content
stringlengths
7
1.05M
class Solution: def nearestPalindromic(self, n: str) -> str: def getPalindromes(s: str) -> tuple: num = int(s) k = len(s) palindromes = [] half = s[0:(k + 1) // 2] reversedHalf = half[:k // 2][::-1] candidate = int(half + reversedHalf) if candidate < num: palindromes.append(candidate) else: prevHalf = str(int(half) - 1) reversedPrevHalf = prevHalf[:k // 2][::-1] if k % 2 == 0 and int(prevHalf) == 0: palindromes.append(9) elif k % 2 == 0 and (int(prevHalf) + 1) % 10 == 0: palindromes.append(int(prevHalf + '9' + reversedPrevHalf)) else: palindromes.append(int(prevHalf + reversedPrevHalf)) if candidate > num: palindromes.append(candidate) else: nextHalf = str(int(half) + 1) reversedNextHalf = nextHalf[:k // 2][::-1] palindromes.append(int(nextHalf + reversedNextHalf)) return palindromes prevPalindrome, nextPalindrome = getPalindromes(n) return str(prevPalindrome) if abs(prevPalindrome - int(n)) <= abs(nextPalindrome - int(n)) else str(nextPalindrome)
""" Dana jest tablica T[N][N] (reprezentująca szachownicę) wypełniona liczbami naturalnymi. Proszę napisać funkcję która ustawia na szachownicy dwie wieże, tak aby suma liczb na „szachowanych” przez wieże polach była największa. Do funkcji należy przekazać tablicę, funkcja powinna zwrócić położenie wież. Uwaga: zakładamy, że wieża szachuje cały wiersz i kolumnę z wyłączeniem pola na którym stoi. """ def column_summary(array, row, col): result = 0 for i in range(len(array)): result += array[i][col] result -= array[row][col] return result def row_summary(array, row, col): result = 0 for i in range(len(array)): result += array[row][i] result -= array[row][col] return result def two_rooks(array): max_result = 0 tower_1 = tower_2 = 0 for i in range(len(array)): for j in range(len(array)): for k in range(i, len(array)): for m in range(len(array)): if i != k and j != m: result = column_summary(array, i, j) + column_summary(array, k, m) \ + row_summary(array, i, j) + row_summary(array, k, m) result -= array[i][m] result -= array[k][j] if result > max_result: tower_1 = (i, j) tower_2 = (k, m) max_result = result return tower_1[0], tower_1[1], tower_2[0], tower_2[1] array = [[1, 1, 2, 3], [-1, 3, -1, 4], [4, 1, 5, 4], [5, 0, 3, 6]] print(two_rooks(array))
def is_prime(num: int) -> bool: prime_nums_list: list = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] if num in prime_nums_list: return True elif list(str(num))[-1] in ['2', '5']: return False else: for n in range(2, num): if (num % n) == 0: return False return True print(is_prime(int(input())))
# create a simple tree data structure with python # First of all: a class implemented to present tree node class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None class Tree: def __init__(self): self.root = None self.size = 0 def addnode(self, new): if self.root == None: self.root = new self.size += 1 else: self.helper(self.root, new) def helper(self, innode, new): if innode == None: innode = new self.size += 1 elif new.val < innode.val: if innode.left == None: innode.left = new self.size += 1 else: self.helper(innode.left, new) elif new.val > innode.val: if innode.right == None: innode.right = new self.size += 1 else: self.helper(innode.right, new) else: print("can't have duplicate node!") def Inorder(root): if root != None: Inorder(root.left) print(root.val, end=" ") Inorder(root.right) elderwood = Tree() n1 = TreeNode(3) n2 = TreeNode(5) n3 = TreeNode(22) n4 = TreeNode(1) n5 = TreeNode(0) n6 = TreeNode(-7) n7 = TreeNode(8) n8 = TreeNode(100) n9 = TreeNode(-50) elderwood.addnode(n1) elderwood.addnode(n2) elderwood.addnode(n3) elderwood.addnode(n4) elderwood.addnode(n5) elderwood.addnode(n6) elderwood.addnode(n7) elderwood.addnode(n8) elderwood.addnode(n9) Inorder(elderwood.root) print("\nTotal tree nodes: %d" % elderwood.size)
class Solution: def lengthOfLongestSubstringKDistinct(self, s: str, k: int) -> int: if k == 0: return 0 maxLen = 0 d = {} i, j = 0, 0 while j < len(s): d[s[j]] = d.get(s[j], 0) + 1 if len(d) <= k: tempMax = 0 for key, val in d.items(): tempMax += val maxLen = max(maxLen, tempMax) j += 1 else: d[s[i]] -= 1 d[s[j]] -= 1 if d[s[i]] == 0: d.pop(s[i]) i += 1 return maxLen
# -*- coding: utf-8 -*- """Module for flask views. Only the home page view is defined in this scope. All other views are defined in nested modules for partitioning. """
leap = Runtime.start("leap","LeapMotion") leap.addLeapDataListener(python) def onLeapData(data): print (data.rightHand.index) leap.startTracking()
language="java" print("Checking if else conditions") if language=='Python': print(Python) elif language=="java": print("java") else: print("no match") print("\nChecking Boolean Conditions") user='Admin' logged_in=False if user=='Admin' and logged_in: print("ADMIN PAGE") else: print("Bad Creds") if not logged_in: print("Please Log In") else: print("Welcome") print("\nWorking with Object Identity") a=[1,2,3] b=[1,2,3] print(id(a)) print(id(b)) print(a==b) print(a is b) b=a print(a is b) # or print("same as") print(id(a)==id(b)) print("\nChecking False Conditions") condition= '34234' if(condition): print("Evaluated to true") else: print("Evaluated to false")
podcast_title = 'Chaos im Radio' hello_text = r'''<p>Der ChaosTreff Potsdam macht mit beim <a href="http://frrapo.de/player/">Freien Radio Potsdam</a>.</p> <p>Hier könnt ihr Sendungen nachhören.</p>''' website = 'https://radio.ccc-p.org' media_base_url = website + '/files' cover_image = website + '/cover.jpg' small_cover_image = website + '/cover_250.jpg' category = 'Technology' feed_url = website + '/feed.xml' language = 'de-DE' author_name = 'ChaosTreff Potsdam' copyright = '2019 ' + author_name
"""Implement an algorithm that takes a BST and transform it into a circular double linked list. The transformation must be done in place. BST: 4 2 6 1 5 10 CDLL: ______________________ / \ 1 <> 2 <> 4 <> 5 <> 6 <> 10 \______________________/ (1 is connected to 10) """ class TreeNode(object): def __init__(self, value): self.value = value self.left = None self.right = None def make_double_linked_list(tree): """Return a circle double linked list from a binary search tree. The space complexity of this algorithm is O(N) in the worst case, and O(log(N)) in the case of a balanced tree. The time complexity is O(N). :param tree: TreeNode :return: TreeNode """ tail = None previous = None def _traverse_inorder(node): if node is None: return _traverse_inorder(node.left) nonlocal previous if previous: node.left = previous previous.right = node previous = node nonlocal tail if tail is None: tail = node _traverse_inorder(node.right) _traverse_inorder(tree) print("At the end of the process, tail points to:", tail.value) print("At the end of the process, previous points to:", previous.value) tail.left = previous previous.right = tail return previous if __name__ == "__main__": """ Constructed binary tree is 10 / \ 6 15 / \ \ 4 7 20 \ 5 """ root = TreeNode(10) root.left = TreeNode(6) root.right = TreeNode(15) root.right.right = TreeNode(20) root.left.left = TreeNode(4) root.left.left.right = TreeNode(5) root.left.right = TreeNode(7) head = make_double_linked_list(root) ptr = head.right c = 10 while c > 0: print(ptr.value) ptr = ptr.right c -= 1 ll = make_double_linked_list(TreeNode(10)) assert ll.left == ll and ll.right == ll
class Adder: a = 0 b = 0 def add(self): return self.a + self.b def __init__(self,a,b): self.a = a; self.b = b; a = int(input('Enter first number: ')) b = int(input('Enter second number: ')) x = Adder(a,b) print(x.add())
# O programa calculará o preço da passagem sabendo a distância. Para viagens de até 200km o preço por km # é de R$ 0,50. Para viagens acima de 200km o preço do km rodado é R$ 0,45 k = float(input('Olá! Qual a distância da sua rota em km? ')) preço = k * 0.5 if k <= 200 else k * 0.45 print('O preço da passagem será de: R$ {:.2f}'.format(preço))
def char_sum(s: str): sum = 0 for char in s: sum += ord(char) return sum # Time complexity: O(M+N) # Space complexity: O(1) def check_permutation(s1: str, s2: str): sum1 = char_sum(s1) sum2 = char_sum(s2) return sum1 == sum2 print(check_permutation("same", "same")) print(check_permutation("same", "smae")) print(check_permutation("same", "not same"))
# -*- coding: utf-8 -*- # # Copyright (C) 2021 CERN. # # Invenio-App-RDM is free software; you can redistribute it and/or modify # it under the terms of the MIT License; see LICENSE file for more details. """Test that all export formats are working.""" def test_export_formats(client, running_app, record): """Test that all expected export formats are working.""" # Expected export formats: formats = [ "json", "csl", "datacite-json", "datacite-xml", "dublincore", ] for f in formats: res = client.get(f"/records/{record.id}/export/{f}") assert res.status_code == 200
class APIError(RuntimeError): def __init__(self, message): self.message = message def __str__(self): return "%s" % (self.message) def __repr__(self): return self.__str__()
kumas, inus, ookamis = 10, 4, 16 if (kumas > inus) and (kumas > ookamis): print(ookamis) elif (inus > kumas) and (inus > ookamis): print(kumas) elif (ookamis > kumas) and (ookamis > inus): print(inus)
L = [92,456,34,7234,24,7,623,5,35] maxSoFar = L[0] for i in range(len(L)): if L[i] > maxSoFar: maxSoFar = L[i] print(maxSoFar)
class Empleado: cantidad_empleados = 0 tasa_incremento = 1.03 def __init__(self, nombre, apellido, email, sueldo): self.nombre = nombre self.apellido = apellido self.email = email self.sueldo = sueldo def get_full_name(self): return '{} {}'.format(self.nombre, self.apellido) def get_new_salary(self): self.sueldo = int(self.sueldo * self.tasa_incremento) emp1 = Empleado('Jane', 'Willis', '[email protected]', 2500) emp2 = Empleado('Jack', 'Ryan', '[email protected]', 5500) print(emp1.get_full_name()) print(emp2.get_full_name()) print(Empleado.get_full_name(emp1)) print(emp1.__dict__) print(emp1.sueldo) emp1.get_new_salary() print(emp1.sueldo) print(Empleado.tasa_incremento) print(emp1.tasa_incremento) print(emp2.tasa_incremento) emp2.tasa_incremento = 2.1 print(emp2.__dict__) print(Empleado.__dict__) Empleado.tasa_incremento = 1.5 print(Empleado.tasa_incremento) print(emp1.tasa_incremento) print(emp2.tasa_incremento) emp1.tasa_incremento = 1.5 print(emp1.__dict__) emp2.foo = 3 print(emp2.__dict__)
class A: def long_unique_identifier(self): pass def foo(x): x.long_unique_identifier() # <ref>
# -*- coding: utf-8 -*- def parametrized(dec): def layer(*args, **kwargs): def repl(f): return dec(f, *args, **kwargs) return repl return layer @parametrized def dependency(module, *_deps): module.deps = _deps return module @parametrized def source(module, _source): module.source = _source return module @parametrized def version(module, _ver): module.version = _ver return module @dependency() @source('unknown') @version('latest') class Module(object): def __init__(self, composer): self.composer = composer def __repr__(self): return '%-13s %-6s (%s)' % ( self.name(), self.version, self.source) def build(self): pass def expose(self): return [] def name(self): return self.__class__.__name__.lower()
print("Enter The Number n") n = int(input()) if (n%2)!=0: print("Weird") elif (n%2)==0: if n in range(2,5): print("Not Weird") elif n in range(6,21): print("Weird") elif n > 20: print("Not Weird")
#! /usr/bin/env python3 # -*- coding: utf-8 -*- """ Unit test cases for cellular environment and algorithms """ __author__ = 'Ari Saha ([email protected]), Mingyang Liu([email protected])'
model = dict( type='TSN2D', backbone=dict( type='ResNet', pretrained='modelzoo://resnet50', nsegments=8, depth=50, out_indices=(3,), tsm=True, bn_eval=False, partial_bn=False), spatial_temporal_module=dict( type='SimpleSpatialModule', spatial_type='avg', spatial_size=7), segmental_consensus=dict( type='SimpleConsensus', consensus_type='avg'), cls_head=dict( type='ClsHead', with_avg_pool=False, temporal_feature_size=1, spatial_feature_size=1, dropout_ratio=0.5, in_channels=2048, num_classes=174)) train_cfg = None test_cfg = None # dataset settings dataset_type = 'RawFramesDataset' data_root = '' data_root_val = '' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) data = dict( videos_per_gpu=8, workers_per_gpu=8, train=dict( type=dataset_type, ann_file='data/sthv1/train_videofolder.txt', img_prefix=data_root, img_norm_cfg=img_norm_cfg, num_segments=8, new_length=1, new_step=1, random_shift=True, modality='RGB', image_tmpl='{:05d}.jpg', img_scale=256, input_size=224, flip_ratio=0.5, resize_keep_ratio=True, resize_crop=True, color_jitter=True, color_space_aug=True, oversample=None, max_distort=1, test_mode=False), val=dict( type=dataset_type, ann_file='data/sthv1/val_videofolder.txt', img_prefix=data_root_val, img_norm_cfg=img_norm_cfg, num_segments=8, new_length=1, new_step=1, random_shift=False, modality='RGB', image_tmpl='{:05d}.jpg', img_scale=256, input_size=224, flip_ratio=0, resize_keep_ratio=True, oversample=None, test_mode=False), test=dict( type=dataset_type, ann_file='data/sthv1/val_videofolder.txt', img_prefix=data_root_val, img_norm_cfg=img_norm_cfg, num_segments=16, new_length=1, new_step=1, random_shift=False, modality='RGB', image_tmpl='{:05d}.jpg', img_scale=256, input_size=256, flip_ratio=0, resize_keep_ratio=True, oversample="three_crop", test_mode=True)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True) optimizer_config = dict(grad_clip=dict(max_norm=20, norm_type=2)) # learning policy lr_config = dict( policy='step', step=[75, 125]) checkpoint_config = dict(interval=1) workflow = [('train', 1)] # yapf:disable log_config = dict( interval=20, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 150 dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None
""" Xilinx primitive tokens """ ASYNC_PORTS = "async_ports" CLK_PORTS = "clk_ports" CLOCK_BUFFERS = "clock_buffers" COMBINATIONAL_CELLS = "combinational_cells" COMPLEX_SEQUENTIAL_CELLS = "complex_sequential_cells" DESCRIPTION = "description" FF_CELLS = "ff_cells" MISC_CELLS = "misc_cells" NAME = "name" POWER_GROUND_CELLS = "power_ground_cells" PRIMITIVE_LIBRARY_NAME = "primitive_library_name" SYNC_PORTS = "sync_ports" VENDOR = "vendor"
#AUTHOR: Pornpimol Kaewphing #Python3 Concept: Twosum in Python #GITHUB: https://github.com/gympohnpimol def twoSum(self, nums: List[int], target: int) -> List[int]: for i in range(len(nums)): for j in range(i + 1, len(nums)): if nums[i] + nums[j] == target: return [i,j] else: pass
def combine_toxic_classes(df): """"""""" Reconfigures the Jigsaw Toxic Comment dataset from a multi-label classification problem to a binary classification problem predicting if a text is toxic (class=1) or non-toxic (class=0). Input: - df: A pandas DataFrame with columns: - 'id' - 'comment_text' - 'toxic' - 'severe_toxic' - 'obscene' - 'threat' - 'insult' - 'identity_hate' Output: - df: A modified pandas DataFrame with columns: - 'comment_text' containing strings of text. - 'isToxic' binary target variable containing 0's and 1's. """"""""" # Create a binary classification label for 'isToxic' # and drop miscellaneous labels. df['isToxic'] = (df['toxic'] == 1) drop_cols = ['id', 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] df.drop(columns=drop_cols, inplace=True) df.replace(to_replace={'isToxic': {True: 1, False: 0}}, inplace=True) # Cast column values to save memory df['isToxic'] = df['isToxic'].astype('int8') return df def undersample_majority(df, percent_conserve): """"""""" Undersamples the majority class of the Jigsaw Toxic Comment dataset ('isToxic'==0) by conserving a given percent of the majority class. Inputs: - df: A pandas DataFrame with columns: - 'comment_text' containing strings of text. - 'isToxic' binary target variable containing 0's and 1's. - percent_conserve: Float representing fraction of majority class (clean_texts) to conserve Outputs: - downsampled_df: A new pandas DataFrame that has been shuffled and has had its majority class downsampled. """"""""" # Get rows of clean and toxic texts clean_texts = df[df['isToxic'] == 0] toxic_texts = df[df['isToxic'] == 1] # Randomly sample from the majority class and construct a new DataFrame # consisting of the majority class (clean_texts) + the minority classes (toxic_texts) to_conserve = clean_texts.sample(frac=percent_conserve, random_state=42) downsampled_df = to_conserve.append(toxic_texts, ignore_index=True) return downsampled_df.sample(frac=1, random_state=42).reset_index(drop=True) def analyze_dist(df): """"""""" Analyzes the class distribution of a pandas DataFrame. Input: - df: a pandas DataFrame containing text whose toxicity is denoted by the 'isToxic' binary indicator column. Output: - Prints class distribution (toxic or non-toxic) statistics of df. """"""""" print('Total rows: ', df.shape[0]) print('Clean texts: ', df.shape[0] - df['isToxic'].sum()) print('Toxic texts: ', df['isToxic'].sum()) print('Toxic texts make up ', ((df['isToxic'].sum() / df.shape[0]) * 100).round(2), 'percent of our total data') return def get_relevant_words(text, to_conserve): """"""""" Takes a string of text and returns the first N words in that text. Input: - text: String of text - to_conserve: Integer representing number of text's words to conserve Output: - String containing first (to_conserve) words of text. """"""""" # Select the first N words in the text word_list = text.split()[:to_conserve] # Build up a string containing words in word_list new_string = ' '.join(word for word in word_list) return new_string def augment_sentence(sentence, aug, num_threads): """"""""" Constructs a new sentence via text augmentation. Input: - sentence: A string of text - aug: An augmentation object defined by the nlpaug library - num_threads: Integer controlling the number of threads to use if augmenting text via CPU Output: - A string of text that been augmented """"""""" return aug.augment(sentence, num_thread=num_threads) def augment_text(df, aug, num_threads, num_times): """"""""" Takes a pandas DataFrame and augments its text data. Input: - df: A pandas DataFrame containing the columns: - 'comment_text' containing strings of text to augment. - 'isToxic' binary target variable containing 0's and 1's. - aug: Augmentation object defined by the nlpaug library. - num_threads: Integer controlling number of threads to use if augmenting text via CPU - num_times: Integer representing the number of times to augment text. Output: - df: Copy of the same pandas DataFrame with augmented data appended to it and with rows randomly shuffled. """"""""" # Get rows of data to augment to_augment = df[df['isToxic'] == 1] to_augmentX = to_augment['comment_text'] to_augmentY = np.ones(len(to_augmentX.index) * num_times, dtype=np.int8) # Build up dictionary containing augmented data aug_dict = {'comment_text': [], 'isToxic': to_augmentY} for i in tqdm(range(num_times)): augX = [augment_sentence(x, aug, num_threads) for x in to_augmentX] aug_dict['comment_text'].extend(augX) # Build DataFrame containing augmented data aug_df = pd.DataFrame.from_dict(aug_dict) return df.append(aug_df, ignore_index=True).sample(frac=1, random_state=42)
list1 = [1, 2, 3] list2 = ["One", "Two"] print("list1: ", list1) print("list2: ", list2) print("\n") list12 = list1 + list2 print("list1 + list2: ", list12) list2x3 = list2 * 3 print("list2 * 3: ", list2x3) hasThree = "Three" in list2 print("'Three' in list2? ", hasThree)
# -*- coding: utf-8 -*- """ @Time : 2020/11/26 15:38 @Author : PyDee @File : __init__.py.py @description : """
def print_in_blocks(li, bp): dli = [] temp_list = [] for i in range(len(li)): temp_list.append(li[i]) if i != 0 and (i+1)%bp == 0: dli.append(temp_list) temp_list = [] cols = bp max_col_len = [] for _ in range(cols): max_col_len.append(0) for i in range(len(max_col_len)): for r in dli: if max_col_len[i] < len(r[i]): max_col_len[i] = len(r[i]) print(end='+-') for i in range(cols): print('-' * max_col_len[i], end='-+-') print(end='\b \n') for i in dli: print(end='| ') for j in range(cols): print(i[j].ljust(max_col_len[j]), end=' | ') print() print(end='+-') for i in range(cols): print('-' * max_col_len[i], end='-+-') print(end='\b \n')
# These should reflect //ci/prebuilt/BUILD declared targets. This a map from # target in //ci/prebuilt/BUILD to the underlying build recipe in # ci/build_container/build_recipes. TARGET_RECIPES = { "ares": "cares", "backward": "backward", "event": "libevent", "event_pthreads": "libevent", # TODO(htuch): This shouldn't be a build recipe, it's a tooling dependency # that is external to Bazel. "gcovr": "gcovr", "googletest": "googletest", "tcmalloc_and_profiler": "gperftools", "http_parser": "http-parser", "lightstep": "lightstep", "nghttp2": "nghttp2", "protobuf": "protobuf", "protoc": "protobuf", "rapidjson": "rapidjson", "spdlog": "spdlog", "ssl": "boringssl", "tclap": "tclap", }
colocacao = ('São Paulo','Coritiba','Corinthians','Atlétigo-MG','Ceará','Avaí','Cuiabá','Bragantino','Juventude','Flamengo','Atlético-GO','Santos','Fluminense','Palmeiras','Fortaleza','América-MG','Botafogo','Internacional', 'Goiás','Athletico-PR') print('=-'*20) print(f'Lista de times do Brasileirão 2022: {colocacao}') print('=-'*20) print(f'Os 5 primeiros são: {colocacao[0:5]}') print('=-'*20) print(f'Os 4 últimos são: {colocacao[16:]}') print('=-'*20) print(f'Times em ordem alfabética: {sorted(colocacao)}') print('=-'*20) print(f'O Flamengo está na {colocacao.index("Flamengo")+1}ª posição') print('=-'*20)
# Python3 program to solve Rat in a Maze # problem using backracking # Maze size N = 4 # A utility function to print solution matrix sol def printSolution( sol ): for i in sol: for j in i: print(str(j) + " ", end ="") print("") # A utility function to check if x, y is valid # index for N * N Maze def isSafe( maze, x, y ): if x >= 0 and x < N and y >= 0 and y < N and maze[x][y] == 1: return True return False def solveMaze( maze ): # Creating a 4 * 4 2-D list sol = [ [ 0 for j in range(4) ] for i in range(4) ] if solveMazeUtil(maze, 0, 0, sol) == False: print("Solution doesn't exist"); return False printSolution(sol) return True # A recursive utility function to solve Maze problem def solveMazeUtil(maze, x, y, sol): # if (x, y is goal) return True if x == N - 1 and y == N - 1 and maze[x][y]== 1: sol[x][y] = 1 return True # Check if maze[x][y] is valid if isSafe(maze, x, y) == True: # Check if the current block is already part of solution path. if sol[x][y] == 1: return False # mark x, y as part of solution path sol[x][y] = 1 #force rat to go to the right way if solveMazeUtil(maze, x + 1, y, sol): return True if solveMazeUtil(maze, x, y + 1, sol): return True if solveMazeUtil(maze, x - 1, y, sol): return True if solveMazeUtil(maze, x, y - 1, sol): return True sol[x][y] = 0 return False # Driver program to test above function if __name__ == "__main__": # Initialising the maze maze = [ [1, 0, 0, 0], [1, 1, 0, 1], [0, 1, 0, 0], [1, 1, 1, 1] ] solveMaze(maze) # This code is contributed by Shiv Shankar # Also explain more by Sahachan Tippimwong to Submit the work on time
# We use this to create easily readable errors for when debugging elastic beanstalk deployment configurations class DynamicParameter(Exception): pass #NOTE: integer values need to be strings def get_base_eb_configuration(): return [ # Instance launch configuration details { 'Namespace': 'aws:autoscaling:launchconfiguration', 'OptionName': 'InstanceType', 'Value': DynamicParameter("InstanceType") },{ 'Namespace': 'aws:autoscaling:launchconfiguration', 'OptionName': 'IamInstanceProfile', 'Value': DynamicParameter("IamInstanceProfile") },{ 'Namespace': 'aws:autoscaling:launchconfiguration', 'OptionName': 'EC2KeyName', 'Value': DynamicParameter("EC2KeyName") }, # open up the ssh port for debugging - adds to the security group { 'Namespace': 'aws:autoscaling:launchconfiguration', 'OptionName': 'SSHSourceRestriction', 'Value': 'tcp,22,22,0.0.0.0/0' }, # cloudwatch alarms { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'BreachDuration', 'Value': '1' }, { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'EvaluationPeriods', 'Value': '1' }, # environment variables { 'Namespace': 'aws:cloudformation:template:parameter', 'OptionName': 'EnvironmentVariables', 'Value': DynamicParameter("EnvironmentVariables"), }, # },{ # could not get this to play well, so we modify it after the environment creates it. # 'Namespace': 'aws:autoscaling:launchconfiguration', # 'OptionName': 'SecurityGroups', # 'Value': AutogeneratedParameter("SecurityGroups") # }, { 'Namespace': 'aws:cloudformation:template:parameter', 'OptionName': 'InstancePort', 'Value': '80' }, # deployment network details # { # 'Namespace': 'aws:ec2:vpc', # 'OptionName': 'VPCId', # 'Value': 'vpc-c6e16da2' # }, # { # 'Namespace': 'aws:ec2:vpc', # 'OptionName': 'ELBSubnets', # 'Value': 'subnet-10718a66,subnet-ea9599c1,subnet-8018a9bd,subnet-bf1f02e6' # }, # { # 'Namespace': 'aws:ec2:vpc', # 'OptionName': 'Subnets', # 'Value': 'subnet-10718a66,subnet-ea9599c1,subnet-8018a9bd,subnet-bf1f02e6' # }, # static network details # { # todo: not in a vpc? # 'Namespace': 'aws:ec2:vpc', # 'OptionName': 'AssociatePublicIpAddress', # 'Value': 'true' # }, { 'Namespace': 'aws:ec2:vpc', 'OptionName': 'ELBScheme', 'Value': 'public' }, { 'Namespace': 'aws:elasticbeanstalk:application', 'OptionName': 'Application Healthcheck URL', 'Value': '' }, # autoscaling settings { 'Namespace': 'aws:autoscaling:asg', 'OptionName': 'Availability Zones', 'Value': 'Any' }, { 'Namespace': 'aws:autoscaling:asg', 'OptionName': 'Cooldown', 'Value': '360' }, { 'Namespace': 'aws:autoscaling:asg', 'OptionName': 'Custom Availability Zones', 'Value': '' }, { 'Namespace': 'aws:autoscaling:asg', 'OptionName': 'MaxSize', 'Value': '2' }, { 'Namespace': 'aws:autoscaling:asg', 'OptionName': 'MinSize', 'Value': '1' }, { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'LowerBreachScaleIncrement', 'Value': '-1' }, { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'LowerThreshold', 'Value': '20' }, { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'MeasureName', 'Value': 'CPUUtilization' }, { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'Period', 'Value': '1' }, { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'Statistic', 'Value': 'Maximum' }, { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'Unit', 'Value': 'Percent' }, { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'UpperBreachScaleIncrement', 'Value': '1' }, { 'Namespace': 'aws:autoscaling:trigger', 'OptionName': 'UpperThreshold', 'Value': '85' }, { 'Namespace': 'aws:autoscaling:updatepolicy:rollingupdate', 'OptionName': 'MaxBatchSize', 'Value': '1' }, { 'Namespace': 'aws:autoscaling:updatepolicy:rollingupdate', 'OptionName': 'MinInstancesInService', 'Value': '1' }, # { # 'Namespace': 'aws:autoscaling:updatepolicy:rollingupdate', # 'OptionName': 'PauseTime', # }, { 'Namespace': 'aws:autoscaling:updatepolicy:rollingupdate', 'OptionName': 'RollingUpdateEnabled', 'Value': 'true' }, { 'Namespace': 'aws:autoscaling:updatepolicy:rollingupdate', 'OptionName': 'RollingUpdateType', 'Value': 'Health' }, { 'Namespace': 'aws:autoscaling:updatepolicy:rollingupdate', 'OptionName': 'Timeout', 'Value': 'PT30M' }, # Logging settings { 'Namespace': 'aws:elasticbeanstalk:cloudwatch:logs', 'OptionName': 'DeleteOnTerminate', 'Value': 'false' }, { 'Namespace': 'aws:elasticbeanstalk:cloudwatch:logs', 'OptionName': 'RetentionInDays', 'Value': '7' }, { 'Namespace': 'aws:elasticbeanstalk:cloudwatch:logs', 'OptionName': 'StreamLogs', 'Value': 'false' }, # miscellaneous EB configuration { 'Namespace': 'aws:elasticbeanstalk:command', 'OptionName': 'BatchSize', 'Value': '30' }, { 'Namespace': 'aws:elasticbeanstalk:command', 'OptionName': 'BatchSizeType', 'Value': 'Percentage' }, { 'Namespace': 'aws:elasticbeanstalk:command', 'OptionName': 'DeploymentPolicy', 'Value': 'Rolling' }, { 'Namespace': 'aws:elasticbeanstalk:command', 'OptionName': 'IgnoreHealthCheck', 'Value': 'true' }, { # Time at which a timeout occurs after deploying the environment - I think. 'Namespace': 'aws:elasticbeanstalk:command', 'OptionName': 'Timeout', 'Value': '300' }, { 'Namespace': 'aws:elasticbeanstalk:control', 'OptionName': 'DefaultSSHPort', 'Value': '22' }, {'Namespace': 'aws:elasticbeanstalk:control', 'OptionName': 'LaunchTimeout', 'Value': '0' }, { 'Namespace': 'aws:elasticbeanstalk:control', 'OptionName': 'LaunchType', 'Value': 'Migration' }, { 'Namespace': 'aws:elasticbeanstalk:control', 'OptionName': 'RollbackLaunchOnFailure', 'Value': 'false' }, # Python environment configuration { 'Namespace': 'aws:elasticbeanstalk:container:python', 'OptionName': 'NumProcesses', 'Value': '2' }, { 'Namespace': 'aws:elasticbeanstalk:container:python', 'OptionName': 'NumThreads', 'Value': '20' }, { 'Namespace': 'aws:elasticbeanstalk:container:python', 'OptionName': 'StaticFiles', 'Value': '/static/=frontend/static/' }, { 'Namespace': 'aws:elasticbeanstalk:container:python', 'OptionName': 'WSGIPath', 'Value': 'wsgi.py' }, { 'Namespace': 'aws:elasticbeanstalk:container:python:staticfiles', 'OptionName': '/static/', 'Value': 'frontend/static/' }, # Elastic Beanstalk system Notifications { # These settings generate the SNS instance for sending these emails. 'Namespace': 'aws:elasticbeanstalk:sns:topics', 'OptionName': 'Notification Endpoint', 'Value': DynamicParameter('Notification Endpoint') }, { 'Namespace': 'aws:elasticbeanstalk:sns:topics', 'OptionName': 'Notification Protocol', 'Value': 'email' }, # Health check/Reporting details { 'Namespace': 'aws:elasticbeanstalk:healthreporting:system', 'OptionName': 'ConfigDocument', 'Value': '{"Version":1,"CloudWatchMetrics":{"Instance":{"CPUIrq":null,"LoadAverage5min":null,"ApplicationRequests5xx":null,"ApplicationRequests4xx":null,"CPUUser":null,"LoadAverage1min":null,"ApplicationLatencyP50":null,"CPUIdle":null,"InstanceHealth":null,"ApplicationLatencyP95":null,"ApplicationLatencyP85":null,"RootFilesystemUtil":null,"ApplicationLatencyP90":null,"CPUSystem":null,"ApplicationLatencyP75":null,"CPUSoftirq":null,"ApplicationLatencyP10":null,"ApplicationLatencyP99":null,"ApplicationRequestsTotal":null,"ApplicationLatencyP99.9":null,"ApplicationRequests3xx":null,"ApplicationRequests2xx":null,"CPUIowait":null,"CPUNice":null},"Environment":{"InstancesSevere":null,"InstancesDegraded":null,"ApplicationRequests5xx":null,"ApplicationRequests4xx":null,"ApplicationLatencyP50":null,"ApplicationLatencyP95":null,"ApplicationLatencyP85":null,"InstancesUnknown":null,"ApplicationLatencyP90":null,"InstancesInfo":null,"InstancesPending":null,"ApplicationLatencyP75":null,"ApplicationLatencyP10":null,"ApplicationLatencyP99":null,"ApplicationRequestsTotal":null,"InstancesNoData":null,"ApplicationLatencyP99.9":null,"ApplicationRequests3xx":null,"ApplicationRequests2xx":null,"InstancesOk":null,"InstancesWarning":null}}}' }, { 'Namespace': 'aws:elasticbeanstalk:healthreporting:system', 'OptionName': 'HealthCheckSuccessThreshold', 'Value': 'Ok' }, { 'Namespace': 'aws:elasticbeanstalk:healthreporting:system', 'OptionName': 'SystemType', 'Value': 'enhanced' }, { 'Namespace': 'aws:elasticbeanstalk:hostmanager', 'OptionName': 'LogPublicationControl', 'Value': 'false' }, { 'Namespace': 'aws:elasticbeanstalk:managedactions', 'OptionName': 'ManagedActionsEnabled', 'Value': 'false' }, # { # 'Namespace': 'aws:elasticbeanstalk:managedactions', # 'OptionName': 'PreferredStartTime' # }, { 'Namespace': 'aws:elasticbeanstalk:managedactions:platformupdate', 'OptionName': 'InstanceRefreshEnabled', 'Value': 'false' }, # { # 'Namespace': 'aws:elasticbeanstalk:managedactions:platformupdate', # 'OptionName': 'UpdateLevel' # }, { 'Namespace': 'aws:elasticbeanstalk:monitoring', 'OptionName': 'Automatically Terminate Unhealthy Instances', 'Value': 'true' }, { 'Namespace': 'aws:elb:healthcheck', 'OptionName': 'HealthyThreshold', 'Value': '3' }, { 'Namespace': 'aws:elb:healthcheck', 'OptionName': 'Interval', 'Value': '10' }, { 'Namespace': 'aws:elb:healthcheck', 'OptionName': 'Target', 'Value': 'TCP:80' }, { 'Namespace': 'aws:elb:healthcheck', 'OptionName': 'Timeout', 'Value': '5' }, { 'Namespace': 'aws:elb:healthcheck', 'OptionName': 'UnhealthyThreshold', 'Value': '5' }, # Storage configuration. We use the default, which is 8gb gp2. # { # 'Namespace': 'aws:autoscaling:launchconfiguration', # 'OptionName': 'BlockDeviceMappings', # }, { # 'Namespace': 'aws:autoscaling:launchconfiguration', # 'OptionName': 'MonitoringInterval', # }, { # 'Namespace': 'aws:autoscaling:launchconfiguration', # 'OptionName': 'RootVolumeIOPS', # }, { # 'Namespace': 'aws:autoscaling:launchconfiguration', # 'OptionName': 'RootVolumeSize', # },{ # 'Namespace': 'aws:autoscaling:launchconfiguration', # 'OptionName': 'RootVolumeType', # }, ## ## Elastic Load Balancer configuration ## { 'Namespace': 'aws:elasticbeanstalk:environment', 'OptionName': 'EnvironmentType', 'Value': 'LoadBalanced' }, { # there are 2 ELBs, ELB classic and ELBv2. We use classic. 'Namespace': 'aws:elasticbeanstalk:environment', 'OptionName': 'LoadBalancerType', 'Value': 'classic' }, { 'Namespace': 'aws:elasticbeanstalk:environment', 'OptionName': 'ServiceRole', 'Value': DynamicParameter("ServiceRole") },# { # 'Namespace': 'aws:elasticbeanstalk:environment', # 'OptionName': 'ExternalExtensionsS3Bucket' # }, { # 'Namespace': 'aws:elasticbeanstalk:environment', # 'OptionName': 'ExternalExtensionsS3Key' # },{ # probably don't override this one, use the one it autogenerates and then modify # 'Namespace': 'aws:elb:loadbalancer', # 'OptionName': 'SecurityGroups', # 'Value': 'sg-********' # },{ # 'Namespace': 'aws:elb:listener:80', # 'OptionName': 'InstancePort', # 'Value': '80' # }, { # 'Namespace': 'aws:elb:listener:80', # 'OptionName': 'InstanceProtocol', # 'Value': 'HTTP' # }, { # 'Namespace': 'aws:elb:listener:80', # 'OptionName': 'ListenerEnabled', # 'Value': 'true' # }, { # 'Namespace': 'aws:elb:listener:80', # 'OptionName': 'ListenerProtocol', # 'Value': 'HTTP' # }, { # 'Namespace': 'aws:elb:listener:80', # 'OptionName': 'PolicyNames', # }, { # 'Namespace': 'aws:elb:listener:80', # 'OptionName': 'SSLCertificateId', # }, { # 'Namespace': 'aws:elb:loadbalancer', # 'OptionName': 'CrossZone', # 'Value': 'true' # }, { # 'Namespace': 'aws:elb:loadbalancer', # 'OptionName': 'LoadBalancerHTTPPort', # 'Value': '80' # }, { # 'Namespace': 'aws:elb:loadbalancer', # 'OptionName': 'LoadBalancerHTTPSPort', # 'Value': 'OFF' # }, { # 'Namespace': 'aws:elb:loadbalancer', # 'OptionName': 'LoadBalancerPortProtocol', # 'Value': 'HTTP' # }, { # 'Namespace': 'aws:elb:loadbalancer', # 'OptionName': 'LoadBalancerSSLPortProtocol', # 'Value': 'HTTPS' # }, { # 'Namespace': 'aws:elb:loadbalancer', # 'OptionName': 'SSLCertificateId', # }, { # 'Namespace': 'aws:elb:policies', # 'OptionName': 'ConnectionDrainingEnabled', # 'Value': 'true' # }, { # 'Namespace': 'aws:elb:policies', # 'OptionName': 'ConnectionDrainingTimeout', # 'Value': '20' # }, { # 'Namespace': 'aws:elb:policies', # 'OptionName': 'ConnectionSettingIdleTimeout', # 'Value': '60' # }, ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- class Student(object): def __init__(self, name, score): # 实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问 self.__name = name self.__score = score def get_grade(self): if self.__score >= 90: return 'A' elif self.__score >= 60: return 'B' else: return 'C' # 数据封装 def get_score(self): return '%s: %s' % (self.__name, self.__score) def get_name(self): return self.__name def get_score(self): return self.__score def set_score(self, score): if 0 <= score <= 100: self.__score = score else: raise ValueError('bad score') Adam = Student('Adam', 100) # print(Adam.name, Adam.score) # print_score(Adam) Adam.get_score() lisa = Student('Lisa', 89) bart = Student('Bart', 59) print(Adam.get_score(), Adam.get_grade()) print(lisa.get_score(), lisa.get_grade()) print(bart.get_score(), bart.get_grade()) Adam.set_score(90) print(Adam.get_score())
''' Context: String compression using counts of repeated characters Definitions: Objective: Assumptions: Only lower and upper case letters present Constraints: Inputs: string value Algorithm flow: Compress the string if string empty: return emotty if length of compressed string >= original string return original string else return compressed string Example(s): aabcccccaaa => a2b1c5a3 Possible Solutions character_count = 1 current_character = set to first character in string compressed_string = '' for the length of string pick a character at current index compare character with current_character if same increment character_count by 1 if not append current_character and character_count to character_count set character_count to 1 set current_character = character Walk through string length = 10 current_character = a character_count = 3 compressed_string = a2b1c5a3 ''' def compress(string_input): string_length = len(string_input) compressed_string = '' count_consecutive = 0 for i in range(string_length): count_consecutive = count_consecutive + 1 if i + 1 >= string_length or string_input[i] != string_input[i + 1]: compressed_string = compressed_string + string_input[i] + str(count_consecutive) count_consecutive = 0 if len(compressed_string) >= string_length: return string_input else: return compressed_string print(compress('') == '') #true print(compress('aabcccccaaa') == 'a2b1c5a3') #true print(compress('abcdef') == 'abcdef') #true compressed same as original ''' Performance P = length of original string K = number of consecutive character sequences Time = O(P + K^2) K^2 because string concatenation is O(N^2) For each character sequence we copy the compressed version and the current character sequence compression into a new compressed string Why is concatenation O(N^2)? X = length of current string N = number of strings 1st iteration = 1X copy 2nd iteration = 2X copy 3rd iteration = 3X copy Nth iteration = NX copy O(1X + 2X + 3X ... NX) => O(N^2) 1 + 2 + ... N = N(N + 1)/2 = O(N^2 + N) => O(N^2) Space = O(2P) => O(P) Compressed string might be twice as long '''
class Solution(object): def multiply(self, num1, num2): """ :type num1: str :type num2: str :rtype: str """ num1 = num1[: : -1] num2 = num2[: : -1] multi = [0 for i in range(len(num1) + len(num2))] for i in range(len(num1)): for j in range(len(num2)): multi[i + j] += int(num1[i]) * int(num2[j]) carry = 0 for i in range(len(multi)): carry += multi[i] multi[i] = str(carry % 10) carry /= 10 while carry: multi.append(carry % 10) carry /= 10 while len(multi) > 1 and '0' == multi[-1]: del multi[-1] return "".join(multi)[: : -1]
# coding=utf-8 # Licensed Materials - Property of IBM # Copyright IBM Corp. 2015,2017 """ SPL primitive operators that call a Python function or callable class are created by decorators provided :py:mod:`streamsx.spl.spl` Once created the operators become part of a toolkit and may be used like any other SPL operator. """
def slow_fib(n: int) -> int: if n < 1: return 0 if n == 1: return 1 return slow_fib(n-1) + slow_fib(n-2)
def word_frequency(list): words = {} for word in list: if word in words: words[word] += 1 else: words[word] = 1 return words frequency_counter = word_frequency(['hey', 'hi', 'more', 'hey', 'hi']) print(frequency_counter)
''' Task Given an integer, , and space-separated integers as input, create a tuple, , of those integers. Then compute and print the result of . Note: hash() is one of the functions in the __builtins__ module, so it need not be imported. Input Format The first line contains an integer, , denoting the number of elements in the tuple. The second line contains space-separated integers describing the elements in tuple . Output Format Print the result of . Sample Input 0 2 1 2 Sample Output 0 3713081631934410656 ''' if __name__ == '__main__': n = int(input()) integer_list = map(int, input().split()) print(hash(tuple(integer_list)))
frase = str(input('Escreva uma frase: ')).strip().lower() numA = frase.count('a') pos1A = frase.find('a') + 1 posFA = frase.rfind('a') + 1 print('A frase digitada possui {} letras A.'.format(numA)) print('A primeira ocorrência da letra A esta na posição {}'.format(pos1A)) print('A última ocorrência da letra A esta na posição {}'.format(posFA))
# Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # https://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. def inject_create_tags(event_name, class_attributes, **kwargs): """This injects a custom create_tags method onto the ec2 service resource This is needed because the resource model is not able to express creating multiple tag resources based on the fact you can apply a set of tags to multiple ec2 resources. """ class_attributes['create_tags'] = create_tags def create_tags(self, **kwargs): # Call the client method self.meta.client.create_tags(**kwargs) resources = kwargs.get('Resources', []) tags = kwargs.get('Tags', []) tag_resources = [] # Generate all of the tag resources that just were created with the # preceding client call. for resource in resources: for tag in tags: # Add each tag from the tag set for each resource to the list # that is returned by the method. tag_resource = self.Tag(resource, tag['Key'], tag['Value']) tag_resources.append(tag_resource) return tag_resources
# GENERATED VERSION FILE # TIME: Fri Mar 20 02:18:57 2020 __version__ = '1.1.0+58a3f02' short_version = '1.1.0'
bruin = set(["Boxtel","Best","Beukenlaan","Helmond 't Hout","Helmond","Helmond Brouwhuis","Deurne"]) groen = set(["Boxtel","Best","Beukenlaan","Geldrop","Heeze","Weert"]) print(bruin.intersection(groen)) print(bruin.difference(groen)) print(bruin.union(groen))
#Exemplo 2 n1 = float(input('Digite sua primeira nota: ')) n2 = float(input('Digite sua segunda nota: ')) media = (n1 + n2)/ 2 if media >= 5: print('Muito bem, sua media é de {:.1f} e está ótima!'.format(media))#{:.1f}formatação para uma casa decimal else: print('Sua média é de {:.1f}, você precisa estudar mais!'.format(media)) print('Boa sorte nos estudos!')
