content
stringlengths 7
1.05M
|
---|
# -*- coding: utf-8 -*-
'''
File name: code\47smooth_triangular_numbers\sol_581.py
Author: Vaidic Joshi
Date created: Oct 20, 2018
Python Version: 3.x
'''
# Solution to Project Euler Problem #581 :: 47-smooth triangular numbers
#
# For more information see:
# https://projecteuler.net/problem=581
# Problem Statement
'''
A number is p-smooth if it has no prime factors larger than p.
Let T be the sequence of triangular numbers, ie T(n)=n(n+1)/2.
Find the sum of all indices n such that T(n) is 47-smooth.
'''
# Solution
# Solution Approach
'''
'''
|
# -*- coding: utf-8 -*-
# @Time : 2019-08-14 14:05
# @Author : Kai Zhang
# @Email : [email protected]
# @File : ex4-string_to_integer.py
# @Software: PyCharm
class Solution:
def myAtoi(self, string: str) -> int:
# 去空格
string = string.strip()
if not string:
return 0
# 判断首字符
if string[0] not in [str(j) for j in range(10)] + ['+', '-']:
return 0
# 根据
if string[0] == '-':
temp_string = '-0'
elif string[0] == '+':
temp_string = '+0'
else:
temp_string = string[0]
for i in string[1:]:
if i in [str(j) for j in range(10)]:
temp_string += i
else:
break
result_value = int(temp_string)
INT_MIN = pow(-2, 31)
INT_MAX = pow(2, 31) - 1
if result_value < INT_MIN:
result_value = INT_MIN
if result_value > INT_MAX:
result_value = INT_MAX
return result_value
s = "words and 987"
s = "4193 with words"
s = '+1'
s = '-'
s = '+'
result = Solution().myAtoi(s)
print(result)
|
x = int(input("Please enter x: "))
y = int(input("Please enter y: "))
# Wrong way
print("Wrong way")
if x < y:
print("x is less than y")
else:
if x > y:
print("x is greater than y")
else:
print("x and y must be equal")
# Correct way using elif
print("Correct way")
if x < y:
print("x is less than y")
elif x > y:
print("x is greater than y")
else:
print("x and y must be equal")
"""
Create one conditional to find whether “false” is in string str1.
If so, assign variable output the string “False. You aren’t you?”.
Check to see if “true” is in string str1 and if it is
then assign “True! You are you!” to the variable output.
If neither are in str1, assign “Neither true nor false!” to output.
"""
str1 = "Today you are you! That is truer than true! There is no one alive who is you-er than you!"
if "false" in str1 :
output = "False. You aren’t you?"
elif "true" in str1 :
output = "True! You are you!"
else :
output = "Neither true nor false!"
"""
Create an empty list called resps. Using the list percent_rain,
for each percent, if it is above 90, add the string ‘Bring an umbrella.’
to resps, otherwise if it is above 80, add the string ‘Good for the flowers?’
to resps, otherwise if it is above 50, add the string ‘Watch out for clouds!’
to resps, otherwise, add the string ‘Nice day!’ to resps.
"""
percent_rain = [94.3, 45, 100, 78, 16, 5.3, 79, 86]
resps = []
for rain in percent_rain :
if rain > 90 :
resps.append("Bring an umbrella.")
elif rain > 80 :
resps.append("Good for the flowers?")
elif rain > 50 :
resps.append("Watch out for clouds!")
else :
resps.append("Nice day!")
|
# throws KeyError
students = {'John': 18, 'Jack': 19}
print(students['Joe'])
# try/catch KeyError
students = {'John': 18, 'Jack': 19}
try:
print(students['Joe'])
except KeyError:
print('you tried to access an entry that does not exists')
|
"""
Write a function that reverses characters in (possibly nested) parentheses in the input string.
Input strings will always be well-formed with matching ()s.
Example
For inputString = "(bar)", the output should be
reverseInParentheses(inputString) = "rab";
For inputString = "foo(bar)baz", the output should be
reverseInParentheses(inputString) = "foorabbaz";
For inputString = "foo(bar)baz(blim)", the output should be
reverseInParentheses(inputString) = "foorabbazmilb";
For inputString = "foo(bar(baz))blim", the output should be
reverseInParentheses(inputString) = "foobazrabblim".
Because "foo(bar(baz))blim" becomes "foo(barzab)blim" and then "foobazrabblim".
"""
def reverseInParentheses(inputString):
char = list(inputString)
#stack
open_bracket = []
for i, c in enumerate(inputString):
if c == '(':
open_bracket.append(i)
elif c == ')':
j = open_bracket.pop()
char[j:i] = char[i:j:-1]
# review this stuff
return ''.join(c for c in char if c not in '()')
inputString = "(bar)"
print(reverseInParentheses(inputString))# = "rab";
inputString = "foo(bar)baz"
print(reverseInParentheses(inputString))# = "foorabbaz";
inputString = "foo(bar)baz(blim)"
print(reverseInParentheses(inputString))# = "foorabbazmilb";
inputString = "foo(bar(baz))blim"
print(reverseInParentheses(inputString))# = "foobazrabblim".
# Because "foo(bar(baz))blim" becomes "foo(barzab)blim" and then "foobazrabblim".
|
# 在计算个数时使用便利的方法导致 judge 用了 500+ms,还没有想到优化方法。
class Solution(object):
def majorityElement(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
nums_len = len(nums)
result_list = list()
if nums_len == 0:
return []
while True:
current_num = nums[0]
nums.pop(0)
current_num_count = 1
index = 0
for i in range(len(nums)):
if current_num == nums[index]:
nums.pop(index)
current_num_count += 1
else:
index += 1
if current_num_count > nums_len/3:
result_list.append(current_num)
if len(result_list)==2 or len(nums)==0:
return result_list
|
_base_ = '../_base_/default_runtime.py'
# dataset settings
dataset_type = 'CocoPanopticDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# file_client_args = dict(backend='disk',)
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection/',
# 'data/': 's3://openmmlab/datasets/detection/'
# }))
file_client_args = dict(
backend='memcached',
server_list_cfg='/mnt/lustre/share/memcached_client/server_list.conf',
client_cfg='/mnt/lustre/share/memcached_client/client.conf',
sys_path='/mnt/lustre/share/pymc/py3',
)
# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
# multiscale_mode='range'
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='LoadPanopticAnnotations',
with_bbox=True,
with_mask=True,
with_seg=True,
file_client_args=file_client_args),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
# Use RepeatDataset to speed up training
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='RepeatDataset',
times=3,
dataset=dict(
type=dataset_type,
ann_file=data_root + 'annotations/panoptic_train2017.json',
img_prefix=data_root + 'train2017/',
seg_prefix=data_root + 'annotations/panoptic_train2017/',
pipeline=train_pipeline)),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/panoptic_val2017.json',
img_prefix=data_root + 'val2017/',
seg_prefix=data_root + 'annotations/panoptic_val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/panoptic_val2017.json',
img_prefix=data_root + 'val2017/',
seg_prefix=data_root + 'annotations/panoptic_val2017/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric=['pq'])
# optimizer
# this is different from the original 1x schedule that use SGD
optimizer = dict(
type='AdamW',
lr=0.0001,
weight_decay=0.05,
paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.25)}))
optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2))
# learning policy
# Experiments show that using step=[9, 11] has higher performance
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1000,
warmup_ratio=0.001,
step=[9, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
|
STATUS_MAPPER = [
"Success",
"Unknown HCI Command",
"Unknown Connection Identifier",
"Hardware Failure",
"Page Timeout",
"Authentication Failure",
"PIN or Key Missing",
"Memory Capacity Exceeded",
"Connection Timeout",
"Connection Limit Exceeded",
"Synchronous Connection Limit to a Device Exceeded",
"ACL Connection Already Exists",
"Command Disallowed",
"Connection Rejected due to Limited Resources",
"Connection Rejected due to Security Reasons",
"Connection Rejected due to Unacceptable BD_ADDR",
"Connection Accept Timeout Exceeded",
"Unsupported Feature or Parameter Value",
"Invalid HCI Command Parameters",
"Remote User Terminated Connection",
"Remote Device Terminated due to Low Resources",
"Remote Device Terminated due to Power Off",
"Connection Terminated By Local Host",
"Repeated Attempts",
"Pairing Not Allowed",
"Unknown LMP PDU",
"Unsupported Remote Feature / Unsupported LMP Feature",
"SCO Offset Rejected",
"SCO Interval Rejected",
"SCO Air Mode Rejected",
"Invalid LMP Parameters / Invalid LL Parameters",
"Unspecified Error",
"Unsupported LMP Parameter Value / Unsupported LL Parameter Value",
"Role Change Not Allowed",
"LMP Response Timeout / LL Response Timeout",
"LMP Error Transaction Collision",
"LMP PDU Not Allowed",
"Encryption Mode Not Acceptable",
"Link Key cannot be Changed",
"Requested QoS Not Supported",
"Instant Passed",
"Pairing With Unit Key Not Supported",
"Different Transaction Collision",
"Reserved",
"QoS Unacceptable Parameter",
"QoS Rejected",
"Channel Classification Not Supported",
"Insufficient Security",
"Parameter Out Of Manadatory Range",
"Reserved",
"Role Switch Pending",
"Reserved",
"Reserved Slot Violation",
"Role Switch Failed",
"Extended Inquiry Response Too Large",
"Secure Simple Pairing Not Supported By Host",
"Host Busy - Pairing",
"Connection Rejected due to No Suitable Channel Found",
"Controller Busy",
"Unacceptable Connection Parameters" ,
"Directed Advertising Timeout",
"Connection Terminated due to MIC Failure",
"Connection Failed to be Established",
"MAC Connection Failed",
"Coarse Clock Adjustment Rejected but Will Try to Adjust Using Clock Dragging"
] |
# Proszę zaimplementować algorytm QuickSort do sortowania n elementowej tablicy tak, żeby zawsze
# używał najwyżej O(log(n)) dodatkowej pamięci na stosie, niezależnie od jakości podziałów w funkcji
# partition.
def partition(T, p, r):
pivot = T[r]
i = p - 1
for j in range(p, r):
if T[j] <= pivot:
i += 1
T[i], T[j] = T[j], T[i]
T[i + 1], T[r] = T[r], T[i + 1]
return i + 1
def quicksort(T, p, r):
while p < r:
q = partition(T, p, r)
if q - p < r - q:
quicksort(T, p, q - 1)
p = q + 1
else:
quicksort(T, q + 1, r)
r = q - 1
return T
T = [27, 8, 19, 7, 21, 15, 33, 12, 26, 40, 38, 19, 28, 25, 6]
print(quicksort(T, 0, len(T) - 1))
|
# __init__
__version__ = '1.1.0'
|
'''Desenvolva um lógica que leia o peso e a altura de uma pessoa, calcule o IMC e mostre o status, de acordo com a
tabela abaixo:
- Abaixo de 18.5: Abaixo do peso
- Entre 18.5 e 25: Peso ideal
- 25 até 30: Sobrepeso
- 30 até 40: Obesidade
- Acima de 40: Obesidade mórbida.'''
peso = float(input('Digite o seu peso em Kg: '))
altura = float(input('Digite a sua altura em metros: '))
imc = peso / altura ** 2
print(f'Seu IMC é de: {imc:.1f}')
if imc <18.5:
print(f'Você está abaixo do peso!')
elif imc < 25:
print('Você está no peso ideal.')
elif imc < 30:
print('Você está com sobrepeso')
elif imc < 40:
print('Você está com obesidade.')
else:
print('Voce está com OBESIDADE MÓRBIDA!!')
print('Procure um médico com urgência')
|
def test_get_public_key(cmd, button, model):
pub_key, address = cmd.get_public_key(
bip32_path="44'/5741565'/0'/0'/1'",
network_byte='V',
display=True,
button=button,
model=model
) # type: bytes, bytes
assert len(pub_key) == 32
assert len(address) == 35
|
#faça um programa que peça a temperatura em farenheit, transforme e mostre a temperatura em celsius..
print ("escolha uma das opçoes abaixo")
print ("1- celsius---farenheit")
print ("2- farenheit---celsius")
print ("3- celsius---kelvin")
print ("4- kelvin---celsius")
t = float(input ("escolha uma das opçoes acima"))
if (t == 1):
c = float (input("informe sua temperatura em celsius :"))
f = c*1.8 +32
print ("sua temperatura convertida de celsius para farenheit é :",f)
if (t == 2):
f = float (input("informe sua temperatura em farenheit :"))
c = (5*(f -32)/9)
print ("sua temperatura convertida de farenheit para celsius é :", c)
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Решить поставленную задачу:
написать функцию, вычисляющую среднее геометрическое
своих аргументов a1, a2, ... an
Если функции передается пустой список аргументов,
то она должна возвращать значение None
"""
def mean(*arg):
if arg:
a = 1.0
for i in arg:
a *= i
a = a ** (1 / len(arg))
return a
else:
return None
if __name__ == '__main__':
print('Введите список аргументов: ')
array = list(map(float, input().split()))
print(mean(*array))
|
x = [1,2,3]
name = "/tests/fixtures/data/names/{name_id}.txt"
output = "/tests/fixtures/data/salutations/{name_id}-{x}.txt"
def main():
return "Hello {name} for the {x} time!".format(name=name, x=x)
|
###Titulo: Validando número em lista
###Função: Este programa identifica se dois números estão na lista e qual foi achado primeiro
###Autor: Valmor Mantelli Jr.
###Data: 01/01/2019
###Versão: 0.0.6
### Declaração de variáve
list = [15, 7, 27, 39]
n = 0
s = 0
x = 0
fn = False
fs = False
find = 0
### Atribuição de valor
n = int(input("Digite o primeiro número que procura na lista: "))
s = int(input("Digite o segundo número que procura na lista: "))
### Processamento
while x < len(list):
if list[x] == n:
fn = True
if not fs:
find = 1
if list[x] == s:
fs = True
if not fn:
find = 2
x += 1
### Saída
if fn:
print ("O número %d foi achado na lista." %n)
else:
print ("O número %d não consta na lista." %n)
if fs:
print ("O número %d foi achado na lista." %s)
else:
print ("O número %d não consta na lista." %s)
if find == 1:
print ("%d foi achado primeiro" % n)
elif find == 2:
print ("%d foi achado primeiro." % s,)
else:
print ("Nenhum dos números foi achado na lista.")
|
# Skin info and colours
theme_name = "Future Bloo"
theme_author = "Lucas."
theme_version = "1.0"
theme_bio = "Bloo" # A long bio will get cut off, keep it simple.
window_theme = "Black"
button_colour = "black"
attacks_theme = {"background": "Black", "button_colour": ('black', 'cyan')}
banner_size = (600, 100)
banner_padding = ((75, 15), 0)
# Command Line colours
menu1 = "cyan"
menu2 = "white"
# Button/Banner Images (Base64)
rtb_icon = b'iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAALEZSURBVHja7J13uBxV2cB/s7u3pOemkUASCC3UGLqEIkIAASkiIsWPjhhFQAQLREEMWEBUQEJVuoD0KkjvvQZCKCG955a023b3fH+c8+68c3Z2701yE26SOc8zz96yO3umnN+8/Q2MMSQjGclIxpowUskpSEYykpEAKxnJSEYyEmAlIxnJSICVjGQkIxkJsJKRjGQkIwFWMpKRjARYyUhGMpKRjGQkIxnLPzLAN93rWjeMMcu1JSMZyeicowdwGzAVMMDH7m/rNLCCYNz45NZIRjI60yIeO2ZH4BZgSwC2GwXvvgJwezBu/A862VxXOdB8cTMZyUhG5wHAKcD1AqrgW9+xf7fA2oMgkJW8zurHyUhGAoqxY4YBG7lfRwK93c8bqb/7YwrwYjBu/A0dNIc7gKMBOOhIglF7278/do+85cUCsIIgCq11BGAJsJKxLsCoRkFoJJAG9lBw6rmCu94TOM6MHcPKQMuMHTMEuBY4gB41BN89Djbb0kJp2mR4+SmA2cDPzHmnBUAgH9X7CcaNX+uplQArGR0FhQxwlgPBi8G48ZetZhj5EOrtJKOh7drR4GHQf5D9ef3BUNXFQqBXb+jRK/4zixsw//q7qGo3rIi0Y8aO2Qa4DtiVwcMIvn8y9OlnYbV0CeaO6+WtfwPqvDVr1IYD51oNrQRYyegIaFwF7I0YieEQM3bM4cG48aM6AIJxENpouWDUowY23RK6dIWBG1gQbTDUQqFPP6iopKBqhfKK96v7felimDUDM30y/O8BpaqlfIGnTXCZsWNGAw8BXRg+guDoU8K5BCnMfbfColqAu4C/AxXexPJuM+p1rR6JlzAZKwOUHYGLgAMAayTeeXfMc/+FSR8AbBeMG/9emc+L3ai3p7KlgN2XC0YAwzazN3X/9aCqGrr3gG49ysNI24TiXusWwsypmCmfw/tvQEOt3lGjkypv9KSewmspiSdiXN/nYIK9D3LfGUAqhXnlWXjodoDXgUOBZe68pBSscupVfjarU8pKvITJWFNgFS44UWVq+jrpIPK+bwIbAsNWSDrablRETQt69oaevUIYabgsL4wCZQ5yKhgL52Hmz4EvPoE3no+b0XTgFeBF4AVgMlDlSTnyauLUNDN2zDnApQAcfjzBDrtGYMUXkwRWAL8EWoEuTu0N3L5z7u9ZTzVMVMJkJEMtth5YA3Hozdpp91CVqVsIn3wgb3+3XXYjp6oFVdXQb4Ddz3rrx8CIKGDa80rgIKr+HgTQ2goL5mFmTIFZ0+DLz2DKp3Gz/Ah4DXjZgapWQcMA1Z604/8csS1pT2BwwpmhcZ0A0mmor8Ncf6l895nAJKC7W6tpJV21EjW+59eF+y8BVjLash+lvdf+wJZF3iwHBvPMY+FOhmwC6w2Cmn7Qq8ZKRz16QffuoXS0IqpaWzDyP1O7AJY0YObNgc8nwicfQt38uMOe6QD1MfCmU8fybmLypT0VrLQ6llWbVg+NOqcWVj1qCI45FYZuXLBXkUpBYyPm6j/I228E7nOwqnL2KzGUZYEmNYesN8cEWMlYZ4DUtv1IAhq794iqMrkswV4HwHePh6oqbYgAk3evptgYXQ5GpUAU97/WFqvSTfvSSnpTv4APXi91FEuAicBbDlKTgFnu+GXxd4+BgPEkKVHNUjESj+zHRGD1w5+HnsAgZSWrbA5zz7+gYSHA/cDvsak4XZwUl3H7ygPNClSpdQFUCbDWDSiJy19sSCMJDdttxx6J/UiM2eJZW2/9KKhSKUilnaG7ZxQixkBewUp+LgWrOAkplVKv7v+zp8OiBsycmTD9S5j4PtTOK3UkAqNJTk391AErpRZ8CuirRL04UPmSVauClW8MT7mfhwBXAQeVhFU6g7n3FpjwNg6gF7jr090Bq0pJVy1uv+kSc0yAlYxODSUxZo90C24PB6URKwWktuxHQRCCKp22P2cy9neBmEhX+bwDVT4eWBFQeb/XLoBF9Zi5s+DTj2D2DPji41JHtNRB6X1gBvCF2wIFlZRTr/p6sAq8rRyotArYHAOrnILVbcDX6VFDcNo5zjHhzk86Dak05ulH4PXnAD4Dfu7WZXcFLFmnrUpy86W9dSLUPQHWmicpbdpuKInLv09f6NUndPe3FXvUpv1IS1YOVOkMZCoKi5BUKpSwcjkLK3ktAlYKliyygZhTv7CQmvI5vPNyuaP7wElNAqUvsa7/tAJTGhjgQakcpPwIcgGBDh/IEhq8895+NOQ2AG4GdinEWFVWhefOSVZ89C48djfOJnW2O4beTsIS6Spw35uPAWNOgcskgaPJWN02JVHZRgJ92rQniadN3P4bDLVQqukbIyUFxZJNKSDFST/6M3rRCawqYoAlklUuF0pX07+EOTMxdQtg6mR4/rFyRzgZmOOA9DEwF1jgYCRqURro5mw+6RhVr5wEVU6SEjuR8eCVVeqgbNroPgj4V1lYZSrg84mYGy+X7/8VMB+oAXq546l2c8+p7291amGL+1n/L1EJk7HKpCWtwm1EubgkX1JqD5RKwaiUh01UuFIGbW0/0qpgOmMlrIoKJ2Fl7N+DFMydBXULMTO+hA/fhhlT4JP3Sx3lPLdNdFCa5rZ0zDZIgclX95YHTFql8jcd59TqgUJvzeq1FVgP+CewM1uMIDiqBKzmz8b842KZ0wVYr2QfJ1mJsT3tzafZbU3q+7WUlaiEyegQMG2kfu5Z1qYkMUmivsXak1YASqWM2nFAKgUp7YIXu1U6A/kczJ+L+fIzWDgPPvsIXvpfudPzKbbSwXwHpc+VCpdWMNpA/Zxup81Jq3SG4oDOvFrgOeLDEuJA1Rrze4t7n/zeHxuOUAJWDu6L6jHj/yxzvQ54xsGql1IFM26OAsImpy4uw0bYN6nvzwP5JPk5GR0PJpGWtArXo2f5qO1ysUbtgVIBNsr+VHhfKgooDSUfXgKwhfMwn3wAH78P778J82aWOj0LgcVOcprqADVfGY+NAlMqRp0L2gEmU0ZqioOSD6hW79VX93Ixql9rjAS2mVMDhzO8DKyaGzF/+53EgT3ujPJ9nCmgF9DVOQU0rBqdQ0E2AVbWs20lElYyInASGInhu11gCnrW2Ajuvv2tsTsCpjKBkaU8Z8sDJYFMud9LwSqVCoEmf5s3B3PhmTB3hj7aJqfGzXE/L3GSgNxfIoV0cepcq6fGaKmJGAM2ZYAUFxflS0zl4BT3e9z/9D5z3utw4GmgC9uNIjj0qBBWYtOrqIB8DvPvGzSs/gT0U7DqBrgbpKBqLnPnc7HbRMJqVbAy64J0lQCrPJyGATs4MG1f0vi9ImAqGRCZKgEgiqWgUhDS4PH3U/i/e10w16aCzJ4OC+cRHHYsVHdVnyMqgc2bjTnvNIHVB26TVJVuTjqQQMc+hLFDvg0oSzQHrpTh28TYlXKeQTxXAjy+WpcrAaxScMt77/ElNJnbFsBzQJeiJGYNK5PH3HI1vP+6nLurHKzEyN5dwUpsYsscpBYpWC1bV2GVACsKqB0dnARSxUbw4SNg8Iah4XuFwBS07X0rZz/ywdMWlFpbYN4cmD0D07QMPnoPZnwJH6s0v91GE/zol9CrpgTsUtDchLn2UpgzHWy80OuE8UxVbqt0m857y8VIS6Le5UrYl/Jl1LhSIGrtADj535fzbF55T7rbCnipJKyUQ8I8+G947zWB1SUO8DVOutKwanWwWupAVe9el7i/Natj/ErsVl51VglKhmhNMhlaC/kAeA+bOH4T0TSmBFjtANRebtujSLUbPAyGbkKw4SZWanJ1lMramOIkpiAov8WqaN7PqVR5KKVSMH8uNNRhZk2zhu+5s+GJe9s+EbvvTzD2MqjuUlpaa27GXHwOPP84TqKaCKxPNN4p7RnG8woErZQOA4hT4cqFDrSWsTFl27Hly0ApDk7GUz8FENtgk6LLw6qyEvPkg/Dk/WDDMf7g9tHXwaqHg1WgYLUEaIiBVZOae4fBStlhfQBtRLRsdM+V/KoRbjsOG3M2YnmhlVnHIDUaOCFWgho+AjbdgqD/IBg02ObJxUlOvvvfl5pSqbbB5NuLNHz0+9NpIu7wRQ2wqB7mzMAsnA9ffgrTp8DH75Q77GZnW5rvVI2lSJ+7U88hOPIkCysBrD+flibM786EZx/BLZ7JzhtGjCcuryCiIdTiedpaykhILSU8dHEG8VJQysXYs/wo9HyMdOfDqSAVaji4KqGvl4VVhY1LM08+CA/cJtfh127//RSsJO1G1MDFClYNCljLZWQvA6GR7rt7055siLihq7O6UJuC/2eDDaPv7dPP2fOw+Z0L52HeewPeeWVLtw6fTYBVfPGGAOOBg4oANXgjKz3JSW3T+xbjPYtT5doCUyoVLy0tWQQNDkpNjTYSelEDvPp0W4c5193c85XRe54nAQ0H9gXg1HMIfjCmxPEKrJoxvz0dnnkYt785zk7l59M1Uxyn1OwBp5loOEBcWEBLOySp5QVTroSBPs67iA+nmHtpG+CNIlgVwj1CWPH5JxpWP3XXpb9TBXsQBoa2erCqc68NyivY4qawp3vt5ZxAWhJqf+HDODusB6BIeeiS2REQW5117kyYP8+GusyaBm8XZS1MdKphohLGDAurHjWw7yEEw7eJl6DKwUnnx8VJRUUwKgGm1laYP8eqWbOnQ+MyKyktXtQeKMlNLFCqVV6juADLfkptGyHifXDZzbD9rjb6XMNWzocx1v3+258KrJqwIQpip8oRBi36bvdGtenAypYYqJWLGI+zPfnqXJzUVMqLWFZqaueDbzlgNQlz+W/0/VcKVlnlIewD7OTOXQ0w0B3btixvE9VSEOo/0FbSqKwqEXhcAkD++wrVMebDgrmYhnoLpnmzYNoXpWb1obNhvYTtu4iydcY5YNY9YDnR2GbKn32hvVA+pEoatcvYjArpJ+pvSxbD4gZIBfbJEqSgdr61Jy1pgNfaJf0KlOa5RTvHvdYrY3ZGQamLu9njAivl7hvhbn6CP90I2+5gbzYZMv+0KdyM5rLfCKyaiTY/0ABpdFJBvZr3EqKxQi0xklRboQRt2ZnKwalIauoIW0/7YVVpg2gvHysf/Zu7Rse518GEOYJ9l3sikrCu69NLFVZoO3G9LQjFvdYutNL2zClQV2vv6TdfaGumrzg4TXPG9leUvUri7zIlHiqGsEjiOmx0nzYZ1h8C3XoWgyit8t8ktSSVgjkzIEhbCE2bHEJt0ofhDWsXdntHE7ZlU7OyKy10i1GgFAem/kQDK/3gypi7kjS2McRABmxA8Idrof9AaGr0YOXSbFxSsrn1anjgVtzc5isI5hWolrj5LnRbndsWK2A1Ew1jaC2hzrVXajIro86tFlgtasBc8Xv98bPa/IJtd4Ku3cLMBmMIevaypXqWRx0rByHfc01M7fqWJsyMqfb+mDnVplZN/azczBc7qekDbOnoCe51WgnhKF1CNc97jpqSEtY60YQi0qBy1Y6FTk1LYZN1A2WHyLr/V7gt417TMXAqB6ZSxdr8BVwJbAfU0H8QwYV/h37rhZUSvHpMVFRCJoO5+19w419wN85kdbMFSv1b7OC0wAFtgTu2eqLBjVqiyntwao86F+edM6sKTCWM1jtgG220DavmJsy4c2DhHLuT/Q+37xu4AfRfD/J5gvU2gLR7SPToBS3NVtrNZm2KUy4XLXK4MhDyw2qWLLY20gVzME1Ntvrq0iUw4a22TsfH7j5+HZtSNdMBPKe+OC7L3pS4N3MlbI3+vWD8JhTrTNcc1zRhL0rFWJUeUqA85QyFIm1MVqCZrgBUqX7WcPKBlKE4HcVX5col70J8wm7eqRu7Av3YfjeCk850T2sT9QZKIm5FBVRUYe65CW76O24/kqVcrZ6MzUqymk+YsDzfgbpBAavF8xh+ZepcO6Ckm2RsHGu4bgtWlVUWPPk8DN7I/k2kdqkJ1tpiAdXcFL4KrKSaRaxgEZQvFa1/bmmxhQwXNWAa6mDWdFi2pD3miInOafOGu74THZhmqHueNgBV6j4tlZFQyoES1sP3iLUuqYQ3YrPoUwoYFW5xV6vXau9vYmiuJhocqX8e4IEqo3R0LTHFlT4ppc75C7lUxLd/8XsBuwH9GPl1gpPOsIuqudFTATPOiWDNBebuf8ItVwqsxHvTzVPjljooLXBeybkOWAucxLXIwarJk6xW2ju3kkDqHfPa7lpiwaZbFtdf17CqqrZbrxr7WlnlihmmogUM86rMTj4fhY3ArS17krx/9gxrV3IVMVg4DyZ+UKpWvYxZDkCfuGv1toPTJErnb/Zqx0OUGGO5iXF8aCDFNdHwv3sdt2GFJ13gISASw7WklnRV8NLgkq0iRoJKL4dKpy8ilE5JyVE+R84PAegDnAxUsO1OBP83xi6MlubQZmfSXgpQGnPfLXDrP8Sg/rgsWc/43ehu8oUOUnOVhFVLGC/k57nlV7U658AkGQqlpaQyUKJXn9B4XWS49mqApdIugl3BqqraxrNVVoZldoLAeWLzIbhQqp6Ar5RtavYMa1eaOxvqFthUqokflCsFjbsGnzjpaLaD0VJsaWhDfBHDPiVsoaVeSwGqXJUM//7Va8GXukuOzDoMq4ySlLq5TcrSdnVblSdZlYJUytvwLkS5p0+cWpdtB5z83wcDPwYq+NYRBPsd6nx62fi8xLRddOb+2+H2qwVW97o5yVNV5tCs7FZxsKonjP1a5Xlu7Uqj0kDy24itSIFDcc5kXL0vUQM1sCqr7N8rKsK1aIw9i0We6TTkm2HebJvPWb8QZky16ttLT7bnNLzrHhKfOTDNxZbpWapgoMHUO+bvcU6btlS99t7LWprCezjny9mtEmAV695BjErYVUlZ3ZR0pfPjBFJalNW1lYJ2XtBcDJzicuVKAct/777YVAfY7zsEex8I2daYvMBUpDqoefDfcPt43H7uULCS2BiJm1rqYDVfqYLabrVKYWXGjtkUOIxSaVQCpmGbuVZiPcNUqjhJqchYTfmyPTqWTiQr2aq7hLCqrArLRIOVqL6YBLksZuIHkMvCB2/ZbIW2wwJwdsTFDkRz3ANisrseqRjzQpXTEMqVgA5i1gKUr5BBCSdIXhnedUpTqZQr/37WNs5STpZEJSQ+By4dY/jWFwCKWysFZbx0ccbwuDIlpS5qrszf9OcOKcDq20cRjNrbqiGFsA290CqcVFCFefguDaub3f56u5s+TRgUuizGyL7AM7KvknInLpXqgiL1rr1pVG2VgQ7aygWNCX3JuMqqlZVWepozC/JZzOyZ9v8fOI/bg7e15xAbnTd5jnsIfOFgNJEwVskHkzxQ42yhcRIUbXiWS927cdJ/KcO5vlfjEsmzZd7vh7QUeYTXdWCV8loI9aULihgGfdWvVKOCUt1/syWM5LkyF7Otz8n+vwf8FiA48UzYbKvQTCFqRzpd8AJa1aUK89CdGlb/dPvrTVg1IPBgtUABa4EnWUn4wqqA1f8KEtTOu1vjd3vSqMTeRDurrfp5oX6Bw0j9+jR88gHmorPaeyiL3LWSWmGfu3P5OWFgra5okcLG3KXagFKwHFBqT6HDUnbTPKVL7LT3/7k2tkQlLHPxdBWBFnfTiAok9ppGpQL6tqmA9tUDLxdrYspAKFdCOvP//kdnYLctzyUNIy5NpLI6hNWDRbAy2DSQnoSJuBJv1eCM7D6s6gnDF1aVzcqWKTn8eILtv+5JSm3keZZLQG9x6SQBthhhc5Pd32cfEeyyJ2yzfXH+pza2f/SehpUULsw7yaiLu38q3f+kDrsU4BOJdIlTvbtQupBhW9VWaYfaVqrQYb6NB2euDITybQAp347XUiV72oTWuihhGQ9Yum6TAMyHFZ5k1R5xOV/md799VFub8YyX/wKOLMBK2sXrQFCxtSjDsHno32Jgb8XWIxIPkVQN0MGh9TGwkoh27Q1sXUUG9nrAhmNMnwLV1Q5UqBxPp/IGKVg41wZDCpxmTYfGpeFnXn6q/Ld97ySbXxmX/SCS6vy5upX8vdja9DWEda16OpUNJaULhDLuHIuts1KBYHk1g7jI/3wZCWl51LdSwb3lSvHk2ni4lsrtLBfmktiwYi5sC2FKgDwNMzHqX1t2qnI3UFs/l7pwpS7mbcCR5boIF7ncK50aeFsBVrcoWHUvAysdGLrQ8wZ2uBroDRsL9ujdHd0OZqnzrIFNW6riqB8SHHF8NDdU0rMEWvPnYH79Q6m2+jE2bGCQg30PZ1eqUqDKe46RvAJZhVp/caEfpoy0lG+HmhVnJypnW2prf209fOP+BvGxd/kSkmH7DNDrSqS7s4v4Bve4nL1UGVhRxhbQ1u9t2RNMuQsZjBtvCilGbcFKPFbVXRys/i1xVq3ArW6XNR6stDdQx1pJ6o1IVksVrHKswhK9Lnzhm87oXhPjetcq1ETC9vNpB6VGdU0/Vt7hTYDLgEqOHUPwvRPjO1mLGphtxRx3AMyeirM9vUI0Xk/CXtLKZCAe1mZlZtAldjRI2jJslwNTltKlnLMlVLpsG2DKlbHJlpOYSlXGaLMKQ8l7YF1NzVHA8r0pcTaqwLNXlQIXJS6OaeP/kX21teBdPa+7gF2jsPIMwhpWWg285SqB1e0KVt1KwGqBBytRA+NSblZtPfEgwJz/I7keOqVJYuj8LS6oV4ekZLCBpRcAFRz7Y4IjT1RhC2mb55fOhMGhra2Y3/8MnnsMbLzTW0Rj8nSYS95z2zerzS9cWE66aasSa7YNr3Nb9qlSttZ8O1W5ttS4DrsnfGCtUyqhk1J8D197onkp8YQwZUDWUWVNQlgNH0Fw8PctrPyW5wIriQkKAh9W/3bHVuN5A5s7Jay8S0dxhoJOpfIzEioVrDRcBmNDQCo4doxVA+2q8Oxi7ry2tmJ+f7bAqgHbqqyvJ0nliNb5alKQ8puuliqrk6N0V54c5ZthdBSYWB7bklx7t55W21jnjO7eIuvU3UaKYBXX8jyt4qsEWIC58mIpCNgK3KlsViJZGcI2Uj6sap0kMgyb5pIHdvElRHezvge8GIwbf89qgJUYrysIU6q6xqhnGlry/g2QTICjTyP4zg9sIKdJFXcrAkilMH+/CJ57FAfsqe57UgpUAqZlhAUMpbOND622KqaWU+PKgaotb3Ke0hUw8m1oBHS2jjxJ15zOC6ttsF2BS8MqUxEvWV0xTmA1DduCKq3UwEplYzFucW/u7Dr9gCHK09WesSdwhhk75nsdDS2nDkJ8SlWlA4jkgXbx7ElaDVy/AKvvnUTw7SNtpQSdz4dx1Vat09jcejU8dDvO9jRN7UvbpyS/sp6w/npceZ1y0tPySEltAam96lunhlICrDUTVrZgXCysMtHIdQFWEGD+/nuB1XSkuaeVkqT3XQ+3+LuXncT2o8Kqlgbb1iwuSXfBPMwd1wDsQRDco4wPHS1hxTlMdLqUdpbouksDC7D6znEEBx4RJoOLs0Kkq7RdDub2a+HGy0VFknq/FYQljVsJ23DVEqYp1ROtWNHShoHbj8try9BtlhNK7baTJsBKxsrDyu/IEgurahejhA+rNPADQhd68dhkSxiwPmy8OUFFpbWN1fQNJY4ibhCF1mcTMS8UEnVftKqV8a2mK31KYhwafnZCi1LVsspAPxhb8bOCg4+xCeFaskp5sDLGhn9YWOWcgV3KUMu+dRsuHfqxUAFLykOLClgq5q5U8ULfplTO27zWQSkB1poDq1OAK2iri7CGVZWVvMzfL9JNLIZEdnzg92HAQKjpSzBkmJUsenrVLnM5W/HSB4yOMG9thS8/w0z6EN5/ExoWyrv+C9xvzvthOs4B0QELSUtM2gMXePYkXcF1I2AsUMGBRxKM/na0zE464xQ8Ba0P34KrLw4BbAHRg2gNJ+2g0DXBFhKmKzUpdbAtO1I5aanT25QSYK3bsLoeoK0uwlHJSsHq20fBBhvCehsQDN/aSk+ZTAimpsaw2mVLszM66/pM6SioggBqF8DMqZiP34M3nven/So2VOImZcgvCog1Y8es0EJzXt3A26dkKIioJwHAOjthU+BSoJL9D7fnsrU1LKsDkJKcS6cWfvQu5oLT5atfctJSLwWqvFP1tGSlK1foevbNHqzKxSetEu9yAqxkrEpYjQPOBy/VJqaLcCGJuboaqrpAUyPBueOg3/WqiihWYsq2hhJUa4v9PVKO1w1d7XLJYpg1DTPlc3jlGahfoKe6GNvt+HG31bq/dyXefS5qDSsKLeJLmWjJqkKphCmsA+FaoIp9DyP45oEWzAJkY6KlYjIZmPgB5ndnyPf9DxtvJUXtckqCW1wCVn4yeNZT9xIgJcBa4yE1EtgR2BvXIKMoL7BMEjNVXSy0evQKi8aJez6fC8vx5rJ2E1AZt36k+mjdQpj+JeaLSTB5Enw5yZ/qRGdTe90tZqOM4D2JJnLrOkd6lCpWviIqod5nVsEqwKba3AVUM/pQgm8eYM9DUUdtVdNq0oc6mflRZ//ro2x/8h1+TbA2y+wkYEqAtabCqR9hhcxv4Nd36lFDcMLp1iPXjiTmoqJxUvYEQsnJ5F0XlnzYiQVg5nTMl5Pgkw9LVbac5YzNb7ptppJeelJc5tkHVVyS+EqfQoq9Y35dssHYhqXV7HOwhZVWbePKGi+q17B6gDAwtIuzg+UJY9XqCRPBdbqSbiUvIQwJrBJgrVGAaruE7/ARMHhDgiEbw/qDXVcbVTAuLom5UDfcwatC6oerzs0mCNtEzZkJUydjpn4G774Bbz4fN93PseV233bS1ByiDTP6UlzyxHiSlY7yhqhXrGxTgfbYsUSlJNqsAPU6FFvBYjjbjSrf3UbD6sIztS3uC2wcmlSukBAGSQaXmmDzia8J1kq0JHAyEmB1SjhlsKV793JwGklcCd9td7B1xTcYGpbvjetALZJAOl2UFxipHa7L8QYBzJ4O0yZjJn9mm7w+dHupKX+ObX75PvCOA42AJEXY3t6PbYproCHqUrO6l7TUJVLQSi/iUhkKLhvgduDrDB9BcOhRxWEgpWA1bybuPLzijru3s8dJxdUmB6Vaoj0Y42C1SuvYJyMB1sqodwKn7YnrzrK8JXx1WRO/yYFUXRBQVVXbZgWzp2MWzIVPP4L7bi41XTESz8LWbvqEsCtzi5Mm/OJxcWV5fdVMq4GBgleatnMxO/JalE5d0mlLWqUuhtXTHqwyJWAVV2YngVUCrE4JqdEOUt+IBdR2o2wDhA2GQt/+doHESVDlKmRGEpkldMFJBQbMvbfA55/Ai/8tNc1WpZYtcgus3tlZJG2k2kEnQ9QQXqoxgW8/ElCZEtKU3zjVsPIG95WEVUUI/XhY9cWmLfmw0lHsfrXVVV4TTEnue7g/1WNzNt9KgJWMOCnqMLdFu7Q49S7YcBPbMipOvdPSUyGhNqYLSxBE6y5FjOwuhKG+FvOXsTDhbT3FOrdYZEgVS3G/LyP0qEnBOA2rbAmQxBUn1O55rQIKHBvVq6735DcVMF8NrKrjYPUe8IwHq4oYWGm7la62qktD51YBrMYBh2O9nv7//h2MG39MAqxkYMaOOQI4oQhSw0fA1tuVtj9BGMekAZVKxQNKq4CFgnHpMC5IVJjaBbbK5ZzpYD1Yn7gv7E3YP1Fy3LS0o2GhS7Lk3e/6/6UqWfotmXSZFKlE0KRedVmVOGCtPlgVAmydzcoYH1aiBmpY5UtIVnGwWmVldgpFGpXkDthS0S/8DxbXHW3GjqkNxo0/PQHWuguqU4DjI+reqNEEm28NG27sdWmJsz+VaICwbAksWYyZPgWaGwn22Bequ6rmBrq6pVto0kZqwtuYyy8UWH3uDOQ12OjrroT1rLRNSWAiUk+LUuFMjLqXp3TD1haiBedaPAmqWf1N/+5LWPnVBiuBvg6wBcw/LhFYfeLBqptSj9uClY5iX1VqYFhR9oTTbQdqnRq11UjMpecB7FF4QOpUKmNW13rRdtyR6l/12JSmB9w92+Fjnao42uYTbfAwgj32g823KoZUnIon4Fm6BJYswsyYAvW1titLmNcHfdYjOO9PNlUmpYzrWroSYKXT8P6bmHOOl09PdlJBL2cklxIqaQUdgUyT2hoVuJoUUOKatbbGSFH+37Lq7/r/fifqHMWlf0subDN2zDCgPhg3vq6N69QDeKIsrCoqQlhVdwlh9dqzIqH+1507qQumJSsxsMdFsS8imnKzQrFW5Y61kO3gl7/2bKDm5qtg4ntgHT7vRRbzxdeYVQUt1cz20Fg7bnQ0YjsyrbQUuE5XHC3xpLBPtO8eB5tuEe1PJ6qeQKquFlpbMDOnWjDVzrchBHULSn9J34EEv/mLfVpqOOk+d2kFrvfe0LB6wy2avkqq0k1Oc56K1uxBq0lJWn4FzDgAtXg/Z0tAKa5qZlz7ppLJz75Ua8aOeQkYE4wbP6HEmby2TVjp/ovFsHrcwd5XA5sdkOoobhYblx+43LBq61gdDM4GrGRVgJU2ITgpvnvBUtGPsD6XjVU7/0dmFUh9pzhQHVTSjisP9uZmzOcT4emHugA/cQ+GDrW3resqofXAbLuDrV4wfw4sbsAsarAXYM5MaFwGn32sKxPEjVnYiPB33OsRwAj6DSL43d9hvQ0UrNRrJhNCK5WGl5/C/OIk2ae0Ke/jpIKMo6gAojlGmvLtSb5dyW+C0F5ADQZ2dtvWbn4vY0u3xPaUKyNRRbs5Dx4GDfWwuG534A0zdsyIYNz4z0uqSt/9v9KwEptVEPiwegwbve4XMWyOUQNT2OqqWwCbOUC9DPx0eWG1HMd6GK5CRyTbwTcbRBPUpUx0URPflcjblHlngAvRXnHdzHbIsGhTWmXLDTbaFHbYFXPNn2FR3dFO0noqAVbHjBeB2bzy1CDzSrvO6cfuBn8TmIGNCv/CwaISW4b3ImArdvoGwUlnuBtQeQIzIlllQmCl0phbroKrL5HvmeT2WUNYgSCvoCMleaWLzTJPBWyOsTHFNUHwVTu/jO/RwLeA/WLOxdbuPT+l/c00rnJPXqt+jz7ESrWAefZxeTLvThAUgGXO/1EIq9PO8TICvHI7xbCaoiSr3h6sfG/gpk6K2L7MsZ6+HLBanmM9FCDYbKvQFqptciKNp1LwaUEA/cIdj5a2C8UCVwRaClShh1LmLrbctkJ1APoPhAO+C3fdALbr0TOsROecBFhyyseNX2DGjhnhJAWJd5mKLYkbABMcED5xUPCbG8jvfRysfg0MZ+dvEJx1ga3YqWGV1rCqKADL3HylwCrvFlmz81LqonSS0ybF42RbQhjE2ORJUS0xqpz+Oa4rSw44D9gN2DXydB2ysY0zAxtqAbsHF1+Tb8vg67yvZxf2p7s5y01e00fePkwKAZrzTrOw6llD8MNzvOYbXpxVVZdysKqJgdVip/Jtg+0vuDEAPfvAznsQDB0GfdyxXna+HKvp6GM15/8oU5Bihm4Sk5rlnDDpDOa156BuPk6SD5xds1Vddw2E3HLC6hQ37y3FQxnsvo/nFQ/inU1+p20g2GgzodKebo2Uq/mVAGs5ofUb5UHT7aR0+yjd5KBa/b0KW4b3bGBTdv4GwZm/LbjTbdSnCaVmHdrQ0oK5ezz842KB1ZfuVcoXaxuVtDqvd1JBHdGSvMtiVL5W4ltExXX4zQPHOVvLLrFPV4B5szH/uiKUULUXS47TvTpD+bUFp8bwEbaeurbRgK0m8eRDss+XzHk/TAE/L8DqtHNtJdRyVVfjYVWlJKsqpQYuAdZzUNlAYBHseygM3djuF2DurFV+rG5Bww67h2lW+vgqXLZD/UK4/jL53G3OhiWwEikcipv1tkdtPRs4oCyoIiE6KU9NVaE6cm4keNrOq5r4stDLHVSchDV4/CKMWxJJSlpIScMD3Vaq0j2dfwJszE57EJx+vr3ZctnQziLGe13dsqUZc9HP4NlHBFYziMZUZZXnT4zCtYTt43UEu64h7nvrynXxlW174DfAgYXFtt+h0Zu2tRXz5kvwyJ1yrv4N/NScd1qqhKj/Xaceb0mPGrt4t9ku3J/c3Lks5t/Xw6JaHGReAE4D/gwQ/GBMQdKJeFh9WF11CbxegNVjSrLq7sEq42xxtirr1jsQfOtwW5E1n7eLrbXFP9Y7gTNW0bHaQlyDN4zarDKZ0IFQVYW54zr5rieczXSgepCl1QNOrnnQDq/reODYyMNpsy1LgEo3l1Vaw7Kl0KsmhK18bb2USuNTpy1oe6kklrO80EqAVQwr3eRApKmuauuiJKtBbnENY4fdCcb8yl5MqW6ZcuwJgmjBvOYmzMXnSL+7ZQ5AKeX1ERWwkeLk27jSJo0xsCrVqdcXy68o2FrEW+rftPULMQ/fJe50gD8gzUijC9g4QIwHjio8sb/1HZtP6Xu+sjnMHdfDx++KR/TnwA/dnAhOPRc22jQsuheUgNU//uDDqopo/0WB1aYF1a+mH8FRp8LGw6OloRtqbV334mPNrIJjrXbwJBg4OLRTSTxeRaWF1VOPwOvPgQ1xeRzbBSjnzBW6C5L2ALeltl5UUP8OP55g2+2VjcoDle/JzmRg2VLMC4/aApLHnqaKQFpgmdeek6/7xEm52kEk6mt2eVXDBFjRTjC+hFVBccNOURPXc4trGNvtSnDq2XYPhbrh6fCpo2HV0oz5w6/ghcdxsJlNtIWUlDRZ4lS+hYTJt+JulwTcxeoGaPXCC0raDFzp4dHuprW2loOOJNhxt+hNGwTwxSeY//wLGmrBFvH7OTb+p8o7k3lnPP4tsAU9awgOcpJGQZVSnq9cDnPHtfDR2zgnxmlOwrsMIPjxebDZVraWl1wnkTwEVhK6YBezDyuxWeHAsq2zNcL3TiLYaQ87l7za/+cTV+ex1gOnAkfQux8MHRYNIpb0rDkz4fpL5XufcpJVyoFJJMdGZRZIUxwgHK+2xgFWVw3RoBK7a+NSzDOPwj3/gn6DCC69Ebp2jwJr6ufw1oviPJrg1FdxEgUxqmu7Sw8lwAoNqH47qbTa/KoFg4AzgfUZsQvBiWcUwyqjbB1ijJw3G/OLU2DONAg7CUuzT4FNE2F1S+1u14XjBFZ+fFAuDk4xN26hJHOsrcXdtOadV8XTA/Af4GQ312rPZtIV+IsL54Dt3ULo5kka8oTO5TC3XwMT3gJbh+sMB6uLAYIzL7TBu9lsNNK7UMXCSVZX/0HD6lFPshLIDMU2hIWRX7cSZM/edt8Cq1QK89YrcNf1+lhPcdd+VRzrEncufw8QHPdjq1aBu3cqCpt59D+oMJJWwOnHNLrXJjfHCuIrbBRLVaXUVp2Bob2TmQowecyTD8B//hk+3X/1RxsMLQ9mJ5WZq/+IcmCtrxxFmZgwjOVyDiTACmHli/t+GRWxLa3vbrRKdvkmwfdckGdrSzROJp+CjHpaLZin8wLnOAN7lbvRRDTW1S0XxsBqoYNYbDAjbQQNugDFKwoG1sOPJ9hh12KbRTqNefpR+G+hzeAZzmbVnbAPoDwVv+WMtpvRsw/BwUfB1iMpZAL5db5yWcxt4+HDN8XbdY7zkllYnfsHGL6NrT8PoXQqjWMrq6ya9MjdGlaPeJJVFWE/xn4AnPgzgp1GWXU9m3X7dWB+6mF9rGcCdxCm7XT0sTYCJzpPLMHZ4yyc5Tgln1RySt9/U4e61Lhjy7n7sZFoX8agxHW/o6xUFQcqgWZFhc28uHU8LJiNu+eqOP4MG79YML7bfZgHbhdJcpaTTtd393OFUl11SE2QAGsF5Cxvk9iWjHuCiao2GPgrUMm3jiDY9xB70bNZddF1HI0T7+sWYH59GsydgQPVx84QWU1YhjdLtCtLHKx05HWLpwbSBqzCFmKDh9lW7RKk6Ntabr1KbrombG/D17BpQRXqSd4tYqjfaU+CA78LXbo5qTUojifK5+yN/8EbYKucnueM3+MAgp9dBCN2tLAyzgAeqRpaGcLq9vG443/MqX5ashrk7FUpNt3aGu4HrGdhJeWixZFw+3iphNEE/B+2+uiqOtZW4HJsHX+CX/7JwjmXDR8aEQkrA9t/HR6/RyTFRsKmG7rNWWzwrntA3QLsGpGq4tTWjLOfSf2wTAXU12Ee+rc4hsSAvjm77WulQh3SkErB26/CX38r750ADHDSVUaFk4jq6kuEiUq4AiPvSVbN6obYELgRqGK/7xDsrbqxBKnoTZBWRtMvP8NcNlZgJeWIe6lzn1WwWlwCVrUKVstYzjSRyBN2n4NtEnZFZbEqkMv7tpZfOQmmp7LfZYCdnCSyEb37WfhtvV1ovNZ11MUGks9jbv4HvP862Cj+C90D4GqgkqN/CLvsGaqBYmDXalJlpQ+rfzrpooawtPFWbqHAESfarjkBFlbiBXSOEauqvQ22hv2qPtYa4BJge/oNskGwW4xwkqQKFygUcLSxV2y6lVzGgU5qEbNFnuLMBK1qHY5tv9YlVu3XaqsuGilS7HuvY265GubPApu9MQPYhd33Izj/Mvs5HZP19quYswpZOB+7dVNDWBu/0anTolWklaqdSFgrIWUJtFoVxDYB7gaqGH0owV4H2Cd1QQVQbaMKlUIr4ZMPMb/9sRbp33CG32p1IVs9WJUzsPulTfJtSFVhdQPtAYxTBfJ5J20UbC1nOUjWOPVKnA0/Ab4NwK5724XQtXt4PvS+RbVpbLRweO81gA+cRDXESRuVHDvGgiDbGnWGBE5KdaqJefguDasb3Tv7OFj1wAaB9qTfIIJTfgabbmntitnW0FaZSkHWqWrhsf7MPRR6r6JjHQH8CNiALb5GcMZvbFxZVveF9Ao4upStYMsRInpsgE3IFum/SRnbdS2yLLZE0tXlH1Ce+iddhDDW8fDQHXIlXnfndhcGDiU4Z5wNiDYqvvDNlzBn/5+8/zN333QlTCVrjAHVClWmTYBVDK28sinlsflkjwLV7HOIlawiNot0NMhP2nB9MkHD6jn39O5DtDSMhpVvYF+gJCu/wmV7YLUj8BAwqOwTNp2xrvxbrpYWX9rWIknX1diWZN/H9v2D488g2Gk310osFy46UY1kITTU25IoC+eKmnCpk1YvASr5wU9sfqCWgArxa0Hh3JqH7tSwusFdhL5uMfVzUKhkpz0JjvmhbX8msMqr1ma1CzC3/EOO9V3gXHdu+6yiYz3aSTuw73cITj7T3jOtLeG8Fs6HBXNg2x2j0e2ZjJXmBg2F2dPkwVGvvMiL1L0hoS3XA98DCI4+TamAMQ1OMqq6bUWlvQ8uPEukqnrgPmBfYAiDhhL89VbrHNBhIO+8hjn3BK0yLiCs3CrOgLoSduIEWCtkcbdufq0WCqy2xeZB2dZRex8Y1f1jewZW+5LVfwkbc3ZXXqesByutAooaWB8TZ5VvB6zCLtKjRhPsd0jxE1Zu2vpazBXjJOXjeQeSFgeBbm6RnAzsYz1tuxIceQL07hOVELQNTxZCQx3m0vNlAT/tQLOxU5EqOO50gu8eH7VZ6ZgrpxqZB//twyrvYNXTeQBtkt7BxxAcdkwh+LPQ2VqkofpazBW/l2N9wcVYNbt9dfSx/tuB/2sAnP17gm98K2xom89bz9vLz8CNf4FTzyXQ9dAKeaYpOPj7cN2luOOdR5iiJZs4YP4BfLekNK0LHGYqotrAu69j/vwruYU+dCEURwIbsMe3CMZeZt+fyxbmzivPYH5X6Dz0kZMAK9y5XF95NLdyc9NxgkU2twRYKwYtOXnbYlMnukRax7cBK/Pqs9rwqGHVg7DfncBKJ9/GNeeMk6za8gSGIQsHHUkwau/ST9iGOszfCwv4UeB3DqoCq62wkdA2LOCUnxPssqczXnsLuBAnVREu4D/9GhbOEQnzerefX1pY/ZTgeyeEYBHPnQAmHlY3upu8j1u8WwIbAXDSz+w1am6yQIiD1d9+J8f6mHPxd1tFxyqq4EDWG0xw4RU2kr21xfWKzNnP3HUjvPiEvf82GKokqwrVESllQwfs6EJYoHGJcsD0wmYGjC6qpxWUkaoqq2w11tAuiLvn67FJ7Rn2/Ja1WWUy7rzaJr3mrhvglqvkM+9g82+7uGsyCID+68OGm8BbL67n1O1PiRaWTFJzVhZabtFv4zxjbcCqMmxwUFll1Zbb/qFhNceDVUqpgbqsiYZVnQer1uWAVcG4XtTy3n/C5vO2GFzdPLDR038k7MvXwz1dbZWGHXa3Nah61YQLWNQZXZdentr1dZg//NKqObYixs3uRj4J6MkRJxIceaKTNhSs8vlysPqnglUvbM/H9QCC3/4NNt/GwsqXrFIpGwt105VQO0+uyx+dVNV9FRxrztnE4FtHEPzoF/Z8SzhFayu88aK1oVlpDHbYDYZtHoYRZFTJoWhgs9g8dWWOXu5Bs10hSbymb1RKjdQLqwzv2/o6qx6/9oyc43uA7ZBk7FPPJTj6VAtZmX/jUsy1l8FTD+CO9UVn7tjSbbZg16nnEOy8B+ZXp+mYrDhtIQHWShmxtPu/vbCqqrbuXwurVuB+ZRfpodRADauFJWxWOt1m+WEV10Val2LJZOxT9ear4IuJYHvyXerE957OfX5MQc06/qcEu+1TCAMgnytewIWYHWcHueRcidl5xalGh2BTUDZg1Gi7CFpb3SIIn9o6mj0GVjlnqJcneDcGbGCDF9dbP5SstPculbbhBf+6Qo71VWwkfb9VdKwbOJWX4MIrYde9oDUbqoG1CzD/vg6efzy8cH0HEhz3E+jaTRnc02HuXlGYYMGr3OJg9XNgBFt8jeCok8NaYXENeQt9LqtgyueYyy8Q7/UUN/+9gYEM2pDg3HEwcmc772zWvs6ebj8z6QPcg/UxpzF809klYd/DbKrOkkW2JpaVOt92mobOey3UxE+AtXKwur7gXWlPB2GB1a0FWN3uea+qlYF9KWFuoB+6UFcCVvnlglUpdUBgBZgb/w7vviqG4WtcGEBv5xH7BtCDzUdYA/F6Gyi7iwJLpKpAZbiAf/9zMdq+7lSjs11MFOw2muDs37uwgpbSsIoa2EWy+oYDi43M3e87BIf9AHr1Do3rEmOlU2LCY/0Im5bS3y30jj7WUQDsvj/BmF9Av/XsQs+57dVnbaiDXcCzRW0KfnGx7V0pNquiMJmgoDa6+0YkreEuLmxLthxJcNQprspEjDSt+zJWVmFeeQb+doHs8wPnBLIxCXseQPDjX0H/9ey5aLWwMk8/AldeJJ/50sFqJLYMEQzYgOAnv7ZOgjkzMBecKcc6xXksfXtsPpGwOghWEXWqHKwAc/1f4Mn7ZXHd4eCkDezaG1jvSVbzY2DVtPKw0h4sddMag7nxb/DuK7KA/+rmN9zdsMMBOORYgsN/YP+lF7BWs3SsWYWz4/zuZ7KA33IA/BEA2+xI8H9jYJsdLFxaW0IvmfbgpdNWsrrjGm2z2tF5ansBcMKZBDvtHkpVGlaYUA3K5/Wxfgz8zZ2yzTv4WL9EyvGcdxnB6INDNTfbCrXzrdr17KNyyd5yx0Tw60ttcrcr4hipKyWwmvypSGQS9tLPQcK209l6B4JjTrWfF1gX7GuZ8H515YHMw3fKw1XsVdsDXVl/QzjpTFuxIdsKLe5czJqGueFv8Obzev4znBrdv6D+ffNA+13vvoa5+OfatvU3N28dQyhaQ+IlXK2wuuoS0f/nOduIwKqbgpWfbuPnBQqspCNzdoVgdZrYLlLRoECZN2Bu/Cu887Is4CudtLIXNlWnHwM2IPjZhdZQ2moXG9ksdOsWLoYgFZU0Kiuhrla30XpXFiSDhsIJTs1KpUNYiZcsknbjJKsQVv91i8ImLB/4fYLDjoZBQyyoxF6VzYahBikVuHlD4VgnAlc5lXyfDj5WgGHs+S2Cn5wHAwaFNq9cFia+j7nsN6IyzgMexkbTw/FnwNd2ioKqcGFNYTPXFWpgNTiJxlrg+wyAbx9JsPX2Ng6wAH4dZuPB6spx8GrBXrWoYKs6doyV0Lr3dA+ArFXpXvyflqpmOs/q1wvXd59DbLjMkGH2nP/nJri7kHv6onvgNHgxhIXMDKXvGtoZ7Z5JYFUGVr6EEg+radgaRVVKspLE2xYHonrC8jBasqpXsNJ6/fLDKlKNU83b2S3MPTfD24UFPN7N8zgXv2RVrBN+aj/f3AyvvwA9etgFrdUsLWlUVllp47eniy1kvjPaws8usnWm0mkLBA2rXK4tWM0GDgbg20cRHP5/sIHzshWkKifFmLyXw1dhAx/ffglsaZNrXHxVRx+rHWP/SrD/YS5Gy6l/Sxdjbr0aHrhNq133OomzkiNPJjjg8GKjugIVgLn3ZnjuUdz9MQCpPnHimQS7fMOew9YWe35TTjLLZKIVLaqqbBPZ3/5U5j3P7asvhxxrnR9DN3YOAbevt162GQ/WVgU266GHOHTYfFuC759s06iMgcZlmL//Dt56SRvvn/BMHM0xnsHAg1YiYXU4rBY1YK78vdRLag+s6pQaKK2jFnqSlS4PYzoEVuoJax67Bx67W2wg1zoP27eBfqw3mOCUs2HHURYGS5dg7v4nwZZfgw03jahrYeyOs4nU1WLOH6MXcH8OOYbg1HNsU4+sM6wXQJWNpse4OCZPDawAhrLtTrYKxshdQhVSoJfLRcvCpMLgTfPIXfDoXWIUvsGpPAd1+LF+4wAbsb7eBqG9K5uFCe9h/vhLUReXYqssvIqt5DqIvQ60AE55WSl+2eW3XwZbmhknscORJxMccoztC9C4DJoaQ0jJOS04hBysGiKwAhjAIccSfP8ke8z5XHid3nwZc9vV8Mn78t7JDjg7AdBvIMHxp9sUKrAPi6mTMX/6lXhJpzob7qcqPqxJ2axEkpIcwuUqLbNOA6vdsBLPSnUXe/EvPEPUgUlORNawkmJqPqzikpgXEc0LbG8S87iysBLbhTOymsfukZIgLc5mdXxBCvrWEdZD1aUrtDZbz9Gfzyc44Sc2TEBLG9ozWlkFdQsx550m1SfgGwdal/pGm0bd4AKqnFbdnAokoQsWVgAVDBpK8ItLYPtd7fuzrbbvYxCE0llkP2E+nHn4LimH0+I8vf+HBG525LH+9gorIeXzYVxV7XzM9ZfDE/dqw/SDbuEeBwxjxz0ITjxTSVVOmsrn7X1XiB5/Vbd6s3A88UxYf4iF1LIl0RAL7RgoPFyrYMoXmL/8xsJq0FA45GiC/b9jjfwC/aWL4f23XL/Dd+UbZ7ttW6CCfgPheydaqa66OpQA/3sf/Ovv8pmPHaxmEiY4N6nwBTxYBd6WSFgrBSvfZhWF1fvYCHjdQViKxTUrWMXlBdYSjU5eniTmU3BBocEJp3t1zothxftvwt03ygJ+yAUDDmDgEBsftPOeVmppabZ1l26+0nrxhm+jpI1MGB8k9pC6hZhfnWoX8Pob2oYbe+5vb2RtcC78nI163Nx+zQO3hwGLA4fASWcRfPMA+z1OxTJPPGD73w0a7O0nHS3q9/arcOd1cqyPAT8G+nfosX7jQHusgwaHqls+Dy88YWtAWSmmwXlfn3cPpRBWp59vQaIj+vU6DQKbdPzLk+3v629I8Os/w3ZfdxJmk5LEVN01Yzyp0KmvvzgRvn8qwa572bSfrt2cjzFvAfvUw3DXjVr6muekpGFI96DvnUSwz7dtDTEB7bzZ1uNpi/QBPOlCeXR8WEuM+ufXl0uxnJ3BMwmsSsCqELNSDZMm2JiS8rDSDQ5KSVb1FJeHaS+stkFKB59wZtg+rBSsPvsYE0bcf4oUnDvw+7b9WLcedgHPmma9aW+/RPDzcbDFtmFZF8ng1yWJ6xZgfnmKXcBjfm3LDFd3seqBWwhkW12ScLRIXqEiZSYDb70cwurkn9sYououIQS++ARz+QU2iHODoWECs0BKVKF0Bj56T6eVfIHt89dxxxqkCP78T/jGAaEqJIv+mj+Lui0q0VPu4dSIzUfcis23sbCqrIxWnw0CSCuP4AdvYn59qv39N3+zYTVV1S4QNg95Ew0BMRnbJ0CHXcj1r19I8PgH1pCeyYSweeNFzP8ehIf/rW+vOU7926ig/n3jQILvHGtbdmk72xsvYi7/jfw2BVvs8HPCPph+UKgGVdqTrhIvYYfBSp6wn36EuaiQL/U+8KwHq4oYWC3wjOsrXHHBzXsItlqEbbYp844zsFdVw/QvtWu5FdiGgUNtB+rh24QG1pefxvzzb9b+cOwY2PJroWqUUdKGLGCTx1z3F9hpd4ITz7IgEftLPo95/B6YPYPgyJOsSqjTWVABrBPexVxyDhx4pFXTNhgaagVNjVa1u/IiOO502Gb7MI9P7D66g/bkTzEX/EQf65YMGkrw27/C5luHNrSVOdYfn+dU79Awbh6/F8b9TL53qTOsf+wkrGb3gPga/QZZD2JFRbTCgV/t4cO3MWN/ZCE75hfQd0AoDTUug1efhZ32UHa7VNiZplDRQuUGbr6N/T2dho/ft001HrwDZk1BaQJ1TvXboBBHttk2BCefBYM3ioJqUQPmzuulDwHOHHIXxbXks2VUwMhtzQq0+8oksGoDVr87Q3ZxvzOy93MxRl0VrHRZ4/meN7A2BlZZlq+L8LXAlmw3KhrMGjfvRfU2mTkcFZxyjs3bq6iwC9j3Yh1+vN1vQRLyWr9XVtkFfM2fCY44Hnb5RtgNyBgrufz1Qth8K+sez2bDezBQ5XdSabsw/30twb8es+VfdGuoyZ9i/nyeLfuy/+EqMdqE0pkOM1k431ZH0Mf6w1/YOWYqLKhW9li/vlcISjnWv12oo9XnOC/aQmWT3MXCaqB9SPRbT1WiINrDL5WCmdMwd1xHcNXd1vMmAaTGwEfvYq4cR3DB39QDIB22/wi8phUVFfa7Pnwb8/H7tkzMzCn6HC1x9+YibPDqdgVQHXG8Dfz0x5sv2XNoDetzsBVe3ybaeDfngcq3T/mlkVeoN2EmgVU8rMxrz+sYlAeA6dj8Mw0rqcG+JAZWC4hWXFjGclRcUHO/CjiAwcMIDj2qOEdMezEX1evoaxt1fcrPYNhmoQH7i0mYC34avmf73WzJXN0YMxJ7ZBcw078k+NnvrIqRShVuQ/PYPXDh6Tb84OhTi6saSAJvOg2ffYRZVEcw/p5o/FHjMhvQKKrGVttbA74OKhXJSuxMC+eFqqmoMKeebT1fOSdBduSxAuZRd6zhwv/C3ReLCJuZbgPsDxD8dKyVlArnxITQFfAsXQJzZ9lmDt17huelqRFzw+VWbf71n60NqbXVfTYdLb+Tzlj19M2X4L3Xo6k/4Vylr2Xa3ce2e5AUE9xqZLGncnED5s4btFT1JjY4upHi1nEmBlYQRrRniW83t1zgyiSwioHVo3fDHddqWE3zYJVRsFqsbFYdUnFBzX00rgVXcNQp0TwxXw0EzO3X2sU5cIhVQ/bcL+zak89hnnwQLlMSSd+BBCedWehAE6ntJAtYzs2InVxRObfYZ03DXH6hLZ+75wHWRhNRebRkZROQ2WIEwfajQoiBhcqffinVOe1Hz73YlTLJRZt3iiSRy9qASt/or2KhzJMPwKUddKyzp2P+coEuFTxfue4lxqjZSd8HAwS/+rNNaBYJUUtHqbB0Dl0HWCN+ZVWhaB8vPmkrS8yaCtvuRLDPwWF1W12GWx5YC+Zizj0JZk/TqrEEbDa7e7U3NhfTWt77rw9HnkSw8x5hWIQG1tuv2BLPYSrRQ9jIdb/QpQ8qPGmqVd37LV6sYZKa04GwkrzAxe5G7KVglXM3wiJls5IYKx9WjSsCKzesiPfd48PwhbgcMbBeqjeehxPPskF9XbuFsKpbYMs0v/xUZOfB6efbJ7c2iostR3IPVfXLgrH7uf9iLv+tVTXW35DgnN9bu0k2G7Wx6DIsMud0xoKsqdEGi4bG8iVAd869xBp686pQnnYs5HOYP/7a5tdpo7/EQtXOt3WpVsWx2ms5213jJrU1OxD8ALC2ty22VXWvTPSciP1Jx3llKmx0+fg/wYO3hfM+4acOJirmTHtHs1nMH38lsJqKTZvJu/n0wKbPSD9N2HI72O9Qm96UyYT5l7ItbsDc/U8tpb0O3ErYS5Ay0pQPKgF5C8VdyXOJSrgysAIfVtcSVrXsRVjLKkfYjbk2JnShzoNV64rAysVb7crwEQTb7xpKVjr1QpKv7/on9O5DcN2DtpdfJhOaDj5613aYtqrTQncMvTn+p9GGqTpKWndMkcWcSkNLkzVE33xFuKCuuMOCQDdSCILysJr8mW0k+96rspu5wHrsvq+VJiJ2KyJeUHPDlfZY73jW2sDEMG0MTHjHFpSzx1rrjL0ddayLHQya1OITr1iVUwMzfPcEm1cnbcQKNbnSxWW0BVoVlbZy5x9/IWC0rbsGDYXtdil+EMh+0hnM3y+SRhdzseWJuzsjutT5sjDZentbgXTrkSo2LhdJkTIvPQX33SpS1Sxnt31bGc99w7kPKw2qJhXi0ES0DpaWsFjnje4rBKvxf7ISSmlYZRSsGjxYxSUxL1fFBW/+GVxZ3WD/w7w6TJmIgdi8+izBzrvbOKOKSufCTlm70N03wvWFXLQZbj7D+OZBNoDQtzWlM+GWyUR/n/oZ5pJfSOUDe7deeZdNQtZ2q4K7Ph3dVyYDLS1Wqvrjudq7Nh+pXHDcT6LGaW0YT6UwTz9C8PW9bKS1tFMDaFpmW7lf92f5y0x3rBt1wLHmHOgbCJs+tCjpodnBagO2G2VjliSxW0tWWqITT15llfWujv+TrqNW5+6Xao48Kd5Y7+ZvnnpYaq8vcXPcnrDjjx0n/cwGfK4/xEW0e7mcxsCMKbYEz+cfyadeBf7ljjNVwtOn7U9ZBSqJxVrmAatUtdF1O6xhJWE1GRudnCEsFKerhDYSLbwXl8S83BUXYsYJwJZsPyoab6WN7JVV0NxIsN9h9jik40kqBVM+sxUw7ZM3j43KrwV2o98gaxzXC6AAhbRSiTKFKgLmv/fCbwuhA8uArpzjotF1eeOIFOB1DZ4zE/Ob06V6ggRY1rnzW8WB34Ohm0RrsOsE9CWLbG5iRWU0B++LT2wBvQ9el2P93C3eXTvoWGuJdqRpUdJVswsH2IQ+6xGccpZrctEalawCrX66+66iyjoOfv9zeP813D7nuntoE8Dal7TKpu15ixrg92fJPLtjK6basee3bNWFkTvb48y2qkqsSqpaVG+DaMOejJOwOY8fu3te9zxMeYZ049modPfppUTb0mc921VS072DYHUfYapNL6L11xuJ1rLSWz0rWHGhxDgMIPjaTjGqYGVYhK1XTahaiMr03/sgDMWodTfffFzdouCEn1oVTkeeaztRWnVTaW2xtq8HbtVP/xpGfp3goO+FdqN8HLBCMJjH74Wwxr2U921xC6AbQLDn/mHlBZ0YLXPs3beoBIt59D/aa9fgFtxcF1bQEce6SC3QrKfuNDnVayRAcM5FYfqQX5deS1ZV1bZd2TOP6jguiYdKIWWJttnR2vL88+GkRFXFATbYCPb+NsE229n4sm7dbXmY1hZobnReUyVVtTRjnv8v3Ha17KEeGwz9HwWqDPFNWnPqfDSrkB4fVgJ0/eBeKVitVcBablg11GEuPldc3gKryjKwqo+BlUhWi1mBigtlho0Q3GjTqDrol7gV1aKiEubPsQ0WnntUq0WfE7ZYGsDwEbDz7mEuXsTmpKWijI3uv+AMCTRscsfaHyD4xR/sItS2EK3CCRQW1WOuvVRDYLHb9M3f1cYBbR2tRZVKeTWpVIfhOTNs3FfotZuLzd1b5NShjjhW6a6s+1TKQhR1Z2eA4Ie/CMMONLQ1rKqqnYfS2LmHkeaznaQukrw9H9/YP6x6KucjHxSgFXz/JDj6VOg3AHr1CZOYW5otrOKqYzQ1Yt54Ee67JSzPbGti3eTuX4FUhfpZx1JpKVNUv6UKVCJlaXtVdkXtVWstsFYSVh9iKy5UEnZi0SWNRbJa6Nms/E7My1VxocyxjAR6ssUIqzZo9SpTEQsr87+H4KIztLdttoOrPAn7AjYnLZ8vdmGnolKHefAO3Uij3h23Vd32OsjWP8q2KsBQbHCf+IGtG2Uh0OzOVx6pGBoCIcWue4eqlE5dkQBK1aXGPH6vlqoaHaxEbWtF6met3LGKlGGUO14Wo8Q0bQj0Y9e9bSstMYxru1tGS1XVUL8Ac04h/GAxNrUl786txPVZmFd1scAx7nyYdDRBetjmYXiIybs4O53HqR4mTY02rjAKqnex2RNT3PFWKVDprsza+6f7IS71tkalArb6WsbKgmqtAdZKwupNF1/Sn7ATi64S6ktWOonZbxvfoiQrVlCyApvyY3Px4poeaClrxlTMTVfowL55DlbGszHYp3affqFNxLfrpNPWrX7F73VJ3ilOapF+fbD5Vrbaga++iTG4pRlz341w/aVaLZ2vFoRR6kRQONbW5nBu6TQYCa5013LK5zYPMJQg6xysWol2QO6IY01789R9AMX2ZqWr7b4eTR3S10vU9apqeOslzIU/le+a4yTCLkQzJqSbEsyZYaUkCTatcNAqWgASkqAqR8h1aWzEvPYc/Ocm8fwJqB7DJmin3IO6wpOq0jFSVbOCtkBK90TU9io/bMF01HrPrFOw+vQjzB8KHqo4WLnITLLugiwiLLxXKi9wuSoutGO8CCzinVd6cvj/2bmnvPSLfN7ab674nbbfzHVzSasnmwBrFvA1/veQTTXRKhfufL3+gi33HIYEfOFu6G5K4oCafq58bjaqrqQzNov/2svgpSdEgprmzmEXZQsSlUJ6Mm7E0w9lOOaHYe9ELV21tGAev0/XIF/irkkz0ca3rR14rEZ5hKUOvzy4FrrNNl0YsH4xtAuSlYuRu/cWuKlQhuVzFy9V4x4CIsm1KqfOUJ58APY9JLz+qRRkFHxLgQusKv74vfDva/U73vNAVaWkqQp1jVMxYQpNClRLFLC0J7ClI7yAay2wVhJWz2GbXZaDVUMMrOI6MXckrAjGjc+asWNeBA4yt19HsN+hVqpJZ2zE9cxpcOcNuiTIZDdPeVLnlPguHpzJwHQ+mzDEPP8Ewe77hAt5cQPmzhvhf/drSUPiebopO84yoBefT4RRe4cG91QKmpswr78At1+jIfCJsskEHlgalbQyBxhsrrzYGvI328ruc/qXmOlfwh3Xhek3Ng2m1l2rlFpU2iA+rwOOVSQrDauFyiywsKBmd+tmpZtUOlqTqrLSSjjXXgqvPIXb52vuPNa4Y0gTbd0l52Q6C+YMMVeMIxjzS9dRJ18cOiLdx+XP77xmm0WENblanSPiSWziPjGgyihQBTHxVFoVXtKGCtghhvWy6yMYN35dg9Wt2LSKfjFqYClYrVTb+BU4viHYTPhdy7xtqlMrMoTdeVDSS4NabHXueE8Kzfr7w7KlUkoYtwjfdZ/R5yWjbsTNgEr2/jZsMcKZY1Pw1MO6SuUUZxfsQdiII6Pm1kiY1ya2p4MKEkv8mOmkNfGi6XI+q+JYW5SEXUsYc7dQOVr+BHwt+NlFsP5QlyZVaW1P1V0scP/2O3mwzMJGjHchTO+q9EwPi5QUF56TPgMIfjAGtt3eSnNduobJ+XNn2xiq156Dpx+B2VO1FDoV229yugrLCJTKV+Gpf3hhCtr7tyRGBWwi2lCiwwzrUcHRrNnAWl5YqYqbAqtJMTYrPFjpWlZ+EvNytY1fwccI5vwfpYBfAIdiC//jQhSmurm0YhuJ9iFMGRJPlra1CGjrsblkhyJ9+EIb01SnivYiTEPq7i3gJe792yEdbKJjspvfIrcoezipJaPOr6iBAhYBQD22QcSOKp7oc7fY6t33S5UMHRe3Ko91kZrjQnUfSNrVycAYhmxCcNixsOkWFiRLFmGef0J7AT/C5uD1dpJVd8LATrnnFqv5L1SG/x8ghfTaN+rdeXvf7U881+IISilI+XYqDapl7ZCqsnoNrCqpao0G1krAqgW400lW/d2N4xvYl3iw8vMCF7NyeYHtH6kU5rzTxHPT1d3s/bAdUwZjG4CurxacqLMt6jjq1AKrU9JhkwJP1t3k/R38BhDtp4i3gOvdvvu675cn6gx3zmrc1pto5yANqzoPBNI8ttHtL+MWdR9sBPwgYKDy4FZ581pVx1rnqYCy70VqEd8KjC5xFRucCviFerDoKHS/A3itB0ZJXN7Tbdu6663HMiVl6rSwuM7hEJ9KI+pvs7JT+VJVYxu2KlhFKqAPrMw6Aqs/uAsnsOqhbnyxVYidQnsDV7htfEfJWmpLe65m7b2Rn7UEszBG6hBVNsCmX/R0IDDeTdyibubGGAnmE2X0rnDns4+6iUW1kKd3o5pXrSetiCTQ6uYlLn4dz5ZVxt/cajrWhZ4KWE807arJSXBnYjtbixT8hZNyRIob6OAtdrecUjnluxao71uo5p8FHsUWjezj9jXEPSzWI0zID9x+007V7KJCSJo9+1LeA1WT5/0rZVRvpjiuapXZqtZoo/tywSoIbEF96+rXsOqnVBUNqyVlYLVCbeM74LEC0RZIEC3r0apAm3cLwV8Etd4CFgkxpzxTOrhPp1jklY1Il88RaVOi+VNKHW0hmrYi5XGbPZvVQgWYBsJaUnl1P1YRxj/paOrVfaz+PJd5JgGDbRR6tbuvapzktoGThLsqUOWVgXqZpxbPV98pYJTqCK6dcwEaOvG6Wnn3skRLEld4ElCrd+80xtipllA6tUbXszLOQWTM2DEkwFoZWF33FzGuzsA2chRYiWTl11/XsJrfBqzyrB7JKnIKPGmgSRma88q21KLAUOfd/A1K4jDuHKTcDd+sbuDFapHnYgzPEnvWoqQr2Z9eAKKu5EpIaKIGLlKSK24/aXWcEqBY+RUca61SgZcSzWSQxatLAKdjvG/akylwbPKkOC1dNXjnROZd4UlCS4gm5Osy3a0UF8tr8c5pY4zqFwcqLX0WJKrVfP+vOcBaCVhNwmabZ5Rk5bfhWuzBSryCWvRv+gphZWLEd1GDqpSqJYtCigkuUh6zRYTxYloqEnWhSe1TnshLPbveImUXWqRUlZSyUVUpsOC+S/ahJaE4G4uoeSkl9TYqY/RXdawCj6We+15LGakY9R2KI8MDTzKs9aRNXT9tqZI400rK0vPXRSS7qvPe6kmlTR7o/FQaH1S6DEzOV/++SlB1emAtF6wWN1hYfTZBw0pKwfYuI1ktULDSeYEaVrnVfsFCQ6OWrCTaWhbbMs8u0qSkBEkfWUo0t0svsozaR4WCQgXR3oqLlNNhqbKZZRRoKpUxucnbhzbYL1L7afQ8WCJZZTrJsS7xVMBs5F64+Bpjzv+RKfGAaVVwCBSAmspIcRrgck5ESmtW89PxW02EjVC0fUxLkrqKgg+qZUQTlVs86azTgKpTA2u5YfWnX0uB/Hew+VFppQZ2p3Rnm/nEp9p8dbCKXwDNnooh1U4rlMG12XuCxqVLoNzZuu2SSC2yGIyC5FJvMbWqeyevpAeZV6VaUC1E8+98qMjiQLn5O8uxaqBGmiwE48Yb76GiQaUlocDtJ60cBYuU/UpLcX4gsrZhNhGNSNfnRcd06aDXFk+yWub93OyBKudDuXCsnWhkOiGsRq8grF50bub+xLfhavJgJcCqZRUkMXcgsLIeFHLqBtaJxK2eYdZPQjWe+iK5fDqHrcK78Zs8A22L2k/W87iJly2jwKIXsPY2+ZHRgadWdZZjbU+ZIN8RIvZFkTYFJlllO1ukpMM4KU5/j0hYKTVfefB2VVJjiuI66r5aWOqcaTU33xlB1SmB5ZqFPgTA4ceXh9XnEzGXnS8f1bCK62wjF7hWwUpLVivUiXk1QSvnqRWyuNJK5cl53q9Wz+hqYhaxSEo6NSRNcRpNS4xKlPJgJfuoUAsrp6Qhv553BALO09TZjjWSwFsGVr7anvIcAzpwVufkLSOai+qXYcF7YOlzJGCU6HxVE7vI0N5CtKZ63DnrtBJVpwWWg9UbuGahwQ67thdWj2NrTwustGSl23DVegb2Wg9WLZ0JVm4h5z1pRhZc2jP46viaojZKcixm7Bh9U+vyti3ePv39xcXemJgFq9M88h5ciqAi8+rEx9qe+8BXB1H3XaX6nmyMQbysFGfGjjFKZTYesBqJr66gz0ur2rIx9qk1BlSdClhFsCrXLHTCO5irCo1C/4HNQvclq7g2XAs8WNUrkTySE9XJLl7eu1njWn3HtV4quhGVNKPfEyiPGjFgMBQHCeYpbo7ZWmZOuXZ6mzrVsbbzPtCqO55k6Es+2RKSZqnzYpRU6RfQ09UVUjEAzXtScVEvwDUFUpEH+VedmtMuWLn+e+bJB+H+W0rBqobiBqc+rBbSAc1Nv4JzFHgqDp6aELnB2zoGtT//tZTKg/fk921OQRmwmFL7WROOtZ3XRjdqEIhoKU4DNk9x5HnJ74w51ylKN4YoBeD8ih5fO45/1d77nSmXsCyspMtIMayagb9jy4KUslk1Eu3GvID45qatSl1ZI584nQymJdXbdeAcaKD4bbGMJxmaFZFyYuAVB2AT97qqrsE6AyxXQuV1YFBZWBlji5E9cZ/A6lwHm7bUQN9m5fcLXPVJzMlYV8EdtKFCrjUQX93AynxFByn1ngYxanQxrEQNNAZz01XScHMhcKGCld+Gy29wqnO0OqS5aTKS0U4pMrmfVtFY7cCKFKcbPoJgv0PC6okCq4oKB6sr4b3XwJZ1/Yt7cmlY6c42Pqx09HpnyQtMRjKSsaYAqwhWR59iPX8EUW/gonrbCql2nsDqMgcrMa5LXaR0G7Cqp3PkBSYjGclYAyWs5YXVy9iod0NxSeM0YexLKVjpvMCVbW6ajGQkY10Blhk75o42YTVjim3lZGH1JLbWUD8Fqx5Ym5VOdfBLdfipNp0hLzAZyUjGmgIsB6uj6VFDcPD3i2GVycAXn2CuuEg+8iTwVweqvmVgJd5Av4yt34Lrq84LTEYykrEmAMuMHXNVAVannWMbXIqBPZUOYXXl7+UjV2D7p/mw8hucajVQB4Suqn6ByUhGMtZmYLkyMT8BimHl1EDz1MPwyJ3ykYuBFxSspDyMhtUyonFWEragYdWp8gKTkYxkdHJgFdW0qumrYGUlK/PUQ/DIXWDtTJc5WPUlDAjtTrQjTGMZWK3yfoHJSEYy1kJguZSbKwqw2mxLFRSahrzB3HUjvPaswOo4ByGBVa8SsPJ7xcVFr3fqvMBkJCMZnQhYZuyYTVH5gYWaVgKrXB5z+3j48C2w7ZB+7WDVrw1YLfZgVU+SapOMZCTAWglYDQFuoVQyc0M95oHbYcJbYMsZn4c1jkuFUIGVFNX3JataBauvpgVXMpKRjLVGwroWibXaY99omZiGesw/LoH6BQKrXylY9cYGhErhPYGVtESq92C1mCTVJhnJSIC1EtLVHcABDB4WBoaKZDVjKuaWfwisHgTGOolKcgLbgpWogrpof5Jqk4xkJMBaIVidg8RaHaWi2FMp+GIS5ro/y1sfdGqgqH9astK91UQNFMlKhy0k0evJSEYCrBWG1RHApQDBMT8MY63Safj8E8z1l8pbxwG3O0j1ipGsdLslKb5XRzRsoahRRAKrVT/M2DHDgI2ADYFh2DzOPby3bQQMVb8vwlaElTHFbV8CU4EXg3Hjs8nZXSXXqj4YN75ubTy+lSrgp4vwBUefBttsV1ADzbOPSdE9gHOw3XB6K1VQWsfrelYaVqIK6o64LZ4aSAKrDr3ZRwIjgU0dkHoDI1bhV36A7Xj0XDBu/D3JFVhpLedQYHf3p38H48Yfsxq+d9XuvyMrjpqxYx4BDmLUaIKDjrBG9lwO87+H4IX/4gA01sFKVMA+hEGhXQg7CAus6tWmyxkn0esdD6cdHZhGlgXT4GHQfxD06Qu9+tgbZ4Ohro6ZG917QPee4e+tLVC7IPx9cQNmUT3U10HtfHjnFf9bpjl4/S0YN/6t5Aotl9AwHjiocK0a6mFxHUCfVS1prTEVR10k+0H0qAmL8C1birn3Vpj4LsAc4PvADKf69VAqYBei3ZilFVeDgtUikuj1jrqpMsBebhNA9Sx64/ARMHhD6NXHAqmq2mUoEIWTrgAsfw+8qsBVXWDQkPD3QUOidYO/dyLULYCZ0zBvvwKfvD8UOBY41owd82/gtGDc+MXJ1St7XbcBrgN2pUcNwTGnwpBhmD+dF70+Zu1ZLitjwzocIDjiOGtkn/Yl5o7rYFEt2MDRHzrwCKx6KFjpdtstHqwaiIYtJNHrK3Yz7wgcBnxDqQlFcAqGbAx9+zvbYwkwBUEUTEWQCqKfC4Jyj8zwtf9A6D+Q4Gs7wZJFmHdfh+efgEW1RwMjzdgxRwYXXzMh8rlkaIHhCqALw0cQHHWyXYcfvSfS1UvBJdfWxUJrDT6XK6QSOsPeZAYPIzjux5j/PgDvvCz//o+zWeUdpHoTGtm1zSqvYLXIgUpgtZQken15r0k/ByiRooZG3rDdKBi2mZWc+vaHisp46PhgkvLVQcwWJ2GVkrhkoWhg6b8ZA/k8LF6EefRueOtFMSnsAkwILrnWRD6/bl/rcYDtJCwB2gDLlmCuvBgW1QEcCdyjnjyRE9dRa2lNUQnrAVsd9JJz5W+fYKPcr8Z2senuJKqubqtSoJLutUsdoBYpe5VfzjiBVembZVMHqUOLpKjhI2DTLQg2Hg4DNyiGkw+lwpaK/p5Khe9NpdoHMWKgZVTXKeNveQurfB769CU49jRMv/Xgv/d0AZ4ARpnzTpsGmODia8y6LHEVasuh83Tt9TD/vV9gdSdwH9FO3JH+kGbsGNapRqrqxE0DXgLOdKDp4mDVgzB0oTthKy4dviCwEntVEhC6MpAaNZpg861h0GBrBC8lQRVApCCUigFVoP7nvz8ObkFQXh30JSofViYPuRzkc9Z5c9+t8OyjAI+7Yw67JF98jVmXoBXph9CjhuCE0+2DSGD16rPw8L9FcNjdraVASVe6J2KHdX9eY4zuwbjxx5ixY37iJKM01oheqbYq91qB7WyTI2xpLr0DFyt71TKS2uulbooMcIJbtHu7hwL0qIGddyfYdEsYMqxYymkPoARGkpVQ9uegDYAFUXuWL2FpKSufD9XAfC6EVi4HuSzksgSHHWvtWvULDgD2B56S+8ic/6N1poKse0jdgqS9fftIa3OUh8YXnwisAE512ksl0c7TumU96nWNGisbOFpPtNNtRm0VDmR4J6tJqX4iVRVVCE1gBWbsmNEOVFGb1D4Htw2pAkg84GgQpdNh5Vf9t6WLoa7e/m3OLExzo/1sYyNM+cz7Pk8F3GQ4dO1uf91sK/v3jTaNUQuJSlYCrqyFFdmstbN95wfwr78BHI8Ne2h1X5gD8muqarMc90DYHd3vhxAE0FCH+c9N8vbTgY+UnThQ6y/rzp0ArMiutS4AS4aGVlqdrDzKw0c0kl2kKu0JXOdrrytp6viIyrfdKOtN23Bjl6dZClIKUBFIpaOAmjMDmpsxc2fZ8IL5c2DmdPj0g447Fv3LHvvD8G0JtvyaDTCuqnIAMyG4tITV2gLZVoKd98BYYO3qTAuN7uEWFKSttRRaEVjtc7AtKKDT3nI565lvWIgzsN/tTC8Vbm3LGsy6cyaXJeX+zroIrEDBKvBE0FalP2cdmMQDKPaqJCA0FPvPcirfloANAtx5T4Lh23g2qTYgJbXHghTUL7Set3mz4dOPYPYM+GxCW9ORmmMpYKa7RtJWbb56KI0ANnD2SoAv3Oekltl67nUALz4BLz4RQuyYHxF841uw1cjQEK+lrEwFZFuhfwY22wY+m7A+sBXwqZtXk7rX1jpJy4WlvIBfqklV7TX33QrTPsepymcQ1pHztZtmZbvKAsGael46sryM3Cya6HlF8xb3t0a3+Z7AdRJWSu07vGCbEmlqsy2jkIJiqUlDKpeFWdMw8+bAZx/DxPdh4dxSX/2xe2hMJ+yOLTbFKmWLFPVentrVwChsXmG6ID19PhFmT9vEGX1zbsLT1QOtJ9YJsx5Qwx3XZMwd18AhxxIcf7p1FAi0MhUWWtmMPcYNNxbIboENSA68+86wFrWH1+XFi2CVTkMqjXnmUXjjeRzAzyd0bFW7ayUqX4sCV6snWKyzwDKeVJVWJ8soHbpZbdoTuM7ByiWNn4CkVMjNOXIXL4gziDeOp9NWbZo1AzNtMkyaAO+9FvdVXwBzsYnHnyo4VZXYeniASqttI2AbJEr+pJ8RHPQ9qO6COfkQ+b4uys6UUsBqIWzHVgEMBAby0O1dzVsvEfz6z7DT7vbYjAmPMwhswxI7+rjNB5UBzNogZUVgddCRBKP2jsIqbbtM8fh/cA/9091Dphdh+JCcMLFZtSgDPGsy3DMdCCtf3BSaa5C1Eg0GXedirNwNGdqnetTAvoeEap+2TRWkqXQIqalfYGZ8CZM+gg/e8He/BHgf+AyYiA05ybqbuIt7+lYC63tSlAZUxrNFptx7dgBsrs3+3yU44afQq8Ye09OPwJzpAPOUfQklaaXUgpG+krMcSDdj1tR+5qffJ7j3VZAcxcA7fjt6Yws+5tRDsCChs4Z6vuJgFYmxKjykMjB/Dmb8H+QjvwNmu/MiMY+Vyr4nsIoLbTDrKrBQRvWsOim+S1XfZOucJ7AIVIOHEeyxH2y+lTKie7apVBqWLYWpn2G+/AyeeSQOUO8A7wITnBRVreAk/Ryr1GuFB6m0glSKqANFpJrtgL70X5/gpDNhlz2tFNS4FJqb4JZ/yHw+IRr/g7c/vQkQPwY2Bwaae24i+Ml5zv6mzsG7r8v+G918Wrwtqx6WZq2F1eJ6zHWXyUeuxsanSdWTboTB2TkPVP66y6+p66gjJayc97M2wOfVVnjfOhJDUwyq0YcU26e02ldXi5nyKXzwttS/1+Mt4FknSX2ppKcuzj4kP2s1r7KEmpfy4KJvZgNsja3oADvsTnDq2bYiw7KlhbmbO66D+bPA1riaqPalX7V6KN8tc6l0tq6B1NdCSzNUVIRS5bxZMGca2BCaLg5Y4rQRW6iW2tcuWIkamM9jbrka6uYDPALc6GAlgdlS+cQoI3vW02qydGDQ6NqgEsqrH2Hrv2etr2O13KCqr8VM/ADefQ2mfqZ3NRN4E3gGWxCvSUlRA9TPXTxJqtJT83xAyQ3tX8O8e/9ewHAAjj6NYJ9vW6mqqTGc/7uvw6N34Wwo92KDiIMSthId9pIhGmC8NQB9B1iJLZ+zMVipNOaJB+Tz9c5OozMkJI4vs6Yak0um2viwuvVq+HISWM/h7wir9op0lVEqoIQTNSugR7zx66RKGIwbb8zYMYGCFDE3jdGv6wCoRgNnAwe0CaoGgdTr4p6W8ZGD1NPutYtS8/qr37t4Kl9lGSkq70nBec/2I1tP4GBgKDX9CU75mQ38lOBRsa1N+Rxz1e9lvnc4g76GYd7bNLQ0sHYHNqLvQIK99oemZZCvtnBcugQeLnQFn+FsNN0Iq35oF/4aB6wCrHrUEHz3uHhYZTK2O7q1V76HbThco6QrbbdqIQxjkBhHySBp1nbjdVYlFACpnCJT6j1rOah2BC5EFVKLBdWyJZhPP4LXnoNpX/iQes1JKpMUhPoqOHVVEpWv8mkpKqUkqDg4ZZW6oH/+GnASUMk2OxAcdSp06w6treExpFKwsBZzbaH09c0OrNqwnldPef+pHhCGSuyJTTciOP4nUFEVSnCAueNamD0NbOxXk/uML0XKcQdAYMaOCdaE+y0Cqx/+PJpqE4HVI5J204QtM95CfP9OOc9NDlJLCUs0rTUpbx0Wh7UOB3z2wFZ8PBYIvX7bbh8a01tbYepkzKvPwMT39McnAK9iS/J8rBZibyU9dVU/d4mxS/mZBb69MKvAoX9u8f52NLYkCex/OMGe+0NlpY2H0o1wF87H/P0isaU8A/xbgUODsoVoYHBWSVopp27+BCA4+Wc2paelKQTjGy/C3TfiJIOPlH0q7TkM1ijpyt0v18bCSrIRHKz46F14+A6B1SkORH2ddNXd3ROBuoZi29P5uX5NuTXadpwhGStz843DBnxaMeqgIwl23C0EVV0t5r3X4fUXpLAhzsD8ilvoryg7Tk9PzdM/y1bhSRUoKJkS0pO2X2hQaUPsb4H9AIIf/Bi22d7JSXn31Hdeu9YWG11tYfUkcLGbF57hXmLu4oKEDXCMs8NUsd93YMuRFuoiYUx8H/PHX8j5etPZq1KeOhN425pwv0QrLpx2jq3oqmPrBFZfTMJcW+g2Nc7Z8ARWUlcupa615Ohq215Rju6aLlgkwFpxO9UFBYP6dqMIvvWdMI7q84mY99+Et1/WH3sceBS4TYGnh3vVYPJtU1WeRKEhpaWonAJRS4mffUmrH3AlsB09awhOPAPWW1+BSqkouaz1UllbyvtO/e2qVLQUUQeLhpYsnCw20NEav0YfSrDXATZC3/UDYP5sDavHnNOhh7tXI6WyWYOi3COwGj6C4Lv/52rgB8WwWtyA+fuF8tE/ufPd17NbpdQ1144IyVbw2+GtFV75BFjLf+NdJaoMg4cRfOcHti5Rawt8/B7m+SdhxmR5+yfAc9iYmakOOl0ViKq9rUsJA3oqRt3TkpQPKF+qavXsVVlgM+AaYDOGjyA4+PvR+u0S+5PJQD6HuXW8htVvneFb3OmV6mmvQ1skHUuMvjeK2hmccKaNQdNjwTzMFQVD/jPYOmv9CT2dAkGtZkZiizrjoiyC1dFe78502qYjCaz+coF89D4nhfcj9ArqLlOt7mGgK/ZKo+FG1gKvYAKslbvxXsFWDYDDjyfY/uuQbcW8+xo8+aBUewR42UlSd7gbpSLGUF4ds1XGqHzacJ6NsUO1tEOS0hHhOeDbzo7She1GERx6VHQBaVhVVGCu+wu8/7qWrFqw8VBiR8kog2+LUg1F+tsW+COwS6FZwtCNo3CcOwtz/WW2coSF1Q3Y9B2R0ioIq300Upw4T2dclMsFK8Bc9luonQs2ofkWBSuxa2bUeV2qYFWv1MFG1tKKvQmw2n/jPYYuoFZVhXnteXjhCQ2qx4BbsR2uJd6oQhnJqzxVrzpGmpLF3kxxlHJLGbWvJQZQGlIihRzvnASUqgJAOmNfKyoxTz4oOYofOFtK3kk9PSiuItsaM+dzsVUoiC0+Jw13r/2TPoeXYoNgRYpoVtKV2Gaa1N+zdEJ3fduwCh8KGIP55xUCq1edVN6PsC2enGvxvmpY6f6dy9YmI3sCrBW78YYBBzB4GMGu38S89hy8/JR+y2POFvQs0eoGugKrHy+lPX0Su9TqSSe5EsZy33De6j1RczEqpHEwPQogbHwbxD/tKypt0OYDt+LAcIWb2wDCYEXXyaIImM3YkIVjge0LDgmdyOskOfPOa3DndXIe/wH80y1UXc9JkuibYmw0LUQjuDvLPbONc0wMahNWlVWY8X+Gd18B6xG9KQZWFepciBpYB9QSbTa8VhnZE2CtwAjGjf/SjB3zODO+PMDc9Hf582wHqCuwuXza3V4KVpWe2qdDEVo9tS/r2Z80FHxpqhykjAPMNcBRRUGKqmQJFR6s7r9FYHWWWyQDCFNBBLStRIsz9gJ+DuwGwBYjCPY7zBrzNaxyOczj98Hzj8n5/KVzSvRR6rPurpQl9ILpzkrNnc1OEym8N2q07dspsNLnWmD1+P0aVle689rPnctuClZis6p3sBLJKs7IvlZWQEmA1X5oHejSbfZwxuAH3dMtrWxOGlRV3s9xnj4NGd/b19oOw7mfn1nIA1QBvVFXuh+kGPe0f/x+uO9mgdU5DgwD1NNeghUFJI1uYR3hbHxV9KyxhvytRqoa7+776utsUKhNQZoL/Awbxd2baP/KjFKPGwkbloitRiSsHJ0kobeoSmhMLasIrP57P9x3k5zrfzrnRV8Fq0oPVmKvqiXaHd03sq+VIwHW8kHrBjN2zI0UVx/QsKqidCMOiMZNlYo89yWocpJUwa3vP1EjnYHFld6tR2xEtbWjYL2BL/xXFtCvHBTKwaoLtkHEdgUVcfShBHuMDnsfRlTAV+HO62WKTwNj3aLTvSt9CU73r6x3EoVuWtIpDMttwsp7MPDZRLi3AKvz3Wt/wij2Ss9mVa/UQIHVUs/IvlZXQUmAtVzEKsQn6goE2rheGaP2pYjPrSuXItNawmiucwHL5mZGSuyW8k6l0gUVEMD8868SOzbNqbrNDlZ6AQmsumK7Sm/ljh32PYxg5z1sOo+cJvECLluGuecm+OhtmeK/sPFY3QjjiwRY2vPoSxaLFLCaO4vBvd2wqqy0KUifT8T8+Vfy8ZvdOe3vHgzdlRqovYECqzp3LsTIvs60xUuAtRL48iQsXRUhTXEtojiJKkf58IOiAMn23IxlS+z6QYqVVfYz118usJqI9VAFHqwq3O4HA5sAwwpfuP93CXbZA7p0CzvjqHI55u1X4b/3Qf0CsJHrf8HW8RJA9VSSlfaGZZUqqOOMltGJgiLbBStRAyuqbBG+P/1SPn69s135sIKoN7BWbRpWLaxlwaEJsDrqxjz/R346iF+MLq4PnKHY1Z+Nka5KqnvLcxOWLbGr7VUaVtf9Bd5+CWyg67XuvtAJtn0cpPpjww2gpj/s+k2CnfeELl3CvoO65nxdLeahO2BCQaq636mARi1OAZXYraS8dtYtyMWUD4r8SqWrkrDS9sGCzaraBoZeXggMfUDBqkZJsaImLnXHLaBaqFTipXge0nUhnzcB1opLV345HS1BQXGZlVwZSOXaY5Nqx+Ip2ca8yBNYWQXNTZibr9KwusE93QVWm2BruK9XcBZssqWtjbXZ1nZBShNUCINOW7M2Rs16GUWq+iu2+GBXBSiJ5RLbWEpJVsucFNGgJKxOJVW0H1aV9nwvbsBcfC4smA021up5J8W2BauFHqz8c7DO9ERIgLWC96r6WafK4P1cSrLKlwDVCqeWlK2tFOMJZFED5g+/lMUzCRv7U4Ft27UjsLFbTHYccSLBtjtC//VsGlLOtpMvgEokuAnvYO6/TdQ/3H7HObtUDWFKj9S2qiaaftTqwWqxMi53moW63LAKAh9W/1Gw6uGALbASm91CwsYddaxD4QsJsDp+6MJ0pWrZazBpUK2wyhezcEqXKwlSxa70CvekD2H1MrYJ5wjg69j2XV0B2GIk7HMQwfa7WnWvtcVu0mZeq5pzZ2HuuhGmfCpTexobU/SZW5R+8b0uSqqSpgnNClZiXF8UA6vsGgWrVAoz/k9yvt/D1jwbQDS9ScOqXklWYmTXoRzrbB/PBFgrLmHpctAaRn6HEr94nqGDamq3GWMVcaUrteSSX2hYLcHGQQ0t7Pi7JxLssidstAk0N9s669lWW1VBjOpiq6pbYINMX3tWPv0GNgfuGQepvgpWGlS+VNVEWHRusdqWKVhl1yhYVVVbyWr8n+DNFwA+xwbH9new6qFgJYG3AistWfk5gutsH88EWMtjuLIlofEkKDx4EQOsDlH7SsKqVLmSgmRVGaqBoVoyCYlGB9hmRzjwCILtvg5dulpItTQXWsaTz0VhtWwJ5uVn4JFCCePPsakoVzso9VP2KV0yJ6MM6zpsQQzsSzypShbpmqUGFmD1Zw2ru5WN0IeVL1kJrOopTmhea6ovJMBavVJWvgys/K3DSp+4tva3UK4CgA5bqKyCzz7G3HC5wApgOAOHwLedJ3HIMFtEr7XFNoIQUPlSVeNSzItPSdlenGR0L7bWeKWSqLp6EpVE+QdKRdblfAVWccXnJP1nzYFVVTXm0bvhzefLwSpQsGpQktUCisMXIqVi1tUKvwmwVk4ljGu8YbzXDq3RFFk4bZUrEVh9+hHmD+eGO/n+KTYcYYdR1h6Vz1lYZVtDUGWzoVE9CGDpUsxL/4MHb9egehobQjFf2an8uvMaVLp8soDKh5WUj9FJvGuON1DD6t/XifR0n4K5VAv1YbXQg1WdUonXylIxCbBWk1qobmRWJZzaXDh77Fu6AoAsnk8/wtzwVzjudIIddrNF87p0swvOGDB5K0XlsqFEpY3qtQttdYowREFGNbbhxkEOWAsIY9KasMnhLe51llt8UtBvqacCLlFqYRMxzSvWYFj9w52XfkRLG5eSrEQVXCcDQxNgrSZ4rYaFc4RTA8sn1RYkK2ceWW99gpsec/9z/w8CJ1m5LZe30pSACmDpYsx7b8CkD+37+w2EBXNKTa+/2/TYxvu9Dlt1dQLwNrbChVb/moh2d/nKG+6uEKyefcyHVc7BqqeCla4UWquAv4B1PDA0AdbaoH+WS7WJS6qtrIaqKqjqAgMG2fy1TIV9n0hWIhhqcIn6l05DTV+CvQ+E0d+OhkdIcKjkVRoD9bVQuyCU1pYuwcycBksWwZTP4eP3oG6+9NIbCfwA28fwDWxV1teJ1mvvDOk2my4vrPh0Atx4ueziWgcaKRMjamBWwWqhg5UASzyCS1lHA0MTYK2ZgOqHLWOzAzbBeHeIKbpXlFRbaSElsKqqDv+ezrgAT0LblFE+AUmnIeMsTpIL6FpPBR6oIARdrxrbgCObLdi/giHDlC0sC/V1MG82Zurn8M5rMP2LzYHNHbxewRYXvJ5O0EbdeWBvWV5YmYvOkl3cS7R/YFdCZ4O2WfmwEsmqOYFVAqzODKhNHZR2dKAaUaR++m3M/Ty1iiq7cKqrFayq7KLKZCx4wEpBGjq4fngZwKRDKUu+Q28Fu5cJJTJRI/N5u++8txn3/x49oWs3gqEbw+6jYeE8zEfvwfNPwKLaUcAobK35C4OLr3krlAK/EliF4SJ77LsisJriwSqlYCWS1Ty3aclKB4ZmE1jFmGGCceOTs/DVSFCHAXs5QA2NvKFHDWy7AwzcgGCDobYrj1dauCggVBaPQKuy2sGqwklITnbJayN7VhnZVTf5VAqmTXaQSoWSWUGqcvauIRtBq0hVbsvlQkkr79J3Cq/5KPDE6P/pR5i7/ql7N54bXHLtZYX3flWw0h7YSNUFd86ru5SDVW+iHW6kntUCbNHCuUq6khQkaXqaA3JrSAfrVbt/7/onEtbqA9ReClBRCWrwMBi+DcGA9WH9ITZaXSQdgYivosXBqrpL+LvAKiMRBUBgoK4WFsyzJU7mz4Y5s2DWdFhUDy89seIHuc8hFkxDN4aqLgQbbgx9B9g5mDSk81FIaXhtNZLg13+23sgHbwO41Jx32g7AMcEl15rVAa4VgtWiesw1l5aCVVcHK10ix1cDaykRxZ6smkQlXN2Q2tEB6lCxQfkSVLD51jBosLX/xAEqsjlJJxN2tCnEWWnpSv42fw7Mmo5ZOA8+nwjTJ8PTDy/PIcwnLKHjd1cW41efwl+efih6/PLDplvDiB0JthoJG28eQsp4amMmY438G22KuelKaFh4FIA577RjZXfBxdeYVQGu9sOqIgqrC8+EeTPB5gdOwRrYRbKSPopNROOsNKz88saJRzBRCVcrpI4oKUWNGk2w4SblJag4SAVaDRQjuzzpnR1lzkwrMc2cCp9+rBs7xA0J3JTcvcVq0TQ4MEkxwgr1szTMkEUon5etj9tHP2yQ5CbYROouhW/uNxC+eSDBqH2gb/8QVhG1MWeN83+7CBoW4kDyA1QqVAcH4rYNK3FqVLqHwqJ6zO/O0rB6WsGqq1IDG5UaOM+pgdpupQND18i2XKtbJUyA1TGQOqzIFjV4GHxtJ4LBG9m0F4GQAApCQ3YpQOmfU+pJn6mAhlrM/bfDUw+WmpoEHUKYyyjeJ+nGLIGcEk4A0Qqqunpq3oOdjlSXIMdGZYcRt3xfbL33HYEtCrPb+9sER51i8x+NceVqXHR9ttVC6/ILpEzNn4HfqOMwqyQfs2NglfFgtTAGVrVE61qtsVHsCbDWZEgNH2FLsbRHihKDdt1C6zFb3AD1C61Xqmdv5aVLRxdPOg0TP7AVAOyiARuQWe8WSd5BRmpOVRJNNm5RoGr1VBEBlt50qWeBXbMClLzK3yNVFYgmfvcF9nbgGkT/9Ql+/CvYZvtQ0hJgZbMw7QsxaM8FdnELvrDflSzLUx5WEogrNdirraBoLjkXJr6nYdWXMC2pQsGqQcFqTglYNbOGp9wkwOq8F2a0gtSIIkhttKlni4qRolqzMHcmZv4cmDwJXn8u/IIROxOc8jNbKSHwmkRod/qEdzC/+bF86h3gcbdg+hA2c5BSLpUUd+vxm7JqsBAVAQvmqLyCXbPamoi2jM9SXBq66FS6eR3uJC+C3/0DRuyooJUteBrNHdfBk/eLUfvkmO9Zkcqs7YOVlDWWygv/uETK6HwCPELYRr4bYR36phjJaq4HKz8wdI21WSVews4JqrOwOXNtQ0rglG2FuoXWrjR7ho34tn34isfIrxOcdq59ivuQymRc6/gM5vnH4dLz5FMPYIvjrYeN95EGp9WEDUibPVjprjwt3sL3O/LENc3IKmi1UNxxWkPKN9jrnwPgIWA6cIi54CcE//iPVZ3TGchnIJ2FVIrgkKMxFli7OjA0qn1kWU6Pmit4uDKwmgo8p2CluzI3E+YGznfAmk+SH9hhIwFW+Zu7UCOdHjWw7yEEwzbz1D0njMybbVW7ebNh4gcw7fO4XS4GXsPm040BqtluV4If/9rCKq3UPw2rTAZz5w3wz7/Kfp5wasYgpfp1cQvHeEbcuPZhpZqyanjliO/wo/dRVOKZ4iYdaaKNOsQmlnbnoR8wylx1McGl/wylUkkD6r8e7LAbvP3y+tj+h/8j6rXMmrFjlkc9vHYlYDXFSbTVymZVqWAlrbjEG6hhpaPYE29gAqwOh1UNruww+x5CsO32hdrczJ0FCxycZkwRm0YcnD5UgPrEQWYrbEniao44keDAIxSsMmF5GAFWLov5z78EVlngKbcABiq1TwzkOQUqDRdfBWwhvr1Y3BYHrjhQEWMDSxNtgeZ7HyuctDKUie8N5pMPYYsRUWClUvD1vaQF2Z7YvEO/9hjtgVa07v3/lW0fLwG45vIL4mAlamCl+36BlVRdEMmqnIE9iWJPgNWhY0PAGtADME89DAvnwyfvl3r/K8D7DlJvAjO8xVmJzQ28DajieycRfOcHxV7ATCasqpDL2drrthNzDnjWQaI/xXWmtKon9iVtCG9W/29pQ+LKxWxx1VONZ/cq1f7Mh5XujF2F7YU42Lz7GsHwbSBIR2x/webbyBft6GBhymxtw+q0c6LVWYtg1cXC6qE7fVhVOcnKh9ViJVnNU9JVkh+YAGv1jGDc+PfM2DGvMumDXZn0gf/vl7Feoved9PSRtyArsLWP9ALdAttGqxhWkbw9t1iXLMb89QKBVa37jkqnAsp1E0mq2dl2pFSLLtnSqKDV4klXpRq45inTJ7EEGOKA5auCGaKdsaXQ36fAvsyabm1/GaIhHRnpK0qVA1Y+DqZm7JggDgRFsOrTj0gNsVKwuu1q3Pl5Wn139xKwEpvVvBhYJZUXEmCtFmiNckb3PRycpjgJSi/ECrfwKpR65res3wb4G1DJ904iOOzYaAJxKoh2TJ4/B3PuSTB7Gu7G/8TtX7rMQLRyp9RBlx5+unlDUwmpSrceKydNmRhYtQWsoIxqKOdJzltXN28bNNri/AS6OsQmw+U7NsN6Q7UNLRvjNGg/rHRZnnhY3eKOx+8d2OLOuw+ruMoLLQmsEmCtHmhdfM1T5vwfPe0ZkTMKVhpMAhX9t4OBMwH47gkE3/6+ddmLBFFol5W2r9MmYy48A+ZMx6mVnxNt4KDLDEvvvnrC7sANarE0EhbFa42xTeXLqHxxsCLmFaKlotvqjq2l0Cp3bLbY3/pDoaXFwco5IPySNhYcErzapIAgntF2wipdXEOsbVhJ78AmBasFHqx0fmCTO097yDk0Y8e8F4wbX/cV2WUzbi4yvrK5JMBaVRc52p5eSw0Vyg4j6o3YZGQxHgScDsAxP7Idk7OtYeiDcYtGxgdv6riWqU4N7OH2lyIM4JRk2jrCDiuy6cx/nf1fromrL0HFQSoOVHFSVilpK4iRTCuchLUtQLDV16yEpdOQUimbF2nHAmdD0oGrkUqlohaasWPOKQ8rpwZWVYewevBOuL1NWEmJZ4GVjmDPY8MvNgd2dsfVMwYci4AXgeeCceMvW0Vw0jXV9sAWTvxK5pIA6ysStgjd8b7xuFoBS/52oMAqOPNC2HKEbfCgqy5IfakggDdfwvzxF4Unn5OsehLN4xNYLSb0SPnuc6lY2URxI4c4yalNOK1AYGbQDlVRzuNZwDB22tMWAsy2QrbCdetxU2tqRKnB3R2surtjlXPe7PabcxVaLwUIjjkVavrGw0pVZzUP3VUKVj1iYFWvJKsU8E0HqJGxJ2S7UeHPn0+ExXU93cPsIDN2zN7AGcG48Z93AKQ2xQY3Fyfcr+a5JMDqHMBKlYGW9trtX4DV6WNt4b2CZOXUQHGnBwHmvtvgzuvke/4HzHSShEhVEqogqoj0rvPd57qle7P6XK6EHWqVNM/w9mU8kOmtyoGdYM/9VD5hNkzTMcDMqbKLeieRdSeMP/M785wCXAeu6OHQjVXxvRKwevU5H1Z4sAo8WM0HhrnrHIXUbqNhPVfHrE8/FzpBVK1tbYHZMzCP/AdmTD4A+MCMHTMiuPgaC4rlrEjhAH0YOrgZYNTosKbaappLAqzOJV3FRWxDtOvzgWKzCsb8GjbdMrRZBYFdVji7TDaLuedmaUbaCjyIjdXq7RYgyv7kP939ukr1hJHUTZ5BusN7I64EyIyC15+B4Ww/ytaeN16NeVeKxnz0nuxioZJmxa6nHxYnYRu5qgqtqeJejRWVBTWQSRPg7xfK/u8hLJvTXcGqxZ37Bqy395tI2EvPPrDzHgSbbmEj9SNACMLfA/VzOgPDNif40bmY55+A/z3QBXjInP+jEcEl12YjlV3L26MuxOZm7grY4OaddyfYdMsw4b4wn1U3lwRYndikRbT9fJZocvB3gXMBgh/+AjbZImpg1xUY8jnMtZfB2y/hFsKNbmH0cQswUFJVq1owC9uAVcSF/lVDqszYB/gxYG17pZ7mQQAvPKGBlVG2Qg2r44DLo7DyGst6QaFMmoC54HTZ96PuHOoW8rp34EbABthkZ9hqe4JR37QSXKaCSKC/n+ROAHNn2mDjUL0lqO5CsNMemLqF8NaLWwLfMOed9mxEHfdqgClQHQ5sCdhUsV2/CRtuHAY3r4a5JMDq3KDSWxysvo8tgUJwys+tKz6fczePi0QQ21V9Leb6y+GzCWDzAW9z++qjVBzJlZOnu0RSi4F3oYLVUtagSGrV5AG+ezzU9AvPj7/A3ntdPKYLHIi1l1G8tUcCFxXBKigBq6pqmPQh5oKfaljNVLDSktUQYAA2XxN22ctW1BgwyOs2pB5G8t3TJ2M+/RhefVbK5BTdVGpMwgYcV2pniDn/RwXp1IwdMy4Cqu1GEey+jy2hrSWpSEWQVTOXBFhrnnTVqmD1A+BigOCkn8HGw+2NrCUqqRK6qB7z5/Okx9+72ETclHtydydaB1xLVtrIrg3s4hHsFC3d2wmru4BBjBpNsMOo6OLSJaBTKczDd8lHp1AcHpHGNq74uT33Z1mp1oeVqIG6aUQUVjPc+e/pJKuUU8vXR6qq7roPwTf2h/4Dw5r2GrISAJzLwaQPME8/ClM+tQv8jN9ibh0PdfMB/qpMCTXOWP8aMFY9qHR8XB443Iwdc0bBkF4KVKtnLsaMHfOVQSsB1vJLWDkPYMcjHqmTzoJNt4jaCqT6QmUVfD4Rc9n5ss8XgZsJs/6lw4roFy0xsJJNd1nR5XXXhOz/MPl4v0OIpMcIqCT5+4O34eX/4SA9ldBjKotsJ+AnAMHJZ4cBpj6sRLKqrPJh9YgnWYltbOOC6rfJlgRH/9AmYWezFlbGRFUseSB9+DbmvlugzpNgvrazTeu6fTzYHNBLvHsoSxgULCo9wGDg7+KYYPAwmyFRElTpVTkXlL02kbA6rbXdiuKBuqD6wh3nbiirimyiYKXTPoph9Ri2vlN/wgJwkp+GZ2D3YVVPGLqwRtUCd4GcBzB4WFgpwbczSR5lNou54xr56BfuXtUFBfsDpwIEx/0UNtvKSj1BUFoN/PQjzIUFWD3sYCWSVRen/m0AVNJvIMH3T7bFBVtbLKwK2Qie5DztC+vp/XKS7PsZbPmfKwCo7kKw0+4YC4md3fVGAULngMoxnu5sfAPpWWMDjrceWQwqkaak0seqmYtvEgm+KikrAdbySVko0fhkbCvyNu0m5okH4H7xlnMVNs4qDlbGg9VCBaqFRNuYNxINBl0TYGUDOY8qUYpYyj9XVGJefRY+egdgGrZuVld1HXo7W04FB34Ptt3eqj+pVPGDojSstBpYg037sYv3oO8THPx9+87WFhde4U6triLRuNRGxr/ytOz3LeB24AXAftne37bq6PpD5D2buO81RD3AzU7F3RA4D+uJhN32tZJoRWVoSPfV53R6Vc0FpVXkHMC+0o4+CbDaKWXJxXPS1slOtSkPK9CwasYmP2tY9fbUwGan5mlYiXG9ZOb/GgUrHXUuZV0K8VGusUbdQvjLWPn4J05FEbteD2BfIMO3v0+wz8FhjJuuvKDVwEkTML87Q/b3kAerzbAewBTDRxAc80Pr+Wtucr0V81Gp2UlV5s2X4eE7oXaeSIAPAnc7tXIgMBogOORoe3xR71pfd90kx1Nq5B/rpMYqhmxioTl4I3UjejX+XcnsVTSXQNls9YMxUFJXAqw1YJyMDkwsB6t/XQHvviqwOtdJRXGwynuwWkCxJ3AJ0cz/LJ2grfsKwypS1kW1LKuswvzz7/LxD50Nr4d7undxhuc0hx5rwyFaWyl0r5Y2aHp/n37kw2q6O//rYVNnrK3qmNMI9jvMLuaW5jB4Vdur0s7De8/N8N5rss//YsMpjNtnFwedwYw+FDbcJIReOLq5ay42uT7YGLKdAdj/cOuJzFSE3+/3pUynoaFuVcxF56qKGq7r+weJhLWm6IQ2ovj6NmG1uMHeSBZWE5zqmHUG9j7OwC6963KEEew+rOooE2PV2TP/l6usi8Dqxafg1acBZmG9qH3ceeqKbUSR5jvHEex7iFXXIjbDdLEaGMLqQQWrjbEJ110ZsAHB2b+zUlVLs1MBHawgomaaN16Ef/1N9vcB8C/gYwfUrm77GjbGjOCI40PoTftCPjeFsGdhAGyN9TIPpnc/gv/7MQwdVizZaTtVpgLz5kurYi4Qn1tqvkpDewKsVQ2rv1wAtXMFVnJX9XeLrzdh6EKWsFqlqIHzlQpYzxoWY+XO1RCnMh/QZqUECTeorLKVXC8vqILvEkab98AW70tzxIkE+x9mVTZf+omELkRg9YCC1XZIu7H9Dic48aehVCXGdQlJEZtV4zLMbX+TBxDAfU7K7k5YprqLk2qOA+Cnv4E+/V1OpIEZhfSiGYShAvtgY8hgl28SHP5/roJHvriBrpyzxkYtueOcN9e5c7Qyc8kS7ajUTLSzkk7vSoC1VsBq5lTM9X8VWD3lDOz9iIYuVMfAqs6zWcWFLXT6GCsFK9vkYfAwa2AvVSlB5fPR3IS56Geymzfdsfd22w5Aiu+fQvCtw4thlUqFamCVi2C/6Mw4WO2Fja2Cs8fZWKbmJlvSprXVSVUmDFdIp2HuLMzfL4KFhQfQbdhg34EOEtKhqD82n687Bx9DMGrvUAI0BvPCkzKfz9y1PAEblgH/9xOCHXcLwya0F1CHesybg7miMJcP3Vw+d6Bambn4zUnKdVb6SqWtBFgdBasvJmHCnDQfVn2cgVfiW1qdGuiXiCkXttDpY6zM2DE7OjvRoKImD6VgVV0NBttnce4MMbJPcuesTwFWR/+Q4MDv2coNeeW1k31KC/liWE3DhivsBdQwcAjBuZfAsE1DWGVbVXyV8jS+/wbmyt/Lvp5x90FGSTLdCPMZDwLWZ8c9CA7/gd2vcWrd4gZJwap1x3Y2sAl9BhCc/DMYspHyRAZhaEYqFUqh77+Fuaowl6fdXCpWci6vEQ2E1lKWX502kbDWFliZl56Gu2+Qj12N7WrTjzBsQYISBVal6llpWDWxZsVYFc4Vo0ZbV3xbsKqyr+bBO+CVp8Ru9baTRENYHTuG4KDvWcCIWhOJt6qMk6zud7DaFBgF1LDbvhYQNX3iYSXSWj6P+e99cM+/ZF93O/hJOzWxE0ka1T7Ahmy2jW3XJiomFoDmmcdkP5Ow1SQ2YbtdCY480ZXUyYb2KpEaxXmQz1tPcziXO509rncHzKVZ2a18aOn6/0USVhLpvqbC6n8Pw8N3yMf+hG1GEQcr3E2wjLCelYBKPIGLPVitKWELV+EizjnoSKuCRNSaTGx1T6q6YB64HW6+ArcoXnHSQl9njE7xgx8THHIUNDaG9iWRrNLKI/jpBOkSLbCa6mD1LSDNbvsS/Pz3rlCMByvZXyptG39c9xeRQlqcpPyxUwGl96O096rGVkrYhL4DCX74c7ueW5pDqC5bJGEtLQ7Aleywm4VJEFhVNJL3F4SNSABz499kLs3AlWouvVZyLne6V4mtynqQ8rt4+4HTiYS1RsHK5DE3/BU+eAMHmNOdwVxgpRNpy8GqTsFK17Hq9LCKGNf9c+W3z8pkwuqeVbZ+uvnfgxpWD7n7sT823KAHu+5NcMB3LVxy2RAugWdknztLw+o+B6ttscGXaU48i+CIE6ClycKqtTUaYyWhAvW1mIvPhQWzRQK5wV1bsVdJo9qM+3kPYAB91yM492Lo0cvaiiTiPpXG3HuLPmWVHHkywaHHWBWwtQXSMgc1l0yFzTn9wy8k5/QTZ1hvcSpgz5Wcy6vYKP8K75LqKiStnsF9ldROS4C1OmDV3Ii580aB1XvY2JcGBSo/1UbyAuNg1UBxjFVnLw2DGTvmCGy6xyAGD7NpLH36eZ6t0pIVE9+HqyWNjUcs4TSs9iE48zd2wUmogVbbRLJqqMP88VfazpQHvofNw6MsrArXNQP1CzWs3nFqIA5WYiOSANZqB4j+bLcrwQ/GQJcuUUCk0/D+m5IL2QxU8f1TbT/EnFZBJaA8HZ6zhjrb3s3C6m0nDaU8Q/+KzmUaNswmRdjpSaLYdRpOXjl58p3lvkuAtbywWlSPueL3ku3+HrasiY6xissLXObAVEc0cl1gtaaFLYQqoNirKipLVEmogApVg6qyGiZ+gPn1qbK7F90C6QmMAHowajTBmb+1f25tDVXBgn2nIoTVhWfCvJlguxqtjy1oBwOHwvE/JtjzWxZWLc3OE+jtK52xpWYu/rmWPv7tVK5+DhDSsDZwv+8G9GLk1wlO+Kk93tbWaJBn3ULMNX+UfVZx1A9tLJQxrl1G3klTQF5Fr3/yAeYP58rnXgbuIPQw9+yAudzs7rGuFHusBVrQSeKuEmCtDKxmTrUxMBZWj2FjrKqVZNWbaKpNkwerWs+4vqaVhtnUSVVWBTz6NNhmu2I3vKSN6FAD2d5+RRvGX8R6RnsVYLXbaIIzL3ByaUtY212uhXjNGup9WG0NZBg0FE48w9nRUmF8lYaVBGJmMhYQIayexZabWU8ZtKvV9Rzq7FDWJva94wuVYyOAyGUx/7yicN6C3/4NRu4S1vDPmvBcBQFk3Lmb+L6G1VNuLgPdfdURc7kfm2OopbTCNBWodHOSBFhrJKwmT8L842L5yGPYshx9FKziysMsc3DyYbWYNaw0jOtCcxHQpUgF9D2BEnGu8/mqu1gbyk2FtJuX3PnohY3I7st6g22JniCwoPHtTALBhnrbCs3CqtV9Hn54rg196N7Dwq65CVqbVYwVHqw+xIw7W+ZzO7ZL0QBl0BYJJI8NNt0agEOPtZH2hbrzChD5HOamq2DyRLvXk8+G7XYNA1HzLklbcoslfOGj9/RcbsXGfAmsOmIur7l7vEZ5FjPKK6iTnItKayfA6ly2mLKwMq88A/feJB+5DOvirlEqoIZVXhnYNax8T+AaURrGGdbHIw0O9jnY5rlpFVDbq/xcvuouUFVtU5UsrLJOslqkJKu+DBxCcMk10LO3sjVlw9ioAqwiaiBABT/8BcHBR0HPXhZyLS0ual2pk5EYq7SF1e8Lhvo7sUGUAiuRPlJO/drWqZtW+pM6/QJBUS8rKjBPPhjm9h19mp1XWnVIMgZSXpmaj97RUqfMRWDVEXP50Hk7eykYVylDu05w1p7BfAKszrUYt8GV6g2OPi0eVk8/Ao+J/ZULnKjex4OV5AXmS0hWdRSHLWTXAFiFhvUeNbZl1tCNi+sxRexVrsFDpfPgGTC3/APuvlFg9ShhRc8NI7DqVeOqJLjOObIAS8Hq20cRHHkSDNvcSi65rIOU23LZaICpxDd9/L4GxH+wFQ76OzWwm7IR1WB7DPajzwCCH/8aBgyMhleIUVsA8cBtFCSfo06x5yZQaXqF+8udwwlv64KC9wGTlUraEXNpdg/ZVsIKFV0JYwLlnvVTcRKVsBPC6g2gC/scHNpiBFa5POaWK2DCWzjAHEdYnVJgJSV1xdPi11+vI5rAvEaUhimSqkaNJtj3YNXgQEVi6xLEhVy+KmtoB8zlY+Gl/+GO/Rl3rnpio883AtcKTWAlXjwdHFpRaUMOfneWhdU2O1rXvRRMNHkrYWSz0JoNJY5CDSsF1rqFNqo+Coj+yq4jrv5NHCCwBu3T7b2hC/kVPJYerHb+hvXWZSpCVdAYMF681fw5mKsintIv3Vy6d9BcmrHhNk2EFUK6qYerxFo1EnZb0venSYDVCWEV7H1QFFaNjZj//Etg9baz3SxwkKohjDLWScytDko+rHxPYKcuDeNsVWcXpKpvHxk1rAdB1LDuq4Bit6pbiPnlKdJAYg7wOmEi84ACrMZdC1tuG/XilYJVEBBcdDXs9a0wHMAYeOMl2GgT6NrdRa3no4tYrmvtAsxvTxcJ7UNstYL+nk2nGtvkYQAAJ54Z5vnlcp6H0VVO0LDqv74NCu3Ww323XGkTNiRJOVj9+jRJR5qIjR3Tdf1Xdi7N2MJ9i523Uwz3YmMVz+Aywi7ajUQj2zvd/ZlJYOXBqqEe849LpLPI29g6Vk0KVn6qjUhWS5Q3UKSqBmVc79SlYVwe4IVlpaoiL6BTASuqXJqNg9WEdzG/Oll2Pc3BoYs7b72dxABn/97CSiSrnBfJnqkIYXX8T+y16tYj7JpdtxBzzZ8I9voWdO9p96GbQ6Akq2wWc9MVAoiPgOeIlkdOO8/bhkA1m25FcOxptumE7DeSEmQL4Znr/gLvFWqeVQVn/hbWH2qhpB1vohamUtDajLn+LzKXT7ER/hIOI/fVys7lDAer/p7hHqUCLnP3pzZVNNNJ8gbXeWCVhVUqZROY77pRYPUgMM49kbRk1c2DVbOCVb1nXPdhle+ksBoH2ILzcbYqHbOUTkdVwMqqqAp4363wz7/KridiI8bFHtMd2zE5xXGnE+y2T3wwp8CqoRbzynMEV9xhm0BUVIY2oeefsJULtt/VNlbIZkMwBClIR+1r5tqL4OVCvuJLTuqQRdzbzcv2G/vWEQQHHRGGCcQBYlE95j83CSAmANuw3+Gw426hymeUk021LzPX/FmCOOc6753YQSs7aC7/cAAa4O7b7uqeFViJ6WIR0Qa8nToWMJPAyt3YH7+PubkQr/IA8GvC8ia9vadUSonUPqwaWEPCFlw4x0lI5+CDjrQqR7ukqspoLavGZZgrx8FLT4px/U1s2EIfwoJyGwHV7PcdW663qbG0ZGUMVFQR/OBH1oBfWWXnMHcW5qYr4aHbLQdOvitcxL4aKCWEn3kUHvsPTvJ92Ukd4n3bXLxubLYNwVEn27LEUss9ny+yETF9Cua6y3TJmW3sXM4qhpXqr2qTjwtzaVCwqnZz2QzbBGNl5vIX92DsT3zifZMyXTR4wGrW92pnXMeZBFYug/2Je+Xt52KbFPQmdANL2II02GyNgVWdgpUOW8h1NliZsWNGA2cV1L/hIwj2O9S2jyonVWV0OWMHq4oq65b/6+9gzjSRGt5y91aNsscMBrry9W/aqprNTaobjcDK1X2qdJ7GvgNCWKUzmCfuh7AoH5x5oQ2DKFQ7cDYjXUdq2pcQBmN+4K5jFyfFDHQ/wwln2k7OxkQBEQQRqc+88CT8+1rZ39MFw/hPzofefcrCiulfwh9/IZ99nzC1ZmM3l64rOZerCGMDa5Q9TMNqqbpn64lWB+n08YCZdRpWuSzm1uvh43fEE3gG8LwHKg0rylz4Bjp52IKLVL8Q2+zAqn/fPc6GcxTUllRxowPpZlNZFTWwG4O59R9wV6G0zmRnH+rqSaNDgJ4M2IDgJ+dFA0MLYQcaVlWht7GyCubPtelQzz0q35MHUsFe34rWKA8CpwqmC+3CzOUXyH8/c9djODZsoAcAow8lOPRo6NHbpvBkW4sDMDMuv+8/N+lKn9cpiYbgG98KPZZ5o1qCqQfj334nn/3E3SebOumuZwfM5SmlAvragJasRBOopUxvy866njPrLKwaajEP3SWwehP4JbZkrAaVzt3yYVWvgNXgidWdKmzBjB2TwaYRnVSQKA4/nmDb7YvVP68jS0T9q1SwmjUNc8U48aQudYt3gQJ8pVssNmWp//oEv/lLtMlDwWblwaoyhJX538NwUUGqEol2A045x1YkyHmpKKkwj9H872H44HXcNQqwNeG7A7D19jb3bsNNbOmalub4mKZU2sZK3fVPrXZd5471e0AFJ5wJvXqHretFwhL4B4GN5/vwTdznstgaXb0A2Gp7W6p56MbQ1LSicxFYSSUH0QayFNdf09qA2K5aWQOKRGbWYlhtGgsrApg323ZmaViIe8+P3QXt6TZda0in2jQpY6WAqoFo3fVOE7bgQHUhtoefFaP2OZhg5z1t+oqv/mlQacO6L1U9cT+ElTinOy+grwIGbtHYqOyfng89a4phVShW5xX2W7YU8/ufa6lqHjDbSSUEI3d2qpIp7iyTyVjb2A2Xy2e7yufYdidrF9tqJDQuCyW9nFZNXYxZfS3m7oIxW9SuK9xxDsDm8hGM3AWyLpxCG8VTgUNGK9x0peyjm9i82HYngmN/ZBukrvxcaogGm8oDVscFLiAMuRHpao1QBddqYLnAx1tiYTV5EuaGv8hb78HGqnT3YNWNMC7HKM+KuIDrlcFyKZ0sbCEWVNuNItj7QJX/R7z6p21VWqqqqPSlKghjmXqohZJ256wV65aH45300NIUDXbU/QgLCdJV8PoLNrRk1lQxTs9157fKfQ9svnXUEK3VryAFH70Ls6bIfyo59AcE3zzQNl1taoKmZWH6jm4/n85AthXzzmva2zkBmzj8oVMnezvJcSgAm25RvB8JvQhSVoqfPU321YVDjnFz2cHOpblxZefSWz1gZU23xMBqoXIMLSGmqm1nX9uZtRRWtgnC8BE2783Byjz3ODx5v7z1Mmd/6O4WXA/1hJK4nLzyBi71PCuLlWTVKaotlATV7vsogzrF3r+018y0ojLafiufx9xytS4DPR0brpBzC7eLk0R1XNoAoAc77Eaw5/7F5Y1TXsXQqmorvf3z79qQPNdJVZWEVTXhgCPChg2qQF0IrQDz+gtw2P8R7D4aRuxo47RamkM4iJSnk6JJ2TLLN10ljURwcPiXuzfWU6aC4QDse5iTGiVgVbXlchKfefsVOOQYO5dt3VxaW6IS1crNRdurUA9XgZVfLNIvadTpq9quzRLW+AKspAlCayvm4TvhrZdw0tAvsTlk3RSwJMeqOkaykuJ7i4gW3OsUYQttgkoWsm+nioDKC1cQkLz5IuaaS8UDuNQZ1r9U50wKyeHOgxh3NwYIDj46VAM1rHSn56pqmD0dc8EZIok0OiN5i7KHhUFNUtRPVyANUhFgBT8dG6bF5LJh+EQ25/IOtTE7BdM+t0UZv/hYTuurzlv8OWFStJZkrBMmlwuBJbAJKiJqdvDjX1vJNXAtvESSynXYXCTfUNJtFnuwqo2xtbasSargWgksV1juIHrUhLCqq8XceQNM/0K8Mye6Bdfdk640rKTigobVYqX3+3XXv5KLbsaO6YcNT1hBUDn1T8NDQFU73y6aMPF7OjYsIIN1m2upSs5Xozs/1tj+tV1gwHoWLjrYsZDOY8MXzH/vh6sLpXtmuoXZlWjyb9add5j6RbRWeTptp2ViTr9USCiAIR/14E353EreL/xXq7lPAy+4+0PXxuqmbHRL7Fn5EpqbwwqiMlRbe1utQeUUFozzHTYXlHFdPIF1ysje4HkE10hYrVXAcpUFfgLYxp2VVTDtS8wd18GiWoAn3eKudRe7G2Gd7q5KUhAASfG9xWpbSjQi+CsRp1V4wt7YGt/tB5UYpTWodLv4fN43qtc5u0lDzLmCaE7aYvf+jQDYbKto9cuUCjmoqLC9CP/+e+n0LAt0hjLeV3jeWVvw8JP3u7BwnvUSSjKxb8vyoaVHEMDH79mshk8naCD/D5uE3LWg0oZwkOMWQC8AFvPZhB7UzrdzEYeFTvVKpcNrIPPQ8+mYuUgC82IPVqViA9dIWK1tEtbh4MrE1PS1hspom6ZT3CKQqGtZfBK2kIqB1RIFq2XEtItfnRfd5fuJRGXDE0aNJthh1+UHVZwaGFX/RCKd6M5VH/VE11JVkzpHUk7H2pqWLrG2plQqWt64ohKmfoH564WSiDwTW0c98DyNxvuOBmfT2ti89BTB6EMcJHJe3JNsbg8CsEX1Nrzg3lt0Pa1PsWEtj7vj6u/uCx8O4vnUkvdk4Gvm1ecI9jkolLA0nLU9S8+v4+ci50fUP18FXKPaxq3VwDJjx9QAR9OjBoZtaitbvvOK/PvX2AjgagUsEaflKR4oWMkNsFQ9meI8gastbMFJjycgkekQE55AeVCllffPzwWcOcX3/k1zi0dqKEl4RympSpeArsWGIBzJK89Yl/0GG4Zer6ZGzB3XwjOPaK/Xm4T5ml2J1hZr8r7jJWBjbrvahknssmdUutJQAJgzw5ZBfuRurWrJMb6GDRTOO5tQpXqgdSEsSeyrvRI0/AjwNe6+wUa577JnVB3UWwDMXqVz8YOYtQd7jenE1NYIgnHj1xZg1dKzxj1J63CSwc+x1S2r1MUXNVDbAAIFq2UerJbFiNKr3BPoDOknAMcDuwPQowb23JdgxE7LD6o4iWrWVMwDd2g71WxsMbt674meVkZdvVAWqae6bAKuXwD7A7D1DrYaaDojuYbyXe87e9V6hN2xK9X18NUc6Y69GTZ2DjbZCnYfTbDx5jBosK1jNnsGTPkMPngzrP5pRxO21M1b7nvluuJgUKW2OEA3KlumgGEHbGFH2GRLNZchX8Vc6hWotAq4yh6yZuyYVbu2PXV+rQCWO3F3AEe7X+/EFi5rdAugi4KUVgW1dNWkFuISpQL6ovQqhZWzT53l7FPWkD54GMEe+8HmW0Uj03VuWcFmUk6icr8vW2IN3WFsT52zHU1WoKpW6p9R50jOj86hrPVUEVk0Z2AjundUhzjXeQAfdZAaiK1MIMUQxcCubWK6Q3at+/vOTjXepo1TKg+hOudsqSdMTpdSKoEDQoU7ZoGDtg8t8zzFIsU0umt1HLDdVzwX/ZBt9u9b6Pi2cQmwVl7SSrkLmHEXvVqpgaVg1aJgpaWq5tXlCYxV+7YbRfC1naK5fpHIdFWcTrxvWqJqG1RZbCfhLxSoungLRZ8fneVfp2Al4Fqk7H1aYtiesL/fTCdRbeAcBv0J03nSRBvO1nugEglumZt7GhiJrTaxJTaqPnDzhTAUQktrcZU0nJiKqmVcsJ01KlvmIrUJHOS7qrCpP7s7iG5AWM5ldc1FvNctq8sptLqBtbbFYdWrJ5S0Jsl4Tyut2uTUzbCMaPXFVW5cd9LUCcA3ImrfzrvbdI8+/YoN6dqgW0r1i6TVVFhQPXyXD6ppTtLBSTjVhJHq/kLRcWh1nmRVrxbOUk8qNe46THDf19fBqsozHufdZ+RVl+vxgx4XuQeJcdf1fedVG4SNPB/i4NiHsMywRHEH7jsr3d8C5Wzx27VraXIR0bAWac/W6D4r99UHTtV92XlKh7h5ra65NFOcxLzG2qvWdi8h3tMppaAlv2uJIe+pgrLpJ9QqgZWSpvYuePti1T7PPhV4sT3pjOf5y0RDFZYtsQGzxaD61P0uqp+4yAPvvCyLMerqiqr1nhfVrwkeEIYmBOp6pDw1Z5n7XSq31nl2sVql9khmQaDU1ia1yZwl+Vd3345cUyXxtKhNP7wWe5LQEk/6blHrqEIBpsUzMayuueh95tcmUK3NwEKJ0ylPtJakZA2uJnVz+U+oDtP7lW1qD2xrq9Dbt9XI4rCEYAVAJbBatrgtUImHtFIB3XgGXV2RUgOqzrOZLPNsJtrAm/JPA8XpToGSVJYRrYkfF6Hd5Ek1ld6cFxOmVuUUJLJKtRWwNsfATsJZtONlifdAE3tTVt1frTES0eqey1opVa0rEpZeIEbZUwK1aFrUjdLs6f0r/YRykegnAIcWVD6wBfO237W0NOXH8Wi1L63qU2mJKlNhwxOiXr/lAZVv0F2sIKVB1aCe8I0lzp1Rao+JAZXYcAL3eYkpWqrsY/VE3fO6Iqbss8Wzr9UraVEAqH9vKQMGbcNc6tkzm2JsQzl1jCl1DpuUU6J6Nc4lvzaDam2XsIySquTmMMqomVM3WIsnTq+0cV2pfHsgxdnK2aaCIB5SWqIqeP1iJKoP37I2qjBkYDEw39mojFL9fFDlPNVjied50pDSpZ+1KhK7aMzYMfqhkfPsYYvc/5qIlu/RoRKLKc7ZFOkNJUHrZgp1SpppIhoRnvMkoEYF6GUxNsxlCihxcMjHPAC/0rms7bBaW4Gln+g+rPRCzSn1b6WfUg5ShzlIDS38Y9RoWyhvyLBoQGM5aUqrfQVjugZWBSxdgnn2MbjnZmmlBTauZz5hLl6XdoJqqed10qBa5NmpStpM9KJx0DKeNNuo7rkmwhgv7bKPCyvxpRr90Gl2+2xQ8GhU6pgOtvTNAE3qmLRZoMk7xiJ7kxyn85L5x/iVzGVdGGuzhJXXOr1SFfPqf3pb7otfElLlVL4421Sc2pfxQCWq4OefYF55Rpd6EVBNca9dndevqh2gWuZ5neqVcX1xDKi0+tee86avQ7OyaUmibgVRr622JzaVknyd9KYXvZbmdNG6KvUdxvO8NccAoVlJ3LnlgENnmksCrDVYwtK/+4sosrX34rcJqY02tVHopVQ+bUAvtGrKFMOqoiKUrpYuwbz7Ajx+r06fWYp1oX/ubuouClQVyuHgq2S+10lAtUiBapGSdJpi7FTtlUa1hOXHFTUqgOkF7EsTef+7lPSWU/vV+15GNEJcSzVZpV5qr552tkS+t9xxdqa5JMBas6Ur/XMQ83/TnhvApcgctsKQ0qBKp6Nt032Pn9SmEslqwjuYF56Ax+/RU5qFDb6c6a6fNCit9ECV94y72ovm26oaiLrMl5YwqK+IzSTvnXuZU4poeEPek6ba+i4NQ5Sa2OLOgwAiHSPtZb0t7jvNchxjZ5rLWj3Wqkh3Bxilf0VefYN8yZvAhSDspSDVc4UhpaWpTCbSJKEALS1NzZyGeeMF+O992ja1yKl7U93POn6qkjAA01c3moi62P1+dIs8iWop5UM8VkRt1nFxOj4uVUIqbrc04e07paCQivke37aZ98wGKyXBdKa5rOb1tmr3vzan5pQAV6wYH/P+0QpQIyL/3G4UwRbbLh+ktAFd6qWr9lMFaSqdgboFmLdehuefgI/e1t88E5vfN4MwJKHaUzH8ODNfotIFCBvUq25R7ktUrcthp1reh0jcg8T46vtyqOj+vlPqZz/EBV+6XpHvXBPmkgBr7QNaaSlKQhCGbAwbbmwN5ysCqUJIQjpU+cR4vnQJfPIh5tlHpYW6jBlOmprmYNElRppKx9inWjyJyq+U6qdzLPMkKj+8I88aFtvjPaSCMuobqxoKnWkuCbDWzBPbzwFqr1gpavgI2Ho7gmGbeXFSxBjOg/KQSqWjKl8mNJ5bSD0Gr0QgJS2svnQQkZCEKmWb8lNa4mJ5lsaof3HpHNrr53ui1jhQJWPdAVZmnQXU4GEwfJvSUhQoOMUASje3LAWpdAYWzse88yp88JYPqQasAX26g5VAaoBS+TJEvX1ZT+1rJprCsUTBSUPKV/v8nL8EVMlYI8baVNN9U2z6y46xgOpRA9vuQLDhJrD+kPJSVFDcqikiSQWpqLrnQ+qLSZgJb8Nbr0hnaQ2pmU7dm63sUgMdoHyVT9umfPtUHKj8nDMtTelI6dY1WfVLRgKsNQ1OGQelHdzrSHS4wYoAqtCEM4iRolJRSaoAKgeppUtsI4FJE+C+m/3pznGS1KcOIgKp9RSkfJVPS1O+2rdMSUxLvE1LUrp6QjPRcjkJqJKRAGsVAmpHBaaRRdKTVvEGrL8cgCoDqSDGwyeQymZhxhTMhHfhnVdh4rv+bKZii+JNd6CoVpCq9CQpXVEiW0KaalTS1LIYQGlINSpIaY9fFi/6PwFVMhJgdYzkNLIsnAC2GwXrDyYYvBH06e+FGywnoHQun2+XEkhN/hQz+VOY8Da89qw/mzqn5k3G5vKhIFWjAFURAymRdlpLSFPLPBVviSdl6eTZlhhpKomUTkYCrA6A0zBgEwWojUrCafgI2HQLgv6DoG//eOlJfm83oHTCsQeobCvMnOoA9Q68/pw/oyasR28aNoeviTD8oDfREIRMGUhpaaopBlS+FKVtUjpuqoVoPao80VIv60w2fzISYHUkmDbCtjDfveQHRHJaHjiB6wnnhR6UA5QG1cJ5MH8OZvIkmPxpHKBw0tNErNG8TgGqi4JURQlImRKQ0vWQ/DpIyzxI6VpIOhzBz+L3q1gmoEpGAqwSqlxvJS2VB9PgYdB/EAzbjKD/etC954rBKRIbVaKulAbUsiUwfwZm7iz45EN45uG42TU6G9SXzg4lzUFlG0Q0RkoAJd49bZPSOWN+Zn6jB6lGzx61TNmxmmNUPr1/XZkiUfuSsW4Dy3WkGQlsCAxzUNrI/a1nu8DUszf06OmVA6YD4OTek05HE41nTYfFDZjZ02HaZHj20VKznO4kpynYNlR1hNHl1dhuLAInreqliKZfaBXMh1SLp8oto9hYrv8fJ0n5KTOJNJWMdWpI54491N9GOkmpt/p5RJt72m4UdOkKAzewYOrZC9Zbv20wFUGqnXDSNaVqF8CSBsycWTBzKsydBW+/VGqmC5ztaRbWmzfNQahavWrpyc+21zFSBZ4TLQqoy6Q0eZBqC1DN7YRUksWfjK98fBWR7h8gDTvLjR41sOmW0Kcv9OoTQqlPP1umNyiROtUeMMVtPpyyrbBgPiyuxzTUwcxpMG8WvP1yuVlPxHrtZmADNacRdtUVQA0iDDWoiLFD+QZzbY/yIeXbpRpjNg0wP/xAG85by0hSicqXjHVWJdyS7UaFf1l/MFR1Iaiqhv7r2ZSVmr6lJaU4KEX+1gaYBE5LF8PixdDSjJk3C5qaYPqX9u/vvtrWcXzpwDTVwanOqXYiKUkfvHJw0oZyreZJEKeWorIUhyH4oGqKkZ7iAjlb1L78eKl8ovIlIxkaWAcdSTBip/g4pnYBiXgoLV0CSxaFu5o/F9PcZP9XtxAWunClaH5dubEUawifp9S6WqfaVXo2pips512xN2njuBS5KwUoiNYl8oustXiSkQ+kRu9/LTGQavUglUsglYxktM+GFV0MPWtgs62UrSkGXvrnubNg6mcdMZc5Tm0TMC0jjHGariSiyjZeM21ITilPxdN2KL/We9azJTV7kpIvNWkjeTlAxUlRCaSSkdiw2rBhBcBt+KV/O2ZIKV/5nknYQMjAwWmeA8kEwg7BGU9Vq4jZyqlzcXYn3fVZA9qvcOnn7vnqXkuM3ck3kLeUgFNbql6kCmoykpGM0sCCaEXEvljvoJZE4l5lEzBpKSbtASTj/U1v4oHzwZQp8Zry9hen1sVJT6UkqFaKexS2xADJjyjXUMt6+/KDOLXRPJ8AKhnJWHFgBZ4kkvJg4MMmpSBR6j3+z77nraKM+uZLTf53+SDV4PVLz+Y9OMUZzFtjYOVHkfsG8lwJCUpsX4kUlYxkrAJgZWLgpWHjQ8WXmkr9LVNCkopT4XxpKQ5KfopLLsb2pDffUN5aAlRxP2fbUOtKxUQVNRBIAJWMZHTsyHiw0hKWthllYtS1UjCqKKH+pcuAyYdSvsRCN97/czEqXq4EdEoZv1u915wHJh9QpoSKlwAqGclYTcDCs1EJbMTA7Ud+l1LlUm1ITHiLPChhdzIx7/UlqFwJuMSBKFfGxlQKTPmYLQFUMpLRSSQsGb7UU05dCzywQBhkKWCJM9rH2Z1MjASlAVUKVrkSEIpT30pt+RJgNIkNKhnJ6HzA0otRL/p0jGSk/1dOtSu1UUKSMiWkmjzFHrdy4Cn1tzhvXZzUFNfaPhnJSEYnA5Ys3JSCUuCBqpVoIGa5kAIfUEEMCErFRJWSrNr7v0gp4DISUyI5JSMZa6gNy8SoclrqyijJKk7NK9XVlxgoxKl+5aQs08bfaENaMiXmkYxkJGMNl7A0bAReaSddpSnfgrs9kIrb8m38TBswMjFSWwKmZCRjLRtxke5+JLvYsNoDKUrAoy2gtAWgchJSAqVkJGMtHaUCRzUItN2KEoAqJ1GtzM+mzD6TkYxkJCphm9CgjDRVFo7J6U1GMpLRoSqhL3IlIxnJSEZnHankFCQjGclIgJWMZCQjGQmwkpGMZCTASkYykpGMBFjJSEYykpEAKxnJSEYCrGQkIxnJSICVjGQkIxkJsJKRjGQkwEpGMpKRjARYyUhGMpKRACsZyUhGAqxkJCMZyUiAlYxkJCMZCbCSkYxkJMBKRjKSkYyvcPz/ACZjXdcxg6j1AAAAAElFTkSuQmCC'
rtb_banner = b'iVBORw0KGgoAAAANSUhEUgAAAkgAAABOCAYAAADb2OmbAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAHxfSURBVHja7H13mFzVkf25PVFxRppRzllIQgkJhEAiiRwNJhhsEMZ5nUH2rtf+rcOya6/A2AYbAwZJ5JwRUSQlJCShnIVy1kiTY3ff3x9V1a/e7fe6e4QkUt/ve1/39Mx0v37v1r2nTp2qMtZaZEd2ZEd2ZEd2ZEd2ZIc3TPYSpBztAIxUP0cATAj4u2Ln7zId5QCWOq9VOK/NBhDN3orsyI7syI7syI4jN9IRRF9GgCSgR4MdDXB6A+j1GTzvrQC2OMfWLIDKDgBn8VyeDWBW9nJkR3YAAPoAKApwQo/2GMn7jIxevK80d8gaDwCHPoXv8aUHSLlm6rQv1heecqMAIJmU+mge8ClqDwwY6n+t76BklFnYAijt1PyTbWyA3bfb/1pDPbBzq/fzotnayHoBOC0EPC3lDfI9M3XaouzU/4Ib9pQbcwH8F4Ojk9WvXjVTp12QvUKfqfs0AcBSM3XaoS/od+zjAICRDEwAIAfJrHsOgFOd15YCWAZgtpk67f5PcC6lAH4C4HT1GfPN1Gnjj9C+oh1r2VeCvs/RGhJh2KKuV3a9P0rDfB4BUgAIkucjmwV6GOyYwkKgtDO91qYt0LqtvkJBVy3samb+t34Ym/616kqgsgKoqoCtOASUHwTK9mkA5RrRbADPf5LFJjs+k3O/PwOjCQnAP2QUMOwE4IN3gG2bAKCvmTptc/Zqfar36FIAlzkb52Nm6rRrP4Pn6zIeGuDIz8Xq5+Y7m80b32ruuqXs4iwAXQAAPfvRWr76IwCYZKZOm5XBdShh2ypW12Fks85+yCigZWvv55IOtO80GwodBMr20/PaavkeCHGQZb1/JmuBzZo3KX+f+zkBQhoAucYbDIB4UpqiYqBNcXrgo3+W50GvZQJ6zCeMXAYBpuL2QBGtYUb/zbXfAaoqgAP7YLdvBtavAlYvKQJwEYCL7JQbbwKFXX5npk7LhuI+/8DoCgAtAABjJsBMPAfo0h04eAD29efkz8uTo+fZZIxjwBTdAGByEpswZgKwYRVQcfBrdsqNfz7SHv9hAJzUa2hzR89+QMeu3s/degIFLbzlsHvv5P/p0t3/88H9tIbdNxUEUMz9mczdQLuYeB7MmFOALt1hP5wrwGICYGbR/0weCQq/jcjYuQ5yrGVvCfo+h+sspxuNDcCBfeQo79sFrF8NrF4i0YWv2yk3zgHwlyxQ+oIxSGzkIwH0YwQfbsQuCOrYGWhTBLTvkB7QGJMMgMLAUrpHD67QaGoEDuwN/l3qb+//sXURATr9Oxvw6L4mzxvqgY/Xw85+E1i9RH6zBsD9Zur027Ob5eccGJ17Ocy40z3Av3sH7P13ABVlxFLc/uC1SXMiC5KO9v3xGL2i9sC402EGDAF69QNgYOe8BbzwMAD83Eydfof3/5PTJYIEhaiOLMBxGQ8X4HTsAuQXeL/PhGWX1xsbPBakqpzYbxjg43X02rqVMm/9DNJtM+5PdhZt8+xixWLYB++Uf/krgBOQKhQm16HvII4qdAIKCsP3lXR7Q3Oc6sN1oq2l6MKmdbBvvwJs2yh/cZeZOv1HWbv/ZAzSpwKQFBgamXLSChDq1hOmqB1N2JKOfmNNBWJSTVr5/e4dHpbZtwe2vs4DNhvXOFcLwNy3jv1dPGUSPZZ2AtqV0LVo2w7o2sO/+dmAY/d22LdnAgvfk3d7zEydfm2WWfhcMBJ3ALgpdAMwBtiwCvae/0vcWwDXqdmauLlm6nSbvd/HgNEbdRIwcKi3hhgDrF8Fe2/iHi3F4WW8HjmAU9IheA1Nx3jon3fvoK/YoHSUEvYHiMkuP9Ccb7EUoqn580P3BzqCsJnZRVMj7PtvAK89HXK9RtNa2rkbXZs2bdM714frWAeCpAyud6B4OMRJ1tdo6ULYaX/x1vrbZlybdZA+wwCJBXwjAYyGXziXbOQ9+hAj1L1XZkAobCLWVAFVlX4R9K7tQG0Nzc15Ry3RpxrAumbSR0FUUldIHD3d6Hsc0H8w0LUnzEBm1awF4nEPNMXjwMfrYKfdKYvWf5vbH/yNu/hkx2fGaP/AG+9xocDIGNi3XgJefUr+7VYAv2MGQuZeXB2WQFL2Podcc5fJ0SxNsfM7vy4l6P7wo100F3jsnvAPLioBBgxxbNqfCJIUojoSACfof/aws9jQQOEbGD/o2bMT2LqhuZe2goEPQFoZyUCZy4vOMv4bdx20eu7y8XMGRuF2UVMF++Q0YNViem3YGGDQUJii9kDHzkDn7smgIhMwtHs7XQ9jgP27Yevr6XlDPbB9swLER2B/6Xcc0KWH5xS3LyWnuKgd0K2Xt65rkKTX+/17YP/ye1nrx5rbH1yUXes/IwDJTrlxDIgSHg1NOweAIdOpK00AmQyZAiGerHb7ZpqQG9fS62tXAIf2N/eUF7ERGgY31fw8ogw7R208q3mGyWvuYdSjyRAoWbUQxJ3D8IIQB9ABQEcAnRhAjQg0rhMnwow9lTyjeNwzoJ1bYW+9GaBw23Dz54eiid9nDeezYKw3QWtYxkyAOfsSz7uV+V9bDfvE/cDKxQBQB+BnAB4BaQpzFDiKAmgCEAMQM1Onx7/I9zgNyHFDVc0X37ojBLjCGCASAfbsgN2+BaZnX+9/CgroftoQxjcVgEkHcNzfV1eSPhEAKsthyw95m31tLT1ft6K5TI+MeTyvygEs53VqGwBGEljBwMddC8NoFOuA+hjP3yhI7P6jtHaxdyfsyiVAcQlMr37EpLmsTNC13r2dfr1tM/39prUeINyy/shP1P5DgOEnEtDdsUU7OZmNUeOBoSNh+gwgMK1Bko0D8TiF2568Xxyn35g7HraJtd7a7Fp/rAASA6LTmB2aADc23rMf0HsA0Lk7MUOZgKGmRhLtiVHv3gHU1VCWTmZjBx9VDAYiADYAqOGFcgX/XW7AkZPiiAQ8DwNI2pMfCi/zozN7Ua8B2BngLcniEPSzLBp68SgB0BPAMABDQBouoKQTzDd/Ahw3wjOeeAx2xl3i4UwC8DYAmNsftFnD+VSN9CwAPwUJ64Ge/WC+OtmzFb3pbtukmcAF/H+bABQAyOd5F2dgVM9HI4CmzwtAaiabMxJHQo/jlvRQYaqkMh4Cctx1S+6RPEYigIn4nbzEBh1nm4wHawmDAJDW8zTUEztuABxyWJ7D39Tn89pSwWukYcAjoGeHem5SAB+T5m+CgJFeAwXYnwzgewDOJ7voD3PJ11jX5diF77rneD/LfrJvD1BxEPZQGbBjK2WFzX+7OddmgXJYVytHugbAemcv2ALgGgBjeO0HSjoDZ14Ac8pZQIfOCX2W/Z8pwPqVAPB9AHwT0ZEPy48d+OjMa7w3BgyD+cG/0/y0FojHaE5t+xj2tz8CKLvtLLm22bW+eQAp9zDesD8DossCAdGQUcCAIRTb7dozWMwnE/fgAaC6kujc3TsoBLbg3UxO4wO+4R/yXV7Mk3UDe9S5APJCHnMB9Ah4TQOk3AyBkAnxkAwv5CNA4bJS5/x7AfgugMfZKMIYJJvidxok7eaF60UA3QGcjbK94+3UX8H842m6B+Jd9OovAGksgDkAovbm68lwEstV1nCOkXGWgvQUX5dN2lz1TWDgsOQNoKkRdt77wDPT5d+fBvALvlkdQHqMPP5dE9sB1Dwxn9J31DVyihXr6TI6nxzopAA5gBOqEpCTCpAEvZ6K4ZaNWjboSA6Qk5MMkAQYxWPEIPCGZbd9TH9TX0evAyQXWP7h4V6R7czqwAE6q9l5BD+vDGC/w9a10hAmyM1cCQJNYYyRXufa8P4yFsDldF9LYC67Fjh+jP8+aFCUkwNEo8D+vRRiqjgEbPsYWL0UKNubCTCMMwiyHFUwvK7uSeFIu8+7A7gawHBI1uCYCTDnXgYMGgYUtoAXptsD+9ffCzhay9+7jTonsd9t7FDr9b8bO8IjsWFlX/vovTBT/tsXLbA75bZjMYCW4iTxWh8ngGSya32akZvBApcLqulxOlOcIwMBUY8+lOqYX5i8gFRXAmX7YffvISB0YC+wMmWmayXTtuKxrGWkvoQNV8CNPnJ5UnZwXnP/Rl4LA0JBwCeSYiGA83M/AIOhQ4sDj4e5+Gpi0jp2hn3tOYCEdN2U16DfX39emFrPPQQ0RQC0ks9F+1JFv1rgwznyHsvZcBrYcGKe4WTHMQAOfwDpKUhrdtW3YEaMIftxGYmDB2CfexhYkdgofwvgQQCt1VHI8zcKgOMnqHfm0pFkdnS21ZEFO81hczLR4zRHi5NJ5pELjiJ8iXNygJpqoLqKXtvPSR+RCOlUaqrIBlcsAcr2HM6VqQSwku9nJYBV/PpOPgyAXfw8jNF2j0IG15EMmJ90YTIErI3uo8sYWQYG5wEYxQDaU5x/7bsww8ck3+NIBFi/kvaUHdtYXrEv7FxqAXzM12YbX8MydrRjPH/DHOruKZxpObow+zsy4aRc/DWY084Fevb1QJEcC2fDPvBXYP8uMNs0lz8HKdZ8eb0YwEkQHdZJp8Pc+GMgL99jJ/fsBJ57WP5nDagERDWDrkZ78/Uwt83IrvWHC5BUobPTk1iinv2A40ZQXL13/2RAtGcnLQyV5VQR2sueChrL1YQV2lLy0jWwyefHzup5JocbMgtjgbQRu3mlAjysY9z6uWE6dSCzUx6lOv5MolRl7NoOvPQ4lPd2IMV7Q21GQV6d/jmXAexwACUo7QLz41+TFytb2IL3gI2rwNd7LxtOpTIca26bYbMs0lEFRlcAuBlS/XrieTBnXODXsaiQgf1wNvDw3fLviwD8nhfVbmyXbXiDy1XgqEnNZfE6w85nJM+DMMDzybQ6ukZOy1Ykkg1idI4k0En1d5n8b6rMIxcc7doO+8KjwNIPDvcKLeH7ZpkRj/M6uJY/tIpDOJkAHnmta4ZsULqwWBD7kwrwhDlvLgsu6+kFIK3qJN8VOeNCmOOGU4i5dVsv9KhCZvblZ4C3X3avZTWAjexUV7LzuZ+d6wZ+rOS/a1BsWG6Ge4m7pwwEMB6Ap6q/+lswZ10EtC1OnneNDbBPPgA8nwAvGwG8x/enLYI1qHKtu/Pn9Ens2z/6fzCnnEnOg7Bp89+lkh8HdgPAQl7nu/A+I2uCtbfcYL3M1uxIC5BYS3RDIEs0ZgLMkBGkoNe09J6dwIG9sHt3kYckmQPJYxtI8LyCQYGwQkETs1SBoPwAkOQ+z00BhIJi31aFHVxPRn4XD3geDzhKAIxjIycmoN8QmPMvB4aNphoaABBtosdN62D/8b9C+c5j4wjyGmzAwhVBsg4qlzewMwD0T4QyTr8A5ppvUXFJof5XLIK9/dfy/nMYyBXw+yHxnYyJZT2LowKMxoDSwi8S5tWcd3mwzigSAWqqYR+/T4dXZgC4jT3IXvzYlsGRMEfVfB8beQMQzUIXAD3slMlSef7wQI/L7KhsqyMGdo4E0Al73LXd+3nvbmJ3DICd2yi8DwCtWgPdesGMGc/2G6Azks3uwznAv253z2gvb0a58MLn+aBeWnXM6q3nNbCc71kjrzVB4CfCtpop4EnFgAeBnjDA44a/0oGeIL1kqsc/ADgXAFBcCowaBzNyLMky8guS9Vhy3bdugp32N0nG2QvgXnYY9qj9ox3P8UJeo9swOMpnWylgJ8Iq9kjvK7lpnOt+vO4PBEBdGM64AObMCwkYAUAs5rfp5Yth75kK7N8NPpf3eF/MU8AlJqEwPopAGqaePobp6m/DnH0x2WOEl++9u2Cfng68kSgWuwnAOwD68vc18GtYY9lVOQOAxFT/BOgeX8ISDRjihc2qK4GD+2HXLKMF5cP3w95zLntF25mpWBjACOWBxGfuxNSP+QFsUW7IhHUBkAt+tPHGnOdBr8VDDvldZ1C9mVN58gGnTIKZcLY/RTfKjnxjI+yLjwKvPyu/eZPDJAhZjOAsZPq7yvc/DcAp0I0R+w2B+dq3KEsiJ4eMtLEB9ukZwIuPynu+DeAgb7K58IsiSY+U9SyOJDCSui0/FJBhLlV6iiCh6crFsE/NkE1gMYB/sEPRixf8Yl70GYGjge2pKwOgksTinW7oGjpBgCcTrU5zwc4nBTqNXJBVft63B7aeo4rlB0mHYkChrmULMr9Z132fbLhAwpwRPzCSz9u0Fvbhu0U/AgAPgWpQtWFbbM/3oB2DWIW00MgbXxQU4q5Vm3WmbHEEqfU9YeGZTFgepFkvMwE/Qckm+nlrAOeiuBTm2m97jqSAI3c+RCJAtAl2/ruSmQUAb4EytBr4WndkcFTC11fChk18ja0CoYXqu2pn05VZGMep7s1rPoW3SjoBX/kGZQwnnOGo36YrDhFr9M4rOmrwEp93Ie9xAl7EqRnOn+WBov5DiFkbMZbS/fmaoKaKMtYeTZSSqAJpcXfxeiFzr4GvQx0/NzDGZp3h9AzSrxOgaNQ4mCEjaUE8uB/YuQ12+WJgywZdoVOPOQyGljM7tArJcdyiFAyQC4RcBJ/rgAM4aLvJAUGxAJR8OEdYNll3AD8AcE5ic7roGpq0XXv42SKwgWzeAHvf7cDBfWCP8gEA0+GlYwug0+ccBpIu5M8eyyEWGpMuhTn5DKB7L/rMGDH2dvY7wLMPAgf2iNfyEUh42Jmvc5yNpkrR0Nl2JEcOHN0MXbfl0utgTpwQrDOKRIDaGtgXH9N1VF5h1qgFe4ICjlo59+86kO7NP3oNADp2IXsuake1VNoUpQc9zQE8zQE7YUBHXqsoh6046P28frW3Ra1ZLjb0ScYSeJlI7TlcAXz1RgpzFrXzC64TQmC+P5XlsI/cA7z1grzfMnZ2NvE9bsPrXVFA+DPOm5PYcw48DWDMCYOGqWdtCOixAUx4PAX7nQrgpANFYWtjOqdSn893ANSj/EChffQ+4IIrYE6cmDxvxC5276Dr/vFa+e2fADzL97CbAkbFCpDmqLVUAFA+PJ1mPIC1jzp7ipz7IA4DEuvaviNw2XUwJ5xCtgTQmqttuqmJamDd8yd5/50AXmXCoCXbcA6zgx15b+mlnB4q2XL8CTAjT6Lojbx3tIlCu0sXAE89kHDH2Ylao65DAZ9/DbOaLRWLZrIrdCYA6dzLYYaOohmyYyvs3FnAsg+Dyr9Lx/g5/DifJ5IWPrdDsHYoP8VzTWe6jJCOV7vZW7EQQBT0PB1gcg3ZpY97A5gC4OLEBL7gKor/inYk6hhITTXsmy/qxfRNAP/J7I2mVaO8SNYrgCL0p7RduYTZIi8lcNgY2mz7D6ZNT4BRfROBspceBzYlKoEvB/Vja833KJ+/V5VaxPOyRnPEgNFZIJ0RpScH1W3RjFFODoUO/vUXEZpuAnAP21kX3gDaq5BahJmIOrabweg7GBhzKkzPPsQItS+Fv+5JCHjJBPQEvd7U6KWcy8sVFQxwVNG8DU41+nlHpBK91uiAQ1Y1/PMedkQiDB43K2ZgAkhbSYD1jAthLvgqC2nhMUY6RT8Soc1u3izAC1EfYIdwCdvN8bwZFfD9KVTsQI7DyghLlK/Co7EUACeeBvDEMmDHY81gd9I5iWGHzeDniwH8GCQyBs77Ksz4M2j9CgJGkRzYBe8B0/4qv30fwL/4HvdRdlHMa1tLvh8Rta7W8Hyp5vlQD1UbLA1A7AjgawDOBAC06wBccg3MCeM9pssHjPi8Vy+FfeBvWoj/JocCu4O0h/0YDCXXCBx1MjDyJJj+x3kJNuJ4NzUCq5fBfvCu1rw1gLLv3uJ9tCtfh0K+FgVqLubiCCZtfDkA0pplsF7oRw8BQ+/x863wpza2cJiiVGGy/JAwmaYxow5yDzqiCK4FFEvxGBY2iyG4Wqs++jLD9hVIWfvzvgpz8ukEjIzxYs2RCE1mY2AXvg+89KSOk98D0pC0UADF8DnWqe9exLHtCQjMGBwNM/YUCoW0KfIMMx6n5oWrlwGvPKWLZS4GZTvthleHycKv/coNoPOzvOvhAaPWAO6GpO337Md1W/oHh9MY1NoXngTefF7e5lUAd7GH2R+epqK1Yo3qQGLTAwnA3rotkJ8Pu2s7TI/ewK5tfiWbA3Tsts3Oa/BCVGVOsdXDK8CayaiCv/L8bj6EMV2hAMVm3uDCapNFQp73B+mwzoDUpBk4HOaGH/jLKSTq5kT8KfrrV8Lee7vWV0pSiWWgFaRxlFBao3KCGnlzroOnRWp01ql4CscvlVOXCRMUtO5lIidIxURZpNcpWQYEtyOhvxsNc/4VJN8wJrFuUsArh679oTKqiL10vlzXaRzGbM/3tL1iUwsU0GyAV+aiVoGjmgAnNOzoAuDboPpBhIS+8W8wo8d5wCgeSwbVu7bCPv8I8NF8Deg2gzSqMxi4+McZFwI9+lJhy87dgVyWRtg4ga+GenJ41ywDZr2k/3MxA6PX+Pt1YjatLX9XYS3r1TWJ+pizbHgtA4C0bRPgiYVncxhmDjMdWvPSKiB8lg4UueyQBkONIWAomsFjNAQIpTL6dEYMc9sMyt+65YbUjRDFqIWKl8V17y7Yl54AlovsCi8A+F+enN15k9OUexc+enHceajv7kjTy559qUSAjs/L52/dBLtsoY5xyyb7OqguUgc2HKGPRRBarxbxKII1UNlxuOG0oLR9PVdyc4Etm2D/9WcJHe0H8CR7gt34vpUo1sjwvaph29yn2JKlWL5wpMy7Y3QDq0B6Cq2F2aUAjhzLFciJcBheAFAukhMPwkBP5wzAUcRZa0qYeSW76tAF5oYfASdN9LNikqYv9XQiOUB1Oez0u4CZiSrHh/ge1cITTcdDwI/oPBqdo0EdTYrJyJThTrfOZaoNSgd2Mlkvk9bNoA3XTpn8B2ZTWyTp71zGKDcXyMmFXfA+8ECin+8qBkZbONQlAuzW8MTHUZ6PtQoMyeHej2iKCIRlhuvbGUUKIhH6l5oq2OceAea+Kee8i5mciXzQGDwCGD0OpltvoHNX0lzFYsQO6ceGOmDjWgJF/ky9ClByz+MA3mDAJbq3uGLNJFmjCVTOoIz/t1at/9l1PiOARCzJFmcRE6W/W//BDZ+FCal1qEw25kyZoUyAkGv4QfS034Bt+pC+veUGKdwX3iE6aLOrraG+WF44bQmAv7Nxt+UJfIICQ935uvtHcSkwYixM7/5kPK5ORI6tm2A3rALmvaPbBOwG8C4vJh+w8bRlYKup/Bq+Pod4o61StHM8axJHIJx24ZWhafvIzaXw61sv6YyTOQDuY5sZwOCoHTytUYwXN9mk9/Kxj+/hOQBOZPbRMPsYVLhPc0W6MrBmEAXkaNChq9DnhICanDRgR44+zs+5GQCkVBlcQYLlCKjsxkhIpu6//SfMuNMoJVrCjq4uKhKhpIZZLwN/v1WuXR1f9xq2I6nRI2xFrdqYD/JRrkI67sacyrGLpQmZZRLysimeBwKcUNCTkmFQv7PxMLv4A6ScxbmXw0w8J9hhyMkBcnKB8oPEGn00Tzt6zzJTdByvZwKMRIAtqfsH+T5VOOE0nRWWaj/5D5YyUKbC+Vf6IwXxeHJR0KYm2HdmAi884n79rijtAow/E+jVD6b/YKBTV3JwdZHQGB/xOLBvN7B1I+yyRcD8WS4omgvgZXZ6q/j7t+H1oY1yvHP4e1YowHiAbXo/vyaat+zIBCCZqdM32ymTdRp5bgBDFJZt5gIiq2jleAa0cTQEFKWKnbsgKMSYUxuwY8y5zBh5hfsyAUaxKOxHC4GXnhDtyD4Az/NkPBvALUx9tg/84JHjgJ59qSddlx7JuhG9eAeDIrBH8QqzD9Xs+XRgo2kLT7uSz/emQhnOHvYuqhWj91kDHxN4oyvmMGExh3zLAcw2U6fd/rkJp+XkAssXUVYLsUYHeAN4D157AWGNdIaahNP28j2TVHLZiBt48XwV/pIQqeq4BFWNzwl5rZjPK+j3zW3Pk2n/wqD6OymMPLEuHMfzhWzuqpv86dfRJv+9icu9ArBsIeydtwJ7d8h77mGw2FqFcozacOv4Huxn29egtUoxF5mKn2MZMDyhjuDhsjxBzmK6NTOFXZQC+BtIuxNczsJnExRSsvPeBB79p7zNOgAzeW0awoxRK4cxquW17ABf//183SvhJZw0hewpOtR4A4DrmWkExk6EmXguhf/09XKqdtsF79O6f3Af0H8oVcru2ddrp9WuxAu/JbX2sFQtfctG2BWLgaULgU2rwy5pEUcX2oP6NEqP0AgDwkr+7iL8r1dhNbk+Ug+qkn+XZZAyHHohylGLqPR1KlDP8wJCZjJSUb2ZaoeChNKJ1NPk1HN7pDY6f+f0oMJ9QaLadatgX35CZ1bsToCroHHmxUCHTjBdelDhyC7dKcYcjdJjLOYZpCXaFpvWwW7Z4IbPNCh6HVRtXMShcrSCV2FZPA3RPTWoRX0vP5bzotL4WejXxffkrIT3mXrMN1Onjf/Mh9Nqa2CffxSY84a8zSxQg9kWDKJLFWskbF81L4L74LU92Kc2glr4s6B06ErsVwTDBQjWA2baRiEIDAWFuMJq+TSnCnPYhp+KJekJXZtm4vnU4kHKFQRlp4nWaNc22Mfu070et4EqL+fwPZGSCkaxFuVq89kdAFx1VmgY8DmcsBYOi+U5dnZLTmZRe3Iyx56a2mHYuwv24X9qgPAGH13Y0StyGHABRmXKYdjH170CntYoqqQDcQU0hGEV0T6Vt+nZn/sfdk+97sdiwOYNNG9KOlBfOA4NJsKz8veJ3ZFZo/pa4OP1sBtWSyeFIz0+5rm7GqRR2sbrR7laLxrxJWhc3Yw5mxFA0h5nYcCi6qrfLcLTRzPRE4WFx44aEAq4MMmd0yeeE164Twxkz07Yt2fqeLN/TLqU6NSSjjD9BgNti0hQHY8xGIp5wEho1niMPIqd22C3bgIWzwtqODmPvarXQSmj+c69asFhNXmU1+XeiSC8ko2mzNloxXDsp2U4dsqN3ZkJO1m8Tww7AaZjZ6Kn2xTRY9l+CoW8/TKw+iMA+G8zdfpvjvamkFTsMVU4TetZli+CfeIB4OBecDj7CVAV3U7MGgnLV8BfoJ4X+/28AcixX7FGdRIWNVOnx5kF1lWBZR604seWyqYLkL7YqgZBxnkeyQD0pGtMmqrgYBADHQ9hl1uCGoMSSG7fkVovDBkZHJ5O9EmLALXVbg2Zbcxe7IGXIeWCo2oV6tzjANcDKsSjw9bxDEJbzWd5PqthZu1kBpWzENZo/rvAY4lrv5DXt0aQBq8Tg1O59vXMymlQuptBUhkDo+E8J8YxIBqBdEVRe/aDOfcrwf0PjaNLEyCUm0fPc/m5/E4E/okLY70emAnhdUyt+27DYhu8RVdVAlXl3ttu3kBPDu4H9u8BVn0U1m9uLUhu8RA/NmXBUfMAkm414uoAdBp6LMSTiyPzzAuflxQOhOzRviB+YJSqc7oGRlo30n8ocPoFQJ8BMCUdyUstLmFa1QQbhw6dWQtUVQB7d9JkX7NcC7v1Yj0fXu2MasUKdHbAkQAk2fxks7PwRKE1vMCU8yJe6Wy0nyo44nE3gJOTaHnNABhDvbmMgWlxFSwBpAmJLEIoAfsR/C7sHVOed1F7mG/8IH04rfwg7FPTdFbLuwAe5UV7EG/CxbzJ56gNuCxgEziowqPCTLhFPV2QVAhPyNlKzZF8hNcaCyq14Ya3ghqPBjUfTbVmpEo1T8VG62MyqF1FCQDghh95KdhNjf70a7FjyTSd/Sbw9HSpbNwIyjhawqxFKbOv+Xzucs2r1L3Zo1ij/SrcocM7cXPbjHg46DkyYa1PcXNJDjMHraXSsFe0Rts2wd5zuzgMYKdoFgOjvuw0FMMr6FirmFTLc3scOxUd4OmTwoeuAs8FUU333l7V92YBozwgL49ZI2GOIv61X5fXiFugshw4VEbgKM4moprL0jm280LBerQvoUOMr2df//4iz7d/TA78hjXAknnAoQODQfXRJoN0TM8D+MvnbqJ9iiPXCZMJwGlUHlvEWfjSLVoxd5H0L+LHDAhJF3FprzCSF9JTm+051NUAFYdgTjsPuOGHilLN9f5OGhKKJyCT3lqiVnfvgN20jjpMr18VFHOuZJZoHkhAu8YJd3ZRIZMC57kwAfpeSSy6VoEjAUUCjJyN9lP3KiYAgLnuu/4ef740bF6EqithX31G/m92YvPT1/0IVCxg7/i3iXkTVOzRDafFYlQkzsvEWQ1Kx93Cc7EDsxOyCUvqvrBGuxUzIZuvD8x6dpX2+1nHtkUrKIVWIxmEvjLNaIqHsELNKVaYLt08BtL3TQYJsYEzL4KZdAnQRjKNmpyUfQCGN+mP18E+dq+ugr2AwZFkypUo1siy7Wi9yz6H0StToR19f8imvqB7ETuaN/vDzGOTwYbLGj3/iO4o8AFIKlDHodFO6vq3UiBf1ruOKU9q7ESy+76DvKbGqYqiBjUdFiAnZR5yGQjl5lJrLcm027yBv5sBtmwilkdMZeaTR+5Cl3YBjh9Nz1u2ToSMTa9+dK1LO3pgrGtPoHN3mOFjga9cB+zfC7tyMbBoHrB1wykgndU37ZQbf2OmTn8myyKlH64GSXc11pS6RerCZPHUYOiogR/dYHMkPCFvr2ZTqtpAcnODDUR7DfI3kYg/8HiojLqvb1hFFcjXLAfWLQ86kx3wWrEs4E00qFRCgRMW0eGRHAcU6ZRjAUZSKE2nvTYexkZ7LBbdlwBcZK7/ETB8TDIwikTIQ1q+CHjpMb3BTXQ3Zr8+wx7u+dwJaRES5B27wCiSQ5qKh+7WAPgVULmFzvDaIbip+8JM7IVfz6I33zRg1sBOmRxxQmw67FrohNPCehWmCoWFaWbiaUJlqfoZxlO8h/s5I0AFW88DAPQaAHPNTf574rs3OR5rcaiMNIPvvarDD28yo9pRsXlSzsSqsI4uq7BXhdPK4Rdjf5acjaNlo/1Bmb6Zh5lzcoF1K2Ef/LuEgsrYLhawXXRmpqMbA6RWCGmkjhEnUdPjvoNgiorpc9uVUjf7wB1OzYmmRg/ABQGknBzKTPtoAbB7O1BHji02rDwSl+4gvMbk7t4rh9R2at449RygRx+YXn0JJOXmEUmkoxabN8DOe1s3j3/MTJ1+7Wc5dPtZCLEZM3Ua7JQbXZ2BLuLoNnHVC5fSDNkjcbLt4MWLR3IoojjgtfRDuoiXdKCQSMfO5PUHifC0gQRRqnl5/FzAUg6wdzfQWE905v49ZEivPhV2NjWgVOlFoOJ3axggBTVKzA85NHDV7VYEFDUoYKQPAUVukbTP3ELOne6fTrxw4mm8iBlg305gs0+XVc+L