Datasets:

Modalities:
Text
Libraries:
Datasets
syntaxgym / syntaxgym.py
Jon Gauthier
type hint improvements
2b3c98b
raw
history blame
10.5 kB
# coding=utf-8
"""
SyntaxGym dataset as used in Hu et al. (2020).
"""
from collections import defaultdict
from copy import deepcopy
import json
from pathlib import Path
import re
from typing import List, Dict, Tuple
from typing_extensions import TypedDict
import datasets
from datasets import logging
import numpy as np
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from .prediction import Prediction
_CITATION = """
@inproceedings{Hu:et-al:2020,
author = {Hu, Jennifer and Gauthier, Jon and Qian, Peng and Wilcox, Ethan and Levy, Roger},
title = {A systematic assessment of syntactic generalization in neural language models},
booktitle = {Proceedings of the Association of Computational Linguistics},
year = {2020}
}
"""
_DESCRIPTION = "" # TODO
_PROJECT_URL = "https://syntaxgym.org"
_DOWNLOAD_URL = "https://raw.githubusercontent.com/cpllab/syntactic-generalization/nextflow/test_suites/json/"
def condition_to_string(cond):
ret = " ".join([region["content"].lstrip()
for region in cond["regions"]
if region["content"].strip() != ""])
ret = re.sub(r"\s+,", ",", ret)
return ret
class SyntaxGymSuiteConfig(datasets.BuilderConfig):
def __init__(self, name, version=datasets.Version("1.0.0"), **kwargs):
description = f"SyntaxGym test suite {name}.\n" + _DESCRIPTION
super().__init__(name=name, description=description, version=version,
**kwargs)
SUITE_DATASET_CONDITION_SPEC = {
"condition_name": datasets.Value("string"),
"content": datasets.Value("string"),
"regions": datasets.Sequence({
"region_number": datasets.Value("int32"),
"content": datasets.Value("string")
})
}
SUITE_DATASET_SPEC = {
"item_number": datasets.Value("int32"),
"conditions": datasets.Sequence(SUITE_DATASET_CONDITION_SPEC),
"predictions": datasets.Sequence(datasets.Value("string")),
}
class SyntaxGym(datasets.GeneratorBasedBuilder):
SUITES = [
"center_embed", "center_embed_mod",
"cleft", "cleft_modifier",
"fgd_hierarchy", "fgd_object",
"fgd_pp", "fgd_subject",
"mvrr", "mvrr_mod",
"npi_orc_any", "npi_orc_ever", "npi_src_any", "npi_src_ever",
"npz_ambig", "npz_ambig_mod", "npz_obj", "npz_obj_mod",
"number_orc", "number_prep", "number_src",
"reflexive_orc_fem", "reflexive_orc_masc",
"reflexive_prep_fem", "reflexive_prep_masc",
"reflexive_src_fem", "reflexive_src_masc",
"subordination", "subordination_orc-orc",
"subordination_pp-pp", "subordination_src-src",
]
BUILDER_CONFIGS = [SyntaxGymSuiteConfig(suite_name)
for suite_name in SUITES]
def _info(self):
citation = ""
# print(self.BUILDER_CONFIGS)
# if self.config.meta["reference"]:
# citation = f"Test suite citation: {self.meta['reference']}\n"
citation += f"SyntaxGym citation:\n{_CITATION}"
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(SUITE_DATASET_SPEC),
homepage=_PROJECT_URL,
citation=citation,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
download_url = _DOWNLOAD_URL + f"{self.config.name}.json"
downloaded_file = dl_manager.download_and_extract(download_url)
return [datasets.SplitGenerator(name=datasets.Split.TEST,
gen_kwargs={"filepath": downloaded_file})]
def _generate_examples(self, filepath):
with open(filepath, "r", encoding="utf-8") as f:
suite_json = json.load(f)
predictions = [p["formula"] for p in suite_json["predictions"]]
for item in suite_json["items"]:
# Convert to sentence input.
for cond in item["conditions"]:
cond["content"] = condition_to_string(cond)
item["predictions"] = predictions
yield item["item_number"], item
class SyntaxGymMetricResult(TypedDict):
prediction_results: List[List[bool]]
region_totals: List[Dict[Tuple[str, int], float]]
class SyntaxGymMetric(datasets.Metric):
"""
SyntaxGym prediction evaluation metric.
