1KgY/1d1heF4StysuHnqoJTt3/khamgaJRI5e\nv4U5c0ZTq1YtXF1dSU9PJyoqCnd3d4fgvRP69OmJwZDPlClrcXZ+CrM5FZMpEaXy5rOgNLF0r0Vj\nDTepMdyuobpQIxRvwf5itz8A/wuUJcQqW2KwOiaz2M2kVSpVuVP3derUIS/vCvn5WxHFPDSaJObN\nG1uiSKzsef7zzxFiY61IJKno9f2QSkORSI4zfvxgRox4jZ9/3szly3/y0EM+PPHEq46lCxUde7lc\niigaCp13LtHRZ/H2XoEo6tDroxg9ehqHD7d1iDo7BZY/WtLSzuHl1Ri9PgNBSHJMW16+fJnx45cj\nlb6FQuHHt99+idW6n5Ej3yi1P/aXf0JCAjNmLEciWYZKVYfk5D955ZWx7NixvlyDdpvNxuHDh8nM\nzCQ8PLxCdi+7d+9m5cq9qNVbkEg8OHt2Ce+8M5cVK0o3hg4LCyMsLIyMjAxefHESOt1LaLWN2bv3\nV+rV+xd91sekJ9qoX9eD0SOfL7GN33/fxprvr+IV8AwpOTm8N3cdc2YPLXF9oMViYdeuXaSmptGo\nUcNKCbr69eszZcrj/P77QcxmK2FhoY7vqZeXF3/9dYC1a/diMomEh29h9uyxxa53ZenZsyeffLKC\nM2c+wGarAyTw6KMNsNlsFbb5qhGNd4+ShHrNGsUaqgv/DSV0jzAYDOTn5+Ps7IzRaLzviScVbbM0\nKltisDpiMBgcFXAsFku5QnHhwhXUrfseBkN9jMY84DMaNapfbLvKvszS0tJYvPhXfHzG8/TTGg4d\n+g2r9Rvmzp3Mww8/jEaj4cUXb65Js7/4KzP2vXp1488/I0lMFBAENTrdVzg5+WAwHCM39yzgg9Wq\nZP36DQwd+mKx8xk37hUiI1cSH78PudzCqFFPOGoIHzv2LyZTD/z8CuoeSyTD2bp1IiNHvlJuv2Ji\nYhCE5iiVBfY4zs69SE7+xGFKX5pIsFqtjB49kd27LyIIgQjCAr74Yh4PPvhgaYcC4MyZaMzmnjg5\nFXgfqtVPc+JExSrKnDt3jvz8Jnh5FURdfX3f4PLlp/jjjwVIpdIyX7x/7TqFV8BQbDYncnJt5GaF\ncfLk6WJC0Wq1MnnyPA4dkiKKoUil3zBq1DWeeuqxCvURCjLhGzduzPLlXzBx4gfIZP6IYhyjRj3H\nF19cIDNzIILgxfnzGxGESBYtml3htktCq9VSr14YaWlhyOWtcHXVcv36F+zfv59OnTpVur3/JdFY\n3X4Y2zEYDI4EsRruIv/NV+M9pWaICmE30pZKpY7yff8FSnrQ2QVWZUViVYvZO2nPYDDA/o3wAAAg\nAElEQVQ4LGOkUqmjNF1ZxMYm4eHRBpmsIAJz5Upzxo6djESiomPHCGbOnOwwl64MKSkp2GyBqNU+\nCILAI488S1zcFTp27OjoU35+PgByubzSIhEgMDCQlStn8uuvf6LTGWnT5mWGDZtKZuYh5PLnEcU8\nJJJ0tmz5m6eeGoRGoym2/4cfTiM7OxsnJ6ciywwKKsnEOf5vNmfg6lqxaIWfnx822wVstjwkEieM\nxvOo1VI8PT2RSCSlioRNmzbx++/RyOXT0GicsVpjGD9+NgcP/lnm8QIC/JDJ/nKYpxuNxwgJqVhC\nh1KpxGa7aeVjseQglYoolcpyr4VSISP6/EVOnc4CfLAaTvHNN5fo27dXEcETFRXFP//o8PVdhCBI\nMJkeZfny13jssb4VihzbuXDhAp988j1K5WykUlf0+hjmz5+JxTIMF5duCIIUqdSVTZteJzLSeltL\nJ44dO8bs2R+QkZFNerqBevVGo1R6AJCUFEpSUlKl27yVW0WjvUJQRUVjdVgjeL/XSJaE3Wu1hv9/\nCILwJdAHSBFFMbyUbboAiwE5kCaKYpe71Z//dmmRKkar1ToextXByqaibd6KXq93CKz/aiTRfg6V\nLZMYGhpCRsYeAPLy0rhy5Rfi4xuTkfEUP/0Uw9tvv3Nb/cnIyODQoS388MPP/PnnHhITz6FWFyTW\nmEwmRo4cT1hYR5o06cBbb72DSqWqtEAHqF27Nm+++Tpjxw6jc+fOjBkzBLiKKB4A/qZjxw5IpVr0\nen2J7UilUjw8PIqtRe3UqRNBQWdJTPyEpKSf0OkWMHLkoAr1rVmzZjz/fFcMhlcxGicjipNYtOhd\npFKpQyQUrjVssViIjY1l7rxl5OaFkJWtICkpHQgmLS0NURQ5cOAgU6Yu5L33F3Px4sUix+vbty/t\n2oFe/xRG4wi02g9ZsKBi162g6gkkJc0jKWk96elTef31ARW6Fk8O6szxw7OxmkA0JyDHxMmTGRw9\nerTIdjqdDpNJICfnKEZjMnK5O1Zr5X9cxsXFIZOFIJXabYXqYbFYEcUE7IlRongNqVQs9XqXxZUr\nVxgyZDTnzjUhI6M/6ek6zp79EQCLJQ9BOE7t2rWr/IehTCZDpVKh1WqRy+WOJRh6vR6z2XxfnR+q\nMzUl/O4T0mrwrzirgZ6ldVkQBDdgGdBPFMWmQMUe5rfJf1NF3CX+i8bTcPMXqb0OtdlsrlYlBisz\njoVrad/OObz77lu89dZM4uK2k5ERh0Zjw919AABy+WC2bZuGxWIps1+iKJKYmIjZbCYwMBC9Xs+s\nWV/g6tqXrKxzZGZe4ODBQ/zyyzzkcjkrVnzNli1pqNXrEEUbf/zxPuHhaxgxYlil+l4Szz33DAcO\nnCY31wtf34bk5l7Gz0+Lm5tbpdpxcXHh88/fZ9u27eTmZtG27SjCwsr2EizMlCnjGDiwF8nJyTRs\n2NBhj2M0Gln+6Wp27TqOq6uWMW8/T6tWrdixYw8WeiCVbkMQcrHZ3ElJWUpgkDfPPT+OU6ev4uE7\nAZs1jz175rByxQxCQkKAgojsxx/PJSYmhvz8fJo2nV7hEnwymYzIyGls376d5OQ0wsIG0a5dyR6O\nt9K4cSM0imRkslQkEgVq9StYLJ+Qlpbm2EYURY4ePUNC8jVsyXuRSRLwcHWmQ4cQnJycKjyeAPXq\n1cNqvYTZnIBcHoBO9y/e3l4Yjf+Sn/8uMpkvNlsUDzxQ3xEFz8rKIisrCy8vr3KPd+DAAUymULTa\ngmpEXl5DSEtbSlraRURRx5Ahj9K2bVvH9lUdVbOLRplMVmqksSoSzP5Xsbtu1PD/D1EU9wmCEFLG\nJs8C60VRjLuxfVoZ294xNULxHnI3o5SiKKLT6bBYLDg7O9+2SLwbU88VpSJCt7y+eXp6smzZ++j1\neg4fPsw773ztmNqyWnORy2WOSFhJbVmtVj755Et2776GIKgICRF58slu6HT+hISMxmRKwWzOIC/v\numP939GjpxGEPgiCAqlUgkTSm0OHDjBiRPnnnJ2dzaZNW0lMyqJRwwD69+9T5HMnJydmzx7DkiWr\niY8/TmhoHUaNGnlbL1gXFxcGDXqi0vsBnD59ms1bDmATwd3dwyEUlyxZwS+/6XH3nk98ahxvj4nk\n0+WTyMs3oHVuSYOwcC6enYrNlocgdaNu6AccP5dCTm4UTq7p+AU9QUpCPn9u3cnwYS87jieVSouU\nSawMSqWyxMzo8tBqtTRoUJfYWB1abS9MpgvAKZo0GevY5sKFC+w5kEWXRz8lKuoSOVnXEKRfM3v2\nqkofr3bt2sydO56pU9/DYtHi7Gzlyy+XYTAYmDp1EVlZ/xIe3pC5cycgCAL79h1g2bLfEEUPFIos\nJk16lqZNm5Y5DoJQtFRlUJAn338/q9z1mlVNWaLRXg2rMok1Vcn9nvou7fg1Wc81lEEDQC4Iwi7A\nGVgiiuI3d+tgNUKxFO63OXZlKGxjcrt1qO83FRG65Z3XX3/tZMaM5ZjNUgIDnZk/fyJ16ki4cOFb\nRDEAmewokyaNLrOdffv2sWOHgVq1piMIUq5e3cK2bQexWpOxWvNRKHwQBDlSaUGCDUBwsC/Hjp1G\nImkHCNhsp6ldu2S/w8LodDqmTvuI68ktUKrbsnPvdvLyDDz7bFExFxISwsKFBZHQ8iIMZrOZXbt2\nkZWVRevWrQkMDEShUNzRC/jIkSNMnbEKhfPDOLuFcGzBRmZMFmjWrBnbdxzB0/cz5AoP8nMvci3e\njSnT19C0iSc20484ub9Dqwd/5lrMGNy8+1Er5CHORn+PyQxXrm5Bp0tFqZBgNpv57rsfiI6OpW5d\nf/r1KzAnj4mJIT09HQ8PDxo2bEhMTAx/bD2AzSrySI8ImjRpUuHzMBgMZY6FIAgsWzaPt96aRkzM\nlzg7a/ngg+nUrl3bsU1WVhYyeRAeHl507uyFKLYl/tKB215LNnBgf7p370ZaWhouLi54eBSsH9y2\n7XuHfyVAeno6S5duxs3tTdRqL3JzY4mM/JIvvphZ6vRkz549Wb78K+LifsZm80ImO8rEiW+yZ89+\nli5dh80mJSwsmPnzp9zTKc5bRaPBYHB8/yUSieOz6jIjcr+oMdy+R/w3VZAcaAU8DGiAQ4Ig/C2K\nYszdONh/c4j+o9yt6Wyz2YxUKsXZ2blKqsfc62SWqhC6sbGxTJu2ArV6Dq6utUhI2M6UKR+wYcN3\nrF37PcnJqbRvP4Pu3bs7yjKWlNQSG5uEQtEUiaTgq+Hm1pz09FO88MJDrFnzFoLQFDjOW28Nws3N\nDb1ez6hRr3L06GhSUy8CIrVq5TJmzNfl9vns2bNcuOxCtq4eZrMFH+8BrN+wnMGDS86eLW9czGYz\nL774BseO5WGzBZKb+x4+Pj54enozYcIQ+vQpWqVFFEVSUlIQRRFvb+8So5Q5OTnMnrOGhMzuaIz+\nZGacJKB2N77+ZhMD+2cjk4mYTKmYTKkkp15CphmEX60gdJZkuncVuHR5GUajhT696nHpugsmYyZS\nyXVE5cNIpDnkmWQY8j/g5Im6nDrli0LRmR07jvD33wt5/PFe/P5nAhJpPayWozQL+5u/9sQgaAYg\nCDL2//0jM6Y8QXh4OHl5eWRlZeHq6lrMSiYnJ4fp0yP555/zyGT/x955hkdRvX34ntm+2U3vCSQh\nDQKhN5GugCiiiCAgiAVFUGkiCoqAiiBgF9A/CjZAREWlCghIlU6oIZAQSCe9bp95P8SshCRElKZv\n7uviA9mZs+ecnZ39zXPO83tg3Lgh9O9ftUQgQHBwMGvWLMdms/0Rkas85yEhIQjSOkpL0tC7BJKZ\nto2IcJ9a/UmPHz/O5MlvkpmZTfv2LZg58xXng4bBYECv11fah1hRUjQlJQWlUklhYSEQgE5XXqfa\naAwhPV1LUVERPj4+ld7LarU6H7hWrVrKihXfkpdXSKdOs9DpdDz33ALc3WejVLpx4sRK3nprPq++\nOoGbQcU4K/a6VkQa60RjneH2f5ltB2HboX/URArlCSwmwCQIwnagGVAnFK83/7Y9irIsOzfQGwyG\nf20ksUIk/hOhm5iYiCw3QacrtzLx9LyT5OQliKLIU0896Txu27ZtPP30BEpKTPj5ebF06aeVKl+E\nhgZgs8UhSR0QBCX5+Ydo3tyf0aMfp2PHNqSnpxMS0o2YmBhnVra3tzebNv3A3r17EQSBtm3b/qXM\n6szMTOLiziJqBiCKWtLSjtEgMOtvX3cbN27k4EEzGs375OUVYrV2ITt7PkFBC3nzzRcIDa3v3Jdo\ns9n44stVHDtRBoJIRJjAiCcerBLB2LXrIBZ7O3SuXTC4hVBa6Mnh/cs5Yj7K3j0aysqKQByHTWqD\n2RyAn38ZYWENkBwB2MtOsPTrFwDIz8/nxcnvk3QmGxRGfDzzcXWV8HA34K5txfHjifj4vI8gKJGk\njhw5MgKL7Xcaxb6ISqXD4ejAyh8mYvDpSf2g2wHIyVSybsNulEoVny3Zgt3hiULM49FHuhAbWz7O\n+Ph4XnttHqdOhVOv3k/YbDnMm/cCYWH1admyZY1zWdMPtL+/PxMn9OXD+e+QlyEREe7F8xMeq3Jc\nRaRMq9WSlZXF4MFPYzINR6WKYt26VeTnv8DXX39S4/sXFxfz/POvc+JEAbJsp127QGTZjsmUjU7n\nQ1HROfR6SyX7FFmWeffdD5k/fxGSJHP77e1ZuPBdRo58ynnM8uXLkaQ2qFTle1zd3Xtw5MiMGvtx\nI6lpefp6i0ZZlm+qEK1p6blOKP536dqq/F8FM65+58pPwEeCICgADdAOeOcada8KdUKxBm71rOeK\nqFjF0/i/VSSWlJTvoforIvFK8+fr64skJeFwmFAodJhMSRgMyko32szMTEaMGI/d/jB6fRhZWQcY\nMuQJ9u7d5rQ16dSpE8eOJbJp0wxEUUtkpIpHHx2NIAh/ZNQ2A/607jEYDM6qN927d6/Sr/z8fCZN\nmsa+fYcJDg5k3rzpNGpUXv4vLS0D7LmI6ngEIQTZchCLucBpBXS15ObmIkkNAAGzOQlR1GCzXUSj\nCSQvrw2ff7GU6OjGtG0TS25uEYdPuBLa4GEEQeBM8iY2bd5B33t7VmqztMxKg4hGHDp6iuICieKC\nPAqz99O00XwMhiaoVEcQxGnceYfA7gP5dOg0DLVaTVbmaRoEuTrb8fDwYPabY1i1ajXf/5xA4xb3\nEBBYn+KiTPIzdnAhSY1CoUQQxD+uAxGHpEGWFdjtdkRRgSC4IEm2Sy8ILBYrSz7fgtHjYVxcfCgr\ny+WLL79i+rQQli79lnnzlpCf74ssr0GhCMPDoxNlZVEcOHDwikLxSrRu3YrPF7escQ9ZWloas2d/\nQmpqPq6uatq1C8dmi0Gv7wqAUjmS3buHVBICl4uFhQu/4OjRSHx8nkWWHeze/Rp9+gicPPkhBQVu\naDTFTJ48rFIkc8OGDSxY8AMazQuIop49e1bx6qszeffd2c5jfHx8EIRDyLIDQVBQUpJAgwY+t9z9\n42aJxlsJs9lct/R8I7gFVZAgCMuBLoC3IAgpwDTKl5uRZfkTWZbjBUHYABwFJGCRLMsnr1d/bsEp\n+u9yrYRihUhUqVROH7trxfVYeq5ur6csy06h6+Li8o9/qBo3bsygQa1YseJ5RDEEUYxn7tzxlX5I\n4uPjgUA0mgbIsoxW24SUlJ8YOHAcwcG+PPvsIKKjo3nmmccYODAbm82Gn58fFouFuXM/4sSJ80RH\nB/H444PRaDS1iltZlnnkkVEcOuSFUvkcOTnJ9O//KNu3r8Xb2xuNRoOvT0cgE4vtNK4e7gQFBv3t\nOWjZsiWC8CmFhe5IogJJLkKjiqao6AAZWWvYe2gA59LCWb32R5o1dcFguN/Zf1e3SNLSdlZpM6ZR\nffYfOkWnDl1ITk4mufhHFB6RGAzlSRQuLo3JybXy4osvsPybn9l/eBmiaMDdmM0D/SovoXt6evLE\nE8MJC9vBz+vXknrOB5WQweiR92G35LNv37uYzS0oK9tLgwaFxDRyJSc7Dk/PaHJyEoiOUpGWsZ3M\nNH9EUYmtaBWdH+rCT6tTcHEpX37V673Iy/YgISGBuXP/h0q1EIVCxGYrJjFxDF5+Jqw2M5u2ZNGj\nxznCwsKqfGZ/5VoUBMEp8nJzc8nKysLf3x83NzdmzlxIXt5tBAe3oKjoAqtWLcThKLgkqaoAhUK4\noufiqVMX0Ouf+kM4i6hUXXA4fud//3uZgoICvLy80Ov12O12vvlmFZs3HyI+/hQmkz86XfnSu0rV\nkb17f6jUbteuXenUaRe7ds1AofBCq01m8uSptY73elJbRO+/LhqvlMxSJxT/fyLL8uC/cMw8YN4N\n6E6dUKyJW3Xp2eFwUFxcjEajQafTYbVab8l+XolrLRKh/PMaP34Ud99dnhgQHj7SWb6uAn9/f+z2\nLATBhCBoKSjYgNXaBYNhKpmZ6UyZ8gkLF76Er6+vM6NZkiTGjJnK4cOhaLWPcOTITg4dmspXX32A\nQqFAkqQa57+wsJADBw5jtnVCtuxAwIxY7Mnhw4fp0aMHd9zRjcWLX8BkGoqLSwRm82KGD68+W/ev\nXI9NmjRh4sShTH9jC0pdFxACcNE350zi8xg9uhDbYgSCIFBSHMrRuGkEhZ7C2ycaBIHC/JN0aOWF\nw+EgKysLV1dXDAYDjRvH8PBDEhs3b6BJlMwDvduwYMEGTKZz2O3FFBRuoFWrBigUCh4ecj9du6Rh\ntVoJCAio8Ueue/dOxMY2pKioCG/vLri5uTF9+gR69x5Kbu5vaLVBZGfr8fNR4+UZz/kLu4kMc2fA\ng0+RlZXFuvW7cEgSvXrcS3R0NOt/OUFxcQZGYwAlJVmolPlYLBZUqgAUCm/c3W1kZyciKWIosWrw\n8mqEl38ky5Zv5uUpT1bbx7/Kpk2bmTFjERAIpDNp0sNkZVkIDGwBgKtrfUpKYggJ2Uly8izs9ghU\nqt94/vnRV8xcj4wM4tSp3bi4NAFkbLY9REQEYTQaK+3B/O67n1mxIg1f3+dQqY5iNn+I1ZqKWh2M\nzXaewMDK3wGlUsns2VM5fvw4ZWVlREVFOffa/hu4HqLxZmc910Td0vMNok4F1UrdFN0E/u6NyW63\nU1xcjE6nu243kOstkCuioUqlEr1ef1XzUFvfNmzYyGef/YAkSQwdeg/9+t1Xqf2GDRvy+OP9Wbz4\nfSAYqzWJtm2Xodd7odd7kZ7ehISEBKdIhHJT5Li4PLy93/8jChlLcvJIzp8/T3R0dK0RxVKzFtEw\nAoUqBsl+jqKSUc4x1KtXjyVLZrJkyUoKC8vo0uUu+ve/74pzt3HTVrZuP4lapaDvPW1p1ary8mm7\ndm0ZMLABQSF3UVpaysWLWZw+FojBPcbZV6VSj7uHN+1bWdl/aAGCIBLb0EB4gxZ06nQ3Fy+akOUS\nJk8ew+DBA2jfvg0dOrRzvodOp2LcuL6YzUFoNAqKi7wpKSnBYDAQHBxcY/8vxcfHp1ISRlxcHApF\nR1q0mIksg9mcypdfjmbLlmVIkuSMvvn4+NC4cWMkSXJWhBk6pDNffrWMglxXNKpSRjx+J35+voji\nRSyWw2g0LdDpDlJq98XVszUKrQt79p3EEpNapV9lZWV8u3Idp+Iz8fUxMOihHjWOKS8vjxkzFqHR\nvIVWG4zJdI6ZMycQGBiMyZSDTueN3W5GlnP5+ON3+f3338nIuEjr1pPp1q3bFedn9OjhnDr1KklJ\nB5FlK+3bezNgwHNVjtu58zheXkPRar2IienMhQtHKCv7GkGoh8GQzsyZS6qcU1BQwPLlP3PqVDIR\nEcFMnPj0P64lfTP4r0ca6+xx6rhVqBOKl3C9k1n+yVNrhUjU6/WVrCxu1chnBZf275+IxNrYvn07\nkyd/ik73BIKg4LXXlqDRqLnnnrsrHffqq5Pp06cXSUlJfPLJagICypMBzp8/z/nz+/nttwzat2/v\ntCUp/5GxI0k2ZFmBUikiy/a/5GNYUlJCSFgrUvKKsNmSEcVCjO6hlWoHh4eH88YbLzkjxVf6PHfs\n/J1Va3MICHkMu93Moi++x2g0EBUV5TwmMDAQQd5DWVkbDEYfCvOP0qtHW+KO/k52VgharTd52asY\nNrgNAwfcT5978pEkCU9PT3r27E96+gB0uoE4HJnMnv0kjRpFctttt1XqR3JyBv7+T+LhUR4VS0p6\nl8WLlzJmzN8zGLfZbJjNZgThz8QMhcKNlJRkIiNb4nDY6d69Gx9+ONuZtKVQKFAoFKjVamJiYpj6\nSgj5+fkYDAYMBgMqlYrFi9/hyScnUFpqR6k04el6D17e9VEoPcjLPExhQXaVvixdtoaE5HD8A+8j\nsyCN9z9cxdSXhzszlC+lPGPcD602mJKS45w69Sw2Wy5paQmEh5fh49MKSUpn4MD2REREEBFRteZ4\nTbi7u7N48dskJycjiiJhYWFVBE9SUhJnzsSTn7+fRo3cMBgMxMYG0qFDP1q0aEabNm3w9vaudI7d\nbue5517hzJkmGAz3sWPHfpKSpvDpp/P+VmnLW4V/s2isKXBws3wl66jjcuqEYg1cLwFW0e7ViCSb\nzeZMmKjNhuOfcr3Gfem+Sp1Od82Xen7+eStKZT8MhnJfPbt9AD//vK2KUITyvXyNGzdGrzcwf/4H\nnD3rTXr6UQQhkwULEjl5MomvvlqEKIoEBgbSrl0wO3a8jlbbDZttD23betGgQYNa++Th4UF4Azf8\nwgIoKVGgVhlxU/lVsTPJz89n9+7dSJJEz549a/yM446ex8v/HrS68ozVYsNtHDuRWEko+vr68uTj\nnflq6RfkZTqIivRh+LAh5OTksHTZOoqKzTxwdwx9+vRy9hHKP5/Tp+PR6xcBoFD443DcTkJCQhWh\nmJSUhUbzgFNMq9VtSUxcTUlJCWlpaZw5c4ZZs+aTn59H584dmDv3tWojViUlJUydOocdOw4himCx\nmBGE5mi1YaSnT6OoSI3R+AUqlTtbt77JtGmzefvtNyq1USEaXV1dMRqNzkijyWQiNjaWvXs3U1pa\nyopv17JqrZLCws8wOxy4ukBEeEiltiwWCyfjswmNfhJRFPH2iSY1+RhpaWnVCkU/Pz9EMYvS0oQ/\nROJgRLExKlU+KSkzmDRpIA0b3kN4eHil82RZxmq11updqFKpiIyMrPa1U6dO0a/fUIqLozCZlpCU\ntJ/mzUOJjMzi2WdfqLa/UJ5ok5RUhpfXkD/2WdYnI2Mf58+fd3o43miu9dLv1YrGW3XpGW5uDer/\nN9QVB6qVOqF4i2O1WiktLXVGSS7n3xBRlCSJoqIi577Kf9JWTWM1GLTY7YXO/zscReh0lX+IZVkm\nKSkJk8lEQEAAnTt3xMvLgz59BmA0PolW+xAAO3e+wdGjR2nWrBlms5np059nzZoNnDq1g6ioYIYO\nHfuXnvQNBgMTxvTnnfe/RO9aDxypPDfq3krl6BITE7n33sGUlgZhNqfj4vo2Ax68n7vvas1tt7Wt\n1J6Li5qsjAJc3esBYLXmYXSpKjaaNGnMW7MaY7PZOHjwIOPGvY7ZbOXBB7vTr1/fan98RFHE3z+Q\nnJz9aDQdkGUTgnCUwMAu1bQfyr59m5DltoCM1boJT0819947gsJCNefO7UarfQUXlyjWr/8Si+VF\nXnppLGlpaYSGhjpF9pw589m+3Rsvr7XY7blYLGMICloCuKBW53H8+EAUCj8AlMpH2LFjyhXn+/JI\noyRJZGVl8d57nxEXd4rMTIGo2JfQaHSU5H1Dn3u6VjpfpVKhUoHVUoxW51YuMuwFVYR7cXExK1du\nIOFMFi1bxrBr1wTs9nxEsTFubgbUak9kuSF6vb6KSDx+/DizZy+koKCM0FB/pkx5jsDAwCpjyc3N\n5Y03PuDYsURCQvx55ZVnKiXevPPOAsrKemA0dkevz6G4+EeMxhTmzv0Mg8FAamoq+fn5BAUFVRKA\nWq0WSTIhy1YEQYMk2ZCk0v9sTeGaRKPJZHK+dqveP+tEYh23CnVCsQaud0Txr2CxWCgrK8NoNDqj\nNzeKa/WUXRHh0ev113W/zbBhD7Jx4/NkZZkQBAVa7RaefPJN5+sOh4O5cxeybVsmouiB0ZjKjBkj\nCQoKQqfzQqls7RyvQuFGSUmJs1KMl5cXjz027IrvX9N8de7ckYYNo7h48SI+Pj74+flVev2ll14n\nP/8uBLEBZjkDszmIA/G+ZGbHYTDoiY39s0Rb7163seCTdZyIO0ti4lmU0iG6tr2vxiWqEydOMHbs\nB4ji84iinpkzP0AQBPr161vtGD766E2GDx+HJEXicKRw//0duP3226sc99hjQzh9eiZ79gwAZDp1\nimTHjtNYLJOR5RMIgjsWSyP0eiNq9SjWr+/P8eMliMoYZOlTXnpxEA880Jfffz+Bm9s7iKIKtdof\npbIvPXuW8MQTj/LRR/OJjz/tnFe7PR5/f98qfamJ8uxiB2PGTOfcuc7o9UORbEtIOjmZrl078Pig\n27j99sqRUlEUebBfe779/isEVRMkexptWmgqCTRZllm06DsSzkbg69OHMlMSHTvpyMn5AoWiCJXK\nE0kqQpLOVxGA5XsaP0Kl6kVgYBDp6ceYMeNdFi58q9L1U55ANY3Tp9tjNE7g+PEDPPXUK/zww8fO\nyGxRUSmiWL53UqHwRqttjtF4AYPBwLJl37F8+V5E0Q+VKpVXX32cpk3L6z37+vpy992tWLNmFoLQ\nBkk6Qrdu4ZWqz/xXqUk0VnheqlSqm7I8Xd2941YVr3X8/6ROKF7CrfQEZzabMZlMtYrEm1mbuTYc\nDgcmkwlRFK/7puzw8HCWLXuPdet+weGQ6N377Up7wnbv3s2vv5oICpqJKCrIyvqNBQtW8O67rxAW\n5s+ZM6tQqTpitZ7A0zOf8PDwSuUEZVlmz549nDt3jnr16tGpU6dK/pVHjx5lwcLvKCgspXPHJowY\n8bAzSnNpFvXlpKSko1T2xGRJQlZ1QZbBZLbj4tGFQ0dOVBKKgYGBjHjsTsaMn0dR9MYAACAASURB\nVIlGdyeefpP4/JsNyPKPDHrogSptr1u3DYdjKO7uHf/4y3N8//2iGoVi27Zt2b79J06dOoWnpyeN\nGzemrKysynFarZZ3332N7OxsZ0WNTp0G4uJiQpKsQBayXO4F6XCkYrXKuHosQql0x2rNZM6cJ7jj\nji74+Lhx4sQa9PoYtNoo4DQ+PrEADBr0EKtXj+TcuecQBE90uv28+eantV0GlUhMTCQlRY2XV3m2\nt043h4KCQYx9bjABAQHOa/PSpci2bVsREhJMRkYGBkMUsbGxiKKI2WymqKgIlUrFmTPFBNfrjiAI\n+GlbkJZynClTxjFnzmvIchQOxzlGjhxIdHT0ZZ91ClarF56e5QLPx6cpGRn7KSgoqLRUnJOTw5kz\n+Xh6lvdbre5DYeEmEhISaNWq3KW3X79eHDiwEJvNE5ARxfXcf/8EkpKSWLZsH76+L6JU6ikuPses\nWYtYuvQdp+fqK688T+vWG0hIOE9YWAd69+79t3w7rxU3QxRdKhpLSkpQq9XO+9Wlr92KRtx1XGPq\nVFCt1E1RDdzMiKLJZMJiseDq6vqXkiZuRSqSbzQazTX1ebzS3IWGhtKmTUu2bt3Fpk1bcHNzc+4H\nzM7OQRAaIYrl8+nq2pi0tBUoFAq+/fZzxo+fwpEjH9GkSQizZn2KXq/HaDSSmprK4cOH2bp1F1u2\nXESSOiKKXzNw4H5efnkCgiCQmprKlFcWozaOQufiz6q1K7A7vmTsmMrWK9nZ2WRnZ+Pu7u6MNnXo\n0Iqvv15DaUkDZF0OgqqAggJ3LGYlLvqqexXPnz+Pyu1+wiKGAuDiWp/V696oVihqtSpkudT5f0kq\nQ62+8lf+8mzkmhAEAV9fX2RZZsGCz8nL8yAn5xAKRSJK5UWs1tcwm4NQKnfh4xuDUlm+r1Kt9seE\nO9nZ2bi6u5BV9BtyyXkEy3Q6tvfnrrvKK7m4uLiwevVytm7ditlspn37KVXsjmqjPHJkotyPVoEs\n25BlK1qtFq1WW+3+NVmWCQkJcS6Py7LMihXf8uKL0wE1np4uxMTcid1uQqXSI0kOJLmIu+/uTa9e\nPTl9+jTBwcGEh4dz5kx5Na2QkBDUajVubm5IUj4OhxWFQo3JlIdS6cBgMFTqd3nfTDgcxSiVrlit\n6RQWxnH8eCOaNm2KSqXioYcGUlRUzKefLkMQBEaNGkG/fvezf/9+FIoQlMry2tNGYxjp6eXjq3if\n33//nRMnzuLt7Ua3bt1QKpU3VSjCzX1Ir9iyoFKpalyevp6isU4Q1nGrUycUa+FGfollWcZkMmGz\n2XB1df1LN6brWUHm7467QiRWeCReK6FYW39++WUjL7ywEEnqiyzn8O23T7Ny5Sd4e3sTGhoC/ITN\ndgdKpYG8vG20aVMe2fHz82PZss+QZZmysjIcDgdGo5Ht27czbNgoJCmC/PwE3NxuJzJyJLL8KCtX\nDmHo0POEhoYSHx+PTe6Ar2d59M8/eBhbt01i7Jg/+3bw4GEWLtoMyvo4rOkM6t+MXr2689prL/PN\nN20Q2A2WdWg0Q8lOT6E4J59uXSc5z3c4HHzxxVesXfsrF9K0+NW/H5XagMNuRqmo/jrp378PP/44\niexsCUFwQaFYxsiRY//W3FssFvbs2Ut2bhENQgNp2bJFeUWXM2dYty6Z9u3/x8GDCdhs0QjCHtrf\n5kmZ5IKHz9PE7VtHXu7PeHr1pahwB0ajiaSkJJKz6tP9/jcpLCzgYkoYFzLXM37Se7RqHsb9fe/A\n29ub3r171965GggPD6d9e3927ZqKKN6GJP1Gr16N8ff3B6pfiqyI5FutVj5ZtJSNm3dz9PABNOqp\n6HQhXLy4DYtlHXp9fURFYxyOZG6/3Z2goCAEQSAkJITi4mLemvMZKRlugExovV8ZN2YYoaGh9O9/\nO99//w2i6ANk8Pzzj6BWqyt9R1xdXXn00btZsmQ8ZWXhZGTMR60OZ8aML1m5cjXfffc1Wq2Wp54a\nwVNPjag05uDgYGR5OSbTRXQ6X3JyDhIQYHRmNK9c+T2zZn2HLN+JLJ/np5+e44svPvjP7lG8Wi6/\nJi5NjrrRkcY68XiDqFNBtVI3RTVwvb6kNQm7CpFy6XLnv5HLM7RtNlvtJ10j3nvvSzSa53FxKa/z\ne/GihfXr1zNs2DBatGjB448n88UXEwEtUVEGnnrqCee51dWcHjXqeazWJ1AoopHlAoqKPqagYAMe\nHnejVHpTXFwM/BEBklKcbZnN2RgNfybtWCwWFi35BY+gkehdvLFZy1jxw0e0aNEEHx8fvLyCCAv7\nHru9FKs1meLiFdzVo1mlpJeJE6fw00+nsNu7YLEcYNO33WjZZTb24k2MG3VntfMREhLCV1/NYdWq\ntZjNWfTu/aKzBGFtWCwWZxKH3W5n/sdLOZ7mg8ZQn/U7DtMvI5t7+/SioKAAhaIenp5+dOvmSVmZ\nibS0UPzCuhHW9GlEUYGrbwd+Xz8J2bEQHx8X3nvvVU6dikdQh6HX68GRx7mSbJQug/BteB97jm/A\n4fiFkU8+XG3fbDYbBQUFxMefRqEQady4caWaxxWIosi8edP47rsfOHs2jkaNmlfx1qygQgRUVFz5\n9LNlbD1gBNf+CKKMxeKJSmVHre5CQcHXjBrVktzcfLy9G9K0adNKbf6ycTupFxtTL7wHAMnnNrBp\n83buv683w4cPoUOHNuTm5hIcHEy9evWqHePo0U8QG7uDsWMno1YPwmDoiixLHDu2gG+++YZHH320\n2vMCAwOZOLE/7733NoWFWry9BaZOfdbZvw8++BIXl6loNOUR7dTUd9mxYwd33ln9NfT/meqSo26U\naKyzxqnjVqJOKF6BfxpZ+6tcKlJcXV2vqQn13+HvtlkhEi/N0L4e/avpMzGbrSiVrpcc50p6egZb\ntmzB3d2dhx7qR9++dzlrNJvNZmd7l4tEWZbJyclCo4kERBQKJQ5HABbLOQoK1uHunu1cnmzdujVR\nDfZzOmk+guiPKP3G81MHOvtRWlqKza5F71LuaadS6xGUvhQVFeHr60vz5o04cmQtrq5DEEUFspxO\nq1aPO88vKCjgxx/XoVD8D61Wj1rdHat1ApG+63no2b60bVs5O/pSQkJCGDdudJW/S5LE9h272X/k\nDK4uWu69uwuBgYHk5uYyc9YCTp5OR69X8uzIB6hXL5hTFxSENH2gPEIcFMuaTXO5q1f3P/z9VlBS\nkoiLSwNMpt8JDjaidglxLvOHR7ZEb+3K3Defdc6v3W4H83LMZR0pLkjELHnRsH4ECqWawLA7iDvx\ndpU+m0wm3n1vEZu3HCTtYiH1Y/tRL9gfr3WLmTxheLX2Lmq1miFDBtU4P3Z7uSfm5R6q+w+dxTdk\nKsX5Z4ELyFQkPpxDEASefHIKDofMPfd0plGjRpUicllZheiNf+4t1RlCuHjxgLPtS+2MKoiPjycp\nKYnAwEBatWqFIAh07twZSZLR6Rr+ca6I1RpGSkp6jeOB8gSqdu3aUFJSgru7OwUFBezYsQO1Wo3J\nZMZovPQ7YsRisVyxvevNzU7c+Cv3+OspGqsrYWg2m+uivHXcMtQJxUu4EaH+y4WTLMuUlJQA1Fo7\n+FamNhufa0Ftc/PAA3fw8ccLMBgex2bLxuFYyZo1kWze7I7DkcIdd2xnypSx6PV6Z6SzOpFY8V5N\nmzbn2LENqNV9cHEppazsAApFFpGRMcyePdu5nKfT6Zjz1kv89ttvpKSkEhv7IO3b/1nJxNXVFU93\nBzlZJ/H2i6GoMBW1mOlMcJk37xWefXYqJ058iU4nMmPGKBo2bOg83263IwhKoDzCJ4oiOp07fe/t\ncUWReCU2bt7KZz+cplCKwGouZPeBj3ln5lhmzfmY+Mx2BDS7F1NJKnPff4NJ4+5HVPzpfalQqJEQ\ncTgc+Pj4MH36MObMeYf0dBPR0QE8+uho5n/2G6bS29DqPck4v5tG0YGVEjYaN27MuKe7sXDRFApy\nLuJtaEyL5sMBKC25iJuxavLTks9X8Nt+V+y6vijrh5JaZKeBRzj5JQbmvfMRXh6ehIcHc++999a6\nt7eoqIinnhrL9u3bUavVvPrqizz++KPO76aXp4HUklS8AttTv2Evkk9MRaGojywnotNFodF8iUJh\nZPXqmXh6fsaECX+K8eioQA4e3Y+7R1j59zv/AJERlTOgzWYzmZmZ6PV69u49wEcfrUWSIrDbf0Wv\nn0dISDjdurWiTZuW/PLLJkRxCLJcgkazj9atX6n189VoNGg0GpKTk5k48R1KS5sgy0VoNFry8j7C\nYHgIiyUVne4Qbds+Wmt715t/032vNtGoUChQKpX/aH95Xfm+G8i/Mw3ghlInFK/A9fYovJY1j2/m\nhugKkXgzbHwuZfToESiVn7N27QIMBh1ZWcF4eLyKi0t9ZNnBli0zuPvuI7RoUV6HtzaR/vnnCxk0\n6HHOnn0OhUJgwYI3GDq0fDnUZrPx448/smfPPlxcdDz4YH+2bDtFTr4ru/f+ztmzaQwb9qAz2jDu\nuUF8OH8FKfE/YXCRGffs/U7h5Ofnx7fffkJKSgpBQUGIoojVanX2w8vLi9atm7J//wIcjh7I8nH8\n/Apo2bJy+b4KLly4wLhxUzh9+iyNGkXx3ntvVilD9/3qnew/G4VdCAFEzhQeZ+3atRw/cZ6A5jMQ\nBAG9sR756uZYLBa8dJlknNuNwSOEvLR9tGsa7Pwha968OUuXNsNmszmXq0cOd7Bk6QJyLAKRDTx5\n7JEBVfrZs+cd9OjRHbPZzCeffsOxs9+gUHujsB5j+ON3VDn+4OGzeASMpfj8r6h0/lglBTk5+aSf\nS+XXuBMYXQYjsJsdOw4xb94M5+d5+PARlq7cQpnJyu1toxjQvw8TJkxh504RlWo5DkcOM2ZMJyKi\nAS1btkQQBEaPHMjkVz8hq7AVfn5uxIZ3ZuCDvdm2bS+bN7dHo/H/o6Tjw/z221uMHm12ioOuXTuS\nmfkTv+2cjSBAj25RdO7cwTmOzMxM5r27jMJST2zWXE4c2Yq7W18uXjxGRkYhkmTlwoVm7Nr1Kw8/\nHEFOzj4OHhyLIMiMGTOKu+66q4ZvQFX+979vsVgG4O/fEVmWsdtdadQojuzsz/D2duP5598kMDDw\nhm4RuZX4p/f3mkRjxWrFpZHGq7k/1wnFOm4l6oTiZVwqDq/nsu61Kmd3PcThtfR6vJGG4AqFglGj\nnmDUqCc4e/YsDz44HrVag14vIwgKRDGYwsJLTbkdiKLoLAt3OcHBwezcuZHCwkJcXFyc4zt79iwD\nB47g9OmzSFIXNJoiFn6ykjvvWUhIg85Ikp2NWz+jadM4mjdvDkBQUBCzZo6ntLQUvV5f7RKVwWBA\noVBUmS9BEFiyZAHTpr1JXNy3hIYG88Yb31SpdmK32/nuh9W8MPltykrroxaeYffuM/TrN5SdO3+p\ntJR1+vRZbPZ70HuUi82S/J2sWbsVd3d3SguTMLhHIEl2ZOsF/Pya8/yYNqxa/StZ2Udo3z6QPnc/\nUKWPlxpTt2rVkhYtmmO1Wq/4g1duW6Pj2VHDOHXqFGVlZYSEDKm2koufrzvHLiTh5RlFQcpmbNpI\nbGZIPraaIK+pGAxtkaQH2bJ1AElJSYSHh3Pu3Dk+XLwVjwbDcNe588u+1SgU69m1ay+C8AaCoEah\nCMRs7sqePb87xXfDhg1Z+MGLxMfHo9VG0LLlaNRqNWlpWWzcmODsu812lsBAbxQKhbMUoVKpZNCg\n++jf34YoilWWEBd//hNlwl0ERTanpLSItE2HSDz7Ng5HF2S5EEE4jVodik53FytXDmLfvrWUlpai\nVquvujJTdnYROl15yUiLxUxxsREPD0/mz3/F2S+bzfaviuhdD67F+P+uaKzuIb+uzvMNpE4F1Urd\nFN1gKoyAKwxer0c5uxtFRYbojbTx+Sv7Rnfs2MEzz7xOVpZIcvIS/Px60KiRB6J4jIiIPs7scqBG\nkXgplyZKSJLEkCFjOXUqDVl+CgjFarVil77iYrZASBiIohJRFUFOTk6Vvl9uhXI5SUlJfLhgKZlZ\n+bRpFcUTjw1Gp9NhMBh4881p5ckfNbDqp/UsW3sRi+sIcGmGLe8HdEIvcnK2kpiYSExMjPPYIB89\nZ46swaYwINvyUBQdw2qVeHHcQ8ya9zal2bFI1lS63uZB06ZNUSgUjHh0YI3vXR1X45+pVCqJjS33\nUJQkyfn5XMrTTw3khZfeo9gajavjGIJpIwFCFO6KQvT61hQV/MKF8y9ht11gzJgX+frrRSQmJoGh\nNQb3IAACwnty4MgifHy8KSxMQqHwQ5ZlVKpkfH0bVXo/f39/Z4Z0BYMGPcj69eM4f/4FBMGIwXCA\niRPf+qOqiwpJknA4HFitViRJcu7HvHQfZGpaPp4h5VsLXFxcKbN5g9QLUeyIw+FAlj/FZDqOThfj\nfGio7bqpiTZtovjuu3VYrQ+wf/8+bLbVFBaaSE19lsWLP/hHlZKuFf9Fe5irEY3VcT0iiitXrmT6\n9OnEx8ezf//+SisSs2bNYvHixSgUCj744AN69ux5Td+7jn83dULxClyvRIyKKMu1uklf66SbvzJu\ns9mM2WyuVSTeyIhiBZMnz0UUXyYkJJD09M/IzByDn1895s2bSFBQkHO5+WqXgwASEhJISMih/Kvj\ngSCokCQbgqSgIPc40Am73YxkPUlAQNXyd1ciLy+P8ZPexqwfiotrGKt+/ZGiokVMeWlM7ScDO3+P\nJyByKPKJbYhiAyRDa+yFCQhCcRWB+dSIwRx59m0cOf6UFv5Ocf6v7Cvx5YknnuXjj99BqVTi6tqW\n0NDQm/ojfml0v379+nyy4FXi4+NRq9sQGxuLIAgMGPAUp8/MICPtKyRpMqIYxOHDK3jyybFMmPA0\nDkuWs72ykhx8jFrmzp3O4MFPIUn7EMVsIiNFHnroITIzM8nLy8PNzY2IiIgqY3d1dWXp0o/YvXs3\nNpuNNm1G4O3t7XxdFEVEUXSKRrvd7hSNFeKgQZgPZ9IPE1DvNuzWMkTpDIKiA5JkQRAkwAOrNYni\n4pcZPrzPP5r/4cMfoqhoMR9+OBCbzQN///txd+/G8ePvsnr1agYOvDrxX8fVU5tolGXZacdT8Vlf\nD6EYGxvLqlWrGDlyZKW/nzx5khUrVnDy5EnS0tK48847SUhIqMu6rsNJnVC8gVT8aFREEv+tVBiC\nG43GW84QvDxbOQetVsZqTSEoaCRFRVpGj25ImzZtnHtCtVpttVVHamt716492CUbghiC7FiGLPcH\n0tFpz9KyyQVSzs5DwMSD97egXr16HDhwAA8Pjyo1f6sjPj6eMpriF9wFWZYIjB7J1u2P4u76Kbt3\nH8fX15WJE5+utjYwgF6nATWEhQVzLmk7DusxBGEdffp0JyQkhPj4eN557yuycwpp1SKS6a8O5+OP\nlxKXEo9W8zkKhR95eRuZOHEa+/ZtBcoztqH8M1+6dAXnzmUQGxuOWq1k69bdBAb68vTTT+Lh4VHr\n+LKyssjIyCA0NBR3d/crHnvhwgXGj5/MgQMHUShEhg4dwltvvY67uzvt27evdOyiRXMYNuxJMtJa\nolLFoFKpMJuH8+uv/WjXvh1hXg6Sj36NoPZAZT7CkOf6ERERwdatP7N7926MRiN33nkn8fGneWf+\nWkRdDA7LXnp2jmPokP5VhJper/9LdjKiKDqXi4uLi4mLi0On0zGg/518sugHLsTvQpRNdG7rxoED\nu5FlD+z2DOz2vXh62mjZMopBg/rV+j5XQqPRMHHiKFav3oTF8iJgo6zsOHa7D9nZef+o7f8CNzqa\nWZ1orPDttFqtnDx5EqVSSVlZ2TUXipcmyF3KTz/9xODBg1GpVISGhhIREcG+ffuqfM/+s9SpoFqp\nm6IrcC2jYRUm1BX1RK8l1yvyWd3fKm5qf9UQ/FpT21glSUKn05GY+AkqVQywCG/vTJo2HVgpcUiS\npKues7VrN7J2QyFaw1DKykyIrEZyvItKBV9+uYhevXqRl5eHVqvl/PnzNGvWDpvNiNWay8MP9+ed\nd96q8UepYo+fZCtw9stmLSItNZUPPzyKyeKN2X6On9YN47vl85wJOZcyqH9X3v1kGTEN2uMipyB6\nH+exYaMZMmQIOTk5vDD5Q2T9KFx8wtm690fKyhJ57LF+vPzyDqC8BrVS2Z3k5HdxOBzOhwC73c7I\nkS9w6JAfotiOL7+ci8l0EUHoi1J5jO++68PWresrZTVfzqJFi5kx4y1UKh9kOZevvvofnTp1qvbY\ntLQ07rvvEbIuapDlL8AqsXTpHAIC5jNxYlXDcG9vb0aOHM6JE59it6sxmS1AFgqVD+t/U9C7Kzz7\ncAOsVisREcOd2eYhISHOGseSJPHJZ6txrT8SN48gZIeDzTvep0P7pGpFfl5eHlu3bsVkstK+fZtK\n5SIvJykpib59H6KkRIPdXkivXp344IO55ObmotVq0Wg0zJgxi19//RqlUoWX1+PoXLpzIbWQadMW\nMXv2s5U8Nf8Ot9/egmXL5mI2+wD+SNKvGI0jaj2vjutHhWiseKAQBIH4+HjmzJkDQFhYGIcOHaJF\nixbXVcymp6dXEoXBwcGkpaVdt/er499HXWz5Mi73U7sWAsxmszkrlVQsMdzKVHdTqjAEv5qqMRVt\n3cjxbt++Ha22I97ek5Dl7shyFyIi6hMcHPyPs8t/+nkv9Rs8wb19H8HDKwa1viXh4cH88stKevXq\nhUKhwMfHB6PRyPDhIykouBuL5QUkaRrLl//Cpk2brth+06ZNiQktJe3UB6QnriY7/g1MJdlYpSgc\n7j3RhSzFpH+OqW8sJj8/v8r5zZo1ZdoLD/BQt1KmP9eE1asWM3ToUERR5PTp01jkpnj4tEat8SAg\nbDj7DiQQHByMIBxDlsuX4+32vQQEBFeKFJ84cYKjR8twd5+Jq+t9FBefw2qdgkrVG1EczcWLnvzy\nyy/VjikuLo7evQcxadJrmEwzsFjexGQaw/DhI2vMtF21ajUFhW7AIETRD1H0wWzuz+bNO2ucu969\ne9OokQpZnoQsL0YUp9G0w5v4hjzKzt0naN26NR06dKix5rbVaqXMLKNzKS9fKCqUiGp/5zaFS8nN\nzWXUqFf56KNiFi/W8Mwz73DkyJEa+zZ69PNkZ3fFZnsNSZrDxo0nWbduHfXr1ychIYHRo1/hwoUC\nJk+eQLt2PUnLbMXJ076cTYpm63Yd27Ztq7Htv8rAgfeiUIAsD0QQehEWNpcfftjjfGC6WdsLbvV7\n4Y2gwkdRoVAwbNgw4uLiGDduHJIkMXDgQCIiInjxxRc5cOBArfPVo0cPYmNjq/xbvXr1VfXpv7Zn\ntI5/Rl1E8Tpzub9gdZv0/yk3wsbn31I1Jjs7B6WyKW3btkGSZGy2WIqKdrNt2zb8/Pxo06bN374J\nysjIMvj6+jH04f4kJpgZ/9zDlZJEKkhOTkKheBoAQdBht0dx5syZK24SV6vVzJk9mTVr1pJ1MYXo\nqJ4888xuiix5qAzdEQCFJhCHKoLU1NRql3vDwsIICwur8nedTodsv4gsS+XGzeYc1GqBLl26MGxY\nb7788ilUqgA0mkwWL15c6dxyH0c9giAiyxJgA1yQZRCEmk2b4+LiGDBgDKWlvZDlYux2b8CKVtsE\nq1UgOzu72mV0q9WGqHADOQmEboAAJOHrW3NUTaPR8PPP3/DGG2/ww5qzhMUuxcOnFcUFpzEYat/m\nodFoCA/14Gj8ZhJTNeTnnMdVWo32mdeqHLtx469cvNiOoKDyetsFBSF89tmPfPhh82rbTkxMRBTL\nTb8FQYPJ1ISEhDMcOHCAZ56ZC7wIaHn99blotCZM5t4Y3VqCAAU5+9i4cQf9+/evdQzVkZOTQ1xc\nHImJiTRo0A0fnx4IgoAgQEbGImeW9s3mZgrVW00UiaKIh4cH9913H+PHj+fIkSOsXLmSyZMns3Hj\nxiueW9vDaHUEBQWRkvJnZanU1FSCgoKuup1/LTf/8r/lqZuiK/BPBVh11jGCICBJ0rXq4nXh0nH/\nk6oxl3Ktbsi1fSbh4Q0QhOXYbHehULiSnLySjIxjTJ7sicORyh13NOCDD2Zd9fuWlJSQn5fEmrXP\noNbdRmSEB40izxEbe4/TD/OHH1aRlZVH+/YtiYiIIiFhP0plJ2S5FKUynujoypvIZVlm27ZtnDt3\njpiYGKKiopBlmd6973IuRQ0d2pf3P96KVHYEFBIGlzzcDdIVs5+ro1mzZrSM/YUDR2eDMgzBupPn\nxwxEoVAwc+Y0Hn10CLm5uURHR1cRoI0aNcLXN5f09P+h0dyGVhuO1foRsjwEmy0ZF5cjdO06p9I5\nOTk5jH52CnkF3RHEfkjSV0AhdrsLVmsCGo2FjxZ8jdGg56GBdzur3AD06tWdJZ+vIcO8CUlKRZbt\nGI0nmD59/RXHqNFoePnll8nJe53TF7ZRVnQalf03XnplSK3zIwgCjz1yH917DKWoNAqVMgCTqhkv\nvDCTH35YXElMxcefITXzIrlFWfh4NEWn9SU+/jhLly6lW7duVcRvdHQ0+/fvQRT7IssmdLqjNGrU\nnR9/3ITd/iTu7nf+8T2DkpKxSI4N2KweOBz5qFTHERV6LBbLVfvxxcfHM3z4WCyWcCyWNEwmCwbD\ng7i4BJObu53gYDd0Ot3/Ww/FW5mKZBZBEGjRokW1W03+CZfeQ/v27cuQIUOYMGECaWlpnDlz5m8b\n+dfx36ROKF4nKqxjboQJ9fWKKNZUteRq+3YjadWqFU8/ncSiRc9gsynIzo7Dze1V9Po7kGUbmzeP\nZcuWLdxxxx01zpnJZOLHnzaQnJxNeAM/7rvvLt5+ez4Z6d5ERwaTl5tA6rk4pk2ZjqurK5mZmTz2\n2HjOnIlElhuyZMlHPPbYPSxe/BWlpb9htxfyxBPDqyRAPP/8ZL7+eg2y3AhZnsXTTz/MpEkTMBgM\nTm+7l14aj8NhZcXPM9G6NSM0UKRzG08CAwOrLT9XE0qlkjdee4EdO3aQKbvfJgAAIABJREFUn19A\ndPRjNGnyZ5m5yMhIIiMjqz1Xr9fz+efvMH36HJKT1/5hkl3Mzp1L8PHxomXrIYx7YQ5Gg46nRzxA\nkyZNWLvuF0qlZihUJpTK1kiO8dgsE5BldxyOQmSC2BnXCKVCz47dc/hk/svOuseNGzdm4YKpLFi4\nnAsXkmjZIpqpUxfi5+dX6zi1Wi3vzHuFHTt2UFpaRpMmz9Y4rsvJyclBp47C2+MzKso1JCf3JT09\nnfr1y70IExISOHTKhMOjMxZVMxIzv6U4YxFKZTCTJi1HpXqNNWu+rzS3Cxa8Td++D5Gfvxu7vYh+\n/frQr18/jh2biyz/mVAlSWbqBftSVJoK4jaUSi0KQcGdd5RX+Tl16hQbN+1FckD37i1qNFyvYOrU\nuZSVDcZo7IROJ2GxTCQ1dSTu7sH4+al4/fXxt1w07f8j1T1EVzhKXEtWrVrFmDFjyMnJ4Z577qFF\nixasX7+emJgYBg4cSExMDEqlkgULFvy/ui7kWysf85ZEqEVg/L/bQGK323E4HACUlZU5DYGvhitl\nBVssFmw229/2RauOoqIidDrdNSudV1paiiiK5fV4+Wteg1ciLy8PDw+Pa3Lzudz8ujqKi4spLCxE\nEAS6deuP0fgToqj74/wPmDYtjMGDB1NYWFgleuZwOJj55nyOxQdjdGtCUcFhWjfL47dt21GrB6BW\nl9+809N/47nnGjNo0CC+//57pkzZhsGw8A8T5jRstgc5cGADSUlJeHh4VFnKOX36NB073oPVOg+7\nXYMk5yMKY/nhh6X07NkDq9Vaab7OnTtHcnIyvr6+NGrUCIfDgc1mq2S78ldF49VQWlqKzWZj5uz3\nOZlcisHNl4hAkRfHj8DV1ZUFCxfzzdp8PEMfJztlCxfPf8sd3dpTVphCcs7tpJ5ZQ0lBBDabBdme\nTKtWD5CWkU1+WTIagxX/gFaoRCtPD1UybFh55K8iE9TFxYWzZ89SWFiIl5cXoaGhSJJEdnY2giDg\n4+NzTcd7+vRp+vd/GaPxewRBhcNRQmlpX7Zt+9ppgbPi2x9ZuzcQQRvBieNJZJ6eT0lmFhrNMAAc\njl20a5fB2rXfV2rbYrGQlJSEwWBwCuIzZ84wePB4ysoeQRB0KBSLWLBgEufOpbF8xWZkSeKBB7ry\nxOMPk5KSwqvTvgJFH0RRTUnRT4wb04U2bVrX6Md3++19sFpfRqUq35eZl/c9o0bpGDp0CGq1Gp1O\nh1KpxGq1IsvyTaktfOlnfTOw2+3YbLab6kJRUlJSZe/0woULqV+/PoMG1Vyn/D/ATVejgiDIUu7N\n7gWIXiDL8k2fj5qoiyjWwtVE6iqygq824eOfcq0jirIsO5e6/mlpwetBTWMtKChgypQ5HDyYhEol\nM3bsIFq2bMrBgytxcxuG3Z6JKO6iSZN7a2w7PT2dk/FW6oeVl9/z8Izm0JE3cHPTkZOTgVrt+sf7\n5+Dp6Qnwx/48L+c8KRSelJXZ0Gg0lSJLl3Lx4kVUKj/KyjQgKBFFX0TRm/mf/kzr1q0qPUiUmzDL\nNGjQwJmlW51XX4Uf26VLlA6HA0EQarwW8/PzsdvteHp6Vmt1VFZWxtTXP2TX2QCM/i0oKU3Aka/n\n2x/WMuLRwWzaehCvsDdx2EspMkuIwS/hcNOg1lyg8PgSolu9RG7mbrLOrcDHYyixsZ1ISF2IwudJ\nBE06Nn0gRakfY7PHsOLb7zmbmE5Eg0B69bqD9Ru28Ou+PBTaekim3+nR4Rz7D5/k5LkyJMnObc38\nGfXkUFQqFaWlpZSUlODm5lajrUhtEdioqCg6dQpj+/bncDjaoVRu5cEHu1FUVIQoinh6eqLTabBb\nC6kfFkBAQADrsxZQklnP2YYg1CMr62iVtjUaDY0aVTb0joyMZPnyd1m2bBUmk4X77pvMbbfdRseO\nMHTowD/aK+/rrt0HcXAnQQHl0UWVSsuWrRtp3bqVs8bw5SbOrVvHsmnTOtzcHsHhKESp3E1ExJO8\n+uq7nDiRhlIpMXbsIHr27F7tfNRx/anpXmY2m2+KcK+jjuqoE4pX4GoE2F9N+LgZBtRXgyzL2Gy2\na1J/uoJraQh+pTZmz17AwYOR+Pu/hiQV8d57U5kxYyClpZ9z+vS3KJUS06ePoVmzZsiyXO3nIAgC\nMpfvIZV55pnHeO21j7h48SySVEyrVl507doVKF/u1mqXUFS0Bo2mESbTIu66q8sVPSZjYmKQ5XQk\n+SDIrUH+DYXWgdoQTU5OjlMoZmZm0rfvQFJTL2K3m3j44UG8885s5zxc6tUnSRKJiYlMm/Yu58+n\nI4gOZFGLVqvj8eF9GDJ4gPM8WZb58edf2H0wE0GhJdjHzmPD7qtSOu9I3DFSisNxbXA3Rs/6lOX6\nUVS0nbjjF9i3bx9KhUyZOQebpRh0UQh2GyqVivDobqhMB7BbvsOnno0He93PoYMmiosv4OHbiMzi\nZNR6JVZJQJaS2bffzomkINSG9qzftodde+agdW9IvcaPoFCqsFlbs2DJK6h8WhDafiiyLLHr8BdE\nb/kNPz9fVvy0D0l0Q6cs5PGHezqXiqFclE977T1OnEzG3c2FqVOeok2bNtV+LrNmvcy2bds4fz4V\no7ED8+Z9yKJFX2C3FzNx4nhGjHiMzds+5vwpK6JCj7e7lYu6gzgczQA9SuVmunbtWKVds9nM4cOH\nkSSJ5s2bOyNokZGRTJs2ySn0L70OLRYLubm5f3pOXvJ6eaasgEajQa1W43A4sNvtlUTjtGkvkJc3\nhUOHRiAIEmPGPMb27XGcONEcX995WK05vP32FIKD/WncuHGN12od15/qlp7/zV67/yYcdSqoVuqm\n6Ar81cSTa5Xw8Xe5VuKzov50RbTqVoskXglJkjhw4BReXk+hVKoALySpIzk5ufz881cUF5dXJ1Eq\nlcTHx7Njxw5kWWbQoEGV9gIFBgbSrIkLh44tx2BsTElxHLe18aVjx4589X/snWdgFFXbhq/ZvptN\n70A6CaGG3ov0qoACFhQRERVEURRFsCCCKGBvCAqCoKgogkoXQ1F6DyWhJKT3bLK9zHw/QhZCQlPQ\n+L25/hFmz5wye+be5zxlWSxJSUl4eHjQunVr9/F3aGgoX345l1mzPiY3t5A77mjJtGlTr9pfPz8/\nPv/8I4aPGIPLZUWuikZT9wVOH99MQMB97jV9/PGnOXcuDlF8CTCzcuVsOnVaxbBhw6q0aTQaeeih\nyRQWPoTZHEpp2Sq8/DNp1uUDPvliNiHB/rRv3x6dTkdSUhLbDliJaPwQcrmCzHO7+WV9IvcMH1Sp\nTZPJjp9/KPkFmYi+dZGrfTl7cD9ZjgySzmowFxYhuV5E8uiCyWAkOKwxMTEtMRSeo2XzeB55qLyf\nkiSxdu16li5diuBy0bBhPzRaPTIpifCIeE6cKiQk7nkEmRxXcBf27L+f1l0aIleUu1MoVRoMJonw\nhg0vRO3K0QYkcOzkH2z98zz+sSPRaL0wFGeyZMUapj33kFuoT3tpPim53QiKf4ui3G08/ex8vvpy\nDpGRkVXmUKFQMGTIEADatetGTk4nZLKeSFIJ77wzl44d2/HaS4+zb99+HA47TZ57gxUrVvLOO2/g\ncrno23cQL7/8Ajt27KC4uJTY2GhCQ0MZOXI8qak6BEFFYODbfPPNJ1dM1QPlgShTprxBWRnI5TbG\njbsLpWIL2VlK5HINNssvDBrYH6CSNfHgwYPs3bsXvV5P7969WbDgbffRrkajoW/fMfj7T0EQBNTq\nQCSpE6dPn/6fFYo19Ue7zWarFYq11BhqheLfRJIkd6616wn4qKkWxQqReGl09s3iVo9ZFEVKS0up\nUyeA9PQUtNrAC2lcThEQ0BlBENxicPv27YwdOw2brTeQy9Klq5kz50W0Wi0NGjRAr9cz+Zmx/PLL\nJlLT9lA/JpR+/cotcdXV/q2gcePGfPfdZ9X+n8lk4vDhwyiVSpo3b45CocBkMuHr60tc3ACKjPVA\nGYJkO4tTKKnkf3n0aBKiOOXCenhgsbTmwIHD1QrF1atXk55eCkISZa5s8OqFwfQRxpLjWMUYXnz9\nM8IitxAR6kmHVg1R6aORy8vv5RsYS3rm8SptxtYPI3D/AWx+OlJTfqI0ayeO4iQaD1yLSuuPuugE\n9jMvMnqkL0knirDJS8g/tw4vZT5DRgx0tyMIAnfc0Z9+/XqyaUsiibtzkasFFGIOfbr25OVZq0GQ\nXbhWjkKpx1NZRH7WSXwDo8jPPkFYoIStJBUpvBVIEpaCo/iHackz+aLRlq+vt29d0tPLK1sYDAbe\neOMDfv01keCocMyWbzC7FFhtTZkyfT7NG4USEhLCiBEjqvgMS5LE6dPHEYTxF/rkg8vVhGPHjtGp\nUyd69erpvvb5559lypTJ7pyEb879lIPHPZGrIpBsa/DTZ5KS0hxPz5cRBIGsrPeZO/dj5s59tdrn\nxel08vzzb2C19iMgIB6LJY8FC75k7txn2X/gFE6HSNeug9ziLjU1lfz8fI4ePca8ectxOLoil6fz\n3XfrWLbsEzw8PHA6nZjNZoKCfMnNPYGvb1skyQWcwt+/qgX0n6ImpKf5t0tUVnd/m8120yuz1FI9\ntRbFa1M7RZdxIwm3K9Ki3Ogx7c0WTX9XiFUIrQoHd6vVWiPFLFQda0Xf1Wo106c/zsSJb5Cfvx2X\nK48uXbzdx8MVzJjxPqL4HN7e7XA4jBw/OYGnp/xKeER9/L3X8PprEwgKCuLOOytb1hITt/Hrr4l4\neGgYOfLO6yrJB+VVRgYOvJeCAi0SFlo0r8sXX7znrvXtoQuhXt2p2O35iKIWo3FyJSt2ZGQExcWH\ngRAkyYlGc4LY2Aeq3GfNmjU899yrWCwdQLMPvHshV3ZD0KaQnbmTMtNRmvR+nvDm7cg+vZ1fNqzE\nI9CJ3d4UpUpFUX4yLSKrltWLiopi5GAHGxMPEetjRtNEz+YDQ1Bpy3MaevjGY3QKjBgxDJVKRXZ2\nNjabjeDg4GpT+KhUKgb2702bVnkYjUYCAjqh0+mIi/qFpLMLsEkNMRf/QaMIG5PG38Pqn7eRdfo3\n6ocFMOG1p1i45HtO7X4TQXLSNt6HgQOHcPKjtVgtpW6Lol5THqBw992PUVBwD3ZrP84dX4ymXjx1\nmr6CMd3Kpn35bFy/FY3CxUcfLSQxcVOlgIryHwbhZGcfQxBaIkk2FIoUIiMfrjKm4uJijEYjISEh\nnDp1iiMn5ITHPVJ+fGxty9a1dyMIQ9z7g0LRhrS0/ZXauFQwlJSUYDC4CAwsL7mm1QZhNocgiiKP\njL230ud++WUjS5fuRZDFkJj4PTrtQHx9hyJJEqdOvca2bdsYMGAAkiThcrmYPPkBnn/+XfLyGiOK\nuXTp4ve/U6rtP8StqPVcSy1/lVqh+Be51AKn0+muWyT+27+eL8flclFWVoZarf7PHXVc3ve4uDhW\nrJjHqVOn0Ol0NGvWrIqvqMFQilJZnufObN6BU7gND99B1ItOIDt9Cyu+XsukpyqLgQ0bNvLyy1+i\nUvXB6Sxj69YXWbLkLXdgydWYMOE5zuXVR+E/CslRwM49n7No0WKmTp1Cw4YNCQ8vIzV1FRpNAqWl\nK+nRIxYfHx93brtPPnmb/v2HYrfvwekspkmTCAxmFfPeX0bH1nF06NAWQRCYMuUV7PZpQADIswAP\nJNdiPLyCMJdtROcfRIMmrREEGX71WrB/+2wa4yJpZyrevoHUCxTp03NwtRaO5s2b0qpVeTLp1NRU\nftv5BpayDECiKCOR+uFBbsf7K9WhvpygoKBKR68zZzzDHUPGkFugRa0NISPHyfHjJ3j04eGVPjf9\n+Qnk5OS4LbwymYx7hrRh5U/Lccm8yDizjwZRHixZsoSSkng8Pcchl1vIzsvHZDnI+ZTFOEyZiEJX\nBEGB3d6UzMwvWblyJWPGjMFgMLD65y1k5hgYOWoUn3z4ATLZNhyOXAYP7lslYfoXi5ezZOlGBLkX\noUESo0cNQqbwcc+hSu2Nt7c3hbmrEMXuCIISp/M7WrWqvu4ugJeXFxqNC5MpAw+PejgcZYhiTpX0\nQIWFhSxb9gdBodNQKvVICJjMf+LlVYZc7okkhVBaWgpcPJ5u3rw5y5e/ycmTJ9FoNO7cnRUBUzVt\nf/pfpVYo1lKTqBWKV+FKlroKkahUKtFqtTe0ud6KY9i/2maF0NJoNFU2pZvZx1sx5ur6bjAYWLhw\nOSkpWTRsGE79+vWrHCn269eV5cs/QxAmYrWlIFP4UKdOKAA6z0hy8w5UudeyZWvw8BiOp2d5Pd/s\nbAsbN27hkUfGuK+50vgOJmUhD34Pha5l+XGp4zwHDx684COm5qOPXmPhwuWkpn5HXFwIjz76RKXn\nKTY2lv37d3Lw4EGKiorYfqCYEmUPFDoN36zbhEwuo327NpSVGYC6yOUaROdhJFFDo6bBxMUE4cjz\nxqLwRyZI2C0GVs3ugLXMh9NJuchkq1mw4H369euHJEns3r2bXbv24OPjxZAhQ1AqlRQVFaHVatHr\n9URGRjLlyTt5cvJQSi0eKFUK4jpHYzKZ/laKk4MHD6Lw6kGbVtNAkigrSea9D2fTvfttiKJIYWEh\nXl5eqNXqKqmGmjdvSv36Udx//0Ps2pXKRmc8grALjSYcrRZ0Oi16j0xKJRMRTe8gZfcCsJ4HpwoE\ncDj8MBgMOBwOFi//mVJFO3wCYyjMPs7EZ3S0ToghMDCQJk2aVFqb/fv388XSvfiFf45C6Ul29hq+\n/X4dWoU3BbmH0HuFkZ+5mTuHdCE/N5uffroNEOjevTVPPVU5+fqlqFQqZsyYxPTp71FYGIAoFjBh\nwnB3Wp0KysrKEGR+KJXlz3jdejGcT92A05mF3W5BLt9FmzZV6zmnp6ezatVWHA4Xgwd3plOnjm4/\na7lc7vZ3/F8Qjf+2OL7S/WuDWf45nPKaUGmsZhfhqBWKV6E6gfNftsBdisvlcudfvFwk1uQXREXK\nF7PZXEkkOhwOJk58mZMnm6HTPcjRo7+TnPwan346p5JVcfr0Z3E45vDrrxPw9bHhE3gbPr4euFwO\nivN/o3+3quXvRLHqZn55hOqV8PXzptReUO4zKbkQFBaioy8KHV9fX6ZMeQIoP3JUqVRV2vD29qZr\n166sXrMOpV87fALKLZliZHf2HNxM+3Zt6NmzJxs2LMRuH4fg0KIwfUBs0DDiQww8+MyzbP5tBz9v\ne5Nzp49hMYQAE3GIIEmNef31+QwZMoTNm7cwceKb2GzDkclSWbToPuRyB0lJx5AkF6NHP8S8eXPI\nKygkIHIwcXHPolQqST71IZ8vXsHA/j3YsWMHXl5eDBgw4KrpPVJSUti5cyc+Pj4MHDgQq9WKIA90\n/79SE0BZbhkLFy5k1qx5mEwmwMXcuXMYPfrBKu0dOXKEPXtOYrG8iSAokaSB2O1PoNW+gkzWGqe0\nmbr1+qDIX4neuZ8yQzqS6y4k+VnU6gN06zaVvLw88sr0RLcsr0qhi+3C+UMnaN68uTsV0qWcP38e\nSdEWhdITUXRgs5WxZ89u3pj1Anv3byS/sIweHSMZdf8D6HQ6pk8vQxRFvL29rzgvFbRr145vvvmA\nzMxMAgMDCQ0NrXJNcHAweo8iiouO4+PbkPgGWkRnIZI4m8BAP15/fVYVF4njx48zadIHCMLjyOVa\nDhxYwLRpdvr06Y1CocDpdOJ0OrHZbP+IaPy3hVpNpTaYpZaaRK1QvAGcTidlZWXViqvr5VZWUble\nKsah0+n+c7m6JEly/9q+dA1SU1NJTnYRFPQogiCg1zfhyJGHyMzMrGSJUavVzJnzCnPmvEJhYSFb\ntmznu1XTSDl9lqL8c6Qle2MyGnjooVHuF9jIkYN47bUVOBx9cTqN6HR76dVrznX196nxI3h5/veU\nmc+Dq5R6nvt54on3qr02KyuLxD8OY7E6ad4ogo4d21Z6iarVSpx2k/vfdqsJnUe5sPz443cYP/5p\ntmx5HL3eizfffJU+ffq4Ld733zeMzh1TmT37LKf21eNis3UpLi4G4PXXPwbewdu7XCidOpWAy+WF\n0/kmYGX58o9p2rQhKWfzUPt3R6Uun39tQBcSE+cy+/WZSFICMlk+devO4623ZpKQkIC/f+UazVu2\nbOG++0YDjXE6s1GpnqNZs/ZYDAYMXi3QaOuSd+4jSrPOMmXKLlyuQUAfIJsXXphBq1Ytadq0aaU2\ni4uLkclCEYSKpPN+qNU6RoywYzBswWCKwe7TmuDILjTvcDdblo2gNP9tfHz8eOutd2jVqhW5ubmI\nTguiKCKTyXA5HSDaqySyLy4u5tf129h38ASlRSfwCbmTk/ueoSTfjkwYzLPPfsorr4zitfueqvQ5\nT09PzGYzO3fuxOl00qhRIwIDA7kS/v7+Veaugry8PCZPfoX9+w/gcCRSP7YxcXGhrP7x/au6RKxf\nn4jLdQ+BgV0v/EXOqlVf0qdPeQ1opVKJUqlEkqQqolGpVN6SpO7/y1zNolh79FxLTaFWKF7GlYJZ\narK4uhHxWTEODw+Paq1XN9reze7f1aioRqJSqapsouVWQyflxYSEC1HPzkq5DJ1OJ7/+uomk42nU\nq+tH9+4dGTbsDgyGIvbsSkGtXojR6GDmzBn4+/syePAdAAwY0A+1WsWvv25Dq1Xx4IOvV6pNfCUk\nSeKuobcjl8vZsesE3p46HnloTpUjxKSkJN588yP2HssmruPDNGnWim82bMVmt9OzR1f3dS2bN+XA\n0V9IO+XCKcpxFf/Bg4+WB93o9XqWLl1YpQ9ZWVl8uex7ioqMdO/WknvvHcHatY9hsbSkXEx9R+/e\n5QmXjUYTCsVFH0OHowBRvB1BkAE6zOZW7Ny5h1atW2PbvxMppBMIMqyFf7B7/3bM5oeBFoBEcvIb\njB79Ot7eEkuWzCMiIoLc3FxCQ0MZP/5pLJaRQDwg4nItJCe3BQrFXryc7+IyKAjWF1PoGILL9Rbl\nIhEgFEFoxsGDB6sIxVatWiGKKUjSXqAxcvkG6tatw6RJj/Pll99y5kw6Z09/gWhOQXJZGX5nL16a\n+mMlq01gYCBtGntz4OgqVJ5R2EuT6dUhqlJuSYvFwocLvqOEdnhFdcQ//CtO7OmHocAXufxLAgMD\nEISxzJx5O/fcM7ySNbusrIzpr75LenEEyPV4iO/y+svjqhV2KSkpfPLp1xQVG+lxWwtGjhzhfpZF\nUWT06CdITm6CRvMxoniY7KzFfLVsBv7+/iQlJbF5yx5kgkD//p2pX7++u12FQo4k2S95Ru0olVXz\nfVYnGh0OB1ar9ZZWAvqnqakWzVqh+M/husUldq8P+7Uv+RepCTNU43E4HO4yS1cSV9fLv2lRvJnj\n+KepOCqveEldTlRUFG3aBPDnn3NQq9tjt2+ne/foSkd2H3+yhA2/O9D7dOaPAyfZtWcB8+dO4+ef\ntyGTjUWpLE/SbDKN5Oeft7qFoiAI9OrVs1JKlOrIz88nJyeHwMBAgoODMZvL6/g+MPJuRt1f/cvo\n9OnTDB06DkNpb2y+ncjfW4Tet5CYuH7s2PN1JaHo5eXFk48O5+tvvuO7tdvw8A9n9rtf8uKkB6ut\nZ1xQUMDD46ZR4hiCSlOX7btWMHFcO+bMmcbLL7+O1WqmX78BvP12uXW0X78ufPvtLGAaTmcGCoUL\nh+M0EIYkiWg0qcTF9WfUA/dw7PgsDh4ciyDIaRit5ripDIi8cGcBiMXlaozV2pXRo5/Bxy8cQV4P\nGRkUFuYBFWJZhiiGIggKlKrB3D1MYPjw4Tz55DROHG+KIHghSclAA8AKnKFevXpVxhoSEsIPP3zN\nmDETyMt7n8aNE1iwYAmPPvoiWVmdUakGY7GsommDFB544G7i4+OrfAcEQWDoHX1pfu4c+QXFhIY0\npFGjRpWuSU9Pp9ASQljD8oTdA4ZN5rfvTnP6mA4Pj2AEQYYk1cFqLRdWl/6o/G3rNs4bmhDepLws\nW156NF99/QvTXhhf6R5ZWVk8Nn4mNulh1Nq6fPzZUozGJYwfXx5kVVhYyOnTWeh0b16wnvfA4Ujk\n2LFj+Pn58eqM71FqhiCJTnbsXMKs10e7xeLtt/dmzZrXyMuTIZPpgOWMHFk1iv7yeakQjaIo4nK5\nsNvtt7x85P8yoiheNWF/LbX8k9QKxatQkXDbaDSi1+tvWi3lm831bNAVIvF6xnErxOzfae9Sa25F\n/enLkclkzJv3Et988z2nT+8iPj6GESPudM+N0Whk89aThNWfi0yuxC+wOedOnubMmTP4+upxubIu\n6Wsmfn6eVe5RUlLC0aNHUavVtGjRotI8/vHHbt777GckZRiSLZ0x93Wl+21dKuXWdLlcFBQUoFKp\n3DWmV636CZPpbnTa9jgoQZKasmv370TU80epuPiiqFgTu93Olj2pRA/6AK1XECVZJ5jz3hcsePfV\nKgJ6586dFFvaExxVLkxsHtEsWzGZ9b8srtbP76WXnkUQ5rN+/X3o9R68+OKrTJ/+Gk5nMpJkIirK\nhwkTxqPT6Xj/nZmkpqbicrmQyWSs/uFHXK4fgAeBfOAPZLK7kcnCSM/IoE7sajTaOlhMZ1Cr9yJJ\nG3A4BgP5CMJeBFl/JCkDvb68zF3nzs3ZtOkrAgPfIz9/IhCOQpHNoEF96d69e7XPQPv27Tl+/GLa\nmW3btpGTE0ZQ0GgAPD0T2LnzAd54o9EVa4XLZDISEhKq/T8AuVyO6LK5/y2JTsLD6pKesgmrNRGV\nqhlW66e0bNmUkpISNBqN2yfRUGpCqb1oTdZ5hlBUUu5KcKlla8+ePZjs3Qiu1w8AlXoKP64e7xaK\nWq0WSbIhigbkch8kyYHLVV7NZ+3PO1HrRhAQ2BKA7CwXmzf/6RaKUVFRfPbZS/zwwzrsdhf9+48n\nPj7+ukWeTCartnzkXxWNNdWi909xpfGXJ5X/352XfxJXrSC/JrVC8So4HA4kScLLy+uKL5Yb5dIS\nav/URmC32zGZTP+a2P0747z8yP9KQhHK/Q/vu28Ev//+O6WlpaSL3f0dAAAgAElEQVSlpVU6dhME\ngQrnvPKNuPxY8PnnJ7Br18OUlaUjCA68vf9gwoTlldpOS0vj4XEvUmqNQ3KW0LTh13z84RtoNBos\nFgvvffoD3vHT0XoEYSrLZ+GyWXTs0Nad6NtgMPDRopVkFMuQnFZ6toviriED3KUEDYYQrMXbkWyF\nuMxHyU8u4pG721YZY25uLnhEoPUqTy3jU6chWSfllJaWVgm4KBfnl0T0XeMHgFqtZubMF5k58+Lf\nevTowYEDB9BqtQQHB3PkyBGCgoKIjo4mOjoai8XCsy++iTrmIcT0RJxlYwA5yIbj0J+nUL4fuWew\n+xnQesQQHtUJXGdISpoMggpV2FiyjDsJ8Mxm33FPlOpEBgzoT3Z2AQsWzMHf348WLcJ4+uk36NSp\n0w0+T5dGNN7Yc5iVlUV6ejpqtZozZ85gs9no0KEDcfVsnDz+C1rPeliKDzNscEceGdWb559/k/z8\nAtq2bUB4TGNmvbceyVXGkL7N6NmjKwlNG/Dj+l8xB8SjVHlQmPYzfQfFXeydu1a4HAGz+++iy4xS\neXH/0ev1TJz4EB99NBWTqSNK5XG6do2hRYsWrF+/p6r7zCVjcjqdpKamEhNTh8aNGxMXF4fFYrmh\neang8vKRl9YcrwiEqemWxvJSiDUh6rWWWmoutULxMio2NavV6t5Ab5ZIvFVczQJYIRI9PT1r/Dgu\n50r+lFcaq8PhYPz4qezfrwQiUCheYt68x+natSt6vZ5uXWL5bftC9H6dMZedJLxOGdHR0Wi1Wtav\nX8HGjRuRyWQMGvS0uwLL0aNH+eSTL9m2bQ8uzUAiGk1HkiQOnpjJ6tU/cc89d2MwGHDihdYjCKfT\niUrjg0Jbh5KSEnewwvc/bSCTZoS174TL6WDDvhU0qH+MYcOG8O67Q7HZdMiEaKT8uWi99IT7eJKQ\n0KzKGAMCApBM57GZS1DrfCjLP4tOYa9UhrCCTp064f3Zc+Rn1EGlqYu1eDmPjel9Q2vg6+vLgAED\n+HHNelbtPIzMMxKpZCvDe2bRvVtnzpw5Q7YxgM6DHmTP3t64XBqM+x4EnwyE2A54e/jiMPqQlvkl\nsTEvYC5LwkNr59FxE1n6uwaf8J7kZCaTemI1msh+OOv3ZdXuzZgtO3j66QlMmjS+2mM4k8nE+fPn\nUSgUREdHV3tM16JFC4KClpKbuwKVqj5W61qGDbvtur4Hf/yxi/mfrsWuDOfAxoUIUks0mlDU6k/5\n8su3SbDYKSw+T1REI/c6/fbb9wDMf38x2faO1KvXFIfdwg8blhATHU5CQgITHy7hq2/exmx3MKRn\nc+4cOrDKvbt06ULQFz+Rm7EQmSyAvIy3iIzwZf7895kwYRwajYYnnxxPQkJjjh8/Tmjo3QwaNOjC\ns9uR/TO/pUByIYpOJNfP9Oo5Cij/Pj399Mvs3QsQiSDMZPbsh2nfvt0NPRPVcTXRWGFplMlkNVo0\n1hSuVIe+llr+Lf5byuEfwmKxYLPZ8PT0dCesvZlUCLtbvWnabDbMZvMNi8SaEMxyJZF4tTlLTEzk\nwAEFAQFzEQQBk6kXM2e+yqZN5X5+Eyc8RHjYOpKObyGsrh99+jzmbjsyMpJx48ZVai8pKYkhQx7C\nbL4fo7EOCCvx8GlBQJ2ByNRNyMw8D5TXbfZQGynMPoZXQAOsxgyUUm6lBMmpGYX4R5cfJcoVShQ+\n9cnJzad3rx506tSWXbu2IwhagoKeQan0oaTkj0p9MZlMTJ78EomJfwICgRmnCYltj8qey9QnR1a7\nvoGBgSxaMJMvFn9Lccl+unXpypAhFyvOpKWlcejICVQqBW1bt3BH2Obn55OcnIxWqyU2NpacnBy2\nHsgivOOjyOQKHLb2/LjpI9q3bYVcLkcSHQT4+9Oze1tKigvIsjSgce9RhDTpiU7nQerZc2z44HEK\nzp9CrTIwZ/aT5OUVIMOFt7c3lgIrmogOeATo0fsGI2vaj92HlzDk9vL1vlQE5ufns2fPHn7ctBtV\nnRbgsNAoaBePjr6nirXc09OThQvnsHDhCrKzT9K2bSPuvbdq6cMKKr6TTqeT9xZ8j3fTaZw78C12\n5yAEcTJ6vR6LpTWzZ3/EDz8svmI75zOKCW1e7tuoVGmRaaMpKCggMjKSHt270aN7tyt+FsDHx4cv\nFr3JNyt/4LMFs7BZG3P27G18/PHvHDjwJF99tQBBEOjWrRvdulVuKyEhgVdegg0bd6GQyxg48H63\n/+quXbvYu9eJv/9bCIIMi6U3s2ZNY+3avy8UL6U60Wiz2WpFYzVc7T1QOz//DC5qj56vRa1QvAyH\nw4HdXm6h+TeOif8K1Qkxq9WK1WrFy8vrP+cU/VeDbsrKyoAI91ppNJHk5GTz+usfYrU56Ne3LXfd\neTvD7rpYKu1qLF26ErN5BHr9cESxFKPJj4zkJfgEdkEybyAhYQhQniB5ylMjeevdheRkKNGqbEx/\nbkwlK194XT8OZ5+kbmwHRJcTZ8lpgoPKLVEdOrTg3Dk7vr7jkMtlFBTMo0GDypHR06fPZuNGJWr1\nFlyuTLJOP8Kz4yPp0WNMpajcywkLC+OVlydX+XtKSgrvfrkRWUgnRKeV3/d8zZTx95Kfn8/LbyzG\nrm2Gy5pHQuRmRt03BJnGC9mFutBKtQ5JpsFqtVK/fn0a1HFw/MgytD5x2HJ3MqR/J9JM2WiU5UeP\nXiobY0fdzsg7++Ln54dKpSIvLw+vNZ+QcUKLsSQTmyGfpl3LLV8Oqwm1qurWdPLkSV6es5gzuU6M\nAa2I9A+jW+f2HN37I/v27adDh6ql6AICApg69cmrrvPlmEwm7KKSAM8QzGWFSFIsgkx+wQ8vjlOn\nznLnnY+g0aiZOHEkHTp0qPT5enV8yc0+SVDdxjgdVkTLOfz9K/tViqKIxWJBp9ORmZnJ50tWUVxi\npkPbeO6683b8/f3p0b0z7737HZ6er14IkunC7t33kpaWRmRk5BX7n5CQ4PazLCsrY+Gi5aSm5WG3\nFiFJoW6XC7U6nMJCU6WSkTeb6kSj1WoFyk9q/m3LWU3d22tin2r536VWKF6GUqmsJBJvBbcq8rmC\nCpHo6en5l0Tire7f1fg7kdnNmjVDLl+JydQTjSaS7Ow5OJwe7D3UBoXCg337v+WFKS5uu63rtRsD\nnE4XFV8RT09P7HYZdtMhSs7ewyOj76Bnz57u8mdRUVGMGNqDnzbsR6HwZc/+JOLjG7ijXocP7kvu\nopVk7E5CdFro3TrMneLlscdGc+LESxw69DiCINKpU0QVy9dvv/2BUvktcrkfcrkfRuMIzp9Pv6pI\nvBrrftuDJrIfZlGLU+aiQGFl3/5DrN2wE1nEWEJDmiJJEgd2z6NbWhpeFJJ3Pgm/kBjyUg9Rz1+B\nt7c3MpmMV16cyK/rNpGde5j4Xo3o0f02Erf/wY+/fQoqT/xVFsY9eGelkn3h4eHMeXUi69b/RmGx\nkdSsMlz5R8kwpePK2cuY26v6Z3686DtkkWNRO3eiiL2drOIzZGRkoPKuy76DezEYSoiJiakSAZ6c\nnMzGxH24XCK3dWjmPirOzMzk5MmThISE0LhxY/f1Xl5e1A3QkHtuB6H1O3J2/5tIrgQEIYKysvmo\nVHKKix/B6TTw9NPvsnChvlK6nlH3DuDjhT+QeWw3oqOUwb0bERV1MZH72bNnWfDFWkpNEjq1g3Nn\nUxE9R6LzDGPhilVs3jKZnt07XKhAo+Cib6UcQVDgcrmua42dTievvvYBKecaovceTH7O7xQULkWj\n6YNOF0Nh4TI6dGj2jwVOVIjGSwNhKnyObTbb/6SlsaYK1VpquZRaoVgN1eVSrMlf5kuF3aXH5jXF\nkni9wvN6IrOv1lZMTAzz5z/BzJkzKSkpJSxMgygfT1BwJwDkcg0/rfneLRSv1a+RI+9i1apHMZu9\nEQQdnp6LmD17GiNGDKekpISNGzficDho2rQpmZlZrN1WQGS7F5HLVexKWkPA+t8YOrg/UH6c+MKk\nh8nPz0elUlVKpKzX61m4cD7Hjh1zl8lzOp2V+ubj401GxjmUyrALYzmLr2+LKn1OSUnhj73HkEQn\n9SNDadKkCT4+PlWuM1us/LZ/DwZHXZBpkYr30y4ogMIiI/q6Ee75EXTh2Gw2nhx7F8u/X0fm3l+J\nDw/k3rvucgcBaLVa7rrzjkrtd+/WmVYtmmGxWPDz86uynoIgULduXcY+/ACiKGIwGNi3bz9may7x\nPXpQt27dKt+7/KIy9GERePumkp2xB8k7ClNpMWe3fcu2M2fR+HQE63KmPnu3+4j9zJkzvLNkE7qY\nAciUCj5auY4nBIG8vFzGj58ONMLlOsMDD/Tn5ZenuPs2bco45ry9iNTcYhrEq8jNeAiXS8THR0Ng\n4By02kgA8vJ6k5j4RyWhGBwczLQpD1NYWIhWq600/yaTiQ8XrkUZOIKw+hEcPbiVk+fO0bFvR4wm\nCyk5CRw7uJP9Rwz46tdQt66ctLT3EISOSNJWEhLqVBKdVyMtLY0zZ2XUibwHQRDw8onHYT2AWjEb\ng8FC587NeLkaa/OtpsKdoGJ/qnjOL7U0VgTC/C9SG2Dzz+KsPXq+JrVC8TL+CUF4q9LPmM1mHA4H\nXl5ef2uj+TcsijeSvudqdOnSmY0bOyNJEu+//yk/rjW7K22IogOZ7PrXt2XLlnz99fu8994X2GwO\nRo16hqFDh3D+/HmemfI2KecVZJ7Zjhwj3bq3xb/RkyiU5Uly/eq14Xjyzwy9pD2FQlFtKTYot7ZE\nRETg4eGB3W4nNzcXLy8vd/3kmTOfYezYyVgsdyCTZRAdncHQoa9VauPUqVO8s2QzJs8WbNmciDP9\nc7T2bGbOnMKoUSMrXSuaC8g7mY9HfC8QLVgLStj6Wwqt2rQg8eRa6jS5B5spH8Gwm/r1RxEcHMwz\nE0Zf99xBuWWuuiCb6sbu6+tL7969EEURh8OBw+HAbDZX8mlrnVCfrafWULfhnZj2LiMn6QvKCoIp\nSj5NnWY/IVfosFuymTNvDH379kSr1bL7QBLKerfhX7dB+bjFPmzb/Qcfzn8Xl+s9lMrGQBnLlj3A\nHXf0oUGD8utCQ0N5b+5L2Gw2VCqV+zvxwANPkZp6MSJZkgx4eARUGZNKpap2rQsKCrCJAQT4lYtx\nn4D6WJ1ytv00iqL884iKWDx0dQiq9xQF2d4M7Z9OWZmZkye/p2nT+kyZ8up1f7dlMhkSF62PVosZ\nhULGZ5/NrpTkuyLf579BxX6rVqurHE8LglBp/W8FNdEIYLVa/3N5bmv5/02tULwGNaHk3vVQ8YL1\n9PT8z/0avVkisQJRFHn11bdYtWoHuXlmkpPP06xZCwRpHSMm3XlDbXXo0KGKD9qnn61g234lZVnr\nkKTJyGR6Nqx/i4bGjYRGtUIQBMqK0mgQfuPHwklJSbw29wvMTg8UYikvPHUvbdq0oWvXrnz77Qcc\nOnQIvT6KAQMGuEVkBZu3H0Ab3Z/16/bgVD2IEHoHzrSjzJjxMW3btiI+Pt59rd7TGx+FCiFzCzKZ\nAr+QQRhNC3ls7EhsHy1m9/bH0GlUPDmmf7XJvG8VFTn6nE4nGo2mkk/b6PvvwrpoBbt3PkUdjYpX\nXhuLTqfhmenrkCt0F9wATFgsTgoKCggLC0Mhl+FyXqx64HLacbrsWK1ONJrGF+7pCcSTmZlJeHg4\nRqMRb29vNBpNpYTZgiAwceJIJk16m7y8XkhSKYGB+xk0qPqSjNXh6emJ5CjEbjOiUuvRaWWU5B5A\nsg5ElB5CsvyEXUwCJOTKEOz2DObMeeUvzWV4eDjNGqs5eOxzDGVBpJz8GQ91Mg88MJn3359O8+bN\n/1K7N5NLhdqllsZLRaPFYvlHROO/QXXWw9qqLP8srloZdE1qZ6gabrVF7Wb+gq2ofSxJUo0VideT\nvud6RWJFEvSrsWHDBlavziYg4Ce8vfPIyJiNybCNDz985arJlK+HsrIyvl/1E6ZCTyRxIIK8E6Jk\nAWkSOSc/4PyhYGQKNQHaPIbecf8NtW2z2Zjx5ufIYp4iJCAWY8l53njvLT7/oD4+Pj7ExsbSokXV\n4+YKJEnC4XRgNltRKOJwsQeZzB+ZrC3JycnEx8djMBgoLCykYXwMWtn3eNd5BJnCi/QjjxMeZ+PU\nqVNMe36iO5H2X82xdzO4XDQoFAomPTEGURTdvm7FxcUoxPcoK9pLzukvKcpMRCZTMmTIKD7+eA4d\n2iTwx8EfyJRcCDIFUvY2bn94IF8v+YqcnF/QagfidJ4DDiLIBvHS3M+R1H5oKGPCA7dXEcnt2rVj\n0aKX2bbtD7TaQAYOfO+q9Zovx8/Pj7uHtOab1YsQ1HXIS9+Pp0qPKB+J3W7HYh2H3XovWakfgmMj\nPXpM/FvzN+3FJ1i8eDlz580h2P8hggLfwmQ6xjPPzGLTpm9q7PFudaLR4XD8vxaNFdQKxVpqGrVC\n8RrcCtF4s9qUJAmTqTxqURCEm7Zp/lNHz7cqEfjp06kYjX7YHStQKf2pU+dZlMqpVUTijY6zpKSE\nGbMXUCC2RPTSgusUkjMbRB2CYCK8TgBTx3fB6XQSHh5eqY7w9VBcXIxF1BMa1ABJFPHwCcOoDGXP\nnj1s2/EHqdnFtGzejBGD+1apFw3Qo1MLjn61BbnDiMO0HlnuEZRCX0TxIOHh97Nt+07mf/odkjoI\npbOAoQOiWfPLSDIzzmO3+rO7sBvDhj3DtGljGDu2auWWI0eOkJ6eTnh4eJVayzcbs9nMtm3bOHfu\nHE2bNqVDhw7u40mXy4XT6cRsNqPVapn7xiQenzCewgxP5PI1KBUenE39jLvvf5bBg3sx/pF7OJF8\nFpdLos3gIYSHh7N06Ufcf//jFBV9gCBYmTHjWdbtPIGuxRh8AutSWpDOR8uW8+a0CVVquzdu3LhS\n8MuN0q1rRxrERVNcXExmpp5Du/YgKJVoNGokYTU2eTRGoYC4mKYUG0x/ax41Gg3NmsUTFNgRpbIN\nefnfIyDHYrFRUlKCv79/jTx+vZRLRWNF8FjF+stksv93orFWKNZS06gVitfg34wAvhqSJGE0GpEk\nCQ8PD4xG47/dpaty+RzeykTgaWnpFJVkotR0BTEFufA1g++o+7falCSJDZu2ku9oTnh8AufTzZgF\nJeTNQ6AxavXPvPTSO8TExLg/k5eXx88//4wkSfTt27faGsWX4u3tjVIqxVSSjs6rLjZTAWUFyUx6\nZjUl2g4Idbrz59ZMTpxbxuznx1aKIgZo1Kghkx4Q8FWu5qtlT6MWwpFYwaOPDicsLIwxT81C3+5V\ntF4hGAvPcfDIW7wz73lGjnwZtedvCIIWlyuDmTO7cd99w9HpdO62P12wmEVfJIKiOS77CsLqSORk\nF+Hn583Mmc/Spk2bq45NFEU2btxIVlYWTZs2ver1JSUl3D/qCQ4eOI3D4YnAUlq2DOWnn77Cw8PD\nLQwqREPz5s0Z0K8HixeHoFB4Y7K4kCuHYnf+QoqpOes2bmfSxLGV7tGgQQN27dpEQUEB3t7e5Obm\nsv3MNjx8yufUKyCMTPQYDIYq8yxJEj//sp51m/aiVil44N5+tGzZ8orjkSSJrVu3kpycTExMDL16\n9SIkJISQkBDi4uJo3nwZ+/ZNxeFoiKjaTWSThwkKDkOpFvjx11+5rWuHagOSrpd69ephNu+nsNgA\nqsG4XAUoRAMmk6lSUNV/gUutiTdDNP7bIrm6+9cKxX+W2jyK1+b/x0+w/xh/V3xWiETAfdz8byfI\nvlZ7l/J3ROK1+ma32zl8JI/wqKdA0IK8JQgSw4f3/Ut9h4uBQqWlZrReQXS7rRO+vhLevuHo9Odp\n0WI3K1d+SO/eF6uepKen06VLf6ZN28H06bvp2nUgp06duup9dDodzz95H5akN8nZO4uSAzNQO0sw\n0xqPBk+hDxiIU92RZHMoR48lVdtGw4bxzJnxAof2rGP58ufYtOlLpkx5ioKCAkRNHbRe5RVn9P5R\n2PAkIyMDhSIaQSi3fsrl9ZDJdBdyUpaTk5PDos9/RR+yEJ/QFzGU1WNbImRnf8CxY2O4994JnD59\nutr+FBcX8/4Hn9K+Q18efvgDXn01ixEjnmHRoiVXnIevln9L0gkbDsedIOxFlPZw+HA93n3340rX\nVYiGcqtZQ9Tq33E4TSBTIonr8AqKw6tOG1LOZVV7H7lcTnBwMBqNBh8fHwRLPlZjEQDG4hxUorHa\nYJxffl3Ph18eoFA9hvPOu3jpja85efLkFcczY8YbPPzwLGbNSmXcuDd54YWLPoeHDh3ittva06eP\nhkGDMqkXFoydOuQaozib48P+Q2cpKiq6YtvXQ0REBA3iI3EpWiMoglFrY4iKm8imzdv/Vrs3g78j\n1C5d/4p0WqIoYjabsVgs7hKs/zVqhWItNY1ai+I1qGkWRUmSKCsrQyaT4eHhUeP6dy3+arWY66U8\nx5ychOataGC14nKJGEtaodVqKS0txdPT84ZeTJIkYbFYcDqdtG3dhHXbfsUZPpQB/Tpy7vDXjHj6\nee66c3AVC8bbb39EcXFPNJoxABiNP/Daa/NZvvyzq96vbds2fPlJQzIyMvD39+fRR6cil+lAdJRf\nIOhw2KzXtJgEBAQQEBBQ6d8yaxYWQzZa71CM+WdQU0a7du0QhLex2bagVHbGZltCeLhvJb+74uJi\n5MoQFEpvAEoKNgNrkMvDkcubYLfvITExsVJdbYCdO3fy0CNTMdiaYS2yI0ir0On0yGTjmDmzJyNH\n3l3t8XxObgkOuxPoV75WMhUuVx9OnFh3xfEOGzaMbdv2snp1PxB1aH10JAz6kuL0HbRqGIjT6bxq\n3WFvb2/G3HUbHy77kN25FhyGTB4e1rXaF/a3P2zC6GqClH+CoHrtsfgMZOef+ysFC1WQnZ3N4sXf\nIpMtQ6XyQpLMrFw5ikcfHc2JE6d46dVlOOVDwBVFZJ0T2IxFyP1kqDV6rLZzOF0imZmZREdHX3Hs\nV8PpdFJaWkpYeARtZe1Qa6LR6bQU5tmxWlP+Ups1kStZGm02m7vutEKhqHFH7FeyKN6o20otf51a\ni+K1qRWK1fBPBLP8lfarE4l/p73rud/N2FgrAlButUiE8px+nTo1YPvORfj698VsPEVx0e888shP\nCIKaVq1i+eCDWXh7e1913nJzc0lOTkaSJOLj4/H29ua7HzaQfuYkhw7OQKu0MHXyvdx3z3B3VG5W\nVhZnz54lJCSE/Pxi4KIfn0wWRkHBwesag6+vL3q9HlEU6devE8ePr8d0+isIbY/Lto+YqGKaJ9xz\nQ/Pi7+/Ps48NY94nMyhTBaAUi3jp6dFERESwbNl7jB8/ldzcTOLjm/D5559WEqJhYWFo1bkYCrfi\n6VuRg7IQmSzqwtgKcDqDKC0txWQyYbPZMBgMPDP9bQxSNwSfbkhFdhA8MZkt2B2+iC47fQbdT3Bw\nKBMeGU73S8ratWvTmKXL1mG3rkKSOiG5ylCp19KsWaMrjk8ul/Phh3OZPPkcHy9YQtJZM6aTHxFf\nR8GYUROw2+3ugJiKHH2XP9v1Y6I4f+Qg+blNUCp78cEHG1GrPbj//otzfexYEsfSjBj9oylxaMjb\n9zn+PoFo1dX72BoMBhQKP8DrwrzpUCgCMBgMzHt7CRq/+Wg84hBFkbTM59F7GFBIB7BkJeLtGYg2\nvJH7u5KRkUFqaio6nY5mzZpd8zuUmJjI88+/hc0mR6m0oNEbCAl7DGOpFdG2mtu6jb7q5/+rXC4a\nKxJ7Vyca/+2j5+qw2Wy1FsVaahS1QvEa1BSLnSiKlJWVoVAo0Ol0t7xyzM3G5XK5SyP+3UjLa63H\n81MeJ2jxNxw8tAAPtYFzKWr8/FYjl3uzb9+7vPba28yfP+OKnz9z5gyz3/kWs6IJosNAXPABWjWL\nYschBQ26LUWQyck59wsnTx1xC6rff/+dqVPnA2E4nVm0bh2OQvEdLldDQIFM9hUDBlROSi1JEqtW\nreKzRSsos9po3qo1Y+8bTKtWF/3dxox5ALvdzvLlP2HN2cHAAV2YNHEKvr6+NzxvXTp3JKFZE4qK\niggICECv1wPlkbz79/92xZemw+GgfacmLP/xBdLSLfgHCFhNE7BaxyIIKcjkW/n2FwcLV2wmrGFz\nElq35eSeTdh1cchVfig822IRpiCJv4GiPQ5egcA4snXdMdrUzJj7NUFBAe4AkYED+3Mq+Qzz5i3A\nav8JpUZNs4RInnhiXJW+XYogCERHRzN3zgxyc3NxOBzUqVPH/bxVpFux2+3V1h1OTEykqKgxwcHl\nibft9rZ88smUSkJx7cY/adRjPAeTjYjqcAyGsyjOLWb79iacPHmKRx4ZXSnQKDIyEi8vB/n5a1Aq\ne+BwbMfX10BsbCxmswV1YEU9cAlBHkLblkZO5xQRGjEAq/EcwarDNG3alMOHj/D+Z5sQ1c2RHOdJ\niD3ExPGjrigWs7OzefbZ+SgUs/DxqU9JyVYwvkeglxa1Ssl9k+52z3dNFEs3C0EQUCqVKJXKakUj\n1LzxWyyWWqFYS42iViheg5oQ9VwhEpVKJVqt9oqbWk3b8Cqo2Jy9vb3/tki81vgkSSI9PZ0OHZoz\ncuSdLF78FXt2t0OhKBdWev1w9u175qptfLVyA7LAIdQNikWtUnH26HdY/9yDQt8NQVbef6+ABNLS\nt7jHN3XqmygUE9FownG5TOzd+wajRnXh22+fxuVyMXr0vTzxxGOV7vP22+8ze/YyrLahyBRpnE1d\nR5EF5gYGuJM1y+VyJkwYx4QJ49ylDf/OGl+aBFsURVJTU7HZbISEhFQrPktLS5n76QoS8yKpf/8C\nXLlH8HFl0jLIjNOaxpFjKRg9n8U7vBtF2UmkCHIa+sQjj3TiOJ+IwvUnTmMj5H59cJY+h0w0INRp\ng0ePj5GMmWiCG5O/O4PDR465hYsgCDz26Bh8g+tyJF+Ph289ZJZstm77E5vNyu/7ktColNw9oBut\nWrVEkiRSU1OxWq0EBQXh7+9PSEhIlbFcq+5wuYDUXnK9DsUbpT8AACAASURBVJvNUakNh9NFUHAw\nPUNjycrK4UzGETJSc8hI7YMgFPHtt0PYsmXNhfJ75VHH3323mMcee5bTpxcQGxvFp58uRq/X06d3\nR9asfwvPgMexms+iYhPPPD2XEyeT2X9wM4EBXtw9fAp6vZ4vV2zEJ2I0eu86SJLE4eOLOX78OM2a\nNat2nc+cOQM0QKMpdwfw8emOwfA5M14ZT2lpqTtN0r8dzPJP7lnViUaXy4XZbEYul6NUKq/qnnAr\nqG78tRbFf5bao+drUysUaziiKFJaWopKpbqiSLwVG9vNOpaxWq04HA73JnwrEUWROW9+yObf0pEp\nAvHQpNK7ZyME4TCSdB+CIMNiOURsbNAV25AkiaLiMlRBvqgvVOSQqwMJDPDDeXwXLkd3ZAoNxZlb\nadu2vLpFaWkpDocMvT4cALncA4WiHv369WLOnNeveJ/58z/A4fwUhSYcQZBhMz5PdqlEcnLyFSu4\n3Oh8pKWlIYoiERERlaxPoijy3ep1HMmWkGl8UBj389DQroSHh1dqI+X0aTJd9fCI7YRXaAx272Bs\nKWuwy+TMfv0JRo6Zgi7qDixlWci96uFS6MgvKKR56/ac/O0rIlv2IuvUSnAeIaT7ENoPGMn6rfux\nSU4UCg1Kj2CczjIcdhvTXp1LanoecdF1GNi3C+llWpp1KrfCulxOlq94BSkgkrAuE7FbjLz//VdM\n89STlHyOfal25Do/ZGUHeGBQ+0rR5wBFRUXk5+cTGBiIn59ftXWHW7VqhU73FSUl9VGpwrFav+G+\n+yoHQfXo2IyFP63FN7Y/wV5OdidtQhBeRaVqDYDBYOPrr7/h2WcvlsarX78+mzevrrI+016chFr9\nMVt/n0iQvwdTX5hKTEwMMTExDBrY332dJEmUllkIiSj3GxUEAZki4Ko5LoOCgnA6U3G5jMjlemy2\nVORyG999v5YffzqOQlEHhfwss2aOu+6SgP+fqDiettlseHh44HQ6cTgcWK3Wq7on/BPU+ijWUtOo\nFYrVUF2t55vd/vW06XK5KCsrQ61WX9fGUdMsilar1R3BVx5kcmv5888/2bilmNDIuchkCgrz/+TQ\n4VW0a2dj376xyGT+eHqe4rXX3gaqrkNF4EqLphFs3LcVD48h2KwGpNLd3DXuTjy9tvH9T08gyNQ0\na+DH44+WWyZ9fHzw89NgMOzDy6s1NlsWkFZFrFxKuUXDAehxOpxICIAOU1FOlbW2Wq3s2bMHo9FI\n586dr1oWT5IkNmzYwNbfd7DvwEEs8hD0XqHE1RGYPeM592fPnDnDkRyB8DaDEQQBQ0EWqzdt4cmH\nwy9rD9QaNS5LafkfBBlWk4EiMYuvv16JWmEjO/cInoENEXN24NJ44ONdH3NBGhNGD0Ejl7D26Em7\nNpNZv3UX+4/9imdJOnZDHsqQNuQf/Zw6Hvms+20fxd5D8I5pwY60RJI/XEJ0m4tiSUAgK6+EhJ59\nUet9UOt9MER0JHH7H6RZ/AlrMwSZTIaxJJ8fNvzMc+Mvzv227Tt584MV2OV+WIqSGT28L3ffPdwd\n2FSRoy8iIoIFC2by8cdfUVCwiW7dWtK9e2fWrVtH/fr1iY2NpVOn9sjkMnbs2YxaJcfHU0Ox8+J6\niKIXFoud7OxsXC4XoaGh7h9IlwfUaDQapk97hunTyvNGXpqvURRFjh49islkIjY2lrYtYtiZ9Ct1\nY3pjKstB4ThGVNSoKz4HcXFxPPhgT5YufRK5PBpJOsHjjw9j5XcpBNV9C7lCS6nhBK/PepdFC6v/\nMfO/QnWWxn9TNFqtVrdbSC211ARqhWINpUIkajSa6zqGuNmb2N8VyBUi0dPT033Ec6v7VVBQgCRv\niExW/lh7+TQhK+sz1q75lAMHDmCxWGjadCq+vr7k5eWRk5NDVFQUKpUKi8Xifknce/dQlMpf2L77\nHXQaFZPG9iQmJobHY2IYee9d2O12/P393XMul8t5//1ZPPXUSxQV/YhS6eCtt6ZWmxS7AplMxuDB\nd/DNytdxOR8AIQ1BvoOSzAgiIyPd1xkMBgYOHE5GhgAo8fGZxbp131/R4vjWvA9YtGw7Bk0z7Jru\n6GSFNIjqyrGibCZOfon6DRtRPzyY+hF1kekC3GPw8A6g8JS1Snv1Y6KJ3pdCdvpBcvan4cg7hitt\nG0cDm5Pi8Pw/9s46sKry/+Ovczt21x1sjI0YGzG6u0MQEVFEBTsQxURF/RqAAgYCAoqiKFLSAykp\nERgxYjDYWLLuu7h9z++PuStzoyR/3+9e/233POc8z3PqfT7PJzDnyZFUfI5Q0hF1QRKeLnLUuR1p\n6OfMqHtqlhls2rQpycnJnE9M4vfD58gr3o53Iyn39H+Sj77eg0/jwQD4NL+frF2/08qew8WEg2jd\n/SnNOkuItwKz8e8E1NaKImTuIGjcHL6iGmcPsipNjvreer2emXN/Qtb8RXJTjmIK7cfsjfvILFnO\ni4/fXyM/oSAIhIeHs3Dhp4iiyKJFSxg8+CGk0mbYbGd5/fVnee65p+jcqQOdO3UAwFxexNy5s7Fa\nn8duL0SlWkuF+T5en7UCiUROqJfIhAdH8M60WcTGnkCj0TDtnecZOvRvEfxPbDYbH03/gr1HS5Gq\nfFGYf+K9qROQyBI5dmIWri4annthuCO/Y/X9pVQqKSwspLi4mMDAQCZPfpqBA3uSl5dHaOjzJCcn\nI5EJSGVVHyI656Zkp1ZgsVgu25dbzd3g/30pl4rGS31arxYI9W+53NLz9VT7qefGsNYvPV+VeqF4\nFW6VRfFKZehsNht6vR61Wn1dvip3y0PXYDBgMpnQ6XRIpVJsNttt6VvDhg2R2JZiNg9GLnehIHc7\nbSJDkEqljgTPoijy6adzWbJkE4LggpNTCU2iWmGyKfB0lfH6S48RHBzMQ2Pv5aGxtY9RlzVPEAQa\nN27M77+vp6CgAFdX11rWoYyMDGw2G0FBQY4qNLNmfcj23X0pN81DqlAS0vVDVJYsUlJSHCJg9uwv\nSU4ORSJ5A4Dc3EVMmzadhQs/r5Uip6SkhGU/b8bmNgZZg7HYccJUsoycvGQoTaYoMAxdg2GcSzlO\no/N7Qe1LRWlT1Do3ss/H0rKhD//E1dWVp8YOIvLwCS6kpCILlLLR0JSAvjMQJBIs4b0p2PUMH77c\nF51uJCEhIVit1jot4FKplPDwcMLDwxk4oD9msxmVSkVqaip2sx67zYpEKsNuNSKIJh4aNYjTZ5Mo\nKImja0sPvPo8waffriE9LxW7qZwgawr9+o3mm9W7KSvOQ+viSdb5IzQN8UYikWA0GlmzZg25eYUo\nnY8j+nTA2TuKcizky2QcPnKC/n171Opn1Tzn8sEHsxDFHwB/bLYcZswYx4ABfQgMDHSIhilTJiGX\ny1i1aj5arYbBQyYSm+dLcI+HQBBIOrGJx56YQnZOL1z95mM2pfHWO8/RsGGDy1Z3OXToEHuOGfFr\n9TGCREpJ7nHmfv0d3y/+pMZ2oiiyYeNWft10ELsoILUXcSw2AanUE52uksWLZ9K0aVNH2h6r1Ypo\n+xWjIReV2oeCvN9p2NALxV8uFneKO3Xsq63A1OXTeitFYzVGo7FWNaB66rmT1AvFq3AttYVvJlar\nlbKyMjQazXU9LO6WJedqkejs7HzbS2q1aNGCZ5/qxsLFL2IXlYSFuvD6a1NqbLN//36WLPkTJ6d1\n2GxwIfMFinQtGDpyLPqCBGZ9+RNzZrxaq6Tg8ePH+XLBckrLKunTvTVPTHwYhUJRY5vqBM6XYjab\nefL5V4g5mIHVLhDuYWX9ikX4+vri5OREo2YRuHT/EqXWA7PZTP7+aTVE1oULF7HZopFKqz5YbHZ/\n9sVt4q1Zi2kW4suoIX0dVruDBw9SkJ+NzXYIRYOhiHYlgtQJm70Yg6WMFm0H4uLbEGefEFI3TefZ\nPuHsObKeYoOZyEZ+DOnfq8559fT0ZNTwKl+92NhYfjt1AOGvcytTOiNIVYSFhTlE9LWUY5RKpY5x\nBgcH06NtAFv2vk+hNRBrwUEGtNXh5+eHv79/jXYfvPQo586dQy73oWXL/mg0GsYP78yvWzeRVWmm\naYg39wzqjcFg4JFHnuPMGRl5+e7YUubj2uN1xOIc0GeQlCpnzs7NHDtymOeeexqdTgdAYmISm/Yc\nJTUjC5vMHanV7a/++iKXB6LX65HJZI7IWZPJRIcObejcuT2RkZH8smYTaiHCMT/O/pHsTskmMPBJ\nBEGGUtUIQ3l/Tpw4cVmhWFxcjKAOcwROObk3Ie9kca3tjh49xoqYNAKiplFSWsbG5R/jyli8XB5A\nr9/NpEnT+O23FY7tQ0JCeHXKcOZ8/jolNhV+fnKmvfPiVc9VPZcXjXVFz18rl/t4NplM9T6KtxFb\nvQy6KvUzdAe4nJWyWiRWVxm4Xu50dZYricSb1ber9Wv06BEMHToAg8GAm5tbrQf3hQsXsNu7IZU6\nYzKdR6JpTblJg0IhxyugBRePxFBcXFyjbFtKSgpT3lqAPOgFVH6+LN+yFJt1KZNeeOKq/V246BvW\nH7ehbPYVaomG8+mLmPDUy8Ss/xmpVMrzE+7j86Xvg08PrCXnaBss1KhJ3bFjK/bu3YIo9sBm02Nz\n3U9QvycJ6DuahLOHWLdlJw/dN5w9e/bw+OOvUKF/GEyJGBXvI/cdiqg/CKYE3DzciWgaDoBotyHa\nrYSHh9GhQ/vr8m0NDw/HyfID+ed2YLNb0Kf9QbsQd4fQ+jdIJBIeHXcfW7c9h0JuxK1hB06kJbBu\n/SZGjhhWY1sfH59aYjw0NJRXng2tMY41a9Zw5owGF5dXUSgMpGR8QsHZDWiixyEYjfy5OQZpUTgn\nj8YTEzOa7dvXU1xczLKtsXi3u48m0RrWH87GkrgMtfQJrNZjyGQ5hIaGOpYmi4qKePGVD8iq8EMU\nRQKcfmLUiD4Yzp7EHtIKQZBQejEOdyclJsNZNE7tEEU7gj0Bd/eBNcZwad/Dw8OhfAHGigEoNd7k\nJ6+nXVTNZOYA55PSUbq1R67QUFaWg1TbG4u+qkKMk1MPLl6cgclkqvHB2bdvb7p160J5ebnj/qio\nuLF60v9r1CUaTSbTvxaN9Qm367nbqReKdXAnglksFosj/cm/EYl3ul5pdcmsukTi7eqbzWbj2yXL\nWLdxP3K5jCceG17LF6xBgwZIJEux259AKnXGajiDq1MwgiBgrChCIpbXciQ/duw4Fk0vvHxaA+DV\n5Am2/f7aNQnFQ8dOgXMXZLKqqiYKjz6cStjo+H3kiGEENwggIeE8Gk1j+vTpg0wmc/h0PvPME8TH\nJ7Bhw3BE0YZ/1FiGjhiJRCLBv2l7zuxaAMCnny7EbH4NrXYIJlMJ1pRP0FbOYOL4exk1dCw79h0i\n9s+VqP2boU/8EyEzno8++pQ+fboxePDgGnOYmZmJUqnE29u71rlzdXXlg6nP8NDEKRRYgtE6uXJR\nXkxOTs4NRWofPhyLNGQska0fQRRFKopSWLF+Vi2heCWKi4v59tsl5OYWYbcbsdsDEQQBjUaD1tsN\nq58XTVQXOB77NaLhTeTyVoiihNTUp/nzzz9xdXVFdA9D61pV0ebh515h2dsPgmEtGo2d776bVyOF\n0E+//EqW2BXf9uMQRbh4aikXLmTQPlBF7I6PkMjkRAZpmPDpVKa8+iZ6Uzewp9IuWk7fvn0vO47G\njRvz6nND+HzeFIqsAi2bB/Hayy/U2s7b0wVzeSqi2BGdTofNfBapUPXsqKg4hLe3R61VieLiYmbN\nXszxuPP4+nrw2iuPXbUG+X8rNyP472opl/6NpbE+PU49dxv1QvEuoFokOjk5XdOy3e3gWgXypSKx\nuu70neKXX9bw/YpUPBvOxGo1MH3OTNzcXOjSpbNjm169ejF69GFWrhyBVOqJr/MFwtzcuHhKD8YU\nnn1kIBqNpsZ+1WoVoiXT8bepMh+d5trcAhoGeiMeO4zdawiCRIal4CB+upofAtHR0URHR5OcnMy3\nP6+lUG8gxM+dewb2wtnZma+//oIZM97n9OnTbDiej/SvNDcVJfm4aKteKEajCXBCEEClcsViaU3f\njgrefaNqabFJkybs2befpNQ4vly/iKKiKKxWLStWvM9rr6UwadJzFBcX88STr3IusQjRbmTwwPa8\n9dZLXLhwAaVSSaNGjZBIJBw7fhLnRvfTNPoZAPLObeDrb37m/XdqLvNfC9XVhqxWKwKXRqCDRBCw\nWCyUlpaSmZmJn59fDUvvpej1evr2HU5WVnOs1lDk8t9QKkGr7Yxc7o3Vkkxw8yG07tKBU8s/wib8\nnbNRELSYzWbUajVixQWHgPBy1fLyi08x/t7+eHp6Ou7N+PgzbP79CDHbDmFUd0W02xAkUmROgVzM\nTmDW9LfIz8/HbDbj7u6OQqFgzaoQTp48iYtLO1q2bInNZrtiZZUB/fvSr2/vKy5DduvWhUNHvyXh\n1HwEqZpIvxNkp2dSWRmHSpXDF198VKvNe+9/zsnzkXj4vEhW8TmmvPY5C76aeseibO+2TA03Ql0p\nl64kGi839vqE27eX+jyKV6deKF6FW21RNJvNVFRU3LBIvBMVZK5VJN7Mvl1pX7v2xuHs9xhKdZWY\nKHe5hz8PnqghFM1mM8OH96V16yZ4eHgQERGBwWAgMzOTI0eKOHDgECaTgd69ezva9OjRg+WrtpF8\nci4ShS/Ssm28OfWha+rTa6++wsaY4aQfeQQEDSrLBb78YXat7YxGI0tWbsUa1BvPJqGcuRCHftUm\nnp0wFkEQcHV1pWXLlmTm7+H4n2uQat2RlKTy2PBuADz22H28/vqnmM1ywIRS+TUPP/yZY/9yuZy+\nvXtRvGoVZWUNEIS3kMvBYunOJ59M4IUXnmXGjLmcSWqFs/eriKKJjTFPEhPTj5ISG6JoJTq6CStX\nLiUnrwSFy9/lCTXujcnJ38+BAwdYu3YdXl6ePPnkkzUiiv/JoUOH2Lp1K3v/OIJZ6o4gWrCYKshV\nuSPXeFGRuBwnbSlNmrSlsLAAhcIPubyE99+fyhNPTKi1v40bN5KXF4ggTEMuB7u9C2bzo8jlMygv\nr6Bry2AE8yn0ub64BjSiOH06ongfVmscrq5ZdOjQAY1GQyu/eE4fWI3MyR1ZaQqPjehRw1KalpbG\n9xuP4hE5jOCekezbtgV18k4Kk3aTeXozF7QqSgoKmPfVDLRaLXa7HYvFgre3Nx07duTrJStYtHwv\nAhbG3tOVIYP6X1YoSSSSy4rEkpIS1q5di1Jq4p5e3jRt2pSGDUdQUlLC+fPnUSqVuLu712hTUVHB\nyVMZ+DSagSAIuHm2Jy9jN0lJSbXyZ9bz77k05dKVLI2XO+8326K4atUq3nvvPRISEoiNjSU6uqry\nU2pqKs2aNXMEO3Xq1In58+fftOPW899DvVC8Bm6VALsdtY9vhCuNWxRFKisrsVqtd9ySWI2bi4bk\ngmx0bs0AsJlycHX52zqo1+t554MvSC92RSaT4a87TdOmTfH19WXy5Hc5ccIDmy0SmWw+L7+czDPP\nPA6AVqtlwdwP2blzF+XlFURHT6JZs2bX1CedTseBvZvZsGEDZWVl9O79UZ35Fffu3cvZLAPNIryR\nK9UENm1P+u9xlJeXO/z/JBIJ9w0fRIvz51m3aSu5JQZiduxl7CgXHnpoLKJoZ/HixchkUl55ZTq9\nevUiIyODLxf8QGZOEdEtGuGilWO3/718KgiuWCxVTvknT19A6TT+LyubiuKSYsyVLZDJpgEiR468\nwWefzaV9+zZs3Pcb1sD2SKRK9Ckb8dBkM2TIg9jt94BwmBkz5hES2oRu3drxwfuvk5WVRU5ODkFB\nQcTGHmHKlA+oqBgEEgVazyzaPPIzhQem0dr5D5RqZyobCWyJESguNiGKczGbW2Oz5fDeexPp2bNb\nlR/fJRiNRux290vG5YEo2vj66xl8vWQ1pWUVhDmX48Mxur40nkMHDnPixNcEBwcwc+YaXFxcsNls\njBzSny55eRiNRnx9I2uJrQsp6Ui9W+Lk6k10W0+Ki4qIW/suFcX+uAZsxcPTh8Nx7zN7znymvfMq\nEokEpVKJQqHgux9XcbYkHN9Og7FZKvlhw3yCAnxr+KRCla/yt9/9xKaYAygUcp6ccA8DBvSrcR2P\nGjWRzMwW2O0BKBTfM3Pms0RGRnLy5Gm+/WE/ojwUu2k348a0Zcjg/gAolUpkMhGzqQClygtRtGO3\n5KDVdrima/m/jdvxYX010SiKoiOVUzVGo7HWqsaNEBUVxdq1a3nqqadq/RYWFsbx49dWg/6/lXqL\n4tW5+9TJXcA/fRRvxf6rS0fdLJF4sy2KVxr33SgSAZ5+8gGenTSdrMRkEA34Op9k5Mi/kwmvXLOR\nNEMLGna4F0GA1BO/smnLDkKD/Tl9WkCn+wxBELBa72HOnEE88cSjjnPj5OTEPfcMv9yhsVqt/Pjz\nKnYfOo1GreSR+wbQtm0bADQaDQ888AB2u53MzExSU1Px9/d3+KJ+PH0O3y6JoVQdwh9pK7hneB8C\n/b2xmSvrrJCzcdtejhtCcI/szIHs81z4bBHT336JceMeYty4vy2der2eSa9+RKnb/WgCm7P+yEai\n3M8jlx+komIrEkkYEslSBg4cjEQiIaxRAGn796LSRCCKVizG84jiWwiCBBAwm/tw4sQB3nzzVdIv\n5vDTqsexi9C/R2u+nLMbm/gfJNKO2K0WrOLH5Fc0YvMuM3EnxiG4NETi2hR78UqSjuzEbP4KaIQo\nyqgsnERewhaUfj3o1knDkCFDmDhxCqLYA1H8A0FoD9gRRV9ksuYkJSXVEoq9evVCJpuNwRCNRNII\nqXQhPXr05KW35yIJfw5loDe7Ti3h0Qbw2PgHeWz8g7XOoSiKSCQSQkNDL3ueNSoFFkMpAFKJhOio\ncEyngsnIeghnj6qyfXLtSA4f+pjk5GTc3d1xdXVFEATOJmXh3WQ0CrkcUe4Crq1JupBMeHg4oig6\n7t+fl69m2epM3INnYbKW8/GsGXh4uNG2bVX1l5iYGLKymuHiMhUAo7ENn3zyAb1792LBN5txbfAK\naq0XFnMFP62cQbu2rfD29kYmk/HCc6P5bO47iNIuYE+kSwcXIiIiLjveW82dTul1O5e9/ykaLRYL\nZrMZg8GAIAgsW7aMPn363HSLYrXFsJ56/i31QvEq3Iol3eq0Cjej9vHtplok2my2axaJt2vpOSws\njO+/+YDY2FhkMi+6dBnrWP40GAxkZhfh7BVN9btB4xpKdt5+/H3ckUguTaDtht0uYrFYaoh4o9HI\nvn37qKiooGXLljVKn63duIX1xyrxb/cKlZWlTF/8DTNdXQgLq4pWtVgsfLd8DfE5VgS5El+ZnmfG\n38fFixf5/oedaIM2YSrYQWXWRdZ8v4DRfSMY1aMVMpmMiooKpFJpVSk3vZ5jiTkEDX8eQSLByasB\nWbvOkpaWRpMmTWrMx9mzZymVhOHZeAgA6tbPEr9jLD//vJhp0z4hP/8XevfuykcfTQPgnbcnc278\nJHLz9yDaKggM0JKT8zui2AGwI5PtwknnwunTp3nskQcZP24Mdrud1es2YrRYgADsNisgATGASnsi\nYvA44s7spdODn+HsF4m5PJ/y3eHI5QGIIojYsdn9SD3+AxpXL9a5NkaiUOPr6wZkIwh27PajCEJL\nIBer9UydFtnQ0FDWrFnKG298RGFhEX36dKV16+Ys3KXAr0EnACQtn2XzjmlMfGzcFa+vK9GyZQsO\nxq0m9fhWBLkGpf4MPTpGsGzlIURxOIIgUF68igKtkvm/xiM15TJueCeioprj5+1KUt4FVA3bgd2O\nUJlGgH8zFAoFRqMRg8GAVCplx66jOPtN+suFwpty3T0c+PO4QyhWVlZit3s6+iSTeWEwGCgvL8dq\n16LWViVrliu0CHIfSktLHb6dw4cPJjS0AYmJibi7d6FTp053NOE23D2pvW4n1aKx2r3AaDQSHx/P\njBkz0Ol0LFy4kPHjxxMcHHxL+5GSkkLr1q1xcXHhww8/pGvXrrf0ePX8/6ReKN5mjEYjJpPJ8aC4\nWdwKi+I/9/dPkXg3PuD9/f3x9fXleNxptm/fwZAhgxEEAZPJRHSLME5s/AM33yYgipRlHyCiTSDR\n0dEolbMpK9uAUtkCg2EpXbq0qeEfZjQaeXbSVM5keYLCF3n5e8z56HlHIu8/j5/Hp+XzKJ3cUDq5\nUeLfjVPxZx1CMfbIUU6VOBPSfSiCIHDxzEG27NiLp4saiaIxBYVGyk0doSIVe8Fs+rzYha5dOiKR\nSBwVY2w2GxaLBbvVjNViRK7UVC1dmSrrtEorFArsplKHRdJmqUTATtu2beusPezt7c36td+RmJiI\nQqHAy8uLoUPv5+LF+zBbDDj7uuE8YDLf/pFEz4xMRgweSGZmJuv/TEDbrBvlCfPA9iKImSBZi6rd\nLwiezRCkceSm/YGzXyQKJy+cPYKoLJ0OkkkgJiNIt2P2641bZGeaPjiWbbE7aNeqGbGxv2CzRZKf\n/wKC4I1KVcpbb71K48aNKSwsJD09HZVKRXh4ODKZjHbt2rFz59/jWr9+PVgKHH9bjXqclNfmB5yS\nksJX364kK7eIpo0CeOrR+/Hy8kKtVvP0o6M5f/48FouFkJARqNVq4uJe5Oz5MYiiFImqiAETvsXd\n0wdDeTE/rV/Ge+GNmDBuBB/OXkJW4TFsphI6RzjTrl07x3NArVYjiiLOOjUZ2VmodI2QCAJWU1YN\nF4quXbvy+ecvUFHRCrk8AKNxPmPG9KwqJelsoTD3FB4+UeiLU1AK2TXSCSUkJHDo0DHUagWRkZHI\nZLI7LhT/V6m+LwVBQK1W88UXXzBr1iyGDh1KWloabdu2JSwsjDFjxjBmzJgrZhXo168fOTk5tf7/\n8ccfM2xY3ZkD/P39ycjIwM3NjWPHjjFixAji4+NvKNXV/0fqK7NcnXqheBVupgCrzjPo5OT0/y53\nmSiKVFRUYLfb71qRCLBmzXo++WwrqAZhN19g/YbXTuRqHAAAIABJREFUmT3rbby8vBg8qD85ucvZ\ntvctAPp3akzfPj3R6XT8/PMXvP32bLKzv6Zfvyjef3+6Y58ZGRmsWbOGuBQtQR3fQRAE9Hkd+PSL\nBaxc1g5BENBplBSUFaBxrXopi5UFOGn+9m/LL9Kj8mjgmDdnn2CyL56jS/tWGPTvUCZJROHaGWvZ\nERSu/mzY9gdDhw4F/i4rVl06cHDXKDbsXICiQVss+Um08ZfVaXmIiooiKngNxw99gsw1AlvuTh4b\nM9Cx5J2ens7B46exiyKdWkcSHByMWq2mRYsWjmv+t9/WcuzYMZZu/YPI8VORKRTYrFb2xXxLj07F\nlJWVIXXxYdCbLxAz/Tkqk55ENFYiDesBOilixTrcAwKoyEjFbrdTkvoHrdu2pKwghxNnxqFy8SKg\n9+MYgjvhrZWh1Drh3aILaUdWs27dUg4dOkRZ2UN4eHgQFhaGv78/Fy5cYNG6XVi8m2CvSCfiyEkm\njB1VSyz36NGDZaveIvvoIiRqb4TsDbz28pirXkN6vZ4PP1+KrfFDeEQGs2rBMyz4cjGuLjqefeZh\nXnjhaVq0aFGjzU/L5nPq1CmysrLYebIcd8+q60Dt5EaRrOp+9/f355P3J5Oeno5SqayqJHSJRb46\nIvb5Zx9k0suzyEu+gM1ajJOwF1/fiej1enQ6HY0bN2bRovf5+OOvKS0t4777OvPqqy8gl8t5bcp4\nZn3+Ixfjl6PTwmsvj3EkQj98+DCvvroYq3UYUMyqVVNZtOjDGmUW/5e4GyOu5XI5EomERYsWsWDB\nAnbt2sWKFSsICAhg9OjRl223ffv26z5WdVofqMq80KhRIxITEx3BLvXUU029ULwN/DPPYPX/bia3\n0qJ4oyLxZvftcvsSRZG583/BLXAuSrUvVquNcynvsG/fPho1aoSXlxdPTBzH+HEmoKq0XvW+IiIi\n+PXXb2vtc+nSn/jgg0WYTL6UlCeh8umBd+hAVLpAii+WObZ7cGQ/Zn3zEylZ0djK8wjV5tG580uO\n34MDfNh+9gy2kAgkUhlFKSdoG+pDUFAQY8f0Yv6SJ7EaXFA66Wg2ZjY557+q1ZeMjAx2796DKMK4\nrgGUGdLxbOxJ505DMJlM2Gw2x4sGqqIrP/34bbZs2UpWbhpREYPo1q0qSjo9PZ0vV/6GtFl3AGJX\nbWPS6P74+fnx3U8r2R17CqVcxpjBPWgZFYlHfDayv14qUpkMQaHEZrPh5+eHsuwiVBYxZuZyMk7s\nxSl+NXrUSCPLaBjel+LUM8SdWU/eptEE+Xvw4YypVWJs+Q58hj5L0YXTxMXFEdCxatnLqC/BS6NC\np9PVyDeo1+uZPmc+q7ftQ97uXnq2aY6vrx9n9v7K2bNniYqKunS6cHV1ZeGXH7B16zb0FVl07vBU\nLYFXFxcvXsSgDMQ3KJIjq2dSkOEDqr0otDLmLXiKhg2DGDZsaI02crmc6OhomjZtyp+nllFWlI3O\n3Y+SvDS0UqPjvndyciIiIoLKykrKyspwdnamoqKC48ePo9FoiIiIoGnTpny78F0OHTrEokW7yEgX\nefnl5bi7z2PJktkEBgbStm1b1q//rta92KBBA76YPZWKigo0Gg1Wq5UzZ85gt9uZN28FCuVLeHpV\n+c7mZMNvv23n3ntHXHVObgV32j/xbqb643DAgAEMGDDgpu330jkvKCjAzc0NqVRKcnIyiYmJV/TP\nred/l3qhWAc3M+F2XYEft7Mk4I1yt1kSrxZkYzKa0SncsNnsf829ni8Wbcc7sBTRlMqT43swcECV\n+DAYDFc8Vnp6Oh9+uBiFYjUymScl+sPE//YiLg+3pijpJ4Z2buXYtnHjxkwY1YOFv2xBptCh0blR\nWlrqsNa0bNmCgTl57Ng1H1GQ0jrUi369hyGKIoMGDWBnXCG6Dq+hcWtIwclldIysGayRmJjI/Q88\nR6V9BAgCWsk8Vq9c4AiEqI6mrHaMr07BoVKpGDmythD449gpZBE98AmLBCBXkHDg2CmspsNsTbMT\neP8MLJVlLNz8Je94ehCgtJB58iBuDcIpSjtPA7XoeMlMffohPl/yI9m/lxPu78Xkaa+Rm5fPL9v2\nY4lLIMpNxadrltQqS/l4Xj7LVn+A2WSiudWKa2kAaUeKUOTEM2hYz1p9nrv4R+JMjVCEyaBRb3Yd\nPMWwPk5IdJ6XPZdubm6EhDbkj1Pn+P3oKVQqFY0bN77ieddqtdgqC7FbLWQnHEOQvwNWJTKFB5UV\nY5jxydd88fVK/Hw9mPrKkzUi4DUaDRPH9GXp6l/JOCfDRWXnsbEDa6S++m3772w9kAASBb46G0kX\n0ikUQ5FKRIK0v/Hem88TFBTE77/vIS0tBK12LoIgIzf3a2bOXMC8edOvWD5OEATHqsV/Pp5HSrYW\nBDnxcQn4+1ziUyy4YzD8vTR/p7jTz5Q7xe2yaK5du5ZJkyZRUFDAkCFDaN26NVu2bGHPnj28++67\njo/LhQsXXjGl1X8r9SX8rk79DF2FGxGKl4sOvl3VXm4UURQpLy8HuGGReDusBxKJhH79OhCz83Oc\nvUZjKE+gqDie6AE/4uoRiNlYyuIfPqJ9u2jc3d2vWsc7MzMTqTQMmayq3rCPVxsKCqH46ASG9OvO\nlMnPOPy7iouL2XQggaj73kHj7E7hxUQW/7yBaVOecvghDR3Yj749u2Gz2dBqtY75bdOmDS8/mseX\ni1+nQpAT3TyEVyfXTF49b/5SKoUncfZ7DBAoy/dl7rzv+PLzj2tEU+bm5rLzQCxGi4U2TRoRGdkc\nuVxeO2+bKGK320hKSsJkMiE3liAqRY7EX8Cr/RPIFCpkChXSsG6cv5DC42NGsnHHbi4ejaeNjztD\n7r/H4VsXHh7OvOnvYLVaHcu/vr6+NI9ohslkQqPR1HntDOjXl/59+zhE7rlz57BYLAT1G1ErAbTd\nbuf42RQC75uMyb6ZnIvx2Jw8yUw5j/riKdLlbmRmZhIREVEjqOdQ7BF+PpKMZ/shlJqMzNsYw0uj\nFISEhFz2vDdo0ID+7YLYumcOgt2AteIQHp7jEASBMv1BJC7+NGnzFRcL4pn02if88v0sPDw8HO1D\nQ0OZNmUiFRUVaLXaGr7IZ8+eZdPhHII6PY1MrmTrmsWU5zsTPehxZDIZx3Yu4oWXpjJ0YC8SElKw\n27shCFVzqlD0IDk55prLx22O2U5SfmOCIu9HEAQy8hVkJP2H0JA5WKxFyGQb6dRp0mXn4b+du3Hp\n+dLo95vFyJEjGTlyZK3/jxo1ilGjRt3UY9Xz30m9ULxGrvehcqklztnZuc62d+OD6lJMJhNSqRQn\nJ6cb6uetGOPl5m7ypMeRyZZw7Ph0/LwlODu1x9WjqkSZQuWCIPegpKSkVn68uggJCUEUEzGbE1Eo\nwhGEkwQFqtj92wqOHj3GhEnvUGmyERUewKDenUAXgMa5ar8egeGkn93iSKZeTXXai0tFuFarZewD\noxk4oC8WiwUvLy9sNhtWq9XRTq+vRCr/25ldKvejtLSyRn+zs7P5YlUMkqjeyJQqTv+xk4kyGRF/\nCTapVIpcLkcqldI2sgmzXp1BUYPeCHId4vFf6P3Mvbg7a0ksyELrUSWOrcVZuIS7otPpeHDklcvp\n/dNHsFq4XIlLRW71srDNZsNkMtXazlmrorI4i5DW/bEfiSF1x49IWwRTlJvNnD+8QBuKpOhT3n/l\nQfr0qUqYfig+Efc2fdB5Vc2dQd+J0+cSkclkvDl1OklJ6UREhDH94zcd14QgCEwYP5b20ac53dGH\n6TMWYbUlUFFSisBeGvc/jEzlgmtgZ4ryd3Lu3Dk6d+5co79SqdSx3HwpObn5yNybIJNXWVYFXQjW\n3Cqr3ukzCSTlKMkqcuF8Zhqu0jgkkkzs9pEIggqzeT1Rl9R8vrR8XPX1cmlS5+zcYtTO7Rz3SePm\nPajQHEYqzkCrVfLUUxNp1qxZrbmu585zN78X/tuoz6N4deqF4lX4NzdstQgQRbFOS9ytys14s75E\nRVF0WMpuVCTebK7UF4PBgEQi4e2pLyORSMjKyuKZSR+SlXoE/5C2lBScRy0trBEFeiX8/PyYM+cN\nXn55HEajGypVGd98M5OsrCw+/XYzqtaTsRWksz1uMxfTf8a5QUvMxkoUKg1lhdloZfY6E+deKhIv\nnV+lUolSqWTn77v548hpXJxUjBo2EB8fH4YN7cH+g3MxKxsAEsSKuQwbUjMw4/ipeGxhHfBt3Jz4\n02c4VaTg3AefsXDWu4SGhmK1WrFYLBiNRpKSksDugpfEHewCyrbP8OOaH/hyxlu8+/m3XMxOQDSW\nE0423brWrjN8uxEEgWcfHsmn382jxLsVSv1FJgxsT/tWzXh91ha8Ok9HECQYSgYw8/NX6d27F4Ig\noFLIsRj/Xpa2GSoQnOyMHfsM2QUPoFBNY8/+9Tw07jk2rP8BvV5PaWkp7u7uVcFAUVH069ePgwcP\nIpFImD47F9FedW+Idht2Q851JUf2cHfFWpKE3d4eiUSCTlJGYXkqqXEbiD92AplNhm/IcNz8ulMQ\n/wKdOxv4888+SCRKmjb1YNq0z+vcb11JnUNDfNh1aC8uXhEIgoSc5C0M696KZ56e6LByXvoxcru5\n2z+UbzWXG///8pzUc3dSLxTr4EaXWG/Wcu2doLr/1X5uN7P/t/LFUB1R7uzsjEQi4eDBQ7zy+mdU\nmpzJjp1Eg5BQIpr48+brj15XlOeQIYPo0aMbeXl5VYEbSiWLFy8mLrmY4iPvYM5IQSK0JsF+gKee\n9iB3/7eg8UBhKuCZBwbXyjNZbWmGukX4xs1bWLo7CW3UIIzFucR+/CWz353CiBHDKSgoZOkPk0GA\nCS/fy6hRNX0Pqz4WbBw9cpy9+xOwlYeSleDLvaMeZ/OmHwkMDHTUoa2srEThE4Vn5D1V7cyVlJ6e\nT0hICHPemcy5c+eQyWQ0bjzysmXkbjdt27Zhtq8PKSkp6HQhtGjRgu3btyPRBP2VFByUzoEUVFRi\nt9uRSqUM6NKOL1dvJaOkELvFhGvWSVzaRlJY7IzW+UkAZPLJXLy4iRWrf+VwciEyrSvukkqeHXcv\n3t7eeHp6OiLQTWYbs75+FdGtO0JFAt1auV1TgEw1kZGRdD6XwsE/v0Ei19JUk8PZjGMcPJKLxaJG\nqjiL2TOSkpw/sItSnn32UWbODMZkMuHv73/VlFqXWmgHDxpAXt4vbNg6hfj4RCQ2KT+lBxB/+i3m\nzHnXcV7/vz2jbhb/60K1nnqulXqheA3UVR2jLkRRpKysDIlEglarveL217rP6+njjQbJXNr/G6k7\n/U9u9cP4nyLRYrHwxtTPwHkqHk6NcGtgoTT9Gd554/EaUX3XaoV1cnLCyckJURRZunw1P/yZSb7W\nH1vuUZC+id3eE8F2ntUrHmfHjuVIpVI8PT1r+dldS2DQuh1/4tP/LZQ6D+x2kYvl+cTFxREYGEiF\nRMb9E0bTu10rIiOb12rbtlULdv+wmgOnihAlA5BeOI2z+jnKKlcTE7OFRx4Zz68bNnMmOQONFCQX\nYzGG9kDuEkRh7Lf0iG6OyWTCzc3NsZR6tYCf201gYCCBgYGOv5s3b460ZDllOScwV+SS8vunaCSF\nPPH8yzRq0pR7+nbj1YfuIT7hHHKplJb9HyAvLw+7rRRRNCMICkTRgMlUyO7zRTQc9BRqjY78lHiW\nrt7Mq88+VuP4I0cMo1FoMOfPn8fDoyfdu3e/rspEEomEB+4bTq/cXCwWCytXrsFo6I+P938oLs6h\nQnyPpPyDaD2jUFemolQqHcmyrxepVMrECQ+Rm5NPTloEHp5PYbUWc+TItyxd+jMTJ47/V/ut5+ZQ\n1/O/XrzefuqXnq9OvVC8Bq5FUFyPSLzWfd5O/tn/6nQrdyOXiux/ikSgKhlzZh4GyVIQJLjognFR\nh5GXl3dD6R/S09M5mKrHtfVQFMfSMUgCoTwOilshlfkilXogimKdgRLVgU3XEj1edV0IgAiInDt3\njk9WbEGI7EGDBkEkbD3A8xIJERE16017eXnx8rh7WdfvPgQxGI2iP3JVOObKqvn64usl7C92wrnp\nMCoyzhIcmETFiY/Jz89Hn1PIequVU8fi+fSTtwgNDUUmk9W4Rk+fPk1qaiq+vr60adPmlr7QSktL\n2bdvHwDt27fHzc2tzu0CAwOZ/cELvPbWVM4cTUJQTcMgKNi4+TOidJEcXbCCj55/kL69ejrauLi4\n0LNnU3b+PhGbvQcyyXa6d4vEKSgCmaLKh9SjQVMyTmys85gtWrTAx8eHtLQ0Lly4QHh4+HXNhSAI\n+Pr6ApCTU4IotvzrvkvF6NoVwc1AYCMPWgx8m+37j12XxbIu0tIKkEjCSLjwBnYU2MxZHDum45FH\nrI57vLoKUb1IubOYTCZHbsN66rlbqBeKl+F6hJzdbqesrAyZTHbZCM9bzY1GZ1+PyP033GwLKtS2\nJFZz9GgcFbIwZMFvIlf5UJz2NbbcPwgKevqGjmexWJCqdXh5uaPVlmCuKMYuK0EiEZEIe9BqDTWs\nXdVcT0Wbe/t34btdi9BGDsJYkoMm6yBfbztDUdsnkJWHk3T8HF0jWnLgRHwtoQjg4+PD5GceYc4X\nm7AKoZgr9+Ok3EjXrl/x9txlBI77FIlUimtwM7LyE/nP87148qnXMYmvoHYewrnUGCZMnMKO7asc\nqZzMZjM//bySBT/sAuf2UL6VoT13065NFE5OTnTo0OGm1CuvJi8vj8eeeZ20Ijml2ekoKWPB3PcY\nOHBgndu3adOGpmHhpKQ/goXBmCUqRIsruSd/wWPUo2zfe7BGChtBEPhq7gzWrFnzVzDLMFq2bMmn\nv+zCYjIgl8kpSDtLkHfd4vTYseN8vGgFdu9m2IoyGNwmmCcfHfevru3OnVuxfv0KbLa+iFQgKPJR\nab2owJlDJ5NRuNeutnG9NG7sy8bflqIK/AKFqhHlpetJuPADoiiiVCoxm82O6OnqACSpVHrLn2N3\n2npWXdv7bsJgMNw1rh711FNNvVC8Bq4kwqpFolwuR61WX/OD726xKFaLRKlUesdE7r/BaDRiNptr\niUSAxJRMojrdz/nMBMzlSaDS0qppBAEBATd0TH9/f3SmLcilJhr5wdm0VCrK1yEVVhEcHMRPP81z\nRDUD7N+/nxdffI/8/Dxat27J4sWz64yEvZQhgwbg5enBgaN/4OSmoCw8iCPnFKhdmqDwbIVR78bJ\nU1vpEXX5MltPPz0RFxcdmzf/jKurE5MnL8LHxwdRtINoB6rqRot2K1lZWejLnNA6PwSA1vlBysqW\nkZ6eTmRkJJWVlZSXlzN/yTp0bZYgV3tQnnOIz+Y8iJtbbwQhj7ZtXFm69KtalhCr1UpsbCybYraR\nm1/EsdjTVFZW0qJFc+Z++dFlg4q+/3ElKWXeFKScB9X7GCz5THj8LbZs9qNly5Z1tpFIANFK1eUr\ngmgBQYJosyKR1r6mZTIZY8bUDAYa0T6V9TsWOXwUHxl3b612drudd2Z+QWWjfrh4hOLVcSwxWz6l\nZ+fztWptV7N5cwzTps2hrExPz55dmT37fXQ6HVarFblcRouWMg4f6lKV4qY0BO+eX6F09qPk1FnO\n5Z65YUE1eHAfFi8/gUHIxGq6SFBIAzyUkeTn5xMQEOCoN1wdBGM2m7Hb7bdVNP4vUpdQNZlMNXKN\n1nPrqV96vjr1QvEGsNvt6PV6FArFdYnEW8X1Cs8rWULvFiF7Ocxmc43clJcS5OeJ4mgm/fo+gslo\npDA1h64tW1FSUoJOp3MEBFxpjGazmTNnzmAymQgNDcXLywuLxYJOsHDo50/QaDW81Lc5gz9eQWBg\nIDKZDBcXF0f7tLQ0xo+fgsUyG7k8iiNHFjNhwmQ2bfr5qmPr2aM73bp2wWKxMPvz+ejcWlAevw+T\nzYLNosd8ahu9Hv/osu0FQeDBB8fw4IM1hVDfNk3YFrMATeNOVF48S6SrSLNmzbBaCpDYypBIddht\nZVgtBQ5BKwgClZWVSGTOyBRV0b3J+2di52OQjkYml3A49hHWrVtHv379OHDsBOVGM6G+nqzaEMOK\ndb9j1HbHmLQPQf4fpOq27PpzCZ37jGD0AyMJD/Bh7JjRNSKH8wpLKc04D5oPEJQdEOR6TOW5rFq9\n4bJC8bFHR7N9xxSsFhtWow0JX+HT/EGEkxsY+PKEq845QO8e3XB30RGzdQcyuZLc3Nxa/oGbtm7j\nnNUZ56BoiooyKdy9HHdnf0pKSurc54kTJ5g8+VNgETJZQ3bs+A+vvfYf5s2bydS3P+b3WAuidhSe\nIS50b6PhTJEbFXl7sGWaaRTcGCHdg8rKSjQaDQkJCej1evz9/QkKCrqmMVVWVuLm5kbzxm4oA0NQ\naTzBXkbZhWJcXV1riNBL0+1cKhovl9i7npuPwWCo8bFZTz13A/VC8RqoS1DYbDbKyspQKpX/aqng\nVpTcux5u93L5zRqv0WhEFEWcnJwuGwE6ZMgAYuM+5/Tx6QgSOe6SDNavzeL772LQqOGTma/QpUvn\nOttC1Vf9Z18v5XyFCxKVC8qNP/Di+GF89c1yEq1RePUYgT7tEMVFKURFRWG326moqMBgMHDmzBnk\ncjnnz5/Hbu+CUtkFQZCgVk/h+PFIjEZjrRfBocOxbNp/GJPFQp/oKPr37e34rVf3jqzZvADPwImU\nnzmDMXszT47rVmdt56vx9ITxhO7YSULKEQIj3Bk2+HnUajVjH+jP8pVjsIrdkQn7GPtAPxo0aOBo\nl52bR5G1gOTDzyKzy6goPINU2uqv5WYBo7EVK1avZdPBEzQceD9eQf7ExPzK8eNJ2H0HoHDvhDE1\nB1EzGKvMhMy5Ofk+2aws80YdV8S2P15h6VdzHPPSuX0UPy/fil2eBNoL2JU2ZLYELBany4ysqlbt\nz8tms2TJKoqLi/EL7kloIy0Dek6kUaNG1zQ/ycnJvDx1NkbP+xFkKjZtn8HcmS/Rtm1boOqe3xZ7\nGr+eoyjTuaMNjaZo2wI0GQdp0KDuZfGDBw9isYxEq62q4qNQvMHu3f1ITExkz6GLeLb4DkEiw2wc\nzJ4Dowho3Iygji+i1LpTnHECrV6NWq3mp5Vr2Xu2AokuEIo2MmFEe9q3a3vZsZjNZj74YA5bfzsM\niLRsGUTRxTmYlMGIpjRefGoYLi4ujjRY/6Qu0Xhpjsb/BtF4p5e+68JkMtULxduMtd6ieFXqheJl\nuFTY/FPkVItElUp1V93UN9On8m60KBqNRoxGI4IgXNG3SKVS8eG7r5CcnIzJZGLySx+it7yIR4Ne\nVJafZcorb7BxQ3gNC+ClHD9+nHOVnoR0vQ9BECi8GM7in1ZzIV/Av+9oBEFA5xPO6a2vkZubi5eX\nF/n5+Ux+5QOy9e6I1ko8NXnYbHZksqo5tNnSUCjktZZnT506zbzfDuDRYwQSuZJle9bh4qyjXduq\nerxt27blo6kPsfC75RgkRu59ehCPjH/wX82fTCZj8MABDP7r7+LiYmJ27yMoqjlPe7mgkUkID3+S\nPn36ONpkZWWxOjYBr1FPYHEOpDw1AUleHPLi5UiE/2A0XsRoXkGatjsGpwiS4pJ4YFgjpCGRGI6c\nAosGicIZ7OmIMgHBno3VS43g7oO8QWN8W3YnfuFL7N+/31HXecTwocTEbOXXg4sQG09DoZCjNB5D\n5+vLus1bOHw2GSe1ktH9exAeHk52dja7Y+OoNFkY9+h9tI9u/a98z9asjcHg+QDezccCUKJy57tl\n6xxC0W63YxOha8f2HDh2guKcM4h555kwojcajQa73V7ruK6urkil+x2ixGpNwsvLFYPBgFTuhiCp\negRLZFqUag8eHtaBFTHvgsINnayMN6c8Tnp6Ovviiwjq8hQSqRRjRQeWrVtAm+jWl/1YWrp0OVu2\nWfHwXY8o2og7OY3HHwuia9dOeHvfe12R1NWisTq1UrVovLRU5L+Z77tRqN1O6hq/0Wis91Gs566j\nXiheJ1arlbKyMtRq9Q2JxDtlUfy3PpU3gxsZb7VI1Ol0lJWVXXZfFouFFavWcTQuCV8fVwb160KJ\nXoZbQC8ANE7NKK0IJyUlhVatWtW5j4rKSqQ6b8fcaFy8KDFYEG0mEEUQBES7DdFucQRxfLVgKRet\n/fBo9Rg2q5XMk+/jH7CPnOxx2GyRSKVbmD79zRovVJPJxItT3uHo8TMIXy0kYuhIWt0/jkPxRxxC\nEaBPn9706dObyspKlErlTXHANxqNLIvZgSE0GqcwbyoS4wmTljvEWjXFxcWUKlxRBTWnbVhTbNEt\n0ctLyVz5Ewb9Wioq9TQaMZ7QAWNJKyzEpFRxLjERd50Wuc2IpfwAVm0YghrEktFIFE2xG7PRNB+F\nQqUFuw2JWkdZeQXJyckUFhbi7+/PlJdeQLrzBCnGPJQKGd27v8zpX+aRLPfCr88jFJQU8dnKX5k0\naiDr/zyJvFlXVFontsYfxm47SucO7a57TswWGxL530vgUrkGk/nvhNRyuZxOEQ3Zf3Q7nZp3RJ+d\nhj1PyuzZi3n99U9Qq+XMnz+dXr16OdoMHz6c77//lcTEx7DbQ5DJNvLRR+8RFhaGqzqX4rR1qD3a\nUZq5iYgQZ+4bNYJBA/uh1+vx9PREpVJx9uxZJGp3JH+JQqXGBbNNcJRHrIvYI+dQaR5AIqn6MFGo\nhpKY+BtNmhSybMVvKJUyHhjVn7CwsDrb18WlORovtTT+s7743RYg8v+JulYc6qnnTlMvFK+BalFX\nLRI1Gs3/S4fj6xWJd3Jp/FIuFYlXc6z/asF3xBw049Lgfs4lXiDu1HcglmI0pKNSN8Bq0WMzp+Lp\n6XlZsR7asCHs3Eh5g6aotC7knNpF//aRJJy7wJ/756PybYUpK5bebRri6emJ3W4nLSMXtefDjlyW\nCvcO9I2U0aFtJHl5eURHf0F0dHSN48ye/RWnjusQpLEIUoH4TU8glf9Mmx5Rlx3ftZwTi8XCrj/+\n5OCZ8ySeP0+gqyuDe3enW7cujrnLycmh1MkzW5lAAAAgAElEQVSboLCmAGjaduXUxh8YbLHUyKGp\n1WqRlhdiL9eDCKaCLFRqFQ89NY7nxo7mjRmfoe/0CBqvAFRJpyi32tGbZPg4wbjOzdh15DQZyXPw\n8pXh5GxA8MgkW2+g4sJRNAEhlOxbjWtpBilp7ny76RAS94aI+b/wyNAuhHjo6NJtOFK5HH1BLnn5\nhXR4eBhKJ2fULu6kZ7Xm0KFDWHxa4htQtRTv27ILR49sriEUS0tLWfHrBg4dP41ErSG6RSQDOrWu\nlSpp8IDuxPz+JaUaDyRSFabE+dz7cs2k5mNHDsdt5++cid9MIycN87fvo6joNdTqkZhMx3nqqYns\n2rUKlUqFUqlEp9Oxdu1SNm/eTFlZGR07LqJp06o5X/jVB3z8yXxS036he7Mg3p76rqP036VBT/7+\n/qiN2yjOvoCzZxC5SYcIC3C9ouUpuIEXx0+eQufSAQCz6SRGUwmffr0Hp5AHsZZXcOL9Jcx8//F/\n5cbwT9FYXUKwsrLSkYf1bk+3c6dXTOqyKNYvPd9+bPUy6KrUz9A1YrPZqKysRKvV3pQ8V7fConil\n/VUH3iiVSlQq1TXlebwb+KdIvBIWi4Xfdh3Fv9MCpDIFzl5NyI5L5OGHGrLs50kYZVHYzed5fGJf\nQkNDa/hnXepm0LBhQ569rzvLN/5IodFMn5bhjBpeVZkjZus2UjNOE9YujIED+jnmKSoilKT9G1E4\nhSEINmyFO2jdohPDhw+/bH/37TuGVPoklZVWRJkS0TqKhJiP6f163cEX13pOvvnxJ2Kyy0kyCcgj\nhnEqIY7Y7zfS5+BBXHz98Xd3JSK8EZiNjjZWswkJtaMwg4ODGdwsg8Xb1pFxYi8KUxl+dj3xZeWM\nO3gUlUSkJGY+XgOewMXDF/G3BfS7bwid27QmLGwoU0wmLBYLCoUCk8lEUlIS5eXlrNy4hVMbZ+Du\npOHhB4bw7aaDeN3zETKVlsrCTH5c/y4vPfkgf+xZi8TJBUV5IZENAzBX6FE6VYkosbIUlbMK26Xj\nMBlRyv9+rBmNRt74YDYn9M6Ue7RHcHKmTG+ncPdRntBqa0Ret27dmk+mPc6ylauwWmyMfukeBg0c\nUGM+5HI5wwb2ZxhVtbVnvjcPtXokAApFa2y2SN775DOkfmGIpkqGtm/OsEEDGDXq/9g77/AoqraN\n/2b7bja990YooQcSIPQqRURAQZpYsYAo+OpnQ30FRcXeC4INEJGOghTpvZfQAoT0bOqmbC/z/bFk\nIZAgKM3X3NflJbs5Z+bMmbNn7nnK/Qy95D5FRkby+cfTcTqdmEwmd8UgURRZvWYdv63biVwuY9TQ\nPjz5wJ189/OvFB6tJDEulNHDhrrXQ22E45FHxrB79/+hKzqGKDqIjSpFlIbiFTcWrwBXdnaeqZQt\nW3fXqvt5NbjQmiiKops0VtcXr/7brbKnXIhbbUz1ySz1uBVRTxSvAKIoYjab0Wq1/0gx1AtJ4s2K\nf/krxPhqSCJwLrgenA4rUpnrPolOKx07dmLIkDs5c+YMoaHDadSoEQ6Hg8LCQkRRZOHyVWzdfwKV\nQs7oO3rQvn0KSa1bkdT6Utf0necI48UY99BosrLf5sCeuwEHQ/p3YPDgQe6/V1VVUVVVhb+/v9ti\nFx0dwvYdO5Aq2iMIEhziITSB4ezdf7BGMsmpU6eYPv1jCgqKue22TgwZMpCqqip8fX0vkZhZufJ3\n3v5qKdaUSZgcerQyHSHNO6Df9js/ZlTQO3Uo+7PPkLZqHXFRkZzcsR6VXzCW7JP0a9XkknkWBIEB\nvXuQ3LIZaWlpOJ1Ovpi/DOG28QTFN6do33rUG78j9NBPeKiUjPjvMyQmJrr7V9evBlAoFLRq1Qq7\n3U6bNm3cEizHjh1D4pOLTOUiSmq/MMokSlokNqZ5k0aYTCb8/Pw4cyaDj5fOR9+gDY7KMmJMedx2\n9z2Ur/yDzAPbkWs8sWenMaLTeYHq48ePk233RxYcjW/rAQhKDem759I4OYGcnNxL5q9NmzZERES4\n4hEdDsaNm0xBQQk9eqTwxBOP1tCL9PHxAYzY7WeQyeJwOiswGI9QFTORxDvGYreYWfLrbOTCKmZ9\nt5SzmTk0ahjH9GnPXDZrefWadbw/Zzteze7FYTUy5Z1ZvDPlQV5+pqYOqMFg4Pv5S9h/LBMvDxVj\nh/YhLCwUmUxGQEAAc+Z8xOHDhxEEgRYtWvDy1I8ptlvc/UWHBZns2rqJLyaNdru9BmmUy+Vur8C/\nPUaxNtRbFG886uVx/hz1RLEOVG9gVqvVbRG5liTxRlkU/2p29s1OZrkcSaxrbFKplBFDuvP98vdQ\nBffAWnGGeP8SmjdvjkqlcpOvU6dO8chjL1Jc4qDCkEf8baNpN/gFLMYKPl/6HQEBfrXGbuXn55OX\nl0dgYGANIme1WtFoNMz88j3KysqQy+XnSIQLG7ds5fuVm3CqPfEVzUy+/x4iIiKYMmUyi5f2xuw4\niiBxoPUvJLbP4xQWl9U458CBo6msfBhBaMCBI2+x5Ohpug4ZinP3YQY1b0hSq/OSMW/PmIVC0R9B\n3hSrwheT/ncqzfuxVRbj02cI/nGN8IttSObCHO5ObEgzi5VyQylhyY0vmx0cFhZGWFgYaWlpOIIT\nCGrkcqMHp/ShYP9vvDDhIQICAv7stiIIAnK5vEZiREBAAJSkU5l/GqVfBEUndhCokeDt7V3j3jdr\n1pQXvTxJP3Uaj2h/WrbsgVqtZsyd/Th27Dgmq56Y3u3ceplGo5G9e/dSlncaSXwYFZmHsUtl2CrL\nsZSXooyumdBhNpv5cemvFKgCMVlt/PT2GziK7kIqvZvDh7+goKCYt9561d1erVbzxhvP88ILw3E4\nUnA6D9OgWRjxPVwWRplShTOkAS+9Og0h+GU8EztzvOA3Hp3wIosXzKxzP1m1fjdeTUfjFeyy/BVU\nDmTj1t1ul3U1vp+/hD1loUT2GYO+KJfRE5+BMj1SqYzBd3bihRcm0b59e3f74UN68OqM2ViMg3DY\nqvCwrKVb1yf+9J79VVx4r6tJo81mw2w2uwn3zXb/3kzUJ7PUoy4IgjALGAAUiqJYZyySIAjJwHZg\nmCiKi+po43e5c4miWPpn46knipeB1WrFYDCgUCiuyKJ1q+HvSvjcLFytJfFCjBk9nLDQ9RxMO0xI\noDeD7niuxhu6KIo8PmEKJZZH8YnpTfGZV0gr8aSpwYS3TwBCeFtOnc64hChu2LiJNz9ZgOjZALEy\ng0dH9mTI4IFYLJYasiGBgYE1+uXm5vLJ4nUc90ui0mzHw16O9fNZfDxtCuHh4bzw0kS+W3sC/5b9\n8IltRdGGz2jW77w8zrp16zCZuqJSjcPh0GMIHMoxmY5R7btgNRlZ8dvPNG6Y4E5qqKoy4KvpROmx\nDeATgr3yMKIyE4epgkZxNavGyOXyOkWi64JWq8Wu1+GwWpAqlFgr9QgWQ51JFZdDdTZtREQEU8aP\nZsILT5KjN6HARnByIhUVFZeU7ouKiqpB0sFF2JKSWtf4rqKigvsensTZsgAKS0Us+95C0rIzNE5B\na6/i9JYVhPebUqPPwSNHyPGMIq5dV/bt24ulwd3Iq5qhoDtOZ2t++imZ6dNfdrvnHQ4HglRG597t\nsJurGHH3JNLzijh59gTBzZJx2u1UpB/ETiiBoS4Xtk/EXRQeXUB+fn6dsYFKpRy7xej+7LAZUClr\nbtWiKHLweBYRvUYjkco4fqaQIiGFSG1nPLRJLFryHxITlzF06GB3n7Zt2/LmFBUbNu9BpZTT77ZJ\nBAYG3hCyVtsLgs1mc3tr5HL5DZfbuRUtmmaz+S/9lurxP4fZwMfA93U1EARBCrwFrMJV87Uu7MNV\nD1YAooBqS4QvkAnE/tlg6oliHTCbzRgMBjw9Pd0b2rXE9bYo/l0JnxsdQ1mNv0MSqxEZGY6Hh5rY\n2Fi02prae5WVleQXVOAf38dVwkwRgsEioUxfhpe3F46KArw8w2r0MRqNvP3JPDzbvYbaOxSrUc8X\nc18guW0rtFotWq2WqqqqWseSnZ3NjoxSHD6JyH0jKa06w/KV83nTYECr1fLIg/dRafySjbsXok/7\nmaHdk4mKiqKkpAQvL69zD7Lqmttm0GiRyFwvgAq1BlQatxXi3Xc/4mxGGlZbP7x8uhDk2xND+VL6\nDu+FRhVG/sm9FEucGHMziJear1i0+UJERUUxKKUJcz9+Al25Cae+kNG3dfhbLyKCIGCxmPFKaEWX\nvhORefqRs2ken37zPZMff/gvJUb8MOcnzhiT8E95Bq3FwLEdj6BpmUSTKH80Zhmb3phJk0VLiI6O\n47vvPqFx48ZUGs0ofMLOjUmCoNbilJvBBmBHEAQEQcBms6HT6fhl8TJWHDDi3XwCZn0+s37+mWnP\nPYpu2WryzuzHYaqia7iKsxIbDrsRqUyD3arHaXMJv9eFkUP68MLbs8mvKsRpN+FVuo4+Pf9zyZz5\neGowlBXgFRhJfkEJUqscqcwTiVSNRN6Xgwf3cnFoZHUpQ6PReNNeHqtfEFxyQXYkEgkWi6Ve2BvX\n/ufv73+zh/Gvwq3oehZFcbMgCDF/0uwJ4BfgshIPoijGAAiC8DWwWBTF38597gcMvkxXN+qJ4mXg\n6emJTCarU5T27+J6vcnfqjqPf4YrJYl1kU5RFPnsy9ksWnUMqSYawfQjrz03lnbtUtxtPDw88NBI\nMVamodYm4qPtRFXaJCobO8nKEGiiraRt25oJKHq9HofUC7V3KAAKjQ+oQ8jNzaVt27aXlQOpqqrC\noitAo4lEIvdAbldhqbJSWFiIVqtFpVLx0jNP8h+zmTNnzjBv4za+2XsMe1kJPROi6Nu3L2+99Tll\nZe/idMYgFH9HUuP7EUWR4ozT+DpdZQyXL1/OJ5+sQKNZjWCSU1X+Il4eX7Fg/gckJydjt9vZsHkL\n6Zm7CPXzoc+gMTWymy++D4IguGMLL5xrQRDo2TmVucs34t96JFrfIDYfWcRvK39nQP/aRaevBKfP\nZiGNT0XlG4Qoivg07cqpzR+gUCj+UmJEvq4MqZdr/5RKJSi1AXiHRNAsJYkfBvbCZn4dD1VncnJW\nMnz4w+zevY6okGA27T6KNSqOBvHxKPQfYavywoIEqfRrHnhgNFVVVfywZCU6tCzaeBTfiO5ogxLw\nCm1CXlkGWVlZvPLkI+h0OpRKJYGBgRjKDCz87XFEVRKCcTsP3z8QP7/z3qCLLVstWrTg/VceYdPW\nXSgVMnr3fLbWcodj77qND76fQ7lvItKsP5CX2lDHPIUoOnHa9xITE1KjvcPh4LVp77PzsBGJPAA1\nc5j28qNXLEh+rVFdwu5CYe9q1zS4LPTVlsb/RdSV9fxPVNSox42FIAjhwCCgBy6ieCVkooMoig9X\nfxBFcaUgCDOu5Hz1RLEOqFQqHA6XJUcQBLfsybXC9bLY/a+TxMvhxIkTLFp1nOA2byKVKTHozzLt\n7aks+yXZvSFLpVJee3UC/3n2CSz6pjismTw5pjd9ejdGoVCQmJh4CYEKCAjAU26kLHs/vpGtqdCd\nRDBk0qBBA2Qy2WXXRlxcHNryYiy/v4vgGQD6InwkXGLpVCqVLNq0HVXnfgSER2I1m1m9Yj6N4mL5\n7befeP/9LygoOEG7dgOQeYvkzP+aMG8vhvbthUwmY9OmXVitd6FSBaPVgt0+EU/PV0lOdpElmUxG\nr+7d6AXs27eP7t0HkZ+fQ2JiM7766l2ioqKw2Wy8OnUGK1ZtAmDwwO48M3nCJde0dcculK2GEZsy\nAIBKL2+W/zHrLxHF9PR0jh8/TrEuH1u2DrHNbSCRUJlxkMTQgDoTI2qrQ/zDD3N4/fWPMJuNNG/e\nFHtlJo6wLghSJfKybDRn9pAlLcdhDUcmaYdMJkUmG0hl5Zfk5OTQsGECA8rL2bhmHk5R5O37+7Nn\n2150umX07DmIe+8dxa9r11Po35iIpm3QnLVSbtKgzz6IX0wbRJsJiUSCUqms4R5//rmn6NplG2lp\naew/GcrOk1nkz/iYcSOH1Fl/PCEhgYSEhMvOXZMmjZk6yY/MzEzMHQYy/c2vKCqegM2mp1FDgbvu\nqpn8smXLFrYdlhDWYhqCIKEkdweffPET78948arv2/VA9dzdKI3GetdzPf7B+AB4ThRFUXAt4itZ\nyHmCILwE/Hiu/Ugg90pOVk8U68D1rnt8PcgnuGKzroXO4410PV8LkghQUlKCRB2NVOa6do13NHlm\nl/RI9ea7ees25qzaReOefbCVZHL/kLFuCZv09HQWL16Mr68v3bt3dwfcKxQKpr88kZde/4S8NCdK\niYVpz427ouSN2NhYhg/qypK1p7CZlSit6YwaMeCSyhhWq5VKu4PwQJflSKZUIvUPorKykgYNGvDu\nu9MwmUzurNFdu3dzIP0Mqzdtpk+XzoSGBiCVHnU//ByONEJDXfGS5eXlFBYWEhgYiN1uZ/jwcRgM\nryKXp3L48FyGDXuQrVtXMfu7OazYbsC722pAZNGGZ1DKP8VucyCKInfddSeJiYnIpFJE+3lJGqfN\njFwmYePGTew9cpwAH08G3d6/zso31diyZStTv/wFZ3QnnHoptjNbyPvxaWQaH/ytOhRR4aR2G0yF\nXkeDmCgGD+7HqFGjUCqVl9Qh3rJlCy+99AVO588IQhAHDkwmsWkBRVvuwGq10Te1Bd3bNWRP2jGk\n9kwUShugweEoAMrw8/NDFEWS2yTRsYMrAUQQBO4ZUlNHUaevwiveFQ/ZrnUiq9dspiD/JGmLX6cq\n7xj/tzeY/ystZ9iw8z5fQRBISUlh2fqdOJKGEdagNbqMo8z4ag5vPj+xVstuQUEBOTk5BAcH1xoi\nkJ2dzZ49e1CpVHTr1g21Wk3r1q354OMv2X1Sjco/hBkfz2by4/e64zxLSkoRVA0RBBfZ8vRvRMHp\nskuOfbNRm7C3zWZzazT+Lwh717UX1mc933jcjBJ+RzaUkLbhT3NILoc2wE/neEoA0E8QBJsoissu\n02cE8Aqw+NznTee++1PUE8X/EVRbP9Vq9T/KdfFXSGJdpDM2NhbBNBdjeRYa7yiKzq4jNtLPHYul\n0+n4etFGAno+iUrrQ2nuKZZvmM2AAQPYuHEjT056H6e0Bzg2k5y0nJlfv+cmiwkJCXz3xVvk5+cT\nEhJSI76rejynT59m8Zr1mCx2uiY1o3Mnl8D161NfpFuXNZw6dRq7M4n4xk1ISztK06bnZWRsNhtC\nVQWZaYdo2LotpopyKMzDL7UlF2P9xk3M2pOGR7seWMqK2PXlNzx970iWLHmY3NzHAB+02t288cb3\nbN+xk9c/+x67NhhplY7bkpvgdDZCoXAlV8hk48jP/x6dTsfOPUeRR4xAInM9qJyebXjvvSlIJY8g\ninJmzx7NwoUz6dWjG4vXvEHeDhlSjTfikSV4RXvwwFOvUlFqQEDk1akziIiMoVHjeO4dNoh9R46R\nkVtI0wZRDL69H6+9NoP5Py9H5hdBk4S+hNw2iZzFeu5KCSMlJYUt23by5U9plFdEUJED2Rkd2bnz\nV9as2coPP3x5SR3itWs3YTY/iFrtmlOH4wV0BWPpe2dv9pwq4kylAvmOfbwx5RmUFgc//jgGaIUg\n7OS5557Ex8cHq9Xqvp91ITbEnw0Zx9D6B9GkUQIVRzaTfvA3HI72xPWai+goZdo7j1JWoSc6Lp6G\nMVHExcVRWlpKkU1BeCOXhTewQQty0zej0+mIiKiZZLRhwybe/HwBeCbgrDjDoyN7MeTO87JMBw4c\nYNy4V7E6u4NYSIPYhXz33YecOHGC42W+NL3jGaQyOXnH1jP3lxWMf3gMAA0axEPVXKymHshVvpRk\n/kpqs5g6r/VWwIWk8UKNRqPReMtrNF4Jast6rieK//to1s2fZt3Ox6L+/N9TV9VfFEV3tQBBEGYD\ny/+EJCKKYgkw8epG6kI9UbwCXC+L4rU6ZnXFGOCakcTrcc0XH+9aWRKrERYWxqvPjuaNd/9LmUUk\nNtyHqS8/5d6Mi4uLwTsSldYlXeMTFk+GTYrBYGDKyx8i93oXtUdTRNHJ7n2Ps379enr37g24iJzJ\nZCIiIqJWC1Bubi7vzF2KtN0dKDw8+XTdcuwOBz26dUUikdCzZ08yS8s5qw6iRBPChj1p3F5WRrdO\nHdm/fz/jxk/BYNGin7uMdr260LJhHMM7tK0Ry1aNZdt2EXT3I2j8XRbDzIpysrKy+P33haxfvx6z\n2UzHji+j0Wj4z/SPUQ98FU1QFKbiHH75dgJ2ey5gRhBUiGIRoliFp6cnkeGB7N17CEI7AlCa9gNO\nxyQ06qcAkcqqAMZNfJGnnnmUac8+xpYdezBZdPjc1ppnp7+LURcFzncR7QWYyydjSOzCGZM3v0/7\nmtCYREI7DOfIsU188dkwdHlNMJvnIhacYc8nT+Kb3B5FVBhbDJVY0o6wYdNeJMHDqTz6LLAJQSbH\nZh/N5s23c/z4cXdSRnWMW3CwPzLZyXPrDByOk677WOJD2LBXQBA4tvlbvpu7gKlTX6R//x5kZmbS\nuPF9dZZyrA2d26dQvHItaau+Q3A6GdU+gamrNYQ2fRK5UoPDLlImi2a5TkLb+DA2rN3FqFQT0VGR\niOZKbCYDcrUHdqsZp6HMLbJdDYPBwNufzcMz9XXU3mFYjXq+nPssqe3bEhLiijl8440vsUuex9u3\nO6IocuL0SyxfvhxPLx/k/olIZa716RvRgjPHd7iP3aJFC8Y/kMNXsydjd0ho2TSCxx95mJuFq3X9\n1ibsbbPZ/pKw94UC+7cS6onijcetWJlFEIR5QFcgQBCEbFyWQDmAKIpfXuWxll/mz6IoinVXhTiH\nW2+G6nFVuLCsoNFovCXjbqD2N+drSRKrkZragWXt27ndzReeNyAgAMqzMVfpUWl90OedwkvhRKPR\noNeX4xUaf26sEpDGodfrAdccV1VV4XQ6effDL0hLzyIuMoQJj9zrlsM5eCQNW+NOhDZxuSUl8qGs\n3rmAHt26ApCVlcVph5LYji7pG3t0PKsXzaJT+3aMf/JlTP4vYxUaQVUOu5c9ziu/3EXjRg0vuT5R\nFHGKItIL3W7nrC0ajYYBAwa4v87IyMCpCUQT5IqXUwdEoI5oQgcPDTt2jMRub4tUupbJk8fj6enJ\n+EfvY+eDT6LbexycDlROHU55GCBisdoQJcE4vHzJiIulaPduxo8cTlVVFc9++QkWMwjyN8ERg+hI\nAB4CixlVk0mUWIoJ1AbgGdUUbUQT9n79CkrFAgS5GmTNEMUtVHmV4tM8kpajhlGcfgrT0lVYqzJB\nogWnGkQLUokSmcwHg8HAtl27SC/IxU/tQZeUdtx3373MnTsUne5+nM4glMqldOjSjbMRbXCKIgIC\nmthk0jPnA9ChQwc6dOhQ5zrKyMhgwe/rqDCa6dC0IX179XS7QocP6o/BYEAqlaJSqfji8x/JKD+O\nXB2Kufw4YmQQES1TCEloSpV/EGv3rGRSs6YM75XCvN8/QxLUEGfRaQZ3bEZAQIDbGwCuMAGH1BO1\ntyv7WqHxQeIRRmlpqZsoFpfoUaqq16qASANKS/UkJCRg23AQhz0VqUxOWc4hkiJryjUNuqM/A/r3\ncWt/Vicu/dNwOWHv2uJXbzXUtU9bLJZ/lJRZPa4PRFG8Ipfwubb3/0mTdy/X/UrOUU8U68CNiFH8\nu8esJonVZQWNRuOfd7pKXA/iWa09+HdI4uXmbtOmzXw2cyEms5UBfdrx0ANjkMlkBAcH8/CQrnyz\n6EOcSh80dj2PjRqETCYjNbUNW3Z9jk/Q41hMp5A4/qBVq/fcc6xWq5n8/FSOGJrgHXsnm3L3cfr5\n15n5yZsolUpX3J7N6h6Dw2pBLjt/baIoIlwgsCyRyRAFAb1eT1m5hQpVDCYRBHUCdkkz3v3wM776\n7MMa11V9H/qmtGbO8nl4p/bCUlaM96mDJPZ95JJ5CAgIQGYsxlCQgUdILMbCTOSGQj7//F22b9/O\n1m3bKLSlUqKWsWLNGvr16MEv875m3759CIJAfn4KTz/9LjZbBHaHgEz9Jm1H3EdIs2Zkp5+iuLgY\nk8mEJDgQtZcnVRW5CJJYQARJATJ1NKLTCoLEfb9EpwNBIsPh1CGVJ+AQnYjObGThscTEhOPt440Q\nHUmb1LaULlpKoaQKu+11BG5HItmCt3cVucVF7HaaCEhpQU5hEelLF/PY3cNZu3YxK1aswGg00q3b\nfPYfPMzn63dD41ScDjsV6VuJaxCE3W6/LInQ6XS88e1P0HUwKh8/fty0Eqvtdwbf3t/d5kJL4Msv\njOfh8a9QUbEJc/khApITada0KQBSuQK7wxWL3Ld3TxLiYigsLCQgoE+tou4BAQF4Kyzos/fjE9ma\nqsJ0ZOYcQkND3W26dE5i0dKvkPo/j92mQ8YS2radRFJSEn3Tz7J209tI5BrCvW2MvOted7+zZ8/y\nzvuzyc4rolmTGCY/+eAlFs1/ImoT9rZare7KP7c6abwQ9YLb9bjWEEVxQ/W/BUHQAJGiKJ64mmPU\nE8UrwM2uUlIbLiaJcG3HeT02VVEUsVgsmEymv0USLze2Q4cO8cpbP6ONfxq50ocfln6BTDaPwYP6\nI5VK6ZTagZbNm7nFnKvj0t5+6yWe/b9pbNvWAx8fb955fxKxsbFua+3Zs2c5crqY0NvHIggCHgGx\n5K7bzdmzZ2nUqBFtk1qz8dv5nDRUYrOYEDMOMO6hke5xhYeH479hK3lH9qMNDKHk+CE6xEXh5+eH\nSiGSX7YfZeTtOC2FyMjhRK6KsrKyWhNm+vXqhadmO7sPb8RLrWLguPsvEaYGl7zTSxPGMu3TaRhU\n/shMxbz4+Fh8fX1JSEhgo76MZgMGIFOp2LxuHZpt2+jeqRMSmZzVu/YhlQqMG9eXpUtfoEhfRpen\nHyJ51D04HQ4cJiMKhQIPDw8EXTFdnr+f1ZOexm4eA85MBOlK0L6KNf1bgoxnobCY0mPbMJ/cQs9e\nXdi66X6MlpFIlel4hBfiH9CW6CCXNLZy0H4AACAASURBVE7JsRO0adiQR+fdzYoVK5g3bzklJatp\n2DCezj1H8MGiRcQ8OJwwPx98I8M5oysmOzubhg0bMnLk+TmPioriyImP2PbzRBxOB82jvBkzYlKN\n6iC1kYijR49hatSWqCYtsRqqyDyZweSvZ/LTvOW8/MIEmp4jgdVo2bIlS37+jP379+N0NmZvdjGl\n2WdQaj0pPbyTgYnnCWF8fDwBAQFkZWVx/Phx4uPjsVqt5OfnExQUhLe3N9NeHM+UNz5FdwRUUitP\nPzK8Bnl49tnxmEzvsHpNX9RqNa+8fD8pKS4JqFHDh9CvdylWq9Utpl1YWAjA08+9g0E1Gs/oluw4\nuZoXX36X92a89I8sJlAXahP2vjDpqToJ5lb1vNQns9x43Io6itcDgiDcAcwAlECMIAitgf9eietZ\n+BNicWuxoxuI6kw7cJEyg8Hwp1mcV4PqmDcvL6+/1LeqqqoGSQSX3t+1dOWWlpbi6+t7TTZUo9GI\nw+HA4XD87TFe6Pa7GDO/+Y7v1wYQmuCqs1xZcoL8A0/RsGUKiA56JMfz0NiRSKVSnE4n5eXlNUhW\n9QOkmoibzWYeH/8CR9IyKSzSkdD3KRp0fwzR6UC3ZhLfvDWeuLg4ysrKOHr0GO8s/g1bRByBEie3\nRQdzz6CB7vnT6/Ws3bqDosoqGoWH0KVDe2QyGQsXLuShia8j8W2FaMknod8YVLkbmfvRyzUqvVRV\nVbFv3z7MZjOtWrW6JHP6QjidTndWaFVVFUVFRS6Zn3NCz6s3bGCrny9hzV3VoaqKilCt30CbmBg+\nWLcd37534bTbKF/xEy8NG0hhWRlrCgqQxcZiy8mmg1rDoNtcCTEHDh3ki+VLKNSXoTt0gg7Nm6P1\n9OLY2XzCIsMZ2LMTeXn5ZBcU0yg2kjtu78/GjRv59KvZ6CxGIlsloaksI7BRQ+RqFQ3UHtzRo8cl\nWoMffDWLXYIfWboM1AN7oC3N5vbuXcj6fT1j4pvWKidTXl7OZ3PnkWu146lQMLBNK1JTUtwkwm63\nu0lE9V64Z88ePj9RTHT/4ax7+T9kHfdA7jcEX3khyoIZfP3pNCQSCeHh4bXGkOp0Otbv2EuVxUqL\nuEiS2yS514BOp+OLhb9iDE1ANBvQFpwmO78Qg8oXqbmCsf260qt7VxwOB+np6Tz3/JucOq1DIrHx\n9KT7GTt21CVrtS5kZWUx49MfKTMrqCrNpSDPTnyHr919Cw+O47svnyMoKKhOTc3rCbPZ7K7/fL1x\n8f2WSqXY7XbXi85NIIwOhwOLxXKJFM7QoUNZsGDBNX3W3MK46UxdEARxnnjnnze8zhghLEEUxes6\nH4Ig7MOlu7heFMXW5747Iopisz/rW29RvALcShbFukgiXD9Jm2uxkVZv0hfX773W0Go1OMw69+fs\nk4uw+LUjos/LOB12Vm+bRcKmzfTo3g241IXtkpZxuC2Jzzw7lbTT7fCJ+gGLIp2Ta8YhOgyoZTY6\nJwa4Mq3Pzc/qA0doN/4ZPPz8EUWR3Uvn0S4jg7g4V4Kaj48Pdw24VGtw4MCB3LlmC4eqAvCIG4lY\neJSOLWJqkBCbzcb4J55j3zEzElU4CutHfPPFG7Ro0aLGsY4eO8riLRsw2a00Do1kSJ9+7uoxF8JT\nrcZaXOL+bCguJlilYsP+w3j1vAPvaFcMnKljH7YfPMzDo0YQmZ5OUUkJvo0a16g73KpFS95PaEhF\nRQU+Pj5XlFDVs2dPevTo4YrJczjw9fXFZDLhcDhQq9XY7fYa7Y1GI3sycol6/FGk+7eScySdYrmV\nQ6vW0qjMRHSP2svhLf1jPZWt29E4qQ1Wo5ElSxcSERJCVFTUJULP1edMTEwkdONMzv6+iMzNG5C2\nWI6/jx8emiTy837n/idewj++PVJDNlOfedCtVVmN4OBg7hnUv7bhsGrLDhwtuhLZoDGI8P37bxEW\n0pL4XnfjtBiZveh9GifEExERwfQ3PyM9uxfeEQ/jsBXxzvsPkJjY0H2+y/0uRVHkvc/nYAq/m/DI\nZuhyTrN/9n8IrcxB4xmB3VoJ4r8ncaI66ana0lhtBDAaje7KP7eC3E59jOKNx7/FogjYRFHUX7Rv\nXJFG383/ZfxL8VdIXTVJ1Gq1l5DEWxkWiwW73X7NamZfbu769e1DpMc+cg59TN7RHzAW/UGLzi6r\nnlQmRxPWmlNn89zHuRgOh6OGFuW+/UfR+t6DIAgEhzbE0+cOGsr28cQdMUTGhDNp6gze+exrCgsL\nMdhsaHz93MeW+vi7q0xcDgqFgo9mvMa9qYG0smzlwY4BTHn2qRrj++2339h9XI5H4vd4NJiBxf8F\nprz6fo3jFBQUMG/XZoLu6UfjCWPICPFg2bo1tZ6zdcuW+KSn8/NrrzP71Wkc+nIm3dq0QSmTYjeZ\n3O3sJgOqCySCUtu3p0mTJpfMnVqtJjg4+Kqy7gVBwMfHB39/fyQSCR4eHheULawJmUyGIDpwWC2E\nJ3UiPqQ5ik17Samw0blZC15+830e/79XWbRkWQ190jOFxQQmulzFCo0GISaOoqKiGseuFnqu1qj0\n8PDgmYfGMtTHhofESaDajodGg8VqoaLkLN4p4wnoORVF+5f47ztfXVXlprIqIxo/lyyGzW7DovJC\n6edKUqkwWdmXa2D0Q5N4c8bHHDh4FE9/19qTKYJwynpy/PjxKzqPwWCgUG/DP9JlLAiKiCMoJpG8\nQ1PJO/kTRcde5r5RvS9J+PpfR7XcjlwuRxAEVCoVoihiMpkwGo3u2MbrjbpewB0Oh1uSqx71uMZI\nEwRhFCATBCFBEISPgW1X0rF+RdaB653McrW4kCRezlVzM+ozXw4WiwWj0YhSqbwhDyRvb2+++uwN\nNm3ahMVi5dTZ/uyvzAdcc2MqPE5EYmCtfastiRdqUUaEh3Aydw9efv1AtKNVHuOeYUM5eCqTQ+po\n/Hv2Y+/ZE5yY9SNJzRM5vXsr4UntqSrSIcvLILRrmysat6enJ489dB8WiwWLxcKmTZtxOh20bt0a\nPz8/CguLcCpb4KoDDyrvFhRk1CQ8eXl5KBpG4eHnkv+JSmnFia9/qfV8drudPTsOYvRrhSoomvyS\nI8ye+zMjhtzBwR/mk1NZjmizod63kW6P/FlS3fWHUqlkUIc2LPzlK5SJyVhzT9OncQKd23fg0Rfe\nwNZuLIqYQD74bQ4ms5lR9wwDIMhLiy47i8CEhq7YyvxcvNq0pLi4mK9mfke+rpTOqUncfdcQzGYz\n6enpSCQSYmNjGXT77ZTrK3jv8ycp8RuErfwgalk+gU37AeAR1IBCp5KKioorrs/bPCaClQd3ourY\nG7vJhDLnKEJ0AwwGAxs3bseud6JpO42VRza7KpNU7UHr0wPRaUPiPEhw8JW5yTQaDd4aqCjKwCsw\nFrvZQEKYgqGjuuB02omNvYu2bdtiuuCl4N+Gi4W9L9RovJnC3v8m4l6PG4ongBcBCzAP+B2YeiUd\n64niFeBmZz1brVYMBsOfksRbbYOpJoleXl7ugPIbAS8vL26//Xby8vIoLV2JcdcCTuYfRK2U0jbW\ng149776kT12lD9+c/ixjxj6NsXglDls+ndoHIVUoWbZtL/I2fpSfyUCtUFPuUPF4syZozpzl6I+f\n4euhYVy/XrUmmVwOBQUFvDHrB/QJrV01jzd8wtQJj9CiRXNkX76D1TQIhTqMqpzv6ZZUM7TEw8MD\nW04ZoihSXlHBgS3bsZ1Mp7Cw8JJ4xrS0NEq94oge5NJfdSb3Z92nY/jPE4/x2oNj2LnvADK5hKSH\nx7plWW427ho0kJjwPZzMzCSkUSCdO93JsmXLMTboSWgrl+yQXDuBxb+95iaKd/Xswczlv5J7/CiO\nqgq6hAYRFBTE4LsfIJ/eSDySWLfjRzIyssDPk4LgUOQeGlQLFjB+0CAeuO9eEuJj2bV7P0pFOL+s\nicFcrkPjH0lF9n58lM6riifr1ikV07r17FjyNUqZjClDe7Fs0waOrP8Fc6ae8JjelJaeQKIOQu2p\nQmKfhqFoCU57Lj27RtGzZ88rOo9EIuGpccOZ8cUs8tKDKcxKo1mUy2Lbo0ePWyKB5VZKKKlNo/Fm\nCHvfbIPEvxE3ozLLzYAoigbghXP/XRXqieItjislidW4VTaaC0lidVbptXLpXAnJzszM5OEJr1Kh\n6IlIN2QnlzL9vxPp1KnTJRaCy9XHTkxMZPWqHzl8+DCenp7kF5ewPEtPXkIKBpsK61v/B2UypBYd\ncwQTM2ZM+1sPk1/Xb8SY0pvoDt1wOB3ke/mwYu0ftG3ejPjGwezePwyZw0jHNs14/bW3avRNSEig\nyfGjbPvyR9bu2o/xtAx5eRB37HyAhfO/JDw8nJMnT5J+6jQF+Xk4TAb3w9ppt4LoSoCJiopy1yq+\nEtf5jYIgCCQnJ9eICZRKpYg2g/uz02rGZjaxctUqlAoFKSkpTBp5D0VFRSiVSoKDg/n1118ptDbC\nu8VkAOyB7fn6uy4M/PBNYjp3QSqToQsK5vdt27h38GA6d+5M586dAWjabCPTP36eKoknHlIjr7ww\n4apieaVSKbf36cXtfXoBrlJ8777zNbnZZgyVeeQFxOLfbgLW8nzE014s+WQqOp0OT09PWrZseVXW\nrUaNGvHefyfy9jsfkl4iY7ezE7ve38mOXYd56YVJtwxJuxm43P5xOY3Ga0Uaa1svt8reXY//LQiC\n8KEoik/WIbxdL7h9rXEt34CvhOxUk0RPT88rilu51hv/X7WkXkwSbwZmzp5LerEnEvUpPDxC0QSM\nYM0fO+nSpYu7TfV8VVZWolQq6wzs9/f3p1u3bgA8++7H+PUahpi1Cnu5HjH6TiRVHRAFbxYve4l+\n/f64YqtPbag0mVH6uSRxBAQUfgHkntrN0SwLbUdMo9OD3mQf2UBqmOESa6VEImH4wEH8et94bOnJ\nBMY+iDTCF33GZ3z9zY/07NmZj9f+AUntsNsETLn7yF/xCYrIptjS1jK8X7d/VPlHgC5dOvPDsikU\nbNRis9kp/O1T1J5KPs+uQiERWLb5Q6ZOnugmvuDKgEVy/joFiRynIEHu7eP+Tu3rS4XFcsn5unfr\nSruUZIqLi1EoFHh7e2OxWGrIr1zNmn/6P1PRVYzCP2Y0lYXvUaEVkJaeRE0Fze8YQWFxSY01e7Ww\nWq1s3pmFJuRBdPlbcTpk/LJ8K2NGDSEmJuYvH/d/AVeyX9am0Xg9hb0FQfhXE/h6XBd8f+7/tQlv\n1wtu/x1cHKN4PY5/ORJ2tSTxVsHlSOKNemO2Wq2s3rIHc4PRaGJ7oc/bQ8XRpZRH1iRW1RZOhUJx\nxZmGgiBgNpnw8A6lsuw0EmcYcokSQe6Pje6kp5/6W0QxpUkj9m1cico3AKfTgWHTKlRKB7+mV0HR\nDqLDg0lq3oG0A9/V2l8ikWB3SFAHpCJVuK5XooqktPQUs1b8iv/jk1EHuvQKMZtpbSxGYtlNrryM\n7dtKKMidzpNPjLsk5s5ut/PLoiXsP3aKyOAA7h057C9JO10p9u3bx6oN25FJpQwb1Nddsu9i+Pv7\n88Vbr/LxZ1/y3dxfMSsHU+50Uv7Nt/Sb9T3ZO6Vs276d2/r0cfdJTU3Fc8aXlJ/6FplXY+w5s7m9\nVxeshw5ijIxEqdFQvGsHHSMjaz1nevop3v/hZ0wSBb4ykWcfGkN0dDR2u91d6eRK49tOnDyN2teV\nbOWlDUAv1eCsOIEyKBSj0fi39UPMZjNmk5mi3E0oGt+PIFVSsu9FNmzazH0xMbeU+/dWR10ajf9E\nYe96nMetWMLvWkIUxb3n/ukFrBBF8apde/VZz1eIG5nQYrFY/hJJvF7yOFeKy5HEa7l5/tm48vLy\nUIclIA0IximRIItsh9FeRErS+ZJ4TqfTXR/7auQo+qe0xrx3I9Ki4wi6swindoIsBqnUgkKyg+jo\nqD8/yGXQvl0Kj3RojrDgcyQLvmBE01hWrN1OkUlOVVAn9mdbWLd2Fb5emjqP0bdPKo6CT7EZs7FW\nnYLimfTp1QGTzYbSx0UeBUFAERBAr+7d0OUW8MceKXtLRjJ/vZYRox+7JMnhrQ8+4eM/TrEn4DZ+\nOqtgwrNT0Ol0NaoBOZ1OsrKySE9Pr1H+sNp9LYoi+fn5ZGZmcubMGdLT0ykrK7tk/Lt27eL/3v2O\n1cXhzN9VwPAHJrBnz546rzcoKIizZ4vwiH4dVcREFHGvYhbu4Pj8OUh9/DCYarrP/f39mf/jZ/Ru\nfJDG0i+YMLop770znXuaN8O2dDHl8+Zwm48PnWsp8ZeVlcUTb75Lulco5iYdqGo/hLdn/oAoiiiV\nSne2vNPpxGg0YjQasdlsda7XmJhITJUbAZCY4xHT5uIZEIHcM5is3dsoLCyqtd+VIiQkBJXSjM2v\nCagDsTpNaBt0Jz2z5M87X2f8k0lqtdyORqNBo9EgkUiwWq0YjUYsFgsOh+Oye9Q/+drr8Y/FcOCU\nIAhvC4LQ+E9bX4D/bSr9D8DFG0Y12fqnWhKvde3mvwKVSoWfVklS03DSMw7htFlpEKahb9/ewHmS\nKJfL3Rv6xZu2w+Fg+85dZBcVE+rnS8f27ZDL5USFh5F44AAqSSH7Ko9zuPwkMnk6HmoTgwa047Zz\nItTgylT/7LOZbN9xmNjYEJ6e/HitlVbARahMJhOCINC3d2969+iBzWZj/fr1iJFdCdSGUXF2LTK5\nljObvmXI4x/Uef33jhlBRUUFc34ai1Qq4amJwxkwoD8ZOh2blvxCYK/bMObnoTh+hODUtvy+bjse\nbTcjkSohqDu5Rw6zf/9+UlNTARfxXrBmPaoej+Bw2PBuO5g/Xp5Jhy5Dkcvg4QeHM+nJx/l98yZO\nYEfq5QVHj6DRl7N443rST+UidwrIHTacKi2aQDWBrVrRvFUS2t17GNO5E5EXWO/mL1uLObQdmSu+\nxuHdDqczlmFjHmXP1tW1ClwD6MurkKnC0EiVlFdVgjSUypzNBNv1NL/vnkvaR0VF8eF7r9f4rnXL\nliS1alWn9JTVauXjuXOp6NoV3+53UHgsDXPWcWxOKXq9noCAgBqZtNVJEWvXrmXeTytRKuU89OAw\nkpOTEQSB/fv34+mrpXLf81grvsVq1RGWEEkDtQKZ04Sy/0MczdzJECA/P5+dBw4hiiLJLZoRERFR\n5/2/EDKZjNEjBvLJmjzs5l34emoIDw/HW3vzieLNxLUkatWk8UJNzuqXo6sJR6gnjzcH/xYdRVEU\nRwmC4A2MAL4VBEEEZgPzRFGsvFzffw4TuQm40HJ1Pax1F+PvksSbZVG8knHfSItscHAw/VIS+PXw\nUhoHNcFZcIQBg7qQkZHBmTNniI6ORqvVolarsdQShwYwd8lStpnBo2ETDBmnSF+wkLZNGjF19gLs\nTTqDjxet2ipZ8P3X5OTk4HQ6adWqVQ1X4+Snp7BiVSUS1Qh27t/Dli33s2rlT5fU192zZx8//roB\ni1NKhI+C8fePQCqVntfnsxkITxmKj+4U1godDl8l0dG1C0yD68E18YnHmPjEYzW+f2jkCBQLF7Hv\nyw8J1XrwwNgxmEwmbFYTdmMuCs84d9vq9WkymVi2fSvGlg0wBRbjzD1E5Y9TsNIdr5avoZBa+PqH\n+7CYKqhoEEObu4cgl8k5LMAPvy5DX+GEoa+R+/kLiLKeyIlHsO8kR6LkbGYOWqmMzJnf8MWrr9T4\nTeRuWYIjajCSDncgyNVUHPqQ9z7+hGmvvIzJZEKpVLrn2mKxkNImgWPz/4sm+nXUViPG3A9okJjA\ns0PuqbViS21wOBzM+WkBqzbuRq1S8Ni9d9GxY6r77wUFBRiCAlEFRyDx8sKzczeKP/0AH4PeXfHm\nQgiCwB9//MFTkz9BlE/G6TSzZcvzfDNzGhqNhienfISk6QQSRj5I6c4PSGrQkKrEO4lo75Lfyd+3\nlgBvLXl5ebw/dxnOhh0Bgc0//cqTd/e97BoAyM3NJTs7mzatmtH+yHJK1DoEqQJ1/jbufvq+K5qT\nelwdqjU5q0ljXeEItZFCq9V6zfVxn3nmGVasWIFCoSA+Pp7Zs2e7s/SnT5/OrFmzkEqlfPTRR/S5\nIDyjHv+bEEWxXBCEXwA18BQwGHhWEISPRFH8qK5+9UTxCnE9JXIEQbglEkD+Cm6GBfTP7oUgCDw0\ndhQtd+8mP1+HZ3JLPv/6Z2bNPYrT6SAyQM/ML966hLBVQ6/XszOngOixjyGRShEbJXLgx6/Z+cPP\nePR9GO9olws7Y/ksDh8+TM+ePdHr9RiNRtatW0dFZRWJTRqzYsUfaEK2I5GogB7oitPYtWsX3bt3\nd58rJyeH2at2EdR1HHKNlswDW/hm7kIeHn03arWa5ORkouYu4cz6j5H6xeM89RsTxt71lywParWa\nR0afLwG3ZedOdleW0ODBOzixYyqyjHbI7OXE+JXTqlUrwGXJKvbxwK9VA2yJkUi7JVP620oE38Go\nVCqcTgVlkh7M37YID18l2b//zqA+fdBbLFhUCpxxHRAQgVgkcVNwGk8gCYvGWLCSgFZt8GvThT0v\nPcWBAwdo3bo1AEP7d2fOjwugfUPwiUawGVE06UaabgkffvsNWZVlKEQY3q03jRIaMn/1WhRdu9NM\n60PakqcIcYhMens8d9895KrmZ+78X/hmzSl8Ok6h3KTn/96ewefTPGl+rsyhXC5HKUhIahDFvv0b\nEeUabCf3MeHRh+tMAvp65iJQTMHD0yXfU1FqYsmS1UREh2CLGExgdAcEAaTKVzBmvEeQbic5a4pB\nIsVPf4KhzzzOxh17EBt1JqyJa34KFUo27jrAvZchiqtXr2Xa23MQlE1wmtMZMzyV2FgVdruDVq0e\nJTQ09Krmph5Xh4s1GqtJY7XXALhknzeZTNe8Uk6fPn146623kEgkPPfcc0yfPp0333yTo0ePMn/+\nfI4ePUpubi69evXi5MmTt0R1mnpcHwiCMAi4D0jAleCSLIpioSAIGuAoUE8Ub2WYzWbMZvPfJok3\nWhj8VnWTV1ZWsnv3bux2O+3aJTNn3iLOlqfg3+RBBEEgK30ms76dx9OTHq+1v9PpRJBIEc5tmoIg\nIEjlVBrNeHqfT/IQvAMxm10WSaPRyJP/91/O2BPAIxzh+/exWKxcHEl4McErKCiAgARUWm8cDgfB\njZJIX7XZpYlos+Hl5cWXH05n8ZJl5Bceo1WPfqSmdsBqtV42WaKkpITM7CxkUinxcfGXkGK9Xs/e\nojxiBvbh0d5dWbN6HYe+W0i32AY8Pelzd9ymRCKhqryCBm2bY/NSU1yYhdZHg6X0KIKQir6yAhwH\niBnaF0dwELkyJ4cPH8GanYPCbMFg1UFYU0RBClYrEkUgzpxDiMFGFCoPzCePoomIo6CgAFEUsdls\npKZ2oGen1qwrXYfcnoRCZkIw7cDqtFPaMppm7QZjKNUzd85yeheXUBwWRXSr1kS3T6VoQH9icjIY\neK5E44XIzs6moLAQrUZDQkLCJWt2zeY9eLV/BnVAjOueJgxm647dbqIYEhJCK09P9h09RtsAPyoO\nH6DfkEF07tSp1ntQJwQBjVoNDhNSqcRFIqxVKJVKXvvPeE6cOIEgCCQm9sPb2xu7w4lEeV4aSyKV\n4biM1JTBYOCNt79FE/0hKo8IbBY9P8x/jHnfvUZhYSEHDx6kuLiYZs2a3VR357/l3LUJe1ssFmw2\nGw6HA4PBgEQiwWazXXOi2Lt3b/e/27Vrx8KFCwFYunQpI0aMQC6XExMTQ4MGDdi1axft27e/puf/\nJ+Df4noGhgDvi6K46cIvRVE0CoLw0OU63jpP91sc18uiaDabsVqtt0Rs38W43DVfLUm8USS2vLyc\nZ16dQZ6yIcg98Fj4Hmq7FZnnCARAKpGg9GlBVs6KOsfl6+tLoo+WI3/8jnejRCrOnCJeLpLUKZlF\nf/xMSI9hmPXFSI9tJrHvwwBs3ryZM7Y4Qno8D4AhKhlNziiMxRORqIbjtO4lMrjwkrrABQUFrJ35\nGcIPs4hv35H45K6EB/nVkMnQarWMGT3S7SaXyWQ1rBPVtWqr2+fn5/PLzs1IG0WTl50Da1Zx7+13\n0rDh+WQem82GRKNGcm7N9e3Xh8Z2kftSu9UQkA4LCyNsq5lj2/cT0S0FVXE5scN6s37GR1jTd2Et\nySCouQfNHhiFUVfEgflLyNq4m7u798QztiGL12+lsrQCwXIUMt9D4tMWe+EiFMVFeJxqjzYgGEQ7\n5eUV3Pfs81RYLMQFBfLqK89jf+8jDpyaitLLm47RgVjzy4hOcVnVPPx8kMdHkFtQgDz0vGVN5emJ\nwWqtMcd2u53FS5eyUacjuE1bFEXFNMjK4s5evWr85jRqJYWGUvdn0VSCRn2BjI4gMHrwYJru30+R\nXk9E5y54eXnxyKP/ISeniNTUFjw9eTxVVVUUFxfj6+vLuIeH8sSTUzGUG3CKJpTC54wc8S5BQUEs\nWP4iun0yBIUWzvzMw8/dh1arpWXLlm5XpdPpJKVFE7YvWkexXIEgkWA49AcdB3au8zeg1+txCl6o\nPFxxjHKlD4I8gpmz57A/T4bELxGx+FdG9jnDgL696jxOPa49qu+r3W5HIpEgkUhYuXIlEydOpE2b\nNigUCiorK2sNZfi7mDVrFiNGjABccccXksKIiAhyc3Ov+TnrcetAFMWxl/nb2sv1rSeKl8HFJOJa\nEx1RFLFYLNfM3XyjyNitYEms6zpXr/2DPM8kIju4KnMUHo+kdMfnWIpWIQQn43Q6MReuJKlvwxr9\nDAYDFosFHx8fJBIJ9989lDUbN3Nmz0ba+vnR955hyOVyJAsWsmnxO/hpVDzz4HBiY2MBl9sI9fnq\nJwrPYMLjYhnatzk7ds4nJiaEyZNm1bDsZWRk8PQzb1JkegyzGELW9x9xbM0cVv0yu05rR7V1ojqA\nvrqCRLUYsFwuZ/uRg3i1b8H+06dJs9gx+niz/fW36d+2GRaFBC+1B/07dUdbZabwTAa+4WGUnM0i\nUJRe8oBSKBSMG3YP8rlz2D1zV7BcXwAAIABJREFUId7BfgQKSiZNHMvxM6cpK/bD2jUZiUyGOsCP\nYCc8dvsddGjfgX5du3FXn4Ns27YNW4dw0o6epqIyg0a9Eil02NDrcnGeOUaX6DAW7T2Ax4MTCY+I\nInPLer6Yv4AfP3qPo8ePU2W1EhUUxJzff6UsOw+/qHAcdjvW/GIS4pqxNf04xsBApDI5pUcO0fYC\nt6rdbmfahx+zLD0D5cDByE+dZUi3Tpw+mkZeXl6NJJpHxgzl2ekfkF84EMFSTlD5Ngb0e7PGfEil\nUtq2bQtAaWkpt/UdQZnhPmSKlpz8YTaHD08gpGNLCI/AkZ/HXS1b8dknk5k77zcUchkPPfQ2LVu2\nBP6fvfMMjKLa+/Az23s22fRGKoHQQu9dUIqAoKgoXuxY8FVRsV71YlesCGJBAQuKdOm9E+kQICGU\nkF5Iskk223fn/RCzEhOagnCveb5AdmfOnDkze+Y3//Mv8NUnk1n8y0oslgL6jH2QTp06ATVL3Pv3\n7ycr6zT+/kY6derE+CE92LpvNyLQa0h3n+i32+1UV1djNBp9c0hQUBAGrYOK4h34BXel2pyO157B\nnuPxRA16E6lMgdsxkLnLXqBnt06XFPXfyOWjVjSOGjWKgQMHMmfOHD777DMiIyMZOHAgt99+O4MH\nD76glXHAgAE1KxN/4I033uDGG28E4PXXX0ehUDBmzJjz9qeRRhqiUSheJJf7R2Sz2RBFEZ1Od81Z\nEmtpSHjWpoC4miLxfNeiwmJFpq+1MInIdIGERMeQ0lzFirU14nHowE6Muf33Mn4r1q7jl92HQKEi\nRqvgoTtG4+fnx43XD6jX/rgxtzGugbk2JSUFxQ/vUpndHqUxgvJdn3Nz36489th4HqNmKbi4uBiH\nw0FERAQAa9eupdJ1A179cFQaLV5nU8pKhrJhR+o5AzAsFgsbdu3kdPkZ9AoVgzp1IzIy0pcM2OVy\nsXv/fvadOEKe3U70sNHIK6spyyxicelx/jXxQSrPlPHVsvncN+Rm9h3LpGhPGhEGf/r16tPgUrZK\npeKxB8dTWlqKxWJh5k9z2RqmRj/2Rpy/HsC9KZWMtGNIgVHde9Olc42lQiaT0b59e9q3r1/v2uFw\nUFBQgFqtJicnh02iDF1UzXUL6dGHUysWIYoi7X/zWwQYM3AwXy5YTFl0KM4z5XQNjqZ79+4EZWay\nZdsmbF4PfZs0IaXV76UNU1NT2eNWouvYC13X/liL81m3M5XewSbcbnedPrVu3Zq7bx3Amn2pyFVS\nxo2567w1nFNTU7HYWqI11qzaeBWt2LCpOQ+/Pxl9aAhOq5X5M2fyyh13kpKSgsPhqFNKMSIigocf\nvLdeecsFi39hzuYjCNFt8aYepN/R4zww7g6ioqJ8LwOiKLJ3335mr9iER64lQObmodtHEBYWhkKh\nYMrbz/D0s+9wJu1DNCovE//vNr5bfxqprCZYQqbUIJHrrqnKO38n11qEsV6vp1u3bmRnZzN58mTm\nz5/P1KlTefTRR8nKyjpvkMuaNWvO2/Y333zD8uXLWbdune+ziIgIcnJyfH/n5ub65qV/Gv+gpec/\nTaNQvEgup7XOZrPhcDh8Sw+Xi8tZJq8h/koS8L/L2tmhTQsWTVtIdWg8olRB+b5FjB7QllE3DeOZ\npyxAzVKu0+lk7969HDp0iA0ldmLHPIZMqeL0rq38sGQZ48c2/OZ9rgdMbGwsH7w6gfenz6DyiJXR\n3dvx+KMPAJCWdphpi1fjNUXjLSvkpg5JDBp4HXK5HLe7CkGhQqpQInjcSAxG9mSeqHfMHTt2cPz4\ncXLMpfgP7E7C4B5UlpSyYMNWxhkGYzAYkMvlbNq0mV9W7cXergfO2Jakf/ctIaYIPDjx65iMyk+H\n1mSk4ngOZrOZkdddfKSjyWSiurqadGc1ifc8iCAIBLdtRebpfN6772HCwsIuqswkgFKp9FUGqays\nxFuYj8fpRKpQYC0sQI1Yz5ISFxfHM2PupqioCE0bjc8a2DQxkabnENaVlZVII2IxKBRk//Q13sAA\nSg4fpH/TRELat6uz7e4DB8kNCuWGyaPxOJ1sXL2SzM8/x2g00rNnz3oBIDKZDMSz80hWg0RAY6pJ\n4aPQaBACAvh42gxWbTqERKEhLlTDh++8fE4BWl1dzfcrtxB6+xvI1Tq8nsFs+vEVRhQX+5J6u1wu\ncnJy+HLZFoKuvw+Nnz9nsjJ4/8tvuXlgL8LCwkhKSmLR/C8wm80YDAZcLhfLN75J8fHt+Ee2pvTk\nTiKM4jnTDf0dXGti7e+koXO32+01qb0CArj//vu5//77qaio+EuR0CtXruTdd99l06ZNdX5Pw4YN\nY8yYMTz55JPk5eWRmZnps2g38r+JIAj/J4riRxf6rCEaheLfTK1INBgMWCyWa76+Z23//lsqxaSk\npPDEbWa++flDHC43d/XrzIhhQ4AagQg1wS4PPjKJzHwFFeZ8PF3bEen1IgOCmrfhxKLUeu26XC6+\nnP0dK7ftQiGXc/eIQQwedH2dbTp06MBPs+o6g3s8Hj5fuAK/geOQ643g9bBwyRe0aZnMgAEDMLw2\nleIzAYi6Zgj2z4ke0otQo1+dNl5/Ywqz52zBQwdcpq0MbxVHVMvm+AUHUh5uorS01FclZc78Ffj3\nfwW3VyTr4B7sZgiKLcddZUYvjYTfBLur0ooi/NIfQKIoguSsqkUSCUgElErlRYvEP5KQkMDghBh+\nfO15CpUavBlp3NerW4Miwmg0YjQaG2ilPidOnGDfgYPkbUtFaNEGebQB26nT6KuLcZYb6y25nigu\nxtShC1KZDJvdzg9b9uJYno2CGNTqafz88+d1/Dy7d++Ov9/75BZMQqJoh5x5tOqQTHlWFoGJiVTk\n5lJy8BDb06wEDfoWiVxD5v5ZvDVlGu++8VKDfbbb7SBXI1PVuChIpDIkWn9fipXayiDV1dVIgmOQ\na/S4XC5K7AIblm1n62YLgusUEyeMYtSo4T4hKJPJeHXSeKZ+8T2nt/xEi5hwHn36ocZKItcQtULx\nbM72F/4zTJgwAafT6Qtq6dq1K9OmTSM5OZnRo0eTnJyMTCZj2rRp/9j7wP3PsSiOA/4oCu9u4LN6\nXLtP/GuMv2oRE0URm82G0+nEYDBckTQEVyrX4+USiZerb+c7T1EU6dypAx3at8VgMDQ4+c2aM5ej\nZ5oR1P5JpEX7OJX3MztT99C3T0/Ks4+TEOhfb5+5Py9k0alqwh54H7etmo8XfERwkMnnr3YubDYb\nZpuLrVv3UFJWiUQQaeZyUFZWRkREBKtX/ci4B/+PfNtmApMTMJw5hbZ1BLMWz6dr81YIgsCs2ctR\nGNYiF7R4+Iw1yzfStWsntBoNLnMVqpi6DxdBEAiIbY8iqBnHNnyJI3UR7Vo1R3vsDJnGPdgKywgt\n9xAbG3vJVp3IyEgSZGoyZ8/DI5NQcSiDdjJtnSXVS0UQBHp17MCPGzYR3r0N2r4DWLNlLS3XrWfg\ndX+uHGJaWhoPPfcG9mbDqTCK2NI3kdDzFlqHJ9GpbQqZM36krKysjmXPT6XiTHkpfiHBbN60ncrC\nAAzSsSjl7bBYvmXy5I+YOfNDNv+aSmZRERlpR1A3TcI/MBd7wU4Gdktm0lOP89WSJZxavgKDREIb\nUyDHwxKRKmqEnyH+eo7sXX3Ofvv7+xMfpOFk6jJMLXtQcfoIfvbCOr6UQI0ANG8Hrxu3FzavWodS\n3RW/2BfwuMp4/5Px9OrVjaCgIN8+4eHhvPHyU3WuucVi+VPj+9+OKIpXNRXM+SyKl5PMzMxzfvf8\n88/z/PPPX9bjNXLtIQjC7cAYIFYQhKVnfaUHLirzfqNQPA+X6w2rViTWpjuRnJV25Vq3KHo8Hux2\n+18WiX/H26ooipSUlPDpl7PZffAEWo2SR8eNolevuhGiWdmFyP37IAgCGlMrjPnryZ/3JbnmkwTY\ny7n9zlvrtb0zLYOAHncjV2uRq7XI2vRj/5H0OkKxoWup1Wo5umcXBa2ao283BlfxCQ7MnUNu3xY0\na9YMf39/1q9YyOHDh9l7YD/HVR4iB/XDabMxf/122hiCkcnDkUj1NWXirAOw7/qZjA3bMAhSUvSB\nviXR/Px8nOYyMlffi1+bQRgSOhNftYWvPvuYxMRETp48yemcbLThUbQY0AJBEKiurr6kOrVSqZQn\n7r6Pu56YyGlTJJqgKDKLssjMzKxjbbtUtu3Zg27kHYT1uQ6vV6QiMJDVqxf+aaH4+Zyf8HR9mODW\nAzCaCzm1uZDYkGC6d+5EWXYuOxau59FNxxh0Qw/Gjh2DIAh0a9OavE2byS0rI2/rFiQH5ChkLQCQ\nyZpTXPwza7Zu4YBChq57F7ZkF6BukUjHbqMQpDKyZz2HUqnk3w/VlEBUq9WsXLmSBTt34PXcjEQq\npypnO61CA84p0CUSCc9NeIAZs+dydMkGEkJMPDzxoXrpjcLDwxnVpTnzl32GRVQg7l1FVOInvwU6\nBSJKQ8jJycHPz8+XRqm6upqPp3/Dzn3p6NQqHr57JG3atPpT4/tXudbnvauBw+FoDCxq5EqwHSgA\ngoD3wFdCvgo4cDENNArFi+TPirqzRaJer7+ib7GXW3h6vV6fBfRaXm6GmnG2Wq18MesHdpaEEHHT\nROxVJbz5xXuEhobUETHNm0azbPN3KLWRSDWRqLEyunMyYwb3qKmN28BbvcmgI7c4F114DADukjwC\nmv0eIXy+KGVXVTXa3Gwcee8icXvxM7XHbDb7xlQul5OSksKukxnEdk1Ga/RDazRQ3jwWSbETpSwP\nS9VylNrrcDkOElBVzS1RzTAajT4H9LKyMm68cSylpTcjuG/jzLapRFj3M/WjN3yBMXFxccTFxdXp\nX20i4NqAColEQn5+PqIonrPyx969e6FTX3qOHV9z7IN7+eLnhbz7/KSLuVT1jm82m5EAHtvv/n5u\nqxXlXwjystgcyCNrrIVyvxBkdj9yVm7hmNPL9+NexeO8i0J1a37dNYP8gmKenfQERqORu264npKS\nEkxJMby5YBkeoRSJRI/H8yl9+rTnYF4uUWNuw2w2owyPRpCYsJUWYIhqikQXgMViISgoCI2mJoPm\nwIED2bJjHxtX34vV4cQmK8HevTNTvvyS+0ePbnBpMSAggOcebzjH59n0692TNi2TKS4u5vT6dXic\nZrzuasxFG8B1iiZNmvhqTkulUqbOmMXWnCAirn8Me2UR73z+Pq89paNly5YXPNaV4p+63NkQV8Ki\n2MiF8fyPyyBRFE8Dp4E/nSTzf3uELiN/RoTVihe3292gSLyWLYpOp9NXUupyiMTLea4NpS2qHef9\nR7MI6XMvEpkcjX84ZRHdSU/P8AnFvLw8DhYXoe1kJCNjEuq8Qm4a0IsnH3/xvJP0PbfexDPvfEJe\n3jFEezWx9nwGDrg4YRQdFUlxdA80IS1wu9yY108kIKBbve00cgXl1Tbf3267HX+jP3PmfMzDjzxP\nTs5jxMTE8fmMz7DarCxavwqpREK/jt04ePAgFRXt0WifAsDj6c6p470btPK53W6+/34uh9IyaZYU\nw9ixd6DRaLDb7Tzz4mR2HMlDkCqID5TxwZv/rhd4UVFlQRL6e61hdVgEZVUWLBYLOTk56HQ6IiMj\nsVqtvkTyDfkvFhYW8sonn5DvcOKpqsRZVU2uKCKo1LBhBbfdPRaLxVJTEeUclU/OJiMjgx9+mI/X\nK9IqPpxDW2YgVT2F12XDYM7m5pDuZP6yHcHTB2NQzZKbx92BmTP7M+mZx2uugUZDQkIC8fHx2Gwu\npk69HpfLzciRg5k48VGm/jwPp9WKn58fOsFJSdYxxMRIivZuQl6WjcFgQBRFKisrEQQBg8HA668+\nx8aNG/ls61aaPvwOWn9/Tm/dxvdLl/LQnXf+pd+FyWTCZDLx8fvPM+GJlzhy0o4kLJa2nTuzdM16\n7ho9CqVSidvtZtf+YwR2G4eIBLVfOKWmLhw/fvyqCsWrxdUOpPm7lp4baaQWQRBGAW8BIfxuVRRF\nUTRcaN9GoXiFuJBIhCsjFC9He7U+iSqV6poVsrXUWmxrxznQ30BxaQ4KrRFRFBErszEYfl9em7V0\nGa7rBjM0uSV2q5UT337NHd07oVKpKCgoYMnSZTicbq7r14vk5GTffjExMXz66rOkpaUhl8tp335c\nvWWikpIS5i1bTW5JOU2jQrltxFD0ej2Tn3+M8U9N5owiBov9GHHNQ9lTeJrI9KMkN2vu279nm/bM\nWr8Cd7UNt82O9mQxzQZ3QaPRsGXzUl9AQ3pGOrO2ryR6SFecHi8zfplPLHrq/pylQM09OOvHeezL\nPElYgJH7b7uFN9/8iJVry/FIBiPxrmfDhp3Mnj2dn+cvZHuBGtMd3yMi4djmT/nks5nceetNeL1e\n/Pz8qKysxN/PgLBqI9ZWbVH4+XNm5ULaKOXc9shjeCKbIHXaSfHXERAXgkyrRGn10ja2OW63m4iI\nCJ+l8s3p08lq1pyAtu1xVlRQ8tkHRKeuJDY4igG3juLzWXPZvvsIotvBkOu6MvHxCecMZDl8+DAj\nRz2A1XYvIEGl/IK77xnGsgWPU1ZZSfPEaNq2aY3RoGfhgkN1xqmhTAGCIDBhwngeffTBOv5sA1JS\nWLpmPbLEONqpFRw5upOCbas5fSIX/6BYhtxyH9cP6o40Khq8XtoGBTK4X1+USiWmLl3Q/RZcEtKh\nPRk7U+scr5bdu3cz/buFVFls9OjQggf+dUcdAeF2u/nll2Vknc4jqWks119/Pa1bt+b6EQPJiuhK\nRPO2gMjWFbNof/gwrVq1Qi6XExRoxFxViFJrxO3x4KnMQq9PxuPxNAa1XAPY7Xb8/ev7RzdyZfkH\npcd5BxgqiuLRS92xUSieh7MnzktJPXMxIvFKcDkm+rMDV9xuNx6P5zL07MrQ0LL+hHtv5fm3vyAv\nJwXReoa2IQ66d+/u26ew3IwxOgYAlUaDMiaOqqoqCgoKuHXsBMqU14PcyKy5LzH9/Ul1UkYEBQXV\nqdN8Nna7nfdnfk9l0z4YWyayI30vpd98zzOP3E+LFi2Y9ekbTJ07B9PgR2nZsR12SzWLF68jPDQM\no9FIRUUFp06doqVfMKF2JSqVgZhBnXxLmFDjvyaKIjsO7SPqhs6EJNQILke1DeXeInS67ZjN05FI\nmyEwnTvvHMWHn3/FVmkAAbc+xsHTJ3j81TfZu+EgStMOBIkKUbydnbv6kZ6eTmZWHtImPWrKFwLq\nuO78PPsefpi9Ao9Xgdpg5f6370Pqgr5Ngtj7+TuUOewkGrVsykvHHtcEy+H9SOV+pKVlEatoT/Pm\n8ag0IjOnfkBI9wGICxYyYdAgVHIZSxcvRN+jLVVlx6jOLSR4ZE8SI8KR5FcyZ+58tpdEQnJXsha9\nytRP1zP7mwV8PfN9+vXri8Vioby8HJ1Oh7+/P9Onz8Fun4BOfy8A1moTGzfMRt+hHdE3jcNjt/Gf\n779g0qgh6FTTqaicjkTWDME1jTvHjDyv68DZ37VKboG/wY+CokK0cQlEfzSFobfcS9gNM9BFtKf4\n8E/MObGJx+99EJ1Oy56NG4g8lIafnx+ejAy8Hg8SqZSK7GyCG1h2PnnyJK9+9iPa/hNQG0NYseV7\nhNnfM+GBe4CapfpJz01mwy4RQdMJFqxn7/50XnjuCYrNVYT2bo5E+psPdGAUlZWVvrYfvfcW/v3u\nZxTmtcNrK6JDlJP27dv73A7O9lW90lzrL6BXA4fD0WhRbORKUvhnRCI0CsXLTq1I9Hg854y6reVa\nsyj+Mbr5jwmJ/wpXYunZbrfX8/1MTk5m+ltPk5GRgVqdRLt27eosezaLDGfP7lQie/fDabEgHjtK\n2I2DmDd/MWXqwQS3ehCAipxopn7+A7P/kFuspKSEQ4cOIZfL6dChg8+qWFBQQKk8gOiWnQGI7NSf\nYz/to6ysDKlUSlBQEGEJsSR1qkk+rdbrkAUHYDabqaio4F8PPkWZJBZ7ZTGto6XM+WrqOV8wZFIp\nbqfL97fb4STA35/Fi2fx9tufUli4meuu68a//jWGW56YRPjLM5BIpWhCIzm1Yy1e8SgIyt+SdIPH\no6SgoICkuCiWLd2MmDwAJFIKV71H1ZlYDH5zsdvcuCreZevSVB76eAIH5m/hzeGPotVqmfz1xyhM\nkRybvhWPbRRuSxZS/0o8j4zkcNUpXAV7UfXoRsjYu3GWl/HivePIP1xKtTiGylUZaA5vJ+G5G3EX\nlhIe2wVplMiirxahbHM7x75+GJRLQBGJw7uHhx4ez/z5X7L24E6kgTqcpVX0adYeq82BIPnd2iiR\n+JNXXErLoWPQRdf4Zdp6DeXIyVMsXvQN77wzjcKizQy4rgcPPHB3nfEVRZFtO3ewcncqIDKgbUd6\nde/h+y1HRkYSGVmz9J6bm4vNq8UY8VtScbUaaVAy5eXlGAx6tDEx5OflMKh3L3ocPcq2L79C6u+P\nOi+fu0aPrndtjx49iju2J/qIGpeB4B63s23Ji0z47fsTJ06wOTWXwOazESQyPO6hLFo6mvEP3EWz\n6DD2HUolokMfXFYLYs4RQrv/niezRYsWTH3zCTIzM1Gr431JwDUaja/CT63VulY0Xmmf6n8q51p6\nbgxmaeRy89uSM8BuQRB+BBYBtXVORVEUF1yojUaheJFcjNARRZHq6mq8Xi96vf5vnwj/yvEaSoFz\nLftQnl3+8I8Ps9DQUPLy8jh9Ohun00n37t1924wdMRzL93PJ+HgPUo+bMR3aER8fz+Klq5AoQnxt\nyNQmqi2OOu2ePHmSia99QHVoO0R7FbELlvP+5BfQ6XSoVCq8NovPYuRxOsDlwOFwYDKZUCgUqEWB\niqIS/EKCcFhtuEvK8Wvvx7P/fosi02jK9Z3xSOWs2/UGj018hk/ef7fBa9qvU3emLfkBp9WG1+2h\neutRut92D2FhYUyb9o5vO7fbjQzw2KqR6Gp85xRyGZHhKvLOvIZLuAGPay3+xjPsLTjCjR0G0Pvg\nEbZ8PwZBKkdjPo5dMQFQIAgeJLLhZKU9jlqtRhdo9JVylPqpyZ55CI/jDQTZQJC58FhepmzdaiLG\n3EPZ3rWEprRDkEhQBJg4uf8YCsNKVOo4XKIHy8lRlG/dS1JKC0LDwsg/nkWAn46sE5tAmoggTUR0\nVCFXt8PrNfLTqiWk3DsEQ6A/DpudjfM3M2RwDzZtmoLDHgSCHAlvkNwmFpelyjceHksFGqWCmJiY\nOuP0R/Yd2M+cA6lEjRmCIJHw/c/LUavUdGogFVJAQAAybyW20uOoTQlI3CLugmP4+Y2qmQ9ycgg2\n1tyjd44aRe+cHGw2G+GDhzRYz1ej0UDl7ylN7OWFGLS/iwe73Y5UZkCQ1PxGJVIVglSN3W5nzE1D\nsXw3j2NzU5F5Pdw1oDvx8fG+fYuLi9mzZy+AL39ebf1wqVSKVCpFoVDg9XpxuVxYrVYkEkm9WuL/\nC1xtH8WGaLQoXh3+AUvPNwK1D3Ib8McqC41C8XJxIdH0Z0TitWJR/DuTaV+OCdrhcCCKIn5+fg1a\nPL6dO4+vVxyA8E5wZgsDdx1g/D13+iJSn37gPqxWKwqFwlfCbED/nvy45B2q/GKRKQzYMj5mxP11\n0+p8/u087G1vJ6xVLwBOrPqKlavXcPPImwgLC6NLtJElX71KhcSLt6KIoUnxmEwm3+Q/qtd1/LR6\nLcV+GrwVFga17oi/vz/ZecWUqcMQAsNRKFWI8f3ZnDaDY8eO0axZs3rnFxcXx4Sb7mRP2gEkgpzO\nv4nEPyKTyRg76Dq++vJtZO164c4+TopK5PGfv+bJJ//N3vRFNO2ZwP1vvIMgEdi+fhfvvfEKS3/5\nhY37d3Ei3UpZ8XLgNgQEXM5lRDWLoCSnEG+JlbAuYTXWJ7MDbG4kROF1OUH0IgiJVB1YyRnjSso2\nHiJu0P016Yt2bkd0u1CoYrG7vajUKtzKBIS0fUS068zpQxlU7j/Js+PH88Jr75NnywT3AeTyJkg5\njtWWx+6sdIQT8bRTt0ar1aI06ejYtCNT3pPz6afv4hW93H/fOFq3bsmz074iY38qzopijFkZ9Hnz\ntQveX3uPpRPQryv6sJoXh8D+3dizM71BoajRaHj9hcd4/vUnqNTFIjGfZFjPFlRu3kCV10tLrZq2\nbXoANb93f39/th86yIKd2wnWGxjWsxdOpxOLxUJERARdu3al2dotZCz7CPQhyE5v49mHf68SlJCQ\nQJBfOYWnf0Bj6kp18UqSYvWEhoYilUqZOP4e370tl8spKyvDbrfjcDh45pWPqTB0Q0Bkzvw3eP+1\nifWirmtriUulUkRRrFdLvNbSeK2JrP8mzjVH22y2RqHYyGVHFMVxf7WNRqF4GbjalsRa/sxxzycS\nL/dy8eWg9qEHNCgSLRYLcxatJ+SmD5GrdHg9w5n3xZ3szs1HFx6JwV7FxLG3+QIqaoVi+/bt+eC1\nh/hkxgwcFS4evKcPd4ypyacoiiKFhYWcys5FHR/uO5YsMIpSc47v/FJaJnHIXYpfh5YoFQocR05y\nMuuUL2AlKiqKR0bdjtlsRqvV+ixK7VolsnP1UtRJvfA6KhHyV6FPTKKkpKRBoQjQpEmTBtPXeL1e\nMjIyqKyqIjgoiJtHDCc6PIz0EycJbhFOv353olQqeeaZh9nrPUFS55qIV3u1DbvLzqG0Q6zMPkLM\nAyMI8Xg4fvMzVOV2RaXwQ60tp0OrG6nYeoqRvYf4cvs9OGosv67fzaGC15DzNoKkBI84HYW+D+7N\n63j6znHs/WUheXO/JTrQRPduXTlw9HXk8oexlx5A4ljBqK530DOoFdJKGbG9B+Pv78+SH7/mww+n\nMnPmaJTqeKosR+n35DCkgTpy3RYqf91Oj5YdcJVUYexkZMSIYYwYMazOeNzepzMrco7g37UJgX3i\n2bB7J2PCws77QqRTqLCX1/j2nck8yaIJb+DMLWHz6h289eoz9ca9T59eLGmZTE5ODqGhoYSEhFBW\nVlaT+DwgwHfvi6LIT6uDakibAAAgAElEQVRXUdI0lpDr+2LOy+fF6Z9iFyTIQ0PRlJt5/OabefOl\nZ0hNTcVqtRIxbCwajQar1YpGo0GtVvPF9Ld4851pnDi5lC7tYpn09H98foWCIKDVahFFkZ8X/8Ly\nPekIaj05+1MRQ4YT1b7mni5MC2D+4hXcc9dt5xyHs5ega2uJ14rGS8m92RDXokXv7+aP599oUWzk\nSiIIwifUWBZ9Ec9ABbBbFMXF59u3USiehz8GszQkmmpFoiiKlywSr3Rt5gvx31KWrxa73Y7dbken\n052zooTNZkOUqZEpa0SMvbyAYoWCNmMeJrxJE0ozj/LJdz/x7nNP1btWffr0oU+fPnU+83q9/PvV\nt1i8IpVKqwfH9nH0ePl7pEoV7iNraTf+Jt+2xwvyaDmoP7oQE1KJlDKNjswT2XUim1UqFaGhoXWO\n8exTE1i04kYKfuqLRCGnyXUD8C/PrleNQxRFtm3bRllZGYmJibRp06be97+sWkauUIgu3I8d+3bR\npaQ9XTp3oXPnznW2jYqKYtPqnZSEF6Lx03Fi51GaRzVlb/oRQvp3wj+qxkJ589f/xrtoB7cOGUZi\nYmKDaWpiY2NZsXAeL7wwmeXLR6NUKhk0aABJSYkkJd1Ey5YtfRYqtVqN2Wzm8SdeYufOQUSGBvDm\nG1PrjHttPWM/Pz9efvkFxo+/j8OHD/Pj7g10nXQPVcVlHFy7mYx9RzAeNHPH9cN9JQzPxu12k2Up\n46bH70P2W73co4vWkZ+fT3R0dL3ta7muR092f/MlR4rPsObtb3CFjafJyKEcy9nInfc+TtuubbE5\nXfTrmMLom0YglUoJDAwkMDDQ18bZ/6+lurqaPIedmDatAZAaDRxApNPNozAlNqXi9Gmm//wz7zz9\nNL1792bp0uXc+9C/QR6IUlLOJ1NepG3btoSGhvLR+/85Z/8Bjhw5wtLD+UTePBGZQkmaVYcj4yi1\nd5RcG0RF1dGLnq/OLh/4x9ybZ/sz/reIv2tRqDYm3L46/INK+KmAJGAeNWJxFHAKaCMIQl9RFB8/\n147Xvjq4hhFF0SdYdDrdVZ94LsUCeLEi8Uosjf+ZcXI4HL4KMefb32QykRCi5fiuhQQk96Fw/woU\nYSEEhtdYAk2Jzcle9gMulwuFQnHBMVu+fDkL1+Xj33UBBomCrF+nsPe1W2iZ0pqezaOZt3kDi7dv\nYVCHzugUSnJLSjCEBSNXKLBXVKJVXthCoNfrWbXgW555/R3ybS40JZk8OfbWOpYrURR59fX3WL4j\nByGgDULJQp56YDhjbvs9IKKoqIgsaw4dR9f4ZDpbxLFtzlbapbRDoahb19lkMjGyxxAWLF/CmbJS\nUhJb0nNId4qXLcVe8bsId1VbiYuKumCuPaVSyXvvvcZ779X/rlZYuN1un2Xs65kfX3SgREhICCqV\nioV7N+NxuTGEmOh8yxD2nCrjvuG3ERwczIEDB3C73TRr1sxn6fR6vYiCgOSs+1sil13w5SwwMJAX\n7n2QJUuXsE0Whandrcjkcoi5gczUj1DHdMGvaSu+WvEdXu8C7hh9y0Wdh0KhQOJy4bRaUWg0VFVW\nIQgCKj8jCKAMCWF/VhbLly8nNjaWV9+aiar5TBTaSKrP7Ob/nnqJdSvnXlRN7TNnziAJT0KmqBH2\nCR26krplKTZzHqLoxXZ8IT3uaziC/0JIJBIUCoXPn7E2CAZq3B3kcvlVLY93rXOuObAxj2IjV5jW\nQHdRFN0AgiBMA7YCPYBD59uxUSheJA0lef6rIvFqBYtcrEi83ML3z7ZXGzRhMBiQShvOe1eLRCLh\n9Ref5INpMzm8Zg3N9CpCAnTgsINcTmnmUYK1mot62AJkHDuFaOyFRFYzgUcm34ImeydjRw7g5+NH\niL9zJE6Hg2nfLuDeLr0Q9meSbbWDR0Sbc4bOw0dd4Ag1REZGMuvjKWRnZ2MymThw4ACr1q6hWWJT\nYmJiOHr0KCu2pmMY+C1ShRqXZSxTpt7KiGFDfSl0nE4nCq3S95BWqJQIMglut7ueUATYc+AgK/ae\nRNIkgd2rtqDTGOjXrQe7Z31BRnU1SCS4Uo8y4LZxF3UO56JWWJxtjbLZbJcUXevn50efpLZsnrkY\nffMmWDJz6R7bEn9/f576z+ukexVIVGoCZ3/PlBcmERwcjEKhoHV4DEfX7SCkRQKVRWfQldkb9Of0\ner1s2bmd/VkZKGRyerfuSN8+ffl45goEXICcyrICvIILU9tuKP0DkQy/hxU/vH1JQnFQmxSWLl2B\nLCaa8szj+BefQaJQUFVZycq583EU2Hl71TGUWd8gKhNRaGuiq7WBHajIqvE5DAkJOf+BqBG73m3b\ncDt7IVMo0TrM9GoTjevIOwjAY7f3oVfPHj6B92e5HNe2kRoao56vDv/rlVnOwgjoAPNvf+uAAFEU\n3YIgnHci+MeM0F/lbFF3rVkSa7kY4fnfttz8R5EIFz7PgIAAJr9YW6HEw7KVq5j/zQcIen8M9ioe\nu+v2i75m8XFRCAs34fXcgkSqwJK/Hj+dly93rsOd2ATPlq20HjYEVY+OZOcV8sgtY8jKykIQBOI6\n9quTB/FCSKVS1Go1U776nMImAUj89CyYN4dHbxiOpcqCR9BgKzqIXBeM0j8Wq1RDdXW17xjBwcGI\nWz1kp2cRGBFE9uEswvUhDfahpKSEGb+sIuCZd1AYjDhKS/jovUnM7dyJZ+9+kAMHDyB6RZLuuJfg\n4OCLPofzcXaghEKh8AVK1JaYqxUW52Lk0GHEHzhAYXExQS3iaNu2LfMWLORwQBMixoxHEASK1i7l\ni+9/5IXHaxLK3NC3P367f+X0zuPEanT0GjICpVLJ0aNH+WLWj1TbHAy/oTcBgQGkVpym6a19ET1e\nlq3Yzq1t+zB6aDd+XPUgoqk9jqy1BCfHo/SvWVZ2WSrQKy7uhaOW9iltCQ0K5syZM+i79CA/NpFv\npn9GWk4e1hIXhmYdqQ6LIt+cjTNjK5qEYuTqYKxlh1DJnRedkDk5OZlhJ7JY9vMUBJUOk2jhkScf\nqWOlvpxuLxd7bc/217zWKqP8nTRaFBu5CrwD7BMEYdNvf/cG3hAEQQusPd+O175SuIo09GMWRZGq\nqiokEglarfYvTTZXyqJ4rknwUkXi5e7fpbbndDqxWq3o9fo/lQR4//79vPTWdCxO8FN6mfhwLzp1\n6nRR5eBqufHGG9m0dTfrtt2GRK5HL+TR7sHbKfJXkaFTkHMok72vvEWEXsfApino9XpatWp14YbP\nwcGDBymM8qfZrcPweDyYm8bx00+raRkZhSYyD1XEBmzFMoq2WkkM0dUpr6dSqRh9/SjWbVvP3vU7\nKDhVQEx4DMeOHfOV8svJyeFoejpnSkrw+vmjMNTkHlSagsAvgIqKCqKioujXtx+AL3DocnO+QIla\nf8Y/3seCIJCSklKnnYLSchRxLXzbaeKTSN+xnFWrV6PTaunQoQM9u3Tj7Pj1zMxM/vXwcziSxyPV\nGNk5ZTr9e0TRevxw1DotEokEU0oCJ3KzeWbiBHp220Fubi6BgeP5etEycpfMRupnQkhdwdN33XzJ\n5x4REeGr0R0XF0d4SAiTXn2Lqoh41CPuQGY04Y6LwWAtxHLwDuTaGKTuHN5/Z1KDluFzje+oYUPo\n070L38yZy4pN6dy39026tk3g2ScfvqQXmEvlj9fW4/Hgcrl811Yul1+zabf+Ds517rU5LRtp5Eog\niuJXgiCsADpRE8jyvCiK+b99/fT59m0UihdJbeDJ5RKJV4Lz9adWJOp0uv8KS+JftXyWlZVx/5Mv\nUx7QAqUhEIc6lA8+/4G5fwjquJB4lUqlvP/uZE6ePIndbift1HGKmodx8kga5afMOIvMlC5OpahC\nwcfx++jfu0+DgQwXi8PpQGb8PTBDZTRwurSU3BAVE958mGVrNmOWlqM8lceHb39Sb1nPZDLRp0tv\nbrnrIUr9+kK2jq/nPcOMKS+i1WqZuvg79F0SsSoqKD60A9WhPfi3ao/58D50Nstlsx5eCn8MlHA6\nnXg8HqxW6wWrhbRKiOOX9Rtwp3RGqlCS/+MX6EUzq1VlOHIz2bxvFxMfeLiOwFqxag3W2NGYWo8E\nwKr2J3XXM8Tf1hdTRE2gkb28Cq2yJmK5W7ff63K3bduWNevWU1GVQ8o9t9KhgZQ5l8LSpcv59+Rp\nVNlVlAYWIzUXoFHI8JqzadujG0/2640gCERGRv6p8m6HDqWxNLUAZ0g/qiry+WnTcRSy6bz47MS/\nxarW0AuBy+XC4/EgCAJut7uxfOBvuN3u/4q5+X+N//U8ioIgNBdF8aggCO2pEYg5v30VKghCqCiK\ney/URuNdeZHUionLKRL/Lh/Fs0XixfrmwbXrQ3kxy1c/L1pMXngshtufwu20U7hsDuIZK2fOnCE8\nPLzBfc6FIAi+xMVV1moyjmdRUlGFWhdO+YYTSCNeRprUhezCmbz+1kd88N7kSzzjs44TF49r8U+c\niW+C0mjg9LINtGkShxkLHq+Xm4ffQFBQEDu/XndOQfrTvAWU+t+Aqev/1fTZlMiHn82mWUoTYm7v\nS3DTmuVHm83GiU9ewR4YQoBSxn8ef+S81lar1UpBQQFGo7GOJfNsSktLcTqdGI3G8/pb1W7n7+9f\nZ7lNIpEgk8lwuVwUFxcjkUgIDAz0ff5Hn7d+/fpyKi+fea88hMVspqLwNDF3DiaqYytUfnrSvlpI\nWloa7dq1+0MPzrqvRRGjyo+q7ekcK61E9HjQ5FTRdkS/ev329/fHg5c1B/ezKeskzVNTmXDXXQ1G\nXV+IwsJCXn59BorEmYSoQ6jOepOc5d+iaRJOsFqB3mEnISHhL1mZ0jJOcMYKrnATypSReAsO89Oa\nt5jwUAU6ne5Pt/tnOPuFwOVy4XQ6r0rk9NW2Zp5v3moUzI1cAZ4E7gemUGfi83HBqLZGoXgR1KbA\nAS67JfFyT1q14q62jy6X60+JxCvBxQjPs/v7V96uj+YXIW3XGYneiESuxNm2K9XHNtdLMHwhzk40\nDNCxXXtyVxTyy+qdlNjBnhuPsun1uMylqEL6c/TYlD/dZ4Dw8HCeGjWG739ZRnl1NQOSmuOVe/jq\n28WE2ypQylw01fjRVBl+zgd9VbUNQfN7RQ6ZLgRLkQ2rw47R+Hs1kMAm4Yx88F46d+zEwsW/8Nq7\n0wgJ8uexh+7xlaiDGuG+au0aPpj9HW6dCaXXzQM3Xs8tN42oc9zUvXtIK89Hptci2V/FoI7dCQgI\nwOPxIJfLKSoqYs/+XzlyPANvkImwmCiE/RYGdepZR3iazWYmvf42p2xerOUltGkSyjMPPkhERESD\nPm/33XUnEUGBTHptBmUBd7F1jZnDa17inrmvIffX11s+Hzr4Br5d8CTlSgNStRHxwAzGP347nTp1\nID8/H7lcTnzH+HpCVxRFPvv6S344shNjj47YLV4Oa0zMXriAR/817pKvdW5uLhJVHAptNAgCWsVw\nnDsnEhkXjcxipaCgmKqqKp9QtNlsKBSKS3LDCA7wo8qcjX/r4QgSCYIxEkVUK7Kysi4YyX6lkUql\nNRWNfqsEUxtYU1sJ5koHwTSKskbgf9+iKIri/b/92+fPttEoFC+A1+vFYrFckUnrSk9ULpcLi8Vy\nTYjEi+Fy9jc00ESi3sCp7C0ISiOOk9sYd30PX+qUs2lIvDocDuav+IVDBTkIXi8DWnegb89eOBwO\njCoNo1u356sfF1Fh0eAqzUcjlyOp3EHzlPpJsC+EKIocO3aMkjNnkMtkdOrUiVeTknA6nVRUVHDL\nY5OIeOhTKk+kUlqWx+nUDYyfOvWc90+/3t2Yu2wK1qAkpEoDtj0fMfiW7gSHmli/ZDNJI3pjM1dR\nuSODqCFtefu9D1mysxhVqwdwnT7GzrsnsHDul5hMJjweD6u2bWRG6hqcw/rhrbKDEMb0VRuJi44i\nKSkJnU5HYWEhaVVFxF3XFalUSllhCR/PmUlhaRFniooJ1RoJa2Igpr0/ZyKqwaTHFKhBH25i075f\nGXndIF//P5v9Hcej22Lz2rBqvGwsOo1k2UImDhlBfFx8vcTPAG9/OAOh9ZP4+7fFJpVQfuBddn7x\nI4EWkYT7bqwzPnFxcXz72Tt8/e08qm0Ohj13N9dd1x+bzYbJZDrnC8qxY8c4aMkhevwoTMlJmI+e\npHL7adJzCy/5mkONddJWcRR3+XH0/glYbRXokNDx+mFogoIpWL2UrKwslEol3y1bRk51NUpRZHTP\nnrRITr6oYwwZfANvzPiB6uNrkWiMKL0VxIb6XVNBExKJBKVSWSfdzj8tcvpqWzkb+d/lt1rP57zB\nGms9/0VqA1dkMhkajQan03nhnS6BK7G0W9vm5RBdf+fS86X294+W0z9y84B+HJ31PdqEltgLTxIp\nq+Kxh+v7655r/zWbN5KhF0geOQa3w8Hq+asw7NEya8kKsv2bIA9IokXX7jQ5eYLjWfehUBuICZXy\nwrMf12ln7dq1zJ23EpVKwQP33kbr1q3rHWvVutUcLD2MMS6AovQCyirLuOG6G4AaX0vBGIQ+Nglt\nTFNEUaS8xHzeIJPOnTvz9nP38smXb2F3OLhrRD/uHTcWAO8KkV8/W4laqWJoSndSczJYkZ2GsuMd\nSAUD2rb3YN6cyY4dOxg6dCglJSUUy1zYtF6iWspQaoxkfLmcE3tOcOuO/agUMkaPGEjXTm2pkDmp\nTfpvtlrYmZOOKjCAk8ZQdhUUEpC5g+BdwYT2b4FfRDkLN/6CwWAi7ER1HaGYmVtAtRryCtORNB+B\niJTNeYfpcvQwMqmMoqIi9Ho9SUlJVFdXs2TzJgqCjIhBNhTm3Wi0bTG79bh/3cMTr/yHoKCgemPU\ntGlT3vzPC/U+Lygo4PTp0xiNRlq0aFHn/qioqMA/IYKqCjOiV0TXJIycnzbRwVg/3U4tbrebmV/P\nIXXXYSIjApnwyH0EBgZy+vRpnnntfVRREWT/OgqNLgqpK49Ok19CHxmF6PXiLSlC0zKWH1asoKhl\nC2Jat8ZabubbhQuZGBx8Ub6wWq2Wd559iE8WrkfUpKDxlNMlWktCQsIF9/27udTI6T/L1Y54blx6\nbuRv5uxazw3RKBT/CoIgoFQqUSqVCIJwQXFyrVA7uV5rlsRzCU+3243FYkGr1V62/sbHx/PG+Hs5\nlHYYWYSBJoN68v7ULzmdW0yb5DjG33dXg9bFWk4WFRA6uEuNX5VKhT45nuXLV3M6OJGEG8cgCHAm\nMpZWRzby2YihmM1m4uPj0ev1eL1eJBIJy5at4MkXZiAJfwyv28LGcU/z07cfkHyWNchsNrPn1D66\n39sbmUxGZPMo9s7dRefyzmi1WkJDQ9FUl1GRsR990zZUHk9DWVXSYC7As+nXry/Nm9eU/6utAww1\nKWZGDh2G2+3m21WLienfHt2OTcjatKdqdxoeRwyInjp+oJZqCyGRcgIitcj9/HGUlWOVtyV02AdI\nRCczFv2L1Ky9EOZPVnUpwwbfSPqBQ0i1Sk5aFOgef4ai226jIHgkJZomZC5fQpzLQXTntmj1JjJ3\nLiE9Pd1XrjAxMowVX/6IbPQryKIG4qmqwHbKypr16yiqOE5A00AqMytIP5lBRHgTLLFN6HrzcLYd\nLcKhi0OatpLgyo1MnvK2z7cUavwiKyoq0Ov1DYrHPXv28OqXcxATWuMtyGZQ82ieeuRh31gEBQWh\nOeklMhDytmzFfLIA7alcxr380Dmvw8uvvs2iteXIgm5lZ+ZBtu98hIXzvmLKZ19T2WYMTdv0J6Ks\ngMJ5r3Jn997szjhArgDeonw6aWU0a9aMbzdvJva3FwyNvxGioyguLj6vUDx48CBffbcIq93JoD6d\nePuRmzmdnYO/MYkOHToglUpxu93X7Fx2JcsHNtLI2fwDlp7H/dU2GoXieRAEAbVafcWsalfKYne5\nROLfYVF0u91UVVWh1WovOvXHxZCZmUlBQQExTaKJjIxk3ENPU6S/Hk3kzSzYt4bc/7zD+2+9cs79\nA/UGsvMK0QfV+M5VZRcgd3lQBYZR+2xS+QdSZXMQExNDdXU1ubm5vP7RZxw/nUuTiFBKc88ga/IC\n2qCaqNkyl4Wffl7KK//+XSg6nU7kGjkyuQxEkMllyDUKnE4nWq0WjUbDW08/xotTPqHI4cEghdef\nmnDeQASbzcayTWuwBdRYX+RH9jGk53V19rHb7XgVElQ6Lb17dGTDnh9wOYzYMz4lzJVG9+411ZxM\nJhOykmpCjDpc+/dRnFeB+VAWmmZPo1RrKCt3QMJwtHG76HZnX9bPXsmKzCICpCrkTg9CkxhsB/fj\n1iQga/8IUokDd1k0R2c9iUkdjDFOSkyv9uTn59OsWTNEUWT8XXcwbeo3uI4UgGI/Kp0BCsops2TR\n4a1bUWnVeL1edny3GXuuBE2nDgxPSkIiWcWeHavQlx3htdeeJCoqCqvVilwuJ/14JpuyTyENMeE5\nkUGPsEhSWv6exkgURd76chaqe15CF9sUr9PJ8g8nMfDgQV+pxNjYWPoUtWHDgV8Jc1hJcsu57z9v\n1SvJePYYL1qyFkPbjUikagjqTXHGUXbt2kVOQQn6zjXiT2UMQZ3cj8BAK2+OHElWVha6pAhf6UM/\npZLKwkIMoaF43G48xcXokhquAQ419/7E/0xD0upBZCY/PvzpayaM8jDohgEcPnyY3bt3k5ycfFVT\nsVzKC/fZQTC1otHpdOL1eutUgvlvEo3nSr3WSCPXIo1C8RK4WlHAF4