7C+ZGRNGJFEQzdw2Ix4e20/LGnkpyld9K73YNB6DnfUK8NyD8jaLOGxwkD1jSd1vzfcxCn/q/m6HmdCsUWMmYJbt2BVpu0kWkQDWKB1LlAl4aS7DlOr/3bBdKwB3glqqAEUlMJddCwwf6529C6Ql9FFXC/v+m8Cz07VjsgBUn0mAkQixZZdtRLLWSEorHAgLp32WnI2jZJ/+mkZXfTOYgXfYd/v8o8Ds1+VtFnJILZ+BUQdQhe3Wvg8bNJw2+4FDae1u2ZokDJLQosNYZfuAhgagoR52/x7Wc26l81m3Ehg0DOaM8wlIu731JPwabYJd8gHwwmM69OeOXcrBqFNOqqytdTwnNiNYi6Zt09X2apZX6tU18u9L+XkOqL5SjJm7lqCyIP5xybXE5nXpQSZkVThv6ULYZx+STOjHzG0zrvWHgL9cYClTgBSWXpucLnqYgMhOuVFCXML49OYjJxG+yHQI+AG8eLIAoDZtPW8mjFKNRALEgw4wqq2mo7ICtuIQMUN7dwE7tgArF6U6O/E418LrjbNFbXJQhhJUQkEfWg8GJzSiQZEuUFeL5IJ1TcpIP9MeLoOkn6aYE0tAGRozebOLO6xZrfrOzdJVJWkqhoyiwnZC0bsZUMIarV8FO+Mu8Y4bGLi9p1gjSd0vUOBOQjaaNdrH3nWlwxpl9D2UHesU/NwAYBQWPkv3c9rMqhSvpfxdmECZCw16WaaXfp1DnAXhAuBIDhCPw370AfDcI9LyoRFUb+pt3pQlzCnhNF1Xp1zdGzkkjdzd+GL44rNG/jBzqppGwqZKSYvH/yV2sY3DzGuVXbQHtR3phHMuB4aMgOkzgOwtJwc4eICOeBT24w3Eihw8QP37aqrTrcNA74HEbh03XIXnHRlFYxPsknnA849oofNcAO/wGiyaJwHTklDR0mEaq9luRcYgiS+6KW6ew/7rYqOyluujAf42VPWOsysZrMdziHIMSJtF+oRrvkNFLvPyFaCMAwf2wt7xOwFJt5g/P3S7JxT/coGkAIBUyhhlNIAJxkydFhB1QwjjftjG5XnjqYYW0nXrCRS0gCksBEo702siqEsFflzqNOxR91sSGjgaJX3CuzMz+Wp1PDnL1YK6gTe4cvizw6SVSFCtqbwUm1hcGVCTYzBu24I6x7Aa4ZSXT7eIcz2oCSG/nm2mTjsGjWwNOCOrEMDpDCpaqnCGFEXL43+QTa0KXkqrpPo2yXd2vpvo0vTYDldTEcYayXypq6EKup53vAhUPT0CL3W/GH4Rtq6ErUXYboZaRqxRCpAU5vSYEMO2GbwWDGoSf53pOmEz+R5+oJyuAKdmf9etgn3hUWDjKnm7+QxYcxRglfTxXHjp41Jvyg2nucUfG3U4zU6ZPJJZqKBxyEydtvQYLPSafQ8aW8zUaZub+Z7pRdhBYebkgo+zATzD16gz24U08z0JHbsRGyhhoXdebu7XX8bAdSyAFiguBS6+mgo9wgT314tEqK/Z/X/RPdPms+O1jc9RgHQJvAreUo9JwFEj/DrPWmW/8QCHWEcBYvBXYa8NAECNAUcTkguNytEFFIKeLOE3M/lHnn3KNd60FnbqrwDSgY03dzxs/b0bj2iCS5+A9TajvYUzhyfw3yw6CnaTC+rPeDoC2nsFAKQj7nm8Jd44Wrb2GJ+iYqANh1sl7JUO+OjNyv19TRVlhgFASUegoDA5xqw9iEgEqK6Cfe5hYgm6dCcDL9sP+9ufUEiHNs1GRY9KCFKo0Dq1Met6E7oWh1ufJiiMiRBA1BjgQbhgSA5tPNpwoDdYBRRGMlAYiXS6Lf+YA8qGmGGmTjtwmPOiP0/KyxRTNAfA983U6StZSyM6miJeoPRC1Vp5d3UOG1PGIGcQqGL5iGaFZvVGnMI7tgveB154VHvHb4JSxLV3HCbCdtPDdYE7uYefkJU40v0oj41XmaRxSZdlqsNpe3dRpun7r8nbLeV5VeEA1lZq/ojOqCwgnFbGdl3F93EIe+i9QNlWzWG+5Vx+d7h2ozabkWpe90oDjPSoYLDyvJk67f4MAOofMnIYdJj5owXA/X+Wt1nDjN0OFU5rD09jFAP1VevsfHwN/81Otq0YX7soqCfoNv4uKxlEXw+pf3Xx12AmXeyt/z5QxJq01Uthn3kQWL9COzZv8HsX8RojeqAi5ZRJQkzEYX4ktKZ77MWUIbprf6o2NdrBDSty6ZO5IFkPGOP5+UsAHc2dT3ICgwpLxmKwd90KLFsAUBX+JQDi5vYH7eGCJAVmZE5mvu7StZ8NYLqZOm0Wv9+jkIKjNB4zU6dde4TWGAFFE3znWNQeGHEiid279zrqAOm3AP4LV32LKowiTedwY4D9e2Ab6pPX+E3r/G++d1dyraA+A2G+egPQZ6DnOWidkYCjmirYd1/3dAlXfxvmysmezqhsL+wvvw3s2Q618bqVdKWmUIU6ahzvP47kNgg6NOFWFG9UBtMQQLs2OIDI7emUKMegmJP+oGJoE9SimhIgBI5Fs91XdgMY3pzFngHzT0FFIFsE/Ml8M3X6eDtlsrS6ac0LlfSskywXreOJq7/pywtu6u/GujT/1nEQpmc/YODQ1ML9ZO9YAGN7tQlnKsI+gOS6Rp8p4fwxpLpzGRjdhKC+XWFgNcI6o9lvAs/OkLfbwRvzJvj1X6IzkvuidUa66OB+tqOhHLY4EVRjJ3iI8xc0aqulVtdh2Y2y39PV5pOafQ8a+3aB+24qW0susMq1yO5GmAjbDTMLm7p3F+xD/wA2JpITpLJ7Z2W3ukJ8vWLsKtiehal7l++Ly8RonezpAL4P4EwAwPizYC64EujQKZkp0sDoqRnA+kTSzCYGBivg1QxrpQBRCyccBiRrPxud9blJRQzgrP3a29BOcH0AMIohuLSGu5+EMcXfAnAiTrsA5js3I4npjccpo5Bs5ocAHpDPNbc/GE8HktheZV6entJZ0JKYzPaWxwD8GcCHKGoPnH4+8O6rQMVBALjLTJ32o8NYX8aAqqYnN4EfMwFmyAigWy9PTlFdCfvKU8eQQTqao10HmCtvBEaPS24+qY2lqgL23VeBpx6Q/2zgCZVvHpnlxb5zc4F9u2F/dj2wexvgpflChbrc1Hm3W7SbpRNz2CHNELmNLBsC4s+abtUtWpIyCO2UyVeEUYYJoNCtJ0xRO0qFbVPk120FMXcJnM/9gt5/FQAuN1OnP5eKZWBDugG69hRAOoYBQ6gSLQA77W+ykYziBauQF9RSUHZLV15s27G32Fdtfv5x0ulA154wbYuAkk6Zh2ZdtlELfuNc2O6Ru+Uv14L6I5Ur1qid4x3r+i17VDhtHzyhb0Bdoy+dUNJfmTxI45K5zuh1DpV0hL8Ip9YZ1TqsoxztGGBPhJQQSACQEmDAEC97qk2Rv05XKpsBgIP7YefMyshumL0Jtt+e/ahxdefupLtsU+RPY091Ho0N1N5izlvA6iUAMMpMnb7U+9zJvkrYKQGqDjO/8QLwWqLkxmJQ2YRyxRoJa5cuzKyrYbv6HTk6APg9SNgN9BkMc9WNQP/ByWu+1CdavRT26Rk6m3gb2+9meBmebiIMHJanyWHpm5DciLgpBdPjZnFGA/YCvW9o9sktzqp7protfzowo3Y8SjrD/OEuqq8ktahUrSb74D+AV54AgB+AkmO8gsG3PxhP1Gvy5mWpYv4nJLFDQ0YBA4Z4+0pJx/B11x3VlbBrlgOvPQtUlAHAXQB+iEu/DnPqJLKf/50CBs3DzdTpG9Mx26GgqGc/4LgRtP906e4vKdPYAPv+G8BrlCuUezQXPjN12iw75cZJyvtJFweQ7t8VASj5A35tIoBreXMkIdqESfQlg+LMkQhlKCx4D3hyGrB/lyyki3gxvQzAKPvmizBf/57nbXTrBfPXR2F/ch2we2tLnrTbFR2qO0bXBngQ4gU0Od6GC4rcTt/u60GNFuPwlVSwsFNuvMJOmXxZkpcpk6FnX5q0QTVBfGHKStgdW/yZIOJ1JI/yRIHGRN2hxPlIfztPYNuzHzDuDK8tBy/a9vXnBRzNN7c/uNTefH2OQxc3gTRsJwPop7xQoH0nYMwpMH0HkG6tqL2XtRFXNWh27yBx4p6dVIF23UoqNjn5R0Dv/smgSXueWzbBPvWA6x2/xqzVAMUaFQR4x0Gp++UKUH+ZWaPkRr9nX+LN0XQ6o+l3av3IPGYechlAi85I9F9xdmQq1OYsqtwzQWnmA32AaOSJ4Y2jXbsp2w+7bzdMYSHs5o3Au057oKIS6tclduOzKwM7ZfJZ7ESE22/XnsEJKPJ46ACwcyts+SGYTl1h57wJrFzsP49eA5Lew95yg1+EPfE8KoUSVNMoXIR9kEMkcxkYDYQngtcFNwWY7gFlhblhZpEmuO2v8kC9Lb8KoAPadQAu/RrMmFOoAbGvhh0Do51bYR/4qw6lbQOwnkN3bdnJEj2RK5jWuqKqgBBak+OoBnWJcPu+pasFFsQ6RVI8arlGLoALAVwOoDvad4T59z/677WsZyYCNNQBC2fr61LC71UNoNHefL01t82w9pbJ4aBozARyGKT/XNi8bGok+9ixhVfHOp3t640TTyMwRwDpVAAwQ0fS+5R0BM69Anj9mRYAfgJjfpSMj2xqUDRqHMyQkcFN4BsbqHzMq8+IeL0OwDNHlUHS91q1QkjXuTsS8trVAK5MfOlzLoe54AqqPKqLwonXIDUtFrwHPH6/aIrAAGw2X4CWvMldAiDHPDufampEVMn4Xdthf/p1YZI28//rNHo3bux6GK6nkepoUl6FK8KzAaBoDICfJC2qQ0bRwqEpQ3fiGkML+67tsFs3AquWAls3NOem1gEYYf780AadcmunTO7P53RWAhiNmQAz6iQvJVjO4dABSgFetVhCD+eYvzyy0v70uggvquMB/AiU6eL1uRt5MjB6HMzAocQOxZ1S/taSQW5cTaHZBe8mn/2FV1E7hAKnIKWuutwUhX3p8YQ3wd7xa3yvuqjQjWzCUXhd3TVrtAf+9PA6OELfLxkwKuVwWjMa/apQzoP/0ALsxQyOypHc087VGR2E19i0P0jUO8QHHk4YTxWWe/XzOwWu7WzdBLt+FbV50HbD88q+8nSY2HgNh7qjDPZvSApRpLJft67Plo2wa5cDHy3wNbE2P/gV0L0X7L23aylChdrg5gM4F8A/vPsQ0I8srNbXC4+5YeaXGQxpEXYLxdrpKuS7HbuQMHMDPL2nZHwVMFt0I7PLwKRLqc+eXvv1ue7eAfv6czrZZjOz0luUvkjAsyu2lm4Dh3i+6MxFt4ZcFME1AcNAUaos0CDyIOgIYpF6s95oIoUbJ8Fc+22gsKVX+TvxSM/tkw8AD94l8/F/OCy9m79vNYdYr08CRRPPgxk0jJxKzby47PvBA7CrPqKiyDrbsPdAmJ//Dli7AvYf/+NqkGQPexXA+Sgqgfl/d3jvfXA/7H//HCA932gAMLc/aO3N1/cPtKN0oIj3QLtmGTDzGW0/r4DqrW3JPYbrYliXcU1rBh3jmDGiLz7qZJjLrwd69HYoVb+Had97HXjsPg2MpM/SQQ7X6LT6MgAd7RP3w3x3Ck9lnrcdiKa037oEAPrweyx2WKNGBxA1hYCkphRAKIqUhTetRsk3MaK/KGlR7TPQn+njToimRpqcC2cHpclKc8MRiVeGj4U56TS63iVUtdW++izwyhMtAJxhf/4NEVH2A7XiuCKhLwrrb2cMsGIR7LS/yqd8ABLj7bQ/va4LG+YlkP5aAHD8WJjTzycqXQSYLDZMUMFl+2CXLwYWzQ3qZee9zyXXENsk09KnN+LN+KMFsI/eKwzFQTbaJQyMeilNhesdB4mwdep+oi4K9URKTRN/AcGRF8YB0jf6FWC0ZyfsrJd1xuAaAB+CMkc7KcaitWLyJBQuOiNZT/okQrPtSoHxZ8KMHg+0L/Wzjm64detG2HWrgHlv+8AI281uACehVRugZWuYS6+BJYBUCWqkWwRKx57Ljt51AM5I2ErP/sC402GOG57efrdsoNpOyfa7LGG77UuB4hKYi6+GvfMPouv4Pp9LW95MFzJzBlzzbZgxpwawqI4Ie85bbph5FjNB3eBPTsjjdUFf/6DkhAr4U+I1IzKQma3TKZw2kKrsd+2luhYIdDDUy/LNFyWMCT6v5XzN28NL0y92QuHC+B5iwCYgWsCbGwqPIvOCp9Zhh4JKXaTaM5ECKOUDuJUBbiGKSykKctxwDkHHgHjEu07iaCxfJOAoxnOmN59jC9YjSbmAzECR2OrBA7CrlgCL57vrbwXfhwloW0wgbdhoylxc/iGYoZrLn7mF5+b5OOVM7lKBxF6MXgOArRtGMnN/mr35+kuZOUPCjkadlBoUiQ557ttu1fOZrL+bw/O3OPfYLIqT5UZrgORWiHY7irdn9mCShFLMN39MFxYmnH5f9RHsE/cDa5ZqI9nGE7wVG0eOI7jbCqAYT/wrH+PPAoaM8Bgka6lK6a33wP7ndwFKodzKKNMFRNGA50E0bJDHEVJnypd99l8+lMwCNjPypOBFVa5NUyOweT3s2hXA2y+7C/s8NpBxvHj2RN/BMOdcCvQbTBoHPTatA1Ynru0SXhhv5UneIqEhGX2yP1QiR2017EtPaFbnbgC/4An/J5Dwr1PCox8znt6rTZH3neIqQaSqkoxy9pvA5nXuZlGTAFl9BsFcfA3dW5cx0qHZg/thX3xMe5+LQSnKBbxgS5+olmm8Y11U0E3dj39Jw2n+MI40NE3FVtTVkHbHE2BvB/CRCuUMgteeooWjMyrne9CSF11PxXzymTCjxlHYS6c3u6Bo93bYFYuBuUmgSFLCqwD8EUBPjDiJHILcXCA3Idpuy/MlzmDkN8yI0jjvqzDDRgOduwVr4eR6rFsRZL/SnmgmSET+LZEdoGdfDkEnNom+DNJ6gBIlzha9nrnoKqBVG//3dwGqv9YXADzHWqMubBel8IuwG/j8dHKCtgthjeoVODIq1PUL1sbQxn/F9cDIE3l9Y9ORc921jbIXPfC8ncHzLL72JQHAqElJJSoUMJKSGxIKr4JTWy1DRigJCDW7LIaj2bG33CAv5AH4f+yMEsA9/0oqhllQSE6j/L9vXkcoLEr7mDBrbdkuLmPHob2sveaMCyhpRaqUB+0tNVVUYDO5wfpydnyf4HV9Atp1hLnmW2QfADB6vACkM9iml/L1PQMAhbddJ6H/YGFs3+K5DBSXAiefATN0FNlRAjgHJNvs3g777mvAB+/oSMiLfJ4fMBbpwNc451gzSG4jTRHIud3FJwM4B1Jb5Js/I++msJBvtiNfikSAFUtgn54OrF0mr+5l7zLKi2cXeBksUn9CUiur2Rsabm+9Beafz1A5+0Q1IguMGAvz27tgf/tDAPguvOaWQSyQC4JiAZ4FMulRF6blMed+JRnRJ02GHbS4z5tF+gRvUZ3Pi8VJDIqA9h2Bc79CFVhLOyUb6c6tJMac84b85j1meq5KAJrzr4QZdxottq4nagwZp1fFdR1Tu3mgLLCzEv9z1sUwI05MCLgTi4kckQhtGIvmAfPfDjLK0xOedN/BJDaV7u4mhDFqbID98H3Ao313MQiOsUamlQoB5PPr1byIBvVP06n74nn2FBrZTpkMvgcjHDvpjfCaIak7k3tjDihd9v7PSDjtb5B03UzT9uMxykx79J9QG+5M/m4deWNIpzMqBPWfIrtp1wE4+xJyKFq19vfu85UCAQGCmU+51ds/4BDrW2qTOgMA8JXrYc65jHp/JY9vcphoVAKsn3UhMOh4bgthw+n/1UuBV55y7fcD1sE9xQ7FzTIvzL/9J3CCSk6LNkHp4n4N4NtyLcxNPyUgpRuruskJ5WWwM5/R4ONDligM41C6gCCpKRV1WCMNjEKTE5QDfRpfV/oSF1xJG3V+gbfRy3nu2k6s4tw35dy2MHB+keeFMEZuBftK/uxqBaI1a3QI/qxkN/HGhhU2dWa/82Mz+/Ilv7eEZK/wyRfOuZSAsDE0nyORwDllX30GuPf/tHMM3gM80uDcy6kQa4fO/ibrbteJ3Tso4ckDGuAw5kJ2KNezQzRLZBHm2m/795bdO+TZDr5PQi7Qve/ex581aSJAjz7yPz0w/ixqTt27P9lRkKMjRMfWTbDz39H7xXZQRf2/8vwshNfvVAgb82mE2CIhobQIe3lXJDy9sy/zx5rjcXWx+MavXOLWtNgOYCMbY4kSCkqKvgimJdZcxsdSAIXYt3OgffDvtHhEcvwofMRY4Js/kyak9zOIW47grLWQZr3IiGENBEZBISsBiInKsA3Apo2wM592GZU32RDGsvaAMrxOO5+Qd//BwSdSVUFp7R5tvZVFjifwYgacdQnMWRfRpqMrsmo688XHtTE9wwvYXXxvCKBNPAdmwtmUMi1dr92Qx7qV7sa1jTeMYp4/lI494VyYEycCIvJLLKyRZA9501rStXhZLh/wgnpN4vy8sYo3X526X84G1o83qnzewOMJVu7YjlMBnGqn3IhPEyT5wmlF7WnxTVlLJyeoxhTYGXmb14iBATojqTMlOqMIKDWfJnW7jsDFV8GMPNHzCV1AwGDCLl0IvPwkcGi/fPYCng/PM/jtzEDjDAAFKOkEc9PPgKGj/Jv3orny/6t5wwf6HUdaq0HDaH4nwsMOa1BdRX2zXn5c/2YBKNPoXQYXEzhsdgp546fAXPsd2tjUediPFsj/d0rY69e+SxWWGYj6NkEROceiLkDdxvP9eF5DXD3iSiRnB7ph5nKEJCfYKZPbALiXbY70UFffBHTtkZz9VFUF++YLwFsvJHhtUOXrx+Flvpby+l+sAHQjvKSaSp4rZXy+ZQF6owYkJVHwun0MmxArrWm4fCHI+UvU+6uEnT4DmPWiDk935mtDF/fa79HaW1BIe0hToyqPo957/SrYV57Se8t2BkUz2OktZIfgHwlH7+v/Ruda2MJ7r/17gNefEfnCTmZtGvj/u6FdB6C4nbdmc9KMKekE+62bYYaP8faJWMx71MAw2gR8vBb2Zd/5rmcn525ep1swE1UIL5tRRPuxYwmQhD3RVaElDjqA4+MTEh7Wdd+lrA2NiqGMeOdW2Dee16GQTRxW2cwXu5Q3uUJ4AtrGAK9B6p5UMZr8Hzz/UBEGDQXGn8UxUG/imfOvgK2qAJ56oBBUXOwEnhhOka3MgFCIQfg7ZafS8kR0L6H5QYt7NW8WRKmXdAbOvIBo/f7HhZ9EZTns26/okgi1vND0SojpJpxLwKhTV2+CCmKX81yxmFJs6ZzW8wZ3ReJvTjuf2KKho4D8fHqPWJSZIgUCd+8gTZA30T9gJuxUZrFoXDGZQnLiaYQ1ppRCoS89DrzwiI6VF/ni70NPAM44n87n77cKvb2H59CJoGKUJRndWLceSMtWQGd/kVRT1C45rCkjVWdyPdavgiVPcQJg7g/1aD+NcFpY2r40NH3xcd3o90O2sToE1zMSZqRG6UdOSISw2ncELroaZhQDI5cpkcdoE+zSBcBLPtv5kMNIL/MaMgDAz3iNopX7ym/CnH8FbSqa3di/B/aRBLAYggHDYL7yddKGyPyGSbaVmmrS+HiNmOtZ+/YCO3AtGORcxXOPugxccQOtD+53+3CO1lgMxgmnwlz+DRJhy6ZiLZCjpC45OXQf/OE0+ID+eV8F+g2CGTgEduazklkE3ugkOWGPCldJsc3A5AQ7ZbJX5qGoBDiPgbQ7v6uriAXwrs9edramO8BItwQRZqvRAdEaGB1SwKg2GBhZHMuQeMryKENHhTOwOsswN496rz1yD3BgN/hebGLWmu7ZjT+FmXQJRWfq64CGej/zIvN6/SrYl5/U6+9CPu5hW2zJkZXzIIkPp18Ac9l1BNq1fTTU0znRWMr/24mvPbGsJ4z3S2mkQfzIE2Hk3OJxsqVolB4jOQRcqypJIP7SE649zwL1ASxkaUgreM283SKgTQDqPw2AJGnbwir9hicCUFwK89XrqZKlMYzS9Y0CCfHeelFXy93B7MhKZRxaj6BT6MU4pJ3APhUOqeH3uwPAb+39f4XpM5AmooAk7r9lrpxMpkIgaRoow26rTzh4GMbEnsJ/QRdpywQYLVvoLu6zeAH1tA4XXQNz0kSq5aIXHo24raXJu+B94KlpwIE9+vRaYswEYNho6pfUrRdN2MSCD79wsrqK2j3Mm6XfYyAGDKNJPmw0hdCEOpdMtIgFLEvEbAQ4sI/YsHlvadAXYRBDQGbAMJgLvkoMX0FheDxfXTf7/hvAEw9I2QcvhDXsBODEiSSW7TOQhIfz3gamJwTl63iRmZQIj7XrAAw+ngS/xe1g8guJSrYWaN0mvDfgJ32tbD81TN6+BSg/SE07vW7dADA7rAzDpxpOk5osohvcu4t0Xx/N1yzdy7x5dWIPT3RGYfWMLIdCCRlf/S1qNZGTm8xqCusaicAumA289Li2nbeZmVnBDtZ4kAj2xAQou+gamIuvJiDrvu/KJbD33U62U9oF5vofAGNPpXOIMvCX+R1nXUhTIzkjHlCv5xDav3htag0SdU9KbCClXYArJ5NNu+EngMLhM/7m3Zzv/wcxBPE4edZBRQBrqmGfe1iH02gcNxIYOwFm9DigzwCgoQ72vTdg/+eXwN4d4HV1Gby0fR1mroDT1FeSE+yUyWNANY28Mg8XXuk5CDrUOO8dqdkj12cmqJigASXddFCskZuhVq0iBgcyBEbxTwkYJWcmh2lNwxIacnKpoO0rT2oCYRkDAlozL7jaC3k11NPhY/65HMDu7QRmPl4r7yPtlF7l9xsKSjoYASnSO/B4Eov3Py7ZPg7shX3obmDxHNFAPc/3qjMoM20sAJi+g/yMZm4uaaFkzZCQZZTLscRygO2biSR4/mF9Sd9hOcgbfL692J4EHAUCIz7qjlGaf6LTuG6k+TMGRlR75PIbaEFza28IvbZnB+xbL2sNzBZmEF5lj65UeZjiOQhzVKd0CfvVUaZi4vV8fm1AncPPwtiJML/6P0LikRzeyGO0wFRXwv7198DiubJpXwNg6+GWaudwxK/FIEI7ZetNZt0qMgJv8lb5QkIXXUNhhUHH+1uv+ICR9X5esRj2n1PF2wAGHg+MPhnm+NGUgp1fQH8vYEYeY1GPqgeAjz6gsNzBffTzCacAY05lEV1Xv35MegPJIZ5tfT0xhM8/JH+5gY2oTcJzPvNCytwTQWpQ/N5ljrZvoQ1MtGqdulNob8wpZNDtSmhxWfA+sXGrEnVkYqz5WMahg/8D0NH86QGgZUtvE/Y1fUQwi5XqeSI+v529rQbYfXw/NvJ9XvBOZhqkOx6+36fdCrrvR86+b2bWM/NwWi13evdsejXrW1YzMJIGoW1VmCTm2PM+BkVfAZCPESeRk1Vckhy+EmAkta2enq5t512+v2t4jl3MDsbxif+95tswp0yias1avyRe8XuvATPupJ8vvpYKGBYU0rWOMcMajfrCWnbe2xROJFupZ33TDP5+3TgcPpbDtwSMrr6RMkvzC5LnW2U5JanIxjh2IswNPwQ6duENJep53vK/DQ3UsPVft3vvM+kSmLETgP5DKMzVWA+sWU6M61xf7d/NAJ6Fv6ZRkAg7ATrslMlSNf2HCSDtlnmIRCihY947mgWrZ13gPXx9SkLCacIuSkitXDnGEkorTw2MjinjGtR6SZVHGeqtmcakrg9WW0Oh0acT+/ouDlGfAaATOveAufkPwKiTaA40NVE4rbEBaGykvS0Wo3n0zINa37WYr/1bbB/D+ZyHsH3SXDv3Mkqkcu0DADaugb3zv8Xx/pjnuTSwHwbpr3nKJGKe2hR57FF+AUUY8vI96Us8TpXq1yyjzGoCXdqOXgdpi9vw0ZoPAUaJUBo80b6A6QoAFccSIIlI+ywAP2cqzruoJR2DJ8DBMtjXntFGuYlv+LNMo+rO3OI5SP0TEeIdgtdryQVGus1DhC9gB6biBuOmn5Px5uZ54rdYlCZSVQXsX34PLJkLRqgXgqqQZgySuLT/vQkv6tLruFt5YTBjlJMD1NQwOxNQpPzir1HI6rjhFPN1N9+gzXLbx1Tw7cP3gTMvJuFbnwEUOjMGqCyn99Jsj9ZQCKipLKdw2uzXSbA9Yiy9T7sSTwytC+Tp99Ig6cM5FKIgir8eujCkgL7hYxMbU2ITChI2SouZ6krYR+8B3noRGHcmpXaPGOMxhBWHgJUfsRDd50GXsf5iPm/c4h1PAXARho0BBg0FCgqpfk4oKKLraCsPeX+zawdQV+P97BecZzKkqOo8XnAkK1G3OkjSxh3JDLqkYo+ZhNNqa2DnztKe3hZFgXdCcN+0OJLrGe1jndE3E3P/3MuCQap8djRKoYI3EoWsP+IQzUZmZyax00ax0A5dgUkXUyi5bZE3R7UN7dhCTU83rKQ7/Zu/qIwr+O1FbGbfbvLM/Q1d7+HvN4k9/cEJh2DQcMrCHDGWNgqtz5NzWTQX9uG7Peb3334Nc+YFHrMr5xFV4GjHFiqmWF5GyRGDhlG4u1Vrzl5bATvnbeCp+13N0T4OsayAv3WOJCdIGRRqX+Gv8u/1eAta72qrqWq9B4zqeHP+OwObEvj7M8o8EYW8ZhcPKZ2pMFpV6vw+FWDkVKX2Wi+lYouCnGQNjFZ+BNw3FQocfsCO5WQAOTj1HKpB1LaYwRHvY00MjHhe2NlvaLD8MTMwj7NdTGDAnlBL45LrYE47l0rBBNlHZTnVXfLYrHk8byYm5gEAfPVGmOFjyYlO6I1zgLw82nsKCgkg5eYB+3bBvvMqFXb0Svms4HXkHZ6DRQzeBBy1UBojyWCXoqDVSG4dVnUsAZLTGbo/AY/ejteQMJIa8q68ePNG/uJPMkvUUdGqxfBqb7ieQ5nSG5UpA9ZCPBFZR3gzbseT9gEAML+9ExhzCi0Yifo7UULdVRWwf7hZCtc9yVR4RiDJTrlxGP/PcWk7ZbMx2IXvA9P/5n+jMy6COYXLE7RoCWzbTBVJi9ohSX+iAVLFIQJaABnk4ONZSMegaO1y2O2bSewshfOkI7SAIjGIDathP14P028QhfHEeKNNwLIPYevr6BwlBBaP+9kjGyfm5rH7gHdeSQZ9+vwaG4C1K+g7DRzmlbP3XWtVIfWD94Dtm2GOG0HeTfvSROYa1iyHXTQXeOI+/YkNPE/WOBuAro0SA/BIgGD1SI0F/BmVHHKS1yxvTDEE93jSxel0nz+domzN1Gn2yNpzSLFHHU6LRkkE/eLjwMG9cp3nsg0UK52RbvQLx9GR8PheBjF/AADzw1+Tp62zWOQ8ErWUdsD+7Vb57APMGH3MztpgZmxonHQ6zHmXe2nOeq7KXNu+Bfa1Z4H3eOEv7QLzu7+RxsdE/M5APOaxNgtnw/75N/JJKwE8zOvZKbwJeYZ72ddhxp1O7KYWVOvzkEQVBmgYeDzMT/+LUp5NxM/Wit2WHyQQYgDT/zhimXNyaTPavxd20RzgmQelH6UwqOXwyizolPj9ipUJbJ/DBWTv8MkH3KrptdWwH7wLzHxKA6OXmNE/yPNCs0bF8BJwIvx5IsDWhR6DgFHjsQZGKVt1JFov9Q+VBXh6nByvKnZtDckFnpmuP0r0ma1BlbVL8M2fkf5MygCIbifaRI+xGPU0fPDvGsi8AUoMOIPZVI+qHzwCOPVsmPFnEJALso/Kcth3Zmod6zZmdk4BlecgB+TiqylU3KIVgTXRoBrjsUcFhXQsmkvhaI/ZkpD8Byy1yeU5UaSAkYivWcicCKPVKLaoXAGjRPuwYwKQknotpSoOJ/FmL4Ojntmie9kgNDDSheGkiazUtShT8eYDAfHmRp8Q77YZ1t5yg1Rwbc3v/x0AP0eHLjC3/hPo3hvI4Uih0NSNDcCOrbC/+4kwHk+CCluSaDtBM9ogcLQQQAuMmQDzleuCr0dYOGLMBJjTz6P09XYlQGUFxV+3fUx6nE5dkRRe0eewbzfpVgYO85Vbx7oVZHBvPAd8799hLrra+z8NZqRIo7VUtr6g0NNp5eQA61dTFfNnZ8Dcei9RugmAFk9+r6ULYe/+I7B/t+eVjDqJmDBpJbBtE2lGFs+D+f4vgZ59/Kmd7sLS1Ahs/RjoN4iMT6qsr1tBG7XXdVy8znIGQxsdliIIXIuuYjjrVNrxoqdBi/t8Bx/y+lp+L8nwXKKAuq6aazLQ97kNkN1+f04Y4fABUlISwVXfIrYwqDVFYj6sokxBCbuS1uclfi7hNN03TdtzeYBu8ACAvwAYjeu+TyyEG1Z1W5Pc/p96A2lkWr+9T2sz4RxiUDt0SmY3ZZ65wIiubYG5/UFiTE3EnwGUCL3GYZ+aDjyWEKi+yPqqwdDNm8edQSzcoOOJtZIq8cLWAiSo3bDaD4wAKoly5oXEAGmQpoFaXS0xr22LvZY61ZVUQPa5h4BVS/TtruJrvQVeNtoBdQ8Oqs0lKWRlpk6Pc4+3mxHWhLimipyYV33A6EVQ0swBXvfbK2Dkyigk7FqpwmlaY+QyRtFjBYxYU3RaUvhM2NagAoxhbJFR4GjPTiIQvGvWyGGwVfx9OzKw6YpTz4b5r78qGUPUC/UKYN67G/b3PxN5xVZ+n2HQGbgduwHnXApz/Bhg4BBVBkB1MLCWHO93ZuowXwOzUN0TAu7BI2Au/RpFAvLyKNQXZcAmde5MhNiiAgZImzfC3vwNeU/pc7mEo0pVPA/y4DUeLuSfpbZWowqjyVw5pOav21e18Vg0q705SYQXVByuhjMUXvYJ8d7gOGW9CqUJMBLBZo7jOaQDRiGpm4mClsIitWXNy18BTMBJp8P84n+oxo9W0UebGCRtgf3dTwUk3Q0qchkIktj7XgjgOJx7OWURuNdDZ/fs2Umx22EnwJxwMoGi9qVkKBtXU1jojeeAk8+CueW/aUK5wCGoeJYc61bBLv/QE3V26g7z2795dYikUrXW2ASFsqoqKHTy3MMi3oT547+AUeOQKO6mNgvE40B9HbUteOQfwGXfICHocSPIICIRMrbZbwLvvQ6s+Yg2j5//nouXBWh+3H5M4mlVlsMungu88rSuQBxXhrKPH8sDNgEJxwb1ZNLsYy689gj56tDNJFO11zFpwJEOm7nASDNGukt4nToa/CEPeziLvT+JIMyeZf7u2cUizzWaXn+D2QcJp7n1jLRusEwBo33qfgwD8DB6DSC2xL3/Yju5eZSVNfU/gr/UcaOA084lvVSHzv5wmAYlDfXEhL7ylG5zspkp/atwzXdgrpzszTvjZKnF49SQOagHFUC2e+aFxAK3KfK3ztEgreIQgYlXntJ96IDSznQdBh3vbaZ6g9XssXjnjQ10bWa/KSnXCbk2H+IYVCn2ztXxVKlNReaZOJ+n8Xw5NcGS6CbENVXEYnmtfOpYAPxnvtdFDIYkpCYyilYqTNKgBNjCFh1SGiNxZBqR1MfSHo09r1QBIn8LqKL2wIgTU4MiPW/EhgQYRWPAmqWkt/Hm4CF2tGbzmiFhx3bMbuebJ98H2hT70+E1G7lvNzn44pzq0bEbcN5XSLYxcKgjr3CchxWLaQ9/71UNjGYxKCL9wYmnUebniLEqOYcZrCZms+rrKasuJ4fW+bx8oLAF1dCjZJm9fM/rFRCuU6y6FJuGE0arUmHXQwobVCp8oNnFo5PmnzH9Lo1kZ73mZii8xrqAGr7h3RGcuiml7CsdAz4Af02LjDIUmAoWpCkI9d8BzMCCd/vbu/8E87Pf+TeCXI7qdesF819/gf3x1wAqWbAcwH325usVSDLyeXcDOA5jJnjgKBJJLpaXm0veXl0tzO3TCZzl5lKG2BsvAO+/IV25gRt+TMJuG1Kjw7doUx0K++Fs4L3X/B7jKWdTu5VOXTxAkyg8ZplBc5iapQt8HZC96zkNGH2yCgnEvdAXIkCUwl9myAjg2Q88zVRDPVGpb73k11ld/0MKQ2rmybfAON3ecyKkr3rrJeCJf7lecZWjlahKMYd0KwTjAB23hU5LdbSAvwhqUEuddOBIp565XcFdcKRZozp4FeP178zheM0ZJxHIUX6QWBZPO7iMhdBL4bUG6RCgMxLvTjN4+wJsmurlnHxGcgVs3Xdq7y4/ODpuFDBkJM25oaOIRUmEwGJ+cFRbQwBi+SK9PoG91sXsvM0AQBu/GwpRDI59Z6YfHI2fBAwcSpvl4OHkEGjGygmHYc1yAjKeEFWu6QiMmQDzvSm0AcvcT/STNMk6xG2bCGS99mzCkXEEqpVKtFqhNDwHHGAkGiPAX98uAuB3AP4jsf5r+YAwRn5g9DyA25jBbQsq2tdeHUUq7BpXIK4yABgFhtJwFFL2OR3/NFBx2tOTWCLpB9ajT3D4LAgc6QK2kRxqLbPkA80WgUHRxxzubME21U4ByPYA8nHuFUDLNhy6iiXXvYpEYO+61QNHHbuRQztsNMzwE6gsiTsf9fts2Qi7eB7w9kwN2HfxeU0CcAEA0rZefDU53bq2oKzhDfXEYC5fBLz2NMyM1zlzLY8AUixG85VGlL+jtHnKcx1AfqxXc6RcgaJyB9xrfBDVa2vuUQBHmYXTpG7PzESVWKn5cT+fdCkobVCnbrZQC2mVI8AO8myambppBSTFlGdSBipFcAfeeqGz7dydajRFAmj0rj1h/mMq7P9OERBkAdyHSMSpj0T1nsyFVyaDI13DIi+fQFGXHjQZ162gJpjzZ/lP+5RJVMJdMz1BlXFNBFi2kDLf/Jko+wF0QOceMD/4d854sQoPwCm2CKCinLQ7M32MjIRDuuEnv6XsNejvbQBjvUKfua1hzvuKB4pWLWE90L9cQWgLnHwWbcqaynXBUUL31EgA6+kZ+tykBpZk1lgFJmSRPaA2g0yAkQ6j5cArPKazJloGgKRcBxjpHSyMMdK6IvdwQ2waKDW6+qPDYIH/AODkUFGttoW6Ws7MekSzLHNZZNuJtQcdkNw3rU7Z834kl+EoR3IBP391dbGfXBZ15uUD+QUwv/w/ynTs2oMr5BtPkxO3STo4fLyOC0b6CjVWMyh6CZQl2IrDGAQQmhqT29aooramQxfgT/dTc+XeAxxGJw7ENEsboyrDH6+jnpKLZuvz2MUA7WUA/8SYCTA/+Y0XQlZF9Xwbb0M9sGQ+heS8zEwwIBFHIV/NuzoV2ixDcsavJAK4QL4LKMPz/MT6L9mMe3aStsljGAQY/QmUGdqa50hxADDS86QuZNOr0uGRowGM0gIiYYl690/fF1MzRTpjOyeHwklrlxNz7gGPGlAtuSWs5ylhhqpIEQfSLYLmZTwGNDX4w2GSuMJFSXHe5TA//g3NzXal/uQCHYEQO1nHQGbWy24pmCV8HydB+qNd822YCeewHs4B63t3wa7+CFgw253jhAm69kgwSPb910UPV60YeavW1UbFKGrR9SFnjlQ4kYCGgPUxMUlyjyAwCq5p4dLv0SbYxQtpY/V6G70FYCqfeCmLwTooYKTRYg28Yo9lToZC+RHKULCOB7Ua1G/sz3j473no1ReYeA4BmQSNnk+T6ITxGiT9EwDsz75+n7nj4Tht7kCCdm3dNhkcCTDKy6fJvX4VtQvxelFBLRC5AErMlTf6w1ZuJWvRJz18txZdHlILYHcAMD/4DxKYJt6DAY02qG2bSCP2wB2+6Qyv2OZgAKQfckXh8j4RtUCsXk5F+l55Eti9TQtCK9nYSgG0MF+93m/kCTihgNGOLaR7mvYXly0SoxFQks/XsNYJqckc8jWVDQhf6fYycYdBKmRQ5KaUagZJziMMCLli6ziSe/o1Oc9dUFSvjkbHM8qUBb4XUtNoyCgSLYclEcRjsB8tBB68UzPBr4BqCpUyMOoIr8mv6Iwa4O+bts/RfYU5O+8DAOa/Q/q23JZeWE3sp6CQEgaGjGTHI8djceNxzourpmq7a1cCyxa6daSqedF/h0MYdbwWdeNNvJjPdZB9ZybM5B+rEJYjVD/xVA80uVllMQqdYcNq2HUrqAq3V9UdbAdyHu/xRkgNtUTcGgSOIhGy1/nv6jpeEqIQLzqfv1NbpeXRgngNjLR2U+Zeo3NMBXAeikqowniX7lTkdfYblCXrfZ93QD3sdvLnl6pr2k4l3ojOqEGJ9SsUOKoIAEbRIwWM7JQb24Hq8wQDIt7r0HcQTPdewZWtNYPv1OHKABQJW7Sc96ECBo6SXq+1NlAC5J0AOuHN54tw8TVAaUclfM7xohSlHcmuc3KUfcBbY2MxYonWr6RIw1svut9+KYeZe0Ay0wUYTboEKG7vfXdhidavAt580a1BV8NzPAbgdNRUeSxwbSXw4N+19ignQGxdrgBQeQB41mG0ukwdx9wjBI7uRKqaFolKzx+6wOhNzuBYzTe9r2KMpJWA9hxqAijfQyHA6DCFeFaH2kQkeog1Q3cC+Lm99WaYlvdQATiZbICXTTX65GCQ9OeH4qxHmgPgVLtoLgGJFi09cBS3FBZauxyY9YqeRE0qXlrOX6gEQIl94gFqjSIVSwHSF6xfCTv7LVdfIOUOKnnzLhbP0R7YC+OjPr1sN6xeRqEqr2ZNTG1gMb5PHUUfY9etJFo5qD/O1k2UrfLKUxoUAf6CbkKhFwLoiAP7gL6DkpsvVlcCa1fCPu8Tl8bVfJDeaa35uSy0utWAW/ah1tHuCNBoUI9NDnsjQEYLo90CZC44ckFQEFOkn0cDHnUTZLdhst64MgZIPhY4XU2jaBPssg+5UGlCgP0qZ7/EQPV7JG1fF/BzdUaaNSqDPyMqyNl5y06Z/Cq2bTzf3v0narg6cChQ2JJrpvBRwExSTi7N40MHCAzt3QmsW+EyqeDPXwoqiPcez6MCPm+pydRWOW4bAZyA5x9uaasrYc6+lEJmmkESHZwAl13bqSny1k3AprUU5vZCXTI2qc3nHXgNvrsyO0mL6IdzgONPADopD73iEG1qrzypQ9RRZot28hwvYtvXDX7rnfX1YMDmUuPYhbaJRk5YgPnl/9I5TPubJwOgrNDnQG0oqvmzRTYh4Eiyj3QF7MaQjKMqZ8P7xMDITrlxJKga+wRQ8cORzQJEmYbP2HawY2sYKFrNIdSN/L3asY6nSAHHAhVGb1RSAXH62gMYZ3/3E+Dy6ymRol2Jl8CQl0dHbh7ZR2MDsGcHsG0z1V7bsNoN68lYweHyd5nR/G8AZ6G0CzDpIgJGRe2IVd24BnbTWmD5It2gPBHsZTH4e7y/ghOcTrebN5IYPCcXdtpd4thXKYe0geeAG4Yvc8CSgGe9jjQ5zmjo+EQi7Yzod1lA/cBIxNcrnewEyVAQStVN3TwYwhgdBSGegZ0yOaJ0Je15cZoMrrtibr2XPMOcHA9tRzmzrbGBKG0CSWCP71/mzw/F7c+/cRazZt7oM8jtnSZjB9/oRsVERJXXPRK61cWkS8gL8PoUQXmEh/jaSOpjrtIPdBSBNkaNo9BedSVQVeHWWzqkFqY8RetGVCiKzmfoaOC088jDBYBVHwFLF2gWCw7NGVWLoRQCbMWeG3DiaZSR1r4jsGMLsGenWzTxkHq/ArXIGsUIVqVgHyucuHSds/g3BnjQcv2EPWqljhaKAnZDc0G6olgASEoFmFIdQQ2UU6b4pxRhBy30G1bBvvw0sDlRbPF9UPbRdiXA7qBsWvQjQfWM9sGfKVgT7OxYfb7+GmIAFTbs0QfIyfO84u2bgRUfhhl6PahWjICilXyOOmQqbGCbAFYQ/Pq50Blx486gcItmiBfPA3ZtDTuPcmYKlvB5bOHXcxRAc89jMoe02PYvBXZsBdYudUNoAowiKhzTCsllFFy7OOQ4Dnqjce1CNp6nEroTb8wHZS3+D89/sRNJxy5SwKilw4bUKV1UhUqWSAOMMtq/+vD6OZoB0Ujo1HsJmQ0YeniAyC12zO2NsGkt7KZ1SZpNBkUfgar1RxVg1NemUIXo48410uBWGNgfQDcCB4AzLwIizKjmRICqKmD2a6ku1cfMYC1mwN7I9zGP7fshlHaB+d4vqEvBrm3AisUuGyvzbDO/j7QFk9BYLtvaUAC/QoeuML/9K+zmDcBtv5L/3c9/JxnHuxlk7eTnuq2Nzkard/VFXpubG3FUAJKPNRoyilI3dU2LaBNlRs18RgOj10GtOZbzzXeBkVDvOUpkVekY7sEA7/IoZCgYndUmDEQJU4nf4ANmxmvUdkNYJA2SJO7/x19okHSfueNha3/29bMA/BRuPQz6Tpv5e9YqwV0rvi5NfPN14cuxTPt3dRb+XbzxVMFfSFMAjVb4x3ixLQ64GFUqBNUEr/6IBllyv6p5wotoMGgc4r+NKX2OXqhFDyRZZF1AhfN6h5xbmfIuihXzKItIo8pi0Jo1t0llpeMhB20AUUf7I7ohyWAr5M/WuqNIADhyQ2oaCNkAsJSKaYqnEHA7DZNtZiLsb/wgvKbRto8po8QD9O8zY7TVAUbSHkTKcDQiuZ6RFmDr+mSJTJLwc0/Y6HdBlbTHs52GjahaaHfzRrQcXquhJnUvC5XYXsCu1FMRil/P+Rr+/BGgvm2phojo9zMQWsaP5coWjZpPcg4tkdweYQIo21Y16UMFO1Z7eAMRtqgt/P0p4+r8ywPsQmcAa82GLhvRpNi9GK9Bf+fzmg3KSpvO11ScllYOE9dGfS+pbFzviMaDQiQZA6OMwBDvZejRB6ZnX2rDEdT7MC0gMg5LtI1Cp8s/BDaudsNKq1lXtJa/U5ECsa2dEJpOutBrWoUSqmtwKwTCiaD+fSc5ewQC1qMGeFm9mxjMyB4iYCbHuZffhLRdSp7n23k/W8eH3rOtckRaKvB/tUg11NiuFoBqDhNv5nPcxvZcFiDQj6bCBkccICWxRlqEx7Vn7PJFVOHSA0avsfh6Kd98zRoJxSrUe9yhCnWxr3JHYHWUUzcTC7BMiDbMtPQA8EsAE9CxG8zU+5NBUlOTn0lyQdJfHrH2p9fpkgIj+fv35bBEL57M7fjaCAviet4SZqzha3Ec/30ln2sXfix2rnGTErNpA6vj75mrPIUovPpT7R2Gz02jLFeGWsibpSzo5fw/UgW3SIVQGxWA0RXPNaPQGVSXoxO/bvn9OqvvKBlRVm2IOtNRA0sdonU9Djc8FWBoidIQOpMtVx05IcAITmgu3fOgn90D5rYZNqn8QvpK7v7GsqlE2Ht2wr77qq74vYjDaXP4+ndSOqMi+Nv9aL2XS4m7HdQz3PgSLK8Ud+3K69JYttHOPF8L1DmUseMgrTHK+LOblFdcqABRgQJFBv5+TTWK2aji13N5Hkp7EAEvbVUoq4rnn5zHXp6HAo4iChzp88hT4dk4/KUcouxAVPBrss6KXEGzM1bZf5jTUO4A1noFjBqDnAVdMoVtQ9uE1uYJOGqjnJkcx5kRcFTVHGDEImpJrx+pjmQw1LMfCeY7dyd2qKSjJ5MIa3KdKSDatglYvUxXStf6L9EU7eD76V6PlinmXYMTbtQFMbXeRgMFw+/ZgefkebyOduU9uCXPiXp+jz2KlTnA79egZDkFal4KeBvJWlbL33ELA5igMiOaoXUdAHFCxrPTL1EB8GfGlAOwjtnfrUpXV+ewRSllNkcUIKVkjQQYvfasBkavAriPaeO2SK5poTc0KA+zXBmtvulphHhHYyRAkhh5EW8EvUDZbSMTIKl7b65cax2QVA8sng/7p1/6QBJPkhYqfNcPlP7cjydbB540Efirgx+Av2BeObzMrJZ8fbvye3Thn4WBiiE5/fGg48U38N+2USCri9Jg5DuCQJ0xoN+rmu9TIZ9DN+ecWiK58WiZ+l6uQDTK5yXtYLrxob9jLpKLglU4m0BYu5n6zDaAUCYj7ACCO8VaBywFPQ8BPpkBoGZpB8MquR88APvmCxoYbQRlH73E90H3TWvn3Ic6JKftHwgRYEeR1EE9ozC4hMC7sf0M5cdefH6FCpiU8cK/T3mcjYo5ylOHUnUnwr918GfJyCGLeCu+Hn1BwvR+fF7t+P1F/yZd7/cpByeqQFoevLYIEbVJCugXTabM3Rj/bWt1TzorR6RQSRbqA9bZA2qTdYsr1iM5I1KcBSTfKx/7LtqpVnxuRQ6T5YqL5TtVI7k2jW/Nt1MmjwS1vBihgFCvwKnyScCQq73TgKiminREe3eFAaIa1tmsY7ZIHFA301V3lM9Rxu3e70q1npXDX8unylnLhEDI4+vemefjUGZo+vBrrfi61vIc2Mtz84AC3DbAPnLVuhZT2sv6gPU0pkLG2glpqRyAXDXPoeQtRby2tOL3OcSs0VoGSNuVo9MsXJAOIOVmuJCGs0ZNjRRKe/VZoKJMA6N7OF4ZVNNCh0GMWnQqHWB0KIAxOmIZChluI27qf7WaKH8E8Cvs2zncTrkJZuoDQPdeXmaV3tROOBnml38SkCSldKcrD0uHZ4TCb1DsRa2z0ehKttp7tWx0UYdBaXKoa7046jBTnfI4IuqaNylvRGt6KkPeq5L/N0ct0A3K661RYjnNGLpVemWxFiMtUOelq0bXqUVbizo1C+luAm7oQLNF8eQNwKaYI9PUH5hPPOf8P8aP7IxOxwK7zUK9GkAb4CVWtOfFtqPSGbVR4LkmIJy2H6kF2Idr05pl0xtKNbyMxSg84X8T/1++8tYBv4A+qsJIDQ4wqlHrkuhyxP5ivLbVOkyIsCnClMo5RdTnx5V9RZTTqDcf/b66K0CEP9fwvZD3sArYaH3foQB23hU+1wc4CwGbjw1HsN6GWKCAQL5aQ+od4FnjaJ1acoioB4POCQB62ymTe4XOhjETgJIOMJ26UpjscMGQrhsXiZDoeP8e2G2bgZ3bgEVzpDBwECCSOkX7FRDqFACI8hXbDLXuNzoguCLgqAwAkm49Hyh2zqq5pJ3HJuXMVDuAqIViHSMOWK9TdlKv7qHLFmkJghTSLXSkHrXq3OoVk9qK53MtX8c4z91dDoirAdBobpsR9xKMPjkuyM1wMX0riTWqroRdu4IYIw8YzQRlbS1QE6KdA4xaK2+mwRGYuTRh9acHjAIX4ZjSRQmwmQrgF9i383j7i5tg/vB3oP9gmhO5fHkl8yoZJOWAmgBCLe4CFmRhdwGEFlHKdarnvyvg8yxUlLpRoKchIGat60PUKI+jrXqs4veM82saHB0Kea86dS4xNjTRLsl7RJAsynb1D1VqAzL8PoYNpxJeD75GpXPRIbVDAecWBoxiCGzoaj8ZwPkMjZQssHjHtdVUEfcVXxf1JwD8je9hT0dnpNP2651wWlCD6KRaNZ/QpnXKr1TTb83nU8t2oR0c2QSiSM4kjMGfiVjnbN618Gc5NqgNRrxgcUD283y1PI919p7MQS0T0Hoy7eBogFYLfzaZbGb5/Pct1WZVwzZWpdh51/bdFgthzoLDoKa9T0ZtqLmKGbEO4JJsz948lzqzTKAdh1nCx5BRBIA6d4fp2JmAkJSVyRQM6XkvzBBraLF/L+y2j4Fd24CNa4FNq4POYi8Dom0cUtoHT0wve2BLR8Omkzas0v40OixaJfwNVDVL5ArmtRbMKpbNOHuXOC37lIyihQLjNYoRbXJsQ94/GsAW1TpsX1yxoQVI7hgQdUBWk2NvOlpQwu8tN7ecAdIBtdeQLdsjiwty0yympQAe8nmZ1ZWU7u1PHX8FlLo5H/6aFu0UMGqjNAmNCK9p4QKjpk8ZGCEg9b/O0Zz8GcAt2LtjqP3OpTB/vJ+y22C8DDcZo8dpkPQPnkAvwCvMthdeY8g8RyugU1wrlZE0Ko+4SS1KcQVuYoqFKkdy/5laFWeWDSVf6Zaa+B5Zh4UKey85j5Yqfixhvno+Jwt/Zlk5kmub1KnNLKI2HImDR/j3Beo7VgWcW1UaT6u5G8DnamTEGknG6aP/1MDoFVCmWDWHRzs6OiM9P+ocoBukI/M5PEegH5b2iquU9k2qcmudW1SxMFpTozMo3TpSOqW9ztHh6BCs7LgSKt6n7LdCOQa6xlpQWFeXZ2hwNqG6AD1QTDkOOcoxyFfh7XgK269JYRPxT2gTwoa1ZU1WBwY/RSAhe0ski3H9o6iEalmVdKDkge69qBVLJkAo7LkLhsr2Awf2wnItKqxeJg2N3VENEgWv4bDOFr5OrRQg6qjCRoWKIdKhUgt/Hal6BXorAw7NEtUGzJl0MgCt7TqoAJFo8lrAryetC5nrYXXWXGfBKmZU98trUkAMDtiqV59d74SMaxSDBKXhO6idjKMhtUnHIE0A0AUTz4Mpagf7xP264mUdqInsQ6D+Si3glTpvB6/YlxZgR9VEqAox1rpwPcKnuWklgaRax0u6A8CNAE6x/36TB5JMxCNPdbjt3/9PhNt/5WvzEryCaAcCNAOafq5xFsqoAkhRhfYrHe2RbifgeiGNitZsVPS4GNJ++EX0cg/dXkzag8hR75mnKGjRnWk9RDVSp9jHFbiG8kar4c/w09+xKsQzbgpmi75YoCgta6Sa+gZknD7NAL6CwVAfeL0QhQnOV+xIUKsWHcr8RCnZaYZmh/bzz9XKm9dlKKJOyKnJORpCjiYkZ8UkQrDsqYuXXqFCSBWseZI5b5yNIegcGkPOoTEg5GXVOp6rvmudYgk0a1Xt2H4DUmb7pNVwtGPtj2TUgX8u5jnTM+3dKyoBBg2jOVnUjtigvAIqMumCoEyAUJBmCAyEqiqoxs+ubdSwe+kHYWdVDdLarQaJgHfzHNeC4t4OO1QAv35Na9jiSG4FVOesfZUB61ZtCJAO0YHZVHtWjWKtatlGWyuABAcIBc3LVHNTGNkcJyxnFEumGa2o837aQZFoRa3a/1o5ToifPToKI6VImxmk5dC1NmiyzGFvdBs8AV4bBY6K4a+A7dahqVThIdezDNAjfJZGUmabUIDd2GAuh1QU/eGvYS7/hhdmi0a9EgBNDcBHC3SdpOcB3KKMLVctpprObAgwlDiSa/HoYmLG8Q7qkVx/KAZ/2qXUf9EpuBEnhu16tNpwZcEW7YFkaugUfO09hHnUbixd3q+NAt+6vH69MigN2BqRkeD6CwWM+nNY7PxQ1mjDatjH/+WW4pgOKgYn2aZuk+gCJ5wp4TS3bEJ1aofniNmjbhSsa1GJJ6+zv/TiHFaJXP/satIChMk+UXKuYl51PSxdv8ZtLhwN2Zjcmlv+ela3zbD2lhu0zse1/fwQ268Psn1tE1wwsZ0DfHrDK7UxEkGZYakAUMtWQNceMAUtAAFBJR2Cm1+nA0NhQKiqCqiuAPbtgW2oI0Zo907dLDlorGdmaD9ITL2Dr7GAn5YOENKlPPIQXOcs7oAivS5VBziFNQEh3IYwpgjNS2TQrZDcrDGZJ1oDFUdw1f4gxyLq7B8R57MK4Bdgu2AxzNZk/9BibmGCtWi9HkCTmTo9fjhryifOYmOQdCkbyRxmjKyzGAk4EmAUVGujxompVn2+gFHgpMtVIKmUQVIfvl4Ekm78KcxXb6Bq2WEg6d7bROz3LKiwVw786bxB7SXiaiJBMT5aDKczIoImpc9jVJlYohnQnelznPMJqg3kvpfWH2hjcVNXXU86FhJL1xtQgXNu1tGPuB6//XzMrSMGjm4CVX5vgZ79YK77nl9rtH4VNZPdukH+5TUA/wLV5CmGV4ZDSju0RXLafljx1qAG0Uezg7px5n9egA0EVS8PK6jpAyKZAWofSAqyQ50VBwckpTqPePh5cCNcAogR+LPftO235tCWrBvjVMxsBLzaZ5mDngT44UKKAFW6B2A6diFRdNsiCocFMTzhO1I4CGK2E2X7gIYG2L27gYY6YPsWqgD98dp0776OJQyb2NE/CNKyyCbcQoEgFwzlB7BDOmRm1T1rdBw/AT/VzqOrZwsKtwaAouY6dkbPkRz1XXR/SBfcxdRan8o+gtb8HARng8KZ79GA99KMrLYjOU8b4NTED3dtOUJp/knG7zIMutpnC/hTN3VKbNXnGxilBEltFUjqDRIYfg1ADk45G+ZX/0cgKR73F5NsagB2boP9w80S914I4OvsxbgLuk2zUOqQn1ucMKmtRbKxmaC6Pvq9gJAChWney+1gbxxvXotUbZr304aek8KwY+Hn9qUAR9Tx99zLYSaeSxuWMVT9+rXnNDCaB0oUeB7JNcp0L0RZnOpVOO0gmtUg+pjYoztHguwgqNedfg2HP2dMmB3KvHfPI57iXGSzyFUsDkCp7L2dDxbGRzzv8Z/ocg4ZBbRs7Qc+RcVAG8ZSJR28zLDDCYGF/d/uHfS4fzdsfT1wqIwAUXU1sHxBJmcutaU28lxcpeaogJ3CABCkgZDekIPWGeswkU0Oy18bIIkIAkP1KUKnzQDnzbYPE7C2m5C9Is3+452XclRc+zMhe0eK7+djvvR5huxjh91r74gBJI0MBRy1DQmduMUDddz7cw6MQq+LZI51ANUg6g2q2voVACXo1B3m1n9Qh2drgVgUaIqSR9TUQLU0HvoH8NF8cLz7evOXR95K6l6fAaWqwFLybzMytqT3COown/F7Oe8T9F7NWARM0HkZuLWDvmSgyGF8lwPoYr59CzBwGNDY4NUo8zJO54IayT7N87aYAZHuhdhahWmCsqBStvv5dOzaqGsROH+9OXIYhTWbex6OHQafh1NgMaDw4XJmgA5viNBZBgMeH9uTDvSkAkHpXivbT84gALt9s9e4dPtmuiR7doS1WQoaVSCRdDWHxupA6fQS3tXscoECRAUBh641lQ4MacaxEeFZXLXwp7vXO2AoDBAdQ4fOZGQf6eZmGjYXn3ytT7xfCtuZZj/henlEAZIu+qWrf2rWSIuKXaHZFwQYBV6bXAWSShkk9QQwHMBlkBLvv/gjzDmXcjfvGIMkrrhdVQn71DTg9WflzW81dzz86wRI+hJu+NnRbIP/CoBnMfE8mOFjYTes0vNJgNEjzBq1gr/isgAjSdsXnZhb0kGX4hDb/gQNorMjxf08A8DbGKMIJM7o8q1CGugA4QLnMMCTDvRUV9Iho6GeQlzy+/KDxPTI/3hFRZs7PmSgsI73DymmWQvKGtNhxKCjAMkheF3YUGeU5YQ4bTqM5Ir33YzCuhRAKF2roiPMEmXHpwKQGMVFFHskuiMRA+rYYL2Douu/mMAoFCRJS5ISBZJ6A7gEwDAAwClnU2O/Tl0p5BZtIiapsQFobIR9ZybwwB3y5q8B+I25/cFFiMezICk7MmaQ1Mt1oGahdzJAaqFYI13AVdL28+BlnUi26SH4+zsdo3Y/WYCUAEgtWwGdu6cBOeGMWuJv6+soiytsrFupRftHYqxiMG0YAFmeP+sZpOzlQ8CLBjR5SNZWuaAoLwQEBQEhzTbrUI3WeeqaRKkODYJc7VCouD4LiL7YAEk3cdSl4mMKYQelJH6BF0+fWFILt6XwWU+QbmAcqGEgKRd/+GuYsy8lzy8W9YEkbN4AO/1vWnh4F4CfmdtmRI90Mazs+EKCpBvgJVa8BBKl6oxCDY6K4fXXA/ytXwQcuaU4jmG7ny/1vfzkIbYjM7aDspZlwasEsFKBDundJbqRJfAL53Oc5y6QCQJEQYfb61CHxSJIbvEjKMQV5rt1fTRD1BDABLlp6EFZhkGi4ywg+hIBJJnAEtcVhK4zm0LSR78ME8OnSRKQ1B5UTbUHg6SeAM6G9AwaOhrmG98Hhp9IICnK/duamijk9t5rwOP3ygesAXC/uW3G7dmQW3ZkMBeD+mEVKXAk4TRhgaWOT1hR0mY2k82OIwiSJvB9GxHAFZlw2ijweRWojIMJABUGVPunCsFC86DHCJITMVwg4/6cFwKQggBQUOJJxL1MCK6K7pZyaHQYn7DHIBAUxArFkCywRxYQfYkAkrPx68kdUeyRRtFf4sXTd63y4fWS6QSqRNyTjyEgfRJlnoyfBPP171HDWwm5NfHjnh2wLz4BzJ8lHzIHlHU0w0ydfiBrhNmRYh7mqnkoDaNd1sgguWJ7hsVbs+MYA96gDLlICNCJBDyPZHgEgaGcANYmJwU4ygsBSmEgKyj71m3y7Gb+xQKAUFhtqzAGyA2LaQc/GgKEAsBQFhB9SQGSj0VyjTEpFTC7eCYV52rFG5JkuPVkRqkrgOMZOFEZ9XMuh7noKmp6G23yQFJTE9WueWoasGW9fFAFgNkMlt4zU6dtzE757FBzUBcQbAOvwr0u4irNMQUcVQUAoy9BmPwzv5C7Kdq5SA5fZQKCXGATxgRFHDATFCZLBZoiKdifsMwkjTDiAWyQWz/HDW81pQA8TQiuJxdLwwgFhMmyYCgLkIINFAETW6Ho7IQJAUl58LQfpSABbXc+uoK0SsPg9fEBBo+Eufqb1Pg2kkMAKdpEYbiNq2EXzQfeeVl/YB2A4Wbq9I3Z+5AdyqGRfkiiO5Lq49IKQHo0udV8s8DoswmQdDFMV5eTk4IByg14HsYG5aYAPUGhLhNyBIEgt/5TLAAIxR3AEk3BFKU6UhU4DAqNZVmhLEDyjdxM38ipN2DDgX92yPXgIm8xJNfS0J2LdZfwtgAGAijG2qXt7e9+TG918ddgho2mbtXtSoABQ2H6DAIuvgrYuAZ2y0Zg5lMtAJwKYzZ6tyJ7T770KN2bCJJEIc0dJaym67i4LWPiX/Q+dZ/D+xmkB3UrPOcgWBQdJGp2mZ2w3+kogQld9JKPOMILYgYVdg0DRWGvxQL+N6mQbcBjGiCUne/Z0QyAlB2fCCRJSw23SZ+UoZeePKX8PB8UgusIoANeeizfvvSY97ajTqYqt9YCNg7EE8a8FZEIEuUAskApOwG9+VYPr+BjRLFHgb39siLTzxVgclkb1yGD83NQuCvV+4UtJG6mSBypK4SHhc3iacBOEOMTT8EA2XAQlAVC2dF8DzM7jt1iJhluEvZoz0CoEx8dQKGQFur+SHXjUlBYLmisBbUbaMxafnbwCOqLpMv1a22GT3iaHZ/p9UP3mwtriZFKyB0JAUDuvhDUngUhz9OBorCQVjzF62GgJ+h8siM7sgDpC7Jp6ZpSIuAWoNSRgZC0esiF1xy0AlROvzW/ptu3vM/P3Q0vu4B8ue3b1aS4bEIc2Rja5wkgyf10s8OCMtkiIc/DxNFWfZZLs6QCKnGkDqtlAnRSgbDsyI5PZWRDbMd+6IVCh9tEKFsBKsxXyqBJUrEjDKYAf2XjQ6Cso1a8sImORJdcyI7sfIshoGdddhP63AwdxgLbttzXIPAT1P8wFTCyIXPDHsbfIc3fZkd2ZAFSdqRc7GLKsxKQVA9igSoZBEkxvzagzKMcBZQs/ILNoCaL8ezClN1Us/f+C3c/tU4nFfj5JHPEZudRdnzZR072EnzqC55mkqLwRLNud2jpaRdV4MoiXJiZDZ9kR3Z88deO+BE60oW8siM7sgApOz51oBSDV+213gFKGjA1KMDk1v3QP2eFt9mRHdmRHdmRHc0c2RDbZwskCaCRQmgScqsCZbW14kepfaL74Ek9m0Rxvywwyo7syI7syI7sOLzx/wcA0Yj4Je+AvvwAAAAASUVORK5CYII='
button_joiner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABzzSURBVHja7J15mFxVmf8/5261dvWW7nQ66e50ks5CVgISBEI07AEXBhQVnAzIMw4iDijMo+Ioooz8FNTxp+LGDCo6ICCjEBEYCUJMGkMSyE4SupPO1vtWVbeWu5z541ZXd6U7gUbSaSb3+zz1dFX1qXPPOfd+z/ue97zve4SmaeRgANcrinKNEGKeEKIIHz58jBfEga1SygellD9zXTcLIHIEniyEeEpV1fmqqqKqKkIIhBD+sPnwMU4gpURKCbBHCOU800y2CE3TDCFEo6Zpp+q6jqqqKIrik9eHj3FKYtd1URSltaambqGqKMoNmqZdZxgGmqblpa8PHz7GH4QQKIqClDIqhFggDMNYp+v6mYZhoKpqQcFgMEgg971PaR8+xlDSAo7jkMlkSGcyA6pzATRN6xCBQCATCAQMXdfzkldRFIpjMRRFIZvNYts2juv6o+rDx1hK2xwXFUUhlU7jDuegowkhjKEGKyEExbEYQgiSySTuCMz34cPHGElh18VxXXRNI5PNHllEVQZIO4BQMIiiKJim6ZPXh49xRObc2rfge+XIgoFAgGw265PXh49xBkWIYxNYCIFQFLKW5Y+WDx/jbU2sKLiuW0BibURxfQKlrxsKk6muw6qYhFNUjBsMg+siHAclbWK0HiBwoAk1GQdfS/BxMhFYiIE94PyyVxuBvSeMGOlps0ksXIIdKwNVBSGQiuq1R4CQkvT02ah9PUS2rCe0ZzvC9rUFHycvtPHQCNcIkDj13aSnz8WJFIEQng1dCDzmei+Zm3XsyhDxcy7CLq8k+vKLKJm0N/eoGlZFFW44imIm0DvbfIL78Al8PCFVlcTis0nNXIAbCHpkVQTCcdG7WhHZDEK6uKEwVkU10gh4pNd0zPlnIIBIjsSp2QtJzl2MGwwhHBetu4Pw9o0EDjQjHNu/2z58Ar/dME9ZTKphPm4w5EldCeHXthBsfg21vwfhOIBEKipuNEbqlFNJzTkVqWlITcNc9G6UdJrIhjUoZsJb6EeLwXVxioqxJ0wkuGcb0U1rUdIp/477+D8FVdO0OzRNyy+MQ8Eg2eEbxscFVnkliVPPxomVelLXsohuWU/k1Ub09sMoqSRKJoWSSaOkTdT+HozD+xFSYlfVIANBpBHAqpxEoGUPRvshjNaDBA40oXe1I4Mh7NIJWBMng6ajtx/2VWof72hkLavAiDWMwMExJHBi0bvJTqkHTUNISei1zUQ2rUNJxo/6G2Fl0VsPgBHEmlIHuoEMBFHMOPqBvaj9PWjdHRhtB9A7DiNDYezyCuzKSSjJOFp3O5zkbqHdP/gtvbd/h8DubSgte97071If+xQdP/odajqFtmW9z6YTAOsIAisnqiFuKII1cQrSMEAoGK37CW99GSVlvuFvRTZD6NWX0NtbQdNA08k0zPMkef4CLnr7IaKNqwnub0IGQpiL3o1TXO4/BTl0JlNYb2HPvzeTJZ1O+wM4LtfArjsm20jZymrcSDRntFIwWppQ+3tBvjnpqPZ0ENy+EbtqCm4whDV5Kk5ZBVpnW0EdWncH4ZfXYFXVYFdOIltdg9rbibBPYqPW0Ns7im3D0K9+gLj/Xnp6e6GkxN+HHwc4YRLYLqtEahoIBTXeh9bbhRiNauu66Af3IjIpUAToBk5JOVLXhxXVO1vR2w+BpmPVTMcNRfw7f+RwTqql51u/5PDaw/lX/x0/LFShr76Rno09lHzuawSDQRK33s3htYdJ3Ho3nQ88m/9d5wPPYi29ZPiS6da7aXtic75c9w8ex51UO6geLr2Ew2sPk7r6xnx97b9Z69+c8UhgaQRAUUFRULKZnHFpdDO6kowPqtxCeFtFI0wCwspiHGhCuA72hIlII+jf+SPI2/nvD5E++/yC75MXXk7bw2vfUIWO/91KrJnzBok4cx5d/3J3gXref8cPif/dStzyivx3mVPPpP27Dw0Lk+t938fy9Tmv76Kzq8u/SeONwEg356CheOtY5S00RUpwHXAlIBFWFjGSCu5KRCaT8+hS8LMTHCEZP/l5nCn1iJ1b4GPnwTQBN30UWppwa+ppv/muY1dgJuHbX/Z+97HzoLMdWV5J96UfzUvW5IWXo+xvHiw3TcCqR5A19XR+9huF9dVOQ/3uV7wy116MPoJW5eMoBHZzcvB4v5CuR1pFQeoGUtWQiFHV4QSCuKqWJ7ETiuCq2rByrqp4arOqgnS9ZR8n92vocjh12jmIVBL5qSsxNq6hoqKCqg3PU/z/7/Sk4ILTSSSTw5bR+XqeeAjlh3dRUlJC1d7thP/8lPcsxUrJZLOklyzzPv/0XvQf3+2Vq6qi6q7PoOxvxll+GYlkcrC+nZtxvndnvlwsFjvp75c8in56whw51P4+sC1QFG+bp3QCesvrCNd5kzUI7IpJ3jratkEDJdk/oseVDISwquuQmo7W3YGwMv7UPXR8wmHoaENp2UPJhAkoOW0o9Jen6U8lkbXTyWQyhI9WwcF9RCIRgkFvaaKIoaYKF3viZO/Dnd/HuvP79B75+1QS0zQxBj63HcYwjHx9PsahCm207kfJZDx1VtWxptQjQ+E3/XsnWkS2ZhpSVcGxUTtbUTvbwRk+AThlFVg19Z7hq6UJxUz6dx6gq71Aog5kJB3R6PgGVvuh+dSGaXXh6LHbEYog62YO0en7GZKv3Md4JLDa24XW2+FZnoUg2zCXzMz5SO3NrXeyU+rJVtchEeC6GHv3oCb7hz880Rjmu5biRGOoXe3oh/adNN5Y7qRaWnNW4YLvIzlCtR7wnAJMEyZMhKkzC8pZSy9BhiKIltf/tsm6+TXvzZc/Pbj+PeLlNu3AHaIk+plRx7sRCwi+tsXzuhICNxzFPPsCsjPnIdVjz77paXNInnYObiDkxQqnUwS3bUCJ9xVK3vJK4svfT2bmfJCS8MsvovZ0njw393ALIpXEnlJP55LzvLG7+kacmnpIJWHvLs/7bsMaCEew//3XWHNPz5O396Z/9aTzq+v/JokYeOnP3pvrP0vsipXe+reqitgd30NsS6C+0ERVVRWKb10cNU6onhJ4fQeZ+lmkSycgdQN7QhXxiz9EcFItoQ1rUHu7C5buTjRGeuYCUrMXFHhdhV5tRDvUAlLilJRjV9diTZlGtm46VuUkRCZDpHE1wR2vnHS+0IGN60iffT72dx6kdagF4Q+PIHIZD6M/vpv0nEW4sxfQ9dMnCi0N+5uQX7ieQNFbP2lHf/EpjDXPkj3nAvq/9QBH6knuT79NV1cXMZ+P7ywCA0Qbn0NGisjMPQ2paThlFZhnLifbcApq60FE2kRks7ia5kUXFZchB8IOcQnufIXwpnUoaW8/ODN7IakzluEUlyMVAbZFcMerhF9+EcVMnHQ3uOS2j9Px/36Os/TCwS8fvh/5hesJRyJ5SV3+z1fRdfPXcM+9aLDcqkeQN30YXdeJRCL8Lc6TZf/y93Te8m/Y770UJlR6X+7cDH94FPnL71NUVuaz8S1ABINBGQwG0TQNIQSxWIxkcmyNPE5JOfGLriAzawHk4n1xHc9KbWXBssCxwXYG3SSFQqB5J7HVTxYEP8RXXEVqyTKk8IxbODZax2GM5l2onW1o3e1oHa2eIUuePEEN/f39mOagn3lRURGRSKFHmuu6JBKJgnKRSISiIdI3nU7T29tLSUkJwWCQZDJJPB7Pfx7Asb43TRMnZ2w0DINwOJwvY1kWXV1dw67rw4NpmgwEH41M4GiUpGmOIXnLyNbOIHX6UqyaaaAb3j6Em3PSsG2PyLblWZgHfLVVFb39IKGtGzGad3p+1K5LavFZpBcuwS0qwYkUea6V3sYzSiqJsXc3ofUvoB/Y6wf5+3jnETiVKiDwCVOhnVgJmboGstNmY9VOw42V5NRiAC8rR/5zLqUOSqEEtmpn4EyqRWs9QGDXVgI7XiGwczP6oRbccBQ3GsOqmoJTXomSSqK1HkTtbENvPeCT18f/TRU6Go0WqFBv/xUF2eo6UnMXk50+BxkIga57ktcwQKgoGRMllfICFRw7v7crNR03EMItinl+1KoKqueGKaSLsXMz4RefRm/ZM+gTrSheih3LAiFwisu8yUJREOkUam83SrL/pI8R9vHOQOpESmCpG6Qb5mIuOBOntMwjH144mxLvQ+vpROs4jNbZhtLf461TBwIUNA03GMaNlWBXTMKursOeVINbXAa654aZWbgEp6KK0LrnCGxZj5LoBylxo8VY9TOxamdgT5yMG42B66D09aC1HkDftxtj327U3p6Tal3s452PMSOwGwiRmrsY89SzkLqRV4sVM4nW1UZw9zaM3dtQUm/OgOaGI2RnLyKz8Aysuoa8Cm5PnkpmziKMPduQ2QyZeadjnnMhdmX1oI+fBFwXNxzFrqgiPXshxu5thNf/2XP0cBz/yfDxjsCwlDqGYbylLA3HlLxGgNTCMzAXDZDXW+dqnW2EN/6F6F+eQT+8f1R7tMKy0A7vJ7h5PUpfD255BW5RKWrHYaJ/eBj9UAvm0otJXnA5bkm5FziRSx4wuLYmF5QucUrLsarrPA+xvm4/WN3HuIRt22Oc2F0IUnMWYS5Y4lmEBQgJxt5dRNc+i9rXw2jjgAutYTbBDWvQ9+0mecmHCWxai7FnO+bSizDPvRgZDBcYwkQqidbZhtR0nOIyLxhioKryiSTecxlKykQ/uNd/Wnz4EjjdMI/kaWcjQ5E8eYO7tlD0/JNvq2OFYiYJbNuA1naQzPzTSb3nMtySskHy5v4GXttK7L/uQ9/fhD25DjdWOhiXLAQyHEGGI+iHWvw0tD7eeRJY/m3ysPBiZRWkZy3ADRflcz4HXt9B5C/PQDbD266kOg7SCJBeuAS7rHKYJgDCM1K5LtKxB5MJSNXbolJVcBwys+Zj7N5GsNfPBOFjfOO4BjNkZi7AmlTrHUOsqBgHmom8+EfEcZRsVl0DTlmlZ7CScnAPeWBveSBcTlFAU73tK92AQAACQe9vKEK2Ya7/dPg4eQlsVdeSnVyH1FQQClp3B5HG595U2ti/SepPrvMs0q4zZD0/QF4VGQp7ZyzpAWQ46u09GwboAc+N0wiCEcQ+IrTuzaD7F3+ivbEN84YvDWo01XV0rG6ivbENWV139KXGNZ9+wzKjRc99vyN9zaeR1XW0N7ZhLVvxlupJ3vZN4l+975hl4l+9j65HG4/7A/tm+hL/6n303Pe7k4LAx20bKTNtDk5ZhecwYVsEmnbkQvmOr3XXiZUghZJz/nDROlvRDu/3jFVGAK3ldYRtofR1Y2zdgNrRCraFcGyckgnYddORhoFTNXn0166pByARDCNSKUKhEObVN3rrfzNJxyvrqaioGDHW1WqYi7K/+ZhlRvugW6eeCb/4PtZ7LkOkkvQ88gBlZWWjDg1MLzkXpfF5EokE0ejIwfnZuacitmyku7ubsuMYmCAO7aNiSSUdHR1H7UvRV24gkUjQ5zgUFxf7EnjUD3LuOJOBtLF6RyuB7ZuOfyhf7jhSKR1wbEQmhbH1ZSJ/fJSix/6Tood/SmjNM4hsBrWzlfAzj1P06x9S9NBPiP76R0Sefsxz/tA0T60eJWFkKAItTVA1BSklsroOc8WVXjK3Ha8ihCD1qX/NS+Sh0tqurEZ0tKI1zKX7sZfyEi952zfzZbsebcSZfwayuo6uRxuH1TEUHb/9qzcx3PVj5ORc6tbnX6f75S66Hm3MS/qR6j9Sq3Cm1GNdeS3yoiswb/gSnau20t7YRsfqJrLvvwYAt7wSN96HetlH6Fy1Nd+mnvt+l6+/+xd/8tq0bAXtjW35/3WsbspL1L57HsyX77vnwRG1ge7HXqKyspLsTXeM2JaO1U1o//R5tK//mM5VW/NjNbTfR0rsgWsObctQHK1dI/Uveds38+0a0MoG6sy+/xo6Vjchq+uOOvbtjW353w/0aUwJnKmbgVtUDIqKcF30A01jE8onZS7wYYj7ZTCMGwp7wQ0lZZ7aLBSkquFGYzgl5bjFpbixEtziUi8jyICb5mj6vPx93pt1qxETq3EcB/PqG1FbmnHbD6O0HUI/5wISK28icM/tiOkKbFhLYskyUqkUTu10ZDKO87MnCP3pCaybrqLnH79Aesm5hK+9BKYJnLbD9Fy+kv5Pfh6RTKLN1OHh+0lcehWpVKFdIfLYz73JZF6UdMUkMJOIe25HvflqnCn1dC84E/OG20es3xniyFJ0/73em+WzSGUtEitvQvv9r1EbNOT2V+m95kZSc09HhiJIKcnefi/Ru28j9fVb6P7WL5GRKIE5QVg+C7usku6P3ED2jPd4RH78QYxL5iMl9C4+h+TVN5I97SyCKxbClz9N5pwL6Jt9auESaWI1NO+m68zzR2xLpnIyMhQhvu550vUzkUj4/D+i3vGZfL+HHmBv3vAlMqcvJfgPF8M0kW/L0BRC6Ws+PWK7+u55cOT+TZuFRKJecAr2xfMhlaRnYg22bZO48lqMVY/QueIjI459JpdP2/2f36M2aPT+7NvHPOrobVehpRHAnuidloCioHa1oR/ch3DGxkVRSSYQVtbLcqnpZOaehj21wVvz6jrGnu2En/oNzoQqUssvw66q8RLpuS5uJIbMB1WMToV1JtWi7G/GjfdBxUTsmunYK64kcM/t2LfehfLqX9E2rEF97AFS516C8g//jKypR3nxGdKT6rx8yUsvhFSS9F2f89TvCz+AM6Ue8z+fGrzQi8/gtB7EnjUP8addBPbtQVt5IaZpEgqFCh50dd8ehKYhp81EPLcK+dQjRD54Df2As2sb5iduwR2h/lQqlVeVrVMWo3S14+7dReDO7+NsWkf2azdTVFSE3LqBxIevw5znZfGQV30CdeM6kv/9ILFTFtGTi0G2dwxGErtFxWQjUdSN63Ae/AHhkhIsARzch5PsR4YipB9dS2DjWvRbV5J44Wmc8vJ8zi176gzEuueRV6xEG6Etife+z8uwue45qKhCee5JeGk10UmT6QOcF57GsiwMw9Owwvd9nfTEajLX3YK47zFPi4r3kc1m8+q50t87vF0tzXDOBSP2jwkTvevu3UVFRQW9O7dgT64j/cG/x6mpR3zmo4if/n7Ee5uaUu+1/wvXE4pGCYfDYyuBnZJynJJyz89ZKOjth1G728fMx1jtbkck4vngBLe41PODrm/AntqAPWWqR+5QGKuuAbtmGlbtdKypDTiVk/LpfNT2Q6Mznk30VGD1wF5keSXOdbegtjSTef6PEIrgvPIS2Xt+QXbJMlRFoH/ny2AmcQ/tR5y13Kvk4fu9sh/9J0KhEM6UetQ7PlOYO2rlReh33Ejwazcjm3aRWXwW5o8eH7butKfOQLQeRNd1nCn1yG2bPILXTUekktD4HG7NyPUPlVBO1WTEvtdRVRV76gzYs5NAIOC1r2oySksTbnWtV+fD9+PMXoA6Yw4yl0p2WO6ruz6LUz8T8bpXjz61wSPN3t0EfvsARZ+4FNavIVM7ncQ9P6d0/mkFCfPc8krktk3IqQ1Hb0tnO0IIzyax7RVCoRByoN97dxXkme56tBGmzUIRAv1bX/QmolfXF9ggjN8/OKxdkcuvHrl/v/oRbk09HNhHKBRCCIHWfgjRMIf0h67DWPUI9u5tRx17Z+a8fPvfiLzHh8DFpbiBgLdNoyqo3R2IMTrtEEA/uA+1r9ubMIZ6lOVuiEiZXiI9y/ISAQxEOzlOLr+0t0+s7942OgJPnYF4fSdqLoGb++HrUNb+CTWX4UI++RDuu5Yi1j2P+MSl2Jd/HMIRxMF9yFMWeQ/XF65H2d+MPONcstksIpXEee+llJSUEP2Klz+q/LzLSG0zCaoqJbd8BGXnZmQyTk9PT0F73PJK5IG9cPGV3n154Wk0TfM0hZYmRM4rbaT6hwbS25XViLZDXgRMRxvOmcvQdZ3s+68hfe5FaH/8LaJhDsqOzYiffAvCEawLLkf0dnsVfPFeKisrCfziGdQXmqisrETWToOD+9B1Hev0pfnxif/PLtwVH6b81qvRXvozmEl64vH8hGItW4EMRXBffAals3XktkyqQdm2EeV9Hz16v3PPgjP/DG9y++E3UO76HNa1N3tt3raxgOSdq7YOa1dy144R+1f6rrO8up94KD/xqK0HcRefhZwwEfmlTxKJRI469krVZJStG4+Z5fP4EjhWCqoOQkFJmShmHDGGfsUDVmdhZQfXxQUNtEFKz6CWJ69dQGSR7Cew9eXR9XtKPfLAXoxNuaNIOtvJfu1mxNxFnhELCLy8BvtD12LvstByD5Hs7YZoLD/rhv76Arx3Bdlslshv/gOWXUTvxh7Myz5C4J7b6X5uFcaaZ+n94r30buxBVFZhfOO2YelghWni3PJVnHcvL5A82WmzEM3e+6PVP3QNrCTj2JdcgXvb3UQf+jGEoyQ2x+m75U6MVY9gfe+rUDEJ2g5iHNqLvqkRuexi3GcfR1/zLFz/Wdob27CnzkD70g10NyxEhiI4Ta+hqirWrAX58Qk/+TDJK1bStb4Td/llBO+9HbFv9xAr/zRPvWx+jaL/+snIbalvgHg/yoJ3HbXfeW1ty19R9zfjfPdX2I83egfjAezdVUCg8JMPDW/XHx4esX99MxfkrzugpuvbN3r3+vEHcRyHcDh89LGvnYZM9OV/+4Z22yPjgSOhEGbqrTtaxJe/j8yMuchIFK27g+jqJ9H3N49pmJ49cTKJ8z+ANX02BCMQDHpWZVVD37Od8FOP4JZNIHXuJdgTJuaOZsFzOBGC0JpnCQ9YpEeB9o4OimMxAoEA7R0dqKpKeVkZpmmSzmQoKy0lkUspAxAKBkml05QUF5O1LLLZLGWlpZimSdI0qZgwgVQ6TTzupQxSVZWiaBTDMIjH46Ry5xNpmkZxLDZs1u7q7sZxHKKRSL4+gL7+flRVJRqJHLX+gnuau1ZRURG6ptHX34/jON7zEg4TDofp7unBMAyikQh9/d64FcdiI7ZzoG1lpaVomlYwPsdqT/zOH5GtmIT7obOpmDAB27aP2pZgIIBQFBKJxIj9LrC09/Rg23belTiTyVBZUVFQZjT3IWtZBdcFzwWyu6eHoqIiQrn0QUers6u7m1AwOKIKnc5kjp1SJxQKDbNojgb9K67CmtqADIbROluJrH7SCwwY44D5zOwFmOd9AGfy1AIC47ooZgKpqt56N6cye+JGwXhtM5FH/wN1SNJzHyce3Y+9hDOlnsBnPw5PPUIsdnLmsMwcQeC335FDUTwf49y5R5ygBN2BnZtB0TDP9yy5+Z5qmmcpHDgYbUBddB2MHZuIPPFrn7zjEGVXLKGnp4eMbVNaWuoPyPHaRlKScYRlIcMCta8HJXniUrkGtm9E7evCPP+DWHMWeXvAuj7oH+06COkizASBl1YTWv0kSiLuPxXjFD5xR9h1OTKcUNf1NzwH55gV9nSCrqNkMwR2bkbtastF/MjRHeD9NkAaARQzgbFnG9qhFoSdBSOAAEQ2g9bSRGDdc4SffIjgpnWITNp/InyMaziOUxBO+LavgX348DF2a2DFHxIfPt65KCCw9PNA+fDxziUweMdr+PDhY/xhJG4OI/DAhrYPHz7GF0YyLg8jsGVZRz2l3YcPHydO+g54nB1J4GGRBtkxDD7w4cPHG5M3m83mAzHyW0hCWAqwcajxauCf2WwW27ZxXdc3bvnwMcaQUuaJm875Wiu5A9kHOKrrRq8mpfyVlPJMKeVQZnvxn7aNbdteehifxD58jDmEEHniqqpaoEIXFRU1C8MwjGAwuF1V1elDo1kGSOu6rm+Z9uHjBBJ4gMRD1WddN3pmzGj4g+a6blYIcZ6iKH91XbcyH6Y0RN/2jVo+fJx4Eg/AMIzu2tqpzymK0iwGXCjnzZs/sb+/7+fJZHKxbdulnMDDv3348DGMxLZhGD3RaFFzZeXEXYqiNAPf/t8BAETChsHsPJizAAAAAElFTkSuQmCC'
button_leaver = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABJwSURBVHja7J17mBTFuYffqu7p6bnsssu6uwoCAgpoQAMGRQ+okUSiJjEYjdGQED3kURJDEmI0B41yyEniBS9H0cSTYyIGLxHUREQUYhTkqpHoCooKrAgILOxt7pe+nD96ZnZmLyoeg7tLvc/Tz+z21FR3Vfevvq+q66sWuq6TwwCmSSmnCCFGCiHKUCgU3YUosNF13QWu6/6v4zgZAJETcH8hxFJN00ZpmoamaQghEEKoalMougmu6+K6LsAWIeTERCL+ntB13RBCrNN1fbTP50PTNKSUSrwKRTcVseM4SCn3DBgw6ARNSjld1/XLDMNA1/WC9VUoFN0PIQRSSlzXDQshjheGYaz1+XzjDMNA07SShKZp4s/tV5JWKA6ipQVs2yadTpNKp/Oucwm6ru8Tfr8/7ff7DZ/PV7C8Ukr6lJcjpSSTyWBZFrbjqFpVKA6mtc1pUUpJMpXC6ahBWxdCGMUDVkII+pSXI4QgHo/jdKJ8hUJxkKyw42A7Dj5dJ53JtE+iybxo8wRMEykliURCiVeh6EZizvV9S/bL9gn9fj+ZTEaJV6HoZkghPljAQgiElGSyWVVbCkV36xNLieM4JSKWnZprZX0Viu4nYCE6CFjvRL3eplAour9brapAoVACVigUSsAKheJA0Hvqibt+k8SoscRPGIdrBsBx8Z6WdTkC8CEZuqDr4LiYWzYRXvscWqRZ3SGKniXgD5FBtyF6yhdIfPYUHDPQJtC8SNt/HiDxsafhajplLyxGJuLqLlEoC/xJkzxutCfevHClLBKx+H+LOH30cQT/uVoJWNHDBOw4PeMxkpBtwpXS+18Wbe2FfED+uQtmADRdPVJTKAv8r+kEO0WC1RB2lsCrL6M3NYDUigR84OJ1fQYyFkFraVR3iEIJ+F9jgUVBvOg6gbr1lC1/ApmIHXIXMTvhbPbf9AdCy56gfPb31V19CNFzHyPl3WZdB92HjEcRtnVIX8x41iIajaq7+lC2wA49YxS6vQV2DT+uOPD2yDUDpEeNRd/1LvruHT2yz+u2+1v12pUF7hkC1rTcpuf6vR/Dak26gNYrrqVl+nVkjv7MIXHRI7PvYc+a3YUtdtWNHdLYI8fScsufStLtv3852QlnF9I0LK6jYXFdh98mrpjFnjW7SVwxq7AvdtWNNCyuK+TVdPcTOEcMLOkG7Fmzm9S3fsD++5ezZ81u9j26Rim01wqYosdHmuZ9HgBOuJzIJdOJn30hriaxBg6h9fvXkhp7mtcg9FL237+cxFmTS/bFzp/K/pvmt9XNEQNp/M19pP7tCyXprGEjaZx9F5ma/gCYr6zCqaqmYeznS9KlRo1FJONE7p9HIpEgMvseYudPxamqLqTJjB7Hvjse6bBMTMtXLsEaNtJrRLa+TWOjGkjs/QIujDp/dLIDh5IedRKu1CCbhWwWu7yS1u/+mMT4s3B9Rq+72LGrbsQaNhKx+XW4ZCIMEXDmcNhchzXhLJq+dJFnQb/1fZyqasTTi7w0+W1zHQRCNH/5EhzHwf/Kak/wp04kWxRDnh0xCvHeNuR7W9AmnU/irMnIHfVw2/VteS1ZiDtgMI0zf1N6kgOHoN1xg5fm0i/h8/mUSnutC03Rs97C/x8N/xv/pPyhe9B2bYdsBqws2Bauz0/0osuJf+kC3ECwV13s1MgTEck47jnHY2xYRXV1NYenIlTPmgbJOJnTzyaTyRCe+3PKTijHvfJC9LsXEfzd4xiPrYURx3v97LI+pFIp/IsfRDY2wMSvkMmt15S4YhZuIIT74nJ0XSd78hmeyH9/K757b6SiooLDDz+cw381A7mjHvvMLxOPF02W2VyHfeecQrry8nKl0gMZxOpxIhbiY8+28r/+MhWRZiJfv5TskBGeJZcSV5PEzv0mTrgP4aceRkZbesXFdqpqcQMh2OaSAfa1r87aI0ilUhiGQXLhGhg2EgvobGw/H1QeXLGU2PlTiU+eSmjZooL77D50L6Zpkqn13G3mzCM7Zx4dajIZJ5FIUPB39u7GMAxM01Tq7N0udGcc+Pirb/sWKu67FXP9C4hMCmy7MBstMWESkYu+h31Ybe+onWDwQ74PY1kWkdn3eK72jnpYstDbbrve+2zfCK5f4TUOY08jk8mUuM+maeIEwx98UoEQ7qBhRX5+hKL3dSl6tQX+oJvRHyB75FG4fjMnSrvdaiO5WVpCIuNRzLqXsPoNxBowtMhFh9RnT8ExTMoX3Yfe8H6PrhNtRz3WkYNhZNeicn0+UieO96zo6UPw+XwYhmcf0w8s72CNfS8uRTY24Jx8OtEf/MKz8C8ux6frSCkx6t8iM3ocXH8lLLi7c88AcE48ucixUq8R+PgC7ilzodtb27w4c+fu+v3Ezvs2mQFDIJWATAYsy5uC6S3S6Q2A6TpoOgIH/IG2x1P5Z8pSkvnMGGLJOBV/uLWHtF6dXz9z4yvEho1EPP0a1bO+h9y9HYDI7N+SmDSZ4LNPUD57Og2AGwghrvwFVQv/B4CWuQuwRp/Ssb6L3OjspT8ucZ9xXfzrVxA7fypMm0l5Mkpw1bO5vvK1RL9xGbKxgeoLTyHbfvxCzUE/tC0wtt12I+QDHTQN3HyUkmx7jqz7vFFnnwE+H+i+toAIxwGpeY+XuruAz72Q+LkX0j5+SiTj1J45lPAt15AYexrOiONpeHx9aZrGBhI3/RwRi2H+YxWJSZNxZ85hz8w5HY8TLh1YCjzzmCdSwN2+1XOfq6o8C73yaYxVy8mM/yKRW+YTaW8vfn8bjU1NqKGqT6gPnLdP3X3ryiYXNiG8dMXhhvlHTppesLzoOcHqept4dV9OzAYYfm/zmz2uPoqNWcO+fbhA9TdOQS5dVJrglTW4P7wYbcdWgsEgZbOnoy99rDTNime9fjDA0OE4rls4tnz9JbQd9d53q/6GrusIKQvfV/7s2+gL/wj7G9ry21wHt12P+6d5hMPhDmVw1faRrrMwTdM1TdOrdCEIh8MkEolu3/Lsn/lr7Jp+4DfBDBD6218IPf1nRNI7d6esD63fu5rMwKMhk4Js3n3O9X+LZ3H5fAjHBjOIGwyDYeRmd+XaN8vCv/Y5Ku74Rbetj2w2S1NTU9cttZRUV7dNpIjFYiWPb0zTJBwOl7zgrn2aQCCAYRi0trZiGAaVlZUlx2hqaiKbzVJeXk4gEOhwDvF4nGQyiZ3zjgzDIBAIFEac82UIhUKEw2FlXjshmUyi58YXerULLZJxwk88gBMMeUEOTlH7JfJhhp5llrEIVm1/4l/7DlZFX88Ca7oncMB4/R+EF97Xrcvr8/morf3oo+XhcPhDRdJVmq4e8fTt2/cD8wuFQoRCoU+sDIreLGDLwlf/1kfrLlceRvrci7EHDmkTru59+tc8R9l9c9F271B3i6IHCLgnL+z+Mc49O2QE0ak/Ijt8VJt4c5/Bpx4h9OA9SBXYr1AWuPuRHnMq0UumY/c/qmQpHpHNEHrwboJPPoQ4BBcIUPRgAffUeNIDPe/McaOJTrnSGwgrQkaaCc+/E//KZyCbUbG1im7NIbuwu/7eVox/rPIsrOOA46Dtepfy/74B8/mnENmMujsUyoXuti1XLELZQ/cgY63Ez5uCvnsHZfffgW/LG+quUCgB9xSCyx5H3/ku+vvb0fbu+tTOI/6zm0mdfBpVF4zrdnXU/Nu/Eli9HHPBPBoXrcNcv5LQLVcr9SgX+pNDWNmPNXouUkn8G1aj7dn5qY6+Z4YMh/p3PnAyxqcyttBvENnR40hufYtUdX/sIweTenFZj5jsowTcg3D6VOH24DA0p7oW9uzssAJF5qtT2L9kIw3r9rLv+W1kvjoFgOzp59C4aB0N6/bSsG4vrXMX4PYbRMO6vWRPP6fw233Pb8PtN4j4z24upG1ctA571EkAtM5dUJJHe/Y9/pJ3vF/dWwjot2f+klhdlH3Pbyscq6v8i+nqWM2//Wthf9MDzxXOvWHd3kLZuypXV/VT/Nv8PuVCd2NSJ5/hzZDcu8ubaWU7XgihbbWFE5a8AE2AzM+T1trmSUuJ6zeRqSTGhtVojQ0H5fztIwejbbq9ZCqjPeokWn8yh+Ct15Gafxf2f91Ly5QfULHoD0SuvhnjhSWIM4dh/fJ3pC/6d2KXn4dIxmmuHUBfyyJ2waUYSxay/5xvIk8+jeClZ5NY8Qz2wtU0T55K8PiTyJx4KuY5J5D63ATSc+bROmI0fTb/s3AOocfmEx87Ac4YSnRWLphj2V/Qb74G69UWWsaMJ3DsaNKd5F/56tpCeVJTruz0WEz7KW4ojP9Yk/QRg7AefZGmb07HP2Cw17DNnoH2zELs11o7litQBp3UT7hpv/fbvz2Jdt3ltNg2FRUVhbBIJeDu4NpJrfT/QJDkxPM8ITqOt0xOJu1t6VRu2ZzcfOjiCKV8UIMvF8CQC2wQyQR9dtYfFAHnLYu98tmSYPbEBZfiBkLEr7sdrrvda3YaG4jFYpTfeyOt489CLN4Aw0chGhtIJpP4Nr+O1X8Qqa99B3vAYMSMixG/fxL7yMEk/ri07aAvLiPT3IgbCJFatAb/hjX4rppKbOWz2FVVBeFZtf3Qtm9B6Dq+AUeR2bAW+9c/JVBWRkwA0VZSkybjdJJ/MpksTMWUkZaOx3qvHsZ/0TvOm6k2b6SsD5lQGG3DWuwlj9Cnb1+ib3Usl/bj2Vid1E+y/1FeWON/TCMQDhMMBumt9FgBC9fpZGe7lSrzq1VqGtgaaC7Y5AL5278QDU/YjgO2jYy2HrQXm2WPG+PdcO++ja8o4CA7eBj6wj9iXXNZW0MFOD+8ntYrrkZ/ZQ3u6ucgHsVxQdM09Ib3sY85ltRnT8JYspDMO5twBwxGmz0D+4G72kQCaIEAZdvfIfqdGaQHH0N67nwq39mEtrdt2qh11NGItS/g8/nIDh6GeO1l/H4/5tARRAMhRN3LONNmdpq/WxTQYDy5gLKtm0uOFbprjhf6OKQ0FtgBWLENuXEDfr8fXdc7LZc2eHjn9TNvIWJ/AwjRq8Xbo/vA/rqXEcl4R/G2Dx3Mhwca+fDA3FYcOqjrbW50TszGGxuQjXsPjvt8eH/km3UIIUpWoxDxGPa4MwgdewKVF34XsSlG+cw5+MaOR75ZhzV1knfDjzkVreF9dF1H27MLZ8ypuIfV4l53OaFQCJGMY3/+XCoqKgjfcCdiU4yqiV8mvXI7zjnfoOqqb6GvXwGJOM3RaGG9KwCnqgZ357tomoY9YDDs2u6J+XMTPME89UiX+ZeVlRXy2b9kY4djxd9+0/ty1q3U1NTgf2AZ2spt1NTU4B5Wg7u5ruAJdFquROf1ox9xJHLjhpLuyKFjgXvIihyhF5agxSMkx0/CqaxC5GN4tVybZDtgZ70wQiubW3XSLnKhc6tYyra3HLqGCVLgf+0lgksfRUZbD0pZrJp+2KPHwVaHhqK+Z/jhe2m55ibiS14lDpiL7id6+w2YP7oBe8YNsNWBtzYiGhuwI634NQ3fpg2esJ5YgG3bBAMBePQ+YlNn0LKhGdm4D//ca2n6+xICix8m/t0ZxL8+Fdm4D3PutaS3vwO5YHwAkUhg/+Q/cXfW4wZC2NveQpOS7PDjkTvqcYBQF/n3rawsiCj41MPEprY71tN/Rr/oMrLTZtIwbSbaznr0a6+g6ZgTcAMhnPq38eneGyI7K5evi/rh4suRW97Abxi9fmWPDvHAgUCAZDKpxucPMpFIhHQ6XdpIhUIYhkEkEinE0IZCIYLBIOl0mkjEW9/CMAxs28Y0TYLBIJZl0dzcTFlZWSH0L5VKFd6bpGka4XAYwzC63F9MU1MTtm1TWVlJc3MzlZWV6LpOIpEgnU5TWVn5kfLpKk00GiWV8vrAuq4XlpJtamoqHAvotFyWZXVaP01NTYX66E2k0+mSeGAlYIWiBwtYqipRKNQglkKhUAJWKBRKwArFoShgVy2mrVD0bAvc/n2tCoWie9CZNjsI2LIs9W4ahaIbYlnWhws4m80WnjEpFIruY31t2+5gXCXQYfGn/MuaFQpF9xBvJpMpzJXPi1gIkZXAhuLBq/yXmUwGy7JwHEcNbikUBxnXdQvCzU8zlVIipSxo1OczWnTXdR90XXec67rFykbTNCzLwrIsXNdVIlYoPgWEEAXhappW4kKXlZXVC8MwDNM039A0bWhx+FVetI7jqJFpheJTFHBexMXus89nNB999DFP647jZIQQE6WULzmOU1OIcijyt9WglkLx6Ys4j2EYTQMHHvV3KWW9yEchjRw5qjYSaZ0fj8fHWJZViVpyVqHoTiK2DMNoDofL6mtqat+WUtYDt/3fAJkQuaX9eWk6AAAAAElFTkSuQmCC'
