|
import collections |
|
import logging |
|
import os |
|
import pathlib |
|
import re |
|
import sys |
|
import warnings |
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
|
logging.getLogger().setLevel('ERROR') |
|
warnings.filterwarnings('ignore', '.*box bound precision lowered.*') |
|
|
|
sys.path.append(str(pathlib.Path(__file__).parent)) |
|
sys.path.append(str(pathlib.Path(__file__).parent.parent)) |
|
|
|
import numpy as np |
|
import ruamel.yaml as yaml |
|
|
|
from dreamerv2 import agent |
|
from dreamerv2 import common |
|
|
|
from dreamerv2.common import Config |
|
from dreamerv2.common import GymWrapper |
|
from dreamerv2.common import RenderImage |
|
from dreamerv2.common import TerminalOutput |
|
from dreamerv2.common import JSONLOutput |
|
from dreamerv2.common import TensorBoardOutput |
|
|
|
configs = yaml.safe_load( |
|
(pathlib.Path(__file__).parent / 'configs.yaml').read_text()) |
|
defaults = common.Config(configs.pop('defaults')) |
|
|
|
|
|
def train(env, config, outputs=None): |
|
logdir = pathlib.Path(config.logdir).expanduser() |
|
logdir.mkdir(parents=True, exist_ok=True) |
|
config.save(logdir / 'config.yaml') |
|
print(config, '\n') |
|
print('Logdir', logdir) |
|
|
|
outputs = outputs or [ |
|
common.TerminalOutput(), |
|
common.JSONLOutput(config.logdir), |
|
common.TensorBoardOutput(config.logdir), |
|
] |
|
replay = common.Replay(logdir / 'train_episodes', **config.replay) |
|
step = common.Counter(replay.stats['total_steps']) |
|
logger = common.Logger(step, outputs, multiplier=config.action_repeat) |
|
metrics = collections.defaultdict(list) |
|
|
|
should_train = common.Every(config.train_every) |
|
should_log = common.Every(config.log_every) |
|
should_video = common.Every(config.log_every) |
|
should_expl = common.Until(config.expl_until) |
|
|
|
def per_episode(ep): |
|
length = len(ep['reward']) - 1 |
|
score = float(ep['reward'].astype(np.float64).sum()) |
|
print(f'Episode has {length} steps and return {score:.1f}.') |
|
logger.scalar('return', score) |
|
logger.scalar('length', length) |
|
for key, value in ep.items(): |
|
if re.match(config.log_keys_sum, key): |
|
logger.scalar(f'sum_{key}', ep[key].sum()) |
|
if re.match(config.log_keys_mean, key): |
|
logger.scalar(f'mean_{key}', ep[key].mean()) |
|
if re.match(config.log_keys_max, key): |
|
logger.scalar(f'max_{key}', ep[key].max(0).mean()) |
|
if should_video(step): |
|
for key in config.log_keys_video: |
|
logger.video(f'policy_{key}', ep[key]) |
|
logger.add(replay.stats) |
|
logger.write() |
|
|
|
env = common.GymWrapper(env) |
|
env = common.ResizeImage(env) |
|
if hasattr(env.act_space['action'], 'n'): |
|
env = common.OneHotAction(env) |
|
else: |
|
env = common.NormalizeAction(env) |
|
env = common.TimeLimit(env, config.time_limit) |
|
|
|
driver = common.Driver([env]) |
|
driver.on_episode(per_episode) |
|
driver.on_step(lambda tran, worker: step.increment()) |
|
driver.on_step(replay.add_step) |
|
driver.on_reset(replay.add_step) |
|
|
|
prefill = max(0, config.prefill - replay.stats['total_steps']) |
|
if prefill: |
|
print(f'Prefill dataset ({prefill} steps).') |
|
random_agent = common.RandomAgent(env.act_space) |
|
driver(random_agent, steps=prefill, episodes=1) |
|
driver.reset() |
|
|
|
print('Create agent.') |
|
agnt = agent.Agent(config, env.obs_space, env.act_space, step) |
|
dataset = iter(replay.dataset(**config.dataset)) |
|
train_agent = common.CarryOverState(agnt.train) |
|
train_agent(next(dataset)) |
|
if (logdir / 'variables.pkl').exists(): |
|
agnt.load(logdir / 'variables.pkl') |
|
else: |
|
print('Pretrain agent.') |
|
for _ in range(config.pretrain): |
|
train_agent(next(dataset)) |
|
policy = lambda *args: agnt.policy( |
|
*args, mode='explore' if should_expl(step) else 'train') |
|
|
|
def train_step(tran, worker): |
|
if should_train(step): |
|
for _ in range(config.train_steps): |
|
mets = train_agent(next(dataset)) |
|
[metrics[key].append(value) for key, value in mets.items()] |
|
if should_log(step): |
|
for name, values in metrics.items(): |
|
logger.scalar(name, np.array(values, np.float64).mean()) |
|
metrics[name].clear() |
|
logger.add(agnt.report(next(dataset))) |
|
logger.write(fps=True) |
|
|
|
driver.on_step(train_step) |
|
|
|
while step < config.steps: |
|
logger.write() |
|
driver(policy, steps=config.eval_every) |
|
agnt.save(logdir / 'variables.pkl') |
|
|