conflict_resolution
stringlengths 27
16k
|
---|
<<<<<<<
public IntegerVertex pluck(int... index) {
return new IntegerPluckVertex(this, index);
}
=======
public IntegerVertex slice(int dimension, int index) {
return new IntegerSliceVertex(this, dimension, index);
}
>>>>>>>
public IntegerVertex slice(int dimension, int index) {
return new IntegerSliceVertex(this, dimension, index);
}
public IntegerVertex pluck(int... index) {
return new IntegerPluckVertex(this, index);
} |
<<<<<<<
import java.util.HashMap;
import java.util.Map;
import io.improbable.keanu.annotation.ExportVertexToPythonBindings;
=======
>>>>>>>
import io.improbable.keanu.annotation.ExportVertexToPythonBindings; |
<<<<<<<
public class PoissonVertex extends IntegerVertex implements ProbabilisticInteger, SamplableWithManyScalars<IntegerTensor> {
=======
import java.util.Collections;
import java.util.Map;
import java.util.Set;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
public class PoissonVertex extends IntegerVertex implements ProbabilisticInteger {
>>>>>>>
import java.util.Collections;
import java.util.Map;
import java.util.Set;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
public class PoissonVertex extends IntegerVertex implements ProbabilisticInteger, SamplableWithManyScalars<IntegerTensor> { |
<<<<<<<
@Override
public BooleanTensor calculate() {
return op(a.getValue(), b.getValue());
}
protected abstract BooleanTensor op(A a, B b);
=======
protected abstract BooleanTensor op(A l, B r);
>>>>>>>
@Override
public BooleanTensor calculate() {
return op(a.getValue(), b.getValue());
}
protected abstract BooleanTensor op(A l, B r); |
<<<<<<<
import io.improbable.keanu.vertices.bool.BooleanVertex;
import io.improbable.keanu.vertices.dbl.KeanuRandom;
=======
>>>>>>>
import io.improbable.keanu.vertices.bool.BooleanVertex; |
<<<<<<<
public DoubleVertex toGreaterThanMask(DoubleVertex rhs) {
return new DoubleGreaterThanMaskVertex(this, rhs);
}
public DoubleVertex toGreaterThanMask(double rhs) {
return new DoubleGreaterThanMaskVertex(this, new ConstantDoubleVertex(rhs));
}
public <T extends NumberTensor> BoolVertex greaterThanOrEqualTo(Vertex<T> rhs) {
=======
public <T extends NumberTensor> BooleanVertex greaterThanOrEqualTo(Vertex<T> rhs) {
>>>>>>>
public DoubleVertex toGreaterThanMask(DoubleVertex rhs) {
return new DoubleGreaterThanMaskVertex(this, rhs);
}
public DoubleVertex toGreaterThanMask(double rhs) {
return new DoubleGreaterThanMaskVertex(this, new ConstantDoubleVertex(rhs));
}
public <T extends NumberTensor> BooleanVertex greaterThanOrEqualTo(Vertex<T> rhs) {
<<<<<<<
public DoubleVertex toGreaterThanOrEqualToMask(DoubleVertex rhs) {
return new DoubleGreaterThanOrEqualToMaskVertex(this, rhs);
}
public DoubleVertex toGreaterThanOrEqualToMask(double rhs) {
return new DoubleGreaterThanOrEqualToMaskVertex(this, new ConstantDoubleVertex(rhs));
}
public <T extends NumberTensor> BoolVertex lessThan(Vertex<T> rhs) {
=======
public <T extends NumberTensor> BooleanVertex lessThan(Vertex<T> rhs) {
>>>>>>>
public DoubleVertex toGreaterThanOrEqualToMask(DoubleVertex rhs) {
return new DoubleGreaterThanOrEqualToMaskVertex(this, rhs);
}
public DoubleVertex toGreaterThanOrEqualToMask(double rhs) {
return new DoubleGreaterThanOrEqualToMaskVertex(this, new ConstantDoubleVertex(rhs));
}
public <T extends NumberTensor> BooleanVertex lessThan(Vertex<T> rhs) {
<<<<<<<
public DoubleVertex toLessThanMask(DoubleVertex rhs) {
return new DoubleLessThanMaskVertex(this, rhs);
}
public DoubleVertex toLessThanMask(double rhs) {
return new DoubleLessThanMaskVertex(this, new ConstantDoubleVertex(rhs));
}
public <T extends NumberTensor> BoolVertex lessThanOrEqualTo(Vertex<T> rhs) {
=======
public <T extends NumberTensor> BooleanVertex lessThanOrEqualTo(Vertex<T> rhs) {
>>>>>>>
public DoubleVertex toLessThanMask(DoubleVertex rhs) {
return new DoubleLessThanMaskVertex(this, rhs);
}
public DoubleVertex toLessThanMask(double rhs) {
return new DoubleLessThanMaskVertex(this, new ConstantDoubleVertex(rhs));
}
public <T extends NumberTensor> BooleanVertex lessThanOrEqualTo(Vertex<T> rhs) { |
<<<<<<<
public static BayesNetDoubleAsContinuous createSimpleGaussian(double mu, double sigma, Random random) {
GaussianVertex A = new GaussianVertex(mu, sigma, random);
=======
public static BayesNet createSimpleGaussian(double mu, double sigma, KeanuRandom random) {
GaussianVertex A = new GaussianVertex(mu, sigma);
>>>>>>>
public static BayesNetDoubleAsContinuous createSimpleGaussian(double mu, double sigma, KeanuRandom random) {
GaussianVertex A = new GaussianVertex(mu, sigma);
<<<<<<<
public static BayesNetDoubleAsContinuous createSumOfGaussianDistribution(double mu, double sigma, double observedSum, Random random) {
=======
public static BayesNet createSumOfGaussianDistribution(double mu, double sigma, double observedSum, KeanuRandom random) {
>>>>>>>
public static BayesNetDoubleAsContinuous createSumOfGaussianDistribution(double mu, double sigma, double observedSum, KeanuRandom random) {
<<<<<<<
public static BayesNetDoubleAsContinuous create2DDonutDistribution(Random random) {
DoubleVertex A = new GaussianVertex(0, 1, random);
DoubleVertex B = new GaussianVertex(0, 1, random);
=======
public static BayesNet create2DDonutDistribution(KeanuRandom random) {
DoubleVertex A = new GaussianVertex(0, 1);
DoubleVertex B = new GaussianVertex(0, 1);
>>>>>>>
public static BayesNetDoubleAsContinuous create2DDonutDistribution(KeanuRandom random) {
DoubleVertex A = new GaussianVertex(0, 1);
DoubleVertex B = new GaussianVertex(0, 1); |
<<<<<<<
@Override
=======
@SaveParentVertex(LEFT_NAME)
>>>>>>>
@Override
@SaveParentVertex(LEFT_NAME)
<<<<<<<
@Override
=======
@SaveParentVertex(RIGHT_NAME)
>>>>>>>
@Override
@SaveParentVertex(RIGHT_NAME) |
<<<<<<<
import static io.improbable.keanu.distributions.hyperparam.Diffs.MU;
import static io.improbable.keanu.distributions.hyperparam.Diffs.SIGMA;
import static io.improbable.keanu.distributions.hyperparam.Diffs.X;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import io.improbable.keanu.annotation.ExportVertexToPythonBindings;
=======
>>>>>>>
import io.improbable.keanu.annotation.ExportVertexToPythonBindings; |
<<<<<<<
public TriangularVertex(@LoadVertexParam(X_MIN_NAME) DoubleVertex xMin,
@LoadVertexParam(X_MAX_NAME) DoubleVertex xMax,
@LoadVertexParam(C_NAME) DoubleVertex c) {
this(checkHasSingleNonScalarShapeOrAllScalar(xMin.getShape(), xMax.getShape(), c.getShape()), xMin, xMax, c);
=======
public TriangularVertex(@LoadParentVertex(X_MIN_NAME) DoubleVertex xMin,
@LoadParentVertex(X_MAX_NAME) DoubleVertex xMax,
@LoadParentVertex(C_NAME) DoubleVertex c) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(xMin.getShape(), xMax.getShape(), c.getShape()), xMin, xMax, c);
>>>>>>>
public TriangularVertex(@LoadVertexParam(X_MIN_NAME) DoubleVertex xMin,
@LoadVertexParam(X_MAX_NAME) DoubleVertex xMax,
@LoadVertexParam(C_NAME) DoubleVertex c) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(xMin.getShape(), xMax.getShape(), c.getShape()), xMin, xMax, c); |
<<<<<<<
protected DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) {
=======
public DualNumber calculateDualNumber(Map<Vertex, DualNumber> dualNumbers) {
>>>>>>>
public DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) { |
<<<<<<<
public final Map<String, DoubleTensor> dLogProbAtValue() {
=======
public Map<Long, DoubleTensor> dLogProbAtValue() {
>>>>>>>
public final Map<Long, DoubleTensor> dLogProbAtValue() { |
<<<<<<<
protected DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) {
=======
public DualNumber calculateDualNumber(Map<Vertex, DualNumber> dualNumbers) {
>>>>>>>
public DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) { |
<<<<<<<
public MinVertex(@LoadVertexParam(LEFT_NAME) DoubleVertex left,
@LoadVertexParam(RIGHT_NAME) DoubleVertex right) {
super(left.getShape(), left.lessThanOrEqualTo(right), left, right);
=======
public MinVertex(@LoadParentVertex(LEFT_NAME) DoubleVertex left,
@LoadParentVertex(RIGHT_NAME) DoubleVertex right) {
super(left.lessThanOrEqualTo(right), left, right);
>>>>>>>
public MinVertex(@LoadVertexParam(LEFT_NAME) DoubleVertex left,
@LoadVertexParam(RIGHT_NAME) DoubleVertex right) {
super(left.lessThanOrEqualTo(right), left, right); |
<<<<<<<
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasOneNonLengthOneShapeOrAllLengthOne;
=======
@DisplayInformationForOutput(displayName = "/")
>>>>>>>
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasOneNonLengthOneShapeOrAllLengthOne;
@DisplayInformationForOutput(displayName = "/") |
<<<<<<<
private Beta() {
}
/**
* Computer Generation of Statistical Distributions
* by Richard Saucier
* ARL-TR-2168 March 2000
* 5.1.2 page 14
*/
=======
>>>>>>>
private Beta() {
}
/**
* Computer Generation of Statistical Distributions
* by Richard Saucier
* ARL-TR-2168 March 2000
* 5.1.2 page 14
*/ |
<<<<<<<
import io.improbable.keanu.util.ProgressBar;
=======
import io.improbable.keanu.util.status.StatusBar;
import io.improbable.keanu.vertices.ProbabilityCalculator;
import io.improbable.keanu.vertices.Vertex;
import io.improbable.keanu.vertices.VertexId;
>>>>>>>
import io.improbable.keanu.util.status.StatusBar;
<<<<<<<
@Override
public NetworkSamplesGenerator generatePosteriorSamples(final ProbabilisticModel model,
final List<? extends Variable> fromVariables) {
Preconditions.checkArgument(model instanceof ProbabilisticModelWithGradient, "NUTS requires a model on which gradients can be calculated.");
return new NetworkSamplesGenerator(setupSampler((ProbabilisticModelWithGradient) model, fromVariables), ProgressBar::new);
=======
return new NetworkSamplesGenerator(setupSampler(bayesNet, fromVertices), StatusBar::new);
>>>>>>>
@Override
public NetworkSamplesGenerator generatePosteriorSamples(final ProbabilisticModel model,
final List<? extends Variable> fromVariables) {
Preconditions.checkArgument(model instanceof ProbabilisticModelWithGradient, "NUTS requires a model on which gradients can be calculated.");
return new NetworkSamplesGenerator(setupSampler((ProbabilisticModelWithGradient) model, fromVariables), StatusBar::new); |
<<<<<<<
public LogNormalVertex(DoubleVertex mu, DoubleVertex sigma) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(mu.getShape(), sigma.getShape()), mu, sigma);
=======
@ExportVertexToPythonBindings
public LogNormalVertex(@LoadParentVertex(MU_NAME) DoubleVertex mu,
@LoadParentVertex(SIGMA_NAME) DoubleVertex sigma) {
this(checkHasSingleNonScalarShapeOrAllScalar(mu.getShape(), sigma.getShape()), mu, sigma);
>>>>>>>
@ExportVertexToPythonBindings
public LogNormalVertex(@LoadParentVertex(MU_NAME) DoubleVertex mu,
@LoadParentVertex(SIGMA_NAME) DoubleVertex sigma) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(mu.getShape(), sigma.getShape()), mu, sigma); |
<<<<<<<
public void fit(INPUT input, OUTPUT output) {
modelGraph.observeValues(input, output);
KeanuOptimizer.Gradient.of(modelGraph.getBayesianNetwork()).maxLikelihood();
=======
public void fit(ModelGraph modelGraph) {
GradientOptimizer.of(modelGraph.getBayesianNetwork()).maxLikelihood();
>>>>>>>
public void fit(ModelGraph modelGraph) {
KeanuOptimizer.Gradient.of(modelGraph.getBayesianNetwork()).maxLikelihood(); |
<<<<<<<
import io.improbable.keanu.distributions.dual.Diffs;
=======
import io.improbable.keanu.tensor.TensorShape;
>>>>>>>
import io.improbable.keanu.distributions.dual.Diffs;
import io.improbable.keanu.tensor.TensorShape;
<<<<<<<
=======
import java.util.Map;
import static io.improbable.keanu.tensor.TensorShape.shapeToDesiredRankByPrependingOnes;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
>>>>>>>
import static io.improbable.keanu.tensor.TensorShape.shapeToDesiredRankByPrependingOnes;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
<<<<<<<
Diffs dlnP = Logistic.withParameters(mu.getValue(), s.getValue()).dLogProb(value);
return convertDualNumbersToDiff(dlnP.get(MU).getValue(), dlnP.get(S).getValue(), dlnP.get(X).getValue());
=======
Logistic.DiffLogP dlnP = Logistic.dlnPdf(mu.getValue(), s.getValue(), value);
return convertDualNumbersToDiff(dlnP.dLogPdmu, dlnP.dLogPds, dlnP.dLogPdx);
>>>>>>>
Diffs dlnP = Logistic.withParameters(mu.getValue(), s.getValue()).dLogProb(value);
return convertDualNumbersToDiff(dlnP.get(MU).getValue(), dlnP.get(S).getValue(), dlnP.get(X).getValue()); |
<<<<<<<
ProbabilisticWithGradientGraph gradientGraph;
if (USE_TENSORFLOW) {
gradientGraph = TensorflowGraphConverter.convertWithGradient(bayesNet);
} else {
bayesNet.cascadeObservations();
gradientGraph = KeanuGraphConverter.convertWithGradient(bayesNet);
}
final List<String> latentVariables = gradientGraph.getLatentVariables();
final List<String> sampleFrom = sampleFromVertices.stream()
.map(Vertex::getUniqueStringReference)
.collect(Collectors.toList());
=======
