content
stringlengths
7
1.05M
BANNERS = ''' ___ ____ __ _______/ (_)___ __ __ / __ \/ / / / ___/ / / __ \/ / / / / / / / /_/ / /__/ / / /_/ / /_/ / /_/ /_/\__,_/\___/_/_/ .___/\__, / /_/ /____/ ---split--- __ _ [ | (_) _ .--. __ _ .---. | | __ _ .--. _ __ [ `.-. |[ | | | / /'`\] | | [ |[ '/'`\ \[ \ [ ] | | | | | \_/ |,| \__. | | | | | \__/ | \ '/ / [___||__]'.__.'_/'.___.'[___][___]| ;.__/[\_: / [__| \__.' ---split--- โ–„โ–„ โ–„ โ–„โ–„ โ–„โ–„ โ–„โ–„โ–„โ–„โ–„โ–„โ–„ โ–„โ–„โ–„ โ–„โ–„โ–„ โ–„โ–„โ–„โ–„โ–„โ–„โ–„ โ–„โ–„ โ–„โ–„ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆโ–„โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–„ โ–ˆ โ–ˆโ–„โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆโ–„โ–ˆ โ–ˆ โ–„โ–„โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆโ–„โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–„ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆโ–„โ–„โ–„โ–ˆ โ–ˆ โ–„โ–„โ–„โ–ˆโ–„ โ–„โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆโ–„โ–„โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆ โ–ˆโ–„โ–ˆ โ–ˆโ–„โ–„โ–ˆโ–„โ–„โ–„โ–„โ–„โ–„โ–„โ–ˆโ–„โ–„โ–„โ–„โ–„โ–„โ–„โ–ˆโ–„โ–„โ–„โ–„โ–„โ–„โ–„โ–ˆโ–„โ–„โ–„โ–ˆโ–„โ–„โ–„โ–ˆ โ–ˆโ–„โ–„โ–„โ–ˆ ---split--- _ _ _ __ _ _ _ _ _ _ __ | |(_)| '_ \| || | | ' \ | || |/ _|| || || .__/ \_. | |_||_| \_._|\__||_||_||_| |__/ ---split--- โ•”โ•— โ•‘โ•‘ โ•”โ•โ•— โ•”โ•—โ•”โ•—โ•”โ•โ•โ•—โ•‘โ•‘ โ•”โ•—โ•”โ•โ•โ•—โ•”โ•— โ•”โ•— โ•‘โ•”โ•—โ•—โ•‘โ•‘โ•‘โ•‘โ•‘โ•”โ•โ•โ•‘โ•‘ โ• โ•ฃโ•‘โ•”โ•—โ•‘โ•‘โ•‘ โ•‘โ•‘ โ•‘โ•‘โ•‘โ•‘โ•‘โ•šโ•โ•‘โ•‘โ•šโ•โ•—โ•‘โ•šโ•—โ•‘โ•‘โ•‘โ•šโ•โ•‘โ•‘โ•šโ•โ•โ•‘ โ•šโ•โ•šโ•โ•šโ•โ•โ•โ•šโ•โ•โ•โ•šโ•โ•โ•šโ•โ•‘โ•”โ•โ•โ•šโ•โ•—โ•”โ• โ•‘โ•‘ โ•”โ•โ•โ•‘ โ•šโ• โ•šโ•โ•โ• ---split--- / \---------------, \_,| | | nuclipy | | ,------------- \_/____________/ ---split--- ___ ___ (o o) (o o) ( V ) nuclipy ( V ) --m-m-------------m-m-- ---split--- ^ ^ (O,O) ( ) nuclipy -"-"------------- ---split--- \\ =o) (o> /\\ _(()_nuclipy_\_V_ // \\ \\ ---split--- /~_______~\ .---------. (| nuclipy |) '---------' \_~~~~~~~_/ '''
""" Largest palindrome product Problem 4 A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 ร— 99. Find the largest palindrome made from the product of two 3-digit numbers. """ # I had a feeling that palindromic numbers needed at least one palindromic factor # But that isn't true. 26 * 26 gives 676, but 26 is not a palindrome. # Given that, all I see to do here is search exhaustively. # Although I can slightly speed this up by avoiding duplicates palindromes = [] for i in range(100, 1000): for j in range(i, 1000): num = i * j str_num = str(num) for idx in range(len(str_num) // 2 + 1): if not str_num[idx] == str_num[-idx - 1]: break else: palindromes.append(num) print(sorted(palindromes)[-1]) # Although actually, it would probably be quicker if we went the other way and broke once # we found one. Does this give the same answer? palindrome = None for i in range(999, 99, -1): for j in range(i, 99, -1): num = i * j str_num = str(num) for idx in range(len(str_num) // 2 + 1): if not str_num[idx] == str_num[-idx - 1]: break else: palindrome = num break if palindrome: break print(palindrome) # No, it doesn't because we end up with a pretty high first number, but a fairly low second. # Maybe instead we try things in 100 number tranches? def find_palindrome(highest, lowest): palindrome = None for i in range(highest, lowest, -1): for j in range(i, lowest, -1): num = i * j str_num = str(num) for idx in range(len(str_num) // 2 + 1): if not str_num[idx] == str_num[-idx - 1]: break else: palindrome = num break if palindrome: break else: return find_palindrome(highest - 100, lowest - 100) return palindrome print(find_palindrome(999, 899)) # This works, but I'm not sure I can prove that it will always work. # In fact, it isn't exhaustive at all! It will miss much of the solution space.
class C: def m1(self): pass # <editor-fold desc="Description"> def m2(self): pass def m3(self): pass # </editor-fold>
''' Created on Aug 14, 2016 @author: rafacarv '''
class CBWGroup(object): def __init__(self, id="", name="", created_at="", updated_at=""): self.group_id = id self.name = name self.created_at = created_at self.updated_at = updated_at
def print_board(data, board): snake_index = 0 for snake in board['snakes']: if (snake['id'] == data['you']['id']): break snake_index += 1 print("My snake: " + str(snake_index)) for i in range(board['height'] - 1, -1, -1): for j in range(0, board['width'], 1): found_snake = False for k in range(len(board['snakes'])): #head if ({'x': j, 'y': i} == board['snakes'][k]['body'][0]): print(str(k), end =">") found_snake = True break #tail elif ({'x': j, 'y': i} == board['snakes'][k]['body'][len(board['snakes'][k]['body']) - 1]): print(str(k), end =")") found_snake = True break #body elif ({'x': j, 'y': i} in board['snakes'][k]['body']): print(str(k), end =" ") found_snake = True break if (found_snake): continue if ({'x': j, 'y': i} in board['food']): print("$", end =" ") else: print("-", end =" ") print(" ")
# automatically generated by the FlatBuffers compiler, do not modify # namespace: class Value(object): NONE = 0 boolean = 1 i8 = 2 u8 = 3 i16 = 4 u16 = 5 i32 = 6 u32 = 7 i64 = 8 u64 = 9 f32 = 10 f64 = 11 str = 12 str_list = 13 int32_list = 14 float_list = 15 bin = 16
l = [1,2,3] assert 1 in l assert 5 not in l d = {1:2} assert 1 in d assert 2 not in d d[2] = d assert 2 in d print("ok")
# -*- coding: utf-8 -*- """DOCSTRING.""" class Settings(object): WIDTH = 800 HEIGHT = 600 SCROLL_SPEED = 30 SAVE_FOLDER = 'saves'
def encode(message, rails): period = 2 * rails - 2 rows = [[] for _ in range(rails)] for i, c in enumerate(message): rows[min(i % period, period - i % period)].append(c) return ''.join(''.join(row) for row in rows) def decode(encoded_message, rails): period = 2 * rails - 2 rows_size = [0] * rails rows = [] text = [] for i in range(len(encoded_message)): rows_size[min(i % period, period - i % period)] += 1 encoded_message = iter(encoded_message) for size in rows_size: rows.append([next(encoded_message) for _ in range(size)][::-1]) for i in range(sum(rows_size)): text.append(rows[min(i % period, period - i % period)].pop()) return ''.join(text)
__author__ = 'Kalyan' notes = ''' 1. Read instructions for each function carefully. 2. Feel free to create new functions if needed. Give good names! 3. Use builtins and datatypes that we have seen so far. 4. If something about the function spec is not clear, use the corresponding test for clarification. 5. Many python builtin functions allow you to pass functions to customize their behavior. This makes it very productive to get things done in python. ''' # Given a list of age, height of various people [(name, years, cms), .... ]. Sort them in decreasing by age and increasing by height. # NOTE: define a function and pass it to the builtin sort function (key) to get this done, don't do your own sort. # Do the sort in-place (ie) don't create new lists. def custom_sort(input): if(input==None): return None if(input==[]): return [] else: input.sort(key=get_data) input.sort(key=get_age,reverse=True) pass def single_custom_sort_test(input, expected): custom_sort(input) # sorts in place assert input == expected def test_custom_sort(): # boundary cases single_custom_sort_test(None, None) single_custom_sort_test([], []) # no collisions single_custom_sort_test( [("Ram", 25, 160), ("Shyam", 30, 162), ("Sita", 15, 130)], [("Shyam", 30, 162), ("Ram", 25, 160), ("Sita", 15, 130)]) # collisions in age single_custom_sort_test( [("Ram", 25, 165), ("Shyam", 30, 162), ("Ravi", 25, 160), ("Gita", 30, 140)], [("Gita", 30, 140), ("Shyam", 30, 162), ("Ravi", 25, 160), ("Ram", 25, 165)]) # collisions in age and height, then initial order is maintained in stable sorts. single_custom_sort_test( [("Ram", 25, 165), ("Shyam", 30, 140), ("Ravi", 25, 165), ("Gita", 30, 140)], [("Shyam", 30, 140), ("Gita", 30, 140), ("Ram", 25, 165), ("Ravi", 25, 165)]) VOWELS = set("aeiou") # returns the word with the maximum number of vowels, in case of tie return # the word which occurs first. Use the builtin max function and pass a key func to get this done. def max_vowels(words): max=0 if (words==[]or words== None): return None else: k=words[0] for i in words: x=set(i)& VOWELS if(len(x)>max): max=len(x) k=i return k pass def test_max_vowels(): assert None == max_vowels(None) assert None == max_vowels([]) assert "hello" == max_vowels(["hello", "pot", "gut", "sit"]) assert "engine" == max_vowels(["engine", "hello", "pot", "gut", "sit"]) assert "automobile" == max_vowels(["engine", "hello", "pot", "gut", "sit", "automobile"]) assert "fly" == max_vowels(["fly", "pry", "ply"]) def get_data(o): return o[2] def get_age(o): return o[1]
a1 = b'\x02' b1 = 'AB' c1 = 'EF' c2 = None d1 = b'\x03' bb = a1 + bytes(b1.encode()) + bytes(c1.encode()) + d1 bb2 = a1 + bytes(b1.encode()) + bytes(c2.encode()) + d1 print(type(bb), bb)
class Solution: def reverseBits(self, n: int) -> int: # we can take the last bit of "n" by doing "n % 2" # and shift the "n" to the right # then we paste the last bit to the first bit of "res" # by using `|` operation # Take 0101 as an example: # 0010 (1) => 1 000 # 0001 (0) => 10 00 # 0000 (1) => 101 0 # 0000 (0) => 1010 res = 0 for i in range(32): bit = n % 2 n >>= 1 # res += 2 ** (31-i) if bit else 0 res |= bit << (31-i) return res
"Create maps with OpenStreetMap layers in a minute and embed them in your site." VERSION = (1, 0, 0) __author__ = 'Yohan Boniface' __contact__ = "[email protected]" __homepage__ = "https://github.com/umap-project/umap" __version__ = ".".join(map(str, VERSION))
#!/user/bin/env python '''structureToPolymerSequences.py: This mapper maps a structure to it's polypeptides, polynucleotide chain sequences. For a multi-model structure, only the first model is considered. ''' __author__ = "Mars (Shih-Cheng) Huang" __maintainer__ = "Mars (Shih-Cheng) Huang" __email__ = "[email protected]" __version__ = "0.2.0" __status__ = "Done" class StructureToPolymerSequences(object): '''This mapper maps a structure to it's polypeptides, polynucleotide chain sequences. For a multi-model structure, only the first model is considered. ''' def __init__(self, useChainIdInsteadOfChainName=False, excludeDuplicates=False): '''Extracts all polymer chains from a structure. If the argument is set to true, the assigned key is: <PDB ID.Chain ID>, where Chain ID is the unique identifier assigned to each molecular entity in an mmCIF file. This Chain ID corresponds to `_atom_site.label_asym_id <http://mmcif.wwpdb.org/dictionaries/mmcif_mdb.dic/Items/_atom_site.label_asym_id.html>`_ field in an mmCIF file. Parameters ---------- useChainIdInsteadOfChainName : bool if true, use the Chain Id in the key assignments excludeDuplicates : bool if true, return only one chain for each unique sequence= t[1] ''' self.useChainIdInsteadOfChainName = useChainIdInsteadOfChainName self.excludeDuplicates = excludeDuplicates def __call__(self, t): structure = t[1] sequences = list() seqSet = set() chainToEntityIndex = self._get_chain_to_entity_index(structure) for i in range(structure.chains_per_model[0]): polymer = structure.entity_list[chainToEntityIndex[i]]['type'] == 'polymer' if polymer: key = t[0] if '.' in key: key = key.split('.')[0] key += '.' if self.useChainIdInsteadOfChainName: key += structure.chain_id_list[i] else: key += structure.chain_name_list[i] if self.excludeDuplicates: if chainToEntityIndex[i] in seqSet: continue seqSet.add(chainToEntityIndex[i]) sequences.append( (key, structure.entity_list[chainToEntityIndex[i]]['sequence'])) return sequences def _get_chain_to_entity_index(self, structure): entityChainIndex = [0] * structure.num_chains for i in range(len(structure.entity_list)): for j in structure.entity_list[i]['chainIndexList']: entityChainIndex[j] = i return entityChainIndex
class ChooserStatistician: def __init__(self, m_iterations): self.m_iterations = m_iterations @property def m_iterations(self): return self._m_iterations @m_iterations.setter def m_iterations(self, m_iterations): if not m_iterations > 1: raise ValueError("Number of iterations should be > 1") self._m_iterations = m_iterations def get_chooser_p(self, chooser): return sum(chooser.is_win() for _ in range(self.m_iterations)) / self.m_iterations
# a = '42' # print(type(a)) # a = int(a) # print(type(a)) # b = 'a2' # print(type(b)) # b = int(b) ERROR ->>>> this cause error!!! because of 'a' in 'a2' # c = 3.141592 # print(type(c)) # c = int(c) # print(c, type(c)) d = '3.141592' print(type(d)) d = int(float(d)) print(d, type(d))
""" Visualization module. This module contains visualization functions for functional data. """
class Config(object): """Common configurations""" MINIFY_PAGE = True SSL_DISABLE = False SQLALCHEMY_COMMIT_ON_TEARDOWN = True SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_RECORD_QUERIES = True # MAIL_SERVER = 'smtp.googlemail.com' # MAIL_PORT = 587 # MAIL_USE_TLS = True # MAIL_USERNAME = os.environ.get('MAIL_USERNAME') # MAIL_PASSWORD = os.environ.get('MAIL_PASSWORD') class DevelopmentConfig(Config): """Development configurations""" DEBUG = True SQLALCHEMY_ECHO = True TESTING = False class TestingConfig(DevelopmentConfig): TESTING = True SQLALCHEMY_DATABASE_URI = 'mysql://test_user:test_password@localhost/test_database' class ProductionConfig(Config): """Production configurations""" DEBUG = False app_config = { 'development': 'config.DevelopmentConfig', 'production': 'config.ProductionConfig', 'testing': 'config.TestingConfig' }
class MultiStack: def __init__(self, stacksize): self.numstacks = 3 self.array = [0] * (stacksize * self.numstacks) self.sizes = [0] * self.numstacks self.stacksize = stacksize def Push(self, item, stacknum): if self.IsFull(stacknum): raise Exception("Stack is full") self.sizes[stacknum] += 1 self.array[self.IndexOfTop(stacknum)] = item def Pop(self, stacknum): if self.IsEmpty(stacknum): raise Exception("Stack is empty") value = self.array[self.IndexOfTop(stacknum)] self.array[self.IndexOfTop(stacknum)] = 0 self.sizes[stacknum] -= 1 return value def Peek(self, stacknum): if self.IsEmpty(stacknum): raise Exception("Stack is empty") return self.array[self.IndexOfTop(stacknum)] def IsEmpty(self, stacknum): return self.sizes[stacknum] == 0 def IsFull(self, stacknum): return self.sizes[stacknum] == self.stacksize def IndexOfTop(self, stacknum): offset = stacknum * self.stacksize return offset + self.sizes[stacknum] - 1 stack = MultiStack(1)
# Confidence Interval using Stats Model Summary thresh = 0.05 intervals = results.conf_int(alpha=thresh) # Renaming column names first_col = str(thresh/2*100)+"%" second_col = str((1-thresh/2)*100)+"%" intervals = intervals.rename(columns={0:first_col,1:second_col}) display(intervals)
def loadfile(name): lines = [] f = open(name, "r") for x in f: if x.endswith('\n'): x = x[:-1] line = [] for character in x: line.append(int(character)) lines.append(line) return lines def add1ToAll(lines): for i in range (0, len(lines)): for j in range(0, len(lines[i])): lines[i][j] = lines[i][j] + 1 return lines neighbours = [[-1, -1], [0, -1], [1, -1], [-1, 0], [1, 0], [1, 1], [0, 1], [-1, 1]] def flash(i, j): lines[i][j] = 0 count = 1 for coor in neighbours: if i + coor[0] >= 0 and i + coor[0] < len(lines) and j + coor[1] >= 0 and j + coor[1] < len(lines[0]): if lines[i + coor[0]][j + coor[1]] != 0: lines[i + coor[0]][j + coor[1]] += 1 if lines[i + coor[0]][j + coor[1]] > 9: count += flash(i + coor[0], j + coor[1]) return count def makeOctopusFlash(): count = 0 for i in range (0, len(lines)): for j in range(0, len(lines[i])): if lines[i][j] > 9: count += flash(i, j) return count def goThroughSteps (lines, steps): countFlashes = 0 for step in range(1, steps + 1): lines = add1ToAll(lines) count = makeOctopusFlash() print("Step: ", step, " Flashes: ", count) countFlashes += count return countFlashes def findAllFlash(lines): countFlashes = 0 found = False step = 1 while found == False: lines = add1ToAll(lines) count = makeOctopusFlash() print("Step: ", step, " Flashes: ", count) if count == 100: return step countFlashes += count step += 1 return 0 lines = loadfile("data.txt") print(lines) flashes = goThroughSteps(lines, 100) lines = loadfile("data.txt") step = findAllFlash(lines) print("Opdracht 11a: ", flashes) print("Opdracht 11b: ", step)
class BuildingSpecification(object): def __init__(self,building_type, display_string, other_buildings_available, codes_available): self.building_type = building_type self.display_string = display_string self.other_buildings_available = other_buildings_available # list of building names self.codes_available = codes_available #list of baseline codes available
################################################################################ level_number = 6 dungeon_name = 'Catacombs' wall_style = 'Catacombs' monster_difficulty = 3 goes_down = True entry_position = (0, 0) phase_door = False level_teleport = [ (4, True), (5, True), (6, False), ] stairs_previous = [(13, 11)] stairs_next = [] portal_down = [] portal_up = [] teleports = [ ((0, 21), (10, 7)), ((21, 15), (13, 17)), ((20, 19), (8, 11)), ((16, 21), (14, 21)), ] encounters = [ ((1, 0), (60, 7)), ((3, 9), (51, 36)), ((4, 13), (30, 69)), ((7, 17), (10, 99)), ((8, 5), (10, 99)), ((16, 13), (20, 66)), ((18, 14), (20, 53)), ((21, 0), (60, 8)), ] messages = [ ((20, 16), "A message is scrawled on the wall in blood:\nSeek the Mad One's stoney self in Harkyn's domain."), ] specials = [((19, 20), (22, 255))] smoke_zones = [] darkness = [(3, 17), (3, 18), (4, 17), (4, 18), (5, 17), (5, 18), (6, 17), (6, 18)] antimagic_zones = [(13, 18), (13, 19), (13, 20), (14, 17), (14, 18), (14, 19), (14, 20), (18, 20)] spinners = [(9, 9), (12, 13), (18, 6)] traps = [(3, 19), (4, 19), (4, 20), (7, 14), (9, 2), (10, 15), (11, 4), (11, 12), (12, 16), (15, 6), (16, 3), (17, 6)] hitpoint_damage = [] spellpoint_restore = [] stasis_chambers = [] random_encounter = [(0, 4), (0, 8), (1, 16), (2, 5), (2, 7), (3, 0), (3, 13), (4, 5), (4, 11), (5, 1), (6, 8), (6, 11), (7, 1), (7, 2), (7, 3), (7, 4), (9, 3), (9, 4), (9, 8), (10, 1), (11, 3), (11, 4), (11, 7), (12, 21), (13, 0), (13, 3), (13, 14), (14, 0), (14, 12), (14, 21), (16, 0), (16, 17), (16, 19), (17, 21), (19, 2), (19, 9), (19, 13), (19, 17), (19, 19), (19, 21), (21, 5), (21, 9)] specials_other = [(0, 0), (0, 15), (1, 16), (1, 19), (2, 20), (3, 6), (3, 14), (3, 20), (5, 13), (5, 21), (7, 17), (7, 18), (7, 19), (7, 20), (8, 18), (8, 19), (8, 20), (9, 13), (12, 9), (13, 5), (14, 17), (17, 13), (18, 9), (20, 0), (21, 21)] map = [ '+-++-------++-++---D---++-++----------++----++-++----++----------+', '| DD DD || DD || || || || || |', '+-++-----. |+-++--. .--++-+| .------. || .. || || .. || .------. |', '+--------. |+----+| |+----+| .-----+| || || .. || .. || |+----+| |', '| || || || || || || || || || || || |', '+D---------+| .. || || .. |+-----. || || |+----++D---+| || .. || |', '+D---++----+| .. || || .. |+----+| || .. |+----++D----. || .. || |', '| || || DD DD || || || || || || || |', '| .. || .. |+---D+| |+D---+| .. || |+---D+| .. || .-----++---D+| |', '| .. || .. .----D-. .-D----. .. || .--++D+| .. || |+----++---D+| |', '| DD DD || || || || || || |', '+D---+| .. .----D-. .-D----. .. |+--. |+D++D---+| || .. || .--+| |', '+D---+| .. |+---D+| |+D---+| .. |+-+| |+D++D----. || || || .--+| |', '| || || DD DD || || DD || || || || || || |', '| .. |+----+| .. || || .. |+----++-+| |+D+| .. .. || || |+---D+| |', '| .. |+----+| .. || || .. |+--------. |+D+| .. .. || || |+---D+| |', '| DD || || || || || || || || || || |', '+----+| .. |+----+| |+----+| .----D---++-+| .. .. || || || .. || |', '+-----. .. |+-++--. .--++-+| |+---D++-----. .. .. || || .. .. || |', '| DD || DD || || || || || || |', '| .--------++-++---D---++-+| || .. || .. .. .. .. || |+-------+| |', '| |+-++-++-++-++-++----++--. || .. || .. .. .. .. || .--------+| |', '| || || || || || || || || || || || |', '+D++D++D++D++D++D++--. |+D---++----+| .. .. .. .. |+--------. || |', '+D++D++D++D++D++D++-+| |+D---++-----. .. .. .. .. |+--------. || |', '| DD DD || DD || DD || || || || || |', '+-++D++-++-++D+| |+-+| || .. || .. .. .-D-. .. .. |+----------+| |', '+-++D++-++-++D+| |+-+| || .. || .. .. |+D+| .. .. .------------. |', '| DD DD DD || DD DD || DD || DD DD |', '+D++-++-++D++-++D++-++D++----+| .. .. |+D+| .. .. .. .. .. .-D---+', '+D++-++-++D++-++D++-++D++-----. .. .. .-D-. .. .. .. .. .. |+D---+', '| || || DD DD DD DD || || || |', '+D++D++D++-++-++-++-++D+| .. .. .. .. .. .. .. .. .. .-D---+| .. |', '+D--D--D++-++-++-++-++D+| .. .. .. .. .. .. .. .. .. |+D---+| .. |', '| DD || DD DD || || || || |', '+D----. |+-++-++D++-++-+| .-D-. .. .. .. .. .. .-D---+| .. || .-D+', '+D++-+| |+-++-++D++-----. |+D+| .. .. .. .. .. |+D---+| .. || |+D+', '| || || DD || DD DD DD DD || || || DD |', '+-++D+| |+-++D++-+| .. .. |+D+| .. .. .. .-D---+| .. || .-D+| |+-+', '+-++D+| |+-++D++-+| .. .. .-D-. .. .. .. |+D---+| .. || |+D+| |+-+', '| DD || DD DD || DD || || || DD || DD |', '+-++D++D+| |+-++-+| .. .. .. .. .. .-D---+| .. || .-D+| |+-+| |+-+', '+-++D--D+| |+-----. .. .. .. .. .. |+D---+| .. || |+D+| |+-+| |+-+', '| DD DD || || || || DD || DD || DD |', '+-+| .. |+-+| .. .. .. .. .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+', '+-+| .. |+-+| .. .. .. .. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+', '| DD DD || || || || DD || DD || DD || DD |', '+-++D---++D+| .. .. .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+', '+-++D++---D-. .. .. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+', '| DD || || || || DD || DD || DD || DD || DD |', '+-+| || .. .. .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+', '+-+| || .. .. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+', '| DD || || || || DD || DD || DD || DD || DD || DD |', '+-++D+| .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '+---D-. .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || || || DD || DD || DD || DD || DD || DD || DD |', '| .. .-D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| .. |+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || || || DD || DD || DD || DD || DD || DD || DD || DD |', '+D---+| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '+D---+| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || || DD || DD || DD || DD || DD || DD || DD || DD || DD |', '| .. || .-D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| .. || |+D+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+| |+-+', '| || DD || DD || DD || DD || DD || DD || DD || DD || DD || DD |', '+----++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-++-+', ]
class Solution: def deleteAndEarn(self, nums: List[int]) -> int: d = [0] *(max(nums)+1) for i in nums: d[i] += i prev,prever = 0,0 for i in d: cur = max(prev,prever+i) prever = prev prev = cur return max(cur,prever)
"""Helpers for PyTorch-ES examples""" def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: m.weight.data.normal_(0.0, 0.02)
keywords = ['program', 'label', 'type', 'array', 'of', 'var', 'procedure' ,'function', 'begin', 'end', 'if', 'then', 'else', 'while', 'do' , 'or', 'and', 'div', 'not'] symbols = ['.', ';', ',', '(', ')', ':', '=', '<', '>', '+', '-', '*', '[', ':=', '..'] def get_tokens(code): label = '' tokens = [] for str in code: if str in symbols: if label in keywords: tokens.append('<' + label + '>') tokens.append('<' + str + '>') label = '' else: if label is not '': tokens.append('#' + label + '#') tokens.append('<' + str + '>') label = '' elif str is ' ' or str is'\t' or str is '\n': if label in keywords: if label is not '' : tokens.append('<' + label + '>') label = '' else: if label is not '': tokens.append('#' + label + '#') label = '' else: label += str return tokens
""" PASSENGERS """ numPassengers = 19048 passenger_arriving = ( (2, 7, 5, 2, 8, 1, 2, 1, 2, 1, 0, 1, 0, 11, 2, 3, 4, 3, 0, 0, 0, 1, 0, 0, 0, 0), # 0 (10, 5, 4, 4, 7, 4, 2, 0, 1, 3, 0, 0, 0, 6, 8, 4, 3, 2, 3, 5, 3, 1, 1, 0, 0, 0), # 1 (8, 6, 11, 4, 2, 2, 4, 3, 3, 0, 1, 1, 0, 4, 4, 5, 3, 6, 1, 1, 0, 4, 0, 2, 0, 0), # 2 (6, 4, 3, 4, 3, 1, 1, 0, 2, 6, 1, 0, 0, 7, 5, 2, 6, 2, 3, 2, 4, 0, 0, 1, 0, 0), # 3 (5, 10, 2, 8, 0, 2, 6, 1, 1, 2, 0, 0, 0, 3, 5, 4, 2, 6, 2, 0, 0, 4, 4, 0, 1, 0), # 4 (11, 7, 5, 1, 6, 1, 3, 1, 2, 2, 1, 0, 0, 11, 6, 3, 5, 4, 4, 3, 3, 2, 2, 1, 0, 0), # 5 (9, 9, 2, 7, 11, 0, 1, 2, 3, 0, 3, 0, 0, 4, 4, 9, 1, 13, 3, 2, 2, 3, 2, 1, 1, 0), # 6 (7, 5, 5, 6, 8, 2, 4, 3, 2, 0, 0, 0, 0, 7, 5, 7, 3, 6, 5, 1, 2, 4, 3, 1, 0, 0), # 7 (9, 6, 8, 10, 7, 1, 1, 1, 3, 2, 2, 3, 0, 12, 3, 10, 5, 6, 6, 4, 0, 5, 1, 0, 0, 0), # 8 (7, 9, 12, 9, 4, 1, 5, 5, 3, 3, 2, 2, 0, 6, 12, 7, 6, 5, 7, 4, 3, 2, 2, 0, 0, 0), # 9 (9, 9, 10, 14, 6, 5, 6, 2, 2, 2, 0, 2, 0, 8, 6, 10, 5, 4, 2, 4, 1, 1, 4, 1, 1, 0), # 10 (6, 10, 5, 4, 4, 1, 4, 6, 5, 1, 1, 2, 0, 10, 10, 7, 4, 7, 2, 4, 4, 5, 1, 1, 2, 0), # 11 (11, 7, 8, 8, 3, 0, 4, 4, 7, 0, 0, 1, 0, 6, 9, 4, 6, 6, 5, 4, 4, 6, 3, 1, 2, 0), # 12 (7, 9, 5, 13, 7, 7, 2, 4, 1, 1, 2, 1, 0, 11, 6, 8, 5, 8, 3, 3, 6, 3, 1, 3, 1, 0), # 13 (2, 10, 8, 13, 6, 3, 2, 3, 2, 3, 1, 0, 0, 12, 9, 3, 7, 5, 3, 1, 1, 5, 1, 1, 1, 0), # 14 (6, 16, 9, 8, 8, 4, 2, 1, 3, 0, 3, 2, 0, 5, 5, 8, 4, 5, 7, 5, 4, 4, 5, 3, 0, 0), # 15 (10, 12, 6, 9, 8, 4, 6, 4, 2, 1, 1, 2, 0, 8, 13, 6, 6, 5, 5, 4, 4, 4, 3, 0, 0, 0), # 16 (6, 9, 9, 7, 6, 3, 2, 0, 5, 0, 1, 0, 0, 10, 6, 11, 6, 9, 4, 4, 3, 7, 3, 2, 2, 0), # 17 (9, 4, 9, 8, 8, 4, 1, 2, 6, 2, 0, 1, 0, 9, 10, 7, 3, 5, 7, 2, 2, 5, 3, 1, 0, 0), # 18 (8, 13, 15, 10, 8, 3, 3, 2, 0, 1, 1, 2, 0, 7, 13, 9, 3, 8, 4, 5, 0, 3, 1, 4, 2, 0), # 19 (14, 9, 11, 8, 8, 2, 2, 3, 5, 0, 2, 2, 0, 12, 14, 4, 5, 7, 5, 7, 1, 4, 4, 1, 0, 0), # 20 (8, 7, 5, 14, 7, 3, 3, 5, 4, 2, 3, 0, 0, 14, 6, 6, 5, 9, 7, 7, 3, 3, 2, 0, 3, 0), # 21 (16, 11, 12, 15, 4, 6, 2, 3, 5, 0, 3, 1, 0, 11, 14, 5, 7, 6, 9, 6, 1, 2, 4, 0, 0, 0), # 22 (24, 8, 8, 10, 4, 5, 3, 4, 2, 3, 3, 1, 0, 16, 8, 6, 2, 2, 3, 4, 2, 4, 4, 3, 0, 0), # 23 (11, 10, 6, 7, 8, 4, 3, 5, 4, 2, 2, 0, 0, 15, 10, 5, 9, 7, 5, 5, 4, 4, 2, 0, 1, 0), # 24 (9, 8, 8, 5, 8, 3, 3, 5, 3, 1, 2, 1, 0, 7, 9, 12, 5, 2, 1, 3, 4, 3, 2, 1, 0, 0), # 25 (7, 12, 12, 11, 9, 1, 8, 5, 3, 3, 2, 0, 0, 7, 8, 7, 5, 8, 12, 2, 4, 2, 1, 2, 0, 0), # 26 (6, 7, 6, 15, 7, 4, 5, 5, 2, 1, 0, 0, 0, 10, 8, 10, 6, 9, 4, 3, 2, 5, 3, 1, 0, 0), # 27 (11, 11, 11, 7, 7, 4, 2, 9, 5, 1, 1, 0, 0, 10, 11, 4, 5, 15, 8, 2, 1, 1, 1, 1, 1, 0), # 28 (7, 10, 7, 11, 9, 5, 4, 4, 3, 3, 1, 0, 0, 9, 8, 9, 9, 5, 1, 3, 1, 3, 5, 1, 2, 0), # 29 (15, 7, 8, 9, 6, 3, 4, 9, 4, 5, 1, 1, 0, 4, 12, 6, 8, 5, 5, 3, 3, 3, 2, 2, 0, 0), # 30 (9, 12, 12, 7, 9, 5, 2, 4, 3, 3, 3, 0, 0, 10, 5, 8, 5, 6, 7, 7, 2, 4, 4, 1, 0, 0), # 31 (5, 11, 5, 11, 5, 2, 4, 2, 6, 0, 2, 1, 0, 13, 8, 10, 6, 8, 3, 7, 3, 4, 1, 2, 0, 0), # 32 (11, 11, 8, 8, 11, 4, 10, 6, 4, 1, 2, 0, 0, 8, 12, 4, 10, 9, 5, 4, 3, 4, 7, 2, 0, 0), # 33 (6, 10, 9, 10, 5, 2, 4, 3, 6, 3, 0, 2, 0, 10, 10, 6, 6, 11, 5, 6, 6, 6, 3, 0, 2, 0), # 34 (7, 7, 8, 6, 7, 2, 6, 2, 6, 2, 3, 0, 0, 9, 8, 7, 3, 5, 7, 7, 5, 4, 1, 3, 1, 0), # 35 (3, 7, 9, 10, 5, 7, 2, 5, 6, 4, 0, 1, 0, 10, 9, 6, 6, 9, 2, 2, 0, 4, 2, 2, 1, 0), # 36 (10, 7, 8, 20, 3, 4, 2, 7, 3, 1, 2, 1, 0, 10, 6, 5, 4, 9, 5, 2, 6, 5, 3, 2, 1, 0), # 37 (8, 10, 9, 6, 7, 4, 5, 3, 2, 1, 0, 0, 0, 11, 6, 4, 6, 6, 10, 3, 2, 3, 5, 0, 2, 0), # 38 (9, 6, 3, 9, 6, 4, 2, 6, 6, 2, 2, 0, 0, 10, 12, 12, 4, 4, 0, 2, 2, 8, 2, 4, 0, 0), # 39 (11, 8, 7, 8, 5, 1, 3, 5, 7, 1, 0, 0, 0, 9, 6, 11, 8, 11, 2, 4, 4, 1, 2, 0, 1, 0), # 40 (9, 5, 15, 12, 7, 2, 3, 1, 1, 0, 0, 0, 0, 9, 15, 5, 6, 8, 2, 3, 5, 2, 1, 0, 2, 0), # 41 (14, 9, 4, 8, 7, 3, 2, 5, 3, 0, 2, 0, 0, 9, 3, 1, 3, 10, 4, 4, 3, 3, 3, 4, 0, 0), # 42 (10, 3, 6, 14, 10, 3, 2, 5, 4, 1, 2, 1, 0, 14, 7, 9, 8, 7, 8, 3, 5, 5, 2, 2, 0, 0), # 43 (11, 13, 9, 5, 9, 3, 6, 7, 6, 0, 0, 0, 0, 12, 8, 4, 2, 9, 7, 5, 1, 1, 3, 0, 0, 0), # 44 (12, 12, 4, 11, 9, 1, 1, 6, 1, 0, 1, 0, 0, 3, 6, 3, 8, 10, 4, 3, 2, 4, 6, 0, 0, 0), # 45 (6, 12, 5, 6, 5, 6, 3, 4, 3, 2, 1, 1, 0, 8, 5, 4, 3, 8, 4, 3, 1, 3, 7, 1, 1, 0), # 46 (14, 7, 10, 8, 9, 2, 1, 3, 6, 1, 1, 1, 0, 8, 6, 5, 5, 7, 5, 4, 2, 8, 2, 0, 2, 0), # 47 (11, 5, 8, 10, 6, 1, 3, 4, 5, 3, 0, 0, 0, 8, 6, 9, 6, 14, 7, 11, 5, 1, 2, 2, 1, 0), # 48 (9, 3, 9, 9, 6, 2, 5, 7, 5, 2, 1, 0, 0, 7, 8, 5, 6, 10, 4, 5, 4, 5, 2, 3, 6, 0), # 49 (9, 9, 11, 7, 9, 4, 2, 6, 8, 2, 0, 0, 0, 10, 7, 9, 8, 5, 4, 6, 3, 5, 1, 0, 2, 0), # 50 (9, 8, 12, 12, 11, 5, 5, 6, 5, 4, 0, 0, 0, 16, 6, 4, 8, 10, 6, 2, 3, 4, 4, 3, 0, 0), # 51 (4, 6, 9, 9, 7, 2, 3, 4, 3, 4, 3, 1, 0, 9, 10, 6, 2, 4, 8, 2, 0, 2, 4, 1, 0, 0), # 52 (9, 11, 6, 5, 7, 3, 4, 0, 4, 0, 2, 1, 0, 9, 12, 8, 4, 11, 4, 5, 0, 0, 1, 2, 1, 0), # 53 (5, 13, 8, 8, 6, 3, 2, 2, 4, 5, 2, 2, 0, 6, 5, 5, 7, 7, 5, 5, 0, 4, 2, 2, 0, 0), # 54 (16, 7, 8, 10, 7, 5, 1, 6, 6, 4, 2, 2, 0, 7, 11, 4, 5, 7, 4, 2, 1, 5, 4, 2, 0, 0), # 55 (11, 11, 8, 6, 5, 6, 2, 2, 4, 1, 3, 1, 0, 10, 10, 4, 7, 9, 5, 4, 2, 4, 1, 1, 1, 0), # 56 (13, 14, 3, 12, 7, 6, 4, 3, 2, 0, 0, 1, 0, 6, 13, 2, 10, 8, 6, 5, 5, 2, 4, 3, 1, 0), # 57 (3, 6, 6, 8, 12, 5, 3, 3, 5, 1, 1, 1, 0, 10, 2, 9, 5, 11, 6, 1, 1, 3, 2, 1, 1, 0), # 58 (6, 10, 6, 10, 7, 3, 3, 2, 4, 1, 1, 1, 0, 17, 9, 11, 6, 8, 4, 3, 0, 0, 3, 1, 0, 0), # 59 (10, 9, 12, 13, 4, 3, 6, 5, 7, 0, 0, 1, 0, 14, 7, 6, 6, 8, 5, 8, 4, 3, 2, 1, 2, 0), # 60 (13, 10, 5, 6, 6, 2, 1, 4, 4, 4, 2, 2, 0, 8, 4, 11, 5, 11, 3, 2, 1, 4, 2, 4, 0, 0), # 61 (9, 12, 5, 8, 10, 5, 3, 4, 4, 4, 4, 0, 0, 9, 9, 9, 4, 7, 7, 5, 1, 2, 1, 2, 1, 0), # 62 (17, 9, 7, 11, 6, 2, 4, 2, 3, 2, 1, 1, 0, 7, 9, 11, 5, 10, 5, 2, 1, 5, 5, 1, 2, 0), # 63 (8, 7, 7, 9, 9, 7, 6, 8, 3, 3, 3, 1, 0, 8, 6, 4, 4, 13, 9, 3, 1, 3, 5, 1, 0, 0), # 64 (16, 8, 10, 5, 9, 6, 7, 4, 2, 3, 3, 0, 0, 10, 6, 7, 4, 8, 4, 6, 1, 2, 3, 1, 1, 0), # 65 (8, 16, 13, 8, 5, 2, 3, 4, 5, 1, 1, 0, 0, 9, 16, 3, 5, 8, 4, 2, 2, 3, 6, 0, 0, 0), # 66 (7, 9, 9, 6, 7, 3, 2, 3, 4, 1, 2, 2, 0, 13, 9, 7, 6, 7, 0, 3, 2, 3, 4, 2, 1, 0), # 67 (11, 6, 9, 5, 5, 2, 1, 4, 2, 1, 0, 1, 0, 12, 7, 8, 6, 7, 6, 0, 1, 0, 1, 1, 1, 0), # 68 (6, 7, 8, 7, 5, 3, 2, 1, 4, 1, 0, 0, 0, 13, 13, 6, 5, 6, 2, 4, 3, 0, 2, 1, 1, 0), # 69 (9, 9, 8, 3, 9, 5, 0, 0, 2, 2, 1, 1, 0, 10, 7, 5, 4, 5, 3, 4, 2, 3, 1, 1, 0, 0), # 70 (5, 11, 10, 8, 7, 1, 3, 3, 5, 1, 2, 1, 0, 9, 8, 6, 3, 7, 3, 3, 5, 3, 4, 3, 0, 0), # 71 (8, 7, 5, 9, 6, 5, 7, 7, 4, 1, 0, 0, 0, 9, 5, 8, 1, 6, 5, 2, 4, 3, 2, 1, 1, 0), # 72 (11, 3, 8, 6, 13, 7, 7, 3, 2, 1, 2, 1, 0, 17, 12, 9, 1, 11, 7, 4, 2, 3, 1, 2, 0, 0), # 73 (8, 9, 7, 6, 10, 9, 4, 2, 4, 3, 0, 0, 0, 11, 6, 4, 3, 5, 3, 5, 1, 3, 0, 2, 1, 0), # 74 (16, 12, 3, 16, 11, 3, 1, 0, 6, 0, 0, 1, 0, 11, 8, 8, 7, 6, 5, 4, 3, 5, 6, 3, 1, 0), # 75 (14, 4, 9, 4, 5, 2, 7, 4, 4, 1, 1, 0, 0, 8, 9, 2, 3, 10, 6, 5, 0, 4, 2, 2, 1, 0), # 76 (6, 4, 4, 14, 8, 5, 5, 2, 4, 3, 2, 0, 0, 12, 8, 8, 8, 14, 2, 5, 4, 6, 3, 0, 1, 0), # 77 (3, 9, 9, 6, 8, 1, 3, 6, 8, 3, 1, 0, 0, 7, 5, 7, 4, 8, 2, 1, 0, 3, 3, 3, 2, 0), # 78 (5, 6, 11, 13, 4, 4, 1, 4, 5, 4, 3, 0, 0, 12, 6, 5, 8, 9, 10, 5, 5, 6, 2, 2, 3, 0), # 79 (15, 10, 6, 9, 12, 6, 2, 6, 2, 1, 1, 3, 0, 13, 9, 5, 6, 8, 4, 3, 5, 4, 2, 1, 1, 0), # 80 (13, 5, 6, 10, 11, 5, 4, 8, 3, 1, 0, 0, 0, 9, 6, 5, 3, 3, 5, 4, 1, 6, 1, 1, 0, 0), # 81 (14, 6, 6, 6, 9, 4, 5, 4, 3, 1, 0, 1, 0, 11, 9, 5, 6, 7, 4, 4, 2, 2, 2, 1, 0, 0), # 82 (8, 10, 10, 8, 6, 1, 5, 4, 6, 2, 2, 0, 0, 12, 12, 10, 4, 9, 5, 7, 2, 2, 6, 2, 0, 0), # 83 (12, 4, 7, 7, 8, 4, 4, 4, 1, 2, 0, 1, 0, 7, 12, 7, 0, 5, 5, 1, 1, 7, 4, 0, 0, 0), # 84 (10, 10, 2, 8, 6, 1, 2, 3, 2, 1, 4, 2, 0, 13, 8, 7, 4, 11, 8, 4, 3, 3, 1, 0, 0, 0), # 85 (14, 10, 4, 5, 7, 0, 4, 4, 8, 2, 0, 2, 0, 4, 12, 5, 4, 4, 1, 1, 4, 2, 3, 4, 0, 0), # 86 (8, 12, 6, 14, 7, 3, 5, 0, 4, 1, 2, 1, 0, 7, 10, 13, 5, 7, 8, 4, 3, 3, 3, 0, 0, 0), # 87 (13, 12, 10, 10, 6, 5, 3, 0, 5, 4, 0, 2, 0, 10, 6, 9, 2, 6, 4, 3, 4, 6, 2, 3, 1, 0), # 88 (3, 7, 10, 11, 7, 5, 5, 1, 2, 1, 0, 0, 0, 12, 9, 8, 2, 9, 7, 2, 4, 3, 2, 1, 1, 0), # 89 (15, 9, 8, 6, 6, 4, 4, 4, 6, 1, 2, 3, 0, 10, 3, 4, 5, 9, 7, 5, 2, 3, 2, 4, 1, 0), # 90 (9, 11, 8, 15, 9, 2, 3, 3, 4, 7, 1, 2, 0, 9, 16, 7, 9, 7, 3, 3, 6, 3, 2, 2, 0, 0), # 91 (13, 4, 5, 7, 3, 3, 3, 3, 6, 1, 5, 0, 0, 11, 3, 9, 1, 1, 2, 3, 0, 5, 1, 1, 1, 0), # 92 (9, 6, 4, 11, 6, 3, 2, 2, 3, 2, 1, 1, 0, 3, 4, 8, 4, 9, 2, 1, 3, 3, 5, 0, 0, 0), # 93 (15, 6, 8, 10, 7, 4, 2, 3, 5, 1, 0, 1, 0, 5, 5, 4, 5, 11, 5, 3, 2, 2, 1, 1, 0, 0), # 94 (9, 5, 7, 12, 7, 1, 6, 2, 4, 1, 3, 1, 0, 12, 6, 11, 2, 3, 3, 3, 3, 4, 1, 1, 0, 0), # 95 (7, 6, 6, 7, 6, 3, 4, 3, 4, 0, 1, 0, 0, 6, 9, 8, 3, 8, 5, 2, 3, 6, 1, 2, 2, 0), # 96 (9, 7, 10, 8, 13, 4, 3, 3, 5, 0, 4, 1, 0, 8, 10, 6, 5, 5, 8, 4, 3, 6, 4, 0, 1, 0), # 97 (10, 7, 11, 7, 3, 3, 4, 4, 4, 5, 2, 0, 0, 11, 8, 11, 2, 8, 3, 6, 2, 3, 4, 1, 0, 0), # 98 (15, 3, 6, 12, 7, 4, 3, 2, 5, 2, 2, 0, 0, 7, 9, 5, 4, 11, 1, 1, 1, 7, 3, 3, 0, 0), # 99 (8, 6, 7, 7, 9, 5, 4, 3, 2, 3, 1, 0, 0, 12, 7, 6, 6, 6, 3, 1, 2, 2, 1, 0, 0, 0), # 100 (7, 15, 7, 9, 10, 1, 8, 1, 4, 0, 2, 0, 0, 8, 6, 6, 5, 6, 0, 0, 0, 4, 5, 3, 1, 0), # 101 (13, 8, 9, 8, 3, 2, 4, 4, 5, 2, 4, 1, 0, 11, 5, 5, 6, 4, 6, 2, 0, 4, 1, 1, 1, 0), # 102 (11, 5, 9, 7, 4, 9, 6, 2, 1, 3, 1, 0, 0, 10, 5, 7, 3, 7, 6, 3, 1, 3, 4, 2, 0, 0), # 103 (10, 8, 8, 4, 9, 2, 6, 7, 7, 6, 0, 2, 0, 10, 8, 7, 9, 2, 3, 2, 4, 7, 1, 0, 0, 0), # 104 (13, 3, 5, 6, 11, 3, 4, 1, 4, 0, 2, 0, 0, 11, 8, 4, 1, 8, 7, 7, 4, 5, 2, 1, 0, 0), # 105 (9, 7, 9, 11, 5, 1, 5, 4, 3, 0, 0, 1, 0, 10, 10, 6, 5, 11, 1, 4, 3, 5, 0, 0, 2, 0), # 106 (9, 5, 10, 6, 10, 6, 3, 5, 4, 2, 0, 0, 0, 6, 10, 7, 7, 6, 3, 7, 2, 6, 4, 0, 1, 0), # 107 (9, 7, 9, 8, 4, 4, 4, 3, 2, 2, 1, 1, 0, 12, 10, 5, 8, 6, 5, 2, 1, 3, 3, 3, 3, 0), # 108 (7, 10, 7, 5, 13, 2, 7, 1, 4, 2, 2, 1, 0, 6, 9, 7, 2, 8, 2, 5, 2, 4, 5, 2, 1, 0), # 109 (17, 5, 8, 8, 6, 2, 1, 2, 3, 1, 2, 2, 0, 7, 11, 2, 3, 7, 4, 5, 3, 5, 0, 3, 1, 0), # 110 (9, 8, 11, 10, 6, 7, 1, 2, 4, 2, 0, 1, 0, 10, 7, 8, 4, 4, 3, 1, 3, 3, 5, 2, 1, 0), # 111 (10, 3, 9, 8, 7, 3, 0, 2, 4, 2, 0, 3, 0, 8, 8, 7, 5, 7, 6, 3, 0, 3, 3, 2, 0, 0), # 112 (6, 9, 6, 7, 9, 3, 3, 2, 9, 0, 6, 0, 0, 9, 10, 6, 7, 9, 1, 7, 2, 2, 2, 1, 0, 0), # 113 (9, 4, 5, 7, 6, 1, 0, 4, 2, 1, 0, 0, 0, 5, 6, 3, 7, 9, 3, 6, 0, 7, 2, 4, 2, 0), # 114 (10, 8, 6, 4, 2, 3, 5, 2, 3, 2, 2, 1, 0, 12, 10, 5, 2, 6, 1, 5, 3, 0, 2, 1, 1, 0), # 115 (14, 4, 8, 3, 11, 7, 3, 3, 10, 1, 0, 0, 0, 7, 8, 8, 4, 7, 1, 2, 0, 2, 3, 1, 0, 0), # 116 (13, 5, 8, 2, 5, 7, 1, 4, 6, 1, 1, 2, 0, 12, 14, 3, 2, 10, 5, 1, 2, 7, 6, 3, 1, 0), # 117 (7, 6, 4, 14, 4, 1, 6, 3, 2, 1, 0, 2, 0, 11, 6, 6, 5, 9, 4, 3, 3, 4, 1, 0, 0, 0), # 118 (11, 5, 10, 8, 9, 2, 2, 2, 2, 0, 2, 0, 0, 7, 6, 3, 5, 6, 4, 2, 2, 1, 3, 0, 0, 0), # 119 (9, 5, 11, 8, 7, 1, 6, 8, 0, 0, 1, 0, 0, 12, 7, 6, 3, 5, 4, 2, 1, 6, 8, 3, 1, 0), # 120 (5, 10, 8, 7, 8, 6, 5, 3, 4, 0, 0, 0, 0, 18, 7, 5, 3, 4, 4, 5, 4, 1, 3, 1, 0, 0), # 121 (6, 4, 9, 5, 12, 5, 2, 2, 6, 1, 0, 0, 0, 17, 8, 7, 4, 8, 2, 3, 0, 2, 4, 1, 1, 0), # 122 (3, 11, 7, 7, 7, 7, 5, 1, 4, 2, 1, 1, 0, 13, 4, 11, 4, 10, 2, 3, 1, 3, 6, 2, 1, 0), # 123 (17, 6, 8, 13, 6, 5, 3, 3, 1, 0, 1, 0, 0, 5, 12, 7, 3, 12, 3, 4, 6, 5, 5, 1, 2, 0), # 124 (9, 6, 7, 11, 3, 3, 2, 2, 4, 1, 1, 3, 0, 5, 8, 9, 2, 11, 4, 5, 2, 3, 1, 1, 0, 0), # 125 (10, 4, 6, 8, 3, 3, 6, 3, 0, 3, 0, 1, 0, 10, 11, 2, 5, 11, 5, 5, 2, 4, 3, 1, 0, 0), # 126 (9, 9, 13, 7, 3, 1, 1, 3, 3, 1, 1, 3, 0, 10, 5, 9, 5, 12, 2, 0, 1, 3, 0, 1, 0, 0), # 127 (14, 7, 9, 13, 7, 3, 2, 5, 7, 1, 2, 2, 0, 11, 4, 6, 4, 4, 6, 6, 2, 1, 1, 0, 0, 0), # 128 (9, 5, 11, 9, 6, 3, 3, 1, 4, 0, 0, 0, 0, 9, 3, 7, 3, 2, 2, 3, 1, 3, 4, 3, 0, 0), # 129 (8, 2, 6, 8, 6, 1, 5, 1, 4, 0, 1, 1, 0, 7, 7, 3, 6, 10, 3, 4, 5, 2, 1, 1, 1, 0), # 130 (10, 8, 10, 10, 6, 6, 5, 4, 0, 3, 3, 0, 0, 8, 11, 3, 6, 4, 8, 4, 2, 3, 0, 0, 0, 0), # 131 (8, 7, 5, 13, 7, 4, 2, 7, 1, 0, 1, 0, 0, 15, 8, 10, 4, 11, 6, 0, 1, 2, 2, 1, 1, 0), # 132 (16, 7, 4, 13, 4, 2, 0, 1, 2, 1, 1, 0, 0, 10, 4, 4, 6, 6, 5, 4, 2, 4, 2, 2, 1, 0), # 133 (9, 5, 4, 7, 14, 7, 4, 5, 2, 3, 2, 2, 0, 6, 10, 7, 4, 7, 2, 3, 6, 4, 1, 0, 1, 0), # 134 (11, 10, 9, 6, 12, 4, 3, 3, 3, 0, 1, 1, 0, 11, 6, 2, 4, 9, 7, 3, 0, 4, 3, 1, 0, 0), # 135 (6, 4, 9, 9, 7, 4, 4, 3, 3, 0, 2, 1, 0, 14, 10, 5, 3, 10, 3, 4, 2, 4, 1, 3, 1, 0), # 136 (12, 11, 4, 8, 2, 3, 5, 2, 7, 0, 1, 0, 0, 10, 7, 7, 3, 7, 5, 6, 2, 5, 2, 1, 1, 0), # 137 (7, 6, 5, 9, 5, 2, 2, 3, 5, 2, 1, 0, 0, 7, 7, 6, 4, 4, 2, 3, 2, 2, 5, 1, 1, 0), # 138 (7, 4, 11, 10, 9, 3, 1, 4, 1, 2, 0, 1, 0, 7, 5, 9, 4, 5, 4, 7, 6, 2, 4, 2, 2, 0), # 139 (11, 4, 7, 11, 10, 2, 3, 2, 4, 2, 2, 0, 0, 7, 11, 4, 2, 4, 3, 1, 1, 2, 2, 2, 0, 0), # 140 (6, 1, 5, 11, 7, 1, 2, 1, 2, 4, 0, 0, 0, 3, 5, 4, 3, 6, 5, 2, 2, 1, 2, 1, 0, 0), # 141 (4, 3, 4, 3, 8, 2, 2, 4, 3, 0, 1, 1, 0, 10, 11, 4, 9, 7, 1, 1, 3, 2, 2, 2, 2, 0), # 142 (7, 7, 7, 8, 7, 4, 6, 0, 3, 0, 1, 1, 0, 13, 12, 2, 5, 7, 2, 2, 0, 6, 2, 0, 0, 0), # 143 (8, 3, 8, 7, 9, 6, 2, 0, 3, 1, 2, 0, 0, 10, 10, 6, 4, 4, 4, 2, 4, 0, 3, 1, 1, 0), # 144 (15, 6, 3, 8, 7, 4, 2, 4, 6, 3, 2, 0, 0, 8, 5, 7, 1, 11, 2, 3, 1, 3, 3, 2, 0, 0), # 145 (7, 4, 10, 4, 10, 1, 1, 0, 6, 1, 1, 1, 0, 11, 7, 3, 4, 6, 3, 2, 3, 5, 2, 2, 0, 0), # 146 (13, 8, 11, 3, 8, 7, 2, 1, 2, 0, 2, 0, 0, 12, 8, 4, 4, 6, 1, 3, 1, 3, 1, 3, 1, 0), # 147 (7, 5, 10, 3, 7, 2, 3, 6, 2, 1, 1, 1, 0, 9, 8, 5, 4, 7, 3, 1, 0, 5, 2, 2, 0, 0), # 148 (10, 4, 7, 8, 4, 3, 3, 3, 2, 1, 0, 0, 0, 8, 7, 9, 0, 7, 3, 0, 1, 1, 4, 1, 0, 0), # 149 (11, 4, 2, 6, 6, 5, 4, 1, 3, 1, 0, 0, 0, 11, 3, 5, 5, 7, 4, 2, 2, 4, 1, 3, 0, 0), # 150 (11, 12, 7, 9, 5, 4, 1, 6, 4, 0, 1, 1, 0, 6, 7, 6, 4, 8, 4, 3, 4, 3, 4, 1, 0, 0), # 151 (10, 4, 7, 6, 10, 4, 2, 2, 6, 1, 0, 0, 0, 3, 8, 9, 3, 3, 2, 4, 4, 3, 3, 3, 1, 0), # 152 (11, 7, 8, 5, 8, 4, 4, 2, 4, 1, 0, 0, 0, 4, 5, 5, 5, 8, 4, 2, 2, 4, 3, 1, 1, 0), # 153 (12, 5, 7, 7, 5, 5, 0, 2, 2, 2, 0, 0, 0, 7, 8, 4, 4, 6, 2, 1, 5, 5, 2, 1, 3, 0), # 154 (8, 3, 5, 9, 4, 2, 1, 5, 3, 0, 1, 0, 0, 12, 7, 3, 5, 9, 4, 2, 1, 2, 4, 1, 1, 0), # 155 (8, 6, 8, 8, 5, 5, 7, 1, 5, 0, 1, 0, 0, 11, 10, 2, 2, 7, 6, 3, 2, 6, 2, 2, 0, 0), # 156 (6, 7, 5, 6, 6, 2, 2, 1, 3, 1, 0, 0, 0, 7, 7, 2, 4, 8, 2, 3, 3, 4, 3, 3, 0, 0), # 157 (8, 5, 7, 3, 7, 5, 3, 5, 3, 0, 0, 0, 0, 7, 2, 6, 8, 4, 2, 6, 1, 2, 2, 1, 0, 0), # 158 (13, 4, 9, 4, 7, 2, 4, 0, 2, 0, 2, 1, 0, 3, 9, 5, 3, 7, 4, 4, 1, 2, 4, 2, 1, 0), # 159 (8, 4, 2, 6, 5, 6, 1, 5, 2, 1, 2, 0, 0, 6, 7, 4, 3, 8, 2, 4, 1, 3, 3, 2, 0, 0), # 160 (8, 2, 7, 13, 3, 6, 5, 3, 2, 1, 0, 0, 0, 8, 3, 5, 3, 7, 3, 2, 1, 1, 3, 0, 0, 0), # 161 (6, 4, 10, 9, 7, 5, 2, 1, 2, 0, 0, 0, 0, 7, 9, 4, 3, 6, 2, 2, 2, 2, 3, 0, 0, 0), # 162 (2, 8, 2, 3, 12, 3, 5, 5, 0, 1, 1, 0, 0, 14, 3, 4, 2, 9, 4, 6, 2, 1, 1, 2, 0, 0), # 163 (8, 3, 8, 8, 6, 0, 2, 1, 2, 0, 2, 1, 0, 6, 6, 8, 1, 2, 3, 3, 3, 3, 0, 1, 0, 0), # 164 (6, 9, 5, 4, 4, 3, 0, 1, 3, 1, 1, 1, 0, 6, 3, 4, 3, 7, 2, 1, 3, 4, 0, 1, 1, 0), # 165 (6, 2, 5, 7, 8, 2, 0, 0, 3, 1, 3, 2, 0, 10, 8, 7, 2, 2, 8, 2, 1, 3, 3, 0, 0, 0), # 166 (3, 3, 5, 5, 9, 3, 4, 4, 4, 2, 0, 1, 0, 6, 5, 4, 4, 5, 0, 1, 0, 4, 0, 1, 0, 0), # 167 (7, 6, 8, 8, 8, 3, 2, 4, 2, 1, 1, 1, 0, 3, 2, 2, 4, 6, 3, 7, 3, 4, 1, 1, 0, 0), # 168 (12, 3, 7, 7, 3, 2, 0, 4, 2, 2, 2, 0, 0, 5, 5, 2, 5, 6, 0, 3, 2, 3, 1, 1, 0, 0), # 169 (9, 2, 4, 8, 4, 2, 2, 1, 3, 1, 0, 0, 0, 6, 4, 9, 8, 4, 0, 1, 2, 2, 0, 1, 1, 0), # 170 (9, 7, 4, 5, 7, 4, 0, 1, 6, 2, 0, 0, 0, 4, 3, 7, 2, 5, 2, 2, 1, 5, 1, 0, 0, 0), # 171 (3, 1, 7, 9, 4, 1, 0, 1, 4, 1, 1, 1, 0, 8, 5, 2, 0, 4, 1, 5, 2, 3, 3, 1, 0, 0), # 172 (5, 1, 7, 7, 2, 4, 1, 2, 3, 0, 0, 2, 0, 11, 5, 9, 2, 6, 3, 0, 1, 5, 4, 2, 0, 0), # 173 (1, 4, 3, 3, 3, 2, 1, 2, 0, 1, 0, 0, 0, 7, 4, 3, 3, 1, 1, 0, 0, 3, 1, 0, 0, 0), # 174 (6, 2, 4, 6, 4, 1, 0, 2, 2, 0, 1, 0, 0, 4, 6, 5, 0, 4, 2, 2, 0, 1, 0, 0, 0, 0), # 175 (8, 5, 1, 6, 5, 0, 1, 1, 0, 0, 1, 1, 0, 6, 5, 4, 1, 5, 1, 1, 2, 2, 2, 1, 0, 0), # 176 (1, 2, 2, 8, 1, 1, 2, 1, 1, 1, 0, 0, 0, 6, 4, 1, 2, 1, 1, 1, 3, 0, 0, 0, 0, 0), # 177 (6, 7, 5, 3, 1, 1, 0, 2, 2, 1, 0, 0, 0, 6, 4, 5, 3, 6, 4, 1, 0, 1, 2, 0, 0, 0), # 178 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), # 179 ) station_arriving_intensity = ( (5.020865578371768, 5.525288559693166, 5.211283229612507, 6.214667773863432, 5.554685607609612, 3.1386549320373387, 4.146035615373915, 4.653176172979423, 6.090099062168007, 3.9580150155223697, 4.205265163885603, 4.897915078306173, 5.083880212578363), # 0 (5.354327152019974, 5.890060694144759, 5.555346591330152, 6.625144253276616, 5.922490337474237, 3.3459835840425556, 4.419468941263694, 4.959513722905708, 6.492245326332909, 4.21898069227715, 4.483096135956131, 5.221216660814354, 5.419791647439855), # 1 (5.686723008979731, 6.253385170890979, 5.8980422855474135, 7.033987704664794, 6.288962973749744, 3.5524851145124448, 4.691818507960704, 5.264625247904419, 6.892786806877549, 4.478913775020546, 4.759823148776313, 5.543232652053055, 5.75436482820969), # 