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def reverseList(self, head: ListNode) -> ListNode: if not head: return head prevHead = head while prevHead.next: curr = prevHead.next # move curr to the head prevHead.next = curr.next curr.next = head head = curr return head # Recursion class Solution: def reverseList(self, head: ListNode) -> ListNode: if not head or not head.next: return head left = self.reverseList(head.next) # Place head node at the end head.next.next = head head.next = None return left
# -*- coding: utf-8 -*- X = int(input()) Y = int(input()) start, end = min(X, Y), max(X, Y) firstDivisible = start if (start % 13 == 0) else start + (13 - (start % 13)) answer = sum(range(start, end + 1)) - sum(range(firstDivisible, end + 1, 13)) print(answer)
"""Top-level package for Webex Bot.""" __author__ = """Finbarr Brady""" __version__ = '0.2.5'
# variables notasV = 0 soma = 0 # while there are not 2 grades between [0,10], so the loop continue while notasV < 2: # receive float nota = float(input()) # if nota is >= 0 and nota <= 10 if (nota >= 0) and (nota <= 10): notasV = notasV + 1 soma = soma + nota # if it is not true else: print('nota invalida') # media if notasV == 2: soma = soma / 2 print('media = {:.2f}'.format(soma))
# Error codes due to an invalid request INVALID_REQUEST = 400 INVALID_ALGORITHM = 401 DOCUMENT_NOT_FOUND = 404
# -*- coding: utf-8 -*- """This module contains all the LUA code that needs to be on the device to perform whats needed. They will be uploaded if they doesn't exist""" # Copyright (C) 2015-2019 Peter Magnusson <[email protected]> # pylint: disable=C0301 # flake8: noqa LUA_FUNCTIONS = ['recv_block', 'recv_name', 'recv', 'shafile', 'send_block', 'send_file', 'send'] DOWNLOAD_FILE = "file.open('{filename}') print(file.seek('end', 0)) file.seek('set', {bytes_read}) uart.write(0, file.read({chunk_size}))file.close()" PRINT_FILE = "file.open('{filename}') print('---{filename}---') print(file.read()) file.close() print('---')" INFO_GROUP = "for key,value in pairs(node.info('{group}')) do k=tostring(key) print(k .. string.rep(' ', 20 - #k), tostring(value)) end" LIST_FILES = 'for key,value in pairs(file.list()) do print(key,value) end' # NUL = \000, ACK = \006 RECV_LUA = \ r""" function recv() local on,w,ack,nack=uart.on,uart.write,'\6','\21' local fd local function recv_block(d) local t,l = d:byte(1,2) if t ~= 1 then w(0, nack); fd:close(); return on('data') end if l >= 0 then fd:write(d:sub(3, l+2)); end if l == 0 then fd:close(); w(0, ack); return on('data') else w(0, ack) end end local function recv_name(d) d = d:gsub('%z.*', '') d:sub(1,-2) file.remove(d) fd=file.open(d, 'w') on('data', 130, recv_block, 0) w(0, ack) end on('data', '\0', recv_name, 0) w(0, 'C') end function shafile(f) print(crypto.toHex(crypto.fhash('sha1', f))) end """ # noqa: E122 SEND_LUA = \ r""" function send(f) uart.on('data', 1, function (data) local on,w=uart.on,uart.write local fd local function send_block(d) l = string.len(d) w(0, '\001' .. string.char(l) .. d .. string.rep('\0', 128 - l)) return l end local function send_file(f) local s, p fd=file.open(f) s=fd:seek('end', 0) p=0 on('data', 1, function(data) if data == '\006' and p<s then fd:seek('set',p) p=p+send_block(fd:read(128)) else send_block('') fd:close() on('data') print('interrupted') end end, 0) w(0, f .. '\000') end uart.on('data') if data == 'C' then send_file(f) else print('transfer interrupted') end end, 0) end """ UART_SETUP = 'uart.setup(0,{baud},8,0,1,1)' REMOVE_ALL_FILES = r""" for key,value in pairs(file.list()) do file.remove(key) end """
# https://en.wikipedia.org/wiki/Trifid_cipher def __encryptPart(messagePart, character2Number): one, two, three = "", "", "" tmp = [] for character in messagePart: tmp.append(character2Number[character]) for each in tmp: one += each[0] two += each[1] three += each[2] return one + two + three def __decryptPart(messagePart, character2Number): tmp, thisPart = "", "" result = [] for character in messagePart: thisPart += character2Number[character] for digit in thisPart: tmp += digit if len(tmp) == len(messagePart): result.append(tmp) tmp = "" return result[0], result[1], result[2] def __prepare(message, alphabet): # Validate message and alphabet, set to upper and remove spaces alphabet = alphabet.replace(" ", "").upper() message = message.replace(" ", "").upper() # Check length and characters if len(alphabet) != 27: raise KeyError("Length of alphabet has to be 27.") for each in message: if each not in alphabet: raise ValueError("Each message character has to be included in alphabet!") # Generate dictionares numbers = ( "111", "112", "113", "121", "122", "123", "131", "132", "133", "211", "212", "213", "221", "222", "223", "231", "232", "233", "311", "312", "313", "321", "322", "323", "331", "332", "333", ) character2Number = {} number2Character = {} for letter, number in zip(alphabet, numbers): character2Number[letter] = number number2Character[number] = letter return message, alphabet, character2Number, number2Character def encryptMessage(message, alphabet="ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): message, alphabet, character2Number, number2Character = __prepare(message, alphabet) encrypted, encrypted_numeric = "", "" for i in range(0, len(message) + 1, period): encrypted_numeric += __encryptPart(message[i : i + period], character2Number) for i in range(0, len(encrypted_numeric), 3): encrypted += number2Character[encrypted_numeric[i : i + 3]] return encrypted def decryptMessage(message, alphabet="ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period=5): message, alphabet, character2Number, number2Character = __prepare(message, alphabet) decrypted_numeric = [] decrypted = "" for i in range(0, len(message) + 1, period): a, b, c = __decryptPart(message[i : i + period], character2Number) for j in range(0, len(a)): decrypted_numeric.append(a[j] + b[j] + c[j]) for each in decrypted_numeric: decrypted += number2Character[each] return decrypted if __name__ == "__main__": msg = "DEFEND THE EAST WALL OF THE CASTLE." encrypted = encryptMessage(msg, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") decrypted = decryptMessage(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") print("Encrypted: {}\nDecrypted: {}".format(encrypted, decrypted))
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ 'model_alias', ] # Records of model name to import class model_alias = { # --------------------------------- # -------------- ASR -------------- # --------------------------------- "deepspeech2offline": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"], "deepspeech2online": ["paddlespeech.s2t.models.ds2:DeepSpeech2Model"], "conformer": ["paddlespeech.s2t.models.u2:U2Model"], "conformer_online": ["paddlespeech.s2t.models.u2:U2Model"], "transformer": ["paddlespeech.s2t.models.u2:U2Model"], "wenetspeech": ["paddlespeech.s2t.models.u2:U2Model"], # --------------------------------- # -------------- CLS -------------- # --------------------------------- "panns_cnn6": ["paddlespeech.cls.models.panns:CNN6"], "panns_cnn10": ["paddlespeech.cls.models.panns:CNN10"], "panns_cnn14": ["paddlespeech.cls.models.panns:CNN14"], # --------------------------------- # -------------- ST --------------- # --------------------------------- "fat_st": ["paddlespeech.s2t.models.u2_st:U2STModel"], # --------------------------------- # -------------- TEXT ------------- # --------------------------------- "ernie_linear_p7": [ "paddlespeech.text.models:ErnieLinear", "paddlenlp.transformers:ErnieTokenizer" ], "ernie_linear_p3": [ "paddlespeech.text.models:ErnieLinear", "paddlenlp.transformers:ErnieTokenizer" ], # --------------------------------- # -------------- TTS -------------- # --------------------------------- # acoustic model "speedyspeech": ["paddlespeech.t2s.models.speedyspeech:SpeedySpeech"], "speedyspeech_inference": ["paddlespeech.t2s.models.speedyspeech:SpeedySpeechInference"], "fastspeech2": ["paddlespeech.t2s.models.fastspeech2:FastSpeech2"], "fastspeech2_inference": ["paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference"], "tacotron2": ["paddlespeech.t2s.models.tacotron2:Tacotron2"], "tacotron2_inference": ["paddlespeech.t2s.models.tacotron2:Tacotron2Inference"], # voc "pwgan": ["paddlespeech.t2s.models.parallel_wavegan:PWGGenerator"], "pwgan_inference": ["paddlespeech.t2s.models.parallel_wavegan:PWGInference"], "mb_melgan": ["paddlespeech.t2s.models.melgan:MelGANGenerator"], "mb_melgan_inference": ["paddlespeech.t2s.models.melgan:MelGANInference"], "style_melgan": ["paddlespeech.t2s.models.melgan:StyleMelGANGenerator"], "style_melgan_inference": ["paddlespeech.t2s.models.melgan:StyleMelGANInference"], "hifigan": ["paddlespeech.t2s.models.hifigan:HiFiGANGenerator"], "hifigan_inference": ["paddlespeech.t2s.models.hifigan:HiFiGANInference"], "wavernn": ["paddlespeech.t2s.models.wavernn:WaveRNN"], "wavernn_inference": ["paddlespeech.t2s.models.wavernn:WaveRNNInference"], # --------------------------------- # ------------ Vector ------------- # --------------------------------- "ecapatdnn": ["paddlespeech.vector.models.ecapa_tdnn:EcapaTdnn"], }
""" The roseguarden project Copyright (C) 2018-2020 Marcus Drobisch, This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ __authors__ = ["Marcus Drobisch"] __contact__ = "[email protected]" __credits__ = [] __license__ = "GPLv3" class Action(object): """Base class that each action for every workspace have to inherit from. The class define methods that all action must implement by the plugin """ disable = False def __init__(self, app, uri=None): if uri is None: self.uri = self.__class__.__name__ else: self.uri = uri def handle(self, action, user, workspace, actionManager): """ Action handler method """ raise NotImplementedError @staticmethod def generate(**kwargs): """ Action generator method """ raise NotImplementedError
# Find minimum number without using conditional statement or ternary operator def main(): a = 4 b = 3 print((a > b) * a + (a < b) * b) if __name__ == '__main__': main()
#!/usr/bin/env python3 """project: Block Letters, created: 2022-01-13, author: seraph★776""" def letter_S(): """This function prints uppercase "S" in block letters.""" for row in range(7): for col in range(5): if row in [0, 3, 6] and col in [1, 2, 3] or ( col in [0] and row in [1, 2] or (col in [4] and row in [4, 5])): print('*', end='') else: print(end=' ') print() print() def letter_E(): """This function prints uppercase "E" in block letters.""" for row in range(7): for col in range(5): if row in [0, 3, 6] or col in [0]: print('*', end='') else: print(end=' ') print() print() def letter_R(): """This function prints uppercase "R" in block letters.""" for row in range(7): for col in range(5): if col in [0] or col in [4] and row not in [0, 3] or (row in [0, 3] and col in [1, 2, 3]): print('*', end='') else: print(end=' ') print() print() def letter_A(): """This function prints uppercase "A" in block letters.""" for row in range(7): for col in range(5): if (col in [0, 4] and row not in [0]) or row in [0, 3] and col in range(1, 4): print('*', end='') else: print(end=' ') print() print() def letter_P(): """This function prints uppercase "P" in block letters.""" for row in range(7): for col in range(5): if col in [0] or (col in [4] and row not in [0, 3, 4, 5, 6]) or (row in [0, 3] and col in [1, 2, 3]): print('*', end='') else: print(end=' ') print() print() def letter_H(): """This function prints uppercase "H" in block letters.""" for row in range(7): for col in range(5): if col in [0, 4] or (row in [3] and col in [1, 2, 3]): print('*', end='') else: print(end=' ') print() print() def number_7(): """This function prints the integer "7" in block letters.""" for row in range(7): for col in range(5): if row in [0] and col in range(5) or (col in [4] and row in range(7)): print('*', end='') else: print(end=' ') print() print() def number_6(): """This function prints the integer "6" in block letters.""" for row in range(7): for col in range(5): if (col in [0] or col in [4] and row in range(3, 7)) or row in [0, 3, 6] and col in range(1, 5): print('*', end='') else: print(end=' ') print() print() def seraph76(): """This function displays 'seraph776' in block letters in vertical format.""" letter_S() letter_E() letter_R() letter_A() letter_P() letter_H() number_7() number_7() number_6() def display_blockletters(): seraph76()
class Author: def __init__(self, name, familyname=None): self.name = name self.familyname = familyname def __repr__(self): return u'{0}'.format(self.name) authors = {'1': Author('Test Author'), '2': Author('Testy McTesterson')} print(list(authors.values())) print(u'Found {0} unique authors: {1}'.format(len(authors), list(authors.values()))) author2 = Author('Test Author 2') name = author2.familyname or author2.name print('Name: {0}'.format(name)) print(author2.familyname)
""" categories: Types,bytearray description: Array slice assignment with unsupported RHS cause: Unknown workaround: Unknown """ b = bytearray(4) b[0:1] = [1, 2] print(b)
""" Given an integer, write an algorithm to convert it to hexadecimal. For negative integer, two’s complement method is used. Note: All letters in hexadecimal (a-f) must be in lowercase. The hexadecimal string must not contain extra leading 0s. If the number is zero, it is represented by a single zero character '0'; otherwise, the first character in the hexadecimal string will not be the zero character. The given number is guaranteed to fit within the range of a 32-bit signed integer. You must not use any method provided by the library which converts/formats the number to hex directly. Example 1: Input: 26 Output: "1a" Example 2: Input: -1 Output: "ffffffff" """ class Solution(object): hexChar = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'] def toHex(self, num): """ :type num: int :rtype: str """ if num == 0: return '0' while num < 0: num += 2 ** 32 if num > 2 ** 32 - 1: num = 2 ** 32 - 1 soln = '' while num > 0: soln += self.hexChar[num % 16] num //= 16 return soln[::-1] a = Solution() print(a.toHex(26) == "1a") print(a.toHex(-1) == "ffffffff")
''' ''' def main(): info('Fill Pipette 1') close(description='Outer Pipette 1') sleep(1) if analysis_type=='blank': info('not filling cocktail pipette') else: info('filling cocktail pipette') open(description='Inner Pipette 1') sleep(15) close(description='Inner Pipette 1') sleep(1)
# Exercício Python 65: Crie um programa que leia vários números inteiros pelo teclado. No final da execução, mostre a média entre todos os valores e qual foi o maior e o menor valores lidos. O programa deve perguntar ao usuário se ele quer ou não continuar a digitar valores. N = int(input('Numero: ')) lista = [] count = 0 S = 0 while S != 1: N = int(input('Numero: ')) lista.append(N) count += 1 S = int(input('Deseja continuar? \n[0]Sim\n[1]Não\n')) print(f'Foi colocado {count} itens na lista.') x = (sum(lista)/count) print(f'A media de todos eles é: {x}') print(max(lista)) print(min(lista))
_base_ = [ '../_base_/models/regproxy/regproxy-l16.py', '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py', '../_base_/schedules/adamw+cr+lr_6e-5+wd_0.01+iter_80k.py' ] model = dict( backbone=dict( img_size=(768, 768), out_indices=[5, 23]), test_cfg=dict( mode='slide', crop_size=(768, 768), stride=(512, 512)))
# Copy this file to config.py and fill the blanks QCLOUD_APP_ID = '' QCLOUD_SECRET_ID = '' QCLOUD_SECRET_KEY = '' QCLOUD_BUCKET = '' QCLOUD_REGION = 'sh'
class MICOptimizer(object): """A simple wrapper class for learning rate scheduling""" def __init__(self, optimizer): self.optimizer = optimizer self.step_num = 0 self.lr = 3e-5 def zero_grad(self): self.optimizer.zero_grad() def step(self): self._update_lr() self.optimizer.step() def _update_lr(self): self.step_num += 1 # Initial learning rate was 3 × 10−5 and dropped to 10−5 # and 3 × 10−6 when loss plateaued, at 200k and 375k iterations, respectively if self.step_num == 200000: self.lr = 1e-5 for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr elif self.step_num == 375000: self.lr = 3e-6 for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr def clip_gradient(self, grad_clip): for group in self.optimizer.param_groups: for param in group['params']: if param.grad is not None: param.grad.data.clamp_(-grad_clip, grad_clip)
class SubSystemTypes: aperture = 'Aperture' client = 'Client' config = 'Config' rights = 'Rights' secret_store_config = 'SecretStoreconfig' websdk = 'WebSDK'
user_0 = {'username': 'efermi', 'first': 'enrico', 'last': 'fermi', } for key, value in user_0.items(): print("\nKey: " + key) print("Value: " + value) print(user_0.items())
# Solution def part1(data): frequency = sum(int(x) for x in data) return frequency def part2(data): known_frequency = { 0: True } frequency = 0 while True: for x in data: frequency += int(x) if frequency in known_frequency: return frequency known_frequency[frequency] = True # Tests def test(expected, actual): assert expected == actual, 'Expected: %r, Actual: %r' % (expected, actual) test(3, part1(['+1', '-2', '+3', '+1'])) test(3, part1(['+1', '+1', '+1'])) test(0, part1(['+1', '+1', '-2'])) test(-6, part1(['-1', '-2', '-3'])) test(2, part2(['+1', '-2', '+3', '+1'])) test(0, part2(['+1', '-1'])) test(10, part2(['+3', '+3', '+4', '-2', '-4'])) test(5, part2(['-6', '+3', '+8', '+5', '-6'])) test(14, part2(['+7', '+7', '-2', '-7', '-4'])) # Solve real puzzle filename = 'data/day01.txt' data = [line.rstrip('\n') for line in open(filename, 'r')] print('Day 01, part 1: %r' % (part1(data))) print('Day 01, part 2: %r' % (part2(data)))
data_file = open('us_cities.txt', 'r') for line in data_file: city, population = line.split(':') # Tuple unpacking city = city.title() # Capitalize city names population = '{0:,}'.format(int(population)) # Add commas to numbers print(city.ljust(15) + population) data_file.close()
# -*- coding: utf-8 -*- """ File Name: two_sum Author : jing Date: 2020/3/18 https://leetcode-cn.com/explore/interview/card/tencent/221/array-and-strings/894/ 返回的是索引 只有一个结果 不能利用相同的数字 """ class Solution: def twoSum(self, nums, target: int): if nums is None or len(nums) < 2: return [] """ for i in range(len(nums)): for j in range(i+1, len(nums)): if nums[i] + nums[j] == target: return [i, j] return [] """ """ for i in range(len(nums)): j = nums.index(target-nums[1]) if j: return [i, j] """ # dict hashtable更快!!! dict = {} for i in range(len(nums)): a = target - nums[i] if a in dict: return dict[a], i else: dict[nums[i]] = i if __name__ == '__main__': print(Solution().twoSum([-1,-2,-3,-4,-5], -8))
class Veiculo: def __init__(self, tipo) -> None: self.tipo = tipo self.propriedades = {} def get_propriedades(self): return self.propriedades def set_propriedades(self, cor: str, cambio: str, capacidade: int) -> None: self.propriedades = { 'cor': cor, 'cambio': cambio, 'capacidade': capacidade } def __str__(self) -> str: prop_str = ", ".join([str(valor) for valor in self.get_propriedades() .values()]) return f'{self.tipo}: {prop_str}' class Carro(Veiculo): def __init__(self, tipo) -> None: super().__init__(tipo) caminhao = Veiculo('caminhao') caminhao.set_propriedades('azul', 'manual', 6) carro = Carro('Sedan') carro.set_propriedades('azul', 'automatico', 5) kombi = Veiculo('kombi') kombi.set_propriedades('azul', 'manual', 12) veiculos = [caminhao, carro, kombi] def buscar_por_cor(cor: str) -> None: for veiculo in veiculos: if veiculo.get_propriedades()['cor'] == cor: print(veiculo) buscar_por_cor('azul')
# -*- coding: utf-8 -*- blupFiles = blupf90(AlphaSimDir, way='burnin_milk', sel='gen') blupFiles.makeDat_sex(2) shutil.copy(blupFiles.blupgenParamFile, blupFiles.AlphaSimDir) # skopiraj template blupparam file # uredi blupparam file # get variance components from AlphaSim Output Files OutputFiles = AlphaSim_OutputFile(AlphaSimDir) genvar = OutputFiles.getAddVar() # dobi additivno varianco resvar = OutputFiles.getResVar() # dobi varianco za ostanek blupFiles.prepareParamFiles(genvar, resvar) # set levels of random aniaml effect, add var and res var # the paramfile is now set if sel == 'class': blupFiles.makePed_class() # make ped file for blup, code (1, 2, 3 - both parentr knows/unknown/group) os.system('./blupf90 blupf90_Selection') if sel == 'gen': blupFiles.makePed_gen() # make ped file for blup, no Code! GenFiles = snpFiles(AlphaSimDir) GenFiles.createBlupf90SNPFile() os.system('./renumf90 < renumParam') # run blupf90 # os.system('./blupf90 blupf90_Selection') resource.setrlimit(resource.RLIMIT_STACK, (resource.RLIM_INFINITY, resource.RLIM_INFINITY)) os.system('./preGSf90 renf90.par') os.system('./blupf90 renf90.par') # os.system('./postGSf90 renf90.par') # os.system('./ renf90.par') blupSol = pd.read_csv(AlphaSimDir + '/solutions', skiprows=1, header=None, sep='\s+', names=['Trait', 'Effect', 'Level', 'Solution']) blupSol = pd.read_csv(AlphaSimDir + '/renumbered_Solutions', header=None, sep='\s+', names=['RenumID', 'OrigID', 'Solution']) blupSol = pd.read_csv(AlphaSimDir + '/renumbered_Solutions', skiprows=1, header=None, sep='\s+', names=['renID', 'ID', 'Solution']) AlphaSelPed = AlphaPed.loc[:, ['Generation', 'Indiv', 'Father', 'Mother', 'gvNormUnres1']] #blupSolRandom = blupSol.loc[blupSol.Effect == 1] Če imaš še fixed effect AlphaSelPed.loc[:, 'EBV'] = blupSol.Solution AlphaSelPed.to_csv(AlphaSimDir + 'GenPed_EBV.txt', index=None) if os.path.isfile(AlphaSimDir + 'GenoFile.txt'): os.system('''sed -n "$(sed 's/$/p/' IndForGeno_new.txt)" ''' + chip + ' > ChosenInd.txt') #only individuals chosen for genotypisation - ONLY NEW - LAST GEN! os.system("sed 's/^ *//' ChosenInd.txt > ChipFile.txt") #Remove blank spaces at the beginning os.system("cut -f1 -d ' ' ChipFile.txt > Individuals.txt") # obtain IDs os.system('''awk '{$1=""; print $0}' ChipFile.txt | sed 's/ //g' > Snps.txt''') # obtain SNP genotypes os.system( r'''paste Individuals.txt Snps.txt | awk '{printf "%- 10s %+ 15s\n",$1,$2}' > GenoFile_new.txt''') # obtain SNP genotypes of the last generation os.system("cat GenoFile.txt GenoFile_new.txt > GenoFileTmp && mv GenoFileTmp GenoFile.txt") else: os.system('''sed -n "$(sed 's/$/p/' IndForGeno.txt)" ''' + chip + ' > ChosenInd.txt') #only individuals chosen for genotypisation - ALL os.system("sed 's/^ *//' ChosenInd.txt > ChipFile.txt") #Remove blank spaces at the beginning os.system("cut -f1 -d ' ' ChipFile.txt > Individuals.txt") #obtain IDs os.system('''awk '{$1=""; print $0}' ChipFile.txt | sed 's/ //g' > Snps.txt''') #obtain SNP genotypes os.system( r'''paste Individuals.txt Snps.txt | awk '{printf "%- 10s %+ 15s\n",$1,$2}' > GenoFile.txt''') # obtain SNP genotypes of the last generation pd.read_csv(AlphaSimDir + '/SimulatedData/Chip1SnpInformation.txt', sep='\s+')[[0, 1, 2]].to_csv(AlphaSimDir + 'SnpMap.txt', index=None, sep=" ", header=None)
turno = input("Qual perido voce estuda? V para vespertino, D para diurno ou N para noturno: ").upper() if turno == "V": print("Boa Tarde") elif turno == "D": print("Bom dia") elif turno == "N": print("Boav Noite") else: print("Entrada invalida")
# # This file is part of snmpresponder software. # # Copyright (c) 2019, Ilya Etingof <[email protected]> # License: http://snmplabs.com/snmpresponder/license.html # def expandMacro(option, context): for k in context: pat = '${%s}' % k if option and '${' in option: option = option.replace(pat, str(context[k])) return option def expandMacros(options, context): options = list(options) for idx, option in enumerate(options): options[idx] = expandMacro(option, context) return options
"""Uma linha de documentação""" variavel = 'valor' def funcao(): return 1
__path__ = __import__('pkgutil').extend_path(__path__, __name__) """ +===================================================+ | © 2019 Privex Inc. | | https://www.privex.io | +===================================================+ | | | Python Async Steem library | | License: X11/MIT | | | | Core Developer(s): | | | | (+) Chris (@someguy123) [Privex] | | | +===================================================+ Async Steem library - A simple Python library for asynchronous interactions with Steem RPC nodes (and forks) Copyright (c) 2019 Privex Inc. ( https://www.privex.io ) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. """
#Cristian Chitiva #[email protected] #16/Sept/2018 class Cat: def __init__(self, name): self.name = name
class RestWriter(object): def __init__(self, file, report): self.file = file self.report = report def write(self, restsection): assert len(restsection) >= 3 for separator, collection1 in self.report: self.write_header(separator, restsection[0], 80) for distribution, collection2 in collection1: self.write_header(distribution, restsection[1], 50) for parameters, table in collection2: self.write_header(parameters, restsection[2], 40) self.file.write('\n') self.file.write(str(table)) def write_header(self, title, char, width = 80): f = self.file f.write('\n') f.write('\n') f.write("%s\n" % title) f.write(char * max(len(title), width)) f.write('\n')
#!/usr/bin/python # vim:fileencoding=utf-8:noet # (C) 2017 Michał Górny, distributed under the terms of 2-clause BSD license PV = '0.2.1'
d = DiGraph(loops=True, multiedges=True, sparse=True) d.add_edges([(0, 0, 'a'), (0, 0, 'b'), (0, 1, 'c'), (0, 1, 'd'), (0, 1, 'e'), (0, 1, 'f'), (0, 1, 'f'), (2, 1, 'g'), (2, 2, 'h')]) GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed') GP.set_edges(edge_style='solid') GP.set_edges(edge_color='black') sphinx_plot(GP)
class Pessoa: def __init__(self, nome): self.nome = nome @classmethod def outro_contrutor(cls, nome, sobrenome): cls.sobrenome = sobrenome return cls(nome) p = Pessoa('samuel') print(p.nome) p = Pessoa.outro_contrutor('saulo', 'nunes') print(p.sobrenome)
#!/usr/bin/python3 """ Main module for demo """ if __name__ == "__main__": pass
"""Exceptions for OpenZWave MQTT.""" class BaseOZWError(Exception): """Base OpenZWave MQTT exception.""" class NotFoundError(BaseOZWError): """Exception that is raised when an entity can't be found.""" class NotSupportedError(BaseOZWError): """Exception that is raised when an action isn't supported.""" class WrongTypeError(NotSupportedError): """Exception that is raised when an input is the wrong type.""" class InvalidValueError(NotSupportedError): """Exception that is raised when an input value is invalid."""
# Crie uma função que recebe como parâmetro 3 inteiros e retorna a soma dos 3. def s(a, b, c): soma = a + b + c print(soma) a = int(input('digite o numero: ')) b = int(input('digite o mnumero: ')) c = int(input('digite um numero: ')) s(a, b, c)
while True: print('-=-' * 6) n=float(input('Digite um valor (negativo para sair do programa): ')) if n<0: break print('-=-'*6) for c in range(1,11): print('\033[35m{:.0f} x {} = {:.0f}\033[m'.format(n,c,n*c)) print('\033[33mPrograma encerrado. Volte sempre!')
""" PASSENGERS """ numPassengers = 31043 passenger_arriving = ( (10, 4, 10, 7, 4, 5, 6, 5, 3, 4, 0, 0, 0, 5, 15, 5, 4, 4, 3, 0, 2, 3, 4, 1, 0, 0), # 0 (2, 10, 11, 8, 5, 3, 3, 2, 5, 2, 0, 0, 0, 9, 10, 2, 5, 6, 4, 3, 5, 2, 8, 1, 0, 0), # 1 (1, 9, 6, 9, 8, 5, 5, 4, 1, 1, 2, 2, 0, 10, 4, 8, 11, 12, 5, 4, 2, 4, 4, 2, 4, 0), # 2 (7, 14, 5, 7, 6, 4, 0, 4, 3, 1, 3, 1, 0, 6, 8, 10, 5, 9, 7, 4, 3, 1, 0, 0, 2, 0), # 3 (11, 11, 13, 8, 7, 2, 5, 3, 3, 2, 4, 0, 0, 9, 3, 2, 9, 5, 5, 4, 3, 4, 2, 5, 0, 0), # 4 (10, 10, 5, 8, 9, 8, 3, 7, 6, 0, 5, 1, 0, 8, 16, 7, 3, 8, 5, 5, 1, 3, 5, 1, 0, 0), # 5 (13, 11, 8, 7, 8, 5, 8, 5, 7, 3, 1, 2, 0, 7, 9, 10, 9, 5, 8, 1, 1, 3, 1, 2, 1, 0), # 6 (14, 9, 7, 6, 6, 1, 5, 6, 7, 3, 2, 1, 0, 12, 12, 8, 2, 11, 6, 4, 1, 4, 1, 2, 1, 0), # 7 (12, 15, 7, 13, 10, 8, 4, 2, 2, 2, 2, 3, 0, 17, 10, 11, 9, 9, 1, 8, 2, 4, 6, 0, 2, 0), # 8 (6, 18, 9, 20, 8, 2, 8, 3, 2, 1, 0, 1, 0, 11, 14, 11, 9, 12, 9, 4, 3, 8, 7, 2, 1, 0), # 9 (18, 16, 13, 13, 6, 4, 7, 4, 7, 3, 1, 0, 0, 16, 7, 13, 6, 8, 8, 4, 3, 5, 6, 6, 1, 0), # 10 (13, 12, 13, 14, 9, 5, 4, 6, 7, 4, 2, 1, 0, 13, 16, 8, 8, 10, 8, 7, 5, 5, 2, 0, 2, 0), # 11 (15, 18, 13, 13, 12, 3, 8, 7, 3, 5, 3, 0, 0, 10, 13, 7, 11, 12, 10, 5, 4, 4, 2, 1, 3, 0), # 12 (12, 11, 10, 14, 7, 11, 5, 4, 6, 9, 2, 0, 0, 12, 13, 10, 8, 13, 11, 8, 3, 6, 3, 2, 1, 0), # 13 (15, 15, 21, 13, 12, 5, 6, 8, 5, 1, 3, 1, 0, 20, 11, 9, 7, 17, 7, 6, 7, 5, 5, 2, 1, 0), # 14 (19, 14, 10, 17, 10, 5, 9, 4, 10, 3, 1, 2, 0, 18, 19, 8, 10, 15, 3, 7, 5, 4, 1, 2, 1, 0), # 15 (11, 11, 13, 11, 11, 4, 1, 8, 7, 3, 2, 1, 0, 10, 16, 8, 6, 11, 10, 2, 4, 5, 10, 3, 0, 0), # 16 (10, 11, 8, 11, 11, 4, 5, 6, 4, 4, 3, 1, 0, 29, 14, 9, 5, 11, 3, 7, 5, 4, 6, 1, 1, 0), # 17 (13, 9, 13, 15, 5, 9, 8, 5, 5, 4, 0, 1, 0, 19, 18, 9, 9, 9, 12, 8, 6, 4, 3, 5, 1, 0), # 18 (22, 22, 14, 12, 16, 6, 9, 5, 9, 5, 2, 1, 0, 14, 20, 11, 18, 18, 2, 4, 5, 7, 2, 3, 2, 0), # 19 (14, 11, 13, 12, 12, 4, 2, 4, 6, 2, 2, 3, 0, 13, 16, 14, 5, 7, 10, 5, 4, 7, 2, 5, 1, 0), # 20 (13, 26, 17, 12, 19, 5, 5, 5, 6, 8, 4, 2, 0, 16, 16, 14, 13, 12, 8, 4, 9, 4, 7, 2, 5, 0), # 21 (8, 20, 15, 4, 10, 6, 6, 4, 10, 4, 0, 0, 0, 18, 11, 12, 7, 12, 8, 9, 2, 5, 6, 3, 1, 0), # 22 (17, 21, 17, 13, 15, 5, 10, 5, 8, 3, 2, 0, 0, 17, 11, 14, 4, 14, 8, 8, 2, 7, 2, 3, 2, 0), # 23 (23, 14, 9, 14, 14, 8, 7, 7, 6, 2, 2, 1, 0, 14, 22, 9, 10, 13, 8, 4, 4, 5, 9, 1, 0, 0), # 24 (20, 12, 12, 18, 9, 5, 12, 6, 8, 1, 3, 2, 0, 18, 14, 4, 5, 10, 13, 1, 5, 7, 7, 2, 1, 0), # 25 (15, 16, 11, 15, 12, 5, 1, 5, 9, 1, 0, 0, 0, 19, 16, 7, 13, 15, 10, 7, 7, 4, 1, 1, 0, 0), # 26 (23, 16, 11, 15, 15, 4, 7, 7, 5, 4, 3, 2, 0, 13, 18, 13, 17, 11, 9, 6, 3, 5, 3, 3, 1, 0), # 27 (19, 18, 17, 18, 12, 5, 3, 5, 9, 4, 2, 0, 0, 10, 11, 13, 11, 10, 9, 10, 3, 7, 6, 3, 2, 0), # 28 (16, 11, 16, 12, 12, 8, 8, 6, 5, 4, 3, 3, 0, 9, 10, 9, 16, 12, 13, 9, 3, 7, 8, 1, 3, 0), # 29 (12, 11, 14, 17, 13, 6, 6, 6, 5, 9, 5, 2, 0, 16, 19, 12, 13, 11, 7, 2, 6, 8, 3, 2, 2, 0), # 30 (14, 23, 17, 13, 20, 6, 6, 9, 6, 3, 1, 1, 0, 19, 16, 8, 8, 10, 8, 5, 4, 9, 4, 2, 1, 0), # 31 (18, 14, 13, 14, 15, 5, 4, 6, 5, 0, 2, 3, 0, 20, 17, 7, 11, 13, 7, 5, 4, 10, 1, 6, 3, 0), # 32 (20, 22, 18, 11, 10, 1, 10, 3, 4, 8, 1, 4, 0, 25, 17, 10, 7, 10, 5, 10, 3, 9, 5, 2, 1, 0), # 33 (21, 14, 11, 19, 11, 10, 4, 10, 9, 4, 1, 1, 0, 16, 10, 20, 15, 20, 14, 9, 3, 4, 8, 3, 1, 0), # 34 (16, 22, 17, 10, 13, 3, 5, 7, 6, 4, 4, 1, 0, 18, 18, 14, 10, 14, 9, 3, 3, 10, 4, 0, 0, 0), # 35 (11, 11, 10, 17, 7, 4, 11, 5, 8, 3, 4, 1, 0, 15, 13, 18, 11, 9, 2, 8, 7, 7, 3, 4, 0, 0), # 36 (10, 24, 13, 15, 13, 4, 3, 9, 5, 5, 3, 1, 0, 13, 16, 12, 7, 12, 10, 6, 11, 12, 4, 3, 2, 0), # 37 (19, 17, 9, 11, 9, 4, 8, 4, 4, 3, 3, 1, 0, 16, 20, 16, 14, 11, 12, 3, 0, 4, 8, 3, 2, 0), # 38 (12, 18, 18, 22, 11, 3, 5, 7, 7, 4, 2, 0, 0, 13, 24, 14, 10, 13, 12, 5, 5, 6, 4, 5, 2, 0), # 39 (15, 18, 13, 16, 13, 5, 6, 7, 4, 1, 3, 2, 0, 18, 18, 10, 11, 9, 6, 12, 1, 9, 6, 4, 2, 0), # 40 (18, 16, 9, 8, 11, 5, 9, 7, 6, 3, 3, 1, 0, 17, 14, 14, 9, 13, 6, 8, 4, 8, 6, 3, 2, 0), # 41 (14, 12, 10, 14, 9, 4, 8, 7, 4, 3, 2, 0, 0, 13, 13, 9, 13, 8, 16, 4, 3, 4, 2, 2, 1, 0), # 42 (24, 16, 13, 12, 20, 8, 7, 5, 5, 3, 1, 2, 0, 18, 12, 8, 8, 13, 8, 5, 6, 9, 5, 3, 2, 0), # 43 (16, 12, 12, 14, 18, 5, 9, 8, 3, 3, 1, 2, 0, 12, 17, 10, 8, 19, 11, 8, 6, 7, 3, 4, 2, 0), # 44 (11, 18, 14, 22, 13, 4, 11, 4, 8, 1, 3, 1, 0, 19, 13, 12, 14, 14, 3, 6, 5, 6, 4, 1, 3, 0), # 45 (21, 10, 14, 15, 7, 5, 6, 5, 10, 4, 0, 5, 0, 22, 14, 12, 10, 16, 9, 7, 3, 6, 6, 2, 1, 0), # 46 (14, 22, 14, 19, 15, 3, 9, 7, 5, 3, 0, 0, 0, 12, 21, 11, 8, 11, 6, 6, 9, 10, 2, 2, 2, 0), # 47 (28, 15, 8, 15, 14, 6, 5, 9, 12, 1, 0, 1, 0, 11, 13, 6, 9, 16, 3, 6, 3, 6, 0, 2, 3, 0), # 48 (10, 18, 17, 17, 14, 6, 6, 4, 5, 6, 1, 1, 0, 18, 15, 11, 10, 12, 7, 7, 4, 4, 3, 1, 0, 0), # 49 (13, 14, 8, 20, 13, 12, 6, 5, 3, 5, 5, 0, 0, 16, 14, 11, 5, 17, 7, 7, 5, 6, 5, 5, 1, 0), # 50 (19, 17, 22, 27, 16, 4, 2, 3, 7, 4, 1, 1, 0, 19, 10, 10, 9, 11, 10, 6, 2, 5, 6, 5, 1, 0), # 51 (12, 12, 19, 11, 9, 8, 7, 7, 8, 1, 1, 3, 0, 17, 18, 9, 6, 13, 8, 5, 4, 13, 3, 2, 1, 0), # 52 (10, 15, 13, 11, 13, 5, 5, 7, 4, 2, 1, 2, 0, 15, 15, 6, 6, 16, 4, 5, 6, 6, 4, 1, 3, 0), # 53 (24, 20, 16, 13, 5, 10, 8, 11, 2, 1, 2, 0, 0, 19, 18, 13, 7, 17, 11, 7, 5, 4, 3, 0, 0, 0), # 54 (18, 18, 14, 17, 11, 6, 6, 3, 5, 4, 0, 0, 0, 11, 19, 10, 5, 13, 10, 5, 4, 6, 5, 1, 2, 0), # 55 (20, 13, 14, 20, 15, 7, 7, 2, 7, 7, 3, 0, 0, 16, 19, 11, 6, 15, 11, 4, 4, 7, 8, 4, 1, 0), # 56 (16, 13, 20, 10, 6, 8, 3, 6, 7, 1, 1, 1, 0, 19, 17, 10, 9, 14, 4, 6, 5, 9, 6, 2, 2, 0), # 57 (19, 15, 10, 20, 8, 7, 6, 9, 3, 7, 3, 0, 0, 18, 15, 6, 8, 13, 5, 7, 4, 5, 3, 7, 4, 0), # 58 (14, 10, 13, 20, 15, 5, 4, 6, 2, 1, 2, 0, 0, 20, 13, 14, 9, 16, 7, 6, 1, 9, 2, 2, 2, 0), # 59 (13, 14, 7, 15, 9, 6, 5, 5, 3, 2, 2, 3, 0, 17, 16, 11, 2, 14, 5, 10, 4, 6, 6, 1, 1, 0), # 60 (16, 16, 13, 13, 11, 9, 6, 2, 8, 3, 2, 0, 0, 18, 9, 7, 12, 18, 6, 6, 3, 6, 5, 4, 2, 0), # 61 (15, 15, 15, 6, 10, 8, 5, 4, 5, 2, 2, 3, 0, 21, 14, 7, 8, 15, 14, 5, 3, 4, 8, 3, 2, 0), # 62 (16, 8, 23, 17, 10, 5, 4, 12, 9, 2, 2, 0, 0, 13, 21, 15, 9, 19, 4, 8, 7, 3, 5, 3, 1, 0), # 63 (18, 13, 22, 10, 6, 5, 4, 4, 3, 4, 2, 2, 0, 16, 16, 9, 5, 12, 6, 7, 6, 7, 6, 3, 1, 0), # 64 (15, 14, 15, 14, 16, 6, 9, 4, 5, 2, 6, 2, 0, 16, 9, 20, 7, 14, 8, 5, 4, 7, 8, 2, 1, 0), # 65 (19, 14, 22, 15, 14, 7, 7, 6, 8, 4, 3, 1, 0, 21, 20, 11, 8, 13, 4, 8, 5, 5, 5, 4, 0, 0), # 66 (16, 17, 13, 15, 9, 6, 3, 8, 6, 1, 6, 0, 0, 16, 21, 16, 11, 13, 6, 10, 5, 8, 3, 1, 2, 0), # 67 (20, 13, 13, 17, 12, 4, 7, 9, 6, 4, 4, 6, 0, 17, 14, 7, 7, 10, 10, 6, 2, 7, 2, 4, 1, 0), # 68 (15, 21, 13, 18, 11, 10, 5, 3, 5, 4, 2, 2, 0, 16, 12, 7, 15, 15, 4, 10, 3, 5, 4, 4, 1, 0), # 69 (15, 13, 17, 8, 9, 7, 5, 2, 6, 1, 5, 0, 0, 20, 9, 14, 3, 17, 6, 10, 8, 3, 6, 1, 0, 0), # 70 (12, 16, 13, 17, 15, 11, 11, 4, 11, 6, 2, 0, 0, 15, 14, 7, 11, 10, 0, 7, 4, 6, 2, 3, 1, 0), # 71 (20, 14, 12, 15, 13, 4, 8, 5, 3, 4, 1, 3, 0, 14, 16, 15, 13, 7, 6, 12, 8, 10, 10, 3, 0, 0), # 72 (17, 16, 16, 15, 16, 8, 6, 4, 4, 3, 4, 1, 0, 21, 16, 12, 14, 19, 7, 3, 7, 6, 5, 0, 1, 0), # 73 (17, 12, 15, 12, 12, 6, 6, 6, 6, 2, 2, 0, 0, 12, 17, 10, 9, 15, 5, 2, 7, 8, 8, 3, 2, 0), # 74 (13, 10, 14, 16, 12, 10, 7, 2, 8, 2, 3, 1, 0, 20, 8, 11, 11, 14, 4, 7, 3, 5, 1, 4, 0, 0), # 75 (19, 22, 10, 17, 7, 6, 10, 5, 6, 2, 4, 1, 0, 11, 16, 11, 4, 13, 7, 8, 3, 10, 1, 5, 3, 0), # 76 (9, 16, 18, 8, 7, 8, 4, 5, 2, 2, 5, 2, 0, 19, 16, 14, 10, 17, 7, 9, 2, 4, 5, 2, 0, 0), # 77 (16, 21, 13, 7, 13, 9, 8, 4, 4, 2, 5, 0, 0, 15, 20, 13, 5, 11, 16, 7, 3, 5, 6, 3, 1, 0), # 78 (18, 10, 14, 11, 10, 8, 11, 3, 12, 1, 2, 2, 0, 16, 12, 10, 8, 9, 8, 7, 4, 7, 4, 2, 1, 0), # 79 (14, 19, 9, 16, 19, 7, 6, 8, 8, 1, 5, 1, 0, 13, 14, 5, 5, 11, 6, 3, 5, 6, 6, 2, 3, 0), # 80 (11, 13, 10, 10, 18, 4, 4, 2, 3, 1, 1, 1, 0, 13, 2, 13, 7, 11, 4, 6, 3, 3, 4, 4, 3, 0), # 81 (16, 17, 11, 12, 11, 6, 6, 4, 7, 2, 5, 0, 0, 15, 14, 14, 19, 14, 2, 5, 1, 7, 3, 4, 1, 0), # 82 (15, 13, 15, 23, 10, 6, 3, 4, 3, 0, 1, 3, 0, 14, 18, 11, 8, 11, 11, 6, 1, 10, 3, 2, 0, 0), # 83 (17, 11, 14, 17, 16, 4, 5, 4, 5, 3, 1, 0, 0, 17, 15, 13, 6, 9, 5, 2, 1, 4, 6, 1, 0, 0), # 84 (18, 14, 16, 11, 10, 4, 4, 4, 6, 2, 2, 1, 0, 14, 11, 9, 4, 9, 8, 7, 3, 9, 2, 5, 0, 0), # 85 (13, 19, 11, 15, 9, 6, 8, 4, 5, 4, 1, 4, 0, 11, 19, 8, 5, 13, 4, 8, 7, 9, 2, 3, 2, 0), # 86 (10, 11, 13, 17, 12, 5, 9, 4, 10, 4, 3, 0, 0, 17, 15, 10, 9, 9, 10, 7, 3, 8, 6, 1, 1, 0), # 87 (18, 12, 15, 16, 7, 5, 1, 2, 8, 2, 3, 4, 0, 18, 18, 9, 3, 18, 8, 8, 1, 8, 3, 5, 0, 0), # 88 (21, 15, 17, 14, 14, 5, 5, 8, 6, 2, 0, 2, 0, 15, 12, 8, 12, 15, 3, 5, 2, 5, 4, 4, 2, 0), # 89 (18, 13, 15, 9, 10, 8, 4, 7, 5, 4, 3, 0, 0, 14, 8, 11, 5, 11, 9, 4, 2, 4, 8, 5, 2, 0), # 90 (16, 12, 12, 20, 10, 6, 6, 4, 1, 2, 2, 2, 0, 17, 11, 5, 9, 12, 8, 5, 3, 4, 5, 1, 0, 0), # 91 (22, 16, 9, 14, 7, 4, 5, 4, 10, 3, 2, 1, 0, 12, 9, 10, 12, 11, 10, 3, 4, 3, 5, 2, 1, 0), # 92 (19, 13, 20, 11, 12, 6, 8, 8, 12, 1, 1, 0, 0, 18, 17, 6, 3, 11, 5, 7, 2, 9, 6, 2, 2, 0), # 93 (19, 15, 11, 21, 8, 7, 4, 1, 6, 2, 2, 0, 0, 21, 14, 10, 6, 21, 6, 7, 3, 6, 3, 4, 0, 0), # 94 (15, 15, 12, 24, 14, 6, 8, 3, 10, 3, 3, 2, 0, 24, 12, 11, 7, 10, 7, 7, 5, 6, 4, 2, 0, 0), # 95 (13, 15, 14, 9, 18, 8, 4, 4, 6, 7, 2, 0, 0, 14, 11, 5, 9, 16, 11, 5, 6, 5, 4, 1, 3, 0), # 96 (12, 7, 15, 14, 18, 5, 4, 6, 7, 2, 6, 3, 0, 19, 16, 6, 6, 19, 2, 7, 4, 4, 8, 2, 2, 0), # 97 (11, 8, 8, 9, 9, 5, 3, 4, 6, 2, 2, 1, 0, 16, 19, 12, 5, 7, 11, 5, 6, 6, 3, 2, 1, 0), # 98 (10, 13, 11, 13, 14, 4, 4, 2, 10, 3, 1, 1, 0, 16, 14, 9, 6, 13, 3, 2, 3, 6, 5, 0, 0, 0), # 99 (20, 11, 10, 14, 12, 5, 7, 3, 7, 3, 4, 1, 0, 12, 10, 12, 1, 15, 4, 8, 6, 5, 7, 1, 2, 0), # 100 (11, 10, 11, 10, 15, 5, 5, 3, 7, 1, 1, 0, 0, 16, 12, 8, 10, 15, 9, 4, 5, 2, 4, 6, 2, 0), # 101 (12, 12, 13, 11, 11, 9, 6, 6, 6, 2, 3, 1, 0, 17, 12, 9, 9, 15, 6, 5, 5, 12, 6, 1, 0, 0), # 102 (16, 18, 12, 18, 8, 7, 2, 4, 9, 1, 1, 5, 0, 15, 17, 13, 4, 16, 2, 6, 4, 4, 3, 3, 3, 0), # 103 (17, 11, 12, 11, 13, 8, 6, 3, 5, 5, 3, 1, 0, 19, 5, 9, 6, 12, 9, 5, 5, 3, 10, 1, 0, 0), # 104 (13, 15, 12, 12, 11, 9, 4, 3, 4, 1, 4, 1, 0, 16, 17, 12, 2, 16, 6, 6, 3, 6, 7, 2, 0, 0), # 105 (11, 13, 12, 14, 7, 9, 7, 8, 7, 1, 2, 1, 0, 16, 11, 8, 5, 10, 7, 4, 4, 7, 1, 2, 1, 0), # 106 (11, 8, 11, 17, 16, 5, 6, 3, 7, 1, 2, 2, 0, 11, 13, 6, 4, 13, 6, 3, 2, 6, 10, 1, 1, 0), # 107 (17, 10, 9, 15, 15, 4, 5, 4, 12, 4, 2, 1, 0, 12, 14, 9, 7, 16, 3, 6, 4, 4, 1, 6, 1, 0), # 108 (26, 11, 14, 21, 13, 5, 5, 5, 3, 1, 5, 1, 0, 17, 10, 7, 6, 8, 8, 8, 3, 5, 2, 2, 1, 0), # 109 (14, 14, 21, 20, 21, 5, 1, 4, 2, 2, 1, 3, 0, 12, 14, 12, 9, 15, 3, 5, 3, 5, 5, 3, 0, 0), # 110 (19, 16, 19, 14, 14, 8, 2, 1, 7, 2, 2, 3, 0, 20, 10, 7, 9, 11, 6, 4, 4, 3, 5, 1, 1, 0), # 111 (20, 12, 10, 9, 15, 2, 6, 4, 8, 5, 2, 1, 0, 20, 8, 7, 8, 11, 8, 5, 3, 6, 8, 2, 2, 0), # 112 (11, 13, 17, 14, 16, 9, 6, 4, 7, 3, 2, 0, 0, 14, 16, 10, 6, 11, 7, 4, 2, 6, 2, 2, 2, 0), # 113 (13, 13, 13, 10, 13, 3, 3, 1, 4, 3, 5, 1, 0, 10, 15, 6, 9, 11, 1, 7, 3, 6, 3, 2, 0, 0), # 114 (10, 14, 17, 12, 14, 8, 5, 2, 5, 4, 1, 1, 0, 17, 10, 17, 9, 9, 10, 3, 5, 8, 3, 2, 0, 0), # 115 (14, 