Preconditions.checkArgument(!sampleFromVertices.isEmpty(), "List of vertices to sample from is empty");
bayesNet.cascadeObservations();
>>>>>>>
Preconditions.checkArgument(!sampleFromVertices.isEmpty(), "List of vertices to sample from is empty");
ProbabilisticWithGradientGraph gradientGraph;
if (USE_TENSORFLOW) {
gradientGraph = TensorflowGraphConverter.convertWithGradient(bayesNet);
} else {
bayesNet.cascadeObservations();
gradientGraph = KeanuGraphConverter.convertWithGradient(bayesNet);
}
final List<String> latentVariables = gradientGraph.getLatentVariables();
final List<String> sampleFrom = sampleFromVertices.stream()
.map(Vertex::getUniqueStringReference)
.collect(Collectors.toList()); |
<<<<<<<
import io.improbable.keanu.KeanuRandom;
import io.improbable.keanu.tensor.bool.BooleanTensor;
=======
>>>>>>>
import io.improbable.keanu.tensor.bool.BooleanTensor; |
<<<<<<<
public InverseGammaVertex(DoubleVertex alpha, DoubleVertex beta) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(alpha.getShape(), beta.getShape()), alpha, beta);
=======
@ExportVertexToPythonBindings
public InverseGammaVertex(@LoadParentVertex(ALPHA_NAME) DoubleVertex alpha,
@LoadParentVertex(BETA_NAME) DoubleVertex beta) {
this(checkHasSingleNonScalarShapeOrAllScalar(alpha.getShape(), beta.getShape()), alpha, beta);
>>>>>>>
@ExportVertexToPythonBindings
public InverseGammaVertex(@LoadParentVertex(ALPHA_NAME) DoubleVertex alpha,
@LoadParentVertex(BETA_NAME) DoubleVertex beta) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(alpha.getShape(), beta.getShape()), alpha, beta); |
<<<<<<<
import io.improbable.keanu.algorithms.variational.optimizer.*;
=======
import io.improbable.keanu.algorithms.ProbabilisticModelWithGradient;
>>>>>>>
import io.improbable.keanu.algorithms.ProbabilisticModelWithGradient;
import io.improbable.keanu.algorithms.VariableReference;
import io.improbable.keanu.algorithms.variational.optimizer.FitnessFunction;
import io.improbable.keanu.algorithms.variational.optimizer.FitnessFunctionGradient;
import io.improbable.keanu.algorithms.variational.optimizer.OptimizedResult;
<<<<<<<
import io.improbable.keanu.algorithms.variational.optimizer.ProbabilisticWithGradientGraph;
import io.improbable.keanu.algorithms.variational.optimizer.nongradient.LogLikelihoodFitnessFunction;
import io.improbable.keanu.algorithms.variational.optimizer.nongradient.LogProbFitnessFunction;
import io.improbable.keanu.tensor.dbl.DoubleTensor;
=======
>>>>>>>
import io.improbable.keanu.algorithms.variational.optimizer.nongradient.LogLikelihoodFitnessFunction;
import io.improbable.keanu.algorithms.variational.optimizer.nongradient.LogProbFitnessFunction;
import io.improbable.keanu.tensor.dbl.DoubleTensor;
<<<<<<<
public OptimizedResult maxAPosteriori() {
return optimize(probabilisticWithGradientGraph, false);
=======
public double maxAPosteriori() {
assertHasLatents();
FitnessFunctionWithGradient fitnessFunction = new FitnessFunctionWithGradient(
probabilisticModel,
false,
this::handleGradientCalculation,
this::handleFitnessCalculation
);
return optimize(fitnessFunction);
>>>>>>>
public OptimizedResult maxAPosteriori() {
return optimize(probabilisticModelWithGradient, false);
<<<<<<<
FitnessFunction fitnessFunction;
FitnessFunctionGradient fitnessFunctionGradient;
=======
FitnessFunctionWithGradient fitnessFunction = new FitnessFunctionWithGradient(
probabilisticModel,
true,
this::handleGradientCalculation,
this::handleFitnessCalculation
);
>>>>>>>
FitnessFunction fitnessFunction;
FitnessFunctionGradient fitnessFunctionGradient;
<<<<<<<
private OptimizedResult optimize(FitnessFunction fitnessFunction, FitnessFunctionGradient fitnessFunctionGradient) {
=======
double[] startingPoint = Optimizer.convertToPoint(getAsDoubleTensors(probabilisticModel.getLatentVariables()));
>>>>>>>
private OptimizedResult optimize(FitnessFunction fitnessFunction, FitnessFunctionGradient fitnessFunctionGradient) {
<<<<<<<
private ProbabilisticWithGradientGraph probabilisticWithGradientGraph;
private GradientOptimizationAlgorithm gradientOptimizationAlgorithm = ConjugateGradient.builder().build();
private boolean checkInitialFitnessConditions = true;
=======
private ProbabilisticModelWithGradient probabilisticModel;
private int maxEvaluations = Integer.MAX_VALUE;
private double relativeThreshold = 1e-8;
private double absoluteThreshold = 1e-8;
private UpdateFormula updateFormula = UpdateFormula.POLAK_RIBIERE;
>>>>>>>
private ProbabilisticModelWithGradient probabilisticModelWithGradient;
private GradientOptimizationAlgorithm gradientOptimizationAlgorithm = ConjugateGradient.builder().build();
private boolean checkInitialFitnessConditions = true; |
<<<<<<<
import static org.junit.Assert.assertEquals;
import java.util.List;
import java.util.function.Function;
import io.improbable.keanu.algorithms.variational.GradientOptimizer;
=======
import io.improbable.keanu.algorithms.variational.optimizer.gradient.GradientOptimizer;
>>>>>>>
import static org.junit.Assert.assertEquals;
import java.util.List;
import java.util.function.Function;
import io.improbable.keanu.algorithms.variational.optimizer.gradient.GradientOptimizer; |
<<<<<<<
import io.improbable.keanu.distributions.continuous.SmoothUniformDistribution;
import io.improbable.keanu.tensor.dbl.DoubleTensor;
=======
import io.improbable.keanu.distributions.continuous.SmoothUniform;
>>>>>>>
import io.improbable.keanu.distributions.continuous.SmoothUniform;
import io.improbable.keanu.tensor.dbl.DoubleTensor; |
<<<<<<<
@Test
public void youCanCheckForZeros() {
IntegerTensor containsZero = IntegerTensor.create(new int[]{
0, -1, Integer.MAX_VALUE,
Integer.MIN_VALUE, -0, 1},
3, 2);
BooleanTensor expectedMask = BooleanTensor.create(new boolean[]{
false, true, true,
true, false, true},
3, 2);
TensorValidator<Integer, IntegerTensor> validator = TensorValidator.thatExpectsNotToFind(0);
assertThat(validator.check(containsZero), equalTo(expectedMask));
}
@Test
public void youCanFixAValidationIssueByReplacingTheValue() {
IntegerTensor containsMinusOne = IntegerTensor.create(1, 0, -1);
IntegerTensor expectedResult = IntegerTensor.create(1, 0, 0);
TensorValidator<Integer, IntegerTensor> validator = TensorValidator.thatReplaces(-1, 0);
containsMinusOne = validator.validate(containsMinusOne);
assertThat(containsMinusOne, equalTo(expectedResult));
}
@Test
public void youCanFixACustomValidationIssueByReplacingTheValue() {
IntegerTensor containsMinusOne = IntegerTensor.create(1, 0, -1);
IntegerTensor expectedResult = IntegerTensor.create(1, 0, 0);
TensorValidator<Integer, IntegerTensor> validator = TensorValidator.thatFixesElementwise(x -> x >= 0, TensorValidationPolicy.changeValueTo(0));
containsMinusOne = validator.validate(containsMinusOne);
assertThat(containsMinusOne, equalTo(expectedResult));
}
=======
@Test
public void canFindScalarMinAndMax() {
IntegerTensor a = IntegerTensor.create(5, 4, 3, 2).reshape(2, 2);
int min = a.min();
int max = a.max();
assertEquals(2, min);
assertEquals(5, max);
}
@Test
public void canFindMinAndMaxFromScalarToTensor() {
IntegerTensor a = IntegerTensor.create(5, 4, 3, 2).reshape(1, 4);
IntegerTensor b = IntegerTensor.create(3);
IntegerTensor min = IntegerTensor.min(a, b);
IntegerTensor max = IntegerTensor.max(a, b);
assertArrayEquals(new int[]{3, 3, 3, 2}, min.asFlatIntegerArray());
assertArrayEquals(new int[]{5, 4, 3, 3}, max.asFlatIntegerArray());
}
@Test
public void canFindElementWiseMinAndMax() {
IntegerTensor a = IntegerTensor.create(1, 2, 3, 4).reshape(1, 4);
IntegerTensor b = IntegerTensor.create(2, 3, 1, 4).reshape(1, 4);
IntegerTensor min = IntegerTensor.min(a, b);
IntegerTensor max = IntegerTensor.max(a, b);
assertArrayEquals(new int[]{1, 2, 1, 4}, min.asFlatIntegerArray());
assertArrayEquals(new int[]{2, 3, 3, 4}, max.asFlatIntegerArray());
}
>>>>>>>
@Test
public void canFindScalarMinAndMax() {
IntegerTensor a = IntegerTensor.create(5, 4, 3, 2).reshape(2, 2);
int min = a.min();
int max = a.max();
assertEquals(2, min);
assertEquals(5, max);
}
@Test
public void canFindMinAndMaxFromScalarToTensor() {
IntegerTensor a = IntegerTensor.create(5, 4, 3, 2).reshape(1, 4);
IntegerTensor b = IntegerTensor.create(3);
IntegerTensor min = IntegerTensor.min(a, b);
IntegerTensor max = IntegerTensor.max(a, b);
assertArrayEquals(new int[]{3, 3, 3, 2}, min.asFlatIntegerArray());
assertArrayEquals(new int[]{5, 4, 3, 3}, max.asFlatIntegerArray());
}
@Test
public void canFindElementWiseMinAndMax() {
IntegerTensor a = IntegerTensor.create(1, 2, 3, 4).reshape(1, 4);
IntegerTensor b = IntegerTensor.create(2, 3, 1, 4).reshape(1, 4);
IntegerTensor min = IntegerTensor.min(a, b);
IntegerTensor max = IntegerTensor.max(a, b);
assertArrayEquals(new int[]{1, 2, 1, 4}, min.asFlatIntegerArray());
assertArrayEquals(new int[]{2, 3, 3, 4}, max.asFlatIntegerArray());
}
@Test
public void youCanCheckForZeros() {
IntegerTensor containsZero = IntegerTensor.create(new int[]{
0, -1, Integer.MAX_VALUE,
Integer.MIN_VALUE, -0, 1},
3, 2);
BooleanTensor expectedMask = BooleanTensor.create(new boolean[]{
false, true, true,
true, false, true},
3, 2);
TensorValidator<Integer, IntegerTensor> validator = TensorValidator.thatExpectsNotToFind(0);
assertThat(validator.check(containsZero), equalTo(expectedMask));
}
@Test
public void youCanFixAValidationIssueByReplacingTheValue() {
IntegerTensor containsMinusOne = IntegerTensor.create(1, 0, -1);
IntegerTensor expectedResult = IntegerTensor.create(1, 0, 0);
TensorValidator<Integer, IntegerTensor> validator = TensorValidator.thatReplaces(-1, 0);
containsMinusOne = validator.validate(containsMinusOne);
assertThat(containsMinusOne, equalTo(expectedResult));
}
@Test
public void youCanFixACustomValidationIssueByReplacingTheValue() {
IntegerTensor containsMinusOne = IntegerTensor.create(1, 0, -1);
IntegerTensor expectedResult = IntegerTensor.create(1, 0, 0);
TensorValidator<Integer, IntegerTensor> validator = TensorValidator.thatFixesElementwise(x -> x >= 0, TensorValidationPolicy.changeValueTo(0));
containsMinusOne = validator.validate(containsMinusOne);
assertThat(containsMinusOne, equalTo(expectedResult));
} |
<<<<<<<
import java.util.HashMap;
import java.util.Map;
=======
>>>>>>>
import java.util.HashMap;
import java.util.Map; |
<<<<<<<
import io.improbable.keanu.backend.tensorflow.TensorflowProbabilisticModel;
import io.improbable.keanu.backend.tensorflow.TensorflowProbabilisticModelWithGradient;
import io.improbable.keanu.network.BayesianNetwork;
import io.improbable.keanu.vertices.dbl.DoubleVertex;
=======
import io.improbable.keanu.tensor.dbl.DoubleTensor;
>>>>>>>
import io.improbable.keanu.backend.tensorflow.TensorflowProbabilisticModel;
import io.improbable.keanu.backend.tensorflow.TensorflowProbabilisticModelWithGradient;
import io.improbable.keanu.network.BayesianNetwork;
import io.improbable.keanu.tensor.dbl.DoubleTensor;
import io.improbable.keanu.vertices.dbl.DoubleVertex;
<<<<<<<
=======
import java.util.Map;
>>>>>>>
import java.util.Map;
<<<<<<<
public void keanuGradientOptimizerCanMLE() {
assertCanCalculateMaxLikelihood(getKeanuGradientOptimizer());
}
@Test
public void tensorflowGradientOptimizerCanMLE() {
assertCanCalculateMaxLikelihood(getTensorflowGradientOptimizer());
}
@Test
public void keanuNonGradientOptimizerCanMLE() {
assertCanCalculateMaxLikelihood(getKeanuNonGradientOptimizer());
}
@Test
public void tensorflowNonGradientOptimizerCanMLE() {
assertCanCalculateMaxLikelihood(getTensorflowNonGradientOptimizer());
}
@Test
public void keanuGradientOptimizerCanMAP() {
assertCanCalculateMaxAPosteriori(getKeanuGradientOptimizer());
}
@Test
public void tensorflowGradientOptimizerCanMAP() {
assertCanCalculateMaxAPosteriori(getTensorflowGradientOptimizer());
}
@Test
public void keanuNonGradientOptimizerCanMAP() {
assertCanCalculateMaxAPosteriori(getKeanuNonGradientOptimizer());
}
@Test
public void tensorflowNonGradientOptimizerCanMAP() {
assertCanCalculateMaxAPosteriori(getTensorflowNonGradientOptimizer());
}
private Function<BayesianNetwork, Optimizer> getKeanuGradientOptimizer() {
return (bayesNet) -> KeanuOptimizer.Gradient.of(bayesNet);
}
private Function<BayesianNetwork, Optimizer> getKeanuNonGradientOptimizer() {
return (bayesNet) -> KeanuOptimizer.NonGradient.of(bayesNet);
}
private Function<BayesianNetwork, Optimizer> getTensorflowGradientOptimizer() {
return (bayesNet) -> GradientOptimizer.builder()
.probabilisticModel(TensorflowProbabilisticModelWithGradient.convert(bayesNet))
.build();
}
private Function<BayesianNetwork, Optimizer> getTensorflowNonGradientOptimizer() {
return (bayesNet) -> NonGradientOptimizer.builder()
.probabilisticModel(TensorflowProbabilisticModel.convert(bayesNet))
.build();
}
private void assertCanCalculateMaxLikelihood(Function<BayesianNetwork, Optimizer> optimizerMapper) {
DoubleVertex A = new GaussianVertex(20.0, 1.0);
DoubleVertex B = new GaussianVertex(20.0, 1.0);
A.setValue(20.0);