2 (6.016757793146562, 6.613820501936447, 6.238010869319854, 7.439576407532074, 6.652661676001902, 3.757340622585113, 4.962003641647955, 5.567301157494507, 7.290135160921093, 4.736782698426181, 5.0343484118273825, 5.862685684930461, 6.086272806254225), # 3 (6.343136148415981, 6.9699251992857745, 6.573892899703036, 7.840288641382569, 7.012144603796492, 3.9597312073986677, 5.2289436685084585, 5.866331861194915, 7.682702045582707, 4.991555897167679, 5.305574134590575, 6.178298392354764, 6.414188632939817), # 4 (6.66456271868351, 7.320257774943588, 6.9043289337525175, 8.234502685720393, 7.36596991669928, 4.158837968091214, 5.491557914725224, 6.160507768524592, 8.068899117981559, 5.242201805918663, 5.572402526547132, 6.488793407234148, 6.736785359632827), # 5 (6.979742147844666, 7.663376740914501, 7.227959528523866, 8.620596820049652, 7.712695774276043, 4.353842003800864, 5.7487657064812625, 6.4486192890024885, 8.447138035236815, 5.487688859352758, 5.833735797178282, 6.792893362476808, 7.052736037699606), # 6 (7.2873790797949685, 7.997840609203132, 7.543425241072635, 8.996949323874462, 8.050880336092554, 4.543924413665721, 5.999486369959585, 6.729456832147552, 8.815830454467644, 5.726985492143586, 6.088476155965268, 7.089320890990929, 7.360713718506519), # 7 (7.586178158429934, 8.322207891814099, 7.849366628454396, 9.361938476698928, 8.379081761714586, 4.7282662968238895, 6.2426392313431975, 7.001810807478725, 9.173388032793206, 5.959060138964774, 6.335525812389321, 7.376798625684702, 7.659391453419917), # 8 (7.874844027645085, 8.635037100752022, 8.144424247724704, 9.713942558027169, 8.69585821070791, 4.906048752413484, 6.47714361681512, 7.264471624514963, 9.518222427332674, 6.182881234489941, 6.573786975931678, 7.654049199466313, 7.947442293806162), # 9 (8.152081331335932, 8.934886748021516, 8.427238655939124, 10.051339847363288, 8.9997678426383, 5.076452879572607, 6.701918852558355, 7.516229692775211, 9.848745295205214, 6.397417213392714, 6.802161856073574, 7.919795245243952, 8.22353929103161), # 10 (8.416594713398005, 9.220315345627206, 8.696450410153215, 10.372508624211397, 9.289368817071534, 5.238659777439368, 6.915884264755916, 7.7558754217784145, 10.163368293529993, 6.601636510346719, 7.019552662296249, 8.17275939592581, 8.486355496462611), # 11 (8.667088817726812, 9.489881405573698, 8.95070006742254, 10.675827168075612, 9.563219293573377, 5.391850545151869, 7.1179591795908115, 7.982199221043521, 10.460503079426179, 6.794507560025572, 7.224861604080934, 8.411664284420068, 8.734563961465534), # 12 (8.902268288217876, 9.74214343986562, 9.188628184802662, 10.959673758460044, 9.819877431709601, 5.5352062818482235, 7.307062923246056, 8.193991500089481, 10.738561310012932, 6.974998797102904, 7.416990890908869, 8.63523254363492, 8.966837737406735), # 13 (9.120837768766716, 9.975659960507588, 9.408875319349146, 11.222426674868792, 10.05790139104599, 5.667908086666534, 7.482114821904661, 8.390042668435246, 10.995954642409421, 7.142078656252334, 7.594842732261284, 8.84218680647856, 9.181849875652563), # 14 (9.321501903268855, 10.188989479504217, 9.610082028117542, 11.462464196805985, 10.275849331148308, 5.789137058744912, 7.642034201749626, 8.569143135599756, 11.23109473373482, 7.29471557214749, 7.757319337619419, 9.031249705859171, 9.37827342756938), # 15 (9.5029653356198, 10.380690508860132, 9.790888868163425, 11.678164603775716, 10.472279411582333, 5.898074297221459, 7.785740388963976, 8.73008331110196, 11.442393241108286, 7.431877979461996, 7.9033229164645125, 9.20114387468494, 9.554781444523545), # 16 (9.663932709715075, 10.549321560579946, 9.949936396542352, 11.867906175282112, 10.645749791913838, 5.993900901234285, 7.9121527097307105, 8.871653604460818, 11.628261821648984, 7.552534312869467, 8.031755678277799, 9.350591945864055, 9.710046977881415), # 17 (9.803108669450204, 10.693441146668274, 10.08586517030988, 12.030067190829278, 10.794818631708589, 6.075797969921503, 8.020190490232851, 8.99264442519526, 11.787112132476096, 7.6556530070435365, 8.141519832540508, 9.478316552304715, 9.842743079009345), # 18 (9.919197858720699, 10.811607779129744, 10.197315746521578, 12.163025929921314, 10.918044090532366, 6.142946602421208, 8.108773056653394, 9.091846182824245, 11.917355830708779, 7.740202496657828, 8.231517588733878, 9.583040326915096, 9.951542799273696), # 19 (10.010904921422082, 10.902379969968962, 10.282928682233003, 12.265160672062354, 11.013984327950944, 6.194527897871518, 8.176819735175362, 9.168049286866717, 12.017404573466198, 7.805151216385958, 8.30065115633915, 9.66348590260339, 10.035119190040824), # 20 (10.076934501449866, 10.964316231190558, 10.341344534499719, 12.334849696756486, 11.081197503530088, 6.229722955410535, 8.223249851981759, 9.220044146841623, 12.085670017867521, 7.849467600901555, 8.34782274483756, 9.718375912277793, 10.092145302677078), # 21 (10.115991242699579, 10.995975074799144, 10.371203860377285, 12.370471283507836, 11.118241776835575, 6.247712874176367, 8.2469827332556, 9.246621172267915, 12.120563821031915, 7.872120084878242, 8.37193456371034, 9.74643298884649, 10.121294188548827), # 22 (10.13039336334264, 10.999723593964335, 10.374923182441702, 12.374930812757203, 11.127732056032597, 6.25, 8.249804002259339, 9.249493827160494, 12.124926234567901, 7.874792272519433, 8.37495803716174, 9.749897576588934, 10.125), # 23 (10.141012413034153, 10.997537037037038, 10.374314814814815, 12.374381944444446, 11.133107613614852, 6.25, 8.248253812636166, 9.2455, 12.124341666666666, 7.87315061728395, 8.37462457912458, 9.749086419753086, 10.125), # 24 (10.15140723021158, 10.993227023319616, 10.373113854595337, 12.373296039094651, 11.138364945594503, 6.25, 8.24519890260631, 9.237654320987655, 12.123186728395062, 7.869918838591678, 8.373963399426362, 9.747485139460448, 10.125), # 25 (10.161577019048034, 10.986859396433472, 10.371336762688616, 12.37168544238683, 11.143503868421105, 6.25, 8.240686718308721, 9.226104938271606, 12.1214762345679, 7.865150708733425, 8.372980483850855, 9.745115683584821, 10.125), # 26 (10.171520983716636, 10.978499999999999, 10.369, 12.369562499999999, 11.148524198544214, 6.25, 8.234764705882354, 9.211, 12.119225, 7.858899999999999, 8.371681818181818, 9.742, 10.125), # 27 (10.181238328390501, 10.968214677640603, 10.366120027434842, 12.366939557613168, 11.153425752413401, 6.25, 8.22748031146615, 9.192487654320988, 12.116447839506172, 7.851220484682213, 8.370073388203018, 9.73816003657979, 10.125), # 28 (10.19072825724275, 10.95606927297668, 10.362713305898492, 12.36382896090535, 11.15820834647822, 6.25, 8.218880981199066, 9.170716049382715, 12.113159567901235, 7.842165935070874, 8.368161179698216, 9.733617741197987, 10.125), # 29 (10.199989974446497, 10.94212962962963, 10.358796296296296, 12.360243055555555, 11.162871797188236, 6.25, 8.209014161220043, 9.145833333333332, 12.109375, 7.83179012345679, 8.365951178451178, 9.728395061728394, 10.125), # 30 (10.209022684174858, 10.926461591220852, 10.354385459533608, 12.356194187242798, 11.167415920993008, 6.25, 8.19792729766804, 9.117987654320988, 12.105108950617284, 7.820146822130773, 8.363449370245666, 9.722513946044812, 10.125), # 31 (10.217825590600954, 10.909131001371742, 10.349497256515773, 12.35169470164609, 11.171840534342095, 6.25, 8.185667836681999, 9.087327160493828, 12.100376234567902, 7.807289803383631, 8.360661740865444, 9.715996342021034, 10.125), # 32 (10.226397897897897, 10.890203703703703, 10.344148148148149, 12.346756944444444, 11.176145453685063, 6.25, 8.172283224400871, 9.054, 12.095191666666667, 7.793272839506173, 8.357594276094275, 9.708864197530863, 10.125), # 33 (10.23473881023881, 10.869745541838133, 10.338354595336076, 12.341393261316872, 11.180330495471466, 6.25, 8.15782090696361, 9.018154320987653, 12.089570061728397, 7.778149702789209, 8.354252961715924, 9.701139460448102, 10.125), # 34 (10.242847531796807, 10.847822359396433, 10.332133058984912, 12.335615997942385, 11.18439547615087, 6.25, 8.142328330509159, 8.979938271604938, 12.083526234567902, 7.761974165523548, 8.350643783514153, 9.692844078646548, 10.125), # 35 (10.250723266745005, 10.824499999999999, 10.3255, 12.3294375, 11.188340212172836, 6.25, 8.12585294117647, 8.9395, 12.077074999999999, 7.7448, 8.346772727272727, 9.684000000000001, 10.125), # 36 (10.258365219256524, 10.799844307270233, 10.318471879286694, 12.322870113168724, 11.192164519986921, 6.25, 8.108442185104494, 8.896987654320988, 12.070231172839506, 7.726680978509374, 8.34264577877541, 9.674629172382259, 10.125), # 37 (10.265772593504476, 10.773921124828533, 10.311065157750342, 12.315926183127573, 11.19586821604269, 6.25, 8.09014350843218, 8.85254938271605, 12.063009567901235, 7.707670873342479, 8.33826892380596, 9.664753543667125, 10.125), # 38 (10.272944593661986, 10.746796296296296, 10.303296296296297, 12.308618055555556, 11.199451116789703, 6.25, 8.071004357298476, 8.806333333333333, 12.055425000000001, 7.687823456790124, 8.333648148148148, 9.654395061728394, 10.125), # 39 (10.279880423902163, 10.718535665294924, 10.295181755829903, 12.300958076131687, 11.202913038677519, 6.25, 8.05107217784233, 8.758487654320989, 12.047492283950618, 7.667192501143119, 8.328789437585733, 9.643575674439873, 10.125), # 40 (10.286579288398128, 10.689205075445816, 10.286737997256516, 12.29295859053498, 11.206253798155702, 6.25, 8.030394416202695, 8.709160493827161, 12.0392262345679, 7.645831778692272, 8.323698777902482, 9.632317329675354, 10.125), # 41 (10.293040391323, 10.658870370370371, 10.277981481481483, 12.284631944444445, 11.209473211673808, 6.25, 8.009018518518518, 8.6585, 12.030641666666668, 7.623795061728395, 8.318382154882155, 9.620641975308642, 10.125), # 42 (10.299262936849892, 10.627597393689987, 10.268928669410151, 12.275990483539095, 11.212571095681403, 6.25, 7.98699193092875, 8.606654320987655, 12.021753395061728, 7.601136122542296, 8.312845554308517, 9.608571559213535, 10.125), # 43 (10.305246129151927, 10.595451989026063, 10.259596021947875, 12.267046553497943, 11.215547266628045, 6.25, 7.964362099572339, 8.553771604938273, 12.0125762345679, 7.577908733424783, 8.307094961965332, 9.596128029263832, 10.125), # 44 (10.310989172402216, 10.5625, 10.25, 12.2578125, 11.218401540963296, 6.25, 7.9411764705882355, 8.5, 12.003124999999999, 7.554166666666667, 8.301136363636363, 9.583333333333332, 10.125), # 45 (10.31649127077388, 10.528807270233196, 10.240157064471878, 12.24830066872428, 11.221133735136716, 6.25, 7.917482490115388, 8.445487654320988, 11.993414506172838, 7.529963694558756, 8.294975745105374, 9.57020941929584, 10.125), # 46 (10.321751628440035, 10.49443964334705, 10.230083676268862, 12.238523405349794, 11.223743665597867, 6.25, 7.893327604292747, 8.390382716049382, 11.983459567901235, 7.505353589391861, 8.288619092156129, 9.55677823502515, 10.125), # 47 (10.326769449573796, 10.459462962962963, 10.219796296296296, 12.228493055555557, 11.22623114879631, 6.25, 7.868759259259259, 8.334833333333334, 11.973275000000001, 7.4803901234567896, 8.28207239057239, 9.543061728395061, 10.125), # 48 (10.331543938348286, 10.42394307270233, 10.209311385459534, 12.218221965020577, 11.228596001181607, 6.25, 7.8438249011538765, 8.278987654320987, 11.96287561728395, 7.455127069044353, 8.275341626137923, 9.529081847279379, 10.125), # 49 (10.336074298936616, 10.387945816186559, 10.198645404663925, 12.207722479423868, 11.230838039203315, 6.25, 7.81857197611555, 8.222993827160494, 11.9522762345679, 7.429618198445358, 8.268432784636488, 9.514860539551899, 10.125), # 50 (10.34035973551191, 10.351537037037037, 10.187814814814814, 12.197006944444444, 11.232957079310998, 6.25, 7.793047930283224, 8.167, 11.941491666666668, 7.403917283950617, 8.261351851851853, 9.50041975308642, 10.125), # 51 (10.344399452247279, 10.314782578875173, 10.176836076817558, 12.186087705761317, 11.234952937954214, 6.25, 7.767300209795852, 8.111154320987653, 11.930536728395062, 7.3780780978509375, 8.254104813567777, 9.485781435756746, 10.125), # 52 (10.348192653315843, 10.27774828532236, 10.165725651577505, 12.174977109053497, 11.23682543158253, 6.25, 7.741376260792383, 8.055604938271605, 11.919426234567903, 7.3521544124371285, 8.246697655568026, 9.470967535436671, 10.125), # 53 (10.351738542890716, 10.2405, 10.154499999999999, 12.1636875, 11.238574376645502, 6.25, 7.715323529411765, 8.000499999999999, 11.908175, 7.3262, 8.239136363636362, 9.456, 10.125), # 54 (10.355036325145022, 10.203103566529492, 10.143175582990398, 12.152231224279834, 11.24019958959269, 6.25, 7.689189461792948, 7.945987654320987, 11.896797839506172, 7.300268632830361, 8.231426923556553, 9.44090077732053, 10.125), # 55 (10.358085204251871, 10.165624828532236, 10.131768861454047, 12.140620627572016, 11.241700886873659, 6.25, 7.663021504074881, 7.892216049382716, 11.885309567901235, 7.274414083219022, 8.223575321112358, 9.425691815272062, 10.125), # 56 (10.360884384384383, 10.12812962962963, 10.120296296296297, 12.128868055555555, 11.243078084937967, 6.25, 7.636867102396514, 7.839333333333334, 11.873725, 7.24869012345679, 8.215587542087542, 9.410395061728394, 10.125), # 57 (10.36343306971568, 10.090683813443073, 10.108774348422497, 12.116985853909464, 11.244331000235174, 6.25, 7.610773702896797, 7.787487654320987, 11.862058950617284, 7.223150525834477, 8.20746957226587, 9.395032464563329, 10.125), # 58 (10.36573046441887, 10.053353223593964, 10.097219478737998, 12.104986368312757, 11.245459449214845, 6.25, 7.584788751714678, 7.736827160493827, 11.850326234567902, 7.197849062642891, 8.1992273974311, 9.379625971650663, 10.125), # 59 (10.367775772667077, 10.016203703703704, 10.085648148148147, 12.092881944444445, 11.246463248326537, 6.25, 7.558959694989106, 7.6875, 11.838541666666668, 7.172839506172839, 8.190867003367003, 9.364197530864198, 10.125), # 60 (10.369568198633415, 9.97930109739369, 10.0740768175583, 12.080684927983539, 11.247342214019811, 6.25, 7.533333978859033, 7.639654320987654, 11.826720061728395, 7.148175628715135, 8.182394375857339, 9.348769090077733, 10.125), # 61 (10.371106946491004, 9.942711248285322, 10.062521947873801, 12.068407664609055, 11.248096162744234, 6.25, 7.507959049463406, 7.5934382716049384, 11.814876234567901, 7.123911202560586, 8.17381550068587, 9.333362597165067, 10.125), # 62 (10.37239122041296, 9.9065, 10.051, 12.056062500000001, 11.248724910949356, 6.25, 7.482882352941176, 7.549, 11.803025, 7.100099999999999, 8.165136363636364, 9.318, 10.125), # 63 (10.373420224572397, 9.870733196159122, 10.039527434842249, 12.043661779835391, 11.249228275084748, 6.25, 7.458151335431292, 7.506487654320988, 11.791181172839506, 7.076795793324188, 8.156362950492579, 9.302703246456334, 10.125), # 64 (10.374193163142438, 9.835476680384087, 10.0281207133059, 12.031217849794238, 11.249606071599967, 6.25, 7.433813443072703, 7.466049382716049, 11.779359567901235, 7.054052354823959, 8.147501247038285, 9.287494284407863, 10.125), # 65 (10.374709240296196, 9.800796296296298, 10.016796296296297, 12.018743055555555, 11.249858116944573, 6.25, 7.409916122004357, 7.427833333333334, 11.767575, 7.031923456790123, 8.138557239057238, 9.272395061728396, 10.125), # 66 (10.374967660206792, 9.766757887517146, 10.005570644718793, 12.006249742798353, 11.24998422756813, 6.25, 7.386506818365206, 7.391987654320989, 11.755842283950617, 7.010462871513489, 8.12953691233321, 9.257427526291723, 10.125), # 67 (10.374791614480825, 9.733248639320323, 9.994405949931412, 11.993641740472357, 11.249877955297345, 6.2498840115836, 7.363515194829646, 7.358343850022862, 11.744087848651121, 6.989620441647166, 8.120285988540376, 9.242530021899743, 10.124875150034294), # 68 (10.373141706924315, 9.699245519713262, 9.982988425925925, 11.980283514492752, 11.248910675381262, 6.248967078189301, 7.340268181346613, 7.325098765432099, 11.731797839506173, 6.968806390704429, 8.10986283891547, 9.227218973359324, 10.12388599537037), # 69 (10.369885787558895, 9.664592459843355, 9.971268432784635, 11.966087124261943, 11.246999314128942, 6.247161255906112, 7.31666013456137, 7.291952446273434, 11.718902892089622, 6.947919524462734, 8.09814888652608, 9.211422761292809, 10.121932334533609), # 70 (10.365069660642929, 9.62931016859153, 9.959250085733881, 11.951073503757382, 11.244168078754136, 6.244495808565767, 7.292701659538988, 7.258915866483768, 11.705422210791038, 6.926960359342639, 8.085187370783862, 9.195152937212715, 10.119039887688615), # 71 (10.358739130434783, 9.593419354838709, 9.946937499999999, 11.935263586956522, 11.240441176470588, 6.2410000000000005, 7.268403361344538, 7.226, 11.691375, 6.905929411764705, 8.07102153110048, 9.17842105263158, 10.115234375), # 72 (10.35094000119282, 9.556940727465816, 9.934334790809327, 11.918678307836823, 11.23584281449205, 6.236703094040542, 7.243775845043092, 7.193215820759031, 11.676780464106082, 6.884827198149493, 8.055694606887588, 9.161238659061919, 10.110541516632374), # 73 (10.341718077175404, 9.519894995353777, 9.921446073388202, 11.901338600375738, 11.230397200032275, 6.231634354519128, 7.218829715699722, 7.160574302697759, 11.661657807498857, 6.863654234917561, 8.039249837556856, 9.143617308016267, 10.104987032750344), # 74 (10.331119162640901, 9.482302867383511, 9.908275462962962, 11.883265398550725, 11.224128540305012, 6.22582304526749, 7.1935755783795, 7.128086419753086, 11.6460262345679, 6.84241103848947, 8.021730462519935, 9.125568551007147, 10.098596643518519), # 75 (10.319189061847677, 9.44418505243595, 9.894827074759945, 11.864479636339238, 11.217061042524005, 6.219298430117361, 7.168024038147495, 7.095763145861912, 11.629904949702789, 6.821098125285779, 8.003179721188491, 9.107103939547082, 10.091396069101508), # 76 (10.305973579054093, 9.40556225939201, 9.881105024005485, 11.845002247718732, 11.209218913903008, 6.212089772900472, 7.142185700068779, 7.063615454961135, 11.613313157293096, 6.7997160117270505, 7.983640852974187, 9.088235025148606, 10.083411029663925), # 77 (10.291518518518519, 9.366455197132618, 9.867113425925925, 11.824854166666666, 11.200626361655774, 6.204226337448559, 7.116071169208425, 7.031654320987655, 11.596270061728394, 6.7782652142338415, 7.9631570972886765, 9.068973359324238, 10.074667245370371), # 78 (10.275869684499314, 9.326884574538697, 9.8528563957476, 11.804056327160493, 11.191307592996047, 6.195737387593354, 7.089691050631501, 6.9998907178783725, 11.578794867398262, 6.756746249226714, 7.941771693543622, 9.049330493586504, 10.065190436385459), # 79 (10.259072881254847, 9.286871100491172, 9.838338048696844, 11.782629663177671, 11.181286815137579, 6.18665218716659, 7.063055949403081, 6.968335619570188, 11.560906778692273, 6.7351596331262265, 7.919527881150688, 9.029317979447935, 10.0550063228738), # 80 (10.241173913043479, 9.246435483870968, 9.8235625, 11.760595108695654, 11.170588235294117, 6.177, 7.036176470588235, 6.937, 11.542625, 6.713505882352941, 7.8964688995215315, 9.008947368421053, 10.044140624999999), # 81 (10.222218584123576, 9.205598433559008, 9.808533864883403, 11.737973597691894, 11.159236060679415, 6.166810089925317, 7.009063219252036, 6.90589483310471, 11.52396873571102, 6.691785513327416, 7.872637988067813, 8.988230212018387, 10.03261906292867), # 82 (10.202252698753504, 9.164380658436214, 9.793256258573388, 11.714786064143853, 11.147254498507221, 6.156111720774272, 6.981726800459553, 6.875031092821216, 11.504957190214906, 6.669999042470211, 7.848078386201194, 8.967178061752461, 10.020467356824417), # 83 (10.181322061191626, 9.122802867383513, 9.777733796296296, 11.691053442028986, 11.134667755991286, 6.144934156378601, 6.954177819275858, 6.844419753086419, 11.485609567901234, 6.648146986201889, 7.822833333333333, 8.945802469135803, 10.007711226851852), # 84 (10.159472475696308, 9.080885769281826, 9.761970593278463, 11.666796665324746, 11.121500040345357, 6.133306660570035, 6.926426880766024, 6.814071787837221, 11.465945073159578, 6.626229860943005, 7.796946068875894, 8.924114985680937, 9.994376393175584), # 85 (10.136749746525913, 9.03865007301208, 9.745970764746229, 11.64203666800859, 11.107775558783183, 6.121258497180309, 6.89848458999512, 6.783998171010516, 11.445982910379517, 6.604248183114124, 7.770459832240534, 8.902127162900394, 9.98048857596022), # 86 (10.113199677938807, 8.996116487455197, 9.729738425925925, 11.61679438405797, 11.09351851851852, 6.108818930041152, 6.870361552028219, 6.75420987654321, 11.425742283950619, 6.582202469135802, 7.743417862838915, 8.879850552306692, 9.96607349537037), # 87 (10.088868074193357, 8.9533057214921, 9.713277692043896, 11.59109074745035, 11.07875312676511, 6.096017222984301, 6.842068371930391, 6.724717878372199, 11.40524239826246, 6.560093235428601, 7.715863400082698, 8.857296705412365, 9.951156871570646), # 88 (10.063800739547922, 8.910238484003717, 9.696592678326475, 11.564946692163177, 11.063503590736707, 6.082882639841488, 6.813615654766708, 6.695533150434385, 11.384502457704619, 6.537920998413083, 7.687839683383544, 8.834477173729935, 9.935764424725651), # 89 (10.03804347826087, 8.866935483870968, 9.6796875, 11.538383152173914, 11.04779411764706, 6.069444444444445, 6.785014005602241, 6.666666666666666, 11.363541666666668, 6.515686274509804, 7.65938995215311, 8.81140350877193, 9.919921875), # 90 (10.011642094590563, 8.823417429974777, 9.662566272290809, 11.511421061460013, 11.031648914709915, 6.055731900624904, 6.756274029502062, 6.638129401005944, 11.342379229538182, 6.4933895801393255, 7.63055744580306, 8.788087262050874, 9.903654942558298), # 91 (9.984642392795372, 8.779705031196071, 9.64523311042524, 11.484081353998926, 11.015092189139029, 6.041774272214601, 6.727406331531242, 6.609932327389118, 11.321034350708734, 6.471031431722209, 7.601385403745053, 8.764539985079297, 9.886989347565157), # 92 (9.957090177133654, 8.735818996415771, 9.62769212962963, 11.456384963768118, 10.998148148148148, 6.027600823045267, 6.69842151675485, 6.582086419753087, 11.299526234567901, 6.448612345679011, 7.57191706539075, 8.74077322936972, 9.869950810185184), # 93 (9.92903125186378, 8.691780034514801, 9.609947445130317, 11.428352824745035, 10.98084099895102, 6.0132408169486355, 6.669330190237961, 6.554602652034752, 11.277874085505259, 6.426132838430297, 7.54219567015181, 8.716798546434674, 9.85256505058299), # 94 (9.90051142124411, 8.647608854374088, 9.592003172153635, 11.400005870907139, 10.963194948761398, 5.9987235177564395, 6.640142957045644, 6.527491998171011, 11.25609710791038, 6.403593426396621, 7.512264457439896, 8.69262748778668, 9.834857788923182), # 95 (9.871576489533012, 8.603326164874554, 9.573863425925927, 11.371365036231884, 10.945234204793028, 5.984078189300411, 6.610870422242971, 6.500765432098766, 11.234214506172838, 6.3809946259985475, 7.482166666666667, 8.668271604938273, 9.816854745370371), # 96 (9.842272260988848, 8.558952674897121, 9.555532321673525, 11.342451254696725, 10.926982974259664, 5.969334095412284, 6.581523190895013, 6.474433927754916, 11.212245484682214, 6.358336953656634, 7.451945537243782, 8.64374244940197, 9.798581640089164), # 97 (9.812644539869984, 8.514509093322713, 9.53701397462277, 11.31328546027912, 10.908465464375052, 5.954520499923793, 6.552111868066842, 6.44850845907636, 11.190209247828074, 6.335620925791441, 7.421644308582906, 8.619051572690298, 9.78006419324417), # 98 (9.782739130434782, 8.470016129032258, 9.5183125, 11.283888586956522, 10.889705882352942, 5.939666666666667, 6.52264705882353, 6.423, 11.168125, 6.312847058823529, 7.391306220095694, 8.59421052631579, 9.761328125), # 99 (9.752601836941611, 8.425494490906676, 9.49943201303155, 11.254281568706388, 10.870728435407084, 5.924801859472641, 6.493139368230145, 6.3979195244627345, 11.146011945587563, 6.290015869173458, 7.36097451119381, 8.569230861790967, 9.742399155521262), # 100 (9.722278463648834, 8.380964887826895, 9.480376628943759, 11.224485339506174, 10.85155733075123, 5.909955342173449, 6.463599401351762, 6.3732780064014625, 11.123889288980338, 6.267127873261788, 7.330692421288912, 8.544124130628353, 9.723303004972564), # 101 (9.691814814814816, 8.336448028673836, 9.461150462962962, 11.194520833333334, 10.832216775599129, 5.895156378600824, 6.43403776325345, 6.349086419753086, 11.1017762345679, 6.244183587509078, 7.300503189792663, 8.518901884340481, 9.704065393518519), # 102 (9.661256694697919, 8.291964622328422, 9.4417576303155, 11.164408984165325, 10.812730977164529, 5.880434232586496, 6.40446505900028, 6.325355738454504, 11.079691986739826, 6.221183528335889, 7.270450056116723, 8.493575674439873, 9.68471204132373), # 103 (9.63064990755651, 8.247535377671579, 9.422202246227709, 11.134170725979603, 10.79312414266118, 5.865818167962201, 6.374891893657326, 6.302096936442616, 11.057655749885688, 6.19812821216278, 7.24057625967275, 8.468157052439054, 9.665268668552812), # 104 (9.600040257648953, 8.203181003584229, 9.402488425925926, 11.103826992753623, 10.773420479302832, 5.851337448559671, 6.345328872289658, 6.279320987654321, 11.035686728395062, 6.175018155410313, 7.210925039872408, 8.442657569850553, 9.64576099537037), # 105 (9.569473549233614, 8.158922208947299, 9.382620284636488, 11.073398718464842, 10.753644194303236, 5.837021338210638, 6.315786599962345, 6.25703886602652, 11.01380412665752, 6.151853874499045, 7.181539636127355, 8.417088778186894, 9.626214741941014), # 106 (9.538995586568856, 8.11477970264171, 9.362601937585735, 11.042906837090714, 10.733819494876139, 5.822899100746838, 6.286275681740461, 6.235261545496114, 10.992027149062643, 6.128635885849539, 7.152463287849252, 8.391462228960604, 9.606655628429355), # 107 (9.508652173913044, 8.070774193548388, 9.3424375, 11.012372282608696, 10.713970588235293, 5.809, 6.256806722689075, 6.214, 10.970375, 6.105364705882353, 7.1237392344497605, 8.365789473684211, 9.587109375), # 108 (9.478489115524543, 8.026926390548255, 9.322131087105625, 10.98181598899624, 10.69412168159445, 5.795353299801859, 6.227390327873262, 6.193265203475081, 10.948866883859168, 6.082040851018047, 7.09541071534054, 8.340082063870238, 9.567601701817559), # 109 (9.448552215661715, 7.983257002522237, 9.301686814128946, 10.951258890230811, 10.674296982167354, 5.7819882639841484, 6.198037102358089, 6.173068129858253, 10.92752200502972, 6.058664837677183, 7.06752096993325, 8.314351551031214, 9.54815832904664), # 110 (9.41888727858293, 7.9397867383512555, 9.281108796296298, 10.920721920289855, 10.654520697167756, 5.768934156378601, 6.168757651208631, 6.153419753086419, 10.906359567901236, 6.035237182280319, 7.040113237639553, 8.288609486679663, 9.528804976851852), # 111 (9.38954010854655, 7.896536306916234, 9.26040114883402, 10.890226013150832, 10.634817033809409, 5.756220240816949, 6.139562579489958, 6.134331047096479, 10.885398776863282, 6.011758401248016, 7.013230757871109, 8.26286742232811, 9.509567365397805), # 112 (9.360504223703044, 7.853598618785952, 9.239617828252069, 10.85983388249204, 10.615175680173705, 5.7438697692145135, 6.1105259636567695, 6.115852568780606, 10.86471281125862, 5.988304736612729, 6.9869239061528665, 8.237192936504428, 9.490443900843221), # 113 (9.331480897900065, 7.811397183525536, 9.219045675021619, 10.829789421277336, 10.595393354566326, 5.731854608529901, 6.082018208410579, 6.09821125950512, 10.84461903571306, 5.965315167912783, 6.961244337113197, 8.211912172112974, 9.471275414160035), # 114 (9.302384903003995, 7.769947198683046, 9.198696932707318, 10.800084505181779, 10.5754076778886, 5.7201435124987645, 6.054059650191562, 6.081402654278709, 10.82512497866879, 5.942825327988077, 6.936154511427094, 8.187037582558851, 9.452006631660376), # 115 (9.273179873237634, 7.729188281291702, 9.178532189983873, 10.770666150266404, 10.555188526383779, 5.708708877287098, 6.026604817527893, 6.065380312898993, 10.80618133922783, 5.920793358449547, 6.911605931271481, 8.162523197487346, 9.43260725975589), # 116 (9.243829442823772, 7.689060048384721, 9.158512035525986, 10.741481372592244, 10.53470577629511, 5.6975230990608905, 5.9996082389477525, 6.050097795163585, 10.787738816492203, 5.899177400908129, 6.887550098823283, 8.13832304654375, 9.413047004858225), # 117 (9.214297245985211, 7.649502116995324, 9.138597058008367, 10.712477188220333, 10.513929303865842, 5.686558573986138, 5.973024442979315, 6.0355086608700965, 10.769748109563935, 5.877935596974759, 6.863938516259424, 8.11439115937335, 9.393295573379024), # 118 (9.184546916944742, 7.610454104156729, 9.118747846105723, 10.683600613211706, 10.492828985339221, 5.675787698228833, 5.946807958150756, 6.021566469816145, 10.752159917545043, 5.857026088260372, 6.840722685756828, 8.090681565621434, 9.373322671729932), # 119 (9.154542089925162, 7.571855626902158, 9.098924988492762, 10.654798663627394, 10.471374696958497, 5.665182867954965, 5.920913312990253, 6.008224781799343, 10.734924939537558, 5.836407016375905, 6.817854109492416, 8.067148294933297, 9.353098006322597), # 120 (9.124246399149268, 7.533646302264829, 9.079089073844187, 10.626018355528434, 10.449536314966918, 5.6547164793305305, 5.89529503602598, 5.995437156617307, 10.717993874643499, 5.816036522932296, 6.795284289643116, 8.043745376954222, 9.33259128356866), # 121 (9.093623478839854, 7.495765747277961, 9.059200690834711, 10.597206704975855, 10.427283715607734, 5.644360928521519, 5.869907655786117, 5.983157154067649, 10.70131742196489, 5.795872749540477, 6.772964728385851, 8.0204268413295, 9.31177220987977), # 122 (9.062636963219719, 7.458153578974774, 9.039220428139036, 10.568310728030694, 10.40458677512419, 5.634088611693925, 5.844705700798839, 5.971338333947983, 10.684846280603754, 5.775873837811387, 6.750846927897544, 7.997146717704421, 9.290610491667572), # 123 (9.031250486511654, 7.420749414388487, 9.01910887443187, 10.539277440753986, 10.381415369759537, 5.623871925013739, 5.819643699592319, 5.959934256055926, 10.668531149662115, 5.755997929355961, 6.728882390355119, 7.973859035724275, 9.269075835343711), # 124 (8.999427682938459, 7.38349287055232, 8.998826618387923, 10.51005385920676, 10.357739375757022, 5.613683264646956, 5.794676180694739, 5.948898480189091, 10.652322728241993, 5.736203165785134, 6.707022617935501, 7.950517825034348, 9.247137947319828), # 125 (8.967132186722928, 7.346323564499494, 8.978334248681898, 10.480586999450054, 10.333528669359893, 5.603495026759568, 5.76975767263427, 5.938184566145092, 10.636171715445418, 5.7164476887098425, 6.685219112815613, 7.927077115279934, 9.224766534007578), # 126 (8.93432763208786, 7.309181113263224, 8.957592353988504, 10.450823877544899, 10.308753126811398, 5.593279607517565, 5.744842703939094, 5.927746073721545, 10.620028810374407, 5.696689639741024, 6.6634233771723785, 7.903490936106316, 9.201931301818599), # 127 (8.900977653256046, 7.272005133876735, 8.93656152298245, 10.420711509552332, 10.28338262435479, 5.583009403086944, 5.719885803137382, 5.917536562716062, 10.603844712130984, 5.6768871604896125, 6.641586913182724, 7.879713317158788, 9.178601957164537), # 128 (8.867045884450281, 7.234735243373241, 8.91520234433844, 10.390196911533382, 10.257387038233311, 5.572656809633695, 5.694841498757313, 5.90750959292626, 10.587570119817174, 5.656998392566545, 6.619661223023571, 7.855698288082636, 9.154748206457038), # 129 (8.832495959893366, 7.197311058785966, 8.893475406731179, 10.359227099549086, 10.230736244690213, 5.562194223323808, 5.669664319327063, 5.89761872414975, 10.571155732535, 5.636981477582757, 6.5975978088718445, 7.831399878523152, 9.130339756107748), # 130 (8.797291513808094, 7.159672197148127, 8.87134129883538, 10.327749089660475, 10.203400119968745, 5.55159404032328, 5.644308793374809, 5.88781751618415, 10.554552249386486, 5.616794557149185, 6.575348172904468, 7.806772118125624, 9.105346312528312), # 131 (8.76139618041726, 7.121758275492944, 8.848760609325746, 10.295709897928587, 10.175348540312154, 5.540828656798102, 5.618729449428725, 5.878059528827073, 10.537710369473654, 5.596395772876765, 6.552863817298364, 7.781769036535342, 9.079737582130376), # 132 (8.724773593943663, 7.083508910853635, 8.825693926876983, 10.263056540414452, 10.146551381963686, 5.529870468914266, 5.592880816016989, 5.868298321876132, 10.520580791898526, 5.575743266376432, 6.53009624423046, 7.756344663397592, 9.053483271325586), # 133 (8.687387388610095, 7.044863720263423, 8.802101840163804, 10.229736033179103, 10.116978521166592, 5.518691872837765, 5.566717421667779, 5.858487455128944, 10.503114215763128, 5.5547951792591235, 6.506996955877678, 7.730453028357666, 9.026553086525583), # 134 (8.649201198639354, 7.005762320755524, 8.777944937860909, 10.195695392283579, 10.08659983416412, 5.507265264734592, 5.540193794909268, 5.84858048838312, 10.48526134016948, 5.533509653135776, 6.483517454416942, 7.704048161060852, 8.99891673414202), # 135 (8.610178658254235, 6.966144329363159, 8.753183808643008, 10.160881633788906, 10.055385197199517, 5.495563040770739, 5.513264464269635, 5.838530981436277, 10.466972864219606, 5.511844829617322, 6.459609242025177, 7.677084091152441, 8.970543920586536), # 136 (8.570283401677534, 6.925949363119547, 8.72777904118481, 10.125241773756125, 10.023304486516034, 5.483557597112198, 5.485883958277055, 5.828292494086029, 10.448199487015533, 5.4897588503147015, 6.435223820879306, 7.649514848277719, 8.941404352270776), # 137 (8.529479063132047, 6.885117039057908, 8.701691224161017, 10.088722828246263, 9.990327578356919, 5.471221329924964, 5.458006805459704, 5.81781858612999, 10.428891907659281, 5.4672098568388465, 6.410312693156252, 7.621294462081978, 8.91146773560639), # 138 (8.487729276840568, 6.843586974211461, 8.67488094624634, 10.051271813320358, 9.956424348965415, 5.458526635375026, 5.429587534345759, 5.807062817365774, 10.409000825252871, 5.444155990800697, 6.38482736103294, 7.592376962210506, 8.880703777005019), # 139 (8.444997677025897, 6.801298785613425, 8.647308796115487, 10.012835745039444, 9.92156467458478, 5.445445909628379, 5.400580673463397, 5.795978747590996, 10.388476938898332, 5.420555393811186, 6.358719326686294, 7.562716378308592, 8.849082182878314), # 140 (8.40124789791083, 6.758192090297021, 8.61893536244316, 9.973361639464553, 9.885718431458253, 5.431951548851015, 5.370940751340795, 5.78451993660327, 10.36727094769768, 5.396366207481251, 6.331940092293238, 7.532266740021525, 8.816572659637913), # 141 (8.356443573718156, 6.714206505295466, 8.58972123390407, 9.93279651265672, 9.848855495829087, 5.418015949208927, 5.340622296506126, 5.772639944200211, 10.345333550752942, 5.371546573421828, 6.304441160030697, 7.500982076994594, 8.783144913695466), # 142 (8.310548338670674, 6.669281647641981, 8.559626999172925, 9.891087380676975, 9.810945743940529, 5.403611506868106, 5.3095798374875685, 5.760292330179432, 10.322615447166147, 5.3460546332438525, 6.276174032075593, 7.4688164188730894, 8.748768651462617), # 143 (8.263525826991184, 6.623357134369786, 8.528613246924428, 9.848181259586356, 9.771959052035829, 5.388710617994547, 5.277767902813299, 5.747430654338549, 10.29906733603931, 5.31984852855826, 6.247090210604851, 7.435723795302299, 8.713413579351014), # 144 (8.215339672902477, 6.576372582512099, 8.496640565833289, 9.804025165445895, 9.731865296358233, 5.3732856787542405, 5.245141021011493, 5.734008476475176, 10.274639916474454, 5.292886400975988, 6.217141197795395, 7.401658235927513, 8.6770494037723), # 145 (8.16595351062735, 6.528267609102142, 8.463669544574216, 9.758566114316626, 9.690634353150992, 5.35730908531318, 5.21165372061033, 5.719979356386927, 10.249283887573606, 5.2651263921079705, 6.186278495824149, 7.3665737703940195, 8.639645831138118), # 146 (8.1153309743886, 6.47898183117313, 8.42966077182191, 9.71175112225958, 9.648236098657351, 5.340753233837358, 5.177260530137981, 5.705296853871415, 10.22294994843879, 5.236526643565146, 6.154453606868036, 7.3304244283471105, 8.601172567860118), # 147 (8.063435698409021, 6.428454865758288, 8.394574836251083, 9.663527205335797, 9.604640409120561, 5.323590520492767, 5.1419159781226265, 5.689914528726257, 10.195588798172029, 5.207045296958447, 6.1216180331039824, 7.29316423943207, 8.561599320349941), # 148 (8.010231316911412, 6.37662632989083, 8.358372326536443, 9.613841379606303, 9.55981716078387, 5.3057933414453995, 5.105574593092441, 5.673785940749067, 10.167151135875338, 5.176640493898813, 6.08772327670891, 7.254747233294191, 8.520895795019237), # 149 (7.955681464118564, 6.323435840603979, 8.321013831352694, 9.562640661132138, 9.513736229890526, 5.287334092861249, 5.0681909035756005, 5.656864649737456, 10.137587660650752, 5.1452703759971765, 6.0527208398597425, 7.215127439578763, 8.479031698279647), # 150 (7.899749774253275, 6.268823014930954, 8.282459939374542, 9.50987206597433, 9.466367492683776, 5.268185170906305, 5.029719438100283, 5.639104215489043, 10.106849071600289, 5.112893084864478, 6.016562224733405, 7.174258887931072, 8.435976736542818), # 151 (7.842399881538343, 6.212727469904973, 8.242671239276701, 9.455482610193918, 9.417680825406869, 5.2483189717465635, 4.9901147251946645, 5.620458197801441, 10.07488606782597, 5.079466762111649, 5.979198933506821, 7.132095607996409, 8.391700616220398), # 152 (7.78359542019656, 6.155088822559256, 8.201608319733868, 9.399419309851933, 9.367646104303056, 5.2277078915480155, 4.949331293386919, 5.600880156472262, 10.041649348429823, 5.044949549349629, 5.940582468356916, 7.088591629420064, 8.346173043724027), # 153 (7.723300024450729, 6.095846689927024, 8.159231769420758, 9.34162918100941, 9.31623320561558, 5.206324326476654, 4.907323671205228, 5.580323651299123, 10.007089612513866, 5.009299588189353, 5.900664331460612, 7.043700981847325, 8.299363725465357), # 154 (7.6614773285236355, 6.034940689041495, 8.115502177012075, 9.282059239727378, 9.263412005587696, 5.184140672698471, 4.864046387177761, 5.558742242079636, 9.971157559180128, 4.972475020241754, 5.859396024994833, 6.997377694923482, 8.251242367856026), # 155 (7.598090966638081, 5.972310436935888, 8.070380131182526, 9.220656502066875, 9.209152380462648, 5.161129326379461, 4.8194539698327, 5.5360894886114185, 9.933803887530626, 4.934433987117773, 5.816729051136504, 6.949575798293822, 8.201778677307685), # 156 (7.533104573016862, 5.907895550643423, 8.023826220606818, 9.157367984088937, 9.153424206483685, 5.137262683685614, 4.773500947698219, 5.512318950692082, 9.894979296667389, 4.895134630428341, 5.772614912062549, 6.900249321603637, 8.150942360231976), # 157 (7.464680946405239, 5.840453120772258, 7.973591953902355, 9.089769581651243, 9.093681105870997, 5.11102447631711, 4.725106720927857, 5.485796952349372, 9.851662091599097, 4.8533659162911436, 5.7255957525389425, 6.847599564194339, 8.096485859415345), # 158 (7.382286766978402, 5.763065319599478, 7.906737818402988, 9.003977158788453, 9.015191309781628, 5.073689648007103, 4.668212763385716, 5.4472135327643825, 9.786427261222144, 4.802280994098745, 5.667416935618994, 6.781362523683108, 8.025427646920194), # 159 (7.284872094904309, 5.675096728540714, 7.821920957955888, 8.89857751040886, 8.916420131346795, 5.024341296047684, 4.602243748383784, 5.3955991895273465, 9.697425227228651, 4.741205651862893, 5.59725950860954, 6.700501948887847, 7.93642060889358), # 160 (7.17322205458596, 5.577120868080469, 7.720046971910309, 8.774572503756728, 8.798393124282113, 4.963577241570314, 4.527681446006876, 5.33160053310978, 9.585829766999018, 4.6706581931709374, 5.515741654599707, 6.605767468907571, 7.830374044819097), # 161 (7.048121770426357, 5.469711258703239, 7.602021459615496, 8.632964006076326, 8.662135842303204, 4.891995305706455, 4.445007626339809, 5.255864173983202, 9.452814657913637, 4.5911569216102315, 5.42348155667862, 6.497908712841293, 7.708197254180333), # 162 (6.9103563668284975, 5.353441420893524, 7.468750020420702, 8.474753884611934, 8.508673839125688, 4.810193309587572, 4.354704059467401, 5.169036722619125, 9.299553677352906, 4.503220140768125, 5.321097397935408, 6.3776753097880325, 7.570799536460879), # 163 (6.760710968195384, 5.228884875135821, 7.321138253675176, 8.300944006607818, 8.339032668465189, 4.718769074345129, 4.257252515474466, 5.071764789489069, 9.127220602697223, 4.407366154231968, 5.209207361459196, 6.245816888846803, 7.419090191144328), # 164 (6.599970698930017, 5.096615141914632, 7.160091758728169, 8.112536239308252, 8.154237884037324, 4.618320421110586, 4.153134764445822, 4.964694985064546, 8.93698921132698, 4.3041132655891134, 5.088429630339111, 