button_group_leaver = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAB+nSURBVHja7J15mBxVvfc/59TS++wzmWyTBQigJKACQRB4AQVlUUERBDSAqC8XEV7cLoggelX0VbwoueBVvLwIXhDwFSGyo0KCYTckQEIgQyYJk5nMkpnpvZZz/zjd1d0zkxAgkEmo3/PUM93T1edUVdf3fH97CdM0KYkNnCOlPEMIsY8QIkUooYQyUWQEWKGUukkp9Rvf94sAogTgqUKIewzDmGsYBoZhIIRACBFetlBCmSCilEIpBfCyEPKobDbTJUzTtIUQS03TfJ9lWRiGgZQyBG8ooUxQEPu+j5Ry4/TpM/Y1pJTnmqZ5tm3bmKYZsG8ooYQy8UQIgZQSpVRSCDFP2Lb9D8uyDrJtG8MwanaMRqNESv8PIR1KKO8g0wKe51EoFMgXCmXVuUZM09wkIpFIIRKJ2JZlBcwrpaS+rg4pJcViEdd18Xw/vKqhhPJOsm0Ji1JKcvk8/lgMeqYQwq52WAkhqK+rQwhBJpPBHwf5oYQSyjvEwr6P5/tYpkmhWBy9i2GWQVuWWDSKlHJCgleZFl5dA159I340rrWFfBZjeAhjqB/huuGvHsouC2YpJZ7n1eDVHL1jJBKhWCxOOPB6qXqc9un48QRUnYBnR/HqmpDNbVjdXRjpYQi1hlB2QZFC4CpVA2BZo3MLgZCSouNMLPDWN1GcMmMMeEHo90LgJVIUZs7BS4T5J6HsojaxlPi+X+PQkuPS9QRiMGXZOC3tqGisCryiBrwIgSjvO7kDPxoLf+1Qdj0ACzEGwOY46J1QKqjb1IYfi2vAqlr81jAxIJRma3+wD1nIQ+g5D2VXV6sn+gH6sTiU49NVjFvDwLJ285J1KMsOf91QdnkxJ/LBKWmgTKuWbgPwAkKWPqq1i5UdQb3B5BNlmKhoDGVaCNdB5LMIzwvvkFBCAL8Fpb9i91YzrxzNwlUglhKkMVrH3uoi4ba24za2okwzmE+4DmZ/L2Z/L8ILw1OhhAB+4/j1PSizYI3/SoxVp4MvSVD+Ntnxyo5QnDoTL1WvgV81jm+YOFNm4Efj2N1dCKe4Xc/NOfSjpE84jdwhH64cei5D/NH7qb/ivJ3yZup+cDVG/ybaTjk4RNaOArCi4ivakVKYOYfc3AMozthD28FlZjXKm6nfmwaYFtFn/4G99mVNwrkMOMWa8/AaW5GZYUSxUFKZDYpTOvDqG8eydYmFFeA2twFgbUcQD1++kMzRJ45dUGIJMkefSPYDh9B6yRcxVjy5091Qru+zqa+PlpaWEF3vgEw4J5YfTzL4yc8xePIXye2zP159o7ZNo3FUPIGKJ1GJlN5SdfpvNI7f2KwdV66DHBpEuJVYduaQj9B37iX0feEbOJOmakDXN+En6jRjj1bZq1leGnh19fjx5Dar5VuT7JcvroB30W0wW1S28z8LK59DNbex6Uvfwgtt8FDeMIB9vxJKeoc3ZUcYPOlM8nvuV7FHy8xrmpp1LQssG2wbzNJry9J0aRhY6zuRI0OVMaVB7v2H4McSuJOmMvTJz+O0T8OPJ/Uc1Wp5tZOsSidRVgQ/WYcyjLd8jiPHnYrIZTRYz/8MyUSCye3tenv6b7R87kjkyuWoDxzM0J77gVKkv/Yjupe8hvOhj9Lz52V0L3mN4csXglL47dMZ/MmNdC95LdjKn5W38vdzp/3LVv8/fPnCYJ7qMQeu+SN++/TXP78adWLr+6a/9qPgXLY2x/DlC9n44Opgv54/LyP75YuDz3v+vIyePy8b873sly+me8lrNftuy5wbH1zN8OULg2ux8cHV23bu79Q2kW3g4Q9/EmfyDA1aIZD5LNGXX8QY7MWvb8JraNaglQYYUrOnlBq4Xa9gr1mJ2bOhhn11CKq0ECiF0z6doeNPI/rCs8hsumI3j1KfA083gGXpLDDDAPfNZ6kVTjgdv7kV8Zfbkff8gabmZizLqtnHsixarvo2Q4/cR6FYxGttDT7rO+9SaNbvM12d0DiJ/NW34E2bVTNG5ugTye29H5NG2aKbC0VEPk80Gh33/8E8Z10Ie82rHPf7DqL332+h7eSDkPKtK23D3/2PMSbEeHP03fAAzpx9avmluZWhz59PcfMADbdcR+zpxWSOPpGeA45g0pN/DfbLzz0AkcswdMM1kM3i/uSGbZoTILPXvtAxW69DmQyblj1Fa0vLdjn3XVKFVpEouX0+QH7O3IB5rd4NNN94NfV33kjykXupW3QrdXf9nsTi+4kt+wfR5U8RXf4k0WeWkHjwTmKP3ofVuSqwccvquDN1BioarQG7M302uf0Owk/WVQBc/rx6C/5voKQ5Ko3zTTiu9pyrz3flc8RjsTHgDdacFU9SX1/P5Pb2mhpt4knMzx+t1e0ffo3i+d/BmzYLsXI5nHZURQ3vWoM/fRa9F/7gzR3oXvMwf/tzPd5pR0HXGtT0WfRd9KPt4Lz7GJmjT0Su64SrLquYD4tuq5mjcMLpOHP2Qa5cXmtm3Ho9ALl9DyKfzxN5eon+rQ8+CqcqBbi411xE1xpk18sYx5y0TXMG0jEbec/tep8DJwVF9KENPBq4hokzuYNCx27k9n4/yo6ClAjfI/bCs/iJSkKGH9GsIYcGMDZtLG3dmD0bkJsHQEr8WCJYEIq77U1xz7m4U2ag7EgFkIZWx92pM8nPOxBVBnE1aKUsJYWUXoMOJflvzb0XLBidq2vA6xz6Mbof667Zeh/vJf31K2sHeOgu1D8epq21lcnt7XgHHIbIZVD/8mkizyzW/3/6bzT88nvazp+3P+lM5o0f6KLbcP/tIurr6pj86gs0XvP9tzZeNevNP1xfi1//DOtXV9LY0KDNhx98FbmuE+/I40lnMkTuupmm/Zvxj52H8ePrSVz3RxLX/RFO+YIeKJmiUCwSuetmZH8vHHVCUG6X/d+XoGIJ1KMPYJkmzvz/tU1zVhwVGfzzTg7Mm7YqLWjCe6H9d8gLrQwDd9IU3OZJoBReYzPKNEBKrK614Ps4bZNRpon9yot49Y24U2do9bnkXApsLSH0fi+tgGIBZ9YcvJZ28LUNHKjQo2LKzuw9IRIj+s/HkJk0arxVVkiE52igvMV4sEgP6xeNzUjDCK7zlq73iONCJlP5fGSIeDwefFfF47CpB9n1MvUlFU8B0SX36ePt2I1CoYC9hSiD2lL0YdVyEokEsXgcBUQW36vHiycpFAokEonX/323xMAlJyLfuwbne9cwOHqHXIZsNksikaB4yVVw0gI8YLxlw/d9FBD/+z2kT1pA5sQFJO6/nVxJfVa//xWRaJTiG5iz/F5KSTKVYqLXte0wBvaa2nCb2lCGqR1FkWgQGpJOSQ2WBm77NNy2ychcFuH5+ImU3uIJ/EQSP5nCT9UhXBc5NIA7fRZe6+QScFUFsCX1WTvCbIhEIRLD2W0vch/8MH59IwIxVo02JKJYwBgaeMsJHdaq5frF/MNrEtKtR++h+YCWimp31WVbMB43j+lXpn13xhZVPPdN1khvSb1/q4Uu2pu/FYklUDPmkD/9PNInLdAOv0W36e3W68e9NpHH/67HPuAwisUiTpX6HI1Gt3nOihGc3mn6wu0QACvL1skThkmVG7jW22wYAei89umIQg45PIjw/YrTqUwbSmH0vqbLCpta9aKgqnimzNiGqb3XdqQE4ChEY7iz9yR/0JEaxGWwl2xf4TiYG9cjM+m3fN6BunfEsWQPO3YMYNrb22lvb6chsuU87mqgimwWWibBzDlj7EwVSyC6Xqn98tQZteAuM9NoGbVfMN6rq9/yNbA7V+kXl32l1rat2vw1L5Lbd77+9X70LeQFp5L417NI/NsFWB2zxi42j96jr+v8wxk57zuB+myaJlLKbZ6zumXNRLV5JwSA/VgCZUdR1amS1QxZBm9J/fUamlGRGKJYQBRyGJu6sdaswl69AnPdGoy+HuTwZrzGFpQVKYXCSsaAonb8cujJjkA0FgDZ2eO95A86Aj9Vr53PhonMZbDWrsbsfQ387ROTTS66FeIJ8lf9jsHLF+JP7qhoJfscwPB3/4Ohs//PNo0VfXoxxBO4V/8e5737B2DbfP539M2/7El9E5dV9w8egTtlJgDpr19JvioLrEZOOJXcmRcGxxSM99SSLTLzNi9iJbbknIuo+9SCYNGq++4vEM+nMR5ZQ3t7e4UB5x9OQ0MDqVQKccVC3OM+M+648b/fAy1tOGddGKjPZW/7ts65s4B2h4eRlGXV5B1XVNxSnLecZaU8/Zlp4dc1YHSvw508newRx6Ni8UrMuorZVSSqget64LkgBH5dY2VxMC0NXtvW78uLiO/j7DUP4RSJP/AnrO7VyME+ZGZku5ZXxq/7Ifl4iuKnz6RwzEn0HnPS+PbyI/ehLj4HUltuUJD81ZXk994Pf6959P/6rtrvr1uDuvgcIqkU0TtvYuTks1Eds0nf/SxlXUKuWo5f8oyPcTZ99XI2fvXyyngrl6Ou+T52Q8PWT7BjNs6qIhvH+aj5W2djPXoP9uIHKH7oIwz/3xsYHr24//oq+vv7SfxzqV5gjjuZgeNOHjtYa3utFnzvHaRPWqDvg7WvaPW5lA22rXM2NzfvdADe8UuO2Ir6XGJhmU0jhwbAtBj59NkU9p1Pcff3UtxjH4p7zgs2Z9aeuJOn406apm3nKR24k6frMJJhVqnQdoWFI9ESoPVW3Hc+uSOPx22bgtc+DWf2XriTpuqGAttJmq66mMRZH9N23TgeYE47CnXmR4nH41t1GMnuLpovOAX5yH1jxlCH74ZlWSQSCWR3Fw3f/Qp0rQm8rPzmKvx/PjH+wNf9GLHyucr7W69HHTsP27bHxJDfiPRncziOQ9M3P495239BX2/lw5XPwVWXoX53DalUiujNC4necLU+1lH70NcLLZNqMtWMFU9irO/UbxY/GKjPwTXfhjl3RhHRaFRFo1FM00QIQV1dHZm3GCp4XQdWqgFn6gyd4ywkwnVIH/NpvPapYEeIrnga++UXwPcQnof94rMYA30U3vM+hs7+mg7HVKu0ox0Ovl9h59HsXnZgWbZeMKq92Z4Lrguug738SSJPPILIZRDFAjIzHISvhLt9Wg55nkc2mx1zvROJBPF4vCYGnMlkGBkZoaGhYQyIfN8nnU6TzWZrxhh9UzqOw/DwMI7jaC9rMolSKhi3eOVvyR59Ilx1GQ03/ZJsNkuxFJpJpVLb5H3u7e0dr/1phYWrklcyGe39LQPRtm3i8XjN+WWzWdLpdDBmeZ+RkRGUUrS1tdUuEv39OI5DXV0d8Xh8zPzbMmdvby+GYUxIRs5mszWL0w5RoWU2jXCKiFiiYgcbRsXRVA75WBbWmpUYfb2402biTp6uP/O9SreN8VIgpRFkXgUOLNOs2L+mVdqq5lKqJtRUnHsAeB6Rpx5F+B5eQwt+PIkfjWOt79wuhQ2GYZBKpbZp9U8kElsEkJSSuro66urqXtezPN5NWR539Bk1NTW94XMaDag3e06ByRGPjwvELWkCrwe6bZnzjZzDxLOBff9tb6kjXAdjsE8nXpQSNCoglpU+V/kcxmtdeI3NuFM6NLirc7XL3xOilDUlamuIA/u6CsBl4JpmZdEoA3gUkxf3nY9wHSLPPKYdI6aF2z4NUSxgdq/b9eqEawLDKuzuGTqxtjLxYB+YFs7k6TA6/ioEyjAwe15DeC5e+zSdTcWom6q62CEAv6wFcRDPNWudZGXwjk7woPYmLrzvYCgWiTz3OCKfQ0mJO3k6MpvGGNgU3kGhTCwAv1OZWPg+Rs9rUCyUbNqy3STAKWL09WCs78SPxHTYSUidRBCU+VUBs9r5JWQNi9ekUAaeaLMC+tGMXb4kSoGlQPkU5h+O0d2FufZlnbIZieK2tCN3MQCnvnsu4uufI5PJoOrrCfk3ZOCta2yWpdVkp1jTf0pm0xibupGZER0CCryJZaYs9cIK4rol1dgYZUOPVq+r48vl11SzdemvMsBUtapkeVwpEb5fagSw60kymSSZTIbICAG8FfKNJ/Hqm1CJJMqKIJyCrrUtGWLKjuJOnaGLFDy3ip1VLTCNUbatZdUy63g2crWqzjg2szTGqNH204sxBjdpB5jytYoSiYZ3TyjvMgBLidvUhtcySTuwSkwp3EjFawyoaAy/rgm/oRljQyfCKYBK1gKymklNs8LCpllRo6vt2vEYebTdW203l8T+51Iiyx5HFAolJ5pXSvCS4d0TygQE8NvlfRQCt3WyrkYxqmKv1fNWz++5eC1tmF2vIAf6dPsbxBZAbNbawlVlgLUgFVsHbmWlAQnWsieIPP53RC6rx/a8yryhlzaUdxMDu02tOG1TxqqooxePqtd+QzNeQxPGxvW6AqmuoYbNa51ZRpVta4wF5XjVJVuqOBECa8UzRJc8gMgM6zF9vyq2jH4MRCihTDQAvx1dKVUkits6uVQ6WMWEY5qya+Cq8l8Fzu7vwV7+lPZIl73Vo3OoR4N5vHjwG9AU7CcfxV5yP6RH9DGX56x+EoQi9NKG8u5gYLe5TXfbGIPXqr5T44HO91CxOH4yhdHbTeTpJXit7eQP/ggqkdR2rx0BQ6eBBsX98RREo8FC4Te1oraxiiby17uJ33wtfmMLfnNrBbxKhHdLKO9OAPupet3tQozDvjWOpSomdR3MjeswNnQh8lnNvlISXfIg9nNPanXajiDyOeTwZkRe5wGLQh5cB795El7HbLwpM8h+7it4k6a+rlptrFtD7PbfYq5ZibP3ftDQVMnSGmPvTgxAj1xxLX4iRf3Xzwjv5hDAb48o0y7FWKvBKyuPSBFCd5ksJV0I38PqXIW59mVULIE7bRZ+U0vQm1mUQ0tSQl0j3rRZKNtGeC5iZBijuwtjfSeyb6MO+zjFSvgHMS6QzVdXE3nwT3oBkBJRyCF8T3f2qGnrWdKd5cQAsDNrDix7kpGRkZ22oiaUNy/vTCxkTKF0NQOX4rFVZYRGT7fOgZ7SQeEDh+DO3AM/WR8wtDItVCSqNzui2V0plGHhN7XgzJtPcf4RYNmYq5YjRoZ0lZHnlQohvBpWNbpeIXLPbcj+TTplU6lR/bFLDQJ8HzwfUcwjB/omxA/oTZ8FG9ZiGAaD195J79Ieepf2MHDjQ3rxnDKDgRsfCv7ff/tS1JQZjFxxLYPX3hmMM3DjQ2S+8RO8uQfSf/vSYP/MN34CQPbcS8eMMVqy517Kpr+uCfbLnnvp2AXn8GOD8ftvX8qmv66h+PEzGLjxIfoWrQjmzJ57afC+vA/A4LV3MnLFtcG59S7twTn8WAavvXPc4w4BvN1EjB+LLavMvk85J1oZBu6sOTi7v6dUoF/r5Krd/CrAlUDmFPEbWyjuN1936CjkdD/nAMR+8D1jw6tE771dp0UaBiJgWV/v6xQR+RwiM6I7Ym5ch/nKSuznn97x4J17ICqWwLvrFvIL/4hKJInsHYUj98RtamPg1HMZvugHoMDeKwLnfxZv2iwG5h2ESI/gtkxiaGiI4sfPwJs+i+Kvf8rAlddjP/53zDkWnP9ZMp9aQKZ5MukF5xP9/oVw5J54TW30H/fZmv5Y3twDSS84n8hPv43YTcLTj5Gefzi5XK7y002ZwdA3f4JVGt/r6UbFEgw9tEgvRGtXY+xhkvnbvaQXnI/5599j7GGiXljG5jPOo1gs4nXshrOhi3Q6jbP/oRrUTz6G1zEbX4F5zD5w6/XBcYcq9NuC5dGPL5EYm/vxJk8HIcgfegyykNPMOW6staTGKl87l8rqsV9l1ypfN4OfuYcOKzlOJdykdCjL2LSB6KI/aFW7zOIljUAO9mt13ikismlENoPIjOgywgkS/3X2PVBXSSmFe+hHtMPwxXyN7yH225+TPetC3P+8Cw47WoPtpeeR6SHUpxbgeR7pT5+Fveg2ikefiGpuI/epM+FTZwbjZGbvjchlyH/n37GOOI7IbdeT+eHXyCeTxGK60YGx/Alid9xA7rCPIc+8ADV9FvLR+ykUCsE+hSNPQMXjOP96jv7fiqfJzNxdLwSxBNzwSyzTxDzlbLxn/0Hx+xeSSqVQK54m/ZmzSbdO1Y7FZU9gGAbOnvOQ6zrxAb+5DeOCj0DnKpoe/BMDp3yBTH0z8b7XdpoGdROXgcd7mmA1AxumbsruuoHXOH/Ih1GJ1BYdTqB0n+Zy8b7vV6nIFfb0Gls0KJ1iaXPAc5G93UT/8gfkpu6Kiq/8wBY3Nq7HeuFZzNXPY2xYixzs003jJ1Dyhje5A9m1BnGoBuaYRm0P3U164W0YQiB7NuiOFNkMLH0Y++XnNeC/fx1+8yT83/wMs2MWxqrlY5u+LbqFxkM74C+34bRMIr3gq9gXXB4As+xMK84/HEMKrJ9fpnsrv7aupilB+Xh93ycej+O1T0WufQV5wqn68q94hkQigTtzd3h5JZFIhFgspvfrWoN30BF6Ybrrv7EsCz+ZQmzaiDFvf2T/JrzHHqS+vh63tLCx9OGtNhcIGfgtaNPVoFSGifnqaqyXn9eF9KaFO2MPsg2tmGtexOjvrai/qrpeSpcdCiExejbojKmamlYf7KhWn4uFEvsq5GA/sfvvQPa8pp9uOCoLTE0YH/PWpTh7T0TnSxjDg7gAl/yMtt/8mKGf3oQ7c3diD91NBnAWHIP9idMpfvtnyP5elBCYG9ch+zfhn/IFzP+6Gu+VF4kISa5jNuYnTqdx7UsM/OJW7OefxU+kGG6bTNvnj2Lo4KMpXPU7Cn2bKBQKRCIRza77H4p8+G749pdwr18E8QSiZJvXRCRaJmHu8V6cffcnf9gxGH+7F6bN0Ez66ksYra3ITT24Bx1O1LIofvwM8ocdg/WfP8WbMRsPYOYc/A8fr79/9x9QhxyF39yKPOGzkB0h88kzsBbdhiPEmPlDAL9ZBq55PX78N/nf1zHcOhm3YzediVXfSPF9H9TAdV1d2OBVOaHKtrRhEFn2OPYLz2iGrbaXXafCvspCpoeJPngnsmdDCdBUFoSdLDXSb52EeHYp9gP/H7H4AZxzLqL3nIsw1ndiXnouec+Hz5yNesXHXd+J7OvBVyq4qY2uV/BRgaoavXkh+QMPw/35TWwCrGeX4px/Csbxp+L+4Dp6l/YAEL3jBvI3LURUNbiLPPUouZPPgpPPIrL4ATxAbR6oAVD85oXkDjwM597lDK/v1Pb7i8uQB3wIsWlj0NYpecuv2PzNH5N+bgSRy2j1/hdXkDz8o6Q/cTrq4VWMlPpfees6Md6zr14Arv49/UDkvj/iXfLFbWoBtLPLmJ5YiViMbJXjYXtIft6BOpFCGrWPLgnK/Ezk5gEiK56isN98Mqd8CXfGbiDNkqpcUonL4SPPq+3IISX2C89gL3tCh4GqFgzhFCnO3Z/CB49CZEaILb4f2ddTqR0O9lUgJMb6TqyXViAyIzvFDzgwOEgsFiMWjTIyMkKu9JAy0zSpL7XYGRgcRClV00upob4egKHhYVzXpbnUPkcpxeDmzUFD+EgkQn1dHa7rMrh5c+C4Spb6dlVLutRvCiAWjZLL52mor8e27ao1tTT+N38Mp30Zjn8/9QMbKRaL+EoFx+y6LkPDw3iep+/LUmsdz/PYPDSE53mYponneci/LEM895Rm/9Jxx+NxkrsggPOFwtZ7Yr0dBf1m9zr9BIVYEhWJ6KohTDAC6Oi5pURu7id27x04e7wXZ6+5+I2tQdtX7WX2akM8QqCsCLJ/U+2TA0s3mm/Z2M8uJbL4fuTwEN702dp2KnuwSx5nUSwihjcjN6yFXGanSZNsbGwMrmEylSI5Tix4vIdtl8+v3EdLVWlI5TGr9zVMc8w4o6/R6H5T5WNRJQ/04C//EDxJ0VjfifWzb1NYuxqruRm7pIqXxzRMc0xPLgVIwxjz/76O2Rj33EEkEqk59ndDqusYBo7FYjWu/+0qhqkfiZKs17XAsQQqGkWZNnJkCGvlMtwZu+sfOUh9rGJINVrVVWzxzgyeDyx1g/ZVzwECZ84+qERKNxAoFnSDvaFB5EAvcmS4BOpQ3g5RSrG5it1N0ySRSNQw9JuVvr4+UqlUYJPvqlJ4PQZ+e92mLnJkSD+Au7TaK8OESAR8VfXYlFFN68pAFoKgqF9VuZpUFXqFGtucDZ38YQz2aSArhchlEY4TAvadZItx2H17yXhaxrtBduwDvpXSPZbLqq+s0qnLABWjfcKj63lVDUmjRG2pXznmLHVJoNw8ECIplBDAbyOqKxlVQoAvS9Hq6vTLanW5xMplnIuSIV8DfEFY/BfKrigTry/M6LTI8t+gAFdVh4FH1RSLWrO5xjAOywFD2cUZWE2EOKhfeSiZzpGmkitd/fSF0fgM2FvVOrKEKIWgvPDXDmXXV6F3aOqZ72FuWIvMpPEbmvATKf0UQtOqatoux7GLGVXyh2buYgFjaBBj43qMwb6q7pahhLLzyXjYrAkjgXbt+74/IdhYmRYqGkPFk6h4AhWJoWJxXaEkjao+zgo8Tz8/OJ/TxQeZEeTI0ITLXw4llDcrxWJxTELOGAZ2HAfLsmoe3bijRLgOIu1Aejj89UJ517Ov53ljcrslYx9KFzxSMpRQQpkY4C0Wiwghgg1ACOFI4Jlqdbn8YbFYxHXdCaNOhxLKu0mUUgFw86X8diklUsoAo5ZlbzaVUjcrpQ5SSlUjG8MwcF0X13VRSoUgDiWUHWFGChEA1zCMmuYEqVSqU9i2bUej0RcMw9itWr8ug9b3/V2+KDqUUCYygMsgrlafLcse3H33Pf5i+r5fFEIcJaV8wvf9trJ3q1rfljJ8DlAooexoEJfFtu2Bjo6ZD0spO0W5CmmffeZOGh4e+n+ZTOb9rus2MiHTLEMJ5V0LYte27cFkMtXZ1jbpJSllJ3DV/wwA0Ab3XQmI9nQAAAAASUVORK5CYII='
button_token_checker = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADK0SURBVHja7L13nF9Vnf//POfc8unTS3pCMkASagKEDoqAIKIiWFHUdVfX9Ys8tvlD17YN2yq2VXEtLIoKtqUI0hSEUCQkJJDepk+mz3zqbef8/rifmUwaggQSdN6Pxzwm+cz93HvOued13v39FpZlIYTAGHMScJWU8jVSyvlAgmmapmk6XKgC7DTG3CelvNFxnCcrlQpW9Y/nCSGuFEKcoZRqk1IihJj8pgEwZnoJp2maXi4SArHnJwngaK21EkLkjDE/01rfbgFzgY9IKV9vWRZKKaYCePL39JJO0zS9bDTBLk2VcU7gUGvdprVuE0LMdxxnmyWEeLsQ4kylFFMBPPFFKSVqL448TdM0TS8xgI0h0hqt9R4AllJOfLY8lUp/SjiO85hSaoVt20zow0IILMvCdV0spSZ05ElQT9M0TdNLjmBMzHHxg4AgCPa5xLKsfuE4TsVxHNe2baSUSCmxlCKRSODYNgiBrp4E0/Cdpml6+UhWsRcEAX4QxBicwkSNMVhCCHeqziulJJlM4jgOge/j+T56mvNO0zQdMlJSYlsWfhDsIwXLCZF5AsCO42DbNkEQTILXVNn5NE3TNL2MUnT1t55iyJoKYCEEcuoXhBDYto0xBs/zCKNo8vNpE9Y0TdPLS2KKqHwgBmrtwaqrBqsgDIm0Rkr5Mp0xf2wK0zRN0zQB5gmmug+AJ9xHUdV0/ZKQ1ogoRIRB/O8qkE31X8IYzITLSkhQEqMsjFTwkh8o0zRNr2AAx/jScLABrDVCR4gwQLtJgtY5BE2tRJkcxnFBKISJwIBRCqEj8D1UpYwcH8UaHUSNjSAq5QlRAaSKgS7FNKeepr84AO9XhN7jjwfD8mxMLCYLhU64aNclbJpJZeFi/NkL0JksRigwBhn4scvKSYAg5tKehzU8gN3bgd3XiTU6jCwXqxw8BB1BpGGSY08DeZr+rNG7B1aFEPty4IOqhOsIEQRE2Rq8uYsoLzkRb14bWBbWcD/J9atxejqR+dFJAEduEl1TT9Ayk6BlFmFTK/6s+RgpscZGcDq24nbvwNrVg8qPoQrjGClijizltJg9TX9RJBKJhHFdF8uysG2bRCKBjiKCIPjTwieNQQQ+6IiwoRV/7hH489rwZs3H2C4qP4rT047TsxNrcBdWVTQWOgIBRtnoZIooV0eUqyWsbSCsbyFsakWnMzFAjUaWS1gDfdiDfaiRQayRQdTIILJUAATGsnaDepozT9MrHahCEIYhnu/H7qNq7MbBBbCOxVmdTBHVNlBZsJhK2xJ0TR0i8HG3bSSxaS1u1w5kMY9RCqOsvbimqRq6IkQUYpSFztQQNDQTts4kmDkPf8Y8olwtwveQgYccG8Hp78Ua6EENDSBLBaRXRngeIgrB6FhPnha1p+kvAcDRnwhgEQXoRJry0cdRPvF0wrpmZClPYvOzJDavxRrqh9BHGPPCdGwhQMhYVFYWOpklaGwiap2LN2suYWMrWDbGUshCHrtzB27HNuzeTtTYMMIrIzAYUeXG0wCeplcogP2DDmAhqi4hgz9rLqWTzsabfySyUsLu2onbvgVroBdreAAReCAURqkXBiKjEdqAiUAbkAqdSKIzOaJcLVGmhqiukaixmbCuKTaEKYUI/PjZfV3Yg7tQw/1YE2K2rLqnlIrdVS8a1AbhVZDjo3/UvW2kwCRSmEwNz3mxELE0Ui4iC3l0Ko3J5A71ToIoRBTyiDCoSjjVeSkFloVOZcCJ60EIr4wcHcYkEuia+pcnrzzwkWMjoBQ6WwO284rPZ3/pABxFCCnxZy2guPwMvCOOQo2OkFr7OO629dh93SAl2nZi989BscZphNbxs6MQY0Bna9C1DQQtswhmzMGfMYeorgG0QVbKyGIea6gPe7AfNTyILOWRxTyyXIQgiDn0n+prNtVDpakVf8mJiIl56gi8Svx3JwGWFUvyQYjq6cDavG63z/sA88SyiVrnEM5dgN3TherYitHm0HjOJuwbyiJoW4rO1WHqG6tSDYj8OHJkCGvnFsT4MMZ20HVNBMecgBrox978zHPP9yCN0WRr8Y86FulVsLdvROTH4sPlzxDA1n434wsQcUUUEjbMonDqq6i0LSX5zCoyj9yLNdQXb+pkas97H5zpVMGmMLYTfxIGqME+1EAviQ1r0IkUYX0DwawF+PMWEbTMJGyZSQWBKBexuztwurZh93SgRoeQgRdzkj9ljFqD7RAeczKjn/oqxrYPzFgVyHyR9G0/IrNhNajncASEIaSyeOe9gbG//Si5m28g/Y1/AxNwKH3fUctMSu++Gn/BUQQLj44BbIHq7sbZsZn0TV/H+f3dyMDHO+Vchr/yI5J33Ubtte8Dy35pB6c1ev6RjP7rt7B7O6i57h+xBh6HVOaVL0dP4HLKIfii3EhCR+hUhuLJZ+EvaCO17kkyj96HGh6IjVC+h3aT6FQGWcojggBj2SDV/kVHY6oiWfVvL8SKXJ3cBGdWYYDwyrHrqX0LOp0hqmsibGwlbGolnDEbf0EbhCH2QC/O9o0ktjyDNdCLcRIvjBNXxUpr3R/IfvxvGM/n4/HMXgAf/Cg0NMH3rocnHwETocOQQm8nslIhjUH4XuzXnhRFJSaTiy3pCLBtSEFRKmSlQsJSsfRQKsaGwGwNxk0ivAoiP4oIokl8G0thUmmMmwRlIcdHEOVSfMgAwg8mzkSMm0Dnag8IDCEkwfKzGfvAP6MXLYGN61B//y6icgkERK++lPLrriD8p/8ga9tkbvtpfEClwEdSHBwiO8UEYRw7nufEIRz4iMI4Igj2XAvHxaSzuyU434vjAXw/VqkApEAnkphkOt5fyRS+7VIMAtJRhBX4iPFRhDHoVAaTzsTxB+OjCK+yeztK0IlUfB/bjtWiseGYYQAijPMDdG1tvE8OMb04P3AQ4C9cSqXtWNTgLtKP3ofduR3tJjGWTdAyG++Ixei6emRxDHfrRqz+nli0nAoQoxFhiJFyd3SW1shSEeGVYx3Vsp6HoUvEgJ84DKovWvV3IwxE2RrCukaiphmEjS34rXOI6hpj7lzfRFTfSOrJh1HjI/FB8IIAHCE7t5Jau4qwejyZGbMJ3vhOIstC3H8H9qP3o3bb2pGJBOFxJxHOnEM0az7CcWL9baAPe81jqJ1b0Lm6eEOXIKp4BGFIsjROeOwp+MedhPR9nDWPIbesRzc24597MdGsWQjpxmvQ046z/mnkYC+iVMA7+SzC2QtQw4PgJgjnLkSgIT+OvW0j9trHY0CJPQ8wUSkRHrGYwjv/Fn/FaYhf/Qz5m5/j3P6T3Rft6sZfdBTBaadRWH42zr23x/79ImilKJ/3elh6PFIpKBVRXTuxn12FKIxDGKIzOYIV5xLNnAeZLGiDGNqF1bEda9PaWCKJAkyuHu/4UwnnHgH19RAZxOgQ1tYN2M+ugihEVkqElTJ+EJAuljEz5lC+4DJMrgZn0zqsdU9C4OOtOJdw0WKYcFGOjWJvWIu1YxOiVCScMQf/oiuQhXx8wLXOQihJ4sG7Ed3t+3DEQw5gM+Xn+VidvbkLMZZN8unHsbp2EqUysSspk6O0/EwqS5dhLBvj2ES1TaRW3oc12LcbaFVOq9Px6R+0zIkND1GIGurH7u9BFvMvXLQVAlTVYIY7KZJa/T3Yfd0YKUkmU0R1jfjzFlFefgal5WcCguSax+KD5oVyYTcJrUlqhADfQ89dwKjjEAGqoYmMgMSMmZMRbyaVofTGd1Nadnq8GV0LpI21q5fM/3yBZHc76Gj3u4hVTXS6hvIbrqTwxndh7dhMtrcDd8M6ghNPI3/1ZwjaFkAh5mJyoIfcrd/H+fVPsbdtpHTRWyhd8T6cZ1cjKmW8404GSwKK1G/vJPuf2xHF8X2nF4b4S46nfOEFiNXrkF+4FtG+FSubJZ1Ox3rZptWM/+TbFEZH8EdHKNbU4uowvkHrLKJrPsP4kUvj8NeEjfvMWjL/9TGcJx6M9epjT6LwwY/jtS0FS0AEcmyI5OrHSH37OlTHdoTWhMcso/jWD1A+/hTIpiAUCK9C+oE7kNf/C0aI3QxVa4xt4518DuMf+TRaWWRv/Cqppx7FzJhD6Z1/R+lVF8c7Xmgoe6Tvu530zd/EWr2ScN5CRj/1NVRPF0Qh0ez5YEHt9s24Xe2xR+VlAvAELsVB48BaozM5ZFBBjQ3HdzYG7bp4Rx9P+fgVOB1bsbp34rctpXLsyXEE1ejgpG9W6IgolaZywmmUTzob7boxN1Y2xnFwt28itfIenI5tsRvoxUZaCYGR8XJIr4wY7MMaGcQaHaFwxvmUTzwdWSlj97THksCL1Vn2u24RJpmh/MZ3U7zwTRAEWP/yAcKO7XDWhYRv/yD59/49Oj9G9u5bp8icBjk2SuGfr8O/5K3Y9/4f0U9uoLz2D4RnnU/5H/4D7SZR3/4q0R23gGWjv3Iz+Xd8kMzWDVg7NyN8DxIQLFyMfct3cT/7UbymZrj601ROPgv95vdRe+v/IIrjk2IjUYipqUfPOzI+C7vaoXsnuWwWK5mcHJ9OZUmtfhSxeT2VsREYGkAjwAUzvw35+O+wv3AtQakA13wG/6yzKa04D7X6MczRx1H4648SHHUM1l0/I7zpGyAt9Ic+RvmsC4m62qn54dcQiSSl170N74yzUA/+FvM/X0Qn0ph//izFN7+VaHyE9B9+j4hiKU/2deEtP4PK334MMTKI9Y3rKD3xEMJy8D72JYKlJ2M/9iDBD74CI4Pwvr+n9PrLYLCP7PqnYtVGWUSts1GPPYD65N8RVUqMbdtInTC4jnNIc+VffCilZcWiWhhWE441OC7+/CPRTa0k/+8m3C3PUi4VGHv7ifjzjyTx7JOIYj7eG+kc5ZPPorTiVYgwxO7aGYdHWjbBjDl4bUsxrgMP3oW9Y9OLS14QYjcbq4ru0qsgvAqu5+HPb6O4dBn+3IWIqZzvBePWTNY02ucENQbCEOM4lC64jKilEXHdJ7B/cRNpQPR24LfMwn/H+yi99nLs1Y9V475jIPlv/xvCiy6HO2+BH30b+9mnsBqb8S99B8GihahvfgX1pU/glvKxuP6lj5G/7ruUzn8j7pMPQqUEDphnnkL/4n9JPP0EjmURti2lfO2/Ull8Ip4BN9JVW0XV1pGtRbfMgjKwcwsyDHEzmcn5GgAngRruJ9mxDWVAGU0kZbzeQ/3oH34T96Hf4ALRw/dSOefVVBYtwa2phyUn4p20AvHbe+Dz15Lqbo/HLwyFI2+mcsGbSf7iB4jZC/BXnIf2A9TdP8d+5H4sAaalFe+Y5ZTXPYXtefFhPzpMeO5FRK+6hGigB/nd65F3/QzLstAXX07lVa9FrnwY/uvjJJ56FAtQIwOUFi2kfP6bcO79FapcjI2U5RL6xq/hPnwvCUAriairi/fUIXRRWfu1cj1vkshyEaMsonR2QsqLpZHAh2r2kEkkq3pUGWEijJTIKEK7CfwjjqJ0+vkYyyZz349xtzyLrJRifbixlcI5r8NbsgxZzKMG+5CF8ee23L4gQMvYSJJIxqd1pQRaTxpVXkpfqkllCOYtRPT2Y77zRRSQaWnBGeqjcO8vCE8/j3DREgrHnEzK9+KFbZqB99rLEPWNWDd+HTatI21J1PJT8Y87BQZGYOdmdG0d7tFLcGwb8dRKikO7CM58DX5dE/g+2MBDd8PTT2DX1ZFOJPGffpyyH/tQvUoF25jd1R4MseQjFfhAuYTFvpkxGI22XWStTRKBKI1TlgoCEBvXwv23Y2WzZGyLYLCXYGic0LbxG1oQM+fFZ+uGNURRhHX8SSSTCcTYMOXunYRnn0ElnUHMmoduroWHHkQ/8RCOkmSbmzG3/ZDSzTdQAKKzLowPFKUI3vrXiBNPwfryp5C/vhVbSdKLjqJ83qWgQbRvJhwbwV18LMlsDrt7J8Ha1QTveA/l41eQevx3sWA53I954E6cXG5SZTgcCj2+OCRIiRwdiUWM+maMtEAIpFfG2fYslWNPIv+mq7A6d+C3LUGEIc62DajCeCxq19TjHXsyOpkh+5tbSaxfXbVAxqGUVl8Xmft/hU5n8NqW4mx4mtTTj6HVwc3BEFGEziSIahtAxuM3L5GbRhiDtmx04wxIurClG1Ipkm5cVDCyHazAx86P4s2YQ9Q8kyjwY9H1rPORI0NENUmCV19C3dgg7vAuvEQqLrvSXEt07RcQ/3wd45aFILaO69lZ8MAXEh0GCAPGdbGBhOsSGY12nN1+1Kq2NblJhYgt5ZUSZEC0ztj/xhECAh9RLsaMIAqrwSix9GADiWQSEwZoacXSVBigaxogVwdJ0FddDW//AAXLoiQk6IioMQPN4Nc1I5tmYHJATwdWdztuNotBYFJpEm4SR2u061DxK3DyaciuboyGcNkZpBYdTbZrO5FShFW3UvSGd8JFl1OSkrKUccprYw1kIaptwCuV4nWQEgUkEonDqkKrtT8l+YWIz3ZvZ2zgOOJooqcfRQ0PgFQ47VtJP3IvlWNPIWpoxhrqx33mSZztG2PrIgZdW08wewFqdIjEs6uQVdF5QqcSgY/TsQ1341qKZ7+WcNYCWP1ILNIczKwjY4hq6gkbWxDFAlZ/70tqmBA6QpTyoGNDllUpYTlxTLjxqokdtgtRhCkXCVOpGATbNmJu/Cp8/L8wb3s/ett6xIN3xmuRykC+BPfdgdmxkch2YztDsQC7ukAqvO4OhO3G3FxIJHERh0jrfazOe/quLcToEHL7RgjAzGtDJ9PIwjh6IjJMCMToMHrBkRReewW6ZSbpO34cgxkQ2qCU3F3lZVKvZ7eUZoDHH4JVj6CTKbSOYimuvxcsn+iZVZhjliGCeN1UrhY7qlSj1UqoShlh2fgQ+5vHxzE/uB6z7HS48DL0G65E3PDZeP5unLbKulXw6APoCQnDq8BAD1TKhJvXYxKpPfaCPMyy3V4UKzNKYe/qwtrVhX/E0XiLlpJ64kHQGjU2SurRB1Ajg0Q1dVi7enC2rkdWyhjLQkRBHE6YSGG3b0WNj+5jNDK2iwgD7L5OZKlI2DITnamBIIhdUXvoteJPBi9SErTMJmpoxertwO7YdvCixvZ+XNXlJIZ2oXq6iGbNQyw/A9Y/hciPo2sa8JcuI5o1Gzasg3VPYs6+AALgyUeQt/8Ee+Fi/Gs+Sfmit2CvX4PVvg3V10mQzsHD96Ju/e6kuypSFlHLDGSlgl0qoB2XaG+d/I9KWgrh5bGeWYW1bhPhwiX4F19BtGkNsrcjPigijalvpHLh5RSu/gR6bAz5+3tQ48N7uPkmc8SnHA6MDiH7umL9etM65Nf+dXJjaiBqaMbYCeyRXVid2wl3VdBLjoPlZ8BDd8bRavPb8FtnI4uF2G9uWbBjK+KX/4v99BNEp56Lf+k7KK68j+SOTbFb6ozXwLZNiBu+gFUYjy38QNTYGjOnkUHkslPjA2GKfeNwanLwoo4TIxWylMfZtgEQVI4+IT6RjcFIifDKuM+sIrXyfpytz8Zhj1V/rpkIDoii2Oy/35PNYITCWBbGdgjrGvFnzse4iVjE0+bFGxCMxlgWUctMdDaL07kDa6BntwX2pQCxlIgowt2wGpIOwYc/iWlqQYznCU88jfLr3kbYnIG1f0A8/QRWtcgByRRuroa6G6/HenIl3oWX4R2zDOupx7Ef/DXUZxDv/CDJi99MgyWor8mR+uh1cPc6nK/9hJrZc3B0GDsAXqADQyeS2D3tpB64DZoaCD/0MYpveHccSBGEiMI4/tkXUbzirzBJEN/5IqV7foVnJ57b5mhZyJF+rNWPIgtluOJ9OFd9mEYF9TVZsu+9GvmjBxD/9xg1y1aQ3bkF0bkD2hail59GhALbwbv0Soa/egv5D38Kk8rEhj/Lwl5wFDXrVpH+8beI5i2gfOk7EX29uL/+KYyPwasvwf7AR6mdMYtGIHfJW5G3/h75s0fIXnApaRNNdkc4HGn/RqwXYszSGnf7RryedvwFR+MddTzJJ34Xi0RaI32v6uyWeyUxCGRhHFHME86aT1RTj9WzE+zEJJil72OAsHUOUUMLCMH4m66KuX5fB1Z/H2poF2poAJUf5U/JAxY6IsrUEDTNhDDCbt+CNTYSc8oXczgYE2dO1TdBcx1MiIjVtRClIsmbv4WXrSVaeiLjX/4xanyYaMFRRPXNyJtuRN/8baRtI3M10ALkapFKIfIjZG/9HiP/sYLiRz+PWxgn84ubCGsaKL/x3VT+4+uY916DsWz0nAUoA/6dt1IZHCTM1kENkK2Z8s4By4FmoK6hmnO9l1HTshDFPIk7fkRYLlB6x4coXfFeomWnxsexDtAzF8QBGN/8CubnN2L7PnYuF9+3tmHK3tIYJ4FuykF9EyaVwV35W8z3v0zhbR8k+PAnGHv9WzCWi563CCUtzPf+i+L2LWR8j+TtNxNm/orgTe9m7OTTkcolmrcQ2d9H5X+/jpSCsLkZ/ACRSCLCgORDd+O96hK8d76fwvZN5G65gZrP/SNjV11D8FfXUDjvImRhDN06H9k6i+hXP6K8bjX2vAXQrMBrfW7X4MsVSrmPdmNZn7Ysa3dXBsvCGIPW+nlnI6liHmwXv20JOleHs21jrPtUa1fFv/cDqDBEZ3P4bUvjKvNjwxAGsQ/PGEwiibfkREqnvQYEOO3bMIkkUUMTUUMLQcssovomdG0DOplGu4lY95kIyYx0LN4JDghmEYYEc46gvOwMVGGc9MP3xJbuF6vrGANukqimjnDbdnjoNyR29WClUpO+VdW+BVMuoyslgromgmyOaHgIVt6PvOG/sLY8S7KpGaumjiBw0Q/eg71hDVY6g9PTgU6m8BJJ9LOrST71KKp7O0FNPWEqQWCnCIQkXLcKdect6Ju+jgp8rLkL0Eah77kba9M6kul0jNVEgrB2LtHDD2CteRQX4ogppkSRGIPs68R6dg1hKkPkVwhqGggtmzCRJOrYgbj/DsT3rsfu7SLjutiNTfjpmeiHH0A99QiJZDKWrDK1RG6GcNVK5NonSXW3Y+/qJDAQWTZ+TR0BkrBzO+KeXyK++hnI53FNiDM2hB4bJ7IUYUMjYWSINq3D+vENcNvNWKk0or6ZaM3jse+5NIbjVaAwTlDXgN/fi7vyftwNa4jcBDqVwbddgmSasKcTcd//IW78GmLHZqzGZkz9PKJVKxH33TZpgX65SVS7NERVXE7+TM1GUkrhuu5kO4fnO1AR+ESNLeQvegve0mVkb/8xqUfu+aPuGBEEBHMWMH7ZewlmziO98l7cdX9AjY3EFT1mzqVw4eUEs+aTfvDXpB6+B53J4i9aQjB3EcGMOdWwP4EcG8Hu2o7V3RHnAQ/3I70yRNGBOXE1u6Z01oXkz38TifVrqPn59zHCcDCSBSYWfWxsjCAIqKmpwXXdffROz/Mol8v4vj/5N9u2SafTJJNJtNZ4nsfo6CjpdJp0Oj1ZQXRsbAzf98lms6RSKYIgoFAoUKlUpkipFo7jkEqlcByHQqHA+Pg4yWSS2traSRExiiIGBwdJJpNkMhmUUgfUkY0xFAoFPM8jiqI9jDxTnxVH3AYMDw+TSCTI5XKTaxMEAaOjoyilyOVykw0FisUinuft0djLdV0ymQxWVQULw5ByuUylUpl8/kRXkXQ6jTGG4eFhpJST9zbGUKlUJueezcauz1KpRLFYnHzexBySySSJRIIgCBgZGQGgoaHhkAE4DEOCIJhktgetJpZRFmp4gMQzq/AXLaV82qtxN61FDu16zuwToyRqoIf07+6geM7FVE44lcqxJ6OK4xgh4qBzZZFceS+JPzyIHBlEFseRxQLOtg3odDaOYW6cgb/gSLzFJ1JpOw41Poy9qxs12Is12I/V14UaH9lHBBHGYGyboHUOxnax+joRlTImmTw4Eo/WCK9CRoJOp7Gqm2jvw8+JQpQAbavYNiAk0k1gOU58feDjBB61qSRWIhG7Nar3TgtDIp2Kr41ClO+RxpBwrElft1QKmUzEgPQquEFAbTqFSiR3j0dHqEqZ2mQClUwipnSo3N/BJ32PFBrXkhi1Wy0SSiHdBGrC1hGFWF6Z2oSLTKX2kL4sv0LOsRFuAqlUPP7AJ4UhYSliT3T1nskUqioRmGqyStJoHDXxfIGw7XjsRiMqFXKOhaiOZXIdQ5/aZAJZfcfC90hEIdYez5NI10XZdjymSpmcbUEyddh16TwoHBgRx6LqbA2FCy+ndPZrST9wB5nf/AwC/8DiqIj9gCgLb+mJeEtPIpg5D1E9+WUpj711PcmnHsHq647L78CURHJDlK1BZ2oZe8v7CdqWYO3YEmfGNLYgyiWsvm4SG9eQePrxOLhkD/E5IGxoYewtf42uqaPm1u/ibnoanUgdXEthdf4H8h9ObW0z8Xvi2ql1gCdaS069x/7uvU+D9gPca0JV2kOnqq798zHc7N2WhylW7T3mKgRyd3/bPd7//j6fmNPUtdjnu/t5/t7znLiPnqLLT1y/93rsfZ/9ren+xvBnwYExBmM7yMIYyT88hH/kMZROezXupnXYOzbudvkcwNCDMSTW/gFn6waiukZ0rg6CADUygBoZBB3u4WIySk06IuKAjw5UYRzd10n2np8TNrZSuOAyjJPEJJKEdQ0YZe0DYLQmaJ2NztZgd3egBnow1sGPwvpjL/35BAYYY/YQVZ/r3s/nefu714QY/fxf+/MMaDBm/w3yDvD58wXJH3v+/u6zv+88n3kcrpZoax+O+EKt0Hu5R9RAL6nHf0v+0ispvOZSam7uRI0MPw+rsEBUSlj9vZjhgWp8dVAtlCefYzwGbAdnyzM4W57B7unAb1sKUpJaeQ+ppx7BCIH0K/sRoTXhjDnoVAZrVxdqdLiajD/dym2aDlPaC0MHNazESIWolHCffoLEUyvxjzqW4nmXEtXWx6Lyc/QYNrIKUr8S11sqFeLvVAvaPRfwjWXjbHmGxOpH4/jq+UciSwUS65/C3rYeq68rNmbtxX2jRJJgxlxEGKJ6OyHwX7IQyml6Adb7MAS/Mr0WL5QDC15YPvB+wSQVYmSI5O/uJJw5h/IZFyAHB0isXonMj8YgPlBGUbUXEn9CDIUcHkBUKgRHH0fU0IzdsQ05MkhUUz+pO+/t/w0bZxPVN6EG+lCDfXEY558894O5iXW10oTZ/WYmJBgd7f7/iwFJtQTwYVcIXwhwExg3ER/ir7Txv9TLs/e+f0legAA12Evqnl8ginmKF12Bd9wKkArpVWL/7EF/rgTHRmdrEZUyVtcOZH70wMXMopBg5lx0OhdbqYcHD5vCZ8L3kYVx5PgYcnwsTrAP49I3olSMfexa8ye5uqqGQ1HMx72mDicATCTHN84gPOWc/asyh/P4D7kOfBBJVso4G54mfe+vKJ17CaXzLiWqa8BdvxqreydydHjSjYOyYq4s5Is6OIyysLp3kn7oLqzOHVUGtv9NboQgmHck2A5WbweqMIZOHOIaRzruOBEcdwrli6/AzJqB8CPU9s0k7rwFObSL0ts+iCoVce++BTE6iMmkMOlsnC1UGIdQg4zrW5lMLq6JXS5BtZaTsS2iY07GO/diVOc2krf8AGNLTCoTZ4GVijH3N2BSSUyqWmPKGESpgCiX4rpZlo0ojMWhsIkkwvPiGHUDxnXiZwc+opiPjZJKIQpjk9KD8L14rFa1/pebQIyNEM09gvKVH8J+dhVRuYjt+7FIbQAnDqmNjj4B75zXojq37zl+iLl2pONxpKtrUywgisXdIqat0Jlc7M14jvn+5QJYCIxQyEqJ5O9/gwhDiq9+PZVTzkY3tmBvfgarpwOZH0VUSohKJW5YFkUYUQXdCy3ALgQIhd2xDad9axxffaCKGlqja+oJZ81F5kexBnp3d284lBRFhItPoHL5e6mcfh5aRWAlEadfgEDg/uDLFN/9/7DGRjHCIHt3ovr7UX2dcY3spcswuSyiEtfVkn1d6IYWopZZmFwthAH2ulWERx5L6e0fRD16H+rxBzHz21BVO0HUOjvexJZA9fYgd3XHOcRSEs1vQ9c3Y7VvhXKR8KjjMJma+PnViDiIUIMDqK6dRI0t6ONOxurYDl6Z8KjjY/AGPjqTw+RyCM9Hde5ADg+ga+qpnPcGSpe/m1RhLE52WbocU1MHaOTwMNbmdYRtx1B6x9+iVk4Zf08HBD7RsSfFBfB0iOrpRPV2Ec1ZQDRzNkLGjEKOjqK629GJ5P7nGwSvmOL/L2lzswndM/HE75DD/ZTPvJBgfhveEYuRhXHsjq1xgbGuHajxUUS5gNBUS96IF3F4PPd3hY6IWueiMzXYnduQYyOT+u+h5L5CKYpX/h3Bqy7B/fq/Et7yXYK5izD/8W2Kb7gS9a3PYrJZAtsm+PQ3wPHJfOOrpL99HdGCI8l/7EuExy1F9I+TuP0nZK//F8LlZ1J4xwcIjjkZdIXa/+8DmEwWutuJhocZ+dAnsE4+i8x3v4iRFuPvuQY9Zz7USjLf/AbJm76OKPSC41K56ArKb34fdR97P3LT05Tecw1h2zFkfvxtShe8Cf/Uc8DRJO+4jewXryVYdjrFD3+SumvfD13bKb/nmjiwZHgAb/mZhMcdg7WjnewXr8X69c/xLriU0pUfxiQtyhe9hcxvfkX+H/6d8PgV4Grchx4m9+8fwTgO9HROGf+ZZG74HJQK5D/0ccKFS0D6ZL79ZTL//Z8UL7yM4of/EeErTNLGXvUkNZ//KMHRx5O/6iP7zJeh/rgY/F86gCf0GlEuYW/biCiXCecdQTBzXlzitWU2Qeuc3R0UdnWh+vtQw7tQg/3IwijCCIxt7+6h9HxLzD7HdSIM8Be0YdI57K521OjQfg1dL6ve61UIzjgfc8RizJ0/Jbzjp9hjo6TaNxP997/j1TZSaDsGU9+E+O1dmG/8J1x9LeUlJ8I5F6PPOB+2bUJ9/dOEZ12Kd9qrsL7uUHn7ByCZgev+CXP1JyhceHmcFdbYgjnupLgY+/e/Qn7DWsTHvxzr2h//AMYbo7ijHUZHSNp2XMY1CIhaZlBsmok7Okzlwjdjf+tzFN70LkSuFvHlT6HPOJfK8jORZ70WM2MOoeNS3LaJZDJJsHQZ4pmnMPMWEc1dgPnhDQSrnqDw7BqEZWEN9ePs3ELFkeh/u4bSVVfDnIWIL38Sffq5eGe8hkrrbELHRc+eG+vC+XHkTf9NobsTcfUnsVc/RnT9Z9Bvez+lRcegjjuFcOlyjJPFfPuzkHAI3vZB8iechrnwjfuf7yHeC4cXgIXAuAmkX8Fdvxq7fTNOU1xkPZg5j3D2AqLGFsLZ8wlbZiCLpRjAu3pRQ32o/FhcA7mYRwT+JDafs8/RHwG5dlyCeYsQgYfV14XwSnHi9qGkwMc/6SyMAHnbzYjeLty6OlJoort/iQQKH/o4oljA/PKHuLffTHDJWwnHRykdtwJx0aXw+EpUVy9hpUB0xFGUjz+V4Njl2Nd/Gud7X0YYg1/fiF52OsyeDbV1qN/9GnXT16t1sxtAR4iBHuhsR/Z1IoSBVBoCP3a1dXdQaZ2NmTU39tNvWENw1Yexb/0+zjc/Sziwi+gjiymfcBqWFPDMU3i7ekguPYGweQbWyvuJ3vUhxM6tWF/7T9jVg5QCk06hCuNYHVsRloW5/3bCL92E84OvoL71OXRXO+E5F1LO1MSi9ayGuAbX/Xcgv389/hvfhT77DFI7tyIHejGFcaLZR1A+5VxMfRP85k7kFz+OOnY5wVs/QGV8FFVTH2+X/c13GsD7itMmGweyq6FdqME+3A1Po1NpovpGwpnzCRa0EcxaQDhjNhwb+5Stnnac7RuxO7ahhgbA9/gTElr34M5RYytRXRNWfxcyPzxZvO2QcmBj0JkcYRigEgmSEhzHITAGGupxa+oJ25bgb9tA+NDduLkcet5C9F0/Rze1wKxmzAVvJDz/jbFvoVAkfNXrUP19BLd8j5RtkbntfymWPYr/9s34mmKByKsQATUtrRTXPUnpdVfAjXchiiUy//YR3Ptvw+gollAqZeTwIMxbRHD0sbh33Ur53Ndh9XYT/OQ7ccmc+ga8nZuJjCaqa0a2b4sjjGfPj41VTz+B+cd/R/zmVwghyKRTOJksFPMEzTMJ5yxEjg2j33AlBD76a/+GBSTTKSrt7fjIODXRi8evywXCRBL39W+jXIbSm6+CN18FLqhHHiFqitMAxe/vxjIa94xXExQLyJX3o1acg//6t+53vofDnjisALyHeDvZQSFE5kNEpYwaHcbu2BobYxpbCJtnETXPJGyeSTh3Ydz5oL8Xq2Mb1q5urIHeuB/w+OikBdpMpC8+Z78hQzBnIVFNHYmNa1BjI4eF+8iIuHi6njkPNWMetgbpe5Su+Gu8FeeQeuwBsC1EXzeWX0EsPw3pOLBzM2buAugeRHz6HzDtWwANqRzmXX8XSz8DfdjzF5L/p+uQa5/EaWrBX70Kujsxi5aijzsZ7+LLCRYuJvWOcykvWYa57iuUapuQYYQtY6lGlIpIpYjOOh98H/PdLyH/9mOY2jqs3k6cZBLvrAvisNpiHn3kUuRTjyGB8uvfjhwbJmpowdQ1ojc9g1MqohxnMjlDZ2uIEmnk+tXQOhNtWUSZGmoCj/KZr4FKCdk6C9O2BLP6SejuQh99HGbpsjjvd9smzD++Z8IiSOQFiEvehnKTqP4eVK4W5h8JoY9+3VuI2pYecL7mFc2BX0oT+h4dFEzcfMyrQLmItas7rmyYq4uzjJpnEjbPIpw5l6iphaixGZ2twV+0BDU8EIN4qB+ZH0OOj6Dy41ApI4ze/YyponY1PNNftBiUjdW5I67DdTj4EpWN8+wqKq++lPCK91Gpq8WvbcA/7TUEyqI0Gif7i3WrsJQkOuksTBTFtap6OzHlCD13NlSKyPFRrF3diB2b8M69CPn//oXgiMWEJ5yKTGUwcxfCr38Ou3rgX69Hn3wWWlkEi4/HmrsI6pqwOvvxd2whKJWws3HXAlkYQwU+4ZxmxC0/Jdz0LMmtGyid93rkNZ8iSCXRbUsxP/kOoqcTXnMp+rwLEUbjnX4eorcLvfh4SNiYbRuwvDIyl40zq6IQk84QLDkGa2wQ6/f34CMwH/0cwVg/0YmnY275LsJ14chjML+4aXL8ZvmZqI1rYX4bzJ4XlywaH8fd8HvCbBadTGOPjSJnziFatATZtTN2Ry0+HnOg+R5udABMvujmZgdFR1Zx0v9k/nAQxC1BuzviFpGpDGFDE+Hs+QQLjiKYOZ+woQX/iKMQvo+1qwe7ewd2dwdyuD9uHxqG1T7EerIKBIg4BXFWXEhPDe6KfYyOe8j9fsZxsVc/hr3yPiqXvJXCicugUMZavxr75u/g3/tLxN98FNW1A2UM2nFh0zNI38N9+g/owR4q//QpKAlk+1YSv74F59EHCM97PdHVn6JU8Ujd8Fl8ZRPlapFrHoPCGGZ4BCMV9h0/QV58BeX//A6EPvZdPyda/SiE/u4Y+TCIE0K6BzG/uAmhFMk/PIR3/hsI/+rvKUqD++ADyJ/fiEmlsfq68Zcdj2k7AbnlGVi/Fst2MBueJerrQpq435IxJq6gWS4jZISeMQdn4zrUpnWEF1/OuKtwnlgJ//sN5LkXxVbiifEPjcR9oR+5D3HhZZgv/RAsgWhvJ/2JD1KxLUqdOxAjQ4hUmqiYR655HHHPL4ne+lfPPd9XAIj3SCec+ImiiLBaqP2QDdSYatsK4rpYtoVx4+wik84SNrQQts4ibJmFSecwTgJjWajJxP4dWLt6kMODqMIoBCEmmaZ86rnkL3sv7pO/J3v3zxCjQ3+879LLNWeliFpmUUzn8MIwPlwKeezhfpxKCeeEFYxv30JifJjE/DYqUhK0byOZTCHmLSRvKSIvBK+MPTZM0ivDgqMoCIGueIiedtxUGlnXQNC+HVtJ1FHHkN+8gWzooZYcz1gQYXwfBvpwhneRdhxs20YODOCtOJv853+A3roB/ZG3k0WTqKnDnzWPgrTi8rfDQ9i9HaRyOcS8RRSUJPQjKIzF7T4xWI0tlJ5dQ862cJNxTrKIQkxdI5VZ88gPDCI7t5FdfCxFZRNGIYwMY+3cQmb2XKKmGZS3bsKxVDz+LRvJohELjyYf6ViHrVRwOreTmjOPioaofSvpbA5mzqU8sAs5Nox77LJ952vb2PspunA4kNaaKIoO3B/4sAHwPpt7dz9gwjhPOUrn0A1NhPXNcQpiYythcysmWY3IicLJYvBqeKCar1xLefmZIAWZ23+Ms3V9HFt8OMxzolplMU9Q8fHY3QdHWQonV4M1NkJRG6yaWpzAIyiViVIpHMuC/Diehqj6PSnATqWwSyUqBqodinBthQwiQsfGchxUoUgRcLIZnGKBko4rM5qJzxwH3BT+inOoXPkewrq5yM9di/nNL6hpbERGIWJ8lHK0+9l2KkXCdTHjo3iRIZjQEgCr+nw/mcBJpeMk/WplUOFVMKNjFAFsi3QU4mkmm8VZ6TQJKdCFAr5tYTvu7vGnk9jFMmV2j184NikBkRcQJhO4roso5vG1QSRTOKXivvNNpCZbBE0D+KUOfNBRXDtZCkhlCWsbiFpnE8xbRDCvDV1bH1/j+3GrFMvGCEnq93eRfPLhuObwYdj4+bmS5Kcmne+dgH6gpPT9fT713hPJ/fu71vgeZOsofuTTlC67BHXjD1Gf/WccqUhmMvsd8/6S5Q/07P3R1OT557rv8xr/AdbpQGtjDuMQyj8vAO+tE1TbpKAsTDKFrm0gbJ5B2DqXsGUmJplCjgzhbliDu3HtfjvwTdMB1lgqdH0jRSWp9PbiFMbIZXOIv/BEgmkAH3Qx21Tzfk3MbdNpopoGdK4O48Tik93biSyMVUvcTm/A5yEPTCY5BKUyPmDlcrjVFiPTdGgBbP357DOJUewWibVG5vPIsZFYt6wWm8dyDn3c8yuLBceegnQGO5PFOUyaek1TTNbeOsmfzYuRsurfndIJYppepDQ9DdxDaReZqvNPbvPpFzRN0/TKPUCtvWXsw7kPzDRN01+y/rt3SeE9OPAEi46i6Pm3VZmmaZqml4WiKJo0YO3NgT3AnfCJTS3qPVFAepqmaZoOndgchiFhGO7jtxZCRBawxhizYn+yttZ6GsDTNE2HAYAnwDu1a4Vt2yOWMeZXwNHGmJqpLSYmqve/kEr90zRN03RwwTtVxZ0qESulwnQ606WUUh2WZV1gjJmxN4APdLNpmqZpenloAo9SyindIg3JZHJXS8uMjRbQ0do64/OVSuUjnuet0FpL0JORHns3jJqmaZqmlxfAwGTvbqUsksnkYG1tzY5kMrnFAmhqav7p+PjYnNHR0Yzv+wu01ilA7s2Np0E8TdP08oO3CmAtpcwnEone2traHblcTZfWetv/PwDMDffKBBPzowAAAABJRU5ErkJggg=='
button_checker_v2 = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAChXSURBVHja7J13fFzFufe/c9r2Va+WZMtykdwxGIxNSWgJpuSFUAOJU997CSE3EEh4QxohISQEQnJJyL0JqRAS2s2ll1ANNsbB4AKusmzJsmx1bd89Zd4/jrTSWpILOIbA/j6f89Hq7Jwzs3POb54yzzwjNE1jEAbweUVRLhVCzBJChMgjjzzeK4gC66WUd0kpf+M4TgZADBJ4ghDicVVVZ6uqiqqqCCEQQuS7LY883iOQUiKlBNgqhHJyIhFvFZqmGUKIVzRNO0LXdVRVRVGUPHnzyOM9SmLHcVAUZXdt7cS5qqIol2ma9lnDMNA0LSt988gjj/cehBAoioKUMiiEmCMMw1ih6/pCwzBQVTWnoNfrxTN4Pk/pPPI4jJIWsG2bdDpNKp0eUp1zoGlal/B4PGmPx2Poup6VvIqiUBAOoygKmUwGy7KwHSffq3nkcTil7SAXFUUhmUrhjOagrQkhjJEOKyEEBeEwQgji8TjOGMzPI488DpMUdhxsx0HXNNKZzN5FVGWItEPweb0oikIikciTN4883kNkHrR9c84rexf0eDxkMpk8efPI4z0GRYh9E1gIgVAUMqaZ76088niv2cSKguM4OSRWxhTXeembRx7vPQILMYrA2hjsdY9DBMfrw6yeSGrKDNK1DdiFJUhdRzgOIp1CHejD2NmCZ8dm9I421Hj0kNafRx7vZ2j/NKNbUcnUTSY1bTbp+kaswhKEbaEkYoiI602T/iDmhDqsyhrSU2egdXbgaduGsWMretcuyE9d5ZHH4SWw1HQytZNJ108n1dCEXViCSKfwtmxC37MTtb8XkUmBouD4glgl5Vjl1VjFZaSajiA9ZQZ69270nS0Y7TvQunejde1G2Fb+aeWRxz+LwFLVsAtLSDU0kZwxH6u0EhwbY2cL3i3r8ezYihLpR9gWwrGRQoBQkB4vdmExmZrJZOoaMKvqMCtrMStqSDUdgb6n3ZXIHa2o/T2osQjCNHEd63nk8QG3i71er/R6vWiahhCCosJCYrHYQanK0uMlU9dAYuZ8MnVTkYqC0dGKp3kDnrZtaJ3tCNve930MD3aoALukArOqhsyEeszqOhxfwLWVI33oHW0YbdvQd7WiRgcQmVSezHl8oBCLx9E0DUVRxiZw4UEQWGo6VlkVqakzSU2fi1VUgtbbhW/TWjzbNqDvagP5NuxYIbDKqjAnTMKsqsWsrsMqq8LRPaixCFpHG3rnTrTd7a5aPtCHsKxB59e7T+bYV39I4ugTsWsmuT8nGce/7CnC118+qlz03KUU/uL7+P78y8PWtsNdp1NVR+efnkFra6H0M6eNWy75iS/Sf/k3CT34B4K3/L9se2Onn4f0BQDQN6+n4Le3oi974gNJ4PheBH7bKrTUDTJ1DSRnHUVqykwAvFvexP/GCoz27a5klG/TCSUlWvdu1N5OvGtfxSqvwpw4lXTDDMzqWjINjWSmNKH296K3bsXTsgltTztqPIqSiL1rzi971gJ6vvWzLHGzP8cXIH7aOSSb5lF25cUoHa053/enM4hUCq/Xe9jaejjrVDpa0TeuI3PEQnqmzKZk67qxCbz4FEQyTvT2GyEWw/zlg6QWn5JTxpw2i+7v/CdFV1yId8PqD7xEHj0P7DjDU0njHFLTSU2ZSXTxaSSnz0Hv3EX4738j/NzDGDu2ItIpcOz93mefh20jTBNhmei7d+J7fQXhR++h8P7fElz2BEZbM04wRHL+YgaWXMTAGRcTO/ZkUlNmYIcLkYryzup/G0fPt27DrpmE2LgOrrgYJgv3uOJi2LgWp7aerm/cimPbo6fKDlc73406pST4xP0AZJZcgD2kLY04nMpaMtNno/zjZZTWrWgXfoHU4lMQbS3DfXnSdNi4FnwB+j91xZj3ed8f+yXwfimvkmyaR2zxqdjFZfjXrCT0/CP41q1C7ev+53iLHQeRSqD2dWNs24h/5fOEnniAgkfuIbDyebRIL1bNJOLHnkJkyUUMnHUp8cWnkalrQGr6YRkJE//+DeyaesTGdcglc/A8/SClJSVUVVZS9drzlH7yJERbC878RfRPnzdaNbrxTjqWd9CxvIPu3z+Nefzpo8pEvvvLbJmO5R3Err5pzLaMLLf7ma3jlhvZ9qF6naq6A67PPP50OpZ3kLzkcrp//zQdyzvovHf5mHV4Hr4bpa0FTj6LZCo1ug2XfBHpCyDv/z1erxercY47xjz5P+hPPeD2ZSpCxadPhWQcOWkqsXg874U+WE9zesoMEkcejxMI4Vu3iuArz6LEoofV9lSScZRkHL2jFc/m9ZgTJroe7AmTsEorXBV74hT0KTPR25rRO9rQejvRejpd7eCfgHRDk9tHf/4vPIZBcXFxzve6rlNy+w0M/O0u0qaJXVY2/OWS88gMvrBDamLP126i5NmH0HV3AOr+/dOY02bl3DN67lKSZVWUfX1p9tze5aQvQPTcpaQch9JbvzFabb3kcgY+dQXqpnWYp8+h3zAoLCyk94/PHFB9AP1nfQLqJrtmRPNmunt6KC0pGVVXYNWLRM9dSvycpQSfuj+XwEefgNLWgvPwPfhLStB/ci1cfwXRaBR/OJztB0VR3LXpiRhmPuT34CSwWVlDYv5i7MISfOtfI7jimVzyKgpS0+BQZPRQVKyyKtKN80geeRyJhR8medTxpGfOxyqvBsVNPiBSCYzmDQSfe4TC+39Lwd/+RODlp9F79mBV1xI/7iNEllxI9OSPET/qeDK1DTjBMAjlkHakObEBknG46xcEgsExy+jLHqcgHKaqsjIneQJ1DWi//amrJn7iZOjuRJaU03vGxa4j5+qbMKfNQtm4zv1+hDppHX8aPR+9MEtGc9osRE/nsNp567chEcdccsEoiWWddDYDn70SddM67NPnZAeexNd+fED1Dbd/Mupt33HLfeajWbLtjeBPrkUk4zgfPjNnaZx5/Omu9rLiOXRdz14fDASoqqzE7/cPO+Guvsl1aD12P0o+c8xoCezsQ5YmZ87HKijGaGvGs2kNIhFDDpaWHh9WxQQcfwC1txO1p2v/6vTIBzBCv7eLSslMmooTLHDLCOGubkZgBwswK2tQIgMYzW+h9nUPX5tKoLc1o7Vvx/faS5gTJpGZMoPMxClk6htJT5mJ2t+L963VeNeuROvsOOQqv6IoGIYxbh9qup79LlvmucdwbryacDiMf/tbRF54nMTHl+KEi0hnMiRnHem++EvmYBgGBWVlqKkI9jc+T9fdz5E58XTSD/2J1LyF7n3//jDqE/dRWFKCfv+vSd31n0QiEeJAlgoTJhK77Oso3Z3IM+ZhGAZFxcVIOOD6sk9v41rsn3+PwsLCrFNsvN/vW/YUieNOI5VKYRiGK31PPguRjGNf+zn8odC416YuuZzouUvRlj2FdfsN+AoLP/ATiAelQpvVE1ETMYxtG9C6dmeJI3WDxDEfInnU8Uh/EL21Gd/K5zC2bUSYmX1MQ2k4/iAik0ZJJUFKzJp6zJp613YdMtyFAEUBMfi4bAcnFCY1byHG1g3o7S0wNM9s2wjHQe3vQUnE0Drb8by5GruskkxNPZnJ00kc/SHsUAH+V5/HaG1+959CRxs+ny8raRQxTDLHcXBKKlyps02SAbr2HgcrqkilUjj+Qcn/0t/x+/1ZSeb1erPEyk4QXvg5d8F4STnaopMpHuEZPtD6fEMn9nRgGMYBebR9zzxM4rRzSH7lBsK/vdkl5pHHoT7/BI6iEAgExrXTI5+6Au31FVhLP4Lf7z+sXvv3BYGdYAH6ru3oe9pR0kn3nM9PeuaRpOYegwyGwbYx6xoAidrXjdbVMcp7ZheVkp7ciDlhIo4viJJKoLfvQFgZHK/fVW8dx5W6QrjDuePkkli6EjkzfRZIB719h+v5HiHNRTqF1rUbtbcb2poxtr5FevdOkvMWkpnShHCcQ0ZgfUczdk098pIvwtP377Ns6pLL8d79ixFep/5clXpkX9k2coQKOeZA6A9iWbmaxJB0GxfdnbDyBTjjfOz/+C72F/9Ptg0HXV8swoj84vvup2WPo25aj33cKSRuvx7lC9fglJTBEw/g8/nGdcolTjsHdfUKrPMW4fV6CYfD5HGQNrBUFFdaJoZtKSdUSPLoE0HT8S97guAT96Hv2oFZNwWrph7p8Y3UL7Eqa4gvPpX44lNJT5uDWVVLenITsRNPJ37MSdjFZYMiSI7Ww+SIc0N/bYfM1FnYRaVj295SIiwTkUqide7C/+rzBJY9idbfS7px7iHrSO8br7jVXfwFMpmxtY7Y1Texe3mHS+K9PLFDE/NjQW1rgUR8eFpq7+NDDUgp3TlwgONO2X+D/3g76lcuRtm0DnnkIvou/uJB15drDR24PRr6+9+gcQ7JOQtJLDoFddM6nIfvGSVR7VkL6Lp3OYnTzkH/3W3Yg+QtLCzMM/ftEFgMOaoGHUgIgfT6sCpqUCJ9eF9fge/15WjtO0BVsYtKcLy+rB1rVtaQWHAiydkLEGYG77pVBFY+j3fzWpAOVmU1mbop2KFCVwofyDshJSiCzJQmpGf/KpVIJfFueAOjZbOrMRwqAt/9C3eapHEOfXc9T+qSy3OcNN2/f5rYuUtR2lrov+VbB3fv9a+BP4B4bA3lRxxNZWUllZWV+H/1IGyT+H/1ICUlJdlBhJPPInnCEneAraqj697l7F7eQfqsS3KJFApRcst1kIxjnfup7KByoPW9k74SPZ2YZ1yA2Tgb8fIzGIaR4/xyquro+eGdOCXlaF+5BPOGKwmHw3nyvhMVGsdGGl6kPwB9wpVuZgY10geqhlVZgxMqwAkXuLZoKoWwTHeiPhgmNfMoUk3zUPu6Cbz8NN6NaxBmhvT0OUjdQ2bSVOzKCViWidL81qD9LEY4ssSwlBUjRhXHwS4oxiqvRt+5fViV3sfvUOLRtx8pNg5KbvgPun/4G2TjbPobZ8Pl38wdPHo6cb7+eXRdx+v1cqAR58GfXEtiwQk4jXPofGDlqHsmbroWEY0SuvsXqKd8DHv6bBK3/JHEyHIb19H361vw3vy7XOm+fhXeF58k9ZFziV57C97brjvg+t6JBRp44XFiZ10EiTjOjV/Fv5fnPnHJF13VGrBuuxtuu5sIEBlqRzJOxclT8hL4oAqnkjg+P3ZRKVI3QEqUeBRj61vYRaXETzqL+ElnYU6ahhKPou3akVXr7OJyMlNngBAElz2J763VCDPjrkYKF6J17sLTshFhWdgl5a50VDVQVdf2VZQRJB7x2TWUEY6NOWESzgFIYccfdFXuQxzkoa5fRemSWYjH7ndV0JF49D7k+cejrnrhbUmR8gsXoTy+l2392nLkFRejtjVnnT9lnzltdLlH70MOepS1MVTdwusvR/R0Yp95IbHiyoOq7+3Cf/cv3ce38gWEEDlTRQCpWUfuV/Hq7Oz8wBN41GKGcDhMfJwIl/4LvoBdWIJn20Z8q19G7et2lxFWVBP96AWkZ80HVUNv34Fv+d/xvvYSSiLmhl7OX0x88akokX5Cj9+L3tE66HWehFk3BalqSI+X9JwFOIEw+o6taLvbRkjhEWJ3LNVaul5t75qVaJ279pnVw6xrIHH8R0nNXkDFtZ/+p3RsNBolmUzm5PINBAIEAoEcezcejxONRnOmYEaeD4VCOWSJRqM5z8fr9RIKhUY5wfYuFwgECIVC+6yzq6sLKSWlpaXZNu6vPtM06enpybn/ASt0jkN3dzc+n2/Ma3t7e8f1Jwz5DcrLyz9QhE0kEvtZzDAUCz2WB3FXK1ZpJVZ5NY4/hNrbhbBMtF2tBJ57GKNlI6iau1po+xZX+kqJNDxYZZXg8YDHQ7pxLnZJOcb2zdiFpUjVDf4QgMikISRcT6huDE8PidGEHWau+1dIiV1YgtrTOe70ldQN7IJi7FAYJRb5p6XvCQWDhMYJ6BhZZ8DvJzAkfQ7g/Lj33et3jFlusMx49y4rLR1Vdn/16ZpGZUXFmG3Yr0YnBOVDEWljXFtcVHRgPpC8DXygUyVbSE+bhVVWhVVWid6+Pbtowdi2EW1XKwiBkkrkrAiyy6uwaiYNz+1qGnZRKcnC4kF12HVYSVVFIEA3XO/10BxwNmpKjsHgER5rx8EpLEZq+j4IrGMXluD4gqg9e/JekDzeXwTeVySWtqcdbU876dJKzLrJ6M0bXAfWYMCFSMZH0QwgU9swaCRqSE1HDu0EoWi5jinHcYM7QkWge7BSSZT+HpT4UBYOMWLEFbk1Df7r+ENI3UAmxzYDHN2DPUhybVdrPhVAHh8cCSzSKYzmja7dWtuAOXUm6urlIMf3+lqVNaAoKPEYqCpOuAjp9UEmM8KTPBis4fEggwXIQBA7FMYJF6L29aB27kLt6kAkY4hMBiwT4TggB1k7eL1UBMJMI1WVTONcHI8PZaAXrXv3oNdZIn0B7HAR2Bbarh35NyCPDw6BAYyWTWQmTyM1bxGZhiY861Yh0uMT2C6tdO3beBSRSmIXlmBX1CDMDEo6nY1zlrqBVT0Ju6wCkXFT6DihIqwJE7ErqlFiAyiDZFZ6u1BiA2DZg0SWQztBubHRioJdUIzjD+AUuPfQ9rRjNG/ACYZx/EGUZBy1a3f+Dcjjg0VgkUqgt7WQbjoCc8JErOqJaK3N4y4KkL7B+N54DLVzF04wjDl5OlLX0TvaEJk00uPFqqzBnNyI1A301ma09h044ULs8iqcwlKcgmLssirsqlrUPbtQejtR+ntRBnoRiRjCAVQVtacL6fWDrg97vhQFs7IWO1zkagC6jjrQhxrtz78BefxLQ9U07btDbmkhBIau73+dpZQ4RaXY1XVI3TP+ogVFwZwwCTQD4diIVNKN0CqtxCmrwikowgkXY9VMwpo0FXwB9B3N6M0bUAb6UGIR1O7dqD2dKLEIQkocfwC7uAyntAK7tALpDyKE4gZlSDC2rMMuLMUpLB4M73MdXMKxcYpKMWsnI31+jLYWjK1vuV7vPPL4F4FlWVmuvi0JDKD2duJ563Ws6jrSsxfg+8eLKDu2js5F5TgI00R6HXAESiyKvn0LSIlVPx2rqtYN1kCixCJoO7agb9/qTu+Aa+vaFqSSKJF+tI427OJSMjOOwAkVIj0+ZCCMXTEBkYih7WzBLirDCRe695VOjpPM8QewS8oRjo3avTtP3jzefyr0AeV1tCy0tma0HVsx6xpIzV6AiEVRuweXGCqKKyXDRTge73DguwARj6Jv24QSj+KUViL9AXeBRE8nameH64QaCtwY6eQyM256WTONmDrTTd8THRgM3SyCgmJkMIz55mrIZNy804jsFJUApDfghoGm0yiRPrDMvBc6jw+WDZy1heNRjOYNmPXTSM9d6GaF7O3E8frJTJ2FEyoYHhKyBB4Me8yk0dpboaPNDZEcGWmVJd7I/wc/S4n0BUGCtrMFZc9O7AkTsVQNYaZRd7W59nAygWMYSFXFnRhTQFFxAkGkx4eSiLvSW9XcWO088vjAEdiy0Ha24Fm3ivjpF5CZ3ITa0eYuIRyMkx43SmakZCU348ZwxNUYoVeKgkjG0DevQ+3pxAmEsMurURJRAn/5b4x1qxCppLu9y7yF2MWDSwyFdMkbKkCoKko66drPXh8ilidwHh9AAgMokT6MLW+SOrKDTONcpGGgDS7MH9ZNxwhcdiRKrBcxZKM6trtzw6gUmsNhktlzioKuvYmIRzAb54Giona1oe3Y6jrJAGGZeF5fjl1U5i4xVFXM2sluaKZ0EKkU0h/CCRUM29vjIHHZN0mefCZ2Tb3bYZvXU/ypkwHouf8VvCtfJHDz1952H8rqiXQ9+Crh22/Ae9ftB3Vt/Jof4wRDhL5z2bhlotffQWbmEZSct/BdfdFSl36J6OeuouzDk3PafSj6EMCefTT93/k5xV++ELHX/L6snkjkqh+QPu5U9/1Ixin46bcxHroLe/bR9Pz64VH3Czzwh1Ft6rvjfzGPyO3H4B/+E/8d33/X+vUdZXYTloW2px3/sieQho45ZSZ2eVXuaqGcZYDuX2Fb6FveRH9zNfqbqzHeegN9wxr0jUPH2hF/h75bi75pHfqGNRhrV6K1b0d6fTihAkR0AJFM7PVEbdS+btSuDtQ97UivD+nxIdJpRDrpauRZNX98giTOvAj9dz9Dm6bDFRdj1dTT89UfIqsnYtfUk1r2FIlE4m33YfqkswCIPHgX6fTBOdVSx5yAFR3Y504amZlHINatpre3910lsPeu2wkvmkBXV1e23dHiykPShwDm3KNxSsrpW/96TrIBWT2Rnl8/6mZRnemHyQL56kv0f+V7pMsnYM492o0g3CtpQfyaT49qk9U4G+227w6Xe/Q+YmdcSDKZ/NeUwOAukPe8vpzUvGMxG5owG5oQpunGGTsjAzOHSCyRukH6qONylwhmPU2Mtp33zv4gJU64EHPqDDfSaldrji1rl1ZiTW7ECRe4ziwpSc9diBMqQO3qyO7e4PhD+xzR4x9fiu+rnyLz0J8JhUIYq54ldu+dJH0BYvWNbrmrbiB2293Ek3EKv/sl9BceI3P2pUT+7VqckrKc0d48cQmRK76NXVOPurOF4i9fiF1Vh0jGkds3k/rjU8TLqyi69rM5EsPz0tMUXH1pTvt6//gMdk099nn1aCueI77oZOIfd9O9qjtbKLz+y6jrXsUpKUdEB9DPvIju627F/8hf8N/x/RxpMqRVxK/5MckPLUEkYzltBOj9+V+zWsjeUidz9qX0f+MWyhdWYJ64hL4f/S4rwQZ+cperdAVCaJ27UOunYY1o93h9mLjsmyTOvGhUH3Y9t43Qnbfivev2rFQv+Om3iXzJTZJg3fMC4vJzsm2LXPUD1NZmnAuOw9E0ysvLkT/7Fr1Xfp9IqAhfVR1K6zYcISgbmep3DE1J+gLY2zZRUFCAx+Ohd2oT4qE/uyuEPvrx7LMd+cz67vhfnLIKpC+IU1I25rN81yRwllyqjr5jC9qeduziMjLT52CXVbkhk4oKYmhN78gF+WIvO3iExp21h5XhhHYjDtc5JVAi/ai7WlF3toDlzkNbk6aRmX8sdmn5YFJ3AZrhTi0pwp1PTiUR0kF6PONLt4+eh9rWQvJ//kRBQUE2x1TwVz8geOOV2EPrVZ/6G9o0HSmhf/5xpGctYODK7+G740bUqRryob/Qf+nlZDIZBr72Y5TtW9E+Mgu7pp6eMy7GqqhGtG6Dx9YAoJ9zNH0nLCFz5CK8S+bCt79E+rhTGWg8Iqd9oTtvcT+cNJ3k0SeS/NDp+L76KThpOrY3QN85S8nMWuAmS5eSzHW3ELzpGpLfv5Lem/+EDATxNHnhpOlYxeX0XnQZmcnT3Syj1/5f1O9+Gbumnt45C4n+27WIeNzVQv565yipo7ZsBqDTX0jirE+42ktpJbGm+e4g9JtbsEorMNtbUX/1o+F2N80bsw9Tx59ObOkVaA/92e3Dt9bQf+nlJGce5ea5XvE86XTaHfy6Oxm486dor6+AR++D8xczMDAwPLgcuQhefAJN0ygocDUusWsHxVdfiveNFWQmT8eePhvZ7ND5yh46X9lD6tIvjZbwRx3vvu4/v4eB1/vpfGUP1rRZyHX/wO/3M/C1H6OvfCHbR+njTiUajWI1zkbGYijHVqPc+9vs+fcOgQG7oAi1vwd92wbU3i6csgoys47EnNw4GGzhdxfPZ1ce7Z1OdqxtJBz3cMY+RDKO2r7DjQJLxBCWjV1agdnQhNQ97j0c18Z2giGkz48wTZR4dDhqbB8L+q2Kati+BU3TRiVs8/l8qNW1qKtXwI1fxefzuT8pOkD8vM+4eyF986fYWyy48HOIQJDoJ7+MU1KGc/1/oO/cRtkx5Tg/uApz4hSc6bOhcQ72A39wB4lEFOkLkLp/OZ7TPkbw6qWkX3wSe8QOj+aM+Sg9nbB9M8opZ6M+9yiZh/5McaQbz8Y1yIpqErMXuF184edQdjQT/9tdhGfMwzr+NKxps0hvSMGzm6C0HCdUgF1agfLsI7DyOYJx1zdgv/gkMhrBmj4L+5nNeCbUEVh6Wo56qa571f1w3KlkjlzkbocCpD97JcZLT5NubUHW1iPXrkLOPirbbm/tpLH78OxPoL2+gswNX8Hv9xNc/xqUVZCYdZSrrax4Fk3TyEyejvLmalRVxamb4ppzfn+WqPbso5G+ANary0bl2xJCEAqFkGUVqPf9Nkd9jtz67VHmjDl9jpsyaajcSdOhuxPrlI+h6zrh/7qJdFkVzsOr3Wfe00myotYdQH95I4qi4FNVlLaWQ6pyHxICS58fKQRq9x6MTetQu3ZjF5VhNs4lM+sozIYm7IoJ7tRSNvG7GCbwyGOIpEOfpQRnxHln8H/LRCTjboz1YBSYNWWG67Ry7MFrHaSqufUqqls+nRpepriftaQyEBqVpDxz9qXYs4/GrJ+GaN6Ix+PB29DopmFduwqnfhrafb/LeSHkggrkhIlu7uPmDQSDQYQQlJeX49TWozx2v/syLPwwPp8P46G7CH3uDFj1Eum6BmI/+QNFs4/MWbRvV05A7GhGbWjCKSnDXr8an8+HpmlYk6agbtuEXV3r2nd/vRO7cQ7qlCbkMSe6N9jL5nN+cBVObT28+QY+nw85scG9dvtmwjd/De8NX0Fu20x6/iISv/qfUTtPiGQcTj4L0d0Jy59FBEPYRy1G/OYWPPOOdtu89h+I6lq33aqKNU4fyklTYat73ufzYVdOcNXcalfdFUK4pC2rQEYH0KfMcAfHNa+Omd1TFpePGoTj1/zYbVNNPbz8DMFgkPLy8uwRe/j1rEROXPZNV1MaHNDLy8spT/Sj9XSixKPEPvllBq78HpqioLz8DMrq5cjtW1FOcHdilI/8hWAwiBMMIbp2H3AGz8NHYFUbjABxULt3Y2x4A711K0gHu6qOzJxjSM9fjDltFnbFBKQ/iNT1wTlgcsmbJeze0ngcySwlIh5zY6Z9AVeaj7yPrruBHo6DiMfATGcJvK9ILL15I878YzG/eqM7Ap+4hJ77XyF++vnYr72EXVsP7TvQdX1YvXrkLyiJGPbCDxFomkvR+Z9GvBkjfNX38Kkq0hdAHHsSia/dTNdz2zBPHEw89/gDaKuWIY79MJlMhu5H1+MsuYCSqy9BW/kCJOL0RaM5zhmrvBqxZxfazm1uEvYFJ6BpmuvhLSmHh+6BhiaUDWsR/30z+AOYp56D6B90Zn3jFsrLy/H88SnUF7dRdP6nsxJX0zTsQdtQHHsSXSs78aoqhVdehLJxLTIepa+vL/dF6umEEz+C8srzCCGQRy5C2bGNzLKnUOcscKXX9s04Q+3WtPH7sHs39sIT0XWdzNmXkjrhI2hPPIioqnXzjus68Wt+7JLvzTegyc0u6qx7LWfAVde96rbrmh/gVE/KErfzlT0Yrz5PdPFHsgPL3ml4S85b6KrDkwWx67+MOXEKYnd79v6Jy76JXVeP+shfsecfi7JhLdZS937O/EWonbsQM49wfzegaVp20B8vhfChIfAB7E445o5pclg6KgO9GBvW4H31BYy3VqP2dCILCjFnzie1+FRSi07BbJyLXVLhbsUykrwjSTrq/FgHKLEBl6SqBvaI6xx7WAKbJkoiPriuGHdNcjI+7n39v7wB7YkHsD77FTpf2UPfj36H/soLyAuPJ1FRk3VoqIoyrF4BoXv+G/wB4o++Qd+Pfofn0fuI/vQ7qL+/DaWtBXn3MyQ/dDqem6+jv6LW7bs3V+N/9iFk3WSSJ52N/5F7iH98KT2runFOOhPvT65D7NiS0z4lHsU6/eM419xE4N474Yzz6V/dR+qYE/DcfB328r9DWSXsacfYtR399VeQJ34U56kH0V96Gj5/lWvHTZqCdt2/MzBtTlbi6oPqqdi2Gf21lzBeepr+b9xC/+o+RHklxg+vcVO6jGxPl5scwbrjJtSh0NU//xe6riOrarKSZ6jd9vfu2E8fBomtjTJw5fcwHr0P8+fX433hcZzaejIb06QHfRD2i0+i9XW7/XjvMtS92lXwo68jgL7//Ydr3x5zAr6rPknffb9HjFDn1TF2sywuKqK8rIzysjJkaTnW+Z8h+WbClcpnXoTnJ9dhvfw0vjdewZ5/LLLZgcWnuPnFIgNQOfy7kXJ4wBp65w/B7oSjcmL5fL6D1tGt8mqc4jLXYbVXAjrp8+MUlrgriarrsCtrcQqKkbhEV7v3oO7a4TqjOjsQeyVn36fkVxSE46BvXIP0+gf3PCJLbGGbmA1NJE6/AKW/F8/ql9G3bwYzA6qG0teNEunf91RSPJ5j7wUCAfx+P1JKuru7KSoqQtM0EokE6XSaoqIiLMsiEolkbdaR1/T392NZFqqqEgwGkVISiUQoLS3Ftm36+vqy9xhydgyV3VtKRKNRUqlUNp/UUHlN0wgEAhiGQV9fH4ZhEAgEiERcuzYcDmevHSofDocxTZNYLEbpYGqdSCSCqqoEAoExy+8tSSKRCOl0mtLSUpLJJPF4POsAjMfj2LadU3cgECAej++3D4eS3vn9ftcZOOikMgyDTCZDaWkpjuPQ29uLqqqj1PuhvhxKRq9pGqFQCE3TSKVSJBKJUdeMhe7u7hwtaORzSafT2f41DAPbtvF6vW5ifimziei7u7sJhUJ49uFA3ee0YzqdkxPrkBD4QOGECrCmzsRsmIE1eTpWdR1OUSkiGUdr2YK+ZT1ay2bUznaXzO90sYGikFpwArHzP4fnjVfwPfsI2u62d20D8DzyeKfYm8Da4axciQ5gvL4CY81KnMJSzPppmLOOJNM0F6t+GubUmSiRPrSWTRhvrnaXFUb6EYm4G3xxkAnMnFAhdlmVu9C/ew9qf0+evHm8r6Ad9hqlBNtG6dmDZ6AXfdtGPMv/jlU7GXPabKyGRszZCzAb56H0daNt34yxcQ36pnXu4n3bGnZg7W96q6gUu7QSkUyg9HW7qnMeeeQJfIhgW64dOtCH1roNfctb2NW1WLUNWJOmYlVPJH30iZjTZ6PtakVr2Yy2bSNa+3bU3q59k1hRcYrdhf1qXzdKZMBNv5NHHu8jjMrIoev6qJ3u/vlS2UFYJkpsALVzF9r2zWitW938zukUeLxY1bVYDU1YE93tV5yCYjAMhG25tvJe6rXUDdKzF2BOn4Pesglj0xqUfAqdPP7FYdv2+Bk55LudJNt2VyWJdGowA8dOjLWvYpdWYk6ejjltNnbFBDJzF5KZOR+1pxO9eSP65nVoHW2IaD9KKgW2hVVVizlpGlLT3PS3fT35p5/H+w45Xmhwt8442FUxh0VI+wJYVbXY1ROxausx6xpcB5V0UPp7Xcm9swVtTztScdPKmg1NaLt2EPzbn1C7OvJPO49/aTiOg2ma408jgTtH5jjOuy+N90Vmw4NVPRGzoQlr8nR3U7NQASKVRBnoRfoCOB4feusW/C8+gb55fT7zRh7/8shkMkgp901gKSW6rucEzr+nR6WCYsxJUzGnznSlcnk1Uijo2zbif+lJ9E3r8uTN430hfdPpNKqqoqpqDoHTXq/XGElgKeUhjdfMI4883hl5h3ZpHCKwcLcnMhVg9Uh1eci7lclksCzrPa9O55HH+xFSyixxh0JYFUXJ8UDrutGvSSnvllIulFJmvxharmVZFpZlZaVyHnnkcXghhMgSd0jyDiEUCrUIwzAMr9f7lqqqDSPV5iHSOo6Ts0l1HnnkcXgJPETioc+D0rdvypSpj2mO42SEECcrivKq4zjlWeN4sPDQxXnkkce7S+IhGIbRW1c36VlFUVrE0CqkWbNmV0QiA3+Ix+PzLcsq4t0Os8wjjzxGktgyDKMvGAy1lJdXbFYUpQW49f8PAOe6+AI7wAjWAAAAAElFTkSuQmCC'