vL5cLr9aLRXHzlkb+bs8fv\nr4rEc12LJctXMmvLXoToZogrt9MlSE2xM4jg1jVVUrSB8ez6ZRxmsxmlUtlgOzf07MOXi+Zx7FQe\nTks1kU4pPYfdyGs//oIlNhG5VkfJ5mVcl1yTn9DlcvH05Peo7DiWkFG9KExPJXP9Y+ibe87uMX98\nPgQEBKB3azm2O4PIplGcOHQcrVOFyWTyJURu1qwZP834hPLyctRq9QUf8GnpR3A30dO0VVPKy8rI\nsB5m/dZN3NBvAEVFRSgUCgIDA9F6ZJTkFjDkhutRCWtI/WE1Hdo049GHpmE01uRXVCgUjL7hRj6a\n+T5+8RLahwRSGhpEVlUmAv1xuV1IzAcIiDASkhBFp8FdCU1zMnb0GF56czKHVy1H7A2CIAVBgdfu\nQlDFI1ZBj1sGodRq2P/JPCojw5j0+guYq8wkNUlk1PDrWbk3DVlGKF7XIYT0jSSPaodKWxNgIpFI\nUOnVBMjVZJ48iV9QEMOH3EA7kz/9776D5k2TfDn8ysrK+GHjekzX9SA6Jga5RMr2VRtIiIn1iWeX\ny0Wl1UZYdM2SrEShQBoRS1lZWZ2x7dGlGx1S2uFwODAYDPUe+Gazmc07t1FpryY6qOHoekEQaNU0\nlq0HVhPccwxuWxWc2k789TfVybFYy+39+zPzl2VUhIfhLiujd1j4eWtVb9/xK87IIYTFda05F9l4\n5i97m20Hj1KgjUGQyghYsoaXJtznu87/LTRUc9rhcFxS5PTVnsMbOv5/w0pVI/9cGoXiJXC1E1Cf\nj1ofv1ofn8vJ5ZrEzm7D4/H4Ijr/jEg8V38qKiqYs3YLYXe/hFyrw223se6jSTgsTkSvF0Eiwet2\ngNfl83cSRZH09HQKi4sJMBpp2bIlAQEBPDbmX5w6dQqXy0VSUhJKpZKJNjvfLv8aq9PJze3bcNPQ\nwUBNneUyUU1Im5qUKgEtuhMQH0v1qclUup/A67agrpzNLaM+qNNfi8XCnm2HWfX6dmQaNykpzZny\n7zeQyWR1fGIlEgkGgwG3283Bw4c4kX8KhUxB++Yp9SxaVocNbZieg2lp7Dh2EI9UYNXivWzduY4m\nLYNx2tw08UtiQI/+bNi9nYw9GSQKWsa/+U6D5eGCgoKY9PDzbNy2hqqyCh68fRxvfziTwiVbcVaX\nYTSW03nM67idLor3nqRn094olUpef+Flkn/4ga8WLsV68jgSzWcEJPXEdehH/MNNZM5ZjbPcQtug\nGNbs30ir+3piig4mbeVuQqx+3GqA9Vs+w0+v48VP/sOJvBMc3ZZGbEo8JXkluAod9Li1G34Z6exf\nthyADhGRNEts6rtHXC4XH371OdtcFfgVRqA8fIghvfvhUSmwWq2+LAYKhYLE8FAOffsRqvgEPJZq\nZIdSiR9zQ73xUKlUvmCQ3bt3M/2LH3A4Xdw0tC9Z5nzk7SLRB4eyedcR2rVryr6MiUhNt+C2HCRC\nn0OHDh1o3bo1Z96YQvoX6xBdNv417Do6deoE1LxAHThwAJvNRnx8PLGxsTw1ejQlJSVoNBpfeqey\nsjIyjmUA0CypmS/PokIuQ3RV+/rrcVgoKS2GjjcS1X0oAAV71rNoxVrG3X7pCcOvFc6uOV3rz2i3\n2y8qCOZaE2W1tecb+ftx/48vPV8OGoXi/wBnB4LYbLbL1u6Vmkw9Hg+VlZVoNJpLqpJyMVRXVyNo\nDMi1NZYimUqNPiyKEPEEx7ZOQR7UGnfeJm4Z1B29Xo/NZmP9lk1sLjmNJqkJ9mPHaXMyk9uGj0Qq\nlRIaGlonn2OXLp3p0qVzvePqdDrE/2fvPAOjKNc2fM1s301PSO+FhE5ICL33IiooClgQxWPDxvEc\n68HeC1ZEBURRUAQV6b23QIBAaCEkpJDes73M92PJQiA0pX2a+0+yO/uWeafd85T70Vdi1Vej0Hli\nM+nxcNfxwku3snrdCozGOloP68ehrMN4e3sTFBSE1Wpl9JiJpObEI4+YilC9iv25O5gxfx6vPfNs\no/u3P+MAhww5RHZujslgZHnqWm7qMqiBvEyQXwCp2zaSps8l+vY+VOw9jqFFEHW6ErqM6odCoWDT\ngjTy8pozauBwrFbrRS3Qvr6+jBpxJ5IkMWPObJLGdsahkVFzQoa8SMv2N35Gckj0apVCj27dAafM\nyfh77uHeu++msLCQz7/6lvyiH+h0UyvG3fmii/jk5eWR51FOQIyTALUeksyy1XP46s3Pef2MDOT2\n+vYsX7ucPd/txFQVcsEAACAASURBVMfdm3HDx+Dm5kaXpGRS2icCnPOStHb9eopjfInwjsIeFUyN\nRxUb16+jm8wZD1sv6q1QKBjStwfHd22ntqgamdlM944t8fHxOe+apKenM+Hhl7AF/xtR4caO196i\n28gYbn/ISS69Av2w5lXRq3sAO1IXEBrix6MPf+6yYn727mtUVlYiSRJeXl4uYvvel1+yV5Qh+jVD\ntmIFL4wZQ8uWLRtIO5WWlvLZr79gah0PgGb+PCaNGo2vry/9+/flpz9eojBVjqj2hqxf6dC2JWV+\npy2cat8gKnL2X/CY/3/CmUkw9XI7BoMBURRdcjs3Cjls7MXbaDTeUJnoTfj74VSpvqeBcEmSJgqC\nEAfES5K0+GJtm4jiZeBqWBThr1nszs4WNplM1921cj4IguCquHE1SCI4rV9+kpmSfdvxa5VM+dH9\neJmqeO/d11m5ag25BUdpNagbgwYNAJw36HWH9tHqsbEoVCocKQ72zlpI9/x83NzcLlnP0dvbm/tH\nDmLmnP9AeHvIP8DdQ3pwxx13kNAigV93LSWoZxzlBhPf/Dqbf902gZKSEo7l2lBEP4Pa1wspsDu1\n+wZxIPc4er3+HAuDIAhkFh4nqm8L3Dzdcff2oLaqhoLCky6iaLPZ+HHBb/y2YTNVUi1ZWw7TZ+Jt\nGH21eAf5YDabUalU+EV6UlldCXBZYQoVFRXsyD5A15fvQqaQ47Db2fb6j/x71AOEhIQ06hYXBIHg\n4GDeePn5Bt/XE5/Kykr0RdWuJKCa4irUCvU5pE+n0zHqplGNzut8VvTiqgo8EyKwGAykfz4Ns81G\nWV4l/33lQ7y8vBrIseQb63jkxWcQTxGO/F17KS4uPm886MLfl2H2m4BXuFN+x+aQsXfDFG4/tV1y\nOJDJRbp26YhVsqNSKLDbT4ciiKKIr68vBoPB9V1aWhp75UoiJk5EEASqEhP56pefmXqWHM6G1J04\nuiYRleiMn8zXadmUmsotg52C7NM/eoXFy1ZiMFbRc9xEaur0fLJ8LZaQGARRRs3eNbRLibpu5Olq\nuVrPzJyuDz04szTkjUQYz0RTnefrB/s/hwbNAnYD9aWmTgK/AE1E8a/iRo5LvBY6iVcy01uSJEwm\nExqN5i+TxPMdF4VCwYuPPsDHs37g+Oq5hAc044lH7sfLy4vRt58mGdXV1Xw1aw4HM7MpFKppLTqJ\nhiiKyNQqKisrCQwMbLCuBw8eZOai36gxGujaohXjRt3m2i4IAnfeNpJOSYnk5uYSHJziSoLYum8H\nCYPb0yzM6dY1G8ykZ+wnOCAIsCPZbc59kRzYzQZqysrYlpZK84hol5sxNzeX9PR08nJyCTDFwCnj\nks1kRa48TZIW/r6I1ZUSER8uwpCdRdnWBeSnZyNziJQfLkU3SIvVYqXoSAVt2pzrZr4YrFYrMpUC\nUe4cUxBFZGolKpXqTydHtGjRgvgdESx7cz4GjY3yvfnc1WvUFTnnmkdEsmLFUgQ/K8NfGUJ15nE8\nCsys2bqS+Pj4BpYohSjDYjKj0mqxWm1UlZaxZX8m+fn5dO7cGZVKhc1mY//BA5TX1lBWXoLVHIDJ\naEKhVCATQW5xcHTzHtz8vSnafZRApSePvDIVe+JIJFMNC59+gW8+eP2ccIH6fdXr9QhBga7PusBA\nKurqztkvo9WC0v00gdVbLcyZ/zsbNuxieP+u9O3bxyWJBM5rr6KymoW/vI5DkritR0cG9O19w97b\nrgTOlzl9I5YPbCKKTbgGiJEkabQgCHcCSJKkv9Rzv4koXgaupu7h5d6sLkQSb8Sbf707SKlUXvUb\nYnBwMO+88Mx519VisfDov1/imCoRZeg4CjZ+xA8fTeP2iXdTlpOPvLiKqGFRDdY1Pz+fV+d8i/vd\no9H4+/HHb0twzP+ZCWPHNei7VatWtGrV6pwxDXo9GQcOOMmywQCCU8svqU0zNu1/E31lN6TqxXgF\nmBkwYSi14SJL9qxlsL0Xx45lMWnyG+DeBXPVXnYeOsBdT92N1WRByDcR1TfKNc7B4zkok3qjUKuJ\nCY8kM78d6fM+okdya6ID2rHym1TsFgcdmnehRYsWl722/v7+hCq92P/bBlRebhQdyKZZnXBRuZ4L\nQRRFBvTox6oPt6Pt2Jzo0Yms3LaPNvva0L5d+z/Vp8Fg4N1Pv2Dd9t1UlBYT2U1D5VaBUJ9mpAzu\nxLKP1jeorSsIAt3iW7B+Syqa5tEUHMvipykfIUrJCPZNxIZ9w4/fT2P9jq0UeEh4RgdSFqxEv2wq\ndXYBAQ1e1bP536uPoNJrqD1YS1JsZ6bPWYBiwCT84p3xh0XA0hWrmHDv3Y3OOyYmBmHmTOoSO6Dx\n96dg2TJ6xsWd87u20THs27wTtbs7lRWVLJ06Aw/FACrFNqR+OguzxcLQIafjKwVB4ObhQxgxbLDr\nc33N5X8CbpTygeC8P58dO2k2m5uIYhOuNsyCILjKTQmCEAOcX5D3DDQRxf+HuBBJvNI3uitBjh0O\nBzU1NQ1K4V1NZGRkMGPhH9QYjPRo25Kxt41ssE6ZmZkcr1XiP+ABJIeENvBzcmbdzgnRnWBvP0aN\nHoe7u3uDPg8dOoSUkohvK6csSfjoW9nw5lQm0JAoNoa44Giee+ldvPp1xW62UrFkCwPe+BC5XM7s\nmZ/y5fQZbN2+BLnSStI9D9F9YG8AZHIZ+zIymPLcBwix01B6t0VhM5Gx/VZqthWQlJREbN+GpeYi\ngwJYfWg3UlIPtFotQbXlDB4wkOefdsrdVFdXo1AoLqgheSGIoshj9/2LSc89w3GZHg9/XySDjIKC\nAiIjI/9UnwCbUncQNX4o0T2TcTgcnAwJYOWmTX+aKE6d9jUrq7U0e/ZHxKN7KF/xXzrGtiQqOpKT\nx4vw0nmfcy42j43D19uH4vIylnw5H1RPoAsZh8Ph4HDWM3z55Vco44Np0b83J0+exJ4YTfKzd6I/\nvA9jZR2RBDJiRMMqMOaZ85BpnOeSzVCLsaqMrOOlrvCLsxEREcG/b7qJb2Z+Q6HBSLf45tw3Zsw5\nv2vXpi0Wi4X1f6wma/cetNYOhPecCECd0o2ffp/egCgCnDhxgq/nLaSkqpb2cZGMHTniH0lOBEFA\nFEU0Go0r9KC+fOCZcjvXEk0WxeuHv7uO4hl4GVgOhAqC8CPQDRh/KQ2biOJl4GpaFC8Vl+JuvpEs\nivUkUaVSueRergTOt255eXlM+eYHVMPuRe3rz/xVv2D7aT733zXW9Zvq6mqqyk5g2/crbr4JqP2j\n8XJrxgM3305ISEijbnGlUomjoNr12VRRiVZ5ae7zXfsOYvUdRm1pCKKgRN6mBb8tX0OHDh3QarU8\n/dQknga27tzOUVUpEhICAoIoYrVZqamtw8PLWZdXlKmQeyTi7elFXEwsNpvNNY7FYsFiMGJfu4ij\nW1fiExNPjMzCo6/+z/UCcSXkUI4cOYKibQSjH78TURQpSDvIjF/m8tq/n/tT/bmO4xnH86+GO2zZ\nux+f+6ciU2vxbtuN4zt6sviTNbTr2IayrEokvYpXXnuH4UP7k5SU5GoXHBxMWFgYdXorKs9kwEmO\n0SRSWraXsJYh2Gw2qqqqkTXzxs0uo9PY25Fr1Byc/O458x7epwtTF03H2nk0ZXt/RutZgim+JZ99\n/zUPj51wzgsJQHJyMsnJyRddg45JyXRMSuYbu0h+qgd2q4nK3K3UlGSgMpQ2aF9ZWcmUT77B2mk0\n7kGRrN61mupv5/DUQw/86TX+K2jMqnYtx65fl/rM6TPldq52+cDGjmsTUWzC1YYkSSsFQUgDOp/6\n6glJkkovpW0TUbwMXO94xUshiTeSRdHhcFBbW4tSqUSj0aDX6y/e6C/i4MGDWFp2JjDO6f4NGjKG\nDbPf5P67nNurq6tZtnsrfoPiqFJnU3lwK8o1dQxpH0NQUNB5YydTUlII37SRY7N/RN7MD/uWVJ4Z\nces5v7NarZSXl6PRaFzJGhU1dbjF9cG7RTdqjm1DX7iP3UcOcTTzKM1PSbkAxEXFsHPlXk56OI9v\n/u5M+iV0ISE+lqM5s9FFjsdaewxqNlNRHcI7019HlIuE+URy202jeXTSf9mWoUHS/QtH0R+khOn5\n4rP3LysetKSkhF8XLabOZKJ3l060bt3atc1ms1FTU0NhYSGamBDXA9Q3NpxjVRtwOBwurceqqiq2\n7FqDwVRDkF8UPbr0aWD5BCd5+fL7mRzMyUSy2Cn+o4yyrFw8QwOpWruXcaPuveR5nw1vD3eKik+g\n9G6GJElo1VqGdLyJiIgI/vXO89QqbweZJz8teJ5pHz9Pr169GrTvnNKGBau+RaF9FYetFrF2IT17\njMEqF8lPP4JKLaNsxTaatWiJoFaTvXoLLcIjsVgsrNu+lWOlxbirNPTrmMyTwJc/vk1U32gGjrqb\n0NAQDq3fzZYd2xjcf+B59+FSr+WB/fvw0+9TOFSUiq19C4TmZhTKtixasYKbBzutillZWRj8mxPc\nwkl+w/qOJnXaEw1eNP7JuFD5wGuROd1EFJtwtSEIwh/AXOB3SZIu62HcRBQvgqsds3KpROxyEldu\nBItiPUlUKBQugnAtiLZKpUKqKXR9NldXoD2DKKXvT8faOpK7eo5mb/oB8gOVKNfu5n/PPn0OkTkT\nGo2G156ezNatWzGYjLS89/4G9XIFQaC4uJgfl/yMWWPHWmuhX7se9Ovdl75dOrJ+1lzKDJUoPQoI\njDfTp00/VmdsQqfVuQSWmzVrxtCOfcnOzcXusNAvoQvRUdFM+/QtHnzkPxzb+hlKhcCjE8dQJstj\n4KRuKFUKdq9MZ9b3M9m5rwhdy8UIohxH8Eg2b+9DVVUVRzKPsvPgfjw1WkYMHEJAQADbt28nPT2d\nZs2aMXz4cBQKBWVlZUx4+lnK2gxA9Axj4YfT+d+9t9Ondy/Ky8tZvfE35BojeUUlnMwsJKJHImpP\nd7JXb0eoMzL2X2OokyTctO7EBrlz+8TeePuFcHT/CRav+JXE1in4+/vj4eEBwFsfv0+2phqfLmFU\n5eUREqkixJJP6bIj3DdwLJ6envz2229oNBp69ux5zvE5M8YQ4Pjx46xbtw6lUskDt9/Mq19+wPGw\nRAyF2YTUnqDT47czd94CalWj8Yh6CgBDaRQfffrVOUTxheeeorjkBTZt7oQoSDz04FiGDh2K1Wol\nLX0fZcVVjA5szaaNe9m/cS+UVqFsm8inM75G6NSesB5D0JdXsXDTVsb3H0yVpRa6h+Ef6jzWbs08\nqT187r1akiTWrF3P6o17UKnk3HFL/wYlHxtDeHg4L02+j5cWL8etexRxMeEEBwSw5ssvGNynDyqV\nCrVajb2uymXNsuhrUMiEK665+nfA2Ukwdrsdq9XqypxWKBRXPAmmPsmvCdce/yDX8wfAHcBbgiCk\nAvOAxZIkmS7WsIkoXgauFtG5WJ+XQxJvhAy+s0ni1ZLBaGzdOnXqRMy6zWT9OgvRuxli+mYm3XmL\na7skgSgXUSiVJCclEhkQQG2hAQ8PD7Kzs/nfm1PJOpFPfHQEr77wFGFhYa62Wq2W/v37n3dOvyz7\nFd/eEUS2jcVsNLNu9lqiI6IYNLA/1TU1fPT9Z3j3iaVX1yS6du5E9sEsCgoLGlTiaNasGbGxsc6H\n+SnB7dDQUJYu+pGqqirkcjlbtm+hrBmo1E75nNgOkazYsA2Z3B1BPJWcIaoRZSqWr1rJqsIjBA7r\nzvGSClI/eZ92IbF88vVirN7DkOlX8uNPi5j59SesXLWKsoSeBNw0AYC64ChmLviYbl27sGz1Atr2\n1BESFobJGEHdZ6tJ++8XyHUapIpy3CMMxHYJwGxSkn8Ycqozyc4LQe3WAkFjZtYfP7Hk+FEoqeap\nsePx8vRi99HN9Hq2F0WHTuARYMAnIJTe8R2hp4wj6w7xypezsbTpjVRxiIifFzLzkw/R6XSUlZWx\ncstKak3VuKs8GNBtIAUFBdx179MY5SMQpVp81T8ybtww/ti7iaD+rfEKiefN6R/j6XAH2en1FhVe\nmEynhc3roVKpePO157DZbPj7+7uuO6VSSefkjq7f3WUw8PDk5zjs3p6cuiiqNs3llpTWhEiga+ZL\nVUgAJSUlJETEsHJbGh7+Pjjsdgp3HKV7297njLt6zTo+m7sbz/jR2Mx6prz/I2+/cF+DmtULFv7G\nV9//ht1u55YhvXj4wfsICQkhMak94b27AeCw2+GMayQhIYH2XmtJWzQdsVkE0rEdTBjW77q5f68n\nLrd84NmZ01arFZPJ9KdrTjc2flMySxOuNiRJWg+sFwRBDvQBJgIzAY+LtW0iipeJqxGjeCFcCwmc\nC+FyybEkSdTW1iKXyxsliVfboqjRaHjzv0+zZcsWDEYTrR4e38Dy1yIhgaVzt5Pv5YmgVlG8IZWb\nWrbFYDDwyL9fpjL6Xjw6dOPg0bU8+szL/PLdtAZ6hpIkkZubi9FoJDw8vEFCQmFFMS1bOR/UKo0K\njyg/ysrKiIqK4o7bR6H0UCC2dCcwwil5Y6oxoNI4rZ2ZmZnM/mkhRSWl3DqoL4MGDcRkMrkSgERR\nxM3NDavVireHN4dzqpCSnQ+cohNlJMQlsMM9k5O501B69cJS9istY/zYejiduMljcAv0AyCjtIL3\nnv8St+7rEUUfzFY9O/eN4f1PXsXHPQLUp2VbZBodmQcP0z65LyazheQuEXw4/V48vd1I6daC0cP6\nolarmbvsS4gtxqtDFNm78klfsgVdoIpF+7NYtX03MtFOs75daDPhPqpyCpg69Vs6x8Wh8wOL3oRP\nlDdylZqS/UWo26lxiPDb6rWIt7+MWF1J5txZHKmpo0v3Ifz043RSD+0kpEsQ7cJaUZxfzLJNS1ky\nfytm3fO4N7sZgLL8t/j5jz+4ed6LuAc4NSb3VeuJKtOiWDoDQ1kkotwTe8FrjH68ofu3qqqKb3+e\nhUGhx2KwkBiVxIghIxq9VtPS0jhm8ybgjhec5F6qYc2GbXRKScFmt2OqqMTuFUhy+w7U1tWxbdpS\nRFFkUIeutGvbznVO1fe9fO0uvBLG4tHMSQwLakvYvjPNRRQ3bNjI+7NW49HtfRQKDXNWv4O720/c\nOXoU/mvWkL91K26hoVSm76NzeLiLfMjlcp59/GG2bdtGZVUNsd1HEBcXd928D/8fS9Y1Vj7wSmVO\nN7merx/+SZVZTmU9jwBGAx2A2ZfS7p/3OvkXcC0tY/DnSOL1jKM8kyRqtdpz1utaPRi0Wi09evQg\nIjwMvV7vymgEp8XusZFjaLY3H7cthxndMoXOKZ3Izc2lUvLGp+Ug5Go3fNuOoMSgID8/v8H+fT5z\nBo9/PY3n//iVh1+Z0mB7oLc/x3Yd5sCWvexcsZnj2w43qJjStX0ninZkczQ1gwMb96AqcpAQn0BW\nVhb3PPkCs0v8WSRPZPyrHzNp8tOA0zprMBgwGo3Y7XYkSaJDhw74mIJZM2MbG3/YSdG2GkYMvoW5\nc6bRu0U6Aab/MqxTGbO++fgci5HdZsfuABR+WGwmtG5q1F4RBMYoEVV6VKmLqUzbSPXRdPI/fpqS\nYjmq1utQtUtlb1ZHXn9+AWaThcpiCz4+Pmi1WmQyAXOVnXf6zmXOf43kHwvj2AElJ61xFHq2Y9Pi\nLEJ6OksbekWGUFBcxBtvz2bP5tbMvH8366bu4MjyIyhNIkpRzfG0AkwmEUQZRz94GSlyDmL73VRo\nnmb8/U9SY6/GL9hJfANCA0DnoKy8Crn6dP1jSR6OyejUy6srqaA0MxdzrYG4uDi+/OR54nVfEia9\nxn8mDeS+8Q2lahat+B2PJB19/tWLfo/14WDVfjIyMho914xGI7j5us5t39he1G3dRW7aPvI2bKG1\nQkd0dDQAPTp35fGxD9ArsSs1ZjMHDx8651pVKuXYrafPV4fdhFJ5+trfunMvsujbUHuFodT5oWt9\nD+u27kWlUvHYnXfSpboS/21bGO7uxuibGmZg11fCad+uTaMSTk24dNQnwWi1WpfL2GQyYTAYMJvN\nl52411SZpQlXG4Ig/AwcBvoCnwGxkiRNupS2TRbFi+BMciMIwhXN3L0Q6kmiTqe7LpbEelwq8awn\niaIoNkoSr+W8qqurefbN98lTOElamG0Bk+65k/LyctRqNdHR0dx16yh0Op0r9sjNzQ2Hvhy7xYhM\nqcFmqsVhqmqQlbpz505WlhURMeVZZAoFRVu28+mc73nnWWe277Deg3lt2lu4JfuhUCnw8NZSUV1J\n9Kn2AQEB3DlgFCdPnkTuISciJQKlUsmylWsoiuqP2GkwPgE+mONiWfHz89yyYzt9evdp4PKqt2Tc\ncesYCgsLsdvtBAcHux4yX017H4PBQE1NDQqFguFdezN3xq8EDuuOsbQC1YF8khLbsO/wu8jCx2Aq\nPISybgfd+j7FrjUFfPifSUz5YCrFVcW41VVR4T4BUemLVgG1PnexdcMdrF+UTZvmvfDz88PhcOCj\nCmfB9M3oFY8jeY1E8lIglb1F3iE7vn1HUXTyd8RTsYRlR7LZvy4dXcvfsMjDUSmt5O4dRYBCRmyv\nJApTa0mJ6cXJ7mbm/vIZaNuDOg6htgJ1wM3kpr3Kli2rqXYvpmunPni6e2CpszJoQFe+mfMBNsXb\nOOy1yPUzuXVkPza9/i3a5m6o3GVU7slGGdeLHt17nBOTeCYKKwrp0MJp7ZMr5PjG+lJa1nhyYNu2\nbVFPn0Pl/o1og2Oo272YoXEtGaT0RB0eQGRkpCsZwmQy8ev6NdRGB6IO9mHfoQxy8/OR7HZUShVt\nWrfmjlv68urH32GqG4zDUoenfiO9ejzpGs/b0w3b4dMvJ+bqAny9neeoh4cHtw8f7tpWVFREVlYW\nSqWS6ppavvh1NVJgHFLxce4Z2JlhA/v/v7PqXQlcaWumKIqoVCpX+cCLZU6fz/V8JRQJmtCEC2AG\nMEaSpMsWT20iitcZjRGeM0ni5RaKv5Zkth5nkkSdTnfem/C1mtvPv/9BbkgSIf1vA+DAd+/z+LRP\naDFyGMbMEmJStzP5gX81mGdoaCijh3Rm3pInkQKSEAt3Mn5kf5o1a+b6TVlZGWJ8LLJTxN2nTUty\nFy527ZvZbKb/7QMJbx/lPG4O2L1oD8mJp+VXPD09G9TsBXBIEmarFZ2Xs9KGIJOh9PEgKz+X3qce\nKvXabiaTCVEUsdls+Pn5uXTf6pGdk83m1D/QeQnUVdnp2GYAE3U6UjcdwF2t4eZJk1EoFDzx9Ets\n3TGUkEhfpsy8F5PRgpdbAJIkMWBEKAPGDGfl/J28/2oqekMd7m6eKCxHiY6I4eZBE1w6jKIoMvb2\ne/n0019QuCUhyjTYbRYkbTskUyaOimJaRUVyYuo8cr3dEMtrUcpVaLzbobTZMFlMCMpW9EuJ4dEJ\njwLO8//RB0IoLnqLHzZtQvTMw8vTH2NNBjp3B2Me7MGutEx+mT2XdhEd6RzflZY3t8Rm+5j5C0aj\nVCp56sV7GTZsCG9NfwOvOC/cdDpaDhjEobUZdNB3uKCOZKBPEPmH80nonIDVYuXQxiO4h3hRUVFx\nTu3ngIAAPn/9Od6bNpPSHVXc3L4VTz78XKMaiQUFBdQFehGT0gGQUHm488mUN0m+pRtyUc7qH7by\n6O3jeevZcWzZkYZGpaRfnyfx9/d39XH7qJtZvva/FG+uQJJp0VVu5OEP/3fOWJmZmXy+bBFC+5ZY\nCirZNnM+bSZNRxcQjtVQx3dz/kdS29Z/SSi9CQ1xoczp+hCS8+nIXukYxWeeeYbFixejVCqJiYlh\n1qxZeHp6kpOTQ4sWLUhIcOrBdunShS+++OKKjfv/EX/3En6CIPSTJGkN4AbcfMZzTwAkSZIWXqyP\nv/cKXWFcC7euzWb70yTxekCSJOrq6i5KEq8lTpZVook6LdRcUVdM+NA+hPXsgkOSODH/Dw4dOuQq\nsVePyU88QteUbeTn5xMRMZ6UFGc1DYfDwdq1a0ndtZuS40cJ7tsLpYcHJVt3EO8fQGVlJWq1GkmS\nkMllLsuAyWACLn6+DBvUn49nT6TW2wd1YCCODTOJjPAm2O/cEnuCIKBUKhs8iOqtFwCbdiymy9Bg\nvHzc0NeZ2LhoFbcOvp9ePXo26GfO7C84fOQgO/atoTjHQoVkZ0CvYWzZvpGIlj4oFHIG3pbCknnf\ncGj/SKw+ceise/ngs8/OIVlqtZohA3vx88qf0QS8g6JOT+XRbxAUDvwN2Xz4/tv4+flRVVWFr68v\nt2SM51jBLLQh96Eyn0Rp38ugQY+c0+cn77+Dn9d7/DD/fqS65ggVG3j2s2G0ah9JUIgvCz5PpXer\nvjRv7pQYev65yTz/3GRXH2VlZTRvHUfH/h1c32XrcjGZTBckiiMGjuDb+d+ybu8G1izdwckaHTvD\nj/D1z4v598Rx5JYWI5fJGNCjFxERESQkJDDj43cvepwlSQLX9SGQnZ+LKtKPFv1SkMtlHPfQsmLD\nGu667U7i4uIoLy9n7dq1WK02evbsQXh4OL6+vnz75fts2bIFm81GSso7jZK9BRvW4nXrYHxjIqnT\n67HuPYihpABdQDgKrRuiVyA1NTXXjSj+f4xRvBycr3yg2ewshFFfRrB+Da50jOLAgQN55513EEWR\nZ599lrfeeou3334bgNjYWPbs2XPFxmrCDY+ewBrgJhp/IDURxRsdZ5JPm81GbW3tXyKJV5rMXqi/\nepIIXBeSeL55tY+LZlvqOjyjnbIi5qIcAkOHIEkSKpUKua+XK27xzP0TBIGuXbs26EuSJN58dyq/\nbM7BEdiJupzjbBhxNzGd2yMvKaUqwpc3Z3+In9yL24bcgv2YheP7j6HzciMv/QTJcRevLBIdHc3X\nb73IM6+/TZ0cQkJ86BPejv59+zb4ndFo5MsZ33Ig6wQRQQFMmjgePz8/F2msqKjAIRrRuSlx2O3o\ndCrcvETq6uoaFXZOiG9JWGgEJSUlBAYGotFo8PPxZ3fmTlp0cKBQyrnn8R4c32ilS0oPOnR4Dj8/\nv0b34YXnlX/OjgAAIABJREFUnqK4+HnWb0xEEODfD4/mgfvvwdfX1yXB4ubmtJh+/eV73P/gZI7v\n/hC1Ss67b7/YIOHoTPzvxWe4+aaBZGZmsmO/nuSeTlLosDtw13gRERGBJElUVVUhiiIeHh6u89DD\nwwPqRIryigkMC6AwtwiZUe6S5zkbx7KOUVJeiJvGnQl3TGDjxo0slJUS+fRniAolxXvW8Nirz9L3\no6exW22s/fwj3nzkyUuuSBMaGopbehp56RnofLzJ35JKZGQwoiggijKUOjUFxccpLCzEZrPx4JMv\nUeXXC2Rqvvrxv3z90cvEx8fj5eXFsGHDLjhWndmEh4/zhUWr0aDxdqPi2H6atelCTV4myuqCc+pN\n/1NwrcW+z0yCkSQJvV7vCnn55ZdfiIyMxGg0XlF5nAEDBrj+79SpEwsWLLhiff/d8HeXx5Ekacqp\nf1+VJOn4mdsEQYhupMk5aCKKl4GraVG8EiTxWqL+hgdOAnApJPFKrt+Fxhs2ZBB5hbNZ+vHjIEAX\nf29kmTlIsbFUFBTCgWNEjut2SeOcPHmShat24jNqDjKlBr8Od1Dyw600V4kc1tbhldyGxP5dOLYj\ng2XrV3H3bWPYtW83hpMGuoen0Lpl6wv2X7+OHTt2ZMvSRezfvx+ZTMahzAy++v5zQvzCGTxwKGq1\nmhdfe5v15Qrcut7NwdxD7Hvyv/z41adotVrkcjk+Pj7IJDfKS2vx8XOnuqqa6jIbOp2uUQvOsWPH\nePurT9HLJUSjlSfHTiA5qSPHso/w2xe7UKpkoPfgkX893MAF3xh0Oh0zvv4Yo9F4jjv8bISHh7Nq\n+Xzq6urQarUXfWi3a9eOdu3aERkVwZKv5+Php6S2zM7IIfcgCALvff4JqTlHQJLo1rw1j054EIVC\ngVKpZFiv4azcvJyj67PwUHsytNfwRue2d98eUrPWEJsYQmlVPlmrjiCzaRDD2yEqnNejwSscm1pF\neJ8uAGQDKzeu58HI8Recfz3UajV3DhhCavpeagpPMCIknm1Fh6goKKGmpoafXp6Brc6dXzelEyCz\nUx00gmad7kOSJCoPhvLFjB+Z+s7Ll3StJUc3Z83KDYQP6YupuobWRivmwt0UfDEJD6XISw/dc17C\n3ISrh/pjp9FonHXfTSaee+45ysrKKCgowNfXl3bt2l3Rl+6ZM2cy5owykNnZ2SQmJuLp6cnrr79O\n9+7dr9hYTbih8QvOTOczMR9IauS3DdBEFC+Cs5NZroY8jt1ux2g0XhGSeC0sivXkxuFw4O7ufsO5\nkORyOY89eD8T7zVjMBiwWq2s2ryRvV/+gLtGw+M33UpAwLlu3cag1+uRaTyRKU+97Ut2JDcLHsk+\ndIgORDLBnjXbadOzA2lbVuPp6Um/nn0v3OkpSJKEwWBosI4RERHMmvsV3m0cxHfx4+ju/cz5qZRu\nKT3ZtmcVEcNHYSxdjTz+Forz9pGRkUHHjh1d+92v+y2s2fAbMlUpVoNI16RhyGQyF4GrD6y32Wy8\n/dWn+EzoT6v28VTnFfHRO7P4NDqacXfcS1FRETabDR8fn8uqz305VpF6C+OlIjmpI7ExcVRXV+Pj\n44O7uzvzFsxnv9ZE0sdPIzkcpH7+M0tWLOOW4SMAZ5b7uFvvPkecG5zuPwCZTEba4e10GNwcbx9P\nBFFgl/4gqgpfhKxVWGvuQO7uizF9Jd6Rp121MpUS22XG3Lq7u9O3Ww/X54i0MJYuXMeiJauxhXQk\n5P4HQaXk6PcvoNSX4i+KIIHKI4iqIj16vb5BPeLzXXvD+vfHsWolqV/PRatQMnnESFq2aIler3eR\n8/p41yZcO5x5LxVFkYceeoiHHnqIRx99FIVCwa233opWq2Xs2LGMGzfugtbqAQMGUFRUdM73b775\nJjedynh/4403UCqVjB3rLGEaHBxMXl4e3t7epKWlccstt5CRkdGox6EJfw8IgtACaAl4CYIwklOx\niTj1Ey8p3qGJKF5nOBwOLBYLbm5u/68siTcqSTwTNpuN+b/9zrqde/Hw8OD+UTeRktLx4g3PQERE\nBP5qE4V7fsY9tg/lafMIitXRon1LNmWmIkZ4cHBZGnqLmWAP34t3eAaMRiM2m62Bu7SwsBCrpork\nfp0QBIHAcD9+eXsz6zeV06mPimZDo7BZ7Oxc8it6fc05lTWCg4O585aJLkKgVCqRJAmHw4HVamVn\n6k72H9yOyWShuLaKVu3jAfAMC0QZ6c/Jkyfx9fV1xa7V68TdKPDy8mqQHXokLwf/oe0RZTKQyfDt\n3Ipl3y2ntCwbb88ABvQdgqenZwOSaLPZeG/qZyxYtgZRELhr5DA0njZk8tOkSSYXad68OU+PGcrU\nr+9FkqtpLrejjPKmZN8hHDYb1b+upc+9//pL+5PUIYmQ4BDWLNuPe59hKH2cLzA+iZ0oW7AIQ/Gt\niAo1pn0zGDqmK1qt1hXrVq/fV08az4RCoWDk0GEMNfVj5px5vDPtO7w9tEy6b9x53fzXEn/3GMWL\n4ex9F0WRyZMn880337Bt2zZ++OEHFi9ezGOPPXbePlatWnXBMb799luWLl3KmjVrXN/VxzcDdOjQ\ngZiYGDIzM+nQ4WxD0z8Hf3fXM9AcZ3yi56m/9ajFKbp9UTQRxcvAlbbW1Qu21rvJrgSuhtWzvr/G\nLGDXa24X68tkMvH2hx8yZ1caqthWyGttHP1kBtNedHdl/F1KPyqViq8+fpOX35rK0VXzaBfgQ5su\nXVAoFJzILMJeUcuJ9AIO/n6QuwYMu+QHoNFoxGKxNCCJ9bFTFrMNySEhyAQcdgdWiw25r5XOyfEc\n2LkIMawVmso0QmVa4uPjsdvtDQijQqGgsLCQ96fNpKK6ll4p7Xlk4gSOZh5lfeoPdBkcgNlkYcmm\nQxzfsIvIHkmYa/SY8krPG4N4KZAkiZKSEpfUx/lcm5IkUVxcjMXi1GK8XMvimQj182dLxjH82zjF\now/PWUhylIUW/R0UZGcw8/ssHpn47wb1rmfPmcsvByrwfup3JLuN2fOe446kAPZuOEpCciS11Xpq\nch2Etg4lISGBEcOHYjAY8Pb2ZmfqTv5YtJ666mru7d7/L5OuqqoqVq9ejbnmJOZje9DGtsRcW4rC\nZqB/cgJFe17FZndw9y39uP22W136fWeKPl9IiuWT6TNZcKCQWpUaW6WZjU88w8LPPiQqKuovzfv/\nM25EklqfzFIfJ312rPTlYvny5bz33nts2LChQZJMWVkZ3t7eyGQyjh8/TmZmpkvnswl/T0iS9Dvw\nuyAIXSVJ2vpn+mgiitcJ9TGJSqXyhnb/nEliDAYDdrv9hrckmkwmcnJy+P1gOgGvvow2NIK6fXsp\n/G4h23elNSCKl4KQkBC+/uw9wLkOi1cu4Y/vl2ENCyVv+V5K8oMQosYxc+kSwiNm8Mi/Hrjo/Mxm\nMx4eHq5jX2/1i46OxndzOKt/2klwrC+5+8toG5OC3nCStgltCQ4sJDv3KEZBzlPvvI5arcbhcLiy\nKGUyGYWFhUx8ZgqWnpNQJUXy3fqZ1Ok/IzRYRbehQcQkOJMYxt2fzHcffkf1tkMY80oZ02twoy55\ns9lMxpFDVBvr8PPwpmXzhHMsmZIksWX3bg6bbIhuHghHjjG4dYsGWbU2m43c3Fx2pu/B6OeO1tsD\nR1YG/VsnNxoDWVlZyYGs41jsdmIDA4mICD/nN6NvHsnBD98lPXMGNpMJTUke9757F2q1irBoP37P\nTSc3N5e4uDhXm617DqDudDcytTPzWZ48ipKqNXT37kbR7pNoVX7cPGC4i8BqNBqXS91sNpOTtw+7\n2sGSfdUczj3CI+MfblQO52KoqKjg7geeoEDeHmvISEp/nkn1yS2ogn3xyi1h/ITH6Nat8VjaS5Fi\nEQSB5Ru2om/TCY9x9yHq3Cj/dSafffcdH0yZ0mi/Tbi6OB9JvdK1nidNmoTFYnEltdTL4GzYsIEp\nU6a4rNDTp09v0m/852CPIAiP4XRDaziVAS1J0oSLNWwiihfB1YhRPDNxpf4hf6VwtSyKBoMBm832\nl0ni1XZjms1mjEYjtbW1qOOjEbXOt2ld23aUGmegUlz6KV9eXs6OtB0YLEZiw2Jo18YZZD5swFAO\nZRxld1ohRYdFdKN/xG6yIg/uzVffT+auMaPPa02rn9/ZJNFqtVJVVYVarebB8Q+zafNGSrOK6Rja\ngfCwCF7/+EN+WpmOrw8khLTi/nFPERERATjDF+olOOx2O9u3b8cY3QvfRGdpOsXNz7Fk2h08dM8g\nbLbTMXXeXr7cPqAlkeHN8evpR0JCAgaDwSUQLZfLsdvtbEzdijFQxaZjO8nYcwBduZ2XJ/27gbuq\npKSEQ0YrISldEQQBQ00Y69N20OvUvvn4+LB65S/oa/ZxRJSj9W1Hckxr7CFB7EhPZ3izfg3W6LNv\nprNozz6U8W3pndKVLEMe/e12oqMbWsLc3d156YnJ7Nixg18XL2VzjoPX/rOCh57oQmi0Hw7buQ/m\nQD9v0k8ehThnGIKt8AjBkb60a9sejabLeV/cMg4e4Pddv9D2wZYEx4VwePVRSopLWbthLcOHDG+0\nzYXw2+9/cFLbDd/OT+Cw26lRBOBdNpvRk25FcjhYunItXbp0Qa/Xs3X3LioNdUQHBJGc2KHBHM8n\nxWKz2bBZTBATjczNGYOmjI7hZHbjVWaacP1wpYliZmZmo9+PGjWKUaNGXbFx/g74B7ie6/E9cAgY\nDLwC3HXq80XRRBQvA1eChJ2d3XxmebkbFVarFXA+lP+K9fNKWiEbOxYWiwWDwYCHhwc+Pj6ECzJO\nHNmFJTgOS24O7rVlDOzf7zw9NkRNTQ0/LpmHb1IgWk831qduxmw2065NO1avX4NMI8DuXdjFKKy1\nBqTKSoL9w3AodOj1+kaJYv383N3dXRY5SZIoLy9n8dI5CPJyzCZo22ow/fr2d1mIXp36PvbhKST1\neYyqY3nsmjafu1SnLVj1x0Qmk+FwOJxuVkPVadklfRUqpZKuKf34afGnmI1WbDYHGxeVENq+FfkB\nbnz+81wy16fi7eHNv/81niGDB2E2m6moqKBGZWPLnl1UOQpoMzKaQ0sO8eJn7zP9lXcICwtz7ZvM\n7bQbXalzY+WWDeQe/gW5XCLroIFRQwJIbhOAyq7GrKhmy5Y1tEhIxHHWNfD9z/PYVJNH0OQHUPr7\ns/a3TYxM6cGB/JNERIS7dEblcjlVVVUs2bGbudvTyRCDELp2YAt2Mu6fxYT7O6C0RJyTEPDo/few\na9J/qCw5gmSzEGLI5t7nPrjoOXE8/zi+8V74Rfii9dQQmhhM1qp8KmorLumcOhtVNXUI2lDAeY0p\n/SJRlLoT1aEFAFtWplNZWclPq5ZhaBmBe0IcK9MPUb2plgG9+jTa59n1iG8b3IePNy+HuBgw63Er\nPUGLU27n6+mCbRq7Icxm8xUlik1oQiOIlSTpNkEQbpYkabYgCD8Cmy+lYRNRvIZoTALnWuoe/hnY\nbDYcDgeenp43tIvcYrGg1+tdJCw6OpqxyV34efc2qvccQHaylFdff6NB7WU4/3plZ2ejinEjqo0z\nBs3Ny42dC3axdfd2KvxNBPYOpYuUTPEna5EfWY5vXA/MRxbQPNC9QSWNelitVtf8zkyscDgcrF77\nK22S60hoFYXRaGHpwqX4NwvC29sbtVrN4RPZdHh5PKJcjqZ9C6pTWnH48GGCgoJc8Wr1x0YURfr2\n7cvXPy7g+I8vglcQssz1PHvv7URGRjJmxBPs3Z+KTBSJbGUlenBfFixZxomoDqijh2K3B/L6N28Q\nER5GYmIi1dXV1FTXUF5ygL4Tk1GoFCjz3DhQXsT8+fPp1KkTkZGRZGRkkHX8BDJvX5oFBbFzzSp0\nquOEJXgy9/djlBVVELhrL61a3knVwRyKtUYKyjTkZe8hrMwTR/8hrn1IPbyf0Js7snfHfmoMAjaD\ngYyMDLzdlfz4/fso5HVYrBp69B5DdnEJ1qgEMldtx/uuV7BmH0SssaAvyMRwwpMnHn/EZWk7efKk\nK9bwpxmfkZqaiiiKdOo0GTc3N1eSVm1tbaMvRRqlBrVNQ3lOGR6+nugr9VTmVBDZL/Kyz9esrCw2\npO2gYPevlDp8CQiMxJz2FfG3xQBQkpWPDiWVlZVU+7kTm+QUh/cM8mfHzF/o16PXRa9HURSZ9Ogj\n1H70Eet++Rq1ry8RDgdj77zzhktS+qfDarVelrpAE64cbP8ci6Ll1N9qQRDaAEXAhXXPTqHpzLwM\n/BUSdj6dxGtR7eXPwmg0YrfbG82q/DO4WvtaT8Lc3NxcN1tBEBg57CY6JyZRV1dHYGAgxcXF/PTz\nfLQaNb179764JITj9Fwddgd1dXWU2avpddswBEEgpEU4tdlV1J1cScHGH2gTG8G7773ZIH5v6dLl\nvPnRV9TU1jKgdxde+9+zrjna7XYcDgcVlbnExjvj7zQaJUFhIgUFBS4i6O/tQ/nh4zRr3RyHzYYl\n+yShN/VGo9FgsVgwmUzI5XKUSiVyuRy1Ws0994xiQ+4hTI4yQhOS6N+3N6IoEh4eTnh4OA6Hgx/X\nrkTjpuNwVg66vo9iyclFKQVgajOUPXv30aFDB3x9fdHoJcTaOqrzyjFXW/DVCRzYmkt2eT6zd+Qh\n5e/g8WcSCfK2suKjVDp3G4Km6ASh0QrmrSmg9Qf3c3xlOt+9/Qfzlv5MRCBEJ7rjExRFl46hHNtV\nSEZGBm3atAHAQ+fGzvlrOVEsRxx6DxZ7MavnzSWqSxgP3B1ESFAopWV1/LHyBzQhXVFHuCEKAg6z\nEUHnjtpUg0Iu0CmlsyuQf0vqbvZX25B5eOM4eoB+8WENRIkBjhw5wnvffkOdZMdTruClhyYRHx/v\n2p7cviPHFmeSV5LN8jUrqDhUzS29RtG96/l16Pbs2cOLb0yluLSMxDYteOvlZ9HpdLz46ceonnyI\njiVlpH/wIcU7iri5X1cUBhu7Pl+EWG1h4si7AJDOkOCRHA4uxRZ28OBB9mdk4OnuzlMPPcS9FRUY\njUYCAwPRarWuuuH1hLE+prEJ1wc3YoJNE/52+FoQBB/gRWARzpJ+L11Kwyai+CdwuRf1tRTTvlJk\nzGg0uuqPXuva0ZeC+rrR9SUP3dzcGggp5+bmsnPvHmSiSNeOKRw9epRnP/kWW+v+UFvC/OVT+Pzt\nV86bhBAbG8vmhds46nYIrYeO/D0naBfTlrXHtjSYg5efFx8++yweHh4YDAZ2paWx9tvZuGnUtI+N\n5b9vfY2ix9vovEJZvu1D1O9O5Y2Xn3eRREEQ8PIM5kR2OTFx/lgsNvJyjHRL8XedK5Pve5Apn31C\neXwY5pNl9ImIJzEx0RWbVh/jWB//mJubizHYg7E3PYAgCFQUlbD7UAZDe/bF4XC44mJD3D3IPXgE\nnUZNac4hpBIrYqQXQskxfFKcpE0URfp3603GjkVU/LSegAR/lszPxZr8AM1u+w8VFWWY1n9IUXE2\n9z/ehaDQLIRyO+FdezL75/XoEmOxW2xs+3w71ps/wKBuRmXaIszpK5n9SgoKhRxDmZna2loMBgMG\ng4G7h4/kp/ETUUyZh72iGK3SD21AHPq6XEKCnIlIzfzc8PaoRquSk5lznP7dOrFi+ZfYbAqk8mIS\npDI6deoEOGNNMyoMhKb0QRAELOExbExdTXRUpIvU6/V63pw5HZ+n7iayVXPK0g/z8hefMPOt910u\nQS8vL+665R6ys7OxWq1E3hN5Tu1nq9VKfn4+DocDuVzOI/95DXuPKehC27Fr1w88/p8pvPHSv9F7\nuhPa0RnjGTyoL0WvvMPTd42nWbNm1NTUOAn6qRcBv107yN62C62/L1UHjtK9ecsLvritW7+Bt79f\njCOhD1LFCZasf5v3Xn6e/fv3szvjAP5eXnTv2g1RFJHJZC65nfo4R5lMdlVJy/V+Mb4RXc9wZUNz\nmtCEsyFJ0ten/t0AXJbsQRNRvAjOTma5XFyMJN6IFsUzs3ItFsvFG1wn1LsJdTpdA5KYlZXFm/O+\nR9YrBclmZ8XX06jOLUcz7DE8o52VUk78/iXr169n6NChrna1tbWumtU6nY67bx7Lrj270JcZGdKm\nP3GxcWRkHSRt0XYCE0Io2JtDvF80Pj4+2Gw2lq9cxbTtO9GMGIm1spx577yHMegOPANaIIoi7skP\ns27dxAYkURAE+vS6hSXLZ7N7ewb6Oon42IayK61ateLL/71BTk6O0yUql7Fo7RIkoGVEPM1j41z6\naA6HA6vNBkoZJpOJoqJiigtPYj+ah7/GjaMHNyMIIq0T+9KrY2e2pO2im0rHT9+8jSy0CzU7VtJa\nrWfIkCGu8f38/Ljv/v+xatkMTMdKqSzzJKhPP+RyGQgSiog2FBRmYLPZ8fBRUXqyjqSkJDZu6s7O\ntZsot6mwh3ZE06YHUlkN2iGTyJ26BKvFjr7WwvEDRsSQHJas/R61TkC0euHn5YNc6Y48IRo3Nzeq\nD27AalNQWWXA20tLba2JqhqBHv3a4ZFzApXCiru3HXN5ES27xTJ61JMugldcXMyx3Hyq3A4SGRWJ\nTqvDjpMg1RPFwsJCLN5uGCrrKFm8Ca27Br1GSUlJiStpCJwi4fWWz7NhNBqZv2guZl0NMpnI4S0n\nsPi1wzPaWcnFq8sDHPxmHqIoYq+oxFJdg9LTA2tNLfbyCpek0JnxrUqlkrtvuoWde9KoPFJE97B4\n2rV2jm+326mtrXXpZdbjix8W4jniBbT+4U7JoIXv8cGnn3LUQ4cmsT2mnBPsnjWLh8eNQ6lUolKp\nXEkwZ1oY66V2rhaBaSJGp9G0FtcP9r85DRIEYXIjX0ucEt6WJOnDi/Xx916hq4B6YncpF/b1Ksv3\nV4inyWTCZDK5YrSupfbh5aBeQLoxofLFGzegvak/QYnOB+oJuYwT73xN0BmC2IKHHwajCUEQMJvN\nzP31J3Kq8pDsDtqFt2JI/yF4eHjQt1fDKiuP3vcwy1Yv5+TGIjoGtWbwiIGuc2Hhxo14P/wEuohI\nZ0zcymVYDh85td9QV3wUf5UCg8GARqNxtTObzRzJLaXSWI5ok5GSdK5wt5+fH35+fuTm5bLx2E4i\nU5ojCAKpu9NRyOVERTpfEEVRJCw0lH17t7K3ZheZhXsQTZVU7zuG/uhvPP5AP0BgxabvUSkfYED3\nngzo3pPxQ28mLS0NjUZDt27dXIkx9WjRshVR0W9iMBgQ3H9g+qbvMbn5Y7WYsWxZSPO73CkrrmPn\nmmL6JA/FYrHwxOOTYbqG31esw1Ekx1pcTlhQKNSWU2wRmPH2QWSiisRWA9ifvYq7/9MCnbuatK3Z\ntNjvS+a813H0HE1V/lGCKzIZO/Epfl26CD+fSsoroH3SKDw9PUlu15bkdm1h2OBz1i0/P5/ZC76k\nXGWl9GQ1+zJ0dEpoT6yHuoG2opeXF8WZeZjtHrglJVF2PJvqnCJ0Ot0ln5O79uxCHmGmYw+npbC8\nsgz91kw87DYEmRxrdSFyHISEhHDfgEHMeuVtZAnNMWcc4oF+A1zxszk5Oew5kI5cJqNrSmd8fX3p\n1bWhTE5JSQk/LP+DWjmIJisju/aiZYIzCcZgNOLt4dTDFAQBNB5syd5B8kfvIVerkVI6cnDaV+Tk\n5Likos5OgrHZbK5Eu/oM+Bs5Rvn/M86sNd+EJlwFuHNKCufPookoXgL+DMG5VJJ4NZJZ/izMZrOL\nJJ6tk3cjwW63YzabXRpyZ8Nss6LQnBaZlWs0xEeHc3zVbPwG3Iulphz5gdV0uPUJALalbqfcq45u\no/rhcDhI+2MHAXvTSO6QfE7fWq2WUSNG/h975x0eVbl18d+ZnplJJr2TXiAJkEDovTcBQVDArmDv\nvX12vXot2CsKIogoiAhKr9I7hBJIJyG9J9PL+f4IMySQUBQk996s5+GPMOe8p79nnb3XXvuc/2/s\nN+mMznh17IzHkcVUrXmCOtEd4eQyJt2cxPyfPue6cbfj7e1NVVUVk26+jZLaGrwDdEx5uD8LVs4j\nrF14s96CeUX5BLQPxd2zIeoU2CGMvOx8F1GEBlLZPyqJJ999mm6jQ4mL86NEVY972VEs5lr8/fzo\nlqQmK/swcac1eBEREURERLisdux2u+ufM82vUjWQK43aRrx8D1nfjMdhsRGu01JX0JVVc6sZ0ONm\nunfvjt1ux2QycfetdzB68DBe/fdMjqx5D31IEtL09bz1/FOMHTMahULBjh07qFG6oXFvuGZJXUNp\nF1bGzb1Gs3XfVgKDPLnlsQ/x9vYmOiaW6upqPDw80Ol0F7xXVm/4na7jAtF4uLFyyQ5yMqvIzEpj\nxsuvNFlOqVSSktyLQ7uOY8yvwFZURs8+Q8/7PJnNZl7913usWr8FNzcVg/ok0eeWDq7fuw7syJ+/\nZVKw5D5E3w4IJzfx/MMzkMlkTBo3ns4dEigsLETXpSfJyckAnDhxgg9/mYtuQBI2k4UNX37Ic3c9\n1MQIXRRFFqxcjmxQF+KjwjFU17Bo8RoeDAjEy8uLQT26sGrNN/j0vR5j+SnkuTvxCPdC2qiATqJS\nYrPZmj2+5ky9z7ZN+k8mNa0x9dzaskpt+O+BKIov/90x2ojiJeJiiN3ViiQ2xqVOhmaz2WUt05gk\ntrbUuDPd1jjVfDb6d07m0+VrkSrk2K029Gu38Pj06Wzfs591S99E56bi3gdvJTY2FofDQXFVCSGp\nES4TY//4IIrzSlocv7m+wQAT+/fn82++QD9mPLbqKrz27+HjOZ+zbNkysoo2M+3DSUREB3IsrYBN\nW1YxYdxUHnvmZfLkffG74QEMlTl8/dqT9O4bwh/rVtIrtSdxMbFNtqGUK6gxGVx/mwwmvGRN77HD\nhw/z+Y/zyc0voafRn/Ydg6k9VYqjXIJUIkEikVBZo8dua4ggy+Vy1zVvbLXjTEU6/RSd576o4hif\n/zQJq6WBRC768iiTht3fpMODs7jGbrcTERHB5zP/zebNm6muriZx6mNNPBh9fHwo2m/CYrahUMrI\nOV7o9Ts9AAAgAElEQVSGn3cgY68Zw9hrxjQ5Nnd390vqS2s063GXSDi6aTs3jhHR11jZtSadI0cO\n0a1bT9dycrmcDjHRdOnci3q9Hl1XHZZj+8+5znq9nrT04+gtVn5fuow1WXJ0U5ZirS/jp6X3YXev\n44ZHrkGQSMg9XMiTD91DVXk1GRkZJE+9kyFDztgzxcbGEhMTg16vd/3f73+uI/i6vgQnNVz3dImE\nLTu3c+2YM523TCYTVQ4zHaIaUuJqTx2yQB8qKyvx8vLigRm3ofxuPtuWv0aoh5b7nnmA9bt2sm/p\nb/h270ZdTh4+5ZUua6OW0JKpt/MjzXnf/CeTxja04X/FR1EQhHjgMyBQFMVEQRA6AeNEUXz9Quu2\nEcXLjEslia0hotgSSbzc+LvH6tQkOltdOf0dz0aPbt0RHQ5WL9+EVCLh1lHj6NixIx07duSu229x\nLVdSUkJaWhrlhWWI2Up8Q/wRRZHKvDKiPTqdM25hYSFf/jCLwooivLVe3DXlTqKjo12/Dx86BK1G\nw5+7tuLl7s7UF54nLCyMTsmJJPSrIyI6AEGAoBBPsg+UNZhj7z6ActA8RIkbSv/21HlGUq3U49HF\njz3FBzEY9CR3SnZto0NMe3K3riHLZGkozMitpW+vM+Tj5MmTPP3JTHR3TcZ7TAoLly2nvm47sbG+\nrN0qISpYT9ZJC+kFXlwzYYCrd3fjKJIzgmg0GlEqlSiVSldkSRRF7DYHNqsdpVKGCDhsYrNpycZG\n0EqlkpEjR2K1WhFF0VU8IZE09FRunz6ID5/7GbOjjPICO1PG339ZIj+JcSn8tPArRgzVExTsSUah\nhYnjOrDn4NYmRFGlUtE1NIADOemo/YIxZqeT4tc0amkymfh10xZq20Wh9PFgRV4p9uDJGOxS3Lwi\nkHa8kfr87az7Zvdp/WgnFFIVXyxYiV0bxspdv1JZU8/kieNb3F+z1YqiUTRcrlFhqWqqE1YqlahF\nKTXFpegC/bEYTVRmn+RgvUB5eTmpqak8ePedPNhonejoaJasXEH6L78R7eXF5DvuvCTfvuZMva1W\nq6vi3umMcDHX63+5wre5Y3e27mxDG64wvgaeBL44/XcasABoI4qXG+cjO06SeLa4vDWjORPoxmgt\nEUUnSVQqlahUKsxmc4vLCoJAr5696NG9R4sT8PHjx3notXcxR3XBWKJHt+9XavMqkQgSQuT+pA7s\n2mR5m83Gx3M+xX9UJF26DqDweD4fz/uM1x9/Ba1W60o5D+jfj9GjRjZJRft6B7AjrZ6IaD0O0c6R\ngyUE+KZgsVhwd9ciFQzUl6sQDQVoPPV069GTmA4xWKOtpP1+gOROyRw7dox16zeiVCoYOmQwFosF\nh+igXd+eTXol796zG9ngbgT0TMHHZiPbXcuvT77FrddE88STX2A0GBAEgQm941wkSKVSuaKHRqPR\nFUGUy+UuHZ+TSPr4+JAY05cls7ehcLOTl1GNTtaekJCQ816/szVwTpLhJCBh7aJwPwjXDI/Dx8+N\nVb8uY+++aFK7npv+vxg0+FOu48DxdPRFKjJ35+Jhh/YRKbi5+SKRnHuvJyclElFdTU1tHe6xIeTm\n5vLhx58S6O/L+PHjKSwspNI7gHZx7amvr8ccEIi+fD9CZDdqyqpRVmbSrW9Xpky5wUUIJt7yAIre\nL6ANiMFqqObLhU/RIzWFsLBz2xEC9O7YhQVLNyJMHIDVaKJi3QFSJt7aZBmJRMINg0cwf9lKSn09\nOHUsgwNbjnCgow5x7WF6rd3EK8883uR5VqlUTL12QpMiKoPBcPbmLwrN6RnNZrOrCOZy2WldCbSG\nuexstJShaMM/g/+ViCKgFkVxZ6N3kygIQvPRlrPQdnf+BTQ32TQmiY1F8hfClSBiF1tw09ik+p+Y\nqP7qsTpJolwud/ninW+syspKPp03l6P5efi4u3P/5Kl06NChyTL//uIbTD0n4tNtMA6JnLKfZxJk\n9WHYsGEEBASc86KrqqqiXmKiV2ocACHtw8gOSKe4uJjo6GiX8F+j0TQhiXa7nfj4eH5Z6satU2Yh\nVSmQWtz58M1J2Gw2Xn32YZ56/WnUQUMwF+0hJlXJmNGN28GJ7Nq1ixmPvoIp7HoEaw1zFjzC4vlf\nEhgYeM6xq5Qq7JUNqUyZTEaAuzfeHZJ57P5nWzy/Z7/46+vrgTMdeRQKhYt0SKVSrp90I8//304U\n7ieIaqemOC+PtMNpJCUmuVKR5yMKEokEpVJ5pkrbamXfvk2MnuhPx5RAEEUsI+0c3rvjLxPFuQvm\nszDjIJ4j+lIrN7BtQw79eidiNKrYtLWS5C43N7teSEgIoaECs+fM4/25K3FEjoOKIyxdsZGXnn3E\ndW3TjqTRaUAY+z9eiLgf7JWnUNccYfz4Ja5nqbKyEqNdTkBADDZTHZXHf6XeXsDn333E9Gn3Eh0d\nfc5z2q93HxBFNi/Zg1wi5YFrpjbpU+1EeHg4D0++icrKSh5etAm/aW+jDYnDXFPGpl/+zc6dO+nd\nu7dreZvNxvzFi1l38AAyicDkAYPo3+j3v4rm9IxGo7FJBLI1ksbWFNE0Go2uea0NbbiCKBMEwWWn\nIQjCJKDoYlZsI4oXgcakpLkJ5q+SxKuJf5ok/lWIokh9fT0ymaxJpfD5lv9gzrcUdo2jw8M3U52b\nz9vffs+7Dz7mKgjIysriUO5B5ME+nFp9GPe4EUiCYhAk9QQFBTU7rkajwa63oK+uR+OpxWKyoC9r\nkBgYDIYmkRrnftjtdkRR5MSJE6xJK8H79pVYqkspObiEh954hbeeeIrhw4cSFhbKwYMH0WonYZJa\nKMg8iVanpSjjFInhHXj7/a9xpDyPT3RDBXbFdgVz5y2gW5cEjPVVBIfF07lzMoIg0K9fPxb83x9k\nfrMQeYAv+uWbeG7StIs+186Iopubm4vE6fV6l17NbDZz9OhRotsbuPXuwQiCwMncGn7+bh7Jnd91\n9S0/deoUaUc2Y7bU4+sdQbfUAee8DJ2EsiE6KuPIoVIQRNqF6airMyOTKv9SmtJms/HjmpXEz3oN\nuVZDyKBeHC2p5MCRdkRFhtGjd0IT+6GzYbfb+fDL79BctwS5tkGOcGT5DPLz89GZbRRnnqCypBB3\nawUPvzgEfVUNdRUiAeYR2O12lq1fSWV9Lf7uXngobFTn7sVUdYjg+GISOwXRr3dHlq79idu87sbT\n0/Occ9K/bz/69+13weN02jjVGcx4eYdQsHUBFqESg5uBX9esIDU11ZXZWLZ6FavNdUS8+ix2k5nv\nZ32Hu1pN7169LunctoSW9IwGgwGpVOoijZfiGvHfiOaO3WQytRHFNvwTeAD4CogXBKEQyAFuvJgV\nWy9DaKU4O5L1d0nilYwotoTmOpn8k/t3sRBF0eVtqFarL+rlYjKZyCwvof2gOxAEAa+ocCpjwsnP\nz8fX1xer1crCNb/S684h5Cm9UIUlkPHdYlR5JXR88p4Wx1Wr1Vw/7DoWfbQUzzhfanIqGZ4yCJ1O\nh9VqRaPRUF9fT1ZWFnsP/IkoinRM6EFcXBx5eXkIoclgt2MwpBF2wzjq/ywlzVCA/IiC5I6dSEhI\nAMBgMHA4/TD1ZQa6+HUkPjYOvd6ILLBRBbSbH7t2/kDf6Hzaebuxf/d2amvG0b1HH774ejZ1pSaE\npTvoM6AHQ++8j86dO1/UuTaZTDgcjoboaX094eHhaDQalEollZWV/LlpCRKhnOPHTyLR1sDp6+EX\noKa2Np+ioiKXPOBg2gpSe7nh7e3NifQMtm+3MmjQNU22WVhYyMdfvEV1bRG19SVExILSo5q1K63U\nl4dx952DMBgMLaYzHQ5Hs9EqURRxABLFmYInuc6dpKQu9O7dmxUrVvLK2x8jk0q569bJ9DqLLNls\nNqx2O1q3BjNtQRCQqH2x2+1MGNCXQ+nHcRhqOZCVQdyYoUhlUrbM20mn9sms3LYBTXII0YHxlOae\nYujwVNas/pSKugx8OsUwpG9XIqPaUZZVTXFx8TlE8a8gNSmeNYvewq1/It5dB6I5bMchk7N11w4G\n9e0PwIHsLPyuHYVMqUSmVKLp04Njx7MvG1FsjOb0jI1NvSUSyVWdU1obTCZTW5/nq4j/lRZ+oihm\nAUMEQdDS4KFYD1wP5F5o3Tai+DdwOSOJ/9RXttVqbbaTyT+JizlWZyTRaYB99vItEVilUokSAUNZ\nBRp/Xxw2G9biMtx7NVTK1tfXY1fBiFFD2bhlG5m7lyMvOcL0oRNdFiUtYWD/gURFRFFUVIRvF1+C\ng4NdxuSiKJKXl8fGnT/QbaAXgkRg9frZSKXTCQwMRCxeQ31JApqoIOymKvz9fAjtGEPO7jySO54p\nnFGr1XTv0r3JdseO7M+HP76HpMfz2M21OI5+S+8xnvTv1qBzCw/x5Kulq/lh8Qo2FrghT3oEa8Fu\n6lb8zl233cGWrX+yc98GZFIZQ/qPIykpyTW2Xq9Hr9e70suzf5jPbwd2Iff1xq20iveeeYHIyEj2\n7llPSpKFyIgoCpLdeOeDPezedpIOHf35YXY6NSfrefe5SdQ67JiV/vTrE0hQ0FhEUSQhKZjvv92P\ndncAoaGhBAQEYLPZeOGFewgPL0OndZDQS4VE4k5IQBeU6FHH9SIqKorq6mpXStOZIq+srGTbnvUY\nTDV4eQTQt8eQJibVcrmcYak92PD+bKS9EqhMz4R1Wwm8ZhorVqzkiTe/QdbtKRw2E3ueeJPZH75E\nauqZFLdSqaRfz1S2bP4XmuRbMRUfRlW+h5SUe9BqtfRO7Uqvrl1YvzGEtZ+uxm63kxzbhUD/QIqq\nsokMa9BrhsRFUpNRzKwPX+ez7z6k//Ak/AJ9GqQU5UbUUed2BaqqquL7XxaSXZhPsG8At068gYCA\ngPPel08/dA/pTzxOSYUNjhYzvFcqGgcU7S9wLeOj0VJ4qhBdeMM9Yy4sxlOjbWnIy4bm9IxnFzT9\n01ZcrS2aaTab/2MyUW34z8NpYng3EA0cpqGYZTzwBpAJLLzQGG1E8RLhJCiXiyReiUmrJRL1V0ji\n5Tbcvhg4K3GBZkni+SCRSLj72uv45JM5yBNjseQXMTAo3FWdrNVqkZmgtryaYYMH0LOyhr0Vblw3\ncQIAR44cYevOXaiVSkaOGN7Evw5w9Up2tstzGpPb7XaOpO+lSz8dUXEBIAg47CJpR3dx7dipXN83\ngdlLZuLWLQzfQA2TJo7GWG/ATX7hlNP022/BZrWxaPkTuCmVTLx7AiGqY67fpRIBo8HExu2H8Zix\nEUEqh/BulP+6n3nzvqfIsIsh14VjNpn5fuF73Kl4lpycHH5a8gfWukLGDkjAIXNH7RfPb1lHiP7k\nFWRuKoo37+D1Tz/im3dnUl9bRERYAAIC7UKCGTFkEEsXlrB80Sn0RUZGdbQTl+yB2kvL13/UkJWf\nTl5eJyIjI9m5Yzfb9m6hTlJA0e8Wrh0xg9raKiK88nj83ji27SmnXmKkxKggODiEkCAVGQcc3Pfc\n02SUlSCx2rj/+qlcM3IUdXV1rPlzCUl9/fAPjKcgr4yNW1cyduRk1q5dx5pN2/DSabnxhkkcf/s1\ncvZtIinOk5TpUcz54RNOZJqRdXsKTeQAAGpMtSxaurIJUbTZbEwaO4jyWXPIXr6K2MgIXvvsbfz9\n/V3LCILAkEFDGNBvAK+/P5Ov1m7CvnoD3p4ij/RMQK1WYzFbcFhsaDQaJo+Zxh+/LcYnqojaUgNh\n2njCw8ObPFsOh4MPv/0SQ5dAoqdOoORoNu/M+pTXH3+uSWpy586d7E87ip+XjpEjR+Dp6clDt93K\nZnMJ7Uc0pKzTV20m0fuMhnXyyFEc/+ZrcnPzEc0mQkorGXjr7Re89y4nnHpGqVTq0vQ2LmhqrXrG\ny4nmKpzbUs9XF//tnVmAuUAtsB0YDtwGmIBpoigeuJgB/uvP0OXA2W387HY7BoPhP0qT6OyJfHa7\nu9YGJ0l0OBy4u7v/JSLds3sPQoKCGzRlHbqRkJDgGkculzNlxEQWLFlMjrscW62J0d0aIlI7duzg\niZlfY08dj1hfyU+rnmX2zLdcHTOcyMvLIycnh4iIiCapQ4kgxWSycvxYIdXVBqrL6lCLIdjtdm66\nYRKD+/VmxZ/r0HYIwlhagyW3kmsaWdtkZGSQmZlJcHAwiYmJLlmAVCrl/ntncP+9M4AG8fsPc2ay\n+1Ah/j5u7DlaTXyn/rD0EKLdhiCVN1RhW82kZx3i2vvCCI9tILw1VQY++uQj1uwpwdhuEkpzAZlz\nFjPvXzcwf+UfyJM6IDttz+LbLZnsT+dz6tQpKqqsZGaVEhcbiNVqQyIL4OknHkUmk/HH3DdxYxc+\nAZ7IFRJUDhOr99STU/AdHduHcCqvnJseGUB8UhDlJfXMe2823RN6ER6gpK7aREiAG9sO1lJWX4ul\nk4O8jBp+W7uXkkGpxN3wLNVHT/DOix/QLiiY4OBgvAIVBAR5Y7PbCQr1IutQJnO+m8u7c/5A7Hw7\njlP5/HbbfXRO9uCLLydRW2XEZLBQWZSNKc2Gw3amYt5hMze0ImyEVSt+BfNmPnw5noIiPUezA5rY\nIDXGr78tY51FJOD9LxEkEnJef5b5H3zL0GuGYSisoltUIkqlkvi4eLy9ZnD8+HGKFBV4+QZQUVHR\npFd0ZWUlhZYauo+YgCAIRPZJZt/uDAoKClyayiVLlzFz8QaEpJE4TuTwx6aX+fTfr9Gne08Klv/K\nkW+XABCr9aHv2DNp5aCgIN588GGOHz+OVCol8fpEl570n4Yzo+AsaDqfnvF/AW3FLG24wogRRbET\ngCAIs2goYAkXRdF4sQO0EcVLhDN9cjlJ4uUWeLeko/wrBuBXwufxfN0JnIUhFyKJF9qv0NBQ9Ho9\n5eXl5ObmEhkZ6dpGZGQkj932gKvDh9Pa47P5i1COewRdXAoAhctEVq1ew7SpU1zjrtu4nrkrF+IV\nH0T9xkom9BrJ6OGjEEWRzh2789E3K/BPdcMn3JsT2bV09bWh1+tRq9W0b9+eqKgoTp48id1uJ3hg\nT5d59KfffMPHy//A6OuNNCeDIR1ieOe1d5vVsLm5uTFp2v1s37KOnJxKguOH0b1nb7bvO8Yvyx5C\n0n48tvzdxGr0hEckYDLWu9Y1m+ys2bwf2fD5aJU+qFUyKrZWsvtQDgE+aow7D6GfOAK9zUzxyk3o\n84oZMuF2JG4+fPhVHs8+OBSdzpvQiP4EBgY22Cs5VDgkWg4dLGP7UT3frq7F/Ym7qIvvxPJVm1Dl\nbSQ+qaFIyDdAi9LNQWFJNelHVOSX5DKonycndhvRyzpTlOVDXERH8sq3ETVuKOmfziP969+wi1pu\nmvEID945iTLDMXRBNmLj4jHoTdgtAl99vxj5iE9QBsQjCALVqyopyFnFgR3Z1FSVovGUkpedz9B+\n48le8G9qzHU4rEbcTnzDjU++6zo/FouF3KxtPHhHGDKZlMhwL4pKT3Ly5MlmC2DS8/NRdO+D5DSp\n9510M5bvvyRFGoIuKaFJZbpEIiGtsgRZUjQ1gsChbZu4rnufBl/E0/OJ3WTBajKjcFNht9mw1Ohd\nJEIURb744Re8bvoQpVcAoiiS+dOr7N69m379+nHThMlUVlYC4O3t3eRZM5vNZGZm4nA4iImJQaVS\nUV9ff9XImHO7F9IzOlPTl2s/r3YhTXPbN5vNbUSxDU0gCMK3wBigVBTFc5rLC4JwI/AUDVrDOuBe\nURQPtTCc64tQFEW7IAinLoUkQhtRvCTY7XasVmsTf7nLgStZMNIausRcDJwVtzabDQ8Pj781mYui\nyLyff2JZVjryqHZY1/zBgOAwykyVWG1WUmI7Mn7UWNdL3OnJaDSbkWvPEDNB44nRVOv6u7q6mu+W\nLaDP8xPw8PfCVG/kl9d/oWvnLvj4+BAcHEx0Ujc8YzWIIoyePJSc7TkYDAaXZ6FCoTiHcBw7doyv\n12+GF14gvH0I5qxstj73DD8smsd90x9o9hh1Oh0jxzRtJfjq/z1D2Lez+WPFFwTrJPTvmYw2oD0b\nFy2nrsaI2eTg8CYLSqUKFBpMDhBFQKamorqYkLge3OAl4dNJd6HzVSM5VUxJtS+6Gxah9vSnLm0x\n3y+Zx8/ff+UiuAqFgqHX3sFXH+Tz/fJcTGETsHmYMX29hs5LryUwNZmtg9dz/HAhMR0COHG4hKMH\nyjhW8Cf1ARMhczcrdmZy85TbuPXOB5HL5VitVgK9fchb/Dvp321Act1SHHV2anM38u3cV3np7o6s\n+/E3DkUl4KeLoWfnIXwsLkeibNDcORwOHDI1wbpoNi3bz5jbwqittNC1ZzgedgWzZr7Aot9WoZDJ\nuPHJd5tYJwmCAAI4HGeeR7udFlOiUUGBrDq4B7F3PxAEjAf30Ck+lvjTrREbIy3jOIpOcQTFNHSw\nyXPYeX/Wx7hrrCjlakYOmMCoLn1Z/fFiPDpHUn/iFN1D4lwelaIoYrFa0Wp0rn2VaDxd968gCK7o\nd35+Pj+uWkZZXQ0hOh/y8os45R+I4K5F/fvvvDxjRpNoZmtAYz2jKIpYrVYsFovLn9GZmv5vizS2\nFbNcXbRSH8XZwMc0pI2bQzbQXxTFGkEQRtJQzdyzhWU7CYJQ1+hvt0Z/i6IoejS3UmO0EcWLhN1u\np7a21tXrtDXjbB1layeJ0DBZWq3Wv5xuboyCggKWHT1E9P89hEyppHjPAX74bCYPvfUwWk8PDq7Y\nweoNaxgzfHST9a4Z0JvPf/8ScfQMrLWVyPYtp88rTwINhLu4uBiVtwYPfy8AVFo3VH5aqqqq8PX1\nRRRFvLw86dol1SXWPyk/idFoxGAwtNgnt6ysDFtoO9z8dAiCgCommjqVitzC3Es6bplMRpivG58+\nPICIYF/MFiur9mVy3ah7yD2ZgUYq59F7++OpWcC3f7yAJOluyjJPoMz+FcXwifQcOJ6cnBzeNsbT\nJT6A1TsyeG1vEmY7qAFN3AhO7n77nBZ6MTExFOjdUQ9+H/fwYVQY6rFnzSX7u1+IuWMy/p4BrJhT\niUNyCjkepKWXo5m6Aq0uCJvVQuWSqSSn9ker1bqiSU/PuIc7n3gUm6obkhobKokEVUw/6vZbGT8o\nge6ldXy+5BSTHnsCf39/plw7iq9XPI+954NYq/JR5/7O1Nee5njRSmxlcvw1OgaOS2T90mySk5Pp\n3r17s+dQLpcT22EgS1asJTlBS0GREb01osV2dxPHjWPPW2+z/7mHQSYnRnAw/f9eaHZZu8OBtNHc\ncezEETyD65l8Rz+Megurf1jEtDH3EhMeyamiQvySE0hNTXXdLxKJhGF9urFi+Ud49rkBQ3EObvm7\n6dTp2ibbqa+v55vli/Ed15vk8BC2LVvF7oOl9H3uBSQSCSV79jD3t9945LbbLvLO+uchCAIKhaKJ\n16ZT1+h8jv5b9IxtEcU2nA1RFP8UBCHiPL9vb/TnTiD0PMv+bSbcuhlPK4HNZqO2tha1Wo3D4fjH\n7Wz+ChwOhyvl+XdI4pVKPTeG0Wh0VQ9fyuTf0n7V19cj9/dBdjrqa6quxjslDIVGhUwuI7Z3EumL\nDzLmrPVunnoDgvATf6yaiVqp5N4n7qF9+/aujwSdTodcD/mHsmjXKZrCYycpPJDFwaCdlFeU0S21\nOwFuARzbdQzPYE+qS6rwk/nSrl07HA6HqwBGLpc3MbGOjIxEkXWC+syTuHsnUP/nVtwEO5EhUVwK\nRFGkrrKI8MSGCJRSISfQQ4KHlxfduzfYZTkcDu6efivu2p9Zu/kzPHUa7p/9GSkpKchkMnKys3FX\nK2kXoCOmnQ+SZVuxJt4B+GM4sYq46Mhmt11Tp8ctIhKluxaDyUi96E3Ztq2oMrN5+s4ZjBs9Br1e\njyiKLPl9DFKNPw6HA6lUjswzvKEavZH2Nzk5mXee+z/ufPLfqFQCMjdPao7+SqS/BqlUQpC/O77e\nHq7U/EP334NG8z0rN3yAl4eWx796n9DQUEo3HCMxPhCNu5K87GJUUs9mP/QcDgfZ2dlYLAbatYul\nVufLkbw8jqTnsivtBEvXP8qkMQMIDPTlSOYRdGodo4ePxsfHh3df/D+ys7MRRZGIiIgWNcAdIqI4\nsm8H0tMfCwVbtzHxngaZg4eXhuA4DcXFxXTp0oXk5GREUaS6urrJh97jD9yD++zv2b7mLSK9PXjo\nlaebFNkAlJaWQpAnvpEN5NYjuh2i1zFs9fUoPDzQhoRQsaGeq4VLTf82Z9BuMBiQSCQtfnxdrm1f\nbjS3/TaNYhv+Ju4E/riSG2gjihcBi8Xi0hAZjcZW6cV1NoxG439EsY3JZPpLJPF8k31ISAjyUyWU\nHz2OT/tYqrNyESqNrvROdUklOvWZaLuTvEqlUm6ZNoVbpp3RJNrtdgoLC3n9/Y85kHUSq9HA8WNZ\nuHnKqK4opHOCDs/gg+SV7qHg10zGjb2B7bu2U3WwimCvYFIHprqIg1KpxG63u8zOnS+60NBQ3r7n\nbh751xvk4kArWhic3Im+3ftRUVHRpJimqKiIzMxM3N3d6dSpU5NzJggCWq9A8osrCQvywWK1UVzr\nIPS0dYzz40Gj0fDAfXfzwH13Y7VaKS8vx2QyodVqiYuPZ+EWdzzTiwj2dSclyMLu5dMweYfgLall\n5lcfNHvORw3uw0eLP0SqfRNPapFmL2DqNalcd90Z2yGnhU1yUnsO7PwQTfJtGAr3oyjZRXT0ndTX\n16NUKl1EbvDgwTx2ZyaffjsZhzYARdlxZkyPJ+tkBfvTqwmPH4hMJsPhcFBRUcHkieO5687bmuxX\nz5Qx7Fi/GiQWlFIv+vYa5uoc0phk7Nm1lYqCdcRGulOUY8Hu1hmdVzt+274Nba9nkEgVvPHNS8RE\nlDD6kUEUnsrhXx+/yUuPv4y7u/t5DbydCA4OZqKjO/uPnwAgReeDRNpw/ew2O7s3p3NYZuRw7nES\nwmL58NvvySmtRuaw8uT0mxkzehRKpZIH75nepI/z2VCr1Vgqa7FZrcjkcjwUbtjy8rEaDUhVKlrG\n9k4AACAASURBVMrWrmF8C8U5rRmNTb2dhvZWqxWz2YxUKkUul19WPeM/hbaq56uLVpp6vigIgjAI\nuAPoc0W3cwHS0/oZ0T8AZ1UeNDzUdrsdjUZz2cavra3Fzc3tslQj2+12ampqUCgUTXoA/1WIokhV\nVRVeXl6XZQKuqalBo9Egk8maWMxcqpea3W6nrq6uRcPizMxMPpg/l+LqKiJ8/PDVuWELUiDXKDFn\nVTN94i0EBwcDDdrD5vbB4XBQW1vLO598zhqTL/7j7sFmqKPgvZuZOD4KdUAdHRI1FO+v4JqRiSz+\n/iSjhz5MQEDABbvIOKUBVqvVpXt1OBwNFcYVFezZuhh/TwsVNSKduk8ktVsvFn43i8WLvsPk7UuN\n0pP+Me156/kXmkTIKioq2LJqMWpq0ZshMnkQnVO6uqrJpVKpizCfOnWKL794BZm0nLp6gREjZzB0\n6EhKS0vZuWUdFqOeqIQu+PsHUFNTQ2RkZItaKpvNxjvvf8TPS1ehkMt5+O6bmTr1hmaXraio4Mnn\nX2PPgTQC/f3496vPEBUVhUQicXW4cbaFk0gkFBUVUVlZiY+PDwf2bqe2uhT/4Gi6de+FXq/ns1kz\nqTSdwmZx0C1hIDdPu63JuXdGoZwfTU6S4SycsFgsrPvjK8YN9kWjVSOKIsvXnWLTfgvbbYPxiW+o\nTD+w5WeS3H/i4c8mA7Dx262MjBhLnz5/bY7Oyclh8Yo5eLaTsnH1LvKREDO6O7bSevI3ZmCIvo6g\nsXdiriim7usn+eaVJ4iLi7uosX9fvZKtJdmoQnwxZRcRYlexMycXq81G/45J3H7DDdhstssyR1wq\nrFYrdrv9spGjxs+Sw+FoYtB+9jPoXO5qaQINBgNKpbLJXPP111/j7+/PTTfddFX26SriqjN6QRDE\ngeKKf3y7VRsPUb3xTO1J3ivzEUWxyfk4nXpe1lwxy+nfOwG/ACNFUcy8cnvbFlG8ZFzNTiUXgpM8\nOYXflwNX6uvcbDZjMBjw8PD4y4a757sOMTExfPLSq67uHVarlYyMDKxWKxG9I1zFJS3B2V9aoVBw\n6EQOuil3IEgkyNw0yNoF4h7qjsrNQrtYH6oL9ZSX1iMIDbKEi2k1eLZw32Kx4HA4CAwMZMXSb5k0\nREZEO3+MJivfLlpMWWEhuVsXM+i2oagiIth1uIjNxytYt24dI0aMcI3r4+PD6Mm3U1NTg0qlQqvV\nuqrJnSm8kpISHA4H38x6m3Gja+jRPZjqajPvzPyS6Oh4IiMjGTtxapP9dRZUtASZTMazTz3Gs089\ndt7lnPv47RcNkcnGBNZJHJxRV5PJhEwmw9fXl8DAQARBYOSYCU3G+n7BbDwT6xh3bU+sFjtLPt7C\n2rWhJCQk4OnpiUajcR1343PfuNLWarUiwY5MJsVmtSGRSlHIQaNWYC8qc61nN1SiCjxzrwqSv/ds\nREZGcseUh9mwYQNFxv0MeOcmPIJ9qT5VypEDmWjDG0ih0ieQuvgeZGZmXjRRHDN8JAk5OdTU1BDQ\noR9BQUHcJ4ouHz8nufpvQHOm3k4949ldfVpj6rnNcPvq4mp0ZnEfmIL7wBTX33mvzL+k9QVBCKOB\nJN50pUkitBHFVoHLQT6dxEalUl01f7SLhVOY/lciiU5c7GS/bt06vv75RwwWCyP69mfGTTdfMJJx\ndn/p0ABfDmYdROUfgkMUcVSU4KOLQ2+0sXb1fvLTiknfnI6feiBhYWGX/CJyesoplUr0ej02SzVB\nfsFYzGYUMinBfgIns9NRy2y4BQcjU8oJ95ByONCfsvLyc8aTy+Uuo3BnNbnz/39a8C01RXuRSET2\n7drOU482FMp5eippH9fQVs9pJXSl0ZjAqlQq13k7m8Q11naenV4sKM5h4PgGKxupVIraW+S3+TMp\nSoqkyihj6IQZJDbqROPEgQMH2LZ7NzqNhtGjRqH1iWdfWjqxUb4UFFZTbfBm6uTB7Hj2XxRvqwGp\nAp9Ti3GP9SLv8EkqT1VTf8xI0uhzx74U6HQ6PD090UUEIdocAHgE+YHVhrn4JHQCh9WCI/8YvqOb\nDSy0iMjISDIyMnj1o4/ILyoiMTyMpx56+Bxf0H8aV5KsOU29G5NGp9SgtRYhtqWe23A2BEFYAAwA\nfAVByAdeAuQAoih+CbwIeAGfn36WrKIoNl+hdxnQOp+cVoazDbdbW0TRmSJVKpWoVCpX0cDlwuX0\neXT2FHZ3d7/iE/eq1at4deFHBEzui8TgYM6qjZgsFp687/4myzW+ps31l376/ru4++mXKE/fjqO+\nikSNJ6YCB4cKcik32zAUuSOTaunkZf/b7cg0Gg1aXQjZ+TXER/lQWaMnq8CCn18QkkJP6g4cQten\nJyWVekjLo/2QUS2OlZaWRkFBAe3atSMxMZFtW7egMu5k2vWRSCQCdSXbmDv3GPfe2wmDwUZmtkhq\nT78Wx/u7EEWRyspK7HY73t7erlZuLfXxPrvy1WKxNCG9CoWCQL92ZB3Kxz/Ek/paIydWHeDJ0Z1I\nSQqlpLKeuUtm0S7sVVeHH4lEwrp163hx/nwkY0ZjLynhl6ee4tPXXuPwISVbD1Wgce/I0JF9USqV\nfPLvF9iydSsCdno/OZNVa5az8fVfcVjMdOsxHKPReMHo9IXOSUBAAPIqK5lL96AIVFFdUIZHiQWx\neAmVxZk4ygsY0ymabt26XdLYJSUlPPL2v6kI98bnjhHsSD/O3c8/yZx3P7qs0pnWiMZ6xsam3s5W\nkFar9aqYejc3j7bZ47ThbIiiOPUCv08Hpv9Du9NGFP8KWlPVszOSqFQqXZNNaxVzOzVEbm5u/8jX\n/c+rlxB52yD8BzZEzRx2gRWLN/PEvfe1aPjtNCF2vkiPHjtKWXkRz99/B6II7u7uJCUlsWnTJlZt\nP0Dc5DFsX7CJgrQi9pX8Qef4jky+7rq/tL8OR0NEafykGSz56TM27i5Eb5bSf/gMgoJDWVZdzqlt\na9n+x15OiVoeuev+Jq3nGuPjr75i3vYdCDExCPPm838334TdVE1chAbJ6ZTpqCG9ef2rfejNRZSX\nO0jtNuW8qU273e56qV2qNYndbmfdit8wFhxBJgiY1IH0GzEWPz+/i7pfnVFHZ0GQsx3luFET+eyb\n98ndv5OKkjpC3DxJ6dgeiURCkJ8OL1UtdXV1rmfDbrfz6U8/4fHUE2hPex0WfvAh27dvZ9iwYedo\n9iIiIggNDcVms7Fr51Zk1p3cPtFCoL+KdVvWMffbUmbc+wpeXl6XdD4A6urqePFf77D1QBomgx52\n7SRpiD++cgUJKZFMGHoroig2RMYE2LZrF+1jYi46Ipienk6ZRkbk7WPRhAXj17cLuW99RFpaGj17\ntmS59t+HxlIDs9nsijReKVPvS0UbUby6+B9o4fe30XaGLhGtiYQ5SaJcLj8ndXGlLW0uFc4WghKJ\n5LKQxIvZJxEHEuG0q7QgIJULyKXNExynVk4URZeX48bNaykyHCQ4SkdxQS0qY7ircMHb2xu1Vsvu\nX3ZwStcb7cs3Yd59gHfmfUFSQkITE+cLweFwsG3TenIP7QRBIDa1HzPue5Ha2lpXJOzLbz9nd146\nBq0vvXuP5dabbkOtVmM2m5tosACysrKYt2UL3u99gMLDA3NREW8+8ShvPHA/6RkGEmMdSKUSTlXA\ndTc8QlLnVDw8PJp0ETkbGRkZfPb6M1SV5GJVarnl/ucYMXxEi8tDQ0Rr55YNWM1GJAotPjXHGNkl\nDIfdwc5juaQfPoD/4OHnrGc0Gvlu/rfsP7oLjdqdaRNuI7VrAyF2RopkMhkqlQo3NzeeevhFTp48\nSXFxMb//PIudhwvo1SmMovI6aq1K/Pz8UCgULl2ewWRC7uHREN0BBC8vzBbzOfvh3J4z5V1afJQQ\nvwoG9PZGoZBhNtex+3ApGRkZLfoyng/vfPIF22Qh+L7xBuUnM6mb8zjjxqSS0rs9uceLSN91iFFD\nxvP9xjVIOjYQ+J3rV3HzwGH4+V048qtUKnEYDUjVp7WfJhNKrRqLzXrVtXpXC86oslKpdBHGs029\n/25W4FLR5qPYhtaONqJ4ibgSqee/MmZjknh28URrS483Nv52tsv7JzCy73DmrVmKxWzHanOQ/+Nm\nXrrxgXNekE5z7MatAw0GAxkF+xl6fQekUgmRscFsWHKUnJwcVq1bQnldLvrMNI4crsf91eepLSjH\nP6I9QtIAjh07dklE8eD+vViOb+HGrmE4HCLrDqwjQ+dNQmIiAPMXzqfILYebPxuPzWJjxczNHDt2\nlN69+7j0njKZDIVCgUwmo7S0FGlIKIrTHW5UwcHUqNyIb9+BP4t78+nCnUgloPLqwPXTJuDm5kZu\nbi7z5s1HoZAzZMiQJlErg8HAV68/Q5+gEnpMiSM7t5rPPnmBqMgoYmNjmz2m8vJyfvjsLfoHmpDL\nJMz+PYNJvRJwOEIb7gF9BSsXzqEo/yQDR44lICDAte7cH2ZTqjrK1Ld6UVlSx6xPP8LX51XUajVb\n1v5KXXUJnn7t6D90PF5eXnh7e7N9505en/sd5vBo/pi7mwF+OXSMb8/o6+9pEq2RSqWM7duX+V98\niedtt2IuKka6dh1dX3rpgtdJJpNjtwo4HAJSiQSzRcRqsbsq1y81lbkr7Ri6e2YiyGRIvfyg6wjy\nM9Pp0qcDUpkEh8PO3qOHUaR2JCiuwX6nSKFg/7EjDPcbeMHxU1JSiJWoyP5sHr7De2LLyia4xEp8\n7MUVxFwptBaS6tQzNk5Nm0ymJhHIy2nq3dK816ZRvLr4T7bH+afQRhT/A+HU0TmLLVpKo14u/B3i\n6azEdhp/O9uN/ROYcM21KOVKVq1ZDQ6B++96msGDBze77NmtA+12OxIJSCTCmSILhZTfVy4hqFMl\nw3olcZ25AxOGzMZxIoPgTr3RuXtQXpiJ95DzR9rORunJbDqHeCGTSkEK8QHu5BTkuIji8ZyjJN4Y\nh1QmRSqTEtM/jMz0DAYMGNikatpZ9BEQEIA0Oxv9sWNoOnSgcsN6/BVy/Pz8mDzlNioqxuJwOPDx\n8UEikXD48GHufuINjMEjESzVzP7xUeZ++Z4ralVdXY2t6iTdJkejUMppH+9H1KFqDhw8QExMDFv/\n3MS+TQ0WE10GjKJPvwEcPLCPrt711JkdzN+aRnltPfOW5RAXHkJRQS7p+3bRKySGdrUHWPD5cW5/\n9AWX1m//0d1c/0Z3rBY79VUGvKNlpKWlYSjPpE+Mg7DuoWTmlbL+j4VcO2UGJpOJN7/5Bs/330EV\nEoK5soqD993PA9fcQkhoAzFVKBSu63jvnXci//571r4/kyA3Nfc/9hhhYWGuwhm73Y5arT7nOiV1\nGsKaPw6yaFkanh4S0o4rUGji6dixI3a7/ZL8/DZu3kReQTa1W9fik9IfX29vSk4cxRhoIS+jmH2r\n8xjVcxp55eVI5WemaalCjtVxcc+iUqlk1nvv88XXX5K+eDshAUHcOv1hAgMDXTKH/zW0RFKb0zMa\nDAZX9Ppy6hmb0yi2EcU2tGa0EcWLwJWO1l3KmI1J4vmKAFoDGpPEK2X/cL7ohEwm45pRYxg3ZizQ\nMCGvX78eo9FIhw4diIqKwmQy4XA4XDYqzjHd3NzwVodxcEc2YbF+lJyqQmL2pLruEAM7h6NQKFCp\nJNxxRycWLPwQR1EaFeX59AnW0q9fvyb7t2PHDgoKCggPD6dbt27n7K9a5015URYhvg2ekOV1BtTB\nZzRvvp5+FGeWEhTtjyiKlGZUEO6V6PrdWTUtk8mor68nICCA1++7l1fefI1Ci4UwPz/ee/FFV0rt\nbI3bJ7N+wJ50PwFxDX6BpTu+YvGS37jnrjuBhgIbPSrKy/SEhiuorjOxL6OGraUL+XLRLyRKqnj1\nuhREERatmotarQURiirq2Vyaw80vJ4Bc5O1n93LbO/MIUEmZmBrD6G7xKOUyTtWeJCsriy5dugDg\nrvFgz5pj/DjvMI7wCKoOZlKTsJ6xXX0ID27oVBUb4c/BkwXU1dU1SAbctahOW/govb1QRzUYSiuV\nSqxWq6v9ptNk+9477uDeO+4AGqLz9fX17D+wn9mLZmO2m4kMjODB6Q/h5+fnui9i4+JwU7/A1i0b\nyCopJLFLB/r1H+RqaeiMTBcXF6NQKNDpdOj1erZu3Yrdbqdnz54EBgZy/Phxvlz9C8PfuYvV7y2g\nKncvpqoKenvJCFN3oWg7jOo5jU4dO+GRm8uRPTuRKxqen5rdh0jqcn59oc1mY+fOndTU1BAdHc3j\njzzm2r/WlGlojTjbOslZAHMl9Yxms7lNo9iGVo02othKcDETeHMVua0Vje16zvawuxwvqwsde2Zm\nJnOWLqRKX0tMUBhTrpnIW19+QYavF5KAAISPP+LZydeTkJCAVCptQhIdDgcOh4MRQ8eya892Mrad\nQqcNZ+TgXhQVnqI4vwYvbw/sdgduKg/efWYqoiji4dGLoKAgvpk3B6PZRL9uvdiwZTsLth9BjOqK\nsGgWdww9zH0z7miyrynde7Hq5yzKD+fjcIjUaoIZkdzF9fuUidN444PXKE3fjMVow8Pkw4hHRzYZ\nw9l1xc3NDYVCQf/+/VnZqxe1tbUuL7mCggLS9+7BYbMRk9KFqKiGFoG19UYU7c7oEyWaQKpq011/\n63Q6Rtz0IB/PeYvYyHK2n6jlsCKSyGdfpriijJLP/s2EnFKGdY5gQLQ7+47sY+DI8bz6vQWfFBWi\nXGTmu+nk+iRQFxnMse37GCuRozwdKTPbGmxw/ty8GaNRT9+ug3n49ZdRv/0y0qgoPKot7HjrXeJy\nHQxPDUIul2I0WTBZBFQqFRqNBp3NTtW2bXj17k19ejpCXh7h4eHneFWe3UZRIpGg1+spKSlhzvI5\nDHlxEJ5Bnuxfvp/P53zG84+9cDq63GDeHBoayg1Tbm72nqurq2PNigVIHSUYzSJa7458/sOvlPp3\nQlCq0Xz3GLPeeZXjJ47j0TeByAHdmBYXQd7W/ZT9lM3sT74/x3Q/IiKCSXYbe/cdA2BQ51TCw8Nb\nvO/tdjtvfPQxu+xShHYRMOs7Hhs9HI1Ww6KNqzDbrHSJas/1Y8e3OEYbGtCcP+PZesbmTL1bQksf\ntW3FLFcXbannC6ONKF4irlZEsTFJdBY4/FP7eKnjnW3X80+jqqqKz5fMI2xKf+LDgsjedpBXZ75N\nbrtwou67u2GZpEQ+nzWHOT3eQa/Xk5eXx4Zd66kz1BEeEMHwgcNRq9X06zMQaHgB6/V6rh0zjR+X\nfEXmwSPU11oJ8+nK4MGDXR1EnnnnJfzGdEDprua1We9y4oSB4JcWI1WpsehvYtZbN3LduDFNNHla\nrZaUAcPZvn0rCrmSYcOHN3lx+Pv78+bzb3HixAmkUint27dv0r/bSRKd/XDhDJHe9uc6so7twmqT\nIK80MdzPC5VCwZ5DB7DfeAuxcXEM75/Kx798jcztCezmeshYyKAb72pyTq+7/nraJyZy8OBB9hjW\nEjr1VlSxcah8fLBeP43fN/zEsM4RVNWbUQW5ExAQwPib7mbu8rdw22Mg0xqM93vPIS8H95tv4tlb\nphPt70mp3kKBLJCTG5YR634KH3cpB9LNuHn44JvYE4lEgkeQBxUJCSi8PPltWwGBOgmnqkQSe451\n3V8fvPACj73xBoUff4ZGEHj38cfx8fHBZrOxasVSMo7tQKnSMGj4FGJjY7Fara7iJalUSkFBAYHJ\n/niHeAOQMiaFBb/+6IosOb1JnaSxuYKHrZtXkBRRQVKHUCwWG/e/MJ9TYSMJnvAQouigcnssH349\nh/HDBmLKLkMURTQBPnhFhuIZF9eEJDYmFTHRMcREN20RmJOTw7IdO6gzmUgMCWFk//6oVCoOHz7M\nboOVkEeeRBAETL368c6LjxKb2p7Yeyag0rlz5PeN/Lrid64ddXa3838GTtPvq7Xtv/KB3VjP6Oz0\nc7n0jG0RxTa0drQRxUvElSKK59MMOW1bLoYkXm007mjS3OR3Oc9fS/6OhYWFyMN98Y1oSEVG90nm\n4A+r4HS7P4fDgdzLC73FglQqpaamhmVbl5E4Mh4Pbw9O7M1g1cZVTBg9wbW8k4iFh4fzwIznKCoq\nQqVSERIS4tr+pi2b8RoSQ+KoHgAYKuvYO3MXUpUag9FIbU01RquVH7/5mCl3Pugii8ePH2f5z+/R\nvYONWoODOV8fYPq9zzWxatFoNKSknHHyd8JZrS2Xy89J7//+2yIoWc2MYUGs3pxB1fZ8wmOvR6PR\nIBXK2bt5E2Hh4dw07QbMFiu//P4EarmMZx6+vln7lMTERBITE9l68CAHsk5gDA3AahepL6miqKKW\n5fvyOGr05OZpwwAYOnQoJ7KPsu7XZZgCoqkutRMaHIabyo0qT19O+PbAM96fZDc1FQdmc23/CACi\nQmqZtyUT8cgRdP36Yi4qwn7kCCPf/BdKpZLa2loiPD2bVGnHx8ezbM4camtrm/QNX7ViKYaS37hu\nsDf7DqXzxQdPcef9b5CUlITdbnd17pHL5ZRlVWC1NLRTLMkuwdPd01Wh3ziq5HA4sNvtrgps57Zq\nqgqI6tZANBUKGRKZA7xDEAQQBAluQRFUZv5Bt27dWLtzC3vf/h6lnw7jvmxeuuthoKG94c9L51NQ\nnI23zp9JY28iLCysyXUoLy9n/vbteA4bSpCnJ4d270b480/GDxvWYGDu7eu6J5XevtTU1qJOiUHj\n0yBniBjYg8Nf/sq151zh/w383fnTWTXdmDRejJ6xJZLqdC5oQxtaK9qIYiuHkyQCF00Sr1ZE8ewi\nm6sFtVqNqawau82GVCZDX1mDt9aDot37qOqagtzbm5IlvzGqU2egwcbFI1yDt783CAIderRn06wt\nLk2XXq9HoVC4iJhGoyEmJuac7TocDoRG9jve4QEoqgsp3/4HVv9IZJk7iFUaGNdBw/qlC7hh+kNI\nJBJ+XzoXb3UpJos7g3qGIuwsZO+ePQwYOPC8x+ncN5lM1qwGNOPwNh69NhS1m5xQfw/kOgcVFRV4\n6jxRKBo0jU5vxJumTuaOW2+8oGjf4XDgYa7AZ/EmHNYaJHY71p8WMfiue3Fv357bT7fOcxqr33bT\ndFI6duPBt97Es8aEqp2UknkLSU1IYNK0WwDYunUrWtWZ86bTqhidEs+BWd9SOuc7qKnl+enTXR1j\nnD26z4ZEIjmn9/fxo9u4fog3f645QpLWikxXx2/fzMT9kRfx9fVFq9UiCAK9e/dmb9pelr30O7oQ\nDyqOVvLwzQ83ebk7o0oOh8OlXzt8+DAZGRkEBgaicQ8gLz+fDnEB2Gx2Qvx0CLt+wZzQHYlKjX79\nXAb374pOp+OVJ55l37591NXVEfvAdQQHB2Oz2Zj749e06ynSf3oP8jNLmLvocx656/n/Z++8w6Mo\n9y/+me2b3U3vjfRACL2G3hFQmoiCioooFgSvYMHe9VqvvSt2EEFQRBFReu8QIISE9EBC+mbr7O7v\njzBrNiQQMAj3d3OeJ48m7M68804777ec47FoOHHiBK7YGAyn3XciunXj0MJFjAMSExNRf7eE8gN7\n0beJpXT1SlJjYrCeKHcfS1VxCX5e/7zH8/831Bf1lqLOUkPU+dYzXs6L///vaE09nxutRLEZaNjM\nAi0r8dAUEatPEqUX2uWK5jTZ/FOIiYmhZ2gS2z/8EW1EAKaMQu64Zho4Xbz56ZeYbDZGd+zE7Tfc\nAIBKpaK23HQ6JSZQXV6DVlVHdE0mk1uzD6C6upqsrCwUCgXJyckeKeC+vfuw8o1nOOanR2Pw4sii\nLTxxz0y+//Urjh09TKfYIF64YzhtQv3ZmpeP2WymoqKCj5b+ibpzGvKjDkIWbeCeq9tgtZnPeoyS\n/Z0gCB72dwClpaUs+mERG9MP4aswcPv4TiQnBrHcKmCoqMR5soQdtWa6jZmIl5dXo1Z5KpWq0fSq\nyWQiQOdi2b96s2rHZgCsIxLp3bs3KSkp7s9JckM6nY6+ffvy4RNP8cTrb1BYVkaXdu159pHH3J9N\nSEjgq99UxBwvRatwsWbPKdIGTeSZKydSUlLi9my+EGg0OrbvPEQXHwed2vggmEW8HAr2bt3A2MnX\ne5DA2XfM5tChQ1RVVRF5RSR+fn4YjUaPekbpswBLl//Ii58vwZXcG1fuHwxPCsVY48uhrDzMVoH+\ng28kNqWC9z+5m1qrletGDeOmqdcBdU02aWlp2Gw2d1q7pKSESksxo3rVpdxj24ZzJKyEEydOeCxM\n1Go1Yl7FX+ekshLv09dnYGAgz915O299s5DSyioGJMYz47FH+XLZ96R/vhylrx7nkULuHH/tBc1n\nKxpHY00wkn+71EDV1GJbEIQWfV4+9thj/PjjjwiCQEBAAAsWLCAqKgqAF154gU8//RS5XM6bb77J\niBFn6pi2ohUNIZwjUtTaInca9WVdysvL8fPza7Gb22q1YrfbPaIG9QWgz5ck2u12zGYz3t7eLTI+\nyfmlPimqj4aOJmcbq0RuWiLiWFFRgbe3d6OExuVykZmZSVVVFREREYSEhFBdXe3Rge1yuThy5Ajl\n5eUcyT5CjVcVhkA91blGRvUaTVhoGDKZzC1BVFxczCdfvUpYvB2LyYGjOoLbp//Low4zMzOTH1b9\nhMVuZVD3vvTv15+Kigp++/INru4WglatorTSyIqjFqbecT+PPPsiP4jRaHoMwN9XSelPXxKf+Stv\nvrGgyaYFKVrncDjOmO/a2lruf3IewUMC8ArRsnXRWmIqrPTvFMexqgg6p/ZEBsR37ERMTMwZ25ai\nIjabzZ2SrS/o7XA4eO2ZudzYW0ZUiDe1Zhvv/HKSKXc/504FW61WbDabRyd5/bE3dn0cOnSI/zx/\nP2JtMV4Gf7r0GcO0W2f97ZTcofR0PnxtHmMjygjRqymv9SckthOZumTGXHP9Wb9bP0pkt9s9fIRr\na2vpPuIqXHe8hdI/BG+tAes7d/DJ4/cSEBDg7nr+5bdVfP3bDyj99KhrHTx611wPL227qR56RgAA\nIABJREFU3Y7D4UCj0WCxWHjuPw8xdlYqWoMGp+hi+bt7mD5xLhGnO7qh7hws+fVXDgkg9/VFOH6c\ngdFt0Ol0tGnTplHnFlEUycjIwGKxEBsbi4+PD1artVEZoIsNaTFyKbyX/+l9S+UKdrvd/beGzkaj\nRo1iw4YNLfY+qampcXfiv/XWW+zbt4+PP/6YQ4cOMXXqVHbs2EFhYWFdacjRo5esXhS45JEPQRBc\nqa7tl3oYHBR64nK5Lvl8NIXWiGIzUT/q15Lexw23DX+RxPoC0JcSZ0s9X0hqvCXH1RTsdjuiKKLR\naPD29nbbuEkk0eFw8OKbb7CxtABlgB/K7AJuHzsRP60ffml+BJ5O69WP1v3y21J6jFDRsXs8LpeL\nVUuPsHnLJoYMHureb2JiIg8k3ucxFn9/f5L7XcniDSswKB1UO7UMGHsDcrmck+WV+HYbg0MbSEl5\nNRafeAKiOp+1s9VqtSKKYqMLiMOHD6OIktF9XF3XdETbSL6c/jXjO0xndK9e55QpklJparXa/YJr\nKOg9bupdvPv+C5TnbKemykKHIWPd5ESKTOr1+kZfQE2ds2MZB5nQN5Cr+tXJ7Cxas5v16/5g6LDz\n06SU4HK52Lx5M7n5uSR1u4qdhzcz0M+XiMRAdp2w0qFX13Nuo6ELjBQlMpvNLFv2PTaZSHhCIKLD\nTllZKTrfECwWCxEREe6FylfrfqL7Czchk8k58PlSHnrsDmbdNo9eaQPPWHhpNBpGDriaVQt+ICxJ\nT0mOkaSw7m5SJzVMyOVyJo0aRXZ2NhaLhTXVtTy/bCXy0EhkOZ/zzO3T6dSpk8e2FQoFvr6+nDp1\nCovF4qEZ2oqLh/qLC2nBYTabsVgsLFmyhIkTJ7b4PiWSCGA0Gt3PsuXLlzNlyhSUSiUxMTEkJCSw\nffv2/yk7x1ZcGC7ZUuK/GRfT+URKKf4dkvhPObNIhBYur9S4yWTilfff5KOty1iw9xeeeP15amtr\n3ZE/p9PJu++/zYr9vyGL80I/sAfKmyby44Z1dO3alZCQEPexGI1GzGYzoihSbSwjJLwuSisIAsHh\nWmqMlc0ak39gML9ln+DtLYf56VAW1dXVAAzo1gnrn99iUMoJMhjwPryO8SOGenzX5XLx5TffknbF\neLoOHsVzL7+GUqkkLy+PvXv3kpeX5/6sTCZDtInu37VqNb4+fqSlpZ2XlqUkDeLl5YW3tzdKpRKr\n1UpNTQ3e3t4oLEquDY7k6Z7diMzNYPmihYiiiNlsbjSSeC6cOpFDSozhtMWaQEobHaXFuee1jfr4\n+POP+fzPj8jy288B406q/KLI1rdltz2E9qNuoO05nHMyMjIYd8N0ugwayeTpM8nNzUWpVKLT6TAY\nDOQX7SchEoybVqJWupAV7kPM3kdCQoKbzJWWluLTPhq13oucpT8xKKWWPqkVOCp+57dff2h0v/36\n9OfGq+aQ6jOGiQNnMvnqKe6on8ViwWw2Y7PZgLqUvVKp5NfsPPzuehBTZBT5ERHc/tyz5Ofne2z3\nj/VreWHRx3ydtZUXFn7E+k0bLnhuW3H+kKwDJWkzs9nMxo0b6dSpE6WlpSxZsgSLxdJi+3vkkUeI\njo5mwYIFzJ8/H6hr8ouMjHR/JjIyksLCwhbbZyv+/6KVKF4GkIidRBIdDsdlEUmU0BjxrE9oz4ck\n/hMkdu2GdVTHqOkx40o6TBmCtn88v63/w/3v23dspdh+gD6zupN2YztceZsR5FBcXobFYnGn+6Uf\nQRAwm82EhySw9c88bDaRmmoLB7dXERfjaYcmiiL79+9n25Yt7pe13W7nqTdewmfaAEZ89yQx88bz\n3EdvUFlZybTrp3B950iMz03C/NJUZg7uwlVXesqW/Pnnn7yyeDXCzI/Q3v89y7NrefjRx9n8/rvU\nfP8dm957l83r1gF1ncnaKh0bPt/EkU1HWfXK74zse8XfSuEKgoBKpUKv16PT6cjKyqKtaKRfXDSx\ngf5MTozi4Lo1GI1GvLy8zssrNzc3l82bN2N1qNifVX1ax9LFwRwjweGx595AIygrK2Ptrt+58uFh\n9LiqC6MfHEKu8Tg9h4xi0i13uh1vmkJNTQ233f8oBf2m4/v8bxzrMJGZ8x52E7Q69QEDDz/QhaSs\nb6mYPx7Nkqe4e8oEDAaD+/oODQ3FmFFI2bECwjUVhAVAZIgPg9KiKC3cS3V1daNqB23atKFXr14k\nJyd7eBNLZRNOpxOTyYTZbObkyZPIouMp3LQGe7togubdizisHwt+X+WO9FdWVrJ0yx90mHUNKdeN\nJOWuq1m6+Q9qamouaH7/m3Ep7QOlfUt6nF988QXp6emo1Wree+89wsPDue2221i3bt05nXOGDx9O\nhw4dzvj56aefAHjuuefIy8vjlltu4d57721yO5fLO+ZSwoHikv9c7rj8R3gZ4mKQHYl4iaL4t0ni\nxSZj9cd6KVNYTR1nWXUlPonB2O02ZDKB4LhwTh3NBOrGfrwwk64D2rKlMANZx7ZEdgxk+8JV9I2K\nPiOlK5PJ3KLhV42ZwOIlJt5+fDMKuZKh/SbSvh7pcDgcLF/0BfpThwnSyVm/wUnHK24gKDiYarlI\n+z4dAQhqF0t+pD8FBQWkpqZy/5x7mDd7lvuYGmLD9l3QaxJK/zBkMjnqwTex8f2ZPH/DRFQKBVZR\nZOHqVXTo2hWNRsOtU2awftN6rLssTOxyDcOHDcdoNDY7Si1FDv38/M4gfXK5HJ1Oh12mON017SS3\nvILjx7J55+H5WIDOQ4cycuQVHjW3DeFyufjwnbfZsOQzggwC8gA/0hVBZJUW4HRBQJs0BgwcfNZx\nNgWbzYbKS4VSrXDLl2gMKnfTiN1up6ioCJ1O507L1Ud2djZmn3B8utVFdn37jaVs47cUFRW56zoH\nD5jEL2veYsbNSVSW28g9HMTkyZNxOBxukfOYmBgm9RrOF/9eTJg6l/gKNVf0H4qAHIQ6EXRJZsdu\nt7uldsrKyjCZTISEhHikpxt22YqiSHh4OLavFlGT0o6g1HEYj2cSGhUBCg0lJSXo9fq6hhw/PWp9\nXWRS661H7uuF0WgkODj4gub47+By8Xq+HODj44OPjw9r1qyhoKCAb775htmzZ/Pzzz97RP8aYvXq\n1c3a/tSpUxk9ejQAERERHpHmgoICj9rXVrSiKbQSxWbiYpMvqejZYDBcyuLiRtHw2KVU7IUS2osd\nUYyPjGHLpl8ITIxC66Uhd9NBBkaluJsTvNR65EoTfWIT2bJ0FQVHywjOCeD2x2Y3WWcpNeBMu2EG\nonizu8mhflfs8ePHUZUeYUyPukhYcq2Zb1cvY+qd83AarRhLytEH+2OrNWMurmuIqr/9phDgY8CZ\nkXXaBQKsRccIVSpQnS7IVysUeAkCx48f56FnX6LYAk5jJTdfPYahQ4ayeOHnHN33BzLBRXh8T6ZO\nm9lkGnrNH2v4cOGHyLUyvOXePPKvR90dkxLatWvH+vBYlmVmE6JR8PG2gwwJDCIoaxdqtY3fPt5K\nxu5NzHn4WXQ6HVarlXV/rqHiVBHh0Yn07def3Tt3sufrT3ioVwAajYL1J6o5LGgYMO5+oqKiCAwM\nvGAyERwcjL8ykLVfb0QT7uDE4RMc25aP7RobRUVFzLj3AYrN4Kyt5KYJo/nXrDs99uXj44PpRC6u\nUyWo9D4o7CYc1eUetV+dO3dGr59PxtF0AtReDJ9eV0sok8k8XGCuGDaCXt16sPLHhQT6lXCqwsHG\n3XkkpY5ApVK5fX4l4rf8pyUcOLYOL4MCp8mbGdPubZTMSaUBCQkJzJ9yDfe++zblQWr8vA0M7d+X\nqtXr3SnrgIAAFJUWTh49TkhSLCeOZKOqsePv739B89uKC0NjBFkURfdiLDIykgceeIAHHnjgb+0n\nMzOTxMREoK4uUdJfHTt2LFOnTuW+++6jsLCQzMxMevbs+bf21Yr/DbQSxQtAS5NGq9WKy+VqMZJ4\nMUmt2WzGbrdf8FgvdiTB5XLRITWV/oX5rH9pCS4grV0Xrhg6HIfDgcvlom+vgSxe8SWGSDntDe2J\nCpJx9S1TCQkJQRRFtm/fTm1tLe3bt290VS/JYKjVajdhrK2tpbKyEi/FXy8EvUaN016ORqPhzkk3\n8P6TX6JPicKYWcSkPsObtZp3OByMHTOan/98mBNfPopLo0d/bCPD+3Qjo6SEuIAAsk6dwuYfwMvv\nfERh6kR8B0/BUVvNZ+/NROVyoKvdxGM3RiGXy1i0eiurV0Vw5dirEUXRHaUCyMvL4+MfPmL0v6/A\nJ8SHw+sP8+KbL/LOy+94jEmtVjNj3oNs3rCB9JzjJFS5aFN9gs4ROvwNARhPVHPCeowNGzYwYMAA\nFnzwBiH2A6SEadm1dg1F+cdxmkXi1XICvOsIa4q3hoyKWry8vAgKCqKqqoq3P3qL/RkH8PP25c5p\nd53RoNEYbDYbSqWSuXfdz+13Tcbf30K7GF/unNeB5Yvf4nCxksKUCfgOnorDVM2CD+6kR+eNHv7c\nRw/up7vOxvZXplER2wVlfjr3Tb36jG7ihIQEQkNDeeXdN/jPVx+jkMm5ddL1XDlqDGq12n19qFQq\nJk+dwcGD+8mtMRLXMYbktm3d9ZzS/B84cIBjJRu4/v6OqFQK9m/PY+GSBcyaOc99rzmdTnbs2EFl\nZSUJCQnEx8czZPAgvgjwY+HObXj5BVK+ej3dDX54e3vXRVM1Gu6ePI0Pv/+aXOvv+Gt03Dnphkvi\nmnSpcblFM00mU4ufh/nz55ORkYFcLic+Pp733nsPgJSUFCZPrrMtVSgUvPvuu5fVXFwqtOoonhut\nRPEC0JJETIrOSbVIlzMsFgtWq9XD+eJSorFucZOpTg/xuquv4ZrxE92+rJJ/syAI+Pn5cf3EW8nL\ny8PpdBLcNRh/f39EUeSB557joFqNPCQY2Q8/8OKdd55BUA4dOsSeAztQq7T07zOQkJAQ1Go1MTEx\nLF2j4vDxIoL9Dew+forItr2QyWQMHzqM5MQkCgoKCB4S3Khgt8lkYs2aNTidDpKSkklOTqa2tpbQ\n0FC+++Q91q9fjyiK9Jxf17n4x9KlbCgswC8qmtETJvDmdTehH/8SAHKdN87k/hxK38ydI71QKuse\nhj1TfPhx30HmPrKf39ZtRCaTcddNU7l9+s3k5uYSnBqMd7A3NcYaQjuGsuW9be6oV31otVrS+vWj\na48eLMnPx1Sai0alwOGCIovIzuMnWLfkc/Yc2IOyZBcTx7VBoVDQId7FM0t+p0OvsdiUOrILqogJ\n8+Z4iZFKWbBbTPu1d1/DFGdk/JxxlGaX8OIbL/LKI69gNpsxmUyEhYURFBTkHk9xcTFzHn6S9KPH\nMOi8mHPL9QzrGc28GdF/2RnuLeLQ+jz0Y/9dN0de3jiS+pOdne0miiUlJZTu3cjnt1zBjmP5ZJ/M\n45DKwI3XTW70Gnzvs4/IDbUzbP4cTOU1fPr0IqLCI93XTP0u8r59+2Oz2dxOHmq12uM+OnXqFNFt\ndWi91LhcLhJSQ9j+81EcDoc7Rf3iW2+zrqIKIToG4aefmX/NJAYNHEDnjp0IDw2jtLQUfVQi0dHR\nHgLQoaGhPDXnAbcSgCiK7lR8Ky4drFZrixPF77//vsl/e/jhh3n44YdbdH+t+P+PVqJ4CWE2m7Fa\nreh0Onf3cEvgYjiz2O12d43b3yGJFyva6XK53KRb0o/cvXcP2w/sQaNQMrB3P3LyczhZeZIg7yD6\npfUjMTERk8nkbsBYu3YtB3VeRN33LwRBoLJ7N17/6isW1COKu/fsZvFvH9J5eCg1RhtvfLSZf818\nhKCgIAIDA7lq2t1sWLUcY2YZwW1607vfICwWC0qlkujo6DPs2CQcOnSI2x64G3xEVOZaUoICGDP2\nHoYOG+n2mB0zxrPJZfLtnn7MsZERHD24AZ/eV+G0WZAd30F09wSO5h+gc9u6SEpmnpEtB46zTxWH\n73NrcJqNvP3BbGKjIoiOjqbsWBk5R4+hstVSkVtOZW4hr7/xJk6ZnF5dOjF0aF3dntT04+fnR7ex\n4/j56BHyDxxF8FGxrNpE+IR29BjcgfRfDmPMLECuiD9NeJzgctCpRw9y0wfzy5b1GA8XU+kfwNwX\nX8Tb2xtRFNmXsY8bH70ec7WZwxuPUlBRyjOPPsqwIH8C5HJ2IGPgrTPchHv2/Cc40mYo/jd/ijn/\nCM9/OJsRqVoqqqz4+2oor7RQXiUQFx3JsfRNdXNktyLP3k7kyEnuObTZbOgVchRyOWnJMaQlx/DZ\n3nxsNluj2p/7MtNJfXYyMrkcfZAvAQOSyTiaccbiQhJklslkiKKIQqGgqqqKzRt+x2w8RXBEAv4B\nYWzcVEvPwXbUGiXHDpYQERKDUqmsm5N9+1hbUkrYI08jKORYho/k1WcfZ0D/fshkMoKDg91p6pyc\nHHal78LlctG5bWdy8vPYdywDP52B0UOG4efn948oIzSGyy2q90+hseNubBHWin8WrRHFc6OVKF4A\nWoLs1I/OwcWv2/s7EEURURTx8fE5r47WfxIWi8WdEhcEgQ2bNvLF5p+JHNkNc1UNS59+gCGT+hDf\nPZ6c49nk/5DP+CvGYzAY3OK7NTU1CJGR7oe5V2QkFadlbCT8sWklA69NIDqx7oUs2tLZvnMbY0Zd\nCUBYWBiTb77D/XmHw4HNZqO2ttZDU63+C0MURR7691NEzupPzysSqC6qZM8jC1m18nNGjBzd7Dl4\n4dEHuPVfD1GzazliZQnj+3fjnntms+Cj//DG4kMoFQJGoigzF+A16kZkKjUylRp6TWDbnv2MGDGC\nTuGd+fW+JcTFB1F5tAJXjYL3dpZhSEnj2/98yZy8Am6cep1H00/Xnj0JePk1Hn/8Cdbt3o9DpaZj\nVDQJXeKITonkldUHWbk1n/Yxvmw/WoEhrD2vv/sRuw4ewd8vijvmzGPw4MHumjq5XI6XWktRRjGf\nPfQjZbGDqI3ryPHVixjWVcngzh1Iqanh58XfkTD/YSwWC4cys/GfvgAQUEcmIyb3ITrBi7e+2ktE\nMBSWwPAxM5kaHMr0OQ9Ss3s5YlUp4/p2YfDgv5pmgoKCqFT7criwhDaBvhwqLEUZHO1Rn1gfAT7+\nlB0rRBfoU9eNnF2Cb/szPbnhr4i35Hqz+peFtA0tIiJex4Gjqzhyoj0pEUP4/IU16LyVyGy+3HbT\nLe6opMViQREWgXC6mUUVGES5XcRqtXqQ2NzcXL5f/z1x/WORy2S8uuBVypV+xF1zBblFJRz85H0e\nnHEnOp0Om83mJrD/C7jcSOrFiCi2ohUtjVai2Ey05MPFYrFgsVjc0TlJGqel0RIPRSlVplQqLzuS\nKBH2xlLiq7auI+m6wQREh2KuNnIgTot/sj+hbUIJiQpm7efrMBqNHg0l7dq1Q3jrLWp790ITEsLJ\nJUsZkprqsU+HQ0Spktf73UFBQQG5ublERUWd8cKVy+VotdozBJvr2+RVVFRgVriI6VBXs2gI80Gf\nGIoly+yOPjUH8fHx/PztArKystDr9cTGxiIIAjNnPUhubi5Op5Po6GgOP/AIRbmH0US3rZOjKThM\nWJe6NO7wwcOJOX6Mdt5+ZMeU84hDRHPlPPwiI7F3GsKbr07gmonjz+h237x1Gzur5OjmfEV5eRFL\n3nuVwBA/4rvHEBQcQbn/EH4+Xkx4wiB2/rKOPYpkvK6dzfHju3jmP+/TuXNnt2OGIAjcNuV2nrj3\nCYoCu6AcPgMvUYYuvhuvf3Avkzp3IFCnw5xfjMvlQq1Wo9OosBYeQxkWBw4R18ks0qbfQVzcjZw6\ndYrAwEB3h/PPC8+cIwlqtZoxN97KuhXL2JBVTGB0CmPGjGuSSN11w6089sbzlG7PxFJaTSz+DGrE\no1uKeEtSN4WFhXgJhfTuWtcoFBHmy4eLMxl+xYP06F5n7RcWFubhnJKUlITi628xHstAFxNHyc8/\n0r5NFHK53IPw7T+8n5g+bYhOisIFOGIV6H2jCU1NhtRkjpwsJzs7m06dOrmldiRh8XN5fbeiZWE2\nm1uJYisue7QSxQvA34ko1ieJF4t4tdSDXoqESV2ZLYGWTj1Lbgf1U+J1WnzOOn8oARAEXC7chNxq\ntSITZGdoCyYnJ/Po5Mm88cprFJtqGdCpM7MbpHfTug7h98Xf0vuqWE7ml7Pug02M71nLtu+PsjOs\nI+Mm39AosZO6VJVKpVuyxWyu83NWq9XoUHDiaAXeegHBYqVgbyFjug4/75eITqejY8eOHn+Ty+XE\nxcW5f3/onjuYds88qrN34jJVk+Qs57pr7wIgPDycPd5+hPl4k1deiVWlR6WtIysyjQFRFM+wIANY\nvmY9qjGz8UrsjLEoEFPXqaz6bCExq7MYO3QsU6fNAKCqqoqHX/8M3wc/RJDJUAe3wXhsPRkZGfj4\n+LhJ9ID+A5iwZwJvHrfhYwhArdZQbqyk1mbD4XSytaCQyNSO7mv9uflzmffCLKzJfaA4k5Ed2tCj\nRw8EQThDAqexOaqPwMBArr55Bi6Xi7Xr1vLK+2+iU2sZ1Lsfmzb9xMmT2QQHxzBlyiySk5N556lX\nOHLkCFqtls6dOzd6/ut7X0sNRDa7y72YczqduFwyt2SPtKiorq52LypCQkJ44c6Z/PvTDyiprKRr\nUiIP3nsvKpXKXcfocDhwupw4xL/qD11OF0IjVopS7aTUcS2KotsBRrJtbCWNLYc6L3nP89Caer70\nEFtTz+dEK1G8QFwI2bFarW4P5qb8iVvywfx3tid18ur1ejexudwgSQo1nE+n08nwHv35euGvRI/q\niaXaiCzXSsnBUtRONeX55YRrIhqVHRkwYAADBgw4Y+62bN3Cu98tosZUS3xAIBm/OMg5mMd9I7uS\n1ikJl8vF8m17SU/vcs7uXCmqJL3g7XY7/7ppJs9/9CZrFzkwFZSQpAlBXW7hw6efotfYcXTq3Bmo\nO6dlZWUIgoC/v/8Fnd/4+HiWff4hu3btora2Fj8/P44ePUqHDh0IDg6m3023snzJYk6hQl6wB1fG\nesxR7TCtXcCIQf0aldbRa7WIVaUIgkBEWAQFW4zoyrVMnjiVEcNHuD+nVqsRnCIOczUKnS8upxOn\nsQyDwYBer/foIh85ciRfzrkf8UAvHGFtEFa8R3xUOO/nFxOZ2pHhE+rsz4qLixFw8fhdN6FQKAgJ\nGUTPnj3/9r20ctUvfPTH98Re25/ismoWPXoPT8+JZNbd0ezbn88nnzzH/fe/SlBQkEdjTUNIUfn6\n0kshISEovdvz67oDRIdp2JVeRqkxiDV//k7P7r2oqanhpY8/oejUKTrGxXH3TdMwGAy0bduWr15/\n7QwSJ5fL3Q1bXdp3YeHqhXWLJZkMebaDqpP5nGx7lNqiEnTZJ2k77K+6zIaLGIkwSo1g9b2+WwKX\nKv17OZb3WCyWFvG9b0UrLiaEc9w8l9+ddYlQv0vQZDK5dfWaC6vVislkapIklpfX6eq11AO0oqLC\nret2vhBFkZqaGvR6vdu6zW63n1VAubmQ9OWaqvlqLux2OzU1NWg0Go/0nMPhcLsa7Ny9i53p+9Aq\nVQztN4hj2ccoqy4jLDCMnt17nuG12xSOHj3K3a+/hN99M9EEBVD46TdM8AlFV3uSySkKfPR1EYHt\nh/MxJ4yjbz2plebCYrFQUlLCyZMnyTyUjnbXDkbERGMWHfx0opRB98wmIiKC519/iZ3Z6QD0iE9l\n/r33N/s4Gjuubz55ho5xNsqqnJgVHbhj1kPu7Ul+xc//510KS07Rr1tHHrj3nsabOvbt4+b7HsHS\n4xqwmfE5uJLvPn670eadN9/7gA9WbMWZOgohfy89vGv45O3XPSJxkubl7t27efXDT6msMTKsT09m\n3+GpAZmens7Cj5+hY7RIhVGG3dCZ2+++/2850UiYMW8WobOHEpAQgdliYf07C7g5+BRTrq1z43n9\n9WKunvTiGTqT9SGKIiaTyUMGR4LdbmfP7p1kHTvMbxt/pdfENoDAoTXlHC6yw823YUhuS/mqX+iY\nfZTXn3rSTTplMpmb3DV2jxcUFLD7wG4cDgepyalk5+aQnpOFv96bMUOHo9fr3Wn7xiBF5aVIo0Qm\nWyI1bTQa/3FfePjLcrQlnmMXAilaXv86X716NQcOHOCJJ564JGO6xLjk4WpBEFyRrsxLPQwKhERc\nLtcln4+m0BpRvACcb/rUZrNhMpnOmm6WttnSEcXzhUQSdTpdi7xsG6IlUs+iKGI0GlEoFB7zKZFE\nySarZ/ce9OjWnaKiIoqKimjfrj3BwcHnPce79+xBNqwfvu2TAQi/+Tr+fOwVZowczq6sTfRrF4bV\n7uJQiUjagPDzPh6bzYbNZiMyMpLo6GgOrf2ToaHBKACDQk6KHHKPHWPj1s0c1lYy8KPZAOx8fQnf\nLf2eG66b2ux9HT16lM3Ll2GrrWVf7iHuuV5Ph6QQXC4Xn3y/nx07dtC3b1+g7lwlJCTw1r+fQaVS\nndUrulOnTix67zV+W/MHSrmcq+a975a6aYh77ridlMR49qcfJqJrJ8aPH39GulbqEu7ZsycLe/TA\nbre7FxlOp9Nd37ls4QfcNERNu7gIXC7499dbePXRh/HTaglNSmbYuPHodLpmz09TkMtliCLYbHWL\nRbNZpLLK4bFIaQiHw+HRVd8QSqWSnr3SOHBkP0NuSaZz37oO7qKcdZywBdE+re48hFw7lX13TMds\nNqPX6931rna7va7BRaFApVJ5kLjIyEgiIyPrnIiOHyciNIxunbu4Cdq5LOLqu8DUj3xLqWnp3mtN\nTf89tKaeW/HfgFai2Exc6ANRqvOr3137T+BCxutwONwksaF12OWStqlPZCXvXahXl3iaJEJdCvqT\nLz9h+Y6VONQC5kIT86bdw5WjxzS1+Uah8/LCUVDg/t1ScgqDVkvnHn14/OFveO/H33E4FQwffxvx\n8fHntW3pZa/T6dyRIa2PD1WFVQT7+OByOimz2dDIZBw8doTwsanIFTJAIHxAKhkJqK6FAAAgAElE\nQVS/ZTV7X0VFRaz98H1G+xjw1qkpzDhKVmYMHZICEASB8CCZ2x8Y/urSVSqVZyWJEpKSkkhKSjrn\n5wRBYNiwYQwbNqxZ45a8pusTFklOqrrqFJGhAYBArdlOSXoOVwR5k9YhlV37drLCVMu1M24/Y5sF\nBQVkZ2cTEBBASkpKo/fLhGGj+fCt74m7th+mihrsGwvJTFHzwYdHOJRuJaX9uDNEuCU4nU53fe+5\n7nubaMHPoKG2xsKpoipcLieOslJcp1PH9qpK5E6H+xzUTxW7XC43gWvYJGU0Grn/6cfZdSoPpb+e\nSJeWp2+/l5iYGLcuoyiKyGSys2YeJNKuUCjc9Yw2m82dmpaaaJrzzLlcniOXC1qJYiv+G9BKFC8A\nzVmRw/mRxEtNxiSS6OXldcGpzObiQo+z4Rgloii9vOqTRIC9e/fye/ZaOjw4nKCEaHI2HuaNdz+l\nQ/tU2rRp0+z9Dh48mCWP/c7x1z9AFhyA8/dNPDDjDhYt/YK0G2PoPmgI1ZVmfnxnJzk5OW4/4HNB\nFEXMZvMZEad+V17FinffoSA3H5PDSXl8Etf06cPhrEw27TpGaOcEBJmM0r1ZtAtpel82m42ysjJ8\nfX3RarXkHD9OKk4ifX0AGBobz7JfjzF6eBxllRa2HRGY2i/RPacmk8ldT3m5QIpyyWQyzGYz8W27\ns2LDBsYNjGTXoVI05U66945Hr1YzoE0kbx45fMbLeP2G9by44F0MHdtgzDrBFam9mXXbHWcQndEj\nR6HTerF27WbC1Vrmv/oBm9evJW/dCoYE+FOdd4Tff/mZYaM8Fx71ZXCacy9169ibz795E72qlOgA\nO6d2lxFljKPo5ecR4pMQtm/mnklXNxrhb4pEC4LAews+ZZ+8hs7vP4hcoyJ/xTpe//oTXnvoSXfa\nWUrxOxwON9k7F2ls2JRlsVg8yGRzyl0uVY3ipYyANqWj2FqjeGnRqqN4brQSxQtAc0id9MD+pyOJ\nEs6HeEoETKPRNEoKWpLEXuiD2ul0UlNTg1ar9YisNEUSXS4XxSeLEYIUBMbX1ZAFt4vkaKCWgoKC\n8yKKer2et595jnXr1mEym+hy/3wSEhL4/Lt3mHl3Lw5uz2X5j8coyK4g8PvvuX/u3HMep5SW1Gq1\nZ1wf4eHhXDN3Hjk5OQQrlYxISkKhUNCvVxpb3n2DLRmf1R2P3YuxD4zBarWeUat28OBBHnv9RWxa\nGYLRyoO33YOXRkuJ468FTkR8Mo5MgfnvnESj0TF6/L+Ii4tzS7lAnQOLdCwOh4PS0lLUarWHrNDZ\njjE3Nxe73U5kZOR5pYDtdjunTp1Cp9O5tUbrb1eKwt5w8x18+6WMRz7dgtkObaJT0Om8cDld1Npt\nuOQKD4LlcDh46aO36fDSTfi2CUW0WFk15wOGZwymbdu2HvsRBIFBAwcxaOAgoK62rjJjL/OGd0ej\nUmITRT7e+BtlPXu7I4sNZXDOhoqKCt5Z8BlHCwsoyjjB1H5mEgO8GXvLANbvc2H3ikKrgqTpN7v9\nes+G+i4wDoeDQ8ez8O6egEKnQRAEDB0TKV+fSUVFBaGhoe7FidPpdJNFaY4kMn42NGzKkuoxW6V2\nmo+WqNduRSsuNlqJ4kWA3W7HaDSi1+ubTRIvVURRImBqtfqyTYGcbYwOh6PRF5LVaiUoIAjLWhPV\nhaX4RAZTvDcXahz4+/uf9xj0er3bGSUnJ4fFX39EdWER37yxlt8PWtDMmEF5qYVFP6yi0++/M3L4\n8LMej5SWbKoO1M/Pz03G7HY7b7/7IrWWvXRNFTieqWTKdXfRvXt3t2uO5P6iVCpxOBw8+toLRN0/\njpDOSVQeL+LFR97mo+de40B0DL9k52CQy0gX5Mx+9iXi4uI85q+hlAtAZWUlH779AraqbKw2F+17\nXcm1U25qkgiIosjXH39M2cGDaORyzD4+3DhrlrvTvLi4mKKiIry8vEhOTvYgJcXFxXz49jOonKeo\nMbkYOOomRl5xpcfcSQRboVBw68x7cbnmIIoi33z8EYsPHyBcLuOI6KTLNVM8xmgymbDLXPi2CQVA\noVGjiwmmvLz87BcAddEfnUJAo6o7ZyqFAm+VHKvVeta5a2p+5j77NDld2uMz7hZOLF3CxswtTL9u\nCAqFnOMn8tHFdKBbt27nHFdDSNG9hOg2ZGVkYy2vRuVnoGJPBhEOGb6+vh7zLaWe5aeFvOtL7UgR\nxvNNTbdK7TQPrYLbrfhvQCtRbCbqP+TORurqk8SL0QzSXDSHeNYnYOdKf1wqHUWXy0VNTQ1KpdJj\njJImmcViQRRFD8cTqUu7W7dujD0yiq/uX4zSX4e9zM4NwyeeETk6HxQWFrLy2/8wvL2K5KviuePd\nPyi/6R4MPhH4BvpiCI7hx59+apIoSkRHisQ0B+vWrUVj2M3Me+sI3do1BaQf2kafPn0A3LVqUrNH\nYWEhVo1AcKe6NLJvbDjqNkGUlpYy5a67SU9Px2azMS4mhtDQOsIkiiKZmZlYrVaio6Px9fX1uOaX\nLFpAp8AsxoyLwGZ38tbSZezYkULPnj0pKyvjwL59AKSkphIcHMzevXsx7t/PsJgYiisrOZyfz7Jv\nv+X2OXNIT09n9fvvEwuUOxzs79GDa266yU1Gvvzkda7sUknvTuFUG228unAB8QltiY+Pd89dw3tr\n9+7dPPnmy1hlTgSznZvHTWZQ9+5ERERQU1PjbvjQ6XSEeQeQ9et24kb2oCK7COPBfGKnxJ7zPPj6\n+mL3DmZvbjHtwoM4drKcao2vW6exMRmcppCdnU2GqZbwyRPRaNSEXH8tBx/cRX5xNQF+WjLzXYzs\nFdKMq6Np3DblBjKefYr0eW+BWkGAycW8uY/idDoxGo3uekZp3qX/1pfakQijKIru5pXzSU03lNq5\nFNkVCZdj6tlsNl9WpR3/i2hNPZ8brUSxBfF3SOI/HVGsT8DOtaK9VA9XaYwKheIMkihFEg0Gg1t0\n22KxIJPJcDgc6PV65HI506dNZ9TwUeTl5REWFkZUVNTfOp5DB/bSO8ZFu9ggIIihXfL4rlYkMiQB\nnc6Lsrx81MrGb6vzbQ6RUFZeTGKSxj3uxGRfdm/J9/iMIAio1WrUajURERG4aiyUZ+XjGxOOtaIG\nU14JwcHBqNVqunbt6vFdo9HIvKceJc9RjQsX0YKBV558ziMlVpx3lIkj65pe1Co5nWMVFBXkUhIT\nw5evvkpsbS0y4IuVK7l+7lwqy8rwUyj4Zf8Oys2Z+OqdbP5lP0PGjGH1V19xlb8/gaclWpbs3Mmx\nvn1JSqrTozxRlE2PSXUd0zqtgnZRdY04oaGhKBSKM+auoqKCx996mfgnphDYLoaibel899bPTJw4\n0V2HJzV8OJ1OHptzP8+88TJ/fvIbXgoNj94xh7CwMFwuF/n5+YiiSGRk5BlEXqFQMPGWmaxaspA/\n03PwC4tk/HXXoVKpEEXxjKakplBdXc2HC96luCgbU/YhvA3+hAaFcLIWvlx5AoPBj75DbiAyMrLZ\n10hjCAkJ4cOXXiUzM5OamhpSU1PdaXypntFoNDZqLSlFERUKhQdhlJ5RzalFrL9diTRKJQ12u701\nNQ1n2C+2ohWXI1qJ4gWgMVInSbZcLFmZ88XZiGdDAnY5PqxdLpf7Jebl5eUeo0QS67scSMX8VqvV\nXVhvMpnIzs4mKy8LnVZH7x69MRgMrPp9NYdzsgj1C+DKkaPOuz5IJpdjq+d6cUXXNqxYtJKqoFCq\n1WrkK37ipnvneHzHarVSUFCAIAiEhYWddwQhKiqBLduX062niFotZ8vGUqIiRzT5eb1ez8Mz5/Dv\nJ95B1SaI2pyT3DRyAj4+Ph6RIQlfLvqG0iRvus68AblcTvp7y/hi4dfcfdtfntWBoW04kLWbof5a\nRNHJxoNGqr328Pufa+lUU0vP9u0B8CouZvOaNbTv3p1fSkrwch3hwat9qbDU0qFGy3tvPoOfqMP/\ndI2oIAj4nW5Mqaqqwmaz4R8YweotBXy7qZijRSZqa508FHISQRAaXdTk5+ejjA4ksF0MAOG92pP3\n8a+cOnWKiIgIj4YPSVrnjWf+jcViwdvbG7VajSiKfPjR65SUbUXrJcNaG849s548oxbT39+fKbfd\n5fG3s8ng2Gw2CgsL0Wq17ujtdz98S0QfOUP9QtizZBGlMYlU78/h6l79uHfWPajV6r/l2nTgwAHW\n7tyOUibnioGDSExM5GD6QVZvWIteo6VPz954e3ujUCjOai3ZkDRKZQ31f4Bz1jPWl9pRKBSYzWaP\n1PT/itROazPL5QmHszWieC60EsULRH0SVl+y5UI7hv+piKJEEhsSsH9qbM3ZliSMC3ik8RojiRKk\niJFer0cmk7F9+3ZW7FlJZK9o8qqK2P3Fbny0/my3nySkX0cyjhWw981XeXre/PMibp26dGfRJ38i\nl+WhUSk4UCzn9Qcf5nBWFqKxmi63TuePjav4dvlnxEYmMSBtMPNffY1ShRJHVSXThg7lzlunN7rt\n6upqnE4nPj4+HuclrXcaBQUTePbRH5ErXISFdGbG9LNrJw7o1592yW05ePAgVZ2qCAoKwmw2u+dP\nIk4ymYyc4kJ8r0hALlcgkwkEdE8m96cjHtu7+rrpvP9GAbuzisg7WcO6fBOxt/pSbZSz64tdxAcG\nkhQSgpdKRbnFQtu2bYlJS6P2yF4KLbVszpGx+KCJk/ajGKwqQmtqGN++PaVGI/kKBeKBA6z+8EPU\ngoDLy4u5n2YTfPtwwvukIBaY+OTj7xg6dGijDTFBQUGYC09hqaxB42ugpqgUR5UJH5+67u6srCwK\n8vMxeHvTsWNHd9OWJLFUU1PDxo0bcMo2Mv+JOGQygVUrC1my9HNm3HrvWef5bDI4xcXFzH7qSU4q\nFDirq5mU1oc5d9xB4ck8eoyIpM9V7dm44gA7Nqwh3BXHY/fN/dup2T179vDCsoX4jB2GaLGy/r03\nuaprT3bXFBCc1h5zeQW7vv6UOTfOQK/XN2ktKV0jDT3eJcJXZznoWc/Y3K5pyaygKamdi2VteqlT\nz42htUaxFf8NaCWKF4D6D5uWIIkXA40RsvpRukvhjNAcSOlZp9OJwWDwIInSy6nhuBuTmVm3Zz09\nJvfCN9gXh8PB1uot/LBwFSM/fwKVVkNk1xT2vPat27quuQgMDGTy9Hns2bUVp93OyOu6EBsby6BB\ngzCZTDzx4kMkj/CiQ0oM+9dncMvc5chnzMZ/+AhcZgtfPjmf7h130LNnT/c2nU4nPy5aRPaGDcgB\n/9RUrpk+3f0CEQSBydfcwJjRE9yWhc05d2azmT3Ll5NitXLK5eKb4GCmzZ2LTqfzSDvGhERweO1+\nInu1x+mEE3/uoXeM55wEBQXxwGOvUFhYyMdffU7oECX6fu3wcrlwyVx8vXgHd2m17KqqYnCPHgCM\nueoqPs9di92gZGl2AYn/nkyMVwjkG/niqYWUnwhA5+dH8siRHF+2jKnR0ajkctZkZiIPCKDj1KsR\nBBnKJAXpa4+Qk5PTaCNSWFgYN4+ayII576JPCKf2SAFzb5qJXq9n2+bN7F/8BaleMnIsIod3dWHK\nrTPdaVWpAaOi4iTJKUocDhGXS0ZKqjf7dh4/6/yeSwbnubffpmTkCELHXoXDZOK7x56k+6ZNRIRE\nc3R3Jv2i/Oh3ZQeqCs0MSrgShUKByWRix/atmE01xMa3JTk5+ZznuT5+2riWgGuvIrhTCi6XkyyL\nhR9++JXhz9yFd1Dd3KXXruPIkSN0797d47tSF7PUNS3JezXmAtOwnlESu5f+vynSWP+Z1FJSO//N\nMJvNrUSxFZc9WoliM9FYM0tLag9e7IhiU1G65uCfrJ+U0lL1yZBEEhsKakPTMjMOh4hCpQQE5HIF\nGi81MkFAkMkQRREEAWQXdlxBQUGMuOKqM/6em5uLOtBKtyF1vsyDrunIG//eRFKPHsjlCgS9Hjp3\nIz8/34Mo7ti+nZq1a7mtTRvkgsDv+/fz5y+/MGrCBI/tn6/DyPoVKxgkl5N8Os27LieHXTt2MGTY\nMHetn9Fo5JoJE8l+63U23fgCgiCje1w7pt517RnbU6vVxMXFcTznOPbYNqitVmwOBxi0FMhl7NLr\n6TduHB1Pe13HxcUx+KpZvPTms9QkhGPVBBIZ2QZlrJIsw3Jmv/giGo2GdevWES2ToTpN8juEhWE7\nuh9XtRlVoA9Omx1z0Sl8fX2bPNYpkyaT1r0nJ06cIOr6qLo6TZeLjT8s4s7EMLy1dbWKnx/aT1ZW\nFomJie7vCoJAVHQCu/eK9OlXd01s23yKQP/+jUoPQfN0JjPz8/Cbcw8Aci8vhG5dyc3LY/KEKfzn\nvZf5dv9G7BYHKVHdGDhwEBaLhS8+eZ14nzxCfJSsW/4z1YOm06Nn72afc6fLhSCX4XLV1QQqVUqs\nuE7fC3WQqZTutHFTkMvlaLXaZrnA1O+KlmoRJZ3ZxqR2Gnv2/H+X2pGeM42pM7QSxUsLUWxNPZ8L\nrUTxAuFyuaiursbLy6tFutZamozV355EEhtG6S4FznacZrMZm83WbJJ4NpmZnu17suXH7SQPbIex\nsgbj4RpGpA0gfcEKwvt3piwzD/2JWkJDQ921WedTJ9VYZFOlUmEy2nA4nMjlMsy1FnQqBabdu9EP\nH4nDZEI4sJeI66d4fK8kN5couZwKs5kALy/a+/uzITu7WeM4G6xGI4Z616a3SoXx9GKhfmONwWDg\nxcefpqioCLvd7u7idTqdZxAkURRRV9VSs3gTNSEByORySr9Yw6xx1zNj+q1njGHQ4KH4+gUw7+3n\nCA+qaxAp3pWBn97Hfd/4+/tzxOmkm9OJQiajuKaGYR26s3fee/h0S8SUUcCVXfsTFxd31uONiYnx\nEDsXRRFEOwZN3SJOEAR8lHIPRx8J/fv1Jzcng6cfWYVaJaDXpXDbjFvcmo0NCZLFYnFfAydPniQw\nMPCMtHF8ZCSHtm0jePQoHBYL7N1H1LhxeHt78/DcJzh58iRyuZyQkBAEQWD//v2Ea/IY1a/uGGIj\nTXyx5ofzIoqj0/rxysJl2MYOwSWK2H7dyLi+Q0j/cT1RA7pgqqjCkV5A0g2jmrW95rjA1Je+kRpY\npOi/KIpu4ieTyc75jLuYUjuXa+r5bDaQrWjF5YBWongBkB6CLUUSLyaaSuVebrBYLFitVry9vd3k\npDkksSmZmSEDh6DZqiF97SF0ai9mTLqVoKAgVvy6kkOrjxDrE8DVc+fj7e3tLuQH3HVZTaW89u7d\nw58rvsZmMRGX0oOrJk5xRwRiY2Np45PKj+9uJyzJm8xtJ7nz2imsXr6YU3+swlFezuS+afTq1cu9\nPZfLxaaDB1m+azc+Pj7EOZ1c3SYav44dL3guS0pK+OqbdzlwZAsbCiqY06E/erWaXTYbV6amekTD\nNBqNu9kgKirKHSm32WyNEiRBEIgMDaWL1Ze1b/yMCxfd5Hr6pvVpcjydO3fmxsFj+eqOt/EK98dZ\nVMXzcx91n8/U1FSODxnCm999h7nkJLXeBqbMvZ8ZwcHk5+cTkhZC586dz3selEolER26sOroLtKi\nQymqrCFH5sXAqKgzPiuTyZg27XYqKq7BZrMRFBTkcR3WJ0gymQyn08mSZct4e9FCZD4GwtRa/vPY\n4x5k9pG7Z3H3449z/KcVOCqruLp3b/r16wfUdQ1HRER4jMHhcKBR/3WNe2mUiHYj54Me3Xswy2Jh\n3cbd6DQarrzpNhITE9m4ZRMH1mYQotZyw6QbmyWY3hBnc4FpeN+cLTUtXWMXIrVjsVgAPEjjfzNa\nLfwuPRxiKw06F4RzrPBajTlPQ9Kpk9LNTqfzgoSbm4LJZHIXebfU9iTY7XYMBsMFP1TrargqWuR4\npW35+fm5iYLVasVkMuHt7e1RyC69XJoiic2R9jkXjhw5Qm5uLv7+/nTu3NkttdNYii0vL48fP3uO\n6/sH4GfQsHJbHtbgQUyYfIN7e6IosnbdWgqL8kmMTyYtLQ2LxUJ+fj4Gg4GwsDCP/W/dupXZn36G\n6+576mpIV/5M1OaNLP322wtybLDb7Tz1zGz6DSuja7cA/lh9lMUfGxncYzQDJkygQ4cOWCwWHA7H\nOUsQJIJks9lwOp3uCNLvv/3GzqVL0drtnKytxadtW+Y99tg5yy+KioooLy8nOjr6DLeVHVu3sunj\nt+gf4I1aLvB7lZ1x8x4mNvbc+oZng9lsZtWypRRlpKPzD2L4pGsJDw+/4O1JnfUrflzGU59+RMiL\nj+AKDMRy8BjRP/3Oko8+ds+p0Wjk2ZefpELMRa1VoTT78fB9TzXpD11RUcEXHzzLiE4OAv29WLer\nFF30aEZdOaHRz0soKytj7969CIJAamoqOp2u2Y1qfxf1FxbSfSORu4b7r6/fWD+zcD61iNLiUUqH\nS/WTzUlN2+32OjJ+CYiZ0+nEbDafUT4yfvx4VqxY8b/a+XzJoxaCILj0taWXehgYdUG4XK5LPh9N\noZVKNxOCIHgIVEsRqMsZoijicrn+FklsaTR8mNtsNkwmEwaDoVkkUYqGNaanVx8lJSUs+fl7isuL\nCA+IYNKV17hTqhJ++W0VX2z8BX2XBEz7C+m9bzezbr0drVbrEUGSoiW5OTl0jHAR7Ff3sB/SJZz3\n/9wL/EUUBUGgZ4+eeHkNcqcitVotSUlJiKJIUVERKpXKPZasrCxkffsS2rYtNpsN3+tvwHlw/wXb\nep04cQKFuoTBw+qiZhMmd+Do4Xyumnozbdq0cQuUSx2vZ0NTEaTeffqwa9s2Dm3YQKBWS+2JE2Rk\nZJyzKSg8PLxJknZoy0YmxYYRodchyATszhIO7919wUSxtraWn1f8QHlZPtFtUrj90af/dkexw+HA\narUil8vZtHIZIb06ER4XidPppKB9ArmffUttbS16vR6Alb+uwDfFzKQbhiMIApuWH2LJj99x+y13\nNrp9Pz8/rpk2l3W/L8OcW0VM0gAGDm7a4QfqyPf8/7yM2CURh82GduWPvPzQo2cQki3btrJq2zpE\nh4O+qd0YOXR4izwTGqaK62uaSost6b6WSh20Wm2jXdPNdYGROq/rX5fNkdq5XFPPl1MTZCta0Rha\niWIz4XQ6qa6udtvISRISLfXgaekaRak2yMfHp8VIYks/aJvywz4XSayfMm0MNpuNTxd9TNjAIAa1\n60PuwTw+XfQJ9838S37EarXy+cqldHpuBlo/bxyiyNYnP2VUVhYJCQkeBEnq/kQQKK4Q3bV7J8tr\n8TL8FWV1OBwe9nL1UVZWxitvvYBRKMNSayOt/WBumXYrISEhuH5dhWuSWNdccvgQCQ2ijgDl5eV8\n9d1iTlZWktahA2NGj2r0+DUaDbU1DqxWB2q1HKvVgbG6Lopis9mw2WzNIokNUd9HODMzE2tuLjf2\n6oVSoaDaYmHJp5+S+tprF1w7JlMqMZqtCIY620uTw4FceWFlHTabjddfe4yE6AzSumjYuHU9C4py\nmXHb7GZvo7S0lK8WL6aspob+XbowbOhQdz1sbW0tAV5qXFnHcZrMyHVeOLJz0PBXB75SqeRUZQnh\nXf9yuIlI8ifj8Mmz7jc8PJwp0+4662fqY+FPy1GM7UfMoN44RAe5K/7g59W/cdOUv+STDqYfZMne\nP0iZNhiFSsHaHzag3aRlUP8Bzd5Pc9BQr7J+SYc0B1I0rzEXmPrC3s2V2mlYz/hPSe2cL8727Lzc\nyOv/GhytzSznRCtRbCYEQWiR7uZ/AlJqsb49199BSz/IBEFwk8SGfthN1SRKJBE4p0h4aWkpos5O\nYrd4AJJ7JpG/cx2nTp1yix6bzWZQKdD41kXu5AoF6kBfd2e4hPrdn926dePw3q18tiqdAIOCjFNq\nxk27zj3us/k3f/7tJwT1ERh75SBsVjvLXtnE1q3tGTJkCMO2bePPe2cjDwz8P/bOOzqKsv/in+2b\nTe8hjUBCh9BBIIAiRRQUEAWRbgMriKKiIFXBiqIggoDYRUWQFymCYKNIkU5ogZBCettsts/vjzDr\nZrNJNg3yvr+953iOWXZmnin7zH2+5V48U1J4Zd7cMttqtVomz3iOq516oGjXje3/2UhqZiaPTZpY\n7jjBwcF0jL+H99/YSOt4GWdOWIhvczf+/v4uO4dUBrGRI+C67aPVYsFLpaI4M5PCwkIEQUCtVruU\n3svKyuLHL9aQmXwBI3ISs/O5x2TCYBE4JPNm7C2uN3HY48KFC6hk5xk3qlRsu31bC9Nf3oFWO9kW\n7asM+fn5TJwxg+zefZG3j2P7DxtJTktj3HUXFrlcTnjz1tx6Yh+/TnsFa1gohacvsWrhYlvNq06n\nIyK0MX/sOURc+whkCinHdicTH1N5hLC6yNdp8QhpjcVc6lTk0SiYvGspZb5z+uI5wnq1wie4tC4x\n5tYOnPjlbJ0TRXuIizmVSoXBYMBgMCCRSCguLq7QBQYoQxYBG2msivC5IrXTUOEmim40dDTcX08D\ng0QisdmBiX/XdURRlJSoDcQaKvuxNjSIXdiOLjb2Re6OJFGMTLhSe6VWqzFoDZiMJhRKBUa9EUOR\nsUwdkK+vL9E+QZz/+U9ibu1M1tnLWJMyiXkwxuk+xYXC5KnTOX36NMXFxYxo1IjAwED0ej1Go7FC\nPT2A5PTLDBzbGgClSkF0x0BS01KQSnuw4KWXOHfuHDqdjri4uHL1e/v37yctMoaQSY8BYIrvyLon\nJvLIhPFOSd8DD0zkyJF40tLTGNSvEREREfzw5ZdgNtGqazfi4+MrvYY5OTnk5uYSGhpabiwAERER\n5MpkZBUVEeTtzbmMDMLi4lizYgUpZ84gSCT0Gz6cO4cOtY2vuLiYwsJC/P39UavVWCwWvlm9jN7e\n2bS7NZRzqbl8Y/EktUs/PL28GNu1W7lSAVchCAIyqQSLxUJGWho6bQkF+aYqJWFE/PXXX+S0bE3o\nhIkgCOhatOSz55/l4QkTgFJic//DT7DpC09MJ44iU3gyetkK4q83IIkEaUrbRRQAACAASURBVPCg\nwWRlX+Ojp3YilUro3KYXdw8ZVum4jxw+xIlje5HLVfRIuJPY2NhKx9q1RWvWbtqF52OjMVqt5G77\nky633VXmO54qD3TZ/9ZhFecWEKi6MZ22YkReFMKvjguMvdSOOC9U5QIj7sOZ1I4YoWyIKWg33GjI\ncBPF/yGIkQwfHx9b4XZdoa6IsTgmDw+PMqRKTB05I4l6vR6r1eqy/mNgYCDdmt3C3rV/EtDUn5wL\nuSS07WNz6hDP54WpT/Ph+k849p+PCPULYvaUaWW+4wxyudxGCMQxi2UIYr2Us8L6yNBoLhxNoeug\nVphNFlKO59K1W2mKWSqV0rJly8qvmfLfNKxUqcLqpM9MEAQ2btrM1zt2opDLeWTEcGJiYlg1by69\nzSX4e6jZu/9P9JMfpXtP513Ku3fvZNOWDwgOlZCVIWfS+FfKdRwHBgbywFNP8d2aNWivXqVxy5Z4\nK5WU/PMP98TEoDeZ+HXDBoJCQ4mPj+fk8eNsXbsWT6sVg0bDA08/jb+/P0LBNTrGN8JsMtO2cSh/\nZ6QR37mLrXNYvPeVlRk4Q1xcHF9rI3l/2V7ah5k4esKCIiOIvTu202/wnby/ahWHzp4hKiSU5x59\nlCiHLmiLxYJwvf7VarUiVSpL9QntxhAYGMjkp2fYnoG8vDwMBoOtblZMwz486THGPjABo9GIVCq1\nRfudyTEd+vsAh//8iMF9/CjRm/nx2xPc9+ArREdHOz1PQRDom9CbvIJ8ds5fiUQiYUK/geU60Hv3\n6MWRT1dyrHgvMoUc46lrPDjauTtQXcJqtdo0TsWIYHVcYCqS2qlOPaN9alqcR4qLi2sttVNdOJs7\nBUFosIv5/09wp56rhrvruRoQ61+gND3l2IBRGxgMBkwmk0upsYrGZl/vZ9+0UBfIy8urdb2jWOcp\nCEKZDueKSCKUptHF61KdCV0QBBITE8nJySEoKIjmzZu7tL0gCBw6dIikK5cJCQqmd+/eTu9xfn4+\ner0ejUZTzjPXvkNY3DYrK4sl7y/E7KFFrzXSMbYHj0ya4lTIWYxOiuPNzc1l1JNPUzDkXlRNYtFt\n/Jb7woN50cFTetNPW5j3wxY0D03DatBjXPkW4xO6EXf8MEOalZKv9CIt36LkqYWLyp3TtWvXWPzm\no8x8NYTAIDWXLxXx4Vs63nrjC6eRUrEDVSaTsXDmTDpJpXhfj9oeT04mduRI2nfowPJZsxji70+A\npyfXtFp+k0h4et48Ppw3g6mdfQnw8cRsEVj2Zyr3T19IWFgY6enpvL98ITm5ySjknjw0cSadOnaq\n8v6JOHToEOvmTqeFr4JoryDuiG3GO0kZXPUJ4O/gYHyGDkV38gTe329kw4oVZRYIGRkZjJk2jeJ7\n70MZEYnu+w2Mi4vlmSlTyh0nMTGRpSuXYFXqMeskPDbuGbp17VbueyLE2j2TyQSUlWP65OPFDOqW\nQZPoUmHxv/5OIct0J3fadT2np6ez/+ABJEDHDh0JCgpyKcqu1Wo5c+YMFouF5s2b16ligzOILlBK\npbJKCTH7rmlnLjD2sJfaEediV+oZAVv6Wy6X27qm4cZI7YjHs89qCILA4MGD+fPPP+vtuA0cNz2s\nK5FIBGVOwc0eBsZAX3fX8/8i6rr5pDZw1hRSH3WFtTlf+45xg8Fg+1yMxInHsIdInmtiNyiRSGjZ\nsiVZWVk2IW9XNC+//n4D358+gHf3VhQfPc7+Y0d44enpZQTAt27ZyKmjP6FUWrHKIpj40HO2+lXH\nDmExKhIUFMRrs98kNTUVtVpNWFhYuXO6cuUKnyx9E31eJoGh4Yx4+AmaNWtGQEAAa99YzIefrufa\nkb/oFd+OiWPKez3/+Ote1OOm4tkqHgHIvudBDv+xhdb2URqJBMFi5cSJE2zYug0BgfsG30F8fDxZ\nWVlERskIDCqtL4xp6o1KnUt+fj4hISFOr7FIhIMjIkhPTMTbw4NrBQX8knSEfzZmcvhoPL5AsLc3\nFquVYA8PTOnpFBcX06n/cNbt2kCLgHySC63E9byLsLAwBEFg6QfzSRhSxC19WnH1chFr3lpIZMRH\nTscBpQulrzZs4OSlS8SGh9O9Uyd6xrRgQvPSaKHZYsVgNHLgzFkazZ+HRCZDE9uU7EOHOXXqFD3t\nIqyhoaF8NH8+H65fT+GBfdzauRMP3n+/02MuXbmYPo81pmm7cDKS8/h4yVJimy6rUALHvnbPUa9S\nEMBg/DcLYDQJSKX/3rvLly/z4ntvIOvbHovRxNfvbOedF2a75NhjMBgIDQ0lJCSk3uVhxHpisTO5\nKtTGBcaxntHV1LRI0MX0ttgk56rUTl3BnQK/+TCb3BHFquAmitVAfZLDmu5b9Ox1bAoBGgyRFQSB\noqIim+6hSBRFkigIQrnJ3Wg0YjAYbLVNNTnmj1u38MuZwyh8PfEoMPL0g5PL6RjaQ6fTsWHPdjq8\n8wxKLw3WOy0ceeUjLly4YLN8O3HiBGmXNjFtUhgKhZT9RzLZsvlLxk980rYf+w5hx5qsqKgop/Id\naWlpPDx1DBFREmQI+Kbn8cOKd5g6dwk+Pj5ERkby+suzKj1ntVKJpagIgetNQcVFNI6K5J/MdPxS\n0/FTKdmVW4hPz948NHc+lvvHg0TC9vkLWfnyS0RERHA12UrGNR2hYRrOnc3HaPTEYrFw5swZIiMj\nK5TtGf7AA3z01ltcSUri4OV9jJ/qTd9+vmzbeoDNuwq4PTQUPw8PMouLkXh5oVAo6N6jJ42bNCUv\nL4/YwEDi4uKA0uhXoTaVHn1bXe9gleDpV8LFixedEkVBEHj5tdf41WxC2bcvvx46xL41a+gYEMYv\nSSk09tbwd3YBzXv1RbJxIxadDrm3d2lE9PrixR4Wi4XQ0FDeevXVSpsgcnNzQW2kabtSyZ/QaH/8\no9Skp6dXSBRFOJOV6dhlAD9sfY/b8nUYTbDvhAfjH/q3oWfD1p/wvLcvUbd2x2KxcMXXm03bf2bq\npPKOOPb4z/ZtbD2+D6W/N8p8PU+NnkhkZGSl29QGBoPBZkhQHSJUExcYsdHFFakdx3mmNlI71YW7\nLtKN/2a4iWIN0RAiimazGa1WW64pBBpORFEkiXK53NatLDbuiDU6jkRQjCjUpkP33Llz7Lpykvhn\nx6BQKUn55yyf/vgtL059psJt9Ho9EpUChWdpekgqk6Hw8y4TAc3KyqRZNCjkpdGH9q2D+OuEc7s9\nZ52YYlOO/YsPYPmaD2gxrBHDhzTHbLKw5YPDBKSncu3aNacNJc7w6KiRTFm4mIysa2AowWf3Fia/\nvQSVSsXvP/+MUVdMp3u78u2OnVjHPETgwDsByFUo+XzzT7z96hzuu/c53pz/Dr5+2RQVehATk8DQ\nKU8gDQlDmZPJstkv07Fjx3LHDgkJYeyUKXz00UcECxpuH9iKoGAPJkxuwp5dp/kuM5MAmQydWs2w\nhx/mzJkzXL58mcDAQHr06IFMJrNpymk0GgSrktTkIj5ff4ntBwzk6pQcOvEuny+LKUf2MzMz+fXU\nKULWr0OqUCD07cOZx5/kyfHjSb14nuSsTMJ7taTv7f3JNppYP3sOsn79sJw6RTvZvzWnULZ7vapO\nWT8/P4xagcyreYRE+VOUpyMvtaTaTThiPWPnzp3x8ZnNsX/2A1JGjOqBr6+vTY5Ja9Cj8vPBYrne\n4RzkR3FSSqX7vnTpEj+fO0z76aNReqhJO3WBNT98zZynn6vWGF1FbSSY7FEbFxj7SKPZbHaJ7N0M\nqR1xbG640dDhJooNBNUlYmazmaKiIjw9PStM79xsIivWKUml0nLRBfHl58xLuKSkBI1GU6tJNCcn\nB01sOApV6bUJa92U4z/8Xuk2/v7+xPqFkrhhJ1G3dSHr1EVUqfnE2PkH+/r6cfiYib49SiMbZ87n\nEhjUusrxOHZiGo1GG4FWKpVk5mYQ3ScYg8mCSiEjpE0ASWdzqyW83bFjR1bOfontv/6KxsODYUvf\nsjVq3D/53+aFr7ftQGK3sJAqlZivp+8SevWmQ/uO5OXlodPpGDNrDl5vr0YRFIL2xFGmLZjH7g3f\nlLs3ly5dYuLM58nv1pkiWQIPTPmT9cta4+mlQOPpx/QFb1BSUoJarWbjli18tHs3Qs8EJPsP0P/g\nQRbNmoXJZLJdkwdHPc2rT8ziqCoc2YuvEuAXRu7vu1nw3vssX/x6mWNbrVYkUikS8VmSSJAoSutG\nh40um6J/6rHHaLFjB/+cPUtkXDNGPPe8bZElpkwr6l43m80cP34crVZLTEwM0dHRPDr2GVYtfo+A\naA9yU3SMHDjeJsFUEzRr1oxmzZo5tVK8pXU7VmzYjjrAFwTI/HEPE+8qnxK3R05ODpqmYSg9StPN\nYa2a8vdXu5z6eNcWoi92bSWYHGEfoXe8Jo4uMOKcIpfLyxBGsZ7WlXG5IrVT3fNzFlEUfw9u3FxY\nLW4aVBXcV6iGqI+Ioqv7E20EK9N1vNlpDlECByhTYyieo9iwYT/hWiwWdDqdrUGkNggJCUF3ZA9G\nXQlKjQepxxKJDq78BS6RSHj56WdZ+dk6ziz6goigEKZOf8HWEGQymWjWrBmXkwazdO2veGkkFJtC\nGDtxbKX7dTyGY8rRYDAQGRpNQUo653z1qC0WDu5Nof9tIypNlTvCYDAQGxvL8/Hxlb7I7h88iD1v\nLyVfoUQilWJZ/zGjpz1l+3cvLy+8vLz4/fffkca1RBFUmu71ateRXEFCfn5+udTq8s/WY3xwFNHD\nhpKamkzyhgBmz/uJyKBgBg6YTFBQECUlJWi1WlZ+9z3+q9egCAjAajKx64kpjE9MpO11H2qTyUTH\nDp3o0OEOTvlFEBzZHI2HB8aefUncsbHc+YSGhtI5OppDS9/Ds18/Sv4+SBOrlRYtWji9/oMGDWLQ\noEFlPrcXcxdT0QaDge9++JYzF08Q5B8CBToCss4RrpHyTaGU/pOepnu37sTFLiM9PZ2goKAak0RB\nEGwRVTG9av+cGI1GenS/hcKiIra/twG5XM7UfnfR45Yele43ODiYkr/S0Gt1qL00pB1LJCootM5J\nohiJte9wrmu46gLjTGpHjHSK2wG1ktqRyWS2sdR0rjUYDP9frfvc+C+DmyjWEHVNFF2dbESS6OHh\n4VJzRl2hOucrvnStVive3t5lSKLVakWtVmMymWwvZvHlKEpp1IU4blxcHENaduWnt79C5u2Bn1HK\nxAcnVbmdr68vM58sn56+evUqSz5aRnLGNRqHhTNx+BOEhIQQGhpaYxF2+/TalElTWbz0NQ4eTEWb\nX0yf+GE8Ne1Zp9tlZWWh1+sJCwuzRcNEwulKTWf37t15/5kn+eynLaQkJxMtMfHXj98hk0joZidy\nHRUVhfX8GYxZGSiDQ9EeP4K3RMDPz6/cPnOLtCgjw5FIJESER3O1SVvyjl7g8YnT6NKlCwaDAbPZ\nXPpltQq5f6n4s1ShQBEahlarLXdNunXuxMZN25CPGFP63P/xKz0aNy5z3OLiYjZ+8RnhugJiDlxA\nmnSZ9s2b8/jiJdW6L3q9vlxd3Ycr3yNDcYYODzTl3JEzHNj4NxvH3IGXWknHgmJWfbWWjp06ERgY\nWGVNYmXIycnhq/UfkJtxEalcw5CRUzifdIkNu35GEGBo79sYftdQlEolI4eP4J4hQ21kx2AwVNqx\nGxMTwz3tE/jx3W+QeXvgpYcnx0ys8VidwT4S60xsvj7g6AJTWVmHSMLFucWxnrGmLjBms9lWz1gT\nqR1R79YNNxo63ESxGqjPKJ0rREzsHHbF+eJm1lCWlJRgNpudkkRRTsVeUsZgMNg6FutSyPyO/gPo\n2a07Op2OoKCgGhNQvV7PrDdfR3ZvL9olTCLj8CmWfr6Gj197q86cekJCQnhzwdtkZmYil8vRaDS2\nBiB7mZ1V61ax58gu1N4qvCw+vDJjDgEBAZSUlFQr5derVy9Kigq5+t1njGwSTYnZzOerPsDLx4fW\nrUtT6TExMbw49gGWPPcIJYHBqPNzWDr7ZacRo/7dunJs/ZeoIyOwmszIftrKo2PG0bVr1zIk1tPT\nk9iAQC5+9SX+d91F0T//oLp4wWn074477uDgiZNsfno8Ui9vwi1Gps15xebuIZfL+Xr1SiLP/8PI\nxqEk+0r5vgimTJqE/3Ui6gpEEmtfV1dSUsKhU/uYumogMrkMrxAFSb+dJvFaLp1jwgjy8kCvS6+T\nZ/Xrzz6ka/Rlet0TSUaOjhffnUVqZCxtF01BIpPx3dIvUO9Qcd+IEbYGDFfSsLZ7c+ttdO/cpdR6\nMDCwTsmcKIYvGhLcDDhG/cQGPzGaKGqb2v9WxXpGUWpH/H9XSaN9atpsNqPX6wFsXdPOZK+cqTq4\nU88NAG4dxSrhJoo1xI0mYvbyMjdjcnH1fEUpGh8fnzIremfWfOJLTxAE20tGjAo4FqzXFKL4+NYd\n2zCazXRqG28TdHYFVquVpKQkijRSOgwolVCJTOjMye0HuHr1KoGBgRw5chir1UL79h1rVZ8mk8nK\npJodIyVHjhzh4NU/GPXeEJRqBYd+OsaKtcuZPvXZGqX8zh3cz/CIQAI0pc9TH59Czp88YSOKAPeN\nGE6/vn3IyckhPDy8Ql3O0SPvo1Cr5cunnkMmk/Hs8BEMHjTIVnNqT2I/WLSQ2W++yYkfNxIVEsLC\nRYucEjupVMqrM5/nkbQ0SkpKiI6Otr34DQYDBQUFXD56iEfiGyOTSWkTGsixwhSuXLniMlG0J7H2\nL3KpVAqCBLPJgkwuQ6PRUFBiJTVPS8tGJn5JTKdp++61Jokmk4mstPP0ujsKiURCWJAnBokOnwFd\n0QQHYLVaCb27D0d/Ps79dseqLA1r3zn8519/ci03h8aNwunerXudp5yNRiMWi6XWzSt1AftrIi5C\nRZFtqVRaTgzfUWpHdIGBGyO1U9c1irNnz2bz5s1IJBICAwNZt24dUVFRXL58mVatWtlE/Xv06MHy\n5cvr7Lhu/O/DTRQbCCojYiJJVCgULte03IyIoujp6u3tXWaCrcy/ubi42CabA5SLlDiz+aoOcnJy\nWPjxMugWhyLAg53fruOZu0eXIUMVQay7CggIwFpUgrGoGKW3J6YSPcacQgwGAx9/OIdOLfOQy+CT\nj75n3OQ5FTppVBeOkZKU1BRC2wcilUsQrFaa92jK1s17K/SXrgpqHx9yUtOI9ivtqs7Rm1B5lieC\nrqRWpVIpUyY/xJTJ/0q1iDWnjiQ2JCSElW++6dIYJRIJERERZT4TU44qlQqpUkWWVkuAxgMJEnKN\nFpdevomJiaSmphIQEEDbtm3LEQKVSkX/Xnex8c3dtL4tkrTEPEI923JKHcjR4wU0btuLkQ+Mc+kc\nKoNcLkep9iE1Q0tkmDcmkwWzHowZuddTpFb017IJ9K64890xDSuK76/+Yj3nvc34toxhz7E/uHQ1\nmQfvG1XrMYuoiGQ3BIjznyAIeHqWSjyJUjvVcYExm802QllVlLEyqR1n6g56vb5OaxRnzpzJggUL\nAFi2bBnz5s1j9erVQGkpztGjR+vsWP9TcEcUq4SbKNYQN4qIiZ3DorzMzUJV52tvH2g/AYupnYpI\nolwuL5OyclbEb2/z5dgAUxX+PLAPusXR8o7eAFwL9OOnXbuqJIpi3ZVCoSA0NJRRfQfy7dyVaDo0\nQ3fyEkM79uD8ueMkdCykX0Jp3VyA3zX27vmJceOfcHl8rkC8JjGNY9jz6w4sQyyggMT9F4kMi6ow\nkmgymcjKysLLy8upxM7tw0fy5RuLSDufjM5i5bx/OI/17l0nYxbt22pKYl2BQqFg0LjJfLr+Y+KV\neVzRm7C27ERkZGSlsijfbPiS3fu/IryZiuTTeoYNeoShd91T7nsTx03il11RnPvnDK39O/DCa3e7\nJG5dHUgkEu65fyprvnmXuEaFpOdaGNB/FLv/OsGJgq+QyeXI/0niwZdedWl/oqB3ZmYm5wy5tJky\nBiTQqH1Ldi/+lCEFd1RpU+kKLBaLTZ2gPh1Nagr7Dmyx1MV+ESqK4Tu6wDhK7Yjzl6PUTnXrGcXy\nGiidW9Rqtc2esq5gr5Cg1Wpr7JXuhhuOcBPFGqI+mlkc9ydqEMpkshqJ196oiKK9faCrJFFMz1Tm\n4yvWPdlP8Fqt1rZqd6Xj0GQ2I/f/dzJWajwwWsyVbuOsA/bB+0fRrmUrUlNTCRvRmw4dOvDNV6vx\nDVSQdk3Lh99d5MxVHQqLnntHTkKj0VR53aqD7OxsLp87hf5sEasf+pKQiGAUOg9eeublMi890frv\n6tWrzH97HjpZCYZCA2PvHsuwocPK7LNx48ZMnrOAs2fP4imX0799+0otHy9cuMCxg/uRK5Tc0qcv\noaGhTr9nT7JrUsMpCAJ/HzjA5XNn8QkMom+/2ytcJPXs3ZuQRo1ITk6mvY8P7du3x2q1Vri4uHbt\nGtv2fMXjb7TG21eNNt/Ishmr6ZNwazkCJZVKGThgIAMZWO1zcAUnT55k3cYNaPU6OsX2omn79nT2\n9ycmJoaB6ekcP34cuVxOp3sernazjMViQe6hRqVSIgAWqQxBLiUvL69MRK0mkUDx/rqiNXkzYK+F\n6biIqgsXGHFedUUmR6xnFEXAAd599102b95Mv3796nyeePnll/nss8/QaDTs37/f9nlSUhIdO3bE\n19eXhQsXkpCQUKfHdeN/G26v52pAXFUCthdRXf3QBUEgLy/P5sEqRhIlEkmNLOysVisFBQXVKuqv\nDFqtFoVCUa5g3d4Zxj5yJE6szkii/bWr7nmJ9VgVeSo7IikpiSXfrKXRvX1RajxI+nEPY9r14tY+\nfSvcv6vjO378OFu+W8DB5GuY7x2K1j8M899X6GdSMH/mi9U6r8qg1Wp5f9EsevvlEuHnwcajaUhj\nezP1qWmo1Wpb1EKsU1MoFLw47wVC7g6hzW2tKc4r5j8vb2Xu1HlOm0ZcwalTp/jxndfo7y2hxGLl\nd6sXj85ZUI4siiRCIpHYBNari//8uJHLP35FDz81l4sNJEe24PGXXqmSdIqizGJ9rKOHsFKp5OLF\ni6z8ehaPLWxXSpSQsHT6UV588n2b5uSNwJUrV3hq8VxCHx6KR7A/l9dvYWRsJ8aNHuPSIqoqGI1G\nFix7h5KuMQS3bEraoVNEJmt59pHHbc8JlO8Qrgr2i6iGKO0iZipEQujqNs7mFGddzGJqWlwEA05d\nYBwhusvI5XIsFgt79+5l1apV7Nq1i379+jF+/HjuueeeKiOMAwYM4Nq1a+U+f+211xg6dKjt78WL\nF5OYmMjatWttC3l/f3+OHDnCsGHDOHXqVLU0WusJN71eQSKRCCQ2AJrTQuL2ev5fhOguUpf7g391\nBkW5kJqQRHF/9R3xFJ1hHEmiOJE6I4licXltzqsyT2XHrs8mTZrwzD0P8NPuXRjMJh6MT6BPgvP0\nanXHFx8fz5Ejd3Kl6A9C2vUg1D+UgL53sW/iszY9yLpAYmIiMdJs+rWJxGwx82S/WOb/etJGnBy7\nMA0GA5dSkujZswcWqwWNv4awDqEkJydXSBTFph2j0UjTpk3LLQh+/+lH7gtV0ya0NLJlPX+Vg3/+\nwdAR99q+I14/e5KdmZnJjs0/oMvPIza+E7f1H1DpC9VisfDXpu+Y2yICjVJBN0FgxZnznDt3jrZt\n21a43Z69e1i5/j2QWwn0CmXWjLmEh4eXiR4ZjUZ8fX3JvyYh8VgWrTqGcmxfKpYSTYXR0fqA1Wpl\n/fr1FHeMQNokGJ+QUJpNGcn2heu5b9gIW2qyNnV/SqWSGQ9NYcOWTaQe+53OoRGMHD/KqXi1GKWv\nqGvaHmJ3b0Pt1hWFsaszvtq6wNhHG13pmpbJZPTr14/c3Fx69+5NeHg4q1atYurUqTz55JPMnz+/\nwm137tzp0jmNGTOGO+8sdV6yF5Dv1KkTsbGxnD9/nk6dOrm0LzfccBPFBgZxxQ40yCJxEaKeo6N9\noBjdciSJ4FyGpDaozFPZvgGmVatWtGrVyradKATuGDGsyfg6dOhI2JVzNGnWFolEgklbjMQq1GlK\nTiqVYraKUQwBiVQGFYxPjPREhkaQcjyFmE4xFBcWc+1kBgHtApzKdBiNRha9tYiLuYkoNUqUWg8W\nzlpUpsbJYjKitjsnD5mUAqOx3H7sr19BQQEfvz6X29QFhHl7sGvjEbSFBdwzsmI3EavVClYryusR\nYkEoPZZNg9EJkpOTWf3NezywuAtBEb4c3nmeJUsX8N4bK4B/ibTVasXLy4tnn5jL+8tf50vtBYID\nInj+mfkolUpOnz7NkX17kckV9LptYJ01JTliw4b1XLu2A6V/K8ymZJIu5eNvVqOUKerk9yH+Nr29\nvXlk7ASn33Gla9oxNS3e35ou8uobdTG+mrjAQNnUNGAjjZUpERgMBvz8/Bg3bhzjxo3j6tWrXLrk\n3A7UFZw/f97mSb9p0yab1WZ2djb+/v7IZDIuXbrE+fPnq6X88D+PyiuR3MBNFGuM+qoBdCZUXRvU\nlSah/flW5AxTFUk0mUz18pJxjKjZS8rYRwQsFgvrvv6SvYknESTQo0kLHnlwHAqFosbja9OmDS02\nyjj7/ieoWjSlZM9+hif04fLly3h5eREeHo4gCGRkZCAIAqGh1XfFaNWqFdtk4fx46ApNgr35/XIx\nPQaOrnQ/z06Zwfyl8zkbfg5tRhG3d+pPixYtymgzitGPrdu2kqFJYeScoUilUvZ/e4g1n69h5rSZ\ntv11vG0AP6xZxjBBoMRkZlOWgdCMa6xbv5aEnr1p3LhxuQ7YM2fO0Nyax61xkQD4eahY8OMGBt89\nrMI0skKhoGXCrby/awvHctNI0hVhUXqzrJIXblJSEtHtfQmKKK0x7NQ/jr1rt5VpFrDv0I2Pj+fj\nD76wRcfMZjMHDhxgx/q3GdpShcFkYe3bvzH5uUW1TkfrdDpycnIICAjA09MTnU7HyePbmT87nmcW\nHqdot4Yck5r0P67y/IhxNSrHsMfFixd574u1aCUWPCzw1OgJNlmUF204xAAAIABJREFUiuCsa9pR\nvNpqtdaLPV9doa7tAysj0lW5wNhL7YiZlYos/OxrT6Oiomr1vL300kskJiYik8mIjY1lxYrShdJv\nv/3GnDlzbPPgypUrnYrmu+FGRXATxWrA/ode10TRnoT5+PjUmkzV14rfXvTbPj0pppudHdtoNLrs\nGlJbOPNUFqMke//4nd8MObSa/wwSqZS/P99I+M7t3DVgEAaDoUYvGYVCweKXXmHrtp+5djmHgDad\nOXtyB3t0u8nKsRDX8k5OJafz5+WLSKQSOgQ3Yv7zL1QrLS2TyZjw+AwO/vU7xwpy6TCiHT169ap0\nm+bNm7NiyQqSk5Px9fUlMrKUrNnLp4gEISX9KhEdwmznHtMpipMHLpTZn3i8n/fuQouRs9IsrGEX\nyfZQ8J83fmLG5Jl07dq1zPWTSqVYrj/XW04lsfL0WXLkUqZMm8ycmQuJsfPQtsew0WMYve1b4h9q\nSsIt0RSmCby94nWWv7Xa6XULCgri2oUijHoTSrWC1PPZaFRetufTWYeu6D8Opc/ukd93MLy1ijZR\n/kilMkyWdPb/sYeoWkjgHD5ymHnLlyL4ekK+llmPPkm7Nm2RSgWCAj348NUObN15ma17chjcfyoD\n+vevlf2dwWDgnc8/IXDcIJq1aEJuUgpLV6/jredeqbRJyR5ibaQYURP9t4FqKw7cKNS3faAjka7M\nBQbKS+2YTCYbeRRlcqRSaZ0Lbn/33XdOPx8xYgQjRoyos+O48f8PbqLYQCBOPHUZcatoJVtTiCRR\nqVSWmeBEkuhMK0xchd/oSIQzmZ3Tly/h070NSKVIpFKCu3fgzI7D9LsuCF3Tl4xarWbEsOEAvL5o\nOmOGCbRpGY7BYGHStDVcaNmHVh8tQSKVcuzDtXz6zVdMnfRQFXsthUhyQkJCGDayehp43t7etGnT\npsxnjkTAaDTSKDicQ78foGWfZiiUChL3XiAuulmZ7SQSCT0TEuiZkMCqtR/TulMxPUd1QRAEvII8\n2bTjR26xs/+D0mjrL+owPtl/lh8ykug3J56wVs3IOKtlyXuLWPHuKqfjzsnJISwukDvG3Vb6QTM4\n+Z80UlNTbak1e7Ru3ZoerQawbsYOAqO9yEgs5tnHXrbVEYskoqJyAIlEgkQqQaVUoFAosVotCFYL\n+pKSKi3yKkJxcTHzli8l6pUJ+DePoSAphUWvfsjnby2jcUwPvv72L7p39SU4wIPmMR0ZOnRorcsV\ncnNzMXqpCG7RBICAJpGkBfvaJJKqA/H3I5PJbELV9nqutemarkvcaPvAylxgHGukpVKpbW60z3iI\nKWqdTue28GsIcKeeq4SbKNYQdRlRFN1MnKVsGxKMRiNKpbJMN2FlJNHelaM+VvquQpTZaRzWiNOX\nUrC2b4PFYiH7zAViNZ51FokQBIG83DRaNisViFapZJgUFlTd2iO9TgL8+tzC2W+3ubQ/i8VSJcmp\nKeyJ9LB7hnE5JYmvHt2ITCkj2j+GCTMnVrit3qBH46dGoPTeewd4kmPOKvc9T09PHp81l2XvvoN/\npJmo+NYEBAQSEiKw68OfbM+TI7y9vdHm6NEV6tH4qCnRGijMLqmwS1MikfDwpMe49cLt5OXl0WRs\nE4KDg20dsCqVqkoS0a3vYL7/9A3utlgxma38mqLkgRG32VKazuRTKkNWVhYEeOPfPAYA3yaRyBoF\nkJGRwYNjp7Dt5zC27jyDhyaIRx4dWScdqD4+PlgLiinOzsMzyB99QRGmrPwa6yaKCgCihqtIvJ2l\npm9WpFFsXrnRhMv+92PfLCXWSIsdzgaDoZyCghhd3Lp1K02aNLmh43bDjZrATRRvMvR6PQaDAR8f\nH4qKiuq9U7kmECNyYrrOvkO7MpIodv7eTJJojzv7D+TkyuVc+PBzBAkE5ZYwdPIjNm/qymR2XIFE\nIqFReDMOHLpMz+5hFBQasOgkmE8kItzRHyQSCv/+hz7hEeW2FSNfYo2fKFjtCslxhry8PNLS0sqk\nnSuCTCZjxtPPMTFnks1+0WKxoNVqnXaSJ3TvzeurF+IT6o3SQ8n+T/9hdG/nKVo/Pz9G3D+KxatO\noFGVRrWSjqfj5+1f4XkFBgYyfNADfPniBqLa+5NyIo87E4ZXao8okUjKRBvFSJOouVkVOnXujET6\nIvv+/AWZXMGYZ4YQFxdn25dY4+jYLCVa2DlKsQQGBmLJLqAwOR2f6EZo0zIxpecQHByMSqXi7nvu\nr3OJLU9PTx66czifvPc1yugQDFczGXvbYJvkVnVhMBjKKQA4S01Xp2u6LuHYPHWz4KxGWnxWnMls\nSaVS1qxZQ58+fZgwwXmzkRtuNCS4dRSrAXESgFIiVFxcXCuXA3EyEYWqCwoK0Gg0dZZCyc/PLyeC\nXV2Ieo5WqxWZTGZLYVXk3wxlI2E3Ih1UHZhMJi5evEhxcTEtWrTAy8vLFiURybAzcuQqMjIyWLN6\nCYI5DV2JlN63jmX7vv2c0OaBTEZTiYI3X55dxinl6NGjzF72HkUWEyEeXrw24zkaNWpki1ZUF6dP\nn+arD18jWmMiXWsh/vaRDBs5ulr7EBuTRCJkn24E2LV7Fz9u/wGrYGVg70HcM3RYpddr3Wdr2L5v\nE/6NPCm4auSlp+dWKncDpYLUKSkphIeHEx8fX63xl5SUYLVaa90c4gh7a7bPv/2G73ZvB5mUnq3j\neWX6c2UI497ffuPlD97CFKDCmp7P8+Mf4/57RwKlv32j0VgvJCczM5PMzEyCgoJq7D0u1uG5Ulds\n3+xhsVicNnvUNcSF6M3OVlQE+zS92WwmOTmZPXv2MGrUKM6fP8+SJUvYunVrg5sfbzBuevpMIpEI\nHG4ANKdzw9ZRdBPFakCMrMG/nb817R4zGAzlLO8KCwvrlFwVFBTg6elZ47SlmLoTRWjF6EJlJNFq\ntaLValGr1TVy5ahviMRXFA//468/2frXXiQSKUN69aVrl662SEVNfaYtFgt5eXloNBo0Gg0Wi4Wk\npCQEQaBJkyZl7kd+fj6jn30GzYtP4dumJdn7DiL56DPWv/Uuvr6+NRIknzPtER6NF2ga6oPeaGbJ\nrnRGPbuE2NjYau1LhEikxUWSGKmuLsm5evUqeXl5NG7cuE5s5CqCSMI0Gg1ms7le0pK7du/i9e3f\n03zuVKQqJReWf81AaSDTpz5huyZbf97M30dX0S5eARIph/f7MmP6m3h7e7tMwqqCVqvli++/5Vxq\nMpFBIYwdfh/BwcG12qe40NNoNNWeOxyflfpITYtzTENciMK/c4zoRy4IAmfOnOH111/nl19+wd/f\nn7lz5zJmzJgGOUfeQNx0YuQmiq6h4bWw/T+A6IvsGO2rL8mdmkBM3YlSPWJhdlUkUawJa4gToKO/\n9IG/D7Lyt/8gG9UHycieLN+9meMnjuPp6Wm7NyUlJWi1WlsazhXIZDKCgoJsKUWZTEZcXBwBAQHs\n2L6NzZt+IDk5GSjVALQ2jsS3TUtAwL9bZ4pUCltXcnVhMBgwFefTJKS05k2tlNPYV0ZeXl619yVC\nTDd6eXnZnCXE1LjJZHL5mY2KiiI+Pr5eSaIY7Tt+7Bizpoxn9qMP8M6C2bU6f2c4ef4cfgNuwcPP\nB6VaTcTQWzly7gxFRUXo9fpS4fB9m3j08cYMHR7L0GFNaNehkKNHj9aZR7IgCLyzagX/+Bnwf2QQ\nSS18WLT8PZvsT01gb39XkwWm/bPi4eFhI03FxcUYjcZaz283unmluhDrOu1LHiQSCa1bt+aTTz6h\ne/fujB49mk8++YTIyEieeeYZDh8+3GDm/f+XMDWA/xo43ESxhqgpqRNV/729vW+IT2pNJyC9Xu+0\n/qcqkujM5q8hwJm/9O9HDxF+d18CY6MJahZD6JAE/vznMPBvd6P4whMjyMXFxdUiRyKys7NZ+s5M\nTLrVeMg+Y+WK50lMTCQoKAhTShqmwqJSrbprGUiListFqi0WCz9v+5kPV69i689bbVJEjlCpVPiE\nRvP3hdLmksyCEs7lCURElK+LrC7E9KK3tzc+Pj42/Ul7cnQzIXaIZ2ZmsmPdUl7s7Mk7AyNpqzvD\nF6s+rNa+0tLSWPfZej75dC0XL14s9+9hgUHoziZdVxWAwsTLRIeE2SLuxcXF17tb/11cWKyCTdux\nLn77eXl5nM+/Rst7B+ATHkJc/x5oA5RcuXKlRvuzJ2G1XeiJzR4eHh54e3ujUChsUjs6nc4mFVNd\n3KzmFVdhX7Pq6Eo1e/Zshg4dyuLFi/n999/Zt28f/v7+TJs2rU5dvtxwo67hbma5gbD3RXb2oqgP\n272awL7Bxj7qIUYTnVnz6XQ6W6SuoUFc5QNlJnAPpQqDttj2PUNRMR6KsuN3Jrwr1paKL1RXIkO/\n/7abHl1yuWdIqdtHWGg2O7Z9xVPPzOWh/newevoryOKaYE28yAtjJ+Dp6Vlm/K+9+w67izLx6NEe\n/f49HD51ildmPFfuHkskEiY9+Tyr33uNHxNTMAgKhk2YRqNGjWp28a7DbDaXkzmytz0TtRlrW+NZ\nU9jL4KSmptLeTyDEp7RecGCrRmzbfcxlqaiUlBSmvDIT2eAuSJQKvl3wCu88/0oZqaG77xrCb/MP\ncuaFd5F5eaK+dI0n5iyweQyr1WoSeo3g09Wf0G+gFznZJo4f8WL6M53rLNquVCoRjCbMBiMKtaq0\nm1anr9H+RfvF+iBh1dUhrAgNpXmlIpjNZpseq+P4vvvuO/Lz83niiSdsn8XGxjJ37lzmzp17g0fq\nhhvVg5soVgO1EdyuyBe5vlFd4mkwGNDr9bZ0sz3E5galUlmm89kxUtfQ4Kx7E2DIbf2Zv2oZiYXF\nIAiY9h5n8NTpFe7H0RNW9Ml1hRwZTSWEBP1bZuDrq8RoLLVqHDViBG1btKCwsJCY+8eXs45LS0tj\n97mTxK5ahEypxDL4VnY/8jKT09KcRgobNWrEy6+9Z6tRrQ5xsFgs/PnHH1xLSya0URQJvUt9sXU6\nXYUyQvbkqDIrxfqCowyOj48PR4sFLFYrMqmUpOwifAOCXR7Dd1s2oxzei9j77wAgJSSQ9Rs3sMSO\nKHp4eLB0/mscP34ck8lE66mtyzQoSSQS7hw8FD+/AE4cPoBcpuaxRwbj6emJXq+vk7o9Ly8vBnXo\nwS8ffItf5+YUJSbTziecxo0bV3tfN4qEVaRDWFXXtP1CpSHOMWIphrPfyKlTp/j444/ZuXNngxQs\n/3+Pm5sI+a+AmyjWEq5EKcxms1NfZEfc7IiiWDtp32AD2GyoNBoNRqORoqIim/epqP/omGppKKjM\nmi8mJoYFjz/Lvr8PIpFAzyefcznyZk+OHH1yncnsxMd34+svNtGoUT4aDznf/5hLfMfRNq3Jdu3a\nVdi9aTAYkHp4ILtO+GRKJVIPDwwGQ7nvnj59mq+2bEZvMjG0T1/69O7j0vlA6bO8/pMVFJ/dTodI\nBccPmTh36ij3j53sUuOAo0yIvd6evZWiq7h8+TKpqakEBwfTvHnzCscsRrNFQty+fXuOtOvLG7/v\nJUwj40yxnLHTXwBKmz8+/epzLqWl0ComlrGjHijXWV5i0KPw/dfnWuXnjc5Y/lorFArat2/PoUOH\n2LdvH7GxsTZJHfF69OqZQOdOXTCbzWg0GltEra4kZcbeP5pmBw6QlJJMaNNu9Ondp9pkRIyE3chI\nnaMOYWUWeZWRsIaAyuomCwoKeOKJJ/jiiy/qTAbJDTduNNxEsYZwdUKtyBe5ocG+dtKRJFqtVpsv\nsL3TiV6vRxCE0hRYHTrA1BVcsQ6MiIhgZMRw29+CILD9l1/Yuv8P5DIZ997Wn149elZ4DGc+uWIK\nViSNEomEVq1acfewWXz301eYzUY6dR7Bbbf1d+kFGBUVRYQgI/mLTQQkdCb3j8NECLJyvrDnz5/n\niSWLUIy/F7m3F/vXrONVo4n+t9/u0vXKysri0pFdLBwehUIupXcbC7O+203eXcOr3YCi1WopKCgg\nKCjItqCojnD17l928uuXH9A6QMrufCut+4/i3tFjynxHTJcCZaLZUqmUyVOf5uzZgRQXF3NHTExp\nLajJxHNzXyazmQ9B97Rm855/OPv6fN6cu6jMWG7vkcCuNcvQNApGplKQ8slmpg0YjiMsFgvLly9G\nYj1IdJSEdWvgjsEzSLAj5yaTySaDI1q3OSNHrridaLVa1n37LSeuXCYiIJCH77uP8PBwbrnlFm7h\nFqfbVAXRIaQummtqiqpS0yaTqcE2r0DFdZNWq5WpU6cye/Zsp45CbjQQuJ1ZqoSbKFYT9lG/qizy\n7EmiK3U/9RFRdGV/FdVOVlSTCNjIo/jCEyMk1XGvqE/U1Drw19/28smRP4h8eBgWk5mla75Do/ag\nY8eOVW5rL0YspmDto4ydOnemc5cuQFkZIfEFmJGRwb79f2CxWOja5RZbClqhUPDOnHksXf0x5/eu\nonNEFNPmzCv34vx59y4k995BoztLiaHc04Ov1292ShSzs7PZsXMneqORhB49aN68OSaTCZUM5LLr\nz40goFFKq30v9+7ZzZb1HxDgIZBv9eSh6XNo3rx5pcLV9tDpdGz9/CPm9gkmwEtFidHM3B3f0qPP\nrYSHh9u+Z58utVgs7Nixg9SMdJo1iaVv3760atWqzH4vXbrEFXMBXZ+ahEQiIbRLS/ZPWMK1a9fK\nRJK7devGy7rJfLbqR0xWC0/cOoS77hhc7jxPnDiBSX+Q55+NvB49LOH1N5fTK6E3EomkjDOR4zPo\nbIFRWfRVEATe+vhjjoc3ImjKY5w+f57ZHyzjvVkvV9uez36foqj7jWiscwWOqWlRD1P8Pd3o2teq\nIEoBOUZjBUHgnXfeIT4+niFDhtzEEbrhRu3RMGaH/0GIgqsicWioEGsnHdPiouCyM5JoMBgwm822\nF6B9hKQqEnAjIL6ga+IKs/efI4SOGIhv41I3k+K7bmXf8X9cIooinDk12JMAuVxue0GLUeb09HTe\nXjqTrr0NyD0kvLf8B6Y+vNCWygwKCmLhi7OqdS4IziPfWVlZTJ45g8KeHZD6efPpwld5d9rzxMfH\nIw2IZdPBi3SM8eZoUj6Cb1PCwsIoKChwWrfqiPT0dLZ/sYzZ/f0J8lFzOiWf1e8tYtH7a2wLiaoa\nYLRaLZ5yKwFequvXE3wVVgoLC21EUXzWvLy8SrUjFy/ib1M2np2ao93yBSfPneXJR6eUuy+OyrAV\nLaRuu/U2brv1tkrPtaSkhODgfyOAQYEqzOZcLBYLUqnU5XSpM/9tx+irVqvlWFoq0U8/WVoGEhJC\nyrHjXLp0qdpi5OJ5N+QGNIlEYuui9/b2xmw2235HN6r2tSqI9o7OFgK//vorBw8eZNOmTQ2K2Lrh\nRk3gJoq1QEURO6u19KWmUqmq5axxoyOKFaXFqyKJYs2f/eTorNHjZnTBiqm0mvoje6nUpBUU2f42\n5Rfioah5yYBjhEQkAeK1FSPSu3ZvpddAM/0Hl3q/+geks23ndzwZ96LLx7qr/wB+nD+HNA8P5J4a\ntJ9uYPoD48t976etWym6tSsxj44FILtpDCu++ZJVnTrx+IxX+Hr9ag4cPkdEk74k9OrMkEmTKLJY\nCFSpeHvWLFq2bOn0+MXFxezcuROhJB9Pdanoc+tIP/g7Fa1WWyZ9nZqayuXLlwkNDaVp06ZlGmB8\nfHwQvEL483wGh1ILWHMyixyTlJTPP+W1WbNRqVRltAjPnTvHgdQLdPj4JaRyOaa7+rBh3FzGjXqg\nzDGbNm1KE5U/x5duIKh7KzL3HqNz4xY1di+JjY1l00Ylp8/kER3lxbYdGTSN7YJMJkOr1VbbfrGy\nDnur1YrEbMFcXIzCywvBasVSVFRjkid6ENfE+edGwL6DWJxDats1XZcQibZarS63EEhOTmbevHls\n27atQdZUuuEAd+q5SriJYi3hSMTESKJSqSzn/9qQIJJEDw+PMi8b0b/ZGUl0peYPnHfBVtboUVew\nFwuuaT3TvQPvYPbHH3IxKxeryYTir+MMnvZ8rccmkUiQyWQIgmAjA+J1USqVGAzFhHn/+3P08lFi\nut4V7SpiY2NZMWsOX/+0Gb3ZxJAJD9OrZ69y3ys26JGF/6vTqAoKoFhf+uLVaDSMmfgoXl5eFBYW\nMvzxx5E99wKN2rYl/+ABpi1axI+rVpUjGDk5OTz20gukBviQJQ3g3Np/+GxsPJkFJQgqnzLp0W07\ndrDoszXI2zbHdC6JiX0H8PD48TYSYDQaGfv4DBbMnsk+FESsWEizuGYc/+hrlq/5hEfHTyizECgp\nKUHp7430+t9yjRqZRymZtCeKcrmcN19dyGfffEnSz+fp1bgdY54YVekCRpRWctasFRISwsTJ8/jm\nmw8oKsomNrYXkyZNqZbHdEVwXHiZTCaGde/Ot+8tQ9mlM+akJLp5epVpnnEVol1lQ5WZqax5paKu\n6Ru5IHXWQCVCr9fzyCOPsHLlSgIDA+t1HG64caPgJorVhGONoj0EQbD5e9aEJIodfnWFyiKeRdej\nEfYvfJEkCoJQjgjWpObPWRdsfUUZ68oVpmnTpix5cjoHDx9CLpPRY8aLNks0g8FAcnIyKpWKqKio\nao1dbLwQBMHWgW2famzRohObNv2Cf6AKlVLOf77Lpl/C2GqPv0WLFrzaonJi27tbd759/23y45qi\n8PUmc+XnPNK9VzmtxOTkZMzhEfhd92T269adzPXryMzMLCfhs+rzz8jq05WYSWPwyc3h+LsfMmbt\n77SIacLEZ16xvfBLSkp4/ZOVhH24AI+IRpiKtKx75AUG9O1L48aNbfevadOmtOiWQGabYCLbd0Aq\nkRJ8d3/+fms9TzlE6po1a4ZHhpbLm38luEsbUrfvI8YniJCQkHLn7unpyZTJj7h0LU+ePMnala9h\nMRbi6duIx56cXe68W7ZsyZxXP7D9LQrV19ZjWqvVkpqaio+PD40aNUImkzF21CiaHzzI+aQk/BvH\n0KdPnzKNZq7AmR5mQ4J93WRVChH2XdM3UpapomisIAg899xzTJ48mU6dOtX5cd1w42bBTRRrAXsi\nJpJE0Y2gIa7UoeKIZ2UksTY1fyKcNXrU1aQuvlzqyhUmMjKSyMjIMp9lZ2fz6tI3yfWSYS7W0y0s\nhmenPOHy9ahIp06MvpZG/mby05ffYrGYuKXbQ/TqmVBuP1arlb///pvc3FxiYmLKNWy4gg4dOrBw\n4sOsXP4leqORyb36MOa++2zdr+I5BQUFYUlLw1SQj8LXD0NGBuTnO/U3T8nJxqPPAAACAgIx9+9H\nSJHA7Ffnlokm5ufnY/XS4BFR2jyi8PZCGR1BTk6OTf9PJAGNG4Wz++w5GCLBKljJO3aGNgFB5a65\nRqPh/Xmv8eZHH3Blw5+0bdqMGXPm14oI5efns27lPJ4ZqSAuOoIDx7P56P15LFjycYX3XGxsqK3W\n34ULF5j70QcYwwIwZeYwslsCD468D6lUWtrhfMsttuirvfi72DVdEf4bZGZKSkpsC0lXUVlNcF2n\npu272B3v8aeffopSqWTixIl1ciw3bhDcqecq4SaKdQCRJEql0lpFEuq7RlH0XRXJrP3nFZFEe/mM\nuuiMrKrRo7pae/aC3/VZlL/mmy/R921Nu7tuxWqxcGjp5+zZs4fbXZCesU/ZV/RsSCQSEnolkNAr\nwRZ91el0ZVKQAB98tJQU3VHC4rz46fN87u4znjsGle/IrQp9+/Slb5++QNkObPt7HB4ezpS7h7Ji\nxrPImjXDevYsL06YUEZYWkTn5i05umUnPu3bgCBQsm0Pt3btWq4jNygoCF+zQNbefQT37UHhmfMI\nl5LLReoA7h02jD0vv8SlGa8j1ahRXUjlqXmLbPfbPiodGRnJewsXV/s6VISUlBSiQ0zERQcA0D0+\niO9+TSc3N9cWYbZHXUbq3lizCo/JI4ju0AaTroTvFyyjc9t2ZWpDxefdPipdWbS+oXskw7/2d7VJ\niddnatpqtVbo03348GG++eYbduzY0WCDBG64UVO4iWItIKaKtVotEomk1pGEuiaK9hBJoiOZFSVw\nnMn8WCwWmy1afchnVNTo4WqUsSJrvvrA5cx0gu/rXjpumQzv+DhS0q5VuV1NUvaO0VeTyURhYSFJ\nSUlczDrM+Hm3IJPL6NJfx6cvfcrt/frX+OUvuppU5O87fvRoenbpQlpaGo3Hj6vQ9WPsqFFcXfou\nW+97GASBuxP6cP+Ie8t9T6FQ8O4rr/L86wu5sHQNnhIZbzz7HEFBQeW+q9FoWLHkTQ4dOkRJSQld\npnXB19fX1mxVn6lGf39/0rMsFOvMeGrkZObo0RnkeHt7l/tuXUbqLBYL1/JyaNO+NQAKjQfK5jFk\nZmZW2ERUlTOOVCpFr9fX+2KqNqhr0e+6Tk3bu/84zoXZ2dlMnz6djRs3Ntjr60YlcEcUq4SbKNYC\ngiBgMBiQSCQNsjBcJLLiJAeUIbMiSXSmlVgXjSHVGac4qbsaZRRr/pxZ89UHmkdEc/Svf/C+bxAW\no4nCv0/TtPugSrcRdeBqmrJ3jL7q9Xq8AhRYBStYwNtPjUQu2Mh1dSFGmWQyWaUvuLi4uCqbJhQK\nBXOen8nzJSVIJJJKu2mbNWvGxk/WUVhYWKXkjkQioW3btmUaqGqbaiwsLGTbzz9RmJ9J85ad6N2n\nT7nnJyIigm59H2Teqs9pGi4j8arAvWOec1qXZm8fWFvIZDIah4SSvu8w4T27YMgvwHDqPBG3DKxy\n24qui7j4bOj2d/Ul+l3b50VckDprUDKbzTz66KMsWbKknAC+G278r0BSRQSrfsJb/8Uwm822NG1B\nQQEAvr6+dTIBixOYs9ReTSAW1ouaZN7e3tUiiUql8qatkMV0uFj35ejoodfrnQrd1hcKCgpYtOxd\nLpfkY9EbGdCuC49NmFTmetrLZdhHY+uKaOfn5/PSgmfoM6ERUc2COLjzAjlHvHh11mtOU2pZWVmc\nPn0alUpFx44dy3W3iySito0X9QWz2YxOp8PT07NKoi0+L6IWvOpjAAAgAElEQVTbSUXi7zqdjoWv\nTqNDVDIxjRTsOGig9S0PMeLeUU73e+nSJbKzs4mMjCwj9i0eU0yD11ThQK/X26z8RFy9epV5y98n\nXynFWljM5EFDGHLHHTXav30UzWw214ltYF1CzHTc6LnG8XmpLDVtMBic1iUKgsC8efMICgpi5syZ\nN2zs/0O46Q+gRCIR+E8DoDl3SRAE4aZfj4rgJorVhNlstr3AjEYjarW6zmRw6oMoipp9Pj4+5Uii\nKAzsOPkVFxfbUjYNAaKmnNFoxGq12ohYVTI9dQ2LxUJWVhZKpZKAgADb5xkZGSz48AMuZuegBp4d\nM4YO7dvXy8vvwoULrPl8OVl5GcQ1bsWksY/aPITtGxouXbrE4vfnENVBRXG+EVl+KK+8sMD2rN5o\nol1diCUdNSHajs+Lfapx3759HNk5n+ljS0lfQZGRGe/n8+HqzdW+DqK+YU2IdklJCUs/+oBD546D\nAPf1H8qoe++z7cdkMpGdnY2Xl5fTdLcrEBcrYn2xeF1MJhMWi8Ul28D6xI0sHalqHGJq2mw2l3le\nxBptZ4uVLVu2sGHDBr755psG2UH+X4CbPvFIJBKBTQ2A5tzTsImiO/VcA5SUlNgmlLqc3Oq6RtFk\nMiEIQhmSCNgiiRWRxKpSkTca9g0dBoPB5u8rdnveKMtAmUzmVJz5tRUrSO7Rg8YDB6BLT+e1xW+w\nLCysRhp3VSEuLo7X5r5T7nPHhoZPv/6YhLFhtOsZgyAIbProML/u+ZU7B9/Z4HX0apLOFQSBs2fP\notPpiI2Nxc/Pr0xDg3hd9Ho9KsW/56xSyiqs0a0MojtRTa/hZ99+yaUALf0/noqpxMjmxRuIDo+k\nZ89SX3GFQlHGVrC6ENO59g1K1bUNrG+IRP5mp8QrS9mLMjiOJPH8+fO8++67bNu2zU0S3ahzSCSS\nNcBdQKYgCO0q+M77wGBAB0wUBOFofY3H/YRXEzqdDpPJZKutqq/mk9pCTDvLZLIyE5nFYnGabrZP\no6nV6gZJIOwL3n18fFAoFBgMBoqKiigpKbFZft1ImEwmElNSaDSgPwDK4GAk7dqQlpZ2Q8chNjR4\ne3ujUqnIy88mKMIbi6W0UjuksSf5BbkVdueWlJTwyy+/sGXLFi5fvnxDx26PysSMK4LFYuG9pYv4\nau0z/PXLK8x9+SEuXrwIlF4XtVptuy6tWrXi+BVPfv49jdOXClj+bRrde91VrZe9+BzWJmV/4uJZ\nYgd1RiqTofLyILRPK85ePF+jfTnClWso/s69vLzw8PCwCfAXFxfbFpj1CVHap6GVPYgNPyJ5lUql\nGAwGCgsL+fLLLykqKkKr1TJlyhRWr15dRtDdDTfqEGuBCutNJBLJnUCcIAjNgEeBFfU5GDdRrCaU\nSqVLnrc1QV1FFMWom2M6pzKS2BBSQJXBXqZHTJUplUq8vLzw9PQESi3ktFotRqPxhhF4uVyOn0ZD\n0aUkLGYzFqMR4WpKmdT0jYQYHWnfphsH/pOE2WghO72AY79co2lMnC0VaR8h0el0vLroBX67sJZE\nw/csWvo8R4/W2+K0QogNSgBqtZqCggIuXrxIUVFRpdvt27cPY8FeFs1sxIxHQ5kwwsj6tW//H3vn\nHR5Ftb/xd7ZkN2UJkRoBCe3SRAUERQURCUgQQfAH0juIgnjBAioiCIKX6wVFpYOgSFOaIAnlChcE\nL3gRCwiCgoQQwFCS7WV2fn/EM052ZzdbZnfO4vk8D89jknX3ZDLlPd/yfsu8hhyX6tWr46Up83D8\n6v34ZF91ZNTti/97clDIRve+52GkVMuojKLTBQBKf+/i04WocosykzxIuUkopSOkkSwlJSVumy9p\nkxet0Tin0wmNRiOm/h0OBzZs2ICGDRuiW7du6Ny5c0QepgwK8VDwzwdBEPYDuB5k1Y8BWPnHa/8L\noCLHcdUi+fVDgaWew4QUhQOxtbOJFOK/V6FCBbHpBgguEuPZPRwJ5dn0qDUyECg9B14aOhSvvfsu\nbjRoAFy+jK5166Fp06biawRBwPfff4/i4mLUr1/frykiFvTvMwhLllvw/tNfQafVo2fOIPHB5nK5\nAEAU3Pv370fKbdfQa2xLAEC9ZpfxyaplaN78vYDv/+OPP2Lr9tVwux1o07ozsrM7l2tldOLECRQX\nF6Nu3bqyKXypKfl/9u/DuvX/ROWqAoqu6DB82Gto2aKl7Htfu3YNf6sDaLWln9+4QQUs/7Qw4Fpq\n1KiBZye8KtbqulwuWCyWchs95NK5weB5Ht9//z0sFgsaNGhQ5nce1mcgprw9A4e/Pw+32YEaHhM6\nDcou9z3LI5CxeyhIU9PSlD35vhKpaenklVhYbikBaaCTHsOqVati06ZNmDdvHv7zn//gs88+w6pV\nqzB48GAMGjQIderUUXnVjL8YNQDkS76+AKAmgMux+DA6r9QEIV4j90KF3NhNJhO0Wq24NvJA9BWJ\nQPS1VrGGPJxDqVfzrTWK5chAKU2aNME7Eybi8uXLyMjIQMOGDcs0Dr313vvYfeEKtDVqQ/PJBkwb\nNgitW7dSfB1SjEYjxj09AV7vcwBKo61EOEtrsJKSkmC1WVGx2p8pykrV02CxBRZaZ86cwXuLX8bj\ng00wVUjCpo/ehYd3I6dLN9nXC4KAhYvm4rcLO1GjlhYfr+EwYuj0MmPOSCoyLS0NV69exfoNczB5\nWgaqZybj3K8WzJ39Bpo0XiPbOFanTh2s/pJDx7YuZFTUI29vEerUu7fcY8RxXJlNBmn0kNtkhJsS\n53keM//1Fk45CpBSPR3m9cvw6ujncfsf4xBvvfVWzJ06Gz///DP0ej2aNGkSdXe8tKwg2vNcq9WK\ntcrEy5McF71eH1FdsNSOKZoxm7GE5/mAvqcHDhzA3r17sX37duh0Onz77bf48MMP0bp1a+zdu7fM\n5pCRQLjVXkDE+F6AMYtaMaF4k+DxeGCxWJCWllZmp046+gKJRCVGjsUK0tQQyWi+WI4MlEIETlZW\nFurWrev382PHjmHPhd+R+cIb0Oh0sPz2K95a+BY+bXV3XI45x3GiwDEYDOA4zm9yRd06dbFt+TXU\nb3YFt1Q3Ydfqn9CyWbuA73no6/1ol6NDyzalEbL/G6bB5uVfBBSK33//PfIv5uHVmbWg12vw6xkz\n3pszG82brwPHceKISPJwvnLlCjJrANUzS0VhVt00pJmKce3aNdSoUcPv/Zs1a4Z2HZ/BxJkLodd5\nUTWzCcaNfy7s4+Tb6CGNppFrKFQngEOHDuFn7yW0ndYXGo0GF7//Fe+vWIwFb70rvqZChQq4++67\nw1pnIGI1nk+6+RIEQZwyFOrYQClkRjJtdYkEX4srKYWFhXjllVewbds2UdC3aNECLVq0wJw5cxQX\nvvn5+Rg0aBCuXLkCjuMwatQoPPvss7h27Rr69OmD3377DVlZWVi/fr3sSE0G5RzfC5zYG807FACQ\nGnfW/ON7MYEJxShQOvUc6ft5PB6YzWakpqb6RSW8Xq/YoS1FOlaOxjohqU1PNB3YclFGaadnUlJS\nxA8tX4EjR3FxMTQ1a0Pzh3hPrZWFizYbeJ6PeepNWnvq26AkNTm/8847MazP81jz/jLY7L/i7jvu\nR78+gwK+r16nh93xZyTd6eCh0wZ+UN64cQO1snTQ60uPUZ16abBaz4n2TL4Cp1q1aigs4FB40YbM\nW1Pw6xkzLGZD0LrPnK7dkd0pp9SUPMrouHSTQerpvF4vdDodPB5PSNG04uJipNWpIp4Xlepl4viN\naxGvKRhKm34HgmwyQh0bKCXYjGQaCBYxdrlcGDlyJN555x1Uq+ZfBhYLhwi9Xo+5c+firrvugsVi\nQcuWLZGdnY0VK1YgOzsbL774It566y3Mnj0bs2crN7qSESeati/9R/hsWrjvsBXAWABrOY67F8AN\nQRBiknYGmFAMm3jc5MKx6iDdiikpKWVucERwGgwGsWZPWn+k1FzaWBCrDmxfAeByuVBSUhJRlJE0\nNZQXwalXrx64dRthzT+HlJq1cSl3C5rVyfITiWazGfn5+ahYsaJiNYxOpzOk2lOO+3PONIkykro9\nOQHQvn1HTJu5BRrtWZgq6LB7sxWDnnwq4PvXrVsXGzYKKLhgw601kpG3vRC31WoMrVYLi8XiJ3Aq\nVaqEJ/u8iNmvz0FGpRu4cU2PkcOnlutXSjYESkE2boIgIC0tTUztkpS91+tFfn4+kpKSULt27TLX\nUoMGDXB1wQYUP3wXTNUycGLzQdzxN+VTk2qlc8sbGyi9lhKleYVY4UgRBAGvvPIKevbsKVoXxYPq\n1auLNa1paWlo3LgxCgoKsHXrVuzbtw8AMHjwYLRv354JxWiJv1lGuXActwbAgwAqcxyXD2AqAD0A\nCIKwSBCELziOy+E47gwAK4ChMV0PM9wOD+KzBfwZlYvUEFeOa9euISMjIyTB4vV6UVJSAqPRWOYG\nR6YOCIIg3piJMCKNDEajMapoWqyI98QQ8vckxyWUon1iBk2OYXl8/fV/8dbylTA7nbg96za8Ou6Z\nMrONT548iZf+NR/2SpnwXr2MAe3vw5B+faP6vcjmINKIsdSEWM6cubCwEDt3bYfb7UDrVu1wxx13\nBH2/A18dwKqP5oDnbcjMbIhxz0wR1xZIABYXl6abq1SpgrS0tLB/h2jxNayWfr+goACv//MNONIF\neOwu3FG9MSY990KZ132590ssWLMcTo8bd9RvjOeffk5xOxVig0VD+Yj0WiJiWq/XizXGtNYlkppd\nuWtl3bp1+PLLL/Hhhx+qJnLPnTuHBx98ED/++CNuu+02XL9e2gwrCAJuueUW8esERPWHD8dxAlZT\nIHP60224zYRimEiFotKTVIBSoVixYsVyb0perxdmsxlJSUllHrRyIpHg8XjE0XykC5pEGWnZ6av1\n4CtvZKD0dZGMHCPCSy7i1W/s31HSfTgq3t4CHpsVv899GfOfHoomTZpE9LuEM/ouFEjKnpz3kXbA\ner1eOJ1OGI1G6scHlrcZmPmvWbjayIvbH2sFt9uN/XO24f8aPYKuOV3LRNOC/d2jJdrNQKwgzXOk\nBprUdtIyNlAK+Tv7bgaA0s7+v//979i1axdSUlJUWZ/FYsGDDz6IKVOmoEePHsjIyCgjDG+55RZc\nuxabkoY4oPrJwHGcgJUUyJzBdAtFeu4uDAChpbYFQYDZbIZerw9ZJEr935KTk0X/QSJ84mW0Gwzy\nYFFDPPj6yel0OtFPjtgHSesmw42OkFpJXzweDwqvXUd60+YAAF1KKrg6jXDp0qWIfg+lfP6kBDJn\nJubzoZ4zJHpIopS0ikSSziWbKDnyLxegZou6okFz9Za34eKVS7DZbLBYLGLaP9DfPVpoLh8h3eQa\njUY8d9xut+jN6PF4qLAVk9Z2+orEGzduYOzYsVi1apVqItHtdqNXr14YOHAgevToAaC0fpfcGwoL\nC1G1alVV1sb4a0HXHSYB8G0IUPqGV957EpGo0+n8RGKgUWRerxdWq1Xc1ROk0zykRrsOhyPuU05I\nGp+GBx8p2vcV08T4mXQPK4FOp0NW9aq4euQAAMB14xqE0z+gVq1aZV7H8zw+27wFz8+YhTnvfYDL\nl/3rlqV/51g0yviKaa1WC4fDUUZMlwfpEqchVSoHEYn/ObAfM9+ZjVnz3hKnvEhpUKsefv3PidL5\nyQ4XLn19Dg3rNoDJZIr5pBPyd1a6w1lJSAo6NTUVSUlJSE1NFRtZ7HZ7GTGtBqTERa62k+d5jBkz\nBlOnTkW9evVUW9/w4cPRpEkTPPfcnx38jz32GFauXAkAWLlypSggGYxYwlLPYUIsIoA/U7lK1h3d\nuHFD9EGU+2yLxQKO48o8aIlIlPNKJA+VUFOl0vRrrP0HCSSFr1SqVGnIQ8Xj8UCj0Ygp+3CsQYLx\n22+/YdI/5qJIowfMxXjmie7o8WjXMq9ZsGwF1vxSgNTs7nDmn0Olg3lY+tZM8dyLNCWuBNJzhjx4\n5TqDlU6JxwKHw4EvcndgzVeb0LjfPbAXW3FuzTG8/cps3HbbbeLriouLMf3tmcg3XwLvcKND87YY\nM+KpMpsccq9wu92KnTPSqHaoVj3xJlBtJyHUMo9Y4nQ6ZbuwBUHAnDlzAABTp05VbTNz4MABtGtX\nWvtL1jBr1iy0bt0avXv3xvnz528GexzVd4ocxwlYRoHMGU536pkJxTCRCkUSNVDyQi0uLkZqaqrf\nDZY8IEgHZigikYgHvV4f9kNFEAQxKuD1emM25YSIh0APFRrwfajEQky7XC78/vvvMJlMfjWvXq8X\nnQYOQ8abi6FLLW3quLTkbUxt0wzt27enZk53sHOG1IIlJyfH1MIlGkjN34szXkbW03ej6t9KPRv/\nt3Y/2jj+hgH9BpR5vdfrxeXLl5GUlIRKlYKP31PinIl3o1ckkHtOqM0r8brPSAm2Ydm9ezeWLl2K\nTZs2UbuZuYlQ/QRmQjE06HwyJwjxGuFHhIDX64XJZPITicSPzlckRuND6DvOKxZTTqQWM7SKRKnf\nJPl9Q53mEQ5JSUmyZtJSBGma7o+Nga9X4qlTpzD/wzW4XmLGAy2aYcSg/nHrNg00As43CqsmZ86c\nwfyPPsKV4mK0adIEowYNEi1epDV/Xu+f13Xpcfc/1zUaDTIzM0P63GBjJqXd5MEgtZ2J6EUYiHiM\nDZQSzJj83LlzmDFjBnJzc5lIZDAksBpFypATnyTtKRWJAMRIopxIVDLCJK1lJCPgSGF6pLWMgeom\naYIIwEB1k+RhJq2/slqtsFgsokWIEmg0GjzZqQMuL5yNa/87hEtb1qBawS9o0aKFWOeVkpKCwsJC\njH/jbfzc6FFYur2INSdvYP7iZYqsIVy0Wq3YAEOOg9PphM1mU62Z4cqVKxg/ezZ+evAhOMY9h88s\nNvxzwQI/8fB4x8fwv/m7cebAcfzw+WEU7TqLDu0fUmQNpLkl3Jo92ms7gcBehKFCzplY1XlKm5R8\n7zl2ux2jRo3CokWLghq7M25CPBT8oxyWeo4Ap9MJoPTGc/36dUVvLCUlJWXSc3a7HU6nExUqVCgj\nVoi9jVy6OR7pKakxc7hRxnDrJtWgvDqrQEj9Bz0eT5m6tGj+Fl6vF1/k5uG/P55A1Yx09Ov5OEwm\nUxl7lC+++AKzj1xBZrdRAAC3tQSW95/CzrUf+r3flStXsH7LVlw3W/BA87vQvv2Dip8rvueiNM0I\nRG6zI0dxcTHWfrYJl68Xo2WThujSuZPf++7ZswczfzyOzDHPAAC8LhcujRqBzQs+EI3YCfu/OoD9\nR75CcpIRPbv2QO3ataNeYyDKq9mL9FyMJ8G8CKNByTpPMmHH974oCAKeeeYZPPTQQxg8eLBia2eU\ni+o7Ho7jBCyiQOaMZqnnm55wJqmUhzSi6HA4IhKJoUzjiBatVgutVltmlnIo6VdpeopWkSjtKg33\nwSw3MtBms5VJsUXyd9FoNHg0pwsezekCoGwDEDk3kpKSAGux+P94LDdkj/H169cx+uXXUNTqYejq\nNEbehk147sYNPPG4fAel1WpFUVERKlWqFJbxtdPpLJMq9Z0zTc6ZYM0MgiDg0qVLEAQB1atXlxUh\nNpsNT0+egvNZraCv2Rp5X3yBi5cvY+SQsg99g8EAobhYvF7dxTeg4SCbKm17/wNoe/8DIf+u0SAd\np0jENJmnrNfr4Xa7Y9bJrgRk8kosHAuiGRsohWzc5O6LK1asQEpKCgYNCjy2knETkwARPbWh885D\nOUTMxVKIkQdFqCIRgGhREs/0lJwwCnQj902J0wgRiUrMzVVyZKAU6Ug0qSBv06YNsjZtx68b34O2\nci0I3+7A5H49/f7/Q4cO4fcGdyGzR38AgKPu3/DhvJdlheKRI9/glbffhyslAzrrNUwdNxJtH7hf\ndl03btzAf//7XwBA8+bNxdSz7+/IcRxOnDiB8+fPo1q1amjWrJl4vksN4F0uF16f8xb+m/8roNHg\njiqZmPnSy36+dkePHsUFUw1Uf3w4AMDTpAVWzxiGYQMHlDk+rVq1QoOtW3Hyg/ehq1MH7j27MaZ7\nd6oaQ6QbCtJ0IW2go820mqTtjUZjzOv6whkbKCWY5+Q333yDTz/9FHl5eVQdVwaDJphQVAClI4ok\nPedrk0OaV+REotPpVH2Ul1QYyRXsk4ddcnIylTdlImT1er2i0U5pxIhM9iENKOGmX4NFO1NTU/H+\n7OnYuXMXrpZcwd3jh6BFixay7wH9nxE0Tp8Ej0xtnNVqxStvvw9Nn6mofFtD2ArP4fX3XsanTZsg\nIyOjzGsvX76M0a++ghtNG0EAh7Q1n2DxzDdlpxat3rAei7/cA23LO8H/Ow+9vr0dz44aLYppi8UC\nrVaLTzdvxpEUAQ2WvgmO43B8/iqsXPsJxgwbEfz30ergBfxq2gwGA+a9/jry8vJwqeh3NO7VE+3a\ntaPyXAQg2g2Rer1QhVG8IBmMSAzoo8F3c0quJzI2UDppilzTckL2999/x8SJE7Fp0yZqsxsMBg0w\noRglSt+ovV4vPB6POB2EQGrfAolEYm6rtlk14H8jdzqdsFqtAEBtJFEa7YzlQ4O8fzjpV+kay4t2\nmkwm9OrlH0WU0qpVK5g+fQVXMm+DMbMGrNvWYujD7f1eV1RUBFdKBirf1hAAkJKZBXtGTRQWFvoJ\nxVWfbkBxdgfU+L+e8Hg8+H3L5/h440a8NG5cmdcVFxdj8dYtyHz/n0iqmA7ebsdn415Ej0e64Lbb\nbivTTX7i3K9I6XAXBHDgOA0y2rXCqQ17/dZ555134pYPP8GVPZtgrFUPln1b0OPB+2RTtSkpKejW\nrZtoj0LD9SKHNFVKJpz4CiNA2TrPcHE4HFE1ryiB9HoiGQ2LxSIeL2nNpxSPx4NRo0bhrbfeQs2a\nNVVaPYMKWOq5XOi8SyYQSlrkeDweeDwev5FSwUQisW9JSUmh8qFHOrI5jkNycjI8Hk/UHdNKI7WY\niVe0U25kYLApJ9GMD/SlWrVqWDhtCh48fwz1d6/F+PvuwtAB/f1eV6lSJeis12ArPAcAcBRdBK5d\nQLVq1fxeW2Q2w1CrpmjVZKhdC0XmEr/XWSwWaExpSKpYahSuTU6GvloVlJT8+VqSfm1UOwu2//0I\n4Q9xdP3gUdSuUtXvektPT8cHM6fiYcsp1D+4BqPuug1/HzNa9neXWjLRaoFCrHrkrmkijHzHKcZ7\nBCdpMKElbU/GBhJ3BoPBINoJkfsnuaYEQcAbb7yB7OxsdOjQQeWVMxj0wyKKlEBu+Dqdzi/dTASV\n7w1Zat9C60PP5XKJZtWkbrG8WsZ4Q2xJ1ErbyxXsk/QrSTE6HA5wHKeYoXbt2rUx/aXng74mLS0N\nrz87ClPnvwx7Rk3g2gVMHjlA1lz6vttvx/6Nm5Fary40Oi0smz7HfW38axmrVauGqtDgUt5uVGnf\nFtf/dwzGwiuyXcVP9noC382agR/HTQe0GtTTJaPfxBdl6zwzMzPx2vMTgv4+JGqsRP1prAjm8yel\nvAaYWJpW0zxnGvjzPikIAlJTU+HxeHDy5EkMGDAAffv2Ra1atfDbb7/hrbfeUnmlDCpgEcVyYfY4\nEUCsGoDAk1TCgYhEEiEg0TciEgVB8LshJ8JEk/JG80mtZHiej8tUBl9oS9sTpFYy5JxQa0Nw/fp1\nXLp0CVWrVpUViSTa+dG6dfjsy38DHNCnYycMHzhQ9pgWFBRg2jvzcOq3c6hVPRNTx45DgwYNZD+b\n53n89ttv8Hq9yMrKKlPnGY7NjrS0QDojnSaUGMMYjW1VKJAJO0ajMa51ieFA1ii9N3q9Xhw6dAhL\nly7F1q1b0bZtW4wcORKPPfYYq09UD9VD0RzHCXibApkzkW57HCYUI8BXKKakpEQcofB6vSgpKYHR\naITRaBSLsololBOJxFeN5nFo4c71JVHGWD3g5IiV95uSSGsYyaxptSOwvjgcDlUaqcKZGRzIQ48W\nlC5/8PXzVKIBJhHmTAcT2xaLBY899hjef/99HD9+HB9++CF++OEHPPnkk5gyZQqqVq2q0qr/sqh+\nITKhGBp0hqISiGhNlM1mMwwGQ5kbb7BIYiKIRFIH5mvfEgy5jmmpXUosZkzHyvtNKXxLC6RRxmhH\nBiqFtLQg3gIsWPpV2v1KHAFoHX0HKF/+EKgzGIB43oR73pPyB1ojcERsk5INKV6vF2PHjsXEiRPR\nsmVLtGzZEoMGDcLZs2exatUqaoUvIw641V4A/dD5hEwgIm1mEQQBZrMZer3e7yYlCIKs5U4ijL2L\nxqwaKDvijIwstFqtMJvN4oiwaEmEhgY5r0TS5JGWliYKiliMDAwV3/nIauJ7bEhkiTQH0WrJBEAU\n/7GKdvo2wJBjE04DDIlM0hqRBf6chS33t/7ggw+QlZWFJ554osz369Spg6lTp8raOEXDsGHDRI9Q\nwuuvv46aNWuiefPmaN68OXJzcxX9TAYjVrCIYgQokRYijSvSmxqJIEo9wUiqSGoETXNtkFJm1UBw\nX8ZI02g3i9iOdDKOUtAstkn3q16vh9VqhVarFf0x1Y7A+iLdEMRabEsjsMSCKJQGGOmGgFaR6PF4\nAs7C3r9/P/bs2YPt27fHbf1Dhw7FuHHjykx74TgOEyZMwIQJwZuuGAzaYEIxSsKNKJLdvEajKbM7\nJ2baGo0GaWlpYmoUKC3Wd7lcihtBKwmpX4rFGuWmv0iPTahj8aQ+hLSK7VC8EqUEmowT7cjAYJDO\nXNq7h+12O5KTk2U77YkwUlP4SDct8W5Ik54fpAFG7tiE2oWtJsHWWFhYiFdffRXbt2+P6zFu27Yt\nzp075/f9eEf9GSFAh0sb1bDUcxwhIgBAmZ0vEYmku5VEitLS0mA0GsX6JWLGTdvNRlrkHmshS6KM\nUh+5kpIS2Gy2oMdGSR/CWBHtcSTHxmQyiWPOQjk24a6R9lnd0jWSv7X02BAbIqWPTSRrJGJNTbRa\nbZljIz1vyOaP1g2B9Dj6rtHlcmHEiBF49913qWlUmbOXkroAACAASURBVD9/Pu68804MHz4cN27c\nUHs5DEZIMKEYJaFGFMkNzev1limqJyKRRBPlDLV1Op3YmWuz2WCxWBSr14sW3/nN8ZwxTQyryahD\nu90ue2xIkbuSPoRK47vGaPCt8/Q9Nr5m3mqsMVaUt0ZybAKdN5Eem3DXSGNjiO95Q+5LpKkqHscm\nXAIdR0EQMHnyZPTu3Rtt2rRRaXVlGTNmDM6ePYtjx44hMzMTEydOVHtJDKDUR1Htf5TDUs9REqpQ\ntNvt8Hg8YoMGgdyMfaeuyNll+NakOZ1OVeuu1JhoIofcWDxiykzGeKlpqB0KsTL9DjQyMJI6T7WN\nyUOBNDSE0uEczTjFaNdIexc2ibISweh2u0UTeHJdqb32YMdx7dq1sNvteOqpp1RanT/SqOaIESPQ\nrVs3FVfDYIQOE4oREO4N0m63w+VyoUKFCmUK1nmeDygSyQ7e96EcqCZNDX892oSDtFhfagkiCAIM\nBoNsJzkNOJ1OuN3umB5HXysZUudJmqbKs0tR0wYnVEhzRrhrLM9mR6/XK7YRI00XNB9H3252jUZT\npgGGBnsm6XQY3+P4ww8/YMWKFdi1axdVx7iwsBCZmZkAgE2bNpXpiGYwaIYJxSgpL6LocDjgdDph\nMplCEokAQvZ9C6UrOFbEQ9xEA0njE/NyMmNaCeNhJSGiJJ4WMyRVJ21kIF34cpE0mmxwAqFU97Bv\nk4eSGzGpvyitxzFYY4j02MSrcUoOUu5iNBr91nj9+nWMGzcOa9euVXUCT9++fbFv3z4UFRWhVq1a\nmDZtGvbu3Ytjx46B4zjUqVMHixYtUm19DAkJkPpVGzaZJQJ4nofHU3p2kYkPqampfq9zOp2w2Wyo\nUKGC3/xmj8cTUCRGM1IuHhNOiCCleaKJ3PjASEa/xRKaxjBKzby9Xq/44CcNNjQbvMd6rJwSoyaV\nGM8XayKZvEKOjdvthtvtjvlGLNgoRp7n0a9fP4wZMwY5OTmKfzZDcVTfqXMcJ2AKBTLnDTaZ5aYm\n0M3Q5XLBZrOJBfOEYCKR1B1GI8BiHWWUTguhVSTKmVUDytbrRYs0cqO2SATkI2kWiwWCIECv11Ox\nRjni0T0crQVRInSKA5FNXgk0ASbUkoZwIY1qckMK5syZg1atWqFLly6KfR6DwWBCMSJ8awZ9o7LE\nkywtLa3MAzaYSFRagMWilpF4O4Yzmi/ehGJWHaiWEYhPlFFpY3KlIXYpZLY0GTVJm2E1aaYiG4B4\n4LsRc7vdYuNUoM1GIHFDE0qMOSR/B2I/RDYbSmU2SMRbbo27d+/Gd999h40bN1JRUsJIIFjquVyY\nUFQYj8cDi8WCtLS0MiKAzG+WE4nSucOxeAgrEWWUTuKgNboUiQCLd5QxEaJLUgFGTOF9TZnj3Tgl\nh5rNVIEiaUDZWcqJ0AQUbKpJpJDpOKQBhmyEpccmnM8iBupy9Z1nz57FzJkzkZeXR80mhsG4maDz\niZ9ASCOKPM/DbDYjNTVVViSSEX1SpHVqsb7JRRplTISxd0SARToZJlBXMKBclFEqwGiPLvkKMLVH\nBvpCkwDz3WwQKxmNRgOe56ku04j15JXyGmBCua6k04p8N6l2ux2jR4/G4sWLkZGRofj6GX8B3Gov\ngH6YUFQIIhJTUlLK1EoFE4lqRumkUcZglheJMGNaWuCuRJTOtytYKX+9QJZHNFGeAAu22YjXWDxa\nu7Clm42kpCRRLNI6ZzrYVJNYIL3n+EbvSR2s77lDNldardbv/iMIAiZMmIDRo0fjrrvuivn6GYy/\nKkwoRgmZh2o2m8WbICGYSKQlShfIDoQY6zqdzoRIkwLKm37LRRkdDkdEhfqkBoxmkRiuAAulpCFW\nc6Zpnj1MzkmDwQCj0ai4zY6Sa4xnfSdB7rqS+lZKr6tgBurLly+HyWTCgAED4rp+BuOvBhOKEeB7\nw+J5XqzHIZDRfHImz7RG6XzriogAAyCOGKSNeNWpyUUZg3kPSpEaQdN4DIGyHn/hCrBg9XpKNgdJ\nU5A0l0D4CjDpdeUrqImZd7xFYzgTbGIJua7kGmB0Ol1Ac/IjR45g48aNyMvLo3bjxUgQeLUXQD9M\nKEYBSd34zpWVzm+Wm7pitVojrqWLFx6PR4wkSsd3xXK0WbioYfpd3hQP3yijtFOcVpFIonRGozHq\nEohYNQeRa00uBUkTwQSYXNo+nt32BFqnw0gFNTlvAIjensnJydBoNLhy5Qqef/55bN68mepzgcG4\nWWBCMUIEQYDZbBbtQ8gNNxSRSHsq17eWTjq+K5goiic0ROnk0vbSKCPHcdR3ikubgJR86AZrDpJ2\nvoYKSfmTLmwaCWeEYLB6vVh6ekpT97RuXIDSY0k2HC6XC//4xz+wbds29O/fH/v378ecOXNQo0YN\ntZfJuBlg9jjlQufTi3LIlAWO45CcnAyLxSJ+3+v1gud5P/sHacOF0Wik9mHncrlk/dQCGTKrEWWU\n2gnR8rDzTdsTsa3T6aivpYt1nVo0aXvgz3OS5vrOSEcIBptPrvRmLBFS90BZ42+SrXnttdfQvn17\nzJs3D1999RXS0tJgs9nQqVMnajdhDMbNAh1P2QSDRAtJNEsQhDKRRDmRGKuGCyUhReXlPZCJKDKZ\nTGLDi9lsFsVRLJF2itMowEh6kQgAjUYDi8UCq9UKt9sddC54vCH1nfE6J8kxSUlJQYUKFUI6d0iD\nzV8hdU8Ee1paGlJTU8UNqRLnTrDuYZogmwLfyLFWq0VxcTEqV66MgoICdO7cGdOnT0ft2rUxffp0\nFVfMYNz8sFnPEeJ0OgGU3oCvX7+O9PT0gOlmh8Mh+qnRKhLlZiOHA4kUud3umEUZYz3TVwmkdatE\ngAWao6ym8KFpXnegc4c0fdEwCzsQJEpHNk+xeH/puROpzQ6ZIU9bXaIUnudhtVpl70GnTp3CM888\ng7y8PJhMJvH7x48fx7fffqt45/OwYcOwfft2VK1aFT/88AMA4Nq1a+jTpw9+++03ZGVlYf369ahY\nsaKin/sXQ/UTkeM4AWMokDkL6J71TOcWPQEJNHXF6XRSLxKVGM3nG2V0OByKRhmlaTNaRSLwZy2d\nNEpH0vaxiBRFAm0+hIEi1BaLheo508CfadJYGaj7njscx8FqtcJiscDlcoV07sRi8orSkA2W0Wj0\nuweZzWaMGTNGtMOR0rRp05jY4wwdOhS5ubllvjd79mxkZ2fj559/xsMPP4zZs2cr/rkMBo2wiGKE\nkJs0MdoGIEaKyM2Y7OJpeSDLQXbxsYjaECsQt9stNvBEUqQvjdrQXN8Zzt9brShjLP/eSkH+3qSk\ngxbvQV9IqUa8o3RkZjzpsCa1nnLXFonC0/73JvXbvlFZr9eLIUOGoG/fvujVq1dc13Xu3Dl069ZN\njCg2atQI+/btQ7Vq1XDp0iW0b98eJ0+ejOuabjJUv5hZRDE06LxzJAikLjE1NVW0uygpKRFtLkiq\nh1aRKDX9jsVDRImReKS2ikRtaBIKUsLtwlajOUhJG5xYQqJ0qampAEDFyEBfpFFZtedMB7q2go2+\nowmn0wlBEGSjsvPnz0f9+vXRs2dPFVZWlsuXL6NatWoAgGrVquHy5csqr4ihCGyEX7nQe/egHLKr\nJ+lmYhBLhtc7nU5oNBp4PB7qIiFAfE2/A43EK88KRM6qh0ai7cL27ZiOhQVRrGxwlIZMsJFG6SKZ\nTx5LaJoOE8hmh2zQyHGiFRJVl4vK/uc//8G+ffuwbds26q59uTIjBuNmhQnFCLh8+TKWLVuG/v37\no0qVKmV+du3aNSQlJYm1aLRFQgD1TL+DeevJRRkDWfXQhJJd2LGKMqo5ri0cyvMhlBsZaLfbY+49\nKIVWixnfa8tms4l1006nU/XmKTmCWQpdvHgRU6ZMwRdffEFNNJSknKtXr47CwkJUrVpV7SUxlIBN\nZikXuu4cCUJ6ejqqV6+OwYMHY/jw4Th06BC8Xi8OHDiAe++9V6zJ0+v1SE1NFR984RahxwJaTL9J\nlDEtLQ3JyclirafNZhOL72kvwJemcpUWDYEaPOx2O3g+vDtbvG1wIiEcH0KSek1NTYXJZIJWq4Xd\nbofFYhF/11iQKNNhPB4PeJ6HyWSionlKDnIs5dLiTqcTI0aMwHvvvee3EVeTxx57DCtXrgQArFy5\nEj169FB5RQxGfGDNLFEgCAKOHj2KBQsW4OjRo/jtt9/w3nvvoXv37gFfr6ZNCrk5A6BywgUxHCY1\nS0lJSdTWJUoFd6w6Xn2R2siEmnqVemPSFlEiKFEGQRrLyPGJRZTR4XAkhPG3XLOSUjY7ShDMV1YQ\nBEycOBEtWrTAqFGj4r42Qt++fbFv3z4UFRWhWrVqmD59Orp3747evXvj/PnzzB5HGVS/iDiOEzCU\nApmzgu5mFiYUFeD06dNo164dHn30URw/fhxNmzbFiBEjcPvttwd8oMTDd1BKovg58jwveiXyPB+z\nh340yHklxvvzQ3noezwe2Gy2iL0x40EsBDfZcLhcLgDKzFEmPqM0N6eRyGFSUlLQbAG5rlwulyq1\nnsE8HVevXo1Dhw5h2bJlVFzrjJii+h+Y4zgBAymQOR/RLRTpKP5IYC5cuIBOnTph+vTpGDlyJLxe\nL/bv34958+ahsLAQ/fv3R8+ePf1sH+LRwCAlEfwcpQbLJJUrHWsG+FsQqYHac4d9axndbrdfgwdJ\ni0fjjRlrpB3tSpZBkFpM3+apUEcG+kLS4jRHZcNJi2u1Wmi1WlVqPYN5On7//fdYtWoVdu7cSe09\nisH4K8IiilHgcrnQokULDB48GC+88ILfz69cuYJly5Zh48aNuP/++zFs2DDUq1cvaJTR6XQqHkVL\nBD9HIhIDRUMCpRbjXehO64QLX289QRBgMBjilhaPhHgey0jLPogPYXJyMlXNK75EmxaPRRRW7jMC\nHcvr16/j8ccfx7p161CnTh3FPpNBNarfQDmOE9CXApmzhu6IIhOKUXLs2DHcddddQV/D8zzy8vKw\nePFi2O12DBkyBDk5OQEfPKQjWImbNk2j2gIRbvqR2KS4XC4xGhWP1FkipR85jhPnjtNoVq3msQy1\n7EONOtRIUPJY+m7IIo3Cyr1voGPJ8zz69u2LsWPH4pFHHolq/YyEQvUbEhOKocGEYhwRBAHnz5/H\nkiVLkJeXh+zsbAwdOhS33nprQB/BaAr0o53fHA+iqffzjaLFskA/Uer9pE0CAOJ2fMKBlukwwWo9\nybFUs8QgFGJ5LMmG1e12R918Z7fb4fV6/Y6lIAiYNWsWjEYjXnnlFWqPMyMmqP7HZkIxNJhQVAmX\ny4XNmzdj2bJlSE5OxrBhw/DQQw8FfIj7pobKi6IRYaP2wzgYSj6MpVFGpaNo5GGcyOnHWB6fcKA1\nlevbUU7M8k0mE7XihUSP42Ga7xuFJSbooRybYKMO8/LysGrVKnz22WfURukZMUP1C4vjOAFPUCBz\nPmVCkREEQRBw6tQpLFy4EAcPHkSPHj0wYMAAVK5cOeDry4sS3QzCJlKUjjLGc4JNNIRqgxPPKKzc\nZ9OeyiXuAKSsgZYorC/B5iPH+nPdbjfcbndI5w+5F8lF4n/99VcMGzYMeXl5yMjIiMfyGXShujBi\nQjE0mFCkCKvVivXr12PlypXIzMzEiBEjcM899wR88MtFibRarTi/mWZhE48Gm2ijaIkgbIDI0+Lx\njDIG886jCWkql8xrVzsKKwcNno6+5w8RjWQ9wSKeNpsNPXr0wAcffIA77rhDjeUz1Ef1C4kJxdBg\nQpFCpEbeJ06cQJ8+fdCnTx9UqFAh4OuJ7QTP86L1Dm1REEK8aycjiaKp7ZUYKkrUqMUjykiDsCmP\nQMJGenzI7HY1fT1pa6qSOz5kmhC5F0nxer0YM2YMHnnkEfTv31+lVTMoQPUbAcdxAh6nQOZsYkKR\nEQU3btzARx99hDVr1gQ18ibRL41GA47j4mbkHS5q106GEkVLFHNyUu+nZPQ4FlHGROm8DyWVS46P\n2+0GEH9fT1oagQLhO12JiG7p333p0qU4c+YM3nnnHWqvLUZcUP2Pz4RiaDChmCAQI++FCxf6GXm7\nXC489dRTmDBhApo2bQqO41QfFygHTbWTwaJotHolSol1WlypKGMidIsDEGdoh7oxiMfIQLnPjFfz\nSjS43W5xM+h2u3HmzBlMnz4dQ4YMwS233II333wTubm5VP8OjLig+s2V4zgB3SiQOZ8zochQGKmR\n93333Yf8/HyYzWZs2LBB9uYb73GBcsQi+qUU0uND/AfT0tKoFTbxTotHGmWktcPZl2jnYcfDrFqt\n5pVwkYt4ms1mrFu3DitXrsSZM2cwZMgQjB8/HnXr1lV5tQyVUV0YMaEYGnTmgRhBqVq1KiZPnoxD\nhw4hPz8fR44cgV6vx44dO8SUmBRSJ2QymaDX6+FwOGCxWOB0OuH1emO+XhL9IlFN2iDHJzk5GV6v\nV2wIcjgccTk+4UJGCMardlKj0cBoNMJkMsFgMMDtdqOkpAQ2mw0ejwdym03yNyc2TrTi8XjgcDjE\n5pVIICMD09LSkJycDJ7nYTabYbVa4Xa7ZY9PuJBULs1NVUTMGgyGMmlxk8mEwYMHIyMjA++++y60\nWi3uuecedOjQAZ988gkcDoeKq2YwGOXBIooJzD/+8Q+sWrUK+/btg8ViiZuRdzgQwaDVamE0GqlN\n5fqmxWmIwsoRbfRLKXyn40hr9RKlESiWEU8lzappa16RI1hXuyAImDJlCm677TY899xzAEqF79at\nW7F06VK8//77qF+/virrZqiK6jcGjuMEdKFA5uygO6LIhGKCsmLFCkybNg1fffUVatSoIX4/WiNv\nJYvzE2W6RbC0OE21njRO2pHreBUEQUzf0/o3J/V+gWaLK0k0m45gPoQ0Eayud9OmTdi+fTs+/vhj\n1YRuVlYWKlSoIJqFHz58WJV1MMqg+s2BCcXQYEIxQZk5cyaeeOIJNGzYUPbnkRh5+0YZDQZDxA+n\nROkcDqcpRM0oI+3drkCp4Lbb7fB4PGItYzw7gkNFLU9HuU2HXq8PuolLBLN30rAkF/H86aefMG7c\nOOzcuRNpaWkqrRCoU6cO/ve//+GWW25RbQ0MP1S/MTChGBpMKP4FUMLIO1yLlETpHI4kRRrvKCPN\njUBSpNZHAOLaERwONHg6+o4M9L3GEqV5JVj6vqSkBN27d8eqVasCbmjjRZ06dfDNN9+gUqVKqq6D\nUQbVbwYcxwnoSIHM2c2EIoMSIjXyDtciJVF880izSjRp8VhHGRNlOkygiGcsSxsigbZ6v0Aj8cgm\nhOaSjWDnptfrxeDBgzFgwAA8/vjjKq3wT+rWrYv09HRotVqMHj0aI0eOVHtJDCYU/4QJRQaNhGrk\nTQg1ypgovnlKRzxjEWVMlKaQUOr91PAd9IX29D25xpxOJwCIEWRa/+52uz2gmJ03bx4sFgtmzpxJ\nxfoLCwuRmZmJ33//HdnZ2Zg/fz7atm2r9rL+6qh+YnAcJ+AhCmTOl0woMijG6/XiwIEDWLBggZ+R\ntxzBBBHtD2JCrCOeSkUZwzWBVgNpV3uoKdJ4+A7KfWYipO95nhfX6fF4xCgjqWWk5TwgglZuo7Vv\n3z68++67+Pzzz6m8D0ybNg1paWmYOHGi2kv5q6P6ycyEYmgwocgQkRp533///Rg2bBjq1asX8OHk\nW2fF8zySk5OpfhDHM+JJLFJcLhcEQQgrykginmrb4AQj2vR9vKKMiZK+l6v3C2ZDpBbBOrELCgrQ\nr18/7NixI2DjXLyx2WzgeR4mkwlWqxWdOnXC1KlT0alTJ7WX9ldHdWHEhGJoMKHI8IPneeTl5WHx\n4sWw2+0YMmQIcnJyAnrNkQcHgYZxgXKoFfEMVxDRaIMjh5Lp+1hFGZWqRY015YlZGlL3ZB2Bxgg6\nnU706NEDc+bMQevWreO2pvI4e/asWCfp8XjQv39/TJ48WeVVMUCLUGxLgczZz4QiI0ERBAHnz58P\nauRtsVhw6tQpNG3aFEajETzPw+l0UtftSkvqURplBPwFUaKk72PVFKK0IEqE7nsgeL2fL2qk7oHg\nndiCIODvf/87WrdujREjRsR0HYybBtUvSCYUQ4MJRUZIyBl5P/DAA3jyySdRs2ZNzJ8/328ag68g\nUitlRqIger2emtSjnCDS6XSw2+3Up+/jJWbLE9XlkSiNVcHq/YLhew7pdLqYensGsxX6+OOPcfjw\nYSxZsoRqQc6gCtVPFI7jBLShQOYcYkKRcRNBjLwXLFiA7du3o0qVKvj444+RmZkZ8PVqpswSoXNY\nEAQ4nU44nU5wHCfOR6YtdQ+oE5mN5BxKlMisUmI2mnrYUAgWQT527BgmTZqEnTt3UrMRYyQEqt+M\nmVAMDXrvoAwq4TgOjRo1Qnp6OtLT0zFo0CAMHz48oJE3x3HQ6XTQ6XRiyowINyKIYiXe1JrAEQk8\nz4sRIbfbDYfDQVXqHvhTdBMREi+k5xARROTvSo6R9Jwj6zQYDFSLRK/XC5vNhuTk5KgjnuR6MhgM\noqi2WCyKeHvyPA+73Y6UlBQ/kXjt2jWMHz8eGzZsYCKRwbhJYRFFRtgsWrQIc+bMwcGDB1G1atW4\nGXmHi8PhgNvtToj6NF8bHNqMqmmb2x0o7arVamG326HRaGA0GlVfZyDi0Ykd7sjAQO8RyCOT53k8\n+eSTGD9+POsgZkSC6hcnx3EC7qZA5nxDd0SRCcVyeOGFF7Bt2zYkJSWhXr16WLFiBdLT0wEAs2bN\nwvLly6HVavHuu+/+JW6W3333Hbp06YL9+/ejXr16fj+PlZF3uCTCdBig/GYLtVP3BJpFtzTt6vV6\nwXEc9XWJ4TSvKEF5IwPlCBaRFwQBb775JlJTUzF58mTqzglGQqD6ScOEYmgwoVgOu3btwsMPPwyN\nRoNJkyYBAGbPno0TJ06gX79+OHLkCAoKCtCxY0f8/PPPVIsSJRAEAYWFhbj11luDvi4SI2+looyJ\n0sQQrg2OWlFG2sbeBYKkpPV6fVyaOyIl0uYVJfCNMga7zoJtYnJzc/Hxxx/j008/pfqcYFCN6hcl\nE4qhwa7wcsjOzhZvhPfccw8uXLgAANiyZQv69u0LvV6PrKws1K9fH4cPH1ZzqXGB47hyRSIAaDQa\ntGvXDmvWrMH69etRVFSERx55BC+//DLOnDkD3w0Kx3HQ6/VITU1FamoqAMBqtcJqtcLtdvu9PhA8\nz8NmsyElJYVqkSit+wp1nRqNBgaDAWlpaUhOTobH40FJSYloKBzLddJs/A2Ubg5IBDklJQUVKlSA\nXq+H0+mE2WwWvRTVhqxTrfQ9Me1OS0sTBaDVaoXFYhEbYcg6nU6nbIfzL7/8grfeegvLly+n+pxg\nMEKCp+Af5bCrPAyWL1+OnJwcAMDFixdRs2ZN8Wc1a9ZEQUGBWkujmqpVq2Ly5Mn4+uuv0alTJ7z2\n2mvo2bMntmzZArfb7fd6Mg7OZDKF9bD3er2wWq0wGo3UNzFEs07S3JGamgqTyQSNRiP7sFdqnUo0\nW8QSuaYQqSBKTU0Va+3C3XjEep1qQuo4TSYTDAYD3G43zGYzbDab+Hf3FYJWqxVPPfUUli5diooV\nK6q0cgaDEU/ofZrGkezsbFy6dMnv+2+++Sa6desGAJg5cyaSkpLQr1+/gO9DU3qLRrRaLXJyctCl\nSxfRyPtf//qXrJE38OfDPikpqdxOTtIcEO+O3HBRep3kYW8wGMTUvW/HdKTrJB3OgSby0EAo6yQb\nD6PRCLfbDafTCbvdHtcJQjQfTxLN1+v1ZaYsORwO8DwPh8OBihUrwuv14rnnnsPYsWPRrFkzlVfN\nYCiER+0F0A8TiiitQwzGhx9+iC+++AJ79uwRv1ejRg3k5+eLX1+4cAE1atSI2RpvJjiOQ+3atTFj\nxgy89tpr2Lx5M8aOHSsaeT/00EN+Akf6sCdiCIAoGB0OB3Q6nV9nJk0QsaDVahVfp/RhTxqErFZr\nRA1C0gkctB9P0uEcyjrD2XjEYp3EwoZmXC6XeK3xPI8ff/wRXbt2RZcuXVC3bl1UrlwZTz75pNrL\nZDAYcYQ1s5RDbm4uJk6ciH379pUZck+aWQ4fPiw2s5w5c4ZFFSOEGHkvXLgQBw8eRI8ePTBgwIAy\nx9z39dJOTmKoTVvjghQ5G5xYEmmDULAJHDShxHg+OQsZpaOMiTJGMFCTzeXLlzF//nysXLkS1apV\nw8iRIzFw4MCA1yaDESKqXwwcxwloRoHM+YHuZhYmFMuhQYMGcLlcuOWWWwAAbdq0wQcffACgNDW9\nfPly6HQ6vPPOO+jcubOaS71psNlsWLduHVauXBnQyJvgcDjgcrlEo2pAfc9BOdQWC6HaECWKrVAs\nOrGlGw+looyJ0oFPUs5y67x8+TJ69+6NLVu24JdffsGSJUuwdetWPPLII3jzzTdRt25dlVbNSHBU\nv0FzHCegMQUy5ycmFBmMiCjPyHvVqlXQaDTo168fNBqNGGV0Op3weDyiYFT7AU2TvUywKGOiiZpY\njedTKspIxh0mJydTV5cohTT6GAwGv7pZt9uNXr16YerUqWjbtq34/Rs3bmD16tXo1asXqlevHtP1\n5ebm4rnnngPP8xgxYgReeumlmH4eI26oLoyYUAwNJhQZCYGvkXfLli0xZcoU7NixA02aNPF7fayM\nvMOF5pnDvseI53kkJydT3QxEOrHlRE0siDTKSJqW9Ho91XWJ0npUX49TQRDwyiuvoG7dunj22WdV\nWR/P82jYsCF2796NGjVqoFWrVlizZg0aN26synoYiqK6MOI4TkB9CmTOGbqFIr25JQZDQsWKFTFu\n3DgcOHAA9913HyZMmIA2bdrg22+/FadHSAlk/UHqBOOB1F6GNpEI/HmM0tLS4PV6odFo4HA44nqM\nwoGIGmKkHQ+CWTUFOkbSJhuaRTdQWhIhCILsGMGNGzeiqKgIY8eOVWFlpRw+fBj169dHVlYW9Ho9\nnnzySWzZskW19TAY8YLjuEc4jjvJcdxpjuP8L+yx+gAAIABJREFUwugcx1XmOC6X47hjHMf9yHHc\nkFithQlFRkJx8eJFTJ06FcuWLcPSpUtx9epVdOnSBZMnTy7XyNvXYDiWfnokomQwGKhPO5JpJsRz\nEEBMfBmjxeFwgOO4mM1GDoacL2OgY0TS+r5j72iDpNflzL9PnDiBBQsWYNGiRaqWSxQUFKBWrVri\n18yvlvFXgOM4LYD3ADwCoAmAvhzH+YbRxwL4VhCEuwC0B/A2x3ExiUgwochIGIqLi5GTk4NnnnkG\nffv2RdWqVTFp0iQcOnQInTt3LtfIWxplTEpKitnUDqkNDu0RJYfDIUaUOI4rE0FLSkqCy+WiYrKJ\ny+WCx+NRbaKJlEDHyG63i53DtHeMSycD+QrBkpISPPPMM/jwww/FjYNa0HwMGTcJak9lkU9MtAZw\nRhCEc4IguAGsBdDd5zWFACr88d8VAFwVBCEmrpBMKFLKhg0b0LRpU2i1Whw9elT8/rlz55CcnIzm\nzZujefPmePrpp1VcZXw5fPgwOnTogBdffLHM94mR96ZNm7B48WIcP34cHTt2xIwZM1BQUCAbZYzl\n1A4ivmiPKBHxJSdqaJpsovbYu0DIHSPil+jxeKiJxPpCNjIGg8GvJMLr9eLpp5/Gyy+/jL/97W8q\nrfBPfP1q8/Pzy0zEYjBuUmoAyJd8feGP70lZAqApx3EXAXwHYHysFsOaWSjl5MmT0Gg0GD16NN5+\n+220aNECQKlQ7NatG3744QeVV0g3LpcLmzdvxrJly4IaeROU6nRV2wYnVCLpcI6H56AvidY5rNfr\nodFoxGMU7YQcpSFiFoDsRmbu3Lmw2+144403qDh/PR4PGjZsiD179uDWW29F69atWTPLzYPqJxjH\ncQLqUCBzzpZtZuE4rheARwRBGPnH1wMA3CMIwjjJa14FUFkQhOc4jqsHYBeAOwVBMCu9PPoq7BkA\ngEaNGqm9hIQmKSkJvXv3xv/93/+JRt4zZswIaOQtndpB7GPMZnOZB315D04yHo52kcjzPGw2G1JS\nUsISMPGebJJodZ5k4g45TjzPw+12RzwhJxaQ+km5c3Tv3r04ePAgtm7dSs35q9Pp8N5776Fz587g\neR7Dhw9nIpGhLGqM8HPsBZx7g72iAEAtyde1UBpVlHIfgJkAIAjCLxzHnQXQEMA3iq3zD1hEkXIe\neughv4ji7bffjgYNGiA9PR0zZszAAw88oPIqE4NwjLyBUgFA7GOA4EbeNNvgSAnmmRfp+8UiykjS\no2TiDi3CRY7yosiRTshRGhJFlvPzvHDhAvr3748dO3awiSuMeKH6Rc1xnIBaFMicfL+Iog7AKQAP\nA7gI4DCAvoIg/CR5zb8AFAuCMI3juGoA/gfgDkEQrim9PCYUVSQ7OxuXLl3y+/6bb76Jbt26AfAX\nimSGb0ZGBo4ePYoePXrg+PHjMJlMcV17IkOMvBcuXIjjx4/7GXnLvV7qp+cbZUyk9KjVahWbMZRG\nyckmiTJGMFwzdbX8PYOdow6HA48//jj++c9/olWrVjFdB4MhQfULm+M4AZkUyJxCfx9FjuO6AJgH\nQAtgmSAIsziOGw0AgiAs4jiuMoAVAG5Dab/JLEEQPonF8phQpBxfoRjuzxnB8TXyHjFiBG6//faA\nD26v1yummEmK0el0wmAwUG+sTDqXY90UEm2UkaZJNsEg4iuSKHI8o4xkg6DT6fyshQRBwPjx43Hf\nffdh2LBhin82gxEEJhQJMkKRJui9CzNEpGK+qKhINPr99ddfcfr0aTZrNQqkRt4DBw7EvHnz0LVr\nV6xevTqgkbfBYIDJZILRaBQNi3mep9KkmhBPexm5bmCz2RxSxzSxbUlNTaVaJErrJyMpNQjm76m0\ndyXxn5TbyHz88cfQaDQYOnSoYp/HYDBuLlhEkVI2bdqEZ599FkVFRUhPT0fz5s2xY8cOfPbZZ5g6\ndarYXTl9+nR07dpV7eXeVFy5cgXLly/Hxo0b0aZNGwwfPhz16tUrI7DI1BXizUgiaLQ0LUihIUIn\nV+9JzmFCIqXwg3UOR/O+SkcZia+jXP3kt99+i5dffhk7d+6kOhrOuGlR/QbJcZyAyhTInCK6I4pM\nKDIYAeB5Hnl5eVi8eDHsdjuGDBmCnJwc6PV6zJs3DydPnsSCBQvEBzAtTQu+vwNNTTaB6j01Go04\nnk+NySvhEI/6SSVqGcnfXs4C6erVq+jVqxc2bNiA2rVrK718BiMUVBdGTCiGBhOKDEY5CIKA8+fP\nY8mSJcjLy0Pz5s2xdetW7NmzB3Xq1JH9f5Rs7IgUEqEzGo1UToiRRhnJrOlwLXviTbyjs5FuPkjE\nW667ned59OnTBxMmTEDHjh1juXwGIxiqCyMmFEODCUUGIwy+/vprdOrUCffffz8MBkPcjLzDJVgD\nA204HA64XC7odDrZrnJaUDs6G2qUkVgLaTQav+52QRAwY8YMpKen46WXXqLq+DL+cqh+8nEcJyCD\nAplznQlFBuOm4Pz587jvvvswf/589OjRQzTyPnjwYEAjbykkykhEUayijKSGThAE6sbe+eIboSNd\n5cFqGdWA+E8mJSWpXs8njTJ6PB5x80E2K8FS49u3b8e6deuwfv161Y8p4y+P6jcmJhRDgwlFBiME\nSkpK8MADD2Dw4MGYOHFimZ8pYeStpBhKFA/CYBG68rwr40mwCJ3aSKOMHMdBq9XC7XbDZDL5nU9n\nzpzB6NGjkZubi/T0dJVWzGCIqH5z4jhOgIkCmWOmWyiyLSXDjw0bNqBp06bQarU4evRomZ/NmjUL\nDRo0QKNGjbBz506VVhh/7HY7Bg0ahAkTJvj9LCUlBUOHDsWXX36J559/HmvXrkWnTp2wZMkSlJSU\n+L2eWJWkpaUhOTkZPM/DbDbDZrPB4/FEZY1ConG0RxKJ+DIajbJpXI7joNPpkJKSApPJBK1WC7vd\nDovFIloSxQvyeTSm8EnXvclkQlJSEtxuN4DSzYLNZoPX6wUAWK1WPPXUU1i6dCkTiQwGIyxYRJHh\nx8mTJ6HRaDB69OgyZt4nTpxAv379cOTIERQUFKBjx474+eefWQpLhkiNvEMZFxgIMqJNrsuVJiKN\n0KkRZaTBWigUpKlxvV4Pl8uFOXPm4PPPP8fgwYPx7bffonv37ujTp4/aS2UwCKrvZFlEMTTU98tg\nUEejRo1kv79lyxb07dsXer0eWVlZqF+/Pg4fPox77703ziukH2Lk/cwzz+DAgQOYN28eCgsL0b9/\nf/Ts2dNPIBEj76SkJPA8D6fTCYfD4Vd/Fgiv1wubzYbk5GSqRSJQGu2KJEJHoow6nU4U1sTPMBJh\nXR7E/DslJYV6kWi328Xueo7jYDQa8fLLL+Pee+/F/PnzceDAARgMBtSuXRv33HMP1dFmBiOueNRe\nAP3Qe/djUMfFixdRs2ZN8euaNWuioKBAxRXRj0ajQbt27bBmzRqsX78eV69eRZcuXTB58mScOXPG\nL4VKxFBqaipMJlNIEztIhzOJJtGMUhNiiLBOS0uD0WiEx+NBSUkJ7Ha7IhNyykuN0wSxzvE1/9Zq\ntaLR9pkzZ9C4cWMMHDgQd9xxB+bPny+mqRkMBiMYTCj+RcnOzkazZs38/n3++edhvQ+LTIRO1apV\nMWnSJBw6dAidO3fGa6+9hp49e2LLli2yD21p/ZnBYIDb7YbZbC4jhoig0Wq1qnfjlofH44HD4VA0\nQicdhReqsC4PckxJZzrNeDweOJ1O2calS5cuYdKkSfjoo49Qs2ZNvPjiizh16hTeeecd/PLLL3EX\nwK+//jpq1qyJ5s2bo3nz5sjNzY3r5zMYsrgp+Ec5dG+VGTFj165dYf8/NWrUQH5+vvj1hQsXUKNG\nDSWX9ZdAq9UiJycHXbp0EY28//WvfyE7OxtDhw7FrbfeWuahT8SQXq8Xu1zJ+ECO4+D1emVHtNFE\nPFLjRFgbDAbRPsbhcIQ9IYfm5hUp0mPqK7zdbjdGjhyJuXPnonr16uL3NRoNOnTogA4dOsR7ueA4\nDhMmTJBtCGMwGPTCIoqMoEgjMo899hjWrl0Ll8uFs2fP4vTp02jdurWKq0tsOI5D7dq1MWPGDHz1\n1Ve46667MHbsWPTv3x+7d++WTaFKo4wajUbsknY6nWKHK22Q1LjBYIhLalwaZSQCOtQoY6J1jcuV\nGwiCgClTpuDxxx/HAw88oNIK5YlntzqDwVAGJhQZfmzatAm1atXC119/ja5du6JLly4AgCZNmqB3\n795o0qQJunTpgg8++IDqh2kikZSUhN69eyM3NxezZ8/Gv//9bzz88MOYN28eioqK/F5/9epVeDwe\npKWlITU1Vex6tVqtcLvd1DyQfRst4k0o6XsCaV5JTU2lunkFKG0IIjZLvnz66ae4fv06nn76aRVW\nFpz58+fjzjvvxPDhw3Hjxg21l8NgADwF/yiH2eMwGJQSyMj73LlzyM7ORl5eHurXry++Xq1xgcGg\n0fxbbhSeTqcLOBuZNlwuF5xOp2y5wYkTJzB+/Hjs2rULKSkpcV9bdnY2Ll265Pf9mTNn4t5770WV\nKlUAAFOmTEFhYSGWLVsW7yUy6EH1GwLHcQI4CmSOQLc9DhOKDAblCIKAo0ePYuHChfjuu+9w7do1\n2QkxUkiNnppTTWj3ICSj8JxOJ3ieh0ajQUpKCtX2QmSajZxXZnFxMXr06IHVq1eX2UDQyLlz59Ct\nWzf88MMPai+FoR6qCyMmFEODCUUGI0HgeR45OTlwOBxwuVy4/fbbyzXylhsXqLTfYKC1BhrPRxsO\nhwNutxs6nQ5ut1uMMur1emqioEBpJNRiscBoNPpFPb1eLwYOHIhhw4ahW7duKq0wOIWFhcjMzAQA\nzJ07F0eOHMEnn3yi8qoYKqL6xcVxnECHzKFbKNJ9B2cwGCLPP/88eJ7H7t27odVqQzLyJnVsxMjb\n5XKhpKREjDLGQsR5vV5YrdaE8SB0uVxi1JN4MhLD83A7pmMFqfUk6/H92dy5c9GsWTM8+uijKq2w\nfF566SUcO3YMHMehTp06WLRokdpLYjAYIcAiigxqef3117F06VKxrmnWrFl45JFHVF6VOixevBhv\nv/02vv76a2RkZJT52ZUrV7B8+XJs3LgRbdq0wfDhw1GvXr2g4wJ9a/SUip6RDmedTke9vUywNC75\nOUnfE4NvnU6nSpQxWK3nv//9byxatAibN29WXdAyGGGgegSNRRRDgwlFBrVMmzYNJpOJ+a4B2Lp1\nKxo3bowGDRoEfA3P88jLy8PixYtht9sxZMgQ5OTkBLSkITV6ZLKHEtEzu90Or9dLvb1MsDSuL2o3\nCQWr9czPz8fAgQOxY8cOVKpUKS7rYTAUQvUbBBOKocGEIoNapk2bhrS0tKBNGwx/BEEQjbzz8vIC\nGnlLUSLK6HQ6xTQuzSKRRD21Wq1fqr48pFFGYvkTyyhjsFpPh8OBHj16YN68eWjRokVMPp/BiCGq\n3ySYUAwNJhQZ1DJt2jSsWLEC6enpuPvuu/H222+jYsWKai8roXC5XNi8eTOWLVuG5ORkDBs2DA89\n9FDAqKG0Ezic6JnH44HNZguYxqUJJaKe8YgyEm/MpKQkP79EQRDw7LPPom3bthgyZIhin8lgxBHV\nhRETiqHBhCJDVZjvWnwQBAGnTp3CwoULcfDgQfTo0QMDBgxA5cqVA/4/oUbPEqnDmXgQKmmqHYso\nI2leAYDk5GS/91q5ciW+++47LFiwgOroLYMRBNVPXCYUQ4MJRUZCwHzXlCOQkXcg4RQsehYs6kUb\n5TWvRIuSUcZgafyjR4/i1VdfRV5eHvXHnMEIgurCiAnF0GBCkUEtzHcttkiNvI8fP44+ffqgT58+\nqFChQsD/h0TPXC4XdDodvF6vWOtHc2SLNK8kJyfHZd50NFFGksaXa14pKipCr169sHHjRtSqVStW\ny2cw4oHqNwwmFEODCUUGtQwaNMjPd61atWpqL+umpLi4GKtWrcKaNWvQtGnTkIy8bTYbPB5PmeYX\nWiewqGXZE26UMZig9Xg86N27N1544QU8/PDD8Vg+gxFLVBdGTCiGBhOKDAZDxOv14sCBA1iwYEFQ\nI++rV69Cr9cjNTVVnP6i5rjAYNBi2cPzPJxOpzgFxjfKGEzQCoKA6dOno1KlSnjxxRfVWD6DoTSq\n3yBKhaJL7WUASGJCkcFgJB6BjLwPHz6MgQMH4ptvvimTpvZ6vWL0DIjfuMBgkOYVmix75MYq6vV6\nsdNcTtBu27YNGzZswLp166iM2jIYEaD6BcmEYmgwochgMIIiNfIuKSnBTz/9hH/84x/o1auX7OsF\nQRCjZx6PRxSM8bbNod2yhxwnEo0FIHaOS4Xi6dOn8dRTTyEvLy9o/SiDkWCoLoyYUAwNJhQZDEZI\n2O12tGnTBlWqVMGNGzfiZuQdCfFuXokGnufFznEibj/55BMMGDAAKSkp6N69O5YuXYomTZqovVQG\nQ0lUF0alQtGm9jIApFAtFOk2PWMwGFQgCAJGjx6Nhg0bYu3atXC73diyZQvGjRsHo9EY0Mhbo9HA\naDTCYDCI4wIdDoci4wKDrdVms4milGa8Xi+sViuSk5ORlJQEQRBQUlKC77//HnfccQcaNmyIRx99\nFI0bN1Z7qQwG4y8KiygyGBJyc3Px3HPPged5jBgxAi+99JLaS6KCOXPmYM2aNThw4ABSUlLE70di\n5O0bZTQYDIqOwaOleaU8iKDVaDSyowTfffdd7Nu3D2fPnoVWq8WoUaMwaNAgZGRkqLBaBkNxVL84\nSyOKxWovA0A61RFFVhXNYPwBz/MYO3YscnNzceLECaxZswY//fST2suiguTkZGzZsqWMSAQAjuPQ\nqFEjzJs3D3v37kVmZiYGDRqE4cOH49ChQ/B6vX7vRaKMJpMJSUlJcDqdMJvNcDgcsq8PB5fLBY/H\nQ71IBEpNtQVBkLXs+eqrr/Dll19i69at+Omnn/DBBx/gv//9L+rUqYNt27bFfG0bNmxA06ZNodVq\ncfTo0TI/mzVrFho0aIBGjRph586dMV8Lg8FQFxZRZDD+4NChQ5g2bRpyc3MBALNnzwYATJo0Sc1l\nJRzRGHlHMwaP9uYVKW63G3a7XdZU+9KlS+jTpw+2bdvm5xv6+++/Q6/Xx3zm+cmTJ6HRaDB69Gi8\n/fbbaNGiBQDgxIkT6NevH44cOYKCggJ07NgRP//8M+vEZkSC6js5FlEMDXZ1Mxh/UFBQUGbaRc2a\nNVFQUKDiihITjuPQsmVLLFmyBDt27IBGo0HPnj0xfvx4/PDDD5DbnJLpLiaTSbSKCSfK6PV6YbPZ\nkJycTL1I5HkedrsdKSkpfgLL5XJhxIgReOedd2TN5atUqRJzkQgAjRo1wt/+9je/72/ZsgV9+/aF\nXq9HVlYW6tevj8OHD8d8PQxG7PBQ8I9umFBkMP6A9lRlIpKeno5x48bhwIEDGDhwIObNm4euXbti\n9erVsNvtfq/nOA5JSUlIS0tDSkoKvF4vzGazOAVGTmQmUvMKWSupy/T92auvvopevXrhvvvuU2mF\nwbl48SJq1qwpfs02UwzGzQ/remYw/qBGjRrIz88Xv87Pzy/zUGREjkajQbt27dCuXTvRyLtLly5l\njLx9hbpOp4NOpxMNqomwlBp5C4IAu90OjuNgMBjU+NVChqyVpNZ92bBhA8xmM8aMGROX9WRnZ+PS\npUt+33/zzTfRrVu3kN+HbbAYjJsbJhQZjD+4++67cfr0aZw7dw633nor1q1bhzVr1qi9rJuOqlWr\nYtKkSXjhhReQl5eH1157DXa7HUOGDEFOTo5fVJCIwKSkJLGWsaSkRPRj5HmeqskrgXC5XAHXevz4\ncSxduhQ7d+6MW73frl27wv5/fDdTFy5cQI0aNZRcFoMRZ9xqL4B6WOqZwfgDnU6H9957D507d0aT\nJk3Qp08f5l8XQ7RaLXJycrBp0yYsXrwYx48fR8eOHTFjxgwUFBT4pZk5joNOp0NKSgpMJhMAiGPw\n3G63bFqaFjweD5xOJ1JTU/1E4o0bNzB27FisXLnSr6ucBqTH9bHHHsPatWvhcrlw9uxZnD59Gq1b\nt1ZxdQwGI9awrmcGg0ENLpcLW7ZswbJly4IaefM8D6vVCqPRCI7jxGhdLI28IyXYlBie5zFgwACM\nGjUKXbt2VWmF/mzatAnPPvssioqKkJ6ejubNm2PHjh0ASlPTy5cvh06nwzvvvIPOnTurvFpGgqJ6\nCqC06zm//BfGnFpUdz0zochgMKgjmJG3zWbDo48+irlz5+LOO+8U/x+1xgWW93tYrVbodDo/v0RB\nEPDPf/4TgiBg6tSp1KfOGQyFUf2EZ0IxNJhQZDAYVGOz2bBu3TqsXLkS1atXh91uh06nw8qVK2Xr\n+QRBEFO9Xq9XbH5Rw+sv2JSYPXv2YMmSJdi0aRNVEVAGI06oLoyYUAwNJhQZDEZCIAgCXnjhBaxe\nvRr169fHE088ERcj70hxuVxwOp2yzSvnz5/HoEGDkJubi1tuuSXma2EwKER1YVQqFM+qvQwAdagW\niqyZhcFgJARffvklPv74Yxw6dAjbtm2Li5F3pPA8D4fDIRtJtNvtGDlyJBYtWsREIoPBoB4WUWQw\nKCErKwsVKlSAVquFXq9nEy8knDt3Dvfeey8++eQTdOjQQfy+1+vFgQMHsGDB/7d39zFR3Xsex9+/\nQfEhGk27YcCHBJ8VRTJuo1uzGiwdH1NEKTZiqEFtTAk2jdaoaba1TVu56bVqXd1qt1TaNBJ0S7AP\nd9TY20lINK1C76Y+FDaFghao1mjVUgU5+wcwARmEXoVzYD6vZBLmnDPDdybRfPn+zvf7+y+qqqpY\nsWIFS5cuZcCAAe2+V3OV8c6dO/Tp04d+/foRFhb20KqM92tesSyLzMxM4uPjWbly5UP5fSI9lO0V\ntMaKYondYQDjHV1RVKIo4hCjRo3izJkzqjIFceDAAX777TdeeOGFdq9pHuT96aef3neQd7PmQd7N\nI3aam18e5F7G5p1XXC5X0GT1ww8/5OzZs+zZs0fNKxLqbP8HoESxc5QoijjEqFGjOH36NI8++qjd\nofRod+/e5ejRo+zfv/++g7ybWZbV6l7GliN2/mwy98cff1BfXx90XuLp06d59dVX8fl8jt9FRqQb\n2J4YKVHsHCWKIg4xevRohgwZQlhYGGvXruW5556zO6QezbIsKioqeP/99zl69Cher5f09HSGDRvW\nbgLY0NBAXV1dqypj83aBHamrq6O2tpZBgwa1qUpevnyZp59+mvz8fG0LKdLI9sSoMVE8Z3cYQIwS\nRRHpWFVVFVFRUVy+fBmv18vu3buZNWuW3WH1Cp0d5N2sucp4+/btTg3ybh4APnDgQPr0ab0zan19\nPSkpKWzevJk5c+Y89M8m0kPZnhgpUewcJYoiDvTaa68xaNAgNmzYYHcovcr9Bnm3p6NB3pZlcfPm\nTcLDw9ssKVuWxdatW3G73bz00ktd+tlEehjbEyMlip2j8TgiDvD7779z48YNAG7dusWxY8eIjY21\nOarexxjDxIkT2blzJ19//TVRUVE8++yzrF69mpMnTwYdmeNyuejfvz+DBw+mX79+1NXVcePGDWpr\na6mvr6e2tjYwo/Fen3/+OT/99BPr16/vjo8nIn9anQMezqaKoogDlJWVsWTJEqBxqXLFihVs2bLF\n5qhCg2VZFBUV8d5773H27FmeeeaZDgd5NzQ0cPv27cC9jM2jcFrey1hSUkJGRgY+n+++7yUSomyv\noDVWFP9hdxhAnKMrikoURUSaXL9+nY8++oiDBw8yefJk1qxZw5QpU4I2s9TX13Pr1i369+8fqDLu\n37+f9PR0HnnkERYvXkx2djaTJk2y4ZOIOJ7tiVFjonjG7jCAf3V0oqilZxGRJkOGDGHdunUUFhaS\nlpbGzp07WbRoEZ988gm1tbWB6yorK9m+fTsDBw6kX79+DBo0iLCwMK5evcrMmTOZO3cuTzzxBBMm\nTLDx04iIPDgliiIi93C5XMyePZuDBw+Sl5fHr7/+yoIFC9iyZQvnzp0jNTWVhoaGVrMZIyIi2LVr\nFxs3biQ6Ohqfz8eYMWPIysril19+sfHTiIj885QoiojcR0REBJs3b+bkyZPMmzePFStW0NDQwKRJ\nk6ira30jemFhIX6/n8OHD3PmzBkOHTpEaWkpEyZMIDc3t1viPXToEJMnTyYsLIyioqLA8fLycgYM\nGIDH48Hj8ZCRkdEt8Yg4m92NLM5vZunT8SUiIhIWFhaoDH788cfk5uayY8eOwCBvl8vFyy+/zBdf\nfBGYpfjYY4/xwQcfsH379qAd1V0hNjaW/Px81q5d2+bc2LFjKS4u7pY4RKR3UKIoItIJRUVFbNy4\nEb/fT0xMDG+88QavvPIKBQUFZGZm8v3333P48GEiIiLavHbo0KHdFufEiRO77XeJ9Hz1dgfgeFp6\nFglRq1atwu12t5rXePXqVbxeL+PHj2fu3Llcu3bNxgido6GhgbS0NPbu3UtMTEzgeHh4OCkpKfh8\nPr766isef/xxG6PsWFlZGR6Ph/j4eAoLC+0OR0R6ACWKIiEqPT0dn8/X6lhWVhZer5eSkhISEhLI\nysqyKTpncblcnDhxgpSUlKDnjTHd2uHs9XqJjY1t8/jss8/afc2wYcOorKykuLiYd955h9TU1MCQ\ndxGR9mjpWSREzZo1i/Ly8lbHjhw5gt/vB2DlypXEx8crWWwSGRlpdwgBx48f/9OvCQ8PD+weM23a\nNMaMGUNpaSnTpk172OGJ9CDObyaxmyqKIhJQU1OD2+0GwO12U1NTY3NE8iBabqhw5coV7t69C8CP\nP/5IaWkpo0ePtis0EekhlCiKSFDGmKA7koiz5efnM3LkSE6dOsWiRYtYsGABAH6/n7i4ODweDykp\nKezbt69bm2xEpGfS0rOIBLjdbqqrq4mMjKSqqipoB68425IlSwL7hreUnJxMcnKyDRGJOJm6njui\niqKIBCQmJpKTkwNATk4OSUlJNkckIiLA0iD7AAAF30lEQVR2Mi3vYQnividFpOdavnw5fr+fK1eu\n4Ha7ef3111m8eDHLli2joqKC6Oho8vLytDwpIl3B9vtajDEWfGl3GMBCLMuy/ftojxJFERER6W62\nJ0ZKFDtHS88iIiIiEpSaWURERCREqZmlI6ooioiIiEhQShRFREREJCgliiJii1WrVuF2u4mNjQ0c\n27p1KyNGjMDj8eDxeNrsRS0i8nDVOeDhbEoURcQW6enpbRJBYwzr16+nuLiY4uJi5s+fb1N0IiIC\namYREZvMmjWL8vLyNsc7GNklIvIQOb+iZzdVFEXEUXbv3k1cXByrV6/m2rVrdocjIhLSlCiKiGM8\n//zzlJWV8d133xEVFcWGDRvsDklEJKRp6VlEHCMiIiLw85o1a3jqqadsjEZEej/NUeyIKooi4hhV\nVVWBn/Pz81t1RIuISPdToigitli+fDkzZ87khx9+YOTIkWRnZ7Np0yamTp1KXFwcfr+fHTt22B1m\nt9m4cSOTJk0iLi6OpUuXcv369cC5bdu2MW7cOCZOnMixY8dsjFKkt7F7NI7zm2lMBx2Gaj8UEekG\nx48fJyEhAZfLxebNmwHIysri3LlzpKam8u2333Lp0iWefPJJSkpKcLn0d770aMb2AIyx4EO7wwDS\nsSzL9u+jPfqfRkTEAbxebyD5mzFjBhcvXgSgoKCA5cuX07dvX6Kjoxk7dizffPONnaGKSAhRoigi\n4jDZ2dksXLgQgJ9//pkRI0YEzo0YMYJLly7ZFZpIL1PvgEdbxpj5xpgLxphSY8ymdq6JN8YUG2O+\nN8Z8/SDfwv2o61lEpJt4vV6qq6vbHH/rrbcCHd5vvvkm4eHhpKamtvs+xjh2lUpEHpAxJgz4T+BJ\n4BLwrTHmiGVZ51tcMxTYA8yzLOuiMeZfuioeJYoiIt3k+PHj9z1/4MABvvzyS06cOBE4Nnz4cCor\nKwPPL168yPDhw7ssRhGx3XTg/yzLKgcwxuQCi4HzLa5JBf7HsqyLAJZlXemqYLT0LCIhq7Kykjlz\n5jB58mSmTJnCu+++C8DVq1fxer2MHz+euXPndssOMT6fj7fffpuCggL69+8fOJ6YmEhubi537tyh\nrKyM0tJSpk+f3uXxiIQGuzueg3Y9DwcqWzy/2HSspXHAI8aYvxtjThtj0v7JL6BDShRFJGT17duX\nHTt2cPbsWU6dOsWePXs4f/48WVlZeL1eSkpKSEhIICsrq8tjWbduHTdv3sTr9eLxeMjIyAAgJiaG\nZcuWERMTw4IFC9i7d6+WnkV6t85MnOkLTAMWAvOA/zDGjOuKYDQeR0SkSVJSEpmZmWRmZuL3+3G7\n3VRXVxMfH8+FCxfsDk+kN7H9r53G8Tjv2vCbS5sezXytxuMYY/4N2GpZ1vym51uABsuy/tLimk3A\nAMuytjY9/2/AZ1nW4YcdrSqKIiJAeXk5xcXFzJgxg5qaGtxuNwBut5uamhqboxOR3mMcjYXA5kcb\np4FxxphoY0w48Axw5J5rCoB/N8aEGWMGAjOAc10RrZpZRCTk3bx5k+TkZHbt2sXgwYNbnTPGaKlX\nRLqNZVn1xphM4CgQBnxgWdZ5Y8zapvP7LMu6YIzxAf8LNADvW5alRFFE5GGrq6sjOTmZtLQ0kpKS\nAAJLzpGRkVRVVREREWFzlCLSNZy5hZ5lWX8D/nbPsX33PP8r8NeujkVLzyISsizLYvXq1cTExPDi\niy8GjicmJpKTkwNATk5OIIEUEQk1amYRkZBVWFjI7NmzmTp1amB5edu2bUyfPp1ly5ZRUVFBdHQ0\neXl5DB061OZoRXoV2+/naGxm+UvHF3a5TY7e61mJooiIiHQ32xMjJYqdo6VnEREREQlKzSwiIiIS\nopzZzOIkqiiKiIiISFBKFEVEREQkKC09i4iISIiqtzsAx1NFUURERESC6mg8joiIiEiv0zgexxmc\nPB5HiaKIiIiIBKWlZxEREREJSomiiIiIiASlRFFEREREglKiKCIiIiJBKVEUERERkaD+Hw1CwARl\n+qrNAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x146a7b70>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from