6.10308307911662, 7.25397851771427), # 165 (6.428920683435397, 4.957205741714454, 6.9865161349289275, 7.910532449957501, 7.955315039557714, 4.509445171015408, 4.042832576466286, 4.848473919817077, 8.730033280622573, 4.193979778426912, 4.959382387664279, 5.950223509696501, 7.0763738156542955), # 166 (6.248346046114523, 4.811230195019787, 6.801316981626704, 7.695934505799843, 7.74328968874198, 4.392741145191058, 3.9268277216206746, 4.723748204218176, 8.5075265879644, 4.077483996332714, 4.822683816523827, 5.7879878096854585, 6.887185384447996), # 167 (6.059031911370395, 4.659262022315128, 6.605399898170748, 7.469744274079546, 7.519187385305742, 4.268806164768999, 3.805601969993804, 4.5911644487393595, 8.270642910732855, 3.955144222893872, 4.678952100006881, 5.617125608182511, 6.6873225235789615), # 168 (5.861763403606015, 4.501874744084979, 6.399670483910309, 7.232963622040883, 7.28403368296462, 4.138238050880695, 3.6796370916704917, 4.451369263852145, 8.020556026308338, 3.8274787616977366, 4.528805421202568, 5.438386534286672, 6.477694532530785), # 169 (5.657325647224384, 4.339641880813837, 6.185034338194635, 6.98659441692812, 7.038854135434233, 4.001634624657607, 3.549414856735553, 4.305009260028047, 7.7584397120712385, 3.6950059163316578, 4.372861963200016, 5.252520217096959, 6.259210710787055), # 170 (5.4465037666285, 4.173136952986201, 5.962397060372978, 6.731638525985535, 6.784674296430206, 3.8595937072311983, 3.4154170352738054, 4.152731047738583, 7.485467745401956, 3.5582439903829886, 4.211739909088348, 5.060276285712386, 6.032780357831365), # 171 (5.230082886221365, 4.002933481086569, 5.7326642497945866, 6.4690978164573965, 6.5225197196681535, 3.7127131197329337, 3.2781253973700655, 3.9951812374552707, 7.202813903680886, 3.41771128743908, 4.046057441956694, 4.862404369231971, 5.799312773147303), # 172 (5.00884813040598, 3.8296049855994423, 5.4967415058087115, 6.1999741555879755, 6.253415958863702, 3.5615906832942748, 3.1380217131091497, 3.8330064396496235, 6.911651964288422, 3.2739261110872815, 3.8764327448941778, 4.659654096754725, 5.5597172562184625), # 173 (4.783584623585344, 3.653724987009318, 5.2555344277646014, 5.9252694106215404, 5.978388567732466, 3.406824219046685, 2.9955877525758754, 3.6668532647931604, 6.613155704604964, 3.1274067649149466, 3.7034840009899277, 4.452775097379668, 5.314903106528433), # 174 (4.555077490162455, 3.4758670058006946, 5.009948615011508, 5.645985448802367, 5.698463099990069, 3.2490115481216284, 2.851305285855058, 3.497368323357396, 6.308498902010905, 2.9786715525094243, 3.5278293933330693, 4.242517000205814, 5.0657796235608075), # 175 (4.324111854540319, 3.296604562458073, 4.760889666898678, 5.363124137374725, 5.41466510935213, 3.0887504916505666, 2.705656083031515, 3.325198225813849, 5.998855333886642, 2.828238777458067, 3.35008710501273, 4.029629434332179, 4.813256106799174), # 176 (4.0914728411219325, 3.1165111774659513, 4.5092631827753635, 5.077687343582883, 5.128020149534273, 2.9266388707649633, 2.5591219141900625, 3.1509895826340326, 5.68539877761257, 2.6766267433482245, 3.1708753191180357, 3.8148620288577786, 4.5582418557271245), # 177 (3.8579455743102966, 2.9361603713088282, 4.255974761990814, 4.790676934671116, 4.8395537742521135, 2.7632745065962827, 2.4121845494155174, 2.9753890042894655, 5.3693030105690855, 2.52435375376725, 2.9908122187381125, 3.598964412881627, 4.301646169828252), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_arriving_acc = ( (2, 7, 5, 2, 8, 1, 2, 1, 2, 1, 0, 1, 0, 11, 2, 3, 4, 3, 0, 0, 0, 1, 0, 0, 0, 0), # 0 (12, 12, 9, 6, 15, 5, 4, 1, 3, 4, 0, 1, 0, 17, 10, 7, 7, 5, 3, 5, 3, 2, 1, 0, 0, 0), # 1 (20, 18, 20, 10, 17, 7, 8, 4, 6, 4, 1, 2, 0, 21, 14, 12, 10, 11, 4, 6, 3, 6, 1, 2, 0, 0), # 2 (26, 22, 23, 14, 20, 8, 9, 4, 8, 10, 2, 2, 0, 28, 19, 14, 16, 13, 7, 8, 7, 6, 1, 3, 0, 0), # 3 (31, 32, 25, 22, 20, 10, 15, 5, 9, 12, 2, 2, 0, 31, 24, 18, 18, 19, 9, 8, 7, 10, 5, 3, 1, 0), # 4 (42, 39, 30, 23, 26, 11, 18, 6, 11, 14, 3, 2, 0, 42, 30, 21, 23, 23, 13, 11, 10, 12, 7, 4, 1, 0), # 5 (51, 48, 32, 30, 37, 11, 19, 8, 14, 14, 6, 2, 0, 46, 34, 30, 24, 36, 16, 13, 12, 15, 9, 5, 2, 0), # 6 (58, 53, 37, 36, 45, 13, 23, 11, 16, 14, 6, 2, 0, 53, 39, 37, 27, 42, 21, 14, 14, 19, 12, 6, 2, 0), # 7 (67, 59, 45, 46, 52, 14, 24, 12, 19, 16, 8, 5, 0, 65, 42, 47, 32, 48, 27, 18, 14, 24, 13, 6, 2, 0), # 8 (74, 68, 57, 55, 56, 15, 29, 17, 22, 19, 10, 7, 0, 71, 54, 54, 38, 53, 34, 22, 17, 26, 15, 6, 2, 0), # 9 (83, 77, 67, 69, 62, 20, 35, 19, 24, 21, 10, 9, 0, 79, 60, 64, 43, 57, 36, 26, 18, 27, 19, 7, 3, 0), # 10 (89, 87, 72, 73, 66, 21, 39, 25, 29, 22, 11, 11, 0, 89, 70, 71, 47, 64, 38, 30, 22, 32, 20, 8, 5, 0), # 11 (100, 94, 80, 81, 69, 21, 43, 29, 36, 22, 11, 12, 0, 95, 79, 75, 53, 70, 43, 34, 26, 38, 23, 9, 7, 0), # 12 (107, 103, 85, 94, 76, 28, 45, 33, 37, 23, 13, 13, 0, 106, 85, 83, 58, 78, 46, 37, 32, 41, 24, 12, 8, 0), # 13 (109, 113, 93, 107, 82, 31, 47, 36, 39, 26, 14, 13, 0, 118, 94, 86, 65, 83, 49, 38, 33, 46, 25, 13, 9, 0), # 14 (115, 129, 102, 115, 90, 35, 49, 37, 42, 26, 17, 15, 0, 123, 99, 94, 69, 88, 56, 43, 37, 50, 30, 16, 9, 0), # 15 (125, 141, 108, 124, 98, 39, 55, 41, 44, 27, 18, 17, 0, 131, 112, 100, 75, 93, 61, 47, 41, 54, 33, 16, 9, 0), # 16 (131, 150, 117, 131, 104, 42, 57, 41, 49, 27, 19, 17, 0, 141, 118, 111, 81, 102, 65, 51, 44, 61, 36, 18, 11, 0), # 17 (140, 154, 126, 139, 112, 46, 58, 43, 55, 29, 19, 18, 0, 150, 128, 118, 84, 107, 72, 53, 46, 66, 39, 19, 11, 0), # 18 (148, 167, 141, 149, 120, 49, 61, 45, 55, 30, 20, 20, 0, 157, 141, 127, 87, 115, 76, 58, 46, 69, 40, 23, 13, 0), # 19 (162, 176, 152, 157, 128, 51, 63, 48, 60, 30, 22, 22, 0, 169, 155, 131, 92, 122, 81, 65, 47, 73, 44, 24, 13, 0), # 20 (170, 183, 157, 171, 135, 54, 66, 53, 64, 32, 25, 22, 0, 183, 161, 137, 97, 131, 88, 72, 50, 76, 46, 24, 16, 0), # 21 (186, 194, 169, 186, 139, 60, 68, 56, 69, 32, 28, 23, 0, 194, 175, 142, 104, 137, 97, 78, 51, 78, 50, 24, 16, 0), # 22 (210, 202, 177, 196, 143, 65, 71, 60, 71, 35, 31, 24, 0, 210, 183, 148, 106, 139, 100, 82, 53, 82, 54, 27, 16, 0), # 23 (221, 212, 183, 203, 151, 69, 74, 65, 75, 37, 33, 24, 0, 225, 193, 153, 115, 146, 105, 87, 57, 86, 56, 27, 17, 0), # 24 (230, 220, 191, 208, 159, 72, 77, 70, 78, 38, 35, 25, 0, 232, 202, 165, 120, 148, 106, 90, 61, 89, 58, 28, 17, 0), # 25 (237, 232, 203, 219, 168, 73, 85, 75, 81, 41, 37, 25, 0, 239, 210, 172, 125, 156, 118, 92, 65, 91, 59, 30, 17, 0), # 26 (243, 239, 209, 234, 175, 77, 90, 80, 83, 42, 37, 25, 0, 249, 218, 182, 131, 165, 122, 95, 67, 96, 62, 31, 17, 0), # 27 (254, 250, 220, 241, 182, 81, 92, 89, 88, 43, 38, 25, 0, 259, 229, 186, 136, 180, 130, 97, 68, 97, 63, 32, 18, 0), # 28 (261, 260, 227, 252, 191, 86, 96, 93, 91, 46, 39, 25, 0, 268, 237, 195, 145, 185, 131, 100, 69, 100, 68, 33, 20, 0), # 29 (276, 267, 235, 261, 197, 89, 100, 102, 95, 51, 40, 26, 0, 272, 249, 201, 153, 190, 136, 103, 72, 103, 70, 35, 20, 0), # 30 (285, 279, 247, 268, 206, 94, 102, 106, 98, 54, 43, 26, 0, 282, 254, 209, 158, 196, 143, 110, 74, 107, 74, 36, 20, 0), # 31 (290, 290, 252, 279, 211, 96, 106, 108, 104, 54, 45, 27, 0, 295, 262, 219, 164, 204, 146, 117, 77, 111, 75, 38, 20, 0), # 32 (301, 301, 260, 287, 222, 100, 116, 114, 108, 55, 47, 27, 0, 303, 274, 223, 174, 213, 151, 121, 80, 115, 82, 40, 20, 0), # 33 (307, 311, 269, 297, 227, 102, 120, 117, 114, 58, 47, 29, 0, 313, 284, 229, 180, 224, 156, 127, 86, 121, 85, 40, 22, 0), # 34 (314, 318, 277, 303, 234, 104, 126, 119, 120, 60, 50, 29, 0, 322, 292, 236, 183, 229, 163, 134, 91, 125, 86, 43, 23, 0), # 35 (317, 325, 286, 313, 239, 111, 128, 124, 126, 64, 50, 30, 0, 332, 301, 242, 189, 238, 165, 136, 91, 129, 88, 45, 24, 0), # 36 (327, 332, 294, 333, 242, 115, 130, 131, 129, 65, 52, 31, 0, 342, 307, 247, 193, 247, 170, 138, 97, 134, 91, 47, 25, 0), # 37 (335, 342, 303, 339, 249, 119, 135, 134, 131, 66, 52, 31, 0, 353, 313, 251, 199, 253, 180, 141, 99, 137, 96, 47, 27, 0), # 38 (344, 348, 306, 348, 255, 123, 137, 140, 137, 68, 54, 31, 0, 363, 325, 263, 203, 257, 180, 143, 101, 145, 98, 51, 27, 0), # 39 (355, 356, 313, 356, 260, 124, 140, 145, 144, 69, 54, 31, 0, 372, 331, 274, 211, 268, 182, 147, 105, 146, 100, 51, 28, 0), # 40 (364, 361, 328, 368, 267, 126, 143, 146, 145, 69, 54, 31, 0, 381, 346, 279, 217, 276, 184, 150, 110, 148, 101, 51, 30, 0), # 41 (378, 370, 332, 376, 274, 129, 145, 151, 148, 69, 56, 31, 0, 390, 349, 280, 220, 286, 188, 154, 113, 151, 104, 55, 30, 0), # 42 (388, 373, 338, 390, 284, 132, 147, 156, 152, 70, 58, 32, 0, 404, 356, 289, 228, 293, 196, 157, 118, 156, 106, 57, 30, 0), # 43 (399, 386, 347, 395, 293, 135, 153, 163, 158, 70, 58, 32, 0, 416, 364, 293, 230, 302, 203, 162, 119, 157, 109, 57, 30, 0), # 44 (411, 398, 351, 406, 302, 136, 154, 169, 159, 70, 59, 32, 0, 419, 370, 296, 238, 312, 207, 165, 121, 161, 115, 57, 30, 0), # 45 (417, 410, 356, 412, 307, 142, 157, 173, 162, 72, 60, 33, 0, 427, 375, 300, 241, 320, 211, 168, 122, 164, 122, 58, 31, 0), # 46 (431, 417, 366, 420, 316, 144, 158, 176, 168, 73, 61, 34, 0, 435, 381, 305, 246, 327, 216, 172, 124, 172, 124, 58, 33, 0), # 47 (442, 422, 374, 430, 322, 145, 161, 180, 173, 76, 61, 34, 0, 443, 387, 314, 252, 341, 223, 183, 129, 173, 126, 60, 34, 0), # 48 (451, 425, 383, 439, 328, 147, 166, 187, 178, 78, 62, 34, 0, 450, 395, 319, 258, 351, 227, 188, 133, 178, 128, 63, 40, 0), # 49 (460, 434, 394, 446, 337, 151, 168, 193, 186, 80, 62, 34, 0, 460, 402, 328, 266, 356, 231, 194, 136, 183, 129, 63, 42, 0), # 50 (469, 442, 406, 458, 348, 156, 173, 199, 191, 84, 62, 34, 0, 476, 408, 332, 274, 366, 237, 196, 139, 187, 133, 66, 42, 0), # 51 (473, 448, 415, 467, 355, 158, 176, 203, 194, 88, 65, 35, 0, 485, 418, 338, 276, 370, 245, 198, 139, 189, 137, 67, 42, 0), # 52 (482, 459, 421, 472, 362, 161, 180, 203, 198, 88, 67, 36, 0, 494, 430, 346, 280, 381, 249, 203, 139, 189, 138, 69, 43, 0), # 53 (487, 472, 429, 480, 368, 164, 182, 205, 202, 93, 69, 38, 0, 500, 435, 351, 287, 388, 254, 208, 139, 193, 140, 71, 43, 0), # 54 (503, 479, 437, 490, 375, 169, 183, 211, 208, 97, 71, 40, 0, 507, 446, 355, 292, 395, 258, 210, 140, 198, 144, 73, 43, 0), # 55 (514, 490, 445, 496, 380, 175, 185, 213, 212, 98, 74, 41, 0, 517, 456, 359, 299, 404, 263, 214, 142, 202, 145, 74, 44, 0), # 56 (527, 504, 448, 508, 387, 181, 189, 216, 214, 98, 74, 42, 0, 523, 469, 361, 309, 412, 269, 219, 147, 204, 149, 77, 45, 0), # 57 (530, 510, 454, 516, 399, 186, 192, 219, 219, 99, 75, 43, 0, 533, 471, 370, 314, 423, 275, 220, 148, 207, 151, 78, 46, 0), # 58 (536, 520, 460, 526, 406, 189, 195, 221, 223, 100, 76, 44, 0, 550, 480, 381, 320, 431, 279, 223, 148, 207, 154, 79, 46, 0), # 59 (546, 529, 472, 539, 410, 192, 201, 226, 230, 100, 76, 45, 0, 564, 487, 387, 326, 439, 284, 231, 152, 210, 156, 80, 48, 0), # 60 (559, 539, 477, 545, 416, 194, 202, 230, 234, 104, 78, 47, 0, 572, 491, 398, 331, 450, 287, 233, 153, 214, 158, 84, 48, 0), # 61 (568, 551, 482, 553, 426, 199, 205, 234, 238, 108, 82, 47, 0, 581, 500, 407, 335, 457, 294, 238, 154, 216, 159, 86, 49, 0), # 62 (585, 560, 489, 564, 432, 201, 209, 236, 241, 110, 83, 48, 0, 588, 509, 418, 340, 467, 299, 240, 155, 221, 164, 87, 51, 0), # 63 (593, 567, 496, 573, 441, 208, 215, 244, 244, 113, 86, 49, 0, 596, 515, 422, 344, 480, 308, 243, 156, 224, 169, 88, 51, 0), # 64 (609, 575, 506, 578, 450, 214, 222, 248, 246, 116, 89, 49, 0, 606, 521, 429, 348, 488, 312, 249, 157, 226, 172, 89, 52, 0), # 65 (617, 591, 519, 586, 455, 216, 225, 252, 251, 117, 90, 49, 0, 615, 537, 432, 353, 496, 316, 251, 159, 229, 178, 89, 52, 0), # 66 (624, 600, 528, 592, 462, 219, 227, 255, 255, 118, 92, 51, 0, 628, 546, 439, 359, 503, 316, 254, 161, 232, 182, 91, 53, 0), # 67 (635, 606, 537, 597, 467, 221, 228, 259, 257, 119, 92, 52, 0, 640, 553, 447, 365, 510, 322, 254, 162, 232, 183, 92, 54, 0), # 68 (641, 613, 545, 604, 472, 224, 230, 260, 261, 120, 92, 52, 0, 653, 566, 453, 370, 516, 324, 258, 165, 232, 185, 93, 55, 0), # 69 (650, 622, 553, 607, 481, 229, 230, 260, 263, 122, 93, 53, 0, 663, 573, 458, 374, 521, 327, 262, 167, 235, 186, 94, 55, 0), # 70 (655, 633, 563, 615, 488, 230, 233, 263, 268, 123, 95, 54, 0, 672, 581, 464, 377, 528, 330, 265, 172, 238, 190, 97, 55, 0), # 71 (663, 640, 568, 624, 494, 235, 240, 270, 272, 124, 95, 54, 0, 681, 586, 472, 378, 534, 335, 267, 176, 241, 192, 98, 56, 0), # 72 (674, 643, 576, 630, 507, 242, 247, 273, 274, 125, 97, 55, 0, 698, 598, 481, 379, 545, 342, 271, 178, 244, 193, 100, 56, 0), # 73 (682, 652, 583, 636, 517, 251, 251, 275, 278, 128, 97, 55, 0, 709, 604, 485, 382, 550, 345, 276, 179, 247, 193, 102, 57, 0), # 74 (698, 664, 586, 652, 528, 254, 252, 275, 284, 128, 97, 56, 0, 720, 612, 493, 389, 556, 350, 280, 182, 252, 199, 105, 58, 0), # 75 (712, 668, 595, 656, 533, 256, 259, 279, 288, 129, 98, 56, 0, 728, 621, 495, 392, 566, 356, 285, 182, 256, 201, 107, 59, 0), # 76 (718, 672, 599, 670, 541, 261, 264, 281, 292, 132, 100, 56, 0, 740, 629, 503, 400, 580, 358, 290, 186, 262, 204, 107, 60, 0), # 77 (721, 681, 608, 676, 549, 262, 267, 287, 300, 135, 101, 56, 0, 747, 634, 510, 404, 588, 360, 291, 186, 265, 207, 110, 62, 0), # 78 (726, 687, 619, 689, 553, 266, 268, 291, 305, 139, 104, 56, 0, 759, 640, 515, 412, 597, 370, 296, 191, 271, 209, 112, 65, 0), # 79 (741, 697, 625, 698, 565, 272, 270, 297, 307, 140, 105, 59, 0, 772, 649, 520, 418, 605, 374, 299, 196, 275, 211, 113, 66, 0), # 80 (754, 702, 631, 708, 576, 277, 274, 305, 310, 141, 105, 59, 0, 781, 655, 525, 421, 608, 379, 303, 197, 281, 212, 114, 66, 0), # 81 (768, 708, 637, 714, 585, 281, 279, 309, 313, 142, 105, 60, 0, 792, 664, 530, 427, 615, 383, 307, 199, 283, 214, 115, 66, 0), # 82 (776, 718, 647, 722, 591, 282, 284, 313, 319, 144, 107, 60, 0, 804, 676, 540, 431, 624, 388, 314, 201, 285, 220, 117, 66, 0), # 83 (788, 722, 654, 729, 599, 286, 288, 317, 320, 146, 107, 61, 0, 811, 688, 547, 431, 629, 393, 315, 202, 292, 224, 117, 66, 0), # 84 (798, 732, 656, 737, 605, 287, 290, 320, 322, 147, 111, 63, 0, 824, 696, 554, 435, 640, 401, 319, 205, 295, 225, 117, 66, 0), # 85 (812, 742, 660, 742, 612, 287, 294, 324, 330, 149, 111, 65, 0, 828, 708, 559, 439, 644, 402, 320, 209, 297, 228, 121, 66, 0), # 86 (820, 754, 666, 756, 619, 290, 299, 324, 334, 150, 113, 66, 0, 835, 718, 572, 444, 651, 410, 324, 212, 300, 231, 121, 66, 0), # 87 (833, 766, 676, 766, 625, 295, 302, 324, 339, 154, 113, 68, 0, 845, 724, 581, 446, 657, 414, 327, 216, 306, 233, 124, 67, 0), # 88 (836, 773, 686, 777, 632, 300, 307, 325, 341, 155, 113, 68, 0, 857, 733, 589, 448, 666, 421, 329, 220, 309, 235, 125, 68, 0), # 89 (851, 782, 694, 783, 638, 304, 311, 329, 347, 156, 115, 71, 0, 867, 736, 593, 453, 675, 428, 334, 222, 312, 237, 129, 69, 0), # 90 (860, 793, 702, 798, 647, 306, 314, 332, 351, 163, 116, 73, 0, 876, 752, 600, 462, 682, 431, 337, 228, 315, 239, 131, 69, 0), # 91 (873, 797, 707, 805, 650, 309, 317, 335, 357, 164, 121, 73, 0, 887, 755, 609, 463, 683, 433, 340, 228, 320, 240, 132, 70, 0), # 92 (882, 803, 711, 816, 656, 312, 319, 337, 360, 166, 122, 74, 0, 890, 759, 617, 467, 692, 435, 341, 231, 323, 245, 132, 70, 0), # 93 (897, 809, 719, 826, 663, 316, 321, 340, 365, 167, 122, 75, 0, 895, 764, 621, 472, 703, 440, 344, 233, 325, 246, 133, 70, 0), # 94 (906, 814, 726, 838, 670, 317, 327, 342, 369, 168, 125, 76, 0, 907, 770, 632, 474, 706, 443, 347, 236, 329, 247, 134, 70, 0), # 95 (913, 820, 732, 845, 676, 320, 331, 345, 373, 168, 126, 76, 0, 913, 779, 640, 477, 714, 448, 349, 239, 335, 248, 136, 72, 0), # 96 (922, 827, 742, 853, 689, 324, 334, 348, 378, 168, 130, 77, 0, 921, 789, 646, 482, 719, 456, 353, 242, 341, 252, 136, 73, 0), # 97 (932, 834, 753, 860, 692, 327, 338, 352, 382, 173, 132, 77, 0, 932, 797, 657, 484, 727, 459, 359, 244, 344, 256, 137, 73, 0), # 98 (947, 837, 759, 872, 699, 331, 341, 354, 387, 175, 134, 77, 0, 939, 806, 662, 488, 738, 460, 360, 245, 351, 259, 140, 73, 0), # 99 (955, 843, 766, 879, 708, 336, 345, 357, 389, 178, 135, 77, 0, 951, 813, 668, 494, 744, 463, 361, 247, 353, 260, 140, 73, 0), # 100 (962, 858, 773, 888, 718, 337, 353, 358, 393, 178, 137, 77, 0, 959, 819, 674, 499, 750, 463, 361, 247, 357, 265, 143, 74, 0), # 101 (975, 866, 782, 896, 721, 339, 357, 362, 398, 180, 141, 78, 0, 970, 824, 679, 505, 754, 469, 363, 247, 361, 266, 144, 75, 0), # 102 (986, 871, 791, 903, 725, 348, 363, 364, 399, 183, 142, 78, 0, 980, 829, 686, 508, 761, 475, 366, 248, 364, 270, 146, 75, 0), # 103 (996, 879, 799, 907, 734, 350, 369, 371, 406, 189, 142, 80, 0, 990, 837, 693, 517, 763, 478, 368, 252, 371, 271, 146, 75, 0), # 104 (1009, 882, 804, 913, 745, 353, 373, 372, 410, 189, 144, 80, 0, 1001, 845, 697, 518, 771, 485, 375, 256, 376, 273, 147, 75, 0), # 105 (1018, 889, 813, 924, 750, 354, 378, 376, 413, 189, 144, 81, 0, 1011, 855, 703, 523, 782, 486, 379, 259, 381, 273, 147, 77, 0), # 106 (1027, 894, 823, 930, 760, 360, 381, 381, 417, 191, 144, 81, 0, 1017, 865, 710, 530, 788, 489, 386, 261, 387, 277, 147, 78, 0), # 107 (1036, 901, 832, 938, 764, 364, 385, 384, 419, 193, 145, 82, 0, 1029, 875, 715, 538, 794, 494, 388, 262, 390, 280, 150, 81, 0), # 108 (1043, 911, 839, 943, 777, 366, 392, 385, 423, 195, 147, 83, 0, 1035, 884, 722, 540, 802, 496, 393, 264, 394, 285, 152, 82, 0), # 109 (1060, 916, 847, 951, 783, 368, 393, 387, 426, 196, 149, 85, 0, 1042, 895, 724, 543, 809, 500, 398, 267, 399, 285, 155, 83, 0), # 110 (1069, 924, 858, 961, 789, 375, 394, 389, 430, 198, 149, 86, 0, 1052, 902, 732, 547, 813, 503, 399, 270, 402, 290, 157, 84, 0), # 111 (1079, 927, 867, 969, 796, 378, 394, 391, 434, 200, 149, 89, 0, 1060, 910, 739, 552, 820, 509, 402, 270, 405, 293, 159, 84, 0), # 112 (1085, 936, 873, 976, 805, 381, 397, 393, 443, 200, 155, 89, 0, 1069, 920, 745, 559, 829, 510, 409, 272, 407, 295, 160, 84, 0), # 113 (1094, 940, 878, 983, 811, 382, 397, 397, 445, 201, 155, 89, 0, 1074, 926, 748, 566, 838, 513, 415, 272, 414, 297, 164, 86, 0), # 114 (1104, 948, 884, 987, 813, 385, 402, 399, 448, 203, 157, 90, 0, 1086, 936, 753, 568, 844, 514, 420, 275, 414, 299, 165, 87, 0), # 115 (1118, 952, 892, 990, 824, 392, 405, 402, 458, 204, 157, 90, 0, 1093, 944, 761, 572, 851, 515, 422, 275, 416, 302, 166, 87, 0), # 116 (1131, 957, 900, 992, 829, 399, 406, 406, 464, 205, 158, 92, 0, 1105, 958, 764, 574, 861, 520, 423, 277, 423, 308, 169, 88, 0), # 117 (1138, 963, 904, 1006, 833, 400, 412, 409, 466, 206, 158, 94, 0, 1116, 964, 770, 579, 870, 524, 426, 280, 427, 309, 169, 88, 0), # 118 (1149, 968, 914, 1014, 842, 402, 414, 411, 468, 206, 160, 94, 0, 1123, 970, 773, 584, 876, 528, 428, 282, 428, 312, 169, 88, 0), # 119 (1158, 973, 925, 1022, 849, 403, 420, 419, 468, 206, 161, 94, 0, 1135, 977, 779, 587, 881, 532, 430, 283, 434, 320, 172, 89, 0), # 120 (1163, 983, 933, 1029, 857, 409, 425, 422, 472, 206, 161, 94, 0, 1153, 984, 784, 590, 885, 536, 435, 287, 435, 323, 173, 89, 0), # 121 (1169, 987, 942, 1034, 869, 414, 427, 424, 478, 207, 161, 94, 0, 1170, 992, 791, 594, 893, 538, 438, 287, 437, 327, 174, 90, 0), # 122 (1172, 998, 949, 1041, 876, 421, 432, 425, 482, 209, 162, 95, 0, 1183, 996, 802, 598, 903, 540, 441, 288, 440, 333, 176, 91, 0), # 123 (1189, 1004, 957, 1054, 882, 426, 435, 428, 483, 209, 163, 95, 0, 1188, 1008, 809, 601, 915, 543, 445, 294, 445, 338, 177, 93, 0), # 124 (1198, 1010, 964, 1065, 885, 429, 437, 430, 487, 210, 164, 98, 0, 1193, 1016, 818, 603, 926, 547, 450, 296, 448, 339, 178, 93, 0), # 125 (1208, 1014, 970, 1073, 888, 432, 443, 433, 487, 213, 164, 99, 0, 1203, 1027, 820, 608, 937, 552, 455, 298, 452, 342, 179, 93, 0), # 126 (1217, 1023, 983, 1080, 891, 433, 444, 436, 490, 214, 165, 102, 0, 1213, 1032, 829, 613, 949, 554, 455, 299, 455, 342, 180, 93, 0), # 127 (1231, 1030, 992, 1093, 898, 436, 446, 441, 497, 215, 167, 104, 0, 1224, 1036, 835, 617, 953, 560, 461, 301, 456, 343, 180, 93, 0), # 128 (1240, 1035, 1003, 1102, 904, 439, 449, 442, 501, 215, 167, 104, 0, 1233, 1039, 842, 620, 955, 562, 464, 302, 459, 347, 183, 93, 0), # 129 (1248, 1037, 1009, 1110, 910, 440, 454, 443, 505, 215, 168, 105, 0, 1240, 1046, 845, 626, 965, 565, 468, 307, 461, 348, 184, 94, 0), # 130 (1258, 1045, 1019, 1120, 916, 446, 459, 447, 505, 218, 171, 105, 0, 1248, 1057, 848, 632, 969, 573, 472, 309, 464, 348, 184, 94, 0), # 131 (1266, 1052, 1024, 1133, 923, 450, 461, 454, 506, 218, 172, 105, 0, 1263, 1065, 858, 636, 980, 579, 472, 310, 466, 350, 185, 95, 0), # 132 (1282, 1059, 1028, 1146, 927, 452, 461, 455, 508, 219, 173, 105, 0, 1273, 1069, 862, 642, 986, 584, 476, 312, 470, 352, 187, 96, 0), # 133 (1291, 1064, 1032, 1153, 941, 459, 465, 460, 510, 222, 175, 107, 0, 1279, 1079, 869, 646, 993, 586, 479, 318, 474, 353, 187, 97, 0), # 134 (1302, 1074, 1041, 1159, 953, 463, 468, 463, 513, 222, 176, 108, 0, 1290, 1085, 871, 650, 1002, 593, 482, 318, 478, 356, 188, 97, 0), # 135 (1308, 1078, 1050, 1168, 960, 467, 472, 466, 516, 222, 178, 109, 0, 1304, 1095, 876, 653, 1012, 596, 486, 320, 482, 357, 191, 98, 0), # 136 (1320, 1089, 1054, 1176, 962, 470, 477, 468, 523, 222, 179, 109, 0, 1314, 1102, 883, 656, 1019, 601, 492, 322, 487, 359, 192, 99, 0), # 137 (1327, 1095, 1059, 1185, 967, 472, 479, 471, 528, 224, 180, 109, 0, 1321, 1109, 889, 660, 1023, 603, 495, 324, 489, 364, 193, 100, 0), # 138 (1334, 1099, 1070, 1195, 976, 475, 480, 475, 529, 226, 180, 110, 0, 1328, 1114, 898, 664, 1028, 607, 502, 330, 491, 368, 195, 102, 0), # 139 (1345, 1103, 1077, 1206, 986, 477, 483, 477, 533, 228, 182, 110, 0, 1335, 1125, 902, 666, 1032, 610, 503, 331, 493, 370, 197, 102, 0), # 140 (1351, 1104, 1082, 1217, 993, 478, 485, 478, 535, 232, 182, 110, 0, 1338, 1130, 906, 669, 1038, 615, 505, 333, 494, 372, 198, 102, 0), # 141 (1355, 1107, 1086, 1220, 1001, 480, 487, 482, 538, 232, 183, 111, 0, 1348, 1141, 910, 678, 1045, 616, 506, 336, 496, 374, 200, 104, 0), # 142 (1362, 1114, 1093, 1228, 1008, 484, 493, 482, 541, 232, 184, 112, 0, 1361, 1153, 912, 683, 1052, 618, 508, 336, 502, 376, 200, 104, 0), # 143 (1370, 1117, 1101, 1235, 1017, 490, 495, 482, 544, 233, 186, 112, 0, 1371, 1163, 918, 687, 1056, 622, 510, 340, 502, 379, 201, 105, 0), # 144 (1385, 1123, 1104, 1243, 1024, 494, 497, 486, 550, 236, 188, 112, 0, 1379, 1168, 925, 688, 1067, 624, 513, 341, 505, 382, 203, 105, 0), # 145 (1392, 1127, 1114, 1247, 1034, 495, 498, 486, 556, 237, 189, 113, 0, 1390, 1175, 928, 692, 1073, 627, 515, 344, 510, 384, 205, 105, 0), # 146 (1405, 1135, 1125, 1250, 1042, 502, 500, 487, 558, 237, 191, 113, 0, 1402, 1183, 932, 696, 1079, 628, 518, 345, 513, 385, 208, 106, 0), # 147 (1412, 1140, 1135, 1253, 1049, 504, 503, 493, 560, 238, 192, 114, 0, 1411, 1191, 937, 700, 1086, 631, 519, 345, 518, 387, 210, 106, 0), # 148 (1422, 1144, 1142, 1261, 1053, 507, 506, 496, 562, 239, 192, 114, 0, 1419, 1198, 946, 700, 1093, 634, 519, 346, 519, 391, 211, 106, 0), # 149 (1433, 1148, 1144, 1267, 1059, 512, 510, 497, 565, 240, 192, 114, 0, 1430, 1201, 951, 705, 1100, 638, 521, 348, 523, 392, 214, 106, 0), # 150 (1444, 1160, 1151, 1276, 1064, 516, 511, 503, 569, 240, 193, 115, 0, 1436, 1208, 957, 709, 1108, 642, 524, 352, 526, 396, 215, 106, 0), # 151 (1454, 1164, 1158, 1282, 1074, 520, 513, 505, 575, 241, 193, 115, 0, 1439, 1216, 966, 712, 1111, 644, 528, 356, 529, 399, 218, 107, 0), # 152 (1465, 1171, 1166, 1287, 1082, 524, 517, 507, 579, 242, 193, 115, 0, 1443, 1221, 971, 717, 1119, 648, 530, 358, 533, 402, 219, 108, 0), # 153 (1477, 1176, 1173, 1294, 1087, 529, 517, 509, 581, 244, 193, 115, 0, 1450, 1229, 975, 721, 1125, 650, 531, 363, 538, 404, 220, 111, 0), # 154 (1485, 1179, 1178, 1303, 1091, 531, 518, 514, 584, 244, 194, 115, 0, 1462, 1236, 978, 726, 1134, 654, 533, 364, 540, 408, 221, 112, 0), # 155 (1493, 1185, 1186, 1311, 1096, 536, 525, 515, 589, 244, 195, 115, 0, 1473, 1246, 980, 728, 1141, 660, 536, 366, 546, 410, 223, 112, 0), # 156 (1499, 1192, 1191, 1317, 1102, 538, 527, 516, 592, 245, 195, 115, 0, 1480, 1253, 982, 732, 1149, 662, 539, 369, 550, 413, 226, 112, 0), # 157 (1507, 1197, 1198, 1320, 1109, 543, 530, 521, 595, 245, 195, 115, 0, 1487, 1255, 988, 740, 1153, 664, 545, 370, 552, 415, 227, 112, 0), # 158 (1520, 1201, 1207, 1324, 1116, 545, 534, 521, 597, 245, 197, 116, 0, 1490, 1264, 993, 743, 1160, 668, 549, 371, 554, 419, 229, 113, 0), # 159 (1528, 1205, 1209, 1330, 1121, 551, 535, 526, 599, 246, 199, 116, 0, 1496, 1271, 997, 746, 1168, 670, 553, 372, 557, 422, 231, 113, 0), # 160 (1536, 1207, 1216, 1343, 1124, 557, 540, 529, 601, 247, 199, 116, 0, 1504, 1274, 1002, 749, 1175, 673, 555, 373, 558, 425, 231, 113, 0), # 161 (1542, 1211, 1226, 1352, 1131, 562, 542, 530, 603, 247, 199, 116, 0, 1511, 1283, 1006, 752, 1181, 675, 557, 375, 560, 428, 231, 113, 0), # 162 (1544, 1219, 1228, 1355, 1143, 565, 547, 535, 603, 248, 200, 116, 0, 1525, 1286, 1010, 754, 1190, 679, 563, 377, 561, 429, 233, 113, 0), # 163 (1552, 1222, 1236, 1363, 1149, 565, 549, 536, 605, 248, 202, 117, 0, 1531, 1292, 1018, 755, 1192, 682, 566, 380, 564, 429, 234, 113, 0), # 164 (1558, 1231, 1241, 1367, 1153, 568, 549, 537, 608, 249, 203, 118, 0, 1537, 1295, 1022, 758, 1199, 684, 567, 383, 568, 429, 235, 114, 0), # 165 (1564, 1233, 1246, 1374, 1161, 570, 549, 537, 611, 250, 206, 120, 0, 1547, 1303, 1029, 760, 1201, 692, 569, 384, 571, 432, 235, 114, 0), # 166 (1567, 1236, 1251, 1379, 1170, 573, 553, 541, 615, 252, 206, 121, 0, 1553, 1308, 1033, 764, 1206, 692, 570, 384, 575, 432, 236, 114, 0), # 167 (1574, 1242, 1259, 1387, 1178, 576, 555, 545, 617, 253, 207, 122, 0, 1556, 1310, 1035, 768, 1212, 695, 577, 387, 579, 433, 237, 114, 0), # 168 (1586, 1245, 1266, 1394, 1181, 578, 555, 549, 619, 255, 209, 122, 0, 1561, 1315, 1037, 773, 1218, 695, 580, 389, 582, 434, 238, 114, 0), # 169 (1595, 1247, 1270, 1402, 1185, 580, 557, 550, 622, 256, 209, 122, 0, 1567, 1319, 1046, 781, 1222, 695, 581, 391, 584, 434, 239, 115, 0), # 170 (1604, 1254, 1274, 1407, 1192, 584, 557, 551, 628, 258, 209, 122, 0, 1571, 1322, 1053, 783, 1227, 697, 583, 392, 589, 435, 239, 115, 0), # 171 (1607, 1255, 1281, 1416, 1196, 585, 557, 552, 632, 259, 210, 123, 0, 1579, 1327, 1055, 783, 1231, 698, 588, 394, 592, 438, 240, 115, 0), # 172 (1612, 1256, 1288, 1423, 1198, 589, 558, 554, 635, 259, 210, 125, 0, 1590, 1332, 1064, 785, 1237, 701, 588, 395, 597, 442, 242, 115, 0), # 173 (1613, 1260, 1291, 1426, 1201, 591, 559, 556, 635, 260, 210, 125, 0, 1597, 1336, 1067, 788, 1238, 702, 588, 395, 600, 443, 242, 115, 0), # 174 (1619, 1262, 1295, 1432, 1205, 592, 559, 558, 637, 260, 211, 125, 0, 1601, 1342, 1072, 788, 1242, 704, 590, 395, 601, 443, 242, 115, 0), # 175 (1627, 1267, 1296, 1438, 1210, 592, 560, 559, 637, 260, 212, 126, 0, 1607, 1347, 1076, 789, 1247, 705, 591, 397, 603, 445, 243, 115, 0), # 176 (1628, 1269, 1298, 1446, 1211, 593, 562, 560, 638, 261, 212, 126, 0, 1613, 1351, 1077, 791, 1248, 706, 592, 400, 603, 445, 243, 115, 0), # 177 (1634, 1276, 1303, 1449, 1212, 594, 562, 562, 640, 262, 212, 126, 0, 1619, 1355, 1082, 794, 1254, 710, 593, 400, 604, 447, 243, 115, 0), # 178 (1634, 1276, 1303, 1449, 1212, 594, 562, 562, 640, 262, 212, 126, 0, 1619, 1355, 1082, 794, 1254, 710, 593, 400, 604, 447, 243, 115, 0), # 179 ) passenger_arriving_rate = ( (5.020865578371768, 5.064847846385402, 4.342736024677089, 4.661000830397574, 3.7031237384064077, 1.8308820436884476, 2.0730178076869574, 1.938823405408093, 2.030033020722669, 0.9895037538805926, 0.7008775273142672, 0.4081595898588478, 0.0, 5.083880212578363, 4.489755488447325, 3.5043876365713356, 2.968511261641777, 4.060066041445338, 2.7143527675713304, 2.0730178076869574, 1.3077728883488913, 1.8515618692032039, 1.5536669434658585, 0.8685472049354179, 0.4604407133077639, 0.0), # 0 (5.354327152019974, 5.399222302966028, 4.629455492775127, 4.968858189957462, 3.948326891649491, 1.9518237573581576, 2.209734470631847, 2.066464051210712, 2.164081775444303, 1.0547451730692876, 0.7471826893260219, 0.4351013884011963, 0.0, 5.419791647439855, 4.786115272413158, 3.73591344663011, 3.164235519207862, 4.328163550888606, 2.8930496716949965, 2.209734470631847, 1.3941598266843982, 1.9741634458247455, 1.6562860633191545, 0.9258910985550255, 0.49083839117872996, 0.0), # 1 (5.686723008979731, 5.732269739983398, 4.915035237956178, 5.275490778498595, 4.192641982499829, 2.072282983465593, 2.345909253980352, 2.193593853293508, 2.297595602292516, 1.1197284437551367, 0.7933038581293855, 0.46193605433775464, 0.0, 5.75436482820969, 5.0812965977153, 3.9665192906469278, 3.3591853312654094, 4.595191204585032, 3.0710313946109116, 2.345909253980352, 1.480202131046852, 2.0963209912499146, 1.758496926166199, 0.9830070475912357, 0.5211154309075817, 0.0), # 2 (6.016757793146562, 6.062668793441743, 5.198342391099879, 5.579682305649055, 4.435107784001268, 2.191782029841316, 2.4810018208239777, 2.3197088156227115, 2.430045053640364, 1.1841956746065454, 0.8390580686378972, 0.4885571404108718, 0.0, 6.086272806254225, 5.374128544519589, 4.195290343189486, 3.5525870238196355, 4.860090107280728, 3.247592341871796, 2.4810018208239777, 1.5655585927437972, 2.217553892000634, 1.8598941018830188, 1.0396684782199759, 0.551151708494704, 0.0), # 3 (6.343136148415981, 6.389098099345293, 5.478244083085864, 5.880216481036927, 4.674763069197661, 2.3098432043158894, 2.6144718342542292, 2.444304942164548, 2.560900681860902, 1.24788897429192, 0.8842623557650959, 0.514858199362897, 0.0, 6.414188632939817, 5.6634401929918665, 4.42131177882548, 3.743666922875759, 5.121801363721804, 3.422026919030367, 2.6144718342542292, 1.6498880030827783, 2.3373815345988307, 1.9600721603456428, 1.095648816617173, 0.5808270999404813, 0.0), # 4 (6.66456271868351, 6.710236293698289, 5.753607444793765, 6.175877014290295, 4.910646611132853, 2.4259888147198754, 2.745778957362612, 2.566878236885247, 2.689633039327186, 1.310550451479666, 0.9287337544245222, 0.5407327839361791, 0.0, 6.736785359632827, 5.948060623297969, 4.64366877212261, 3.9316513544389973, 5.379266078654372, 3.593629531639346, 2.745778957362612, 1.7328491533713395, 2.4553233055664263, 2.058625671430099, 1.1507214889587531, 0.6100214812452991, 0.0), # 5 (6.979742147844666, 7.024762012504959, 6.023299607103222, 6.465447615037239, 5.141797182850695, 2.5397411688838374, 2.8743828532406313, 2.686924703751037, 2.8157126784122717, 1.3719222148381898, 0.9722892995297139, 0.5660744468730674, 0.0, 7.052736037699606, 6.22681891560374, 4.8614464976485685, 4.115766644514569, 5.631425356824543, 3.761694585251452, 2.8743828532406313, 1.8141008349170267, 2.5708985914253475, 2.1551492050124135, 1.2046599214206444, 0.6386147284095418, 0.0), # 6 (7.2873790797949685, 7.331353891769537, 6.286187700893863, 6.747711992905847, 5.367253557395036, 2.650622574638337, 2.9997431849797924, 2.8039403467281465, 2.9386101514892147, 1.4317463730358968, 1.0147460259942116, 0.5907767409159108, 0.0, 7.360713718506519, 6.498544150075018, 5.073730129971057, 4.2952391191076895, 5.877220302978429, 3.9255164854194056, 2.9997431849797924, 1.8933018390273837, 2.683626778697518, 2.249237330968616, 1.2572375401787725, 0.6664867174335943, 0.0), # 7 (7.586178158429934, 7.628690567496257, 6.54113885704533, 7.021453857524196, 5.586054507809724, 2.7581553398139356, 3.1213196156715988, 2.917421169782802, 3.0577960109310682, 1.4897650347411937, 1.0559209687315536, 0.6147332188070586, 0.0, 7.659391453419917, 6.762065406877643, 5.279604843657768, 4.469295104223581, 6.1155920218621365, 4.084389637695923, 3.1213196156715988, 1.970110957009954, 2.793027253904862, 2.3404846191747324, 1.3082277714090662, 0.6935173243178416, 0.0), # 8 (7.874844027645085, 7.915450675689353, 6.787020206437253, 7.285456918520376, 5.797238807138606, 2.861861772241199, 3.23857180840756, 3.0268631768812346, 3.1727408091108913, 1.5457203086224858, 1.0956311626552797, 0.6378374332888596, 0.0, 7.947442293806162, 7.016211766177453, 5.478155813276398, 4.637160925867456, 6.345481618221783, 4.237608447633728, 3.23857180840756, 2.044186980172285, 2.898619403569303, 2.4284856395067926, 1.3574040412874508, 0.7195864250626686, 0.0), # 9 (8.152081331335932, 8.190312852353056, 7.022698879949271, 7.538504885522466, 5.999845228425533, 2.961264179750688, 3.3509594262791773, 3.1317623719896712, 3.282915098401738, 1.599354303348179, 1.133693642678929, 0.6599829371036627, 0.0, 8.22353929103161, 7.259812308140289, 5.668468213394645, 4.798062910044536, 6.565830196803476, 4.384467320785539, 3.3509594262791773, 2.11518869982192, 2.9999226142127666, 2.5128349618408223, 1.4045397759898541, 0.7445738956684597, 0.0), # 10 (8.416594713398005, 8.451955733491605, 7.247042008461013, 7.779381468158547, 6.192912544714355, 3.055884870172965, 3.457942132377958, 3.2316147590743394, 3.3877894311766643, 1.6504091275866801, 1.1699254437160416, 0.6810632829938176, 0.0, 8.486355496462611, 7.491696112931993, 5.849627218580208, 4.951227382760039, 6.775578862353329, 4.524260662704076, 3.457942132377958, 2.1827749072664036, 3.0964562723571776, 2.5931271560528497, 1.4494084016922026, 0.7683596121356006, 0.0), # 11 (8.667088817726812, 8.699057955109222, 7.458916722852117, 8.006870376056709, 6.375479529048918, 3.1452461513385908, 3.5589795897954057, 3.325916342101467, 3.486834359808726, 1.6986268900063934, 1.2041436006801558, 0.7009720237016724, 0.0, 8.734563961465534, 7.710692260718395, 6.020718003400779, 5.095880670019179, 6.973668719617452, 4.656282878942054, 3.5589795897954057, 2.246604393813279, 3.187739764524459, 2.6689567920189035, 1.4917833445704234, 0.7908234504644749, 0.0), # 12 (8.902268288217876, 8.93029815321015, 7.657190154002218, 8.219755318845033, 6.546584954473067, 3.2288703310781304, 3.653531461623028, 3.414163125037284, 3.579520436670977, 1.7437496992757264, 1.2361651484848115, 0.7196027119695768, 0.0, 8.966837737406735, 7.915629831665344, 6.180825742424058, 5.2312490978271775, 7.159040873341954, 4.7798283750521975, 3.653531461623028, 2.306335950770093, 3.2732924772365335, 2.7399184396150114, 1.5314380308004438, 0.8118452866554684, 0.0), # 13 (9.120837768766716, 9.144354963798623, 7.840729432790956, 8.416820006151594, 6.705267594030659, 3.306279717222145, 3.7410574109523305, 3.4958511118480193, 3.6653182141364735, 1.785519664063084, 1.2658071220435476, 0.7368489005398801, 0.0, 9.181849875652563, 8.10533790593868, 6.329035610217737, 5.3565589921892505, 7.330636428272947, 4.894191556587227, 3.7410574109523305, 2.3616283694443894, 3.3526337970153297, 2.8056066687171985, 1.5681458865581912, 0.8313049967089657, 0.0), # 14 (9.321501903268855, 9.339907022878865, 8.008401690097953, 8.59684814760449, 6.850566220765538, 3.376996617601199, 3.821017100874813, 3.5704763064998986, 3.743698244578273, 1.823678893036873, 1.2928865562699035, 0.752604142154931, 0.0, 9.37827342756938, 8.27864556370424, 6.464432781349516, 5.471036679110618, 7.487396489156546, 4.998666829099858, 3.821017100874813, 2.4121404411437135, 3.425283110382769, 2.865616049201497, 1.6016803380195905, 0.8490824566253515, 0.0), # 15 (9.5029653356198, 9.51563296645512, 8.159074056802854, 8.758623452831788, 6.981519607721555, 3.4405433400458514, 3.892870194481988, 3.6375347129591504, 3.8141310803694286, 1.8579694948654994, 1.3172204860774188, 0.7667619895570784, 0.0, 9.554781444523545, 8.434381885127861, 6.586102430387094, 5.5739084845964975, 7.628262160738857, 5.092548598142811, 3.892870194481988, 2.4575309571756083, 3.4907598038607777, 2.9195411509439295, 1.6318148113605708, 0.8650575424050111, 0.0), # 16 (9.663932709715075, 9.670211430531618, 8.291613663785293, 8.900929631461583, 7.097166527942559, 3.4964421923866666, 3.9560763548653552, 3.6965223351920073, 3.8760872738829946, 1.8881335782173672, 1.3386259463796333, 0.7792159954886714, 0.0, 9.710046977881415, 8.571375950375383, 6.693129731898166, 5.6644007346521, 7.752174547765989, 5.17513126926881, 3.9560763548653552, 2.4974587088476192, 3.5485832639712793, 2.9669765438205284, 1.6583227327570589, 0.8791101300483289, 0.0), # 17 (9.803108669450204, 9.802321051112584, 8.404887641924901, 9.022550393121959, 7.1965457544723925, 3.5442154824542103, 4.010095245116426, 3.746935177164692, 3.929037377492032, 1.9139132517608846, 1.3569199720900849, 0.7898597126920597, 0.0, 9.842743079009345, 8.688456839612655, 6.784599860450424, 5.741739755282652, 7.858074754984064, 5.245709248030569, 4.010095245116426, 2.531582487467293, 3.5982728772361963, 3.0075167977073205, 1.6809775283849802, 0.8911200955556896, 0.0), # 18 (9.919197858720699, 9.910640464202265, 8.497763122101317, 9.122269447440985, 7.2786960603549105, 3.5833855180790386, 4.054386528326697, 3.7882692428434357, 3.9724519435695926, 1.9350506241644574, 1.3719195981223131, 0.7985866939095915, 0.0, 9.951542799273696, 8.784453633005505, 6.859597990611565, 5.80515187249337, 7.944903887139185, 5.30357693998081, 4.054386528326697, 2.55956108434217, 3.6393480301774552, 3.0407564824803295, 1.6995526244202632, 0.9009673149274788, 0.0), # 19 (10.010904921422082, 9.993848305804882, 8.569107235194169, 9.198870504046766, 7.342656218633962, 3.613474607091719, 4.088409867587681, 3.8200205361944657, 4.005801524488732, 1.95128780409649, 1.3834418593898585, 0.805290491883616, 0.0, 10.035119190040824, 8.858195410719775, 6.9172092969492915, 5.853863412289469, 8.011603048977465, 5.348028750672252, 4.088409867587681, 2.5810532907797996, 3.671328109316981, 3.0662901680155894, 1.713821447038834, 0.9085316641640803, 0.0), # 20 (10.076934501449866, 10.050623211924679, 8.6177871120831, 9.251137272567364, 7.387465002353392, 3.6340050573228124, 4.1116249259908795, 3.84168506118401, 4.028556672622507, 1.9623669002253892, 1.39130379080626, 0.8098646593564828, 0.0, 10.092145302677078, 8.90851125292131, 6.9565189540313, 5.887100700676166, 8.057113345245014, 5.378359085657614, 4.1116249259908795, 2.5957178980877234, 3.693732501176696, 3.0837124241891223, 1.72355742241662, 0.91369301926588, 0.0), # 21 (10.115991242699579, 10.079643818565883, 8.642669883647738, 9.277853462630876, 7.41216118455705, 3.644499176602881, 4.1234913666278, 3.852758821778298, 4.040187940343971, 1.968030021219561, 1.3953224272850568, 0.8122027490705409, 0.0, 10.121294188548827, 8.934230239775948, 6.976612136425284, 5.904090063658682, 8.080375880687942, 5.393862350489617, 4.1234913666278, 2.6032136975734863, 3.706080592278525, 3.09261782087696, 1.7285339767295478, 0.9163312562332622, 0.0), # 22 (10.13039336334264, 10.083079961133974, 8.645769318701419, 9.281198109567903, 7.418488037355065, 3.6458333333333335, 4.124902001129669, 3.8539557613168727, 4.0416420781893, 1.9686980681298587, 1.3958263395269568, 0.8124914647157445, 0.0, 10.125, 8.93740611187319, 6.9791316976347835, 5.906094204389575, 8.0832841563786, 5.395538065843622, 4.124902001129669, 2.604166666666667, 3.7092440186775324, 3.0937327031893016, 1.729153863740284, 0.9166436328303613, 0.0), # 23 (10.141012413034153, 10.08107561728395, 8.645262345679013, 9.280786458333335, 7.422071742409901, 3.6458333333333335, 4.124126906318083, 3.852291666666667, 4.041447222222222, 1.968287654320988, 1.39577076318743, 0.8124238683127573, 0.0, 10.125, 8.936662551440328, 6.978853815937151, 5.904862962962962, 8.082894444444443, 5.393208333333334, 4.124126906318083, 2.604166666666667, 3.7110358712049507, 3.0935954861111123, 1.7290524691358027, 0.9164614197530866, 0.0), # 24 (10.15140723021158, 10.077124771376313, 8.644261545496114, 9.279972029320987, 7.4255766303963355, 3.6458333333333335, 4.122599451303155, 3.8490226337448563, 4.041062242798354, 1.96747970964792, 1.3956605665710604, 0.8122904282883707, 0.0, 10.125, 8.935194711172077, 6.978302832855302, 5.902439128943758, 8.082124485596708, 5.388631687242799, 4.122599451303155, 2.604166666666667, 3.7127883151981678, 3.0933240097736636, 1.728852309099223, 0.9161022519433014, 0.0), # 25 (10.161577019048034, 10.071287780064015, 8.642780635573846, 9.278764081790122, 7.429002578947403, 3.6458333333333335, 4.120343359154361, 3.8442103909465026, 4.0404920781893, 1.9662876771833566, 1.3954967473084758, 0.8120929736320684, 0.0, 10.125, 8.933022709952752, 6.977483736542379, 5.898863031550069, 8.0809841563786, 5.381894547325103, 4.120343359154361, 2.604166666666667, 3.7145012894737013, 3.0929213605967085, 1.7285561271147696, 0.915571616369456, 0.0), # 26 (10.171520983716636, 10.063624999999998, 8.640833333333333, 9.277171874999999, 7.432349465696142, 3.6458333333333335, 4.117382352941177, 3.837916666666667, 4.039741666666666, 1.9647250000000003, 1.3952803030303031, 0.8118333333333335, 0.0, 10.125, 8.930166666666667, 6.976401515151515, 5.894175, 8.079483333333332, 5.373083333333334, 4.117382352941177, 2.604166666666667, 