7, 14, 14, 17, 8, 5, 6, 3, 3, 1, 0, 0, 10, 11, 10, 8, 15, 6, 5, 7, 9, 6, 3, 1, 0), # 116 (11, 15, 15, 12, 13, 5, 3, 5, 7, 2, 1, 1, 0, 18, 8, 15, 11, 7, 8, 1, 4, 6, 5, 2, 1, 0), # 117 (17, 6, 15, 11, 12, 5, 5, 2, 5, 5, 2, 1, 0, 24, 7, 10, 6, 16, 2, 6, 9, 3, 4, 1, 1, 0), # 118 (17, 16, 17, 13, 7, 5, 4, 7, 4, 0, 3, 1, 0, 15, 10, 5, 7, 9, 1, 3, 5, 4, 3, 3, 1, 0), # 119 (11, 9, 14, 14, 15, 3, 3, 2, 6, 2, 1, 0, 0, 17, 11, 8, 9, 12, 9, 1, 1, 4, 6, 1, 2, 0), # 120 (12, 12, 14, 7, 14, 5, 3, 2, 7, 2, 2, 1, 0, 12, 11, 12, 7, 6, 4, 2, 0, 5, 5, 1, 0, 0), # 121 (11, 9, 14, 14, 15, 9, 9, 3, 6, 3, 0, 1, 0, 13, 7, 4, 6, 14, 6, 10, 4, 5, 6, 0, 0, 0), # 122 (8, 14, 19, 15, 17, 2, 1, 4, 5, 2, 2, 1, 0, 18, 11, 13, 11, 6, 10, 3, 4, 8, 2, 2, 0, 0), # 123 (14, 8, 12, 16, 8, 2, 5, 2, 6, 4, 1, 0, 0, 22, 11, 7, 8, 12, 9, 5, 4, 6, 0, 1, 0, 0), # 124 (17, 13, 10, 18, 10, 4, 9, 3, 5, 3, 0, 4, 0, 23, 12, 10, 7, 20, 9, 3, 7, 7, 6, 1, 0, 0), # 125 (12, 9, 9, 7, 10, 2, 6, 3, 6, 1, 2, 1, 0, 9, 16, 4, 10, 13, 2, 1, 5, 6, 2, 3, 0, 0), # 126 (14, 11, 6, 11, 15, 3, 5, 3, 8, 1, 2, 2, 0, 12, 9, 8, 7, 5, 7, 9, 5, 7, 4, 4, 1, 0), # 127 (13, 11, 13, 12, 14, 6, 5, 5, 3, 2, 1, 1, 0, 20, 12, 12, 6, 11, 13, 3, 6, 8, 1, 5, 2, 0), # 128 (18, 7, 12, 12, 13, 2, 3, 5, 7, 0, 1, 2, 0, 15, 11, 13, 12, 15, 6, 6, 1, 6, 4, 3, 1, 0), # 129 (8, 8, 12, 17, 11, 3, 7, 2, 2, 3, 0, 0, 0, 10, 7, 9, 10, 14, 6, 1, 3, 5, 4, 2, 1, 0), # 130 (13, 10, 17, 10, 9, 5, 4, 1, 4, 3, 2, 2, 0, 14, 10, 8, 11, 15, 7, 6, 3, 5, 2, 0, 0, 0), # 131 (22, 6, 13, 10, 11, 4, 9, 5, 10, 2, 3, 0, 0, 11, 15, 4, 7, 12, 13, 4, 2, 3, 5, 2, 2, 0), # 132 (8, 18, 15, 11, 13, 6, 4, 6, 11, 3, 0, 3, 0, 13, 13, 10, 11, 7, 7, 3, 5, 4, 2, 1, 0, 0), # 133 (14, 17, 10, 8, 11, 2, 8, 5, 7, 2, 3, 3, 0, 13, 8, 11, 8, 11, 4, 2, 3, 3, 3, 0, 1, 0), # 134 (7, 10, 11, 14, 7, 15, 7, 3, 3, 2, 0, 0, 0, 15, 6, 10, 4, 9, 3, 3, 6, 6, 6, 1, 1, 0), # 135 (13, 11, 9, 6, 10, 2, 0, 4, 4, 4, 2, 0, 0, 15, 9, 10, 7, 11, 3, 5, 1, 10, 1, 2, 0, 0), # 136 (15, 7, 11, 9, 10, 2, 2, 3, 4, 4, 1, 0, 0, 14, 14, 5, 3, 11, 6, 6, 4, 4, 5, 2, 2, 0), # 137 (6, 11, 14, 15, 9, 7, 4, 2, 0, 0, 3, 0, 0, 7, 12, 8, 8, 12, 3, 5, 4, 4, 1, 1, 1, 0), # 138 (10, 8, 13, 7, 11, 3, 4, 7, 5, 2, 3, 0, 0, 18, 13, 4, 8, 8, 3, 3, 3, 3, 6, 5, 2, 0), # 139 (14, 16, 13, 12, 13, 3, 0, 3, 6, 1, 2, 1, 0, 10, 7, 5, 7, 8, 5, 1, 3, 8, 5, 1, 1, 0), # 140 (14, 12, 18, 10, 12, 4, 2, 2, 7, 0, 1, 0, 0, 11, 4, 12, 7, 15, 6, 5, 1, 4, 5, 4, 2, 0), # 141 (11, 9, 14, 12, 6, 6, 2, 4, 8, 2, 4, 0, 0, 17, 12, 12, 5, 9, 8, 5, 2, 6, 9, 4, 0, 0), # 142 (15, 9, 10, 16, 7, 6, 7, 2, 2, 3, 2, 1, 0, 20, 11, 13, 9, 12, 7, 1, 10, 10, 3, 2, 2, 0), # 143 (17, 11, 7, 16, 14, 6, 4, 2, 6, 0, 1, 2, 0, 14, 12, 9, 7, 17, 5, 4, 2, 4, 5, 3, 0, 0), # 144 (12, 11, 12, 13, 8, 5, 5, 5, 6, 2, 1, 0, 0, 14, 11, 6, 9, 11, 7, 4, 4, 6, 5, 3, 1, 0), # 145 (9, 7, 9, 7, 6, 5, 4, 3, 6, 2, 1, 0, 0, 20, 8, 11, 12, 10, 5, 4, 5, 6, 4, 1, 1, 0), # 146 (14, 9, 10, 13, 8, 1, 4, 2, 7, 4, 1, 0, 0, 17, 15, 6, 6, 12, 5, 3, 4, 5, 3, 3, 0, 0), # 147 (12, 4, 8, 16, 10, 4, 5, 4, 5, 1, 1, 1, 0, 11, 7, 7, 6, 13, 3, 2, 3, 3, 3, 2, 2, 0), # 148 (13, 11, 17, 12, 8, 3, 5, 3, 4, 3, 4, 2, 0, 16, 8, 11, 4, 13, 4, 4, 3, 5, 3, 2, 1, 0), # 149 (10, 7, 19, 10, 8, 4, 7, 4, 6, 1, 3, 0, 0, 13, 10, 10, 8, 12, 5, 3, 4, 9, 3, 2, 0, 0), # 150 (16, 10, 7, 11, 11, 3, 5, 9, 3, 2, 2, 0, 0, 16, 5, 9, 6, 9, 2, 1, 1, 5, 6, 6, 0, 0), # 151 (11, 12, 6, 12, 9, 2, 3, 5, 5, 2, 1, 2, 0, 7, 9, 3, 4, 12, 6, 2, 4, 7, 5, 5, 0, 0), # 152 (11, 6, 10, 9, 8, 3, 3, 3, 7, 4, 1, 0, 0, 11, 14, 2, 11, 12, 4, 4, 8, 5, 4, 1, 0, 0), # 153 (14, 11, 7, 12, 12, 5, 7, 8, 7, 3, 2, 1, 0, 9, 15, 14, 4, 2, 7, 4, 6, 1, 5, 6, 2, 0), # 154 (11, 9, 10, 9, 14, 8, 5, 3, 3, 1, 1, 1, 0, 15, 11, 3, 6, 10, 4, 6, 3, 5, 6, 2, 0, 0), # 155 (14, 7, 14, 15, 8, 9, 5, 2, 5, 1, 4, 2, 0, 7, 10, 8, 3, 10, 5, 5, 4, 1, 5, 0, 1, 0), # 156 (10, 11, 13, 14, 6, 13, 3, 1, 7, 3, 0, 2, 0, 15, 10, 13, 5, 18, 5, 4, 2, 7, 4, 8, 1, 0), # 157 (14, 9, 7, 12, 7, 7, 3, 4, 7, 3, 3, 1, 0, 16, 11, 5, 4, 11, 8, 2, 3, 5, 9, 2, 0, 0), # 158 (11, 10, 9, 13, 14, 4, 3, 2, 2, 5, 0, 0, 0, 19, 6, 5, 5, 10, 5, 3, 2, 6, 7, 4, 2, 0), # 159 (8, 6, 11, 10, 13, 7, 3, 5, 6, 4, 0, 1, 0, 13, 10, 2, 3, 8, 8, 5, 4, 6, 2, 6, 0, 0), # 160 (6, 8, 15, 12, 9, 8, 3, 3, 8, 2, 1, 1, 0, 15, 7, 11, 3, 14, 6, 3, 4, 6, 1, 3, 1, 0), # 161 (12, 9, 14, 5, 10, 2, 3, 6, 2, 2, 1, 1, 0, 5, 13, 11, 2, 9, 4, 4, 1, 5, 2, 0, 0, 0), # 162 (8, 7, 8, 18, 5, 4, 3, 5, 1, 1, 0, 2, 0, 14, 6, 9, 3, 8, 5, 3, 3, 3, 2, 3, 1, 0), # 163 (13, 11, 7, 7, 10, 3, 5, 5, 5, 1, 1, 0, 0, 3, 8, 7, 5, 11, 3, 1, 3, 6, 6, 1, 1, 0), # 164 (16, 16, 6, 15, 7, 3, 2, 3, 3, 1, 0, 3, 0, 14, 19, 7, 7, 10, 3, 1, 5, 3, 1, 1, 2, 0), # 165 (13, 6, 8, 13, 16, 2, 4, 9, 4, 0, 1, 0, 0, 8, 8, 4, 4, 7, 5, 2, 5, 5, 5, 1, 0, 0), # 166 (10, 10, 9, 6, 7, 2, 1, 2, 5, 2, 3, 1, 0, 10, 12, 12, 6, 3, 4, 4, 5, 5, 1, 1, 0, 0), # 167 (11, 6, 6, 10, 12, 2, 1, 4, 6, 2, 2, 2, 0, 14, 13, 7, 7, 10, 2, 3, 5, 7, 4, 0, 0, 0), # 168 (17, 3, 5, 9, 7, 4, 2, 2, 5, 2, 0, 0, 0, 16, 9, 7, 5, 11, 4, 0, 4, 5, 7, 0, 0, 0), # 169 (10, 8, 8, 11, 6, 4, 2, 3, 5, 3, 1, 1, 0, 8, 10, 3, 4, 12, 3, 5, 2, 1, 3, 2, 0, 0), # 170 (6, 4, 4, 4, 5, 4, 3, 2, 2, 0, 0, 1, 0, 7, 6, 6, 2, 9, 4, 2, 4, 5, 3, 1, 0, 0), # 171 (8, 6, 14, 3, 8, 6, 2, 2, 5, 0, 1, 1, 0, 12, 5, 4, 3, 10, 1, 2, 2, 0, 5, 2, 1, 0), # 172 (12, 7, 11, 8, 6, 6, 4, 1, 4, 1, 0, 0, 0, 9, 10, 5, 2, 11, 3, 3, 2, 5, 2, 0, 0, 0), # 173 (6, 6, 9, 5, 5, 3, 3, 0, 3, 2, 0, 0, 0, 9, 9, 2, 2, 11, 2, 6, 4, 7, 2, 2, 1, 0), # 174 (4, 6, 6, 4, 9, 3, 3, 1, 6, 1, 1, 0, 0, 7, 7, 7, 4, 9, 6, 0, 2, 4, 2, 2, 1, 0), # 175 (7, 4, 10, 6, 4, 3, 2, 1, 4, 0, 0, 0, 0, 7, 15, 5, 2, 6, 2, 4, 1, 4, 3, 4, 0, 0), # 176 (7, 1, 2, 4, 4, 0, 2, 2, 2, 0, 0, 0, 0, 9, 6, 2, 6, 3, 3, 2, 3, 2, 0, 2, 0, 0), # 177 (3, 2, 5, 3, 3, 0, 5, 3, 4, 0, 2, 0, 0, 3, 4, 5, 6, 4, 3, 5, 1, 2, 1, 5, 1, 0), # 178 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), # 179 ) station_arriving_intensity = ( (8.033384925394829, 8.840461695509067, 8.33805316738001, 9.943468438181492, 8.887496972175379, 5.021847891259743, 6.6336569845982645, 7.445081876767077, 9.744158499468812, 6.332824024835792, 6.728424262216965, 7.836664125289878, 8.134208340125381), # 0 (8.566923443231959, 9.424097110631614, 8.888554546128244, 10.600230805242587, 9.475984539958779, 5.353573734468089, 7.07115030602191, 7.9352219566491335, 10.387592522132655, 6.75036910764344, 7.172953817529811, 8.353946657302968, 8.671666635903767), # 1 (9.09875681436757, 10.005416273425567, 9.436867656875862, 11.254380327463672, 10.062340757999591, 5.683976183219912, 7.506909612737127, 8.423400396647072, 11.028458891004078, 7.166262040032874, 7.615717038042101, 8.869172243284888, 9.206983725135505), # 2 (9.6268124690345, 10.582112803098315, 9.980817390911767, 11.903322252051318, 10.644258681603043, 6.011744996136181, 7.939205826636729, 8.907681851991212, 11.664216257473749, 7.578852317481889, 8.054957458923813, 9.380297095888738, 9.738036490006762), # 3 (10.149017837465571, 11.15188031885724, 10.518228639524859, 12.544461826212112, 11.219431366074389, 6.335569931837869, 8.366309869613534, 9.386130977911865, 12.292323272932332, 7.986489435468286, 8.48891861534492, 9.885277427767623, 10.262701812703709), # 4 (10.663300349893618, 11.712412439909741, 11.04692629400403, 13.17520429715263, 11.785551866718848, 6.654140748945943, 8.786492663560358, 9.856812429639348, 12.910238588770495, 8.387522889469862, 8.915844042475412, 10.382069451574637, 10.778856575412524), # 5 (11.167587436551466, 12.261402785463202, 11.564735245638186, 13.792954912079445, 12.34031323884167, 6.9661472060813825, 9.19802513037002, 10.317790862403982, 13.515420856378904, 8.780302174964413, 9.333977275485251, 10.868629379962893, 11.284377660319372), # 6 (11.65980652767195, 12.79654497472501, 12.069480385716217, 14.39511891819914, 12.881408537748086, 7.270279061865153, 9.599178191935335, 10.767130931436084, 14.105328727148231, 9.16317678742974, 9.74156184954443, 11.342913425585486, 11.777141949610431), # 7 (12.137885053487896, 13.31553262690256, 12.558986605527034, 14.979101562718284, 13.406530818743338, 7.565226074918224, 9.988222770149116, 11.20289729196596, 14.67742085246913, 9.53449622234364, 10.136841299822914, 11.802877801095525, 12.255026325471867), # 8 (12.599750444232136, 13.816059361203237, 13.031078796359527, 15.54230809284347, 13.913373137132655, 7.849678003861574, 10.363429786904192, 11.623154599223941, 15.229155883732279, 9.892609975183907, 10.518059161490685, 12.246478719146102, 12.71590767008986), # 9 (13.043330130137491, 14.295818796834425, 13.483581849502599, 16.08214375578126, 14.399628548221282, 8.122324607316171, 10.723070164093368, 12.025967508440338, 15.757992472328343, 10.235867541428343, 10.883458969717719, 12.671672392390324, 13.157662865650577), # 10 (13.466551541436809, 14.752504553003531, 13.914320656245145, 16.596013798738237, 14.862990107314454, 8.38185564390299, 11.065414823609466, 12.409400674845465, 16.26138926964799, 10.56261841655475, 11.231284259673998, 13.076415033481297, 13.57816879434018), # 11 (13.8673421083629, 15.183810248917917, 14.321120107876064, 17.08132346892098, 15.301150869717404, 8.626960872242991, 11.388734687345298, 12.771518753669634, 16.736804927081888, 10.871212096040916, 11.559778566529495, 13.45866285507211, 13.975302338344855), # 12 (14.243629261148602, 15.587429503784993, 14.701805095684259, 17.53547801353607, 15.711803890735363, 8.856330050957158, 11.69130067719369, 13.11038640014317, 17.181698096020693, 11.159998075364648, 11.86718542545419, 13.816372069815873, 14.346940379850777), # 13 (14.593340430026746, 15.961055936812143, 15.054200510958635, 17.95588267979007, 16.092642225673583, 9.068652938666455, 11.971383715047459, 13.424068269496395, 17.593527427855076, 11.427325850003735, 12.151748371618055, 14.147498890365696, 14.690959801044102), # 14 (14.914403045230168, 16.30238316720675, 15.376131244988068, 18.339942714889578, 16.441358929837293, 9.26261929399186, 12.227254722799401, 13.71062901695961, 17.96975157397571, 11.671544915435986, 12.411710940191071, 14.449999529374674, 15.00523748411101), # 15 (15.204744536991681, 16.609104814176213, 15.66542218906148, 18.685063366041145, 16.755647058531732, 9.436918875554335, 12.457184622342362, 13.968133297763139, 18.307829185773258, 11.891004767139194, 12.64531666634322, 14.721830199495905, 15.287650311237673), # 16 (15.46229233554412, 16.878914496927916, 15.919898234467764, 18.98864988045138, 17.033199667062142, 9.590241441974857, 12.659444335569138, 14.19464576713731, 18.605218914638375, 12.084054900591148, 12.850809085244478, 14.960947113382488, 15.536075164610265), # 17 (15.684973871120327, 17.10950583466924, 16.137384272495808, 19.248107505326846, 17.271709810733743, 9.721276751874406, 12.832304784372562, 14.388231080312417, 18.859379411961754, 12.249044811269659, 13.026431732064815, 15.165306483687544, 15.748388926414954), # 18 (15.870716573953118, 17.29857244660759, 16.315705194434525, 19.460841487874106, 17.468870544851786, 9.828714563873934, 12.974036890645431, 14.546953892518793, 19.067769329134048, 12.384323994652526, 13.170428141974206, 15.332864523064154, 15.922468478837914), # 19 (16.01744787427533, 17.44380795195034, 16.452685891572806, 19.624257075299766, 17.62237492472151, 9.91124463659443, 13.08291157628058, 14.668878858986748, 19.22784731754592, 12.488241946217535, 13.28104185014264, 15.461577444165426, 16.05619070406532), # 20 (16.123095202319785, 17.542905969904893, 16.54615125519955, 19.73575951481038, 17.729916005648143, 9.967556728656858, 13.157199763170816, 14.752070634946598, 19.337072028588036, 12.559148161442488, 13.356516391740096, 15.54940145964447, 16.147432484283325), # 21 (16.18558598831933, 17.59356011967863, 16.593926176603656, 19.79275405361254, 17.78918684293692, 9.996340598682188, 13.19517237320896, 14.794593875628664, 19.392902113651065, 12.595392135805188, 13.395095301936545, 15.594292782154383, 16.194070701678125), # 22 (16.208629381348224, 17.599557750342935, 16.599877091906723, 19.799889300411525, 17.804371289652156, 10.0, 13.199686403614942, 14.79919012345679, 19.399881975308645, 12.599667636031093, 13.399932859458785, 15.599836122542294, 16.2), # 23 (16.225619860854646, 17.59605925925926, 16.598903703703705, 19.799011111111113, 17.812972181783763, 10.0, 13.197206100217867, 14.7928, 19.398946666666667, 12.59704098765432, 13.39939932659933, 15.598538271604937, 16.2), # 24 (16.242251568338528, 17.589163237311386, 16.59698216735254, 19.797273662551444, 17.821383912951205, 10.0, 13.192318244170096, 14.78024691358025, 19.3970987654321, 12.591870141746686, 13.39834143908218, 15.595976223136716, 16.2), # 25 (16.258523230476854, 17.578975034293556, 16.594138820301787, 19.79469670781893, 17.82960618947377, 10.0, 13.185098749293955, 14.76176790123457, 19.39436197530864, 12.58424113397348, 13.396768774161368, 15.592185093735715, 16.2), # 26 (16.27443357394662, 17.5656, 16.5904, 19.7913, 17.837638717670742, 10.0, 13.175623529411766, 14.7376, 19.39076, 12.57424, 13.39469090909091, 15.587200000000003, 16.2), # 27 (16.2899813254248, 17.549143484224967, 16.585792043895747, 19.787103292181072, 17.845481203861443, 10.0, 13.163968498345842, 14.707980246913582, 19.386316543209876, 12.561952775491541, 13.39211742112483, 15.581056058527665, 16.2), # 28 (16.3051652115884, 17.52971083676269, 16.580341289437587, 19.78212633744856, 17.853133354365152, 10.0, 13.150209569918506, 14.673145679012345, 19.381055308641976, 12.547465496113398, 13.389057887517147, 15.57378838591678, 16.2), # 29 (16.319983959114396, 17.50740740740741, 16.574074074074073, 19.77638888888889, 17.860594875501178, 10.0, 13.13442265795207, 14.633333333333333, 19.375, 12.530864197530866, 13.385521885521886, 15.56543209876543, 16.2), # 30 (16.334436294679772, 17.482338545953365, 16.567016735253773, 19.76991069958848, 17.867865473588814, 10.0, 13.116683676268863, 14.588780246913581, 19.368174320987656, 12.512234915409238, 13.381518992393067, 15.556022313671699, 16.2), # 31 (16.34852094496153, 17.45460960219479, 16.55919561042524, 19.762711522633747, 17.874944854947355, 10.0, 13.097068538691198, 14.539723456790126, 19.360601975308644, 12.49166368541381, 13.377058785384712, 15.545594147233656, 16.2), # 32 (16.362236636636634, 17.424325925925924, 16.55063703703704, 19.75481111111111, 17.8818327258961, 10.0, 13.075653159041394, 14.486400000000001, 19.352306666666667, 12.469236543209878, 13.372150841750841, 15.534182716049381, 16.2), # 33 (16.375582096382097, 17.391592866941014, 16.541367352537723, 19.746229218106997, 17.888528792754347, 10.0, 13.052513451141776, 14.429046913580246, 19.343312098765438, 12.445039524462736, 13.36680473874548, 15.521823136716964, 16.2), # 34 (16.388556050874893, 17.356515775034293, 16.53141289437586, 19.736985596707818, 17.895032761841392, 10.0, 13.027725328814654, 14.367901234567903, 19.333641975308645, 12.419158664837678, 13.361030053622645, 15.508550525834478, 16.2), # 35 (16.40115722679201, 17.3192, 16.5208, 19.7271, 17.901344339476537, 10.0, 13.001364705882352, 14.303200000000002, 19.32332, 12.391680000000001, 13.354836363636364, 15.494400000000002, 16.2), # 36 (16.41338435081044, 17.27975089163237, 16.50955500685871, 19.71659218106996, 17.907463231979076, 10.0, 12.97350749616719, 14.23518024691358, 19.31236987654321, 12.362689565615, 13.348233246040657, 15.479406675811616, 16.2), # 37 (16.425236149607162, 17.238273799725654, 16.49770425240055, 19.70548189300412, 17.913389145668305, 10.0, 12.944229613491487, 14.164079012345681, 19.300815308641976, 12.332273397347967, 13.341230278089538, 15.4636056698674, 16.2), # 38 (16.436711349859177, 17.194874074074075, 16.485274074074077, 19.69378888888889, 17.919121786863524, 10.0, 12.913606971677561, 14.090133333333334, 19.288680000000003, 12.300517530864198, 13.333837037037037, 15.447032098765431, 16.2), # 39 (16.44780867824346, 17.149657064471878, 16.472290809327845, 19.6815329218107, 17.924660861884032, 10.0, 12.88171548454773, 14.013580246913584, 19.27598765432099, 12.267508001828991, 13.326063100137175, 15.429721079103798, 16.2), # 40 (16.458526861437004, 17.102728120713305, 16.458780795610426, 19.66873374485597, 17.930006077049125, 10.0, 12.848631065924312, 13.934656790123459, 19.262761975308642, 12.233330845907636, 13.317918044643973, 15.411707727480568, 16.2), # 41 (16.4688646261168, 17.054192592592596, 16.444770370370374, 19.655411111111114, 17.935157138678093, 10.0, 12.814429629629629, 13.8536, 19.24902666666667, 12.198072098765433, 13.30941144781145, 15.393027160493828, 16.2), # 42 (16.47882069895983, 17.00415582990398, 16.430285871056242, 19.641584773662554, 17.940113753090245, 10.0, 12.779187089486001, 13.770646913580249, 19.234805432098767, 12.161817796067673, 13.300552886893627, 15.373714494741657, 16.2), # 43 (16.488393806643085, 16.9527231824417, 16.4153536351166, 19.62727448559671, 17.944875626604873, 10.0, 12.742979359315743, 13.686034567901238, 19.220121975308643, 12.124653973479653, 13.291351939144532, 15.353804846822133, 16.2), # 44 (16.497582675843546, 16.900000000000002, 16.400000000000002, 19.6125, 17.949442465541274, 10.0, 12.705882352941178, 13.600000000000001, 19.205, 12.086666666666668, 13.281818181818181, 15.333333333333332, 16.2), # 45 (16.50638603323821, 16.846091632373113, 16.384251303155008, 19.59728106995885, 17.953813976218747, 10.0, 12.667971984184621, 13.512780246913582, 19.189463209876543, 12.04794191129401, 13.271961192168598, 15.312335070873344, 16.2), # 46 (16.514802605504055, 16.79110342935528, 16.36813388203018, 19.581637448559672, 17.957989864956588, 10.0, 12.629324166868395, 13.424612345679012, 19.173535308641977, 12.008565743026978, 13.261790547449806, 15.29084517604024, 16.2), # 47 (16.522831119318074, 16.735140740740743, 16.351674074074076, 19.565588888888893, 17.961969838074097, 10.0, 12.590014814814815, 13.335733333333335, 19.15724, 11.968624197530865, 13.251315824915824, 15.268898765432098, 16.2), # 48 (16.53047030135726, 16.67830891632373, 16.334898216735255, 19.549155144032923, 17.965753601890572, 10.0, 12.550119841846204, 13.246380246913581, 19.14060098765432, 11.928203310470966, 13.240546601820677, 15.246530955647007, 16.2), # 49 (16.537718878298588, 16.620713305898494, 16.31783264746228, 19.53235596707819, 17.969340862725304, 10.0, 12.50971516178488, 13.15679012345679, 19.12364197530864, 11.887389117512575, 13.22949245541838, 15.223776863283039, 16.2), # 50 (16.544575576819057, 16.56245925925926, 16.300503703703704, 19.515211111111114, 17.9727313268976, 10.0, 12.46887668845316, 13.0672, 19.10638666666667, 11.846267654320988, 13.218162962962964, 15.200671604938274, 16.2), # 51 (16.551039123595647, 16.503652126200276, 16.282937722908095, 19.497740329218107, 17.975924700726743, 10.0, 12.427680335673365, 12.977846913580246, 19.0888587654321, 11.8049249565615, 13.206567701708444, 15.177250297210794, 16.2), # 52 (16.55710824530535, 16.444397256515778, 16.26516104252401, 19.479963374485596, 17.978920690532046, 10.0, 12.386202017267813, 12.888967901234569, 19.071081975308644, 11.763447059899406, 13.194716248908842, 15.153548056698675, 16.2), # 53 (16.562781668625146, 16.384800000000002, 16.2472, 19.4619, 17.981719002632804, 10.0, 12.344517647058824, 12.800799999999999, 19.05308, 11.72192, 13.18261818181818, 15.1296, 16.2), # 54 (16.568058120232035, 16.324965706447188, 16.229080932784637, 19.443569958847736, 17.984319343348304, 10.0, 12.302703138868717, 12.71358024691358, 19.034876543209876, 11.68042981252858, 13.170283077690485, 15.10544124371285, 16.2), # 55 (16.572936326802996, 16.264999725651577, 16.210830178326475, 19.424993004115226, 17.986721418997856, 10.0, 12.26083440651981, 12.627545679012346, 19.016495308641975, 11.639062533150437, 13.157720513779774, 15.0811069044353, 16.2), # 56 (16.577415015015013, 16.205007407407408, 16.192474074074077, 19.40618888888889, 17.988924935900748, 10.0, 12.218987363834422, 12.542933333333336, 18.997960000000003, 11.597904197530866, 13.144940067340068, 15.056632098765432, 16.2), # 57 (16.581492911545087, 16.145094101508917, 16.174038957475997, 19.387177366255145, 17.99092960037628, 10.0, 12.177237924634875, 12.459980246913581, 18.979294320987655, 11.557040841335164, 13.131951315625393, 15.032051943301326, 16.2), # 58 (16.585168743070195, 16.085365157750342, 16.155551165980796, 19.367978189300413, 17.992735118743752, 10.0, 12.135662002743485, 12.378923456790124, 18.960521975308644, 11.516558500228626, 13.11876383588976, 15.007401554641062, 16.2), # 59 (16.588441236267325, 16.02592592592593, 16.137037037037036, 19.34861111111111, 17.99434119732246, 10.0, 12.094335511982571, 12.3, 18.94166666666667, 11.476543209876544, 13.105387205387206, 14.982716049382717, 16.2), # 60 (16.591309117813463, 15.966881755829906, 16.11852290809328, 19.329095884773665, 17.995747542431697, 10.0, 12.053334366174454, 12.223446913580247, 18.922752098765432, 11.437081005944217, 13.091831001371743, 14.958030544124373, 16.2), # 61 (16.593771114385607, 15.908337997256517, 16.100035116598082, 19.30945226337449, 17.996953860390775, 10.0, 12.01273447914145, 12.149501234567902, 18.903801975308642, 11.398257924096939, 13.078104801097394, 14.933380155464107, 16.2), # 62 (16.595825952660736, 15.8504, 16.0816, 19.289700000000003, 17.99795985751897, 10.0, 11.972611764705881, 12.078400000000002, 18.88484, 11.36016, 13.064218181818184, 14.9088, 16.2), # 63 (16.597472359315837, 15.793173113854596, 16.0632438957476, 19.26985884773663, 17.998765240135597, 10.0, 11.933042136690068, 12.010380246913583, 18.86588987654321, 11.322873269318702, 13.050180720788127, 14.884325194330135, 16.2), # 64 (16.5987090610279, 15.73676268861454, 16.04499314128944, 19.249948559670784, 17.999369714559947, 10.0, 11.894101508916325, 11.945679012345678, 18.846975308641976, 11.286483767718336, 13.036001995261257, 14.859990855052581, 16.2), # 65 (16.599534784473914, 15.681274074074077, 16.026874074074076, 19.22998888888889, 17.999772987111317, 10.0, 11.855865795206972, 11.884533333333335, 18.828120000000002, 11.251077530864197, 13.021691582491583, 14.835832098765435, 16.2), # 66 (16.59994825633087, 15.626812620027435, 16.00891303155007, 19.209999588477366, 17.99997476410901, 10.0, 11.81841090938433, 11.827180246913583, 18.809347654320987, 11.216740594421584, 13.007259059733137, 14.811884042066758, 16.2), # 67 (16.59966658316932, 15.573197822912517, 15.991049519890261, 19.189826784755773, 17.999804728475752, 9.99981441853376, 11.781624311727434, 11.77335016003658, 18.790540557841794, 11.183392706635466, 12.992457581664603, 14.788048035039589, 16.19980024005487), # 68 (16.597026731078905, 15.51879283154122, 15.97278148148148, 19.168453623188405, 17.99825708061002, 9.998347325102882, 11.744429090154583, 11.720158024691358, 18.770876543209877, 11.150090225127087, 12.975780542264753, 14.76355035737492, 16.198217592592595), # 69 (16.59181726009423, 15.463347935749368, 15.954029492455417, 19.14573939881911, 17.995198902606308, 9.995458009449779, 11.706656215298192, 11.667123914037496, 18.750244627343395, 11.116671239140375, 12.957038218441728, 14.738276418068494, 16.195091735253776), # 70 (16.584111457028687, 15.406896269746449, 15.93480013717421, 19.12171760601181, 17.990668926006617, 9.991193293705228, 11.668322655262381, 11.61426538637403, 18.728675537265662, 11.083136574948224, 12.936299793254179, 14.712244699540344, 16.190463820301783), # 71 (16.573982608695655, 15.349470967741935, 15.915099999999999, 19.096421739130435, 17.98470588235294, 9.985600000000002, 11.62944537815126, 11.5616, 18.706200000000003, 11.04948705882353, 12.913634449760767, 14.685473684210528, 16.184375), # 72 (16.561504001908514, 15.291105163945307, 15.894935665294923, 19.069885292538917, 17.977348503187283, 9.978724950464867, 11.590041352068948, 11.50914531321445, 18.682848742569732, 11.01572351703919, 12.889111371020142, 14.65798185449907, 16.1768664266118), # 73 (16.546748923480646, 15.231831992566043, 15.874313717421124, 19.04214176060118, 17.96863552005164, 9.970614967230606, 11.550127545119556, 11.456918884316416, 18.658652491998172, 10.9818467758681, 12.86279974009097, 14.629787692826028, 16.167979252400553), # 74 (16.52979066022544, 15.171684587813619, 15.85324074074074, 19.01322463768116, 17.95860566448802, 9.961316872427986, 11.509720925407201, 11.404938271604939, 18.63364197530864, 10.947857661583152, 12.834768740031897, 14.600909681611435, 16.157754629629633), # 75 (16.510702498956285, 15.11069608389752, 15.831723319615913, 18.98316741814278, 17.94729766803841, 9.950877488187778, 11.468838461035993, 11.353221033379059, 18.607847919524463, 10.913757000457247, 12.805087553901586, 14.571366303275333, 16.146233710562413), # 76 (16.48955772648655, 15.048899615027217, 15.809768038408777, 18.95200359634997, 17.934750262244815, 9.939343636640757, 11.427497120110047, 11.301784727937816, 18.581301051668955, 10.87954561876328, 12.7738253647587, 14.54117604023777, 16.13345764746228), # 77 (16.46642962962963, 14.98632831541219, 15.787381481481482, 18.919766666666668, 17.92100217864924, 9.926762139917695, 11.38571387073348, 11.250646913580248, 18.55403209876543, 10.845224342774147, 12.741051355661883, 14.510357374918781, 16.119467592592596), # 78 (16.441391495198904, 14.923015319261916, 15.76457023319616, 18.88649012345679, 17.906092148793675, 9.913179820149367, 11.343505681010402, 11.199825148605397, 18.52607178783722, 10.810793998762742, 12.706834709669796, 14.478928789738408, 16.104304698216733), # 79 (16.414516610007755, 14.858993760785877, 15.74134087791495, 18.852207461084273, 17.890058904220126, 9.898643499466544, 11.30088951904493, 11.149336991312301, 18.497450845907636, 10.776255413001962, 12.671244609841102, 14.446908767116696, 16.08801011659808), # 80 (16.385878260869568, 14.79429677419355, 15.7177, 18.816952173913048, 17.872941176470587, 9.8832, 11.257882352941177, 11.099200000000002, 18.4682, 10.741609411764706, 12.63435023923445, 14.414315789473685, 16.070625), # 81 (16.355549734597723, 14.728957493694413, 15.693654183813445, 18.780757756307032, 17.854777697087066, 9.866896143880508, 11.214501150803258, 11.049431732967536, 18.43834997713763, 10.706856821323866, 12.596220780908501, 14.381168339229419, 16.052190500685874), # 82 (16.323604318005607, 14.663009053497943, 15.669210013717422, 18.743657702630166, 17.835607197611555, 9.849778753238837, 11.170762880735285, 11.000049748513947, 18.40793150434385, 10.671998467952339, 12.55692541792191, 14.34748489880394, 16.03274777091907), # 83 (16.290115297906603, 14.59648458781362, 15.644374074074074, 18.70568550724638, 17.815468409586057, 9.831894650205761, 11.126684510841374, 10.95107160493827, 18.376975308641974, 10.637035177923023, 12.516533333333333, 14.313283950617285, 16.012337962962963), # 84 (16.255155961114095, 14.529417230850923, 15.61915294924554, 18.666874664519593, 17.794400064552573, 9.813290656912057, 11.08228300922564, 10.902514860539554, 18.345512117055325, 10.60196777750881, 12.47511371020143, 14.2785839770895, 15.991002229080934), # 85 (16.21879959444146, 14.46184011681933, 15.593553223593966, 18.627258668813745, 17.772440894053094, 9.794013595488494, 11.037575343992193, 10.854397073616827, 18.313572656607228, 10.566797092982599, 12.432735731584856, 14.24340346064063, 15.968781721536352), # 86 (16.18111948470209, 14.393786379928315, 15.567581481481481, 18.586871014492754, 17.749629629629634, 9.774110288065843, 10.99257848324515, 10.806735802469136, 18.28118765432099, 10.531523950617284, 12.389468580542264, 14.207760883690709, 15.945717592592594), # 87 (16.142188918709373, 14.325289154387361, 15.541244307270233, 18.54574519592056, 17.726005002824177, 9.753627556774882, 10.947309395088626, 10.75954860539552, 18.248387837219937, 10.496149176685762, 12.345381440132318, 14.171674728659784, 15.921850994513035), # 88 (16.102081183276677, 14.256381574405948, 15.51454828532236, 18.503914707461085, 17.701605745178732, 9.732612223746381, 10.901785047626733, 10.712853040695016, 18.21520393232739, 10.460673597460932, 12.30054349341367, 14.135163477967897, 15.897223079561043), # 89 (16.06086956521739, 14.187096774193549, 15.4875, 18.461413043478263, 17.676470588235297, 9.711111111111112, 10.856022408963586, 10.666666666666666, 18.18166666666667, 10.425098039215687, 12.255023923444977, 14.098245614035088, 15.871875000000001), # 90 (16.0186273513449, 14.117467887959643, 15.460106035665294, 18.41827369833602, 17.650638263535864, 9.689171040999847, 10.810038447203299, 10.621007041609511, 18.14780676726109, 10.389423328222922, 12.208891913284896, 14.060939619281399, 15.845847908093276), # 91 (15.975427828472597, 14.047528049913716, 15.432372976680384, 18.374530166398284, 17.624147502622446, 9.666838835543363, 10.763850130449988, 10.57589172382259, 18.113654961133975, 10.353650290755535, 12.162216645992086, 14.023263976126877, 15.819182956104251), # 92 (15.931344283413848, 13.977310394265235, 15.404307407407408, 18.33021594202899, 17.597037037037037, 9.644161316872427, 10.717474426807762, 10.53133827160494, 18.079241975308644, 10.31777975308642, 12.1150673046252, 13.985237166991553, 15.791921296296294), # 93 (15.886450002982048, 13.906848055223684, 15.375915912208507, 18.285364519592058, 17.569345598321632, 9.621185307117818, 10.670928304380737, 10.487364243255604, 18.044598536808415, 10.281812541488476, 12.067513072242896, 13.946877674295479, 15.764104080932785), # 94 (15.840818273990577, 13.836174166998541, 15.347205075445817, 18.240009393451423, 17.541111918018238, 9.597957628410304, 10.62422873127303, 10.443987197073618, 18.00975537265661, 10.245749482234594, 12.019623131903835, 13.908203980458689, 15.735772462277092), # 95 (15.79452238325282, 13.765321863799286, 15.318181481481483, 18.194184057971015, 17.512374727668846, 9.574525102880658, 10.577392675588754, 10.401224691358026, 17.974743209876543, 10.209591401597677, 11.971466666666668, 13.869234567901238, 15.706967592592594), # 96 (15.747635617582157, 13.694324279835394, 15.28885171467764, 18.14792200751476, 17.483172758815464, 9.550934552659655, 10.530437105432021, 10.359094284407867, 17.939592775491544, 10.173339125850616, 11.923112859590052, 13.829987919043152, 15.677730624142663), # 97 (15.700231263791975, 13.623214549316343, 15.259222359396432, 18.101256736446594, 17.453544743000084, 9.52723279987807, 10.48337898890695, 10.317613534522177, 17.904334796524918, 10.136993481266307, 11.87463089373265, 13.790482516304477, 15.648102709190674), # 98 (15.652382608695653, 13.552025806451613, 15.229300000000002, 18.054221739130437, 17.423529411764708, 9.503466666666666, 10.43623529411765, 10.276800000000001, 17.869, 10.100555294117648, 11.826089952153112, 13.750736842105264, 15.618125000000001), # 99 (15.60416293910658, 13.480791185450682, 15.19909122085048, 18.00685050993022, 17.393165496651335, 9.479682975156226, 10.389022989168232, 10.236671239140376, 17.833619112940102, 10.064025390677534, 11.777559217910095, 13.710769378865548, 15.58783864883402), # 100 (15.555645541838135, 13.409543820523034, 15.168602606310015, 17.959176543209878, 17.36249172920197, 9.455928547477518, 10.34175904216282, 10.19724481024234, 17.798222862368544, 10.027404597218862, 11.72910787406226, 13.670598609005365, 15.557284807956103), # 101 (15.506903703703706, 13.338316845878138, 15.13784074074074, 17.911233333333335, 17.331546840958605, 9.432250205761319, 10.294460421205521, 10.15853827160494, 17.762841975308643, 9.990693740014526, 11.680805103668263, 13.63024301494477, 15.526504629629631), # 102 (15.458010711516671, 13.267143395725476, 15.1068122085048, 17.86305437466452, 17.300369563463246, 9.408694772138395, 10.247144094400449, 10.120569181527207, 17.72750717878372, 9.953893645337423, 11.632720089786758, 13.589721079103796, 15.495539266117968), # 103 (15.409039852090416, 13.196056604274526, 15.075523593964334, 17.814673161567367, 17.268998628257886, 9.385309068739522, 10.199827029851722, 10.083355098308186, 17.692249199817102, 9.91700513946045, 11.584922015476401, 13.549051283902486, 15.464429869684501), # 104 (15.360064412238325, 13.125089605734766, 15.043981481481481, 17.766123188405796, 17.237472766884533, 9.362139917695474, 10.152526195663453, 10.046913580246915, 17.6570987654321, 9.880029048656501, 11.537480063795854, 13.508252111760886, 15.433217592592593), # 105 (15.311157678773782, 13.054275534315678, 15.012192455418381, 17.717437949543747, 17.205830710885177, 9.339234141137021, 10.105258559939752, 10.011262185642433, 17.622086602652033, 9.842966199198472, 11.490463417803769, 13.46734204509903, 15.401943587105624), # 106 (15.26239293851017, 12.983647524226738, 14.980163100137176, 17.66865093934514, 17.174111191801824, 9.31663856119494, 10.058041090784739, 9.976418472793783, 17.58724343850023, 9.805817417359263, 11.443941260558804, 13.426339566336967, 15.370649005486968), # 107 (15.21384347826087, 12.913238709677422, 14.947900000000002, 17.619795652173917, 17.14235294117647, 9.294400000000001, 10.010890756302521, 9.942400000000001, 17.5526, 9.768583529411766, 11.397982775119617, 13.38526315789474, 15.339375000000002), # 108 (15.16558258483927, 12.843082224877207, 14.915409739369, 17.570905582393987, 17.11059469055112, 9.272565279682976, 9.96382452459722, 9.90922432556013, 17.518187014174668, 9.731265361628877, 11.352657144544864, 13.34413130219238, 15.308162722908094), # 109 (15.117683545058746, 12.77321120403558, 14.882698902606315, 17.522014224369297, 17.078875171467768, 9.251181222374639, 9.916859363772943, 9.876909007773206, 17.484035208047555, 9.693863740283494, 11.308033551893201, 13.302962481649942, 15.277053326474624), # 110 (15.07021964573269, 12.703658781362009, 14.849774074074077, 17.47315507246377, 17.047233115468412, 9.230294650205762, 9.87001224193381, 9.845471604938272, 17.450175308641978, 9.656379491648512, 11.264181180223286, 13.261775178687461, 15.246087962962964), # 111 (15.02326417367448, 12.634458091065975, 14.816641838134434, 17.42436162104133, 17.015707254095055, 9.209952385307119, 9.823300127183934, 9.814929675354367, 17.41663804298125, 9.618813441996826, 11.221169212593775, 13.220587875724977, 15.215307784636488), # 112 (14.976806757924871, 12.565757790057525, 14.78338852520331, 17.375734211987265, 16.98428108827793, 9.190191630743222, 9.776841541850832, 9.78536411004897, 17.383540498013794, 9.581287578580367, 11.179078249844586, 13.179508698407085, 15.184710241349155), # 113 (14.930369436640104, 12.498235493640857, 14.75047308003459, 17.327663074043738, 16.952629367306123, 9.170967373647843, 9.731229133456928, 9.757138015208191, 17.351390457140898, 9.544504268660452, 11.137990939381115, 13.13905947538076, 15.154040662656056), # 114 (14.883815844806392, 12.431915517892875, 14.717915092331708, 17.280135208290847, 16.920652284621763, 9.152229619998023, 9.6864954403065, 9.730244246845935, 17.320199965870064, 9.508520524780923, 11.09784721828335, 13.099260132094162, 15.123210610656603), # 115 (14.837087797180216, 12.366701250066724, 14.685651503974197, 17.233065840426246, 16.888301642214046, 9.133934203659356, 9.64256770804463, 9.70460850063839, 17.28989014276453, 9.473269373519276, 11.05856949003437, 13.060037115979753, 15.092171615609425), # 116 (14.790127108518035, 12.302496077415555, 14.653619256841578, 17.18637019614759, 16.855529242072176, 9.116036958497425, 9.599373182316404, 9.680156472261736, 17.260382106387524, 9.438683841453006, 11.020080158117253, 13.021316874470001, 15.06087520777316), # 117 (14.742875593576338, 12.239203387192518, 14.621755292813388, 17.139963501152533, 16.82228688618535, 9.098493718377823, 9.556839108766905, 9.656813857392155, 17.231596975302296, 9.404696955159615, 10.98230162601508, 12.98302585499736, 15.02927291740644), # 118 (14.695275067111588, 12.176726566650768, 14.589996553769158, 17.09376098113873, 16.788526376542755, 9.081260317166132, 9.51489273304121, 9.634506351705832, 17.20345586807207, 9.371241741216595, 10.945156297210925, 12.945090504994296, 14.997316274767892), # 119 (14.647267343880259, 12.114969003043454, 14.55827998158842, 17.04767786180383, 16.754199515133596, 9.064292588727945, 9.473461300784406, 9.613159650878949, 17.175879903260093, 9.338251226201448, 10.908566575187866, 12.907437271893276, 14.964956810116156), # 120 (14.59879423863883, 12.053834083623727, 14.5265425181507, 17.001629368845496, 16.71925810394707, 9.047546366928849, 9.432472057641569, 9.592699450587691, 17.148790199429598, 9.305658436691674, 10.872454863428986, 12.869992603126756, 14.932146053709857), # 121 (14.549797566143766, 11.993225195644738, 14.494721105335538, 16.95553072796137, 16.683653944972374, 9.03097748563443, 9.391852249257788, 9.573051446508238, 17.122107875143822, 9.273396399264763, 10.836743565417363, 12.832682946127202, 14.898835535807633), # 122 (14.50021914115155, 11.933045726359639, 14.462752685022458, 16.90929716484911, 16.647338840198707, 9.01454177871028, 9.351529121278142, 9.554141334316773, 17.095754048966008, 9.24139814049822, 10.801355084636072, 12.795434748327075, 14.864976786668116), # 123 (14.450000778418648, 11.87319906302158, 14.430574199090993, 16.86284390520638, 16.61026459161526, 8.998195080021983, 9.311429919347711, 9.535894809689482, 17.069649839459384, 9.209596686969538, 10.766211824568192, 12.758174457158841, 14.830521336549939), # 124 (14.399084292701534, 11.813588592883713, 14.398122589420678, 16.816086174730817, 16.572383001211236, 8.98189322343513, 9.271481889111582, 9.518237568302546, 17.04371636518719, 9.177925065256215, 10.731236188696803, 12.720828520054958, 14.795420715711726), # 125 (14.347411498756685, 11.754117703199192, 14.365334797891038, 16.768939199120087, 16.53364587097583, 8.965592042815308, 9.231612276214832, 9.501095305832148, 17.017874744712667, 9.146316301935748, 10.696350580504982, 12.683323384447895, 14.759626454412127), # 126 (14.294924211340579, 11.69468978122116, 14.332147766381608, 16.72131820407184, 16.494005002898238, 8.949247372028104, 9.19174832630255, 9.484393717954474, 16.99204609659905, 