B.setAndCascade(20.0);
DoubleVertex Cobserved = new GaussianVertex(A.plus(B), 1.0);
Cobserved.observe(44.0);
BayesianNetwork bayesNet = new BayesianNetwork(A.getConnectedGraph());
Optimizer optimizer = optimizerMapper.apply(bayesNet);
OptimizedResult optimizedResult = optimizer.maxLikelihood();
double maxA = optimizedResult.get(A.getReference()).scalar();
double maxB = optimizedResult.get(B.getReference()).scalar();
assertEquals(44, maxA + maxB, 0.1);
}
public void assertCanCalculateMaxAPosteriori(Function<BayesianNetwork, Optimizer> optimizerMapper) {
DoubleVertex A = new GaussianVertex(20.0, 1.0);
DoubleVertex B = new GaussianVertex(20.0, 1.0);
A.setValue(21.5);
B.setAndCascade(21.5);
DoubleVertex Cobserved = new GaussianVertex(A.plus(B), 1.0);
Cobserved.observe(46.0);
BayesianNetwork bayesNet = new BayesianNetwork(A.getConnectedGraph());
Optimizer optimizer = optimizerMapper.apply(bayesNet);
OptimizedResult optimizedResult = optimizer.maxAPosteriori();
double maxA = optimizedResult.get(A.getReference()).scalar();
double maxB = optimizedResult.get(B.getReference()).scalar();
assertEquals(22, maxA, 0.1);
assertEquals(22, maxB, 0.1);
}
@Test
=======
>>>>>>>
public void keanuGradientOptimizerCanMLE() {
assertCanCalculateMaxLikelihood(getKeanuGradientOptimizer());
}
@Test
public void tensorflowGradientOptimizerCanMLE() {
assertCanCalculateMaxLikelihood(getTensorflowGradientOptimizer());
}
@Test
public void keanuNonGradientOptimizerCanMLE() {
assertCanCalculateMaxLikelihood(getKeanuNonGradientOptimizer());
}
@Test
public void tensorflowNonGradientOptimizerCanMLE() {
assertCanCalculateMaxLikelihood(getTensorflowNonGradientOptimizer());
}
@Test
public void keanuGradientOptimizerCanMAP() {
assertCanCalculateMaxAPosteriori(getKeanuGradientOptimizer());
}
@Test
public void tensorflowGradientOptimizerCanMAP() {
assertCanCalculateMaxAPosteriori(getTensorflowGradientOptimizer());
}
@Test
public void keanuNonGradientOptimizerCanMAP() {
assertCanCalculateMaxAPosteriori(getKeanuNonGradientOptimizer());
}
@Test
public void tensorflowNonGradientOptimizerCanMAP() {
assertCanCalculateMaxAPosteriori(getTensorflowNonGradientOptimizer());
}
private Function<BayesianNetwork, Optimizer> getKeanuGradientOptimizer() {
return (bayesNet) -> Keanu.Optimizer.Gradient.of(bayesNet);
}
private Function<BayesianNetwork, Optimizer> getKeanuNonGradientOptimizer() {
return (bayesNet) -> Keanu.Optimizer.NonGradient.of(bayesNet);
}
private Function<BayesianNetwork, Optimizer> getTensorflowGradientOptimizer() {
return (bayesNet) -> GradientOptimizer.builder()
.probabilisticModel(TensorflowProbabilisticModelWithGradient.convert(bayesNet))
.build();
}
private Function<BayesianNetwork, Optimizer> getTensorflowNonGradientOptimizer() {
return (bayesNet) -> NonGradientOptimizer.builder()
.probabilisticModel(TensorflowProbabilisticModel.convert(bayesNet))
.build();
}
private void assertCanCalculateMaxLikelihood(Function<BayesianNetwork, Optimizer> optimizerMapper) {
DoubleVertex A = new GaussianVertex(20.0, 1.0);
DoubleVertex B = new GaussianVertex(20.0, 1.0);
A.setValue(20.0);
B.setAndCascade(20.0);
DoubleVertex Cobserved = new GaussianVertex(A.plus(B), 1.0);
Cobserved.observe(44.0);
BayesianNetwork bayesNet = new BayesianNetwork(A.getConnectedGraph());
Optimizer optimizer = optimizerMapper.apply(bayesNet);
OptimizedResult optimizedResult = optimizer.maxLikelihood();
double maxA = optimizedResult.getValueFor(A.getReference()).scalar();
double maxB = optimizedResult.getValueFor(B.getReference()).scalar();
assertEquals(44, maxA + maxB, 0.1);
}
public void assertCanCalculateMaxAPosteriori(Function<BayesianNetwork, Optimizer> optimizerMapper) {
DoubleVertex A = new GaussianVertex(20.0, 1.0);
DoubleVertex B = new GaussianVertex(20.0, 1.0);
A.setValue(21.5);
B.setAndCascade(21.5);
DoubleVertex Cobserved = new GaussianVertex(A.plus(B), 1.0);
Cobserved.observe(46.0);
BayesianNetwork bayesNet = new BayesianNetwork(A.getConnectedGraph());
Optimizer optimizer = optimizerMapper.apply(bayesNet);
OptimizedResult optimizedResult = optimizer.maxAPosteriori();
double maxA = optimizedResult.getValueFor(A.getReference()).scalar();
double maxB = optimizedResult.getValueFor(B.getReference()).scalar();
assertEquals(22, maxA, 0.1);
assertEquals(22, maxB, 0.1);
}
@Test |
<<<<<<<
public MaxVertex(DoubleVertex left, DoubleVertex right) {
super(left.greaterThanOrEqualTo(right), left, right);
=======
@ExportVertexToPythonBindings
public MaxVertex(@LoadParentVertex(LEFT_NAME) DoubleVertex left,
@LoadParentVertex(RIGHT_NAME) DoubleVertex right) {
super(left.getShape(), left.greaterThanOrEqualTo(right), left, right);
>>>>>>>
@ExportVertexToPythonBindings
public MaxVertex(@LoadParentVertex(LEFT_NAME) DoubleVertex left,
@LoadParentVertex(RIGHT_NAME) DoubleVertex right) {
super(left.greaterThanOrEqualTo(right), left, right); |
<<<<<<<
public static Map<String, DoubleTensor> getJointLogProbGradientWrtLatents(List<Vertex> probabilisticVertices) {
final Map<String, DoubleTensor> diffOfLogWrt = new HashMap<>();
=======
public static Map<String, Double> getJointLogProbGradientWrtLatents(List<? extends Vertex> probabilisticVertices) {
final Map<String, Double> diffOfLogWrt = new HashMap<>();
>>>>>>>
public static Map<String, DoubleTensor> getJointLogProbGradientWrtLatents(List<? extends Vertex> probabilisticVertices) {
final Map<String, DoubleTensor> diffOfLogWrt = new HashMap<>(); |
<<<<<<<
@Override
DoubleTensor tad(int dimension, int index);
=======
DoubleTensor concat(int dimension, DoubleTensor... those);
>>>>>>>
@Override
DoubleTensor tad(int dimension, int index);
DoubleTensor concat(int dimension, DoubleTensor... those); |
<<<<<<<
DoubleTensor slice(int dimension, int[] index);
DoubleTensor tensorAlongDimension(int index, int... dimension);
=======
default List<DoubleTensor> sliceAlongDimension(int dimension, int indexStart, int indexEnd) {
List<DoubleTensor> slicedTensors = new ArrayList<>();
for (int i = indexStart; i < indexEnd; i++) {
slicedTensors.add(slice(dimension, i));
}
return slicedTensors;
}
>>>>>>>
default List<DoubleTensor> sliceAlongDimension(int dimension, int indexStart, int indexEnd) {
List<DoubleTensor> slicedTensors = new ArrayList<>();
for (int i = indexStart; i < indexEnd; i++) {
slicedTensors.add(slice(dimension, i));
}
return slicedTensors;
}
DoubleTensor slice(int dimension, int[] index);
DoubleTensor tensorAlongDimension(int index, int... dimension); |
<<<<<<<
import io.improbable.keanu.util.ProgressBar;
=======
import io.improbable.keanu.vertices.VertexId;
>>>>>>>
import io.improbable.keanu.util.ProgressBar;
import io.improbable.keanu.vertices.VertexId; |
<<<<<<<
import io.improbable.keanu.network.BayesianNetwork;
=======
import io.improbable.keanu.DeterministicRule;
import io.improbable.keanu.network.BayesNet;
>>>>>>>
import io.improbable.keanu.DeterministicRule;
import io.improbable.keanu.network.BayesianNetwork; |
<<<<<<<
public <T extends Vertex<?>> void addAll(Collection<T> vertices) {
for (T v : vertices) {
add(v);
}
}
public <T extends Vertex<?>> T add(T v) throws PlateException {
if (v.getLabel() == null) {
throw new PlateException("Vertex " + v + " has no label");
=======
public <T extends Vertex<?>> T add(T v) {
VertexLabel label = v.getLabel();
if (label == null) {
throw new PlateException("Vertex " + v + " must contain a label in order to be added to a plate");
}
String outerNamespace = label.getOuterNamespace().orElse("");
if (NAME_REGEX.matcher(outerNamespace).matches()) {
throw new PlateException("Vertex " + v + " has already been added to " + outerNamespace);
>>>>>>>
public <T extends Vertex<?>> void addAll(Collection<T> vertices) {
for (T v : vertices) {
add(v);
}
}
public <T extends Vertex<?>> T add(T v) {
VertexLabel label = v.getLabel();
if (label == null) {
throw new PlateException("Vertex " + v + " must contain a label in order to be added to a plate");
}
String outerNamespace = label.getOuterNamespace().orElse("");
if (NAME_REGEX.matcher(outerNamespace).matches()) {
throw new PlateException("Vertex " + v + " has already been added to " + outerNamespace); |
<<<<<<<
import io.improbable.keanu.vertices.NonProbabilistic;
=======
import io.improbable.keanu.vertices.Vertex;
>>>>>>>
import io.improbable.keanu.vertices.NonProbabilistic;
import io.improbable.keanu.vertices.Vertex;
<<<<<<<
=======
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.DualNumber;
import io.improbable.keanu.vertices.update.NonProbabilisticValueUpdater;
>>>>>>>
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.DualNumber;
<<<<<<<
public DoubleUnaryOpVertex(int[] shape, DoubleVertex inputVertex) {
=======
public DoubleUnaryOpVertex(
DoubleVertex inputVertex) {
this(inputVertex.getShape(), inputVertex);
}
/**
* A vertex that performs a user defined operation on a single input vertex
*
* @param shape the shape of the tensor
* @param inputVertex the input vertex
*/
public DoubleUnaryOpVertex(
int[] shape,
DoubleVertex inputVertex) {
super(new NonProbabilisticValueUpdater<>(v -> ((DoubleUnaryOpVertex) v).op(inputVertex.getValue())));
>>>>>>>
public DoubleUnaryOpVertex(
DoubleVertex inputVertex) {
this(inputVertex.getShape(), inputVertex);
}
/**
* A vertex that performs a user defined operation on a single input vertex
*
* @param shape the shape of the tensor
* @param inputVertex the input vertex
*/
public DoubleUnaryOpVertex(int[] shape, DoubleVertex inputVertex) {
<<<<<<<
@Override
public DoubleTensor calculate() {
return op(inputVertex.getValue());
}
protected abstract DoubleTensor op(DoubleTensor a);
=======
@Override
public DualNumber calculateDualNumber(Map<Vertex, DualNumber> dualNumbers) {
try {
return dualOp(dualNumbers.get(inputVertex));
} catch (UnsupportedOperationException e) {
return super.calculateDualNumber(dualNumbers);
}
}
protected abstract DoubleTensor op(DoubleTensor value);
>>>>>>>
@Override
public DoubleTensor calculate() {
return op(inputVertex.getValue());
}
@Override
public DualNumber calculateDualNumber(Map<Vertex, DualNumber> dualNumbers) {
try {
return dualOp(dualNumbers.get(inputVertex));
} catch (UnsupportedOperationException e) {
return super.calculateDualNumber(dualNumbers);
}
}
protected abstract DoubleTensor op(DoubleTensor value); |
<<<<<<<
import io.improbable.keanu.tensor.dbl.DoubleTensor;
=======
import io.improbable.keanu.testcategory.Slow;
>>>>>>>
import io.improbable.keanu.tensor.dbl.DoubleTensor;
import io.improbable.keanu.testcategory.Slow; |
<<<<<<<
public Vertex<Tensor<T>> orElse(Vertex<? extends Tensor<T>> els) {
long[] shape = TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar(thn.getShape(), els.getShape(), predicate.getShape());
return new IfVertex<>(shape, predicate, thn, els);
=======
public IfVertex<T> orElse(Vertex<? extends Tensor<T>> els) {
assertShapesMatchOrAreScalar(thn.getShape(), els.getShape(), predicate.getShape());
return new IfVertex<>(els.getShape(), predicate, thn, els);
>>>>>>>
public IfVertex<T> orElse(Vertex<? extends Tensor<T>> els) {
long[] shape = TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar(thn.getShape(), els.getShape(), predicate.getShape());
return new IfVertex<>(shape, predicate, thn, els);
<<<<<<<
public BoolVertex orElse(Vertex<? extends BooleanTensor> els) {
long[] shape = TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar(thn.getShape(), els.getShape(), predicate.getShape());
return new BooleanIfVertex(shape, predicate, thn, els);
=======
public BooleanIfVertex orElse(Vertex<? extends BooleanTensor> els) {
assertShapesMatchOrAreScalar(thn.getShape(), els.getShape(), predicate.getShape());
return new BooleanIfVertex(els.getShape(), predicate, thn, els);
>>>>>>>
public BooleanIfVertex orElse(Vertex<? extends BooleanTensor> els) {
long[] shape = TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar(thn.getShape(), els.getShape(), predicate.getShape());
return new BooleanIfVertex(shape, predicate, thn, els);
<<<<<<<
public DoubleVertex orElse(Vertex<? extends DoubleTensor> els) {
long[] shape = TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar(thn.getShape(), els.getShape(), predicate.getShape());
return new DoubleIfVertex(shape, predicate, thn, els);
=======
public DoubleIfVertex orElse(Vertex<? extends DoubleTensor> els) {
assertShapesMatchOrAreScalar(thn.getShape(), els.getShape(), predicate.getShape());
return new DoubleIfVertex(els.getShape(), predicate, thn, els);
>>>>>>>
public DoubleIfVertex orElse(Vertex<? extends DoubleTensor> els) {
long[] shape = TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar(thn.getShape(), els.getShape(), predicate.getShape());
return new DoubleIfVertex(shape, predicate, thn, els); |
<<<<<<<
import java.util.Map;
import java.util.Set;
import com.google.common.collect.ImmutableList;
=======
>>>>>>>
import com.google.common.collect.ImmutableList;
<<<<<<<