3.716174732848071, 3.0923906250000006, 1.7281666666666669, 0.914875, 0.0), # 27 (10.181238328390501, 10.054196787837219, 8.638433356195703, 9.275204668209877, 7.4356171682756, 3.6458333333333335, 4.113740155733075, 3.830203189300412, 4.038815946502057, 1.9628051211705537, 1.3950122313671698, 0.8115133363816492, 0.0, 10.125, 8.926646700198141, 6.9750611568358485, 5.88841536351166, 8.077631893004114, 5.3622844650205765, 4.113740155733075, 2.604166666666667, 3.7178085841378, 3.091734889403293, 1.7276866712391405, 0.9140178898033837, 0.0), # 28 (10.19072825724275, 10.043063500228623, 8.635594421582077, 9.272871720679012, 7.438805564318813, 3.6458333333333335, 4.109440490599533, 3.821131687242798, 4.037719855967078, 1.9605414837677189, 1.3946935299497027, 0.811134811766499, 0.0, 10.125, 8.922482929431489, 6.973467649748514, 5.881624451303155, 8.075439711934155, 5.349584362139917, 4.109440490599533, 2.604166666666667, 3.7194027821594067, 3.0909572402263383, 1.7271188843164156, 0.9130057727480568, 0.0), # 29 (10.199989974446497, 10.03028549382716, 8.63233024691358, 9.270182291666666, 7.441914531458824, 3.6458333333333335, 4.104507080610022, 3.8107638888888884, 4.036458333333333, 1.957947530864198, 1.39432519640853, 0.8106995884773662, 0.0, 10.125, 8.917695473251028, 6.9716259820426485, 5.873842592592593, 8.072916666666666, 5.335069444444444, 4.104507080610022, 2.604166666666667, 3.720957265729412, 3.0900607638888897, 1.7264660493827162, 0.9118441358024693, 0.0), # 30 (10.209022684174858, 10.01592312528578, 8.62865454961134, 9.267145640432098, 7.444943947328672, 3.6458333333333335, 4.09896364883402, 3.799161522633745, 4.035036316872428, 1.9550367055326936, 1.3939082283742779, 0.8102094955037343, 0.0, 10.125, 8.912304450541077, 6.969541141871389, 5.865110116598079, 8.070072633744855, 5.318826131687243, 4.09896364883402, 2.604166666666667, 3.722471973664336, 3.0890485468107003, 1.7257309099222682, 0.910538465935071, 0.0), # 31 (10.217825590600954, 10.00003675125743, 8.624581047096479, 9.263771026234568, 7.447893689561397, 3.6458333333333335, 4.092833918340999, 3.7863863168724285, 4.033458744855967, 1.951822450845908, 1.3934436234775742, 0.8096663618350862, 0.0, 10.125, 8.906329980185948, 6.96721811738787, 5.8554673525377225, 8.066917489711933, 5.3009408436214, 4.092833918340999, 2.604166666666667, 3.7239468447806985, 3.0879236754115236, 1.7249162094192958, 0.909094250114312, 0.0), # 32 (10.226397897897897, 9.98268672839506, 8.620123456790123, 9.260067708333333, 7.450763635790041, 3.6458333333333335, 4.086141612200436, 3.7725000000000004, 4.031730555555555, 1.9483182098765437, 1.392932379349046, 0.8090720164609053, 0.0, 10.125, 8.899792181069957, 6.96466189674523, 5.84495462962963, 8.06346111111111, 5.2815, 4.086141612200436, 2.604166666666667, 3.7253818178950207, 3.086689236111112, 1.724024691358025, 0.9075169753086421, 0.0), # 33 (10.23473881023881, 9.963933413351622, 8.615295496113397, 9.256044945987654, 7.453553663647644, 3.6458333333333335, 4.078910453481805, 3.7575643004115222, 4.029856687242798, 1.9445374256973027, 1.3923754936193207, 0.8084282883706753, 0.0, 10.125, 8.892711172077426, 6.961877468096604, 5.833612277091907, 8.059713374485597, 5.260590020576132, 4.078910453481805, 2.604166666666667, 3.726776831823822, 3.085348315329219, 1.7230590992226795, 0.9058121284865113, 0.0), # 34 (10.242847531796807, 9.943837162780063, 8.610110882487428, 9.25171199845679, 7.456263650767246, 3.6458333333333335, 4.071164165254579, 3.741640946502058, 4.0278420781893, 1.9404935413808875, 1.3917739639190256, 0.807737006553879, 0.0, 10.125, 8.88510707209267, 6.958869819595128, 5.821480624142661, 8.0556841563786, 5.238297325102881, 4.071164165254579, 2.604166666666667, 3.728131825383623, 3.0839039994855972, 1.7220221764974855, 0.9039851966163696, 0.0), # 35 (10.250723266745005, 9.922458333333331, 8.604583333333334, 9.247078125, 7.45889347478189, 3.6458333333333335, 4.062926470588235, 3.724791666666667, 4.025691666666666, 1.9362000000000004, 1.391128787878788, 0.8070000000000002, 0.0, 10.125, 8.877, 6.95564393939394, 5.8086, 8.051383333333332, 5.214708333333334, 4.062926470588235, 2.604166666666667, 3.729446737390945, 3.0823593750000007, 1.7209166666666669, 0.9020416666666666, 0.0), # 36 (10.258365219256524, 9.89985728166438, 8.598726566072246, 9.242152584876543, 7.4614430133246135, 3.6458333333333335, 4.054221092552247, 3.707078189300412, 4.023410390946502, 1.931670244627344, 1.3904409631292352, 0.8062190976985216, 0.0, 10.125, 8.868410074683737, 6.952204815646175, 5.79501073388203, 8.046820781893004, 5.189909465020577, 4.054221092552247, 2.604166666666667, 3.7307215066623067, 3.080717528292182, 1.7197453132144491, 0.8999870256058529, 0.0), # 37 (10.265772593504476, 9.876094364426155, 8.592554298125286, 9.23694463734568, 7.46391214402846, 3.6458333333333335, 4.04507175421609, 3.6885622427983544, 4.021003189300411, 1.92691771833562, 1.3897114873009937, 0.8053961286389272, 0.0, 10.125, 8.859357415028198, 6.948557436504967, 5.780753155006859, 8.042006378600822, 5.163987139917697, 4.04507175421609, 2.604166666666667, 3.73195607201423, 3.078981545781894, 1.7185108596250571, 0.8978267604023779, 0.0), # 38 (10.272944593661986, 9.851229938271604, 8.586080246913582, 9.231463541666667, 7.466300744526468, 3.6458333333333335, 4.035502178649238, 3.6693055555555554, 4.0184750000000005, 1.9219558641975314, 1.3889413580246914, 0.8045329218106996, 0.0, 10.125, 8.849862139917693, 6.944706790123457, 5.765867592592593, 8.036950000000001, 5.137027777777778, 4.035502178649238, 2.604166666666667, 3.733150372263234, 3.07715451388889, 1.7172160493827164, 0.8955663580246914, 0.0), # 39 (10.279880423902163, 9.82532435985368, 8.579318129858253, 9.225718557098766, 7.468608692451679, 3.6458333333333335, 4.025536088921165, 3.649369855967079, 4.015830761316872, 1.9167981252857802, 1.3881315729309558, 0.8036313062033228, 0.0, 10.125, 8.83994436823655, 6.940657864654778, 5.750394375857339, 8.031661522633744, 5.1091177983539104, 4.025536088921165, 2.604166666666667, 3.7343043462258394, 3.0752395190329227, 1.7158636259716507, 0.8932113054412438, 0.0), # 40 (10.286579288398128, 9.79843798582533, 8.57228166438043, 9.219718942901235, 7.4708358654371345, 3.6458333333333335, 4.015197208101347, 3.628816872427984, 4.0130754115226335, 1.9114579446730684, 1.3872831296504138, 0.8026931108062796, 0.0, 10.125, 8.829624218869075, 6.936415648252069, 5.734373834019204, 8.026150823045267, 5.0803436213991775, 4.015197208101347, 2.604166666666667, 3.7354179327185673, 3.073239647633746, 1.7144563328760862, 0.8907670896204848, 0.0), # 41 (10.293040391323, 9.770631172839506, 8.564984567901236, 9.213473958333335, 7.472982141115872, 3.6458333333333335, 4.004509259259259, 3.6077083333333335, 4.010213888888889, 1.9059487654320992, 1.3863970258136926, 0.8017201646090536, 0.0, 10.125, 8.818921810699589, 6.931985129068463, 5.717846296296297, 8.020427777777778, 5.050791666666667, 4.004509259259259, 2.604166666666667, 3.736491070557936, 3.0711579861111122, 1.7129969135802474, 0.8882391975308643, 0.0), # 42 (10.299262936849892, 9.741964277549155, 8.557440557841794, 9.206992862654321, 7.475047397120935, 3.6458333333333335, 3.993495965464375, 3.58610596707819, 4.007251131687243, 1.9002840306355744, 1.3854742590514195, 0.800714296601128, 0.0, 10.125, 8.807857262612407, 6.927371295257098, 5.700852091906722, 8.014502263374485, 5.020548353909466, 3.993495965464375, 2.604166666666667, 3.7375236985604676, 3.0689976208847747, 1.7114881115683587, 0.8856331161408324, 0.0), # 43 (10.305246129151927, 9.712497656607225, 8.549663351623229, 9.200284915123458, 7.477031511085363, 3.6458333333333335, 3.9821810497861696, 3.564071502057614, 4.0041920781893, 1.8944771833561962, 1.3845158269942222, 0.7996773357719861, 0.0, 10.125, 8.796450693491845, 6.92257913497111, 5.683431550068587, 8.0083841563786, 4.98970010288066, 3.9821810497861696, 2.604166666666667, 3.7385157555426813, 3.0667616383744867, 1.709932670324646, 0.8829543324188387, 0.0), # 44 (10.310989172402216, 9.682291666666666, 8.541666666666668, 9.193359375, 7.478934360642197, 3.6458333333333335, 3.9705882352941178, 3.541666666666667, 4.001041666666666, 1.8885416666666672, 1.3835227272727273, 0.798611111111111, 0.0, 10.125, 8.784722222222221, 6.917613636363637, 5.665625, 8.002083333333331, 4.958333333333334, 3.9705882352941178, 2.604166666666667, 3.7394671803210984, 3.064453125000001, 1.7083333333333335, 0.8802083333333335, 0.0), # 45 (10.31649127077388, 9.65140666438043, 8.533464220393233, 9.186225501543209, 7.480755823424477, 3.6458333333333335, 3.958741245057694, 3.518953189300412, 3.997804835390946, 1.8824909236396894, 1.3824959575175624, 0.7975174516079867, 0.0, 10.125, 8.772691967687852, 6.912479787587812, 5.647472770919067, 7.995609670781892, 4.926534465020577, 3.958741245057694, 2.604166666666667, 3.7403779117122387, 3.062075167181071, 1.7066928440786466, 0.8774006058527665, 0.0), # 46 (10.321751628440035, 9.619903006401461, 8.525069730224052, 9.178892554012345, 7.482495777065244, 3.6458333333333335, 3.9466638021463734, 3.4959927983539094, 3.994486522633745, 1.8763383973479657, 1.3814365153593549, 0.7963981862520958, 0.0, 10.125, 8.760380048773053, 6.9071825767967745, 5.629015192043896, 7.98897304526749, 4.894389917695474, 3.9466638021463734, 2.604166666666667, 3.741247888532622, 3.0596308513374493, 1.7050139460448106, 0.8745366369455876, 0.0), # 47 (10.326769449573796, 9.587841049382716, 8.516496913580248, 9.171369791666667, 7.48415409919754, 3.6458333333333335, 3.9343796296296296, 3.4728472222222226, 3.9910916666666667, 1.8700975308641978, 1.3803453984287317, 0.7952551440329219, 0.0, 10.125, 8.74780658436214, 6.901726992143659, 5.610292592592592, 7.982183333333333, 4.861986111111112, 3.9343796296296296, 2.604166666666667, 3.74207704959877, 3.05712326388889, 1.7032993827160496, 0.871621913580247, 0.0), # 48 (10.331543938348286, 9.555281149977136, 8.507759487882945, 9.163666473765433, 7.485730667454405, 3.6458333333333335, 3.9219124505769383, 3.4495781893004116, 3.987625205761317, 1.8637817672610888, 1.3792236043563206, 0.7940901539399483, 0.0, 10.125, 8.73499169333943, 6.896118021781603, 5.5913453017832655, 7.975250411522634, 4.829409465020577, 3.9219124505769383, 2.604166666666667, 3.7428653337272024, 3.054555491255145, 1.7015518975765893, 0.8686619227251944, 0.0), # 49 (10.336074298936616, 9.522283664837678, 8.49887117055327, 9.155791859567902, 7.4872253594688765, 3.6458333333333335, 3.909285988057775, 3.4262474279835393, 3.9840920781893, 1.85740454961134, 1.3780721307727481, 0.7929050449626583, 0.0, 10.125, 8.72195549458924, 6.89036065386374, 5.572213648834019, 7.9681841563786, 4.796746399176955, 3.909285988057775, 2.604166666666667, 3.7436126797344382, 3.051930619855968, 1.6997742341106543, 0.86566215134888, 0.0), # 50 (10.34035973551191, 9.488908950617283, 8.489845679012346, 9.147755208333333, 7.488638052873998, 3.6458333333333335, 3.896523965141612, 3.4029166666666666, 3.9804972222222226, 1.8509793209876546, 1.3768919753086422, 0.7917016460905352, 0.0, 10.125, 8.708718106995885, 6.884459876543211, 5.552937962962963, 7.960994444444445, 4.764083333333334, 3.896523965141612, 2.604166666666667, 3.744319026436999, 3.049251736111112, 1.6979691358024693, 0.8626280864197532, 0.0), # 51 (10.344399452247279, 9.455217363968908, 8.480696730681299, 9.139565779320987, 7.489968625302809, 3.6458333333333335, 3.883650104897926, 3.3796476337448556, 3.976845576131687, 1.8445195244627348, 1.3756841355946297, 0.7904817863130622, 0.0, 10.125, 8.695299649443683, 6.878420677973147, 5.533558573388203, 7.953691152263374, 4.731506687242798, 3.883650104897926, 2.604166666666667, 3.7449843126514044, 3.04652192644033, 1.69613934613626, 0.8595652149062645, 0.0), # 52 (10.348192653315843, 9.421269261545497, 8.471438042981255, 9.131232831790122, 7.491216954388353, 3.6458333333333335, 3.8706881303961915, 3.3565020576131688, 3.9731420781893005, 1.8380386031092826, 1.3744496092613379, 0.7892472946197227, 0.0, 10.125, 8.681720240816947, 6.872248046306688, 5.514115809327846, 7.946284156378601, 4.699102880658437, 3.8706881303961915, 2.604166666666667, 3.7456084771941764, 3.043744277263375, 1.694287608596251, 0.8564790237768635, 0.0), # 53 (10.351738542890716, 9.387125000000001, 8.462083333333332, 9.122765625, 7.492382917763668, 3.6458333333333335, 3.8576617647058824, 3.333541666666666, 3.9693916666666667, 1.8315500000000005, 1.3731893939393938, 0.788, 0.0, 10.125, 8.668, 6.865946969696969, 5.49465, 7.938783333333333, 4.666958333333333, 3.8576617647058824, 2.604166666666667, 3.746191458881834, 3.040921875000001, 1.6924166666666667, 0.8533750000000002, 0.0), # 54 (10.355036325145022, 9.352844935985367, 8.452646319158665, 9.114173418209877, 7.493466393061793, 3.6458333333333335, 3.844594730896474, 3.3108281893004117, 3.9655992798353905, 1.8250671582075908, 1.3719044872594257, 0.7867417314433777, 0.0, 10.125, 8.654159045877153, 6.859522436297127, 5.4752014746227715, 7.931198559670781, 4.6351594650205765, 3.844594730896474, 2.604166666666667, 3.7467331965308963, 3.0380578060699595, 1.6905292638317333, 0.8502586305441244, 0.0), # 55 (10.358085204251871, 9.31848942615455, 8.443140717878373, 9.105465470679011, 7.4944672579157725, 3.6458333333333335, 3.8315107520374405, 3.288423353909465, 3.961769855967078, 1.818603520804756, 1.3705958868520598, 0.7854743179393385, 0.0, 10.125, 8.640217497332722, 6.852979434260299, 5.455810562414267, 7.923539711934156, 4.603792695473251, 3.8315107520374405, 2.604166666666667, 3.7472336289578863, 3.035155156893005, 1.6886281435756747, 0.8471354023776865, 0.0), # 56 (10.360884384384383, 9.284118827160494, 8.433580246913582, 9.096651041666666, 7.495385389958644, 3.6458333333333335, 3.818433551198257, 3.2663888888888892, 3.957908333333333, 1.812172530864198, 1.369264590347924, 0.7841995884773663, 0.0, 10.125, 8.626195473251027, 6.8463229517396185, 5.436517592592593, 7.915816666666666, 4.572944444444445, 3.818433551198257, 2.604166666666667, 3.747692694979322, 3.0322170138888898, 1.6867160493827165, 0.844010802469136, 0.0), # 57 (10.36343306971568, 9.24979349565615, 8.423978623685414, 9.087739390432098, 7.496220666823449, 3.6458333333333335, 3.8053868514483984, 3.2447865226337447, 3.954019650205761, 1.8057876314586196, 1.367911595377645, 0.7829193720469442, 0.0, 10.125, 8.612113092516385, 6.8395579768882255, 5.417362894375858, 7.908039300411522, 4.5427011316872425, 3.8053868514483984, 2.604166666666667, 3.7481103334117245, 3.029246463477367, 1.684795724737083, 0.8408903177869229, 0.0), # 58 (10.36573046441887, 9.215573788294467, 8.414349565614998, 9.078739776234567, 7.49697296614323, 3.6458333333333335, 3.792394375857339, 3.2236779835390945, 3.9501087448559673, 1.799462265660723, 1.3665378995718502, 0.7816354976375554, 0.0, 10.125, 8.597990474013107, 6.83268949785925, 5.398386796982168, 7.900217489711935, 4.513149176954733, 3.792394375857339, 2.604166666666667, 3.748486483071615, 3.02624659207819, 1.6828699131229998, 0.8377794352994972, 0.0), # 59 (10.367775772667077, 9.181520061728396, 8.404706790123456, 9.069661458333334, 7.497642165551024, 3.6458333333333335, 3.779479847494553, 3.203125, 3.946180555555556, 1.7932098765432103, 1.3651445005611673, 0.7803497942386832, 0.0, 10.125, 8.583847736625515, 6.825722502805837, 5.37962962962963, 7.892361111111112, 4.484375, 3.779479847494553, 2.604166666666667, 3.748821082775512, 3.023220486111112, 1.6809413580246915, 0.8346836419753088, 0.0), # 60 (10.369568198633415, 9.147692672610884, 8.395064014631917, 9.060513695987654, 7.498228142679874, 3.6458333333333335, 3.7666669894295164, 3.183189300411523, 3.9422400205761314, 1.7870439071787843, 1.3637323959762233, 0.7790640908398111, 0.0, 10.125, 8.56970499923792, 6.818661979881115, 5.361131721536351, 7.884480041152263, 4.456465020576132, 3.7666669894295164, 2.604166666666667, 3.749114071339937, 3.0201712319958856, 1.6790128029263836, 0.8316084247828076, 0.0), # 61 (10.371106946491004, 9.114151977594878, 8.385434956561502, 9.051305748456791, 7.498730775162823, 3.6458333333333335, 3.753979524731703, 3.1639326131687247, 3.9382920781893, 1.7809778006401469, 1.3623025834476452, 0.7777802164304223, 0.0, 10.125, 8.555582380734645, 6.811512917238226, 5.3429334019204395, 7.8765841563786, 4.429505658436215, 3.753979524731703, 2.604166666666667, 3.7493653875814115, 3.0171019161522645, 1.6770869913123003, 0.8285592706904436, 0.0), # 62 (10.37239122041296, 9.080958333333333, 8.375833333333334, 9.042046875, 7.499149940632904, 3.6458333333333335, 3.741441176470588, 3.1454166666666667, 3.9343416666666666, 1.7750250000000003, 1.360856060606061, 0.7765000000000001, 0.0, 10.125, 8.5415, 6.804280303030303, 5.325075, 7.868683333333333, 4.403583333333334, 3.741441176470588, 2.604166666666667, 3.749574970316452, 3.014015625000001, 1.675166666666667, 0.8255416666666667, 0.0), # 63 (10.373420224572397, 9.048172096479195, 8.366272862368541, 9.032746334876544, 7.4994855167231655, 3.6458333333333335, 3.729075667715646, 3.127703189300412, 3.9303937242798352, 1.7691989483310475, 1.3593938250820965, 0.7752252705380279, 0.0, 10.125, 8.527477975918305, 6.796969125410483, 5.307596844993141, 7.8607874485596705, 4.378784465020577, 3.729075667715646, 2.604166666666667, 3.7497427583615828, 3.0109154449588487, 1.6732545724737085, 0.822561099679927, 0.0), # 64 (10.374193163142438, 9.015853623685413, 8.35676726108825, 9.023413387345679, 7.499737381066645, 3.6458333333333335, 3.7169067215363514, 3.1108539094650207, 3.9264531893004113, 1.7635130887059902, 1.357916874506381, 0.7739578570339887, 0.0, 10.125, 8.513536427373873, 6.7895843725319045, 5.290539266117969, 7.852906378600823, 4.355195473251029, 3.7169067215363514, 2.604166666666667, 3.7498686905333223, 3.0078044624485605, 1.67135345221765, 0.819623056698674, 0.0), # 65 (10.374709240296196, 8.984063271604938, 8.34733024691358, 9.014057291666667, 7.499905411296382, 3.6458333333333335, 3.7049580610021784, 3.094930555555556, 3.9225250000000003, 1.7579808641975312, 1.3564262065095398, 0.7726995884773664, 0.0, 10.125, 8.499695473251029, 6.782131032547699, 5.273942592592592, 7.8450500000000005, 4.332902777777778, 3.7049580610021784, 2.604166666666667, 3.749952705648191, 3.0046857638888897, 1.6694660493827165, 0.8167330246913582, 0.0), # 66 (10.374967660206792, 8.952861396890716, 8.337975537265661, 9.004687307098765, 7.499989485045419, 3.6458333333333335, 3.693253409182603, 3.0799948559670787, 3.9186140946502057, 1.7526157178783728, 1.3549228187222018, 0.7714522938576437, 0.0, 10.125, 8.485975232434079, 6.774614093611008, 5.257847153635117, 7.837228189300411, 4.31199279835391, 3.693253409182603, 2.604166666666667, 3.7499947425227096, 3.001562435699589, 1.6675951074531323, 0.8138964906264289, 0.0), # 67 (10.374791614480825, 8.922144586043629, 8.328671624942844, 8.995231305354269, 7.499918636864896, 3.645765673423767, 3.681757597414823, 3.0659766041761927, 3.9146959495503735, 1.747405110411792, 1.3533809980900628, 0.770210835158312, 0.0, 10.124875150034294, 8.47231918674143, 6.766904990450313, 5.242215331235375, 7.829391899100747, 4.29236724584667, 3.681757597414823, 2.604118338159833, 3.749959318432448, 2.99841043511809, 1.6657343249885688, 0.8111040532766937, 0.0), # 68 (10.373141706924315, 8.890975059737157, 8.319157021604937, 8.985212635869564, 7.499273783587508, 3.6452307956104257, 3.6701340906733066, 3.052124485596708, 3.910599279835391, 1.7422015976761076, 1.3516438064859118, 0.7689349144466104, 0.0, 10.12388599537037, 8.458284058912714, 6.758219032429559, 5.226604793028321, 7.821198559670782, 4.272974279835391, 3.6701340906733066, 2.6037362825788755, 3.749636891793754, 2.9950708786231885, 1.6638314043209876, 0.8082704599761052, 0.0), # 69 (10.369885787558895, 8.859209754856408, 8.309390360653863, 8.974565343196456, 7.497999542752628, 3.6441773992785653, 3.658330067280685, 3.0383135192805977, 3.9063009640298736, 1.736979881115684, 1.3496914810876801, 0.7676185634410675, 0.0, 10.121932334533609, 8.44380419785174, 6.7484574054383994, 5.210939643347051, 7.812601928059747, 4.253638926992837, 3.658330067280685, 2.6029838566275467, 3.748999771376314, 2.991521781065486, 1.6618780721307727, 0.8053827049869463, 0.0), # 70 (10.365069660642929, 8.826867654542236, 8.299375071444901, 8.963305127818035, 7.496112052502757, 3.6426225549966977, 3.646350829769494, 3.0245482777015704, 3.9018074035970125, 1.7317400898356603, 1.347531228463977, 0.7662627447677263, 0.0, 10.119039887688615, 8.428890192444989, 6.737656142319885, 5.195220269506979, 7.803614807194025, 4.234367588782199, 3.646350829769494, 2.6018732535690696, 3.7480560262513785, 2.987768375939346, 1.6598750142889804, 0.8024425140492942, 0.0), # 71 (10.358739130434783, 8.793967741935482, 8.289114583333333, 8.95144769021739, 7.493627450980392, 3.6405833333333337, 3.634201680672269, 3.0108333333333333, 3.897125, 1.7264823529411768, 1.3451702551834133, 0.7648684210526316, 0.0, 10.115234375, 8.413552631578947, 6.7258512759170666, 5.179447058823529, 7.79425, 4.215166666666667, 3.634201680672269, 2.600416666666667, 3.746813725490196, 2.983815896739131, 1.6578229166666667, 0.7994516129032258, 0.0), # 72 (10.35094000119282, 8.760529000176998, 8.27861232567444, 8.939008730877617, 7.490561876328034, 3.638076804856983, 3.621887922521546, 2.9971732586495965, 3.8922601547020275, 1.7212067995373737, 1.3426157678145982, 0.7634365549218266, 0.0, 10.110541516632374, 8.397802104140093, 6.71307883907299, 5.163620398612119, 7.784520309404055, 4.196042562109435, 3.621887922521546, 2.598626289183559, 3.745280938164017, 2.979669576959206, 1.655722465134888, 0.7964117272888181, 0.0), # 73 (10.341718077175404, 8.726570412407629, 8.267871727823502, 8.926003950281803, 7.486931466688183, 3.6351200401361585, 3.609414857849861, 2.9835726261240665, 3.8872192691662857, 1.7159135587293908, 1.3398749729261428, 0.7619681090013557, 0.0, 10.104987032750344, 8.38164919901491, 6.699374864630713, 5.147740676188171, 7.774438538332571, 4.177001676573693, 3.609414857849861, 2.5965143143829703, 3.7434657333440917, 2.975334650093935, 1.6535743455647005, 0.7933245829461482, 0.0), # 74 (10.331119162640901, 8.692110961768218, 8.256896219135802, 8.912449048913043, 7.482752360203341, 3.6317301097393697, 3.59678778918975, 2.9700360082304527, 3.8820087448559666, 1.7106027596223679, 1.336955077086656, 0.7604640459172624, 0.0, 10.098596643518519, 8.365104505089885, 6.684775385433279, 5.131808278867102, 7.764017489711933, 4.158050411522634, 3.59678778918975, 2.594092935528121, 3.7413761801016703, 2.9708163496376816, 1.6513792438271604, 0.7901919056152927, 0.0), # 75 (10.319189061847677, 8.65716963139962, 8.245689228966622, 8.898359727254428, 7.478040695016003, 3.6279240842351275, 3.5840120190737474, 2.956567977442463, 3.876634983234263, 1.7052745313214452, 1.3338632868647486, 0.7589253282955902, 0.0, 10.091396069101508, 8.348178611251491, 6.669316434323743, 5.115823593964334, 7.753269966468526, 4.139195168419449, 3.5840120190737474, 2.5913743458822336, 3.7390203475080015, 2.96611990908481, 1.6491378457933243, 0.7870154210363293, 0.0), # 76 (10.305973579054093, 8.621765404442675, 8.234254186671238, 8.883751685789049, 7.472812609268672, 3.6237190341919425, 3.5710928500343897, 2.9431731062338065, 3.871104385764365, 1.699929002931763, 1.3306068088290313, 0.7573529187623839, 0.0, 10.083411029663925, 8.330882106386222, 6.653034044145156, 5.099787008795288, 7.74220877152873, 4.120442348727329, 3.5710928500343897, 2.58837073870853, 3.736406304634336, 2.9612505619296834, 1.6468508373342476, 0.7837968549493343, 0.0), # 77 (10.291518518518519, 8.585917264038233, 8.222594521604938, 8.868640625, 7.467084241103849, 3.6191320301783265, 3.5580355846042124, 2.9298559670781894, 3.8654233539094642, 1.6945663035584608, 1.327192849548113, 0.7557477799436866, 0.0, 10.074667245370371, 8.313225579380552, 6.635964247740564, 5.083698910675381, 7.7308467078189285, 4.101798353909466, 3.5580355846042124, 2.585094307270233, 3.7335421205519244, 2.956213541666667, 1.6445189043209878, 0.7805379330943849, 0.0), # 78 (10.275869684499314, 8.549644193327138, 8.210713663123, 8.85304224537037, 7.460871728664031, 3.61418014276279, 3.5448455253157505, 2.916621132449322, 3.859598289132754, 1.6891865623066789, 1.3236286155906039, 0.7541108744655421, 0.0, 10.065190436385459, 8.295219619120962, 6.618143077953018, 5.067559686920035, 7.719196578265508, 4.083269585429051, 3.5448455253157505, 2.5815572448305644, 3.7304358643320157, 2.951014081790124, 1.6421427326246, 0.7772403812115581, 0.0), # 79 (10.259072881254847, 8.51296517545024, 8.198615040580703, 8.836972247383253, 7.454191210091719, 3.6088804425138448, 3.5315279747015405, 2.9034731748209115, 3.853635592897424, 1.683789908281557, 1.3199213135251149, 0.7524431649539947, 0.0, 10.0550063228738, 8.27687481449394, 6.599606567625574, 5.05136972484467, 7.707271185794848, 4.064862444749276, 3.5315279747015405, 2.577771744652746, 3.7270956050458595, 2.945657415794418, 1.639723008116141, 0.7739059250409311, 0.0), # 80 (10.241173913043479, 8.475899193548386, 8.186302083333333, 8.82044633152174, 7.447058823529411, 3.60325, 3.5180882352941176, 2.890416666666667, 3.8475416666666664, 1.6783764705882358, 1.3160781499202554, 0.7507456140350878, 0.0, 10.044140624999999, 8.258201754385965, 6.580390749601277, 5.035129411764706, 7.695083333333333, 4.046583333333333, 3.5180882352941176, 2.57375, 3.7235294117647055, 2.940148777173914, 1.6372604166666667, 0.7705362903225808, 0.0), # 81 (10.222218584123576, 8.438465230762423, 8.17377822073617, 8.803480198268922, 7.43949070711961, 3.5973058857897686, 3.504531609626018, 2.8774561804602956, 3.841322911903673, 1.6729463783318543, 1.3121063313446355, 0.7490191843348656, 0.0, 10.03261906292867, 8.23921102768352, 6.560531656723177, 5.018839134995561, 7.682645823807346, 4.0284386526444145, 3.504531609626018, 2.5695042041355487, 3.719745353559805, 2.934493399422974, 1.634755644147234, 0.767133202796584, 0.0), # 82 (10.202252698753504, 8.400682270233196, 8.16104688214449, 8.78608954810789, 7.431502999004814, 3.591065170451659, 3.4908634002297765, 2.8645962886755068, 3.8349857300716352, 1.6674997606175532, 1.3080130643668657, 0.7472648384793719, 0.0, 10.020467356824417, 8.219913223273089, 6.540065321834328, 5.002499281852659, 7.6699714601432705, 4.01043480414571, 3.4908634002297765, 2.5650465503226134, 3.715751499502407, 2.9286965160359637, 1.632209376428898, 0.7636983882030178, 0.0), # 83 (10.181322061191626, 8.362569295101553, 8.14811149691358, 8.768290081521739, 7.423111837327523, 3.584544924554184, 3.477088909637929, 2.851841563786008, 3.8285365226337444, 1.6620367465504726, 1.3038055555555557, 0.7454835390946503, 0.0, 10.007711226851852, 8.200318930041153, 6.519027777777778, 4.986110239651417, 7.657073045267489, 3.9925781893004113, 3.477088909637929, 2.5603892318244172, 3.7115559186637617, 2.922763360507247, 1.629622299382716, 0.7602335722819594, 0.0), # 84 (10.159472475696308, 8.32414528850834, 8.13497549439872, 8.75009749899356, 7.414333360230238, 3.577762218665854, 3.463213440383012, 2.8391965782655086, 3.8219816910531925, 1.6565574652357518, 1.2994910114793157, 0.7436762488067449, 0.0, 9.994376393175584, 8.180438736874192, 6.497455057396579, 4.969672395707254, 7.643963382106385, 3.9748752095717124, 3.463213440383012, 2.5555444419041815, 3.707166680115119, 2.916699166331187, 1.626995098879744, 0.7567404807734855, 0.0), # 85 (10.136749746525913, 8.285429233594407, 8.121642303955191, 8.731527501006443, 7.405183705855455, 3.57073412335518, 3.44924229499756, 2.826665904587715, 3.815327636793172, 1.6510620457785314, 1.2950766387067558, 0.7418439302416996, 0.0, 9.98048857596022, 8.160283232658694, 6.475383193533778, 4.953186137335593, 7.630655273586344, 3.9573322664228017, 3.44924229499756, 2.550524373825129, 3.7025918529277275, 2.910509167002148, 1.6243284607910382, 0.7532208394176735, 0.0), # 86 (10.113199677938807, 8.246440113500597, 8.10811535493827, 8.712595788043478, 7.3956790123456795, 3.563477709190672, 3.4351807760141093, 2.8142541152263374, 3.8085807613168727, 1.645550617283951, 1.290569643806486, 0.7399875460255577, 0.0, 9.96607349537037, 8.139863006281134, 6.452848219032429, 4.936651851851852, 7.6171615226337455, 3.9399557613168725, 3.4351807760141093, 2.54534122085048, 3.6978395061728397, 2.904198596014493, 1.6216230709876542, 0.7496763739545999, 0.0), # 87 (10.088868074193357, 8.207196911367758, 8.094398076703246, 8.693318060587762, 7.385835417843406, 3.5560100467408424, 3.4210341859651954, 2.801965782655083, 3.8017474660874866, 1.6400233088571508, 1.2859772333471164, 0.7381080587843638, 0.0, 9.951156871570646, 8.119188646628, 6.429886166735582, 4.9200699265714505, 7.603494932174973, 3.9227520957171165, 3.4210341859651954, 2.540007176243459, 3.692917708921703, 2.897772686862588, 1.6188796153406495, 0.7461088101243417, 0.0), # 88 (10.063800739547922, 8.16771861033674, 8.080493898605397, 8.673710019122383, 7.375669060491138, 3.5483482065742016, 3.406807827383354, 2.7898054793476605, 3.794834152568206, 1.634480249603271, 1.2813066138972575, 0.7362064311441613, 0.0, 9.935764424725651, 8.098270742585774, 6.4065330694862865, 4.903440748809812, 7.589668305136412, 3.905727671086725, 3.406807827383354, 2.534534433267287, 3.687834530245569, 2.891236673040795, 1.6160987797210793, 0.7425198736669765, 0.0), # 89 (10.03804347826087, 8.128024193548386, 8.06640625, 8.653787364130435, 7.365196078431373, 3.5405092592592595, 3.3925070028011204, 2.7777777777777777, 3.7878472222222226, 1.6289215686274514, 1.2765649920255184, 0.7342836257309943, 0.0, 9.919921875, 8.077119883040936, 6.382824960127592, 4.886764705882353, 7.575694444444445, 3.888888888888889, 3.3925070028011204, 2.5289351851851856, 3.6825980392156863, 2.884595788043479, 1.6132812500000002, 0.7389112903225807, 0.0), # 90 (10.011642094590563, 8.088132644143545, 8.05213856024234, 8.63356579609501, 7.35443260980661, 3.532510275364528, 3.378137014751031, 2.7658872504191434, 3.780793076512727, 1.6233473950348318, 1.2717595743005101, 0.7323406051709063, 0.0, 9.903654942558298, 8.055746656879968, 6.35879787150255, 4.870042185104494, 7.561586153025454, 3.872242150586801, 3.378137014751031, 2.5232216252603767, 3.677216304903305, 2.8778552653650036, 1.6104277120484682, 0.7352847858312315, 0.0), # 91 (9.984642392795372, 8.048062945263066, 8.0376942586877, 8.613061015499195, 7.343394792759352, 3.524368325458518, 3.363703165765621, 2.754138469745466, 3.773678116902911, 1.6177578579305527, 1.2668975672908422, 0.7303783320899415, 0.0, 9.886989347565157, 8.034161652989356, 6.334487836454211, 4.853273573791657, 7.547356233805822, 3.8557938576436523, 3.363703165765621, 2.517405946756084, 3.671697396379676, 2.871020338499732, 1.6075388517375402, 0.7316420859330061, 0.0), # 92 (9.957090177133654, 8.00783408004779, 8.023076774691358, 8.592288722826089, 7.332098765432098, 3.5161004801097393, 3.349210758377425, 2.742536008230453, 3.766508744855967, 1.6121530864197533, 1.261986177565125, 0.7283977691141434, 0.0, 9.869950810185184, 8.012375460255576, 6.309930887825625, 4.836459259259259, 7.533017489711934, 3.839550411522634, 3.349210758377425, 2.5115003429355283, 3.666049382716049, 2.86409624094203, 1.6046153549382718, 0.727984916367981, 0.0), # 93 (9.92903125186378, 7.967465031638567, 8.008289537608597, 8.571264618558777, 7.320560665967347, 3.5077238098867043, 3.3346650951189805, 2.7310844383478132, 3.759291361835086, 1.6065332096075746, 1.2570326116919686, 0.7263998788695563, 0.0, 9.85256505058299, 7.990398667565118, 6.285163058459842, 4.819599628822722, 7.518582723670172, 3.823518213686939, 3.3346650951189805, 2.5055170070619317, 3.6602803329836733, 2.8570882061862592, 1.6016579075217197, 0.7243150028762335, 0.0), # 94 (9.90051142124411, 7.926974783176247, 7.993335976794697, 8.550004403180354, 7.308796632507598, 3.499255385357923, 3.320071478522822, 2.719788332571255, 3.7520323693034596, 1.6008983565991557, 1.2520440762399827, 0.7243856239822234, 0.0, 9.834857788923182, 7.968241863804456, 6.260220381199914, 4.8026950697974655, 7.504064738606919, 3.8077036655997567, 3.320071478522822, 2.4994681323985164, 3.654398316253799, 2.850001467726785, 1.5986671953589393, 0.7206340711978407, 0.0), # 95 (9.871576489533012, 7.886382317801674, 7.978219521604939, 8.528523777173913, 7.296822803195352, 3.4907122770919066, 3.3054352111214853, 2.708652263374486, 3.7447381687242793, 1.5952486564996373, 1.247027777777778, 0.7223559670781895, 0.0, 9.816854745370371, 7.945915637860083, 6.23513888888889, 4.785745969498911, 7.489476337448559, 3.7921131687242804, 3.3054352111214853, 2.4933659122085046, 3.648411401597676, 2.8428412590579715, 1.595643904320988, 0.7169438470728796, 0.0), # 96 (9.842272260988848, 7.845706618655694, 7.962943601394604, 8.506838441022543, 7.284655316173109, 3.482111555657166, 3.2907615954475067, 2.697680803231215, 3.7374151615607376, 1.589584238414159, 1.2419909228739638, 0.7203118707834976, 0.0, 9.798581640089164, 7.923430578618472, 6.209954614369819, 4.768752715242476, 7.474830323121475, 3.7767531245237014, 3.2907615954475067, 2.4872225397551184, 3.6423276580865545, 2.8356128136741816, 1.5925887202789208, 0.7132460562414268, 0.0), # 97 (9.812644539869984, 7.804966668879153, 7.947511645518976, 8.48496409520934, 7.272310309583368, 3.4734702916222124, 3.276055934033421, 2.68687852461515, 3.7300697492760246, 1.5839052314478608, 1.236940718097151, 0.7182542977241916, 0.0, 9.78006419324417, 7.900797274966106, 6.184703590485755, 4.751715694343581, 7.460139498552049, 3.7616299344612103, 3.276055934033421, 2.48105020830158, 3.636155154791684, 2.8283213650697805, 1.589502329103795, 0.7095424244435595, 0.0), # 98 (9.782739130434782, 7.764181451612902, 7.931927083333334, 8.462916440217391, 7.259803921568627, 3.464805555555556, 3.261323529411765, 2.67625, 3.7227083333333333, 1.5782117647058826, 1.2318843700159492, 0.7161842105263159, 0.0, 9.761328125, 7.878026315789473, 6.159421850079745, 4.734635294117647, 7.445416666666667, 3.7467500000000005, 3.261323529411765, 2.474861111111111, 3.6299019607843137, 2.820972146739131, 1.5863854166666669, 0.7058346774193549, 0.0), # 99 (9.752601836941611, 7.723369949997786, 7.916193344192958, 8.44071117652979, 7.247152290271389, 3.4561344180257074, 3.2465696841150726, 2.665799801859473, 3.715337315195854, 1.572503967293365, 1.2268290851989685, 0.714102571815914, 0.0, 9.742399155521262, 7.8551282899750525, 6.134145425994841, 4.717511901880093, 7.430674630391708, 3.732119722603262, 3.2465696841150726, 2.468667441446934, 3.6235761451356945, 2.8135703921765973, 1.5832386688385918, 0.7021245409088898, 0.0), # 100 (9.722278463648834, 7.682551147174654, 7.900313857453133, 8.41836400462963, 7.234371553834153, 3.4474739496011786, 3.231799700675881, 2.6555325026672763, 3.7079630963267793, 1.5667819683154474, 1.2217820702148188, 0.7120103442190294, 0.0, 9.723303004972564, 7.832113786409323, 6.108910351074094, 4.7003459049463405, 7.415926192653559, 3.7177455037341867, 3.231799700675881, 2.4624813925722706, 3.6171857769170765, 2.806121334876544, 1.5800627714906266, 0.6984137406522414, 0.0), # 101 (9.691814814814816, 7.641744026284349, 7.884292052469135, 8.395890625, 7.221477850399419, 3.4388412208504806, 3.217018881626725, 2.645452674897119, 3.7005920781893, 1.56104589687727, 1.2167505316321108, 0.7099084903617069, 0.0, 9.704065393518519, 7.808993393978774, 6.083752658160553, 4.683137690631809, 7.4011841563786, 3.703633744855967, 3.217018881626725, 2.4563151577503435, 3.6107389251997093, 2.798630208333334, 1.5768584104938272, 0.6947040023894864, 0.0), # 102 (9.661256694697919, 7.60096757046772, 7.8681313585962505, 8.373306738123993, 7.208487318109686, 3.430253302342123, 3.20223252950014, 2.63556489102271, 3.6932306622466085, 1.5552958820839726, 1.211741676019454, 0.7077979728699895, 0.0, 9.68471204132373, 7.785777701569883, 6.058708380097269, 4.6658876462519165, 7.386461324493217, 3.689790847431794, 3.20223252950014, 2.4501809302443736, 3.604243659054843, 2.7911022460413317, 1.5736262717192502, 0.6909970518607019, 0.0), # 103 (9.63064990755651, 7.560240762865614, 7.851835205189758, 8.350628044484703, 7.195416095107452, 3.421727264644617, 3.187445946828663, 2.6258737235177567, 3.685885249961896, 1.5495320530406955, 1.2067627099454585, 0.7056797543699213, 0.0, 9.665268668552812, 7.762477298069133, 6.033813549727292, 4.648596159122086, 7.371770499923792, 3.6762232129248593, 3.187445946828663, 2.4440909033175835, 3.597708047553726, 2.783542681494901, 1.5703670410379515, 0.687294614805965, 0.0), # 104 (9.600040257648953, 7.519582586618876, 7.835407021604938, 8.327870244565217, 7.182280319535221, 3.4132801783264752, 3.172664436144829, 2.6163837448559675, 3.6785622427983538, 1.5437545388525786, 1.201820839978735, 0.7035547974875461, 0.0, 9.64576099537037, 7.739102772363006, 6.009104199893674, 4.631263616557734, 7.3571244855967075, 3.662937242798354, 3.172664436144829, 2.4380572702331964, 3.5911401597676105, 2.775956748188406, 1.5670814043209877, 0.6835984169653525, 0.0), # 105 (9.569473549233614, 7.479012024868357, 7.818850237197074, 8.305049038848631, 7.1690961295354905, 3.404929113956206, 3.1578932999811724, 2.6070995275110502, 3.6712680422191735, 1.5379634686247616, 1.1969232726878927, 0.701424064848908, 0.0, 9.626214741941014, 7.715664713337986, 5.9846163634394625, 4.613890405874283, 7.342536084438347, 3.6499393385154706, 3.1578932999811724, 2.4320922242544327, 3.5845480647677452, 2.768349679616211, 1.5637700474394147, 0.6799101840789417, 0.0), # 106 (9.538995586568856, 7.438548060754901, 7.802168281321446, 8.282180127818036, 7.155879663250759, 3.3966911421023225, 3.1431378408702306, 2.5980256439567144, 3.6640090496875475, 1.532158971462385, 1.1920772146415421, 0.6992885190800504, 0.0, 9.606655628429355, 7.692173709880553, 5.96038607320771, 4.596476914387154, 7.328018099375095, 3.6372359015394005, 3.1431378408702306, 2.426207958644516, 3.5779398316253794, 2.760726709272679, 1.5604336562642893, 0.6762316418868093, 0.0), # 107 (9.508652173913044, 7.398209677419356, 7.785364583333334, 8.259279211956523, 7.1426470588235285, 3.3885833333333335, 3.1284033613445374, 2.589166666666667, 3.656791666666667, 1.5263411764705888, 1.1872898724082936, 0.6971491228070177, 0.0, 9.587109375, 7.668640350877193, 5.936449362041468, 4.579023529411765, 7.313583333333334, 3.624833333333334, 3.1284033613445374, 2.4204166666666667, 3.5713235294117642, 2.7530930706521746, 1.557072916666667, 0.6725645161290325, 0.0), # 108 (9.478489115524543, 7.358015858002567, 7.768442572588021, 8.23636199174718, 7.129414454396299, 3.3806227582177515, 3.113695163936631, 2.580527168114617, 3.6496222946197223, 1.5205102127545123, 1.1825684525567568, 0.6950068386558532, 0.0, 9.567601701817559, 7.645075225214384, 5.9128422627837836, 4.561530638263536, 7.299244589239445, 3.612738035360464, 3.113695163936631, 2.4147305415841083, 3.5647072271981495, 2.7454539972490606, 1.5536885145176043, 0.668910532545688, 0.0), # 109 (9.448552215661715, 7.317985585645383, 7.751405678440788, 8.213444167673108, 7.116197988111569, 3.3728264873240867, 3.0990185511790447, 2.5721117207742723, 3.6425073350099066, 1.5146662094192962, 1.177920161655542, 0.6928626292526012, 0.0, 9.54815832904664, 7.621488921778612, 5.8896008082777085, 4.543998628257887, 7.285014670019813, 3.600956409083981, 3.0990185511790447, 2.409161776660062, 3.5580989940557846, 2.737814722557703, 1.5502811356881578, 0.6652714168768531, 0.0), # 110 (9.41888727858293, 7.278137843488651, 7.7342573302469155, 8.190541440217391, 7.103013798111837, 3.365211591220851, 3.0843788256043156, 2.5639248971193416, 3.635453189300412, 1.5088092955700803, 1.173352206273259, 0.6907174572233054, 0.0, 9.528804976851852, 7.597892029456357, 5.866761031366295, 4.526427886710239, 7.270906378600824, 3.5894948559670783, 3.0843788256043156, 2.4037225651577505, 3.5515068990559184, 2.7301804800724643, 1.546851466049383, 0.6616488948626047, 0.0), # 111 (9.38954010854655, 7.238491614673214, 7.717000957361684, 8.167669509863124, 7.089878022539605, 3.357795140476554, 3.069781289744979, 2.5559712696235333, 3.628466258954427, 1.5029396003120044, 1.1688717929785184, 0.6885722851940093, 0.0, 9.509567365397805, 7.574295137134101, 5.844358964892591, 4.5088188009360115, 7.256932517908854, 3.5783597774729463, 3.069781289744979, 2.3984251003403956, 3.5449390112698027, 2.7225565032877084, 1.543400191472337, 