conglu's picture
upload code
6e5cc8b
import re
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers as tfkl
from tensorflow_probability import distributions as tfd
from tensorflow.keras.mixed_precision import experimental as prec
from .. import common
class EnsembleRSSM(common.Module):
def __init__(
self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False,
act='elu', norm='none', std_act='softplus', min_std=0.1):
super().__init__()
self._ensemble = ensemble
self._stoch = stoch
self._deter = deter
self._hidden = hidden
self._discrete = discrete
self._act = get_act(act)
self._norm = norm
self._std_act = std_act
self._min_std = min_std
self._cell = GRUCell(self._deter, norm=True)
self._cast = lambda x: tf.cast(x, prec.global_policy().compute_dtype)
def initial(self, batch_size):
dtype = prec.global_policy().compute_dtype
if self._discrete:
state = dict(
logit=tf.zeros([batch_size, self._stoch, self._discrete], dtype),
stoch=tf.zeros([batch_size, self._stoch, self._discrete], dtype),
deter=self._cell.get_initial_state(None, batch_size, dtype))
else:
state = dict(
mean=tf.zeros([batch_size, self._stoch], dtype),
std=tf.zeros([batch_size, self._stoch], dtype),
stoch=tf.zeros([batch_size, self._stoch], dtype),
deter=self._cell.get_initial_state(None, batch_size, dtype))
return state
@tf.function
def observe(self, embed, action, is_first, state=None):
swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape))))
if state is None:
state = self.initial(tf.shape(action)[0])
post, prior = common.static_scan(
lambda prev, inputs: self.obs_step(prev[0], *inputs),
(swap(action), swap(embed), swap(is_first)), (state, state))
post = {k: swap(v) for k, v in post.items()}
prior = {k: swap(v) for k, v in prior.items()}
return post, prior
@tf.function
def imagine(self, action, state=None):
swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape))))
if state is None:
state = self.initial(tf.shape(action)[0])
assert isinstance(state, dict), state
action = swap(action)
prior = common.static_scan(self.img_step, action, state)
prior = {k: swap(v) for k, v in prior.items()}
return prior
def get_feat(self, state):
stoch = self._cast(state['stoch'])
if self._discrete:
shape = stoch.shape[:-2] + [self._stoch * self._discrete]
stoch = tf.reshape(stoch, shape)
return tf.concat([stoch, state['deter']], -1)
def get_dist(self, state, ensemble=False):
if ensemble:
state = self._suff_stats_ensemble(state['deter'])
if self._discrete:
logit = state['logit']
logit = tf.cast(logit, tf.float32)
dist = tfd.Independent(common.OneHotDist(logit), 1)
else:
mean, std = state['mean'], state['std']
mean = tf.cast(mean, tf.float32)
std = tf.cast(std, tf.float32)
dist = tfd.MultivariateNormalDiag(mean, std)
return dist
@tf.function
def obs_step(self, prev_state, prev_action, embed, is_first, sample=True):
# if is_first.any():
prev_state, prev_action = tf.nest.map_structure(
lambda x: tf.einsum(
'b,b...->b...', 1.0 - is_first.astype(x.dtype), x),
(prev_state, prev_action))
prior = self.img_step(prev_state, prev_action, sample)
x = tf.concat([prior['deter'], embed], -1)
x = self.get('obs_out', tfkl.Dense, self._hidden)(x)
x = self.get('obs_out_norm', NormLayer, self._norm)(x)
x = self._act(x)
stats = self._suff_stats_layer('obs_dist', x)
dist = self.get_dist(stats)
stoch = dist.sample() if sample else dist.mode()
post = {'stoch': stoch, 'deter': prior['deter'], **stats}
return post, prior
@tf.function
def img_step(self, prev_state, prev_action, sample=True):
prev_stoch = self._cast(prev_state['stoch'])
prev_action = self._cast(prev_action)
if self._discrete:
shape = prev_stoch.shape[:-2] + [self._stoch * self._discrete]
prev_stoch = tf.reshape(prev_stoch, shape)
x = tf.concat([prev_stoch, prev_action], -1)
x = self.get('img_in', tfkl.Dense, self._hidden)(x)
x = self.get('img_in_norm', NormLayer, self._norm)(x)
x = self._act(x)
deter = prev_state['deter']
deter, _ = self._cell(x, [deter])
stats = self._suff_stats_ensemble(deter)
index = tf.random.uniform((), 0, self._ensemble, tf.int32)
stats = {k: v[index] for k, v in stats.items()}
dist = self.get_dist(stats)
stoch = dist.sample() if sample else dist.mode()
prior = {'stoch': stoch, 'deter': deter, **stats}
return prior
def _suff_stats_ensemble(self, inp):