public class Categorical<T> implements Distribution<Tensor<T>> {
=======
import java.util.Map;
public class Categorical<T> implements Distribution<T> {
>>>>>>>
import java.util.Map;
import java.util.Set;
public class Categorical<T> implements Distribution<Tensor<T>> { |
<<<<<<<
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.Infinitesimal;
import io.improbable.keanu.vertices.dbltensor.DoubleTensor;
=======
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
>>>>>>>
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
import io.improbable.keanu.vertices.dbltensor.DoubleTensor; |
<<<<<<<
import io.improbable.keanu.testcategory.Slow;
=======
import io.improbable.keanu.vertices.ConstantVertex;
import io.improbable.keanu.vertices.dbl.DoubleVertex;
>>>>>>>
import io.improbable.keanu.testcategory.Slow;
import io.improbable.keanu.vertices.ConstantVertex;
import io.improbable.keanu.vertices.dbl.DoubleVertex; |
<<<<<<<
import io.improbable.keanu.vertices.Vertex;
import io.improbable.keanu.vertices.dbl.Differentiator;
=======
>>>>>>>
import io.improbable.keanu.vertices.Vertex;
import io.improbable.keanu.vertices.dbl.Differentiator;
<<<<<<<
import java.util.HashMap;
import java.util.Map;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
=======
>>>>>>>
import java.util.HashMap;
import java.util.Map;
<<<<<<<
public Map<Vertex, PartialDerivatives> reverseModeAutoDifferentiation(PartialDerivatives derivativeOfOutputsWithRespectToSelf) {
Map<Vertex, PartialDerivatives> partials = new HashMap<>();
PartialDerivatives rightPartial = derivativeOfOutputsWithRespectToSelf.multiplyBy(right.getValue());
PartialDerivatives leftPartial = derivativeOfOutputsWithRespectToSelf.multiplyBy(left.getValue());
partials.put(left, Differentiator.reshapeReverseAutoDiff(rightPartial, left.getValue(), right.getValue()));
partials.put(right, Differentiator.reshapeReverseAutoDiff(leftPartial, right.getValue(), left.getValue()));
return partials;
}
@Override
protected DoubleTensor op(DoubleTensor left, DoubleTensor right) {
return left.times(right);
=======
protected DualNumber dualOp(DualNumber l, DualNumber r) {
return l.multiplyBy(r);
>>>>>>>
public Map<Vertex, PartialDerivatives> reverseModeAutoDifferentiation(PartialDerivatives derivativeOfOutputsWithRespectToSelf) {
Map<Vertex, PartialDerivatives> partials = new HashMap<>();
PartialDerivatives rightPartial = derivativeOfOutputsWithRespectToSelf.multiplyBy(right.getValue());
PartialDerivatives leftPartial = derivativeOfOutputsWithRespectToSelf.multiplyBy(left.getValue());
partials.put(left, Differentiator.reshapeReverseAutoDiff(rightPartial, left.getValue(), right.getValue()));
partials.put(right, Differentiator.reshapeReverseAutoDiff(leftPartial, right.getValue(), left.getValue()));
return partials;
}
@Override
protected DualNumber dualOp(DualNumber l, DualNumber r) {
return l.multiplyBy(r); |
<<<<<<<
private Map<Long, DoubleTensor> convertDualNumbersToDiff(DoubleTensor dLogPdLocation,
DoubleTensor dLogPdScale,
DoubleTensor dLogPdX) {
=======
private Map<VertexId, DoubleTensor> convertDualNumbersToDiff(DoubleTensor dLogPdLoc,
DoubleTensor dLogPdScale,
DoubleTensor dLogPdX) {
>>>>>>>
private Map<VertexId, DoubleTensor> convertDualNumbersToDiff(DoubleTensor dLogPdLocation,
DoubleTensor dLogPdScale,
DoubleTensor dLogPdX) { |
<<<<<<<
private static final Logger log = Logger.getLogger(Module.class);
=======
>>>>>>>
private static final Logger log = Logger.getLogger(Module.class);
<<<<<<<
public void visit(State state, Environment env, Properties props) throws Exception {
=======
public void visit(final State state, Properties props) throws Exception {
>>>>>>>
public void visit(final State state, final Environment env, Properties props) throws Exception {
<<<<<<<
Node initNode = getNode(initNodeId);
boolean test = false;
if (initNode instanceof Test) {
startTimer(initNode);
test = true;
}
initNode.visit(state, env, getProps(initNodeId));
if (test)
stopTimer(initNode);
// update aliases
Set<String> aliases;
if ((aliases = aliasMap.get(initNodeId)) != null)
for (String alias : aliases) {
((Alias) nodes.get(alias)).update(initNodeId);
}
String curNodeId = initNodeId;
int numHops = 0;
long startTime = System.currentTimeMillis() / 1000;
while (true) {
// check if END state was reached
if (curNodeId.equalsIgnoreCase("END")) {
log.debug("reached END state");
break;
}
// check if maxSec was reached
long curTime = System.currentTimeMillis() / 1000;
if ((curTime - startTime) > maxSec) {
log.debug("reached maxSec(" + maxSec + ")");
break;
}
// check if maxHops was reached
if (numHops > maxHops) {
log.debug("reached maxHops(" + maxHops + ")");
break;
}
numHops++;
if (!adjMap.containsKey(curNodeId) && !curNodeId.startsWith("alias.")) {
throw new Exception("Reached node(" + curNodeId + ") without outgoing edges in module(" + this + ")");
}
AdjList adj = adjMap.get(curNodeId);
String nextNodeId = adj.randomNeighbor();
Node nextNode = getNode(nextNodeId);
if (nextNode instanceof Alias) {
nextNodeId = ((Alias) nextNode).getTargetId();
nextNode = ((Alias) nextNode).get();
=======
ExecutorService service = new SimpleThreadPool(1, "RandomWalk Runner");
try {
Node initNode = getNode(initNodeId);
boolean test = false;
if (initNode instanceof Test) {
startTimer(initNode);
test = true;
>>>>>>>
ExecutorService service = new SimpleThreadPool(1, "RandomWalk Runner");
try {
Node initNode = getNode(initNodeId);
boolean test = false;
if (initNode instanceof Test) {
startTimer(initNode);
test = true; |
<<<<<<<
DoubleTensor mask = Nd4jDoubleTensor.create(new double[]{1., 1., 1., 1.}, new int[]{2, 2});
=======
DoubleTensor mask = Nd4jDoubleTensor.ones(2, 2);
>>>>>>>
DoubleTensor mask = Nd4jDoubleTensor.ones(2, 2);
<<<<<<<
=======
public void canBroadcastMultiplyRank4ContainingVectorAndMatrix() {
/*
# test to make sure numpy returns same result
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6, 7, 8]).reshape(2,2,2,1)
b = np.array([1, 2, 3, 4]).reshape(2,2,1,1)
ab = a * b
print(ab)
print(np.shape(ab))
*/
DoubleTensor rank4 = Nd4jDoubleTensor.create(new double[]{1, 2, 3, 4, 5, 6, 7, 8}, new int[]{2, 2, 2, 1});
DoubleTensor matrix = matrixA.reshape(2, 2, 1, 1);
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{1, 2, 6, 8, 15, 18, 28, 32}, new int[]{2, 2, 2, 1});
assertTimesOperationEquals(rank4, matrix, expected);
assertTimesInPlaceOperationEquals(rank4, matrix, expected);
}
@Test
public void canBroadcastMultiplyRank4ContainingMatrixAndMatrix() {
/*
# test to make sure numpy returns same result
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 4, 3, 2, 1, 7, 5, 8, 6]).reshape(2,2,2,2)
b = np.array([1, 2, 3, 4]).reshape(2,2,1,1)
ab = a * b
print(ab)
print(np.shape(ab))
*/
DoubleTensor rank4 = Nd4jDoubleTensor.create(new double[]{
1, 2, 3, 4, 5, 6, 7, 8,
4, 3, 2, 1, 7, 5, 8, 6
}, new int[]{2, 2, 2, 2});
DoubleTensor matrix = matrixA.reshape(2, 2, 1, 1);
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
1, 2, 3, 4, 10, 12, 14, 16,
12, 9, 6, 3, 28, 20, 32, 24
}, new int[]{2, 2, 2, 2});
assertTimesOperationEquals(rank4, matrix, expected);
assertTimesInPlaceOperationEquals(rank4, matrix, expected);
}
@Test
public void canBroadcastMultiplyRank5ContainingMatrixAndMatrix() {
/*
# test to make sure numpy returns same result
import numpy as np
a = np.array([
1, 2, 3, 4, 5, 6, 7, 8, 4, 3, 2, 1, 7, 5, 8, 6,
6, 3, 2, 9, 3, 4, 7, 6, 6, 2, 5, 4, 0, 2, 1, 3
]).reshape(2,2,2,2,2)
b = np.array([1, 2, 3, 4]).reshape(2,2,1,1,1)
ab = a * b
print(ab)
print(np.shape(ab))
*/
DoubleTensor rank5 = Nd4jDoubleTensor.create(new double[]{
1, 2, 3, 4, 5, 6, 7, 8, 4, 3, 2, 1, 7, 5, 8, 6,
6, 3, 2, 9, 3, 4, 7, 6, 6, 2, 5, 4, 0, 2, 1, 3
}, new int[]{2, 2, 2, 2, 2});
DoubleTensor matrix = matrixA.reshape(2, 2, 1, 1, 1);
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
1, 2, 3, 4, 5, 6, 7, 8, 8, 6, 4, 2, 14, 10, 16, 12,
18, 9, 6, 27, 9, 12, 21, 18, 24, 8, 20, 16, 0, 8, 4, 12
}, new int[]{2, 2, 2, 2, 2});
assertTimesOperationEquals(rank5, matrix, expected);
assertTimesInPlaceOperationEquals(rank5, matrix, expected);
}
@Test
public void canSuperBroadcast() {
/*
# test to make sure numpy returns same result
import numpy as np
a = np.zeros([2,2,2,2])
b = np.array([1,0,1,0]).reshape(2,2)
ab = a + b
print(ab)
print(np.shape(ab))
*/
DoubleTensor x = Nd4jDoubleTensor.zeros(new int[]{2, 2, 2, 2});
DoubleTensor y = Nd4jDoubleTensor.create(new double[]{1, 0, 1, 0}, new int[]{2, 2});
DoubleTensor diff = x.plus(y);
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
1, 0, 1, 0,
1, 0, 1, 0,
1, 0, 1, 0,
1, 0, 1, 0
}, new int[]{2, 2, 2, 2});
assertEquals(expected, diff);
}
@Test
public void canSuperBroadcastInPlace() {
DoubleTensor x = Nd4jDoubleTensor.zeros(new int[]{2, 2, 2, 2});
DoubleTensor y = Nd4jDoubleTensor.create(new double[]{1, 0, 1, 0}, new int[]{2, 2});
DoubleTensor diff = x.plusInPlace(y);
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
1, 0, 1, 0,
1, 0, 1, 0,
1, 0, 1, 0,
1, 0, 1, 0
}, new int[]{2, 2, 2, 2});
assertEquals(expected, diff);
}
@Test
>>>>>>>
<<<<<<<
=======
public void canBroadcastAdd() {
/*
# test to make sure numpy returns same result
import numpy as np
x = np.array([1,2,3]).reshape(3,1)
s = np.array([-5, -2, -3, -7, -8, -5, -2, -3, -7, -8, -5, -2, -3, -7, -8]).reshape(3,5)
sx = s + x
print(sx)
print(np.shape(sx))
*/
DoubleTensor x = Nd4jDoubleTensor.create(new double[]{1, 2, 3}, new int[]{3, 1});
DoubleTensor s = Nd4jDoubleTensor.create(new double[]{
-5, -2, -3, -7, -8,
-5, -2, -3, -7, -8,
-5, -2, -3, -7, -8
}, new int[]{3, 5});
DoubleTensor diff = s.plus(x);
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
-4, -1, -2, -6, -7,
-3, 0, -1, -5, -6,
-2, 1, 0, -4, -5
}, new int[]{3, 5});
assertEquals(expected, diff);
}
@Test
public void canBroadcastSubtract() {
/*
# test to make sure numpy returns same result
import numpy as np
x = np.array([-1,-2,-3]).reshape(3,1)
s = np.array([-5, -2, -3, -7, -8, -5, -2, -3, -7, -8, -5, -2, -3, -7, -8]).reshape(3,5)
sx = s - x
print(sx)
print(np.shape(sx))
*/
DoubleTensor x = Nd4jDoubleTensor.create(new double[]{-1, -2, -3}, new int[]{3, 1});
DoubleTensor s = Nd4jDoubleTensor.create(new double[]{
-5, -2, -3, -7, -8,
-5, -2, -3, -7, -8,
-5, -2, -3, -7, -8
}, new int[]{3, 5});
DoubleTensor diff = s.minus(x);
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
-4, -1, -2, -6, -7,
-3, 0, -1, -5, -6,
-2, 1, 0, -4, -5
}, new int[]{3, 5});
assertEquals(expected, diff);
}
@Test
public void canBroadcastDivide() {
/*
# test to make sure numpy returns same result
import numpy as np
x = np.array([1,2,3]).reshape(3,1)
s = np.array([5, 2, 3, 7, 8, 5, 2, 3, 7, 8, 5, 2, 3, 7, 8]).reshape(3,5)
sx = s / x
print(sx)
print(np.shape(sx))
*/
DoubleTensor x = Nd4jDoubleTensor.create(new double[]{1, 2, 3}, new int[]{3, 1});
DoubleTensor s = Nd4jDoubleTensor.create(new double[]{
5, 2, 3, 7, 8,
5, 2, 3, 7, 8,
5, 2, 3, 7, 8
}, new int[]{3, 5});
DoubleTensor diff = s.div(x);
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
5 / 1.0, 2 / 1.0, 3 / 1.0, 7 / 1.0, 8 / 1.0,
5 / 2.0, 2 / 2.0, 3 / 2.0, 7 / 2.0, 8 / 2.0,
5 / 3.0, 2 / 3.0, 3 / 3.0, 7 / 3.0, 8 / 3.0
}, new int[]{3, 5});
assertEquals(expected, diff);
}
@Test
>>>>>>>
<<<<<<<
=======
private void assertTimesOperationEquals(DoubleTensor left, DoubleTensor right, DoubleTensor expected) {
DoubleTensor actual = left.times(right);
assertEquals(expected, actual);
}
private void assertTimesInPlaceOperationEquals(DoubleTensor left, DoubleTensor right, DoubleTensor expected) {
left = left.timesInPlace(right);
assertEquals(expected, left);
}
private void assertPlusOperationEquals(DoubleTensor left, DoubleTensor right, DoubleTensor expected) {
DoubleTensor actual = left.plus(right);
assertEquals(expected, actual);
}
private void assertPlusInPlaceOperationEquals(DoubleTensor left, DoubleTensor right, DoubleTensor expected) {
left = left.plusInPlace(right);
assertEquals(expected, left);
}
private void assertDivideOperationEquals(DoubleTensor left, DoubleTensor right, DoubleTensor expected) {
DoubleTensor actual = left.div(right);
assertEquals(expected, actual);
}
private void assertDivideInPlaceOperationEquals(DoubleTensor left, DoubleTensor right, DoubleTensor expected) {
left = left.divInPlace(right);
assertEquals(expected, left);
}
private void assertMinusOperationEquals(DoubleTensor left, DoubleTensor right, DoubleTensor expected) {
DoubleTensor actual = left.minus(right);
assertEquals(expected, actual);
}
private void assertMinusInPlaceOperationEquals(DoubleTensor left, DoubleTensor right, DoubleTensor expected) {
left = left.minusInPlace(right);
assertEquals(expected, left);
}
>>>>>>>
<<<<<<<
=======
@Test
public void canBroadcastMultiplyDifferentRankedTensorsBigToSmall() {
DoubleTensor rank4 = DoubleTensor.ones(4, 2, 2, 2);
DoubleTensor matrix = DoubleTensor.create(new double[]{1, 2, 3, 4}, new int[]{2, 2});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