tqdm import tqdm\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits.mplot3d import Axes3D\n", "%matplotlib inline\n", "#%matplotlib qt\n", "fig = plt.figure(figsize=(12, 12))\n", "ax = fig.add_subplot(111, projection='3d')\n", "points = []\n", "values = []\n", "for i in tqdm(range(len(data['xmid']))):\n", " points.append((data[i]['xmid'], data[i]['ymid'], data[i]['zmid']))\n", " values.append(s1map.get_value(*points[-1]))\n", "points = np.array(points)\n", "values = np.array(values)\n", " \n", "sc = ax.scatter(*points.T, c=values)\n", "plt.colorbar(sc, label='Relative light yield')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Z-slices" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Z-slices of map (compare with gallery 5 in Cecilia's note)\n", "points = {}\n", "for z in np.unique(data['zmid']):\n", " plt.figure(figsize=(12, 10))\n", " for r in np.unique(data['rmid']): \n", " this_data = data[(data['rmid'] == r) & (data['zmid'] == z)]\n", " plt.errorbar(this_data['tmid'], this_data['ly'], yerr=this_data['errly'], \n", " label='r=%s cm' % (r/10))\n", " plt.xlabel('Theta (degrees)')\n", " plt.ylabel('Light yield')\n", " plt.legend()\n", " plt.title('z = %s cm' % (z/10))\n", " plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.4" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
hainm/scikit-xray-examples
demos/1_time_correlation/Multi_tau_one_time_correlation_example.ipynb
1
466607
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# One Time Correlation Example for NIPA_GEL 250K¶" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":0: FutureWarning: IPython widgets are experimental and may change in the future.\n" ] } ], "source": [ "import numpy as np\n", "from matplotlib.ticker import MaxNLocator\n", "from matplotlib.colors import LogNorm\n", "import matplotlib.pyplot as plt\n", "import matplotlib.patches as mp\n", "%matplotlib notebook\n", "\n", "import skxray.core.correlation as corr\n", "import skxray.core.roi as roi" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## One Time Correlation¶" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Multi-tau Scheme" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " fig.waiting = false;\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width);\n", " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'];\n", " var y0 = fig.canvas.height - msg['y0'];\n", " var x1 = msg['x1'];\n", " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x;\n", " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.send_message('closing', {});\n", " fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Close figure', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# it would be great to have a link to what this multi-tau scheme is!\n", "num_levels = 7\n", "num_bufs = 8\n", "\n", "# load the data\n", "img_stack = np.load(\"100_500_NIPA_GEL.npy\")\n", "\n", "# plot the first image to make sure the data loaded correctly\n", "plt.imshow(img_stack[0])\n", "plt.title(\"NIPA_GEL_250K\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Get the Reqiured ROI's \n", "### Call skxray.diff_roi_choice.roi_rings_step" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# define the ROIs\n", "roi_start = 65 # in pixels\n", "roi_width = 9 # in pixels\n", "roi_spacing = (5.0, 4.0)\n", "x_center = 7. # in pixels\n", "y_center = (129.) # in pixels\n", "num_rings = 3\n", "\n", "# get the edges of the rings\n", "edges = roi.ring_edges(roi_start, width=roi_width, \n", " spacing=roi_spacing, num_rings=num_rings)\n", "\n", "# get the label array from the ring shaped 3 region of interests(ROI's)\n", "labeled_roi_array = roi.rings(\n", " edges, (y_center, x_center), img_stack.shape[1:])\n", "\n", "# extarct the ROI's lables and pixel indices corresponding to those labels\n", "roi_indices, pixel_list = corr.extract_label_indices(labeled_roi_array)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Plot the Reqiured ROI's" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " fig.waiting = false;\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width);\n", " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'];\n", " var y0 = fig.canvas.height - msg['y0'];\n", " var x1 = msg['x1'];\n", " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x;\n", " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.send_message('closing', {});\n", " fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Close figure', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def overlay_rois(ax, inds, pix_list, img_dim, image):\n", " \"\"\"\n", " This will plot the reqiured roi's on the image\n", " \"\"\"\n", " tt = np.zeros(img_dim).ravel() * np.nan\n", " tt[pix_list] = inds\n", "\n", " im = ax.imshow(image, interpolation='none', norm=LogNorm())\n", " im = ax.imshow(tt.reshape(*img_dim), cmap='Paired', \n", " interpolation='nearest')\n", " \n", "roi_names = ['gray', 'orange', 'brown']\n", "tt = np.zeros(img_stack.shape[1:]).ravel()\n", "tt[pixel_list] = roi_indices\n", "\n", "fig, ax = plt.subplots()\n", "plt.title(\"NIPA_GEL_250K\")\n", "overlay_rois(ax, roi_indices, pixel_list, \n", " img_stack.shape[1:], img_stack[0])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Use the 1-time correlation function in scikit-xray" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# g2 one time correlation results for 3 ROI's\n", "g2, lag_steps = corr.multi_tau_auto_corr(\n", " num_levels, num_bufs, labeled_roi_array, img_stack)\n", "# lag_staps are delays for multiple tau analysis\n", "lag_time = 0.001\n", "lag_step = lag_steps[:g2.shape[0]]\n", "lags = lag_step*lag_time" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot the one time correlation functions" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " fig.waiting = false;\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width);\n", " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'];\n", " var y0 = fig.canvas.height - msg['y0'];\n", " var x1 = msg['x1'];\n", " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x;\n", " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.send_message('closing', {});\n", " fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Close figure', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(num_rings, sharex=True, figsize=(5,10))\n", "axes[num_rings-1].set_xlabel(\"lags\")\n", "for i, roi_color in zip(range(num_rings), roi_names):\n", " axes[i].set_ylabel(\"g2\") \n", " axes[i].semilogx(lags, g2[:, i], 'o', markerfacecolor=roi_color, markersize=10)\n", " axes[i].set_ylim(bottom=1, top=np.max(g2[1:, i]))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import skxray" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'0.0.4+95.gb764d5c'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "skxray.__version__" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
awsteiner/o2sclpy
doc/static/examples/nucmass.ipynb
1
3096
{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "d22847a1", "metadata": {}, "outputs": [], "source": [ "import o2sclpy\n", "import numpy" ] }, { "cell_type": "code", "execution_count": 2, "id": "d8bfc0af", "metadata": {}, "outputs": [], "source": [ "link=o2sclpy.linker()\n", "link.link_o2scl()" ] }, { "cell_type": "code", "execution_count": 3, "id": "4b2bf486", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hbarc = 1.973270e+02\n" ] } ], "source": [ "fc=o2sclpy.find_constants(link)\n", "hc=fc.find_unique('hbarc','MeV*fm')\n", "print('hbarc = %7.6e' % (hc))" ] }, { "cell_type": "code", "execution_count": 4, "id": "6932b5bc", "metadata": {}, "outputs": [], "source": [ "# Instantiate and load the Atomic Mass Evaluation\n", "ame=o2sclpy.nucmass_ame(link)\n", "o2sclpy.ame_load(link,ame,'16',False)" ] }, { "cell_type": "code", "execution_count": 5, "id": "3ecc90a3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of isotopes in the AME list: 3436\n" ] } ], "source": [ "# Print out the number of entries\n", "print('Number of isotopes in the AME list:',ame.get_nentries())" ] }, { "cell_type": "code", "execution_count": 6, "id": "9e0805fb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get lead-208\n", "nuc=o2sclpy.nucleus(link)\n", "ame.get_nucleus(82,126,nuc)" ] }, { "cell_type": "code", "execution_count": 7, "id": "b8bdd0ac", "metadata": { "lines_to_next_cell": 1 }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Binding energy per nucleon in Pb-208 = -7.867459e+00 \n" ] } ], "source": [ "# Output the binding energy per nucleon in MeV\n", "print('Binding energy per nucleon in Pb-208 = %7.6e ' % (nuc.be/208*hc))" ] }, { "cell_type": "code", "execution_count": 8, "id": "acfea247", "metadata": {}, "outputs": [], "source": [ "def test_fun():\n", " assert numpy.allclose(nuc.be/208*hc,-7.867,rtol=1.0e-3)\n", " return" ] } ], "metadata": { "jupytext": { "cell_metadata_filter": "-all", "main_language": "python", "notebook_metadata_filter": "-all" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" } }, "nbformat": 4, "nbformat_minor": 5 }
gpl-3.0
mojolab/cowmesh
cowbots/.ipynb_checkpoints/Articles-checkpoint.ipynb
1
1583
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from bs4 import BeautifulSoup\n", "import urllib2,urlparse\n", "import sys,os\n", "sys.path.append(\"/opt/livingdata/lib\")\n", "from livdatcsvlib import *\n", "from cowbotfunctions import *\n", "\n", "\n", "baseurl=\"http://environicsindia.in/index.php/en/?option=com_content&view=article&layout=&id=1481\"\n", "baseurl2=\"http://environicsindia.in/index.php/en/?option=com_content&view=article&layout=&id=1322\"\n", "gettextandlinks(baseurl)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
kit-cel/wt
qc/quantization/Uniform_Quantization_Sine.ipynb
1
32356
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Illustration of Uniform Quantization\n", "\n", "This code is provided as supplementary material of the lecture Quellencodierung.\n", "\n", "This code illustrates\n", "* Uniform scalar quantization with midrise characteristic" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import librosa\n", "import librosa.display\n", "import IPython.display as ipd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generate artificial signal\n", "$$\n", "x[k] = \\sin\\left(2\\pi\\frac{2k}{f_s}\\right),\\qquad k = 0,\\ldots,f_s\n", "$$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "sr = 22050 # sample rate\n", "T = 1.0 # seconds\n", "t = np.linspace(0, T, int(T*sr), endpoint=False) # time variable\n", "x = np.sin(2*np.pi*2*t) # pure sine wave at 2 Hz" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Uniform Quantization" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Sample to 4 bit ... 16 quantization levels\n", "w = 4\n", "\n", "# fix x_max based on the current signal, leave some tiny room\n", "x_max = np.max(x) + 1e-10\n", "Delta_x = x_max / (2**(w-1))\n", "\n", "xh_max = (2**w-1)*Delta_x/2\n", "\n", "# Quantize\n", "xh_uniform_midrise = np.sign(x)*Delta_x*(np.floor(np.abs(x)/Delta_x)+0.5) " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeVwTd/oH8M+XcInIpSgqKoJ41wOwXrVawaP1rndb2+62tcfevd3d33a7V2vb3e1u27Xa2tOqCF71FrCeeHB5gwioiICA3Dck398fmcQASUggycwkz/v18iU558nkkzyZme/MMM45CCGEELE5iV0AIYQQAlBDIoQQIhHUkAghhEgCNSRCCCGSQA2JEEKIJFBDIoQQIgnOYhfQGT169OBBQUFil0EIIcREKSkpJZxzf323SaYhMcZ8AKwGUM4532DKY4KCgpCcnGzdwgghhFgMY+yWoduktMouQuwCCCGEiEcyS0ic83jGWLDYdVhSWUMdjuXfwqV7RUgvK0FRXS3KG+vBAHR1cUWAR1cM9u6OB7r3xNTeA9DTo6vYJRNiEmPZ9nRxRS/KNukAyTQkUzHGVkO9ag/9+/cXuZq2iutq8EPmZWzNuoKk4nyohEMzBXXzQZ+unujZRf3BrG5qRHJRAWKy07X3Gd29F1aGjsAToSPRz9NbtNdAiD7tZbtXl67goGyTjmNSOpad0Gxg6jakiIgILpVtSBllJfh76klEZ11Bk0qFsB4BmBc0GFGBAzG2RwC6urjqfVyjUom0kkL8dOcmfryZidN388AALA4ehrfGTkJEzz62fSGEtGKJbO++eQ1n7t4BA7AkZBjeGjsZ4f69bftCiCQwxlI453o30VBD6qS86kq8dSYBW65fRhdnF7wwbCyeHzYWI7v37NDzZVeU4sv0NKy7koKKxgYsCBqMDydGIdSnu4UrJ8Q4a2T7i/Q0fE7ZdmjUkKygSanEvy+exV+Sj0PJOX4z6kG8NnoC/LtYZl15ZWMDPr2UhPfSTqFB2YxXR0/AnyOmwt1ZdmtZicxQtok1yaIhMcaiALwIwAfAes55bHuPEashZZbfw1MJu5BUlI8FQYPx78kzMdDL1yrTKqytxpozR/DNtQsY7tsD305fQKvxiNVQtom1yaIhdYQYDemr9PP41cmDcFMo8MXUuVgcMswm0z2Ym4Xnj+5FYW01PpgYhd+NGg/GmE2mTRwDZZvYAjUkC2hSKvGbU4ew7koKpvcNwrfTFyDQ08sm09Yob6jHz3/6ETtvXMOykOHY+Mg8eBrYoEyIqVpn+7vpC9CXsk2shBpSJ92rr8WSQ7E4mn8Lb4yZiPfGT4fCSZx9ijnn+OB8In5/9ieM8PXHgTkrbf7lQeyHbrbfHDMR/6BsEyujhtQJuVUVmLn3B9ysKscXU+di1ZBRVp2eqQ7lZmPJ4Vj4urnj4JwnMNxP76GhCDFIN9tfTpuLpwZTton1GWtIUjp0kORcKyvBQ7u+QWFtNeLnPSWZZgQAs/qH4PiCp9GkUmHyzm+QWHhb7JKIjLTOtlSaEUDZdmTUkAw4X1KIh3Z9i/rmZhxd8DQe6i29o0KM9e+NxEXPwr+LB2bt3YxTBfTBJe3TZLtBqaRsE0mhhqTHldIiRO3ZhC7Ozji56FmM6REgdkkGDfTyxdEFT6OPhydm79uMkwW5YpdEJOzyvfvZPrHwGco2kRRqSK1klt9D5I+b4OqkwJH5qzBYBnuR9+naDT8teBp9u3bD7L2bcbowT+ySiARllt9D1B51tn+SWbb7eHhSth0ANSQdNyvLEfnjJqg4R8L8pzDI20/skkzWp2s3/DR/Ffp07YY5+7fgSmmR2CURCblRWdYi2yEyy/bRBU+jN2Xb7lFDEpTU1WLm3h9Q09yIuHlPYpiv/Eb29O7aDYfmPgE3hTNm7d2M3KoKsUsiElBSV4tZezejprkR8fOfkm22D1O27R41JAD1zc1YeHAbcqsrsOfRFRgt4fXq7Rno5YtDc59AdVMjZu39ASV1tWKXRERU19yEBQejkVtdgb2PrcCo7r3ELqnDBnr54uCclaiibNsth29IKs7x9JFdOFV4G99HLsTk3v3ELqnTRnXvhR8fXY4bVeVYdHAbGpTNYpdERKDiHM8c2Y3Ewjx8H7kQkwLkn+3RPQKwh7Jttxy+Ib11OgEx2en4cGIUloYMF7sci3m4zwB888h8nCy8jZeP74ecd4AmHaPJ9kd2mO2vKdt2yaGP9/5NxgV8dOE0XhkRgddGTxC7HItbEToS6WUl+EvKCQz39cfrYyaKXRKxEU22fzEyAq/aYbZXCtn+a8oJjPD1x2uUbbvgsA0pqSgfLx3fh+l9g/Cfh2bZ7dGF3xk3FenlJXjzdDyG+HTHvKDBYpdErEw32x9Ptt9s/3ncVKSXleANIdtzKduy55Cr7O7WVmPRwW0I8PBE9IzFcBbpYJK24MQYvnlkAcL8e+OJ+J3IKCsRuyRiRY6W7W+n38/2Ncq27NlvWg1oVCqx9PB2lDbUYdfsZejRxUPskqzOw8UFO2cvhbvCGYsPxaC6qVHskogVNCqVWHIo1iGz7aZwxuOUbdlzuIb0WmIcThTkYuO0eZI+bIql9fP0xpYZi5BRfg8vHN1LG4Lt0KuJh3Gy8LZDZ3s1ZVvWHKohRWddwaeXk/Da6AlYGTpS7HJsLiowGH8dNw1bhflA7MfW65fx2eVkh8/2lqwr+Oyybc8iTSzHYRpSVkUpXji6F5MCAvHe+OlilyOat8MmY96AULyaGEeH9bcT18vv4YVj+yjb2mwfpmPeyZRDNKT65mYsO7wdLk4KbIl6HC4KhdglicaJMXwXuRD9Pb2x7PB23Kunvd3lrL65GcvitsPVSYGtMyjb30UuRD/Ktmw5REN6/XQc0koK8e30+ejfzVvsckTn4+aOmJmLUVRXg+d+2kPr3GXstcQ4nC+5i2+nz0c/T8q2Jtt366rxPG1Pkh27b0ix2Ve169ZpP4X7wvx7Y+2ESOy+mYn/XaF17nIUm30V/7tC2W5Nk+1dN65h3ZUUscshZrDrhpRTWYbnju7F+J59HXrduiG/GTUej/YfhNcS43ChpFDscogZsitKKdtGaLL9auJhXLx3V+xyiInstiE1KZV4Im4nnMAcft26IeqdZufD160LVsTtQA3twyELTUolnohXZzt6JmVbn9bZrm1qErskYgK7bUh/Tz2Js0V3sGHaHAR5+YhdjmT19OiKTZELca38Hn576rDY5RAT/C3lBM4V5WPDtDkY0I2ybYgm2xllJfjtqUNil0NMYJcN6UxhHv6WcgKrBj9gV0c5tpbIwIF4e+xkfJmehm1ZV8QuhxhxujAPf089iacHj6Jsm0CT7S/S0xCTfVXsckg7DB5clTHmBaAj5zku5ZxXdrykzqluasRTCbsQ6OmFTx6aLVYZsvPuuKlIuHMDLx3fj8kB/dDX00vskkgrVY0NWJWwC/08vfHJFMq2qTTZfvHYPkzqFUjZljBjS0hrAIQBCDfz3xor1tuu3506jJzKMnw/fSG83dzFLEVWXBQKbIpciAalEj/7aQ9UNFxWcjTZ/m76Ani5uoldjmxQtuXD2OknkjnnO8x9QsZYR5aqLGLXjQx8mZ6Gt8dOwpQ+/cUqQ7ZCfbrjX5Nm4KXj+/HppST8etSDYpdEBLtuZGBjxnmsGTuZst0BlG15MLiExDnf3vo6xthixliSzuWxwqo93cd9YdkSTVNYW40Xju7D2B4BeHfcNDFKsAurh4dh7oBQvHUmAVdLi8Uuh+B+tsN6BODP46aKXY5srR4ehjmUbUnryKCGKM0fnPM0ABGWK6djOOf4+U97UN3UiB+iFsKVhsF2GGMMX06bC08XVzyZsBONSqXYJTk03Wxvomx3im62n0rYRdmWIHMbUjzU24nAGHtDWFqaYfGqzLTuSgoO5Gbho0lRGObrL3Y5stfLwxNfTpuL8yV38eekY2KX49Ao25YVIGQ7raSQsi1BRhsSYyyLMRbNGHueMTaGc17BOT/CGNPsGh7FORd1EENGWQleS4zD7H4heGWE6AtrdmPBwCF4bugYrD2fiJMFuWKX45Ao29ZB2Zau9paQYgG8D8AXwAeMsXvCUtFbAMo45xWWLIYxtoQxFiX8H9be/TmAJ+N3oquLC756ZB4YY5Ysx+H9e/JMBHXzwaqE3ahsbBC7HIfSqFRStq2Isi1NRhsS5/xtznka5/xDzvlMznl3AKuhXnW3TGhQ6yxRCGPMB8AMznk85zwWwNr2HpNfU4XUkkJ8MXUuenftZokyiI5urm7YFLkQudUVtKe7jb2bfIyybUXdXN3wfeQCyrbEmD2oQU+D+sBCtSwDkK1zuby9paTC2mr8fOgYLAoeaqESSGsTAwLx+7DJ+DrjAnbkpItdjkM4WZCL99MS8Rxl26omBfTDmrGUbVtqbxWpwYbEGBtjygQ45zdaPa6jhx72AVCuc7kUeo4UwRhbzRhLZowluwD4ePLMDk6OmOpP4Q8jwr83Vh/bh4KaKrHLsWuVjQ1YlbAbQd188G/KttW9E/EwwinbNqHJtjHGlpBWMMa8zPznDcCSn6I2R47knG/gnEdwziMe8O+NbrTHutVp9nSvbW7Cz+iEflb121OHkFtdgU2RCynbNkDZtp3fnFRn2xhjR2qIBrDczGly4XEdUY6WDcgPQI6xB9BmXtsZ4tsD/5w4A6+cOIDPLifjlw+ME7sku7MjJx1fZ1zAH8MfwsSAQLHLcRhDfXvgo4kz8AvKttXsyEnHN9cu4A9hD+HvRu5nsCEJO72mWb40g7ah5UAGH855qg2nT9rx0ohw7L11HW+cjsf0vkEY7kf7xVhKQU0VVh/bh3D/3vhT+MNil+NwXqZsW41utt+JeNhoQzJ7UEPrQwVZCue8HECcMOw7CiaMsiO2xRjDV4/MQzc6ioNFcc7x3NG9qG1uwqbIhXTCPRFosk1HcbAsTbZrmkzLtlkNiTH2PoAU4W/vTgxg0ItzHisM+47nnMdb8rmJZegexeGdpKNil2MXPheOxvDhxCgM9e0hdjkOS/coDpRty1hnZrbNXUJK4pyHAoCwU+wNxtjzHaiTyNj8gUPwwrCxWJuWiOP5t8QuR9aulZXgtdNxmEVHY5CEBQOH4Hkh2yfy6SgOnXGtrASvC9n+xUjTsm1uQ0pljB3SNCFhyHeZmc9B7MC/Js9EiLcfViXsRkVDvdjlyFKTUolVR3aji4KOxiAl/548E8Fevlh1ZBdlu4OalEo8lbDL7Gyb25BWA9gAYJBwnLskqA8rRByMp4srNkUuxJ2aSvzq5EGxy5Glv6WcQFJRPjZMnYM+dDQGydBkO6+ast1Rf005geTiArOzbW5DyuGcbxcOKTQI6gaVbOZzEDsxvldf/F/4FHyfeQnRWVfELkdWzhTm4e+pJ/H04FFYHDJM7HJIKxMCAvFHIdvbKNtmOd2JbJt9+gnG2Os6I+3CAQSb+RzEjvwhfArG9+yLl47tR151pdjlyEJFQz1Wxu9EP09v/PehWWKXQwz4Q9hD6mwfp2ybqryhHk/E70T/DmbbrIbEOb/BOf+Ic655d2h1nYNzdnLCpqiFaFIp8eyRH6GiPd2N4pzjxeP7cLu6ApujFsHbzV3skogBLgoFvo9cgAYlZdsUnHO81Mlsd+SMsboFfMg539GZ5yDyN8jbDx9PnoWEOzfwz/OnxS5H0r7KOI/orKv464PT6GgMMhDq0x0fT56JhDs38K8LZ8QuR9Iske1ONSRCNJ4bNgZLgodhzdkjOF2YJ3Y5kpReVoxfnzyEyL4D8dbYyWKXQ0z0/LCxWBw8FGvOHsEZyrZe6WXF+NXJg53ONjUkYhGMMXw5bS76e3pjRdwOlNbXiV2SpNQ3N2NF3A54OLvgu8gFcKIh3rKhzvY89OvqheWU7TY02e7q7NrpbFNDIhbj7eaObTMXo6C2Cj/76Uc6crKON07H4+K9Inw7fT4N8ZYhHzd3RFO29bJktqkhEYuK6NkHH06Mwo83M/HxxbNilyMJ27PT8enlJPx21Hg8NiBU7HJIB43r2QcfTFBn+z8Xz4ldjiRYOtvUkIjF/fqBB7EgaDDeOpOAc3fviF2OqK6VleBnP/2I8T374v0JFj30IxHBb0aps/3mmXjKthWyTQ2JWJz6yMnz0dujG5bH7cC9+lqxSxJFdVMjHj8UAzeFM2JmLYabwtjpx4gctM62o25Psla2qSERq/Bz74JtMxcjv6YKK+N2olmlErskm+KcY/XRvUgvK8GWGYvQz9Nb7JKIhbTIdvwOKB002xnl9yyebWpIxGrG9+qLz6Y8iri8HPz+7BGxy7GpTy8nYUvWFfz1wWmICqSDmdgbTbYP33bgbI+zfLZpHQKxqueHj0VqSQE+PH8aYT0CsCJ0pNglWd2x/Ft4NTEOcweEYk3YQ2KXQ6xEk+0Pzp9GmH9vLB80QuySrE6T7XkDQvF2mOX3paMlJGJ1H0+ehYcC+uHnR/fgQkmh2OVYVXZFKR4/GIMQL198H7mQ9jeyc9ps/+Q42R7k5YvvrJRtakjE6lwVCsTMWgI/ty5YcHAb7tZWi12SVVQ01GPegWhwcOx9bAV86Dh1dk+TbV83dyw8GGPX2Z67fysAYI8Vs00NidhEgIcnds1ehuK6WszdvxU1TY1il2RRzSoVlsftwPWKUmyftRSDvP3ELonYiCbbRXU1mHcg2m6znVVZhu2zllg129SQiM1E9OyDLVGLkFpSiJVx9jM6iXOOX588iEO3s/G/KY/ikb5BYpdEbEyT7ZTiArvL9q9O3M/2NCtnmxoSsan5A4fgvw/Nwp5b1/GbU4fs4hAsf0k+jnVXUvDmmIl4YXiY2OUQkdhjtt9NPo7Pr9ou2zTKjtjcL0aOw43Kcvzzwhn09vDEH8KniF1Sh31+JQV/Tj6OZ4eMxvsTIsUuh4jMnrK97nIy3rVxtqkhEVF8MDEKd+tq8MdzR+Hh7ILfjZ4gdklmi8m+ileO78fcAaH4YtpcMBpRR2Af2d6WdQW/OHHA5tmmhkRE4cQYvn5kPuqbm/FqYhy6OLvgpRHhYpdlstjsq1gZtwOTA/ohesZiODvR2m+iZg/ZfiJ+pyjZpoZEROPs5IQfohah/lAzXj6+HwrGZLENJkZoRhN6BWL/nJXwcHERuyQiMZTtjqGfdURUrgoFYmYuwaP9B2H1sX34MC1R7JKM2px5CSvjdmBir0AcmLMS3VzdxC6JSFTrbH90/rTYJRklhWxTQyKic3d2xq7Zy7B80HC8eSYBa84kSG6EEucc/zx/Gk8m7MJDvftjPzUjYgLdbL9xOh6/P3OEsm0ErbIjkuCqUOCHyEXwcXXH+2mJyKupwhdT58LdWfyIKlUqvH46Hh9fPIulIcPw3fSFkqiLyIMm296u7ngv7RTyaiqxgbKtl/hzhBCBwskJ6x5+DIGeXvi/c0eRWX4PO2cvE/WU36X1dXgificO3c7Gbx54EP+aPJOOT0fMpnBywucPP4bArt3wp6RjuEbZ1otJbfHRHBERETw5OVnsMogV7MzJwKqEXfBydcP3kQsRGTjQ5jWkFhdg8aFY5NdU4dMps2WxUZpIn6NnmzGWwjmP0HcbbUMikrQoeChOP/4zeLu6IWrPJryRGI8GZbNNpt2sUuHvKScwYcdXaFapcGLhM9SMiMVQtg2jJSQiabVNTXgtMQ6fX03BUJ/u+HTKo1b9RZlSXICXj+9HUlE+lg8ajs+mPIru7h5Wmx5xXGJme8WgEfh0ymxRsm1sCYkaEpGFA7ey8MuTB5FTWYalIcPw7ripGObrb7Hnv11dgf87dxTfXruInl264pOHZmGZA5xwjYjP1tn+dMpsLA0ZbrHnNxc1JGIX6pub8cH5RKxNS0RdcxOWhgzHrx94EJMCAjt8aJMLJYX414Wz2Jx1GU5g+O2oB/GH8CnwoiHdxIYcKduyaUiMMR8AqwGUc843tHd/akiOqbiuBv++cBafXk5CVVMjBnv7YfmgEZjVLwQP9uwDF4XC4GObVSqkFhcgPu8GtmZdwaXSIng4u+D5YWPx6ujxGNDNx4avhJCWHCHbcmpIUQDCQA2JmKC6qRGx2en4OuM8ThbehopzuCkUGOLTHYO8/ODn3gUezi6oa25CeWM9sivKcK38HmqamwAA43v2xaohD2DFoBG0nYhIirFsh3r7wddNvtmWTUMCAMbYagAw1JCE21cDQP/+/cNv3bplw+qIVJU11CEh7wbOFeXjalkJcirLUN5Qj9rmJnRxdkE3F1eEePlisE93TAoIxLQ+A9DLw1Pssglpl71l264aki5aQiKEEHmh/ZAIIYRIns0OHcQYe9PIzRs45+W2qoUQQoj0yHqVHWOsCsA1qxfVeT0AlIhdRDvkUCMgjzrlUCMgjzrlUCMgjzqlUuMAzrneHa0kdXBVYZTdDAA+jLFSznlsOw+5ZmhdpJQwxpKlXqccagTkUaccagTkUaccagTkUaccapRUQ+KcxwOIF7sOQgghtkeDGgghhEiC3BtSu9uZJEIOdcqhRkAedcqhRkAedcqhRkAedUq+RskNaiCEEOKY5L6ERAghxE5QQyKEECIJkhplZyrG2BIA5QB8AORwzlNFqsEPQDiAGGGEIBhj6wGsF+4WodmfylDN1n4tlqrHWnUKR3hfwzl/y1q1d7K2Nkeft9S8s0S97dQomXwaqVMy+dRXo1TzaeT9lUw2O4RzLqt/wgxar3M5ToQawgCE6Vwu0/k7BkB2qxr11myL12KJeqxZpzAvy4Qas4W/35TCvAQQBeBNAKstPe8sVa+BGiWXT311Si2fRualpPJp6P2VWjY78k+OS0jLoA6BRjljLIzbdinJD8BSAC8Kl0t1algPIFm4j4bemgFE6Lvewq+l0/VYu07Oua/mb8bYEn5/h2hR5yXnPJ4xFtzqaovMO0vVa6BGyeXTQJ2wRD2WqtNQjRLMp97319A0LHW9Lb5j5bgNyQfqRUmNUrQMhNVxzuM55y/qXOWn82YFC/X4MMbWCtcZqtkWr8US9VitTt2QC6sJdHeMltq87Mj0xZinlE87zqeR91fy2WyPHJeQ9BHtVIhCECM1l3nL9eNfGPhVCBiu2aKvxYr1WLROYV29H9c5yK7U5qURlpp3Fq+X8mkZUs1n6/fXAtMW9bMkxyUkzYY2DT8AOWIUIvxiiuY6GwJbHdW8VPjfUM1WfS0WrMcW83wN1Ks/AEhvXuqw1Lyzer2UT4uSXD5bv78dmLbYn6U25NiQtgEI0bnsY+PtRwAAYV1rKuc8lTEWLPw6ykHLRXo/znkODNds7ddiqXpsMc+j0HI1gdTmpYal5p1V66V82nc+Dby/ssimMbI8UoPOkEQA2oOy2nL6YQAScP9XkZ9mw6dQG6BevxwrhNRgzdZ+LZaqxwZ1pnDOw61ReydqioJ6w7EP1KOOYjsyfWvWq69GKeaznXnZ6XqsNS91bpNMPk14fyWRzY6QZUMihBBif+S4yo4QQogdooZECCFEEqghEUIIkQRqSIQQQiSBGhIhMmBkp0tC7AY1JOJQhH024hhjZcK/GGEvfFvWUNaBaWYLw33NmU4wY6zMzOmY8rxrGWPZ7d+TEPNQQyKOJg7qw/X7CvtuxMHGx0LsCM45E2MHcAOiAUilFmJH7OVYdoS0S1jt5ad7DDLdv4nJoqBu5IRYFC0hEYch7Envo7OHfRuMsfWMsWzh39pWt2UzxlbrrPJboll9JfwL1rlvCmPsTeH/MkPTFFarpeibXqv7aVfz6dShee4onfstEa5LAfBWq+doMy3h9a7Xuc9axliMoToEM6BzXDdCLIUaEnE0SwHECF/a6/UMFojhnIdwzkMArG613cYPQAjnfAbUX/YxAJKE+8bj/vlpAPXhZMqFw81opqlvu1EKgBeE5wjTbS5GaOoIF+p4C9AekToGwFLhtpT2piWcxiBCaGRhAJZwzpe2M/0I4RhqPsLjDDZ4QsxBDYk4FOH4ZL4AXoD6i73FYIFWx+yKh/pkZbqidW6DzvHO4qA+k6cuzX3ihb9bNBvhizxZZ9vQWqiXPkyhW4emxmUA4nVeg/a1tDOtpcLlGOFvg4R5pTnyc4QwjTUm1kyIUbQNiTgc4Zw2sQBihdVVayB8Ebc6wGYE2m4rKTfwd3tyoF5q0jUOQLCwek0jGqbRN20fGD5NgMFpcc5zGGPxAIJNGDgRBfUZSqN0Gl+4sQcQYipqSMTRxUFY1SasvlsPIJxzXq67bUVHqZ7rTKGvuWVDfZTot/Tcvz366ihH26bX7rTY/dNW57CWp+jWZwbUS1JhTH1a6w/MrJsQg2iVHXEYjLEoYb+jYOGyD9RLR5qN+JrtPpqlD1O25xgTJUxnCdRLH62/6LcBWKJbj4nbkAzZBiBKZxXkkla3GZqWZlXdCwDWtrMTboQwMnEDgOXCc5m1fxQhhtASEnEYnPN44cs2jjHmB/VSxlrN0G/hdgg7kyaj82fJDBdWkflAz7YZYSlMd8BDOdRNoUN0ni+BMaY5gVyOsWkJI+rW65zL50WoG1Sb1XDs/kngNM8XLzQ1GnFHLILOh0SIFQhNLVzzRU8IaR+tsiOEECIJ1JAIIYRIAq2yI4QQIgm0hEQIIUQSqCERQgiRBGpIhBBCJIEaEiGEEEmghkQIIUQSqCERQgiRBGpIhBBCJIEaEiGEEEmghkQIIUQSqCERQgiRBGpIhBBCJEHW50Pq0aMHDwoKErsMQgghJkpJSSnhnPvru00yDUk4adhqqM/YucGUxwQFBSE5mc4NRgghcsEYu2XoNimtsosQuwBCCCHikUxD4pzHQ31aZUIIIQ5IMg2JEEKIY5NdQ2KMrWaMJTPGkouLi8UuhxBCiIVIZlCDqYQBDxsAICIiQpTT3VY3NeLTS0moa26y6XQVTk54dsho9O/mbdPpEschZrZ/NnQ0+nlSth2Z7BqSFMTn5WDN2SOiTJtzjnfGTRVl2sT+UbaJmCTTkBhjUQBmAPBhjJVyzmPFrsmQ+uZmAMDVFS9hmK/e4fRW4br+76hXNttsesTxULaJmCTTkIRRdvFi12GKJpUKAODqpLDpdF2dFGgUpk2INTSqlADEyXYTZdvhyW5QgxRoP7QKG05S8CwAACAASURBVH9oFQo0CdMmxBq0P7ZEyHYjZdvhSWYJSYqqmxqRVlzY5vr0shIAgIuNf0W6OClwq6oCJ/Jz29wW6uOHAA9Pm9ZD5MtQtq+KmO1cyrbDo4ZkxBuJ8fj8aore25ydnODp4mrTevzc3PHjzUz8eDOzzW3jevbBucXP2bQeIl9Sy7avmzt238zEbsq2Q6OGZERpQx36eXrh60fmt7ktwKOrzT+0h+Y+iesVpW2ufz/tFG5U0kEuiOmkl+0nkFVR1ub691JP4WYVZdtRUEMyolGlhI+rOyIDB4pdCgCgfzdvvfsg/XD9Eq6V3xOhIiJXUsv2gG4+GNDNp831mzIvIbOCsu0oaFCDEU0qlc037naEq5MCjUraIExM16hUyiPbCsq2I6GGZESjUmnz4a8d4eJEI5SIeRpV8si2K2XbodAqO8E7545i7fnEFtc1KpWY2meASBWZzl3hjLKGerhv+EeL6x/tPwg7Zy8TqSoiFZRtIhfUkAQpJYXwcXXHs0NHt7j+sf6DRKrIdKuHj4WLkxNUuH9ov/23spBcVCBiVUQqKNtELqghCZpUSgz08sH7EyLFLsVsoT7d8Y8J01tcV95Qj503rolUEZESe8z2Lsq2XaJtSIJGpdLmOwNaEx3VgWjIZVuoqWibqf2ihiRoUqns70NLo5MI1Nm2vx9bdNw7e+SQq+yUKhVePr4f+bXV2usulxZhYq9AEauyLFcnJ9Q2N2Hu/q3a67o6u+DTKbPh36WriJURazKU7UkB/USsyrJcnJxQ09RI2bZDDtmQCmqr8UV6GgZ080YPdw8AwCBvPywKHipyZZYzIzAYCXduolD4YqppakRG+T2sGvwA5gYNFrk6Yi2Gsr1w4BCRK7OcGYHBOELZtksO2ZA065/fjZiKZ1qNPLIX0wMH4lzg/eN/nS8pxNiYL2hVh51zhGxHUrbtlkNuQ2pSinP6CDFpto/RxmD71ujA2aZBPPLnkA1JrJOQiUnzBUUDHeybQ2ebGpLsOcQqO845frh+CSV1dQCAvJpKAI75K3J/bhbu1avng7uzM1YNfgBdbXxkZ2I5lG2dbN/K0s4HyrY8OURDyqksw6qE3S2uUzCGfp5eIlVke37uXeDt6oatWVewNeuK9npfN3csHzRCxMpIZ+jLtrOTk0Nme0vWFWyhbMuaQzSk2uYmAMC30+djfpB6tJGrkwIeLi5ilmVTni6uuPvsq6hrbgYA3K6uwKhtG7TzhshTDWW7TbZzqyswmrItSw7RkBqF0Tc+ru7wcXMXuRrxuCmc4aZQv+WaDyuNTJI3zfvn69aFsk3Zlj2HGNTgiKPq2qMddUeDHGRN8/65ODnER9kkmnlB2ZYfu11Culdfq91xTnPGSXs6fEpnaT60udUVuFJaBADwdnVHoANte5Crkrpa3K0Tsi2cKdiRRtW1RzMvKNvyY7cNadiWdSiur21xnZerm0jVSI+7szOcnZzw4fnT+PD8ae31N578FYK82p5KmkjHsK3rUELZNoiyLV922ZBUnKO4vhZLQ4ZhachwAEA3F1eE+/cWuTLpcFM44+TCZ5FbXQEASC0uwPtpiSiur6UPrYSpOEdJq2x7ubhRtnVQtuXLLhuSZo/tMd0DtB9a0tb4Xn0xvldfAIC3qxveT0ukvd0lTvP+jO1B2TaGsi1PdrklVDO6hgYxmI4GOcjD/UEMlG1TuVC2ZcPgEhJjzAuAXwees5RzXtnxkjpPezwv+tCaTNO8aaistGl/bFG2TXb/WHeUbakztspuDYAkAMzM54wQHmtT76eewn8unQOgPicMQEtI5tB8aJcd3g53Z3UsIvsGYVPUIjHLIgDeSz2J/15KAkDZ7gjNvNLNdlTgQHwfuVDMsogexhpSMud8h7lPyBjryFJVpx3LvwWlSqU9p5GrkwLzBoSKUYosjereC2+OmYjyxgYAwImCXBy5c1PcoggA4Hh+LlSca89pRNk2z+hW2T6efwsJeTdEroroY7Ahcc63t76OMbYYwNuc83HC5bEAsnVX0XHOv7BGoe1pVCkxxKc71k+dI8bkZc9VocDaiVHay788caDFMe+IeBpVSgz29qNsdxBlWz46MqhB+85yztOgXkUnukalkjb0WpCrk4I2AktEo1JJq+gsyIWyLVnmNqR4AOEAwBh7gzGWBGCGxavqgEYVfWgtycXJic4vIxGNKvqxZUmulG3JMrofEmMsC0AKgDiotymdB3CEMTZduEsU57zCUsUwxpYAKAfgAyCHc55q7P63qiqwKmEXAOB6RSkeCuhnqVIcnqtCgQalUjt/ncDwm1EPIox2wLS6u7XV+OO5o6hXqo9eTdm2LH3Z/u2oBzGWsi269naMjQUQDfVqug8YY+EAcgCUAoixcDPyATCDc/6icDkO7Sx9ldTX4lj+Lbg4KeDr1gVRgcGWKsfhTQ7oh1BvPyQW5gFQn3fHv4sHNSQbOHLnJr5MT0NgVy+4KijblmYo29SQxGe0IXHO3xb+TAPwIaAdyBAFYBljbC2AbZzzly1QyzIA2TqXyxljYe0tJZ1e9DP0pYMmWtzs/oOQ+cQg7WXfjR/Sag4b0WzfOLbwaQR7+Ypcjf2hbEuX2YcOEgYy6DaogRaqxQfq1XUapTBhx1xPOkWxTbgqFGhS0o6FtkA7v9oWZVs6DA5qYIyNMeUJOOctBvTrbF+yhDZHQmSMrWaMJTPGkr3hhK7UkGyCBjnYjmY+0zmObIOyLR3GlpBWMMZyzHw+BmAmgCMdqEUzmEHDD+rtVS1wzjcA2AAAERER3Jk+tDbh6qRARnkJvrt2AYD67LvzggaDMXMP5EH0OVVwG9mVpQCAxMLbAOhoDLZC2bYu3Wy3x1hDigaw3Mxpc+FxHbENwFqdyz7tbT8ittO3azecLLyt3RAMAJeXv4gRfj1FrMo+cM4RtWeTdlQdoD6/UVdnWvq3hT5du+EUZdsq9GXbGGNHatBsK7IJznk5YyyOMabZ8Xat0QcQmzo870kUCGfgPXrnFp47ugfVTU0iV2UflJyjXtmM340aj18+MA4A4OfWhZaQbCSOsm01+rId8sqfDN7f7EENjDEvax3Nm3Mea43nJZ3XxdlFO+Irp7IMAB3O31I087GXR1caVScCyrb1mJttszbAMMbeh3pHWTDGvC08gIHIhPbcSbQh2CI0J46jUXXiu3+qCsq2JTSame12GxJj7A2di0mc81AAEHaKvcEYe978MomcacJVWFuN/Joq5NdUocHEdcRETalSaefd7Wr1CgdaRSc+TbYLKNsd1jLb6mMnmJrt9g4dtK7VTq+pjLFDUB+l4UvO+Q3GWFlHCyfy1NXFBQDwlHDoFQAI9++N5CX028RULx7bh40Z51tcR4MYxEfZ7rzOZLu9bUhvM8ae55x/KVxeDfWQ63HCce7KAKw3r1widyP9eiJ6xuPa88tsvn4ZV0uLRa5KXm5VVyDYyxdvjZ0EQP3LfEnIMJGrIvqynV5WInJV8tKZbLd36KAKxliMzkCGHOE8SduhblZjoR7qTRwIYwzLBo3QXr5cWoQLJXdFrEh+mlQqBHbthtXDw8QuhejQl+2L9yjb5mhSqdDP06tD2W53GxLnvEJnVF08Y+x1xpjm4HHhAOiojw7O1UlBAxzMROc4kgc6L5j51Oem69gBC8x6FOf8Buf8I50GRWNUCVycnGhUkpma6BxHskCHFTJfo0rZ4RGjZu+HpItz/mFnHk/sg6uTAk0qFYZvXae97rmhY/DamIkiViUte29m4u0zR6AS1nDnVJZhVr8Qkasi7dGX7eeHjcWroyeIWJW07LmZiTWtsh3YwWx3qiERAgCLQ4Yhs6IUSq4+YvKROzexPzeLGpKOI3du4lrFPSwaOAQAMNLPH88OGS1yVaQ9+rK979Z1akg6LJltakik00Z174UtMx7XXp6++3ta795Ko0oJLxc3bJu5ROxSiBko2+1rVCrh7WqZbNOhsonFuSpokENrNIjBPlC227Lk9lBqSMTiXJ2ctCeZI2pNKhUdGsgOULbb6swghtZolR2xOBcnBW5VVeDXJw9qr5sZGIy5QYNFrMq2zpcU4uuMC+DCht7Ewtt0wj07QNlum+3ThXkWyzY1JGJxEwMC8VP+TWzKvAQAqGpqRGJhnkN9aD+/koL1V1Ph6+auvW6+A71+e0XZVmd7w9VU+Fgh29SQiMW9PmYiXtcZYff4wW3IqnCsQx42KJXo7+mNW6t+LXYpxIIo2+ps97NStmkdArE6R9wQ3Kjq+N7qRD5cHPAoJY0q6w3QoU8MsToXBzz8Co2qcwyuCsfMtrV+bNEqO2J1rk4KVDY1YM/NTO113q5umNK7PxhjIlZmORdKCpFbff9EyrerK2lUnQOgbFsWNSRidf5dPHCvvg7zD0S3uP7istV4oHsvkaqyHBXnmLDja9S3OpFbZN+BIlVEbMVQti8texEju/cUqSrLUapUNs02NSRidX8ZNw3LQoZrz1Ny9u4d/OLEAVQI55yRu0alEvXKZvxy5Dg8O/T+IVMGedGxh+1d62yfuZuHX544aD/ZVtk229SQiNW5KhQI8++tvVwlfFjtZQdDzUbtoG7eCNd5ncT+Gcq2vQx00HxGbZVtGtRAbE6zsd9eNgZrTr1BgxiIJgP2cjoWzWfUVtmmJSRic5rjXlU3NaKuuUl7vTNzgosMvtSbVaoWXziVwq9iOr8R0WSgqtE+sl3VZNtsU0MiNufhrI7dksOxLa53Vzjj0vIXMcjbT4yyTNKkVCLoh0+QX1PV5rYuCvo4OTq5Z3vApv+ioLa6zW22yjZ9gojNDff1x/qpc1DWUKe97kZlOdZfTcXt6kpJf2irmhqRX1OFeQNCMbl3P+31bk7OWCicD4Y4Lrlnu6C2WtRsU0MiNscYw+rhYS2uSyy8jfVXUyW/XUmzsfrR/oPw8sgIkashUmMP2X5sQCheGhEuSg00qIFIgmZHO6mPTrL1Rl4if5psS32ggybbYh7yihoSkQS5jE7SjqijAQzERNpRpZTtdtEqOyIJmg/BmjNH8M8LZ1rcxsCwJmwy5gwItVk9GWUleOX4ATSoWu6hXtesvkwHTiWmai/bvw+bjMco2wBoCYlIxEAvH6wYNAL9u3nDw9mlxb9zRXew9+Z1m9ZzsuA2fsq/CSewFrV0d++CeQNCMSmgX/tPQgjaz/YeyrYWLSERSXBTOGPLjMf13hb43cc2X5WnmV7srCXo5eFp02kT+0LZNh0tIRHJcxXhnDONdPQFYgOU7ZaoIRHJE+MEf/dHHEnvQ0vsh4uTk2jZluLAHFplRyTPxckJF0ru4s9Jx2w2zRMFuQCk+aEl9sNVoRAt21L8sUUNiUjeqO69sPn6ZbybfNym0x3i051G0xGromy3xDjn7d/LRhhjPgBWAyjnnG9o7/4RERE8OTnZ+oURQgixCMZYCudc72FOpNYi6VgshBDioCTVkDjn8QDKjd2HMbaaMZbMGEsuLi62UWWEEEKsTVINyRSc8w2c8wjOeYS/v7/Y5RBCCLEQ2TUkQggh9slmo+wYY28auXkD59zoqjpCCCH2TVKj7AD1NiJAvWrOhPtWAbhm9aI6rweAErGLaIccagTkUaccagTkUaccagTkUadUahzAOde7vUVS+yExxqIAzADgwxgr5ZzHtvOQa4aGD0oJYyxZ6nXKoUZAHnXKoUZAHnXKoUZAHnXKoUZJNSRhlF282HUQQgixPRrUQAghRBLk3pDa3c4kEXKoUw41AvKoUw41AvKoUw41AvKoU/I1Sm5QAyGEEMck9yUkQgghdoIaEiGEEEmQ1Cg7UzHGlkB9zDsfADmc81SRavADEA4gRhghCMbYegDrhbtFaPanMlSztV+LpeqxVp3CEd7XcM7fslbtnaytzdHnLTXvLFFvOzVKJp9G6pRMPvXVKNV8Gnl/JZPNDuGcy+qfMIPW61yOE6GGMABhOpfLdP6OAZDdqka9NdvitViiHmvWKczLMqHGbOHvN6UwLwFEAXgTwGpLzztL1WugRsnlU1+dUsunkXkpqXwaen+lls2O/JPjEtIyqEOgUc4YC+O2XUryA7AUwIvC5VKdGtYDSBbuo6G3ZqhPt2Ht19LpeqxdJ+fcV/M3Y2wJv79DtKjzknMezxgLbnW1Readpeo1UKPk8mmgTliiHkvVaahGCeZT7/traBqWut4W37Fy3Ibkg5anqChFy0BYHec8nnP+os5VfjpvVrBQjw9jbK1wnaGabfFaLFGP1erUDbmwmkB3x2ipzcuOTF+MeUr5tON8Gnl/JZ/N9shxCUkfH7EmLAQxUnOZt1w//oWBX4WA4Zot+lqsWI9F6xTW1ftxnYPsSm1eGmGpeWfxeimfliHVfLZ+fy0wbVE/S3JcQtJsaNPwA5AjRiHCL6ZorrMhsNVRzUuF/w3VbNXXYsF6bDHP10C9+gOA9OalDkvNO6vXS/m0KMnls/X724Fpi/1ZakOODWkbgBCdyz423n4EABDWtaZyzlMZY8HCr6MctFyk9+Oc58BwzdZ+LZaqxxbzPAotVxNIbV5qWGreWbVeyqd959PA+yuLbBojyyM16AxJBKA9KKstpx8GIAH3fxX5aTZ8CrUB6vXLsUJIDdZs7ddiqXpsUGcK5zzcGrV3oqYoqDcc+0A96ii2I9O3Zr36apRiPtuZl52ux1rzUuc2yeTThPdXEtnsCFk2JEIIIfZHjqvsCCGE2CFqSIQQQiSBGhIhhBBJoIZECCFEEqghESIDRna6JMRuUEMiDkXYZyOOMVYm/IsR9sK3ZQ1lHZhmtjDc15zpBDPGysycjinPu5Yxlt3+PQkxDzUk4mjioD5cv6+w70YcbHwsxI7gnDMxdgA3IBqAVGohdsRejmVHSLuE1V5+uscg0/2bmCwK6kZOiEXREhJxGMKe9D46e9i3wRhbzxjLFv6tbXVbNmNstc4qvyWa1VfCv2Cd+6Ywxt4U/i8zNE1htVqKvum1up92NZ9OHZrnjtK53xLhuhQAb7V6jjbTEl7vep37rGWMxRiqQzADOsd1I8RSqCERR7MUQIzwpb1ez2CBGM55COc8BMDqVttt/ACEcM5nQP1lHwMgSbhvPO6fnwZQH06mXDjcjGaa+rYbpQB4QXiOMN3mYoSmjnChjrcA7RGpYwAsFW5LaW9awmkMIoRGFgZgCed8aTvTjxCOoeYjPM5ggyfEHNSQiEMRjk/mC+AFqL/YWwwWaHXMrnioT1amK1rnNugc7ywO6jN56tLcJ174u0WzEb7Ik3W2Da2FeunDFLp1aGpcBiBe5zVoX0s701oqXI4R/jZImFeaIz9HCNNYY2LNhBhF25CIwxHOaRMLIFZYXbUGwhdxqwNsRqDttpJyA3+3JwfqpSZd4wAEC6vXNKJhGn3T9oHh0wQYnBbnPIcxFg8g2ISBE1FQn6E0SqfxhRt7ACGmooZEHF0chFVtwuq79QDCOefluttWdJTquc4U+ppbNtRHiX5Lz/3bo6+OcrRteu1Oi90/bXUOa3mKbn1mQL0kFcbUp7X+wMy6CTGIVtkRh8EYixL2OwoWLvtAvXSk2Yiv2e6jWfowZXuOMVHCdJZAvfTR+ot+G4AluvWYuA3JkG0AonRWQS5pdZuhaWlW1b0AYG07O+FGCCMTNwBYLjyXWftHEWIILSERh8E5jxe+bOMYY35QL2Ws1Qz9Fm6HsDNpMjp/lsxwYRWZD/RsmxGWwnQHPJRD3RQ6ROf5EhhjmhPI5RibljCibr3OuXxehLpBtVkNx+6fBE7zfPFCU6MRd8Qi6HxIhFiB0NTCNV/0hJD20So7QgghkkANiRBCiCTQKjtCCCGSQEtIhBBCJIEaEiGEEEmghkQIIUQSqCERQgiRBGpIhBBCJIEaEiGEEEmghkQIIUQSqCERQgiRBGpIhBBCJIEaEiGEEEmghkQIIUQSZH0+pB49evCgoCCxyyCEEGKilJSUEs65v77bJNOQhJOGrYb6jJ0bTHlMUFAQkpPp3GCEECIXjLFbhm6T0iq7CLELIIQQIh7JNCTOeTzUp1UmhBDigCTTkEzFGFvNGEtmjCUXFxeLXQ4hhBALkV1D4pxv4JxHcM4j/P31bhcjhBAiQ7JrSIQQQuwTNSRCCCGSIKVh31EAZgDwYYyVcs5jxa6JEEKI7UimIQmj7OLFroMQQog4aJUdIYQQSaCGRAghRBKoIRFCCJEEakiEEEIkgRoSIYQQSaCGRAghRBKoIRFCCJEEakiEEEIkgRoSIYQQSaCGRAghRBKoIRFCCJEEakiEEEIkgRoSIYQQSaCGRAghRBKoIRFCCJEEakiEEEIkgRoSIYQQSaCGRAghRBKoIRFCCJEEakiEEEIkgRoSIYQQSaCGRAghRBKoIRFCCJEEakiEEEIkgRoSIYQQSaCGRAghRBKoIRFCCJEEZ0M3MMa8APh14DlLOeeVHS+JEEKIIzLYkACsAZAEgJn5nBHCYwkhhBCTGWtIyZzzHeY+IWOsI0tVhBBCHJzBbUic8+0deULO+RcdL4cQQoijMmtQA2NsMWMsSefyWGFbEyGEENIpHRllF6X5g3OeBvU2I0IIIcQozrnR281tSPEAwgGAMfaGsLQ0o2OltcUYW8IYixL+DzP1cUqVCksOxeD91FMAgNyqCozeth4n8nMBAKcKbmPYlv/hdnUFACC5KB8jtq5DZvk9AECDshmRP36PPycd0z5nbVMTFh6IxmuJcS2m1aRU4tcnD2JU9Ho0KpUGa1JxjnN37+DjC2fxZPxOTNzxFQZ8/1/4ffUh/L76EH2/+xjjt2/E8sPb8WFaIk4W5KJZpTL6Oifv/BrPJOxGfXNzi+v/ef40Hty+EWUNddrrPrl0DmNjNqCysQEAUFRbg9DNn2FHTjoAoLqpEaO3rceW65cBABllJRiy+TOcu3sHALDhairCY77QTuuxfVvwf+d+AgBcKytB6ObPcFa47/orKRi9bT1qm5oAAK8lxmHOvi1QCeH7e8oJRP74vXZ+ZVWUYsjmz3AoN1tb783Kcgz64VP8kHmpzetecCAaCw9Eo7C22uj8sZTyhno8nbALD27f2OYDdPh2NkI3f4bzJYXa6y7eu4vhW9fhdGEeAPV7v/hgDF45vh+A+kP425OH8EzCbgBAs0qFhQei8V7qSQDq1z5y6+favH6TcQHhMV+gWaUyOdt51eqBrYay/a7Esz1pR8ezfbe2GqGbP8POnAwA97O91UC2119JaZHtR/duxp/OHQXQfrZfPXW4Rbb/1slsz9+/VZRsj+9Eth8/uK1Ntp890jLbmry2zva6KylG6zPakBhjWYyxaMbY84yxMZzzCs75EcbYdOEuUZxzi4yoY4z5AJjBOY/nnMcCWGvqY/914Qy252TgbNEdKFUqPH1kNy7eK8LVsmKU1tdhZfwOZJTfw83KCtyrr8WSw7G4WlaCrIpScM7xwtG9OHLnJj4XZlZNUyPm7t+K3TczkVJcoJ1OYW01IvdswieXknCptAhVTQ1takkrLsArx/cj8LuPMX7HV/hd4mEcy7+Frs6umNZnAJ4MfQBPDX4As/oFw8fNHUlF+XjzTAKm7PoWAd/+Cz//6UecLMjV+0sisTAP32VexMSdXyGrolR7/Y4bGUgqysfMPT+gvKEeABCTnY7zJXexIm4HmlUq5FZXIKuiFIsPxeJWVTnu1lbj4r0iPBG/E7lVFbhSWozMilKM3/EV6pubsTE9DaklhfiD0IQO5GbhbykncfbuHVwpK0ZWRSkm7PgKdc1N+D7zEi7eK8LvEg9r34/9uVnaL9z/XDyHI3du4pXj+8E5x/XyUmRWlGL2vs1IFebvjapyZFeW4amEXVh3ObnF6/7xZiZ238zE8K3r8FX6ee2XgaVxzhGbfRXDt67D95mXkFSUD90pbc9Ox6y9m5FVUYprwhf+jcoyzNq7GellJcgoLwGg/pLacSND++HbmH4e/7l0DmeL1F9yf0k+jt03M5FUlA+lSoVVCbtwpawY6eUluFZWgldO7EdqSSHqmpvaZHtVwi792a4qb5Ht7IqyFtlep5PtOfu3YPfNTO28B9pmu7qpsc38MTfb58zI9um7+rO9PadttrdlXcX5krtYqc12JbIqSvH4oZgW2V5pINtftsr2wdvZ+GvKCb3Z/vbaxRbZ/vfFsy2y/d9OZnvPres2zfYwIdvnOpHtnTeutcn2mbsts31OJ69XyoqRIWT79dMtfwS1ZmyUHQDEAoiGejXdB4yxcAA5AEoBxHDOK8ycL8YsA5Ctc7mcMRbGOU819ICyhnqkFRfgj8KvG845PrpwGsfyb6kvA3j+6B7cFn49KrkKqxJ241ZVhfb2tWmJ+F745RLu3xsNymYsOhiDYwW34Ovmrv3wnCnMw+LDsShrqMPEXoE4fTcPmuxwzrHv1nW8l3YKiYV58HB2wWP9B2HhwCGY3jcIvbt2M/rCi+tqcDw/F7tuXsP2nAx8nXEBY3r0wptjJmH5oBFwYuqR9wzA2B4BuFFVjvDYLxEzczFm9gtBf09vJCIPF+7dxay9P+Dw3CcR4uWLEwW5OJCbhdcS4/DU4Ae001t6eDu+eWS+9vIT8Tvx6ujx2strzh7BqO69cK4oH/++cAbzBoRqb1uVsAt/fXCa9vLbZ45ghJ8/ThXexoarqZgROBCTA/rhVOFt/CnpGCb0CsT4Xn2x99Z1bMw4jxF+/hjm20P7+Fl7N+PEwme0l7u5uOKVEweQX1uFv4ybBsYY/N09MNKvJ5q5Cs8d3YP/XjqH98ZPx+z+IWDM3L0S9DtZkIu3zxzBqcLbGNsjAA/27IPdNzPBOQeH+ovo9cQ4eLm6obKxAQxAQU0VZu7drP31zjkQnXUF7whLI+H+vZFaXIBfnjwg3M5x9M5N/C3lhPoygA/OJ+Jk4W0AQJNKiVVHdqNO+OV+8V5Rm2wfL8jVPrZltnmrbHO92V5wYBuOF+Sqsy28dt1sT+jV01cY9AAAEqpJREFUF2fu3gEXbrVltsf0CMDNVtke0M0bp++2zPYgbz+cLLyN/blZeD0xDk8ayfaT8Tvxu1bZHtMjAMnFBe1me82ZIxjp54/Td/NMzvZQH+lne7yNsr02TTfb6gUFd4Uz6loXqIO1t06vzQMYGwt1g5oB9eq7bZzzl816Ev3P+yaAcs75BuHyeqibXnyr+60GsBoA0L9PePA/1qCmqRHuzs5QcY7C2mpM7BWI4wW5GNW9Jy7eK8KcAaHYd+s6ogIHIj7vBn42dDS+zriA54aOwcaM81g5aAQyK0rR3b0LPJ1dseNGBr55ZD6+uXYBSs7xu1HjsTJ+B/p29cLO2UtxPD8Xvzp5EEXPvoqsijK8cToepwpvI9jLF78aOQ7PDh0NHzf3Ds2HmqZG/HD9Mv578RyulBVjdPdeWDshErP6h4Ct+yv+L3wKnhs2BvMPRONKaTHWPfwYEu7cQFpxIT6cGIUlh2MR4d8HgZ7dcPZuPh4PHoqPL57FM0NG4dtrF7WveXa/EBy8na39f1zPPkgqysekgEAkFuZhqE93FNbWwL+LBxqUShTWVuOB7j2RWlyAUG8/ZFaU4qGAfjhZeBtDfbqjuL4WIV6+yCwvhZ97F/Ts4oHKxgYU19Win6cXOICgbt7YfTMTvxgZgU8uJeH7yAV4PTEergoF/jJuGn7204+In/cUtly/jI0Z57E4eCi+fmQ+gn/4FEtDhuHTKY9iy/XL+FPSMeRUliHcvzd+OXIclg8aji7OLmbP6yalErtuXsMnl5JwoiAXvT088U7Ew3hu2Fi8l3oSf0o6hprn38ZriXH4/GoKlgQPw5qwyQiP/RL/mTwL664k43Z1JTY+Mg8r4nbghWFj8V3mRYzz7wN3Z2fkVJaDc44mlQpDfbsjtbgQXZyd0dXZBUrO1fO1rhqTA/rhWP4t9PbwREFttfY9GNDNG/XNzXB3doZSxXG3znC2ZwQGIy4vR5vt54eNxZfpaUazreIcv22V7WP5t/Drk4dQ/OxruF5RapVs/+fiWVwtK2k3258/PAfxd3KQVlyID4Rsj9OT7WeHjMY31y5YNNuaxjPUpztK6usQ7OVjUrZfGRGBTy8nYVPkQryaGAe3VtnefP0yvrJRtnfeyMCnl5Mtmu0He/aFu8IZ2ZVlRrNdr2zG3boabbb7dO2G/JoqRM94HMtDR6ZwzvWOPTB7UAPnPI1z/iHnfCbnvDuAD8yeW6bz0TP9DZzzCM0Lyqksw8ZH5sFd4Yzb1ZXw79IVn099DID6F+bsfiH43Sj1L6T4vBt4MnQkXh6hnhcbM85jXM8+2PjIPDAAh2/nYMeNDHw8eSaeGToaDAwnCnKx5HAsxvYIwLnFP8eo7r2g+eHy8vH9mLTza+RUluHzhx9DxoqX8dvR4zv8gQWAri6uWD08DBeXv4gfIheiqqkRs/dtxso49S5hDMCAbj44sfBZRAUGY/WxfYjOugoAmD9wCLbOeBxni+4gJjsdjAEfTYzCnAGh+PbaRQDA48FD8droCTh4W70w+tTgB/D04FFIKsoHAHw4MQrDfHsgo/weurq44PvIhbhTU4lGlRKP9AnC70ZPQKawSmXtxEiM8PVHRvk9uDopsGXG41ByFXIqy+Dp4orts5aiTtmM1JJCODGG7yMXYlT3nvjkknqgZqh3dxya+wSqGhvxsrBO2sXJCV9Mm4t/TpqBXTeu4cHtG1FSXwsGBifG8OTgB5C+4mWsnzoHdc1N+NlPP6LnN//C8sPb8f21i9rVsPpwznGrqhzRWVfwTMJu9Pr2X1h2eDvyqivxz0kzkPXEL/HiiHA4Ozlpf51O3vU1Pr+agrfGTkL0zMXo4qxeqfCbU4eQW12J/XNWYlJAIADgi/Q04Yt9GdwUzsipLMPtmkpsm7kY/u4eKG2oQ3FdLbbOeByMMeTVVCKgiyf+N+VRAEBBbTWeDB2JxcHDAAC3qiq02c6rMZ7tuLycFtn+Mj3NaLYB4Li+bAv7wb90fJ/Vsn1p+UsmZfuFY3sRnXUVjDEsGDgEW6P0Z/ubaxcsnu0PJkZiuHBfV4Xp2f70sibbfjg89wlUNjbgpeP7tNn+0obZXh63w+LZ3jFrKVwVCuRUliGvphIxMxejh55s36mpapHt/JoqPBk6EssGjTCaEYMNiTE2xugj78+IG60eN93QfdtRjpYNyA/q1YNGLQsZjjkDQrXrPb95ZD66u3lob/9m+vwW918/dU6LQ0/snr0MXZxdkCys7/1T+BT8RviQXykrBgA81n8QEuatQnd39fNqMrE9JwOvjp6A60/8Ai+OCIeLQmHGyzXOiTE8IQT03XFTsUPYYNskbBz2cnXDnkeX4/lhYwFA+0F6PHgYPn9Y/aXFwKBwcsKWqEXa51VxjvfGT8dDAf201306ZTZCvdX7M3s4u2BT5EK4OKmjMb5XX/w+7CHtff/+4CMY4esPAOiicMYPUQvh6qQAYwzBXr5YP3WOdtpDfXtg47S52sd2dXHFj48ub/E6R/cIQNy8J+GucNY+jjGGV0dPQPy8p3CvXr2AX9N8f5uGq0KB1cPDcHn5SzgyfxVWDhqBo/m38PSR3Qjd/Bl8vvoQI7d+jqgfN2H23s2YuecHjN62Hn5ffYSgTZ9gRdwO/HgzE/MGDMbex1bg+hO/wKujJ8DD5f4vUaUwnzPLS7Fj1lK8PyESToxpv7ABYN9jK/BwnwEtrtv72HL06OKBM3fVG4H/OXEGJgYEardFrp0QibH+vbXbSb6dPh9+7l103otHca++FoBp2eY6WwI0816jdbbfiXj4frZLDWRbeD4xst3M9Wdb8/oXhwzDOjOyzaDO9iA92WZgLbLNmL5sLxLuC6PZZjCW7afQReGifZwm23ESyfbO2Z3I9qQZmGBmttvFOdf7D8D7ALzM/OcN4H1Dz2nsH9TNaL3O5bj2HuMXGsIrG+o555z/I+UEX5t6inPOebNSyZcdiuVH79zknHNeVFvN5+/fytNLiznnnJfX1/G5+7bwlKJ8rvF+6kn+p7M/cZVKpb3uvxfP8tdOHeZNSiXXlVKUz+fs28LPFuZxW7laWsQXHYjmR/JutLhepVLxvyYf5388e6TF9Z9cPMfXnE7QXs4qv8cX7N/K86oqOOec36mu5PP2beEZwjxJKy7gc/dt0c7Pr9LT+JuJcZxzzhubm/mzCbv5odwszjnnF0sK+fz9W7X3/TbjPH/rdLx2Wu+cO8rXXU7WXn4v5SR/L+Wk9nLS3Tt8zr4tvLS+VntdclE+n7tvCy+qrW7xOvKqKviSgzF8R3a60fmjVKn4+eIC/sWVVP6L4/v5ogPRfOL2r/j42I184vav+Pz9W/nLx/bxzy4l8aS7d3hjc7PR5zt+5xafv38rzyq/1+L6msZGPnffFh5/O0d7XWNzM198cFuL92bj1TT++qk4bZ42Z17ivzx+QHv5Hykn+EdpiZxzzpuUSr7i8HZ+Iv8W51ydr5WHt5uU7bs16mxntJPtd84dtdtsXy+/xxceiLZKtr9Jb5vtzy2U7dsmZrtZqZRctt9IND3byw/HarPNOedQHwVI73e6wW1IwrYic/cx4gBSuHr/JLMxxpZAvaSkfrJW249ai4iI4MnJycbuQgghREIY+//27u62jeUM4/jzArkPzcTXAeg0EImngtAdSCcNxHIDgR1XEOjgNECnApnuQHQFkYzc5kJqwIEkIAW8udhZaUjt8kuz5Az5/wGC+bHmPlyO+GpnZ2et9RhS6yi7UFQ2Kiyb8mq4NwDgAK07ddCfzOxv9XRBqx5nAgBgmXVH2b1y919VnTMkd//3CwYxAADwaN2CVI+Ci0fWpTl7CwBw0NYtSL8zs79KM7NO/DZhHgDAgVqrIHl1raM/SpqGOe4uJA06SQYAOCjL5rJ7xt3/bmb/UDUk/G7TId4AAMTWLkiS5NWkqt8SZwEAHLBNLtAHAEByFCQAQBYoSACALFCQAABZoCABALJAQQIAZIGCBADIAgUJAJAFChIAIAsUJABAFihIAIAsUJAAAFmgIAEAskBBAgBkgYIEAMgCBQkAkAUKEgAgCxQkAEAWKEgAgCxQkAAAWaAgAQCyQEECAGSBggQAyAIFCQCQBQoSACALFCQAQBYoSACALPxm1wFiZtaTdCbpwd0/7zoPAGB7cttDGu46AABgN7IqSO4+lfSw6xwAgO3LqiCtwszOzOzKzK5+/Pix6zgAgESKK0ju/tndh+4+fP369a7jAAAS2dqgBjP7sODpz+5OVx0AHLCtFSR3/2Vb6wIAlMfcfdcZHpnZSNJ7ST1JY3f/umT5/0n6zzayvdDvJf131yGWKCGjVEbOEjJKZeQsIaNURs5cMv7B3RuPt2RVkNZlZlfunv1Q8RJylpBRKiNnCRmlMnKWkFEqI2cJGYsb1AAA2E8UJABAFkovSKVML1RCzhIySmXkLCGjVEbOEjJKZeTMPmPRx5AAAPuj9D0kAMCeoCABALKQ1eUnVmVmJ6omYe1JunX37zvK0Jd0LGkSJoaVmY0ljcNiw/oyGm2Zu34vqfJ0lTNccuSTu3/sKvsLsz27HEqqbZci75KM2bTPBTmzaZ9NGXNtnws+32za5kbcvagfPZ00W9+/3EGGI0lH0f376PZE0s1cxsbM23gvKfJ0mTNsy/uQ8Sbc/pDDtpQ0kvRB0lnqbZcqb0vG7NpnU87c2ueCbZlV+2z7fHNrm5v8lLiH9LOqRlB7MLMj3+5eUl/SqapZJSTpLsowlnQVlqk1ZlZ1/aeu38uL83Sd091f1bfN7MSfZujY6bZ096mZDeYeTrLtUuVtyZhd+2zJqRR5UuVsy5hh+2z8fNvWkerxbXzHlngMqafZaybdabZBdM7dp+7+PnqoH31Yg5CnZ2bn4bG2zNt4LynydJYzbuShm2CaOHtqqbZdl9uU9rnH7XPB55t921ymxD2kJr1drTg0xD/X9322f/yfLX8VSu2Zk76XDvMkzRn66vsezfqe27ZcINW2S56X9plGru1z/vNNsO6d/i6VuIdUH2ir9SXd7iJI+IvpwqMDgXOX2bgL/7Zl7vS9JMyzjW3+SVX3h6T8tmUk1bbrPC/tM6ns2uf857vBunf9u/RMiQXpi6Q30f3elo8fSZJCX+t3d/9uZoPw19GtZnfp++5+q/bMXb+XVHm2sc1Hmu0myG1b1lJtu07z0j73u322fL5FtM1FipypIRqSKKnqU93y+o8kfdPTX0X9+sBnyCZV/ctfQyNtzdz1e0mVZws5r939uIvsL8jUeDmUVNsuRd6mjDm2zyXb8sV5utqW0XPZtM8VPt8s2uYmiixIAID9U2KXHQBgD1GQAABZoCABALJAQQIKsOAcF2BvUJBwUMIQ2Uszuw8/k3DS4zYz3G+wzpswumqd9QzM7H7N9azyuudmdrN8SWA9FCQcmktVsyO/CkNlL7Xlqac24e62i/PtWlxIyiUL9si+TB0ELBW6vfrxlC/xbaxspKqQA0mxh4SDEU5c7EUnND5jZmMzuwk/53PP3ZjZWdTld1J3X4WfQbTstZl9CP/et60zdKtdN61vbrnHbr4oR/3ao2i5k/DYtaSPc6/xbF3h/Y6jZc7NbNKWI3iraBodIBUKEg7NqaRJ+NIeNwwWmLj7G3d/I+ls7rhNX9Ibd3+r6st+IulfYdmpni4HIFVn7z+Es/vrdTYdN7qW9C68xlFcXBaocxyHHB+lxwlAJ5JOw3PXy9YVZo0ehkJ2JOnE3U+XrH8Ypqzphf/XWuCBdVCQcFDCdDCvJL1T9cU+M1hgboqUqaprw8QuoucUTS9zqerCabF6mWm4PVNswhf5VXRs6FzV3scq4hx1xp8lTaP38PhelqzrNNyfhNutwraqJ9ochnV8WjEzsBDHkHBwwiUEvkr6GrqrPil8Ec/NZzbU82MlDy23l7lVtdcU+0nSIHSv1S60mqZ199Q+K3Prutz91symkgYrDJwYqbog3CgqfMeL/gOwKgoSDt2lQldb6L4bSzp294f42ErkruGxVTQVtxtVk3J+bFh+maYcD3pe9Jauy56uEnprs1dEbfJW1Z7UkVVXEf1lzdxAK7rscDDMbBTOOxqE+z1Ve0f1Qfz6uE+997HK8ZxFRmE9J6r2Pua/6L9IOonzrHgMqc0XSaOoC/Jk7rm2ddVdde8knS85CXcYRiZ+lvSX8FprnR8FtGEPCQfD3afhy/bSzPqq9jLO66Hf4XmFk0mv9PKLkh2HLrKeGo7NhL2weMDDg6qisJHo9b6ZWX29nttF6woj6sbRpRPeqypQz7rh7OmaO/XrTUNRY8QdkuDyE0AHQlE7rr/oASxHlx0AIAsUJABAFuiyAwBkgT0kAEAWKEgAgCxQkAAAWaAgAQCyQEECAGSBggQAyML/AbPk+dPvnxlkAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x432 with 3 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "font = {'size' : 12}\n", "plt.rc('font', **font)\n", "plt.rc('text', usetex=True)\n", "\n", "plt.figure(figsize=(6, 6))\n", "plt.subplot(3,1,1)\n", "plt.plot(range(len(t)),x, c=(0,0.59,0.51))\n", "plt.autoscale(enable=True, axis='x', tight=True)\n", "#plt.title('Original')\n", "plt.xlabel('Sample index $k$', fontsize=14)\n", "plt.ylabel('$x[k]$', fontsize=14)\n", "plt.ylim((-1.1,+1.1))\n", "\n", "plt.subplot(3,1,2)\n", "plt.plot(range(len(t)),xh_uniform_midrise, c=(0,0.59,0.51))\n", "plt.autoscale(enable=True, axis='x', tight=True)\n", "#plt.title('Quantized')\n", "plt.xlabel('Sample index $k$', fontsize=14)\n", "plt.ylabel('$\\hat{x}[k]$', fontsize=14)\n", "plt.ylim((-1.1,+1.1))\n", "\n", "plt.subplot(3,1,3)\n", "plt.plot(range(len(t)),x-xh_uniform_midrise,c=(0,0.59,0.51))\n", "plt.autoscale(enable=True, axis='x', tight=True)\n", "#plt.title('Quantization error signal')\n", "plt.xlabel('Sample index $k$', fontsize=14)\n", "plt.ylabel('$e[k]$', fontsize=14)\n", "plt.ylim((-1.1,+1.1))\n", "\n", "plt.tight_layout()\n", "plt.savefig('figure_DST_7.2c.pdf',bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
gpl-2.0
garth-wells/fenics-x3dom
DOLFIN_X3DOM.ipynb
1
251997
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# X3DOM examples\n", "\n", "This notebook demonstrates experimental DOLFIN features (<http://fenicsproject.org>) for X3DOM (<http://www.x3dom.org/>) and HTML output. The objective is to support the interactive display of meshes and simulation outputs in web browsers, including in Jupyter notebooks.\n", "\n", "These examples use a development version of DOLFIN at <https://bitbucket.org/garth-wells/dolfin-coding-days>, and the branch `x3dom`." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from IPython.core.display import HTML\n", "from dolfin import *" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create mesh in 2D\n", "mesh = UnitSquareMesh(32, 32)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<!DOCTYPE html>\n", "<html>\n", " <head>\n", " <meta http-equiv=\"content-type\" content=\"text/html;charset=UTF-8\" />\n", " <meta name=\"generator\" content=\"FEniCS/DOLFIN (http://fenicsproject.org)\" />\n", " <title>FEniCS/DOLFIN X3DOM plot</title>\n", " <script type=\"text/javascript\" src=\"http://www.x3dom.org/download/x3dom.js\"></script>\n", " <link rel=\"stylesheet\" type=\"text/css\" href=\"http://www.x3dom.org/download/x3dom.css\" />\n", " </head>\n", " <body>\n", " <x3d showStat=\"false\" xmlns=\"http://www.web3d.org/specifications/x3d-namespace\" width=\"500.000000px\" height=\"400.000000px\">\n", " <scene>\n", " <shape>\n", " <appearance>\n", " <material diffuseColor=\"1.000000 1.000000 1.000000\" emissiveColor=\"0.000000 0.000000 0.000000\" specularColor=\"0.000000 0.000000 0.000000\" ambientIntensity=\"0\" shininess=\"0.5\" transparency=\"0\"></material>\n", " </appearance>\n", " <indexedFaceSet solid=\"false\" colorPercVertex=\"false\" coordIndex=\"0 1 34 -1 0 33 34 -1 1 2 35 -1 1 34 35 -1 2 3 36 -1 2 35 36 -1 3 4 37 -1 3 36 37 -1 4 5 38 -1 4 37 38 -1 5 6 39 -1 5 38 39 -1 6 7 40 -1 6 39 40 -1 7 8 41 -1 7 40 41 -1 8 9 42 -1 8 41 42 -1 9 10 43 -1 9 42 43 -1 10 11 44 -1 10 43 44 -1 11 12 45 -1 11 44 45 -1 12 13 46 -1 12 45 46 -1 13 14 47 -1 13 46 47 -1 14 15 48 -1 14 47 48 -1 15 16 49 -1 15 48 49 -1 16 17 50 -1 16 49 50 -1 17 18 51 -1 17 50 51 -1 18 19 52 -1 18 51 52 -1 19 20 53 -1 19 52 53 -1 20 21 54 -1 20 53 54 -1 21 22 55 -1 21 54 55 -1 22 23 56 -1 22 55 56 -1 23 24 57 -1 23 56 57 -1 24 25 58 -1 24 57 58 -1 25 26 59 -1 25 58 59 -1 26 27 60 -1 26 59 60 -1 27 28 61 -1 27 60 61 -1 28 29 62 -1 28 61 62 -1 29 30 63 -1 29 62 63 -1 30 31 64 -1 30 63 64 -1 31 32 65 -1 31 64 65 -1 33 34 67 -1 33 66 67 -1 34 35 68 -1 34 67 68 -1 35 36 69 -1 35 68 69 -1 36 37 70 -1 36 69 70 -1 37 38 71 -1 37 70 71 -1 38 39 72 -1 38 71 72 -1 39 40 73 -1 39 72 73 -1 40 41 74 -1 40 73 74 -1 41 42 75 -1 41 74 75 -1 42 43 76 -1 42 75 76 -1 43 44 77 -1 43 76 77 -1 44 45 78 -1 44 77 78 -1 45 46 79 -1 45 78 79 -1 46 47 80 -1 46 79 80 -1 47 48 81 -1 47 80 81 -1 48 49 82 -1 48 81 82 -1 49 50 83 -1 49 82 83 -1 50 51 84 -1 50 83 84 -1 51 52 85 -1 51 84 85 -1 52 53 86 -1 52 85 86 -1 53 54 87 -1 53 86 87 -1 54 55 88 -1 54 87 88 -1 55 56 89 -1 55 88 89 -1 56 57 90 -1 56 89 90 -1 57 58 91 -1 57 90 91 -1 58 59 92 -1 58 91 92 -1 59 60 93 -1 59 92 93 -1 60 61 94 -1 60 93 94 -1 61 62 95 -1 61 94 95 -1 62 63 96 -1 62 95 96 -1 63 64 97 -1 63 96 97 -1 64 65 98 -1 64 97 98 -1 66 67 100 -1 66 99 100 -1 67 68 101 -1 67 100 101 -1 68 69 102 -1 68 101 102 -1 69 70 103 -1 69 102 103 -1 70 71 104 -1 70 103 104 -1 71 72 105 -1 71 104 105 -1 72 73 106 -1 72 105 106 -1 73 74 107 -1 73 106 107 -1 74 75 108 -1 74 107 108 -1 75 76 109 -1 75 108 109 -1 76 77 110 -1 76 109 110 -1 77 78 111 -1 77 110 111 -1 78 79 112 -1 78 111 112 -1 79 80 113 -1 79 112 113 -1 80 81 114 -1 80 113 114 -1 81 82 115 -1 81 114 115 -1 82 83 116 -1 82 115 116 -1 83 84 117 -1 83 116 117 -1 84 85 118 -1 84 117 118 -1 85 86 119 -1 85 118 119 -1 86 87 120 -1 86 119 120 -1 87 88 121 -1 87 120 121 -1 88 89 122 -1 88 121 122 -1 89 90 123 -1 89 122 123 -1 90 91 124 -1 90 123 124 -1 91 92 125 -1 91 124 125 -1 92 93 126 -1 92 125 126 -1 93 94 127 -1 93 126 127 -1 94 95 128 -1 94 127 128 -1 95 96 129 -1 95 128 129 -1 96 97 130 -1 96 129 130 -1 97 98 131 -1 97 130 131 -1 99 100 133 -1 99 132 133 -1 100 101 134 -1 100 133 134 -1 101 102 135 -1 101 134 135 -1 102 103 136 -1 102 135 136 -1 103 104 137 -1 103 136 137 -1 104 105 138 -1 104 137 138 -1 105 106 139 -1 105 138 139 -1 106 107 140 -1 106 139 140 -1 107 108 141 -1 107 140 141 -1 108 109 142 -1 108 141 142 -1 109 110 143 -1 109 142 143 -1 110 111 144 -1 110 143 144 -1 111 112 145 -1 111 144 145 -1 112 113 146 -1 112 145 146 -1 113 114 147 -1 113 146 147 -1 114 115 148 -1 114 147 148 -1 115 116 149 -1 115 148 149 -1 116 117 150 -1 116 149 150 -1 117 118 151 -1 117 150 151 -1 118 119 152 -1 118 151 152 -1 119 120 153 -1 119 152 153 -1 120 121 154 -1 120 153 154 -1 121 122 155 -1 121 154 155 -1 122 123 156 -1 122 155 156 -1 123 124 157 -1 123 156 157 -1 124 125 158 -1 124 157 158 -1 125 126 159 -1 125 158 159 -1 126 127 160 -1 126 159 160 -1 127 128 161 -1 127 160 161 -1 128 129 162 -1 128 161 162 -1 129 130 163 -1 129 162 163 -1 130 131 164 -1 130 163 164 -1 132 133 166 -1 132 165 166 -1 133 134 167 -1 133 166 167 -1 134 135 168 -1 134 167 168 -1 135 136 169 -1 135 168 169 -1 136 137 170 -1 136 169 170 -1 137 138 171 -1 137 170 171 -1 138 139 172 -1 138 171 172 -1 139 140 173 -1 139 172 173 -1 140 141 174 -1 140 173 174 -1 141 142 175 -1 141 174 175 -1 142 143 176 -1 142 175 176 -1 143 144 177 -1 143 176 177 -1 144 145 178 -1 144 177 178 -1 145 146 179 -1 145 178 179 -1 146 147 180 -1 146 179 180 -1 147 148 181 -1 147 180 181 -1 148 149 182 -1 148 181 182 -1 149 150 183 -1 149 182 183 -1 150 151 184 -1 150 183 184 -1 151 152 185 -1 151 184 185 -1 152 153 186 -1 152 185 186 -1 153 154 187 -1 153 186 187 -1 154 155 188 -1 154 187 188 -1 155 156 189 -1 155 188 189 -1 156 157 190 -1 156 189 190 -1 157 158 191 -1 157 190 191 -1 158 159 192 -1 158 191 192 -1 159 160 193 -1 159 192 193 -1 160 161 194 -1 160 193 194 -1 161 162 195 -1 161 194 195 -1 162 163 196 -1 162 195 196 -1 163 164 197 -1 163 196 197 -1 165 166 199 -1 165 198 199 -1 166 167 200 -1 166 199 200 -1 167 168 201 -1 167 200 201 -1 168 169 202 -1 168 201 202 -1 169 170 203 -1 169 202 203 -1 170 171 204 -1 170 203 204 -1 171 172 205 -1 171 204 205 -1 172 173 206 -1 172 205 206 -1 173 174 207 -1 173 206 207 -1 174 175 208 -1 174 207 208 -1 175 176 209 -1 175 208 209 -1 176 177 210 -1 176 209 210 -1 177 178 211 -1 177 210 211 -1 178 179 212 -1 178 211 212 -1 179 180 213 -1 179 212 213 -1 180 181 214 -1 180 213 214 -1 181 182 215 -1 181 214 215 -1 182 183 216 -1 182 215 216 -1 183 184 217 -1 183 216 217 -1 184 185 218 -1 184 217 218 -1 185 186 219 -1 185 218 219 -1 186 187 220 -1 186 219 220 -1 187 188 221 -1 187 220 221 -1 188 189 222 -1 188 221 222 -1 189 190 223 -1 189 222 223 -1 190 191 224 -1 190 223 224 -1 191 192 225 -1 191 224 225 -1 192 193 226 -1 192 225 226 -1 193 194 227 -1 193 226 227 -1 194 195 228 -1 194 227 228 -1 195 196 229 -1 195 228 229 -1 196 197 230 -1 196 229 230 -1 198 199 232 -1 198 231 232 -1 199 200 233 -1 199 232 233 -1 200 201 234 -1 200 233 234 -1 201 202 235 -1 201 234 235 -1 202 203 236 -1 202 235 236 -1 203 204 237 -1 203 236 237 -1 204 205 238 -1 204 237 238 -1 205 206 239 -1 205 238 239 -1 206 207 240 -1 206 239 240 -1 207 208 241 -1 207 240 241 -1 208 209 242 -1 208 241 242 -1 209 210 243 -1 209 242 243 -1 210 211 244 -1 210 243 244 -1 211 212 245 -1 211 244 245 -1 212 213 246 -1 212 245 246 -1 213 214 247 -1 213 246 247 -1 214 215 248 -1 214 247 248 -1 215 216 249 -1 215 248 249 -1 216 217 250 -1 216 249 250 -1 217 218 251 -1 217 250 251 -1 218 219 252 -1 218 251 252 -1 219 220 253 -1 219 252 253 -1 220 221 254 -1 220 253 254 -1 221 222 255 -1 221 254 255 -1 222 223 256 -1 222 255 256 -1 223 224 257 -1 223 256 257 -1 224 225 258 -1 224 257 258 -1 225 226 259 -1 225 258 259 -1 226 227 260 -1 226 259 260 -1 227 228 261 -1 227 260 261 -1 228 229 262 -1 228 261 262 -1 229 230 263 -1 229 262 263 -1 231 232 265 -1 231 264 265 -1 232 233 266 -1 232 265 266 -1 233 234 267 -1 233 266 267 -1 234 235 268 -1 234 267 268 -1 235 236 269 -1 235 268 269 -1 236 237 270 -1 236 269 270 -1 237 238 271 -1 237 270 271 -1 238 239 272 -1 238 271 272 -1 239 240 273 -1 239 272 273 -1 240 241 274 -1 240 273 274 -1 241 242 275 -1 241 274 275 -1 242 243 276 -1 242 275 276 -1 243 244 277 -1 243 276 277 -1 244 245 278 -1 244 277 278 -1 245 246 279 -1 245 278 279 -1 246 247 280 -1 246 279 280 -1 247 248 281 -1 247 280 281 -1 248 249 282 -1 248 281 282 -1 249 250 283 -1 249 282 283 -1 250 251 284 -1 250 283 284 -1 251 252 285 -1 251 284 285 -1 252 253 286 -1 252 285 286 -1 253 254 287 -1 253 286 287 -1 254 255 288 -1 254 287 288 -1 255 256 289 -1 255 288 289 -1 256 257 290 -1 256 289 290 -1 257 258 291 -1 257 290 291 -1 258 259 292 -1 258 291 292 -1 259 260 293 -1 259 292 293 -1 260 261 294 -1 260 293 294 -1 261 262 295 -1 261 294 295 -1 262 263 296 -1 262 295 296 -1 264 265 298 -1 264 297 298 -1 265 266 299 -1 265 298 299 -1 266 267 300 -1 266 299 300 -1 267 268 301 -1 267 300 301 -1 268 269 302 -1 268 301 302 -1 269 270 303 -1 269 302 303 -1 270 271 304 -1 270 303 304 -1 271 272 305 -1 271 304 305 -1 272 273 306 -1 272 305 306 -1 273 274 307 -1 273 306 307 -1 274 275 308 -1 274 307 308 -1 275 276 309 -1 275 308 309 -1 276 277 310 -1 276 309 310 -1 277 278 311 -1 277 310 311 -1 278 279 312 -1 278 311 312 -1 279 280 313 -1 279 312 313 -1 280 281 314 -1 280 313 314 -1 281 282 315 -1 281 314 315 -1 282 283 316 -1 282 315 316 -1 283 284 317 -1 283 316 317 -1 284 285 318 -1 284 317 318 -1 285 286 319 -1 285 318 319 -1 286 287 320 -1 286 319 320 -1 287 288 321 -1 287 320 321 -1 288 289 322 -1 288 321 322 -1 289 290 323 -1 289 322 323 -1 290 291 324 -1 290 323 324 -1 291 292 325 -1 291 324 325 -1 292 293 326 -1 292 325 326 -1 293 294 327 -1 293 326 327 -1 294 295 328 -1 294 327 328 -1 295 296 329 -1 295 328 329 -1 297 298 331 -1 297 330 331 -1 298 299 332 -1 298 331 332 -1 299 300 333 -1 299 332 333 -1 300 301 334 -1 300 333 334 -1 301 302 335 -1 301 334 335 -1 302 303 336 -1 302 335 336 -1 303 304 337 -1 303 336 337 -1 304 305 338 -1 304 337 338 -1 305 306 339 -1 305 338 339 -1 306 307 340 -1 306 339 340 -1 307 308 341 -1 307 340 341 -1 308 309 342 -1 308 341 342 -1 309 310 343 -1 309 342 343 -1 310 311 344 -1 310 343 344 -1 311 312 345 -1 311 344 345 -1 312 313 346 -1 312 345 346 -1 313 314 347 -1 313 346 347 -1 314 315 348 -1 314 347 348 -1 315 316 349 -1 315 348 349 -1 316 317 350 -1 316 349 350 -1 317 318 351 -1 317 350 351 -1 318 319 352 -1 318 351 352 -1 319 320 353 -1 319 352 353 -1 320 321 354 -1 320 353 354 -1 321 322 355 -1 321 354 355 -1 322 323 356 -1 322 355 356 -1 323 324 357 -1 323 356 357 -1 324 325 358 -1 324 357 358 -1 325 326 359 -1 325 358 359 -1 326 327 360 -1 326 359 360 -1 327 328 361 -1 327 360 361 -1 328 329 362 -1 328 361 362 -1 330 331 364 -1 330 363 364 -1 331 332 365 -1 331 364 365 -1 332 333 366 -1 332 365 366 -1 333 334 367 -1 333 366 367 -1 334 335 368 -1 334 367 368 -1 335 336 369 -1 335 368 369 -1 336 337 370 -1 336 369 370 -1 337 338 371 -1 337 370 371 -1 338 339 372 -1 338 371 372 -1 339 340 373 -1 339 372 373 -1 340 341 374 -1 340 373 374 -1 341 342 375 -1 341 374 375 -1 342 343 376 -1 342 375 376 -1 343 344 377 -1 343 376 377 -1 344 345 378 -1 344 377 378 -1 345 346 379 -1 345 378 379 -1 346 347 380 -1 346 379 380 -1 347 348 381 -1 347 380 381 -1 348 349 382 -1 348 381 382 -1 349 350 383 -1 349 382 383 -1 350 351 384 -1 350 383 384 -1 351 352 385 -1 351 384 385 -1 352 353 386 -1 352 385 386 -1 353 354 387 -1 353 386 387 -1 354 355 388 -1 354 387 388 -1 355 356 389 -1 355 388 389 -1 356 357 390 -1 356 389 390 -1 357 358 391 -1 357 390 391 -1 358 359 392 -1 358 391 392 -1 359 360 393 -1 359 392 393 -1 360 361 394 -1 360 393 394 -1 361 362 395 -1 361 394 395 -1 363 364 397 -1 363 396 397 -1 364 365 398 -1 364 397 398 -1 365 366 399 -1 365 398 399 -1 366 367 400 -1 366 399 400 -1 367 368 401 -1 367 400 401 -1 368 369 402 -1 368 401 402 -1 369 370 403 -1 369 402 403 -1 370 371 404 -1 370 403 404 -1 371 372 405 -1 371 404 405 -1 372 373 406 -1 372 405 406 -1 373 374 407 -1 373 406 407 -1 374 375 408 -1 374 407 408 -1 375 376 409 -1 375 408 409 -1 376 377 410 -1 376 409 410 -1 377 378 411 -1 377 410 411 -1 378 379 412 -1 378 411 412 -1 379 380 413 -1 379 412 413 -1 380 381 414 -1 380 413 414 -1 381 382 415 -1 381 414 415 -1 382 383 416 -1 382 415 416 -1 383 384 417 -1 383 416 417 -1 384 385 418 -1 384 417 418 -1 385 386 419 -1 385 418 419 -1 386 387 420 -1 386 419 420 -1 387 388 421 -1 387 420 421 -1 388 389 422 -1 388 421 422 -1 389 390 423 -1 389 422 423 -1 390 391 424 -1 390 423 424 -1 391 392 425 -1 391 424 425 -1 392 393 426 -1 392 425 426 -1 393 394 427 -1 393 426 427 -1 394 395 428 -1 394 427 428 -1 396 397 430 -1 396 429 430 -1 397 398 431 -1 397 430 431 -1 398 399 432 -1 398 431 432 -1 399 400 433 -1 399 432 433 -1 400 401 434 -1 400 433 434 -1 401 402 435 -1 401 434 435 -1 402 403 436 -1 402 435 436 -1 403 404 437 -1 403 436 437 -1 404 405 438 -1 404 437 438 -1 405 406 439 -1 405 438 439 -1 406 407 440 -1 406 439 440 -1 407 408 441 -1 407 440 441 -1 408 409 442 -1 408 441 442 -1 409 410 443 -1 409 442 443 -1 410 411 444 -1 410 443 444 -1 411 412 445 -1 411 444 445 -1 412 413 446 -1 412 445 446 -1 413 414 447 -1 413 446 447 -1 414 415 448 -1 414 447 448 -1 415 416 449 -1 415 448 449 -1 416 417 450 -1 416 449 450 -1 417 418 451 -1 417 450 451 -1 418 419 452 -1 418 451 452 -1 419 420 453 -1 419 452 453 -1 420 421 454 -1 420 453 454 -1 421 422 455 -1 421 454 455 -1 422 423 456 -1 422 455 456 -1 423 424 457 -1 423 456 457 -1 424 425 458 -1 424 457 458 -1 425 426 459 -1 425 458 459 -1 426 427 460 -1 426 459 460 -1 427 428 461 -1 427 460 461 -1 429 430 463 -1 429 462 463 -1 430 431 464 -1 430 463 464 -1 431 432 465 -1 431 464 465 -1 432 433 466 -1 432 465 466 -1 433 434 467 -1 433 466 467 -1 434 435 468 -1 434 467 468 -1 435 436 469 -1 435 468 469 -1 436 437 470 -1 436 469 470 -1 437 438 471 -1 437 470 471 -1 438 439 472 -1 438 471 472 -1 439 440 473 -1 439 472 473 -1 440 441 474 -1 440 473 474 -1 441 442 475 -1 441 474 475 -1 442 443 476 -1 442 475 476 -1 443 444 477 -1 443 476 477 -1 444 445 478 -1 444 477 478 -1 445 446 479 -1 445 478 479 -1 446 447 480 -1 446 479 480 -1 447 448 481 -1 447 480 481 -1 448 449 482 -1 448 481 482 -1 449 450 483 -1 449 482 483 -1 450 451 484 -1 450 483 484 -1 451 452 485 -1 451 484 485 -1 452 453 486 -1 452 485 486 -1 453 454 487 -1 453 486 487 -1 454 455 488 -1 454 487 488 -1 455 456 489 -1 455 488 489 -1 456 457 490 -1 456 489 490 -1 457 458 491 -1 457 490 491 -1 458 459 492 -1 458 491 492 -1 459 460 493 -1 459 492 493 -1 460 461 494 -1 460 493 494 -1 462 463 496 -1 462 495 496 -1 463 464 497 -1 463 496 497 -1 464 465 498 -1 464 497 498 -1 465 466 499 -1 465 498 499 -1 466 467 500 -1 466 499 500 -1 467 468 501 -1 467 500 501 -1 468 469 502 -1 468 501 502 -1 469 470 503 -1 469 502 503 -1 470 471 504 -1 470 503 504 -1 471 472 505 -1 471 504 505 -1 472 473 506 -1 472 505 506 -1 473 474 507 -1 473 506 507 -1 474 475 508 -1 474 507 508 -1 475 476 509 -1 475 508 509 -1 476 477 510 -1 476 509 510 -1 477 478 511 -1 477 510 511 -1 478 479 512 -1 478 511 512 -1 479 480 513 -1 479 512 513 -1 480 481 514 -1 480 513 514 -1 481 482 515 -1 481 514 515 -1 482 483 516 -1 482 515 516 -1 483 484 517 -1 483 516 517 -1 484 485 518 -1 484 517 518 -1 485 486 519 -1 485 518 519 -1 486 487 520 -1 486 519 520 -1 487 488 521 -1 487 520 521 -1 488 489 522 -1 488 521 522 -1 489 490 523 -1 489 522 523 -1 490 491 524 -1 490 523 524 -1 491 492 525 -1 491 524 525 -1 492 493 526 -1 492 525 526 -1 493 494 527 -1 493 526 527 -1 495 496 529 -1 495 528 529 -1 496 497 530 -1 496 529 530 -1 497 498 531 -1 497 530 531 -1 498 499 532 -1 498 531 532 -1 499 500 533 -1 499 532 533 -1 500 501 534 -1 500 533 534 -1 501 502 535 -1 501 534 535 -1 502 503 536 -1 502 535 536 -1 503 504 537 -1 503 536 537 -1 504 505 538 -1 504 537 538 -1 505 506 539 -1 505 538 539 -1 506 507 540 -1 506 539 540 -1 507 508 541 -1 507 540 541 -1 508 509 542 -1 508 541 542 -1 509 510 543 -1 509 542 543 -1 510 511 544 -1 510 543 544 -1 511 512 545 -1 511 544 545 -1 512 513 546 -1 512 545 546 -1 513 514 547 -1 513 546 547 -1 514 515 548 -1 514 547 548 -1 515 516 549 -1 515 548 549 -1 516 517 550 -1 516 549 550 -1 517 518 551 -1 517 550 551 -1 518 519 552 -1 518 551 552 -1 519 520 553 -1 519 552 553 -1 520 521 554 -1 520 553 554 -1 521 522 555 -1 521 554 555 -1 522 523 556 -1 522 555 556 -1 523 524 557 -1 523 556 557 -1 524 525 558 -1 524 557 558 -1 525 526 559 -1 525 558 559 -1 526 527 560 -1 526 559 560 -1 528 529 562 -1 528 561 562 -1 529 530 563 -1 529 562 563 -1 530 531 564 -1 530 563 564 -1 531 532 565 -1 531 564 565 -1 532 533 566 -1 532 565 566 -1 533 534 567 -1 533 566 567 -1 534 535 568 -1 534 567 568 -1 535 536 569 -1 535 568 569 -1 536 537 570 -1 536 569 570 -1 537 538 571 -1 537 570 571 -1 538 539 572 -1 538 571 572 -1 539 540 573 -1 539 572 573 -1 540 541 574 -1 540 573 574 -1 541 542 575 -1 541 574 575 -1 542 543 576 -1 542 575 576 -1 543 544 577 -1 543 576 577 -1 544 545 578 -1 544 577 578 -1 545 546 579 -1 545 578 579 -1 546 547 580 -1 546 579 580 -1 547 548 581 -1 547 580 581 -1 548 549 582 -1 548 581 582 -1 549 550 583 -1 549 582 583 -1 550 551 584 -1 550 583 584 -1 551 552 585 -1 551 584 585 -1 552 553 586 -1 552 585 586 -1 553 554 587 -1 553 586 587 -1 554 555 588 -1 554 587 588 -1 555 556 589 -1 555 588 589 -1 556 557 590 -1 556 589 590 -1 557 558 591 -1 557 590 591 -1 558 559 592 -1 558 591 592 -1 559 560 593 -1 559 592 593 -1 561 562 595 -1 561 594 595 -1 562 563 596 -1 562 595 596 -1 563 564 597 -1 563 596 597 -1 564 565 598 -1 564 597 598 -1 565 566 599 -1 565 598 599 -1 566 567 600 -1 566 599 600 -1 567 568 601 -1 567 600 601 -1 568 569 602 -1 568 601 602 -1 569 570 603 -1 569 602 603 -1 570 571 604 -1 570 603 604 -1 571 572 605 -1 571 604 605 -1 572 573 606 -1 572 605 606 -1 573 574 607 -1 573 606 607 -1 574 575 608 -1 574 607 608 -1 575 576 609 -1 575 608 609 -1 576 577 610 -1 576 609 610 -1 577 578 611 -1 577 610 611 -1 578 579 612 -1 578 611 612 -1 579 580 613 -1 579 612 613 -1 580 581 614 -1 580 613 614 -1 581 582 615 -1 581 614 615 -1 582 583 616 -1 582 615 616 -1 583 584 617 -1 583 616 617 -1 584 585 618 -1 584 617 618 -1 585 586 619 -1 585 618 619 -1 586 587 620 -1 586 619 620 -1 587 588 621 -1 587 620 621 -1 588 589 622 -1 588 621 622 -1 589 590 623 -1 589 622 623 -1 590 591 624 -1 590 623 624 -1 591 592 625 -1 591 624 625 -1 592 593 626 -1 592 625 626 -1 594 595 628 -1 594 627 628 -1 595 596 629 -1 595 628 629 -1 596 597 630 -1 596 629 630 -1 597 598 631 -1 597 630 631 -1 598 599 632 -1 598 631 632 -1 599 600 633 -1 599 632 633 -1 600 601 634 -1 600 633 634 -1 601 602 635 -1 601 634 635 -1 602 603 636 -1 602 635 636 -1 603 604 637 -1 603 636 637 -1 604 605 638 -1 604 637 638 -1 605 606 639 -1 605 638 639 -1 606 607 640 -1 606 639 640 -1 607 608 641 -1 607 640 641 -1 608 609 642 -1 608 641 642 -1 609 610 643 -1 609 642 643 -1 610 611 644 -1 610 643 644 -1 611 612 645 -1 611 644 645 -1 612 613 646 -1 612 645 646 -1 613 614 647 -1 613 646 647 -1 614 615 648 -1 614 647 648 -1 615 616 649 -1 615 648 649 -1 616 617 650 -1 616 649 650 -1 617 618 651 -1 617 650 651 -1 618 619 652 -1 618 651 652 -1 619 620 653 -1 619 652 653 -1 620 621 654 -1 620 653 654 -1 621 622 655 -1 621 654 655 -1 622 623 656 -1 622 655 656 -1 623 624 657 -1 623 656 657 -1 624 625 658 -1 624 657 658 -1 625 626 659 -1 625 658 659 -1 627 628 661 -1 627 660 661 -1 628 629 662 -1 628 661 662 -1 629 630 663 -1 629 662 663 -1 630 631 664 -1 630 663 664 -1 631 632 665 -1 631 664 665 -1 632 633 666 -1 632 665 666 -1 633 634 667 -1 633 666 667 -1 634 635 668 -1 634 667 668 -1 635 636 669 -1 635 668 669 -1 636 637 670 -1 636 669 670 -1 637 638 671 -1 637 670 671 -1 638 639 672 -1 638 671 672 -1 639 640 673 -1 639 672 673 -1 640 641 674 -1 640 673 674 -1 641 642 675 -1 641 674 675 -1 642 643 676 -1 642 675 676 -1 643 644 677 -1 643 676 677 -1 644 645 678 -1 644 677 678 -1 645 646 679 -1 645 678 679 -1 646 647 680 -1 646 679 680 -1 647 648 681 -1 647 680 681 -1 648 649 682 -1 648 681 682 -1 649 650 683 -1 649 682 683 -1 650 651 684 -1 650 683 684 -1 651 652 685 -1 651 684 685 -1 652 653 686 -1 652 685 686 -1 653 654 687 -1 653 686 687 -1 654 655 688 -1 654 687 688 -1 655 656 689 -1 655 688 689 -1 656 657 690 -1 656 689 690 -1 657 658 691 -1 657 690 691 -1 658 659 692 -1 658 691 692 -1 660 661 694 -1 660 693 694 -1 661 662 695 -1 661 694 695 -1 662 663 696 -1 662 695 696 -1 663 664 697 -1 663 696 697 -1 664 665 698 -1 664 697 698 -1 665 666 699 -1 665 698 699 -1 666 667 700 -1 666 699 700 -1 667 668 701 -1 667 700 701 -1 668 669 702 -1 668 701 702 -1 669 670 703 -1 669 702 703 -1 670 671 704 -1 670 703 704 -1 671 672 705 -1 671 704 705 -1 672 673 706 -1 672 705 706 -1 673 674 707 -1 673 706 707 -1 674 675 708 -1 674 707 708 -1 675 676 709 -1 675 708 709 -1 676 677 710 -1 676 709 710 -1 677 678 711 -1 677 710 711 -1 678 679 712 -1 678 711 712 -1 679 680 713 -1 679 712 713 -1 680 681 714 -1 680 713 714 -1 681 682 715 -1 681 714 715 -1 682 683 716 -1 682 715 716 -1 683 684 717 -1 683 716 717 -1 684 685 718 -1 684 717 718 -1 685 686 719 -1 685 718 719 -1 686 687 720 -1 686 719 720 -1 687 688 721 -1 687 720 721 -1 688 689 722 -1 688 721 722 -1 689 690 723 -1 689 722 723 -1 690 691 724 -1 690 723 724 -1 691 692 725 -1 691 724 725 -1 693 694 727 -1 693 726 727 -1 694 695 728 -1 694 727 728 -1 695 696 729 -1 695 728 729 -1 696 697 730 -1 696 729 730 -1 697 698 731 -1 697 730 731 -1 698 699 732 -1 698 731 732 -1 699 700 733 -1 699 732 733 -1 700 701 734 -1 700 733 734 -1 701 702 735 -1 701 734 735 -1 702 703 736 -1 702 735 736 -1 703 704 737 -1 703 736 737 -1 704 705 738 -1 704 737 738 -1 705 706 739 -1 705 738 739 -1 706 707 740 -1 706 739 740 -1 707 708 741 -1 707 740 741 -1 708 709 742 -1 708 741 742 -1 709 710 743 -1 709 742 743 -1 710 711 744 -1 710 743 744 -1 711 712 745 -1 711 744 745 -1 712 713 746 -1 712 745 746 -1 713 714 747 -1 713 746 747 -1 714 715 748 -1 714 747 748 -1 715 716 749 -1 715 748 749 -1 716 717 750 -1 716 749 750 -1 717 718 751 -1 717 750 751 -1 718 719 752 -1 718 751 752 -1 719 720 753 -1 719 752 753 -1 720 721 754 -1 720 753 754 -1 721 722 755 -1 721 754 755 -1 722 723 756 -1 722 755 756 -1 723 724 757 -1 723 756 757 -1 724 725 758 -1 724 757 758 -1 726 727 760 -1 726 759 760 -1 727 728 761 -1 727 760 761 -1 728 729 762 -1 728 761 762 -1 729 730 763 -1 729 762 763 -1 730 731 764 -1 730 763 764 -1 731 732 765 -1 731 764 765 -1 732 733 766 -1 732 765 766 -1 733 734 767 -1 733 766 767 -1 734 735 768 -1 734 767 768 -1 735 736 769 -1 735 768 769 -1 736 737 770 -1 736 769 770 -1 737 738 771 -1 737 770 771 -1 738 739 772 -1 738 771 772 -1 739 740 773 -1 739 772 773 -1 740 741 774 -1 740 773 774 -1 741 742 775 -1 741 774 775 -1 742 743 776 -1 742 775 776 -1 743 744 777 -1 743 776 777 -1 744 745 778 -1 744 777 778 -1 745 746 779 -1 745 778 779 -1 746 747 780 -1 746 779 780 -1 747 748 781 -1 747 780 781 -1 748 749 782 -1 748 781 782 -1 749 750 783 -1 749 782 783 -1 750 751 784 -1 750 783 784 -1 751 752 785 -1 751 784 785 -1 752 753 786 -1 752 785 786 -1 753 754 787 -1 753 786 787 -1 754 755 788 -1 754 787 788 -1 755 756 789 -1 755 788 789 -1 756 757 790 -1 756 789 790 -1 757 758 791 -1 757 790 791 -1 759 760 793 -1 759 792 793 -1 760 761 794 -1 760 793 794 -1 761 762 795 -1 761 794 795 -1 762 763 796 -1 762 795 796 -1 763 764 797 -1 763 796 797 -1 764 765 798 -1 764 797 798 -1 765 766 799 -1 765 798 799 -1 766 767 800 -1 766 799 800 -1 767 768 801 -1 767 800 801 -1 768 769 802 -1 768 801 802 -1 769 770 803 -1 769 802 803 -1 770 771 804 -1 770 803 804 -1 771 772 805 -1 771 804 805 -1 772 773 806 -1 772 805 806 -1 773 774 807 -1 773 806 807 -1 774 775 808 -1 774 807 808 -1 775 776 809 -1 775 808 809 -1 776 777 810 -1 776 809 810 -1 777 778 811 -1 777 810 811 -1 778 779 812 -1 778 811 812 -1 779 780 813 -1 779 812 813 -1 780 781 814 -1 780 813 814 -1 781 782 815 -1 781 814 815 -1 782 783 816 -1 782 815 816 -1 783 784 817 -1 783 816 817 -1 784 785 818 -1 784 817 818 -1 785 786 819 -1 785 818 819 -1 786 787 820 -1 786 819 820 -1 787 788 821 -1 787 820 821 -1 788 789 822 -1 788 821 822 -1 789 790 823 -1 789 822 823 -1 790 791 824 -1 790 823 824 -1 792 793 826 -1 792 825 826 -1 793 794 827 -1 793 826 827 -1 794 795 828 -1 794 827 828 -1 795 796 829 -1 795 828 829 -1 796 797 830 -1 796 829 830 -1 797 798 831 -1 797 830 831 -1 798 799 832 -1 798 831 832 -1 799 800 833 -1 799 832 833 -1 800 801 834 -1 800 833 834 -1 801 802 835 -1 801 834 835 -1 802 803 836 -1 802 835 836 -1 803 804 837 -1 803 836 837 -1 804 805 838 -1 804 837 838 -1 805 806 839 -1 805 838 839 -1 806 807 840 -1 806 839 840 -1 807 808 841 -1 807 840 841 -1 808 809 842 -1 808 841 842 -1 809 810 843 -1 809 842 843 -1 810 811 844 -1 810 843 844 -1 811 812 845 -1 811 844 845 -1 812 813 846 -1 812 845 846 -1 813 814 847 -1 813 846 847 -1 814 815 848 -1 814 847 848 -1 815 816 849 -1 815 848 849 -1 816 817 850 -1 816 849 850 -1 817 818 851 -1 817 850 851 -1 818 819 852 -1 818 851 852 -1 819 820 853 -1 819 852 853 -1 820 821 854 -1 820 853 854 -1 821 822 855 -1 821 854 855 -1 822 823 856 -1 822 855 856 -1 823 824 857 -1 823 856 857 -1 825 826 859 -1 825 858 859 -1 826 827 860 -1 826 859 860 -1 827 828 861 -1 827 860 861 -1 828 829 862 -1 828 861 862 -1 829 830 863 -1 829 862 863 -1 830 831 864 -1 830 863 864 -1 831 832 865 -1 831 864 865 -1 832 833 866 -1 832 865 866 -1 833 834 867 -1 833 866 867 -1 834 835 868 -1 834 867 868 -1 835 836 869 -1 835 868 869 -1 836 837 870 -1 836 869 870 -1 837 838 871 -1 837 870 871 -1 838 839 872 -1 838 871 872 -1 839 840 873 -1 839 872 873 -1 840 841 874 -1 840 873 874 -1 841 842 875 -1 841 874 875 -1 842 843 876 -1 842 875 876 -1 843 844 877 -1 843 876 877 -1 844 845 878 -1 844 877 878 -1 845 846 879 -1 845 878 879 -1 846 847 880 -1 846 879 880 -1 847 848 881 -1 847 880 881 -1 848 849 882 -1 848 881 882 -1 849 850 883 -1 849 882 883 -1 850 851 884 -1 850 883 884 -1 851 852 885 -1 851 884 885 -1 852 853 886 -1 852 885 886 -1 853 854 887 -1 853 886 887 -1 854 855 888 -1 854 887 888 -1 855 856 889 -1 855 888 889 -1 856 857 890 -1 856 889 890 -1 858 859 892 -1 858 891 892 -1 859 860 893 -1 859 892 893 -1 860 861 894 -1 860 893 894 -1 861 862 895 -1 861 894 895 -1 862 863 896 -1 862 895 896 -1 863 864 897 -1 863 896 897 -1 864 865 898 -1 864 897 898 -1 865 866 899 -1 865 898 899 -1 866 867 900 -1 866 899 900 -1 867 868 901 -1 867 900 901 -1 868 869 902 -1 868 901 902 -1 869 870 903 -1 869 902 903 -1 870 871 904 -1 870 903 904 -1 871 872 905 -1 871 904 905 -1 872 873 906 -1 872 905 906 -1 873 874 907 -1 873 906 907 -1 874 875 908 -1 874 907 908 -1 875 876 909 -1 875 908 909 -1 876 877 910 -1 876 909 910 -1 877 878 911 -1 877 910 911 -1 878 879 912 -1 878 911 912 -1 879 880 913 -1 879 912 913 -1 880 881 914 -1 880 913 914 -1 881 882 915 -1 881 914 915 -1 882 883 916 -1 882 915 916 -1 883 884 917 -1 883 916 917 -1 884 885 918 -1 884 917 918 -1 885 886 919 -1 885 918 919 -1 886 887 920 -1 886 919 920 -1 887 888 921 -1 887 920 921 -1 888 889 922 -1 888 921 922 -1 889 890 923 -1 889 922 923 -1 891 892 925 -1 891 924 925 -1 892 893 926 -1 892 925 926 -1 893 894 927 -1 893 926 927 -1 894 895 928 -1 894 927 928 -1 895 896 929 -1 895 928 929 -1 896 897 930 -1 896 929 930 -1 897 898 931 -1 897 930 931 -1 898 899 932 -1 898 931 932 -1 899 900 933 -1 899 932 933 -1 900 901 934 -1 900 933 934 -1 901 902 935 -1 901 934 935 -1 902 903 936 -1 902 935 936 -1 903 904 937 -1 903 936 937 -1 904 905 938 -1 904 937 938 -1 905 906 939 -1 905 938 939 -1 906 907 940 -1 906 939 940 -1 907 908 941 -1 907 940 941 -1 908 909 942 -1 908 941 942 -1 909 910 943 -1 909 942 943 -1 910 911 944 -1 910 943 944 -1 911 912 945 -1 911 944 945 -1 912 913 946 -1 912 945 946 -1 913 914 947 -1 913 946 947 -1 914 915 948 -1 914 947 948 -1 915 916 949 -1 915 948 949 -1 916 917 950 -1 916 949 950 -1 917 918 951 -1 917 950 951 -1 918 919 952 -1 918 951 952 -1 919 920 953 -1 919 952 953 -1 920 921 954 -1 920 953 954 -1 921 922 955 -1 921 954 955 -1 922 923 956 -1 922 955 956 -1 924 925 958 -1 924 957 958 -1 925 926 959 -1 925 958 959 -1 926 927 960 -1 926 959 960 -1 927 928 961 -1 927 960 961 -1 928 929 962 -1 928 961 962 -1 929 930 963 -1 929 962 963 -1 930 931 964 -1 930 963 964 -1 931 932 965 -1 931 964 965 -1 932 933 966 -1 932 965 966 -1 933 934 967 -1 933 966 967 -1 934 935 968 -1 934 967 968 -1 935 936 969 -1 935 968 969 -1 936 937 970 -1 936 969 970 -1 937 938 971 -1 937 970 971 -1 938 939 972 -1 938 971 972 -1 939 940 973 -1 939 972 973 -1 940 941 974 -1 940 973 974 -1 941 942 975 -1 941 974 975 -1 942 943 976 -1 942 975 976 -1 943 944 977 -1 943 976 977 -1 944 945 978 -1 944 977 978 -1 945 946 979 -1 945 978 979 -1 946 947 980 -1 946 979 980 -1 947 948 981 -1 947 980 981 -1 948 949 982 -1 948 981 982 -1 949 950 983 -1 949 982 983 -1 950 951 984 -1 950 983 984 -1 951 952 985 -1 951 984 985 -1 952 953 986 -1 952 985 986 -1 953 954 987 -1 953 986 987 -1 954 955 988 -1 954 987 988 -1 955 956 989 -1 955 988 989 -1 957 958 991 -1 957 990 991 -1 958 959 992 -1 958 991 992 -1 959 960 993 -1 959 992 993 -1 960 961 994 -1 960 993 994 -1 961 962 995 -1 961 994 995 -1 962 963 996 -1 962 995 996 -1 963 964 997 -1 963 996 997 -1 964 965 998 -1 964 997 998 -1 965 966 999 -1 965 998 999 -1 966 967 1000 -1 966 999 1000 -1 967 968 1001 -1 967 1000 1001 -1 968 969 1002 -1 968 1001 1002 -1 969 970 1003 -1 969 1002 1003 -1 970 971 1004 -1 970 1003 1004 -1 971 972 1005 -1 971 1004 1005 -1 972 973 1006 -1 972 1005 1006 -1 973 974 1007 -1 973 1006 1007 -1 974 975 1008 -1 974 1007 1008 -1 975 976 1009 -1 975 1008 1009 -1 976 977 1010 -1 976 1009 1010 -1 977 978 1011 -1 977 1010 1011 -1 978 979 1012 -1 978 1011 1012 -1 979 980 1013 -1 979 1012 1013 -1 980 981 1014 -1 980 1013 1014 -1 981 982 1015 -1 981 1014 1015 -1 982 983 1016 -1 982 1015 1016 -1 983 984 1017 -1 983 1016 1017 -1 984 985 1018 -1 984 1017 1018 -1 985 986 1019 -1 985 1018 1019 -1 986 987 1020 -1 986 1019 1020 -1 987 988 1021 -1 987 1020 1021 -1 988 989 1022 -1 988 1021 1022 -1 990 991 1024 -1 990 1023 1024 -1 991 992 1025 -1 991 1024 1025 -1 992 993 1026 -1 992 1025 1026 -1 993 994 1027 -1 993 1026 1027 -1 994 995 1028 -1 994 1027 1028 -1 995 996 1029 -1 995 1028 1029 -1 996 997 1030 -1 996 1029 1030 -1 997 998 1031 -1 997 1030 1031 -1 998 999 1032 -1 998 1031 1032 -1 999 1000 1033 -1 999 1032 1033 -1 1000 1001 1034 -1 1000 1033 1034 -1 1001 1002 1035 -1 1001 1034 1035 -1 1002 1003 1036 -1 1002 1035 1036 -1 1003 1004 1037 -1 1003 1036 1037 -1 1004 1005 1038 -1 1004 1037 1038 -1 1005 1006 1039 -1 1005 1038 1039 -1 1006 1007 1040 -1 1006 1039 1040 -1 1007 1008 1041 -1 1007 1040 1041 -1 1008 1009 1042 -1 1008 1041 1042 -1 1009 1010 1043 -1 1009 1042 1043 -1 1010 1011 1044 -1 1010 1043 1044 -1 1011 1012 1045 -1 1011 1044 1045 -1 1012 1013 1046 -1 1012 1045 1046 -1 1013 1014 1047 -1 1013 1046 1047 -1 1014 1015 1048 -1 1014 1047 1048 -1 1015 1016 1049 -1 1015 1048 1049 -1 1016 1017 1050 -1 1016 1049 1050 -1 1017 1018 1051 -1 1017 1050 1051 -1 1018 1019 1052 -1 1018 1051 1052 -1 1019 1020 1053 -1 1019 1052 1053 -1 1020 1021 1054 -1 1020 1053 1054 -1 1021 1022 1055 -1 1021 1054 1055 -1 1023 1024 1057 -1 1023 1056 1057 -1 1024 1025 1058 -1 1024 1057 1058 -1 1025 1026 1059 -1 1025 1058 1059 -1 1026 1027 1060 -1 1026 1059 1060 -1 1027 1028 1061 -1 1027 1060 1061 -1 1028 1029 1062 -1 1028 1061 1062 -1 1029 1030 1063 -1 1029 1062 1063 -1 1030 1031 1064 -1 1030 1063 1064 -1 1031 1032 1065 -1 1031 1064 1065 -1 1032 1033 1066 -1 1032 1065 1066 -1 1033 1034 1067 -1 1033 1066 1067 -1 1034 1035 1068 -1 1034 1067 1068 -1 1035 1036 1069 -1 1035 1068 1069 -1 1036 1037 1070 -1 1036 1069 1070 -1 1037 1038 1071 -1 1037 1070 1071 -1 1038 1039 1072 -1 1038 1071 1072 -1 1039 1040 1073 -1 1039 1072 1073 -1 1040 1041 1074 -1 1040 1073 1074 -1 1041 1042 1075 -1 1041 1074 1075 -1 1042 1043 1076 -1 1042 1075 1076 -1 1043 1044 1077 -1 1043 1076 1077 -1 1044 1045 1078 -1 1044 1077 1078 -1 1045 1046 1079 -1 1045 1078 1079 -1 1046 1047 1080 -1 1046 1079 1080 -1 1047 1048 1081 -1 1047 1080 1081 -1 1048 1049 1082 -1 1048 1081 1082 -1 1049 1050 1083 -1 1049 1082 1083 -1 1050 1051 1084 -1 1050 1083 1084 -1 1051 1052 1085 -1 1051 1084 1085 -1 1052 1053 1086 -1 1052 1085 1086 -1 1053 1054 1087 -1 1053 1086 1087 -1 1054 1055 1088 -1 1054 1087 1088 -1 \">\n", " <coordinate point=\"0 0 0 0.03125 0 0 0.0625 0 0 0.09375 0 0 0.125 0 0 0.15625 0 0 0.1875 0 0 0.21875 0 0 0.25 0 0 0.28125 0 0 0.3125 0 0 0.34375 0 0 0.375 0 0 0.40625 0 0 0.4375 0 0 0.46875 0 0 0.5 0 0 0.53125 0 0 0.5625 0 0 0.59375 0 0 0.625 0 0 0.65625 0 0 0.6875 0 0 0.71875 0 0 0.75 0 0 0.78125 0 0 0.8125 0 0 0.84375 0 0 0.875 0 0 0.90625 0 0 0.9375 0 0 0.96875 0 0 1 0 0 0 0.03125 0 0.03125 0.03125 0 0.0625 0.03125 0 0.09375 0.03125 0 0.125 0.03125 0 0.15625 0.03125 0 0.1875 0.03125 0 0.21875 0.03125 0 0.25 0.03125 0 0.28125 0.03125 0 0.3125 0.03125 0 0.34375 0.03125 0 0.375 0.03125 0 0.40625 0.03125 0 0.4375 0.03125 0 0.46875 0.03125 0 0.5 0.03125 0 0.53125 0.03125 0 0.5625 0.03125 0 0.59375 0.03125 0 0.625 0.03125 0 0.65625 0.03125 0 0.6875 0.03125 0 0.71875 0.03125 0 0.75 0.03125 0 0.78125 0.03125 0 0.8125 0.03125 0 0.84375 0.03125 0 0.875 0.03125 0 0.90625 0.03125 0 0.9375 0.03125 0 0.96875 0.03125 0 1 0.03125 0 0 0.0625 0 0.03125 0.0625 0 0.0625 0.0625 0 0.09375 0.0625 0 0.125 0.0625 0 0.15625 0.0625 0 0.1875 0.0625 0 0.21875 0.0625 0 0.25 0.0625 0 0.28125 0.0625 0 0.3125 0.0625 0 0.34375 0.0625 0 0.375 0.0625 0 0.40625 0.0625 0 0.4375 0.0625 0 0.46875 0.0625 0 0.5 0.0625 0 0.53125 0.0625 0 0.5625 0.0625 0 0.59375 0.0625 0 0.625 0.0625 0 0.65625 0.0625 0 0.6875 0.0625 0 0.71875 0.0625 0 0.75 0.0625 0 0.78125 0.0625 0 0.8125 0.0625 0 0.84375 0.0625 0 0.875 0.0625 0 0.90625 0.0625 0 0.9375 0.0625 0 0.96875 0.0625 0 1 0.0625 0 0 0.09375 0 0.03125 0.09375 0 0.0625 0.09375 0 0.09375 0.09375 0 0.125 0.09375 0 0.15625 0.09375 0 0.1875 0.09375 0 0.21875 0.09375 0 0.25 0.09375 0 0.28125 0.09375 0 0.3125 0.09375 0 0.34375 0.09375 0 0.375 0.09375 0 0.40625 0.09375 0 0.4375 0.09375 0 0.46875 0.09375 0 0.5 0.09375 0 0.53125 0.09375 0 0.5625 0.09375 0 0.59375 0.09375 0 0.625 0.09375 0 0.65625 0.09375 0 0.6875 0.09375 0 0.71875 0.09375 0 0.75 0.09375 0 0.78125 0.09375 0 0.8125 0.09375 0 0.84375 0.09375 0 0.875 0.09375 0 0.90625 0.09375 0 0.9375 0.09375 0 0.96875 0.09375 0 1 0.09375 0 0 0.125 0 0.03125 0.125 0 0.0625 0.125 0 0.09375 0.125 0 0.125 0.125 0 0.15625 0.125 0 0.1875 0.125 0 0.21875 0.125 0 0.25 0.125 0 0.28125 0.125 0 0.3125 0.125 0 0.34375 0.125 0 0.375 0.125 0 0.40625 0.125 0 0.4375 0.125 0 0.46875 0.125 0 0.5 0.125 0 0.53125 0.125 0 0.5625 0.125 0 0.59375 0.125 0 0.625 0.125 0 0.65625 0.125 0 0.6875 0.125 0 0.71875 0.125 0 0.75 0.125 0 0.78125 0.125 0 0.8125 0.125 0 0.84375 0.125 0 0.875 0.125 0 0.90625 0.125 0 0.9375 0.125 0 0.96875 0.125 0 1 0.125 0 0 0.15625 0 0.03125 0.15625 0 0.0625 0.15625 0 0.09375 0.15625 0 0.125 0.15625 0 0.15625 0.15625 0 0.1875 0.15625 0 0.21875 0.15625 0 0.25 0.15625 0 0.28125 0.15625 0 0.3125 0.15625 0 0.34375 0.15625 0 0.375 0.15625 0 0.40625 0.15625 0 0.4375 0.15625 0 0.46875 0.15625 0 0.5 0.15625 0 0.53125 0.15625 0 0.5625 0.15625 0 0.59375 0.15625 0 0.625 0.15625 0 0.65625 0.15625 0 0.6875 0.15625 0 0.71875 0.15625 0 0.75 0.15625 0 0.78125 0.15625 0 0.8125 0.15625 0 0.84375 0.15625 0 0.875 0.15625 0 0.90625 0.15625 0 0.9375 0.15625 0 0.96875 0.15625 0 1 0.15625 0 0 0.1875 0 0.03125 0.1875 0 0.0625 0.1875 0 0.09375 0.1875 0 0.125 0.1875 0 0.15625 0.1875 0 0.1875 0.1875 0 0.21875 0.1875 0 0.25 0.1875 0 0.28125 0.1875 0 0.3125 0.1875 0 0.34375 0.1875 0 0.375 0.1875 0 0.40625 0.1875 0 0.4375 0.1875 0 0.46875 0.1875 0 0.5 0.1875 0 0.53125 0.1875 0 0.5625 0.1875 0 0.59375 0.1875 0 0.625 0.1875 0 0.65625 0.1875 0 0.6875 0.1875 0 0.71875 0.1875 0 0.75 0.1875 0 0.78125 0.1875 0 0.8125 0.1875 0 0.84375 0.1875 0 0.875 0.1875 0 0.90625 0.1875 0 0.9375 0.1875 0 0.96875 0.1875 0 1 0.1875 0 0 0.21875 0 0.03125 0.21875 0 0.0625 0.21875 0 0.09375 0.21875 0 0.125 0.21875 0 0.15625 0.21875 0 0.1875 0.21875 0 0.21875 0.21875 0 0.25 0.21875 0 0.28125 0.21875 0 0.3125 0.21875 0 0.34375 0.21875 0 0.375 0.21875 0 0.40625 0.21875 0 0.4375 0.21875 0 0.46875 0.21875 0 0.5 0.21875 0 0.53125 0.21875 0 0.5625 0.21875 0 0.59375 0.21875 0 0.625 0.21875 0 0.65625 0.21875 0 0.6875 0.21875 0 0.71875 0.21875 0 0.75 0.21875 0 0.78125 0.21875 0 0.8125 0.21875 0 0.84375 0.21875 0 0.875 0.21875 0 0.90625 0.21875 0 0.9375 0.21875 0 0.96875 0.21875 0 1 0.21875 0 0 0.25 0 0.03125 0.25 0 0.0625 0.25 0 0.09375 0.25 0 0.125 0.25 0 0.15625 0.25 0 0.1875 0.25 0 0.21875 0.25 0 0.25 0.25 0 0.28125 0.25 0 0.3125 0.25 0 0.34375 0.25 0 0.375 0.25 0 0.40625 0.25 0 0.4375 0.25 0 0.46875 0.25 0 0.5 0.25 0 0.53125 0.25 0 0.5625 0.25 0 0.59375 0.25 0 0.625 0.25 0 0.65625 0.25 0 0.6875 0.25 0 0.71875 0.25 0 0.75 0.25 0 0.78125 0.25 0 0.8125 0.25 0 0.84375 0.25 0 0.875 0.25 0 0.90625 0.25 0 0.9375 0.25 0 0.96875 0.25 0 1 0.25 0 0 0.28125 0 0.03125 0.28125 0 0.0625 0.28125 0 0.09375 0.28125 0 0.125 0.28125 0 0.15625 0.28125 0 0.1875 0.28125 0 0.21875 0.28125 0 0.25 0.28125 0 0.28125 0.28125 0 0.3125 0.28125 0 0.34375 0.28125 0 0.375 0.28125 0 0.40625 0.28125 0 0.4375 0.28125 0 0.46875 0.28125 0 0.5 0.28125 0 0.53125 0.28125 0 0.5625 0.28125 0 0.59375 0.28125 0 0.625 0.28125 0 0.65625 0.28125 0 0.6875 0.28125 0 0.71875 0.28125 0 0.75 0.28125 0 0.78125 0.28125 0 0.8125 0.28125 0 0.84375 0.28125 0 0.875 0.28125 0 0.90625 0.28125 0 0.9375 0.28125 0 0.96875 0.28125 0 1 0.28125 0 0 0.3125 0 0.03125 0.3125 0 0.0625 0.3125 0 0.09375 0.3125 0 0.125 0.3125 0 0.15625 0.3125 0 0.1875 0.3125 0 0.21875 0.3125 0 0.25 0.3125 0 0.28125 0.3125 0 0.3125 0.3125 0 0.34375 0.3125 0 0.375 0.3125 0 0.40625 0.3125 0 0.4375 0.3125 0 0.46875 0.3125 0 0.5 0.3125 0 0.53125 0.3125 0 0.5625 0.3125 0 0.59375 0.3125 0 0.625 0.3125 0 0.65625 0.3125 0 0.6875 0.3125 0 0.71875 0.3125 0 0.75 0.3125 0 0.78125 0.3125 0 0.8125 0.3125 0 0.84375 0.3125 0 0.875 0.3125 0 0.90625 0.3125 0 0.9375 0.3125 0 0.96875 0.3125 0 1 0.3125 0 0 0.34375 0 0.03125 0.34375 0 0.0625 0.34375 0 0.09375 0.34375 0 0.125 0.34375 0 0.15625 0.34375 0 0.1875 0.34375 0 0.21875 0.34375 0 0.25 0.34375 0 0.28125 0.34375 0 0.3125 0.34375 0 0.34375 0.34375 0 0.375 0.34375 0 0.40625 0.34375 0 0.4375 0.34375 0 0.46875 0.34375 0 0.5 0.34375 0 0.53125 0.34375 0 0.5625 0.34375 0 0.59375 0.34375 0 0.625 0.34375 0 0.65625 0.34375 0 0.6875 0.34375 0 0.71875 0.34375 0 0.75 0.34375 0 0.78125 0.34375 0 0.8125 0.34375 0 0.84375 0.34375 0 0.875 0.34375 0 0.90625 0.34375 0 0.9375 0.34375 0 0.96875 0.34375 0 1 0.34375 0 0 0.375 0 0.03125 0.375 0 0.0625 0.375 0 0.09375 0.375 0 0.125 0.375 0 0.15625 0.375 0 0.1875 0.375 0 0.21875 0.375 0 0.25 0.375 0 0.28125 0.375 0 0.3125 0.375 0 0.34375 0.375 0 0.375 0.375 0 0.40625 0.375 0 0.4375 0.375 0 0.46875 0.375 0 0.5 0.375 0 0.53125 0.375 0 0.5625 0.375 0 0.59375 0.375 0 0.625 0.375 0 0.65625 0.375 0 0.6875 0.375 0 0.71875 0.375 0 0.75 0.375 0 0.78125 0.375 0 0.8125 0.375 0 0.84375 0.375 0 0.875 0.375 0 0.90625 0.375 0 0.9375 0.375 0 0.96875 0.375 0 1 0.375 0 0 0.40625 0 0.03125 0.40625 0 0.0625 0.40625 0 0.09375 0.40625 0 0.125 0.40625 0 0.15625 0.40625 0 0.1875 0.40625 0 0.21875 0.40625 0 0.25 0.40625 0 0.28125 0.40625 0 0.3125 0.40625 0 0.34375 0.40625 0 0.375 0.40625 0 0.40625 0.40625 0 0.4375 0.40625 0 0.46875 0.40625 0 0.5 0.40625 0 0.53125 0.40625 0 0.5625 0.40625 0 0.59375 0.40625 0 0.625 0.40625 0 0.65625 0.40625 0 0.6875 0.40625 0 0.71875 0.40625 0 0.75 0.40625 0 0.78125 0.40625 0 0.8125 0.40625 0 0.84375 0.40625 0 0.875 0.40625 0 0.90625 0.40625 0 0.9375 0.40625 0 0.96875 0.40625 0 1 0.40625 0 0 0.4375 0 0.03125 0.4375 0 0.0625 0.4375 0 0.09375 0.4375 0 0.125 0.4375 0 0.15625 0.4375 0 0.1875 0.4375 0 0.21875 0.4375 0 0.25 0.4375 0 0.28125 0.4375 0 0.3125 0.4375 0 0.34375 0.4375 0 0.375 0.4375 0 0.40625 0.4375 0 0.4375 0.4375 0 0.46875 0.4375 0 0.5 0.4375 0 0.53125 0.4375 0 0.5625 0.4375 0 0.59375 0.4375 0 0.625 0.4375 0 0.65625 0.4375 0 0.6875 0.4375 0 0.71875 0.4375 0 0.75 0.4375 0 0.78125 0.4375 0 0.8125 0.4375 0 0.84375 0.4375 0 0.875 0.4375 0 0.90625 0.4375 0 0.9375 0.4375 0 0.96875 0.4375 0 1 0.4375 0 0 0.46875 0 0.03125 0.46875 0 0.0625 0.46875 0 0.09375 0.46875 0 0.125 0.46875 0 0.15625 0.46875 0 0.1875 0.46875 0 0.21875 0.46875 0 0.25 0.46875 0 0.28125 0.46875 0 0.3125 0.46875 0 0.34375 0.46875 0 0.375 0.46875 0 0.40625 0.46875 0 0.4375 0.46875 0 0.46875 0.46875 0 0.5 0.46875 0 0.53125 0.46875 0 0.5625 0.46875 0 0.59375 0.46875 0 0.625 0.46875 0 0.65625 0.46875 0 0.6875 0.46875 0 0.71875 0.46875 0 0.75 0.46875 0 0.78125 0.46875 0 0.8125 0.46875 0 0.84375 0.46875 0 0.875 0.46875 0 0.90625 0.46875 0 0.9375 0.46875 0 0.96875 0.46875 0 1 0.46875 0 0 0.5 0 0.03125 0.5 0 0.0625 0.5 0 0.09375 0.5 0 0.125 0.5 0 0.15625 0.5 0 0.1875 0.5 0 0.21875 0.5 0 0.25 0.5 0 0.28125 0.5 0 0.3125 0.5 0 0.34375 0.5 0 0.375 0.5 0 0.40625 0.5 0 0.4375 0.5 0 0.46875 0.5 0 0.5 0.5 0 0.53125 0.5 0 0.5625 0.5 0 0.59375 0.5 0 0.625 0.5 0 0.65625 0.5 0 0.6875 0.5 0 0.71875 0.5 0 0.75 0.5 0 0.78125 0.5 0 0.8125 0.5 0 0.84375 0.5 0 0.875 0.5 0 0.90625 0.5 0 0.9375 0.5 0 0.96875 0.5 0 1 0.5 0 0 0.53125 0 0.03125 0.53125 0 0.0625 0.53125 0 0.09375 0.53125 0 0.125 0.53125 0 0.15625 0.53125 0 0.1875 0.53125 0 0.21875 0.53125 0 0.25 0.53125 0 0.28125 0.53125 0 0.3125 0.53125 0 0.34375 0.53125 0 0.375 0.53125 0 0.40625 0.53125 0 0.4375 0.53125 0 0.46875 0.53125 0 0.5 0.53125 0 0.53125 0.53125 0 0.5625 0.53125 0 0.59375 0.53125 0 0.625 0.53125 0 0.65625 0.53125 0 0.6875 0.53125 0 0.71875 0.53125 0 0.75 0.53125 0 0.78125 0.53125 0 0.8125 0.53125 0 0.84375 0.53125 0 0.875 0.53125 0 0.90625 0.53125 0 0.9375 0.53125 0 0.96875 0.53125 0 1 0.53125 0 0 0.5625 0 0.03125 0.5625 0 0.0625 0.5625 0 0.09375 0.5625 0 0.125 0.5625 0 0.15625 0.5625 0 0.1875 0.5625 0 0.21875 0.5625 0 0.25 0.5625 0 0.28125 0.5625 0 0.3125 0.5625 0 0.34375 0.5625 0 0.375 0.5625 0 0.40625 0.5625 0 0.4375 0.5625 0 0.46875 0.5625 0 0.5 0.5625 0 0.53125 0.5625 0 0.5625 0.5625 0 0.59375 0.5625 0 0.625 0.5625 0 0.65625 0.5625 0 0.6875 0.5625 0 0.71875 0.5625 0 0.75 0.5625 0 0.78125 0.5625 0 0.8125 0.5625 0 0.84375 0.5625 0 0.875 0.5625 0 0.90625 0.5625 0 0.9375 0.5625 0 0.96875 0.5625 0 1 0.5625 0 0 0.59375 0 0.03125 0.59375 0 0.0625 0.59375 0 0.09375 0.59375 0 0.125 0.59375 0 0.15625 0.59375 0 0.1875 0.59375 0 0.21875 0.59375 0 0.25 0.59375 0 0.28125 0.59375 0 0.3125 0.59375 0 0.34375 0.59375 0 0.375 0.59375 0 0.40625 0.59375 0 0.4375 0.59375 0 0.46875 0.59375 0 0.5 0.59375 0 0.53125 0.59375 0 0.5625 0.59375 0 0.59375 0.59375 0 0.625 0.59375 0 0.65625 0.59375 0 0.6875 0.59375 0 0.71875 0.59375 0 0.75 0.59375 0 0.78125 0.59375 0 0.8125 0.59375 0 0.84375 0.59375 0 0.875 0.59375 0 0.90625 0.59375 0 0.9375 0.59375 0 0.96875 0.59375 0 1 0.59375 0 0 0.625 0 0.03125 0.625 0 0.0625 0.625 0 0.09375 0.625 0 0.125 0.625 0 0.15625 0.625 0 0.1875 0.625 0 0.21875 0.625 0 0.25 0.625 0 0.28125 0.625 0 0.3125 0.625 0 0.34375 0.625 0 0.375 0.625 0 0.40625 0.625 0 0.4375 0.625 0 0.46875 0.625 0 0.5 0.625 0 0.53125 0.625 0 0.5625 0.625 0 0.59375 0.625 0 0.625 0.625 0 0.65625 0.625 0 0.6875 0.625 0 0.71875 0.625 0 0.75 0.625 0 0.78125 0.625 0 0.8125 0.625 0 0.84375 0.625 0 0.875 0.625 0 0.90625 0.625 0 0.9375 0.625 0 0.96875 0.625 0 1 0.625 0 0 0.65625 0 0.03125 0.65625 0 0.0625 0.65625 0 0.09375 0.65625 0 0.125 0.65625 0 0.15625 0.65625 0 0.1875 0.65625 0 0.21875 0.65625 0 0.25 0.65625 0 0.28125 0.65625 0 0.3125 0.65625 0 0.34375 0.65625 0 0.375 0.65625 0 0.40625 0.65625 0 0.4375 0.65625 0 0.46875 0.65625 0 0.5 0.65625 0 0.53125 0.65625 0 0.5625 0.65625 0 0.59375 0.65625 0 0.625 0.65625 0 0.65625 0.65625 0 0.6875 0.65625 0 0.71875 0.65625 0 0.75 0.65625 0 0.78125 0.65625 0 0.8125 0.65625 0 0.84375 0.65625 0 0.875 0.65625 0 0.90625 0.65625 0 0.9375 0.65625 0 0.96875 0.65625 0 1 0.65625 0 0 0.6875 0 0.03125 0.6875 0 0.0625 0.6875 0 0.09375 0.6875 0 0.125 0.6875 0 0.15625 0.6875 0 0.1875 0.6875 0 0.21875 0.6875 0 0.25 0.6875 0 0.28125 0.6875 0 0.3125 0.6875 0 0.34375 0.6875 0 0.375 0.6875 0 0.40625 0.6875 0 0.4375 0.6875 0 0.46875 0.6875 0 0.5 0.6875 0 0.53125 0.6875 0 0.5625 0.6875 0 0.59375 0.6875 0 0.625 0.6875 0 0.65625 0.6875 0 0.6875 0.6875 0 0.71875 0.6875 0 0.75 0.6875 0 0.78125 0.6875 0 0.8125 0.6875 0 0.84375 0.6875 0 0.875 0.6875 0 0.90625 0.6875 0 0.9375 0.6875 0 0.96875 0.6875 0 1 0.6875 0 0 0.71875 0 0.03125 0.71875 0 0.0625 0.71875 0 0.09375 0.71875 0 0.125 0.71875 0 0.15625 0.71875 0 0.1875 0.71875 0 0.21875 0.71875 0 0.25 0.71875 0 0.28125 0.71875 0 0.3125 0.71875 0 0.34375 0.71875 0 0.375 0.71875 0 0.40625 0.71875 0 0.4375 0.71875 0 0.46875 0.71875 0 0.5 0.71875 0 0.53125 0.71875 0 0.5625 0.71875 0 0.59375 0.71875 0 0.625 0.71875 0 0.65625 0.71875 0 0.6875 0.71875 0 0.71875 0.71875 0 0.75 0.71875 0 0.78125 0.71875 0 0.8125 0.71875 0 0.84375 0.71875 0 0.875 0.71875 0 0.90625 0.71875 0 0.9375 0.71875 0 0.96875 0.71875 0 1 0.71875 0 0 0.75 0 0.03125 0.75 0 0.0625 0.75 0 0.09375 0.75 0 0.125 0.75 0 0.15625 0.75 0 0.1875 0.75 0 0.21875 0.75 0 0.25 0.75 0 0.28125 0.75 0 0.3125 0.75 0 0.34375 0.75 0 0.375 0.75 0 0.40625 0.75 0 0.4375 0.75 0 0.46875 0.75 0 0.5 0.75 0 0.53125 0.75 0 0.5625 0.75 0 0.59375 0.75 0 0.625 0.75 0 0.65625 0.75 0 0.6875 0.75 0 0.71875 0.75 0 0.75 0.75 0 0.78125 0.75 0 0.8125 0.75 0 0.84375 0.75 0 0.875 0.75 0 0.90625 0.75 0 0.9375 0.75 0 0.96875 0.75 0 1 0.75 0 0 0.78125 0 0.03125 0.78125 0 0.0625 0.78125 0 0.09375 0.78125 0 0.125 0.78125 0 0.15625 0.78125 0 0.1875 0.78125 0 0.21875 0.78125 0 0.25 0.78125 0 0.28125 0.78125 0 0.3125 0.78125 0 0.34375 0.78125 0 0.375 0.78125 0 0.40625 0.78125 0 0.4375 0.78125 0 0.46875 0.78125 0 0.5 0.78125 0 0.53125 0.78125 0 0.5625 0.78125 0 0.59375 0.78125 0 0.625 0.78125 0 0.65625 0.78125 0 0.6875 0.78125 0 0.71875 0.78125 0 0.75 0.78125 0 0.78125 0.78125 0 0.8125 0.78125 0 0.84375 0.78125 0 0.875 0.78125 0 0.90625 0.78125 0 0.9375 0.78125 0 0.96875 0.78125 0 1 0.78125 0 0 0.8125 0 0.03125 0.8125 0 0.0625 0.8125 0 0.09375 0.8125 0 0.125 0.8125 0 0.15625 0.8125 0 0.1875 0.8125 0 0.21875 0.8125 0 0.25 0.8125 0 0.28125 0.8125 0 0.3125 0.8125 0 0.34375 0.8125 0 0.375 0.8125 0 0.40625 0.8125 0 0.4375 0.8125 0 0.46875 0.8125 0 0.5 0.8125 0 0.53125 0.8125 0 0.5625 0.8125 0 0.59375 0.8125 0 0.625 0.8125 0 0.65625 0.8125 0 0.6875 0.8125 0 0.71875 0.8125 0 0.75 0.8125 0 0.78125 0.8125 0 0.8125 0.8125 0 0.84375 0.8125 0 0.875 0.8125 0 0.90625 0.8125 0 0.9375 0.8125 0 0.96875 0.8125 0 1 0.8125 0 0 0.84375 0 0.03125 0.84375 0 0.0625 0.84375 0 0.09375 0.84375 0 0.125 0.84375 0 0.15625 0.84375 0 0.1875 0.84375 0 0.21875 0.84375 0 0.25 0.84375 0 0.28125 0.84375 0 0.3125 0.84375 0 0.34375 0.84375 0 0.375 0.84375 0 0.40625 0.84375 0 0.4375 0.84375 0 0.46875 0.84375 0 0.5 0.84375 0 0.53125 0.84375 0 0.5625 0.84375 0 0.59375 0.84375 0 0.625 0.84375 0 0.65625 0.84375 0 0.6875 0.84375 0 0.71875 0.84375 0 0.75 0.84375 0 0.78125 0.84375 0 0.8125 0.84375 0 0.84375 0.84375 0 0.875 0.84375 0 0.90625 0.84375 0 0.9375 0.84375 0 0.96875 0.84375 0 1 0.84375 0 0 0.875 0 0.03125 0.875 0 0.0625 0.875 0 0.09375 0.875 0 0.125 0.875 0 0.15625 0.875 0 0.1875 0.875 0 0.21875 0.875 0 0.25 0.875 0 0.28125 0.875 0 0.3125 0.875 0 0.34375 0.875 0 0.375 0.875 0 0.40625 0.875 0 0.4375 0.875 0 0.46875 0.875 0 0.5 0.875 0 0.53125 0.875 0 0.5625 0.875 0 0.59375 0.875 0 0.625 0.875 0 0.65625 0.875 0 0.6875 0.875 0 0.71875 0.875 0 0.75 0.875 0 0.78125 0.875 0 0.8125 0.875 0 0.84375 0.875 0 0.875 0.875 0 0.90625 0.875 0 0.9375 0.875 0 0.96875 0.875 0 1 0.875 0 0 0.90625 0 0.03125 0.90625 0 0.0625 0.90625 0 0.09375 0.90625 0 0.125 0.90625 0 0.15625 0.90625 0 0.1875 0.90625 0 0.21875 0.90625 0 0.25 0.90625 0 0.28125 0.90625 0 0.3125 0.90625 0 0.34375 0.90625 0 0.375 0.90625 0 0.40625 0.90625 0 0.4375 0.90625 0 0.46875 0.90625 0 0.5 0.90625 0 0.53125 0.90625 0 0.5625 0.90625 0 0.59375 0.90625 0 0.625 0.90625 0 0.65625 0.90625 0 0.6875 0.90625 0 0.71875 0.90625 0 0.75 0.90625 0 0.78125 0.90625 0 0.8125 0.90625 0 0.84375 0.90625 0 0.875 0.90625 0 0.90625 0.90625 0 0.9375 0.90625 0 0.96875 0.90625 0 1 0.90625 0 0 0.9375 0 0.03125 0.9375 0 0.0625 0.9375 0 0.09375 0.9375 0 0.125 0.9375 0 0.15625 0.9375 0 0.1875 0.9375 0 0.21875 0.9375 0 0.25 0.9375 0 0.28125 0.9375 0 0.3125 0.9375 0 0.34375 0.9375 0 0.375 0.9375 0 0.40625 0.9375 0 0.4375 0.9375 0 0.46875 0.9375 0 0.5 0.9375 0 0.53125 0.9375 0 0.5625 0.9375 0 0.59375 0.9375 0 0.625 0.9375 0 0.65625 0.9375 0 0.6875 0.9375 0 0.71875 0.9375 0 0.75 0.9375 0 0.78125 0.9375 0 0.8125 0.9375 0 0.84375 0.9375 0 0.875 0.9375 0 0.90625 0.9375 0 0.9375 0.9375 0 0.96875 0.9375 0 1 0.9375 0 0 0.96875 0 0.03125 0.96875 0 0.0625 0.96875 0 0.09375 0.96875 0 0.125 0.96875 0 0.15625 0.96875 0 0.1875 0.96875 0 0.21875 0.96875 0 0.25 0.96875 0 0.28125 0.96875 0 0.3125 0.96875 0 0.34375 0.96875 0 0.375 0.96875 0 0.40625 0.96875 0 0.4375 0.96875 0 0.46875 0.96875 0 0.5 0.96875 0 0.53125 0.96875 0 0.5625 0.96875 0 0.59375 0.96875 0 0.625 0.96875 0 0.65625 0.96875 0 0.6875 0.96875 0 0.71875 0.96875 0 0.75 0.96875 0 0.78125 0.96875 0 0.8125 0.96875 0 0.84375 0.96875 0 0.875 0.96875 0 0.90625 0.96875 0 0.9375 0.96875 0 0.96875 0.96875 0 1 0.96875 0 0 1 0 0.03125 1 0 0.0625 1 0 0.09375 1 0 0.125 1 0 0.15625 1 0 0.1875 1 0 0.21875 1 0 0.25 1 0 0.28125 1 0 0.3125 1 0 0.34375 1 0 0.375 1 0 0.40625 1 0 0.4375 1 0 0.46875 1 0 0.5 1 0 0.53125 1 0 0.5625 1 0 0.59375 1 0 0.625 1 0 0.65625 1 0 0.6875 1 0 0.71875 1 0 0.75 1 0 0.78125 1 0 0.8125 1 0 0.84375 1 0 0.875 1 0 0.90625 1 0 0.9375 1 0 0.96875 1 0 1 1 0 \"></coordinate>\n", " </indexedFaceSet>\n", " </shape>\n", " <shape>\n", " <appearance>\n", " <material emissiveColor=\"0.000000 0.000000 0.000000\" specularColor=\"0.000000 0.000000 0.000000\" ambientIntensity=\"0\" shininess=\"0.5\" transparency=\"0\"></material>\n", " </appearance>\n", " <indexedLineSet solid=\"false\" colorPercVertex=\"false\" coordIndex=\"1 34 -1 0 34 -1 0 1 -1 33 34 -1 0 33 -1 2 35 -1 1 35 -1 1 2 -1 34 35 -1 3 36 -1 2 36 -1 2 3 -1 35 36 -1 4 37 -1 3 37 -1 3 4 -1 36 37 -1 5 38 -1 4 38 -1 4 5 -1 37 38 -1 6 39 -1 5 39 -1 5 6 -1 38 39 -1 7 40 -1 6 40 -1 6 7 -1 39 40 -1 8 41 -1 7 41 -1 7 8 -1 40 41 -1 9 42 -1 8 42 -1 8 9 -1 41 42 -1 10 43 -1 9 43 -1 9 10 -1 42 43 -1 11 44 -1 10 44 -1 10 11 -1 43 44 -1 12 45 -1 11 45 -1 11 12 -1 44 45 -1 13 46 -1 12 46 -1 12 13 -1 45 46 -1 14 47 -1 13 47 -1 13 14 -1 46 47 -1 15 48 -1 14 48 -1 14 15 -1 47 48 -1 16 49 -1 15 49 -1 15 16 -1 48 49 -1 17 50 -1 16 50 -1 16 17 -1 49 50 -1 18 51 -1 17 51 -1 17 18 -1 50 51 -1 19 52 -1 18 52 -1 18 19 -1 51 52 -1 20 53 -1 19 53 -1 19 20 -1 52 53 -1 21 54 -1 20 54 -1 20 21 -1 53 54 -1 22 55 -1 21 55 -1 21 22 -1 54 55 -1 23 56 -1 22 56 -1 22 23 -1 55 56 -1 24 57 -1 23 57 -1 23 24 -1 56 57 -1 25 58 -1 24 58 -1 24 25 -1 57 58 -1 26 59 -1 25 59 -1 25 26 -1 58 59 -1 27 60 -1 26 60 -1 26 27 -1 59 60 -1 28 61 -1 27 61 -1 27 28 -1 60 61 -1 29 62 -1 28 62 -1 28 29 -1 61 62 -1 30 63 -1 29 63 -1 29 30 -1 62 63 -1 31 64 -1 30 64 -1 30 31 -1 63 64 -1 32 65 -1 31 65 -1 31 32 -1 64 65 -1 34 67 -1 33 67 -1 66 67 -1 33 66 -1 35 68 -1 34 68 -1 67 68 -1 36 69 -1 35 69 -1 68 69 -1 37 70 -1 36 70 -1 69 70 -1 38 71 -1 37 71 -1 70 71 -1 39 72 -1 38 72 -1 71 72 -1 40 73 -1 39 73 -1 72 73 -1 41 74 -1 40 74 -1 73 74 -1 42 75 -1 41 75 -1 74 75 -1 43 76 -1 42 76 -1 75 76 -1 44 77 -1 43 77 -1 76 77 -1 45 78 -1 44 78 -1 77 78 -1 46 79 -1 45 79 -1 78 79 -1 47 80 -1 46 80 -1 79 80 -1 48 81 -1 47 81 -1 80 81 -1 49 82 -1 48 82 -1 81 82 -1 50 83 -1 49 83 -1 82 83 -1 51 84 -1 50 84 -1 83 84 -1 52 85 -1 51 85 -1 84 85 -1 53 86 -1 52 86 -1 85 86 -1 54 87 -1 53 87 -1 86 87 -1 55 88 -1 54 88 -1 87 88 -1 56 89 -1 55 89 -1 88 89 -1 57 90 -1 56 90 -1 89 90 -1 58 91 -1 57 91 -1 90 91 -1 59 92 -1 58 92 -1 91 92 -1 60 93 -1 59 93 -1 92 93 -1 61 94 -1 60 94 -1 93 94 -1 62 95 -1 61 95 -1 94 95 -1 63 96 -1 62 96 -1 95 96 -1 64 97 -1 63 97 -1 96 97 -1 65 98 -1 64 98 -1 97 98 -1 67 100 -1 66 100 -1 99 100 -1 66 99 -1 68 101 -1 67 101 -1 100 101 -1 69 102 -1 68 102 -1 101 102 -1 70 103 -1 69 103 -1 102 103 -1 71 104 -1 70 104 -1 103 104 -1 72 105 -1 71 105 -1 104 105 -1 73 106 -1 72 106 -1 105 106 -1 74 107 -1 73 107 -1 106 107 -1 75 108 -1 74 108 -1 107 108 -1 76 109 -1 75 109 -1 108 109 -1 77 110 -1 76 110 -1 109 110 -1 78 111 -1 77 111 -1 110 111 -1 79 112 -1 78 112 -1 111 112 -1 80 113 -1 79 113 -1 112 113 -1 81 114 -1 80 114 -1 113 114 -1 82 115 -1 81 115 -1 114 115 -1 83 116 -1 82 116 -1 115 116 -1 84 117 -1 83 117 -1 116 117 -1 85 118 -1 84 118 -1 117 118 -1 86 119 -1 85 119 -1 118 119 -1 87 120 -1 86 120 -1 119 120 -1 88 121 -1 87 121 -1 120 121 -1 89 122 -1 88 122 -1 121 122 -1 90 123 -1 89 123 -1 122 123 -1 91 124 -1 90 124 -1 123 124 -1 92 125 -1 91 125 -1 124 125 -1 93 126 -1 92 126 -1 125 126 -1 94 127 -1 93 127 -1 126 127 -1 95 128 -1 94 128 -1 127 128 -1 96 129 -1 95 129 -1 128 129 -1 97 130 -1 96 130 -1 129 130 -1 98 131 -1 97 131 -1 130 131 -1 100 133 -1 99 133 -1 132 133 -1 99 132 -1 101 134 -1 100 134 -1 133 134 -1 102 135 -1 101 135 -1 134 135 -1 103 136 -1 102 136 -1 135 136 -1 104 137 -1 103 137 -1 136 137 -1 105 138 -1 104 138 -1 137 138 -1 106 139 -1 105 139 -1 138 139 -1 107 140 -1 106 140 -1 139 140 -1 108 141 -1 107 141 -1 140 141 -1 109 142 -1 108 142 -1 141 142 -1 110 143 -1 109 143 -1 142 143 -1 111 144 -1 110 144 -1 143 144 -1 112 145 -1 111 145 -1 144 145 -1 113 146 -1 112 146 -1 145 146 -1 114 147 -1 113 147 -1 146 147 -1 115 148 -1 114 148 -1 147 148 -1 116 149 -1 115 149 -1 148 149 -1 117 150 -1 116 150 -1 149 150 -1 118 151 -1 117 151 -1 150 151 -1 119 152 -1 118 152 -1 151 152 -1 120 153 -1 119 153 -1 152 153 -1 121 154 -1 120 154 -1 153 154 -1 122 155 -1 121 155 -1 154 155 -1 123 156 -1 122 156 -1 155 156 -1 124 157 -1 123 157 -1 156 157 -1 125 158 -1 124 158 -1 157 158 -1 126 159 -1 125 159 -1 158 159 -1 127 160 -1 126 160 -1 159 160 -1 128 161 -1 127 161 -1 160 161 -1 129 162 -1 128 162 -1 161 162 -1 130 163 -1 129 163 -1 162 163 -1 131 164 -1 130 164 -1 163 164 -1 133 166 -1 132 166 -1 165 166 -1 132 165 -1 134 167 -1 133 167 -1 166 167 -1 135 168 -1 134 168 -1 167 168 -1 136 169 -1 135 169 -1 168 169 -1 137 170 -1 136 170 -1 169 170 -1 138 171 -1 137 171 -1 170 171 -1 139 172 -1 138 172 -1 171 172 -1 140 173 -1 139 173 -1 172 173 -1 141 174 -1 140 174 -1 173 174 -1 142 175 -1 141 175 -1 174 175 -1 143 176 -1 142 176 -1 175 176 -1 144 177 -1 143 177 -1 176 177 -1 145 178 -1 144 178 -1 177 178 -1 146 179 -1 145 179 -1 178 179 -1 147 180 -1 146 180 -1 179 180 -1 148 181 -1 147 181 -1 180 181 -1 149 182 -1 148 182 -1 181 182 -1 150 183 -1 149 183 -1 182 183 -1 151 184 -1 150 184 -1 183 184 -1 152 185 -1 151 185 -1 184 185 -1 153 186 -1 152 186 -1 185 186 -1 154 187 -1 153 187 -1 186 187 -1 155 188 -1 154 188 -1 187 188 -1 156 189 -1 155 189 -1 188 189 -1 157 190 -1 156 190 -1 189 190 -1 158 191 -1 157 191 -1 190 191 -1 159 192 -1 158 192 -1 191 192 -1 160 193 -1 159 193 -1 192 193 -1 161 194 -1 160 194 -1 193 194 -1 162 195 -1 161 195 -1 194 195 -1 163 196 -1 162 196 -1 195 196 -1 164 197 -1 163 197 -1 196 197 -1 166 199 -1 165 199 -1 198 199 -1 165 198 -1 167 200 -1 166 200 -1 199 200 -1 168 201 -1 167 201 -1 200 201 -1 169 202 -1 168 202 -1 201 202 -1 170 203 -1 169 203 -1 202 203 -1 171 204 -1 170 204 -1 203 204 -1 172 205 -1 171 205 -1 204 205 -1 173 206 -1 172 206 -1 205 206 -1 174 207 -1 173 207 -1 206 207 -1 175 208 -1 174 208 -1 207 208 -1 176 209 -1 175 209 -1 208 209 -1 177 210 -1 176 210 -1 209 210 -1 178 211 -1 177 211 -1 210 211 -1 179 212 -1 178 212 -1 211 212 -1 180 213 -1 179 213 -1 212 213 -1 181 214 -1 180 214 -1 213 214 -1 182 215 -1 181 215 -1 214 215 -1 183 216 -1 182 216 -1 215 216 -1 184 217 -1 183 217 -1 216 217 -1 185 218 -1 184 218 -1 217 218 -1 186 219 -1 185 219 -1 218 219 -1 187 220 -1 186 220 -1 219 220 -1 188 221 -1 187 221 -1 220 221 -1 189 222 -1 188 222 -1 221 222 -1 190 223 -1 189 223 -1 222 223 -1 191 224 -1 190 224 -1 223 224 -1 192 225 -1 191 225 -1 224 225 -1 193 226 -1 192 226 -1 225 226 -1 194 227 -1 193 227 -1 226 227 -1 195 228 -1 194 228 -1 227 228 -1 196 229 -1 195 229 -1 228 229 -1 197 230 -1 196 230 -1 229 230 -1 199 232 -1 198 232 -1 231 232 -1 198 231 -1 200 233 -1 199 233 -1 232 233 -1 201 234 -1 200 234 -1 233 234 -1 202 235 -1 201 235 -1 234 235 -1 203 236 -1 202 236 -1 235 236 -1 204 237 -1 203 237 -1 236 237 -1 205 238 -1 204 238 -1 237 238 -1 206 239 -1 205 239 -1 238 239 -1 207 240 -1 206 240 -1 239 240 -1 208 241 -1 207 241 -1 240 241 -1 209 242 -1 208 242 -1 241 242 -1 210 243 -1 209 243 -1 242 243 -1 211 244 -1 210 244 -1 243 244 -1 212 245 -1 211 245 -1 244 245 -1 213 246 -1 212 246 -1 245 246 -1 214 247 -1 213 247 -1 246 247 -1 215 248 -1 214 248 -1 247 248 -1 216 249 -1 215 249 -1 248 249 -1 217 250 -1 216 250 -1 249 250 -1 218 251 -1 217 251 -1 250 251 -1 219 252 -1 218 252 -1 251 252 -1 220 253 -1 219 253 -1 252 253 -1 221 254 -1 220 254 -1 253 254 -1 222 255 -1 221 255 -1 254 255 -1 223 256 -1 222 256 -1 255 256 -1 224 257 -1 223 257 -1 256 257 -1 225 258 -1 224 258 -1 257 258 -1 226 259 -1 225 259 -1 258 259 -1 227 260 -1 226 260 -1 259 260 -1 228 261 -1 227 261 -1 260 261 -1 229 262 -1 228 262 -1 261 262 -1 230 263 -1 229 263 -1 262 263 -1 232 265 -1 231 265 -1 264 265 -1 231 264 -1 233 266 -1 232 266 -1 265 266 -1 234 267 -1 233 267 -1 266 267 -1 235 268 -1 234 268 -1 267 268 -1 236 269 -1 235 269 -1 268 269 -1 237 270 -1 236 270 -1 269 270 -1 238 271 -1 237 271 -1 270 271 -1 239 272 -1 238 272 -1 271 272 -1 240 273 -1 239 273 -1 272 273 -1 241 274 -1 240 274 -1 273 274 -1 242 275 -1 241 275 -1 274 275 -1 243 276 -1 242 276 -1 275 276 -1 244 277 -1 243 277 -1 276 277 -1 245 278 -1 244 278 -1 277 278 -1 246 279 -1 245 279 -1 278 279 -1 247 280 -1 246 280 -1 279 280 -1 248 281 -1 247 281 -1 280 281 -1 249 282 -1 248 282 -1 281 282 -1 250 283 -1 249 283 -1 282 283 -1 251 284 -1 250 284 -1 283 284 -1 252 285 -1 251 285 -1 284 285 -1 253 286 -1 252 286 -1 285 286 -1 254 287 -1 253 287 -1 286 287 -1 255 288 -1 254 288 -1 287 288 -1 256 289 -1 255 289 -1 288 289 -1 257 290 -1 256 290 -1 289 290 -1 258 291 -1 257 291 -1 290 291 -1 259 292 -1 258 292 -1 291 292 -1 260 293 -1 259 293 -1 292 293 -1 261 294 -1 260 294 -1 293 294 -1 262 295 -1 261 295 -1 294 295 -1 263 296 -1 262 296 -1 295 296 -1 265 298 -1 264 298 -1 297 298 -1 264 297 -1 266 299 -1 265 299 -1 298 299 -1 267 300 -1 266 300 -1 299 300 -1 268 301 -1 267 301 -1 300 301 -1 269 302 -1 268 302 -1 301 302 -1 270 303 -1 269 303 -1 302 303 -1 271 304 -1 270 304 -1 303 304 -1 272 305 -1 271 305 -1 304 305 -1 273 306 -1 272 306 -1 305 306 -1 274 307 -1 273 307 -1 306 307 -1 275 308 -1 274 308 -1 307 308 -1 276 309 -1 275 309 -1 308 309 -1 277 310 -1 276 310 -1 309 310 -1 278 311 -1 277 311 -1 310 311 -1 279 312 -1 278 312 -1 311 312 -1 280 313 -1 279 313 -1 312 313 -1 281 314 -1 280 314 -1 313 314 -1 282 315 -1 281 315 -1 314 315 -1 283 316 -1 282 316 -1 315 316 -1 284 317 -1 283 317 -1 316 317 -1 285 318 -1 284 318 -1 317 318 -1 286 319 -1 285 319 -1 318 319 -1 287 320 -1 286 320 -1 319 320 -1 288 321 -1 287 321 -1 320 321 -1 289 322 -1 288 322 -1 321 322 -1 290 323 -1 289 323 -1 322 323 -1 291 324 -1 290 324 -1 323 324 -1 292 325 -1 291 325 -1 324 325 -1 293 326 -1 292 326 -1 325 326 -1 294 327 -1 293 327 -1 326 327 -1 295 328 -1 294 328 -1 327 328 -1 296 329 -1 295 329 -1 328 329 -1 298 331 -1 297 331 -1 330 331 -1 297 330 -1 299 332 -1 298 332 -1 331 332 -1 300 333 -1 299 333 -1 332 333 -1 301 334 -1 300 334 -1 333 334 -1 302 335 -1 301 335 -1 334 335 -1 303 336 -1 302 336 -1 335 336 -1 304 337 -1 303 337 -1 336 337 -1 305 338 -1 304 338 -1 337 338 -1 306 339 -1 305 339 -1 338 339 -1 307 340 -1 306 340 -1 339 340 -1 308 341 -1 307 341 -1 340 341 -1 309 342 -1 308 342 -1 341 342 -1 310 343 -1 309 343 -1 342 343 -1 311 344 -1 310 344 -1 343 344 -1 312 345 -1 311 345 -1 344 345 -1 313 346 -1 312 346 -1 345 346 -1 314 347 -1 313 347 -1 346 347 -1 315 348 -1 314 348 -1 347 348 -1 316 349 -1 315 349 -1 348 349 -1 317 350 -1 316 350 -1 349 350 -1 318 351 -1 317 351 -1 350 351 -1 319 352 -1 318 352 -1 351 352 -1 320 353 -1 319 353 -1 352 353 -1 321 354 -1 320 354 -1 353 354 -1 322 355 -1 321 355 -1 354 355 -1 323 356 -1 322 356 -1 355 356 -1 324 357 -1 323 357 -1 356 357 -1 325 358 -1 324 358 -1 357 358 -1 326 359 -1 325 359 -1 358 359 -1 327 360 -1 326 360 -1 359 360 -1 328 361 -1 327 361 -1 360 361 -1 329 362 -1 328 362 -1 361 362 -1 331 364 -1 330 364 -1 363 364 -1 330 363 -1 332 365 -1 331 365 -1 364 365 -1 333 366 -1 332 366 -1 365 366 -1 334 367 -1 333 367 -1 366 367 -1 335 368 -1 334 368 -1 367 368 -1 336 369 -1 335 369 -1 368 369 -1 337 370 -1 336 370 -1 369 370 -1 338 371 -1 337 371 -1 370 371 -1 339 372 -1 338 372 -1 371 372 -1 340 373 -1 339 373 -1 372 373 -1 341 374 -1 340 374 -1 373 374 -1 342 375 -1 341 375 -1 374 375 -1 343 376 -1 342 376 -1 375 376 -1 344 377 -1 343 377 -1 376 377 -1 345 378 -1 344 378 -1 377 378 -1 346 379 -1 345 379 -1 378 379 -1 347 380 -1 346 380 -1 379 380 -1 348 381 -1 347 381 -1 380 381 -1 349 382 -1 348 382 -1 381 382 -1 350 383 -1 349 383 -1 382 383 -1 351 384 -1 350 384 -1 383 384 -1 352 385 -1 351 385 -1 384 385 -1 353 386 -1 352 386 -1 385 386 -1 354 387 -1 353 387 -1 386 387 -1 355 388 -1 354 388 -1 387 388 -1 356 389 -1 355 389 -1 388 389 -1 357 390 -1 356 390 -1 389 390 -1 358 391 -1 357 391 -1 390 391 -1 359 392 -1 358 392 -1 391 392 -1 360 393 -1 359 393 -1 392 393 -1 361 394 -1 360 394 -1 393 394 -1 362 395 -1 361 395 -1 394 395 -1 364 397 -1 363 397 -1 396 397 -1 363 396 -1 365 398 -1 364 398 -1 397 398 -1 366 399 -1 365 399 -1 398 399 -1 367 400 -1 366 400 -1 399 400 -1 368 401 -1 367 401 -1 400 401 -1 369 402 -1 368 402 -1 401 402 -1 370 403 -1 369 403 -1 402 403 -1 371 404 -1 370 404 -1 403 404 -1 372 405 -1 371 405 -1 404 405 -1 373 406 -1 372 406 -1 405 406 -1 374 407 -1 373 407 -1 406 407 -1 375 408 -1 374 408 -1 407 408 -1 376 409 -1 375 409 -1 408 409 -1 377 410 -1 376 410 -1 409 410 -1 378 411 -1 377 411 -1 410 411 -1 379 412 -1 378 412 -1 411 412 -1 380 413 -1 379 413 -1 412 413 -1 381 414 -1 380 414 -1 413 414 -1 382 415 -1 381 415 -1 414 415 -1 383 416 -1 382 416 -1 415 416 -1 384 417 -1 383 417 -1 416 417 -1 385 418 -1 384 418 -1 417 418 -1 386 419 -1 385 419 -1 418 419 -1 387 420 -1 386 420 -1 419 420 -1 388 421 -1 387 421 -1 420 421 -1 389 422 -1 388 422 -1 421 422 -1 390 423 -1 389 423 -1 422 423 -1 391 424 -1 390 424 -1 423 424 -1 392 425 -1 391 425 -1 424 425 -1 393 426 -1 392 426 -1 425 426 -1 394 427 -1 393 427 -1 426 427 -1 395 428 -1 394 428 -1 427 428 -1 397 430 -1 396 430 -1 429 430 -1 396 429 -1 398 431 -1 397 431 -1 430 431 -1 399 432 -1 398 432 -1 431 432 -1 400 433 -1 399 433 -1 432 433 -1 401 434 -1 400 434 -1 433 434 -1 402 435 -1 401 435 -1 434 435 -1 403 436 -1 402 436 -1 435 436 -1 404 437 -1 403 437 -1 436 437 -1 405 438 -1 404 438 -1 437 438 -1 406 439 -1 405 439 -1 438 439 -1 407 440 -1 406 440 -1 439 440 -1 408 441 -1 407 441 -1 440 441 -1 409 442 -1 408 442 -1 441 442 -1 410 443 -1 409 443 -1 442 443 -1 411 444 -1 410 444 -1 443 444 -1 412 445 -1 411 445 -1 444 445 -1 413 446 -1 412 446 -1 445 446 -1 414 447 -1 413 447 -1 446 447 -1 415 448 -1 414 448 -1 447 448 -1 416 449 -1 415 449 -1 448 449 -1 417 450 -1 416 450 -1 449 450 -1 418 451 -1 417 451 -1 450 451 -1 419 452 -1 418 452 -1 451 452 -1 420 453 -1 419 453 -1 452 453 -1 421 454 -1 420 454 -1 453 454 -1 422 455 -1 421 455 -1 454 455 -1 423 456 -1 422 456 -1 455 456 -1 424 457 -1 423 457 -1 456 457 -1 425 458 -1 424 458 -1 457 458 -1 426 459 -1 425 459 -1 458 459 -1 427 460 -1 426 460 -1 459 460 -1 428 461 -1 427 461 -1 460 461 -1 430 463 -1 429 463 -1 462 463 -1 429 462 -1 431 464 -1 430 464 -1 463 464 -1 432 465 -1 431 465 -1 464 465 -1 433 466 -1 432 466 -1 465 466 -1 434 467 -1 433 467 -1 466 467 -1 435 468 -1 434 468 -1 467 468 -1 436 469 -1 435 469 -1 468 469 -1 437 470 -1 436 470 -1 469 470 -1 438 471 -1 437 471 -1 470 471 -1 439 472 -1 438 472 -1 471 472 -1 440 473 -1 439 473 -1 472 473 -1 441 474 -1 440 474 -1 473 474 -1 442 475 -1 441 475 -1 474 475 -1 443 476 -1 442 476 -1 475 476 -1 444 477 -1 443 477 -1 476 477 -1 445 478 -1 444 478 -1 477 478 -1 446 479 -1 445 479 -1 478 479 -1 447 480 -1 446 480 -1 479 480 -1 448 481 -1 447 481 -1 480 481 -1 449 482 -1 448 482 -1 481 482 -1 450 483 -1 449 483 -1 482 483 -1 451 484 -1 450 484 -1 483 484 -1 452 485 -1 451 485 -1 484 485 -1 453 486 -1 452 486 -1 485 486 -1 454 487 -1 453 487 -1 486 487 -1 455 488 -1 454 488 -1 487 488 -1 456 489 -1 455 489 -1 488 489 -1 457 490 -1 456 490 -1 489 490 -1 458 491 -1 457 491 -1 490 491 -1 459 492 -1 458 492 -1 491 492 -1 460 493 -1 459 493 -1 492 493 -1 461 494 -1 460 494 -1 493 494 -1 463 496 -1 462 496 -1 495 496 -1 462 495 -1 464 497 -1 463 497 -1 496 497 -1 465 498 -1 464 498 -1 497 498 -1 466 499 -1 465 499 -1 498 499 -1 467 500 -1 466 500 -1 499 500 -1 468 501 -1 467 501 -1 500 501 -1 469 502 -1 468 502 -1 501 502 -1 470 503 -1 469 503 -1 502 503 -1 471 504 -1 470 504 -1 503 504 -1 472 505 -1 471 505 -1 504 505 -1 473 506 -1 472 506 -1 505 506 -1 474 507 -1 473 507 -1 506 507 -1 475 508 -1 474 508 -1 507 508 -1 476 509 -1 475 509 -1 508 509 -1 477 510 -1 476 510 -1 509 510 -1 478 511 -1 477 511 -1 510 511 -1 479 512 -1 478 512 -1 511 512 -1 480 513 -1 479 513 -1 512 513 -1 481 514 -1 480 514 -1 513 514 -1 482 515 -1 481 515 -1 514 515 -1 483 516 -1 482 516 -1 515 516 -1 484 517 -1 483 517 -1 516 517 -1 485 518 -1 484 518 -1 517 518 -1 486 519 -1 485 519 -1 518 519 -1 487 520 -1 486 520 -1 519 520 -1 488 521 -1 487 521 -1 520 521 -1 489 522 -1 488 522 -1 521 522 -1 490 523 -1 489 523 -1 522 523 -1 491 524 -1 490 524 -1 523 524 -1 492 525 -1 491 525 -1 524 525 -1 493 526 -1 492 526 -1 525 526 -1 494 527 -1 493 527 -1 526 527 -1 496 529 -1 495 529 -1 528 529 -1 495 528 -1 497 530 -1 496 530 -1 529 530 -1 498 531 -1 497 531 -1 530 531 -1 499 532 -1 498 532 -1 531 532 -1 500 533 -1 499 533 -1 532 533 -1 501 534 -1 500 534 -1 533 534 -1 502 535 -1 501 535 -1 534 535 -1 503 536 -1 502 536 -1 535 536 -1 504 537 -1 503 537 -1 536 537 -1 505 538 -1 504 538 -1 537 538 -1 506 539 -1 505 539 -1 538 539 -1 507 540 -1 506 540 -1 539 540 -1 508 541 -1 507 541 -1 540 541 -1 509 542 -1 508 542 -1 541 542 -1 510 543 -1 509 543 -1 542 543 -1 511 544 -1 510 544 -1 543 544 -1 512 545 -1 511 545 -1 544 545 -1 513 546 -1 512 546 -1 545 546 -1 514 547 -1 513 547 -1 546 547 -1 515 548 -1 514 548 -1 547 548 -1 516 549 -1 515 549 -1 548 549 -1 517 550 -1 516 550 -1 549 550 -1 518 551 -1 517 551 -1 550 551 -1 519 552 -1 518 552 -1 551 552 -1 520 553 -1 519 553 -1 552 553 -1 521 554 -1 520 554 -1 553 554 -1 522 555 -1 521 555 -1 554 555 -1 523 556 -1 522 556 -1 555 556 -1 524 557 -1 523 557 -1 556 557 -1 525 558 -1 524 558 -1 557 558 -1 526 559 -1 525 559 -1 558 559 -1 527 560 -1 526 560 -1 559 560 -1 529 562 -1 528 562 -1 561 562 -1 528 561 -1 530 563 -1 529 563 -1 562 563 -1 531 564 -1 530 564 -1 563 564 -1 532 565 -1 531 565 -1 564 565 -1 533 566 -1 532 566 -1 565 566 -1 534 567 -1 533 567 -1 566 567 -1 535 568 -1 534 568 -1 567 568 -1 536 569 -1 535 569 -1 568 569 -1 537 570 -1 536 570 -1 569 570 -1 538 571 -1 537 571 -1 570 571 -1 539 572 -1 538 572 -1 571 572 -1 540 573 -1 539 573 -1 572 573 -1 541 574 -1 540 574 -1 573 574 -1 542 575 -1 541 575 -1 574 575 -1 543 576 -1 542 576 -1 575 576 -1 544 577 -1 543 577 -1 576 577 -1 545 578 -1 544 578 -1 577 578 -1 546 579 -1 545 579 -1 578 579 -1 547 580 -1 546 580 -1 579 580 -1 548 581 -1 547 581 -1 580 581 -1 549 582 -1 548 582 -1 581 582 -1 550 583 -1 549 583 -1 582 583 -1 551 584 -1 550 584 -1 583 584 -1 552 585 -1 551 585 -1 584 585 -1 553 586 -1 552 586 -1 585 586 -1 554 587 -1 553 587 -1 586 587 -1 555 588 -1 554 588 -1 587 588 -1 556 589 -1 555 589 -1 588 589 -1 557 590 -1 556 590 -1 589 590 -1 558 591 -1 557 591 -1 590 591 -1 559 592 -1 558 592 -1 591 592 -1 560 593 -1 559 593 -1 592 593 -1 562 595 -1 561 595 -1 594 595 -1 561 594 -1 563 596 -1 562 596 -1 595 596 -1 564 597 -1 563 597 -1 596 597 -1 565 598 -1 564 598 -1 597 598 -1 566 599 -1 565 599 -1 598 599 -1 567 600 -1 566 600 -1 599 600 -1 568 601 -1 567 601 -1 600 601 -1 569 602 -1 568 602 -1 601 602 -1 570 603 -1 569 603 -1 602 603 -1 571 604 -1 570 604 -1 603 604 -1 572 605 -1 571 605 -1 604 605 -1 573 606 -1 572 606 -1 605 606 -1 574 607 -1 573 607 -1 606 607 -1 575 608 -1 574 608 -1 607 608 -1 576 609 -1 575 609 -1 608 609 -1 577 610 -1 576 610 -1 609 610 -1 578 611 -1 577 611 -1 610 611 -1 579 612 -1 578 612 -1 611 612 -1 580 613 -1 579 613 -1 612 613 -1 581 614 -1 580 614 -1 613 614 -1 582 615 -1 581 615 -1 614 615 -1 583 616 -1 582 616 -1 615 616 -1 584 617 -1 583 617 -1 616 617 -1 585 618 -1 584 618 -1 617 618 -1 586 619 -1 585 619 -1 618 619 -1 587 620 -1 586 620 -1 619 620 -1 588 621 -1 587 621 -1 620 621 -1 589 622 -1 588 622 -1 621 622 -1 590 623 -1 589 623 -1 622 623 -1 591 624 -1 590 624 -1 623 624 -1 592 625 -1 591 625 -1 624 625 -1 593 626 -1 592 626 -1 625 626 -1 595 628 -1 594 628 -1 627 628 -1 594 627 -1 596 629 -1 595 629 -1 628 629 -1 597 630 -1 596 630 -1 629 630 -1 598 631 -1 597 631 -1 630 631 -1 599 632 -1 598 632 -1 631 632 -1 600 633 -1 599 633 -1 632 633 -1 601 634 -1 600 634 -1 633 634 -1 602 635 -1 601 635 -1 634 635 -1 603 636 -1 602 636 -1 635 636 -1 604 637 -1 603 637 -1 636 637 -1 605 638 -1 604 638 -1 637 638 -1 606 639 -1 605 639 -1 638 639 -1 607 640 -1 606 640 -1 639 640 -1 608 641 -1 607 641 -1 640 641 -1 609 642 -1 608 642 -1 641 642 -1 610 643 -1 609 643 -1 642 643 -1 611 644 -1 610 644 -1 643 644 -1 612 645 -1 611 645 -1 644 645 -1 613 646 -1 612 646 -1 645 646 -1 614 647 -1 613 647 -1 646 647 -1 615 648 -1 614 648 -1 647 648 -1 616 649 -1 615 649 -1 648 649 -1 617 650 -1 616 650 -1 649 650 -1 618 651 -1 617 651 -1 650 651 -1 619 652 -1 618 652 -1 651 652 -1 620 653 -1 619 653 -1 652 653 -1 621 654 -1 620 654 -1 653 654 -1 622 655 -1 621 655 -1 654 655 -1 623 656 -1 622 656 -1 655 656 -1 624 657 -1 623 657 -1 656 657 -1 625 658 -1 624 658 -1 657 658 -1 626 659 -1 625 659 -1 658 659 -1 628 661 -1 627 661 -1 660 661 -1 627 660 -1 629 662 -1 628 662 -1 661 662 -1 630 663 -1 629 663 -1 662 663 -1 631 664 -1 630 664 -1 663 664 -1 632 665 -1 631 665 -1 664 665 -1 633 666 -1 632 666 -1 665 666 -1 634 667 -1 633 667 -1 666 667 -1 635 668 -1 634 668 -1 667 668 -1 636 669 -1 635 669 -1 668 669 -1 637 670 -1 636 670 -1 669 670 -1 638 671 -1 637 671 -1 670 671 -1 639 672 -1 638 672 -1 671 672 -1 640 673 -1 639 673 -1 672 673 -1 641 674 -1 640 674 -1 673 674 -1 642 675 -1 641 675 -1 674 675 -1 643 676 -1 642 676 -1 675 676 -1 644 677 -1 643 677 -1 676 677 -1 645 678 -1 644 678 -1 677 678 -1 646 679 -1 645 679 -1 678 679 -1 647 680 -1 646 680 -1 679 680 -1 648 681 -1 647 681 -1 680 681 -1 649 682 -1 648 682 -1 681 682 -1 650 683 -1 649 683 -1 682 683 -1 651 684 -1 650 684 -1 683 684 -1 652 685 -1 651 685 -1 684 685 -1 653 686 -1 652 686 -1 685 686 -1 654 687 -1 653 687 -1 686 687 -1 655 688 -1 654 688 -1 687 688 -1 656 689 -1 655 689 -1 688 689 -1 657 690 -1 656 690 -1 689 690 -1 658 691 -1 657 691 -1 690 691 -1 659 692 -1 658 692 -1 691 692 -1 661 694 -1 660 694 -1 693 694 -1 660 693 -1 662 695 -1 661 695 -1 694 695 -1 663 696 -1 662 696 -1 695 696 -1 664 697 -1 663 697 -1 696 697 -1 665 698 -1 664 698 -1 697 698 -1 666 699 -1 665 699 -1 698 699 -1 667 700 -1 666 700 -1 699 700 -1 668 701 -1 667 701 -1 700 701 -1 669 702 -1 668 702 -1 701 702 -1 670 703 -1 669 703 -1 702 703 -1 671 704 -1 670 704 -1 703 704 -1 672 705 -1 671 705 -1 704 705 -1 673 706 -1 672 706 -1 705 706 -1 674 707 -1 673 707 -1 706 707 -1 675 708 -1 674 708 -1 707 708 -1 676 709 -1 675 709 -1 708 709 -1 677 710 -1 676 710 -1 709 710 -1 678 711 -1 677 711 -1 710 711 -1 679 712 -1 678 712 -1 711 712 -1 680 713 -1 679 713 -1 712 713 -1 681 714 -1 680 714 -1 713 714 -1 682 715 -1 681 715 -1 714 715 -1 683 716 -1 682 716 -1 715 716 -1 684 717 -1 683 717 -1 716 717 -1 685 718 -1 684 718 -1 717 718 -1 686 719 -1 685 719 -1 718 719 -1 687 720 -1 686 720 -1 719 720 -1 688 721 -1 687 721 -1 720 721 -1 689 722 -1 688 722 -1 721 722 -1 690 723 -1 689 723 -1 722 723 -1 691 724 -1 690 724 -1 723 724 -1 692 725 -1 691 725 -1 724 725 -1 694 727 -1 693 727 -1 726 727 -1 693 726 -1 695 728 -1 694 728 -1 727 728 -1 696 729 -1 695 729 -1 728 729 -1 697 730 -1 696 730 -1 729 730 -1 698 731 -1 697 731 -1 730 731 -1 699 732 -1 698 732 -1 731 732 -1 700 733 -1 699 733 -1 732 733 -1 701 734 -1 700 734 -1 733 734 -1 702 735 -1 701 735 -1 734 735 -1 703 736 -1 702 736 -1 735 736 -1 704 737 -1 703 737 -1 736 737 -1 705 738 -1 704 738 -1 737 738 -1 706 739 -1 705 739 -1 738 739 -1 707 740 -1 706 740 -1 739 740 -1 708 741 -1 707 741 -1 740 741 -1 709 742 -1 708 742 -1 741 742 -1 710 743 -1 709 743 -1 742 743 -1 711 744 -1 710 744 -1 743 744 -1 712 745 -1 711 745 -1 744 745 -1 713 746 -1 712 746 -1 745 746 -1 714 747 -1 713 747 -1 746 747 -1 715 748 -1 714 748 -1 747 748 -1 716 749 -1 715 749 -1 748 749 -1 717 750 -1 716 750 -1 749 750 -1 718 751 -1 717 751 -1 750 751 -1 719 752 -1 718 752 -1 751 752 -1 720 753 -1 719 753 -1 752 753 -1 721 754 -1 720 754 -1 753 754 -1 722 755 -1 721 755 -1 754 755 -1 723 756 -1 722 756 -1 755 756 -1 724 757 -1 723 757 -1 756 757 -1 725 758 -1 724 758 -1 757 758 -1 727 760 -1 726 760 -1 759 760 -1 726 759 -1 728 761 -1 727 761 -1 760 761 -1 729 762 -1 728 762 -1 761 762 -1 730 763 -1 729 763 -1 762 763 -1 731 764 -1 730 764 -1 763 764 -1 732 765 -1 731 765 -1 764 765 -1 733 766 -1 732 766 -1 765 766 -1 734 767 -1 733 767 -1 766 767 -1 735 768 -1 734 768 -1 767 768 -1 736 769 -1 735 769 -1 768 769 -1 737 770 -1 736 770 -1 769 770 -1 738 771 -1 737 771 -1 770 771 -1 739 772 -1 738 772 -1 771 772 -1 740 773 -1 739 773 -1 772 773 -1 741 774 -1 740 774 -1 773 774 -1 742 775 -1 741 775 -1 774 775 -1 743 776 -1 742 776 -1 775 776 -1 744 777 -1 743 777 -1 776 777 -1 745 778 -1 744 778 -1 777 778 -1 746 779 -1 745 779 -1 778 779 -1 747 780 -1 746 780 -1 779 780 -1 748 781 -1 747 781 -1 780 781 -1 749 782 -1 748 782 -1 781 782 -1 750 783 -1 749 783 -1 782 783 -1 751 784 -1 750 784 -1 783 784 -1 752 785 -1 751 785 -1 784 785 -1 753 786 -1 752 786 -1 785 786 -1 754 787 -1 753 787 -1 786 787 -1 755 788 -1 754 788 -1 787 788 -1 756 789 -1 755 789 -1 788 789 -1 757 790 -1 756 790 -1 789 790 -1 758 791 -1 757 791 -1 790 791 -1 760 793 -1 759 793 -1 792 793 -1 759 792 -1 761 794 -1 760 794 -1 793 794 -1 762 795 -1 761 795 -1 794 795 -1 763 796 -1 762 796 -1 795 796 -1 764 797 -1 763 797 -1 796 797 -1 765 798 -1 764 798 -1 797 798 -1 766 799 -1 765 799 -1 798 799 -1 767 800 -1 766 800 -1 799 800 -1 768 801 -1 767 801 -1 800 801 -1 769 802 -1 768 802 -1 801 802 -1 770 803 -1 769 803 -1 802 803 -1 771 804 -1 770 804 -1 803 804 -1 772 805 -1 771 805 -1 804 805 -1 773 806 -1 772 806 -1 805 806 -1 774 807 -1 773 807 -1 806 807 -1 775 808 -1 774 808 -1 807 808 -1 776 809 -1 775 809 -1 808 809 -1 777 810 -1 776 810 -1 809 810 -1 778 811 -1 777 811 -1 810 811 -1 779 812 -1 778 812 -1 811 812 -1 780 813 -1 779 813 -1 812 813 -1 781 814 -1 780 814 -1 813 814 -1 782 815 -1 781 815 -1 814 815 -1 783 816 -1 782 816 -1 815 816 -1 784 817 -1 783 817 -1 816 817 -1 785 818 -1 784 818 -1 817 818 -1 786 819 -1 785 819 -1 818 819 -1 787 820 -1 786 820 -1 819 820 -1 788 821 -1 787 821 -1 820 821 -1 789 822 -1 788 822 -1 821 822 -1 790 823 -1 789 823 -1 822 823 -1 791 824 -1 790 824 -1 823 824 -1 793 826 -1 792 826 -1 825 826 -1 792 825 -1 794 827 -1 793 827 -1 826 827 -1 795 828 -1 794 828 -1 827 828 -1 796 829 -1 795 829 -1 828 829 -1 797 830 -1 796 830 -1 829 830 -1 798 831 -1 797 831 -1 830 831 -1 799 832 -1 798 832 -1 831 832 -1 800 833 -1 799 833 -1 832 833 -1 801 834 -1 800 834 -1 833 834 -1 802 835 -1 801 835 -1 834 835 -1 803 836 -1 802 836 -1 835 836 -1 804 837 -1 803 837 -1 836 837 -1 805 838 -1 804 838 -1 837 838 -1 806 839 -1 805 839 -1 838 839 -1 807 840 -1 806 840 -1 839 840 -1 808 841 -1 807 841 -1 840 841 -1 809 842 -1 808 842 -1 841 842 -1 810 843 -1 809 843 -1 842 843 -1 811 844 -1 810 844 -1 843 844 -1 812 845 -1 811 845 -1 844 845 -1 813 846 -1 812 846 -1 845 846 -1 814 847 -1 813 847 -1 846 847 -1 815 848 -1 814 848 -1 847 848 -1 816 849 -1 815 849 -1 848 849 -1 817 850 -1 816 850 -1 849 850 -1 818 851 -1 817 851 -1 850 851 -1 819 852 -1 818 852 -1 851 852 -1 820 853 -1 819 853 -1 852 853 -1 821 854 -1 820 854 -1 853 854 -1 822 855 -1 821 855 -1 854 855 -1 823 856 -1 822 856 -1 855 856 -1 824 857 -1 823 857 -1 856 857 -1 826 859 -1 825 859 -1 858 859 -1 825 858 -1 827 860 -1 826 860 -1 859 860 -1 828 861 -1 827 861 -1 860 861 -1 829 862 -1 828 862 -1 861 862 -1 830 863 -1 829 863 -1 862 863 -1 831 864 -1 830 864 -1 863 864 -1 832 865 -1 831 865 -1 864 865 -1 833 866 -1 832 866 -1 865 866 -1 834 867 -1 833 867 -1 866 867 -1 835 868 -1 834 868 -1 867 868 -1 836 869 -1 835 869 -1 868 869 -1 837 870 -1 836 870 -1 869 870 -1 838 871 -1 837 871 -1 870 871 -1 839 872 -1 838 872 -1 871 872 -1 840 873 -1 839 873 -1 872 873 -1 841 874 -1 840 874 -1 873 874 -1 842 875 -1 841 875 -1 874 875 -1 843 876 -1 842 876 -1 875 876 -1 844 877 -1 843 877 -1 876 877 -1 845 878 -1 844 878 -1 877 878 -1 846 879 -1 845 879 -1 878 879 -1 847 880 -1 846 880 -1 879 880 -1 848 881 -1 847 881 -1 880 881 -1 849 882 -1 848 882 -1 881 882 -1 850 883 -1 849 883 -1 882 883 -1 851 884 -1 850 884 -1 883 884 -1 852 885 -1 851 885 -1 884 885 -1 853 886 -1 852 886 -1 885 886 -1 854 887 -1 853 887 -1 886 887 -1 855 888 -1 854 888 -1 887 888 -1 856 889 -1 855 889 -1 888 889 -1 857 890 -1 856 890 -1 889 890 -1 859 892 -1 858 892 -1 891 892 -1 858 891 -1 860 893 -1 859 893 -1 892 893 -1 861 894 -1 860 894 -1 893 894 -1 862 895 -1 861 895 -1 894 895 -1 863 896 -1 862 896 -1 895 896 -1 864 897 -1 863 897 -1 896 897 -1 865 898 -1 864 898 -1 897 898 -1 866 899 -1 865 899 -1 898 899 -1 867 900 -1 866 900 -1 899 900 -1 868 901 -1 867 901 -1 900 901 -1 869 902 -1 868 902 -1 901 902 -1 870 903 -1 869 903 -1 902 903 -1 871 904 -1 870 904 -1 903 904 -1 872 905 -1 871 905 -1 904 905 -1 873 906 -1 872 906 -1 905 906 -1 874 907 -1 873 907 -1 906 907 -1 875 908 -1 874 908 -1 907 908 -1 876 909 -1 875 909 -1 908 909 -1 877 910 -1 876 910 -1 909 910 -1 878 911 -1 877 911 -1 910 911 -1 879 912 -1 878 912 -1 911 912 -1 880 913 -1 879 913 -1 912 913 -1 881 914 -1 880 914 -1 913 914 -1 882 915 -1 881 915 -1 914 915 -1 883 916 -1 882 916 -1 915 916 -1 884 917 -1 883 917 -1 916 917 -1 885 918 -1 884 918 -1 917 918 -1 886 919 -1 885 919 -1 918 919 -1 887 920 -1 886 920 -1 919 920 -1 888 921 -1 887 921 -1 920 921 -1 889 922 -1 888 922 -1 921 922 -1 890 923 -1 889 923 -1 922 923 -1 892 925 -1 891 925 -1 924 925 -1 891 924 -1 893 926 -1 892 926 -1 925 926 -1 894 927 -1 893 927 -1 926 927 -1 895 928 -1 894 928 -1 927 928 -1 896 929 -1 895 929 -1 928 929 -1 897 930 -1 896 930 -1 929 930 -1 898 931 -1 897 931 -1 930 931 -1 899 932 -1 898 932 -1 931 932 -1 900 933 -1 899 933 -1 932 933 -1 901 934 -1 900 934 -1 933 934 -1 902 935 -1 901 935 -1 934 935 -1 903 936 -1 902 936 -1 935 936 -1 904 937 -1 903 937 -1 936 937 -1 905 938 -1 904 938 -1 937 938 -1 906 939 -1 905 939 -1 938 939 -1 907 940 -1 906 940 -1 939 940 -1 908 941 -1 907 941 -1 940 941 -1 909 942 -1 908 942 -1 941 942 -1 910 943 -1 909 943 -1 942 943 -1 911 944 -1 910 944 -1 943 944 -1 912 945 -1 911 945 -1 944 945 -1 913 946 -1 912 946 -1 945 946 -1 914 947 -1 913 947 -1 946 947 -1 915 948 -1 914 948 -1 947 948 -1 916 949 -1 915 949 -1 948 949 -1 917 950 -1 916 950 -1 949 950 -1 918 951 -1 917 951 -1 950 951 -1 919 952 -1 918 952 -1 951 952 -1 920 953 -1 919 953 -1 952 953 -1 921 954 -1 920 954 -1 953 954 -1 922 955 -1 921 955 -1 954 955 -1 923 956 -1 922 956 -1 955 956 -1 925 958 -1 924 958 -1 957 958 -1 924 957 -1 926 959 -1 925 959 -1 958 959 -1 927 960 -1 926 960 -1 959 960 -1 928 961 -1 927 961 -1 960 961 -1 929 962 -1 928 962 -1 961 962 -1 930 963 -1 929 963 -1 962 963 -1 931 964 -1 930 964 -1 963 964 -1 932 965 -1 931 965 -1 964 965 -1 933 966 -1 932 966 -1 965 966 -1 934 967 -1 933 967 -1 966 967 -1 935 968 -1 934 968 -1 967 968 -1 936 969 -1 935 969 -1 968 969 -1 937 970 -1 936 970 -1 969 970 -1 938 971 -1 937 971 -1 970 971 -1 939 972 -1 938 972 -1 971 972 -1 940 973 -1 939 973 -1 972 973 -1 941 974 -1 940 974 -1 973 974 -1 942 975 -1 941 975 -1 974 975 -1 943 976 -1 942 976 -1 975 976 -1 944 977 -1 943 977 -1 976 977 -1 945 978 -1 944 978 -1 977 978 -1 946 979 -1 945 979 -1 978 979 -1 947 980 -1 946 980 -1 979 980 -1 948 981 -1 947 981 -1 980 981 -1 949 982 -1 948 982 -1 981 982 -1 950 983 -1 949 983 -1 982 983 -1 951 984 -1 950 984 -1 983 984 -1 952 985 -1 951 985 -1 984 985 -1 953 986 -1 952 986 -1 985 986 -1 954 987 -1 953 987 -1 986 987 -1 955 988 -1 954 988 -1 987 988 -1 956 989 -1 955 989 -1 988 989 -1 958 991 -1 957 991 -1 990 991 -1 957 990 -1 959 992 -1 958 992 -1 991 992 -1 960 993 -1 959 993 -1 992 993 -1 961 994 -1 960 994 -1 993 994 -1 962 995 -1 961 995 -1 994 995 -1 963 996 -1 962 996 -1 995 996 -1 964 997 -1 963 997 -1 996 997 -1 965 998 -1 964 998 -1 997 998 -1 966 999 -1 965 999 -1 998 999 -1 967 1000 -1 966 1000 -1 999 1000 -1 968 1001 -1 967 1001 -1 1000 1001 -1 969 1002 -1 968 1002 -1 1001 1002 -1 970 1003 -1 969 1003 -1 1002 1003 -1 971 1004 -1 970 1004 -1 1003 1004 -1 972 1005 -1 971 1005 -1 1004 1005 -1 973 1006 -1 972 1006 -1 1005 1006 -1 974 1007 -1 973 1007 -1 1006 1007 -1 975 1008 -1 974 1008 -1 1007 1008 -1 976 1009 -1 975 1009 -1 1008 1009 -1 977 1010 -1 976 1010 -1 1009 1010 -1 978 1011 -1 977 1011 -1 1010 1011 -1 979 1012 -1 978 1012 -1 1011 1012 -1 980 1013 -1 979 1013 -1 1012 1013 -1 981 1014 -1 980 1014 -1 1013 1014 -1 982 1015 -1 981 1015 -1 1014 1015 -1 983 1016 -1 982 1016 -1 1015 1016 -1 984 1017 -1 983 1017 -1 1016 1017 -1 985 1018 -1 984 1018 -1 1017 1018 -1 986 1019 -1 985 1019 -1 1018 1019 -1 987 1020 -1 986 1020 -1 1019 1020 -1 988 1021 -1 987 1021 -1 1020 1021 -1 989 1022 -1 988 1022 -1 1021 1022 -1 991 1024 -1 990 1024 -1 1023 1024 -1 990 1023 -1 992 1025 -1 991 1025 -1 1024 1025 -1 993 1026 -1 992 1026 -1 1025 1026 -1 994 1027 -1 993 1027 -1 1026 1027 -1 995 1028 -1 994 1028 -1 1027 1028 -1 996 1029 -1 995 1029 -1 1028 1029 -1 997 1030 -1 996 1030 -1 1029 1030 -1 998 1031 -1 997 1031 -1 1030 1031 -1 999 1032 -1 998 1032 -1 1031 1032 -1 1000 1033 -1 999 1033 -1 1032 1033 -1 1001 1034 -1 1000 1034 -1 1033 1034 -1 1002 1035 -1 1001 1035 -1 1034 1035 -1 1003 1036 -1 1002 1036 -1 1035 1036 -1 1004 1037 -1 1003 1037 -1 1036 1037 -1 1005 1038 -1 1004 1038 -1 1037 1038 -1 1006 1039 -1 1005 1039 -1 1038 1039 -1 1007 1040 -1 1006 1040 -1 1039 1040 -1 1008 1041 -1 1007 1041 -1 1040 1041 -1 1009 1042 -1 1008 1042 -1 1041 1042 -1 1010 1043 -1 1009 1043 -1 1042 1043 -1 1011 1044 -1 1010 1044 -1 1043 1044 -1 1012 1045 -1 1011 1045 -1 1044 1045 -1 1013 1046 -1 1012 1046 -1 1045 1046 -1 1014 1047 -1 1013 1047 -1 1046 1047 -1 1015 1048 -1 1014 1048 -1 1047 1048 -1 1016 1049 -1 1015 1049 -1 1048 1049 -1 1017 1050 -1 1016 1050 -1 1049 1050 -1 1018 1051 -1 1017 1051 -1 1050 1051 -1 1019 1052 -1 1018 1052 -1 1051 1052 -1 1020 1053 -1 1019 1053 -1 1052 1053 -1 1021 1054 -1 1020 1054 -1 1053 1054 -1 1022 1055 -1 1021 1055 -1 1054 1055 -1 1024 1057 -1 1023 1057 -1 1056 1057 -1 1023 1056 -1 1025 1058 -1 1024 1058 -1 1057 1058 -1 1026 1059 -1 1025 1059 -1 1058 1059 -1 1027 1060 -1 1026 1060 -1 1059 1060 -1 1028 1061 -1 1027 1061 -1 1060 1061 -1 1029 1062 -1 1028 1062 -1 1061 1062 -1 1030 1063 -1 1029 1063 -1 1062 1063 -1 1031 1064 -1 1030 1064 -1 1063 1064 -1 1032 1065 -1 1031 1065 -1 1064 1065 -1 1033 1066 -1 1032 1066 -1 1065 1066 -1 1034 1067 -1 1033 1067 -1 1066 1067 -1 1035 1068 -1 1034 1068 -1 1067 1068 -1 1036 1069 -1 1035 1069 -1 1068 1069 -1 1037 1070 -1 1036 1070 -1 1069 1070 -1 1038 1071 -1 1037 1071 -1 1070 1071 -1 1039 1072 -1 1038 1072 -1 1071 1072 -1 1040 1073 -1 1039 1073 -1 1072 1073 -1 1041 1074 -1 1040 1074 -1 1073 1074 -1 1042 1075 -1 1041 1075 -1 1074 1075 -1 1043 1076 -1 1042 1076 -1 1075 1076 -1 1044 1077 -1 1043 1077 -1 1076 1077 -1 1045 1078 -1 1044 1078 -1 1077 1078 -1 1046 1079 -1 1045 1079 -1 1078 1079 -1 1047 1080 -1 1046 1080 -1 1079 1080 -1 1048 1081 -1 1047 1081 -1 1080 1081 -1 1049 1082 -1 1048 1082 -1 1081 1082 -1 1050 1083 -1 1049 1083 -1 1082 1083 -1 1051 1084 -1 1050 1084 -1 1083 1084 -1 1052 1085 -1 1051 1085 -1 1084 1085 -1 1053 1086 -1 1052 1086 -1 1085 1086 -1 1054 1087 -1 1053 1087 -1 1086 1087 -1 1055 1088 -1 1054 1088 -1 1087 1088 -1 \">\n", " <coordinate point=\"0 0 0 0.03125 0 0 0.0625 0 0 0.09375 0 0 0.125 0 0 0.15625 0 0 0.1875 0 0 0.21875 0 0 0.25 0 0 0.28125 0 0 0.3125 0 0 0.34375 0 0 0.375 0 0 0.40625 0 0 0.4375 0 0 0.46875 0 0 0.5 0 0 0.53125 0 0 0.5625 0 0 0.59375 0 0 0.625 0 0 0.65625 0 0 0.6875 0 0 0.71875 0 0 0.75 0 0 0.78125 0 0 0.8125 0 0 0.84375 0 0 0.875 0 0 0.90625 0 0 0.9375 0 0 0.96875 0 0 1 0 0 0 0.03125 0 0.03125 0.03125 0 0.0625 0.03125 0 0.09375 0.03125 0 0.125 0.03125 0 0.15625 0.03125 0 0.1875 0.03125 0 0.21875 0.03125 0 0.25 0.03125 0 0.28125 0.03125 0 0.3125 0.03125 0 0.34375 0.03125 0 0.375 0.03125 0 0.40625 0.03125 0 0.4375 0.03125 0 0.46875 0.03125 0 0.5 0.03125 0 0.53125 0.03125 0 0.5625 0.03125 0 0.59375 0.03125 0 0.625 0.03125 0 0.65625 0.03125 0 0.6875 0.03125 0 0.71875 0.03125 0 0.75 0.03125 0 0.78125 0.03125 0 0.8125 0.03125 0 0.84375 0.03125 0 0.875 0.03125 0 0.90625 0.03125 0 0.9375 0.03125 0 0.96875 0.03125 0 1 0.03125 0 0 0.0625 0 0.03125 0.0625 0 0.0625 0.0625 0 0.09375 0.0625 0 0.125 0.0625 0 0.15625 0.0625 0 0.1875 0.0625 0 0.21875 0.0625 0 0.25 0.0625 0 0.28125 0.0625 0 0.3125 0.0625 0 0.34375 0.0625 0 0.375 0.0625 0 0.40625 0.0625 0 0.4375 0.0625 0 0.46875 0.0625 0 0.5 0.0625 0 0.53125 0.0625 0 0.5625 0.0625 0 0.59375 0.0625 0 0.625 0.0625 0 0.65625 0.0625 0 0.6875 0.0625 0 0.71875 0.0625 0 0.75 0.0625 0 0.78125 0.0625 0 0.8125 0.0625 0 0.84375 0.0625 0 0.875 0.0625 0 0.90625 0.0625 0 0.9375 0.0625 0 0.96875 0.0625 0 1 0.0625 0 0 0.09375 0 0.03125 0.09375 0 0.0625 0.09375 0 0.09375 0.09375 0 0.125 0.09375 0 0.15625 0.09375 0 0.1875 0.09375 0 0.21875 0.09375 0 0.25 0.09375 0 0.28125 0.09375 0 0.3125 0.09375 0 0.34375 0.09375 0 0.375 0.09375 0 0.40625 0.09375 0 0.4375 0.09375 0 0.46875 0.09375 0 0.5 0.09375 0 0.53125 0.09375 0 0.5625 0.09375 0 0.59375 0.09375 0 0.625 0.09375 0 0.65625 0.09375 0 0.6875 0.09375 0 0.71875 0.09375 0 0.75 0.09375 0 0.78125 0.09375 0 0.8125 0.09375 0 0.84375 0.09375 0 0.875 0.09375 0 0.90625 0.09375 0 0.9375 0.09375 0 0.96875 0.09375 0 1 0.09375 0 0 0.125 0 0.03125 0.125 0 0.0625 0.125 0 0.09375 0.125 0 0.125 0.125 0 0.15625 0.125 0 0.1875 0.125 0 0.21875 0.125 0 0.25 0.125 0 0.28125 0.125 0 0.3125 0.125 0 0.34375 0.125 0 0.375 0.125 0 0.40625 0.125 0 0.4375 0.125 0 0.46875 0.125 0 0.5 0.125 0 0.53125 0.125 0 0.5625 0.125 0 0.59375 0.125 0 0.625 0.125 0 0.65625 0.125 0 0.6875 0.125 0 0.71875 0.125 0 0.75 0.125 0 0.78125 0.125 0 0.8125 0.125 0 0.84375 0.125 0 0.875 0.125 0 0.90625 0.125 0 0.9375 0.125 0 0.96875 0.125 0 1 0.125 0 0 0.15625 0 0.03125 0.15625 0 0.0625 0.15625 0 0.09375 0.15625 0 0.125 0.15625 0 0.15625 0.15625 0 0.1875 0.15625 0 0.21875 0.15625 0 0.25 0.15625 0 0.28125 0.15625 0 0.3125 0.15625 0 0.34375 0.15625 0 0.375 0.15625 0 0.40625 0.15625 0 0.4375 0.15625 0 0.46875 0.15625 0 0.5 0.15625 0 0.53125 0.15625 0 0.5625 0.15625 0 0.59375 0.15625 0 0.625 0.15625 0 0.65625 0.15625 0 0.6875 0.15625 0 0.71875 0.15625 0 0.75 0.15625 0 0.78125 0.15625 0 0.8125 0.15625 0 0.84375 0.15625 0 0.875 0.15625 0 0.90625 0.15625 0 0.9375 0.15625 0 0.96875 0.15625 0 1 0.15625 0 0 0.1875 0 0.03125 0.1875 0 0.0625 0.1875 0 0.09375 0.1875 0 0.125 0.1875 0 0.15625 0.1875 0 0.1875 0.1875 0 0.21875 0.1875 0 0.25 0.1875 0 0.28125 0.1875 0 0.3125 0.1875 0 0.34375 0.1875 0 0.375 0.1875 0 0.40625 0.1875 0 0.4375 0.1875 0 0.46875 0.1875 0 0.5 0.1875 0 0.53125 0.1875 0 0.5625 0.1875 0 0.59375 0.1875 0 0.625 0.1875 0 0.65625 0.1875 0 0.6875 0.1875 0 0.71875 0.1875 0 0.75 0.1875 0 0.78125 0.1875 0 0.8125 0.1875 0 0.84375 0.1875 0 0.875 0.1875 0 0.90625 0.1875 0 0.9375 0.1875 0 0.96875 0.1875 0 1 0.1875 0 0 0.21875 0 0.03125 0.21875 0 0.0625 0.21875 0 0.09375 0.21875 0 0.125 0.21875 0 0.15625 0.21875 0 0.1875 0.21875 0 0.21875 0.21875 0 0.25 0.21875 0 0.28125 0.21875 0 0.3125 0.21875 0 0.34375 0.21875 0 0.375 0.21875 0 0.40625 0.21875 0 0.4375 0.21875 0 0.46875 0.21875 0 0.5 0.21875 0 0.53125 0.21875 0 0.5625 0.21875 0 0.59375 0.21875 0 0.625 0.21875 0 0.65625 0.21875 0 0.6875 0.21875 0 0.71875 0.21875 0 0.75 0.21875 0 0.78125 0.21875 0 0.8125 0.21875 0 0.84375 0.21875 0 0.875 0.21875 0 0.90625 0.21875 0 0.9375 0.21875 0 0.96875 0.21875 0 1 0.21875 0 0 0.25 0 0.03125 0.25 0 0.0625 0.25 0 0.09375 0.25 0 0.125 0.25 0 0.15625 0.25 0 0.1875 0.25 0 0.21875 0.25 0 0.25 0.25 0 0.28125 0.25 0 0.3125 0.25 0 0.34375 0.25 0 0.375 0.25 0 0.40625 0.25 0 0.4375 0.25 0 0.46875 0.25 0 0.5 0.25 0 0.53125 0.25 0 0.5625 0.25 0 0.59375 0.25 0 0.625 0.25 0 0.65625 0.25 0 0.6875 0.25 0 0.71875 0.25 0 0.75 0.25 0 0.78125 0.25 0 0.8125 0.25 0 0.84375 0.25 0 0.875 0.25 0 0.90625 0.25 0 0.9375 0.25 0 0.96875 0.25 0 1 0.25 0 0 0.28125 0 0.03125 0.28125 0 0.0625 0.28125 0 0.09375 0.28125 0 0.125 0.28125 0 0.15625 0.28125 0 0.1875 0.28125 0 0.21875 0.28125 0 0.25 0.28125 0 0.28125 0.28125 0 0.3125 0.28125 0 0.34375 0.28125 0 0.375 0.28125 0 0.40625 0.28125 0 0.4375 0.28125 0 0.46875 0.28125 0 0.5 0.28125 0 0.53125 0.28125 0 0.5625 0.28125 0 0.59375 0.28125 0 0.625 0.28125 0 0.65625 0.28125 0 0.6875 0.28125 0 0.71875 0.28125 0 0.75 0.28125 0 0.78125 0.28125 0 0.8125 0.28125 0 0.84375 0.28125 0 0.875 0.28125 0 0.90625 0.28125 0 0.9375 0.28125 0 0.96875 0.28125 0 1 0.28125 0 0 0.3125 0 0.03125 0.3125 0 0.0625 0.3125 0 0.09375 0.3125 0 0.125 0.3125 0 0.15625 0.3125 0 0.1875 0.3125 0 0.21875 0.3125 0 0.25 0.3125 0 0.28125 0.3125 0 0.3125 0.3125 0 0.34375 0.3125 0 0.375 0.3125 0 0.40625 0.3125 0 0.4375 0.3125 0 0.46875 0.3125 0 0.5 0.3125 0 0.53125 0.3125 0 0.5625 0.3125 0 0.59375 0.3125 0 0.625 0.3125 0 0.65625 0.3125 0 0.6875 0.3125 0 0.71875 0.3125 0 0.75 0.3125 0 0.78125 0.3125 0 0.8125 0.3125 0 0.84375 0.3125 0 0.875 0.3125 0 0.90625 0.3125 0 0.9375 0.3125 0 0.96875 0.3125 0 1 0.3125 0 0 0.34375 0 0.03125 0.34375 0 0.0625 0.34375 0 0.09375 0.34375 0 0.125 0.34375 0 0.15625 0.34375 0 0.1875 0.34375 0 0.21875 0.34375 0 0.25 0.34375 0 0.28125 0.34375 0 0.3125 0.34375 0 0.34375 0.34375 0 0.375 0.34375 0 0.40625 0.34375 0 0.4375 0.34375 0 0.46875 0.34375 0 0.5 0.34375 0 0.53125 0.34375 0 0.5625 0.34375 0 0.59375 0.34375 0 0.625 0.34375 0 0.65625 0.34375 0 0.6875 0.34375 0 0.71875 0.34375 0 0.75 0.34375 0 0.78125 0.34375 0 0.8125 0.34375 0 0.84375 0.34375 0 0.875 0.34375 0 0.90625 0.34375 0 0.9375 0.34375 0 0.96875 0.34375 0 1 0.34375 0 0 0.375 0 0.03125 0.375 0 0.0625 0.375 0 0.09375 0.375 0 0.125 0.375 0 0.15625 0.375 0 0.1875 0.375 0 0.21875 0.375 0 0.25 0.375 0 0.28125 0.375 0 0.3125 0.375 0 0.34375 0.375 0 0.375 0.375 0 0.40625 0.375 0 0.4375 0.375 0 0.46875 0.375 0 0.5 0.375 0 0.53125 0.375 0 0.5625 0.375 0 0.59375 0.375 0 0.625 0.375 0 0.65625 0.375 0 0.6875 0.375 0 0.71875 0.375 0 0.75 0.375 0 0.78125 0.375 0 0.8125 0.375 0 0.84375 0.375 0 0.875 0.375 0 0.90625 0.375 0 0.9375 0.375 0 0.96875 0.375 0 1 0.375 0 0 0.40625 0 0.03125 0.40625 0 0.0625 0.40625 0 0.09375 0.40625 0 0.125 0.40625 0 0.15625 0.40625 0 0.1875 0.40625 0 0.21875 0.40625 0 0.25 0.40625 0 0.28125 0.40625 0 0.3125 0.40625 0 0.34375 0.40625 0 0.375 0.40625 0 0.40625 0.40625 0 0.4375 0.40625 0 0.46875 0.40625 0 0.5 0.40625 0 0.53125 0.40625 0 0.5625 0.40625 0 0.59375 0.40625 0 0.625 0.40625 0 0.65625 0.40625 0 0.6875 0.40625 0 0.71875 0.40625 0 0.75 0.40625 0 0.78125 0.40625 0 0.8125 0.40625 0 0.84375 0.40625 0 0.875 0.40625 0 0.90625 0.40625 0 0.9375 0.40625 0 0.96875 0.40625 0 1 0.40625 0 0 0.4375 0 0.03125 0.4375 0 0.0625 0.4375 0 0.09375 0.4375 0 0.125 0.4375 0 0.15625 0.4375 0 0.1875 0.4375 0 0.21875 0.4375 0 0.25 0.4375 0 0.28125 0.4375 0 0.3125 0.4375 0 0.34375 0.4375 0 0.375 0.4375 0 0.40625 0.4375 0 0.4375 0.4375 0 0.46875 0.4375 0 0.5 0.4375 0 0.53125 0.4375 0 0.5625 0.4375 0 0.59375 0.4375 0 0.625 0.4375 0 0.65625 0.4375 0 0.6875 0.4375 0 0.71875 0.4375 0 0.75 0.4375 0 0.78125 0.4375 0 0.8125 0.4375 0 0.84375 0.4375 0 0.875 0.4375 0 0.90625 0.4375 0 0.9375 0.4375 0 0.96875 0.4375 0 1 0.4375 0 0 0.46875 0 0.03125 0.46875 0 0.0625 0.46875 0 0.09375 0.46875 0 0.125 0.46875 0 0.15625 0.46875 0 0.1875 0.46875 0 0.21875 0.46875 0 0.25 0.46875 0 0.28125 0.46875 0 0.3125 0.46875 0 0.34375 0.46875 0 0.375 0.46875 0 0.40625 0.46875 0 0.4375 0.46875 0 0.46875 0.46875 0 0.5 0.46875 0 0.53125 0.46875 0 0.5625 0.46875 0 0.59375 0.46875 0 0.625 0.46875 0 0.65625 0.46875 0 0.6875 0.46875 0 0.71875 0.46875 0 0.75 0.46875 0 0.78125 0.46875 0 0.8125 0.46875 0 0.84375 0.46875 0 0.875 0.46875 0 0.90625 0.46875 0 0.9375 0.46875 0 0.96875 0.46875 0 1 0.46875 0 0 0.5 0 0.03125 0.5 0 0.0625 0.5 0 0.09375 0.5 0 0.125 0.5 0 0.15625 0.5 0 0.1875 0.5 0 0.21875 0.5 0 0.25 0.5 0 0.28125 0.5 0 0.3125 0.5 0 0.34375 0.5 0 0.375 0.5 0 0.40625 0.5 0 0.4375 0.5 0 0.46875 0.5 0 0.5 0.5 0 0.53125 0.5 0 0.5625 0.5 0 0.59375 0.5 0 0.625 0.5 0 0.65625 0.5 0 0.6875 0.5 0 0.71875 0.5 0 0.75 0.5 0 0.78125 0.5 0 0.8125 0.5 0 0.84375 0.5 0 0.875 0.5 0 0.90625 0.5 0 0.9375 0.5 0 0.96875 0.5 0 1 0.5 0 0 0.53125 0 0.03125 0.53125 0 0.0625 0.53125 0 0.09375 0.53125 0 0.125 0.53125 0 0.15625 0.53125 0 0.1875 0.53125 0 0.21875 0.53125 0 0.25 0.53125 0 0.28125 0.53125 0 0.3125 0.53125 0 0.34375 0.53125 0 0.375 0.53125 0 0.40625 0.53125 0 0.4375 0.53125 0 0.46875 0.53125 0 0.5 0.53125 0 0.53125 0.53125 0 0.5625 0.53125 0 0.59375 0.53125 0 0.625 0.53125 0 0.65625 0.53125 0 0.6875 0.53125 0 0.71875 0.53125 0 0.75 0.53125 0 0.78125 0.53125 0 0.8125 0.53125 0 0.84375 0.53125 0 0.875 0.53125 0 0.90625 0.53125 0 0.9375 0.53125 0 0.96875 0.53125 0 1 0.53125 0 0 0.5625 0 0.03125 0.5625 0 0.0625 0.5625 0 0.09375 0.5625 0 0.125 0.5625 0 0.15625 0.5625 0 0.1875 0.5625 0 0.21875 0.5625 0 0.25 0.5625 0 0.28125 0.5625 0 0.3125 0.5625 0 0.34375 0.5625 0 0.375 0.5625 0 0.40625 0.5625 0 0.4375 0.5625 0 0.46875 0.5625 0 0.5 0.5625 0 0.53125 0.5625 0 0.5625 0.5625 0 0.59375 0.5625 0 0.625 0.5625 0 0.65625 0.5625 0 0.6875 0.5625 0 0.71875 0.5625 0 0.75 0.5625 0 0.78125 0.5625 0 0.8125 0.5625 0 0.84375 0.5625 0 0.875 0.5625 0 0.90625 0.5625 0 0.9375 0.5625 0 0.96875 0.5625 0 1 0.5625 0 0 0.59375 0 0.03125 0.59375 0 0.0625 0.59375 0 0.09375 0.59375 0 0.125 0.59375 0 0.15625 0.59375 0 0.1875 0.59375 0 0.21875 0.59375 0 0.25 0.59375 0 0.28125 0.59375 0 0.3125 0.59375 0 0.34375 0.59375 0 0.375 0.59375 0 0.40625 0.59375 0 0.4375 0.59375 0 0.46875 0.59375 0 0.5 0.59375 0 0.53125 0.59375 0 0.5625 0.59375 0 0.59375 0.59375 0 0.625 0.59375 0 0.65625 0.59375 0 0.6875 0.59375 0 0.71875 0.59375 0 0.75 0.59375 0 0.78125 0.59375 0 0.8125 0.59375 0 0.84375 0.59375 0 0.875 0.59375 0 0.90625 0.59375 0 0.9375 0.59375 0 0.96875 0.59375 0 1 0.59375 0 0 0.625 0 0.03125 0.625 0 0.0625 0.625 0 0.09375 0.625 0 0.125 0.625 0 0.15625 0.625 0 0.1875 0.625 0 0.21875 0.625 0 0.25 0.625 0 0.28125 0.625 0 0.3125 0.625 0 0.34375 0.625 0 0.375 0.625 0 0.40625 0.625 0 0.4375 0.625 0 0.46875 0.625 0 0.5 0.625 0 0.53125 0.625 0 0.5625 0.625 0 0.59375 0.625 0 0.625 0.625 0 0.65625 0.625 0 0.6875 0.625 0 0.71875 0.625 0 0.75 0.625 0 0.78125 0.625 0 0.8125 0.625 0 0.84375 0.625 0 0.875 0.625 0 0.90625 0.625 0 0.9375 0.625 0 0.96875 0.625 0 1 0.625 0 0 0.65625 0 0.03125 0.65625 0 0.0625 0.65625 0 0.09375 0.65625 0 0.125 0.65625 0 0.15625 0.65625 0 0.1875 0.65625 0 0.21875 0.65625 0 0.25 0.65625 0 0.28125 0.65625 0 0.3125 0.65625 0 0.34375 0.65625 0 0.375 0.65625 0 0.40625 0.65625 0 0.4375 0.65625 0 0.46875 0.65625 0 0.5 0.65625 0 0.53125 0.65625 0 0.5625 0.65625 0 0.59375 0.65625 0 0.625 0.65625 0 0.65625 0.65625 0 0.6875 0.65625 0 0.71875 0.65625 0 0.75 0.65625 0 0.78125 0.65625 0 0.8125 0.65625 0 0.84375 0.65625 0 0.875 0.65625 0 0.90625 0.65625 0 0.9375 0.65625 0 0.96875 0.65625 0 1 0.65625 0 0 0.6875 0 0.03125 0.6875 0 0.0625 0.6875 0 0.09375 0.6875 0 0.125 0.6875 0 0.15625 0.6875 0 0.1875 0.6875 0 0.21875 0.6875 0 0.25 0.6875 0 0.28125 0.6875 0 0.3125 0.6875 0 0.34375 0.6875 0 0.375 0.6875 0 0.40625 0.6875 0 0.4375 0.6875 0 0.46875 0.6875 0 0.5 0.6875 0 0.53125 0.6875 0 0.5625 0.6875 0 0.59375 0.6875 0 0.625 0.6875 0 0.65625 0.6875 0 0.6875 0.6875 0 0.71875 0.6875 0 0.75 0.6875 0 0.78125 0.6875 0 0.8125 0.6875 0 0.84375 0.6875 0 0.875 0.6875 0 0.90625 0.6875 0 0.9375 0.6875 0 0.96875 0.6875 0 1 0.6875 0 0 0.71875 0 0.03125 0.71875 0 0.0625 0.71875 0 0.09375 0.71875 0 0.125 0.71875 0 0.15625 0.71875 0 0.1875 0.71875 0 0.21875 0.71875 0 0.25 0.71875 0 0.28125 0.71875 0 0.3125 0.71875 0 0.34375 0.71875 0 0.375 0.71875 0 0.40625 0.71875 0 0.4375 0.71875 0 0.46875 0.71875 0 0.5 0.71875 0 0.53125 0.71875 0 0.5625 0.71875 0 0.59375 0.71875 0 0.625 0.71875 0 0.65625 0.71875 0 0.6875 0.71875 0 0.71875 0.71875 0 0.75 0.71875 0 0.78125 0.71875 0 0.8125 0.71875 0 0.84375 0.71875 0 0.875 0.71875 0 0.90625 0.71875 0 0.9375 0.71875 0 0.96875 0.71875 0 1 0.71875 0 0 0.75 0 0.03125 0.75 0 0.0625 0.75 0 0.09375 0.75 0 0.125 0.75 0 0.15625 0.75 0 0.1875 0.75 0 0.21875 0.75 0 0.25 0.75 0 0.28125 0.75 0 0.3125 0.75 0 0.34375 0.75 0 0.375 0.75 0 0.40625 0.75 0 0.4375 0.75 0 0.46875 0.75 0 0.5 0.75 0 0.53125 0.75 0 0.5625 0.75 0 0.59375 0.75 0 0.625 0.75 0 0.65625 0.75 0 0.6875 0.75 0 0.71875 0.75 0 0.75 0.75 0 0.78125 0.75 0 0.8125 0.75 0 0.84375 0.75 0 0.875 0.75 0 0.90625 0.75 0 0.9375 0.75 0 0.96875 0.75 0 1 0.75 0 0 0.78125 0 0.03125 0.78125 0 0.0625 0.78125 0 0.09375 0.78125 0 0.125 0.78125 0 0.15625 0.78125 0 0.1875 0.78125 0 0.21875 0.78125 0 0.25 0.78125 0 0.28125 0.78125 0 0.3125 0.78125 0 0.34375 0.78125 0 0.375 0.78125 0 0.40625 0.78125 0 0.4375 0.78125 0 0.46875 0.78125 0 0.5 0.78125 0 0.53125 0.78125 0 0.5625 0.78125 0 0.59375 0.78125 0 0.625 0.78125 0 0.65625 0.78125 0 0.6875 0.78125 0 0.71875 0.78125 0 0.75 0.78125 0 0.78125 0.78125 0 0.8125 0.78125 0 0.84375 0.78125 0 0.875 0.78125 0 0.90625 0.78125 0 0.9375 0.78125 0 0.96875 0.78125 0 1 0.78125 0 0 0.8125 0 0.03125 0.8125 0 0.0625 0.8125 0 0.09375 0.8125 0 0.125 0.8125 0 0.15625 0.8125 0 0.1875 0.8125 0 0.21875 0.8125 0 0.25 0.8125 0 0.28125 0.8125 0 0.3125 0.8125 0 0.34375 0.8125 0 0.375 0.8125 0 0.40625 0.8125 0 0.4375 0.8125 0 0.46875 0.8125 0 0.5 0.8125 0 0.53125 0.8125 0 0.5625 0.8125 0 0.59375 0.8125 0 0.625 0.8125 0 0.65625 0.8125 0 0.6875 0.8125 0 0.71875 0.8125 0 0.75 0.8125 0 0.78125 0.8125 0 0.8125 0.8125 0 0.84375 0.8125 0 0.875 0.8125 0 0.90625 0.8125 0 0.9375 0.8125 0 0.96875 0.8125 0 1 0.8125 0 0 0.84375 0 0.03125 0.84375 0 0.0625 0.84375 0 0.09375 0.84375 0 0.125 0.84375 0 0.15625 0.84375 0 0.1875 0.84375 0 0.21875 0.84375 0 0.25 0.84375 0 0.28125 0.84375 0 0.3125 0.84375 0 0.34375 0.84375 0 0.375 0.84375 0 0.40625 0.84375 0 0.4375 0.84375 0 0.46875 0.84375 0 0.5 0.84375 0 0.53125 0.84375 0 0.5625 0.84375 0 0.59375 0.84375 0 0.625 0.84375 0 0.65625 0.84375 0 0.6875 0.84375 0 0.71875 0.84375 0 0.75 0.84375 0 0.78125 0.84375 0 0.8125 0.84375 0 0.84375 0.84375 0 0.875 0.84375 0 0.90625 0.84375 0 0.9375 0.84375 0 0.96875 0.84375 0 1 0.84375 0 0 0.875 0 0.03125 0.875 0 0.0625 0.875 0 0.09375 0.875 0 0.125 0.875 0 0.15625 0.875 0 0.1875 0.875 0 0.21875 0.875 0 0.25 0.875 0 0.28125 0.875 0 0.3125 0.875 0 0.34375 0.875 0 0.375 0.875 0 0.40625 0.875 0 0.4375 0.875 0 0.46875 0.875 0 0.5 0.875 0 0.53125 0.875 0 0.5625 0.875 0 0.59375 0.875 0 0.625 0.875 0 0.65625 0.875 0 0.6875 0.875 0 0.71875 0.875 0 0.75 0.875 0 0.78125 0.875 0 0.8125 0.875 0 0.84375 0.875 0 0.875 0.875 0 0.90625 0.875 0 0.9375 0.875 0 0.96875 0.875 0 1 0.875 0 0 0.90625 0 0.03125 0.90625 0 0.0625 0.90625 0 0.09375 0.90625 0 0.125 0.90625 0 0.15625 0.90625 0 0.1875 0.90625 0 0.21875 0.90625 0 0.25 0.90625 0 0.28125 0.90625 0 0.3125 0.90625 0 0.34375 0.90625 0 0.375 0.90625 0 0.40625 0.90625 0 0.4375 0.90625 0 0.46875 0.90625 0 0.5 0.90625 0 0.53125 0.90625 0 0.5625 0.90625 0 0.59375 0.90625 0 0.625 0.90625 0 0.65625 0.90625 0 0.6875 0.90625 0 0.71875 0.90625 0 0.75 0.90625 0 0.78125 0.90625 0 0.8125 0.90625 0 0.84375 0.90625 0 0.875 0.90625 0 0.90625 0.90625 0 0.9375 0.90625 0 0.96875 0.90625 0 1 0.90625 0 0 0.9375 0 0.03125 0.9375 0 0.0625 0.9375 0 0.09375 0.9375 0 0.125 0.9375 0 0.15625 0.9375 0 0.1875 0.9375 0 0.21875 0.9375 0 0.25 0.9375 0 0.28125 0.9375 0 0.3125 0.9375 0 0.34375 0.9375 0 0.375 0.9375 0 0.40625 0.9375 0 0.4375 0.9375 0 0.46875 0.9375 0 0.5 0.9375 0 0.53125 0.9375 0 0.5625 0.9375 0 0.59375 0.9375 0 0.625 0.9375 0 0.65625 0.9375 0 0.6875 0.9375 0 0.71875 0.9375 0 0.75 0.9375 0 0.78125 0.9375 0 0.8125 0.9375 0 0.84375 0.9375 0 0.875 0.9375 0 0.90625 0.9375 0 0.9375 0.9375 0 0.96875 0.9375 0 1 0.9375 0 0 0.96875 0 0.03125 0.96875 0 0.0625 0.96875 0 0.09375 0.96875 0 0.125 0.96875 0 0.15625 0.96875 0 0.1875 0.96875 0 0.21875 0.96875 0 0.25 0.96875 0 0.28125 0.96875 0 0.3125 0.96875 0 0.34375 0.96875 0 0.375 0.96875 0 0.40625 0.96875 0 0.4375 0.96875 0 0.46875 0.96875 0 0.5 0.96875 0 0.53125 0.96875 0 0.5625 0.96875 0 0.59375 0.96875 0 0.625 0.96875 0 0.65625 0.96875 0 0.6875 0.96875 0 0.71875 0.96875 0 0.75 0.96875 0 0.78125 0.96875 0 0.8125 0.96875 0 0.84375 0.96875 0 0.875 0.96875 0 0.90625 0.96875 0 0.9375 0.96875 0 0.96875 0.96875 0 1 0.96875 0 0 1 0 0.03125 1 0 0.0625 1 0 0.09375 1 0 0.125 1 0 0.15625 1 0 0.1875 1 0 0.21875 1 0 0.25 1 0 0.28125 1 0 0.3125 1 0 0.34375 1 0 0.375 1 0 0.40625 1 0 0.4375 1 0 0.46875 1 0 0.5 1 0 0.53125 1 0 0.5625 1 0 0.59375 1 0 0.625 1 0 0.65625 1 0 0.6875 1 0 0.71875 1 0 0.75 1 0 0.78125 1 0 0.8125 1 0 0.84375 1 0 0.875 1 0 0.90625 1 0 0.9375 1 0 0.96875 1 0 1 1 0 \"></coordinate>\n", " </indexedLineSet>\n", " </shape>\n", " <viewpoint id=\"default\" position=\"1.914214 1.914214 1.414214\" orientation=\"-0.7071067812 0.7071067812 0 1\" fieldOfView=\"0.785398\" centerOfRotation=\"0.500000 0.500000 0.000000\" zNear=\"-1\" zFar=\"-1\"></viewpoint>\n", " <background skyColor=\"0.950000 0.950000 0.950000\"></background>\n", " <directionalLight ambientIntensity=\"0\" intensity=\"1\"></directionalLight>\n", " </scene>\n", " </x3d>\n", " <div style=\"position: absolute; margin: 1%; text-align: left; font-size: 12px; color: black;\">Number of vertices: 1089, number of cells: 2048</div>\n", " </body>\n", "</html>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Display mesh\n", "HTML(X3DOM.html(mesh))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<!DOCTYPE html>\n", "<html>\n", " <head>\n", " <meta http-equiv=\"content-type\" content=\"text/html;charset=UTF-8\" />\n", " <meta name=\"generator\" content=\"FEniCS/DOLFIN (http://fenicsproject.org)\" />\n", " <title>FEniCS/DOLFIN X3DOM plot</title>\n", " <script type=\"text/javascript\" src=\"http://www.x3dom.org/download/x3dom.js\"></script>\n", " <link rel=\"stylesheet\" type=\"text/css\" href=\"http://www.x3dom.org/download/x3dom.css\" />\n", " </head>\n", " <body>\n", " <x3d showStat=\"false\" xmlns=\"http://www.web3d.org/specifications/x3d-namespace\" width=\"500.000000px\" height=\"400.000000px\">\n", " <scene>\n", " <shape>\n", " <appearance>\n", " <material diffuseColor=\"1.000000 1.000000 1.000000\" emissiveColor=\"0.000000 0.000000 0.000000\" specularColor=\"0.000000 0.000000 0.000000\" ambientIntensity=\"0\" shininess=\"0.5\" transparency=\"0\"></material>\n", " </appearance>\n", " <indexedFaceSet solid=\"false\" colorPercVertex=\"false\" coordIndex=\"0 1 18 -1 0 1 290 -1 0 289 290 -1 0 17 18 -1 0 289 306 -1 0 17 306 -1 1 2 19 -1 1 2 291 -1 1 290 291 -1 1 18 19 -1 2 3 20 -1 2 3 292 -1 2 291 292 -1 2 19 20 -1 3 4 21 -1 3 4 293 -1 3 292 293 -1 3 20 21 -1 4 5 22 -1 4 5 294 -1 4 293 294 -1 4 21 22 -1 5 6 23 -1 5 6 295 -1 5 294 295 -1 5 22 23 -1 6 7 24 -1 6 7 296 -1 6 295 296 -1 6 23 24 -1 7 8 25 -1 7 8 297 -1 7 296 297 -1 7 24 25 -1 8 9 26 -1 8 9 298 -1 8 297 298 -1 8 25 26 -1 9 10 27 -1 9 10 299 -1 9 298 299 -1 9 26 27 -1 10 11 28 -1 10 11 300 -1 10 299 300 -1 10 27 28 -1 11 12 29 -1 11 12 301 -1 11 300 301 -1 11 28 29 -1 12 13 30 -1 12 13 302 -1 12 301 302 -1 12 29 30 -1 13 14 31 -1 13 14 303 -1 13 302 303 -1 13 30 31 -1 14 15 32 -1 14 15 304 -1 14 303 304 -1 14 31 32 -1 16 33 307 -1 15 16 33 -1 16 305 307 -1 15 16 305 -1 15 304 305 -1 15 32 33 -1 17 18 35 -1 17 34 35 -1 17 306 308 -1 17 34 308 -1 18 19 36 -1 18 35 36 -1 19 20 37 -1 19 36 37 -1 20 21 38 -1 20 37 38 -1 21 22 39 -1 21 38 39 -1 22 23 40 -1 22 39 40 -1 23 24 41 -1 23 40 41 -1 24 25 42 -1 24 41 42 -1 25 26 43 -1 25 42 43 -1 26 27 44 -1 26 43 44 -1 27 28 45 -1 27 44 45 -1 28 29 46 -1 28 45 46 -1 29 30 47 -1 29 46 47 -1 30 31 48 -1 30 47 48 -1 31 32 49 -1 31 48 49 -1 33 50 309 -1 32 33 50 -1 33 307 309 -1 32 49 50 -1 34 35 52 -1 34 51 52 -1 34 308 310 -1 34 51 310 -1 35 36 53 -1 35 52 53 -1 36 37 54 -1 36 53 54 -1 37 38 55 -1 37 54 55 -1 38 39 56 -1 38 55 56 -1 39 40 57 -1 39 56 57 -1 40 41 58 -1 40 57 58 -1 41 42 59 -1 41 58 59 -1 42 43 60 -1 42 59 60 -1 43 44 61 -1 43 60 61 -1 44 45 62 -1 44 61 62 -1 45 46 63 -1 45 62 63 -1 46 47 64 -1 46 63 64 -1 47 48 65 -1 47 64 65 -1 48 49 66 -1 48 65 66 -1 50 67 311 -1 49 50 67 -1 50 309 311 -1 49 66 67 -1 51 52 69 -1 51 68 69 -1 51 310 312 -1 51 68 312 -1 52 53 70 -1 52 69 70 -1 53 54 71 -1 53 70 71 -1 54 55 72 -1 54 71 72 -1 55 56 73 -1 55 72 73 -1 56 57 74 -1 56 73 74 -1 57 58 75 -1 57 74 75 -1 58 59 76 -1 58 75 76 -1 59 60 77 -1 59 76 77 -1 60 61 78 -1 60 77 78 -1 61 62 79 -1 61 78 79 -1 62 63 80 -1 62 79 80 -1 63 64 81 -1 63 80 81 -1 64 65 82 -1 64 81 82 -1 65 66 83 -1 65 82 83 -1 67 84 313 -1 66 67 84 -1 67 311 313 -1 66 83 84 -1 68 69 86 -1 68 85 86 -1 68 312 314 -1 68 85 314 -1 69 70 87 -1 69 86 87 -1 70 71 88 -1 70 87 88 -1 71 72 89 -1 71 88 89 -1 72 73 90 -1 72 89 90 -1 73 74 91 -1 73 90 91 -1 74 75 92 -1 74 91 92 -1 75 76 93 -1 75 92 93 -1 76 77 94 -1 76 93 94 -1 77 78 95 -1 77 94 95 -1 78 79 96 -1 78 95 96 -1 79 80 97 -1 79 96 97 -1 80 81 98 -1 80 97 98 -1 81 82 99 -1 81 98 99 -1 82 83 100 -1 82 99 100 -1 84 101 315 -1 83 84 101 -1 84 313 315 -1 83 100 101 -1 85 86 103 -1 85 102 103 -1 85 314 316 -1 85 102 316 -1 86 87 104 -1 86 103 104 -1 87 88 105 -1 87 104 105 -1 88 89 106 -1 88 105 106 -1 89 90 107 -1 89 106 107 -1 90 91 108 -1 90 107 108 -1 91 92 109 -1 91 108 109 -1 92 93 110 -1 92 109 110 -1 93 94 111 -1 93 110 111 -1 94 95 112 -1 94 111 112 -1 95 96 113 -1 95 112 113 -1 96 97 114 -1 96 113 114 -1 97 98 115 -1 97 114 115 -1 98 99 116 -1 98 115 116 -1 99 100 117 -1 99 116 117 -1 101 118 317 -1 100 101 118 -1 101 315 317 -1 100 117 118 -1 102 103 120 -1 102 119 120 -1 102 316 318 -1 102 119 318 -1 103 104 121 -1 103 120 121 -1 104 105 122 -1 104 121 122 -1 105 106 123 -1 105 122 123 -1 106 107 124 -1 106 123 124 -1 107 108 125 -1 107 124 125 -1 108 109 126 -1 108 125 126 -1 109 110 127 -1 109 126 127 -1 110 111 128 -1 110 127 128 -1 111 112 129 -1 111 128 129 -1 112 113 130 -1 112 129 130 -1 113 114 131 -1 113 130 131 -1 114 115 132 -1 114 131 132 -1 115 116 133 -1 115 132 133 -1 116 117 134 -1 116 133 134 -1 118 135 319 -1 117 118 135 -1 118 317 319 -1 117 134 135 -1 119 120 137 -1 119 136 137 -1 119 318 320 -1 119 136 320 -1 120 121 138 -1 120 137 138 -1 121 122 139 -1 121 138 139 -1 122 123 140 -1 122 139 140 -1 123 124 141 -1 123 140 141 -1 124 125 142 -1 124 141 142 -1 125 126 143 -1 125 142 143 -1 126 127 144 -1 126 143 144 -1 127 128 145 -1 127 144 145 -1 128 129 146 -1 128 145 146 -1 129 130 147 -1 129 146 147 -1 130 131 148 -1 130 147 148 -1 131 132 149 -1 131 148 149 -1 132 133 150 -1 132 149 150 -1 133 134 151 -1 133 150 151 -1 135 152 321 -1 134 135 152 -1 135 319 321 -1 134 151 152 -1 136 137 154 -1 136 153 154 -1 136 320 322 -1 136 153 322 -1 137 138 155 -1 137 154 155 -1 138 139 156 -1 138 155 156 -1 139 140 157 -1 139 156 157 -1 140 141 158 -1 140 157 158 -1 141 142 159 -1 141 158 159 -1 142 143 160 -1 142 159 160 -1 143 144 161 -1 143 160 161 -1 144 145 162 -1 144 161 162 -1 145 146 163 -1 145 162 163 -1 146 147 164 -1 146 163 164 -1 147 148 165 -1 147 164 165 -1 148 149 166 -1 148 165 166 -1 149 150 167 -1 149 166 167 -1 150 151 168 -1 150 167 168 -1 152 169 323 -1 151 152 169 -1 152 321 323 -1 151 168 169 -1 153 154 171 -1 153 170 171 -1 153 322 324 -1 153 170 324 -1 154 155 172 -1 154 171 172 -1 155 156 173 -1 155 172 173 -1 156 157 174 -1 156 173 174 -1 157 158 175 -1 157 174 175 -1 158 159 176 -1 158 175 176 -1 159 160 177 -1 159 176 177 -1 160 161 178 -1 160 177 178 -1 161 162 179 -1 161 178 179 -1 162 163 180 -1 162 179 180 -1 163 164 181 -1 163 180 181 -1 164 165 182 -1 164 181 182 -1 165 166 183 -1 165 182 183 -1 166 167 184 -1 166 183 184 -1 167 168 185 -1 167 184 185 -1 169 186 325 -1 168 169 186 -1 169 323 325 -1 168 185 186 -1 170 171 188 -1 170 187 188 -1 170 324 326 -1 170 187 326 -1 171 172 189 -1 171 188 189 -1 172 173 190 -1 172 189 190 -1 173 174 191 -1 173 190 191 -1 174 175 192 -1 174 191 192 -1 175 176 193 -1 175 192 193 -1 176 177 194 -1 176 193 194 -1 177 178 195 -1 177 194 195 -1 178 179 196 -1 178 195 196 -1 179 180 197 -1 179 196 197 -1 180 181 198 -1 180 197 198 -1 181 182 199 -1 181 198 199 -1 182 183 200 -1 182 199 200 -1 183 184 201 -1 183 200 201 -1 184 185 202 -1 184 201 202 -1 186 203 327 -1 185 186 203 -1 186 325 327 -1 185 202 203 -1 187 188 205 -1 187 204 205 -1 187 326 328 -1 187 204 328 -1 188 189 206 -1 188 205 206 -1 189 190 207 -1 189 206 207 -1 190 191 208 -1 190 207 208 -1 191 192 209 -1 191 208 209 -1 192 193 210 -1 192 209 210 -1 193 194 211 -1 193 210 211 -1 194 195 212 -1 194 211 212 -1 195 196 213 -1 195 212 213 -1 196 197 214 -1 196 213 214 -1 197 198 215 -1 197 214 215 -1 198 199 216 -1 198 215 216 -1 199 200 217 -1 199 216 217 -1 200 201 218 -1 200 217 218 -1 201 202 219 -1 201 218 219 -1 203 220 329 -1 202 203 220 -1 203 327 329 -1 202 219 220 -1 204 205 222 -1 204 221 222 -1 204 328 330 -1 204 221 330 -1 205 206 223 -1 205 222 223 -1 206 207 224 -1 206 223 224 -1 207 208 225 -1 207 224 225 -1 208 209 226 -1 208 225 226 -1 209 210 227 -1 209 226 227 -1 210 211 228 -1 210 227 228 -1 211 212 229 -1 211 228 229 -1 212 213 230 -1 212 229 230 -1 213 214 231 -1 213 230 231 -1 214 215 232 -1 214 231 232 -1 215 216 233 -1 215 232 233 -1 216 217 234 -1 216 233 234 -1 217 218 235 -1 217 234 235 -1 218 219 236 -1 218 235 236 -1 220 237 331 -1 219 220 237 -1 220 329 331 -1 219 236 237 -1 221 222 239 -1 221 238 239 -1 221 330 332 -1 221 238 332 -1 222 223 240 -1 222 239 240 -1 223 224 241 -1 223 240 241 -1 224 225 242 -1 224 241 242 -1 225 226 243 -1 225 242 243 -1 226 227 244 -1 226 243 244 -1 227 228 245 -1 227 244 245 -1 228 229 246 -1 228 245 246 -1 229 230 247 -1 229 246 247 -1 230 231 248 -1 230 247 248 -1 231 232 249 -1 231 248 249 -1 232 233 250 -1 232 249 250 -1 233 234 251 -1 233 250 251 -1 234 235 252 -1 234 251 252 -1 235 236 253 -1 235 252 253 -1 237 254 333 -1 236 237 254 -1 237 331 333 -1 236 253 254 -1 238 239 256 -1 238 255 256 -1 238 332 334 -1 238 255 334 -1 239 240 257 -1 239 256 257 -1 240 241 258 -1 240 257 258 -1 241 242 259 -1 241 258 259 -1 242 243 260 -1 242 259 260 -1 243 244 261 -1 243 260 261 -1 244 245 262 -1 244 261 262 -1 245 246 263 -1 245 262 263 -1 246 247 264 -1 246 263 264 -1 247 248 265 -1 247 264 265 -1 248 249 266 -1 248 265 266 -1 249 250 267 -1 249 266 267 -1 250 251 268 -1 250 267 268 -1 251 252 269 -1 251 268 269 -1 252 253 270 -1 252 269 270 -1 254 271 335 -1 253 254 271 -1 254 333 335 -1 253 270 271 -1 255 256 273 -1 272 273 337 -1 255 272 273 -1 255 334 336 -1 272 336 337 -1 255 272 336 -1 256 257 274 -1 273 274 338 -1 256 273 274 -1 273 337 338 -1 257 258 275 -1 274 275 339 -1 257 274 275 -1 274 338 339 -1 258 259 276 -1 275 276 340 -1 258 275 276 -1 275 339 340 -1 259 260 277 -1 276 277 341 -1 259 276 277 -1 276 340 341 -1 260 261 278 -1 277 278 342 -1 260 277 278 -1 277 341 342 -1 261 262 279 -1 278 279 343 -1 261 278 279 -1 278 342 343 -1 262 263 280 -1 279 280 344 -1 262 279 280 -1 279 343 344 -1 263 264 281 -1 280 281 345 -1 263 280 281 -1 280 344 345 -1 264 265 282 -1 281 282 346 -1 264 281 282 -1 281 345 346 -1 265 266 283 -1 282 283 347 -1 265 282 283 -1 282 346 347 -1 266 267 284 -1 283 284 348 -1 266 283 284 -1 283 347 348 -1 267 268 285 -1 284 285 349 -1 267 284 285 -1 284 348 349 -1 268 269 286 -1 285 286 350 -1 268 285 286 -1 285 349 350 -1 269 270 287 -1 286 287 351 -1 269 286 287 -1 286 350 351 -1 271 288 352 -1 270 271 288 -1 271 335 352 -1 287 288 352 -1 270 287 288 -1 287 351 352 -1 289 290 354 -1 289 353 354 -1 289 353 370 -1 289 306 370 -1 290 291 355 -1 290 354 355 -1 291 292 356 -1 291 355 356 -1 292 293 357 -1 292 356 357 -1 293 294 358 -1 293 357 358 -1 294 295 359 -1 294 358 359 -1 295 296 360 -1 295 359 360 -1 296 297 361 -1 296 360 361 -1 297 298 362 -1 297 361 362 -1 298 299 363 -1 298 362 363 -1 299 300 364 -1 299 363 364 -1 300 301 365 -1 300 364 365 -1 301 302 366 -1 301 365 366 -1 302 303 367 -1 302 366 367 -1 303 304 368 -1 303 367 368 -1 305 307 371 -1 305 369 371 -1 304 305 369 -1 304 368 369 -1 306 370 372 -1 306 308 372 -1 307 309 373 -1 307 371 373 -1 308 372 374 -1 308 310 374 -1 309 311 375 -1 309 373 375 -1 310 374 376 -1 310 312 376 -1 311 313 377 -1 311 375 377 -1 312 376 378 -1 312 314 378 -1 313 315 379 -1 313 377 379 -1 314 378 380 -1 314 316 380 -1 315 317 381 -1 315 379 381 -1 316 380 382 -1 316 318 382 -1 317 319 383 -1 317 381 383 -1 318 382 384 -1 318 320 384 -1 319 321 385 -1 319 383 385 -1 320 384 386 -1 320 322 386 -1 321 323 387 -1 321 385 387 -1 322 386 388 -1 322 324 388 -1 323 325 389 -1 323 387 389 -1 324 388 390 -1 324 326 390 -1 325 327 391 -1 325 389 391 -1 326 390 392 -1 326 328 392 -1 327 329 393 -1 327 391 393 -1 328 392 394 -1 328 330 394 -1 329 331 395 -1 329 393 395 -1 330 394 396 -1 330 332 396 -1 331 333 397 -1 331 395 397 -1 332 396 398 -1 332 334 398 -1 333 335 399 -1 333 397 399 -1 336 337 401 -1 334 398 400 -1 336 400 401 -1 334 336 400 -1 337 338 402 -1 337 401 402 -1 338 339 403 -1 338 402 403 -1 339 340 404 -1 339 403 404 -1 340 341 405 -1 340 404 405 -1 341 342 406 -1 341 405 406 -1 342 343 407 -1 342 406 407 -1 343 344 408 -1 343 407 408 -1 344 345 409 -1 344 408 409 -1 345 346 410 -1 345 409 410 -1 346 347 411 -1 346 410 411 -1 347 348 412 -1 347 411 412 -1 348 349 413 -1 348 412 413 -1 349 350 414 -1 349 413 414 -1 350 351 415 -1 350 414 415 -1 335 352 416 -1 335 399 416 -1 351 352 416 -1 351 415 416 -1 353 354 418 -1 353 417 418 -1 353 417 434 -1 353 370 434 -1 354 355 419 -1 354 418 419 -1 355 356 420 -1 355 419 420 -1 356 357 421 -1 356 420 421 -1 357 358 422 -1 357 421 422 -1 358 359 423 -1 358 422 423 -1 359 360 424 -1 359 423 424 -1 360 361 425 -1 360 424 425 -1 361 362 426 -1 361 425 426 -1 362 363 427 -1 362 426 427 -1 363 364 428 -1 363 427 428 -1 364 365 429 -1 364 428 429 -1 365 366 430 -1 365 429 430 -1 366 367 431 -1 366 430 431 -1 367 368 432 -1 367 431 432 -1 369 371 435 -1 369 433 435 -1 368 369 433 -1 368 432 433 -1 370 434 436 -1 370 372 436 -1 371 373 437 -1 371 435 437 -1 372 436 438 -1 372 374 438 -1 373 375 439 -1 373 437 439 -1 374 438 440 -1 374 376 440 -1 375 377 441 -1 375 439 441 -1 376 440 442 -1 376 378 442 -1 377 379 443 -1 377 441 443 -1 378 442 444 -1 378 380 444 -1 379 381 445 -1 379 443 445 -1 380 444 446 -1 380 382 446 -1 381 383 447 -1 381 445 447 -1 382 446 448 -1 382 384 448 -1 383 385 449 -1 383 447 449 -1 384 448 450 -1 384 386 450 -1 385 387 451 -1 385 449 451 -1 386 450 452 -1 386 388 452 -1 387 389 453 -1 387 451 453 -1 388 452 454 -1 388 390 454 -1 389 391 455 -1 389 453 455 -1 390 454 456 -1 390 392 456 -1 391 393 457 -1 391 455 457 -1 392 456 458 -1 392 394 458 -1 393 395 459 -1 393 457 459 -1 394 458 460 -1 394 396 460 -1 395 397 461 -1 395 459 461 -1 396 460 462 -1 396 398 462 -1 397 399 463 -1 397 461 463 -1 400 401 465 -1 398 462 464 -1 400 464 465 -1 398 400 464 -1 401 402 466 -1 401 465 466 -1 402 403 467 -1 402 466 467 -1 403 404 468 -1 403 467 468 -1 404 405 469 -1 404 468 469 -1 405 406 470 -1 405 469 470 -1 406 407 471 -1 406 470 471 -1 407 408 472 -1 407 471 472 -1 408 409 473 -1 408 472 473 -1 409 410 474 -1 409 473 474 -1 410 411 475 -1 410 474 475 -1 411 412 476 -1 411 475 476 -1 412 413 477 -1 412 476 477 -1 413 414 478 -1 413 477 478 -1 414 415 479 -1 414 478 479 -1 399 416 480 -1 399 463 480 -1 415 416 480 -1 415 479 480 -1 417 418 482 -1 417 481 482 -1 417 481 498 -1 417 434 498 -1 418 419 483 -1 418 482 483 -1 419 420 484 -1 419 483 484 -1 420 421 485 -1 420 484 485 -1 421 422 486 -1 421 485 486 -1 422 423 487 -1 422 486 487 -1 423 424 488 -1 423 487 488 -1 424 425 489 -1 424 488 489 -1 425 426 490 -1 425 489 490 -1 426 427 491 -1 426 490 491 -1 427 428 492 -1 427 491 492 -1 428 429 493 -1 428 492 493 -1 429 430 494 -1 429 493 494 -1 430 431 495 -1 430 494 495 -1 431 432 496 -1 431 495 496 -1 433 435 499 -1 433 497 499 -1 432 433 497 -1 432 496 497 -1 434 498 500 -1 434 436 500 -1 435 437 501 -1 435 499 501 -1 436 500 502 -1 436 438 502 -1 437 439 503 -1 437 501 503 -1 438 502 504 -1 438 440 504 -1 439 441 505 -1 439 503 505 -1 440 504 506 -1 440 442 506 -1 441 443 507 -1 441 505 507 -1 442 506 508 -1 442 444 508 -1 443 445 509 -1 443 507 509 -1 444 508 510 -1 444 446 510 -1 445 447 511 -1 445 509 511 -1 446 510 512 -1 446 448 512 -1 447 449 513 -1 447 511 513 -1 448 512 514 -1 448 450 514 -1 449 451 515 -1 449 513 515 -1 450 514 516 -1 450 452 516 -1 451 453 517 -1 451 515 517 -1 452 516 518 -1 452 454 518 -1 453 455 519 -1 453 517 519 -1 454 518 520 -1 454 456 520 -1 455 457 521 -1 455 519 521 -1 456 520 522 -1 456 458 522 -1 457 459 523 -1 457 521 523 -1 458 522 524 -1 458 460 524 -1 459 461 525 -1 459 523 525 -1 460 524 526 -1 460 462 526 -1 461 463 527 -1 461 525 527 -1 464 465 529 -1 462 526 528 -1 464 528 529 -1 462 464 528 -1 465 466 530 -1 465 529 530 -1 466 467 531 -1 466 530 531 -1 467 468 532 -1 467 531 532 -1 468 469 533 -1 468 532 533 -1 469 470 534 -1 469 533 534 -1 470 471 535 -1 470 534 535 -1 471 472 536 -1 471 535 536 -1 472 473 537 -1 472 536 537 -1 473 474 538 -1 473 537 538 -1 474 475 539 -1 474 538 539 -1 475 476 540 -1 475 539 540 -1 476 477 541 -1 476 540 541 -1 477 478 542 -1 477 541 542 -1 478 479 543 -1 478 542 543 -1 463 480 544 -1 463 527 544 -1 479 480 544 -1 479 543 544 -1 481 482 546 -1 481 545 546 -1 481 545 562 -1 481 498 562 -1 482 483 547 -1 482 546 547 -1 483 484 548 -1 483 547 548 -1 484 485 549 -1 484 548 549 -1 485 486 550 -1 485 549 550 -1 486 487 551 -1 486 550 551 -1 487 488 552 -1 487 551 552 -1 488 489 553 -1 488 552 553 -1 489 490 554 -1 489 553 554 -1 490 491 555 -1 490 554 555 -1 491 492 556 -1 491 555 556 -1 492 493 557 -1 492 556 557 -1 493 494 558 -1 493 557 558 -1 494 495 559 -1 494 558 559 -1 495 496 560 -1 495 559 560 -1 497 499 563 -1 497 561 563 -1 496 497 561 -1 496 560 561 -1 498 562 564 -1 498 500 564 -1 499 501 565 -1 499 563 565 -1 500 564 566 -1 500 502 566 -1 501 503 567 -1 501 565 567 -1 502 566 568 -1 502 504 568 -1 503 505 569 -1 503 567 569 -1 504 568 570 -1 504 506 570 -1 505 507 571 -1 505 569 571 -1 506 570 572 -1 506 508 572 -1 507 509 573 -1 507 571 573 -1 508 572 574 -1 508 510 574 -1 509 511 575 -1 509 573 575 -1 510 574 576 -1 510 512 576 -1 511 513 577 -1 511 575 577 -1 512 576 578 -1 512 514 578 -1 513 515 579 -1 513 577 579 -1 514 578 580 -1 514 516 580 -1 515 517 581 -1 515 579 581 -1 516 580 582 -1 516 518 582 -1 517 519 583 -1 517 581 583 -1 518 582 584 -1 518 520 584 -1 519 521 585 -1 519 583 585 -1 520 584 586 -1 520 522 586 -1 521 523 587 -1 521 585 587 -1 522 586 588 -1 522 524 588 -1 523 525 589 -1 523 587 589 -1 524 588 590 -1 524 526 590 -1 525 527 591 -1 525 589 591 -1 528 529 593 -1 526 590 592 -1 528 592 593 -1 526 528 592 -1 529 530 594 -1 529 593 594 -1 530 531 595 -1 530 594 595 -1 531 532 596 -1 531 595 596 -1 532 533 597 -1 532 596 597 -1 533 534 598 -1 533 597 598 -1 534 535 599 -1 534 598 599 -1 535 536 600 -1 535 599 600 -1 536 537 601 -1 536 600 601 -1 537 538 602 -1 537 601 602 -1 538 539 603 -1 538 602 603 -1 539 540 604 -1 539 603 604 -1 540 541 605 -1 540 604 605 -1 541 542 606 -1 541 605 606 -1 542 543 607 -1 542 606 607 -1 527 544 608 -1 527 591 608 -1 543 544 608 -1 543 607 608 -1 545 546 610 -1 545 609 610 -1 545 609 626 -1 545 562 626 -1 546 547 611 -1 546 610 611 -1 547 548 612 -1 547 611 612 -1 548 549 613 -1 548 612 613 -1 549 550 614 -1 549 613 614 -1 550 551 615 -1 550 614 615 -1 551 552 616 -1 551 615 616 -1 552 553 617 -1 552 616 617 -1 553 554 618 -1 553 617 618 -1 554 555 619 -1 554 618 619 -1 555 556 620 -1 555 619 620 -1 556 557 621 -1 556 620 621 -1 557 558 622 -1 557 621 622 -1 558 559 623 -1 558 622 623 -1 559 560 624 -1 559 623 624 -1 561 563 627 -1 561 625 627 -1 560 561 625 -1 560 624 625 -1 562 626 628 -1 562 564 628 -1 563 565 629 -1 563 627 629 -1 564 628 630 -1 564 566 630 -1 565 567 631 -1 565 629 631 -1 566 630 632 -1 566 568 632 -1 567 569 633 -1 567 631 633 -1 568 632 634 -1 568 570 634 -1 569 571 635 -1 569 633 635 -1 570 634 636 -1 570 572 636 -1 571 573 637 -1 571 635 637 -1 572 636 638 -1 572 574 638 -1 573 575 639 -1 573 637 639 -1 574 638 640 -1 574 576 640 -1 575 577 641 -1 575 639 641 -1 576 640 642 -1 576 578 642 -1 577 579 643 -1 577 641 643 -1 578 642 644 -1 578 580 644 -1 579 581 645 -1 579 643 645 -1 580 644 646 -1 580 582 646 -1 581 583 647 -1 581 645 647 -1 582 646 648 -1 582 584 648 -1 583 585 649 -1 583 647 649 -1 584 648 650 -1 584 586 650 -1 585 587 651 -1 585 649 651 -1 586 650 652 -1 586 588 652 -1 587 589 653 -1 587 651 653 -1 588 652 654 -1 588 590 654 -1 589 591 655 -1 589 653 655 -1 592 593 657 -1 590 654 656 -1 592 656 657 -1 590 592 656 -1 593 594 658 -1 593 657 658 -1 594 595 659 -1 594 658 659 -1 595 596 660 -1 595 659 660 -1 596 597 661 -1 596 660 661 -1 597 598 662 -1 597 661 662 -1 598 599 663 -1 598 662 663 -1 599 600 664 -1 599 663 664 -1 600 601 665 -1 600 664 665 -1 601 602 666 -1 601 665 666 -1 602 603 667 -1 602 666 667 -1 603 604 668 -1 603 667 668 -1 604 605 669 -1 604 668 669 -1 605 606 670 -1 605 669 670 -1 606 607 671 -1 606 670 671 -1 591 608 672 -1 591 655 672 -1 607 608 672 -1 607 671 672 -1 609 610 674 -1 609 673 674 -1 609 673 690 -1 609 626 690 -1 610 611 675 -1 610 674 675 -1 611 612 676 -1 611 675 676 -1 612 613 677 -1 612 676 677 -1 613 614 678 -1 613 677 678 -1 614 615 679 -1 614 678 679 -1 615 616 680 -1 615 679 680 -1 616 617 681 -1 616 680 681 -1 617 618 682 -1 617 681 682 -1 618 619 683 -1 618 682 683 -1 619 620 684 -1 619 683 684 -1 620 621 685 -1 620 684 685 -1 621 622 686 -1 621 685 686 -1 622 623 687 -1 622 686 687 -1 623 624 688 -1 623 687 688 -1 625 627 691 -1 625 689 691 -1 624 625 689 -1 624 688 689 -1 626 690 692 -1 626 628 692 -1 627 629 693 -1 627 691 693 -1 628 692 694 -1 628 630 694 -1 629 631 695 -1 629 693 695 -1 630 694 696 -1 630 632 696 -1 631 633 697 -1 631 695 697 -1 632 696 698 -1 632 634 698 -1 633 635 699 -1 633 697 699 -1 634 698 700 -1 634 636 700 -1 635 637 701 -1 635 699 701 -1 636 700 702 -1 636 638 702 -1 637 639 703 -1 637 701 703 -1 638 702 704 -1 638 640 704 -1 639 641 705 -1 639 703 705 -1 640 704 706 -1 640 642 706 -1 641 643 707 -1 641 705 707 -1 642 706 708 -1 642 644 708 -1 643 645 709 -1 643 707 709 -1 644 708 710 -1 644 646 710 -1 645 647 711 -1 645 709 711 -1 646 710 712 -1 646 648 712 -1 647 649 713 -1 647 711 713 -1 648 712 714 -1 648 650 714 -1 649 651 715 -1 649 713 715 -1 650 714 716 -1 650 652 716 -1 651 653 717 -1 651 715 717 -1 652 716 718 -1 652 654 718 -1 653 655 719 -1 653 717 719 -1 656 657 721 -1 654 718 720 -1 656 720 721 -1 654 656 720 -1 657 658 722 -1 657 721 722 -1 658 659 723 -1 658 722 723 -1 659 660 724 -1 659 723 724 -1 660 661 725 -1 660 724 725 -1 661 662 726 -1 661 725 726 -1 662 663 727 -1 662 726 727 -1 663 664 728 -1 663 727 728 -1 664 665 729 -1 664 728 729 -1 665 666 730 -1 665 729 730 -1 666 667 731 -1 666 730 731 -1 667 668 732 -1 667 731 732 -1 668 669 733 -1 668 732 733 -1 669 670 734 -1 669 733 734 -1 670 671 735 -1 670 734 735 -1 655 672 736 -1 655 719 736 -1 671 672 736 -1 671 735 736 -1 673 674 738 -1 673 737 738 -1 673 737 754 -1 673 690 754 -1 674 675 739 -1 674 738 739 -1 675 676 740 -1 675 739 740 -1 676 677 741 -1 676 740 741 -1 677 678 742 -1 677 741 742 -1 678 679 743 -1 678 742 743 -1 679 680 744 -1 679 743 744 -1 680 681 745 -1 680 744 745 -1 681 682 746 -1 681 745 746 -1 682 683 747 -1 682 746 747 -1 683 684 748 -1 683 747 748 -1 684 685 749 -1 684 748 749 -1 685 686 750 -1 685 749 750 -1 686 687 751 -1 686 750 751 -1 687 688 752 -1 687 751 752 -1 689 691 755 -1 689 753 755 -1 688 689 753 -1 688 752 753 -1 690 754 756 -1 690 692 756 -1 691 693 757 -1 691 755 757 -1 692 756 758 -1 692 694 758 -1 693 695 759 -1 693 757 759 -1 694 758 760 -1 694 696 760 -1 695 697 761 -1 695 759 761 -1 696 760 762 -1 696 698 762 -1 697 699 763 -1 697 761 763 -1 698 762 764 -1 698 700 764 -1 699 701 765 -1 699 763 765 -1 700 764 766 -1 700 702 766 -1 701 703 767 -1 701 765 767 -1 702 766 768 -1 702 704 768 -1 703 705 769 -1 703 767 769 -1 704 768 770 -1 704 706 770 -1 705 707 771 -1 705 769 771 -1 706 770 772 -1 706 708 772 -1 707 709 773 -1 707 771 773 -1 708 772 774 -1 708 710 774 -1 709 711 775 -1 709 773 775 -1 710 774 776 -1 710 712 776 -1 711 713 777 -1 711 775 777 -1 712 776 778 -1 712 714 778 -1 713 715 779 -1 713 777 779 -1 714 778 780 -1 714 716 780 -1 715 717 781 -1 715 779 781 -1 716 780 782 -1 716 718 782 -1 717 719 783 -1 717 781 783 -1 720 721 785 -1 718 782 784 -1 720 784 785 -1 718 720 784 -1 721 722 786 -1 721 785 786 -1 722 723 787 -1 722 786 787 -1 723 724 788 -1 723 787 788 -1 724 725 789 -1 724 788 789 -1 725 726 790 -1 725 789 790 -1 726 727 791 -1 726 790 791 -1 727 728 792 -1 727 791 792 -1 728 729 793 -1 728 792 793 -1 729 730 794 -1 729 793 794 -1 730 731 795 -1 730 794 795 -1 731 732 796 -1 731 795 796 -1 732 733 797 -1 732 796 797 -1 733 734 798 -1 733 797 798 -1 734 735 799 -1 734 798 799 -1 719 736 800 -1 719 783 800 -1 735 736 800 -1 735 799 800 -1 737 738 802 -1 737 801 802 -1 737 801 818 -1 737 754 818 -1 738 739 803 -1 738 802 803 -1 739 740 804 -1 739 803 804 -1 740 741 805 -1 740 804 805 -1 741 742 806 -1 741 805 806 -1 742 743 807 -1 742 806 807 -1 743 744 808 -1 743 807 808 -1 744 745 809 -1 744 808 809 -1 745 746 810 -1 745 809 810 -1 746 747 811 -1 746 810 811 -1 747 748 812 -1 747 811 812 -1 748 749 813 -1 748 812 813 -1 749 750 814 -1 749 813 814 -1 750 751 815 -1 750 814 815 -1 751 752 816 -1 751 815 816 -1 753 755 819 -1 753 817 819 -1 752 753 817 -1 752 816 817 -1 754 818 820 -1 754 756 820 -1 755 757 821 -1 755 819 821 -1 756 820 822 -1 756 758 822 -1 757 759 823 -1 757 821 823 -1 758 822 824 -1 758 760 824 -1 759 761 825 -1 759 823 825 -1 760 824 826 -1 760 762 826 -1 761 763 827 -1 761 825 827 -1 762 826 828 -1 762 764 828 -1 763 765 829 -1 763 827 829 -1 764 828 830 -1 764 766 830 -1 765 767 831 -1 765 829 831 -1 766 830 832 -1 766 768 832 -1 767 769 833 -1 767 831 833 -1 768 832 834 -1 768 770 834 -1 769 771 835 -1 769 833 835 -1 770 834 836 -1 770 772 836 -1 771 773 837 -1 771 835 837 -1 772 836 838 -1 772 774 838 -1 773 775 839 -1 773 837 839 -1 774 838 840 -1 774 776 840 -1 775 777 841 -1 775 839 841 -1 776 840 842 -1 776 778 842 -1 777 779 843 -1 777 841 843 -1 778 842 844 -1 778 780 844 -1 779 781 845 -1 779 843 845 -1 780 844 846 -1 780 782 846 -1 781 783 847 -1 781 845 847 -1 784 785 849 -1 782 846 848 -1 784 848 849 -1 782 784 848 -1 785 786 850 -1 785 849 850 -1 786 787 851 -1 786 850 851 -1 787 788 852 -1 787 851 852 -1 788 789 853 -1 788 852 853 -1 789 790 854 -1 789 853 854 -1 790 791 855 -1 790 854 855 -1 791 792 856 -1 791 855 856 -1 792 793 857 -1 792 856 857 -1 793 794 858 -1 793 857 858 -1 794 795 859 -1 794 858 859 -1 795 796 860 -1 795 859 860 -1 796 797 861 -1 796 860 861 -1 797 798 862 -1 797 861 862 -1 798 799 863 -1 798 862 863 -1 783 800 864 -1 783 847 864 -1 799 800 864 -1 799 863 864 -1 801 802 866 -1 801 865 866 -1 801 865 882 -1 801 818 882 -1 802 803 867 -1 802 866 867 -1 803 804 868 -1 803 867 868 -1 804 805 869 -1 804 868 869 -1 805 806 870 -1 805 869 870 -1 806 807 871 -1 806 870 871 -1 807 808 872 -1 807 871 872 -1 808 809 873 -1 808 872 873 -1 809 810 874 -1 809 873 874 -1 810 811 875 -1 810 874 875 -1 811 812 876 -1 811 875 876 -1 812 813 877 -1 812 876 877 -1 813 814 878 -1 813 877 878 -1 814 815 879 -1 814 878 879 -1 815 816 880 -1 815 879 880 -1 817 819 883 -1 817 881 883 -1 816 817 881 -1 816 880 881 -1 818 882 884 -1 818 820 884 -1 819 821 885 -1 819 883 885 -1 820 884 886 -1 820 822 886 -1 821 823 887 -1 821 885 887 -1 822 886 888 -1 822 824 888 -1 823 825 889 -1 823 887 889 -1 824 888 890 -1 824 826 890 -1 825 827 891 -1 825 889 891 -1 826 890 892 -1 826 828 892 -1 827 829 893 -1 827 891 893 -1 828 892 894 -1 828 830 894 -1 829 831 895 -1 829 893 895 -1 830 894 896 -1 830 832 896 -1 831 833 897 -1 831 895 897 -1 832 896 898 -1 832 834 898 -1 833 835 899 -1 833 897 899 -1 834 898 900 -1 834 836 900 -1 835 837 901 -1 835 899 901 -1 836 900 902 -1 836 838 902 -1 837 839 903 -1 837 901 903 -1 838 902 904 -1 838 840 904 -1 839 841 905 -1 839 903 905 -1 840 904 906 -1 840 842 906 -1 841 843 907 -1 841 905 907 -1 842 906 908 -1 842 844 908 -1 843 845 909 -1 843 907 909 -1 844 908 910 -1 844 846 910 -1 845 847 911 -1 845 909 911 -1 848 849 913 -1 846 910 912 -1 848 912 913 -1 846 848 912 -1 849 850 914 -1 849 913 914 -1 850 851 915 -1 850 914 915 -1 851 852 916 -1 851 915 916 -1 852 853 917 -1 852 916 917 -1 853 854 918 -1 853 917 918 -1 854 855 919 -1 854 918 919 -1 855 856 920 -1 855 919 920 -1 856 857 921 -1 856 920 921 -1 857 858 922 -1 857 921 922 -1 858 859 923 -1 858 922 923 -1 859 860 924 -1 859 923 924 -1 860 861 925 -1 860 924 925 -1 861 862 926 -1 861 925 926 -1 862 863 927 -1 862 926 927 -1 847 864 928 -1 847 911 928 -1 863 864 928 -1 863 927 928 -1 865 866 930 -1 865 929 930 -1 865 929 946 -1 865 882 946 -1 866 867 931 -1 866 930 931 -1 867 868 932 -1 867 931 932 -1 868 869 933 -1 868 932 933 -1 869 870 934 -1 869 933 934 -1 870 871 935 -1 870 934 935 -1 871 872 936 -1 871 935 936 -1 872 873 937 -1 872 936 937 -1 873 874 938 -1 873 937 938 -1 874 875 939 -1 874 938 939 -1 875 876 940 -1 875 939 940 -1 876 877 941 -1 876 940 941 -1 877 878 942 -1 877 941 942 -1 878 879 943 -1 878 942 943 -1 879 880 944 -1 879 943 944 -1 881 883 947 -1 881 945 947 -1 880 881 945 -1 880 944 945 -1 882 946 948 -1 882 884 948 -1 883 885 949 -1 883 947 949 -1 884 948 950 -1 884 886 950 -1 885 887 951 -1 885 949 951 -1 886 950 952 -1 886 888 952 -1 887 889 953 -1 887 951 953 -1 888 952 954 -1 888 890 954 -1 889 891 955 -1 889 953 955 -1 890 954 956 -1 890 892 956 -1 891 893 957 -1 891 955 957 -1 892 956 958 -1 892 894 958 -1 893 895 959 -1 893 957 959 -1 894 958 960 -1 894 896 960 -1 895 897 961 -1 895 959 961 -1 896 960 962 -1 896 898 962 -1 897 899 963 -1 897 961 963 -1 898 962 964 -1 898 900 964 -1 899 901 965 -1 899 963 965 -1 900 964 966 -1 900 902 966 -1 901 903 967 -1 901 965 967 -1 902 966 968 -1 902 904 968 -1 903 905 969 -1 903 967 969 -1 904 968 970 -1 904 906 970 -1 905 907 971 -1 905 969 971 -1 906 970 972 -1 906 908 972 -1 907 909 973 -1 907 971 973 -1 908 972 974 -1 908 910 974 -1 909 911 975 -1 909 973 975 -1 912 913 977 -1 910 974 976 -1 912 976 977 -1 910 912 976 -1 913 914 978 -1 913 977 978 -1 914 915 979 -1 914 978 979 -1 915 916 980 -1 915 979 980 -1 916 917 981 -1 916 980 981 -1 917 918 982 -1 917 981 982 -1 918 919 983 -1 918 982 983 -1 919 920 984 -1 919 983 984 -1 920 921 985 -1 920 984 985 -1 921 922 986 -1 921 985 986 -1 922 923 987 -1 922 986 987 -1 923 924 988 -1 923 987 988 -1 924 925 989 -1 924 988 989 -1 925 926 990 -1 925 989 990 -1 926 927 991 -1 926 990 991 -1 911 928 992 -1 911 975 992 -1 927 928 992 -1 927 991 992 -1 929 930 994 -1 929 993 994 -1 929 993 1010 -1 929 946 1010 -1 930 931 995 -1 930 994 995 -1 931 932 996 -1 931 995 996 -1 932 933 997 -1 932 996 997 -1 933 934 998 -1 933 997 998 -1 934 935 999 -1 934 998 999 -1 935 936 1000 -1 935 999 1000 -1 936 937 1001 -1 936 1000 1001 -1 937 938 1002 -1 937 1001 1002 -1 938 939 1003 -1 938 1002 1003 -1 939 940 1004 -1 939 1003 1004 -1 940 941 1005 -1 940 1004 1005 -1 941 942 1006 -1 941 1005 1006 -1 942 943 1007 -1 942 1006 1007 -1 943 944 1008 -1 943 1007 1008 -1 945 947 1011 -1 945 1009 1011 -1 944 945 1009 -1 944 1008 1009 -1 946 1010 1012 -1 946 948 1012 -1 947 949 1013 -1 947 1011 1013 -1 948 1012 1014 -1 948 950 1014 -1 949 951 1015 -1 949 1013 1015 -1 950 1014 1016 -1 950 952 1016 -1 951 953 1017 -1 951 1015 1017 -1 952 1016 1018 -1 952 954 1018 -1 953 955 1019 -1 953 1017 1019 -1 954 1018 1020 -1 954 956 1020 -1 955 957 1021 -1 955 1019 1021 -1 956 1020 1022 -1 956 958 1022 -1 957 959 1023 -1 957 1021 1023 -1 958 1022 1024 -1 958 960 1024 -1 959 961 1025 -1 959 1023 1025 -1 960 1024 1026 -1 960 962 1026 -1 961 963 1027 -1 961 1025 1027 -1 962 1026 1028 -1 962 964 1028 -1 963 965 1029 -1 963 1027 1029 -1 964 1028 1030 -1 964 966 1030 -1 965 967 1031 -1 965 1029 1031 -1 966 1030 1032 -1 966 968 1032 -1 967 969 1033 -1 967 1031 1033 -1 968 1032 1034 -1 968 970 1034 -1 969 971 1035 -1 969 1033 1035 -1 970 1034 1036 -1 970 972 1036 -1 971 973 1037 -1 971 1035 1037 -1 972 1036 1038 -1 972 974 1038 -1 973 975 1039 -1 973 1037 1039 -1 976 977 1041 -1 974 1038 1040 -1 976 1040 1041 -1 974 976 1040 -1 977 978 1042 -1 977 1041 1042 -1 978 979 1043 -1 978 1042 1043 -1 979 980 1044 -1 979 1043 1044 -1 980 981 1045 -1 980 1044 1045 -1 981 982 1046 -1 981 1045 1046 -1 982 983 1047 -1 982 1046 1047 -1 983 984 1048 -1 983 1047 1048 -1 984 985 1049 -1 984 1048 1049 -1 985 986 1050 -1 985 1049 1050 -1 986 987 1051 -1 986 1050 1051 -1 987 988 1052 -1 987 1051 1052 -1 988 989 1053 -1 988 1052 1053 -1 989 990 1054 -1 989 1053 1054 -1 990 991 1055 -1 990 1054 1055 -1 975 992 1056 -1 975 1039 1056 -1 991 992 1056 -1 991 1055 1056 -1 993 994 1058 -1 993 1057 1058 -1 993 1057 1074 -1 993 1010 1074 -1 994 995 1059 -1 994 1058 1059 -1 995 996 1060 -1 995 1059 1060 -1 996 997 1061 -1 996 1060 1061 -1 997 998 1062 -1 997 1061 1062 -1 998 999 1063 -1 998 1062 1063 -1 999 1000 1064 -1 999 1063 1064 -1 1000 1001 1065 -1 1000 1064 1065 -1 1001 1002 1066 -1 1001 1065 1066 -1 1002 1003 1067 -1 1002 1066 1067 -1 1003 1004 1068 -1 1003 1067 1068 -1 1004 1005 1069 -1 1004 1068 1069 -1 1005 1006 1070 -1 1005 1069 1070 -1 1006 1007 1071 -1 1006 1070 1071 -1 1007 1008 1072 -1 1007 1071 1072 -1 1009 1011 1075 -1 1009 1073 1075 -1 1008 1009 1073 -1 1008 1072 1073 -1 1010 1074 1076 -1 1010 1012 1076 -1 1011 1013 1077 -1 1011 1075 1077 -1 1012 1076 1078 -1 1012 1014 1078 -1 1013 1015 1079 -1 1013 1077 1079 -1 1014 1078 1080 -1 1014 1016 1080 -1 1015 1017 1081 -1 1015 1079 1081 -1 1016 1080 1082 -1 1016 1018 1082 -1 1017 1019 1083 -1 1017 1081 1083 -1 1018 1082 1084 -1 1018 1020 1084 -1 1019 1021 1085 -1 1019 1083 1085 -1 1020 1084 1086 -1 1020 1022 1086 -1 1021 1023 1087 -1 1021 1085 1087 -1 1022 1086 1088 -1 1022 1024 1088 -1 1023 1025 1089 -1 1023 1087 1089 -1 1024 1088 1090 -1 1024 1026 1090 -1 1025 1027 1091 -1 1025 1089 1091 -1 1026 1090 1092 -1 1026 1028 1092 -1 1027 1029 1093 -1 1027 1091 1093 -1 1028 1092 1094 -1 1028 1030 1094 -1 1029 1031 1095 -1 1029 1093 1095 -1 1030 1094 1096 -1 1030 1032 1096 -1 1031 1033 1097 -1 1031 1095 1097 -1 1032 1096 1098 -1 1032 1034 1098 -1 1033 1035 1099 -1 1033 1097 1099 -1 1034 1098 1100 -1 1034 1036 1100 -1 1035 1037 1101 -1 1035 1099 1101 -1 1036 1100 1102 -1 1036 1038 1102 -1 1037 1039 1103 -1 1037 1101 1103 -1 1040 1041 1105 -1 1038 1102 1104 -1 1040 1104 1105 -1 1038 1040 1104 -1 1041 1042 1106 -1 1041 1105 1106 -1 1042 1043 1107 -1 1042 1106 1107 -1 1043 1044 1108 -1 1043 1107 1108 -1 1044 1045 1109 -1 1044 1108 1109 -1 1045 1046 1110 -1 1045 1109 1110 -1 1046 1047 1111 -1 1046 1110 1111 -1 1047 1048 1112 -1 1047 1111 1112 -1 1048 1049 1113 -1 1048 1112 1113 -1 1049 1050 1114 -1 1049 1113 1114 -1 1050 1051 1115 -1 1050 1114 1115 -1 1051 1052 1116 -1 1051 1115 1116 -1 1052 1053 1117 -1 1052 1116 1117 -1 1053 1054 1118 -1 1053 1117 1118 -1 1054 1055 1119 -1 1054 1118 1119 -1 1039 1056 1120 -1 1039 1103 1120 -1 1055 1056 1120 -1 1055 1119 1120 -1 1057 1058 1122 -1 1057 1121 1122 -1 1057 1121 1138 -1 1057 1074 1138 -1 1058 1059 1123 -1 1058 1122 1123 -1 1059 1060 1124 -1 1059 1123 1124 -1 1060 1061 1125 -1 1060 1124 1125 -1 1061 1062 1126 -1 1061 1125 1126 -1 1062 1063 1127 -1 1062 1126 1127 -1 1063 1064 1128 -1 1063 1127 1128 -1 1064 1065 1129 -1 1064 1128 1129 -1 1065 1066 1130 -1 1065 1129 1130 -1 1066 1067 1131 -1 1066 1130 1131 -1 1067 1068 1132 -1 1067 1131 1132 -1 1068 1069 1133 -1 1068 1132 1133 -1 1069 1070 1134 -1 1069 1133 1134 -1 1070 1071 1135 -1 1070 1134 1135 -1 1071 1072 1136 -1 1071 1135 1136 -1 1073 1075 1139 -1 1073 1137 1139 -1 1072 1073 1137 -1 1072 1136 1137 -1 1074 1138 1140 -1 1074 1076 1140 -1 1075 1077 1141 -1 1075 1139 1141 -1 1076 1140 1142 -1 1076 1078 1142 -1 1077 1079 1143 -1 1077 1141 1143 -1 1078 1142 1144 -1 1078 1080 1144 -1 1079 1081 1145 -1 1079 1143 1145 -1 1080 1144 1146 -1 1080 1082 1146 -1 1081 1083 1147 -1 1081 1145 1147 -1 1082 1146 1148 -1 1082 1084 1148 -1 1083 1085 1149 -1 1083 1147 1149 -1 1084 1148 1150 -1 1084 1086 1150 -1 1085 1087 1151 -1 1085 1149 1151 -1 1086 1150 1152 -1 1086 1088 1152 -1 1087 1089 1153 -1 1087 1151 1153 -1 1088 1152 1154 -1 1088 1090 1154 -1 1089 1091 1155 -1 1089 1153 1155 -1 1090 1154 1156 -1 1090 1092 1156 -1 1091 1093 1157 -1 1091 1155 1157 -1 1092 1156 1158 -1 1092 1094 1158 -1 1093 1095 1159 -1 1093 1157 1159 -1 1094 1158 1160 -1 1094 1096 1160 -1 1095 1097 1161 -1 1095 1159 1161 -1 1096 1160 1162 -1 1096 1098 1162 -1 1097 1099 1163 -1 1097 1161 1163 -1 1098 1162 1164 -1 1098 1100 1164 -1 1099 1101 1165 -1 1099 1163 1165 -1 1100 1164 1166 -1 1100 1102 1166 -1 1101 1103 1167 -1 1101 1165 1167 -1 1104 1105 1169 -1 1102 1166 1168 -1 1104 1168 1169 -1 1102 1104 1168 -1 1105 1106 1170 -1 1105 1169 1170 -1 1106 1107 1171 -1 1106 1170 1171 -1 1107 1108 1172 -1 1107 1171 1172 -1 1108 1109 1173 -1 1108 1172 1173 -1 1109 1110 1174 -1 1109 1173 1174 -1 1110 1111 1175 -1 1110 1174 1175 -1 1111 1112 1176 -1 1111 1175 1176 -1 1112 1113 1177 -1 1112 1176 1177 -1 1113 1114 1178 -1 1113 1177 1178 -1 1114 1115 1179 -1 1114 1178 1179 -1 1115 1116 1180 -1 1115 1179 1180 -1 1116 1117 1181 -1 1116 1180 1181 -1 1117 1118 1182 -1 1117 1181 1182 -1 1118 1119 1183 -1 1118 1182 1183 -1 1103 1120 1184 -1 1103 1167 1184 -1 1119 1120 1184 -1 1119 1183 1184 -1 1121 1122 1186 -1 1121 1185 1186 -1 1121 1185 1202 -1 1121 1138 1202 -1 1122 1123 1187 -1 1122 1186 1187 -1 1123 1124 1188 -1 1123 1187 1188 -1 1124 1125 1189 -1 1124 1188 1189 -1 1125 1126 1190 -1 1125 1189 1190 -1 1126 1127 1191 -1 1126 1190 1191 -1 1127 1128 1192 -1 1127 1191 1192 -1 1128 1129 1193 -1 1128 1192 1193 -1 1129 1130 1194 -1 1129 1193 1194 -1 1130 1131 1195 -1 1130 1194 1195 -1 1131 1132 1196 -1 1131 1195 1196 -1 1132 1133 1197 -1 1132 1196 1197 -1 1133 1134 1198 -1 1133 1197 1198 -1 1134 1135 1199 -1 1134 1198 1199 -1 1135 1136 1200 -1 1135 1199 1200 -1 1137 1139 1203 -1 1137 1201 1203 -1 1136 1137 1201 -1 1136 1200 1201 -1 1138 1202 1204 -1 1138 1140 1204 -1 1139 1141 1205 -1 1139 1203 1205 -1 1140 1204 1206 -1 1140 1142 1206 -1 1141 1143 1207 -1 1141 1205 1207 -1 1142 1206 1208 -1 1142 1144 1208 -1 1143 1145 1209 -1 1143 1207 1209 -1 1144 1208 1210 -1 1144 1146 1210 -1 1145 1147 1211 -1 1145 1209 1211 -1 1146 1210 1212 -1 1146 1148 1212 -1 1147 1149 1213 -1 1147 1211 1213 -1 1148 1212 1214 -1 1148 1150 1214 -1 1149 1151 1215 -1 1149 1213 1215 -1 1150 1214 1216 -1 1150 1152 1216 -1 1151 1153 1217 -1 1151 1215 1217 -1 1152 1216 1218 -1 1152 1154 1218 -1 1153 1155 1219 -1 1153 1217 1219 -1 1154 1218 1220 -1 1154 1156 1220 -1 1155 1157 1221 -1 1155 1219 1221 -1 1156 1220 1222 -1 1156 1158 1222 -1 1157 1159 1223 -1 1157 1221 1223 -1 1158 1222 1224 -1 1158 1160 1224 -1 1159 1161 1225 -1 1159 1223 1225 -1 1160 1224 1226 -1 1160 1162 1226 -1 1161 1163 1227 -1 1161 1225 1227 -1 1162 1226 1228 -1 1162 1164 1228 -1 1163 1165 1229 -1 1163 1227 1229 -1 1164 1228 1230 -1 1164 1166 1230 -1 1165 1167 1231 -1 1165 1229 1231 -1 1168 1169 1233 -1 1166 1230 1232 -1 1168 1232 1233 -1 1166 1168 1232 -1 1169 1170 1234 -1 1169 1233 1234 -1 1170 1171 1235 -1 1170 1234 1235 -1 1171 1172 1236 -1 1171 1235 1236 -1 1172 1173 1237 -1 1172 1236 1237 -1 1173 1174 1238 -1 1173 1237 1238 -1 1174 1175 1239 -1 1174 1238 1239 -1 1175 1176 1240 -1 1175 1239 1240 -1 1176 1177 1241 -1 1176 1240 1241 -1 1177 1178 1242 -1 1177 1241 1242 -1 1178 1179 1243 -1 1178 1242 1243 -1 1179 1180 1244 -1 1179 1243 1244 -1 1180 1181 1245 -1 1180 1244 1245 -1 1181 1182 1246 -1 1181 1245 1246 -1 1182 1183 1247 -1 1182 1246 1247 -1 1167 1184 1248 -1 1167 1231 1248 -1 1183 1184 1248 -1 1183 1247 1248 -1 1185 1186 1250 -1 1249 1250 1267 -1 1185 1249 1250 -1 1249 1266 1267 -1 1185 1249 1266 -1 1185 1202 1266 -1 1186 1187 1251 -1 1250 1251 1268 -1 1186 1250 1251 -1 1250 1267 1268 -1 1187 1188 1252 -1 1251 1252 1269 -1 1187 1251 1252 -1 1251 1268 1269 -1 1188 1189 1253 -1 1252 1253 1270 -1 1188 1252 1253 -1 1252 1269 1270 -1 1189 1190 1254 -1 1253 1254 1271 -1 1189 1253 1254 -1 1253 1270 1271 -1 1190 1191 1255 -1 1254 1255 1272 -1 1190 1254 1255 -1 1254 1271 1272 -1 1191 1192 1256 -1 1255 1256 1273 -1 1191 1255 1256 -1 1255 1272 1273 -1 1192 1193 1257 -1 1256 1257 1274 -1 1192 1256 1257 -1 1256 1273 1274 -1 1193 1194 1258 -1 1257 1258 1275 -1 1193 1257 1258 -1 1257 1274 1275 -1 1194 1195 1259 -1 1258 1259 1276 -1 1194 1258 1259 -1 1258 1275 1276 -1 1195 1196 1260 -1 1259 1260 1277 -1 1195 1259 1260 -1 1259 1276 1277 -1 1196 1197 1261 -1 1260 1261 1278 -1 1196 1260 1261 -1 1260 1277 1278 -1 1197 1198 1262 -1 1261 1262 1279 -1 1197 1261 1262 -1 1261 1278 1279 -1 1198 1199 1263 -1 1262 1263 1280 -1 1198 1262 1263 -1 1262 1279 1280 -1 1199 1200 1264 -1 1263 1264 1281 -1 1199 1263 1264 -1 1263 1280 1281 -1 1201 1203 1282 -1 1201 1265 1282 -1 1200 1201 1265 -1 1264 1265 1282 -1 1200 1264 1265 -1 1264 1281 1282 -1 1266 1267 1284 -1 1266 1283 1284 -1 1202 1266 1283 -1 1202 1204 1283 -1 1267 1268 1285 -1 1267 1284 1285 -1 1268 1269 1286 -1 1268 1285 1286 -1 1269 1270 1287 -1 1269 1286 1287 -1 1270 1271 1288 -1 1270 1287 1288 -1 1271 1272 1289 -1 1271 1288 1289 -1 1272 1273 1290 -1 1272 1289 1290 -1 1273 1274 1291 -1 1273 1290 1291 -1 1274 1275 1292 -1 1274 1291 1292 -1 1275 1276 1293 -1 1275 1292 1293 -1 1276 1277 1294 -1 1276 1293 1294 -1 1277 1278 1295 -1 1277 1294 1295 -1 1278 1279 1296 -1 1278 1295 1296 -1 1279 1280 1297 -1 1279 1296 1297 -1 1280 1281 1298 -1 1280 1297 1298 -1 1203 1205 1299 -1 1203 1282 1299 -1 1281 1282 1299 -1 1281 1298 1299 -1 1283 1284 1301 -1 1283 1300 1301 -1 1204 1283 1300 -1 1204 1206 1300 -1 1284 1285 1302 -1 1284 1301 1302 -1 1285 1286 1303 -1 1285 1302 1303 -1 1286 1287 1304 -1 1286 1303 1304 -1 1287 1288 1305 -1 1287 1304 1305 -1 1288 1289 1306 -1 1288 1305 1306 -1 1289 1290 1307 -1 1289 1306 1307 -1 1290 1291 1308 -1 1290 1307 1308 -1 1291 1292 1309 -1 1291 1308 1309 -1 1292 1293 1310 -1 1292 1309 1310 -1 1293 1294 1311 -1 1293 1310 1311 -1 1294 1295 1312 -1 1294 1311 1312 -1 1295 1296 1313 -1 1295 1312 1313 -1 1296 1297 1314 -1 1296 1313 1314 -1 1297 1298 1315 -1 1297 1314 1315 -1 1205 1207 1316 -1 1205 1299 1316 -1 1298 1299 1316 -1 1298 1315 1316 -1 1300 1301 1318 -1 1300 1317 1318 -1 1206 1300 1317 -1 1206 1208 1317 -1 1301 1302 1319 -1 1301 1318 1319 -1 1302 1303 1320 -1 1302 1319 1320 -1 1303 1304 1321 -1 1303 1320 1321 -1 1304 1305 1322 -1 1304 1321 1322 -1 1305 1306 1323 -1 1305 1322 1323 -1 1306 1307 1324 -1 1306 1323 1324 -1 1307 1308 1325 -1 1307 1324 1325 -1 1308 1309 1326 -1 1308 1325 1326 -1 1309 1310 1327 -1 1309 1326 1327 -1 1310 1311 1328 -1 1310 1327 1328 -1 1311 1312 1329 -1 1311 1328 1329 -1 1312 1313 1330 -1 1312 1329 1330 -1 1313 1314 1331 -1 1313 1330 1331 -1 1314 1315 1332 -1 1314 1331 1332 -1 1207 1209 1333 -1 1207 1316 1333 -1 1315 1316 1333 -1 1315 1332 1333 -1 1317 1318 1335 -1 1317 1334 1335 -1 1208 1317 1334 -1 1208 1210 1334 -1 1318 1319 1336 -1 1318 1335 1336 -1 1319 1320 1337 -1 1319 1336 1337 -1 1320 1321 1338 -1 1320 1337 1338 -1 1321 1322 1339 -1 1321 1338 1339 -1 1322 1323 1340 -1 1322 1339 1340 -1 1323 1324 1341 -1 1323 1340 1341 -1 1324 1325 1342 -1 1324 1341 1342 -1 1325 1326 1343 -1 1325 1342 1343 -1 1326 1327 1344 -1 1326 1343 1344 -1 1327 1328 1345 -1 1327 1344 1345 -1 1328 1329 1346 -1 1328 1345 1346 -1 1329 1330 1347 -1 1329 1346 1347 -1 1330 1331 1348 -1 1330 1347 1348 -1 1331 1332 1349 -1 1331 1348 1349 -1 1209 1211 1350 -1 1209 1333 1350 -1 1332 1333 1350 -1 1332 1349 1350 -1 1334 1335 1352 -1 1334 1351 1352 -1 1210 1334 1351 -1 1210 1212 1351 -1 1335 1336 1353 -1 1335 1352 1353 -1 1336 1337 1354 -1 1336 1353 1354 -1 1337 1338 1355 -1 1337 1354 1355 -1 1338 1339 1356 -1 1338 1355 1356 -1 1339 1340 1357 -1 1339 1356 1357 -1 1340 1341 1358 -1 1340 1357 1358 -1 1341 1342 1359 -1 1341 1358 1359 -1 1342 1343 1360 -1 1342 1359 1360 -1 1343 1344 1361 -1 1343 1360 1361 -1 1344 1345 1362 -1 1344 1361 1362 -1 1345 1346 1363 -1 1345 1362 1363 -1 1346 1347 1364 -1 1346 1363 1364 -1 1347 1348 1365 -1 1347 1364 1365 -1 1348 1349 1366 -1 1348 1365 1366 -1 1211 1213 1367 -1 1211 1350 1367 -1 1349 1350 1367 -1 1349 1366 1367 -1 1351 1352 1369 -1 1351 1368 1369 -1 1212 1351 1368 -1 1212 1214 1368 -1 1352 1353 1370 -1 1352 1369 1370 -1 1353 1354 1371 -1 1353 1370 1371 -1 1354 1355 1372 -1 1354 1371 1372 -1 1355 1356 1373 -1 1355 1372 1373 -1 1356 1357 1374 -1 1356 1373 1374 -1 1357 1358 1375 -1 1357 1374 1375 -1 1358 1359 1376 -1 1358 1375 1376 -1 1359 1360 1377 -1 1359 1376 1377 -1 1360 1361 1378 -1 1360 1377 1378 -1 1361 1362 1379 -1 1361 1378 1379 -1 1362 1363 1380 -1 1362 1379 1380 -1 1363 1364 1381 -1 1363 1380 1381 -1 1364 1365 1382 -1 1364 1381 1382 -1 1365 1366 1383 -1 1365 1382 1383 -1 1213 1215 1384 -1 1213 1367 1384 -1 1366 1367 1384 -1 1366 1383 1384 -1 1368 1369 1386 -1 1368 1385 1386 -1 1214 1368 1385 -1 1214 1216 1385 -1 1369 1370 1387 -1 1369 1386 1387 -1 1370 1371 1388 -1 1370 1387 1388 -1 1371 1372 1389 -1 1371 1388 1389 -1 1372 1373 1390 -1 1372 1389 1390 -1 1373 1374 1391 -1 1373 1390 1391 -1 1374 1375 1392 -1 1374 1391 1392 -1 1375 1376 1393 -1 1375 1392 1393 -1 1376 1377 1394 -1 1376 1393 1394 -1 1377 1378 1395 -1 1377 1394 1395 -1 1378 1379 1396 -1 1378 1395 1396 -1 1379 1380 1397 -1 1379 1396 1397 -1 1380 1381 1398 -1 1380 1397 1398 -1 1381 1382 1399 -1 1381 1398 1399 -1 1382 1383 1400 -1 1382 1399 1400 -1 1215 1217 1401 -1 1215 1384 1401 -1 1383 1384 1401 -1 1383 1400 1401 -1 1385 1386 1403 -1 1385 1402 1403 -1 1216 1385 1402 -1 1216 1218 1402 -1 1386 1387 1404 -1 1386 1403 1404 -1 1387 1388 1405 -1 1387 1404 1405 -1 1388 1389 1406 -1 1388 1405 1406 -1 1389 1390 1407 -1 1389 1406 1407 -1 1390 1391 1408 -1 1390 1407 1408 -1 1391 1392 1409 -1 1391 1408 1409 -1 1392 1393 1410 -1 1392 1409 1410 -1 1393 1394 1411 -1 1393 1410 1411 -1 1394 1395 1412 -1 1394 1411 1412 -1 1395 1396 1413 -1 1395 1412 1413 -1 1396 1397 1414 -1 1396 1413 1414 -1 1397 1398 1415 -1 1397 1414 1415 -1 1398 1399 1416 -1 1398 1415 1416 -1 1399 1400 1417 -1 1399 1416 1417 -1 1217 1219 1418 -1 1217 1401 1418 -1 1400 1401 1418 -1 1400 1417 1418 -1 1402 1403 1420 -1 1402 1419 1420 -1 1218 1402 1419 -1 1218 1220 1419 -1 1403 1404 1421 -1 1403 1420 1421 -1 1404 1405 1422 -1 1404 1421 1422 -1 1405 1406 1423 -1 1405 1422 1423 -1 1406 1407 1424 -1 1406 1423 1424 -1 1407 1408 1425 -1 1407 1424 1425 -1 1408 1409 1426 -1 1408 1425 1426 -1 1409 1410 1427 -1 1409 1426 1427 -1 1410 1411 1428 -1 1410 1427 1428 -1 1411 1412 1429 -1 1411 1428 1429 -1 1412 1413 1430 -1 1412 1429 1430 -1 1413 1414 1431 -1 1413 1430 1431 -1 1414 1415 1432 -1 1414 1431 1432 -1 1415 1416 1433 -1 1415 1432 1433 -1 1416 1417 1434 -1 1416 1433 1434 -1 1219 1221 1435 -1 1219 1418 1435 -1 1417 1418 1435 -1 1417 1434 1435 -1 1419 1420 1437 -1 1419 1436 1437 -1 1220 1419 1436 -1 1220 1222 1436 -1 1420 1421 1438 -1 1420 1437 1438 -1 1421 1422 1439 -1 1421 1438 1439 -1 1422 1423 1440 -1 1422 1439 1440 -1 1423 1424 1441 -1 1423 1440 1441 -1 1424 1425 1442 -1 1424 1441 1442 -1 1425 1426 1443 -1 1425 1442 1443 -1 1426 1427 1444 -1 1426 1443 1444 -1 1427 1428 1445 -1 1427 1444 1445 -1 1428 1429 1446 -1 1428 1445 1446 -1 1429 1430 1447 -1 1429 1446 1447 -1 1430 1431 1448 -1 1430 1447 1448 -1 1431 1432 1449 -1 1431 1448 1449 -1 1432 1433 1450 -1 1432 1449 1450 -1 1433 1434 1451 -1 1433 1450 1451 -1 1221 1223 1452 -1 1221 1435 1452 -1 1434 1435 1452 -1 1434 1451 1452 -1 1436 1437 1454 -1 1436 1453 1454 -1 1222 1436 1453 -1 1222 1224 1453 -1 1437 1438 1455 -1 1437 1454 1455 -1 1438 1439 1456 -1 1438 1455 1456 -1 1439 1440 1457 -1 1439 1456 1457 -1 1440 1441 1458 -1 1440 1457 1458 -1 1441 1442 1459 -1 1441 1458 1459 -1 1442 1443 1460 -1 1442 1459 1460 -1 1443 1444 1461 -1 1443 1460 1461 -1 1444 1445 1462 -1 1444 1461 1462 -1 1445 1446 1463 -1 1445 1462 1463 -1 1446 1447 1464 -1 1446 1463 1464 -1 1447 1448 1465 -1 1447 1464 1465 -1 1448 1449 1466 -1 1448 1465 1466 -1 1449 1450 1467 -1 1449 1466 1467 -1 1450 1451 1468 -1 1450 1467 1468 -1 1223 1225 1469 -1 1223 1452 1469 -1 1451 1452 1469 -1 1451 1468 1469 -1 1453 1454 1471 -1 1453 1470 1471 -1 1224 1453 1470 -1 1224 1226 1470 -1 1454 1455 1472 -1 1454 1471 1472 -1 1455 1456 1473 -1 1455 1472 1473 -1 1456 1457 1474 -1 1456 1473 1474 -1 1457 1458 1475 -1 1457 1474 1475 -1 1458 1459 1476 -1 1458 1475 1476 -1 1459 1460 1477 -1 1459 1476 1477 -1 1460 1461 1478 -1 1460 1477 1478 -1 1461 1462 1479 -1 1461 1478 1479 -1 1462 1463 1480 -1 1462 1479 1480 -1 1463 1464 1481 -1 1463 1480 1481 -1 1464 1465 1482 -1 1464 1481 1482 -1 1465 1466 1483 -1 1465 1482 1483 -1 1466 1467 1484 -1 1466 1483 1484 -1 1467 1468 1485 -1 1467 1484 1485 -1 1225 1227 1486 -1 1225 1469 1486 -1 1468 1469 1486 -1 1468 1485 1486 -1 1470 1471 1488 -1 1470 1487 1488 -1 1226 1470 1487 -1 1226 1228 1487 -1 1471 1472 1489 -1 1471 1488 1489 -1 1472 1473 1490 -1 1472 1489 1490 -1 1473 1474 1491 -1 1473 1490 1491 -1 1474 1475 1492 -1 1474 1491 1492 -1 1475 1476 1493 -1 1475 1492 1493 -1 1476 1477 1494 -1 1476 1493 1494 -1 1477 1478 1495 -1 1477 1494 1495 -1 1478 1479 1496 -1 1478 1495 1496 -1 1479 1480 1497 -1 1479 1496 1497 -1 1480 1481 1498 -1 1480 1497 1498 -1 1481 1482 1499 -1 1481 1498 1499 -1 1482 1483 1500 -1 1482 1499 1500 -1 1483 1484 1501 -1 1483 1500 1501 -1 1484 1485 1502 -1 1484 1501 1502 -1 1227 1229 1503 -1 1227 1486 1503 -1 1485 1486 1503 -1 1485 1502 1503 -1 1487 1488 1505 -1 1487 1504 1505 -1 1228 1487 1504 -1 1228 1230 1504 -1 1488 1489 1506 -1 1488 1505 1506 -1 1489 1490 1507 -1 1489 1506 1507 -1 1490 1491 1508 -1 1490 1507 1508 -1 1491 1492 1509 -1 1491 1508 1509 -1 1492 1493 1510 -1 1492 1509 1510 -1 1493 1494 1511 -1 1493 1510 1511 -1 1494 1495 1512 -1 1494 1511 1512 -1 1495 1496 1513 -1 1495 1512 1513 -1 1496 1497 1514 -1 1496 1513 1514 -1 1497 1498 1515 -1 1497 1514 1515 -1 1498 1499 1516 -1 1498 1515 1516 -1 1499 1500 1517 -1 1499 1516 1517 -1 1500 1501 1518 -1 1500 1517 1518 -1 1501 1502 1519 -1 1501 1518 1519 -1 1229 1231 1520 -1 1229 1503 1520 -1 1502 1503 1520 -1 1502 1519 1520 -1 1504 1505 1522 -1 1232 1233 1522 -1 1504 1521 1522 -1 1230 1504 1521 -1 1232 1521 1522 -1 1230 1232 1521 -1 1505 1506 1523 -1 1233 1234 1523 -1 1505 1522 1523 -1 1233 1522 1523 -1 1506 1507 1524 -1 1234 1235 1524 -1 1506 1523 1524 -1 1234 1523 1524 -1 1507 1508 1525 -1 1235 1236 1525 -1 1507 1524 1525 -1 1235 1524 1525 -1 1508 1509 1526 -1 1236 1237 1526 -1 1508 1525 1526 -1 1236 1525 1526 -1 1509 1510 1527 -1 1237 1238 1527 -1 1509 1526 1527 -1 1237 1526 1527 -1 1510 1511 1528 -1 1238 1239 1528 -1 1510 1527 1528 -1 1238 1527 1528 -1 1511 1512 1529 -1 1239 1240 1529 -1 1511 1528 1529 -1 1239 1528 1529 -1 1512 1513 1530 -1 1240 1241 1530 -1 1512 1529 1530 -1 1240 1529 1530 -1 1513 1514 1531 -1 1241 1242 1531 -1 1513 1530 1531 -1 1241 1530 1531 -1 1514 1515 1532 -1 1242 1243 1532 -1 1514 1531 1532 -1 1242 1531 1532 -1 1515 1516 1533 -1 1243 1244 1533 -1 1515 1532 1533 -1 1243 1532 1533 -1 1516 1517 1534 -1 1244 1245 1534 -1 1516 1533 1534 -1 1244 1533 1534 -1 1517 1518 1535 -1 1245 1246 1535 -1 1517 1534 1535 -1 1245 1534 1535 -1 1518 1519 1536 -1 1246 1247 1536 -1 1518 1535 1536 -1 1246 1535 1536 -1 1231 1248 1537 -1 1231 1520 1537 -1 1519 1520 1537 -1 1247 1248 1537 -1 1519 1536 1537 -1 1247 1536 1537 -1 \">\n", " <coordinate point=\"0 0 0 0.0625 0 0 0.125 0 0 0.1875 0 0 0.25 0 0 0.3125 0 0 0.375 0 0 0.4375 0 0 0.5 0 0 0.5625 0 0 0.625 0 0 0.6875 0 0 0.75 0 0 0.8125 0 0 0.875 0 0 0.9375 0 0 1 0 0 0 0.0625 0 0.0625 0.0625 0 0.125 0.0625 0 0.1875 0.0625 0 0.25 0.0625 0 0.3125 0.0625 0 0.375 0.0625 0 0.4375 0.0625 0 0.5 0.0625 0 0.5625 0.0625 0 0.625 0.0625 0 0.6875 0.0625 0 0.75 0.0625 0 0.8125 0.0625 0 0.875 0.0625 0 0.9375 0.0625 0 1 0.0625 0 0 0.125 0 0.0625 0.125 0 0.125 0.125 0 0.1875 0.125 0 0.25 0.125 0 0.3125 0.125 0 0.375 0.125 0 0.4375 0.125 0 0.5 0.125 0 0.5625 0.125 0 0.625 0.125 0 0.6875 0.125 0 0.75 0.125 0 0.8125 0.125 0 0.875 0.125 0 0.9375 0.125 0 1 0.125 0 0 0.1875 0 0.0625 0.1875 0 0.125 0.1875 0 0.1875 0.1875 0 0.25 0.1875 0 0.3125 0.1875 0 0.375 0.1875 0 0.4375 0.1875 0 0.5 0.1875 0 0.5625 0.1875 0 0.625 0.1875 0 0.6875 0.1875 0 0.75 0.1875 0 0.8125 0.1875 0 0.875 0.1875 0 0.9375 0.1875 0 1 0.1875 0 0 0.25 0 0.0625 0.25 0 0.125 0.25 0 0.1875 0.25 0 0.25 0.25 0 0.3125 0.25 0 0.375 0.25 0 0.4375 0.25 0 0.5 0.25 0 0.5625 0.25 0 0.625 0.25 0 0.6875 0.25 0 0.75 0.25 0 0.8125 0.25 0 0.875 0.25 0 0.9375 0.25 0 1 0.25 0 0 0.3125 0 0.0625 0.3125 0 0.125 0.3125 0 0.1875 0.3125 0 0.25 0.3125 0 0.3125 0.3125 0 0.375 0.3125 0 0.4375 0.3125 0 0.5 0.3125 0 0.5625 0.3125 0 0.625 0.3125 0 0.6875 0.3125 0 0.75 0.3125 0 0.8125 0.3125 0 0.875 0.3125 0 0.9375 0.3125 0 1 0.3125 0 0 0.375 0 0.0625 0.375 0 0.125 0.375 0 0.1875 0.375 0 0.25 0.375 0 0.3125 0.375 0 0.375 0.375 0 0.4375 0.375 0 0.5 0.375 0 0.5625 0.375 0 0.625 0.375 0 0.6875 0.375 0 0.75 0.375 0 0.8125 0.375 0 0.875 0.375 0 0.9375 0.375 0 1 0.375 0 0 0.4375 0 0.0625 0.4375 0 0.125 0.4375 0 0.1875 0.4375 0 0.25 0.4375 0 0.3125 0.4375 0 0.375 0.4375 0 0.4375 0.4375 0 0.5 0.4375 0 0.5625 0.4375 0 0.625 0.4375 0 0.6875 0.4375 0 0.75 0.4375 0 0.8125 0.4375 0 0.875 0.4375 0 0.9375 0.4375 0 1 0.4375 0 0 0.5 0 0.0625 0.5 0 0.125 0.5 0 0.1875 0.5 0 0.25 0.5 0 0.3125 0.5 0 0.375 0.5 0 0.4375 0.5 0 0.5 0.5 0 0.5625 0.5 0 0.625 0.5 0 0.6875 0.5 0 0.75 0.5 0 0.8125 0.5 0 0.875 0.5 0 0.9375 0.5 0 1 0.5 0 0 0.5625 0 0.0625 0.5625 0 0.125 0.5625 0 0.1875 0.5625 0 0.25 0.5625 0 0.3125 0.5625 0 0.375 0.5625 0 0.4375 0.5625 0 0.5 0.5625 0 0.5625 0.5625 0 0.625 0.5625 0 0.6875 0.5625 0 0.75 0.5625 0 0.8125 0.5625 0 0.875 0.5625 0 0.9375 0.5625 0 1 0.5625 0 0 0.625 0 0.0625 0.625 0 0.125 0.625 0 0.1875 0.625 0 0.25 0.625 0 0.3125 0.625 0 0.375 0.625 0 0.4375 0.625 0 0.5 0.625 0 0.5625 0.625 0 0.625 0.625 0 0.6875 0.625 0 0.75 0.625 0 0.8125 0.625 0 0.875 0.625 0 0.9375 0.625 0 1 0.625 0 0 0.6875 0 0.0625 0.6875 0 0.125 0.6875 0 0.1875 0.6875 0 0.25 0.6875 0 0.3125 0.6875 0 0.375 0.6875 0 0.4375 0.6875 0 0.5 0.6875 0 0.5625 0.6875 0 0.625 0.6875 0 0.6875 0.6875 0 0.75 0.6875 0 0.8125 0.6875 0 0.875 0.6875 0 0.9375 0.6875 0 1 0.6875 0 0 0.75 0 0.0625 0.75 0 0.125 0.75 0 0.1875 0.75 0 0.25 0.75 0 0.3125 0.75 0 0.375 0.75 0 0.4375 0.75 0 0.5 0.75 0 0.5625 0.75 0 0.625 0.75 0 0.6875 0.75 0 0.75 0.75 0 0.8125 0.75 0 0.875 0.75 0 0.9375 0.75 0 1 0.75 0 0 0.8125 0 0.0625 0.8125 0 0.125 0.8125 0 0.1875 0.8125 0 0.25 0.8125 0 0.3125 0.8125 0 0.375 0.8125 0 0.4375 0.8125 0 0.5 0.8125 0 0.5625 0.8125 0 0.625 0.8125 0 0.6875 0.8125 0 0.75 0.8125 0 0.8125 0.8125 0 0.875 0.8125 0 0.9375 0.8125 0 1 0.8125 0 0 0.875 0 0.0625 0.875 0 0.125 0.875 0 0.1875 0.875 0 0.25 0.875 0 0.3125 0.875 0 0.375 0.875 0 0.4375 0.875 0 0.5 0.875 0 0.5625 0.875 0 0.625 0.875 0 0.6875 0.875 0 0.75 0.875 0 0.8125 0.875 0 0.875 0.875 0 0.9375 0.875 0 1 0.875 0 0 0.9375 0 0.0625 0.9375 0 0.125 0.9375 0 0.1875 0.9375 0 0.25 0.9375 0 0.3125 0.9375 0 0.375 0.9375 0 0.4375 0.9375 0 0.5 0.9375 0 0.5625 0.9375 0 0.625 0.9375 0 0.6875 0.9375 0 0.75 0.9375 0 0.8125 0.9375 0 0.875 0.9375 0 0.9375 0.9375 0 1 0.9375 0 0 1 0 0.0625 1 0 0.125 1 0 0.1875 1 0 0.25 1 0 0.3125 1 0 0.375 1 0 0.4375 1 0 0.5 1 0 0.5625 1 0 0.625 1 0 0.6875 1 0 0.75 1 0 0.8125 1 0 0.875 1 0 0.9375 1 0 1 1 0 0 0 0.0625 0.0625 0 0.0625 0.125 0 0.0625 0.1875 0 0.0625 0.25 0 0.0625 0.3125 0 0.0625 0.375 0 0.0625 0.4375 0 0.0625 0.5 0 0.0625 0.5625 0 0.0625 0.625 0 0.0625 0.6875 0 0.0625 0.75 0 0.0625 0.8125 0 0.0625 0.875 0 0.0625 0.9375 0 0.0625 1 0 0.0625 0 0.0625 0.0625 1 0.0625 0.0625 0 0.125 0.0625 1 0.125 0.0625 0 0.1875 0.0625 1 0.1875 0.0625 0 0.25 0.0625 1 0.25 0.0625 0 0.3125 0.0625 1 0.3125 0.0625 0 0.375 0.0625 1 0.375 0.0625 0 0.4375 0.0625 1 0.4375 0.0625 0 0.5 0.0625 1 0.5 0.0625 0 0.5625 0.0625 1 0.5625 0.0625 0 0.625 0.0625 1 0.625 0.0625 0 0.6875 0.0625 1 0.6875 0.0625 0 0.75 0.0625 1 0.75 0.0625 0 0.8125 0.0625 1 0.8125 0.0625 0 0.875 0.0625 1 0.875 0.0625 0 0.9375 0.0625 1 0.9375 0.0625 0 1 0.0625 0.0625 1 0.0625 0.125 1 0.0625 0.1875 1 0.0625 0.25 1 0.0625 0.3125 1 0.0625 0.375 1 0.0625 0.4375 1 0.0625 0.5 1 0.0625 0.5625 1 0.0625 0.625 1 0.0625 0.6875 1 0.0625 0.75 1 0.0625 0.8125 1 0.0625 0.875 1 0.0625 0.9375 1 0.0625 1 1 0.0625 0 0 0.125 0.0625 0 0.125 0.125 0 0.125 0.1875 0 0.125 0.25 0 0.125 0.3125 0 0.125 0.375 0 0.125 0.4375 0 0.125 0.5 0 0.125 0.5625 0 0.125 0.625 0 0.125 0.6875 0 0.125 0.75 0 0.125 0.8125 0 0.125 0.875 0 0.125 0.9375 0 0.125 1 0 0.125 0 0.0625 0.125 1 0.0625 0.125 0 0.125 0.125 1 0.125 0.125 0 0.1875 0.125 1 0.1875 0.125 0 0.25 0.125 1 0.25 0.125 0 0.3125 0.125 1 0.3125 0.125 0 0.375 0.125 1 0.375 0.125 0 0.4375 0.125 1 0.4375 0.125 0 0.5 0.125 1 0.5 0.125 0 0.5625 0.125 1 0.5625 0.125 0 0.625 0.125 1 0.625 0.125 0 0.6875 0.125 1 0.6875 0.125 0 0.75 0.125 1 0.75 0.125 0 0.8125 0.125 1 0.8125 0.125 0 0.875 0.125 1 0.875 0.125 0 0.9375 0.125 1 0.9375 0.125 0 1 0.125 0.0625 1 0.125 0.125 1 0.125 0.1875 1 0.125 0.25 1 0.125 0.3125 1 0.125 0.375 1 0.125 0.4375 1 0.125 0.5 1 0.125 0.5625 1 0.125 0.625 1 0.125 0.6875 1 0.125 0.75 1 0.125 0.8125 1 0.125 0.875 1 0.125 0.9375 1 0.125 1 1 0.125 0 0 0.1875 0.0625 0 0.1875 0.125 0 0.1875 0.1875 0 0.1875 0.25 0 0.1875 0.3125 0 0.1875 0.375 0 0.1875 0.4375 0 0.1875 0.5 0 0.1875 0.5625 0 0.1875 0.625 0 0.1875 0.6875 0 0.1875 0.75 0 0.1875 0.8125 0 0.1875 0.875 0 0.1875 0.9375 0 0.1875 1 0 0.1875 0 0.0625 0.1875 1 0.0625 0.1875 0 0.125 0.1875 1 0.125 0.1875 0 0.1875 0.1875 1 0.1875 0.1875 0 0.25 0.1875 1 0.25 0.1875 0 0.3125 0.1875 1 0.3125 0.1875 0 0.375 0.1875 1 0.375 0.1875 0 0.4375 0.1875 1 0.4375 0.1875 0 0.5 0.1875 1 0.5 0.1875 0 0.5625 0.1875 1 0.5625 0.1875 0 0.625 0.1875 1 0.625 0.1875 0 0.6875 0.1875 1 0.6875 0.1875 0 0.75 0.1875 1 0.75 0.1875 0 0.8125 0.1875 1 0.8125 0.1875 0 0.875 0.1875 1 0.875 0.1875 0 0.9375 0.1875 1 0.9375 0.1875 0 1 0.1875 0.0625 1 0.1875 0.125 1 0.1875 0.1875 1 0.1875 0.25 1 0.1875 0.3125 1 0.1875 0.375 1 0.1875 0.4375 1 0.1875 0.5 1 0.1875 0.5625 1 0.1875 0.625 1 0.1875 0.6875 1 0.1875 0.75 1 0.1875 0.8125 1 0.1875 0.875 1 0.1875 0.9375 1 0.1875 1 1 0.1875 0 0 0.25 0.0625 0 0.25 0.125 0 0.25 0.1875 0 0.25 0.25 0 0.25 0.3125 0 0.25 0.375 0 0.25 0.4375 0 0.25 0.5 0 0.25 0.5625 0 0.25 0.625 0 0.25 0.6875 0 0.25 0.75 0 0.25 0.8125 0 0.25 0.875 0 0.25 0.9375 0 0.25 1 0 0.25 0 0.0625 0.25 1 0.0625 0.25 0 0.125 0.25 1 0.125 0.25 0 0.1875 0.25 1 0.1875 0.25 0 0.25 0.25 1 0.25 0.25 0 0.3125 0.25 1 0.3125 0.25 0 0.375 0.25 1 0.375 0.25 0 0.4375 0.25 1 0.4375 0.25 0 0.5 0.25 1 0.5 0.25 0 0.5625 0.25 1 0.5625 0.25 0 0.625 0.25 1 0.625 0.25 0 0.6875 0.25 1 0.6875 0.25 0 0.75 0.25 1 0.75 0.25 0 0.8125 0.25 1 0.8125 0.25 0 0.875 0.25 1 0.875 0.25 0 0.9375 0.25 1 0.9375 0.25 0 1 0.25 0.0625 1 0.25 0.125 1 0.25 0.1875 1 0.25 0.25 1 0.25 0.3125 1 0.25 0.375 1 0.25 0.4375 1 0.25 0.5 1 0.25 0.5625 1 0.25 0.625 1 0.25 0.6875 1 0.25 0.75 1 0.25 0.8125 1 0.25 0.875 1 0.25 0.9375 1 0.25 1 1 0.25 0 0 0.3125 0.0625 0 0.3125 0.125 0 0.3125 0.1875 0 0.3125 0.25 0 0.3125 0.3125 0 0.3125 0.375 0 0.3125 0.4375 0 0.3125 0.5 0 0.3125 0.5625 0 0.3125 0.625 0 0.3125 0.6875 0 0.3125 0.75 0 0.3125 0.8125 0 0.3125 0.875 0 0.3125 0.9375 0 0.3125 1 0 0.3125 0 0.0625 0.3125 1 0.0625 0.3125 0 0.125 0.3125 1 0.125 0.3125 0 0.1875 0.3125 1 0.1875 0.3125 0 0.25 0.3125 1 0.25 0.3125 0 0.3125 0.3125 1 0.3125 0.3125 0 0.375 0.3125 1 0.375 0.3125 0 0.4375 0.3125 1 0.4375 0.3125 0 0.5 0.3125 1 0.5 0.3125 0 0.5625 0.3125 1 0.5625 0.3125 0 0.625 0.3125 1 0.625 0.3125 0 0.6875 0.3125 1 0.6875 0.3125 0 0.75 0.3125 1 0.75 0.3125 0 0.8125 0.3125 1 0.8125 0.3125 0 0.875 0.3125 1 0.875 0.3125 0 0.9375 0.3125 1 0.9375 0.3125 0 1 0.3125 0.0625 1 0.3125 0.125 1 0.3125 0.1875 1 0.3125 0.25 1 0.3125 0.3125 1 0.3125 0.375 1 0.3125 0.4375 1 0.3125 0.5 1 0.3125 0.5625 1 0.3125 0.625 1 0.3125 0.6875 1 0.3125 0.75 1 0.3125 0.8125 1 0.3125 0.875 1 0.3125 0.9375 1 0.3125 1 1 0.3125 0 0 0.375 0.0625 0 0.375 0.125 0 0.375 0.1875 0 0.375 0.25 0 0.375 0.3125 0 0.375 0.375 0 0.375 0.4375 0 0.375 0.5 0 0.375 0.5625 0 0.375 0.625 0 0.375 0.6875 0 0.375 0.75 0 0.375 0.8125 0 0.375 0.875 0 0.375 0.9375 0 0.375 1 0 0.375 0 0.0625 0.375 1 0.0625 0.375 0 0.125 0.375 1 0.125 0.375 0 0.1875 0.375 1 0.1875 0.375 0 0.25 0.375 1 0.25 0.375 0 0.3125 0.375 1 0.3125 0.375 0 0.375 0.375 1 0.375 0.375 0 0.4375 0.375 1 0.4375 0.375 0 0.5 0.375 1 0.5 0.375 0 0.5625 0.375 1 0.5625 0.375 0 0.625 0.375 1 0.625 0.375 0 0.6875 0.375 1 0.6875 0.375 0 0.75 0.375 1 0.75 0.375 0 0.8125 0.375 1 0.8125 0.375 0 0.875 0.375 1 0.875 0.375 0 0.9375 0.375 1 0.9375 0.375 0 1 0.375 0.0625 1 0.375 0.125 1 0.375 0.1875 1 0.375 0.25 1 0.375 0.3125 1 0.375 0.375 1 0.375 0.4375 1 0.375 0.5 1 0.375 0.5625 1 0.375 0.625 1 0.375 0.6875 1 0.375 0.75 1 0.375 0.8125 1 0.375 0.875 1 0.375 0.9375 1 0.375 1 1 0.375 0 0 0.4375 0.0625 0 0.4375 0.125 0 0.4375 0.1875 0 0.4375 0.25 0 0.4375 0.3125 0 0.4375 0.375 0 0.4375 0.4375 0 0.4375 0.5 0 0.4375 0.5625 0 0.4375 0.625 0 0.4375 0.6875 0 0.4375 0.75 0 0.4375 0.8125 0 0.4375 0.875 0 0.4375 0.9375 0 0.4375 1 0 0.4375 0 0.0625 0.4375 1 0.0625 0.4375 0 0.125 0.4375 1 0.125 0.4375 0 0.1875 0.4375 1 0.1875 0.4375 0 0.25 0.4375 1 0.25 0.4375 0 0.3125 0.4375 1 0.3125 0.4375 0 0.375 0.4375 1 0.375 0.4375 0 0.4375 0.4375 1 0.4375 0.4375 0 0.5 0.4375 1 0.5 0.4375 0 0.5625 0.4375 1 0.5625 0.4375 0 0.625 0.4375 1 0.625 0.4375 0 0.6875 0.4375 1 0.6875 0.4375 0 0.75 0.4375 1 0.75 0.4375 0 0.8125 0.4375 1 0.8125 0.4375 0 0.875 0.4375 1 0.875 0.4375 0 0.9375 0.4375 1 0.9375 0.4375 0 1 0.4375 0.0625 1 0.4375 0.125 1 0.4375 0.1875 1 0.4375 0.25 1 0.4375 0.3125 1 0.4375 0.375 1 0.4375 0.4375 1 0.4375 0.5 1 0.4375 0.5625 1 0.4375 0.625 1 0.4375 0.6875 1 0.4375 0.75 1 0.4375 0.8125 1 0.4375 0.875 1 0.4375 0.9375 1 0.4375 1 1 0.4375 0 0 0.5 0.0625 0 0.5 0.125 0 0.5 0.1875 0 0.5 0.25 0 0.5 0.3125 0 0.5 0.375 0 0.5 0.4375 0 0.5 0.5 0 0.5 0.5625 0 0.5 0.625 0 0.5 0.6875 0 0.5 0.75 0 0.5 0.8125 0 0.5 0.875 0 0.5 0.9375 0 0.5 1 0 0.5 0 0.0625 0.5 1 0.0625 0.5 0 0.125 0.5 1 0.125 0.5 0 0.1875 0.5 1 0.1875 0.5 0 0.25 0.5 1 0.25 0.5 0 0.3125 0.5 1 0.3125 0.5 0 0.375 0.5 1 0.375 0.5 0 0.4375 0.5 1 0.4375 0.5 0 0.5 0.5 1 0.5 0.5 0 0.5625 0.5 1 0.5625 0.5 0 0.625 0.5 1 0.625 0.5 0 0.6875 0.5 1 0.6875 0.5 0 0.75 0.5 1 0.75 0.5 0 0.8125 0.5 1 0.8125 0.5 0 0.875 0.5 1 0.875 0.5 0 0.9375 0.5 1 0.9375 0.5 0 1 0.5 0.0625 1 0.5 0.125 1 0.5 0.1875 1 0.5 0.25 1 0.5 0.3125 1 0.5 0.375 1 0.5 0.4375 1 0.5 0.5 1 0.5 0.5625 1 0.5 0.625 1 0.5 0.6875 1 0.5 0.75 1 0.5 0.8125 1 0.5 0.875 1 0.5 0.9375 1 0.5 1 1 0.5 0 0 0.5625 0.0625 0 0.5625 0.125 0 0.5625 0.1875 0 0.5625 0.25 0 0.5625 0.3125 0 0.5625 0.375 0 0.5625 0.4375 0 0.5625 0.5 0 0.5625 0.5625 0 0.5625 0.625 0 0.5625 0.6875 0 0.5625 0.75 0 0.5625 0.8125 0 0.5625 0.875 0 0.5625 0.9375 0 0.5625 1 0 0.5625 0 0.0625 0.5625 1 0.0625 0.5625 0 0.125 0.5625 1 0.125 0.5625 0 0.1875 0.5625 1 0.1875 0.5625 0 0.25 0.5625 1 0.25 0.5625 0 0.3125 0.5625 1 0.3125 0.5625 0 0.375 0.5625 1 0.375 0.5625 0 0.4375 0.5625 1 0.4375 0.5625 0 0.5 0.5625 1 0.5 0.5625 0 0.5625 0.5625 1 0.5625 0.5625 0 0.625 0.5625 1 0.625 0.5625 0 0.6875 0.5625 1 0.6875 0.5625 0 0.75 0.5625 1 0.75 0.5625 0 0.8125 0.5625 1 0.8125 0.5625 0 0.875 0.5625 1 0.875 0.5625 0 0.9375 0.5625 1 0.9375 0.5625 0 1 0.5625 0.0625 1 0.5625 0.125 1 0.5625 0.1875 1 0.5625 0.25 1 0.5625 0.3125 1 0.5625 0.375 1 0.5625 0.4375 1 0.5625 0.5 1 0.5625 0.5625 1 0.5625 0.625 1 0.5625 0.6875 1 0.5625 0.75 1 0.5625 0.8125 1 0.5625 0.875 1 0.5625 0.9375 1 0.5625 1 1 0.5625 0 0 0.625 0.0625 0 0.625 0.125 0 0.625 0.1875 0 0.625 0.25 0 0.625 0.3125 0 0.625 0.375 0 0.625 0.4375 0 0.625 0.5 0 0.625 0.5625 0 0.625 0.625 0 0.625 0.6875 0 0.625 0.75 0 0.625 0.8125 0 0.625 0.875 0 0.625 0.9375 0 0.625 1 0 0.625 0 0.0625 0.625 1 0.0625 0.625 0 0.125 0.625 1 0.125 0.625 0 0.1875 0.625 1 0.1875 0.625 0 0.25 0.625 1 0.25 0.625 0 0.3125 0.625 1 0.3125 0.625 0 0.375 0.625 1 0.375 0.625 0 0.4375 0.625 1 0.4375 0.625 0 0.5 0.625 1 0.5 0.625 0 0.5625 0.625 1 0.5625 0.625 0 0.625 0.625 1 0.625 0.625 0 0.6875 0.625 1 0.6875 0.625 0 0.75 0.625 1 0.75 0.625 0 0.8125 0.625 1 0.8125 0.625 0 0.875 0.625 1 0.875 0.625 0 0.9375 0.625 1 0.9375 0.625 0 1 0.625 0.0625 1 0.625 0.125 1 0.625 0.1875 1 0.625 0.25 1 0.625 0.3125 1 0.625 0.375 1 0.625 0.4375 1 0.625 0.5 1 0.625 0.5625 1 0.625 0.625 1 0.625 0.6875 1 0.625 0.75 1 0.625 0.8125 1 0.625 0.875 1 0.625 0.9375 1 0.625 1 1 0.625 0 0 0.6875 0.0625 0 0.6875 0.125 0 0.6875 0.1875 0 0.6875 0.25 0 0.6875 0.3125 0 0.6875 0.375 0 0.6875 0.4375 0 0.6875 0.5 0 0.6875 0.5625 0 0.6875 0.625 0 0.6875 0.6875 0 0.6875 0.75 0 0.6875 0.8125 0 0.6875 0.875 0 0.6875 0.9375 0 0.6875 1 0 0.6875 0 0.0625 0.6875 1 0.0625 0.6875 0 0.125 0.6875 1 0.125 0.6875 0 0.1875 0.6875 1 0.1875 0.6875 0 0.25 0.6875 1 0.25 0.6875 0 0.3125 0.6875 1 0.3125 0.6875 0 0.375 0.6875 1 0.375 0.6875 0 0.4375 0.6875 1 0.4375 0.6875 0 0.5 0.6875 1 0.5 0.6875 0 0.5625 0.6875 1 0.5625 0.6875 0 0.625 0.6875 1 0.625 0.6875 0 0.6875 0.6875 1 0.6875 0.6875 0 0.75 