bs = list(inp.shape[:-1])
inp = inp.reshape([-1, inp.shape[-1]])
stats = []
for k in range(self._ensemble):
x = self.get(f'img_out_{k}', tfkl.Dense, self._hidden)(inp)
x = self.get(f'img_out_norm_{k}', NormLayer, self._norm)(x)
x = self._act(x)
stats.append(self._suff_stats_layer(f'img_dist_{k}', x))
stats = {
k: tf.stack([x[k] for x in stats], 0)
for k, v in stats[0].items()}
stats = {
k: v.reshape([v.shape[0]] + bs + list(v.shape[2:]))
for k, v in stats.items()}
return stats
def _suff_stats_layer(self, name, x):
if self._discrete:
x = self.get(name, tfkl.Dense, self._stoch * self._discrete, None)(x)
logit = tf.reshape(x, x.shape[:-1] + [self._stoch, self._discrete])
return {'logit': logit}
else:
x = self.get(name, tfkl.Dense, 2 * self._stoch, None)(x)
mean, std = tf.split(x, 2, -1)
std = {
'softplus': lambda: tf.nn.softplus(std),
'sigmoid': lambda: tf.nn.sigmoid(std),
'sigmoid2': lambda: 2 * tf.nn.sigmoid(std / 2),
}[self._std_act]()
std = std + self._min_std
return {'mean': mean, 'std': std}
def kl_loss(self, post, prior, forward, balance, free, free_avg):
kld = tfd.kl_divergence
sg = lambda x: tf.nest.map_structure(tf.stop_gradient, x)
lhs, rhs = (prior, post) if forward else (post, prior)
mix = balance if forward else (1 - balance)
if balance == 0.5:
value = kld(self.get_dist(lhs), self.get_dist(rhs))
loss = tf.maximum(value, free).mean()
else:
value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs)))
value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs))
if free_avg:
loss_lhs = tf.maximum(value_lhs.mean(), free)
loss_rhs = tf.maximum(value_rhs.mean(), free)
else:
loss_lhs = tf.maximum(value_lhs, free).mean()
loss_rhs = tf.maximum(value_rhs, free).mean()
loss = mix * loss_lhs + (1 - mix) * loss_rhs
return loss, value
class Encoder(common.Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]):
self.shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Encoder CNN inputs:', list(self.cnn_keys))
print('Encoder MLP inputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
@tf.function
def __call__(self, data):
key, shape = list(self.shapes.items())[0]
batch_dims = data[key].shape[:-len(shape)]
data = {
k: tf.reshape(v, (-1,) + tuple(v.shape)[len(batch_dims):])
for k, v in data.items()}
outputs = []
if self.cnn_keys:
outputs.append(self._cnn({k: data[k] for k in self.cnn_keys}))
if self.mlp_keys:
outputs.append(self._mlp({k: data[k] for k in self.mlp_keys}))
output = tf.concat(outputs, -1)
return output.reshape(batch_dims + output.shape[1:])
def _cnn(self, data):
x = tf.concat(list(data.values()), -1)
x = x.astype(prec.global_policy().compute_dtype)
for i, kernel in enumerate(self._cnn_kernels):
depth = 2 ** i * self._cnn_depth
x = self.get(f'conv{i}', tfkl.Conv2D, depth, kernel, 2)(x)
x = self.get(f'convnorm{i}', NormLayer, self._norm)(x)
x = self._act(x)
return x.reshape(tuple(x.shape[:-3]) + (-1,))
def _mlp(self, data):
x = tf.concat(list(data.values()), -1)
x = x.astype(prec.global_policy().compute_dtype)
for i, width in enumerate(self._mlp_layers):
x = self.get(f'dense{i}', tfkl.Dense, width)(x)
x = self.get(f'densenorm{i}', NormLayer, self._norm)(x)
x = self._act(x)
return x
class Decoder(common.Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]):
self._shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Decoder CNN outputs:', list(self.cnn_keys))
print('Decoder MLP outputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
def __call__(self, features):
features = tf.cast(features, prec.global_policy().compute_dtype)
outputs = {}
if self.cnn_keys:
outputs.update(self._cnn(features))
if self.mlp_keys:
outputs.update(self._mlp(features))
return outputs
def _cnn(self, features):
channels = {k: self._shapes[k][-1] for k in self.cnn_keys}
ConvT = tfkl.Conv2DTranspose
x = self.get('convin', tfkl.Dense, 32 * self._cnn_depth)(features)
x = tf.reshape(x, [-1, 1, 1, 32 * self._cnn_depth])
for i, kernel in enumerate(self._cnn_kernels):
depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth
act, norm = self._act, self._norm
if i == len(self._cnn_kernels) - 1:
depth, act, norm = sum(channels.values()), tf.identity, 'none'
x = self.get(f'conv{i}', ConvT, depth, kernel, 2)(x)
x = self.get(f'convnorm{i}', NormLayer, norm)(x)