}, new int[]{4, 2, 2, 2});
assertTimesOperationEquals(rank4, matrix, expected);
assertTimesInPlaceOperationEquals(rank4, matrix, expected);
}
@Test
public void canBroadcastMultiplyDifferentRankedTensorsSmallToBig() {
DoubleTensor rank4 = DoubleTensor.ones(4, 2, 2, 2);
DoubleTensor matrix = DoubleTensor.create(new double[]{1, 2, 3, 4}, new int[]{2, 2});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
}, new int[]{4, 2, 2, 2});
assertTimesOperationEquals(matrix, rank4, expected);
assertTimesInPlaceOperationEquals(matrix, rank4, expected);
}
@Test
public void canBroadcastPlusDifferentRankedTensorsBigToSmall() {
DoubleTensor rank4 = DoubleTensor.zeros(new int[]{4, 2, 2, 2});
DoubleTensor matrix = DoubleTensor.create(new double[]{1, 2, 3, 4}, new int[]{2, 2});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
}, new int[]{4, 2, 2, 2});
assertPlusOperationEquals(rank4, matrix, expected);
assertPlusInPlaceOperationEquals(rank4, matrix, expected);
}
@Test
public void canBroadcastPlusDifferentRankedTensorsSmallToBig() {
DoubleTensor rank4 = DoubleTensor.zeros(new int[]{4, 2, 2, 2});
DoubleTensor matrix = DoubleTensor.create(new double[]{1, 2, 3, 4}, new int[]{2, 2});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,
}, new int[]{4, 2, 2, 2});
assertPlusOperationEquals(matrix, rank4, expected);
assertPlusInPlaceOperationEquals(matrix, rank4, expected);
}
@Test
public void canBroadcastDivideDifferentRankedTensorsBigToSmall() {
DoubleTensor rank4 = DoubleTensor.ones(new int[]{4, 2, 2, 2}).times(10.);
DoubleTensor matrix = DoubleTensor.create(new double[]{1, 2, 5, 10}, new int[]{2, 2});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
10, 5, 2, 1, 10, 5, 2, 1,
10, 5, 2, 1, 10, 5, 2, 1,
10, 5, 2, 1, 10, 5, 2, 1,
10, 5, 2, 1, 10, 5, 2, 1,
}, new int[]{4, 2, 2, 2});
assertDivideOperationEquals(rank4, matrix, expected);
assertDivideInPlaceOperationEquals(rank4, matrix, expected);
}
@Test
public void canBroadcastDivideDifferentRankedTensorsSmallToBig() {
DoubleTensor rank4 = DoubleTensor.ones(new int[]{4, 2, 2, 2}).times(10.);
DoubleTensor matrix = DoubleTensor.create(new double[]{1, 2, 5, 10}, new int[]{2, 2});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
.1, .2, .5, 1, .1, .2, .5, 1,
.1, .2, .5, 1, .1, .2, .5, 1,
.1, .2, .5, 1, .1, .2, .5, 1,
.1, .2, .5, 1, .1, .2, .5, 1,
}, new int[]{4, 2, 2, 2});
assertDivideOperationEquals(matrix, rank4, expected);
assertDivideInPlaceOperationEquals(matrix, rank4, expected);
}
@Test
public void canBroadcastMinusDifferentRankedTensorsBigToSmall() {
DoubleTensor rank4 = DoubleTensor.ones(new int[]{4, 2, 2, 2}).times(5.);
DoubleTensor matrix = DoubleTensor.create(new double[]{1, 2, 3, 4}, new int[]{2, 2});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
4, 3, 2, 1, 4, 3, 2, 1,
4, 3, 2, 1, 4, 3, 2, 1,
4, 3, 2, 1, 4, 3, 2, 1,
4, 3, 2, 1, 4, 3, 2, 1
}, new int[]{4, 2, 2, 2});
assertMinusOperationEquals(rank4, matrix, expected);
assertMinusInPlaceOperationEquals(rank4, matrix, expected);
}
@Test
public void canBroadcastMinusDifferentRankedTensorsSmallToBig() {
DoubleTensor rank4 = DoubleTensor.ones(new int[]{4, 2, 2, 2}).times(5.);
DoubleTensor matrix = DoubleTensor.create(new double[]{1, 2, 3, 4}, new int[]{2, 2});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
-4, -3, -2, -1, -4, -3, -2, -1,
-4, -3, -2, -1, -4, -3, -2, -1,
-4, -3, -2, -1, -4, -3, -2, -1,
-4, -3, -2, -1, -4, -3, -2, -1
}, new int[]{4, 2, 2, 2});
assertMinusOperationEquals(matrix, rank4, expected);
assertMinusInPlaceOperationEquals(matrix, rank4, expected);
}
>>>>>>> |
<<<<<<<
@Override
public String get(Locale language) {
// No language support
return get();
}
=======
@Override
public String get(String identification) {
return get();
}
>>>>>>>
@Override
public String get(Locale language) {
// No language support
return get();
}
@Override
public String get(String identification) {
return get();
} |
<<<<<<<
import java.util.HashMap;
import java.util.Map;
=======
>>>>>>>
import java.util.HashMap;
import java.util.Map; |
<<<<<<<
protected DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) {
=======
public DualNumber calculateDualNumber(Map<Vertex, DualNumber> dualNumbers) {
>>>>>>>
public DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) { |
<<<<<<<
Map<String, DoubleTensor> diffs = LogProbGradient.getJointLogProbGradientWrtLatents(probabilisticVertices);
=======
Map<Long, Double> diffs = LogProbGradient.getJointLogProbGradientWrtLatents(probabilisticVertices);
>>>>>>>
Map<Long, DoubleTensor> diffs = LogProbGradient.getJointLogProbGradientWrtLatents(probabilisticVertices); |
<<<<<<<
import io.improbable.keanu.algorithms.variational.optimizer.VariableReference;
import io.improbable.keanu.util.ProgressBar;
=======
import io.improbable.keanu.util.status.PercentageComponent;
import io.improbable.keanu.util.status.RemainingTimeComponent;
import io.improbable.keanu.util.status.StatusBar;
import io.improbable.keanu.vertices.VertexId;
>>>>>>>
import io.improbable.keanu.algorithms.variational.optimizer.VariableReference;
import io.improbable.keanu.util.status.PercentageComponent;
import io.improbable.keanu.util.status.RemainingTimeComponent;
import io.improbable.keanu.util.status.StatusBar;
<<<<<<<
progressBar.finish();
return new NetworkSamples(samplesByVariable, logOfMasterPForEachSample, sampleCount);
=======
statusBar.finish();
return new NetworkSamples(samplesByVertex, logOfMasterPForEachSample, sampleCount);
>>>>>>>
statusBar.finish();
return new NetworkSamples(samplesByVariable, logOfMasterPForEachSample, sampleCount); |
<<<<<<<
Map<String, Double> gradient = DoubleTensor.toScalars(LogProbGradient.getJointLogProbGradientWrtLatents(
=======
Map<Long, Double> gradient = LogProbGradient.getJointLogProbGradientWrtLatents(
>>>>>>>
Map<Long, Double> gradient = DoubleTensor.toScalars(LogProbGradient.getJointLogProbGradientWrtLatents(
<<<<<<<
));
Map<String, Double> gradientBeforeLeapfrog = new HashMap<>();
=======
);
Map<Long, Double> gradientBeforeLeapfrog = new HashMap<>();
>>>>>>>
));
Map<Long, Double> gradientBeforeLeapfrog = new HashMap<>();
<<<<<<<
Map<String, Double> newGradient = DoubleTensor.toScalars(LogProbGradient.getJointLogProbGradientWrtLatents(
=======
Map<Long, Double> newGradient = LogProbGradient.getJointLogProbGradientWrtLatents(
>>>>>>>
Map<Long, Double> newGradient = DoubleTensor.toScalars(LogProbGradient.getJointLogProbGradientWrtLatents( |
<<<<<<<
import io.improbable.keanu.vertices.VertexBinaryOp;
=======
import io.improbable.keanu.vertices.dbl.Differentiable;
>>>>>>>
import io.improbable.keanu.vertices.VertexBinaryOp;
import io.improbable.keanu.vertices.dbl.Differentiable;
<<<<<<<
public abstract class DoubleBinaryOpVertex extends DoubleVertex implements NonProbabilistic<DoubleTensor>, VertexBinaryOp<DoubleVertex, DoubleVertex> {
=======
public abstract class DoubleBinaryOpVertex extends DoubleVertex implements Differentiable, NonProbabilistic<DoubleTensor> {
>>>>>>>
public abstract class DoubleBinaryOpVertex extends DoubleVertex implements Differentiable, NonProbabilistic<DoubleTensor>, VertexBinaryOp<DoubleVertex, DoubleVertex> { |
<<<<<<<
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
=======
import java.util.concurrent.atomic.AtomicReference;
>>>>>>>
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.atomic.AtomicReference;
<<<<<<<
public DoubleTensor nextLaplace(int[] shape, DoubleTensor mu, DoubleTensor beta) {
List<Double> laplaceValues = new ArrayList<>();
List<List<Integer>> possibleIndexes = exploreIndexes(shape);
for (List<Integer> index : possibleIndexes) {
int[] currentDimension = index.stream().mapToInt(i -> i).toArray();
double sample = laplaceSample(
mu.getValue(currentDimension),
beta.getValue(currentDimension),
nd4jRandom
);
laplaceValues.add(sample);
}
return createTensorFromList(laplaceValues, shape);
}
private List<List<Integer>> exploreIndexes(int[] shape) {
List<List<Integer>> possibleIndexes = new ArrayList<>();
int[] results = new int[shape.length];
iterateThroughShape(0, shape.length, shape, results, possibleIndexes);
return possibleIndexes;
}
private void iterateThroughShape(int count, int length, int[] size, int[] result, List<List<Integer>> dimensions) {
if (count >= length) {
Integer[] res = ArrayUtils.toObject(result);
dimensions.add(Arrays.asList(res));
return;
}
for (int i = 0; i < size[count]; i++) {
result[count] = i;
iterateThroughShape(count + 1, length, size, result, dimensions);
}
}
private DoubleTensor createTensorFromList(List<Double> list, int[] shape) {
double[] values = list.stream().mapToDouble(d -> d).toArray();
return Nd4jDoubleTensor.create(values, shape);
}
private static double laplaceSample(double mu, double beta, Random random) {
if (beta <= 0.0) {
throw new IllegalArgumentException("Invalid value for beta: " + beta);
}
if (random.nextDouble() > 0.5) {
return mu + beta * Math.log(random.nextDouble());
} else {
return mu - beta * Math.log(random.nextDouble());
}
}
=======
public double nextGaussian() {
return nd4jRandom.nextGaussian();
}
public boolean nextBoolean() {
return nd4jRandom.nextBoolean();
}
public int nextInt(int maxExclusive) {
return nd4jRandom.nextInt(maxExclusive);
}
>>>>>>>
public DoubleTensor nextLaplace(int[] shape, DoubleTensor mu, DoubleTensor beta) {
List<Double> laplaceValues = new ArrayList<>();
List<List<Integer>> possibleIndexes = exploreIndexes(shape);
for (List<Integer> index : possibleIndexes) {
int[] currentDimension = index.stream().mapToInt(i -> i).toArray();
double sample = laplaceSample(
mu.getValue(currentDimension),
beta.getValue(currentDimension),
nd4jRandom
);
laplaceValues.add(sample);
}
return createTensorFromList(laplaceValues, shape);
}
private List<List<Integer>> exploreIndexes(int[] shape) {
List<List<Integer>> possibleIndexes = new ArrayList<>();
int[] results = new int[shape.length];
iterateThroughShape(0, shape.length, shape, results, possibleIndexes);
return possibleIndexes;
}
private void iterateThroughShape(int count, int length, int[] size, int[] result, List<List<Integer>> dimensions) {
if (count >= length) {
Integer[] res = ArrayUtils.toObject(result);
dimensions.add(Arrays.asList(res));
return;
}
for (int i = 0; i < size[count]; i++) {
result[count] = i;
iterateThroughShape(count + 1, length, size, result, dimensions);
}
}
private DoubleTensor createTensorFromList(List<Double> list, int[] shape) {
double[] values = list.stream().mapToDouble(d -> d).toArray();
return Nd4jDoubleTensor.create(values, shape);
}
private static double laplaceSample(double mu, double beta, Random random) {
if (beta <= 0.0) {
throw new IllegalArgumentException("Invalid value for beta: " + beta);
}
if (random.nextDouble() > 0.5) {
return mu + beta * Math.log(random.nextDouble());
} else {
return mu - beta * Math.log(random.nextDouble());
}
}
public double nextGaussian() {
return nd4jRandom.nextGaussian();
}
public boolean nextBoolean() {
return nd4jRandom.nextBoolean();
}
public int nextInt(int maxExclusive) {
return nd4jRandom.nextInt(maxExclusive);
} |
<<<<<<<
@Override
public BooleanTensor elementwiseEquals(Double value) {
return BooleanTensor.create(this.scalar().equals(value));
}
private static class SimpleDoubleFlattenedView implements FlattenedView<Double> {
private double value;
public SimpleDoubleFlattenedView(double value) {
this.value = value;
}
@Override
public long size() {
return 1;
}
@Override
public Double get(long index) {
if (index != 0) {
throw new IndexOutOfBoundsException();
}
return value;
}
@Override
public Double getOrScalar(long index) {
return value;
}
@Override
public void set(long index, Double value) {
if (index != 0) {
throw new IndexOutOfBoundsException();
}
this.value = value;
}
}
=======
>>>>>>>
@Override
public BooleanTensor elementwiseEquals(Double value) {
return BooleanTensor.create(this.scalar().equals(value));
} |
<<<<<<<
import static java.util.stream.Collectors.counting;
import static java.util.stream.Collectors.groupingBy;
import static org.hamcrest.MatcherAssert.assertThat;
import static org.hamcrest.number.IsCloseTo.closeTo;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNull;
import static org.junit.Assert.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.function.Supplier;
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
import com.google.common.collect.ImmutableList;
=======
import static java.util.stream.Collectors.counting;
import static java.util.stream.Collectors.groupingBy;
import static org.hamcrest.MatcherAssert.assertThat;
import static org.hamcrest.number.IsCloseTo.closeTo;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNull;
import static org.junit.Assert.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.function.Supplier;
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
>>>>>>>
import static java.util.stream.Collectors.counting;
import static java.util.stream.Collectors.groupingBy;
