conglu's picture
upload code
6e5cc8b
import atexit
import os
import sys
import threading
import traceback
import cloudpickle
import gym
import numpy as np
class GymWrapper:
def __init__(self, env, obs_key='image', act_key='action'):
self._env = env
self._obs_is_dict = hasattr(self._env.observation_space, 'spaces')
self._act_is_dict = hasattr(self._env.action_space, 'spaces')
self._obs_key = obs_key
self._act_key = act_key
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def obs_space(self):
if self._obs_is_dict:
spaces = self._env.observation_space.spaces.copy()
else:
spaces = {self._obs_key: self._env.observation_space}
return {
**spaces,
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
@property
def act_space(self):
if self._act_is_dict:
return self._env.action_space.spaces.copy()
else:
return {self._act_key: self._env.action_space}
def step(self, action):
if not self._act_is_dict:
action = action[self._act_key]
obs, reward, done, info = self._env.step(action)
if not self._obs_is_dict:
obs = {self._obs_key: obs}
obs['reward'] = float(reward)
obs['is_first'] = False
obs['is_last'] = done
obs['is_terminal'] = info.get('is_terminal', done)
return obs
def reset(self):
obs = self._env.reset()
if not self._obs_is_dict:
obs = {self._obs_key: obs}
obs['reward'] = 0.0
obs['is_first'] = True
obs['is_last'] = False
obs['is_terminal'] = False
return obs
class DMC:
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None, **kwargs):
os.environ['MUJOCO_GL'] = 'egl'
domain, task = name.split('_', 1)
if domain == 'cup': # Only domain with multiple words.
domain = 'ball_in_cup'
if domain == 'manip':
from dm_control import manipulation
self._env = manipulation.load(task + '_vision')
elif domain == 'locom':
from dm_control.locomotion.examples import basic_rodent_2020
self._env = getattr(basic_rodent_2020, task)()
else:
from dm_control import suite
self._env = suite.load(domain, task, **kwargs)
self._action_repeat = action_repeat
self._size = size
if camera in (-1, None):
camera = dict(
quadruped_walk=2, quadruped_run=2, quadruped_escape=2,
quadruped_fetch=2, locom_rodent_maze_forage=1,
locom_rodent_two_touch=1,
).get(name, 0)
self._camera = camera
self._ignored_keys = ['orientations', 'height', 'velocity', 'pixels']
for key, value in self._env.observation_spec().items():
if value.shape == (0,):
print(f"Ignoring empty observation key '{key}'.")
self._ignored_keys.append(key)
@property
def obs_space(self):
spaces = {
'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
for key, value in self._env.observation_spec().items():
if key in self._ignored_keys:
continue
if value.dtype == np.float64:
spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32)
elif value.dtype == np.uint8:
spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8)
else:
raise NotImplementedError(value.dtype)
return spaces
@property
def act_space(self):
spec = self._env.action_spec()
action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
return {'action': action}
def step(self, action):
assert np.isfinite(action['action']).all(), action['action']
reward = 0.0
for _ in range(self._action_repeat):
time_step = self._env.step(action['action'])
reward += time_step.reward or 0.0
if time_step.last():
break
assert time_step.discount in (0, 1)
obs = {
'reward': reward,
'is_first': False,
'is_last': time_step.last(),
'is_terminal': time_step.discount == 0,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
def reset(self):
time_step = self._env.reset()
obs = {
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
class Atari:
LOCK = threading.Lock()
def __init__(
self, name, action_repeat=4, size=(84, 84), grayscale=True, noops=30,
life_done=False, sticky=True, all_actions=False):
assert size[0] == size[1]
import gym.wrappers
import gym.envs.atari
if name == 'james_bond':
name = 'jamesbond'
with self.LOCK:
env = gym.envs.atari.AtariEnv(
game=name, obs_type='image', frameskip=1,
repeat_action_probability=0.25 if sticky else 0.0,
full_action_space=all_actions)
