Upload results for model google/gemma-7b
#430
by
yakazimir
- opened
data/google/gemma-7b/cot/24-05-14-06:48:04_idx5.json
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"tenetur-sit-9095_lsat-rc_cot": {
|
4 |
+
"acc,none": 0.1821561338289963,
|
5 |
+
"acc_stderr,none": 0.023577062969635087,
|
6 |
+
"alias": "tenetur-sit-9095_lsat-rc_cot"
|
7 |
+
},
|
8 |
+
"tenetur-sit-9095_lsat-lr_cot": {
|
9 |
+
"acc,none": 0.1450980392156863,
|
10 |
+
"acc_stderr,none": 0.01561097532356473,
|
11 |
+
"alias": "tenetur-sit-9095_lsat-lr_cot"
|
12 |
+
},
|
13 |
+
"tenetur-sit-9095_lsat-ar_cot": {
|
14 |
+
"acc,none": 0.2217391304347826,
|
15 |
+
"acc_stderr,none": 0.02745149660405892,
|
16 |
+
"alias": "tenetur-sit-9095_lsat-ar_cot"
|
17 |
+
},
|
18 |
+
"tenetur-sit-9095_logiqa_cot": {
|
19 |
+
"acc,none": 0.21405750798722045,
|
20 |
+
"acc_stderr,none": 0.01640667626359583,
|
21 |
+
"alias": "tenetur-sit-9095_logiqa_cot"
|
22 |
+
},
|
23 |
+
"tenetur-sit-9095_logiqa2_cot": {
|
24 |
+
"acc,none": 0.20610687022900764,
|
25 |
+
"acc_stderr,none": 0.01020561459385605,
|
26 |
+
"alias": "tenetur-sit-9095_logiqa2_cot"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"group_subtasks": {
|
30 |
+
"tenetur-sit-9095_logiqa2_cot": [],
|
31 |
+
"tenetur-sit-9095_logiqa_cot": [],
|
32 |
+
"tenetur-sit-9095_lsat-ar_cot": [],
|
33 |
+
"tenetur-sit-9095_lsat-lr_cot": [],
|
34 |
+
"tenetur-sit-9095_lsat-rc_cot": []
|
35 |
+
},
|
36 |
+
"configs": {
|
37 |
+
"tenetur-sit-9095_logiqa2_cot": {
|
38 |
+
"task": "tenetur-sit-9095_logiqa2_cot",
|
39 |
+
"group": "logikon-bench",
|
40 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
41 |
+
"dataset_kwargs": {
|
42 |
+
"data_files": {
|
43 |
+
"test": "data/google/gemma-7b/tenetur-sit-9095-logiqa2.parquet"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"test_split": "test",
|
47 |
+
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
|
48 |
+
"doc_to_target": "{{answer}}",
|
49 |
+
"doc_to_choice": "{{options}}",
|
50 |
+
"description": "",
|
51 |
+
"target_delimiter": " ",
|
52 |
+
"fewshot_delimiter": "\n\n",
|
53 |
+
"num_fewshot": 0,
|
54 |
+
"metric_list": [
|
55 |
+
{
|
56 |
+
"metric": "acc",
|
57 |
+
"aggregation": "mean",
|
58 |
+
"higher_is_better": true
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"output_type": "multiple_choice",
|
62 |
+
"repeats": 1,
|
63 |
+
"should_decontaminate": false,
|
64 |
+
"metadata": {
|
65 |
+
"version": 0.0
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"tenetur-sit-9095_logiqa_cot": {
|
69 |
+
"task": "tenetur-sit-9095_logiqa_cot",
|
70 |
+
"group": "logikon-bench",
|
71 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
72 |
+
"dataset_kwargs": {
|
73 |
+
"data_files": {
|
74 |
+
"test": "data/google/gemma-7b/tenetur-sit-9095-logiqa.parquet"
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"test_split": "test",
|
78 |
+
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
|
79 |
+
"doc_to_target": "{{answer}}",
|
80 |
+
