File size: 33,046 Bytes
ce08e9b 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 7997bf1 7f424a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
---
license: cc-by-4.0
---
# Monado SLAM Datasets
The [Monado SLAM datasets
(MSD)](https://huggingface.co/datasets/collabora/monado-slam-datasets), are
egocentric visual-inertial SLAM datasets recorded for improving the
[Basalt](https://gitlab.com/VladyslavUsenko/basalt)-based inside-out tracking
component of the [Monado](https://monado.dev) project. These have a permissive
license [CC-BY 4.0](http://creativecommons.org/licenses/by/4.0/), meaning you
can use them for any purpose you want, including commercial, and only a mention
of the original project is required. The creation of these datasets was
supported by [Collabora](https://collabora.com)
Monado is an open-source OpenXR runtime that you can use to make devices OpenXR
compatible. It also provides drivers for different existing hardware thanks to
different contributors in the community creating drivers for it. Monado provides
different XR-related modules that these drivers can use. To be more specific,
inside-out head tracking is one of those modules and, while you can use
different tracking systems, the main system is a [fork of
Basalt](https://gitlab.freedesktop.org/mateosss/basalt). Creating a good
open-source tracking solution requires a solid measurement pipeline to
understand how changes in the system affect tracking quality. For this reason,
the creation of these datasets was essential.
These datasets are very specific to the XR use-case as they contain VI-SLAM
footage recorded from devices such as VR headsets but other devices like phones
or AR glasses might be added in the future. These were made since current SLAM
datasets like EuRoC or TUM-VI were not specific enough for XR, or they didn't
have permissively enough usage licenses.
For questions or comments you can use the Hugging Face
[Community](https://huggingface.co/datasets/collabora/monado-slam-datasets/discussions),
join Monado's discord [server](https://discord.gg/8RkJgRJ) and ask in the
`#slam` channel, or send an email to <[email protected]>.
## List of sequences
https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC01_camcalib1.webm
- [MI_valve_index](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index)
- [MIC_calibration](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIC_calibration)
- [MIC01_camcalib1](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC01_camcalib1.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC01_camcalib1.webm).
- [MIC02_camcalib2](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC02_camcalib2.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC02_camcalib2.webm).
- [MIC03_camcalib3](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC03_camcalib3.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC03_camcalib3.webm).
- [MIC04_imucalib1](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC04_imucalib1.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC04_imucalib1.webm).
- [MIC05_imucalib2](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC05_imucalib2.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC05_imucalib2.webm).
- [MIC06_imucalib3](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC06_imucalib3.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC06_imucalib3.webm).
- [MIC07_camcalib4](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC07_camcalib4.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC07_camcalib4.webm).
- [MIC08_camcalib5](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC08_camcalib5.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC08_camcalib5.webm).
- [MIC09_imucalib4](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC09_imucalib4.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC09_imucalib4.webm).
- [MIC10_imucalib5](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC10_imucalib5.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC10_imucalib5.webm).
- [MIC11_camcalib6](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC11_camcalib6.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC11_camcalib6.webm).
- [MIC12_imucalib6](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC12_imucalib6.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC12_imucalib6.webm).
- [MIC13_camcalib7](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC13_camcalib7.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC13_camcalib7.webm).
- [MIC14_camcalib8](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC14_camcalib8.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC14_camcalib8.webm).
- [MIC15_imucalib7](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC15_imucalib7.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC15_imucalib7.webm).
- [MIC16_imucalib8](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC16_imucalib8.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIC16_imucalib8.webm).
- [MIO_others](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIO_others)
- [MIO01_hand_puncher_1](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO01_hand_puncher_1.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO01_hand_puncher_1.webm).
- [MIO02_hand_puncher_2](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO02_hand_puncher_2.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO02_hand_puncher_2.webm).
- [MIO03_hand_shooter_easy](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO03_hand_shooter_easy.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO03_hand_shooter_easy.webm).
- [MIO04_hand_shooter_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO04_hand_shooter_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO04_hand_shooter_hard.webm).
- [MIO05_inspect_easy](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO05_inspect_easy.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO05_inspect_easy.webm).
- [MIO06_inspect_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO06_inspect_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO06_inspect_hard.webm).
- [MIO07_mapping_easy](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO07_mapping_easy.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO07_mapping_easy.webm).
- [MIO08_mapping_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO08_mapping_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO08_mapping_hard.webm).
- [MIO09_short_1_updown](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO09_short_1_updown.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO09_short_1_updown.webm).
- [MIO10_short_2_panorama](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO10_short_2_panorama.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO10_short_2_panorama.webm).
- [MIO11_short_3_backandforth](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO11_short_3_backandforth.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO11_short_3_backandforth.webm).