button_message_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAB8eSURBVHja7J13mBXV+cc/Z2bu3L67sA0UUUApugiIBStGVATUKMVKXEF/SQysGqPRYMfEhmIvSQQlilGxRQLYFewFUYoiQUAxBrbv3dvvlN8fc+/svbt3YVFYUOf7PPPs3pkzp7znfM/7nveUEYqikIYKnC9J0kQhRIUQIogDBw52FTQDK03TfMw0zYcMw0gCiDSBdxdCLJJleaAsy8iyjBACIYQjNgcOdhGYpolpmgBrhZBGRKORb4SiKKoQ4n1FUYa4XC5kWUaSJIe8DhzsoiQ2DANJkjbtsceeg2RJki5QFGWyqqooimJrXwcOHOx6EEIgSRKmaQaEEPsLVVXfc7lcw1RVRZblnIAejwd3+r5DaQcOOlHTArquk0gkiCcSGdM5B4qi1Ai3251wu92qy+WyNa8kSRQWFCBJEslkEk3T0A3DkaoDB52pbdNclCSJWDyO0ZaDuiKEULMdVkIICgsKEEIQiUQw8jDfgQMHnaSFDQPdMHApColksnUQWcqQNgOvx4MkSUSjUYe8DhzsQmROj31z7kutA7rdbpLJpENeBw52MUhCbJnAQgiEJJFMpRxpOXCwq42JJQnDMHJILOVV1472deBg1yOwEG0IrORhr3U5cOBg1zerHRE4cOAQ2IEDBzsByo6I1HSpRIYcSrz/YAyX2imruExJRuga7nWr8S99C7m5yaldBw6BtxWGx0vomJOJVRyIKcmZ0bd1Zf7P/rudkdqtJ6ndelK46CmUhlqnhh38vAhspq/vi+jAg4jtewCmJKM01CI31KQXighrbRg7iMC6ht61FK2kG4m99yM65DAC77yMSMSdWnbgaOCOIjZgCKZLRandRJdnH0apq/mBXcI2aH9/kMYJ55PoM4BE3wq8n76H4hDYwc+KwIbxg6aRTI8PhMBV/R1yUwOYnbcJQgqHUDb/l0TfgZi+AMiyMyXmwNHA20hhEAJTcYHU1smtlZRj+oJZxNpOBDMMMAyMrmXgcmG6PaR69ML0+JCaQ8hNdVYYBw4cAm8BQljEbTXGNV0qzaNPI3bQcEx/YPtrRjPTcSggyejd96BxYhUIgRQJ4X/1X/jfex2RiP3gpMKX3kzz2EoACv9xD74Hb8wbrmHGo8QPPxYRi9BtxN5Oa0sjdeQoms/4NYkhw+x7rjUr8b3/RruydNBpBJasK0v7moqL0PjziA07GlPOr5m3i3c6+13TBMVlaWWlK80nT0QYOv4lL27X4jbtNxSiUXw+X5tniQMOtbOyubqa8rKyn32Di509hcYpV7Uldd8KmvpWEC3bjZLpUx1mfl8CGz/UqM1MGQlhK9n4wIOIDT0C0+VGXbca9fNlCEPHFFlEzvZQbw8CA0LXMWWZ+NDD0cp2I3LMyfi2A4Ft+dRWw4BBJJJJvK0IHD97CqbXD3XV4PVvz8HCjxqhM35j/bNgHlSd1vJg2u1wykRSJ4yj4eXnKXr/VUdYO9eElmw+6sWl4HIhkgkCLzyGuvbzTh2PSuEQzaecg15Svn0jXrUMho8kcclfYPaMnEfRw45F2rje2paZJnAGesVBNF0wjWTahJTqaggseKKN+Ri+9Gaiw0djFJdalbVmJV1um4a88qNtCqNXHERz5YXEDz+2peLXrKRw1kxcby3KCddw6Y1ofSvsMErNJuKHH0vg2TkEbruihYjX3U/0+FPt362f53VTdO+JUVyK+GYdZtVp+P1+gsH06cWzZ9AgyyQmXUT8kKNJvbUI/dyLaZxyFYFn5yCFQ4TOqWo375k8xY483uo488g1deQo6m6Zje/l51A2fUvzhMmYXj/KmpWUnHscRvee1N80yy5/6zJtfm0tUl01RffcQGPV1eg9eiF/u56u0y9CXvlRjkwycbbu1MPHnZIj39bl2PzaWrxvvWy1oeNPRcQilE48Bul/3+Rv2zuEMa3NYMMAIRCahkglO90zLLSU1ZfI27m/WvoOoq4ac8gwotForknYfyDS+2+SmQLPJkndTbNs8gIYxaWEzqmi4f+uyCFmeGylTUwArW8FtTc9hFbeo8NhjO49qbtpVg55M+HqrruHZNnuOeEyjSsTJvNeOKURiUQsw+ORV3LICxAeW0ntLXO23JH+7xvkb9djlpSjHHFcC3nT6PL3mykYXAh/Op9k1ukT4X2H2OTNznt836H2vUyezKzOMiPXxjN+m9u59uxD6JwqO6zWt4Lqq++h7q4ncsofHltJQ6t3da+f+j/ejN6jl/W7Ry9qr76Txmvvy5FJJs5s8jZOuaqNfFuXAyDaf5AdlxmJUPvZx/mO09nBBM4hcfq3JCzNbJqYbg+RkeNpqryY0K+qCE2ssv62czVNvpTwmDMxgkXfQwVLoCjWtNL2NmG++AwGDMppcNHfTrMa0F9nIFoNC5oumGZpoSUvQW9hXVVnwjfrSJx+vt0RxCuGImIR61km3NJ3MYvLqD/xLAzD6FCY6Nm/s9Jb+HRLmN4CVi8Hr5+G1uFWL4dj+llhHpqZ14Gn9a1ArF4BZ42wwh3TD1YvRzvyeOpPOH2L8iq65wYQoP3jZWqeepfQdfcTuu5++7nP56Nbt274/VlWS//9kZa83CbvTRdMsw5+O+nsljxll/HJWZYsBw0jHo/nxCfPm22FOWsE1FZjjBpvuU3OOd66v2Ce5cdo/W5xGdRsQt5HsfNi7tGb+FEjUe+63ro38xqr/g86iubmZnvoIGIRK0+Z/D00E0xouvRGdF1vSaNnb6RF6fo6uNw+ibLzTOjWGjjP0DbVuz+RUeMxfMEWkmW/m/Yqt4bc3IDn3VcRmvb9nGvbGeqbC0kdcVyOGR0d9gukb9ZhbviyTRFS/QcifbkC49wT8Pl8FBQUwNI3Cf9rLuGqq2meei2+dDym1484twr1xAkUPPMIctU4GhsbicfjxAsKOhQmcNsViOuraG5uRrnvaVRZQivtTrL//tb7wULi8Tixg49CxCKYv5uA+t0GisrKkGbPoK7HnqROGNeiSdKdhjl6f1RVpbC0FDkeQp92PjVz3yA5fBTJFx5FVdW88nK9tYjio/ak/voH0Hv3szVN9PhTkb9dT/Bfc/HMvS/3pW/WYZw7skVek0eyef5nmAMG0dzcTNH8uXR95mHq6+uRb5mFu7CLHadlCwdJJpN4M/GtXo5++XkEg0H8Gz6nbuM6UiVlGH+/HfmDNyktLYV/PUrNmAn2ux6PJ907RzBHD0JWVUpLSwl/voxw//3hhSfQ7plOUVERnqf/zubKqZg+P/F4HPWs32IUlyI9NRtx5a/xB4NWB5Ul38Z+Qyheu9xOw5gyIXeI0Wlj4PbM6FbEljf/F3XVMrTueyDSJnbed2xPtoJcX4tr/RpEdm/VIa+TucMWlLiefQTpgj9hpM1o98HD0fpWIM++A0VR0FuNfU2vH7PfQFhnEgWirbMaLCQajRJ85hEa/nQb5tDDSAA1I8ci1dXgW7yQbulxmdyBMACxee9C3wo0QMsrHhOjuAxqNyN9s5aikhK7x/d/9QWN2aOh4nLL9FxnkgRqWld7eXer0bZDYACXy0X5ny+kubmZVCpF8oAj4Ozfoh8ynMYpV+FvqCO48ImWF1YsxeVyWeTNxPHNOpJDhpHcrRdEG0hOmwljK9HzyNQaxWXV/1dfoqqqreXtVrb2C4LBILIsY9Rtzv9u7WYkSaJr1665CTQ34ff7baJLsQi6149pmui772nFc9pkOG0yzVjfScnp2PfaB/3LZekKiyBJ0lbJu2MJvBVyy/U1FD5yB6bq7tiYWJIQiThCS237GNowQEuBoe+Q4niWvkP0iOOts8ROGIeIRdD/fAn+ggIi2dnoUrL1yAIFmKaJe/5cCr9aTdOplTBmgj2mC4+tJF7anZLLKzsUJnTd/ZZ5uXE95vKPrTS+XAH9Btrv5My8pb/M0W5fmGe6LPd5AK2D1pHdQDd8jj59CuEBQ4k9sojI+Em4n/9HrqXTTodgGDrRs35HeGylZRm8vjBt64fgv1/DJdPb7UTaYNO3OWejt4e8YUKNbT+IkP5pBAq2Loyiri1mdCTc4Y8r7BwCZ8qXSlpOrR0NQ4dUCrbV7O4g3EvfIXr8qSTOv4zUwUchf/wOhiTh8/lyCOx6a5HVyL7+CkYPaj+7ac3g/Xwp6ooPiV4xyXIg3fMU/GI02tDDCYVCFBQUbDVMfOgRVprDe+NyuWwiJP7xSo42FtEoZkk57NUXmuvs+8l99sttvBvXo/XoBRWB9kmcjxxZTrd8HmtZlilc8ynxWATTFyAcDmN3FX36tYlL69nHciBuWENisOUQNG+6HOnxB/B6LWM5ee09pLZZt3z/qcz2Oj7Xlyusf56cBX86v/16Lyraalxbd2Jl1kJ/3yvHbM26J0TLGDR93wgUkOyzL8m99yXZZ4D1f5/M/1m/9943z7MBJHv3J9mrn3Xt1bfl6tUPwx9sSUs3LPLq2g8rW77jhkwT9wuPIdVVY44ej96jF+bSd/C43XnDulavsJwy982jW3k53crLKRt8MMqLK2CdSdElNxAMBKiev5zq+csxjj6RYCBAt/JyipdYHQCxCPF4vENh7HHy1Ksp7tqVYCCA/uDzaEMOzcmXb/FC8PnR7nocvbwHmCbR30zL9TabJp6VS8HnRyz8jLLBB9tl8D3wLKwz8T3wLMVdu+aVm/uDxRaRTxhP7TX35jwzuvWk/r7nrLyuXGqd+2S2OJ3i19xth6195BXL8/7BktxPAR0ynKLCQoKBAOL6+9DGnNaBoZWZ/56ZJ2yH3829n2kfnHQG6tV32jIrnjAJeck6xKowZYMPttpMe/G1c9RVJ2ngVnMppokRLKTp/MtI9upnkTuf00pkObZyCmKArlua1dAtcqbXQmMYmIoLzxfLCM6f27KhwtCtd3YQfIsXWWZcXTX63dNRCwvzhit84EZq7vonxqjxbBo1Pre4q1fQOPNqigoL8S1eSHhsJXW3zG7b6z41GyEE3g6EcX/8NtGRp2JeMp1N+czJtHnne+x+IsNHYfbfn5rnPmrfwp9xOdGDjsLovz/Vz36Qm/+6aqK3XIEIhwkG2mpo15KFuF96lsTIsWgnjGNTlnMsOw7ztqtyTeZoBH3CZDZNmNwq3JV4PB5cy963prvGTKC+1bAAgNJu7GwE/v0kocoqkpMuYtOki3Ktj6dmU7v8Y0qKi7dd67dRwLTsCf4+V04H0vqeEPY9w+1F67YHpteHqboxPd5Wl896lrl8fuvKvufxYbq96ctjxeP2gCTQSsoxPD4rPZM0iY0fVLZ85cz8VtPaxXx/MbIs4/Z48spDWvEhXapORyx9N/fhgnm2Z9ft8eCfcTmupx+2VntleWN5aCbGFefh9Xo7FCZ43QUoi57JTWvxS/ZUB336YZgm4n9f0+WK86xppCxvbWYqJruspacdak1z5MyJv4tZdSbyxq/w+Xztyq3out9Z0y2tyx+NWDI4qDwnDgDeWIh4alZuWhOOtMO5596L++G7rDiy8z7zGks2JeXour719rmVtry1cFt61/vgX/Dcfb2VL9shVg1PzkK/4jx8Ph+ildm8NX4BCI/HY3o8HhRFQQhBIBBosyhhW1BXdR1a9z3wrPqEgqdnIRJxoseeQnjcJEQqSdFd1+BatxpMk2S//Un17p+VXZE1+M9ziodtRqT/Zsx9w7AImi6hKcuoG/6Da/2XCC1F7MAjCf9yIoY/SPklZ22XHjUSiRAOhyksLLQ9j6lUivr6evx+P4EsDVRfX4+u69b0RMYjreuEw+GcOcbW72XSicVitoPD5XLh9XrtcV5Hw4TDYXshBoDX60VVVZqamlBVlS5dutj5CoVC9ry2fMss9AmTYeY1BB65I2d+tnWcHo+HQCDQIUdQPB63PtyVVX5JkvB6vbYM4mdPpWnqVbBgHv4rJiGEIBwO22kFg8GcsWIsFiMcDtteY1VV8Xq9hMNhTNOktLS03TpqamoiHo9TWlpqx2kYBjU1NXg8HgrTFlVNTQ2yLOd4ofO1hfbqPR6PE4vFWuQry1ZnnCXXfGlkl1FRFDuP292ENjNk0/WtbhlUv1yO+uXyTjLhty/8fn/uYoPM9Eh52+Wa+SpClmUKCwvthrEt6XyfMIFAoE3nkCECQMP9z5McMgz/s3PoMuNyq0M6ajSNx5xkBfz4nTbEbC/ODnnuPZ4cYnxfmWejdafVuoxbqqN8dSFJUpuw2WTcWr7y1Xum3FtCvjQ6zQudmaM1goWYirX+WaRSO3clv/WZtx1C5J8K3Ms/IjlkGJGxlUTSWyVt8S15CfP913GVlDiC2sWw3Q92V/+zCr18d5J9BhA6ewrK/74h1bcC0+VCJON2/KYskxx0CFpxubWQI9uEtv1eoh3SWV5CU5IRqQTu5R8i11W3n28hQMjOCR1bcsI98GeShkFixEnQs3fLGO21+Zh/Oh+v14ssSZ0sP3O7tcufD4F/aEP4eAmpXn1J9e5PYsBga45OVXOXSpomWq9+hH51IYbP37IzKXs1lpS1rzh7DNzGXW95tP0vPYOIx9oncJ5DBhzkouivNxK782pisRip9Jy5LMt4AwH8W1nAsSPgeexemHU7TU1NsBPS/1ES+IeeSinVVVMw7yEiI04mtU8F+AIYBUWYgYIcL7Soq0bZuA5ttz1A01s0sE1g0ZbA2b2x1bpA05H/txFTS23RhjbFlkbjDmzSeL148owjd5bc3G43ZemDEJy66wQNDCDXVVMwbxZ6cTkIiB15ArFRp7WcxJFeSlnwt5sxCrq0eJbbcz61pzhlBRGPItfVWIs0tmSKGY4J5sAh8DYMX0zk2k2WMm1uBNPARCCSiRZt3dyE1BlfUNA0hJbCdA61c+AQeNsh0iulTK+PZMVQ0PX0kTrW2FQKNaVJbmlIvbSbdarl9/J5mEjRsOX51jVM1U1yn/0wPF5EKuHUuAOHwNsKdeXHSMedir5bTyJjzyV2XHp9rWFgShKed1/FP/9xRDxG7JiTiB01Kn2+NLnj4rT53WYsbGYt6DB0RKQZEgmElsLw+Kx1s0LgXv5RpwtYH3gwTZfdZJ/EIGIR/E/NxvfAn39SDSk+cSrhM39LyZiKbZZP47V30/XC0xHffe0wclcksFyzieDc+2g+92L00u7oxWUt65s1DdPjRSQTxIaPJnzKryzyQtbZWlshcWYllp5e71zYNb0+umUxiWvjOnyvPN/pAm689m7kDWtRTx5KMpnEvOkhwhMmI2ZemXfRwY8VeveeiK/XUldXR/E2rOlNDToYo7iMhpXL6NKlyw/aDeQQeEdq4VWfUHjvdBIHHG4t8vB4SQ48CMMfRAo3Ex92DJFfTsT0+BCJOO7lHyGizW2OqG3XI20alqMqm8yYmLKCXF+DZ+nb1lxxJ2tfvUcvmPcIqixb3tQ7phH9y8WEIxHij7yMUVpun6/kf2YO/hl/JDV8NKGqa+z77rdfofDSiUQuu5XY0aMt46W4FO9LzyKFm4mMs/bCdr3wDKS6zdTf/aT9bmDOPW20fXvxtw7T9MdbrWN2YhGKrpuKa/FCkidPJPSbK+z7hXdcg/rCYyR790Ns/i+yohC57FYi46zFIPK36ym6/kLkFR8SveAqIqdZB8m5334F75IXCU292nJT/HMxYkrLzqeOlFVe8WHetNqTQfSCqwhXVtlhM1q/+foHiI0ca1tImbJm51dZsxKtbwVlw8rblcFPmsAAytdrUb5ea1WKP0jTJTdi9AoSP/hojEDA0ryGQeDZOXjefqlz9grvSMtjxYeob79C8vfXkxh/LsbXa/HNfxzf4oX4fD5qe/bBjIZRRlagTf49kdPPg9l3EPvjrahvLkAc0xfthgdJnH4ezc3NaL37YWIiXXQ20slnEjvxdFxP/B3/mMFEFnxK/SG/QN1jL0QkgtLXhXbDg4THnN5G2ze1E3/2CRChqmtQ31xA6orz0ed/QsOYMyisqyH0++n4br+K+Jx70P/8VxonTqHo6dnoPfsgLX4R47KbiR9yFL5Jo4gufhF93js0nFpJgWkSrqxCffguUg11JC6ZDg/djrLsPbTvvoWq02hyu+3ljMkOlNV7+HEk8qTlkqU2MmDebMKVVXhuuJj4G4vQ//0JdWPOxKfIJA48Es+5JxBf8hLmyjCNBxxB0DDt8Ik3X0R7cgli43qqe1cg2pHBlk4h2VHYeR/4znx61DAsp5U3AEIiMO+hnwR5Myi6dCLe/XwYyz8m6fXTcMvDRM6egrnbntY5SX/6Naz/kq6vWuZ9pLCY4F9vJlHaHWP+J3D6eYi6amKxGEZpOdLr/4YP3sAtS0h11Wh/ucQ2O83PPsJobkLrV4H+2hrcu/fEX3l8m80pBe3En+N4jEaIjzsX89/L8K9ahvrrkwmPm4Tp9RO56g70/2jWu/4A4dLdMYpLMdavQT/ul+g9ehF9eBGsM2HoYRAsIDxuEvLG9SRvuJjAnDspHFJEYslLGD37oGz+Lz6fL2ctckfKGh9xUt609FBbGcQSCUQsQvzqO3FNv5fAvFmYN/4BMfMqpI+WkJj8e8SqMPj80NxEdMRJKMveI/7wXRQ2bMa9+jNYvwZp4gX5ZZDeZPHzIbAQ1qbtjFksBIGnZ+Nd8uJPhrwZBINBym6YirfyOMTG9UTKdifaewBSXQ36u69SWFiINuhgayP+gYcT+v10FElCeuc1pE/exdywFlmWLZNw1aeWNg0UIGo2Icsyrv0GWwmt+oTgzZfiueFizHVrSBxwGNEHn8tZVB+fOJWmduLPRtdzRiDPm42x6Tsi4yox7nwc0acfyryHc05+NA8qx0gfkGfM/yfGHr2Qr7swJ4xRORKjfDeo2YSiKHi9XtxuN6WDD8IoLsP47MM26XekrO2l5bpuSlsZhGopOboXLJxHqqSccOWFqBddS3TBZ9C7H5IQuGZMa+kIe/WFtatxu92oqoq2197Im7+DdmRg7qQ1Btv/RI5tugx7I7//hbl4X3/B+p5vp6W/4y6ze0+q399M5LJbW06kGH0alJQhv/c6yUOOtjTwSWfC4EOJnDIR14J5cODhSF8sR6scaVXHAYchV3+HdOIZVsNe8hKKLJPcbwjiq9XIskxq3yHWiQ/delD/cR0eWabo4tORVi/HjDTT0NBg5yExeFje+BVFscNEL7iSmjfW0fXxB/DfejmirhqtqREz3Iw+7Gj8AwbRZfy5iFVhCi6ZjveokUgb19tjSP0XYygqLCRw7V2IVWGKR5yILATGnn2QZZmGB/5F/ZzX0Pa2jusxVizFlZV+6qjRWy/rhjXtphVbFW0jg7oZj9Lwj9cpu34K7r9Zp34mfEHrBJX7b0L6yx9ITbrY7hykaBijTz9cikL0giutcN9uQETCeWXQ3ikk2/3aGoF/6Ib+Dl9Za5l9LzyGd9FTkIh3TtqdcPHd1/jn3E1k1HiqP6im+oNqQhdeg//2qzHm/xMRLLS+3HDX49T9fT7KqmUY0/4Pddn76AccivmVAYcfa53wEWqCgQdaGnrDGhSXC6O4DPPbDSiKgtatB+Lrr5A/Wozr7VdonHY7jcsaEWXdUG+6DEmSWg4e+DR//LIs22E8zz+KqK2m5rmPiCz4FOWbdchX/QbXY/eDz09kwac03Pow6oJ5NN9xLUl/ALHhPyiKgv+pWTB8JI3LGomeeCbu266k/vUFeB9/ENPnJ/FF3DKPb/wD4U3fWY3uqbeQstJP7Tdk62WV5XbTyiuD5x5F69mL6g+qScx8FPfTj8CNf0DauB79zrloz72PUps+iXLDGgL//BvGgEGEV4SJjbC2VOrzn8Az94G8MognEp3Trlobsq039Hu93jbjoR3ioS0uo2nqtahffIr/hcfa34jwY58fjcftDeWA1cj9fiJPvA3LP4Irf22f4ujz+fD7/SQSCUKhkOW9V1V0Xcfj8SBJEuFwmJL0tr7a2lqCwSBut5tIJIKu6xQUFNDc3GxvlFcUhYKCghwTtb34sz/QZpomjY2Ndt7cbjcFBQVomkYoFLIPD/D7/dbhfZEIhmEQDAaJx+P2geayLBMIBCwzVNNobGzENE07X2BtfG+9gT0jt62Vtb208skgU6ZMXWTy3tDQgKZpCCFQVZVEIkFpaWlLfmcvQpTvhjl6f0pKSuxDD1rLoDOQSCRyNvTvPAKXdCPZbyCeT961etufGWrfXI/81xm4Z93WaZXvoGPQho+h8fp77U+vKF+uRL7xD5gfvLlNBxD8pAnsIFerONjFSJxlLWQslY4eF9SZBFacqtp5KHFOuNhloSjKj6J+JKeqHDj48SKHwKazX9aBgx8vgYF2v0PqwIGDnYt83JTyDd6dHSEOHOx6yPfRuDYETqVSHf6wkgMHDjpP++q63ka5SkCbhcfZX5t34MDBzidvMplECGFfAEKIlAR8ku28yjxMJpNomoZhGI5zy4GDToZpmjZxMyvKJElCkiSboy6X2qiYpjnXNM1hpmlmMxtZltE0DU3TME3TIbEDBzsBQgibuDmfUgWCweB6oaqq6vF4PpdluU/2KpMMaQ3DcDzTDhzsRAJnSJxtPrtcasPee++zUDEMIymEGCFJ0oeGYZTZayyz7G3HqeXAwc4ncQaqqtb37LnX65IkrReZNdAVFQPLQ6GmOZFI5ABN07rgLLN04GBXIrGmqmpDIBBcX1ZWvkaSpPXAzP8fAOjm4IgR9xUjAAAAAElFTkSuQmCC'
button_ascii_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADlnSURBVHja7J13lF3Fkf8/3Te9PFGjnFAWSEIgRJDI2RhjDDgbDM457do/r+31Jq+x1zmtccaBYGxsE2wQmBxEFghljdIojSa+Ny/c2P37o9+MRkKsJdYEe6fOmTPn3Hdv31hdVd+q+rawbRshBFrrRcBlUsozpJRTgBQjMiIj8koRH9iitb5TSnm167qP+76PXf/xdCHEW4UQSyzLmiGlRAgxdKQG0HrkEY7IiLxUIgRi3y0pYLZSyhJCFLTWv1FK3WwDk4CPSCnPt20by7IYrsBD/0ce6YiMyEsmg+ZS1w3noB4qpWYopWYIIaa4rttuCyHeJIRYalkWwxV48EApJdZ+FnlERmREXmQF1ppEKZRS+yiwlHJw29GZTPbzwnXd5ZZlHes4DoPxsBAC27bxPA/bsgZj5CGlHpERGZEXXYPRxuISRhFRFD1nF9u29wjXdX3XdT3HcZBSIqXEtixSqRSu44AQqPpMMKK+IzIiL53Iuu5FUUQYRUYHhxlRrTW2EMIbHvNKKUmn07iuSxSGBGGIGrG8IzIiL5tYUuLYNmEUPccLloMu86ACu66L4zhEUTSkvLpuzkdkREbkJfSi6//VMCBruAILIZDDDxBC4DgOWmuCICBOkqHtIxDWiIzISytimKv8fAZ0HwW26oBVFMckSiGlHHmKIzIirySrvB+YvI+GDqaPkjp0PSIjMiKvbAW2999BKQUjCjwiI/KKVeDhYj/vjyPI84iMyCtNe/fR1eeAWCMyIiPytyUjCjwiI/I3LPb/ypwrBXp4vCww2SsBlgQh6/tokBJG6qlHZERefAXW8JcLN7RGDClwXWkHFVsItJR1fdYIrdAjxn5ERuR/FwL/1SywSkjGTCQ8YhHJmPHguIgohDhGZXNIv4r34J1Y27cQHb4Q1diM+/TjyFKfscT/l2KUUh+i6qPTHirXALb9XIAwiRHVCiKoIdQwoEJKdCqNTmfBsve+QiEgDBBhgPCriEQd4JhM/RhASmTPHkQUoRqbzHh+DTlQBKXQ+QZ0Kn1g4FIICENErWLONzxDIQXa9VD5BhDWwUz7I/Kyu9AqgSQBy0bnG1BNrUaBAx/iCJ3No1wP7XlgO+ZjSmXMh/B/CtnWiCgmXHgCyaSxWDu6cNpXo+PIhBZDz1OB4xEdPotkwlRIp403IzSiUsHatgl7x1Z0EoNlGZ3ya+hcgXjyDOKJUyGfBy0AhahUsTvakbs6IAzAdhBhgH/i2eh8AXftSuTuHajWNoJFS9G2i7N5HbK703hN++tv4JtzzTycePR4yOXrLpoGv4rVuQtn7Qq01EPXNyIvpwJrvffvQGLZxpJEId4jd5N6MIK69d1ndlYJOp3F3r4VsX41slz8v6XEKgHboXzZh6m95QLSv7+bhi9/Crl1A9rbl61ITZpO9eLLqZ15IaoxDzHggOzuI/PHX5P77c8QHRtByyErm8yYh3/SOVTOuYhk/BgI9x6Tu+Va0n+8AblpjQlhKmVKH/lXovlH0fTxy8iuXkm0aCmlf/wycVMrTV/6JN6y34J3ABalKCSePpfqJe+kdsxJqFEt5voAURkg/eh9FK78BKK/Z+j6RuTFsgl6KEQ9dAtcB6KiOQuonvtGVMso7I52Uvfcir3maUQUIWRdQTWodJpw7gL8U8/He+IBUvf9CVEu1V2tv3cRiIEi4ZkXkkw/AioQzJ5P5eil5Fc8BmPH7p3IUmlK7/wHojlHYt93G+G9f4RiERoaUKe9hspZF5IUmmj42mcQtQHEwAD+hZdSecO70WMm4Dz5EOobt6B7eqC5FXXGaymf/TrCuQvJX3UlzrNPmHOl0pCBsh9gA8K2IZ1BpdKUE42MIuz9FFgEPsn0I6hcfAX+aeci77kd/btfoBMFqQz6dZdSm7eI5NNfpek/Pors64YkQVbLaNsGDSKMDBYiBSqVRucKQ665qFaMax4nwx8d2nVRuQJYNiIMkMU+tOuZySgKQQESVDaHTmWQxV5EVJ9VLDm0XfhVZLmEtmyQEhHWj7VApbPoVBpZ6t97rASVK9Q9RomIAkS5hIiioehAWxLteuhsHmwbUS0jygMghTkmjNGWQOfyZpxXlAstBEm+iXj8ZHQ2i9XRDr5xnQG0qANXg8izECSjx5O0jEJLG1FvjhhyIfUB4DIh9nUxD+QZiDraLQ6AbGttgDU9OJbYu89wz2L49uHu7PONe0gzpULnm6id+3pUKo2480HUYdOpnvwq3JuvxUti86wsi3jeYmqnnwftG/B+9i3Sjz+wd5hSP+H8RdTe8HqcJx8mc+uvUDONQgULF8JNN+L9/Nuklt+z95juTqLsx/FPPRn55CnkVj6OLTTCr0ENolrVGHil6tsqhGFAkiTP/RjCgGjOAoJTzkMVi1g//Cqpx+5HYvRAhzWCT3yB4A3nUXnsAXK//QnxrNnEU2YgB/rRqQzJ1MMQkUL092BvXIOz+im06yEqAyRTZhLOXYhqG2smFJVApYy1bRPe6qfQSUwybjLVV78Je+dWVDaPGj8FXAsGyjhPPozd0U7tgreRTJiICCJETyfuqhVYnduJp80lnHskVrEPtCKeOsu82t5enLVPY23fQvW1l6JGj0foGPr78FY8gtW5Ax1WUbkGomNPIRk32YQOSiN6OrG3bcJe9wyiUiaecTjRjMPNxCIlyeTJyIEa3jOPIDat5cUmo7KfD4HWBwIztEZ2d5K691ZE4GNvWIW1fTNIy8RPg8ohTfrIXr+a9K3XYXfugDBA265JLw0qkrSee3/P574PT0MNgt4H2lfKvVZes2+aSwgTp+2/fVh48LzjHorEEcmRS/AXnYju2Iy89Rr0GReQzDuKyoln4d1xowGShCCePA0ZRqitG4iLveSbGkkXGhGVMmrdCio3XUv58vdSnnUE7k2a+PQLCOYdjVy9BnXlJ0m2tZNuaCCdySCUQq14kNoPYkrpLFUhcKMIa9itiHqcO/wdy/pktv8dC61RdVIHnl1Bsn0rqcYm8s3N6GoF/eQDFO+6BX/UGAYOX4R7yzWEJ5xJ+fKP4HRsgigiXLgAAokIfLJ/vhn5zc8hKgNoL4V/5oVUXvMW4rETwaIeQ0vcxx/A+vZ/IDc8QzJzHv3/+l3SD99NYlmEsxZAawESQe7HXydz06+oXPYRgrmHg7IQpV4afvptUtf9N9HCEyh+8kqcjk3InR34Ry2BvIeoxuRu/BmpP15P+dIPEx02G/IeVGMavvl50r/7GSJQRPMWUX7vZwhmHA62gARksYf0U8vJXPVFnGefIDxqCaUP/jOiVkH27iGaPwfZ0UPD97+Au3E1Qv71PE69b77nhYFYslzEbl+L0ApsFzVqDKJURPiVva6GEKAUVl8X3vK7jOuSROh8AW3ZxhVMFDqdQzuOUSZRV+zQR9aq+yqQ1uA4qHQObVuIOAZpGQQ28PctMXM9g6jW3S9Rq0Acg5DG/ckWEICoDtQ9BzMxacuGTA7tuOb6atUDewIH46hUy/jHLEW3jEL99mrcP90Aza2Ep55FMnch8W9/jpUtoJXCvfMm9Ns+BKecifb/jXDXNqxN6/Huvhl7yxayv/gW+s4bKXf3UIsj9NQZCFei1jyNHfrkPBcvlap7QAIhJN6m1RT+82OUO3cTB/4LtgLK9XBXPondvobk7LMQ8XdQ65+lVuwlfcOPkP39FH7+Taxbr6NcKuF3dqK1ca+j+Quwb7wO9wsfI2wchf7Yv1M99TySzetouP771C5+D+V3/yPWM49jf+WfiHdth0mHweUfJZp7FMXz30zjl580bnMQEBy9FPdPN+B+9z8JpxwG7/oU1QvfTDJxGt6TD6K/8FHCBUvQ7/o4A6edj3XLr9BRiAx8oqmzcJ94GO/ycwjGT0J/4gtUz76QqNBE5sFlVP79o8SnnQeXfojySedg3ftHrPFTKL/rU0SzjsD+02+If/FdkDbq/f9E7cSzSbZvpWFXByIKAE0yegzyzzfj/MsHiWo+pd3baYhiXM96BbnQg2mKxmbCGYeTjJmEiHysnR04Kx/FWfO0ccsG0cjAxyqXjCvd1Epw+mtQ+Ubcx+5BlgcI5y0maR2NUAnaSyFqFawdW/GeeNAoGGLIGsYTphAuPpWkoQGrrwctLOzN63BXPWGUTSkQEE2fS3TUCeh0FmvrRtxnH8festHEVW3j8U86G6HBffQerG2bEEkMSYxqaSNcfArJ6PG4zyzHffrRF9bUoTW0jiE44Qzo2o1YdiNuTxfO08tJentIjjuN2twjKXTvIJEWcscW8t//IuVL34+aNR9/4fEkYUBw4hnIjnZkxxbcu24lv30bclQbteY2tA0svxfXr+LlcliWNUR+hmVhlUukdz4EiUI2NEL8At0418PasYXMD64kuex9xAuPJ5g0jaCtlWjOfERvN9a2jdhPLie3ZQMOEAqBkBbqqSdJrvshqUcfwJWgJkym+v++TO3VbyL9mx9jde7A/vWPUHfcjHP/MlKAfOJB4mye6r9/l2DWEdSqVVylEHGE8n3iO2/Cu+92vEc8giOPJ7zibfhrC1g3/BTvmcdxdnRQu/jtJEccSc2ysQMfqRRJdyfx/XeQfvQ+nIZGotNeQ/D6S0gKTThXXUl65ZPo7VuonfpqktnzCdrGI8dNIjjmWMRdy+DLnyazYyuWcUsoz7wG/6yLSP/2x+hK2ZBhdHej7r8D75H78QAlBaK55SWOgQ/KdRSofAPx1NkkE6YgkgSdb0Tu2YG9YZWxzKoeX9ZzkqgEHJd46kxUcxv2+mcBQTJhMvGEqQil0OksothrxnNcM86gVRYC1dBCPH2uiac7t6O1QFZK6LW22Vcb50I1jyKeOQ+Vzpq89JYNRhGlRDc0E0+bi0Bjr3sGi0116ww630A8eRrJhKnYOzajpTTKfahWOEkITziTePoc2L4F0dSCmDoTMekwrFKRcPY8/AvfSu4bn4N8AzqTpXD1t4njBH/yDJgxl2DGHIITToPchchqleycI8n+8L8gCvGFMAa1rxtbK4R0n9Ohoh0H0dhCVpqCGhH4LyxDa1noOCT9h+tRXXsYeM1bSXJ5dNtSyqeeD7kCojpA+pnHyF71JdxH7yUeLOC55dfw0F1YhQINKY/4zt/hX/R21OELqKXzNN78K7jlOkqWgxg/iWxTEzIK8cMq1ZoPUYBfq+EAWA6seZT4qeVkbIt8GFDevI6wCjy5nOiZx8k2NpKKakTFHkJvOn4YkUkSSKVgxaPoZx5DCkGudRTVzesIasDG1YRrV5Jvbia1fQtx53aSCVOIW8fAuEkGJlmzwuADCxaRTqcQxV5qO7YQn7QEP9+MFScIx4V1z6I3r8dxLPKjxw7xV73YRJD2oVoXq7sT+dj92O1rDRInpbGce3YZ11fF9YDeQtuOscbC7JP60w3GQmzbhAx8ZHkA1dhkYlYpoVrGGiia4ocgRDuuQfoQ2Fs3kv7d1Wg3haiVIE6w+nqQfT2IJEI7HiBw163E6ukCnSCKfQYZFeZjFH17yPz+54gkwtqxFVkrQxSh8w0Iv0bqvj8ilEbu2YWoVk0FmesdEqAl/Rrlsy5EZdKwYA589zdUohCRzqAKFsSgJs3Ar9Tw8g3IygDaEuQfuA3rgWXEUhIrRWS7cMp5qLd/iMpr3kjkeDR97TOIJEYkoGfPR65+AlEt7fuRCAFxgigXzSvLN7xwGEUIhO+DBen21YiffAXfD1CeS6glnH0R+oI3UTvmROLeXpq2bETEEYQhWJIUkM1kSJIY7bi4e3biz1uA3zIGtXE14pzX4B1zEtr1KBcaCecsIJk6FYS7F/AcjP4sCy+Xw+33IPT3oty2gw24nouSEhEGoNhLwigkRCGOFHgp14Bv9mCBi4WdziAtiXakwXGikKShGRpa0GnQl30Y3vQeyrZNVUhTxNSagzYIWseS8lLGgMQxlkpwPW+IBPIlzwMfTAmlCGqIziqi2EfSNgbd2IJOZ4inzkBPn4vO5QCJ3NWBvWMrstgLKkGEPnb7WpLJ0wgXn4xOZbC6d2O1r8Hq3oN2XZKxE4mmzkAdewqyaxfu048galWiWUeg0lnszeux+rpRmQzJxGkEi09Gp1LYWzfirF2JrAwgu3eDZROPn4RqaCaZfjh+Uyt2925E1y60l0aLNMkxJ5lwvVarv4AI4hBteyRt40lObMXesh537dOmIOIgP/j4yOMIjz4B0deH/ukvYGAAZdtmjGwezn0dyYJj8BefTGrbWkof+Cy6uZWGr3+ObOceYgGJNqlWUeoldiTVT1+Jf9xpVAeKuCsfJzjpNFh4PPzuZ1DqRzS1mo8vSZDlIqqxhdI/fBEyOXLXXoVoX/OCQDlZ6qdyyTuID59H5oafk3nkAVNIpyAC0Al6zROUv3Ud4dIz8b//BVTgg20hosjgUo6LqleM6UwOEo3u3EH1lFeRXP5xVFMLulwicT3Us0+gH7gd3v5R9P6TphBIyzYsMcMzCHW6JyklCeLAYY9SSMFehpnhx0pp0p+DY9afk/EcgUfugyceRKUzKJWAX4M9u8AOUSsfI1l65lDNv9QaKa2XTHlfWCXW4E1KAa6HamolGTMelcmjU2lU62i0l8ZZtxIRR6Z8EiBRYGmS0eMJFi1FNY/CXf0kclu7ebmWRI0aQzR3IdGs+di7t2NvXodVrZC0jUcVGrG2bgS/is43kEw4jOD401Eto3CffgS7YzOUiyaebWgimjkPnc6aKqIJU+HRe3F6u0jGTUKn0sSTDkM1NCNrVewt67G2bIB0lmT8FJJRY4inzUU99RDOlg1mVv+LiI9x0/1XvR4amhDX/RjxxU8iw2CvBfRSaC9FfMX7CN/8HpIv/wPh8WcQnr0Ye80zpB69B7fYZ3AEraFaotqxiWrFB79GZaBM0323U3nNW0mOOIrw2FNxHr4Dx6+ZD8v1SEZPJDjhdMof/jjsLGJf9yPSL9CNE9Uq4eKTqV1xEUp6FHZuIxWFEAakpYT+LvwooFoto5wUQeAbwNKyYNpsdGsbFHtN+DTzCKKpM5E7d6A62ql++J9JzliCvGUZ1qMPIC0L66E7UV6K6B0f3VvttY8D+PwuqR6eHjzAN6uHGm2eB94dlokQvV2InVtJasC6lchv/9uQoiggaWlDOymcnl1InaCGpSs1L+0qJi+sFrruqtg7tw2lGmQQmhmtXEJnc8gwMAizGpa7tWxEpYy9fQu62Ie1swOrPIB2XYSQyHIJa+d2tGUZF0pYxm3fswNR6jOK7njGHS4XsbdtRA0UEUENTZ34SwgIfaweY9XVQBGnUsJe9QTOpnWoTA5daMBGE0/UiDjG3rQWZ9WTqJbRxm0PfBAWolapI7sHUUFWxw9qC49D1KqoX30PLwrJtTRj27ZpwK5VCR+5i763vQ81bxG+lyV3w4/pmzGX0hUfJ5k+l+y138fauAZUQjTvGGqXfgjyKeS6Z9GA1b4K99F7qL3mzdQ+8BmcTBb79t8g+rpRhSaCcy5h4G3vhwGwfvldSutW4iTRC1pZQ6VSpB69j/CE0/HPvhjZ1Unh1z+C4la0myKZMIXKx7+AGjcW7r6LpKcHCQilUWe+FrX6KcTPv4s6bBq1i9+JGj0a6/abkEqZ3G8M6s+3Yv/827jpDPHp55N84DNgUW+UeRmq9hwHejqxenajyj7JJVfg7txC8y+/g8rlCV53OaU3vBvV1Ezh/a9DaUXpZawutJ+3WOIvXVSSQK2K3NWBWy6Z2mjHRTU2g+shB0pQLqIyOWSlBNqgiVbHZlO94nrQ34PwK8YFSRLknp24tRpO+yrQphEAIbA6NmFpDYFP0joGnS9gde7AK/WBtCEO61VeErTA6tqNiGITgwsgiU1cW6vgrH/WVPmkM9gbViODKtbODmS5ZJoC4hjSadSap01qrFr5y89DJehMjtol7yQ6bj7yrocRO7aScmxcx92rPFLiblpH+uF7qL36FPw3vIum319N9odfoXzyuVQvvJT4hJMRPb0gFDrbSNI6GnnXMtRVXzJE+1FI9prvEQtJdNQSyu/5FMElb0OUK+hCAdU2yUx2P/sWyXU/JlV3H1VTK4wBvLR51baDammD5gZTf30AhdHpDN79t+G1jqH6qtdTfe3bSE49C1EcMO87myNpHo18/FHUj7+KHCgiUmkITA128LrL6Hn1BehMC2rMROzHHib+7yvxtMJ94A4qs+agL/sQ8clnmkKfXAHbtgn7B9Cz5sG4ieClUKNS0DzK5OmVgsSU6TIayDfs/XYF5vsbUwfgvDSqzYGmFuMVJAoQxpUfDRQa9x6bJObY0S660IR37x9xfvp1Bt74HqIPfo7i+a9H2x5q8nQsaaN/8lVq2zYj5x8LbZ65Pts+4HP8q5ZSPqd0wbb/xbbtvasy1K2FUuovz9paIwIfq78X2dNlcq6WDY5pZlBjJxLOXwyWZcAklaBGjSWZOM2kj5LIHBdFaMtCtY5GjR6HamgGaWH195hyu0oFMlnChScQHb7QxJOWRTJ+iskJC7B6u4z7JqSJfcdOIBk1BqTE2rEVq7fbgBdJgho70bjSDc1YWzcid203L1ZKExJMmIIqGGDL6uuGJP4LpkqDlyI66gSSko+6/ic47WvIpjykZQ+5flpKRBRjFXuJUk1EW9rx7v0j7ub1UC4Rp9JE6RSxkyb2UsTFfsT9y7Buvg75yD1k8nkcz8Pesh56utD9PSTpNHE2Z47RimTzBuTvf4l18zVYW9vJNzRgC0EyeTpxRzf69t+T6t6N09xKks4Qb1yPvu92Ul27sF1vv6/DQXbuQOzegSr1o9BEjY3EVorYsolDH+69Deu2GxHLbiSjFJx4JtHiJegVj6I3riGeNZe4GqAevQ/7D9fA/beTSadI93ahw5ikdRSqtQ2VyaG2tmPfeRNyczu6Zw/iwbtIeS4q00Ly2ANYT9yPF/hmfaC2ccQqjbrndpy1T+NlsmgBatQ44s4S+qbrSWUyiFQr8SP3Yq1YTioKEak0KlcgjlOoe5fhrH0a17YQSpFMnka8swd1/zIy7WvxOrcRaUhsh7ChiQhJ3LEJsex3iG/9K5TLOGMnIJwC8WMPYD1+P6koQNjOX784t75KQ1LXy6G/VCqlPc8bWtjMq6NoUXQIbtdgqiebR008jGj2fJLxU1Cto4mmz8G79zay110FgU9w5mvxz7qIpG0s3oPLyPzq+1hdO1HZPOEJZxAcs5Rk0nRkbxfZq7+Js/YZsBzCo0+gesk70LZN+sar0a1jqF5yhUGTu3aR/dV/Y+3cinZdwqOWEpzyKpLR45Hdu/Huu53UQ3eiLYtkzET8My8gWnAcSds4Mtf/gNSfbkBWBkhGjyNYejbBSWeTjB6P98g9ZK+5ClHsOegHXa1WGRgYIJvNks1m91kobrgEQUB/fz+ZTIZcLgeA7/tUKhWSYQisEALXdfE8j3Q6vc/2MAwJggDf959zTCaTwfM8HMepG39Jb28vYRhSKBTIZrOEYcjAwABhGNLY2Ijrus/78cRxjO/7BEHwnHV6PM/DdV0yfoXqh/+V8sc/i/72f+Fc+Umk5xEEQd07dUilUqTTaQM6JQmVSoVarTb0jBzHwfM84jgmDEOam5sB6O3txXEc8vn80Bpe1WqVUqlEJpMhn88PjTEwMECtVqOpqQkhBP39/di2TUNDw9D7GHz+g+9JCIGUkv7+foIgIJ/Pk8lkiKKISqVCEAT7LDTmeR65XA7HcQiCgGKxiJSSxsbGF4WOefAdRFE0ZGyFEC8gBo5jkyqw6mmiYYig8GtYO7aAX8XetBYtJG7raGT3bpNaSmLsVU+SKfaZQvLd2xHVsqnOimPs9SsRvXtQjS2IKED27AGlEJU+rO2bcR+5G1Gr4qx7Br2tnWy1bNzxWgUxUDTVVBrsbe1w5x8gnTFu/u7t6HqjhSj14T1yL86G1eh0Bqt9jSkkcRxEtYrzzKPInk6T2969HVErH/QkJqKQVBJhZdLYqdRzmPSHEJMoxo0CGjNprHQaoTUiifGSGMuSaEvsbYqQEum6SM/bd7w4xk5ipFa49n7H2DaW6yAH0yVCoGtVckKjcjls10XFEVYYkJOgcllsx3nevD9JghVHpLTClQLlDvtspIXlOEjPQ/pldCaHHoMJUYCsFKRdG4REOg5WKoWQEp0kyCggoxWeYw2lfKRtI9FoCel8Hqk1IvRp8FxEKo206vuGIW4UDj3DoWU4A5+MTvAKBdO0EfgUPBfhDXsfUTT0/AffE0Kg/RoZFKlsFtt10UmMFYVk0KRsq05KIRCWhUxnsCwLHUXYoU/Bdcw5XuJ+90OvxCo0kuQKiNA3DeFxvFeB48gUGAwUUa1jSFrbkH09yEq53mCgEZUBZPcutOOZGFcng4XNCL9mOkt833SC1KokY8aTjB4PSuE9fBeivxdRq6BaRiP37DRprTBEqGSfiUT2dUPVgyBE+pUhbFDEEaLUj1QJeClktTxU/il0gqhWsLp3o0v9iGKfKUI5SHReux6Wl8KpLwF5YMRUgOMgXZfMsP20dLFcD3vYMjfD0dX9EVhtWUg7g0yDc4Bjhh+H1mgvhZvO7Pt7OoObzf0FhNe4/ngp7FR6n2V49j+fTmVwVz2Be9W1hI/cC1LiNbfg7ncPepBiyUtjpzL7XP/g78PWwwU7R6quGKoeY2rbxiqY8GCf+61fpzO43XVJDR+rDlTt//zRGu16uKn0vs8jlcbNZIes4PB3opQy7yFXeO45XpEKLITJ1c6ej7VnJ86zTyKiYS2CQpgCjlSaeNocguNPReUb8J54CGvHFkSiSCZOI1x4HKqxBXfNCrzeLqjVQLok46cQT5uNamzG6u1C9naTTJtD7eyLsDevw/7Dr5DlEipXIDlsDv5JZxnAqtRPqthnYnDbRrWOIT58IUlzK7LUj7P6SWRfn2GQyORMc/qUmaimVlIP3lGPwxOU65FMmUE8ez4qm8duX4vV12Xi7IPGGfQ+7uyh7HeolTv7KOnBoMoH+LgO5YP7i9eXzePddxvq5utIohiRyfzFoobnG3P/bQca4386dvh29Tz7HOg9vZBn9HIuvWsfMMd7INRVm2oY1TyKeM6R4LjYq1YY19geFjvpBO2miCcdRjJxmknL6DpZvBAmV9zUgm4cZfolB4nktUEIVTqLGjW2PhGkSFrHokaPRe/Zafa36m2Jtm0aKcLQlGICUmm0UmjXRuULqEKTGdv2jKXXtrmGTB7V2IpqaTPN9XovOZ92HFRjM8mYiaZJ/f8ck8j/tmNG46bTNKYFwnXRL1c66O9V9vN+notCW9bzo9B1sjoRhcj+XlPyGIXGAbasvf6/ZaNdF9nXjbP+WZw1K5C9XSbWq8ehdscm7E1rTZzp10xaSkpEpYws9mDt6sDa1WH4okr92JvXI/fsNFxQAhM3JwlWxyZTiNGxGVRsFDaOEUEN2dOF1dGO1bHJpJmkhNAHlSD7us2xG1Yh+3qGSPpEFCEqZaydW3A2rkbu3IrQjDBqHqwCC4lwXGzXNevbav2KXxhPC4EIaqZjTVqHdr1aG0aaekebeNH01jxL9T+h0LZt4zjO/4hCq3wjpDNoxzH5NGFADlPPZoHtmJuqVRDlEvbu7UMxC7aDKjSiM3l0KmWaFgLfxJpeCtXcapqmgxpW506TQop8VDpHMnYiuqHJ1FrXaqYDKa7zRDmOiZv7e8w5GprBderXJUxXTn8vIvJJGprA9UzCXlgQhchSv6lkymRR+SYDNKnEvIwwQPb21GP1Q6mCUAfoORZDzA0vKAeo1HN5pwYJDIZT+v6tEgcO3qPY7x60Mqm64SVTUg4jhtj/d7G3f3zwt8HxDjS+StC5gqm4i6JDn6y9NLqO4bxYE70QgiRJiON4CDE/NBS67kJHC48jmToTZ8VyU6Y450iSQhOyXiWVjJuAthycTWuw1q9CPHqvUZAkRntpwsWnEB69lGTiFMOZ1bEJa8tGkjETSKbOBGnhrH2a1I1XY7evRiNI2sYRLDmL+Kjj0Y6DvWUj9toVWLs6UPlGwhPPRhR7SP/hGtSoMdTOewM4DlbHZpK2cehUmvQt12JvWkftordDJm/KMUeNQe7ZSequW7Da1xAvWExw7KnI6gCqsRWtNc6mtaSv/6Gx4AdL2iZEncUxfK4HM8gYeShupdb13uYqqqFp31rewDcWoE6igLTQ2dzfntsqBETREB2PzhWG7kGEAQTBMEYXTJlsOgNJYp5N4NcLNTD0PekseCmEHxgyiTqBgqiWwXHRmeze8StlotMvwF6zAtmx2VQQHux7kdKElKGP/dTDz+E7e8Wh0AZF7sTq2o0u9qGaWtFhYDqRLAfQKMetu8DbTYw8mGpSCbJnD/am1Sa32tCM8GvGrfZrWDu3gVZYm9fVEWpd73aqYu3Zge7YZLiOesz5rd07EOUBZM8e00guzGwsKmVT9dW1C6RlKmzqM6+IYxjoNy8yjqAysJdQII6Q/T3I/h6IY+M1RKGZ2Q9hYhXVCrULLyU+eilks/W63hixezfeQ3fiLr8bHQZ7FVyD9lyTWvOrxgoMbfdQzaNI5hxJ7fTzyf/wvxDdnYbqVUF43EnERyxCVEoGIyj1kfntL1C5DDqTQ9SqJlWXb9jbWRVHdRrbwFybLVHZvFGEKKzjEoBro/KNJkwql8w26vvnCibkGCgZlpVEGa8Ghq5fZ7PmfQ30I4I6N5bATELDix2EQJT6SabOpHLeG7F3biV987WoVBrimHjeYoKlZ5FMnoawTe9t6o+/xn3oblRTM/ERi/BPfTVq0lRziu1bSd/6a+wNz+KfcAbJ7Pl4y++CgRLBGRdgd2zCu+dWlO1AUEPNXoB/7uvx2tfi9vUhUw7Ur1d7hv9K+DWT/WhsQYS+8RzDhNrrLydecALOshtIohArlX5JAS37kGZIrbE3roYtG7F6Ok2OdqAfncmbFBKGuAxLYvX1IOokZ4M8VyIKsTevQ/Z2Gvd5UCtsx8QPUQhxiOzcWVdgQNQrsh6/H3v9KnBdU+vc3Yks9SNtB5EkqEwWWW8ESC270UwIxT5ULo/KFbD2GJfcffjP5kMNQ8PeYdvIUh+yXMJe+wxWx5a6MqTNNSpl2uMOxe3VitpbP0A0YRp07TAuXCEHzWNR+Qas+25DLViMaqw3fCchsq8Pq7eLqHkUOt9gLKkQplClXCI88Wyqb/sQ3rf+FTHzCPTo8YiBPvwLLyWeOQ/ZtRvVOgbRtQtn/bOmNLV7N2rMBOIJU7C3b0EUe837SGWIJx6Gah0Njo3wA+yOzSSZHCqXr3NKS2RfL9b2zSQtbSQTp9Y5rRViYAB75zaUtIgXHm/aLh3XYAm2bXiikwRr93as3i7iuUejWlpA2ogkxm5faybOQYkidDpDuPQsKh/6J+wnH8O58efIVBpcj9pFlxMceRyJEOBZMHEyGoG94nHU5BnULnkn/vGnoeLQfDOnX4CQDtlvfo5g6Vn4516C3LAaXWii8q5PkvrtT7Fv+w0i56BbRpvxl5yMXnYEcvd25PjJJE3NJvTq2onVuZNk7ERUcyv2upWoljaStnHI3j1UX/tW1PSZiOV3mCq7lxWFPgiXQZaKZmaqxyGyrwf6e4fCDznEW7UXeR4et6h8A8mkGZBKI7duwNnwbF1RZd3k1OMUxF6rpxJkqYgsl/bGesp8NIABquqxuKgMGAta572y+rvNb3U01Fm/at9YafBatcaqVkDsfA51J0l88LGN1tDYim4bh/zG5+Hqb6G0gtkL4N++RzB2Ipblot75KWqnn2vID3SN1J3LyNx6HZUL3kJ45GKQNjqdJfOL75D76ddR46ZgP7WcYk8P9qe/SnzeG9AqQcQJ1gN3kJT6jeIJ6PviT8jefQupX3yL6MSzKX3wn2n8wsdwHrjdWJyJh1F724eonXMxFFysTVtp+OpnCRafjH/kYtS4SejGLN7991P4j48QHrWE8v/7MrqxACrBWreOhq/+EyrfSP/nvoFV7CMZMx7vgTvQqTThkceB1uS+/0UyN11D9b2fxj/9LNAuYqBI8yfeilz1xF6vqFYhPuZkwpNfhYg1cb6BciZPAaCxFf/083Gv+yHW968ktF34xrX4845BHrMUe/4x1M6+EO83PyP56meIlIaf3UbljNfgXPNddDqD7u0i3LQeNW0WGojWPEMtCMkUJMkRi6idcxGqKUVwxgVYDa0kS04jOOlU8GNSN/2KwlVfJjzrIsqXXE7rFecSLj2b6mvfgqhUiCdNQ80dTTh/Me7Nv36Z00gHI0lsFGCQrCuOhtgwhj7gehyyD7ujVmjbJpk8nWDJmejmUbjL78LetAZRKu1LcCet5wIxSQzxXrZLs3/9gDCox+j1VQ9Ushcw2odAT9RdYrGXvG44IKLiffm5BkEh2z6kSS4+4miU46Lf+k6YvwiKPdA8GjudRdx1E36lTMO1/0287LeEpRL8438QtI6GWfNNDrpUgjtugsUnEZx4NuKRe4lb2xC7OtCXXE5y3GnIH32VePwU9MVvQWzfAn4V5i5APvsk8awF+KPHY/V2Uz3vDchalYFN68lVq3iBT3DMUoITTkcs+wPqjl8T10KKu7Yh3/xekplHIH7+PfTUwwgWn0rtsFm4999OOgyo+lX04UcRv/fTlA+bg93ahm5rJr71tzBlGsExJ2Mvv9uMe9qr8afORk2bS3DSmchlt5L8/ho0UFz9NIUkwbasoT7p4JRXEQuJe9WXCc69mGjeMYhVj9U5zlKER5+Adck78Hq7cH/zI4LO3VTzBbwlZ2LfdzvhL75Hqr+PNMAPvkQlnaW2eyfR2InQsRm9tR2x9Ex0GKAfewDpuMYgbV6L2L0Dip3oNc/gL1qCXatgfeBNxEcsJjjtVVQnTcd59jHUOz5G6e0fQy1agnX/MuLtW1Dv+Dj84RbCP/4G37bJH7D67sWTQ4crpdyrvIPKZtkG4LEs87Hb9r4KNmjvwtCwZHTuwNq5zYBbSLO/45i4yHYOjKJKac5jO3X2SDE8GWa2D6KLtrP3GgZ/G0QlB38b3G47e6/VqqPoQ/fhHJry1gPXeOY8w7wYheiFx8GH3g/nXmQaE266Fsu2ET17sFc9Bds3Q08nqms3wYSpEPiIP/wK5xv/gnvvbcSjxlLNNZIUGqG3C3n5R5A7t2F97bO4P/8Ock8XqjKAkhYqCtH3L8Pa3UHc2II/eyHRzHnIq79NvOZplFaIyOTpdaEB6fcjN29GPvs4ons3cds45CP3Ib71LzjX/wykpNo2jqQ8YFJ+mzfCrq1Q7CMo9hNNmYm1fiP89BvYd91i0Ny7bsG59irklg3E1Qq1KEJn08hiP3RsQq54BLo7hxrvRRgSLTwB/5wLUWMnmIk1nUEfcRQqjhC9nWR++V3U2mdJTjsP3vQeZC6P9/j9WEIQTZmOfcNPkeufxW1qItvSTO6235H93S8hk4O2sbB6BToMsGYeDju3QfsanIwBEq0Nq0w69MEHEV27SGbMRTc2Ye3aBQO9qNHj8VvGIB/+M86qp/Bf+xaigX7E1d/CWn6P6bS76SbEU8sRmczfgAV+wVOFBXGMs+pJ7E3rDKtkUDNAimXzdyNaowpNyFKR5ANvMjHnt6+H3TuIrvoSsqeT9Nz5lD/xnyT5BmOhMxLre9+EiYdBTxfysftx/QqioYGwu9PweuUKyJ4u08729c+jXI9MPk+wqwM/3wijxiA6NqFXPoYT1AjHTyZ62wexdm8n/v0vSCcxTq4BrWLsrZuwdm0nuvw9cMm78e6/jfz3r6SnbSzW9/4TVS7i5XOwZyeRm6Jy0eWI11+BGj0OxjbBkysRj95H8oZ3IjauwdqxCattDGLTOuIVjyBHjcZxXaKdW5FbN8L2nURvfgdcfDn24w/Q8Nl3IXq70XEM2ZyxvhMnQQLB+z4FA2XEqLFEUYQbBmS/fyXxnj3El3+E6KwLCd7zafJArlykXymSYh/ZdArXcUgA2tpI1ypYx5+CdhySLevRbWNg4lTY1l6HXZx6OWmWZMZcrLtuhdnzSRpbCKdMgV/fBx6weZtx8d007s4OomOWIH/2HaJN63Eu/wgOEAQ1UkCuXnn2Uop8yT7qdIbgpHPxz38z/jkXU3vDO6le+kGCk88x+V2t/m4UOG4bC6V+rDCgsGkdmUfvgVFjcI5YSGb0GMIrPkFi2dj/9C7kw3ebMH/tSnQuj2pqxdm9HTFhMvGxJyO3tYNSqJZR8NTD6KYsse2SthzipWeihMTK5pDNLbCrAxEGWNUKesp0knMvxrnpGkR/L17Kwwp8whPOpPaW9yPv+RPeq46Fe28nOnoJlYZWdCZDYtlkbTM2pSLi5HNg6RlYP/4a9pf/H9Q0FPvQu7ahJk2FPbtwggA1YQpUyjgDRURLG9r3EdNmo9//aez7luFctAQef5Bo9nxqSqO1Qvb04J90LvGxJ2P/8gdw+XnwqXfD6mfQCxYT+zX6v/Yr/IuuICeg+epvkrrzD9DQiN/YQlDsh6YW1OFH4dZ8rN49hK96I/1X3URyynnoSdNhoIjs3oNoaUO5KeSOrSZSq2dGkrkLIZsnue23KCEQvXvg0++D1x0PFxwP776A+JF7iM6+mGDREoQfoKbPJZNJI8ZOQPf1YXfuwIKXvJHh+S3wX9uHr3NIJ5MOMyWKcYQaNdoQ1JWL6DVPm1X5/g5WXRFaE81fBKuewrYkHhrnkbvxT3k1nP9G6OsiPvYU4oyHPHwhVncnKgO6WjY8TJOnoy77EFFjM1pIrPtuRx2z1CD8zzyG1b6N5JzXkTQ0Elx8uYntHBcaW2GghB1FONs2oZuz0LGH5OZr8Sxpum5qZvXDZNxEdBJgrZiCjALkjg5qM+aC0qjXXYaaPRd19BL4xfcQx5+GOuF01LpnoXs3or+MThQi34ie3Ip++jHsfIHwqBMQ9y0jVeonnrOAxPOQe3ajjj+VxIrRYyebDrOVT1ArlUj5Psm8o/Df8j5UVyfWj76ObF+LVe9dDt//ScJpc4nnHEl17lFkxozFWr8S5izAbl+LWvU08c4dOLu2E7/xXfiuhcgWCE99DXHbGCqlEmrqLFSisXs60VNmELeOxtrZYT76OgVSfMQiVGMGveQMnHIJFQaoiROh2I3sK2L19KDnHU104duwnniIJFtAv/qNyD9djxo7kWjODOy5C7FWPo6OwhfMJX5Q4OhBKfDBMnIc6ocdRdhb25F7dptlN9IZdK4B2bNrL2nc30PNbJ0vTK9+ClnqR3kO1uYNeBtW4ucK+FGCveZpwlNOJfjCD/Du+ROiox/dYJhM8GuEr7sMpIX7w68gH/oz9rv/EZ5aTtzfS/aPv6b2hndQGT8Z4biI1SsQvd3IxhZ0b7exBP094CvEDT8h3NpOrqGAQKC8FM5TD+He9hsqV3yAeMkp2CtX4tx8LfHsBcjuTtThR1JetAjv0eVw3Q+QxX7U/EUEl34QuasDa9Ma1K4OxOhxqB1F1GP3I/MNSK1JVjyCLJeQ6TSqpxN72e+x/Br+pz4Fs3+GtWEV7veuJKoYUv3o+NMNh9p3/h3RvpZ0IU/aSxGsXUFfbz/hlFnkf/Edym95P6U3v9eQ5XX34v382+jld2Pl8th/vomB113GwKe+BLHCWvcs3lc+Q3DvbYjz32Twlr5u9OELiQb6sTs2Y1vDyOuEQOzYg37Te/B+8xOiWfOI3/8PgIXcuJnUnX9ANbcSWJLMVz5NsnAJyWe/RtDQgiqX0I0uesbh0NCErhTBcV/cb2t/vdq/lNK27X1Ktv6aMbDO5vfyLQ+CYUm8d/WEvxMXOpl7JH3r15AuF8m6phc1GTuRsu+TbNtEYeZcyq5HGCXQ24WTbyCeOgv9D19AXP9D9EN3mZe1YyvpWpnUtFn4SYK/8kma586j1thKtVo15+vajWtZ2I3NqPa1WJYF/3U1lcUnwrkL8Ho7yecLQ+6dUAo1ZgLlphb8IICBAVOW9/F/N0wq//0FVBxBfx/2lvVkJ04hHjuJShCaNYWTGBkGyN49ZOYvov+he2hqbETMPZK+VU+TKRfJzJ3PQBQTb95IfsJEgrFjqQ74UC5hd+4glUSkbRvGTqTW0ERtwxrcYh/5pkaTScwVCCZMpfTMkzSOGkXUNo7K4KofYYDcvYPUQB/pXA5GjaXS0IyfJKaYpFzC7t6NVxnAmzOfSq1mesfHTSRqbMFvX0c2DvDSGZNpbG7Db26l3F/E7t5FetxEapkscRSD72OX+kjl8iSuS/zsU2THTSSZOJXKM0+QnTCZqLkRf9t2Uj2d5NPei2eBMV1RSZLsU0r50ilwvRxwiNFSa1PgMEgM8Pey8LcQyJ49lBNwCgWcdNpUf5WLhEFMnEqRURFBmBDVE1UuUP3w50ne8l70R96Eu/weBpfzdvM5vDgirAVEuRwZFRNXfQYXTFGAIwWO0gTTZ+N/7PPII5ei77qF6HPvo6Gh4TlMG7JSJqzWGOTaVNNmEV69DOuuWxH//P6hSMbOZkkLSMoVfIYW9jPVTpk0qWqNAdchm8tjFXspa7AbmkhHAUG5SuS5ZGyLpFKjVr8faUtShUak4yBqFZJSmcCS2IUGPNc1IFDgQ2mAshRkXAf8EJ991wbyGhtxHBtdHiCuBYTDfrcsidfYhFMtU6sFqGyWtBQkA2UCx8ZrqLNm1IkGVblCrZ76TKGJlKH1HTqXLSFWhKkUWddGl8pUHJu0ABXG+ICdy5HKZF5UL/JACmy/lB/2S10n+rKh0M2jyNWpW7RSpiG+0IQrBC6mf9QTYqgJnFoF5bkEj99PUqviWZJs2+ihZnOlNU5e4NSPtXMF8vs18Mv+PuKjjiM57VzU8odxf/0jsKwD0uSobA4nl8cVAuHXiFta6O/tQqxZgZPPkx1kzaj3uVqZLLn9mtlNqWSOQr0pfvg9J7aNk8kNXa+VzQ9d71APs1JoL43VliEz7AMFzDrFo1JDY4uCGDr/8HvWWkOugJMXuAcgQUhyBbz83vNaaXMuPSxE1OkMIp0ZunYGJ6kDjDd4P4xKk69fmyXMuV+unuCXzgKPyP8c2zS1UI0Tou49pIUmlT7ElIRKIN+I39DEQOdurGIvOdd9Xp6rfc7tesRNrZR2dJCOQ1KDNDMj8oqSl9eFHpH/0TsR1QqxX0N5Kax0Zm9J6kGPIRGhjyoW8TWIlIeXL/zlHgwhTP/0QD81LXDyBSzbHnknIwo8Ioeux891217IGOIF8jPJYW7ziPxtKLB9wLhiRF4mT1r/VcZ4oeO81FVEI3Lok7vWeh/aWjmiwCMyIn87E/z++mnvPwOPzMIjMiKvTPf5QFTFcn8TnSTJwS2rMiIjMiIvmSRJMhT/7m+BA8AbJNMeZKQEhpgqR2RERuTlc5vjOCaO4yHC+0ElFkIkNrBCa33sgXxtpdSIAo/IiLwCFHhQeQf1UQiB4zh9ttb698BsrXXDcL7ZQeb6g1llYERGZEReHOUdHuIO94gty4qz2dx2y7KsbbZtn6W1Hru/Aj/fYCMyIiPy0sigPkopzWJqdaqndDrdOXr02LU2sG3MmLFf9n3/I0EQHKuUkqCGEsX7LEg1IiMyIi+5AgNDa3dblk06ne5ubGzYnE6nN9gAo0a1XV8qFSf29/fnwjCcqpTKAHJ/azyixCMyIi+98tYVWEkpB1Kp1K7GxsbNhULDdqVU+/8fANRQTK2s9sySAAAAAElFTkSuQmCC'
button_mass_mentioner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABtbSURBVHja7J17mBTFuf8/Vd3Tc19g7yCXAApeQEIQXBXBKyKi5yB6TJQjxvicxIhGMZ5oYoySeCfEn1HRRAkajURQoyJqjHeRRUUEQUFlV1EJ7H13Lju37v790TO9MzsDLrCwq6e/z9PPzPRU163rW+9bb1W9JVRVJQ0NuEhKOUsIMUoIEcSBAwe9BSFgg2maD5umeb9hGAkAkSbwAUKI5xRFGa0oCoqiIIRACOFUmwMHvQSmaWKaJsCnQsgTo9HIVqGqqiaEqFZVdazL5UJRFKSUDnkdOOilJDYMAynl9kGDhoxRpJQXq6p6oaZpqKpqS18HDhz0PgghkFJimmZACHG40DRtlcvlqtI0DUVRcgJ6PB7c6fsOpR042I+SFtB1nXg8Tiwez6jOOVBVtV643e642+3WXC6XLXmllPQpKkJKSSKRIJVKoRuGU6sOHOxPaZvmopSS9lgMI5+DuiqE0LINVkII+hQVIYQgEolgFGC+AwcO9pMUNgx0w8ClqsQTic5BFJkhbQZejwcpJdFo1CGvAwe9iMzpsW/Ofdk5oNvtJpFIOOR14KCXQQqxawILIRBSkkgmndpy4KC3jYmlxDCMHBLLguLakb4OHPQ+AguRR2C1AHuty4EDB71frXaqwIEDh8AOHDjoAag9nQG9Tz/ig4aTGDgUvU8/TI8XU6r7To0XAkwTYeiIWDtqYx3uzz9B++ozZHvEaREOHAJ3FcnyAbQfNo74kAMxAn0wNDeoLkwhLKJlCJf92V08Ng1IpUj1H0TygCF4Nq/Hu3ENSrjNaRUOvrkqtLk/LqmQqBxI5IhjiY6pIlk5CD3Yx5K+mgb25QZXp89uuky3F9MXQO9bQmLoSCJHnURk/CSSxWV7XK7QlTezbeU2tq3cRuTH1+w0XNNtD7Ft5Tb+/a9P9k99d/FKHDvVzn/TbQ/tNFzkx9fY4RLHTt1n+QldeXNOHen9B7Nt5TZaf3N3r6q3/Xn1CgmcLKskOqaK9kPGYmpuS7pKaV1kfZcyLXlFvhq8t8hR0U30sgqiE44DIQm+/PReR9962DiIRvH5fHn/xb93lJ2FHTt2UFFR0et69tjIw2ltbaVPnz55/0Wrjre/N0TaKU0mcblc3Z6H6ITJQH4dRZIpRChEMOj4nMgnsGHs82mk+HdGkBg8HNOlZRFVgqJYl1RySYzodhU6n8gmRnEZse9WEXzpqb2Ls6EODhlDPB7H5/Xm/NV+3iWYXj801oHXX6Az6UGYWfkvLSd21oX0+eey3ObRfzCpQUMRjXWYJeUd+d8nZTAxM923aSK3fU5FVQU76urA73emO3tMAvcfhOELWEuxpbQIq6qgqB2fGTKLtBQW+4jEmcZnGGAa6AMG732cG9fC5FOIz70RFt2eS+CjT0J+UWstVc0QOGPQGzWettmXETvmJPue6+MN9HlgAa43nrPvhX9+C5HJ0zBKyuww/eb/EmXDO7sVZpf5Hz8R4/jpxJf/DbemdUjF837aEWbSKXmPtl1/D5EpM+zfwSceJDD/6o53f+ypNNy6CP8/n0T3B+2yysZ6gs8uwXfvTRj9B7Pj8dUdncanOuEnHsT3yD3seHw1/n8+SfD6n+aUNXzqWVbHCLjXVtNn4U12WbuSZjY61517bTV9f/cz5L+32mG2v/Qpvjf+aWkEU2Yg2iOUzzohJ0yPjIH3S0fv9qQlbZq8LlfHGNftAa/PatxeP/gD1uXbh1cmDa8fM1C09wVcs9KSUGOriEajOX8lDh6NrH41b2Rg9B9Mw80P5JAXIDliFA3X/5FE+QF24wqdOdtuXJkw9TffT6piYJfD7BLhNpRN62HUWGKxWK5qPWoc8qP1UMDY17D4xRzyAoTOnE39rQ/mhY1MmZFTVqOkjNbzL6XtqJMLZimUTBGJJ2wVOhQKAdB095OEzpxtkxcgPraKuv/3KInDjtjtNNuuvyev7uJjq6i7Y0nedr7IwWPs8pqRCPXr3i205e/bR2ChpwsppCVx1TSB3R7weK3L6wNfmsQZkvn8++bKdBY+P8Ll7h7V5qN1lhqdtQUs+pNfWg3nvtsRncb10fN+ilFShlixDIaJjmvTevD6aZp+LoZhEBs1DtEegUt/0BFmzVuYJeU07kaYr4OybjWUWGp0toaQHDEK8foLSCHzpFZyxCjkpg/g3BOtNE8YCZvWkzp2Co1Tz8lP5O8P5JYTiEyYjL51CxVVFbC1BqIR6/9rLsp7vP28S4iPrUI01sGC63LSxOun6SfXoOt6l9JMJpMkjz2VyJQZyC9qO+IbJuDZpZiDhtIw9+bcuAYPQz6Xfl8TKmxvGT1KYGO/WNPMDumrpAmckb7uNHm9PvBkPr25xO6uq3N8Huted1gJtVdXgM9PfO6NHdbbquORW2vgs805owET8M+/muCYIsw5Z6PevQzfvU+gPb4KDj7cChPsQ3ssZsXl9SMuuBT3wscpO+l0Ki+diedQL8aNc3cvzC7y71pwLaI9YqnRiQQmEJ06E9EeIXXnDShZBTCB9nSnYUw7HO29NykrK6My1kbZLy+C9giJyafa8QAWea65iGAwSGVlJf2efMi6HyginkggpESRIm3TlFRWVuJzazlpxr5bZX1/8C6UhTfRt29fKmNtlF9wsqUBHTKGtlCoy2nGjrSMZsaff4/rvlus+CorqbzxMuQXtegnTCcciXTEF41gXHI2fr+fyspKysrK/m9Yoa3WmzZaqWrHlFGGxJrbUqtVV4clel/66cqMgdPj4O6A64nFyIuvwUir0e4Jk0mNGIWy6A+oqope4Jn2pW/BiFGkgFTBbJoEH19M8zXzMccdTRyoP+VMZGM9vtdWUJkeaypdCNOlMmz6gERajdY0jejkaSjvrsSQElUKsreXGyUVlhpbY5IA6ju/8or+xGIxbJPels1omobfb6m+sqUpy47atXdg+ALWl+V/JxgM4vF4rLikxLW1hsTYKhInz8DfxTT1CmuYwry7SM67i5a8FxQhGo3az9MeQUrZo9bwniOwIFcCu1zgzpDYWtCBon4tgWVbC7JhOyKVQi8uw+hXYj23R4YsHfRUtxXTs2Yl0YlTrP3Vaeml/24u/qIiIgWMP6kRoxBf1GKuf9e6ufkDGDkaTjvbDud+5hH6bNlE64zZ9n2jpIzwmbOJlfWn9BezuxSmK/C99S8SY68ldtaFeNsj1rjwpWdsouRUYYHpstz/A6RSuXXbnVNPWpahLXdSxSSV1SHsKk27Q9gZvH7MISMg2pweBId73AFkzxE4M0WUsTarrg4iZ76rasc0kj0QS1mkbW5A3boF10frULd8CKqL+JHHETvhdIw+xXsghQ0w0mPyboJ7zUqiU2YQv+gqkhMm2dLL5/PlETg2biKiPYI5eRgul8tukPGHXsyTxt4P16B98DbRq39IJBKBPz4Gx08jNe4Y2traKCoq6lKYr+2AHrkbceEVGOMnEVYVZGMdxkN34SkuJtZ5zPxFLamBQ2HUzklgdvNcsYyGrS/Tz4HH7sv5LzV4OLRH4NklMLNrHZZWu5nE2Cq4bg48fHdhkgNGeXlHHmTPbifoudRzSJyePspI5OzfneaEZWsznpUv4l9yH75//BXP6ytwv/sm7pUvoq17GxEJF5D2nRaHZDoNJTvuzL1uJPAzjyAb6zCnnYU+cCjmmpUFpZfdwL1+xJxfU1JSQjAYRL/3H6TGHpUTpu6Z9dQ9sx7juOn2WK7k9ecso1V7hFgs1qUwXS7De6ugajKJIyYi334DRVEKSjvPhjWWEXDFOsrHTrDGjpWV+O59AmpMfPc+QUlJSbc2Ic/71daX8+cQPveSDmv+4hctg+DnW5BSonaRZO7Vr1lfLppL0czZdhmKrr8TsTGM8noNlZWVPU7anpfAZM3rik4LObJXYBVYB620NOJa/w7aB++QGnIQ8fGTcX24FtcnG9MbFQxLFbafy5qvKaTu5FiTun+s7XvtOcJnzkY01qHfOQ+tb9+dqNtvEp0yA3PuPLbPnZcfID295XttBeEzZ9N466L83vixRQgh8HYhTFfhff15YsechAkYzz+OdycdUGD+1UTHT8I4+HDqsuZwAURjHdFbrkaEQnh2p5VEIzDQj/GpTuzu36G9/EyehqAefSKpsUcRvew6opddlzNeNeddgWs3NCrXG8+hvfkiiYkn03b7YjpPlBl/XkBjY2O3d0TfXAnc1Su7EvsUEzthOm2X3UDrz28hfP6lJA8baxHXNEHXc6+MYerrVgvto8UimV7drH4NRVF2KoGLrv8p6nOP59587QVrOgNg+EgMwyAw/2pcy/5irZbKYGsN3L8A4+of4fP5uhRmd7UIttZgPPPoLjWI8nOOtqZVsrHmLcxLf4DyxZYO408XEXjxH5YaDLSMGk+8gKun0kvORF36F2u6KStNfnQG8u1XCy4F3RWK//d8K77sutu0HhZch/nXu3rd8k3h8XhMj8eDqqoIISgqKrLGTPsQzd//CcnhB2P0K7PmYdOLKPD6LCu0S8u1QGdnOJGAZBxUDVNVEOEQwT/fiu/Jh4gdP53QhXM7rIlCdlpXLQvGmWXxQMSiVJx00B6XLRKJEAqF6Nu3r93Yk8kkjY2N+P3+nAbQ2NiIruuUZ42pQqFQTv37fD40TaOlpQVN0yguLrbTiUaj9jyny+XC6/XmkLMrYTpjZ3mtr69HSpkjfTJ5LSkpyTEOdS6Dx+MhGAzaBwfsLI1C92OxGG1tbRiGYXVOgQB1dXV5z0YiEcsNctpgtTdpFqo7TdPw+Xw5HVhdXR2KouxXiRyNRlFV1Vbje2Qt9F7N+LjSxi3TBNNAhNsQ0ShkfAWlUpBMdox7UbIkbJYU3pWk3Yvy+30+/BmCpONxqSqVmcX4WXGXpMmYfS8YCBAM5BuCOj+fk85O8t6VMHlq5E7yWlZauuu8dqEMX1cfhe573G48ZWW7rIuulHV30uxq3ZVn8tWDfFH5xsLM2YiQ2ahPKgWpLAKbplVKWz029+2csgMHPUngzEqs3s1dM+syOlapmKY1j5tKWSTNbIYwDBBGWn3uUtfgwME3k8C9nriFfmd/mhmjVcZMJ635XZkZGjj0dOAQuIdMbmk1OTM9lPO5E2J3vhw4cAjcK9icP+0jOkvqTsR1SOzgW0/gb1Ijzyawaaa1Y9EhqTuTN7uM+8gK7cCBI4G7QtxCUlhkkTpDUsfi7OD/EoF7vZknm5ymsJZNJpPWHHAykS+Z9wCO/HXwTcE382SG7DXSUrEWdygKpuaxNiVkG7gcOHBU6N4riU2vn9TIMcRDrSQP+S6m15dLXkeFduBI4N5LYtPrJX7MSUQuuJz40Sdh+IOFT3XYT0Rueugl6qp3EL342g6VfMAQ6l+poa56B+aAIbsdpz56Ao3LqjEHDMEcMIS66h0kJ0/rsWpvnf8wrfMf3mfxh25YSPPCp/b6HYRuWOgQeN+pwN1EKEXFKC4lNWiY5THC5erYppg3zdQVqbx3+dIHDQUg7PHR3t4OQDTjCzoaof79d3b7/OXkmAkYJeU0b1gLX31G2ZHlNC9dnOfhYn8h9Z0D0f/9pe0ZsruROGws5qcf0drautvPxmbNQR80FNfU0bRfPJNwOOwQuNvRndM06XGwvRk/Q9zO+4q7eMaSqex5lZgDhlhE3VoDlQMxTRNzwBCi086yPB1+tA4hBMn/+G8ant1AXfUO6l+pIXHGLACaFz5F47Jq+7/W+Q+TOGMWbXN+bQ0VHn2N6P/eTtPjqykvLyd+zQLqqndQV72DxmXV6KMnAFD/Sg3NC5+y/8toA9GLr80JX0gbCN2w0A5T/0pNQUmvDxyKYZrEn99IXfUOO//1r9QQmzXHJlL9KzU7LVemvjLSMjsto6QcvWoy8Y9iedpMBtGLr82rw9isOXZdJf/0FGVlZQTSmyoiV91G47Jq+/nGZdVErrqN5ORpOfFk8pA4Y1bBd9T00Ev2/chVt9E6/2G7vvalVtKrCCzbWkBPdheDcyWu7LSFMOPRQ8guqdEytOeHm8VPON36suoVRMUAdF0net4lKFtrMer+jdyxDdfEk2m9Yh7ehTehHKRiPr2EllmXkEgkSB08GjMcRh41APnYIuITTyb+yELUtavg2aVw9jHEfH6o/YSGuTfTftw0vFeeDyeMRPf4aZ4xm/ixp1pk/3gj7kM8sGk94SMnEy0dQHj2pXh+e7kVvricxtN+kKMNRC++lvgRx+K5YCoME5gmtHxvYo6kt0lWcQC+0w5Hvv4CLbMuof2wIzC9fkKrXiUej6P3H4xoqKO+vr5guUKhEG1zb8T0+XFNHY1Zv4Pm075PfNR4TK8fs/YT1BEuWPMW4SMn29pMJg/h2ZeiPv03qw4/XEfLrEuQixagvvGiVVfHDae5ublDa6gYALWf0NTUZHdCsa01tM65Du3VZ614Pt9i52Fn70gfNBQ+/wTlIJXI51tIjDsaz7QxcN0c4hNPpvXgsd9+Aru+rEVpqEMYevdJ4RzyKvnueMTXW6ZFexT1o/f3XH3uP9iStKFWKKsgNWg40WlnoT52Pxw6Brn9S4zv/w+m10/k2j+gf5KCc36E8AcIlx1gNdx7bkJKiVdRkF/U0t7ejjH4QNQdX1n7eEePQ2z/CvPE6SivLCfx9N8obmvAvWkdZsUA2gcOtXxrXXMRLpcLV3sUWfsx8VQK0R4h9us7cM27i8DSBzBvujLHvY5v4e+Q77xO/MIrEBvD1l7tUCuJLN/W+qBhlmueH05F13V8tR8j/AGio46w0l31Mqqqkhg2ErnxPZQDDy1cropBxCeejHz8QcyaTZSdXYV60XSio614uGCqlX8pkfXbicfjHR3N6eeirl1F4reXW3uEN6yBsgrC4TDm0ANRo2F8Pp+9dzqj9ovtX+FyuexOSH9mCSIaJjbzAszla/FvXIv2P2cQnvnDXb+jxX9EVVX6xiKYXj+xZW/hnvIfBH4+m/jrL+T7ov7WEXjrFtyb1yOb6vd+5Vc2eUWWq1q10/Es8uslsLrlQ9yvrdjzsWHFAET9dpQvP8MsKUe/8AqUrbXEX30evH7091djDBtheXzIct5ujq/AOMo6MMxcvoRAIIARCCLqt6MedBhGSRnGurdRFAWjpBwzE/+G9/B6vaiqSuo7B6LUbEYfMAi5tQYhBD6fD6OsAhFuw/VlDaXHDYUVS0mWVhCefRnaz36DN+vspsZl1TBsJFIIXLdbTujNde/kuOBJHnSYHX8wGESvPAD5+RbMA4bY9xVFwSirwAy1ItMnIXQul3K4dWpC8tPN+P1+hBAUFxejDRyaE79RVoHY/qW9MT9DRj7dhNvtxuv1WnnYWoOu65bvsY1r8/xWZe4ritLRCX32McXnn4iydBHG9m1EZs7GuONviOEjC7+jqTOtsmx4D7/fj/b0wwR/dBq88ybxwcMJz3+QfqPH5eT1W0lgpbUR94dr8bz7BuoXNYhUqsCmg90gdUY9VrIkb2ZMbKvQO3eZI9ojaO++iWf5kg7HZnto3BFbNqHUbrbUzP+6EPnWSyjpM4TM5UuQ0TB61XH4DxlDv7MvQGwMUzR3Ht7RR1jSG1BVleTQEYgtmxCHfteK64M1yPGTML1+jOV/t5yoj5+EqqpErroNo6Qcnn4Uhh+CqP3Y9pChDxwKG98nvvBJmv/6MuXz5uD+k3VeU7yh3pZs+ugJViO/52bkjVeS/OHlVqE2vpfjbSNVPgB95GjkLfdb485Jp6As/zv0H4jpC+ByuYhcdZudrnnomILlkpn3MGY85kn/aY+lE8NGFsx/Nilk/Q70qsm4XC47D+rzT6Ccca71zOsvoGb5wsrYBvSivojxk4j85yyrk/jl72l4tZbiR+/Ff9svEI11pFpbMMOhwu9o8DCrLJ99jKIoNDy7AWPaf1Hy8/NQV78G0QjNodBuGyn3Bj3jkSOVQqnbhmftKmR7hNS2regDBmH2LcH0B0DzWBI0h3CFpKeZtQY67Zyd9G97KWXncTL2HLKIx5ChVuS2rbjWrUZbu8ry/7SnKvTAoShfLkZ7b6Xl9LyhjsRvL8d12yLrQDMg+OifaPnFrUSefZ8I4Fm2mNAffoOy+HlL4qa9jeiDhqKsWIaruZEkwGNvYDx6n6Wm1m4m8NgDhGdfRstpZ6N8WYv79l8Rf+tfiDsehi0fWWSZNM1u0IFwK+Hf3kNd9Q5Ipxt7+G5Enz5gmijrV6N8UYt+xyMY7RHUTR+QHDTUaqylpXab0AcPR1m6CP3I42idfg7uJfcTf/BOfFIQOXYKiU1xjM0b7HTliacXLJf7X/+AN18kedFc2tL5abl/AfK/5yA+/TAv/6qi2HkIPHofLb+4lfD6kNX5PruUxJ034PnZbzAa6zA++xhXVp6V9atRNn+APnce4cY6ZDSCuWUz6rK/oJ8yg/on3rY0w7XVGNf+GO30HxD71e93+Y4E4Fv+KOHZlxGZORvZWI9n/q+If/4J7EcXO3k+sbxeb47BYF9PJxn+IEZpBXpZZZrAQcsflu0SpytTO+auLdydpa6QoFtjQtlUj9z+FcqOrxDR8F53XvX19RQVFeF2u6mvr0dRFIqLi4lGo8Tjcfr160cqlaKtrc0eK/n9fnw+H6F0753x2dzQ0EAwGERVVZqamlAUBb/fTygUorS0lFgsZk/lqKpqqXWaRlNTEx6PB5/PRyqVorm5mdLSUnRdp6WlxZYQmXSz0dzcTCqVQgiBpmnE43HKOrm0ycQfj8fRdZ1AIIDH4yGRSNhTP5qmkUgkKC0ttcamBcrldrsJhUL2ODyTn+bmZtxud17+s1X57DrMDBd8Ph/xeJxIJJIz/rXnr1ut8byiKHb5fD4fLS0ttqHO7XZTVFTU5XeU/Q4URSEQCOzUyXx3IB6P5/jE6lkCW6XG8Pox/QFrKaRL27fHiWYT3TAQ7VFkqMVyYWrsP+ODAwfdQeCeX0qp68hwW8HjKh04cNALjVgOHDhwCOzAgUNgpwocOPiWENh0XMk4cPDNlsBdPVzZgQMH+xeFuJlH4MwcoAMHDnoXCm0fzSNwMpnsVeefOnDgwJK+mUUrnQmc6Bw4e/eJAwcOep68iUQCIYR9AQghkhJ4L9t4lfkzkUiQSqUwMqf+OXDgYL/BNE2buJmlplJKpJQ2R10urUU1TfMR0zSrTNPMZjaKopBKpUilUpZnCYfEDhzsdwghbOJm1nBnEAwGa4WmaZrH4/lQUZTh2Vu2MqQ1DMOxTDtw0IMEzpA4W312ubTmAw88aIVqGEZCCHGilPJtwzDK7V0OWfq2Y9Ry4KDnSZyBpmlNgwd/52UpZa3I7EIaNWp0RVtb64ORSOR7qVSqH9/og88cOPjWkTilaVpzIBCsLS+v+FhKWQss+P8DANDb9GG5OrLHAAAAAElFTkSuQmCC'
