|
import collections |
|
import functools |
|
import logging |
|
import os |
|
import pathlib |
|
import re |
|
import sys |
|
import warnings |
|
|
|
try: |
|
import rich.traceback |
|
|
|
rich.traceback.install() |
|
except ImportError: |
|
pass |
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
|
logging.getLogger().setLevel('ERROR') |
|
warnings.filterwarnings('ignore', '.*box bound precision lowered.*') |
|
|
|
sys.path.append(str(pathlib.Path(__file__).parent)) |
|
sys.path.append(str(pathlib.Path(__file__).parent.parent)) |
|
|
|
import numpy as np |
|
import ruamel.yaml as yaml |
|
|
|
from dreamerv2 import agent |
|
from dreamerv2 import common |
|
|
|
|
|
def main(): |
|
configs = yaml.safe_load((pathlib.Path(sys.argv[0]).parent / 'configs.yaml').read_text()) |
|
parsed, remaining = common.Flags(configs=['defaults']).parse(known_only=True) |
|
config = common.Config(configs['defaults']) |
|
for name in parsed.configs: |
|
config = config.update(configs[name]) |
|
config = common.Flags(config).parse(remaining) |
|
|
|
logdir = pathlib.Path(config.logdir).expanduser() |
|
logdir.mkdir(parents=True, exist_ok=True) |
|
config.save(logdir / 'config.yaml') |
|
print(config, '\n') |
|
print('Logdir', logdir) |
|
|
|
import tensorflow as tf |
|
tf.config.experimental_run_functions_eagerly(not config.jit) |
|
message = 'No GPU found. To actually train on CPU remove this assert.' |
|
assert tf.config.experimental.list_physical_devices('GPU'), message |
|
for gpu in tf.config.experimental.list_physical_devices('GPU'): |
|
tf.config.experimental.set_memory_growth(gpu, True) |
|
assert config.precision in (16, 32), config.precision |
|
if config.precision == 16: |
|
from tensorflow.keras.mixed_precision import experimental as prec |
|
prec.set_policy(prec.Policy('mixed_float16')) |
|
|
|
train_replay = common.Replay(logdir / 'train_episodes', **config.replay) |
|
eval_replay = common.Replay(logdir / 'eval_episodes', **dict( |
|
capacity=config.replay.capacity // 10, |
|
minlen=config.dataset.length, |
|
maxlen=config.dataset.length)) |
|
step = common.Counter(train_replay.stats['total_steps']) |
|
outputs = [ |
|
common.TerminalOutput(), |
|
common.JSONLOutput(logdir), |
|
common.TensorBoardOutput(logdir), |
|
] |
|
logger = common.Logger(step, outputs, multiplier=config.action_repeat) |
|
metrics = collections.defaultdict(list) |
|
|
|
should_train = common.Every(config.train_every) |
|
should_log = common.Every(config.log_every) |
|
should_video_train = common.Every(config.eval_every) |
|
should_video_eval = common.Every(config.eval_every) |
|
should_expl = common.Until(config.expl_until) |
|
|
|
def make_env(mode): |
|
suite, task = config.task.split('_', 1) |
|
if suite == 'dmc': |
|
env = common.DMC( |
|
task, config.action_repeat, config.render_size, config.dmc_camera) |
|
env = common.NormalizeAction(env) |
|
elif suite == 'dmcmt': |
|
env = common.DMCMultitask( |
|
task, config.action_repeat, config.render_size, config.dmc_camera) |
|
env = common.NormalizeAction(env) |
|
elif suite == 'atari': |
|
env = common.Atari( |
|
task, config.action_repeat, config.render_size, |
|
config.atari_grayscale) |
|
env = common.OneHotAction(env) |
|
elif suite == 'crafter': |
|
assert config.action_repeat == 1 |
|
outdir = logdir / 'crafter' if mode == 'train' else None |
|
reward = bool(['noreward', 'reward'].index(task)) or mode == 'eval' |
|
env = common.Crafter(outdir, reward) |
|
env = common.OneHotAction(env) |
|
else: |
|
raise NotImplementedError(suite) |
|
env = common.TimeLimit(env, config.time_limit) |
|
return env |
|
|
|
def per_episode(ep, mode): |
|
length = len(ep['reward']) - 1 |
|
score = float(ep['reward'].astype(np.float64).sum()) |
|
print(f'{mode.title()} episode has {length} steps and return {score:.1f}.') |
|