# Avoid unnecessary rendering in inner env.
env._get_obs = lambda: None
# Tell wrapper that the inner env has no action repeat.
env.spec = gym.envs.registration.EnvSpec('NoFrameskip-v0')
self._env = gym.wrappers.AtariPreprocessing(
env, noops, action_repeat, size[0], life_done, grayscale)
self._size = size
self._grayscale = grayscale
@property
def obs_space(self):
shape = self._size + (1 if self._grayscale else 3,)
return {
'image': gym.spaces.Box(0, 255, shape, np.uint8),
'ram': gym.spaces.Box(0, 255, (128,), np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
@property
def act_space(self):
return {'action': self._env.action_space}
def step(self, action):
image, reward, done, info = self._env.step(action['action'])
if self._grayscale:
image = image[..., None]
return {
'image': image,
'ram': self._env.env._get_ram(),
'reward': reward,
'is_first': False,
'is_last': done,
'is_terminal': done,
}
def reset(self):
with self.LOCK:
image = self._env.reset()
if self._grayscale:
image = image[..., None]
return {
'image': image,
'ram': self._env.env._get_ram(),
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
}
def close(self):
return self._env.close()
class Crafter:
def __init__(self, outdir=None, reward=True, seed=None):
import crafter
self._env = crafter.Env(reward=reward, seed=seed)
self._env = crafter.Recorder(
self._env, outdir,
save_stats=True,
save_video=False,
save_episode=False,
)
self._achievements = crafter.constants.achievements.copy()
@property
def obs_space(self):
spaces = {
'image': self._env.observation_space,
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
'log_reward': gym.spaces.Box(-np.inf, np.inf, (), np.float32),
}
spaces.update({
f'log_achievement_{k}': gym.spaces.Box(0, 2 ** 31 - 1, (), np.int32)
for k in self._achievements})
return spaces
@property
def act_space(self):
return {'action': self._env.action_space}
def step(self, action):
image, reward, done, info = self._env.step(action['action'])
obs = {
'image': image,
'reward': reward,
'is_first': False,
'is_last': done,
'is_terminal': info['discount'] == 0,
'log_reward': info['reward'],
}
obs.update({
f'log_achievement_{k}': v
for k, v in info['achievements'].items()})
return obs
def reset(self):
obs = {
'image': self._env.reset(),
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'log_reward': 0.0,
}
obs.update({
f'log_achievement_{k}': 0
for k in self._achievements})
return obs
class Dummy:
def __init__(self):
pass
@property
def obs_space(self):
return {
'image': gym.spaces.Box(0, 255, (64, 64, 3), dtype=np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
@property
def act_space(self):
return {'action': gym.spaces.Box(-1, 1, (6,), dtype=np.float32)}
def step(self, action):
return {
'image': np.zeros((64, 64, 3)),
'reward': 0.0,
'is_first': False,
'is_last': False,
'is_terminal': False,
}
def reset(self):
return {
'image': np.zeros((64, 64, 3)),
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
}
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs = self._env.step(action)
self._step += 1
if self._duration and self._step >= self._duration:
obs['is_last'] = True
self._step = None
return obs
def reset(self):
self._step = 0
return self._env.reset()
class NormalizeAction:
def __init__(self, env, key='action'):
self._env = env
self._key = key
space = env.act_space[key]
self._mask = np.isfinite(space.low) & np.isfinite(space.high)
self._low = np.where(self._mask, space.low, -1)
self._high = np.where(self._mask, space.high, 1)
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def act_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
space = gym.spaces.Box(low, high, dtype=np.float32)
return {**self._env.act_space, self._key: space}
def step(self, action):
orig = (action[self._key] + 1) / 2 * (self._high - self._low) + self._low
orig = np.where(self._mask, orig, action[self._key])
return self._env.step({**action, self._key: orig})
class OneHotAction:
def __init__(self, env, key='action'):
assert hasattr(env.act_space[key], 'n')
self._env = env
self._key = key
self._random = np.random.RandomState()
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def act_space(self):
shape = (self._env.act_space[self._key].n,)
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
space.sample = self._sample_action
space.n = shape[0]
return {**self._env.act_space, self._key: space}
def step(self, action):
index = np.argmax(action[self._key]).astype(int)
reference = np.zeros_like(action[self._key])
reference[index] = 1
if not np.allclose(reference, action[self._key]):
raise ValueError(f'Invalid one-hot action:\n{action}')
return self._env.step({**action, self._key: index})
def reset(self):
return self._env.reset()
def _sample_action(self):
actions = self._env.act_space.n
index = self._random.randint(0, actions)
reference = np.zeros(actions, dtype=np.float32)
reference[index] = 1.0
return reference
class ResizeImage:
def __init__(self, env, size=(64, 64)):
self._env = env
self._size = size
self._keys = [
k for k, v in env.obs_space.items()
if len(v.shape) > 1 and v.shape[:2] != size]
print(f'Resizing keys {",".join(self._keys)} to {self._size}.')