button_role_mass_mentioner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACP8SURBVHja7J15nBXFufe/1d2nzz4ss7IzyL6KIOKCuKIgmivGLRLJVd8kRjFxu9ctxugbd829GtQYNWpUUFyigEsAQcQRRFAGUECYARSG2WfOvvTy/tEzPXOYA87AgN739u/z6Q+Hnuqup6vqV89TT1U9JRRFoQkqcJUkSTOFECOFEEEcOHDwY0EY2Gia5kumaT5jGEYKQDQRuJcQ4j1ZlkfJsowsywghEEI4xebAwY8EpmlimibANiGk02Ox6C6hKIoqhFilKMpYl8uFLMtIkuSQ14GDHymJDcNAkqS9ffr0GyNLknS1oihXqKqKoii29nXgwMGPD0IIJEnCNM2AEGK0UFX1U5fLNVFVVWRZzkjo8XhwN913KO3AwRHUtICu6ySTSRLJZLPpnAFFUaqF2+1Out1u1eVy2ZpXkiS65OQgSRKpVApN09ANwylVBw6OpLZt4qIkScQTCYy2HNQVIYTa2mElhKBLTg5CCKLRKEYW5jtw4OAIaWHDQDcMXIpCMpXaN4ksNZO2GV6PB0mSiMViDnkdOPgRkblp7JtxX9o3odvtJpVKOeR14OBHBkmINgRWMmxuIRCSRCqdPkwSSGjd8kkMHE6y3yC07nmYimrZApFG1D07cW//GvW7HUjJRFO/48CBAwAhSRiGkbFGQ3g8HtPj8aAoCkIIunXrRiQS6fTMtdxCYqMnEBs9AcPja+4xsv7rLt9CYPUy1B3fIAzdqTkHDpoQiURQFAVJktpqYMvYNq2rE5EYNILQaeehdcsDBAiBFI9al5bGUD0Ywa4YHg8gSA4cQap4CMGlb+NfuxKRTjk158BBFiiHO4P40KNpnDIDwxcAIXBV7cbzzSZce3ah1FYipZIYXj9aXiHpXv2JjxqPlluI6XIRmnoRyAr+z5Y7JHbg4EgTONWrP6HTf2KT17fxcwKfLkGprcrQ8lI0jFKzF8/m9Xg3fk5oygUkh4zCdKmEpl6EHK7Hs2kdQnfMaQcOWkM6XC82PF7Ck85GDwRBkgh8towu/3oDpabygCa6UrmbrvOfwfPVFwhZAlUlPOUC9K55Tm05cHCkCJwcOIJUr/4gK3i2biBQsgSRTLRPqESMnPdew7V7JygutB59SYyegOlSnRpz4OBABDY74TJUN7ER4zBVFSkatsawyUSH3iHV1+D79EOkVBJcLmLHTkL3+TtFvtjPfsOeT/bs99r7znqiv7r1oN5dO+dN9nyyB71H30OWMzXpbFumugdf3G+66K9utdOlJp3dKWXUWVfFkm/sMt1fGm3ksbb84RvvO2yyhG+8j4ol39j/13v0Zc8ne2j8w5wfVZkd6DoiGljrmmtpXyHh3rEV197dcBBrqT0bPsO1ewdIMlqfAei5hUekVzNy82m8fDZ1V/3nQb+jsq4+29rVg0ZiyGgaGxuz/i028VT7d000TvpwzeMfYplWjj8l69/iZ82wf4fT2mGZxgSITZhs1U1lZcb9aFojHA7/f2JCG0bLVNJBXunCXiDLIEmou7aDlj6o94h4DGXvdwhds0hc0BNTVg5ZPhuvPgsDRNvr1WetYcC5lxKLRjv4/tbmzCHK2fyumirIKyDx0yvapDGK+qD1KUbUVnVivp14ATTJZpxwOulUqk2a2ISTM+U/XN+A2VI9pom0ZyeFEwth9kU/rjJrT9s9rBo4vwemoiDFoygNtQjz4DWRsnunPYWk5/cApXMd58FgkB5FRZnXf9+B9G05+PxEolE7bXrSVGqeX0xFSQUVJRVULiglctP935uHPvJY6ua8lfFc7Ne3tV/ITV9ALIpx6vQ2C9pjl/2mJU2WfOsf+oedb0VJBTXPLyY9aWpGushN91O5oDQjjT7y2A6n2S+iEcSuMjj93DbypydNRe9djMgif7Z86+a8hdGjb8bzFSUVhO56IuNbW5ex0aMvFSUV6L2LwevH2KYTuel+jB59qVxVif+pNwkGgxl57l26LSPPfb9179JtVL1W0iZttvYQv+yajHaTrQ72Lt1G6K4nCN31BBUlFexdui3jO4+oE8v0+kCSELpuke8QFoaIZNzW4IbXhymkw26WRG66H6NPMSIetdeepidNpfaux0kPHplhFoZnzKL6gRcOSN6a+54lOXZiWxP9/9zSToFCyJtLYeRYEolMR2Bi5Dikr0shEso0pHr0pea+Z0mceEYmYQaPpOaux0kV9LK/NTxjFkZufkaa6vueQSvs3e4039vQVi2HvAKip0zPdHYeNxmptgrj80/aPBO664k2+SbHTqTqv+a1GZ5Ep5yf8a3NZRw6/sys8oTTGtFkqo0JXTfnLcIzZmF6/Zl5/vdcUiPGZ9Zt7+I2acMzZlFzw70Z5G245o6MdtNcB4nh4zK/YegYolPOtzgUjVK9/vPvHYYdHgILCSQJJBnzUKN7WDubwTQw3R6QOjG0wMVXEl4fytBQFSUVhGfMsrJ+6yV7zWn97N9jev2ItSUtpvYzj0IsijZpCnUTz8iaRePVt2Hk5iNWfNDy3OxLYVcZyYuvIhaLtUtUef1qyG0yo1t1DunBIxErPkDap2OLXfYbK993X88cHmwuBa+fuuk/wzAMEiPHIeJRS6bmNGtLMHMLqO1Amu/tiBfOazGjW43Ro5OnIa35GGmfdpKeNJXolPMtS+jRO1vyXTQfs08xNTfc1zaT1kOizaXW+ydMRt+13TKVd5VBLGr9/darsmrK5NiJljnfnOdpQ1rK7Ne3ou+7FmFzaYZsAOmR42zLLXTJr6yyay3bM4+CCQ033Zv5vr4DkN5rqq8JhXb0jQ4R2OgET5lIJcAEw+fD8AUwhXTQ79KDOZYCNwxEKmkPDTvTk9cGm0utCrz3Rvx+P9rIYy0z79syzAtPxOPxUFRURNFzD6G+O79Jk5xCKp3OHAIDqaGjkLZswPzF2fh8Puu5tcsJvP0y+PyErv1Du2R1PXoHIt5iRptA7OwLEPEo2mN/RG5FABPwP3wLwTE5mNdeiDLndXxPvYn6xqcwdLSVJtiFeKJpZsDrR/xiNu4n3yD/jHMpmn0BnuFejD/d0LE0B5BfrF6OsmWjbUabQOLcyzBy8zFWLUfZp6EmjrMcTsbfHsH11/vp2rWrVXZ/ug7p23L006YTiUZb8thcCrdeRTAYpKioiG5vvWjdD+SQTKUQkoQsCRDWtryioiJ8bjWjzBJHW1aS+cJfkJ+818ozEaLgF2ciaqswh40hFA635BmLwrQxqKpqyybiUfAFrEgaTd8nFryKdPsvbdmKnnsI14r3MYeOpn7I2Iz3GddciN/vp6ioiPz8/B/GC+3a+x3CNDG9frTCXpjSwWejFfTEVGTQNOTaKoSmdZ6grXvFJq1ITRXMuQ/16Qfo2rUrPp8Po5u1iMQsXYvL5aJr164tY+g1K6wfA4eR2md8p4+agOn1YwwZBWUmsY1R9pZUsLekgsjs39tEaq8Wdm3ekGFGxyZPQ/78EyRJQslimcTnl0CZiTb1AmJTzifVyoy3/DgmwTeet36PO4HkWTOofvodqhaUovzfp6xG7vO1K027ZhU2rc0wo+Mnn22Zzy/+Bdc+8muFlonP3X8hvSVFw7p6u+yMPsXg92eW2/YtqKqK32+Zs1JDXSu/bPt8MIYvYP1Y+CrBYBCPx2O9S5Jw7SoDn5/Umee3PFBTiSRJdO/eva3haJrovfpZ773oCoxtOuH1Ifsb0mdfYGnr/oNatHA8iiRJGePxH2QM7Kr4tmnaSJAaNCJjjNARpHv0sTzaJmAaKHt2ItLJTndiNWvFrndfB34/PPAMvpPOtCuwNVR1/4tJ9p2+Mbq3Y/VYICdrvKNs8JUssc3o9KSplvZauiCrnKG7nkAbPBLxbbll2i2ab1kVTWZeM9wLXqbLVdMz7hu5+URmzKKmaWzfnjTtkv/lJywrosmMTg0dg/ThImRZxrVPJ2+TaX/w+jH7Dc5sdy5Xp7WL/dWzYZgZ9dw6jlybtIGc78+oa/cWAkcjHQ4oeVgILNfXoO4uB9MkOXQMyWFjrGmljs59jhiH3qU7GAZybRVK5Z5O3ymVoSG+WkvgtWfB56fhzsfsgpXqa6wEo8a1eSbZZOqx7eu2HdlH71omVetx0r7X7IvarSE8L8+xCHDsyUROm25rr2wETow7yXLCTR6A64bL8N/y7/j//ihKz7ZOJ+9Xa8m/+xr8owItY7lYFG3ciYRCoXan+d7GVrEL+dtyOP5UIj+fjZGbj/n2K1k1uFq+xfpx57X7LTuj7GuMTtwzLsWa5p+nX9zWEux7FMSjsGhe+xXZlg0Hnq4cIOAv92TUv9RBa/WwEFikU3jXlSA0q6eKTJlBuveAln2/7SHv8LHER0/AVFyAiWddCVK48bB7oAN/vQ95ywboO4C6G60pAXnjGuTvyqHvAOIv/KvFUfTr24hO/ak9jZNNA7g2b4Cho5HmzLc0fVERBWMnoLy/AcpMut54T4dMJve6T2HiZFLjT0L67GNkWd6vtjC9fsS1vyc3N5dgMIj+1D/Rxh6fkaZqQSlVC0oxTpluWyO5K96zOp54lEQi0a407dbCq5ZB3wGkpsywxrIlS7J2QO7VH1k/rrqBnAtm2WWXc9djiE0R5BVlFBUVIXVivFTPl6usH5dfS+Rn17R4859fbI1ld263zOl2anr3gpeRaqvg3EtQf/9f9jfkXvjvyCvKEJsiFIydkPX7f1ACA7i3lKJu+woMHT2/B6GLriTdf5Dlnf4eJAeNIHzKdAx/EIRAbqzHW7ramlI6Auj+yO0Qj6JPv5jwkKMtS+fxeyAexTjmBHscE7p8tkWSFR/AS3OyVmyXJ++1npv6U/u5qjdWW+bt5g00PPL7DhHAu+J9yC3AzC3AeP+N/Va+Z+1Ki8Q33G3nmzGl1GTe+T56FyM3n9oHnrPT1T7wHGZuAdLShQgh2pWm3QR+6l7LMhg6CrFqGc2HCbTp+D5+D3XlYug7gNBDz7cpc+Nvj1JbW9sxxRKL2vPAicuuyWrhKF98CnkFxK67M6OuiEcx774epYPrEAKLXrXGzv/+24yy03sXIy14lZp2TBX9IAQWqSSBpW8jN9RZq7P6DaJh1u+InXimZRZnqXS9Wx6Rk86i8ZxL0bvlWWmEILDkn8iVezhSkDeuwffu6+DzE/vPB9B1HdfH79HlzmsQTdMTlhOjCl591vYwZ9OE8sY1dL/uEmv6qTUWzcecNhpVVTvUA9u9+q4yjAVz9/tszl2/QXnvjcybH31gjYMBjhqCYRgEHr4F1+t/t76lGbvK4JlHMW65Ep/P1640HfKRbN4AsSj6kw8c8Nu7/8flKPP3ybdphsD8x186ZLkABBb/0zKDgYaRx5LMsuQ075oZVp6xlgU8rC2BK89D+mw5Xbp06VCevqfuxfPYH+1prdbtRr/lSvx+f4fN5gye7RtSJycnh2ir1UeHiuSQ0YR+egV6UW8QEhg6rh3foHxXhlJVgUgmMBQXWn4PtLxCtO4F9jJMhERwxbv4SpYgUp3rvEokEjQ0NBAMBm3P5b6IRqOEw2FUVbU9jel0mnA4bHucZVnG5/NlvKOhoYFEIkFBQYFdObquEw6HM7St3+//3kaYTqepra1tk7a6uhpJksjNzbXvhcNhotEoubm5tjXQfM9uUE0dTUNDQ8Z3RaNRYrGYPe53uVx4vd4McrYnTTZUVVUhy3KGrA0NDaRSKfLy8uwy2l+d7Juvqqr4fD6b/Psro2z3E4kEoVAIwzCszikQoKqqqs2z0WjUCqvcpB09Hg/BYDDDWsj2Xfu7n0gkiMViB2w3+3tfxvx+LJYRUqctgQMBou2c1mg3iYcdTehnV1ubEUwTDB00DXQNUqmW/zcvuRQCkU4TXPKWNZZ2onE4cGAROB7/nphYnWpHC5KDRxI/7lRrPGu52bBzbjajNc2637SRwr15Pf6VH6B+W26R24EDB1nRhsDNK7EOFele/YmeOp3U4FGY/gAoTQ4ew0DoGlKoAZGIQTqFiMeRQvW4vivHVbYZ13c7EKmEE1TWgYOOEvhQYSou4uNOInLKOZj+ILhcoGtI8SiuXdtxbynFVbYFqb7GmmYyTWt86wSSd+DghyWw4fERnnI+iRHjwKWCaaJUVeDZuAb3+s9Qqiscojpw8GMksOH1EZp6EcnBo0FWEFoaz/rV+Fd+gFxX3bnElSSSw8eSLuqNSMTxfrkKKRJyatOBQ+CDCexuulQip/+kibwyUiJGYMk/8ZSusaJpdLaZLsvEjzmJ5KARoOuo5VuPyCotBw5+bOiUhRzRE84gMWK8Rd5YhJx//gPv+tWdRt7kmOPQu+baXmuRSiGF6kHTEIlYRrRL0+Ml3bMfpup2atfB/z4N3O49s83kGjyS2LEnYyoKQtcILpqLuv0rzE4K6JY45kQi589C2bODnJfmIIUbSfcfjJZbYK/USg4chtRYi0iliI2fROy4U/F9shivcyyLA2cMvH/oOV2JHX8GpttrLXlc/BbubV8dVATKrOPqYBfiJ5yO4fWRKh5KdMoMDI+PdJ9iDF+wSeP6iJ55AckR45HrqkgNHoXhCxA7eSpK1W7Usi1OLTtwCJxV+w47Gq1HH5Ak3Ju/xL1pnRX+prPs+3AjvuWLiJztx/AHrODucovIQtcwFRemy0V64DDSDG8yIwzcX39pbT904MAZA2fXjonRx2G6VEQ6aQVhT8Q6XUD3xrUEFs1FikVs8sqhBryfLSf49ksEFr9lBRCQFXC7we3Gs/4z/B++gxTtWKxffdQE6l5cStWqSqpWVVK9rIzY1Xf8j65gfdQEal9fhdmzH4mZ11K9rOyIy1D7+ipiV99BYua11CzaeETzDv/xSeqffBt91ASqVlWij5qwX/k6O9/Gh1/6sRJYkOpzFHpeIQiBp/QzlKrDt9leK+qN4faCaeLas5OcV54guOAVPOs+wbd8EV3/9iDetR8jJAlUN6bf37LyqwNo+MNjSFUVqEPdMEBgvjOPyIVXEI/H/8cSOD1mAkZuAfUbv8D9j8fJOaEX1dXVR7YT6V1M/ItVxIt6I3Zu6/A2wENB8A9X4/r56TSOsALz1S5d2CYwnS1fJ9ZzungwesV3hz1g/EER2FRVksOOxpQVhKbh3rLB3rzfKRAC0+3FdKkY/iDJoWMwVTcilSCwcC6u78ozOgsRjxJ443lc35aD6iY1ZiLpfgPbtfe4tabSexejr1mJLMsUFBRQ8OfbCEwsIhKJUP/k29S+vsrWztGbH7QqavK0jPvNvW705gepWbSRmkUbqVpVSfiPTxK9+UFbs++rCdKTp1G1qtJ+V+3rq0idN5PqZWVUraokMfNaAFLnzbTfWb2sjNR5MwGoXlZG/ZNv23LErr6D1HkzCV1rRdPU5n5Ew1PvkLr/OfLz821ZmvPSR02wZWh+T/WyMtKTpwHQ+PBLbb4xo0307JdhvTRr/ebn9dLPMY8aiqjak7Gndt/vrlm00S6bbDLuT5b05GkZ5dKcb/WyMpRf34K7TzHSrjL4y2vUrqmh7sWl9nPN8nHRVVnLtjXqXlxqp4ne/CCxq+/I+ozepxh270SW5Yx6ac7X7Nkvo90crAVwUATWu+aS7j8YZBnXrm3WIWSdeIyIHuxCeMoMGn96BZEz/g3Dn2Od8lC+xVoUko3z6RTutSuRkglMf5DYORcT+vl1hC6/rl15yhs+Q125GP36P5J8fxOND79EevI0fD4f+fn56H2PwjBBOWskvPos0QtmEc3tQeN/PIhr9Ucog13w6rMkTzrT2m44YAgmJuK3P0N67Tnik84i1ViP/5yjMb1+6o47NUMTpCacYn37048g/+4y9N7FhE6aQpcTe8OuMkKjJhAfPo7G6+/G++S9yIMUzHfm0TDzGmInnW2RdOsm3MM8sLmUyHGT0V/9m7VBfdF8uPBE6wzm3buou/F+4qdMw3vj5XDaEHSPn/rzZ5FoOnok/dZLqFNHYZrQcMxJRC+7htS4E/BMGwN3XkvypDNpHDo2o/xCN/wJTCzrZfal6L2LqRs9kfTwsVZo2B1bMfoOhM0bMrbkpYcfY333+2+hnDUSwzSpO38W4ZsfyCpj7LJrs8oSmn0n6vJFVrns3E79OZeQLuyD6fUT/nQ5ieLBGHmFKIvfxvOLs9EGj6TukqtJDz/Gkq+oN5Eb7mlTtm0CFfYphp3fIA9SiC5/n8is2SjvvGI989V6GmZeQ3zEeEyvH33BPBJz3sT0B6x6OW0IWvcC6i65msivbkFEo3a7iZxz8UFZAAdH4NwCTFUFISzTuZOnaky3l9SAoaQGjiA9YIgVD1qWUWoqEQc490euqrB2L7lcpIeMJnHy2SQmndXufLveNBPvCB9G6eekvH7qH/g70cuuwezZDyM3H+nWX0L5Frov+aelIbrkEvzr/STze2AsWAcXX4morSIej2PkFyJ9uBBWL8MtS0i1VWh/usGOXmGuX5PROIxAEHndp/DSHLxNGsq46zqSySSyJJAqdxO78EpMr5/oHX9G/0az8vMHiPfqb0W5uPUqXC4XrngMqXwryWQSo+9AlMrdeIeOxuxTjFm6Bv20c5CXLST1zit0D9Xg3rwes7AnaV+LDL7K76xp99070RvqML1+Eq+X4J7yEwI3zSK54oOMDijwwmOYVXvQnl4Aj8+12snWTaQKeyOq96IMGmEF4SvfmhG5RC/qhfLxv+DeG/Hu3YV783oIBEmcMi2rjKn62qyyEI2SuOAXmAu/wL/pC9RfnkfktOlWuXz6IeQXIX24EHPhPHwb11j1EcghWdgTUb0XaebVWcu29TlNZs9+mF4/5vOPoygK7ouvQPniU1L3/M7aW7xxLeQXEhs53j4UQJt0JtrgkSS/TsCHWyCvACPYBT0cQhsyEn3pVty9+uKfNaXd0UkPmcDpXv2b5n11lMrdiE4e+wpdtzfwi3jMmu+V5O8N7G56vCDJTekl6xiWDo6Fg8EgBfdci3fWmYhvy4kW9CI2YBhSbTV6yRK6dOmCNmaCFQ9q/ImErr8bRZKQPlmKtK4Ec8c2ZFm2jvHY9CVerxcCOYjqvVb0xRFHWxltWpfRkNPFgxHbN+N2u5H6D7Tev2MrgUAAI7cAsXsn5oDBVrSIVkHRzGMLMXv1Q9pVZoW/8fkw8gsRkRDygKEWadZ/hhg2psWUzS1A37gOr9eLoiho/Qcil23BaCWDq/8gK5rojm9wv/k8wSvPgTUrSfY9isjDL9Bt1Dhbk+qjJlD32DxkYXU0dkSLVR9iFPZEbN+MGG59t7FgboYG1gp6Ir75Cq/Xi9frtWSp3LNfGcXcp7LKkjvrdOT5z2Hs3UP0glkY//UKau9iRE0VoniIpTmb6kPuexRGbgHShs8xCiz5GDAke9m2atvJ08612tnGdVa88P4DYZtVXl6vF72oF9KuMoyefa36mDTFenDfYHx/ugH3Pdfhued3mGVbSR5zArGn3soanvbwaOC8QpCsVVfWOmejUwksherp8ubf6f7UvQT+9aYVLVCWSR813Jpz3l/HMmSUdayLYeBd+jY5T91HztMPfL/G79kvY1wL4D7nIsgrQP70Q1ITT7E08LmXwtHHE/23mbgWzYfxJyJ9XYo2y9LyxjEnIFftQZp+iVVOKz5AURRSI8Yitm9GlmXLZKutgh1bMxpy85jJ5XKRHjQC6etShBAYo4+zYkB9vhIRjaBPPAX/sDF0u/AXiE0Rcm64G3nQcEQrzdbcedBEWmPDWhg13jZlmyNbKopC9OYHMXIL4J25mP0GtMgwfpJVNgvnEV6yFWPaReTedBnK6o8gFqU+HLYbd/Ikq6GmZ52F/OmH6Kedg1RbhRACfego2L0TTjzdyh8yxsDa0FHoR0/IlOWZR/YrY2rlrray/OxqqpeV0X3uU/gf/E9EbRVaYwOJgh5Im9YhNUUT1a+9A3HsydTf/xzKlo0YC+ZiDBsNu3ciYtnLtnV0DL1HX7sMZVlGqq5EnzgZl8tF6ryZJE4+C+X9NxGDhiHKtyKH6q0Hb3uEgoIC3C/+C3lFGbmnTye8PoRHlul6/SVIm0sxo2Hq6+s7gcDtOJ1Q75rXtAFfRyTinX4Cm0inUPZ+h1K1B3X711YnIQTp4sEkjjvVWia574mIxUNIjj0eU0jIe3bhWbkYT8kSPCVLvj+/3TsIvPAY0ak/tZ0Kodl3Enjk9xgL5iIFuiB9W47x369Q+7cFKJu+wLjt/+D+YhX6McdjbjfgxDMQtVXooUYYNd7WoC5FwcgtwPxuBy5FQS/qhdi5HVmWrXiKpmkHgNfLtiBLkqWVKvegqirpJm1vfvohgbl/BZ+f6KIvqX/g77gXzSf85z+g9R2AGW5EURTSJ09r6Tyaw+G+9jFGjyZTVlHwv/YsnHMhDevqSRx3Mu6Hbkc39AwZ0kNG24TzLZxH9IJZ1K6pwThtOp6Hb0fs/MYuP/dKK1Knud1Au+FupJpKzGgYeeBw651rPraskB3fWORtes7s0dfqnPKKCK8PkTjuZDy3/xp921fZZSxZgndBFlmefghRU0X1m58RXfQlyq4y5Dt+hdl/EIRDSKOPtb5l6QLCzy7CNE3Eby/FNXikLZ/n5Sezlm0ykbDl1ZrMbUVRENBUHwEipWEar78bddF80o/9EfJ7wJ5vURe/hWvlYrjqBqpWVaL1H4hy+69p/Oh91JWLabjtERrW1SMKilDvu9mKstHB0wnbhNTxer3fO5iuvel+jC7dkeur6fLi48i1lYd1m2Di2JOJ/uTnVmhPwPvBm3hWL0eEGyxiDx1D7NxL0Yr6gBB4l7yNf8EriFjHzplNJBJEIhFbsyiKgt/vJzpvJZSugdt/idZ0MkRzPKNkMmnHRVZVFV3X8Xg8SJJEJBIhL88K7l5TU0MwGMTtdhONRtF1nZyclsDfuq5TV1dHt27dUBSFUCiELMt2HuFwmLy8PDRNIxQK2eNPv9+Pz+ejrq4Oj8eDz+dD0zTq6+vJy8vDMAzq6uqQZRm3223nm0gk7CmO5u+UZTlDhlgsRjKZpFu3bhnpZVkmEAhkBPHTdZ36+npM08wI+ZKTk0NNTQ3du3cnkUhgGIYdeyr1k58Tuv5uzBEBy0zWNBRFIRgMoihKVhlVVc0qi8vloqGhwa4ft9tNTk4O9fX11rBEkojH43b5q6pql3+zfKZpZi3bjPndJsuj+dnW9dE8hPH5fNTX1+P1evF4PBmx0BRFIScnB1mW93v/gIunkskDx8RqN4G75qJU76HL3/+MFGo4bOTVCnsRmzKD9NAx1hEnbjcoLqT6GpTdOzACXdAKeloWgWmCEKhbSvHPexplz85OkaFmeTnyXx/C/ezDHY7A6GD/iP7HQyQmnIx5ylF2R+eADhH44JZSNjmJhKZn7ATqbBg53YicP4v0wOHg9iBXV2AU9sJUXBi5BaS65bUExzMMRDqFKSukhozGvHw2gZfmoHxXfshy5J1STE1NDXIHw5g6ODD8D96MiMVIHsSpHQ44BAI3L7ZwqRhdc62A2RmLJppPl2/174E6A123HFX7muGGbu3zFQK5ag/BeX/F9AVIHH8a6dHHYvhzEIk4ru1f4V6zApGIE/3JTPSCntY4Weq8sNeOhjg8aDY5HRxJAjedRasX9CB0+W9BYK1FBssj3awVtabL0FucY9k6AkUh8P7rqDu+yfBoS5EQgYWvIMWjuNevxlW+FQwd5dsywjndSI04BrlyN/75z6J8a63xNV0qyQmT8b03377nwIFD4H21JmC6PWi9+1uB65oJbBM3Del0y/9N44COrtip01HmP9MmsobUWG85pJoC4FnzFSl7LzBCWB7fJnhWL8e9frUV8dKJv+XgfxOB233M5cfvE590FqbHZy2UcLmsBRRNZq8VqF0HPW3926yBD2BKaz37kRx6NJ4vStqsq26zKV8IRCRkmdiJWOYxLbqGiIadmnXwvwIZXmiwjpBIJpNOyThw8CODYRik0+kML3QbL4+maR0+ZNiBAweHH81z3BlDzH1vpNPpQzotzYEDB4dH+zYvFtmXwG22Eu27hcqBAwc/LHlTqRRCCPsCEEKkJWBda+dV8x9TqRSapmEYRrudWw4cOOgcmKZpE7d5uaUkSUiSZHPU5VIbFNM0XzZNc6Jpmq2ZjSzLaJqGpmmYpumQ2IGDHwBCCJu4sixnmNDBYLBcqKqqejyer2RZPqr1Qupm0hqGYR9y7MCBgyNP4GYStzafXS61fuDAQe8qhmGkhBCnS5L0mWEYBfYuh1b2tuPUcuDghydxM1RVrevbt/+HkiSVi+ZdSCNHjioMhRpfiEajx2ia1o3Dffi3AwcOOkJiTVXV+kAgWF5QULhVkqRy4NH/NwB4v8twTp6sBQAAAABJRU5ErkJggg=='
button_vc_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADM+SURBVHja7L13vF1Vmf//XmvtdsrtJfemVxJSCSE0BSlBEAEpAjIW9KszzIztNzPqVP2qM+M485sZUYdRx8aIisgAShGpgtQQEkIKaeSm3OS23H5P222t7x/73JImKqHOeV6vvJKcs/c+e6+9Ps/zrM9TlrAsCyEExpiTgGullKuklDMBj4pUpCKvFykBu40xD0op/9txnGdLpRJW+ctzhRDvE0K8RSk1T0qJEGLsTANgTGUIK1KRV0uEQBz8iQcs0ForIUS1MeZ/tNZ3WcB04JNSyosty0IpxUQAj/1dGdKKVORVk1FzacqGcxSHWut5Wut5QoiZjuPstIQQ1wgh3qqUYiKAR0+UUqIOscgVqUhFXmEAG0OsNVrrgwAspRz9bEU6nfm/wnGcp5VSp9i2zeh6WAiBZVm4roul1OgaeQzUFalIRV5xBGMSi0sQhoRheNghlmX1CMdxSo7juLZtI6VESomlFJ7n4dg2CIEua4IKfCtSkVdPZBl7YRgShGGCwQlG1BiDJYRwJ655pZSkUikcxyEMAvwgQFcsb0Uq8pqJkhLbsgjC8DAvWI66zKMAdhwH27YJw3AMvKZszitSkYq8il50+W89gciaCGAhBHLiCUIIbNvGGIPv+0RxPPZ5hcKqSEVeXRETXOWjGdCDAKzKhFUYRcRaI6WsjGJFKvJ6ssqHkMkHIXQ0fBSXqeuKVKQir28AW4ceoLWGCoArUpHXLYAninXULyvMc0Uq8npD70FYPYzEqkhFKvLGEuv1eFMiihBRCEaDstCWDVLB7xPMMgYRhog4BATGtjGWRSW7uyIVAL8SLoIx6FQanclilIXwS8hCHhFH8FL52MaUQS7GjjVKEWerMF4ajEHmhpGBX3nzFXnzAtj8frbuWCAYBPgt0ygtWk5c04C990Uym9aiBnsxynrJ88VozEwIMJo4laU0fyn+vCWIwCe1/knc3TsR+rdQCBWpyOvJvr1uLXAcI+OIuLqO4rxFlBYsI2qeTOyl0a6Hs283Vm/XOIC1TqytlOMgNAadrSbOVKHyOdTwIBiNSWUJZh6HP30uwi9ipMQaGsDq60mucUxAnCgLkRtCFoto18NU1YBSB5OBQoDWiGIemRvBeB66ui75PPARgY8oFRDxeBTASInxUphUGn6TAhMCwgCZH0GE4UGRBKMUWDY6WwWWXSEoKy70sXOZhdZoyyJoaiGYfTyFxSsIW6cnE1AI4pr6ZPLqeMzFRkqMUslELU/GuLaB0vylRI2TsAZ6cbdvwu7ZjwgDZLGQVHd4aYJZCyh17Ca97snk82MBYBOD5RCufBtxfSNWdwdqzw4IgkTJjIrWIBXxzPmU5i1ADQ1ivfAcopDHVNUQzZhHNG0WVFWBEYBG5AtY7TuRne0Q+AkAj4Rfv4RJZwkWLieub4JM1fh3I0PI/gNYO7cgAh9jO5WZ/6YF8ChIXg0tbQxGKaKGZgrLTsVfsAztphCBD0JgLAsZ+AmhNXq8ZRFX1WFSadRAL7JUQEQRYeMkCktOJmpuReaGMUKhhvtRA714LzxH2DyFqLkVBJSOX467azuyuHdMUbxcD8JkPIqXXUvuoveQeeQXZP/9b1Cd7QeDJQqhOot//rsZ/Phfkrr/Hmr+758ghCCet4TSmReQv+AK4iktEAA2yN4BsnffTOoXtyLbthz9vYQB0az55K77a0rzF2MamkAnzoHs6cTbuoHsf3wRa8fmoyqBirzefWhzmNdovVY3IgIf46YozV1IcdEKwqmziGvqkYU8YJKJL1XZTU6sl7FtgplzKS5aiU5nsTv3kl7za6zhAaxRckpIdLYaf/Z87I7dpLauxz7QibtrG3FTC8ayiJonE0yfg9XbjSwWMZZ6ec8jFaJYwLvzR+QueDfFU85EVtWR2b8XicGUSTVRLBC1TKN4xtshBv/WG8l3tGO9548oXvPH6Jap2OueRF9/N6avD+ob0asuJXf+5QQLl1P1rS9jb1qLOYTQE8UC0fHLyV/7SfwTTkU9fj/R7T8AnYBdX3MdxVPPJP7IX1Lzn1/E3rMDow0yP4JxHIiiMbfdKIlxPUw6mywBtEb4RUQ+h4j0OHkvwDguuqYWhETkc8n1bBsQiDAADUYJTDqLcVzk8AAiistjJtBVNZhUevxcy0quVfKT3xGg01mwbUQhhwhCMGAsiclWJ8QkBuIIOTyYfD/2TgQ6nUmOsWxEfgSZH06WYUYnzyIhrmv8zUuTigt9iKsXRRgpiBom4c+eT3HxSQQz5oGysLr24e3cTDB1NmHrVLCssgsqyq6zIm6YRGnRiRjHJWpqQY4MkV7/NFZvN+6Lm4ira4nrGglbpuLPW4SzfzdyaADvxc348xYRTZqMcVxKC5fjtm1DFvYCLxPA5fWnvebXpO67g+JVV1I4bRXu/j04hSGwHIgjTFUN4UlnECw8AfnsU+j77yCetwj/yg8TLF8Od96O+4Ov4z39yLiu6+0mzPw5pbPfhlx3FtmNz6IOXbv7RcIFSyi+/Z2Y7TtQX/0Cqc3PIcrEh4gjCguX4V99CYX1T1K1YzPR0pWEcxejDnSim1rQTZMQ2iB6OrB3bUft2pYAW8fEU2cTLDsF3TIJESfrfXIjWHtfxFn7BEZIwoUnEB63BNXbBY5HNH0OQmpEby/O5nXI3m7yF7wb09CMiAIY6MN97ilU517C4xYTzV2YgFBAuGARItQw0Iuz5XnkYD/+ORejp8xAECK7urE3rEk8HJUo+dKqdxFNn41wvERZ9nZjb16P6tiNyI8QHreY8LgliaLIVqGbWpB+Ce+hu2B44A3LC1hHY6BfqccxyiKuqae0aDmFpScT1zcji3nkyDCpTWtIr38SffYlRK1TE22pFEaI5H6iCJHLoQp5YmWhs9UUl52KvXcnTsdevG0bCKfNIq6pw3gpgumz8afNwdvyHKq3C3vfLqKmFkQcE8yYR9AyFXWg49iQWVJCJkv2rh/jn3ke8QWXEz55P/aWPozlIHyfaP5i/Ldfhoki1EN3IjBYF19DYelJyBe2oL/8GeK9O0nV1JBKpxN+YP0TFP8rYjiVoSAEThjiyYPvVRiDth2MMLB9I/GOF0i3tJLyPIRfRD5xH+YXt1JqvJZCXROuNoRvOY/hT3wW95knCVunoVtbIAKZGyTzyL2kbrwetW8XcUMzxVWXkr/6D4mnNEPJgJIgFd7qR6lp24480Elw+nkMffyzuJvWQqGAv+QkqPaQg3mqfvwt7CcfZOTDf0E8eQakbRgpUvvPnyb90+8QrHgrwx/7LPaenagDXRTPOQd8CSam+ub/wt66gfzl1xIsXgH1Hqqjn6qvfo7Urd8HyyKat5jcH/0V/vIVUIxAGcTwCFU//zHebd/H3rQO/6QzGP7zf0Tt24VRNnrKZMTAIPVrHsceBfDrPCoxIUg6Pu2OjVkVEMcIv4QoFZNJUzr0TwERBoStU8mfdg75E9+Crm1AjQzhbttA9rF7SW1cgxgllqRKJoqlQIoEIFGIvX837vaNIJJJFDe3EM5ZgPZSqANd2Pt2I0t5sCx0TT3htJkYx0WEAfb+PchSMbm+myKeMgOdrUkIsmMxBlqjtj6H9fwamD0fv7aJOI4RUiAKOeKaevxlp8CLW4hv+2/cTIZw1nEIR6K3PI8VlMi6Dq6XdPQ1QiCExG17geov/RnqphuI/BLmkIlmLBuraz92Rxecfwnin7+L/sAn8C+4EjnQhygF1H7vX0ldeS76+9cTBGHyzA0Qzl+MfOph1NVnwwfejo5i8he+i8Lp52F0TP6KD5H7xGdR2zZgve+dcM3Z8NGrYOsm/MUnMXTFhyCTRcQR0vcJ5i+FbZtwPvB2+Ks/Redy5N71XvKXvp/MPbdgXXse3PhNsB1GznwHQctURDGPcVzCeYvQBzrx3n0O/NGlMDRA/rRzyb37/5B66E6c958H//EV4kw1+be9E7+hhXjSFAb/5t+JJs/A+tlP4X2r4KqzMXvbyF31PoqnnJW45qEPaUXc1Ip4+leoq8/GfPgiBl94nih644YUj40LHUfoqmqiuqZy6GSUGJowKDpGV9Xizz6e0oITMK6L27YVd8dG7PZd2Ac6EaUixrIQOk4AbNmg7IP0jNV/AG/Lc/jHLSGurUfbFv68JbjbN2Pv34Xd3oY1fylBXSM6W0M4dTZxQzPWgS6cfW1Yw/0EdQ2gLIJZx+FuWY8c7DuCbvs9ZWSQ7E1fZ2D5KfgXXknU9gLW/j3o1mkEZ15AnE2j7vkJpqeTVOtkcvXNGAt4+lGcUgE3m0UpNdbMDKVQuWFSHU9CrJE1tYdNNuOlsF98gdSNXyc+/1Lit6zCz49Qqq4lmjkXCiNY7btxH7gb2bkPBwiNgRj0jhcQP/oG7vrVydN/91/J/+3/T/GCK3AfuRt79zbkT76Nvu2/cdY+hVceJd06jfw/Xk/p+OX4xmDCAKFjdE8X8SP34j77OE77LoJzLyV45/n4az3s239Aqm07ZqCP4qqLiRetwK9tQBQKSEuhd2whuuMm0s88jnJsghe3EJ58JvGvfoH94J2kXtyK7aUoXXQN4dxFlJadgt06mfCk5chbbkH+82fwOvZiAfLLnyb3jVsovP1y3EfuQRZyyWzv2gc//ubY82rHRpB6k6yBf0/2WYQBUfNk8iedgRAStEYreRAghNHo6nqi+kkYJXF2biG95lG8F1+AKMRYNsb1EtIkKCWT1LITgkGIBF9lK2x178fZu5NiXQPCGMLWaUStU7H6urD6urEOdBLOmINxPeLGFqLJ07G6O7CG+rH6eghnzMMIiFqnEzW1Yu/ZUVY66uWPqJsi9dBd5J99HP/tlxI8fj/u9i1EZy4nOPti2LIZ8cvbcaQc6zmGAAZ6sYxGSOewihNj24jaBjJSJHHhQ1+R7SC62vFu/gbR9s2U3n4ZUdMk9MITCC+4ChpqYDhP1aKTyNz2few1jxNKCSPAo/fB+tW49fWJy33j9fhXX0e08ARKLdOoueVGzG03MeKlEdNnka2uxjgeUX6IfJiw337JT9blrgfPP4PZugFbCNJVWfJ7dhDkz8ds20TYtp1sYyPOzk0Evd3EM48jFBIZRQhbwtonME8+jKquomrSZIY79xHaEvHwPQRd+6n2bFJRQNzdQdwwiWDBUuK5x8NIhNi9nVhrUstOwvM8rL07KLW1ESw/ldKs+YnnJYG2rZgJz5tE9/SbBMAvg5iK6xoJ5i1OYprlxIFyR/gx9xIMWAq7ax/p9U/j7tqWuIO2c5BVkaUiUmu0KgNYyrFVuZESggBn1zb8hSegHRedyRJMnYXTthU5PIjV21WOi1ZhstVETa0YK7Hiqr8PEUcIKdHZGuLGFoyXTsgNdWwGVWezpFf/mvCM8ykuPZnUHTcRN7USNbYg7/0f9N420tXVGG2Se4nBLFiKfGEtojB8MICFgChG5IaS56+qKeeFT1y+RIgwQEUR2U1rcPbuoBQExLZDGITwkb+Ak88gf9HlxFFE9a6tiCgCP0b6BVzAdRy01ohMFWJkEJhJKQxIA9ZbzsU573IQhpGqGoIlJ6FbJkOYJNQkNaoky5rAx7YUjmejpUQrK3l1loXluSilMI6LURJijY7jRHmaRBHZgOd5SQM3pRIm23LwMllUXmP8UhKOM0n+AJ4HaYv4jz4NH/wEOcsiLyQiCohba8CB0EsjS35C6ikLBXiu+4YG7hEB/HuTV1pjbBdTVYuJIqzBfqwDHWA56FQq+T5bTVTbgFESq7cTu2MXspBHe6nDXEKhdQJaSyUu+cTvpUSEIVbHbmR+BJ3KgFJEk6cTpzI4vd1JfLhQQE9yMek0cVMrJl2FKBWxDnQgS0V0bQM4LvGkVuJsDXJ48JiFE4ybwn3wZ1gXv4dg0YkULroGTj4L3dGOdefNWFGI7bpgYtyNa/HPPAeWnwZ33AjDg4i6xkRRxTEyN4SubWD4U/8E6SzZm78FBzrH4tci8NGTp5NfdSm6qob0nT8ivf5ZpCUxkSYCxE++SbB/N6VP/QOllWfgNLYkQDACEYWJy6kUOkrCMcZxEEZjDnSRP/Us+MO/RE+ZQTzUjy4VMc8+Sew4cPF7jjgXpBDj3VxG350QCCknZM+VOfJDlJUElFREh5wrlUJIiRmrV0+iEsZLQxjDU7+C9U+jyyw0pQJ07wNtCJ9bjTr5jMSRK7eHklISx/GbC8Avl8AhjlGFHN7mtXjbnse4SVGCiEOC6XPRy08jdj1UqYCIwiTWewTyIAGwSMCrDuXZBOgYOTKE7OuBplaQkri+GV1dm6wZhwZRuWEipRI3uqGJuKYBq7gXdaADWcwn8UYpiZtakvPa247hqFrI3dvwfv4jwis+RPHDn0Cla5CP34/c+Cypmuqxyeg+dh/ykj8gXnwiwSlnYz/1AHapCKViWcFMwz/9XHKf+HPoGML6yXdwjRlfnJT5gtLpq/DPeQt4KVKD/XhD/YmyEwL272a4ax9BLocu5PFLATIKIS0xc47H1DVCPodQimD5aegp02DvTqRfonTFtegLz0HedT/y2SeQxQJy8zqYPpf4Xdck1vPQuYAY976OlIzwUkzrEY4xE5MYhABlIfsPIHe8QLziLbB+NfJrXxyb0BqIJk1B6Bh7sB9SaWJzyPXeBHLs6oFFQrjIUgF3zw7s3i7srnactq04O7di9XQkwLRsjO2WyakjD6LwS+U1qSz/EYdNEhHHWAc6EXGMEBKTzqLrmtCOhyyMoPLDCKPBcdFVtejqmqQaabAf4ZczvaQirk6yusSxdKeMQdc1kr7vNpyudvTKE9BxjHz2CQTgeKmxCSl3bsZ+5lGoq6f40b8lOPdSTDnxwHhp/AuuZOSjfwcjoH54A8PbNhKHwXi1leuhXtyCe+8tMKDJXXQNIxf/AeSGMWGILpUIl6wkuPgaTEstrHsSs2tbkuNRA/rMdxCvugSRz2GAob/4J3RrPWb1Y4i6Jpg2GyIwD9+N/PoXse/6Eeb4ZZjrPp2g5LXCgeshdm3HvvtmUBLxrvfifuCj1NdU0aAg86FPIu5ai/3f91G9bAWpOHxTNpo5Mon1u5JZE47VboqoYRJ2+84kOR+TrLekAstCKJkcr/Wouj08SyuKxrW5kEcm2OIYa6AXoeOE2MlWoWvrk5BRIYfMDyfrM9fDVFVjMlXJtUvFJNwlEkJIZ2swbirJZz6WWlkpZGc7ztYNBOefT7xpLfYTD+Cm06jx7TEgDMj++AZiIQlPfAu56/4S/8r3I3J5THU1unk6YngAcePXiH/yXTytkUKO32s55TT1yC+IJk2lcPmHKF35YQbOXAXSSZTJ5MkQg7r9VqKf/RAZx8hUGgqA51H64Cfov+pajOUSH38C8q470T/9LnZ7G87zqymsOBnzkT8jOnMVxkkhMlXYgY+fBlacjnAcjJdCNwM1dYnXpBMFbLLVMAmoqhl/h7FG1zXApBqwE/JSTyqfC2NRDFNVm5ybzo55XihVPrce0lnsR35B1fWfY+Tq6wg+/SWGL/8AIvKJp85G1dQR/eTblPa0oU84FZqBusaXRdi+toFg8wpnYhmTEEoz5uJuXY/0SxOYVAdjOWUmOUiY56MtqTPZckreIb7VoWut3PDYWlC7HjpbjbFtZG4EUSomD1xmt3UqM7bIl0FpPPnCS4Ftj6UdHsuou3Yc3NWPEN7YiH//bci+Htzm5oPdN9vBWf80aelQfHEL4clvpdTYCNnaZMJuXIP1q19g/fqX0N5Gpr4eodTBY57OoDr2krnl20S+TzjneIpz5ydrQ4C+HtTqJ1D33Iq9cQ2egMh1oQhi20Z0bxfFBYvBD5F33IS844fIjWtwBVgP/RydylJadiJ66ix0oYTa9jz2to1YL76FSBuiMMDbvQ3njgfxVz+KKeQS5jwIsDavxbqtkej5Z8bi18a28R77JYX19ej+XtzOdri9fO6oixwGWOufQtmKePtGTBQk8dxCDueJB4i2biDu2o8sFfF+/E38TBXhyWdQUB44Lmxah/XC83DjV4n6e7G79mHf/iDhY08eFkd/05FYvyuZlRxfHhSpMJ6HkQozMbYahQlgpELEcVIAcMSBNEQNzRjHG9fG5Rpfc+ivli382O/aDkaq8npcJzSJVCDK34lRVrecMyskKCux4K+EN5ipwnphHen1T2PyeaxMBmtijHfUmahrIrV7K2r7Bvzv/RulUukggiUWgnQ6jVtfj1VWbOYQZRbX1KMKOap/8DUKhQLhIfvpxIDlumSqqnCHBwjLb19sXof9pU9hys38NaBsm3RNDbbrIvfuJP3Vz2LyeUqlRPFpIdC2jXfr9ygWi0SA88SDyEd/STg0hHEcTHU1opjD+flNpG/5NsPDw1BVlYxzOkv1Vz5H1N9PFEW4Q324H72aaGgInPI7LBVJ/eRbmO99hZGREaiuxngp5MAB0l//AtHwMEEQoGsT3qP2O/9K7vrPUygUJmT9KVzHId3QgLvuCdQTDzI4OIiw7dew5v3lZWK9chZYlBniOESODI61sBn9UpRL6bDKLW2EQHCEhtWmnMAu1Rh4j5hjYRI3etzVFhNK9w7pzFFWHBPd77HzxljRV+B1lpWFFQZkXQfhuEcnT6IIK46QRuNYEqMmjJ1loRwbaVm/+QXEMSoMSGPQUqAda3w4lEK5LsqyEAZMKlN2T6uwgJSSxCIpJpCui3KchDWOI6wwIIPBK19PSIWwLKSJsW0FXhoZx9iBT43nIj1vbBcBEQa4UUhtJo3luuPjUiyQlUnIzRKAX6LacxET+AERBnhxiMpmsBwnuabWCL9ERkAqk3xutEYGPmkT44w+sxAIqZCeh7IsTBhgBz61notIpd80JNaxdaGVQgY+VncHMggOhoQqh4QcZ6xC5KiaZvS7l2pxK9XBwJ7IiI6GLEb/TPxuNDQlJa9obyxjMMpCZmzUS+zwaJRCWmlkCuwJW92MMqaj5x194pkk9OSlsFLpg7bLOfQ6OpXCeeE57G/eTPj0rxBK4dY3HHacMSaxhukMTiY7dr2J92KP71uLdBy8Cf8HwHFRroddXvePglO7Hk4qPX49+5BzhcAc6VwhwEvhpDMH36vrYXkpnAn116P3qY1BS4Wsqj78/ioAnmABpIQoQg30J1ZuwlrN2A5YKgnO207y91Eno55AdB2F6hQC47qYUZJLxxCWc3yVlSiIsqVPyKLx4n/jeGPWWoyRV+IVxPFvtzXrS4P0GP1eVQ3uY/ej7/4pw2GEyGYP2/nuMG7jaIrnkFanRwsBHSnmeiiIXs65v+nY3/U9vHEBLMTLYKEnVHPEUbn7xDi4jOMmdZ1Cjq9bj/Q7o//XE0A8+m8zfp4RoL10YnUAEYUJwxxFGMtK2OdyYoaIIoRfTPSAjpMa2FHXOQrHWe//Ra1mDAYnlaI2BcpxkwSJirz+5RCvyjpW02Gie2osK2GBRy1wFKJ6OpDDQ+hsLaJYSFIdj8YGhlFiSbVOYo2H/VzSaiKub0qYbUCWSsiBXkSpiK6uQ1fXJUojjpMeVPmRsvV1MV5mLD1T5HNQKiUE1/8a9CYupUilccuuvZ6YHFKRlx5CIZI5bllJ3P41Uv7WoTzUy2WhjesRTZ5O1NmerGWlLIPRIIr5xDqHIYTBkX9DgMznEqZYxxjMEe/J2A7xpCmJqywkYmQY1dcNpSLx1NnE9Y1Jkn8xjxzqRw4NYIQgrm1EZ6rGXG812I8ojJRZ82MoY+7/IdpTlPO6tTloifHa4NgQT3SBR+974idHSqQ52vP+tsePelbykGNHPa2jjcvv8hu/z/v6Xa4dR+ja+sR7C/xXLTQlXjkWOkmn1KkM/tKTMXWN6HQmicmVs550XRMgMW4qIXf8YgLyg7SXSDoz+H7ZbdYHf2+SQdbpNHFTS/KRlAnzPTKUDGzZAiNF4j4P9SOGBkBKdHMLJpNJUjWFRA70JtZZHkMwCYEo5hFBcPC8tW2Ml07cfb+Erqnn9RbMEKXC2BgTR+ClEk/mN1mYcrugpAto+qU7X4YBspBDZ6rBccYAIYqFJLyYrT64GeDob5SKSWeTVDopgDlWVu93vX8hELlhwjPegdq/G7V9YzJGb2gSa7RbZLaGsLqOaMY8cL0kIUPJxOKUByZYuBzVtY/UmkeRueEE6GL8hcnCSNJ25aA18nj7WCybaMpMdE3DeFpl515kbiRpn9rUXAaHgDhEHehEDg+AEESt09FVtUnpoAHZ04EY6k9ItWMFgkKe4mUfIFrxVshkypO2gL32GdwnHiScPhv/lLOo/voXMYX8eFgLMFXV5eYIRUymCmM7iPxIuboqk0w0nYTWTDqFSWfGlU8ZBKJYnPCGLXRtPXKwL4mFZ6rKjRcKSbta20EO9kOcVIqV3vVeTFUNcniIaMoMnKcfwl73VNlqAkpgUpnkd0ffjV+i9M73YJom4d5/B9aOrZjRAjIlMdlsOdstUcjRyrdReuu5pO+4CbVza8JJZKrw33EV0fQ5ZH54A2LfrjHdZlwHlE1p1aWYqbNwnnwAa/3qcmEy4FjoqlpEGCAKOYiTLD+TSSeAlGo8jzoMkSNDEMVJyrbngu1SuvgaSGdxH7gD1b4XnfaSFNtS8bDxNLaDnrOQ0juuxr7lm3hDQzCp5TXZFPDYAFjZWP0HsLesRygbY1tJnFHIBLyjCe6Oi66pI5x7fJlcCnA2r0s062gBAyQVSkeziEajM1UE85dhvKQQW44MYbdtS6qTahsScFfXJs3ORoaw9u1GhAEmU0U8ZdZYwzaZG0J1tifAP5YW2GiK7/so4ezjobdcOTSpEWvuCTA8RLR0JfkrPoj7/esxJ5wCXjrxNMIQa28bJpVCV9ejuvchcsPEcxei65tQne3Eza3J2FoC1dmB7N4/zrC7KeJpcxLPpDxZRX4Yu20rwYmnJ2Wane3oxknohknIgQOI4UGCU8/BZNKI2FB4z3VJAzvfJ5y/GNPeBh3tmPlLMI6FyBVQ3fsRAwfGlK4oFihe8aEk+2rfbnR1Dbq+GSRJC6TOfUmJYpkkNZOmUPiTTyC3biS1YzMqnyNctILCH/wpsRDY99yKmDI9SaWMQ1TvAawXnqN04VXE0+cgdm2DwX7i2ceBksi+Pqz2nehsI/GSk5K0WR2hOtqRfQcST2I0gcfzCOYvwVTXJBGTA12oF1+geMn70FOmYxwXa/MzyKFh5EAv8fQ5xE2t4+DPDaG6Oyhd8l78t51DvHkN1rqncKII/Rrsp31MAKxdD3vvi1Td+aNx12a0oL+cJCFiTTR5OsXTzyWcu5hwznzyF16NTmfx1vwakRsBYQEG3ZAUJRxGkI26z3WNRHPml62mQPZ2Y+3bhSzkCGbMI5o6M3FVgwDV04XavxejFCZbTTxpcrLeVQqrZz/qQPcYc33MPJHaBkzzZOTX/x5z0w1JF8nL3k/03j8hv3AFdm09asMaBmfMR/zdV9Ez5oEyUCpS+9mPEs2aT+m8S8l+68s4a35N8eo/orTqErLf/yq5qz6CnjYTaiTZb9xA6qb/gL6epH/WpCmUrvww+cuuBdeCYhFr4zrqP34FI3/5L7ibnyPz9S8QLD2Z0pUfxrv7x1jPPsHQ5/8TPWcuoj8J/1k//xHxvIWIPS8S5vMEl7yf+LpPoxuzyLb9ZG/8Gt7/fDuxqiTVY6a+Af3wPRQWnoj+xOfRU2dCSqC2vkj1f/4j9iN3J26mkNhrHsXqGCLf2IrKVpPp7iZYeCJxdS32N77EUF0T8m//lXjWPAh9Ur/8GVVf/ChU16C3PI9fLFD64CcJL/8AJuPhPPowtV/8GNGSleT+5K+J5iwEGZD95ldI3fZ9GOwDy0GUikTT5zLy1/9GtHQZ5Eqk7/wJ2X/5FMZ1ibI1jHzsc1AtSN/0AzI/+xGli95D/qqPjI2n/fyzZG/7PsXzLkM3pwnffjnRxmdxVj8Mmeo3qAWWElEsYBXyh+9GMOpWGo3s7UIMDeCv7MY/5SyieQspSoGurcd95jHszr0QlLB3bcdfuAJdW3aDx9xnja5toLT8VKKmyWPdLJytz5W3XlGEs+cTT5oKSiFyJaz2NqzOvaAswpnziFumJusr18PauQ2re98R6fmXA+Bo6cqEEHzoLlKDfbhAsaqGkuNhtCZqbEHs3w0vPEf661+gEMXEs+bDZ/6BfNNkZBgR1zfhOx5aOfhnvRPR30f+/CswYQh/cx3GHyK/aw8MDpBSFkaBGOzDufNHRM8+RkkoeN+fEs45nvzshUTzFqPv/in20BDRtFlEjS34LTMIrlyAURLxD59Cv/M9sOJk9OpfE596FmrN48RLTsa843LE4w9gdm8lvuZjFM+/DOsHX0OV3eL4uCWY5lb0I/eiz78M5h2H+eG3oTRCdPH7KcxdSPa+25BlPkR27IHCCGbmcWggXLiU8NyLYd2TRE8/gvn8DQkx+aVPoS/7AKVzL8K6++bEc/jl7QQz5qFWvQt5z0+JghL+ez/KyHmXE517EfZzTxNf/wX0ez5C8fgTkM2T8Xo6MNqgp87Cf9cHiOubUN/9GtEZF1K4+BrUXT9Gt06HznbMT/4LLr2a0innIB+6G/d/vke4/ml8mYxnMG8RpR0vwP7dkLYwd96Mv30zjhpP1nljroEnsHNHijAZAXKwH3dwNWpkAFksJECcNpu4ph7tZoi3b0x2IciNJG11Jq59y6mY0dSZ+MtPxaSzCL+I1b4Ld/M6KBWJps4mWLAsAX4cIQ90Ym99Pmko19iCv/BE4pr6MrhHsLdvQg70HtP1LxiieYuTpIGzLkDMnIucMR117kWoDc/AlvXE51yI9dh9SKWwdm5FxZrYSSGGcgQD/diFHKq/h2DyDOLlpxFbNvYN/0jw8c+ipISeDti3B9nVjhAG0pmkOMQYRCGH9cJ6RH0jprcbkc5SWHYqIp8jXvcUcamEmTIT3dNBGEboiy/FuucW+O5XMKkM4dIT0ds3YWrqMD2dmLesQkQh6mtfQO7ZRbzybILWaRTCiKqywornL0n4j/wIoq4B1q9F/dvfQX0T8VmXEAhBGIaM0Ty+jzzQAfVNmPpmiudfTlzXiPrOvxE2tSBPPgP5D/8f6gc3oNNVhJ/6AoWFy5PIgeOiF69ADvVjfeXzqJEBTOsMCiedCWecgbWnDXmgE5MbJjpuKUGmGicIUFrjH7eY0qp3IVf/Cuuf/gq1YS3ReZdSWrQi8Q7uuwPnh99AT5lFdPY7KRUL2IUc9pb1BPWNmN4eRLaGYOOzMNCLXF+Eu25GdOzFNDa9wUksIV7Sihk3AYq1ZyepoUFEXw+lt55H1DKV0mlnE8xfjLf28aTY30uPu+Aisb7GdtB1jWPgFaUC7nNPoro7QCqCRScSTZ+TED/FAvaubdg7t2DcFHHzZKI5C5I4tZTYbduw9u+BMEjc/mMZY01XoW0H/upL5CPIe2C37U1AONCHqW+Ctu1w6fspvHUV8fyl0DIlWSK2bUUolaxBT3kbLFiKWvcE8b23Yq+6mPCiq+EH9yLyBbJ//0nch+7E6BgR+ERLVlJ838eJGpsxJ50Mfox66C70zHnI/h50ECAFxFNnoTv3IXo7IZVC/OoeSKdJ64jhzv3J8mV0W9fqGrj3Vsy2zTgLl2GGBsgHAT5QXU4I0XUN0NeLOPF0mL0Ac9/tWH09qLPfQclxUG3biA9h49W+PZDKEi1eiV52Kqx9ErVpHfEffhq9ZwfyBzegslW4aPSuNiIvjRjsR6w8EzF5GvEvb0d07aMqm0H8+9/S98m/Bx8KV1wLV1wLLsiNm9Ejw0TGYMURcVMLUU0t7uMPoKOQmicfwH/gDvKf+CKy/wD64buwgXjJcqJtG9DFEvnP/Atm0mTMipXga9QjvwCliOctQj77BA6GVDaDpeRrkuX1mrWkl8MDeGsfQw31UTztXILjlxO3TKV00hmIOCozxWI88CVl0v6lvQ3v6V+haxtRne14zz2FLOYJp8+ltPIM4pYpkEoju/bhbFiD7O1GV9cSLFqR9CQWCZnmPr86aUJ+rON3xhC1TEG270J/9UbY3w7opEpn9w6sS99LkB8h6uqAv/03vDtuggd+jv7Ip5KmA4GPwmCiEH3qcsT2dpzvfoXiR/4c5i4i/QdnUVx4IuafvkqhtgkZxdhhiXjWfEqXvJewqg77+9dj2i8hOuudxL09iObJgMDet4vwpLcSzV8Cjz9APDwEjZPQQpKpa6T0tgtQ+/fA0pWJRc9kkx0Q3BQO4Myax8jC5ahH753gXBni1qnIrn3oGXMglcb09mAB1rRZFJWFWPc0amKYRUrUgW7UrBqCK67FEQLuv4PYL+JOnUFBJckRmXSG4TPPR/Z2Y+qbEIP9mDjE1DbAQB82oK/5Y4rnXkxqcIDSzm2YT31w1BVEh5po/+7EGJTymFQKarLooUFSQP5T/4TatxunsZmoZz/WyCBy3kJ0JgvFEvF5lyBrG7G/9xX03kuIzrqIuLcbe9kp6MZm9MN3IzvaUU1NrxWMjgLgV1iTGMsGHaN6OpFDg4hiATU0QDBnIfGUmUk8PSgma9XRrpSj1TYde0g9XkRX1SL7elA9HUmcWakkjDIyiOztxlv9KM6mtRjLJpy/FH/lGUl7HwTW3p04G55B5oaOsfucNFkPl52M2LgW6+Zvowp5RiMqYspMWHkmFAroUhFOnEW8/URMuYlfPDSIlBK7ez/R0CA0VGF27cD8+pd4f/xXlI5fhpk+F+qasNp7CHbtICwUcJTApKuIZx9PtGAeavUCxMhwEsYb6Ec2tRK3Tkf96WcIjluGqa5NNkvr3gdRRPyHf07U1YF/2tuwfnoT4pS3IcIQvXUDZv4SWPUuIhkjFq5E93Yhf/E/WGXST8SGYMlK6O1BNrVgpEKMDCGqa9GLV2BGEsVl19UeBGD7xS0UzzwfPXse5tv/jnz6ERwlsNq2UDjtHOLPfYVQWegpM5Ff+wK88xpEUERuXEc0eQbmwiuI0xmCS/6ASAisZ5+EpSfB1BlJGG54GGfjGuxiDlVVjQmKqL5eZCEgfu//IT5hJf4F78b55pfRs+dDXw92GGBWnpH0T8u3YeYsID5hMfLp+eXxdDEDfYhlJ2OaJmFOeity2wZUKYfGemV7Sx8Fk6/d5mYiSehAa5xNa1E9XcjTzqV04unj22BObIJWjuOJIER1tKPYmwDXdpKG6gc68Z76FeGBLtRgH94zjyF7u4lbphIsXkE8c16yX48xuE89jOxsx+gyW34sn9WYZF+erc/jZDJkLImVSkOxQNzcRGFkELl7B0bHyOf24J9+LmLO8cgoRLbtQPlFVDGXtM3ZnUPf/VOizn3U3H87wapLKH7p2xAF2PfeRvzcU0lzhFQVsq8Ha/M6gpUL8N//MaxtGxB93Yj9u1DCYBYuI7ruLxA9fcjnnkb092J37UeufYLCOe8gd6APsW8fevsm5NwF0LYd+dh9qLp64r/4R0of+wzB3h7sb3wJ/fj9ONXVY/PE2A5mTxsilUa0bUf0dWOampMN2tevxhidlPSNFmsIC7V9AzKK0C9uI3rw5zj5EdKeQ/zw3ch3XIV+7x8y5Gu8B35G/JPvIM65GDHYj1r9CNTWEn3wT/FXvhXr6cdwv/OvFGKNvOx9mH//IVgCsWcP6es/h/PkA5g4wtiJK+8882tK515A/vTzsR97kPgbXyY++0JkdwfSL2G8NKazHbV+Naa+CX3xufjv//j4eO5tA89F7NuLufBKWPsYPPUQZKtfecwciRz2PM+4rotlWWN/4jgmiqLDytFeqZsSxmAsG11TR7DwRIqnnU00dyHU1KH2tpH9wdfw1vw6qRMupyEKTLl7gxzT6jqdTYLvURKsF/kccctU8ld8iNKFV0IQYG9YQ/aWb2Ht2l6OD8pj/jzxwhMY2LaFVH6IjOcipErSQr00cWMLhSAg3L2TquUnM+T7mFIpyaX1S7gvvoCz5CT8r9+Cv7cN8fGrSfsFMk3N+NPnMBxpTBDAgS6c/m4yto3jOGhloZtbyddUUxouQjGHlckS7WkjU9+AqW+kIAQUi0l4qbeLFBp7zgJGbJcwl0uohq59pBubMUKg27aRmjKNsGUa+SiAfAnRsYdUbohMTc34885bxPC+vdiuB66H7mzHlQJr5lzyQ4PEbdtpaGgYr2gq95COZsxleHgEvWsbVRg8z8WkMvjT5zASa0wQQl8Pzr42MstPIT9U9q5ap+I3NFEs+TDYj93TiZtOI+fMZyTSGB1DqYTTtY9s5GPZFibWiFSGoLmVvJciLAXQfwBr9w6qTjmDXE83Vvd+UlOmEWWqKPV0Yqcy6CmTKQ4VDhrPbHU1tEwhXyii2tuoigPs0TrmV1C01slOH+Wun0KI1wGAx9jrGBEG6LpGgvlLiCdPx6QyyIFenA3PoDrbfzPZVN7xkDhOGFE7yZE2mSzBghOI5sxHxBpr1zacTc8m5JV4BQLvQiD7esjFYFdXY3veeBZQFEF+hMgPiVIeKb9EQSfdMkYrk6NVlxBf92fQOhv9tS/AT79HbWMjKo5gcJCCGe8l51Rlcbx0cmIcIwo5wqJPqXwtC4gEeLYFQUTA+G9J18FJpVH5YfxQE5Q/N4CnBDo2mKoqHB0T5wv4jO1Wiltfjz1qUYVADvRRiGKUFAht0J6H5SbNBcMwJs5W4aVSB/XxIgwQw4MUY9C2hVdTi1IKggAzMECR8ee0q6tJ+QWKfoRIpXCMJir5+KPJXraF53mIkdxB5wlL4VXXYFlW8v8oxAwPEUTJ8wJYVVWkSwWKYYyorsYxGl3IEQqFJSUEIcWJ4wl4nossJeOsbQu3ugZbqf/lAJ4QhhJhiCiXJJpya9jfe2d5oxG+n7jPo/nIE+qBXzGSTsqj1p9OLIyfWHgv+noZ+cIN5C97N9att6C+9WVkdwfVjY1j9a8Tjz/S9Q/9XkyITR7aJOBI9zDxu9/0/ZF+92B9ag571iPru+Tah9b3Huk5jzZuE+/npcbnt7n2oc9zpPE0xoz1vn61mgO8MQA8Wls81ldY/FYhqpcC8UE51a9ByttvZbzjGDOplZyQFLu6cIt5Ml7SBqciFTkSgF9/M2OUcT6WukNI3gjFrsa2ke278HIFJGBls1i2/abrIlGRN0EcuCJHVLHoVAY7ncV5iR5aFanIYQCuTJjXiSWuvIeK/AbeRE5YAsrKxKlIRd64it06dJGsK83NKlKR1+HqSh+xc6g81ETHcZzsEysqLc4qUpHXi8RxPMZAH2qBfcCdGOMatcJSyoP87YpUpCKvvtscRRFRFB2eNyBEbAHrjTGnHMnX1lpXAFyRirwOADwK3lE8CiGwbXvAMsb8DFhgjKkZRfeoJR412xWpSEVeG/BOXOJO9IiVUlEmk92nlFJ7Lct6uzGm9VAAH+1iFalIRV4dGcWjlBI1lm9tSKVS3ZMmtW61gL0tLa3/UiqVPun7/ilaawl6LFVr4kZXFalIRV59AEPCR1mWhVIWqVSqt7a2ZlcqldphATQ1Nd8yPDw0bXBwMBsEwSytdRqQh1rjCogrUpFXH7xlAGsp5YjneZ21tbW7qqtr9mmtd/6/AQBMatLgnQ7U/gAAAABJRU5ErkJggg=='
button_dm_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABgmSURBVHja7J15nBTV1fe/t6q6unt6mX0YWQaHZXAZQEANJhLjRlg0CQJu+Igg7yfBXWJM4kMU8TGYiEQjSvJAlCi+IYrJ6wIuRMWNRQ3KpizKEECB2Wd6mV5qef+o6Z7umR4QGIZB6/f51Ifh1l3OvX1/dc49de8poSgKzVCBaZIkXSOEKBdC+LBhw0ZXQQDYbJrmEtM0FxmGEQMQzQTuIYR4RZblgbIsI8syQgiEEPaw2bDRRWCaJqZpAnwuhHRhOBzaLRRFUYUQaxVFGeJwOJBlGUmSbPLasNFFSWwYBpIk7e/Vq/dgWZKk6YqiTFVVFUVRktrXhg0bXQ9CCCRJwjRNrxBikFBVdY3D4RiuqiqyLKdldLlcOJvTbUrbsNGJmhbQdZ1oNEokGk2YzmlQFKVKOJ3OqNPpVB0OR1LzSpJEtt+PJEnEYjE0TUM3DHtUbdjoTG3bzEVJkmiKRDDaclBXhBBqqsNKCEG2348QglAohJGB+TZs2OgkLWwY6IaBQ1GIxmKts8hSgrQJuF0uJEkiHA7b5LVhowuRuXntm5Yutc7odDqJxWI2eW3Y6GKQhDg4gYUQCEkiFo/bo2XDRldbE0sShmGkkVjKqK5t7WvDRtcjsBBtCKxkYK912bBho+ub1fYQ2LBhE9iGDRs2gW3YsHE4UDq7QT0nn/Cgs4j0Ox3d44P2Nml2xn5sIRC6hmPfXrI2rMX5nx2IeMyeFTZOXAKbzdexIEusVx8aRl+OlltgETdB0tR/j8NBCj0nn8ipg/GuXolnzZtITaGjrjP48zkELpuc8Z68dxdZH7yN96Ffp6XHR4yi+oEnAHC9/y9y77w2Y/nwT39Nw7U3A1Dwq6k43n31oLKEf/prwsPPJ15WnkxzfrIW39L/PWRZG7YGtiZnt540XjTOIq+QkBvrkEMBy+MtJSz5DKQ+VjBNMA1MpxstrxDToRIcMRopGMDzwapj+8DoeTKBnicTPrmMopvHZ8wTGTCIhoYGsrOz2xJy+PnJv6tDTRTE4zgcjoz1NN7zGKGR49qkR88YTvSM4fgevQ/v0gU2E74xBDaMY/IaKTzobLS8QhASzp1b8b29HMf+vcf9lZXpUAmdcyHhcy5E9+fQNPS7eNa91XENzLsb5t+XnnbXQ/CTa9CHnkPVbfdT+Ie7WswfgOpKKCgiMmEq2a8vS/95TipB61WKqKnEzC9KeRi1HUe9/CxCI8chmkKYz/wZfvvzlptzFsEV1xO46qcoT87D5XLZbDgB0WlOrFjvfpgOFbmhFt+7r3QJ8gKIeAzvu6/i3LYBhCBe0q/D28jNyeGk4uKW64kH8cy5AwDt/LEEQ61M9i0fQziEcf4lbTawhyfd0JLnUGM++GyL32+uQHrgF2T7/S0yPDIT5d3XoaCIhh9dY2nrWY+zb/U+4iNGU/fg0+xbvY99q/dR+9g/MU4qafNwSM2zb/U+qhevJD5idMqSYDT7Vu+jcdbjhH92F/vf+DyZL/Ewql68Mlk+eMcDHVI2uYy54wEOvLSx3X4k2miadGOyrspnV9sEzqjpnG4QAjnQgBRoTJI3flIvov1Px1QcndbpaNlAIoPOxvD6kxpMaahDmICqdooM/jUrUbZthoIiwgO/02rmNSJv3QjlQ4hEIummdfkwpM82QrDxkG0433wJ0RSCgcPIcrvJyspKu1/4y8lklXswnpqf9qConnIbke9d1DJeQ4ZT+fDS5HE246QSquf8JS0PQLysnOpZjxIr6pGWHirpS8O1N2O6Pcl8lb95lOpHlqatywOXTab2yp91SNnGWY8TuGwyRn5hu/1IoP7Sq5N16V9sp7qmxiZw5takNEeVVnQSjT+5lvrJt9Jw9XTiPXof07Wv4fYQHH059VNmUD/ldiJDv4vZvHY0ZQWcKjjUThsO95Z/W5OmzwB0XU93dG1YB/mWGZ2q9eJl5Yh3XkMSh/7ppH27yVqxDEr6ENwUpHrxShpnPZ6mrRJa2Zn64DplEMoTf4A+Aq6+EHbvxOxVSvWMOUkrwMgvRKxYZuVJXFs3gttD7SVXp5PklEHIzz3RUl91JfroCZgmKNeOtNKXP2eRbPDw9IfWEZSNjxhNaOQ4pD0V1hImId/y59L6kURJH+SH77HyTBnVrj/hhCCwQYsnuiOv5tPJIMuYkoQJGK4stJ6lGDkFNA2/gPppdxIaMQpDdXZ4+7He/an/r5sI/nA8hi8bU3VhKComwpJPlkF2gOLouD7TsrQ9aJ6cPDRdTyvjmDcT0dRiRptAeNR4RFMI7Y/3Iqc86A5Wv++hX+GZMhqWP0c8r4jQyHEELpvMvtX7qFq8Eq38rLbyLH8O7X9m4Pf7Kd71KbnNa3h90JkEQyE8c3+Fb7Af86aJKI8tI+tP/0B9fg2cMsiSx5dNUyTSUt/Wjei/vB6fz0fxrk9x7NlpzbWFDyHWraKwsJDCF5628np9yf4eadnId85L5nH8+QFycnIoLi6m+P5bkPZUoF9wCcFQKL2NP85O5vP7/ceEAx05pzrdC21pXsm6EpP0y134n11I8JKr0Hr1QeteQmDi9cROPQPP68/j+M/nllPtaEx3WaFp+PmEz78Erag7SBJSsBHPyn/g/mBVyntfkXzAdDrqazEMg9YtO7ZuItZsRquqSvi8McgfvY8hSSiS4Ou+sfZt+4Ss2TcSDoeJRCLo0++CAQPRxk6kes4i8qeNRTmwt6XAtk14PJ6kye1871XLEZblJRqN4vF4aHpuNZSVowFaRid/ynT7YhuqquLxeBIjbeHzz/D5fMiyjFFzIMWPahxVWaNbswk/ez7x2fOpby1cU4hwOEzS5jiwD1VVT0hHXicTWICUYiLrOq4N61ArthO64FLCF/4IU3USGXIOsZPLyHp7BZ5VLyMiTUfUpFbck+DI8URPG4KpOsEwULduxPfK33Hs2nHcnWiR8mHJyShJbU3irNX/IjZkJpEJU3E3haz13BsvHdFEk2UZn8+Hz+eDZQuJRCKEKr8kPuU2aq+aTsG89HfS7ZmRpmnSOOtxtLJyxJ4KzI0fJUnPgIEwdmLGchnr2783LQ5bezjcskaW9xBrFw9m77I0n0NKfHSbwO0SWGrWwK3WuVJjHb4Xn8H56ccExk0mXtIXIzuX4NgriZ0yCN8LTx+2Nm46+zxC541FK+gGkoSIRfCsWkHW6pVIjfXHfeDjI0a3kGDtm8iFhbTuneuZxxBTb8c46/sEFRmpphLjqfm48vKIfI02qhevRCsrJ/+XU3G8+0p63S4X8taN1ACGx0dTU8pDskfvNrKabg9i1w7rwTPsXEsjn9cHh8OB2rx+jj61MqM2Pvi0EEcxpTKXVSu2ERsyHO6+CZY8lpnkgDHsOx0ix7fEiXWIXVaGjrp9E7nz78Xz+vNI4aC1e6vfadTeMJPgqIkYnkN/LELPK6Lh8v9D45grrE0jhoGydxc5f30Ez8p/HoS8ZqcdpQze8QB1d/7OavW5J0nE487oSV6/BoafR+zMc5E+eBdZlpOEORRcmy0nWc2NM2n4+Zw2pGy4fkZSe6aZrZdeSdN1tyUdZ/U3/8aS9aP3k9rQdHsQN/2G/Px8fD4f+p/+H9qQc7rEpHaue9v6Y9oM/OMnW+vf4mL8s/6I2BJEfmcnxcXFSN+AWKtKpxP4EE86KRTA98ISnJ9+QvCSK4mdXIbpdBMceRnR/uV4X30WtWI7IhZNp5/qpGnQ2YRGjELPybe0vRbH/ckavG+9jFxXfYjFMseGwDNmUz9jduYReec1zPn34cnJad/ae+dVIt+7yHL6vfo87sMwn71zf0X49KEYAwbSVNKHpvHXtZVh6ybM+ffhyMlJW1NHb7mH/bfc0yafmpMD/36P8MhxmDNmsz9T3xKv544THO++gvreSmLnXkzjg4tp/cLNWDiPmpoa/Jz46NzXSIex11ndsZncBffjXfkP5IZaME3iJX2pv+52Gi+dRKzPKeg5+ej+XCKnDaX22ltoHHM5uj8HDAO5+gDZ/3gS/0vPHJq8CQbrunUda2zdCIvmYV43iqysrIOuaZ0vPYNUUwm7d2K89LfDXv8WTRlpvYbZujH9xu6d8Pe/YI4Z1NaB86ffIVLzt8rnn3UDyivPp9f39mvWKxuAvgMyhUDtVOTdeS3Kc09au9pSx33e3ZhPz7d8Ad8ACJfLZbpcLhRFQQiB3+8nFAp1eENVM+agFxSh7v6C7GcXItdWfe2ysX6nEbroJ8T6nYYphEUyTUMKNoAJhuok4WSXIk04t2/C+/aKw2ojdPFPCP5wPKbTTfHNEzqkz6FQiEAgkPkB1UyG1psr4vE4NTU1eDyetElWVVWFJEnk5+cn0wKBAKFQiPz8/EO+uwyFQkSjUWIpGzYcDgculyvp4W2c9TjhkeNg3t3kLHmUcDiczO/z+ZL5WrefdLplZaGqKvX19aiqSl5eXrv9qa+vJxKJUFRUlHTgGYZBZWUlLpeLnJycoyqb2u9wOJx8z66qatpDs702uirC4TCKoiT73Wl7oVu5Mg+rDXXHFhy7thMeMZrIGcPRTuqJqSgYvhwwDTAMpHAQx54K3B++jXPHFoR2mIH5DKNFA3dQ/z1ZWXhaETTjWKSaf4pCcbdube4VFhS0SfN5vfi83oz1HJYsibJmelpebu5BZU1rPwWp8rfXn5zsbEgc1GhOl4TosLKH7HdznvbasNfAHW0qxON43nwR14a1RAcMIt6rj+XUMgzkQD3q55/i/OyTNmvjr0/gZhPa/gKFjROZwAbH6Dxwa3/RkS7aaypxr/4XbrA2XZhmGumOtF4zYRWYBt/WkH5mB/1GNmwN/PXQkQ6nhAn9LdbA/lnTke74L2tdm+Ecsg2bwF0YNoEBvF4vXq/Xng4nCOygdqlrYNOwY2LbOME18DHbjWSm19/ViJIgrx3Y3oatgU9A2Jy18U3QwMfa+2jShT2czZrX5rINWwPbsGHDJrANGzZsAnca6ha8QOXaA2lX6Be/T96vfeoNKtceIDx9Zovl3r03VW/tpHLtAczuvb9V42V2703l2gPoA88+7LKhX/yewL0LbALb6DjoJX1Rnni4JZDavLsJjZ9M49irrPu9SgEIurKSh+jDk260oi6GQ1R98uG36vvM8TNHIJpC1LzxcpvAfodC5DvfRws0EAwGbQJ3FrruEeqjJ43ZvTdGfiHGhg/w+XwUFRVR9OyfkfZUECkbSLSoh0XU3TuhuCemaWJ27014zAQrguJnGxBCpEWHaJi7JKnJG+YuSWqe6uWbqV6+mcq1B6h96o1k/sC9C5L5q97aSfy8MQBUvbWTmmVrk+mxH12T/H9Ci2VqqzXaqz8V7dWTap0kZI4PGISorkQIgT5ucrJPCRkT45qwXBJt1j71BnrPUuITpmD+sOXrFvHzxqRZMoF7F1C34IXDliv2o2uoXHuA6uWbqXprZ5e1jDovLnRqGNSuuNvJbPaNH4X20/qfbnXvpb+lHe+TmkJIQhC58MdWwpq3EN26o+s64Uk3Iu+uwKjch3Tgq7RoG5FrbiI27Lu4xgyGu28ieu7FNJwyBK1bd0xMmH0r0q1Xo5WVU3vldMLTZxI9cwSu60ZBH4FpQv3Qc4k0h8Qx3n8TpcxhpV9zI94bxiOtWEbTsHOpv+qGjG2lor36NU07pMwNc5dgerw4T3XBBQPQ8oqovXI6WrfuSFvWI3/3Ihpun417wW+R+yuYLy6l/pobicViNM64HzPLg2PUQMyqA9SNvZKshXOtBi8YQNM/n07KED9tKFJNZdKSiZeWYe7/ktorpx+WXPEBVoRNY9YtSIOyqd7wUZe0jDqNwInjfYbXj+nOOi4fMTsYDI/fCit7FHLFzv6BpUkhLUia3qsU6avdGD1KrPuBBijshtarL+ExE1CeXQSnDUZqFahNaqzHdHuILFuNc+SP8d4xmeg7r6H17of8wv9FrHiWnPdfQ6qpRPP6kR/+DdKH7xCdejtiSxCyPBBoINqz1Iph9etpuFwuK67CssWEtm5ClSXk3V+g1VVnbCvVrM1a8D8Z6089Y5xR5t0VRM+9GK2snOhnEXhzGxQUYfiyiffuB4FGuPqnmG4PoZl/QN+hwRXXIzxegoU9iJ57MdLzf8XcuZXCicNRpl1C+NQzrEAHu7ZTWFiYHG+9uAfiP18gy7Kl1XuVwrZNhy1XzONFXr8Gli8lOzubwsLCLhk3q9MI7NizE6FpaEXdCZ9/6aEjB3YiIuXDrMiVioJS+dWRPwS8PkTV/jTyJpxV+qOzMbv1RFTtR967CzO/CH3q7ci7K4iuehXcHvRP1qURWH1xCb7rx8KH7xEt6Utw7l/JHTgMo6AI3lpBVlYWcklfjPwipE0fEXjxY+gzAEkIHA9a31syN3xoPTh270QIgbvfqZYZv2sHHo8Hvag74sBXOP6+MGNbqfLULFubsf7UiZ1JZs+4SdbN1CDwfQTG/TMwC4owt3yM0afMiqCRct88qxtGc6zp+Ofb8Hg8CCHIy8vD0aMkjahJE7q0DPHFVhRFwezeG9PtQd+5Dfc/Fx+WXPrpQxEHvsLpdHbpiJWdJplr/fvE+52K7nITOXMEWq9S5NpqhKFhGiYYVpQNDL3DD9ZntAiajw4abg9aj94Y/lyQJJwb1h25Q6a0DLHhw+SkD0+fSejyqagL5xIDzNJ+iDWrkCq2oQPG5VNRnnwEvv9DNMB8eSmOvLxkfdXLN+NetYL8OybRcOeDaAXdqCvpb5H9kitQt66n7oEnULZtRqs6AL1KEbdNQtq6kfjCF61KtqzHnHoLomI7DoeD6AWXWtr45aXIeXnoJX2RPl5L7L3dKKteSW8rEKDQNC1NNvBs9J6lyBnqT10uZJI5tP0z6+ZdD1G06Hc0zF2CdnI//I/Ops7twXj3deQfX4U+/Ad4Th2MWj6E+lnz8f1lHvKendQBDD4L0+Wk8sHF5Pz252hF3RH7v0RuRS4jvxt4fbgcDuqaP9VqvryUwIcHcLfqX3ty5U8YTlVBEebWjV8r7G3XIvAxisihVmzDs+JZAhOvx/TloJX0RTu5zGpL1yzyanHrisctInfGvmQhQJJBlnGtX4Prw3eOuE29VylmWTnaxClUAlJNFY6li4g9ci9+n4+GnqXIexejrn/fCiBXXUnsvttw/P4JpD0VGICSOOMMZL38N4KTbyE0fjJSTRWuuf9NtLQ/NIUwL7yUmiuuR9m2GXHrVai7tqPvqUB/+BmMphDK1k3Ee5XCru0YJX0Rn3+GoijoJ5Ugqiut71T16mPFmt7wAQ4hCE25Nb2t/+yA5hA+8sZ1yO3ULxcUHFzmFX9HuWIq8WkzqJw2A3lvBcp//4zGM4ZboXIrtuH72/9S/8vfEVr+CSHAtWwxgT/cg9/nw3Hp1cSnzaCxOb1+0TwcI0ahjR6P2LcH/vzb5G/gXrWC0PjJBEdPsMZmTwUmkPXy0q8tV23/wZbPoGI7DkXp0nvj28TEcrvd6TGCO/q1Qe9+NP1gLFq/0yxTLkHghAZO1cLH0tmV8h1iKVCP69/v49y4Dil0dK8kqqur05wdsiynxWCqqqrC7/fjdDqpqqpClmXy8vIIh8NEo1FyW4WxiUQiybhasiwjz1mE3mcAxsTvIUkSuq6jqip+vx8hBHV1dWiahhACVVWJRqMUFhZSW1ubjMGV2pZpmlRXV5Obm4umaWlteb3eNiFs26v/YDIn6gkEAsnvHimKgt/vR9M0QqEQeXl5aJpGY2Njct2d+nWI1LKJ9ESaz+dLC8oXDoeTsbpUVcUwDHJzcw9LLoDa2lpyc3O7lAkdjUbTYmJ1OoFtHB3q//Qi5v4vkWdMSk40G98e2AT+BqCxsRFZlttEibTx7SOwHZHjBISteW0kYG+ltGHDJrANGzaOO4FNO5SMDRsntgY27MDmNmx0SWTiZhsCJ97x2bBho2sh9dBIuwSOx+MZvxZvw4aN46t9dV1vo1wlSPssLEDa6RIbNmwcf/LGYrHkWfEEiYUQcQlYn+q8StyMxWJomoZhGLZzy4aNToZpmkniJrZ5SpKEJElJjjocar1imuYzpmkON5tPnSRILMsymqahaZoVOcImsQ0bnQ4hRJK4rY9O+ny+CqGqqupyuT6VZblv6tGpBGkNw7A90zZsHEcCJ0icaj47HGpdv379VyiGYcSEEBdKkvSBYRhFyU3SKfa27dSyYeP4kzgBVVVrS0pOflOSpAqROMRQXj6wW2Njw19DodBQTdNysfdJ27DRlUisqapa5/X6KoqKum2XJKkCmPf/BwA1pTpnjv1U+AAAAABJRU5ErkJggg=='
button_friend_bomber = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACDbSURBVHja7J15mBTV1f8/t6q6eu+ZYVYQBmfYRFlEBcUoLgSN4BIX3CNq/L2+RjHRxGh81RhjjHEhMWo0iaiJJmowmqio0YgbAURZBFmVGWSRYfal967l90d113TP9MAgCEOs7/P0w3Dr3lN3O/ece+qec4WiKKShAldIknSxEGKUECKIAwcO+go6gE9M03zaNM3HDMNIAog0Ax8ghHhNluXRsiwjyzJCCIQQTrc5cNBHYJompmkCfCaENDkajWwSiqKoQohFiqKMc7lcyLKMJEkO8zpw0EeZ2DAMJEmqGzRo8FhZkqSrFEW5XFVVFEWxpa8DBw76HoQQSJKEaZoBIcQYoarqQpfLdZSqqsiynJPR4/HgTqc7LO3AwV6UtICu6yQSCeKJREZ1zoGiKA3C7XYn3G636nK5bMkrSRIFoRCSJJFMJtE0Dd0wnF514GBvSts0L0qSRCwex+jOg7oihFCzDVZCCApCIYQQRCIRjDyc78CBg70khQ0D3TBwKQqJZLJrFlnKMG0GXo8HSZKIRqMO8zpw0IeYOb33zVWju2Z0u90kk8l9zrzJgVXERh5KcmAVuj+I0DRcDdvwbFiNd/UyRDKRb4dPfOghxEaMJlUxCMPjRUokcNV/gXf1Uty16xBaypkNDvZLSEKgmWaOwBUej8f0eDwoioIQgqKiIiKRSN5N895R/CXaTziVyKETMV2qzZjZ/6pbail8fQ5Kwza7mOEP0jb5DOLDx2BmjHFdynnXLCf01j+RO1qd2eBg/5PCpkksFsv5UiQrinK7oij2t1+v10uyu66919B20plEx07EdLlwb1xP6L3XCH4wD9+qpUjJOKmKgejFZSQrh+CuXYcUi2LKCi1nXUZ8+GiQZbxrlhF691UCi9/B++knIAR6STmp/oMwQkWomzcg5ZPgDhz0YQghSCQSOec0lDxsbv32ARKVQ4gddCimy4Vv+UJC815GSsTs5+qmz3Bt20zb1PNJ9a8kNmYCwbdfIXr4MSQHVYMsE3rzRfxL5iNSnYuQ+7PVdLS3EJ74TWKjx+P+dBW+FYvBdCzrDvZztbovVSZRPRLT7UVKxAksmpfDvBl4V36IumUDKAqJoYdg+PwkDxyG6Qugbv0c75plOcybgX/BWygtDaAoJKuGY3h9zug7cBh4T8Lw+jAVGSnSjkj1bGySIx0gK5heP4Y/hOELguJCjrQjNC1/Q+NRpEQcFBdGINS5T3bgwGHgPQO5rQWh62glFegFRT3m0wYMBpeKHOlAbmtGjnaAqpI6cBiGx5u/TGl/9OJyUFwobS2ONdqBw8B7Gt61y5HiUZAV2qeeR6p/ZaclGTBdLtrOnEGyagQoCp7VSxHJBJ7Vy5DiMbSKQXScci56Yb9cye4P0n7GxWgDDwRZxv3pSqRY1Bl9B/s9un1GKiwsJBwO77MKRccdTfvJ52AGQ0jxGJ51K1C2b8XwBUiMPoLUAYNBUvB+9B6h5x9HinQA0H7mpUSPOQlTdaPUf4F79TLkxu3o/YqJjzkSvaQcEATnPoP/7VcQibgz+g72O0QiETJfjfokAwPEDzmMjilnoQ2oBJcKspyWxAKRSuJ7/18EXp+DFIvkNm7y6UQmfxu9X0laZJtgGGCaSB1tBOc+g3fxu4hkAr2wmNSgakyvD7l+G66tG/Mavxw42L8YOBQiHIns84oaPj/J4aNJVo9ELypGJJO4vtiIe/UylO1bLcbMA71fKYmDD7P2w/4gUqQd9bM1uFcsRoqGSQ4ZSeyoE4iPHo8RKLA+JaVSuFctIfSPP6M01TuzxEHfZeBodP9g4D26GISKiB12NLEJx5OqHGJJdECp24LU0Uaq/yBMSca34N8EX59jq+UOHPR1Blb6DJN5fOiF/azjk2l1GUlYfshpQ5aJIJ2Adbw783eXjT2ArqEXlxE/9CgSo47A8PpBCEQijrr2Y7wfvod75YdI0TBt515B9OgpJA4eh2/Bm7vFwLGLrqb16lt2mMf/xouEbv/eTmkUPnwn3r88vNfGIPyju+k4a8YO35s69hQaf/V43mfylloC817B9+hde3XuZOq0s379b0SfYODIhOOIjp2IVlYBLjcoCigucLmsf2UZhGQxctdoIZm0nqKIpFVtZdtmPEsX4F06H2XbFjB0ALTyA9ArBoEsI8UiCF3/6tub0hAdHQSDO44b2JpIIuJxPB7PXh2PL/tefWAVbZfMJK4b9Pvj3Xt/HvWyX/+rGdjIkm17A+0nnUUsffZZaBpSNGoxbIaJFQVkBSQpl1mzj3tmmDcrzZQVpHgUV+06PEsXoK5ZbnswGR4viYMPI37k8SQOPgzT5QJNw7vg30hN9Xum/c/Nhp9c0eNj0+/v8T2evzxM4ez7aW1txSws3GvjYXb529xRnrlzYOa5uQ9vvh+uuJ7EaRcQeeA2fD5fn6m3I4G/CtVnQCXxNAN51iwnMP9fyO0tWdJUdNGQ80hZ04B8UlOSLKtylrFLG1BJ/IhJxCdMQqsY1LkQGAbexf/Gs/JDhK7tsfYFg0H8fv8OVdbwWTMovvFyWn78K4ziUnxvvIj66SpbhfZkqbLtt/+O6Eln2v8PvPAnAvfd1I1e4IU/ER91ONrwUdYgr/+EgtmzcL3/Wqe0HDWetqtuJjnuKAB8b7yIFG7fpfb5/f5caff4vdSffCZGcRmRSCSHgcM/upvIKedgeq3+UJctouCRu5A/+dBWg5t+9Ti+N15EqdtCx/TLMb1+lPWfUHLpFIz+lTT/crbdpq5tzyB5/Z3UXfaDHtudqUv0uKkYxaV2XQrv/D7Stk05dSl8+E7CU76NNnwU8pZaSs892mHgnL3eqPEYbg9CSxGY/zpKQ92XW4G9PkwhdXfCUD0YXh+ptOU5efDhmG43CIEUbsfz4XukBlWTGjKSVPVBGIECpI62vd4PTVffAunJFN1Ui6bptipbmFZlG59805689kQ8awbx0v6U3DijW3o2tOGjaP7x3fSb9xIulwujfyVNv5xtT2CA6ElnIm2u3a12RP/3ZsySMqQ1H+e4ozY//KK9UNiMNu4oGh54hn7Xno+66qNOGpVDIGuR0oaPov7WBxGjD0cfWJXTxtSWjRQ9+2gn0dGHk6qcnlO26fYHKZx5Hp7VS/IugnZdfvMspdOPso1DAK2nXQiV1daCt2E9TU1NFBcX9ykG3mcnsYxAiMTQQ0BW8Kxbgdy+64xjulTavjOTxpvup+mm+2i6Mf276X6afjKLxpt/TdOtv6X1/91I4tCJmKqKa9NnBJ/9PcU/u4bQUw/i//c/kDra0AYPJXnQGJD20Bnp875Lx8ft1C3YlvML/yjP3tAXQLnkJKgWcNcPkUR3Sa0NH4VYuxIunGzlO3EErF2BduxJNH/rvC6cFIFZt1n5LpwMjfWYxWW0TLvAenzR9zCKSxFrV1h0qgU8NgtjUFXv2zdtOpGV4Zy2tV8yE9FYDz++AlW1fLnjF11NctxRiKb6zjql647XT8v//gQ9W4M6aAzynMdz6m6ccg6mSWcfzZ0DQGLsUcTjWQdyKquRXnveylMt7He0XTITXddJHXtK50KVqUuanjmoiqbrf5nbxspq5N/81Mpz2bdwuVx9TgLvMwaOjToCwx8AScK7cjEiGc/dz/bGaFJSTvKgMeil/dFLKtBLK9DL+nf+Kg7ACBQgd7Tie/91+s26mX53XY//jReQm7YD4F62EKVuM0gS8fGT0IvLvlpLb0oj0vUz3VsvYy6cR2lpKRUVFXi6OFrERx2OiEUwp45BXTrfyhdvp/TmKyAWIXncKbk+3C8/i/S7X1BYWEjFxtX43rVUSCNURDKZJDZhkkXve9NRv9hIWVkZFY/fi/L+G7u/MHv9iFOnEwqFrLofakle808PIT9yl1WneDtll05BNNVjjhxLR0eW1X/tCvQbv0swGKRi42pcm2ssun+8H/HBO5SWllL6z6fSe4hgbruXLMC4ejp+v5+KigoqLj/ZescRxxCJREgceZxNy/X7u626VFRQ8YtrkTbXop94au7YrF2B/ts77HyZNn3tVWjD6yd+0FhM1Y26pRalbguYJolhhxA54TTcaz/Gt2he/rA5OSI4fdJKCHzvzMWzbCHommXwwjJ2iXgUuWk7UjQCpklqyEjCZ1yMq2YdvjdfRIp04F6xmFTVCJIHj0MbeCByVqSPr8SI1dVK2tGGz+fLCeub01/F5dbescYkCTR0eS7K+xOPxztX462f4/f7bStytkQ3DAOjuAwatyNt+ozCkhJbbfTVrqP92JN61758Rqxp58MNv0D/nx+TmPcy3sZtGL6A9eyV5wgGg511kiRcm2pIjjuK5JQzsS0FG9ahqqptO7Cr/tkagsEgsixjpBffTHvIyuPxeHL25Zl3xCsGo5YfYCXe8RCpOx6itZtUiRCNRlEz/9++DVVV9/pXgD7PwPGRh6IVl1vS9+MPEAmLUePjjiY5fDR6WX8rvbcMrOsodZtx1azdqZdRfPwkEqPHow2swrNkPlKkA8/i94h94yS0gQcSP+JY3MsW7hUjVqd1qnWHwfTNnVhzTV8ATdM6Jx70uBhkd52SvoXjy6KbEWvJO7TPe4XopdfSfvHVuGfdnGuSUNX8C5RhomUxYl5VtW7LTtvUY1nAMHT0zGLSE7x+zMHDs9SldrLuDuuT2CcqdGzMBEyPF6WxDvenn9iWX2GaoCjWv735GGCakEqBrmFKcu/Uby1lWa113TZ6yY11FtPqBvEjjtk3A7EDRpI311r72syerevv+CG7FMNM3lwLJeVw4PDcrqkYuPsSIS3uTRNisRhSNH2u/tTzug9F5RCIRWDus72ivdMbQ4aOzPsO0VQPG9ej1qyzEm+7pse+NGrWYGTNvb5+S4mUZ6nqDKvzFf30wmKQJNTNtZaUzTwTIq3+0nt6hg6a1vt6G4YttbPTXTVrkTpaMN3e3WxflwVmRz96ypub7vlkCfj8iFc/puzQCVSUl1NRXo7vkRegxsT3yAsU9+vXMz3y09Me+Ct6+UAwTaJX3pxrne1NnbvkSx17CpETT7XSVy2z3rVskfX/S64hfOHVYJoYFZU0PvmmZUj7fAOSJKF0XcB22Ec9zObDjyZ2ywPd3sGqZciyjGfxu1a+K64ndPYldj+GfvpbxKow8ns1VJSXI3X9XPkV88Mu/fqCCq3UbyMZLCB+0Fj8C95Ezrj2SVLniatemaHNNCPuQmwruzNyj6wkx4zHCBYiNTf0uVU2cO+NRMdPwjhoDPUvfJArlZrqif7qJkQ43Ovrb7LpNbz4Yedqvrm295boadOJTJtOvlPzYu1KzKcfxlVUhPqXh1COnox22ESi195G9Nrbcvac5h3X4dpTauqmGrTpl1E3/bKc/jFvvxa3quJ671XU+W+SPGYK7ff+ia5fvY0/zqKpuZkQ+w+6SeDMtP4qf74l7yMl4hgFRUQPOwZDVdPPhH3iqre0MHRb+vYuv2EZunTdXswTw0aRGDEGDAPPgrd2u332WrEbebuml5470fpEko0lCzBnXoC8eQM+n2+X6BV//3ykpQtyjG7Ggnm9qnuPiEasTzJTx6CqKq70uBZffSbKnCes51l157unIy1+h1Ao1I1uvneZO0gHYOUS5L89nmNFzvSPPxDABIpu+I5Vl8b6nHzMug3zqYcIpPOxi+O4t37dFsuu3kiBQIBo9CuOViHJtJ5/JYlRhyPFIvT73S+Qm7bTftH3iB37LZQvNlH0wK1IbS073s6WVtB66XXoJRUE5z6Ld+FbO/XpDZ9+EZEpZyK3NlH48M9R6rbQfsm1xCadgohFKPrNrbg2rNk9I108TltbG4FAYKdGrEgkQjgcpqCgIMfamaHRNT0cDud86vB4PAQCAdvA0xO9fOmGYdDR0WF/Sw0EAvY7upbPRiqVorm5uce9vNfrtWl1bWs0GrUtx13rnqHr9/tzyre1tRGPxyktLbVtBYZh0NDQgMfjoaCgIKesEML2aVdVlVAo1M0AFolEiMVi9jdoVVXxer12m3uqy75GLBbrA95Iho5v8Tukho7ECBURHzsB/7yX7U8/vVehsVRoQ6fXJ2B13TJ8aRoilUTrP4jksEPANPH+503kui273TyPx9PrTw9+vz8vk/dEIxAI7HBC9UQvX7okSRQUFFBQUNAt784sveXl5V/Kar0j2j3RzVdHSZJy8nYtu7M2fNm6OFbozCeFz1ajbN4IQhD7xhRMrw9h6FkMvAv74F2JY20atuFLaCniR56AXtofkUriXr7Q8QV2sF9hnwZ2933wNqnqEeglFSRGT+iUpqKX9cg8FyK9SehFmbQVWupoJTWwmsTIsSAEnkXzULZs3GdB7R042DMMvBfhXrUE19ZakqFxhE89H2EYILt6L32/lPpuIJIJjFAh4annWV5Juobng3f2iSODAwd7lIH3tj9l4JVnaCsuRx8wGFTVVqG71kMvLEZKxBHxaF4p2c3aqrgwggVIHa05wd5Nw7SidQQLoZ8VMM//8jMotetxZK8DRwLvagU211L4+18SPf5UEkcej9GvNM3EnXlS1QfRfuH3EIkYBU/MQm7sPAvbk8ErctqFxI48Ht9bL+F773VE9jUt6TKuDWvwzf8X6qqlTkRKB/sl+kRgd7mhjuCcx6zjjGnnhGxoBwzGKChE6z8IPdTlxoYeDF6pwUMxVTda/0GYXc7gmrKC3NpE8PnZuJcvcpjXgcPAewQ9HJUTumar1iInlA6doXa6QKSSVn5D7x5+x46vtWea3/znt6hftJ3oVZ3B7MwBg2l4u4b6RdsxBwzebyZEw9s1xC++pld5k6dfTP2i7d3aaA4YTP2i7aSOm7rb9Wl55J90/OyRPtlX+ugJND2/aJ+Obx9jYKPzl8uOPTBcmnHzMXFGMgspV0JnzltL0i75Hu9wINPHD8MeH7GYpapHL7racgGMRmhY/uG+uzB9Fyek6fXTsfAdEomd35/ccck1uJ9/EqpFThvFF59TemQZLXOeRNN2L0SRXjmE1NZN+/yygXxIjZ2AUVxGyyfL9tn49j0JnDnb3LU/RA9MJ8mdDhBdGTizl84uIonOM9d7osoDBluMuqkGKgZimibmgMFEp55jRX5Y8zFCCGLfu9WWyNnSOnrVLXZaZjU3Bwym6flF3fJmI185gMgN9+Sk66Mn2JK15ZF/5n1/pl6tP/2t5ei/cB6p79+Rl34GTc8vQh9YReKcS3F//3aoMWl6dRX1i7YTueEemv/+AWVlZRhnXUrj3E+oX7SdhrdrSJ5+sS1Zm55fZD9ru+9piymOm2q3ven5RRjFpRgfL845SRW54R67XPOf37IlYaa+kRvuyUur4e0aUsdNJXLDPTQ9vyinLZky+fov33gkT7+Y9mtuxfT60Z55F+34aTnt3BPax/7HwPY55XzOCaI7owphRbDMK00z+aXuC4HcA9N/CSROPM36Y+HbiPIB6LpO9KKrkTfVYtRvQ9r+Ba5jphCeMRP3ff+HGCLBkgWEjzyOaMkAwjNm4vn5D+DEEej9ymiadgEdV96EiERQhrvgudmEp51nS/bMopGvXPSq/yN+5CR8l50C1QJ9+zZazpxB4thTrIm2fhXukR5Yu4LwkccR/sbJnfWafBC6xw+N2xFVI4heem03+tlSpvBn11p/nDiCxGdrreH790vIwxQiHh/UfkrzsLG0XXcH3kfuQh6mYL70LK0XX00ymUQ7aDRmOIw0cQDS3x4nccwU2vtV0Pbje3B98C7KcBf6diuwgrFySY6fb7J6BCYm8pSD0b41mua7Z6OmyzDzAiJnzyBS3L8bLdPrp/WjhSTLB1j1Sx8H1QdWEd9UQ+uVN+ftv/Y846E/90eUZQutwAbTv0HrNbehvjPXaufnG2iZdv5uax/7IQNnXAP1/BI1r6osWVK4WzqdqnJOi7Py7wENWu9faUnajjYoLUcbNITo1HNQ/vYYHDwWqW4LypL5eP/+JPFJpyDe2QCHH43UUEdC0xCxCPFbf4PrjocIzJmNedcP0Tva0EaMQn9rPe4DKvHPOKnb+fR85aInnoY+sIroE69BjQmHHw3BELGBVZZk/ckVuFwuXLEoUu164t88HWXZQuJPPEBBy3bcaz+GlUuRFSUv/ez4U6mxExCxCGxcT3DEwdbfP7kCr9eLPPYIRN1WzAuvxPT6idzya/RPNTjvuwh/gHDpAZheP+bv7rLOTssy0uZa4t88A9PnI3XTFdY56U+WIDbXwsb1ORLYKC1HmveK9e7r78AsLiN29qVo61Pw4DOWJL1kZl5aZu06jAOHIuq24nK5bEmpv/ws2jdPz9t/env+8TAqh6Js32pFU4lFiJ99KeYry/CvWob6P6fnLLpfEwZO+/fqPZ1t7nJOWoh03Gi5ZwksddGhpT0rgbXyAYiGOuQtGzGLy9Avvw55Uy2Jd14Hrx99+Qck7/szySOPQ5YErl/fBtEIxhebUTZvoOT4Knh1DqmScsIzrkX9/k8puu8mPD//AWbNehKHHU300Rfpl+XvK774PG85Y1AV8u3X5jqozzgZY0Al0qYahBD4fD6M0nJEuB2qR8Bna3G73aiqinbgUORIB+rW2rz0vV5v7sKVpqkNOwTRWN9Jv7gMc8tGzOrhludPVn3M8eUYE0+wNIlXniUQCGAEgoiGOqSBByJtqsEwDHw+H3rFAUgNdbajTUb70AdWwZbP8Xq9GP0rkdet7O6cD4geaOkDqzDTPsL6oGp7Ieqp/1y3X91tPIpGjctR7/tdMhl5zuMYdV8QOXsGxm/+ulcCzPc9I5au57m4rIuzP3n2tPRkxBI9SHKJPSGCtQOHIjasRa61oj0Y516OtOAt5Ekn25PUGH8sYuE7iO9OQzvzO5Zz/tbPST76D1qemkfZHdfg/sO9lkruC1K/aDseWabwuvOR1q7AjHTQ0tLpmdV239PdyzU2IGIR9BOmUVhYSCDtpF48+VTE0JGI2vW2GqoPrIJVyxGRMPpRx+NyuYhedYs9sROPvJiXfrZhK1k9wqaplQ1A+mSpxRBpQ5jxynM2ff/IsRRNvxSxKkzo+jvwjj7CDmGrKAqpquGIDWsRAozKapRvTCF13FTik062+jZL+mrDDrElZibdqKxGOeMiSg8dj/xeDd5H/o5fUTDz0JImnmiVDxUixk8i8u2L7YWop/6LrYp2H4906B1j5RL06+6k4e0a+j3zKP57bkQ01aO1te4Vw9s+icixw2gZmfPQRp4IFdk3MNj7sSyDVNfIBUKAmb5HyU7P+oy0J6KLDKzC3LIRdel/rHc21pP8+Q8QhxxqT1L3R/PRpl+Gtj6FkpEkrc14/vE02qAq6hdtJzHrKTzPPwl3/RDl/Tdovfl+Wpe2IMoqUH95g+U+ln6n76W/di/39MO4n30MjjuZ1qUtRE89H/d9/0fzvLnoldWYHW0Ws0xKq4zv/QvvXx8Fn5/wig5ik0/tTP/nX/LSF1l9bJSWwxebLYlWOQQz3IaqqrZqbdauI/TsH8DnJzJ3OS2/egL33Dl0/PqnJMr6I9LSENO0rPhbP8fz5G8RjfWk/vwv2q+5DdPrR99cazn8Z6J+HDzOlpiqy4Xv6YcQjfVov36ahhcWIzVsJzXzPIzZs/LSUpf+x5LY199B+J4nrKmxYR0ulwv/32bn7T91/pvdx6O50Rrvv72P7x9PIRrraXhhMZG5y1E21SDfciXSHppjO4rI0c0f2Ov17hXdPe9niTO+Q3ziiShN9RT8/m6kdkvqxI+eTPi8KzG9PgrvvRHXp6usyVYxkLaZt6OXlBOY8xied1+zD2W0XXcnyYPG4v7ofQLP/QGpvdXaG505g+jJZyO3NBB66OcoWzfu/rfThgZCoRBut5uGhgZLperXj2g0SiKRoKioyPaFBctVMB6PU1BQgCRJ1hUq6cHx+/34fL4cP11FUbr5tGqalrdcPB63w7TKskwgEEBVVZqbm/F4PPh8PjRNo6WlhZKSEnRdp729HV3XURQFTdPs9Hz0c77RtrTYPrTZ9BOJBB0dHZSUlKBpmk2/a/tM07RDtTY2NhIMBlFVldbWVjRNs+uT6dsM4vE44XCYkpKS9Lpt2mUA3G63FSQgk37EJPjrW3DhZEKrP8LtdtPW1kYymUSWZYQQdiTMnvov33gANDc3I8syRUVFeeuwp5FIJPrm7YS2qmyvNGZ+Q1ZPn4vo4Rl5jFu74nPcC5SWlub92+fz2ZO+q/9p9v4oMxGzEQwGd7iHUhQlb7me/Iiz99CKotj1VBQl59nO6GejqKgoL323220zXE/0u7Yt+13ZdPOhaxuFEHnLZNLjRx9POBbBXDQPJV2Xrv7FO+u/nsYje7x3Vu+vwR6YHgKn9VTgyzDinmVeB30fnqceJDhxAEKIXoWm3Z/QN4PedjViZZ/Myn5mGlkMnyeCIYCpd6fl+Px+7ZCtFfw3oW9J4IyBR1FypKSZvpwbwHR7Op/Jsn3tgNnlTiMzvdKaHl/OfUc5F4g7cLCfQ1YU5fbMplgIYX0W2AsnSPIK3uIyUlUjMAr6gepGiobRKocQPfUCjCLrVjijfABScyOm10d02gVoBw4DWcYoPwCpvQWh68S+eQbJcRNBcaGXH4BIpZAi7aRGHkr8+GmY/qB1b/CS+YhY1JkFDvYb6Lpu8yp0sUJnDC/7ygptKi7aL7yK5MHjwO2xLvZ2qdZtDbEopsebdRpLdKrEGRfEbOOUaSISMUyX2yqTCRwvBFJHG8E/3oO6aqkzIxzsV+hqhc6RwJZWKude97g3NWjDwL1mOVIsgunzg+pBxGOoq5cTfOpB3Evmg+rG9AcRmoay6TMCLzyJ940XEYaB6Q8hsK5K8b71Ev45s5FbGjEDIVBVpHAH6orFBJ/+Ha7PVjuzwcF+BcMwMAxjxxJYURQMw9gv3N8cOPg6IZlMYppmjgTuZsRKpVK7dWOdAwcOvhrpq+t6t8vWJCCZj9MdOHDQd5g3mUxa57XTPwAhREoClmary5mHyWQSTdMcddqBg30A0zRtxs0c4ZQkKWf/63KprYppmn8xTfMo0zSzORtZltE0DU3TrCgTDhM7cLDXIYSwGTdzbjuDYDBYK1RVVT0ez2pZlodkHzPLMG3G8uXAgYN9w8AZJs5Wn10utWXo0GGvKoZhJIUQkyVJWmwYRlnGgJWtbztGLQcO9j0TZ6CqanNl5YHzJEmqFRk3wlGjRpe3t7f9KRKJHKZpWhF99Zy0AwdfTybWVFVtCQSCtWVl5eslSaoFZv3/AQBJelHN/7uKCgAAAABJRU5ErkJggg=='
