Datasets:

DOI:
License:
File size: 8,093 Bytes
1e3d185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python3

# Converts Windows Mixed Reality (Reverb G2 and Odyssey+) calibrations in to
# basalt calibrations.

# Run with ./wmr2bslt_calib.py your_wmrcalib.json > your_calib.json

import json
import argparse
import numpy as np
from numpy.linalg import inv

from math import sqrt


def get(j, name):
    assert name in ["HT0", "HT1", "Gyro", "Accelerometer"]
    is_imu = name in ["Gyro", "Accelerometer"]
    calib = j["CalibrationInformation"]
    sensors = calib["InertialSensors" if is_imu else "Cameras"]
    name_key = "SensorType" if is_imu else "Location"
    sensor = next(filter(lambda s: s[name_key].endswith(name), sensors))
    return sensor


def rt2mat(rt):
    R33 = np.array(rt["Rotation"]).reshape(3, 3)
    t31 = np.array(rt["Translation"]).reshape(3, 1)
    T34 = np.hstack((R33, t31))
    T44 = np.vstack((T34, [0, 0, 0, 1]))
    return T44


def rmat2quat(r):
    w = sqrt(1 + r[0, 0] + r[1, 1] + r[2, 2]) / 2
    w4 = 4 * w
    x = (r[2, 1] - r[1, 2]) / w4
    y = (r[0, 2] - r[2, 0]) / w4
    z = (r[1, 0] - r[0, 1]) / w4
    return np.array([x, y, z, w])


def project(intrinsics, x, y, z):
    fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, p1, p2 = (
        intrinsics["fx"],
        intrinsics["fy"],
        intrinsics["cx"],
        intrinsics["cy"],
        intrinsics["k1"],
        intrinsics["k2"],
        intrinsics["k3"],
        intrinsics["k4"],
        intrinsics["k5"],
        intrinsics["k6"],
        intrinsics["p1"],
        intrinsics["p2"],
    )

    xp = x / z
    yp = y / z
    r2 = xp * xp + yp * yp
    cdist = (1 + r2 * (k1 + r2 * (k2 + r2 * k3))) / (
        1 + r2 * (k4 + r2 * (k5 + r2 * k6))
    )
    deltaX = 2 * p1 * xp * yp + p2 * (r2 + 2 * xp * xp)
    deltaY = 2 * p2 * xp * yp + p1 * (r2 + 2 * yp * yp)
    xpp = xp * cdist + deltaX
    ypp = yp * cdist + deltaY
    u = fx * xpp + cx
    v = fy * ypp + cy
    return u, v


def extrinsics(j, cam):
    # NOTE: The `Rt` field seems to be a transform from the sensor to HT0 (i.e.,
    # from HT0 space to sensor space). For basalt we need the transforms
    # expressed w.r.t IMU origin.

    # NOTE: The gyro and magnetometer translations are 0, probably because an
    # HMD is a rigid body. Therefore the accelerometer is considered as the IMU
    # origin.

    imu = get(j, "Accelerometer")
    T_i_c0 = rt2mat(imu["Rt"])

    T = None
    if cam == "HT0":
        T = T_i_c0
    elif cam == "HT1":
        cam1 = get(j, "HT1")
        T_c1_c0 = rt2mat(cam1["Rt"])
        T_c0_c1 = inv(T_c1_c0)
        T_i_c1 = T_i_c0 @ T_c0_c1
        T = T_i_c1
    else:
        assert False

    q = rmat2quat(T[0:3, 0:3])
    p = T[0:3, 3]
    return {
        "px": p[0],
        "py": p[1],
        "pz": p[2],
        "qx": q[0],
        "qy": q[1],
        "qz": q[2],
        "qw": q[3],
    }


def resolution(j, cam):
    camera = get(j, cam)
    width = camera["SensorWidth"]
    height = camera["SensorHeight"]
    return [width, height]


def intrinsics(j, cam):
    # https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/2feb3425259bf803749065bb6d628c6c180f8e77/include/k4a/k4atypes.h#L1024-L1046
    camera = get(j, cam)
    model_params = camera["Intrinsics"]["ModelParameters"]
    assert (
        camera["Intrinsics"]["ModelType"]
        == "CALIBRATION_LensDistortionModelRational6KT"
    )
    width = camera["SensorWidth"]
    height = camera["SensorHeight"]
    return {
        "camera_type": "pinhole-radtan8",
        "intrinsics": {
            "fx": model_params[2] * width,
            "fy": model_params[3] * height,
            "cx": model_params[0] * width,
            "cy": model_params[1] * height,
            "k1": model_params[4],
            "k2": model_params[5],
            "p1": model_params[13],
            "p2": model_params[12],
            "k3": model_params[6],
            "k4": model_params[7],
            "k5": model_params[8],
            "k6": model_params[9],
            "rpmax": model_params[14],
        },
    }


def view_offset(j):
    """
    This is a very rough offset in pixels between the two cameras. Originally we
    needed to manually estimate it like explained and shown here
    https://youtu.be/jyQKjyRVMS4?t=670.
    With this calculation we get a similar number without the need to open Gimp.