x = act(x)
x = x.reshape(features.shape[:-1] + x.shape[1:])
means = tf.split(x, list(channels.values()), -1)
dists = {
key: tfd.Independent(tfd.Normal(mean, 1), 3)
for (key, shape), mean in zip(channels.items(), means)}
return dists
def _mlp(self, features):
shapes = {k: self._shapes[k] for k in self.mlp_keys}
x = features
for i, width in enumerate(self._mlp_layers):
x = self.get(f'dense{i}', tfkl.Dense, width)(x)
x = self.get(f'densenorm{i}', NormLayer, self._norm)(x)
x = self._act(x)
dists = {}
for key, shape in shapes.items():
dists[key] = self.get(f'dense_{key}', DistLayer, shape)(x)
return dists
class MLP(common.Module):
def __init__(self, shape, layers, units, act='elu', norm='none', **out):
self._shape = (shape,) if isinstance(shape, int) else shape
self._layers = layers
self._units = units
self._norm = norm
self._act = get_act(act)
self._out = out
def __call__(self, features):
x = tf.cast(features, prec.global_policy().compute_dtype)
x = x.reshape([-1, x.shape[-1]])
for index in range(self._layers):
x = self.get(f'dense{index}', tfkl.Dense, self._units)(x)
x = self.get(f'norm{index}', NormLayer, self._norm)(x)
x = self._act(x)
x = x.reshape(features.shape[:-1] + [x.shape[-1]])
return self.get('out', DistLayer, self._shape, **self._out)(x)
class GRUCell(tf.keras.layers.AbstractRNNCell):
def __init__(self, size, norm=False, act='tanh', update_bias=-1, **kwargs):
super().__init__()
self._size = size
self._act = get_act(act)
self._norm = norm
self._update_bias = update_bias
self._layer = tfkl.Dense(3 * size, use_bias=norm is not None, **kwargs)
if norm:
self._norm = tfkl.LayerNormalization(dtype=tf.float32)
@property
def state_size(self):
return self._size
@tf.function
def call(self, inputs, state):
state = state[0] # Keras wraps the state in a list.
parts = self._layer(tf.concat([inputs, state], -1))
if self._norm:
dtype = parts.dtype
parts = tf.cast(parts, tf.float32)
parts = self._norm(parts)
parts = tf.cast(parts, dtype)
reset, cand, update = tf.split(parts, 3, -1)
reset = tf.nn.sigmoid(reset)
cand = self._act(reset * cand)
update = tf.nn.sigmoid(update + self._update_bias)
output = update * cand + (1 - update) * state
return output, [output]
class DistLayer(common.Module):
def __init__(
self, shape, dist='mse', min_std=0.1, init_std=0.0):
self._shape = shape
self._dist = dist
self._min_std = min_std
self._init_std = init_std
def __call__(self, inputs):
out = self.get('out', tfkl.Dense, np.prod(self._shape))(inputs)
out = tf.reshape(out, tf.concat([tf.shape(inputs)[:-1], self._shape], 0))
out = tf.cast(out, tf.float32)
if self._dist in ('normal', 'tanh_normal', 'trunc_normal'):
std = self.get('std', tfkl.Dense, np.prod(self._shape))(inputs)
std = tf.reshape(std, tf.concat([tf.shape(inputs)[:-1], self._shape], 0))
std = tf.cast(std, tf.float32)
if self._dist == 'mse':
dist = tfd.Normal(out, 1.0)
return tfd.Independent(dist, len(self._shape))
if self._dist == 'normal':
dist = tfd.Normal(out, std)
return tfd.Independent(dist, len(self._shape))
if self._dist == 'binary':
dist = tfd.Bernoulli(out)
return tfd.Independent(dist, len(self._shape))
if self._dist == 'tanh_normal':
mean = 5 * tf.tanh(out / 5)
std = tf.nn.softplus(std + self._init_std) + self._min_std
dist = tfd.Normal(mean, std)
dist = tfd.TransformedDistribution(dist, common.TanhBijector())
dist = tfd.Independent(dist, len(self._shape))
return common.SampleDist(dist)
if self._dist == 'trunc_normal':
std = 2 * tf.nn.sigmoid((std + self._init_std) / 2) + self._min_std
dist = common.TruncNormalDist(tf.tanh(out), std, -1, 1)
return tfd.Independent(dist, 1)
if self._dist == 'onehot':
return common.OneHotDist(out)
raise NotImplementedError(self._dist)
class NormLayer(common.Module):
def __init__(self, name):
if name == 'none':
self._layer = None
elif name == 'layer':
self._layer = tfkl.LayerNormalization()
else:
raise NotImplementedError(name)
def __call__(self, features):
if not self._layer:
return features
return self._layer(features)
def get_act(name):
if name == 'none':
return tf.identity
if name == 'mish':
return lambda x: x * tf.math.tanh(tf.nn.softplus(x))
elif hasattr(tf.nn, name):
return getattr(tf.nn, name)
elif hasattr(tf, name):
return getattr(tf, name)
else:
raise NotImplementedError(name)