button_group_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADJmSURBVHja7L15nNxVme//Pud8l9q6ujvd6SX7ClmAJARlRxKCgCAiiOM2uHFnvOqMOnMdl58641wd+XnnjqMzqOOMjru4oCiuoOxIFgiEAEnIvm+9dy3f9Zz7x6mq7iQsypDQDP28XvVKp6q+p77L+ZzneT7PcoTjOAghMMacAbxVSrlCSjkDyDAu4zIuY0UCYIcx5rdSym94nvdgEAQ4tQ8vEkK8RQhxrlJqrpQSIUTjSANgzPgtHJdxOVEiBOLIdzLAPK21EkIUjTE/0lrf6gDTgPdJKV/tOA5KKUYDuPHvWLo4Y+xLPA9nVh9HiLF2lePyEhbTmJ7mCBxqredqrecKIWZ4nrfVEUK8UQhxnlKK0QCuHyilRB2lkV/wxUlrMNoCTjwPiwFgpKqBeFzGZSzoKEOqNVrrIwAspay/tzSXy/+t8DxvpVLqTNd1qfvDQggcx8H3fRyl6j5yA9QvGHCNQTsuUVsHwcRuZBKjgipGCBDyjxxLY4QiyeWRUYh/YDfeUH/DfBmXcXmhrUxjNS5RHBPH8TFfcRznkAMsVkqhakCVUuIoRSaTwXNdEAKttQXvCz2xtcZ4HlH3NMJJ0/EP7EYmCUbKmvlrRrSy4Zn/r+2ClLR1YPwMThzC8EDNpB4H8Li88D6wqivTmiZu4LAmcRx3OEIIf7TPK6Ukm83ieR5xFBFGEXqMEFgiTUm9DCEgeg/jPLYWVRp87uNFEWmlRDhrHqGQiDiGNB0H8LiMKVFS4joOURwfYwXLuslcB7DnebiuSxzHDfCamjofK6YFWtd819rfaVoziaV9P02tCVI3q9MUjK5p6tr/a+/Zl8FIiZEKkaaQJIxz7uPygk/1uuE5isgaDWAhRCOM1HjDdV2MMYRhSJKmyDFGYNV9YSPAKBdq5FPUNYVo8kzcA7vx9m4nmTiJYNps3L7D+Ns3krS2EZx0Gm7PAbxd2xBhgHEAKa1p7vokEyYidIoMqsjhwXFNPC4v7DwfRWg93Vw8gvmp+8FxkpBqjZTyRbFOGSmJOyZRPfUM4q6pICRxeyfVU5YSTp2JEZK0uY3KojMJp87C+D4I01jmBAYjFWnzBMIZc4kmz0DodHwGjcvYm+1HkclHaOB6+CitUddj2cFvvGpmtdNzgMyGR3AP7QVjUP09ZDetwzl8EGEManiA3ONrcQ7tQ0TRiH2iJAiJqgyjhgdIOrpJlWtNczU+YcZl7AG4bi0fA2CwtDUvBgBrg0gi0BphDO6hfajBPmQUQprg9uxHlQaRUQRpYgH96GpEHCGiEIxBpEmDtBJxiBoeQsQRRjnjM2VcxjSAn1IDH/HhWEydbJyTsL6rENYHxiCiEBVWbTxYKUQUo8J++x1lySmn77Adpn5s7XijFCAQSYwIAnC9sXsPxuWljN4jsHoMifWiuQ4pSXN50uIERBJbFlk5T5EOWbtgYYkqWS0jw8BaGI6DzuVJiy3oTBaExEhhx5GScRp6XF4M8uICsBCIOMLpO0za1Ew0ZQZpc4sNITkeCIE5KrdSGA1SWsY6jvD27UQN9BJPnkEysZOktQM1NIga7LXgd+oLwTiCx2UcwM+v5q0D+MBujFLofJG0qQU8DxFUEUli0yqPNjsEaM9Ht0wAx0W0dxHNPQWEQR0+iLtvJ6rvMCabt6SWHgfvuLyIAWzGqv4RwjLMw4PIJx/H+D5JexdpWwfuri3IyvBT50QbDcol6ZhENHkG8fzFpC1t5FbfSeaJh5HVEiJOSPNNjd8Zs/dgXF66LvCLVwObmlas5TJjkEmMSSLMxG50No+slFB9veC6GKUQ2oBOR1UtCWRQQQwNgHKQQRXV14Ma6oc4QiAQupbN9V/O3xCQxtYqCKo2u2vUR0YpjJfB5PI1Eu7F48KQxMjSMCTxkdclJcZ10fkmSwKOE4DjJnQjbRJAqRHfNNWNCSIAnc2StHWCVIgwQIZVjHLQTUXrG2Ozt0gTVGkIb+eTpIN9CJ2StHXaiWg0aUsbOpO1RNd/ReIA4fqkcxaQdE/DFFvs+YNN+xwaQB3ej9q5xS4wQr448BuFGC9DtPRc0gkToal55MPyMKrvMM62TYjKMMYbb+jywgC4Xiw/VlZQITCej843YVwPTIqsVJDlktWq5WFkUCWeNJ10Yhfu/j2Ig7vRuSbiyTPQuYLVhnW/1mhkGCCHB9CZLHrKzMb1mlzehpyCas2PeI73QEj05JkEl11L+ZLXkkyePvJZkuLs30N25e/IfetGZM/+F4+2ShLSmdMpX/9BgnmnoTu67X2Strgks+kxCl/+DO4jD4Drj6PreCi0o9IqRSaTMb7v4zgOruuS8X3SNCWO4xc2B7pm+sYdkwnnLCDunorO5BA6wRnoxd/+JN72TYgkIWnvJGluJe2aikhi5ECvNVE9HzXUh6hWrJaT1ocWSWzLCR0HRidtCIFIE0RpCOfwARtO+mOxW60Qn7OC4ev+gnTuKVAZJvnZ9zDrH7STvWsyvOHPUO0TcTc+SssNH0QM9CD7DtukEimtRZAaTDaDbipaM7xaQSQjJqtxFCZXwPgZUA6iNIgcLmHyOXSxpWG5iGoZOTyMzmQwxRZEpYyslOy1GxBRbM0YKdCZLKZQfOrrCqukM06m9I6/orr81Yi1v0d/58sYre3xV74Zsexy3Afvo3jjJ/E3PIJRCjk4iPE9a3nUz18KtJ/B5Av2/htjr7FSQsTpES6M8Vx0sRUcB1EpIUtDjVCfiCLQgAKdzWMyWeTQACJOar8DulDE5AqIagVZGrSNG5SDqAa1Tiygc3lwPUS1jAhtlp5RAlNowmQLjYIXWRpEhOEIySnBuB4m14TJZOy9HRqoJQIZe70CdMsEq3z+S3pMkCQJURQhpGzUKIxZE9oISdI5mcqiswhPOoW0uQ38DBhNVC2TTOxG+xkyG9fhHNiLKA+RtncTzZiL7Gu14aJDe1EDvfamN5I3sKEmMzrgVK8R1sigAknynMCLEOjOKVSueTvBigvhp7/AuefXuLfehOjvsYnnnodxXaLlryY45QxKU2dT6DlAdfmrMbkmRBqj27ugtQnnyU14D9xJOm0u0cmnoidNRUgFOkbu3YO34WFE7yFEuUS8cCnxwtNwNm/Ce+xBO2GEIJm3mGj+Itx9O3Efe4h44RKS6XORwwOYTI505ixErBEDvThbNuA+8TDG849Nng9DkhlzqFz2OkzPIZwvfJLMmvtGqrAH+qguXEJ09QoqGx7GWf8QevZ8otPORB3Yg26biO7otpVvPQdxtm/G2boB4giMIe2aSrz4TNLJkxFpbdRKGbVnO96aexDVCsmchUTzF6EG+8FokpknIySIvj7cjetQe3ZQueo6dOdkhElgoB//kVWo3VtJZpxMPG8RojKMjELihYsQqYGhfrwNjyIPHyBaeDrpjDkIEsShw3iPPYTavdXejyQhOuMC4mmzYUK7nR/DQzi7t+NsfATZc5hk7nyiU5YiS8OYbA7dOQmhNdk7fw6HDx4XWtR5OgbavMCmgvGzBHMWUl24FFNshjiGsApKYTJ5wlkLMI6DHOjF270dOTyIHOhrJGy42zaiBvsaWVZHUUzPzPQ9F/AaA1ISLzqLyvmvRO7pQ3/2b+DJJ3CzWbLt7bZBQpKQ3vpdSts3E1x6NWUvQzaoUrruL0nmLkT29ZC2TcRMKpK5+Sc0b95AcMnVlC5/I+m0GVZLZ1ycrVtpuvk/8W7/Cc6mJ6ie/0pKH/kouS99BXfVXZjmVlCK+JwVDPyvT5D/+S00Pf4w1XMupvy29+Hu3gZxTLRkEYQSEQbkf3cr8vMfR1RKx65NxqCVg1ESdjxJum4Nuc4uctkcIqwiH7oH8fPvUZn0Xqot7fhCwqkvY+Az/4J//++JO7rRk6Y0rJT8fbeT/do/4Wx+HD1hIsGyyym/6V0kM6ZA1VhryXXw1q+l+aPbcbc8Qbz0PAb/+tO4u7ch9+0mOP1caPIRlYTCj79O5pffp3TdXxLPmgdNPlQSmj//t+S+/jmiBUsY/NA/4hzeh7v9SSoXXwqR/Y2mH3wNb+0DVC5/PcHLzoOWLPLwME3/dgO5b3we44GeNJ3yn/4F1aXnYvJNoAxUAjIb15P/xufI/PLHRPMWMfB3X0Tt2WHpjsnTII6Qj63FO3zwv9wsYjSN2+AOX1iCKkUkic1JHp1/bTRpoUjSOdlqXa2PLGAQgKNIOiaRtHdhHAeBxO3ZT3blHWTWPYAc6j+q+d0fwbQ+ZztHksyZB76Hvu+30N9HzpEUikWcNLHasvcwzuGDNK36HS3//HEyv70FXS1jkhjd1U5aaEJ9+Qa4ajnBl/9/+s9eQelt1yPSGPdv3gFvXAb/8FESrRl6y7uJTjnD/nSqIYEwDKmEo9wfoxEpVMOIIAwxUQiZHPFpizA7t+C9bjm851rM7h1Ull3O0JVvgWzOMvijH5fjoHoP4+3aDue+AvGP30C//f2Er3mLNX0TQ/G7XyT/hosx//L3hNUAg4EmiOcvQj62FvXm5fCGCzE9h6lcchmVCy7DSEnwytcy/NefQh7ci/vWK+01vuPV8OAq4jkLGXzd9ejWdkgiZBAQzzwZs38P/tsvhfe9FdNzgMolr2X4De8id/9tOG+/FL74j6BTSudfQjhtNqJaAschmTGXJArIXrsc/nQF7NlJ+WXnM/zmP8d/8F78P30lfPaTaMelfOGrCKbPhUKR0p99iOC8i1E7tyDe9Vp4/TL48bcIFixh+Jp3Es6Zh6yUwJOkHZMQj9eu9y0rGFhzP3EcHZfy1BfAhDYNH8VksmjPs5MsihBB1fpmgKwXHQhps6OS2P4tpPWbHAehNTIKGsX96sAelNHgeph8EWO09R2jCOO4z02z/hHLoxGCaNY8W2f85BP4xpApNOEmEcGCJZSWXY4o5CEFEQWYvTsRvYdRd/7cFmHkwNz9a8QP/5N8fy/plGmEF12Jae9EfuVLODd/gywg9+wg7p5M9I73UF52Bc49v7GmfwQ6ikhGk2JpiohSdGTru0kSpFKkD68lvenfyay+D0+CnjKdyoc/S/WKN5L96bdx08Sa6/XL8zOo3dvIfvNfSV91NelZywiH+wnbuoinz0IM9qL27cG941cU9uzArVszMehd2xDfuhFv9X1IQHzlBkqf+jzVS67Bu+NWnF1bUTd/HX3r93Hv+y1+PbrQ2kb5X75NtOB0QuVhosiG+noOktx7O9nV9+A2txAvv5Lw9deSFltx/+0GsuvXYvbsoLrsCtIFSwg7JuGUywgl0ft3k/74m3hr7iMPxE88THTxlUSr78W985dk1j+EkySEr/lTkrmnUJ09H7V/F8HyKzEH92Fu+Bv8lXfhAnLXFionLSA6+0KChUtw+g7ZEx/oQX/7i/ir70UC2lEIv/UEsNAnhH0W6EwGXWghmdiJLhQhjVFDQzg9B2o+aIosDeJv20DS1kkyeVqNcFIgLMkjh/vxN63H3bfLZmBJiXE90tZ2ks5JmFwThFWcwwdQPQctQIw+rgsTgG5ubfTg8n0foSN0UCWdNI3KZX+Cbm2C2FoQdBVwHtsGq++2xJUAfvszZH8vhYyHXnIWySlLSDZuR3//P1CuQ3FCG044TPCbHzG44jVES88jmDEXgmot3C2e2uCodV1pdCX5+Q/g93egikWaMz7Jb39CcM3b0AsXUVUujj7KcHFcZM9BMjd/jXTzE1QufR1p+0R0Nk+8/DXQ1gLliPyisyj88Gs4D9xBGaACrLwDs/JO/JYWcrkc8qavEr7+euLTzyKYNoeWn32Ppt/+jEEvC1OmUWhuxWQypFGFSphg4ogwDHC0hkwG1q3GPLoGKQSF9olUtm8irAJbniDauJ6mCRPI7NlBcnAP6fS5JMq1cWvHhY3rML/7ObJYpNDSQungPmJXwj23Ee3cSsaVZJXAHNhtydGJXUQ6RRdzqAc3ke7cij/vVDLFIu6hfUTbNhKvuJBw+lz0wb0212jfTswDI9droXV8mkKeWA2sNUhFPHkGwfwlxN1TLYuapsjyMO6+neQeewinrwejE/xN6xFJQuVlFxDNOsnmMxuN03eYzCMPkHnkAZuIgcE4LuGpLyNcsIS4vRO8DMQRTs8BvE3ryax/EFkeOn5auGbZizi2+M34DbDofBP+Q/dTfPdVDJZKmCSF9g74wb0kw0OUhoZtDbYB/Awe4ChJ1c+QtDTB1g3Ig3vJt7UhhCB1fdxd26ybMHs+STZXs1aexlU5OiwXRaAkGSCfy5GmCcb18A7tIzh1EUFbF/nBXhTGEn5CWN87iVBxRH7jI7gHdhFEEYnjWfPwje+CV1xKdcUVaATF7Zss2x+DrJTxsAua1hpyPrI0BBqiNLHr2eln4736zQiglC8QnroU3TUV4zqgUzv5Tc3FiSNcKfAzHrpm3luzTeFkc0glMa60999odJqS1u+F46KAXCaDTrXlSDQY5eHn8zhpCFEAUQRpivF8ks4p4EJ6zkXw6/UEShFKiUgT0uYitEPa1gW5ZoS2LYoVkMlkGm1hT0gc+PiSVwaEJJo6k+rp5xLOmofO5KxW1TbJImnrAM8nv/puVM+BWt2vRiBAubVkiFr5X61uWYQBRkC45Gwq519CPGk6xvNq8YGUtL2TtLUN47jkHvm9DSkdLyvDGPxHHyRYtgzOWoa4+WvIvn6Y2A5DA/h7dtAc2X5bZvcWhuIYEBZADVZCIqk1V0gTRJxivCzCz+IqZedwFGAmdFh2NAxIqhWkrvn6o9qPWlA/RcN6RyHiGAUo10NHISKoYHIFG77q78HEMUZ5jXF0xySqr3sHadcUcr+4ieyq+5CORCfaguNH/0F0aB/BX32S4Izz8Lqn2dJMQCSxNTmltFxfJQTHsxGBnoNUTjkd8T8/hp55EvT3EEcR+tG1pA+vgquvO9Z31BopGOkYU/9cCISUCDm64cNRsdOahaKUsuc96n1Z74k+uibe1BYIF9i6CX75A7SfbSwk9BwAPYR+Yiu6c5LVD8f2cP5vkImlDcb3CecsIJi3yMbXomCEoPI89MRuKtks7p7teEIQTp9NNOcUaxK7ngWwUqQT2olOWYpubraadaif6tkXEc1fbB9WGFoSRoDJFYhnngxI/F1bcPbuOG6uATrFv+83OCteQ7L0LJILLiXO3oNTHkIM9KJyeXITC+iOSSTTZoPvI6LgGMVpAKMsaeRu2Uw0dTriwlfBw/ciogCyecLzX4meNBk2PAb792DmnWZxWmy2MdI4Ip3QSTxtNkaJI60gpWD2PEx7Bwz2geuRnHQK8cyTkPv2og/txSQx4I+ynCTR6edRfd3lmKYW8v09+D0HR7YAObSX4X07iYaH0EFAGAS4SQwZMLNOxnR0QlBFANH8U0lnzoS9u5BDgwRXvB792kuQv74Ped9tyDjGe2wtcXMryWuvO1arNKrOzDN5M8+y1pqnfK/Rf0rUas6rVeThvYihGHP4AOKrn8OplBq/njS3YnLNqMHDyPaJpPKZf+P5lhPHQhuD8XzSljYLxjgcWT3rL60xhRbiybOoLDqT8nmXEix6OcmEDktcSQnKxRRbiBYuoXLxa6lcdBXhknNtfE4qC1xZu/nIRgdL3TKBtND8hz/h5xADxhjktifI3vJNRBRT/bMPU/rAp0hmnIQYHoZKmaSljaHrP8jAez4GHnBwX22xEUexvi7q0D68daugu4i+9u222CJOSOcspHLRq9HteXj0QdT+PShjrCk4Yy50TwGtSU45g2DJWRhXjNIoNhXVXHwV+lXXIoZK6OZWqq+7Ht3ZiXh8LcKAdFSDyTa+j9q1Ff9X34f9AZVLXsvQ694JYYCJY3S1QnzyIuIr34iZPtn6qBsfJRUS8qDPXk5y+RssURkGDH7g70nmTIcH70P6WcSseZCCeeAOxL/8b9wffhU9ZSbm3R8Fp/YMX4jAplI2EeaJh3F27IBzliM/8n9o7eykDWhecQXul34Mv15H4Zo/pagTTnQrtacmsY4TmSWiENXfa821fLFWbEANcMqW+lXLhHPmQzZL0t5VCyMZUDUz2nHBcxsZSOHis0hmnoRpaQO3zn1G1AsYkBLS1LbbGR6sXRvHb0LEEdk7foYpD1G65HUEi8/GzJiD7D9ozf9iC8mUmehd25A3/hP6Vz9CBAGmtR1agEyuAWDZ34P/6x8QdXcRvfwCBm/8EbJaQXdNQmebkD/5Mekt30KmCdldW0nvf4Bo6TkEX/sp6XAZEKjSMEkb0NI2skhEITgu4dVvpfeK12BybeiuqThrHiD50g34URWRzx2RumeUg7/mXgpf+gylN/9Pgsuupf/0s0DYRVN3d2GEj/OLnxF//6vIMMDJ5iC0vmn0J9fTf/m1gCE95Qzk7bejv/Nl1PYncR9fS/XQCvSb/gfpKYsJvQyiUMQxmtQDlp6NyOZtSm2HB61t1opIbbaeyRWgEyi2jFqkUls+2umBn8EYg+5Q0Np+BDdgCkVMJ1Ao1ho/pCAUpnkCdGahqYjas5PCl2+g/88/THrlmxhedAYyqKCnzYHWiciff59wzX1Es+dDF9DWcXxI4acYSzmO83eO4yBr6VmO49iL1fp5T6UUaYKstb1J80VMNlfTrLWWN4f2ktm83jLJU2aNVLUoaX0m17XvOa49TghMsQXdVMRftwp1aL9Nbctk7YIgBSKo4G3ZQHb13bjbNyKS5DjbNArVdwi5bg0EVXQYEGdzJM2tJI5PEgToh+5H3nYL7s3fQG55gqznoWbOIRksY37xU7wDe/CbmiAKEYcPIA4cJPV84tY2EscjrQzBvb9DffvfUI+uIuu6ZHUCfT0kjkvS3EyiJcnWDbh3/woqDvqBO6w2P/1skrNfgXlkNWbLBpKTF5BUQvTqe3B++l249zfkMj6ud2Qus3E95EAvzrZNJFpjqhXi7qkk0iFxfdKwjLn/Tpyb/gO59n6yJkUsPZvgFZcjHn3Y/tbkaSSOB6vuQn7rK8hVd5INq/hRFRNq0kIe3daJdjzM9k04d/wC+gbQ+3YhfvtTvEwG/Akkq+5BPbKSTBwhMll0oUiSZNB334a7cR2eoxBak06fTbKvF27/KW4UoFqnk6y+G7nyLvKFgt26pLWdpCLQd/4Kb8dmXJMisjnSYivJgV70vbeR2baJ7N5tpKnGGE1UbCHO5Ej6ejH33oa88VOwdROqaxKyaRLpynsR9/yGfKHwPBp4doeUtIbLxmt0LrRSqsEUHq9caJEkxJOnUz7vlYQLl1pNKgSyNEx25R34mx+jeu7FVnNlclZTKtWI/TYA7NRMaiFRvQdp+vfPQqqpLr+CaN4im4+axDh7d5C7/Raya+62TOoJliAICIKAOI6PIDTqe09ls9nGhnKDg4NUKhWampooFAqN7xtjiKKIcrl8xB45ruuSz+dtuKr2gMMwpFwuk9QWKs/z8DyPcrlMzhj4wCepfvAT6C/8H9wb/gbp+4Rh2Bgvk8mQzWaf8dlrralUKsRxTBRFR3zmeZ49p/IQ1Tf+OYOfuRH5za+iPnw9wvMa33ccp3HuUkqSJKFcLlOtVo+4Pt/3CYIAYwwtLS0YYxgcHMRxHJqbmxudVMMwZGBggHw+Tz6fb2wTNDAwQBiGNDc3o5RiYGAAIQTt7e2N+1utVhkaGqJQKNgwV418KpVKVKtVisUi2WwWYwyVSoVqtdq4v6OvOZvNEgQBAwMDSClpb29/3vzgei50HMcNZXtic6G1tmmEzS0k7Z01cFJjlgW4LrrYTDx1FmlbjWF1aiaxkjXzWY2AV7k101tg/Azp1FlQLmMyOctSK2vaGddDT+gg6ZyC2rsTmSYjYYfjHfFOYjyd4AgbzDd1ykFIpOMgPa/Ri9sEVXI6xWsq4GQyIw++1j3TS2KkFGjPGWGrPR/Hde3xWtvfS2OUEmhpFzjpuEid4GYzOEGVSqGI7gKyORwgLwVZz7Hn5LqoTOaZF26jkXFEFoMvGTkfA6jaOTkOspYOSxdQaMYBsvXvC2mv3fMQdRcnDsmh8evj1e+RSfEcicnkUBiIAoq+h/AzIzsVxDFeHNKSy+LUz79+T9FkCgVcKRFhlaLnQiY7cn/jCD+JacnncGoLodEaEYXkjLahJc+zTeSikIxOcZW097d+npksjutikhgnDGj2XWvynwAS64Rq4KRjMsGCxcTTZpO2d6Fb2jCZDEgHYTSq7xAijkkndtuKmnqlkBT2b+WA59W0b10DA2GIu+NJRKVM0tZpjxVAnCAqJZxD+1D7duKvW4X/+FqbVvesWdHPn+lz9F7LoxnPo7fKqK/+Rz/8o7fAeaYxRn+v/rkQAlEeJlhxFaWLXkX0i5+Q/fXNTOjubhz/VOM923UdPUcax5eHic5cRumaNxPdcTu5H3+D5o6OY85r9G8ds7H8qHO3gQxT28q5sVfus967eqipPlb9/3/IsfXrG32ez/YcRn/2fIaQnk4DnxgAG01anEDlnBVUl5yFKbTYJbuuSb26f+vb9+oZ2/Xfl9L6tMqx33Oc2pYqclSMGUhSGwet9YtuhKiUXeXdJx8jf8s38Teus6Gml9rWKUIgk4Tq4ADDcYKfy9Hc3Hx8YpVCIJKEaHiQgTAmm89TeB59wpea/GEmdC0U8nyzZyKOiWaeRDh7nm0cp9MRACpV823rprEzwh6LUdEuWcuBrpvH9eNrW4Xa6HzNVDcOiFE7K9T2D06mzyVYeh7qwF6cg/tekm1fDAYvm6UlKxCeZ5MWjuN9cPwMLV4G6fvjbXaer3DlCU/k0Cnx5Bm2DUt9kZC24brVvLXwkFPbrMxx7OeNihqOBHC99Ws92V6aRtG1zZeuARkxkv9spA3hzFtEuvIuVM8Bu52olC8h9Bq0VIhsDq9mGmpjjo8jYQxaSkQ2hz9GNoh/1lMWws4Jndbm4tifG0fuTsjxqwc22fwImSVHadI6w1xnmZU7AtDGamNGtHX9+3Ut3Yi3jbrZWh6ZuFAz40kSTFPRdloYqw/HjFqMGg9GPq+TyRhDOrrL/3G9nCN/64Tfy1oW2R/kLmmNyWRteWoSW3dsrO3M+UwAPu4sdMOfHV3bO8q/rYP4GACPmsT1F+LYmytrjLbQIPVRoDBHzdQx6P/W8mttJ8ukwQUY18cUmsZN0D/WBw8DCAPLOvvZZ61GE1FIOmUmunMyas92xL6dtUjIi0QDn5D1ow5aoY70aY/QwkeZ0PVj6+AV6igTe1TCev1l5FMA2Nhjj7veeY5Stdk94QWXkixYjMi4MDCEu/pusj/9tm2XG9cJOsBz0E0tdsO2WnWPfaoSXSgitEYMD9VIPF3LVKNR8GDyeUwmhxgeQITxSI+o5taRiSslolJGlIdHxlcC3dQ8sodUzU2SpWFbxSOxaZ2+b/tUDQzYTDpj0MUWZKVsz8EArrLXUCuo0MVWC77SkH2Ofsb+DY1eVKaplgQ0ysoSQQVRrdaIS1u/nLz8QqLTXoZ332/w1q7GuPa+oBzkYF8tk8tOBZPPI6sVyle8GSolsmsfwCAY6zTnC1DQP1qTjgZv7e+67yHVUQA2jcSNRoO6owFsjiLjjgGwHrt9mI1BpCnRhZdTveo6Es8DmcLEqbjzF+H8/neICe22SVs2Z2Ou/X2oPdtJ2zpIp86sMfgaMTyMs28XWiqSJWfbrWdcD9nfa/eEamq2sdcDe1B9h0kWLEW3tdlwXprgbN0I5WF7XlFIOnk66eTpR46/dydUyyPPRrnEC5ag2zvtDo/GoAb7kf2HCZeciTCW83A2Pko8e77tsCENcmAAtWsraXsnur0TZ9dWSBKSBUvsbOnvIV14OijH7uscxzi7tyH7e2yThlorI909jbRzsu0sGgZ4j64mPuN8Kn/yP0gndkHGByNR+3ZBEhOefZHtPAKQhDjbt5J2dFO96g2IJzfi3vyftkDfccYBPGKxjspPVnUQjyKmnFF+sXgKv+WItjpPYUIz0nnyGF+oXlZWH3usra1aI3IFgmWXQc9+Mh+5nuDgfnjPx0iuew/DF1yGt3AJweIz0ZOmYVry+PfeS/FT7yM6/VxKH/4spsXml6tNm2j+vx9FN7Uw8PF/Rg32k3ZNxr/vdkwmS7T4LDCGwpc/Q+5n36Xyro8QXPRKMB5ieJAJf/0W5OMP2bK94SGqV72V8vv+dmT8zZtp+cxfI9c/aJ+h1jChg/L1/4vwlVche3vQvk/2zl+S/eVNDHzhO8ihCngere99PaV3/hXR2cuhIPAeWEPxk+8lPOcigqvfRutHr0eXh6lc/zeIsELmzlsZet/f2yq0zskQBBT/4QNkb/mWzR/XKSaXJ1p+JeXXv5N02mwYHKDtvdeQ5vKY8jDBVddRffs7cdc+TtM/fxyxfxdDH/8CetZJNTelTPMnPkj1VdeSTukAv0C47FX43/5XdCYzDuAjNGO9PrVBStW0rRyliaU6krQ5whcePcZo03x0+KvuPB6lhZU+Kjw1xsgrxwHHJZl5Mlx9Hd7OrbjbNsB7r6U8OAiveTPpSacgvvlFzMxZhC9fRnXWyXj3/oZsFFIJKpiFp5O86yOUZs3Hae/AdEwg+cXNMGM24ctegbPyTsRtP0Uvv4Jg5jz07AWEF1yMvO0XpLd8FwMMPrGOYpriKIXJZMg8dC/pJ/+Sali147/7I5SmzqHwyCobjxwepPzOD2LmL0b+xz+RFifAm68nbGom6Z6B6SiS/vA7sH4Nw697O3rh6cgv/QPpKYsIL7yS6isuI5k6i1hryrt24E+ZSrRgEerB+6metIh0xkmYe34Dt90K17yVyvmXolbehVsatJtgTJpO+fXvRPb3knzzX+HTn6d04eUkp54Bvg/f+AJmUhfRuZdTmT2f/Ko7KfzLJykJSRoEcONNlOcvRgz2I3bvw9z2S8KVdxMot8Ggj2vgI7SuPJKwUmrEbD6CqHoGAJtRABaMaFgzqm+fOYrIknIkh3qsiVKYoEr21u+SnryYZP5i/GVX2PrYu36JV62QdE5CrroHvvB3uGctJznrIiodk1Clu3C2bUSGEemENhjsJxwcwJxxHurJLaT/+c84r7iEdOESzB0/x922iXjWySSVMmkcY/JZ1OAA6e5tyN7D0HsQikW7XUre9qV2tm1ERrEdf7hEcPggOZ0ijYOZ0EHwqmuR61bj3vAhxNnL0UvPIS0NkU6bC4/vQNz4adyBHsL/759wfvlD3C/8b9T5lxKfuYLqGedb3/7RNUS9h/AXnoZubUOuvofwgkuRO7eiv/cV/Lt+RXzGOcTt3QSujxeH6LZO4rOWkUyehve5T+DfehNi6kzCKMLMPAmxbjXOlz6DXHQWyeILiLwMnnJwdm1BpYY0SWCwj7ivF29oANU1jfTXP0JsWIdpbR1J1xyjcsJmsmkAU4wAWYgaITX6/6P+PuJ9Mcr0FSOZWqM1cl2zjy7IPvp45YwissYWa2pcl8yt3yP7wbchv/4Fkv5eSstfTfXvb6S5owPT0Y386XegNIjfVMA5tI/Uy1C+5u1Ub/ga+rt3wD9+GQ7sQay+h7S9C7FlA2rvNlRHF862TaSPrML4Pq7nIfbtRO7cgtqzj/hN74SfPYTz+e/SMmMWCjBxhGlpo3rVW6kcNb5ceZfltIwtD2TCRJKffAsBZLsm4e7ZidQGOX0W8vG1cHAvmavfivB9zI2fAiDT0oK3cwupl0VncsiDe23TuykzLfO+9gHExE7k5scQ61bhS4GTycDOLeg9O9HaoNu7iV72CuSm9cS33oRbKND8r5/EvffXNiz06x+jyiXcU5cg0wR5cB/h+ZdR+tgXSL90M/z8YZjeibj/tySFZkDjADkB2XoLoDEsJ04VuZ41Z/yMrXmtv3J5yNZeuTxks7UwkjwKlKMAfowfLCAjIa8gO/rl1F4u5D3I52xPX8cdcz6wHOpn+K8/Temv/gG/o5u2+24n/50vQpIQzz2F8sz5mGyOVDnkHZfkvIthaBDxikvhvBWor/4Tzmc/bHsqD/Zj9u9CT5sJh/bjhiF6ygwol3CHBxFtHZggQMyeh3n3R3DuuQ33mnPhwfuJ551GVRuMTpGVMtVXXUv08gtwv/a5kfGHBmCgF6fGapuObshm0eUKTi6PWXouutiM0iliQhvi4H4cQHRPtUUr+SI5ID37QrRykGkCza2oQweQQPXSaxEH9pBueQIzdQbacckc3Ee67DJM5xTYttGWWtYsONPUjBECCbiLXs7g//023pKzcIf6YaAXF3Cmz8aUhmF4gOStf4Ha8Aju+94EO7dA2WC2b0J3dsPuXcgdW5CZF8fWMM7T+mPPs3ZxDuxFFzbaZnP1vGc/Y1+uD641pU2+ibR7KqbYeuymX0eb0nVJItTOncjS4EgG1tHXIoV1gw/tR/T3gEnH1pOIY0znFKqvuBRRLODdfyd66kzU0ADs3EL19HNAG/TVb0XPW4Beei5864vWXD3nIvSmx6DnAGKghEk1oqkFM70ds24NTlOR6PRzEPfcRmZogGT+IlLfRx46gD57GalKMN3TEXGIXP8Q1aEhfGNw45hkxlziJWfhrrkHeg4iBsu2vavRKKkwWiO3bYTew/C295JufoLkgktJD+5FBhVM52TUHb/AURJn6xNQrWL+8m+J928lOecizK9+jAwC0j+5Hn3Fa0knTUEvPhPx6Bp01xRMWyfi5FPRf/kJkuVXIJ58DLnqbut7Oy6iNIjasRlz4WXwjvcTnfdKkvmnQaWMiGNkpYyYMBE9bzHm0H7Sfbvh7PNIdILonIwsDaMDjXBcTPdU0rYC7tQZOAd2jy3t+zSYPDGbmymFv2Ed6uDekSQNpWoMdI2Jljbmpid0UL3sWvsQ3Myzx2sFiKBK5o5bcbY8MdLTyDyFDy4VcqgPtWfbyNaYY8S/Mdkc2Vu+Rdo1hdJlr4FLroFSGe/Wm1A/+y7p29+P7DmIXriY0hln4K9eCTd9BTk4gD7tDMLr3ovcvxu1bQN6/25E5yT03kH0mnuRTc1IY0gfWYUsDSGzWXTvQZzbbkEFVYIPfQjmfR21+XG8L95AXB4G38M4CnfjeqKzV9TG34PavpF093ZrutXutXrwPtSqu0kveQ3VM87DtHciHl6J3rEV0XcYdm6xDfQe+B3Oo2uIl7+K4byLu/Zh5Pe+DBM6YcWrSc49H73oHOTG9YjNG1AXXEqKzeYK3vsxRH8f3g0fxN3wCG42a2PUfb14999O9exlpB/5Ryo9B8l98R+ozpmHyOZRAz3oSVPRcYjY8DBm/27cJ58kWvRy+PhcnH174Mn1iNZ2TO8h9JnzMCctRN7/u7GXOPMU53NENVL9laYpSZI8j9VIplbf64zSnGIktDRKo+rWdsrv+jDROSts+uXoxeSY7Cw7hjp8gMKnPoD76BrLRj/ddp1CQJrYbolpMrYejtZQbCWc2EVJ2m6PJAmi5yCe52E+9jlS5WC+9Gl0EsNAP86OJ8lPnUHSPY1yGEFQtX5eFCL7DpE77QwGfn8XrS0tiAWL6X98HbnSILkFpzEcJyTbt9A0ZSphdzeV4QBKQzgH95JJY7K+j9AppnMK5eYJVOIYggCpU0QYoHZvo7mlBRDI3kOYKdMZMpLg4qvgPR+DH3wV92ufw5s2g+r2zRSiKn4mQzrzZIaVS5wmMDiIs2Mz+dZWmD6HkhSkYQKlIRQGecnVJG9/P+b9b4JqBcIAsXsb+Sggm8tZgkkITFMzQecUSnFi78HenWTaO2yf8N3byOZyqGmzKR3Yhzm8n8KSMxmME3QYIaIApRRm51byc+dTzXnET26maXiA3PGq1HrOU0STpmmj/PHEFfQL29pGHFP5clR6oxAYL1Pbr7eWeFEvCXwmn7WWNif7DllgPm2yhgW3cd2xl9ChFKLvEN6OLeQNVvPUSApxyhKCkxYi7/gFYuXdjSIrJ5/HP3wAZ/tW+4CxBVgCELks3j23k/VclE5R999OzoDT3Ira/DjZUoXY93D3bEdueqIR7ZOOxC+2WAZaKeSebWQ2rLfW0ejxm2sNAnVC5S3vRnR0owf6YOl5OJsfxzxwB+rwfrI9+xFK4TRbsLuPrCIXp8S131PZDF5YhQfvI2d3h7GbJTY1ES1YhOw7jL7/t2QbqbjgtUxAKNVo/yoP7SezdbNtkVM7PjPUi0k1aTaHE1SRD/+erDaQzeOuvIt87bdqrQ8xmQz++jWIRBMBsrV1zBdfnNgwknIw6tmBbov8c8cyy40ewBwZPhJgvAx6wkTbKK+2AdqLTmpWimifSHZ0E4CgSpzNEvQdQmx4BLepiXwmg6i1kjHGoHJ5CqMK5RtD5gsUa4XqesJECrVjUsfBzRXs9ifGoPJNNB11vKlZPjqTw8nmcZ9q/FqxQPyyCwjOWQE5DzE0jPza55GPrMTN+KjmFtvKp/Z93TIBXwgyRxX20zbqutME3TwBXSnDyrsQxRaypLi1ThrGGAve+qKfySIyWQqjwoP186xfIy1t+PXfzGaPuMejr7l+bi+G6qkTC+A/IuvDuK41n3MCUmmXfTmKMxf1ZdOqBB0V7K55AP8NavSPmDyuh9y7k8JHrmd47268egngKNPumSbbaBNQH3XMH3L8s36uHApf+jTc+Cm7eVqaEg32k0ti/HzhKU3QpxtvpC+zhNIQ2X//LOVyGRFWIZslfZaeZs9m7v4h1/xiAe6J9YH/GDu/2EJy6stIu6ZYU3d0d47RpvToTvvVCt6au+22jmn636vThhDWFx4eoGoEblMRNcbyc2V5mKgSNMxiBHjFZlzff+5gMAZRLhHFEeSbcDyPl1j/lD/IBx5zACa1faxEFD8zAT36M4mt8fX9/x4q+OmAMspsHnvrzFP3iXo+xj1ae44D+GlIrDExOZSDKTT/8cV+L4H+VmM5K+h4zZ1x4B67kMlRvv7YA/BLBIzjMi7PxyLpHL3Cj/Xcz3EZl5eq+fxU7Ybl0So6TdPjsq3KuIzLuDx3SdO04f8erYFDwK83pa7viwQ0+s+Oy7iMywtnNidJQpIkxzSOF0KkDvCIMebMp7K1tdbjAB6XcRkDAK6Dt45HIQSu6/Y7xphbgHnGmObR20YYYxpqe1zGZVxeGPCOdnFHW8RKqSSfL+xRSqldjuO80hjTfTSAn26wcRmXcTkxUsejlNIWXdRaRmWz2YOdnd0bHWBXV1f3Z4MgeF8YhmdqrSXoRqD4j9nwalzGZVyefwADjb27lXLIZrM9LS3N27PZ7GYHYOLEju8PDQ1OHRgYKERRNFNrnQPk0dp4HMTjMi4nHrw1AGsp5XAmk9nf0tKyvVhs3qO13vr/BgBv4qitCbBJjQAAAABJRU5ErkJggg=='
button_image_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACCTSURBVHja7J15eBRV1v8/t6p6XxLS2UBAQAmorIqAC6KIIDI6iuL+ioA/HXVwZnydEXF0XGZcRtxHceYVREccVFxRXBBURAEBZZWdsErInnR6r+X3R3V30iQRkAjRqe/z9JN09a2655663zrnnnvvKaEoCknYgeskSbpaCNFDCOHDggULrQVBYI1hGC8bhvG8rutxAJEk8FFCiA9kWe4pyzKyLCOEQAhhqc2ChVYCwzAwDANgsxDS2eFwaIdQFMUuhFisKEpfm82GLMtIkmSR14KFVkpiXdeRJKmkQ4eje8uSJN2oKMo4u92Ooihp62vBgoXWByEEkiRhGIZXCNFL2O32RTabbaDdbkeW5YyCTqcTR/K4RWkLFg6jpQU0TSMWixGNxVKucwYURSkTDocj5nA47DabLW15JUkiy+9HkiTi8TiqqqLpuqVVCxYOp7VNclGSJCLRKHpjDmqKEMLeMGAlhCDL70cIQSgUQm+C+RYsWDhMVljX0XQdm6IQi8f3LSJLKdKm4HI6kSSJcDhskdeChVZE5uTYN+O4tG9Bh8NBPB63yGvBQiuDJMQPE1gIgZAk4omEpS0LFlrbmFiS0HU9g8RSk+basr4WLLQ+AgvRiMBKE+w1PxYsWGj9brWlAgsWLAJbsGDhCEBp7QJGjz2BulOGoOYWmrF0mnLvzWkwQ5YRiTjulYvxLl2AFK6z7rAFi8AtBUOWQZJTI3JEIgFG8yu8wr0HUHvWBehOF0JTzbG5JKXPz/hrGCAEutNF3aBz0XLy8H/yNnKwxrrLFv57CGw0Y+MOFYl2HYkc19cko2FgSDIiHsXz7SKU8pJGgbPwiadRO3gkhsOJo3gDjq3rkGJRDElqZHkBhGFKnijsQKTPQCI9+2Modvxz30SurjgsykwMOpfyh6bhWLGYnJtH/SI7TPiGOwgPPItEUY/0MceKxfhm/gvbFx9ajPqlWuBQv0FEuvfJsMAAelYOWbNfQYqGze8uN6F+ZxDqfyaG3YFz0xr8H7+JXFt1QPW4Vi5Brqmkbsj5RHv2w3C58X46G/uubT9o7VsSMU2nqqqKNm3a/KI6S+1fniE07KLG7e0zkFifgfievh/vzCkWq44ogXW9RaaREvntiHXpDrKM7vER69gVZBmEZJI3+Yl1PYHaEaMR0TAgUPMKSRzVGUOWcX/zJd4FHxy0G+xZNA8pXEdw+CXEuvVEzSvEsWG1eR3DwKDBVFlzbZVlbHt349i6HhGLHuAYYd/vv5zpOK3HyYSGXYSIhDBm/BMe+N/6Hx98Hi4bT/CKG1BeeAyn02kx6+dsgWNdulM79NeogQLTzU0RVkqRV0p/N2x2In1Pre/whgGqimfZAryfvYcUCf8oGVwrlyDFogRHjCaRfxThU/JNC6w3+Bh643nvBv8LTcW5bgW+z95Hrqn8UXJUPvMWsb4Dyb/+Aqpue4BEUQ9EJETWtMdxzXiG8G8mUTt6HIbLg7yrmMB9v0NeszSDOLVjbiF62tD0MdvGNWRNfQzbFx9klEtdP1VGLishetpQfG++iHfyxHpLes+zGZZ039+bQrx3f1M98+cgPfRHfH4/brfb/PHJP1PWrgPqoGHUXHA1zo9nEbnqZqpv/jO+N19Eqqul5poJzcqekik8aBiGywOAVFGG7/2ZuJ97IDk8GUH5w9PwfPwWSsmutM5sG9eQe+056G07Uvng1HT7G7bpUM5NIXLVzYTOuTBDv/u2o2TeZtxffGx6nMmHXf7VQ5D27Pj5EDhyXB9qh16E7vUjhYPItdUNLG6SuLLc4DvmX0DoGvbN3+FcswylrASRiB+SLI71K7HtKibWrRfRniej+bJAN0DX6smrG43Mp9A0dLcHLTtApM9AhJog6/2ZhyRL6a1/heTNN1weqsf+gZjHRyTZsQG09p0pu+sJ8i4ZiCzL6G07Uv7gVPRAXqZ3U9SD8nueJnDFYOylu5sslyjqke5swYQKoRBej4fy6XMzxq8AwVFjiOS1Je/2Mc3rcv5sxLg/YPQ8CbfLVU/eJPJuH0NNbS3hcJhYTk79tY/vC917NZK9zYTLcH63HKBJmfRAHjXXTCBeXUn2zOfqh2Idj4EGD59EUQ9K73oaep6E1r5zRpviu7aR0wLnph5GTd2Dhu0ACHXvDR27mPc5FKJs5TLycnORJOnnQeDgWRege/0oFaW0eesF5KoKhKaRmRFAmIQRAkOSM84XaqJFXU+prhbX8oU4Vyyuj2Dvz/c1DISuU3vupYQGnEm43xmHTGDcXuzXDCe+8GN4+jUYOZrItb/DPms68T+NhYFD4Kn/YHToQmW3PuRtXk34qpvQA3mIObMwfju6/lpzVkL3XlT+6kryn3+4vtz6VRg3jYZtG2HSo3DdrRki1N32EImiHkjrV6Pf93tYPB86FcGzr6MOGkbFuZcR+PDVpvW4ZwfuObMIXTyGutV1xDauwb5tE1JdbdpaZfn9ZPn9ZqdPndi9F9KCj9GvHZ4he/WNk8i76ULUC6+pl+m8Xo3c8kjvgTinP4Hc4Hry69PQbh+f1pk24hKkncUo1wxDXTg3rd9Y74FED/Fcp9NJ7eU3mEOHd2fCHdeZ15r0KFx5A9W3PUDemKH1yTA6dkH6YBb6zeb9EskUVYfNAuuHGIU2HE4QAufG1UhVFaBpqG0C6B5feqoHIcAwkCtKkSKhDML+UN2G04Vhs6O7vRgOlzkVFQ0jYhFEImG627rWzCBOBe0g2gE4vltOrOsJqAXtDkgnxg9F9J9/DGPJp+Tl5aEv+ICKkaNh/SrifxqLz+fDs+07qtavJHb6OahZAVRNwzN5Itw7gWAwiPLMLOyyhJrXlnjSohm+LCLRKOH+Z5gd7KbR2L/fRnZ+PtK0R6hofzSJcy+u9456nISIhNDP64XdbicrLw85Wos26TrKZnxKfPAIYu/+G7vd3mT7fI9OhPdmErpkHIkBg+st/KgxKBvX0GbypAz3H4AdW9GvHY7b7cbv98O44eydvRLjuN7UBoNkz55BzhsvUFlZifzwVBxZZuAvnLKUXh+xeBxX6nrrV6HdPj6ts4qdW0nk5qP/36PISz4jLy8P3vk3ZSNHt8i5jB6PHshDem0a4s7r8fh8eDweaKDfqm59CWxelQzTh9BvHo3H48Hn8+23T7fCMbDZbaVwEKGpJI7qRPUVv0HLLQRFAVlJ/3WuXIL/lSlI+4kwazl5xI7rS7zoBLRAIWpuAYbdYVpKLYFUVYFcU4ltxxbTbd6++ZDdb9MbUE3HQbEduloWzsXn85mucerY3j3Y7XazQwByg4Unuq4jyzKR17+Coh6ogNqUtg0DPZAP5XuRdmwmu4G75tmyjuoMt7TAHGNuNYgDZfu2t6At0Wi0WQID+DaswH3fzYTDYaLRKNqNk6BbT9SRoyl/8HkC141E2bur/oTVy7HZbCZ5U2P4HVuJ9x1IvF1nCFcRn/QYjBqDBjQV8cjIRLFlQ4bO0o7d5nX1+q3Y22Lnakcdbf5/6Ti4dBxBzPyuGe50p65oG75NPiVDSJKUJu/PL4glBEhy2jXW/dnovmyw2TMJrNiI9eqP/u6MZgmsZQeInnQ6kYFnoea1TUfJpWANcnU56DqGzY7WJoCWk0e8czfCpw3D8d03eL74ENuOrc1b5APyvyWTvHLLqKlBDu6kT1vb+Ng+gR21qAdiZzHGqmXmwQ2roVtPGDm6UcBb2Y+7Zuwzbm38uxdVVffbDlmW8fl8Zied9X9Eo1FCpbtJjP09lVfcSO5jd2SUb+6BoOsa4Stvom7UGNODmD8nrRd2b4db72vyPJutiQdqya6MnG7N4WDP1b3+/d/Y7Bw0LdnPQnWHNSnkT0RgKXOllGIDm62eDEkii3isWQcj3vUE6kZeTrxzESCw7SrGtnkdyp4dKKXfp11vQ1bQ2uSi5RYQ71REvKgH0V79SXQqwr3wI9yL5iGikR/bGFBkU96fCD90s6MnnW527MFdsNlsaSLEXpqbYY1FOIyRW2COZ4MVGTrMIN7OYtT2naGHt3kS25r2Nsqnz0Ut6kHg9nGNIshOpxN5/SoqAN3jIxKJ1I87j+nW6Fpqx2MQFaUY2zYS6zPQrPfB25FemYLLZTq88b88TaIFdfljz7VtWG3+8+rU+vFvU0TPzm7w3D98WwxaviZJSkaXTRJLNVXI4aC5gEOW662wLGPfuLrJ9crRvqdQc/UE4scej4hG8c55lazpT+B/5yXci+dj37oeZc9OlJJd2HZvw7lmGZ7P3id75j/J/vc/sO3YgubLIjjycoLDLzmwp+gPjWqPYJpdw+VB/PYuAoEAPp8P7bm3Ufuekhkf+3wOuD2oT76CVtjBHIr9ZlL9ODJFtDXLwe1BzFlJft/+FBYWUlhYiPu5N2Grgfu5NwkEAk3K4VxjRlorbv4zNf/7YKYLOWgENeNvTXsIGW5r915E734q40GgB/JgyYLMFMYDBpOdnY3P50Pc+wzqyEtbxTyrY/YMpIpSOP9y7Hc9kdZZYPRY5AVbEWvryO/b/4jNff80Fjj5MSQJ2/fbafPPh9CyA8kgVsqyKSh7diDVVGfOIfc8meAl49Gy2iCX7ML37gwca78x10Lvr+poGMe6b1FKdhIccSmxXicTHjQcoal45s/+cZsbWmhhy4+Bc/lCwsMuwrj1PkqacieTDyb3jGcJDR6B0b0XZW9+3ez1vJMnEj75DPTuvSh9Y0mm7ipKCT80EREMNjl+806eSPiEE9G79STSsQuRi69trP/1qzH+cT+2BtaIcAht9DhKRo/LqMuYfCdOpxPbisXmHPfI0VTuMyww56cKjziJve+/Su01E4iP/R0lY3+X6dW8No3ylcvIzc09IrL9BLZeNJiuEaDryGV7sG9ag33zWuyb1pr/r1uBVF2ZsbzRcDgJXnQNWlYO8t7dZM14FufqpY3Jm3LTG7rqDZVaVU7WrKnm1JGmETpzJPEu3X6E+TNA00HTjsjN8d9zE8oHb2Qe/PwjeOzutHuq6zrSnh3kTByPWL+qvtz6Vabbtw/yLzsV6YNZmQeXf4Ux4QrknVvSAZ6mkD92GPLr08xr7xNp5tWpGMnodoY1+nQO4rWpmXWNHpSuyznjGZzTn4RwKFP2x+6G8lLILagfXx4huJ97AOdT92a2u7wUXp2KNnE8Ho/nsLrNGVRwOp2G0+lEURSEEPj9fkKh0I++YOmfHkH3ZeH7aBbuxZ+a87oHiGi/QdRcdRPoOv5XpuBcsTiTvJKM5ssi3r03auFRGLINKRTEsX4FSsluRDyaYS3VwvbUjr6OeKciXEvm45vzGlJd7QHLk2jfmdrR40m070zh/151YOckElRUVOB0OslOWqLq6mqi0Sj5+fnpG50q13C6ASAYDBIKhQgEAumAS+pYukO53djtdqqrq7Hb7eQkF05omkZNTQ3xZPpR+eGpaKPHwWN343vxiQxy7ntNp9OZjsTuD6FQiFgslq4nFRxyOp3pOqKpxQ/vv45n4lgkSSIYDKbr8ifzjqcNdThMXV1d2v222+243W6CwSCGYZCfn9+szprSr67rlJaWpu/DoZyb7p/RKOFwuF6/sozb7c7Qa2lpKbIsNzsUOVSEw2EURUnL+hOshRaZFuwAr2U4XYTOvQTDZsf11TzTbW5AfsPhJDzoXMKnD0Nrk5sRJKsbMRrHd9/iff8/2HZvT9ep7NmJa9E81Ly2RAaejXPttzjWLDs4C6xqpgU+wHbYFIXCgoL684HsrCzIyso41lQ5AJ/Xi8/rzTiecawBUudXPvMW8b4D8b75IjmP3G4+IM44j6oh55sFl32JLEnN17Nvm/cDj9uNp7mIdnqN+QGc06Aut8uF2+VqPIxwONJlm9NZU/qVhMgoeyjnNpQlLU8z7cjPyztgPbbOMfCPDPrEi3qiZuciBWtwf/FhendSesZl2CjCZ4zAcDhRyvag7NiCFIuiBfKJH3McsR4nYThdZL30FHJVefo817IviPU6mWivAcS698ZWvAEpFDxwAhvaEXOhD3isvGop8b4DqRs1hrpRmcshxYKPMBbPx3aExmgWDjOBD3UlVhMx3ANCrHtvDEXBVrweqbIsI/NevEt3on0GmnuDv/sGz5zXsO3cak4jKTbCZ/2K0LBRxI89nmiv/ri++qR+IYdhoOzciujRj9jxfXF9+THiAAlsYGBo5qaH1ryvyPXc34jpOrGzz0+vw6W8FObNxrjjOlwuF5IsH9Y2GIfQFywcaQv8I6B5/aBpZmBrH4sX69UfLVCAUrIL79v/RimpX+kj1ASeuW9heHyEzr6A6Emn4Vj1dYYVlmprQFXRvT6Mg1mUkUrh8zN4L1T2vx4k8uTdRCIREsm83rIs4/J6fzAw9ZN5BTP+AVMnU1NTA0egfovAhzualoibq6aacL8Njw8UBfumtc1u67NtWYd06tnoWTlm+QYETkWrhaYf/FsWf0Z7el0uV3ohRKtw7Z1Oa2/wT4zWk5VST07XNGXtksshDYejWQtqOJ1mzq2mnDUrz7WF/xoL3FKJ3Y2DvJaayFy33DD7/O5tiGiE6Imn4Vi1FMfqZRlldX82kVOGYjg9KBvWmGurG9abToQnJb1i4yAaYT0ELFgWeP9Pkt3bEfE4an47DFvm4nfnt4uwb1mHYbNTc80thIZegFrYHj07h/hxfai+4Q7i3XrVR7BrqzOfDfntzOj199vNNdQWLPxSLXBLZaU82OvYN60lPGi4ud+1W08c33yVngcWtdW4P5yF5stCbd+Zul//D6FzLjIzZ3j9IMkINYF7/rsoW9dnRLC1/HYkunQ361i9FFFTyY+wv1YU1YJlgX/wSVKyE/vGNSAE4VOGouUWZPxu27oe/8vP4PnoDWzbNoHNhu7LNldirViE/6UncX36XqOdR5HThpLo0AWpthpb8QYzF7UFC7/YMfARhHvhR+YyyY5dCA85H99bLyEauLzK7m0ou7fhXDQfLb8QQ7EhherMed4mNvBH+w8mOuAsUBTc895F2Vls3XELlgX+6azwLhzffYtQE0T7n0l4sLnyal/IFXuxr1uJY/UybFvXN0neRNcTCA8fhe7LQtlVjH3dty2SpaMlUTP5ZUoX701/gvf+snIqV015p8XbVDFrMaE//t1ibmskMID3/Zk4l3yGSMQJjbyc4BU3ogUKDuoakUHDqR3ze9S2HVF2FeN77XmUPTtbVTuD905B7XQszvN6QxcBE64gMnwUNacO+8V0Lq3jMSR276CuruXeURW4ZCCxO64jHA5b7KUVvtxMxCJ4Z7+C0FQig84l2u90Ep274v7kXRyrliDCdQgtc67YkMzlGVphB8LDRhHrPQDDZsNWvAHv61Oxbd/c6qaBYv0GIX29AHXzd+Tl5SGWzkftF6CyspLKN77CyCtMpzr1vPEinkf+hNHuaKoemoaaTCYn7yom55bLCF91M5EzzwPMdKyuj95EqgsSuthMVZNzy+VIFXupfOrV9DW9Lz6Ne8pfM2SqfGkeeqAAPZCH540XEXW1hC4dl87VnDqnaso76HkFGC4veiAPx8K5ZN12NYnB51E74W609p2RdxWbG/dXfo3UqYiq+6eQ6Gtm31A2riHnmrMJ/fHv+5VbXl2/vzkx+DyqHn6BvFH9qb7rKSJ5Ben2+P9xP+FhF6EW9TDza18ysFl9ie+3E7x3CpHho9LyAGmZQhePSZfPvvcW5NVfUzP5ZWKnnwOQbq9lgZsjcSKO990ZeN9+CbmsBC1QQPDy66m46ymqbn2A2itvJHjJuPSndvwfqbz7GSonPkq03yAQwnxfz8vPmAGvVjiH635vJuqIi1FXVlP76AzCN/4ZRVHIz89H73gsugHK8B7w6lRCF48hFGhL7a1/AwPs3R0w4Qq09p2p7DWQeJduGBiI312J9No0IoOGE6+pwjOyD4bLQ+WAs6i9YSIiFEIpssGrU6kbeRmRSGbAT+vQGbZvQu6qEHrjJerGTMAx+U7EMRIs/4q6AYOJRCKo3Xti1NUhndIO6bVpxE4/h9qcQmr+9HdsSz5HKbKh7d1jEnP1cqL3P4ueV4B9RE+YcAVqUQ8qL7/xgORuuBdY69AFqaKUshVL0zIoRTZY/hW1l9+A41+PoDxxj6mXrr2b1VfdH/9OrN8gnNeem5ZH37KeiusnEh1wBu6xI6CLQNu7h6qLxhC+6rfETzrV9Jbu/i2x08+hpntfi8A/CMPAtfBjsp+9H9fnHyDv3Q2yjNqhC9FThhAZPML8nHkesd790XLykCIh7BtW4X/xCfwvPN7q3OYMAk/5K77efnh3JjFdp27MBCrveRaj3dFmGtM7rofiDeR88jYAoawAnhefwij9HvVfs+Hp/5ideuNatNwCpPnvwZJPccgSUkUp6t9uTaerMVYuRQ/WoHbrgTZvI46jOuIZMyzDDTXaHY3h8mBMf9p8kGxdg+uN6UTPGIH4bAucdCpSWQnRtslyzz6AJEm4ZBlpZzHRob/GcLtJTLwOp9OJd81yxM5iKGyP2vcUpEfvQt+ynryv55nyte1wQHI33HOc6HoCYvsW5GOOy5DBJknISxcQfWcGDllCREKoX87FNf3JJvUV7X8G8qfvkfjyEwKL5yJVlKLv3oF+zoVo7TsTfuED2GrASaeCz0+8qgLD5SE66yscw36N97YxxBZ8dMQTDfx0LrRhtFiCdrmsBN/rz6MVHEWifWcMrx81vy2Gx48hS4hYDLm8BClch1y6B9uWdS0WrBLNLe1sIbhcLlyPTyIcDhN5eDpq567UduqGVFGG9tUnBAIBEr37m4ntgKqnZmJb/hV6yS6k118w80Ytno/eoTPy1MdxuVxoXj+irARJlrGd0MesaO03+BZ9THjdSqJnjCB28unEn3uL3EsG1Lv0yb3Dxppv8Hg8BO+dQvyEvsjFm1Aev5vYX59D/34nyqlDzHLvzcSbk0PE6zPra98JsWMruq6bG/ELj0IqK4GTT0cDEu/MMBMPHNUJPZCPtG4F+mXj9yt3wyySan47RMluSLqyKRlq8gpg83c4HA5odzSivBROGULN0682qy+RrFfq0MWUZ/Uy9OtuRb7nFrSXnk7XqQOyy4Vv+yaC19xCrHNXYpNfpM2mtch7d/7yLLBht4MkoRa0M5PYtRDkvbtxLl+I6/M5+F6fin/642RNfRT/y//A8+EsXAs+xL5+ZYtGmtXcQgyPv8WVXjFrMZUvzasn8rHHQc8TUVYvRz3lLNMCn38F9DmF0IVXY3v/dcSQkaYVGjMcedF8tCEjkSpKEb+63LQsCz5CURTiJ/RFbFmPLMskjj/RTMhW2J7KZRU4ZZnsP1yOtH4VRihIVVV9Ol+tbUekncWwbSOyLBPrNwix6DPE+JGoF/2PmQxv93aM4/uY5TDT5CY6FyG2rEcI0Dt2QTntHBKDzyN6xnDElvVIO7aYFfz2LhRFoeqhaeb4uKJ8/3InZWkYFGPDamggg9zxGHMc/OU8pGS/E9s2IYb8qml9CYGIhNCO642iKKabnXT1RSSEdtZIsrOz8f7lKcTaOgJn/4rYgu3o511K4LarUJZ8DuEQVclMIa3PAh9iRg7btk3Eu/Uk2vdU5GAtyvfbM1/CbRjJl4wZmWulU8nuxA98AEMIRCxan61DCPMtDQeakygtA/u83MyoX7+tqRguN5GBQ9Cyc5Ary1p0HO1/6j6qJ9xF6WIzibiIhHDNmUX8zusRT85E2lmM/uQrVACOj95Em/T/cJ06lMhVN2Bs0VF3FSOV70U3DETv/hAJYWzbiC0317Qmu7ZhUxS0wqNMl3Pp58gL51I96VGY9CjyrmLsd/7G1FmyXWpBO0RZiZlaCXAs+4LI6LEweiyOhXPRAKO6EuPk09PlMAy0Dp2R58zCOfdtIgPPIvHSR9TuLMZwedB2FuP55G1YOJfErfdReut95lr1Sb/BGHwuxv7klmWzWxhGemhB8Uakk05Ny6Aea6bO1VYtw26zEel0LGLRZygLPiR+5fWN9CXLMs7XplI35haqLxuPvKvYzLu9bSOe1PFvqpAqynBMvpPK+e/jmv0fQtfeQujiMUgVZTgn30ls+yb4idLmHJSXuG9OLJfL1Si4cVBTB21yqbvgauLH9wG7I2kRhUkWTQVVNXcdqQnzu66bxBE0SFYnJ9PQKmZe5lRKWmEmshOpB0DaPMsYP7hRsMGDQ9PMjRApOfRUyhw9LYswdAyHC8PpQgrV4p39Hxxrl7eo4lVVJRgMphOpCyFwu93EZi2GVUvhzuvTv6XyLmmaRlVVFYZhZORFcjgc1NXVpTMjlpeX4/P5cDgchEIhNE3D7/cTDAaJRqNp6+n3+zMsXCr/VOotCqFQKD1OdjqdRKNRsrKyiMViGeVS9aXydKmqapJLVfH7/Tgcjoy67XY7Xq+XRCJxQHLXP3sNysvLadOmDZFIJC2DqqpUVVWRm5uLEIKqqiocDgcOh6NJfWVlZRGNRgkG2sL0D5AWf4b05xto06aNeTyZu0uWZbxeL3a7vdnjh332IhbLaEuLExjMXMahoRcS7zMA3d/GJKeumxke9SRxNNXMN6U3zAEi6t9eKJlveEBRQMhJIifzTUtyhlVudqVyymqmXiWakkFTk8RV6481tMSSBAYoe3fhmT8b27aNhy2SXf5ZMfI/H8ExdXKjNwBaOHREbvozdWNuSX+3L5yLPu48HA7Hz0Lfh4XAFg6RxA0skYWWR0NrmvIuDte7jFqawIp1O1sfcq0EdD8pfkmZQiTrdlqwYBHYggULR5rAhpU2xoKFn7cF1n8GKVQtWPhvRFPcbERgVVUP6wuKLViwcGBo6uXrjQicSCSO2JvWLFiw0Lz11TStkXGVgEaLhxvuALFgwcKRJ288HjfXcSc/AEKIhAR80zB4lfoxHo+jqiq6rlvBLQsWDjMMw0gTN7UEVZIkJElKc9Rms1crhmHMMAxjoGEYDZmNLMuoqoqqqhiGYZHYgoUjACFEmriyLGe40D6fr1jY7Xa70+n8TpblYxoubE+RVtd1KzJtwcIRJHCKxA3dZ5vNXnXssV3nKLqux4UQZ0uS9LWu6/npRdIN/G0rqGXBwpEncQp2u72yY8dO8yVJKhapTQw9evQsqK2teTEUCp2oqmobrHXSFiy0JhKrdru9yuv1FefnF2yUJKkYeOz/DwCMSzs3bRbgYQAAAABJRU5ErkJggg=='
button_status_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACMxSURBVHja7J13nBXV+f/fZ8rtd3fZRpHelRZFkVjAFgy2RBQ1asT2+xq/gN+oiTFqbDE2jEnsJhI1asRuVCxYwQKigNJFOkjZvnv7vTNzfn/MvbP37t5FiAHRzOf1mheXs2eeU2Y+53nOc855RmiaRhYe4EJFUc4WQgwVQoRx4cLF3oIIsFRK+biU8iHLstIAIkvgfYQQr6mqOkxVVVRVRQiBEMLtNhcu9hJIKZFSAqwWQjk6Ho9tFJqmeYQQ8zRN21/XdVRVRVEUl7wuXOylJLYsC0VRtvXo0WuEqijKxZqmne/xeNA0zdG+Lly42PsghEBRFKSUISHEcOHxeObquj7a4/GgqmpBRp/Phzeb7lLahYs9qGkB0zRJpVIkU6mc6VwATdNqhdfrTXm9Xo+u647mVRSF0pISFEUhnU5jGAamZbm96sLFntS2WS4qikIimcRqz0FTE0J48h1WQghKS0oQQhCLxbCKMN+FCxd7SAtbFqZloWsaqXS6bRZVyZE2B7/Ph6IoxONxl7wuXOxFZM7OfQvSlbYZvV4v6XTaJa8LF3sZFCF2TGAhBEJRSGcybm+5cLG3zYkVBcuyCkisFFXXrvZ14WLvI7AQ7QisFWGvfblw4WLvN6vdLnDh4rsLbW+oRLpbL1qO+SmZzt1QYlGCCz8ksHg+Sjy6I4OCVO8BRH94NKle/dEa6wh9/B6+FYtQUkn3ybpwCfyfhFlShvR4kZpeWIGGWix/EMsfQKo6Zmk5ZkkZlteH5fUhfQFA2n50QCoKSjKOSKcww6VY/iAgsPwhzEAIKxhG+oPZdAnZxW8lEUeNNjv/d+HCJfAuINl3X6ySMiyfHxAgBJgmvi+XInXdTlMUO13Tkf4A6e59yVR3RViWQzyp62j1NejbNiM93tx2FZusmoZZVoFRXkWm8z4IKcE0QVroNVvwfbEEJRFzn7qL7y+BJY6y+48iPmIU0hvA8vmRPj+YJsIyUVsabc2oCNA0m6iWhRkIkRw4jHTvAWAaCMNAqgpS96Bv3QSGAdKyHW6aZm9GsSyMkk6kBgwl1W9fkBKRTiEyKcyyCrTabehb4rvVSRe9/BZiY4/Dqqhy0oKzXiD019tQtm4syNtw7/MAlE+esMvlfJN7v/GzvOi3xEcfSWbgUCfN9+FblPzjbtSlnzhpmcN/TN2tfyc46wVKbpjssm03YI85sTJde2FUVGMFQijxKFpTPVpTfatGVDX70j2gqiAlaqwFrbkBraketaURrbEBrbEBtbkJJZWwD1iomq2xNR0UBcXIoERb0BrrUKPNSK8Ps7yaTLfethmv7L4m1z08i8iESQXkBYiNO5maB18iM+RAJ83q2pPUD0aTsSSNjY27VM43ufc/0cbmc6YWkBcgeegx1Pz5nyQPO7bdPbGMQSQScdm2R0xoy9otGkqYBlL34Nm6kdAHs1BaGm0N3FhPavAIpNdnk1cIrEAYtbmR0LuvYPkDWZMgWydFRYm1IEyTxJCRyHCJTeBgGBkMoa1YhL5xNVL3In1+YocdS2L4KFAVhGXaZvVuaF/8F1eRGTgUsWkd8varYOYM+w+9B8K0h5EjD6H+oiup+t+f2qe+snVwdrztSp2+yb3fAC3X32e3sb4G+cLjcPPlBW1k5CE0XnEble+8jK7rhaacuzz53Z4DIyUoCmpzA/qWDSix1hFZq9uGd80KzEgzIpPGu3YFSqwFJR5D3YGC8Wxai7lqGUoqidLchGf9l6iNdYjsTjKp6Wj12xGKAI8XxO7TvkaX7naZzzyMPus5Sisq7Jc42YI1+WRqZi5B7juClkgE3+SraZp8jX3jyENILk+Q+c356O+/hjn0IFomXULy0GMc2fqqpZROvxP9/ddInDW56L2pg8cSmTCJsntvwv/Eva0m/a9ubZce/dWtBWa+vmopne64qsD8beeEHHoQsXEn2+SdeDjqpjWESkoIBAJOG+umPYZ5+DgafnE1naffXnB/+rKb2HbG/0P6gyj1tYRnziDwwM3tBoj44eOQ/qA9VrfJlzl8PHW32Sa5GQw7fdSRvMZpjxXkCc5+lciESXgXzaN88skFfZTfH95F8yi76f8Kpjzb3l5N4P1ZjkUlEjGqzz6q3bTo+0tgkXVcFRmF1brtBD6ZjVlWiRJrQavdhpJM2Pl3MCDo2zbBgvfxbPgSJRZB37LBIW/BqK/pjnbfXdC/XAbjToaRhxIKBm3y5uYpikKXE0dQU1tLWkp8xUzTeIKK6n1ovGV6OxM8M3AoddffTcXPxhY3a+MJ/Nl+bUqlEckkPl9hKbl045o/E5kwqZ382lseovLC49G2by5aRuqwH9ld+tbLqJvWUFlRgZI3HVEUhco//47m6XeSnPMG8ZISnB7oN4j08RNbjbyKKprPmYrx+SeUzH3TbsMjb7Yzy3P50k0NlM14oGBKUizfjuRZFVVOu1OWRWNTE53Kymi5/r528lL7j6bmzzOonji6oI2xwSOgZ1+7H2Ixaj//lKrKyoI839s5sE1gxZ7f5hFJ6h6kz4fa0oT+1Xq0+hqQEitUghUuwwqXtl6h7JX77fWjRprRN61FbahFqhoyn6jCNrnR7Hkyu7Gj/U/ci7ZoLow9lsaFjTROe4yW6+8jcVar86a6qorO1dX4n7iXspMOsBMXfAR9BcycQfznU7AqqhCvPmun5a6Vi8EfpOGEM/E+dnfRe3cWyaEjEYkYTP1Zq/wFHyErqqk/4cxiZ04LLAyWLSIQCBR9aZWtGylduYjqqipbM+cweDjqa88WtgeIjRpLJpMhdeJZZAYORVm5pLDdT00HIDFiNMlkm7X9p6Z/rTxRX9Pazqk/g7qawoHr8PHExp2Msmkd3Hltq7yZzyB79KHuslsKy+zZFyXXjlGdnegYe5UGtnaTFxpFAUWxSZZXRrpHXzK9ByKQkMnYeTxem4iK0jr/zZ9DSQskCGllvcxppNeH1L1o2zair1mJEm1BIuwBQ9VAVZBCsDtnYZWTJ1B32kUYA4aQzGmccSfTNPkafB++Rdmvf95q/udpaJ/PR1lZGfzxt2g3XkIkEkG791k8qoJR1ZX04OF2s8OlJJJJfEXujeYPinn9K4usMEh/EHHuVDwnTKTkuUdQp55CU1MTyWSSRM4sLrI6Ydul9ei63mE/CkVBtF3N2LgWc/JEgsEg4XCY1Av/oPG3d0CohFQ6TfDlJyh/7mEaGhpQb5uOt7ST7VfIacZQmFQ6jT8nb+Vi+O2FhMNhgsFgO3nmyEPtOj96D+rrz1BWUYG+4D2iTz5IdOrvWgezg22LxvrbH9Gf+ivBsjLbcvnDJdQMPxDzqBOI/uGXBIPBrKMjhpXXDnYXV/ZKE9pZ5y0csdKDhhM/4njbGSXbaGtFaSVubsnIWRPOpmdNc+nxIowMvoVzUetrUaItdp6c6S6UrErevah8+kGSySSZK88jFovBLQ9B/31tL+3Ds6g+b9wO70888xEMHIoBGEVnDt/slQk/9wiNv70DOfIQUkDtsRNQ6msJzH6VLndc+fUCOlXsesy0dV+i67rz0itNDXZ6l30cjZ++6k6YMAkTiBfzvOdbBmu+wOPxOMRy5GXzGVVd7f+88hThcNiZzgTee6WAwEbnfewfN95D5sZ7aGr3MGLE4/FWAidiKIritOO/y4nlELNNBWq34v1iMVYg2H44E/mqwyruJRfZgUHTEIaBtnmtbSK21x3sqcBePp8Pn89nP+i/XEMsFiN+z7OYh4+j7tjTqHzj6Q69vEbOk734UzvxiyUwaBjkzSG/CbwvP0HpmpU0nzzJkWlVVBGdMIlkVVcqfzOp+IuyLTs3HrI/8tUnd2ymnzUZX54jjWhLgU+gwDlmmiTPmkx0wiREIoZ851XnHr7aAJfdWNzn0IG8do5Oj6fDv1mB0NfMi4LIXgMhnvWkxqJ7XcDHPe/EatMB3mUL0Dat3bn5qdyB0aLYSzNKrAUlGmllbIEG333N2/72akQ8TvWJw9v9LRgMImu3EgWMcCnpdLpoxydHHma/xGP7ouu68/Kl/vFmUW1cFPv0Kpy75rRM/nu5fAGeJfOJ56yEu5+GI4/DGHkoLS0tlJSUtB+U/vU4kYnnI48+kfRj9+Bp2FaUuM3nX4r//VmQTKIWPP6OX/zkD0bbj/eW36D88378fttYTl93N//OyXRnD/0Jp8PTD7Zae0edWEjudV+Q3n80XDsFHr+3OMkBq7q6wFm3N0HZ4wRuy0lR3LTuyAq3ZeRdBQ4rUXz5yjR3+xqkvnIJVkUV2//+BsmzCncdxX9xFfGxx9mWwStPFZqDwUItIP1BxJTfUVFRQTgcxnzgRYz9f1i80Lx77SkD8MMjMbr1dpZH8pejAGpeXkzNy4uxjjiBcDhMly5dqJjzml23RKy9syjPQeWb8wZUVhN99A0il9/a+pJ37UnTtMec5a3k7VeT+XeCQhw8lrKyMsLhMOKGezGOP+3fcyjOed3+ceq5xA/7seOwajnjokLl8fFs+8eFl1FyyiS6dOlCly5dKLn+LsSyKOqctXTp0mWvI+23Z0IX82726Edq0HDQ9fYHDdqSvtjGhezfpaYjLBN9/Zd4vliMEmlu1b6WBdbu3UhQev/N1N3yEHLwcJoGD4fcWm0+CZ7+O2LjajyVlShbN9radvBwkgvqsM4+Ct+CD4iPOxl52Y1sK2Y6hkocMrW7N6che/Yl+soicue4lC+WYA0a5ogIzH6V6IRJ1N/29+L124GmLL1hMqneA7AGDSN2yiRip7Q3t+X9tyHWf0GwshJzZ6ccn82zB5rjJ9JQbKpQ1WWXpwnqhEmYg4YRveNROjrTpr//Gp4P3iR92I9omfYILW2179/upL6+noqKCpfAHSHdfz8Sh/4IKxhuM19VHM+1Q9SOdh7lXjrLxPfpB2hbN9kEzre95e49haQu/YTK44ZSd919yFFjoLLV7GLlYnj1Wax7fk84HHZG9OBrzxKdMAn8QWrHn07Vtb8gbVoY409pvXf2G7DgQ3su2G+Qo73b3fvQbZRdP4XGyb+z1yrjMfjng1jhUnsOnRsD7riSlGWROeL41jpuXAuzXsS6+fKvddBUnzeO2kv/gHnwEc6aKGAvaT1yN8ycQUlZGYqi7DyBn7gXXzBM8rQLIRAs6DPOmQKVnTFNc5eeR9V546i59VGsMVmnYV0NvP0ynH5BQb7yK86h7tKbMY7M649s2fKxewiXl7M3Q/h8Punz+dCyBwJKSkrsedF/eo549V+QwRC+pZ9S8tITjsmXGnIA6QFDkF5/HjFF6ymjnMks2vukCkxrRQXDQF+/Cu/yRSjNDUhVI37MT4geewpKLELJ03/Du3yRbVLvRkQiEZLJZMFL5/F4CAQC7TZYxGIxZ59wSXYJJxKJFDyDQCCAx+OhqakJj8dDefalKnZvJpOhpaWFTCaDoiiEQiGklEQiEcpyyyTZe+PxuFNHXdfx+/1Fl5CKIRazze18U9nn8xFss4klk8lQX19fsPSSn+4soQHxeJxoNOoMUrk+i0QiSCmprq7+Wnlt01taWojHbb+2cs4UrOvvhpnP4Pv1OU65xfqj2POqqalBVdVvVSPH43E0TXOUwB7bC13giMpb0/Uu/wzP6uU72CW1c14/KezVRyWVAtMoNLuLXXnOL5k9jph/bPGbIBwKEQ514OFs07fBQIBgPmmk7PD+Lp07F8godq+uaVQU0RpOvo7u7aB+HaHD+9vI0DWtXb07Sg/4/QT8/vYa2ustaN/XyYv+6laiEybhWTSP8v/9KSXhMFbXXjSceREWwNZNBfvRd7Y/qquqdqmP/itMaLOs3PaUCqWNmSvylp1EIZeL9Z+qgbRQ67ej1m5DZNIFWaWqItUi41UgiFHZGWFZaNu/QrjRPL7z8L/+HLHxp5LefzTb5hZ6y8WmdcibL0ct4mn/LmLP7cRqq4Rzc+DeA0geNAbp8YFltm7OyG38yJnRO/BSC2nZp5kMA++ST/B++r69tTK7wQNAbay3zeo8s9as6kpy2IEYXbojkkm0zWvxrFuFVrvVZcF3GMqS+ZReN4Xm8y9FDs5b1pv5DHLqac50QX4fCbzHNXBlFzJ9B9tOrHzyqmqWwGrr/ukdLaILgchkUJob8CzNboJQVaTuRWluRF+9DLW2dTSWqkamex8Sh43DDIQRqQRKz35YJZ0IvfWiy4LvOLzvv0and14iGo2SzvskSTAYJBQKfW/a+a0T2LNqCSKVtLdCSqvQdBZ52vdrpsJSURGmifrVOpSWptY50+a1qE116F8uQ4nHQFGxgiFEOoW2ZQP6mpVY++2P1D2Y5VXEDxrjEvh7Al3X6dSp0/e6jd86gfX1X6Kv//KbC8pp53wHg2mgf7kMkUqixKNIj5dMrwGYnbuh1m5DX7uC4Nv/QqRTpAb/AMvrdc6iunDx3STwnoicIFuJZnTvQ6bPQNvBZOXmp6Jw66Wz20p0MAeWdkgdy0LbvA59w2pEIoYwDDvyh2F7pTO9BxIf82OMfXqhbfuKABLPysUEZz1vk3jgMNSmejdyhAtXA+8sMj37ET/8WKTuRTjLP8LeFqlk576qSsG2yXYDgmWHnzUy+ObPtj3RSTt4nTAMpNdHuv9+JEcdQTobvscsq4R0KmvGL8O38EOU5ga0um3uW+Hiu0vg3RWVsqMypO5BBkJIrx9pZDcF5PZGK0qrM2tHXmjLxPIHEKaJFQgiFbW1DUKQ7juY+JEnkO63nxMwD0UhPeQAzKouBF9/Fs/yRfi/2mAfTXTfCxeuBt7JOfAXiwlFmpGqirBMWtd8RYcnmNoNCLmgdopA25R1YkmJ1D2khx1IYtQRZHoPbBfSR+oerFCpvdRkWXkWgAsXLoF3rgI1W1Drt+fr051Q4bJgTixMo90OKhkIkR40jPiRJ5Dp0RfnaGHuPmmhRJrxrliEWrfNjlbpwoVL4F1DetBwUsMOtHdSmWahwyr/qGE7LWwHq5OKivbVerwLP0Kt3epo3uQBh5AcfSRG157tyasoqI31+D98C8+ST1Drajo87BC/+BoSR5+A2b2P3WGrllJ+ztEA1D87D9/HcwhOu2Kve7Dpk84mNn4inS7+CcmzpxC54DKqjuy7W+R3BHPYKJquu4vyS05HbNmwW9rZ8I+3MQYOxf/G84Svu7hduQC1z8+n02/OQ5/96i7Lj/36dqxQ2JFdDJEb7ic9ZH8qTh39X0DgNprSrO5GevgoZydVK3kVULMbOQrmwK2RJqWqojY1oDbVObu4rLIKUsMPInnIMWSypHMOL2QdYmrNVnyfzsE3712UpvodPrzEEcfhue8PiMfuxTj2VIzbHqL+8lsof/IBzO59SN5xDSIe3+lDAHsKqZGHIpE0NzejDBiCsmIxtbW1VFVV/cfll5aWFs2TGTEKq6KaxqWL6NSp0388mkXy7CmYPfqg/3gYiVVLEYEAoVCooFz/JdciEjEan3mE8vJyNG3XXvnkwWNQ5r1HNBrtcANIesj+iCULaWhocA6afI81cKGbTMQiqLXb7CB2ptm6gUMRILLkVXPxrLImM9ImvJRoq5fjXTgXtb4G6fGSGnko8SNPxKzqkj0HbLYeSVQU1KYG/HPfxv/Rm4hYdIfaI3bKJPyXn0P6pX8SDofxfPIO0aenk/AHifYZbOe77PdE//wEsUSMsuunoM9+lfjF1xA77XxnTTn06N0E7r+J2nfXoq1cQmb/0QXpmbHH0TL1WszufVA3r8OqqKb0T9eirltF03V3Odo/+NyjBKddQWbscTRfcbsdwTKv3IKB51j7kyvyxvtQqrthVXZGLo1Q4w/i/eBNSn91tqOp2sovIGGRstKjjiiQH4/H2rVX+2o9LVPs+FPGk7NpUhS0mi2Er7sY2a2XoxWBHbYlZwXFTzjDyVP6p2uxSsoc+Zm//ouqiaMRQpA+6eyCcq3cHoP31tDQsy/q5nWORdB4/7+cZ5FvWeVrd7N7H8xT+6DNfZfYIUc7Z6DVzesou+ES1CXzsSqqEZFm9BPOoO7qOwm8MoPA/TcVlZ9TCiIRdZ53zlJouOsp51nk3o2vw54LNdDBHNOz4jOCLz5G6PlHCL3wqH09/wihZx8m9Ox0Qs/8jdCMvxKa8SChGQ8QenY6gZefIPDKkwRmzsD34ZtoG1cjvT6SY8aTGHscZnW3QgdYdk+1vnEt/ndfxrvoI0R8x0cmkz8+FXXTOhIvPEZpaakT3ib0wB8I3Xwp5tCRdsZZL6IN1JESmg44jNTQg4hOmor3jqsR/RRY8BHRg8cSPfRYpD+IsWoZ3n19sHIx0YPHEq/sRvMVt6N/PBttoI65fSvSH6T57Zk03DodTzadqT+zD9FXdKVl6rV43puJOkBDblhD4/FnYBitDrjgtCvsCBt3Xov5mwswsud2tZ8ejHhqOqnDfkQkEqHx1r8XlZ+PYmV5b7msVf4LTxRtr/nU3+wwuzOfgYmHYvTsS+arjUSjUTIHHg5A4ycf0Txlx23JjD2O6KSpaC/9086z/HOazp6M8vc70d5/05Z/RD/nEzOelx4vKDdR3RXiMcQdV6P+8izM7n1oGD6a5jseRwZD9rM4ahBGeTUNZxSayeHpf7R/HDWIxKixJI4Yj//yc+CoQZi+II0nTyI99CCkP4iUkvTVfyR0669J3HQpDdMeKyo/3XcQEglX/g/q9Zc49YlcdCUiFrOfxVPTiR5/OolEYi/SwFktaJZXYXTtidrcYCvUdBq1bhsdR7QrvF+YBqLtkUEhSP1gNPGjT8Ks6mrPZ50IHAJhGqjbN+Ob+xa++bMRya/vGKNzN1j/JZqmtTO7/H4/RrceqAvnYt58Of5wmKgAIs2Y82fjf+4REmPGo5z7f8gefVDen0W6R187isZvL0QPhbASccxtm0ke8xNkIEDmygvtWFBLFxDr3R95/GlQUU3ilHPhlHNbtWtpBVosRvKUc1GGjiS4dCGZq/+HhKo652DNYaPs0DwLPiQ8ZH9aKqpRbjwT1n2BX9NI1NeQuOBXUFFVVH6gbotj7op4+7Jio4905JesWEC6SHtTqRRWz/5oiz5GHzycREU11ufzUVWVzKDhKJvWYa1fhRLfcVviJ56Jtmgu6d//knA4jFy6gOhp5xONRpF9+qPNfQ9P1nR2ZmnZcj2BAKk+A1DemYl87RmCPz2bFsCsr8XMBqo3VrSePrPCpaRSKbzZ44uZ/Q5Aqa+x63nMSajvvkL6pX9SXlpKbOXnpDt3Iz7sIFs/nX4B6sK5xF58nJL9fkDj4eOKyqeyM8o7r8DH7xLqug/NgDnnDbShB2AMGop4exXeDavRJo0jHo878cG+dQJL3dZgmZ79iZ5ynv1Rs9yyjmHkEVi0MaOzDqxswHaloRbvJ3PwLF+EyG7EMLr2JD1iNFZpeZa8VuvBCEVB27ga/7uv4Fn+2S4dF5TBcEH85pzzRl23ikyfgYjPP8Hr9eLrN5iIP4hY/AnJ2x9BDj0Add2XaH+6ltRND2Bt2YSyTy+UjWuxhCAQCJCo6oxYvRxy6ZZlH17vsg/KhjXI7r0RXyzBHN8+SF7p2UfQdMXtmNX7EDtlElowRNn1/1sw9xSJGHLuO8gLLrVfnpefpKy8nEQo/LXyrYoK+7wsUH7O0dRffktBWYHVy0ln5Sfvfw5jyP7t29t3sP2Fic/nI394pFMHPVsHUbsNTdMon9Refn5bjN79EXPfw+v14vf77f7ZuBbTNJHd+6Au+1NBzCrZrZdTrqqqtpm67E82EXr1s/ulU/ZAft9CJWEBVl4wALPLPogNa1D77YtZUQVLFxLw+9E0DaN3f9S572F262HLfGkG5oln4Om/LzIbb7qYfC64FHW6XR+Zq8/6VZRMu4LIis9IjhlP6qDDSD/wApWnHrz3mNDa1o2oDbUoqQRmZWcyPfuR6dmfTO8BZPoNJtNvX/vqn/dv/yFkBgwlM3AomcHDMXoPAI/HPuubZ5IbfQeT3m//7PeCW81mISWe1cvxz34V72fzUCJNO71NUl+zEuuAH5K5/GbHlKt/dh6x8RMxF3yA2aMPfLUBXdcdk1C+MgProMMRc99DXHA8xsk/h0AQ8dUGZL/BiHWrnGgVZvc+sOwzhACrsjPagCFkxh5HcsyxiO1b7PSefdF+chZVPzgIdc5a/Pc/R+i6u2iYs4HyJx8gePtvEPU1GM1NRKOt83mza09EXQ1CCKzBI+wvDwCaptkDz5qVHcqvrq52yBu/+Bpq313brqx45+6O/MyBxdsr9h1hv7RLFqD0yHq/ew/EmnCu3cY1K+HKaUXl57dFqd2OOXosuq6TPulskmOORXv9edSTzrTbOueNAgvJGDDEKVeMm1CQx+zaE2XjWkTOcXnVH6mursb7j1moc9ZSXV1doPGM6m6I7VucUMXWQWPQNM32TFdUw0tPQr99UVYsRvx1GgSCZH50MiIXp7qN/E4Tzy1enx8eRe3HNfhUlbJLz0BZuRgZi+zUlyeVol7ijqJYfIPL99k8vMsX4Vm2CO+iuXiXfIp32ad4ly7AuyzvWroA77KF9r9LPsG7ZD7eJQvwfPYx3o/ewf/WS3hWfG5rXymRPj9G1+7Zj4TnmdtCoG1Yjf/NF/B+Msc2m3ehvoH7fo/2+nMY5/+SmnnbabztYfR5s5GnH068c3ekP4i59gtURXFMQgDvpx9gTDwPY1UGLRdwr6kBq1c/ZKTZJtGY45wHGXj0bkQ8Rub1JbRMudaWu+JzPA//BVFXg/Gnx6l9fj5K7XYyU0/HfOohRF0Ntc/PJzbzM7SNa1GvuQhFtIbQFdFmrB59EA+/hpWn7ZDSGXh8j9xVVH40GnXk+F/8R/Gy8uR7P32/aHu1xjr7WTz9Pr4PZtmfOXnnCyI/n2K3fdM6vM898rVtCT35IARCRBdHaL70RjwznyFz1w3ofQag1NfA+lXo2bYhJUpDa7myp63hcnnSfQch1q5Cn/U8+gdvwoWXUTNvO0bv/mhX/4KGhoaCd0CJRTDGn4L161sJPj0djp9I08JGkgePwTvtasyP3rID7m3/Cs+W9eiL5iHH/hirA/nNA4cXr8+CD/B88CZNV/2RpoWNiOoueG75tW1ZdBRJJmevto2J5ff7d2ryvKswy6ucT4jK/DO+RZEfAD7nhBKIRAK1disiHs07DNGb+E9+TmrEKLAkat1W1JqtaFs2on+5zD6NFI/+2/XOxUpyHETBIIFAACkldXV1dOrUCU3TiMfjpFIpOnXqVHCPz+cjmUxSWlpKNBrF5/MRCAQwDIPGxkYqKysBaGpqwrjiNjjzIjjhAEoatjlxsHJOHa/XS0lJCVLKoukFTrhkkkgkgs/nswPMmaaTp66uzvaqdyC/0PdYvKy28ou1V1VV+3MpqkppaSnNzc2YpmlrH9Pc6ToYhkFLSwumaSKyU5BAIEAqlSIWi7VbujFN0yk3GAwSiUScfm5paSlIz4XR1TSNkpISx/pw1nizeXJz8lwMMk3TCAaDeDweGhsbnS9FtLTYsd5KSkqKys9kMkSj0X+7PqlUqiAm1h4j8O6C0as/iaNPIj1oBEq0GW3zOrQNq9HXrkTbvK51bXkvhOzWi8a7n3aWDtTN69Af/gupR+6ioqJir/sKgIu9YH3/+0bg7zraarj8kd2Fi68jsOZ2ybcLIcT3PmqEi924Out2gQsXLoFduHDxbRNYukfqXLj4bmtgy7LcXnHhYi9EMW62I7BhGO7yhQsXeyGMIkui7Qic+yiWCxcu9i7tm9vI0pbA6baZ8yPZu3Dh4tsnbzqdRgjhXABCiIwCLMx3XuX+mE6nMQwDy7Jc55YLF3sYUkqHuLntlYqioCiKw1Fd9zRpUsonpJSjpZT5zEZVVQzDwDAMpJQuiV24+BYghHCIq6pqgQkdDofXCY/H4/H5fMtVVe2Xv3E6R1rLslzPtAsX3yKBcyTON5913dPYv/+AVzXLstJCiKMVRZlvWVa1s0k6z952nVouXHz7JM7B4/E09OzZ+x1FUdaJ3CGGoUOHdW5paX40FosdYBhGJ9x90i5c7E0kNjweT2MoFF5XXd15laIo64A7//8Ah8oQvFoopzsAAAAASUVORK5CYII='