if self._keys:
from PIL import Image
self._Image = Image
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def obs_space(self):
spaces = self._env.obs_space
for key in self._keys:
shape = self._size + spaces[key].shape[2:]
spaces[key] = gym.spaces.Box(0, 255, shape, np.uint8)
return spaces
def step(self, action):
obs = self._env.step(action)
for key in self._keys:
obs[key] = self._resize(obs[key])
return obs
def reset(self):
obs = self._env.reset()
for key in self._keys:
obs[key] = self._resize(obs[key])
return obs
def _resize(self, image):
image = self._Image.fromarray(image)
image = image.resize(self._size, self._Image.NEAREST)
image = np.array(image)
return image
class RenderImage:
def __init__(self, env, key='image'):
self._env = env
self._key = key
self._shape = self._env.render().shape
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def obs_space(self):
spaces = self._env.obs_space
spaces[self._key] = gym.spaces.Box(0, 255, self._shape, np.uint8)
return spaces
def step(self, action):
obs = self._env.step(action)
obs[self._key] = self._env.render('rgb_array')
return obs
def reset(self):
obs = self._env.reset()
obs[self._key] = self._env.render('rgb_array')
return obs
class Async:
# Message types for communication via the pipe.
_ACCESS = 1
_CALL = 2
_RESULT = 3
_CLOSE = 4
_EXCEPTION = 5
def __init__(self, constructor, strategy='thread'):
self._pickled_ctor = cloudpickle.dumps(constructor)
if strategy == 'process':
import multiprocessing as mp
context = mp.get_context('spawn')
elif strategy == 'thread':
import multiprocessing.dummy as context
else:
raise NotImplementedError(strategy)
self._strategy = strategy
self._conn, conn = context.Pipe()
self._process = context.Process(target=self._worker, args=(conn,))
atexit.register(self.close)
self._process.start()
self._receive() # Ready.
self._obs_space = None
self._act_space = None
def access(self, name):
self._conn.send((self._ACCESS, name))
return self._receive
def call(self, name, *args, **kwargs):
payload = name, args, kwargs
self._conn.send((self._CALL, payload))
return self._receive
def close(self):
try:
self._conn.send((self._CLOSE, None))
self._conn.close()
except IOError:
pass # The connection was already closed.
self._process.join(5)
@property
def obs_space(self):
if not self._obs_space:
self._obs_space = self.access('obs_space')()
return self._obs_space
@property
def act_space(self):
if not self._act_space:
self._act_space = self.access('act_space')()
return self._act_space
def step(self, action, blocking=False):
promise = self.call('step', action)
if blocking:
return promise()
else:
return promise
def reset(self, blocking=False):
promise = self.call('reset')
if blocking:
return promise()
else:
return promise
def _receive(self):
try:
message, payload = self._conn.recv()
except (OSError, EOFError):
raise RuntimeError('Lost connection to environment worker.')
# Re-raise exceptions in the main process.
if message == self._EXCEPTION:
stacktrace = payload
raise Exception(stacktrace)
if message == self._RESULT:
return payload
raise KeyError('Received message of unexpected type {}'.format(message))
def _worker(self, conn):
try:
ctor = cloudpickle.loads(self._pickled_ctor)
env = ctor()
conn.send((self._RESULT, None)) # Ready.
