Dataset Viewer
form
stringlengths 1
58
| type
stringclasses 4
values | mentions
int64 1
1.85k
| entity
stringlengths 1
56
| novel
stringclasses 7
values |
---|---|---|---|---|
À la belle vue
|
LOC
| 1 |
?
|
BelAmi
|
À la Belle-Vue
|
LOC
| 1 |
?
|
BelAmi
|
Afrique
|
LOC
| 10 |
?
|
BelAmi
|
Alexandre
|
PER
| 3 |
Alexandre Duroy
|
BelAmi
|
Alger
|
LOC
| 4 |
?
|
BelAmi
|
Antibes
|
LOC
| 1 |
?
|
BelAmi
|
Argenteuil
|
LOC
| 1 |
?
|
BelAmi
|
Asnières
|
LOC
| 2 |
?
|
BelAmi
|
au Bois
|
LOC
| 3 |
?
|
BelAmi
|
au bois du Vésinet
|
LOC
| 1 |
?
|
BelAmi
|
au bouillon Duval
|
LOC
| 1 |
?
|
BelAmi
|
au boulevard Poissonnière
|
LOC
| 1 |
?
|
BelAmi
|
au café Anglais
|
LOC
| 1 |
?
|
BelAmi
|
au café Riche
|
LOC
| 1 |
?
|
BelAmi
|
au Clergé
|
ORG
| 1 |
?
|
BelAmi
|
au Continental
|
LOC
| 1 |
?
|
BelAmi
|
au golfe Juan
|
LOC
| 3 |
?
|
BelAmi
|
au Louvre
|
LOC
| 1 |
?
|
BelAmi
|
au Luxembourg
|
LOC
| 1 |
?
|
BelAmi
|
au manège Pellerin
|
LOC
| 1 |
?
|
BelAmi
|
au Maroc
|
LOC
| 2 |
?
|
BelAmi
|
au marquis de Cazolles
|
PER
| 1 |
Marquis de Cazolles
|
BelAmi
|
au marquis de Latour-Yvelin
|
PER
| 1 |
Marquis de Latour-Yvelin
|
BelAmi
|
au Napolitain
|
LOC
| 1 |
?
|
BelAmi
|
au Nord
|
ORG
| 1 |
?
|
BelAmi
|
au parc Monceau
|
LOC
| 3 |
?
|
BelAmi
|
au patron
|
PER
| 1 |
Monsieur Walter
|
BelAmi
|
au pavillon Henri-IV
|
LOC
| 1 |
?
|
BelAmi
|
au Pecq
|
LOC
| 1 |
?
|
BelAmi
|
au père Walter
|
PER
| 2 |
Monsieur Walter
|
BelAmi
|
au pôle Nord
|
LOC
| 1 |
?
|
BelAmi
|
au pont de la Concorde
|
LOC
| 1 |
?
|
BelAmi
|
au portique du Palais-Bourbon
|
LOC
| 1 |
?
|
BelAmi
|
au restaurant du Coq-Faisan
|
LOC
| 1 |
?
|
BelAmi
|
aux Batignolles
|
LOC
| 1 |
?
|
BelAmi
|
aux Folies-Bergère
|
LOC
| 5 |
?
|
BelAmi
|
aux Forestier
|
PER
| 1 |
Famille Forestier
|
BelAmi
|
aux halles
|
LOC
| 1 |
?
|
BelAmi
|
aux Italiens
|
LOC
| 1 |
?
|
BelAmi
|
aux Magistrats
|
ORG
| 1 |
?
|
BelAmi
|
aux Walter
|
PER
| 1 |
Famille Walter
|
BelAmi
|
Balzac
|
PER
| 3 |
Honoré de Balzac
|
BelAmi
|
Baron de Tanquelet
|
PER
| 1 |
Baron de Tanquelet
|
BelAmi
|
Basile-Ravalau
|
PER
| 1 |
Monsieur Basile-Ravalau
|
BelAmi
|
Bastien-Lepage
|
PER
| 1 |
Jules Bastien-Lepage
|
BelAmi
|
Bazaine
|
PER
| 1 |
François Achille Bazaine
|
BelAmi
|
Bel-Ami
|
PER
| 47 |
George Duroy
|
BelAmi
|
Bibi
|
PER
| 1 |
Clotilde de Marelle
|
BelAmi
|
Bleus
|
ORG
| 1 |
?
|
BelAmi
|
Boisrenard
|
PER
| 18 |
Monsieur Boisrenard
|
BelAmi
|
Bonaparte
|
PER
| 1 |
Napoléon Bonaparte
|
BelAmi
|
Bonnières
|
LOC
| 1 |
?
|
BelAmi
|
Bougival
|
LOC
| 3 |
?
|
BelAmi
|
Bouguereau
|
PER
| 1 |
William-Adolphe Bouguereau
|
BelAmi
|
boulevard Malesherbes
|
LOC
| 2 |
?
|
BelAmi
|
Cambronne
|
LOC
| 1 |
?
|
BelAmi
|
campagne de Paris
|
LOC
| 1 |
?
|
BelAmi
|
Cannes
|
LOC
| 7 |
?
|
BelAmi
|
Canteleu
|
LOC
| 5 |
?
|
BelAmi
|
Carapin
|
PER
| 1 |
Monsieur Carapin
|
BelAmi
|
Carleville
|
LOC
| 1 |
?