9.114703423585638, 10.661477403475807, 12.645585497770107, 14.723090082909758), # 127 (14.241564245209673, 11.635208214202777, 14.29849843677192, 16.67313841528373, 16.453412198967666, 8.93281504493911, 9.151817285019812, 9.4680585003457, 16.966151539409577, 9.083019456783381, 10.626539061092359, 12.607541307454062, 14.68576313146326), # 128 (14.187273415120451, 11.575576389397186, 14.264323750941504, 16.624315058453412, 16.4118192611733, 8.916250895413912, 9.111746398011702, 9.452015348682016, 16.94011219170748, 9.051197428106473, 10.591457956837715, 12.569117260932218, 14.647597130331262), # 129 (14.131993535829388, 11.515697694057547, 14.229560650769887, 16.57476335927854, 16.36917799150434, 8.899510757318094, 9.0714629109233, 9.4361899586396, 16.913849172056, 9.019170364132412, 10.556156494194951, 12.530239805637045, 14.608543609772397), # 130 (14.07566642209295, 11.455475515437003, 14.19414607813661, 16.524398543456762, 16.32544019194999, 8.88255046451725, 9.030894069399695, 9.42050802589464, 16.887283599018378, 8.986871291438696, 10.52055707664715, 12.490835389000999, 14.568554100045299), # 131 (14.018233888667616, 11.39481324078871, 14.158016974921194, 16.47313583668574, 16.280557664499447, 8.865325850876964, 8.98996711908596, 9.404895246123317, 16.860336591157846, 8.954233236602823, 10.484582107677383, 12.450830458456547, 14.527580131408602), # 132 (13.959637750309861, 11.333614257365817, 14.121110283003175, 16.420890464663124, 16.2344822111419, 8.847792750262826, 8.948609305627183, 9.389277315001811, 16.832929267037642, 8.921189226202292, 10.448153990768738, 12.410151461436149, 14.485573234120938), # 133 (13.899819821776152, 11.271781952421478, 14.083362944262086, 16.367577653086567, 16.18716563386655, 8.829906996540425, 8.906747874668445, 9.37357992820631, 16.804982745221007, 8.887672286814597, 10.411195129404286, 12.368724845372267, 14.442484938440934), # 134 (13.838721917822966, 11.209219713208839, 14.044711900577454, 16.313112627653727, 16.138559734662593, 8.811624423575347, 8.86431007185483, 9.357728781412993, 16.77641814427117, 8.853615445017242, 10.373627927067108, 12.326477057697364, 14.398266774627231), # 135 (13.776285853206776, 11.145830926981056, 14.005094093828815, 16.25741061406225, 16.08861631551923, 8.792900865233184, 8.821223142831416, 9.341649570298044, 16.74715658275137, 8.818951727387716, 10.335374787240283, 12.283334545843907, 14.352870272938459), # 136 (13.712453442684055, 11.081518980991277, 13.964446465895698, 16.200386838009802, 16.037287178425654, 8.773692155379518, 8.77741433324329, 9.325267990537647, 16.717119179224852, 8.783614160503523, 10.296358113406889, 12.239223757244352, 14.306246963633242), # 137 (13.647166501011277, 11.016187262492654, 13.922705958657628, 16.141956525194022, 15.98452412537107, 8.753954127879942, 8.732810888735527, 9.308509737807984, 16.68622705225485, 8.747535770942156, 10.256500309050004, 12.194071139331164, 14.258348376970226), # 138 (13.58036684294491, 10.949739158738339, 13.879809513994145, 16.082034901312575, 15.930278958344665, 8.733642616600042, 8.687340054953216, 9.29130050778524, 16.654401320404595, 8.710649585281116, 10.215723777652705, 12.14780313953681, 14.20912604320803), # 139 (13.511996283241437, 10.88207805698148, 13.83569407378478, 16.020537192063113, 15.874503479335647, 8.712713455405407, 8.640929077541434, 9.273565996145594, 16.62156310223733, 8.672888630097898, 10.17395092269807, 12.100346205293746, 14.158531492605304), # 140 (13.44199663665733, 10.813107344475235, 13.790296579909057, 15.957378623143285, 15.817149490333206, 8.691122478161624, 8.593505202145272, 9.255231898565233, 16.587633516316288, 8.634185931970002, 10.131104147669182, 12.05162678403444, 14.106516255420662), # 141 (13.37030971794905, 10.742730408472745, 13.743553974246513, 15.892474420250753, 15.75816879332654, 8.668825518734284, 8.544995674409803, 9.236223910720339, 16.552533681204707, 8.594474517474925, 10.087105856049115, 12.001571323191351, 14.053031861912746), # 142 (13.29687734187308, 10.67085063622717, 13.695403198676681, 15.82573980908316, 15.697513190304846, 8.64577841098897, 8.49532773998011, 9.21646772828709, 16.516184715465837, 8.553687413190165, 10.04187845132095, 11.950106270196944, 13.998029842340188), # 143 (13.221641323185896, 10.597371414991658, 13.645781195079085, 15.757090015338171, 15.635134483257326, 8.621936988791274, 8.444428644501278, 9.195889046941678, 16.478507737662895, 8.511757645693216, 9.995344336967761, 11.897158072483679, 13.941461726961624), # 144 (13.144543476643964, 10.52219613201936, 13.594624905333262, 15.686440264713433, 15.570984474173173, 8.597257086006785, 8.39222563361839, 9.174413562360282, 16.439423866359128, 8.46861824156158, 9.947425916472632, 11.842653177484022, 13.88327904603568), # 145 (13.065525617003761, 10.445228174563427, 13.541871271318747, 15.613705782906601, 15.505014965041589, 8.57169453650109, 8.338645952976528, 9.151966970219084, 16.39885422011777, 8.424202227372753, 9.898045593318638, 11.786518032630433, 13.82343332982099), # 146 (12.98452955902176, 10.366370929877009, 13.487457234915055, 15.538801795615328, 15.437177757851764, 8.545205174139772, 8.28361684822077, 9.128474966194265, 16.356719917502065, 8.378442629704233, 9.847125770988859, 11.728679085355378, 13.761876108576189), # 147 (12.901497117454435, 10.285527785213262, 13.431319738001733, 15.461643528537275, 15.367424654592899, 8.517744832788429, 8.227065564996202, 9.103863245962012, 16.312942077075245, 8.331272475133515, 9.794588852966372, 11.669062783091313, 13.698558912559907), # 148 (12.81637010705826, 10.20260212782533, 13.37339572245831, 15.382146207370084, 15.295707457254194, 8.48926934631264, 8.168919348947906, 9.078057505198506, 16.26744181740054, 8.282624790238101, 9.740357242734255, 11.607595573270707, 13.63343327203078), # 149 (12.729090342589704, 10.117497344966367, 13.313622130164312, 15.30022505781142, 15.221977967824841, 8.459734548577998, 8.109105445720962, 9.05098343957993, 16.220140257041205, 8.232432601595482, 9.684353343775589, 11.544203903326022, 13.566450717247434), # 150 (12.63959963880524, 10.030116823889527, 13.251935902999268, 15.215795305558927, 15.146187988294043, 8.429096273450089, 8.047551100960453, 9.02256674478247, 16.170958514560464, 8.180628935783165, 9.626499559573448, 11.478814220689715, 13.49756277846851), # 151 (12.54783981046135, 9.940363951847957, 13.188273982842723, 15.128772176310271, 15.06828932065099, 8.397310354794502, 7.984183560311464, 8.992733116482306, 16.119817708521552, 8.12714681937864, 9.566718293610915, 11.411352972794255, 13.426720985952636), # 152 (12.453752672314497, 9.848142116094811, 13.12257331157419, 15.039070895763093, 14.988233766884889, 8.364332626476825, 7.918930069419071, 8.96140825035562, 16.06663895748772, 8.071919278959406, 9.504931949371066, 11.341746607072103, 13.353876869958444), # 153 (12.357280039121166, 9.75335470388324, 13.054770831073213, 14.946606689615056, 14.905973128984929, 8.330118922362647, 7.851717873928365, 8.928517842078596, 16.011343380022186, 8.014879341102965, 9.44106293033698, 11.26992157095572, 13.278981960744572), # 154 (12.258363725637818, 9.655905102466392, 12.984803483219322, 14.851294783563805, 14.821459208940315, 8.294625076317555, 7.782474219484418, 8.893987587327418, 15.953852094688205, 7.955960032386807, 9.375033639991733, 11.195804311877572, 13.201987788569642), # 155 (12.15694554662093, 9.555696699097421, 12.912608209892042, 14.753050403307, 14.734643808740238, 8.257806922207138, 7.71112635173232, 8.85774318177827, 15.894086220049003, 7.8950943793884365, 9.306766481818407, 11.119321277270117, 13.122845883692296), # 156 (12.05296731682698, 9.452632881029478, 12.838121952970909, 14.6517887745423, 14.645478730373895, 8.219620293896982, 7.637601516317151, 8.819710321107332, 15.831966874667822, 7.832215408685347, 9.236183859300079, 11.04039891456582, 13.041507776371162), # 157 (11.943489514248384, 9.344724993235614, 12.75774712624377, 14.54363133064199, 14.549889769393596, 8.177639162107376, 7.560170753484572, 8.777275123758995, 15.762659346558557, 7.76538546606583, 9.160953204062308, 10.956159302710944, 12.954377375064553), # 158 (11.811658827165445, 9.220904511359164, 12.65078050944478, 14.406363454061527, 14.424306095650605, 8.117903436811366, 7.469140421417146, 8.715541652423012, 15.658283617955432, 7.683649590557993, 9.06786709699039, 10.850180037892974, 12.840684235072311), # 159 (11.655795351846896, 9.080154765665142, 12.515073532729422, 14.237724016654177, 14.266272210154874, 8.038946073676295, 7.363589997414055, 8.632958703243755, 15.515880363565842, 7.58592904298063, 8.955615213775264, 10.720803118220555, 12.69827297422973), # 160 (11.477155287337537, 8.92339338892875, 12.352075155056495, 14.039316006010765, 14.077428998851381, 7.941723586512502, 7.244290313611002, 8.530560852975649, 15.337327627198428, 7.473053109073501, 8.825186647359532, 10.569227950252113, 12.528598471710556), # 161 (11.27699483268217, 8.751538013925183, 12.163234335384793, 13.812742409722123, 13.859417347685127, 7.827192489130329, 7.112012202143695, 8.409382678373124, 15.12450345266182, 7.3458510745763705, 8.677570490685794, 10.39665394054607, 12.333115606688533), # 162 (11.056570186925597, 8.565506273429639, 11.950000032673124, 13.559606215379095, 13.613878142601102, 7.696309295340116, 6.967526495147841, 8.2704587561906, 14.87928588376465, 7.205152225229, 8.513755836696653, 10.204280495660853, 12.113279258337407), # 163 (10.817137549112616, 8.366215800217313, 11.713821205880283, 13.281510410572508, 13.342452269544303, 7.550030518952207, 6.811604024759146, 8.114823663182511, 14.603552964315558, 7.05178584677115, 8.334731778334714, 9.993307022154886, 11.870544305830926), # 164 (10.559953118288028, 8.154584227063411, 11.45614681396507, 12.980057982893204, 13.046780614459719, 7.389312673776939, 6.6450156231133155, 7.943511976103274, 14.299182738123168, 6.8865812249425815, 8.141487408542579, 9.764932926586592, 11.606365628342832), # 165 (10.286273093496636, 7.931529186743127, 11.178425815886285, 12.656851919932002, 12.728504063292343, 7.215112273624654, 6.468532122346058, 7.757558271707324, 13.968053248996117, 6.71036764548306, 7.935011820262847, 9.520357615514403, 11.322198105046873), # 166 (9.997353673783238, 7.6979683120316595, 10.882107170602728, 12.31349520927975, 12.389263501987168, 7.028385832305694, 6.28292435459308, 7.557997126749083, 13.61204254074304, 6.523974394132343, 7.716294106438124, 9.260780495496734, 11.019496615116793), # 167 (9.694451058192634, 7.454819235704206, 10.568639837073198, 11.951590838527274, 12.030699816489188, 6.830089863630398, 6.088963151990087, 7.345863117982976, 13.233028657172568, 6.328230756630195, 7.48632336001101, 8.987400973092019, 10.69971603772634), # 168 (9.378821445769624, 7.202999590535967, 10.239472774256495, 11.572741795265413, 11.654453892743392, 6.621180881409112, 5.887419346672787, 7.122190822163432, 12.832889642093342, 6.123966018716379, 7.24608867392411, 8.701418454858675, 10.364311252049257), # 169 (9.051721035559014, 6.94342700930214, 9.896054941111416, 11.178551067084992, 11.262166616694774, 6.402615399452171, 5.679063770776885, 6.888014816044876, 12.413503539313982, 5.912009466130653, 6.996579141120026, 8.404032347355134, 10.014737137259289), # 170 (8.7144060266056, 6.677019124777921, 9.539835296596765, 10.770621641576858, 10.85547887428833, 6.175349931569918, 5.464667256438089, 6.644369676381733, 11.976748392643131, 5.693190384612782, 6.738783854541357, 8.096442057139818, 9.652448572530185), # 171 (8.368132617954185, 6.4046935697385114, 9.172262799671339, 10.350556506331834, 10.436031551469046, 5.940340991572694, 5.245000635792105, 6.392289979928433, 11.524502245889417, 5.468338059902528, 6.473691907130711, 7.779846990771154, 9.278900437035686), # 172 (8.014157008649567, 6.127367976959108, 8.79478640929394, 9.919958648940762, 10.005465534181923, 5.69854509327084, 5.02083474097464, 6.132810303439398, 11.058643142861477, 5.238281777739651, 6.202292391830685, 7.45544655480756, 8.89554760994954), # 173 (7.6537353977365505, 5.845959979214909, 8.408855084423363, 9.480431056994465, 9.565421708371947, 5.450918750474696, 4.792940404121401, 5.866965223669057, 10.581049127367942, 5.003850823863915, 5.9255744015838845, 7.124440155807469, 8.503844970445494), # 174 (7.288123984259929, 5.561387209281111, 8.015917784018413, 9.033576718083788, 9.11754095998411, 5.198418476994606, 4.562088457368093, 5.595789317371834, 10.09359824321745, 4.765874484015079, 5.644527029332911, 6.788027200329303, 8.105247397697292), # 175 (6.91857896726451, 5.274567299932917, 7.617423467037885, 8.58099861979956, 8.663464174963408, 4.942000786640907, 4.329049732850424, 5.3203171613021585, 9.598168534218628, 4.525182043932907, 5.360139368020368, 6.447407094931487, 7.701209770878679), # 176 (6.546356545795092, 4.986417883945522, 7.214821092440582, 8.124299749732613, 8.204832239254838, 4.682622193223941, 4.094595062704101, 5.0415833322144525, 9.096638044180112, 4.282602789357159, 5.073400510588858, 6.103779246172446, 7.2931869691634), # 177 (6.172712918896475, 4.697856594094126, 6.809559619185302, 7.665083095473786, 7.743286038803382, 4.421239210554052, 3.859495279064828, 4.760622406863145, 8.590884816910537, 4.0389660060276, 4.78529954998098, 5.758343060610604, 6.882633871725203), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_arriving_acc = ( (10, 4, 10, 7, 4, 5, 6, 5, 3, 4, 0, 0, 0, 5, 15, 5, 4, 4, 3, 0, 2, 3, 4, 1, 0, 0), # 0 (12, 14, 21, 15, 9, 8, 9, 7, 8, 6, 0, 0, 0, 14, 25, 7, 9, 10, 7, 3, 7, 5, 12, 2, 0, 0), # 1 (13, 23, 27, 24, 17, 13, 14, 11, 9, 7, 2, 2, 0, 24, 29, 15, 20, 22, 12, 7, 9, 9, 16, 4, 4, 0), # 2 (20, 37, 32, 31, 23, 17, 14, 15, 12, 8, 5, 3, 0, 30, 37, 25, 25, 31, 19, 11, 12, 10, 16, 4, 6, 0), # 3 (31, 48, 45, 39, 30, 19, 19, 18, 15, 10, 9, 3, 0, 39, 40, 27, 34, 36, 24, 15, 15, 14, 18, 9, 6, 0), # 4 (41, 58, 50, 47, 39, 27, 22, 25, 21, 10, 14, 4, 0, 47, 56, 34, 37, 44, 29, 20, 16, 17, 23, 10, 6, 0), # 5 (54, 69, 58, 54, 47, 32, 30, 30, 28, 13, 15, 6, 0, 54, 65, 44, 46, 49, 37, 21, 17, 20, 24, 12, 7, 0), # 6 (68, 78, 65, 60, 53, 33, 35, 36, 35, 16, 17, 7, 0, 66, 77, 52, 48, 60, 43, 25, 18, 24, 25, 14, 8, 0), # 7 (80, 93, 72, 73, 63, 41, 39, 38, 37, 18, 19, 10, 0, 83, 87, 63, 57, 69, 44, 33, 20, 28, 31, 14, 10, 0), # 8 (86, 111, 81, 93, 71, 43, 47, 41, 39, 19, 19, 11, 0, 94, 101, 74, 66, 81, 53, 37, 23, 36, 38, 16, 11, 0), # 9 (104, 127, 94, 106, 77, 47, 54, 45, 46, 22, 20, 11, 0, 110, 108, 87, 72, 89, 61, 41, 26, 41, 44, 22, 12, 0), # 10 (117, 139, 107, 120, 86, 52, 58, 51, 53, 26, 22, 12, 0, 123, 124, 95, 80, 99, 69, 48, 31, 46, 46, 22, 14, 0), # 11 (132, 157, 120, 133, 98, 55, 66, 58, 56, 31, 25, 12, 0, 133, 137, 102, 91, 111, 79, 53, 35, 50, 48, 23, 17, 0), # 12 (144, 168, 130, 147, 105, 66, 71, 62, 62, 40, 27, 12, 0, 145, 150, 112, 99, 124, 90, 61, 38, 56, 51, 25, 18, 0), # 13 (159, 183, 151, 160, 117, 71, 77, 70, 67, 41, 30, 13, 0, 165, 161, 121, 106, 141, 97, 67, 45, 61, 56, 27, 19, 0), # 14 (178, 197, 161, 177, 127, 76, 86, 74, 77, 44, 31, 15, 0, 183, 180, 129, 116, 156, 100, 74, 50, 65, 57, 29, 20, 0), # 15 (189, 208, 174, 188, 138, 80, 87, 82, 84, 47, 33, 16, 0, 193, 196, 137, 122, 167, 110, 76, 54, 70, 67, 32, 20, 0), # 16 (199, 219, 182, 199, 149, 84, 92, 88, 88, 51, 36, 17, 0, 222, 210, 146, 127, 178, 113, 83, 59, 74, 73, 33, 21, 0), # 17 (212, 228, 195, 214, 154, 93, 100, 93, 93, 55, 36, 18, 0, 241, 228, 155, 136, 187, 125, 91, 65, 78, 76, 38, 22, 0), # 18 (234, 250, 209, 226, 170, 99, 109, 98, 102, 60, 38, 19, 0, 255, 248, 166, 154, 205, 127, 95, 70, 85, 78, 41, 24, 0), # 19 (248, 261, 222, 238, 182, 103, 111, 102, 108, 62, 40, 22, 0, 268, 264, 180, 159, 212, 137, 100, 74, 92, 80, 46, 25, 0), # 20 (261, 287, 239, 250, 201, 108, 116, 107, 114, 70, 44, 24, 0, 284, 280, 194, 172, 224, 145, 104, 83, 96, 87, 48, 30, 0), # 21 (269, 307, 254, 254, 211, 114, 122, 111, 124, 74, 44, 24, 0, 302, 291, 206, 179, 236, 153, 113, 85, 101, 93, 51, 31, 0), # 22 (286, 328, 271, 267, 226, 119, 132, 116, 132, 77, 46, 24, 0, 319, 302, 220, 183, 250, 161, 121, 87, 108, 95, 54, 33, 0), # 23 (309, 342, 280, 281, 240, 127, 139, 123, 138, 79, 48, 25, 0, 333, 324, 229, 193, 263, 169, 125, 91, 113, 104, 55, 33, 0), # 24 (329, 354, 292, 299, 249, 132, 151, 129, 146, 80, 51, 27, 0, 351, 338, 233, 198, 273, 182, 126, 96, 120, 111, 57, 34, 0), # 25 (344, 370, 303, 314, 261, 137, 152, 134, 155, 81, 51, 27, 0, 370, 354, 240, 211, 288, 192, 133, 103, 124, 112, 58, 34, 0), # 26 (367, 386, 314, 329, 276, 141, 159, 141, 160, 85, 54, 29, 0, 383, 372, 253, 228, 299, 201, 139, 106, 129, 115, 61, 35, 0), # 27 (386, 404, 331, 347, 288, 146, 162, 146, 169, 89, 56, 29, 0, 393, 383, 266, 239, 309, 210, 149, 109, 136, 121, 64, 37, 0), # 28 (402, 415, 347, 359, 300, 154, 170, 152, 174, 93, 59, 32, 0, 402, 393, 275, 255, 321, 223, 158, 112, 143, 129, 65, 40, 0), # 29 (414, 426, 361, 376, 313, 160, 176, 158, 179, 102, 64, 34, 0, 418, 412, 287, 268, 332, 230, 160, 118, 151, 132, 67, 42, 0), # 30 (428, 449, 378, 389, 333, 166, 182, 167, 185, 105, 65, 35, 0, 437, 428, 295, 276, 342, 238, 165, 122, 160, 136, 69, 43, 0), # 31 (446, 463, 391, 403, 348, 171, 186, 173, 190, 105, 67, 38, 0, 457, 445, 302, 287, 355, 245, 170, 126, 170, 137, 75, 46, 0), # 32 (466, 485, 409, 414, 358, 172, 196, 176, 194, 113, 68, 42, 0, 482, 462, 312, 294, 365, 250, 180, 129, 179, 142, 77, 47, 0), # 33 (487, 499, 420, 433, 369, 182, 200, 186, 203, 117, 69, 43, 0, 498, 472, 332, 309, 385, 264, 189, 132, 183, 150, 80, 48, 0), # 34 (503, 521, 437, 443, 382, 185, 205, 193, 209, 121, 73, 44, 0, 516, 490, 346, 319, 399, 273, 192, 135, 193, 154, 80, 48, 0), # 35 (514, 532, 447, 460, 389, 189, 216, 198, 217, 124, 77, 45, 0, 531, 503, 364, 330, 408, 275, 200, 142, 200, 157, 84, 48, 0), # 36 (524, 556, 460, 475, 402, 193, 219, 207, 222, 129, 80, 46, 0, 544, 519, 376, 337, 420, 285, 206, 153, 212, 161, 87, 50, 0), # 37 (543, 573, 469, 486, 411, 197, 227, 211, 226, 132, 83, 47, 0, 560, 539, 392, 351, 431, 297, 209, 153, 216, 169, 90, 52, 0), # 38 (555, 591, 487, 508, 422, 200, 232, 218, 233, 136, 85, 47, 0, 573, 563, 406, 361, 444, 309, 214, 158, 222, 173, 95, 54, 0), # 39 (570, 609, 500, 524, 435, 205, 238, 225, 237, 137, 88, 49, 0, 591, 581, 416, 372, 453, 315, 226, 159, 231, 179, 99, 56, 0), # 40 (588, 625, 509, 532, 446, 210, 247, 232, 243, 140, 91, 50, 0, 608, 595, 430, 381, 466, 321, 234, 163, 239, 185, 102, 58, 0), # 41 (602, 637, 519, 546, 455, 214, 255, 239, 247, 143, 93, 50, 0, 621, 608, 439, 394, 474, 337, 238, 166, 243, 187, 104, 59, 0), # 42 (626, 653, 532, 558, 475, 222, 262, 244, 252, 146, 94, 52, 0, 639, 620, 447, 402, 487, 345, 243, 172, 252, 192, 107, 61, 0), # 43 (642, 665, 544, 572, 493, 227, 271, 252, 255, 149, 95, 54, 0, 651, 637, 457, 410, 506, 356, 251, 178, 259, 195, 111, 63, 0), # 44 (653, 683, 558, 594, 506, 231, 282, 256, 263, 150, 98, 55, 0, 670, 650, 469, 424, 520, 359, 257, 183, 265, 199, 112, 66, 0), # 45 (674, 693, 572, 609, 513, 236, 288, 261, 273, 154, 98, 60, 0, 692, 664, 481, 434, 536, 368, 264, 186, 271, 205, 114, 67, 0), # 46 (688, 715, 586, 628, 528, 239, 297, 268, 278, 157, 98, 60, 0, 704, 685, 492, 442, 547, 374, 270, 195, 281, 207, 116, 69, 0), # 47 (716, 730, 594, 643, 542, 245, 302, 277, 290, 158, 98, 61, 0, 715, 698, 498, 451, 563, 377, 276, 198, 287, 207, 118, 72, 0), # 48 (726, 748, 611, 660, 556, 251, 308, 281, 295, 164, 99, 62, 0, 733, 713, 509, 461, 575, 384, 283, 202, 291, 210, 119, 72, 0), # 49 (739, 762, 619, 680, 569, 263, 314, 286, 298, 169, 104, 62, 0, 749, 727, 520, 466, 592, 391, 290, 207, 297, 215, 124, 73, 0), # 50 (758, 779, 641, 707, 585, 267, 316, 289, 305, 173, 105, 63, 0, 768, 737, 530, 475, 603, 401, 296, 209, 302, 221, 129, 74, 0), # 51 (770, 791, 660, 718, 594, 275, 323, 296, 313, 174, 106, 66, 0, 785, 755, 539, 481, 616, 409, 301, 213, 315, 224, 131, 75, 0), # 52 (780, 806, 673, 729, 607, 280, 328, 303, 317, 176, 107, 68, 0, 800, 770, 545, 487, 632, 413, 306, 219, 321, 228, 132, 78, 0), # 53 (804, 826, 689, 742, 612, 290, 336, 314, 319, 177, 109, 68, 0, 819, 788, 558, 494, 649, 424, 313, 224, 325, 231, 132, 78, 0), # 54 (822, 844, 703, 759, 623, 296, 342, 317, 324, 181, 109, 68, 0, 830, 807, 568, 499, 662, 434, 318, 228, 331, 236, 133, 80, 0), # 55 (842, 857, 717, 779, 638, 303, 349, 319, 331, 188, 112, 68, 0, 846, 826, 579, 505, 677, 445, 322, 232, 338, 244, 137, 81, 0), # 56 (858, 870, 737, 789, 644, 311, 352, 325, 338, 189, 113, 69, 0, 865, 843, 589, 514, 691, 449, 328, 237, 347, 250, 139, 83, 0), # 57 (877, 885, 747, 809, 652, 318, 358, 334, 341, 196, 116, 69, 0, 883, 858, 595, 522, 704, 454, 335, 241, 352, 253, 146, 87, 0), # 58 (891, 895, 760, 829, 667, 323, 362, 340, 343, 197, 118, 69, 0, 903, 871, 609, 531, 720, 461, 341, 242, 361, 255, 148, 89, 0), # 59 (904, 909, 767, 844, 676, 329, 367, 345, 346, 199, 120, 72, 0, 920, 887, 620, 533, 734, 466, 351, 246, 367, 261, 149, 90, 0), # 60 (920, 925, 780, 857, 687, 338, 373, 347, 354, 202, 122, 72, 0, 938, 896, 627, 545, 752, 472, 357, 249, 373, 266, 153, 92, 0), # 61 (935, 940, 795, 863, 697, 346, 378, 351, 359, 204, 124, 75, 0, 959, 910, 634, 553, 767, 486, 362, 252, 377, 274, 156, 94, 0), # 62 (951, 948, 818, 880, 707, 351, 382, 363, 368, 206, 126, 75, 0, 972, 931, 649, 562, 786, 490, 370, 259, 380, 279, 159, 95, 0), # 63 (969, 961, 840, 890, 713, 356, 386, 367, 371, 210, 128, 77, 0, 988, 947, 658, 567, 798, 496, 377, 265, 387, 285, 162, 96, 0), # 64 (984, 975, 855, 904, 729, 362, 395, 371, 376, 212, 134, 79, 0, 1004, 956, 678, 574, 812, 504, 382, 269, 394, 293, 164, 97, 0), # 65 (1003, 989, 877, 919, 743, 369, 402, 377, 384, 216, 137, 80, 0, 1025, 976, 689, 582, 825, 508, 390, 274, 399, 298, 168, 97, 0), # 66 (1019, 1006, 890, 934, 752, 375, 405, 385, 390, 217, 143, 80, 0, 1041, 997, 705, 593, 838, 514, 400, 279, 407, 301, 169, 99, 0), # 67 (1039, 1019, 903, 951, 764, 379, 412, 394, 396, 221, 147, 86, 0, 1058, 1011, 712, 600, 848, 524, 406, 281, 414, 303, 173, 100, 0), # 68 (1054, 1040, 916, 969, 775, 389, 417, 397, 401, 225, 149, 88, 0, 1074, 1023, 719, 615, 863, 528, 416, 284, 419, 307, 177, 101, 0), # 69 (1069, 1053, 933, 977, 784, 396, 422, 399, 407, 226, 154, 88, 0, 1094, 1032, 733, 618, 880, 534, 426, 292, 422, 313, 178, 101, 0), # 70 (1081, 1069, 946, 994, 799, 407, 433, 403, 418, 232, 156, 88, 0, 1109, 1046, 740, 629, 890, 534, 433, 296, 428, 315, 181, 102, 0), # 71 (1101, 1083, 958, 1009, 812, 411, 441, 408, 421, 236, 157, 91, 0, 1123, 1062, 755, 642, 897, 540, 445, 304, 438, 325, 184, 102, 0), # 72 (1118, 1099, 974, 1024, 828, 419, 447, 412, 425, 239, 161, 92, 0, 1144, 1078, 767, 656, 916, 547, 448, 311, 444, 330, 184, 103, 0), # 73 (1135, 1111, 989, 1036, 840, 425, 453, 418, 431, 241, 163, 92, 0, 1156, 1095, 777, 665, 931, 552, 450, 318, 452, 338, 187, 105, 0), # 74 (1148, 1121, 1003, 1052, 852, 435, 460, 420, 439, 243, 166, 93, 0, 1176, 1103, 788, 676, 945, 556, 457, 321, 457, 339, 191, 105, 0), # 75 (1167, 1143, 1013, 1069, 859, 441, 470, 425, 445, 245, 170, 94, 0, 1187, 1119, 799, 680, 958, 563, 465, 324, 467, 340, 196, 108, 0), # 76 (1176, 1159, 1031, 1077, 866, 449, 474, 430, 447, 247, 175, 96, 0, 1206, 1135, 813, 690, 975, 570, 474, 326, 471, 345, 198, 108, 0), # 77 (1192, 1180, 1044, 1084, 879, 458, 482, 434, 451, 249, 180, 96, 0, 1221, 1155, 826, 695, 986, 586, 481, 329, 476, 351, 201, 109, 0), # 78 (1210, 1190, 1058, 1095, 889, 466, 493, 437, 463, 250, 182, 98, 0, 1237, 1167, 836, 703, 995, 594, 488, 333, 483, 355, 203, 110, 0), # 79 (1224, 1209, 1067, 1111, 908, 473, 499, 445, 471, 251, 187, 99, 0, 1250, 1181, 841, 708, 1006, 600, 491, 338, 489, 361, 205, 113, 0), # 80 (1235, 1222, 1077, 1121, 926, 477, 503, 447, 474, 252, 188, 100, 0, 1263, 1183, 854, 715, 1017, 604, 497, 341, 492, 365, 209, 116, 0), # 81 (1251, 1239, 1088, 1133, 937, 483, 509, 451, 481, 254, 193, 100, 0, 1278, 1197, 868, 734, 1031, 606, 502, 342, 499, 368, 213, 117, 0), # 82 (1266, 1252, 1103, 1156, 947, 489, 512, 455, 484, 254, 194, 103, 0, 1292, 1215, 879, 742, 1042, 617, 508, 343, 509, 371, 215, 117, 0), # 83 (1283, 1263, 1117, 1173, 963, 493, 517, 459, 489, 257, 195, 103, 0, 1309, 1230, 892, 748, 1051, 622, 510, 344, 513, 377, 216, 117, 0), # 84 (1301, 1277, 1133, 1184, 973, 497, 521, 463, 495, 259, 197, 104, 0, 1323, 1241, 901, 752, 1060, 630, 517, 347, 522, 379, 221, 117, 0), # 85 (1314, 1296, 1144, 1199, 982, 503, 529, 467, 500, 263, 198, 108, 0, 1334, 1260, 909, 757, 1073, 634, 525, 354, 531, 381, 224, 119, 0), # 86 (1324, 1307, 1157, 1216, 994, 508, 538, 471, 510, 267, 201, 108, 0, 1351, 1275, 919, 766, 1082, 644, 532, 357, 539, 387, 225, 120, 0), # 87 (1342, 1319, 1172, 1232, 1001, 513, 539, 473, 518, 269, 204, 112, 0, 1369, 1293, 928, 769, 1100, 652, 540, 358, 547, 390, 230, 120, 0), # 88 (1363, 1334, 1189, 1246, 1015, 518, 544, 481, 524, 271, 204, 114, 0, 1384, 1305, 936, 781, 1115, 655, 545, 360, 552, 394, 234, 122, 0), # 89 (1381, 1347, 1204, 1255, 1025, 526, 548, 488, 529, 275, 207, 114, 0, 1398, 1313, 947, 786, 1126, 664, 549, 362, 556, 402, 239, 124, 0), # 90 (1397, 1359, 1216, 1275, 1035, 532, 554, 492, 530, 277, 209, 116, 0, 1415, 1324, 952, 795, 1138, 672, 554, 365, 560, 407, 240, 124, 0), # 91 (1419, 1375, 1225, 1289, 1042, 536, 559, 496, 540, 280, 211, 117, 0, 1427, 1333, 962, 807, 1149, 682, 557, 369, 563, 412, 242, 125, 0), # 92 (1438, 1388, 1245, 1300, 1054, 542, 567, 504, 552, 281, 212, 117, 0, 1445, 1350, 968, 810, 1160, 687, 564, 371, 572, 418, 244, 127, 0), # 93 (1457, 1403, 1256, 1321, 1062, 549, 571, 505, 558, 283, 214, 117, 0, 1466, 1364, 978, 816, 1181, 693, 571, 374, 578, 421, 248, 127, 0), # 94 (1472, 1418, 1268, 1345, 1076, 555, 579, 508, 568, 286, 217, 119, 0, 1490, 1376, 989, 823, 1191, 700, 578, 379, 584, 425, 250, 127, 0), # 95 (1485, 1433, 1282, 1354, 1094, 563, 583, 512, 574, 293, 219, 119, 0, 1504, 1387, 994, 832, 1207, 711, 583, 385, 589, 429, 251, 130, 0), # 96 (1497, 1440, 1297, 1368, 1112, 568, 587, 518, 581, 295, 225, 122, 0, 1523, 1403, 1000, 838, 1226, 713, 590, 389, 593, 437, 253, 132, 0), # 97 (1508, 1448, 1305, 1377, 1121, 573, 590, 522, 587, 297, 227, 123, 0, 1539, 1422, 1012, 843, 1233, 724, 595, 395, 599, 440, 255, 133, 0), # 98 (1518, 1461, 1316, 1390, 1135, 577, 594, 524, 597, 300, 228, 124, 0, 1555, 1436, 1021, 849, 1246, 727, 597, 398, 605, 445, 255, 133, 0), # 99 (1538, 1472, 1326, 1404, 1147, 582, 601, 527, 604, 303, 232, 125, 0, 1567, 1446, 1033, 850, 1261, 731, 605, 404, 610, 452, 256, 135, 0), # 100 (1549, 1482, 1337, 1414, 1162, 587, 606, 530, 611, 304, 233, 125, 0, 1583, 1458, 1041, 860, 1276, 740, 609, 409, 612, 456, 262, 137, 0), # 101 (1561, 1494, 1350, 1425, 1173, 596, 612, 536, 617, 306, 236, 126, 0, 1600, 1470, 1050, 869, 1291, 746, 614, 414, 624, 462, 263, 137, 0), # 102 (1577, 1512, 1362, 1443, 1181, 603, 614, 540, 626, 307, 237, 131, 0, 1615, 1487, 1063, 873, 1307, 748, 620, 418, 628, 465, 266, 140, 0), # 103 (1594, 1523, 1374, 1454, 1194, 611, 620, 543, 631, 312, 240, 132, 0, 1634, 1492, 1072, 879, 1319, 757, 625, 423, 631, 475, 267, 140, 0), # 104 (1607, 1538, 1386, 1466, 1205, 620, 624, 546, 635, 313, 244, 133, 0, 1650, 1509, 1084, 881, 1335, 763, 631, 426, 637, 482, 269, 140, 0), # 105 (1618, 1551, 1398, 1480, 1212, 629, 631, 554, 642, 314, 246, 134, 0, 1666, 1520, 1092, 886, 1345, 770, 635, 430, 644, 483, 271, 141, 0), # 106 (1629, 1559, 1409, 1497, 1228, 634, 637, 557, 649, 315, 248, 136, 0, 1677, 1533, 1098, 890, 1358, 776, 638, 432, 650, 493, 272, 142, 0), # 107 (1646, 1569, 1418, 1512, 1243, 638, 642, 561, 661, 319, 250, 137, 0, 1689, 1547, 1107, 897, 1374, 779, 644, 436, 654, 494, 278, 143, 0), # 108 (1672, 1580, 1432, 1533, 1256, 643, 647, 566, 664, 320, 255, 138, 0, 1706, 1557, 1114, 903, 1382, 787, 652, 439, 659, 496, 280, 144, 0), # 109 (1686, 1594, 1453, 1553, 1277, 648, 648, 570, 666, 322, 256, 141, 0, 1718, 1571, 1126, 912, 1397, 790, 657, 442, 664, 501, 283, 144, 0), # 110 (1705, 1610, 1472, 1567, 1291, 656, 650, 571, 673, 324, 258, 144, 0, 1738, 1581, 1133, 921, 1408, 796, 661, 446, 667, 506, 284, 145, 0), # 111 (1725, 1622, 1482, 1576, 1306, 658, 656, 575, 681, 329, 260, 145, 0, 1758, 1589, 1140, 929, 1419, 804, 666, 449, 673, 514, 286, 147, 0), # 112 (1736, 1635, 1499, 1590, 1322, 667, 662, 579, 688, 332, 262, 145, 0, 1772, 1605, 1150, 935, 1430, 811, 670, 451, 679, 516, 288, 149, 0), # 113 (1749, 1648, 1512, 1600, 1335, 670, 665, 580, 692, 335, 267, 146, 0, 1782, 1620, 1156, 944, 1441, 812, 677, 454, 685, 519, 290, 149, 0), # 114 (1759, 1662, 1529, 1612, 1349, 678, 670, 582, 697, 339, 268, 147, 0, 1799, 1630, 1173, 953, 1450, 822, 680, 459, 693, 522, 292, 149, 0), # 115 (1773, 1669, 1543, 1626, 1366, 686, 675, 588, 700, 342, 269, 147, 0, 1809, 1641, 1183, 961, 1465, 828, 685, 466, 702, 528, 295, 150, 0), # 116 (1784, 1684, 1558, 1638, 1379, 691, 678, 593, 707, 344, 270, 148, 0, 1827, 1649, 1198, 972, 1472, 836, 686, 470, 708, 533, 297, 151, 0), # 117 (1801, 1690, 1573, 1649, 1391, 696, 683, 595, 712, 349, 272, 149, 0, 1851, 1656, 1208, 978, 1488, 838, 692, 479, 711, 537, 298, 152, 0), # 118 (1818, 1706, 1590, 1662, 1398, 701, 687, 602, 716, 349, 275, 150, 0, 1866, 1666, 1213, 985, 1497, 839, 695, 484, 715, 540, 301, 153, 0), # 119 (1829, 1715, 1604, 1676, 1413, 704, 690, 604, 722, 351, 276, 150, 0, 1883, 1677, 1221, 994, 1509, 848, 696, 485, 719, 546, 302, 155, 0), # 120 (1841, 1727, 1618, 1683, 1427, 709, 693, 606, 729, 353, 278, 151, 0, 1895, 1688, 1233, 1001, 1515, 852, 698, 485, 724, 551, 303, 155, 0), # 121 (1852, 1736, 1632, 1697, 1442, 718, 702, 609, 735, 356, 278, 152, 0, 1908, 1695, 1237, 1007, 1529, 858, 708, 489, 729, 557, 303, 155, 0), # 122 (1860, 1750, 1651, 1712, 1459, 720, 703, 613, 740, 358, 280, 153, 0, 1926, 1706, 1250, 1018, 1535, 868, 711, 493, 737, 559, 305, 155, 0), # 123 (1874, 1758, 1663, 1728, 1467, 722, 708, 615, 746, 362, 281, 153, 0, 1948, 1717, 1257, 1026, 1547, 877, 716, 497, 743, 559, 306, 155, 0), # 124 (1891, 1771, 1673, 1746, 1477, 726, 717, 618, 751, 365, 281, 157, 0, 1971, 1729, 1267, 1033, 1567, 886, 719, 504, 750, 565, 307, 155, 0), # 125 (1903, 1780, 1682, 1753, 1487, 728, 723, 621, 757, 366, 283, 158, 0, 1980, 1745, 1271, 1043, 1580, 888, 720, 509, 756, 567, 310, 155, 0), # 126 (1917, 1791, 1688, 1764, 1502, 731, 728, 624, 765, 367, 285, 160, 0, 1992, 1754, 1279, 1050, 1585, 895, 729, 514, 763, 571, 314, 156, 0), # 127 (1930, 1802, 1701, 1776, 1516, 737, 733, 629, 768, 369, 286, 161, 0, 2012, 1766, 1291, 1056, 1596, 908, 732, 520, 771, 572, 319, 158, 0), # 128 (1948, 1809, 1713, 1788, 1529, 739, 736, 634, 775, 369, 287, 163, 0, 2027, 1777, 1304, 1068, 1611, 914, 738, 521, 777, 576, 322, 159, 0), # 129 (1956, 1817, 1725, 1805, 1540, 742, 743, 636, 777, 372, 287, 163, 0, 2037, 1784, 1313, 1078, 1625, 920, 739, 524, 782, 580, 324, 160, 0), # 130 (1969, 1827, 1742, 1815, 1549, 747, 747, 637, 781, 375, 289, 165, 0, 2051, 1794, 1321, 1089, 1640, 927, 745, 527, 787, 582, 324, 160, 0), # 131 (1991, 1833, 1755, 1825, 1560, 751, 756, 642, 791, 377, 292, 165, 0, 2062, 1809, 1325, 1096, 1652, 940, 749, 529, 790, 587, 326, 162, 0), # 132 (1999, 1851, 1770, 1836, 1573, 757, 760, 648, 802, 380, 292, 168, 0, 2075, 1822, 1335, 1107, 1659, 947, 752, 534, 794, 589, 327, 162, 0), # 133 (2013, 1868, 1780, 1844, 1584, 759, 768, 653, 809, 382, 295, 171, 0, 2088, 1830, 1346, 1115, 1670, 951, 754, 537, 797, 592, 327, 163, 0), # 134 (2020, 1878, 1791, 1858, 1591, 774, 775, 656, 812, 384, 295, 171, 0, 2103, 1836, 1356, 1119, 1679, 954, 757, 543, 803, 598, 328, 164, 0), # 135 (2033, 1889, 1800, 1864, 1601, 776, 775, 660, 816, 388, 297, 171, 0, 2118, 1845, 1366, 1126, 1690, 957, 762, 544, 813, 599, 330, 164, 0), # 136 (2048, 1896, 1811, 1873, 1611, 778, 777, 663, 820, 392, 298, 171, 0, 2132, 1859, 1371, 1129, 1701, 963, 768, 548, 817, 604, 332, 166, 0), # 137 (2054, 1907, 1825, 1888, 1620, 785, 781, 665, 820, 392, 301, 171, 0, 2139, 1871, 1379, 1137, 1713, 966, 773, 552, 821, 605, 333, 167, 0), # 138 (2064, 1915, 1838, 1895, 1631, 788, 785, 672, 825, 394, 304, 171, 0, 2157, 1884, 1383, 1145, 1721, 969, 776, 555, 824, 611, 338, 169, 0), # 139 (2078, 1931, 1851, 1907, 1644, 791, 785, 675, 831, 395, 306, 172, 0, 2167, 1891, 1388, 1152, 1729, 974, 777, 558, 832, 616, 339, 170, 0), # 140 (2092, 1943, 1869, 1917, 1656, 795, 787, 677, 838, 395, 307, 172, 0, 2178, 1895, 1400, 1159, 1744, 980, 782, 559, 836, 621, 343, 172, 0), # 141 (2103, 1952, 1883, 1929, 1662, 801, 789, 681, 846, 397, 311, 172, 0, 2195, 1907, 1412, 1164, 1753, 988, 787, 561, 842, 630, 347, 172, 0), # 142 (2118, 1961, 1893, 1945, 1669, 807, 796, 683, 848, 400, 313, 173, 0, 2215, 1918, 1425, 1173, 1765, 995, 788, 571, 852, 633, 349, 174, 0), # 143 (2135, 1972, 1900, 1961, 1683, 813, 800, 685, 854, 400, 314, 175, 0, 2229, 1930, 1434, 1180, 1782, 1000, 792, 573, 856, 638, 352, 174, 0), # 144 (2147, 1983, 1912, 1974, 1691, 818, 805, 690, 860, 402, 315, 175, 0, 2243, 1941, 1440, 1189, 1793, 1007, 796, 577, 862, 643, 355, 175, 0), # 145 (2156, 1990, 1921, 1981, 1697, 823, 809, 693, 866, 404, 316, 175, 0, 2263, 1949, 1451, 1201, 1803, 1012, 800, 582, 868, 647, 356, 176, 0), # 146 (2170, 1999, 1931, 1994, 1705, 824, 813, 695, 873, 408, 317, 175, 0, 2280, 1964, 1457, 1207, 1815, 1017, 803, 586, 873, 650, 359, 176, 0), # 147 (2182, 2003, 1939, 2010, 1715, 828, 818, 699, 878, 409, 318, 176, 0, 2291, 1971, 1464, 1213, 1828, 1020, 805, 589, 876, 653, 361, 178, 0), # 148 (2195, 2014, 1956, 2022, 1723, 831, 823, 702, 882, 412, 322, 178, 0, 2307, 1979, 1475, 1217, 1841, 1024, 809, 592, 881, 656, 363, 179, 0), # 149 (2205, 2021, 1975, 2032, 1731, 835, 830, 706, 888, 413, 325, 178, 0, 2320, 1989, 1485, 1225, 1853, 1029, 812, 596, 890, 659, 365, 179, 0), # 150 (2221, 2031, 1982, 2043, 1742, 838, 835, 715, 891, 415, 327, 178, 0, 2336, 1994, 1494, 1231, 1862, 1031, 813, 597, 895, 665, 371, 179, 0), # 151 (2232, 2043, 1988, 2055, 1751, 840, 838, 720, 896, 417, 328, 180, 0, 2343, 2003, 1497, 1235, 1874, 1037, 815, 601, 902, 670, 376, 179, 0), # 152 (2243, 2049, 1998, 2064, 1759, 843, 841, 723, 903, 421, 329, 180, 0, 2354, 2017, 1499, 1246, 1886, 1041, 819, 609, 907, 674, 377, 179, 0), # 153 (2257, 2060, 2005, 2076, 1771, 848, 848, 731, 910, 424, 331, 181, 0, 2363, 2032, 1513, 1250, 1888, 1048, 823, 615, 908, 679, 383, 181, 0), # 154 (2268, 2069, 2015, 2085, 1785, 856, 853, 734, 913, 425, 332, 182, 0, 2378, 2043, 1516, 1256, 1898, 1052, 829, 618, 913, 685, 385, 181, 0), # 155 (2282, 2076, 2029, 2100, 1793, 865, 858, 736, 918, 426, 336, 184, 0, 2385, 2053, 1524, 1259, 1908, 1057, 834, 622, 914, 690, 385, 182, 0), # 156 (2292, 2087, 2042, 2114, 1799, 878, 861, 737, 925, 429, 336, 186, 0, 2400, 2063, 1537, 1264, 1926, 1062, 838, 624, 921, 694, 393, 183, 0), # 157 (2306, 2096, 2049, 2126, 1806, 885, 864, 741, 932, 432, 339, 187, 0, 2416, 2074, 1542, 1268, 1937, 1070, 840, 627, 926, 703, 395, 183, 0), # 158 (2317, 2106, 2058, 2139, 1820, 889, 867, 743, 934, 437, 339, 187, 0, 2435, 2080, 1547, 1273, 1947, 1075, 843, 629, 932, 710, 399, 185, 0), # 159 (2325, 2112, 2069, 2149, 1833, 896, 870, 748, 940, 441, 339, 188, 0, 2448, 2090, 1549, 1276, 1955, 1083, 848, 633, 938, 712, 405, 185, 0), # 160 (2331, 2120, 2084, 2161, 1842, 904, 873, 751, 948, 443, 340, 189, 0, 2463, 2097, 1560, 1279, 1969, 1089, 851, 637, 944, 713, 408, 186, 0), # 161 (2343, 2129, 2098, 2166, 1852, 906, 876, 757, 950, 445, 341, 190, 0, 2468, 2110, 1571, 1281, 1978, 1093, 855, 638, 949, 715, 408, 186, 0), # 162 (2351, 2136, 2106, 2184, 1857, 910, 879, 762, 951, 446, 341, 192, 0, 2482, 2116, 1580, 1284, 1986, 1098, 858, 641, 952, 717, 411, 187, 0), # 163 (2364, 2147, 2113, 2191, 1867, 913, 884, 767, 956, 447, 342, 192, 0, 2485, 2124, 1587, 1289, 1997, 1101, 859, 644, 958, 723, 412, 188, 0), # 164 (2380, 2163, 2119, 2206, 1874, 916, 886, 770, 959, 448, 342, 195, 0, 2499, 2143, 1594, 1296, 2007, 1104, 860, 649, 961, 724, 413, 190, 0), # 165 (2393, 2169, 2127, 2219, 1890, 918, 890, 779, 963, 448, 343, 195, 0, 2507, 2151, 1598, 1300, 2014, 1109, 862, 654, 966, 729, 414, 190, 0), # 166 (2403, 2179, 2136, 2225, 1897, 920, 891, 781, 968, 450, 346, 196, 0, 2517, 2163, 1610, 1306, 2017, 1113, 866, 659, 971, 730, 415, 190, 0), # 167 (2414, 2185, 2142, 2235, 1909, 922, 892, 785, 974, 452, 348, 198, 0, 2531, 2176, 1617, 1313, 2027, 1115, 869, 664, 978, 734, 415, 190, 0), # 168 (2431, 2188, 2147, 2244, 1916, 926, 894, 787, 979, 454, 348, 198, 0, 2547, 2185, 1624, 1318, 2038, 1119, 869, 668, 983, 741, 415, 190, 0), # 169 (2441, 2196, 2155, 2255, 1922, 930, 896, 790, 984, 457, 349, 199, 0, 2555, 2195, 1627, 1322, 2050, 1122, 874, 670, 984, 744, 417, 190, 0), # 170 (2447, 2200, 2159, 2259, 1927, 934, 899, 792, 986, 457, 349, 200, 0, 2562, 2201, 1633, 1324, 2059, 1126, 876, 674, 989, 747, 418, 190, 0), # 171 (2455, 2206, 2173, 2262, 1935, 940, 901, 794, 991, 457, 350, 201, 0, 2574, 2206, 1637, 1327, 2069, 1127, 878, 676, 989, 752, 420, 191, 0), # 172 (2467, 2213, 2184, 2270, 1941, 946, 905, 795, 995, 458, 350, 201, 0, 2583, 2216, 1642, 1329, 2080, 1130, 881, 678, 994, 754, 420, 191, 0), # 173 (2473, 2219, 2193, 2275, 1946, 949, 908, 795, 998, 460, 350, 201, 0, 2592, 2225, 1644, 1331, 2091, 1132, 887, 682, 1001, 756, 422, 192, 0), # 174 (2477, 2225, 2199, 2279, 1955, 952, 911, 796, 1004, 461, 351, 201, 0, 2599, 2232, 1651, 1335, 2100, 1138, 887, 684, 1005, 758, 424, 193, 0), # 175 (2484, 2229, 2209, 2285, 1959, 955, 913, 797, 1008, 461, 351, 201, 0, 2606, 2247, 1656, 1337, 2106, 1140, 891, 685, 1009, 761, 428, 193, 0), # 176 (2491, 2230, 2211, 2289, 1963, 955, 915, 799, 1010, 461, 351, 201, 0, 2615, 2253, 1658, 1343, 2109, 1143, 893, 688, 1011, 761, 430, 193, 0), # 177 (2494, 2232, 2216, 2292, 1966, 955, 920, 802, 1014, 461, 353, 201, 0, 2618, 2257, 1663, 1349, 2113, 1146, 898, 689, 1013, 762, 435, 194, 0), # 178 (2494, 2232, 2216, 2292, 1966, 955, 920, 802, 1014, 461, 353, 201, 0, 2618, 2257, 