"doc_to_choice": "{{options}}",
|
81 |
+
"description": "",
|
82 |
+
"target_delimiter": " ",
|
83 |
+
"fewshot_delimiter": "\n\n",
|
84 |
+
"num_fewshot": 0,
|
85 |
+
"metric_list": [
|
86 |
+
{
|
87 |
+
"metric": "acc",
|
88 |
+
"aggregation": "mean",
|
89 |
+
"higher_is_better": true
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"output_type": "multiple_choice",
|
93 |
+
"repeats": 1,
|
94 |
+
"should_decontaminate": false,
|
95 |
+
"metadata": {
|
96 |
+
"version": 0.0
|
97 |
+
}
|
98 |
+
},
|
99 |
+
"tenetur-sit-9095_lsat-ar_cot": {
|
100 |
+
"task": "tenetur-sit-9095_lsat-ar_cot",
|
101 |
+
"group": "logikon-bench",
|
102 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
103 |
+
"dataset_kwargs": {
|
104 |
+
"data_files": {
|
105 |
+
"test": "data/google/gemma-7b/tenetur-sit-9095-lsat-ar.parquet"
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"test_split": "test",
|
109 |
+
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
|
110 |
+
"doc_to_target": "{{answer}}",
|
111 |
+
"doc_to_choice": "{{options}}",
|
112 |
+
"description": "",
|
113 |
+
"target_delimiter": " ",
|
114 |
+
"fewshot_delimiter": "\n\n",
|
115 |
+
"num_fewshot": 0,
|
116 |
+
"metric_list": [
|
117 |
+
{
|
118 |
+
"metric": "acc",
|
119 |
+
"aggregation": "mean",
|
120 |
+
"higher_is_better": true
|
121 |
+
}
|
122 |
+
],
|
123 |
+
"output_type": "multiple_choice",
|
124 |
+
"repeats": 1,
|
125 |
+
"should_decontaminate": false,
|
126 |
+
"metadata": {
|
127 |
+
"version": 0.0
|
128 |
+
}
|
129 |
+
},
|
130 |
+
"tenetur-sit-9095_lsat-lr_cot": {
|
131 |
+
"task": "tenetur-sit-9095_lsat-lr_cot",
|
132 |
+
"group": "logikon-bench",
|
133 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
134 |
+
"dataset_kwargs": {
|
135 |
+
"data_files": {
|
136 |
+
"test": "data/google/gemma-7b/tenetur-sit-9095-lsat-lr.parquet"
|
137 |
+
}
|
138 |
+
},
|
139 |
+
"test_split": "test",
|
140 |
+
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
|
141 |
+
"doc_to_target": "{{answer}}",
|
142 |
+
"doc_to_choice": "{{options}}",
|
143 |
+
"description": "",
|
144 |
+
"target_delimiter": " ",
|
145 |
+
"fewshot_delimiter": "\n\n",
|
146 |
+
"num_fewshot": 0,
|
147 |
+
"metric_list": [
|
148 |
+
{
|
149 |
+
"metric": "acc",
|
150 |
+
"aggregation": "mean",
|
151 |
+
"higher_is_better": true
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"output_type": "multiple_choice",
|
155 |
+
"repeats": 1,
|
156 |
+
"should_decontaminate": false,
|
157 |
+
"metadata": {
|
158 |
+
"version": 0.0
|
159 |
+
}
|
160 |
+
},
|
161 |
+
"tenetur-sit-9095_lsat-rc_cot": {
|
162 |
+
"task": "tenetur-sit-9095_lsat-rc_cot",
|
163 |
+
"group": "logikon-bench",
|
164 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
165 |
+
"dataset_kwargs": {
|
166 |
+
"data_files": {
|
167 |
+
"test": "data/google/gemma-7b/tenetur-sit-9095-lsat-rc.parquet"
|
168 |
+
}
|
169 |
+
},
|
170 |
+
"test_split": "test",
|
171 |
+
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
|
172 |
+