import static org.hamcrest.MatcherAssert.assertThat;
import static org.hamcrest.number.IsCloseTo.closeTo;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNull;
import static org.junit.Assert.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.function.Supplier;
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
import com.google.common.collect.ImmutableList;
import static java.util.stream.Collectors.counting;
import static java.util.stream.Collectors.groupingBy;
import static org.hamcrest.MatcherAssert.assertThat;
import static org.hamcrest.number.IsCloseTo.closeTo;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNull;
import static org.junit.Assert.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.function.Supplier;
import org.apache.commons.math3.stat.descriptive.SummaryStatistics; |
<<<<<<<
import static io.improbable.keanu.vertices.dbltensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.vertices.dbltensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
=======
import static io.improbable.keanu.vertices.dbltensor.probabilistic.ProbabilisticVertexShaping.checkParentShapes;
>>>>>>>
import static io.improbable.keanu.vertices.dbltensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.vertices.dbltensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
<<<<<<<
public TensorUniformVertex(DoubleTensorVertex xMin, DoubleTensorVertex xMax, KeanuRandom random) {
this(xMin.getValue().getShape(), xMin, xMax, random);
}
public TensorUniformVertex(DoubleTensorVertex xMin, double xMax, KeanuRandom random) {
this(xMin.getValue().getShape(), xMin, new ConstantTensorVertex(xMax), random);
}
public TensorUniformVertex(double xMin, DoubleTensorVertex xMax, KeanuRandom random) {
this(xMax.getValue().getShape(), new ConstantTensorVertex(xMin), xMax, random);
}
public TensorUniformVertex(double xMin, double xMax, KeanuRandom random) {
this(Tensor.SCALAR_SHAPE, new ConstantTensorVertex(xMin), new ConstantTensorVertex(xMax), random);
}
=======
>>>>>>>
<<<<<<<
this(checkHasSingleNonScalarShapeOrAllScalar(xMin.getValue(), xMax.getValue()), xMin, xMax, new KeanuRandom());
=======
this(xMin.getValue().getShape(), xMin, xMax);
>>>>>>>
this(checkHasSingleNonScalarShapeOrAllScalar(xMin.getValue(), xMax.getValue()), xMin, xMax);
<<<<<<<
this(Tensor.SCALAR_SHAPE, new ConstantTensorVertex(xMin), new ConstantTensorVertex(xMax), new KeanuRandom());
=======
this(new int[]{1, 1}, new ConstantTensorVertex(xMin), new ConstantTensorVertex(xMax));
>>>>>>>
this(Tensor.SCALAR_SHAPE, new ConstantTensorVertex(xMin), new ConstantTensorVertex(xMax));
<<<<<<<
public DoubleTensor sample() {
return TensorUniform.sample(getShape(), xMin.getValue(), xMax.getValue(), random);
=======
public DoubleTensor sample(KeanuRandom random) {
return TensorUniform.sample(xMin.getValue(), xMax.getValue(), random);
>>>>>>>
public DoubleTensor sample(KeanuRandom random) {
return TensorUniform.sample(getShape(), xMin.getValue(), xMax.getValue(), random); |
<<<<<<<
public GammaVertex(@LoadVertexParam(THETA_NAME) DoubleVertex theta,
@LoadVertexParam(K_NAME) DoubleVertex k) {
this(checkHasSingleNonScalarShapeOrAllScalar(theta.getShape(), k.getShape()), theta, k);
=======
public GammaVertex(@LoadParentVertex(THETA_NAME) DoubleVertex theta,
@LoadParentVertex(K_NAME) DoubleVertex k) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(theta.getShape(), k.getShape()), theta, k);
>>>>>>>
public GammaVertex(@LoadVertexParam(THETA_NAME) DoubleVertex theta,
@LoadVertexParam(K_NAME) DoubleVertex k) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(theta.getShape(), k.getShape()), theta, k); |
<<<<<<<
import io.improbable.keanu.vertices.Vertex;
import io.improbable.keanu.vertices.dbl.Differentiator;
=======
>>>>>>>
import io.improbable.keanu.vertices.Vertex;
import io.improbable.keanu.vertices.dbl.Differentiator;
<<<<<<<
import java.util.HashMap;
import java.util.Map;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
=======
>>>>>>>
import java.util.HashMap;
import java.util.Map;
<<<<<<<
public DualNumber calculateDualNumber(Map<Vertex, DualNumber> dualNumbers) {
DualNumber leftDual = dualNumbers.get(left);
DualNumber rightDual = dualNumbers.get(right);
return leftDual.subtract(rightDual);
}
@Override
public Map<Vertex, PartialDerivatives> reverseModeAutoDifferentiation(PartialDerivatives derivativeOfOutputsWithRespectToSelf) {
Map<Vertex, PartialDerivatives> partials = new HashMap<>();
partials.put(left, Differentiator.reshapeReverseAutoDiff(derivativeOfOutputsWithRespectToSelf, left.getValue(), right.getValue()));
partials.put(right, Differentiator.reshapeReverseAutoDiff(derivativeOfOutputsWithRespectToSelf.multiplyBy(-1.0), right.getValue(), left.getValue()));
return partials;
=======
protected DoubleTensor op(DoubleTensor l, DoubleTensor r) {
return l.minus(r);
>>>>>>>
protected DoubleTensor op(DoubleTensor l, DoubleTensor r) {
return l.minus(r);
}
@Override
public Map<Vertex, PartialDerivatives> reverseModeAutoDifferentiation(PartialDerivatives derivativeOfOutputsWithRespectToSelf) {
Map<Vertex, PartialDerivatives> partials = new HashMap<>();
partials.put(left, Differentiator.reshapeReverseAutoDiff(derivativeOfOutputsWithRespectToSelf, left.getValue(), right.getValue()));
partials.put(right, Differentiator.reshapeReverseAutoDiff(derivativeOfOutputsWithRespectToSelf.multiplyBy(-1.0), right.getValue(), left.getValue()));
return partials; |
<<<<<<<
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
import io.improbable.keanu.vertices.update.NonProbabilisticValueUpdater;
=======
>>>>>>>
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
<<<<<<<
@Override
public Map<Vertex, PartialDerivatives> reverseModeAutoDifferentiation(PartialDerivatives derivativeOfOutputsWithRespectToSelf) {
if (reverseModeAutoDiffLambda != null) {
return reverseModeAutoDiffLambda.apply(derivativeOfOutputsWithRespectToSelf);
}
throw new UnsupportedOperationException();
}
}
=======
}
>>>>>>>
@Override
public Map<Vertex, PartialDerivatives> reverseModeAutoDifferentiation(PartialDerivatives derivativeOfOutputsWithRespectToSelf) {
if (reverseModeAutoDiffLambda != null) {
return reverseModeAutoDiffLambda.apply(derivativeOfOutputsWithRespectToSelf);
}
throw new UnsupportedOperationException();
}
} |
<<<<<<<
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.AbsVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.ArcCosVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.ArcSinVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.ArcTanVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.CeilVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.CosVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.DoubleUnaryOpLambda;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.ExpVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.FloorVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.LogVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.PluckVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.RoundVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.SigmoidVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.SinVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.SliceVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.SumVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.TanVertex;
import io.improbable.keanu.vertices.update.ValueUpdater;
=======
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.*;
>>>>>>>
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.*;
import io.improbable.keanu.vertices.update.ValueUpdater; |
<<<<<<<
import io.improbable.keanu.algorithms.variational.optimizer.*;
import io.improbable.keanu.tensor.dbl.DoubleTensor;
import io.improbable.keanu.util.ProgressBar;
=======
import io.improbable.keanu.algorithms.variational.optimizer.Optimizer;
import io.improbable.keanu.algorithms.variational.optimizer.ProbabilisticGraph;
import io.improbable.keanu.algorithms.variational.optimizer.Variable;
import io.improbable.keanu.util.status.StatusBar;
>>>>>>>
import io.improbable.keanu.algorithms.variational.optimizer.*;
import io.improbable.keanu.algorithms.variational.optimizer.Optimizer;
import io.improbable.keanu.algorithms.variational.optimizer.ProbabilisticGraph;
import io.improbable.keanu.algorithms.variational.optimizer.Variable;
import io.improbable.keanu.tensor.dbl.DoubleTensor;
import io.improbable.keanu.util.status.StatusBar;
<<<<<<<
progressBar.finish();
=======
statusBar.finish();
return pointValuePair.getValue();
}
>>>>>>>
statusBar.finish(); |
<<<<<<<
pythonConstructors.add(
new PythonConstructor(
javaClass,
toPythonClass(javaClass),
toPythonParams(pythonParameters, parameterTypes),
String.join(", ", pythonParameters),
docString.getAsString()
)
);
=======
PythonConstructor pythonConstructor = new PythonConstructor(javaClass, toPythonClass(javaClass), String.join(", ", pythonParameters), docString.getAsString());
pythonConstructors.add(pythonConstructor);
exportedMethodsJoiner.add(pythonConstructor.pythonClass);
>>>>>>>
PythonConstructor pythonConstructor = new PythonConstructor(
javaClass,
toPythonClass(javaClass),
toPythonParams(pythonParameters, parameterTypes),
String.join(", ", pythonParameters),
docString.getAsString()
);
pythonConstructors.add(pythonConstructor);
exportedMethodsJoiner.add(pythonConstructor.pythonClass); |
<<<<<<<
import static org.junit.Assert.assertArrayEquals;
import static org.junit.Assert.assertEquals;
import static junit.framework.TestCase.assertTrue;
import org.junit.Before;
import org.junit.Test;
import org.junit.Before;
import org.junit.Test;
=======
import static org.junit.Assert.assertArrayEquals;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
>>>>>>>
import static org.junit.Assert.assertArrayEquals;
import static org.junit.Assert.assertEquals;
import static junit.framework.TestCase.assertTrue;
import org.junit.Before;
import org.junit.Test;
<<<<<<<
@Test
public void canTensorMultiplyWithVectorAndRank4() {
DoubleTensor a = Nd4jDoubleTensor.create(new double[]{1, 2, 3}, new int[]{1, 1, 3, 1});
DoubleTensor b = Nd4jDoubleTensor.create(new double[]{
5, 2, 3, 7, 8,
5, 2, 3, 7, 8,
5, 2, 3, 7, 8
}, new int[]{1, 3, 1, 5});
DoubleTensor c = a.tensorMultiply(b, new int[]{2, 3}, new int[]{1, 0});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
30, 12, 18, 42, 48
}, new int[]{1, 1, 1, 5});
assertEquals(expected, c);
}
@Test
public void canTensorMultiplyWithNumpyExample() {
DoubleTensor a = DoubleTensor.arange(0, 60).reshape(3, 4, 5);
DoubleTensor b = DoubleTensor.arange(0, 24.).reshape(4, 3, 2);
DoubleTensor c = a.tensorMultiply(b, new int[]{1, 0}, new int[]{0, 1});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
4400., 4730.,
4532., 4874.,
4664., 5018.,
4796., 5162.,
4928., 5306.
}, new int[]{5, 2});
assertEquals(expected, c);
}
// @Test
// public void canTensorMultiplyWithMatrixAndRank4() {
// DoubleTensor a = Nd4jDoubleTensor.create(new double[]{
// 5, 5, 2, 7,
// 3, 2, 8, 4,
// 9, 7, 6, 9,
// 2, 3, 5, 6
// }, new int[]{2, 2, 2, 2});
//
// DoubleTensor b = Nd4jDoubleTensor.create(new double[]{3, 2, 6, 4, 7, 5}, new int[]{2, 3});
//
// DoubleTensor c = a.tensorMultiply(b, new int[]{3}, new int[]{0});
//
// DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
// 35, 45, 55, 34, 53, 47,
// 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0
// }, new int[]{2, 2, 2, 3});
//
// assertEquals(expected, c);
// }
=======
@Test
public void canPermuteForTranspose() {
DoubleTensor a = DoubleTensor.create(new double[]{1, 2, 3, 4}, new int[]{2, 2});
DoubleTensor permuted = a.permute(1, 0);
DoubleTensor transposed = a.transpose();
assertEquals(transposed, permuted);
}
@Test
public void canPermuteUpperDimensions() {
DoubleTensor a = DoubleTensor.create(new double[]{
1, 2,
3, 4,
5, 6,
7, 8
}, new int[]{1, 2, 2, 2});
DoubleTensor permuted = a.permute(0, 1, 3, 2);
DoubleTensor expected = DoubleTensor.create(new double[]{
1, 3,
2, 4,
5, 7,
6, 8
}, new int[]{1, 2, 2, 2});
assertEquals(expected, permuted);
}
>>>>>>>
@Test
public void canTensorMultiplyWithVectorAndRank4() {
DoubleTensor a = Nd4jDoubleTensor.create(new double[]{1, 2, 3}, new int[]{1, 1, 3, 1});
DoubleTensor b = Nd4jDoubleTensor.create(new double[]{
5, 2, 3, 7, 8,
5, 2, 3, 7, 8,
5, 2, 3, 7, 8
}, new int[]{1, 3, 1, 5});
DoubleTensor c = a.tensorMultiply(b, new int[]{2, 3}, new int[]{1, 0});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
30, 12, 18, 42, 48
}, new int[]{1, 1, 1, 5});
assertEquals(expected, c);
}
@Test
public void canTensorMultiplyWithNumpyExample() {
DoubleTensor a = DoubleTensor.arange(0, 60).reshape(3, 4, 5);
DoubleTensor b = DoubleTensor.arange(0, 24.).reshape(4, 3, 2);
DoubleTensor c = a.tensorMultiply(b, new int[]{1, 0}, new int[]{0, 1});
DoubleTensor expected = Nd4jDoubleTensor.create(new double[]{
4400., 4730.,
4532., 4874.,
4664., 5018.,
4796., 5162.,
4928., 5306.
