Datasets:
annotations_creators:
- crowdsourced
language_creators:
- expert-generated
language:
- en
language_bcp47:
- en-US
license:
- apache-2.0
multilinguality:
- monolingual
pretty_name: CoDa
paperswithcode_id: coda
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-scoring
task_ids:
- text-scoring-other-distribution-prediction
Dataset Card for CoDa
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Repository: nala-cub/coda
- Paper: The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color
- Point of Contact: Cory Paik
Dataset Summary
The Color Dataset (CoDa) is a probing dataset to evaluate the representation of visual properties in language models. CoDa consists of color distributions for 521 common objects, which are split into 3 groups. We denote these groups as Single, Multi, and Any, which represents the typical object of each group.
The default configuration of CoDa uses 10 CLIP-style templates (e.g. "A photo of a [object]"), and 10 cloze-style templates (e.g. "Everyone knows most [object] are [color]." )
Supported Tasks and Leaderboards
This version of the dataset consists of the filtered and templated examples as cloze style questions. See the GitHub repo for the raw data (e.g. unfiltered annotations) as well as example usage with GPT-2, RoBERTa, ALBERT, and CLIP.
Languages
The text in the dataset is in English. The associated BCP-47 code is en-US
.
Dataset Structure
Data Instances
An example looks like this:
{
"text": "All rulers are [MASK].",
"label": [
0.0181818176, 0.0363636352, 0.3077272773, 0.0181818176, 0.0363636352,
0.086363636, 0.0363636352, 0.0363636352, 0.0363636352, 0.086363636,
0.301363647
],
"template_group": 1,
"template_idx": 0,
"class_id": "/m/0hdln",
"display_name": "Ruler",
"object_group": 2,
"ngram": "ruler"
}
Data Fields
text
: The templated example. What this is depends on the value oftemplate_group
.template_group=0
: A CLIP style example. There are no[MASK]
tokens in these examples.template_group=1
: A cloze style example. Note that all templates have[MASK]
as the last word, but in most cases, the period should be included.
label
: A list of probability values for the 11 colors. Note that these are sorted by the alphabetic order of the 11 colors (black, blue, brown, gray, green, orange, pink, purple, red, white, yellow).template_group
: Type of template,0
corresponds to A CLIP style template (clip-imagenet
), and1
corresponds to A cloze style templates (text-masked
).template_idx
: The index of the template out of all templatesclass_id
: The Corresponding OpenImages v6ClassID
.display_name
: The Corresponding OpenImages v6DisplayName
.object_group
: Object Group, values correspond toSingle
,Multi
, andAny
.ngram
: Corresponding n-gram used for lookups.
Data Splits
Object Splits:
Group | All | Train | Valid | Test |
---|---|---|---|---|
Single | 198 | 118 | 39 | 41 |
Multi | 208 | 124 | 41 | 43 |
Any | 115 | 69 | 23 | 23 |
Total | 521 | 311 | 103 | 107 |
Example Splits:
Group | All | Train | Valid | Test |
---|---|---|---|---|
Single | 3946 | 2346 | 780 | 820 |
Multi | 4146 | 2466 | 820 | 860 |
Any | 2265 | 1352 | 460 | 453 |
Total | 10357 | 6164 | 2060 | 2133 |
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
CoDa is licensed under the Apache 2.0 license.
Citation Information
@misc{paik2021world,
title={The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color},
author={Cory Paik and Stéphane Aroca-Ouellette and Alessandro Roncone and Katharina Kann},
year={2021},
eprint={2110.08182},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Contributions
Thanks to @github-username for adding this dataset.