- [MIO12_moving_screens](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO12_moving_screens.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO12_moving_screens.webm).
- [MIO13_moving_person](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO13_moving_person.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO13_moving_person.webm).
- [MIO14_moving_props](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO14_moving_props.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO14_moving_props.webm).
- [MIO15_moving_person_props](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO15_moving_person_props.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO15_moving_person_props.webm).
- [MIO16_moving_screens_person_props](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIO_others/MIO16_moving_screens_person_props.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIO16_moving_screens_person_props.webm).
- [MIP_playing](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIP_playing)
- [MIPB_beat_sabet](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber)
- [MIPB01_beatsaber_100bills_360_normal](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber/MIPB01_beatsaber_100bills_360_normal.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPB01_beatsaber_100bills_360_normal.webm).
- [MIPB02_beatsaber_crabrave_360_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber/MIPB02_beatsaber_crabrave_360_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPB02_beatsaber_crabrave_360_hard.webm).
- [MIPB03_beatsaber_countryrounds_360_expert](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber/MIPB03_beatsaber_countryrounds_360_expert.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPB03_beatsaber_countryrounds_360_expert.webm).
- [MIPB04_beatsaber_fitbeat_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber/MIPB04_beatsaber_fitbeat_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPB04_beatsaber_fitbeat_hard.webm).
- [MIPB05_beatsaber_fitbeat_360_expert](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber/MIPB05_beatsaber_fitbeat_360_expert.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPB05_beatsaber_fitbeat_360_expert.webm).
- [MIPB06_beatsaber_fitbeat_expertplus_1](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber/MIPB06_beatsaber_fitbeat_expertplus_1.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPB06_beatsaber_fitbeat_expertplus_1.webm).
- [MIPB07_beatsaber_fitbeat_expertplus_2](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber/MIPB07_beatsaber_fitbeat_expertplus_2.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPB07_beatsaber_fitbeat_expertplus_2.webm).
- [MIPB08_beatsaber_long_session_1](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber/MIPB08_beatsaber_long_session_1.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPB08_beatsaber_long_session_1.webm).
- [MIPP_pistol_whip](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPP_pistol_whip)
- [MIPP01_pistolwhip_blackmagic_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPP_pistol_whip/MIPP01_pistolwhip_blackmagic_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPP01_pistolwhip_blackmagic_hard.webm).
- [MIPP02_pistolwhip_lilith_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPP_pistol_whip/MIPP02_pistolwhip_lilith_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPP02_pistolwhip_lilith_hard.webm).
- [MIPP03_pistolwhip_requiem_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPP_pistol_whip/MIPP03_pistolwhip_requiem_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPP03_pistolwhip_requiem_hard.webm).
- [MIPP04_pistolwhip_revelations_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPP_pistol_whip/MIPP04_pistolwhip_revelations_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPP04_pistolwhip_revelations_hard.webm).
- [MIPP05_pistolwhip_thefall_hard_2pistols](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPP_pistol_whip/MIPP05_pistolwhip_thefall_hard_2pistols.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPP05_pistolwhip_thefall_hard_2pistols.webm).
- [MIPP06_pistolwhip_thegrave_hard](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPP_pistol_whip/MIPP06_pistolwhip_thegrave_hard.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPP06_pistolwhip_thegrave_hard.webm).
- [MIPT_thrill_of_the_fight](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPT_thrill_of_the_fight)
- [MIPT01_thrillofthefight_setup](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPT_thrill_of_the_fight/MIPT01_thrillofthefight_setup.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPT01_thrillofthefight_setup.webm).
- [MIPT02_thrillofthefight_fight_1](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPT_thrill_of_the_fight/MIPT02_thrillofthefight_fight_1.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPT02_thrillofthefight_fight_1.webm).
- [MIPT03_thrillofthefight_fight_2](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPT_thrill_of_the_fight/MIPT03_thrillofthefight_fight_2.zip): [Preview 5x](https://huggingface.co/datasets/collabora/monado-slam-datasets/resolve/main/M_monado_datasets/MI_valve_index/extras/previews/MIPT03_thrillofthefight_fight_2.webm).
## Valve Index datasets
These datasets were recorded using a Valve Index with the `vive` driver in
Monado and they have groundtruth from 3 lighthouses tracking the headset through
the proprietary OpenVR implementation provided by SteamVR. The exact commit used
in Monado at the time of recording is
[a4e7765d](https://gitlab.freedesktop.org/mateosss/monado/-/commit/a4e7765d7219b06a0c801c7bb33f56d3ea69229d).
The datasets are in the ASL dataset format, the same as the [EuRoC
datasets](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets).
Besides the main EuRoC format files we provide some extra files with raw
timestamp data for exploring realtime timestamp alignment techniques.