1663, 1349, 2113, 1146, 898, 689, 1013, 762, 435, 194, 0), # 179 ) passenger_arriving_rate = ( (8.033384925394829, 8.103756554216645, 6.9483776394833425, 7.45760132863612, 5.924997981450252, 2.9294112699015167, 3.3168284922991322, 3.102117448652949, 3.2480528331562706, 1.5832060062089484, 1.1214040437028276, 0.6530553437741565, 0.0, 8.134208340125381, 7.183608781515721, 5.607020218514138, 4.749618018626844, 6.496105666312541, 4.342964428114128, 3.3168284922991322, 2.0924366213582264, 2.962498990725126, 2.4858671095453735, 1.3896755278966686, 0.7367051412924223, 0.0), # 0 (8.566923443231959, 8.638755684745645, 7.407128788440204, 7.95017310393194, 6.317323026639185, 3.122918011773052, 3.535575153010955, 3.306342481937139, 3.462530840710885, 1.6875922769108604, 1.1954923029216353, 0.6961622214419141, 0.0, 8.671666635903767, 7.657784435861053, 5.9774615146081755, 5.06277683073258, 6.92506168142177, 4.628879474711995, 3.535575153010955, 2.230655722695037, 3.1586615133195926, 2.650057701310647, 1.4814257576880407, 0.7853414258859679, 0.0), # 1 (9.09875681436757, 9.171631583973436, 7.864056380729885, 8.440785245597754, 6.708227171999727, 3.3156527735449486, 3.7534548063685635, 3.5097501652696135, 3.676152963668026, 1.7915655100082188, 1.269286173007017, 0.7390976869404075, 0.0, 9.206983725135505, 8.13007455634448, 6.346430865035084, 5.374696530024655, 7.352305927336052, 4.913650231377459, 3.7534548063685635, 2.3683234096749635, 3.3541135859998636, 2.8135950818659183, 1.5728112761459772, 0.8337846894521307, 0.0), # 2 (9.6268124690345, 9.70027006950679, 8.317347825759807, 8.927491689038488, 7.096172454402028, 3.5068512477461056, 3.9696029133183646, 3.7115341049963386, 3.8880720858245827, 1.8947130793704727, 1.3424929098206355, 0.7816914246573948, 0.0, 9.738036490006762, 8.598605671231342, 6.712464549103178, 5.684139238111417, 7.7761441716491655, 5.196147746994874, 3.9696029133183646, 2.5048937483900753, 3.548086227201014, 2.97583056301283, 1.6634695651519613, 0.8818427335915264, 0.0), # 3 (10.149017837465571, 10.222556958952469, 8.765190532937382, 9.408346369659084, 7.479620910716259, 3.6957491269054237, 4.183154934806767, 3.910887907463277, 4.097441090977444, 1.996622358867072, 1.4148197692241535, 0.8237731189806353, 0.0, 10.262701812703709, 9.061504308786986, 7.074098846120767, 5.9898670766012145, 8.194882181954888, 5.475243070448588, 4.183154934806767, 2.6398208049324454, 3.7398104553581293, 3.136115456553029, 1.7530381065874767, 0.9293233599047701, 0.0), # 4 (10.663300349893618, 10.736378069917262, 9.205771911670025, 9.881403222864472, 7.8570345778125645, 3.8815821035518008, 4.393246331780179, 4.1070051790163955, 4.303412862923498, 2.096880722367466, 1.4859740070792353, 0.8651724542978865, 0.0, 10.778856575412524, 9.51689699727675, 7.429870035396177, 6.290642167102396, 8.606825725846996, 5.749807250622953, 4.393246331780179, 2.772558645394143, 3.9285172889062823, 3.2938010742881585, 1.841154382334005, 0.9760343699924785, 0.0), # 5 (11.167587436551466, 11.239619220007935, 9.637279371365155, 10.344716184059584, 8.226875492561113, 4.06358587021414, 4.59901256518501, 4.299079526001659, 4.5051402854596345, 2.195075543741104, 1.555662879247542, 0.9057191149969079, 0.0, 11.284377660319372, 9.962910264965986, 7.77831439623771, 6.5852266312233105, 9.010280570919269, 6.018711336402323, 4.59901256518501, 2.902561335867243, 4.113437746280557, 3.448238728019862, 1.9274558742730312, 1.021783565455267, 0.0), # 6 (11.65980652767195, 11.73016622683126, 10.05790032143018, 10.796339188649355, 8.587605691832056, 4.2409961194213395, 4.799589095967668, 4.486304554765035, 4.701776242382744, 2.2907941968574352, 1.6235936415907386, 0.9452427854654573, 0.0, 11.777141949610431, 10.397670640120028, 8.117968207953693, 6.872382590572304, 9.403552484765488, 6.280826376671049, 4.799589095967668, 3.029282942443814, 4.293802845916028, 3.598779729549786, 2.0115800642860364, 1.066378747893751, 0.0), # 7 (12.137885053487896, 12.205904907994013, 10.465822171272528, 11.234326172038713, 8.937687212495558, 4.413048543702297, 4.994111385074558, 4.667873871652484, 4.89247361748971, 2.3836240555859103, 1.6894735499704858, 0.9835731500912939, 0.0, 12.255026325471867, 10.81930465100423, 8.447367749852429, 7.150872166757729, 9.78494723497942, 6.535023420313477, 4.994111385074558, 3.152177531215927, 4.468843606247779, 3.744775390679572, 2.093164434254506, 1.1096277189085468, 0.0), # 8 (12.599750444232136, 12.664721081102966, 10.859232330299607, 11.656731069632603, 9.27558209142177, 4.578978835585919, 5.181714893452096, 4.842981083009976, 5.076385294577426, 2.4731524937959772, 1.7530098602484476, 1.0205398932621754, 0.0, 12.71590767008986, 11.225938825883926, 8.765049301242238, 7.41945748138793, 10.152770589154851, 6.780173516213966, 5.181714893452096, 3.270699168275656, 4.637791045710885, 3.8855770232108684, 2.1718464660599213, 1.1513382801002698, 0.0), # 9 (13.043330130137491, 13.104500563764889, 11.236318207918833, 12.061607816835945, 9.599752365480853, 4.7380226876011005, 5.361535082046684, 5.010819795183474, 5.252664157442781, 2.558966885357086, 1.8139098282862867, 1.0559726993658605, 0.0, 13.157662865650577, 11.615699693024464, 9.069549141431432, 7.676900656071258, 10.505328314885562, 7.015147713256865, 5.361535082046684, 3.3843019197150714, 4.799876182740427, 4.020535938945316, 2.247263641583767, 1.1913182330695355, 0.0), # 10 (13.466551541436809, 13.52312917358657, 11.595267213537621, 12.447010349053677, 9.908660071542968, 4.889415792276744, 5.532707411804733, 5.170583614518944, 5.420463089882663, 2.640654604138688, 1.8718807099456667, 1.0897012527901082, 0.0, 13.57816879434018, 11.986713780691188, 9.359403549728333, 7.921963812416063, 10.840926179765326, 7.238817060326522, 5.532707411804733, 3.4924398516262456, 4.954330035771484, 4.14900344968456, 2.3190534427075247, 1.229375379416961, 0.0), # 11 (13.8673421083629, 13.918492728174757, 11.934266756563387, 12.810992601690735, 10.200767246478268, 5.032393842141746, 5.694367343672649, 5.321466147362347, 5.578934975693962, 2.7178030240102293, 1.9266297610882495, 1.1215552379226759, 0.0, 13.975302338344855, 12.337107617149433, 9.633148805441246, 8.153409072030687, 11.157869951387925, 7.4500526063072865, 5.694367343672649, 3.5945670301012465, 5.100383623239134, 4.270330867230246, 2.3868533513126775, 1.26531752074316, 0.0), # 12 (14.243629261148602, 14.288477045136244, 12.251504246403549, 13.151608510152053, 10.474535927156907, 5.166192529725009, 5.845650338596845, 5.462661000059654, 5.727232698673564, 2.7899995188411624, 1.9778642375756985, 1.1513643391513229, 0.0, 14.346940379850777, 12.66500773066455, 9.889321187878492, 8.369998556523486, 11.454465397347128, 7.647725400083517, 5.845650338596845, 3.6901375212321494, 5.237267963578454, 4.383869503384019, 2.45030084928071, 1.2989524586487495, 0.0), # 13 (14.593340430026746, 14.630967942077797, 12.54516709246553, 13.466912009842552, 10.728428150449055, 5.2900475475554325, 5.9856918575237295, 5.593361778956831, 5.864509142618358, 2.856831462500934, 2.0252913952696763, 1.1789582408638082, 0.0, 14.690959801044102, 12.968540649501888, 10.12645697634838, 8.570494387502801, 11.729018285236716, 7.830706490539565, 5.9856918575237295, 3.778605391111023, 5.3642140752245275, 4.488970669947518, 2.509033418493106, 1.3300879947343454, 0.0), # 14 (14.914403045230168, 14.943851236606186, 12.813442704156724, 13.754957036167184, 10.960905953224861, 5.403194588161918, 6.1136273613997005, 5.7127620903998375, 5.989917191325237, 2.917886228858997, 2.0686184900318456, 1.2041666274478897, 0.0, 15.00523748411101, 13.245832901926784, 10.343092450159226, 8.753658686576989, 11.979834382650473, 7.997866926559773, 6.1136273613997005, 3.8594247058299413, 5.480452976612431, 4.584985678722395, 2.562688540831345, 1.3585319306005625, 0.0), # 15 (15.204744536991681, 15.225012746328195, 13.054518490884568, 14.013797524530858, 11.170431372354487, 5.504869344073363, 6.228592311171181, 5.820055540734641, 6.102609728591085, 2.972751191784799, 2.1075527777238703, 1.2268191832913256, 0.0, 15.287650311237673, 13.495011016204579, 10.53776388861935, 8.918253575354395, 12.20521945718217, 8.148077757028497, 6.228592311171181, 3.932049531480973, 5.585215686177244, 4.671265841510287, 2.6109036981769136, 1.384092067848018, 0.0), # 16 (15.46229233554412, 15.472338288850588, 13.266581862056471, 14.241487410338536, 11.355466444708094, 5.594307507818667, 6.329722167784569, 5.914435736307213, 6.201739638212791, 3.021013725147788, 2.141801514207413, 1.2467455927818742, 0.0, 15.536075164610265, 13.714201520600614, 10.709007571037066, 9.063041175443361, 12.403479276425582, 8.280210030830098, 6.329722167784569, 3.9959339341561906, 5.677733222354047, 4.747162470112846, 2.6533163724112945, 1.4065762080773265, 0.0), # 17 (15.684973871120327, 15.683713681780135, 13.447820227079841, 14.436080628995136, 11.514473207155827, 5.670744771926737, 6.416152392186281, 5.995096283463507, 6.286459803987251, 3.0622612028174157, 2.171071955344136, 1.2637755403072954, 0.0, 15.748388926414954, 13.901530943380248, 10.855359776720679, 9.186783608452245, 12.572919607974502, 8.39313479684891, 6.416152392186281, 4.050531979947669, 5.757236603577914, 4.812026876331712, 2.689564045415968, 1.4257921528891033, 0.0), # 18 (15.870716573953118, 15.857024742723624, 13.596420995362104, 14.59563111590558, 11.645913696567856, 5.733416828926462, 6.4870184453227155, 6.061230788549498, 6.355923109711349, 3.0960809986631324, 2.1950713569957014, 1.2777387102553464, 0.0, 15.922468478837914, 14.055125812808807, 10.975356784978505, 9.288242995989394, 12.711846219422698, 8.485723103969297, 6.4870184453227155, 4.095297734947473, 5.822956848283928, 4.865210371968527, 2.7192841990724212, 1.441547703883966, 0.0), # 19 (16.01744787427533, 15.990157289287811, 13.710571576310672, 14.718192806474825, 11.748249949814339, 5.781559371346751, 6.54145578814029, 6.112032857911145, 6.409282439181973, 3.1220604865543846, 2.213506975023774, 1.2884647870137858, 0.0, 16.05619070406532, 14.17311265715164, 11.067534875118868, 9.366181459663151, 12.818564878363945, 8.556846001075604, 6.54145578814029, 4.129685265247679, 5.874124974907169, 4.9060642688249425, 2.7421143152621346, 1.4536506626625285, 0.0), # 20 (16.123095202319785, 16.080997139079486, 13.78845937933296, 14.801819636107783, 11.819944003765428, 5.8144080917165, 6.578599881585408, 6.1466960978944165, 6.445690676196012, 3.139787040360623, 2.226086065290016, 1.2957834549703726, 0.0, 16.147432484283325, 14.253618004674097, 11.13043032645008, 9.419361121081867, 12.891381352392024, 8.605374537052183, 6.578599881585408, 4.153148636940357, 5.909972001882714, 4.933939878702596, 2.757691875866592, 1.461908830825408, 0.0), # 21 (16.18558598831933, 16.12743010970541, 13.82827181383638, 14.844565540209405, 11.85945789529128, 5.83119868256461, 6.59758618660448, 6.164414114845277, 6.464300704550355, 3.148848033951298, 2.232515883656091, 1.2995243985128655, 0.0, 16.194070701678125, 14.294768383641518, 11.162579418280455, 9.446544101853892, 12.92860140910071, 8.630179760783388, 6.59758618660448, 4.1651419161175784, 5.92972894764564, 4.948188513403136, 2.7656543627672763, 1.4661300099732195, 0.0), # 22 (16.208629381348224, 16.132927937814358, 13.83323090992227, 14.849916975308645, 11.869580859768103, 5.833333333333334, 6.599843201807471, 6.166329218106997, 6.466627325102881, 3.149916909007774, 2.233322143243131, 1.2999863435451913, 0.0, 16.2, 14.299849778997103, 11.166610716215654, 9.44975072702332, 12.933254650205763, 8.632860905349796, 6.599843201807471, 4.166666666666667, 5.9347904298840515, 4.949972325102882, 2.7666461819844543, 1.4666298125285782, 0.0), # 23 (16.225619860854646, 16.12972098765432, 13.832419753086421, 14.849258333333335, 11.875314787855842, 5.833333333333334, 6.598603050108934, 6.163666666666667, 6.466315555555555, 3.149260246913581, 2.2332332210998884, 1.2998781893004117, 0.0, 16.2, 14.298660082304526, 11.166166105499443, 9.44778074074074, 12.93263111111111, 8.629133333333334, 6.598603050108934, 4.166666666666667, 5.937657393927921, 4.949752777777779, 2.7664839506172845, 1.4663382716049385, 0.0), # 24 (16.242251568338528, 16.1233996342021, 13.830818472793784, 14.847955246913582, 11.880922608634137, 5.833333333333334, 6.596159122085048, 6.158436213991771, 6.465699588477367, 3.1479675354366723, 2.233056906513697, 1.2996646852613931, 0.0, 16.2, 14.296311537875322, 11.165284532568485, 9.443902606310015, 12.931399176954734, 8.62181069958848, 6.596159122085048, 4.166666666666667, 5.940461304317068, 4.949318415637862, 2.766163694558757, 1.4657636031092822, 0.0), # 25 (16.258523230476854, 16.114060448102425, 13.828449016918157, 14.846022530864197, 11.886404126315846, 5.833333333333334, 6.592549374646977, 6.150736625514405, 6.46478732510288, 3.146060283493371, 2.2327947956935614, 1.2993487578113097, 0.0, 16.2, 14.292836335924404, 11.163973978467807, 9.43818085048011, 12.92957465020576, 8.611031275720167, 6.592549374646977, 4.166666666666667, 5.943202063157923, 4.948674176954733, 2.7656898033836312, 1.46491458619113, 0.0), # 26 (16.27443357394662, 16.1018, 13.825333333333333, 14.843475, 11.891759145113827, 5.833333333333334, 6.587811764705883, 6.140666666666667, 6.463586666666666, 3.143560000000001, 2.232448484848485, 1.2989333333333337, 0.0, 16.2, 14.288266666666669, 11.162242424242425, 9.430679999999999, 12.927173333333332, 8.596933333333334, 6.587811764705883, 4.166666666666667, 5.945879572556914, 4.947825000000001, 2.765066666666667, 1.4638000000000002, 0.0), # 27 (16.2899813254248, 16.08671486053955, 13.821493369913123, 14.840327469135804, 11.896987469240962, 5.833333333333334, 6.581984249172921, 6.12832510288066, 6.462105514403292, 3.140488193872886, 2.232019570187472, 1.2984213382106389, 0.0, 16.2, 14.282634720317025, 11.160097850937358, 9.421464581618656, 12.924211028806583, 8.579655144032923, 6.581984249172921, 4.166666666666667, 5.948493734620481, 4.946775823045269, 2.764298673982625, 1.462428623685414, 0.0), # 28 (16.3051652115884, 16.0689016003658, 13.816951074531323, 14.83659475308642, 11.902088902910101, 5.833333333333334, 6.575104784959253, 6.113810699588477, 6.460351769547325, 3.1368663740283504, 2.2315096479195247, 1.2978156988263985, 0.0, 16.2, 14.27597268709038, 11.157548239597624, 9.41059912208505, 12.92070353909465, 8.559334979423868, 6.575104784959253, 4.166666666666667, 5.951044451455051, 4.945531584362141, 2.763390214906265, 1.460809236396891, 0.0), # 29 (16.319983959114396, 16.04845679012346, 13.811728395061728, 14.832291666666666, 11.907063250334119, 5.833333333333334, 6.567211328976035, 6.097222222222222, 6.458333333333333, 3.1327160493827173, 2.230920314253648, 1.297119341563786, 0.0, 16.2, 14.268312757201645, 11.15460157126824, 9.398148148148149, 12.916666666666666, 8.536111111111111, 6.567211328976035, 4.166666666666667, 5.953531625167059, 4.944097222222223, 2.7623456790123457, 1.458950617283951, 0.0), # 30 (16.334436294679772, 16.02547700045725, 13.805847279378145, 14.82743302469136, 11.911910315725876, 5.833333333333334, 6.558341838134432, 6.078658436213992, 6.456058106995885, 3.1280587288523103, 2.2302531653988447, 1.296335192805975, 0.0, 16.2, 14.259687120865724, 11.151265826994223, 9.384176186556928, 12.91211621399177, 8.510121810699589, 6.558341838134432, 4.166666666666667, 5.955955157862938, 4.942477674897121, 2.761169455875629, 1.4568615454961138, 0.0), # 31 (16.34852094496153, 16.00005880201189, 13.799329675354366, 14.82203364197531, 11.916629903298237, 5.833333333333334, 6.548534269345599, 6.058218106995886, 6.453533991769548, 3.1229159213534534, 2.229509797564119, 1.2954661789361381, 0.0, 16.2, 14.250127968297518, 11.147548987820594, 9.368747764060357, 12.907067983539095, 8.48150534979424, 6.548534269345599, 4.166666666666667, 5.958314951649118, 4.940677880658438, 2.759865935070873, 1.4545508001828993, 0.0), # 32 (16.362236636636634, 15.972298765432097, 13.792197530864199, 14.816108333333332, 11.921221817264065, 5.833333333333334, 6.537826579520697, 6.0360000000000005, 6.450768888888889, 3.1173091358024703, 2.228691806958474, 1.2945152263374486, 0.0, 16.2, 14.239667489711932, 11.143459034792368, 9.351927407407409, 12.901537777777778, 8.450400000000002, 6.537826579520697, 4.166666666666667, 5.960610908632033, 4.938702777777778, 2.75843950617284, 1.452027160493827, 0.0), # 33 (16.375582096382097, 15.942293461362596, 13.784472793781436, 14.809671913580248, 11.92568586183623, 5.833333333333334, 6.526256725570888, 6.012102880658436, 6.447770699588479, 3.111259881115685, 2.2278007897909133, 1.2934852613930805, 0.0, 16.2, 14.228337875323884, 11.139003948954567, 9.333779643347052, 12.895541399176958, 8.41694403292181, 6.526256725570888, 4.166666666666667, 5.962842930918115, 4.93655730452675, 2.7568945587562874, 1.449299405578418, 0.0), # 34 (16.388556050874893, 15.9101394604481, 13.776177411979882, 14.802739197530864, 11.930021841227594, 5.833333333333334, 6.513862664407327, 5.986625514403293, 6.4445473251028815, 3.1047896662094203, 2.226838342270441, 1.2923792104862066, 0.0, 16.2, 14.216171315348271, 11.134191711352205, 9.314368998628257, 12.889094650205763, 8.381275720164611, 6.513862664407327, 4.166666666666667, 5.965010920613797, 4.934246399176955, 2.755235482395977, 1.4463763145861912, 0.0), # 35 (16.40115722679201, 15.87593333333333, 13.767333333333335, 14.795325, 11.934229559651024, 5.833333333333334, 6.500682352941176, 5.959666666666668, 6.441106666666666, 3.097920000000001, 2.225806060606061, 1.2912000000000003, 0.0, 16.2, 14.203200000000002, 11.129030303030303, 9.29376, 12.882213333333333, 8.343533333333335, 6.500682352941176, 4.166666666666667, 5.967114779825512, 4.931775000000001, 2.753466666666667, 1.4432666666666667, 0.0), # 36 (16.41338435081044, 15.839771650663007, 13.757962505715593, 14.78744413580247, 11.938308821319383, 5.833333333333334, 6.486753748083595, 5.931325102880659, 6.437456625514404, 3.090672391403751, 2.2247055410067764, 1.2899505563176348, 0.0, 16.2, 14.18945611949398, 11.123527705033881, 9.27201717421125, 12.874913251028808, 8.303855144032923, 6.486753748083595, 4.166666666666667, 5.969154410659692, 4.929148045267491, 2.751592501143119, 1.4399792409693644, 0.0), # 37 (16.425236149607162, 15.801750983081849, 13.748086877000459, 14.77911141975309, 11.942259430445535, 5.833333333333334, 6.4721148067457435, 5.901699588477367, 6.433605102880659, 3.0830683493369926, 2.22353837968159, 1.2886338058222835, 0.0, 16.2, 14.174971864045116, 11.11769189840795, 9.249205048010975, 12.867210205761317, 8.262379423868314, 6.4721148067457435, 4.166666666666667, 5.971129715222768, 4.926370473251031, 2.7496173754000917, 1.4365228166438047, 0.0), # 38 (16.436711349859177, 15.761967901234568, 13.737728395061731, 14.770341666666667, 11.94608119124235, 5.833333333333334, 6.456803485838781, 5.8708888888888895, 6.42956, 3.0751293827160504, 2.2223061728395064, 1.2872526748971194, 0.0, 16.2, 14.159779423868311, 11.111530864197531, 9.225388148148149, 12.85912, 8.219244444444445, 6.456803485838781, 4.166666666666667, 5.973040595621175, 4.923447222222223, 2.7475456790123465, 1.4329061728395065, 0.0), # 39 (16.44780867824346, 15.720518975765888, 13.726909007773205, 14.761149691358025, 11.949773907922687, 5.833333333333334, 6.440857742273865, 5.838991769547327, 6.425329218106996, 3.0668770004572488, 2.2210105166895295, 1.2858100899253166, 0.0, 16.2, 14.143910989178481, 11.105052583447646, 9.200631001371743, 12.850658436213992, 8.174588477366258, 6.440857742273865, 4.166666666666667, 5.974886953961343, 4.920383230452676, 2.745381801554641, 1.42913808870599, 0.0), # 40 (16.458526861437004, 15.677500777320528, 13.71565066300869, 14.751550308641978, 11.953337384699417, 5.833333333333334, 6.424315532962156, 5.806106995884774, 6.420920658436214, 3.05833271147691, 2.2196530074406624, 1.2843089772900476, 0.0, 16.2, 14.12739875019052, 11.09826503720331, 9.174998134430727, 12.841841316872427, 8.128549794238685, 6.424315532962156, 4.166666666666667, 5.976668692349708, 4.9171834362139935, 2.743130132601738, 1.4252273433927756, 0.0), # 41 (16.4688646261168, 15.633009876543213, 13.70397530864198, 14.741558333333336, 11.956771425785394, 5.833333333333334, 6.4072148148148145, 5.772333333333334, 6.416342222222223, 3.049518024691359, 2.2182352413019086, 1.282752263374486, 0.0, 16.2, 14.110274897119341, 11.091176206509541, 9.148554074074074, 12.832684444444446, 8.081266666666668, 6.4072148148148145, 4.166666666666667, 5.978385712892697, 4.913852777777779, 2.740795061728396, 1.421182716049383, 0.0), # 42 (16.47882069895983, 15.587142844078647, 13.69190489254687, 14.731188580246915, 11.960075835393496, 5.833333333333334, 6.389593544743001, 5.737769547325104, 6.4116018106995885, 3.040454449016919, 2.2167588144822714, 1.281142874561805, 0.0, 16.2, 14.092571620179852, 11.083794072411356, 9.121363347050755, 12.823203621399177, 8.032877366255146, 6.389593544743001, 4.166666666666667, 5.980037917696748, 4.9103961934156395, 2.738380978509374, 1.4170129858253318, 0.0), # 43 (16.488393806643085, 15.539996250571559, 13.679461362597166, 14.720455864197532, 11.963250417736582, 5.833333333333334, 6.371489679657872, 5.702514403292183, 6.4067073251028805, 3.031163493369914, 2.2152253231907557, 1.279483737235178, 0.0, 16.2, 14.074321109586954, 11.076126615953777, 9.09349048010974, 12.813414650205761, 7.983520164609057, 6.371489679657872, 4.166666666666667, 5.981625208868291, 4.906818621399179, 2.7358922725194335, 1.4127269318701419, 0.0), # 44 (16.497582675843546, 15.491666666666667, 13.66666666666667, 14.709375000000001, 11.966294977027516, 5.833333333333334, 6.352941176470589, 5.666666666666668, 6.4016666666666655, 3.021666666666668, 2.213636363636364, 1.277777777777778, 0.0, 16.2, 14.055555555555554, 11.068181818181818, 9.065000000000001, 12.803333333333331, 7.9333333333333345, 6.352941176470589, 4.166666666666667, 5.983147488513758, 4.903125000000001, 2.733333333333334, 1.4083333333333337, 0.0), # 45 (16.50638603323821, 15.442250663008686, 13.653542752629173, 14.697960802469137, 11.969209317479164, 5.833333333333334, 6.333985992092311, 5.63032510288066, 6.396487736625514, 3.0119854778235036, 2.2119935320281, 1.2760279225727789, 0.0, 16.2, 14.036307148300564, 11.059967660140499, 9.035956433470508, 12.792975473251028, 7.882455144032924, 6.333985992092311, 4.166666666666667, 5.984604658739582, 4.899320267489713, 2.730708550525835, 1.4038409693644263, 0.0), # 46 (16.514802605504055, 15.391844810242342, 13.640111568358483, 14.686228086419753, 11.971993243304391, 5.833333333333334, 6.3146620834341975, 5.593588477366255, 6.391178436213992, 3.0021414357567453, 2.210298424574968, 1.2742370980033535, 0.0, 16.2, 14.016608078036885, 11.051492122874839, 9.006424307270233, 12.782356872427984, 7.831023868312758, 6.3146620834341975, 4.166666666666667, 5.985996621652196, 4.895409362139919, 2.728022313671697, 1.3992586191129404, 0.0), # 47 (16.522831119318074, 15.340545679012347, 13.626395061728397, 14.674191666666669, 11.974646558716064, 5.833333333333334, 6.295007407407407, 5.556555555555557, 6.385746666666667, 2.9921560493827166, 2.208552637485971, 1.272408230452675, 0.0, 16.2, 13.996490534979422, 11.042763187429854, 8.976468148148149, 12.771493333333334, 7.77917777777778, 6.295007407407407, 4.166666666666667, 5.987323279358032, 4.891397222222224, 2.7252790123456796, 1.3945950617283953, 0.0), # 48 (16.53047030135726, 15.288449839963418, 13.612415180612713, 14.661866358024692, 11.977169067927047, 5.833333333333334, 6.275059920923102, 5.519325102880659, 6.380200329218106, 2.982050827617742, 2.2067577669701133, 1.2705442463039174, 0.0, 16.2, 13.97598670934309, 11.033788834850565, 8.946152482853226, 12.760400658436213, 7.727055144032923, 6.275059920923102, 4.166666666666667, 5.9885845339635235, 4.887288786008232, 2.7224830361225427, 1.389859076360311, 0.0), # 49 (16.537718878298588, 15.235653863740286, 13.598193872885233, 14.649266975308642, 11.979560575150202, 5.833333333333334, 6.25485758089244, 5.481995884773663, 6.3745473251028795, 2.971847279378144, 2.204915409236397, 1.2686480719402533, 0.0, 16.2, 13.955128791342785, 11.024577046181985, 8.91554183813443, 12.749094650205759, 7.674794238683129, 6.25485758089244, 4.166666666666667, 5.989780287575101, 4.883088991769548, 2.7196387745770467, 1.385059442158208, 0.0), # 50 (16.544575576819057, 15.182254320987655, 13.583753086419755, 14.636408333333335, 11.981820884598399, 5.833333333333334, 6.23443834422658, 5.4446666666666665, 6.368795555555556, 2.9615669135802474, 2.2030271604938276, 1.2667226337448563, 0.0, 16.2, 13.933948971193416, 11.015135802469137, 8.88470074074074, 12.737591111111112, 7.622533333333334, 6.23443834422658, 4.166666666666667, 5.9909104422991994, 4.878802777777779, 2.716750617283951, 1.380204938271605, 0.0), # 51 (16.551039123595647, 15.128347782350252, 13.56911476909008, 14.623305246913581, 11.983949800484496, 5.833333333333334, 6.213840167836683, 5.407436213991769, 6.3629529218107, 2.9512312391403754, 2.2010946169514076, 1.2647708581008996, 0.0, 16.2, 13.912479439109894, 11.005473084757037, 8.853693717421125, 12.7259058436214, 7.570410699588477, 6.213840167836683, 4.166666666666667, 5.991974900242248, 4.874435082304528, 2.713822953818016, 1.3753043438500232, 0.0), # 52 (16.55710824530535, 15.074030818472796, 13.554300868770008, 14.609972530864198, 11.985947127021364, 5.833333333333334, 6.1931010086339064, 5.370403292181071, 6.357027325102881, 2.940861764974852, 2.1991193748181406, 1.2627956713915565, 0.0, 16.2, 13.890752385307119, 10.995596874090701, 8.822585294924554, 12.714054650205762, 7.518564609053499, 6.1931010086339064, 4.166666666666667, 5.992973563510682, 4.8699908436214, 2.710860173754002, 1.3703664380429816, 0.0), # 53 (16.562781668625146, 15.019400000000001, 13.539333333333333, 14.596425, 11.987812668421869, 5.833333333333334, 6.172258823529412, 5.333666666666667, 6.351026666666667, 2.9304800000000006, 2.19710303030303, 1.2608000000000001, 0.0, 16.2, 13.8688, 10.98551515151515, 8.791440000000001, 12.702053333333334, 7.467133333333333, 6.172258823529412, 4.166666666666667, 5.993906334210934, 4.865475000000001, 2.707866666666667, 1.3654000000000004, 0.0), # 54 (16.568058120232035, 14.964551897576587, 13.524234110653865, 14.582677469135803, 11.989546228898869, 5.833333333333334, 6.151351569434358, 5.2973251028806585, 6.344958847736625, 2.9201074531321454, 2.1950471796150812, 1.2587867703094042, 0.0, 16.2, 13.846654473403445, 10.975235898075404, 8.760322359396435, 12.68991769547325, 7.416255144032922, 6.151351569434358, 4.166666666666667, 5.994773114449434, 4.860892489711935, 2.704846822130773, 1.360413808870599, 0.0), # 55 (16.572936326802996, 14.909583081847279, 13.509025148605396, 14.56874475308642, 11.991147612665237, 5.833333333333334, 6.130417203259905, 5.261477366255145, 6.338831769547324, 2.9097656332876096, 2.1929534189632958, 1.2567589087029418, 0.0, 16.2, 13.824347995732358, 10.964767094816478, 8.729296899862828, 12.677663539094649, 7.366068312757203, 6.130417203259905, 4.166666666666667, 5.995573806332619, 4.856248251028807, 2.7018050297210796, 1.3554166438042983, 0.0), # 56 (16.577415015015013, 14.85459012345679, 13.493728395061732, 14.554641666666669, 11.99261662393383, 5.833333333333334, 6.109493681917211, 5.226222222222224, 6.332653333333334, 2.899476049382717, 2.1908233445566783, 1.254719341563786, 0.0, 16.2, 13.801912757201645, 10.95411672278339, 8.69842814814815, 12.665306666666668, 7.316711111111113, 6.109493681917211, 4.166666666666667, 5.996308311966915, 4.851547222222224, 2.6987456790123465, 1.3504172839506174, 0.0), # 57 (16.581492911545087, 14.79966959304984, 13.478365797896664, 14.540383024691359, 11.99395306691752, 5.833333333333334, 6.088618962317438, 5.191658436213992, 6.326431440329218, 2.8892602103337914, 2.1886585526042324, 1.2526709952751107, 0.0, 16.2, 13.779380948026215, 10.943292763021162, 8.667780631001373, 12.652862880658436, 7.2683218106995895, 6.088618962317438, 4.166666666666667, 5.99697653345876, 4.846794341563787, 2.695673159579333, 1.3454245084590766, 0.0), # 58 (16.585168743070195, 14.744918061271147, 13.462959304983997, 14.525983641975309, 11.995156745829167, 5.833333333333334, 6.067831001371743, 5.157884773662552, 6.320173991769548, 2.879139625057157, 2.1864606393149604, 1.2506167962200887, 0.0, 16.2, 13.756784758420972, 10.9323031965748, 8.63741887517147, 12.640347983539096, 7.221038683127573, 6.067831001371743, 4.166666666666667, 5.9975783729145835, 4.841994547325104, 2.6925918609968, 1.3404470964791952, 0.0), # 59 (16.588441236267325, 14.690432098765434, 13.44753086419753, 14.511458333333334, 11.996227464881638, 5.833333333333334, 6.0471677559912855, 5.125000000000001, 6.31388888888889, 2.8691358024691365, 2.184231200897868, 1.2485596707818931, 0.0, 16.2, 13.734156378600822, 10.921156004489339, 8.607407407407408, 12.62777777777778, 7.175000000000001, 6.0471677559912855, 4.166666666666667, 5.998113732440819, 4.837152777777779, 2.6895061728395064, 1.3354938271604941, 0.0), # 60 (16.591309117813463, 14.636308276177413, 13.432102423411067, 14.496821913580249, 11.997165028287798, 5.833333333333334, 6.026667183087227, 5.093102880658437, 6.3075840329218105, 2.8592702514860546, 2.1819718335619576, 1.246502545343698, 0.0, 16.2, 13.711527998780674, 10.909859167809786, 8.577810754458163, 12.615168065843621, 7.130344032921811, 6.026667183087227, 4.166666666666667, 5.998582514143899, 4.832273971193417, 2.6864204846822135, 1.3305734796524924, 0.0), # 61 (16.593771114385607, 14.582643164151806, 13.416695930498403, 14.482089197530867, 11.997969240260517, 5.833333333333334, 6.006367239570725, 5.062292181069959, 6.301267325102881, 2.849564481024235, 2.1796841335162327, 1.2444483462886757, 0.0, 16.2, 13.68893180917543, 10.898420667581162, 8.548693443072704, 12.602534650205762, 7.0872090534979435, 6.006367239570725, 4.166666666666667, 5.998984620130258, 4.827363065843623, 2.6833391860996807, 1.3256948331047098, 0.0), # 62 (16.595825952660736, 14.529533333333333, 13.401333333333335, 14.467275000000003, 11.998639905012647, 5.833333333333334, 5.986305882352941, 5.0326666666666675, 6.294946666666666, 2.8400400000000006, 2.1773696969696976, 1.2424000000000002, 0.0, 16.2, 13.6664, 10.886848484848487, 8.52012, 12.589893333333332, 7.045733333333335, 5.986305882352941, 4.166666666666667, 5.999319952506323, 4.822425000000002, 2.6802666666666672, 1.3208666666666669, 0.0), # 63 (16.597472359315837, 14.477075354366713, 13.386036579789668, 14.452394135802471, 11.999176826757065, 5.833333333333334, 5.966521068345034, 5.004325102880659, 6.288629958847737, 2.830718317329676, 2.1750301201313547, 1.2403604328608446, 0.0, 16.2, 13.64396476146929, 10.875150600656774, 8.492154951989026, 12.577259917695473, 7.006055144032923, 5.966521068345034, 4.166666666666667, 5.999588413378532, 4.817464711934158, 2.6772073159579337, 1.316097759487883, 0.0), # 64 (16.5987090610279, 14.425365797896662, 13.370827617741199, 14.437461419753088, 11.999579809706631, 5.833333333333334, 5.947050754458163, 4.977366255144033, 6.282325102880659, 2.8216209419295843, 2.1726669992102097, 1.238332571254382, 0.0, 16.2, 13.6216582837982, 10.863334996051048, 8.464862825788751, 12.564650205761318, 6.968312757201646, 5.947050754458163, 4.166666666666667, 5.999789904853316, 4.812487139917697, 2.67416552354824, 1.3113968907178786, 0.0), # 65 (16.599534784473914, 14.374501234567903, 13.35572839506173, 14.422491666666668, 11.99984865807421, 5.833333333333334, 5.927932897603486, 4.95188888888889, 6.27604, 2.81276938271605, 2.170281930415264, 1.2363193415637863, 0.0, 16.2, 13.599512757201648, 10.851409652076319, 8.438308148148149, 12.55208, 6.932644444444446, 5.927932897603486, 4.166666666666667, 5.999924329037105, 4.807497222222223, 2.6711456790123465, 1.3067728395061733, 0.0), # 66 (16.59994825633087, 14.324578235025148, 13.340760859625059, 14.407499691358025, 11.999983176072671, 5.833333333333334, 5.909205454692165, 4.927991769547327, 6.269782551440329, 2.8041851486053964, 2.1678765099555233, 1.23432367017223, 0.0, 16.2, 13.577560371894528, 10.839382549777614, 8.412555445816189, 12.539565102880658, 6.899188477366257, 5.909205454692165, 4.166666666666667, 5.999991588036336, 4.802499897119342, 2.6681521719250116, 1.3022343850022864, 0.0), # 67 (16.59966658316932, 14.275431337669806, 13.325874599908552, 14.39237008856683, 11.999869818983834, 5.833225077478026, 5.890812155863717, 4.905562566681908, 6.263513519280598, 2.795848176658867, 2.1654095969441007, 1.2323373362532992, 0.0, 16.19980024005487, 13.555710698786289, 10.827047984720503, 8.3875445299766, 12.527027038561195, 6.867787593354672, 5.890812155863717, 4.166589341055733, 5.999934909491917, 4.797456696188944, 2.6651749199817103, 1.29776648524271, 0.0), # 68 (16.597026731078905, 14.22556009557945, 13.310651234567901, 14.376340217391304, 11.998838053740013, 5.832369272976682, 5.872214545077291, 4.8833991769547325, 6.256958847736625, 2.7875225562817723, 2.162630090377459, 1.2302958631145768, 0.0, 16.198217592592595, 13.533254494260342, 10.813150451887294, 8.362567668845315, 12.51391769547325, 6.8367588477366255, 5.872214545077291, 4.165978052126201, 5.999419026870006, 4.792113405797102, 2.66213024691358, 1.2932327359617684, 0.0), # 69 (16.59181726009423, 14.174735607770254, 13.295024577046181, 14.359304549114333, 11.996799268404205, 5.8306838388457045, 5.853328107649096, 4.861301630848957, 6.2500815424477985, 2.7791678097850943, 2.159506369740288, 1.228189701505708, 0.0, 16.195091735253776, 13.510086716562785, 10.797531848701441, 8.337503429355282, 12.500163084895597, 6.80582228318854, 5.853328107649096, 4.164774170604074, 5.998399634202102, 4.786434849704778, 2.6590049154092363, 1.2886123279791142, 0.0), # 70 (16.584111457028687, 14.122988247267578, 13.279000114311843, 14.341288204508857, 11.993779284004411, 5.828196087994717, 5.8341613276311906, 4.8392772443225125, 6.242891845755221, 2.7707841437370564, 2.1560499655423633, 1.226020391628362, 0.0, 16.190463820301783, 13.486224307911982, 10.780249827711817, 8.312352431211167, 12.485783691510441, 6.774988142051518, 5.8341613276311906, 4.162997205710512, 5.9968896420022055, 4.780429401502953, 2.6558000228623686, 1.2839080224788708, 0.0), # 71 (16.573982608695655, 14.070348387096773, 13.262583333333334, 14.322316304347826, 11.989803921568626, 5.824933333333335, 5.81472268907563, 4.817333333333334, 6.2354, 2.762371764705883, 2.1522724082934617, 1.2237894736842108, 0.0, 16.184375, 13.461684210526316, 10.761362041467306, 8.287115294117648, 12.4708, 6.744266666666667, 5.81472268907563, 4.160666666666668, 5.994901960784313, 4.7741054347826095, 2.6525166666666666, 1.2791225806451614, 0.0), # 72 (16.561504001908514, 14.016846400283198, 13.245779721079103, 14.302413969404189, 11.984899002124855, 5.820922887771173, 5.795020676034474, 4.795477213839354, 6.227616247523244, 2.753930879259798, 2.1481852285033574, 1.2214984878749227, 0.0, 16.1768664266118, 13.436483366624147, 10.740926142516786, 8.261792637779392, 12.455232495046488, 6.713668099375096, 5.795020676034474, 4.157802062693695, 5.992449501062428, 4.76747132313473, 2.649155944215821, 1.274258763662109, 0.0), # 73 (16.546748923480646, 13.962512659852205, 13.228594764517604, 14.281606320450884, 11.979090346701094, 5.816192064217854, 5.775063772559778, 4.773716201798507, 6.219550830666057, 2.7454616939670253, 2.143799956681829, 1.219148974402169, 0.0, 16.167979252400553, 13.410638718423858, 10.718999783409142, 8.236385081901075, 12.439101661332113, 6.683202682517909, 5.775063772559778, 4.154422903012753, 5.989545173350547, 4.760535440150296, 2.645718952903521, 1.269319332713837, 0.0), # 74 (16.52979066022544, 13.90737753882915, 13.211033950617283, 14.259918478260868, 11.972403776325345, 5.810768175582992, 5.754860462703601, 4.752057613168724, 6.211213991769547, 2.7369644153957884, 2.13912812333865, 1.2167424734676198, 0.0, 16.157754629629633, 13.384167208143815, 10.695640616693249, 8.210893246187364, 12.422427983539094, 6.652880658436215, 5.754860462703601, 4.150548696844995, 5.986201888162673, 4.7533061594202906, 2.6422067901234567, 1.2643070489844683, 0.0), # 75 (16.510702498956285, 13.851471410239393, 13.193102766346595, 14.237375563607085, 11.964865112025606, 5.804678534776205, 5.734419230517997, 4.730508763907942, 6.2026159731748205, 2.728439250114312, 2.134181258983598, 1.2142805252729445, 0.0, 16.146233710562413, 13.357085778002387, 10.67090629491799, 8.185317750342936, 12.405231946349641, 6.622712269471118, 5.734419230517997, 4.146198953411575, 5.982432556012803, 4.745791854535696, 2.638620553269319, 1.259224673658127, 0.0), # 76 (16.48955772648655, 13.794824647108282, 13.174806698673981, 14.21400269726248, 11.956500174829877, 5.797950454707109, 5.7137485600550235, 4.70907696997409, 6.193767017222985, 2.7198864046908207, 2.1289708941264505, 1.2117646700198144, 0.0, 16.13345764746228, 13.329411370217956, 10.64485447063225, 8.15965921407246, 12.38753403444597, 6.592707757963726, 5.7137485600550235, 4.141393181933649, 5.9782500874149385, 4.738000899087494, 2.6349613397347964, 1.254074967918935, 0.0), # 77 (16.46642962962963, 13.737467622461173, 13.156151234567902, 14.189825, 11.94733478576616, 5.790611248285322, 5.69285693536674, 4.687769547325104, 6.184677366255142, 2.711306085693537, 2.123508559276981, 1.2091964479098987, 0.0, 16.119467592592596, 13.301160927008882, 10.617542796384903, 8.13391825708061, 12.369354732510285, 6.562877366255145, 5.69285693536674, 4.136150891632373, 5.97366739288308, 4.729941666666668, 2.6312302469135807, 1.248860692951016, 0.0), # 78 (16.441391495198904, 13.679430709323423, 13.1371418609968, 14.164867592592593, 11.93739476586245, 5.782688228420464, 5.671752840505201, 4.666593811918916, 6.1753572626124065, 2.702698499690686, 2.117805784944966, 1.2065773991448674, 0.0, 16.104304698216733, 13.27235139059354, 