logger.scalar(f'{mode}_return', score) |
|
logger.scalar(f'{mode}_length', length) |
|
for key, value in ep.items(): |
|
if re.match(config.log_keys_sum, key): |
|
logger.scalar(f'sum_{mode}_{key}', ep[key].sum()) |
|
if re.match(config.log_keys_mean, key): |
|
logger.scalar(f'mean_{mode}_{key}', ep[key].mean()) |
|
if re.match(config.log_keys_max, key): |
|
logger.scalar(f'max_{mode}_{key}', ep[key].max(0).mean()) |
|
should = {'train': should_video_train, 'eval': should_video_eval}[mode] |
|
if should(step): |
|
for key in config.log_keys_video: |
|
logger.video(f'{mode}_policy_{key}', ep[key]) |
|
replay = dict(train=train_replay, eval=eval_replay)[mode] |
|
logger.add(replay.stats, prefix=mode) |
|
logger.write() |
|
|
|
print('Create envs.') |
|
num_eval_envs = min(config.envs, config.eval_eps) |
|
if config.envs_parallel == 'none': |
|
train_envs = [make_env('train') for _ in range(config.envs)] |
|
eval_envs = [make_env('eval') for _ in range(num_eval_envs)] |
|
else: |
|
make_async_env = lambda mode: common.Async( |
|
functools.partial(make_env, mode), config.envs_parallel) |
|
train_envs = [make_async_env('train') for _ in range(config.envs)] |
|
eval_envs = [make_async_env('eval') for _ in range(num_eval_envs)] |
|
act_space = train_envs[0].act_space |
|
obs_space = train_envs[0].obs_space |
|
train_driver = common.Driver(train_envs) |
|
train_driver.on_episode(lambda ep: per_episode(ep, mode='train')) |
|
train_driver.on_step(lambda tran, worker: step.increment()) |
|
train_driver.on_step(train_replay.add_step) |
|
train_driver.on_reset(train_replay.add_step) |
|
eval_driver = common.Driver(eval_envs) |
|
eval_driver.on_episode(lambda ep: per_episode(ep, mode='eval')) |
|
eval_driver.on_episode(eval_replay.add_episode) |
|
|
|
prefill = max(0, config.prefill - train_replay.stats['total_steps']) |
|
if prefill: |
|
print(f'Prefill dataset ({prefill} steps).') |
|
random_agent = common.RandomAgent(act_space) |
|
train_driver(random_agent, steps=prefill, episodes=1) |
|
eval_driver(random_agent, episodes=1) |
|
train_driver.reset() |
|
eval_driver.reset() |
|
|
|
print('Create agent.') |
|
train_dataset = iter(train_replay.dataset(**config.dataset)) |
|
report_dataset = iter(train_replay.dataset(**config.dataset)) |
|
eval_dataset = iter(eval_replay.dataset(**config.dataset)) |
|
agnt = agent.Agent(config, obs_space, act_space, step) |
|
train_agent = common.CarryOverState(agnt.train) |
|
train_agent(next(train_dataset)) |
|
if (logdir / 'variables.pkl').exists(): |
|
agnt.load(logdir / 'variables.pkl') |
|
else: |
|
print('Pretrain agent.') |
|
for _ in range(config.pretrain): |
|
train_agent(next(train_dataset)) |
|
train_policy = lambda *args: agnt.policy( |
|
*args, mode='explore' if should_expl(step) else 'train') |
|
eval_policy = lambda *args: agnt.policy(*args, mode='eval') |
|
|
|
def train_step(tran, worker): |
|
if should_train(step): |
|
for _ in range(config.train_steps): |
|
mets = train_agent(next(train_dataset)) |
|
[metrics[key].append(value) for key, value in mets.items()] |
|
if should_log(step): |
|
for name, values in metrics.items(): |
|
logger.scalar(name, np.array(values, np.float64).mean()) |
|
metrics[name].clear() |
|
logger.add(agnt.report(next(report_dataset)), prefix='train') |
|
logger.write(fps=True) |
|
|
|
train_driver.on_step(train_step) |
|
|
|
while step < config.steps: |
|
logger.write() |
|
print('Start evaluation.') |
|
logger.add(agnt.report(next(eval_dataset)), prefix='eval') |
|
eval_driver(eval_policy, episodes=config.eval_eps) |
|
print('Start training.') |
|
train_driver(train_policy, steps=config.eval_every) |
|
agnt.save(logdir / f'variables.pkl') |
|
|
|
for env in train_envs + eval_envs: |
|
try: |
|
env.close() |
|
except Exception: |
|
pass |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|