The dataset is postprocessed to reduce as much as possible special treatment
from SLAM systems: camera-IMU and groundtruth-IMU timestamp alignment, IMU
alignment and bias calibration has been applied, lighthouse tracked pose has
been converted to IMU pose and so on. Most of the post processing was done with
Basalt
[calibration](https://gitlab.com/VladyslavUsenko/basalt/-/blob/master/doc/Calibration.md?ref_type=heads#camera-imu-mocap-calibration)
and
[alignment](https://gitlab.com/VladyslavUsenko/basalt/-/blob/master/doc/Realsense.md?ref_type=heads#generating-time-aligned-ground-truth)
tools, as well as the
[xrtslam-metrics](https://gitlab.freedesktop.org/mateosss/xrtslam-metrics)
scripts for Monado tracking. The postprocessing process is documented in [this
video][postprocessing-video] which goes through making the [MIPB08] dataset ready
for use starting from its raw version.
### Data
#### Camera samples
In the `vive` driver from Monado we don't have direct access to the camera
device timestamps but only to V4L2 timestamps. These are not exactly hardware
timestamps and have some offset with respect to the device clock in which the
IMU samples are timestamped.
The camera frames can be found in the `camX/data` directory as PNG files with
names corresponding to the their V4L2 timestamps. The `camX/data.csv` file
contains aligned timestamp of each frame. The `camX/data.extra.csv` also
contains the original V4L2 timestamp and the "host timestamp" which is the time
at which the host computer had the frame ready to use after USB transmission. By
separating arrival time and exposure time algorithms can be made to be more
robust for real-time operation.
The cameras of the Valve Index are global shutter with a resolution of 960x960
streaming at 54fps. They have autoexposure enabled. While the cameras of the
Index are RGB you will find only grayscale images in these datasets. The
original images are provided in YUYV422 format but only the luma component is
stored.
For each dataset, the camera timestamps are aligned with respect to IMU
timestamps by running visual-only odometry with Basalt on a 30-second subset of
the dataset. The resulting trajectory is then aligned with the
[`basalt_time_alignment`](https://gitlab.com/VladyslavUsenko/basalt/-/blob/master/doc/Realsense.md?ref_type=heads#generating-time-aligned-ground-truth)
tool that aligns the rotational velocities of the trajectory with the gyroscope
samples and returns the resulting offset in nanoseconds. That correction is then
applied to the dataset. Refer to the postprocessing walkthrough
[video][postprocessing-video] for more details.
#### IMU samples
The IMU timestamps are device timestamps, they come at about 1000Hz. We provide
an `imu0/data.raw.csv` file that contains the raw measurements without any axis
scale-misalignment nor bias correction. `imu0/data.csv` has the
scale-misalignment and bias corrections applied so that the SLAM system can
ignore those corrections. `imu0/data.extra.csv` contains the arrival time of the
IMU sample to the host computer for algorithms that want to adapt themselves to
work on real-time.
#### Groundtruth information
The groundtruth setup consists of three lighthouses 2.0 base stations and a
SteamVR session providing tracking data through the OpenVR API to Monado. While
not as precise as a other MoCap tracking systems like OptiTrack or Vicon it
should still provide pretty good accuracy and precision close to the 1mm range.
There are different attempts at studying the accuracy of SteamVR tracking that
you can checkout like
[this](https://dl.acm.org/doi/pdf/10.1145/3463914.3463921),
[this](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956487/pdf/sensors-21-01622.pdf),
or [this](http://doc-ok.org/?p=1478). When a tracking system gets closer to
milimiter accuracy these datasets will no longer be as useful for improving it.
The raw groundtruth data is stored in `gt/data.raw.csv`. OpenVR does not provide
timestamps and as such, the timestamps recorded are from when the host asks
OpenVR for the latest pose with a call to
[`GetDeviceToAbsoluteTrackingPose`](https://github.com/ValveSoftware/openvr/wiki/IVRSystem::GetDeviceToAbsoluteTrackingPose).
The poses contained in this file are not of the IMU but of the headset origin as
interpreted by SteamVR, which usually is between the middle of the eyes and
facing towards the displays. The file `gt/data.csv` corrects each entry of the
previous file with timestamps aligned with the IMU clock and poses of the IMU
instead of this headset origin.
#### Calibration
There are multiple calibration datasets in the
[`MIC_calibration`](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIC_calibration)
directory. There are camera-focused and IMU-focused calibration datasets. See
the [README.md
there](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/README.md)
for more information on what each sequence is.