0.6580446922430195, 0.0), # 112 (9.360504223703044, 7.1991320672204555, 7.699681523543391, 8.14487541186903, 7.076783786782469, 3.3505906987084666, 3.0552629818283847, 2.548271903658586, 3.6215709370862066, 1.4970761841531826, 1.1644873176921446, 0.6864327447087024, 0.0, 9.490443900843221, 7.550760191795725, 5.8224365884607225, 4.491228552459547, 7.243141874172413, 3.5675806651220205, 3.0552629818283847, 2.3932790705060474, 3.5383918933912346, 2.7149584706230105, 1.5399363047086783, 0.654466551565496, 0.0), # 113 (9.331480897900065, 7.16044741823174, 7.682538062518016, 8.122342065958001, 7.063595569710884, 3.343581854975776, 3.0410091042052896, 2.5409213581271333, 3.6148730119043533, 1.491328791978196, 1.1602073895188663, 0.684326014342748, 0.0, 9.471275414160035, 7.5275861577702265, 5.801036947594331, 4.473986375934587, 7.229746023808707, 3.557289901377987, 3.0410091042052896, 2.3882727535541255, 3.531797784855442, 2.7074473553193346, 1.5365076125036032, 0.6509497652937947, 0.0), # 114 (9.302384903003995, 7.122451598792792, 7.665580777256098, 8.100063378886334, 7.050271785259067, 3.3367503822909463, 3.027029825095781, 2.533917772616129, 3.6083749928895963, 1.4857063319970194, 1.1560257519045158, 0.6822531318799043, 0.0, 9.452006631660376, 7.5047844506789465, 5.7801287595225785, 4.457118995991058, 7.216749985779193, 3.5474848816625806, 3.027029825095781, 2.3833931302078186, 3.5251358926295335, 2.700021126295445, 1.5331161554512198, 0.647495599890254, 0.0), # 115 (9.273179873237634, 7.0850892578507265, 7.648776824986561, 8.077999612699802, 7.036792350922519, 3.330080178417474, 3.0133024087639466, 2.5272417970412473, 3.6020604464092765, 1.480198339612387, 1.1519343218785802, 0.6802102664572789, 0.0, 9.43260725975589, 7.482312931030067, 5.7596716093929015, 4.44059501883716, 7.204120892818553, 3.5381385158577463, 3.0133024087639466, 2.3786286988696244, 3.5183961754612594, 2.6926665375666015, 1.5297553649973124, 0.6440990234409752, 0.0), # 116 (9.243829442823772, 7.04830504435266, 7.632093362938321, 8.056111029444182, 7.02313718419674, 3.323555141118853, 2.9998041194738763, 2.5208740813181603, 3.5959129388307343, 1.4747943502270324, 1.1479250164705472, 0.6781935872119792, 0.0, 9.413047004858225, 7.46012945933177, 5.739625082352736, 4.424383050681096, 7.1918258776614685, 3.5292237138454245, 2.9998041194738763, 2.3739679579420376, 3.51156859209837, 2.6853703431480613, 1.5264186725876645, 0.6407550040320601, 0.0), # 117 (9.214297245985211, 7.0120436072457135, 7.615497548340306, 8.03435789116525, 7.009286202577227, 3.317159168158581, 2.9865122214896576, 2.51479527536254, 3.5899160365213114, 1.46948389924369, 1.143989752709904, 0.6761992632811126, 0.0, 9.393295573379024, 7.438191896092237, 5.71994876354952, 4.40845169773107, 7.179832073042623, 3.5207133855075567, 2.9865122214896576, 2.369399405827558, 3.5046431012886137, 2.678119297055084, 1.5230995096680613, 0.6374585097496104, 0.0), # 118 (9.184546916944742, 6.976249595477001, 7.598956538421437, 8.012700459908778, 6.99521932355948, 3.3108761573001524, 2.973403979075378, 2.5089860290900607, 3.5840533058483475, 1.4642565220650932, 1.1401204476261382, 0.6742234638017862, 0.0, 9.373322671729932, 7.416458101819647, 5.70060223813069, 4.392769566195279, 7.168106611696695, 3.5125804407260848, 2.973403979075378, 2.3649115409286803, 3.49760966177974, 2.670900153302927, 1.5197913076842873, 0.6342045086797276, 0.0), # 119 (9.154542089925162, 6.940867657993644, 7.582437490410635, 7.991098997720545, 6.980916464638998, 3.304690006307063, 2.9604566564951265, 2.5034269924163928, 3.578308313179186, 1.4591017540939766, 1.136309018248736, 0.6722623579111081, 0.0, 9.353098006322597, 7.394885937022188, 5.68154509124368, 4.377305262281929, 7.156616626358372, 3.50479778938295, 2.9604566564951265, 2.360492861647902, 3.490458232319499, 2.663699665906849, 1.516487498082127, 0.6309879689085133, 0.0), # 120 (9.124246399149268, 6.90584244374276, 7.565907561536823, 7.969513766646325, 6.966357543311279, 3.29858461294281, 2.94764751801299, 2.4980988152572112, 3.572664624881166, 1.4540091307330743, 1.1325473816071863, 0.6703121147461852, 0.0, 9.33259128356866, 7.373433262208036, 5.662736908035931, 4.362027392199222, 7.145329249762332, 3.497338341360096, 2.94764751801299, 2.356131866387721, 3.4831787716556395, 2.656504588882109, 1.5131815123073646, 0.6278038585220692, 0.0), # 121 (9.093623478839854, 6.871118601671464, 7.549333909028926, 7.947905028731892, 6.951522477071823, 3.292543874970886, 2.9349538278930587, 2.492982147528187, 3.5671058073216297, 1.4489681873851195, 1.1288274547309753, 0.6683689034441251, 0.0, 9.31177220987977, 7.352057937885375, 5.644137273654876, 4.346904562155357, 7.1342116146432595, 3.490175006539462, 2.9349538278930587, 2.351817053550633, 3.4757612385359113, 2.6493016762439643, 1.5098667818057854, 0.6246471456064968, 0.0), # 122 (9.062636963219719, 6.836640780726876, 7.532683690115864, 7.92623304602302, 6.936391183416127, 3.28655169015479, 2.9223528503994194, 2.4880576391449933, 3.5616154268679177, 1.443968459452847, 1.1251411546495909, 0.6664288931420351, 0.0, 9.290610491667572, 7.330717824562385, 5.625705773247954, 4.33190537835854, 7.123230853735835, 3.4832806948029904, 2.9223528503994194, 2.3475369215391355, 3.4681955917080636, 2.642077682007674, 1.5065367380231727, 0.621512798247898, 0.0), # 123 (9.031250486511654, 6.802353629856113, 7.515924062026559, 7.90445808056549, 6.920943579839691, 3.2805919562580144, 2.9098218497961597, 2.483305940023303, 3.5561770498873715, 1.4389994823389904, 1.1214803983925201, 0.664488252977023, 0.0, 9.269075835343711, 7.309370782747252, 5.6074019919625995, 4.316998447016971, 7.112354099774743, 3.476628316032624, 2.9098218497961597, 2.3432799687557244, 3.4604717899198456, 2.634819360188497, 1.5031848124053118, 0.618395784532374, 0.0), # 124 (8.999427682938459, 6.768201798006293, 7.499022181989936, 7.88254039440507, 6.905159583838015, 3.274648571044058, 2.8973380903473696, 2.478707700078788, 3.5507742427473308, 1.4340507914462837, 1.1178371029892504, 0.6625431520861957, 0.0, 9.247137947319828, 7.2879746729481525, 5.5891855149462515, 4.30215237433885, 7.1015484854946616, 3.470190780110303, 2.8973380903473696, 2.3390346936028985, 3.4525797919190073, 2.6275134648016905, 1.4998044363979874, 0.6152910725460268, 0.0), # 125 (8.967132186722928, 6.734129934124536, 7.481945207234916, 7.8604402495875405, 6.889019112906595, 3.2687054322764144, 2.884878836317135, 2.474243569227122, 3.545390571815139, 1.4291119221774609, 1.1142031854692689, 0.6605897596066612, 0.0, 9.224766534007578, 7.266487355673273, 5.571015927346345, 4.287335766532382, 7.090781143630278, 3.463940996917971, 2.884878836317135, 2.334789594483153, 3.4445095564532977, 2.620146749862514, 1.4963890414469831, 0.6121936303749579, 0.0), # 126 (8.93432763208786, 6.7000826871579555, 7.464660294990421, 7.838117908158674, 6.8725020845409315, 3.26274643771858, 2.872421351969547, 2.469894197383977, 3.5400096034581354, 1.4241724099352562, 1.1105705628620632, 0.6586242446755264, 0.0, 9.201931301818599, 7.244866691430789, 5.552852814310316, 4.272517229805768, 7.080019206916271, 3.457851876337568, 2.872421351969547, 2.3305331697989855, 3.4362510422704657, 2.612705969386225, 1.4929320589980841, 0.6090984261052688, 0.0), # 127 (8.900977653256046, 6.666004706053673, 7.447134602485375, 7.815533632164248, 6.855588416236526, 3.2567554851340508, 2.859942901568691, 2.465640234465026, 3.534614904043661, 1.4192217901224033, 1.1069311521971208, 0.6566427764298991, 0.0, 9.178601957164537, 7.223070540728888, 5.534655760985604, 4.257665370367209, 7.069229808087322, 3.4518963282510366, 2.859942901568691, 2.3262539179528936, 3.427794208118263, 2.6051778773880834, 1.4894269204970751, 0.6060004278230613, 0.0), # 128 (8.867045884450281, 6.631840639758805, 7.4293352869486995, 7.792647683650037, 6.838258025488874, 3.250716472286322, 2.8474207493786565, 2.4614623303859418, 3.529190039939058, 1.4142495981416365, 1.1032768705039286, 0.6546415240068865, 0.0, 9.154748206457038, 7.20105676407575, 5.516384352519642, 4.242748794424909, 7.058380079878116, 3.4460472625403185, 2.8474207493786565, 2.321940337347373, 3.419129012744437, 2.597549227883346, 1.4858670573897401, 0.6028946036144368, 0.0), # 129 (8.832495959893366, 6.5975351372204685, 7.411229505609316, 7.769420324661814, 6.820490829793475, 3.2446132969388883, 2.8348321596635313, 2.457341135062396, 3.5237185775116666, 1.4092453693956895, 1.0995996348119743, 0.6526166565435961, 0.0, 9.130339756107748, 7.178783221979556, 5.4979981740598705, 4.2277361081870675, 7.047437155023333, 3.4402775890873545, 2.8348321596635313, 2.3175809263849203, 3.4102454148967376, 2.589806774887272, 1.4822459011218634, 0.5997759215654973, 0.0), # 130 (8.797291513808094, 6.563032847385783, 7.392784415696151, 7.7458118172453565, 6.802266746645829, 3.238429856855247, 2.8221543966874045, 2.4532572984100627, 3.5181840831288285, 1.4041986392872965, 1.0958913621507447, 0.6505643431771354, 0.0, 9.105346312528312, 7.156207774948489, 5.479456810753724, 4.212595917861889, 7.036368166257657, 3.4345602177740875, 2.8221543966874045, 2.3131641834680337, 3.4011333733229145, 2.5819372724151193, 1.4785568831392302, 0.596639349762344, 0.0), # 131 (8.76139618041726, 6.528278419201865, 7.373967174438122, 7.72178242344644, 6.783565693541435, 3.2321500497988933, 2.8093647247143627, 2.449191470344614, 3.5125701231578845, 1.3990989432191914, 1.0921439695497275, 0.6484807530446118, 0.0, 9.079737582130376, 7.13328828349073, 5.460719847748638, 4.1972968296575734, 7.025140246315769, 3.4288680584824593, 2.8093647247143627, 2.3086786069992096, 3.3917828467707176, 2.573927474482147, 1.4747934348876244, 0.5934798562910787, 0.0), # 132 (8.724773593943663, 6.493216501615832, 7.354744939064153, 7.697292405310838, 6.764367587975791, 3.225757773533322, 2.7964404080084946, 2.445124300781722, 3.5068602639661752, 1.3939358165941083, 1.0883493740384103, 0.6463620552831327, 0.0, 9.053483271325586, 7.10998260811446, 5.44174687019205, 4.181807449782324, 7.0137205279323505, 3.4231740210944106, 2.7964404080084946, 2.3041126953809443, 3.3821837939878954, 2.5657641351036133, 1.4709489878128308, 0.590292409237803, 0.0), # 133 (8.687387388610095, 6.457791743574804, 7.33508486680317, 7.672302024884328, 6.7446523474443945, 3.2192369258220297, 2.7833587108338893, 2.44103643963706, 3.5010380719210428, 1.388698794814781, 1.0844994926462799, 0.6442044190298056, 0.0, 9.026553086525583, 7.0862486093278605, 5.422497463231399, 4.166096384444343, 7.0020761438420855, 3.417451015491884, 2.7833587108338893, 2.2994549470157355, 3.3723261737221972, 2.557434008294776, 1.4670169733606342, 0.5870719766886187, 0.0), # 134 (8.649201198639354, 6.421948794025897, 7.314954114884091, 7.646771544212684, 6.724399889442747, 3.212571404428512, 2.770096897454634, 2.4369085368263, 3.4950871133898262, 1.3833774132839443, 1.0805862424028239, 0.6420040134217377, 0.0, 8.99891673414202, 7.0620441476391145, 5.402931212014119, 4.150132239851832, 6.9901742267796525, 3.41167195155682, 2.770096897454634, 2.2946938603060802, 3.3621999447213735, 2.548923848070895, 1.4629908229768183, 0.583813526729627, 0.0), # 135 (8.610178658254235, 6.385632301916229, 7.294319840535841, 7.62066122534168, 6.703590131466344, 3.205745107116265, 2.7566322321348173, 2.4327212422651154, 3.4889909547398688, 1.3779612074043308, 1.0766015403375297, 0.6397570075960368, 0.0, 8.970543920586536, 7.037327083556404, 5.383007701687648, 4.133883622212991, 6.9779819094797375, 3.4058097391711617, 2.7566322321348173, 2.289817933654475, 3.351795065733172, 2.540220408447227, 1.4588639681071682, 0.58051202744693, 0.0), # 136 (8.570283401677534, 6.348786916192918, 7.273149200987342, 7.593931330317094, 6.682202991010689, 3.1987419316487826, 2.7429419791385277, 2.428455205869179, 3.4827331623385107, 1.3724397125786756, 1.0725373034798844, 0.63745957068981, 0.0, 8.941404352270776, 7.012055277587909, 5.362686517399421, 4.117319137736026, 6.965466324677021, 3.3998372882168506, 2.7429419791385277, 2.284815665463416, 3.3411014955053444, 2.5313104434390317, 1.4546298401974684, 0.577162446926629, 0.0), # 137 (8.529479063132047, 6.311357285803083, 7.251409353467515, 7.566542121184698, 6.660218385571278, 3.1915457757895624, 2.729003402729852, 2.4240910775541624, 3.4762973025530934, 1.3668024642097119, 1.0683854488593754, 0.6351078718401649, 0.0, 8.91146773560639, 6.986186590241813, 5.341927244296877, 4.100407392629135, 6.952594605106187, 3.3937275085758274, 2.729003402729852, 2.2796755541354017, 3.330109192785639, 2.5221807070615663, 1.450281870693503, 0.5737597532548258, 0.0), # 138 (8.487729276840568, 6.273288059693839, 7.229067455205284, 7.538453859990269, 6.63761623264361, 3.184140537302099, 2.7147937671728797, 2.4196095072357395, 3.469666941750957, 1.3610389977001744, 1.0641378935054902, 0.6326980801842089, 0.0, 8.880703777005019, 6.959678882026297, 5.32068946752745, 4.083116993100523, 6.939333883501914, 3.3874533101300353, 2.7147937671728797, 2.274386098072928, 3.318808116321805, 2.51281795333009, 1.4458134910410567, 0.5702989145176218, 0.0), # 139 (8.444997677025897, 6.234523886812306, 7.206090663429573, 7.509626808779583, 6.614376449723186, 3.176510113949888, 2.7002903367316984, 2.4149911448295818, 3.462825646299444, 1.3551388484527966, 1.0597865544477159, 0.6302263648590494, 0.0, 8.849082182878314, 6.932490013449542, 5.298932772238579, 4.0654165453583895, 6.925651292598888, 3.3809876027614147, 2.7002903367316984, 2.2689357956784915, 3.307188224861593, 2.5032089362598615, 1.4412181326859146, 0.5667748988011189, 0.0), # 140 (8.40124789791083, 6.195009416105602, 7.1824461353693, 7.480021229598415, 6.590478954305501, 3.1686384034964257, 2.6854703756703975, 2.4102166402513627, 3.455756982565893, 1.349091551870313, 1.0553233487155398, 0.6276888950017938, 0.0, 8.816572659637913, 6.904577845019731, 5.276616743577699, 4.047274655610939, 6.911513965131786, 3.3743032963519077, 2.6854703756703975, 2.26331314535459, 3.2952394771527507, 2.4933404098661387, 1.4364892270738603, 0.5631826741914184, 0.0), # 141 (8.356443573718156, 6.154689296520844, 7.158101028253392, 7.44959738449254, 6.565903663886058, 3.1605093037052074, 2.670311148253063, 2.4052666434167547, 3.448444516917647, 1.3428866433554572, 1.0507401933384497, 0.6250818397495496, 0.0, 8.783144913695466, 6.875900237245045, 5.253700966692247, 4.028659930066371, 6.896889033835294, 3.3673733007834565, 2.670311148253063, 2.2575066455037196, 3.282951831943029, 2.4831991281641805, 1.4316202056506786, 0.5595172087746222, 0.0), # 142 (8.310548338670674, 6.113508177005149, 7.133022499310772, 7.418315535507731, 6.540630495960352, 3.152106712339729, 2.6547899187437842, 2.4001218042414303, 3.4408718157220486, 1.3365136583109634, 1.0460290053459322, 0.6224013682394242, 0.0, 8.748768651462617, 6.846415050633665, 5.230145026729661, 4.009540974932889, 6.881743631444097, 3.360170525938002, 2.6547899187437842, 2.251504794528378, 3.270315247980176, 2.472771845169244, 1.4266044998621543, 0.5557734706368318, 0.0), # 143 (8.263525826991184, 6.071410706505636, 7.107177705770357, 7.386135944689768, 6.514639368023886, 3.1434145271634857, 2.6388839514066493, 2.3947627726410623, 3.4330224453464364, 1.3299621321395652, 1.0411817017674754, 0.619643649608525, 0.0, 8.713413579351014, 6.816080145693774, 5.205908508837376, 3.9898863964186946, 6.866044890692873, 3.3526678816974873, 2.6388839514066493, 2.245296090831061, 3.257319684011943, 2.4620453148965895, 1.4214355411540713, 0.5519464278641489, 0.0), # 144 (8.215339672902477, 6.0283415339694235, 7.080533804861075, 7.353018874084421, 6.487910197572155, 3.134416645939974, 2.6225705105057466, 2.3891701985313234, 3.424879972158151, 1.3232216002439972, 1.036190199632566, 0.6168048529939595, 0.0, 8.6770494037723, 6.784853382933553, 5.180950998162829, 3.969664800731991, 6.849759944316302, 3.344838277943853, 2.6225705105057466, 2.238869032814267, 3.2439550987860777, 2.451006291361474, 1.4161067609722149, 0.548031048542675, 0.0), # 145 (8.16595351062735, 5.984245308343629, 7.053057953811847, 7.318924585737469, 6.460422902100661, 3.1250969664326886, 2.605826860305165, 2.3833247318278863, 3.4164279625245353, 1.3162815980269928, 1.0310464159706916, 0.6138811475328351, 0.0, 8.639645831138118, 6.7526926228611845, 5.155232079853457, 3.948844794080978, 6.832855925049071, 3.3366546245590407, 2.605826860305165, 2.2322121188804918, 3.2302114510503306, 2.439641528579157, 1.4106115907623695, 0.5440223007585119, 0.0), # 146 (8.1153309743886, 5.93906667857537, 7.024717309851591, 7.283813341694685, 6.4321573991049, 3.1154393864051255, 2.5886302650689905, 2.3772070224464232, 3.40764998281293, 1.3091316608912866, 1.0257422678113395, 0.6108687023622593, 0.0, 8.601172567860118, 6.719555725984851, 5.1287113390566965, 3.9273949826738592, 6.81529996562586, 3.3280898314249923, 2.5886302650689905, 2.2253138474322327, 3.21607869955245, 2.4279377805648954, 1.4049434619703185, 0.5399151525977609, 0.0), # 147 (8.063435698409021, 5.892750293611764, 6.9954790302092364, 7.247645404001847, 6.403093606080374, 3.105427803620781, 2.5709579890613132, 2.3707977203026074, 3.398529599390676, 1.301761324239612, 1.0202696721839972, 0.6077636866193392, 0.0, 8.561599320349941, 6.68540055281273, 5.101348360919985, 3.905283972718835, 6.797059198781352, 3.3191168084236504, 2.5709579890613132, 2.2181627168719866, 3.201546803040187, 2.4158818013339496, 1.3990958060418472, 0.535704572146524, 0.0), # 148 (8.010231316911412, 5.845240802399927, 6.965310272113703, 7.210381034704727, 6.37321144052258, 3.0950461158431497, 2.5527872965462204, 2.3640774753121114, 3.3890503786251127, 1.2941601234747035, 1.0146205461181517, 0.6045622694411826, 0.0, 8.520895795019237, 6.650184963853008, 5.073102730590758, 3.88248037042411, 6.778100757250225, 3.3097084654369557, 2.5527872965462204, 2.21074722560225, 3.18660572026129, 2.403460344901576, 1.3930620544227408, 0.5313855274909026, 0.0), # 149 (7.955681464118564, 5.796482853886981, 6.934178192793912, 7.171980495849104, 6.342490819927017, 3.0842782208357287, 2.5340954517878003, 2.3570269373906068, 3.3791958868835836, 1.2863175939992944, 1.0087868066432906, 0.601260619964897, 0.0, 8.479031698279647, 6.6138668196138655, 5.043934033216452, 3.8589527819978824, 6.758391773767167, 3.2998377123468496, 2.5340954517878003, 2.2030558720255207, 3.1712454099635083, 2.390660165283035, 1.3868356385587826, 0.5269529867169983, 0.0), # 150 (7.899749774253275, 5.746421097020041, 6.902049949478785, 7.132404049480748, 6.310911661789184, 3.0731080163620113, 2.5148597190501416, 2.3496267564537683, 3.3689496905334293, 1.2782232712161197, 1.002760370788901, 0.5978549073275894, 0.0, 8.435976736542818, 6.576403980603482, 5.013801853944504, 3.8346698136483583, 6.737899381066859, 3.2894774590352753, 2.5148597190501416, 2.1950771545442938, 3.155455830894592, 2.377468016493583, 1.3804099898957571, 0.5224019179109128, 0.0), # 151 (7.842399881538343, 5.6950001807462245, 6.868892699397251, 7.091611957645439, 6.278453883604579, 3.0615194001854955, 2.4950573625973322, 2.3418575824172674, 3.3582953559419897, 1.2698666905279126, 0.9965331555844703, 0.5943413006663675, 0.0, 8.391700616220398, 6.537754307330042, 4.982665777922351, 3.809600071583737, 6.716590711883979, 3.2786006153841742, 2.4950573625973322, 2.1867995715610684, 3.1392269418022893, 2.36387065254848, 1.3737785398794504, 0.5177272891587478, 0.0), # 152 (7.78359542019656, 5.642164754012652, 6.834673599778224, 7.049564482388949, 6.245097402868703, 3.049496270069676, 2.4746656466934596, 2.333700065196776, 3.3472164494766075, 1.2612373873374074, 0.9900970780594861, 0.5907159691183387, 0.0, 8.346173043724027, 6.497875660301725, 4.95048539029743, 3.783712162012222, 6.694432898953215, 3.2671800912754865, 2.4746656466934596, 2.17821162147834, 3.1225487014343516, 2.3498548274629836, 1.3669347199556448, 0.5129240685466048, 0.0), # 153 (7.723300024450729, 5.587859465766439, 6.7993598078506325, 7.006221885757057, 6.210822137077053, 3.0370225237780484, 2.453661835602614, 2.325134854707968, 3.3356965375046217, 1.2523248970473384, 0.9834440552434354, 0.5869750818206104, 0.0, 8.299363725465357, 6.456725900026714, 4.917220276217177, 3.7569746911420143, 6.671393075009243, 3.2551887965911552, 2.453661835602614, 2.169301802698606, 3.1054110685385266, 2.335407295252353, 1.3598719615701265, 0.5079872241605854, 0.0), # 154 (7.6614773285236355, 5.532028964954703, 6.762918480843396, 6.961544429795533, 6.175608003725131, 3.0240820590741087, 2.4320231935888805, 2.316142600866515, 3.323719186393376, 1.2431187550604388, 0.9765660041658056, 0.5831148079102902, 0.0, 8.251242367856026, 6.414262887013191, 4.882830020829028, 3.7293562651813157, 6.647438372786752, 3.242599641213121, 2.4320231935888805, 2.160058613624363, 3.0878040018625654, 2.320514809931845, 1.3525836961686795, 0.5029117240867913, 0.0), # 155 (7.598090966638081, 5.474617900524564, 6.725316775985439, 6.915492376550157, 6.139434920308432, 3.0106587737213526, 2.40972698491635, 2.3067039535880913, 3.3112679625102084, 1.2336084967794434, 0.9694548418560842, 0.5791313165244852, 0.0, 8.201778677307685, 6.370444481769337, 4.84727420928042, 3.7008254903383295, 6.622535925020417, 3.2293855350233276, 2.40972698491635, 2.150470552658109, 3.069717460154216, 2.3051641255167192, 1.3450633551970879, 0.49769253641132405, 0.0), # 156 (7.533104573016862, 5.415570921423138, 6.686521850505682, 6.868025988066703, 6.102282804322456, 2.9967365654832747, 2.3867504738491094, 2.2967995627883675, 3.2983264322224626, 1.2237836576070855, 0.9621024853437583, 0.5750207768003032, 0.0, 8.150942360231976, 6.325228544803333, 4.810512426718791, 3.671350972821256, 6.596652864444925, 3.2155193879037145, 2.3867504738491094, 2.140526118202339, 3.051141402161228, 2.2893419960222348, 1.3373043701011365, 0.4923246292202853, 0.0), # 157 (7.464680946405239, 5.353748694041236, 6.644659961585297, 6.817327186238432, 6.062454070580665, 2.9814309445183143, 2.3625533604639286, 2.285748730145572, 3.2838873638663655, 1.213341479072786, 0.9542659587564906, 0.570633297016195, 0.0, 8.096485859415345, 6.276966267178143, 4.771329793782452, 3.640024437218358, 6.567774727732731, 3.200048222203801, 2.3625533604639286, 2.129593531798796, 3.0312270352903323, 2.2724423954128112, 1.3289319923170593, 0.48670442673102154, 0.0), # 158 (7.382286766978402, 5.282809876299521, 6.58894818200249, 6.7529828690913405, 6.010127539854418, 2.95965229467081, 2.334106381692858, 2.2696723053184926, 3.2621424204073812, 1.2005702485246865, 0.9445694892698324, 0.5651135436402591, 0.0, 8.025427646920194, 6.216248980042849, 4.722847446349162, 3.601710745574059, 6.5242848408147625, 3.17754122744589, 2.334106381692858, 2.114037353336293, 3.005063769927209, 2.250994289697114, 1.3177896364004982, 0.4802554432999565, 0.0), # 159 (7.284872094904309, 5.202172001162321, 6.51826746496324, 6.673933132806645, 5.94428008756453, 2.9308657560278157, 2.301121874191892, 2.248166328969728, 3.2324750757428835, 1.1853014129657236, 0.9328765847682567, 0.5583751624073207, 0.0, 7.93642060889358, 6.142126786480525, 4.664382923841283, 3.55590423889717, 6.464950151485767, 3.147432860557619, 2.301121874191892, 2.0934755400198686, 2.972140043782265, 2.2246443776022153, 1.3036534929926482, 0.47292472737839286, 0.0), # 160 (7.17322205458596, 5.11236079574043, 6.4333724765919245, 6.5809293778175455, 5.865595416188075, 2.895420057582683, 2.263840723003438, 2.2215002221290754, 3.1952765889996724, 1.1676645482927346, 0.9192902757666179, 0.5504806224089643, 0.0, 7.830374044819097, 6.055286846498606, 4.596451378833089, 3.5029936448782033, 6.390553177999345, 3.1101003109807053, 2.263840723003438, 2.0681571839876307, 2.9327977080940375, 2.1936431259391824, 1.2866744953183848, 0.46476007234003913, 0.0), # 161 (7.048121770426357, 5.013901987144635, 6.335017883012913, 6.474723004557244, 5.7747572282021356, 2.853663928328766, 2.2225038131699044, 2.1899434058263343, 3.150938219304545, 1.147789230402558, 0.9039135927797701, 0.5414923927367745, 0.0, 7.708197254180333, 5.956416320104519, 4.519567963898851, 3.4433676912076736, 6.30187643860909, 3.065920768156868, 2.2225038131699044, 2.03833137737769, 2.8873786141010678, 2.158241001519082, 1.2670035766025827, 0.4558092715586033, 0.0), # 162 (6.9103563668284975, 4.90732130248573, 6.223958350350585, 6.35606541345895, 5.672449226083792, 2.8059460972594175, 2.1773520297337003, 2.153765301091302, 3.0998512257843016, 1.1258050351920315, 0.8868495663225682, 0.5314729424823361, 0.0, 7.570799536460879, 5.846202367305696, 4.43424783161284, 3.3774151055760937, 6.199702451568603, 3.015271421527823, 2.1773520297337003, 2.0042472123281554, 2.836224613041896, 2.118688471152984, 1.2447916700701172, 0.4461201184077937, 0.0), # 163 (6.760710968195384, 4.793144468874502, 6.100948544729314, 6.225708004955863, 5.559355112310126, 2.752615293367992, 2.128626257737233, 2.113235328953779, 3.0424068675657407, 1.1018415385579923, 0.8682012269098661, 0.5204847407372336, 0.0, 7.419090191144328, 5.725332148109569, 4.34100613454933, 3.305524615673976, 6.0848137351314815, 2.9585294605352903, 2.128626257737233, 1.9661537809771372, 2.779677556155063, 2.075236001651955, 1.2201897089458629, 0.43574040626131844, 0.0), # 164 (6.599970698930017, 4.671897213421746, 5.966743132273474, 6.084402179481189, 5.436158589358215, 2.694020245647842, 2.076567382222911, 2.068622910443561, 2.9789964037756596, 1.0760283163972786, 0.8480716050565187, 0.5085902565930517, 0.0, 7.25397851771427, 5.594492822523568, 4.2403580252825925, 3.2280849491918353, 5.957992807551319, 2.8960720746209856, 2.076567382222911, 1.9243001754627442, 2.7180792946791077, 2.0281340598270634, 1.1933486264546949, 0.42471792849288603, 0.0), # 165 (6.428920683435397, 4.54410526323825, 5.82209677910744, 5.932899337468126, 5.3035433597051425, 2.630509683092322, 2.021416288233143, 2.020197466590449, 2.9100110935408576, 1.0484949446067282, 0.8265637312773799, 0.49585195914137514, 0.0, 7.0763738156542955, 5.454371550555126, 4.1328186563869, 3.145484833820184, 5.820022187081715, 2.8282764532266285, 2.021416288233143, 1.8789354879230868, 2.6517716798525712, 1.9776331124893758, 1.1644193558214881, 0.41310047847620457, 0.0), # 166 (6.248346046114523, 4.410294345434805, 5.667764151355587, 5.771950879349882, 5.1621931258279865, 2.562432334694784, 1.9634138608103373, 1.9682284184242402, 2.835842195988133, 1.0193709990831787, 0.8037806360873045, 0.48233231747378824, 0.0, 6.887185384447996, 5.30565549221167, 4.0189031804365225, 3.058112997249536, 5.671684391976266, 2.755519785793936, 1.9634138608103373, 1.8303088104962744, 2.5810965629139933, 1.9239836264499612, 1.1335528302711175, 0.4009358495849823, 0.0), # 167 (6.059031911370395, 4.270990187122201, 5.50449991514229, 5.60230820555966, 5.012791590203827, 2.490136929448583, 1.902800984996902, 1.9129851869747332, 2.7568809702442847, 0.9887860557234682, 0.7798253500011468, 0.468093800681876, 0.0, 6.6873225235789615, 5.149031807500635, 3.8991267500057343, 2.9663581671704042, 5.513761940488569, 2.6781792617646265, 1.902800984996902, 1.7786692353204163, 2.5063957951019136, 1.867436068519887, 1.100899983028458, 0.3882718351929274, 0.0), # 168 (5.861763403606015, 4.1267185154112305, 5.333058736591924, 5.4247227165306615, 4.856022455309747, 2.413972196347072, 1.8398185458352458, 1.8547371932717271, 2.6735186754361124, 0.9568696904244344, 0.7548009035337614, 0.45319887785722274, 0.0, 6.477694532530785, 4.985187656429449, 3.774004517668807, 2.8706090712733023, 5.347037350872225, 2.596632070580418, 1.8398185458352458, 1.724265854533623, 2.4280112276548733, 1.808240905510221, 1.066611747318385, 0.3751562286737483, 0.0), # 169 (5.657325647224384, 3.978005057412684, 5.154195281828863, 5.23994581269609, 4.692569423622822, 2.334286864383604, 1.7747074283677764, 1.7937538583450197, 2.5861465706904125, 0.9237514790829147, 0.7288103272000027, 0.4377100180914133, 0.0, 6.259210710787055, 4.814810199005545, 3.6440516360000137, 2.7712544372487433, 5.172293141380825, 2.5112554016830275, 1.7747074283677764, 1.6673477602740028, 2.346284711811411, 1.7466486042320304, 1.0308390563657726, 0.36163682340115316, 0.0), # 170 (5.4465037666285, 3.82537554023735, 4.968664216977482, 5.048728894489152, 4.523116197620137, 2.2514296625515327, 1.7077085176369027, 1.7303046032244096, 2.495155915133985, 0.8895609975957474, 0.7019566515147247, 0.4216896904760322, 0.0, 6.032780357831365, 4.638586595236354, 3.509783257573624, 2.6686829927872413, 4.99031183026797, 2.4224264445141737, 1.7077085176369027, 1.6081640446796661, 2.2615580988100685, 1.6829096314963843, 0.9937328433954964, 0.3477614127488501, 0.0), # 171 (5.230082886221365, 3.6693556909960217, 4.777220208162156, 4.851823362343048, 4.348346479778769, 2.1657493198442115, 1.6390626986850327, 1.664658848939696, 2.4009379678936282, 0.8544278218597702, 0.6743429069927823, 0.4052003641026643, 0.0, 5.799312773147303, 4.457204005129307, 3.3717145349639117, 2.56328346557931, 4.8018759357872565, 2.3305223885155746, 1.6390626986850327, 1.5469637998887225, 2.1741732398893845, 1.6172744541143496, 0.9554440416324312, 0.3335777900905475, 0.0), # 172 (5.00884813040598, 3.510471236799489, 4.58061792150726, 4.649980616690982, 4.168943972575801, 2.077594565254994, 1.5690108565545748, 1.5970860165206766, 2.303883988096141, 0.8184815277718206, 0.6460721241490297, 0.3883045080628938, 0.0, 5.5597172562184625, 4.271349588691831, 3.2303606207451483, 2.4554445833154612, 4.607767976192282, 2.235920423128947, 1.5690108565545748, 1.483996118039281, 2.0844719862879004, 1.5499935388969943, 0.916123584301452, 0.31913374879995354, 0.0), # 173 (4.783584623585344, 3.349247904758541, 4.3796120231371685, 4.443952057966156, 3.9855923784883105, 1.987314127777233, 1.4977938762879377, 1.5278555269971503, 2.204385234868321, 0.7818516912287369, 0.6172473334983214, 0.37106459144830567, 0.0, 5.314903106528433, 4.081710505931362, 3.0862366674916064, 2.34555507368621, 4.408770469736642, 2.1389977377960103, 1.4977938762879377, 1.4195100912694523, 1.9927961892441552, 1.4813173526553853, 0.8759224046274336, 0.3044770822507765, 0.0), # 174 (4.555077490162455, 3.18621142198397, 4.174957179176257, 4.2344890866017755, 3.7989753999933793, 1.8952567364042834, 1.425652642927529, 1.457236801398915, 2.102832967336968, 0.7446678881273562, 0.5879715655555117, 0.35354308335048457, 0.0, 5.0657796235608075, 3.8889739168553294, 2.939857827777558, 2.234003664382068, 4.205665934673936, 2.040131521958481, 1.425652642927529, 1.3537548117173452, 1.8994876999966896, 1.411496362200592, 0.8349914358352515, 0.28965558381672457, 0.0), # 175 (4.324111854540319, 3.0218875155865668, 3.9674080557488987, 4.0223431030310435, 3.609776739568087, 1.8017711201294973, 1.3528280415157574, 1.3854992607557703, 1.9996184446288805, 0.7070596943645169, 0.558347850835455, 0.33580245286101496, 0.0, 4.813256106799174, 3.693826981471164, 2.791739254177275, 2.1211790830935504, 3.999236889257761, 1.9396989650580787, 1.3528280415157574, 1.2869793715210696, 1.8048883697840434, 1.3407810343436815, 0.7934816111497798, 0.2747170468715061, 0.0), # 176 (4.0914728411219325, 2.856801912677122, 3.7577193189794698, 3.808265507687162, 3.4186800996895155, 1.7072060079462288, 1.2795609570950313, 1.3129123260975137, 1.8951329258708567, 0.6691566858370562, 0.528479219853006, 0.3179051690714816, 0.0, 4.5582418557271245, 3.496956859786297, 2.6423960992650297, 2.0074700575111684, 3.7902658517417134, 1.838077256536519, 1.2795609570950313, 1.2194328628187348, 1.7093400498447577, 1.269421835895721, 0.751543863795894, 0.25970926478882933, 0.0), # 177 (3.8579455743102966, 2.6914803403664256, 3.5466456349923448, 3.593007701003337, 3.226369182834742, 1.6119101288478317, 1.2060922747077587, 1.239745418453944, 1.7897676701896952, 0.6310884384418126, 0.49846870312301883, 0.299913701073469, 0.0, 4.301646169828252, 3.299050711808158, 2.4923435156150937, 1.8932653153254375, 3.5795353403793904, 1.7356435858355217, 1.2060922747077587, 1.1513643777484512, 1.613184591417371, 1.1976692336677792, 0.7093291269984691, 0.24468003094240237, 0.0), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_allighting_rate = ( (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 0 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 1 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 2 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 3 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 4 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 5 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 6 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 7 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 8 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 9 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 10 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 11 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 12 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 13 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 14 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 15 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 16 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 17 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 18 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 19 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 20 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 21 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 22 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 23 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 24 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 25 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 26 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 27 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 28 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 29 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 30 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 31 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 32 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 33 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 34 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 35 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 36 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 37 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 38 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 39 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 40 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 41 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 42 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 43 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 44 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 45 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 46 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 47 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 48 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 49 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 50 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 51 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 52 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 53 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 54 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 55 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 56 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 57 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 58 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 59 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 60 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 61 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 62 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 63 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 64 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 65 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 66 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 67 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 68 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 69 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 70 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 71 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 72 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 73 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 74 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 75 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 76 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 77 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 78 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 79 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 80 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 81 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 82 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 83 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 84 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 85 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 86 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 87 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 88 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 89 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 90 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 91 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 92 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 93 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 94 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 95 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 96 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 97 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 98 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 99 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 100 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 101 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 102 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 103 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 104 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 105 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 106 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 107 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 108 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 109 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 110 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 111 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 112 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 113 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 114 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 115 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 116 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 117 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 118 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 119 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 120 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 121 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 122 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 123 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 124 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 125 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 126 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 127 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 128 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 129 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 130 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 131 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 132 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 133 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 134 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 135 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 136 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 137 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 138 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 139 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 140 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 141 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 142 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 143 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 144 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 145 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 146 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 147 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 148 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 149 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 150 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 151 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 152 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 153 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 154 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 155 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 156 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 157 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 158 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 159 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 160 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 161 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 162 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 163 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 164 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 165 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 166 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 167 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 168 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 169 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 170 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 171 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 172 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 173 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 174 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 175 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 176 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 177 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 178 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 179 ) """ parameters for reproducibiliy. More information: https://numpy.org/doc/stable/reference/random/parallel.html """ #initial entropy entropy = 8991598675325360468762009371570610170 #index for seed sequence child child_seed_index = ( 1, # 0 30, # 1 )