|
BelAmi
|
Cazolles
|
PER
| 1 |
Marquis de Cazolles
|
BelAmi
|
ce Christ-là
|
PER
| 1 |
Jésus Christ
|
BelAmi
|
ce Jésus
|
MISC
| 1 |
?
|
BelAmi
|
Ce Langremont
|
PER
| 1 |
Louis Langremont
|
BelAmi
|
ces Walter
|
PER
| 1 |
Famille Walter
|
BelAmi
|
César
|
PER
| 1 |
Gaius Julius Caesar
|
BelAmi
|
Charles
|
PER
| 32 |
Charles Forestier
|
BelAmi
|
Charles Forestier
|
PER
| 2 |
Charles Forestier
|
BelAmi
|
Chatou
|
LOC
| 2 |
?
|
BelAmi
|
Chaussée-d ' Antin
|
LOC
| 1 |
?
|
BelAmi
|
Chiliens
|
MISC
| 1 |
?
|
BelAmi
|
Chine
|
LOC
| 2 |
?
|
BelAmi
|
Chinois
|
MISC
| 1 |
?
|
BelAmi
|
Chinois
|
PER
| 1 |
Peuple Chinois
|
BelAmi
|
Cicéron
|
PER
| 1 |
Marcus Tullius Cicero
|
BelAmi
|
Clo
|
PER
| 15 |
Clotilde de Marelle
|
BelAmi
|
Clotilde
|
PER
| 23 |
Clotilde de Marelle
|
BelAmi
|
Clotilde de Marelle
|
PER
| 1 |
Clotilde de Marelle
|
BelAmi
|
comte de Vaudrec
|
PER
| 1 |
Comte de Vaudrec
|
BelAmi
|
Croisset
|
LOC
| 1 |
?
|
BelAmi
|
D. de Cantel
|
PER
| 3 |
Georges Duroy
|
BelAmi
|
de Marelle
|
PER
| 1 |
Clotilde de Marelle
|
BelAmi
|
Delft
|
LOC
| 1 |
?
|
BelAmi
|
Deo
|
PER
| 1 |
Dieu
|
BelAmi
|
des Arabes
|
MISC
| 3 |
?
|
BelAmi
|
des bords de la Seine
|
LOC
| 1 |
?
|
BelAmi
|
des Chambres
|
ORG
| 2 |
?
|
BelAmi
|
des demoiselles Walter
|
PER
| 1 |
Demoiselles Walter
|
BelAmi
|
des Espagnoles
|
MISC
| 1 |
?
|
BelAmi
|
des Forestier
|
PER
| 1 |
Famille Forestier
|
BelAmi
|
des îles de Lérins
|
LOC
| 1 |
?
|
BelAmi
|
des Indiens
|
MISC
| 1 |
?
|
BelAmi
|
des Juives
|
MISC
| 1 |
?
|
BelAmi
|
des Mauresques
|
MISC
| 1 |
?
|
BelAmi
|
des Parisiens
|
MISC
| 1 |
?
|
BelAmi
|
des Walter
|
PER
| 2 |
Famille Walter
|
BelAmi
|
Detaille
|
MISC
| 1 |
?
|
BelAmi
|
Didon
|
PER
| 1 |
Didon
|
BelAmi
|
Dieu
|
MISC
| 1 |
?
|
BelAmi
|
End of preview. Expand
in Data Studio
7-romans
This dataset contains 7 French novels, entirely annoted for the alias resolution task. See the related NER dataset.
Novel | Author | Publication Year | Number of tokens | Number of characters |
---|---|---|---|---|
Les Trois Mousquetaires | Alexandre Dumas | 1849 | 294 989 | 213 |
Le Rouge et le Noir | Stendhal | 1854 | 216 445 | 318 |
Eugénie Grandet | Honoré de Balzac | 1855 | 80 659 | 107 |
Germinal | Émile Zola | 1885 | 220 273 | 102 |
Bel-Ami | Guy de Maupassant | 1901 | 138 156 | 150 |
Notre-Dame de Paris | Victor Hugo | 1904 | 221 351 | 536 |
Madame Bovary | Gustave Flaubert | 1910 | 148 861 | 175 |
This gold standard corpus was created in the context of a project at the ObTIC laboratory, Sorbonne University. The project was directed by Motasem Alrahabi, and annnotations were performed by Perrine Maurel, Una Faller and Romaric Parnasse.
The corpus was then used to train a CamemBERT NER model in collaboration with Arthur Amalvy and Vincent Labatut, from Avignon University.
Usage
To load the alias resolution data:
>>> from datasets import load_dataset
>>> dataset = load_dataset("compnet-renard/7-romans-alias-resolution", "alias-resolution")
>>> dataset["train"][0]
{'form': 'À la belle vue', 'type': 'LOC', 'mentions': 1, 'entity': '?', 'novel': 'BelAmi'}
Only the PER entities are annotated: other types only have a "?" in their entity field.
The novel texts themselves are in a separate configuration:
>>> dataset = load_dataset("compnet-renard/7-romans-alias-resolution", "text")
>>> dataset["train"].features
{'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'novel': Value(dtype='string', id=None)}
Citation
If you use this dataset in your research, please cite:
@InProceedings{Maurel2025,
authors = {Maurel, P. and Amalvy, A. and Labatut, V. and Alrahabi, M.},
title = {Du repérage à l’analyse : un modèle pour la reconnaissance d’entités nommées dans les textes littéraires en français},
booktitle = {Digital Humanities 2025},
year = {2025},
}
- Downloads last month
- 74