}, new int[]{5, 2});
assertEquals(expected, c);
}
@Test
public void canPermuteForTranspose() {
DoubleTensor a = DoubleTensor.create(new double[]{1, 2, 3, 4}, new int[]{2, 2});
DoubleTensor permuted = a.permute(1, 0);
DoubleTensor transposed = a.transpose();
assertEquals(transposed, permuted);
}
@Test
public void canPermuteUpperDimensions() {
DoubleTensor a = DoubleTensor.create(new double[]{
1, 2,
3, 4,
5, 6,
7, 8
}, new int[]{1, 2, 2, 2});
DoubleTensor permuted = a.permute(0, 1, 3, 2);
DoubleTensor expected = DoubleTensor.create(new double[]{
1, 3,
2, 4,
5, 7,
6, 8
}, new int[]{1, 2, 2, 2});
assertEquals(expected, permuted);
} |
<<<<<<<
pythonConstructors.add(
new PythonConstructor(
javaClass,
toPythonClass(javaClass),
toPythonParams(pythonParameters, parameterTypes),
String.join(", ", pythonParameters)));
=======
pythonConstructors.add(new PythonConstructor(javaClass, toPythonClass(javaClass), String.join(", ", pythonParameters), docString.getAsString()));
>>>>>>>
pythonConstructors.add(
new PythonConstructor(
javaClass,
toPythonClass(javaClass),
toPythonParams(pythonParameters, parameterTypes),
String.join(", ", pythonParameters),
docString.getAsString()
)
);
<<<<<<<
PythonConstructor(String javaClass, String pythonClass, String pythonTypedParameters, String pythonParameters) {
=======
PythonConstructor(String javaClass, String pythonClass, String pythonParameters, String docString) {
>>>>>>>
PythonConstructor(String javaClass, String pythonClass, String pythonTypedParameters, String pythonParameters, String docString) { |
<<<<<<<
import io.improbable.keanu.vertices.Vertex;
import io.improbable.keanu.vertices.dbl.Differentiator;
=======
>>>>>>>
import io.improbable.keanu.vertices.Vertex;
import io.improbable.keanu.vertices.dbl.Differentiator;
<<<<<<<
import java.util.HashMap;
import java.util.Map;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
=======
>>>>>>>
import java.util.HashMap;
import java.util.Map;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar; |
<<<<<<<
protected DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) {
=======
public DualNumber calculateDualNumber(Map<Vertex, DualNumber> dualNumbers) {
>>>>>>>
public DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) { |
<<<<<<<
public KeanuSavedBayesNet.VertexID toProtoBuf() {
return KeanuSavedBayesNet.VertexID.newBuilder()
.addAllIdValues(Longs.asList(idValues))
.build();
}
=======
public long[] getValue() {
return Arrays.copyOf(idValues, idValues.length);
}
>>>>>>>
public KeanuSavedBayesNet.VertexID toProtoBuf() {
return KeanuSavedBayesNet.VertexID.newBuilder()
.addAllIdValues(Longs.asList(idValues))
.build();
}
public long[] getValue() {
return Arrays.copyOf(idValues, idValues.length);
} |
<<<<<<<
static DoubleTensor placeHolder(int[] shape) {
return new Nd4jDoubleTensor(shape);
}
static Map<String, DoubleTensor> fromScalars(Map<String, Double> scalars) {
Map<String, DoubleTensor> asTensors = new HashMap<>();
=======
static Map<Long, DoubleTensor> fromScalars(Map<Long, Double> scalars) {
Map<Long, DoubleTensor> asTensors = new HashMap<>();
>>>>>>>
static DoubleTensor placeHolder(int[] shape) {
return new Nd4jDoubleTensor(shape);
}
static Map<Long, DoubleTensor> fromScalars(Map<Long, Double> scalars) {
Map<Long, DoubleTensor> asTensors = new HashMap<>(); |
<<<<<<<
public class LogisticVertex extends DoubleVertex implements ProbabilisticDouble, SamplableWithManyScalars<DoubleTensor> {
=======
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import static io.improbable.keanu.distributions.hyperparam.Diffs.MU;
import static io.improbable.keanu.distributions.hyperparam.Diffs.S;
import static io.improbable.keanu.distributions.hyperparam.Diffs.X;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
public class LogisticVertex extends DoubleVertex implements ProbabilisticDouble {
>>>>>>>
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import static io.improbable.keanu.distributions.hyperparam.Diffs.MU;
import static io.improbable.keanu.distributions.hyperparam.Diffs.S;
import static io.improbable.keanu.distributions.hyperparam.Diffs.X;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
public class LogisticVertex extends DoubleVertex implements ProbabilisticDouble, SamplableWithManyScalars<DoubleTensor> { |
<<<<<<<
private Laplace() {
}
/**
* Computer Generation of Statistical Distributions
* by Richard Saucier
* ARL-TR-2168 March 2000
* 5.1.8 page 25
*/
=======
>>>>>>>
private Laplace() {
}
/**
* Computer Generation of Statistical Distributions
* by Richard Saucier
* ARL-TR-2168 March 2000
* 5.1.8 page 25
*/ |
<<<<<<<
@Override
@SaveParentVertex(LEFT_NAME)
=======
@SaveVertexParam(LEFT_NAME)
>>>>>>>
@Override
@SaveVertexParam(LEFT_NAME)
<<<<<<<
@Override
@SaveParentVertex(RIGHT_NAME)
=======
@SaveVertexParam(RIGHT_NAME)
>>>>>>>
@Override
@SaveVertexParam(RIGHT_NAME) |
<<<<<<<
public class InverseGammaVertex extends DoubleVertex implements ProbabilisticDouble, SamplableWithManyScalars<DoubleTensor> {
=======
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import static io.improbable.keanu.distributions.hyperparam.Diffs.A;
import static io.improbable.keanu.distributions.hyperparam.Diffs.B;
import static io.improbable.keanu.distributions.hyperparam.Diffs.X;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
public class InverseGammaVertex extends DoubleVertex implements ProbabilisticDouble {
>>>>>>>
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import static io.improbable.keanu.distributions.hyperparam.Diffs.A;
import static io.improbable.keanu.distributions.hyperparam.Diffs.B;
import static io.improbable.keanu.distributions.hyperparam.Diffs.X;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
public class InverseGammaVertex extends DoubleVertex implements ProbabilisticDouble, SamplableWithManyScalars<DoubleTensor> { |
<<<<<<<
public void fit(INPUT input, OUTPUT output) {
modelGraph.observeValues(input, output);
KeanuOptimizer.Gradient.of(modelGraph.getBayesianNetwork()).maxAPosteriori();
=======
public void fit(ModelGraph modelGraph) {
GradientOptimizer.of(modelGraph.getBayesianNetwork()).maxAPosteriori();
>>>>>>>
public void fit(ModelGraph modelGraph) {
KeanuOptimizer.Gradient.of(modelGraph.getBayesianNetwork()).maxAPosteriori(); |
<<<<<<<
import io.improbable.keanu.vertices.Vertex;
import io.improbable.keanu.vertices.dbl.Differentiator;
=======
>>>>>>>
import io.improbable.keanu.vertices.Vertex;
import io.improbable.keanu.vertices.dbl.Differentiator;
<<<<<<<
import java.util.HashMap;
import java.util.Map;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
=======
>>>>>>>
import java.util.HashMap;
import java.util.Map; |
<<<<<<<
public DoubleVertex getWeightsVertex(long featureCount, DoubleVertex priorOnWeightsMeans, DoubleVertex priorOnWeightsScaleParameter) {
return new GaussianVertex(new long[]{1, featureCount}, priorOnWeightsMeans, priorOnWeightsScaleParameter).setLabel("weights");
=======
public DoubleVertex getWeightsVertex(long featureCount, double[] priorOnWeightsMeans, double[] priorOnInterceptScaleParameter) {
return new GaussianVertex(new long[]{featureCount, 1},
ConstantVertex.of(priorOnWeightsMeans, featureCount, 1),
ConstantVertex.of(priorOnInterceptScaleParameter, featureCount, 1)).setLabel("weights");
>>>>>>>
public DoubleVertex getWeightsVertex(long featureCount, DoubleVertex priorOnWeightsMeans, DoubleVertex priorOnWeightsScaleParameter) {
return new GaussianVertex(new long[]{featureCount, 1}, priorOnWeightsMeans, priorOnWeightsScaleParameter).setLabel("weights");
<<<<<<<
public DoubleVertex getWeightsVertex(long featureCount, DoubleVertex priorOnWeightsMeans, DoubleVertex priorOnWeightsScaleParameter) {
return new LaplaceVertex(new long[]{1, featureCount}, priorOnWeightsMeans, priorOnWeightsScaleParameter);
=======
public DoubleVertex getWeightsVertex(long featureCount, double[] priorOnWeightsMeans, double[] priorOnInterceptScaleParameter) {
return new LaplaceVertex(new long[]{featureCount, 1},
new ConstantDoubleVertex(priorOnWeightsMeans, new long[]{priorOnWeightsMeans.length, 1}),
new ConstantDoubleVertex(priorOnInterceptScaleParameter, new long[]{priorOnInterceptScaleParameter.length, 1})
);
>>>>>>>
public DoubleVertex getWeightsVertex(long featureCount, DoubleVertex priorOnWeightsMeans, DoubleVertex priorOnWeightsScaleParameter) {
return new LaplaceVertex(new long[]{featureCount, 1}, priorOnWeightsMeans, priorOnWeightsScaleParameter);
<<<<<<<
public DoubleVertex getWeightsVertex(long featureCount, DoubleVertex priorOnWeightsMeans, DoubleVertex priorOnWeightsScaleParameter) {
return new GaussianVertex(new long[]{1, featureCount}, priorOnWeightsMeans, priorOnWeightsScaleParameter);
=======
public DoubleVertex getWeightsVertex(long featureCount, double[] priorOnWeightsMeans, double[] priorOnInterceptScaleParameter) {
return new GaussianVertex(new long[]{featureCount, 1},
new ConstantDoubleVertex(priorOnWeightsMeans, new long[]{priorOnWeightsMeans.length, 1}),
new ConstantDoubleVertex(priorOnInterceptScaleParameter, new long[]{priorOnInterceptScaleParameter.length, 1})
);
>>>>>>>
public DoubleVertex getWeightsVertex(long featureCount, DoubleVertex priorOnWeightsMeans, DoubleVertex priorOnWeightsScaleParameter) {
return new GaussianVertex(new long[]{featureCount, 1}, priorOnWeightsMeans, priorOnWeightsScaleParameter); |
<<<<<<<
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
=======
import io.improbable.keanu.vertices.update.NonProbabilisticValueUpdater;
>>>>>>>
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
import io.improbable.keanu.vertices.update.NonProbabilisticValueUpdater; |
<<<<<<<
import io.improbable.keanu.annotation.DisplayInformationForOutput;
=======
import io.improbable.keanu.annotation.ExportVertexToPythonBindings;
>>>>>>>
import io.improbable.keanu.annotation.DisplayInformationForOutput;
import io.improbable.keanu.annotation.ExportVertexToPythonBindings; |
<<<<<<<
import static org.junit.Assert.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import io.improbable.keanu.algorithms.variational.GradientOptimizer;
=======
import io.improbable.keanu.algorithms.variational.optimizer.gradient.GradientOptimizer;
>>>>>>>
import static org.junit.Assert.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import io.improbable.keanu.algorithms.variational.optimizer.gradient.GradientOptimizer; |
<<<<<<<
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.function.Function;
=======
import java.util.Arrays;
import io.improbable.keanu.kotlin.DoubleOperators;
>>>>>>>
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import io.improbable.keanu.kotlin.DoubleOperators;
<<<<<<<
public interface DoubleTensor extends NumberTensor<Double> {
=======
public interface DoubleTensor extends NumberTensor<Double, DoubleTensor>, DoubleOperators<DoubleTensor> {
DoubleTensor MINUS_ONE_SCALAR = scalar(-1.0);
>>>>>>>
public interface DoubleTensor extends NumberTensor<Double, DoubleTensor>, DoubleOperators<DoubleTensor> {
DoubleTensor MINUS_ONE_SCALAR = scalar(-1.0); |
<<<<<<<
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
=======
import io.improbable.keanu.vertices.update.NonProbabilisticValueUpdater;
>>>>>>>
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
import io.improbable.keanu.vertices.update.NonProbabilisticValueUpdater;
<<<<<<<
public DoubleUnaryOpLambda(int[] shape, Vertex<IN> inputVertex,
Function<IN, DoubleTensor> op,
Function<Map<Vertex, DualNumber>, DualNumber> dualNumberCalculation,
Function<PartialDerivatives, Map<Vertex, PartialDerivatives>> reverseModeAutoDiffLambda) {
=======
public DoubleUnaryOpLambda(int[] shape, Vertex<IN> inputVertex, Function<IN, DoubleTensor> op, Function<Map<Vertex, DualNumber>, DualNumber> dualNumberCalculation) {
super(new NonProbabilisticValueUpdater<>(v -> ((DoubleUnaryOpLambda<IN>) v).op.apply(inputVertex.getValue())));
>>>>>>>
public DoubleUnaryOpLambda(int[] shape, Vertex<IN> inputVertex,
Function<IN, DoubleTensor> op,
Function<Map<Vertex, DualNumber>, DualNumber> dualNumberCalculation,
Function<PartialDerivatives, Map<Vertex, PartialDerivatives>> reverseModeAutoDiffLambda) {
super(new NonProbabilisticValueUpdater<>(v -> ((DoubleUnaryOpLambda<IN>) v).op.apply(inputVertex.getValue()))); |
<<<<<<<
import io.improbable.keanu.tensor.dbl.DoubleTensor;
=======
import io.improbable.keanu.testcategory.Slow;
>>>>>>>
import io.improbable.keanu.tensor.dbl.DoubleTensor;
import io.improbable.keanu.testcategory.Slow; |
<<<<<<<
import io.improbable.keanu.distributions.dual.Diffs;
=======
import io.improbable.keanu.tensor.TensorShape;
>>>>>>>
import io.improbable.keanu.distributions.dual.Diffs;
import io.improbable.keanu.tensor.TensorShape;
<<<<<<<
=======
import java.util.Map;
import static io.improbable.keanu.tensor.TensorShape.shapeToDesiredRankByPrependingOnes;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
>>>>>>>
import java.util.Map;
import static io.improbable.keanu.tensor.TensorShape.shapeToDesiredRankByPrependingOnes;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkHasSingleNonScalarShapeOrAllScalar;
import static io.improbable.keanu.tensor.TensorShapeValidation.checkTensorsMatchNonScalarShapeOrAreScalar;
<<<<<<<
Diffs dlnP = LogNormal.withParameters(mu.getValue(), sigma.getValue()).dLogProb(value);
return convertDualNumbersToDiff(dlnP.get(MU).getValue(), dlnP.get(SIGMA).getValue(), dlnP.get(X).getValue());
=======
LogNormal.DiffLogP dlnP = LogNormal.dlnPdf(mu.getValue(), sigma.getValue(), value);
return convertDualNumbersToDiff(dlnP.dLogPdmu, dlnP.dLogPdsigma, dlnP.dLogPdx);
>>>>>>>
Diffs dlnP = LogNormal.withParameters(mu.getValue(), sigma.getValue()).dLogProb(value);
return convertDualNumbersToDiff(dlnP.get(MU).getValue(), dlnP.get(SIGMA).getValue(), dlnP.get(X).getValue()); |
<<<<<<<
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.AdditionVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.DifferenceVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.DivisionVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.MultiplicationVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.*;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.PowerVertex;
import io.improbable.keanu.vertices.dbl.probabilistic.ExponentialVertex;
=======
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.*;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.AbsVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.DoubleUnaryOpLambda;
>>>>>>>
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.AdditionVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.DifferenceVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.DivisionVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.MultiplicationVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.*;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.binary.PowerVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.AbsVertex;