while True:
try:
# Only block for short times to have keyboard exceptions be raised.
if not conn.poll(0.1):
continue
message, payload = conn.recv()
except (EOFError, KeyboardInterrupt):
break
if message == self._ACCESS:
name = payload
result = getattr(env, name)
conn.send((self._RESULT, result))
continue
if message == self._CALL:
name, args, kwargs = payload
result = getattr(env, name)(*args, **kwargs)
conn.send((self._RESULT, result))
continue
if message == self._CLOSE:
break
raise KeyError('Received message of unknown type {}'.format(message))
except Exception:
stacktrace = ''.join(traceback.format_exception(*sys.exc_info()))
print('Error in environment process: {}'.format(stacktrace))
conn.send((self._EXCEPTION, stacktrace))
finally:
try:
conn.close()
except IOError:
pass # The connection was already closed.
class DMCMultitask:
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None):
os.environ['MUJOCO_GL'] = 'egl'
domain, task, xml = name.split('_', 2)
import envs.fb_mtenv_dmc as fb_mtenv_dmc
self._env = fb_mtenv_dmc.load(
domain_name=domain,
task_name=task,
task_kwargs={'xml_file_id': xml},
)
self._action_repeat = action_repeat
self._size = size
if camera in (-1, None):
camera = dict(
quadruped_walk=2, quadruped_run=2, quadruped_escape=2,
quadruped_fetch=2, locom_rodent_maze_forage=1,
locom_rodent_two_touch=1,
).get(name, 0)
self._camera = camera
self._ignored_keys = ['orientations', 'height', 'velocity', 'pixels']
for key, value in self._env.observation_spec().items():
if value.shape == (0,):
print(f"Ignoring empty observation key '{key}'.")
self._ignored_keys.append(key)
@property
def obs_space(self):
spaces = {
'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
for key, value in self._env.observation_spec().items():
if key in self._ignored_keys:
continue
if value.dtype == np.float64:
spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32)
elif value.dtype == np.uint8:
spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8)
else:
raise NotImplementedError(value.dtype)
return spaces
@property
def act_space(self):
spec = self._env.action_spec()
action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
return {'action': action}
def step(self, action):
assert np.isfinite(action['action']).all(), action['action']
reward = 0.0
for _ in range(self._action_repeat):
time_step = self._env.step(action['action'])
reward += time_step.reward or 0.0
if time_step.last():
break
assert time_step.discount in (0, 1)
obs = {
'reward': reward,
'is_first': False,
'is_last': time_step.last(),
'is_terminal': time_step.discount == 0,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
def reset(self):
time_step = self._env.reset()
obs = {
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
class DistractingDMC:
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None, **kwargs):
os.environ['MUJOCO_GL'] = 'egl'
domain, task, difficulty = name.split('_', 2)
from envs.distracting_control import suite as dsuite
self._env = dsuite.load(
domain_name=domain,
task_name=task,
difficulty=difficulty,
**kwargs
)
self._action_repeat = action_repeat
self._size = size
if camera in (-1, None):
camera = dict(
quadruped_walk=2, quadruped_run=2, quadruped_escape=2,
quadruped_fetch=2, locom_rodent_maze_forage=1,
locom_rodent_two_touch=1,
).get(name, 0)
self._camera = camera
self._ignored_keys = []
for key, value in self._env.observation_spec().items():
if value.shape == (0,):
print(f"Ignoring empty observation key '{key}'.")
self._ignored_keys.append(key)
@property
def obs_space(self):
spaces = {
'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
for key, value in self._env.observation_spec().items():
if key in self._ignored_keys:
continue
if value.dtype == np.float64:
spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32)
elif value.dtype == np.uint8:
spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8)
else:
raise NotImplementedError(value.dtype)
return spaces
@property
def act_space(self):
spec = self._env.action_spec()
action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
return {'action': action}
def step(self, action):
assert np.isfinite(action['action']).all(), action['action']
reward = 0.0
for _ in range(self._action_repeat):
time_step = self._env.step(action['action'])
reward += time_step.reward or 0.0
if time_step.last():
break
assert time_step.discount in (0, 1)
obs = {
'reward': reward,
'is_first': False,
'is_last': time_step.last(),
'is_terminal': time_step.discount == 0,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs
def reset(self):
time_step = self._env.reset()
obs = {
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'image': self._env.physics.render(*self._size, camera_id=self._camera),
}
obs.update({
k: v for k, v in dict(time_step.observation).items()
if k not in self._ignored_keys})
return obs