"""
def _info(self):
seq = datasets.Sequence
features = datasets.Features({
"suite": SUITE_DATASET_SPEC
})
return datasets.MetricInfo(
description="TODO",
citation=_CITATION,
inputs_description="TODO",
features=features,
)
def _compute(self, suite, model_id, batch_size: int = 16,
add_start_token=True, device=None
) -> SyntaxGymMetricResult:
if device is not None:
assert device in ["gpu", "cpu", "cuda"]
if device == "gpu":
device = "cuda"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(model_id)
model = model.to(device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_id)
# TODO copy from perplexity metric
tokenizer.pad_token = tokenizer.eos_token
results = {"prediction_results": [], "region_totals": []}
# TODO batch all items together
for item in logging.tqdm(suite):
result_single = self._compute_single(item, tokenizer, model, device)
for k in ["prediction_results", "region_totals"]:
results[k].append(result_single[k])
return results
def _compute_single(self, item, tokenizer, model, device):
tokenized = tokenizer(item["conditions"]["content"],
padding=True,
return_tensors="pt",
return_offsets_mapping=True).to(device)
# input_ids: B * T
input_ids = tokenized["input_ids"]
assert input_ids.ndim == 2
# Compute sentence level surprisals.
with torch.no_grad():
# Pre-softmax predictive distribution B * T * V
logits = model(input_ids).logits
surprisals = -logits.log_softmax(dim=2) / np.log(2)
# surprisals: B * T * V
assert surprisals.ndim == 3
# Get surprisals of expected words.
surps_shifted = surprisals[:, :-1, :]
expected_ids = input_ids[:, 1:]
# TODO: check this logic
tt = expected_ids.unsqueeze(2)
surprisals = torch.gather(surps_shifted, 2, expected_ids.unsqueeze(2)) \
.squeeze(2)
# This is the original, which works but not with multiple axes in expected_ids
# surprisals = surps_shifted[range(surps_shifted.shape[0]), expected_ids]
# surprisals is now B * (T - 1)
#### aggregate
condition_names = item["conditions"]["condition_name"]
region_totals = {condition_name: defaultdict(float)
for condition_name in condition_names}
region2tokens = self.compute_region_token_mapping(
item, input_ids, tokenized["offset_mapping"])
for i, (i_cond, i_inputs) in enumerate(zip(condition_names, input_ids)):
for region_number, region_tokens in region2tokens[i_cond].items():
for token in region_tokens:
if token < surprisals.shape[1]:
region_totals[i_cond][region_number] += surprisals[i, token]
else:
# TODO don't think this is an issue, just should clean
# up the aggregation output
assert token == surprisals.shape[1], \
"%s %s" % (token, surprisals.shape[1])
region_totals = {(condition_name, region_number): float(total)
for condition_name, totals in region_totals.items()
for region_number, total in totals.items()}
results = {
"prediction_results": [
Prediction(i, formula, "sum").formula(region_totals)
for i, formula in enumerate(item["predictions"])
],
"region_totals": region_totals
}
return results
def get_region_edges(self, item, condition_idx):
"""
Get left edge of each region as a character index.
"""
# NB this is coupled with `condition_to_string` logic of course
regions = item["conditions"]["regions"][condition_idx]
idx = 0
ret = []
for r_idx, region_content in enumerate(regions["content"]):
ret.append(idx)
region_size = len(region_content)
if region_content.strip() != "" and r_idx != 0 and not region_content.startswith(","):
# Add joining space
region_size += 1
idx += region_size
return ret
def compute_region_token_mapping(self, item, input_ids: torch.LongTensor,
offset_mapping: List[Tuple[int, int]]
) -> Dict[str, Dict[int, List[int]]]:
# input_ids: B * T
# offset_mapping: B * T * 2
# assumes batch is sorted according to item's condition_name order
condition_names = item["conditions"]["condition_name"]
region2tokens = {cond: defaultdict(list) for cond in condition_names}
max_long = torch.iinfo(torch.int64).max
input_ids = input_ids.detach()
for i_cond, (i_tokens, i_offsets) in enumerate(zip(input_ids, offset_mapping)):
region_edges = self.get_region_edges(item, i_cond)
t_cursor, r_cursor = 0, 0
while t_cursor < i_tokens.shape[0]:
# token = i_tokens[t_cursor]
token_char_start, token_char_end = i_offsets[t_cursor]
region_start = region_edges[r_cursor]
region_end = region_edges[r_cursor + 1] \
if r_cursor + 1 < len(region_edges) else max_long
# NB region boundaries are left edges, hence the >= here.
if token_char_start >= region_end:
r_cursor += 1
continue
region2tokens[condition_names[i_cond]][r_cursor + 1].append(t_cursor)
t_cursor += 1
return region2tokens