    In reality this offset changes based on distance to the point, nonetheless
    it helps to get some features tracked in the right camera.
    """

    # Rough approximation of how far from the cameras features will likely be in your room
    DISTANCE_TO_WALL = 2  # In meters

    cam1 = get(j, "HT1")
    width = cam1["SensorWidth"]
    height = cam1["SensorHeight"]
    cam1_intrinsics = intrinsics(j, "HT1")["intrinsics"]
    T_c1_c0 = rt2mat(cam1["Rt"])  # Maps a point in c0 space to c1 space
    p = np.array([0, 0, DISTANCE_TO_WALL, 1])  # Fron tof c0, in homogeneous coords
    p_in_c1 = T_c1_c0 @ p  # Point in c1 coordinates
    u, v = project(cam1_intrinsics, *p_in_c1[0:3])
    view_offset = [width / 2 - u, height / 2 - v]  # We used a point in the middle of c0
    return view_offset


def calib_accel_bias(j):
    # https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/2feb3425259bf803749065bb6d628c6c180f8e77/include/k4ainternal/calibration.h#L48-L77
    # https://vladyslavusenko.gitlab.io/basalt-headers/classbasalt_1_1CalibAccelBias.html#details
    # https://gitlab.com/VladyslavUsenko/basalt-headers/-/issues/8
    accel = get(j, "Accelerometer")
    bias = accel["BiasTemperatureModel"]
    align = accel["MixingMatrixTemperatureModel"]
    return [
        -bias[0 * 4],
        -bias[1 * 4],
        -bias[2 * 4],
        align[0 * 4] - 1,  # [0, 0]
        align[3 * 4],  # [1, 0]
        align[6 * 4],  # [2, 0]
        align[4 * 4] - 1,  # [1, 1]
        align[7 * 4],  # [2, 1]
        align[8 * 4] - 1,  # [2, 2]
    ]


def calib_gyro_bias(j):
    # https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/2feb3425259bf803749065bb6d628c6c180f8e77/include/k4ainternal/calibration.h#L48-L77
    # https://vladyslavusenko.gitlab.io/basalt-headers/classbasalt_1_1CalibGyroBias.html#details
    gyro = get(j, "Gyro")
    bias = gyro["BiasTemperatureModel"]
    align = gyro["MixingMatrixTemperatureModel"]
    return [
        -bias[0 * 4],
        -bias[1 * 4],
        -bias[2 * 4],
        align[0 * 4] - 1,  # [0, 0]
        align[3 * 4],  # [1, 0]
        align[6 * 4],  # [2, 0]
        align[1 * 4],  # [0, 1]
        align[4 * 4] - 1,  # [1, 1]
        align[7 * 4],  # [2, 1]
        align[2 * 4],  # [0, 2]
        align[5 * 4],  # [1, 2]
        align[8 * 4] - 1,  # [2, 2]
    ]


def noise_std(j, name):
    imu = get(j, name)
    return imu["Noise"][0:3]


def bias_std(j, name):
    imu = get(j, name)
    return list(map(sqrt, imu["BiasUncertainty"]))


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("wmr_json_file", help="Input WMR json calibration file")
    args = parser.parse_args()
    in_fn = args.wmr_json_file

    with open(in_fn) as f:
        j = json.load(f)

    # We get 250 packets with 4 samples each per second, totalling 1000 samples per second.
    # But in monado we just average those 4 samples to reduce the noise. So we have 250hz.
    IMU_UPDATE_RATE = 250

    out_calib = {
        "value0": {
            "T_imu_cam": [extrinsics(j, "HT0"), extrinsics(j, "HT1")],
            "intrinsics": [intrinsics(j, "HT0"), intrinsics(j, "HT1")],
            "resolution": [resolution(j, "HT0"), resolution(j, "HT1")],
            "calib_accel_bias": calib_accel_bias(j),
            "calib_gyro_bias": calib_gyro_bias(j),
            "imu_update_rate": IMU_UPDATE_RATE,
            "accel_noise_std": noise_std(j, "Accelerometer"),
            "gyro_noise_std": noise_std(j, "Gyro"),
            "accel_bias_std": bias_std(j, "Accelerometer"),
            "gyro_bias_std": bias_std(j, "Gyro"),
            "cam_time_offset_ns": 0,
            # "view_offset": view_offset(j),
            "vignette": [],
        }
    }

    print(json.dumps(out_calib, indent=4))


if __name__ == "__main__":
    main()