10.58902892472483, 8.108095499072057, 12.350714525224813, 6.533231336686482, 5.671752840505201, 4.130491591728903, 5.968697382931225, 4.721622530864199, 2.6274283721993603, 1.243584609938493, 0.0), # 79 (16.414516610007755, 13.620744280720386, 13.117784064929126, 14.139155595813204, 11.92670593614675, 5.774208708022151, 5.650444759522465, 4.645557079713459, 6.165816948635879, 2.694063853250491, 2.111874101640184, 1.2039090639263914, 0.0, 16.08801011659808, 13.242999703190304, 10.559370508200919, 8.082191559751472, 12.331633897271757, 6.503779911598843, 5.650444759522465, 4.1244347914443935, 5.963352968073375, 4.713051865271069, 2.6235568129858255, 1.23824948006549, 0.0), # 80 (16.385878260869568, 13.56143870967742, 13.098083333333335, 14.112714130434785, 11.915294117647058, 5.765200000000001, 5.628941176470589, 4.624666666666667, 6.156066666666666, 2.685402352941177, 2.1057250398724086, 1.2011929824561405, 0.0, 16.070625, 13.213122807017545, 10.528625199362043, 8.05620705882353, 12.312133333333332, 6.474533333333334, 5.628941176470589, 4.118, 5.957647058823529, 4.704238043478263, 2.619616666666667, 1.2328580645161293, 0.0), # 81 (16.355549734597723, 13.501544369219879, 13.078045153177872, 14.085568317230274, 11.903185131391377, 5.75568941726363, 5.607250575401629, 4.603929888736474, 6.146116659045877, 2.676714205330967, 2.099370130151417, 1.198430694935785, 0.0, 16.052190500685874, 13.182737644293633, 10.496850650757084, 8.030142615992899, 12.292233318091753, 6.445501844231063, 5.607250575401629, 4.111206726616879, 5.951592565695688, 4.695189439076759, 2.6156090306355746, 1.2274131244745345, 0.0), # 82 (16.323604318005607, 13.441091632373114, 13.057675011431185, 14.057743276972625, 11.890404798407703, 5.745704272722655, 5.585381440367643, 4.5833540618808115, 6.135977168114616, 2.667999616988085, 2.0928209029869853, 1.195623741566995, 0.0, 16.03274777091907, 13.151861157236944, 10.464104514934926, 8.003998850964255, 12.271954336229232, 6.416695686633136, 5.585381440367643, 4.104074480516182, 5.945202399203851, 4.6859144256575425, 2.6115350022862374, 1.2219174211248287, 0.0), # 83 (16.290115297906603, 13.380110872162485, 13.036978395061729, 14.029264130434784, 11.876978939724037, 5.735271879286694, 5.563342255420687, 4.562946502057613, 6.125658436213991, 2.659258794480756, 2.0860888888888893, 1.1927736625514405, 0.0, 16.012337962962963, 13.120510288065844, 10.430444444444445, 7.977776383442267, 12.251316872427982, 6.388125102880658, 5.563342255420687, 4.096622770919067, 5.938489469862018, 4.676421376811596, 2.607395679012346, 1.2163737156511352, 0.0), # 84 (16.255155961114095, 13.318632461613346, 13.015960791037951, 14.000155998389694, 11.862933376368382, 5.724419549865368, 5.54114150461282, 4.542714525224815, 6.115170705685108, 2.650491944377203, 2.0791856183669055, 1.1898819980907918, 0.0, 15.991002229080934, 13.088701978998708, 10.395928091834525, 7.951475833131607, 12.230341411370215, 6.35980033531474, 5.54114150461282, 4.088871107046691, 5.931466688184191, 4.666718666129899, 2.6031921582075905, 1.210784769237577, 0.0), # 85 (16.21879959444146, 13.256686773751051, 12.994627686328306, 13.970444001610309, 11.84829392936873, 5.713174597368289, 5.518787671996097, 4.522665447340345, 6.104524218869075, 2.64169927324565, 2.0721226219308098, 1.1869502883867193, 0.0, 15.968781721536352, 13.05645317225391, 10.360613109654047, 7.9250978197369495, 12.20904843773815, 6.331731626276483, 5.518787671996097, 4.080838998120206, 5.924146964684365, 4.656814667203437, 2.5989255372656612, 1.2051533430682777, 0.0), # 86 (16.18111948470209, 13.194304181600955, 12.972984567901234, 13.940153260869565, 11.833086419753089, 5.7015643347050755, 5.496289241622575, 4.5028065843621405, 6.093729218106997, 2.6328809876543215, 2.0649114300903775, 1.1839800736408925, 0.0, 15.945717592592594, 13.023780810049816, 10.324557150451888, 7.898642962962963, 12.187458436213994, 6.303929218106997, 5.496289241622575, 4.072545953360768, 5.9165432098765445, 4.646717753623189, 2.594596913580247, 1.1994821983273598, 0.0), # 87 (16.142188918709373, 13.131515058188414, 12.951036922725194, 13.90930889694042, 11.817336668549451, 5.689616074785349, 5.473654697544313, 4.483145252248133, 6.082795945739979, 2.624037294171441, 2.0575635733553868, 1.1809728940549822, 0.0, 15.921850994513035, 12.990701834604803, 10.287817866776932, 7.8721118825143215, 12.165591891479957, 6.276403353147386, 5.473654697544313, 4.064011481989534, 5.908668334274726, 4.636436298980141, 2.5902073845450393, 1.193774096198947, 0.0), # 88 (16.102081183276677, 13.068349776538785, 12.928790237768634, 13.877936030595814, 11.80107049678582, 5.677357130518723, 5.4508925238133665, 4.463688766956257, 6.07173464410913, 2.6151683993652335, 2.050090582235612, 1.1779302898306583, 0.0, 15.897223079561043, 12.957233188137238, 10.250452911178058, 7.845505198095699, 12.14346928821826, 6.24916427373876, 5.4508925238133665, 4.055255093227659, 5.90053524839291, 4.625978676865272, 2.585758047553727, 1.1880317978671624, 0.0), # 89 (16.06086956521739, 13.004838709677419, 12.906250000000002, 13.846059782608698, 11.784313725490197, 5.664814814814815, 5.428011204481793, 4.444444444444445, 6.060555555555556, 2.606274509803922, 2.04250398724083, 1.1748538011695908, 0.0, 15.871875000000001, 12.923391812865496, 10.212519936204147, 7.818823529411765, 12.121111111111112, 6.222222222222222, 5.428011204481793, 4.046296296296297, 5.892156862745098, 4.615353260869567, 2.5812500000000003, 1.1822580645161291, 0.0), # 90 (16.0186273513449, 12.941012230629672, 12.883421696387746, 13.813705273752014, 11.767092175690575, 5.652016440583244, 5.405019223601649, 4.4254196006706294, 6.049268922420364, 2.597355832055731, 2.0348153188808165, 1.17174496827345, 0.0, 15.845847908093276, 12.889194651007948, 10.174076594404081, 7.792067496167191, 12.098537844840727, 6.195587440938882, 5.405019223601649, 4.037154600416603, 5.883546087845287, 4.604568424584006, 2.5766843392775494, 1.1764556573299705, 0.0), # 91 (15.975427828472597, 12.876900712420905, 12.86031081390032, 13.780897624798712, 11.749431668414964, 5.638989320733629, 5.381925065224994, 4.406621551592746, 6.037884987044658, 2.5884125726888843, 2.027036107665348, 1.1686053313439067, 0.0, 15.819182956104251, 12.85465864478297, 10.135180538326738, 7.765237718066651, 12.075769974089315, 6.169270172229845, 5.381925065224994, 4.027849514809735, 5.874715834207482, 4.593632541599572, 2.5720621627800644, 1.1706273374928098, 0.0), # 92 (15.931344283413848, 12.812534528076466, 12.836922839506174, 13.747661956521743, 11.731358024691357, 5.625760768175583, 5.358737213403881, 4.388057613168725, 6.026413991769548, 2.5794449382716054, 2.0191778841042, 1.1654364305826295, 0.0, 15.791921296296294, 12.819800736408922, 10.095889420521, 7.738334814814815, 12.052827983539096, 6.143280658436215, 5.358737213403881, 4.018400548696845, 5.865679012345678, 4.582553985507248, 2.567384567901235, 1.1647758661887697, 0.0), # 93 (15.886450002982048, 12.74794405062171, 12.813263260173755, 13.714023389694043, 11.712897065547754, 5.612358095818728, 5.335464152190369, 4.369735101356501, 6.014866178936138, 2.5704531353721194, 2.01125217870715, 1.16223980619129, 0.0, 15.764104080932785, 12.784637868104188, 10.056260893535747, 7.711359406116356, 12.029732357872277, 6.117629141899102, 5.335464152190369, 4.008827211299091, 5.856448532773877, 4.571341129898015, 2.5626526520347515, 1.1589040046019738, 0.0), # 94 (15.840818273990577, 12.683159653081995, 12.789337562871514, 13.680007045088567, 11.694074612012159, 5.598808616572678, 5.312114365636515, 4.351661332114007, 6.003251790885536, 2.561437370558649, 2.0032705219839726, 1.1590169983715575, 0.0, 15.735772462277092, 12.749186982087132, 10.016352609919863, 7.684312111675945, 12.006503581771073, 6.09232586495961, 5.312114365636515, 3.999149011837627, 5.847037306006079, 4.560002348362857, 2.5578675125743033, 1.1530145139165453, 0.0), # 95 (15.79452238325282, 12.61821170848268, 12.765151234567902, 13.645638043478261, 11.674916485112563, 5.585139643347051, 5.288696337794377, 4.333843621399177, 5.991581069958848, 2.55239785039942, 1.9952444444444448, 1.1557695473251033, 0.0, 15.706967592592594, 12.713465020576134, 9.976222222222225, 7.657193551198258, 11.983162139917695, 6.067381069958849, 5.288696337794377, 3.9893854595336076, 5.8374582425562815, 4.5485460144927545, 2.553030246913581, 1.1471101553166074, 0.0), # 96 (15.747635617582157, 12.553130589849111, 12.740709762231369, 13.61094150563607, 11.655448505876976, 5.571378489051465, 5.265218552716011, 4.316289285169945, 5.979864258497181, 2.5433347814626543, 1.9871854765983423, 1.152498993253596, 0.0, 15.677730624142663, 12.677488925789556, 9.93592738299171, 7.630004344387961, 11.959728516994362, 6.042804999237923, 5.265218552716011, 3.9795560636081895, 5.827724252938488, 4.536980501878691, 2.5481419524462736, 1.141193689986283, 0.0), # 97 (15.700231263791975, 12.487946670206647, 12.71601863283036, 13.575942552334945, 11.635696495333388, 5.557552466595541, 5.241689494453475, 4.299005639384241, 5.968111598841639, 2.5342483703165772, 1.9791051489554419, 1.1492068763587067, 0.0, 15.648102709190674, 12.64127563994577, 9.89552574477721, 7.60274511094973, 11.936223197683278, 6.018607895137937, 5.241689494453475, 3.969680333282529, 5.817848247666694, 4.525314184111649, 2.5432037265660723, 1.1352678791096953, 0.0), # 98 (15.652382608695653, 12.422690322580646, 12.691083333333335, 13.540666304347827, 11.615686274509805, 5.543688888888889, 5.218117647058825, 4.282000000000001, 5.956333333333333, 2.5251388235294123, 1.9710149920255189, 1.1458947368421055, 0.0, 15.618125000000001, 12.604842105263158, 9.855074960127594, 7.575416470588236, 11.912666666666667, 5.9948000000000015, 5.218117647058825, 3.9597777777777776, 5.807843137254903, 4.51355543478261, 2.5382166666666675, 1.129335483870968, 0.0), # 99 (15.60416293910658, 12.357391919996457, 12.665909350708734, 13.505137882447666, 11.595443664434223, 5.529815068841132, 5.194511494584116, 4.265279682975157, 5.944539704313367, 2.516006347669384, 1.9629265363183495, 1.1425641149054624, 0.0, 15.58783864883402, 12.568205263960085, 9.814632681591746, 7.54801904300815, 11.889079408626735, 5.97139155616522, 5.194511494584116, 3.9498679063150943, 5.797721832217111, 4.501712627482556, 2.533181870141747, 1.1233992654542237, 0.0), # 100 (15.555645541838135, 12.292081835479447, 12.640502171925013, 13.469382407407409, 11.574994486134646, 5.515958319361886, 5.17087952108141, 4.248852004267642, 5.932740954122847, 2.506851149304716, 1.9548513123437101, 1.1392165507504473, 0.0, 15.557284807956103, 12.531382058254918, 9.77425656171855, 7.520553447914146, 11.865481908245695, 5.948392805974699, 5.17087952108141, 3.9399702281156324, 5.787497243067323, 4.48979413580247, 2.528100434385003, 1.1174619850435863, 0.0), # 101 (15.506903703703706, 12.22679044205496, 12.614867283950618, 13.433425000000002, 11.554364560639069, 5.5021459533607695, 5.1472302106027605, 4.2327242798353915, 5.920947325102881, 2.497673435003632, 1.9468008506113774, 1.135853584578731, 0.0, 15.526504629629631, 12.49438943036604, 9.734004253056886, 7.493020305010894, 11.841894650205761, 5.925813991769548, 5.1472302106027605, 3.93010425240055, 5.7771822803195345, 4.477808333333335, 2.522973456790124, 1.1115264038231782, 0.0), # 102 (15.458010711516671, 12.161548112748353, 12.589010173754001, 13.397290780998391, 11.533579708975497, 5.488405283747397, 5.123572047200224, 4.2169038256363365, 5.909169059594573, 2.4884734113343563, 1.9387866816311266, 1.132476756591983, 0.0, 15.495539266117968, 12.457244322511812, 9.693933408155633, 7.4654202340030675, 11.818338119189146, 5.903665355890872, 5.123572047200224, 3.920289488390998, 5.766789854487748, 4.465763593666131, 2.5178020347508006, 1.1055952829771232, 0.0), # 103 (15.409039852090416, 12.096385220584981, 12.562936328303612, 13.361004871175524, 11.512665752171923, 5.474763623431389, 5.099913514925861, 4.201397957628411, 5.897416399939034, 2.479251284865113, 1.9308203359127338, 1.129087606991874, 0.0, 15.464429869684501, 12.419963676910612, 9.654101679563668, 7.437753854595337, 11.794832799878067, 5.881957140679775, 5.099913514925861, 3.9105454453081343, 5.756332876085962, 4.4536682903918425, 2.5125872656607227, 1.099671383689544, 0.0), # 104 (15.360064412238325, 12.031332138590201, 12.536651234567902, 13.324592391304346, 11.491648511256354, 5.461248285322361, 5.076263097831727, 4.186213991769549, 5.885699588477366, 2.470007262164126, 1.922913343965976, 1.125687675980074, 0.0, 15.433217592592593, 12.382564435780811, 9.61456671982988, 7.410021786492376, 11.771399176954732, 5.860699588477368, 5.076263097831727, 3.9008916323731144, 5.745824255628177, 4.44153079710145, 2.5073302469135803, 1.093757467144564, 0.0), # 105 (15.311157678773782, 11.96641923978937, 12.510160379515318, 13.28807846215781, 11.470553807256785, 5.44788658232993, 5.052629279969876, 4.1713592440176805, 5.8740288675506775, 2.4607415497996183, 1.9150772363006283, 1.1222785037582528, 0.0, 15.401943587105624, 12.345063541340778, 9.575386181503141, 7.382224649398854, 11.748057735101355, 5.839902941624753, 5.052629279969876, 3.8913475588070923, 5.735276903628392, 4.429359487385938, 2.5020320759030636, 1.0878562945263066, 0.0), # 106 (15.26239293851017, 11.901676897207842, 12.483469250114315, 13.251488204508856, 11.449407461201215, 5.434705827363715, 5.0290205453923695, 4.156841030330743, 5.862414479500076, 2.451454354339816, 1.9073235434264675, 1.1188616305280807, 0.0, 15.370649005486968, 12.307477935808887, 9.536617717132337, 7.354363063019447, 11.724828959000153, 5.819577442463041, 5.0290205453923695, 3.8819327338312255, 5.724703730600607, 4.417162734836286, 2.496693850022863, 1.081970627018895, 0.0), # 107 (15.21384347826087, 11.83713548387097, 12.456583333333336, 13.214846739130437, 11.428235294117645, 5.421733333333335, 5.0054453781512604, 4.142666666666667, 5.850866666666667, 2.442145882352942, 1.8996637958532698, 1.1154385964912283, 0.0, 15.339375000000002, 12.26982456140351, 9.498318979266347, 7.326437647058825, 11.701733333333333, 5.799733333333334, 5.0054453781512604, 3.8726666666666674, 5.714117647058822, 4.40494891304348, 2.4913166666666675, 1.076103225806452, 0.0), # 108 (15.16558258483927, 11.772825372804107, 12.429508116140834, 13.17817918679549, 11.40706312703408, 5.408996413148403, 4.98191226229861, 4.128843468983388, 5.839395671391555, 2.4328163404072196, 1.8921095240908108, 1.112010941849365, 0.0, 15.308162722908094, 12.232120360343014, 9.460547620454054, 7.298449021221657, 11.67879134278311, 5.780380856576743, 4.98191226229861, 3.8635688665345733, 5.70353156351704, 4.392726395598498, 2.485901623228167, 1.0702568520731008, 0.0), # 109 (15.117683545058746, 11.708776937032614, 12.402249085505263, 13.141510668276972, 11.385916780978512, 5.396522379718539, 4.9584296818864715, 4.1153787532388355, 5.828011736015851, 2.423465935070874, 1.8846722586488671, 1.108580206804162, 0.0, 15.277053326474624, 12.194382274845779, 9.423361293244335, 7.27039780521262, 11.656023472031702, 5.76153025453437, 4.9584296818864715, 3.8546588426560997, 5.692958390489256, 4.380503556092325, 2.4804498171010527, 1.0644342670029652, 0.0), # 110 (15.07021964573269, 11.64502054958184, 12.374811728395064, 13.104866304347826, 11.36482207697894, 5.384338545953361, 4.935006120966905, 4.102279835390947, 5.816725102880659, 2.4140948729121283, 1.8773635300372145, 1.1051479315572885, 0.0, 15.246087962962964, 12.156627247130173, 9.386817650186073, 7.242284618736384, 11.633450205761317, 5.743191769547326, 4.935006120966905, 3.845956104252401, 5.68241103848947, 4.368288768115943, 2.474962345679013, 1.0586382317801675, 0.0), # 111 (15.02326417367448, 11.581586583477144, 12.347201531778696, 13.068271215781, 11.34380483606337, 5.372472224762486, 4.911650063591967, 4.089554031397653, 5.805546014327083, 2.404703360499207, 1.8701948687656293, 1.101715656310415, 0.0, 15.215307784636488, 12.118872219414563, 9.350974343828147, 7.214110081497619, 11.611092028654166, 5.725375643956714, 4.911650063591967, 3.837480160544633, 5.671902418031685, 4.356090405260334, 2.469440306355739, 1.0528715075888313, 0.0), # 112 (14.976806757924871, 11.51861130755273, 12.319490437669426, 13.031800658990448, 11.322854058851952, 5.3609451179335466, 4.888420770925416, 4.077235045853738, 5.794513499337931, 2.3953218946450923, 1.8631797083074313, 1.098292391533924, 0.0, 15.184710241349155, 12.081216306873161, 9.315898541537155, 7.185965683935276, 11.589026998675863, 5.708129064195233, 4.888420770925416, 3.829246512809676, 5.661427029425976, 4.343933552996817, 2.4638980875338854, 1.0471464825047938, 0.0), # 113 (14.930369436640104, 11.456715869170786, 12.292060900028826, 12.995747305532802, 11.301752911537415, 5.349730967961242, 4.865614566728464, 4.065474173003413, 5.783796819046966, 2.3861260671651134, 1.8563318232301862, 1.094921622948397, 0.0, 15.154040662656056, 12.044137852432362, 9.28165911615093, 7.1583782014953385, 11.567593638093932, 5.691663842204779, 4.865614566728464, 3.821236405686601, 5.6508764557687075, 4.331915768510935, 2.4584121800057654, 1.0415196244700715, 0.0), # 114 (14.883815844806392, 11.395922558068468, 12.264929243609757, 12.960101406218136, 11.280434856414509, 5.338800611665514, 4.84324772015325, 4.054268436185806, 5.773399988623354, 2.3771301311952313, 1.8496412030472253, 1.091605011007847, 0.0, 15.123210610656603, 12.007655121086316, 9.248206015236125, 7.131390393585693, 11.546799977246708, 5.675975810660129, 4.84324772015325, 3.8134290083325095, 5.640217428207254, 4.320033802072713, 2.452985848721952, 1.0359929598244064, 0.0), # 115 (14.837087797180216, 11.336142812561162, 12.238042919978499, 12.924799380319683, 11.25886776147603, 5.328128285467958, 4.821283854022315, 4.043586875265996, 5.763296714254843, 2.3683173433798195, 1.8430949150057288, 1.0883364263316462, 0.0, 15.092171615609425, 11.971700689648106, 9.215474575028642, 7.104952030139457, 11.526593428509686, 5.661021625372395, 4.821283854022315, 3.8058059181913984, 5.629433880738015, 4.308266460106562, 2.4476085839957, 1.0305584375055605, 0.0), # 116 (14.790127108518035, 11.277288070964257, 12.211349380701316, 12.88977764711069, 11.237019494714783, 5.317688225790165, 4.799686591158202, 4.033398530109057, 5.753460702129175, 2.359670960363252, 1.8366800263528757, 1.085109739539167, 0.0, 15.06087520777316, 11.936207134930834, 9.183400131764378, 7.079012881089755, 11.50692140425835, 5.6467579421526795, 4.799686591158202, 3.7983487327072605, 5.6185097473573915, 4.296592549036898, 2.4422698761402635, 1.0252080064512963, 0.0), # 117 (14.742875593576338, 11.21926977159314, 12.18479607734449, 12.854972625864399, 11.214857924123566, 5.3074546690537305, 4.7784195543834524, 4.023672440580065, 5.743865658434098, 2.351174238789904, 1.8303836043358468, 1.0819188212497801, 0.0, 15.02927291740644, 11.901107033747579, 9.151918021679233, 7.053522716369711, 11.487731316868196, 5.633141416812091, 4.7784195543834524, 3.791039049324093, 5.607428962061783, 4.284990875288134, 2.436959215468898, 1.0199336155993766, 0.0), # 118 (14.695275067111588, 11.161999352763203, 12.158330461474298, 12.820320735854047, 11.192350917695169, 5.297401851680244, 4.757446366520605, 4.014377646544097, 5.734485289357356, 2.3428104353041492, 1.824192716201821, 1.0787575420828581, 0.0, 14.997316274767892, 11.866332962911438, 9.120963581009105, 7.028431305912447, 11.468970578714712, 5.620128705161736, 4.757446366520605, 3.7838584654858884, 5.5961754588475845, 4.273440245284683, 2.43166609229486, 1.014727213887564, 0.0), # 119 (14.647267343880259, 11.105388252789831, 12.131899984657018, 12.785758396352872, 11.169466343422396, 5.287504010091301, 4.736730650392203, 4.005483187866229, 5.7252933010866975, 2.3345628065503625, 1.818094429197978, 1.0756197726577732, 0.0, 14.964956810116156, 11.831817499235502, 9.090472145989889, 7.003688419651086, 11.450586602173395, 5.60767646301272, 4.736730650392203, 3.7767885786366437, 5.584733171711198, 4.2619194654509585, 2.4263799969314035, 1.0095807502536214, 0.0), # 120 (14.59879423863883, 11.049347909988416, 12.105452098458917, 12.751222026634121, 11.146172069298046, 5.277735380708496, 4.716236028820784, 3.9969581044115383, 5.716263399809866, 2.326414609172919, 1.812075810571498, 1.0724993835938965, 0.0, 14.932146053709857, 11.797493219532859, 9.060379052857488, 6.979243827518756, 11.432526799619732, 5.595741346176154, 4.716236028820784, 3.769810986220354, 5.573086034649023, 4.250407342211375, 2.4210904196917835, 1.0044861736353108, 0.0), # 121 (14.549797566143766, 10.993789762674343, 12.078934254446281, 12.716648045971027, 11.122435963314915, 5.268070199953418, 4.695926124628894, 3.9887714360450994, 5.707369291714607, 2.3183490998161913, 1.8061239275695606, 1.0693902455106004, 0.0, 14.898835535807633, 11.763292700616601, 9.030619637847803, 6.955047299448573, 11.414738583429214, 5.584280010463139, 4.695926124628894, 3.762907285681013, 5.561217981657458, 4.238882681990344, 2.4157868508892566, 0.9994354329703949, 0.0), # 122 (14.50021914115155, 10.938625249163001, 12.052293904185383, 12.681972873636834, 11.098225893465804, 5.258482704247664, 4.675764560639071, 3.9808922226319887, 5.698584682988669, 2.3103495351245553, 1.8002258474393456, 1.0662862290272563, 0.0, 14.864976786668116, 11.729148519299818, 9.001129237196727, 6.931048605373665, 11.397169365977337, 5.573249111684785, 4.675764560639071, 3.7560590744626166, 5.549112946732902, 4.227324291212279, 2.4104587808370765, 0.9944204771966367, 0.0), # 123 (14.450000778418648, 10.883765807769782, 12.025478499242494, 12.647132928904785, 11.073509727743506, 5.248947130012824, 4.655714959673856, 3.9732895040372846, 5.689883279819794, 2.302399171742385, 1.794368637428032, 1.063181204763237, 0.0, 14.830521336549939, 11.694993252395603, 8.971843187140161, 6.907197515227153, 11.379766559639588, 5.562605305652198, 4.655714959673856, 3.74924795000916, 5.536754863871753, 4.215710976301596, 2.405095699848499, 0.9894332552517985, 0.0), # 124 (14.399084292701534, 10.82912287681007, 11.9984354911839, 12.612064631048113, 11.048255334140823, 5.239437713670492, 4.635740944555791, 3.965932320126061, 5.68123878839573, 2.294481266314054, 1.7885393647828007, 1.0600690433379134, 0.0, 14.795420715711726, 11.660759476717045, 8.942696823914003, 6.883443798942161, 11.36247757679146, 5.552305248176485, 4.635740944555791, 3.7424555097646373, 5.524127667070411, 4.204021543682705, 2.39968709823678, 0.9844657160736429, 0.0), # 125 (14.347411498756685, 10.774607894599258, 11.971112331575865, 12.576704399340066, 11.022430580650552, 5.229928691642264, 4.615806138107416, 3.958789710763395, 5.6726249149042225, 2.2865790754839375, 1.7827250967508306, 1.0569436153706582, 0.0, 14.759626454412127, 11.626379769077237, 8.913625483754151, 6.859737226451811, 11.345249829808445, 5.542305595068753, 4.615806138107416, 3.735663351173045, 5.511215290325276, 4.192234799780023, 2.394222466315173, 0.9795098085999328, 0.0), # 126 (14.294924211340579, 10.720132299452729, 11.943456471984673, 12.54098865305388, 10.996003335265492, 5.220394300349728, 4.595874163151275, 3.951830715814364, 5.664015365533016, 2.27867585589641, 1.7769129005793014, 1.0537987914808424, 0.0, 14.723090082909758, 11.591786706289264, 8.884564502896506, 6.836027567689229, 11.328030731066033, 5.53256300214011, 4.595874163151275, 3.728853071678377, 5.498001667632746, 4.1803295510179606, 2.388691294396935, 0.97455748176843, 0.0), # 127 (14.241564245209673, 10.665607529685879, 11.915415363976601, 12.504853811462798, 10.968941465978443, 5.210808776214481, 4.575908642509906, 3.9450243751440417, 5.655383846469858, 2.2707548641958457, 1.7710898435153934, 1.0506284422878387, 0.0, 14.68576313146326, 11.556912865166222, 8.855449217576966, 6.812264592587535, 11.310767692939717, 5.523034125201659, 4.575908642509906, 3.722006268724629, 5.484470732989221, 4.168284603820934, 2.3830830727953205, 0.9696006845168982, 0.0), # 128 (14.187273415120451, 10.610945023614088, 11.886936459117921, 12.468236293840059, 10.9412128407822, 5.201146355658116, 4.555873199005851, 3.938339728617507, 5.646704063902494, 2.2627993570266187, 1.765242992806286, 1.0474264384110183, 0.0, 14.647597130331262, 11.5216908225212, 8.82621496403143, 6.788398071079855, 11.293408127804987, 5.51367562006451, 4.555873199005851, 3.7151045397557967, 5.4706064203911, 4.156078764613354, 2.377387291823584, 0.9646313657830989, 0.0), # 129 (14.131993535829388, 10.556056219552751, 11.857967208974907, 12.431072519458905, 10.91278532766956, 5.191381275102222, 4.53573145546165, 3.9317458160998338, 5.637949724018666, 2.2547925910331035, 1.7593594156991588, 1.044186650469754, 0.0, 14.608543609772397, 11.48605315516729, 8.796797078495793, 6.764377773099309, 11.275899448037332, 5.504444142539767, 4.53573145546165, 3.7081294822158726, 5.45639266383478, 4.1436908398196355, 2.3715934417949813, 0.9596414745047956, 0.0), # 130 (14.07566642209295, 10.500852555817252, 11.828455065113841, 12.393298907592571, 10.883626794633326, 5.181487770968396, 4.515447034699847, 3.9252116774560997, 5.629094533006126, 2.2467178228596745, 1.7534261794411918, 1.0409029490834167, 0.0, 14.568554100045299, 11.449932439917582, 8.767130897205957, 6.740153468579022, 11.258189066012251, 5.49529634843854, 4.515447034699847, 3.701062693548854, 5.441813397316663, 4.131099635864191, 2.3656910130227686, 0.9546229596197504, 0.0), # 131 (14.018233888667616, 10.445245470722984, 11.798347479100995, 12.354851877514303, 10.853705109666297, 5.171440079678229, 4.49498355954298, 3.918706352551382, 5.620112197052615, 2.238558309150706, 1.7474303512795641, 1.0375692048713792, 0.0, 14.527580131408602, 11.413261253585167, 8.73715175639782, 6.715674927452117, 11.24022439410523, 5.486188893571935, 4.49498355954298, 3.693885771198735, 5.4268525548331485, 4.1182839591714355, 2.3596694958201994, 0.949567770065726, 0.0), # 132 (13.959637750309861, 10.38914640258533, 11.767591902502646, 12.315667848497343, 10.822988140761264, 5.161212437653315, 4.474304652813592, 3.9121988812507547, 5.61097642234588, 2.2302973065505736, 1.7413589984614566, 1.0341792884530125, 0.0, 14.485573234120938, 11.375972172983136, 8.706794992307282, 6.690891919651719, 11.22195284469176, 5.477078433751057, 4.474304652813592, 3.686580312609511, 5.411494070380632, 4.105222616165782, 2.3535183805005295, 0.9444678547804848, 0.0), # 133 (13.899819821776152, 10.332466789719687, 11.736135786885072, 12.275683239814924, 10.791443755911033, 5.150779081315248, 4.453373937334223, 3.9056583034192958, 5.601660915073669, 2.2219180717036497, 1.7351991882340478, 1.030727070447689, 0.0, 14.442484938440934, 11.337997774924577, 8.675995941170239, 6.6657542151109475, 11.203321830147338, 5.467921624787015, 4.453373937334223, 3.6791279152251772, 5.395721877955516, 4.091894413271643, 2.3472271573770147, 0.9393151627017899, 0.0), # 134 (13.838721917822966, 10.275118070441435, 11.703926583814546, 12.234834470740296, 10.759039823108395, 5.14011424708562, 4.432155035927415, 3.8990536589220803, 5.592139381423722, 2.213403861254311, 1.7289379878445184, 1.0272064214747805, 0.0, 14.398266774627231, 11.299270636222584, 8.64468993922259, 6.640211583762932, 11.184278762847445, 5.458675122490913, 4.432155035927415, 3.671510176489728, 5.379519911554198, 4.0782781569134325, 2.340785316762909, 0.9341016427674034, 0.0), # 135 (13.776285853206776, 10.217011683065968, 11.670911744857346, 12.193057960546685, 10.725744210346152, 5.129192171386024, 4.410611571415708, 3.892353987624185, 5.5823855275837895, 2.2047379318469296, 1.7225624645400475, 1.0236112121536591, 0.0, 14.352870272938459, 11.259723333690248, 8.612812322700236, 6.614213795540787, 11.164771055167579, 5.44929558267386, 4.410611571415708, 3.6637086938471604, 5.362872105173076, 4.064352653515563, 2.3341823489714693, 0.9288192439150881, 0.0), # 136 (13.712453442684055, 10.15805906590867, 11.63703872157975, 12.15029012850735, 10.691524785617101, 5.117987090638052, 4.388707166621645, 3.885528329390686, 5.572373059741617, 2.1959035401258813, 1.716059685567815, 1.0199353131036961, 0.0, 14.306246963633242, 11.219288444140656, 8.580298427839075, 6.587710620377642, 11.144746119483234, 5.439739661146961, 4.388707166621645, 3.6557050647414657, 5.345762392808551, 4.050096709502451, 2.3274077443159498, 0.9234599150826065, 0.0), # 137 (13.647166501011277, 10.098171657284933, 11.602254965548024, 12.106467393895517, 10.656349416914047, 5.106473241263299, 4.366405444367763, 3.8785457240866603, 5.56207568408495, 2.1868839427355393, 1.7094167181750008, 1.016172594944264, 0.0, 14.258348376970226, 11.1778985443869, 8.547083590875005, 6.560651828206616, 11.1241513681699, 5.4299640137213245, 4.366405444367763, 3.6474808866166426, 5.3281747084570235, 4.035489131298506, 2.320450993109605, 0.9180156052077213, 0.0), # 138 (13.58036684294491, 10.037260895510144, 11.566507928328454, 12.061526175984431, 10.620185972229777, 5.094624859683358, 4.343670027476608, 3.8713752115771833, 5.551467106801532, 2.1776623963202795, 1.7026206296087845, 1.0123169282947344, 0.0, 14.20912604320803, 11.135486211242075, 8.513103148043921, 6.532987188960837, 11.102934213603064, 5.419925296208056, 4.343670027476608, 3.6390177569166844, 5.3100929861148884, 4.020508725328145, 2.313301585665691, 0.912478263228195, 0.0), # 139 (13.511996283241437, 9.97523821889969, 11.529745061487317, 12.015402894047334, 10.583002319557098, 5.082416182319821, 4.320464538770717, 3.863985831727331, 5.54052103407911, 2.168222157524475, 1.6956584871163454, 1.008362183774479, 0.0, 14.158531492605304, 11.091984021519266, 8.478292435581725, 6.504666472573423, 11.08104206815822, 5.409580164418264, 4.320464538770717, 3.6302972730855863, 5.291501159778549, 4.005134298015779, 2.3059490122974635, 0.9068398380817901, 0.0), # 140 (13.44199663665733, 9.912015065768964, 11.491913816590882, 11.968033967357464, 10.544766326888803, 5.069821445594281, 4.296752601072636, 3.8563466244021805, 5.529211172105429, 2.158546482992501, 1.688517357944864, 1.00430223200287, 0.0, 14.106516255420662, 11.047324552031569, 8.442586789724318, 6.4756394489775015, 11.058422344210857, 5.398885274163053, 4.296752601072636, 3.6213010325673434, 5.272383163444402, 3.989344655785822, 2.2983827633181764, 0.9010922787062696, 0.0), # 141 (13.37030971794905, 9.84750287443335, 11.452961645205429, 11.919355815188066, 10.505445862217693, 5.056814885928333, 4.272497837204901, 3.848426629466808, 5.517511227068235, 2.1486186293687317, 1.6811843093415195, 1.0001309435992793, 0.0, 14.053031861912746, 11.001440379592072, 8.405921546707596, 6.445855888106194, 11.03502245413647, 5.3877972812535315, 4.272497837204901, 3.612010632805952, 5.252722931108846, 3.973118605062689, 2.2905923290410857, 0.8952275340393956, 0.0), # 142 (13.29687734187308, 9.781613083208239, 11.412835998897235, 11.86930485681237, 10.465008793536564, 5.043370739743566, 4.247663869990055, 3.840194886786288, 5.505394905155279, 2.1384218532975416, 1.6736464085534917, 0.9958421891830788, 0.0, 13.998029842340188, 10.954264081013864, 8.368232042767458, 6.415265559892624, 11.010789810310557, 5.376272841500803, 4.247663869990055, 3.6024076712454045, 5.232504396768282, 3.956434952270791, 2.282567199779447, 0.8892375530189309, 0.0), # 143 (13.221641323185896, 9.714257130409019, 11.37148432923257, 11.817817511503629, 10.423422988838217, 5.029463243461577, 4.222214322250639, 3.8316204362256996, 5.492835912554298, 2.1279394114233043, 1.6658907228279605, 0.99142983937364, 0.0, 13.941461726961624, 10.905728233110038, 8.329453614139801, 6.383818234269912, 10.985671825108597, 5.364268610715979, 4.222214322250639, 3.592473745329698, 5.2117114944191085, 3.9392725038345437, 2.2742968658465146, 0.8831142845826383, 0.0), # 144 (13.144543476643964, 9.64534645435108, 11.328854087777719, 11.764830198535075, 10.380656316115449, 5.015066633503958, 4.196112816809195, 3.8226723176501176, 5.479807955453042, 2.1171545603903956, 1.6579043194121055, 0.9868877647903354, 0.0, 13.88327904603568, 10.855765412693687, 8.289521597060528, 6.351463681171186, 10.959615910906084, 5.351741244710165, 4.196112816809195, 3.582190452502827, 5.190328158057724, 3.921610066178359, 2.265770817555544, 0.8768496776682801, 0.0), # 145 (13.065525617003761, 9.574792493349808, 11.284892726098956, 11.710279337179951, 10.33667664336106, 5.000155146292303, 4.169322976488264, 3.813319570924618, 5.4662847400392565, 2.1060505568431886, 1.6496742655531065, 0.9822098360525362, 0.0, 13.82343332982099, 10.804308196577896, 8.248371327765533, 6.318151670529565, 10.932569480078513, 5.338647399294466, 4.169322976488264, 3.5715393902087875, 5.16833832168053, 3.903426445726651, 2.2569785452197917, 0.870435681213619, 0.0), # 146 (12.98452955902176, 9.502506685720592, 11.239547695762546, 11.654101346711496, 10.291451838567841, 4.984703018248201, 4.141808424110385, 3.803531235914277, 5.4522399725006885, 2.094610657426059, 1.6411876284981433, 0.9773899237796149, 0.0, 13.761876108576189, 10.751289161575762, 8.205938142490716, 6.2838319722781755, 10.904479945001377, 5.324943730279988, 4.141808424110385, 3.5605021558915717, 5.145725919283921, 3.884700448903833, 2.2479095391525097, 0.8638642441564175, 0.0), # 147 (12.901497117454435, 9.428400469778822, 11.192766448334778, 11.596232646402957, 10.2449497697286, 4.968684485793251, 4.113532782498101, 3.7932763524841717, 5.437647359025082, 2.082818118783379, 1.6324314754943956, 0.9724218985909429, 0.0, 13.698558912559907, 10.69664088450037, 8.162157377471978, 6.248454356350136, 10.875294718050164, 5.310586893477841, 4.113532782498101, 3.5490603469951787, 5.1224748848643, 3.8654108821343196, 2.2385532896669558, 0.8571273154344385, 0.0), # 148 (12.81637010705826, 9.352385283839885, 11.144496435381926, 11.536609655527563, 10.197138304836129, 4.9520737853490395, 4.084459674473953, 3.7825239604993777, 5.42248060580018, 2.0706561975595257, 1.6233928737890426, 0.9672996311058923, 0.0, 13.63343327203078, 10.640295942164814, 8.116964368945213, 6.211968592678575, 10.84496121160036, 5.295533544699129, 4.084459674473953, 3.5371955609635997, 5.098569152418064, 3.845536551842522, 2.2288992870763855, 0.8502168439854443, 0.0), # 149 (12.729090342589704, 9.274372566219169, 11.09468510847026, 11.475168793358566, 10.147985311883227, 4.934845153337166, 4.054552722860481, 3.771243099824971, 5.406713419013735, 2.058108150398871, 1.614058890629265, 0.9620169919438353, 0.0, 13.566450717247434, 10.582186911382186, 8.070294453146325, 6.174324451196611, 10.81342683802747, 5.27974033975496, 4.054552722860481, 3.524889395240833, 5.0739926559416135, 3.825056264452856, 2.2189370216940523, 0.8431247787471974, 0.0), # 150 (12.63959963880524, 9.194273755232066, 11.043279919166057, 11.411846479169196, 10.097458658862696, 4.916972826179219, 4.023775550480226, 3.759402810326029, 5.390319504853488, 2.0451572339457917, 1.6044165932622414, 0.956567851724143, 0.0, 13.49756277846851, 10.522246368965572, 8.022082966311206, 6.135471701837374, 10.780639009706976, 5.263163934456441, 4.023775550480226, 3.5121234472708704, 5.048729329431348, 3.8039488263897328, 2.2086559838332116, 0.8358430686574607, 0.0), # 151 (12.54783981046135, 9.11200028919396, 10.990228319035603, 11.346579132232703, 10.045526213767326, 4.898431040296793, 3.992091780155732, 3.7469721318676275, 5.373272569507184, 2.0317867048446603, 1.5944530489351527, 0.950946081066188, 0.0, 13.426720985952636, 10.460406891728066, 7.9722652446757625, 6.09536011453398, 10.746545139014367, 5.245760984614678, 3.992091780155732, 3.4988793144977093, 5.022763106883663, 3.7821930440775686, 2.198045663807121, 0.8283636626539964, 0.0), # 152 (12.453752672314497, 9.027463606420243, 10.935477759645158, 11.27930317182232, 9.992155844589925, 4.8791940321114815, 3.9594650347095355, 3.7339201043148416, 5.355546319162572, 2.017979819739852, 1.5841553248951779, 0.945145550589342, 0.0, 13.353876869958444, 10.39660105648276, 7.920776624475889, 6.053939459219555, 10.711092638325145, 5.227488146040779, 3.9594650347095355, 3.485138594365344, 4.996077922294963, 3.759767723940774, 2.187095551929032, 0.8206785096745677, 0.0), # 153 (12.357280039121166, 8.940575145226303, 10.878975692561012, 11.209955017211293, 9.937315419323285, 4.859236038044878, 3.9258589369641825, 3.7202157675327485, 5.337114460007395, 2.0037198352757417, 1.5735104883894968, 0.9391601309129768, 0.0, 13.278981960744572, 10.330761440042743, 7.867552441947483, 6.011159505827224, 10.67422892001479, 5.208302074545848, 3.9258589369641825, 3.4708828843177697, 4.968657709661643, 3.736651672403765, 2.1757951385122025, 0.8127795586569367, 0.0), # 154 (12.258363725637818, 8.851246343927524, 10.820669569349436, 11.138471087672855, 9.880972805960209, 4.838531294518574, 3.891237109742209, 3.705828161386424, 5.317950698229401, 1.9889900080967022, 1.562505606665289, 0.9329836926564644, 0.0, 13.201987788569642, 10.262820619221108, 7.812528033326444, 5.966970024290106, 10.635901396458802, 5.188159425940994, 3.891237109742209, 3.456093781798981, 4.940486402980104, 3.712823695890952, 2.1641339138698874, 0.804658758538866, 0.0), # 155 (12.15694554662093, 8.759388640839303, 10.760506841576703, 11.06478780248025, 9.823095872493491, 4.817054037954164, 3.85556317586616, 3.690726325740946, 5.298028740016334, 1.9737735948471096, 1.5511277469697347, 0.9266101064391765, 0.0, 13.122845883692296, 10.19271117083094, 7.755638734848673, 5.921320784541328, 10.596057480032668, 5.167016856037325, 3.85556317586616, 3.440752884252974, 4.911547936246746, 3.688262600826751, 2.1521013683153405, 0.7963080582581185, 0.0), # 156 (12.05296731682698, 8.664913474277022, 10.698434960809092, 10.988841580906726, 9.76365248691593, 4.79477850477324, 3.8188007581585754, 3.6748793004613884, 5.27732229155594, 1.958053852171337, 1.5393639765500133, 0.9200332428804852, 0.0, 13.041507776371162, 10.120365671685335, 