# Problem Link : https://codeforces.com/problemset/problem/339/A# s = input() nums = list(s[0:len(s):2]) nums.sort() j = 0 for i in range(len(s)): if i%2 == 0: print(nums[j], end="") j += 1 else: print("+", end="")
# # PySNMP MIB module CISCO-SNMPv2-CAPABILITY (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-SNMPv2-CAPABILITY # Produced by pysmi-0.3.4 at Wed May 1 12:12:36 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion") ciscoAgentCapability, = mibBuilder.importSymbols("CISCO-SMI", "ciscoAgentCapability") ModuleCompliance, NotificationGroup, AgentCapabilities = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup", "AgentCapabilities") TimeTicks, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, MibIdentifier, iso, ObjectIdentity, Integer32, Unsigned32, ModuleIdentity, Counter64, Counter32, Gauge32, NotificationType, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "TimeTicks", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "MibIdentifier", "iso", "ObjectIdentity", "Integer32", "Unsigned32", "ModuleIdentity", "Counter64", "Counter32", "Gauge32", "NotificationType", "Bits") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ciscoSnmpV2Capability = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 7, 113)) ciscoSnmpV2Capability.setRevisions(('2007-11-12 00:00', '2006-05-30 00:00', '2006-04-24 00:00', '2004-03-18 00:00', '2002-02-07 00:00', '2002-01-31 00:00', '1994-08-18 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ciscoSnmpV2Capability.setRevisionsDescriptions(('Added capability statement ciscoSnmpV2Capc4710aceVA1R700 for ACE 4710 Application Control Engine Appliance.', 'Added capability statement ciscoSnmpV2CapACSWV03R000 for Application Control Engine (ACE). For ciscoSnmpV2CapabilityV10R02 commented out references to object groups snmpStatsGroup, snmpV1Group, snmpORGroup, snmpTrapGroup because they are defined only in the original RFC 1450, not in the latest RFC 3418.', 'Added the VARIATION for the notification authenticationFailure in ciscoSnmpV2CapCatOSV08R0301. Added capability statement ciscoSnmpV2CapCatOSV08R0601.', 'Added ciscoSnmpV2CapCatOSV08R0301.', 'Added following agent capabilities: - ciscoMgxSnmpV2CapabilityV20 for MGX8850 series - ciscoBpxSesSnmpV2CapabilityV10 for BPX SES.', "Added 'ciscoRpmsSnmpV2CapabilityV20' for Cisco Resource Policy Management Server (RPMS) 2.0.", 'Initial version of this MIB module.',)) if mibBuilder.loadTexts: ciscoSnmpV2Capability.setLastUpdated('200711120000Z') if mibBuilder.loadTexts: ciscoSnmpV2Capability.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: ciscoSnmpV2Capability.setContactInfo('Cisco Systems Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]') if mibBuilder.loadTexts: ciscoSnmpV2Capability.setDescription('Agent capabilities for SNMPv2-MIB') ciscoSnmpV2CapabilityV10R02 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 1)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapabilityV10R02 = ciscoSnmpV2CapabilityV10R02.setProductRelease('Cisco IOS 10.2') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapabilityV10R02 = ciscoSnmpV2CapabilityV10R02.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapabilityV10R02.setDescription('IOS 10.2 SNMPv2 MIB capabilities') ciscoRpmsSnmpV2CapabilityV20 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 2)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoRpmsSnmpV2CapabilityV20 = ciscoRpmsSnmpV2CapabilityV20.setProductRelease('Cisco Resource Policy Management Server (RPMS) 2.0') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoRpmsSnmpV2CapabilityV20 = ciscoRpmsSnmpV2CapabilityV20.setStatus('current') if mibBuilder.loadTexts: ciscoRpmsSnmpV2CapabilityV20.setDescription('Cisco RPMS 2.0 SNMPv2 MIB capabilities.') ciscoMgxSnmpV2CapabilityV20 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 3)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoMgxSnmpV2CapabilityV20 = ciscoMgxSnmpV2CapabilityV20.setProductRelease('MGX8850 Release 2.0.00') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoMgxSnmpV2CapabilityV20 = ciscoMgxSnmpV2CapabilityV20.setStatus('current') if mibBuilder.loadTexts: ciscoMgxSnmpV2CapabilityV20.setDescription('SNMPv2-MIB capabilities in MGX Series.') ciscoBpxSesSnmpV2CapabilityV10 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 4)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoBpxSesSnmpV2CapabilityV10 = ciscoBpxSesSnmpV2CapabilityV10.setProductRelease('Cisco BPX SES Release 1.0.00') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoBpxSesSnmpV2CapabilityV10 = ciscoBpxSesSnmpV2CapabilityV10.setStatus('current') if mibBuilder.loadTexts: ciscoBpxSesSnmpV2CapabilityV10.setDescription('SNMPv2-MIB capabilities.') ciscoSnmpV2CapCatOSV08R0301 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 5)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapCatOSV08R0301 = ciscoSnmpV2CapCatOSV08R0301.setProductRelease('Cisco CatOS 8.3(1) for Catalyst 6000/6500\n and Cisco 7600 series devices.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapCatOSV08R0301 = ciscoSnmpV2CapCatOSV08R0301.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapCatOSV08R0301.setDescription('SNMPv2-MIB capabilities.') ciscoSnmpV2CapCatOSV08R0601 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 6)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapCatOSV08R0601 = ciscoSnmpV2CapCatOSV08R0601.setProductRelease('Cisco CatOS 8.6(1) for Catalyst 6000/6500\n and Cisco 7600 series devices.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapCatOSV08R0601 = ciscoSnmpV2CapCatOSV08R0601.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapCatOSV08R0601.setDescription('SNMPv2-MIB capabilities.') ciscoSnmpV2CapACSWV03R000 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 7)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapACSWV03R000 = ciscoSnmpV2CapACSWV03R000.setProductRelease('ACSW (Application Control Software) 3.0\n for Application Control Engine (ACE) \n Service Module.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2CapACSWV03R000 = ciscoSnmpV2CapACSWV03R000.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2CapACSWV03R000.setDescription('SNMPv2-MIB capabilities.') ciscoSnmpV2Capc4710aceVA1R700 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 113, 8)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2Capc4710aceVA1R700 = ciscoSnmpV2Capc4710aceVA1R700.setProductRelease('ACSW (Application Control Software) A1(7)\n for ACE 4710 Application Control Engine \n Appliance.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSnmpV2Capc4710aceVA1R700 = ciscoSnmpV2Capc4710aceVA1R700.setStatus('current') if mibBuilder.loadTexts: ciscoSnmpV2Capc4710aceVA1R700.setDescription('SNMPv2-MIB capabilities.') mibBuilder.exportSymbols("CISCO-SNMPv2-CAPABILITY", ciscoSnmpV2CapCatOSV08R0601=ciscoSnmpV2CapCatOSV08R0601, ciscoSnmpV2CapACSWV03R000=ciscoSnmpV2CapACSWV03R000, PYSNMP_MODULE_ID=ciscoSnmpV2Capability, ciscoBpxSesSnmpV2CapabilityV10=ciscoBpxSesSnmpV2CapabilityV10, ciscoSnmpV2CapCatOSV08R0301=ciscoSnmpV2CapCatOSV08R0301, ciscoMgxSnmpV2CapabilityV20=ciscoMgxSnmpV2CapabilityV20, ciscoRpmsSnmpV2CapabilityV20=ciscoRpmsSnmpV2CapabilityV20, ciscoSnmpV2Capability=ciscoSnmpV2Capability, ciscoSnmpV2Capc4710aceVA1R700=ciscoSnmpV2Capc4710aceVA1R700, ciscoSnmpV2CapabilityV10R02=ciscoSnmpV2CapabilityV10R02)
description = 'Asyn serial controllers in the SINQ AMOR.' group='lowlevel' pvprefix = 'SQ:AMOR:serial' devices = dict( serial1=device( 'nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the devices connected to serial 1', commandpv=pvprefix + '1.AOUT', replypv=pvprefix + '1.AINP', ), serial2=device( 'nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the devices connected to serial 2', commandpv=pvprefix + '2.AOUT', replypv=pvprefix + '2.AINP', ), serial3=device( 'nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the devices connected to serial 3', commandpv=pvprefix + '3.AOUT', replypv=pvprefix + '3.AINP', ), cter1=device( 'nicos_ess.devices.epics.extensions.EpicsCommandReply', epicstimeout=3.0, description='Controller of the counter box', commandpv='SQ:AMOR:cter1.AOUT', replypv='SQ:AMOR:cter1.AINP', ), )
# SPDX-FileCopyrightText: 2021 Pierre Constantineau # SPDX-License-Identifier: MIT """ These keycodes are based on Universal Serial Bus HID Usage Tables Document Version 1.12 Chapter 10: Keyboard/Keypad Page(0x07) - Page 53 https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf """ class Keycode: NO = 0x00 XXXXXXX = 0x00 ROLL_OVER = 0x01 TRANSPARENT = 0x01 TRNS = 0x01 _______ = 0x01 POST_FAIL = 0x02 UNDEFINED = 0x03 A = 0x04 B = 0x05 C = 0x06 D = 0x07 E = 0x08 F = 0x09 G = 0x0A H = 0x0B I = 0x0C J = 0x0D K = 0x0E L = 0x0F M = 0x10 N = 0x11 O = 0x12 P = 0x13 Q = 0x14 R = 0x15 S = 0x16 T = 0x17 U = 0x18 V = 0x19 W = 0x1A X = 0x1B Y = 0x1C Z = 0x1D ONE = 0x1E TWO = 0x1F THREE = 0x20 FOUR = 0x21 FIVE = 0x22 SIX = 0x23 SEVEN = 0x24 EIGHT = 0x25 NINE = 0x26 ZERO = 0x27 ENTER = 0x28 ESCAPE = 0x29 BSPACE = 0x2A TAB = 0x2B SPACE = 0x2C MINUS = 0x2D EQUAL = 0x2E LBRACKET = 0x2F RBRACKET = 0x30 BSLASH = 0x31 NONUS_HASH = 0x32 SCOLON = 0x33 QUOTE = 0x34 GRAVE = 0x35 COMMA = 0x36 DOT = 0x37 SLASH = 0x38 CAPSLOCK = 0x39 F1 = 0x3A F2 = 0x3B F3 = 0x3C F4 = 0x3D F5 = 0x3E F6 = 0x3F F7 = 0x40 F8 = 0x41 F9 = 0x42 F10 = 0x43 F11 = 0x44 F12 = 0x45 PSCREEN = 0x46 SCROLLLOCK = 0x47 PAUSE = 0x48 INSERT = 0x49 HOME = 0x4A PGUP = 0x4B DELETE = 0x4C END = 0x4D PGDOWN = 0x4E RIGHT = 0x4F LEFT = 0x50 DOWN = 0x51 UP = 0x52 NUMLOCK = 0x53 KP_SLASH = 0x54 KP_ASTERISK = 0x55 KP_MINUS = 0x56 KP_PLUS = 0x57 KP_ENTER = 0x58 KP_1 = 0x59 KP_2 = 0x5A KP_3 = 0x5B KP_4 = 0x5C KP_5 = 0x5D KP_6 = 0x5E KP_7 = 0x5F KP_8 = 0x60 KP_9 = 0x61 KP_0 = 0x62 KP_DOT = 0x63 NONUS_BSLASH = 0x64 APPLICATION = 0x65 POWER = 0x66 KP_EQUAL = 0x67 F13 = 0x68 F14 = 0x69 F15 = 0x6A F16 = 0x6B F17 = 0x6C F18 = 0x6D F19 = 0x6E F20 = 0x6F F21 = 0x70 F22 = 0x71 F23 = 0x72 F24 = 0x73 EXECUTE = 0x74 HELP = 0x75 MENU = 0x76 SELECT = 0x77 STOP = 0x78 AGAIN = 0x79 UNDO = 0x7A CUT = 0x7B COPY = 0x7C PASTE = 0x7D FIND = 0x7E MUTE = 0x7F VOLUP = 0x80 VOLDOWN = 0x81 LOCKING_CAPS = 0x82 LOCKING_NUM = 0x83 LOCKING_SCROLL = 0x84 KP_COMMA = 0x85 KP_EQUAL_AS400 = 0x86 INT1 = 0x87 INT2 = 0x88 INT3 = 0x89 INT4 = 0x8A INT5 = 0x8B INT6 = 0x8C INT7 = 0x8D INT8 = 0x8E INT9 = 0x8F LANG1 = 0x90 LANG2 = 0x91 LANG3 = 0x92 LANG4 = 0x93 LANG5 = 0x94 LANG6 = 0x95 LANG7 = 0x96 LANG8 = 0x97 LANG9 = 0x98 ALT_ERASE = 0x99 SYSREQ = 0x9A CANCEL = 0x9B CLEAR = 0x9C PRIOR = 0x9D RETURN = 0x9E SEPARATOR = 0x9F OUT = 0xA0 OPER = 0xA1 CLEAR_AGAIN = 0xA2 CRSEL = 0xA3 EXSEL = 0xA4 # LAST OF THE VALID KEYCODES ANYTHING BELOW SHOULD BE FILTERED OUT RESERVED_A5 = 0xA5 # Used as macro identifier RESERVED_A6 = 0xA6 RESERVED_A7 = 0xA7 RESERVED_A8 = 0xA8 RESERVED_A9 = 0xA9 RESERVED_AA = 0xAA RESERVED_AB = 0xAB RESERVED_AC = 0xAC RESERVED_AD = 0xAD RESERVED_AE = 0xAE RESERVED_AF = 0xAF LCTRL = 0xE0 LSHIFT = 0xE1 LALT = 0xE2 LGUI = 0xE3 RCTRL = 0xE4 RSHIFT = 0xE5 RALT = 0xE6 RGUI = 0xE7 LAYER_0 = 0xF0 LAYER_1 = 0xF1 LAYER_2 = 0xF2 LAYER_3 = 0xF3 LAYER_4 = 0xF4 LAYER_5 = 0xF5 LAYER_6 = 0xF6 LAYER_7 = 0xF7 LAYER_8 = 0xF8 LAYER_9 = 0xF9 LAYER_A = 0xFA LAYER_B = 0xFB LAYER_C = 0xFC LAYER_D = 0xFD LAYER_E = 0xFE LAYER_F = 0xFF LCTL = LCTRL RCTL = RCTRL LSFT = LSHIFT RSFT = RSHIFT ESC = ESCAPE BSPC = BSPACE ENT = ENTER DEL = DELETE INS = INSERT CAPS = CAPSLOCK CLCK = CAPSLOCK RGHT = RIGHT PGDN = PGDOWN PSCR = PSCREEN SLCK = SCROLLLOCK PAUS = PAUSE BRK = PAUSE NLCK = NUMLOCK SPC = SPACE MINS = MINUS EQL = EQUAL GRV = GRAVE RBRC = RBRACKET LBRC = LBRACKET COMM = COMMA BSLS = BSLASH SLSH = SLASH SCLN = SCOLON QUOT = QUOTE APP = APPLICATION NUHS = NONUS_HASH NUBS = NONUS_BSLASH LCAP = LOCKING_CAPS LNUM = LOCKING_NUM LSCR = LOCKING_SCROLL ERAS = ALT_ERASE CLR = CLEAR # Japanese specific ZKHK = GRAVE RO = INT1 KANA = INT2 JYEN = INT3 HENK = INT4 MHEN = INT5 # Korean specific HAEN = LANG1 HANJ = LANG2 # Keypad P1 = KP_1 P2 = KP_2 P3 = KP_3 P4 = KP_4 P5 = KP_5 P6 = KP_6 P7 = KP_7 P8 = KP_8 P9 = KP_9 P0 = KP_0 PDOT = KP_DOT PCMM = KP_COMMA PSLS = KP_SLASH PAST = KP_ASTERISK PMNS = KP_MINUS PPLS = KP_PLUS PEQL = KP_EQUAL PENT = KP_ENTER # Unix function key EXEC = EXECUTE SLCT = SELECT AGIN = AGAIN PSTE = PASTE # GUI key aliases LCMD = LGUI LWIN = LGUI RCMD = RGUI RWIN = RGUI BIT_LCTRL = (1) BIT_LSHIFT = (2) BIT_LALT = (4) BIT_LGUI = (8) BIT_RCTRL = (16) BIT_RSHIFT = (32) BIT_RALT = (64) BIT_RGUI = (128) MOD_LCTRL = (BIT_LCTRL << 8) MOD_LSHIFT = (BIT_LSHIFT << 8) MOD_LALT = (BIT_LALT << 8) MOD_LGUI = (BIT_LGUI << 8) MOD_RCTRL = (BIT_RCTRL << 8) MOD_RSHIFT = (BIT_RSHIFT << 8) MOD_RALT = (BIT_RALT << 8) MOD_RGUI = (BIT_RGUI << 8) def MOD(M, KC): return ( KC | M ) def LALT(KEY): return ( KEY | ((4) << 8) ) def RALT(KEY): return ( KEY | ((64)<< 8) ) def LCTL(KEY): return ( KEY | ((1)<< 8) ) def RCTL(KEY): return ( KEY | ((16) << 8) ) def RSFT(KEY): return ( KEY | ((32) << 8) ) def LSFT(KEY): return ( KEY | ((2) << 8) ) def LGUI(KEY): return ( KEY | ((8) << 8) ) def RGUI(KEY): return ( KEY | ((128) << 8) ) def S(KEY): return ( KEY | ((2) << 8) ) LT = MOD(MOD_LSHIFT, COMMA) GT = MOD(MOD_LSHIFT, DOT) TILD = MOD(MOD_LSHIFT, GRV) EXLM = MOD(MOD_LSHIFT, ONE) AT = MOD(MOD_LSHIFT, TWO) HASH = MOD(MOD_LSHIFT, THREE) DLR = MOD(MOD_LSHIFT, FOUR) PERC = MOD(MOD_LSHIFT, FIVE) CIRC = MOD(MOD_LSHIFT, SIX) AMPR = MOD(MOD_LSHIFT, SEVEN) ASTR = MOD(MOD_LSHIFT, EIGHT) LPRN = MOD(MOD_LSHIFT, NINE) RPRN = MOD(MOD_LSHIFT, ZERO) UNDS = MOD(MOD_LSHIFT, MINUS) PLUS = MOD(MOD_LSHIFT, EQUAL) LCBR = MOD(MOD_LSHIFT, LBRC) RCBR = MOD(MOD_LSHIFT, RBRC) PIPE = MOD(MOD_LSHIFT, BSLS) COLN = MOD(MOD_LSHIFT, SCLN) DQUO = MOD(MOD_LSHIFT, QUOTE) DQT = DQUO LT = MOD(MOD_LSHIFT, COMMA) GT = MOD(MOD_LSHIFT, DOT) QUES = MOD(MOD_LSHIFT, SLASH) NUTL = MOD(MOD_LSHIFT,NUHS) NUPI = MOD(MOD_LSHIFT,NUBS) LABK = LT RABK = GT def MC(KC): return (( KC << 8 ) | 0xA5 ) # move KC to upper 8 bits and use RESERVED_A5 keycode for marking this as a macro. def KB(KC): return (( KC << 8 ) | 0xA6 ) # move KC to upper 8 bits and use RESERVED_A6 keycode for marking this as a special keyboard function. def MK(KC): return (( KC << 8 ) | 0xA7 ) # move KC to upper 8 bits and use RESERVED_A7 keycode for marking this as a media key. def MS(KC): return (( KC << 8 ) | 0xA9 ) # move KC to upper 8 bits and use RESERVED_A9 keycode for marking this as a mouse key. # Mousekey MS_OFF = MS(A) MS_UP = MS(B) MS_DOWN = MS(C) MS_LEFT = MS(D) MS_RIGHT = MS(E) MS_BTN1 = MS(F) MS_BTN2 = MS(G) MS_BTN3 = MS(H) MS_BTN4 = MS(I) MS_BTN5 = MS(J) MS_WH_UP = MS(K) MS_WH_DOWN = MS(L) MS_WH_DN = MS_WH_DOWN MS_WH_LEFT = MS(M) MS_WH_RIGHT = MS(N) MS_ACCEL0 = MS(O) MS_ACCEL1 = MS(P) MS_ACCEL2 = MS(Q) MS_U = MS_UP MS_D = MS_DOWN MS_L = MS_LEFT MS_R = MS_RIGHT BTN1 = MS_BTN1 BTN2 = MS_BTN2 BTN3 = MS_BTN3 BTN4 = MS_BTN4 BTN5 = MS_BTN5 WH_U = MS_WH_UP WH_D = MS_WH_DOWN WH_L = MS_WH_LEFT WH_R = MS_WH_RIGHT ACL0 = MS_ACCEL0 ACL1 = MS_ACCEL1 ACL2 = MS_ACCEL2
#!/usr/bin/python3 def NativeZeros(nRows, nCols): return [range(nRows) for col in range(nCols)] matrix = NativeZeros(4, 4) print(matrix) print(sum([sum(row) for row in matrix]))
def prepare_config_line(name, value): """ Create the entry for one specific configuration with it's name and value :param name: :param value: :return: string """ conf_item = '{}'.format(name) if value and value.lower() != 'true': conf_item += ': {}'.format(value.capitalize()) return conf_item def get_config_string(config): """ Use the given config to extract one string for the output. :param config: a dictionary of configs from a Build object :return: string representation """ configs = {} for key, entry in config.items(): abbrev = entry.get('abbreviation') value = entry.get('value') category = entry.get('category') string = prepare_config_line(abbrev if abbrev else key, value) if category: configs.setdefault(category.capitalize(), []).append(string) out = '' for category in configs: if len(configs[category]) > 0: out += '**' + category + '**: ' out += ', '.join(configs[category]) out += '\n' return out if out != '' else None
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, }, 'includes': [ '../build/win_precompile.gypi', '../chrome/version.gypi', 'blacklist.gypi', ], 'targets': [ { 'target_name': 'chrome_elf', 'type': 'shared_library', 'include_dirs': [ '..', ], 'sources': [ 'chrome_elf.def', 'chrome_elf_main.cc', 'chrome_elf_main.h', ], 'dependencies': [ 'blacklist', 'chrome_elf_lib', ], 'msvs_settings': { 'VCLinkerTool': { 'BaseAddress': '0x01c20000', # Set /SUBSYSTEM:WINDOWS. 'SubSystem': '2', 'AdditionalDependencies!': [ 'user32.lib', ], 'IgnoreDefaultLibraryNames': [ 'user32.lib', ], }, }, }, { 'target_name': 'chrome_elf_unittests_exe', 'product_name': 'chrome_elf_unittests', 'type': 'executable', 'sources': [ 'blacklist/test/blacklist_test.cc', 'create_file/chrome_create_file_unittest.cc', 'elf_imports_unittest.cc', 'ntdll_cache_unittest.cc', ], 'include_dirs': [ '..', '<(SHARED_INTERMEDIATE_DIR)', ], 'dependencies': [ 'chrome_elf_lib', '../base/base.gyp:base', '../base/base.gyp:run_all_unittests', '../base/base.gyp:test_support_base', '../sandbox/sandbox.gyp:sandbox', '../testing/gtest.gyp:gtest', 'blacklist', 'blacklist_test_dll_1', 'blacklist_test_dll_2', 'blacklist_test_dll_3', 'blacklist_test_main_dll', ], 'conditions': [ ['component=="shared_library"', { # In component builds, all targets depend on chrome_redirects by # default. Remove it here so we are able to test it. 'dependencies!': [ '../chrome_elf/chrome_elf.gyp:chrome_redirects', ], }], ], }, { # A dummy target to ensure that chrome_elf.dll and chrome.exe gets built # when building chrome_elf_unittests.exe without introducing an # explicit runtime dependency. 'target_name': 'chrome_elf_unittests', 'type': 'none', 'dependencies': [ '../chrome/chrome.gyp:chrome', 'chrome_elf', 'chrome_elf_unittests_exe', ], }, { 'target_name': 'chrome_elf_lib', 'type': 'static_library', 'include_dirs': [ '..', ], 'sources': [ 'chrome_elf_constants.cc', 'chrome_elf_constants.h', 'chrome_elf_types.h', 'create_file/chrome_create_file.cc', 'create_file/chrome_create_file.h', 'ntdll_cache.cc', 'ntdll_cache.h', ], 'conditions': [ ['component=="shared_library"', { # In component builds, all targets depend on chrome_redirects by # default. Remove it here to avoid a circular dependency. 'dependencies!': [ '../chrome_elf/chrome_elf.gyp:chrome_redirects', ], }], ], }, ], # targets 'conditions': [ ['component=="shared_library"', { 'targets': [ { 'target_name': 'chrome_redirects', 'type': 'shared_library', 'include_dirs': [ '..', ], 'sources': [ 'chrome_redirects.def', ], 'dependencies': [ 'chrome_elf_lib', ], 'msvs_settings': { 'VCLinkerTool': { 'BaseAddress': '0x01c10000', # Set /SUBSYSTEM:WINDOWS. 'SubSystem': '2', }, }, 'conditions': [ ['component=="shared_library"', { # In component builds, all targets depend on chrome_redirects by # default. Remove it here to avoid a circular dependency. 'dependencies!': [ '../chrome_elf/chrome_elf.gyp:chrome_redirects', ], }], ], }, ], }], ], }
elem = lambda value, next: {'value': value, 'next': next} to_str = lambda head: '' if head is None \ else str(head['value']) + ' ' + to_str(head['next']) values = elem(1, elem(2, elem(3, None))) # print(to_str(values)) def make_powers(count): powers = [] for i in range(count): # powers.append(lambda x: x ** i) # wrong code powers.append((lambda p: lambda x: x ** p)(i)) # wrong code return powers powers = make_powers(5) # for power in powers: # print(power(2)) handlers = [] for i in range(1, 4): def on_click(i=i): print('Button {} was clicked!'.format(i)) handlers.append(on_click) for handler in handlers: handler()
class Allergies(object): def __init__(self, score): self.score = [allergen for num, allergen in list(enumerate([ 'eggs', 'peanuts', 'shellfish', 'strawberries', 'tomatoes', 'chocolate', 'pollen', 'cats' ])) if 0 < (score & (1 << num))] def is_allergic_to(self, item): return item in self.score @property def lst(self): return self.score
# 1. Sort the 'people' list of dictionaries alphabetically based on the # 'name' key from each dictionary using the 'sorted' function and store # the new list as 'sorted_by_name' people = [ {'name': 'Kevin Bacon', 'age': 61}, {'name': 'Fred Ward', 'age': 77}, {'name': 'finn Carter', 'age': 59}, {'name': 'Ariana Richards', 'age': 40}, {'name': 'Vicotor Wong', 'age': 74}, ] # sorted_by_name = None # AssertionError sorted_by_name = sorted(people, key=lambda d: d['name'].lower()) assert sorted_by_name == [ {'name': 'Ariana Richards', 'age': 40}, {'name': 'finn Carter', 'age': 59}, {'name': 'Fred Ward', 'age': 77}, {'name': 'Kevin Bacon', 'age': 61}, {'name': 'Vicotor Wong', 'age': 74}, ] # =============================================================================== # # 2. Use the 'map' function to iterate over 'sorted_by_name' to generate a # new list called 'name_declarations' where each value is a string with # '<NAME> is <AGE> years old.' where the '<NAME>' and '<AGE>' values are from # the dictionary. # name_declarations = None # name_declarations = list(map(lambda d: f"{d['name']} is {d['age']} years old", sorted_by_name)) name_declarations = list( map(lambda d: f"{d['name']} is {d['age']} years old", sorted_by_name) ) # print(name_declarations) assert name_declarations == [ "Ariana Richards is 40 years old", "finn Carter is 59 years old", "Fred Ward is 77 years old", "Kevin Bacon is 61 years old", "Victor Wong is 74 years old", ]
# Copyright 2017 Pedro M. Baeza <[email protected]> # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). { "name": "Weights in the invoices analysis view", "version": "13.0.1.0.0", "author": "Tecnativa," "Odoo Community Association (OCA)", "category": "Inventory, Logistics, Warehousing", "development_status": "Production/Stable", "license": "AGPL-3", "website": "https://www.github.com/account_reporting_weight", "depends": ["sale"], "installable": True, }
""" Projet d'analyse: Sujet 31 Le projet: Il nous est demandรฉ d'approcher la valeur de sin(8/5) tout en certifiant nos resultats. Cependant, avec la formule de Taylor sur R combinรฉe a la preuve de Cauchy et a l'etablissement du certificat de convergence, on s'est vite rendu compte que l'on peut etendre cette definition sur R et ainsi pouvoir cette de maniere moduler a un ordre k les N premieres decimales du sin de tout reel. Ci-dessous, le programme informatique traduisant les resultats de nos analyses. """ """ dans ce code python ,on realise le programme en une classe gรฉnรฉrale tout en definissant toutes les fonctions supplemntaires et celles demandรฉes dans l'ennoncรฉ et dans la deuxieme partie on aura le main pour pouvoir tester le programme """ class classe_General: def __init__(self, val): """ Initialisation de la fonction calsse_General pour les calculs mรฉnant a sin(:param val) :param val: Valeur numerique de type float sur laquelle portera notre analyse """ self.val = val pass def absolu(self, x): ''' Fonction retournant la valeur absolue de :param x :param x: Valeur nรฉgative ou positive :return: La valeur absolue de :param x''' if x < 0: return x*-1 else : return x def fonction_factorielle(self, x): """ Fonction de calcul du fonction_factorielle de :param x :param x: Entier naturel dont on veut determiner le factoriel :return: Le factoriel de :param x """ return 1 if x <= 1 else x * self.fonction_factorielle(x - 1) def fonction_tronque(self, x, pre): """ Fonction tronquant :param x a 10 ** -:param precision pres :param x: Flottant que l'on veut tronquer :param pre: pre de troncature souhaitee :return: :param x tronquee a 10 ** -:param precision pres """ pre = 10 ** pre return (int(x * pre)) / pre def fonction_sinusTaylorien(self, angle, pre): """ Fonction calculant la valeur de la definition de sin(:param angle) selont la formule de Taylor a l'ordre :param pre :param angle: flottant dont on souhaite obtenir le sin :param pre: l'ordre n du calcul du developpement limitรฉ menant a sin(:param angle) :return: sin(:param angle) selon le developpement limitรฉ de Taylor a l'ordre n=:param pre """ v = 0.0 for n in range(pre): v += (((-1) ** n) * ((angle ** ((2 * n) + 1)) / self.fonction_factorielle((2 * n) + 1))) return v def r(self, n): """ Suite (r(n))_n :param n: entier naturel representant l'indice n de la suite (r(n))_n :return: r(:param n) """ return self.fonction_sinusTaylorien(self.val, n) def conv(self, k): """ Certificat de convergence de la suite (r(n))_n :param k: entier naturel representant l'ordre k du calcul du certificat de convergence conv(k) :return: conv(:param k) """ n = 0 ordre = 1 / (10 ** (k)) while True: n += 1 serie_approchee = (2 ** (n + 1)) / self.fonction_factorielle(n + 1) if (serie_approchee <= ordre): break return n def fonction_preuveParCauchy(self, epsilon): """ Fonction prouvant la stabilite d'un developpement limitรฉ de pre 10 ** -:param epsilon :param epsilon: Ordre de pre souhaite du developpement limite :return: L'ordre du developpement limite a partir duquel :param val est stable avec une pre(ordre) 10 ** -:param epsilon """ n = 1 while True: difference_de_cauchy = self.fonction_sinusTaylorien(self.val, n) - self.fonction_sinusTaylorien(self.val, n + 1) n += 1 if (self.absolu(difference_de_cauchy) < epsilon): break return n - 1 # Instance de la classe PRINCIPALE classe_General valeur = classe_General(8 / 5) # PROGRAMME PRINCIPAL if __name__ == '__main__': # Affichage des resultats attendus #debut du programme print('___________________[ DEBUT DU PRROGRAMME ]___________________\n') resultat = valeur.conv(8) print(f"resultat = {resultat}") for i in range(0, resultat+1): print(f"r({i}) = {valeur.r(i)}") epsilon = 10 ** -6 print(f"[INFO] Certification d'ordre {epsilon} atteinte ร  partir de r({valeur.fonction_preuveParCauchy(epsilon)})") a = valeur.fonction_tronque(valeur.r(valeur.fonction_preuveParCauchy(epsilon)), 6) print('a = ', a) print('\n__________________[ FIN DU PROGRAMME ]__________________\n')
# Theory: List # In your programs, you often need to group several elements in # order to process them as a single object. For this, you will need # to use different collections. One of the most useful collections # in Python is a list. It is one of the most important things in # Python. # 1. Creating and printing lists # Look at a simple list that stores several names of dog's breed: dog_breeds = ['corgi', 'labrador', 'poodle', 'jack russel'] print(dog_breeds) # In this first line, we use square brackets to create a list that # contains four elements and then assign it to the dog_breeds # variable. In the second line, the list is printed through the # variable's name. All the elements are printed in the same order # as they were stored in the list because lists are ordered. # Here is another list that contains five integers: numbers = [1, 2, 3, 4, 5] print(numbers) # [1, 2, 3, 4, 5] # Another way to create a list is to invoke the list function. It is # used to create a list out of an iterable object: that is, a kind of # object where you can get its elements one by one. The concept # of iterability will be explained in detail further on, but let's look # at the examples below: list_out_of_string = list('danger!') print(list_out_of_string) # ['d', 'a', 'n', 'g', 'e', 'r', '!'] # list_out_of_integer = list(235) # TypeError: 'int' object is not iterable # So, the list function create a list containing each element # from the given iterable object. For now, remember that a string # is an example of an iterable object, and an integer is an example # of non-iterable object. A list itself is also an iterable object. # Let's also note the difference between the list function and # creating a list using square brackets: multi_element_list = list('danger!') print(multi_element_list) # ['d', 'a', 'n', 'g', 'e', 'r', '!'] singe_element_list = ['danger!'] print(singe_element_list) # ['danger!'] # The square brackets and the list function can also be used to # create empty lists that do not have elements at all. empty_list_1 = list() empty_list_2 = [] # In the following topics, we will consider how to fill empty lists. # 2. Features of lists # Lists can store duplicate values as many times as needed. on_off_list = ['on', 'off', 'on', 'off', 'on'] print(on_off_list) # ['on', 'off', 'on', 'off', 'on'] # Another important thing about lists is that they can contain # different types of elements. So there are neither restrictions, # nor fixed list types, and you can add to your list any data you # want, like in the following example: different_object = ['a', 1, 'b', 2] # 3. Length of a list # Sometimes you need to know how many elements are there in a # list. There is a built-in function len that can be applied # to any iterable object, and it returns simply the length of that # object. # So, when applied to a list, it returns the number of elements in # that lists. numbers = [1, 2, 3, 4, 5] print(len(numbers)) # 5 empty_list = list() print(len(empty_list)) # 0 single_element_list = ['danger!'] print(len(single_element_list)) # 1 multi_element_list = list('danger!') print(len(multi_element_list)) # 7 # In the example above, you can see how the len() function # works. Again, pay attention to the difference between list() # and [] as applied to strings: it may not result in what you # expected: # 4. Summary # As a recap, we note that lists are: # ordered, i.e. each element has a fixed position in a list; # iterable, i.e. you can get their elements one by one; # able to store duplicate values; # able to store different types of elements
class State(object): def __init__(self): pass def enter(self): """Initialize data that might not be initialized in init""" pass def exit(self): """State is finished, perform cleanup if necessary""" pass def reason(self): """Conditional or logic to see if the current state needs to end, and a new one started""" pass def act(self): """Per-frame behavior""" pass class StateMachine(object): def __init__(self, host, first_state=None): self.host = host self.current_state = first_state def transition(self, new_state): """Transition to a new State""" self.current_state.exit() self.current_state = new_state # provide state references to host object and fsm instance self.current_state.host = self.host self.current_state.fsm = self self.current_state.enter() def update(self): if self.current_state: # only update if we have a state new_state = self.current_state.reason() if new_state: # if reason provides new state # do transition self.transition(new_state) else: # otherwise act with current state self.current_state.act()
# -*- python -*- # This software was produced by NIST, an agency of the U.S. government, # and by statute is not subject to copyright in the United States. # Recipients of this software assume all responsibilities associated # with its operation, modification and maintenance. However, to # facilitate maintenance we ask that before distributing modified # versions of this software, you first contact the authors at # [email protected]. # Time, in milliseconds, between the time that a progressbar object is # created and the time that it is installed in the ActivityViewer # window. delay = 2000 # Time in milliseconds between progress bar updates. period = 200 def set_delay(menuitem, milliseconds): global delay delay = milliseconds
class Solution: def floodFill(self, image: List[List[int]], sr: int, sc: int, newColor: int) -> List[List[int]]: m = len(image) n = len(image[0]) oldColor = image[sr][sc] if oldColor == newColor: return image def dfs(r, c): nonlocal image, newColor, oldColor if image[r][c] == oldColor: image[r][c] = newColor if r - 1 >= 0: dfs(r-1, c) if r + 1 < m: dfs(r+1, c) if c - 1 >= 0: dfs(r, c-1) if c + 1 < n: dfs(r, c+1) dfs(sr, sc) return image
#### digonal sum digonal=[[1,2,3,5], [4,5,6,4], [7,8,9,3] ] def digonaldiffernce(arr): SUM1=0 SUM2=0 j=0 for i in arr: SUM1+=i[j] SUM2+=i[(len(i)-1)-j] j+=1 return abs(SUM1-SUM2) print(digonaldiffernce(digonal))
""" Module: 'neopixel' on esp32 1.10.0 """ # MCU: (sysname='esp32', nodename='esp32', release='1.10.0', version='v1.10 on 2019-01-25', machine='ESP32 module with ESP32') # Stubber: 1.3.2 class NeoPixel: '' ORDER = None def fill(): pass def write(): pass def neopixel_write(): pass
""" Movie object - title - storyline - poster url - trailer url """ class Movie: def __init__(self, title): self.title = title self.storyline = "" self.poster_url = "" self.trailer_url = ""
class Main: class featured: it = {'css': '#content > div.row'} products = {'css': it['css'] + ' .product-layout'} names = {'css': products['css'] + ' .caption h4 a'}
def foo(x): print(x) foo([x for x in range(10)])