"doc_to_target": "{{answer}}",
|
173 |
+
"doc_to_choice": "{{options}}",
|
174 |
+
"description": "",
|
175 |
+
"target_delimiter": " ",
|
176 |
+
"fewshot_delimiter": "\n\n",
|
177 |
+
"num_fewshot": 0,
|
178 |
+
"metric_list": [
|
179 |
+
{
|
180 |
+
"metric": "acc",
|
181 |
+
"aggregation": "mean",
|
182 |
+
"higher_is_better": true
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"output_type": "multiple_choice",
|
186 |
+
"repeats": 1,
|
187 |
+
"should_decontaminate": false,
|
188 |
+
"metadata": {
|
189 |
+
"version": 0.0
|
190 |
+
}
|
191 |
+
}
|
192 |
+
},
|
193 |
+
"versions": {
|
194 |
+
"tenetur-sit-9095_logiqa2_cot": 0.0,
|
195 |
+
"tenetur-sit-9095_logiqa_cot": 0.0,
|
196 |
+
"tenetur-sit-9095_lsat-ar_cot": 0.0,
|
197 |
+
"tenetur-sit-9095_lsat-lr_cot": 0.0,
|
198 |
+
"tenetur-sit-9095_lsat-rc_cot": 0.0
|
199 |
+
},
|
200 |
+
"n-shot": {
|
201 |
+
"tenetur-sit-9095_logiqa2_cot": 0,
|
202 |
+
"tenetur-sit-9095_logiqa_cot": 0,
|
203 |
+
"tenetur-sit-9095_lsat-ar_cot": 0,
|
204 |
+
"tenetur-sit-9095_lsat-lr_cot": 0,
|
205 |
+
"tenetur-sit-9095_lsat-rc_cot": 0
|
206 |
+
},
|
207 |
+
"config": {
|
208 |
+
"model": "vllm",
|
209 |
+
"model_args": "pretrained=google/gemma-7b,revision=main,dtype=bfloat16,tensor_parallel_size=2,gpu_memory_utilization=0.5,trust_remote_code=true,max_length=2048",
|
210 |
+
"batch_size": "auto",
|
211 |
+
"batch_sizes": [],
|
212 |
+
"device": null,
|
213 |
+
"use_cache": null,
|
214 |
+
"limit": null,
|
215 |
+
"bootstrap_iters": 100000,
|
216 |
+
"gen_kwargs": null
|
217 |
+
},
|
218 |
+
"git_hash": "f3c749c",
|
219 |
+
"date": 1715673519.6710796,
|
220 |
+
"pretty_env_info": "PyTorch version: 2.1.2+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.6\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA RTX A6000\nGPU 1: NVIDIA RTX A6000\n\nNvidia driver version: 525.105.17\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 43 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 128\nOn-line CPU(s) list: 0-127\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7502 32-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 2\nCore(s) per socket: 32\nSocket(s): 2\nStepping: 0\nFrequency boost: enabled\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 5000.35\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es\nVirtualization: AMD-V\nL1d cache: 2 MiB (64 instances)\nL1i cache: 2 MiB (64 instances)\nL2 cache: 32 MiB (64 instances)\nL3 cache: 256 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-31,64-95\nNUMA node1 CPU(s): 32-63,96-127\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] mypy-extensions==1.0.0\n[pip3] numpy==1.22.2\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.1.2\n[pip3] torch-tensorrt==0.0.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchtext==0.16.0a0\n[pip3] torchvision==0.16.0a0\n[pip3] triton==2.1.0+e621604\n[conda] Could not collect",
|
221 |
+
"transformers_version": "4.40.0",
|
222 |
+
"upper_git_hash": null
|
223 |
+
}
|