0.6875 1 0.75 0.6875 0 0.8125 0.6875 1 0.8125 0.6875 0 0.875 0.6875 1 0.875 0.6875 0 0.9375 0.6875 1 0.9375 0.6875 0 1 0.6875 0.0625 1 0.6875 0.125 1 0.6875 0.1875 1 0.6875 0.25 1 0.6875 0.3125 1 0.6875 0.375 1 0.6875 0.4375 1 0.6875 0.5 1 0.6875 0.5625 1 0.6875 0.625 1 0.6875 0.6875 1 0.6875 0.75 1 0.6875 0.8125 1 0.6875 0.875 1 0.6875 0.9375 1 0.6875 1 1 0.6875 0 0 0.75 0.0625 0 0.75 0.125 0 0.75 0.1875 0 0.75 0.25 0 0.75 0.3125 0 0.75 0.375 0 0.75 0.4375 0 0.75 0.5 0 0.75 0.5625 0 0.75 0.625 0 0.75 0.6875 0 0.75 0.75 0 0.75 0.8125 0 0.75 0.875 0 0.75 0.9375 0 0.75 1 0 0.75 0 0.0625 0.75 1 0.0625 0.75 0 0.125 0.75 1 0.125 0.75 0 0.1875 0.75 1 0.1875 0.75 0 0.25 0.75 1 0.25 0.75 0 0.3125 0.75 1 0.3125 0.75 0 0.375 0.75 1 0.375 0.75 0 0.4375 0.75 1 0.4375 0.75 0 0.5 0.75 1 0.5 0.75 0 0.5625 0.75 1 0.5625 0.75 0 0.625 0.75 1 0.625 0.75 0 0.6875 0.75 1 0.6875 0.75 0 0.75 0.75 1 0.75 0.75 0 0.8125 0.75 1 0.8125 0.75 0 0.875 0.75 1 0.875 0.75 0 0.9375 0.75 1 0.9375 0.75 0 1 0.75 0.0625 1 0.75 0.125 1 0.75 0.1875 1 0.75 0.25 1 0.75 0.3125 1 0.75 0.375 1 0.75 0.4375 1 0.75 0.5 1 0.75 0.5625 1 0.75 0.625 1 0.75 0.6875 1 0.75 0.75 1 0.75 0.8125 1 0.75 0.875 1 0.75 0.9375 1 0.75 1 1 0.75 0 0 0.8125 0.0625 0 0.8125 0.125 0 0.8125 0.1875 0 0.8125 0.25 0 0.8125 0.3125 0 0.8125 0.375 0 0.8125 0.4375 0 0.8125 0.5 0 0.8125 0.5625 0 0.8125 0.625 0 0.8125 0.6875 0 0.8125 0.75 0 0.8125 0.8125 0 0.8125 0.875 0 0.8125 0.9375 0 0.8125 1 0 0.8125 0 0.0625 0.8125 1 0.0625 0.8125 0 0.125 0.8125 1 0.125 0.8125 0 0.1875 0.8125 1 0.1875 0.8125 0 0.25 0.8125 1 0.25 0.8125 0 0.3125 0.8125 1 0.3125 0.8125 0 0.375 0.8125 1 0.375 0.8125 0 0.4375 0.8125 1 0.4375 0.8125 0 0.5 0.8125 1 0.5 0.8125 0 0.5625 0.8125 1 0.5625 0.8125 0 0.625 0.8125 1 0.625 0.8125 0 0.6875 0.8125 1 0.6875 0.8125 0 0.75 0.8125 1 0.75 0.8125 0 0.8125 0.8125 1 0.8125 0.8125 0 0.875 0.8125 1 0.875 0.8125 0 0.9375 0.8125 1 0.9375 0.8125 0 1 0.8125 0.0625 1 0.8125 0.125 1 0.8125 0.1875 1 0.8125 0.25 1 0.8125 0.3125 1 0.8125 0.375 1 0.8125 0.4375 1 0.8125 0.5 1 0.8125 0.5625 1 0.8125 0.625 1 0.8125 0.6875 1 0.8125 0.75 1 0.8125 0.8125 1 0.8125 0.875 1 0.8125 0.9375 1 0.8125 1 1 0.8125 0 0 0.875 0.0625 0 0.875 0.125 0 0.875 0.1875 0 0.875 0.25 0 0.875 0.3125 0 0.875 0.375 0 0.875 0.4375 0 0.875 0.5 0 0.875 0.5625 0 0.875 0.625 0 0.875 0.6875 0 0.875 0.75 0 0.875 0.8125 0 0.875 0.875 0 0.875 0.9375 0 0.875 1 0 0.875 0 0.0625 0.875 1 0.0625 0.875 0 0.125 0.875 1 0.125 0.875 0 0.1875 0.875 1 0.1875 0.875 0 0.25 0.875 1 0.25 0.875 0 0.3125 0.875 1 0.3125 0.875 0 0.375 0.875 1 0.375 0.875 0 0.4375 0.875 1 0.4375 0.875 0 0.5 0.875 1 0.5 0.875 0 0.5625 0.875 1 0.5625 0.875 0 0.625 0.875 1 0.625 0.875 0 0.6875 0.875 1 0.6875 0.875 0 0.75 0.875 1 0.75 0.875 0 0.8125 0.875 1 0.8125 0.875 0 0.875 0.875 1 0.875 0.875 0 0.9375 0.875 1 0.9375 0.875 0 1 0.875 0.0625 1 0.875 0.125 1 0.875 0.1875 1 0.875 0.25 1 0.875 0.3125 1 0.875 0.375 1 0.875 0.4375 1 0.875 0.5 1 0.875 0.5625 1 0.875 0.625 1 0.875 0.6875 1 0.875 0.75 1 0.875 0.8125 1 0.875 0.875 1 0.875 0.9375 1 0.875 1 1 0.875 0 0 0.9375 0.0625 0 0.9375 0.125 0 0.9375 0.1875 0 0.9375 0.25 0 0.9375 0.3125 0 0.9375 0.375 0 0.9375 0.4375 0 0.9375 0.5 0 0.9375 0.5625 0 0.9375 0.625 0 0.9375 0.6875 0 0.9375 0.75 0 0.9375 0.8125 0 0.9375 0.875 0 0.9375 0.9375 0 0.9375 1 0 0.9375 0 0.0625 0.9375 1 0.0625 0.9375 0 0.125 0.9375 1 0.125 0.9375 0 0.1875 0.9375 1 0.1875 0.9375 0 0.25 0.9375 1 0.25 0.9375 0 0.3125 0.9375 1 0.3125 0.9375 0 0.375 0.9375 1 0.375 0.9375 0 0.4375 0.9375 1 0.4375 0.9375 0 0.5 0.9375 1 0.5 0.9375 0 0.5625 0.9375 1 0.5625 0.9375 0 0.625 0.9375 1 0.625 0.9375 0 0.6875 0.9375 1 0.6875 0.9375 0 0.75 0.9375 1 0.75 0.9375 0 0.8125 0.9375 1 0.8125 0.9375 0 0.875 0.9375 1 0.875 0.9375 0 0.9375 0.9375 1 0.9375 0.9375 0 1 0.9375 0.0625 1 0.9375 0.125 1 0.9375 0.1875 1 0.9375 0.25 1 0.9375 0.3125 1 0.9375 0.375 1 0.9375 0.4375 1 0.9375 0.5 1 0.9375 0.5625 1 0.9375 0.625 1 0.9375 0.6875 1 0.9375 0.75 1 0.9375 0.8125 1 0.9375 0.875 1 0.9375 0.9375 1 0.9375 1 1 0.9375 0 0 1 0.0625 0 1 0.125 0 1 0.1875 0 1 0.25 0 1 0.3125 0 1 0.375 0 1 0.4375 0 1 0.5 0 1 0.5625 0 1 0.625 0 1 0.6875 0 1 0.75 0 1 0.8125 0 1 0.875 0 1 0.9375 0 1 1 0 1 0 0.0625 1 0.0625 0.0625 1 0.125 0.0625 1 0.1875 0.0625 1 0.25 0.0625 1 0.3125 0.0625 1 0.375 0.0625 1 0.4375 0.0625 1 0.5 0.0625 1 0.5625 0.0625 1 0.625 0.0625 1 0.6875 0.0625 1 0.75 0.0625 1 0.8125 0.0625 1 0.875 0.0625 1 0.9375 0.0625 1 1 0.0625 1 0 0.125 1 0.0625 0.125 1 0.125 0.125 1 0.1875 0.125 1 0.25 0.125 1 0.3125 0.125 1 0.375 0.125 1 0.4375 0.125 1 0.5 0.125 1 0.5625 0.125 1 0.625 0.125 1 0.6875 0.125 1 0.75 0.125 1 0.8125 0.125 1 0.875 0.125 1 0.9375 0.125 1 1 0.125 1 0 0.1875 1 0.0625 0.1875 1 0.125 0.1875 1 0.1875 0.1875 1 0.25 0.1875 1 0.3125 0.1875 1 0.375 0.1875 1 0.4375 0.1875 1 0.5 0.1875 1 0.5625 0.1875 1 0.625 0.1875 1 0.6875 0.1875 1 0.75 0.1875 1 0.8125 0.1875 1 0.875 0.1875 1 0.9375 0.1875 1 1 0.1875 1 0 0.25 1 0.0625 0.25 1 0.125 0.25 1 0.1875 0.25 1 0.25 0.25 1 0.3125 0.25 1 0.375 0.25 1 0.4375 0.25 1 0.5 0.25 1 0.5625 0.25 1 0.625 0.25 1 0.6875 0.25 1 0.75 0.25 1 0.8125 0.25 1 0.875 0.25 1 0.9375 0.25 1 1 0.25 1 0 0.3125 1 0.0625 0.3125 1 0.125 0.3125 1 0.1875 0.3125 1 0.25 0.3125 1 0.3125 0.3125 1 0.375 0.3125 1 0.4375 0.3125 1 0.5 0.3125 1 0.5625 0.3125 1 0.625 0.3125 1 0.6875 0.3125 1 0.75 0.3125 1 0.8125 0.3125 1 0.875 0.3125 1 0.9375 0.3125 1 1 0.3125 1 0 0.375 1 0.0625 0.375 1 0.125 0.375 1 0.1875 0.375 1 0.25 0.375 1 0.3125 0.375 1 0.375 0.375 1 0.4375 0.375 1 0.5 0.375 1 0.5625 0.375 1 0.625 0.375 1 0.6875 0.375 1 0.75 0.375 1 0.8125 0.375 1 0.875 0.375 1 0.9375 0.375 1 1 0.375 1 0 0.4375 1 0.0625 0.4375 1 0.125 0.4375 1 0.1875 0.4375 1 0.25 0.4375 1 0.3125 0.4375 1 0.375 0.4375 1 0.4375 0.4375 1 0.5 0.4375 1 0.5625 0.4375 1 0.625 0.4375 1 0.6875 0.4375 1 0.75 0.4375 1 0.8125 0.4375 1 0.875 0.4375 1 0.9375 0.4375 1 1 0.4375 1 0 0.5 1 0.0625 0.5 1 0.125 0.5 1 0.1875 0.5 1 0.25 0.5 1 0.3125 0.5 1 0.375 0.5 1 0.4375 0.5 1 0.5 0.5 1 0.5625 0.5 1 0.625 0.5 1 0.6875 0.5 1 0.75 0.5 1 0.8125 0.5 1 0.875 0.5 1 0.9375 0.5 1 1 0.5 1 0 0.5625 1 0.0625 0.5625 1 0.125 0.5625 1 0.1875 0.5625 1 0.25 0.5625 1 0.3125 0.5625 1 0.375 0.5625 1 0.4375 0.5625 1 0.5 0.5625 1 0.5625 0.5625 1 0.625 0.5625 1 0.6875 0.5625 1 0.75 0.5625 1 0.8125 0.5625 1 0.875 0.5625 1 0.9375 0.5625 1 1 0.5625 1 0 0.625 1 0.0625 0.625 1 0.125 0.625 1 0.1875 0.625 1 0.25 0.625 1 0.3125 0.625 1 0.375 0.625 1 0.4375 0.625 1 0.5 0.625 1 0.5625 0.625 1 0.625 0.625 1 0.6875 0.625 1 0.75 0.625 1 0.8125 0.625 1 0.875 0.625 1 0.9375 0.625 1 1 0.625 1 0 0.6875 1 0.0625 0.6875 1 0.125 0.6875 1 0.1875 0.6875 1 0.25 0.6875 1 0.3125 0.6875 1 0.375 0.6875 1 0.4375 0.6875 1 0.5 0.6875 1 0.5625 0.6875 1 0.625 0.6875 1 0.6875 0.6875 1 0.75 0.6875 1 0.8125 0.6875 1 0.875 0.6875 1 0.9375 0.6875 1 1 0.6875 1 0 0.75 1 0.0625 0.75 1 0.125 0.75 1 0.1875 0.75 1 0.25 0.75 1 0.3125 0.75 1 0.375 0.75 1 0.4375 0.75 1 0.5 0.75 1 0.5625 0.75 1 0.625 0.75 1 0.6875 0.75 1 0.75 0.75 1 0.8125 0.75 1 0.875 0.75 1 0.9375 0.75 1 1 0.75 1 0 0.8125 1 0.0625 0.8125 1 0.125 0.8125 1 0.1875 0.8125 1 0.25 0.8125 1 0.3125 0.8125 1 0.375 0.8125 1 0.4375 0.8125 1 0.5 0.8125 1 0.5625 0.8125 1 0.625 0.8125 1 0.6875 0.8125 1 0.75 0.8125 1 0.8125 0.8125 1 0.875 0.8125 1 0.9375 0.8125 1 1 0.8125 1 0 0.875 1 0.0625 0.875 1 0.125 0.875 1 0.1875 0.875 1 0.25 0.875 1 0.3125 0.875 1 0.375 0.875 1 0.4375 0.875 1 0.5 0.875 1 0.5625 0.875 1 0.625 0.875 1 0.6875 0.875 1 0.75 0.875 1 0.8125 0.875 1 0.875 0.875 1 0.9375 0.875 1 1 0.875 1 0 0.9375 1 0.0625 0.9375 1 0.125 0.9375 1 0.1875 0.9375 1 0.25 0.9375 1 0.3125 0.9375 1 0.375 0.9375 1 0.4375 0.9375 1 0.5 0.9375 1 0.5625 0.9375 1 0.625 0.9375 1 0.6875 0.9375 1 0.75 0.9375 1 0.8125 0.9375 1 0.875 0.9375 1 0.9375 0.9375 1 1 0.9375 1 0 1 1 0.0625 1 1 0.125 1 1 0.1875 1 1 0.25 1 1 0.3125 1 1 0.375 1 1 0.4375 1 1 0.5 1 1 0.5625 1 1 0.625 1 1 0.6875 1 1 0.75 1 1 0.8125 1 1 0.875 1 1 0.9375 1 1 1 1 1 \"></coordinate>\n", " </indexedFaceSet>\n", " </shape>\n", " <shape>\n", " <appearance>\n", " <material emissiveColor=\"0.000000 0.000000 0.000000\" specularColor=\"0.000000 0.000000 0.000000\" ambientIntensity=\"0\" shininess=\"0.5\" transparency=\"0\"></material>\n", " </appearance>\n", " <indexedLineSet solid=\"false\" colorPercVertex=\"false\" coordIndex=\"1 18 -1 0 18 -1 0 1 -1 1 290 -1 0 290 -1 289 290 -1 0 289 -1 17 18 -1 0 17 -1 289 306 -1 0 306 -1 17 306 -1 2 19 -1 1 19 -1 1 2 -1 2 291 -1 1 291 -1 290 291 -1 18 19 -1 3 20 -1 2 20 -1 2 3 -1 3 292 -1 2 292 -1 291 292 -1 19 20 -1 4 21 -1 3 21 -1 3 4 -1 4 293 -1 3 293 -1 292 293 -1 20 21 -1 5 22 -1 4 22 -1 4 5 -1 5 294 -1 4 294 -1 293 294 -1 21 22 -1 6 23 -1 5 23 -1 5 6 -1 6 295 -1 5 295 -1 294 295 -1 22 23 -1 7 24 -1 6 24 -1 6 7 -1 7 296 -1 6 296 -1 295 296 -1 23 24 -1 8 25 -1 7 25 -1 7 8 -1 8 297 -1 7 297 -1 296 297 -1 24 25 -1 9 26 -1 8 26 -1 8 9 -1 9 298 -1 8 298 -1 297 298 -1 25 26 -1 10 27 -1 9 27 -1 9 10 -1 10 299 -1 9 299 -1 298 299 -1 26 27 -1 11 28 -1 10 28 -1 10 11 -1 11 300 -1 10 300 -1 299 300 -1 27 28 -1 12 29 -1 11 29 -1 11 12 -1 12 301 -1 11 301 -1 300 301 -1 28 29 -1 13 30 -1 12 30 -1 12 13 -1 13 302 -1 12 302 -1 301 302 -1 29 30 -1 14 31 -1 13 31 -1 13 14 -1 14 303 -1 13 303 -1 302 303 -1 30 31 -1 15 32 -1 14 32 -1 14 15 -1 15 304 -1 14 304 -1 303 304 -1 31 32 -1 33 307 -1 16 307 -1 16 33 -1 15 33 -1 15 16 -1 305 307 -1 16 305 -1 15 305 -1 304 305 -1 32 33 -1 18 35 -1 17 35 -1 34 35 -1 17 34 -1 306 308 -1 17 308 -1 34 308 -1 19 36 -1 18 36 -1 35 36 -1 20 37 -1 19 37 -1 36 37 -1 21 38 -1 20 38 -1 37 38 -1 22 39 -1 21 39 -1 38 39 -1 23 40 -1 22 40 -1 39 40 -1 24 41 -1 23 41 -1 40 41 -1 25 42 -1 24 42 -1 41 42 -1 26 43 -1 25 43 -1 42 43 -1 27 44 -1 26 44 -1 43 44 -1 28 45 -1 27 45 -1 44 45 -1 29 46 -1 28 46 -1 45 46 -1 30 47 -1 29 47 -1 46 47 -1 31 48 -1 30 48 -1 47 48 -1 32 49 -1 31 49 -1 48 49 -1 50 309 -1 33 309 -1 33 50 -1 32 50 -1 307 309 -1 49 50 -1 35 52 -1 34 52 -1 51 52 -1 34 51 -1 308 310 -1 34 310 -1 51 310 -1 36 53 -1 35 53 -1 52 53 -1 37 54 -1 36 54 -1 53 54 -1 38 55 -1 37 55 -1 54 55 -1 39 56 -1 38 56 -1 55 56 -1 40 57 -1 39 57 -1 56 57 -1 41 58 -1 40 58 -1 57 58 -1 42 59 -1 41 59 -1 58 59 -1 43 60 -1 42 60 -1 59 60 -1 44 61 -1 43 61 -1 60 61 -1 45 62 -1 44 62 -1 61 62 -1 46 63 -1 45 63 -1 62 63 -1 47 64 -1 46 64 -1 63 64 -1 48 65 -1 47 65 -1 64 65 -1 49 66 -1 48 66 -1 65 66 -1 67 311 -1 50 311 -1 50 67 -1 49 67 -1 309 311 -1 66 67 -1 52 69 -1 51 69 -1 68 69 -1 51 68 -1 310 312 -1 51 312 -1 68 312 -1 53 70 -1 52 70 -1 69 70 -1 54 71 -1 53 71 -1 70 71 -1 55 72 -1 54 72 -1 71 72 -1 56 73 -1 55 73 -1 72 73 -1 57 74 -1 56 74 -1 73 74 -1 58 75 -1 57 75 -1 74 75 -1 59 76 -1 58 76 -1 75 76 -1 60 77 -1 59 77 -1 76 77 -1 61 78 -1 60 78 -1 77 78 -1 62 79 -1 61 79 -1 78 79 -1 63 80 -1 62 80 -1 79 80 -1 64 81 -1 63 81 -1 80 81 -1 65 82 -1 64 82 -1 81 82 -1 66 83 -1 65 83 -1 82 83 -1 84 313 -1 67 313 -1 67 84 -1 66 84 -1 311 313 -1 83 84 -1 69 86 -1 68 86 -1 85 86 -1 68 85 -1 312 314 -1 68 314 -1 85 314 -1 70 87 -1 69 87 -1 86 87 -1 71 88 -1 70 88 -1 87 88 -1 72 89 -1 71 89 -1 88 89 -1 73 90 -1 72 90 -1 89 90 -1 74 91 -1 73 91 -1 90 91 -1 75 92 -1 74 92 -1 91 92 -1 76 93 -1 75 93 -1 92 93 -1 77 94 -1 76 94 -1 93 94 -1 78 95 -1 77 95 -1 94 95 -1 79 96 -1 78 96 -1 95 96 -1 80 97 -1 79 97 -1 96 97 -1 81 98 -1 80 98 -1 97 98 -1 82 99 -1 81 99 -1 98 99 -1 83 100 -1 82 100 -1 99 100 -1 101 315 -1 84 315 -1 84 101 -1 83 101 -1 313 315 -1 100 101 -1 86 103 -1 85 103 -1 102 103 -1 85 102 -1 314 316 -1 85 316 -1 102 316 -1 87 104 -1 86 104 -1 103 104 -1 88 105 -1 87 105 -1 104 105 -1 89 106 -1 88 106 -1 105 106 -1 90 107 -1 89 107 -1 106 107 -1 91 108 -1 90 108 -1 107 108 -1 92 109 -1 91 109 -1 108 109 -1 93 110 -1 92 110 -1 109 110 -1 94 111 -1 93 111 -1 110 111 -1 95 112 -1 94 112 -1 111 112 -1 96 113 -1 95 113 -1 112 113 -1 97 114 -1 96 114 -1 113 114 -1 98 115 -1 97 115 -1 114 115 -1 99 116 -1 98 116 -1 115 116 -1 100 117 -1 99 117 -1 116 117 -1 118 317 -1 101 317 -1 101 118 -1 100 118 -1 315 317 -1 117 118 -1 103 120 -1 102 120 -1 119 120 -1 102 119 -1 316 318 -1 102 318 -1 119 318 -1 104 121 -1 103 121 -1 120 121 -1 105 122 -1 104 122 -1 121 122 -1 106 123 -1 105 123 -1 122 123 -1 107 124 -1 106 124 -1 123 124 -1 108 125 -1 107 125 -1 124 125 -1 109 126 -1 108 126 -1 125 126 -1 110 127 -1 109 127 -1 126 127 -1 111 128 -1 110 128 -1 127 128 -1 112 129 -1 111 129 -1 128 129 -1 113 130 -1 112 130 -1 129 130 -1 114 131 -1 113 131 -1 130 131 -1 115 132 -1 114 132 -1 131 132 -1 116 133 -1 115 133 -1 132 133 -1 117 134 -1 116 134 -1 133 134 -1 135 319 -1 118 319 -1 118 135 -1 117 135 -1 317 319 -1 134 135 -1 120 137 -1 119 137 -1 136 137 -1 119 136 -1 318 320 -1 119 320 -1 136 320 -1 121 138 -1 120 138 -1 137 138 -1 122 139 -1 121 139 -1 138 139 -1 123 140 -1 122 140 -1 139 140 -1 124 141 -1 123 141 -1 140 141 -1 125 142 -1 124 142 -1 141 142 -1 126 143 -1 125 143 -1 142 143 -1 127 144 -1 126 144 -1 143 144 -1 128 145 -1 127 145 -1 144 145 -1 129 146 -1 128 146 -1 145 146 -1 130 147 -1 129 147 -1 146 147 -1 131 148 -1 130 148 -1 147 148 -1 132 149 -1 131 149 -1 148 149 -1 133 150 -1 132 150 -1 149 150 -1 134 151 -1 133 151 -1 150 151 -1 152 321 -1 135 321 -1 135 152 -1 134 152 -1 319 321 -1 151 152 -1 137 154 -1 136 154 -1 153 154 -1 136 153 -1 320 322 -1 136 322 -1 153 322 -1 138 155 -1 137 155 -1 154 155 -1 139 156 -1 138 156 -1 155 156 -1 140 157 -1 139 157 -1 156 157 -1 141 158 -1 140 158 -1 157 158 -1 142 159 -1 141 159 -1 158 159 -1 143 160 -1 142 160 -1 159 160 -1 144 161 -1 143 161 -1 160 161 -1 145 162 -1 144 162 -1 161 162 -1 146 163 -1 145 163 -1 162 163 -1 147 164 -1 146 164 -1 163 164 -1 148 165 -1 147 165 -1 164 165 -1 149 166 -1 148 166 -1 165 166 -1 150 167 -1 149 167 -1 166 167 -1 151 168 -1 150 168 -1 167 168 -1 169 323 -1 152 323 -1 152 169 -1 151 169 -1 321 323 -1 168 169 -1 154 171 -1 153 171 -1 170 171 -1 153 170 -1 322 324 -1 153 324 -1 170 324 -1 155 172 -1 154 172 -1 171 172 -1 156 173 -1 155 173 -1 172 173 -1 157 174 -1 156 174 -1 173 174 -1 158 175 -1 157 175 -1 174 175 -1 159 176 -1 158 176 -1 175 176 -1 160 177 -1 159 177 -1 176 177 -1 161 178 -1 160 178 -1 177 178 -1 162 179 -1 161 179 -1 178 179 -1 163 180 -1 162 180 -1 179 180 -1 164 181 -1 163 181 -1 180 181 -1 165 182 -1 164 182 -1 181 182 -1 166 183 -1 165 183 -1 182 183 -1 167 184 -1 166 184 -1 183 184 -1 168 185 -1 167 185 -1 184 185 -1 186 325 -1 169 325 -1 169 186 -1 168 186 -1 323 325 -1 185 186 -1 171 188 -1 170 188 -1 187 188 -1 170 187 -1 324 326 -1 170 326 -1 187 326 -1 172 189 -1 171 189 -1 188 189 -1 173 190 -1 172 190 -1 189 190 -1 174 191 -1 173 191 -1 190 191 -1 175 192 -1 174 192 -1 191 192 -1 176 193 -1 175 193 -1 192 193 -1 177 194 -1 176 194 -1 193 194 -1 178 195 -1 177 195 -1 194 195 -1 179 196 -1 178 196 -1 195 196 -1 180 197 -1 179 197 -1 196 197 -1 181 198 -1 180 198 -1 197 198 -1 182 199 -1 181 199 -1 198 199 -1 183 200 -1 182 200 -1 199 200 -1 184 201 -1 183 201 -1 200 201 -1 185 202 -1 184 202 -1 201 202 -1 203 327 -1 186 327 -1 186 203 -1 185 203 -1 325 327 -1 202 203 -1 188 205 -1 187 205 -1 204 205 -1 187 204 -1 326 328 -1 187 328 -1 204 328 -1 189 206 -1 188 206 -1 205 206 -1 190 207 -1 189 207 -1 206 207 -1 191 208 -1 190 208 -1 207 208 -1 192 209 -1 191 209 -1 208 209 -1 193 210 -1 192 210 -1 209 210 -1 194 211 -1 193 211 -1 210 211 -1 195 212 -1 194 212 -1 211 212 -1 196 213 -1 195 213 -1 212 213 -1 197 214 -1 196 214 -1 213 214 -1 198 215 -1 197 215 -1 214 215 -1 199 216 -1 198 216 -1 215 216 -1 200 217 -1 199 217 -1 216 217 -1 201 218 -1 200 218 -1 217 218 -1 202 219 -1 201 219 -1 218 219 -1 220 329 -1 203 329 -1 203 220 -1 202 220 -1 327 329 -1 219 220 -1 205 222 -1 204 222 -1 221 222 -1 204 221 -1 328 330 -1 204 330 -1 221 330 -1 206 223 -1 205 223 -1 222 223 -1 207 224 -1 206 224 -1 223 224 -1 208 225 -1 207 225 -1 224 225 -1 209 226 -1 208 226 -1 225 226 -1 210 227 -1 209 227 -1 226 227 -1 211 228 -1 210 228 -1 227 228 -1 212 229 -1 211 229 -1 228 229 -1 213 230 -1 212 230 -1 229 230 -1 214 231 -1 213 231 -1 230 231 -1 215 232 -1 214 232 -1 231 232 -1 216 233 -1 215 233 -1 232 233 -1 217 234 -1 216 234 -1 233 234 -1 218 235 -1 217 235 -1 234 235 -1 219 236 -1 218 236 -1 235 236 -1 237 331 -1 220 331 -1 220 237 -1 219 237 -1 329 331 -1 236 237 -1 222 239 -1 221 239 -1 238 239 -1 221 238 -1 330 332 -1 221 332 -1 238 332 -1 223 240 -1 222 240 -1 239 240 -1 224 241 -1 223 241 -1 240 241 -1 225 242 -1 224 242 -1 241 242 -1 226 243 -1 225 243 -1 242 243 -1 227 244 -1 226 244 -1 243 244 -1 228 245 -1 227 245 -1 244 245 -1 229 246 -1 228 246 -1 245 246 -1 230 247 -1 229 247 -1 246 247 -1 231 248 -1 230 248 -1 247 248 -1 232 249 -1 231 249 -1 248 249 -1 233 250 -1 232 250 -1 249 250 -1 234 251 -1 233 251 -1 250 251 -1 235 252 -1 234 252 -1 251 252 -1 236 253 -1 235 253 -1 252 253 -1 254 333 -1 237 333 -1 237 254 -1 236 254 -1 331 333 -1 253 254 -1 239 256 -1 238 256 -1 255 256 -1 238 255 -1 332 334 -1 238 334 -1 255 334 -1 240 257 -1 239 257 -1 256 257 -1 241 258 -1 240 258 -1 257 258 -1 242 259 -1 241 259 -1 258 259 -1 243 260 -1 242 260 -1 259 260 -1 244 261 -1 243 261 -1 260 261 -1 245 262 -1 244 262 -1 261 262 -1 246 263 -1 245 263 -1 262 263 -1 247 264 -1 246 264 -1 263 264 -1 248 265 -1 247 265 -1 264 265 -1 249 266 -1 248 266 -1 265 266 -1 250 267 -1 249 267 -1 266 267 -1 251 268 -1 250 268 -1 267 268 -1 252 269 -1 251 269 -1 268 269 -1 253 270 -1 252 270 -1 269 270 -1 271 335 -1 254 335 -1 254 271 -1 253 271 -1 333 335 -1 270 271 -1 273 337 -1 256 273 -1 255 273 -1 272 337 -1 272 273 -1 255 272 -1 336 337 -1 334 336 -1 255 336 -1 272 336 -1 274 338 -1 257 274 -1 256 274 -1 273 338 -1 273 274 -1 337 338 -1 275 339 -1 258 275 -1 257 275 -1 274 339 -1 274 275 -1 338 339 -1 276 340 -1 259 276 -1 258 276 -1 275 340 -1 275 276 -1 339 340 -1 277 341 -1 260 277 -1 259 277 -1 276 341 -1 276 277 -1 340 341 -1 278 342 -1 261 278 -1 260 278 -1 277 342 -1 277 278 -1 341 342 -1 279 343 -1 262 279 -1 261 279 -1 278 343 -1 278 279 -1 342 343 -1 280 344 -1 263 280 -1 262 280 -1 279 344 -1 279 280 -1 343 344 -1 281 345 -1 264 281 -1 263 281 -1 280 345 -1 280 281 -1 344 345 -1 282 346 -1 265 282 -1 264 282 -1 281 346 -1 281 282 -1 345 346 -1 283 347 -1 266 283 -1 265 283 -1 282 347 -1 282 283 -1 346 347 -1 284 348 -1 267 284 -1 266 284 -1 283 348 -1 283 284 -1 347 348 -1 285 349 -1 268 285 -1 267 285 -1 284 349 -1 284 285 -1 348 349 -1 286 350 -1 269 286 -1 268 286 -1 285 350 -1 285 286 -1 349 350 -1 287 351 -1 270 287 -1 269 287 -1 286 351 -1 286 287 -1 350 351 -1 288 352 -1 271 352 -1 271 288 -1 270 288 -1 335 352 -1 287 352 -1 287 288 -1 351 352 -1 290 354 -1 289 354 -1 353 354 -1 289 353 -1 353 370 -1 289 370 -1 306 370 -1 291 355 -1 290 355 -1 354 355 -1 292 356 -1 291 356 -1 355 356 -1 293 357 -1 292 357 -1 356 357 -1 294 358 -1 293 358 -1 357 358 -1 295 359 -1 294 359 -1 358 359 -1 296 360 -1 295 360 -1 359 360 -1 297 361 -1 296 361 -1 360 361 -1 298 362 -1 297 362 -1 361 362 -1 299 363 -1 298 363 -1 362 363 -1 300 364 -1 299 364 -1 363 364 -1 301 365 -1 300 365 -1 364 365 -1 302 366 -1 301 366 -1 365 366 -1 303 367 -1 302 367 -1 366 367 -1 304 368 -1 303 368 -1 367 368 -1 307 371 -1 305 371 -1 369 371 -1 305 369 -1 304 369 -1 368 369 -1 370 372 -1 306 372 -1 308 372 -1 309 373 -1 307 373 -1 371 373 -1 372 374 -1 308 374 -1 310 374 -1 311 375 -1 309 375 -1 373 375 -1 374 376 -1 310 376 -1 312 376 -1 313 377 -1 311 377 -1 375 377 -1 376 378 -1 312 378 -1 314 378 -1 315 379 -1 313 379 -1 377 379 -1 378 380 -1 314 380 -1 316 380 -1 317 381 -1 315 381 -1 379 381 -1 380 382 -1 316 382 -1 318 382 -1 319 383 -1 317 383 -1 381 383 -1 382 384 -1 318 384 -1 320 384 -1 321 385 -1 319 385 -1 383 385 -1 384 386 -1 320 386 -1 322 386 -1 323 387 -1 321 387 -1 385 387 -1 386 388 -1 322 388 -1 324 388 -1 325 389 -1 323 389 -1 387 389 -1 388 390 -1 324 390 -1 326 390 -1 327 391 -1 325 391 -1 389 391 -1 390 392 -1 326 392 -1 328 392 -1 329 393 -1 327 393 -1 391 393 -1 392 394 -1 328 394 -1 330 394 -1 331 395 -1 329 395 -1 393 395 -1 394 396 -1 330 396 -1 332 396 -1 333 397 -1 331 397 -1 395 397 -1 396 398 -1 332 398 -1 334 398 -1 335 399 -1 333 399 -1 397 399 -1 337 401 -1 336 401 -1 400 401 -1 398 400 -1 334 400 -1 336 400 -1 338 402 -1 337 402 -1 401 402 -1 339 403 -1 338 403 -1 402 403 -1 340 404 -1 339 404 -1 403 404 -1 341 405 -1 340 405 -1 404 405 -1 342 406 -1 341 406 -1 405 406 -1 343 407 -1 342 407 -1 406 407 -1 344 408 -1 343 408 -1 407 408 -1 345 409 -1 344 409 -1 408 409 -1 346 410 -1 345 410 -1 409 410 -1 347 411 -1 346 411 -1 410 411 -1 348 412 -1 347 412 -1 411 412 -1 349 413 -1 348 413 -1 412 413 -1 350 414 -1 349 414 -1 413 414 -1 351 415 -1 350 415 -1 414 415 -1 352 416 -1 335 416 -1 399 416 -1 351 416 -1 415 416 -1 354 418 -1 353 418 -1 417 418 -1 353 417 -1 417 434 -1 353 434 -1 370 434 -1 355 419 -1 354 419 -1 418 419 -1 356 420 -1 355 420 -1 419 420 -1 357 421 -1 356 421 -1 420 421 -1 358 422 -1 357 422 -1 421 422 -1 359 423 -1 358 423 -1 422 423 -1 360 424 -1 359 424 -1 423 424 -1 361 425 -1 360 425 -1 424 425 -1 362 426 -1 361 426 -1 425 426 -1 363 427 -1 362 427 -1 426 427 -1 364 428 -1 363 428 -1 427 428 -1 365 429 -1 364 429 -1 428 429 -1 366 430 -1 365 430 -1 429 430 -1 367 431 -1 366 431 -1 430 431 -1 368 432 -1 367 432 -1 431 432 -1 371 435 -1 369 435 -1 433 435 -1 369 433 -1 368 433 -1 432 433 -1 434 436 -1 370 436 -1 372 436 -1 373 437 -1 371 437 -1 435 437 -1 436 438 -1 372 438 -1 374 438 -1 375 439 -1 373 439 -1 437 439 -1 438 440 -1 374 440 -1 376 440 -1 377 441 -1 375 441 -1 439 441 -1 440 442 -1 376 442 -1 378 442 -1 379 443 -1 377 443 -1 441 443 -1 442 444 -1 378 444 -1 380 444 -1 381 445 -1 379 445 -1 443 445 -1 444 446 -1 380 446 -1 382 446 -1 383 447 -1 381 447 -1 445 447 -1 446 448 -1 382 448 -1 384 448 -1 385 449 -1 383 449 -1 447 449 -1 448 450 -1 384 450 -1 386 450 -1 387 451 -1 385 451 -1 449 451 -1 450 452 -1 386 452 -1 388 452 -1 389 453 -1 387 453 -1 451 453 -1 452 454 -1 388 454 -1 390 454 -1 391 455 -1 389 455 -1 453 455 -1 454 456 -1 390 456 -1 392 456 -1 393 457 -1 391 457 -1 455 457 -1 456 458 -1 392 458 -1 394 458 -1 395 459 -1 393 459 -1 457 459 -1 458 460 -1 394 460 -1 396 460 -1 397 461 -1 395 461 -1 459 461 -1 460 462 -1 396 462 -1 398 462 -1 399 463 -1 397 463 -1 461 463 -1 401 465 -1 400 465 -1 464 465 -1 462 464 -1 398 464 -1 400 464 -1 402 466 -1 401 466 -1 465 466 -1 403 467 -1 402 467 -1 466 467 -1 404 468 -1 403 468 -1 467 468 -1 405 469 -1 404 469 -1 468 469 -1 406 470 -1 405 470 -1 469 470 -1 407 471 -1 406 471 -1 470 471 -1 408 472 -1 407 472 -1 471 472 -1 409 473 -1 408 473 -1 472 473 -1 410 474 -1 409 474 -1 473 474 -1 411 475 -1 410 475 -1 474 475 -1 412 476 -1 411 476 -1 475 476 -1 413 477 -1 412 477 -1 476 477 -1 414 478 -1 413 478 -1 477 478 -1 415 479 -1 414 479 -1 478 479 -1 416 480 -1 399 480 -1 463 480 -1 415 480 -1 479 480 -1 418 482 -1 417 482 -1 481 482 -1 417 481 -1 481 498 -1 417 498 -1 434 498 -1 419 483 -1 418 483 -1 482 483 -1 420 484 -1 419 484 -1 483 484 -1 421 485 -1 420 485 -1 484 485 -1 422 486 -1 421 486 -1 485 486 -1 423 487 -1 422 487 -1 486 487 -1 424 488 -1 423 488 -1 487 488 -1 425 489 -1 424 489 -1 488 489 -1 426 490 -1 425 490 -1 489 490 -1 427 491 -1 426 491 -1 490 491 -1 428 492 -1 427 492 -1 491 492 -1 429 493 -1 428 493 -1 492 493 -1 430 494 -1 429 494 -1 493 494 -1 431 495 -1 430 495 -1 494 495 -1 432 496 -1 431 496 -1 495 496 -1 435 499 -1 433 499 -1 497 499 -1 433 497 -1 432 497 -1 496 497 -1 498 500 -1 434 500 -1 436 500 -1 437 501 -1 435 501 -1 499 501 -1 500 502 -1 436 502 -1 438 502 -1 439 503 -1 437 503 -1 501 503 -1 502 504 -1 438 504 -1 440 504 -1 441 505 -1 439 505 -1 503 505 -1 504 506 -1 440 506 -1 442 506 -1 443 507 -1 441 507 -1 505 507 -1 506 508 -1 442 508 -1 444 508 -1 445 509 -1 443 509 -1 507 509 -1 508 510 -1 444 510 -1 446 510 -1 447 511 -1 445 511 -1 509 511 -1 510 512 -1 446 512 -1 448 512 -1 449 513 -1 447 513 -1 511 513 -1 512 514 -1 448 514 -1 450 514 -1 451 515 -1 449 515 -1 513 515 -1 514 516 -1 450 516 -1 452 516 -1 453 517 -1 451 517 -1 515 517 -1 516 518 -1 452 518 -1 454 518 -1 455 519 -1 453 519 -1 517 519 -1 518 520 -1 454 520 -1 456 520 -1 457 521 -1 455 521 -1 519 521 -1 520 522 -1 456 522 -1 458 522 -1 459 523 -1 457 523 -1 521 523 -1 522 524 -1 458 524 -1 460 524 -1 461 525 -1 459 525 -1 523 525 -1 524 526 -1 460 526 -1 462 526 -1 463 527 -1 461 527 -1 525 527 -1 465 529 -1 464 529 -1 528 529 -1 526 528 -1 462 528 -1 464 528 -1 466 530 -1 465 530 -1 529 530 -1 467 531 -1 466 531 -1 530 531 -1 468 532 -1 467 532 -1 531 532 -1 469 533 -1 468 533 -1 532 533 -1 470 534 -1 469 534 -1 533 534 -1 471 535 -1 470 535 -1 534 535 -1 472 536 -1 471 536 -1 535 536 -1 473 537 -1 472 537 -1 536 537 -1 474 538 -1 473 538 -1 537 538 -1 475 539 -1 474 539 -1 538 539 -1 476 540 -1 475 540 -1 539 540 -1 477 541 -1 476 541 -1 540 541 -1 478 542 -1 477 542 -1 541 542 -1 479 543 -1 478 543 -1 542 543 -1 480 544 -1 463 544 -1 527 544 -1 479 544 -1 543 544 -1 482 546 -1 481 546 -1 545 546 -1 481 545 -1 545 562 -1 481 562 -1 498 562 -1 483 547 -1 482 547 -1 546 547 -1 484 548 -1 483 548 -1 547 548 -1 485 549 -1 484 549 -1 548 549 -1 486 550 -1 485 550 -1 549 550 -1 487 551 -1 486 551 -1 550 551 -1 488 552 -1 487 552 -1 551 552 -1 489 553 -1 488 553 -1 552 553 -1 490 554 -1 489 554 -1 553 554 -1 491 555 -1 490 555 -1 554 555 -1 492 556 -1 491 556 -1 555 556 -1 493 557 -1 492 557 -1 556 557 -1 494 558 -1 493 558 -1 557 558 -1 495 559 -1 494 559 -1 558 559 -1 496 560 -1 495 560 -1 559 560 -1 499 563 -1 497 563 -1 561 563 -1 497 561 -1 496 561 -1 560 561 -1 562 564 -1 498 564 -1 500 564 -1 501 565 -1 499 565 -1 563 565 -1 564 566 -1 500 566 -1 502 566 -1 503 567 -1 501 567 -1 565 567 -1 566 568 -1 502 568 -1 504 568 -1 505 569 -1 503 569 -1 567 569 -1 568 570 -1 504 570 -1 506 570 -1 507 571 -1 505 571 -1 569 571 -1 570 572 -1 506 572 -1 508 572 -1 509 573 -1 507 573 -1 571 573 -1 572 574 -1 508 574 -1 510 574 -1 511 575 -1 509 575 -1 573 575 -1 574 576 -1 510 576 -1 512 576 -1 513 577 -1 511 577 -1 575 577 -1 576 578 -1 512 578 -1 514 578 -1 515 579 -1 513 579 -1 577 579 -1 578 580 -1 514 580 -1 516 580 -1 517 581 -1 515 581 -1 579 581 -1 580 582 -1 516 582 -1 518 582 -1 519 583 -1 517 583 -1 581 583 -1 582 584 -1 518 584 -1 520 584 -1 521 585 -1 519 585 -1 583 585 -1 584 586 -1 520 586 -1 522 586 -1 523 587 -1 521 587 -1 585 587 -1 586 588 -1 522 588 -1 524 588 -1 525 589 -1 523 589 -1 587 589 -1 588 590 -1 524 590 -1 526 590 -1 527 591 -1 525 591 -1 589 591 -1 529 593 -1 528 593 -1 592 593 -1 590 592 -1 526 592 -1 528 592 -1 530 594 -1 529 594 -1 593 594 -1 531 595 -1 530 595 -1 594 595 -1 532 596 -1 531 596 -1 595 596 -1 533 597 -1 532 597 -1 596 597 -1 534 598 -1 533 598 -1 597 598 -1 535 599 -1 534 599 -1 598 599 -1 536 600 -1 535 600 -1 599 600 -1 537 601 -1 536 601 -1 600 601 -1 538 602 -1 537 602 -1 601 602 -1 539 603 -1 538 603 -1 602 603 -1 540 604 -1 539 604 -1 603 604 -1 541 605 -1 540 605 -1 604 605 -1 542 606 -1 541 606 -1 605 606 -1 543 607 -1 542 607 -1 606 607 -1 544 608 -1 527 608 -1 591 608 -1 543 608 -1 607 608 -1 546 610 -1 545 610 -1 609 610 -1 545 609 -1 609 626 -1 545 626 -1 562 626 -1 547 611 -1 546 611 -1 610 611 -1 548 612 -1 547 612 -1 611 612 -1 549 613 -1 548 613 -1 612 613 -1 550 614 -1 549 614 -1 613 614 -1 551 615 -1 550 615 -1 614 615 -1 552 616 -1 551 616 -1 615 616 -1 553 617 -1 552 617 -1 616 617 -1 554 618 -1 553 618 -1 617 618 -1 555 619 -1 554 619 -1 618 619 -1 556 620 -1 555 620 -1 619 620 -1 557 621 -1 556 621 -1 620 621 -1 558 622 -1 557 622 -1 621 622 -1 559 623 -1 558 623 -1 622 623 -1 560 624 -1 559 624 -1 623 624 -1 563 627 -1 561 627 -1 625 627 -1 561 625 -1 560 625 -1 624 625 -1 626 628 -1 562 628 -1 564 628 -1 565 629 -1 563 629 -1 627 629 -1 628 630 -1 564 630 -1 566 630 -1 567 631 -1 565 631 -1 629 631 -1 630 632 -1 566 632 -1 568 632 -1 569 633 -1 567 633 -1 631 633 -1 632 634 -1 568 634 -1 570 634 -1 571 635 -1 569 635 -1 633 635 -1 634 636 -1 570 636 -1 572 636 -1 573 637 -1 571 637 -1 635 637 -1 636 638 -1 572 638 -1 574 638 -1 575 639 -1 573 639 -1 637 639 -1 638 640 -1 574 640 -1 576 640 -1 577 641 -1 575 641 -1 639 641 -1 640 642 -1 576 642 -1 578 642 -1 579 643 -1 577 643 -1 641 643 -1 642 644 -1 578 644 -1 580 644 -1 581 645 -1 579 645 -1 643 645 -1 644 646 -1 580 646 -1 582 646 -1 583 647 -1 581 647 -1 645 647 -1 646 648 -1 582 648 -1 584 648 -1 585 649 -1 583 649 -1 647 649 -1 648 650 -1 584 650 -1 586 650 -1 587 651 -1 585 651 -1 649 651 -1 650 652 -1 586 652 -1 588 652 -1 589 653 -1 587 653 -1 651 653 -1 652 654 -1 588 654 -1 590 654 -1 591 655 -1 589 655 -1 653 655 -1 593 657 -1 592 657 -1 656 657 -1 654 656 -1 590 656 -1 592 656 -1 594 658 -1 593 658 -1 657 658 -1 595 659 -1 594 659 -1 658 659 -1 596 660 -1 595 660 -1 659 660 -1 597 661 -1 596 661 -1 660 661 -1 598 662 -1 597 662 -1 661 662 -1 599 663 -1 598 663 -1 662 663 -1 600 664 -1 599 664 -1 663 664 -1 601 665 -1 600 665 -1 664 665 -1 602 666 -1 601 666 -1 665 666 -1 603 667 -1 602 667 -1 666 667 -1 604 668 -1 603 668 -1 667 668 -1 605 669 -1 604 669 -1 668 669 -1 606 670 -1 605 670 -1 669 670 -1 607 671 -1 606 671 -1 670 671 -1 608 672 -1 591 672 -1 655 672 -1 607 672 -1 671 672 -1 610 674 -1 609 674 -1 673 674 -1 609 673 -1 673 690 -1 609 690 -1 626 690 -1 611 675 -1 610 675 -1 674 675 -1 612 676 -1 611 676 -1 675 676 -1 613 677 -1 612 677 -1 676 677 -1 614 678 -1 613 678 -1 677 678 -1 615 679 -1 614 679 -1 678 679 -1 616 680 -1 615 680 -1 679 680 -1 617 681 -1 616 681 -1 680 681 -1 618 682 -1 617 682 -1 681 682 -1 619 683 -1 618 683 -1 682 683 -1 620 684 -1 619 684 -1 683 684 -1 621 685 -1 620 685 -1 684 685 -1 622 686 -1 621 686 -1 685 686 -1 623 687 -1 622 687 -1 686 687 -1 624 688 -1 623 688 -1 687 688 -1 627 691 -1 625 691 -1 689 691 -1 625 689 -1 624 689 -1 688 689 -1 690 692 -1 626 692 -1 628 692 -1 629 693 -1 627 693 -1 691 693 -1 692 694 -1 628 694 -1 630 694 -1 631 695 -1 629 695 -1 693 695 -1 694 696 -1 630 696 -1 632 696 -1 633 697 -1 631 697 -1 695 697 -1 696 698 -1 632 698 -1 634 698 -1 635 699 -1 633 699 -1 697 699 -1 698 700 -1 634 700 -1 636 700 -1 637 701 -1 635 701 -1 699 701 -1 700 702 -1 636 702 -1 638 702 -1 639 703 -1 637 703 -1 701 703 -1 702 704 -1 638 704 -1 640 704 -1 641 705 -1 639 705 -1 703 705 -1 704 706 -1 640 706 -1 642 706 -1 643 707 -1 641 707 -1 705 707 -1 706 708 -1 642 708 -1 644 708 -1 645 709 -1 643 709 -1 707 709 -1 708 710 -1 644 710 -1 646 710 -1 647 711 -1 645 711 -1 709 711 -1 710 712 -1 646 712 -1 648 712 -1 649 713 -1 647 713 -1 711 713 -1 712 714 -1 648 714 -1 650 714 -1 651 715 -1 649 715 -1 713 715 -1 714 716 -1 650 716 -1 652 716 -1 653 717 -1 651 717 -1 715 717 -1 716 718 -1 652 718 -1 654 718 -1 655 719 -1 653 719 -1 717 719 -1 657 721 -1 656 721 -1 720 721 -1 718 720 -1 654 720 -1 656 720 -1 658 722 -1 657 722 -1 721 722 -1 659 723 -1 658 723 -1 722 723 -1 660 724 -1 659 724 -1 723 724 -1 661 725 -1 660 725 -1 724 725 -1 662 726 -1 661 726 -1 725 726 -1 663 727 -1 662 727 -1 726 727 -1 664 728 -1 663 728 -1 727 728 -1 665 729 -1 664 729 -1 728 729 -1 666 730 -1 665 730 -1 729 730 -1 667 731 -1 666 731 -1 730 731 -1 668 732 -1 667 732 -1 731 732 -1 669 733 -1 668 733 -1 732 733 -1 670 734 -1 669 734 -1 733 734 -1 671 735 -1 670 735 -1 734 735 -1 672 736 -1 655 736 -1 719 736 -1 671 736 -1 735 736 -1 674 738 -1 673 738 -1 737 738 -1 673 737 -1 737 754 -1 673 754 -1 690 754 -1 675 739 -1 674 739 -1 738 739 -1 676 740 -1 675 740 -1 739 740 -1 677 741 -1 676 741 -1 740 741 -1 678 742 -1 677 742 -1 741 742 -1 679 743 -1 678 743 -1 742 743 -1 680 744 -1 679 744 -1 743 744 -1 681 745 -1 680 745 -1 744 745 -1 682 746 -1 681 746 -1 745 746 -1 683 747 -1 682 747 -1 746 747 -1 684 748 -1 683 748 -1 747 748 -1 685 749 -1 684 749 -1 748 749 -1 686 750 -1 685 750 -1 749 750 -1 687 751 -1 686 751 -1 750 751 -1 688 752 -1 687 752 -1 751 752 -1 691 755 -1 689 755 -1 753 755 -1 689 753 -1 688 753 -1 752 753 -1 754 756 -1 690 756 -1 692 756 -1 693 757 -1 691 757 -1 755 757 -1 756 758 -1 692 758 -1 694 758 -1 695 759 -1 693 759 -1 757 759 -1 758 760 -1 694 760 -1 696 760 -1 697 761 -1 695 761 -1 759 761 -1 760 762 -1 696 762 -1 698 762 -1 699 763 -1 697 763 -1 761 763 -1 762 764 -1 698 764 -1 700 764 -1 701 765 -1 699 765 -1 763 765 -1 764 766 -1 700 766 -1 702 766 -1 703 767 -1 701 767 -1 765 767 -1 766 768 -1 702 768 -1 704 768 -1 705 769 -1 703 769 -1 767 769 -1 768 770 -1 704 770 -1 706 770 -1 707 771 -1 705 771 -1 769 771 -1 770 772 -1 706 772 -1 708 772 -1 709 773 -1 707 773 -1 771 773 -1 772 774 -1 708 774 -1 710 774 -1 711 775 -1 709 775 -1 773 775 -1 774 776 -1 710 776 -1 712 776 -1 713 777 -1 711 777 -1 775 777 -1 776 778 -1 712 778 -1 714 778 -1 715 779 -1 713 779 -1 777 779 -1 778 780 -1 714 780 -1 716 780 -1 717 781 -1 715 781 -1 779 781 -1 780 782 -1 716 782 -1 718 782 -1 719 783 -1 717 783 -1 781 783 -1 721 785 -1 720 785 -1 784 785 -1 782 784 -1 718 784 -1 720 784 -1 722 786 -1 721 786 -1 785 786 -1 723 787 -1 722 787 -1 786 787 -1 724 788 -1 723 788 -1 787 788 -1 725 789 -1 724 789 -1 788 789 -1 726 790 -1 725 790 -1 789 790 -1 727 791 -1 726 791 -1 790 791 -1 728 792 -1 727 792 -1 791 792 -1 729 793 -1 728 793 -1 792 793 -1 730 794 -1 729 794 -1 793 794 -1 731 795 -1 730 795 -1 794 795 -1 732 796 -1 731 796 -1 795 796 -1 733 797 -1 732 797 -1 796 797 -1 734 798 -1 733 798 -1 797 798 -1 735 799 -1 734 799 -1 798 799 -1 736 800 -1 719 800 -1 783 800 -1 735 800 -1 799 800 -1 738 802 -1 737 802 -1 801 802 -1 737 801 -1 801 818 -1 737 818 -1 754 818 -1 739 803 -1 738 803 -1 802 803 -1 740 804 -1 739 804 -1 803 804 -1 741 805 -1 740 805 -1 804 805 -1 742 806 -1 741 806 -1 805 806 -1 743 807 -1 742 807 -1 806 807 -1 744 808 -1 743 808 -1 807 808 -1 745 809 -1 744 809 -1 808 809 -1 746 810 -1 745 810 -1 809 810 -1 747 811 -1 746 811 -1 810 811 -1 748 812 -1 747 812 -1 811 812 -1 749 813 -1 748 813 -1 812 813 -1 750 814 -1 749 814 -1 813 814 -1 751 815 -1 750 815 -1 814 815 -1 752 816 -1 751 816 -1 815 816 -1 755 819 -1 753 819 -1 817 819 -1 753 817 -1 752 817 -1 816 817 -1 818 820 -1 754 820 -1 756 820 -1 757 821 -1 755 821 -1 819 821 -1 820 822 -1 756 822 -1 758 822 -1 759 823 -1 757 823 -1 821 823 -1 822 824 -1 758 824 -1 760 824 -1 761 825 -1 759 825 -1 823 825 -1 824 826 -1 760 826 -1 762 826 -1 763 827 -1 761 827 -1 825 827 -1 826 828 -1 762 828 -1 764 828 -1 765 829 -1 763 829 -1 827 829 -1 828 830 -1 764 830 -1 766 830 -1 767 831 -1 765 831 -1 829 831 -1 830 832 -1 766 832 -1 768 832 -1 769 833 -1 767 833 -1 831 833 -1 832 834 -1 768 834 -1 770 834 -1 771 835 -1 769 835 -1 833 835 -1 834 836 -1 770 836 -1 772 836 -1 773 837 -1 771 837 -1 835 837 -1 836 838 -1 772 838 -1 774 838 -1 775 839 -1 773 839 -1 837 839 -1 838 840 -1 774 840 -1 776 840 -1 777 841 -1 775 841 -1 839 841 -1 840 842 -1 776 842 -1 778 842 -1 779 843 -1 777 843 -1 841 843 -1 842 844 -1 778 844 -1 780 844 -1 781 845 -1 779 845 -1 843 845 -1 844 846 -1 780 846 -1 782 846 -1 783 847 -1 781 847 -1 845 847 -1 785 849 -1 784 849 -1 848 849 -1 846 848 -1 782 848 -1 784 848 -1 786 850 -1 785 850 -1 849 850 -1 787 851 -1 786 851 -1 850 851 -1 788 852 -1 787 852 -1 851 852 -1 789 853 -1 788 853 -1 852 853 -1 790 854 -1 789 854 -1 853 854 -1 791 855 -1 790 855 -1 854 855 -1 792 856 -1 791 856 -1 855 856 -1 793 857 -1 792 857 -1 856 857 -1 794 858 -1 793 858 -1 857 858 -1 795 859 -1 794 859 -1 858 859 -1 796 860 -1 795 860 -1 859 860 -1 797 861 -1 796 861 -1 860 861 -1 798 862 -1 797 862 -1 861 862 -1 799 863 -1 798 863 -1 862 863 -1 800 864 -1 783 864 -1 847 864 -1 799 864 -1 863 864 -1 802 866 -1 801 866 -1 865 866 -1 801 865 -1 865 882 -1 801 882 -1 818 882 -1 803 867 -1 802 867 -1 866 867 -1 804 868 -1 803 868 -1 867 868 -1 805 869 -1 804 869 -1 868 869 -1 806 870 -1 805 870 -1 869 870 -1 807 871 -1 806 871 -1 870 871 -1 808 872 -1 807 872 -1 871 872 -1 809 873 -1 808 873 -1 872 873 -1 810 874 -1 809 874 -1 873 874 -1 811 875 -1 810 875 -1 874 875 -1 812 876 -1 811 876 -1 875 876 -1 813 877 -1 812 877 -1 876 877 -1 814 878 -1 813 878 -1 877 878 -1 815 879 -1 814 879 -1 878 879 -1 816 880 -1 815 880 -1 879 880 -1 819 883 -1 817 883 -1 881 883 -1 817 881 -1 816 881 -1 880 881 -1 882 884 -1 818 884 -1 820 884 -1 821 885 -1 819 885 -1 883 885 -1 884 886 -1 820 886 -1 822 886 -1 823 887 -1 821 887 -1 885 887 -1 886 888 -1 822 888 -1 824 888 -1 825 889 -1 823 889 -1 887 889 -1 888 890 -1 824 890 -1 826 890 -1 827 891 -1 825 891 -1 889 891 -1 890 892 -1 826 892 -1 828 892 -1 829 893 -1 827 893 -1 891 893 -1 892 894 -1 828 894 -1 830 894 -1 831 895 -1 829 895 -1 893 895 -1 894 896 -1 830 896 -1 832 896 -1 833 897 -1 831 897 -1 895 897 -1 896 898 -1 832 898 -1 834 898 -1 835 899 -1 833 899 -1 897 899 -1 898 900 -1 834 900 -1 836 900 -1 837 901 -1 835 901 -1 899 901 -1 900 902 -1 836 902 -1 838 902 -1 839 903 -1 837 903 -1 901 903 -1 902 904 -1 838 904 -1 840 904 -1 841 905 -1 839 905 -1 903 905 -1 904 906 -1 840 906 -1 842 906 -1 843 907 -1 841 907 -1 905 907 -1 906 908 -1 842 908 -1 844 908 -1 845 909 -1 843 909 -1 907 909 -1 908 910 -1 844 910 -1 846 910 -1 847 911 -1 845 911 -1 909 911 -1 849 913 -1 848 913 -1 912 913 -1 910 912 -1 846 912 -1 848 912 -1 850 914 -1 849 914 -1 913 914 -1 851 915 -1 850 915 -1 914 915 -1 852 916 -1 851 916 -1 915 916 -1 853 917 -1 852 917 -1 916 917 -1 854 918 -1 853 918 -1 917 918 -1 855 919 -1 854 919 -1 918 919 -1 856 920 -1 855 920 -1 919 920 -1 857 921 -1 856 921 -1 920 921 -1 858 922 -1 857 922 -1 921 922 -1 859 923 -1 858 923 -1 922 923 -1 860 924 -1 859 924 -1 923 924 -1 861 925 -1 860 925 -1 924 925 -1 862 926 -1 861 926 -1 925 926 -1 863 927 -1 862 927 -1 926 927 -1 864 928 -1 847 928 -1 911 928 -1 863 928 -1 927 928 -1 866 930 -1 865 930 -1 929 930 -1 865 929 -1 929 946 -1 865 946 -1 882 946 -1 867 931 -1 866 931 -1 930 931 -1 868 932 -1 867 932 -1 931 932 -1 869 933 -1 868 933 -1 932 933 -1 870 934 -1 869 934 -1 933 934 -1 871 935 -1 870 935 -1 934 935 -1 872 936 -1 871 936 -1 935 936 -1 873 937 -1 872 937 -1 936 937 -1 874 938 -1 873 938 -1 937 938 -1 875 939 -1 874 939 -1 938 939 -1 876 940 -1 875 940 -1 939 940 -1 877 941 -1 876 941 -1 940 941 -1 878 942 -1 877 942 -1 941 942 -1 879 943 -1 878 943 -1 942 943 -1 880 944 -1 879 944 -1 943 944 -1 883 947 -1 881 947 -1 945 947 -1 881 945 -1 880 945 -1 944 945 -1 946 948 -1 882 948 -1 884 948 -1 885 949 -1 883 949 -1 947 949 -1 948 950 -1 884 950 -1 886 950 -1 887 951 -1 885 951 -1 949 951 -1 950 952 -1 886 952 -1 888 952 -1 889 953 -1 887 953 -1 951 953 -1 952 954 -1 888 954 -1 890 954 -1 891 955 -1 889 955 -1 953 955 -1 954 956 -1 890 956 -1 892 956 -1 893 957 -1 891 957 -1 955 957 -1 956 958 -1 892 958 -1 894 958 -1 895 959 -1 893 959 -1 957 959 -1 958 960 -1 894 960 -1 896 960 -1 897 961 -1 895 961 -1 959 961 -1 960 962 -1 896 962 -1 898 962 -1 899 963 -1 897 963 -1 961 963 -1 962 964 -1 898 964 -1 900 964 -1 901 965 -1 899 965 -1 963 965 -1 964 966 -1 900 966 -1 902 966 -1 903 967 -1 901 967 -1 965 967 -1 966 968 -1 902 968 -1 904 968 -1 905 969 -1 903 969 -1 967 969 -1 968 970 -1 904 970 -1 906 970 -1 907 971 -1 905 971 -1 969 971 -1 970 972 -1 906 972 -1 908 972 -1 909 973 -1 907 973 -1 971 973 -1 972 974 -1 908 974 -1 910 974 -1 911 975 -1 909 975 -1 973 975 -1 913 977 -1 912 977 -1 976 977 -1 974 976 -1 910 976 -1 912 976 -1 914 978 -1 913 978 -1 977 978 -1 915 979 -1 914 979 -1 978 979 -1 916 980 -1 915 980 -1 979 980 -1 917 981 -1 916 981 -1 980 981 -1 918 982 -1 917 982 -1 981 982 -1 919 983 -1 918 983 -1 982 983 -1 920 984 -1 919 984 -1 983 984 -1 921 985 -1 920 985 -1 984 985 -1 922 986 -1 921 986 -1 985 986 -1 923 987 -1 922 987 -1 986 987 -1 924 988 -1 923 988 -1 987 988 -1 925 989 -1 924 989 -1 988 989 -1 926 990 -1 925 990 -1 989 990 -1 927 991 -1 926 991 -1 990 991 -1 928 992 -1 911 992 -1 975 992 -1 927 992 -1 991 992 -1 930 994 -1 929 994 -1 993 994 -1 929 993 -1 993 1010 -1 929 1010 -1 946 1010 -1 931 995 -1 930 995 -1 994 995 -1 932 996 -1 931 996 -1 995 996 -1 933 997 -1 932 997 -1 996 997 -1 934 998 -1 933 998 -1 997 998 -1 935 999 -1 934 999 -1 998 999 -1 936 1000 -1 935 1000 -1 999 1000 -1 937 1001 -1 936 1001 -1 1000 1001 -1 938 1002 -1 937 1002 -1 1001 1002 -1 939 1003 -1 938 1003 -1 1002 1003 -1 940 1004 -1 939 1004 -1 1003 1004 -1 941 1005 -1 940 1005 -1 1004 1005 -1 942 1006 -1 941 1006 -1 1005 1006 -1 943 1007 -1 942 1007 -1 1006 1007 -1 944 1008 -1 943 1008 -1 1007 1008 -1 947 1011 -1 945 1011 -1 1009 1011 -1 945 1009 -1 944 1009 -1 1008 1009 -1 1010 1012 -1 946 1012 -1 948 1012 -1 949 1013 -1 947 1013 -1 1011 1013 -1 1012 1014 -1 948 1014 -1 950 1014 -1 951 1015 -1 949 1015 -1 1013 1015 -1 1014 1016 -1 950 1016 -1 952 1016 -1 953 1017 -1 951 1017 -1 1015 1017 -1 1016 1018 -1 952 1018 -1 954 1018 -1 955 1019 -1 953 1019 -1 1017 1019 -1 1018 1020 -1 954 1020 -1 956 1020 -1 957 1021 -1 955 1021 -1 1019 1021 -1 1020 1022 -1 956 1022 -1 958 1022 -1 959 1023 -1 957 1023 -1 1021 1023 -1 1022 1024 -1 958 1024 -1 960 1024 -1 961 1025 -1 959 1025 -1 1023 1025 -1 1024 1026 -1 960 1026 -1 962 1026 -1 963 1027 -1 961 1027 -1 1025 1027 -1 1026 1028 -1 962 1028 -1 964 1028 -1 965 1029 -1 963 1029 -1 1027 1029 -1 1028 1030 -1 964 1030 -1 966 1030 -1 967 1031 -1 965 1031 -1 1029 1031 -1 1030 1032 -1 966 1032 -1 968 1032 -1 969 1033 -1 967 1033 -1 1031 1033 -1 1032 1034 -1 968 1034 -1 970 1034 -1 971 1035 -1 969 1035 -1 1033 1035 -1 1034 1036 -1 970 1036 -1 972 1036 -1 973 1037 -1 971 1037 -1 1035 1037 -1 1036 1038 -1 972 1038 -1 974 1038 -1 975 1039 -1 973 1039 -1 1037 1039 -1 977 1041 -1 976 1041 -1 1040 1041 -1 1038 1040 -1 974 1040 -1 976 1040 -1 978 1042 -1 977 1042 -1 1041 1042 -1 979 1043 -1 978 1043 -1 1042 1043 -1 980 1044 -1 979 1044 -1 1043 1044 -1 981 1045 -1 980 1045 -1 1044 1045 -1 982 1046 -1 981 1046 -1 1045 1046 -1 983 1047 -1 982 1047 -1 1046 1047 -1 984 1048 -1 983 1048 -1 1047 1048 -1 985 1049 -1 984 1049 -1 1048 1049 -1 986 1050 -1 985 1050 -1 1049 1050 -1 987 1051 -1 986 1051 -1 1050 1051 -1 988 1052 -1 987 1052 -1 1051 1052 -1 989 1053 -1 988 1053 -1 1052 1053 -1 990 1054 -1 989 1054 -1 1053 1054 -1 991 1055 -1 990 1055 -1 1054 1055 -1 992 1056 -1 975 1056 -1 1039 1056 -1 991 1056 -1 1055 1056 -1 994 1058 -1 993 1058 -1 1057 1058 -1 993 1057 -1 1057 1074 -1 993 1074 -1 1010 1074 -1 995 1059 -1 994 1059 -1 1058 1059 -1 996 1060 -1 995 1060 -1 1059 1060 -1 997 1061 -1 996 1061 -1 1060 1061 -1 998 1062 -1 997 1062 -1 1061 1062 -1 999 1063 -1 998 1063 -1 1062 1063 -1 1000 1064 -1 999 1064 -1 1063 1064 -1 1001 1065 -1 1000 1065 -1 1064 1065 -1 1002 1066 -1 1001 1066 -1 1065 1066 -1 1003 1067 -1 1002 1067 -1 1066 1067 -1 1004 1068 -1 1003 1068 -1 1067 1068 -1 1005 1069 -1 1004 1069 -1 1068 1069 -1 1006 1070 -1 1005 1070 -1 1069 1070 -1 1007 1071 -1 1006 1071 -1 1070 1071 -1 1008 1072 -1 1007 1072 -1 1071 1072 -1 1011 1075 -1 1009 1075 -1 1073 1075 -1 1009 1073 -1 1008 1073 -1 1072 1073 -1 1074 1076 -1 1010 1076 -1 1012 1076 -1 1013 1077 -1 1011 1077 -1 1075 1077 -1 1076 1078 -1 1012 1078 -1 1014 1078 -1 1015 1079 -1 1013 1079 -1 1077 1079 -1 1078 1080 -1 1014 1080 -1 1016 1080 -1 1017 1081 -1 1015 1081 -1 1079 1081 -1 1080 1082 -1 1016 1082 -1 1018 1082 -1 1019 1083 -1 1017 1083 -1 1081 1083 -1 1082 1084 -1 1018 1084 -1 1020 1084 -1 1021 1085 -1 1019 1085 -1 1083 1085 -1 1084 1086 -1 1020 1086 -1 1022 1086 -1 1023 1087 -1 1021 1087 -1 1085 1087 -1 1086 1088 -1 1022 1088 -1 1024 1088 -1 1025 1089 -1 1023 1089 -1 1087 1089 -1 1088 1090 -1 1024 1090 -1 1026 1090 -1 1027 1091 -1 1025 1091 -1 1089 1091 -1 1090 1092 -1 1026 1092 -1 1028 1092 -1 1029 1093 -1 1027 1093 -1 1091 1093 -1 1092 1094 -1 1028 1094 -1 1030 1094 -1 1031 1095 -1 1029 1095 -1 1093 1095 -1 1094 1096 -1 1030 1096 -1 1032 1096 -1 1033 1097 -1 1031 1097 -1 1095 1097 -1 1096 1098 -1 1032 1098 -1 1034 1098 -1 1035 1099 -1 1033 1099 -1 1097 1099 -1 1098 1100 -1 1034 1100 -1 1036 1100 -1 1037 1101 -1 1035 1101 -1 1099 1101 -1 1100 1102 -1 1036 1102 -1 1038 1102 -1 1039 1103 -1 1037 1103 -1 1101 1103 -1 1041 1105 -1 1040 1105 -1 1104 1105 -1 1102 1104 -1 1038 1104 -1 1040 1104 -1 1042 1106 -1 1041 1106 -1 1105 1106 -1 1043 1107 -1 1042 1107 -1 1106 1107 -1 1044 1108 -1 1043 1108 -1 1107 1108 -1 1045 1109 -1 1044 1109 -1 1108 1109 -1 1046 1110 -1 1045 1110 -1 1109 1110 -1 1047 1111 -1 1046 1111 -1 1110 1111 -1 1048 1112 -1 1047 1112 -1 1111 1112 -1 1049 1113 -1 1048 1113 -1 1112 1113 -1 1050 1114 -1 1049 1114 -1 1113 1114 -1 1051 1115 -1 1050 1115 -1 1114 1115 -1 1052 1116 -1 1051 1116 -1 1115 1116 -1 1053 1117 -1 1052 1117 -1 1116 1117 -1 1054 1118 -1 1053 1118 -1 1117 1118 -1 1055 1119 -1 1054 1119 -1 1118 1119 -1 1056 1120 -1 1039 1120 -1 1103 1120 -1 1055 1120 -1 1119 1120 -1 1058 1122 -1 1057 1122 -1 1121 1122 -1 1057 1121 -1 1121 1138 -1 1057 1138 -1 1074 1138 -1 1059 1123 -1 1058 1123 -1 1122 1123 -1 1060 1124 -1 1059 1124 -1 1123 1124 -1 1061 1125 -1 1060 1125 -1 1124 1125 -1 1062 1126 -1 1061 1126 -1 1125 1126 -1 1063 1127 -1 1062 1127 -1 1126 1127 -1 1064 1128 -1 1063 1128 -1 1127 1128 -1 1065 1129 -1 1064 1129 -1 1128 1129 -1 1066 1130 -1 1065 1130 -1 1129 1130 -1 1067 1131 -1 1066 1131 -1 1130 1131 -1 1068 1132 -1 1067 1132 -1 1131 1132 -1 1069 1133 -1 1068 1133 -1 1132 1133 -1 1070 1134 -1 1069 1134 -1 1133 1134 -1 1071 1135 -1 1070 1135 -1 1134 1135 -1 1072 1136 -1 1071 1136 -1 1135 1136 -1 1075 1139 -1 1073 1139 -1 1137 1139 -1 1073 1137 -1 1072 1137 -1 1136 1137 -1 1138 1140 -1 1074 1140 -1 1076 1140 -1 1077 1141 -1 1075 1141 -1 1139 1141 -1 1140 1142 -1 1076 1142 -1 1078 1142 -1 1079 1143 -1 1077 1143 -1 1141 1143 -1 1142 1144 -1 1078 1144 -1 1080 1144 -1 1081 1145 -1 1079 1145 -1 1143 1145 -1 1144 1146 -1 1080 1146 -1 1082 1146 -1 1083 1147 -1 1081 1147 -1 1145 1147 -1 1146 1148 -1 1082 1148 -1 1084 1148 -1 1085 1149 -1 1083 1149 -1 1147 1149 -1 1148 1150 -1 1084 1150 -1 1086 1150 -1 1087 1151 -1 1085 1151 -1 1149 1151 -1 1150 1152 -1 1086 1152 -1 1088 1152 -1 1089 1153 -1 1087 1153 -1 1151 1153 -1 1152 1154 -1 1088 1154 -1 1090 1154 -1 1091 1155 -1 1089 1155 -1 1153 1155 -1 1154 1156 -1 1090 1156 -1 1092 1156 -1 1093 1157 -1 1091 1157 -1 1155 1157 -1 1156 1158 -1 1092 1158 -1 1094 1158 -1 1095 1159 -1 1093 1159 -1 1157 1159 -1 1158 1160 -1 1094 1160 -1 1096 1160 -1 1097 1161 -1 1095 1161 -1 1159 1161 -1 1160 1162 -1 1096 1162 -1 1098 1162 -1 1099 1163 -1 1097 1163 -1 1161 1163 -1 1162 1164 -1 1098 1164 -1 1100 1164 -1 1101 1165 -1 1099 1165 -1 1163 1165 -1 1164 1166 -1 1100 1166 -1 1102 1166 -1 1103 1167 -1 1101 1167 -1 1165 1167 -1 1105 1169 -1 1104 1169 -1 1168 1169 -1 1166 1168 -1 1102 1168 -1 1104 1168 -1 1106 1170 -1 1105 1170 -1 1169 1170 -1 1107 1171 -1 1106 1171 -1 1170 1171 -1 1108 1172 -1 1107 1172 -1 1171 1172 -1 1109 1173 -1 1108 1173 -1 1172 1173 -1 1110 1174 -1 1109 1174 -1 1173 1174 -1 1111 1175 -1 1110 1175 -1 1174 1175 -1 1112 1176 -1 1111 1176 -1 1175 1176 -1 1113 1177 -1 1112 1177 -1 1176 1177 -1 1114 1178 -1 1113 1178 -1 1177 1178 -1 1115 1179 -1 1114 1179 -1 1178 1179 -1 1116 1180 -1 1115 1180 -1 1179 1180 -1 1117 1181 -1 1116 1181 -1 1180 1181 -1 1118 1182 -1 1117 1182 -1 1181 1182 -1 1119 1183 -1 1118 1183 -1 1182 1183 -1 1120 1184 -1 1103 1184 -1 1167 1184 -1 1119 1184 -1 1183 1184 -1 1122 1186 -1 1121 1186 -1 1185 1186 -1 1121 1185 -1 1185 1202 -1 1121 1202 -1 1138 1202 -1 1123 1187 -1 1122 1187 -1 1186 1187 -1 1124 1188 -1 1123 1188 -1 1187 1188 -1 1125 1189 -1 1124 1189 -1 1188 1189 -1 1126 1190 -1 1125 1190 -1 1189 1190 -1 1127 1191 -1 1126 1191 -1 1190 1191 -1 1128 1192 -1 1127 1192 -1 1191 1192 -1 1129 1193 -1 1128 1193 -1 1192 1193 -1 1130 1194 -1 1129 1194 -1 1193 1194 -1 1131 1195 -1 1130 1195 -1 1194 1195 -1 1132 1196 -1 1131 1196 -1 1195 1196 -1 1133 1197 -1 1132 1197 -1 1196 1197 -1 1134 1198 -1 1133 1198 -1 1197 1198 -1 1135 1199 -1 1134 1199 -1 1198 1199 -1 1136 1200 -1 1135 1200 -1 1199 1200 -1 1139 1203 -1 1137 1203 -1 1201 1203 -1 1137 1201 -1 1136 1201 -1 1200 1201 -1 1202 1204 -1 1138 1204 -1 1140 1204 -1 1141 1205 -1 1139 1205 -1 1203 1205 -1 1204 1206 -1 1140 1206 -1 1142 1206 -1 1143 1207 -1 1141 1207 -1 1205 1207 -1 1206 1208 -1 1142 1208 -1 1144 1208 -1 1145 1209 -1 1143 1209 -1 1207 1209 -1 1208 1210 -1 1144 1210 -1 1146 1210 -1 1147 1211 -1 1145 1211 -1 1209 1211 -1 1210 1212 -1 1146 1212 -1 1148 1212 -1 1149 1213 -1 1147 1213 -1 1211 1213 -1 1212 1214 -1 1148 1214 -1 1150 1214 -1 1151 1215 -1 1149 1215 -1 1213 1215 -1 1214 1216 -1 1150 1216 -1 1152 1216 -1 1153 1217 -1 1151 1217 -1 1215 1217 -1 1216 1218 -1 1152 1218 -1 1154 1218 -1 1155 1219 -1 1153 1219 -1 1217 1219 -1 1218 1220 -1 1154 1220 -1 1156 1220 -1 1157 1221 -1 1155 1221 -1 1219 1221 -1 1220 1222 -1 1156 1222 -1 1158 1222 -1 1159 1223 -1 1157 1223 -1 1221 1223 -1 1222 1224 -1 1158 1224 -1 1160 1224 -1 1161 1225 -1 1159 1225 -1 1223 1225 -1 1224 1226 -1 1160 1226 -1 1162 1226 -1 1163 1227 -1 1161 1227 -1 1225 1227 -1 1226 1228 -1 1162 1228 -1 1164 1228 -1 1165 1229 -1 1163 1229 -1 1227 1229 -1 1228 1230 -1 1164 1230 -1 1166 1230 -1 1167 1231 -1 1165 1231 -1 1229 1231 -1 1169 1233 -1 1168 1233 -1 1232 1233 -1 1230 1232 -1 1166 1232 -1 1168 1232 -1 1170 1234 -1 1169 1234 -1 1233 1234 -1 1171 1235 -1 1170 1235 -1 1234 1235 -1 1172 1236 -1 1171 1236 -1 1235 1236 -1 1173 1237 -1 1172 1237 -1 1236 1237 -1 1174 1238 -1 1173 1238 -1 1237 1238 -1 1175 1239 -1 1174 1239 -1 1238 1239 -1 1176 1240 -1 1175 1240 -1 1239 1240 -1 1177 1241 -1 1176 1241 -1 1240 1241 -1 1178 1242 -1 1177 1242 -1 1241 1242 -1 1179 1243 -1 1178 1243 -1 1242 1243 -1 1180 1244 -1 1179 1244 -1 1243 1244 -1 1181 1245 -1 1180 1245 -1 1244 1245 -1 1182 1246 -1 1181 1246 -1 1245 1246 -1 1183 1247 -1 1182 1247 -1 1246 1247 -1 1184 1248 -1 1167 1248 -1 1231 1248 -1 1183 1248 -1 1247 1248 -1 1250 1267 -1 1186 1250 -1 1185 1250 -1 1249 1267 -1 1249 1250 -1 1185 1249 -1 1266 1267 -1 1249 1266 -1 1185 1266 -1 1202 1266 -1 1251 1268 -1 1187 1251 -1 1186 1251 -1 1250 1268 -1 1250 1251 -1 1267 1268 -1 1252 1269 -1 1188 1252 -1 1187 1252 -1 1251 1269 -1 1251 1252 -1 1268 1269 -1 1253 1270 -1 1189 1253 -1 1188 1253 -1 1252 1270 -1 1252 1253 -1 1269 1270 -1 1254 1271 -1 1190 1254 -1 1189 1254 -1 1253 1271 -1 1253 1254 -1 1270 1271 -1 1255 1272 -1 1191 1255 -1 1190 1255 -1 1254 1272 -1 1254 1255 -1 1271 1272 -1 1256 1273 -1 1192 1256 -1 1191 1256 -1 1255 1273 -1 1255 1256 -1 1272 1273 -1 1257 1274 -1 1193 1257 -1 1192 1257 -1 1256 1274 -1 1256 1257 -1 1273 1274 -1 1258 1275 -1 1194 1258 -1 1193 1258 -1 1257 1275 -1 1257 1258 -1 1274 1275 -1 1259 1276 -1 1195 1259 -1 1194 1259 -1 1258 1276 -1 1258 1259 -1 1275 1276 -1 1260 1277 -1 1196 1260 -1 1195 1260 -1 1259 1277 -1 1259 1260 -1 1276 1277 -1 1261 1278 -1 1197 1261 -1 1196 1261 -1 1260 1278 -1 1260 1261 -1 1277 1278 -1 1262 1279 -1 1198 1262 -1 1197 1262 -1 1261 1279 -1 1261 1262 -1 1278 1279 -1 1263 1280 -1 1199 1263 -1 1198 1263 -1 1262 1280 -1 1262 1263 -1 1279 1280 -1 1264 1281 -1 1200 1264 -1 1199 1264 -1 1263 1281 -1 1263 1264 -1 1280 1281 -1 1203 1282 -1 1201 1282 -1 1265 1282 -1 1201 1265 -1 1200 1265 -1 1264 1282 -1 1264 1265 -1 1281 1282 -1 1267 1284 -1 1266 1284 -1 1283 1284 -1 1266 1283 -1 1202 1283 -1 1204 1283 -1 1268 1285 -1 1267 1285 -1 1284 1285 -1 1269 1286 -1 1268 1286 -1 1285 1286 -1 1270 1287 -1 1269 1287 -1 1286 1287 -1 1271 1288 -1 1270 1288 -1 1287 1288 -1 1272 1289 -1 1271 1289 -1 1288 1289 -1 1273 1290 -1 1272 1290 -1 1289 1290 -1 1274 1291 -1 1273 1291 -1 1290 1291 -1 1275 1292 -1 1274 1292 -1 1291 1292 -1 1276 1293 -1 1275 1293 -1 1292 1293 -1 1277 1294 -1 1276 1294 -1 1293 1294 -1 1278 1295 -1 1277 1295 -1 1294 1295 -1 1279 1296 -1 1278 1296 -1 1295 1296 -1 1280 1297 -1 1279 1297 -1 1296 1297 -1 1281 1298 -1 1280 1298 -1 1297 1298 -1 1205 1299 -1 1203 1299 -1 1282 1299 -1 1281 1299 -1 1298 1299 -1 1284 1301 -1 1283 1301 -1 1300 1301 -1 1283 1300 -1 1204 1300 -1 1206 1300 -1 1285 1302 -1 1284 1302 -1 1301 1302 -1 1286 1303 -1 1285 1303 -1 1302 1303 -1 1287 1304 -1 1286 1304 -1 1303 1304 -1 1288 1305 -1 1287 1305 -1 1304 1305 -1 1289 1306 -1 1288 1306 -1 1305 1306 -1 1290 1307 -1 1289 1307 -1 1306 1307 -1 1291 1308 -1 1290 1308 -1 1307 1308 -1 1292 1309 -1 1291 1309 -1 1308 1309 -1 1293 1310 -1 1292 1310 -1 1309 1310 -1 1294 1311 -1 1293 1311 -1 1310 1311 -1 1295 1312 -1 1294 1312 -1 1311 1312 -1 1296 1313 -1 1295 1313 -1 1312 1313 -1 1297 1314 -1 1296 1314 -1 1313 1314 -1 1298 1315 -1 1297 1315 -1 1314 1315 -1 1207 1316 -1 1205 1316 -1 1299 1316 -1 1298 1316 -1 1315 1316 -1 1301 1318 -1 1300 1318 -1 1317 1318 -1 1300 1317 -1 1206 1317 -1 1208 1317 -1 1302 1319 -1 1301 1319 -1 1318 1319 -1 1303 1320 -1 1302 1320 -1 1319 1320 -1 1304 1321 -1 1303 1321 -1 1320 1321 -1 1305 1322 -1 1304 1322 -1 1321 1322 -1 1306 1323 -1 1305 1323 -1 1322 1323 -1 1307 1324 -1 1306 1324 -1 1323 1324 -1 1308 1325 -1 1307 1325 -1 1324 1325 -1 1309 1326 -1 1308 1326 -1 1325 1326 -1 1310 1327 -1 1309 1327 -1 1326 1327 -1 1311 1328 -1 1310 1328 -1 1327 1328 -1 1312 1329 -1 1311 1329 -1 1328 1329 -1 1313 1330 -1 1312 1330 -1 1329 1330 -1 1314 1331 -1 1313 1331 -1 1330 1331 -1 1315 1332 -1 1314 1332 -1 1331 1332 -1 1209 1333 -1 1207 1333 -1 1316 1333 -1 1315 1333 -1 1332 1333 -1 1318 1335 -1 1317 1335 -1 1334 1335 -1 1317 1334 -1 1208 1334 -1 1210 1334 -1 1319 1336 -1 1318 1336 -1 1335 1336 -1 1320 1337 -1 1319 1337 -1 1336 1337 -1 1321 1338 -1 1320 1338 -1 1337 1338 -1 1322 1339 -1 1321 1339 -1 1338 1339 -1 1323 1340 -1 1322 1340 -1 1339 1340 -1 1324 1341 -1 1323 1341 -1 1340 1341 -1 1325 1342 -1 1324 1342 -1 1341 1342 -1 1326 1343 -1 1325 1343 -1 1342 1343 -1 1327 1344 -1 1326 1344 -1 1343 1344 -1 1328 1345 -1 1327 1345 -1 1344 1345 -1 1329 1346 -1 1328 1346 -1 1345 1346 -1 1330 1347 -1 1329 1347 -1 1346 1347 -1 1331 1348 -1 1330 1348 -1 1347 1348 -1 1332 1349 -1 1331 1349 -1 1348 1349 -1 1211 1350 -1 1209 1350 -1 1333 1350 -1 1332 1350 -1 1349 1350 -1 1335 1352 -1 1334 1352 -1 1351 1352 -1 1334 1351 -1 1210 1351 -1 1212 1351 -1 1336 1353 -1 1335 1353 -1 1352 1353 -1 1337 1354 -1 1336 1354 -1 1353 1354 -1 1338 1355 -1 1337 1355 -1 1354 1355 -1 1339 1356 -1 1338 1356 -1 1355 1356 -1 1340 1357 -1 1339 1357 -1 1356 1357 -1 1341 1358 -1 1340 1358 -1 1357 1358 -1 1342 1359 -1 1341 1359 -1 1358 1359 -1 1343 1360 -1 1342 1360 -1 1359 1360 -1 1344 1361 -1 1343 1361 -1 1360 1361 -1 1345 1362 -1 1344 1362 -1 1361 1362 -1 1346 1363 -1 1345 1363 -1 1362 1363 -1 1347 1364 -1 1346 1364 -1 1363 1364 -1 1348 1365 -1 1347 1365 -1 1364 1365 -1 1349 1366 -1 1348 1366 -1 1365 1366 -1 1213 1367 -1 1211 1367 -1 1350 1367 -1 1349 1367 -1 1366 1367 -1 1352 1369 -1 1351 1369 -1 1368 1369 -1 1351 1368 -1 1212 1368 -1 1214 1368 -1 1353 1370 -1 1352 1370 -1 1369 1370 -1 1354 1371 -1 1353 1371 -1 1370 1371 -1 1355 1372 -1 1354 1372 -1 1371 1372 -1 1356 1373 -1 1355 1373 -1 1372 1373 -1 1357 1374 -1 1356 1374 -1 1373 1374 -1 1358 1375 -1 1357 1375 -1 1374 1375 -1 1359 1376 -1 1358 1376 -1 1375 1376 -1 1360 1377 -1 1359 1377 -1 1376 1377 -1 1361 1378 -1 1360 1378 -1 1377 1378 -1 1362 1379 -1 1361 1379 -1 1378 1379 -1 1363 1380 -1 1362 1380 -1 1379 1380 -1 1364 1381 -1 1363 1381 -1 1380 1381 -1 1365 1382 -1 1364 1382 -1 1381 1382 -1 1366 1383 -1 1365 1383 -1 1382 1383 -1 1215 1384 -1 1213 1384 -1 1367 1384 -1 1366 1384 -1 1383 1384 -1 1369 1386 -1 1368 1386 -1 1385 1386 -1 1368 1385 -1 1214 1385 -1 1216 1385 -1 1370 1387 -1 1369 1387 -1 1386 1387 -1 1371 1388 -1 1370 1388 -1 1387 1388 -1 1372 1389 -1 1371 1389 -1 1388 1389 -1 1373 1390 -1 1372 1390 -1 1389 1390 -1 1374 1391 -1 1373 1391 -1 1390 1391 -1 1375 1392 -1 1374 1392 -1 1391 1392 -1 1376 1393 -1 1375 1393 -1 1392 1393 -1 1377 1394 -1 1376 1394 -1 1393 1394 -1 1378 1395 -1 1377 1395 -1 1394 1395 -1 1379 1396 -1 1378 1396 -1 1395 1396 -1 1380 1397 -1 1379 1397 -1 1396 1397 -1 1381 1398 -1 1380 1398 -1 1397 1398 -1 1382 1399 -1 1381 1399 -1 1398 1399 -1 1383 1400 -1 1382 1400 -1 1399 1400 -1 1217 1401 -1 1215 1401 -1 1384 1401 -1 1383 1401 -1 1400 1401 -1 1386 1403 -1 1385 1403 -1 1402 1403 -1 1385 1402 -1 1216 1402 -1 1218 1402 -1 1387 1404 -1 1386 1404 -1 1403 1404 -1 1388 1405 -1 1387 1405 -1 1404 1405 -1 1389 1406 -1 1388 1406 -1 1405 1406 -1 1390 1407 -1 1389 1407 -1 1406 1407 -1 1391 1408 -1 1390 1408 -1 1407 1408 -1 1392 1409 -1 1391 1409 -1 1408 1409 -1 1393 1410 -1 1392 1410 -1 1409 1410 -1 1394 1411 -1 1393 1411 -1 1410 1411 -1 1395 1412 -1 1394 1412 -1 1411 1412 -1 1396 1413 -1 1395 1413 -1 1412 1413 -1 1397 1414 -1 1396 1414 -1 1413 1414 -1 1398 1415 -1 1397 1415 -1 1414 1415 -1 1399 1416 -1 1398 1416 -1 1415 1416 -1 1400 1417 -1 1399 1417 -1 1416 1417 -1 1219 1418 -1 1217 1418 -1 1401 1418 -1 1400 1418 -1 1417 1418 -1 1403 1420 -1 1402 1420 -1 1419 1420 -1 1402 1419 -1 1218 1419 -1 1220 1419 -1 1404 1421 -1 1403 1421 -1 1420 1421 -1 1405 1422 -1 1404 1422 -1 1421 1422 -1 1406 1423 -1 1405 1423 -1 1422 1423 -1 1407 1424 -1 1406 1424 -1 1423 1424 -1 1408 1425 -1 1407 1425 -1 1424 1425 -1 1409 1426 -1 1408 1426 -1 1425 1426 -1 1410 1427 -1 1409 1427 -1 1426 1427 -1 1411 1428 -1 1410 1428 -1 1427 1428 -1 1412 1429 -1 1411 1429 -1 1428 1429 -1 1413 1430 -1 1412 1430 -1 1429 1430 -1 1414 1431 -1 1413 1431 -1 1430 1431 -1 1415 1432 -1 1414 1432 -1 1431 1432 -1 1416 1433 -1 1415 1433 -1 1432 1433 -1 1417 1434 -1 1416 1434 -1 1433 1434 -1 1221 1435 -1 1219 1435 -1 1418 1435 -1 1417 1435 -1 1434 1435 -1 1420 1437 -1 1419 1437 -1 1436 1437 -1 1419 1436 -1 1220 1436 -1 1222 1436 -1 1421 1438 -1 1420 1438 -1 1437 1438 -1 1422 1439 -1 1421 1439 -1 1438 1439 -1 1423 1440 -1 1422 1440 -1 1439 1440 -1 1424 1441 -1 1423 1441 -1 1440 1441 -1 1425 1442 -1 1424 1442 -1 1441 1442 -1 1426 1443 -1 1425 1443 -1 1442 1443 -1 1427 1444 -1 1426 1444 -1 1443 1444 -1 1428 1445 -1 1427 1445 -1 1444 1445 -1 1429 1446 -1 1428 1446 -1 1445 1446 -1 1430 1447 -1 1429 1447 -1 1446 1447 -1 1431 1448 -1 1430 1448 -1 1447 1448 -1 1432 1449 -1 1431 1449 -1 1448 1449 -1 1433 1450 -1 1432 1450 -1 1449 1450 -1 1434 1451 -1 1433 1451 -1 1450 1451 -1 1223 1452 -1 1221 1452 -1 1435 1452 -1 1434 1452 -1 1451 1452 -1 1437 1454 -1 1436 1454 -1 1453 1454 -1 1436 1453 -1 1222 1453 -1 1224 1453 -1 1438 1455 -1 1437 1455 -1 1454 1455 -1 1439 1456 -1 1438 1456 -1 1455 1456 -1 1440 1457 -1 1439 1457 -1 1456 1457 -1 1441 1458 -1 1440 1458 -1 1457 1458 -1 1442 1459 -1 1441 1459 -1 1458 1459 -1 1443 1460 -1 1442 1460 -1 1459 1460 -1 1444 1461 -1 1443 1461 -1 1460 1461 -1 1445 1462 -1 1444 1462 -1 1461 1462 -1 1446 1463 -1 1445 1463 -1 1462 1463 -1 1447 1464 -1 1446 1464 -1 1463 1464 -1 1448 1465 -1 1447 1465 -1 1464 1465 -1 1449 1466 -1 1448 1466 -1 1465 1466 -1 1450 1467 -1 1449 1467 -1 1466 1467 -1 1451 1468 -1 1450 1468 -1 1467 1468 -1 1225 1469 -1 1223 1469 -1 1452 1469 -1 1451 1469 -1 1468 1469 -1 1454 1471 -1 1453 1471 -1 1470 1471 -1 1453 1470 -1 1224 1470 -1 1226 1470 -1 1455 1472 -1 1454 1472 -1 1471 1472 -1 1456 1473 -1 1455 1473 -1 1472 1473 -1 1457 1474 -1 1456 1474 -1 1473 1474 -1 1458 1475 -1 1457 1475 -1 1474 1475 -1 1459 1476 -1 1458 1476 -1 1475 1476 -1 1460 1477 -1 1459 1477 -1 1476 1477 -1 1461 1478 -1 1460 1478 -1 1477 1478 -1 1462 1479 -1 1461 1479 -1 1478 1479 -1 1463 1480 -1 1462 1480 -1 1479 1480 -1 1464 1481 -1 1463 1481 -1 1480 1481 -1 1465 1482 -1 1464 1482 -1 1481 1482 -1 1466 1483 -1 1465 1483 -1 1482 1483 -1 1467 1484 -1 1466 1484 -1 1483 1484 -1 1468 1485 -1 1467 1485 -1 1484 1485 -1 1227 1486 -1 1225 1486 -1 1469 1486 -1 1468 1486 -1 1485 1486 -1 1471 1488 -1 1470 1488 -1 1487 1488 -1 1470 1487 -1 1226 1487 -1 1228 1487 -1 1472 1489 -1 1471 1489 -1 1488 1489 -1 1473 1490 -1 1472 1490 -1 1489 1490 -1 1474 1491 -1 1473 1491 -1 1490 1491 -1 1475 1492 -1 1474 1492 -1 1491 1492 -1 1476 1493 -1 1475 1493 -1 1492 1493 -1 1477 1494 -1 1476 1494 -1 1493 1494 -1 1478 1495 -1 1477 1495 -1 1494 1495 -1 1479 1496 -1 1478 1496 -1 1495 1496 -1 1480 1497 -1 1479 1497 -1 1496 1497 -1 1481 1498 -1 1480 1498 -1 1497 1498 -1 1482 1499 -1 1481 1499 -1 1498 1499 -1 1483 1500 -1 1482 1500 -1 1499 1500 -1 1484 1501 -1 1483 1501 -1 1500 1501 -1 1485 1502 -1 1484 1502 -1 1501 1502 -1 1229 1503 -1 1227 1503 -1 1486 1503 -1 1485 1503 -1 1502 1503 -1 1488 1505 -1 1487 1505 -1 1504 1505 -1 1487 1504 -1 1228 1504 -1 1230 1504 -1 1489 1506 -1 1488 1506 -1 1505 1506 -1 1490 1507 -1 1489 1507 -1 1506 1507 -1 1491 1508 -1 1490 1508 -1 1507 1508 -1 1492 1509 -1 1491 1509 -1 1508 1509 -1 1493 1510 -1 1492 1510 -1 1509 1510 -1 1494 1511 -1 1493 1511 -1 1510 1511 -1 1495 1512 -1 1494 1512 -1 1511 1512 -1 1496 1513 -1 1495 1513 -1 1512 1513 -1 1497 1514 -1 1496 1514 -1 1513 1514 -1 1498 1515 -1 1497 1515 -1 1514 1515 -1 1499 1516 -1 1498 1516 -1 1515 1516 -1 1500 1517 -1 1499 1517 -1 1516 1517 -1 1501 1518 -1 1500 1518 -1 1517 1518 -1 1502 1519 -1 1501 1519 -1 1518 1519 -1 1231 1520 -1 1229 1520 -1 1503 1520 -1 1502 1520 -1 1519 1520 -1 1233 1522 -1 1505 1522 -1 1504 1522 -1 1232 1522 -1 1521 1522 -1 1504 1521 -1 1230 1521 -1 1232 1521 -1 1234 1523 -1 1506 1523 -1 1505 1523 -1 1233 1523 -1 1522 1523 -1 1235 1524 -1 1507 1524 -1 1506 1524 -1 1234 1524 -1 1523 1524 -1 1236 1525 -1 1508 1525 -1 1507 1525 -1 1235 1525 -1 1524 1525 -1 1237 1526 -1 1509 1526 -1 1508 1526 -1 1236 1526 -1 1525 1526 -1 1238 1527 -1 1510 1527 -1 1509 1527 -1 1237 1527 -1 1526 1527 -1 1239 1528 -1 1511 1528 -1 1510 1528 -1 1238 1528 -1 1527 1528 -1 1240 1529 -1 1512 1529 -1 1511 1529 -1 1239 1529 -1 1528 1529 -1 1241 1530 -1 1513 1530 -1 1512 1530 -1 1240 1530 -1 1529 1530 -1 1242 1531 -1 1514 1531 -1 1513 1531 -1 1241 1531 -1 1530 1531 -1 1243 1532 -1 1515 1532 -1 1514 1532 -1 1242 1532 -1 1531 1532 -1 1244 1533 -1 1516 1533 -1 1515 1533 -1 1243 1533 -1 1532 1533 -1 1245 1534 -1 1517 1534 -1 1516 1534 -1 1244 1534 -1 1533 1534 -1 1246 1535 -1 1518 1535 -1 1517 1535 -1 1245 1535 -1 1534 1535 -1 1247 1536 -1 1519 1536 -1 1518 1536 -1 1246 1536 -1 1535 1536 -1 1248 1537 -1 1231 1537 -1 1520 1537 -1 1519 1537 -1 1247 1537 -1 1536 1537 -1 \">\n", " <coordinate point=\"0 0 0 0.0625 0 0 0.125 0 0 0.1875 0 0 0.25 0 0 0.3125 0 0 0.375 0 0 0.4375 0 0 0.5 0 0 0.5625 0 0 0.625 0 0 0.6875 0 0 0.75 0 0 0.8125 0 0 0.875 0 0 0.9375 0 0 1 0 0 0 0.0625 0 0.0625 0.0625 0 0.125 0.0625 0 0.1875 0.0625 0 0.25 0.0625 0 0.3125 0.0625 0 0.375 0.0625 0 0.4375 0.0625 0 0.5 0.0625 0 0.5625 0.0625 0 0.625 0.0625 0 0.6875 0.0625 0 0.75 0.0625 0 0.8125 0.0625 0 0.875 0.0625 0 0.9375 0.0625 0 1 0.0625 0 0 0.125 0 0.0625 0.125 0 0.125 0.125 0 0.1875 0.125 0 0.25 0.125 0 0.3125 0.125 0 0.375 0.125 0 0.4375 0.125 0 0.5 0.125 0 0.5625 0.125 0 0.625 0.125 0 0.6875 0.125 0 0.75 0.125 0 0.8125 0.125 0 0.875 0.125 0 0.9375 0.125 0 1 0.125 0 0 0.1875 0 0.0625 0.1875 0 0.125 0.1875 0 0.1875 0.1875 0 0.25 0.1875 0 0.3125 0.1875 0 0.375 0.1875 0 0.4375 0.1875 0 0.5 0.1875 0 0.5625 0.1875 0 0.625 0.1875 0 0.6875 0.1875 0 0.75 0.1875 0 0.8125 0.1875 0 0.875 0.1875 0 0.9375 0.1875 0 1 0.1875 0 0 0.25 0 0.0625 0.25 0 0.125 0.25 0 0.1875 0.25 0 0.25 0.25 0 0.3125 0.25 0 0.375 0.25 0 0.4375 0.25 0 0.5 0.25 0 0.5625 0.25 0 0.625 0.25 0 0.6875 0.25 0 0.75 0.25 0 0.8125 0.25 0 0.875 0.25 0 0.9375 0.25 0 1 0.25 0 0 0.3125 0 0.0625 0.3125 0 0.125 0.3125 0 0.1875 0.3125 0 0.25 0.3125 0 0.3125 0.3125 0 0.375 0.3125 0 0.4375 0.3125 0 0.5 0.3125 0 0.5625 0.3125 0 0.625 0.3125 0 0.6875 0.3125 0 0.75 0.3125 0 0.8125 0.3125 0 0.875 0.3125 0 0.9375 0.3125 0 1 0.3125 0 0 0.375 0 0.0625 0.375 0 0.125 0.375 0 0.1875 0.375 0 0.25 0.375 0 0.3125 0.375 0 0.375 0.375 0 0.4375 0.375 0 0.5 0.375 0 0.5625 0.375 0 0.625 0.375 0 0.6875 0.375 0 0.75 0.375 0 0.8125 0.375 0 0.875 0.375 0 0.9375 0.375 0 1 0.375 0 0 0.4375 0 0.0625 0.4375 0 0.125 0.4375 0 0.1875 0.4375 0 0.25 0.4375 0 0.3125 0.4375 0 0.375 0.4375 0 0.4375 0.4375 0 0.5 0.4375 0 0.5625 0.4375 0 0.625 0.4375 0 0.6875 0.4375 0 0.75 0.4375 0 0.8125 0.4375 0 0.875 0.4375 0 0.9375 0.4375 0 1 0.4375 0 0 0.5 0 0.0625 0.5 0 0.125 0.5 0 0.1875 0.5 0 0.25 0.5 0 0.3125 0.5 0 0.375 0.5 0 0.4375 0.5 0 0.5 0.5 0 0.5625 0.5 0 0.625 0.5 0 0.6875 0.5 0 0.75 0.5 0 0.8125 0.5 0 0.875 0.5 0 0.9375 0.5 0 1 0.5 0 0 0.5625 0 0.0625 0.5625 0 0.125 0.5625 0 0.1875 0.5625 0 0.25 0.5625 0 0.3125 0.5625 0 0.375 0.5625 0 0.4375 0.5625 0 0.5 0.5625 0 0.5625 0.5625 0 0.625 0.5625 0 0.6875 0.5625 0 0.75 0.5625 0 0.8125 0.5625 0 0.875 0.5625 0 0.9375 0.5625 0 1 0.5625 0 0 0.625 0 0.0625 0.625 0 0.125 0.625 0 0.1875 0.625 0 0.25 0.625 0 0.3125 0.625 0 0.375 0.625 0 0.4375 0.625 0 0.5 0.625 0 0.5625 0.625 0 0.625 0.625 0 0.6875 0.625 0 0.75 0.625 0 0.8125 0.625 0 0.875 0.625 0 0.9375 0.625 0 1 0.625 0 0 0.6875 0 0.0625 0.6875 0 0.125 0.6875 0 0.1875 0.6875 0 0.25 0.6875 0 0.3125 0.6875 0 0.375 0.6875 0 0.4375 0.6875 0 0.5 0.6875 0 0.5625 0.6875 0 0.625 0.6875 0 0.6875 0.6875 0 0.75 0.6875 0 0.8125 0.6875 0 0.875 0.6875 0 0.9375 0.6875 0 1 0.6875 0 0 0.75 0 0.0625 0.75 0 0.125 0.75 0 0.1875 0.75 0 0.25 0.75 0 0.3125 0.75 0 0.375 0.75 0 0.4375 0.75 0 0.5 0.75 0 0.5625 0.75 0 0.625 0.75 0 0.6875 0.75 0 0.75 0.75 0 0.8125 0.75 0 0.875 0.75 0 0.9375 0.75 0 1 0.75 0 0 0.8125 0 0.0625 0.8125 0 0.125 0.8125 0 0.1875 0.8125 0 0.25 0.8125 0 0.3125 0.8125 0 0.375 0.8125 0 0.4375 0.8125 0 0.5 0.8125 0 0.5625 0.8125 0 0.625 0.8125 0 0.6875 0.8125 0 0.75 0.8125 0 0.8125 0.8125 0 0.875 0.8125 0 0.9375 0.8125 0 1 0.8125 0 0 0.875 0 0.0625 0.875 0 0.125 0.875 0 0.1875 0.875 0 0.25 0.875 0 0.3125 0.875 0 0.375 0.875 0 0.4375 0.875 0 0.5 0.875 0 0.5625 0.875 0 0.625 0.875 0 0.6875 0.875 0 0.75 0.875 0 0.8125 0.875 0 0.875 0.875 0 0.9375 0.875 0 1 0.875 0 0 0.9375 0 0.0625 0.9375 0 0.125 0.9375 0 0.1875 0.9375 0 0.25 0.9375 0 0.3125 0.9375 0 0.375 0.9375 0 0.4375 0.9375 0 0.5 0.9375 0 0.5625 0.9375 0 0.625 0.9375 0 0.6875 0.9375 0 0.75 0.9375 0 0.8125 0.9375 0 0.875 0.9375 0 0.9375 0.9375 0 1 0.9375 0 0 1 0 0.0625 1 0 0.125 1 0 0.1875 1 0 0.25 1 0 0.3125 1 0 0.375 1 0 0.4375 1 0 0.5 1 0 0.5625 1 0 0.625 1 0 0.6875 1 0 0.75 1 0 0.8125 1 0 0.875 1 0 0.9375 1 0 1 1 0 0 0 0.0625 0.0625 0 0.0625 0.125 0 0.0625 0.1875 0 0.0625 0.25 0 0.0625 0.3125 0 0.0625 0.375 0 0.0625 0.4375 0 0.0625 0.5 0 0.0625 0.5625 0 0.0625 0.625 0 0.0625 0.6875 0 0.0625 0.75 0 0.0625 0.8125 0 0.0625 0.875 0 0.0625 0.9375 0 0.0625 1 0 0.0625 0 0.0625 0.0625 1 0.0625 0.0625 0 0.125 0.0625 1 0.125 0.0625 0 0.1875 0.0625 1 0.1875 0.0625 0 0.25 0.0625 1 0.25 0.0625 0 0.3125 0.0625 1 0.3125 0.0625 0 0.375 0.0625 1 0.375 0.0625 0 0.4375 0.0625 1 0.4375 0.0625 0 0.5 0.0625 1 0.5 0.0625 0 0.5625 0.0625 1 0.5625 0.0625 0 0.625 0.0625 1 0.625 0.0625 0 0.6875 0.0625 1 0.6875 0.0625 0 0.75 0.0625 1 0.75 0.0625 0 0.8125 0.0625 1 0.8125 0.0625 0 0.875 0.0625 1 0.875 0.0625 0 0.9375 0.0625 1 0.9375 0.0625 0 1 0.0625 0.0625 1 0.0625 0.125 1 0.0625 0.1875 1 0.0625 0.25 1 0.0625 0.3125 1 0.0625 0.375 1 0.0625 0.4375 1 0.0625 0.5 1 0.0625 0.5625 1 0.0625 0.625 1 0.0625 0.6875 1 0.0625 0.75 1 0.0625 0.8125 1 0.0625 0.875 1 0.0625 0.9375 1 0.0625 1 1 0.0625 0 0 0.125 0.0625 0 0.125 0.125 0 0.125 0.1875 0 0.125 0.25 0 0.125 0.3125 0 0.125 0.375 0 0.125 0.4375 0 0.125 0.5 0 0.125 0.5625 0 0.125 0.625 0 0.125 0.6875 0 0.125 0.75 0 0.125 0.8125 0 0.125 0.875 0 0.125 0.9375 0 0.125 1 0 0.125 0 0.0625 0.125 1 0.0625 0.125 0 0.125 0.125 1 0.125 0.125 0 0.1875 0.125 1 0.1875 0.125 0 0.25 0.125 1 0.25 0.125 0 0.3125 0.125 1 0.3125 0.125 0 0.375 0.125 1 0.375 0.125 0 0.4375 0.125 1 0.4375 0.125 0 0.5 0.125 1 0.5 0.125 0 0.5625 0.125 1 0.5625 0.125 0 0.625 0.125 1 0.625 0.125 0 0.6875 0.125 1 0.6875 0.125 0 0.75 0.125 1 0.75 0.125 0 0.8125 0.125 1 0.8125 0.125 0 0.875 0.125 1 0.875 0.125 0 0.9375 0.125 1 0.9375 0.125 0 1 0.125 0.0625 1 0.125 0.125 1 0.125 0.1875 1 0.125 0.25 1 0.125 0.3125 1 0.125 0.375 1 0.125 0.4375 1 0.125 0.5 1 0.125 0.5625 1 0.125 0.625 1 0.125 0.6875 1 0.125 0.75 1 0.125 0.8125 1 0.125 0.875 1 0.125 0.9375 1 0.125 1 1 0.125 0 0 0.1875 0.0625 0 0.1875 0.125 0 0.1875 0.1875 0 0.1875 0.25 0 0.1875 0.3125 0 0.1875 0.375 0 0.1875 0.4375 0 0.1875 0.5 0 0.1875 0.5625 0 0.1875 0.625 0 0.1875 0.6875 0 0.1875 0.75 0 0.1875 0.8125 0 0.1875 0.875 0 0.1875 0.9375 0 0.1875 1 0 0.1875 0 0.0625 0.1875 1 0.0625 0.1875 0 0.125 0.1875 1 0.125 0.1875 0 0.1875 0.1875 1 0.1875 0.1875 0 0.25 0.1875 1 0.25 0.1875 0 0.3125 0.1875 1 0.3125 0.1875 0 0.375 0.1875 1 0.375 0.1875 0 0.4375 0.1875 1 0.4375 0.1875 0 0.5 0.1875 1 0.5 0.1875 0 0.5625 0.1875 1 0.5625 0.1875 0 0.625 0.1875 1 0.625 0.1875 0 0.6875 0.1875 1 0.6875 0.1875 0 0.75 0.1875 1 0.75 0.1875 0 0.8125 0.1875 1 0.8125 0.1875 0 0.875 0.1875 1 0.875 0.1875 0 0.9375 0.1875 1 0.9375 0.1875 0 1 0.1875 0.0625 1 0.1875 0.125 1 0.1875 0.1875 1 0.1875 0.25 1 0.1875 0.3125 1 0.1875 0.375 1 0.1875 0.4375 1 0.1875 0.5 1 0.1875 0.5625 1 0.1875 0.625 1 0.1875 0.6875 1 0.1875 0.75 1 0.1875 0.8125 1 0.1875 0.875 1 0.1875 0.9375 1 0.1875 1 1 0.1875 0 0 0.25 0.0625 0 0.25 0.125 0 0.25 0.1875 0 0.25 0.25 0 0.25 0.3125 0 0.25 0.375 0 0.25 0.4375 0 0.25 0.5 0 0.25 0.5625 0 0.25 0.625 0 0.25 0.6875 0 0.25 0.75 0 0.25 0.8125 0 0.25 0.875 0 0.25 0.9375 0 0.25 1 0 0.25 0 0.0625 0.25 1 0.0625 0.25 0 0.125 0.25 1 0.125 0.25 0 0.1875 0.25 1 0.1875 0.25 0 0.25 0.25 1 0.25 0.25 0 0.3125 0.25 1 0.3125 0.25 0 0.375 0.25 1 0.375 0.25 0 0.4375 0.25 1 0.4375 0.25 0 0.5 0.25 1 0.5 0.25 0 0.5625 0.25 1 0.5625 0.25 0 0.625 0.25 1 0.625 0.25 0 0.6875 0.25 1 0.6875 0.25 0 0.75 0.25 1 0.75 0.25 0 0.8125 0.25 1 0.8125 0.25 0 0.875 0.25 1 0.875 0.25 0 0.9375 0.25 1 0.9375 0.25 0 1 0.25 0.0625 1 0.25 0.125 1 0.25 0.1875 1 0.25 0.25 1 0.25 0.3125 1 0.25 0.375 1 0.25 0.4375 1 0.25 0.5 1 0.25 0.5625 1 0.25 0.625 1 0.25 0.6875 1 0.25 0.75 1 0.25 0.8125 1 0.25 0.875 1 0.25 0.9375 1 0.25 1 1 0.25 0 0 0.3125 0.0625 0 0.3125 0.125 0 0.3125 0.1875 0 0.3125 0.25 0 0.3125 0.3125 0 0.3125 0.375 0 0.3125 0.4375 0 0.3125 0.5 0 0.3125 0.5625 0 0.3125 0.625 0 0.3125 0.6875 0 0.3125 0.75 0 0.3125 0.8125 0 0.3125 0.875 0 0.3125 0.9375 0 0.3125 1 0 0.3125 0 0.0625 0.3125 1 0.0625 0.3125 0 0.125 0.3125 1 0.125 0.3125 0 0.1875 0.3125 1 0.1875 0.3125 0 0.25 0.3125 1 0.25 0.3125 0 0.3125 0.3125 1 0.3125 0.3125 0 0.375 0.3125 1 0.375 0.3125 0 0.4375 0.3125 1 0.4375 0.3125 0 0.5 0.3125 1 0.5 0.3125 0 0.5625 0.3125 1 0.5625 0.3125 0 0.625 0.3125 1 0.625 0.3125 0 0.6875 0.3125 1 0.6875 0.3125 0 0.75 0.3125 1 0.75 0.3125 0 0.8125 0.3125 1 0.8125 0.3125 0 0.875 0.3125 1 0.875 0.3125 0 0.9375 0.3125 1 0.9375 0.3125 0 1 0.3125 0.0625 1 0.3125 0.125 1 0.3125 0.1875 1 0.3125 0.25 1 0.3125 0.3125 1 0.3125 0.375 1 0.3125 0.4375 1 0.3125 0.5 1 0.3125 0.5625 1 0.3125 0.625 1 0.3125 0.6875 1 0.3125 0.75 1 0.3125 0.8125 1 0.3125 0.875 1 0.3125 0.9375 1 0.3125 1 1 0.3125 0 0 0.375 0.0625 0 0.375 0.125 0 0.375 0.1875 0 0.375 0.25 0 0.375 0.3125 0 0.375 0.375 0 0.375 0.4375 0 0.375 0.5 0 0.375 0.5625 0 0.375 0.625 0 0.375 0.6875 0 0.375 0.75 0 0.375 0.8125 0 0.375 0.875 0 0.375 0.9375 0 0.375 1 0 0.375 0 0.0625 0.375 1 0.0625 0.375 0 0.125 0.375 1 0.125 0.375 0 0.1875 0.375 1 0.1875 0.375 0 0.25 0.375 1 0.25 0.375 0 0.3125 0.375 1 0.3125 0.375 0 0.375 0.375 1 0.375 0.375 0 0.4375 0.375 1 0.4375 0.375 0 0.5 0.375 1 0.5 0.375 0 0.5625 0.375 1 0.5625 0.375 0 0.625 0.375 1 0.625 0.375 0 0.6875 0.375 1 0.6875 0.375 0 0.75 0.375 1 0.75 0.375 0 0.8125 0.375 1 0.8125 0.375 0 0.875 0.375 1 0.875 0.375 0 0.9375 0.375 1 0.9375 0.375 0 1 0.375 0.0625 1 0.375 0.125 1 0.375 0.1875 1 0.375 0.25 1 0.375 0.3125 1 0.375 0.375 1 0.375 0.4375 1 0.375 0.5 1 0.375 0.5625 1 0.375 0.625 1 0.375 0.6875 1 0.375 0.75 1 0.375 0.8125 1 0.375 0.875 1 0.375 0.9375 1 0.375 1 1 0.375 0 0 0.4375 0.0625 0 0.4375 0.125 0 0.4375 0.1875 0 0.4375 0.25 0 0.4375 0.3125 0 0.4375 0.375 0 0.4375 0.4375 0 0.4375 0.5 0 0.4375 0.5625 0 0.4375 0.625 0 0.4375 0.6875 0 0.4375 0.75 0 0.4375 0.8125 0 0.4375 0.875 0 0.4375 0.9375 0 0.4375 1 0 0.4375 0 0.0625 0.4375 1 0.0625 0.4375 0 0.125 0.4375 1 0.125 0.4375 0 0.1875 0.4375 1 0.1875 0.4375 0 0.25 0.4375 1 0.25 0.4375 0 0.3125 0.4375 1 0.3125 0.4375 0 0.375 0.4375 1 0.375 0.4375 0 0.4375 0.4375 1 0.4375 0.4375 0 0.5 0.4375 1 0.5 0.4375 0 0.5625 0.4375 1 0.5625 0.4375 0 0.625 0.4375 1 0.625 0.4375 0 0.6875 0.4375 1 0.6875 0.4375 0 0.75 0.4375 1 0.75 0.4375 0 0.8125 0.4375 1 0.8125 0.4375 0 0.875 0.4375 1 0.875 0.4375 0 0.9375 0.4375 1 0.9375 0.4375 0 1 0.4375 0.0625 1 0.4375 0.125 1 0.4375 0.1875 1 0.4375 0.25 1 0.4375 0.3125 1 0.4375 0.375 1 0.4375 0.4375 1 0.4375 0.5 1 0.4375 0.5625 1 0.4375 0.625 1 0.4375 0.6875 1 0.4375 0.75 1 0.4375 0.8125 1 0.4375 0.875 1 0.4375 0.9375 1 0.4375 1 1 0.4375 0 0 0.5 0.0625 0 0.5 0.125 0 0.5 0.1875 0 0.5 0.25 0 0.5 0.3125 0 0.5 0.375 0 0.5 0.4375 0 0.5 0.5 0 0.5 0.5625 0 0.5 0.625 0 0.5 0.6875 0 0.5 0.75 0 0.5 0.8125 0 0.5 0.875 0 0.5 0.9375 0 0.5 1 0 0.5 0 0.0625 0.5 1 0.0625 0.5 0 0.125 0.5 1 0.125 0.5 0 0.1875 0.5 1 0.1875 0.5 0 0.25 0.5 1 0.25 0.5 0 0.3125 0.5 1 0.3125 0.5 0 0.375 0.5 1 0.375 0.5 0 0.4375 0.5 1 0.4375 0.5 0 0.5 0.5 1 0.5 0.5 0 0.5625 0.5 1 0.5625 0.5 0 0.625 0.5 1 0.625 0.5 0 0.6875 0.5 1 0.6875 0.5 0 0.75 0.5 1 0.75 0.5 0 0.8125 0.5 1 0.8125 0.5 0 0.875 0.5 1 0.875 0.5 0 0.9375 0.5 1 0.9375 0.5 0 1 0.5 0.0625 1 0.5 0.125 1 0.5 0.1875 1 0.5 0.25 1 0.5 0.3125 1 0.5 0.375 1 0.5 0.4375 1 0.5 0.5 1 0.5 0.5625 1 0.5 0.625 1 0.5 0.6875 1 0.5 0.75 1 0.5 0.8125 1 0.5 0.875 1 0.5 0.9375 1 0.5 1 1 0.5 0 0 0.5625 0.0625 0 0.5625 0.125 0 0.5625 0.1875 0 0.5625 0.25 0 0.5625 0.3125 0 0.5625 0.375 0 0.5625 0.4375 0 0.5625 0.5 0 0.5625 0.5625 0 0.5625 0.625 0 0.5625 0.6875 0 0.5625 0.75 0 0.5625 0.8125 0 0.5625 0.875 0 0.5625 0.9375 0 0.5625 1 0 0.5625 0 0.0625 0.5625 1 0.0625 0.5625 0 0.125 0.5625 1 0.125 0.5625 0 0.1875 0.5625 1 0.1875 0.5625 0 0.25 0.5625 1 0.25 0.5625 0 0.3125 0.5625 1 0.3125 0.5625 0 0.375 0.5625 1 0.375 0.5625 0 0.4375 0.5625 1 0.4375 0.5625 0 0.5 0.5625 1 0.5 0.5625 0 0.5625 0.5625 1 0.5625 0.5625 0 0.625 0.5625 1 0.625 0.5625 0 0.6875 0.5625 1 0.6875 0.5625 0 0.75 0.5625 1 0.75 0.5625 0 0.8125 0.5625 1 0.8125 0.5625 0 0.875 0.5625 1 0.875 0.5625 0 0.9375 0.5625 1 0.9375 0.5625 0 1 0.5625 0.0625 1 0.5625 0.125 1 0.5625 0.1875 1 0.5625 0.25 1 0.5625 0.3125 1 0.5625 0.375 1 0.5625 0.4375 1 0.5625 0.5 1 0.5625 0.5625 1 0.5625 0.625 1 0.5625 0.6875 1 0.5625 0.75 1 0.5625 0.8125 1 0.5625 0.875 1 0.5625 0.9375 1 0.5625 1 1 0.5625 0 0 0.625 0.0625 0 0.625 0.125 0 0.625 0.1875 0 0.625 0.25 0 0.625 0.3125 0 0.625 0.375 0 0.625 0.4375 0 0.625 0.5 0 0.625 0.5625 0 0.625 0.625 0 0.625 0.6875 0 0.625 0.75 0 0.625 0.8125 0 0.625 0.875 0 0.625 0.9375 0 0.625 1 0 0.625 0 0.0625 0.625 1 0.0625 0.625 0 0.125 0.625 1 0.125 0.625 0 0.1875 0.625 1 0.1875 0.625 0 0.25 0.625 1 0.25 0.625 0 0.3125 0.625 1 0.3125 0.625 0 0.375 0.625 1 0.375 0.625 0 0.4375 0.625 1 0.4375 0.625 0 0.5 0.625 1 0.5 0.625 0 0.5625 0.625 1 0.5625 0.625 0 0.625 0.625 1 0.625 0.625 0 0.6875 0.625 1 0.6875 0.625 0 0.75 0.625 1 0.75 0.625 0 0.8125 0.625 1 0.8125 0.625 0 0.875 0.625 1 0.875 0.625 0 0.9375 0.625 1 0.9375 0.625 0 1 0.625 0.0625 1 0.625 0.125 1 0.625 0.1875 1 0.625 0.25 1 0.625 0.3125 1 0.625 0.375 1 0.625 0.4375 1 0.625 0.5 1 0.625 0.5625 1 0.625 0.625 1 0.625 0.6875 1 0.625 0.75 1 0.625 0.8125 1 0.625 0.875 1 0.625 0.9375 1 0.625 1 1 0.625 0 0 0.6875 0.0625 0 0.6875 0.125 0 0.6875 0.1875 0 0.6875 0.25 0 0.6875 0.3125 0 0.6875 0.375 0 0.6875 0.4375 0 0.6875 0.5 0 0.6875 0.5625 0 0.6875 0.625 0 0.6875 0.6875 0 0.6875 0.75 0 0.6875 0.8125 0 0.6875 0.875 0 0.6875 0.9375 0 0.6875 1 0 0.6875 0 0.0625 0.6875 1 0.0625 0.6875 0 0.125 0.6875 1 0.125 0.6875 0 0.1875 0.6875 1 0.1875 0.6875 0 0.25 0.6875 1 0.25 0.6875 0 0.3125 0.6875 1 0.3125 0.6875 0 0.375 0.6875 1 0.375 0.6875 0 0.4375 0.6875 1 0.4375 0.6875 0 0.5 0.6875 1 0.5 0.6875 0 0.5625 0.6875 1 0.5625 0.6875 0 0.625 0.6875 1 0.625 0.6875 0 0.6875 0.6875 1 0.6875 0.6875 0 0.75 0.6875 1 0.75 0.6875 0 0.8125 0.6875 1 0.8125 0.6875 0 0.875 0.6875 1 0.875 0.6875 0 0.9375 0.6875 1 0.9375 0.6875 0 1 0.6875 0.0625 1 0.6875 0.125 1 0.6875 0.1875 1 0.6875 0.25 1 0.6875 0.3125 1 0.6875 0.375 1 0.6875 0.4375 1 0.6875 0.5 1 0.6875 0.5625 1 0.6875 0.625 1 0.6875 0.6875 1 0.6875 0.75 1 0.6875 0.8125 1 0.6875 0.875 1 0.6875 0.9375 1 0.6875 1 1 0.6875 0 0 0.75 0.0625 0 0.75 0.125 0 0.75 0.1875 0 0.75 0.25 0 0.75 0.3125 0 0.75 0.375 0 0.75 0.4375 0 0.75 0.5 0 0.75 0.5625 0 0.75 0.625 0 0.75 0.6875 0 0.75 0.75 0 0.75 0.8125 0 0.75 0.875 0 0.75 0.9375 0 0.75 1 0 0.75 0 0.0625 0.75 1 0.0625 0.75 0 0.125 0.75 1 0.125 0.75 0 0.1875 0.75 1 0.1875 0.75 0 0.25 0.75 1 0.25 0.75 0 0.3125 0.75 1 0.3125 0.75 0 0.375 0.75 1 0.375 0.75 0 0.4375 0.75 1 0.4375 0.75 0 0.5 0.75 1 0.5 0.75 0 0.5625 0.75 1 0.5625 0.75 0 0.625 0.75 1 0.625 0.75 0 0.6875 0.75 1 0.6875 0.75 0 0.75 0.75 1 0.75 0.75 0 0.8125 0.75 1 0.8125 0.75 0 0.875 0.75 1 0.875 0.75 0 0.9375 0.75 1 0.9375 0.75 0 1 0.75 0.0625 1 0.75 0.125 1 0.75 0.1875 1 0.75 0.25 1 0.75 0.3125 1 0.75 0.375 1 0.75 0.4375 1 0.75 0.5 1 0.75 0.5625 1 0.75 0.625 1 0.75 0.6875 1 0.75 0.75 1 0.75 0.8125 1 0.75 0.875 1 0.75 0.9375 1 0.75 1 1 0.75 0 0 0.8125 0.0625 0 0.8125 0.125 0 0.8125 0.1875 0 0.8125 0.25 0 0.8125 0.3125 0 0.8125 0.375 0 0.8125 0.4375 0 0.8125 0.5 0 0.8125 0.5625 0 0.8125 0.625 0 0.8125 0.6875 0 0.8125 0.75 0 0.8125 0.8125 0 0.8125 0.875 0 0.8125 0.9375 0 0.8125 1 0 0.8125 0 0.0625 0.8125 1 0.0625 0.8125 0 0.125 0.8125 1 0.125 0.8125 0 0.1875 0.8125 1 0.1875 0.8125 0 0.25 0.8125 1 0.25 0.8125 0 0.3125 0.8125 1 0.3125 0.8125 0 0.375 0.8125 1 0.375 0.8125 0 0.4375 0.8125 1 0.4375 0.8125 0 0.5 0.8125 1 0.5 0.8125 0 0.5625 0.8125 1 0.5625 0.8125 0 0.625 0.8125 1 0.625 0.8125 0 0.6875 0.8125 1 0.6875 0.8125 0 0.75 0.8125 1 0.75 0.8125 0 0.8125 0.8125 1 0.8125 0.8125 0 0.875 0.8125 1 0.875 0.8125 0 0.9375 0.8125 1 0.9375 0.8125 0 1 0.8125 0.0625 1 0.8125 0.125 1 0.8125 0.1875 1 0.8125 0.25 1 0.8125 0.3125 1 0.8125 0.375 1 0.8125 0.4375 1 0.8125 0.5 1 0.8125 0.5625 1 0.8125 0.625 1 0.8125 0.6875 1 0.8125 0.75 1 0.8125 0.8125 1 0.8125 0.875 1 0.8125 0.9375 1 0.8125 1 1 0.8125 0 0 0.875 0.0625 0 0.875 0.125 0 0.875 0.1875 0 0.875 0.25 0 0.875 0.3125 0 0.875 0.375 0 0.875 0.4375 0 0.875 0.5 0 0.875 0.5625 0 0.875 0.625 0 0.875 0.6875 0 0.875 0.75 0 0.875 0.8125 0 0.875 0.875 0 0.875 0.9375 0 0.875 1 0 0.875 0 0.0625 0.875 1 0.0625 0.875 0 0.125 0.875 1 0.125 0.875 0 0.1875 0.875 1 0.1875 0.875 0 0.25 0.875 1 0.25 0.875 0 0.3125 0.875 1 0.3125 0.875 0 0.375 0.875 1 0.375 0.875 0 0.4375 0.875 1 0.4375 0.875 0 0.5 0.875 1 0.5 0.875 0 0.5625 0.875 1 0.5625 0.875 0 0.625 0.875 1 0.625 0.875 0 0.6875 0.875 1 0.6875 0.875 0 0.75 0.875 1 0.75 0.875 0 0.8125 0.875 1 0.8125 0.875 0 0.875 0.875 1 0.875 0.875 0 0.9375 0.875 1 0.9375 0.875 0 1 0.875 0.0625 1 0.875 0.125 1 0.875 0.1875 1 0.875 0.25 1 0.875 0.3125 1 0.875 0.375 1 0.875 0.4375 1 0.875 0.5 1 0.875 0.5625 1 0.875 0.625 1 0.875 0.6875 1 0.875 0.75 1 0.875 0.8125 1 0.875 0.875 1 0.875 0.9375 1 0.875 1 1 0.875 0 0 0.9375 0.0625 0 0.9375 0.125 0 0.9375 0.1875 0 0.9375 0.25 0 0.9375 0.3125 0 0.9375 0.375 0 0.9375 0.4375 0 0.9375 0.5 0 0.9375 0.5625 0 0.9375 0.625 0 0.9375 0.6875 0 0.9375 0.75 0 0.9375 0.8125 0 0.9375 0.875 0 0.9375 0.9375 0 0.9375 1 0 0.9375 0 0.0625 0.9375 1 0.0625 0.9375 0 0.125 0.9375 1 0.125 0.9375 0 0.1875 0.9375 1 0.1875 0.9375 0 0.25 0.9375 1 0.25 0.9375 0 0.3125 0.9375 1 0.3125 0.9375 0 0.375 0.9375 1 0.375 0.9375 0 0.4375 0.9375 1 0.4375 0.9375 0 0.5 0.9375 1 0.5 0.9375 0 0.5625 0.9375 1 0.5625 0.9375 0 0.625 0.9375 1 0.625 0.9375 0 0.6875 0.9375 1 0.6875 0.9375 0 0.75 0.9375 1 0.75 0.9375 0 0.8125 0.9375 1 0.8125 0.9375 0 0.875 0.9375 1 0.875 0.9375 0 0.9375 0.9375 1 0.9375 0.9375 0 1 0.9375 0.0625 1 0.9375 0.125 1 0.9375 0.1875 1 0.9375 0.25 1 0.9375 0.3125 1 0.9375 0.375 1 0.9375 0.4375 1 0.9375 0.5 1 0.9375 0.5625 1 0.9375 0.625 1 0.9375 0.6875 1 0.9375 0.75 1 0.9375 0.8125 1 0.9375 0.875 1 0.9375 0.9375 1 0.9375 1 1 0.9375 0 0 1 0.0625 0 1 0.125 0 1 0.1875 0 1 0.25 0 1 0.3125 0 1 0.375 0 1 0.4375 0 1 0.5 0 1 0.5625 0 1 0.625 0 1 0.6875 0 1 0.75 0 1 0.8125 0 1 0.875 0 1 0.9375 0 1 1 0 1 0 0.0625 1 0.0625 0.0625 1 0.125 0.0625 1 0.1875 0.0625 1 0.25 0.0625 1 0.3125 0.0625 1 0.375 0.0625 1 0.4375 0.0625 1 0.5 0.0625 1 0.5625 0.0625 1 0.625 0.0625 1 0.6875 0.0625 1 0.75 0.0625 1 0.8125 0.0625 1 0.875 0.0625 1 0.9375 0.0625 1 1 0.0625 1 0 0.125 1 0.0625 0.125 1 0.125 0.125 1 0.1875 0.125 1 0.25 0.125 1 0.3125 0.125 1 0.375 0.125 1 0.4375 0.125 1 0.5 0.125 1 0.5625 0.125 1 0.625 0.125 1 0.6875 0.125 1 0.75 0.125 1 0.8125 0.125 1 0.875 0.125 1 0.9375 0.125 1 1 0.125 1 0 0.1875 1 0.0625 0.1875 1 0.125 0.1875 1 0.1875 0.1875 1 0.25 0.1875 1 0.3125 0.1875 1 0.375 0.1875 1 0.4375 0.1875 1 0.5 0.1875 1 0.5625 0.1875 1 0.625 0.1875 1 0.6875 0.1875 1 0.75 0.1875 1 0.8125 0.1875 1 0.875 0.1875 1 0.9375 0.1875 1 1 0.1875 1 0 0.25 1 0.0625 0.25 1 0.125 0.25 1 0.1875 0.25 1 0.25 0.25 1 0.3125 0.25 1 0.375 0.25 1 0.4375 0.25 1 0.5 0.25 1 0.5625 0.25 1 0.625 0.25 1 0.6875 0.25 1 0.75 0.25 1 0.8125 0.25 1 0.875 0.25 1 0.9375 0.25 1 1 0.25 1 0 0.3125 1 0.0625 0.3125 1 0.125 0.3125 1 0.1875 0.3125 1 0.25 0.3125 1 0.3125 0.3125 1 0.375 0.3125 1 0.4375 0.3125 1 0.5 0.3125 1 0.5625 0.3125 1 0.625 0.3125 1 0.6875 0.3125 1 0.75 0.3125 1 0.8125 0.3125 1 0.875 0.3125 1 0.9375 0.3125 1 1 0.3125 1 0 0.375 1 0.0625 0.375 1 0.125 0.375 1 0.1875 0.375 1 0.25 0.375 1 0.3125 0.375 1 0.375 0.375 1 0.4375 0.375 1 0.5 0.375 1 0.5625 0.375 1 0.625 0.375 1 0.6875 0.375 1 0.75 0.375 1 0.8125 0.375 1 0.875 0.375 1 0.9375 0.375 1 1 0.375 1 0 0.4375 1 0.0625 0.4375 1 0.125 0.4375 1 0.1875 0.4375 1 0.25 0.4375 1 0.3125 0.4375 1 0.375 0.4375 1 0.4375 0.4375 1 0.5 0.4375 1 0.5625 0.4375 1 0.625 0.4375 1 0.6875 0.4375 1 0.75 0.4375 1 0.8125 0.4375 1 0.875 0.4375 1 0.9375 0.4375 1 1 0.4375 1 0 0.5 1 0.0625 0.5 1 0.125 0.5 1 0.1875 0.5 1 0.25 0.5 1 0.3125 0.5 1 0.375 0.5 1 0.4375 0.5 1 0.5 0.5 1 0.5625 0.5 1 0.625 0.5 1 0.6875 0.5 1 0.75 0.5 1 0.8125 0.5 1 0.875 0.5 1 0.9375 0.5 1 1 0.5 1 0 0.5625 1 0.0625 0.5625 1 0.125 0.5625 1 0.1875 0.5625 1 0.25 0.5625 1 0.3125 0.5625 1 0.375 0.5625 1 0.4375 0.5625 1 0.5 0.5625 1 0.5625 0.5625 1 0.625 0.5625 1 0.6875 0.5625 1 0.75 0.5625 1 0.8125 0.5625 1 0.875 0.5625 1 0.9375 0.5625 1 1 0.5625 1 0 0.625 1 0.0625 0.625 1 0.125 0.625 1 0.1875 0.625 1 0.25 0.625 1 0.3125 0.625 1 0.375 0.625 1 0.4375 0.625 1 0.5 0.625 1 0.5625 0.625 1 0.625 0.625 1 0.6875 0.625 1 0.75 0.625 1 0.8125 0.625 1 0.875 0.625 1 0.9375 0.625 1 1 0.625 1 0 0.6875 1 0.0625 0.6875 1 0.125 0.6875 1 0.1875 0.6875 1 0.25 0.6875 1 0.3125 0.6875 1 0.375 0.6875 1 0.4375 0.6875 1 0.5 0.6875 1 0.5625 0.6875 1 0.625 0.6875 1 0.6875 0.6875 1 0.75 0.6875 1 0.8125 0.6875 1 0.875 0.6875 1 0.9375 0.6875 1 1 0.6875 1 0 0.75 1 0.0625 0.75 1 0.125 0.75 1 0.1875 0.75 1 0.25 0.75 1 0.3125 0.75 1 0.375 0.75 1 0.4375 0.75 1 0.5 0.75 1 0.5625 0.75 1 0.625 0.75 1 0.6875 0.75 1 0.75 0.75 1 0.8125 0.75 1 0.875 0.75 1 0.9375 0.75 1 1 0.75 1 0 0.8125 1 0.0625 0.8125 1 0.125 0.8125 1 0.1875 0.8125 1 0.25 0.8125 1 0.3125 0.8125 1 0.375 0.8125 1 0.4375 0.8125 1 0.5 0.8125 1 0.5625 0.8125 1 0.625 0.8125 1 0.6875 0.8125 1 0.75 0.8125 1 0.8125 0.8125 1 0.875 0.8125 1 0.9375 0.8125 1 1 0.8125 1 0 0.875 1 0.0625 0.875 1 0.125 0.875 1 0.1875 0.875 1 0.25 0.875 1 0.3125 0.875 1 0.375 0.875 1 0.4375 0.875 1 0.5 0.875 1 0.5625 0.875 1 0.625 0.875 1 0.6875 0.875 1 0.75 0.875 1 0.8125 0.875 1 0.875 0.875 1 0.9375 0.875 1 1 0.875 1 0 0.9375 1 0.0625 0.9375 1 0.125 0.9375 1 0.1875 0.9375 1 0.25 0.9375 1 0.3125 0.9375 1 0.375 0.9375 1 0.4375 0.9375 1 0.5 0.9375 1 0.5625 0.9375 1 0.625 0.9375 1 0.6875 0.9375 1 0.75 0.9375 1 0.8125 0.9375 1 0.875 0.9375 1 0.9375 0.9375 1 1 0.9375 1 0 1 1 0.0625 1 1 0.125 1 1 0.1875 1 1 0.25 1 1 0.3125 1 1 0.375 1 1 0.4375 1 1 0.5 1 1 0.5625 1 1 0.625 1 1 0.6875 1 1 0.75 1 1 0.8125 1 1 0.875 1 1 0.9375 1 1 1 1 1 \"></coordinate>\n", " </indexedLineSet>\n", " </shape>\n", " <viewpoint id=\"default\" position=\"2.267767 2.267767 2.267767\" orientation=\"-0.7071067812 0.7071067812 0 1\" fieldOfView=\"0.785398\" centerOfRotation=\"0.500000 0.500000 0.500000\" zNear=\"-1\" zFar=\"-1\"></viewpoint>\n", " <background skyColor=\"0.950000 0.950000 0.950000\"></background>\n", " <directionalLight ambientIntensity=\"0\" intensity=\"1\"></directionalLight>\n", " </scene>\n", " </x3d>\n", " <div style=\"position: absolute; margin: 1%; text-align: left; font-size: 12px; color: black;\">Number of vertices: 4913, number of cells: 24576</div>\n", " </body>\n", "</html>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create mesh in 3D and display\n", "mesh = UnitCubeMesh(16, 16, 16)\n", "HTML(X3DOM.html(mesh))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Create a contour plot\n", "e = Expression(\"sin(x[0])*sin(x[1])\", degree=1)\n", "V = FunctionSpace(mesh, \"Lagrange\", 1)\n", "u = Function(V)\n", "u.interpolate(e)\n", "\n", "HTML(X3DOM.html(u))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11+" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-2-clause
wiheto/sentiment-timelines
notebooks/League_06_Leicester.ipynb
1
108608
{ "metadata": { "language": "python", "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Sentiment analysis of match thread" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## To run the code\n", "\n", "Firstly, I write for Python 3.x. Python 2 may work but I don't consciously try and correct for any Python 2 differences. Apart from installing the necessary packages (pandas, numpy, matplotlib and so on). One additional thing is needed:\n", "\n", "1. Get a client_id / client_secret set up with PRAW / Reddit. In this code it is assumed that there is a file called: *praw.json* which contains client_id, client_secret, password, user_agent, and username.\n", "\n", "Tweaks will need to be made before the match events are fully automatic.\n", "\n", "Notebooks are run in the main directory of the repository (and just archived in the notebook folder). So paths will have to be modified if you run the notebook in the notebook folder" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Notes for this mathch.\n", "\n", "Premier league games will be automatic in getting match events. But Europe and cup games will probabaly be manually entering events." ] }, { "cell_type": "heading", "level": 3, "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Import packages" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import praw\n", "import datetime\n", "import pandas as pd\n", "import nltk.sentiment.vader\n", "import matplotlib.pyplot as plt\n", "from bs4 import BeautifulSoup\n", "# from selenium import webdriver\n", "import numpy as np\n", "import os\n", "from urllib.request import urlopen, urlretrieve" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Some parameters\n", "\n", "These need to be changed every match" ] }, { "cell_type": "code", "collapsed": false, "input": [ "url = 'https://www.premierleague.com/match/22396'\n", "thread_id = '71z1i2'\n", "opposition = 'Leicester'\n", "competition = 'League'\n", "hometeam = 'Leicester'\n", "\n", "#analysis_name = 'League_1_' + opposition\n", "analysis_name = competition + '_06_' + opposition\n", "\n", "# Hopefully this can be fixed somehow without having to specify it\n", "kickoff = datetime.time(17,30)\n", "firsthalfend = datetime.time(18,19)\n", "secondhalfbegin = datetime.time(18,34)\n", "secondhalfend = datetime.time(19,23)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### More parameters\n", "\n", "These parameters and definitions that don't need to change each game" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Define some objects to be used later\n", "# set up driver for scraping\n", "# driver = webdriver.PhantomJS()\n", "# Define NLTK object\n", "vader = nltk.sentiment.vader.SentimentIntensityAnalyzer()\n", "# set matplotlib style\n", "plt.style.use('ggplot')\n", "# Change this to 0 if you have downloaded the data and want to redownload\n", "use_saved_data = 1" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Function definitions\n", "\n", "Funcitons that do most of the work" ] }, { "cell_type": "heading", "level": 3, "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Functions for match events" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def get_match_report(url,kickoff,secondhalfbegin):\n", " \"\"\"\n", " Function gets all times and titles of telegraph match report\n", "\n", " \"\"\"\n", " #Open page and make a soup object\n", " #driver.get(url)\n", " #r = driver.page_source\n", " r = urlopen(url).read()\n", " soup = BeautifulSoup(r, 'lxml')\n", " # This gets the titles and timeing of match events\n", " home_events_html = soup.findAll('div', class_='event home')\n", " away_events_html = soup.findAll('div', class_='event away')\n", " home_events = parse_match_events_html(home_events_html,kickoff,secondhalfbegin)\n", " away_events = parse_match_events_html(away_events_html,kickoff,secondhalfbegin)\n", " return home_events,away_events\n", "\n", "def parse_match_events_html(events_html,kickoff,secondhalfbegin):\n", " event_list = []\n", " for e in events_html:\n", " time = e.find('time').text\n", " evtype = e.find('time').nextSibling.lower()\n", " evtype = evtype.replace(' ','')\n", " evtype = evtype.replace('\\n','')\n", " time = time.replace(' ','')\n", " time = time.replace(\"'\",'')\n", " # Adds time together (e.g. 90+2) if it exists\n", " time_split = time.split('+')\n", " time = np.sum(list(map(int,time_split)))\n", "\n", " if (len(time_split)>1 and time < 90) or time < 45:\n", " time_real = add_times(kickoff,time)\n", " else:\n", " time_real = add_times(secondhalfbegin,time-45)\n", "\n", " event_list.append([time_real,evtype])\n", " return event_list\n", "\n", "\n", "def parse_match_events(liverpool_events,opposition_events):\n", "\n", " match_events = {}\n", " # Preallocate\n", " match_events['liverpool_goal'] = []\n", " match_events['opponenet_goal'] = []\n", " #match_events['liverpool_dis_goal'] = []\n", " #match_events['opponent_dis_goal'] = []\n", " match_events['liverpool_yellowcard'] = []\n", " match_events['opponenet_yellowcard'] = []\n", " match_events['liverpool_redcard'] = []\n", " match_events['opponenet_redcard'] = []\n", " match_events['liverpool_substitution'] = []\n", " match_events['opponenet_substitution'] = []\n", "\n", " for e in liverpool_events:\n", " match_events['liverpool_' + e[1]] += [e[0]]\n", " for e in opposition_events:\n", " match_events['opponenet_' + e[1]] += [e[0]]\n", "\n", " return match_events" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Get comment data and sentiment funcitons" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def get_comments(thread_id,praw_info):\n", " reddit = praw.Reddit(client_id=praw_info['client_id'][0],\n", " client_secret=praw_info['client_secret'][0],\n", " password=praw_info['password'][0],\n", " user_agent=praw_info['user_agent'][0],\n", " username=praw_info['username'][0])\n", " submission = reddit.submission(id=thread_id)\n", " submission.comments.replace_more(limit=None, threshold = 0)\n", " return submission\n", "\n", "def comment_time_and_sentiment(submission):\n", " time = []\n", " sentiment = []\n", " score = []\n", " # Loop through top comments and add to time and sentiment list\n", " for top_level_comment in submission.comments:\n", " time.append((datetime.datetime.fromtimestamp(top_level_comment.created_utc) - datetime.timedelta(hours=1)))\n", " sentiment.append(vader.polarity_scores(top_level_comment.body)['compound'])\n", " score.append(top_level_comment.score)\n", " # Make time format\n", " pd_time = pd.to_datetime(time)\n", " # Make to dateframe\n", " df = pd.DataFrame(data={'sentiment': sentiment,'score':score}, index = pd_time)\n", " return df\n", "\n", "def posneg_sentiment_difference(df,bins='1min'):\n", " # Find comments with positive > 0 and negative < 0 sentiment\n", " pdf = df[df['sentiment'] > 0]\n", " ndf = df[df['sentiment'] < 0]\n", "\n", " # Bin\n", " pgdf = pdf.groupby(pd.TimeGrouper(freq=bins)).count()\n", " ngdf = ndf.groupby(pd.TimeGrouper(freq=bins)).count()\n", " diff_df = (pgdf['sentiment']-ngdf['sentiment']).dropna()\n", " return diff_df\n", "\n", "\n", "def weighted_posneg_sentiment_difference(df,bins='1min'):\n", " # Find comments with positive > 0 and negative < 0 sentiment\n", " df = pd.DataFrame(df[df['score']>0])\n", " pdf = df[df['sentiment'] > 0]\n", " ndf = df[df['sentiment'] < 0]\n", " # Bin\n", " pgdf = pdf.groupby(pd.TimeGrouper(freq=bins)).count()\n", " ngdf = ndf.groupby(pd.TimeGrouper(freq=bins)).count()\n", " # Take the difference\n", " diff_df = (pgdf['sentiment']*pgdf['score']-ngdf['sentiment']*ngdf['score']).dropna()\n", " return diff_df" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Plotting and misc functions" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def add_times(base_time, match_time):\n", " time = datetime.datetime.combine(datetime.date.today(),base_time)+datetime.timedelta(minutes=int(match_time))\n", " return time.time()\n", "\n", "def plot_sentiment_figure(df,match_events,opposition):\n", "\n", " fig = plt.figure(figsize=(6,8))\n", " ax = plt.subplot2grid((7, 1), (1, 0), rowspan=6)\n", " ax_me = plt.subplot2grid((7, 1), (0, 0),sharex=ax)\n", " # Main line\n", " ax.plot(df.index.time,df,linewidth=2,color='firebrick')\n", " # Scale y axis (make even -/+ directions)\n", " ax.set_ylim([-np.max(np.abs(ax.get_ylim())),np.max(np.abs(ax.get_ylim()))])\n", " # Make axis ticks and labels correct\n", " start_xaxis=datetime.datetime.combine(datetime.date.today(),match_events['kickoff'])-datetime.timedelta(minutes=10)\n", " end_xaxis=datetime.datetime.combine(datetime.date.today(),match_events['secondhalfend'])+datetime.timedelta(minutes=10)\n", " ax.set_xticks([match_events['kickoff'].hour*3600+m*60 for m in range(0,180,30)])\n", " ax.set_xlim([start_xaxis.time(),end_xaxis.time()])\n", " ax.set_xlabel('Time (GMT/BST)')\n", " # Get y axis lims to place events\n", " scatter_y_min, scatter_y_max = ax.get_ylim()\n", " # Define first and second half\n", " ax.fill_between([match_events['kickoff'],match_events['firsthalfend']],scatter_y_min,scatter_y_max+np.abs(scatter_y_max*0.05),facecolor='dimgray',alpha=0.25,zorder=0)\n", " ax.fill_between([match_events['secondhalfbegin'],match_events['secondhalfend']],scatter_y_min,scatter_y_max+np.abs(scatter_y_max*0.05),facecolor='dimgray',alpha=0.25,zorder=0)\n", " ax.text(datetime.time(match_events['kickoff'].hour,match_events['kickoff'].minute+3),scatter_y_min+np.abs(scatter_y_min*0.05),'First Half')\n", " ax.text(datetime.time(match_events['secondhalfbegin'].hour,match_events['secondhalfbegin'].minute+3),scatter_y_min+np.abs(scatter_y_min*0.05),'Second Half')\n", "\n", " # MATCH EVENTS (BELOW HERE) MIGHT HAVE TO CHANGE\n", " # Place match events\n", " axlabs = []\n", " if match_events['liverpool_goal']:\n", " axlabs += [ax_me.scatter(match_events['liverpool_goal'],np.tile(2,len(match_events['liverpool_goal'])),color='black',s=50,label='goal')]\n", " if match_events['opponenet_goal']:\n", " axlabs += [ax_me.scatter(match_events['opponenet_goal'],np.tile(1,len(match_events['opponenet_goal'])),color='black',s=50,label='goal')]\n", " if match_events['liverpool_dis_goal']:\n", " ax_me.scatter(match_events['liverpool_dis_goal'],np.tile(2,len(match_events['liverpool_dis_goal'])),color='black',s=50)\n", " ax_me.scatter(match_events['liverpool_dis_goal'],np.tile(2,len(match_events['liverpool_dis_goal'])),marker='x',color='red',s=40)\n", " if match_events['opponent_dis_goal']:\n", " ax_me.scatter(match_events['opponent_dis_goal'],np.tile(1,len(match_events['opponent_dis_goal'])),color='black',s=50)\n", " ax_me.scatter(match_events['opponent_dis_goal'],np.tile(1,len(match_events['opponent_dis_goal'])),marker='x',color='red',s=40)\n", " if match_events['liverpool_yellowcard']:\n", " axlabs += [ax_me.scatter(match_events['liverpool_yellowcard'],np.tile(2,len(match_events['liverpool_yellowcard'])),marker='s',color='y',s=40,label='yellow')]\n", " if match_events['opponenet_yellowcard']:\n", " axlabs += [ax_me.scatter(match_events['opponenet_yellowcard'],np.tile(1,len(match_events['opponenet_yellowcard'])),marker='s',color='y',s=40,label='yellow')]\n", " if match_events['liverpool_redcard']:\n", " axlabs += [ax_me.scatter(match_events['liverpool_redcard'],np.tile(2,len(match_events['liverpool_redcard'])),marker='s',color='r',s=40,label='red')]\n", " if match_events['opponenet_redcard']:\n", " axlabs += [ax_me.scatter(match_events['opponenet_redcard'],np.tile(1,len(match_events['opponenet_redcard'])),marker='s',color='r',s=40,label='red')]\n", " if match_events['liverpool_substitution']:\n", " axlabs += [ax_me.scatter(match_events['liverpool_substitution'],np.tile(2,len(match_events['liverpool_substitution'])),marker='s',color='g',s=10,label='sub')]\n", " if match_events['opponenet_substitution']:\n", " axlabs += [ax_me.scatter(match_events['opponenet_substitution'],np.tile(1,len(match_events['opponenet_substitution'])),marker='s',color='g',s=10,label='sub')]\n", "\n", " # Filter out any duplicate labels\n", " l = []\n", " lax = []\n", " for n in axlabs:\n", " lt = n.get_label()\n", " if lt not in l:\n", " l += [lt]\n", " lax.append(n)\n", " fig.legend(lax,l,ncol=len(lax),loc=9,fontsize='small')\n", "\n", " ax_me.set_ylim(0.5,2.5)\n", " ax_me.set_yticks([1,2])\n", " ax_me.set_yticklabels([opposition,'Liverpool'])\n", " ax_me.set_xlabel('')\n", " plt.setp(ax_me.get_xticklabels(), visible=False)\n", "\n", " return fig,ax,ax_me" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Get comments and sentiment score\n", "\n", "If the data already exists, it loads that (remember to run in main directory, not notebook directory)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# If data doesn't exist, download it. If data exists, load it.