def dogleg(value, units): return_dict = {} if units == 'deg/100ft': return_dict['deg/100ft'] = value return_dict['deg/30m'] = value * 0.9843004 elif units == 'deg/30m': return_dict['deg/100ft'] = value * 1.01595 return_dict['deg/30m'] = value return return_dict def axial_spring_con(value, units): return_dict = {} if units == 'N/m': return_dict['N/m'] = value return_dict['lb/in'] = value * 1.016 elif units == 'lb/in': return_dict['N/m'] = value * 0.984252 return_dict['lb/in'] = value return return_dict def axial_dampening_coef(value, units): return_dict = {} if units == 'N-s/m': return_dict['N-s/m'] = value return_dict['lb-s/in'] = value * 1.016 elif units == 'lb-s/in': return_dict['N-s/m'] = value * 0.984252 return_dict['lb-s/in'] = value return return_dict def torsional_spring_con(value, units): return_dict = {} if units == 'N-m/rad': return_dict['N-m/rad'] = value return_dict['lb-in/rad'] = value * 1.01595 elif units == 'lb-in/rad': return_dict['N-m/rad'] = value * 0.9843004 return_dict['lb-in/rad'] = value return return_dict def torsional_dampening_coef(value, units): return_dict = {} if units == 'N-m-s/rad': return_dict['N-m-s/rad'] = value return_dict['lb-in-s/rad'] = value * 1.01595 elif units == 'lb-in-s/rad': return_dict['N-m-s/rad'] = value * 0.9843004 return_dict['lb-in-s/rad'] = value return return_dict def pressure_grad(value, units): return_dict = {} if units == 'psi/ft': return_dict['psi/ft'] = value return_dict['kPa/m'] = value * 22.5 return_dict['Mpa/m'] = value * 0.0225 return_dict['Pa/m'] = value * 22500 elif units == 'kPa/m': return_dict['psi/ft'] = value * 0.0444444 return_dict['kPa/m'] = value return_dict['Mpa/m'] = value * 0.001 return_dict['Pa/m'] = value * 1000 elif units == 'Mpa/m': return_dict['psi/ft'] = value * 44.4444444 return_dict['kPa/m'] = value * 1000 return_dict['Mpa/m'] = value return_dict['Pa/m'] = value * 1000000 elif units == 'Pa/m': return_dict['psi/ft'] = value * 0.0000444 return_dict['kPa/m'] = value * 0.001 return_dict['Mpa/m'] = value * 0.000001 return_dict['Pa/m'] = value return return_dict def yield_slurry(value, units): return_dict = {} if units == 'ft3/sk': return_dict['ft3/sk'] = value return_dict['m3/sk'] = value * 0.028317 return_dict['gal/sk'] = value * 7 elif units == 'm3/sk': return_dict['ft3/sk'] = value * 35 return_dict['m3/sk'] = value return_dict['gal/sk'] = value * 264 elif units == 'gal/sk': return_dict['ft3/sk'] = value * 0.13369 return_dict['m3/sk'] = value * 0.0037857 return_dict['gal/sk'] = value return return_dict def footage_cost(value, units): return_dict = {} if units == 'cur/ft': return_dict['cur/ft'] = value return_dict['cur/m'] = value * 3.2810014 return_dict['cur/1000ft'] = value / 0.001 return_dict['cur/1000m'] = value * 3281.0014 elif units == 'cur/m': return_dict['cur/ft'] = value * 0.304785 return_dict['cur/m'] = value return_dict['cur/1000ft'] = value / 0.0003048 return_dict['cur/1000m'] = value * 1000 elif units == 'cur/1000ft': return_dict['cur/ft'] = value / 1000 return_dict['cur/m'] = value / 3281.00 return_dict['cur/1000ft'] = value return_dict['cur/1000m'] = value / 3.2810003 elif units == 'cur/1000m': return_dict['cur/ft'] = value / 305 return_dict['cur/m'] = value / 1000 return_dict['cur/1000ft'] = value / 0.3047851 return_dict['cur/1000m'] = value return return_dict def mud_weight(value, units): return_dict = {} if units == 'g/cm3': return_dict['g/cm3'] = value * 1.0 return_dict['g/L'] = value * 1000.0 return_dict['kg/m3'] = value * 1000.0 return_dict['kg/L'] = value * 1.0 return_dict['kPa/m'] = value * 9.8114244 return_dict['lb/ft3'] = value * 62.4336642 return_dict['lb/bbl'] = value * 350.5070669 return_dict['ppg'] = value * 8.3454064 return_dict['psi/ft'] = value * 0.4339843 return_dict['psi/100ft'] = value * 43.3726579 return_dict['SG'] = value * 1.0 elif units == 'g/L': return_dict['g/cm3'] = value * 0.001 return_dict['g/L'] = value * 1.0 return_dict['kg/m3'] = value * 1.0 return_dict['kg/L'] = value * 0.001 return_dict['kPa/m'] = value * 0.0098114 return_dict['lb/ft3'] = value * 0.0624337 return_dict['lb/bbl'] = value * 0.3505071 return_dict['ppg'] = value * 0.0083454 return_dict['psi/ft'] = value * 0.000434 return_dict['psi/100ft'] = value * 0.0433727 return_dict['SG'] = value * 0.001 elif units == 'kg/m3': return_dict['g/cm3'] = value * 0.001 return_dict['g/L'] = value * 1.0 return_dict['kg/m3'] = value * 1.0 return_dict['kg/L'] = value * 0.001 return_dict['kPa/m'] = value * 0.0098114 return_dict['lb/ft3'] = value * 0.0624337 return_dict['lb/bbl'] = value * 0.3505071 return_dict['ppg'] = value * 0.0083454 return_dict['psi/ft'] = value * 0.000434 return_dict['psi/100ft'] = value * 0.0433727 return_dict['SG'] = value * 0.001 elif units == 'kg/L': return_dict['g/cm3'] = value * 1.0 return_dict['g/L'] = value * 1000.0 return_dict['kg/m3'] = value * 1000.0 return_dict['kg/L'] = value * 1.0 return_dict['kPa/m'] = value * 9.8114244 return_dict['lb/ft3'] = value * 62.4336642 return_dict['lb/bbl'] = value * 350.5070669 return_dict['ppg'] = value * 8.3454064 return_dict['psi/ft'] = value * 0.4339843 return_dict['psi/100ft'] = value * 43.3726579 return_dict['SG'] = value * 1.0 elif units == 'kPa/m': return_dict['g/cm3'] = value * 0.101922 return_dict['g/L'] = value * 101.922 return_dict['kg/m3'] = value * 101.922 return_dict['kg/L'] = value * 0.101922 return_dict['kPa/m'] = value * 1.0 return_dict['lb/ft3'] = value * 6.3633639 return_dict['lb/bbl'] = value * 35.7243813 return_dict['ppg'] = value * 0.8505805 return_dict['psi/ft'] = value * 0.0442325 return_dict['psi/100ft'] = value * 4.420628 return_dict['SG'] = value * 0.101922 elif units == 'lb/ft3': return_dict['g/cm3'] = value * 0.016017 return_dict['g/L'] = value * 16.017 return_dict['kg/m3'] = value * 16.017 return_dict['kg/L'] = value * 0.016017 return_dict['kPa/m'] = value * 0.1571496 return_dict['lb/ft3'] = value * 1.0 return_dict['lb/bbl'] = value * 5.6140717 return_dict['ppg'] = value * 0.1336684 return_dict['psi/ft'] = value * 0.0069511 return_dict['psi/100ft'] = value * 0.6946999 return_dict['SG'] = value * 0.016017 elif units == 'lb/bbl': return_dict['g/cm3'] = value * 0.002853 return_dict['g/L'] = value * 2.8530095 return_dict['kg/m3'] = value * 2.8530095 return_dict['kg/L'] = value * 0.002853 return_dict['kPa/m'] = value * 0.0279921 return_dict['lb/ft3'] = value * 0.1781238 return_dict['lb/bbl'] = value * 1.0 return_dict['ppg'] = value * 0.0238095 return_dict['psi/ft'] = value * 0.0012382 return_dict['psi/100ft'] = value * 0.1237426 return_dict['SG'] = value * 0.002853 elif units == 'ppg': return_dict['g/cm3'] = value * 0.1198264 return_dict['g/L'] = value * 119.8264 return_dict['kg/m3'] = value * 119.8264 return_dict['kg/L'] = value * 0.1198264 return_dict['kPa/m'] = value * 1.1756677 return_dict['lb/ft3'] = value * 7.4812012 return_dict['lb/bbl'] = value * 42.0 return_dict['ppg'] = value * 1.0 return_dict['psi/ft'] = value * 0.0520028 return_dict['psi/100ft'] = value * 5.1971895 return_dict['SG'] = value * 0.1198264 elif units == 'psi/ft': return_dict['g/cm3'] = value * 2.304231 return_dict['g/L'] = value * 2304.231 return_dict['kg/m3'] = value * 2304.231 return_dict['kg/L'] = value * 2.304231 return_dict['kPa/m'] = value * 22.6077883 return_dict['lb/ft3'] = value * 143.8615846 return_dict['lb/bbl'] = value * 807.6492492 return_dict['ppg'] = value * 19.229744 return_dict['psi/ft'] = value * 1.0 return_dict['psi/100ft'] = value * 99.9406228 return_dict['SG'] = value * 2.304231 elif units == 'psi/100ft': return_dict['g/cm3'] = value * 0.023056 return_dict['g/L'] = value * 23.056 return_dict['kg/m3'] = value * 23.056 return_dict['kg/L'] = value * 0.023056 return_dict['kPa/m'] = value * 0.2262122 return_dict['lb/ft3'] = value * 1.4394706 return_dict['lb/bbl'] = value * 8.0812909 return_dict['ppg'] = value * 0.1924117 return_dict['psi/ft'] = value * 0.0100059 return_dict['psi/100ft'] = value * 1.0 return_dict['SG'] = value * 0.023056 elif units == 'SG': return_dict['g/cm3'] = value * 1.0 return_dict['g/L'] = value * 1000.0 return_dict['kg/m3'] = value * 1000.0 return_dict['kg/L'] = value * 1.0 return_dict['kPa/m'] = value * 9.8114244 return_dict['lb/ft3'] = value * 62.4336642 return_dict['lb/bbl'] = value * 350.5070669 return_dict['ppg'] = value * 8.3454064 return_dict['psi/ft'] = value * 0.4339843 return_dict['psi/100ft'] = value * 43.3726579 return_dict['SG'] = value * 1.0 return return_dict def flow_rate(value, units): return_dict = {} if units == 'bbl/hr': return_dict['bbl/hr'] = value * 1.0 return_dict['bbl/min'] = value * 0.0166667 return_dict['ft3/min'] = value * 0.0935764 return_dict['m3/hr'] = value * 0.1589873 return_dict['m3/min'] = value * 0.0026498 return_dict['gal/hr'] = value * 42.0 return_dict['gpm'] = value * 0.7 return_dict['L/hr'] = value * 158.9872949 return_dict['L/min'] = value * 2.6497882 elif units == 'bbl/min': return_dict['bbl/hr'] = value * 60.0 return_dict['bbl/min'] = value * 1.0 return_dict['ft3/min'] = value * 5.6145833 return_dict['m3/hr'] = value * 9.5392377 return_dict['m3/min'] = value * 0.1589873 return_dict['gal/hr'] = value * 2520.0 return_dict['gpm'] = value * 42.0 return_dict['L/hr'] = value * 9539.2376957 return_dict['L/min'] = value * 158.9872949 elif units == 'ft3/min': return_dict['bbl/hr'] = value * 10.6864564 return_dict['bbl/min'] = value * 0.1781076 return_dict['ft3/min'] = value * 1.0 return_dict['m3/hr'] = value * 1.6990108 return_dict['m3/min'] = value * 0.0283168 return_dict['gal/hr'] = value * 448.8311688 return_dict['gpm'] = value * 7.4805195 return_dict['L/hr'] = value * 1699.0107955 return_dict['L/min'] = value * 28.3168466 elif units == 'm3/hr': return_dict['bbl/hr'] = value * 6.2898108 return_dict['bbl/min'] = value * 0.1048302 return_dict['ft3/min'] = value * 0.5885778 return_dict['m3/hr'] = value * 1.0 return_dict['m3/min'] = value * 0.0166667 return_dict['gal/hr'] = value * 264.1720524 return_dict['gpm'] = value * 4.4028675 return_dict['L/hr'] = value * 1000.0 return_dict['L/min'] = value * 16.6666667 elif units == 'm3/min': return_dict['bbl/hr'] = value * 377.3886462 return_dict['bbl/min'] = value * 6.2898108 return_dict['ft3/min'] = value * 35.3146667 return_dict['m3/hr'] = value * 60.0 return_dict['m3/min'] = value * 1.0 return_dict['gal/hr'] = value * 15850.3231414 return_dict['gpm'] = value * 264.1720524 return_dict['L/hr'] = value * 60000.0 return_dict['L/min'] = value * 1000.0 elif units == 'gal/hr': return_dict['bbl/hr'] = value * 0.0238095 return_dict['bbl/min'] = value * 0.0003968 return_dict['ft3/min'] = value * 0.002228 return_dict['m3/hr'] = value * 0.0037854 return_dict['m3/min'] = value * 6.31e-05 return_dict['gal/hr'] = value * 1.0 return_dict['gpm'] = value * 0.0166667 return_dict['L/hr'] = value * 3.7854118 return_dict['L/min'] = value * 0.0630902 elif units == 'gpm': return_dict['bbl/hr'] = value * 1.4285714 return_dict['bbl/min'] = value * 0.0238095 return_dict['ft3/min'] = value * 0.1336806 return_dict['m3/hr'] = value * 0.2271247 return_dict['m3/min'] = value * 0.0037854 return_dict['gal/hr'] = value * 60.0 return_dict['gpm'] = value * 1.0 return_dict['L/hr'] = value * 227.124707 return_dict['L/min'] = value * 3.7854118 elif units == 'L/hr': return_dict['bbl/hr'] = value * 0.0062898 return_dict['bbl/min'] = value * 0.0001048 return_dict['ft3/min'] = value * 0.0005886 return_dict['m3/hr'] = value * 0.001 return_dict['m3/min'] = value * 1.67e-05 return_dict['gal/hr'] = value * 0.2641721 return_dict['gpm'] = value * 0.0044029 return_dict['L/hr'] = value * 1.0 return_dict['L/min'] = value * 0.0166667 elif units == 'L/min': return_dict['bbl/hr'] = value * 0.3773886 return_dict['bbl/min'] = value * 0.0062898 return_dict['ft3/min'] = value * 0.0353147 return_dict['m3/hr'] = value * 0.06 return_dict['m3/min'] = value * 0.001 return_dict['gal/hr'] = value * 15.8503231 return_dict['gpm'] = value * 0.2641721 return_dict['L/hr'] = value * 60.0 return_dict['L/min'] = value * 1.0 return return_dict def drilling_rate(value, units): return_dict = {} if units == 'ft/d': return_dict['ft/d'] = value * 1.0 return_dict['ft/hr'] = value * 0.0416667 return_dict['ft/min'] = value * 0.0006944 return_dict['ft/s'] = value * 1.16e-05 return_dict['m/d'] = value * 0.3048 return_dict['m/hr'] = value * 0.0127 return_dict['m/min'] = value * 0.0002117 return_dict['m/s'] = value * 3.5e-06 elif units == 'ft/hr': return_dict['ft/d'] = value * 24.0 return_dict['ft/hr'] = value * 1.0 return_dict['ft/min'] = value * 0.0166667 return_dict['ft/s'] = value * 0.0002778 return_dict['m/d'] = value * 7.3152 return_dict['m/hr'] = value * 0.3048 return_dict['m/min'] = value * 0.00508 return_dict['m/s'] = value * 8.47e-05 elif units == 'ft/min': return_dict['ft/d'] = value * 1440.0 return_dict['ft/hr'] = value * 60.0 return_dict['ft/min'] = value * 1.0 return_dict['ft/s'] = value * 0.0166667 return_dict['m/d'] = value * 438.9119993 return_dict['m/hr'] = value * 18.288 return_dict['m/min'] = value * 0.3048 return_dict['m/s'] = value * 0.00508 elif units == 'ft/s': return_dict['ft/d'] = value * 86400.0 return_dict['ft/hr'] = value * 3600.0 return_dict['ft/min'] = value * 60.0 return_dict['ft/s'] = value * 1.0 return_dict['m/d'] = value * 26334.71996 return_dict['m/hr'] = value * 1097.2799983 return_dict['m/min'] = value * 18.288 return_dict['m/s'] = value * 0.3048 elif units == 'm/d': return_dict['ft/d'] = value * 3.2808399 return_dict['ft/hr'] = value * 0.1367017 return_dict['ft/min'] = value * 0.0022784 return_dict['ft/s'] = value * 3.8e-05 return_dict['m/d'] = value * 1.0 return_dict['m/hr'] = value * 0.0416667 return_dict['m/min'] = value * 0.0006944 return_dict['m/s'] = value * 1.16e-05 elif units == 'm/hr': return_dict['ft/d'] = value * 78.7401576 return_dict['ft/hr'] = value * 3.2808399 return_dict['ft/min'] = value * 0.0546807 return_dict['ft/s'] = value * 0.0009113 return_dict['m/d'] = value * 24.0 return_dict['m/hr'] = value * 1.0 return_dict['m/min'] = value * 0.0166667 return_dict['m/s'] = value * 0.0002778 elif units == 'm/min': return_dict['ft/d'] = value * 4724.409456 return_dict['ft/hr'] = value * 196.850394 return_dict['ft/min'] = value * 3.2808399 return_dict['ft/s'] = value * 0.0546807 return_dict['m/d'] = value * 1440.0 return_dict['m/hr'] = value * 60.0 return_dict['m/min'] = value * 1.0 return_dict['m/s'] = value * 0.0166667 elif units == 'm/s': return_dict['ft/d'] = value * 283464.56736 return_dict['ft/hr'] = value * 11811.02364 return_dict['ft/min'] = value * 196.850394 return_dict['ft/s'] = value * 3.2808399 return_dict['m/d'] = value * 86400.0 return_dict['m/hr'] = value * 3600.0 return_dict['m/min'] = value * 60.0 return_dict['m/s'] = value * 1.0 return return_dict def weight_length(value, units): return_dict = {} if units == 'lb/ft': return_dict['lb/ft'] = value return_dict['kg/m'] = value * 1.48816 elif units == 'kg/m': return_dict['lb/ft'] = value * 0.671969 return_dict['kg/m'] = value return return_dict def geothermal_gradient(value, units): return_dict = {} if units == 'c/100m': return_dict['c/100m'] = value return_dict['f/100ft'] = value * 0.549 elif units == 'f/100ft': return_dict['c/100m'] = value / 0.549 return_dict['f/100ft'] = value return return_dict
# V0 # V1 # http://bookshadow.com/weblog/2016/10/13/leetcode-battleships-in-a-board/ # IDEA : GREEDY class Solution(object): def countBattleships(self, board): """ :type board: List[List[str]] :rtype: int """ h = len(board) w = len(board[0]) if h else 0 ans = 0 for x in range(h): for y in range(w): if board[x][y] == 'X': if x > 0 and board[x - 1][y] == 'X': continue if y > 0 and board[x][y - 1] == 'X': continue ans += 1 return ans # V1' # http://bookshadow.com/weblog/2016/10/13/leetcode-battleships-in-a-board/ # IDEA : DFS class Solution(object): def countBattleships(self, board): """ :type board: List[List[str]] :rtype: int """ vs = set() h = len(board) w = len(board[0]) if h else 0 def dfs(x, y): for dx, dy in zip((1, 0, -1, 0), (0, 1, 0, -1)): nx, ny = x + dx, y + dy if 0 <= nx < h and 0 <= ny < w: if (nx, ny) not in vs and board[nx][ny] == 'X': vs.add((nx, ny)) dfs(nx, ny) ans = 0 for x in range(h): for y in range(w): if (x, y) not in vs and board[x][y] == 'X': ans += 1 vs.add((x, y)) dfs(x, y) return ans # V2 # Time: O(m * n) # Space: O(1) class Solution(object): def countBattleships(self, board): """ :type board: List[List[str]] :rtype: int """ if not board or not board[0]: return 0 cnt = 0 for i in range(len(board)): for j in range(len(board[0])): cnt += int(board[i][j] == 'X' and (i == 0 or board[i - 1][j] != 'X') and (j == 0 or board[i][j - 1] != 'X')) return cnt
DYNAMIC_API_URL = 'https://api.vc.bilibili.com/dynamic_svr/v1/dynamic_svr/space_history' GET_DYNAMIC_DETAIL_API_URL = 'https://api.vc.bilibili.com/dynamic_svr/v1/dynamic_svr/get_dynamic_detail' USER_INFO_API_URL = 'https://api.bilibili.com/x/space/acc/info' DYNAMIC_URL = 'https://t.bilibili.com/'
def readDiary(): day = input("What day do you want to read? ") file = open(day, "r") line = file.read() print(line) file.close() def writeDiary(): day = input("What day is your diary for? ") file = open(day, "w") line = input("Enter entry: ") file.write(line) file.close() operation = input("Read entries or write entries (R/W)? ") if (operation == "R"): readDiary() elif (operation == "W"): writeDiary() else: print("Sorry, you can only enter a R (for read) or W (for write). Run the program again.") print("=== All done ===")
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def numComponents(self, head, G): """ :type head: ListNode :type G: List[int] :rtype: int """ bits = [] G = { x:x for x in G } while head: if head.val in G: bits.append(1) else: bits.append(0) head = head.next counter = 0 flag = True for bit in bits: if flag and bit == 1: counter += 1 if bit == 1: flag = False else: flag = True return counter
T = int(input()) for c in range(T): N = int(input()) sum = N * (N + 1) // 2 sqs = N * (N + 1) * (2 * N + 1) // 6 d = sum * sum - sqs print(abs(d))
# This file is part of Pynguin. # # Pynguin is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pynguin is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pynguin. If not, see <https://www.gnu.org/licenses/>. """Provides custom exception types.""" class ConfigurationException(BaseException): """An exception type that's raised if the generator has no proper configuration.""" class GenerationException(BaseException): """An exception during test generation. This type shall be used for all exceptions that occur during test generation and that are caused by the test-generation process. """ class ConstructionFailedException(BaseException): """An exception used when error occurs during construction of a test case.""" class TimerError(Exception): """A custom exception used to report errors in use of Timer class"""
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class Opencv(CMakePackage, CudaPackage): """OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library.""" homepage = "https://opencv.org/" url = "https://github.com/opencv/opencv/archive/4.5.0.tar.gz" git = "https://github.com/opencv/opencv.git" maintainers = ["bvanessen", "adamjstewart", "glennpj"] version("master", branch="master") version( "4.5.4", sha256="c20bb83dd790fc69df9f105477e24267706715a9d3c705ca1e7f613c7b3bad3d", ) version( "4.5.2", sha256="ae258ed50aa039279c3d36afdea5c6ecf762515836b27871a8957c610d0424f8", ) version( "4.5.1", sha256="e27fe5b168918ab60d58d7ace2bd82dd14a4d0bd1d3ae182952c2113f5637513", ) version( "4.5.0", sha256="dde4bf8d6639a5d3fe34d5515eab4a15669ded609a1d622350c7ff20dace1907", ) version( "4.2.0", sha256="9ccb2192d7e8c03c58fee07051364d94ed7599363f3b0dce1c5e6cc11c1bb0ec", ) version( "4.1.2", sha256="385dd0a9c25e67ef0dd60e022d2a2d7b17e2f36819cf3cb46aa8cdff5c5282c9", ) version( "4.1.1", sha256="5de5d96bdfb9dad6e6061d70f47a0a91cee96bb35afb9afb9ecb3d43e243d217", ) version( "4.1.0", sha256="8f6e4ab393d81d72caae6e78bd0fd6956117ec9f006fba55fcdb88caf62989b7", ) version( "4.0.1", sha256="7b86a0ee804244e0c407321f895b15e4a7162e9c5c0d2efc85f1cadec4011af4", ) version( "4.0.0", sha256="3787b3cc7b21bba1441819cb00c636911a846c0392ddf6211d398040a1e4886c", ) version( "3.4.12", sha256="c8919dfb5ead6be67534bf794cb0925534311f1cd5c6680f8164ad1813c88d13", ) version( "3.4.6", sha256="e7d311ff97f376b8ee85112e2b536dbf4bdf1233673500175ed7cf21a0089f6d", ) version( "3.4.5", sha256="0c57d9dd6d30cbffe68a09b03f4bebe773ee44dc8ff5cd6eaeb7f4d5ef3b428e", ) version( "3.4.4", sha256="a35b00a71d77b484f73ec485c65fe56c7a6fa48acd5ce55c197aef2e13c78746", ) version( "3.4.3", sha256="4eef85759d5450b183459ff216b4c0fa43e87a4f6aa92c8af649f89336f002ec", ) version( "3.4.1", sha256="f1b87684d75496a1054405ae3ee0b6573acaf3dad39eaf4f1d66fdd7e03dc852", ) version( "3.4.0", sha256="678cc3d2d1b3464b512b084a8cca1fad7de207c7abdf2caa1fed636c13e916da", ) version( "3.3.1", sha256="5dca3bb0d661af311e25a72b04a7e4c22c47c1aa86eb73e70063cd378a2aa6ee", ) version( "3.3.0", sha256="8bb312b9d9fd17336dc1f8b3ac82f021ca50e2034afc866098866176d985adc6", ) contrib_vers = [ "3.3.0", "3.3.1", "3.4.0", "3.4.1", "3.4.3", "3.4.4", "3.4.5", "3.4.6", "3.4.12", "4.0.0", "4.0.1", "4.1.0", "4.1.1", "4.1.2", "4.2.0", "4.5.0", "4.5.1", "4.5.2", "4.5.4", ] for cv in contrib_vers: resource( name="contrib", git="https://github.com/opencv/opencv_contrib.git", tag="{0}".format(cv), when="@{0}".format(cv), ) # Patch to fix conflict between CUDA and OpenCV (reproduced with 3.3.0 # and 3.4.1) header file that have the same name. Problem is fixed in # the current development branch of OpenCV. See #8461 for more information. patch("dnn_cuda.patch", when="@3.3.0:3.4.1+cuda+dnn") patch("opencv3.2_cmake.patch", when="@3.2:3.4.1") # do not prepend system paths patch("cmake_no-system-paths.patch") patch("opencv4.1.1_clp_cmake.patch", when="@4.1.1:") patch("opencv4.0.0_clp_cmake.patch", when="@4.0.0:4.1.0") patch("opencv3.4.12_clp_cmake.patch", when="@3.4.12") patch("opencv3.3_clp_cmake.patch", when="@:3.4.6") patch("opencv3.4.4_cvv_cmake.patch", when="@3.4.4:") patch("opencv3.3_cvv_cmake.patch", when="@:3.4.3") # OpenCV prebuilt apps (variants) # Defined in `apps/*/CMakeLists.txt` using # `ocv_add_application(...)` apps = [ "annotation", "createsamples", "interactive-calibration", "model-diagnostics", "traincascade", "version", "visualisation", ] # app variants for app in apps: variant(app, default=False, description="Install {0} app".format(app)) # app conflicts with when("+annotation"): conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~videoio") with when("+createsamples"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~objdetect") conflicts("~videoio") with when("+interactive-calibration"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgproc") conflicts("~videoio") with when("+model-diagnostics"): conflicts("~dnn") with when("+traincascade"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~objdetect") with when("+visualisation"): conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~videoio") # OpenCV modules (variants) # Defined in `modules/*/CMakeLists.txt` using # `ocv_add_module(...)` and `ocv_define_module(...)` modules = [ "calib3d", "dnn", "features2d", "flann", "gapi", "highgui", "imgcodecs", "imgproc", "java", "java_bindings_generator", "ml", "objc", "objc_bindings_generator", "objdetect", "photo", "python2", "python3", "python_bindings_generator", "python_tests", "stitching", "ts", "video", "videoio", "world", ] # These need additional spack packages # js needs Emscripten modules_pending = [ "js", "js_bindings_generator", ] # module variants for mod in modules: # At least one of these modules must be enabled to build OpenCV variant(mod, default=False, description="Include opencv_{0} module".format(mod)) # module conflicts and dependencies with when("+calib3d"): conflicts("~features2d") conflicts("~flann") conflicts("~imgproc") with when("+dnn"): conflicts("~imgproc") conflicts("~protobuf") with when("+features2d"): conflicts("~imgproc") with when("+gapi"): conflicts("~ade") conflicts("~imgproc") with when("+highgui"): conflicts("~imgcodecs") conflicts("~imgproc") with when("+imgcodecs"): conflicts("~imgproc") with when("+java"): conflicts("~imgproc") conflicts("~java_bindings_generator") conflicts("~python2~python3") with when("+java_bindings_generator"): depends_on("java") depends_on("ant") with when("+objc"): conflicts("~imgproc") conflicts("~objc_bindings_generator") with when("+objc_bindings_generator"): conflicts("~imgproc") with when("+objdetect"): conflicts("~calib3d") conflicts("~dnn") conflicts("~imgproc") with when("+photo"): conflicts("~imgproc") with when("+python2"): conflicts("+python3") conflicts("~python_bindings_generator") depends_on("[email protected]:2.8", type=("build", "link", "run")) depends_on("py-setuptools", type="build") depends_on("py-numpy", type=("build", "run")) extends("python", when="+python2") with when("+python3"): conflicts("+python2") conflicts("~python_bindings_generator") depends_on("[email protected]:", type=("build", "link", "run")) depends_on("py-setuptools", type="build") depends_on("py-numpy", type=("build", "run")) extends("python", when="+python3") with when("+stitching"): conflicts("~calib3d") conflicts("~features2d") conflicts("~flann") conflicts("~imgproc") with when("+ts"): conflicts("~highgui") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~videoio") with when("+video"): conflicts("~imgproc") with when("+videoio"): conflicts("~ffmpeg") conflicts("~imgcodecs") conflicts("~imgproc") # OpenCV contrib modules (variants) contrib_modules = [ "alphamat", "aruco", "barcode", "bgsegm", "bioinspired", "ccalib", "cudaarithm", "cudabgsegm", "cudacodec", "cudafeatures2d", "cudafilters", "cudaimgproc", "cudalegacy", "cudaobjdetect", "cudaoptflow", "cudastereo", "cudawarping", "cudev", "cvv", "datasets", "dnn_objdetect", "dnn_superres", "dpm", "face", "freetype", "fuzzy", "hdf", "hfs", "img_hash", "intensity_transform", "line_descriptor", "matlab", "mcc", "optflow", "phase_unwrapping", "plot", "quality", "rapid", "reg", "rgbd", "saliency", "sfm", "shape", "stereo", "structured_light", "superres", "surface_matching", "text", "tracking", "videostab", "viz", "wechat_qrcode", "xfeatures2d", "ximgproc", "xobjdetect", "xphoto", ] contrib_modules_pending = [ "julia", # need a way to manage the installation prefix "ovis", # need ogre ] for mod in contrib_modules: variant( mod, default=False, description="Include opencv_{0} contrib module".format(mod), ) # contrib module conflicts and dependencies with when("+alphamat"): conflicts("~eigen") conflicts("~imgproc") with when("+aruco"): conflicts("~calib3d") conflicts("~imgproc") with when("+barcode"): conflicts("~dnn") conflicts("~imgproc") with when("+bgsegm"): conflicts("~calib3d") conflicts("~imgproc") conflicts("~video") with when("+ccalib"): conflicts("~calib3d") conflicts("~features2d") conflicts("~highgui") conflicts("~imgproc") with when("+cublas"): conflicts("~cuda") conflicts("~cudev") with when("+cuda"): conflicts("~cudev") with when("+cudaarithm"): conflicts("~cuda") conflicts("~cublas") conflicts("~cudev") conflicts("~cufft") with when("+cudabgsegm"): conflicts("~cuda") conflicts("~cudev") conflicts("~video") with when("+cudacodec"): conflicts("~cudev") conflicts("~videoio") with when("+cudafeatures2d"): conflicts("~cuda") conflicts("~cudafilters") conflicts("~cudawarping") conflicts("~cudev") conflicts("~features2d") with when("+cudafilters"): conflicts("~cuda") conflicts("~cudaarithm") conflicts("~cudev") conflicts("~imgproc") with when("+cudaimgproc"): conflicts("~cuda") conflicts("~cudev") conflicts("~imgproc") with when("+cudalegacy"): conflicts("~cuda") conflicts("~cudev") conflicts("~video") with when("+cudaobjdetect"): conflicts("~cuda") conflicts("~cudaarithm") conflicts("~cudawarping") conflicts("~cudev") conflicts("~objdetect") with when("+cudaoptflow"): conflicts("~cuda") conflicts("~cudaarithm") conflicts("~cudaimgproc") conflicts("~cudawarping") conflicts("~cudev") conflicts("~optflow") conflicts("~video") with when("+cudastereo"): conflicts("~calib3d") conflicts("~cuda") conflicts("~cudev") with when("+cudawarping"): conflicts("~cuda") conflicts("~cudev") conflicts("~imgproc") with when("+cudev"): conflicts("~cuda") with when("+cvv"): conflicts("~features2d") conflicts("~imgproc") conflicts("~qt") with when("+datasets"): conflicts("~flann") conflicts("~imgcodecs") conflicts("~ml") with when("+dnn_objdetect"): conflicts("~dnn") conflicts("~imgproc") with when("+dnn_superres"): conflicts("~dnn") conflicts("~imgproc") with when("+dpm"): conflicts("~imgproc") conflicts("~objdetect") with when("+face"): conflicts("~calib3d") conflicts("~imgproc") conflicts("~objdetect") conflicts("~photo") with when("+fuzzy"): conflicts("~imgproc") with when("+freetype"): conflicts("~imgproc") depends_on("freetype") depends_on("harfbuzz") with when("+hdf"): depends_on("hdf5") with when("+hfs"): with when("+cuda"): conflicts("~cudev") conflicts("~imgproc") with when("+img_hash"): conflicts("~imgproc") with when("+intensity_transform"): conflicts("~imgproc") with when("+line_descriptor"): conflicts("~imgproc") with when("+matlab"): conflicts("~python2~python3") depends_on("matlab") depends_on("py-jinja2") with when("+mcc"): conflicts("~calib3d") conflicts("~dnn") conflicts("~imgproc") with when("+optflow"): conflicts("~calib3d") conflicts("~flann") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~video") conflicts("~ximgproc") with when("+phase_unwrapping"): conflicts("~imgproc") with when("+plot"): conflicts("~imgproc") with when("+quality"): conflicts("~imgproc") conflicts("~ml") with when("+rapid"): conflicts("~calib3d") conflicts("~imgproc") with when("+reg"): conflicts("~imgproc") with when("+rgbd"): conflicts("~calib3d") conflicts("~eigen") conflicts("~imgproc") with when("+saliency"): conflicts("%intel") conflicts("~features2d") conflicts("~imgproc") with when("+sfm"): conflicts("~calib3d") conflicts("~eigen") conflicts("~features2d") conflicts("~imgcodecs") conflicts("~xfeatures2d") depends_on("ceres-solver") depends_on("gflags") depends_on("glog") with when("+shape"): conflicts("~calib3d") conflicts("~imgproc") with when("+stereo"): conflicts("~calib3d") conflicts("~features2d") conflicts("~imgproc") conflicts("~tracking") with when("+structured_light"): conflicts("~calib3d") conflicts("~imgproc") conflicts("~phase_unwrapping") with when("+superres"): with when("+cuda"): conflicts("~cudev") conflicts("~imgproc") conflicts("~optflow") conflicts("~video") with when("+surface_matching"): conflicts("~flann") with when("+text"): conflicts("~dnn") conflicts("~features2d") conflicts("~imgproc") conflicts("~ml") with when("+tracking"): conflicts("~imgproc") conflicts("~plot") conflicts("~video") with when("+videostab"): with when("+cuda"): conflicts("~cudev") conflicts("~calib3d") conflicts("~features2d") conflicts("~imgproc") conflicts("~photo") conflicts("~video") with when("+viz"): conflicts("~vtk") with when("+wechat_qrcode"): conflicts("~dnn") conflicts("~imgproc") depends_on("libiconv") with when("+xfeatures2d"): with when("+cuda"): conflicts("~cudev") conflicts("~calib3d") conflicts("~features2d") conflicts("~imgproc") with when("+ximgproc"): conflicts("~calib3d") conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~video") with when("+xobjdetect"): conflicts("~imgcodecs") conflicts("~imgproc") conflicts("~objdetect") with when("+xphoto"): conflicts("~imgproc") conflicts("~photo") # Optional 3rd party components (variants) # Defined in `CMakeLists.txt` and `modules/gapi/cmake/init.cmake` # using `OCV_OPTION(WITH_* ...)` components = [ "1394", "ade", "android_mediandk", "android_native_camera", "avfoundation", "cap_ios", "carotene", "clp", "cpufeatures", "cublas", "cuda", "cudnn", "cufft", "directx", "dshow", "eigen", "ffmpeg", "gdal", "gtk", "hpx", "imgcodec_hdr", "imgcodec_pfm", "imgcodec_pxm", "imgcodec_sunraster", "ipp", "itt", "jasper", "jpeg", "lapack", "msmf", "msmf_dxva", "onnx", "opencl", "opencl_d3d11_nv", "openexr", "opengl", "openjpeg", "openmp", "plaidml", "png", "protobuf", "pthreads_pf", "qt", "quirc", "tbb", "tengine", "tesseract", "tiff", "v4l", "vtk", "vulcan", "webp", "win32ui", ] # These likely need additional spack packages components_pending = [ "aravis", "gdcm", "gphoto2", "gstreamer", "gtk_2_x", # deprecated in spack "halide", "inf_engine", "librealsense", "mfx", "ngraph", "nvcuvid", # disabled, details: https://github.com/opencv/opencv/issues/14850 "opencl_svm", "openclamdblas", "openclamdfft", "openni", "openni2", "openvx", "pvapi", "ueye", "va", "va_intel", "ximea", "xine", ] # components and modules with the same name # used in `def cmake_args(self)` component_and_module = ["freetype", "julia", "matlab"] for component in components: variant( component, default=False, description="Include {0} support".format(component), ) # Other (variants) variant("shared", default=True, description="Enables the build of shared libraries") variant("powerpc", default=False, description="Enable PowerPC for GCC") variant( "fast-math", default=False, description="Enable -ffast-math (not recommended for GCC 4.6.x)", ) variant("nonfree", default=False, description="Enable non-free algorithms") # Required (dependencies) depends_on("[email protected]:", type="build") depends_on("[email protected]:2.8,3.2:", type="build") depends_on("java", type="build") depends_on("[email protected]:") # Optional 3rd party components (dependencies) depends_on("clp", when="+clp") depends_on("[email protected]:", when="+cuda") depends_on("cuda@:10.2", when="@4.0:4.2+cuda") depends_on("cuda@:9.0", when="@3.3.1:3.4+cuda") depends_on("cuda@:8", when="@:3.3.0+cuda") depends_on("cudnn", when="+cudnn") depends_on("cudnn@:7.6", when="@4.0:4.2+cudnn") depends_on("cudnn@:7.3", when="@3.3.1:3.4+cudnn") depends_on("cudnn@:6", when="@:3.3.0+cudnn") depends_on("eigen", when="+eigen") depends_on("ffmpeg+avresample", when="+ffmpeg") depends_on("gdal", when="+gdal") depends_on("gtkplus", when="+gtk") depends_on("hpx", when="+hpx") depends_on("ipp", when="+ipp") depends_on("jasper", when="+jasper") depends_on("jpeg", when="+jpeg") depends_on("lapack", when="+lapack") depends_on("onnx", when="+onnx") depends_on("opencl", when="+opencl") depends_on("openexr", when="+openexr") depends_on("gl", when="+opengl") depends_on("openjpeg@2:", when="+openjpeg") depends_on("libpng", when="+png") depends_on("[email protected]:", when="@3.4.1: +protobuf") depends_on("[email protected]", when="@3.3.0:3.4.0 +protobuf") depends_on("qt@5:", when="+qt") depends_on("qt@5:+opengl", when="+qt+opengl") depends_on("tbb", when="+tbb") depends_on("libtiff+jpeg+libdeflate+lzma+zlib", when="+tiff") depends_on("vtk", when="+vtk") depends_on("libwebp", when="+webp") depends_on("tesseract", when="+tesseract") depends_on("leptonica", when="+tesseract") depends_on("libdc1394", when="+1394") # Optional 3rd party components (conflicts) # Defined in `CMakeLists.txt` and `modules/gapi/cmake/init.cmake` # using `OCV_OPTION(WITH_* ...)` conflicts("+android_mediandk", when="platform=darwin", msg="Android only") conflicts("+android_mediandk", when="platform=linux", msg="Android only") conflicts("+android_mediandk", when="platform=cray", msg="Android only") conflicts("+android_native_camera", when="platform=darwin", msg="Android only") conflicts("+android_native_camera", when="platform=linux", msg="Android only") conflicts("+android_native_camera", when="platform=cray", msg="Android only") conflicts("+avfoundation", when="platform=linux", msg="iOS/macOS only") conflicts("+avfoundation", when="platform=cray", msg="iOS/macOS only") conflicts("+cap_ios", when="platform=darwin", msg="iOS only") conflicts("+cap_ios", when="platform=linux", msg="iOS only") conflicts("+cap_ios", when="platform=cray", msg="iOS only") conflicts("+carotene", when="target=x86:", msg="ARM/AARCH64 only") conflicts("+carotene", when="target=x86_64:", msg="ARM/AARCH64 only") conflicts("+cpufeatures", when="platform=darwin", msg="Android only") conflicts("+cpufeatures", when="platform=linux", msg="Android only") conflicts("+cpufeatures", when="platform=cray", msg="Android only") conflicts("+cublas", when="~cuda") conflicts("+cudnn", when="~cuda") conflicts("+cufft", when="~cuda") conflicts("+directx", when="platform=darwin", msg="Windows only") conflicts("+directx", when="platform=linux", msg="Windows only") conflicts("+directx", when="platform=cray", msg="Windows only") conflicts("+dshow", when="platform=darwin", msg="Windows only") conflicts("+dshow", when="platform=linux", msg="Windows only") conflicts("+dshow", when="platform=cray", msg="Windows only") conflicts("+gtk", when="platform=darwin", msg="Linux only") conflicts("+ipp", when="target=aarch64:", msg="x86 or x86_64 only") conflicts("+jasper", when="+openjpeg") conflicts("+msmf", when="platform=darwin", msg="Windows only") conflicts("+msmf", when="platform=linux", msg="Windows only") conflicts("+msmf", when="platform=cray", msg="Windows only") conflicts("+msmf_dxva", when="platform=darwin", msg="Windows only") conflicts("+msmf_dxva", when="platform=linux", msg="Windows only") conflicts("+msmf_dxva", when="platform=cray", msg="Windows only") conflicts("+opencl_d3d11_nv", when="platform=darwin", msg="Windows only") conflicts("+opencl_d3d11_nv", when="platform=linux", msg="Windows only") conflicts("+opencl_d3d11_nv", when="platform=cray", msg="Windows only") conflicts("+opengl", when="~qt") conflicts("+tengine", when="platform=darwin", msg="Linux only") conflicts("+tengine", when="target=x86:", msg="ARM/AARCH64 only") conflicts("+tengine", when="target=x86_64:", msg="ARM/AARCH64 only") conflicts("+v4l", when="platform=darwin", msg="Linux only") conflicts("+win32ui", when="platform=darwin", msg="Windows only") conflicts("+win32ui", when="platform=linux", msg="Windows only") conflicts("+win32ui", when="platform=cray", msg="Windows only") def cmake_args(self): spec = self.spec args = [ self.define( "OPENCV_EXTRA_MODULES_PATH", join_path(self.stage.source_path, "opencv_contrib/modules"), ), self.define("BUILD_opencv_core", "on"), ] # OpenCV pre-built apps apps_list = [] for app in self.apps: if "+{0}".format(app) in spec: apps_list.append(app) if apps_list: args.append(self.define("BUILD_opencv_apps", "on")) args.append(self.define("OPENCV_INSTALL_APPS_LIST", ",".join(apps_list))) else: args.append(self.define("BUILD_opencv_apps", "off")) # OpenCV modules for mod in self.modules: args.append(self.define_from_variant("BUILD_opencv_" + mod, mod)) if mod in self.component_and_module: args.append(self.define_from_variant("WITH_" + mod.upper(), mod)) for mod in self.modules_pending: args.append(self.define("BUILD_opencv_" + mod, "off")) if mod in self.component_and_module: args.append(self.define("WITH_" + mod.upper(), "off")) # OpenCV contrib modules for mod in self.contrib_modules: args.append(self.define_from_variant("BUILD_opencv_" + mod, mod)) if mod in self.component_and_module: args.append(self.define_from_variant("WITH_" + mod.upper(), mod)) for mod in self.contrib_modules_pending: args.append(self.define("BUILD_opencv_" + mod, "off")) if mod in self.component_and_module: args.append(self.define("WITH_" + mod.upper(), "off")) # Optional 3rd party components for component in self.components: args.append( self.define_from_variant("WITH_" + component.upper(), component) ) for component in self.components_pending: args.append(self.define("WITH_" + component.upper(), "off")) # Other args.extend( [ self.define("ENABLE_CONFIG_VERIFICATION", True), self.define_from_variant("BUILD_SHARED_LIBS", "shared"), self.define("ENABLE_PRECOMPILED_HEADERS", False), self.define_from_variant("WITH_LAPACK", "lapack"), self.define_from_variant("ENABLE_POWERPC", "powerpc"), self.define_from_variant("ENABLE_FAST_MATH", "fast-math"), self.define_from_variant("OPENCV_ENABLE_NONFREE", "nonfree"), ] ) if "+cuda" in spec: if spec.variants["cuda_arch"].value[0] != "none": cuda_arch = spec.variants["cuda_arch"].value args.append(self.define("CUDA_ARCH_BIN", " ".join(cuda_arch))) # TODO: this CMake flag is deprecated if spec.target.family == "ppc64le": args.append(self.define("ENABLE_VSX", True)) # Media I/O zlib = spec["zlib"] args.extend( [ self.define("BUILD_ZLIB", False), self.define("ZLIB_LIBRARY", zlib.libs[0]), self.define("ZLIB_INCLUDE_DIR", zlib.headers.directories[0]), ] ) if "+png" in spec: libpng = spec["libpng"] args.extend( [ self.define("BUILD_PNG", False), self.define("PNG_LIBRARY", libpng.libs[0]), self.define("PNG_INCLUDE_DIR", libpng.headers.directories[0]), ] ) if "+jpeg" in spec: libjpeg = spec["jpeg"] args.extend( [ self.define("BUILD_JPEG", False), self.define("JPEG_LIBRARY", libjpeg.libs[0]), self.define("JPEG_INCLUDE_DIR", libjpeg.headers.directories[0]), ] ) if "+tiff" in spec: libtiff = spec["libtiff"] args.extend( [ self.define("BUILD_TIFF", False), self.define("TIFF_LIBRARY", libtiff.libs[0]), self.define("TIFF_INCLUDE_DIR", libtiff.headers.directories[0]), ] ) if "+jasper" in spec: jasper = spec["jasper"] args.extend( [ self.define("BUILD_JASPER", False), self.define("JASPER_LIBRARY", jasper.libs[0]), self.define("JASPER_INCLUDE_DIR", jasper.headers.directories[0]), ] ) if "+clp" in spec: clp = spec["clp"] args.extend( [ self.define("BUILD_CLP", False), self.define("CLP_LIBRARIES", clp.prefix.lib), self.define("CLP_INCLUDE_DIR", clp.headers.directories[0]), ] ) if "+onnx" in spec: onnx = spec["onnx"] args.extend( [ self.define("BUILD_ONNX", False), self.define("ORT_LIB", onnx.libs[0]), self.define("ORT_INCLUDE", onnx.headers.directories[0]), ] ) if "+tesseract" in spec: tesseract = spec["tesseract"] leptonica = spec["leptonica"] args.extend( [ self.define("Lept_LIBRARY", leptonica.libs[0]), self.define("Tesseract_LIBRARY", tesseract.libs[0]), self.define( "Tesseract_INCLUDE_DIR", tesseract.headers.directories[0] ), ] ) # Python python_exe = spec["python"].command.path python_lib = spec["python"].libs[0] python_include_dir = spec["python"].headers.directories[0] if "+python2" in spec: args.extend( [ self.define("PYTHON2_EXECUTABLE", python_exe), self.define("PYTHON2_LIBRARY", python_lib), self.define("PYTHON2_INCLUDE_DIR", python_include_dir), self.define("PYTHON3_EXECUTABLE", ""), ] ) elif "+python3" in spec: args.extend( [ self.define("PYTHON3_EXECUTABLE", python_exe), self.define("PYTHON3_LIBRARY", python_lib), self.define("PYTHON3_INCLUDE_DIR", python_include_dir), self.define("PYTHON2_EXECUTABLE", ""), ] ) else: args.extend( [ self.define("PYTHON2_EXECUTABLE", ""), self.define("PYTHON3_EXECUTABLE", ""), ] ) return args @property def libs(self): shared = "+shared" in self.spec return find_libraries( "libopencv_*", root=self.prefix, shared=shared, recursive=True )
# @Vipin Chaudhari host='192.168.1.15' meetup_rsvp_stream_api_url = "http://stream.meetup.com/2/rsvps" # Kafka info kafka_topic = "meetup-rsvp-topic" kafka_server = host+':9092' # MySQL info mysql_user = "python" mysql_pwd = "python" mysql_db = "meetup" mysql_driver = "com.mysql.cj.jdbc.Driver" mysql_tbl = "MeetupRSVP" mysql_jdbc_url = "jdbc:mysql://" + host + ":3306/" + mysql_db + "?useJDBCCompliantTimezoneShift=true&useLegacyDatetimeCode=false&serverTimezone=UTC" # MongoDB info mongodb_host=host mongodb_user = "admin" mongodb_pwd = "admin" mongodb_db = "meetup" mongodb_collection = "tbl_meetup_rsvp"
class Layer: def __init__(self): self.input = None self.output = None def forward_propagation(self,input): raise NotImplementedError def backward_propagation(self, output_error,learning_rate): raise NotImplementedError
def to_fp_name(path, prefix='fp'): if path == 'stdout': return 'stdout' if path == 'stderr': return 'stderr' if path == 'stdin': return 'stdin' # For now, just construct a fd variable name by taking objectionable chars out of the path cleaned = path.replace('.', '_').replace ('/', '_').replace ('-', '_').replace ('+', 'x') return "{}_{}".format(prefix, cleaned) def doinatest(): return "YO"
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode: if root is None: return None left = self.lowestCommonAncestor(root.left, p, q) right = self.lowestCommonAncestor(root.right, p, q) if (left and right) or root in [p,q]: return root else: return left or right
# instance/config.cfg SQLALCHEMY_DATABASE_URI= \ "mysql://microaccounts_dev:r783qjkldDsiu@localhost:3306/elixir_beacon_testing" SECRET_KEY= \ "nsady679d8+eiqรฅowmยดยด`msdjjwi"
#!/usr/bin/env python #pylint: skip-file # This source code is licensed under the Apache license found in the # LICENSE file in the root directory of this project. class AclAce(object): def __init__(self): """ Attributes: swaggerTypes (dict): The key is attribute name and the value is attribute type. attributeMap (dict): The key is attribute name and the value is json key in definition. """ self.swaggerTypes = { 'result': 'str', 'matchingPorts': 'list[AclMatchingPorts]', 'ace': 'str' } self.attributeMap = { 'result': 'result', 'matchingPorts': 'matchingPorts', 'ace': 'ace' } self.result = None # str self.matchingPorts = None # list[AclMatchingPorts] self.ace = None # str
class MarginGetError(Exception): pass class PositionGetError(Exception): pass class TickGetError(Exception): pass class TradeGetError(Exception): pass class BarGetError(Exception): pass class FillGetError(Exception): pass class OrderPostError(Exception): pass class OrderGetError(Exception): pass class OrderBookGetError(Exception): pass class BalanceGetError(Exception): pass class AssetTransferError(Exception): pass
class MyStuff(object): def __init__(self): self.stark = "I am classy Iron Man." def groot(self): print("I am classy groot!") thing = MyStuff() thing.groot() print(thing.stark)