import io.improbable.keanu.vertices.dbl.nonprobabilistic.operators.unary.DoubleUnaryOpLambda; |
<<<<<<<
protected DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) {
=======
public DualNumber calculateDualNumber(Map<Vertex, DualNumber> dualNumbers) {
>>>>>>>
public DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) { |
<<<<<<<
import org.apache.accumulo.core.client.impl.AcceptableThriftTableOperationException;
import org.apache.accumulo.core.client.impl.ServerClient;
=======
>>>>>>>
import org.apache.accumulo.core.client.impl.AcceptableThriftTableOperationException;
<<<<<<<
import org.apache.accumulo.core.master.thrift.BulkImportState;
=======
import org.apache.accumulo.core.rpc.ThriftUtil;
>>>>>>>
import org.apache.accumulo.core.master.thrift.BulkImportState;
import org.apache.accumulo.core.rpc.ThriftUtil; |
<<<<<<<
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
import io.improbable.keanu.vertices.update.NonProbabilisticValueUpdater;
=======
>>>>>>>
import io.improbable.keanu.vertices.dbl.nonprobabilistic.diff.PartialDerivatives;
<<<<<<<
return DualNumber.concat(dualNumbers, duals, input, dimension, inputValues);
}
@Override
public Map<Vertex, PartialDerivatives> reverseModeAutoDifferentiation(PartialDerivatives derivativeOfOutputsWithRespectToSelf) {
DoubleTensor value = derivativeOfOutputsWithRespectToSelf.asMap().get(this.getId());
int[] partialShape = value.getShape();
int[] rearrange = TensorShape.dimensionRange(0, partialShape.length);
rearrange[dimension] = 0;
rearrange[0] = dimension;
DoubleTensor permuted = value.permute(rearrange);
double[] permutedBuffer = permuted.asFlatDoubleArray();
Map<Vertex, PartialDerivatives> concattedPartial = new HashMap<>();
int bufferOffset = 0;
for (DoubleVertex vertex : input) {
int[] ofWrtShape = TensorShape.concat(Arrays.copyOfRange(value.getShape(), 0, vertex.getValue().getRank()), vertex.getShape());
int inputSize = (int) (value.getLength() / (value.getShape()[value.getShape().length / 2 + dimension])) * vertex.getShape()[dimension];
double[] inputsDualNumbers = Arrays.copyOfRange(permutedBuffer, bufferOffset, bufferOffset + inputSize);
DoubleTensor unpermuted = DoubleTensor.create(inputsDualNumbers, ofWrtShape).permute(rearrange);
PartialDerivatives partial = new PartialDerivatives(getId(), unpermuted);
concattedPartial.put(vertex, partial);
bufferOffset += inputSize;
}
return concattedPartial;
=======
return DualNumber.concat(dualNumbers, dualNumbersOfInputs, input, dimension, inputValues);
>>>>>>>
return DualNumber.concat(dualNumbers, dualNumbersOfInputs, input, dimension, inputValues);
}
@Override
public Map<Vertex, PartialDerivatives> reverseModeAutoDifferentiation(PartialDerivatives derivativeOfOutputsWithRespectToSelf) {
DoubleTensor value = derivativeOfOutputsWithRespectToSelf.asMap().get(this.getId());
int[] partialShape = value.getShape();
int[] rearrange = TensorShape.dimensionRange(0, partialShape.length);
rearrange[dimension] = 0;
rearrange[0] = dimension;
DoubleTensor permuted = value.permute(rearrange);
double[] permutedBuffer = permuted.asFlatDoubleArray();
Map<Vertex, PartialDerivatives> concattedPartial = new HashMap<>();
int bufferOffset = 0;
for (DoubleVertex vertex : input) {
int[] ofWrtShape = TensorShape.concat(Arrays.copyOfRange(value.getShape(), 0, vertex.getValue().getRank()), vertex.getShape());
int inputSize = (int) (value.getLength() / (value.getShape()[value.getShape().length / 2 + dimension])) * vertex.getShape()[dimension];
double[] inputsDualNumbers = Arrays.copyOfRange(permutedBuffer, bufferOffset, bufferOffset + inputSize);
DoubleTensor unpermuted = DoubleTensor.create(inputsDualNumbers, ofWrtShape).permute(rearrange);
PartialDerivatives partial = new PartialDerivatives(getId(), unpermuted);
concattedPartial.put(vertex, partial);
bufferOffset += inputSize;
}
return concattedPartial; |
<<<<<<<
BayesianNetwork network = new BayesianNetwork(A.getConnectedGraph());
network.probeForNonZeroMasterP(100);
=======
BayesNet network = new BayesNet(A.getConnectedGraph());
network.probeForNonZeroMasterP(100, random);
>>>>>>>
BayesianNetwork network = new BayesianNetwork(A.getConnectedGraph());
network.probeForNonZeroMasterP(100, random);
<<<<<<<
BayesNetDoubleAsContinuous network = new BayesNetDoubleAsContinuous(A.getConnectedGraph());
network.probeForNonZeroMasterP(100);
=======
BayesNet network = new BayesNet(A.getConnectedGraph());
network.probeForNonZeroMasterP(100, random);
>>>>>>>
BayesNetDoubleAsContinuous network = new BayesNetDoubleAsContinuous(A.getConnectedGraph());
network.probeForNonZeroMasterP(100, random); |
<<<<<<<
protected DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) {
=======
public DoubleTensor getDerivedValue() {
return op(extractFromInputs(DoubleTensor.class, Vertex::getValue));
}
@Override
public DualNumber calculateDualNumber(Map<Vertex, DualNumber> dualNumbers) {
>>>>>>>
public DualNumber calculateDualNumber(Map<Vertex<?>, DualNumber> dualNumbers) { |
<<<<<<<
public BetaVertex(DoubleVertex alpha, DoubleVertex beta) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(alpha.getShape(), beta.getShape()), alpha, beta);
=======
@ExportVertexToPythonBindings
public BetaVertex(@LoadParentVertex(ALPHA_NAME) DoubleVertex alpha,
@LoadParentVertex(BETA_NAME) DoubleVertex beta) {
this(checkHasSingleNonScalarShapeOrAllScalar(alpha.getShape(), beta.getShape()), alpha, beta);
>>>>>>>
@ExportVertexToPythonBindings
public BetaVertex(@LoadParentVertex(ALPHA_NAME) DoubleVertex alpha,
@LoadParentVertex(BETA_NAME) DoubleVertex beta) {
this(checkHasOneNonLengthOneShapeOrAllLengthOne(alpha.getShape(), beta.getShape()), alpha, beta); |
<<<<<<<
=======
import org.apache.lucene.index.Fields;
>>>>>>> |
<<<<<<<
//import org.apache.lucene.codecs.bloom.BloomFilteringPostingsFormat;
//import org.apache.lucene.codecs.bloom.DefaultBloomFilterFactory;
import org.apache.lucene.codecs.lucene41.Lucene41Codec;
=======
import org.apache.lucene.codecs.lucene40.Lucene40Codec;
>>>>>>>
import org.apache.lucene.codecs.lucene41.Lucene41Codec;
<<<<<<<
/*
if (field.equals("id")) {
if (idFieldPostingsFormat.equals("BloomLucene41")) {
return new BloomFilteringPostingsFormat(
PostingsFormat.forName("Lucene41"),
new DefaultBloomFilterFactory());
} else if (idFieldPostingsFormat.equals("BloomMemory")) {
return new BloomFilteringPostingsFormat(
PostingsFormat.forName("Memory"),
new DefaultBloomFilterFactory());
}
}
*/
=======
>>>>>>> |
<<<<<<<
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.*;
import org.apache.lucene.index.*;
import org.apache.lucene.index.IndexReader.AtomicReaderContext;
import org.apache.lucene.codecs.Codec;
import org.apache.lucene.codecs.PostingsFormat;
import org.apache.lucene.codecs.lucene40.Lucene40Codec;
import org.apache.lucene.search.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.*;
=======
import org.apache.lucene.codecs.Codec;
import org.apache.lucene.codecs.PostingsFormat;
import org.apache.lucene.codecs.lucene40.Lucene40Codec;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.NumericField;
import org.apache.lucene.document.StringField;
import org.apache.lucene.index.BalancedSegmentMergePolicy;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.IndexableField;
import org.apache.lucene.index.LogByteSizeMergePolicy;
import org.apache.lucene.index.LogDocMergePolicy;
import org.apache.lucene.index.LogMergePolicy;
import org.apache.lucene.index.MergePolicy;
import org.apache.lucene.index.NoDeletionPolicy;
import org.apache.lucene.index.NoMergePolicy;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TieredMergePolicy;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.MMapDirectory;
import org.apache.lucene.store.NIOFSDirectory;
import org.apache.lucene.store.SimpleFSDirectory;
import org.apache.lucene.util.InfoStream;
import org.apache.lucene.util.PrintStreamInfoStream;
import org.apache.lucene.util.Version;
import org.apache.lucene.util._TestUtil;
>>>>>>>
import org.apache.lucene.codecs.Codec;
import org.apache.lucene.codecs.PostingsFormat;
import org.apache.lucene.codecs.lucene40.Lucene40Codec;
import org.apache.lucene.document.*;
import org.apache.lucene.index.*;
import org.apache.lucene.index.IndexReader.AtomicReaderContext;
import org.apache.lucene.search.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.*; |
<<<<<<<
import thredds.client.catalog.Catalog;
import thredds.client.catalog.builder.CatalogBuilder;
import thredds.client.catalog.tools.CatalogXmlWriter;
=======
import thredds.catalog.InvCatalogFactory;
import thredds.catalog.InvCatalogImpl;
>>>>>>>
import thredds.client.catalog.Catalog;
import thredds.client.catalog.builder.CatalogBuilder;
import thredds.client.catalog.tools.CatalogXmlWriter;
<<<<<<<
=======
import ucar.unidata.test.util.ThreddsServer;
>>>>>>>
import ucar.unidata.test.util.NotTravis;
import ucar.unidata.test.util.ThreddsServer; |
<<<<<<<
Assert.assertEquals(expected, actual);
}
=======
assertEquals(expected, actual);
>>>>>>>
assertEquals(expected, actual);
}
<<<<<<<
=======
assertTrue("Expected to find metadata entries", itemsInspected > 0);
>>>>>>> |
<<<<<<<
* Copyright 1998-2015 John Caron and University Corporation for Atmospheric Research/Unidata
=======
* Copyright 1998-2017 University Corporation for Atmospheric Research/Unidata
>>>>>>>
* Copyright 1998-2017 University Corporation for Atmospheric Research/Unidata
<<<<<<<
=======
import ucar.nc2.dataset.TransformType;
import ucar.unidata.geoloc.Earth;
import ucar.unidata.geoloc.ProjectionImpl;
import ucar.unidata.geoloc.projection.proj4.AlbersEqualAreaEllipse;
>>>>>>>
import ucar.nc2.dataset.TransformType;
import ucar.unidata.geoloc.Earth;
import ucar.unidata.geoloc.ProjectionImpl;
<<<<<<<
public ProjectionCT makeCoordinateTransform(AttributeContainer ctv, String geoCoordinateUnits) {
readStandardParams(ctv, geoCoordinateUnits);
ucar.unidata.geoloc.ProjectionImpl proj = new EquidistantAzimuthalProjection(lat0, lon0, false_easting, false_northing, earth);
return new ProjectionCT(ctv.getName(), "FGDC", proj);
=======
public TransformType getTransformType() {
return TransformType.Projection;
}
public CoordinateTransform makeCoordinateTransform(NetcdfDataset ds, Variable ctv) {
readStandardParams(ds, ctv);
// create spherical Earth obj if not created by readStandardParams w radii, flattening
if (earth == null) {
if (earth_radius > 0.) {
// Earth radius obtained in readStandardParams is in km, but Earth object wants m
earth = new Earth(earth_radius * 1000.);
}
else {
earth = new Earth();
}
}
ProjectionImpl proj = new EquidistantAzimuthalProjection(lat0, lon0, false_easting, false_northing, earth);
return new ProjectionCT(ctv.getShortName(), "FGDC", proj);
>>>>>>>
public TransformType getTransformType() {
return TransformType.Projection;
}
public ProjectionCT makeCoordinateTransform(AttributeContainer ctv, String geoCoordinateUnits) {
readStandardParams(ctv, geoCoordinateUnits);
// create spherical Earth obj if not created by readStandardParams w radii, flattening
if (earth == null) {
if (earth_radius > 0.) {
// Earth radius obtained in readStandardParams is in km, but Earth object wants m
earth = new Earth(earth_radius * 1000.);
}
else {
earth = new Earth();
}
}
ProjectionImpl proj = new EquidistantAzimuthalProjection(lat0, lon0, false_easting, false_northing, earth);
return new ProjectionCT(ctv.getName(), "FGDC", proj); |
<<<<<<<
@ContextConfiguration(locations={"/WEB-INF/applicationContext.xml"},loader=MockTdsContextLoader.class)
=======
@ContextConfiguration(locations={"/WEB-INF/applicationContext-tdsConfig.xml"},loader=MockTdsContextLoader.class)
@Category(NeedsContentRoot.class)
>>>>>>>
@ContextConfiguration(locations={"/WEB-INF/applicationContext.xml"},loader=MockTdsContextLoader.class)
@Category(NeedsContentRoot.class) |
<<<<<<<
* Copyright 1998-2015 John Caron and University Corporation for Atmospheric Research/Unidata
*
* Portions of this software were developed by the Unidata Program at the
* University Corporation for Atmospheric Research.
*
* Access and use of this software shall impose the following obligations
* and understandings on the user. The user is granted the right, without
* any fee or cost, to use, copy, modify, alter, enhance and distribute
* this software, and any derivative works thereof, and its supporting
* documentation for any purpose whatsoever, provided that this entire
* notice appears in all copies of the software, derivative works and
* supporting documentation. Further, UCAR requests that the user credit
* UCAR/Unidata in any publications that result from the use of this
* software or in any product that includes this software. The names UCAR
* and/or Unidata, however, may not be used in any advertising or publicity
* to endorse or promote any products or commercial entity unless specific
* written permission is obtained from UCAR/Unidata. The user also
* understands that UCAR/Unidata is not obligated to provide the user with
* any support, consulting, training or assistance of any kind with regard
* to the use, operation and performance of this software nor to provide
* the user with any updates, revisions, new versions or "bug fixes."
*
* THIS SOFTWARE IS PROVIDED BY UCAR/UNIDATA "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL UCAR/UNIDATA BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
=======
* Copyright (c) 1998-2017 University Corporation for Atmospheric Research/Unidata
>>>>>>>
* Copyright (c) 1998-2017 John Caron and University Corporation for Atmospheric Research/Unidata |
<<<<<<<
// class not interface, per Bloch edition 2 item 19
private CDM() {} // disable instantiation
=======
// Special Attribute Names
public static final String NCPROPERTIES = "_NCProperties";
public static final String ISNETCDF4 = "_IsNetcdf4";
public static final String SUPERBLOCKVERSION = "_SuperblockVersion";
public static final String DAP4_LITTLE_ENDIAN = "_DAP4_Little_Endian";
public static final String EDU_UCAR_PREFIX = "_edu.ucar";
>>>>>>>
// Special Attribute Names
public static final String NCPROPERTIES = "_NCProperties";
public static final String ISNETCDF4 = "_IsNetcdf4";
public static final String SUPERBLOCKVERSION = "_SuperblockVersion";
public static final String DAP4_LITTLE_ENDIAN = "_DAP4_Little_Endian";
public static final String EDU_UCAR_PREFIX = "_edu.ucar";
// class not interface, per Bloch edition 2 item 19
private CDM() {} // disable instantiation |
<<<<<<<
=======
import ucar.unidata.test.util.NeedsExternalResource;
import ucar.unidata.test.util.TestDir;
>>>>>>>
import ucar.unidata.test.util.TestDir; |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.