7.696819882750066, 5.87416155651401, 10.55464458311188, 5.1448310206459436, 3.8188007581585754, 3.4248417891237426, 4.881826243457965, 3.662947193635576, 2.1396869921618182, 0.7877194067524566, 0.0), # 157 (11.943489514248384, 8.56599791046598, 10.631455938536474, 10.907723497981493, 9.699926512929064, 4.7702895112293024, 3.780085376742286, 3.6571979682329148, 5.254219782186185, 1.9413463665164579, 1.5268255340103847, 0.9130132752259121, 0.0, 12.954377375064553, 10.043146027485031, 7.634127670051924, 5.824039099549372, 10.50843956437237, 5.120077155526081, 3.780085376742286, 3.407349650878073, 4.849963256464532, 3.6359078326604983, 2.126291187707295, 0.7787270827696345, 0.0), # 158 (11.811658827165445, 8.452495802079234, 10.542317091203984, 10.804772590546145, 9.61620406376707, 4.7354436714732975, 3.734570210708573, 3.6314756885095885, 5.21942787265181, 1.9209123976394986, 1.5113111828317318, 0.9041816698244146, 0.0, 12.840684235072311, 9.94599836806856, 7.556555914158659, 5.762737192918495, 10.43885574530362, 5.084065963913424, 3.734570210708573, 3.3824597653380692, 4.808102031883535, 3.6015908635153826, 2.108463418240797, 0.7684087092799304, 0.0), # 159 (11.655795351846896, 8.323475201859713, 10.429227943941186, 10.678293012490633, 9.51084814010325, 4.689385209644506, 3.6817949987070273, 3.5970661263515646, 5.171960121188613, 1.896482260745158, 1.4926025356292107, 0.893400259851713, 0.0, 12.69827297422973, 9.827402858368842, 7.463012678146054, 5.689446782235472, 10.343920242377227, 5.0358925768921905, 3.6817949987070273, 3.3495608640317895, 4.755424070051625, 3.559431004163545, 2.0858455887882372, 0.7566795638054286, 0.0), # 160 (11.477155287337537, 8.179777273184687, 10.293395962547079, 10.529487004508074, 9.38495266590092, 4.632672092132293, 3.622145156805501, 3.5544003554065204, 5.112442542399476, 1.8682632772683756, 1.4708644412265888, 0.8807689958543429, 0.0, 12.528598471710556, 9.68845895439777, 7.354322206132943, 5.6047898318051255, 10.224885084798952, 4.976160497569129, 3.622145156805501, 3.3090514943802094, 4.69247633295046, 3.509829001502692, 2.058679192509416, 0.7436161157440625, 0.0), # 161 (11.27699483268217, 8.022243179431417, 10.136028612820661, 10.359556807291593, 9.239611565123418, 4.565862285326026, 3.5560061010718473, 3.503909449322135, 5.041501150887273, 1.836462768644093, 1.4462617484476323, 0.8663878283788393, 0.0, 12.333115606688533, 9.530266112167231, 7.231308742238162, 5.509388305932278, 10.083002301774545, 4.9054732290509895, 3.5560061010718473, 3.261330203804304, 4.619805782561709, 3.4531856024305316, 2.0272057225641325, 0.7292948344937653, 0.0), # 162 (11.056570186925597, 7.851714083977169, 9.958333360560937, 10.169704661534322, 9.075918761734068, 4.489513755615068, 3.4837632475739206, 3.4460244817460834, 4.959761961254883, 1.8012880563072504, 1.418959306116109, 0.8503567079717379, 0.0, 12.113279258337407, 9.353923787689116, 7.0947965305805445, 5.40386416892175, 9.919523922509766, 4.824434274444517, 3.4837632475739206, 3.2067955397250487, 4.537959380867034, 3.3899015538447745, 1.9916666721121876, 0.71379218945247, 0.0), # 163 (10.817137549112616, 7.669031150199204, 9.761517671566903, 9.961132807929381, 8.894968179696201, 4.404184469388787, 3.405802012379573, 3.3811765263260463, 4.867850988105186, 1.762946461692788, 1.3891219630557858, 0.8327755851795738, 0.0, 11.870544305830926, 9.160531436975312, 6.945609815278928, 5.288839385078362, 9.735701976210372, 4.733647136856465, 3.405802012379573, 3.1458460495634197, 4.447484089848101, 3.320377602643128, 1.9523035343133808, 0.6971846500181095, 0.0), # 164 (10.559953118288028, 7.475035541474793, 9.546789011637559, 9.735043487169904, 8.697853742973145, 4.310432393036548, 3.3225078115566578, 3.3097966567096977, 4.766394246041056, 1.7216453062356458, 1.35691456809043, 0.8137444105488828, 0.0, 11.606365628342832, 8.951188516037709, 6.7845728404521495, 5.164935918706936, 9.532788492082112, 4.633715319393577, 3.3225078115566578, 3.078880280740391, 4.348926871486572, 3.245014495723302, 1.909357802327512, 0.6795486855886177, 0.0), # 165 (10.286273093496636, 7.270568421181199, 9.315354846571905, 9.492638939949002, 8.485669375528229, 4.208815492947715, 3.234266061173029, 3.2323159465447184, 4.656017749665372, 1.6775919113707654, 1.322501970043808, 0.7933631346262003, 0.0, 11.322198105046873, 8.726994480888202, 6.612509850219039, 5.0327757341122945, 9.312035499330744, 4.525242325162606, 3.234266061173029, 3.0062967806769394, 4.242834687764114, 3.1642129799830014, 1.8630709693143812, 0.6609607655619273, 0.0), # 166 (9.997353673783238, 7.056470952695688, 9.06842264216894, 9.235121406959813, 8.259509001324778, 4.099891735511655, 3.14146217729654, 3.1491654694787847, 4.537347513581013, 1.6309935985330861, 1.2860490177396875, 0.7717317079580612, 0.0, 11.019496615116793, 8.489048787538673, 6.430245088698436, 4.892980795599257, 9.074695027162026, 4.408831657270299, 3.14146217729654, 2.928494096794039, 4.129754500662389, 3.0783738023199385, 1.8136845284337881, 0.6414973593359717, 0.0), # 167 (9.694451058192634, 6.833584299395522, 8.807199864227664, 8.963693128895455, 8.020466544326124, 3.9842190871177325, 3.0444815759950434, 3.0607762991595733, 4.411009552390856, 1.5820576891575493, 1.247720560001835, 0.7489500810910016, 0.0, 10.69971603772634, 8.238450892001017, 6.2386028000091756, 4.746173067472647, 8.822019104781711, 4.285086818823403, 3.0444815759950434, 2.8458707765126663, 4.010233272163062, 2.987897709631819, 1.7614399728455332, 0.6212349363086839, 0.0), # 168 (9.378821445769624, 6.602749624657969, 8.53289397854708, 8.67955634644906, 7.769635928495594, 3.8623555141553156, 2.9437096733363934, 2.9675795092347634, 4.277629880697781, 1.5309915046790952, 1.2076814456540184, 0.7251182045715564, 0.0, 10.364311252049257, 7.976300250287119, 6.038407228270092, 4.592974514037284, 8.555259761395561, 4.154611312928669, 2.9437096733363934, 2.7588253672537966, 3.884817964247797, 2.8931854488163538, 1.706578795709416, 0.6002499658779973, 0.0), # 169 (9.051721035559014, 6.3648080918602945, 8.24671245092618, 8.383913300313743, 7.508111077796515, 3.7348589830137664, 2.8395318853884426, 2.870006173352032, 4.137834513104661, 1.4780023665326634, 1.1660965235200045, 0.7003360289462612, 0.0, 10.014737137259289, 7.7036963184088725, 5.830482617600023, 4.43400709959799, 8.275669026209322, 4.018008642692845, 2.8395318853884426, 2.6677564164384044, 3.7540555388982577, 2.7946377667712485, 1.649342490185236, 0.5786189174418451, 0.0), # 170 (8.7144060266056, 6.12060086437976, 7.949862747163971, 8.077966231182643, 7.23698591619222, 3.602287460082452, 2.7323336282190445, 2.7684873651590554, 3.992249464214377, 1.4232975961531957, 1.1231306424235596, 0.6747035047616515, 0.0, 9.652448572530185, 7.421738552378166, 5.615653212117798, 4.269892788459586, 7.984498928428754, 3.8758823112226777, 2.7323336282190445, 2.5730624714874657, 3.61849295809611, 2.692655410394215, 1.5899725494327943, 0.5564182603981601, 0.0), # 171 (8.368132617954185, 5.870969105593635, 7.643552333059449, 7.762917379748876, 6.9573543676460305, 3.4651989117507385, 2.6225003178960526, 2.663454158303514, 3.8415007486298056, 1.3670845149756323, 1.0789486511884518, 0.648320582564263, 0.0, 9.278900437035686, 7.1315264082068905, 5.3947432559422595, 4.101253544926896, 7.683001497259611, 3.7288358216249198, 2.6225003178960526, 2.475142079821956, 3.4786771838230153, 2.587639126582959, 1.52871046661189, 0.5337244641448761, 0.0), # 172 (8.014157008649567, 5.616753978879182, 7.328988674411616, 7.439968986705571, 6.6703103561212815, 3.3241513044079904, 2.51041737048732, 2.5553376264330825, 3.6862143809538255, 1.309570444434913, 1.0337153986384477, 0.62128721290063, 0.0, 8.89554760994954, 6.83415934190693, 5.168576993192238, 3.9287113333047383, 7.372428761907651, 3.5774726770063157, 2.51041737048732, 2.37439378886285, 3.3351551780606408, 2.479989662235191, 1.4657977348823235, 0.5106139980799257, 0.0), # 173 (7.6537353977365505, 5.358796647613667, 7.00737923701947, 7.110323292745849, 6.376947805581297, 3.179702604443573, 2.3964702020607005, 2.4445688431954404, 3.527016375789314, 1.250962705965979, 0.9875957335973142, 0.5937033463172892, 0.0, 8.503844970445494, 6.53073680949018, 4.93797866798657, 3.7528881178979363, 7.054032751578628, 3.4223963804736166, 2.3964702020607005, 2.2712161460311235, 3.1884739027906486, 2.370107764248617, 1.401475847403894, 0.4871633316012425, 0.0), # 174 (7.288123984259929, 5.097938275174352, 6.679931486682011, 6.7751825385628415, 6.078360639989406, 3.0324107782468537, 2.2810442286840464, 2.331578882238264, 3.36453274773915, 1.19146862100377, 0.9407545048888186, 0.5656689333607753, 0.0, 8.105247397697292, 6.222358266968527, 4.703772524444093, 3.574405863011309, 6.7290654954783, 3.26421043513357, 2.2810442286840464, 2.1660076987477526, 3.039180319994703, 2.2583941795209475, 1.3359862973364023, 0.46344893410675936, 0.0), # 175 (6.91857896726451, 4.835020024938507, 6.347852889198238, 6.435748964849671, 5.775642783308939, 2.882833792207196, 2.164524866425212, 2.216798817209233, 3.199389511406209, 1.131295510983227, 0.8933565613367281, 0.537283924577624, 0.0, 7.701209770878679, 5.910123170353863, 4.46678280668364, 3.39388653294968, 6.398779022812418, 3.103518344092926, 2.164524866425212, 2.0591669944337117, 2.8878213916544695, 2.1452496549498905, 1.2695705778396478, 0.4395472749944098, 0.0), # 176 (6.546356545795092, 4.570883060283395, 6.012350910367152, 6.093224812299459, 5.469888159503225, 2.731529612713966, 2.0472975313520503, 2.100659721756022, 3.0322126813933705, 1.07065069733929, 0.8455667517648098, 0.5086482705143706, 0.0, 7.2931869691634, 5.595130975658075, 4.227833758824048, 3.211952092017869, 6.064425362786741, 2.9409236104584306, 2.0472975313520503, 1.9510925805099755, 2.7349440797516125, 2.0310749374331536, 1.2024701820734305, 0.4155348236621269, 0.0), # 177 (6.172712918896475, 4.306368544586282, 5.6746330159877525, 5.74881232160534, 5.162190692535588, 2.5790562061565305, 1.929747639532414, 1.9835926695263104, 2.863628272303512, 1.0097415015069002, 0.7975499249968301, 0.4798619217175504, 0.0, 6.882633871725203, 5.278481138893053, 3.98774962498415, 3.0292245045207, 5.727256544607024, 2.7770297373368344, 1.929747639532414, 1.8421830043975218, 2.581095346267794, 1.916270773868447, 1.1349266031975505, 0.3914880495078438, 0.0), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_allighting_rate = ( (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 0 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 1 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 2 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 3 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 4 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 5 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 6 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 7 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 8 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 9 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 10 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 11 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 12 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 13 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 14 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 15 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 16 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 17 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 18 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 19 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 20 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 21 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 22 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 23 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 24 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 25 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 26 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 27 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 28 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 29 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 30 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 31 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 32 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 33 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 34 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 35 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 36 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 37 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 38 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 39 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 40 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 41 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 42 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 43 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 44 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 45 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 46 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 47 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 48 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 49 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 50 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 51 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 52 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 53 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 54 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 55 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 56 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 57 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 58 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 59 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 60 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 61 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 62 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 63 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 64 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 65 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 66 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 67 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 68 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 69 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 70 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 71 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 72 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 73 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 74 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 75 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 76 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 77 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 78 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 79 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 80 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 81 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 82 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 83 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 84 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 85 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 86 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 87 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 88 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 89 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 90 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 91 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 92 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 93 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 94 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 95 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 96 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 97 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 98 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 99 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 100 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 101 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 102 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 103 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 104 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 105 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 106 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 107 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 108 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 109 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 110 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 111 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 112 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 113 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 114 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 115 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 116 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 117 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 118 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 119 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 120 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 121 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 122 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 123 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 124 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 125 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 126 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 127 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 128 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 129 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 130 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 131 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 132 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 133 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 134 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 135 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 136 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 137 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 138 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 139 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 140 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 141 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 142 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 143 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 144 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 145 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 146 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 147 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 148 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 149 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 150 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 151 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 152 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 153 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 154 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 155 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 156 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 157 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 158 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 159 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 160 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 161 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 162 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 163 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 164 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 165 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 166 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 167 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 168 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 169 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 170 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 171 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 172 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 173 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 174 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 175 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 176 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 177 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 178 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 179 ) """ parameters for reproducibiliy. More information: https://numpy.org/doc/stable/reference/random/parallel.html """ #initial entropy entropy = 8991598675325360468762009371570610170 #index for seed sequence child child_seed_index = ( 1, # 0 21, # 1 )
n = int(input()) teams = [int(x) for x in input().split()] carrying = 0 for i in range(n): if teams[i] == 0 and carrying == 1: print("NO") exit() if teams[i] % 2 == 1: if carrying == 0: carrying = 1 else: carrying = 0 if carrying == 0: print("YES") else: print("NO")
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2013 Midokura PTE LTD. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. APPLICATION_OCTET_STREAM = "application/octet-stream" APPLICATION_JSON_V5 = "application/vnd.org.midonet.Application-v5+json" APPLICATION_ERROR_JSON = "application/vnd.org.midonet.Error-v1+json" APPLICATION_TENANT_JSON = "application/vnd.org.midonet.Tenant-v1+json" APPLICATION_TENANT_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Tenant-v1+json" APPLICATION_ROUTER_JSON = "application/vnd.org.midonet.Router-v3+json" APPLICATION_ROUTER_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Router-v3+json" APPLICATION_BRIDGE_JSON = "application/vnd.org.midonet.Bridge-v3+json" APPLICATION_BRIDGE_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Bridge-v3+json" APPLICATION_HOST_JSON = "application/vnd.org.midonet.Host-v2+json" APPLICATION_HOST_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Host-v2+json" APPLICATION_INTERFACE_JSON = "application/vnd.org.midonet.Interface-v1+json" APPLICATION_INTERFACE_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Interface-v1+json" APPLICATION_HOST_COMMAND_JSON = \ "application/vnd.org.midonet.HostCommand-v1+json" APPLICATION_HOST_COMMAND_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.HostCommand-v1+json" APPLICATION_PORT_LINK_JSON = "application/vnd.org.midonet.PortLink-v1+json" APPLICATION_ROUTE_JSON = "application/vnd.org.midonet.Route-v1+json" APPLICATION_ROUTE_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Route-v1+json" APPLICATION_PORTGROUP_JSON = "application/vnd.org.midonet.PortGroup-v1+json" APPLICATION_PORTGROUP_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.PortGroup-v1+json" APPLICATION_PORTGROUP_PORT_JSON = \ "application/vnd.org.midonet.PortGroupPort-v1+json" APPLICATION_PORTGROUP_PORT_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.PortGroupPort-v1+json" APPLICATION_CHAIN_JSON = "application/vnd.org.midonet.Chain-v1+json" APPLICATION_CHAIN_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Chain-v1+json" APPLICATION_RULE_JSON = "application/vnd.org.midonet.Rule-v2+json" APPLICATION_RULE_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Rule-v2+json" APPLICATION_BGP_JSON = "application/vnd.org.midonet.Bgp-v1+json" APPLICATION_BGP_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Bgp-v1+json" APPLICATION_AD_ROUTE_JSON = "application/vnd.org.midonet.AdRoute-v1+json" APPLICATION_AD_ROUTE_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.AdRoute-v1+json" APPLICATION_BGP_NETWORK_JSON = "application/vnd.org.midonet.BgpNetwork-v1+json" APPLICATION_BGP_NETWORK_COLLECTION_JSON =\ "application/vnd.org.midonet.collection.BgpNetwork-v1+json" APPLICATION_BGP_PEER_JSON = "application/vnd.org.midonet.BgpPeer-v1+json" APPLICATION_BGP_PEER_COLLECTION_JSON =\ "application/vnd.org.midonet.collection.BgpPeer-v1+json" APPLICATION_VPN_JSON = "application/vnd.org.midonet.Vpn-v1+json" APPLICATION_VPN_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Vpn-v1+json" APPLICATION_DHCP_SUBNET_JSON = "application/vnd.org.midonet.DhcpSubnet-v2+json" APPLICATION_DHCP_SUBNET_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.DhcpSubnet-v2+json" APPLICATION_DHCP_HOST_JSON = "application/vnd.org.midonet.DhcpHost-v1+json" APPLICATION_DHCP_HOST_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.DhcpHost-v1+json" APPLICATION_DHCPV6_SUBNET_JSON = \ "application/vnd.org.midonet.DhcpV6Subnet-v1+json" APPLICATION_DHCPV6_SUBNET_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.DhcpV6Subnet-v1+json" APPLICATION_DHCPV6_HOST_JSON = "application/vnd.org.midonet.DhcpV6Host-v1+json" APPLICATION_DHCPV6_HOST_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.DhcpV6Host-v1+json" APPLICATION_MONITORING_QUERY_RESPONSE_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.mgmt.MetricQueryResponse-v1+json" APPLICATION_MONITORING_QUERY_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.MetricQuery-v1+json" APPLICATION_METRICS_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Metric-v1+json" APPLICATION_METRIC_TARGET_JSON = \ "application/vnd.org.midonet.MetricTarget-v1+json" APPLICATION_TUNNEL_ZONE_JSON = "application/vnd.org.midonet.TunnelZone-v1+json" APPLICATION_TUNNEL_ZONE_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.TunnelZone-v1+json" APPLICATION_TUNNEL_ZONE_HOST_JSON = \ "application/vnd.org.midonet.TunnelZoneHost-v1+json" APPLICATION_TUNNEL_ZONE_HOST_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.TunnelZoneHost-v1+json" APPLICATION_GRE_TUNNEL_ZONE_HOST_JSON = \ "application/vnd.org.midonet.GreTunnelZoneHost-v1+json" APPLICATION_GRE_TUNNEL_ZONE_HOST_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.GreTunnelZoneHost-v1+json" APPLICATION_HOST_INTERFACE_PORT_JSON = \ "application/vnd.org.midonet.HostInterfacePort-v1+json" APPLICATION_HOST_INTERFACE_PORT_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.HostInterfacePort-v1+json" APPLICATION_CONDITION_JSON = "application/vnd.org.midonet.Condition-v1+json" APPLICATION_CONDITION_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Condition-v1+json" APPLICATION_TRACE_JSON = "application/vnd.org.midonet.Trace-v1+json" APPLICATION_TRACE_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Trace-v1+json" APPLICATION_WRITE_VERSION_JSON = \ "application/vnd.org.midonet.WriteVersion-v1+json" APPLICATION_SYSTEM_STATE_JSON = \ "application/vnd.org.midonet.SystemState-v2+json" APPLICATION_HOST_VERSION_JSON = \ "application/vnd.org.midonet.HostVersion-v1+json" # Port media types APPLICATION_PORT_JSON = "application/vnd.org.midonet.Port-v2+json" APPLICATION_PORT_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Port-v2+json" APPLICATION_IP_ADDR_GROUP_JSON = \ "application/vnd.org.midonet.IpAddrGroup-v1+json" APPLICATION_IP_ADDR_GROUP_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.IpAddrGroup-v1+json" APPLICATION_IP_ADDR_GROUP_ADDR_JSON = \ "application/vnd.org.midonet.IpAddrGroupAddr-v1+json" APPLICATION_IP_ADDR_GROUP_ADDR_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.IpAddrGroupAddr-v1+json" # L4LB media types APPLICATION_LOAD_BALANCER_JSON = \ "application/vnd.org.midonet.LoadBalancer-v1+json" APPLICATION_LOAD_BALANCER_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.LoadBalancer-v1+json" APPLICATION_VIP_JSON = "application/vnd.org.midonet.VIP-v1+json" APPLICATION_VIP_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.VIP-v1+json" APPLICATION_POOL_JSON = "application/vnd.org.midonet.Pool-v1+json" APPLICATION_POOL_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.Pool-v1+json" APPLICATION_POOL_MEMBER_JSON = "application/vnd.org.midonet.PoolMember-v1+json" APPLICATION_POOL_MEMBER_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.PoolMember-v1+json" APPLICATION_HEALTH_MONITOR_JSON = \ "application/vnd.org.midonet.HealthMonitor-v1+json" APPLICATION_HEALTH_MONITOR_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.HealthMonitor-v1+json" APPLICATION_POOL_STATISTIC_JSON = \ "application/vnd.org.midonet.PoolStatistic-v1+json" APPLICATION_POOL_STATISTIC_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.PoolStatistic-v1+json" # VxGW APPLICATION_VTEP_JSON = "application/vnd.org.midonet.VTEP-v1+json" APPLICATION_VTEP_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.VTEP-v1+json" APPLICATION_VTEP_BINDING_JSON = \ "application/vnd.org.midonet.VTEPBinding-v1+json" APPLICATION_VTEP_BINDING_COLLECTION_JSON = \ "application/vnd.org.midonet.collection.VTEPBinding-v1+json"
def compute_epsg(lon, lat): """ Compute the EPSG code of the UTM zone which contains the point with given longitude and latitude Args: lon (float): longitude of the point lat (float): latitude of the point Returns: int: EPSG code """ # UTM zone number starts from 1 at longitude -180, # and increments by 1 every 6 degrees of longitude zone = int((lon + 180) // 6 + 1) # EPSG = CONST + ZONE where CONST is # - 32600 for positive latitudes # - 32700 for negative latitudes const = 32600 if lat > 0 else 32700 return const + zone
""" **kwargs """ def print_info(**kwargs): for key in kwargs: print('{}: {}'.format(key, kwargs[key])) if __name__ == '__main__': print_info(name='Mike', lastname='Red', age=22)
def clean_gdp(gdp): # get needed columns from gdplev excel file columns_to_keep = ['Unnamed: 4', 'Unnamed: 5', 'Unnamed: 6'] gdp = gdp[columns_to_keep] gdp.columns = ['Quarter', 'GDP Current', 'GDP Chained'] gdp = gdp[~gdp['Quarter'].isnull()] # only keep data from 2000 onwards gdp = gdp[gdp['Quarter'].str.startswith('2')] gdp.reset_index(drop = True, inplace = True) # create column to compare GDP change from quarter to quarter gdp['GDP Change'] = gdp['GDP Current'] - gdp['GDP Current'].shift(1) return gdp def get_recession_start(gdp): '''Returns the year and quarter of the recession start time as a string value in a format such as 2005q3 ''' # look for two successive quarters with negative change in GDP start_qtr = '' for j in range(1,len(gdp)-1): if gdp.iloc[j]['GDP Change']<0 and gdp.iloc[j-1]['GDP Change']<0: start_qtr = gdp.iloc[j-2]['Quarter'] break return start_qtr def get_recession_end(gdp, rec_start): '''Returns the year and quarter of the recession end time as a string value in a format such as 2005q3 ''' # start at the beginning of the recession rec_start_ix = gdp.Quarter[gdp.Quarter == rec_start].index.tolist()[0] end_qtr = '' # look for 2 successive quarters of increasing GDP for j in range(rec_start_ix,len(gdp)-1): if gdp.iloc[j]['GDP Change']>0 and gdp.iloc[j+1]['GDP Change']>0: end_qtr = gdp.iloc[j+1]['Quarter'] break return end_qtr def get_recession_bottom(gdp, rec_start, rec_end): '''Returns the year and quarter of the recession bottom time as a string value in a format such as 2005q3 ''' # get index locations of recession start and end rec_start_ix = gdp.Quarter[gdp.Quarter == rec_start].index.tolist()[0] rec_end_ix = gdp.Quarter[gdp.Quarter == rec_end].index.tolist()[0] gdp['GDP Current'] = gdp['GDP Current'].astype(float).fillna(0.0) bottom_qtr = '' lowest_gdp = gdp.iloc[rec_start_ix]['GDP Current'] # look for 2 successive quarters of increasing GDP for j in range(rec_start_ix, rec_end_ix): if gdp.iloc[j]['GDP Current'] < lowest_gdp: bottom_qtr = gdp.iloc[j]['Quarter'] lowest_gdp = gdp.iloc[j]['GDP Current'] return bottom_qtr
# Can be used in the test data like ${MyObject()} or ${MyObject(1)} class MyObject: def __init__(self, index=''): self.index = index def __str__(self): return '<MyObject%s>' % self.index UNICODE = (u'Hyv\u00E4\u00E4 y\u00F6t\u00E4. ' u'\u0421\u043F\u0430\u0441\u0438\u0431\u043E!') LIST_WITH_OBJECTS = [MyObject(1), MyObject(2)] NESTED_LIST = [ [True, False], [[1, None, MyObject(), {}]] ] NESTED_TUPLE = ( (True, False), [(1, None, MyObject(), {})] ) DICT_WITH_OBJECTS = {'As value': MyObject(1), MyObject(2): 'As key'} NESTED_DICT = { 1: {None: False}, 2: {'A': {'n': None}, 'B': {'o': MyObject(), 'e': {}}} }
def Fibonacci(n): # Check if input is 0 then it will # print incorrect input if n < 0: print("Incorrect input") # Check if n is 0 # then it will return 0 elif n == 0: return 0 # Check if n is 1,2 # it will return 1 elif n == 1 or n == 2: return 1 else: return Fibonacci(n-1) + Fibonacci(n-2) # Driver Program print(Fibonacci(40))
# encoding: utf-8 # Copyright 2011 Tree.io Limited # This file is part of Treeio. # License www.tree.io/license """ Documents docstring """
class Solution(object): def findPeakElementLinear(self, nums): """ :type nums: List[int] :rtype: int """ i = 0 while i < len(nums): # check dangerous condition first if i == len(nums) - 1 or (nums[i + 1] < nums[i]): return i i += 1 def findPeakElementBisec(self, nums): """ :type nums: List[int] :rtype: int """ l, r = 0, len(nums) - 1 if not nums: return if len(nums) == 1: return 0 if len(nums) == 2: return 0 if nums[0] > nums[1] else 1 while l < r: # should not exclude equal case m = (l + r) // 2 if nums[m] > nums[m - 1] and nums[m] > nums[m + 1]: return m elif nums[m] < nums[m - 1]: # climb left uphill r = m - 1 elif nums[m] < nums[m + 1]: # climb right uphill l = m + 1 # no peak exists return l if nums[0] > nums[-1] else r
for t in range(int(input())): a,b = input().split() cnt1,cnt2 = 0,0 for i in range(len(a)): if a[i] != b[i]: if b[i] == '0': cnt1+=1 else: cnt2+=1 print(max(cnt1,cnt2))
class Solution: def subsets(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ def deep_subsets(nums): r = [] n = len(nums) if n == 1: return [nums] for idx, num in enumerate(nums): r += [[num]] for sb in deep_subsets(nums[idx+1:]): r += [[num] + sb] return r r = [[]] r += deep_subsets(nums) return r
# @license Apache-2.0 # # Copyright (c) 2018 The Stdlib Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # A `.gyp` file for building a Node.js native add-on. # # [1]: https://gyp.gsrc.io/docs/InputFormatReference.md # [2]: https://gyp.gsrc.io/docs/UserDocumentation.md { # List of files to include in this file: 'includes': [ './include.gypi', ], # Define variables to be used throughout the configuration for all targets: 'variables': { # Target name should match the add-on export name: 'addon_target_name%': 'addon', # Fortran compiler (to override -Dfortran_compiler=<compiler>): 'fortran_compiler%': 'gfortran', # Fortran compiler flags: 'fflags': [ # Specify the Fortran standard to which a program is expected to conform: '-std=f95', # Indicate that the layout is free-form source code: '-ffree-form', # Aggressive optimization: '-O3', # Enable commonly used warning options: '-Wall', # Warn if source code contains problematic language features: '-Wextra', # Warn if a procedure is called without an explicit interface: '-Wimplicit-interface', # Do not transform names of entities specified in Fortran source files by appending underscores (i.e., don't mangle names, thus allowing easier usage in C wrappers): '-fno-underscoring', # Warn if source code contains Fortran 95 extensions and C-language constructs: '-pedantic', # Compile but do not link (output is an object file): '-c', ], # Set variables based on the host OS: 'conditions': [ [ 'OS=="win"', { # Define the object file suffix: 'obj': 'obj', }, { # Define the object file suffix: 'obj': 'o', } ], # end condition (OS=="win") ], # end conditions }, # end variables # Define compile targets: 'targets': [ # Target to generate an add-on: { # The target name should match the add-on export name: 'target_name': '<(addon_target_name)', # Define dependencies: 'dependencies': [], # Define directories which contain relevant include headers: 'include_dirs': [ # Local include directory: '<@(include_dirs)', ], # List of source files: 'sources': [ '<@(src_files)', ], # Settings which should be applied when a target's object files are used as linker input: 'link_settings': { # Define libraries: 'libraries': [ '<@(libraries)', ], # Define library directories: 'library_dirs': [ '<@(library_dirs)', ], }, # C/C++ compiler flags: 'cflags': [ # Enable commonly used warning options: '-Wall', # Aggressive optimization: '-O3', ], # C specific compiler flags: 'cflags_c': [ # Specify the C standard to which a program is expected to conform: '-std=c99', ], # C++ specific compiler flags: 'cflags_cpp': [ # Specify the C++ standard to which a program is expected to conform: '-std=c++11', ], # Linker flags: 'ldflags': [], # Apply conditions based on the host OS: 'conditions': [ [ 'OS=="mac"', { # Linker flags: 'ldflags': [ '-undefined dynamic_lookup', '-Wl,-no-pie', '-Wl,-search_paths_first', ], }, ], # end condition (OS=="mac") [ 'OS!="win"', { # C/C++ flags: 'cflags': [ # Generate platform-independent code: '-fPIC', ], }, ], # end condition (OS!="win") ], # end conditions # Define custom build actions for particular inputs: 'rules': [ { # Define a rule for processing Fortran files: 'extension': 'f', # Define the pathnames to be used as inputs when performing processing: 'inputs': [ # Full path of the current input: '<(RULE_INPUT_PATH)' ], # Define the outputs produced during processing: 'outputs': [ # Store an output object file in a directory for placing intermediate results (only accessible within a single target): '<(INTERMEDIATE_DIR)/<(RULE_INPUT_ROOT).<(obj)' ], # Define the rule for compiling Fortran based on the host OS: 'conditions': [ [ 'OS=="win"', # Rule to compile Fortran on Windows: { 'rule_name': 'compile_fortran_windows', 'message': 'Compiling Fortran file <(RULE_INPUT_PATH) on Windows...', 'process_outputs_as_sources': 0, # Define the command-line invocation: 'action': [ '<(fortran_compiler)', '<@(fflags)', '<@(_inputs)', '-o', '<@(_outputs)', ], }, # Rule to compile Fortran on non-Windows: { 'rule_name': 'compile_fortran_linux', 'message': 'Compiling Fortran file <(RULE_INPUT_PATH) on Linux...', 'process_outputs_as_sources': 1, # Define the command-line invocation: 'action': [ '<(fortran_compiler)', '<@(fflags)', '-fPIC', # generate platform-independent code '<@(_inputs)', '-o', '<@(_outputs)', ], } ], # end condition (OS=="win") ], # end conditions }, # end rule (extension=="f") ], # end rules }, # end target <(addon_target_name) # Target to copy a generated add-on to a standard location: { 'target_name': 'copy_addon', # Declare that the output of this target is not linked: 'type': 'none', # Define dependencies: 'dependencies': [ # Require that the add-on be generated before building this target: '<(addon_target_name)', ], # Define a list of actions: 'actions': [ { 'action_name': 'copy_addon', 'message': 'Copying addon...', # Explicitly list the inputs in the command-line invocation below: 'inputs': [], # Declare the expected outputs: 'outputs': [ '<(addon_output_dir)/<(addon_target_name).node', ], # Define the command-line invocation: 'action': [ 'cp', '<(PRODUCT_DIR)/<(addon_target_name).node', '<(addon_output_dir)/<(addon_target_name).node', ], }, ], # end actions }, # end target copy_addon ], # end targets }
''' In this module, we implement selection sort Time complexity: O(n ^ 2) ''' def selection_sort(arr): ''' Sort array using selection sort ''' for index_x in range(len(arr)): min_index = index_x for index_y in range(index_x + 1, len(arr)): if arr[index_y] < arr[min_index]: min_index = index_y arr[min_index], arr[index_x] = arr[index_x], arr[min_index]