expected_output = { "GigabitEthernet0/1/1": { "service_policy": { "output": { "policy_name": { "shape-out": { "class_map": { "class-default": { "bytes": 0, "bytes_output": 0, "match": ["any"], "match_evaluation": "match-any", "no_buffer_drops": 0, "packets": 0, "pkts_output": 0, "queue_depth": 0, "queue_limit_packets": "64", "queueing": True, "rate": { "drop_rate_bps": 0, "interval": 300, "offered_rate_bps": 0, }, "shape_bc_bps": 2000, "shape_be_bps": 2000, "shape_cir_bps": 500000, "shape_type": "average", "target_shape_rate": 500000, "total_drops": 0, } } } } } } } }
class MXVLANPorts(object): def __init__(self, session): super(MXVLANPorts, self).__init__() self._session = session def getNetworkAppliancePorts(self, networkId: str): """ **List per-port VLAN settings for all ports of a MX.** https://developer.cisco.com/meraki/api/#!get-network-appliance-ports - networkId (string) """ metadata = { 'tags': ['MX VLAN ports'], 'operation': 'getNetworkAppliancePorts', } resource = f'/networks/{networkId}/appliancePorts' return self._session.get(metadata, resource) def getNetworkAppliancePort(self, networkId: str, appliancePortId: str): """ **Return per-port VLAN settings for a single MX port.** https://developer.cisco.com/meraki/api/#!get-network-appliance-port - networkId (string) - appliancePortId (string) """ metadata = { 'tags': ['MX VLAN ports'], 'operation': 'getNetworkAppliancePort', } resource = f'/networks/{networkId}/appliancePorts/{appliancePortId}' return self._session.get(metadata, resource) def updateNetworkAppliancePort(self, networkId: str, appliancePortId: str, **kwargs): """ **Update the per-port VLAN settings for a single MX port.** https://developer.cisco.com/meraki/api/#!update-network-appliance-port - networkId (string) - appliancePortId (string) - enabled (boolean): The status of the port - dropUntaggedTraffic (boolean): Trunk port can Drop all Untagged traffic. When true, no VLAN is required. Access ports cannot have dropUntaggedTraffic set to true. - type (string): The type of the port: 'access' or 'trunk'. - vlan (integer): Native VLAN when the port is in Trunk mode. Access VLAN when the port is in Access mode. - allowedVlans (string): Comma-delimited list of the VLAN ID's allowed on the port, or 'all' to permit all VLAN's on the port. - accessPolicy (string): The name of the policy. Only applicable to Access ports. Valid values are: 'open', '8021x-radius', 'mac-radius', 'hybris-radius' for MX64 or Z3 or any MX supporting the per port authentication feature. Otherwise, 'open' is the only valid value and 'open' is the default value if the field is missing. """ kwargs.update(locals()) metadata = { 'tags': ['MX VLAN ports'], 'operation': 'updateNetworkAppliancePort', } resource = f'/networks/{networkId}/appliancePorts/{appliancePortId}' body_params = ['enabled', 'dropUntaggedTraffic', 'type', 'vlan', 'allowedVlans', 'accessPolicy'] payload = {k: v for (k, v) in kwargs.items() if k in body_params} return self._session.put(metadata, resource, payload)
TOKEN = '668308467:AAETX4hdMRnVvYVBP4bK5WDgvL8zIXoHq5g' main_url = 'https://schedule.vekclub.com/api/v1/' list_group = 'handbook/groups-by-institution?institutionId=4' shedule_group ='schedule/group?groupId='
# -*- coding: utf-8 -*- """This module contains exceptions """ class PublishError(RuntimeError): """Raised when the published version is not matching the quality """ pass
# SOME BASIC CONSTANT AND MASS FUNCTION OF POISSION DISTRIBUTION # e is Euler's number (e = 2.71828...) # f(k, lambda) = lambda^k * e^-lambda / k! # Task: # A random variable, X , follows Poisson distribution with mean of 2.5. Find the probability with which the random variable X is equal to 5. # Define functions def factorial(n): if n == 1 or n == 0: return 1 if n > 1: return factorial(n - 1) * n # Input data lam = float(input()) k = float(input()) e = 2.71828 # We can show result on the screen # The round() function returns a floating point number that is a rounded version of the specified number, with the specified number of decimals. # 3 denotes decimal places (i.e., 1.234 format): result = ((lam ** k) * (e ** -lam)) / factorial(k) print(round(result, 3))
s1 = {'ab', 3,4, (5,6)} s2 = {'ab', 7, (7,6)} print(s1-s2) # Returns all the items in both s1 and s2 print(s1.intersection(s2)) # Returns all the items in a set print(s1.union(s2)) print('ab' in s1) # Testing for a member's presence in the set # Lopping through elements in a set for element in s1: print(element) # Frozen or Immutable sets s1.add(frozenset(s2)) print(s1) # Using frozen set as a key to a dictionary fs1 = frozenset(s1) fs2 = frozenset(s2) {fs1: 'fs1', fs2: 'fs2'}
# Programa que converte metros em medidas print('Conversor de metros\n') medida = float(input('Insira uma medida em metros: ')) print('Essa medida correponde a\nQuilรดmetros: {:.2f}\nHectรดmetros: {:.2f}\nDecรขmetros: {:.2f}\nDecรญmetros: {:.2f}\nCentรญmetros: {:.2f}\nMilรญmetros: {:.2f}'.format(medida/1000, medida/100, medida/10, medida*10, medida*100, medida*1000))
AI_FEEDBACK_SCALAS = { 1: "Strongly disagree", 2: "", 3: "", 4: "", 5: "", 6: "", 7: "Strongly agree" } AI_FEEDBACK_ACCURACY_SCALAS = { "no_clue": "I don't know", "0_percent": "0%", "20_percent": "20%", "40_percent": "40%", "60_percent": "60%", "80_percent": "80%", "100_percent": "100%", } AI_FEEDBACK_ACCURACY_PROPOSER_SCALAS = { "ai_much_worse": "Worse than me", "ai_worse": "", "ai_sligthly_worse": "", "ai_equal_to_proposer": "As good as me", "ai_slighly_better": "", "ai_better": "", "ai_much_better": "Better than me", } AI_FEEDBACK_ACCURACY_RESPONDER_SCALAS = { "ai_much_worse": "Worse than the PROPOSER", "ai_worse": "", "ai_sligthly_worse": "", "ai_equal_to_proposer": "As good as the PROPOSER", "ai_slighly_better": "", "ai_better": "", "ai_much_better": "Better than the PROPOSER", } AI_FEEDBACK_ACCURACY_RESPONDER_SCALAS_T3X = { 1: "Less", 2: "", 3: "", 4: "Equal", 5: "", 6: "", 7: "More" } AI_SYSTEM_DESCRIPTION_BRIEF_STANDALONE_PROPOSER = """Thank you for your offer. You will now make another decision as a PROPOSER. This time you have the option to use an AI Recommendation System (AI System) to help you decide which offer to make. The system was trained using prior interactions of comparable bargaining situations.""" AI_SYSTEM_DESCRIPTION_BRIEF_PROPOSER = """Thank you for your offer. You will now make another decision as a PROPOSER. This time you have the option to use an AI Recommendation System (AI System) to help you decide which offer to make.""" AI_SYSTEM_UNINFORMED_RESPONDER_INFORMATION_PROPOSER = """The RESPONDER does NOT know there is an AI System.""" AI_SYSTEM_INFORMED_RESPONDER_INFORMATION_PROPOSER = """The RESPONDER knows you can use an AI System.""" AI_SYSTEM_DESCRIPTION_EXTENDED_ACC_PROPOSER = """The system was trained using 100 prior interactions of comparable bargaining situations. - The system learned a fixed optimal offer (AI_OFFER). - AI_OFFER was found by testing each possible offer on comparable bargaining situations and was selected as the one that provided the highest average gain to PROPOSERs. - Following the AI System's recommendations, PROPOSERs can gain 80% of the pie left by RESPONDERs. - Following the AI System's recommendations, PROPOSERs can have 95% of their offers accepted. - The probability of an offer being accepted is higher than 50% when the offer is greater than or equal to AI_OFFER. - The probability of an offer being the RESPONDER's minimal offer is higher the closer the offer is to AI_OFFER.""" AI_SYSTEM_DESCRIPTION_EXTENDED_PROPOSER = """The system was trained using 100 prior interactions of comparable bargaining situations. - The system learned a fixed optimal offer (AI_OFFER). - AI_OFFER was found by testing each possible offer on these prior bargaining situations and was selected as the one that provided the highest average gain to PROPOSERs. - Using the same process, the system also constructed an interval that judges offers that deviate from its recommendation.""" AI_SYSTEM_DESCRIPTION_USAGE_PROPOSER = """To use the AI System, simply select a test offer and submit it to the system. The system will tell you its estimates on: 1. The probability that your offer will be accepted by your specific RESPONDER. 2. The probability that your offer is the minimal offer accepted by your specific RESPONDER. You can use the system as often as you want.""" AI_SYSTEM_DESCRIPTION_BRIEF_STANDALONE_RESPONDER = """Thank you for your minimum offer. You will now make another decision as a RESPONDER. This time your PROPOSER has the option to use an AI Recommendation System (AI System) to help them decide which offer to make. The system was trained using prior interactions of comparable bargaining situations.""" AI_SYSTEM_DESCRIPTION_BRIEF_RESPONDER = """Thank you for your minimum offer. You will now make another decision as a RESPONDER. This time your PROPOSER has the option to use an AI Recommendation System (AI System) to help them decide which offer to make.""" AI_SYSTEM_DESCRIPTION_EXTENDED_RESPONDER = AI_SYSTEM_DESCRIPTION_EXTENDED_PROPOSER AI_SYSTEM_AUTO_DESCRIPTION_BRIEF_STANDALONE_RESPONDER = """An AI Machine-Learning System will autonomously make an offer to you on behalf of a human PROPOSER. The system was trained using prior interactions of comparable bargaining situations. The human PROPOSER does not make any decisions, they only receives whatever money the system earns from this task.""" AI_SYSTEM_AUTO_DESCRIPTION_BRIEF_RESPONDER = """An AI Machine-Learning System will autonomously make an offer to you on behalf of a human PROPOSER. The human PROPOSER does not make any decisions, they only receives whatever money the system earns from this task.""" AI_SYSTEM_AUTO_DESCRIPTION_EXTENDED_RESPONDER = """The system was trained using 100 prior interactions of comparable bargaining situations. - The system learned a fixed optimal offer (AI_OFFER). - AI_OFFER was found by testing each possible offer on these prior bargaining situations and was selected as the one that provided the highest average gain to PROPOSERs. - Using the same process, the system also constructed an interval that judges offers that deviate from its recommendation.""" AI_SYSTEM_DESCRIPTION_BRIEF_RESPONDER_T3X="""You have successfully submitted your minimum offer. Now, you have the option to revise your initial minimum offer by making a second decision in your role as RESPONDER. This second decision will be compared to your PROPOSER's offer and determine your bonus payoff from this task. For this second decision, you receive new information: Your matched PROPOSER does not actually make an offer themselves. Instead, an AI Machine-Learning System autonomously makes an offer on the human PROPOSER's behalf. The PROPOSER still receives whatever money the system earns from this task."""
# -*- coding: utf-8 -*- class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def tree2str(self, t): if t is None: return '' result = [str(t.val)] if t.left is not None or t.right is not None: result.extend(['(', self.tree2str(t.left), ')']) if t.right is not None: result.extend(['(', self.tree2str(t.right), ')']) return ''.join(result) if __name__ == '__main__': solution = Solution() t0_0 = TreeNode(1) t0_1 = TreeNode(2) t0_2 = TreeNode(3) t0_3 = TreeNode(4) t0_1.left = t0_3 t0_0.right = t0_2 t0_0.left = t0_1 assert '1(2(4))(3)' == solution.tree2str(t0_0) t1_0 = TreeNode(1) t1_1 = TreeNode(2) t1_2 = TreeNode(3) t1_3 = TreeNode(4) t1_1.right = t1_3 t1_0.right = t1_2 t1_0.left = t1_1 assert '1(2()(4))(3)' == solution.tree2str(t1_0)
#!/usr/bin/python # -*- coding: utf-8 -*- # Simulation : https://framagit.org/kepon/PvMonit/issues/8 # ~ print("PID:0x203"); # ~ print("FW:146"); # ~ print("SER#:HQ18523ZGZI"); # ~ print("V:25260"); # ~ print("I:100"); # ~ print("VPV:28600"); # ~ print("PPV:6"); # ~ print("CS:3"); # ~ print("MPPT:2"); # ~ print("OR:0x00000000"); # ~ print("ERR:0"); # ~ print("LOAD:OFF"); # ~ print("Relay:OFF"); # ~ print("H19:3213"); # ~ print("H20:76"); # ~ print("H21:293"); # ~ print("H22:73"); # ~ print("H23:361"); # Simulation BMV 700 print("AR:0"); print("Alarm:OFF"); print("BMV:700"); print("CE:-36228"); print("FW: 0308"); print("H1:-102738"); print("H10:121"); print("H11:0"); print("H12:0"); print("H17:59983"); print("H18:70519"); print("H2:-36228"); print("H3:-102738"); print("H4:1"); print("H5:0"); print("H6:-24205923"); print("H7:21238"); print("H8:29442"); print("H9:104538"); print("I:-2082"); print("P:-50"); print("PID:0x203"); print("Relay:OFF"); print("SOC:886"); print("TTG:3429"); print("V:24061");
# Uso de variรกveis em Strings first_name = "ada" last_name = "lovelace" full_name = f"{first_name} {last_name}" print(full_name) # Podemos usar f-strings para escrever mensagens completas usando as informaรงรตes associadas a uma variรกvel first_name = "ada" last_name = "lovelace" full_name = f"{first_name} {last_name}" print(f"Hello, {full_name.title()}!") # Podemos usar f-strings para mostrar uma mensagem e, em seguida, atribuir essa mensagem a uma variรกvel first_name = "ada" last_name = "lovelace" full_name = f"{first_name} {last_name}" message = f"Hello, {full_name.title()}!" print(message)
def check_prime(n): f = 0 for i in range (2, n//2 +1): if n%i==0 : f= 1 break return f def min_range(d): a = (10**(d-1)) return a def max_range(d): b = (10**d) return b d=int(input("Enter d")) twin_prime_list = [] for i in range ( min_range(d) , max_range(d) ): if check_prime(i)== 0 and check_prime(i+2)== 0: twin_prime_list.append((i, i+2)) with open("twin_prime_list.txt", "w") as f: for twin_pair in twin_prime_list: f.write(str(twin_pair)) f.write("\n")
print (" ****** Bienvenido a Calculadora Basica 2020 ****** ") print (" -------------------------------------------------------- ") num = input("Ingresar el nรบmero entero a calcular: \n") calculo = input("Ingresar el simbolo de la operaciรณn que desea realizar: (+,-,*,/) \n") num_dos = input("Ingresar el siguiente nรบmero a calcular: \n") try: n = float(num) nu = float(num_dos) except: print(" -------------------------------------------------------- ") print("El Valor ingresado no es un nรบmero") quit() if calculo == "+": print("El resultado de la suma es: \n", n + nu) elif calculo == "-": print("El resultado de la resta es: \n", n - nu) elif calculo == "*": print("El resultado de la multiplicaciรณn es: \n", n * nu) elif calculo == "/": print("El resultado de la divisiรณn es: \n", n / nu) else: print(" ------------------------------------------------------- ") print ("El valor ingresado no es un simbolo de operaciรณn matematica") print (" ---------------------------------------------------------- ") print (" ****** Gracias por usar Calculadora Basica 2020 ******")
# -*- coding: utf-8 -*- """ Created on Tue Jun 29 10:24:19 2021 @author: USUARIO """
def valid_parentheses(string): count = 0 for bracket in string: if count < 0: return False if bracket == "(": count += 1 if bracket == ")": count -= 1 else: continue return count == 0 def testing(): a = "()" b = True print("ะ’ะตั€ะฝะพ!" if valid_parentheses(a) == b else "ะะต ะฒะตั€ะฝะพ") c = ")(()))" d = False print("ะ’ะตั€ะฝะพ!" if valid_parentheses(c) == d else "ะะต ะฒะตั€ะฝะพ") e = "(())((()())())" print("ะ’ะตั€ะฝะพ!" if valid_parentheses(e) == b else "ะะต ะฒะตั€ะฝะพ") if __name__ == "__main__": testing() print(valid_parentheses(")"))
# Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # DFS class Solution: def levelOrder(self, root: TreeNode) -> List[List[int]]: self.ans = [] self.dfs(root, 0) return self.ans def dfs(self, node, level): if not node: return if level == len(self.ans): self.ans.append([node.val]) else: self.ans[level].append(node.val) self.dfs(node.left, level + 1) self.dfs(node.right, level + 1) # BFS class Solution: def levelOrder(self, root: TreeNode) -> List[List[int]]: ans = [] queue = collections.deque([(root, 0)]) while queue: node, level = queue.popleft() if node: if level == len(ans): ans.append([node.val]) else: ans[level].append(node.val) queue.append((node.left, level + 1)) queue.append((node.right, level + 1)) return ans
""" Calculates compound interest over a specified time period. Since: 1.0.0 Catergory: Maths Args: param1 (int) investment: The amount of original investment. param2 (int) rate: Interest rate in whole number. i.e. 2% = 2. param3 (int) time: Length of investment. Used to exponentially raise total. Assumes interest is applied for every whole integer in param. Returns: Integer: Does not round or format the returned value. Example: >>> print(compound_interest(10, 3, 5)) 11.592740743000002 """ def compound_interest(investment, rate, time): counter = 0 total = investment interest = 1 + (rate * 0.01) while counter < time: total = total * interest counter += 1 return total
# Copyright (c) 2016 Alexander Sosedkin <[email protected]> # Distributed under the terms of the MIT License, see below: # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module defines a collection of special methods and their fallback functions / canonical invocations. Fallback function invocations will be tried if the special method is missing. At least they should fail like the real deal, right? Taken from https://docs.python.org/3.5/reference/datamodel.html """ __all__ = ['SPECIAL_METHODS'] def _raise(exception_cls, *a, **kwa): raise exception_cls(*a, **kwa) def _will_give_up(msg): return lambda *a, **kwa: RuntimeError(msg) def _setitem(w, k, v): w[k] = v def _delitem(w, k): del w[k] SPECIAL_METHODS = { #'__new__': _will_give_up('no __new__'), #'__init__': _will_give_up('no __init__'), #'__del__': lambda _: None, # gc will call the right __del__ directly '__repr__': repr, '__str__': str, '__bytes__': bytes, '__format__': format, '__lt__': object.__lt__, '__le__': object.__le__, '__eq__': object.__eq__, '__ne__': object.__ne__, '__gt__': object.__gt__, '__ge__': object.__ge__, '__hash__': hash, '__bool__': bool, '__getattr__': getattr, '__getattribute__': object.__getattribute__, '__setattr__': setattr, '__delattr__': delattr, '__dir__': dir, '__get__': lambda w, i, o: w.__get__(i, o), '__set__': lambda w, i, o: w.__set__(i, o), '__delete__': lambda w, i, o: w.__delete__(i, o), '__prepare__': lambda w, n, b, **kwa: w.__prepare__(n, b, **kwa), '__instancecheck__': isinstance, '__subclasscheck__': issubclass, '__call__': lambda w, *a, **kwa: w(*a, **kwa), '__len__': len, '__length_hint__': len, # FIXME '__getitem__': lambda w, k: w[k], '__setitem__': _setitem, #'__missing__', '__delitem__': _delitem, '__iter__': iter, '__reversed__': reversed, '__contains__': lambda w, i: i in w, '__neg__': lambda w: -w, '__pos__': lambda w: +w, '__abs__': abs, '__invert__': lambda w: ~w, '__complex__': complex, '__int__': int, '__float__': float, '__round__': round, '__index__': lambda w: w.__index__(), # FIXME '__enter__': lambda w: w.__enter__(), # FIXME '__exit__': lambda w, et, ev, tb: w.__exit__(et, ev, tb), # FIXME '__await__': lambda w: w.__await__(), # FIXME '__aiter__': lambda w: w.__aiter__(), # FIXME '__anext__': lambda w: w.__anext__(), # FIXME '__aenter__': lambda w: w.__aenter__(), # FIXME '__aexit__': lambda w, et, ev, tb: w.__aexit__(et, ev, tb), # FIXME # # And... # '__next__', } # Also add numerical operators to that dict: _NUMERIC_SPECIAL_METHODS = set(( 'add', 'sub', 'mul', 'matmul', 'truediv', 'floordiv', 'mod', 'divmod', 'pow', 'lshift', 'rshift', 'and', 'xor', 'or', )) # All of these have three forms (__???__, __r???__ and __i???__) # and should not require a fallback if missing def _add_numeric_operators(): # let's not pollute namespace for numeric_name in _NUMERIC_SPECIAL_METHODS: for tmpl in ('__%s__', '__r%s__', '__i%s__'): name = tmpl % numeric_name try: SPECIAL_METHODS[name] = getattr(object, name) except AttributeError: SPECIAL_METHODS[name] = lambda w, o: NotImplemented _add_numeric_operators() del _add_numeric_operators
""" """ class ConfigurationManager(object): def __init__(self, full_config): self._full_config = full_config def get(self, task_key): self.result_config = {} self.current_config = self._full_config.copy() [self._add_task_options(task_option) for task_option in task_key.split('.')] return self.result_config def _add_task_options(self, task_option): task_config = self.current_config.get(task_option) if task_config: self._merge_into_result(task_config) self._remove_from_result(task_option) self.current_config = task_config def _merge_into_result(self, task_config): self.result_config.update(task_config) def _remove_from_result(self, task_option): if task_option in self.result_config: del self.result_config[task_option]
numbers = (input("enter the value of a number")) def divisors(numbers): array = [] for item in range(1, numbers): if(numbers % item == 0): print("divisors items", item) array.append(item) print(array) # print("all items",item) divisors(numbers)
#!/usr/bin/python # -*- coding: utf-8 -*- """ mw_util.py Set of helper functions while dealing with MediaWiki. str2cat Adds prefix Category if string doesn't have it. """ def str2cat(category): """Return a category name starting with Category.""" prefix = "Category:" if not category.startswith(prefix): category = "%s%s" % (prefix, category) return category.replace(' ', '_')
#!/usr/bin/python3 target = 10 def showVar(a, b): global target target = target + b print('่ฎฟ้—ฎtaget:{}'.format(target)) return target def insert(sql, values): print("exec sql : {}".format(sql)) print("insert into values:{}".format(values)) return True showVar(12, 12) print('ๅ…จๅฑ€่Œƒๅ›ดๅ†…็š„target:{}'.format(target)) if __name__ == "__main__": print("ๆˆ‘ๆฅ่‡ช่‡ช่บซไธป็จ‹ๅบๆ‰ง่กŒ") else: print("ๆˆ‘ๆฅ่‡ชๅ…ถไป–็จ‹ๅบๆ‰ง่กŒ:{}".format(__name__))
# Space : O(n) # Time : O(n**2) class Solution: def jump(self, nums: List[int]) -> int: n = len(nums) dp = [10**5] * n dp[0] = 0 if n == 1: return 0 for i in range(n): for j in range(nums[i]): dp[j+i+1] = min(dp[j+i+1], dp[i] + 1) if j+i+1 == n-1: return dp[-1] return dp[-1]
# -*- coding: utf-8 -*- """ Created on 2018-03- @author: Frank Dip """ s = "hello boy" for i,j in enumerate(s): print(i, j)
while True: a = input() if int(a) == 42: break; print(int(a))
# -*- coding: utf-8 -*- # Contributors : [[email protected],[email protected], # [email protected], # [email protected] ] class CoefficientNotinRangeError(Exception): """ Class to throw exception when a coefficient is not in the specified range """ def __init__(self, coefficient, coeff_type="Default", range_min=0, range_max=1): self.range_max = range_max self.range_min = range_min self.coeff_type = coeff_type self.coefficient = coefficient super().__init__() def __str__(self): return '''\"{0}\" coefficient of value {1} is not in range {2} and {3}'''.format( self.coeff_type, self.coefficient, self.range_min, self.range_max) class InvalidImageArrayError(Exception): """ Class to throw exception when an image is not valid """ def __init__(self, image_type="PIL"): self.image_type = image_type super().__init__() def __str__(self): return "Image is not a {} Image".format(self.image_type) class CrucialValueNotFoundError(Exception): """ Class to throw exception when an expected value is not found """ def __init__(self, operation, value_type="sample"): self.value_type = value_type self.operation = operation super().__init__() def __str__(self): return "\"{0}\" value not found for the \"{1}\" mentioned".format( self.value_type, self.operation) class OperationNotFoundOrImplemented(Exception): """ Class to throw exception when an operation is not found """ def __init__(self, module, class_name): self.module = module self.class_name = class_name super().__init__() def __str__(self): return "\"{0}\" not found or implemented in the module \"{1}\"".format( self.class_name, self.module) class ConfigurationError(Exception): """ Class to throw exception when a configuration is not right """ def __init__(self, exception_string) -> None: self.exception_string = exception_string super().__init__() def __str__(self) -> str: return self.exception_string
class Solution: """ @param matrix: A 2D-array of integers @return: an integer """ def longestContinuousIncreasingSubsequence2(self, matrix): # write your code here if not matrix or not matrix[0]: return 0 m, n = len(matrix), len(matrix[0]) visited = [[0] * n for _ in range(m)] result = 0 for i in range(m): for j in range(n): self.dfs(matrix, i, j, visited) result = max(result, visited[i][j]) return result def dfs(self, matrix, i, j, visited): if visited[i][j] != 0: return visited[i][j] = 1 m, n = len(matrix), len(matrix[0]) dx = [0, 0, 1, -1] dy = [1, -1, 0, 0] for k in range(4): nx, ny = i + dx[k], j + dy[k] if 0 <= nx < len(matrix) and 0 <= ny < len(matrix[0]) and matrix[nx][ny] < matrix[i][j]: self.dfs(matrix, nx, ny, visited) visited[i][j] = max(visited[i][j], visited[nx][ny] + 1) # result = 1 # visited = [[-1] * len(matrix[0]) for _ in range(len(matrix))] # for i in range(len(matrix)): # for j in range(len(matrix[0])): # if visited[i][j] != -1: # result = max(visited[i][j], result) # continue # self.search(visited, matrix, i, j) # result = max(visited[i][j], result) # return result # def search(self, visited, matrix, x, y): # visited[x][y] = 1 # dx = [0, 0, -1, 1] # dy = [1, -1, 0, 0] # for i in range(4): # nx = dx[i] + x # ny = dy[i] + y # if 0 <= nx < len(matrix) and 0 <= ny < len(matrix[0]) and visited[nx][ny] == -1: # if matrix[x][y] > matrix[nx][ny]: # self.search(visited, matrix, nx, ny) # visited[x][y] = max(visited[x][y], visited[nx][ny] + 1)
__version__ = '0.0.7' def get_version(): return __version__
# -*- coding: utf-8 -*- """ solace.views ~~~~~~~~~~~~ All the view functions are implemented in this package. :copyright: (c) 2009 by Plurk Inc., see AUTHORS for more details. :license: BSD, see LICENSE for more details. """
class BaseASHException(Exception): """A base exception handler for the ASH ecosystem.""" def __init__(self, *args): if args: self.message = args[0] else: self.message = self.__doc__ def __str__(self): return self.message class DuplicateObject(BaseASHException): """Raised because you attempted to create and add an object, using the exact same id's as a pre-existing one.""" class ObjectMismatch(BaseASHException): """Raised because you attempted add a message to a member, but that member didn't create that message.""" class LogicError(BaseASHException): """Raised because internal logic has failed. Please create an issue in the github.""" class MissingGuildPermissions(BaseASHException): """I need both permissions to kick & ban people from this guild in order to work!"""
#Question:1 # Initializing matrix matrix = [] # Taking input from user of rows and column row = int(input("Enter the number of rows:")) column = int(input("Enter the number of columns:")) print("Enter the elements row wise:") # Getting elements of matrix from user for i in range(row): a =[] for j in range (column): a.append(int(input())) matrix.append(a) print() # Printing user entered matrix print("Entered Matrix is: ") for i in range(row): for j in range(column): print(matrix[i][j], end = " ") print() print() #Printing prime numbers of matrix: print("The prime numbers in the matrix are: ") for i in range(row): for j in range(column): if( matrix[i][j] > 1): for p in range(2, matrix[i][j]): if(matrix[i][j] % p) == 0: break else: print(matrix[i][j])
devices = \ { # ------------------------------------------------------------------------- # NXP ARM7TDMI devices Series LPC21xx, LPC22xx, LPC23xx, LPC24xx "lpc2129": { "defines": ["__ARM_LPC2000__"], "linkerscript": "arm7/lpc/linker/lpc2129.ld", "size": { "flash": 262144, "ram": 16384 }, }, "lpc2368": { "defines": ["__ARM_LPC2000__", "__ARM_LPC23_24__"], "linkerscript": "arm7/lpc/linker/lpc2368.ld", "size": { "flash": 524288, "ram": 32768 }, }, "lpc2468": { "defines": ["__ARM_LPC2000__", "__ARM_LPC23_24__"], "linkerscript": "arm7/lpc/linker/lpc2468.ld", "size": { "flash": 524288, "ram": 65536 }, }, # ------------------------------------------------------------------------- # NXP Cortex-M0 devices Series LPC11xx and LPC11Cxx "lpc1112_301": { "defines": ["__ARM_LPC11XX__",], "linkerscript": "cortex_m0/lpc/linker/lpc1112_301.ld", "size": { "flash": 16384, "ram": 8192 }, }, "lpc1114_301": { "defines": ["__ARM_LPC11XX__",], "linkerscript": "cortex_m0/lpc/linker/lpc1114_301.ld", "size": { "flash": 32768, "ram": 8192 }, }, "lpc1115_303": { "defines": ["__ARM_LPC11XX__",], "linkerscript": "cortex_m0/lpc/linker/lpc1115_303.ld", "size": { "flash": 65536, "ram": 8192 }, }, # Integrated CAN transceiver "lpc11c22_301": { "defines": ["__ARM_LPC11XX__", "__ARM_LPC11CXX__"], "linkerscript": "cortex_m0/lpc/linker/lpc11c22.ld", "size": { "flash": 16384, "ram": 8192 }, }, # Integrated CAN transceiver "lpc11c24_301": { "defines": ["__ARM_LPC11XX__", "__ARM_LPC11CXX__"], "linkerscript": "cortex_m0/lpc/linker/lpc11c24.ld", "size": { "flash": 32768, "ram": 8192 }, }, # ------------------------------------------------------------------------- # NXP Cortex-M3 devices Series LPC13xx # TODO # ------------------------------------------------------------------------- "lpc1343": { "defines": ["__ARM_LPC13XX__",], "linkerscript": "cortex_m3/lpc/linker/lpc1343.ld", "size": { "flash": 32768, "ram":8192 }, }, "lpc1769": { "defines": ["__ARM_LPC17XX__"], "linkerscript": "cortex_m3/lpc/linker/lpc1769.ld", "size": { "flash": 524288, "ram": 65536 }, # 32kB local SRAM + 2x16kB AHB SRAM }, # ------------------------------------------------------------------------- # AT91SAM7S "at91sam7s32": { "defines": ["__ARM_AT91__", "__ARM_AT91SAM7S__", "__ARM_AT91SAM7S32__"], "linkerscript": "arm7/at91/linker/at91sam7s32.ld", "size": { "flash": 32768, "ram": 4096 }, }, "at91sam7s321": { "defines": ["__ARM_AT91__", "__ARM_AT91SAM7S__", "__ARM_AT91SAM7S321__"], "linkerscript": "arm7/at91/linker/at91sam7s32.ld", "size": { "flash": 32768, "ram": 8192 }, }, "at91sam7s64": { "defines": ["__ARM_AT91__", "__ARM_AT91SAM7S__", "__ARM_AT91SAM7S64__"], "linkerscript": "arm7/at91/linker/at91sam7s64.ld", "size": { "flash": 65536, "ram": 16384 }, }, "at91sam7s128": { "defines": ["__ARM_AT91__", "__ARM_AT91SAM7S__", "__ARM_AT91SAM7S128__"], "linkerscript": "arm7/at91/linker/at91sam7s128.ld", "size": { "flash": 131072, "ram": 32768 }, }, "at91sam7s256": { "defines": ["__ARM_AT91__", "__ARM_AT91SAM7S__", "__ARM_AT91SAM7S256__"], "linkerscript": "arm7/at91/linker/at91sam7s256.ld", "size": { "flash": 262144, "ram": 65536 }, }, "at91sam7s512": { "defines": ["__ARM_AT91__", "__ARM_AT91SAM7S__", "__ARM_AT91SAM7S512__"], "linkerscript": "arm7/at91/linker/at91sam7s512.ld", "size": { "flash": 524288, "ram": 65536 }, }, # ------------------------------------------------------------------------- # AT91SAM7X "at91sam7x128": { "defines": ["__ARM_AT91__", "__ARM_AT91SAM7X__"], "linkerscript": "arm7/at91/linker/at91sam7x128.ld", "size": { "flash": 131072, "ram": 32768 }, }, "at91sam7x256": { "defines": ["__ARM_AT91__", "__ARM_AT91SAM7X__"], "linkerscript": "arm7/at91/linker/at91sam7x256.ld", "size": { "flash": 262144, "ram": 65536 }, }, "at91sam7x512": { "defines": ["__ARM_AT91__", "__ARM_AT91SAM7X__"], "linkerscript": "arm7/at91/linker/at91sam7x512.ld", "size": { "flash": 524288, "ram": 131072 }, }, # ------------------------------------------------------------------------- # STM32F103 p s # # Pins (p): # T | 36 pins # C | 48 pins # R | 64 pins # V | 100 pins # Z | 144 pins # # Size (s): # 4 | 16 kB Flash, 6 kB RAM low density line (T, C, R) # 6 | 32 kB Flash, 10 kB RAM # 8 | 64 kB Flash, 20 kB RAM medium density (T, C, R, V) # B | 128 kB Flash, 20 kB RAM # C | 256 kB Flash, 48 kB RAM high density (R, V, Z) # D | 384 kB Flash, 64 kB RAM # E | 512 kB Flash, 64 kB RAM # F | 768 kB Flash, 96 kB RAM xl density (R, V, Z) # G | 1 MB Flash, 96 kB RAM # "stm32f103_4": { "defines": ["__STM32F103__", "__ARM_STM32__", "STM32F10X", "STM32F10X_LD", "STM32_LOW_DENSITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f103_4.ld", "size": { "flash": 16384, "ram": 6144 }, }, "stm32f103_6": { "defines": ["__STM32F103__", "__ARM_STM32__", "STM32F10X", "STM32F10X_LD", "STM32_LOW_DENSITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f103_6.ld", "size": { "flash": 32768, "ram": 10240 }, }, "stm32f103_8": { "defines": ["__STM32F103__", "__ARM_STM32__", "STM32F10X", "STM32F10X_MD", "STM32_MEDIUM_DENSITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f103_8.ld", "size": { "flash": 65536, "ram": 20480 }, }, "stm32f103_b": { "defines": ["__STM32F103__", "__ARM_STM32__", "STM32F10X", "STM32F10X_MD", "STM32_MEDIUM_DENSITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f103_b.ld", "size": { "flash": 131072, "ram": 20480 }, }, "stm32f103_c": { "defines": ["__STM32F103__", "__ARM_STM32__", "STM32F10X", "STM32F10X_HD", "STM32_HIGH_DENSITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f103_c.ld", "size": { "flash": 262144, "ram": 49152 }, }, "stm32f103_d": { "defines": ["__STM32F103__", "__ARM_STM32__", "STM32F10X", "STM32F10X_HD", "STM32_HIGH_DENSITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f103_d.ld", "size": { "flash": 393216, "ram": 65536 }, }, "stm32f103_e": { "defines": ["__STM32F103__", "__ARM_STM32__", "STM32F10X", "STM32F10X_HD", "STM32_HIGH_DENSITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f103_e.ld", "size": { "flash": 524288, "ram": 65536 }, }, "stm32f103_f": { "defines": ["__STM32F103__", "__ARM_STM32__", "STM32F10X", "STM32F10X_XL", "STM32_XL_DENSITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f103_f.ld", "size": { "flash": 786432, "ram": 98304 }, }, "stm32f103_g": { "defines": ["__STM32F103__", "__ARM_STM32__", "STM32F10X", "STM32F10X_XL", "STM32_XL_DENSITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f103_g.ld", "size": { "flash": 1048576, "ram": 98304 }, }, # STM32F105 p s (pins: R, V) # # Size (s): # 8 | 64 kB Flash, 20 kB RAM # B | 128 kB Flash, 32 kB RAM # C | 256 kB Flash, 64 kB RAM # "stm32f105_8": { "defines": ["__STM32F105__", "__ARM_STM32__", "STM32F10X", "STM32F10X_CL", "STM32_CONNECTIVITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f105_8.ld", "size": { "flash": 65536, "ram": 20480 }, }, "stm32f105_b": { "defines": ["__STM32F105__", "__ARM_STM32__", "STM32F10X", "STM32F10X_CL", "STM32_CONNECTIVITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f105_b.ld", "size": { "flash": 131072, "ram": 32768 }, }, "stm32f105_c": { "defines": ["__STM32F105__", "__ARM_STM32__", "STM32F10X", "STM32F10X_CL", "STM32_CONNECTIVITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f105_c.ld", "size": { "flash": 262144, "ram": 65536 }, }, # STM32F107 p s (pins: R, V) # # Size (s): # B | 128 kB Flash, 48 kB RAM # C | 256 kB Flash, 64 kB RAM # "stm32f107_b": { "defines": ["__STM32F107__", "__ARM_STM32__", "STM32F10X", "STM32F10X_CL", "STM32_CONNECTIVITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f107_b.ld", "size": { "flash": 131072, "ram": 49152 }, }, "stm32f107_c": { "defines": ["__STM32F107__", "__ARM_STM32__", "STM32F10X", "STM32F10X_CL", "STM32_CONNECTIVITY"], "linkerscript": "cortex_m3/stm32/linker/stm32f107_c.ld", "size": { "flash": 262144, "ram": 65536 }, }, # ------------------------------------------------------------------------- # STM32F205 p s # # Pins (p): # R | 64 pins # V | 100 pins # Z | 144 pins # # Size (s): # B | 128 kB Flash, 48+16 kB RAM (R, V) # C | 256 kB Flash, 80+16 kB RAM (R, V, Z) # E | 512 kB Flash, 112+16 kB RAM (R, V, Z) # F | 768 kB Flash, 112+16 kB RAM (R, V, Z) # G | 1 MB Flash, 112+16 kB RAM (R, V, Z) # "stm32f205_b": { "defines": ["__STM32F205__", "__ARM_STM32__", "STM32F2XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f205_b.ld", "size": { "flash": 131072, "ram": 49152 }, }, "stm32f205_c": { "defines": ["__STM32F205__", "__ARM_STM32__", "STM32F2XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f205_c.ld", "size": { "flash": 262144, "ram": 81920 }, }, "stm32f205_e": { "defines": ["__STM32F205__", "__ARM_STM32__", "STM32F2XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f205_e.ld", "size": { "flash": 524288, "ram": 114688 }, }, "stm32f205_f": { "defines": ["__STM32F205__", "__ARM_STM32__", "STM32F2XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f205_f.ld", "size": { "flash": 786432, "ram": 114688 }, }, "stm32f205_g": { "defines": ["__STM32F205__", "__ARM_STM32__", "STM32F2XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f205_g.ld", "size": { "flash": 1048576, "ram": 114688 }, }, # STM32F207 p s # # Pins (p): # V | 100 pins # Z | 144 pins # I | 176 pins # # Size (s): # C | 256 kB Flash, 112+16 kB RAM # E | 512 kB Flash, 112+16 kB RAM # F | 768 kB Flash, 112+16 kB RAM # G | 1 MB Flash, 112+16 kB RAM # "stm32f207_c": { "defines": ["__STM32F207__", "__ARM_STM32__", "STM32F2XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f207_c.ld", "size": { "flash": 262144, "ram": 114688 }, }, "stm32f207_e": { "defines": ["__STM32F207__", "__ARM_STM32__", "STM32F2XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f207_e.ld", "size": { "flash": 524288, "ram": 114688 }, }, "stm32f207_f": { "defines": ["__STM32F207__", "__ARM_STM32__", "STM32F2XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f207_f.ld", "size": { "flash": 786432, "ram": 114688 }, }, "stm32f207_g": { "defines": ["__STM32F207__", "__ARM_STM32__", "STM32F2XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f207_g.ld", "size": { "flash": 1048576, "ram": 114688 }, }, # ------------------------------------------------------------------------- # STM32F405 p s # # Pins (p): # R | 64 pins # V | 100 pins # Z | 144 pins # # Size (s): # G | 1 MB Flash, 112+64+16 kB RAM # "stm32f405_g": { "defines": ["__STM32F405__", "__ARM_STM32__", "STM32F4XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f4xx_g.ld", "size": { "flash": 1048576, "ram": 114688 }, }, # STM32F407 p s # # Pins (p): # V | 100 pins # Z | 144 pins # I | 176 pins # # Size (s): # E | 512 kB Flash, 112+64+16 kB RAM # G | 1 MB Flash, 112+64+16 kB RAM # "stm32f407_e": { "defines": ["__STM32F407__", "__ARM_STM32__", "STM32F4XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f4xx_e.ld", "size": { "flash": 524288, "ram": 114688 }, }, "stm32f407_g": { "defines": ["__STM32F407__", "__ARM_STM32__", "STM32F4XX"], "linkerscript": "cortex_m3/stm32/linker/stm32f4xx_g.ld", "size": { "flash": 1048576, "ram": 114688 }, }, # ------------------------------------------------------------------------- # STM32 F3 Series # ARM Cortex-M4F MCU + FPU # STM32F302 p s # # Pins (p): # C | 48 pins # R | 64 pins # V | 100 pins # # Size (s): # B | 128 kB Flash, 8 + 40 kB RAM # C | 256 kB Flash, 8 + 40 kB RAM # "stm32f303_b": { "defines": ["__STM32F303__", "__ARM_STM32__", "STM32F3XX", "STM32F30X"], "linkerscript": "cortex_m3/stm32/linker/stm32f3xx_b.ld", "size": { "flash": 131072, "ram": 40960 }, }, "stm32f303_c": { "defines": ["__STM32F303__", "__ARM_STM32__", "STM32F3XX", "STM32F30X"], "linkerscript": "cortex_m3/stm32/linker/stm32f3xx_c.ld", "size": { "flash": 262144, "ram": 40960 }, }, }
WALK_UP = 4 WALK_DOWN = 3 WALK_RIGHT = 2 WALK_LEFT = 1 NO_OP = 0 SHOOT = 5 WALK_ACTIONS = [WALK_UP, WALK_DOWN, WALK_RIGHT, WALK_LEFT] ACTIONS = [NO_OP, WALK_LEFT, WALK_RIGHT, WALK_DOWN, WALK_UP, SHOOT]
# Day Six: Lanternfish file = open("input/06.txt").readlines() ages = [] for num in file[0].split(","): ages.append(int(num)) for day in range(80): for i, fish in enumerate(ages): if fish == 0: ages[i] = 6 ages.append(9) else: ages[i] = fish-1 print(len(ages)) # ages: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ages = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] for num in file[0].split(","): ages[int(num)] += 1 for day in range(256): for i, age in enumerate(ages): if i == 0: ages[7] += ages[0] ages[9] += ages[0] ages[0] -= ages[0] else: ages[i-1] += ages[i] ages[i] -= ages[i] print(sum(ages))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # https://leetcode.com/problems/subarray-sum-equals-k/description/ # I think it is a sub-problem of: https://leetcode.com/problems/path-sum-iii/description/ class Solution(object): def subarraySum(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ counts = {0:1} sofar = 0 ret = 0 for num in nums: sofar += num complement = sofar - k ret += counts.get(complement, 0) counts.setdefault(sofar, 0) counts[sofar] += 1 return ret solution = Solution() assert solution.subarraySum([1,1,1], 2) == 2