In the [`MI_valve_index/extras`](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/extras) directory you can find the following files:
- [`calibration.json`](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/extras/calibration.json):
Calibration file produced with the
[`basalt_calibrate_imu`](https://gitlab.com/VladyslavUsenko/basalt/-/blob/master/doc/Calibration.md?ref_type=heads#camera-imu-mocap-calibration)
tool from
[`MIC01_camcalib1`](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC01_camcalib1.zip)
and
[`MIC04_imucalib1`](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/MIC_calibration/MIC04_imucalib1.zip)
datasets with camera-IMU time offset and IMU bias/misalignment info removed so
that it works with the fully the all the datasets by default which are fully
postprocessed and don't require those fields.
- [`calibration.extra.json`](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/extras/calibration.extra.json):
Same as `calibration.json` but with the cam-IMU time offset and IMU bias and
misalignment information filled in.
- [`factory.json`](https://huggingface.co/datasets/collabora/monado-slam-datasets/blob/main/M_monado_datasets/MI_valve_index/extras/factory.json):
JSON exposed by the headset used for recording with information from factory
that include calibration and other data. It's not used for anything but might
be of interest.
- [`other_calibrations/`](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/extras/other_calibrations):
Results from calibrating using the other datasets for comparisson and checking
most of them are similar. `MICXX_camcalibY` have camera only calibration
produced with the
[`basalt_calibrate`](https://gitlab.com/VladyslavUsenko/basalt/-/blob/master/doc/Calibration.md?ref_type=heads#camera-calibration)
tool, while the corresponding `MICXX_imucalibY` datasets use these datasets as
a starting point and have the `basalt_calibrate_imu` calibration results.
##### Camera model
By default, the `calibration.json` file provides parameters `k1`, `k2`, `k3`,
and `k4` for the [Kannala-Brandt camera
model](https://vladyslavusenko.gitlab.io/basalt-headers/classbasalt_1_1KannalaBrandtCamera4.html#a423a4f1255e9971fe298dc6372345681)
with fish-eye distortion (also known as [OpenCV's
fish-eye](https://docs.opencv.org/3.4/db/d58/group__calib3d__fisheye.html#details)).
Calibrations with other camera models might be added later on, otherwise you can
use the calibration sequences for custom calibrations.
##### IMU model
For the default `calibration.json` where all parameters are zero you can ignore
any model and just use the measurements present in `imu0/data.csv` directly. If
instead you want to use the raw measurements from `imu0/data.raw.csv` you will
need to apply the Basalt
[accelerometer](https://vladyslavusenko.gitlab.io/basalt-headers/classbasalt_1_1CalibAccelBias.html#details)
and
[gyroscope](https://vladyslavusenko.gitlab.io/basalt-headers/classbasalt_1_1CalibGyroBias.html#details)
models that uses a misalignment-scale correction matrix together with a constant
initial bias. The random walk and white noise parameters were not computed and
default reasonable values are used instead.
#### Post-processing walkthrough
If you are interested in understanding the step-by-step procedure of
postprocessing of the dataset, below is a video detailing the procedure for the
[MIPB08] dataset.
[![Post-processing walkthrough video](https://img.youtube.com/vi/0PX_6PNwrvQ/0.jpg)](https://www.youtube.com/watch?v=0PX_6PNwrvQ)
### Sequences
- [MIC_calibration](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIC_calibration):
Calibration sequences recording
[this](https://drive.google.com/file/d/1DqKWgePodCpAKJCd_Bz-hfiEQOSnn_k0)
calibration target from Kalibr with the squares of the target having sides of
3cm. Some sequeneces are focused on camera calibration covering the image
planes of both stereo cameras while others on IMU calibration properly
exciting all six components of the IMU.
- [MIP_playing](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIO_others): Datasets in which
the user is playing a particular VR game on SteamVR while Monado records
the datasets.
- [MIPB_beat_saber](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber):
This contains different songs played at different speeds. The fitbeat song
is one that requires a lot of head movement while [MIPB08] is a long 40min
dataset with many levels played.
- [MIPP_pistol_whip](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPP_pistol_whip):
This is a shooting and music game, each dataset is a different level/song.
- [MIPT_thrill_of_the_fight](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPT_thrill_of_the_fight):
This is a boxing game.
- [MIO_others](https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIO_others): These are other
datasets that might be useful, they include playpretend scenarios in which
the user supposed to be playing some particular game, then there is some
inspection and scanning/mapping of the room, some very short and
lightweight datasets for quick testing, and some datasets with a lot of
movement around the environment.
## License
This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.
<a rel="license" href="http://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a>
[postprocessing-video]: https://youtu.be/0PX_6PNwrvQ
[MIPB08]: https://huggingface.co/datasets/collabora/monado-slam-datasets/tree/main/M_monado_datasets/MI_valve_index/MIP_playing/MIPB_beat_saber
|