\n", "if use_saved_data == 1 and os.path.exists('./data/' + analysis_name + '.csv'):\n", " df = pd.read_csv('./data/' + analysis_name + '.csv', index_col=0, parse_dates=[0])\n", "else:\n", " # read in reddit api info\n", " praw_info = pd.read_json('praw.json')\n", " # do the sentiment analysis\n", " submission = get_comments(thread_id,praw_info)\n", " df = comment_time_and_sentiment(submission)\n", " df.to_csv('./data/' + analysis_name + '.csv')\n", " # Delete reddit api info\n", " praw_info = {}" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Get match report" ] }, { "cell_type": "code", "collapsed": false, "input": [ "if hometeam.lower() == 'liverpool':\n", " liverpool_events,opposition_events = get_match_report(url,kickoff,secondhalfbegin)\n", "else:\n", " opposition_events,liverpool_events = get_match_report(url,kickoff,secondhalfbegin)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Parse match report" ] }, { "cell_type": "code", "collapsed": false, "input": [ "match_events = {}\n", "\n", "# Manual entry\n", "\n", "\n", "#match_events['liverpool_goal'] = []\n", "#match_events['opponenet_goal'] = [datetime.time(21,9),datetime.time(21,22)]\n", "#match_events['liverpool_yellowcard'] = [datetime.time(21,0),datetime.time(21,18)]\n", "#match_events['opponenet_yellowcard'] = [datetime.time(21,34)]\n", "#match_events['liverpool_redcard'] = []\n", "#match_events['opponenet_redcard'] = []\n", "#match_events['liverpool_substitution'] = [datetime.time(20,48),datetime.time(21,19)]\n", "#match_events['opponenet_substitution'] = [datetime.time(20,54),datetime.time(21,29)]\n", "\n", "\n", "match_events = parse_match_events(liverpool_events,opposition_events)\n", "\n", "match_events['liverpool_dis_goal'] = []\n", "match_events['opponent_dis_goal'] = [datetime.time(19,3)]\n", "\n", "# match_events = parse_match_events(liverpool_events,opposition_events)\n", "match_events['kickoff'] = kickoff\n", "match_events['firsthalfend'] = firsthalfend\n", "match_events['secondhalfbegin'] = secondhalfbegin\n", "match_events['secondhalfend'] = secondhalfend" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Get positive/negative difference\n", "\n", "Sort into number of positive and number of negative comments" ] }, { "cell_type": "code", "collapsed": false, "input": [ "posneg_df = posneg_sentiment_difference(df,bins='2min')\n", "weighted_posneg_df = weighted_posneg_sentiment_difference(df,bins='1min')" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Plot figure (unweighted)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Plot weighted figure\n", "fig,ax,axtop = plot_sentiment_figure(posneg_df,match_events,opposition)\n", "ax.set_ylabel('# Pos - Neg Comments')\n", "fig.tight_layout()\n", "# Save\n", "fig.savefig('./figures/' + analysis_name + '.png',dpi=300)\n", "fig.savefig('./figures/' + analysis_name + '.pdf',dpi=300)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAI/CAYAAAAiOU2mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8U1XeP/DPzdY9XYFS9rIJSGVTWUZFpi4o4zaOMG7j\nPsKIKzgOM8+M8yhj0QcRQXEGUfSn4y6g4zJQtbgUUBQsIDtdgLaU7mua5d7fH0muaZukN+lNc9N+\n3q9XX9Ak996T25t87znne84RJEmSQEREpDG6cBeAiIjIGwYoIiLSJAYoIiLSJEO4C0DhY7FYUF1d\nDVEUIQhCuItD1IEkSUhMTERCQkK4i0JhwADVi1VWVsJkMjE4kabV1dUxQPVSbOLrxQRBYHAizeM1\n2nsxQJHmLVy4EPv37w93MVR10UUXAeiZ7y0QTz75JDZv3hzuYpBGMUCRIsXFxcjNzUVxcXG4i0JE\nvQT7oMiv+vp63HnnnSgoKEBVVRVSU1ORlZWFtWvXwmw2K96P3W7HXXfdhbq6OowYMQLNzc2YNWsW\n/vnPf0IQBCxevBizZs3C6tWrkZubi4aGBvzP//wPZs6cGbo35+HkyQdhtR7t8LjJNBwDBjyteD9/\n/vOfceWVV+Kcc87BF198gW3btqGhoQEHDhyATqfDqlWrkJGR0WE7h8OBe+65B6WlpYiLi8Pzzz+P\nDz74AHFxcbjsssswcuRIbN++HSUlJfjqq6/wxz/+sUvvtzvs3LkTf/nLXxATE4Np06Zhy5Yt2LJl\nCwBnDdL9//feew/r1q0DAKxbtw7x8fFhKzNpC2tQ5Nedd96JL774AlVVVQCAqqoqfPHFF7jzzjsD\n2s8nn3yC4cOH47333sO4cePgcDiwcuVKbNy4EW+//TaeeOIJAMBtt92GjRs34s0338SKFStUfz++\nWK1H0dy8rcOPt6Dlz9y5c/Huu+8CcH7x9uvXD4mJidiwYQOWLFmCZ5991ut2H3/8MTIyMrBp0yZc\nddVVePHFFzF16lRs374dP/zwA37xi19g+/bt2L59O6ZNm9bl99uZB794EFduuFL+efCLBwPeR25u\nLhYtWoQNGzZg0aJFPl83ePBgvPXWW5g9ezb+3//7f10pNvUwrEGRT0VFRSgoKPD6XEFBAYqLizFk\nyBBF+yosLERWVhYA4KyzzsJHH32EgQMHIjo6GtHR0TAYDLDb7XjnnXfw3nvvQafT4dSpU6q9l+6S\nlZWFQ4cOob6+HqWlpRg9ejQ++eQTbN++HZIkea09Ac7zM2HCBADAxIkTkZeXh5EjR+Lw4cPYtm0b\n7r//frz33nsoLS3F3XffHfL3cbT2KLaVbevSPm699VasWLEC7777Lq699to2z3nOsOa+LiZOnIjX\nXnutS8eknoU1KPLpyJEjcs2pvaqqKhw5ckTxvoYNG4a9e/cCAPbs2YPU1FQcP34cFosFDQ0NsNls\nMBgMWLduHTZs2IB//etfiNRpIi+66CIsXrwYl156KUaOHIkrrrgCGzduxKZNm3zWoIYNG4Zdu3YB\nAHbt2oXMzEwIgoCkpCR8++23mDp1KioqKtDa2orY2NjufDtBM5vNyMnJwbPPPovHHnsMer0ejY2N\naGxsbNOX6b4udu/ejWHDhoWruKRBrEGRTyNHjkRqaqrXIJWamooRI0Yo3tfs2bOxYcMG/PrXv8aQ\nIUMQHR2Ne++9F1deeSV0Oh3+9Kc/AQDOOecczJkzB1OmTEFcXJxq76U7XXvttcjJycHjjz+OtLQ0\nfP3117j66qshCAJ+/etf44YbbuiwzezZs/HRRx/hiiuukPugAODcc8/Fjh07AAB9+/aNqP6ZV199\nFR999BHsdjvmzp2L1NRU/OpXv8KkSZOQnp4uv+7kyZP4zW9+A0EQ5L4oIgAQOJt573Xy5EmYTCa/\nr5k7dy6++OKLDo9feOGFeOuttwI6ns1mg9FoxKuvvora2lrce++9AW0fSoWFV6K5uWOTVmzsNAwb\ntimgfZ06dQqLFy/Gq6++qlbxut2DXzyIo7U/978NTxqOpy9UniyiJqvVigEDBoTl2BRerEGRX2vX\nrvWZxReom2++GU1NTTCZTEFtH0om0/CAHvdlx44d+Pvf/45HH31UhVKFT7iCEZEn1qB6MSU1KLfi\n4mIcOXIEI0aMUJwYQaQG1qB6L9agSJEhQ4YwMBFRt+qVNajS0tKQHyMtLQ2VlZUhP05XNDU1ITY2\nVjNznblTzUm53nDOmpqaVE+YiYTPp9Z0ds58DaHoCtagerHo6Gg0NzcD0MaEnFFRUWhtbQ13MSJK\nTz9nkiTBaDSGuxgUJgxQvZher9dUKjfvagPHc0Y9GQfqEhGRJjFAERGRJjFAERGRJjFAERGRJjFA\nERGRJjFAERGRJjFAERGRJnUaoG666aYOj23evBlbt24NSYGCtW/fPuTk5IS7GJpWUlKCzz77DCUl\nJZreJ1FX8JrsOYIaqHvxxRercnCHwwG9Xq/Kvsi3+vp6zJ8/HwUFBaiurkZKSgqysrKwZs0amM1m\nzewzEpSXL4bVeqzD4yZTJtLTnwpDibQlnOdH6TVZXr4YZWXHYbPZur2MFJigAtTbb7+N6OhoTJ48\nGatXr8YTTzwBAKioqMCyZcuwfPlyHDt2DK+88gosFgvMZjMWLFiA5ORkPProoxg6dCgOHDiAGTNm\noKSkBEajEceOHUNLSwtuvvlmTJ48GVarFS+++CKOHj0KvV6Pm2++GWeeeabPx8m3+fPnIy8vT/69\nuroaeXl5mD9/Pl5//XXN7DMSWK3HYLFsD3cxNCtU52fxl4txrO7nwJeZmImnzm8bTJRek/7KqOQ4\namxDynRpqqMBAwbAbrejoqICffv2RX5+PqZPnw673Y6XXnoJDz/8MMxmM/Lz8/HGG29gwYIFAAC7\n3S43xz333HM4ffo0/vGPf+DUqVP4+9//jvHjx+O///0vAGD58uU4efIkHn/8caxcudLn4+RdcXEx\nCgoKvD5XUFCAkpISDB48OOz7JPLnWN0xbC/3HfjUuiY7O45a25AyXZ6Lb9q0acjPz8dVV12Fbdu2\n4f7770dpaSmOHz+Oxx57DAAgiiKSk5PlbaZPn95hHzqdDv3790e/fv1QWlqKAwcOYPbs2QCcgbBP\nnz4oKyvz+bg/ubm5yM3NBQDk5OQgLS2tq2+7UwaDoVuO05mdO3eiurra63PV1dU4ffo0Jk2aFPZ9\nAto5Z/6UlRlhsXR83Gg0hqXsWjtnoTo/7SeMbb+/QK5Jf2VsPy+tknJ3VraeIhzXWpcD1PTp07Fi\nxQqcc845AID+/fujpKQEAwcOxNKlS71uExUV1eb3UM+knZ2djezsbPn37phcUyuTePbt2xcpKSle\nP7wpKSno06dPwOUMxT4B7Zwzf9r3W3g+Ho6ya+2cher8tN9v+/0Fck36K2P7p5SUu7Oy9RThWG6j\ny2nm6enp0Ol0eO+99+SaUUZGBurr63Ho0CEAzia948eP+9zH9u3bIYoiysvLcerUKWRkZGDMmDH4\n6quvADjXb6qsrPT7OHk3ePBgZGVleX0uKysrqKa4UOyTyJ/MxExMTZ8q/2QmZrZ5Xq1rsrPjqLUN\nKdNpDcpqteLuu++Wf58zZ06H10ybNg2vvfYaVq9e7dypwYCHHnoIL7/8Mpqbm+FwOHDZZZdh0KBB\nXo+RmpqKJUuWoKWlBXfeeSdMJhMuvvhivPjii3jooYeg1+uxYMECGI1Gn4+Tb2vWrPGZ3aSlfUYC\nk8n7l4+vx3ubUJ0fJUkHSq9JkykTRqPRaxZfMMkNTIgInbCvqPvcc89h8uTJmDp1arcds7euqFtS\nUoKjR49i+PDhqtVy1NynFs+Z1vGcdaTkmuR5CxxX1KWQGjx4sOrNb6HYJ1FX8JrsOcIeoP7whz+E\nuwhERKRBnIuPiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGK\niIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0iQGKiIg0\nqdMAddNNNyne2c6dO7Fx48YuFchTXl4eqqurVdsfkdpKSkrw2WefoaSkJNxFIS8C+vu0tACS1HYb\nSXI+TmFhUHNnU6ZMwZQpU1TbX15eHgYNGoSUlBTF2zgcDuj1etXK0FOVly+G1Xqsw+MmUybS059S\nbZueqr6+HvPnz0dBQQGqq6uRkpKCrKwsrFmzBmazOdzF6/UC/vu0tCDp2mvxUWUl7m5qQnVNDVKS\nk/FCXBwuT0tD7bvvAjEx3f9GFOjJn8ugAlR9fT3+9a9/oaqqCgDwu9/9DmeccQby8vJw9OhR3H77\n7aitrcXatWtRUVEBALjjjjswevRofPnll/jkk09gt9sxcuRI3HHHHQCANWvW4Ngx50m+8MILkZaW\nhqNHj+LZZ5+FyWTC0qVLceLECbzyyiuwWCwwm81YsGABkpOT8eijj2Lo0KE4cOAAZsyYgV/96ldq\nnJsezWo9Botle8i36anmz5+PvLw8+ffq6mrk5eVh/vz5eP3118NXsAi1+MvFOFb385dsZmImnjo/\n+C/XgP8+0dH4qLISWyaeQFIqUA0gCTXYUlUD7AJmREd3+3tQqid/LoMKUC+//DLmzJmDM844A5WV\nlVi6dClWrFjR4TVjx47F4sWLIYoiLBYLTpw4gfz8fDz22GMwGAx48cUX8dVXX2HQoEGorq7G8uXL\nAQBNTU2Ii4vDp59+iptuugnDhw+H3W7HSy+9hIcffhhmsxn5+fl44403sGDBAgCA3W5HTk5OF08H\nUeeKi4tRUFDg9bmCggKUlJRg8ODB3VyqyHas7hi2l6vzJavk75OWltZ2m5IS3N3UhKRU4NhQV5lc\nz73X1ISPjh/v9G+q5nsgp6AC1J49e3DixAn59+bmZlgsljav2bt3L+655x4AgE6nQ2xsLL788ksU\nFhbiT3/6EwDAarXCbDZj8uTJqKiowEsvvYRJkyYhKyurwzFLS0tx/PhxPPbYYwAAURSRnJwsPz99\n+nSf5c3NzUVubi4AICcnp8PFGQoGg6FbjhOssjIj2v3JAABGo9FnuYPZJhBaP2duO3fu9Nk3Wl1d\njdOnT2PSpEndUpZIOWedMRqNHX4P9n0p+fu0P287d+5EdU0N2m91DABqahT9TdV8D4EI9efSLRzX\nWlABSpIkLF26FCaTKeDtLrjgAlx//fUdnnvqqaewe/dubN68Gfn5+XLNyNPAgQOxdOlSr/uOiory\nedzs7GxkZ2fLv1dWVgZU7mCkpaV1y3GCZbPZfD7uq9zBbBMIrZ8zt759+yIlJcXrl2BKSgr69OnT\nbe8jUs5ZZ9pfW125ppT8fex2e5v99+3bFynJyUhCDTx7czIB1CYnK/qbqvkeAhHqz6VbZ9daRkaG\nasdyCyrNPCsrC59++qn8e1FRUYfXjB8/Hps3bwbgrO00Nzdj/Pjx2L59O+rq6gAAjY2NOH36NOrr\n6yGKIqZOnYp58+ahsLAQABAdHY0WVwZNRkYG6uvrcejQIQDOJr3jx48HU3yiLhk8eLDXWj7g/Gyw\neS9wmYmZmJo+Vf7JTMwMel/B/H0GDxqEF+Li8MsqILMIQJHz319WAS/ExWHwoEHd+h7IqdMalNVq\nxd133y3/PmfOHNx6661Yt24dFi1aBIfDgTFjxuCuu+5qs90tt9yCf/3rX/j888+h0+lw5513YtSo\nUZg3bx4ef/xxSJIEvV6P22+/HSaTCWvWrIEoigAg17BmzpyJtWvXykkSDz30EF5++WU0NzfD4XDg\nsssuwyAFFw51ZDJ5//D4ejzYbXqqNWvW+MwSo8CpnUwQ8N/HYsHlaWnALmefE2pqUJucjIvcWXwW\nS6dZfN2REOFNT/5cCpIkSeEuRHcrLS0N+TF6StNLd4rEc1ZSUoKjR49i+PDhYak5ReI5606+/j5e\nz1tLCxAdjZLjx3/eZtAgQEFw6g3C0cSn6jgoot5m8ODBbNLTsID+Pq4g1GEbBqew4VRHRESkSQxQ\nRESkSQxQRESkSQxQRESkSQxQRESkSQxQRESkSQxQRESkSQxQRESkSb1yJgkiItI+1qBC5JFHHgl3\nESIOz1ngeM6Cw/MWuHCcMwYoIiLSJAYoIiLSJAaoEPFcIJGU4TkLHM9ZcHjeAheOc8YkCSIi0iTW\noIiISJMYoIiISJMYoIiISJMYoIiISJMYoIiISJMYoIiISJMYoIiISJMYoIiISJMYoIiISJMYoIiI\nSJMYoIiISJMYoIiISJMYoIiISJMM4S5AOJSWlob8GGazGQUFBSE/Tk+SlZUV8eds6NCh3Xq8tLQ0\nVFZWKnptUVFRaAsTQXrCtaaUWtdkZ9daRkaGKsfxxBoUERFpEgMUERFpEgMUERFpEgMUERFpEgMU\nERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFp\nEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMU\nERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFp\nEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMUERFpEgMU\nERFpEgMUERFpEgMUERFpkiHcBVCqqakJL7zwAo4fPw5BEDB//nxkZGRgxYoVOH36NPr06YMHHngA\n8fHx4S4qERGpIGIC1Msvv4wJEybgoYcegt1uR2trKzZs2IDx48fjqquuwsaNG7Fx40bceOON4S4q\nERGpICKa+Jqbm7F//37MmjULAGAwGBAXF4fvvvsOF1xwAQDgggsuwHfffRfOYhIRkYoiogZVUVEB\ns9mM559/HsXFxcjMzMQtt9yCuro6JCcnAwCSkpJQV1cX5pISEZFaIiJAORwOFBYW4rbbbsPIkSPx\n8ssvY+PGjW1eIwgCBEHwun1ubi5yc3MBADk5OUhLSwt5mfV6PbKyskJ+nJ4kJiYm4s+ZyWTq1uMZ\nDAbF17PZbA5xaSJHT7jWlFLrmgzkWlNLRASo1NRUpKamYuTIkQCAqVOnYuPGjUhMTERNTQ2Sk5NR\nU1Pj8wOYnZ2N7Oxs+ffKysqQl9lsNqOgoCDkx+lJsrKyIv6cDR06tFuPl5aWpvh6LioqCm1hIkhP\nuNaUUuua7Oxay8jIUOU4niKiDyopKQmpqakoLS0FAOzZswcDBw7ElClTsHXrVgDA1q1bcfbZZ4ez\nmEREpKKIqEEBwG233YZnn30Wdrsdffv2xYIFCyBJElasWIHPP/9cTjMnIqKeIWIC1NChQ5GTk9Ph\n8b/+9a9hKA0REYVaRDTxERFR78MARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQA\nRUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARURE\nmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQA\nRUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARURE\nmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQARUREmsQA\nRUREmsQARUREmsQARUREmmQIdwECIYoiHnnkEaSkpOCRRx5BRUUFnnnmGTQ0NCAzMxMLFy6EwRBR\nb4mIiHyIqBrUxx9/jAEDBsi/v/baa7j88suxatUqxMXF4fPPPw9j6YiISE0RE6Cqqqrwww8/4Je/\n/CUAQJIk7Nu3D1OnTgUAzJw5E9999104i0hERCqKmPaw9evX48Ybb0RLSwsAoKGhAbGxsdDr9QCA\nlJQUVFdXe902NzcXubm5AICcnBykpaWFvLx6vR5ZWVkhP05PEhMTE/HnzGQydevxDAaD4uvZbDaH\nuDSRoydca0qpdU0Gcq2pJSIC1Pfff4/ExERkZmZi3759AW+fnZ2N7Oxs+ffKyko1i+eV2WxGQUFB\nyI/Tk2RlZUX8ORs6dGi3Hi8tLU3x9VxUVBTawkSQnnCtKaXWNdnZtZaRkaHKcTxFRIA6ePAgdu7c\niV27dsFqtaKlpQXr169Hc3MzHA4H9Ho9qqurkZKSEu6iEhGRSiIiQF1//fW4/vrrAQD79u3Dhx9+\niHvvvRdPP/00tm/fjhkzZiAvLw9TpkwJc0mJiEgtEZMk4c0NN9yA//znP1i4cCEaGxsxa9ascBeJ\niIhUEhE1KE/jxo3DuHHjAAD9+vXDE088EeYSERFRKER0DYqIiHouBigiItIkBigiItIkBigiItIk\nBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigi\nItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIk\nBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigi\nItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItIkBigiItKkkAQoq9UKm80Wil0TEVEvoUqA\nevXVV3HkyBEAwA8//IBbb70Vt956K3bu3KnG7omIqBdSJUB9/fXXGDRoEADg3XffxcKFC/Hwww/j\njTfeUGP3RETUCxnU2ElrayuioqLQ0NCAU6dOYerUqQCAyspKNXZPRES9kCoBKiMjA1999RXKy8uR\nlZUFAKivr4fJZFJj90RE1Aup0sR3++2347///S/27duHuXPnAgB+/PFHOVhRzyaJIlq3bUP98uWw\nHzsW7uIQUQ+hSg0qLS0Njz/+eJvHzjvvPIwfP16N3ZOG2fbvR9Obb8LhCkyW5GTEZ2aGuVRE1BOo\nUoO67777vD7+wAMPqLF70iD7yZOof/pp1P/jH87gZDQCAMSqqjCXjIh6ClVqUJIkdXisubkZOp06\nw6wqKyvx3HPPoba2FoIgIDs7G5dddhkaGxuxYsUKnD59Gn369MEDDzyA+Ph4VY5JvrVu24bGNWsA\nSQKioxFz+eUwjhmD+scfZ4AiItV0KUDNnz8fgHNgrvv/bo2NjZgxY0ZXdi/T6/W46aabkJmZiZaW\nFjzyyCPIyspCXl4exo8fj6uuugobN27Exo0bceONN6pyTPLNumsXIEkwnX024n73O+gSEyE2NAAA\nxOrqMJeOiHqKLgWohQsXQpIkPPHEE1i4cGGb55KSkpCRkdGlwrklJycjOTkZABATE4MBAwaguroa\n3333HR599FEAwAUXXIBHH32UAaobSPX1AIComTOhS0wEAAjx8YDRCKmlBWJLC3QxMeEsIhH1AF0K\nUGPHjgUArFu3DlFRUaoUqDMVFRUoLCzEiBEjUFdXJweupKQk1NXVdUsZejvRFaB0ZrP8mCAI0KWm\nQiwvh1hVBd3AgeEqHhH1EKr0Qen1euTm5qKoqAgWi6XNc/fcc48ahwAAWCwWLF++HLfccgtiY2Pb\nPCcIAgRB8Lpdbm4ucnNzAQA5OTlIS0tTrUy+6PX6Hptm/01zMxwAxp17LqL69ZMf3z1kCGrKyzEk\nMRGpQbz3mJiYiD9n3T32z2AwKL6ezR43FL1dT7jWlFLrmgzkWlOLKgFq9erVKC4uxuTJk5HoavJR\nm91ux/Lly3Heeefh3HPPBQAkJiaipqYGycnJqKmp8fkBzM7ORnZ2tvx7d8xwYTabUVBQEPLjdDdJ\nFGF19TMdOHkSwqlT8nPNrg/C0Z07cTIhIeB9Z2VlRfw5Gzp0aLceLy0tTfH1XFRUFNrCRJCecK0p\npdY12dm1plaXjidVAtSPP/6I1atXIy4uTo3ddSBJEl544QUMGDAAc+bMkR+fMmUKtm7diquuugpb\nt27F2WefHZLj08+kpiZAkiDExUEwtL18dKmpAJhqTkTqUG2gbiiX1zh48CC+/PJLDB48GIsXLwYA\n/Pa3v8VVV12FFStW4PPPP5fTzCm0RFc/n+CltqpLSXG+hgGKiFSgSoA6//zz8dRTT2H27NlISkpq\n89yZZ57Z5f2fccYZePvtt70+99e//rXL+yflJC8JEm7uGpSDqeZEpAJVAtSnn34KAB2W1xAEAatX\nr1bjEKQR3jL43OQaFAMUEalAlQD13HPPqbEbigDuAOW1ic+jD0qSJJ9ZlURESqi25Lvdbsf+/fuR\nn58PwJkS3j7lnLTDkpsL6/ffB7yd5OqD8lqDiomBEBsL2GyQGhu7XEYi6t1UqUGVlJRg2bJlMBqN\nqKqqwvTp0/HTTz9h69atTFzQILG+Hk2vvALBbEbK5MkBbwt4D1CAs5nP0dzsHKwbRKo5EZGbKjWo\ntWvXYu7cuXjmmWdgcKUejx07FgcOHFBj96Qy97x5UkMDJFEMbFt3E5+P8W7M5CMitagSoE6cOIHz\nzjuvzWPR0dGwWq1q7J5UJje/SZJzXFMg23ZWg2ImHxGpRJUA1adPHxxrt5LqkSNHkJ6ersbuSWWe\nQUly1aaUUtLEB7AGRURdp0of1Ny5c5GTk4OLLroIdrsdGzZswJYtW/D73/9ejd2TyqTmZvn/YmMj\n9AFs6y+LD/DI5GMNioi6SJUa1OTJk7FkyRLU19dj7NixOH36NBYtWoSzzjpLjd2TysQga1BSaytg\nsQB6vTNbzws9pzsiIpWoUoMCgGHDhuGOO+5Qa3cUQp4p4GIA6eDu5Aqd2exzjBNrUESkFlUClMPh\nwDfffIPCwsIOY5/YzKc9wfZBSZ1k8AGAzrU+l1hTA0kUIehUG2pHFFEkUQT8LANEnVPl22PVqlXY\nuHEjBEFAYmJimx/SHrFdH5Ti7TpJkAAAwWSCkJAAOBwQa2uDLyRRBHOUlaH69tvR8sEH4S5KRFOl\nBrV79275HXf5AAAgAElEQVSsWbMGMVzmOyK0qUEFEqD8zCLhSZeaCkdDA8TqauhdWX1EvYnt4EHA\nbod1xw7EXnlluIsTsVSpQQ0aNAiNnNomYrTpgwqmia+zAMVUc+rl3DdzjhMnnMlFFBRValD33HMP\nXnjhBZx11lkdmvUuuOACNQ5BKvJMMw+oBqWgiQ9wZvLZwEQJ6r3cc1ZCkmAvLoZx1KjwFihCqRKg\n8vLycODAATQ1NcHkWvYbcC63wQClPWKwTXzuANVJ3yJX1qXezv1ZAQB7UREDVJBUCVAff/wxli1b\nhoEDB6qxOwohSZK6r4mPNSjqpTwThByFhWEsSWRTpQ8qKSkJaWlpauyKQq21FXA4AL1z/gipsVHx\nhLGBJEkArEFR79WmBsUAFTRVAtTll1+OVatW4dChQzh16lSbH9IWd4q5kJAAISbGOWFsS4uybQOs\nQXHCWOqt5D4oAI7SUkhcGy8oqjTxrVu3DgCwc+fODs+99dZbahyCVOJOMdfFxUEymSC1tDib/OLi\n/G8nivKg3s7WedIlJwOCAKmuDpLdDsGg2oQlqpMsFli+/BK6xEREnXtuuItDPYBktToTkfR66AcM\ngKOkxJkoMXp0uIsWcVT55mAQihzu/ichLg6w24GKCogNDdD36+d/u6YmQBQhxMZCMBr9vlbQ66FL\nSoJYU+McC9W3r2rlV4skimj98ks0v/8+pJoaQBBgHDcOuvj4cBeNIpxnS4MhM9MZoAoLGaCCwHlo\nehl3DUqIi5O/jJVk8ilt3nPT6px8kiTBuns36pYsQdO6dXJwgiTBfuRIuItHPYDkke1qGDYMAPuh\ngqVKDaqyshLvvPMOioqKOszFt3LlSjUOQSpx90Hp4uIgSZLzMQWZfJ0tVNieLjUVOHJEU4kSkiii\nYeVK2H74AQCgS0tD7HXXwV5UBMvHH8N++DBMEyaEuZQU6dwZfDqzmQGqi1QJUE8//TQyMjJw3XXX\ntRkHRdrjWYNyT2EZSA1KcYDSYKq5/dAh2H74AUJ0NGKuuQbR2dkQjEYIJhMsH38M2+HD4S4i9QCe\n4wX1AwcCBgPEsjKILS3QcTq4gKgSoE6ePInHH38cOs5crXlyH1RsLOD6eymZ0VxUMJO5J3npdw3V\noOyHDgEATL/4BWJmz5YfN4wY4Xz+6FHNJ3WQ9rmHYwiJiRCMRugHDYKjsBCOoiLoxowJc+kii2oL\nFv70009q7IpCzD2LhBAfL/dBKZnRPOAmPg3WoNw1JOPIkW0e1yUmQpeeDlitcBw/Ho6iUQ/iTjF3\nz7jCZr7gqXKreNttt+Evf/kL+vXr12EuvgULFqhxCFKJ5NEHBVdNIRRNfFpbWVfySIIwtAtQAGAc\nMQKt5eWwHT4sf6EQBUP0EqBawQAVDFVqUM8//zx0Oh0GDBiAlJSUNj8UOpLdHvg2Hmnmcg1KSROf\nu9lChRqUZLUqnr1CLWJZGaTGRgjJydB5mfXEHbTs7IeiLmo/4wprUMFTpQa1d+9e/POf/+R6UN3I\nkpeHpnXrYF6yBMYA2rXlJInYWAjR0c7HQtDEJ5jNgMHgnEqptRVCVBQAwF5cjPply2AYNgzmxYsV\nl7ur5Oa9ESO8rnDKAEVqkftrk5IAAPoBAwCjEeKpUxCbmpytF6SIKjWoIUOGoCGASUep6yyffQYA\nsB04ENB2cpp5fDyEQGpQCmcydxN0ug61KMepU6h/6ilIDQ2w7dsXVA0wWO7A4615D3B+iQixsRCr\nqjSV2EGRR2pXgxIMBhgGDwYAOIqKwlWsiKRKDWrcuHFYunQpZs6c2aEPatasWWocgjw4qqvlC130\nmPNLiTZp5q4ar9TYCEmSvNYs5O0CHKgLOJv5xIoKOKqqIMTEoP7JJ3+eo8zhgOPUKRgGDAio/MHq\nLEAJOh0MI0bAVlAA+5Ejch8aUSA8pzkSPGpK+mHDYD961DmjxLhxYSxhZFElQB08eBApKSkoKCjo\n8BwDlPrcA02BtpNSdkaSpLYBymAAoqKA1lZIFoscsDpsZ7U6J5TV653p6QrJqeYnT6L5zTchVlRA\nP2wYhOho2Pfvh+PEiW4JUGJDAxylpYDRCMPQoT5fZxg50hmgDh3ivHwUFM9kIsFj2A0TJYKjSoD6\n29/+psZuSCHrrl3y/z2n9e+MZLEAoghERcljfXTx8RBbW51joXwEKM9pjvzVstrTu5r4mt98E7Db\noUtPh/mhh9Dy6afOAHXypOJ9dYX96FEAgCEz0+8YJ+PIkWgBOGCXguY5BsoTEyWCo9rI2sbGRmzd\nuhUbNmzA1q1b0RjASq2knGSxwOYx5sxzYbROt/WYydxNcM1M7i9RItAECTd3HxTsdgiJiTAvXuyc\nn8xVa3KUlga0P8BZG2rNzw8oC9A9QNdX856bYfhwQBDgKC7m8ggRRnI40Lp9O0SFS8eErBw+1kzT\nZ2QAJhPE06cDWiQ0qDKIIlp37Aj5cbqDKgHq0KFDWLhwIbZs2YLi4mLk5uZi4cKFOOT6YiD1WPfs\nAex2Z2YQAqxBeTTvuSkZrBvoGCh5364Z0oXYWJgfflie1VyfkQEAcJw4EdD+AKDxn/9E45o1aP3q\nK8Xb+Bqg254QHQ394MGAKPJON8JYPvkEjc89B8snn4S1HPJnxZXB5ybo9TAMGQLAuQR8KFm//x6N\nq1ej6ZVXQnqc7qBKE9/69etxxx13YMaMGfJj+fn5ePnll/HEE0+ocQhycfc/Rc2Ygeb33wcsFmf/\nkStl3J820xy5yDUoP3dbgc5k7mYcNw6xN90E45gxMAwaJD8uB6jy8oCmFrIfPw7bjz8CAKw7dyL6\nggs63Uay22E/dgxA5zUoADCOGgVHcTFshw8HlL5P4WX97jsAzkzRcHK3aHj7rBiGDYP98GHYCwth\nGj8+ZGVwJ1BZf/wRks0WsuN0B1VqUGVlZZg2bVqbx6ZOnYry8nI1dk8ukijC6vqCNk6aJKd8K61F\nyavpeqx5pKQGFWwTn6DTIebii9sEJ8BZU9GlpQEOB8SKCsX7s3z8sfx/2759iprhHCUlgNUKXXp6\npwstAhwPFU7WnTth+fLLgLcTa2vlm5BAkoZCQfIzHEPuh3KVNVQcZWXO/1gssO3fH9JjhZoqASo9\nPR35+fltHtu2bRv6dbIIHgXGfuQIpIYG6Pr2hT4jQ+6IVZpq7rUPSsGaUME28fmjHzgQAGBXmCjh\nqK5G67ZtgCBA17cvYLPBtm9fp9spbd5zkwPUkSPdPttFbyY2NqLhuefQtHYtHJWVAW3bJmkozAGq\n/TRHntzXlu2HH2D1svq4WuQABcDqkfEbiVQJULfccgvWrVuHP//5z1ixYgWWLFmCF198Ebfeeqsa\nuycX98VmmjQJgiDIAUPpXWOb1XRd3E18/jpUA53JXAm5mU9hgLJs3gw4HDCdfTaizj8fgLIPnzz+\nadQoRcfRpaZCSE6G1NjY5oNOoWXdvt25wjMCr716XgdaDlD6fv0Qc/XVgCSh4fnnQ1K7kUSxTTOn\nbfdued23SKRKgBo9ejRWrVqFSy65BJmZmbj00kuxatUqjOYSx6qyue4UTRMnAvi5I1bph1L0kyQR\niiw+f9xJHkoSJcSWFrR+/jkAIObyy2GaNAkAYN29228tR5IkxRl8boIgyLUtNvN1n9ZvvpH/H8h5\nl1pb29SkpcZGSA6HqmULhK80c7eYq69G1C9/CdhsaFixAvbiYnWPX1UF2GzOpT6SkiBWVaElgleK\n7lKAslqtKCkpAQDEx8fj/PPPx5VXXonzzz8f1dXVsFqtqhSSnAkFjtJSCLGxcm3AHTAUN/F5zmTu\nomS6o1A08RlcTXxKUs1bv/gCUksLDKNHw5CZCf3AgdClpUGqr/fbni9WVUGsqYEQGwt9//7Ky8YA\n1a0cp07JM80DgC2A7F/bvn2AzeYc45aQAEiSovXNQqWzmzlBEBB3880wnXMOpJYW1D/1FBwB9MN2\nxl3r1/fvL9/I1n79tWr7725dClCbNm3C56472/by8vLwwQcfdGX35MHdzm486yw5600IMEnCa5q5\ngnFQwWbx+SM38ZWV+b3jlex2WP77XwDO2hPg/JC7P3w2P818cvPeiBFtRvV3Ru4rYIDqFq2uL1DT\n2WcDOh0cJSWKx6G5m/eMEyf+nDQUpmY+X9MctSfodIi/+24Yx42DVFeH+mXLVCtzmwDlammo86id\nRpouBaj8/HxcccUVXp+bM2cOvongE6M1cv+T64sZ+Lmdu0t9UJ008UmiGJImPjmTz273m8ln3bED\nYnU19BkZMJ51lvy40d3M59FB3l6g/U9uhiFDnIMqy8o0PdixbscOfHnJJWhUkCyiVZIkodWVYBX9\ny19CP2QIIEny7B9+txVFWHfvBuDslw13gPI1zZE3gtGIhPvug37oUIgVFahfvlyVyZM9A5Rx7FjA\nZELzwYOwnj7d5X2HQ5cCVHV1tc81n1JSUlCtodVUI5nY2OjsS9HrYczKkh8P9AMpp5l7G6jr44tY\nam4GHA7n8hxGY1Dl98Vdi/KVySdJElo++ggAED17dpsPvfGMMyDExMBx4oTPJpJAM/jcBINB3sa2\nZ09A23anU2++iZaSEpS/9lq4ixI0++HDECsqoEtOhmHMmJ/Pu4Laq/3YMUh1ddClpUE/aFDAWa1q\n66z/qT0hJgbmRYugS0uDo7AQli1bul4G19Aeff/+EEwmGM88EwBQ1y7LOlJ0KUBFR0ej0kdKaGVl\nJaJcawBpmWS3Q+xCX5nD9aWvFkkU4aisbPNj3bYNEEUYzzijTf9RoAHKW5o5oqIAoxGw2SC1tnbc\nJgTNe25yooSPAGXbuxeO48chJCYiymMQOOAKIq5g7a0WJVkszjFQOh0MmZkBl83oqqlqNU3X0diI\nRlftoX77dtgDmPJKS+TmvenTnTPKB9D/55k0JAhCwC0Kamu/1LsSusRExP3udwCA5vffh6OLN/Vy\nDSo9HQDkZr5I7YfqUoCaOHEi3njjDa/Pvfnmm5jkOjlaJLa2ovyNN/Djr36F/bfdBkcQc3idfOEF\n7L7kEhz54x/RotLUOPU5Oah94IE2P02vvgrg5y9Nt2DHQbVp4hMEv7WoUCRIuLnHQvkKUJZPPwUA\nxFx8sdfam9wP5SVAtX77LSCK0A8ZomiWDZ/73rOnW9etUqru22/lckl2O6p99AVrmWS1wrpjBwDI\nNyCBjEOT+59c3zNy0lAA03+pyV+KuT+mCRNgnDwZsFjQ/O9/B318yWJxrr2m10PXp4+8bwgCGn74\nQfWb6e7QpQA1b948HDhwAIsXL8Y777yD3NxcvPPOO1i8eDEOHDiAefPmqVVOVVVt3ox9N96Ik88/\nD0djIyzFxSgLcN6q8n//G+Wvvw7AWX3+6ZZbUPzkk7AFOMjQk+P0adj373deYKmpbX4Mw4cjqt1s\nHUJMjLP241ouwx9JFOUsvvZLZvjrhwppgPIzFkqsqXE2rxkMiLrwQq/bG886C9DpYDtwQE6hBwDr\n3r1oeuklAEC0a8xUwGXr2xf6AQMgNTfDfvBgUPsIpTrXHbHZNWVOtSuRJJJYf/wRUnMz9EOGyLON\n6F3Xu9Tc7DfD01FRAceJExBiYmA84wwAHsMuwlSblJv4gvisxN14I2Aywbpjh3O+zSC4xz/p+/WD\noNcDcNXQxo2DZLWiPoSDg0OlSwEqKSkJy5Ytw+TJk7F79258+OGH2L17NyZPnoycnBwktZswUSuK\nHnsM1vJyRGdmYuDChYAgONvzFdaCqj75BCfXrAEADHrwQfS5+mpAEFD54YfY+9vfonTdOtg9vjCV\ncjdVmSZPRvIzz7T5SXz00Q5BwnOwbmd3jVJLCyBJEGJi5ItX3o+fwbpSFz50nZFnNS8r63C33Jqf\nD0gSTBMm+JyiSBcfD8Po0YDDAZtrLTL7sWNoWLkScDgQfcklzjEnQZLHW2msmU+y21G3fTsAYNzf\n/w5dTAyafvoJFteQj0jhbt5r33xrGDECwM+z0HsjZ7VmZf2c1eoeuB7uGlQQ33v6tDTEXnUVAKDp\n1VeDmkPP3bynczXvuSVOnw4gMrP5ujxQNz4+HvPmzcPSpUuxcuVKLF26FPPmzUO8x3xvobR7927c\nd999WLhwITZu3KhoG2NaGoY88gjGvvQS+l13HdKuuAJwOFCyYkWno65rv/kGRcuWAQAG3nsv+l59\nNQY/+CDGvfoqks47D6LFgrL167HjV7+C5bPPAho0aPOSqdcZuR+qk7tGb8178j7CVIMSYmKcixra\nbB0y+dwDN9t/ebXnPlfWXbvgKC9H/f/9H2CxwDRtGmKvvz6g9avaM3oEKC2Nxm/csweOhgZEDR4M\n85gxSJ45E4CzZSBSiA0Nzol/BaFDy4CSfqj2g9aBwPtk1eZrqQ2lomfPhj4jA2J5OVo85p1UyjOD\nz1PSL34BwNnSE85BzMFQbT2ocBBFEevWrcOSJUuwYsUKfPPNNzihYGaCM994A2mXXy7XJAbcdRcM\niYlo3LUL1X4yaRr37MGxv/0NcDiQftNN6Peb38jPRQ8ejOH/+AdGP/cc4saNg7WqCk3r16P2T3+C\n9fvvO/2CE5ubYTtwABCENunUnVE6FspfgPK3JlQoAxTgvZnPXlzsTI6Ij4dxwgS/28t9RT/+iPpl\nyyA1NMA4fjzi77oroLFP3hgyMyGYzRArK4NaGiRUal3BO8kVvFMuuQQAUL15c8TMH2jdvh1wOGAc\nP75DjcPoGhZg8zEDgvxZ0enafFbCHaBEPxPFKiEYDIi7+WYAQMumTQEP4PUVoKKHDoUpIwP22lo0\neawlFwkiOkAdOXIE6enp6NevHwwGA6ZPn47vXNPu+6Nr12luMJsxYP58AMCJ556Dw8sXddPBgzjy\n8MOQWluRNmcOMu680+u+47OyMHrNGoz7v/+Drm9fiGVlaHjmGdQvXep3YlTbnj2AwwHDqFGKZt2W\n34vCzCXRyxgoeR9+kiRCmcUHeJ801l17Mp17bqdLcejT06HPyIDU3AyxshKGzEwk3Huv4iU8/BF0\nOmcnM/yPt+pOkiTJTTWJrgCVMHEijH37wlpWhkYNp8V78tW8BwD6QYOc49DKy70GG1tBgfOzMnq0\nfO0CrhstQQjbdEeBppl7Yxw3DqZp0wCbDU0BDh9weKSYexIEQb6ZqY2wZr6IDlDV1dVITU2Vf09N\nTQ167FXq7NmIO/NM2KurUbpunfy49fRpFOXk4MBdd8HR2Iik887D4Ice8tt0JAgC+l50EZKWLUPs\nTTdBSEiA/eBBNKxY4fMO13Mi2EAone7I2zRHcnn91KAcVVXO7ULUn9i+BiU5HPLAzShX00Rn5Cyu\n/v2RsGhRUFl7vrj/Hv5mrOhOrSUlaD1xAvrERMSPGwfAGUhTLroIQGQkSzgqK51TVEVHwzR5cofn\nBYPBubox0GYKJMAZoC25uQA6NoULer0z4SdM0x0Fk2buTdz110OIjoZt1y7Yjx9XdmxJ8lmDAn6+\nmYm0fihVFizUutzcXOS6LuqcnBykpaV5fV30449j269/jYr338fQK69E5TffoGj9eogWCwSDAYOu\nvx6jHnoIegVfgHq9HmdNmgRMmgT773+P7+bNg+XECfSvrETf7Ow2rxVtNnzjuvMdP28eYocOVfze\nTuzbh8MffIBkgwGjPQbxtnfy4EEcApA6aBDOaPe68pIS7AdgNhgwzuM5W309vi4uhmAw4KzLL4eh\nXfafGuoA/LBuHUzV1YiJicHA5mZU19UhZvBgTLr6akV9SLahQ1E2ciT6XX45olzptWpxjBiBr9es\ngf3oUYzOyECUj2vHzWQyqXr89gpd/az9Zs5En/R0GAwGpKWlIXruXJx6/XXU5uVhwmOPQe9lDKI5\nRLXgQJVt3IhaAGlTp2L82Wd7fc2xX/wCxfv3I7m2FsM9rsnyDz9E9cGDMCYnY9L8+TC2e0/fpqej\nqaEBw/v0QYKfBSdjYmKQ5efzEihHayu+bGlxflamTetS3ycA7L/oIpR/+CH6VFdjkGuKL39aT59G\nvsUCQ2IiJrSrlZpMJqTMmoWGyy9H2owZSE1JCar5232tdSdVAtRbb73l9XGj0YiUlBRMmDAhJBl9\nKSkpqHLd4QNAVVWV15ktsrOzke0RFHwNLkZqKvpccw0q3nkH3950k/xw0gUXYMBddyF68GDUNDYC\nfuatczObzShwZZYBgH7WLODVV3Hw+edR1qdPmwvYtn8/7A0N0PXvjyP19YDHdp1pdZWlsrAQrX62\na3GlStdYLG3KBQDWmhrncydOtHnO+v33zrFEI0bgpxDNiOye3aLx6FE0NzbigLtZY8oU7AmkuWrS\nJNSWlQEhWCJDP2YMxN278eO//41oV0KCL0MDuLkIxklXIkT05MmorKxEWlqa83pOTkbsqFFoPnQI\nxz74AMleUvOLQrzUuFINrlpe88CBHa5FN6sr8JTm56PJlYkpNjWh9sknAQBR112H/V7ej9V1g3Dw\n++9h8pMJl5WV5fPYwXCvYSUkJAR23fpgcdWCinNzUaOgT1peuqNPnw7vy31NDnjkEQBAVZCtTPK1\n5kOGqzVETaqtqLtp0ybs27cP5eXl2LdvHzZt2oTCwkJs2bIFCxcuxG7XqHc1DR8+HGVlZaioqIDd\nbkd+fj6mTJnSpX1m3H47jK67hLgzz8To557D8McfR/TgwV3ab9T550OIj4f96NEO6bNWLxlJSinN\n4nOPE9J5ya7U+Ugzt7k6VI2upqRQ0MXGQpecDNhsaDx8WF7IrbPsve7kmSkYTraaGjTt2wfBaIT5\n3HM7PO9OlqjScDOfJEny8hjGsWN9vk5ONS8slFOum999F1J9PQyjR8Pk4/oI13RH8lLvKt2Iuz9z\n9gMHFPWntZ9BoqdQpQYliiLuv/9+nHPOOfJj3333Hb7++mssXboUeXl5eP311zGhk4ysQOn1etx2\n221YunQpRFHEhRdeiEHtlhcPeJ9xcTjjhRfQWl6O+KysLlfV3YSoKERnZ6Nl40a0fPwxjK61siRJ\nctZUEHj/EwDFy75LXubhk8vmI81cyReJGvQDB0KsqUHx2rWA1QrDqFHQ9+0b0mMGwjRxIppefhm2\nvXshtbZCCNMUXvXbtwOiiIQpU6D30tyakp2NE88/j7rt22GrqYExOTkMpfTPUVoKqa4OQmKinCDj\njS4+HvoBA+A4eRL24mIIej1aP/sM0OkQ97vf+fxchmu6I7UnVNanpECXng6xvBz2wkIYXQHbF3/9\nT5FMlRrUjz/+2KHm4h68CwDnn38+KlRc88TTpEmTsHLlSqxatQrXXHONKvs09euHhLPOUi04uUVn\nZwNGI2w//CCPkneUlkKsqIAQH694UT1PSu8YlaSZix4BSqyrcyYumEzy3WyouBMlTrv6CbVUewIA\nXXIy9JmZgNWqaJn5rjq9cSMK//d/0dxuBgt3Blaij+QRY0oKzGefDTgcKFu/HqKXuRXDTa6Vjx3b\n6edLHg918CAa168HJAnRl1wizzrhTbhSzYOd5sgf942hkmtOHqTLANVReno6NrcbJLh582b069cP\nAFBfXx/yzuNIoEtMlDPTWj75BIDHgMMJE4LquFQ63ZGcZu7lzluIjgb0esBikZtT5C+S0aNVSdn2\np82dtMEAk5fmq3DrrmY+0WLB8VWrUL1lC/bfcQcKH3sMreXlEFtbUf/ttwCAJNfMAN70vfpqAMDp\n99/HvhtvRPWWLZoaGxVIrdwdoFo++ACOY8cgJCcj1vX+fOlRAcrVzBdIgOppNShVvnl+//vfY/ny\n5di0aZO8zIZOp8NDDz0EACgtLcXcuXPVOFTEi5k9G615eWj95hvEXnvtz1O2BDmxrnsWZ7GyEmJd\nnc8MQznN3EsflCAIEOLjIdXVQWpshJCc3G3Ne8DPNSjAGQi8pcKHm2niRLS89x6su3ZBEsUuDwL2\npX7nTkhWK/SJiRCbm1G9eTNq8vJgPucciC0tiBk5EibXjZ83idOnY8RTT+HEmjWwHDuGwv/9X5x6\n6y0MXLAA8LE0TneRRNE51ySUXVfupTfc127cDTc4b8j8EAJcZVotaoyBas/oykK0HzkCyWqF4OMm\nX7LZIJ4+DQgC9H6ujUikSoDKzMzEypUrcfjwYdTU1CApKQmjRo2CwXXnPXbsWIzthi+6SKDv3x/G\niRNh++EHNL/3nnM6F4MBJte6LcHQuWY7EOvqfF6g/pr4AGfgctTVQWxogC45uVsSJNzcy24Aysc+\ndTf94MHQpaZCrKpy9gm4xumozT1Opd9vfoOUiy7CybVrUZObK08Om6Sg+TNx6lSYzz4bVZ9+itIX\nX0TzwYM4dN99gJcvOMOQIYj9zW/kL8P2HGVlaH77bdhPnkTCH/7gXMwxSI6iIkjNzdD16aOoj1GX\nnu68cWpshPHMM2Hy6OP2uY2KfVDNGzbAumsXzA8+2Ok4wK5Oc+SNLiEB+iFD4Cguhv3wYZ+fRUdF\nBSBJ0PXtq/qabeEWktvAsWPHwm63w6Jw2ebexr10eesXXwCSBOOYMZ3eGfqjpB+qswDlmSjhqKiA\nePo0hNhY5wqnIaaLi4Nx4kQkjBvXZkFGLREEQe6LE12zRqtNEkXUugYpJ86YgaiMDGT+7W84Y+1a\nJEyaBGNqKlIvvVRZefV6pF1+Ocb9+9/IuPNOZ63Uau3wYz98GPX/+Afqn366zWweYl0dGtevR+0j\nj8C6cyfEsjLUP/VUwNPvePLsf1L0HgQBUeefD11yst/ECE9Kk4aUaP3ySzgKC9HkY0khT12ZKNYf\nJf1QYg/N4ANUqkGVlJRg2bJlMBqNqKqqwvTp0/HTTz9h69ateOCBB9Q4RI9iHDUKhhEj5FHywWTv\neersrlFyOJyzmQuCz0DomWru/hIyjh0bsqas9swPPqj62BS1uc9dZ0ubBKt5/37Yq6thSk9HjEcN\nLe6MMzBq5cqg9qmPiUH/m29G+vXXo6j9rAx2OyxbtqDlo49g27ULdbt3I2rmTOiSk52TlVoszslc\nL0s6ePkAACAASURBVLwQjvJy2PfvR/2TTyLxf/4nqL6WYGrlcb/9LWLnzVOcsCRPd9TQAMluD7r/\nVBJFiK7xgdb8fNhmzvRZywR+DohqTwlmHDsWlk8+kc+dN76mOOoJVPn2Wbt2LebOnYtnnnmmTbPe\ngQMH1Nh9jxR92WXy/9svRBiozu4aPdeB8hVwPGtQ7g+Dgc2ybbinUPK28rAa5Cy96dNVzyAVDAYI\n0dFtfnTx8Yi9+mokL1/uXJZEEND6xRdoef99wGKBceJEJD7xBOJvuw0JDzwA/dChEE+dQv1TT0EM\ncIFPyWaDzZWVGGi/ZiDnQtDrf566qwvTHUn19YDH+KOm9ev9Llyp1jRH7RnPOAPQ62E/dkwe1N5e\nTx0DBagUoE6cOIHzzjuvzWPR0dGwdmEp9Z7ONHkyTDNmIPrSS6H3mE8wGJ018XXWvAe0rUEF2hTT\nW4Q6QLn7n5K6uR9Ol5iI+FtuQdITT8B0zjkwjBkD85IlMD/4oLxmly4mBuZFi6Dr1w+O4mI0PPNM\nQGsW2Y8eBaxW6AcMUP1LvD01Mvncc1DqBwyALj0djtJSeYXn9iSr1dlCodf7/YwFQ4iOds5LKEmw\n+7jh76kZfIBKAapPnz44duxYm8fcM42Td4JOh4S770bcDTd0eV+dfSD9zWQul8dVg7IfPOgcSJmU\n1Ca7jiAP0A1FE19raSlajh2DLjYW8SoPaFdKn5GBhIULkbhkidfmLF1iIswPPwwhMRH2n35C45o1\nilPY5azQbki6UTqBsj+iazogXb9+8hIYzRs2yFMatXmtR+1J7Zov4NEP5aOZr6eOgQJUClBz585F\nTk4O3n77bdjtdmzYsAFPP/20Zpd872k67YPyM5O5m7tZJJCBlL2NXIMKQYCqcydHnHsudBrOxNL3\n7Qvz4sUQYmJg/e47WHfsULRdd2aFuqcb6lKAcs/in5IC0/jxzgxCqxXNr7/e8bUhSDH35C9RQmxo\ncM4AEx3tnDKsh1ElQE2ePBlLlixBfX09xo4di9OnT2PRokU4K4CF9yh4nd0xKmric4+Pct0Rd8cX\nSaSRl/EIQRNfbbs1nrTMMGQIoi++GADkGVH8kSwWZxOfIMDgmuIrlHQqLP3urkG5m99jb7gBiIqC\ndedOWNvNKxqKFHNPhhEjAJMJjhMnOnzG5QSJ9PQeeUOp2hQBw4YNwx133KHW7igAnd0xKglQQrsB\nvOx/8iJETXyOxkY07NoF6PVIbLf8uVbpXIN+3Zlu/tgOHnQuMJiZ2S2DsJVOoOyP6GrKc79PfUoK\nYq+5Bs1vvIGmV15ps8KyvbCwzXHVJhiNMI4aBdvevbD99BOiPK4R9w1CT+x/AroYoN59991OX3Pt\ntdd25RCkgBAd7ZzuyGqFZLF0WLDP3Qfl78vBcxVfXd++0Hfzui+RIFRJEnU7dgAOB+LPOgsGjazZ\n1Bn3eB9FAaobm/cAdcZCyX1QHglM0Rdf7BwbdfIkmr0sMaTrYrKTP8Zx49oEKLGlBZb//ActrsQN\ng5+JdyNZlwJUmZ+1d3bv3o3GxkYGqG7Q2XRH/mYyl/fhUYNi8553oUqSCFf2Xle4+zuU9PO4+066\na9iCGktuOLwEKMFgQMJ996H1q686LIHhXq0gVOR+qL17YdmyBc0bNshp9Kazz5abXHuaLgWohQsX\ndnjs+++/x1tvvQWz2cwmv27kb7ojRU18sbGAIDhntmDznlehCFCS3Y66bdsAREb/k5scoDqpQYkN\nDXCUlACuZqruIPdBBRmgJLsdUm0tIAgdZobQ9++P2Ouu63IZA6UfOhRCbCzEyko0vfoqAOdkurG/\n/a08Z2FPpFof1N69e/Hmm2+irq4O1157Lc477zzoumkWAvLfDyUqCVA6HfT9+8NRWckA5UMomvga\n9+yBo7ER0UOGILqLa5l1J8Fsds7YUF/vd8YGe2EhIEkwDBvmc7JTtXV1HJRYWwtIEoTk5JDP5K+U\noNPBOGECrPn50KWnI3buXJgmT+6RiRGeunz2Dx06hDfeeANlZWW45pprMGvWLHk2Ceo+/u4aJQV9\nUACQsGgRpNbWkGUjRbpQpJnXuiaBTfSzhIYWCTodhMRESLW1zlq7j/4Xd7p2d86yLQfPxsagpjuS\nyxzm2d/bi7v5ZkSffz4M3bAEjlZ06V3m5OTg8OHDuPLKK/HHP/5RXvNJ9Bi8x1pU9/B316ikDwoA\n9H36qF+wHkTtJj5LSQlq8vIARFb/k5suORmO2lqINTW+A5SXvpxQE3Q6CAkJztpdQwOEAMcHyWXW\nWIDSxcVB18v6h7sUoHa51jJ6/fXX8bqXAWwA8JaXbBdSn7/MJSV9UKSAyeTsp7Nau7QmlK2mBmXr\n1+P0pk2Aw4GoAQMQF4FfPLqkJDjgP53bc8Brd9IlJsJRXw+xri7gAaxymbsxqJJ3XQpQq1evVqsc\n1EWCn7EfSqY6os4JOp1zLJTF4hysG+ASKaLFglNvv43y1193Tvyp0yFtzhxk3H47BL0+RKUOHfcX\nv+QnUSIcNSjAFaCOHw+qH8rBAKUZXQpQfdgkpBnydEftalCS3e5c+0en6zA+igInREVBslggtbYG\ntIaX5cQJHL7/flhda0klTpuGAXffjZjMzFAVNeTksVB+alCOMNWgupJqHq6gSh31jp62XsBXH5Rn\n815Pz/jpDkJ0NKS6uoD6oWyVlTj84IOwnjqFmBEjMGjhQiR0cQ0wLegs1VySpLA1l3Ul1TxczZLU\nEQNUD+F5xyhJkhyM2P+krkAz+ewNDTi8eDGsZWWIHTMGo555BvrY2FAWsdt0VoOSGhsBmw1CTAx0\nXVgxOhhdSTVvPw8fhQ9T7HoIz+mO4PHlaS8uBgDoesiXYrjJmXwKxkKJra04+qc/oeXIEUQNGoQR\ny5b1mOAEeNSgfASocCYbBDvdkWS1Omdo0OtVXx2XAqd6gOIquuHhnu4I+PlDaTtyBI0vvggAME2Z\nEray9SRKa1CS3Y7Cv/8djT/+CGNaGkY+/TSMPWw5hM7m4wtnura/pCF/5DInJwedpUnqUf0v8MQT\nT6i9S1LIcxZn+8mTaFi+HLBaEfWLXyB6zpwwl65nUDIWSpIklCxfjtqvvoI+Ph4jly9HVA9cvFNI\nSAD0eueAWC+r62qhBhXokhtMMdcW1fugJElSe5ekkPuu0V5UBMsnn0BqbIRxwgTE3X47EyRUomS6\no4bvv0flf/4DwWTCiGXLIjpTzx9Bp4MuKQliVRXE2toOA73DlcEHBN8HxRRzbVG9BsXU8/Bxfyib\n//1viFVVMIwahYR77uk106J0ByVNfK2uNXpSLroI8VlZ3VKucJEDgZdmvnCmawsJCW2mO1JKq7NI\n9FaqB6jly5ervUtSSF4wTRShHzAACQ8+KDdJkUrc59NPgHK4BkYbPNbY6qkEP4kS4ZzTzj3dERBY\nooRcZtagNIG9gD2I+05Vl5qKhIcf7pbVS3sbJU18Dldqv74XnH9/iRLhHvAaTD8Ua1DawrafHiRq\n6lRIFgtMU6ZobibmnkJJE5+7BqX3WASyp/KVai6Johy0wvVlL093FEAmH5MktIUBqgcRoqMRc+ml\n4S5Gj6Yki69X1aB8zCYh1dUBDgeEhIRuWweqPSGIsVCsQWkLm/iIAsAmvrbcTXxSu1qKFrLh/n97\ndx4eVXX+Afx7Z8kGSWAStiAUwg4yBH6BsoMaKd20UkWqtBGhVkBoK4TFFqiNIIqyaLF1ARqxrk9J\nXSiIMSIPBCwQQiASViMEEskK2We7vz8mc80kk2EyTMiZud/P8/iY2e6cHO7Mm/ec956jDPF5WMln\nq66GXFMDBAVBUkH26w98EqA++eQT5OXlAbBvYDh37lzMnz8fZ86c8cXhiYThUYDiEJ8Q69k51uPz\ntNS84fAeL8sQg08C1M6dO9G5c2cAwDvvvIOf/exn+OUvf4l//vOfvjg8kTA4xOesuSIJEdaza+m1\nUEqbObwnDJ8EqOrqaoSFhaGmpgZ5eXn48Y9/jDvvvBNX6q8HIQoUnqzFp6YMSmrfHtDpIFdXO/WJ\nCBmUY5jOsWDyjbBAQjw+CVBRUVE4ffo0Dhw4gEGDBkGj0aC6uprbvVPA8aiKT0UZlCRJLlc1b+sS\ncwBKcYarZZhcYYGEeHxSxTdz5kysX78eOp0OixYtAgBkZmaib9++vjg8kTgcmz42E6BkWf4+QKkg\ngwLs81C24mL7ckddugAQJBvR6+3/9zRAidBmcuKTADVixAi8+uqrTveNHj0ao0eP9sXhiYRxoyE+\nW22tvbw6OFg1S0y5moeyCpCNSPUBytMMSoQ2kzOffYIKCgpw4MABlJaWwmAwYNy4cejWrZuvDk8k\nhIZFEg03hnRQ0/CeQ+MAJVss9tJuSVKq/NpECwMUMyjx+GSS6MiRI1i2bBkuX76M9u3b48qVK1i2\nbBmOHDnii8MTCUPS6exffDaby6Eja0UFAPUM7wFNS81tpaWALEPToQMkrbbN2iW1YIhPlmVW8QnI\nJxnUO++8g6SkJNx+++3KfTk5Odi6dSviuVEeBRgpOBiy2Qy5rq7JKgmqzKAarSYhQoEE0LIiCbmi\nwr49fVgYpFu8PT01zycZVGlpKQYNGuR038CBA1FSnzITBRJ3lXxqK5AAAKlRFZ8IJeYAWlQkIUpQ\nJWc+CVC9evXCxx9/7HTfJ598gl69evni8ERCcXexrnINlBozqIZDfGj7L/uWFEkIE1TJiU+G+GbP\nno3nn38eu3btQlRUFEpKShAUFISlS5f64vBEQnG33JEqh/gc6/HVD/GJsA4fAMBRRWk2uyxoacgq\nSFAlZz4JULfddhs2bNiAs2fPKlV8ffv2hU4lZbakLm6H+FS0ioSDFBYGBAXZKxtraoS54FXSaACt\nFrBaAYvl+yE/F5hBiemmIogsy/j8889x8eJFxMbGYvLkyT5qFpHA3Oyqq8YMyrGahO3qVdjKy4Xa\nlVbS6yFbrZDN5u+r+lwQqc30vZuag9q+fTvef/99lJeX4+2338b777/vq3YRCcvtEJ8KMyjAeR5K\nlAwKgMeFEkK1mRQ3lUEdPHgQf/nLXxATE4P8/Hw8//zzmD59uq/aRiQkj6r4VJRBAd/PQ1m/+w5y\nZSWg1UKq3+6iLUlBQZBx40IJXqQrppsKUNXV1YiJiQFgn4eqrP/r0Ze2b9+Oo0ePQqfToUuXLpg3\nbx7a1X/4U1NTkZ6eDo1Gg1mzZiEuLs7n70/UmNsqvvoApVNpBmU5f95+22CwzwG1NU8zqPotORyB\nlsRw03NQV69ehSzLAACbzeZ0GwC61C8e6S2j0YiHHnoIWq0Wb731FlJTUzFz5kzk5+cjIyMD69ev\nR1lZGZKTk7Fp0yauoE6tjkN8TTm+2JUAJUgmopSam0zNPke22exFFJIEtNH29OTaTQWouro6LFiw\nwOm+xrffe++9m3kLDBs2TPm5f//+OHToEADg8OHDGDt2LPR6PTp37oyuXbvi3Llz6N+//029H9GN\neJJBqXaILz/ffluQAOXRenyO4KXXcyddwdxUgLrZ4NNS6enpGDt2LAD76hX9+vVTHjMYDCitn+hs\nLC0tDWlpaQCAtWvXIjo6utXbqtVqYTQaW/19AkloaKhf9Nnl3FycAWBo1w4DGrX3UE0NACC6Rw+E\n3YLzTKfTeXw+R7TinFBZbS2yAKB+9KTrwIHoI8C/ZWaHDrgGILZnT3Rs0J6G55qprAwHAOj85Pxr\nqSAfZYUtOdd8RYgLlZKTk1HeYLMzhxkzZmDkyJEAgB07dkCr1WLChAktPn5CQgISEhKU28XFxd43\n1kMRERHIzs5u9fcJJEaj0S/6rK5+Qr34yhXUNWqv6fp1AMB1kwnVt+A8i46O9vh8zsvLa7V2WBtt\n+V5isaBKgH/L6vrs6HxurtMXdcNzzXGRrlWj8Yvzr6V8taLPjc41Rz2CLwkRoFasWOH28b179+Lo\n0aNYuXKlkoIbDAantf4cFwgTtbbmhvjUuFmhQ+PiAtGG+GCxNP+c+iDm7jopahvCVxRkZWXhww8/\nxNKlSxHsuEASQHx8PDIyMmA2m3H16lUUFBRwB1+6NRznYeMiibo61W1W6CCFhn6/2zDEuZ7I8e/g\nbg7K8Vjjlemp7Qn/KdqyZQssFguSk5MBAP369cNjjz2GHj16YMyYMXjyySeh0Wgwe/ZsVvDRLdHc\ndVBy/fyT2gokHDQdOsBWWGj/WZQMyhF03AWoBkUSJBafBaiioiJ06tTJV4dTvPzyy80+Nm3aNEyb\nNs3n70nkTnMBylZdDUB9w3sOmo4d7QEqOBiSIEHakzJzZYiPGZRwfJZyLFmyBADw3//+11eHJBKS\nMgfVaIiPGZR9HkobFSVMubYnW24oQ3zMoIRzUxnU0qVLERsbi969e8NmswEAPvjgA/zkJz/xSeOI\nRNTchboyMyj7/wWZfwLg2UoSjuyKGZRwbiqDWrRoEYYNG4aioiKYTCYsXboUFosFJ0+eRHX9h5Uo\n0DQ7B+UIUGrNoOoDk+YWXyvjDjMo/3ZTAcpms2H06NF4+OGHERISgqSkJMiyjN27dyMpKQkLFy70\nVTuJxKHX25fFMZshW63K3WoPUMGjRyN48mSETJnS1k35ngcZFAOUuG5qiO+ll15CcXExbrvtNpjN\nZlRVVUGv12Px4sUA0CqLxxK1NUmSIIWEQK6pgVxXZ9+wDw3moNQ6xBcZifazZ7d1M5x4tO07h/iE\ndVMBas2aNbBarbh48SJWrlyJrVu3ora2Fq+//jp69+6N2NhYtFfph5UCXEgIUFNjH+ZzBCiVZ1Ai\n8miIj1V8wrrpKj6tVovevXtDp9Ph6aefRnBwMIYMGYLCwkL861//8kUbiYQjubhYV+0ZlJA4xOfX\nfHYdVGJiIgD78MfYsWOVRV2JApGrQgkbMyjhcIjPv/nsOqjJkycDcH9hLVGgcLUeHzMoATGD8ms+\nXxuIc06kBq6uheIclHhaMgfFDEo8XLyOyAuuhviYQQnIkyE+ZlDCYoAi8oLLIT5mUMKROMTn1xig\niLzgcohP5WvxiYhDfP6NAYrIC42H+GRZVv1afEJqwVp8vA5KPAxQRF5oMsRXVwfYbJCCgqDhUJEw\nHEGHa/H5JwYoIm84do+tH+JjgYSgeB2UX2OAIvJC4yE+XqQrJhZJ+DcGKCIvNB7iYwYlphZtt8EM\nSjgMUEReaLyrLkvMBaWrX83NkyE+ZlDCYYAi8kKTKj5mUGLSau17d9lsTnt3NcTVzMXFAEXkhcbX\nQclVVQCYQYlGkqQblppzDkpcDFBEXuAclP9wV2ouyzKr+ATGAEXkhSZDfJyDEpe7QgmrFZBlQKOB\npNXe4obRjTBAEXmj8RAfMyhhuSs1V4IWsychMUAReaHhjrqyzcbroASmlJo7hvIachRIcP5JSAxQ\nRF6QNBr7X931cxjMoATmQQbFCj4xMUAReanhtVCcgxKXkkFZLE0f5DVQQmOAIvJSw1JzZlACc5dB\n8RoooTFAEXmpYSUfMyhxSfWrSbgsM+c1UEJjgCLyUsNrobhZobjcbrnBa6CExgBF5CWXGRSH+MTj\nyI5cVPExgxIbAxSRl5QAdf06YLMBej03KxSQuxXNWcUnNgYoIm/VD/HZysoAAFJYWFu2hprjbi0+\nVvEJjQGKyEuODEoJUKGhbdkcaobbDIoX6gqNAYrISxIzKL/gyRAfiyTExABF5CUlgyotBQBomEGJ\nyZEdublQl3NQYmKAIvJSkyE+ZlBCcrcWH6v4xMYAReQlZYjv2jX7bWZQYvJgJQkO8YmJAYrIS44M\nCjab/TYzKCG5m4MCMyihMUAReUnZcsNxmxmUmDy5DooBSkgMUEReUjIox21mUEJyt2EhlzoSGwMU\nkbcaZ1AMUELy6DooBighMUARealJBsUhPjF5smEhh/iExABF5KXGAUrDDEpIboskOMQnNAYoIi+x\nSMJPsEjCbzFAEXmJRRL+wV2RBFczFxsDFJG3dDpAq1VuMoMSk0cbFjKDEpLfBKiPP/4Y06dPx/Xr\n1wEAsixj69atWLBgARYvXowLFy60cQtJbSRJchrmYwYlKA9WkmAGJSa/CFDFxcXIzs5GdHS0ct+x\nY8dQWFiIl156CY899hjeeOONNmwhqZUyzKfXcx5DUB6tZs5/OyH5RYBKSUnBww8/DEmSlPuOHDmC\niRMnQpIk9O/fH1VVVSirX7ST6FZxBChmTwLT6ez/dzPExwxKTMIHqMOHD8NgMKBXr15O95eWljpl\nVFFRUSit3/aA6JapH+Lj/JO4PNrynRmUkHRt3QAASE5ORnl5eZP7Z8yYgdTUVPz5z3++qeOnpaUh\nLS0NALB27VqnwNZatFotjEZjq79PIAkNDfW7PjsWFYXyb75Bu6goGI1GBN3iv8R1Op3H53NEREQr\nt0ZMsixjLwBYLBh6++2QNBqEhoZi6NCh2FsfoIz/93+QNML/ve4VX52TLTnXfEWIALVixQqX91+8\neBFXr15FUlISAKCkpARLly7Fs88+C4PBgOLiYuW5JSUlMBgMLo+TkJCAhIQE5XbD17WWiIgIZGdn\nt/r7BBKj0eh3fVZVvwleLYDs7OwmmX5ri46O9vh8zsvLa93GiEyvB8xmZGdmQgoKsp9rR48qj504\nebJt29eKfHVO3uhci4mJ8cn7NCREgGpOz549nYof5s+fj2effRYRERGIj4/H7t27MW7cOJw9exZh\nYWHo2LFjG7aW1IhzUP5B0ushm82QzeYmZecc3hOX0AHKneHDhyMzMxMLFy5EUFAQ5s2b19ZNIhVS\nAhTnoMTmqtSc10AJz68C1ObNm5WfJUnCnDlz2rA1RN8vd8QMSmySXg8ZzoUSyjVQDFDCCsxZQaJb\nRKovPNBERrZxS8gtFxkUlzkSn19lUESiCbnjDkghIQgeN66tm0JuuCw150rmwmOAIroJmvBwhE6Z\n0tbNoBtwFaBYJCE+DvERUeBzNcTHVSSExwBFRAHP5RAf1+ETHgMUEQU+RxByzDuBVXz+gAGKiAKe\nuzkoFkmIiwGKiAKeuyo+zkGJiwGKiAKfu+ugOMQnLAYoIgp4SgZVv7gvAF4H5QcYoIgo8DGD8ksM\nUEQU8JQMylUVHzMoYTFAEVHA43VQ/okBiogCn7uVJBighMUARUQBz+1afBziExYDFBEFPncbFjJA\nCYsBiogCnssMikN8wmOAIqLAxyE+v8QARUQBT3I1xMcqPuExQBFRwHM7xMcMSlgMUEQU+NysJMEM\nSlwMUEQU8BxZElcz9y8MUEQU+LgWn19igCKigOduPyheByUuBigiCnhuV5JgBiUsBigiCnw6nf3/\n9UHJZrEAVisgSd8/RsJhgCKigNc4g7I5hvf0ekiS1FbNohtggCKiwNegSEKWZdhqawGwgk90DFBE\nFPAkrRbQagFZBqxWJYPi/JPYGKCISB0aZFGODIoVfGJjgCIiVWg4D2Wrq3O6j8TEAEVEqtAwQFnr\nAxQzKLExQBGROjQc4mMG5RcYoIhIFZyG+LgOn19ggCIidXBVJMEMSmgMUESkCiyS8D9c44OIVEEJ\nUCYTbPXLG3GIT2zMoIhIHRoM8bGKzz8wQBGRKigZlMXCIT4/wSE+IlKHhkUSNhsADvGJjgGKiFTB\nqUjCYrHfyQxKaAxQRKQODVeScGRQDFBCY4AiIlVQgpHJxCE+P8EARUSq4DTE59j6nQFKaKziIyJ1\n4Fp8focBiohUwdVafMygxMYARUTq0LBIwrHlOzMooTFAEZEqSA2H+LiauV/wiyKJXbt24dNPP4VG\no8GIESMwc+ZMAEBqairS09Oh0Wgwa9YsxMXFtXFLiUhUTitJcDVzvyB8gDp58iSOHDmCdevWQa/X\n49q1awCA/Px8ZGRkYP369SgrK0NycjI2bdoEjYZJIRG50LDMnEUSfkH4b/M9e/bg3nvvhb7+RIqM\njAQAHD58GGPHjoVer0fnzp3RtWtXnDt3ri2bSkQC44aF/kf4DKqgoAC5ubl49913odfr8etf/xp9\n+/ZFaWkp+vXrpzzPYDCgtLS0DVtKREJztWEhA5TQhAhQycnJKC8vb3L/jBkzYLPZUFlZidWrV+P8\n+fPYsGED/va3v7Xo+GlpaUhLSwMArF27FtHR0T5ptztarRZGo7HV3yeQhIaG+n2fBd3iLzydTufx\n+RwREdHKrRFbucWCYwDCgoJQXZ9BDRk2DEEGQ9s2rJX56pxsybnmK0IEqBUrVjT72J49ezBq1ChI\nkoS+fftCo9GgoqICBoMBJSUlyvNKS0thaOZES0hIQEJCgnK7uLjYd41vRkREBLKzs1v9fQKJ0Wj0\n+z7r1avXLX2/6Ohoj8/nvLy81m2M4CwXLwIAKsvLIddnUKfOnYMUEtKWzWp1vjonb3SuxcTE+OR9\nGhJ+DmrkyJHIyckBAFy5cgUWiwXh4eGIj49HRkYGzGYzrl69ioKCAvTt27eNW0tEwnJRJMEqPrEJ\nkUG5c+edd+KVV17BokWLoNPpMH/+fEiShB49emDMmDF48sknodFoMHv2bFbwEVGzlCKJ2lpAlgGt\nFpJW28atIneED1A6nQ4LFy50+di0adMwbdq0W9wiIvJLOvvXnVxVBYAl5v6AKQcRqYJTBgVweM8P\nMEARkTo0qmbjNVDiY4AiIlVoMqTHACU8BigiUgetFpAk5SbnoMTHAEVEqiBJktO8E4f4xMcARUSq\n4ZQ1MYMSHgMUEalHwwyKAUp4DFBEpBoSh/j8CgMUEamGU9bEACU8BigiUg8O8fkVBigiUg0O8fkX\nBigiUg9W8fkVBigiUg1mUP6FAYqI1INzUH6FAYqIVIMX6voXBigiUg0O8fkXBigiUg9eB+VXGKCI\nSDUkzkH5FQYoIlIPDvH5FQYoIlINFkn4FwYoIlINFkn4FwYoIlIPzkH5FQYoIlINDvH5FwYoIlIP\nDvH5FQYoIlINzkH5FwYoIlINDvH5FwaoNjJhwgQkJiYq/xUUFODUqVPYsGGDx8eoqKjAjh07WLwu\nvAAAFBZJREFUmn08ISHB6fbOnTvx4osvuj1mw+eUlZXht7/9LR555BFkZWV53C7yXykpKXj44Yfx\nm9/8BomJicjJybnlbcjMzERSUpJH9z/zzDP44osv3B6v4XOyv/0W8y9dwu/z82GSZd81mlqFrq0b\noFbBwcFISUlxuq9bt24YNGhQk+daLBbodE3/qSorK7Fjxw5MmzatVdp49OhRxMbGYvny5a1yfBLL\nyZMnceDAAWzbtg1BQUEoLy+H2Wxu62b5VNrRo7i/QwfcER6O4Pbt27o5dAMMUALJzMzEO++8g3Xr\n1mHLli24fPkyrly5gi5duiAxMRFr1qyB2WyGLMtYvXo1Xn/9dVy+fBmJiYkYOXIknnjiCY/fa//+\n/UhJSYHZbEZkZCRWrVoFg8GgPH7mzBm88sorqKurQ2JiIl577TUEBwe3xq9NgiguLkaHDh0QVD83\n06FDB+Wx3NxcvPzyy6ipqUFkZCT+9Kc/ITo6Gvn5+Vi3bh3Ky8uh0WiQnJyM7t27Y/PmzTh06BAk\nSUJiYiISEhKQmZmJrVu3IjIyEhcuXMCAAQOwatUqSJKEQ4cOYdOmTQgJCYHRaPSq/Vu3bsWBAwdQ\nV1eHoUOHYsmSJZAkSXn8o48+wt4jR/BVXR0y6+qwpsFjJCYGqDbi+OIHgJiYGDz77LNNnpOXl4e/\n//3vCA4Oxvr16/HAAw/gRz/6EcxmM2w2G+bOnYsLFy40ycRcvQdgHxIcN24cAMBoNOK1116DJEn4\n6KOP8K9//QsLFixQntu/f3/Mnj0bubm5WLRokS9/dRLUqFGjsG3bNsyYMQPx8fG46667MHz4cFgs\nFmzYsAFr165Fx44dkZaWhtdeew1PPfUUnn76acycOROTJk1CXV0dZFnG3r17cfbsWaSkpODatWuY\nM2cO4uLiANj/8HnrrbcQHR2Nxx9/HNnZ2Rg4cCCee+45vPTSS7jtttuwcuXKZtt4/Phxp3P6u+++\nU87p+++/H48++igA4K9//SsOHDiA8ePHK8+95557cPzgQQzLzcWkbt1aowvJxxig2oirIb7Gxo8f\nr2Qtt99+O1JSUlBUVIRJkyahR48eLX6PnTt3Ijc3FwBQVFSElStXoqSkBGazGTExMTfx21AgCAsL\nw9atW3H8+HFkZmZi5cqVePzxxzFo0CBcuHABf/jDHwAANpsNUVFRqKqqUs5HAMq5mp2djbvvvhta\nrRYGgwFxcXE4deoU2rVrh0GDBqFz584AgH79+qGwsBChoaHo1q2bck5PmTIFH330kcs2Dhs2DOvW\nrVNuP/PMM8rPR48exdtvv43a2lpcv34dvXv3dgpQAID6rEkTEuKDHqPWxgAlsJAGH6IpU6Zg8ODB\nOHjwIBYvXowlS5bcVFDZsGEDHnzwQUyYMEEZeiHSarUYMWIERowYgT59+mDXrl0YOHAgevfujdde\ne83puVVVVS0+flCD0m6NRgOLxXLTbQbsowUvvvgitmzZgi5dumDLli0wmUyuGgBoNAiuD5IkNlbx\n+YnLly+je/fueOCBBzBhwgScO3cOYWFhqK6u9up4lZWV6NSpEwBg165dvmwq+alvv/0Wly5dUm6f\nPXsWXbp0Qc+ePVFeXo6TJ08CsBftXLhwAe3atUOnTp2wb98+AIDJZEJtbS2GDRuGzz//HFarFWVl\nZcjKysLgwYObfd8f/OAHKCwsRH5+PgAgLS2txW13BKMOHTqgurq62co+SadD2IMPYujGjS1+D7r1\nmEH5ifT0dOzevRs6nQ5RUVH4zW9+g4iICBiNRsycOROjR49uUZHE7NmzsWLFCoSHh2PEiBEoKCho\nxdaTP6ipqcGGDRtQWVkJrVaL7t27Y+nSpdDr9XjmmWewceNGVFVVwWKx4MEHH0RsbCxWrlyJ559/\nHm+88QZ0Oh2Sk5MxadIknDx5EomJiZAkCfPmzUNUVBS+/fZbl+8bHByMJUuWICkpCSEhIRg2bFiL\n//AKDw/HPffcg5kzZyIqKsplNayDtlMnewZVWNii96BbT5Jl9V0McOXKlVZ/j4iICGRnZ7f6+wQS\no9Ho933Wq1evW/p+0dHRKC4u9ui5eXl5rdsYPxII55qnfHVO3uhca415bA7xERGRkBigiIhISAxQ\nREQkJAYoIiISEgMUEREJiQGKiIiExABFRERCYoAiIiIhMUAREZGQGKCIiEhIqlzqiIiIxMcMqpUs\nW7asrZvgd9hnLcc+8w77reXaos8YoIiISEgMUEREJCQGqFaSkJDQ1k3wO+yzlmOfeYf91nJt0Wcs\nkiAiIiExgyIiIiFxy3cAr7zyCjIzMxEZGYkXX3wRALBhwwZl593q6mqEhYVh3bp1Tq8zmUxYtWoV\nLBYLrFYrRo8ejenTpwMArl69io0bN6KiogKxsbFYsGABdLqm3Z2amor09HRoNBrMmjULcXFxAICs\nrCxs27YNNpsNd911F37xi1+0Zhe0mKs+y8vLw+uvvw6TyQStVos5c+agb9++TV67d+9e7NixAwAw\nbdo0TJ48GQBw4cIFbN68GSaTCcOHD8esWbMgSZLTa2VZxrZt23Ds2DEEBwdj3rx5iI2NdXtckXjb\nb0VFRXjhhRdgs9lgtVoxdepUTJkyBUDg95u7PqutrUWnTp2wcOFChIWFNXltc58jNX8+3fWZcN9p\nMsk5OTny+fPn5SeffNLl4ykpKfIHH3zQ5H6bzSbX1NTIsizLZrNZXr58uXz69GlZlmX5xRdflPfv\n3y/Lsiy/+uqr8qefftrk9ZcuXZIXL14sm0wm+bvvvpOfeOIJ2Wq1ylarVX7iiSfkwsJC2Ww2y4sX\nL5YvXbrkq1/XJ1z1WXJyspyZmSnLsiwfPXpUXrVqVZPXVVRUyPPnz5crKiqcfpZlWV62bJl8+vRp\n2WazyatXr1aO1dDRo0fl1atXyzabTT59+rS8fPnyGx5XJN72m9lslk0mkyzLslxTUyPPmzdPLikp\nkWU58PvNVZ8tW7ZMzsnJkWVZlj///HP5nXfeafI6d58jNX4+Pekz0b7TOMQHYPDgwWjfvr3Lx2RZ\nxsGDBzFu3Lgmj0mShJCQEACA1WqF1WqFJEmQZRk5OTkYPXo0AGDy5Mk4fPhwk9cfPnwYY8eOhV6v\nR+fOndG1a1ecO3cO586dQ9euXdGlSxfodDqMHTvW5evbkqs+kyQJNTU1AOxZZ8eOHZu8LisrC0aj\nEe3bt0f79u1hNBqRlZWFsrIy1NTUoH///pAkCRMnTnT5Ox85cgQTJ06EJEno378/qqqqUFZW1uxx\nReNtv+l0Ouj1egCA2WyGzWYDAFX0m6s+u3LlCgYNGgQAMBqN+Oqrr5q8rrnPkVo/n570mWjfaQxQ\nN3Dq1ClERkaiW7duAIDS0lI8++yzyuM2mw1JSUmYM2cOhg4din79+qGiogJhYWHQarUAAIPBgNLS\nUgD2L4r33ntPOVZUVJRyLMfzGt8fFRWlvF5kiYmJ2L59O+bOnYvt27fjoYceAgCcP38e//jHPwB4\n9zvv2bMHe/bsUV4fHR3d5HnNHdcfeNJvAFBcXIzFixdj7ty5uPfee5XfUY391qNHD+UL7tChQygp\nKQHg/Plsrm/U+vn0pM8Asb7TOAd1AwcOHHDKngwGA5YvX67c1mg0WLduHaqqqvDCCy/g4sWL6NCh\nQ7PHi4+PR3x8fKu2ua3s2bMHiYmJGD16NDIyMvCPf/wDK1asQJ8+fdCnTx+vj+uYawlUnvZbdHQ0\nXnjhBZSWlmLdunXKX7PNCeR+mzt3LrZt24Z///vfiI+PV+ZCGn8+WyqQP5+e9plI32nMoNywWq34\n3//+h7Fjx97wue3atcOQIUOQlZWF8PBwVFdXw2q1ArD/VWEwGJq8xmAwKH/FNHxe4/tLSkpcvl40\nX375JX74wx8CAMaMGYNz5841ec7N/s4GgwHFxcVNntfccf2BJ/3WkMFgQI8ePZCbm6vafuvevTv+\n/Oc/47nnnsO4cePQpUuXJs9prm/U+vn0pM8aEuE7jQHKjRMnTiAmJsYpNW3o+vXrqKqqAmCvfsnO\nzkb37t0hSRKGDBmCQ4cOAbBXSbn6CyM+Ph4ZGRkwm824evUqCgoK0LdvX/Tp0wcFBQW4evUqLBYL\nMjIy/OKvOoPBgK+//hoAcPLkSXTt2rXJc+Li4nD8+HFUVlaisrISx48fR1xcHDp27IjQ0FCcOXMG\nsixj3759zfbZvn37IMsyzpw5g7CwMHTs2LHZ4/oDT/qtpKQEJpMJAFBZWYnTp08jJiZGtf127do1\nAPbhqB07duDuu+9u8pzmPkdq/Xx60meifafxQl0AGzduxNdff42KigpERkZi+vTpuPPOO7F582b0\n69fPaaiktLQUr776KpYvX45vv/0Wmzdvhs1mgyzLGDNmDO6//34AwHfffYeNGzeisrISvXv3xoIF\nC6DX63HkyBGcP38eDz74IABgx44d+OKLL6DRaPDII49g+PDhAIDMzEykpKTAZrPhjjvuwLRp0259\nx7jhqs9iYmKUMlK9Xo85c+YgNjYW58+fx2effYbHH38cAJCeno7U1FQA9rLmO+64A4B9zuWVV16B\nyWRCXFwcHn30UUiSpMyjTJkyBbIsY8uWLTh+/DiCgoIwb948ZRisueOKxNt+y87OxptvvqlMWE+d\nOlW5sj/Q+81Vn9XW1uLTTz8FAIwaNQoPPfQQJEly+nwCzX+O1Pj59KTPRPtOY4AiIiIhcYiPiIiE\nxABFRERCYoAiIiIhMUAREZGQGKCIiEhIDFBERCQkBihSrR07djitddfaVqxYgW+++eaWvV9b2LVr\nF9566622bgYFCK7FRwHr17/+tfKzyWSCTqeDRmP/m+yxxx67pRdXHjlyBCEhIejdu7dyX0FBAd57\n7z2cOHECFosFkZGRiIuLw7333ouoqCjk5OTg6aefxsiRI5GUlKS8Li8vD0uWLMHgwYPxxBNP4I9/\n/KPyWF1dHYKDg5XbTz31lLKC9e9//3ssXboUqamp2L9/P3Q6HSRJQrdu3ZCYmIjBgwcDACwWC95+\n+21kZGSgqqoKERERGDlyJB555JEb9uldd92FhQsX4uc//zkiIyNbpzNJNRigKGBt375d+Xn+/Pn4\n3e9+B6PR2CZt+eyzzzBx4kTldmFhIZ566ilMnjwZzz//PKKionDt2jXs378fubm5ygLFEREROHPm\nDCoqKhAeHg7AvnafY3X96Ohop99z+vTpWLduXZPlkgoLC2Gz2RATEwMAuPfeezFjxgzIsoz09HS8\n8MILeOONN6DRaJCamorz589jzZo16NixI4qKinDq1CkAnvVpXFwcvvzyS9xzzz2+6j5SKQ7xkWq9\n//77eOmllwDYdwudPn06vvjiC8ydOxezZs3Cnj17cO7cOSxevBiPPPIItmzZ4vT69PR0/PGPf8Ss\nWbOwevVqFBUVuXwfi8WCkydPKhmK470HDBiAxMREZa3HyMhI/PSnP3VaPV+n02HkyJE4cOAAAPs6\nahkZGZgwYUKLftfMzExlyZmGJEnC+PHjUVlZifLycgD2pZNGjRoFg8EASZLQuXNnTJo0yeP3GjJk\nCI4dO9ai9hG5wgBF1MDZs2exadMm/OEPf0BKSgp27NiBFStWYP369Th48KCyqOvhw4eRmpqKRYsW\n4Y033sDAgQOxadMml8csKCiARqNxWnT4xIkTN9wuw2HSpEnYt28fAPuGjz179nS5qaE7x44dw4gR\nI5rcb7PZ8OWXX6Jz587Klgr9+vXDJ598gk8//RQXL15ES1dD6969O/Ly8lr0GiJXOMRH1MD999+P\noKAgDBs2DMHBwRg/frwylzJw4EB88803GDx4MD777DPcd999uO222wAA9913H1JTU1FUVIROnTo5\nHbOqqkrZpdShoqLCaY+d3bt3491334XVasW4ceOUhXUBYMCAAaisrMSVK1ewb98+TJw4UVnZ3BN1\ndXU4f/48hgwZotz38ccfY/fu3TCbzQCAxx9/XJlLuu+++9CuXTvs378fKSkpCA8Px69+9StMnjzZ\no/cLDQ1FdXW1x+0jag4DFFEDDSf2g4KCmtyura0FABQVFWHbtm148803lcdlWUZpaWmTANW+fXvl\ndQ7h4eEoKytTbk+dOhVTp07Fu+++67RvjsPEiROxe/du5OTkYO7cudi/f7/Hv9OJEyfQv39/Zct4\nAPj5z3+uzEFdunQJq1evRvv27TF8+HBoNBqlPSaTCenp6fj73/+Ovn37KgHZnZqaGoSFhXncPqLm\nMEAReSE6OhrTpk3zaC6oa9euSvBybNJ2++2346uvvvJ4a4uJEydiwYIFmDRpklOVnieaG94D7HNQ\nPXv2xIABA1zOUwUFBWHq1Kn44IMPkJ+f71GAunz5Mnr16tWiNhK5wjkoIi/cfffd+M9//oNLly4B\nAKqrq3Hw4EGXz9XpdBg6dKgyfwUADzzwAHJzc5GSkoLS0lIA9s3i8vPzXR6jc+fOePrppzFjxowW\ntzUrK6vZAAXYA0pubi569OgBANi5cydycnJgMplgtVqxd+9e1NTUOJXIu/P111/7xaaHJD5mUERe\nGDVqFGpra7Fx40YUFxcjLCwMQ4cOxZgxY1w+/+6778bu3bsxfvx4AEBMTAzWrFmDd999F0lJSTCb\nzejYsSOGDRvWbHn2wIEDW9zOixcvIiQkBNHR0U73f/jhh9i5cycA+xDk5MmTlQ0Qg4OD8eabb6Kw\nsFC5TmrRokU33CIcsF8bdezYMaxdu7bFbSVqjBsWEt0iK1aswKOPPupxJuILH374ISoqKjBz5sxb\n8n67du1CSUnJLXs/CmwMUEQBLCMjAz179vRo7ohINAxQREQkJBZJEBGRkBigiIhISAxQREQkJAYo\nIiISEgMUEREJiQGKiIiE9P9TA/vJ+1+yuwAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x7fa659034240>" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Plot figure (weighted)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Plot weighted figure\n", "fig,ax,axtop = plot_sentiment_figure(weighted_posneg_df,match_events,opposition)\n", "ax.set_ylabel('# Pos - Neg Comments (weighted by upvotes)')\n", "fig.tight_layout()\n", "# Save\n", "fig.savefig('./figures/weighted_' + analysis_name + '.png',dpi=300)\n", "fig.savefig('./figures/weighted_' + analysis_name + '.pdf',dpi=300)" ], "language": "python", "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAI/CAYAAAAiOU2mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4U2Xa+PFv1qYL3SlYoEBbREHKVhXKKhZHwB0Hnd+o\n4/4KLsPooKPMoI6iKOPgsIgLiOLMO4MvKDiuWKEsssheEKHsBQp0Sfc2TZOc3x9pQldI2yQ9Lffn\nurhoTpJz7pyc5M7zPPd5jkZRFAUhhBBCZbStHYAQQgjREElQQgghVEkSlBBCCFXSt3YAovVYLBbM\nZjMOhwONRtPa4QhRj6IohIWF0aFDh9YORbQCSVCXsLy8PIxGoyQnoWpFRUWSoC5R0sV3CdNoNJKc\nhOrJMXrpkgQlVO/JJ5/kl19+ae0wvGrs2LFA+3xtTfHmm2+yevXq1g5DqJQkKOGREydOkJaWxokT\nJ1o7FCHEJULGoMQFFRcX88gjj5CRkUF+fj5RUVEkJSXxwQcfEBoa6vF6bDYbjz76KEVFRSQmJlJe\nXs6YMWN477330Gg0TJs2jTFjxjB//nzS0tIoKSnhL3/5C6NHj/bdi6vh9OmnsVqP1FtuNCbQpcvf\nPV7P9OnTufXWW7nmmmtYu3YtmzdvpqSkhAMHDqDVapk3bx6xsbH1nme323niiSfIzs4mODiYd955\nhy+++ILg4GDGjx9Pr1692LJlC1lZWWzYsIHnnnuuRa/XH7Zv386f//xnAgMDGTp0KN9//z3ff/89\n4GxBuv5esWIFixcvBmDx4sWEhIS0WsxCXaQFJS7okUceYe3ateTn5wOQn5/P2rVreeSRR5q0nm++\n+YaEhARWrFhB3759sdvt/OMf/2DlypV8+umnvP766wA8+OCDrFy5kv/85z/MmTPH66+nMVbrEcrL\nN9f711DSupC77rqL5cuXA84v3k6dOhEWFsbnn3/OCy+8wNy5cxt83tdff01sbCyrVq3itttuY9Gi\nRQwZMoQtW7awc+dOhg8fzpYtW9iyZQtDhw5t8eu9mKfXPs2tn9/q/vf02qebvI60tDT++Mc/8vnn\nn/PHP/6x0cfFxcWxbNkyxo0bxyeffNKSsEU7Iy0o0ajjx4+TkZHR4H0ZGRmcOHGC7t27e7SuY8eO\nkZSUBED//v356quv6Nq1KyaTCZPJhF6vx2az8X//93+sWLECrVbLuXPnvPZa/CUpKYnMzEyKi4vJ\nzs6md+/efPPNN2zZsgVFURpsPYFz/wwYMACAgQMHkp6eTq9evTh06BCbN29m6tSprFixguzsbB57\n7DGfv44jhUfYfGZzi9bxwAMPMGfOHJYvX86dd95Z676aM6y5jouBAwfyz3/+s0XbFO2LtKBEow4f\nPuxuOdWVn5/P4cOHPV5Xz5492bdvHwB79+4lKiqKkydPYrFYKCkpoaqqCr1ez+LFi/n88895//33\naavTRI4dO5Zp06Zx44030qtXL2655RZWrlzJqlWrGm1B9ezZk127dgGwa9cu4uPj0Wg0hIeH89NP\nPzFkyBBycnKorKwkKCjIny+n2UJDQ5k1axZz587llVdeQafTUVpaSmlpaa2xTNdxsXv3bnr27Nla\n4QoVkhaUaFSvXr2IiopqMElFRUWRmJjo8brGjRvH559/zsSJE+nevTsmk4mnnnqKW2+9Fa1Wy/PP\nPw/ANddcw0033URycjLBwcFeey3+dOeddzJr1ixeffVVoqOj2bhxI7fffjsajYaJEyfy29/+tt5z\nxo0bx1dffcUtt9ziHoMCuPbaa9m6dSsAMTExbWp8ZunSpXz11VfYbDbuuusuoqKiuPnmmxk0aBCd\nO3d2P+706dP8+te/RqPRuMeihADQyGzml67Tp09jNBov+Ji77rqLtWvX1lt+3XXXsWzZsiZtr6qq\nCoPBwNKlSyksLOSpp55q0vN96dixWykvr9+lFRQ0lJ49VzVpXefOnWPatGksXbrUW+H53dNrn+ZI\n4fnxt4TwBP5+nefFIt5ktVrp0qVLq2xbtC5pQYkL+uCDDxqt4muq++67j7KyMoxGY7Oe70tGY0KT\nljdm69atvPzyy7z00kteiKr1tFYyEqImaUFdwjxpQbmcOHGCw4cPk5iY6HFhhBDeIC2oS5e0oIRH\nunfvLolJCOFX0oKqlp2d7dP1R0dHk5eX59NtNFVZWRlBQUGqnOvMVXYuPNde91lZWZlPCmbU+JlU\ns4vtr8ZOoWgJaUFdwkwmE+Xl5YD6JuQMCAigsrKytcNoU9rjPlMUBYPB0NphiFYiCeoSptPpVFvK\nLb9um072mWhv5ERdIYQQqiQJSgghhCpJghJCCKFKkqCEEEKokiQoIYQQqiQJSgghhCpJghJCCKFK\nzUpQ9957b71lq1evZt26dS0OyJt+/vlnZs2a1dphqFZWVhY//PADWVlZql6nEE0lx2H74LUTdW+4\n4QavrMdut6PT6byyLtGw4uJiJk+eTEZGBmazmcjISJKSkli4cCGhoaGqWafanT07Dav1aL3lRmM8\nnTvPboWI1KO19k1TjsPDhydTXLzf7zEKz3ktQX366aeYTCYGDx7M/Pnzef311wHIycnhjTfe4K23\n3uLo0aN8/PHHWCwWQkNDmTJlChEREbz00kv06NGDAwcOMGzYMLKysjAYDBw9epSKigruu+8+Bg8e\njNVqZdGiRRw5cgSdTsd9993HVVdd1ehy0bDJkyeTnp7uvm02m0lPT2fy5Mn861//Us061c5qPYrF\nsqW1w1AlX+ybaeuncbTofNKLD4tn9sjaiaQpx2FFxaEGY5z18xHO2SZecDtNjUs0j9enOurSpQs2\nm42cnBxiYmLYtGkTKSkp2Gw2PvzwQ5599llCQ0PZtGkT//73v5kyZQoANpvN3R23YMECcnNzee21\n1zh37hwvv/wy/fr147vvvgPgrbfe4vTp07z66qv84x//aHS5qO/EiRNkZGQ0eF9GRgZZWVnExcW1\n+jqFqOto0VG2nG086XnrOMwqs7CrwPPkerG4RPP5ZC6+oUOHsmnTJm677TY2b97M1KlTyc7O5uTJ\nk7zyyisAOBwOIiIi3M9JSUmptw6tVstll11Gp06dyM7O5sCBA4wbNw5wJsKOHTty5syZRpdfSFpa\nGmlpaQDMmjWL6Ohor73+huj1ep9vwxPbt2/HbDY3eJ/ZbCY3N5dBgwa1+jrVsr8u5MwZAxZL/eUG\ng6FVYlfTPvPFvqk7aWzddTX1ODx7tuEJkutOnHyxmC8WV3vRGseXTxJUSkoKc+bM4ZprrgHgsssu\nIysri65duzJz5swGnxMQEFDrtq9n105NTSU1NdV929eTbKplIs+YmBgiIyMb/CBHRkbSsWPHJsfp\ni3WqZX9dSFVVVaPLWyN2Ne0zX+ybuuusu66mHoeNXWmo7vKLxXyxuNqL1rjchk/KzDt37oxWq2XF\nihXullFsbCzFxcVkZmYCzi69kydPNrqOLVu24HA4OHv2LOfOnSM2NpYrr7ySDRs2AM7rN+Xl5V1w\nuagvLi6OpKSkBu9LSkpqVlecL9YpRF3xYfEM6TzE/S8+LL7W/d46DuOCTRfcTlPjEs3XrBaU1Wrl\nsccec9++6aab6j1m6NCh/POf/2T+/PnODen1PPPMMyxZsoTy8nLsdjvjx4+nW7duDW4jKiqKF154\ngYqKCh555BGMRiM33HADixYt4plnnkGn0zFlyhQMBkOjy0XDFi5c2Gilk5rWqXZGY8NfRI0tv5T4\nYt94UnjQlOMwMLBXgy29GQObVsUnBRG+o8or6i5YsIDBgwczZMgQv23zUryiblZWFkeOHCEhIcFr\nrRxvrVON+0vtZJ+d58lxKPuraeSKusKv4uLivN795ot1CtFUchy2D6pMUI8//nhrhyCEEKKVyVx8\nQgghVEkSlBBCCFWSBCWEEEKVJEEJIYRQJUlQQgghVEkSlBBCCFWSBCWEEEKVJEEJIYRQJUlQQggh\nVEkSlBBCCFWSBCWEEEKVJEEJIYRQJUlQQgghVEkSlBBCCFWSBCWEEEKVJEEJIYRQJUlQQgghVEkS\nlBBCCFVqVoK69957PX7s9u3bWblyZXM206D09HTMZrPX1ieEt2RlZfHDDz+QlZXV2qGIGpr0vlRU\ngKLUfo6iOJcLv9P7egPJyckkJyd7bX3p6el069aNyMhIj59jt9vR6XRei6E9Ont2Glbr0XrLjcZ4\nOnee7bXntEfFxcVMnjyZjIwMzGYzkZGRJCUlsXDhQkJDQ1s7vEtWk9+XigrC77yTr/LyeKysDHNB\nAZEREbwbHMyE6GgKly+HwED/vxAPtNfPotcSVHFxMe+//z75+fkA/O53v+OKK64gPT2dI0eO8NBD\nD1FYWMgHH3xATk4OAA8//DC9e/dm/fr1fPPNN9hsNnr16sXDDz8MwMKFCzl61LnTr7vuOqKjozly\n5Ahz587FaDQyc+ZMTp06xccff4zFYiE0NJQpU6YQERHBSy+9RI8ePThw4ADDhg3j5ptv9tZLbZes\n1qNYLFt8/pz2aPLkyaSnp7tvm81m0tPTmTx5Mv/6179aL7A2aNr6aRwtOv9FGx8Wz+yRzfuCbfL7\nYjLxVV4e3w88RXgUmIFwCvg+vwB2wTCTya/xN0V7/Sx6LUEtWbKEm266iSuuuIK8vDxmzpzJnDlz\n6j2mT58+TJs2DYfDgcVi4dSpU2zatIlXXnkFvV7PokWL2LBhA926dcNsNvPWW28BUFZWRnBwMN9+\n+y333nsvCQkJ2Gw2PvzwQ5599llCQ0PZtGkT//73v5kyZQoANpuNWbNmeeslClHPiRMnyMjIaPC+\njIwMsrKyiIuL83NUbdfRoqNsOdvyL1pP3pfo6Ojaz8nK4rGyMsKj4GiP6niq71tRVsZXJ09e9L30\nVvzCyWsJau/evZw6dcp9u7y8HIvFUusx+/bt44knngBAq9USFBTE+vXrOXbsGM8//zwAVquV0NBQ\nBg8eTE5ODh9++CGDBg0iKSmp3jazs7M5efIkr7zyCgAOh4OIiAj3/SkpKY3Gm5aWRlpaGgCzZs2q\nd7B6m16v9/k2WuLMGQN13i4ADAZDo3E35zmeUvv+ctm+fXujY6Jms5nc3FwGDRrkl1jayj67EIPB\nUO92c16TJ+9L3f21fft2zAUF1H3WUYCCAo/eS2/F31S+/Cy6tMbx5bUEpSgKM2fOxGg0Nvl5o0aN\n4v/9v/9X777Zs2eze/duVq9ezaZNm9wto5q6du3KzJkzG1x3QEBAo9tNTU0lNTXVfTsvL69JcTdV\ndHS0z7fRElVVVY0ubyzu5jzHU2rfXy4xMTFERkY2+GUYGRlJx44d/fY62so+u5C6x1RzjyVP3heb\nzVZr3TExMURGRBBOATVHc+KBwogIj95Lb8XfVL78LLpc7PiKjY31ynZq8lqZeVJSEt9++6379vHj\nx+s9pl+/fqxevRpwtnbKy8vp168fW7ZsoaioCIDS0lJyc3MpLi7G4XAwZMgQ7r77bo4dOwaAyWSi\norqiJjY2luLiYjIzMwFnl97Jkye99ZKEuKi4uLgGW/fg/ExI917TxIfFM6TzEPe/+LD4Zq2nOe9L\nXLduvBsczPX5EH8cOO78//p8eDc4mLhu3fwWv3BqVgvKarXy2GOPuW/fdNNNPPDAAyxevJg//vGP\n2O12rrzySh599NFaz7v//vt5//33WbNmDVqtlkceeYTLL7+cu+++m1dffRVFUdDpdDz00EMYjUYW\nLlyIw+EAcLewRo8ezQcffOAuknjmmWdYsmQJ5eXl2O12xo8fTzcPDiRRm9HY8AepseXNfU57tHDh\nwkarxUTTeLOgoMnvi8XChOho2OUcc6KggMKICMa6qvgslotW8fmjIKIh7fWzqFEURWntINQgOzvb\np+tvD90v/tQW91dWVhZHjhwhISGhVVpObXGf+UNj70uD+6uiAkwmsk6ePP+cbt3Ag+TU3rVGF5/P\nz4MS4lIRFxcnXXoq1KT3pToJ1XvOJZ6cWotMdSSEEEKVJEEJIYRQJUlQQgghVEkSlBBCCFWSBCWE\nEEKVJEEJIYRQJUlQQgghVEkSlBBCCFWSmSSEEEKokrSg/ORPf/pTa4fQpsj+ajrZZ00j+6tpWmN/\nSYISQgihSpKghBBCqJIkKD+peXFEcXGyv5pO9lnTyP5qmtbYX1IkIYQQQpWkBSWEEEKVJEEJIYRQ\nJUlQQgghVEkSlBBCCFWSBCWEEEKVJEEJIYRQJUlQQgghVEkSlBBCCFWSBCWEEEKVJEEJIYRQJUlQ\nQgghVEkSlBBCCFWSBCWEEEKV9K0dgFpkZ2f7dP2hoaFkZGT4dBvtSVJSUpvfXz169PDr9qKjo8nL\ny7vo444fP+77YNqA9nCMecobx+LFjq/Y2NgWb6MuaUEJIYRQJUlQQgghVEkSlBBCCFWSBCWEEEKV\nJEEJIYRQJUlQQgghVEkSlBBCCFWSBCWEEEKVJEEJIYRQJUlQQgghVEkSlBBCCFWSBCWEEEKVVDFZ\nrNVq5cUXX8Rms2G32xkyZAiTJk0iJyeHt99+m5KSEuLj43nyySfR6/VUVVUxf/58jh49SocOHZg6\ndSoxMTEAfP7556xZswatVssDDzzAgAEDWvnVCSGEaA5VtKAMBgMvvvgis2fP5s0332T37t1kZmby\nz3/+kwkTJjBv3jyCg4NZs2YNAGvWrCE4OJh58+YxYcIE/vWvfwFw6tQpNm3axN///nemT5/O4sWL\ncTgcrfnShBBCNJMqEpRGo8FkMgFgt9ux2+1oNBp+/vlnhgwZAsDo0aPZtm0bANu3b2f06NEADBky\nhH379qEoCtu2bSMlJQWDwUBMTAydO3fm8OHDrfKahBBCtIwquvgAHA4Hzz33HGfPnuVXv/oVnTp1\nIigoCJ1OB0BkZCRmsxkAs9lMVFQUADqdjqCgIEpKSjCbzfTq1cu9zprPqSstLY20tDQAZs2aRXR0\ntC9fHjqdjqSkJJ9uoz0JDAxs8/vLaDT6dXt6vd6j4zg0NNQP0ahfezjGPOWNY9HT48ubVJOgtFot\ns2fPpqysjL/97W8+v4Bgamoqqamp7tueXOitJeSChU3THi4mJxcsVLf2cIx5Si5Y6CXBwcH07duX\nzMxMysvLsdvtgLPVFBkZCThbRvn5+YCzS7C8vJwOHTrUWl73OUIIIdoWVSSo4uJiysrKAGdFX0ZG\nBl26dKFv375s2bIFgPT0dJKTkwEYPHgw6enpAGzZsoW+ffui0WhITk5m06ZNVFVVkZOTw5kzZ0hM\nTGyV1ySEEKJlVNHFV1BQwIIFC3A4HCiKwtChQxk8eDBdu3bl7bff5j//+Q89e/ZkzJgxAIwZM4b5\n8+fz5JNPEhISwtSpUwHo1q0bQ4cO5emnn0ar1fLQQw+h1aoiBwshhGgijaIoSmsHoQa+HvOSMaim\naQ/jAzIGpW7t4RjzlIxBCSGEEF4kCUoIIYQqSYISQgihSpKghBBCqJIkKCGEEKokCUoIIYQqSYIS\nQgihSpKghBBCqJIkKCGEEKokCUoIIYQqSYISQgihSpKghBBCqJIkKCGEEKokCUoIIYQqSYISQgih\nSpKghBBCqJIkKCGEEKokCUoIIYQqSYISQgihSpKghBBCqJIkKCGEEKokCUoIIYQqSYISQgihSpKg\nhBBCqJIkKCGEEKokCUoIIYQqSYISQgihSpKghBBCqJIkKCGEEKokCUoIIYQqSYISQgihSpKghBBC\nqJIkKCGEEKokCUoIIYQqSYISQgihSpKghBBCqJIkKCGEEKokCUoIIYQqSYISQgihSpKghBBCqJIk\nKCGEEKokCUoIIYQqSYISQgihSpKghBBCqJIkKCGEEKokCUoIIYQqSYISQgihSpKghBBCqJIkKCGE\nEKokCUoIIYQqSYISQgihSpKghBBCqJIkKCGEEKokCUoIIYQqSYISQgihSpKghBBCqJIkKCGEEKok\nCUoIIYQqSYISQgihSvrWDgAgLy+PBQsWUFhYiEajITU1lfHjx1NaWsqcOXPIzc2lY8eO/OEPfyAk\nJARFUViyZAm7du0iICCAKVOmEB8fD0B6ejqfffYZAHfccQejR49uxVcmhBCiuTxOUBaLhbKyMoKD\ngzGZTF4NQqfTce+99xIfH09FRQV/+tOfSEpKIj09nX79+nHbbbexcuVKVq5cyT333MOuXbs4e/Ys\nc+fO5dChQyxatIjXXnuN0tJSli9fzqxZswD405/+RHJyMiEhIV6NVwghhO9dMEFlZWWRlpbGzp07\nyc3NdS+PiYlhwIABjB07lri4uBYHERERQUREBACBgYF06dIFs9nMtm3beOmllwAYNWoUL730Evfc\ncw/bt29n5MiRaDQaLr/8csrKyigoKODnn38mKSnJnZCSkpLYvXs3w4cPb3GMQggh/KvRBPX2229z\n6tQpUlJSePLJJ+nSpQuBgYFUVFRw+vRp9u/fz9y5c+natStTp071WkA5OTkcO3aMxMREioqK3Ikr\nPDycoqIiAMxmM9HR0e7nREVFYTabMZvNREVFuZdHRkZiNpsb3E5aWhppaWkAzJo1q9b6fEGn05GU\nlOTTbbQngYGBbX5/GY1Gv25Pr9d7dByHhob6IRr1aw/HmKe8cSx6enx5U6MJasSIEQwePLje8pCQ\nEHr37k3v3r25/fbb2bFjh9eCsVgsvPXWW9x///0EBQXVuk+j0aDRaLy2rdTUVFJTU9238/LyvLbu\nhoSGhpKRkeHTbbQnSUlJbX5/9ejRw6/bi46O9ug4Pn78uO+DaQPawzHmKW8cixc7vmJjY1u8jboa\nreJrKDm15HEXY7PZeOuttxgxYgTXXnstAGFhYRQUFABQUFDg/uUXGRlZa0fl5+cTGRlJZGQk+fn5\n7uVms5nIyEivxCeEEMK/PCoz37hxI6dOnQIgOzubF198kZdffpnTp097JQhFUXj33Xfp0qULN910\nk3t5cnIy69atA2DdunVcffXV7uXr169HURQyMzMJCgoiIiKCAQMGsGfPHkpLSyktLWXPnj0MGDDA\nKzEKIYTwL4+q+JYtW8Yrr7wCwNKlS0lISMBkMrFo0SJefPHFFgdx8OBB1q9fT1xcHNOmTQPgN7/5\nDbfddhtz5sxhzZo17jJzgIEDB7Jz506eeuopjEYjU6ZMAZzdjxMnTuT5558H4M4775QKPiGEaKM8\nSlDFxcWEh4djtVo5ePAgzzzzDDqdjoceesgrQVxxxRV8+umnDd43Y8aMess0Gg0PP/xwg48fM2YM\nY8aM8UpcQgghWo9HCSo0NJSzZ8+SlZVFQkICBoOByspKX8cmhBDiEuZRgpo4cSLPPfccWq3W3c22\nd+9eunfv7tPghBBCXLo8SlCjR49m6NChAAQEBADQq1cvr57/JIQQQtTk8WSxVquVrVu3smrVKgDs\ndjt2u91ngQkhhLi0eZSg9u/fz9SpU9mwYQMrVqwA4OzZs3zwwQc+DU4IIcSly6ME9dFHHzF16lSm\nT5+OTqcDIDExkSNHjvg0OCGEEJcujxJUbm4u/fr1q7VMr9dLF58QQgif8ShBde3ald27d9datnfv\nXq/MZC6EEEI0xKMqvnvvvZc33niDgQMHYrVaef/999mxY4d71gchhBDC2zxKUJdffjmzZ89mw4YN\nmEwmoqOjee2112pd2kIIIYTwJo8S1BdffMEtt9zCrbfeWmv5l19+WWtyVyGEEMJbPBqDcpWWe7pc\nCCGEaKkLtqD27dsHgMPhcP/tcu7cOQIDA30XmRBCiEvaBRPUwoULAecsEq6/wTmbeHh4OA8++KBv\noxNCCHHJumCCWrBgAQDz58/niSee8EtAQgghBHhYJPHEE09gt9s5ePAgZrOZqKgoLr/8cvesEkII\nIYS3eZSgsrOzmTVrFlarlaioKPLz8zEYDDz33HN07drV1zEKIYS4BHmUoD744ANSU1O5+eab0Wg0\ngLP0fPHixV655LsQQghRl0dl5sePH+emm25yJyeACRMmcPz4cV/FJYQQ4hLnUYKKjIxk//79tZb9\n8ssvRERE+CQoIYQQwqMuvt/85je88cYbDB48mOjoaPLy8ti5cydPPvmkr+MTQghxifIoQSUnJ/PG\nG2+wefNmCgoK6NatG5MmTSI2NtbX8QkhhLhEeZSgjh8/To8ePZg4caKv4xFCCCEADxPUq6++Smho\nKMOGDWPEiBHExMT4Oi4hhBCXOI8S1Pvvv8/u3bvZuHEj06ZNo2vXrgwfPpyUlBTCwsJ8HaMQQohL\nkEcJSqvVMmjQIAYNGoTVamXbtm2sXr2aTz75hP/93//1dYxCCCEuQR6VmbtYrVZ27NjBpk2bOHr0\nKFdeeaWv4hJCCHGJ86gFtXPnTjZu3MiOHTvo2rUrKSkpPPLII4SHh/s6PiGEEJcojxLUJ598wrBh\nw5g0aRKdO3f2dUxCCCGEZwlqzpw5vo5DCCGEqMWjBGWz2VixYgU//vgjBQUFREREkJKSwh133IHR\naPR1jEIIIS5BHpeZnzlzhgceeICOHTuSm5vL559/jtlsZsqUKb6OUQghxCXIowS1fft25s2bR3Bw\nMABdu3alV69eMhefEEIIn/GozDw8PJzKyspay6xWq8xmLoQQwmc8akGNHDmS1157jRtvvNF9Rd3v\nvvuOkSNHsm/fPvfjrrrqKp8FKoQQ4tLiUYL6/vvvAfj888/rLXfdp9FomD9/vpfDE0IIcanyKEEt\nWLDA13EIIYQQtTRpqiMhhBDCXzxqQU2ePLnR+xYuXOi1YIQQQggXjxJU3XLygoICvv76a4YNG+aT\noIQQQgiPElSfPn3qLevbty8zZ85k/PjxXg9KCCGEaPYYlF6vJycnx5uxCCGEEG4etaCWLVtW63Zl\nZSW7du1i4MCBPglKCCGE8ChB5efn17odEBDATTfdxMiRI30SlBBCCOFRgpIJYYUQQvibnAclhBBC\nlSRBCa+xnzlDwVNPYUlPb+1QhBDtgCQo4TVVhw7hKCjAunt3a4cihGgHPEpQDofD13GI9sBmA0Ap\nK2vlQIQQ7YFHCerRRx9lyZIlHDlyxNfxiDZMqapy/i8JSgjhBR5V8b3wwgts2LCBN954g+DgYEaM\nGMHIkSMM8jI6AAAgAElEQVSJjo72dXyiLXElqNLSVg5ECNEeeJSg4uPjiY+P59577yUjI4P169fz\nzDPPEB8fz4gRI0hJScFkMvk6VqFyitUKgENaUEIIL2hSkYRWq6VLly506dKF0NBQzGYzGzduZPLk\nyaxfv95XMYq2onoMCqvVnayEEKK5PGpBlZaWsnnzZtavX8/p06cZOnQoTzzxBL179wbg8OHDzJw5\nU2aWuMS5xqAAlPJyNEZjK0YjhGjrPL4eVN++fRk3bhxXX301BoOh1v2JiYkkJyf7JEDRdtRMUI6y\nMrTh4a0YjRCirfMoQc2bN4/wi3zZPP74414JSLRhNVtQUighhGghjxJUeHg4+/btY+PGjRQUFBAR\nEcGwYcPo16+fr+MTbUitLj4plBBCtJBHRRL//e9/efvttwkJCWHQoEF06NCBuXPn8t///tfX8Qk/\nUSwWlJaekF2ni08IIVrCoxbUl19+yYwZM4iLi3MvGzlyJK+++io333yzVwJ555132LlzJ2FhYbz1\n1luAszhjzpw55Obm0rFjR/7whz8QEhKCoigsWbKEXbt2ERAQwJQpU4iPjwcgPT2dzz77DIA77riD\n0aNHeyW+9sxRXk7hH/6AoU8fOvz+981ejyJdfEIIL/K4zLxz5861bnfq1MmrgYwePZoXXnih1rKV\nK1fSr18/5s6dS79+/Vi5ciUAu3bt4uzZs8ydO5dHH32URYsWAc6Etnz5cl577TVee+01li9fTql8\nUV6UIzcXpbwcW1ZWi9YjXXxCCG9qNEE5HA73v1//+te8++67nDlzBqvVSnZ2Nu+99x6TJk3yWiB9\n+vQhJCSk1rJt27YxatQoAEaNGsW2bdsA2L59OyNHjkSj0XD55ZdTVlZGQUEBu3fvJikpiZCQEEJC\nQkhKSmK3TFx6Ue4pimokmGZxnQeFdPEJIVqu0S6+3/zmN/WW/fjjj7Vub9y4keuvv977UVUrKioi\nIiICcBZqFBUVAWA2m2tNsxQVFYXZbMZsNhMVFeVeHhkZidls9ll87YbrpNoWnlwrLSghhDc1mqDm\nz5/vzzguSqPRoNFovLa+tLQ00tLSAJg1a5bP5xXU6XQkJSX5dBvNlV9cTAagsdlaFONPWi2utBSi\n0bRoXYGBgardX54y+vlEZb1e79FxHBoa6odo1K89HGOe8sax6Onx5U2NJqiOHTv6M44GhYWFucva\nCwoK3B+syMhI8vLy3I/Lz88nMjKSyMhI9u/f715uNpvp06dPg+tOTU0lNTXVfbvm+nwhNDSUjIwM\nn26juSoPHgTAUVnJnj17mv1DoKKkxP138dmzLXq9SUlJqt1fnurRo4dftxcdHe3RcXz8+HHfB9MG\ntIdjzFPeOBYvdnzFxsa2eBt1qfqChcnJyaxbtw6AdevWcfXVV7uXr1+/HkVRyMzMJCgoiIiICAYM\nGMCePXsoLS2ltLSUPXv2MGDAgNZ8CW1DzbGnloxDyRiUEMKLPCoz94e3336b/fv3U1JSwmOPPcak\nSZO47bbbmDNnDmvWrHGXmQMMHDiQnTt38tRTT2E0GpkyZQoAISEhTJw4keeffx6AO++8s17hhaiv\n5sSuSlVVs+fQkzEoIYQ3qSZBTZ06tcHlM2bMqLdMo9Hw8MMPN/j4MWPGMGbMGK/G1u7VbDVZrRAc\n3KzV1E1QisOBRqvqRroQQsXk20PUa0E1m+u5BgMoCkpFRQsjE0JcyhptQc2YMcOjwfKXX37ZqwEJ\n/6vV8mlmqbnicIDdDhoN2tBQHPn5zm6+ZrbGhBCi0QRVs5vs3LlzrF27llGjRtGxY0fy8vJYt24d\n1113nV+CFD5Wt4uvJevQ69GEhIArQQkhRDM1mqBqzmE3ffp0pk+fTrdu3dzLhg8fzsKFC706m4Ro\nHd7o4nM9T2MwoKluNTlkmikhRAt4NAZ16tSpenPvxcTEcPr0aZ8EJfzLG1187hJzgwFtdYKSFpQQ\noiU8SlB9+vThnXfeqTUX38KFC7niiit8HZ/wh5pJqbktqOp1aAwGZxcfkqCEEC3jUZn5448/zqJF\ni3j66adxOBzodDquueYa9/lHom3zSpFEjQo+dxefJCghRAt4lKBCQkKYOnUqDoeD4uJiQkND0cr5\nLe2GV8rMa4xBubv4ZAxKCNECHmeZ06dP89lnn7FixQq0Wi3Z2dmcOHHCl7EJf/FCFZ9SPQYlXXxC\nCG/xKEFt3ryZGTNmYDabWb9+PQAVFRUsXbrUp8EJ/6jVgvJGmbl08QkhvMCjLr5PP/2Uv/zlL/To\n0YPNmzcD0L17d5kVuZ2oNQbV0jJzo1G6+IQQXuFRC6qoqIju3bvXWubt6zOJVuSN2cxdLa8aRRJK\neXkLAxNCXMo8SlDx8fHurj2XH3/8kcTERJ8EJfzLG118tcagpAUlhPACj7r4HnjgAV599VXWrFlD\nZWUlM2fOJDs7mz//+c++jk/4gzfLzPV6tNVFEjIGJYRoCY8SVJcuXXj77bfZsWMHgwcPJioqisGD\nB2MymXwdn/ADxQsn6tYsMycgAHQ6sFpRrNZmX19KiKZQFIXShQvRXXYZQbff3trhCC/wqIvvww8/\nJCAggJSUFG655RaGDRuGyWTio48+8nF4wh+8eaKuxmBwjk/KOJTwM0d+PtbNm7F8/31rhyK8xKME\n5brsel11x6VE26MoilemOqp1LSg4380n41DCT9zXH2vJNc2Eqlywi2/NmjUA2O12998uOTk5dOjQ\nwXeRCf+w20FR3De90YIC0AQFOZdLC0r4iStBuQp2RNt3wQS1YcMGAGw2m/tvl7CwMB5//HHfRSb8\nou55Ty2d6oi6CUoKJYSfKBaL8w+bDUVR5DSYduCCCerFF18E4D//+Q933323XwISfla3xeSFMnNA\nxqCE37m7+MD5g0mKc9o8j6r4XMmpqKgIi+tXSrW614kSbUu9FlRzE1SNy23A+RaUQxKU8JOaCUqx\n2aR6tB3wKEHt3r2bhQsXUlhYWO++ZcuWeT0o4UeuhKTRgKJ4rYtPLloo/K1eC0q0eR4lqMWLFzNx\n4kRGjx6NUX6VtCvu4obAQGd3nBcu+Q5SJCH8T6nRu9PsH1pCVTwqMy8tLWXs2LGSnNohd9ecq8Xj\nhUu+11qftKCEn9RqQUklX7vgUYIaM2YMa9eu9XUsojW4Wj6uhNLSFpTe2SiXFpTwt1pjUNKCahca\n7eKbMWOGu0xTURS+/vprVq1aRXh4eK3Hvfzyy76NUPiUq8WkDQ7GDs2u4muszFzm4xP+Ii2o9qfR\nBDVmzJgL3hbtg/uXpsnkLJRwOJwVUHqPhifrrcdVOaWVFpTwMxmDan8a/RYaPXq0H8MQrcY1BmU0\nOs8bqaxEqapqfoKS86BEK5EqvvbHo2+hutMcuRgMBqKioujVqxeG6i8m0bbUmuTVaESprHQmrcDA\npq2oxuU2QMaghP/VPQ9KtH0eJaj169eTmZlJWFgYUVFR5OfnU1RUREJCAjk5OQA8++yzJCQk+DRY\n4X1KjbEjjdGIQvO6Ry5UZq44HGi0HtXjCNFs0oJqfzxKUF27duWaa65h/Pjx7mXffvstp0+f5q9/\n/SufffYZH374ITNnzvRZoMJHanbxuVrBzSmUqFskodOhMZlQLBYUi8WdsITwFRmDan88+ln7448/\ncuONN9ZadsMNN7Bx40Y0Gg233HILp06d8kmAwrdqdfFVJxdvtKBAxqGE/yiKIl187ZBHCSosLIwd\nO3bUWrZz505CQ0MBqKqqQt/EQXWhEq7WktHorsBr1sm6dVpQIDOaCz+qqnJeOqbmbdHmeZRVHnjg\nAf7+978TFxfnHoPKysri6aefBuDQoUP1WliibahVHt6CLr4GW1BSKCH8RKkzibW0oNoHjxJU//79\nmTdvHrt378ZsNjNw4EAGDRrkvmBh//796d+/v08DFb5RcxZydwuqib8+FYfj/K/XGi1pme5I+Eut\nAgmQFlQ74XG/XGhoKCNHjvRlLKI1uD7INbv4mvrhrjEPX82LxGnlkhvCT+omKCmSaB8aTVAzZ85k\n+vTpQO1pj+qSqY7atlrXcWpmF19D3XsgY1DCf+q1oKSLr11oNEGNGjXK/bdMc9R+NVjF19QxqAYK\nJEDGoIT/1BuDkhZUu9Bogho+fLj7b5n2qB2r0cVHc8eg6lxN10XKzIW/yBhU++TRGJSiKPzwww/8\n+OOPlJSU8Le//Y39+/dTWFhISkqKr2MUPtRQkUSTq/hc3Sl1TjWQFpTwF3eCcl0ZWrr42gWPzoNa\ntmwZa9euJTU1lby8PACioqJYtWqVT4MTvldrqqNmdvE1NgallUtuCD9xJShXq11aUO2DRwlq3bp1\nPPfccwwbNsxdLBETE+Oeh0+0YXVnM6cZXXyNFUlIF5/wE9cYlLZ68gAZg2ofPEpQDocDk8lUa5nF\nYqm3TLQ9NU/UdSeYpn64pUhCtDJ3C6r63Ew1dPEpViuV27bVK+AQnvMoQQ0cOJClS5dSVf1FpCgK\ny5YtY/DgwT4NTviBqzuv5om63iozlxN1hZ+4EpS2OkGpoYvPsmYNpXPnUrF6dWuH0mZ5lKDuu+8+\nCgoKuP/++ykvL+e+++4jNzeX3/72t76OT/hYQ1MdebvMXE7UFb7mbkG5uvhU0IKynzxZ63/RdB5V\n8QUFBTFt2jQKCwvJy8sjOjqa8PBwX8cm/KDBKj5vjUG5LiNvsaDY7Wh0upYHLEQD3GNQKmpB2XNz\nAXDIWH2zedSC+vrrrzlx4gTh4eEkJiZKcmonFEWp1fpp9mzmNaY6qkmj1co4lPALNY5BOaoTlCtR\niabzqAV19OhRvvzySyoqKrjyyivp06cPffr0oWfPno1OgSTaALsdFAV0OmfrpplFEo2dqAvObj6l\nrMyZoFy/blWscutWNDodxuTk1g5FNIF7DKq6i6+1W1CKzYbDbHb+XVKCo6ICbWBgq8bUFnmUoJ54\n4gkAcnJy2L9/P/v372f58uUAfPTRRz4LTvhW3cTi7SIJaFvz8TlKSihdsAB0OiLfe+98l6dQPVcX\nn1paUA6zGRyO87dzctB2796KEbVNHnXxAWRnZ5ORkcGePXvYt28fl112Gddff70vYxO+Vvcy7c29\nom4jRRJwvpKvLRRK2I4ccbYobTbs2dmtHY5oArVV8TnqdOvZZRyqWTxqQT3yyCOYTCaGDBnCqFGj\nePTRRwmU5mqbp9Q8SRfcJ+o2eTbz6l+rmgauqqxtQ2NQtkOHzv998iT6Hj1aLxjhMcXhqN+CauUE\nVXfcSQolmsejFtTgwYPR6XRs27aNn376iR07dmCu7l8VbVjNiWLB67OZQ9vq4qs6fNj9t5QGtyGV\nlc6Wb0AAmoAA57LW7uKrTkiakBBAWlDN5VEL6rHHHgOgsLCQX375hf3797No0SI6dOjAvHnzfBqg\n8J1Gx6C8VGYObWe6I8XhwHb0qPu2PSurFaMRTeFuPQUGulvxamlBGfr0wfrTT/W6/IRnPL6i7rFj\nx9i/fz8///wzv/zyCwEBASQmJvoyNuFjtU7ShfNdfM2s4qOBooK2UmZuP3kSLBY0JhOKxYJNWlBt\nhrvE3GSqVYmqKEqrVRm7EpKhb1+sP/0kLahm8ihBPfDAAwQFBXHllVeSnJzMfffdR+fOnX0dmwBs\nR49S8c03BN9zD9qwMO+uvMY0R9CCLr4LjEG5iyRU3sVnq+7eMwwcSNXu3SjFxTiKiry/z4XXOVwJ\nKjAQjVYLOp3zFAq7vd4lYPzFXiNBATjy8uRk9Wbw6N174403iImJ8XUsogEVX36Jdds2dLGxBN1+\nu1fXXa9rzvW/zYbicDg/7M1ZTw1tpUjClaD0vXrhyM/HlpmJLSsLY79+rRzZpUWprKTiiy8wpqSg\n79LFs+fUSFCAMynZ7c6egFZIUIrFglJcDHo92o4d0UREoBQU4DCb0XXs6Pd42rJGv4EKCwvdf18o\nOdV8nPA+2/Hjzv8zM72+7rpdfBqNpnkn63pSZl5QcOFYbDZK5s2jbNkyz7fbQraTJ7FXF/u4CiQM\niYnounUDpFCiNVhWr6biiy8oXbjQOdOJB2qOQUELTpfwElfrSRsdjUarRVf9/SmVfE3XaIL661//\nyqJFi8jMzMRR44QzcF5+IzMzk0WLFvHKK6/4PMhLlaOszN2XXXX4MIrd7t0N1Onig+adrHuhFpS+\nZ08wGLAdOIDt1Cn3ckd5OUqN46py0yasP/2E5csv/TI1TOWmTRRNn07hc89RuXEjjrNnwWhE160b\n+rg44MIJylFRgb364p3COxRFofLHHwGwnzhB1Z49nj2v5hgUnJ/02AuVfEplZZOPR9dn1tVacv3f\n0DiU4nBQ+eOPFL36KpWbN7cw2van0fbvm2++SVpaGu+99x45OTnExMQQGBhIRUUFOTk5dO7cmbFj\nx3L//ff7MdxLi7269QSAxYI9K8v5he8lDSaW5vz6vEALShsWRsCoUVSmpVHxxRd0mDKFqkOHKH7z\nTfRxcYQ+/zxotVi++sr9nMoffwQfngReuW0bpe+95yxNtlicf+NMphq93t2CaqxQwpqRQem776JU\nVBDxj3+cn15HtIj9+HHsp0+7b1esWoWhf/9ahQ6WH36gcsMGQiZPRtepE1C/i0+j16OAV07WLX3/\nfazbtxM6YwaGhATPXoerBVWdmLTVLShXgnIUF2M/eRJbdjaVa9e6fwiV5eRgvOYar45TOQoLsW7f\nTtXEiRgiIry2Xn9pNEHp9XpuvPFGbrzxRvLy8sjKyqK8vJzg4GC6d+9OZGSkP+Nskt27d7NkyRIc\nDgfXX389t912W2uH1Cy2mgkKqDp4sNEEZTt6lIqvv8ZRXIxisaCLiSH4d787f2Z9AxqqvtMYjU3+\ncF+oBQUQOGEClWvXYt2yharrr6dkwQKwWLBlZlLxxRfo4+KcMzcYDFBVReXGjU3r3gkI8Lhay7pz\np3M6I4eDwFtuAa2WipUrAef4E4C+a1cA7KdPo9hszi88RcGRk4MlPR3Ll1+612c/c8bjBFVx9Ci6\nDh0wyjhEg1ytp4CRI7Hu3Int8GFsv/yCoU8f92Mqvv0Wx9mzlCxYQNiMGc73xjWLRN0uvha2oBwl\nJVh37ACHg8q0NI8TVL0WlKuLLzcXy5o1lC1d6hwjq6aNinKebFxQQNXevRgHDGhR3FA9lvfNN1R8\n+SVUVnJs/34u//vfW7xef/NoBDE6Opro6Ghfx+IVDoeDxYsX8+c//5moqCief/55kpOT6Vr9pdOW\n2E6cAECfmOj8sGZmwo03uu9XFAWlvJyKlSuxfPeds0VQzX7sGPZTp+jw7LPoGvsxUbfMnOZV8ikX\naEEB6KKjCRgxgsr0dIpffx3sdnSxsdizs6n44gu01cdW0KRJziR77hxFu3eDTuf8tZmbi65jR/cs\nAVRWYt2zB8vq1dgyM9H17EnwffdhuMhpD5Y1ayj76CNQFEzjxhF4551oNBp0sbFY1q7FNGKEcx8E\nBqKNicGRk0NVRgbWbduw7t6NUlpavZM0aEJDUYqK3BOCXkyV2cwvjzxCwGWX0eeTT9rcJMuKw0HF\nF19gO3aM4Hvu8fpgv2Kzubu4TNdfj7ZjRypWrKDiiy/cCcpRWOjsisV5fJcvW0bwb39bbwzKXRjR\nwhaUdccOdyKp/Okngu65B231mOqFuFtQ1YnJ9X/V3r1Yt251hpiYiC42Fn1CAgHDh2P57jvKP/2U\nynXrGkxQnhQtOYqLqfjvf53fFSdOnH/9Oh0l27ZRvH07odWTIJf9/DNBvXs3WHmrJuqOrhkOHz5M\n586d6VTd/E9JSWHbtm0XTVBnli5FsdupysujKi8PrcmEIToaQ2Qk2oAA5xupKDiqqlCqqnBYrShV\nVc4uoaAg5683hwPFbkex2Zz/u/7ZbOSZTFQUF6MJCMBRWoqjoAClshJtSAiakBCUigpnIYFGQ/B9\n96ENDsZenaBMN9xA6eHDVB08iKIoVO3dS9nixc7Hu5KSRoNp3DiM/fuDTkfZxx9jP3WK4ldeIfT5\n592/4mpqcBbyBsagHGVlVKanYz97FkduLprQUExjx2KobnFcqMzcJfDmm6lcvx7sdjTh4YQ+/zwV\nX36J5bvvcJw7h6ZDB0zXXYejsBDLV19x9r//xRoX52xt1Wzp2Wy1JuEE55dV8csvO0t6DQZwONDF\nxWFMTna2zk6epHLTJmcSBwJvu43AO+5wJ4mAoUMJGDq01jp13brhyMmhZM4c9zJNWBj6hAQCx493\njpetXn3R4g+X8kOHUKxWLCdOUH7gAMFXXunR81zKDhzAkpVF+PDh6KorI6sKCij/5Res1cdsUYcO\nVOp06Dt0QFf9z1FRQVVuLraiItDp0BoMWPV6DL17ozEYUCoqsO7dCxoNxgED3MeC3WxGKStD16UL\nVFVR+t57WLdtA6Do0CE6/P73GHr3rhWjNSMDXceO6C67zKPXZM/Lo2rfPvRxcTiKilCKi9HFxqLr\n2RNTp05Yvv6aqp9/dk471a0bVdVTUWljYnDk52P59lvQ67EdPAicH4PyVpGE9aefnH8YjWC1Yt20\nCdPYsRd9XmMtKFcla9DddxM4YUKt5wSMGEH58uVYd+2qdXqDo6KCskWLqNq3jw5PPeUuW29IxVdf\nOfdJNX1iIkGTJmE7dIjy//s/Tr/7Lh3efx/z6tUcnzWLyNRUerzwgsfVuq2h3SUos9lMVFSU+3ZU\nVBSHasyx1pjsDz7wZVhNouvcmcBx47CfOQM6HcbBg52/2IuLsR054hz/KClxPthgQN+jB8H33lur\n+y90+nRK/vY3bEeOUP7ZZ3Song2kljpTHUGNZFXjw12xYgWW77+v9VTr5s3oe/UiYMQI9wfvQrN/\n62JiMI0dS+X69XR48km04eEETZqENSMDx5kzmMaORRMQQMCIEVi++opzX36Jw2oFRUHbqRNKcbG7\nKweDAV3nzpiuuw7j1Vc7K7+++Yaqn38+/9IyMpxdcRrN+SSu1RL84IOYRo264P4H53hU1Y4doNEQ\nMHw4gbfcgrZTJ3dSc83b52mCshw75v67YO1ad4JSFAUUxf0lYc3LozQjA21AAGHXXotGryfvq684\nMXs22O1oAwOJGD2ayuxsSjMyarWamyQgAH23bs5uZNcPjJAQjMnJ2LKysFfPqqEJDEQTHIwjLw9N\nUBC6bt2wHTxI8euvE/I//+NO7Na9eymZPRtdjx6EX6RwynbiBBWrVmHdvv18/NXjLsZhw9BoNGiC\ngzFeey2V6elYt293xlqdiAKGDUNjNFK+bFmt7lbX1XTdLagWdPE5Skqcx5NOR/BvfkPZxx9jSU8n\nIDX1gq1fxWp1jzW5xqA0oaHOy86UlxN4xx31khOANjwcQ//+VO3aReXGjQROmIA9O5uSf/zDPXFx\nyYIFhL36aqM9Iq7jP/h3v8M4dKi7taePj6dqzRrKDx7k6IwZFK5bB4AhKsr5+VCxdpegPJWWlkZa\nWhoAs2bNouejj6LRaAiIiSEgJga7xULl2bNYzWYcVqvzy1KrRWs0ojUYnP+MRhS7HVtpKfaKCucF\n+vR657/qX6sanc55W1GwFBVhLytDHxZGQEwMuuBgbEVFVBUWogsKQrHZOPbOO9g3bCBu/HjMikJI\nYiL9k5PZd/XV5P7wA5Z33kEpKSE8OZn+776LtpFuNYCiGTPY+bvfEVBYSFJSUr37D333HaeA2Lg4\n4qrv3x0ZSQHQo0sXopKScFRVsan6l3P8U08RcvnlFO3ezelPP8V26FCtCVav7NcPU2xs4zv9zTfr\nnaxYsWgRuT/8QJe770YXEABJSWz/5BNKqj9sPSZPpsf//A8A9ooK976vZeRILI8/TvG+fWgNBhSH\ng4KtW8lbs4bKnByCevYk9KqruOyOOwgfNKjx+GqwJyZyJj6eiGuvJbiBrsOzJ0/yy7JlhDoc9G1g\n3wIYayTss+fOuf8uWreO/n/5C/aKCrbedRelR49iCAtDazRSWeNxgV26EDZgAGerC0iCExIoO3KE\n/G++AZw/JiIGDSKwSxcCOnZEA1QWFjqPqeJiqoqL0QUGYurUCWNkJIrDgd1ioTAjg7LMTOe5XxoN\nYQMHYi8vp/TgQSrT0wHQmkwYIyOxZGejVFRgio0laf58Art358icOZz65z+p+Ogj+t12GwExMeyY\nNQsAx+nT9Ovbt9GB/qriYjZPnoy9tBSNXk/EkCGUZWZSmZODxmBgwEMPYapugeVNnMje9HR0+/eT\n9OKLbD95EgvQe9w4wq++mrN9+1J25AgAhvBwuv72t+gCAtgdEeE8hrt2JaqR9wYgMDCwwc8FQPaK\nFRQ4HEQOG0a/J55g06pVVGVl0VOnI/Sqqxp8jmK38/O0aVBZSWBcHP2HDnUnM/Pbb1OVn0/MuHGN\nJrjc3/2Ofbt2YV+3DuX0aYq3bsVhtRKckIAhIoLC7dtxLFlC/0WLsJeVUVVYSFD1hMZVhYVszMpC\nazQyeMoUdK6KxmrnnnyS/S+95E5OvZ97jh5NLHDT6/V+H+ppVoKyWq1oNBoMF/hybC2RkZHk5+e7\nb+fn5zdY0JGamkpqaur55917b637dYA3rwYUGhpKRkYGAJVAQ/MqKIqCbtUqrKdPs2/2bACqOnUi\nIyODiuqZO6y5uc5urLvvZt8vv1xwm47iYgBKs7Lc266ptPqX2dm8PAqr7y+trATg2MGDnO7QAevO\nnc4E2rUrhcnJFGk0MGoUoddeS+WWLc4KoZ9/RhMczMHsbDTNKb0eOJDC6l/HAKSmEmA2o7/pJkpS\nUti7d69n66nu1gVgwgSCx40j2GZDYzRSBWQBWQ3sh0b164e5vBwaeE5V9XiU+fjxBvctQI8as6EX\nHjjg/EOjwZKdTdbGjRRu2EBp9flXVdUtMW1QECFXXUVldjYVp05Rcfo06HTEPf00HW+5hYpjxyjc\nsIGA2FjChg5FV2NMJDo6mjwP9r/l+HEM+fnYT5xAn5CANiwMnaIQduwY1j170HfrhqFfPzQBAZjM\nZtA43iIAACAASURBVOzZ2ejj4zlSVgb798OvfoXxwAGs27ezY/p0jCkplFb/oFCqqti9bh26Rr7I\nKlavxl5aij4hgQ6//z2aiAiCHQ5Mx4+DXk9mbi5Ud5EpQUEQEEDpgQPs/OYbSn75BXQ6sjQaTu7b\nBz17Ov9VK6o+htzHcGYmp2sUCdnNZiq++ILAcePQdepEUlJSo+9d8WefAVDZpw/7DhxAN3QoVd98\nw54XX8Q0frzzBG7XxLQAikLZJ59Q+cMPaIKCMD72WO3jNjAQunbl3AWOZSUsDE1YGJVnzlB55gwA\nxqFDCXjwQRSrFe2RIxTv3s36UaPcky+HPP44AUOGUPnTT87ehoQEfm7gnMnuo0YRmJhIxbFj9Hjh\nBUJuuMGjY6Wmix1fsRf6cdpMHiWopUuXkpKSQmJiIjt37uStt95Co9EwdepUklV25dGEhATOnDlD\nTk4OkZGRbNq0iaeeeqq1w/KIRqPBlJpK2ccfu7szdNVfcobLL3c/LmjiRHeJ7QXXFxoKBgNKSQlK\n9TxztTRSxQfn++/dlVXVXS/ux5lMmEaPxjR6tHOQWqdrtIqvqYzJySQ/+GCjXx6e0mi1Dc4P6A3a\n6pJdT4okFEXBUl2RGTF6NAVr13L2f/+Xoup9e/n8+Zi6dcNeXk5A587OyjS7naIff6QgPZ2oCRMI\nHTwYgMCePQn0wqkGuqgodDW6wjUaDfr4ePTx8bUfFxnZYJdS0D33YN27F+u2bVTVSL5UVzs2lKAU\nRaHyhx8AME2Y4N6HGq223nbBeSwak5KwbttG+bJloCjou3evfxzXfZ5rwtg6XXzWTZuo/OEHtEFB\nBE2a1OjzHcXFVO3f7+5eB2fhRuXatdgOH6Z07tzGN67X02HqVPTVpyo0hUavJ+Thh7Fu3Yr+iisw\n9u+PNjzceZ/JRMgTT1D82mvO5FQ9nZPlu+8IGDLE3b3X2BiVRq+n9zvvoFRWoq9eZ1vgUYLauHEj\nd911FwDLly/nySefJCgoiI8//lh1CUqn0/Hggw8yc+ZMHA4H1113Hd2acbC0loDhwyn/9FP3eIu+\n+iqcuu7d0ffu7UwMNSr5LkSj1aKNjsZx5gz23Nx6H5qGysNdlVBVGRkY+vfHumuXcwC9ThFBre1c\n5AujPXInqMLCi05KajObsZeWogsJoePEiRSsXUthdVda5I030qF/fwAMNRKBRqcjfORIwkeO9N2L\naAFdVBRBd9xB+b//jVJSgjY6Gn1CAtatW7Hn5NQqDXexHTiAPTsbTXg4xoEDPdqOcfBgZxLctQsA\nfZ3CjAY1MhuKaz7Ii1Wo2o4dA4cD/RVXuMdxdJ06Efb661i3bsW6ffv5i1vWoAkJIfjBBzE0sQCm\nJuOAAY2WmRsuv5zw2bPBZkMbHk7B73/vrNg7edKZUGk8QQHoAgOdLbk2xKMEVVlZSUBAACUlJZw7\nd44hQ4YANLmJ6C+DBg1ikIdjDWqjMZmchQKrV4NG457VQKPTEfbnPzd5fbrqBOXIy4MaCcpuNmOv\nntmhZoIyXX89lZs2Ublxo3Owt6oK/ZVX1vq1LUATEOAe+FZKSs4P0Degorr1ZOrRg5B+/TBERVGV\nn482KIiu1eNrbZHphhucx8nJkwTefrvzGAPsNcbRarKsWeN83ujRHpc3G/r3B63WXblZsyehMY1d\ncsP1o+9iM7K4Epi2+lpOLrroaAInTGiwyMFfapb3G4cOpXLNGio++wzH2bNoTCavnsivBh7VF8bG\nxrJhwwa+/fZb96BicXFxrUFg4T2m1FRndV5CQotbJ65KoprTtVi+/57C555znrVvMrlnTgDQ9+hB\nSHXFn2v+v4Dhw1sUQ3vlbkVdpJLP1b0X2KMHGq2WyF/9CoDYBx/E0EbOL2yIRq8n9Nln6fCHPxAw\nYoS727mhOeccRUXOMnWNhoDRoz3ehjYkBP0VV7hv6z1IUI1NdeQ6X4qLTRnmSmwqP0fIdN3/b+/O\nw5uq1sWPf3eSDpRSIC20lEFmoWgppXCYJ8GL13Mc0AM4HAHlKCAoCoii6PUyFQFBcOJqRRQFxEN/\nOIGAiBwoHpkKAjKUeSi0tAU6QYfs3x9pYtqmYReadqd5P8/jI9nZSVb33sm711rvWqsvgDUbEjC1\naVPtZkvXdAaeeuopPv30U0wmk33xwr1795aZASNujbFBA+rMmmVfS+mW3qsoQNnubvOTkqwj2QGf\njh2tgy5L/Ej6deqEZcgQa7u/jw++OmvG1QuD2UzhuXPWAFXUFOvMNdt4tqJ9wp96irr9+hGg5cdW\n5wx16uBb1FphKApQzmpQ1xMSoLAQn+joctfGfaOjKTh4EGN4uKZZO5wNlYA/a1A3ClC2wFZRfaru\nYmraFGOzZhQWDWFw1bznqTTPJDF9+vRi23r27MmdshSB22hJgtDCNkuDbfCgY60o0EXzkv+996LU\nrImhTh37khmiOK2JEvYmvqLmF4OvLzW19KV4GMdZu0v2y9nG8tzM8iV+PXqQ//vvpQZTl6mMJAmt\nTXyu5pbUG/8+fciuxgFKUxPf888/73T7Cy+8UKGFERXPFqBsTXz26ZNucPeuKIp1IKzGzmxvZChK\natDaxOfvopZVHSi1allXJM7N/XNaqCKWomV5DDeRQWaoWZOgiRPx695dWznKqkFpbOJTNcyMohe+\nXbui1KljnYHDA6dzuxFNZ8DZxJ05OTkYdDxFhrAq2cRnmyHd5DBGR9wcLX1QBVeuUJCRgaFGDXyr\n+aKfiqJgCA2l8NQpCi9eLDZRseXKFes+lZDiXNZUR1qb+DylDwqsE+TWiY21ThKg81khbobLMzB6\n9GjAOjDX9m+brKwsumu8oxFVRwkKAl9f1OxsLBkZ9umTquPdVmXTEqAc+5/0POdZRTHWr0/hqVPW\nRAmHGThupQZVbmVMdaQ5i8/JJMp6pmUCW0/lMkCNGzcOVVWZNWsW48aNK/ZcnTp13DJyWFQsRVEw\n1qtH4blz1tmZVRVjw4a67wD2BFoCVK6XNO/ZOEuUUC0W1KIalG0SVHe65RqULbB5QA2qunN5BiKK\nBtvFxcXh5zith/AohpAQa4CypaNK816F0FSDckgx9wbOljdXMzPBYkEJDKycGyMnfVBqYeGfM6do\nrUFJgKpyms6A0Whk48aNnDx5kmu2jsYiY8eOdUvBRMWxJUrkF83dZ/SSH0t3U2rVAqMRNSsLNS/P\naZNQXtH6RX4NG1Z28aqEscTqseDQvFcJtSdwPtWR6vC7pbWJzxOy+Ko7TQHq3Xff5dSpU3Ts2JHa\nlXSRiYpjH31eNBrf5CXNTe6mGAwY6tbFcukSlowMp0MDCoum1zG6WNm4OnHWxGdLkKiU/idwXoOy\nNe+B5iY+qUFVPU1nYO/evbz77rvUrMadcdWZwXH1U4fpk8Stu2GAKlory+gl3x2D2QwmE+qVK/YJ\nim01qMrI4IMyalDlCFCeliRRnWlKKwoJCSH/FlenFFXHcaYIY4MGXjm5q7vcqB/KXoPyksHOisHw\n5/RaRc18lZrBB85rUOVo4pMkCf3QdAZ69erFnDlzuOeee6hT4iK7o4zFu4R+ONagpP+pYt1oNglb\ngKrOqcAlGevXt86gn5KCqUkT1EoOUM6y+G6qBiUBqsppOgPrita5X758ebHtiqLw7rvvVnypRIVS\nAgPB3x+uXZP+pwp2oxqUxdbE5yU1KABjWBj5e/diKZreqNJrULfYxOdJUx1Vd5oC1Hvvvefucgg3\nUhQFY9EI/+o2HX9VczXdkVpYiOXaNVAUDB62Ds+tsA0CLzh3DnBIkqisLL5bbOLzlMlivYHmOmxB\nQQFHjx4lIyODbt262dPN/aU/wyPUfPxxCpKSii1dIG6drVZg+xF25JggUR2noSmLLUDZ1hur7BrU\nrTbxedJUR9WdpjNw+vRpZs+ejY+PD2lpaXTr1o2DBw/yyy+/yISxHsKnTRt8JDhVOFutwFmAsjXv\nedts8MaiMV+FycnWWmQVNfFxq1l8UoOqcpqy+D766COGDBnCggULMBWd/IiICA4dOuTWwgmhd0pR\ngLIlAjiyZ/B5UYIEWCcwNQQHQ34+hadOWWdw8PNDqaRmzhvVoCSLz3NoClBnz56lZ8+exbb5+/uT\nZ5s6RAgvpQQEgI8P6rVrqNevF3vO21LMHdlqUfn79wOVWHuCPwNLGX1QMg7Kc2gKUPXq1eP48ePF\ntiUlJREWFuaWQgnhKRRFKbOZr9ALM/hsbP1QeVUQoBQnS75LDcozaToDQ4YMITY2lgEDBlBQUEB8\nfDwbNmzgGRcrsgrhLQxBQdbZJK5csc9FB945BsrGVoMqOHoUqOQa1C1OdSTjoPRDUw2qY8eOTJky\nhatXrxIREUFqaioTJ06kffv27i6fELqnlJHJZ/HSPigAk229saLaSKXWoIxGUBRQVXttqTxNfDIO\nSj803yI0a9aMkSNHurMsQngkQxmJEl7dxFdirbjKGgNl5+NjTc7Iz7fOOO9Yg7JYnK4SbuNJS75X\nd5rOQGFhIdu2bePEiROlltuQZj7h7W7YB+WFNSjF3x9DvXpYUlOtjyuziQ9rP5Sal4ean4/i7188\nQEGZtShVVf/sg5IaVJXTFKAWLVrE6dOniYqKkuU2hCjBHqCuXi223d4H5YU1KLAmStgCVKX2QUGp\nsVBqiRvrMpv5HBIkvGlwtV5pClCJiYl88MEH1PCi6VqE0Mo2FspSoonPm/ugwJookb9nD1D5AUrx\n8UHlz4QHew3KaITCwjIz+SRBQl80JUk0btyYrKwsd5dFCI9k74OSNPNi7IkSVEENymGwrpqfb60Z\nGY1/LjVTVg1KEiR0RdNtwtixY/nwww9p3759qSa+3r17u6VgQniKsubj89aZJGxsY6EwGq0z6lci\nxaGJz9a8p9SoAYaie/KyalAyUayuaApQmzdv5tChQ2RnZ+PrMLpaURQJUMLrGYKCAGuAUlXV3nfh\n9QGqYUOM4eEY6tev/P4cxxpUUfOe4u9vbd7DxWBdGaSrK5rOwg8//MDs2bNp5FBlF0JYKf7+1kyx\na9dQc3Ot0x/xZxOftyZJKCYTtWfNso5JqoLPBsAxQNWo8WdfVFk1qKLp26QGpQ+a+qDq1KlDiMOy\n4UKI4hQn/VAWL04zt1EMhirJhnOc7qhYE5/RaN1BalAeQVOAuvfee1m0aBFHjhzh4sWLxf4TQjik\nmjtk8nnzZLFVzmG6I8cmPqUoQN0wi09qULqg6TYhLi4OgJ07d5Z6buXKlRVbIiE8UMnBuqqqen0T\nX1VSHJd9LwpG5apBSYDSBU0BSoKQEK6VyuTLy4PCQhRfXwzyY1f5HGtQRcugaAlQMs2Rvmhq4hNC\nuFayD8rWrOTN/U9VSXGWxVejxg2b+LCtcSc3Fbqg6Tbh0qVLrFq1ipMnT5aai++dd95xS8GE8CSl\nmvgkQFUtZ+Og/P2lBuVhNJ2Ft99+m/DwcAYPHlxsHJQQwqpkkoQ9QEn/U5Ww16BycorVoKQPyrNo\nClDnzp1j+vTpGAzSIiiEM2XVoCRBomqYmjUDIP/gQQzBwYC2Jj7J4tMXzQsWHjx40N1lEcJjlVy0\n0NasJE18VcMnKgoMBvL/+ANLWhqgMUnCNhefNPHpgqaz8OSTT/Laa68RGhpaai6+MWPGuKVgQngS\n23RH6tWrqBaLNPFVMUPNmpjatKHg4EHyi26uHfugykySkBqUrmgKUO+//z4Gg4GGDRtKH5QQTigm\nE0pgIGpWlvU/SZKocr4dO1Jw8CAUrZ7r2MQnSRKeQdNZ2L9/P4sXL5b1oIRwwVC7NoVZWdZJY219\nUBKgqoxvdDQ5n39ufyxJEp5HUx/UbbfdRmZmprvLIoRHM5jNABRevIhFmviqnDEkBONtt9kfOwao\nMpMkZLJYXdFUg2rXrh0zZsygT58+pfqg+vXr55aCCeFpjLfdRv7vv1N46pQ08emEb3Q0uadOAcXn\n4pPJYj2DprNw+PBhzGYz+/btK/WcBCghrExNmwJQcPIkSlFgkhpU1fLt2JHc+HigxEBdWyAqQfqg\n9EXTWXjjjTfcXQ4hPJ5jgDI1bw5IH1RVMzZpgl+PHuDraw06tiY+i8X5C2xp5pIMpguabxOysrLY\ntWsX6enpmM1mOnbsSGAlL+MshJ4Z6tWzLop3+TKWCxcAqUFVNUVRCHzmmT8faxwHJTUofdCUJHHk\nyBHGjRvHhg0bOHXqFBs3bmTcuHEcOXLE3eUTwmMoBoO9U77w/HlA+qB0R7L4PIqm24RPP/2UkSNH\n0r17d/u2hIQElixZwqxZs9xWOCE8jalpUwoOHbI/lgClL5qnOpIalC5oqkElJyfTtWvXYtu6dOnC\nhaJmDCGEla0fykaa+HRGsvg8iqYAFRYWRkJCQrFt27dvJzQ01C2FEsJTGUsEKEmS0BmtfVCSJKEL\nmm4Thg8fTmxsLGvXriUkJITU1FSSk5N5+eWX3V0+ITyKsUEDawZYXh4YDBj8/au6SMKBvYmvrDRz\nmSxWVzSdhdtvv51Fixaxe/duMjIy6NixI9HR0ZLFJ0QJisGAqUkTCpKSMAYEoChKVRdJOLLVoMpK\nM5dxULri8izk5eVx4cIFmjRpQmBgIL169bI/d/r0aXx9fWXyWCFKMN52GwVJSbIWlB5pbeKTLD5d\ncNkHtWbNGjZt2uT0uc2bN/PNN9+4pVBCeDJbooRk8OnPjbL4JM1cX1wGqISEBO677z6nz/31r39l\n27ZtbimUEJ7Mp00bUBT8Gjas6qKIkqQG5VFcNvHZZo1wxmw2k56e7pZCCeHJjGFh1ImNpWlUVFUX\nRZR0ozRzSZLQFZc1KH9/fy5duuT0uUuXLuHn5+eWQgnh6Yzh4TIGSoduOFBXkiR0xWWA6tChA8uX\nL3f63IoVK4iOjnZLoYQQwi1czGauquqfNShp4tMFl7cJQ4cO5dVXX2XSpEl07tyZunXrkpGRwW+/\n/UZubi7Tp0+/5QJs376dVatWce7cOWbOnEmLFi3sz8XHx7Np0yYMBgMjRowgqqjJJDExkSVLlmCx\nWLjrrrt44IEHAEhJSWHBggVkZmbSvHlzxo0bh0nuhIQQNq5mMy8stC4PbzD8OamsqFIua1B16tRh\n9uzZdOzYkcTERL799lsSExPp2LEjsbGx1KlT55YL0LhxYyZOnEjbtm2LbT979iwJCQm8/fbbvPrq\nq8TFxWGxWLBYLMTFxTFlyhTmz5/Ptm3bOHv2LADLli3j3nvvZdGiRdSsWbPMDEQhhHdyOZu5THOk\nOzc8E4GBgQwdOpShQ4e6pQCNGjVyun3Hjh1069YNHx8f6tevT1hYGElJSYB16iXbNEvdunVjx44d\nNGzYkAMHDvD8888D0KdPH1atWsXdd9/tlnILITyQLfg4CVCSwac/ur1VSE9Pp1WrVvbHjlmDwcHB\n9u3BwcEcPXqUzMxMAgICMBbdId0oy3Djxo1s3LgRgNjYWEJCQtzxZ9gZjUYiIyPd+hnVSY0aNTz+\neFX2IHaTyaTpOg4KCqqE0uhTek4Oe4GaNWqUusaup6SQAPhUg2uvpIq4FrVeXxWpUgLUtGnTuHz5\ncqntQ4cOpVOnTpVRhFL69+9P//797Y/LylasKEFBQezbt8+tn1GdREZGevzxalpi4lh3CwkJ0XQd\nnzx50v2F0an8U6cAyLpyhdzc3GLXWGFKCgAF4PHXXkkVcS3e6PoKDw+/5c8oqVIC1NSpU8v9GrPZ\nTFpamv2x45gsx+1paWmYzWZq1apFTk4OhYWFGI1Gl2O4hBBeykUflCoZfLqjabmNqhATE0NCQgL5\n+fmkpKSQnJxMy5YtadGiBcnJyaSkpFBQUEBCQgIxMTEoikK7du349ddfAetUTDExMVX8Vwgh9MQ2\nvsnpOCgZA6U7ms7EypUrnW738fHBbDYTFRV10xl9v/32G5988glXr14lNjaWpk2b8uqrr9K4cWO6\ndu3Kiy++iMFg4KmnnsJgsMbTJ598khkzZmCxWOjbty+NGzcG4LHHHmPBggWsWLGCZs2a0a9fv5sq\nkxCimir6DZEalGfQFKCSk5P57bffaNmyJcHBwaSlpZGUlETHjh3ZtWsXcXFxTJgwwT5OqTw6d+5M\n586dnT43aNAgBg0aVGp7dHS000HCoaGhsgS9EKJsGtLMJYtPPzQFKIvFwvjx44sFkh07drB161Zm\nzJjB5s2b+eKLL24qQAkhRGVx1cRnTzOXJj7d0NQHtXfv3lL9ObbBuwC9evUipSgDRgghdMtFE59M\nc6Q/mgJUWFgY69evL7Zt/fr19sGyV69elYULhRD65yqLT5IkdEfTmXjmmWeYN28ea9assQ+ANRgM\nTJgwAYDz588zZMgQtxZUCCFulcssPqlB6Y6mANW8eXPeeecdjh49SkZGBnXq1KF169b2iVgjIiKI\niIhwa0GFEOKWaRgHJUkS+nFT46AiIiIoKCjg2rVrFV0eIYRwH1d9UDJZrO5oOhOnT59m9uzZ+Pj4\nkJaWRrdu3Th48CC//PILL7zwgrvLKIQQFcLVgoVSg9IfTTWojz76iCFDhrBgwYJizXqHDh1ya+GE\nEKJCuZjNXGpQ+qMpQJ09e5aePXsW2+bv709eXp5bCiWEEG7h0MSnqmqxp6QGpT+aAlS9evU4fvx4\nsW1JSUmEhYW5pVBCCOEOisEAigKUbuaTqY70R1NddsiQIcTGxjJgwAAKCgqIj49nw4YNPPPMM+4u\nnxBCVCyTCfLz7eOe7GQclO5oqkF17NiRKVOmcPXqVSIiIkhNTWXixIm0b9/e3eUTQoiKZUuUKBGg\npAalP5pvFZo1a8bIkSPdWRYhhHA7xWBAxUkmn8zFpzsuz8TXX399wzd4+OGHK6wwQgjhdmXVoGQ2\nc91xGaCSk5PLfC4xMZGsrCwJUEIIz1JUQ7KU7IOSJj7dcRmgxo0bV2rbrl27WLlyJUFBQdLkJ4Tw\nOPYmPltAKiKTxeqP5jOxf/9+VqxYwZUrV3j44Yfp2bOnfYVbIYTwGGXNJmGrUUkNSjduGKCOHDnC\n8uXLSU5OZtCgQfTr188+m4QQQnga+4zmJfugiiYekD4o/XAZaWJjYzl69Cj3338/kydPtq/5ZLFY\n7PtILUoI4VHKSJKQqY70x+WZ2LNnDwBffPEFX3zxhdN9Vq5cWfGlEkIIdym6qS41k4Rk8emOywD1\n7rvvVlY5hBCiUthmNC8zi09qULrh8kzUq1evssohhBCVw7EPyiEYSRaf/kgHkhDCu9j6oEqkmduX\n4JAApRsSoIQQXkW5UR+UBCjdkAAlhPAuZfVB2QJW0fOi6pU7QMkqukIIj1bWOCipQelOuQPUrFmz\n3FEOIYSoFGU18dnHQUkNSjfKHaBKLpMshBAexclAXVVVZaCuDpU7QEnquRDCozlr4rPVpgwGew1L\nVL1yn4l58+a5oxxCCFEp7AN1HdPMJcVcl+RWQQjhXZz0QUmChD5JgBJCeBdnk8VKgoQuSYASQngV\nZ8ttqNLEp0sSoIQQ3sVZmrmtiU9qULqiKUB99913nDx5ErAuYDh69GieffZZjhw54s6yCSFExXM2\nk4TUoHRJU4D6/vvvqV+/PgDLly/nr3/9Kw899BCffvqpO8smhBAVzmkTnyRJ6JKmAJWTk0NAQAC5\nubmcPHmSe+65h379+nH+/Hl3l08IISqWqyQJCVC6oulsBAcHc/jwYc6cOUPbtm0xGAzk5OTIcu9C\nCI9jn+rIWQ1K+qB0RVOAevzxx3n77bcxmUxMmDABgN27d9OyZUu3Fk4IISqc1KA8hqazER0dzeLF\ni4tt69KlC126dHFLoYQQwm2KgpBF+qB0T/PZSE5OZtu2baSnp2M2m+nevTsNGjRwZ9mEEKLCOWvi\nk7Wg9ElTJ9LOnTt5+eWXOXfuHIGBgZw/f56XX36ZnTt3urt8QghRsWxNfE7GQUkTn75oOhvLly9n\n0qRJ3HHHHfZtBw4c4JNPPiEmJsZthRNCiArnYiYJSZLQF001qPT0dNq2bVtsW5s2bUhLS3NLoYQQ\nwl0USZLwGJoCVNOmTfn222+Lbfvuu+9o2rSpO8okhBDu4yrNXAKUrmg6G0899RRvvfUWa9euJTg4\nmLS0NHx9fZk8ebK7yyeEEBXLSRafTHWkT5rORqNGjZg/fz5Hjx61Z/G1bNkSk5xMIYSHcdbEJzUo\nfXJ5NlRV5aeffuL06dM0b96cPn36VFKxhBDCTRya+BTbNumD0iWXfVCff/45X331FZcvX+bLL7/k\nq6++qqxyCSGEe7hKM5csPl1xebuwfft2/ud//ofw8HDOnj3LW2+9xeDBgyurbEIIUeEUhz4o2x26\nNPHpk8saVE5ODuHh4YC1HyorK6tSCiWEEG7jLM1cZpLQpRv2QaWkpKCqKgAWi6XYY4DQ0FD3llAI\nISqSpJl7DJdn4/r164wbN67YtpKPV65cWfGlEkIIN3G2YKGkmeuTy7MhwUcIUe24SjOXJj5dkRUH\nhRBexRaELDLVke5JgBJCeBcnaeaqBChdkgAlhPAuLrL4JElCXyRACSG8isxm7jk0n43U1FTq1atX\n4QX4/PPP2bVrFyaTidDQUMaMGUPNmjUBiI+PZ9OmTRgMBkaMGEFUVBQAiYmJLFmyBIvFwl133cUD\nDzwAQEpKCgsWLCAzM5PmzZszbtw4mS9QCFGcLc3cSROfJEnoi+Ya1EsvvQTADz/8UKEFiIyMZN68\necydO5cGDRoQHx8PwNmzZ0lISODtt9/m1VdfJS4uDovFgsViIS4ujilTpjB//ny2bdvG2bNnAVi2\nbBn33nsvixYtombNmmzatKlCyyqEqAYkzdxjuAxQkydPZvHixaxfvx6LxQLAqlWrKrQA7du3x1h0\n19K6dWvS09MB2LFjB926dcPHx4f69esTFhZGUlISSUlJhIWFERoaislkolu3buzYsQNVVTlw4ABd\nunQBoE+fPuzYsaNCyyqE8Hz2LL78fPs2qUHpk8sANWHCBNq3b09qaip5eXlMnjyZgoIC9u/f7M1N\nHgAAHPpJREFUT05OToUXZtOmTfZmvPT0dIKDg+3Pmc1m0tPTS20PDg4mPT2dzMxMAgIC7MHOtr8Q\nQhQjfVAew+XZsFgsdOnShS5durBx40YmTZrE+PHjWbduHSdOnMBoNLJw4cIbfsi0adO4fPlyqe1D\nhw6lU6dOAKxevRqj0UjPnj1v8k8pn40bN7Jx40YAYmNjCQkJcevnGY1GIiMj3foZ1UmNGjU8/nj5\n+vpW6ueZTCZN13FQUFAllEa/1MJCNhf933aN7fT1JRNo1aYNQXfeWZXFc4uKuBa1Xl8VyWWAWrhw\nIZcuXaJRo0bk5+eTnZ2Nj48PEydOBNA8eezUqVNdPr9582Z27drF66+/jqJYV2gxm82kpaXZ97Et\nlAgU256WlobZbKZWrVrk5ORQWFiI0Wgstr8z/fv3p3///vbHly5d0vS33KygoCD27dvn1s+oTiIj\nIz3+eDVt2rRSPy8kJETTdXzy5En3F0bvFAVUlb2JiSgGAzmZmQAknTyJyWGu0eqiIq7FG11ftonF\nK5LLJr6ZM2fywQcf8I9//ANFUfjkk0+4du0aH330ERs3biQlJeWWC5CYmMiaNWuYPHkyfn5+9u0x\nMTEkJCSQn59PSkoKycnJtGzZkhYtWpCcnExKSgoFBQUkJCQQExODoii0a9eOX3/9FbAGvZiYmFsu\nnxCiGrL1Ndma9mQ9KF26YYOr0WikWbNmmEwm3nzzTYYPH067du04fvw427dvv2Ht6Ebi4uIoKChg\n2rRpALRq1Yqnn36axo0b07VrV1588UUMBgNPPfUUhqL00CeffJIZM2ZgsVjo27cvjRs3BuCxxx5j\nwYIFrFixgmbNmtGvX79bKpsQopoq+i2hKPlLZjPXJ81nY9iwYQAoikK3bt3o1q1bhRRg0aJFZT43\naNAgBg0aVGp7dHQ00dHRpbaHhoYya9asCimXEKL6Ukwm1Lw81MJC67LvkmauS5rHQfXp0wdwHVCE\nEMIj2JryilLNpQalT+We6igwMNAd5RBCiEqjFPV3q3l51g2yoq4uyVx8QgivoxSlXdsClNSg9EkC\nlBDC+9gyhm01KMni0yUJUEIIr2OvQV2/jqqqMpOETkmAEkJ4nWJNfLb+J4MBxSA/iXoiZ0MI4XWK\nJUlIirluSYASQngf29x0169LgoSOSYASQnidYk18kiChWxKghBBex97Ed/36nyvrSg1KdyRACSG8\njrMalCxWqD8SoIQQ3sfWByVJEromAUoI4XWKNfFJkoRuSYASQngdp0kSEqB0RwKUEMLrOI6DUqUP\nSrckQAkhvI/DOCipQemXBCghhNdxbOKTPij9kgAlhPA6jkkSshaUfkmAEkJ4H0mS8AgSoIQQXkdx\nGAdlm0lCkiT0RwKUEMLrFGvikxqUbkmAEkJ4HXuSRH6+JEnomAQoIYT3sS357pgkIQFKdyRACSG8\njuLjAxSlmefnW7dJgNIdCVBCCK+jmEzWgGSxWGtRIGnmOiQBSgjhlYw1agBgycmxbpAalO5IgBJC\neCWDvz8AalGAkiY+/ZEAJYTwSsYSAUqa+PRHApQQwitJDUr/JEAJIbxSqRqUBCjdkQAlhPBKthqU\nLUlCpjrSHwlQQgivJDUo/ZMAJYTwSoaiNHMJUPolAUoI4ZVsNShkJgndkgAlhPBKtj4oOwlQuiMB\nSgjhlYwlApQkSeiPBCghhFeSGpT+SYASQnglqUHpnwQoIYRXKhmgpAalPxKghBBeyZZmbicBSnck\nQAkhvFKpJj4JULojAUoI4ZVKJUlIH5TuSIASQnglqUHpnwQoIYRXkjRz/ZMAJYTwSsYSSRJSg9If\nCVBCCK8kfVD6JwFKCOGVZByU/kmAEkJ4pZI1KJlJQn8kQAkhvJLUoPRPApQQwisZ/PwcHhhQDPJz\nqDdyRoQQXkkxGMDX1/pAak+6JAFKCOG1lKIAJSnm+iQBSgjhtRRbM58kSOiSBCghhPeSJj5dkwAl\nhPBa9iY+qUHpkgQoIYTXsjfxSQ1KlyRACSG8liRJ6JsEKCGE97L1QUkTny5JgBJCeC1bE5/UoPSp\nys/KihUr2LlzJ4qiULt2bcaMGYPZbEZVVZYsWcKePXvw8/NjzJgxNG/eHIDNmzezevVqAAYNGkSf\nPn0AOH78OO+99x55eXl06NCBESNGoChKVf1pQgidUySLT9eqvAZ13333MXfuXObMmUN0dDRff/01\nAHv27OHChQssXLiQp59+mo8//hiArKwsvv76a2bOnMnMmTP5+uuvycrKAuCjjz7imWeeYeHChVy4\ncIHExMQq+7uEEPonfVD6VuUBKiAgwP7v69ev22s8O3fupFevXiiKQuvWrcnOziYjI4PExEQiIyMJ\nDAwkMDCQyMhIEhMTycjIIDc3l9atW6MoCr169WLHjh1V9WfdlJ49ezJs2DD7f8nJyfzxxx/Mnz9f\n83tkZmbaa5fO9O/fv9jj77//nnnz5rl8T8d9MjIy+Oc//8nw4cPlBqAaW7p0KY899hhPPPEEw4YN\n48CBA5Veht27dzNp0iRN26dPn87PP//s8v0c90lMTKRTp06M+te/uG6xSB+UTunitmH58uVs2bKF\ngIAA3njjDQDS09MJCQmx7xMcHEx6ejrp6ekEBwfbt5vNZqfbbft7Ej8/P5YuXVpsW4MGDWjbtm2p\nfQsKCjA5uevLyspi9erVDBo0yC1l3LVrF82bN+eVV15xy/uLqrd//362bdvGkiVL8PX15fLly+Tn\n51d1sSrU+vXrmTBhAk0PHyZ39Wpp4tOpSjkr06ZN4/Lly6W2Dx06lE6dOvHII4/wyCOPEB8fz7p1\n6xg8eLDby7Rx40Y2btwIQGxsbLFg6A5Go5HIyEiX+xgMhlL7/Pvf/+add96xN2ueOHGCEydO0Lhx\nY1566SVGjx5NXl4eFouFZcuWsXz5cpKTkxk1ahR9+/ZlxowZLj9j3759XLp0icjISH744QfmzJlD\nXl4eZrOZuLg46tevb98HrM2oubm5jBo1ip9++okaJZbNrig1atS44fHSO19b/0YlMZlMmq7joKAg\nl8/brq+YmJhSz+3Zs4dXXnmF7OxsgoOD+fDDDwkLC+PYsWOMHz+eS5cuYTQa+eyzz2jWrBmvvfYa\nGzZsQFEUXnrpJR566CH+/e9/M3PmTIKDgzl48CAdOnTg448/RlEUNmzYwOTJkwkICKBr167UqlWr\n1HVw5cqVUtvr1q3LbbfdRmRkJLGxsaxdu5bc3Fz+8pe/sHDhQhRFse+ze/dutmzZwt69e2kXEsIz\nQJ3gYO7w8OvNlYq4FrVeXxWpUgLU1KlTNe3Xs2dPZs2axeDBgzGbzfYfRYC0tDTMZjNms5mDBw/a\nt6enpxMREYHZbCYtLa3U/mXp379/seYux89yh6CgIPbt2+dyn9zcXDp06ABAeHg4s2bN4tixY2Rm\nZrJv3z4uXrzInj17+OCDD/Dz82P27Nnce++9/Nd//Rf5+flkZGTwyCOPsHv3bj788EOAUp/p+Blg\nbRLs3r07+/btIygoiAULFqAoCt988w2vvvoq48aN48yZM/bj88QTT3Do0CEmTJjA0aNHK/IQFRMZ\nGXnD46V3TZs2rdTPCwkJ0XQdnzx50uXzoaGhJCUlERERQUxMDHfddRcdOnSgoKCAZ599ltjYWOrW\nrcvGjRsZP348U6ZM4Z///CePP/44vXv35vr161y6dIlvv/2WhIQEFi9ezJUrVxg5ciR169bl9OnT\n7Nmzh2XLlhESEsKoUaNYtmwZbdq0YdSoUSxcuJBGjRrx+uuvc+3atVLXwbFjx9i6dWux6/jixYtE\nRESwb98+evTowX//938D8L//+7988MEH9OjRg4yMDE6dOkXfvn3p0qULjz76KOHHj5O9dClXsrI8\n/npzpSKuxRtdX+Hh4bf8GSVVeb02OTmZBg0aALBjxw77HxkTE8O6devo3r07R48eJSAggLp16xIV\nFcXy5cvtiRF79+7l0UcfJTAwkBo1anDkyBFatWrFli1bGDhwYJX9XTfDWRNfST169MCvKDX2jjvu\nYOnSpaSmptK7d28aN25c7s/4/vvvOXToEACpqam8/vrrpKWlkZ+f75YLTuhfQEAAn3zyCXv37mX3\n7t28/vrrjBo1irZt23L8+HHGjx8PgMViITg4mOzsbPs1CNivz3379jFgwACMRiNms5moqCj++OMP\natasSdu2balfvz4ArVq14sKFC9SoUYMGDRrYr+O7776bb775xmkZ27dvz5w5c+yPp0+fbv/3rl27\n+PLLL7l27RpXr16lWbNm9OjRw+n7GIpuYg116tzKIRNuUuUB6osvviA5ORlFUQgJCeHpp58GoEOH\nDuzevZvnnnsOX19fxowZA0BgYCAPPfSQvQ/k4YcfJjAwEICRI0fy/vvvk5eXR1RUVLE7rOrC32EV\n0LvvvpuIiAi2b9/OxIkTeemll24pqMyfP58hQ4bQs2dPdu/ezSeffFIRRRYeyGg0Eh0dTXR0NC1a\ntGDt2rW0adOGZs2a8X//93/F9s3Ozi73+zs2ORkMBgoKCm65zGBNtJo3bx5xcXGEhoYSFxdHXl5e\nmfv7REVRa9IkTK1aVcjni4pV5QFq4sSJTrcrisLIkSOdPtevXz/69etXanuLFi1umJFWnZw7d46G\nDRvy97//nYsXL5KUlETLli3Jycm5qffLysqiXr16AKxdu7Yiiyo8yKlTpzAYDPaazNGjRwkNDaVJ\nkyZcvnyZ/fv3c8cdd1BQUMDp06dp3rw59erVY8uWLfTq1cveJ9q+fXvWrFnDPffcw9WrV0lMTOTZ\nZ5/l1KlTTj/3tttu48KFC5w9e5ZGjRrZ+4jLwxaM6tSpQ05ODj///DN9+/Ytc3/FYMC3Gvc9eboq\nD1Di5m3atIl169ZhMpkIDg7miSeeICgoiMjISB5//HG6dOnC2LFjNb/fU089xdSpU6lVqxbR0dEk\nJye7sfRCr3Jzc5k/fz5ZWVkYjUYaNmzI5MmT8fHxYfr06SxYsIDs7GwKCgoYMmQIzZs35/XXX+et\nt97i448/xmQyMW3aNHr37s3+/fsZNmwYiqIwZswYgoODywxQfn5+vPTSS0yaNAl/f3/at29f7put\nWrVqcd999/H4448THBzsNANWeA5FVVW1qguhB+fPn3fr+2tJkhB/kiSJ8quoJAlvUR2uMa08NUmi\nygfqCiGEEM5IgBJCCKFLEqCEEELokgQoIYQQuiQBSgghhC5JgBJCCKFLEqCEEELokgQoIYQQuiQB\nSgghhC5JgBJCCKFLMtWREEIIXZIaVCV5+eWXq7oIHkWOV/nJMSsfOV7lUxXHSwKUEEIIXZIAJYQQ\nQpckQFWS/v37V3URPIocr/KTY1Y+crzKpyqOlyRJCCGE0CWpQQkhhNAlWfLdiffff5/du3dTu3Zt\n5s2bB8D8+fPtq+7m5OQQEBDAnDlzir0uLy+PN954g4KCAgoLC+nSpQuDBw8GICUlhQULFpCZmUnz\n5s0ZN24cJlPpwx8fH8+mTZswGAyMGDGCqKgoABITE1myZAkWi4W77rqLBx54wJ2HoNycHbOTJ0/y\n0UcfkZeXh9FoZOTIkbRs2bLUazdv3szq1asBGDRoEH369AHg+PHjvPfee+Tl5dGhQwdGjBiBoijF\nXquqKkuWLGHPnj34+fkxZswYmjdv7vJ99eBmj1dqaipz587FYrFQWFjIwIEDufvuuwHvPV7Xrl2j\nXr16PPfccwQEBJR6bVnfner8nbzZ46W73zBVlHLgwAH12LFj6osvvuj0+aVLl6qrVq0qtd1isai5\nubmqqqpqfn6++sorr6iHDx9WVVVV582bp27dulVVVVVdvHix+uOPP5Z6/ZkzZ9SJEyeqeXl56sWL\nF9WxY8eqhYWFamFhoTp27Fj1woULan5+vjpx4kT1zJkzFfXnVghnx2zatGnq7t27VVVV1V27dqlv\nvPFGqddlZmaqzz77rJqZmVns36qqqi+//LJ6+PBh1WKxqDNmzLC/l6Ndu3apM2bMUC0Wi3r48GH1\nlVdeueH76sHNHq/8/Hw1Ly9PVVVVzc3NVceMGaOmpaWpqup9x+vll19WDxw4oKqqqv7000/q8uXL\nS73O1XenOn8nb/Z46e03TJr4nIiIiCAwMNDpc6qqsn37drp3717qOUVR8Pf3B6CwsJDCwkIURUFV\nVQ4cOECXLl0A6NOnDzt27Cj1+h07dtCtWzd8fHyoX78+YWFhJCUlkZSURFhYGKGhoZhMJrp16+b0\n9VXJ2TFTFIXc3FzAWuusW7duqdclJiYSGRlJYGAggYGBREZGkpiYSEZGBrm5ubRu3RpFUejVq5fT\nv3nnzp306tULRVFo3bo12dnZZGRklPm+enGzx8tkMuHj4wNAfn4+FosFwCuP1/nz52nbti0AkZGR\n/Oc//yn1urK+O9X9O3mzx0tvv2ESoMrpjz/+oHbt2jRo0ACA9PR0Zs2aZX/eYrEwadIkRo4cyZ13\n3kmrVq3IzMwkICAAo9EIgNlsJj09HbD+YKxcudL+XsHBwfb3su1XcntwcLD99Xo2bNgwPv/8c0aP\nHs3nn3/Oo48+CsCxY8f48MMPgZv7m9evX8/69evtrw8JCSm1X1nvq2dajhfApUuXmDhxIqNHj+b+\n+++3/23edrwaN25s/5H79ddfSUtLA4p/J8s6Lt74ndRyvEBfv2HSB1VO27ZtK1Z7MpvNvPLKK/bH\nBoOBOXPmkJ2dzdy5czl9+jR16tQp8/1iYmKIiYlxa5mryvr16xk2bBhdunQhISGBDz/8kKlTp9Ki\nRQtatGhx0+9r63OpbrQer5CQEObOnUt6ejpz5syx39WWpboer9GjR7NkyRL+9a9/ERMTY+8PKfmd\nLK/q+p3Uerz09BsmNahyKCws5LfffqNbt2433LdmzZq0a9eOxMREatWqRU5ODoWFhYD1LsNsNpd6\njdlstt/VOO5XcntaWprT1+vNL7/8wl/+8hcAunbtSlJSUql9bvVvNpvNXLp0qdR+Zb2vnmk5Xo7M\nZjONGzfm0KFDXnm8GjZsyGuvvcbs2bPp3r07oaGhpfYp67h443dSy/FypIffMAlQ5fD7778THh5e\nrKrq6OrVq2RnZwPWbJh9+/bRsGFDFEWhXbt2/Prrr4A1W8rZHUdMTAwJCQnk5+eTkpJCcnIyLVu2\npEWLFiQnJ5OSkkJBQQEJCQkecYdnNps5ePAgAPv37ycsLKzUPlFRUezdu5esrCyysrLYu3cvUVFR\n1K1blxo1anDkyBFUVWXLli1lHrMtW7agqipHjhwhICCAunXrlvm+eqbleKWlpZGXlwdAVlYWhw8f\nJjw83CuP15UrVwBrk9Tq1asZMGBAqX3K+u5443dSy/HS22+YDNR1YsGCBRw8eJDMzExq167N4MGD\n6devH++99x6tWrUq1mSSnp7O4sWLeeWVVzh16hTvvfceFosFVVXp2rUrDz/8MAAXL15kwYIFZGVl\n0axZM8aNG4ePjw87d+7k2LFjDBkyBIDVq1fz888/YzAYGD58OB06dABg9+7dLF26FIvFQt++fRk0\naFDlHxgXnB2z8PBwe1qpj48PI0eOpHnz5hw7dowNGzYwatQoADZt2kR8fDxgTW/u27cvYO17ef/9\n98nLyyMqKoonn3wSRVHs/Sl33303qqoSFxfH3r178fX1ZcyYMfbmsLLeVw9u9njt27ePzz77zN5x\nPXDgQPsIf287XteuXePHH38EoHPnzjz66KMoilLsOwllf3eq83fyZo+X3n7DJEAJIYTQJWniE0II\noUsSoIQQQuiSBCghhBC6JAFKCCGELkmAEkIIoUsSoIQQQuiSBCjh9VavXl1srjt3mzp1KidOnKi0\nz6sKa9euZdmyZVVdDOHhZC4+Ue394x//sP87Ly8Pk8mEwWC9N3v66acrdYDlzp078ff3p1mzZvZt\nycnJrFy5kt9//52CggJq165NVFQU999/P8HBwRw4cIA333yTTp06MWnSJPvrTp48yUsvvURERARj\nx47lhRdesD93/fp1/Pz87I+nTJlin8n6+eefZ/LkycTHx7N161ZMJhOKotCgQQOGDRtGREQEAAUF\nBXz55ZckJCSQnZ1NUFAQnTp1Yvjw4Tc8pnfddRfPPfccf/vb36hdu7Z7Dqao9iRAiWrv888/t//7\n2Wef5ZlnniEyMrJKyrJhwwZ69eplf3zhwgWmTJlCnz59eOuttwgODubKlSts3bqVQ4cO2ScmDgoK\n4siRI2RmZlKrVi3AOnefbVb9kJCQYn/n4MGDmTNnTqnpki5cuIDFYiE8PByA+++/n6FDh6KqKps2\nbWLu3Ll8/PHHGAwG4uPjOXbsGDNnzqRu3bqkpqbyxx9/ANqOaVRUFL/88gv33XdfRR0+4WWkiU94\nva+++oqFCxcC1lVDBw8ezM8//8zo0aMZMWIE69evJykpiYkTJzJ8+HDi4uKKvX7Tpk288MILjBgx\nghkzZpCamur0cwoKCti/f7+9hmL77Ntvv51hw4bZ53isXbs29957b7FZ800mE506dWLbtm2AdT61\nhIQEevbsWa6/dffu3fapZxwpikKPHj3Iysri8uXLgHXqpM6dO2M2m1EUhfr169O7d2/Nn9WuXTv2\n7NlTrvIJ4UgClBBOHD16lHfeeYfx48ezdOlSVq9ezdSpU3n77bfZvn27fVLXHTt2EB8fz4QJE/j4\n449p06YN77zzjtP3TE5OxmAwFJts+Pfff7/hchk2vXv3ZsuWLYB1occmTZo4XdTQlT179hAdHV1q\nu8Vi4ZdffqF+/fr2pRVatWrFd999x48//sjp06cp76xoDRs25OTJk+V6jRCOpIlPCCcefvhhfH19\nad++PX5+fvTo0cPel9KmTRtOnDhBREQEGzZs4MEHH6RRo0YAPPjgg8THx5Oamkq9evWKvWd2drZ9\ntVKbzMzMYmvtrFu3jhUrVlBYWEj37t3tE+oC3H777WRlZXH+/Hm2bNlCr1697DOba3H9+nWOHTtG\nu3bt7Nu+/fZb1q1bR35+PgCjRo2y9yU9+OCD1KxZk61bt7J06VJq1arFI488Qp8+fTR9Xo0aNcjJ\nydFcPiFKkgAlhBOOHfu+vr6lHl+7dg2A1NRUlixZwmeffWZ/XlVV0tPTSwWowMBA++tsatWqRUZG\nhv3xwIEDGThwICtWrCi2fo5Nr169WLduHQcOHGD06NFs3bpV89/0+++/07p1a/uS8QB/+9vf7H1Q\nZ86cYcaMGQQGBtKhQwcMBoO9PHl5eWzatIkPPviAli1b2gOyK7m5uQQEBGgunxAlSYAS4haEhIQw\naNAgTX1BYWFh9uBlW6ztjjvu4D//+Y/mpS169erFuHHj6N27d7EsPS3Kat4Dax9UkyZNuP322532\nU/n6+jJw4EBWrVrF2bNnNQWoc+fO0bRp03KVUQhH0gclxC0YMGAA/+///T/OnDkDQE5ODtu3b3e6\nr8lk4s4777T3XwH8/e9/59ChQyxdupT09HTAumjc2bNnnb5H/fr1efPNNxk6dGi5y5qYmFhmgAJr\nQDl06BCNGzcG4Pvvv+fAgQPk5eVRWFjI5s2byc3NLZYi78rBgwd1v+ih0DepQQlxCzp37sy1a9dY\nsGABly5dIiAggDvvvJOuXbs63X/AgAGsW7eOHj16ABAeHs7MmTNZsWIFkyZNIj8/n7p169K+ffsy\n07PbtGlT7nKePn0af39/QkJCim1fs2YN33//PWBtguzTp499AUQ/Pz8+++wzLly4YB8nNWHChBsu\nFQ7WsVF79uwhNja23GUVwkYWLBSikk2dOpUnn3xSc02kIqxZs4bMzEwef/zxSvm8tWvXkpaWVmmf\nJ6onCVBCeIGEhASaNGmiqe9ICL2QACWEEEKXJElCCCGELkmAEkIIoUsSoIQQQuiSBCghhBC6JAFK\nCCGELkmAEkIIoUv/H0TN6ZbuzK81AAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7fa6597cfe48>" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Number of comments\n", "\n", "# Get number of comments per minute\n", "commentnumber = df.groupby(pd.TimeGrouper(freq='1min')).count()\n", "# Plot weighted figure\n", "fig,ax,axtop = plot_sentiment_figure(commentnumber,match_events,opposition)\n", "ax.set_ylabel('Comments per minute')\n", "ax.set_ylim([0,ax.get_ylim()[1]])\n", "fig.tight_layout()\n", "# Save\n", "fig.savefig('./figures/numberofcomments_' + analysis_name + '.png',dpi=300)\n", "fig.savefig('./figures/numberofcomments_' + analysis_name + '.pdf',dpi=300)" ] } ], "metadata": {} } ] }
mit
vnpy/vnpy
examples/cta_backtesting/backtesting_demo.ipynb
1
2421
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#%%\n", "from vnpy.trader.optimize import OptimizationSetting\n", "from vnpy_ctastrategy.backtesting import BacktestingEngine\n", "from vnpy_ctastrategy.strategies.atr_rsi_strategy import (\n", " AtrRsiStrategy,\n", ")\n", "from datetime import datetime" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#%%\n", "engine = BacktestingEngine()\n", "engine.set_parameters(\n", " vt_symbol=\"IF888.CFFEX\",\n", " interval=\"1m\",\n", " start=datetime(2019, 1, 1),\n", " end=datetime(2019, 4, 30),\n", " rate=0.3/10000,\n", " slippage=0.2,\n", " size=300,\n", " pricetick=0.2,\n", " capital=1_000_000,\n", ")\n", "engine.add_strategy(AtrRsiStrategy, {})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "#%%\n", "engine.load_data()\n", "engine.run_backtesting()\n", "df = engine.calculate_result()\n", "engine.calculate_statistics()\n", "engine.show_chart()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "setting = OptimizationSetting()\n", "setting.set_target(\"sharpe_ratio\")\n", "setting.add_parameter(\"atr_length\", 25, 27, 1)\n", "setting.add_parameter(\"atr_ma_length\", 10, 30, 10)\n", "\n", "engine.run_ga_optimization(setting)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "engine.run_bf_optimization(setting)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ledell/useR-machine-learning-tutorial
generalized-linear-models.ipynb
1
218499
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Generalized Linear Models\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* * *\n", "![Alt text](./images/linear_regression.png \"Linear Regression Model\")\n", "* * *\n", "Image Source: Wikipedia" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "\n", "[Linear Models](https://en.wikipedia.org/wiki/Linear_regression) are one of the oldest and most well known statistical prediction algorithms which nowadays is often categorized as a \"machine learning algorithm.\" [Generalized Linear Models](https://en.wikipedia.org/wiki/Generalized_linear_model) (GLMs) are are a framework for modeling a response variable $y$ that is bounded or discrete. Generalized linear models allow for an arbitrary link function $g$ that relates the mean of the response variable to the predictors, i.e. $E(y) = g(β′x)$. The link function is often related to the distribution of the response, and in particular it typically has the effect of transforming between, $(-\\infty ,\\infty )$, the range of the linear predictor, and the range of the response variable (e.g. $[0,1]$). [1]\n", "\n", "Therefore, GLMs allow for response variables that have error distribution models other than a normal distribution. Some common examples of GLMs are:\n", "- [Poisson regression](https://en.wikipedia.org/wiki/Poisson_regression) for count data.\n", "- [Logistic regression](https://en.wikipedia.org/wiki/Logistic_regression) and [probit regression](https://en.wikipedia.org/wiki/Probit_regression) for binary data.\n", "- [Multinomial logistic regression](https://en.wikipedia.org/wiki/Multinomial_logistic_regression) and [multinomial probit](https://en.wikipedia.org/wiki/Multinomial_probit) regression for categorical data.\n", "- [Ordered probit](https://en.wikipedia.org/wiki/Ordered_probit) regression for ordinal data.\n", "\n", "\n", "\n", "## Linear Models\n", "\n", "In a linear model, given a vector of inputs, $X^T = (X_1, X_2, ..., X_p)$, we predict the output $Y$ via the model:\n", "\n", "$$\\hat{Y} = \\hat{\\beta}_0 + \\sum_{j=1}^p X_j \\hat{\\beta}_j$$\n", "\n", "The term $\\hat{\\beta}_0$ is the intercept, also known as the *bias* in machine learning. Often it is convenient to include the constant variable $1$ in $X$, include $\\beta_0$ in the vector of coefficients $\\hat{\\beta}$, and then write the linear model in vector form as an inner product, \n", "\n", "$$\\hat{Y} = X^T\\hat{\\beta},$$\n", "\n", "where $X^T$ denotes the transpose of the design matrix. We will review the case where $Y$ is a scalar, however, in general $Y$ can have more than one dimension. Viewed as a function over the $p$-dimensional input space, $f(X) = X^T\\beta$ is linear, and the [gradient](https://en.wikipedia.org/wiki/Gradient), $f′(X) = \\beta$, is a vector in input space that points in the steepest uphill direction.\n", "\n", "### Ordinary Least Squares (OLS)\n", "\n", "There are many different methods to fitting a linear model, but the most simple and popular method is [Ordinary Least Squares](https://en.wikipedia.org/wiki/Ordinary_least_squares) (OLS). The OLS method minimizes the [residual sum of squares](https://en.wikipedia.org/wiki/Residual_sum_of_squares) (RSS), and leads to a closed-form expression for the estimated value of the unknown parameter $\\beta$.\n", "\n", "$$RSS(\\beta) = \\sum_{i=1}^n (y_i - x_i^T\\beta)^2$$\n", "\n", "$RSS(\\beta)$ is a quadratic function of the parameters, and hence its minimum always exists, but may not be unique. The solution is easiest to characterize in matrix notation:\n", "\n", "$$RSS(\\beta) = (\\boldsymbol{y} - \\boldsymbol{X}\\beta)^T(\\boldsymbol{y} - \\boldsymbol{X}\\beta)$$\n", "\n", "where $\\boldsymbol{X}$ is an $n \\times p$ matrix with each row an input vector, and $\\boldsymbol{y}$ is a vector of length $n$ representing the response in the training set. Differentiating with respect to $\\beta$, we get the *normal equations*, \n", "\n", "$$\\boldsymbol{X}^T(\\boldsymbol{y} - \\boldsymbol{X}\\beta) = 0$$\n", "\n", "If $\\boldsymbol{X}^T\\boldsymbol{X}$ is [nonsingular](https://en.wikipedia.org/wiki/Invertible_matrix), then the unique solution is given by:\n", "\n", "$$\\hat{\\beta} = (\\boldsymbol{X}^T\\boldsymbol{X})^{-1}\\boldsymbol{X}^T\\boldsymbol{y}$$\n", "\n", "The fitted value at the $i^{th}$ input, $x_i$ is $\\hat{y}_i = \\hat{y}(x_i) = x_i^T\\hat{\\beta}$. To solve this equation for $\\beta$, we must invert a matrix, $\\boldsymbol{X}^T\\boldsymbol{X}$, however it can be computationally expensive to invert this matrix directly. There are computational shortcuts for solving the normal equations available via [QR](https://en.wikipedia.org/wiki/QR_decomposition) or [Cholesky](https://en.wikipedia.org/wiki/Cholesky_decomposition) decomposition. When dealing with large training sets, it is useful to have an understanding of the underlying computational methods in the software that you are using. Some GLM software implementations may not utilize all available computational shortcuts, costing you extra time to train your GLMs, or require you to upgrade the memory on your machine." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Regularization\n", "\n", "http://web.stanford.edu/~hastie/Papers/glmpath.pdf\n", "\n", "\n", "### Ridge Regression\n", "\n", "\n", "Consider a sample consisting of $n$ cases, each of which consists of $p$ covariates and a single outcome. Let $y_i$ be the outcome and $X_i := ( x_1 , x_2 , … , x_p)^T$. \n", "\n", "Then the objective of Ridge is to solve:\n", "\n", "$${\\displaystyle \\min _{\\beta }\\left\\{{\\frac {1}{N}}\\sum _{i=1}^{N}\\left(y_{i}-\\beta_0 - \\sum_{j=1}^p x_{ij}\\beta_j \\right)^{2}\\right\\}{\\text{ subject to }}\\sum _{j=1}^{p}\\beta _{j}^2 \\leq t.}$$\n", "\n", "\n", "Here $t$ is a prespecified free parameter that determines the amount of regularization. Ridge is also called $\\ell_2$ regularization.\n", "\n", "### Lasso Regression\n", "\n", "[Lasso](https://en.wikipedia.org/wiki/Lasso_(statistics) (least absolute shrinkage and selection operator) (also Lasso or LASSO) is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the statistical model it produces. \n", "\n", "- It was [introduced by Robert Tibshirani in 1996](http://www-stat.stanford.edu/%7Etibs/lasso/lasso.pdf) based on Leo Breiman’s Nonnegative Garrote.\n", "- Lasso conveniently performs coefficient shrinkage comparable to the ridge regression as well as variable selection by reducing coefficients to zero. \n", "- By sacrificing a small amount of bias in the predicted response variable in order to decrease variance, the lasso achieves improved predictive accuracy compared with ordinary least squares (OLS) models, particularly with data containing highly correlated predictor variables or in over determined data where $p>n$.\n", "\n", "Then the objective of Lasso is to solve:\n", "\n", "$${\\displaystyle \\min _{\\beta }\\left\\{{\\frac {1}{N}}\\sum _{i=1}^{N}\\left(y_{i}-\\beta_0 - \\sum_{j=1}^p x_{ij}\\beta_j \\right)^{2}\\right\\}{\\text{ subject to }}\\sum _{j=1}^{p}|\\beta _{j}| \\leq t.}$$\n", "\n", "Here $t$ is a prespecified free parameter that determines the amount of regularization.\n", "Lasso is also called $\\ell_1$ regularization.\n", "\n", "\n", "### Elastic Net\n", "\n", "[Elastic Net regularization](https://en.wikipedia.org/wiki/Elastic_net_regularization) is a simple blend of Lasso and Ridge regularization. In software, this is typically controlled by an `alpha` parameter in between 0 and 1, where:\n", "- `alpha = 0.0` is Ridge regression\n", "- `alpha = 0.5` is a 50/50 blend of Ridge/Lasso regression\n", "- `alpha = 1.0` is Lasso regression" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Other Solvers\n", "\n", "GLM models are trained by finding the set of parameters that maximizes the likelihood of the data. For the Gaussian family, maximum likelihood consists of minimizing the mean squared error. This has an analytical solution and can be\n", "solved with a standard method of least squares. This is also applicable when the $\\ell_2$ penalty is added to the optimization. For all other families and when the $\\ell_1$ penalty is included, the maximum likelihood\n", "problem has no analytical solution. Therefore an iterative method such as IRLSM, L-BFGS, the Newton method, or gradient descent, must be used.\n", "\n", "\n", "### Iteratively Re-weighted Least Squares (IRLS)\n", "\n", "The [IRLS](https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares) method is used to solve certain optimization problems with objective functions of the form:\n", "\n", "$${\\underset {{\\boldsymbol \\beta }}{\\operatorname {arg\\,min}}}\\sum _{{i=1}}^{n}{\\big |}y_{i}-f_{i}({\\boldsymbol \\beta }){\\big |}^{p},$$\n", "\n", "by an iterative method in which each step involves solving a weighted least squares problem of the form:\n", "\n", "$${\\boldsymbol \\beta }^{{(t+1)}}={\\underset {{\\boldsymbol \\beta }}{\\operatorname {arg\\,min}}}\\sum _{{i=1}}^{n}w_{i}({\\boldsymbol \\beta }^{{(t)}}){\\big |}y_{i}-f_{i}({\\boldsymbol \\beta }){\\big |}^{2}.$$\n", "\n", "IRLS is used to find the [maximum likelihood](https://en.wikipedia.org/wiki/Maximum_likelihood) estimates of a generalized linear model as a way of mitigating the influence of outliers in an otherwise normally-distributed data set. For example, by minimizing the least absolute error rather than the least square error.\n", "\n", "One of the advantages of IRLS over [linear programming](https://en.wikipedia.org/wiki/Linear_programming) and [convex programming](https://en.wikipedia.org/wiki/Convex_programming) is that it can be used with [Gauss-Newton](https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton) and [Levenberg-Marquardt](https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt) numerical algorithms.\n", "\n", "The IRL1 algorithm solves a sequence of non-smooth weighted $\\ell_1$-minimization problems, and hence can be seen as the non-smooth counterpart to the IRLS algorithm. \n", "\n", "\n", "### Iteratively Re-weighted Least Squares with ADMM\n", "\n", "The IRLS method with [alternating direction method of multipliers](http://web.stanford.edu/~boyd/admm.html) (ADMM) inner solver as described in [Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers](http://web.stanford.edu/~boyd/papers/admm_distr_stats.html) by Boyd et. al to deal with the $\\ell_1$ penalty. ADMM is an algorithm that solves convex optimization problems by breaking them into smaller pieces, each of which are then easier to handle. Every iteration of the algorithm consists of following steps:\n", "\n", "1. Generate weighted least squares problem based on previous solution, i.e. vector of weights w and response z.\n", "2. Compute the weighted [Gram matrix](https://en.wikipedia.org/wiki/Gramian_matrix) XT WX and XT z vector\n", "3. Decompose the Gram matrix ([Cholesky decomposition](https://en.wikipedia.org/wiki/Cholesky_decomposition)) and apply ADMM solver to solve the $\\ell_1$ penalized least squares problem.\n", "\n", "In the [H2O GLM](http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/GLMBooklet.pdf) implementation, steps 1 and 2 are performed distributively, and Step 3 is computed in parallel on a single node. The Gram matrix approach is very efficient for tall and narrow datasets when running lambda search with a sparse solution. \n", "\n", "\n", "### Cyclical Coordinate Descent\n", "\n", "The IRLS method can also use cyclical coordinate descent in its inner loop (as opposed to ADMM). The [glmnet](http://web.stanford.edu/~hastie/glmnet/glmnet_beta.html) package uses [cyclical coordinate descent](http://web.stanford.edu/~hastie/Papers/glmnet.pdf) which successively optimizes the objective function over each parameter with others fixed, and cycles repeatedly until convergence.\n", "\n", "Cyclical coordinate descent methods are a natural approach for solving\n", "convex problems with $\\ell_1$ or $\\ell_2$ constraints, or mixtures of the two (elastic net). Each coordinate-descent step is fast, with an explicit formula for each coordinate-wise minimization. The method also exploits the sparsity of the model, spending much of its time evaluating only inner products for variables with non-zero coefficients.\n", "\n", "\n", "### L-BFGS \n", "\n", "[Limited-memory BFGS](https://en.wikipedia.org/wiki/Limited-memory_BFGS) (L-BFGS) is an optimization algorithm in the family of [quasi-Newton methods](https://en.wikipedia.org/wiki/Quasi-Newton_method) that approximates the [Broyden–Fletcher–Goldfarb–Shanno](https://en.wikipedia.org/wiki/BFGS_method) (BFGS) algorithm using a limited amount of computer memory. Due to its resulting linear memory requirement, the L-BFGS method is particularly well suited for optimization problems with a large number of variables. The method is popular among \"big data\" GLM implementations such as [h2o::h2o.glm()](http://www.rdocumentation.org/packages/h2o/functions/h2o.glm) (one of two available solvers) and [SparkR::glm()](https://spark.apache.org/docs/latest/api/R/index.html). The [L-BFGS-B algorithm](http://sepwww.stanford.edu/data/media/public/docs/sep117/antoine1/paper_html/node12.html#lbfgsb) is an extension of the L-BFGS algorithm to handle simple bounds on the model. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Preprocessing\n", "\n", "In order for the coefficients to be easily interpretable, the features must be centered and scaled (aka \"normalized\"). Many software packages will allow the direct input of categorical/factor columns in the training frame, however internally any categorical columns will be expanded into binary indicator variables. The caret package offers a handy utility function, [caret::dummyVars()](http://www.rdocumentation.org/packages/caret/functions/dummyVars), for dummy/indicator expansion if you need to do this manually.\n", "\n", "Missing data will need to be imputed, otherwise in many GLM packages, those rows will simply be omitted from the training set at train time. For example, in the `stats::glm()` function there is an `na.action` argument which allows the user to do one of the three options:\n", "\n", "- na.omit and na.exclude: observations are removed if they contain any missing values; if na.exclude is used some functions will pad residuals and predictions to the correct length by inserting NAs for omitted cases.\n", "- na.pass: keep all data, including NAs\n", "- na.fail: returns the object only if it contains no missing values\n", "\n", "Other GLM implementations such as `h2o::glm()` will impute the mean automatically (in both training and test data), unless specified by the user." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# GLM Software in R\n", "\n", "There is an implementation of the standard GLM (no regularization) in the built-in \"stats\" package in R called [glm](http://www.rdocumentation.org/packages/stats/functions/glm).\n", "\n", "## glm\n", "\n", "Authors: The original R implementation of glm was written by Simon Davies working for Ross Ihaka at the University of Auckland, but has since been extensively re-written by members of the R Core team. The design was inspired by the S function of the same name described in Hastie & Pregibon (1992).\n", "\n", "Backend: Fortran\n", "\n", "### Example Linear Regression with glm()" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading required package: lattice\n", "Loading required package: ggplot2\n" ] } ], "source": [ "#install.packages(\"caret\")\n", "library(caret)\n", "data(\"Sacramento\")\n", "\n", "# Split the data into a 70/25% train/test sets\n", "set.seed(1)\n", "idxs <- caret::createDataPartition(y = Sacramento$price, p = 0.75)[[1]]\n", "train <- Sacramento[idxs,]\n", "test <- Sacramento[-idxs,]" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "glm(formula = price ~ ., family = gaussian(), data = train)\n", "\n", "Deviance Residuals: \n", " Min 1Q Median 3Q Max \n", "-269404 -39233 -6677 27418 279476 \n", "\n", "Coefficients: (32 not defined because of singularities)\n", " Estimate Std. Error t value Pr(>|t|) \n", "(Intercept) 7.434e+06 1.931e+07 0.385 0.700365 \n", "cityAUBURN 1.450e+05 7.163e+04 2.024 0.043348 * \n", "cityCAMERON_PARK 3.497e+04 6.341e+04 0.551 0.581536 \n", "cityCARMICHAEL 8.019e+04 2.699e+04 2.971 0.003078 ** \n", "cityCITRUS_HEIGHTS -8.352e+03 2.222e+04 -0.376 0.707161 \n", "cityCOOL 1.300e+05 1.015e+05 1.281 0.200691 \n", "cityEL_DORADO 3.534e+04 1.061e+05 0.333 0.739141 \n", "cityEL_DORADO_HILLS 1.243e+05 5.417e+04 2.295 0.022047 * \n", "cityELK_GROVE -6.302e+04 5.984e+04 -1.053 0.292688 \n", "cityELVERTA -5.559e+04 5.066e+04 -1.097 0.272929 \n", "cityFAIR_OAKS 6.136e+04 3.307e+04 1.855 0.064008 . \n", "cityFOLSOM 1.056e+05 4.168e+04 2.533 0.011540 * \n", "cityFORESTHILL 7.605e+04 1.283e+05 0.593 0.553518 \n", "cityGALT -9.711e+04 8.547e+04 -1.136 0.256354 \n", "cityGOLD_RIVER 3.459e+04 6.240e+04 0.554 0.579555 \n", "cityGRANITE_BAY 3.217e+05 7.939e+04 4.053 5.70e-05 ***\n", "cityGREENWOOD 7.445e+04 1.119e+05 0.665 0.506249 \n", "cityLINCOLN 3.605e+04 3.989e+04 0.904 0.366484 \n", "cityLOOMIS 3.754e+05 6.367e+04 5.896 6.08e-09 ***\n", "cityMATHER -8.306e+04 7.679e+04 -1.082 0.279856 \n", "cityMEADOW_VISTA 1.221e+05 1.060e+05 1.153 0.249537 \n", "cityNORTH_HIGHLANDS -3.655e+04 2.425e+04 -1.507 0.132220 \n", "cityORANGEVALE 5.875e+04 3.518e+04 1.670 0.095465 . \n", "cityPLACERVILLE 1.271e+05 9.188e+04 1.384 0.166998 \n", "cityPOLLOCK_PINES 3.648e+04 1.291e+05 0.283 0.777580 \n", "cityRANCHO_CORDOVA -6.894e+04 4.502e+04 -1.531 0.126222 \n", "cityRANCHO_MURIETA -1.675e+05 8.849e+04 -1.893 0.058780 . \n", "cityRIO_LINDA -2.221e+04 3.001e+04 -0.740 0.459428 \n", "cityROCKLIN 9.179e+04 3.562e+04 2.577 0.010205 * \n", "cityROSEVILLE 9.536e+04 2.678e+04 3.560 0.000398 ***\n", "citySACRAMENTO 1.203e+05 4.113e+04 2.926 0.003561 ** \n", "cityWALNUT_GROVE 4.904e+04 1.173e+05 0.418 0.676124 \n", "cityWEST_SACRAMENTO -7.501e+04 6.405e+04 -1.171 0.242019 \n", "cityWILTON 1.265e+05 7.234e+04 1.749 0.080744 . \n", "zipz95608 NA NA NA NA \n", "zipz95610 7.732e+03 3.056e+04 0.253 0.800363 \n", "zipz95614 NA NA NA NA \n", "zipz95621 NA NA NA NA \n", "zipz95623 NA NA NA NA \n", "zipz95624 -1.452e+03 2.038e+04 -0.071 0.943237 \n", "zipz95626 NA NA NA NA \n", "zipz95628 NA NA NA NA \n", "zipz95630 NA NA NA NA \n", "zipz95631 NA NA NA NA \n", "zipz95632 NA NA NA NA \n", "zipz95635 NA NA NA NA \n", "zipz95648 NA NA NA NA \n", "zipz95650 NA NA NA NA \n", "zipz95655 NA NA NA NA \n", "zipz95660 NA NA NA NA \n", "zipz95661 2.926e+04 3.994e+04 0.733 0.464062 \n", "zipz95662 NA NA NA NA \n", "zipz95667 NA NA NA NA \n", "zipz95670 5.343e+04 3.267e+04 1.635 0.102495 \n", "zipz95673 NA NA NA NA \n", "zipz95677 1.607e+04 4.510e+04 0.356 0.721739 \n", "zipz95678 -4.077e+04 2.838e+04 -1.437 0.151329 \n", "zipz95682 NA NA NA NA \n", "zipz95683 NA NA NA NA \n", "zipz95690 NA NA NA NA \n", "zipz95691 NA NA NA NA \n", "zipz95693 NA NA NA NA \n", "zipz95722 NA NA NA NA \n", "zipz95726 NA NA NA NA \n", "zipz95742 NA NA NA NA \n", "zipz95746 NA NA NA NA \n", "zipz95747 NA NA NA NA \n", "zipz95757 1.339e+04 1.874e+04 0.715 0.475149 \n", "zipz95758 NA NA NA NA \n", "zipz95762 NA NA NA NA \n", "zipz95765 NA NA NA NA \n", "zipz95811 1.067e+05 7.624e+04 1.400 0.162053 \n", "zipz95814 -7.275e+04 6.049e+04 -1.203 0.229549 \n", "zipz95815 -1.940e+05 3.691e+04 -5.256 2.02e-07 ***\n", "zipz95816 -2.631e+03 4.872e+04 -0.054 0.956956 \n", "zipz95817 -1.662e+05 4.612e+04 -3.605 0.000337 ***\n", "zipz95818 -5.284e+04 4.452e+04 -1.187 0.235783 \n", "zipz95819 1.074e+05 5.104e+04 2.104 0.035800 * \n", "zipz95820 -1.712e+05 3.770e+04 -4.540 6.73e-06 ***\n", "zipz95821 -9.943e+04 4.344e+04 -2.289 0.022420 * \n", "zipz95822 -1.762e+05 4.333e+04 -4.066 5.39e-05 ***\n", "zipz95823 -2.001e+05 4.157e+04 -4.813 1.86e-06 ***\n", "zipz95824 -2.056e+05 4.097e+04 -5.019 6.77e-07 ***\n", "zipz95825 -1.386e+05 3.719e+04 -3.727 0.000212 ***\n", "zipz95826 -1.435e+05 3.811e+04 -3.765 0.000182 ***\n", "zipz95827 -1.880e+05 4.005e+04 -4.694 3.30e-06 ***\n", "zipz95828 -2.005e+05 3.935e+04 -5.096 4.60e-07 ***\n", "zipz95829 -1.802e+05 4.471e+04 -4.030 6.25e-05 ***\n", "zipz95831 -1.137e+05 5.317e+04 -2.138 0.032914 * \n", "zipz95832 -2.242e+05 4.891e+04 -4.584 5.52e-06 ***\n", "zipz95833 -1.549e+05 4.048e+04 -3.827 0.000143 ***\n", "zipz95834 -1.510e+05 4.150e+04 -3.639 0.000297 ***\n", "zipz95835 -1.202e+05 4.195e+04 -2.865 0.004309 ** \n", "zipz95838 -1.729e+05 3.648e+04 -4.741 2.64e-06 ***\n", "zipz95841 -7.757e+04 5.190e+04 -1.495 0.135538 \n", "zipz95842 -1.651e+05 3.921e+04 -4.210 2.93e-05 ***\n", "zipz95843 NA NA NA NA \n", "zipz95864 NA NA NA NA \n", "beds -1.336e+04 5.016e+03 -2.664 0.007926 ** \n", "baths 1.314e+04 6.323e+03 2.078 0.038099 * \n", "sqft 1.148e+02 7.457e+00 15.388 < 2e-16 ***\n", "typeMulti_Family 3.034e+04 2.731e+04 1.111 0.266933 \n", "typeResidential 4.665e+04 1.298e+04 3.594 0.000351 ***\n", "latitude -2.121e+05 1.895e+05 -1.120 0.263319 \n", "longitude -6.519e+03 1.547e+05 -0.042 0.966399 \n", "---\n", "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n", "\n", "(Dispersion parameter for gaussian family taken to be 4622177625)\n", "\n", " Null deviance: 1.2350e+13 on 699 degrees of freedom\n", "Residual deviance: 2.8981e+12 on 627 degrees of freedom\n", "AIC: 17635\n", "\n", "Number of Fisher Scoring iterations: 2\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Fit the GLM\n", "fit <- glm(price ~ ., \n", " data = train, \n", " family = gaussian())\n", "summary(fit)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ERROR", "evalue": "Error in model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels): factor city has new levels DIAMOND_SPRINGS, GARDEN_VALLEY, PENRYN\n", "output_type": "error", "traceback": [ "Error in model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels): factor city has new levels DIAMOND_SPRINGS, GARDEN_VALLEY, PENRYN\nTraceback:\n", "1. predict(fit, newdata = test)", "2. predict.glm(fit, newdata = test)", "3. predict.lm(object, newdata, se.fit, scale = 1, type = ifelse(type == \n . \"link\", \"response\", type), terms = terms, na.action = na.action)", "4. model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)", "5. model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)", "6. stop(sprintf(ngettext(length(m), \"factor %s has new level %s\", \n . \"factor %s has new levels %s\"), nm, paste(nxl[m], collapse = \", \")), \n . domain = NA)" ] } ], "source": [ "# Predict on the test set\n", "pred <- predict(fit, newdata = test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Above we have a slight issue. The `city` column has new factor levels in the test set that were not present in the training set. Even though the `train` and `test` data frames originated from a single data frame, `Sacramento`, and therefore have identical factor levels, we still run into this problem. Let's take a closer look at the factor levels to see what's going on:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "'data.frame':\t700 obs. of 9 variables:\n", " $ city : Factor w/ 37 levels \"ANTELOPE\",\"AUBURN\",..: 34 34 34 34 34 29 31 34 34 34 ...\n", " $ zip : Factor w/ 68 levels \"z95603\",\"z95608\",..: 52 44 44 53 65 24 25 44 51 66 ...\n", " $ beds : int 3 2 2 2 3 2 3 1 3 2 ...\n", " $ baths : num 1 1 1 1 1 2 2 1 1 2 ...\n", " $ sqft : int 1167 796 852 797 1122 941 1146 871 1020 1022 ...\n", " $ type : Factor w/ 3 levels \"Condo\",\"Multi_Family\",..: 3 3 3 3 1 1 3 3 3 3 ...\n", " $ price : int 68212 68880 69307 81900 89921 94905 98937 106852 107502 108750 ...\n", " $ latitude : num 38.5 38.6 38.6 38.5 38.7 ...\n", " $ longitude: num -121 -121 -121 -121 -121 ...\n" ] } ], "source": [ "str(train)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "'data.frame':\t232 obs. of 9 variables:\n", " $ city : Factor w/ 37 levels \"ANTELOPE\",\"AUBURN\",..: 34 34 34 34 34 1 34 24 11 10 ...\n", " $ zip : Factor w/ 68 levels \"z95603\",\"z95608\",..: 64 66 49 64 52 67 57 19 9 8 ...\n", " $ beds : int 2 3 3 3 3 3 3 3 3 3 ...\n", " $ baths : num 1 2 1 2 2 2 2 2 2 2 ...\n", " $ sqft : int 836 1104 1177 909 1289 1088 1248 1152 1116 1056 ...\n", " $ type : Factor w/ 3 levels \"Condo\",\"Multi_Family\",..: 3 3 3 3 3 3 3 3 3 3 ...\n", " $ price : int 59222 90895 91002 100309 106250 126640 132000 134555 138750 156896 ...\n", " $ latitude : num 38.6 38.7 38.5 38.6 38.5 ...\n", " $ longitude: num -121 -121 -121 -121 -121 ...\n" ] } ], "source": [ "str(test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although `train` and `test` have identical structure, not all the levels are represented in the training data. To validate this, let's take a look at the actual unique levels that were used in the model:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1] 34\n", "[1] 65\n", "[1] 3\n" ] }, { "data": { "text/html": [ "<dl class=dl-horizontal>\n", "\t<dt>city</dt>\n", "\t\t<dd>34</dd>\n", "\t<dt>zip</dt>\n", "\t\t<dd>65</dd>\n", "\t<dt>type</dt>\n", "\t\t<dd>3</dd>\n", "</dl>\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[city] 34\n", "\\item[zip] 65\n", "\\item[type] 3\n", "\\end{description*}\n" ], "text/markdown": [ "city\n", ": 34zip\n", ": 65type\n", ": 3\n", "\n" ], "text/plain": [ "city zip type \n", " 34 65 3 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Check the number of levels in the model features\n", "sapply(fit$xlevels, function(x) print(length(x)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can manually fix this by updating the `xlevels` element of the model. We have the same issue with `zip`, so we should go ahead and manually update that as well." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Update factor levels so that prediction works\n", "fit$xlevels[[\"city\"]] <- union(fit$xlevels[[\"city\"]], levels(test$city))\n", "fit$xlevels[[\"zip\"]] <- union(fit$xlevels[[\"zip\"]], levels(test$zip))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "In predict.lm(object, newdata, se.fit, scale = 1, type = ifelse(type == : prediction from a rank-deficient fit may be misleading" ] }, { "data": { "text/plain": [ "\n", "Call:\n", "glm(formula = price ~ ., family = gaussian(), data = train)\n", "\n", "Deviance Residuals: \n", " Min 1Q Median 3Q Max \n", "-269404 -39233 -6677 27418 279476 \n", "\n", "Coefficients: (32 not defined because of singularities)\n", " Estimate Std. Error t value Pr(>|t|) \n", "(Intercept) 7.434e+06 1.931e+07 0.385 0.700365 \n", "cityAUBURN 1.450e+05 7.163e+04 2.024 0.043348 * \n", "cityCAMERON_PARK 3.497e+04 6.341e+04 0.551 0.581536 \n", "cityCARMICHAEL 8.019e+04 2.699e+04 2.971 0.003078 ** \n", "cityCITRUS_HEIGHTS -8.352e+03 2.222e+04 -0.376 0.707161 \n", "cityCOOL 1.300e+05 1.015e+05 1.281 0.200691 \n", "cityEL_DORADO 3.534e+04 1.061e+05 0.333 0.739141 \n", "cityEL_DORADO_HILLS 1.243e+05 5.417e+04 2.295 0.022047 * \n", "cityELK_GROVE -6.302e+04 5.984e+04 -1.053 0.292688 \n", "cityELVERTA -5.559e+04 5.066e+04 -1.097 0.272929 \n", "cityFAIR_OAKS 6.136e+04 3.307e+04 1.855 0.064008 . \n", "cityFOLSOM 1.056e+05 4.168e+04 2.533 0.011540 * \n", "cityFORESTHILL 7.605e+04 1.283e+05 0.593 0.553518 \n", "cityGALT -9.711e+04 8.547e+04 -1.136 0.256354 \n", "cityGOLD_RIVER 3.459e+04 6.240e+04 0.554 0.579555 \n", "cityGRANITE_BAY 3.217e+05 7.939e+04 4.053 5.70e-05 ***\n", "cityGREENWOOD 7.445e+04 1.119e+05 0.665 0.506249 \n", "cityLINCOLN 3.605e+04 3.989e+04 0.904 0.366484 \n", "cityLOOMIS 3.754e+05 6.367e+04 5.896 6.08e-09 ***\n", "cityMATHER -8.306e+04 7.679e+04 -1.082 0.279856 \n", "cityMEADOW_VISTA 1.221e+05 1.060e+05 1.153 0.249537 \n", "cityNORTH_HIGHLANDS -3.655e+04 2.425e+04 -1.507 0.132220 \n", "cityORANGEVALE 5.875e+04 3.518e+04 1.670 0.095465 . \n", "cityPLACERVILLE 1.271e+05 9.188e+04 1.384 0.166998 \n", "cityPOLLOCK_PINES 3.648e+04 1.291e+05 0.283 0.777580 \n", "cityRANCHO_CORDOVA -6.894e+04 4.502e+04 -1.531 0.126222 \n", "cityRANCHO_MURIETA -1.675e+05 8.849e+04 -1.893 0.058780 . \n", "cityRIO_LINDA -2.221e+04 3.001e+04 -0.740 0.459428 \n", "cityROCKLIN 9.179e+04 3.562e+04 2.577 0.010205 * \n", "cityROSEVILLE 9.536e+04 2.678e+04 3.560 0.000398 ***\n", "citySACRAMENTO 1.203e+05 4.113e+04 2.926 0.003561 ** \n", "cityWALNUT_GROVE 4.904e+04 1.173e+05 0.418 0.676124 \n", "cityWEST_SACRAMENTO -7.501e+04 6.405e+04 -1.171 0.242019 \n", "cityWILTON 1.265e+05 7.234e+04 1.749 0.080744 . \n", "zipz95608 NA NA NA NA \n", "zipz95610 7.732e+03 3.056e+04 0.253 0.800363 \n", "zipz95614 NA NA NA NA \n", "zipz95621 NA NA NA NA \n", "zipz95623 NA NA NA NA \n", "zipz95624 -1.452e+03 2.038e+04 -0.071 0.943237 \n", "zipz95626 NA NA NA NA \n", "zipz95628 NA NA NA NA \n", "zipz95630 NA NA NA NA \n", "zipz95631 NA NA NA NA \n", "zipz95632 NA NA NA NA \n", "zipz95635 NA NA NA NA \n", "zipz95648 NA NA NA NA \n", "zipz95650 NA NA NA NA \n", "zipz95655 NA NA NA NA \n", "zipz95660 NA NA NA NA \n", "zipz95661 2.926e+04 3.994e+04 0.733 0.464062 \n", "zipz95662 NA NA NA NA \n", "zipz95667 NA NA NA NA \n", "zipz95670 5.343e+04 3.267e+04 1.635 0.102495 \n", "zipz95673 NA NA NA NA \n", "zipz95677 1.607e+04 4.510e+04 0.356 0.721739 \n", "zipz95678 -4.077e+04 2.838e+04 -1.437 0.151329 \n", "zipz95682 NA NA NA NA \n", "zipz95683 NA NA NA NA \n", "zipz95690 NA NA NA NA \n", "zipz95691 NA NA NA NA \n", "zipz95693 NA NA NA NA \n", "zipz95722 NA NA NA NA \n", "zipz95726 NA NA NA NA \n", "zipz95742 NA NA NA NA \n", "zipz95746 NA NA NA NA \n", "zipz95747 NA NA NA NA \n", "zipz95757 1.339e+04 1.874e+04 0.715 0.475149 \n", "zipz95758 NA NA NA NA \n", "zipz95762 NA NA NA NA \n", "zipz95765 NA NA NA NA \n", "zipz95811 1.067e+05 7.624e+04 1.400 0.162053 \n", "zipz95814 -7.275e+04 6.049e+04 -1.203 0.229549 \n", "zipz95815 -1.940e+05 3.691e+04 -5.256 2.02e-07 ***\n", "zipz95816 -2.631e+03 4.872e+04 -0.054 0.956956 \n", "zipz95817 -1.662e+05 4.612e+04 -3.605 0.000337 ***\n", "zipz95818 -5.284e+04 4.452e+04 -1.187 0.235783 \n", "zipz95819 1.074e+05 5.104e+04 2.104 0.035800 * \n", "zipz95820 -1.712e+05 3.770e+04 -4.540 6.73e-06 ***\n", "zipz95821 -9.943e+04 4.344e+04 -2.289 0.022420 * \n", "zipz95822 -1.762e+05 4.333e+04 -4.066 5.39e-05 ***\n", "zipz95823 -2.001e+05 4.157e+04 -4.813 1.86e-06 ***\n", "zipz95824 -2.056e+05 4.097e+04 -5.019 6.77e-07 ***\n", "zipz95825 -1.386e+05 3.719e+04 -3.727 0.000212 ***\n", "zipz95826 -1.435e+05 3.811e+04 -3.765 0.000182 ***\n", "zipz95827 -1.880e+05 4.005e+04 -4.694 3.30e-06 ***\n", "zipz95828 -2.005e+05 3.935e+04 -5.096 4.60e-07 ***\n", "zipz95829 -1.802e+05 4.471e+04 -4.030 6.25e-05 ***\n", "zipz95831 -1.137e+05 5.317e+04 -2.138 0.032914 * \n", "zipz95832 -2.242e+05 4.891e+04 -4.584 5.52e-06 ***\n", "zipz95833 -1.549e+05 4.048e+04 -3.827 0.000143 ***\n", "zipz95834 -1.510e+05 4.150e+04 -3.639 0.000297 ***\n", "zipz95835 -1.202e+05 4.195e+04 -2.865 0.004309 ** \n", "zipz95838 -1.729e+05 3.648e+04 -4.741 2.64e-06 ***\n", "zipz95841 -7.757e+04 5.190e+04 -1.495 0.135538 \n", "zipz95842 -1.651e+05 3.921e+04 -4.210 2.93e-05 ***\n", "zipz95843 NA NA NA NA \n", "zipz95864 NA NA NA NA \n", "beds -1.336e+04 5.016e+03 -2.664 0.007926 ** \n", "baths 1.314e+04 6.323e+03 2.078 0.038099 * \n", "sqft 1.148e+02 7.457e+00 15.388 < 2e-16 ***\n", "typeMulti_Family 3.034e+04 2.731e+04 1.111 0.266933 \n", "typeResidential 4.665e+04 1.298e+04 3.594 0.000351 ***\n", "latitude -2.121e+05 1.895e+05 -1.120 0.263319 \n", "longitude -6.519e+03 1.547e+05 -0.042 0.966399 \n", "---\n", "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n", "\n", "(Dispersion parameter for gaussian family taken to be 4622177625)\n", "\n", " Null deviance: 1.2350e+13 on 699 degrees of freedom\n", "Residual deviance: 2.8981e+12 on 627 degrees of freedom\n", "AIC: 17635\n", "\n", "Number of Fisher Scoring iterations: 2\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Predict on the test set\n", "pred <- predict(fit, newdata = test)\n", "summary(fit)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "0.0371512375879591" ], "text/latex": [ "0.0371512375879591" ], "text/markdown": [ "0.0371512375879591" ], "text/plain": [ "[1] 0.03715124" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "7173981.7581349" ], "text/latex": [ "7173981.7581349" ], "text/markdown": [ "7173981.7581349" ], "text/plain": [ "[1] 7173982" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compute model performance on the test set\n", "\n", "caret::R2(pred = pred, obs = test$price)\n", "caret::RMSE(pred = pred, obs = test$price)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### GLM in caret\n", "\n", "Now let's run the same model using caret's glm method to get a sense of how much easier it is to use." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "\n", "Call:\n", "NULL\n", "\n", "Deviance Residuals: \n", " Min 1Q Median 3Q Max \n", "-269404 -39233 -6677 27418 279476 \n", "\n", "Coefficients: (38 not defined because of singularities)\n", " Estimate Std. Error t value Pr(>|t|) \n", "(Intercept) 7.434e+06 1.931e+07 0.385 0.700365 \n", "cityAUBURN 1.450e+05 7.163e+04 2.024 0.043348 * \n", "cityCAMERON_PARK 3.497e+04 6.341e+04 0.551 0.581536 \n", "cityCARMICHAEL 8.019e+04 2.699e+04 2.971 0.003078 ** \n", "cityCITRUS_HEIGHTS -8.352e+03 2.222e+04 -0.376 0.707161 \n", "cityCOOL 1.300e+05 1.015e+05 1.281 0.200691 \n", "cityDIAMOND_SPRINGS NA NA NA NA \n", "cityEL_DORADO 3.534e+04 1.061e+05 0.333 0.739141 \n", "cityEL_DORADO_HILLS 1.243e+05 5.417e+04 2.295 0.022047 * \n", "cityELK_GROVE -6.302e+04 5.984e+04 -1.053 0.292688 \n", "cityELVERTA -5.559e+04 5.066e+04 -1.097 0.272929 \n", "cityFAIR_OAKS 6.136e+04 3.307e+04 1.855 0.064008 . \n", "cityFOLSOM 1.056e+05 4.168e+04 2.533 0.011540 * \n", "cityFORESTHILL 7.605e+04 1.283e+05 0.593 0.553518 \n", "cityGALT -9.711e+04 8.547e+04 -1.136 0.256354 \n", "cityGARDEN_VALLEY NA NA NA NA \n", "cityGOLD_RIVER 3.459e+04 6.240e+04 0.554 0.579555 \n", "cityGRANITE_BAY 3.217e+05 7.939e+04 4.053 5.70e-05 ***\n", "cityGREENWOOD 7.445e+04 1.119e+05 0.665 0.506249 \n", "cityLINCOLN 3.605e+04 3.989e+04 0.904 0.366484 \n", "cityLOOMIS 3.754e+05 6.367e+04 5.896 6.08e-09 ***\n", "cityMATHER -8.306e+04 7.679e+04 -1.082 0.279856 \n", "cityMEADOW_VISTA 1.221e+05 1.060e+05 1.153 0.249537 \n", "cityNORTH_HIGHLANDS -3.655e+04 2.425e+04 -1.507 0.132220 \n", "cityORANGEVALE 5.875e+04 3.518e+04 1.670 0.095465 . \n", "cityPENRYN NA NA NA NA \n", "cityPLACERVILLE 1.271e+05 9.188e+04 1.384 0.166998 \n", "cityPOLLOCK_PINES 3.648e+04 1.291e+05 0.283 0.777580 \n", "cityRANCHO_CORDOVA -6.894e+04 4.502e+04 -1.531 0.126222 \n", "cityRANCHO_MURIETA -1.675e+05 8.849e+04 -1.893 0.058780 . \n", "cityRIO_LINDA -2.221e+04 3.001e+04 -0.740 0.459428 \n", "cityROCKLIN 9.179e+04 3.562e+04 2.577 0.010205 * \n", "cityROSEVILLE 9.536e+04 2.678e+04 3.560 0.000398 ***\n", "citySACRAMENTO 1.203e+05 4.113e+04 2.926 0.003561 ** \n", "cityWALNUT_GROVE 4.904e+04 1.173e+05 0.418 0.676124 \n", "cityWEST_SACRAMENTO -7.501e+04 6.405e+04 -1.171 0.242019 \n", "cityWILTON 1.265e+05 7.234e+04 1.749 0.080744 . \n", "zipz95608 NA NA NA NA \n", "zipz95610 7.732e+03 3.056e+04 0.253 0.800363 \n", "zipz95614 NA NA NA NA \n", "zipz95619 NA NA NA NA \n", "zipz95621 NA NA NA NA \n", "zipz95623 NA NA NA NA \n", "zipz95624 -1.452e+03 2.038e+04 -0.071 0.943237 \n", "zipz95626 NA NA NA NA \n", "zipz95628 NA NA NA NA \n", "zipz95630 NA NA NA NA \n", "zipz95631 NA NA NA NA \n", "zipz95632 NA NA NA NA \n", "zipz95633 NA NA NA NA \n", "zipz95635 NA NA NA NA \n", "zipz95648 NA NA NA NA \n", "zipz95650 NA NA NA NA \n", "zipz95655 NA NA NA NA \n", "zipz95660 NA NA NA NA \n", "zipz95661 2.926e+04 3.994e+04 0.733 0.464062 \n", "zipz95662 NA NA NA NA \n", "zipz95663 NA NA NA NA \n", "zipz95667 NA NA NA NA \n", "zipz95670 5.343e+04 3.267e+04 1.635 0.102495 \n", "zipz95673 NA NA NA NA \n", "zipz95677 1.607e+04 4.510e+04 0.356 0.721739 \n", "zipz95678 -4.077e+04 2.838e+04 -1.437 0.151329 \n", "zipz95682 NA NA NA NA \n", "zipz95683 NA NA NA NA \n", "zipz95690 NA NA NA NA \n", "zipz95691 NA NA NA NA \n", "zipz95693 NA NA NA NA \n", "zipz95722 NA NA NA NA \n", "zipz95726 NA NA NA NA \n", "zipz95742 NA NA NA NA \n", "zipz95746 NA NA NA NA \n", "zipz95747 NA NA NA NA \n", "zipz95757 1.339e+04 1.874e+04 0.715 0.475149 \n", "zipz95758 NA NA NA NA \n", "zipz95762 NA NA NA NA \n", "zipz95765 NA NA NA NA \n", "zipz95811 1.067e+05 7.624e+04 1.400 0.162053 \n", "zipz95814 -7.275e+04 6.049e+04 -1.203 0.229549 \n", "zipz95815 -1.940e+05 3.691e+04 -5.256 2.02e-07 ***\n", "zipz95816 -2.631e+03 4.872e+04 -0.054 0.956956 \n", "zipz95817 -1.662e+05 4.612e+04 -3.605 0.000337 ***\n", "zipz95818 -5.284e+04 4.452e+04 -1.187 0.235783 \n", "zipz95819 1.074e+05 5.104e+04 2.104 0.035800 * \n", "zipz95820 -1.712e+05 3.770e+04 -4.540 6.73e-06 ***\n", "zipz95821 -9.943e+04 4.344e+04 -2.289 0.022420 * \n", "zipz95822 -1.762e+05 4.333e+04 -4.066 5.39e-05 ***\n", "zipz95823 -2.001e+05 4.157e+04 -4.813 1.86e-06 ***\n", "zipz95824 -2.056e+05 4.097e+04 -5.019 6.77e-07 ***\n", "zipz95825 -1.386e+05 3.719e+04 -3.727 0.000212 ***\n", "zipz95826 -1.435e+05 3.811e+04 -3.765 0.000182 ***\n", "zipz95827 -1.880e+05 4.005e+04 -4.694 3.30e-06 ***\n", "zipz95828 -2.005e+05 3.935e+04 -5.096 4.60e-07 ***\n", "zipz95829 -1.802e+05 4.471e+04 -4.030 6.25e-05 ***\n", "zipz95831 -1.137e+05 5.317e+04 -2.138 0.032914 * \n", "zipz95832 -2.242e+05 4.891e+04 -4.584 5.52e-06 ***\n", "zipz95833 -1.549e+05 4.048e+04 -3.827 0.000143 ***\n", "zipz95834 -1.510e+05 4.150e+04 -3.639 0.000297 ***\n", "zipz95835 -1.202e+05 4.195e+04 -2.865 0.004309 ** \n", "zipz95838 -1.729e+05 3.648e+04 -4.741 2.64e-06 ***\n", "zipz95841 -7.757e+04 5.190e+04 -1.495 0.135538 \n", "zipz95842 -1.651e+05 3.921e+04 -4.210 2.93e-05 ***\n", "zipz95843 NA NA NA NA \n", "zipz95864 NA NA NA NA \n", "beds -1.336e+04 5.016e+03 -2.664 0.007926 ** \n", "baths 1.314e+04 6.323e+03 2.078 0.038099 * \n", "sqft 1.148e+02 7.457e+00 15.388 < 2e-16 ***\n", "typeMulti_Family 3.034e+04 2.731e+04 1.111 0.266933 \n", "typeResidential 4.665e+04 1.298e+04 3.594 0.000351 ***\n", "latitude -2.121e+05 1.895e+05 -1.120 0.263319 \n", "longitude -6.519e+03 1.547e+05 -0.042 0.966399 \n", "---\n", "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n", "\n", "(Dispersion parameter for gaussian family taken to be 4622177625)\n", "\n", " Null deviance: 1.2350e+13 on 699 degrees of freedom\n", "Residual deviance: 2.8981e+12 on 627 degrees of freedom\n", "AIC: 17635\n", "\n", "Number of Fisher Scoring iterations: 2\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Train a caret glm model\n", "fit <- caret::train(form = price ~ ., \n", " data = train, \n", " trControl = trainControl(method = \"none\"), \n", " method = \"glm\", \n", " family = gaussian())\n", "summary(fit$finalModel)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "In predict.lm(object, newdata, se.fit, scale = 1, type = ifelse(type == : prediction from a rank-deficient fit may be misleading" ] } ], "source": [ "# Predict on the test set\n", "pred <- predict(fit, newdata = test)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "0.733889319847418" ], "text/latex": [ "0.733889319847418" ], "text/markdown": [ "0.733889319847418" ], "text/plain": [ "[1] 0.7338893" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "66030.8440670652" ], "text/latex": [ "66030.8440670652" ], "text/markdown": [ "66030.8440670652" ], "text/plain": [ "[1] 66030.84" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compute model performance on the test set\n", "\n", "caret::R2(pred = pred, obs = test$price)\n", "caret::RMSE(pred = pred, obs = test$price)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, this looks much better. And we didn't have to deal with the missing factor levels! :-)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### h2o\n", "\n", "Authors: Tomas Nykodym, H2O.ai contributors\n", "\n", "Backend: Java\n", "\n", "The [h2o](https://cran.r-project.org/web/packages/h2o/index.html) package offers a data-distributed implementation of Generalized Linear Models. A \"data-distributed\" version uses distributed data frames, so that the whole design matrix does not need to fit into memory at once. The h2o package fits both regularized and non-regularized GLMs. The implementation details are documented [here](http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/GLMBooklet.pdf)." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ERROR", "evalue": "Error in eval(expr, envir, enclos): could not find function \"h2o.shutdown\"\n", "output_type": "error", "traceback": [ "Error in eval(expr, envir, enclos): could not find function \"h2o.shutdown\"\nTraceback:\n" ] } ], "source": [ "h2o.shutdown(prompt = FALSE)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading required package: statmod\n", "\n", "----------------------------------------------------------------------\n", "\n", "Your next step is to start H2O:\n", " > h2o.init()\n", "\n", "For H2O package documentation, ask for help:\n", " > ??h2o\n", "\n", "After starting H2O, you can use the Web UI at http://localhost:54321\n", "For more information visit http://docs.h2o.ai\n", "\n", "----------------------------------------------------------------------\n", "\n", "\n", "Attaching package: ‘h2o’\n", "\n", "The following objects are masked from ‘package:stats’:\n", "\n", " sd, var\n", "\n", "The following objects are masked from ‘package:base’:\n", "\n", " &&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,\n", " colnames<-, ifelse, is.character, is.factor, is.numeric, log,\n", " log10, log1p, log2, round, signif, trunc\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "H2O is not running yet, starting it now...\n", "\n", "Note: In case of errors look at the following log files:\n", " /var/folders/2j/jg4sl53d5q53tc2_nzm9fz5h0000gn/T//RtmpN5WlEN/h2o_me_started_from_r.out\n", " /var/folders/2j/jg4sl53d5q53tc2_nzm9fz5h0000gn/T//RtmpN5WlEN/h2o_me_started_from_r.err\n", "\n", "\n", "Starting H2O JVM and connecting: . Connection successful!\n", "\n", "R is connected to the H2O cluster: \n", " H2O cluster uptime: 1 seconds 202 milliseconds \n", " H2O cluster version: 3.8.2.6 \n", " H2O cluster name: H2O_started_from_R_me_sot072 \n", " H2O cluster total nodes: 1 \n", " H2O cluster total memory: 3.56 GB \n", " H2O cluster total cores: 8 \n", " H2O cluster allowed cores: 8 \n", " H2O cluster healthy: TRUE \n", " H2O Connection ip: localhost \n", " H2O Connection port: 54321 \n", " H2O Connection proxy: NA \n", " R Version: R version 3.3.0 (2016-05-03) \n", "\n" ] } ], "source": [ "# h2o.glm example\n", "#install.packages(\"h2o\")\n", "library(h2o)\n", "h2o.init(nthreads = -1) #Start a local H2O cluster using nthreads = num available cores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Typically one would load a dataset in parallel from disk using the `h2o.importFile()` function, however for the purposes of this tutorial, we are going to use a tiny built-in R dataset, so we can send that data to the H2O cluster (from R memory) using the `as.h2o()` function. We would also use the `h2o.splitFrame()` function to split the data instead of the `caret::createDataPartition()`, but for an apples-to-apples comparison with the methods above, it's good to use the same exact train and test split, generated the same way as above." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " | \r", " | | 0%\r", " | \r", " |======================================================================| 100%\n" ] }, { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>700</li>\n", "\t<li>9</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 700\n", "\\item 9\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 700\n", "2. 9\n", "\n", "\n" ], "text/plain": [ "[1] 700 9" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>232</li>\n", "\t<li>9</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 232\n", "\\item 9\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 232\n", "2. 9\n", "\n", "\n" ], "text/plain": [ "[1] 232 9" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>'city'</li>\n", "\t<li>'zip'</li>\n", "\t<li>'beds'</li>\n", "\t<li>'baths'</li>\n", "\t<li>'sqft'</li>\n", "\t<li>'type'</li>\n", "\t<li>'price'</li>\n", "\t<li>'latitude'</li>\n", "\t<li>'longitude'</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 'city'\n", "\\item 'zip'\n", "\\item 'beds'\n", "\\item 'baths'\n", "\\item 'sqft'\n", "\\item 'type'\n", "\\item 'price'\n", "\\item 'latitude'\n", "\\item 'longitude'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 'city'\n", "2. 'zip'\n", "3. 'beds'\n", "4. 'baths'\n", "5. 'sqft'\n", "6. 'type'\n", "7. 'price'\n", "8. 'latitude'\n", "9. 'longitude'\n", "\n", "\n" ], "text/plain": [ "[1] \"city\" \"zip\" \"beds\" \"baths\" \"sqft\" \"type\" \n", "[7] \"price\" \"latitude\" \"longitude\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Load Sacramento dataset\n", "library(caret)\n", "data(\"Sacramento\")\n", "\n", "# Convert the data into an H2OFrame\n", "sac <- as.h2o(Sacramento)\n", "\n", "# Split the data into a 70/25% train/test sets\n", "set.seed(1)\n", "idxs <- caret::createDataPartition(y = Sacramento$price, p = 0.75)[[1]]\n", "train <- sac[idxs,]\n", "test <- sac[-idxs,]\n", "\n", "# Dimensions\n", "dim(train)\n", "dim(test)\n", "\n", "# Columns\n", "names(train)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " | \r", " | | 0%\r", " | \r", " |======================================================================| 100%\n" ] }, { "data": { "text/plain": [ " user system elapsed \n", " 0.152 0.005 1.298 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Identify the predictor columns\n", "xcols <- setdiff(names(train), \"price\")\n", "\n", "# Train a default GLM model with no regularization\n", "system.time(fit <- h2o.glm(x = xcols,\n", " y = \"price\",\n", " training_frame = train,\n", " family = \"gaussian\",\n", " lambda = 0)) #lambda = 0 means no regularization" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model Details:\n", "==============\n", "\n", "H2ORegressionModel: glm\n", "Model Key: GLM_model_R_1467015677812_1 \n", "GLM Model: summary\n", " family link regularization number_of_predictors_total\n", "1 gaussian identity None 113\n", " number_of_active_predictors number_of_iterations training_frame\n", "1 104 0 RTMP_sid_8211_2\n", "\n", "H2ORegressionMetrics: glm\n", "** Reported on training data. **\n", "\n", "MSE: 4140201839\n", "R2 : 0.765328\n", "Mean Residual Deviance : 4140201839\n", "Null Deviance :1.234975e+13\n", "Null D.o.F. :699\n", "Residual Deviance :2.898141e+12\n", "Residual D.o.F. :595\n", "AIC :17699.32\n", "\n", "\n", "\n", "\n", "\n", "Scoring History: \n", "data frame with 0 columns and 0 rows\n", "\n", "Variable Importances: (Extract with `h2o.varimp`) \n", "=================================================\n", "\n", "Standardized Coefficient Magnitudes: standardized coefficient magnitudes\n", " names coefficients sign\n", "1 zip.z95819 227041.126260 POS\n", "2 zip.z95811 225456.089371 POS\n", "3 zip.z95650 168023.485796 POS\n", "4 city.LOOMIS 168023.485796 POS\n", "5 zip.z95746 141127.252069 POS\n", "\n", "---\n", " names coefficients sign\n", "108 zip.missing(NA) 0.000000 POS\n", "109 city.DIAMOND_SPRINGS 0.000000 POS\n", "110 city.GARDEN_VALLEY 0.000000 POS\n", "111 city.PENRYN 0.000000 POS\n", "112 city.missing(NA) 0.000000 POS\n", "113 type.missing(NA) 0.000000 POS\n" ] } ], "source": [ "summary(fit)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "0.734942627890473" ], "text/latex": [ "0.734942627890473" ], "text/markdown": [ "0.734942627890473" ], "text/plain": [ "[1] 0.7349426" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "64639.0844892456" ], "text/latex": [ "64639.0844892456" ], "text/markdown": [ "64639.0844892456" ], "text/plain": [ "[1] 64639.08" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# H2O computes many model performance metrics automatically, accessible by utility functions\n", "\n", "perf <- h2o.performance(model = fit, newdata = test)\n", "h2o.r2(perf)\n", "sqrt(h2o.mse(perf))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### speedglm\n", "\n", "Also worth mentioning is the [speedglm](https://cran.r-project.org/web/packages/speedglm/index.html) package, which fits Linear and Generalized Linear Models to large data sets. This is particularly useful if R is linked against an optimized [BLAS](https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). For data sets of size greater of R memory, the fitting is performed by an iterative algorithm." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Regularized GLM in R\n", "\n", "OK, so let's assume that we have wide, sparse, collinear or big data. If your training set falls into any of those categories, it might be a good idea to use a regularized GLM.\n", "\n", "### glmnet\n", "\n", "Authors: [Jerome Friedman](https://statweb.stanford.edu/~jhf/), [Trevor Hastie](http://web.stanford.edu/~hastie/), [Noah Simon](http://faculty.washington.edu/nrsimon/), [Rob Tibshirani](http://statweb.stanford.edu/~tibs/)\n", "\n", "Backend: [Mortran](https://en.wikipedia.org/wiki/Mortran) (extension of Fortran used for scientific computation)\n", "\n", "[glmnet](http://web.stanford.edu/~hastie/glmnet/glmnet_beta.html) is a package that fits a generalized linear model via penalized maximum likelihood. The regularization path is computed for the lasso or elastic-net penalty at a grid of values for the regularization parameter lambda. The algorithm is extremely fast, and can exploit sparsity in the input matrix $\\boldsymbol{X}$.\n", "\n", "Features:\n", "\n", "- The code can handle sparse input-matrix formats, as well as range constraints on coefficients. \n", "- Glmnet also makes use of the strong rules for efficient restriction of the active set. \n", "- The core of Glmnet is a set of FORTRAN subroutines, which make for very fast execution. \n", "- The algorithms use coordinate descent with warm starts and active set iterations. \n", "- Supports the following distributions: `\"gaussian\",\"binomial\",\"poisson\",\"multinomial\",\"cox\",\"mgaussian\"`\n", "- Supports standardization and offsets.\n", "\n", "The Glmnet package is a fast implementation, but it requires some extra processing up-front to your data if it's not already represented as a numeric matrix. For example, if you have categorical data or missing data, you need to deal with that yourself." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading required package: Matrix\n", "Loading required package: foreach\n", "Loaded glmnet 2.0-5\n", "\n" ] } ], "source": [ "#install.packages(\"glmnet\")\n", "#install.packages(\"Cairo\") #for plotting lasso coefficients in Jupyter notebook\n", "library(glmnet)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " num [1:100, 1:20] 0.274 2.245 -0.125 -0.544 -1.459 ...\n" ] }, { "data": { "text/html": [ "'matrix'" ], "text/latex": [ "'matrix'" ], "text/markdown": [ "'matrix'" ], "text/plain": [ "[1] \"matrix\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data(\"QuickStartExample\") #loads 'x' and 'y'\n", "str(x)\n", "class(x)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "fit <- glmnet(x, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can visualize the coefficients by executing the `plot` function. Each curve corresponds to a variable. It shows the path of its coefficient against the $\\ell_1$-norm of the whole coefficient vector at as $\\lambda$ varies. The axis above indicates the number of nonzero coefficients at the current $\\lambda$, which is the effective degrees of freedom for the lasso." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd1iVdeM/8PdhHPbeslHDvUdWluZOzZUTRXBgPRpWmjR+fnt6rmfwqJVmjlCZ\nKqWWG7dpWimKKJkbZSh7CwLncM75/XGEh8zMeT6c+7xfF1eX3tzgGzvK2/uzZBqNBkRERESk\n/4xEByAiIiKip4PFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiI\nJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgi\nWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILF\njoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyI\niIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiI\niEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiI\nJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgi\nWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOyIiIiIJILFjoiIiEgiWOx058iRI/37\n93d0dHRwcOjbt+/u3btFJyIxcnNz33777RYtWpiZmbm6uo4aNercuXOiQ5HuyB5IdDrSKaVS\nuWTJkvbt21tYWLi4uAwYMGDv3r2iQ5F+k2k0GtEZDML27dvHjBmjUqkaX1y5cuVbb70lKhIJ\nkZGR0bt375s3bza+aG1tfe7cuYCAAFGpSJce0N7Mzc2rq6t1GYYE0mg0Y8aM2bp1a+OLMpls\nxYoV/NZAj41P7HThzp07YWFhKpXq/fffLygoKC8vX7p0qZGR0bvvvpuVlSU6HelUSEjIzZs3\nX3rppbNnz965c+fkyZMdO3asrKxcuHCh6GikI5o/qKure+GFFwCsX79edDrSnQ0bNmzdutXa\n2nrVqlV5eXnFxcUJCQkODg7z5s3LzMwUnY701h//iqGnbu3atQD69+/f+OKECRMAfPrpp6JS\nke4dP34cgLe3d0VFRcPF3377DYCbm5vAYCTWP//5TwB/+9vfRAchnXr55ZcBrFy5svHFDRs2\n8FsDPQk+sdOFQ4cOAQgNDW18cfjw4QB++OEHMZlIhF27dgF4++23bWxsGi62adNGo9Hk5eWJ\ny0UiXb9+/R//+IeXl9eiRYtEZyGdOnPmDIDRo0c3vjhw4EAA+/btE5OJ9B+LnS6kpKQA6Nat\nW+OLPXr0AHDlyhUxmUiEY8eOAejXr9/y5csDAwPNzMz8/f0XLFhw+/Zt0dFImAULFigUiiVL\nllhZWYnOQjqlUCgAmJubN76oVqsBZGRkCIlEEsBipwtFRUUAPD09G190dnYGUFJSIiYTiaCd\nUhkVFRUeHn7lyhWFQpGRkbF48eLnn3++tLRUdDoS4OTJk999912XLl3Gjx8vOgvpmr+/P4DD\nhw83vnjw4EEAxcXFYjKR/mOx04Xy8nIAFhYWjS9qB+OUSqWYTCSCtr198803UVFRBQUFlZWV\n27dvd3Z2vnDhwr/+9S/R6UiA//znPwA+/vhj0UFIgHHjxgGYPXv21q1bS0pKiouLY2Ji5syZ\nA8DMzEx0OtJX3O5EFywtLaurqysqKhrPrLpz546VlZWNjU1FRYXAbKRLpqamdXV18fHxU6ZM\nabgYGxsbGhraokWLq1evCsxGunflypVWrVr5+fmlp6dzBzsDVFlZ2atXr/Pnzze+OHbs2M2b\nNzdv3vzatWuigpFe4xM7XXBxcUH9gGwD7WT5Zs2aiclEImib/Wuvvdb44uuvv476UVoyKNHR\n0RqNZubMmWx1hsna2vrYsWPvvPOOt7e3qalpQEDAf/7zn+DgYAB+fn6i05G+YrHThTZt2gA4\ndepU44tpaWkAOnToICYTiaCdUnPP+Lv2p5aWlmIykSAajUa7a92kSZNEZyFh7O3tv/jii6ys\nLIVCkZ6e/sEHH2jn2A0YMEB0NNJXLHa6oP0jqt2dqEF8fDyAwYMHi8lEIvTu3RvApk2bGl/U\n7juvXSVNhuP06dO3bt3q0qWLr6+v6CwkhrW1tUwma3wOTWFhYXx8vEwm0+6HRfQYWOx0YerU\nqdbW1jt27Fi4cGFpaWlhYWFERMTWrVs9PT25FM6gzJw508TE5MMPP1y+fHlubm5JSUlCQsKC\nBQsAvP3226LTkU5pNyrr37+/6CAkjPZfeqGhoZcuXVIoFCdOnBg4cGBpaekbb7yhHechegxc\nPKEj69evDw4Obvy7LZfLt23bNmTIEIGpSPe++uqr8PDwe/7cvfnmm6tWrRIViYR47bXX9uzZ\ns23bthEjRojOQmKcO3fuxRdfrKqqanwxMDDw6NGjbm5uolKRvuMTOx2ZPHny3r17X375ZRsb\nGwcHh0GDBv3www9sdQZozpw5Bw4c6Nevn7W1taWlZbdu3dasWbNy5UrRuUjXUlNTAXTv3l10\nEBKmY8eOJ06cGDt2rIuLi1wub968+bx5844fP85WR0+CT+yIiIiIJIJP7IiIiIgkgsWOiIiI\nSCJY7IiIiIgkgsWOiIiISCJY7IiIiIgkgsWOiIiISCJY7IiIiIgkgsWOiIiISCJY7IiIiIgk\ngsWOiIiISCJY7IiIiIgkgsWOiIiISCJY7IiIiIgkgsWOiIiISCJY7IiIiIgkgsWOiIiISCJY\n7IiIiIgkgsWOiIiISCJY7HRKpVIdOHBApVKJDkKC8ZVAWnwlEPgyoKeKxU6n9uzZM3DgwL17\n94oOQoLxlUBafCUQ+DKgp4rFTqeqq6sB3LlzR3QQEoyvBNLiK4HAlwE9VSx2RERERBLBYkdE\nREQkESx2RERERBIh02g0ojM0dRUVFWvXrlUqlU/+qc6dO5eYmNi7d28fH58n/2ykv7Kyso4d\nO8ZXAvGVQODLQD+ZmZktWbLEwcFBdJA/0NBf+eqrr0T/XyIiIqKmJTw8XHRDuQ8T0b8teqCu\nrg7AunXrOnbs+OSfatOmTQEBAUZGHAQ3aGq1Oj09vXnz5nwlGDi+Egh8Geih9PT0zz77zM/P\nT3SQ+2Cxe1iBgYFdu3Z98s/Ts2fPJ/8kREREJMpPP/302WefNc0i3hQzEREREdFjYLEjIiIi\nkggWOyIiIiKJYLEjIiIikggWOyIiIiKJYLEjIiIikggWOyIiIiKJYLEjIiIikggWOyIiIiKJ\nYLEjIiIikggWOyIiIiKJYLEjIiIikggWOyIiIiKJYLEjIiIikggWOyIiIiKJYLEjIiIikggW\nOyIiIiKJYLEjIiIikggWOyIiIiKJMBEdgIiIiOgpq6qqys/Pr6ioKC8vLysrKykpKSoq6tSp\n04ABA0RHe7ZY7IiIiEhvFBcXFxUVlZeXV1RU5OfnFxQUFBQUFNcrLCwsLCysrq6urKz848e+\n+uqrLHZEREREz1ZNTU1xcXFJSYm2n+Xn5xcVFRUVFZWVlZWWlpaWlja8V6VS3fczyGQyJycn\nFxeX1q1bW1hYuLm5ubm52djY2Nvb29vbOzo6Ojk5tW3bVsdfl+6x2BEREdEzoVAoioqKSn6v\nsLCwqKhIW+BK61VXV//ZJzEzM3NwcHBycgoMDHRycnJ2dnZ1dXWp5+DgoO1tjo6OMplMl19d\n08RiR0RERI+ssrJS+2hNOwBaVFRUWFhYUFCgfdJWWFioneL2Zx9uYmLi5OTk4ODg6+vbqVMn\nbXXTPldzdHR0dXV1dXV1dnZ2cHCwsLDQ5del71jsiIiI6HcqKytv3bpVUFCQm5ubl5fXMIlN\n+6RNuxChpqbmvh9ramrq7Ozs7OzcrVs3Nzc3Z2dnx9/TDpja29vr+IsyECx2REREhqK0tLTs\nDwoKCvLz87XLDvLy8goLC+/cuXPfD7e3t3d2dvb09OzYsaN2VFQ7MOpcz9XV1cHBQcdfFDXG\nYkdERCQdarU6Nzc3IyMjKysrOzs7Jyfn1q1bOTk5N2/ezMvLUygUf/aBZmZm2mbWpk0bV1dX\nd3d3Dw8PV1dXT09PFxcXJycnJycnY2NjHX4p9DhY7IiIiPRSUVHR9evX09PTr9fLzMy8efOm\nUqlsfJtMJnNzc/Pw8OjQoYObm5t2tUFjzs7O7u7udnZ2or4QeopY7IiIiJq6kpKSS5cuXb16\n9dq1aw3/vWdpgp2dnY+Pz6BBg3x9fX3qeXt7u7u7m5qaikpOOsZiR0RE1LRUVVX9+uuvaWlp\nv9XLy8treK+ZmVnz5s379u3r7+/vV8/X15fLEQgsdkRERGKpVKobN26cP3/+t99+O3fu3Nmz\nZ9PT09Vqtfa9tra27du3HzVqVIcOHVq2bNmiRQtvb28jIx71TvfHYkdERKRTOTk5586dO3fu\n3Pnz5y9cuHDx4sWGrUNMTU0DAwPHjh3brl27tm3bduzY0d/fn/vu0sNjsSMiInqG6urqLl68\neK7e2bNnCwsLG97r7e3dr1+/9u3bd+zYsX379s899xznw9GTYLEjIiJ6mm7fvp2amtpQ486f\nP19bW6t9l52dXbt27UaPHt2hQ4d27dq1b9+eu77R08ViR0RE9EQ0Gs2lS5dOnjz5yy+/nDhx\n4rfffms4qN7Ly2vQoEFdunTp0qVLx44dfXx8xEYlyWOxIyIiemT5+fmnTp1KTk4+derUiRMn\nysrKtNfd3d2HDh3avXv3rl27dunSxc3NTWxOMjQsdkRERH/t9u3bKSkpycnJ2jKXlZWlvW5r\na9u1a9cePXr06NGje/fu3t7eYnOSgWOxIyIiuo/a2tqzZ8+eOnXq1KlTp0+fvnTpknYLErlc\n3qlTp+HDh3fv3r179+6tWrXi5iPUdLDYERERAYBKpbp48WLDAGtaWpr2bC6ZTPbcc88FBQX1\n7Nmze/funTp1ksvlosMS3R+LHRERGa7s7OxTp06dPHkyOTk5JSXl9u3b2utOTk4DBgzo0aNH\nz549e/bsybWrpC9Y7IiIyIBUVFQ0NLnk5OTc3FztdXNz806dOvWo17JlS7E5iR4Pix0REUlZ\nXV3dr7/+euLECW2Ta5gqZ2RkFBgYOHDgQG2T69ixI3cGJglgsSMiIqnJyMg4efKk9rHcmTNn\nqqurtdc9PDyGDx+uHWDt3r27ra2t2JxETx2LHRER6b2ysrLk5OSGAdaCggLtdSsrq27dumnn\nyfXo0YP7A5PksdgREZH+USgUZ8+eTa535coVjUYDwNjYuHXr1sOGDdOWubZt25qY8DsdGRC+\n3ImISA9oNJorV65o9yJJTk4+e/ZswwGsnp6eI0eO1Da5rl272tjYiI1KJBCLHRERNVF5eXkN\nTS45Obnh2C5bW9sXXnhBO7rao0cPT09PsTmJmg4WOyIiakKuXLly5MiRo0ePHj9+vOHYLlNT\n0w4dOjTsRcLDHoj+DIsdEREJdvny5aNHj2r7XE5ODuqnyk2aNEnb5Dp37mxubi46JpEeYLEj\nIiJdU6vVqampBw8ePHjw4MmTJ7XnPZiZmfXu3Ts8PPzFF1/s0qWLpaWl6JhE+ofFjoiIdCct\nLW3dunWbNm3Ky8sDYGxs3KlTpz59+rzyyisvv/yynZ2d6IBE+o3FjoiInrmysrKNGzdGR0en\npKQAaN++fVBQUJ8+fXr37s0yR/QUsdgREdGzolQqt23bFhUV9cMPP6hUKjc3t4iIiNDQ0MDA\nQNHRiKSJxY6IiJ6+8+fPr1mzZvPmzbm5uaampqNHjw4LC+vbt6+xsbHoaERSxmJHRERPTW1t\n7bZt26Kjow8ePKhWq319fT/55JOQkBA/Pz/R0YgMAosdERE9BefOnYuOjl6/fn1JSYm5ufm4\nceOmTZvWr18/bjhHpEssdkRE9PjKysoSExOjo6NPnz4NoFOnTp9++mlQUJCDg4PoaESGiMWO\niIgeWV1d3datW+Pj4/fv369QKLgqgqiJYLEjIqJHkJ6evmbNmoSEhJycHBMTk1GjRnFVBFHT\nwWJHRER/TaFQ7Nq1Kzo6eu/evSqVysvLa+HChSEhIQEBAaKjEdH/sNgREdGDpKWlxcTEbNiw\nobCwUC6Xjxo1atq0aQMHDuQjOqImiMWOiIjuo6SkZOPGjbGxsdqzItq1a/fhhx9OnjzZxcVF\ndDQi+lMsdkRE9D8KhWL79u0NZ0W4urpGRERMnTq1devWoqMR0V9jsSMiIgBITU1dvXr15s2b\nS0tLTUxMRo8ePWXKlEGDBsnlctHRiOhhsdgRERm0oqKidevWxcfHX7hwAUCLFi0iIiKmTJnS\nrFkz0dGI6JGx2BERGajjx49HR0dv3ry5srJSLpePGTNm2rRpgwYN4qoIIv3FYkdEZFhyc3Pj\n4+NjYmIuX74MoF27dtOnTw8KCuKqCCIJYLEjIjIId+7cWb9+fXx8/C+//KJWq7kqgkiSWOyI\niCQuJSUlKirq22+/LS8vNzExGTNmDFdFEEkVix0RkTT9cVXEhx9+yFURRNLGYkdEJCkqlSop\nKSkhIWHHjh21tbVWVlZhYWFhYWFdu3YVHY2InjkWOyIiicjLy4uPj4+Ojm5YFTFt2jSeFUFk\nUFjsiIj0W11dXVJS0rp165KSkurq6uzs7GbNmjVt2rQePXqIjkZEusZiR0Skr86cOfP1119v\n2rSprKzMxMRk1KhRXBVBZOBY7IiI9Mw9qyKaN2/+wQcfcFUEEYHFjohIX2g0mkOHDkVFRTVe\nFTFlypQXXnjByMhIdDoiahJY7IiImrqMjIzVq1dv2LDh5s2bAF588cXg4ODx48fb2dmJjkZE\nTQuLHRFRE6VSqfbs2RMdHb1r1y6lUmljYzNjxoxp06b16tVLdDQiaqJY7IiImpxr165FR0fH\nxcXl5OQAeOmll6ZPnz527FgrKyvR0YioSWOxIyJqKqqrq7ds2bJu3boff/xRo9F4eHhERESE\nhoYGBgaKjkZE+oHFjohIsIZVETt37qypqbGyspo5cyZXRRDRY2CxIyISJisrKzo6OjEx8cqV\nK+CqCCJ6Yix2RES6plQqt23bFhUV9cMPP6hUKldX14iIiODg4DZt2oiORkT6jcWOiEh3zp8/\nv2bNmk2bNuXl5ZmYmIwePZpnRRDRU8RiR0T0zFVWVm7cuDEqKiolJQVAixYtIiMjeVYEET11\nLHZERM9QWlpadHT0+vXri4uLzczMxo0bFxoaOmDAAGNjY9HRiEiCWOyIiJ6+srKyxMTE6Ojo\n06dPA+jYseP//d//BQUFOTk5iY5GRFLGYkdE9NTU1dVt3bq1YVWEm5tbRERESEhIq1atREcj\nIoPAYkdE9BRcu3Zt7dq18fHxubm5pqamo0ePDgsL69u3L4dciUiXWOyIiB7fPasiWrZsGRkZ\nGRwc7OHhIToaERkiFjsiosdx8ODB+Pj47du3V1RUWFtbh4WFhYWFde3aVXQuIjJoLHZERI+g\noKAgJiYmNjb20qVLMpmsX79+U6ZMGTlypK2trehoRER6WOyysrJiY2N/+OGHK1eulJSUKJVK\nS0vLZs2adejQYciQIePGjbOyshKdkYikRrsqIj4+fv/+/QqFQntWBFdFEFFTo2fFbuXKle+9\n915tbW3ji7dv3758+fLly5c3b968cOHCtWvXDh48WFRCIpKY7OzsuLi42NjY9PR0mUzWt2/f\nadOmjR492sLCQnQ0IqJ76VOx27Vr1+zZs42MjCZMmDB8+PAePXo4Ozvb2NjU1tbm5eWlpaXF\nx8dv3bp1xIgRR44c6dWrl+i8RKTHamtrt23bFhMTc+DAAbVa7ePjs3DhwtDQUH9/f9HRiIj+\nlD4VuyVLlgD44osvwsPDG1+3tLQMCAgICAgYOXJkRETEokWL/vGPf+zZs0dQTCLSYxqN5tCh\nQ/Hx8du2bbt9+7a1tfWMGTO4KoKI9IU+FbvU1FQAISEhD7hn/vz5ixYtSk5O1lEmIpKKrKys\n6Ojob7755vLly9pVEWFhYcOGDeOQKxHpEX0qdkZGRgAUCsUD7tHuBapUKnWUiYj0nEKh2L59\ne1RU1OHDh9Vqta+v7yeffDJp0qTnnntOdDQiokdmJDrAI+jSpQuARYsWPeCezz//vOFOIqIH\nOHv27KxZs9zd3ceNG/fjjz+OGTPmwIED169f//vf/85WR0R6Sp+e2C1cuPDo0aOLFy9OTU0N\nDQ3t1q2bp6enhYVFVVVVUVHRqVOn1q9fv3PnTiMjo48++kh0WCJqooqLi9evX5+QkKA9K6Jz\n586RkZFjx451cHAQHY2I6EnpU7Hr06fPli1bwsLCDh48ePDgwfveY21tvXr16oEDB+o4GxE1\ncSqVKikpKSEhYceOHbW1tc7OzhEREVOmTGnbtq3oaERET40+FTsAI0eOHDhwYGJi4qFDh1JS\nUoqKisrLy+VyuYuLS5s2bQYMGDB16lQnJyfRMYmoCcnNzU1ISIiJibl06RKAF198MTQ0dNy4\ncTY2NqKjERE9ZXpW7ABYWlpOnz59+vTpooMQUZNWW1u7Y8eO2NjYffv2qVQqDw+PiIiI0NDQ\nwMBA0dGIiJ4V/St2REQPdurUqbi4uMTExJKSEjMzs9GjR0+dOnXw4MHaVfNERBJm6MVOO+2m\npqbmAfdo98/jFipETdz169ejoqI2btyYnZ3NjeiIyDBJsNjJZDIAGo3mYW4+evTo66+//jB3\nJiYm9unT50mCEdGzUFlZuXHjxvj4+F9++UWtVgcEBERGRk6aNMnb21t0NCIiXZNgsXskr7zy\nyuHDh1Uq1QPuWbJkyb59+zw9PXWWioj+UsPZX9u3b6+oqNCe/TVlypQXXnhBu5k5EZEBkmCx\ne8hndVrGxsZ9+/Z98D0bNmxA/bkXRCTcjRs3vv7668TExKysLO2Q65QpU0aOHGlrays6GhGR\nYBIsdkQkSVVVVRs2bGgYcvX394+MjJw4caKPj4/oaERETQWLHRE1dWfOnImLi9u4cWNRUZFc\nLh8xYkRoaOiQIUNMTPg3GBHR7/CvRSJqogoKCjZs2BAbG5uWlgagc+fOCxcunDRpkrOzs+ho\nRERNFIsdETUtCoUiKSkpJiZmz549SqXS1dX1nXfeCQ0N7dChg+hoRERNHYsdETUJDatcd+zY\nUV5ebmVlFRoaylWuRESPhMWOiATLyMiIjY395ptvLl++3LDKdcSIEXZ2dqKjERHpGX0qdtqd\nhx/SI216QkS6V1VV9d133yUkJBw+fFitVvv5+X3yyScTJ07kWa5ERI9Nn4rdjBkzduzYUVBQ\nIDoIET2+e4ZcLS0tg4KCgoODX331VQ65EhE9IX0qdmvWrFm2bNmQIUN+/PFHPpAj0juZmZkx\nMTEcciUienb0qdgBsLS0XLBgwY8//ig6CBE9rDt37mzZsqVhyNXX1/eTTz6ZMGFCq1atREcj\nIpIaPSt2AJ5//nnREYjoofz666+xsbEbNmzIz883MTEZOnRoSEjIsGHD5HK56GhERNKkf8XO\nycmJ47BETVlxcfHGjRvj4uJSUlIAtGvXbsGCBUFBQW5ubqKjERFJnP4VOyJqmurq6vbu3Rsb\nG7tz506FQuHo6DhnzpypU6d269ZNdDQiIkPBYkdET+r48eMJCQmbNm0qKyvTnuUaFhbWt29f\nY2Nj0dGIiAwLix0RPaasrKzo6OhNmzZdvHgRQNeuXcPCwsaOHevg4CA6GhGRgWKxI6JHc88q\nV1dX14iIiClTprRt21Z0NCIiQ8diR0QPq/GQq6mp6ZgxY6ZMmTJo0CCuciUiaiJY7IjoL+Tl\n5cXFxcXFxWmHXDt27Pj3v/99/Pjx7u7uoqMREdHvsNgR0f1VV1dv3rw5ISHhhx9+UKlUzs7O\n4eHhwcHBXbt2FR2NiIjuj8WOiO7VeMjVxMRkyJAhwcHBr7/+upmZmehoRET0ICx2RHRXaWlp\nYmJiXFxccnIyAG9v79mzZ4eEhLRo0UJ0NCIieigsdkSGTqVS7d+/PzY2dseOHTU1Nebm5hMn\nTgwJCenfv7+RkZHodERE9AhY7IgM16VLl+Li4uLj43NycgD06tVr6tSp48ePt7e3Fx2NiIge\nB4sdkcEpKCiIiYmJj4+/cOECgBYtWkRGRgYFBXl5eYmORkRET4TFjshQKJXKbdu2RUVFaVe5\n2tjYhIWFhYWFcZUrEZFksNgRSV9qaurq1au3bNlSUlJibGysXeU6fPhwc3Nz0dGIiOhpYrEj\nkqzCwsLo6OiGIdeWLVsuWLBg8uTJnp6eoqMREdEzwWJHJDXaIdf4+PgDBw7U1tY6OjpyY2Ei\nIgPBYkckHefOnYuOjt68eXNubq6JicngwYM55EpEZFBY7Ij0XlFR0YYNGxISElJSUgC0bNky\nMjKSQ65ERAaIxY5IX9XV1e3ZsychIWHHjh21tbVOTk4cciUiMnAsdkT65+bNmzExMXFxcenp\n6TKZ7MUXXwwJCRk7dqytra3oaEREJBKLHZHeUCqVu3btWrt27b59+1QqlY+Pz8KFC4ODg3mW\nKxERabHYEemBs2fPrlq16ttvvy0vL7e0tJw+fTo3FiYioj9isSNqum7fvp2YmBgVFaVdFdGp\nU6e33npr/PjxdnZ2oqMREVFTxGJH1BQdPHgwKipq586dNTU11tbWPPuLiIgeBosdUROiPSsi\nNjb20qVLAPr37z9lypRRo0bZ2NiIjkZERHqAxY5IPI1Gc+jQoaioqIaNSyIiIoKDg9u0aSM6\nGhER6RMWOyKRsrKyVq5cuXHjxuzsbJlM1q9fv7CwMJ4VQUREj4fFjkiAurq6rVu3RkVFHT58\nWK1Wu7q6RkRETJs27bnnnhMdjYiI9BiLHZFOpaenr1mzJj4+Pjc319jY+LXXXgsODh4xYoRc\nLhcdjYiI9B6LHZEuVFdXJyQkxMfH//LLL2q12sfHJzIyMigoyMvLS3Q0InXkQBQAACAASURB\nVCKSDhY7omcrPT1du9A1JydHJpO9+uqrM2bMGDVqlJmZmehoREQkNSx2RM9KcnLy0qVLt2zZ\nolQqPTw8Pvzww+nTpzdv3lx0LiIikiwWO6KnTLswYunSpT///DOAfv36zZkzZ9iwYSYm/ONG\nRETPFr/TED01OTk5X375ZWxsbH5+vr29fURExMyZM/mIjoiIdIbFjugp+PXXXxcvXrxp06ba\n2lo/P7+lS5eGhoba2tqKzkVERIaFxY7o8alUqu+//37ZsmU//fQTgP79+4eHhw8dOtTIyEh0\nNCIiMkQsdkSPo6qqau3atcuXL09PT7ewsAgLC3vrrbc6deokOhcRERk0FjuiR5OZmfn555/H\nxsZWVFR4enpGRkaGhoa6urqKzkVERMRiR/TQDh48uGzZsqSkJLVa3bNnz3nz5vHECCKipqy4\nrjhTkZmlyMqvy89QZHS37D7afrToUM8Wix3RX1AqlYmJiV9++WVKSoqJicmYMWPCw8Nfeukl\n0bmIiAgANNDcUt7KqM3IUmRlKDJuKG6k16bfUtzKVmZXq6sb3znEdgiLHZHhKi4uXr58+ddf\nf52Xl+fg4BARETFr1ix/f3/RuYiIDFGtpvam4maOMidbkX1dcf1KzZVMRWZBXUGmIvOeAmdj\nbONt6t3burenqaev3DfALCBAHuBs4hxgFiAqvM6w2BHdx2+//fbf//5Xu31J69atP/3004kT\nJ9rY2IjORUQkfQqNIluRnanIzFRkXq+9fl1x/UbtjUxFZq4yVwNN4zudTZz95f5DbYd6yj29\nTL285d5+cj9/M39XE8Od98xiR/Q/Go1m165dX3755aFDhwAMHTp07ty5r776KrcvISJ66qrV\n1VmKrGxldpYiK0uRdaP2xg3FjRu1N3KUOWqoG9/pauLqK/d9weoFXzPfAHlAgFmAr9zXV+5r\naWQpKnyTxWJHdNf+/fsXLlyYnJxsamo6YcKEd955p0ePHqJDERHpPe0Q6k3lzSxFVqYiM702\nXfuWo8y5504HYwd/M/8eVj20vc3PzM9f7h9gFmBtZC0kuT5isSPCTz/99PHHHx89etTCwuK9\n99577733PD09RYciItIzaqhzlbmXai5dqrmUocjQjqVmKbLylHmNb5NB5m7q7if3623d20fu\n4yP38ZX7akdR7Y3tRYWXDBY7MmhHjx79+OOPf/rpJwsLi4iIiPnz5zs7O4sORUTU1Kk0qgxF\nxqWaSxdrLl6quXRDcSNTkZmtyFZoFI1v8zD18JP79bXuq3325if38zPz85H7mMnMRCWXPBY7\nMlApKSkffPDBwYMHzczMwsPD33//fS8vL9GhiIiaHKVGqR0/vV57PV1xdxT1Ss2VWk1twz22\nxrYB8oDhdsObmzUPMAvwl/trx1LNjcwFJjdMLHZkcNLS0j7++OPdu3cbGRmFhYV99NFHvr6+\nokMREYlXp6m7obhxpebK1dqr12qvad8yFZl1mrqGe4xlxt6m3q/YvNLKvFVr89aBZoFtzNu4\nmboJjE2NsdiRAbl27dpHH3303XffaTSaN95449NPP23durXoUEREAmi3FMlQZFyvvX6l9sqV\nmiuXay9fr72u1Cgb7jGTmfmb+Q+xHdLCrEVzs+bap3F+cj+5jCfuNF0sdmQQcnJyPv3005iY\nGKVSOXbs2IULF7Zv3150KCKiZ6tCVZGjzCmsK8xV5uYp8wrqCrRnM2QoMnKUOSqNquFOE5mJ\nn9xvgO2AQLPA58yfa2nWsrlZcx+5jxG42ZOeYbEjicvPz/+///u/2NhYhULRt2/ff/3rX716\n9RIdiojoSRXXFRfUFRTVFWnfCusKG36QX5dfqCwsUhXVqGvu+SgTmUkz02a+ct/e1r29Tb29\n5d4+cp+WZi0DzAL4HE4aWOxIssrKyiIjI1esWFFZWdm9e/d///vf/fv3Fx2KiOhxKDXKCzUX\nzlefT6tOS6tO+7X611vKW/e909LI0sXExVPu2dGko7OJs7ept4eph5fcq5lps2amzdxN3fkQ\nTtpY7EiCbt++/dlnny1fvrykpKRTp06LFy9mpSMifVRQV5BUnrS7fPf+2/srVBXaixZGFq3N\nW/e16esn93M2cXYycXI2cXYxcXExcXE2ceZhDAaOxY4kpaamZtmyZZ999llhYWHLli1Xr149\nZswYHghGRPrlQs2FbWXbtpdvP111Wg21scy4h2WPIbZDOlp2bGve1t/Mn0/d6M+w2JFE1NXV\nRUdH//Of/8zOzvb391+yZMnEiRNNTU1F5yIieihqqJOrkreVbdtatvVK7RUA9sb2Yx3GDrUb\nOsR2iLMJ906nh8JiR3pPpVKtW7cuMjLyxo0b7u7uX3/9dUhIiFzOWcBEpAeq1FX7K/bvKt+1\nu2J3vjIfQHOz5u+4vjPcbnhv696mMv7rlB4Nix3pMY1Gs2XLlk8//fS3335zcHCIjIycM2eO\nlZWV6FxERH8hW5G9s3znzvKdRyqP1KhrjGDUw6rHu67vDrcb3sa8jeh0pMdY7EhfXbt2bebM\nmUeOHDE3N3/33Xc//PBDFxcX0aGIiP6UBprUO6k7ynfsKN+ReicVgJnM7FWbV0fajxxuN9zD\n1EN0QJICFjvSS6mpqUOGDCkuLp41a9b/+3//j8e8ElFTdubOmYSShC2lW24qbwJwNHGc4jhl\nuN3wwbaDbYxtRKcjSWGxI/2zd+/eN954w9jY+MCBA3369BEdh4jo/lLupGwu3bylbEt6bTqA\nFmYt3nN973X711+yeslYZiw6HUkTix3pmW+//TY4ONjOzi4pKalbt26i4xAR3ets9dnEksQt\nZVuu114H4C/3/8D9gwkOEzpadBQdjaSPxY70yerVq+fMmdOsWbP9+/e3atVKdBwiov8prive\nULIhpjjmbPVZAF6mXu+6vjveYXxPq56io5EBYbEjvfHBBx/897//DQwM3L9/v4+Pj+g4REQA\noNKo9lbsjS2O3VG+Q6FR2BjbhDiFTHWc+rLNy9xGmHSPxY70gFqtDg8PX7FixfPPP797925H\nR0fRiYiIcKHmQlxx3PqS9TnKHCMY9bPtF+wYPNp+NA/1IoFY7KipUyqVISEhGzduHDBgwPff\nf29tbS06EREZtJK6ksTSxLjiuFN3TgFobd76bZe3JztN9jLl8nwSj8WOmrQ7d+6MGzdu9+7d\nb7zxxvr1683MzEQnIiIDVaep21uxN644bmf5zlpNrYOxw99c/hbsGMwpdNSksNhR01VcXPza\na68lJyfPmDFj9erVxsbcHYCIBPi1+tfY4tgNpRvylfkmMpNBtoOmOk593f51Mxn/qUlNDosd\nNVG3bt0aOHDghQsXFixYEBkZKZPJRCciIsNSVFe0sWRjbEms9pSIdhbt3nd9P8gxyN3UXXQ0\noj/FYkdN0dWrVwcOHJiZmRkZGRkRESE6DhEZEKVGmVSRFFscm1SepNAonEyc3nZ5e6rT1K6W\nXUVHI/prLHbU5Jw9e3bw4MHFxcUxMTFTp04VHYeIDEVadVpMccyGkg2FdYWmMtMhtkNCnEKG\n2g2Vy+SioxE9LBY7alqOHTv2+uuv19TUbNmyZcSIEaLjEJH0ldSVbCjdEFsce+bOGQAdLDp8\n5P7RJMdJriauoqMRPTIWO2pCvv/++0mTJpmZmSUlJfXt21d0HCKSsmp19eayzQnFCYdvH1ZD\n7SP3+cTjkwkOE1qZ81Qb0mMsdtRUrFu3btasWY6OjjwEloieqcYbCxvLjIfYDQlxChluN5yr\nXKWjCLgFZAM3gUwgC8gHMoCBwErR2Z4xFjtqEhYvXhwREeHl5bVv377WrVuLjkNEElRcV5xY\nmhhfHN+wsfBc17mTHSc3M20mOho9Fg2QC1wHMoFcIBvIAjKAG0D5H262BgIAb92n1DUWOxJM\no9F8+OGH2kNg9+3b5+vrKzoREUlKlbrqu7LvGoZc3U3dI9wigp2C25i3ER2NHo4ayAEygQwg\nE7gOXAeygGxA8fs7jQFPoBPQHPABPAEvwBfwAyxEJBeBxY5EqqurmzFjRlxcXM+ePZOSkngI\nLBE9RWerz8YWxyaWJBbUFZjITF6ze22q01QOuTZdSiAHuAlkAZn1b9eBDKD293faAL7AAMAH\n8Ad86zucJ3sNfwNIqLCwsLi4uF69eu3evdvBwUF0HCKSgoK6gg0lG2KLY9Oq0wB0sOjwgfsH\nkxwmuZm6iY5GAIDS+tKWUf/gLQvIAvIAze/vdAO8gEGAD+AD+AK+QADgIiS3fmCxI2FWrVoV\nExMzcODA77//3srKSnQcItJvCo1iV/muuOK4PRV7lBqli4nLXNe5IU4hnSw6iY5mqPKAW8BN\n4Eb91DftD27/4U4PwBvoDfgD/oBffYczmPHTp4jFjsT45Zdf5s6d27p16++++46tjogemwaa\nQ7cPxRfHby/fXqGqsDSynOAwIdgp+FWbV41gJDqd1NUB+UA2kFO/BDUHyAJuAbf+MAHOBPAG\nugE+gF99e/MGvAGOjT89LHYkQElJyYQJE0xMTDZt2mRtbS06DhHppeu116OKohJLE7MUWQBe\ntH4x2DF4vMN4O2M70dEkp7R+4UJG/Zt2Mlw+oP7DzU6AJzAQ8AQ864dQ/QAvlg5d4O8x6ZpG\no5k6dWpWVtbq1avbtWsnOg4R6ZlKdeXGko3xJfG/VP7SsMo1xCmEGws/KWX93m8Z9fPesusn\nw1X+/k4TwA3wAXoC3kAzwBPwrl/BwPFToVjsSNeWL1++a9euyZMnz5o1S3QWItIb2iHXqKKo\nXeW7qtXVFkYWQY5BwU7Bfa37GsuMRafTN0rgKvAb8Btwub7M5QGq399mBngDPX4/eOrHZ29N\nGv/PkE798ssv8+fPb9Wq1apVq0RnISL9kF6bvqZozcbSjdmKbNQPuY5zGGdvbC86mv7IBM4B\n54DzwG/AFUDZ6L0ugA/QHfCtX3/qDfgAHsLy0mNjsSPd4dQ6Inp49wy5upq4cmPhh1UN/Aak\nAb8CZ4FzQGmj9/oC/YB2QBugHdAa4N/HEsJiRzqi0WhCQkKysrJWrVrVvn170XGIqOlKvZO6\nrnjdxpKNpapSIxj1t+0f4hQy0m6khRFnb/2JG/U1Lg1IA641GlR1BjoB7YB2QHugLWArMik9\na/pd7BQKxeLFixMSEm7cuGFjY/P888+//fbbgwYNEp2L7uOrr77auXNnUFDQm2++KToLETVF\n5aryjSUb1xWvS7mTAqCFWYt5bvOCHYO95QZwwOejugEcB34GfgV+BSrqr8uA5sBooDPQGegE\nuIuMSbqnT8VOJpMB0Gju7kutVCqHDBly+PBh7U+Li4t37969e/fuOXPmLF++XFhKup8TJ07M\nmzevVatWq1evFp2FiJoWlUb1fdn38SXx+yv2KzQKRxPHcNfwYMfgrpZdRUdrSm4DvwDJwEkg\nGSiov24LtAM61L+15wM5Q6dPxe4eX3zxxeHDh62srJYuXTpy5EilUrlhw4aFCxd+9dVXPXv2\nnDx5suiAdFd5eXlQUBCn1hHRPTIUGasLV68vWX9LeUsGWT+bfmHOYcPthpsbmYuO1mRcBXYB\nu4Fj9fv9WgJdgSlAT6Ar4A/IBGekJkWPi11sbCyAyMjIGTNmaK/Mnz9fLpfPnTt37dq1LHZN\nx4wZM65fv75y5UpOrSMiACqNal/FvnXF63aW79Se/fWu67vTnae3NW8rOlrTUAscBZKAJOAq\nAMACGAAMAV4E2un1t2565vT41ZGeng5g7NixjS+OGTNm7ty5586dExSK7rVixYotW7YEBQW9\n9dZborMQkWClqtI1RWtWFK7IUmQZy4wH2Q6a5jRtuN1wuUwuOloTkA3sBpKAw0AVAMAHeBMY\nBrzKXX/pYelxsbO3ty8oKLC1/d1sAicnJwC1tbWCQtHvpKSkzJs3LzAwkFPriAzcxZqLXxZ8\nmVCSUKWu8jD1+IfHP6Y5T/M09RSdSzQ1cBrYCewCzgIATICXgCHAEICDHPTo9K/YKZVKU1NT\nAGPGjFm1alVycvIrr7zS8N4TJ04AaN68ubB8VK+8vHz8+PFGRkacWkdksOo0dRtLN35Z8KV2\noWt/m/7hruFD7YYawUh0NKFuAweA3cBuIB8A4AIEA8OAgQCPuqUnoH/FztLS0t/fv2XLlu7u\n7jKZbP78+adOndK+69KlS3PnzgUwevRooRkJAGbMmJGenv7VV1916NBBdBYi0rWSupIvC79c\nU7QmR5ljYWQR5hz2pvObnS07i84l1NX6Mvdj/UqIdkAoMBzoCfBcNHoa9KnY9e/f//Llyzdv\n3rx69erVq9oJpTh9+nTDDa1btwbg7e397rvviolI9VauXLlly5ZJkybNnj1bdBYi0qkLNReW\nFSzbWLKxUl3paeoZ6RkZ6hTqauIqOpcgdcBxYBewE7gCADAH+gHDgNcAP7HhSIL0qdgdOHAA\nQHV19dWrV6/Ua2h4AJydnQcPHvzvf//b3p4HCIp05syZ9957j1PriAzN8crjSwuWbivfptKo\nWpu3nus6d4rjFEsjS9G5RCgD9gI7gT31x3l5AbOAoUA/wCB/S0g39KnYaVlYWHTo0OG+o3uF\nhYW6z0P3KC8vHzdunHZqnY2Njeg4RPTMKTSKTaWblhYsTbmTIoNssO3gd1zfGWA7QGaAG6yd\nB5KAPcBxoA6QAV2B4cAwoDM3nCNd0L9iR03czJkz09PTly9fzql1RJKXrcheUrAkrjiuXFXu\naOIY4RYxy2WWv9xfdC7dqgIO1/e5TACAFTAEGA4MBZoJTkeGxtCLnUqlSkpKqqmpecA9GRkZ\nANRqtY4y6bNVq1Zt3rx5zJgxc+bMEZ2FiJ6hn6t+XlqwdFvZNqVG2dq89SLPRZMcJ1kbGdL6\n9+z6mXM/ANrvIS2AcOA14BWAZ2eQIBIsdvccKftgR48eff311x/mTm29owc4f/78/PnzfXx8\noqKiRGchomei8fYlMsiG2g2d6zr3VZtXDWX7EjWQAuxotO2cHHgFGAq8BrQUnI4Ikix2j+SV\nV145fPiwSqV6wD1LlizZt2+fn5+frkLppaqqqnHjximVym+++cbR0VF0HCJ6yirVlbHFsV8W\nfHm19qqpzHSiw8R3XN/pYdVDdC6dqAIO1J/ZmgcAcAaCgeHAQMD2Lz6aSJckWOwe8lmdlrGx\ncd++fR98z4YNGwAYGRnGv0cf17Rp0y5evLhs2bJevXqJzkJET1OGIuOrwq/WFq0tV5U7mTh9\n6P7hbJfZBnFoRFb9YOuR+sHWtsBUYDjwPLedoyZKgsWOdG/16tWbNm0aM2ZMeHi46CxE9NT8\nWPnjsoJl28u3qzSqdhbtFrksmuw4WeLbl6iBZGAnsBvQnjquHWwdBgwDAgSnI/pLLHb0pM6c\nOfPOO+8EBASsXbtWdBYiegqq1FVri9auKFyhHXWd5DBpruvcrpZdRed6lhoGW3fVn/HlCoTU\nn/HFjZtIf+hfscvKyoqNjf3hhx+uXLlSUlKiVCotLS2bNWvWoUOHIUOGjBs3zsrKSnRGA1JR\nUTF+/HgA3377LfeFJtJ3mYrMzws+125f4mLi8onHJ286v+lu6i461zNzC9gF7AAO1w+2tgOm\n1Z/xxQk4pIf0rNitXLnyvffeq62tbXzx9u3bly9fvnz58ubNmxcuXLh27drBgweLSmhoZs6c\nee3atWXLlnXr1k10FiJ6fAdvH1xWsCypPEkNdUeLju+5vTfeYbyZzEx0rmdAA6TUP5w7A2gA\nU+AVYDgwHDCwPfhIevSp2O3atWv27NlGRkYTJkwYPnx4jx49nJ2dbWxsamtr8/Ly0tLS4uPj\nt27dOmLEiCNHjnAKvw5wah2RvlNpVDvKdywrWHa08qj20Ihw1/BBtoMkeGhEJXAA2N1oZasj\nMAl4HRgE2AlOR/S06FOxW7JkCYAvvvjinhphaWkZEBAQEBAwcuTIiIiIRYsW/eMf/9izZ4+g\nmIaCU+uI9FqZqmxd0boVhStuKG7YGNvMcZnztuvbz5k9JzrX05YC7Kzfdk4FGAG9gHeAYUBb\n0dmIngF9KnapqakAQkJCHnDP/PnzFy1alJycrKNMhopT64j018Wai8sLl8cXx1epqwLMAr7w\n+iLUKdTOWELPrOqAn+ofzl0AAJgB/YFhwFAOtpLE6VOx0+4kp1AoHnCPsbExAKVSqaNMhopT\n64j0TuNDI4xlxqPtR4e7hL9k/ZLoXE9PEbAX2AXsB0oBAB7ADGAoMADgsjoyDPpU7Lp06XL4\n8OFFixYtWrToz+75/PPPtXfqMJfB4dQ6Iv1SXFe8vHB5VFFUrjLXysgq3DX8bZe3W5i1EJ3r\naagDjgAHgZ31D+fkwMvAMGA4t50jQ6RPxW7hwoVHjx5dvHhxampqaGhot27dPD09LSwsqqqq\nioqKTp06tX79+p07dxoZGX300Ueiw0oWp9YR6ZFfq39dnL94U+mmWk2tn9xvqdfSUKdQW2P9\nPwOrGjhcf8ZXNgDAFhhTf2arm+B0RALpU7Hr06fPli1bwsLCDh48ePDgwfveY21tvXr16oED\nB+o4m4Hg1DoivaDSqL4v+35Z4bKfKn8C0N+mf7hr+FC7oUb6vjPbLWA3sAs4BNwBALQE3gWG\nAr0BueB0RE2BPhU7ACNHjhw4cGBiYuKhQ4dSUlKKiorKy8vlcrmLi0ubNm0GDBgwdepUJycn\n0TEli1PriJq4KnVVQknC8oLlF2oumMhM3rB/Y67rXP2eSKcAfqxf2XodAGANDAWGAYP4cI7o\nXnpW7ABYWlpOnz59+vTpooMYHE6tI2rKshRZKwpXrC1eW1JX4mDs8L7b+7NdZvvKfUXnelyV\nwP76la3aM76cgcn1fY4DBkR/Qv+KHQnBqXVETdbPVT8vK1j2fdn3dZq6QPPAf3r8M9gp2MpI\nP1eBZgC7gJ3AUUB7xlA7IBQYBjwPGIsNR6QHWOzor3FqHVETdEd9Z03RmpWFK6/UXjGRmYyy\nH6Wv25eogBP1Z3ydBwCYA32A4cBQwE9oNiJ9w2JHf41T64ialGxF9pKCJfHF8WWqMgdjhwi3\niDDnsAAzfdvbIxfYCewEDtevhAgEIuofzvG7E9Fj4R8d+gucWkfUdPxc9fPSgqXbyrYpNcrW\n5q3/6/nfiQ4TbYxtROd6FBeAPUAScAxQAjKgMzAUGA50hb4v2yUSjsWOHoRT64iaAqVGmVia\nqD00QgbZULuhc13nvmrzqt5sX1IBHAL2AnuBLACAJTC4/owvT8HpiKSExY7+FKfWEQnX+NAI\nSyPLcNfwvzn/LdA8UHSuh6ABztWXuZ8B7UGPgcA7wGDgZcBCcEAiSWKxoz/FqXVEAl2vvf5V\n4VfRxdHlqnJnE+eP3D+a7TK7mWkz0bn+SglwANgL7ANyAQDWwGvAYGAQ4C84HZHksdjR/XFq\nHZEoR24fWVa4bEfZDjXU7SzaLXFZEuQYZGHUhB9wqYEUYC+wB0gGVACADsBkYDDwEs+EIN1S\nKpGRgVu3cPPm3beiImRmorAQAwZg1SrR+Z4tFju6D06tI9K9KnXV2qK1XxV+da32monMJMgx\naK7r3K6WXUXn+nOFwH5gD7AfKAQA2AOjgMHAYM6co2dMpUJuLjIycOMGMjORm4usLGRloaAA\nRUWoq/vdzTIZmjWDkxN89XbL7ofGYkf3qqqqmjJlilqtXr9+PafWEelApiLz84LPY4tjK1QV\nTiZOn3h8Mst5loeph+hc91ML7Ad2AQfrD/gyBV4B+gPDgLaC05EE5eXh1i3cuoWMDGRkIDsb\nOTnIzkZu7r3tzdQUnp5o1Qq+vvDwgIcHPD3h5QUfHzg4wNxc0Begayx2dK+//e1vFy5cWLx4\nca9evURnIZK4g7cPLitYllSepIa6rXnbBd4LxtmPMzdqet+BcuunzR0ASgAATsAEYAgPbKUn\nVleH3FxkZv6vtN28idxc3LqFvDzU1t57v7s7mjVD587w9YWvL/z84OsLT0+4ucFIT9aJP0ss\ndvQ7X3/9dXx8/OjRo+fPny86C5Fk1ahr4kvivy76+sydMw3bl/Sz6SeDTHS0RpTAcWAfsBdI\nAzSAEdC9fqS1Ow/4okdUXIy8PNy8iczM37398dmbTAY3N7i7o107+PkhIAABAXB3h5cXXF0h\n55zNB2Gxo/9JTU3VTq1bt26d6CxE0lRYV7iicMXqotX5ynwrI6tw1/A5LnNamrUUnauRjPo9\nSg4DtwEAbsAUYDAwAHAWG46atqKiu4/c8vNx6xYKCnDr1t0f3/fZm4sLvL3RpQt8feHjA09P\neHvD2xseHjA1FfEFSAGLHd1VUVExbtw4jUbDXeuInoW06rQl+Us2lW6q1dT6yn2Xei0NcQqx\nM7YTnQsAUAYcAHYCB4A8AIA1MAToD/QH9O2sMnqGamuRn/+/oVLtDxqGUGtq7r3fyAiurvDy\nQufO8PGBl9fdN09PNGtmOPPedInFju7S7lq3dOlS7lpH9BRpoDl0+9DSgqV7yveooe5s2Xmu\ny9wJjhPMZGaiowGXgT3AXuBHoBoA4AOEAYOA/oCt4HQkRlkZcnPvPmwrKEBuLvLykJeHnBzk\n5aGo6D4fYm8PT0/07Ytmze72Nu3aBXd3uLnBmGP2OsViRwDw9ddfb9q0afTo0XPnzhWdhUgi\nqtXV60vWf1n45fnq88Yy4xH2I+a6zn3F+hXBsSobne6VAQAwB14GBgGDgTZiw9Gzp1T+r67l\n5yMn538Dprm5yM29z1M3AJaW8PRE69bw9Ly7dsHD4+6YqZcXLC11/mXQn2KxI06tI3rKLtdc\n/rzg88TSxNuq284mzp94fPKm85vupu4iM6XVl7mfAAUAoCXwNjAY6APw+7L0qFTIzER6+t2d\n3hr+m5d3n5u1A6ZubmjdGq6u8PSEq+v/Hrk1awZra51/AfSYWOwMHafWET0t2lHXhu1L2lu0\nn+82f7zDeGGjrreA3cBB4DBQDABwAMYDw4FXAFcxoeiZuHULly7hCnkpmgAAIABJREFU8mVc\nvXr3LSMDCsXv7nFzg58feveGh8fv2pubGwdMpYTFztBxah3Rk6tWVyeUJKwqXHW2+qyxzHiM\nw5hwl/CXrF8SEEV7utc+YA9wsv50r3ZAaP3pXk1gah89qbw8pKbi7FlcuoSLF3H5Mioq/vde\nU1P4+aF/f7RogZYt4ecHf3/4+3PA1ECw2Bm0qKgoTq0jehK3lLeWFyyPKY4pqCuwN7aPcIuY\n6TyzuVlzXecoqj/da1/96V52wEhgMDAI8NZ1HHrKiorw0084eRJnzyI19XfDqS4u6NQJrVoh\nMBCtW+O55+DrCxN+czdcj/D/fvny5f/617/y8vIAFBUVBQUFHT161M/P79///vfo0aOfWUJ6\nVlJTU+fOnevv78+pdUSP4UTVic8LPt9etl2hUfjJ/ZZ6LQ11CrU11uFSUhVwGtgD7AFOA2pA\nBnQGZgKDgV78l7uey87G0aM4fhzHjuHiRWg0ACCXo0MHjBiBbt3QtSt8feHoKDooNS0P++d+\n27Zt4eHhDT+dN2/e/v37AVy+fPmNN97Yv39///79n0lAeja0U+vUajWn1hE9kjpN3cbSjV8W\nfJlyJwVAf5v+4a7hQ+2GGkFXZxllAtuAXcDPwB0AgBcwAxgG9AU4x12vZWfjyBEcOYKjR5Ge\nfveiiwtGjMDLL+PFF9GpE89doAd72GK3YsUKAIsXLwZw586dTZs2tWzZ8vjx4//5z3+WLl26\nePFiFjv9op1a98UXX3Tv3l10FiL9UFJXsqZ4zdeFX99Q3LAwsghzDnvT+c3Olp118WvXAvuB\nXcBB4DoAQA68DPQHhgFtdRGBnpVLl3D8OH78EceOISPj7kU/P0yZgpdeQu/eaNUKsqZ01hw1\nbQ9b7M6cOQNg4sSJAI4fP15TUxMUFOTq6jpv3rylS5eePn36GWakp41T64geyU3lzeUFy9cU\nrSlVlToYO7zv9v4clzk+cp9n/gvn1e9RcgAoAQA4AxOBIcAgLmvVWyoVzp3DsWP48UccP46C\nAgAwMkLbtpg9+26Z8/QUnZL01cMWu9u3bwNwdXUFcOzYMQB9+vQB4OTkBKCi8XocatoaT62T\n8V+BRA+Ueif1s4LPNpVuUmqU7Sza/cv5X8FOwVZGVs/wl6wDfqk/EOIsoAGMgG7AEGAI0B06\nG/Klp0mpxMmTd5vcTz/dXcRqaopu3TB16t1hVgcH0SlJCh622Lm7u2dnZ1dVVdnb/3/27juu\nyrp94PjnHDayEdnDrbjFvXOCilquMgeO1LJ8Siv7ZWXzecrKkS33yI2GK/feCwcgAuJg7705\n4/79ccAoFVGBw/i+X+fFy+5zc9+XpnDxva/re1mcOnVKX1+/U6dOQFhYGCCKtKoLUVonCGVR\nspBOT6b3quWrc2zntDVqW4G3jCmxOJcBQD14HbxgINStwDsLFej2bY4c4cgRTp4kOxtAV5dO\nnejdmz596N6dOhX5Q4JQK5U1sWvXrl1UVNTGjRvbtm177ty53r17GxkZRUVFzZkzB+jatWtF\nBimUG1FaJwilS1elL09erimks9CxWGC/YEbdGfZ69hVysyw4CEdLVM4ZwADwhv7QoELuKVS4\n5GSOHOHwYY4cISYGQEeHdu3o25e+feneXUxxECpUWRO7Dz/8cO/eve+8847mP6dMmQK4uLgA\nhoaGn376aQXFJ5SjlStXbt++/eWXXxaldYLwqMjCyB8Tf1yXsi5Tlemi77LEackU6ymmOqbl\nfyf/4mTuLGjGcjaDedAfuonpXtWTUsmlSxw8yKFD+PujVgO0aMErr9C3L336IJ6QCJWlrIld\n9+7d161b99lnnyUmJk6dOvX1118H7Ozsevbs+dVXXzVt2rQigxTKwfXr12fPnl2/fv01a9aI\n0jpBKOlSzqUfE3/clb5LISk61en0fr33R1iM0JPplec9MuEQHIUjcB8AQ+gvFuequejoomTu\n6FHS0wGsrRkzhkGDGDQI+4pZ6BWEUj3D/pUTJ06cOHFiySNxcXHlHY9QITIzM8eOHStK6wSh\nJJWk+jP9z6VJS89ln5MhG2I+ZJ7tvHKeA3YfDsIBOA45ADjCVPCC/mBenrcSKklBAWfPcvAg\nBw8SFASgo0OnTnh6MmgQHTqIoauCdomNyWuF6dOn37lzZ9GiRaK0ThCAXHXuyuSVPyf9HF4Q\nbiQ3ml1v9ts2bzc2aFw+V8+H08UDIUIB0IMe4Ame0Lp8biJUtogI9u/nwAGOHycnB8DBgcmT\n8fRkwADR0CpUHWVN7DQP7yTNSJMyvyVUBStXrty2bdvLL7/87rvvajsWQdCyWEXsT4k/rUlZ\nk6RMsta1XmC/4C2bt+rpvvCOcBJcg6OwFy6BEgCP4sq5HmD4wqELlU+p5OxZ9u9n/35u3QLQ\n06NHDwYNwtOT1q3FvsFCFfSiK3YhISGAjlh5rqpEaZ0gaNzKv/Vd/Hfb07YXSAXNDJv94PTD\nGIsxhvIXS7jS4QjshcOQAIAZvAz9YQDUL4+4hcoXH8+BA+zfz5EjZGQAODgwbRpeXgwYgGkF\n9NMIQvl5emJXMht4Umbg5uZWXgEJ5UiU1gkCEJAX8EXcF7szdqskVVujtnNt5461HPv8vRGa\nxbm9sA9ugAoAD/CBodBFVLhUT4WFnDvHoUMcOsTNm0gSOjp07syQIXh50batWJwTqoty+Ark\n4uKyePHiF7+OUO5EaZ1Qy90puLMgdsG2tG2Al7nXe/Xe62fa7zmvlQsniyvnNMPZDaAveIIX\nNC+vkIXKde9eUVvr8eNFGwjb2jJ+PF5eDByItbW24xOEZ/b0xE5TPCcK6aqdVatWidI6oda6\nU3Bnfuz8nWk7gdetXp9vN7+p4XPtyhRWnMydKt5zrgG8BV7wEoipAdVRfj6nThV1Qty5A6Cn\nR7duRW2tYnFOqObKumInUrrq5fbt2++++66Tk9OKFStEaZ1Qq8QoYr6M+3JtylqFpBhtOfoz\nu89aGrV8tktoFuf2w8HixTlD6FU8rVXs2llNadpa9+/n+HFycwHc3Jg5k0GD6NdPVM4JNcYz\nJHaLFi1at27d/fv3czSd3o+cUK6BCc8vNzd3zJgxBQUFW7ZsqVtXzJgUaosERcJncZ+tS1lX\nKBX2Ne37jcM3Xep0KesnP1o5J4P2ME9UzlVnWVkcPMjRoxw5wv37AKamDBlC//4MHIioDhdq\norJ+rfr+++/nzZtXoaEI5WXKlClBQUE//vhjjx7lutWqIFRV6ar0b+O//Tnp5xx1Tkfjjv91\n/G9/0/5l+0zYA/vgFCQCYA6vwFAYBLYVGbRQcSIiOHSIgwc5dozMTABHR9HWKtQSZU3sfv/9\nd2DYsGFLlixxdXWVy+UVGZXw/B6W1r333nvajkUQKlyuOndZ0rKFCQtTlaltjdp+7/T901O6\nJy3OTRaLc9VZfj5nzhQNhAgOBtDVpWtXvLzw8qJNG1E5J9QSZf0CFhMTA/zyyy9OTk4VGY/w\nQm7cuPHOO++IXeuE2iBfnb80aemPCT8mKZMaGTT63fn3kZYj5Tz5Z85SFucGgl1lxS2UI0ni\n2jWOHmXvXi5dQqkE8PBg3jz696d7d4yMtB2iIFS2siZ2DRo0CAkJsbKyqtBohBeRmZk5ZswY\nsWudUOMpJeWalDXfxH8TWRjpqOe43GX5ZOvJT9yXLg72wC44WdzWWr+4rbUvGFde2EK5ycvj\n5EkOHODAAcLDAQwM6N27qK21VSttxydoWQrchRiIhiiIgWR4ADHgCTu0HV5FK2ti98EHH0yd\nOnXnzp0TJkyo0ICE56bZte7HH38Uu9YJNZWEtCNtx2dxn4Xkh9jq2S53We5j7aMv03/MqXfA\nD3bBJVCDPvQGLxgs2lqrrfDwooEQp06RlwdQvz5vvomXF337UkfsPVO7pEMUREEiREMcREIk\nREDGIyfbgw0MgGFaiLSylTWxmzJlSlxc3Ntvv61Wq4cPH25ubi6e9FUporROqPF803y/iv8q\nMC/QQsfiW8dvZ9nMMpGb/OMMJZyEvbAbIgCwhWkwFPqDeChXHaWnc+QIe/dy+DAJCQBmZgwd\nytChDByInXiCXsOpIQbuw32IhXiIhntwDzIfOdkGnKA72EIjcAZHcAKXWjaruayJ3cM0zsfH\n57EniO1OtEiU1gk125XcK5/EfnI487C+TP9tm7fn28230yvxHT0H9sNe2A8pADjDbBgNXUEM\nsq6OIiPZu5e//uLkSbE4VxukQWxxAncfIiEOYiAeCv55Zh1wgY7gBK7gBHbgBI1AdDtriO6v\nak+U1gk1WFBe0Gdxn+1K3yWXyX2sfRbYL3DTdyt6T9MM4QvHIRcAD3gbRkMLrQUsPD9Jwt+f\nPXvYu5cbNwAMDOjVC09PBg+mWTNtxye8qGyIhCiIKPGKhdji8teHdMAe3KAHOIEjuIIzuIKo\n9H8qMXmi2hOldUKNFF4Q/nnc51tSt0hIoyxHfWn/ZTPDZgAxsAN84SKoQA5dYTQMg/raDlp4\nDhkZ7N7Nvn0cO0ZqKoCTE7Nn4+1Njx4Y1qpnaDVHFIRBGIRCOERANKQ/clpdcIFW4Aou4AjO\n4Az28IRmKOHpxIpd9SZK64Sa519jXj+2+7iZYTNuwzbwhWAA9MELRsNgENNVqqPISPz88PUt\n2qZEJqNbN7y9GTqUFmLFtXrIgCh4UNyy8PAV98/T9MEJWhc/OdUsvLmCmxi2XDGeIbFLS0tb\ntmzZunXr4uLiCgoK1Gp148aNP/zww2nTpom6Lq0QpXVCDfOYMa/3W7II/MAfJDCEoTAChoGN\ntsMVnkNWFtu3s24d58+jVqOjQ48eDB3K8OE0bqzt4ITHSIV4iINoiCzeQyQCoh7XfGoHrtAT\n6kPD4pczpWwvKZS/siZ2eXl5ffr0CQgIKHkwPDx8+vTpJ06c2LRpk0gsKpkorRNqknhF/IK4\nBZoxr/1M+i2OW9zKtxV+EAqABYyDEeAJJk+5lFAVSRKnTrF2LTt3kpODvj7Dh/PKK3h5YW2t\n7eBqNSXEQwwkQBzEFadxiRADiY/0LgDG4ABtixfeXIpfbrWs+bTKKmtit2zZsoCAgJYtW/r6\n+jZv3lxz8PTp0z4+Plu2bOnTp8/06dMrLEjhMURpnVAzPBzzSg5zrsyZfWm2/RH7oubWprAA\nvKGd+JG/2goIYPVqfH2Ji0Mmo18/JkxgxAjMzLQdWa2TCwEQBg9KvKJA+ciZumAHztCpeMcQ\ne3AEO3AA80qOW3hGZU3sNm/eDCxevLhZidaknj17LlmyZNiwYWvWrBGJXWUSpXVCDZCpylyU\nuGj9/fW9jvbaf2J/90vddfJ0kEE38Iahorm1OktN5Y8/+OMP/P0BGjbk228ZNw5nZ21HVouo\n4BJchWvgDyH/zOFMwQ28oH5xxmYLjlAP6oF4Bld9lTWxCw0NBTw8PP51vEePHkBISEj5hiWU\n4vr166K0TqjW8tX5q4NWx26KfenUSx9f/1i/UB89GATeMAhctR2f8CLOn2fdOrZvJyMDQ0PG\njmXiRAYNQkfsKFgZCuAynIGzcK7ELr72MAjaQ2uoD24gHoHXVGVN7PT19fPz8+Xyfz8OKSgo\nAJTKR5dyhQqRmZk5duxYUVonVFOqMJX/Rn/5PvmbN9+Uq+XKOkr5cDlDYYj4PlPNRUfzxx+s\nX09oKEDXrkycyKuvIr5MVTwlXIajcBSuFO8JZwCdoQ90hPbgoN0QhUpU1sSubdu2p0+fPnv2\n7JAhQ0oe/+uvv4DWrVuXf2jC42hK6xYtWiRK64TqxB9pr5S+Nd0y1LITnTJNM++Oulv/9fq6\nA3TFpK/qLT8fPz/Wr+foUVQqHB356CN8fGgqJvJWuDA4AkfhRHGDqiaZewl6QxcxRa+2Kmti\n984775w+ffq9995zc3PTHElISNi9e/cHH3ygebeC4hNKWrlypaa07t1339V2LIJQBjdhF/jB\nTWTIVBaqTcM3Gb5i6DnSs3EdsbdFdSZJHDvGihXs3Ut+PqamTJ3K9Ok8Uq4jlC8FnIF9sBfC\nAdABD+gLfaE7GGs5QEH7yprYjRo16sMPP1y4cGHLli01R+yKpy+/+eabr732WoVEJ5Rw/fr1\n2bNni9I6oapTwXnYBbvgHkC8Q/y217Yd7ne4t1fvN23fNNUREx2rs7t3WbmSTZuIji7qcp0+\nHW9vMSKiQuWDH+yCQ8WLcy7wJnhBL9GmKvzTM2xQ/N133w0cOPCXX345f/58SkqKqalp+/bt\nZ8yYMXr06IqLT9AQpXVCVZcPx2AX7IFEgHz3fL+3/X7o+kNg88Ap1lOW2y930nPSdpTC88rP\nZ/du1q/n8GFUKhwcmDePSZMo3v1KqCCXYR1sgXSQQ8filvE22g5MqLKebaRYv379+vXrV0Gh\nCKUQpXVCFRUH22EfnIV8NM2t8Z7xX7b78nfD32XIxlmN226/vaFBQ20HKjyvS5dYv56tW0lL\nw9CQkSPx8WHgQNHlWqGSYQOsgVsANIEPYSI4ajkuoRoQs2KrAVFaJ1Q5YeAHe+ECqMGkaBnh\n7oC7/5f/fzvSdshl8jes3/g/u/9z03fTdqzCc9E8ct28maiovx+5Dh2KkajIr0BqOA6rYBcU\ngClMhcnQXduBCdVIaYmdppBLkqSHvy6F5jSh3InSOqGqkOBccdl2MAAW8DqMhv7ck9/7KPaj\nnXE7JaRRlqM+t//c3dBdywELzyEriy1bWLGiaGNhNzcWLGDcOJo00XZkNVw0rIO1cA9k0BOm\nwCioo+3AhGpHrNhVaaK0TtA+JZyEvbAbIgBwgNkwGrqCDnGKuM/jPteMee1v2v9rh6871+ms\n3ZCFZ/awy3XfPvLyMDZmwgQmTqRvXx7ZvlQoRwWwB9bAEVCBM3wCPiBqF4TnVlpiV3IRTizI\naYUorRO0Jgf2w17Yz5Mmt6ap0r6L+e7npJ9z1Dm9THp94/BND5MeWg1aeHaxsWzcyLp13L4N\n4O6Ojw8TJlC874FQQW7AWtgEKWAAI2EyDBRTkYUX9gwrdkFBQf/973+PHz8eHx+vOeLi4jJy\n5Mj58+fXrVu3YsKr1URpnaAFuXAQdsFfkApAE5gGL0Onv+dHZqoy/xv/31+Tf81SZbUzbrfQ\ncWF/0/7aC1p4dgUF7NnDunUcOoRKhbk5M2bg40OXLtqOrIZLhc2wFq4B0BY+g/FgpeW4hJqj\nrIldYGBgly5dcnNzSx6MiopasmSJn5/f1atXRW5XvkRpnVCpUmAv7ILDkAdAe3gPXoYW/zgx\nX52/NGnpDwk/JCuTmxg0We2yepTlKJmYGF6NXLnC+vVs2UJqKnI5ffvi48Mrr4iuiIp2ApYX\nd0WYwUyYBmJDZ6HclTWx+/zzz3Nzc3v27LlixYqHB69cuTJp0qTg4OBvvvlm8eLFFRNhbZSf\nnz9x4kSlUrlhwwZRWidUoAjYDbvgNKhAB3rACHgZXP99rlJSrklZ83X811GFUfX16//o9uM4\ny3G6MlGnW03cu8eKFUVdrkC7dvzvf4wahZVYKqpYabARVkIgAN1hGowWXRFChSnrF+ULFy4A\nq1evbtz470FAHTp02LBhQ4cOHfbv3y8Su3K0adOmoKCgr7/+ukcPUbEklDdNc6sv7CuaDIE5\njIPR0O/xA4nUqDembvxv/H9D80Pt9OyWuyz3sfbRl+lXbtzCc8nOZvNmNmzgwgXUamxsmDeP\nCRNo0eLpnyu8AAnOwErYAflgDe/CGyB6xYWKVtbELjU1FXBy+vfG8U2bNgUiIyPLN6xa7rff\nfrOwsHjvvfe0HYhQgxTCIfCFg5AEFDe3ekNPMHji5/mm+X4Z/2VQXpCFjsW3jt++bfN2HblY\na6jyNF2uGzawezeZmejpMXIkEyYwcCAGT/6fLZSHFFgLqyAUZPASTINXSvtHJlSS8HCsrGr+\nInVZE7umTZsGBAQcPnx4+PDhJY+fP3+eEnNjhRfn7+/v7+//1ltvGRuLac7CC8sCP9gHRyEN\ngGbw1j+aW5/keNbx+bHzL+ZcNNUxXWC/YLbNbCvdmv4VsQZITGTTJtauJTAQoEED5s5l4kTc\n3LQcWC1wAX4DX8gHW/gIpkIjbUdVm8XGcvUqN2/i78+lS8TH06sXp05pO6wKVtbEbubMmW+9\n9dbEiRMXLFgwYsQIJyentLS0w4cPf/DBB8Drr79ekUHWLpoqxhkzZmg7EKE6i4dtJSZ9yaBb\n8YzJMjyCu5J75eOYj49mHTWUG86znTfXdq6Nrk3FBy28AIWC/ftZu5b9+1EoMDHBxwcfH3r1\nQnRfVbAUWAWr4Q7owCswHfqKjUu0ITeX69e5epXr1zl9mvv3i44bGdG+PePGURuG2z9DYufv\n77969eq5c+fOnTu35FsDBgyYP39+BcRWG2VmZm7evLlz586tW7fWdixCNfSvSV96MAi8wRNc\nynSB8ILwBXELtqZuBcZajv3S4csmBmLkQNUWGMjatWzaRGIiMhm9e+Pjw8iRmJhoO7Ka7zqs\ngM2QCRYwG2ZCc21HVdvcu8fFi1y+zMWLXLuGQgEgk9GkCePH4+6eYW4emJFx4d69sIsXgyWp\nc5cui7QdcsUqa2Ink8lWrVo1YsSIVatWXb58OTk52cDAoHXr1j4+PlOnTpWLrcnLyZYtW7Kz\ns6dPn67tQITq49FJXyYwEobC0GfYHStaEf1V3FdrU9YqJMVQ86FfO3zdxqhNhQUtvLDISNas\nYds2QkIA2rbl448ZMwZ7e21HVvNlw1ZYAVcA6AAz4bXHtx4J5a+ggOvXuXCBM2c4f56EhKLj\nJiZSu3aZTk7RRkaBmZkH7969snPn/Y0bNRs4IZPJXF1dzc3NtRZ3ZXm2rQqGDh06dOjQCgpF\noLht4rXXXtN2IEKV9+ikL1uYDkOhPzzLlmRJyqT/xf/vt+Tf8tX5fUz7fOPwTbc63SokZuHF\n5eXh68sff3D8uOhyrXxHYQXshXywgnkwGZpqO6ra4O5dLl7k0iUuXeLGDQoLAWQyydY2zd09\nTCa7kJj4V1LSycuXVZcvA8jlcldX1969e7ds2bJFixZNmjRp06ZNnTq1ovFL7EFVhVy9evXm\nzZtvvfWWkdgpVHgSCS7DdvCFKADqwTQYAf3A8NkulqBI+CzuM82Y15dMX/rG4ZuudbpWQNBC\neTh7lj/+YPt20tNFl2sly4ft8CtcAqAZzIRJIHYZrThpafj7c/kyly5x4YKUlFRUKmpklGxk\ndEMmO1VQcFaSrsXHZ8bHY2Vl1bBhwwEDxjZv3rxZs2YtWrRo0KCBQW39p1FaYqcZeKCZEvvU\n4QdimOyLE20TQmmuFudzDwBwLp4M0Q10nvli6ar0b+O//SXpl2x1dgfjDv9z/J+YCVZFJSay\ndi0bNhAcDNCuHTNnio2FK809WA5rIBn0YAzMhD6IWSvlT6HQPGCVjh/PuXJFHhdX9GRbJsuX\npKtwES7AxcLCBEfH+u7u7k2bdmzceFzjxo1btGhhYyO6u/4mVuyqiszMzC1btnTp0kW0TQh/\ne7iZ8E6IAaAJLIDRZWpufaxcde6ypGULExamKlPbGLX5wekHkdJVRWo1x46xbh1+fuTlYWbG\ntGlMmkT37qLLtRIoYAv8BP4AtIRvYCzU/PqsyhUWlrdrV8KZM4UBAUYxMXYqlR7IwAQewAW4\noKfn37hxTvPmjZo2bdqy5Sh398+aNWtWa5fiyqi0xK7kIpxYkKtomzdvFm0TQpGH+Zxf8fPW\nRi+azwEFUsGSxCU/JvyYpExqZNDod+ffR1qOlIs9GaqaO3dYv54NG4iKQi6nXz8mTRKzXCtN\nIqyF5XAfdMAbZoKn2LvkhUmSFBkZeetW2IkTqRcvyu/csUlObqpS2YMbADky2UUrq9AGDRI8\nPJRt29o2atSoUaM5zs7OOjrP/kiidhMrdlXF77//bmlp+eqrr2o7EEF7HuZzu0AzzKVhOeRz\ngEpSrU5Z/U38N5GFkQ56Dstdlk+2nqwn0yuPoIVy8ugj108+EY9cK9Np+B3+hAJwgE/hDXDW\ndlTVlEKhCA8PDw4Ovn379qVLyUFBxtHRDkple+hR3NulNjSMcHY+1aJFdq9eep6eTs2bd9HT\n66nluGuEp9fYqdVqmUxWst5OKHdXrly5efPmrFmzRNtELXUWfEv0tzrCPJjwovkcICHtSNux\nIG7B7fzbtnq2YsxrlaNQsGsXGzZw+DCFhaLLtfIlwRpYCXdBF14W2ws/u8LCwpCQkJCQkFu3\nbt2+ffvmzeR796yUyrbQEd4Ea81phoY5DRvGd+yo6t/fZPDgepaW9aG+diOvkUpL7IyNjXNz\ncy9fvtyxY8dKC6h2Em0TtZQmn9tT3A9hD7NhNHQrn+8qvmm+X8V/FZgXaK5j/q3jt7NsZpnI\nxaa1VcaNG6xdy/btxMejp8eIEUyYwKBB6Iu0u5L4w++wBXLAGubCDGis7aiqvoiIiODg4LCw\nsDvFIiMjVSpr6AN9YfzDP0UdHXXDhnlduxb27q3ftStNm9aRyUQmV+FKS+zat29/9uzZLl26\nPDxSSm+sWMx7bg/bJlq1aqXtWIRKEQwbYDtoxt3YlXM+B5zMOjk/dv75nPNGcqN5tvM+sP3A\nWte6fC4tvKCkJNas+fuRa9u2fPQRY8ciJm5XllzYCr8Xby/cFWbCmGfeLKi2yM7OvnHjxo0b\nN4KCggIDA2/dupWRkVH8pmGdOp6mpl+ZmfVOT3fSZAH29lKfPnTtSseOtG0rNzSsFVvHVSml\nJXaLFi2aMmXK7du3VSpVpQVUC23evDknJ0e0TdR8IbAVfIvnQ9iWfz4H+Of6fxTz0dGsowYy\ng3m28+bYzqmnW6/cri48t4ePXI8coaBAPHLViluwHP6AdDCFmTATxHyVf8nKyrp586Z/sdDQ\n0Ic5gJmZWcuWLZ2d+yoUA6Oi3AMDrXJyZDk5ODjg7U2vXvTqRePGomtby0pL7Dp27BgYGKj5\ntaixqzi//fabaJuoyaJhB2yDSyCBCbwGY8CznJcIAvIC5se1zJ+cAAAgAElEQVTO/yvjL7lM\nPr3u9I/tPnbVdy3PGwjP5949Nmxg/XoePEAmo0+folmutWMT/KogGzbDiuK9S/rDdBgGYs8M\njeTk5OvXr1+/fv3atWvXr18PDw9Xq9WatxwdHYcMGeLh4dGmjUdeXoerV2337uX8eQBDQ3r2\nZNAgBg5EPG2qUsraFStSugpy5cqVgICAt99+W7RN1DRqOAYrYA8UgjGMhjEw+NnmfZXF3YK7\n/xf7fzvTdkpIoyxHfWH/RXNDMYhc27Kz2bGDtWs5cwZJon59Pv+cSZNwc9N2ZLVIOKyAtZAM\nRuADM6GztqPSuuzsbH9//ytXrly+fPnKlSsPHjx4+Jarq+uwYcPatWvXvn37Dh06qFR2Bw9y\n8CCLF5OeDuDszMyZDB3KSy9hXB2G48bGEhxMWBjXrxMcTM+efPuttmOqYNWvKzYyMnLdunUn\nTpwICwtLTU1VKBTGxsYODg6tW7f28vIaM2ZM9RoGp2mbEM9ha5Q4WAur4R7IYRD4wNAKmRAe\nq4j9Iu6LtSlrFZJitOXoT+0+bWUkfnbWqn89crW25p13mDgRDw9tR1aLKGEP/A5HQYLm8AlM\nBEttB6YtarU6ODj44sWLFy5cuHz5cskKq4YNG7766qvt27fXJHNWVlYKBWfPcvAg8+cTEACg\no0PHjgwdypAhtG2rzd/IUyUnExhISAh37nD9OgEBpKb+/a65OT1rwYYq1awr9tdff50zZ05B\nQUHJg1lZWaGhoaGhob6+vp9++umqVas8PT21FeEz0bRNdO3aVbRN1AQK2AUr4DiooQF8C5Og\nYmriM1QZSxKXLEpclKnK9DD2+Nrha0+z6vHXvsa6eZM1a/D1JS4OHR28vJg4kWHDxCzXyhQN\nK2EVxII+jIUZ0LtWTgBLS0u7cOHCw2QuMzNTc9zW1tbLy6tjx46dOnXq2LGjtXVRW1VqKgcO\nsHcvhw4VLc7Z2jJpEp6eDBiAdZVsvsrNJSSEkBCCgggM5OZNoqKK3qoLzUzxcaBdc5oZ4arC\nIhm9aIjWasSVojp1xe7bt2/WrFlyufzVV1/19vbu1KlT3bp1TU1NCwoK4uPjAwICNmzY4Ofn\nN3z48JMnT3btWg1mmW/atEm0TdQEd2ElrId40IORFbgRlhr10cyj61PX+6X75anzmhs2X+O6\n5hWLV2S18TtX1ZCczKZN/PEH/v4AjRrx7beMH4+jo7Yjq0X+9VNVK1hQ+yaASZIUEhJy4cKF\n8+fPX7hw4fbt25rvy6amph4eHp06ddJkci4uLiU/KziYv/5i3z7OnUOlQi6nY0e8vfHyol27\nqjW+TpJ48KAogdO8Eu7hqKYeuEFPA94ypYEdddWY5aCXA1kQCqHFn+8EraEapAYvqjp1xf7w\nww/A4sWLZ8+eXfK4sbFxgwYNGjRoMGLEiHnz5i1cuPDLL788cOCAlsJ8BpppE2PHjtV2IMJz\nKYTdlbdEF1YQtj5l/R+pf0QVRsmR9zPrN8V6ymiL0ToyMW9HG5RK/Pz+fuRqasr06UyfLh65\nVrII+A02QBwYwjSYDrXn/4FCofD39z937tyZM2fOnTuXnJwMyGSypk2b+vj4dOvWrWvXrs2b\nN5fL//FTZn4+J0+ybx/793P/PoCJCcOGFT1stbXVym/lMeLjuXWL2zeIuUxKADzALh9naA/D\nwUWOhbrE2QVQAOZgD82hETiDIziCK9Qv/+LmKqs6dcVev34d8PHxKeWc999/f+HChZcvX66k\nmF7A5cuXRdtEdXULfgJfSKvwJbpEZeLalLUbUjYE5wcD7YzbfWL3ySiLUVa6YtKUlpR85CqT\n0a8f06czdKiY5VrJzsJvsBMKwL42TQDLzs6+ePHimTNnzpw5c+nSpdzcXMDAwKBjx449evTo\n3r17165drR/36DQ5mT//ZN8+jh0jNxegQQPefpuhQ+nTR9slAyribhB5jsQb5IRAJMZJ2BXS\nAvo9cq6kDw7InMEVXMENXMERnMG08kOvcqpTV6zmZ47CwsJSztFMC1YoFJUU0wsQbRPVTx78\nUWLXhAYwr6KW6BSSYlf6rg2pGw5nHi6UCm10bebZzptgPaGFodj2TEs0Xa7r1nH6NJKErS1z\n5jB5Mi1bajuy2iULNsJvEAgy6AczYRjU7MnH2dnZJ06cOHny5NmzZ69du6ZUKgELC4uXXnqp\ne/fuPXv27NChg6Hh4/dPSknBz4/t2zlxAqUSPT169GDwYIYMoXkld89LEA9REEHhHdJvUhCG\nLA6jNCwKsQf7Eucq5GSZoqhHqhumzdDTrMC5gjOyKrOmWDWVNbED0tLSli1btm7duri4uIKC\nArVa3bhx4w8//HDatGml1N6Vo/bt2x8/fnzhwoULFy580jmLFi3SnFkJ8byIzMzMrVu3iraJ\naiMQfobtkA56MLoCl+iu517/Pfn3Hek7UpWpejK9ERYjJlhNGGQ2SAx41Y60NPbuxc+PQ4fI\ny0NPj+HDmTwZLy/0anYuUeUcLd4+qACc4FuYAA7ajqpCBQQEHDx48NChQ2fPntUsatjb27/y\nyis9e/bs2bNnq1at/vWMtaTsbP78ky1bOHYMhQI9PQYMYMwYhg/HshLag+PgbvHrPur7KB+g\nm4BcWfS+PtQDBSTAfV3yrFDaodsQ8zbYdaVeB/TqIZ5KPJ+yJnZ5eXl9+vQJ0LQ+FwsPD58+\nffqJEyc2bdpUCbndp59+eurUqe+///769euTJ0/u0KGDo6OjkZFRTk5OcnLylStXNm7cuHfv\nXrlc/vHHH1d0MC9ItE1UD7mw8Z9LdB9V1BJdkjJpTcqah49c2xq1/czus7GWY+30xKQpbYiL\nY/du/vyTkydRKNDRoXt3XnmFceOwsdF2cLVLDmyC5XCteIluOgyHmvqDTkFBwcmTJ/fs2bNv\n377IyEjA2Ni4f//+Xl5eAwcObNKkSemfrlZz4gQbNrBzJzk56OrSty9jxvDyy1hVRKKkhAgI\nL5HG3YV7kPuPszIgGiIgGmJ1UDhg3Jy6HWjUC/eWdKiIRiOFguxs0tLIyiIjg8JCsrNJSaFz\n5xq/yl7WxG7ZsmUBAQEtW7b09fVtXrx6e/r0aR8fny1btvTp06cScpQ+ffrs2LFj+vTpR48e\nPXr06GPPMTEx+f333wcOHFjRwbwg0TZR1QXAL7ANMip2ie7hI9cjmUcKpALxyFXL/P3Zuxdf\n36JBrqamvPoq3t4MGICFhbaDq3WCYBlshUywhHkwGZpqO6oKEhsbe+DAgf379x8+fDg7Oxto\n3LjxnDlzvLy8evbsaVCGCriQEDZsYOPGoi0/Onfm9dcZO5Z65ThTMBWC4TaEQBjcgftQojxK\nocMDfYIKCYcIzUuOzI0GrXF3p1UrurnTrBn6z5SVSxLp6eTlkZNDZiZZWUWvzEwyMkhLIz2d\ntDRSU0lLK8rnsrJISnr81Xr04MyZ5/8TqA7Kmtht3rwZWLx4cbNmzR4e7Nmz55IlS4YNG7Zm\nzZrKWXwaMWLEwIEDt2zZcuzYMX9//+Tk5IyMDH19fRsbG3d39wEDBkyaNOmxRaNViqZt4p13\n3hFtE1VOLuyDlcWNro4wG6ZCBYzmupF3Y23KWt803zhF3MNHrgPNBhrIxLZnlUuSOHcOX1/2\n7i1qEaxXr6gfon9/0RJR+aJhF/wJp0ANTeELmFQTtxdWKpUXL17cv3//gQMHbt68KUmSjo5O\nt27dvL29vb29S363LUVqKlu3smEDly4BNG7M558zbhyNG79wfAlwC25DEIRAMCT+/aZaTqIx\nd/S5qSJERRiEQZyM+i60aEHz5nRvwbTmNGvGP2r/0tKIyyQjg/T0oo85OWRkkJVVlJBlZpKe\nXvQxI4OMDPLzyxStuTlWVujpYWmJkxN9+2Jujrk5ZmaYm2NggLExdevi7v7Cfy5VXVkTu9DQ\nUMDjkU7+Hj16ACEhIeUbVimMjY2nTp06derUSrtjudO0Tbz55pvaDqS20jwViIZYiIIYiIEo\niIVkAOTgCdNhyDOVoZZJsjJ5U+qmP1L/8M/1B9oYtZlnO2+M5Rh7Pfunfq5QnhQKDh5k3z4O\nHCha4nBwYPZsRo+ma1d0xCYyle0O/Al/whWQwAJeh0nQt8ZtL5yZmXnw4ME9e/bs378/LS0N\nsLGxGT9+vOZhaxnXJjR/f9evZ98+CgqwtGTmTCZO5Dm3cJUgsjh7uw23IRhKzGxQGBBjSrA1\nFzMIUnIL7quR8mlUX9WyUX6Lhvm97VObW8Y3MY7Wz0wmLY20NA6msqV4IS0zs+hVFhYWRdlY\n48ZYWGBkVPTR2BgLC0xMqFuXevUwMwMwN8fSEgsL8W/2obJ+19LX18/Pz3+0TlMzBELToSOU\nRXp6+pYtW7p169a8svuRahMJEiC2RMamSeBiIRJyHjnfBhyhKzhBfRhT/kt0Sknpl+738JFr\nXd26s+vNnmg10cO49my5VTXk5LB/P3v38tdfRcOGmjZlwQK8vWnXjieXogsVQQ3nwRf2wAMA\nHOEdGA3dKqQ3SWuUSuXdu3ePHDmyZ8+eU6dOFRYWymQyDw+PoUOHenl5dejQoZQ2iJIkiQsX\n2LSJ7dtJTkZXF09PJk7E25snNMU+KSAIgitwGa5DyD++MCoMpXhTVXBd1ZVc+flcvdsQUYBU\ngKthQkvjsJYEjSy42qLgWnPlbYM7Bdx58l0MDLC0LFpCMzXFwqJoCU3zC83HOnWwtMTEhDp1\nMDMrSteEF1DWxK5t27anT58+e/bskCFDSh7/66+/gNatW5d/aJVCpVLt378/v9SVXs2AZLVa\nXco5ZffL4pUvt3vD0MR81sv/LZcLVmsSskxjC5Xs+b+Ay5QymUIuk5ArZDKlDKVcrpLJH7ej\ntqSD2kGSXCR01SpdSdJB0lNLupKkI/29IJALt2DBc4fzuPtKUiY56VKWEoWMVp3oZCEzMZXV\nSUG+mOtwvTxvJjyZTkG+fnamXnY6ajXUU7eboTAxV5qaKw2NiZHxezAEazvGWqRQVyfdxDDV\n1LBATxewVKkbZOdZZuWZ5BRmwRpYo+0IX5BKUuXl5eTm5ebm5eXm5eTm56olAB15487dO9a1\nsLaysNbXM0iIZd3qe+tW33vSdSQ1SqVMoZIrFLL8VOPYe5a5ObpAi3oKZ488J5c8A331rVPc\nOgUgl8mNDIx09f7+zi7pq+UqmY5KZpAn18uT6+fKzaPl1g8M68YY6yiKlrhyDQpijbPumxTe\n0ueGvuEdAyleTwXoobAnzpHojsSMkt1vJgs2NpYwNcXEFBOT28aNbxu3wdAII0O5vr6lXGZg\nbIhxHYyNMDLGzAwTE00lg75c30bXRv7URL2wkORkkpNf6M/9n8zNzU1NTfWfraav2itrYvfO\nO++cPn36vffec3Nz0xxJSEjYvXv3Bx98oHm3guJ7Ds+0l/KpU6eGDRtWljM16d2Le+l/C+cr\nyvMvbnUXC8thBcRrOxJBEIRqI678fhLRzGx4hAIiIbKcbqItMpnM3t6+QYMGdevWbdCggaen\n54ABA7QdVMUqa2I3atSoDz/8cOHChS2L+4Tt7Ip2YXjzzTdfe+21Comu4vXu3fv48eOlz0z7\n4YcfDh069DCjfUHHG3pGxZfpn6OETPu7QlcwPVQ9s+9+ocz6VKZzuk5DP/PWtwxFqZkgCMLj\nyCRJjlTiO4NMQqaSy5V/L4ZJSJqFDQlJs8Ch0pEKdKRCXbVCV67SlecY6eQbyHXQ1UFHpaNS\n6KqUumq1vlLSU5eya5mklqkUumqlXK2Uq5Q6Uok7ynTVesYKubkaU0kykKv0dZWyv1MLY3WO\nsSpdpkgoVETlFjxQSH8/H9OV6VrrWFvrWlvqWFrpWlnpWFnrWuvJynN7yLS0tJSUlIiIiLCw\nsIsXLyqVyhs3bojE7m/ffffdwIEDf/nll/Pnz6ekpJiamrZv337GjBmjR4+uuPiewzMNydDR\n0XnppZdKP2fTpk0Uz714cZ/c/uMf/52dTVQUsbHExBAdTVxc0X8GBmJtzdWr2NX8bcziz55N\n/+mn3n5+fbPDwpo02TdlinzGjNcsLMTu4oIgCP9SKBUG5wcH5gX65/pvTt2cpEwykZtMsJ7w\njs07zQ3/XbodExNz+fLlK8UyMjIevmWgY1Bfp36DwgYNaeiMq72xvUsrF4cuDk4DnQx7GpY+\nmysvj6AgbtwgIICbNwm4SokL49IAJy+M+pLXmmgnIouL//SglaR0VSZbFISpss8nZB0Pzg8M\nVvy90iFD5qbv5m7k7m7o3tyweQvDFs0Mm5nplE/VnUKhiImJqVu3brlcrSqTVYVZYVXc5MmT\n161b99VXX33yySeVd9d9+xg+nI4dOXVK2zP8Ksu9e/ErVpiuXl0nOTnL1HTra69dnj27Z4sW\nr4CJtkMTBEGoggqkgq2pW5clLfPP9Zch62fab5bNLG9zbx3ZY1pEJUm6c+fO7du37927d7dY\nRETEo4M6rbF2MHRwruvs4Obg2MLRsZ2jg5ODq6uro6Oj5RPGVkRFcfs2wcFFH4ODi3qTAKyw\n9sKsP2oPUhuRVbyDUB3wgFZSgZ0ixigvOD3n8u384OD84PCCcIX091xQBz2HZobNmhg0aWLY\nRPOxvn59XVl5b1jwjM6dO9ejR48lS5b85z//0W4kjxKJ3dNpJ7EDPv+cL75g5kx++61S76td\nBQXqbdtyFi82vXEDONe9+2//+Y/q5ZfH6ep6lf/eI4IgCDXB+ZzzyxKX7UzfqZAUjnqO0+pO\nm1Z3mpOe01M/UaVSxcbGRkVFxcbGxkTFRF2PiguJi4qISkhLiFXEZpP9r/ONjYxd3VwdHR2d\nnZ1dXV1dXV1dXFycnZ1dXFz+tYtyfHxRnnf5MoGBhIaSqxlH4QoeGHbDsDsFLcgrXho0g/bQ\nAdpIynqFkfn5t8IL7tzJvxOYHxiUF5Sh+ntJUF+m38Swibuhe2uj1u6G7i2MWjTQb1DJqV4N\nSezUavXKlSs3bNgQFBSUl5dna2vbtWvXt956q0+fPhUZ4b9FRkauW7fuxIkTYWFhqampCoXC\n2NjYwcGhdevWXl5eY8aMqVOnTvneUWuJnVrNsGH89RerVlGd9+17Tv7+iqVLdbZulSsUMY6O\nq6ZN2/H2233r1p0IYoMQQRCERyUoEtakrFmZvPJ+4X0dmc5Qs6EzbGYMNB342AW8p0sk92Ru\n3PG4+IvxcSFx0QXRkURGEx1jEBOhExGXF6eW/t4sQtOj4Obmpsn2nJycnJ2dnZycHB0dbW1t\nAUkiMpLQUEJDCQkhLIywMCIjwRk8oAOyDsi7oSrO80xVdJDRWU5n6AKFhZF3Cu7cKbgTlh8W\nnB8ckh8SURjx8O56Mj1Xfdfmhs3bGbdratC0oUHDlkYt68jLORkoqSYkdpIkjR49eufOnY++\nNXv27KVLl5Z3YI/366+/zpkzR7N53mM5OjquWrXK09OzHG+qtcQOSEujUyeiozl9mo4dK/vu\nVUF8POvXq375RScqqtDAYNuYMYvmzCls23Y0TIL62o5OEAShqlGjPpR5aHnS8n2Z+1SSykHP\n4VXLVydYT2hr1Pb5L6qEW3C5+BVMgbLgAQ/uy+7fq3fvvuX9BzyIUEZEpEUkpiT+61MNDAzs\n7Ow0GZ6jo6OdnZ2zs7ODg4Ojo6O1tUtkZJ2gIIKDuXWL4NtEGCF1hk7QAVr/PRLYOovWCnrW\noasBHcEaMlWZQflBt/JuheSHhBaEhheE3yu49/AZrhy5q75rU8Om7oburvqu9Q3qNzZo3MCg\ngb6sfLY+qQmJ3fLly2fOnGllZbVo0aLBgwebmprev39/27ZtCxcuzMvL27Bhw4QJEyo61n37\n9nl7e8vl8jFjxnh7e3fq1Klu3bqmpqYFBQXx8fEBAQEbNmzw8/PT19c/efJk1+fcfvsxtJnY\nAYGBdO2KlRX+/rV3+nhhIbt3s2IFR48CNz08Fs2eveO11/rp6X0DrbQdnSAIQhUUrYjemLJx\nU9qmoLwgoIVhi/FW48dZjXPRd3nRS+fCTfCHa3ANbkHxmII8s7z7Te7H2MXEmMZE6kTGKGNi\nMmNi42Lj4+MTEhIe3RHWyMiobt26tra29erVs7GxqVvXVZKa5eXVz8x0ik22DDcyjrGTqdsV\n53nFj1stkmiUTgeJvuYMskXTXqGUlPcK7wXlBYXkh4QXhF/LvRZWEJanzit5u9etXt/otvFF\nf/s1I7Hr0KGDv7+/r6/vqFGjSh7ftGnT+PHje/Tocabip+r26dPn1KlTS5cunT179pPOmTdv\n3sKFCz09PQ8cOFBe99VyYgds2cK4cfTty6FD6NbuMrPz5/n5Z3bupLAw0c3tx1mzfv7Pf+bq\n6c2H2tFgIgiC8Mxu5N3YmLpxS+qWWEWsHHlv094TrSaOtBhpqlNq72vZ5UMQRRuu34CAfw74\n0YcG0AhlQ2WibWKcaVy8YXySLCk2ITYxMTEuLi42NjY2NjYuLi4vL+/Ra9epY2ll1alOnfZy\nk1a5zVtlNnHMamimcNehRXGeJ2EYjWMMLfPpasgQe1q48HDrlhRlyt2CuzfzbkYURkQrojsZ\nd3rL5q0X/x3XhMTOyMgoPz8/KyvLxOQfHYpZWVlmZmbm5ubp6ekVE+HfzM3NMzMzMzIyzJ48\nciQpKalevXpWVlYpKSnldV/tJ3bAu++ydCkffsh332kthqojLo4VK1i+nLi4Gz17Dt62zdDe\nfgX013ZcgiAIVZZKUp3IPrE+Zf3O9J156jxjufHLFi+Ptxo/wHTAcxbhPYkEURAGYRAKYRAO\nEaAocY4uuEBDaAxNoSk0IdMiMy4xTpPtxcXFRUdHx8fHJyYmaj4mJiaWWPCri1EH2g6Udeki\n69ZEam8huekUzbZQIQuRzAJVLnGqdsj6O+m3bUajRpopGOWmKid2ZV3+0dHRAbKzs/+V2OXm\n5gKlj+QqL5qd5B5tzC5JE6dCoSjlnGrphx+4cYPvv8fDgzFjtB2Nttnbs2AB//d/zJ3b9uef\nwz08RmzfPrBHj/GwGMo0QFsQBKGW0ZHp9Dft39+0/y+qX7albVuXsm5T6qZNqZvs9ezHWI4Z\nZTGqm0m3pw/+KgsZuIDLP3/aVsIDCIe7JV5n4Mjfp5gZmJk1NGvapCmNwAV6gRs0AiMAlUqV\nkJAQFxcXExMTHR2dmJiYmHgn9t6pxIuJ0dHR8dmSos0wug+icwvJwzHjVcNAdANhgwL8YTV6\nAdnmEYmjGmf89nO7cvg9VmFlTezatGlz/vx5Pz+/N998s+TxPXv2AI0bNy7/0B7Rvn3748eP\nL1y4cOHChU86Z9GiRZozKyGeSqWry7ZteHgwdSru7hTP/6jV9PVZtowBA4wnTjzcp8/GTz6Z\n9NlnR+Tyn6BqbZktCIJQlZjpmL1R94036r4Rmh+6PnX9ltQtSxOXLk1c6qjnONJy5CiLUd1N\nupdPhleSLjSCRv88KEFk8dpeGNyD+3AEdpU4Rw4u0BSdxjoOTR0cGjl4NPPA8+++iqIrSVJK\nSkpycnJyclzixZuhaWnX5MYBhvbxTk45jexUXUwUmCRjsvZ4as3fP0wqmy1btgCGhoZfffXV\nnTt38vLyIiMjv//+e2NjY+D7778v43VexIkTJzQLcv3799+0aVNoaGh2drZKpcrMzLx37962\nbdu8vb0BuVx+6NChcryvj48P8NVXX5XjNZ/ThQuSvr7UuLGUlqbtUKqS0FCpRQsJYry9G6al\nIUlDJSlK20EJgiBUC2pJfSn70gfRH7gFuuEP/jgEOMyOmn0u+5xaUmsnpnhJOitJayXpY0ka\nKUktJclAkijxkkuSmyQNkKQ3Jek7SfKVpOuSlFXa9XZL0seFhb7lFODZs2eBJUuWlNP1ylNZ\nEztJkubOnfvY1HDo0KEKhaLiQizJz8/PptTOUBMTk40bN5bvTatQYidJ0s8/SyB5e0sqlbZD\nqUqysqTRoyVQNmnyf4GBSJK5JC2XtPU1SRAEoVq6nHP5w+gP6wfW12R4LoEu70e/fyXnirbj\nkiS1JMVI0nlJ2lic7bWSJMN/ZntIkrMk9ZYkH0n6WpK2S9JNScqvkHCqcmL3bJMnjh49+uuv\nv168eDEpKcnY2Lh169aTJk2aMmVKec1RLYvc3NwtW7YcO3bM398/OTk5IyNDX1/fxsbG3d19\nwIABkyZNsrYu5yKrKtE8UdLUqaxZw5df8umn2g6lKpEkfvqJDz7AwODa6tUjxoyJgp6wCppo\nOzRBEITqxT/Xf0f6jh1pO8ILwgEnPSdPc8/h5sP7mfYzkpdrG8KLkCAW7sNdCIc7EAr3ILPE\nOTKwh/rQGBqAF3QohztX5eYJMVLs6apcYpefT48eXL/O3r0MHqztaKqY06cZO5b4+MLp0z/6\n+eelenoGsADeh3Jt+hIEQagVbuTd2JG2wy/dLzg/GKgjrzPIbNAw82FDzIfU1a2r7eieIAXC\nIRRuwx2IgHugmV3bE06Xwx2qcmJXuzdFq6YMDdm5kw4dGD+eK1do2FDbAVUlvXpx9SqjRumv\nWLEoJOTVbdsm2dl9BFthlZhFJgiC8IzaGrVta9T2a4evwwvCd6Xv2pOxZ3fG7j/T/5Qj9zD2\nGGg2cJDZoK51ulbyqNansAZr6PzPg1kQDZbaiagyPf0RalRU1BtvvGFnZ1fyoK2t7ahRow4d\nOlRhgQmlcnVl61YyM3nlFXJynn5+reLoyMmTzJ7N6dOdOnS4eeHCAgiGLvARVMbGPIIgCDVO\nI4NG79u+f7rJ6bhWcetc1421HPug8ME38d/0CutlHWA94u6IX5N+vVNwR9thPpkpNAe7p59Y\n3T0lsTt16lSrVq1WrVqVkJBQ8nhiYuLOnTs9PT1HjhyZIxILrejXjy++ICCAN97QdihVj4EB\nS5fyxx+kpen36vX5d99dgXbwHbSCE9qOThAEofqy0bWZZD1pc/3N8a3jrzS78o3DN22N2u7P\n3D8ralaTW00aBDWYETnDN803WZms7UhrqdISu+jo6GcqIYAAACAASURBVBEjRmRkZHh6el69\nerXkW2FhYV9++aWFhcWff/45ZswYUainHR9/zKhRbNnC0qXaDqVKGj+ec+dwduajj1pPmHA+\nN3cJxEE/mPHP4lpBEAThWcmRdzDu8LHdx6eanEptk7qn4Z63bd7Wl+uvSF4x5v4Y2wDbdrfb\nzY2euztjd4Ii4emXE8pJaYnd4sWL09PT+/fvv2/fPg+Pf5QnNW7c+NNPP7169aq9vf3+/fu3\nbt1awXEKjyOTsWYN7u68/z6nTmk7miqpbVuuXGHQIDZu1O3e/T/37gVAX1gBzcFP29EJgiDU\nDCZyE29z72XOy0LcQyJaRqx1XTvOalyiMnFR4qIRd0fYB9q3ud1mbvTcg5kHc9W52g62hist\nsTtw4AAwf/58zbbAj2rYsOG3334LrF+/viKCE57O1JQ//8TYmLFjiY7WdjRVkrU1Bw7w7bcE\nBNCxY4ODB4/AesiHV2AMJGk7QEEQhJrERd/Fx9rnD7c/YlrFBLsH/+z880iLkbGK2EWJi7zC\nvSxvWvYI6/Fx7McHMg9kqbK0HWwNVFpi9+DBA6BVq1alnOPl5QVcu3atXKMSnkXTpqxfT2Ii\no0dTUKDtaKokmYx589izB0li8GDZRx9NVKtvwUjwhaawQtsBCoIg1EjNDZvPspnl28A3sXXi\nzeY3lzgtGWw+ODQ/9H/x/xscPtgywLJTSKcPYz7cn7FfJHnl5eldsXXq1CnlXTMzMyA9Pb3c\nIhKew4gRvP8+Fy/y3nvaDqUKGzKEy5dp2ZLvvmPYMLu0tB2wB4xhBgyGCG0HKAiCUFPJkLU2\nav2fev/xa+CX2DoxyD3oF+dfRlmMilREfp/w/ZC7Q6wCrDqGdJwTPccv3S9JKR6lPL/SEjt7\ne3sgLCyslHMiIiKAch/2IDyz//2PQYP47TdWr9Z2KFVYo0ZcvoyPD3/9RadOBAR4QxBMh4Pg\nDt+BStsxCoIg1GwyZC0MW7xl89bW+lvjW8Xfcr/1q/OvL1u8HFEYsThx8Sv3XtE0Xrwf8754\nXPscSkvs+vTpA6xbt66Uc7Zv3w507ty5lHOEyqCjw+bN1K/P229z5Yq2o6nCDA1Zu5bly4mM\npHNn1q61gOWwCyzhIxgEIdqOURAEofZwN3R/0+bN7fW3J7RO0DyuHW4xPEoR9WPCj4PDB2tW\n8uZGz92TsSdVmartYKuB0hK7t956SyaTLVu2bO/evY894fz585rmiRkzZlRIdMIzsbJi505k\nMkaOJEmsY5dq+nSOHcPSkilTmDGDwsJhcAvehJPQGv5TPH5GEARBqBwlH9cmtU4KbB6oabyI\nUcQsSlw0/O5wmwCbNrfbzImeI2rySlFaYufh4fHxxx8rlcoRI0ZMnjz52LFjycnJSqUyMzPz\nwoUL77zzTu/evXNycsaPH69poRC0r107fvqJqChefRWlUtvRVG09enDjBi+9xIoV9O1LbKw5\n/Aq3YQT8BC7wuZhUIQiCoA0yZC2NWs6ymbW1/tbYVrEh7iE/O/88zGJYVGHU4sTFmpq8zqGd\n3495f2/G3nSVKPQvQXqar7/+Wlf38TPg5HL5rFmzlErlUy9Srfn4+ABfffWVtgMpszfekED6\n8ENtx1EdKBTSvHnS/7N332FV1v8fx5+AE0cOVJS9UXCTpWJO3IcMBTUFNBXSCsivBWUpZBak\nJmBm4ATMEhy/cKSJKxy4FXEggoCK24ZZLuT3B+BIU1TOuTnwflxeXXW4OedF9r18fe/P/fm8\noaBBg4KNG++9vLGgoEVBAQUFpgUFMQrGE0II8YD8gvzUv1NnXZzlkeVhmGrIPtiH7j7dVkdb\nvX/6/bV/rP0r/y8NxNi2bRsQHh6ugc96Vk/fFTtx4sTjx49PmDChVatWtWvXrlSpkoGBQdu2\nbcePH5+amvrNN9/81yl3QjEREbRuzbRp/PST0lHKvEqVCA1lyRL+/ptevQgLK3y5GxwoPu7O\nG7rCQWVzCiGEAF10m1dv/m6Dd5daLD3X/NyxZseiTaMH1R1UuPGi78m+dQ/V7ZjeMfBs4Jo/\n1vyZXxFnDD3+Vty/WFlZTZs2Td1RRKmpXp3ly3Fywtub3buxtVU6UJk3dCg2NgwcSFAQGRnM\nmkX16rrgBa4QCuHQFobBVxVihLQQQmgH+2r29tXsxxiMyS/IT/0nddv1bVuubfn1r193XN/x\n1YWvdNF1qO7QuWbnzrU6t6/R3qiykdJ5NeHpd+yEVrKwYNkyrl+nf3/klMGScHJi3z569mT+\nfNq1Iy2t8OU6EAqHYSDEgbU8eCeEEGWPno5ea/3W7zV4b7nl8ostLh5tdvRbk28H1Blw8c7F\nby59457lbnzY2CLN4uuLXyudVO2k2JVfXbvyxRdkZODlxd27SqfRBgYGrF9PTAxZWbRuTXDw\nvX9vNhAPG8EaQsAWYqFA2bRCCCEeRwedptWajm0wdrnl8vPNz+c65saZx40xGFNHr86xG8eU\nTqd2UuzKtQkT8PBg1Sq++ELpKNrDy4u9e3FwICQEFxfOnr33lW6wH2LgFnhDB0hRMKcQQogS\nMKliMrze8GjT6ANND8w1nat0HLWTYleu6egwfz6OjkyezNq1SqfRHk2bkpKCnx+bN9OqFYmJ\n975S+ODdSZgMB6AjeMF5BaMKIYQQD5BiV97VrMmKFdSuzfDhZGYqnUZ7VKtGRATr1lGpEq+/\njpcXf/9974s1IRjS5ME7IYQQZYwUuwrAxobYWP74Aze3B9uJeLqePTl0iD59iIvDyYlDhx78\nojXEwyZ58E4IIUSZIcWuYlCpmDiR1FTGjFE6irZp2JA1awgPJzOTV18lIoKCh8pb14cfvGsv\nD94JIYRQjhS7CiM4mL59WbKEyEilo2gbHR38/dmxA1NTAgLo3ZvzDz1W9+CDd4egA3jBOaXS\nCiGEqMCk2FUYurosXoyVFf/7H1u3Kp1GC7Vty8GD+Pnxyy+0bPnoZpTCB+/SYTjEgQ0Ewz8K\nBBVCCFFxSbGrSOrWZcUKqlRh8OAHT/EQJVW9OhERLF/OnTv074+/P7du/esSU4iFtWAKIdAK\nEuXBOyGEEJoixa6CadGCuXO5cIFBgx4tJaJE3Nw4eJBOnYiMpEMHTpx49JI+cAgi4TK8Dm2l\n3gkhhNAIKXYVz5tv4udHSgrjxysdRWuZmLB5M+HhpKbSqhUREY9eUhnegwwYB0fgdXgZVms+\nqhBCiIpEil2FNGMGnTszezYLFigdRWvp6uLvz7ZtGBkREMDAgVy9+uhV9WA2nIFAOAoqcIRY\nkBFvQggh1EGKXYVUqRJLl2JkxDvvsHev0mm0Wbt27NvH8OGsWEGrVvz662OvagChkA2BkAXe\n0BISZHFWCCFEaZNiV1E1asSyZRQUMHAgly8rnUab1a5NXBzx8Vy7Rteu+Ptz+/ZjL2z4QL3L\nBA+pd0IIIUqbFLsK7NVX+fprcnMZMoT8fKXTaDl3dw4coH17IiNxdubkyf+68MF6lwEe0Erq\nnRBCiFIixa5iGzeOt95i40Y+/VTpKNrP3JwtW5g8mX37aNuWxYufcG1hvcsAPzgBHtAaEjQW\nVQghRDklxa7Cmz0bJydCQ0mQXvHCKlUiOJgNG6hdG09PPDz4/fcnXG4MEXAC/CAdPKA9rNJY\nWiGEEOWOFLsKr1o1li+nfn3eeosjR5ROUy507UpaGkOGkJBA69Zs3/7ky00eqHcHwRU6SL0T\nQgjxXKTYCTA15ccf+ecf3Nz44w+l05QLL73EkiXMnMm5c3TvziefcOPGk7+jsN6lgx/sB1dw\nhiTNpBVCCFFeSLETAHTvzpQpnDiBtzcF8hx/adDRISCAXbtwdGTqVFq0YNOmp36T6QN37/aC\nCzjD079NCCGEAKTYifuCgnB356efCAtTOko50rIle/YQE8OVK3TvjkpVkim9pg/cvdsL3cEZ\nNmsgrRBCCC0nxU4U09FhwQKaNWPiRNatUzpNOaKjg5cXR47g7s7q1Tg6EhHB3afPnjArrnc+\nsAu6gTNsUX9eIYQQ2kuKnXhAzZqsXEmtWgwbRlaW0mnKF0ND4uNJTKRWLQIC6NyZo0dL8n1m\nEAUZxfWuK7jALnWnFUIIoZ2k2ImH2dry3XdcvcqwYdy6pXSackelIi0NPz927qRVK4KCuHmz\nJN9nDlFwEDxgE7SHQZCm5rBCCCG0jhQ78YghQxg/npQU/PyUjlIe1a5NRATJydjaEhaGoyMb\nN5bwWx1gKRyEgbASWsIbsEetaYUQQmgVKXbicaZNo08foqKYM0fpKOVU+/YcOEBoKGfO4OKC\nlxdXrpTwW5tDAuyGXvB/0A56ybN3QgghACl24vF0dfn+e6ys8PcnOVnpNOVU5coEBpKWRvfu\nxMXh4EBsbMm/uy2shZPgA5ugK7SEWJChv0IIUZFJsRP/oW5dVqygcmU8PMjLUzpN+WVlxS+/\nEBNDfj7e3vTrR07OM3x38dYKP8gAb7CDaLitvsBCCCHKMCl24r+1aMHcuZw/j7u7bKRQo8Lz\nUNLS8PRk7VqaNSMsjPxnuPVmDhGQDZPhMviCDUTAP+pKLIQQooySYiee6M038fNjxw4CA5WO\nUt41akRsLGvW0KABQUE4ObHn2fZFNIRgyITJcA0CwByCQYbECSFExSHFTjzNjBl07kx4ODEx\nSkepAPr25ehRAgM5fJgOHfD356+/nukN6kMw5EA4VIIQMIUguKqevEIIIcoUKXbiaSpVYulS\njI0ZO5b9+5VOUwHo6xMayt69tGpFZCTNm/Pzz8/6HjXBH05BDDSEMDADf3j6ODMhhBDaTIqd\nKIFGjUhI4O5dBg4s+akc4oW0asXOnYSHc/kyffuWcMjsv1QBLzgKMWACkWAJXpChjsBCCCHK\nACl2omRefZXwcLKzGTr0mZ7rF8+vUiX8/UlNpVevZxoy+y+VwQvSIBFaQhzYgweUaKKZEEII\nrSLFTpTY228zejQbNvDZZ0pHqUgsLFi3jvh4KlcuGjJ77NhzvI0uqGA3JENXSIDmxa8IIYQo\nN6TYiWfxzTe8/DJTprBihdJRKhh3d9LT8fFh+3Zatiz5kNlHOUMSJENfWAOvFL8ihBCiHJBi\nJ55F1aosX46BASNGPN99I/H86tYlKoqffsLQkLAwXn2VvXuf+82cYRUcAE9IAZfiVwpKMbAQ\nQgiNk2InnpGJCUuX8s8/uLnx559Kp6l4VCqOHMHPj8OHefVVxo3j6vOfZFI4hWw3DISd4Aqd\nYK3UOyGE0FpS7MSz69qVL7/k+HFGjKBAOoDG1apFRAQpKbRty5w52Nkxb95zbKq4pw0sgzTw\ngt3QD9rCMnj+dxRCCKEQKXbiuUyYwODBrFzJ118rHaWicnJi1y4SE6lenTFjaNOGbdte5P2a\nQgycgHFwDNzBAWJk7KwQQmgVKXbiec2fj6MjgYH88ovSUSowlYpjx5g8mWPHeO01vLy4cOFF\n3s8cZsMZmAwXYQQYy1wyIYTQHlLsxPOqUYOVK6lVizffJDtb6TQVWI0aBAeTmoqLC3Fx2NkR\nEcGdOy/ylg/OJasMIWAFwTKXTAghyjwpduIFWFuzdCm//46bG//8o3Sais3OjvXrSUzkpZcI\nCKB5c5Je9AyTwrlkWRAD9SCkeC5ZXqkEFkIIoQZS7MSL6dmTTz/lwAH8/ZWOIkCl4uhRJk8m\nKwsXF1QqTp9+wbcsnEt2HOLBtHgumS+86PsKIYRQAyl24oVNmoSbG3PnMm+e0lFE8crs4cNF\ng8iaNiU4mFu3XvBddcG9eC5ZK4gGK/CC9FLJLIQQopRIsRMvTEeHRYto2pR332W3TKgqG2xt\nWbeOxETq1yckhBYt2LDhxd9VB1SQAsnQC+KgGahg34u/tRBCiNIgxU6Uhlq1WLIEPT2GDHmR\n83JFKbu3ZzY7m549S2VltlDhmIrtxXPJXi4ufEIIIZQlxU6UklatiIri1CnefJP8fKXTiGL6\n+kUrs717l+LKbKEOsAoOwXBYB+2LC58QQgilSLETpWf4cCZMYP16goKUjiIeZmPDzz+TmIiB\nASEhNG9eiqcPNodYOAF+sA9coQ0kyFwyIYRQghQ7UapCQ+nZk+nTWbpU6SjiEff2zObk0KsX\nKhW5uaX13hYQAdkQCOngUTyIVm7eCiGEJkmxE6VKT48lS7CwYNQo0tKUTiMecW9ltk+f+yuz\nN2+W1ts3glDIgPFwCryhDfwo9U4IITRFip0obfXrs3w5d+/i5sbvvyudRjyOjQ1r15KYSMOG\nRXtm168vxbdvAjMgGybBaRgKTWE+lM6TfUIIIf6bFDuhBq1bExVFRgaenty9q3Qa8R9UKo4c\nKVqZ7d0blYqcnFJ8+/oQAucgCm7A6OKxs1L2hRBCfaTYCfXw9GTMGFavZupUpaOI/1a4MpuW\nRt++rF5Ns2aluzILVAUfyISY4qpXOJfsfCl+hhBCiGJS7ITazJpFu3YEB7N2rdJRxBNZW7N6\nNYsX89JLhITwyits21a6n1AZvOAIJIINRII1+MOZ0v0YIYSo8KTYCbWpWpVlyzAwYPhwMjOV\nTiOeSEeHYcM4fpzx4zl6lNdew9ub86V8W00XVLAXNkALiCyeS5ZRuh8jhBAVmBQ7oU4mJvz4\nI9eu4ebG9etKpxFPU7s2M2Zw7Bh9+hAbi5VVqa/MFuoBOyAZekIc2IMHHC31jxFCiIpHip1Q\ns65dCQ0lNZUxY5SOIkrGyoo1a0hMpFGjotOMf/5ZHZ9TOKZiPwyEZeAIKpBhw0II8SKk2An1\n+9//GDyYH34gIkLpKKLE7u2ZPX2avn1RqcjOVsfntIZ4SC2eS/YKOEOSOj5JCCEqACl2QiPm\nz8fRkQkT2LpV6SiixKpXL9oz268fq1fj4KCmlVnA8eG5ZC7F9/NkLpkQQjwTKXZCI2rUYOVK\natZk8GDOyFZIrWJlxerV91dmHR3Vt825cC7ZKQiEA+AKrWQumRBCPAspdkJTrK2Ji+PSJdzd\n1XTXR6jRvZXZM2fo1099K7OAIYRCOgRAJniDEySAHHUthBBPJcVOaFD//nzyCSkpjB+vdBTx\n7ApXZo8coX//+6cZ37ihpk8zhplwCibCKfCAZhADt9X0eUIIUS5IsROaNXky/frx7bcsWKB0\nFPFcLC1ZtYrERBo3LlqZXbNGfZ/WAD6HHJgKV2EE2MK3oK46KYQQWk67i92tW7emTp1qb29f\ntWpVAwOD/v37ry/VWeai9OnqEheHtTXvvMPevUqnEc9LpeLYMcLDOX+e/v1RqTh1Sn2f9hJ8\nDGcgBqrAO8VjZ6+q7yOFEEI7aVOx09HR0dHRufePt2/f7tOnzyeffJKenn7r1q0rV66sWbOm\nd+/e7733noIhxdPVrcuKFejpMXAgly4pnUY8rypV8Pfn+HE8Pe/vmVXbyixQBbzgGMRDowfG\nzuap7yOFEELbaFOx+5eZM2du2rSpRo0ac+fOvXTpUl5e3rRp06pVq/bNN98sXrxY6XTiiZo3\nZ+5ccnMZOpR82fKozYyNiY0lKQkzs6KV2dWr1fqBuuAOaZAIzSASLMEXTqv1U4UQQktocbFb\ntGgREBoaOnr0aAMDg8aNG0+YMCEsLAyYN2+ewuHEUw0dytixbNzIBx9QIKeVabnu3Tl0iPBw\nLlxApVL3yiygAyrYBcnQCaKLx84eV+unCiFEmafFxS4zMxNwd3d/8MWBAwcChw4dUiaTeCbh\n4XTqxMyZjBjBbdnsqOUKV2aPHdPYymwhZ9gAydALFoMDqGCfuj9VCCHKKi0udnXq1AFq1679\n4Iv169cHbsoxaVqhShU2bMDdndhYevXijz+UDiReWOHK7PLlNGhASAitW5OkifFghWMqDsAw\n+BmcwAVSNPDBQghRxmhfsbtdfGun8Obc7t0PDQ1PSUkBrKysNB9MPI+qVfnhB95+m82bcXbm\n7FmlA4nS4ObGsWNMnMipU7i44OGhmXEjLSEW0sEHtkD74sInhBAVh/YVO319fVtb2379+t28\neVNHR2fChAn3vnT8+HF/f3/Azc1NuYDiGenpMWcOoaGkpeHsTHq60oFEadDX5/PPOXyY3r1J\nSMDentBQbt3SwCdbQRRkgB/sB1doAwkydlYIUTFoU7Hr0aOHiYlJfn5+RkbG2rVrFyxYUFBQ\nsPeBs9CaNm2amppqYmLy/vvvK5hTPI/AQBYu5MwZOnRgxw6l04hSYmPDzz+zcSNmZnz0EVZW\nxMZq5pPNIQKOwlg4Bh7gAJEg6/1CiPJNm4rdhg0bcnNzr1+/fujQoYSEhKlTp3p7e3fo0OHe\nBQYGBsOHD9++fXvh43dCy4wYwYoV3LhBz57qGzMvFNCtGwcPEh7OH3/g7U2PHhw7pplPNodv\nIQs+hEvgD8YwFg5r5uOFEELjKikd4JlVr169RYsWLVq0ePRLl+S0W22nUrF5M/378/rrzJnD\n6NFKBxKlpHJl/P0ZNIiPPiIujpYtGTuWqVOpWVMDH94YwuALWAuREAXfQVvwgeGgr4EEQgih\nKdp0x05UCO3asXUrRkb4+BAcrHQaUaqMjIiNZdMmbG2JjKRpU42tzAJ6oIINcAz8IB18wQj8\nQb1n7gkhhAZJsRNlT9Om7NxJy5aEhODnx927SgcSpaprVw4cuL8y2727xlZmC9lBBORBFBhD\nJFiDCySATEERQmi7cljs/jVSVmilxo1JTqZnT2bNwt1dA+fcCo0qXJktnDO7aRMtW+Lvz19/\naTJCLfCBw5AMA2ELeIAdhMEVTeYQQohSVQ6LnSgnatZk1SqGDGHFCvr2leOLy6EmTYiNZfPm\nopVZe3tNrsze4wzxkAuhcBOCwAi84IDmowghxAsrh8WuoKCgQGaPlg9VqrBkCRMmsHkznTrJ\n8cXlU5cuRSuz164VrcwePar5FI0hEDIhHjpBHLQBJ4iGfzSfRgghnpf27YotXfn5+WvXrr3x\nxJW+7Oxs4K486aUIHR2mTcPYmPHj6dSJdeuwtVU6kyhthSuz7u4EBbF4Ma1aMXYsn39OrVoa\nDlIF3MEdDsB38D34wqcwEsaCmYbTCCHEs6voxW7r1q2urq4lubKw3gll+PtTrx6jRtGhA6tW\n0b690oGEGhSuzI4axbvvEhnJsmV8+SVeXopkaQ1R8BnMgygIg5kwCN6GTooEEkKIktG+Ypeb\nm7to0aLNmzefOHHi6tWrt2/f1tfXb9KkSYsWLfr06ePh4VGjRo2Sv1vnzp03bdqUn/+kzXDT\np09fv369ubn5i0YXL8LTk8aNcXPDxYWEBPr0UTqQUI/OnTlwgNmzmTQJb28WLWLWLBwcFMnS\nCCZCECTCt/ADLAEHeBs84SVFMgkhxJMVaJXZs2dXrVr1CT+OkZHRzz//XLofOmLECGDKlCml\n+7bieezZU9CwYUGlSgXz5ikdRahZXl6Bp2eBjk5B5coFfn4Ff/6pdKCCswUFoQUFJgUFFBRU\nKShwLyjYUFBwV+lUQgjN27ZtGxAeHq50kMfQps0Tq1evfuedd27fvj1kyJDvv/8+IyPjt99+\nu3PnzvXr1zMzM1euXPnGG2+cPXv29ddf37lzp9JhhXo4ObFzJxYWjBkjxxeXc40bExvL2rWY\nmxMZSatWrFqlbKImEAinIBFeg2XgAk0hDK4qm0wIIYppU7GbPn06MHPmzB9++OHNN9+0trau\nU6eOnp6evr6+paXlgAEDVqxY8eGHH966deuzzz5TOqxQG0tLNm/GwYGQED7+mDt3lA4k1Kl3\nbw4f5vPPOX8eV1f69yczU9lE9yZYpEMgXCk+IcUDtiubTAghtKvYHThwAChcGP0vEyZMAHbv\n3q2ZSEIZRkYkJ/Paa3z5Jc2bs3Kl0oGEOlWtysSJnDyJpydr19K0Kf7+/Pmn0rGwgVA4A/Hg\nDAngXHxCynWlswkhKixtKna6urrArVu3nnCNnp4ecPv2bQ1lEkqpU4f16wkO5swZ3Nzo2JFt\n25TOJNSpcGV2yxbs7e+fZlwGTqysCu7FI2gDIQt8oQn4wmGlswkhKiBtKnZt2rQBvvrqqydc\n8/XXX9+7UpRz1aoxeTK5uQQGsn8/nTrh4sL+/UrHEur02mvs3094OH//jbc3XbuSlqZ0piL2\nEAo5EAVWEA0t5IhjIYTGaVOx+/TTT/X09KZNm+bi4rJkyZITJ05cv3797t27165dO3XqVHx8\nvKur69SpU3V1dT/++GOlwwpNqVuX0FAyMvDxYfNmnJzw8FD8MSyhRpUq3Z8z++uvtG5dRlZm\nCxWOoN0Hm8ADDoMv2EIIyOAUIYQGaFOx69Kly7Jlyxo0aJCUlDRs2DA7O7uaNWvq6enVrl3b\n0tJy8ODBq1atqlmzZmxsbM+ePZUOKzTL2JioKFJTGTSIhASaNsXXl4sXlY4l1MbQkNhYtm6l\nWbMytTJbSAe6wlLIhS+gEgSDObwB60CG2Agh1Eebih0wYMCA7OzsefPmDR061NbWtl69enp6\netWrVzc1Ne3du/eMGTOys7OHDRumdEyhkGbNiI9n+3batSM6GisrgoK4dk3pWEJtOnVi3777\nK7NdunC4bD3Y1gg+gkxYA31gFfQBa/gSLiidTQhRLmlZsQP09fVHjRq1ZMmS9PT0K1eu3Llz\n5++//87Jyfn555/Hjx9fv359pQMKpXXoQHIy8fEYGhIWRtOmREfLqSjl1r2VWR8ftm2jTZsy\ntTJbSBf6QiKchVAAPoYm4AIJIP9pCiFKkfYVOyGeTkcHd3eOHiUqivx8fH1p3pyEhLKzVCdK\nmaEhUVGkpNC6dRlcmb2nEQTCSdgAA2ELeIAZBEGu0tmEEOVDeSh2Ojo6Ojo6SqcQZU/lyvj4\ncPIkoaHk5eHhQYcO/Pqr0rGE2rz8MikpxMRw61bZXJktpAs9IB5yIBT0IAwsi2/gPWlwtRBC\nPE15KHZCPEmNGgQGkplZdCpK5864uJTNP+9FKdDVxcuL9HT8/O6vzP7xh9KxHq9J8Q28eOgK\nG8ED7CAMZOOPEOL5SLETFYOBAaGhHD6Muzsbsw91gwAAIABJREFUN9KqFV5e5OUpHUuoR/36\nRESwaxdt2pTlldlCVYqPOC6cUfYHBIEJeEASlNHQQoiySoqdqEhsbYmPJyWF114jLg4bG4KC\nyuztHPGinJzYto1p07h+HW9vevZke5me5lo4oywLvgV7SAAXaANR8JfS2YQQ2kKKnah42rVj\n82Y2bMDGhrAwrKwIC+PmTaVjCTWoXJkJEzh2jJEj2boVZ2e6dmXjRqVjPUktGAuHYDt4wnF4\nG4xgnMwoE0KUQHkodgUFBQVldZFFlF09erB/P/Hx1KpFUBC2tkRHc1fOji2PjIxYsIAzZwgM\nZPduevSgRQtiY8kv0xsVOkAsXIQosIQ50ALaQrTcwBNC/LfyUOyEeE66uri7c/gwkydz9Sq+\nvnTqxI4dSscS6tGwIaGh5OQweTKnT+PtjZ1d2T/jsHBG2QHYCz6QDr5gBL6QqnQ2IUQZJMVO\nVHg1axIczMmTjBvHnj107EivXmzerHQsoR4GBgQHk5NDaGhRm7exISKCGzeUTvYUbSEKzkIU\nmEE0tAQniIZ/lM4mhCg7pNgJAUCjRsyeTVoagwaRlES3brRvz08/ldmtlOKF1K5NYCA5OYSH\nc+MGAQHY2RERwT9lvSO9BD6QWnwD72jxDTx/yFI6mxCiLJBiJ8QDbG1JSCArCz8/UlMZMAAr\nK6348148j1q18Pfn5EnCw7lzh4AAzMwIDtaKjdKFN/DyIAoaQyTYyIwyIYQUOyEew8yMiAiy\ns5k8md9/JyAACwtt+fNePLMaNfD3JyuLqCiqViUkBCsrgoP57Telkz1dneIbeD9Bb9gEHtAU\npsNlpbMJIRQhxU6I/9CgQdHDWOHh6OkREoKpKf7+nD+vdDKhBlWr4uNDZiYxMdStS0gIZmba\n8tutB66wBjLhY/gLPgBjGA7blM4mhNAwKXZCPFHhal1WFjExNGpEZCTW1vj7c/q00smEGlSp\ngpcXR48SE0OTJvd/u8+eVTpZiZjDVDgLG8AVlkInsIEwuKR0NiGEZkixE6IEqlbFy4vjx4mP\nx9ycyEisrIpeEeVP5cp4eZGayty5GBoWDSX74AOtuHsH6EIPiIccCIWbEATGMqNMiIpBip0Q\nJXbv3LvERJyciIvDwQGVit27lU4m1KBKFUaP5vhxYmIwNmb6dCwsGDeOzEylk5VUEwiEU7AB\nesIycIGmEAZXlM4mhFATKXZCPCMdHVQqduwgOZm+fVmzhldewdmZVauUTibUoFIlvLw4coT4\neJo1Y84c7OwYMoQDB5ROVlJ60ANWwQkIhKsP38ATQpQzUuyEeF6FZW7/fjw9SUnB1ZW2bUlI\nkKPvyqHCm7X79pGcTJ8+xMfTpk3RfwDa89ttDaFwCuaCAySACzhDHJT105mFECUmxU6IF9Oq\nFbGxpKfj58fRo3h4FM0hLduDqsRzKixzqal4erJ7N66uRb/dt28rnaykasBo2At7YBQcBC8w\nhgmQoXQ2IcSLk2InRGkoPMf41CkCA8nKwtu7aFCVnGxcLjk6EhtLbu79sbOFv93Xryud7Bk4\nwTw4C7PAEGaAHbjAcjniWAhtJsVOiNJjaEhoKBkZ/O9/XL5MQAD29syapV1/3ouSMjQkOJjc\nXMLDuXWLgACMjPD359w5pZM9g5fgXUiDvTAGdsIgaAC+cFTpbEKI5yDFTojS1qQJ06eTk0NI\nCNev4+eHoSGenqxbR36+0uFEaatdG39/Tp0iJoaGDYmMxMICLy8ytGxh88EZZaYQDY7FM8q0\nZplZCCHFTgh1qVePSZPIyWHBAl55hSVL6NMHIyMCAtizR+lworTdO+kwMZHmzYmLw94elYq9\ne5VO9mxqgw8cKr6Btx08wAyCIEfpbEKIkpBiJ4Q61ajByJEkJXH5MjExNG9OZCTt2mFigr+/\nFh2ZIUpEVxeVij17io7CWb2al1/W0qNwCm/gnYBJoANhYAtvwq9KBxNCPJkUOyE0om5dvLzY\nsIHsbEJDqVGDyEjatMHBgeBgsrOVzidKVWGZ27SJXr3Yvh1XV7p355dflI71zIwhBHJgOXSG\nH6EzOEAk/K50NiHEY0mxE0KzTE0JDOT4cdLSCAzk6lVCQrCywtmZ6Gj+/FPpfKL0dO3KunUc\nOMDQofz6K7160aYNS5dq3aOWlcANfoEzEAp/gT80khllQpRJUuyEUIiDA6GhnD1LcjKjR5Oa\niq8vjRqhUpGQwK1bSucTpaRVK5YsIT2dceM4fpwhQ7C3JyqKG9p3KvCDM8pehxXgAvYyo0yI\nskSKnRCK0tXF2ZmoKC5eJD6eHj1Yvx4PDwwN8fIiKUmLBhuIJ7G0ZPZszp8nPJy//+bttzE2\nJjiYK9rXiHShB8TDcQiE32RGmRBliRQ7IcqGatVwd2fVKs6fJyqKZs1YvBgXF8zM8Pfn4EGl\n84nS8ODZKAYGhIQU/f7m5iqd7Hncm1E2DxyLZ5R1lBllQihKip0QZUy9evj4sG0bp04RGkr1\n6kRG0ro1Dg6EhWnX4bfi8apUwcuLo0dJTMTRkchIrK3x8uLIEaWTPY8aMAr2wB4YDYcemFF2\nQulsQlRAUuyEKKvMzAgMJD29aJvFlSsEBWFsLNssyonCs1FSUkhOplcvFi+meXNUKnbsUDrZ\nc3KCuQ/PKLOHHrBMjjgWQoOk2AlR5hVus8jOZtkyXF3ZuxdfX0xMGDGCn36ScbRar/BslAMH\nGD6cdevo2LHoFe18vPJfM8p2gXvxjDKtvCEphLaRYieElqhWjYEDWbmSc+eIisLRkZgYBgzA\nwAA3N2JitPExfHFfy5bExnLiBH5+HDiAq2vRK3fuKJ3sORUecXwWosC8eEaZs8woE0LNpNgJ\noW3q1sXHh+3buXiRmBi6dWPNGkaMwMCg6LjjffuUjiiel4UFERGkpzN+PNnZeHvTogULF2rv\n8TeFM8oOwC/gBrvAA2xgIsjcFSHUQYqdEFqrQQO8vFi1iqtXSUzE05OzZwkJwckJKyv8/dm2\njbt3lU4pnp2xMTNmkJPD559z5QpvvYWlJdOna++DlTrgAsshBz6Du/AFtAE7mCRLtEKUKil2\nQmi/GjVQqYiN5fJlkpPx8+PmTSIj6dSJRo2Kyt/Nm0qnFM+obl0mTuTMGWJieOklPviAJk20\n92yUQk3gU8iGrfAuXIMp4AiOMEV20QpRGqTYCVGOVKqEszMREZw5Q1oakyfTsCFxcbi6Uq9e\nUfn7XYZ8apXKlfHy4vBhEhNp0YLISCwsUKnYu1fpZM9PF16DWZAHaTAZbsAksANLCIJjSicU\nQntJsROinCp83u7IETIzCQ+ndWvWrsXbGwOD++VPaIvCs1F27CA5mb59WbOGl18u2jyr5Rwg\nGNJhI7wNf0EYOEB7CIfTSscTQutIsROivLO0LHre7sIFYmLo04e9ewkIwMRENlton8Iyd/Ag\nnp7s2oWrK23aEBtLfr7SyV6IHnSDOXAONsAYOAnvgxm0g1BZpRWixKTYCVFhGBj8e7NFXl7R\nZovC8peUpL2Ha1QsLVoQG0tGBn5+pKfj7Y2dHRER5eBQQz3oAVFwDlbAEEiHj8AOHGESyHA9\nIZ5Mip0QFY++ftHzdmfPsnIlI0Zw7RqRkbi4YGWFnx8bN0rD0wLm5kREkJ3N5Mn89hsBAZib\nExzMb78pnawUVII3YAlchWTwgz9gCrSGhuAFq+Q8PCEeR4qdEBWYvj4DBrBwIefPs2ULAQHo\n6TFrFj16FG2nXb6c69eVTimeqEEDgoPJyOCzzygoICQEGxuCg7l8WelkpUMPnCECsmETvAdV\nIQ5cwQzGQRLI/wsR4h4pdkII0NOjc2dmziQri6wswsNp04YffmDQIF56qWizxWl5kL0Mq1eP\nTz8lO5tZs6hVi5AQzMzw8yMnR+lkpUYPukIk5MIuCISaMAdcoBGMgJ9A65eihXhhUuyEEA+z\nsMDfnw0bOHeOmBjc3Dh4kIAATE1ls0VZp6/Pu++SmUliIi1bMmsWlpaoVKSkKJ2sNOk8sKPi\nFIRDG/geBkBdcIEIOK90SCGUIsVOCPEfCjdbxMdz8eK/N1sUlj/ZbFE2PXo2Svv2RdtpCwqU\nDlfKzMEfNkAWzAJn2AIBYA79YD5cUjigEJomxU4I8TT3Nlvcm2yRn1+02cLQEC8vEhL46y+l\nU4pHPHo2SqtWxMaWyzpuAu9CElyAGOgHW2A0NIYuEAHlZ01aiCeSYieEKDE9vaLn7XJziyZb\nmJsTF4eHBw0bolIRHc2FC0qnFA978GyUkyfx9sbGhogI/v5b6WRqUQ+8YDlchv+DYZBafA+v\nLXwuo2lFeSfFTgjxXAqft9u7t2izRceOrFuHry9GRjg7ExZGRobSEcUDHjwb5c8/75+NcvWq\n0snUpTq8DjFwAdbBGDgNn4Ij2EEQ7ILytjIthBQ7IcSLurfZIiuLWbPo2pXduwkKwt6ejh35\n6itOyNSAMqPwbJSTJ/n8c3R0CAnB2ppPPuHiRaWTqVFl6AXRcA42w3twHcLgVTAFf/gVtHtw\nhxAPkGInhCglJia8+y4bNnDhAnFxuLmRmkpgIHZ2ODjw8cfs3l3+Ht7XSnXrMnEi2dl8+y11\n6zJ1KubmjBtHVpbSydRLD7pAJJyGnfABVIVI6AxG8LYciSfKBSl2QojSVrcuw4eTkMClS6xe\nzejRXLnCl1/yyisYGzN2LL/8wq1bSqes8KpXZ+xYTpzghx+wt2fOHGxtGTKE/fuVTqZ2OvAq\nfAUn4RCEQGOIAhcwhLdgDdxUOqQQz0eKnRBCbapVo18/5s7l/HnS0ggNxcKCqCh69eKll4o2\nW5yXE8cUpadXVOaSk+nTh/h42rbF2ZmEBO7eVTqcJrSASXAAMmE6NIUY6A8NYDD8CH8onVCI\nZyLFTgihEQ4OBAaybRunThEejrMz69c/tNkiPV3piBVb4dkoqan4+LB3Lx4e2NkREcGNG0on\n0xBL+B8kQx58B6/CShgKDaEPRMuhx0JLSLETQmiWmVnRZovz54mJYeBADh0q2mzh4EBQENu2\nyaN4inF0JCqqaPPspUsEBGBhQXAwf1Sg+1aNwBd+gfOwEHrBFvAFI+gI06GcP4ootJwUOyGE\nQurVe2iyhY8PV68SFkanTpib4+vLqlXyKJ4yDA0JDiY3l/Dwos2zpqb4+5OXp3QyjaoHIyAR\nLsIP4AaH4AOwglYQAqlKJxTiUVLshBBKq14dlaroRtHPP+Pry+3bREfj6oqZGb6+rF3LTXmW\nXeNq18bfn/R0pk+nVi0iI7G3Z8IEzp5VOpmm1YIhkACX4P/AG05DMLQEa/gQUqBCPJAotIEU\nOyFEmVG1Kr178913nDnDzp0EBVGnDtHR9OtHgwYMHsyPP1aoNcEyoVYt/vc/srJYsABjY2bM\nwNKS0aMr5vGEhYceL4ILsAHGwT8wDdqDCbwDG+XAFKE0KXZCiLJHV5dXX+XLLzl2jOPHCQ3F\nwYFlyxg6lIYN6d2bqCjOnVM6ZUVSpQojR3L0KMnJ9OzJggXY2RXtt6iQKkEPmP3AkXjV4Vvo\nAYYwEhKhfI5sE2WeFDshRNlmZ0dgIDt3cukS8fEMHsz27bz9Nk2ayGYLBRSWuf378fRk1y5c\nXXFyIja2gpyN8ijdh4/EmwxGsAheh/rQB76RzRZCs6TYCSG0RL16uLsTG3t/s8Xly0WbLSwt\n8fcnKYk7sg6mEa1aERvLiRP4+XHsGN7etGxJbCy3byudTEktIBgOwUmYCZ2KJ5hZgT38DzZA\nRTk8RihHip0QQtvc22yRl0dyMn5+5OcTGYmLC4aGeHmRkMD160qnrAAsLIiIKDobJS8Pb29s\nbIiIkH/5VhAAv8AVWAk+cB2+hp5QD3rBDEgFuc8s1EGKnRBCa+np4exMRAS5uaSlMXky5ubE\nxeHhQcOGqFTExspmC7Vr0IDgYE6eZOpUbtwgIABbW776ij//VDqZ8mrAAIiC05AKM+A1SIYJ\n0BKagBfEwBmlc4ryRIqdEKJccHAgOJi9ezl4kOBgbG1ZvRpvb5o0wc2N2FiuXFE6YrlWty4f\nf0x2Nt99h74+gYGYmhIUJHtc7mkO42EdXIUN8CEYwmIYASZgD+/ACvhd6ZxC20mxE0KULy1b\nMnkyBw6QlcXXX+PkRGIi3t40bEibNkyYwNq1/PWX0inLqWrV8PXlxAkSE3FwICwMY2NUKvbs\nUTpZGVINekAYHIALsBTGwG34FgZCA+gIn0EK5CsdVWgjKXZCiHLKwoL332frVs6dY8EChg7l\n/HlmzKBfP+rWxdmZSZPYvLnizELVHB0dVCq2byc5mb59WbOGdu0q8tkoT9AAPCAaMiELomEA\nHIPJ0B4awCD4Dk4qnVNoESl2QojyrkEDRo5k8WLy8sjLIz6et94iN5cpU+jWjZo1cXIiKIik\nJCl5paywzB06dP9slDZtiI0lX25FPYYFjCmeb7EDgqEp/ARjwQYsYChMh2So6JtTxBNJsRNC\nVCSNG+PuTlQUublkZhIVhZsb2dmEheHiQr16ODsXlTwZU1tamjcnNpbUVEaM4MgRvL1p3Zq4\nODmb5r/oQXuYDNvhCvwE74E+/AgfwGtQB1rD2zAHkiBHBpqJB0ixE0JUVJaW+PgQH8/Fi6Sl\nERVF//6kpd0veS4uhIWxb1+FPX23NDVtysKFnDxJQACnTuHlha0tUVEyBfjJaoMrRMIRuAJr\nIRhc4DREwThwAXOoAc3BDQJhLmyGM3KcSkVVSekAQgihNF1dHBxwcMDHh3/+Yft2Nm1i0yY2\nbyYpCcDYmG7d6NaNrl0xNVU6rjYzMWHmTD75hMhIZs3i7beZMoUJE/DxQV9f6XBlXT3oA32K\n/zETThY/nJcFmbABVj5wfXWwBmuwAqvivzEFPQWyC82RYieEEA+oXp0ePejRA+DPP9m6tajk\nxcURGwtgaUmXLnTpQteuGBsrG1Zb1a9PSAgff8zSpUyZwvvvM2kSI0fy0UcYGiodTmsU1rV/\nOQvHIb34rycg8eHdtVXAHCyLv73wbxpDfY3lFmomxU4IIf5D7dqoVKhUAJcusXUrW7aweTML\nFrBgAYC19f2S16SJsmG1T9WqeHkxdCg//EBoKJGRzJ/PqFF8+CFGRkqH01ZGYATdH3jlFpwq\nvr137w7fZlj38DdWhUZgBA3BCAzBBJoUv2Edjf4Q4oVIsRNCiBJo0IBBgxg0COCvv0hJISmJ\npCQWLGDePIDGjXF2LrrbZ2mpbFhtUrkyXl4MH86aNUyZQmQk333H4MFMmoS1tdLhyoMqYAd2\nD794F84UL+DmwFm4AHmQDbsfd36ePpiBERiDKRiBCZiBGdTQzI8hSkyKnRBCPKOaNe8v1167\nxq5dRSVv+XISEuCBkufigoWFsmG1g64uKhX9+vF//8cXXxAXR0ICo0bxwQeYmSkdrhzSBVMw\nhS6PfOkuXISzkAdnIA9OwznIg4OQ9Mj19cGk+FcTMCkuf6ZQRQM/iXiEFDshhHgBtWrdL3l5\neWzezObNbNlCQgIJCejo0KxZ0Vrta6/RoIHSccs2XV3c3HBzY/16vvyS2bOJjmbYMIKCsLN7\n+reL0qALhmAIbR/31ZtwHs5CNmTBqeK/HoHbj7xPYzAHczABIzADYzABA7X/EBWaFDshhCgl\nTZowbBjDhgGcPl30QN6WLcyezezZ90te58507kzDhkrHLcN69aJXL7Zt4/PPWbSI2Fjc3fno\nI1q2VDpZRVe1eAW2w8Ov34XzcAbOwmnIKf6VDtsfeZMaYAbmYAYmYApmYAqNobJmfoxyTYqd\nEEKogYkJnp54egLk5LBlC1u2sHVrUckDmjUranidO8tW0MdzdmbdOtLS+Oorlixh6VI6diQw\nsGg7iyhLdKEJPHYD0d+QA2fgDOQ+UPs2ws1H3sQQjMH4geZnXLyZQ5SQFDshhFAzMzO8vfH2\nBrh4kV272L6dpCSiopgzBx54Jq9jRxwclA1b5jg6EhtLcDBhYSxYgKsrHToQFET//ujoKB1O\nPJ0+NIWmj7xeAOeKq15u8d+chTOw95FZGlWLt2uYFN/bMym+z1dbQz+H1pBiJ4QQGtSw4UNH\nqKSkFJW8RzdeSMl7kKUlUVF89BEzZxIdjasrzZszYQLDhqEnB+5qJZ3im3yvPvKlWw+0vcJN\nu4VP9aXAxkcurl+8Y7dw34Y5mEFjMK6oC7tS7IQQQiENGtwveWfPFq3Vbt1atPECsLEpWqvt\n2lWOdgMwNyciAj8/vvySuDi8vfn6ayZOZOBAdGVCZvlR5T+OXwauFm/UPQOnIRtOQQ4cfmT3\nRuXiwmcGdcESDKATmGjgB1CUFDshhCgDjIzub7w4d+5+yZs3r+icPGvr+yWvgk+8sLJi3jwm\nTSpanPXwwN6ejz7izTepJH+olXP1oB44PvL6vYXdHMiFc3ASsuAgbH3gMmdI1lxYZcj/BoQQ\nooxp3JihQxk6FOD8+aKttVu2MH8+8+cDWFnRuXPR0AuTcn8D4j+YmjJ7Np99xqxZREbi7c2H\nH/L++7z3noydrYCesLD7F1yGHLgMNgpE0zS5dy2EEGWYoSFDhxIVRXo6f/7Jhg0EBlKnDgsX\n4uWFqSmGhnh4EBHBvn0UFCgdV+Pq1yc4mJwcwsPR0SEoCDMzgoP5/Xelk4myoiaYQ2cYCC2U\nDqMBUuyEEEJLFB6GHBrK3r1kZ7NoEd7eVKtGQgIBATg5YWXFyJHExJCbq3RWzapVC39/Tp4k\nPJyqVQkJwcyMoCCuXlU6mRCaJsVOCCG0kKkp3t4sWkR2NllZzJ+Ppye3b7NoESNGYGaGlRWj\nRhEXx5kzSmfVlBo18PcnPZ0ZM6hRg7AwrK0JDua335ROJoTmaF+xy83N/eyzz7p27WpkZFS9\nevVKlSrVrl3b3t7ew8Nj4cKF169fVzqgEEJoloUFb71FbCynT3PiRNEYrps3WbAALy9MTLCx\nYcwYvv+evDyls6pfjRqMH09WFrNnU7s2ISGYmzNxIpcvK51MCE3QsmL37bff2traTp48ecuW\nLXl5eTdu3MjPz7927Vp6enpCQsJbb71lZ2e3bt06pWMKIYRCCjvc4sWcOcO5c8TH4+fHSy8x\nfz7Dh2NkRJMmeHgQHc2RI0pnVadq1Rg3jqwsEhOxseGLLzAywteX06eVTiaEemlTsVu9evU7\n77xz+/btIUOGfP/99xkZGb/99tudO3euX7+emZm5cuXKN9544+zZs6+//vrOnTuVDiuEEEoz\nNMTdnYgI9u7l5EkWLsTbm6pVSUjA1xdHR5o1Y9w44uO5eFHprOqhq4tKxZ49JCbSujXR0VhZ\n4eVFRobSyYRQF20qdtOnTwdmzpz5ww8/vPnmm9bW1nXq1NHT09PX17e0tBwwYMCKFSs+/PDD\nW7duffbZZ0qHFUKIssTSkhEjWLSIU6fIziYmhpEjuXmTOXMYPBhDQxwdee89li8vh0uWOjqo\nVKSkkJxMr17ExeHggJcX6elKJxOi9GlTsTtw4AAwYsSIJ1wzYcIEYPfu3ZqJJIQQ2sfMDC8v\nFiwgM5PcXGJjGTGCv//mm28YNIiGDWnZkoAAfvqpvG07cHZm1SrWr6d9e+LiaN6cUaM4eVLp\nWEKUJm0qdrq6usCtW7eecI2enh5w+/btJ1wjhBCiiIkJnp4sWEBWFhcuEB/Pe+9RuTKRkQwY\nQL16WFnh60tsLGfPKp21lPTsydatJCfTvTsLFmBvz7Bh5fyJQ1GRaFOxa9OmDfDVV1894Zqv\nv/763pVCCCGeQcOG95/Jy8hg7lyGDePGDaKj8fbGzIx27fjgA1av5o8/lM76wpyd+fln0tJ4\n803i43F0xNmZTZuUjiXEi9KmYvfpp5/q6elNmzbNxcVlyZIlJ06cuH79+t27d69du3bq1Kn4\n+HhXV9epU6fq6up+/PHHSocVQghtZmXF6NEsXszZsxw/znffMWgQp08zfToqFfXr07Yt48eT\nmKjdhwA7OBAby4kT+Pmxdy/duxct1wqhtbRpVmyXLl2WLVvm4+OTlJSUlJT02Gtq1qz53Xff\n9ezZU8PZhBCi3LKzw84OX1+Ac+fYto2kJLZtY+ZMZs4EsLSkY0ecnenZE3NzRbM+FwsLIiJ4\n5x2+/JLvv8fVla5d+eQTunVTOpkQz0yb7tgBAwYMyM7Onjdv3tChQ21tbevVq6enp1e9enVT\nU9PevXvPmDEjOzt72LBhSscUQohyqnFj3N2JiuLIEU6cYO5chg/n9m3i4vD1xdKS5s21dXet\nrS0LF3LiBG+/zY4ddO9O+/asXl0RJ/AKbaZNd+wK6evrjxo1atSoUUoHEUKIis3GBhsbRo8G\nyMpi69aiX998wzffoKtL8+Z06UK3brz2GnXqKB23ZMzNmTOHKVP45hvCw1GpsLQkMJCRI6lc\nWelwQjydlt2xE0IIURZZWjJy5P1z8hYuZPhwrl4lIoLXX8fAACcnPviANWu4dk3prCVgYEBw\nMJmZTJ7Mb7/h64uNDRER/POP0smEeAopdkIIIUqVmRkjRhATQ24uGRlERzN4MHl5TJ9O//7U\nq0f79gQFkZhY1ide1K9PcDDp6Xz0EVevEhBAs2bMmcPNm0onE+I/lcNip6Ojo6Ojo3QKIYQQ\nYG3NmDF8/z15eRw9yrff8sYbZGYSFsbrr9OoEdbWeHoyezb793PnjtJxH6dBA774guxsJk3i\n998ZNw5LS2bO5Pp1pZMJ8RjlsNgJIYQoi5o2ZexY4uO5cIFjx1iwgFGjqFKF77/n3Xdp25Y6\ndejShY8+Kos38+rVIySE8+eJikJXl/HjadwYf3/On1c6mRAP0b7NE09VIDuYhBCiLNPRwd4e\ne3tGjgS4epWdO9m5k23b2LuXrVuLLrOyon37ol/Nm1OpDPyBVbUqPj4MH050NNOnExlJTAzv\nvYe/PwYGSocTAsplsXsm+fn5a9euvXHjxhOuyc7OBu7evauhTEIIUaHUq0e/fvTrB3DnDgcP\nsmNH0a/Fi1m8GKBGDV5+mQ4dePVV2rfodCL/AAAZgklEQVRXuEXp6xMQwNixLFpEWBiff054\nOGPHMmECDRsqGUwIKXZbt251dXUtyZVny82cRCGEKLMqVcLJCScn/PwA8vLYtYuUFHbtYs8e\ntmwpuszWtqjhtW+PoyN6egpErVoVX19GjWLJEkJDmTaN2bPx8eH/27vzsKrqfY/jH+ZBMgEF\nVGY0FVIcgEwccuqqZJkCh9Ox8uRx6Fpp3ifzduykp8mGc5JMU7Fzc7yKmXLLLE0l1Aso5nDE\nqzmBmiglghJaMtw/9g7RPKame7kX79ezH59n//YavksXm4+/tX6/9dxzatbMgHoASZJDPb9w\nWVVVlZWVVVVVdZVlli9fPmvWrA0bNtx33322qgsAcKnKSuXnKztbubnKzdXevdapg728FBOj\ne+9V58665x75+xtQW3W1VqzQa6/p66/l7q7hwzVhgoKDDagENrF58+auXbtOmzZt7NixRtdy\nufreY+fk5NSzZ8+rL5Ofny/JhakpAcBAzs6KjlZ0tEaPlqTSUm3ZYu3My8m52JkXHm5NeJ07\nq0MHG80q7OioIUM0ZIhWr9Zrr2nGDKWlKSVF48crOtoWBQA/q+/BDgBglxo10v33y/Jk8Joa\nffONNeRlZys9XYsXS5K7uzp1UufO1uu2zZvf8qr691f//srK0t/+poULNX++evfW+PHq31/M\nwwWbINgBAOycg4NatVKrVnr8cUn64Qfl5Sk7Wzk5ysnR5s3WxQIDrVdsO3dWx45yd79V9XTv\nru7dtX+/3nlH8+YpIUFt2mjcOCUn282j1WC37CnYXde0w/X83kEAqL8aNFCPHurRw/r28GHr\nnXk5OVq5UsuWSZKrqzp0sF6xvfdehYbe/DJattTMmXr5Zc2erffe06hRGj9eQ4fqqad09903\nf3eAJPuaoPhPf/qTHyPJAQDXJSxMjzyi1FTl5qqsTJs26e23NXCgjh3Tu+/qkUcUFqamTTVo\nkKZOVWamystv5t59ffXCCyoo0IIFuvtuzZ6ttm3Vq5c+/lhXHbcH3Bh76rFLS0tLTU3t379/\nVlYWHXIAgOvm4aH4eMXHW98eO6acHGt/3hdfKCNDkpycdPfd1hEY99yj1q3l+Js7QVxdNXSo\nhg7V1q2aPl3p6dqwQcHBevJJDR+uJk1+6/aBn9lTj50kT0/PCRMmGF0FAMAUAgOVmKi//U2b\nNunMGeXm6t139bvf6cwZzZ6tJ55QVJS8vdW3ryZN0ief3IQHncXGav58HTmil19WVZX+8z8V\nFKTHHlNu7s04HsCueuwsOnfubHQJAADTcXFRXJzi4vT005J04oRycvS//6vsbG3erC+/tC4W\nFqZ777V25nXoIFfXG9mXn58mTdLEiVq5UjNmaMECLVigmBj9+78rJUUeHjftoFD/2F+w8/X1\n5TosAODWCgjQoEEaNEiSLlzQ119bx9hmZ2vxYut0Km5u6tjROsy2c+frnpHY2VmJiUpMVH6+\nZszQwoV64gn9x3/o8cc1apRat775B4V6wP6CHQAANuXiYu2iszxmwNKZZ3lZ5lWxaNZM99xj\nnVGlUyd5el7r9qOiNHOmpk7V/PmaMUPTpik1VT16aPRoDR5sozmWYRYEOwAArkfdzrzaB51Z\nct7KlVqxQvr5ORm1IzDuuuvXN9uwoZ56SmPGaP16zZih//kfZWaqaVONHKlRo9S06a09KJiF\nGYKdZX47rs8CAGztsgedlZRYJ8zbskVbt2rbNs2YIUm+vrrnHsXFKSZGsbG6ytRdDg7q3Vu9\ne+vIEc2Zow8+0JQpeu01DR6sJ55Qz5504OHqzBDsAAC4Lfj4WJ8qZnHwoLZu1datystTVpY+\n+8zaHhKi2FjFxlqjnpfXFTYVHKxXXtFLL2nlSs2apfR0LV0qX18lJiolRd2734RJWGBGBDsA\nAG6NiAhFRCglRZKqqpSfb71im5urjz/WRx9JkpOTIiOtz8CIi1NkpJycLm7BxUVJSUpK0v79\nWrRIS5Zo9mzNnq3mzZWcrN/9TnFxPIUWdRHsAAC49Zyc1K6d2rXTyJGSVFam3Fzl5Vlfc+dq\n7lxJ8vJSx47WiVfi4hQSYl29ZUtNnqzJk7V9u/77v7V0qd55R++8o9BQJSUpOVkxMYYdGm4n\nBDsAAGzuzjt1//26/37r25MnrQlv61Zt2aKsLGu7n5/i4qwXbWNj5eurDh3UoYPeeEPZ2UpP\n10cf6a239NZbCg9XcrISE9Wpk1HHhNuBGYIdwyYAAPbN318JCUpIsL4tKNCWLdbXhg369FNJ\ncnBQmzbq1k1du6p7d3Xpoi5d9Pe/a/Nmpadr+XJNnaqpUxUaqocf1uDB6tKF+/DqITMEOwAA\nTCU0VKGhSk6Wfr45b+tWbdyozEzrPXaSgoM1eLD69VP37urWTamp2rRJy5drxQrrVdqmTfXQ\nQ0pIUM+eatDA2AOCzZDlAQC4jVluzhs+XB9+qIICHT6s//ovPfaYamo0bZr69ZOvr/r107vv\nys9PqakqLFRurp5/Xl5emjVLAwfKx0e9e+vNN7Vjh7jGZXb02AEAYD9CQzVsmIYNk6Q9e/T5\n5/riC331lb74Qs8+q5AQ3X+/+vbVhAmaOlXffKM1a/T558rM1Pr1ev75K9y0B3Mh2AEAYJ8i\nIxUZqfHjVVFhzXZr1igtTWlpcnJSTIy6d1dsrObMka+vNm3SmjXavFnr1llv2pMUEWGdUS8m\nRh066I47DD0e3AQEOwAA7Jyn58WJkY8e1Zo1WrNG69YpN9e6QFiY4uMVH6+UFEVEaN++i4+7\nXbJES5ZIkqOjWrdWp06KiVGnTmrfnjvz7BHBDgAAEwkK0vDhGj7cOuqi9jm2ixZp4UJJcnRU\nSIhatVKbNnr+eTVtqspK7d+vr7/W9u1atEgLFkiSk5PatFGnTurUSR07Kjr6yk/IwG2GYAcA\ngBnVTok8apQknT6t3Fzt2qX8fOXnKytLn39+ceHgYLVrp8RE3XWXXFx08qS2b9e2bVq4UPPm\nSZKjo8LD1b692rdXdLTuvluhoYYcFq6OYAcAQD3g7a1+/dSvn/VtdbUKCqwhb+dO7dqlzz+/\neO+dh4ciIxUXp6FD5e6uc+d08KB27tQnn1ifhCapYUNFRqptW0VFKSpKbdqoeXMDjguXItgB\nAFD/WHrgwsM1cKC15fz5iyHvn//Url3atu3i8gEBio7WM8+ocWPV1KioSHv2aOdO5eRcXKZR\nI7VuragotWplfYWHy8XFpsdV7xHsAACA5O5uvaOu1okT1oS3e7d279bGjfrii4ufhoQoJkZh\nYWrQQD/9pJISHTig//u/S6Kes7PCwhQaqsBABQcrKEjNmsnXV02ayNdXDRva7ujqDYIdAAC4\nkoAABQSob1/r2+pqHTqkXbu0Z4/27NG+fcrM1GefXVze319t2yooSF5ecnLSuXMqLtahQ9qy\nRWvXXmH7rq7y81NQ0MU/LXv081NgoPz95UxKuW78lQEAgGvg6KgWLdSihQYPtrbU1KiwUPv2\nKT9fe/cqP1///Keysi6u4uys5s0VGamwMPn56c475eqq6mr9+KNOnNDJkyoqUmGhtmxRVdXl\nu3NwkL+/mjRRQID8/eXvr+bN5eenxo2t7U2ayNXVRsduPwh2AADghjg4WB9r+2//drHx5Ekd\nOKADB3TwoA4e1KFD2r9f2dmXrOjkJH9/BQUpIkJ9+yo0VN7ecnNTTY1KS1VUpKIiffutiopU\nXKzsbJWXX7kAHx8FBKhZMzVrpoAAa9pr3FhNm6ppU/n7y7HePTqVYAcAAG4eS+9afPwljaWl\n1rR3+LCOH9fRozp+XEeOXJxCuVbjxgoMVEiIQkMVH6+wMIWHKyDAehtfcbG+/VbHjqm4WMXF\nOn5cxcXKybly8nNxUdOmCg6Wt7ciIuTrqz591LnzrTrw2wPBDgAA3GKNGikmRjExl7efO6dD\nh6yvo0etoe3IEe3ercrKS5b09VVIiIKCFByspk3VpYtatlRYmLy9JensWZ04oe+/1/ffWwPf\nyZM6elQnTujECeXm6sIFSVq7Vl99ZZMDNgzBDgAAGMTDwzoN3mUqK/XttyoosGa+w4dVWKiC\nAu3cefndeO7uat5cLVooPFxBQQoNVVSUHnxQTZpcslhJiQoLFRh4aw/nNkCwAwAAtxlnZ4WE\nKCREPXpc0l5Zae2Ks3TsFRZak19m5iVTsUhyd1dgoJo3V0iIwsPVooUiIurDYAuCHQAAsBOW\nYba/fMSFZc7kI0dUUKCjR1VUpAMHdOiQduy45Nprr15at86W9doewQ4AANg5Bwfr2Nhfjo0o\nLdWhQyos1LFjV7jmazoEOwAAYF6NGqljR3XsaHQdNlLv5ncBAAAwK4IdAACASRDsAAAATIJg\nBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAA\nYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATMLZ6ALsRl5e\n3rlz537jRiorK5csWRIYGOjoSKSu16qrqwsKCkJDQzkT6jnOBEiqrq4+duxYSkqKszO/lO1D\nfn6+0SX8S5xDv87ykzZu3DijCwEAmNa8efOMLgHXx8XFxegSroBg9+seffRRNze36urq376p\nvLy8tLS0hISEli1b/vatwX7t379/1apVnAngTIB+Pg1GjBgRExNjdC24Vo6OjsnJyUZXcQUO\nNTU1RtdQjyxbtiw5OTk9PT0pKcnoWmAkzgRYcCZAnAa4qbirAwAAwCQIdgAAACZBsAMAADAJ\ngh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdjbl4eEhydPT0+hCYDDO\nBFhwJkCcBripeKSYTVVVVW3atKlr165OTk5G1wIjcSbAgjMB4jTATUWwAwAAMAkuxQIAAJgE\nwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4A\nAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2NlOZmZmnz59fHx8\nvL29e/bsuWrVKqMrggHOnTv3yiuvREdHN2zY0MPDo3Xr1s8999zp06eNrguGOXr0qI+Pj4OD\ng9GFwBhFRUVPP/10ixYt3Nzc/Pz8Hn744Z07dxpdFOyYQ01NjdE11AsZGRlDhgypqqqq2zhz\n5swnn3zSqJJgexUVFT169MjLy7usvXXr1tnZ2Y0aNTKkKhiourq6V69eX331lSS+jeuhgoKC\nbt26HTt2rG6jl5fXzp07w8PDjaoKdo0eO1uoqKgYOXJkVVXVc889V1xcXFZWNm3aNEdHx2ef\nffbIkSNGVwfbmT59el5eXpMmTZYuXVpaWlpWVpaRkREYGLh3796XXnrJ6OpggNdff92S6lA/\nDRs27NixY127dt2xY0dFRUVubm50dHR5efmLL75odGmwWzW49ebOnSupT58+dRtTUlIkTZky\nxaiqYHsdOnSQtGzZsrqN69atk9SsWTOjqoJRcnNznZ2da3tqjS4HtrZp0yZJQUFBZ86cqW3M\nz8+X5O/vb2BhsGv02NmC5Tf3H//4x7qNAwcOlLRhwwZjaoIRDh48KKlPnz51G2NjYyWdOnXK\nmJpgkPLy8kceeaSysnL27NlG1wJjfPrpp5KefvrpO+64o7YxMjKypqbmxIkTxtUF+0aws4Vt\n27ZJiomJqdsYFxcn6ZtvvjGmJhihrKyspqbmsnvp1q9fL6l169YGFQVjjBkz5uDBg8OGDUtO\nTja6Fhhj48aNknr37j19+vRWrVq5ubmFhYVNmDDh7NmzRpcGO8bgCVvw9fUtKSkpLy9v0KBB\nbWNpaam3t7e7u/u5c+cMrA3G2rBhQ1JS0qlTpxYuXPiHP/zB6HJgI0uWLPn9738fERGxY8cO\nLy8vy5BYvo3rm+Dg4KNHj44aNeqyXtvIyMhNmzZ5e3sbVRjsGj12tlBWVibJw8OjbqOl7/3C\nhQvG1ASjnTp1auTIkb179y4pKXnppZdIdfVHYWHh6NGjnZ2dFy9e7OXlZXQ5MIxlnqMlS5bM\nmTOnuLi4vLw8IyOjcePGe/bsefXVV42uDvaKYGcLrq6ukn744Ye6jT/++KMkT09PY2qCcaqr\nq2fOnHnXXXelpaW1aNHiyy+/nDx5stFFwXaGDh1aVlY2efJky/0YqLfOnz8vafr06SNGjGjS\npEmDBg0efPDBt956S1JGRobR1cFecSnWFkJCQo4cOXLo0KGwsLDaxkOHDkVERLRq1Wrv3r0G\n1gYbKy4uTkpKysrK8vb2njRp0lNPPWXJ/ag/rj4XMd/J9YePj8/p06e///57X1/f2saSkhJf\nX19XV1fLf/6B60WPnS1ERkZK2rp1a93GXbt2SWrXrp0xNcEI58+f79u3b1ZWVkJCwt69e8eP\nH0+qA+oty3/1L7shx/KWizm4YQQ7W+jbt6+kRYsW1W2cP3++pH79+hlTE4zwj3/8Y9euXffd\nd9/KlSv9/PyMLgfG+OW8U3Xbja0NttStWzdJ6enpdRtXrFihn6dNAG4Al2Jt4dSpU6GhoeXl\n5ZMmTRo/fnxlZeXbb7/95ptvNm/efN++fXWHysLcBgwYsHr16m3btnXs2NHoWnAbYVRs/ZSf\nn9++fXtXV9epU6cmJia6ubmtWrVqzJgxZ8+e/eSTTx544AGjC4RdItjZyMKFCx977LG6f9uu\nrq4rV67s37+/gVXBxoKCgi57KGRd/DDWWwS7euu999575plnLvunHz169Pvvv29USbB3BDvb\nWbNmzauvvrp9+3ZnZ+e4uLi//OUvXbp0Mboo2JSnp+dVpi3kh7HeItjVZ+vWrXv99ddzc3Or\nq6sjIyNHjRo1fPjwq4+wAa6CYAcAAGASDJ4AAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAA\nAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg\n2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEA\nAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgE\nwQ4AAMAkCHYAAAAmQbADYMccHBwcHByuceGRI0de+8KWLXfv3r2mpuY37hcAbIZgB6BeqKio\nyMjIuN61Nm7c+MEHH9yKegDgViDYATC5kpKS1atXP/DAA8XFxde7rrOz84QJE25gRQAwBMEO\ngMn5+voOGDBgw4YNN7DuuHHjTp8+/eyzz970qgDgViDYATC5mp/dwLpTpkwJCQlZvHjx2rVr\nf3Xh9PT0bt26NWzY0NPTMzY2ds6cOXV3arktr7y8PCUlxd3dvbalqqrqxRdfDAgI8Pf3f+GF\nF2pqagoKChISEry8vPz8/MaNG/fjjz/eQOUA6ieHG/uyA4DbgWUEwzV+j93Ywp999llCQkJE\nRMTu3bstgeyKm5o4ceIbb7xx2UYSExOXLl3q6OhYu8qjjz66YMECy7qWlrFjx6amptauMnXq\n1Pfff7+wsLC25c9//vMrr7xyLTUDAD12AHA1AwYMSEpKOnjw4F//+td/tcz69evfeOMNd3f3\nmTNnHj9+/OzZs+np6T4+Ph999FFaWlrdJTMzM9evX1+3E2758uVr164tKyubMmWKpIkTJ3p4\neGzZsqW8vNyyx6VLl96ygwNgNvTYAbBjNuixk1RUVNSmTZuKiort27dHRUX9clNDhgz5+OOP\nX3755UmTJtVuYd68ecOGDevSpcvmzZtrV1mxYsWgQYPq7qK2pbS01NvbW9KXX37Zu3dvST/8\n8IOXl5ebm9v58+evpWYAINgBsGO2CXaSZs6cOWbMmPj4+I0bN9ZOYlf7abNmzYqKivbv39+i\nRYvaLXz33Xd+fn4NGzYsKyur3eCZM2fuuOOOurs4deqUj49P3ZbS0tI777zzBmoGAIIdADtm\ns2BXXV0dHx+fk5Mza9asUaNGXfapi4tLZWXluXPnam/Ck3T+/HkPDw8XF5effvrpinu3tFRX\nV9fOdfyvluGLGsA14h47APh1jo6Os2fPdnZ2njhx4smTJy/71NPTU9J3331Xt/Hw4cOS/P39\nr75lnmAB4CYi2AHANWnXrt348eNLS0vHjh37y48kLVu2rG6jZdDDvffea7MKAYBLsQDsmM0u\nxVpUVFRERUUVFBRY3tZ+Onfu3BEjRjRo0CA1NXXgwIGenp4ZGRkjR46sqKhYt25dr169rrjB\nG2sBgKsg2AGwY1e5jvnLL7ebkgJXr149YMCAy3ZRXV390EMPffrpp5ctPGbMmPfee+9fbZBg\nB+CmI9gBsGO2D3aSUlJSLJdZ63564cKF1NTUDz/88MCBA66urm3bth0xYsTjjz9+XQMjCHYA\nfiOCHQAAgEkweAIAAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg\n2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEA\nAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgE\nwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASfw/NFSOXcaiQvQAAAAASUVORK5CYII=", "image/svg+xml": [ "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n", "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"504pt\" height=\"504pt\" viewBox=\"0 0 504 504\" version=\"1.1\">\n", "<defs>\n", "<g>\n", "<symbol overflow=\"visible\" id=\"glyph0-0\">\n", "<path style=\"stroke:none;\" d=\"M 0.40625 0 L 0.40625 -8.96875 L 7.515625 -8.96875 L 7.515625 0 Z M 6.390625 -1.125 L 6.390625 -7.84375 L 1.53125 -7.84375 L 1.53125 -1.125 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-1\">\n", "<path style=\"stroke:none;\" d=\"M 3.375 -8.734375 C 4.507812 -8.734375 5.328125 -8.269531 5.828125 -7.34375 C 6.222656 -6.625 6.421875 -5.632812 6.421875 -4.375 C 6.421875 -3.1875 6.242188 -2.207031 5.890625 -1.4375 C 5.378906 -0.320312 4.539062 0.234375 3.375 0.234375 C 2.320312 0.234375 1.539062 -0.21875 1.03125 -1.125 C 0.601562 -1.882812 0.390625 -2.90625 0.390625 -4.1875 C 0.390625 -5.1875 0.519531 -6.039062 0.78125 -6.75 C 1.257812 -8.070312 2.125 -8.734375 3.375 -8.734375 Z M 3.375 -0.765625 C 3.9375 -0.765625 4.382812 -1.015625 4.71875 -1.515625 C 5.0625 -2.023438 5.234375 -2.96875 5.234375 -4.34375 C 5.234375 -5.332031 5.109375 -6.144531 4.859375 -6.78125 C 4.617188 -7.425781 4.148438 -7.75 3.453125 -7.75 C 2.804688 -7.75 2.332031 -7.441406 2.03125 -6.828125 C 1.726562 -6.222656 1.578125 -5.332031 1.578125 -4.15625 C 1.578125 -3.257812 1.675781 -2.539062 1.875 -2 C 2.164062 -1.175781 2.664062 -0.765625 3.375 -0.765625 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-2\">\n", "<path style=\"stroke:none;\" d=\"M 0.390625 0 C 0.429688 -0.75 0.585938 -1.398438 0.859375 -1.953125 C 1.128906 -2.515625 1.65625 -3.023438 2.4375 -3.484375 L 3.609375 -4.15625 C 4.140625 -4.46875 4.507812 -4.726562 4.71875 -4.9375 C 5.050781 -5.28125 5.21875 -5.671875 5.21875 -6.109375 C 5.21875 -6.609375 5.0625 -7.007812 4.75 -7.3125 C 4.445312 -7.613281 4.046875 -7.765625 3.546875 -7.765625 C 2.785156 -7.765625 2.265625 -7.476562 1.984375 -6.90625 C 1.828125 -6.601562 1.738281 -6.179688 1.71875 -5.640625 L 0.609375 -5.640625 C 0.617188 -6.398438 0.757812 -7.019531 1.03125 -7.5 C 1.5 -8.34375 2.335938 -8.765625 3.546875 -8.765625 C 4.546875 -8.765625 5.273438 -8.492188 5.734375 -7.953125 C 6.203125 -7.410156 6.4375 -6.8125 6.4375 -6.15625 C 6.4375 -5.457031 6.1875 -4.859375 5.6875 -4.359375 C 5.40625 -4.066406 4.894531 -3.71875 4.15625 -3.3125 L 3.328125 -2.84375 C 2.929688 -2.625 2.617188 -2.414062 2.390625 -2.21875 C 1.984375 -1.863281 1.726562 -1.46875 1.625 -1.03125 L 6.390625 -1.03125 L 6.390625 0 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-3\">\n", "<path style=\"stroke:none;\" d=\"M 4.125 -3.09375 L 4.125 -7.0625 L 1.328125 -3.09375 Z M 4.15625 0 L 4.15625 -2.140625 L 0.3125 -2.140625 L 0.3125 -3.203125 L 4.328125 -8.765625 L 5.25 -8.765625 L 5.25 -3.09375 L 6.53125 -3.09375 L 6.53125 -2.140625 L 5.25 -2.140625 L 5.25 0 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-4\">\n", "<path style=\"stroke:none;\" d=\"M 3.65625 -8.78125 C 4.632812 -8.78125 5.316406 -8.523438 5.703125 -8.015625 C 6.085938 -7.503906 6.28125 -6.984375 6.28125 -6.453125 L 5.1875 -6.453125 C 5.125 -6.796875 5.019531 -7.066406 4.875 -7.265625 C 4.613281 -7.628906 4.210938 -7.8125 3.671875 -7.8125 C 3.054688 -7.8125 2.566406 -7.523438 2.203125 -6.953125 C 1.847656 -6.390625 1.648438 -5.578125 1.609375 -4.515625 C 1.859375 -4.890625 2.175781 -5.171875 2.5625 -5.359375 C 2.90625 -5.515625 3.296875 -5.59375 3.734375 -5.59375 C 4.460938 -5.59375 5.097656 -5.359375 5.640625 -4.890625 C 6.191406 -4.421875 6.46875 -3.722656 6.46875 -2.796875 C 6.46875 -2.003906 6.207031 -1.300781 5.6875 -0.6875 C 5.164062 -0.0820312 4.429688 0.21875 3.484375 0.21875 C 2.660156 0.21875 1.953125 -0.0859375 1.359375 -0.703125 C 0.765625 -1.328125 0.46875 -2.375 0.46875 -3.84375 C 0.46875 -4.925781 0.597656 -5.847656 0.859375 -6.609375 C 1.367188 -8.054688 2.300781 -8.78125 3.65625 -8.78125 Z M 3.578125 -0.75 C 4.148438 -0.75 4.578125 -0.941406 4.859375 -1.328125 C 5.148438 -1.722656 5.296875 -2.179688 5.296875 -2.703125 C 5.296875 -3.148438 5.164062 -3.578125 4.90625 -3.984375 C 4.65625 -4.390625 4.191406 -4.59375 3.515625 -4.59375 C 3.046875 -4.59375 2.632812 -4.4375 2.28125 -4.125 C 1.925781 -3.8125 1.75 -3.335938 1.75 -2.703125 C 1.75 -2.148438 1.910156 -1.6875 2.234375 -1.3125 C 2.554688 -0.9375 3.003906 -0.75 3.578125 -0.75 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-5\">\n", "<path style=\"stroke:none;\" d=\"M 0.953125 -8.96875 L 2.171875 -8.96875 L 2.171875 -1.0625 L 6.703125 -1.0625 L 6.703125 0 L 0.953125 0 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-6\">\n", "<path style=\"stroke:none;\" d=\"M 1.203125 -6.1875 L 1.203125 -7.03125 C 1.992188 -7.101562 2.546875 -7.226562 2.859375 -7.40625 C 3.171875 -7.59375 3.40625 -8.023438 3.5625 -8.703125 L 4.421875 -8.703125 L 4.421875 0 L 3.25 0 L 3.25 -6.1875 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-7\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-8\">\n", "<path style=\"stroke:none;\" d=\"M 0.953125 -8.96875 L 2.390625 -8.96875 L 6.921875 -1.703125 L 6.921875 -8.96875 L 8.0625 -8.96875 L 8.0625 0 L 6.703125 0 L 2.109375 -7.25 L 2.109375 0 L 0.953125 0 Z M 4.4375 -8.96875 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-9\">\n", "<path style=\"stroke:none;\" d=\"M 3.40625 -0.703125 C 4.132812 -0.703125 4.628906 -0.976562 4.890625 -1.53125 C 5.160156 -2.082031 5.296875 -2.695312 5.296875 -3.375 C 5.296875 -3.988281 5.203125 -4.484375 5.015625 -4.859375 C 4.703125 -5.460938 4.164062 -5.765625 3.40625 -5.765625 C 2.738281 -5.765625 2.25 -5.507812 1.9375 -5 C 1.632812 -4.488281 1.484375 -3.867188 1.484375 -3.140625 C 1.484375 -2.441406 1.632812 -1.859375 1.9375 -1.390625 C 2.25 -0.929688 2.738281 -0.703125 3.40625 -0.703125 Z M 3.4375 -6.71875 C 4.28125 -6.71875 4.992188 -6.4375 5.578125 -5.875 C 6.160156 -5.320312 6.453125 -4.5 6.453125 -3.40625 C 6.453125 -2.351562 6.191406 -1.484375 5.671875 -0.796875 C 5.160156 -0.109375 4.367188 0.234375 3.296875 0.234375 C 2.398438 0.234375 1.6875 -0.0664062 1.15625 -0.671875 C 0.625 -1.285156 0.359375 -2.101562 0.359375 -3.125 C 0.359375 -4.21875 0.632812 -5.085938 1.1875 -5.734375 C 1.75 -6.390625 2.5 -6.71875 3.4375 -6.71875 Z M 3.40625 -6.703125 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-10\">\n", "<path style=\"stroke:none;\" d=\"M 0.84375 -6.53125 L 1.875 -6.53125 L 1.875 -5.40625 C 1.96875 -5.625 2.179688 -5.890625 2.515625 -6.203125 C 2.847656 -6.523438 3.226562 -6.6875 3.65625 -6.6875 C 3.675781 -6.6875 3.710938 -6.679688 3.765625 -6.671875 C 3.816406 -6.671875 3.898438 -6.664062 4.015625 -6.65625 L 4.015625 -5.5 C 3.953125 -5.507812 3.890625 -5.515625 3.828125 -5.515625 C 3.773438 -5.523438 3.71875 -5.53125 3.65625 -5.53125 C 3.101562 -5.53125 2.675781 -5.347656 2.375 -4.984375 C 2.082031 -4.628906 1.9375 -4.222656 1.9375 -3.765625 L 1.9375 0 L 0.84375 0 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-11\">\n", "<path style=\"stroke:none;\" d=\"M 0.8125 -6.53125 L 1.890625 -6.53125 L 1.890625 -5.609375 C 2.148438 -5.929688 2.382812 -6.164062 2.59375 -6.3125 C 2.957031 -6.5625 3.367188 -6.6875 3.828125 -6.6875 C 4.347656 -6.6875 4.769531 -6.554688 5.09375 -6.296875 C 5.269531 -6.148438 5.429688 -5.9375 5.578125 -5.65625 C 5.816406 -6 6.101562 -6.253906 6.4375 -6.421875 C 6.769531 -6.597656 7.140625 -6.6875 7.546875 -6.6875 C 8.429688 -6.6875 9.03125 -6.367188 9.34375 -5.734375 C 9.507812 -5.390625 9.59375 -4.929688 9.59375 -4.359375 L 9.59375 0 L 8.453125 0 L 8.453125 -4.546875 C 8.453125 -4.972656 8.34375 -5.269531 8.125 -5.4375 C 7.914062 -5.601562 7.65625 -5.6875 7.34375 -5.6875 C 6.90625 -5.6875 6.53125 -5.539062 6.21875 -5.25 C 5.90625 -4.957031 5.75 -4.472656 5.75 -3.796875 L 5.75 0 L 4.640625 0 L 4.640625 -4.265625 C 4.640625 -4.710938 4.585938 -5.035156 4.484375 -5.234375 C 4.316406 -5.535156 4.003906 -5.6875 3.546875 -5.6875 C 3.128906 -5.6875 2.75 -5.523438 2.40625 -5.203125 C 2.070312 -4.890625 1.90625 -4.3125 1.90625 -3.46875 L 1.90625 0 L 0.8125 0 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-12\">\n", "<path style=\"stroke:none;\" d=\"M 6.53125 -8.59375 L 6.53125 -7.640625 C 6.25 -7.367188 5.875 -6.894531 5.40625 -6.21875 C 4.945312 -5.539062 4.539062 -4.8125 4.1875 -4.03125 C 3.832031 -3.269531 3.5625 -2.578125 3.375 -1.953125 C 3.257812 -1.546875 3.109375 -0.894531 2.921875 0 L 1.703125 0 C 1.984375 -1.664062 2.59375 -3.328125 3.53125 -4.984375 C 4.09375 -5.953125 4.679688 -6.785156 5.296875 -7.484375 L 0.453125 -7.484375 L 0.453125 -8.59375 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-13\">\n", "<path style=\"stroke:none;\" d=\"M 1.65625 -2.109375 C 1.6875 -1.503906 1.921875 -1.085938 2.359375 -0.859375 C 2.585938 -0.734375 2.84375 -0.671875 3.125 -0.671875 C 3.644531 -0.671875 4.085938 -0.890625 4.453125 -1.328125 C 4.828125 -1.765625 5.09375 -2.648438 5.25 -3.984375 C 5.007812 -3.597656 4.707031 -3.328125 4.34375 -3.171875 C 3.976562 -3.015625 3.59375 -2.9375 3.1875 -2.9375 C 2.34375 -2.9375 1.675781 -3.195312 1.1875 -3.71875 C 0.695312 -4.25 0.453125 -4.925781 0.453125 -5.75 C 0.453125 -6.550781 0.691406 -7.25 1.171875 -7.84375 C 1.648438 -8.445312 2.363281 -8.75 3.3125 -8.75 C 4.582031 -8.75 5.460938 -8.175781 5.953125 -7.03125 C 6.222656 -6.394531 6.359375 -5.601562 6.359375 -4.65625 C 6.359375 -3.59375 6.195312 -2.644531 5.875 -1.8125 C 5.34375 -0.4375 4.4375 0.25 3.15625 0.25 C 2.300781 0.25 1.648438 0.0234375 1.203125 -0.421875 C 0.765625 -0.867188 0.546875 -1.429688 0.546875 -2.109375 Z M 3.328125 -3.90625 C 3.765625 -3.90625 4.160156 -4.046875 4.515625 -4.328125 C 4.878906 -4.617188 5.0625 -5.125 5.0625 -5.84375 C 5.0625 -6.488281 4.898438 -6.96875 4.578125 -7.28125 C 4.253906 -7.59375 3.84375 -7.75 3.34375 -7.75 C 2.800781 -7.75 2.375 -7.566406 2.0625 -7.203125 C 1.75 -6.847656 1.59375 -6.367188 1.59375 -5.765625 C 1.59375 -5.191406 1.726562 -4.738281 2 -4.40625 C 2.28125 -4.070312 2.722656 -3.90625 3.328125 -3.90625 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-0\">\n", "<path style=\"stroke:none;\" d=\"M 0 -0.40625 L -8.96875 -0.40625 L -8.96875 -7.515625 L 0 -7.515625 Z M -1.125 -6.390625 L -7.84375 -6.390625 L -7.84375 -1.53125 L -1.125 -1.53125 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-1\">\n", "<path style=\"stroke:none;\" d=\"M -4.046875 -0.515625 L -4.046875 -3.578125 L -2.921875 -3.578125 L -2.921875 -0.515625 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-2\">\n", "<path style=\"stroke:none;\" d=\"M -6.1875 -1.203125 L -7.03125 -1.203125 C -7.101562 -1.992188 -7.226562 -2.546875 -7.40625 -2.859375 C -7.59375 -3.171875 -8.023438 -3.40625 -8.703125 -3.5625 L -8.703125 -4.421875 L 0 -4.421875 L 0 -3.25 L -6.1875 -3.25 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-3\">\n", "<path style=\"stroke:none;\" d=\"M -1.328125 -1.0625 L -1.328125 -2.34375 L 0 -2.34375 L 0 -1.0625 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-4\">\n", "<path style=\"stroke:none;\" d=\"M -8.734375 -3.375 C -8.734375 -4.507812 -8.269531 -5.328125 -7.34375 -5.828125 C -6.625 -6.222656 -5.632812 -6.421875 -4.375 -6.421875 C -3.1875 -6.421875 -2.207031 -6.242188 -1.4375 -5.890625 C -0.320312 -5.378906 0.234375 -4.539062 0.234375 -3.375 C 0.234375 -2.320312 -0.21875 -1.539062 -1.125 -1.03125 C -1.882812 -0.601562 -2.90625 -0.390625 -4.1875 -0.390625 C -5.1875 -0.390625 -6.039062 -0.519531 -6.75 -0.78125 C -8.070312 -1.257812 -8.734375 -2.125 -8.734375 -3.375 Z M -0.765625 -3.375 C -0.765625 -3.9375 -1.015625 -4.382812 -1.515625 -4.71875 C -2.023438 -5.0625 -2.96875 -5.234375 -4.34375 -5.234375 C -5.332031 -5.234375 -6.144531 -5.109375 -6.78125 -4.859375 C -7.425781 -4.617188 -7.75 -4.148438 -7.75 -3.453125 C -7.75 -2.804688 -7.441406 -2.332031 -6.828125 -2.03125 C -6.222656 -1.726562 -5.332031 -1.578125 -4.15625 -1.578125 C -3.257812 -1.578125 -2.539062 -1.675781 -2 -1.875 C -1.175781 -2.164062 -0.765625 -2.664062 -0.765625 -3.375 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-5\">\n", "<path style=\"stroke:none;\" d=\"M -2.234375 -1.546875 C -1.597656 -1.617188 -1.160156 -1.910156 -0.921875 -2.421875 C -0.804688 -2.679688 -0.75 -2.984375 -0.75 -3.328125 C -0.75 -3.972656 -0.953125 -4.453125 -1.359375 -4.765625 C -1.773438 -5.078125 -2.238281 -5.234375 -2.75 -5.234375 C -3.351562 -5.234375 -3.820312 -5.046875 -4.15625 -4.671875 C -4.488281 -4.304688 -4.65625 -3.863281 -4.65625 -3.34375 C -4.65625 -2.957031 -4.582031 -2.628906 -4.4375 -2.359375 C -4.289062 -2.085938 -4.085938 -1.859375 -3.828125 -1.671875 L -3.890625 -0.71875 L -8.59375 -1.390625 L -8.59375 -5.921875 L -7.53125 -5.921875 L -7.53125 -2.203125 L -5.109375 -1.84375 C -5.253906 -2.039062 -5.367188 -2.234375 -5.453125 -2.421875 C -5.585938 -2.742188 -5.65625 -3.117188 -5.65625 -3.546875 C -5.65625 -4.347656 -5.394531 -5.023438 -4.875 -5.578125 C -4.363281 -6.140625 -3.707031 -6.421875 -2.90625 -6.421875 C -2.082031 -6.421875 -1.351562 -6.164062 -0.71875 -5.65625 C -0.09375 -5.144531 0.21875 -4.328125 0.21875 -3.203125 C 0.21875 -2.492188 0.0195312 -1.863281 -0.375 -1.3125 C -0.78125 -0.769531 -1.398438 -0.46875 -2.234375 -0.40625 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-6\">\n", "<path style=\"stroke:none;\" d=\"M -9.203125 -4.734375 C -9.203125 -5.867188 -8.90625 -6.75 -8.3125 -7.375 C -7.71875 -8 -7.039062 -8.347656 -6.28125 -8.421875 L -6.28125 -7.234375 C -6.851562 -7.097656 -7.304688 -6.828125 -7.640625 -6.421875 C -7.984375 -6.023438 -8.15625 -5.46875 -8.15625 -4.75 C -8.15625 -3.863281 -7.84375 -3.144531 -7.21875 -2.59375 C -6.601562 -2.050781 -5.65625 -1.78125 -4.375 -1.78125 C -3.320312 -1.78125 -2.46875 -2.023438 -1.8125 -2.515625 C -1.164062 -3.015625 -0.84375 -3.75 -0.84375 -4.71875 C -0.84375 -5.613281 -1.1875 -6.296875 -1.875 -6.765625 C -2.226562 -7.015625 -2.703125 -7.195312 -3.296875 -7.3125 L -3.296875 -8.5 C -2.347656 -8.394531 -1.554688 -8.046875 -0.921875 -7.453125 C -0.148438 -6.742188 0.234375 -5.785156 0.234375 -4.578125 C 0.234375 -3.535156 -0.0820312 -2.660156 -0.71875 -1.953125 C -1.550781 -1.015625 -2.835938 -0.546875 -4.578125 -0.546875 C -5.898438 -0.546875 -6.984375 -0.894531 -7.828125 -1.59375 C -8.742188 -2.351562 -9.203125 -3.398438 -9.203125 -4.734375 Z M -9.203125 -4.484375 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-7\">\n", "<path style=\"stroke:none;\" d=\"M -0.703125 -3.40625 C -0.703125 -4.132812 -0.976562 -4.628906 -1.53125 -4.890625 C -2.082031 -5.160156 -2.695312 -5.296875 -3.375 -5.296875 C -3.988281 -5.296875 -4.484375 -5.203125 -4.859375 -5.015625 C -5.460938 -4.703125 -5.765625 -4.164062 -5.765625 -3.40625 C -5.765625 -2.738281 -5.507812 -2.25 -5 -1.9375 C -4.488281 -1.632812 -3.867188 -1.484375 -3.140625 -1.484375 C -2.441406 -1.484375 -1.859375 -1.632812 -1.390625 -1.9375 C -0.929688 -2.25 -0.703125 -2.738281 -0.703125 -3.40625 Z M -6.71875 -3.4375 C -6.71875 -4.28125 -6.4375 -4.992188 -5.875 -5.578125 C -5.320312 -6.160156 -4.5 -6.453125 -3.40625 -6.453125 C -2.351562 -6.453125 -1.484375 -6.191406 -0.796875 -5.671875 C -0.109375 -5.160156 0.234375 -4.367188 0.234375 -3.296875 C 0.234375 -2.398438 -0.0664062 -1.6875 -0.671875 -1.15625 C -1.285156 -0.625 -2.101562 -0.359375 -3.125 -0.359375 C -4.21875 -0.359375 -5.085938 -0.632812 -5.734375 -1.1875 C -6.390625 -1.75 -6.71875 -2.5 -6.71875 -3.4375 Z M -6.703125 -3.40625 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-8\">\n", "<path style=\"stroke:none;\" d=\"M -6.6875 -3.53125 C -6.6875 -3.988281 -6.578125 -4.4375 -6.359375 -4.875 C -6.140625 -5.3125 -5.859375 -5.644531 -5.515625 -5.875 C -5.179688 -6.09375 -4.796875 -6.238281 -4.359375 -6.3125 C -4.054688 -6.375 -3.578125 -6.40625 -2.921875 -6.40625 L -2.921875 -1.625 C -2.253906 -1.632812 -1.71875 -1.785156 -1.3125 -2.078125 C -0.914062 -2.378906 -0.71875 -2.835938 -0.71875 -3.453125 C -0.71875 -4.023438 -0.90625 -4.484375 -1.28125 -4.828125 C -1.507812 -5.015625 -1.765625 -5.148438 -2.046875 -5.234375 L -2.046875 -6.3125 C -1.804688 -6.289062 -1.539062 -6.195312 -1.25 -6.03125 C -0.957031 -5.875 -0.71875 -5.695312 -0.53125 -5.5 C -0.195312 -5.164062 0.0234375 -4.75 0.140625 -4.25 C 0.203125 -3.988281 0.234375 -3.691406 0.234375 -3.359375 C 0.234375 -2.546875 -0.0625 -1.851562 -0.65625 -1.28125 C -1.25 -0.71875 -2.078125 -0.4375 -3.140625 -0.4375 C -4.191406 -0.4375 -5.046875 -0.722656 -5.703125 -1.296875 C -6.359375 -1.867188 -6.6875 -2.613281 -6.6875 -3.53125 Z M -3.796875 -5.28125 C -4.265625 -5.238281 -4.644531 -5.132812 -4.9375 -4.96875 C -5.457031 -4.664062 -5.71875 -4.160156 -5.71875 -3.453125 C -5.71875 -2.953125 -5.535156 -2.53125 -5.171875 -2.1875 C -4.804688 -1.84375 -4.347656 -1.660156 -3.796875 -1.640625 Z M -6.703125 -3.421875 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-9\">\n", "<path style=\"stroke:none;\" d=\"M -7.53125 -1.078125 C -7.988281 -1.097656 -8.320312 -1.175781 -8.53125 -1.3125 C -8.90625 -1.570312 -9.09375 -2.066406 -9.09375 -2.796875 C -9.09375 -2.867188 -9.085938 -2.941406 -9.078125 -3.015625 C -9.078125 -3.085938 -9.070312 -3.171875 -9.0625 -3.265625 L -8.0625 -3.265625 C -8.070312 -3.148438 -8.078125 -3.066406 -8.078125 -3.015625 C -8.085938 -2.960938 -8.09375 -2.914062 -8.09375 -2.875 C -8.09375 -2.539062 -8.003906 -2.335938 -7.828125 -2.265625 C -7.648438 -2.203125 -7.207031 -2.171875 -6.5 -2.171875 L -6.5 -3.265625 L -5.640625 -3.265625 L -5.640625 -2.171875 L 0 -2.171875 L 0 -1.078125 L -5.640625 -1.078125 L -5.640625 -0.171875 L -6.5 -0.171875 L -6.5 -1.078125 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-10\">\n", "<path style=\"stroke:none;\" d=\"M -6.5 -0.8125 L -6.5 -1.921875 L 0 -1.921875 L 0 -0.8125 Z M -8.96875 -0.8125 L -8.96875 -1.921875 L -7.71875 -1.921875 L -7.71875 -0.8125 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-11\">\n", "<path style=\"stroke:none;\" d=\"M -6.71875 -3.328125 C -6.71875 -4.066406 -6.539062 -4.664062 -6.1875 -5.125 C -5.832031 -5.582031 -5.21875 -5.859375 -4.34375 -5.953125 L -4.34375 -4.890625 C -4.738281 -4.828125 -5.070312 -4.675781 -5.34375 -4.4375 C -5.613281 -4.207031 -5.75 -3.835938 -5.75 -3.328125 C -5.75 -2.628906 -5.40625 -2.128906 -4.71875 -1.828125 C -4.269531 -1.628906 -3.722656 -1.53125 -3.078125 -1.53125 C -2.421875 -1.53125 -1.867188 -1.664062 -1.421875 -1.9375 C -0.972656 -2.21875 -0.75 -2.65625 -0.75 -3.25 C -0.75 -3.707031 -0.890625 -4.066406 -1.171875 -4.328125 C -1.453125 -4.597656 -1.832031 -4.785156 -2.3125 -4.890625 L -2.3125 -5.953125 C -1.445312 -5.835938 -0.8125 -5.535156 -0.40625 -5.046875 C -0.0078125 -4.554688 0.1875 -3.929688 0.1875 -3.171875 C 0.1875 -2.316406 -0.125 -1.632812 -0.75 -1.125 C -1.375 -0.613281 -2.15625 -0.359375 -3.09375 -0.359375 C -4.238281 -0.359375 -5.128906 -0.632812 -5.765625 -1.1875 C -6.398438 -1.75 -6.71875 -2.460938 -6.71875 -3.328125 Z M -6.703125 -3.15625 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-12\">\n", "<path style=\"stroke:none;\" d=\"M -6.53125 -0.8125 L -6.53125 -1.84375 L -5.609375 -1.84375 C -5.992188 -2.15625 -6.269531 -2.484375 -6.4375 -2.828125 C -6.601562 -3.171875 -6.6875 -3.554688 -6.6875 -3.984375 C -6.6875 -4.910156 -6.363281 -5.535156 -5.71875 -5.859375 C -5.363281 -6.046875 -4.851562 -6.140625 -4.1875 -6.140625 L 0 -6.140625 L 0 -5.015625 L -4.125 -5.015625 C -4.519531 -5.015625 -4.835938 -4.957031 -5.078125 -4.84375 C -5.484375 -4.644531 -5.6875 -4.289062 -5.6875 -3.78125 C -5.6875 -3.519531 -5.660156 -3.304688 -5.609375 -3.140625 C -5.523438 -2.835938 -5.347656 -2.570312 -5.078125 -2.34375 C -4.859375 -2.15625 -4.632812 -2.035156 -4.40625 -1.984375 C -4.175781 -1.929688 -3.847656 -1.90625 -3.421875 -1.90625 L 0 -1.90625 L 0 -0.8125 Z M -6.703125 -3.390625 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-13\">\n", "<path style=\"stroke:none;\" d=\"M -8.359375 -1.03125 L -8.359375 -2.140625 L -6.53125 -2.140625 L -6.53125 -3.1875 L -5.640625 -3.1875 L -5.640625 -2.140625 L -1.375 -2.140625 C -1.144531 -2.140625 -0.992188 -2.21875 -0.921875 -2.375 C -0.867188 -2.457031 -0.84375 -2.597656 -0.84375 -2.796875 C -0.84375 -2.847656 -0.84375 -2.90625 -0.84375 -2.96875 C -0.851562 -3.03125 -0.859375 -3.101562 -0.859375 -3.1875 L 0 -3.1875 C 0.0390625 -3.050781 0.0664062 -2.914062 0.078125 -2.78125 C 0.0976562 -2.644531 0.109375 -2.5 0.109375 -2.34375 C 0.109375 -1.832031 -0.0195312 -1.484375 -0.28125 -1.296875 C -0.550781 -1.117188 -0.894531 -1.03125 -1.3125 -1.03125 L -5.640625 -1.03125 L -5.640625 -0.140625 L -6.53125 -0.140625 L -6.53125 -1.03125 Z \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-14\">\n", "<path style=\"stroke:none;\" d=\"M -2.046875 -1.453125 C -1.679688 -1.484375 -1.398438 -1.578125 -1.203125 -1.734375 C -0.847656 -2.015625 -0.671875 -2.492188 -0.671875 -3.171875 C -0.671875 -3.578125 -0.757812 -3.9375 -0.9375 -4.25 C -1.113281 -4.5625 -1.390625 -4.71875 -1.765625 -4.71875 C -2.046875 -4.71875 -2.257812 -4.59375 -2.40625 -4.34375 C -2.5 -4.1875 -2.601562 -3.875 -2.71875 -3.40625 L -2.9375 -2.53125 C -3.070312 -1.96875 -3.226562 -1.554688 -3.40625 -1.296875 C -3.695312 -0.828125 -4.101562 -0.59375 -4.625 -0.59375 C -5.25 -0.59375 -5.75 -0.8125 -6.125 -1.25 C -6.507812 -1.695312 -6.703125 -2.296875 -6.703125 -3.046875 C -6.703125 -4.035156 -6.414062 -4.75 -5.84375 -5.1875 C -5.476562 -5.457031 -5.082031 -5.585938 -4.65625 -5.578125 L -4.65625 -4.546875 C -4.90625 -4.523438 -5.128906 -4.4375 -5.328125 -4.28125 C -5.617188 -4.03125 -5.765625 -3.59375 -5.765625 -2.96875 C -5.765625 -2.550781 -5.6875 -2.234375 -5.53125 -2.015625 C -5.375 -1.804688 -5.164062 -1.703125 -4.90625 -1.703125 C -4.613281 -1.703125 -4.382812 -1.84375 -4.21875 -2.125 C -4.113281 -2.289062 -4.023438 -2.53125 -3.953125 -2.84375 L -3.765625 -3.578125 C -3.578125 -4.359375 -3.394531 -4.882812 -3.21875 -5.15625 C -2.9375 -5.582031 -2.492188 -5.796875 -1.890625 -5.796875 C -1.304688 -5.796875 -0.800781 -5.570312 -0.375 -5.125 C 0.0390625 -4.6875 0.25 -4.019531 0.25 -3.125 C 0.25 -2.144531 0.03125 -1.453125 -0.40625 -1.046875 C -0.851562 -0.648438 -1.398438 -0.4375 -2.046875 -0.40625 Z M -6.703125 -3.078125 Z \"/>\n", "</symbol>\n", "</g>\n", "</defs>\n", "<g id=\"surface44\">\n", "<rect x=\"0\" y=\"0\" width=\"504\" height=\"504\" style=\"fill:rgb(100%,100%,100%);fill-opacity:1;stroke:none;\"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 81.960938 240.773438 L 95.222656 223.074219 L 107.304688 206.953125 L 118.3125 192.261719 L 128.34375 178.875 L 140.648438 167.535156 L 157.332031 158.855469 L 173.734375 151.664062 L 191.398438 144.714844 L 208.707031 138.210938 L 224.476562 132.285156 L 238.84375 126.886719 L 251.9375 121.964844 L 265.230469 116.871094 L 277.605469 112.113281 L 288.878906 107.777344 L 299.152344 103.824219 L 308.511719 100.226562 L 317.039062 96.945312 L 324.808594 93.957031 L 331.890625 91.234375 L 339.269531 89.390625 L 346.265625 87.914062 L 352.636719 86.5625 L 358.445312 85.328125 L 363.738281 84.207031 L 368.558594 83.183594 L 372.953125 82.253906 L 376.953125 81.40625 L 380.8125 80.664062 L 384.476562 80.011719 L 387.820312 79.417969 L 390.867188 78.871094 L 393.71875 78.382812 L 397.066406 77.894531 L 400.632812 77.441406 L 403.988281 77.027344 L 407.4375 76.667969 L 411.257812 76.425781 L 414.992188 76.101562 L 418.390625 75.8125 L 421.621094 75.542969 L 424.652344 75.308594 L 427.589844 75.070312 L 430.503906 74.839844 L 433.335938 74.636719 L 435.957031 74.445312 L 438.347656 74.269531 L 440.527344 74.109375 L 442.496094 73.964844 L 444.304688 73.832031 L 445.953125 73.710938 L 447.457031 73.601562 L 448.824219 73.5 L 450.074219 73.40625 L 451.207031 73.324219 L 452.246094 73.246094 L 453.1875 73.175781 L 454.046875 73.113281 L 454.832031 73.054688 L 455.558594 73.003906 L 456.222656 72.953125 L 456.84375 72.910156 L 457.410156 72.867188 L 457.929688 72.832031 L 458.398438 72.800781 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 430.558594 L 386.921875 430.558594 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 430.558594 L 74.398438 437.761719 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 178.574219 430.558594 L 178.574219 437.761719 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 282.75 430.558594 L 282.75 437.761719 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 386.921875 430.558594 L 386.921875 437.761719 \"/>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-1\" x=\"70.921875\" y=\"457.921875\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-2\" x=\"175.097656\" y=\"457.921875\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-3\" x=\"279.273438\" y=\"457.921875\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-4\" x=\"383.445312\" y=\"457.921875\"/>\n", "</g>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 59.039062 395.183594 L 59.039062 124.109375 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 59.039062 395.183594 L 51.839844 395.183594 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 59.039062 327.417969 L 51.839844 327.417969 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 59.039062 259.648438 L 51.839844 259.648438 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 59.039062 191.878906 L 51.839844 191.878906 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 59.039062 124.109375 L 51.839844 124.109375 \"/>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-1\" x=\"43.199219\" y=\"405.953125\"/>\n", " <use xlink:href=\"#glyph1-2\" x=\"43.199219\" y=\"401.790527\"/>\n", " <use xlink:href=\"#glyph1-3\" x=\"43.199219\" y=\"394.838623\"/>\n", " <use xlink:href=\"#glyph1-4\" x=\"43.199219\" y=\"391.365723\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-1\" x=\"43.199219\" y=\"338.1875\"/>\n", " <use xlink:href=\"#glyph1-4\" x=\"43.199219\" y=\"334.024902\"/>\n", " <use xlink:href=\"#glyph1-3\" x=\"43.199219\" y=\"327.072998\"/>\n", " <use xlink:href=\"#glyph1-5\" x=\"43.199219\" y=\"323.600098\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-4\" x=\"43.199219\" y=\"268.335938\"/>\n", " <use xlink:href=\"#glyph1-3\" x=\"43.199219\" y=\"261.384033\"/>\n", " <use xlink:href=\"#glyph1-4\" x=\"43.199219\" y=\"257.911133\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-4\" x=\"43.199219\" y=\"200.566406\"/>\n", " <use xlink:href=\"#glyph1-3\" x=\"43.199219\" y=\"193.614502\"/>\n", " <use xlink:href=\"#glyph1-5\" x=\"43.199219\" y=\"190.141602\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-2\" x=\"43.199219\" y=\"132.796875\"/>\n", " <use xlink:href=\"#glyph1-3\" x=\"43.199219\" y=\"125.844971\"/>\n", " <use xlink:href=\"#glyph1-4\" x=\"43.199219\" y=\"122.37207\"/>\n", "</g>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 59.039062 430.558594 L 473.761719 430.558594 L 473.761719 59.039062 L 59.039062 59.039062 L 59.039062 430.558594 \"/>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-5\" x=\"242.433594\" y=\"486.71875\"/>\n", " <use xlink:href=\"#glyph0-6\" x=\"249.385498\" y=\"486.71875\"/>\n", " <use xlink:href=\"#glyph0-7\" x=\"256.337402\" y=\"486.71875\"/>\n", " <use xlink:href=\"#glyph0-8\" x=\"259.810303\" y=\"486.71875\"/>\n", " <use xlink:href=\"#glyph0-9\" x=\"268.837402\" y=\"486.71875\"/>\n", " <use xlink:href=\"#glyph0-10\" x=\"275.789307\" y=\"486.71875\"/>\n", " <use xlink:href=\"#glyph0-11\" x=\"279.951904\" y=\"486.71875\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-6\" x=\"14.398438\" y=\"277.453125\"/>\n", " <use xlink:href=\"#glyph1-7\" x=\"14.398438\" y=\"268.426025\"/>\n", " <use xlink:href=\"#glyph1-8\" x=\"14.398438\" y=\"261.474121\"/>\n", " <use xlink:href=\"#glyph1-9\" x=\"14.398438\" y=\"254.522217\"/>\n", " <use xlink:href=\"#glyph1-9\" x=\"14.398438\" y=\"251.049316\"/>\n", " <use xlink:href=\"#glyph1-10\" x=\"14.398438\" y=\"247.576416\"/>\n", " <use xlink:href=\"#glyph1-11\" x=\"14.398438\" y=\"244.799316\"/>\n", " <use xlink:href=\"#glyph1-10\" x=\"14.398438\" y=\"238.549316\"/>\n", " <use xlink:href=\"#glyph1-8\" x=\"14.398438\" y=\"235.772217\"/>\n", " <use xlink:href=\"#glyph1-12\" x=\"14.398438\" y=\"228.820312\"/>\n", " <use xlink:href=\"#glyph1-13\" x=\"14.398438\" y=\"221.868408\"/>\n", " <use xlink:href=\"#glyph1-14\" x=\"14.398438\" y=\"218.395508\"/>\n", "</g>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(100%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 403.988281 259.648438 L 407.4375 259.601562 L 411.257812 259.328125 L 414.992188 259.03125 L 418.390625 258.765625 L 421.621094 258.539062 L 424.652344 258.378906 L 427.589844 258.203125 L 430.503906 258.003906 L 433.335938 257.832031 L 435.957031 257.695312 L 438.347656 257.5625 L 440.527344 257.445312 L 442.496094 257.332031 L 444.304688 257.234375 L 445.953125 257.140625 L 447.457031 257.058594 L 448.824219 256.984375 L 450.074219 256.914062 L 451.207031 256.851562 L 452.246094 256.796875 L 453.1875 256.742188 L 454.046875 256.695312 L 454.832031 256.652344 L 455.558594 256.613281 L 456.222656 256.578125 L 456.84375 256.546875 L 457.410156 256.519531 L 457.929688 256.496094 L 458.398438 256.476562 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,80.392157%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 173.734375 259.648438 L 191.398438 253.003906 L 208.707031 243.976562 L 224.476562 235.75 L 238.84375 228.257812 L 251.9375 221.429688 L 265.230469 215.460938 L 277.605469 210.074219 L 288.878906 205.167969 L 299.152344 200.695312 L 308.511719 196.621094 L 317.039062 192.90625 L 324.808594 189.523438 L 331.890625 186.441406 L 339.269531 183.582031 L 346.265625 180.957031 L 352.636719 178.570312 L 358.445312 176.390625 L 363.738281 174.40625 L 368.558594 172.601562 L 372.953125 170.953125 L 376.953125 169.453125 L 380.8125 168.152344 L 384.476562 167.027344 L 387.820312 165.996094 L 390.867188 165.058594 L 393.71875 164.21875 L 397.066406 163.640625 L 400.632812 163.351562 L 403.988281 163.070312 L 407.4375 162.742188 L 411.257812 162.285156 L 414.992188 161.71875 L 418.390625 161.226562 L 421.621094 160.789062 L 424.652344 160.332031 L 427.589844 159.933594 L 430.503906 159.554688 L 433.335938 159.21875 L 435.957031 158.882812 L 438.347656 158.585938 L 440.527344 158.320312 L 442.496094 158.066406 L 444.304688 157.84375 L 445.953125 157.644531 L 447.457031 157.457031 L 448.824219 157.292969 L 450.074219 157.136719 L 451.207031 157 L 452.246094 156.871094 L 453.1875 156.757812 L 454.046875 156.652344 L 454.832031 156.554688 L 455.558594 156.46875 L 456.222656 156.394531 L 456.84375 156.324219 L 457.410156 156.261719 L 457.929688 156.203125 L 458.398438 156.152344 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 407.4375 259.648438 L 411.257812 259.566406 L 414.992188 258.871094 L 418.390625 258.253906 L 421.621094 257.6875 L 424.652344 257.1875 L 427.589844 256.691406 L 430.503906 256.199219 L 433.335938 255.710938 L 435.957031 255.261719 L 438.347656 254.847656 L 440.527344 254.46875 L 442.496094 254.132812 L 444.304688 253.820312 L 445.953125 253.535156 L 447.457031 253.277344 L 448.824219 253.039062 L 450.074219 252.824219 L 451.207031 252.625 L 452.246094 252.445312 L 453.1875 252.285156 L 454.046875 252.132812 L 454.832031 252 L 455.558594 251.875 L 456.222656 251.765625 L 456.84375 251.660156 L 457.410156 251.566406 L 457.929688 251.480469 L 458.398438 251.402344 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 128.34375 259.648438 L 140.648438 264.074219 L 157.332031 274.839844 L 173.734375 284.203125 L 191.398438 293.109375 L 208.707031 301.398438 L 224.476562 308.949219 L 238.84375 315.828125 L 251.9375 322.097656 L 265.230469 327.652344 L 277.605469 332.679688 L 288.878906 337.261719 L 299.152344 341.4375 L 308.511719 345.242188 L 317.039062 348.710938 L 324.808594 351.871094 L 331.890625 354.746094 L 339.269531 357.246094 L 346.265625 359.484375 L 352.636719 361.523438 L 358.445312 363.382812 L 363.738281 365.074219 L 368.558594 366.617188 L 372.953125 368.023438 L 376.953125 369.304688 L 380.8125 370.429688 L 384.476562 371.410156 L 387.820312 372.308594 L 390.867188 373.128906 L 393.71875 373.886719 L 397.066406 374.59375 L 400.632812 375.101562 L 403.988281 375.59375 L 407.4375 376.089844 L 411.257812 376.585938 L 414.992188 376.972656 L 418.390625 377.324219 L 421.621094 377.664062 L 424.652344 378.03125 L 427.589844 378.371094 L 430.503906 378.714844 L 433.335938 379.03125 L 435.957031 379.347656 L 438.347656 379.625 L 440.527344 379.878906 L 442.496094 380.113281 L 444.304688 380.324219 L 445.953125 380.515625 L 447.457031 380.691406 L 448.824219 380.847656 L 450.074219 380.992188 L 451.207031 381.125 L 452.246094 381.246094 L 453.1875 381.355469 L 454.046875 381.453125 L 454.832031 381.542969 L 455.558594 381.628906 L 456.222656 381.703125 L 456.84375 381.769531 L 457.410156 381.828125 L 457.929688 381.882812 L 458.398438 381.933594 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(100%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 140.648438 259.648438 L 157.332031 257.820312 L 173.734375 251.269531 L 191.398438 245.292969 L 208.707031 239.84375 L 224.476562 234.878906 L 238.84375 230.355469 L 251.9375 226.230469 L 265.230469 222.402344 L 277.605469 218.898438 L 288.878906 215.707031 L 299.152344 212.800781 L 308.511719 210.148438 L 317.039062 207.734375 L 324.808594 205.535156 L 331.890625 203.53125 L 339.269531 201.355469 L 346.265625 199.269531 L 352.636719 197.371094 L 358.445312 195.640625 L 363.738281 194.066406 L 368.558594 192.628906 L 372.953125 191.320312 L 376.953125 190.125 L 380.8125 188.980469 L 384.476562 187.894531 L 387.820312 186.90625 L 390.867188 186.003906 L 393.71875 185.183594 L 397.066406 184.449219 L 400.632812 183.800781 L 403.988281 183.183594 L 407.4375 182.550781 L 411.257812 181.929688 L 414.992188 181.480469 L 418.390625 181.066406 L 421.621094 180.695312 L 424.652344 180.351562 L 427.589844 180.03125 L 430.503906 179.710938 L 433.335938 179.375 L 435.957031 179.054688 L 438.347656 178.761719 L 440.527344 178.496094 L 442.496094 178.257812 L 444.304688 178.039062 L 445.953125 177.835938 L 447.457031 177.652344 L 448.824219 177.488281 L 450.074219 177.335938 L 451.207031 177.199219 L 452.246094 177.070312 L 453.1875 176.957031 L 454.046875 176.851562 L 454.832031 176.757812 L 455.558594 176.671875 L 456.222656 176.605469 L 456.84375 176.535156 L 457.410156 176.472656 L 457.929688 176.417969 L 458.398438 176.367188 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 376.953125 259.648438 L 380.8125 259 L 384.476562 257.917969 L 387.820312 256.929688 L 390.867188 256.03125 L 393.71875 255.214844 L 397.066406 254.425781 L 400.632812 253.582031 L 403.988281 252.816406 L 407.4375 252.085938 L 411.257812 251.285156 L 414.992188 250.558594 L 418.390625 249.890625 L 421.621094 249.316406 L 424.652344 248.855469 L 427.589844 248.390625 L 430.503906 247.917969 L 433.335938 247.472656 L 435.957031 247.070312 L 438.347656 246.703125 L 440.527344 246.367188 L 442.496094 246.066406 L 444.304688 245.785156 L 445.953125 245.53125 L 447.457031 245.300781 L 448.824219 245.089844 L 450.074219 244.898438 L 451.207031 244.722656 L 452.246094 244.5625 L 453.1875 244.417969 L 454.046875 244.285156 L 454.832031 244.164062 L 455.558594 244.054688 L 456.222656 243.945312 L 456.84375 243.839844 L 457.410156 243.746094 L 457.929688 243.660156 L 458.398438 243.582031 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(100%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 251.9375 259.648438 L 265.230469 255.425781 L 277.605469 250.769531 L 288.878906 246.527344 L 299.152344 242.660156 L 308.511719 239.140625 L 317.039062 235.929688 L 324.808594 233.003906 L 331.890625 230.339844 L 339.269531 228.09375 L 346.265625 226.101562 L 352.636719 224.289062 L 358.445312 222.636719 L 363.738281 221.128906 L 368.558594 219.757812 L 372.953125 218.507812 L 376.953125 217.367188 L 380.8125 216.363281 L 384.476562 215.46875 L 387.820312 214.65625 L 390.867188 213.917969 L 393.71875 213.234375 L 397.066406 212.585938 L 400.632812 212.050781 L 403.988281 211.554688 L 407.4375 211.105469 L 411.257812 210.765625 L 414.992188 210.414062 L 418.390625 210.09375 L 421.621094 209.773438 L 424.652344 209.441406 L 427.589844 209.136719 L 430.503906 208.84375 L 433.335938 208.542969 L 435.957031 208.242188 L 438.347656 207.96875 L 440.527344 207.722656 L 442.496094 207.503906 L 444.304688 207.300781 L 445.953125 207.113281 L 447.457031 206.945312 L 448.824219 206.789062 L 450.074219 206.648438 L 451.207031 206.519531 L 452.246094 206.402344 L 453.1875 206.296875 L 454.046875 206.199219 L 454.832031 206.109375 L 455.558594 206.03125 L 456.222656 205.96875 L 456.84375 205.910156 L 457.410156 205.855469 L 457.929688 205.804688 L 458.398438 205.757812 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,80.392157%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 430.503906 259.648438 L 433.335938 260.003906 L 435.957031 260.425781 L 438.347656 260.808594 L 440.527344 261.152344 L 442.496094 261.457031 L 444.304688 261.746094 L 445.953125 262.011719 L 447.457031 262.25 L 448.824219 262.46875 L 450.074219 262.667969 L 451.207031 262.847656 L 452.246094 263.015625 L 453.1875 263.164062 L 454.046875 263.300781 L 454.832031 263.425781 L 455.558594 263.542969 L 456.222656 263.621094 L 456.84375 263.707031 L 457.410156 263.785156 L 457.929688 263.859375 L 458.398438 263.925781 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 390.867188 259.648438 L 393.71875 259.484375 L 397.066406 258.289062 L 400.632812 256.957031 L 403.988281 255.738281 L 407.4375 254.582031 L 411.257812 253.441406 L 414.992188 252.355469 L 418.390625 251.363281 L 421.621094 250.425781 L 424.652344 249.585938 L 427.589844 248.84375 L 430.503906 248.234375 L 433.335938 247.613281 L 435.957031 247.046875 L 438.347656 246.523438 L 440.527344 246.046875 L 442.496094 245.621094 L 444.304688 245.222656 L 445.953125 244.863281 L 447.457031 244.535156 L 448.824219 244.234375 L 450.074219 243.960938 L 451.207031 243.710938 L 452.246094 243.484375 L 453.1875 243.28125 L 454.046875 243.089844 L 454.832031 242.921875 L 455.558594 242.765625 L 456.222656 242.628906 L 456.84375 242.5 L 457.410156 242.378906 L 457.929688 242.269531 L 458.398438 242.167969 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 331.890625 259.648438 L 339.269531 257.277344 L 346.265625 254.414062 L 352.636719 251.808594 L 358.445312 249.4375 L 363.738281 247.273438 L 368.558594 245.300781 L 372.953125 243.507812 L 376.953125 241.871094 L 380.8125 240.34375 L 384.476562 238.929688 L 387.820312 237.636719 L 390.867188 236.464844 L 393.71875 235.386719 L 397.066406 234.386719 L 400.632812 233.441406 L 403.988281 232.605469 L 407.4375 231.929688 L 411.257812 231.445312 L 414.992188 231.074219 L 418.390625 230.742188 L 421.621094 230.398438 L 424.652344 230.050781 L 427.589844 229.695312 L 430.503906 229.292969 L 433.335938 228.949219 L 435.957031 228.652344 L 438.347656 228.378906 L 440.527344 228.128906 L 442.496094 227.898438 L 444.304688 227.691406 L 445.953125 227.5 L 448.824219 227.171875 L 450.074219 227.03125 L 451.207031 226.898438 L 452.246094 226.78125 L 453.1875 226.671875 L 454.046875 226.574219 L 454.832031 226.484375 L 455.558594 226.402344 L 456.222656 226.332031 L 456.84375 226.261719 L 457.410156 226.195312 L 457.929688 226.140625 L 458.398438 226.085938 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(100%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 403.988281 259.648438 L 407.4375 259.816406 L 411.257812 260.660156 L 414.992188 261.492188 L 418.390625 262.246094 L 421.621094 262.933594 L 424.652344 263.53125 L 427.589844 264.066406 L 430.503906 264.511719 L 433.335938 264.910156 L 435.957031 265.289062 L 438.347656 265.628906 L 440.527344 265.9375 L 442.496094 266.210938 L 444.304688 266.464844 L 445.953125 266.699219 L 448.824219 267.109375 L 450.074219 267.285156 L 451.207031 267.449219 L 452.246094 267.597656 L 453.1875 267.730469 L 454.046875 267.851562 L 454.832031 267.964844 L 455.558594 268.066406 L 456.222656 268.152344 L 456.84375 268.234375 L 457.410156 268.3125 L 457.929688 268.386719 L 458.398438 268.453125 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 400.632812 259.648438 L 403.988281 259.917969 L 407.4375 260.636719 L 411.257812 261.15625 L 414.992188 261.542969 L 418.390625 261.898438 L 421.621094 262.261719 L 424.652344 262.65625 L 427.589844 263.003906 L 430.503906 263.332031 L 433.335938 263.609375 L 435.957031 263.859375 L 438.347656 264.085938 L 440.527344 264.292969 L 442.496094 264.484375 L 444.304688 264.65625 L 445.953125 264.8125 L 447.457031 264.953125 L 448.824219 265.082031 L 450.074219 265.203125 L 451.207031 265.308594 L 452.246094 265.40625 L 453.1875 265.496094 L 454.046875 265.578125 L 454.832031 265.652344 L 455.558594 265.71875 L 456.222656 265.777344 L 456.84375 265.828125 L 457.410156 265.875 L 457.929688 265.914062 L 458.398438 265.953125 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(100%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 81.960938 260.445312 L 95.222656 277.253906 L 107.304688 292.570312 L 118.3125 306.527344 L 128.34375 319.246094 L 140.648438 330.292969 L 157.332031 339.355469 L 173.734375 347.128906 L 191.398438 353.441406 L 208.707031 358.851562 L 224.476562 363.78125 L 238.84375 368.273438 L 251.9375 372.367188 L 265.230469 375.824219 L 277.605469 378.925781 L 288.878906 381.75 L 299.152344 384.324219 L 308.511719 386.671875 L 317.039062 388.808594 L 324.808594 390.753906 L 331.890625 392.527344 L 339.269531 394.199219 L 346.265625 395.734375 L 352.636719 397.136719 L 358.445312 398.414062 L 363.738281 399.578125 L 368.558594 400.636719 L 372.953125 401.601562 L 376.953125 402.484375 L 380.8125 403.308594 L 384.476562 404.078125 L 387.820312 404.78125 L 390.867188 405.421875 L 393.71875 406.027344 L 397.066406 406.839844 L 400.632812 407.859375 L 403.988281 408.765625 L 407.4375 409.539062 L 411.257812 410.164062 L 414.992188 410.832031 L 418.390625 411.4375 L 421.621094 412.011719 L 424.652344 412.503906 L 427.589844 412.96875 L 430.503906 413.378906 L 433.335938 413.746094 L 435.957031 414.054688 L 438.347656 414.347656 L 440.527344 414.613281 L 442.496094 414.847656 L 444.304688 415.066406 L 445.953125 415.269531 L 447.457031 415.453125 L 448.824219 415.621094 L 450.074219 415.773438 L 451.207031 415.914062 L 452.246094 416.039062 L 453.1875 416.152344 L 454.046875 416.257812 L 454.832031 416.355469 L 455.558594 416.441406 L 456.222656 416.523438 L 456.84375 416.601562 L 457.410156 416.675781 L 457.929688 416.738281 L 458.398438 416.800781 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,80.392157%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 393.71875 259.648438 L 397.066406 260.25 L 400.632812 261.769531 L 403.988281 263.121094 L 407.4375 264.367188 L 411.257812 265.769531 L 414.992188 267.019531 L 418.390625 268.160156 L 421.621094 269.15625 L 424.652344 269.972656 L 427.589844 270.765625 L 430.503906 271.523438 L 433.335938 272.25 L 435.957031 272.898438 L 438.347656 273.496094 L 440.527344 274.042969 L 442.496094 274.53125 L 444.304688 274.984375 L 445.953125 275.398438 L 447.457031 275.773438 L 448.824219 276.117188 L 450.074219 276.429688 L 451.207031 276.714844 L 452.246094 276.972656 L 453.1875 277.210938 L 454.046875 277.425781 L 454.832031 277.621094 L 455.558594 277.800781 L 456.222656 277.949219 L 456.84375 278.09375 L 457.410156 278.230469 L 457.929688 278.355469 L 458.398438 278.464844 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 418.390625 259.648438 L 421.621094 259.941406 L 424.652344 260.480469 L 427.589844 260.980469 L 430.503906 261.464844 L 433.335938 261.917969 L 435.957031 262.339844 L 438.347656 262.722656 L 440.527344 263.074219 L 442.496094 263.390625 L 444.304688 263.679688 L 445.953125 263.941406 L 447.457031 264.183594 L 448.824219 264.402344 L 450.074219 264.601562 L 451.207031 264.785156 L 452.246094 264.949219 L 453.1875 265.101562 L 454.046875 265.238281 L 454.832031 265.363281 L 455.558594 265.476562 L 456.222656 265.578125 L 456.84375 265.671875 L 457.410156 265.757812 L 457.929688 265.835938 L 458.398438 265.90625 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 424.652344 259.648438 L 427.589844 259.910156 L 430.503906 260.535156 L 433.335938 261.121094 L 435.957031 261.660156 L 438.347656 262.148438 L 440.527344 262.597656 L 442.496094 263 L 444.304688 263.371094 L 445.953125 263.710938 L 447.457031 264.019531 L 448.824219 264.300781 L 450.074219 264.554688 L 451.207031 264.789062 L 452.246094 265 L 453.1875 265.195312 L 454.046875 265.371094 L 454.832031 265.53125 L 455.558594 265.675781 L 456.222656 265.816406 L 456.84375 265.941406 L 457.410156 266.054688 L 457.929688 266.160156 L 458.398438 266.253906 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(100%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 403.988281 259.648438 L 407.4375 259.429688 L 411.257812 258.640625 L 414.992188 258.03125 L 418.390625 257.472656 L 421.621094 256.96875 L 424.652344 256.511719 L 427.589844 256.097656 L 430.503906 255.726562 L 433.335938 255.394531 L 435.957031 255.097656 L 438.347656 254.828125 L 440.527344 254.578125 L 442.496094 254.351562 L 444.304688 254.148438 L 445.953125 253.960938 L 447.457031 253.792969 L 448.824219 253.636719 L 450.074219 253.496094 L 451.207031 253.367188 L 452.246094 253.25 L 453.1875 253.144531 L 454.046875 253.046875 L 454.832031 252.960938 L 455.558594 252.878906 L 456.222656 252.789062 L 456.84375 252.710938 L 457.410156 252.640625 L 457.929688 252.574219 L 458.398438 252.515625 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 454.832031 259.648438 L 455.558594 259.6875 L 456.222656 259.761719 L 456.84375 259.828125 L 457.410156 259.890625 L 457.929688 259.945312 L 458.398438 259.996094 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(100%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 259.648438 L 128.34375 259.648438 L 140.648438 264.847656 L 157.332031 277.925781 L 173.734375 289.730469 L 191.398438 300.898438 L 208.707031 311.261719 L 224.476562 320.703125 L 238.84375 329.304688 L 251.9375 337.140625 L 265.230469 343.605469 L 277.605469 349.367188 L 288.878906 354.613281 L 299.152344 359.394531 L 308.511719 363.753906 L 317.039062 367.722656 L 324.808594 371.34375 L 331.890625 374.636719 L 339.269531 378.175781 L 346.265625 381.566406 L 352.636719 384.648438 L 358.445312 387.460938 L 363.738281 390.019531 L 368.558594 392.355469 L 372.953125 394.480469 L 376.953125 396.417969 L 380.8125 398.136719 L 384.476562 399.671875 L 387.820312 401.066406 L 390.867188 402.339844 L 393.71875 403.503906 L 397.066406 404.664062 L 400.632812 405.855469 L 403.988281 406.941406 L 407.4375 407.910156 L 411.257812 408.722656 L 414.992188 409.460938 L 418.390625 410.132812 L 421.621094 410.738281 L 424.652344 411.285156 L 427.589844 411.769531 L 430.503906 412.199219 L 433.335938 412.5 L 435.957031 412.734375 L 438.347656 412.957031 L 440.527344 413.15625 L 442.496094 413.34375 L 444.304688 413.511719 L 445.953125 413.664062 L 447.457031 413.800781 L 448.824219 413.925781 L 450.074219 414.039062 L 451.207031 414.144531 L 452.246094 414.242188 L 453.1875 414.328125 L 454.046875 414.40625 L 454.832031 414.476562 L 455.558594 414.546875 L 456.222656 414.617188 L 456.84375 414.679688 L 457.410156 414.738281 L 457.929688 414.789062 L 458.398438 414.835938 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 59.039062 L 473.761719 59.039062 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 74.398438 59.039062 L 74.398438 55.324219 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 178.574219 59.039062 L 178.574219 55.324219 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 282.75 59.039062 L 282.75 55.324219 \"/>\n", "<path style=\"fill:none;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 386.921875 59.039062 L 386.921875 55.324219 \"/>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-1\" x=\"70.921875\" y=\"43.199219\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-4\" x=\"175.097656\" y=\"43.199219\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-12\" x=\"279.273438\" y=\"43.199219\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-13\" x=\"383.445312\" y=\"43.199219\"/>\n", "</g>\n", "</g>\n", "</svg>\n" ], "text/plain": [ "plot without title" ] }, "metadata": { "image/svg+xml": { "isolated": true } }, "output_type": "display_data" } ], "source": [ "plot(fit)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# TO DO: Add caret::twoClassSim example for comparison instead of \"QuickStartExample\"" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>100000</li>\n", "\t<li>116</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 100000\n", "\\item 116\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 100000\n", "2. 116\n", "\n", "\n" ], "text/plain": [ "[1] 100000 116" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Simulate a binary response dataset\n", "library(caret)\n", "set.seed(1)\n", "df <- caret::twoClassSim(n = 100000,\n", " linearVars = 10, \n", " noiseVars = 50, \n", " corrVars = 50)\n", "dim(df)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>75000</li>\n", "\t<li>115</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 75000\n", "\\item 115\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 75000\n", "2. 115\n", "\n", "\n" ], "text/plain": [ "[1] 75000 115" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "75000" ], "text/latex": [ "75000" ], "text/markdown": [ "75000" ], "text/plain": [ "[1] 75000" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>25000</li>\n", "\t<li>115</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 25000\n", "\\item 115\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 25000\n", "2. 115\n", "\n", "\n" ], "text/plain": [ "[1] 25000 115" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "25000" ], "text/latex": [ "25000" ], "text/markdown": [ "25000" ], "text/plain": [ "[1] 25000" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Identify the response & predictor columns\n", "ycol <- \"Class\"\n", "xcols <- setdiff(names(df), ycol)\n", "df[,ycol] <- ifelse(df[,ycol]==\"Class1\", 0, 1)\n", "\n", "# Split the data into a 70/25% train/test sets\n", "set.seed(1)\n", "idxs <- caret::createDataPartition(y = df[,ycol], p = 0.75)[[1]]\n", "train <- df[idxs,]\n", "test <- df[-idxs,]\n", "train_y <- df[idxs, ycol]\n", "test_y <- df[-idxs, ycol]\n", "train_x <- model.matrix(~-1 + ., train[, xcols])\n", "test_x <- model.matrix(~-1 + ., test[, xcols])\n", "\n", "\n", "# Dimensions\n", "dim(train_x)\n", "length(train_y)\n", "dim(test_x)\n", "length(test_y)" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>0</li>\n", "\t<li>1</li>\n", "\t<li>1</li>\n", "\t<li>0</li>\n", "\t<li>0</li>\n", "\t<li>0</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0\n", "\\item 1\n", "\\item 1\n", "\\item 0\n", "\\item 0\n", "\\item 0\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0\n", "2. 1\n", "3. 1\n", "4. 0\n", "5. 0\n", "6. 0\n", "\n", "\n" ], "text/plain": [ "[1] 0 1 1 0 0 0" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(test_y)" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ " user system elapsed \n", " 38.178 0.998 39.187 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Train a Lasso GLM\n", "system.time(cvfit <- cv.glmnet(x = train_x,\n", " y = train_y,\n", " family = \"binomial\",\n", " alpha = 1.0)) # alpha = 1 means lasso by default" ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<table>\n", "<thead><tr><th></th><th scope=col>1</th></tr></thead>\n", "<tbody>\n", "\t<tr><th scope=row>2</th><td>0.3136236</td></tr>\n", "\t<tr><th scope=row>14</th><td>0.6544411</td></tr>\n", "\t<tr><th scope=row>15</th><td>0.9269314</td></tr>\n", "\t<tr><th scope=row>21</th><td>0.1027764</td></tr>\n", "\t<tr><th scope=row>29</th><td>0.6640567</td></tr>\n", "\t<tr><th scope=row>30</th><td>0.5079524</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "\\begin{tabular}{r|l}\n", " & 1\\\\\n", "\\hline\n", "\t2 & 0.3136236\\\\\n", "\t14 & 0.6544411\\\\\n", "\t15 & 0.9269314\\\\\n", "\t21 & 0.1027764\\\\\n", "\t29 & 0.6640567\\\\\n", "\t30 & 0.5079524\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "1. 0.313623573108128\n", "2. 0.654441085969551\n", "3. 0.92693141202768\n", "4. 0.102776418399302\n", "5. 0.664056691877269\n", "6. 0.50795243094522\n", "\n", "\n" ], "text/plain": [ " 1\n", "2 0.3136236\n", "14 0.6544411\n", "15 0.9269314\n", "21 0.1027764\n", "29 0.6640567\n", "30 0.5079524" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "preds <- predict(cvfit$glmnet.fit, \n", " newx = test_x, \n", " s = cvfit$lambda.min, \n", " type = \"response\")\n", "head(preds)" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "0.908288759734547" ], "text/latex": [ "0.908288759734547" ], "text/markdown": [ "0.908288759734547" ], "text/plain": [ "[1] 0.9082888" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#install.packages(\"cvAUC\")\n", "library(cvAUC)\n", "\n", "cvAUC::AUC(predictions = preds, labels = test_y)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plot(cvfit)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "coef(cvfit, s = \"lambda.min\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### h2o\n", "\n", "Introduced in the previous section, the h2o package can perform unregularized or regularized regression. By default, `h2o.glm` will perform an Elastic Net regression. Similar to the `glmnet` function, you can adjust the Elastic Net penalty through the `alpha` parameter (`alpha = 1.0` is Lasso and `alpha = 0.0` is Ridge)." ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>100000</li>\n", "\t<li>116</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 100000\n", "\\item 116\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 100000\n", "2. 116\n", "\n", "\n" ], "text/plain": [ "[1] 100000 116" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Simulate a binary response dataset\n", "library(caret)\n", "set.seed(1)\n", "df <- caret::twoClassSim(n = 100000,\n", " linearVars = 10, \n", " noiseVars = 50, \n", " corrVars = 50)\n", "dim(df)" ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Connection successful!\n", "\n", "R is connected to the H2O cluster: \n", " H2O cluster uptime: 40 minutes 25 seconds \n", " H2O cluster version: 3.8.2.6 \n", " H2O cluster name: H2O_started_from_R_me_sot072 \n", " H2O cluster total nodes: 1 \n", " H2O cluster total memory: 2.84 GB \n", " H2O cluster total cores: 8 \n", " H2O cluster allowed cores: 8 \n", " H2O cluster healthy: TRUE \n", " H2O Connection ip: localhost \n", " H2O Connection port: 54321 \n", " H2O Connection proxy: NA \n", " R Version: R version 3.3.0 (2016-05-03) \n", "\n", " |======================================================================| 100%\n" ] } ], "source": [ "# Convert the data into an H2OFrame\n", "library(h2o)\n", "h2o.init(nthreads = -1)\n", "hf <- as.h2o(df)" ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Identify the response & predictor columns\n", "ycol <- \"Class\"\n", "xcols <- setdiff(names(hf), ycol)\n", "\n", "# Convert the 0/1 binary response to a factor \n", "hf[,ycol] <- as.factor(hf[,ycol])" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>100000</li>\n", "\t<li>116</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 100000\n", "\\item 116\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 100000\n", "2. 116\n", "\n", "\n" ], "text/plain": [ "[1] 100000 116" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dim(df)" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>75001</li>\n", "\t<li>116</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 75001\n", "\\item 116\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 75001\n", "2. 116\n", "\n", "\n" ], "text/plain": [ "[1] 75001 116" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>24999</li>\n", "\t<li>116</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 24999\n", "\\item 116\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 24999\n", "2. 116\n", "\n", "\n" ], "text/plain": [ "[1] 24999 116" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Split the data into a 70/25% train/test sets\n", "set.seed(1)\n", "idxs <- caret::createDataPartition(y = df[,ycol], p = 0.75)[[1]]\n", "train <- hf[idxs,]\n", "test <- hf[-idxs,]\n", "\n", "# Dimensions\n", "dim(train)\n", "dim(test)" ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " | \r", " | | 0%\r", " | \r", " |============= | 18%\r", " | \r", " |======================== | 34%\r", " | \r", " |================================== | 49%\r", " | \r", " |======================================================================| 100%\n" ] }, { "data": { "text/plain": [ " user system elapsed \n", " 0.196 0.008 4.297 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Train a Lasso GLM\n", "system.time(fit <- h2o.glm(x = xcols,\n", " y = ycol,\n", " training_frame = train,\n", " family = \"binomial\",\n", " lambda_search = TRUE, # compute lasso path\n", " alpha = 1)) # alpha = 1 means lasso, same as glmnet above" ] }, { "cell_type": "code", "execution_count": 101, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "0.91198390500988" ], "text/latex": [ "0.91198390500988" ], "text/markdown": [ "0.91198390500988" ], "text/plain": [ "[1] 0.9119839" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compute AUC on test dataset\n", "# H2O computes many model performance metrics automatically, including AUC\n", "\n", "perf <- h2o.performance(model = fit,\n", " newdata = test)\n", "h2o.auc(perf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# References\n", "\n", "[1] [https://en.wikipedia.org/wiki/Linear_regression#Generalized\\_linear\\_models](https://en.wikipedia.org/wiki/Linear_regression#Generalized_linear_models)\n", "\n", "[2] [https://en.wikipedia.org/wiki/Generalized\\_linear\\_model](https://en.wikipedia.org/wiki/Generalized_linear_model)\n", "\n", "[3] [Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., Vol. 58, No. 1, pages 267-288). ](http://www-stat.stanford.edu/%7Etibs/lasso/lasso.pdf)\n" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.3.0" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
batfish/pybatfish
docs/source/notebooks/resolvingSpecifiers.ipynb
1
47925
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "nbsphinx": "hidden" }, "outputs": [], "source": [ "import pandas as pd\n", "from pybatfish.client.session import Session\n", "from pybatfish.datamodel import *\n", "\n", "pd.set_option(\"display.width\", 300) \n", "pd.set_option(\"display.max_columns\", 20) \n", "pd.set_option(\"display.max_rows\", 1000) \n", "pd.set_option(\"display.max_colwidth\", None)\n", "\n", "# Configure all pybatfish loggers to use WARN level\n", "import logging\n", "logging.getLogger('pybatfish').setLevel(logging.WARN)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "nbsphinx": "hidden" }, "outputs": [], "source": [ "bf = Session(host=\"localhost\")\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Resolving Specifiers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Specifier grammars allow you to specify complex inputs for Batfish questions.\n", "This category of questions reveals how specifier inputs are resolved\n", "by Batfish.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* [Resolve Location Specifier](#Resolve-Location-Specifier)\n", "* [Resolve Filter Specifier](#Resolve-Filter-Specifier)\n", "* [Resolve Node Specifier](#Resolve-Node-Specifier)\n", "* [Resolve Interface Specifier](#Resolve-Interface-Specifier)\n", "* [Resolve IPs from Location Specifier](#Resolve-IPs-from-Location-Specifier)\n", "* [Resolve IP Specifier](#Resolve-IP-Specifier)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_network('generate_questions')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_snapshot('generate_questions')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Resolve Location Specifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Returns the set of locations corresponding to a locationSpec value." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Helper question that shows how specified locationSpec values resolve to the locations in the network." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Inputs**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type | Optional | Default Value\n", "--- | --- | --- | --- | --- \n", "locations | Input to the LocationSpecifier. | [LocationSpec](../specifiers.md#location-specifier) | False | \n", "grammarVersion | Version of grammar to use for resolution. | str | True | " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Invocation**" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "result = bf.q.resolveLocationSpecifier(locations='@enter(as2border1[GigabitEthernet2/0])').answer().frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Return Value**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type\n", "--- | --- | ---\n", "Location | Location | str" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first 5 rows of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Location</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>InterfaceLinkLocation{nodeName=as2border1, interfaceName=GigabitEthernet2/0}</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Location\n", "0 InterfaceLinkLocation{nodeName=as2border1, interfaceName=GigabitEthernet2/0}" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first row of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Location InterfaceLinkLocation{nodeName=as2border1, interfaceName=GigabitEthernet2/0}\n", "Name: 0, dtype: object" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.iloc[0]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_network('generate_questions')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_snapshot('generate_questions')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Resolve Filter Specifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Returns the set of filters corresponding to a filterSpec value." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Helper question that shows how specified filterSpec values resolve to the filters in the network." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Inputs**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type | Optional | Default Value\n", "--- | --- | --- | --- | --- \n", "filters | Input to the FilterSpecifier. | [FilterSpec](../specifiers.md#filter-specifier) | False | \n", "grammarVersion | Version of grammar to use for resolution. | str | True | \n", "nodes | Input to the NodeSpecifier that specifies the set of nodes that should be considered. | [NodeSpec](../specifiers.md#node-specifier) | True | /.*/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Invocation**" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "result = bf.q.resolveFilterSpecifier(filters='@in(as2border1[GigabitEthernet0/0])').answer().frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Return Value**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type\n", "--- | --- | ---\n", "Node | Node | str\n", "Filter_Name | Filter name | str" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first 5 rows of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Node</th>\n", " <th>Filter_Name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>as2border1</td>\n", " <td>OUTSIDE_TO_INSIDE</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Node Filter_Name\n", "0 as2border1 OUTSIDE_TO_INSIDE" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first row of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Node as2border1\n", "Filter_Name OUTSIDE_TO_INSIDE\n", "Name: 0, dtype: object" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.iloc[0]" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_network('generate_questions')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_snapshot('generate_questions')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Resolve Node Specifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Returns the set of nodes corresponding to a nodeSpec value." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Helper question that shows how specified nodeSpec values resolve to the nodes in the network." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Inputs**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type | Optional | Default Value\n", "--- | --- | --- | --- | --- \n", "nodes | Input to the NodeSpecifier. | [NodeSpec](../specifiers.md#node-specifier) | False | \n", "grammarVersion | Version of grammar to use for resolution. | str | True | " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Invocation**" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "result = bf.q.resolveNodeSpecifier(nodes='/border/').answer().frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Return Value**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type\n", "--- | --- | ---\n", "Node | Node | str" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first 5 rows of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Node</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>as1border1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>as1border2</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>as2border1</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>as2border2</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>as3border1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Node\n", "0 as1border1\n", "1 as1border2\n", "2 as2border1\n", "3 as2border2\n", "4 as3border1" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first row of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Node as1border1\n", "Name: 0, dtype: object" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.iloc[0]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_network('generate_questions')" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_snapshot('generate_questions')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Resolve Interface Specifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Returns the set of interfaces corresponding to an interfaceSpec value." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Helper question that shows how specified interfaceSpec values resolve to the interfaces in the network." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Inputs**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type | Optional | Default Value\n", "--- | --- | --- | --- | --- \n", "interfaces | Input to the interfaceSpecifier. | [InterfaceSpec](../specifiers.md#interface-specifier) | False | \n", "grammarVersion | Version of grammar to use for resolution. | str | True | \n", "nodes | Input to the NodeSpecifier that specifies the set of nodes that should be considered. | [NodeSpec](../specifiers.md#node-specifier) | True | /.*/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Invocation**" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "result = bf.q.resolveInterfaceSpecifier(interfaces='/border/[.*Ethernet]').answer().frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Return Value**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type\n", "--- | --- | ---\n", "Interface | Interface | [Interface](../datamodel.rst#pybatfish.datamodel.primitives.Interface)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first 5 rows of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Interface</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>as1border1[Ethernet0/0]</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>as1border1[GigabitEthernet0/0]</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>as1border1[GigabitEthernet1/0]</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>as1border2[Ethernet0/0]</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>as1border2[GigabitEthernet0/0]</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Interface\n", "0 as1border1[Ethernet0/0]\n", "1 as1border1[GigabitEthernet0/0]\n", "2 as1border1[GigabitEthernet1/0]\n", "3 as1border2[Ethernet0/0]\n", "4 as1border2[GigabitEthernet0/0]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first row of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Interface as1border1[Ethernet0/0]\n", "Name: 0, dtype: object" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.iloc[0]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_network('generate_questions')" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_snapshot('generate_questions')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Resolve IPs from Location Specifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Returns IPs that are auto-assigned to locations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Helper question that shows IPs that will be assigned to specified locationSpec values by questions are automatically pick IPs based on locations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Inputs**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type | Optional | Default Value\n", "--- | --- | --- | --- | --- \n", "locations | Input to the LocationSpecifier. | [LocationSpec](../specifiers.md#location-specifier) | False | \n", "grammarVersion | Version of grammar to use for resolution. | str | True | " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Invocation**" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "result = bf.q.resolveIpsOfLocationSpecifier(locations='@enter(as2border1[GigabitEthernet2/0])').answer().frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Return Value**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type\n", "--- | --- | ---\n", "Locations | Resolution | str\n", "IP_Space | IP space | str" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first 5 rows of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Locations</th>\n", " <th>IP_Space</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>[InterfaceLinkLocation{nodeName=as2border1, interfaceName=GigabitEthernet2/0}]</td>\n", " <td>AclIpSpace{lines=[AclIpSpaceLine{action=DENY, ipSpace=AclIpSpace{lines=[AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.2.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.1.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.3.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.2.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.2.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.1.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.2.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.0.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.2.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.1.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.1.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.3.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.1.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.10.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.10.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.13.22.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.21.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.22.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.12.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.11.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.12.11.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.13.22.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.12.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.22.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.21.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.11.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.12.11.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.14.22.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.23.21.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.12.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.22.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.21.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.11.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.21.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.22.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.12.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.11.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.23.21.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.201.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.101.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.201.4}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.101.4}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=90.90.90.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=90.90.90.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.1.101}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.0.101}}]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[2.12.12.0, 2.12.12.255], whitelist=[2.12.12.0/24]}}]}</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Locations \\\n", "0 [InterfaceLinkLocation{nodeName=as2border1, interfaceName=GigabitEthernet2/0}] \n", "\n", " IP_Space \n", "0 AclIpSpace{lines=[AclIpSpaceLine{action=DENY, ipSpace=AclIpSpace{lines=[AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.2.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.1.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.3.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.2.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.2.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.1.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.2.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.0.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.2.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.1.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.1.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.3.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.1.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.10.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.10.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.13.22.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.21.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.22.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.12.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.11.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.12.11.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.13.22.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.12.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.22.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.21.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.11.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.12.11.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.14.22.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.23.21.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.12.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.22.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.21.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.11.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.21.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.22.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.12.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.11.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.23.21.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.201.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.101.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.201.4}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.101.4}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=90.90.90.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=90.90.90.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.1.101}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.0.101}}]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[2.12.12.0, 2.12.12.255], whitelist=[2.12.12.0/24]}}]} " ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first row of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Locations [InterfaceLinkLocation{nodeName=as2border1, interfaceName=GigabitEthernet2/0}]\n", "IP_Space AclIpSpace{lines=[AclIpSpaceLine{action=DENY, ipSpace=AclIpSpace{lines=[AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.2.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.1.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.3.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.2.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.2.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.1.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.2.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.0.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.2.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.1.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.0.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.1.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.0.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.3.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.2.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.1.1.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=3.10.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=1.10.1.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.13.22.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.21.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.22.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.12.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.11.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.12.11.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.13.22.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.12.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.22.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.21.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.12.11.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.12.11.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.14.22.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.23.21.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.12.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.22.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.21.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.11.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.21.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.22.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.12.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.23.11.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=10.23.21.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.201.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.101.3}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.201.4}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.34.101.4}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=90.90.90.2}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=90.90.90.1}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.1.101}}, AclIpSpaceLine{ipSpace=IpIpSpace{ip=2.128.0.101}}]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[2.12.12.0, 2.12.12.255], whitelist=[2.12.12.0/24]}}]}\n", "Name: 0, dtype: object" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.iloc[0]" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_network('generate_questions')" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "nbsphinx": "hidden" }, "outputs": [ { "data": { "text/plain": [ "'generate_questions'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bf.set_snapshot('generate_questions')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Resolve IP Specifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Returns the IP address space corresponding to an ipSpec value." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Helper question that shows how specified ipSpec values resolve to IPs." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Inputs**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type | Optional | Default Value\n", "--- | --- | --- | --- | --- \n", "ips | Input to the IP space specifier. | [IpSpec](../specifiers.md#ip-specifier) | False | \n", "grammarVersion | Version of grammar to use for resolution. | str | True | " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Invocation**" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "result = bf.q.resolveIpSpecifier(ips='/border/[.*Ethernet]').answer().frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### **Return Value**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name | Description | Type\n", "--- | --- | ---\n", "IP_Space | IP space | str" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first 5 rows of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>IP_Space</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>AclIpSpace{lines=[AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[1.0.1.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.12.11.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.13.22.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[1.0.2.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.14.22.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.12.11.2]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.11.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.12.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.23.21.2]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.22.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.21.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[3.0.1.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.23.21.3]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.13.22.3]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[3.0.2.1]}}]}</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " IP_Space\n", "0 AclIpSpace{lines=[AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[1.0.1.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.12.11.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.13.22.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[1.0.2.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.14.22.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.12.11.2]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.11.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.12.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.23.21.2]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.22.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.21.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[3.0.1.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.23.21.3]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.13.22.3]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[3.0.2.1]}}]}" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the first row of the returned Dataframe" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "IP_Space AclIpSpace{lines=[AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[1.0.1.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.12.11.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.13.22.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[1.0.2.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.14.22.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.12.11.2]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.11.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.12.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.23.21.2]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.22.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[2.12.21.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[3.0.1.1]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.23.21.3]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[10.13.22.3]}}, AclIpSpaceLine{ipSpace=IpWildcardSetIpSpace{blacklist=[], whitelist=[3.0.2.1]}}]}\n", "Name: 0, dtype: object" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.iloc[0]" ] } ], "metadata": { "celltoolbar": "Edit Metadata", "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
developerQuinnZ/this_will_work
lessons/09-Pandas/data-wrangling-with-Pandas.ipynb
1
8797831
null
mit
tensorflow/docs-l10n
site/zh-cn/tutorials/keras/save_and_load.ipynb
1
27175
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "g_nWetWWd_ns" }, "source": [ "##### Copyright 2019 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "2pHVBk_seED1" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "N_fMsQ-N8I7j" }, "outputs": [], "source": [ "#@title MIT License\n", "#\n", "# Copyright (c) 2017 François Chollet\n", "#\n", "# Permission is hereby granted, free of charge, to any person obtaining a\n", "# copy of this software and associated documentation files (the \"Software\"),\n", "# to deal in the Software without restriction, including without limitation\n", "# the rights to use, copy, modify, merge, publish, distribute, sublicense,\n", "# and/or sell copies of the Software, and to permit persons to whom the\n", "# Software is furnished to do so, subject to the following conditions:\n", "#\n", "# The above copyright notice and this permission notice shall be included in\n", "# all copies or substantial portions of the Software.\n", "#\n", "# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n", "# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n", "# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n", "# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n", "# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n", "# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER\n", "# DEALINGS IN THE SOFTWARE." ] }, { "cell_type": "markdown", "metadata": { "id": "pZJ3uY9O17VN" }, "source": [ "# 保存和恢复模型" ] }, { "cell_type": "markdown", "metadata": { "id": "M4Ata7_wMul1" }, "source": [ "<table class=\"tfo-notebook-buttons\" align=\"left\">\n", " <td> <a target=\"_blank\" href=\"https://tensorflow.google.cn/tutorials/keras/save_and_load\"><img src=\"https://tensorflow.google.cn/images/tf_logo_32px.png\">在 tensorflow.google.cn 上查看</a> </td>\n", " <td> <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/zh-cn/tutorials/keras/save_and_load.ipynb\"><img src=\"https://tensorflow.google.cn/images/colab_logo_32px.png\">在 Google Colab 运行</a> </td>\n", " <td> <a target=\"_blank\" href=\"https://github.com/tensorflow/docs-l10n/blob/master/site/zh-cn/tutorials/keras/save_and_load.ipynb\"><img src=\"https://tensorflow.google.cn/images/GitHub-Mark-32px.png\">在 Github 上查看源代码</a> </td>\n", " <td> <a href=\"https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/zh-cn/tutorials/keras/save_and_load.ipynb\" class=\"_active_edit_href\"><img src=\"https://tensorflow.google.cn/images/download_logo_32px.png\">下载此 notebook</a> </td>\n", "</table>" ] }, { "cell_type": "markdown", "metadata": { "id": "mBdde4YJeJKF" }, "source": [ "可以在训练期间和之后保存模型进度。这意味着模型可以从停止的地方恢复,避免长时间的训练。此外,保存还意味着您可以分享您的模型,其他人可以重现您的工作。在发布研究模型和技术时,大多数机器学习从业者会分享:\n", "\n", "- 用于创建模型的代码\n", "- 模型训练的权重 (weight) 和参数 (parameters) 。\n", "\n", "共享数据有助于其他人了解模型的工作原理,并使用新数据自行尝试。\n", "\n", "小心:TensorFlow 模型是代码,对于不受信任的代码,一定要小心。请参阅 [安全使用 TensorFlow](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) 以了解详情。\n", "\n", "### 选项\n", "\n", "根据您使用的 API,可以通过多种方式保存 TensorFlow 模型。本指南使用 [tf.keras](https://tensorflow.google.cn/guide/keras),这是一种在 TensorFlow 中构建和训练模型的高级 API。对于其他方式,请参阅 TensorFlow [保存和恢复](https://tensorflow.google.cn/guide/saved_model)指南或[在 Eager 中保存](https://tensorflow.google.cn/guide/eager#object-based_saving)。" ] }, { "cell_type": "markdown", "metadata": { "id": "xCUREq7WXgvg" }, "source": [ "## 配置\n", "\n", "### 安装并导入" ] }, { "cell_type": "markdown", "metadata": { "id": "7l0MiTOrXtNv" }, "source": [ "安装并导入Tensorflow和依赖项:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "RzIOVSdnMYyO" }, "outputs": [], "source": [ "!pip install pyyaml h5py # Required to save models in HDF5 format" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "7Nm7Tyb-gRt-" }, "outputs": [], "source": [ "import os\n", "\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "\n", "print(tf.version.VERSION)" ] }, { "cell_type": "markdown", "metadata": { "id": "SbGsznErXWt6" }, "source": [ "### 获取示例数据集\n", "\n", "为了演示如何保存和加载权重,您将使用 [MNIST 数据集](http://yann.lecun.com/exdb/mnist/)。为了加快运行速度,请使用前 1000 个样本:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "9rGfFwE9XVwz" }, "outputs": [], "source": [ "(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()\n", "\n", "train_labels = train_labels[:1000]\n", "test_labels = test_labels[:1000]\n", "\n", "train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0\n", "test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0" ] }, { "cell_type": "markdown", "metadata": { "id": "anG3iVoXyZGI" }, "source": [ "### 定义模型" ] }, { "cell_type": "markdown", "metadata": { "id": "wynsOBfby0Pa" }, "source": [ "首先构建一个简单的序列(sequential)模型:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0HZbJIjxyX1S" }, "outputs": [], "source": [ "# Define a simple sequential model\n", "def create_model():\n", " model = tf.keras.models.Sequential([\n", " keras.layers.Dense(512, activation='relu', input_shape=(784,)),\n", " keras.layers.Dropout(0.2),\n", " keras.layers.Dense(10)\n", " ])\n", "\n", " model.compile(optimizer='adam',\n", " loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=[tf.metrics.SparseCategoricalAccuracy()])\n", "\n", " return model\n", "\n", "# Create a basic model instance\n", "model = create_model()\n", "\n", "# Display the model's architecture\n", "model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "soDE0W_KH8rG" }, "source": [ "## 在训练期间保存模型(以 checkpoints 形式保存)" ] }, { "cell_type": "markdown", "metadata": { "id": "mRyd5qQQIXZm" }, "source": [ "您可以使用经过训练的模型而无需重新训练,或者在训练过程中断的情况下从离开处继续训练。`tf.keras.callbacks.ModelCheckpoint` 回调允许您在训练*期间*和*结束*时持续保存模型。\n", "\n", "### Checkpoint 回调用法\n", "\n", "创建一个只在训练期间保存权重的 `tf.keras.callbacks.ModelCheckpoint` 回调:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "IFPuhwntH8VH" }, "outputs": [], "source": [ "checkpoint_path = \"training_1/cp.ckpt\"\n", "checkpoint_dir = os.path.dirname(checkpoint_path)\n", "\n", "# Create a callback that saves the model's weights\n", "cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,\n", " save_weights_only=True,\n", " verbose=1)\n", "\n", "# Train the model with the new callback\n", "model.fit(train_images, \n", " train_labels, \n", " epochs=10,\n", " validation_data=(test_images, test_labels),\n", " callbacks=[cp_callback]) # Pass callback to training\n", "\n", "# This may generate warnings related to saving the state of the optimizer.\n", "# These warnings (and similar warnings throughout this notebook)\n", "# are in place to discourage outdated usage, and can be ignored." ] }, { "cell_type": "markdown", "metadata": { "id": "rlM-sgyJO084" }, "source": [ "这将创建一个 TensorFlow checkpoint 文件集合,这些文件在每个 epoch 结束时更新:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "gXG5FVKFOVQ3" }, "outputs": [], "source": [ "os.listdir(checkpoint_dir)" ] }, { "cell_type": "markdown", "metadata": { "id": "wlRN_f56Pqa9" }, "source": [ "只要两个模型共享相同的架构,您就可以在它们之间共享权重。因此,当从仅权重恢复模型时,创建一个与原始模型具有相同架构的模型,然后设置其权重。\n", "\n", "现在,重新构建一个未经训练的全新模型并基于测试集对其进行评估。未经训练的模型将以机会水平执行(约 10% 的准确率):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Fp5gbuiaPqCT" }, "outputs": [], "source": [ "# Create a basic model instance\n", "model = create_model()\n", "\n", "# Evaluate the model\n", "loss, acc = model.evaluate(test_images, test_labels, verbose=2)\n", "print(\"Untrained model, accuracy: {:5.2f}%\".format(100 * acc))" ] }, { "cell_type": "markdown", "metadata": { "id": "1DTKpZssRSo3" }, "source": [ "然后从 checkpoint 加载权重并重新评估:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "2IZxbwiRRSD2" }, "outputs": [], "source": [ "# Loads the weights\n", "model.load_weights(checkpoint_path)\n", "\n", "# Re-evaluate the model\n", "loss, acc = model.evaluate(test_images, test_labels, verbose=2)\n", "print(\"Restored model, accuracy: {:5.2f}%\".format(100 * acc))" ] }, { "cell_type": "markdown", "metadata": { "id": "bpAbKkAyVPV8" }, "source": [ "### checkpoint 回调选项\n", "\n", "回调提供了几个选项,为 checkpoint 提供唯一名称并调整 checkpoint 频率。\n", "\n", "训练一个新模型,每五个 epochs 保存一次唯一命名的 checkpoint :" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "mQF_dlgIVOvq" }, "outputs": [], "source": [ "# Include the epoch in the file name (uses `str.format`)\n", "checkpoint_path = \"training_2/cp-{epoch:04d}.ckpt\"\n", "checkpoint_dir = os.path.dirname(checkpoint_path)\n", "\n", "batch_size = 32\n", "\n", "# Create a callback that saves the model's weights every 5 epochs\n", "cp_callback = tf.keras.callbacks.ModelCheckpoint(\n", " filepath=checkpoint_path, \n", " verbose=1, \n", " save_weights_only=True,\n", " save_freq=5*batch_size)\n", "\n", "# Create a new model instance\n", "model = create_model()\n", "\n", "# Save the weights using the `checkpoint_path` format\n", "model.save_weights(checkpoint_path.format(epoch=0))\n", "\n", "# Train the model with the new callback\n", "model.fit(train_images, \n", " train_labels,\n", " epochs=50, \n", " batch_size=batch_size, \n", " callbacks=[cp_callback],\n", " validation_data=(test_images, test_labels),\n", " verbose=0)" ] }, { "cell_type": "markdown", "metadata": { "id": "1zFrKTjjavWI" }, "source": [ "现在查看生成的 checkpoint 并选择最新的 checkpoint :" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "p64q3-V4sXt0" }, "outputs": [], "source": [ "os.listdir(checkpoint_dir)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "1AN_fnuyR41H" }, "outputs": [], "source": [ "latest = tf.train.latest_checkpoint(checkpoint_dir)\n", "latest" ] }, { "cell_type": "markdown", "metadata": { "id": "Zk2ciGbKg561" }, "source": [ "注:默认 TensorFlow 格式只保存最近的 5 个检查点。\n", "\n", "如果要进行测试,请重置模型并加载最新的 checkpoint :" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "3M04jyK-H3QK" }, "outputs": [], "source": [ "# Create a new model instance\n", "model = create_model()\n", "\n", "# Load the previously saved weights\n", "model.load_weights(latest)\n", "\n", "# Re-evaluate the model\n", "loss, acc = model.evaluate(test_images, test_labels, verbose=2)\n", "print(\"Restored model, accuracy: {:5.2f}%\".format(100 * acc))" ] }, { "cell_type": "markdown", "metadata": { "id": "c2OxsJOTHxia" }, "source": [ "## 这些文件是什么?" ] }, { "cell_type": "markdown", "metadata": { "id": "JtdYhvWnH2ib" }, "source": [ "上述代码将权重存储到 [checkpoint](https://tensorflow.google.cn/guide/saved_model#save_and_restore_variables)—— 格式化文件的集合中,这些文件仅包含二进制格式的训练权重。 Checkpoints 包含:\n", "\n", "- 一个或多个包含模型权重的分片。\n", "- 一个索引文件,指示哪些权重存储在哪个分片中。\n", "\n", "如果您在一台计算机上训练模型,您将获得一个具有如下后缀的分片:`.data-00000-of-00001`" ] }, { "cell_type": "markdown", "metadata": { "id": "S_FA-ZvxuXQV" }, "source": [ "## 手动保存权重\n", "\n", "使用 `Model.save_weights` 方法手动保存权重。默认情况下,`tf.keras`(尤其是 `save_weights`)使用扩展名为 `.ckpt` 的 TensorFlow [检查点](../../guide/checkpoint.ipynb)格式(保存在扩展名为 `.h5` 的 [HDF5](https://js.tensorflow.org/tutorials/import-keras.html) 中,[保存和序列化模型](../../guide/keras/save_and_serialize#weights-only_saving_in_savedmodel_format)指南中会讲到这一点):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "R7W5plyZ-u9X" }, "outputs": [], "source": [ "# Save the weights\n", "model.save_weights('./checkpoints/my_checkpoint')\n", "\n", "# Create a new model instance\n", "model = create_model()\n", "\n", "# Restore the weights\n", "model.load_weights('./checkpoints/my_checkpoint')\n", "\n", "# Evaluate the model\n", "loss, acc = model.evaluate(test_images, test_labels, verbose=2)\n", "print(\"Restored model, accuracy: {:5.2f}%\".format(100 * acc))" ] }, { "cell_type": "markdown", "metadata": { "id": "kOGlxPRBEvV1" }, "source": [ "## 保存整个模型\n", "\n", "调用 [`model.save`](https://tensorflow.google.cn/api_docs/python/tf/keras/Model#save) 将保存模型的结构,权重和训练配置保存在单个文件/文件夹中。这可以让您导出模型,以便在不访问原始 Python 代码*的情况下使用它。因为优化器状态(optimizer-state)已经恢复,您可以从中断的位置恢复训练。\n", "\n", "整个模型可以保存为两种不同的文件格式(`SavedModel` 和 `HDF5`)。TensorFlow `SavedModel` 格式是 TF2.x 中的默认文件格式。但是,模型能够以 `HDF5` 格式保存。下面详细介绍了如何以两种文件格式保存整个模型。\n", "\n", "保存完整模型会非常有用——您可以在 TensorFlow.js([Saved Model](https://tensorflow.google.cn/js/tutorials/conversion/import_saved_model), [HDF5](https://tensorflow.google.cn/js/tutorials/conversion/import_keras))加载它们,然后在 web 浏览器中训练和运行它们,或者使用 TensorFlow Lite 将它们转换为在移动设备上运行([Saved Model](https://tensorflow.google.cn/lite/convert/python_api#converting_a_savedmodel_), [HDF5](https://tensorflow.google.cn/lite/convert/python_api#converting_a_keras_model_))\n", "\n", "*自定义对象(例如,子类化模型或层)在保存和加载时需要特别注意。请参阅下面的**保存自定义对象**部分 " ] }, { "cell_type": "markdown", "metadata": { "id": "kPyhgcoVzqUB" }, "source": [ "### SavedModel 格式" ] }, { "cell_type": "markdown", "metadata": { "id": "LtcN4VIb7JkK" }, "source": [ "SavedModel 格式是另一种序列化模型的方式。以这种格式保存的模型可以使用 `tf.keras.models.load_model` 恢复,并且与 TensorFlow Serving 兼容。[SavedModel 指南](https://tensorflow.google.cn/guide/saved_model)详细介绍了如何应用/检查 SavedModel。以下部分说明了保存和恢复模型的步骤。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "sI1YvCDFzpl3" }, "outputs": [], "source": [ "# Create and train a new model instance.\n", "model = create_model()\n", "model.fit(train_images, train_labels, epochs=5)\n", "\n", "# Save the entire model as a SavedModel.\n", "!mkdir -p saved_model\n", "model.save('saved_model/my_model') " ] }, { "cell_type": "markdown", "metadata": { "id": "iUvT_3qE8hV5" }, "source": [ "SavedModel 格式是一个包含 protobuf 二进制文件和 TensorFlow 检查点的目录。检查保存的模型目录:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "sq8fPglI1RWA" }, "outputs": [], "source": [ "# my_model directory\n", "!ls saved_model\n", "\n", "# Contains an assets folder, saved_model.pb, and variables folder.\n", "!ls saved_model/my_model" ] }, { "cell_type": "markdown", "metadata": { "id": "B7qfpvpY9HCe" }, "source": [ "从保存的模型重新加载一个新的 Keras 模型:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0YofwHdN0pxa" }, "outputs": [], "source": [ "new_model = tf.keras.models.load_model('saved_model/my_model')\n", "\n", "# Check its architecture\n", "new_model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "uWwgNaz19TH2" }, "source": [ "使用与原始模型相同的参数编译恢复的模型。尝试使用加载的模型运行评估和预测:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Yh5Mu0yOgE5J" }, "outputs": [], "source": [ "# Evaluate the restored model\n", "loss, acc = new_model.evaluate(test_images, test_labels, verbose=2)\n", "print('Restored model, accuracy: {:5.2f}%'.format(100 * acc))\n", "\n", "print(new_model.predict(test_images).shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "SkGwf-50zLNn" }, "source": [ "### HDF5 格式\n", "\n", "Keras使用 [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) 标准提供了一种基本的保存格式。 " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "m2dkmJVCGUia" }, "outputs": [], "source": [ "# Create and train a new model instance.\n", "model = create_model()\n", "model.fit(train_images, train_labels, epochs=5)\n", "\n", "# Save the entire model to a HDF5 file.\n", "# The '.h5' extension indicates that the model should be saved to HDF5.\n", "model.save('my_model.h5') " ] }, { "cell_type": "markdown", "metadata": { "id": "GWmttMOqS68S" }, "source": [ "现在,从该文件重新创建模型:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "5NDMO_7kS6Do" }, "outputs": [], "source": [ "# Recreate the exact same model, including its weights and the optimizer\n", "new_model = tf.keras.models.load_model('my_model.h5')\n", "\n", "# Show the model architecture\n", "new_model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "JXQpbTicTBwt" }, "source": [ "检查其准确率(accuracy):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jwEaj9DnTCVA" }, "outputs": [], "source": [ "loss, acc = new_model.evaluate(test_images, test_labels, verbose=2)\n", "print('Restored model, accuracy: {:5.2f}%'.format(100 * acc))" ] }, { "cell_type": "markdown", "metadata": { "id": "dGXqd4wWJl8O" }, "source": [ "Keras 通过检查模型的架构来保存这些模型。这种技术可以保存所有内容:\n", "\n", "- 权重值\n", "- 模型的架构\n", "- 模型的训练配置(您传递给 `.compile()` 方法的内容)\n", "- 优化器及其状态(如果有)(这样,您便可从中断的地方重新启动训练)\n", "\n", "Keras 无法保存 `v1.x` 优化器(来自 `tf.compat.v1.train`),因为它们与检查点不兼容。对于 v1.x 优化器,您需要在加载-失去优化器的状态后,重新编译模型。\n" ] }, { "cell_type": "markdown", "metadata": { "id": "kAUKJQyGqTNH" }, "source": [ "### 保存自定义对象\n", "\n", "如果您正在使用 SavedModel 格式,则可以跳过此部分。HDF5 和 SavedModel 之间的主要区别在于,HDF5 使用对象配置来保存模型架构,而 SavedModel 则保存执行计算图。因此,SavedModel 能够在不需要原始代码的情况下保存自定义对象,如子类模型和自定义层。\n", "\n", "要将自定义对象保存到 HDF5,您必须执行以下操作:\n", "\n", "1. 在您的对象中定义一个 `get_config` 方法,并且可以选择定义一个 `from_config` 类方法。\n", " - `get_config(self)` 返回重新创建对象所需的参数的 JSON 可序列化字典。\n", " - `from_config(cls, config)` 使用从 `get_config` 返回的配置来创建一个新对象。默认情况下,此函数将使用配置作为初始化 kwarg (`return cls(**config)`)。\n", "2. 加载模型时将对象传递给 `custom_objects` 参数。参数必须是将字符串类名映射到 Python 类的字典。例如 `tf.keras.models.load_model(path, custom_objects={'CustomLayer': CustomLayer})`\n", "\n", "有关自定义对象和 `get_config` 的示例,请参阅[从头开始编写层和模型](https://tensorflow.google.cn/guide/keras/custom_layers_and_models)教程。\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "save_and_load.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
colour-science/colour-ipython
notebooks/colorimetry/photometry.ipynb
1
745
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# !!! D . R . A . F . T !!!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Photometry" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bibliography" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
hawkw/breadplan
Breadplan Science.ipynb
1
6164
{ "metadata": { "name": "", "signature": "sha256:b8554cf229ad6e20983d575938d5c0aa4def4378a69bc30a550cae78c17810bd" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# BreadPlan Science!\n", "\n", "This is where I'm doing the calculations that go into BreadPlan\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Densities for flour types in grams/cup according to different sources\n", "# USDA and Gold Medal from http://www.weekendbakery.com/cooking-conversions/\n", "# King Arthur from http://www.kingarthurflour.com/recipe/master-weight-chart.html \n", "# (rounded to nearest gram)\n", "whole_wheat = {\n", " \"USDA\": 125,\n", " \"Gold Medal\": 128,\n", " \"King Arthur\": 113,\n", " }\n", "all_purpose = {\n", " \"USDA\": 125,\n", " \"Gold Medal\": 130,\n", " \"King Arthur\": 120\n", " }\n", "bread_flour = {\n", " \"USDA\": 127,\n", " \"Gold Medal\": 135,\n", " \"King Arthur\": 120\n", " }\n", "rye = {\n", " \"USDA\": 102,\n", " # couldn't find Gold Medal's reported density for rye flour (do they make it?)\n", " \"King Arthur Medium Rye\": 103,\n", " \"King Arthur White Rye\": 106\n", " }" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "values = lambda flour: [grams for key, grams in flour.iteritems() if key not in [\"average\", \"std\"]]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 24 }, { "cell_type": "code", "collapsed": false, "input": [ "# Compute average density\n", "whole_wheat[\"average\"] = numpy.mean(values(whole_wheat))\n", "all_purpose[\"average\"] = numpy.mean(values(all_purpose))\n", "bread_flour[\"average\"] = numpy.mean(values(bread_flour))\n", "rye[\"average\"] = numpy.mean(values(rye))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [ "# Compute standard deviations\n", "whole_wheat[\"std\"] = numpy.std(values(whole_wheat))\n", "all_purpose[\"std\"] = numpy.std(values(all_purpose))\n", "bread_flour[\"std\"] = numpy.std(values(bread_flour))\n", "rye[\"std\"] = numpy.std(values(rye))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 26 }, { "cell_type": "code", "collapsed": false, "input": [ "whole_wheat" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 27, "text": [ "{'Gold Medal': 128,\n", " 'King Arthur': 113,\n", " 'USDA': 125,\n", " 'average': 122.0,\n", " 'std': 6.4807406984078604}" ] } ], "prompt_number": 27 }, { "cell_type": "code", "collapsed": false, "input": [ "all_purpose" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 28, "text": [ "{'Gold Medal': 130,\n", " 'King Arthur': 120,\n", " 'USDA': 125,\n", " 'average': 125.0,\n", " 'std': 4.0824829046386304}" ] } ], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "bread_flour" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 29, "text": [ "{'Gold Medal': 135,\n", " 'King Arthur': 120,\n", " 'USDA': 127,\n", " 'average': 127.33333333333333,\n", " 'std': 6.1282587702834119}" ] } ], "prompt_number": 29 }, { "cell_type": "code", "collapsed": false, "input": [ "rye" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 30, "text": [ "{'King Arthur Medium Rye': 103,\n", " 'King Arthur White Rye': 106,\n", " 'USDA': 102,\n", " 'average': 103.66666666666667,\n", " 'std': 1.699673171197595}" ] } ], "prompt_number": 30 }, { "cell_type": "code", "collapsed": false, "input": [ "# A nice simple percentage function\n", "percentage = lambda part, whole: (part * whole) / 100.0" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "# Eggs!\n", "large_egg = 54.4 # USDA large egg (this is American)\n", "shell = percentage(13, large_egg) #" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "7.071999999999999" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
datascience-practice/data-quest
python_introduction/intermediate/Classes.ipynb
2
8755
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 3: Class syntax\n", "### Instructions\n", "Create a class called Team.\n", "\n", "Inside the class, create a name property. Assign the value \"Tampa Bay Buccaneers\" to this property.\n", "\n", "Create an instance of the Team class, and assign it to the variable bucs.\n", "\n", "Print the name property of the bucs instance." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "black\n" ] } ], "source": [ "class Car():\n", " def __init__(self):\n", " self.color = \"black\"\n", " self.make = \"honda\"\n", " self.model = \"accord\"\n", "\n", "black_honda_accord = Car()\n", "\n", "print(black_honda_accord.color)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Answer\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tampa Bay Buccaneers\n" ] } ], "source": [ "class Team():\n", " def __init__(self):\n", " self.name = \"Tampa Bay Buccaneers\"\n", " \n", "bucs = Team()\n", "\n", "print(bucs.name)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4: Instance methods and __init__\n", "### Instrutions\n", "Add a name parameter to the __init__ method, and set the self.name property to the name argument.\n", "\n", "Make an instance of the class, passing in the value \"New York Giants\" to the __init__ function (when you write Team()).\n", "\n", "Assign the result to the variable giants.\n", "### Answer" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "New York Giants\n" ] } ], "source": [ "class Team():\n", " def __init__(self, name):\n", " self.name = name\n", " \n", "giants = Team(\"New York Giants\")\n", "\n", "print(giants.name)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6: More instance methods\n", "### Instructions\n", "Add an instance method called count_total_wins to the Team class. The method should take no arguments (except self), and should return the number of games the team won from 2009-2013.\n", "\n", "Use the instance method to assign the number of wins by the \"Denver Broncos\" to broncos_wins.\n", "\n", "Use the instance method to assign the number of wins by the \"Kansas City Chiefs\" to chiefs_wins." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tampa Bay Buccaneers\n" ] } ], "source": [ "import csv\n", "\n", "f = open(\"nfl.csv\", 'r')\n", "nfl = list(csv.reader(f))\n", "\n", "# The nfl data is loaded into the nfl variable.\n", "class Team():\n", " def __init__(self, name):\n", " self.name = name\n", "\n", " def print_name(self):\n", " print(self.name)\n", " \n", " # Your method goes here\n", " \n", " \n", "bucs = Team(\"Tampa Bay Buccaneers\")\n", "bucs.print_name()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Answer" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tampa Bay Buccaneers\n", "8 3\n" ] } ], "source": [ "import csv\n", "\n", "f = open(\"nfl.csv\", 'r')\n", "nfl = list(csv.reader(f))\n", "\n", "# The nfl data is loaded into the nfl variable.\n", "class Team():\n", " def __init__(self, name):\n", " self.name = name\n", "\n", " def print_name(self):\n", " print(self.name)\n", " \n", " # Your method goes here\n", " def count_total_wins(self):\n", " wins = 0\n", " for row in nfl:\n", " if row[2] == self.name:\n", " wins += 1\n", " return wins\n", " \n", " \n", "bucs = Team(\"Tampa Bay Buccaneers\")\n", "bucs.print_name()\n", "\n", "broncos_wins = Team(\"Denver Broncos\").count_total_wins()\n", "chiefs_wins = Team(\"Kansas City Chiefs\").count_total_wins()\n", "\n", "print(broncos_wins, chiefs_wins)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 7: Adding to the init function\n", "### Instructions\n", "Add code in the __init__ method to read and store the nfl data in the self.nfl property. The data is stored in \"nfl.csv\".\n", "\n", "Then alter the code in the count_total_wins method to use the self.nfl property instead of the nfl variable (which no longer exists).\n", "\n", "Use the instance method to assign the number of wins by the \"Jacksonville Jaguars\" to jaguars_wins." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import csv\n", "class Team():\n", " def __init__(self, name):\n", " self.name = name\n", " f = open(\"nfl.csv\", 'r')\n", " self.nfl = list(csv.reader(f))\n", " \n", " def count_total_wins(self):\n", " count = 0\n", " for row in self.nfl:\n", " if row[2] == self.name:\n", " count = count + 1\n", " return count\n", "jaguars_wins = Team(\"Jacksonville Jaguars\").count_total_wins()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "7\n" ] } ], "source": [ "print(jaguars_wins)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 8: Wins in a year\n", "### Instructions\n", "Add a method to the Team class that computes how many wins the team had in a given year.\n", "\n", "The count_wins_in_year method should take a year string as an argument (e.g. \"2011\"), and return the number of wins the team had in that year.\n", "\n", "Use the instance method to assign the number of wins in \"2013\" by the \"San Francisco 49ers\" to niners_wins_2013." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] } ], "source": [ "import csv\n", "class Team():\n", " def __init__(self, name):\n", " self.name = name\n", " f = open(\"nfl.csv\", 'r')\n", " csvreader = csv.reader(f)\n", " self.nfl = list(csvreader)\n", "\n", " def count_total_wins(self):\n", " count = 0\n", " for row in self.nfl:\n", " if row[2] == self.name:\n", " count = count + 1\n", " return count\n", " \n", " def count_wins_in_a_year(self, year):\n", " count = 0\n", " for row in self.nfl:\n", " if row[0] == year and row[2] == self.name:\n", " count = count + 1\n", " return count \n", " \n", "niners_wins_2013 = Team(\"San Francisco 49ers\").count_wins_in_a_year(\"2013\")\n", "print(niners_wins_2013)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
awitney/2017
hic_workshop_2017/WD/Basic_HiC_analysis.ipynb
2
28147
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<a id=\"navigation\"></a>\n", "# Hi-C data analysis\n", "\n", "Welcome to the [Jupyter notebook](http://jupyter.org/) dedicated to Hi-C data analysis. Here we will be working in interactive Python environment with some mixture of bash command line tools. \n", "\n", "Here is the outline of what we are going to do:\n", "\n", "0. [Notebook basics](#basics)\n", "1. [Reads maping](#mapping)\n", "2. [Data filtering](#filtering)\n", "3. [Binning](#binning)\n", "4. [Hi-C data visualisation](#visualisation)\n", "5. [Iterative correction](#correction)\n", "6. [Compartments and TADs](#meta)\n", "\n", "If you have any questions, please, contact Aleksandra Galitsyna ([email protected])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id=\"basics\"></a>\n", "## 0. Notebook basics\n", "\n", "If you are new to Python and Jupyter notebook, please, take a quick look through this small list of tips.\n", "\n", "- First of all, __Jupyter notebook is organised in cells__, which may contain text, comments and code blocks of any size." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# This is regular Python comment inside Jupyter \"Code\" cell.\n", "# You can easily run \"Hello world\" in the \"Code\" cell (focus on the cell and press Shift+Enter):\n", "print(\"Hello world!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- There are also other types of cells, for example, \"Markdown\". Double click this cell to view raw Markdown markup content.\n", "[comment]: <> (Wow, can you see it? This is Markdown commented line. Please, click Shift+Enter to render Markdown output again.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- You can define functions, classes, run pipelines and visualisations, run thousands of code lines inside a Jupyter cell.\n", "But usually, it is convenient to write simple and clean blocks of code.\n", "\n", "\n", "- Note that behind this interactive notebook you have __regular Python session running__. Thus Python variables are accessible only throughout your history of actions in the notebook. To create a variable, you have to execute the corresponding block of code. All your variables will be lost when you restart the kernel of the notebook. \n", "\n", "- You can pause or stop the kernel, save notebook (.ipynb) file, copy and insert cells via __buttons in the toolbar__. Please, take a look at these useful buttons.\n", "\n", "- Also, try pressing 'Esc' and then 'h'. You will see __shortcuts help__. \n", "\n", "- Jupyter notebook allows you to create __[\"magical\" cells](http://ipython.readthedocs.io/en/stable/interactive/magics.html )__. We will use %%bash, %%capture, %matplotlib. For example, %%bash magic makes it easier to access bash commands:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "%%bash \n", "echo \"Current directory is: \"; pwd\n", "echo \"List of files in the current directory is: \"; ls" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- If you are not sure about the function, class or variable then use its name with '?' at the end to get available documentation. Here is an example for common module numpy:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Module import under custom name\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# You've started asking questions about it\n", "np?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, it seems that now we are ready to start our Hi-C data analysis! I've placed [Go top](#navigation) shortcut for you in each section so that you can navigate quickly throughout the notebook." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id=\"mapping\"></a>\n", "## 1. Reads mapping\n", "[Go top](#navigation)\n", "\n", "#### 1.1 Input raw data \n", "Hi-C results in paired-end sequencing, where each pair represents one possible contact. The analysis starts with raw sequencing data (.fastq files). \n", "\n", "I've downloaded raw files from [Flyamer et al. 2017](http://www.nature.com/nature/journal/v544/n7648/full/nature21711.html?foxtrotcallback=true) (GEO ID [GSE80006](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80006)) and placed them in the DATA/FASTQ/ directory. \n", "\n", "We can view these files easily with bash help. Forward and reverse reads, correspondingly:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%%bash \n", "head -n 8 '../DATA/FASTQ/K562_B-bulk_R1.fastq'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%%bash \n", "head -n 8 '../DATA/FASTQ/K562_B-bulk_R2.fastq'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.2 Genome\n", "\n", "Now we have to map these reads to the genome of interest (*Homo sapiens* hg19 downloaded from [UCSC](ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/) in this case). \n", "We are going to use only chromosome 1 to minimise computational time. \n", "\n", "The genome is also pre-downloaded:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%%bash \n", "ls ../GENOMES/HG19_FASTA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For Hi-C data mapping we will use [hiclib](https://bitbucket.org/mirnylab/hiclib). It utilizes [bowtie 2](http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml) read mapping software. Bowtie 2 indexes the genome prior to reads mapping in order to reduce memory usage. Usually, you have to run genome indexing, but I've already done this time-consuming step. That's why code for this step is included but commented." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#%%bash\n", "#bowtie2-build /home/jovyan/GENOMES/HG19_FASTA/chr1.fa /home/jovyan/GENOMES/HG19_IND/hg19_chr1\n", "#Time consuming step" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%%bash \n", "ls ../GENOMES/HG19_IND" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.3 Iterative mapping\n", "\n", "First of all, we need to import useful Python packages:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import os\n", "\n", "from hiclib import mapping\n", "from mirnylib import h5dict, genome" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we need to set some parameters and prepare our environment:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%%bash \n", "which bowtie2\n", "# Bowtie 2 path" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%%bash\n", "pwd\n", "# Current working directory path" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Setting parameters and environmental variables\n", "bowtie_path = '/opt/conda/bin/bowtie2'\n", "\n", "enzyme = 'DpnII'\n", "\n", "bowtie_index_path = '/home/jovyan/GENOMES/HG19_IND/hg19_chr1'\n", "fasta_path = '/home/jovyan/GENOMES/HG19_FASTA/'\n", "chrms = ['1']\n", "\n", "# Reading the genome\n", "genome_db = genome.Genome(fasta_path, readChrms=chrms)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Creating directories for further data processing\n", "\n", "if not os.path.exists('tmp/'):\n", " os.mkdir('tmp/', exists_)\n", "if not os.path.exists('../DATA/SAM/'):\n", " os.mkdir('../DATA/SAM/')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Set parameters for iterative mapping\n", "\n", "min_seq_len = 25\n", "len_step = 5\n", "nthreads = 2\n", "temp_dir = 'tmp'\n", "bowtie_flags = '--very-sensitive'\n", "\n", "infile1 = '/home/jovyan/DATA/FASTQ1/K562_B-bulk_R1.fastq'\n", "infile2 = '/home/jovyan/DATA/FASTQ1/K562_B-bulk_R2.fastq'\n", "out1 = '/home/jovyan/DATA/SAM/K562_B-bulk_R1.chr1.sam'\n", "out2 = '/home/jovyan/DATA/SAM/K562_B-bulk_R2.chr1.sam'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "# Iterative mapping itself. Time consuming step!\n", "\n", "mapping.iterative_mapping(\n", " bowtie_path = bowtie_path,\n", " bowtie_index_path = bowtie_index_path,\n", " fastq_path = infile1,\n", " out_sam_path = out1,\n", " min_seq_len = min_seq_len,\n", " len_step = len_step,\n", " nthreads = nthreads,\n", " temp_dir = temp_dir, \n", " bowtie_flags = bowtie_flags)\n", "\n", "mapping.iterative_mapping(\n", " bowtie_path = bowtie_path,\n", " bowtie_index_path = bowtie_index_path,\n", " fastq_path = infile2,\n", " out_sam_path = out2,\n", " min_seq_len = min_seq_len,\n", " len_step = len_step,\n", " nthreads = nthreads,\n", " temp_dir = temp_dir, \n", " bowtie_flags = bowtie_flags)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's take a look at .sam files that were created during iterative mapping:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%%bash\n", "ls /home/jovyan/DATA/SAM/" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%%bash\n", "head -n 10 /home/jovyan/DATA/SAM/K562_B-bulk_R1.chr1.sam.25" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.4 Making sense of mapping output \n", "For each read length and orientation, we have a file. Now we need to merge them into the single dataset ([.hdf5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) file):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create the directory for output\n", "if not os.path.exists('../DATA/HDF5/'):\n", " os.mkdir('../DATA/HDF5/')\n", "\n", "# Define file name for output\n", "out = '/home/jovyan/DATA/HDF5/K562_B-bulk.fragments.hdf5'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Open output file\n", "mapped_reads = h5dict.h5dict(out)\n", "\n", "# Parse mapping data and write to output file\n", "mapping.parse_sam(\n", " sam_basename1 = out1,\n", " sam_basename2 = out2,\n", " out_dict = mapped_reads,\n", " genome_db = genome_db,\n", " enzyme_name = enzyme, \n", " save_seqs = False,\n", " keep_ids = False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's take a look at the created file:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%%bash\n", "ls /home/jovyan/DATA/HDF5/" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import h5py\n", "\n", "# Reading the file\n", "a = h5py.File('/home/jovyan/DATA/HDF5/K562_B-bulk.fragments.hdf5')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# \"a\" variable has dictionary-like structure, we can view its keys, for example:\n", "list( a.keys() )" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Mapping positions for forward reads are stored under 'cuts1' key:\n", "a['cuts1'].value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id=\"filtering\"></a>\n", "## 2. Data filtering\n", "[Go top](#navigation)\n", "\n", "The raw Hi-C data is mapped and interpreted, the next step is to filter out possible methodological artefacts:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from hiclib import fragmentHiC" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "inp = '/home/jovyan/DATA/HDF5/K562_B-bulk.fragments.hdf5'\n", "out = '/home/jovyan/DATA/HDF5/K562_B-bulk.fragments_filtered.hdf5'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Create output file\n", "fragments = fragmentHiC.HiCdataset(\n", " filename = out,\n", " genome = genome_db,\n", " maximumMoleculeLength= 500,\n", " mode = 'w')\n", "\n", "# Parse input data\n", "fragments.parseInputData(\n", " dictLike=inp)\n", "\n", "# Filtering\n", "fragments.filterRsiteStart(offset=5) # reads map too close to restriction site\n", "fragments.filterDuplicates() # remove PCR duplicates\n", "fragments.filterLarge() # remove too large restriction fragments\n", "fragments.filterExtreme(cutH=0.005, cutL=0) # remove fragments with too high and low counts" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Some hidden filteres were also applied, we can check them all:\n", "fragments.printMetadata()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nice visualisation of the data:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "\n", "df_stat = pd.DataFrame(list(fragments.metadata.items()), columns=['Feature', 'Count'])\n", "df_stat" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df_stat['Ratio of total'] = 100*df_stat['Count']/df_stat.loc[2,'Count']\n", "df_stat" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id=\"binning\"></a>\n", "## 3. Data binning\n", "[Go top](#navigation)\n", "\n", "The previous analysis involved interactions of restriction fragments, now we would like to work with interactions of genomic bins." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Define file name for binned data. Note \"{}\" prepared for string formatting\n", "out_bin = '/home/jovyan/DATA/HDF5/K562_B-bulk.binned_{}.hdf5'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "res_kb = [100, 20] # Several resolutions in Kb\n", "\n", "for res in res_kb:\n", " print(res)\n", " \n", " outmap = out_bin.format(str(res)+'kb') # String formatting\n", "\n", " fragments.saveHeatmap(outmap, res*1000) # Save heatmap" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "del fragments # delete unwanted object" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id=\"visualisation\"></a>\n", "## 4. Hi-C data visualisation\n", "[Go top](#navigation)\n", "\n", "Let's take a look at the resulting heat maps." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Importing visualisation modules\n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set_style('ticks')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from hiclib.binnedData import binnedDataAnalysis" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "res = 100 # Resolution in Kb" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# prepare to read the data\n", "data_hic = binnedDataAnalysis(resolution=res*1000, genome=genome_db)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# read the data\n", "data_hic.simpleLoad('/home/jovyan/DATA/HDF5/K562_B-bulk.binned_{}.hdf5'.format(str(res)+'kb'),'hic')\n", "mtx = data_hic.dataDict['hic']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "# show heatmap\n", "plt.figure(figsize=[15,15])\n", "plt.imshow(mtx[0:200, 0:200], cmap='jet', interpolation='None')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id=\"correction\"></a>\n", "## 5. Iterative correction\n", "[Go top](#navigation)\n", "\n", "The next typical step is data correction for unequal amplification and accessibility of genomic regions. \n", "We will use iterative correction. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Additional data filtering \n", "data_hic.removeDiagonal()\n", "data_hic.removePoorRegions()\n", "data_hic.removeZeros()\n", "data_hic.iterativeCorrectWithoutSS(force=True)\n", "data_hic.restoreZeros()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mtx = data_hic.dataDict['hic']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plt.figure(figsize=[15,15])\n", "plt.imshow(mtx[200:500, 200:500], cmap='jet', interpolation='None')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id=\"meta\"></a>\n", "## 7. Compartmanets and TADs\n", "[Go top](#navigation)\n", "\n", "#### 7.1 Comparison with compartments\n", "Compartments usually can be found at whole-genome datasets, but we have only chromosome 1. Still, we can try to find some visual signs of compartments." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Load compartments computed previously based on K562 dataset from Rao et al. 2014\n", "eig = np.loadtxt('/home/jovyan/DATA/ANNOT/comp_K562_100Kb_chr1.tsv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "eig" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from matplotlib import gridspec" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bgn = 0\n", "end = 500\n", "\n", "fig = plt.figure(figsize=(10,10))\n", "\n", "gs = gridspec.GridSpec(2, 1, height_ratios=[20,2]) \n", "gs.update(wspace=0.0, hspace=0.0)\n", "\n", "ax = plt.subplot(gs[0,0])\n", "\n", "ax.matshow(mtx[bgn:end, bgn:end], cmap='jet', origin='lower', aspect='auto')\n", "ax.set_xticks([])\n", "ax.set_yticks([])\n", "\n", "axl = plt.subplot(gs[1,0])\n", "plt.plot(range(end-bgn), eig[bgn:end] )\n", "plt.xlim(0, end-bgn)\n", "plt.xlabel('Eigenvector values')\n", "\n", "ticks = range(bgn, end+1, 100)\n", "ticklabels = ['{} Kb'.format(x) for x in ticks]\n", "plt.xticks(ticks, ticklabels)\n", "\n", "print('')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Seems to be nothing special with compartments. What if we had much better coverage by reads? Let's take a look at the dataset from [Rao et al. 2014](https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(14)01497-4), GEO [ GSE63525, HIC069](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mtx_Rao = np.genfromtxt('../DATA/ANNOT/Rao_K562_chr1.csv', delimiter=',')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bgn = 0\n", "end = 500\n", "\n", "fig = plt.figure(figsize=(10,10))\n", "\n", "gs = gridspec.GridSpec(2, 1, height_ratios=[20,2])\n", "gs.update(wspace=0.0, hspace=0.0)\n", "\n", "ax = plt.subplot(gs[0,0])\n", "\n", "ax.matshow(mtx_Rao[bgn:end, bgn:end], cmap='jet', origin='lower', aspect='auto', vmax=1000)\n", "ax.set_xticks([])\n", "ax.set_yticks([])\n", "\n", "axl = plt.subplot(gs[1,0])\n", "plt.plot(range(end-bgn), eig[bgn:end] )\n", "plt.xlim(0, end-bgn)\n", "plt.xlabel('Eigenvector values')\n", "\n", "ticks = range(bgn, end+1, 100)\n", "ticklabels = ['{} Kb'.format(x) for x in ticks]\n", "plt.xticks(ticks, ticklabels)\n", "\n", "print('')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#### 7.2 Topologically associating domains (TADs)\n", "\n", "For TADs calling we will use [lavaburst](https://github.com/nezar-compbio/lavaburst) package. The code below is based on [this example](http://nbviewer.jupyter.org/github/nezar-compbio/lavaburst/blob/master/example/example.ipynb)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Import Python package \n", "import lavaburst" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "good_bins = mtx.astype(bool).sum(axis=0) > 1 # We have to mask rows/cols if data is missing\n", "\n", "gam=[0.15, 0.25, 0.5, 0.75, 1.0] # set of parameters gamma for TADs calling\n", "\n", "segments_dict = {}\n", "\n", "for gam_current in gam:\n", " print(gam_current)\n", " \n", " S = lavaburst.scoring.armatus_score(mtx, gamma=gam_current, binmask=good_bins)\n", " model = lavaburst.model.SegModel(S)\n", " segments = model.optimal_segmentation() # Positions of TADs for input matrix\n", "\n", " segments_dict[gam_current] = segments.copy()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "A = mtx.copy()\n", "\n", "good_bins = A.astype(bool).sum(axis=0) > 0\n", "\n", "At = lavaburst.utils.tilt_heatmap(mtx, n_diags=100)\n", "\n", "start_tmp = 0\n", "end_tmp = 500\n", "\n", "f = plt.figure(figsize=(20, 6))\n", "\n", "ax = f.add_subplot(111)\n", "blues = sns.cubehelix_palette(0.4, gamma=0.5, rot=-0.3, dark=0.1, light=0.9, as_cmap=True)\n", "ax.matshow(np.log(At[start_tmp: end_tmp]), cmap=blues)\n", "\n", "cmap = mpl.cm.get_cmap('brg')\n", "\n", "gammas = segments_dict.keys()\n", "for n, gamma in enumerate(gammas):\n", "\n", " segments = segments_dict[gamma]\n", "\n", " for a in segments[:-1]:\n", " if a[1]<start_tmp or a[0]>end_tmp:\n", " continue\n", " ax.plot([a[0]-start_tmp, a[0]+(a[1]-a[0])/2-start_tmp], [0, -(a[1]-a[0])], c=cmap(n/len(gammas)), alpha=0.5)\n", " ax.plot([a[0]+(a[1]-a[0])/2-start_tmp, a[1]-start_tmp], [-(a[1]-a[0]), 0], c=cmap(n/len(gammas)), alpha=0.5)\n", "\n", " a = segments[-1]\n", " ax.plot([a[0]-start_tmp, a[0]+(a[1]-a[0])/2-start_tmp], [0, -(a[1]-a[0])], c=cmap(n/len(gammas)), alpha=0.5, label=gamma)\n", " ax.plot([a[0]+(a[1]-a[0])/2-start_tmp, a[1]-start_tmp], [-(a[1]-a[0]), 0], c=cmap(n/len(gammas)), alpha=0.5)\n", " \n", "ax.set_xlim([0,end_tmp-start_tmp])\n", "ax.set_ylim([100,-100])\n", " \n", "ax.legend(bbox_to_anchor=(1.1, 1.05))\n", "ax.set_aspect(0.5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#Let's check what are median TAD sized with different parameters:\n", "\n", "for gam_current in gam:\n", " segments = segments_dict[gam_current]\n", " tad_lens = segments[:,1]-segments[:,0]\n", " good_lens = (tad_lens>=200/res)&(tad_lens<100)\n", " print(res*1000*np.mean(tad_lens[good_lens]))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0