# Link : https://leetcode.com/problems/subtree-of-another-tree/ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object): def sameTree(self , root , subRoot): if(root == None or subRoot == None): return root == None and subRoot == None # If one node matches , check if all its nodes match or not elif(root.val == subRoot.val): return self.sameTree(root.right , subRoot.right) and self.sameTree(root.left , subRoot.left) else: return False def isSubtree(self, root, subRoot): """ :type root: TreeNode :type subRoot: TreeNode :rtype: bool """ # Base Cases # If none if(root == None): return False # If subtree and tree is same elif(self.sameTree(root , subRoot)): return True else: return self.isSubtree(root.right , subRoot) or self.isSubtree(root.left , subRoot)
"""Cabal packages""" load("@bazel_skylib//lib:paths.bzl", "paths") load("@bazel_tools//tools/build_defs/repo:utils.bzl", "maybe") load("@bazel_tools//tools/cpp:toolchain_utils.bzl", "find_cpp_toolchain") load(":cc.bzl", "cc_interop_info") load(":private/context.bzl", "haskell_context", "render_env") load(":private/dependencies.bzl", "gather_dep_info") load(":private/expansions.bzl", "expand_make_variables") load(":private/mode.bzl", "is_profiling_enabled") load(":private/path_utils.bzl", "join_path_list", "truly_relativize") load(":private/set.bzl", "set") load(":haddock.bzl", "generate_unified_haddock_info") load( ":private/workspace_utils.bzl", _execute_or_fail_loudly = "execute_or_fail_loudly", ) load( ":providers.bzl", "HaddockInfo", "HaskellInfo", "HaskellLibraryInfo", "get_ghci_extra_libs", ) def _so_extension(hs): return "dylib" if hs.toolchain.is_darwin else "so" def _dirname(file): return file.dirname def _version(name): """Return the version component of a package name.""" return name.rpartition("-")[2] def _has_version(name): """Check whether a package identifier has a version component.""" return name.rpartition("-")[2].replace(".", "").isdigit() def _chop_version(name): """Remove any version component from the given package name.""" return name.rpartition("-")[0] def _find_cabal(hs, srcs): """Check that a .cabal file exists. Choose the root one.""" cabal = None for f in srcs: if f.extension == "cabal": if not cabal or f.dirname < cabal.dirname: cabal = f if not cabal: fail("A .cabal file was not found in the srcs attribute.") return cabal def _find_setup(hs, cabal, srcs): """Check that a Setup script exists. If not, create a default one.""" setup = None for f in srcs: if f.basename in ["Setup.hs", "Setup.lhs"]: if not setup or f.dirname < setup.dirname: setup = f if not setup: setup = hs.actions.declare_file("Setup.hs", sibling = cabal) hs.actions.write( output = setup, content = """ module Main where import Distribution.Simple main :: IO () main = defaultMain """, ) return setup _CABAL_TOOLS = ["alex", "c2hs", "cpphs", "doctest", "happy"] _CABAL_TOOL_LIBRARIES = ["cpphs", "doctest"] # Some old packages are empty compatibility shims. Empty packages # cause Cabal to not produce the outputs it normally produces. Instead # of detecting that, we blacklist the offending packages, on the # assumption that such packages are old and rare. # # TODO: replace this with a more general solution. _EMPTY_PACKAGES_BLACKLIST = [ "bytestring-builder", "fail", "mtl-compat", "nats", ] def _cabal_tool_flag(tool): """Return a --with-PROG=PATH flag if input is a recognized Cabal tool. None otherwise.""" if tool.basename in _CABAL_TOOLS: return "--with-{}={}".format(tool.basename, tool.path) def _binary_paths(binaries): return [binary.dirname for binary in binaries.to_list()] def _prepare_cabal_inputs(hs, cc, posix, dep_info, cc_info, direct_cc_info, component, package_id, tool_inputs, tool_input_manifests, cabal, setup, srcs, compiler_flags, flags, cabal_wrapper, package_database): """Compute Cabal wrapper, arguments, inputs.""" with_profiling = is_profiling_enabled(hs) # Haskell library dependencies or indirect C library dependencies are # already covered by their corresponding package-db entries. We only need # to add libraries and headers for direct C library dependencies to the # command line. (direct_libs, _) = get_ghci_extra_libs(hs, posix, direct_cc_info) (transitive_libs, env) = get_ghci_extra_libs(hs, posix, cc_info) env.update(**hs.env) env["PATH"] = join_path_list(hs, _binary_paths(tool_inputs) + posix.paths) if hs.toolchain.is_darwin: env["SDKROOT"] = "macosx" # See haskell/private/actions/link.bzl args = hs.actions.args() package_databases = dep_info.package_databases transitive_headers = cc_info.compilation_context.headers direct_include_dirs = depset(transitive = [ direct_cc_info.compilation_context.includes, direct_cc_info.compilation_context.quote_includes, direct_cc_info.compilation_context.system_includes, ]) direct_lib_dirs = [file.dirname for file in direct_libs.to_list()] args.add_all([component, package_id, setup, cabal.dirname, package_database.dirname]) args.add("--flags=" + " ".join(flags)) args.add_all(compiler_flags, format_each = "--ghc-option=%s") args.add("--") args.add_all(package_databases, map_each = _dirname, format_each = "--package-db=%s") args.add_all(direct_include_dirs, format_each = "--extra-include-dirs=%s") args.add_all(direct_lib_dirs, format_each = "--extra-lib-dirs=%s", uniquify = True) if with_profiling: args.add("--enable-profiling") # Redundant with _binary_paths() above, but better be explicit when we can. args.add_all(tool_inputs, map_each = _cabal_tool_flag) inputs = depset( [setup, hs.tools.ghc, hs.tools.ghc_pkg, hs.tools.runghc], transitive = [ depset(srcs), depset(cc.files), package_databases, transitive_headers, transitive_libs, dep_info.interface_dirs, dep_info.static_libraries, dep_info.dynamic_libraries, tool_inputs, ], ) input_manifests = tool_input_manifests return struct( cabal_wrapper = cabal_wrapper, args = args, inputs = inputs, input_manifests = input_manifests, env = env, ) def _haskell_cabal_library_impl(ctx): hs = haskell_context(ctx) dep_info = gather_dep_info(ctx, ctx.attr.deps) cc = cc_interop_info(ctx) # All C and Haskell library dependencies. cc_info = cc_common.merge_cc_infos( cc_infos = [dep[CcInfo] for dep in ctx.attr.deps if CcInfo in dep], ) # Separate direct C library dependencies. direct_cc_info = cc_common.merge_cc_infos( cc_infos = [ dep[CcInfo] for dep in ctx.attr.deps if CcInfo in dep and not HaskellInfo in dep ], ) posix = ctx.toolchains["@rules_sh//sh/posix:toolchain_type"] package_id = "{}-{}".format( ctx.attr.package_name if ctx.attr.package_name else hs.label.name, ctx.attr.version, ) with_profiling = is_profiling_enabled(hs) user_compile_flags = _expand_make_variables("compiler_flags", ctx, ctx.attr.compiler_flags) cabal = _find_cabal(hs, ctx.files.srcs) setup = _find_setup(hs, cabal, ctx.files.srcs) package_database = hs.actions.declare_file( "_install/{}.conf.d/package.cache".format(package_id), sibling = cabal, ) interfaces_dir = hs.actions.declare_directory( "_install/{}_iface".format(package_id), sibling = cabal, ) data_dir = hs.actions.declare_directory( "_install/{}_data".format(package_id), sibling = cabal, ) haddock_file = hs.actions.declare_file( "_install/{}_haddock/{}.haddock".format(package_id, ctx.attr.name), sibling = cabal, ) haddock_html_dir = hs.actions.declare_directory( "_install/{}_haddock_html".format(package_id), sibling = cabal, ) static_library_filename = "_install/lib/libHS{}.a".format(package_id) if with_profiling: static_library_filename = "_install/lib/libHS{}_p.a".format(package_id) static_library = hs.actions.declare_file( static_library_filename, sibling = cabal, ) if hs.toolchain.is_static: dynamic_library = None else: dynamic_library = hs.actions.declare_file( "_install/lib/libHS{}-ghc{}.{}".format( package_id, hs.toolchain.version, _so_extension(hs), ), sibling = cabal, ) (tool_inputs, tool_input_manifests) = ctx.resolve_tools(tools = ctx.attr.tools) c = _prepare_cabal_inputs( hs, cc, posix, dep_info, cc_info, direct_cc_info, component = "lib:{}".format( ctx.attr.package_name if ctx.attr.package_name else hs.label.name, ), package_id = package_id, tool_inputs = tool_inputs, tool_input_manifests = tool_input_manifests, cabal = cabal, setup = setup, srcs = ctx.files.srcs, compiler_flags = user_compile_flags, flags = ctx.attr.flags, cabal_wrapper = ctx.executable._cabal_wrapper, package_database = package_database, ) ctx.actions.run( executable = c.cabal_wrapper, arguments = [c.args], inputs = c.inputs, input_manifests = c.input_manifests, tools = [c.cabal_wrapper], outputs = [ package_database, interfaces_dir, static_library, data_dir, haddock_file, haddock_html_dir, ] + ([dynamic_library] if dynamic_library != None else []), env = c.env, mnemonic = "HaskellCabalLibrary", progress_message = "HaskellCabalLibrary {}".format(hs.label), ) default_info = DefaultInfo( files = depset([static_library] + ([dynamic_library] if dynamic_library != None else [])), runfiles = ctx.runfiles( files = [data_dir], collect_default = True, ), ) hs_info = HaskellInfo( package_databases = depset([package_database], transitive = [dep_info.package_databases]), version_macros = set.empty(), source_files = depset(), extra_source_files = depset(), import_dirs = set.empty(), static_libraries = depset( direct = [static_library], transitive = [dep_info.static_libraries], order = "topological", ), dynamic_libraries = depset( direct = [dynamic_library] if dynamic_library != None else [], transitive = [dep_info.dynamic_libraries], ), interface_dirs = depset([interfaces_dir], transitive = [dep_info.interface_dirs]), compile_flags = [], ) lib_info = HaskellLibraryInfo(package_id = package_id, version = None, exports = []) doc_info = generate_unified_haddock_info( this_package_id = package_id, this_package_html = haddock_html_dir, this_package_haddock = haddock_file, deps = ctx.attr.deps, ) cc_toolchain = find_cpp_toolchain(ctx) feature_configuration = cc_common.configure_features( ctx = ctx, cc_toolchain = cc_toolchain, requested_features = ctx.features, unsupported_features = ctx.disabled_features, ) library_to_link = cc_common.create_library_to_link( actions = ctx.actions, feature_configuration = feature_configuration, dynamic_library = dynamic_library, static_library = static_library, cc_toolchain = cc_toolchain, ) compilation_context = cc_common.create_compilation_context() linking_context = cc_common.create_linking_context( libraries_to_link = [library_to_link], ) cc_info = cc_common.merge_cc_infos( cc_infos = [ CcInfo( compilation_context = compilation_context, linking_context = linking_context, ), cc_info, ], ) return [default_info, hs_info, cc_info, lib_info, doc_info] haskell_cabal_library = rule( _haskell_cabal_library_impl, attrs = { "package_name": attr.string( doc = "Cabal package name. Defaults to name attribute.", ), "version": attr.string( doc = "Version of the Cabal package.", mandatory = True, ), "srcs": attr.label_list(allow_files = True), "deps": attr.label_list(), "compiler_flags": attr.string_list( doc = """Flags to pass to Haskell compiler, in addition to those defined the cabal file. Subject to Make variable substitution.""", ), "tools": attr.label_list( cfg = "host", allow_files = True, doc = """Tool dependencies. They are built using the host configuration, since the tools are executed as part of the build.""", ), "flags": attr.string_list( doc = "List of Cabal flags, will be passed to `Setup.hs configure --flags=...`.", ), "_cabal_wrapper": attr.label( executable = True, cfg = "host", default = Label("@rules_haskell//haskell:cabal_wrapper"), ), "_cc_toolchain": attr.label( default = Label("@bazel_tools//tools/cpp:current_cc_toolchain"), ), }, toolchains = [ "@bazel_tools//tools/cpp:toolchain_type", "@rules_haskell//haskell:toolchain", "@rules_sh//sh/posix:toolchain_type", ], fragments = ["cpp"], ) """Use Cabal to build a library. Example: ```bzl haskell_cabal_library( name = "lib-0.1.0.0", srcs = ["lib.cabal", "Lib.hs", "Setup.hs"], ) haskell_toolchain_library(name = "base") haskell_binary( name = "bin", deps = [":base", ":lib-0.1.0.0"], srcs = ["Main.hs"], ) ``` This rule does not use `cabal-install`. It calls the package's `Setup.hs` script directly if one exists, or the default one if not. All sources files that would have been part of a Cabal sdist need to be listed in `srcs` (crucially, including the `.cabal` file). A `haskell_cabal_library` can be substituted for any `haskell_library`. The two are interchangeable in most contexts. However, using a plain `haskell_library` sometimes leads to better build times, and does not require drafting a `.cabal` file. """ def _haskell_cabal_binary_impl(ctx): hs = haskell_context(ctx) dep_info = gather_dep_info(ctx, ctx.attr.deps) cc = cc_interop_info(ctx) # All C and Haskell library dependencies. cc_info = cc_common.merge_cc_infos( cc_infos = [dep[CcInfo] for dep in ctx.attr.deps if CcInfo in dep], ) # Separate direct C library dependencies. direct_cc_info = cc_common.merge_cc_infos( cc_infos = [ dep[CcInfo] for dep in ctx.attr.deps if CcInfo in dep and not HaskellInfo in dep ], ) posix = ctx.toolchains["@rules_sh//sh/posix:toolchain_type"] user_compile_flags = _expand_make_variables("compiler_flags", ctx, ctx.attr.compiler_flags) cabal = _find_cabal(hs, ctx.files.srcs) setup = _find_setup(hs, cabal, ctx.files.srcs) package_database = hs.actions.declare_file( "_install/{}.conf.d/package.cache".format(hs.label.name), sibling = cabal, ) binary = hs.actions.declare_file( "_install/bin/{name}{ext}".format( name = hs.label.name, ext = ".exe" if hs.toolchain.is_windows else "", ), sibling = cabal, ) data_dir = hs.actions.declare_directory( "_install/{}_data".format(hs.label.name), sibling = cabal, ) (tool_inputs, tool_input_manifests) = ctx.resolve_tools(tools = ctx.attr.tools) c = _prepare_cabal_inputs( hs, cc, posix, dep_info, cc_info, direct_cc_info, component = "exe:{}".format(hs.label.name), package_id = hs.label.name, tool_inputs = tool_inputs, tool_input_manifests = tool_input_manifests, cabal = cabal, setup = setup, srcs = ctx.files.srcs, compiler_flags = user_compile_flags, flags = ctx.attr.flags, cabal_wrapper = ctx.executable._cabal_wrapper, package_database = package_database, ) ctx.actions.run( executable = c.cabal_wrapper, arguments = [c.args], inputs = c.inputs, input_manifests = c.input_manifests, outputs = [ package_database, binary, data_dir, ], tools = [c.cabal_wrapper], env = c.env, mnemonic = "HaskellCabalBinary", progress_message = "HaskellCabalBinary {}".format(hs.label), ) hs_info = HaskellInfo( package_databases = dep_info.package_databases, version_macros = set.empty(), source_files = depset(), extra_source_files = depset(), import_dirs = set.empty(), static_libraries = dep_info.static_libraries, dynamic_libraries = dep_info.dynamic_libraries, interface_dirs = dep_info.interface_dirs, compile_flags = [], ) default_info = DefaultInfo( files = depset([binary]), executable = binary, runfiles = ctx.runfiles( files = [data_dir], collect_default = True, ), ) return [hs_info, cc_info, default_info] haskell_cabal_binary = rule( _haskell_cabal_binary_impl, executable = True, attrs = { "srcs": attr.label_list(allow_files = True), "deps": attr.label_list(), "compiler_flags": attr.string_list( doc = """Flags to pass to Haskell compiler, in addition to those defined the cabal file. Subject to Make variable substitution.""", ), "tools": attr.label_list( cfg = "host", doc = """Tool dependencies. They are built using the host configuration, since the tools are executed as part of the build.""", ), "flags": attr.string_list( doc = "List of Cabal flags, will be passed to `Setup.hs configure --flags=...`.", ), "_cabal_wrapper": attr.label( executable = True, cfg = "host", default = Label("@rules_haskell//haskell:cabal_wrapper"), ), "_cc_toolchain": attr.label( default = Label("@bazel_tools//tools/cpp:current_cc_toolchain"), ), }, toolchains = [ "@bazel_tools//tools/cpp:toolchain_type", "@rules_haskell//haskell:toolchain", "@rules_sh//sh/posix:toolchain_type", ], fragments = ["cpp"], ) """Use Cabal to build a binary. Example: ```bzl haskell_cabal_binary( name = "happy", srcs = glob(["**"]), ) ``` This rule assumes that the .cabal file defines a single executable with the same name as the package. This rule does not use `cabal-install`. It calls the package's `Setup.hs` script directly if one exists, or the default one if not. All sources files that would have been part of a Cabal sdist need to be listed in `srcs` (crucially, including the `.cabal` file). """ # Temporary hardcoded list of core libraries. This will no longer be # necessary once Stack 2.0 is released. # # TODO remove this list and replace it with Stack's --global-hints # mechanism. _CORE_PACKAGES = [ "Cabal", "array", "base", "binary", "bytestring", "containers", "deepseq", "directory", "filepath", "ghc", "ghc-boot", "ghc-boot-th", "ghc-compact", "ghc-heap", "ghc-prim", "ghci", "haskeline", "hpc", "integer-gmp", "integer-simple", "libiserv", "mtl", "parsec", "pretty", "process", "rts", "stm", "template-haskell", "terminfo", "text", "time", "transformers", "unix", "Win32", "xhtml", ] _STACK_DEFAULT_VERSION = "2.1.3" # Only ever need one version, but use same structure as for GHC bindists. _STACK_BINDISTS = \ { "2.1.3": { "freebsd-x86_64": ( "https://github.com/commercialhaskell/stack/releases/download/v2.1.3/stack-2.1.3-freebsd-x86_64.tar.gz", "b646380bd1ee6c5f16ea111c31be494e6e85ed5050dea41cd29fac5973767821", ), "linux-aarch64": ( "https://github.com/commercialhaskell/stack/releases/download/v2.1.3/stack-2.1.3-linux-aarch64.tar.gz", "1212c3ef9c4e901c50b086f1d778c28d75eb27cb4529695d2f1a16ea3f898a6d", ), "linux-arm": ( "https://github.com/commercialhaskell/stack/releases/download/v2.1.3/stack-2.1.3-linux-arm.tar.gz", "6c8a2100183368d0fe8298bc99260681f10c81838423884be885baaa2e096e78", ), "linux-i386": ( "https://github.com/commercialhaskell/stack/releases/download/v2.1.3/stack-2.1.3-linux-i386.tar.gz", "4acd97f4c91b1d1333c8d84ea38f690f0b5ac5224ba591f8cdd1b9d0e8973807", ), "linux-x86_64": ( "https://github.com/commercialhaskell/stack/releases/download/v2.1.3/stack-2.1.3-linux-x86_64.tar.gz", "c724b207831fe5f06b087bac7e01d33e61a1c9cad6be0468f9c117d383ec5673", ), "osx-x86_64": ( "https://github.com/commercialhaskell/stack/releases/download/v2.1.3/stack-2.1.3-osx-x86_64.tar.gz", "84b05b9cdb280fbc4b3d5fe23d1fc82a468956c917e16af7eeeabec5e5815d9f", ), "windows-i386": ( "https://github.com/commercialhaskell/stack/releases/download/v2.1.3/stack-2.1.3-windows-i386.tar.gz", "9bc67a8dc0466b6fc12b44b3920ea6be3b00fa1c52cbeada1a7c092a5402ebb3", ), "windows-x86_64": ( "https://github.com/commercialhaskell/stack/releases/download/v2.1.3/stack-2.1.3-windows-x86_64.tar.gz", "075bcd9130cd437de4e726466e5738c92c8e47d5666aa3a15d339e6ba62f76b2", ), }, } def _stack_version_check(repository_ctx, stack_cmd): """Returns False if version not recent enough.""" exec_result = _execute_or_fail_loudly(repository_ctx, [stack_cmd, "--numeric-version"]) stack_major_version = int(exec_result.stdout.split(".")[0]) return stack_major_version >= 2 def _compute_dependency_graph(repository_ctx, snapshot, core_packages, versioned_packages, unversioned_packages, vendored_packages): """Given a list of root packages, compute a dependency graph. Returns: dict(name: struct(name, version, versioned_name, deps, is_core_package, sdist)): name: The unversioned package name. version: The version of the package. versioned_name: <name>-<version>. flags: Cabal flags for this package. deps: The list of dependencies. vendored: Label of vendored package, None if not vendored. is_core_package: Whether the package is a core package. sdist: directory name of the unpackaged source distribution or None if core package or vendored. """ all_packages = {} for core_package in core_packages: all_packages[core_package] = struct( name = core_package, version = None, versioned_name = None, flags = repository_ctx.attr.flags.get(core_package, []), deps = [], vendored = None, is_core_package = True, sdist = None, ) if not versioned_packages and not unversioned_packages and not vendored_packages: return all_packages # Unpack all given packages, then compute the transitive closure # and unpack anything in the transitive closure as well. stack_cmd = repository_ctx.path(repository_ctx.attr.stack) if not _stack_version_check(repository_ctx, stack_cmd): fail("Stack version not recent enough. Need version 2.1 or newer.") stack = [stack_cmd] if versioned_packages: _execute_or_fail_loudly(repository_ctx, stack + ["unpack"] + versioned_packages) stack = [stack_cmd, "--resolver", snapshot] if unversioned_packages: _execute_or_fail_loudly(repository_ctx, stack + ["unpack"] + unversioned_packages) exec_result = _execute_or_fail_loudly(repository_ctx, ["ls"]) unpacked_sdists = exec_result.stdout.splitlines() # Determines path to vendored package's root directory relative to stack.yaml. # Note, this requires that the Cabal file exists in the package root and is # called `<name>.cabal`. vendored_sdists = [ truly_relativize( str(repository_ctx.path(label.relative(name + ".cabal")).dirname), relative_to = str(repository_ctx.path("stack.yaml").dirname), ) for (name, label) in vendored_packages.items() ] package_flags = { pkg_name: { flag[1:] if flag.startswith("-") else flag: not flag.startswith("-") for flag in flags } for (pkg_name, flags) in repository_ctx.attr.flags.items() } stack_yaml_content = struct(resolver = "none", packages = unpacked_sdists + vendored_sdists, flags = package_flags).to_json() repository_ctx.file("stack.yaml", content = stack_yaml_content, executable = False) exec_result = _execute_or_fail_loudly( repository_ctx, stack + ["ls", "dependencies", "--global-hints", "--separator=-"], ) transitive_unpacked_sdists = [] indirect_unpacked_sdists = [] for package in exec_result.stdout.splitlines(): name = _chop_version(package) if name in _CABAL_TOOLS and not name in _CABAL_TOOL_LIBRARIES: continue version = _version(package) vendored = vendored_packages.get(name, None) is_core_package = name in _CORE_PACKAGES all_packages[name] = struct( name = name, version = version, versioned_name = package, flags = repository_ctx.attr.flags.get(name, []), deps = [], vendored = vendored, is_core_package = is_core_package, sdist = None if is_core_package or vendored != None else package, ) if is_core_package or vendored != None: continue if version == "<unknown>": fail("""\ Could not resolve version of {}. It is not in the snapshot. Specify a fully qualified package name of the form <package>-<version>. """.format(package)) transitive_unpacked_sdists.append(package) if package not in unpacked_sdists: indirect_unpacked_sdists.append(name) # We removed the version numbers prior to calling `unpack`. This # way, stack will fetch the package sources from the snapshot # rather than from Hackage. See #1027. if indirect_unpacked_sdists: _execute_or_fail_loudly(repository_ctx, stack + ["unpack"] + indirect_unpacked_sdists) stack_yaml_content = struct(resolver = "none", packages = transitive_unpacked_sdists + vendored_sdists, flags = package_flags).to_json() repository_ctx.file("stack.yaml", stack_yaml_content, executable = False) # Compute dependency graph. exec_result = _execute_or_fail_loudly( repository_ctx, stack + ["dot", "--global-hints", "--external"], ) for line in exec_result.stdout.splitlines(): tokens = [w.strip('";') for w in line.split(" ")] # All lines of the form `"foo" -> "bar";` declare edges of the # dependency graph in the Graphviz format. if len(tokens) == 3 and tokens[1] == "->": [src, _, dest] = tokens if src in all_packages and dest in all_packages: all_packages[src].deps.append(dest) return all_packages def _invert(d): """Invert a dictionary.""" return dict(zip(d.values(), d.keys())) def _from_string_keyed_label_list_dict(d): """Convert string_keyed_label_list_dict to label_keyed_string_dict.""" # TODO Remove _from_string_keyed_label_list_dict once following issue # is resolved: https://github.com/bazelbuild/bazel/issues/7989. out = {} for (string_key, label_list) in d.items(): for label in label_list: if label in out: out[label] += " " + string_key else: out[label] = string_key return out def _to_string_keyed_label_list_dict(d): """Convert label_keyed_string_dict to string_keyed_label_list_dict.""" # TODO Remove _to_string_keyed_label_list_dict once following issue # is resolved: https://github.com/bazelbuild/bazel/issues/7989. out = {} for (label, string_key_list) in d.items(): for string_key in string_key_list.split(" "): out.setdefault(string_key, []).append(label) return out def _label_to_string(label): return "@{}//{}:{}".format(label.workspace_name, label.package, label.name) def _stack_snapshot_impl(repository_ctx): if repository_ctx.attr.snapshot and repository_ctx.attr.local_snapshot: fail("Please specify either snapshot or local_snapshot, but not both.") elif repository_ctx.attr.snapshot: snapshot = repository_ctx.attr.snapshot elif repository_ctx.attr.local_snapshot: snapshot = repository_ctx.path(repository_ctx.attr.local_snapshot) else: fail("Please specify one of snapshot or repository_snapshot") vendored_packages = _invert(repository_ctx.attr.vendored_packages) packages = repository_ctx.attr.packages core_packages = [] versioned_packages = [] unversioned_packages = [] for package in packages: has_version = _has_version(package) unversioned = _chop_version(package) if has_version else package if unversioned in vendored_packages: fail("Duplicate package '{}'. Packages may not be listed in both 'packages' and 'vendored_packages'.".format(package)) if unversioned in _CORE_PACKAGES: core_packages.append(unversioned) elif has_version: versioned_packages.append(package) else: unversioned_packages.append(package) all_packages = _compute_dependency_graph( repository_ctx, snapshot, core_packages, versioned_packages, unversioned_packages, vendored_packages, ) extra_deps = _to_string_keyed_label_list_dict(repository_ctx.attr.extra_deps) tools = [_label_to_string(label) for label in repository_ctx.attr.tools] # Write out dependency graph as importable Starlark value. repository_ctx.file( "packages.bzl", "packages = " + repr({ package.name: struct( name = package.name, version = package.version, deps = [Label("@{}//:{}".format(repository_ctx.name, dep)) for dep in package.deps], flags = package.flags, ) for package in all_packages.values() }), executable = False, ) # Write out the dependency graph as a BUILD file. build_file_builder = [] build_file_builder.append(""" load("@rules_haskell//haskell:cabal.bzl", "haskell_cabal_library") load("@rules_haskell//haskell:defs.bzl", "haskell_library", "haskell_toolchain_library") """) for package in all_packages.values(): if package.name in packages or package.versioned_name in packages or package.vendored != None: visibility = ["//visibility:public"] else: visibility = ["//visibility:private"] if package.vendored != None: build_file_builder.append( """ alias(name = "{name}", actual = "{actual}", visibility = {visibility}) """.format(name = package.name, actual = package.vendored, visibility = visibility), ) elif package.is_core_package: build_file_builder.append( """ haskell_toolchain_library(name = "{name}", visibility = {visibility}) """.format(name = package.name, visibility = visibility), ) elif package.name in _EMPTY_PACKAGES_BLACKLIST: build_file_builder.append( """ haskell_library( name = "{name}", version = "{version}", visibility = {visibility}, ) """.format( name = package.name, version = package.version, visibility = visibility, ), ) else: build_file_builder.append( """ haskell_cabal_library( name = "{name}", version = "{version}", flags = {flags}, srcs = glob(["{dir}/**"]), deps = {deps}, tools = {tools}, visibility = {visibility}, compiler_flags = ["-w", "-optF=-w"], ) """.format( name = package.name, version = package.version, flags = package.flags, dir = package.sdist, deps = package.deps + [ _label_to_string(label) for label in extra_deps.get(package.name, []) ], tools = tools, visibility = visibility, ), ) if package.versioned_name != None: build_file_builder.append( """alias(name = "{name}", actual = ":{actual}", visibility = {visibility})""".format( name = package.versioned_name, actual = package.name, visibility = visibility, ), ) build_file_content = "\n".join(build_file_builder) repository_ctx.file("BUILD.bazel", build_file_content, executable = False) _stack_snapshot = repository_rule( _stack_snapshot_impl, attrs = { "snapshot": attr.string(), "local_snapshot": attr.label(allow_single_file = True), "packages": attr.string_list(), "vendored_packages": attr.label_keyed_string_dict(), "flags": attr.string_list_dict(), "extra_deps": attr.label_keyed_string_dict(), "tools": attr.label_list(), "stack": attr.label(), "stack_update": attr.label(), }, ) def _stack_update_impl(repository_ctx): stack_cmd = repository_ctx.path(repository_ctx.attr.stack) _execute_or_fail_loudly(repository_ctx, [stack_cmd, "update"]) repository_ctx.file("stack_update") repository_ctx.file("BUILD.bazel", content = "exports_files(['stack_update'])") _stack_update = repository_rule( _stack_update_impl, attrs = { "stack": attr.label(), }, # Marked as local so that stack update is always executed before # _stack_snapshot is executed. local = True, ) """Execute stack update. This is extracted into a singleton repository rule to avoid concurrent invocations of stack update. See https://github.com/tweag/rules_haskell/issues/1090 """ def _get_platform(repository_ctx): """Map OS name and architecture to Stack platform identifiers.""" os_name = repository_ctx.os.name.lower() if os_name.startswith("linux"): os = "linux" elif os_name.startswith("mac os"): os = "osx" elif os_name.find("freebsd") != -1: os = "freebsd" elif os_name.find("windows") != -1: os = "windows" else: fail("Unknown OS: '{}'".format(os_name)) if os == "windows": reg_query = ["reg", "QUERY", "HKLM\\SYSTEM\\CurrentControlSet\\Control\\Session Manager\\Environment", "/v", "PROCESSOR_ARCHITECTURE"] result = repository_ctx.execute(reg_query) value = result.stdout.strip().split(" ")[-1].lower() if value in ["amd64", "ia64"]: arch = "x86_64" elif value in ["x86"]: arch = "i386" else: fail("Failed to determine CPU architecture:\n{}\n{}".format(result.stdout, result.stderr)) else: result = repository_ctx.execute(["uname", "-m"]) if result.stdout.strip() in ["arm", "armv7l"]: arch = "arm" elif result.stdout.strip() in ["aarch64"]: arch = "aarch64" elif result.stdout.strip() in ["amd64", "x86_64", "x64"]: arch = "x86_64" elif result.stdout.strip() in ["i386", "i486", "i586", "i686"]: arch = "i386" else: fail("Failed to determine CPU architecture:\n{}\n{}".format(result.stdout, result.stderr)) return (os, arch) def _fetch_stack_impl(repository_ctx): repository_ctx.file("BUILD.bazel") stack_cmd = repository_ctx.which("stack") if stack_cmd: if _stack_version_check(repository_ctx, stack_cmd): repository_ctx.symlink(stack_cmd, "stack") return else: print("Stack version not recent enough. Downloading a newer version...") # If we can't find Stack, download it. (os, arch) = _get_platform(repository_ctx) version = _STACK_DEFAULT_VERSION (url, sha256) = _STACK_BINDISTS[version]["{}-{}".format(os, arch)] repository_ctx.download_and_extract(url = url, sha256 = sha256) stack_cmd = repository_ctx.path( "stack-{}-{}-{}".format(version, os, arch), ).get_child("stack.exe" if os == "windows" else "stack") _execute_or_fail_loudly(repository_ctx, [stack_cmd, "--version"]) exec_result = repository_ctx.execute([stack_cmd, "--version"], quiet = True) if exec_result.return_code != 0: error_messsage = ["A Stack binary for your platform exists, but it failed to execute."] if os == "linux": error_messsage.append("HINT: If you are on NixOS,") error_messsage.append("* make Stack available on the PATH, or") error_messsage.append("* specify a Stack binary using the stack attribute.") fail("\n".join(error_messsage).format(exec_result.return_code)) repository_ctx.symlink(stack_cmd, "stack") _fetch_stack = repository_rule( _fetch_stack_impl, ) """Find a suitably recent local Stack or download it.""" def stack_snapshot(stack = None, extra_deps = {}, vendored_packages = {}, **kwargs): """Use Stack to download and extract Cabal source distributions. Args: snapshot: The name of a Stackage snapshot. Incompatible with local_snapshot. local_snapshot: A custom Stack snapshot file, as per the Stack documentation. Incompatible with snapshot. packages: A set of package identifiers. For packages in the snapshot, version numbers can be omitted. vendored_packages: Add or override a package to the snapshot with a custom unpacked source distribution. Each package must contain a Cabal file named `<package-name>.cabal` in the package root. flags: A dict from package name to list of flags. extra_deps: Extra dependencies of packages, e.g. system libraries or C/C++ libraries. tools: Tool dependencies. They are built using the host configuration, since the tools are executed as part of the build. stack: The stack binary to use to enumerate package dependencies. Examples: ```bzl stack_snapshot( name = "stackage", packages = ["conduit", "lens", "zlib-0.6.2"], vendored_packages = {"split": "//split:split"}, tools = ["@happy//:happy", "@c2hs//:c2hs"], snapshot = "lts-13.15", extra_deps = {"zlib": ["@zlib.dev//:zlib"]}, ) ``` defines `@stackage//:conduit`, `@stackage//:lens`, `@stackage//:zlib` library targets. Alternatively ```bzl stack_snapshot( name = "stackage", packages = ["conduit", "lens", "zlib"], flags = {"zlib": ["-non-blocking-ffi"]}, tools = ["@happy//:happy", "@c2hs//:c2hs"], local_Snapshot = "//:snapshot.yaml", extra_deps = {"zlib": ["@zlib.dev//:zlib"]}, ``` Does the same as the previous example, provided there is a `snapshot.yaml`, at the root of the repository with content ```yaml resolver: lts-13.15 packages: - zlib-0.6.2 ``` This rule will use Stack to compute the transitive closure of the subset of the given snapshot listed in the `packages` attribute, and generate a dependency graph. If a package in the closure depends on system libraries or other external libraries, use the `extra_deps` attribute to list them. This attribute works like the `--extra-{include,lib}-dirs` flags for Stack and cabal-install do. Packages that are in the snapshot need not have their versions specified. But any additional packages or version overrides will have to be specified with a package identifier of the form `<package>-<version>` in the `packages` attribute. In the external repository defined by the rule, all given packages are available as top-level targets named after each package. Additionally, the dependency graph is made available within `packages.bzl` as the `dict` `packages` mapping unversioned package names to structs holding the fields - name: The unversioned package name. - version: The package version. - deps: The list of package dependencies according to stack. - flags: The list of Cabal flags. """ if not stack: _fetch_stack(name = "rules_haskell_stack") stack = Label("@rules_haskell_stack//:stack") # Execute stack update once before executing _stack_snapshot. # This is to avoid multiple concurrent executions of stack update, # which may fail due to ~/.stack/pantry/hackage/hackage-security-lock. # See https://github.com/tweag/rules_haskell/issues/1090. maybe( _stack_update, name = "rules_haskell_stack_update", stack = stack, ) _stack_snapshot( stack = stack, # Dependency for ordered execution, stack update before stack unpack. stack_update = "@rules_haskell_stack_update//:stack_update", # TODO Remove _from_string_keyed_label_list_dict once following issue # is resolved: https://github.com/bazelbuild/bazel/issues/7989. extra_deps = _from_string_keyed_label_list_dict(extra_deps), # TODO Remove _invert once following issue is resolved: # https://github.com/bazelbuild/bazel/issues/7989. vendored_packages = _invert(vendored_packages), **kwargs ) def _expand_make_variables(name, ctx, strings): extra_label_attrs = [ ctx.attr.srcs, ctx.attr.tools, ] return expand_make_variables(name, ctx, strings, extra_label_attrs)