button_nickname_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACEzSURBVHja7J15nFTF2e+/dU7vG7MzIDvKoqACEpUgGFEUjOYmilHxqqifqwYxRs17E181qDfGJL5GFDXv1agxmqgQjHpxQXEjIIqiskT2ZUCG2Zfe+yx1/zjdPd0z3cwMmgjm/D6f84E5XafqqefUU89SVc8RDocDAEVRXEKIq4QQlwBjgCA2bNg4JCClDEspN5im+TTwGJACEE6nE5/PN1hK+TYwVAiBEMLmmA0bh47wIqXEMIzM9YmU8rvAPjFu3Pi+e/bUfGYYRl9FUWzhtWHjEBVi0zQxDANN09B1/VMp5Ymqz+dbHI/Hj1dV1RZeGzYOUQghyChYIQRSymrTNOsdsVh0gqIoXaQdwOvx4PF4UFUVW7Rt2PgXalzAMAySySSJZDIrk4qioKoqqqpimuZsUVFRYQBKrq0thMDv9yNNE8M0bW7asPGv1LZpQXU4nbicTgzDoD0cxkzLopQSTdNIJpNJpbPwmqaJ2+1G13VbeG3Y+Lq0r2mSTCaJxWIoikIoGMy6uBkzWgjhVnLNZl3XcaiqzUEbNg4RGKZJPB5HVVU8bneeT0yu9jVNEyklDqfT5poNG4eYEKc0DVeOAGfQRYA7B7Rs2LDx9UPTNNQC1rEtrTZsHAYwi8SjHLk+cPo/Nrds2DgUUUA2HT2eAXwBkoOGkxw6Er2qP6bHixSHkwKXHf9ImcMMidA1HK3NuPbuwL1zC46WBoRh2APGxiGPHglw4shjCE+dgV5RjXQ4rUFvSmvB6nBS2BnBzQqwBFOCNNHLqkgMHYEy8VR8n60msHYlSjxqjxAbh7cAx8ZNInzqdzFCJQjTwL1rC67d23C0NoNpwOG0/VKSP+OYJkiJdLtJ9R1AcugIDH+IyLemYoRKCf39ddRwqz1KbByeApwachTh087F6FOGGm4j+MYS3Ds3oyRiYOiWLByueyxzhVkoeD7/FOOTcsLfPp3E0FHERx+Po7WR4PvL7VFi45CFUmhcZ67oCVMwSivA4cC/8nU8/1iL0tYMyQTouiXE+mF6GToYhnXpGiKZwFH/BYFVy3E21AIQH3lcHj86X+GbfsW+lftoeGJZ0TK1b26l7rlV2b9jF/+IfSv3Ebv4Rwesu1A7vXnmm3ClTjmL5t88xb6V+7JXwxPLuvAhdcpZ7Fu5j7ZfPPSN50m3ApwLbcAwcDhRW5pw7dyM0FLf+BnNWbcX574aQKKXlBctF4lECGu6xacRY4hd/fMuZerq6vKYnkgkaE32joe57fw7ofXGX9F4z+Mkvn16/pgcMYbWubcSuelX1t+aRmM0bmvgQoEe6XSBlCjRdpREomsQ6Bt6Kck4wjBBUYqX64T2WVdgVg8sUibn3sK7KB1fiveZh3pGT3eBuG/g1fzDq4mfd5nV3+f+AMNEx/XcHwAI/+AytMlndeXRN50/vdHAwjStQJWUyH+n84SKaglvD0Ps4uNVSK+f5l/94YDlPB4PJTfdRcvaFuKz5+ZPAPMfpnZVLbWratm/fBuRm+85cHDxmluoXVVL45NvYPYbROTme6hdVUvk5ntofPKNbF2NT76BdsqMvGeNMRNp+e2fsmUKlcvUF589N4+2DF3aKTOof35Vlt7O/cnUUffyuuyzzQ+9gNlv0AH7lUgkSF58rcWvu26g34Jb6VddTb/qaoLBIPz8KnjsPqv+cy8uyJf9y7dRu6qWupfXEbvmlq6T7fyHs2UKldNOmUHtqlra5z+cx6di9UVuvievvvb5D1P//Cr2L9+WVy4+e26372b/8m20z384y/P9y7cdkGcHjkKbaT/RNK1o1UEsGUm3B72sCqNPKWYgBEIgEnHU9hbU5kbUSNuht3mkl5F1+e5rKAK08ZOIXXMLvt/fXXRwFjKh655YhjlybEd9Xj/hH6Q10B3zupqXF15D/NJ5KJvWU3b56cTi8ayZnX0ux+Rs/o9f03fFqwDofQfQ+KvHkOVVXco1zX+QqktOI7bt82x97ad/L4+28A8uw2xvI/rDK8Hrz9LbdsVPcL/1MkptDQANty9EP+u8vDaS406iccGzVF0wqSgv248+ASqqUDevp/TV5/J+C/j9KELQdvdNuPbVUPrac2i5/B18JMb073cM3/JK2i6dh3PjJzjT/e/M69xyItyG48n7aYxZJnk0p65i9TXeeDdaJ55nnhM5y5BtF15LbO6tBXle+eOLUDesoa6+3hL00cdjDhxq1RGLZXnaMxM6b6o2rWCPadBr6VUUUoOPIvydc2j/7kW0ffdi2s88n/bp59E+YxZtM39I+5nnER9zAqY/eGiFswW9osehKJg3z0E01VumdDdaJhcNF1xtDajGeph3kWUm3nc7Ih4lMuP8rrP9pOnEr7oZZdN6+l4xveve9VgU7rvdqufiadBUj1leSfKc2ZimSdNF11rCu3RRnmkqNq1Dev0kvndJ/qAdOKyjvvtutwbo5dfD7u1Fn2096XRLeGt2dDw7TKC8uhhjwNCi1oVhGBjjTwbAt3FtwTI+n4+ysjLKX3uu6/Mjx+b3a9M6a+I4carF6zMvsHi9aV1Bszxx/EldG8w14TvVF4lG0WZeYJV77D6rzGkjs+VyJ+7YxddY7yanPpG2JFpuvjsviGwOHApLF6Ee5aDvOccefBQaaVjCa+i9ipSZLjex4yfRftYsoidPIzVwGEJL4di/F8e+3ShtLRjBEhJHjaH91LMJTzodvbQCKcQhEu0TWS3ck2igz6Gi7tkOLzyN9Ppp+tUfupQp9Fw8kUAfZw1Y77uvUP3xO5SUlKA8/EvE2BB9px2Zr8GqBxC+82FEUz1VV0wvWKf7lUVUL36UyspK1DXvwpsvW4IYKiEWj2P+7Er8YwNU//J6fL9fgu/3S1AWr0SOsgaKEQgVrK+kpAQW3mUNwniU6ivOpLq6GpfLhfz7m9lnU5pG/MRTAfA/9SDVix+luroav9+POXcWyp6dRKfOLBx11rSC47Dz5XK5Cr4LZc9Oqn95fZYu/vx/s3QlUyn0Pz6Aa5Sb6ivOJHDvk/h+vwTHw4vhh1daPPIF8uvbvJ7qBbcWrE8CkctuAJ8f52t/pfrx31JVVYVr3y740SyLT2n62s69BCqqcL7yfLa+UCiEuOeniHdeRRsxBn3MxGzHRTxK9S+vp7KystsotKNbDazr1r89NXOFIDHmBCKnfw8jVIra2oRn/RrcWzegtLcgDAPT40PrN4DE6HGk+g0mdvwkpNNF8N1XUKLhHpvmRiAEqqNb2qSiILQUaritd5H0HprSSjqDSfvdN6GMPwk9bUpz5w0HfC6VSkHAyt7r+/C9rJ/s8XgKlo+fd3mariqMMRNRN6zpUsZbtxcAVVXx+XzkctPv9+P3+2l88g2iI8b0qG+Z+jweD4qiYAJKLJbn16faW/P7VD3A0tS3/o7orb/L1+idTMuvEq6a7R3mdiBAc0uT5TZU9sPlclFdXW35q51M3qIxi93bCtaX0aryiMEWX7d/njY6FUpKSmis2YbZWAeVfUmlUpgDLHNYO38O+8+fU7AtfegIYGnWbO6x9XfgkZ/2f2XPM3Po1QOInfgdjJJy1JZGAstfxLPuQ4TRsRSiAs7aGlw1OwhPmUFyyAjio8fhqtmO5/NP88oWQ3z0OBKjxyE93nSgjY45yjTz9jpLpwu1vRX/2r9bL7m7TCMHYc37fD5SqRSJm+cgFq0gPOsKxFOPHDjE0NuMJ431iA/fRc6cRdu1t1A29/u9prP+tgcxR4yxzNv1H1s3N6+HkWPh7Fk9m9fikRxPSeliBmcmpaLDyuvH7DeosG/30UpLQMZMINANHYnZc1GfvL+DlpzJv1CCxpYLryH5g8ss7fj2K2mfpB2+2A033tnNXC669rOg52jlrMq8WV3XIdine4UUKinI3y8pwDl7hnuI5FFj0fsPAtWBZ+PHeDZ8VFQgHY378X+0Ar2qH4Y/RHzUcbi3f46Idy/ARlU/9H4DrKWujMBKa1+zZW+kJx4pQVGRLg9GoA9SUa3o+j8BoVAIbc92zBeeRl51I/z6sR4s9IazflUmMFJUwzzzCKkF81FeXUdq3EkkZs/F88xDPaYvHA5jTpwC8Sj+sy2T2el0omka0SeX9SI+0M2ktO1zmDAJbr8Onu5KX1VVVcFz506nE1a/hdizE33EGJLnzMb98jNd3/2YiTTdtgAhoCRHgLuNbh9n+bjue/8Tx6LHssLW+r/vPbgXHm6zrI6jjiHPZhoyAir6pkVIwsZPOvzpn1/VpZqSkhI8Hg/t3fG3t8tIBwOjvArpcqNEwzj37kSYBz7Vo7Y0oLa1ghAYJeVItWcHpHxr3iP06vOElv2V0LIl1vXGEkJvvEDozSWE3vwboTdfJLT8JYJvvUTozb9Zk4Ou/fNWnxTFSgZ4900oa99HTpiUjdQWK8/HlsaJTZ2ZXVIw+w2i4flV7F9Vi3b+FXm+tsvlwrzjBkQ8Svh7s3tFXyKRsAaI14/zmp8RDAbxeDwkHl5iCdxXAKfTCWmfWP1fN1E+aw7V1dWW3zf/AcTGCE2LVxceC6qK0+lELnrC0pg/v5f2+Q/nR6lvuoeGBX/BHDiU4IvP9JiuVKrDdVJPmkowGMTv9xO95T4458KDWKgQcPdNiHiU+CnTs8tLRvVA9AV/Bp+/gx9PP4RoqkeceyGh+Q9k+VE+aw7qeztoW7m3V4HPnmvggwngJmIIw0Q6nJihEqRQEBgHNqfc1vylJOKIHprraksjaksjhxo6TOnL4fkVUFFVXKO6XMQW3oWYeT7mqGNp+vXj+X3cvB7n4sdJ3NLhR/bp04emD9+Bd17FmHE+kZvvQRRYaiqK1e/C2bNonXsrdFrWADADIb5MVjSXywVLn0WZdTnGlDO79Akg9KfiVoPf76d14V1Zkz42/fvEpnd1FVyvLcHzzEP0ajr+eCVMPbNonUZl316950gkgnz5WeQFV9J+6TzaL51XkB+qqmatskLl/H/94wGXinIDewepgXvuFLp2bkZtrke6PSSOmYBRXlU0GCTdHpJHHo1RVmk9u3srIpXkcEcoFLKi0n97+sBBEo/HiqjOPM5a/sh9Ma8upnLO9IJayuv1Ys6dhWiqJzrjfOTA4T0Lyng8MO+CLm3x7uvZJaLUkKO+tAb2+XyYl59lmYyN9R0/blqH/8E7C5rFuTT6/X6Lzvtu77Ikw6Z1OJ+4n7I75/Z+Yll4l7XcE4vm1cd9tyOa6jHLq3pVp9/vR/7sKqufuXU+9wcrxpBb7u6buvansR7n4icI/tfPDl5hVlRUSNM00TQNKSWBQEfooPHa/0QPleHcv4c+Lz+Do7mxW39YujyEZ8wiPnEq0uXGvXkdgTdewFG319oUkiO8sROmED3xVKRQcDTWUvLi0zga9/c8QqwoyEKTQwEShZTp4FX3/nz4tHOIjZuMFJLqewszNxqNEg6Hs/5LZ8RiMdrb23E6nZSXl2dN2NbW1i7PhMNhotFo3gsPBoMHbKehoQEpJRUVFcTj8YJlCj3buS2fz4fL5aK1tRWXy0VZWVnRNuvr61FVNduf3D5lTNLctmOxWDbY43K58Pl8RSPshcz9WCyWZ/q6XC48Hg8+ny97T9M0mpqa8niWe9/j8VhLYOl3EolEssHDDE3hcBgpJVVVVd3W1/l+NBolGo1m6wwGgyQSCbRPWlCb66lMb1rp3J/MKkEuzwrxt/OE0dbWlg2OJRKJAiZ0wf23dGSy6EYARDKO/52l1sL+cSeSHH082pCjcO7agrO2BjQdI1SCdsQQ9D5lYBqojXUE33wRR1Ndj5erjPIqUsNGYfpDVrAqG8hK/9/soFUKBUdbE65dW1BiPVjCkN3wA/D7fPgzA6lAGZ/Xi8/rzfvd43ZT3bdvl2eCgQDBQKDgeyjWTmVFRbe0FLpfsC3Io6tYfVWVlV3uFetTXh10z88umtjtzkujWqwOp8NRsP1C9/PeSae2MuV6U582ZSbhXz+OuncnVddfiFK724pLPrjIWh/+ZHveuy/Yn2742x3vvnIfGEBtbSL018dx7t1B9DvnYJRVkhw7keSYE9LH99LH+ZIJPBvXEnh3aY+0e4d9qRKdMpP4hMlIlzu93VPv2DmWOeaYswSmxGME/v4a3vUf/VMDWTb+PaBpGk2LnkBcdyvGwGHUL/kgv0A8SvCPD/zT6XAcUPl0VsA9rFR6/Wj9B6NXVIOaPhiQa+pKmU4IkM6GccQQ0HUr+0VPZmjTwLVtI0aoBOkLpLd7pg9eGEbHv5lTVQ4namsTjv1fZHeV9RR2ij8bBQXH6bSW4C6bAb94AKae2WGFfryKkkfuRtn40Vc6fnq/EyvX3+xJA04nyXGTiJ1yFkZVf6TbbUWhdR0Rj6HEIqBrVoTa4UACySOPJjVgGCIWxfOPtfg+W43a2tStILv+8QnOrRsL0Ca79lSAMEyElrSzbtr4ylBSUkKkbg/xOWflBeECgUDBHM7/Eg1cVHi7kWH9iMFEzr4I7cijMQMhRCqBc8dm3Bs+xlmzDaW9FTLbGIVAur3o5VWkho4kNfhIjGCI+IRvkxo+Gt+H7+D5/BOEXnxDh9A12xS28bVCURRCoRChUOjrswS6kd7Mp9IOWCp19DiiMy4gNXw0KAru9R/hfe8VHF/UoETbraWhAppPrd+Ha8cmTF+AxDHjiR9/MnpFNZFp38MsKcP3wTvfiGUlGzb+dQKcK2hCQCb3cyYC3UkQtaEjiZw1C234aIRp4nttMd7330Rt2N+tuZrRoko0jG/12zi/2E3k1LPRK/sRPWkaIpnEu3ZlwQMI0uG0zherjhyzuXNy+k7mdPaYoLUEJfQUSqQ9b3mri7dhm9w2DhX0OgqdXmvtEoTKxJJ8AWJTZ6ANPgpME9/ri/G99bIlFL01RxIx3Fs3IPQU7TMuwCitJPrtM3A01OLataXLAYT45OkkjjsxvRdadux9NkzrEIaR+dtIR6KFFVATCjhUcLgQmob/7Zdwb15XQIht2DgMNbAsKMBq19+A5NgTSB15DEgT95qVeN95BRFp/1KRN+fOLfg+eIfIaedgBkLEx05EbahFSW8cz8DwhzBKK5Bub87po/QasNEpIm2a+X1xOJBON0oqgenxYSLyXHxZjB82bHydCrjXPrBQcvJD5Wtg6faSmDAZ0+NDRCN41ryHEmn7Sgj1rPuQxHEnog0cRmLcJDwb1+KKhvO0sHfNO7h2bEJmPofa2WzOPUmV+U1kzGcBimqlkq3d0+2BCxs2Dh8fOM+uVXJM6E6zgaoiYjFELIJ7w8c4vtj1lfmLQkvhWbcGM1SCWeQ0j1pfi1pfe1gxO3HJdYSvvJHK7ww7rOhuWrwazwfv4f/tfxT93bXxE4K/uPYbIRQtj7yId+UbeJ5eWFgT9h9Mw5IPCS28q2iZQ0OAs6lluvq/SjyK753/h3PrBpy7tvR8E0YP4d74MSCtVDy1Nd0fwj/EkUwmaR82Cuem9YcV3c3NzXhnHpu3/zjv9z6VGAOG4uzm4MbhgtbSKrRxJxF49r+LxJEkDZOtdV/3Wy9/7fQq3clvdimpS5IniXPXFnwrl+H8YtdXHgRS4lG8H/0dz2cf9DjNzqGE2LW30vD2DupX19F279NomoZSfQRmZd+8+5kZvfmp5dSvrqN+dR1Ni1cj+w9GmzqT+tV1tDzyIvWr62h4ewfa1JkAhO94JFu++anlND9lfQImde4lNC7dkC2fOtdKNNd279PZ8pl2c1GsreD3LyGyLozsPziPzoa3d6BNmYk+wsrwqO7ZQezaW2lavBpt6kxaHnmRpsWrs7R019foT39D49IN2fLhOx4h+tPfZNsyxn4LIHsv82zmfmfeF+JBMZpyhTP1qjXBts5fiOw/OMuPDJ9TqRQcMRgRjyL27abt3qdpfmo5sv/gorwv1q42dWZe+cy7Le4E9/ZAf3r9V2RTyx4Kbvs/HyKbA+zgMmVGR48nctk85DP/jXPBfJKTz0CfMBk5+EgMUyLPHo9j0RMkJ5+BlJKmG/4PumnCMIF6w2yMAUNJTJhMy/jJ1ot+4WnEtFGWgH7rVJpvuof4hMlw8TQcP7kEfcQYnDu3ED/mBFpvuBNzwR2I4QqupYsIX3odLRddS3L8JDhtJK47f0xy8hl5A1/X9YJtxb81lZa+A1GaGuCLXRadHh9i2ihEY72Vl/k4KxlbZOIUoqedTWjuLGIv/QVt5FjMSBhzYlW3fQ2Pm0RsyFGYSMx5F+JY9ASJKWcSbWlCTBuF9PpJTp5O69W3EJ14itXvEU5EQx2xTjmmIt8+k8hl8zBf+BNiuIK6aR3hS6+jra2tIE25aGhoyB4FrDh1KE233o9WXgWnjczyOXH5T6DfANQ9O2n845topqT0f55GorSyIO+LtavrOq1zb8N88yXEcAWlZgexcy7utTQcOLG7roM0Md1upMPBvwtMtxvZi8TuuTAMg+j5V6Ds2Umfh+5EW3AH5RMrMPbtQZZXUbrwLgKN+9BNE6WpgUgkgvrYf+FurMP51DKM+62zssa2zyEQwvHJ+1S+/jzs2mIJ295dGCdOxfvuK5Rt+RT9xWesbA+1ewmfd7mVCeLOhcjtJsnzL8f0+tGbm8DnRyxdS2rqTPr89HLU9R9mabaS63VtS3xRgxh1LGrNdsLl/TCnTCf40jOoe7bjPusYPHPPg34DLcE/fw7eD1fgrNtDqv8Q8PkpeeJ3BAIBdNNE3buzaF/NbZ9DZTXed14hsOFDDNNENNZT+eg92Q/Pm+vWoJ1+DgwaBn9ejr5FQx93UjolccdEFDt3Nura96l67NdW9pK1qzHLq4rSlItAIIDSbwDumu20jRqHOX4SpQvvoqy9Mctno/8gxNAR6CPGYI4cS5+lf8E0zYK8l95A0Xbb29ut5H4/vBKWfoZY9xF9br7kqzWhHbU1YBgYJRVog4b3ON3N4Qy9qj/6EUNAUVDbWnr9fDweR1QfgdpYh9vtzuZ/Mk4+DQDne1YyNRHsg1qzHffJp6H99xJ0KdG+qIHn/mC92DXvoQwfhXvHFit9y5ARSK8ffecW5KBhuDevx+FwoA4fjSyvwli3BoaNzMs7rB7loM8ZI5F/WoiYPQ3lo5Uow0bQ9tsnkf0Hd0xYplmwLXPXVkR1f9T6fSSGH22NiT07KCsrIxgMWmd9h4+Emh2oK5aRGjsBKSUy/T0j57tWX5VgH5SGuqJ9Nd9/K9unLG8a6yzijhlvTTIb1iIHDrPybKX75z3Glzfo4/E4YtgIPDutCcjlcmH2G4Bas7MoTZ0nXzl0BErdF6SOOzH7vnL5LDd+gkznbVaa6kl961Ti8XhB3pfPPKZou4qiYM44FnXR4ygNteiz5hC+45GvVoA9n7yf3ZQRm3QGqeGjMP1B6yPfQunYqfVlrrxI95d4tid1dCmbDtKpKtLlxiivIjZ5OlrfI6wgRedsED3UwEKAMWh41v9pfmo5HDMuO+ObpokYNhLHjk20nWQJtnfueXg/fBdOPwelqR5d15GDh6HW1uQJhfHSnxHxKNrIY5FSYqTTtpr/+BQ1FkX99mlUHj+R0lmXY65rw7ziRpQ1daj/4xLElWdjrnqrS1rXYm3x6iLk4CNRt2zo8JWPHp/1l1OzroJBw3F88C7i41XoI8aQ6jugS1/prq9nWgnsnR+twDRN5NgJuHZstiaI4yaiNDWgb92IiEdxT/8eVVVVBH7xAImPGvJcAU3TUBr2kzhxihU4PO8K+M5MXK8vKUiTa8fm/DiAplkpkL6ogZ1bsysHUkqMB59F2bMTo6nBEpxlL6CsWUHixCnoul6Q99HZ1xVt1/XzexEbIzifWIDxi3mIpnqUSO9jPQdUqa6tG/C9v5zYydMwyipp//7luLduxLX9c5T2loP3i3O/fCAOZORLuhbiy7UpukbWpduNfsQQkiOPQy+vBC2Fe/N6vOs+OLi2/rgQec+j1K+uQ+zZiff2H5GYdWV2xs8IjLlsCXzwHmL21UTWhRE1OxANdQhFoE2YjPT6UffssAZWeiCYQuB89jGic35M9LzLLO23dyfK7q2YTy1E3nY/DUss89i1+EmiC+7A4Q+RmvNjmDUHmuoJ/e52xL7dHQO3SFv6gGHI8irUmh2w9FkcF8whcpmVz8m9+ElS770Ov1iAs3YP8QfuQFz9U2KXzkOp6t/jviKA4yZmg0KpVMr6tEptDZqmIfoPQq3ZjhQC9S+PkrziBupX10FTPcH7bstzBVRVRU/zoH51HcSiuJYuQnnstygLF3ehSX3zb10mX2JR4tffbvnZK96g/brb4LrbEJvWE7xjHm1HWxaBe+tGUkJgnHUeyoxZUID3xdrVly0h9eJfUKZ9l8Qrn1kTwtr3iy7THXBYd06p0yVjgRAkjj+Z6NQZmMESy4w2jXRq1py9x90tIWVPNeUIT8ElqgL7mYsJcMF0OrJwOaGAw2FtTFHVjp1Z1tSIzHwnOJXE8+n7+Fa8jtreexNa13VaWluRUuJwOOgTChFPJDAMgz7pUysNjY2EgkEcDgfNLS3ZsplUq8FAgKbmZspKS3E4HMRiMRLJJGWlpcQTCcJha6Z2HHUMxmMv4ftwBe67f0Jbe3s2hU3A78fn8+WVV1WVYCBg5YfKGbSF2iotKaGhsTF7PxwOE08ksnV7vV4aGhvpEwrhdrtpaGzE7/NhGAamlD3uq9vtJhKJZDOMZMq73W4i0WiWb931I8P7DA+EEPh9vmzKnEI0uTtlyGhqbsYwDMrLyojFYtn+ulwugoFAtv7KigoMw6C5pYWy0lIryl+A98XadblctLS2Wjmj0zzo04MTTT6fj0g6HVImpU4XAfYWSDmCEBh9ykiNPJbU8NHp1LEeerfpUBxAoIsI4Fe1rpwxrRUV1BxzOk2T0JIorc04dm3BvXEtjn27D9mjivEf3Urksus7tM6KZZQdRPDDxuEHn8+XzWfWOwG2cUggkaOFwDo8nptgzca/nwA7bLYcPjjQd5Ns/HtCsVlgw4YtwDZs2LAF2IYNGwctwNJOH2PDxiELeaDDDJnvn5qH+bE9Gza+qSj0TeI8DSyEKPrhYhs2bHyNprKiFBdgIQSKoiCEQNd1WwvbsHEICrBeIE+6IoQwcwVYCEEqlbKF2IaNQwQZxVoAYcXpdDVlCjkcjqwvnEwm0TTNOh1iB7ds2PiXQkqJaZqYpmkdc+wkg+m/NzqCweDOpqZkZUZwHQ5H9sHMZcOGjX+txu1sFXcW3vT1jKOqqu+W9vb2IzUtVZYpnHnYhg0bX68QF0Jaqe6QUj7qUBRl1+DBQ97avXvnNE3TSrt72IYNG18fTNNEUdT9pim/Y5pmUh0yZOinDodjZGlpWT3IuGEYbtM03di7tGzYOJSgOxyOpmAwtKKqqu+Z+/bt3Qfw/wcAvDvr4Il4O6YAAAAASUVORK5CYII='
button_embed_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAB0xSURBVHja7J15fBXVGfe/Z5a73yRkT4RgQEEqoLggFQELCiLqWxeEKhXRbop0sfrWulv7qlXrWqtdoFbFgiguNOAKShHQCiqCRQSCqCzJzXr3ZWbeP+beubkkIVgDBDu/zycfyOTMmeecOb/zLOecZ4SiKKThAH4gSdI0IcRgIYQfGzZs9BQEgfWGYTxlGMZfdV1PAIg0gQ8TQiyRZXmILMvIsowQAiGE3W02bPQQGIaBYRgAm4WQxkUi4e1CURSHEGK1oijDVFVFlmUkSbLJa8NGDyWxrutIkrSrT5++x8iSJF2hKMplDocDRVEs7WvDho2eByEEkiRhGIZPCDFUOByOVaqqjnA4HMiynFPQ5XLhTF+3KW3DxgHUtICmacTjcWLxeMZ0zoGiKPXC6XTGnU6nQ1VVS/NKkkR+Xh6SJJFIJEilUmi6bveqDRsHUtumuShJEtFYDL09BzVFCOFoG7ASQpCfl4cQgnA4jN4B823YsHGAtLCuo+k6qqIQTyT2LCJLGdJm4Ha5kCSJSCRik9eGjR5E5rTvm3Nd2rOg0+kkkUjY5LVho4dBEmLvBBZCICSJRDJp95YNGz3NJ5YkdF3PIbHUobq2ta8NGz2PwEK0I7DSAXvNHxs2bPR8s9ruAhs2bALbsGHDJrANGza+CpRvSkNiRw6mdfQZGA4nIBCahv+tGlybNyA07YDLE73oSppm3thlufILRiDt3P61nhX85Z0Ez5tOr0d+i/vpP+63Nn2V5yRHnUHr1B8RP3aEdU3dtB7P6mV4/3Snzbz9RWAj/XOoIVlSju7xY6gOEAIpFkXEY6DpB6U9+/rMXY1NlJmnS772M5viCYjFcLlc+7VtXT0netGVNHcweSUHDKZlwGAipZUU3z7LZp9tQmdaIaHlF4KsgBAgBHKwGaWl8eBPR/NnQz/R+c+2Td+4QdU69cfmf2oW5Lb1r/dBoI7kGefTPOI0m337xYTW9UNuGUl3ukkVFGEoCkiSSeCmACIe7RFt8fv9+LzevZYJpc3Tgkd+S/LIowmPP9e8d+Hf8d17HclRE2madRNa72pENEz+nPtxz32kfT0PzqfplNMBcL39Ovn33dDORG+99Y9W/W2f0Rba4BNpueJ64sNME9j76vNIodY2JkbHy416RRV6UQli+1aMWRfi83rx+9PJXebcQ6MsE5/xM6LDx+BdvpjUpT+neeaN+Bf+HSnUSsslsyxzO3/2faj/WtJO9sio8Rhusz+lhnr8NfPwPHZH2nSfSOB3c/C++jzKri9onXwZhtuLumk9xZeejl5RReOds0kOGNyu7V/nXsv6uHgm4dO/a5XpqB273tiM51+vAhAefy4iGqZ02tj/ypX6RvjAWn4hui/fJG+awEprIyKVOuTa0jzuHDhqaNbvPG868ZZmklN/YA1aw+2lecYv4JWFuAM7szdfcCnJqn7ZuMDI04hX9ad08gjLRA88/po1uNo+I1pSQcmvplskDNw5G72oxCoTHn8u0ue1XRtDO7cjf1GLVlyGcsrp+Dd/lPP3wr/cReTBm2lpbSXu95M5wBr81rCcdicHDCZw68P0mjUF18drOpVdLyqh5ZJZJJobKZj3WFbeqv7QZpJKDhhM3U0Pw5Dj0XpX57Q98cU2Crvh3ujFM9u5Dh21AyB81DGQfldGOEz9h+9RUlz8lV2pb4QJrRUUmsGrDIEVBbm5EZHqAVtCp1xO8MNWdq7c2e6n9dYOAkFV/VEeuNU0Oe+7GYDEjJ8hbd+KdIRsXt+4DjxeWs6ZlnvErLgMefb9ZpmLxsH2rRh9qgn80NQSoWvuIjlgMNLGj8y/9xMwdiBsXEdq1HgazpgCQOTiK00tunGd+fe0+av3qd6nJvd6+HYQkHriVeqeWUnrrX/MaavH46GivDzXKjlqKNLyV7Pm9sZ14PbSfMX15rnYsy/Oyt7WLJ8/2yTPMSOIxWI59ckL5mT7IlCHNvECDAOUS8ab12sWABDvpntbp/4YEQ3nuk1/vQ8MaL7mDrS2wdSqfkhLnjXLDC+zDup/43xgQ1HQnS7Tt+0EqV4lGKpqlpEVhK6jNNSBpmE4nBhd3H+wEE6mCAaDuRcXzUP/w+30Kiig4tm/mAMiEkabOBRVUagoLyf/3bfMvvHn5w68RfMw7ryG/Lw8KrZ9TK8/3G5OcMeeRCQSITb4eEQ0jH7mUJxrV1BaUkJFrJWS638A0TCJMROJJxJEho9GRMMYV07GuWMbZaWlVMy5ByVt9nUF9V9LKB7dF7F4AVooSHj8uYTHn8vOlTupe2Yl0Ytntr9p+1b0SydY5K64bAKioQ5j0DG0BoM4F82l8IQi9DOHIv9uNt7HFuJ9bCFMudy83+fPPW63cR3ary7H7/dTse1j1M+3mhr7L79HvPMmpSUllL74ZLfdGz/7YnPSWzQf6YYfmfeWl1Mx5x7U5S9jHDWU5oHDss+IhNFnTsbn9VJRXk5pSUn3+MB6D4pCa/58wiefhrrjM1wbP0R0csgiWVppklSWQZZR6nciQq0YQKqolPCpk3BuWIvz47UH3qyePxt+/YPOJyivNzfy/+VneL1enC5X9lo0jCRJ9CosxABEsCX7vgwjW27F63i9XtweDwbgXPGyScSScuKJBFpRmWmGbzWIA3V7yCLKKojFYuhFpRDYjbR9M/nFxQhJwgA8tZ/QOmq8FWXf2zhRVJWy3/6UYDBIMpkkcdwpcPFP0E4aQ/PMG0k2NeBfPC97w0drUFWVvLw8q151+1YSw0aQqKzGiDSRuP4+OG86GhDuKBait1lx2PIJDocDb7p/rel783/w+/1IsozesLvb7k0d1tf8/4WXwYWXEcRMI9kWicOPJPXJ+znv1Of3fy2+9VgfOF49kPDI00mW9Ta1aSet1D0+tMKStO8rgSSjNNQhEnFzUGoaySOPJnb8SDxvLsb7Zk1uMOYABbG8XQSx2qJtaiNTVYf2OU+Zw+HoeDLUNAyPZ+/WjsdHKj3BGQYo6QSHX7ftAGz7GO03MwkNOp7o40sIXzAD5wtP7JPsuq4RuehKQudNNyekpYvTEbtW+PIzuPo3HVsCqtr+4q4v2vdvN9yr+/K67oyCwqwZ/RXe6SFFYN3tJXLCKCLHjMiavqlUp/N9qrAU3e0xy0kSyLIZgU6mTSJdM7Wu6iBy6iSSffrhe+U5HNs2mRH3QwT7RKRTToPVr2Utk1ETMdxexLZPzYnh81pSvathsK9zEqtqttzhAyDYkO3r8t5dihC65i5C503H10GEVpZl8jd9QCwaxvD4CIVCWFNK/4Ht321Vf9OM3rbJ2hBi3PkrpKcfxe12m1rtlof5qpGOr0Oczu5VP/lonywuvaDgq73TQ8kHTvQ9kpZzLiZ8wmgMl9uKKLOXhmq9ikBVLfIiyciB3W1MZZGuQwYhSPY9kpapPyY05kx07zcsd/24swl9f5ZF3uZZN5mDftMGVFXFtX4NeLyIxR9SOmw45eXllJeX43lsIWw18Dy2kKKiIqtc6sGn0cr7mC7bT64n0iYy2xmc75j+eeiMCwjc/Id2S0yNjzxvTirr1+QeWz1qKLGbH7J+DTz+mhkFf2d5bqbUk8ZQUFCA3+9H3PYIqUkX9oiudy6ai9RQB2dPxXHTA1bfFk2egbx8K2JDiNJhw7t9k02P0MC620tk2LeJDhuJ7nJbmzHaLgt1SuDisvTuK9OEloPNyI31oGsWf616ZBk0Dd3rJ3zqJJJV/fG+tQTH9i3Z8vsjCj3l8nb+kGVVPfJbXB2s5/5XiISI//QWdv30lqzG2PgRxh2/RMnLw3PvdUROHI1+1FDqnnsnV7M01BG56zpEMIi/Tbn6he9mZ/vPa7uMRKv/WoLzlYXEJ5xH6ozz2XXG+e21WEMdxr035prMkTDa5MvYNfmyPcrdgMvlQv1gNbGRp8GkyTROmtz+wSXlB30c+2rm03rJLBIzfsauGT/LtT6emUPgw/coLi7uXsvs4GvdI0yte9JY0xTOEE1Rsv+m9ze3l14mVVSK4cwuIcnNDUjh1pwyKGouiWUFFJVE/0G0TPkhoTET0T3eg9L+5ngiN5L8dfDs40hrV2Z/f+sVjDOH4nA48KT939IpJ5vLF22xZiXGrO8hf77F8tWLfz41t675s9FXLt0nMXrdNhPHg7fBmpV7TDBhqFmAcWJZzrMAWLYY8czsXJkmj7LKueY+guvxB8062kSLue9mCNRBcVnuMs1BgOexO3A9dJspl2VK1MH82WjXXY7X6+0WszlnMnS5XIbL5UJRFIQQ5OXlEQ6H97/WdXmIHD+S6DEj0N3erNaVTVMXRQFJRq37Ev8/56F+Udtu54/Wq4iW82aQPOxwi+ju91fhq5lnBaoMh4PwWRcRGTUBQ1ZAS4GmmT+6ZvrBuo6jdiPepYtwfLYFjO7xjWOxGM3NzV3HNgoKcLlchMNhgsGg9XsGdXV1yLJMUVFRu7ozAbK298ZiMWtS8Hg85OW1D7AEg8Gc9+xyufD7/TlBGl3XaW1tterKBKQ6krGz9reVJeP3ud1uq65YZvNDzQK8181AkiRrac3lcpGXTm9szQGRCKFQyFr/zkxOwWAQwzAoLS0lmUzS0NCAt+0uMKC5uZlYLEZpaalVp67r1NXV4XK5KCgo+Fr3tm13JBIhkV6akmUZj8eTM2F19E73yciKRFAUxZLhwBNYSCQr+xA6ZQKJysOzhM1oyLSWFJqG+/1VeN5+DbmlsVPt3frdS9B6FZta1eHE9/oLeJYvMQ8ytI1qHzOC8PjvmmQ3e9+cENIERteQgi14VryK+71/IUVC2Nj/2JPAbUljo2sCH/C90KGR44gOHWGarJ1p3R3b8S5fguPTDQgttZeIXpEZqU4TX6SSKLu/RCQS7drg/GAVau0nhMeeRWzEWHRPJhKb3tObSqEXFBE64wKSVf0pePJhe7QcCOw51Ox0Tj07iBUZdjKG052z7JMhrxSN4F67Es87y5DabFboDKmyw8wtlOm6pFArUnNDpwEpqaUR//NP4Ny4jvD480gMGGxqbgzTT04lQZaJDz7eHhk2Dk0C7++dWCKZwHB50ks+ac0pBI5PP8bz9quon9eCrnUpg+FwkiqpwFDUdARaIDU3IMKhLu9V//MBedu3EDv5NKJjz0YrrTBnfkkGKQnpnUc29j+cc/9A/ux7aWlpgfTOJxs9WAMLA5Da+LyKitTciHf5YpQvP9tnE0p3e83dLxkNLiRzA0cssk/3S+EgntdfQC8sITrunPRhCDk7sdg4YHC5XPs9CcE3FQd8pBrpzRYZ8qI60A7rS+v3ZxEbMdb0afeFwL2KcjdiCIGye0d2B1ZX5ndlX1ov/QXRU8/M+tGKAqoDnPZgsmFr4I6R0ZiZNV7VAQ4Hqar+tF7+S5zHj8RbMx/ls0/3utUxVVyG4XCYGlsI0HXkht1dHiE0XG5iJ44h8p1JaBV9zOcbRm4UXLI/pmrjUCXwfk7s7lv6EtGTvkOyTz9TA1skdoKqEj95HMlBx+B5+Vncr7+IiHS8pKUVFGNIchuTuBWppSm9b7pjJPseQfg7Z5EcOMQMpCUT1g6uzI4vkUzgfmWhHQ21YWvgDv2d9WtwbN9CZNQZREeebp7jVdr8yAp6SQWhi64k8a1heF54Csem9bmRZUlCzy/MElgI5MYAUlOgY3Pb6yM6YizRE0ah+/NBN8yIsxBm0EqWwVBQajfhff4JHB+sskeGjUOTwAciK6VobcZbMw9l+2Yi50wj1W9g2nTNDSAlBp9AqrIvvtm/x7n+PXP3FObRLS2/ILtPWgjkwE6Ix9rJrnv9hM6/jPiAweYOK00DyQBNAlk3ryUTuN9agnvJAuTALqsfbNiwNfBe4PzoPZQd24meOYXYqRPTOZ1zzXndl4deVIYhyVZ+Z62gyMxCKQTmaSMJuTHQof9reH1oJeVmWU3PugjpH+WLWjyvvYhj3bv7HACzYaOn4KCvl8gNdfiefBj/n+9G2brR0rIZ09hkbO55YK2oFNQ2ObAMAzmwq+MAlqaBnmq3v1kkE7hXvUHen+/GuWZFt5BXGzKcxifeoG71bupW76Z+2VYiV9z4PzOYwtfeTfC2R3u0fA3Prj4gz4pccSOBmvX7XdYes+DpfOdN8u79Ne5XnkPEolkCp8/x5hClpCJ9Aslct5UiQeTA7lzy7+kXWPVJKHU78C+YjffFp8yjh92E5lseQqrbieMoJ/QTGC/NIzT5MqLR6P8EgWMnjSYVbCEU6pn7yFNllVD7KY2Njfv9WVr5YYjPNtPQ0LBfZe1ROxbkwG58f3sA/8O3oWzfnLu8kzlOKElpAruzB/gb680IdIfkNbLk1XXca1aQ9/SjONe/161ZK7Uhw9F6V6P9ewWyLFNaWkrp/dfjG1FOKBSi6dEXaXh2taWdw9feDUByzJk511vufcqagQM16wnUrKdu9W6Ctz1K+Nq7Lc2uDRmOUdk3596OtH1n9e+J4G2PtqunftlWYtOuMsk57Srql221tEumbMOzqzEq+9L4xBtovatJXjADY8L5lqyZMtqQ4VadGXnql20lcc406/eOtPee/RabdpVl5WQ0VGdtzMiVeVZy0LGIXV+iqmqn8u2pBf/bNiSrByB278BY9H7O+9aGDO9wHOxN1kOGwGZLdFMb3/0rXMuXgADDkc0qqecVoJX3NpedFNVModNYb0aVO/TyVQzVgdxQR95zf8NbM79bta41+Xz0Lo4Vr6H94jbiL2+g5d6nSI45E4/HQ0lJCVpVf3QDlAmDYf5swudPJ1xUQcv/vRv1nbdQBqgwfzbxU04nGAyS6DcQAwPxs4uQnplDdNQEEi1NeCcdi+H20njSd2j98XWIcNi6NzRpSjtt31n9e5p7sdETcF79fahZQGjSFMKDjsNwewmuepN4PI5WUYUI1FHv7UVo+ixct/8cxg5EKyylYdL38P/192ZlYwcSHT6G6KkTcf/yErOMy0vTudOJp1P86G8vRRmgYhjQPG0mvivPR1r8LNHjT2mnvVNHDcEIhUz516ykdeqPcf75HpQHbkXrXU3jkcd02sbmmx4CAxxHOTFemodeVIL+xTa0a+4kdtJoPDMmQj+BtnsnTedOzzlPHLnixg7L7GsbtD7VaIOPw3n1NOQ591vvu+muOTgyss76nnW9M1m7yt/VY/cMyoHd+Gf/Ht/fHkCu+9Kyg7WiMvT8XtkD/5KEXL9rrz6s6503yZv7x27Xunui4JppuI/2oK97j4TbS9Pv/kb44pkYlX3Ri0qQfv0jqP2EwtdfMGf4/CL8f7qLeEkF+qK1MOVyREMd0WgUvaQMaek/4Z1lOGUJqaGO1P+72kotY3z4b/RgC6mBg9He2ITzsCq808cTieRuJc3rpP62iI47C/mtl0m8OJfCW36C59RqokOHmwnkVi1FURQS/QYibViLrCiIaJjYTQ+g/uYP+BbMxrjjl4QHHWumlNm2Cem0c5CX1ZB46WkKWwM4N36IUVZJNP1VCePXP8DlcpkLCM8+TnjjRzhkCXn7FuLxeHYur+yL4fZi/PEOJElClSTkfy8n9uJcnLKEiIZJvf0a3sfubN/Gsj4kh41APHYXAEXpPtcXzSN12jlovauJ/G0JbDXg+JPBn5fTL9FxZ3VcZl/aUGHKzT3Xk9z8MfmrzEQI4UtmoReVED3/UlKbkvDwP8zr/QZ1KmtXBO7ZX2bQNNxLF5naN20KayXl2QwcGZ/2i1orC2W7iaB+J566HQdMZL/fj//2qwiFQkSXrCdcehj0G4TUUI+28nWKiopIHpMmxwkjab3iVyhrVmK8/QaEg+iGeQBc612NvOF+3G43mi8PUb8LSZZRjz7WfNCGtfhXvUrkPx8SGz2R+ImnkHjseYovOCnrk067iuDlV3dYf1voRaWI1hbcbjeKouDz+RBV/Yht34ouBLIso5eUweaPcX5Zi/fUaupveYRkv4EkTzkdZ0sTUmUftM+2IPcfhFZUAuvX4knXlzr8CORVb6JV9kFK1+k+YhChdMI9r9dLpLQSsetLZCU7JJMnjDKJ/M95+AoLacnI4HRCZV9EoA6uuolQB30ojR6PDiRfnEthYWG2z7dtQu9TjXzrT9GeyB4Z1QEjnSgPMPu/gzL67+Z02QbSebqMf84jr7CQVObZgPTJR+gTh+YOmmlmnuyOZHV0kS/60Ni132ZXVKrqCHC4Ld9YaknnwOps59QB2FFlVPbN8WcAnJMuhOJS5FVLSYw41dTAZ38Pjv024e9OQ61ZACeMRPrPOlLTJ5gD5LiTket2IJ011RxEy18xtd/RwxBbNiLLMslvHWdquvLeNL7XgEuWKfjFVKSN6zDCQZqasrGA+LEjOqxfUTo4Bl5+GKLvkQRq1hO+9m5SZZUYHp/lL2q9q2HDB8QffZ6mJ5dS+purcP75HvM5gXoSJRWI3TtQvthqJo8/cTSKohC+9m4zz/RL/4D+gxC1m1BVlfjYs81B+k9Ty2hV/WHn5zmTS3LgUOtzLnJVf1OGt99AkiRSZZWIbZ8iOulDORMTueom5Kr+hL87DWn7VoQQiGgY7TuTKCgowHfLQ4gNIYrGnZWTTKCzMuKIrttAOkc0iz9EDDvZet8CMKr6ofyfiyk59kTk5VtxP/ocveLhzmXtIoPmIXfsRvflIaIhpJZGRCKBum0TIhw8qDKJHZ/h+/tDhCdeYAUnWmfdjO++m9AX/QPJn28mhHvwaRr+sghlw/vo1/8Q5/ur0Y77NsYWHU45DdFQh9baAkNOML/IsM0cKHpRKcYX21BVNR3d3IL877dwrHiN5ut/T/PaJkRpOY47r81JP+P8oOP699TA3mfmwOgJhGs+QN6+hdh1lyOW1aD3qSaxMU58yPHWhOJ+cS6pPtXUrd5N/L4ncT33ODz1CFIkRGri+ejX3mXWN2kyzWubiJ00Gue9N6CtfB2jb3+MYAuKolg+tRACuaq/6fN9+G6ObKmySkT9LlOLH3m0KcO693A4HKQOP8LU2O+v6rCN6mvPo654Da7+DYG5yzDcPowtn6CqqinfmAk0r20ictZUnPfeQOPSmhwfuNMyVf26bAPlh6G8/BxAzvv2PPEwIlBH6v6nqF/4LlL9bpKzphCveaZTWbsce3um1PG63UT+R5Y9uhvRWIxQKGSlS1UUBZ/XS2jeClj3b7jhR1bidI/Hg8/rJR6P09Jq5u9yOBxomobb5UJIEqFQiJJ0FsP6QIA8vx+n00koHEbTNPLz8ggGg0TTOacURSE/Ly+HBJ3V79kjyXs0FrOCW06nk/y8PBKJBM0tLda9iUSCkuJiNE2jqbnZaqfP67XyUkVjsZzcWW37weFw0NDYaD0/EokQi8cp7NULwzCoDwQo7NUrx0IIBoPohkF+Xh6pVIrGpiZKiosRQtDY1ITL6USW5U7bmJEp8+0hp9OJz+vNaa8sy/h9vnaJ5Tsrsy9tiEajCEkilUqRSCSs920YBk3NzdY4yPR1pq0dyZqzVBeP7z0nltvt/p9ZtzxQCLxZi/yne3DOvrcdcWzY+CqI70Fgxe6S/Y/iU6sJBALIdsI2G90Mm8AHisTdnNDbho1DMohlw4YNm8A2bNgEtmHDRg8isGGnkbFh49DWwPoh9M1cGzb+l9ARN9sROJVKdcuXw23YsNG9SHWQsLEdgZPJZLd/AtGGDRtfX/tqmtZOuUpAu3N4mc8i2rBho2eQN5FIWIcbMiQWQiQlYG3b4FXmj4lEglQqha7rdnDLho0DDMMwLOJmvq8sSRJS+ltiAKrqaFYMw5hrGMYIwzDaMhtZlkmlUqRSKQzDsElsw8ZBQOZggyRJyLKcY0L7/f5a4XA4HC6X62NZlvu3PcWSIa2u63Zk2oaNg0jgDInbms+q6mg64ogjFyu6rieEEOMkSXpX1/VS65hSG3vbDmrZsHHwSZyBw+ForKo6fKkkSbUic4xw8OAhZa2tLX8Ph8PHpVKpXtgHHWzY6EkkTjkcjiafz19bWlq2SZKkWuC+/z8Ar8Y5qjZRM5QAAAAASUVORK5CYII='
button_avatar_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACAdSURBVHja7J15mBTVuf8/p5beewYYZhh2GGVRBhA3QEFccUMTUeICCUa9bmh+CV41UaOo0bjFaERJ7o37GgGXIIqioGhgFJEroAIKw6YDDLMw093TS1Wd3x/VXdPdMywSB5DU93nqmZ7qc06dc7q+9S7nPW8JTdNIwwNcpijKBCFEuRAijAsXLvYXNAIrpJTPSSn/bllWEkCkCdxVCPGWqqoDVVVFVVWEEAgh3Glz4WI/gZQSKSXAN0IoJ8Vi0Q1C0zSPEKJC07Qhuq6jqiqKorjkdeFiPyWxZVkoirK5e/eeg1VFUa7SNO0Sj8eDpmmO9HXhwsX+ByEEiqIgpQwJIQYJj8ezSNf1YR6PB1VVcwr6fD686fMupV242IuSFjBNk0QiQTyRyKjOOdA0rVp4vd6E1+v16LruSF5FUSgsKEBRFJLJJIZhYFqWO6suXOxNaZvmoqIoNMXjWC05aGpCCE+2w0oIQWFBAUIIotEoVivMd+HCxV6SwpaFaVnomkYimcwvoioZ0mbg9/lQFIVYLOaS14WL/YjMads357ySX9Dr9ZJMJl3yunCxn0ERYucEFkIgFIVkKuXOlgsX+5tNrChYlpVDYqVVce1KXxcu9j8CC9GCwFor7LUPFy5c7P9qtTsFLly4BHbhwoVLYBcuXLgEduHiPwQtnFgyfexLSFVFev2Y4ULMgnaY7Ysx2hdhhguR/hAyE5ktBMJMoW6vR22oQ62vQavfhtpQjxKLIJLJ/WA0LlzsRQLvOwgsnx+jpDPJrr1Idu1FqnMPpO5xyNrqXyDVtVea+TZZtdpq9E2VeDZV4vluPUpDPcI03F/bxQEH4fP5pM/nQ9M0hBC0KyggEo3u1U6YhR1I9OpDoldfkj0ORnq8uUTNP5ze72CPVPY62Zbv8K5difebFehVm1wiu/hRIxqLoWkaiqLsewls+fzE+w4ifuhhJDv3BEVpSdZ0R53vFAUQrUriHAJL2xgwuvbA6NyN+IAh+FYtx7d8MfrWKpB7Z3fVtqfmYnTvTcmEE1GqNrT59WoffRWADpPO2Svji115E7FhJ5DqW+6c8/3rXQqe/gvqisXNWtLI09l27xME33mVgilXu0z8savQqc7diR51HImyQ5GqmkvY7M+KAkJp+bk1aZyRvBkCS2kT1bIwO5YSLSoh0WcAgY/fx7/iU0Qy0bZjHHm6c2NvPf9ySh68yXlytskDsXMPEkOGoXy2iLr6etq3a9fmD6ds4mYQP/Zk4ocPp/1t1+D7aE6uBEkZiMZGwmE35doPgX3ihY73G8T2U8cRP7gcqWk2IVW1+dA00D3g8YLHB14f+Pzg9dt/sw9/wD4yn/O/92bV8/gwOnen8fRxNJ4wBitc2KbjbDrpLERTFDasRZ54FrGmpr2j2eyFSLqGKY+R6luOqNkKf38QyoR9nNgPliwEf5C6G+8l5cbV710CWzR7on/wQ1GJHjachuPHYBSVNEtVVbX/ahpouk1cbxZx88kaCII/CIHQLo5gunwgh9AyGCY24lQaRo/FKCpps/HGRo5GbFiLqJgPHUuIXvybnO+N8qOoWlhF3f3Ptqhbd/+zVC2swig/yimbOZc5qp+aS3Lk6Uigafwktsz82P4RjziG+JdNzne7qiuBxv++h6qFVSRHns6WWcuoWljF9imPtTouo/wooqPPQdRsRY4biXrvDRQUFFBaWkppvIGSSeegfvgOFJVQe+XNLVY2EpP/wOb3vqFqYRVbZi0jeuVNLa6xfcpjTpnWyiVHnu70MXtsO2ovv0xmvDWPvppTrvG/73HGn/ne7Nwjp8zm975h+5TH2D7lMaoWVrH5vW9alGmrY99JYKEQGzKc6DGn2JIvX+rqHvvw+mypm03cQB5Z/cFmcmYI7ZA1/TkQaCa5P014fwD8GSL7iB85ksbRYzGKOv3gw4389z1IfxD54Vy0Jx5CNEWxTj+XeDzulFFXLEbdVEm83yAaGhpy6if7D0ZsrKT63VkYnbpR88fHiR97ck4Zo285NVMeIVnStdU+1MSaSJZ0/V51aybdglVUbNu3GyppbGxs0W5ixCm2pfLuLNSNaygqKiIQCDTfVIpC0UO/x3fxaVh3TSYWizVXPqgfqV/+GukP2gKjqJiGX1xL4/BTclTz2OhznDLZ5eovuDLXBh99Ts7YdtRefpnI2In2PFsW9fX1jlYRGTvRGT9Acsgwqh96qUU2jFj/wcRG234GGY2y7fNPW8uYceCo0PG+5USHnogVCObatxl1OUNen7+ZZA7xssiXIa2jOgey1ORsVTrQsmx2W2kSJ4YcQ2zEaKxQwQ+rPh99nC2h7r4O/+YNaCuXQ/9BREadmVPO/8kC6FhC/LxLmgly1nisomLEovnouk7859fY/785o1lVLROwcpmtqo65CM+zj1B49uF2A0sW2t/Pfomm3aibc+MFQmi/GG2Xufu6nDxpDvlLu9kfvlhKIBBo1a5XqjZQsHIpxcXFOeSm/yCUt2bk9gOIHj2KVCpF4qzxGH3LESuX5/b3H4/b99HgYTkPQcD+blft1WyFay+0y1x7IWzb2sJfERt9DsrGSnjw1ub2Zk9Hdu9NzeQ/5l6zR1nzOI7u5CSbOyAJbHQoIXr08Vj+QC55db1ZZc6xXQPNRMtTf/F4EYBIpRCGiVCUXJXbkz68/lzbOdtOzpbgPh9Nx55CYsARSE3/QcabOGs8ZrfeiE8WoKoqgUCA0JwZ9lyc/JMcu9A/Z6YtFU4YQzKdMqXpuNPsc689j8/nI/TAbwkPLkBeMw7t0RkE/voKnpmLoP8gWwKEC4nH43j15v77fD5KS0sp/NPvdquug/dmIRfNo7i4mNLS0lzy5aOuBl3f8ZwpitLyAbBhLdakcQSDQUpLS2n/6jP2+VAByWQS76zn6XBkEfKMQaj3Pk7gr68Q+OsrcP6l6XJhZ54Am7C/u4xwONxqe4kjjrXH+fRU1DnTKSoqonTJ+4Re/FvubzZ0lD3n//sn9L/dQ7t27WyT4K5foWysxDxxDNHs5dVYNGccxcXFB6YXWmoaTYOHYubbvBl7N+Osykhhj7eZ2JoGqmaXFwpq7VY8ny1EX/k5ak010uPF6N6b5BEjSB0yuDnow3HiSLAkaBIsCzQTTBM0A4xM2/bRdOzJaN+tR9+49t9fqzvtPPtmOP08+Npgc/aXJ5xB/Ldx58ZXVyxGW7UC46gRxONxPB6Poz7Linn40jdG0/SF0LccA2htJXtne7i/V93G7QQCgVYlbwu0L/r+KYgrv0bXdccLrdTX2udLuzqaQPKmB2HsREwg1pqTLltjWLMKj8dDMBjMbS9dzijubP/zxj8Ih8POvAfef4PItb9vFjKd0qbEHVNJ3TGV+haTGCUWiznXoSmKoij73JvetgQWglSXnsQPHWKTK1ttzkhex+71NpNX92SRSwVF4PlsIaFnp9qT3asvRlk/MA20DWvwLppH/KSziZ11ETKUN6FK9pKSCqYFlpbXvkqqzwAShw1D3bYFpWnPA1mszj1I9R+44wKBILHfP0z4oVuapeUXS4j0K6fpkuvwJmJYRcUo781CSyfab5jymK0GbqxELvvUrrRqOfQbCGeO26W3+HvVbajfJSm1zZvsDwOGIN98ceem0/hJ+J5/NMs50LBDqW2aJvHxk4iMnYhoiiLnvenU4dv1MPmOVuvtTAvIhsfj2fHvFgjtvLI/iOzZF2J16ad0ZL/In96mBLa8PuKHDEF6fDsnr8/fLH013Saxqjl19FXLKZh2N2bnHkTGX43R51Ck1wdSokQa8M2ZQfDVZ0DTbBJnVPVcMWMfimUTWclyoKWvkzhsGN5ln6Cs/2aPxxwbfzXSH0Q8eCty6p25X/bqC298hhx2AtFo1Hma++fMJDJ2InLUaUTSDw/rtecJ+nw2CY4YYd/Qo8rQdd25ERPPzGVXcWV7UndXtpzv9edoHHcJ8qSzSD47FU/t5laJu/2S3+D/8B2Ix1Fznus7vvHjhw2zf64/3ojywjT8fr8tlW97hD1ZkFJiEfvDmPPh5Wa1OXniWbnkrlxFcsgwuPUaeO7R1u9nwCop2e15+tHbwGZhBxK9++Wu9WbU5mzy5tiwGRVac1To4PTHsQra0Xj5jaTKj3DIi5RYgRCxcyaSOHIkvvdmoW6qzMsqIuxDKDZpM2q5nqW+e33g9WKU9cfoefC/NebYqDNs59XUO5vtqMwRb0BftRx6lBEbe3GON1pbtQKOOIbUiFMQGyuhYh6+NIEB+6Fwze8pKioiHA5j/vU1jCHDW+9EMFeafK+6u3PTVG3At+Bt6FhC5Om3abzunhwNpP7+Z6mfZGsY8ftu3rO14KGjaNeuHeFwGHH7oxhn/myP+upfkA4kOe9iYiNOcxxWDRdckVPO+/EH9ofLJlNw7kTnNyuY8hfEFxHUBWspLS3dL0i7cwlsWT9YSh2jU9dm6SuETRwtjziZvxlSZ6SisOso2+vQ1n1N4sgRmMWlabvWyo22QpLqOwDP55+gVm/B6N3XJqsTkqlkSWQBSnaopmgmOZAqOwT/B2/tGXmvvNlWf19+AkVV8Xm9Leay4KX/oWbIMMwxF5D853OORAxUzKehnx3VJBfOQ9d1VEUBKfF9+hGxU89BTr6Dza2pkaECWxv5br0tbfsPIr5kG9b4E3e7bqvayk5QOOVqEr36YPUbSPTciUTPndjStp52L2LdKoJFRZgtDe/WpfvSCnvJ58xx1Lam4heX7sDZ0np73n8+hzp2Ima/gUQeeJrIDsajL3gTz0dzSY44hYb7n6Ihnxb/+yA1NTUUdeiwW9c9ICRwqksv0LUs1TmjPmeirPIcWNnkTZPeatcBs7Qr2pqVKA11Nnmdw7T/mhb6l5+DwF5jtmTzd5Zlh1NmT7SiZKnQmt3H9EPFKOu3586rk8bY672/vZRAWvVr7UZRN1bCIYOJlnTLUUtFxvZ+/QWb/BnST7kK7a2ZuQ198La93JFeW81EXwXfmuHYbNVnnE/o1it2u+73RcnFp6BOfwI25Dn+liy0l2qm3klBOPy9pJbv+an4nnwYYtFcT/ODt9pLPx07YZrm9+pn8cWnoCx4p/nEtq3OslQ2Olz/c7TpT+YuMaWvLZ+dSjgUYn9Di91IoVAod+H930Dd+EmkuvXKVZm9vqz1W1+z9NWaHUr59qtnyb8IP3I7Ru++RC+8AqNHWTpkTCIScQIzn8T/5ss0jbmA2NkXIf2hNElFyzjq7BjqjKSxTDANSKVQtm2m46Vn7PGYa2trMU1zl8sKmXJFRUXODW5ZFjU1NViWRceOHVt4giORSM5Sht/vx+PxsH37djweD+3bt7cfJNEokYgtawoKCvD7/btVN1OvsLAwR33f5YMrGiWRSOSoyj6fj0AgkONgSqVS1NbWEgwGCWWRIXPe5/NRWGiHtzY1NRGJRByPs8fjccYhpaS4uHiX7eWfb2hooCkdzqr84hqsKY/A7On4rv+Fc93MeJqampwHReba2XNSXV2Nqqp0yJfIbYympqa9txspx/OckXYZFVrTmpeLHGeS2nKTgpQkhwwnfvJP8M98ksKVyzC79sQs7QapFPq61WhrVpI69DDix55iq+yWaavaUgEVkOmNDkI6qnLONRTFdmypMif6Z0+wuz9oa+UURdkp8UOhUM4NmU2WHBM4GGxe7vgedVurtzvY3Xq6rtOpU6fdOu/3+x0H1o76uzvtRa6/l+jYiXiWVtD+6p9SUFCA1bkndRddgQVQtbHFg3J3xrOv1n33+jKSbWeqzUs2zhpvhrxKjs2bQyzLQl/+Kf43XkCr/BqjzwDMki52eQnSq2J07YVUVdRv11Pw0O+JnT2e5BEjkD6/vYSU6UeGxMhWtiIqdllFsfvp4oCBf85MYqefR3LIMLYsyvWWi42VyLuvQy0o+NGOr03vViGtrMgrNTcwQ9Psc4ra7OTKcWGbBJ9/DN+bL5MqP5zGX91Gqqy/LUFNww7IoNmRpX+5lMBb0/F9+DZm9zKMbr2bSWop9iKAELR4T6pD5vSDxM2JfUBBXf4Jhbddw/ZLfoNMR58BdojktT9D1/VWJf2Pl8A/YGJ3ddsWjK49kdkOo6zgCUe9pmW2jdDf78c39zWiF11FfPQ5dpijaTY7pzLkNU1EvAnj4ENpuPoWlIY6pMeLiDYgfcG0eiyby2f+5j8w0tdXt2xySXyAwbvgTdrP+yeRSCQnDDMYCNhmxY/4925TCax/u47EwCNz459zyNt6qhzf/Dfwvf0KsQsuJ37aWKTmsYmbs1HfPjzLF+Ob/wYilUIGQkivF6WhHikU4sefQeqwYUhfwL5Wpp4gl8RZf/W1q9w7/gCErmltnuBgvyDwD5mVUt3yLSKRQIaz1FRBs0e4FckrEnG8b04nVdafRMYpZZr20pCUudLXIaSCVBRIJhCJODKVsr3b2ctIlmI7seQOJLB9ddS1q9w8li5cCQyg1VTj+eZL4h065gZV5Nuf2XVWfo66cS2J0WOxCts3p8XJUYOb6ycHHUWq3yDbLnacXxJUFen3246yrICPFuZCVh+0davRVi937woXLoFtadqEd/liEoOHIoO7t2tDqa9FWCZmcSdb3c5EXeVHiKWJp69ege+DOWAZtmoOkEwgvT4Sw08idehh9vm8yK3WpLCn4n20Tevcu8LFjwZtG9gpJfqGNfiWLkSkks3SNFsC5sEo60/sgisw+g1CZhLVWXmky8Q1K2pa589rU0qEaSIydrOjRueFYWb1QVu1HO9HbyMiDe5d4cKVwI6gNFL4P55Pqt8gjFCBTTgrK/NWntfb7NKDpjEXAla6rNn8fStOp1T54Rj9BuYR1baZZWbZitakb5YKbRj43nwZtY0cWLGrbqHppDGY6aUtbfUKOvziJABqZlTg+3gBwftvOOBuLnPg0dTd8wRWUTEFU++k8dLJFJ9QRs2MCvzvvUFg2h/2XDZ06Un1K5/Q/sZfon/wZqtl6qa9jv9fc/E9N9WVwP+WM2trFYG3Z6Jsr2teCsp2TOWrxmraySVlrtma7c3OSGDda+ee8gfsw+dHev32jqVMUIZsfQNEBv43XsT7r7ltkmY2ev19xMZcgP7kw2h9dbj2Qoxuvam57o/ILj0xu/Um/uE7P1j46v6E2Hm/RGzbgtpHo+HBWyk4pivV1dWY3XrTtLTCCWvcI8Hw3XqKh5ZQN/0pDMNoleCpIcNoWrOKRCLhEvjfhXf5YgKzX0I01OWu57bmVW51LTpvW6CqpqO48pamsmOfdxZEn27f++Hb+Gc+iVJb3SYSKHruRLx3X0fqmamEQiFKFs8j8PLjWJYk0ru/XW7ynUSWNVI9fy2pUWc4Urt6/lq2Vmxha8UWYlfZ2/Oq56+lbtrrLc6nRp1BzYwKtlZsoWZGBdXz15I8e4IjiTLla595zym/bfYKtlZsybluvgTLtLm1YgvR6+8DoPaZ95y60evvI3bVLTltJc+eQOPt02g6dSxmv3LkX15Cn7mI5D1P0O48e9eSuexT+NllLertbh+i199H7cyPKSkpQZ50ds7YM9IZIHXX30jc8hA1MyqcNmtmVBC9/j6SZ09ga8UWts1e4cxBa9fanbk64AkM4P/XuwRnvWCTxTDSJDZ3voVR0DLRu5onhZ1zWTHVWRv1HVJnq9+A94O3CD7+J9Q2clzFTzsPdWMlTa8+S2FhobN1MPTXuwjd/RvM8iPsgu+8htZXR0qoP3wEifKjiEy8Fu8DNyMOUmDJQiJDRxE59lSkP4ix+gu8h/hg5TIiQ0cR69iF7Tfch/7xB2h9dcwtVUh/kO3vzabugeeQwZBd/sR+GB1KqL3gKhquvRXP+7NR+2jI9WuoO/OCFpLM7HGQnZHo1HL4x+P2tsGizpjde8P6r1H7aETfn0Nk4rVo/3zBbuvLz6mfMAnv7y61E8k9eCvWpHEYHTuR+nYDkX6D7cRxpd2ITL4T/7S77Xr/fIn6CZNy813tpA9WKAyVX1NbW8v2G+5DWfcN2qnlmN16U3PmhQRmPm3vkioPES/u7JQFbK1nw1qi6aT01pRfoQwqpO6Ge5055NoLnWvtzlz9RxAYy8T/7uuEnn8MrXIVpBJgpNXp7KUiaP0VK4poucMoeyNEhsTOzqO8HUhp8oqmGP5XnyE07W7UDWvabLhGpy6w7ms0TUPTct0Nfr8ftUt31M8Wwd3X4ff77e41bsf85AP8M58iftzpiPfXwBHHoFRvJtm9zN7v+7vL0HUdvSmGUrma+Mk/QQYCpH57mZ0Eb8USO6mAlKRGnILRt5zEV3GYtwo6lthbLqMR4udejHxjKcEvluK5/OwclVZ26Wnvbf7d5VC5ig7vvmZLvrJDbJPlqUfQNA3v+ZegLV1E8s5f28n7ViyB4k5Eirsii0pQ1n9DwYAhyO69kcsWI7t0R1RvRplwFdIfJHrLnzG/NuD8SxHBkLOLaqd9KCwiOWAIYvO3iEn2Hmzr9v+HvmktxUNLsO6aTLKkM+r6b9A0DbWsL2Lzt+i67khPc9ZLECqw53/2S/h+dSsUlRA/92KM1Sl45EXnWiIa3elc/ecQOCP5KuYTnnY33g/mIOIxm8AZtTrfHs5RibMlbmb3UiuvXclOl5O3x1hbv4bQY38g+MSDKNVVbT5WGQy3yNmUPHsC5sCjSfXui1izEq/Xi++g/vZOqGWLid/3FMmho1AVgf7nW+0MiN9thK49UTasRQhBIBDAKu5ke83T5y3LIhAIYJZ2RVm/BuW40fYFs9OzlgmsuyYT+NmxqNOfwNr8HdFzJ2I99EJOgjajzwCUmmrMhe9SWFiIMfhoe79y7z72uFZ8RjAYxOh1MHxjj8Hv99vX3rAWc9gJ9jN71otOBkxz2afQqQtizUoo62fvvc3qlzyqU06CvR32oWIeVlEJctM66NoT0RTFXPMVoVAIIYStVvfu45DW7NYb+cVSVFXFTD8EWbcaq/xwxJbv8Hq90KUn6qrlLeaKinkUTjh+p3O1fxE439nTRoe27mvCf3+A0P/ci75sMSSTLZd48lXnHNs2W6qKluGaam7WSbVmC/5ZLxC+9wZ8c19HNMXafIz6mq+wDh9O6rq7QUpSx9k2VvT0cZiffmirot+uR9c0UkeOtInxxktYR41ELHofcemZGOf8HAJBxLfrkQf1R6xdbT8QpLS92l/8HwKwOnZC6zOA1HFnED/uVMSW71C3pxOw3fQnSoqL8T7zDuqCtYRue5hIRRUdXphG8L4bETVbMbbX29Iv3ffk0cfb0u+sC+Gw4UR/OgF99nRE1562CrxuNaqioFRvwRw2Cl3TSJ49gfhxp6LNeQWlfIhdDrDKD3fqmP0HwbfrEbEI5rDjCR4ymPbnXYz4IkLB5DvsjBe76sPwE5H+INYb/0Ag7JRBw08kdsP9VM9fi+zcwyG4OMpOF2sWtEMcOZLoTyc4D0GrqAS5cpmzndDqUYb2k/EUDz4SdcFa/NNmErrtYWoXrN/pXO3VY1fLSBZ78ZXYsQjeua+hLVtMashwkkcdR2rIUGSosPX3AWeTNc+etbcE5sg+e4CVq9GXfIRn0Xy01SsQqeReG5//sT8Q79QV45Jfs/WSX9vax4ynMG/6L2JpiWuuXYWiqiT7DULZWIkFeD79iPi4X8K4X+L9aC4mIOtrsXoehLLmKzRNI5VOEG8ueJvgko+IDDue1JzlNGystNv96nP8c1+Fj+aSumwyWy+bjLqpEu3mK4lv/hZx4llUv2q/PVBfWoF1yxUIn8+ZGzMUtvvz8AvUAN63X8G86b9QHp8N1Zttk0AIQi/+jfob7yWyPIJoiqLPnk7qL7ejPTodK20+GKXdENWb0foMwPAHMRd/SGDjWmI3PUB09v8RTc9L459vg3DYlog76YM+6RZSTVFk5SrCzz1K3dBRWM+/R1PNVjz338y2ZUsQsSjmb25HueQM1FXLMSffQaRmKyIWhTWr0I49hZQ/iFW5Gk3T8Dw3laajj8P483NUp+ckde35cPChu5yrfYkWGTn8fv++0e+FQIYKMMr6kRp4JKkBR2D0G4gMF+4GecnKrmGgrl+D/tXn6Ms+QftyKcrWKjuQZB8hGo3mLBMFg0ECgQBSSrZt20b79u3RNI1YLEYikXCyY2Tq+Hw+4vE4hYWFRCIRJ9uFYRjU1dXRsWNHAOrr6zFuuBcuugLGHE5B7Wa8Xi+NjY1O8nZN0ygoKEBRFLt82hnj9XopyNoXW/fMPFi2GG6+3CkTCAQIBoM0NjYipXTKG4ZBQ0MDpmk66n0gECAajWJZFuFwmGg0immahMNhtm3bRocOHZBSOvWy52V3+pBIJGhsbKRjx45IKZ2xqKpKKBTC4/E4WU86dOjg7ERSVRUhBB6PB5/PR21trTP/2e1kz8mOzu8LJBKJnIwc+w+Bc/QCHStUgFVUgtWpC2aPgzC79cbs1AVZ0MF2VmG/LE0kE6ibN6Fs3oi6aT3qxjUoW6tQttc2q8kHMGSXntQ98rITJKJuqkR/8mEST/2FoqKiPc5dvO39StS/3Y/38Qd2/naGNsT+0If9DT8OArv4fiTOkxCaphEMBneayHy3CLRtG+EslXafkHg/6INLYBcuXLQJgRV3Sly4+PFCyVfFXLhw8SMlMLBPXlLswoWLXaM1brYgsGEY+8Vb11y4cNGSm7skcCqV2u9e4OTChSt9LWedPZ/ALSIc8neEuHDhYt+SN5lMIoRwDgAhREoBPst2XmW+TCaTGIaBZVmuc8uFi70MKaVD3EwUnaIoKIricFTXPfWalPJ5KeUwKWU2s1FVFcMwMAwDKaVLYhcu9gGEEA5xM2GgGYTD4Urh8Xg8Pp/vS1VVD8p+yVOGtJZluZ5pFy72IYEzJM5Wn3XdU3fwwX3e1CzLSgohTlIU5RPLskqcEK0sfdt1arlwse9JnIHH46nt0aPXPEVRKkUmhLK8fGCnhobtT0ej0cMNw2jPXshY6cKFi90mseHxeOpCoXBlSUmn1YqiVAIP/v8BAPZB4wjg9XlhAAAAAElFTkSuQmCC'
button_server_cleaner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABncSURBVHja7J15nBTVufe/p6q6ep/B2QVkGVEgDoyKKAZwVAQR0FxQDEZeicT3VS5qYjQ3LlxFk7hcDUpegRgXVCQuIKgEjRBcouK4gIqoqMgoaIDZp/ellvtHTfdMT/eAC8sMqd/ncz7dXX3qnOc5Vb96nrM9JRRFoRUqcIkkSdOFEBVCCD82bNjoKggCm03TfMw0zQcMw0gAiFYC9xJCvCDL8hBZlpFlGSEEQgi72WzY6CIwTRPTNAG2CiGNiUTC24WiKKoQolpRlOMcDgeyLCNJkk1eGza6KIkNw0CSpF1HHNG3UpYkaZaiKDNVVUVRlLT1tWHDRteDEAJJkjBN0yeEGCpUVX3T4XCMUFUVWZYzMrpcLpytx21K27BxAC0toOs68XicWDyecp0zoChKnXA6nXGn06k6HI605ZUkify8PCRJIpFIoGkaumHYrWrDxoG0tq1clCSJaCyGkc1BXRFCqO0HrIQQ5OflIYQgHA5j5GC+DRs2DpAVNgx0w8ChKMQTiY5ZZClF2hTcLheSJBGJRGzy2rDRhcjc2vfNOC51zOh0OkkkEjZ5bdjoYpCE2DOBhRAISSKRTNqtZcNGV+sTSxKGYWSQWMpprm3ra8NG1yOwEFkEVnKw10o2bNjo8lAO6Y6/LBMefgqRyhGIZBLf+n/g+nwzQtfsK2/j0OgXH8rKBU+dRHDkmWiHFZMs6Unz2RcSPeZ4TFmxr7wNm8BdmrwjxxIeehKmQwUhQJIwVZXA2MnEjzoGhGRffRs2gbsiwsf9mPDwKkyXGyQJZLk1KRi+fFrOPI94v6Psq2+j20NWFGWuoijpHUgul4tE9oqPboPYwKEEqyZi+PIsyyvLILUSWFFAUTC9eSR79cPxzZdIgWb7LrDRbZBMJjN2Cx5SFjjR50iCVRPR83pkktfhAIcKqtNKThdan3IC50xHK+lp3xU2DiELrKrd0gInS3oSGHcuWmnPbPIqDlBTBFYtMisO9KJS9B6FqDWfIkXD9t1go9tZ4ENiOFbvUUBg3BSSh/fOTd6U9U39llodD10nfsIogrEIec88ihRsse8QG90K3Z7AhstN4IzJJHr1t0grSdanorRaXstlTpNYUSyCmyYYBmhJoqPHIwea8a5ZsV8tceia2wlXTcAoLE4f865Zie++25F2bj+0LMXoswid8zNiI89IH3N8thnv2mdwL12Qka/+jofwrllJ3tz/tBn570RgU5YJnPEfxMsHtVrdTsibSg7VssKpKSRDh6QCQiI06QJENIz31ecR8dg+l7X+4bUkj67IOh4eN5nIsJEUXvsLHB+9e0jcVKFrbic4ZUY2qY+uoPnoCqKlvSmYd11mOyQ1RDCI32/HUvwuyBrEMrC2LnWHFKyaSGzQsZiKo81tbk/ejgTuLLnc4HITPHcmkeGn7HM5w5ddT/LoCsSOGrjiAigXVjp9IGxYj1lYQsNl16Hperdp+85S9MLZbeR98sE2XcuF9RuIn/dzWk4emz4n/UC2017TXgncXRAecTrRyhGYqrPV8kpt5E25y7nImiK22i5P6tPtIXL6OftcVq2st3WDLluMY83TFBYWUlZWRlksQMnsyYiGWszBlQSDwYzzAnMXsmv9znQKXXN7lqXbtX4nydFnUbtqE7vW76RxwUp2rd9J851LsuRovnMJu9bvRK8Y/oPqCMxd2KmugWmXWl9uvByuuwS/32/pWlZG2fw5qIvnAxA550KSe9j1Frrm9nR9Kb2Mw/tk1zd3IbvXbU3nq121ichl12e46CmZU/rnyvdd6t29biuBuQvTbbd73dacsh0UC9wdEK08ifCI0zHcnnYLNRQrqSo4ndmkTbnPiqON6IrDOtZ+emk/LPBQP//I+jJsJF6vF4fD0XYBJInSsyuRK/MzRv/rH15LZNzkzJtrygzq73gkq/yG2XPS/erEhvWIHTXEBg4lEAhk5EsMqkTsqKHuH6vQdf171xHZXpP1sAHQK4ZjFBYjtmyCxxZQUFCA1+vNyFNw/+24f3cVXDyeaDSa+yEwdyGhKTMyxgoSx42g7p4nMsLKpOQ33W11GIXFBC66guZpl2WUGRk3OaM/nsoXPHnsd64XIDKoMt12ZjhM/Qfv5gp5YxO4I+JHVRA8dRKGxwemgZSIA6LDVFEOi+twtJK8HdnTFruNxFJy30+huZYuQHnvTag6k+aNTTTfuYTA3IXELpydzlNcXExJSUnaCmhHVyC2fAg/G9Pmbm/ZhDZ6HI3jf5pZgceHctE4K9+tV+N461UoKiF23sy2djv7Qotcb76Mw+Eg+ts7f1Ad7QMgpq1d5YnWDf3BO6iqiqqqOdsj/4UnKCgoIC8vL+fgV2TcZKQdNTDvxjb3e/UyzCP60/Dr29L6pOXP4abHKkcQi3UYy2jv0m/ZZHlyJ1aRTCa/db1p9ClHemG5lefE0nS0SJvAexrZ7N2PwLgpGF4/CIH74/c47PFFqN/UWGRMW1JnO+KqrSPPreQVkjXVJIT1XZbbkVjF9c5r+0X2otlTUO6ZC6uXERt5BpFxk2mePSenuxurGIaIhjEnDEXd+DrFxcWUxQIUX38JRMMkqs7KnKtftwrzzZesfGVl5K9ZYVmZ0yal80VPGW8de2YpLpfrB9fh8Xj2qK/T6dyzV9IJueMnVVly3v9HHPfdTo8ePSz3+w9XIu2oQT99EuFwGOeqpRScUIg5YSjyHQ/i+fMKPH9eAT/9hVWQz58p/5ZNGS79YSsfbc2XRyKR+Nb1tpngMMbsqXi9XsrKyiguLrZHoffYjywsoeXMqej5BSAE6tc1+F77O3JjHXmrn6SlRyHJAT9q18dNzft2IG/7p6QQ1qidDJgmzg3r8D67ZL/pUPTUfcRiMZLXXmzdDLc9AAMGExt5BrWL11By8bhW967Ucgu3mSSAug7liNLDicVibU/fYAsejydtFeXN76B8uhlt+ChisRiqqqbdZ7P6JVzFxYR/YB377TqX9rK+3HIvyVvupTmr/xQmEong9XpJXD8PpsxAByI5yspwab/4FFVV0y691NyYkU//DvWmfkuSdNBHzbuFBdb9+QTGn49WfDgIgVK/G/+ap5EbrdtO2bkd/zOPotTubO3rtre6HSxvirgZ3yXUjzfif+Au5Lqd+1UXl8vVNrAzfw7+meORX1uDMXAI9Weeb7mge7FupseHprXb0xxozgrG7/poA3i8RGdeneU+y7K8T+roCMcHb1tfKofvtR3adx8ySOfx7flEtxez79HELpxNaMoMRDQMq5dZ6ckHLfe3M/najT1833rbRlFDXeIFCF2ewKbTReDMqSR69wdZRg40k/fichy7vs50ybZ+jH/lI8jNDW2bF6R2pO1I3Ha/lZpP8S/4Pcr2L/aLDrvXbaV21aac/3m9XtytDw3Nbw1kyTtqIBLO7Nu1T6cemR3crEP/y/33p632qxpPaPSZGe4zsE/q6Ah58zvIX9fAoKFEp1yc+2FcMZy6p9YT/MmF2X1UQK35tG0UuxPZjG2fEK08ydLvtt8i/XIa3msvxvv7X+Lo0//7DTR+y3rbW/WD0efdO4ENoy2szkFOpiwTGHMOifKBIMuIZJy8F5ejfvV5TjmdG9/At/yhzpdE5ggXJO/+F/6Fv8fxyfv7TQ/Hlg8xCovZ/dCLxH42O+O/yKXXE6maYFmSvz2Joeu4NlvWUzz/ASXHnkhZaSllpaV4Fq2AbSaeRSsoLCjIrVtrkj98G+XTzTDsxyRHjbXmoKtfwuV0gmnukzpyJf8zS62H0U3zabpxQcZ/oWtup37+4+i9+8PyhzP7lKm+81uvWl8u+TV5516Ulivvpj8hPgoh/3MbZaWlbdbvpCp65Ofj9/kQNy9Am3j+XixC7pBR37ZeqaPVPdC86E594NDo8cR+NMxaqIFJ3pqVqF98bJG3M0/n5b9h9CggPO1SjPyCNissBIjM/psIBfD/6Sbr4u3HOGD5i26l/rYHMAcNpXnQULh8TvaT9KmHENu3ohYW4rrzt0SGn4IxaCi1K97KlLmhlsgd1yJCob2+7sZT/TKBgdbqL3P9S2n3GcC3j+rIHnG/F3XAYBLjzyU+fgq7xk/JyiOeX4b+p1vw5+dnu7n/fB719bUkRo0lcOcjBDral/vn0dDYiPe9amtaaOJUGidOzRakuOw7yf1t6816qHU1C9xVVmKFT6wicvyo9EIN/0vP4dz8DmjaXs/1rHwU9+onEaEW0DTQNYv0ht72JNM1/At+h/r6Gkxj/66Akj58m8KzjkE8vxzqazMbfMsmmHcjxrW/wOPxICQJEyg+/2RrmqI9NqzHvOIC5B1f4PF49rqKyfnsY5ZlB3j2rzidzoz/90UdudJhN89GnX9zeqomQ9cH5mFefj5erxeny5W1usgEDvvN/0FZtjizrVrbyVxyLz6fD+fSe3Eunm91Azrkob4WikrRW1e20YkO36fePZV3MFZiCZfLZbpcLhRFQQiBz+cjEokc1KdKrGIYwTE/wfDlgyThfWMN3jfWfrc1ypJE4LLriI2djOnxtS3gaB3Q8i36A56nFyOiB1bXUChELBZD1/WMKRW3253un3bM397VdLlc+Hy+tCUNh8OEQiHy8/Nznm8YBg0NDRiGQVFRUc5R5B9aR6fXMRYjGo1mTOeoqorL5cLtdrdNDyaTNDY24vV68fnaBpPC4TDRaDTdVrnaKRqNEgqF0n3TVJ5QKIRpmhQXF3da/g+pt66uDlmWKTjAFjkajZLa/tslCRwfVElwzE/QexRac73vv4nvpeeQIt99l5Dp9hD4v/9F/NSJmF5/msTeJ/+C99E/IUJBbNjoTuhI4C43Ch2tHIHhzwchcH28Ed8rq78XeQFENIJz43pEUwMkE6Alca96HM/j99nktXFIoMsFdtfzD8NUHIhEHNfmDUjh4PeWJ9l/IOHxUzE8XkjEcVa/hPfhe5Aa6+wrb+OQQJezwEr9LoSuYXq8hKsmoBV/v5hVWmkvgufNRCsug0Qc9f1q/A/O2+8LNWzYOJDIionlUNU9bvPa70+UcIhknyMx/D0wCkvQS3vi+PLzttHUbwEj7zCC515Mst9R1kKNb77E//B85K+32VfcRreGpmldOyqlY/tW/M8/idzSCJJMYvCxhCddgJF32Lc633S6CJ41lcQR5aBpyLU78f31zyhffW5ffRuHvgVWD7IFBpCbG5EDzSQHDMb0+tH6HInpdKNu+wSxB9lMWSY0firxwceC4kCKhfGvWIzzsw/tF7bZsC3wgYTzow141z2HiEdBSERPm0hk7GTrbQudIHzqJGLHWCu3RDKBb/UTqFs27XHl1sFC+Df/Q2317ozU+Oi6vZ4XvHkRLXc9tsc8TYueJTb98i6hpz7kRBqWV2P27Guzb390ObuycO431uJ5+W+IRByEIDzpAmIjTrfed9QBkZPHEB020vrPNPD+4xmcH77bZd9EqJX2RH5tTdti+Z+NQevdn4arb9vjecn+R6Pv/DpnRAwAs2dfkseNIPrFp8Tj8YOuZ7LyRIzCEpo2v2e/d/rfjcAA3hefxvXmOovEQOi8mcSPHZHxhsHY8SOJjB5v7W+VJLyvr8W9cT0i2XUD1Gv9BiB2fYPb7aakpISSbZtxvvYi+pATiEQiGRa6YXk1+hAr2oV+RH/45itkWaZp0bNZ1rtuhbWlL/mH+5BlOWc5Zs++NCyvTh+PzMpem52smkD96s3UVu+m7uVtJKsmAJA4Z3rG8cQ50616X96WIU9k1hwS50wncPl/Y7q9aI+/mrH9rmnRsxkyxKZfTuOj69Jyts/XUcfO5I/MmpOha8rqB29elD7eXpfIrDnUvbwtXXZt9e496thZ+TaB9wTDwLfiEZzvvYlIJjEdKqGpl5AcOASA+OBjCZ/xEytKhyTh3vAG7up1luvdldUqLMH86L2MpY1KKIgkBNFf3ULspFPwXHwWlAv03TtpmjyDRMVwTLcXfdUTxBaswPT6cA52wekD0QpKaJw2C+/Tj8D2bVDho+myG3KWE7j0WkQ4jHK0A558kNDEn2bFpwpccSPqK6uRj1Iwv/qCponTiFcMp+WqW3AvutU6/twTNE+fTWSU9fDUPvvIkmfLJkInVaE/eb8VSmj1Mpg6kpaWtl1i2qAhmKGQJcOG9QSmXYrzL3ei3DMXvXd/Go+qpOWux3LqGMohf6SoJ6EZV+D63a/g9IHoBSU0TLyAyKwbiJ8wGtfPx0O5wDSh+fhRxEafRWjGFTjvugExZhBaQQliRw215RU5dYyX9MpZ/sH2KrpFRA6RiOF/ZD4YOvFhozH8+YTPmop2eB9ix45ALygGw8D91it4v+eyywPqVlZNwHR7MV5bg6K0XYJE+UCkms/Qx/4HZu/+RBa/0HbSa2uIDBluhcExTbTRVjA27ZO29eGGP594SU/kr7YiFAVz/GT0HOXou75BG1iBWPcZzq+2oswYRyQSyVifLCJhYuf+HKliGN7NG0ne8P8I3f1XTLeX8Jy7Yc7dVr6GWqK9+llyXXcJDp8PIxpB3/U18Xgco88AlPfeQvV40uuNzZ59LW9p4a1IkoRDkjDe+SexZ5fiuvJG9GgY7Zuv0Ebl1lEPBrLkjyYSiGiY2H/fg+O0iTiXPUj41qsRPh9SaS/iM69CLHraqjfYQmTM2SjvvUls8Xx69OhBdMsHJAwDafosjBw6huO5y4/5fBntZhO4o6Xy5ZHsexTC0FC+3Epi8HGY/nyS5YPReve3BpdNA6mxHqV2J8m+A9pen5LewN9uU5xpgmm0vZkh9RswJRmlYTfKzh37d2DniHLrhq/5FEdrLCV9yIkkjxuB46rpmOPPRZ57Jfqj/7+tHQDjjoeQtm/DGD3O2plSnrnZzwB4dRtS9StW4Lre/XOW43S7UbZ8QOyUs4gPH0XizyspOu+kjLIKLhpDw9W3oZf0InzuDBSvD1E+EGXZYrTftgXLMwHz9gctuYTA4/EQLS5FbP0YuXwQicJi+ODtDE8jecJo69y/PYGvoICW4lLY+rEVR6tnX0R9LexBR6ffj/TJ+9nyn9qfupsWkCwfSHLUWJwtTUSmXISIhJF2/wv5zutJ3Dgf84N3MEaPRdr0Lk6nE1VVCfYbgPzmKxhDT8itoyxTlKN8918X2hZ4j6O1p59NfNgoTJcHJGFtShDCek2o5LG2COo6RkExoUkXgNz6dobUZ4rIpgm6lRdNAy0JehI0vZXIRqu1j1P0x+v2L4EP74P0ySYMIRBCkKyaQOCKG3G+uIL4s0sRt96HftpEejy3BO2XtxA+fyYFV04jMGAw1HyGHGhCA7j+j5Q8cActdz2G1m8AheeNoK6oBPPrL5FlGREN5yyn4f5V9Lj1alxXTSPwwPMYHi9NTU3pnTWRWXMInz+TogtPIxJPEKk4Dq2lGTkUxBhxKt7BlagVx9E89178D84jetSPMGs+S4es0Xv3R/7obhhcaZHuww0Z4WySA4ci7aixwpH1OdLK/8YcJEkiWdoT8eXniJZG9Bw69rj5ypzyN9y5BKmsFyUXjaHlx+OIz1tC3OOH3v2Rf3Uh0pZNJO9/zhLgo41IkRDGkQNxORxEZs2xZPj6YcSRg9Bz6Bg/dgRNJYdnll9fRzwe32sAvwPbB+5CETkwTWtBRzyOSMYR8ThSS2NrakIKtiCFg0jRMFIyjpCt+TEhQBgmwjAQmo5IJhGJBCIRb00xRDJhHdeSCD1pzS8LgRSL7HedEuUD0Y8/GfMLg9rq3TTdsRhH9avoV/wUj8eD96kH0yFoI5Om4bzrBhpfWo1RVAr/2oG6diWO19fCJb+mtno3Wr8BKDdcRmNjIyISQb/qZsQJozstR319Lc3X/5HmjU2IkjLU235j7W5plc/9zKOI+lrqVrxNePX7KNu3Ic+5FPWxheDxEl79Pk13LMa5ehnBu29C61OOGWxBURSSp1gDRPo/X0RpqrfuqadeQ25XvlbaE1G3C0VR0AYcY+Xf9C6qw5Ee3FPXrMipY8urf88t/8olaEf0p7Z6N/F5S3AtfxhuvdqKKHnPUrSV1Sj11iAVX36G//G/YAyuJLQpSHTMJEuGVU/gWroop45KrvIfW2D5dgcxIkfWdkK3291pwG0b+w6BQCBrmsfr9abDtcZisfRUkSzL+Hw+VFWlqakpvTc1GAym40opikJeXh6yLNPY2Iiu6xQUFJBMJnOW09m5bT0Nk+bm5nRgO6fTSV5eHpqmEQgE0ntlUzI3NjbicrnweDxomkZTUxNFRUUYhkFjY2PW3tlgMIhpmukyU/mFEDQ1NeF0OvF4PJ3Kmet4SubUwFJKtqamJjRNSy9UisfjFBcXo2malf+hFxClPTEnDKWoqAhd13PqmM7fofwDiXg8vuf9wDaBbRzq0Kom0nzzvek3Oiifbka+9WrMt14hP0eYn64Em8A2bECWNVVVNSMKSXchsGJfShv/jlAUhaKiom6vh2RfShs2bALbsGHjYBPYXmxuw0Y3t8BGF9x6Z8OGjdzczCJwar7Mhg0bXQsZL5vrjMDJZLJLvLTJhg0bmdZX1/Us4yoBWZtmM16MbMOGjYNO3kQi0bpMWKRJLIRISsDG9oNXqT8TiQSapmEYhj24ZcPGAYZpmmnippaMSpKUEQ/L4VCbFdM0l5qmOcI0zfbMRpZlNE1D0zRM07RJbMPGQYAQIk1cWZYzXGi/318jVFVVXS7Xx7IsH9lxMXvqKWCPTNuwcfAInCJxe/fZ4VCbBgw46nnFMIyEEGKMJElvG4ZRkl4k3c7ftge1bNg4+CROQVXVxj59+r0kSVKNSG1iqKgYUhoItDwSDoeP1zTtMOx10jZsdCUSa6qqNvl8/pqSktLPJEmqAeb97wDdhFrawDFecQAAAABJRU5ErkJggg=='
button_hypesquad_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACH1SURBVHja7J15fFTV2ce/d5k7exISkgCyGJSlNWBdUFyACm6A6CsKLsEiyltLEbWo1aJV0WoVt7pCqwi1bixaLYJVBBUVUERl0YICqYAlZF9mn7u8f9yZOzOZCSAawLf39/mcTyZnzpx7tt95nvOcc54ryLJMAgowURTFcYIglAuC4MeGDRuHClqAjYZhPGcYxtO6rscAhASBDxME4Q1JkvpJkoQkSQiCgCAIdrPZsHGIwDAMDMMA2CII4rBQKLhdkGVZEQRhtSzLxzgcDiRJQhRFm7w2bByiJNZ1HVEUq7p163G0JIriJFmWr1AUBVmWLelrw4aNQw+CICCKIoZh+ARB6C8oirLK4XAMVBQFSZIyErpcLpyJeJvSNmwcQEkLaJpGNBolEo0mVecMyLJcIzidzqjT6VQcDocleUVRJD8vD1EUicViqKqKput2q9qwcSClbYKLoigSjkTQszmoyYIgKOkGK0EQyM/LQxAEgsEgeg7m27Bh4wBJYV1H03Ucskw0FmudRBKTpE3C7XIhiiKhUMgmrw0bhxCZE2vfjHixdUKn00ksFrPJa8PGIQZREPZMYEEQEESRWDxut5YNG4famlgU0XU9g8RiTnFtS18bNg49AgtCFoHlHOw1gw0bNg59tdpuAhs2bALbsGHDJrANGzZsAtuw8V+CLCOWkQg2bNiwJbANGzYOpARG1+1tJBs2bAlsw4aNAy+B9xG1E6ai5RUk/mvrtvBBukUsiaCqlD562x6ThSsm0zj5Vvyv/BXfAzfnTFO1bAtiXTUlY08+6J0V+tU0QgNPI9673IpzfrYa/0t/wfH+G4fsIIsPGk7tfc/gfevv5N3x631KHzj3UiKnnG7FOb7aiHfpq7iff2K/87UJnAatoCO6y53gqWCG1p9/JGiJqxAM4vN6c9dVN6itq6NjUdFBK2PzHU8SPPP8rPjoMQOJHjMQ/2N34XvxyUO6nYNxFaGlBb+/bX+JgRvupWX0+GxS9y6nsXc54dKuFD70u++c73+NCq2TskTvKaBrJlFF0QySBLIMUiLIjoMe9lqHVthbGuMgBbV8AMEzz0cIB+Hph6CnkArzZpuT0CVXEY5EDloZ97Wt95QmXDE5Rd55s3PWM3rh5TSddMZ3yvf/U/gB18BCisCSlCKtopjBoYDiPHjBobSLFKxauYvoqIqs76oXrad60XoAauavZPeyLeidu1M7dylVK3dRtXIXgRvu3WO+baWLH32COUiXL0G890by8vLo1KmTGR65Ffn9t6BjCc3njktpDeUDsp4dqZickX/ghnupWrmLSMXkLCnYOl4rH0Dj/X/LKGft3KXEBw3fY31q5y5FLyjct/a9+Crzw21Xw+8m4vf7M+qpzHnEXEqcW0G81Y252NQ/sHvZFqpW7qJ60XpCv5qWs1zJNG2l271sCzXzVxK44d6MtLn6rnWa5juetPo+HZGKyRl9kavddi/bQvMdT1ptlxw/7aZCJ/x9gCilpG/ysyiCIB48dbqdLmS4ly0idOb5NJx8BoUvz0FRFGtw60XFiPOfoaamxpII1Q+/CN17pjp89HgixZ3peFNKRayduxQ1bU2bK52yfBHCFb/B6Hccbrcbj8eTkb7jTeNpbm4mFAoRKyxE7nEkdX+cjV5UnJGnuHmD+TmuIgSD1neN0RgFkQgulysj32S8UtY7Kz8AtXc5dXc8RuElQ1Cqv81ZH7V3OY3jJu99SZZoQ2HTeoznnqCwsNBq3yQKn7qXpp3/JjznT4Q9HtzJL47oQ3zkmJQWWVRM8y+moK1bg3/V0jbbOZku1lhPwUuzUmXpWkaga1lWn0R1naKHplnkDbRS9UPJJU44SHV1NSUlJUQSdpZc7VYw5SJcX65N/b7v0dZ4MYJBatd9QseOHRFFsR2s0OnSV3akJK7TBU43uD0HP+wrLrqSlnXNGdIlGQx3al3seP8NpB2VMOBUIpFIyhh29gXmgNj4aYpcbi94fcjXVZgq4EO3QSiIOuhMGgaebg0CtXc5wqYNcOkwM93QPrBpPeqgM6k/+yKzk3Ztx7NkIXTvSXBDgNq5S2m+48kMqZCUyoqiEKr4tUUGhvaxVFC9T7/9M54l81uyMFOt3bQe3F4azrkUXdeJjqow67OjEqZcYqaZcklGG7ZpuEpqGevWoChKFnmTyH/jJQoLC8nLy0tF9u2P+MbCzHIBwROGEI/HU+XatCGnWh45emBGfwJmHsl0ixeYZSw/jmBi4gsOv9BMl1zSJPrNmr3TtAohHMxcEjz9EBjQdMM9aJqWSty9Z6oeJ5RaHijbZxspKX1lGRwOk7wuN7g84PGawes/eMHjaxfh7n3ndfB4CV93V4rAJwxGqKuG557A4XCkEv/1cYzF8ygqKqLTwqdwLjEHQvTEnxOPx4mUH4cQDmKM6I/y6QcUFxfTKdJM8bSJEA4SGzKcWMIPkv/Bm/FOGA6LF6AWlhA683wCo8dbKplWPiClsiXz/fUYlP/8m5KSkpSqvR/wPXAz/qPzMK4eg/zEQjyzXkF5eRX07W+OV38+kUiE6HGnmP8vmIPjrZfNeq99F8/rL32n5zmdzj1+n0Xu7dvQJ4/B6/XSqVMnOvz92UTB84jFYjgXPU/h8UUYI/oj3Tcbz6xX8Mx6BS66MpHOb7WzOWMFYcTRKIpiqu93X2OS0OMzvURWTMZwexGWLIB7rjcnz7R+swyMoyrMiW/RPMRbfplaEjxzP44V/8To25/GPsdkPDe9HsXFxe2pQgtpKrRsSmCny/zrcJhxSQPXwVCh02e2vWHebPjdxNzfbQxk/OuZdQ8tY67AOPV0Qo9Px3nCELSuZYhvLESUpMzB9fo8/H6/RWrfmhVEL7zcGlh6UakpnbYZxICa1k1c2plIJGLl6d/8OZ47JxMKhYhEImiTpkGffqgjx1D7x6cpmjgSefdOtG5lEAoibt9CQZoK5qncTPOgM/erScMLVkLvclRAzdnkBmpxZ6veXq/Xqrd35duELr+m/fq78mscDodlhRYb6834TodZnhxj0x6C0ePRgFCOLDI8PtbuRhRFCgsLc9ezczfz86YNeL1eS+uSqnYg1VWjFZaYqvhhPcy8x14BY6+gBfP9KBmax+G90DZ/Zqneoih+J2v6/hMYIdP6nK5GK0rCGi2Za+EDz+DvRmDA7/fjzbGNtFvItv6533+L0JnnE+4/ED2pPq96F2+rNWROaZE2YAzPntV8w+NDVTPpIkkSfr/f7OSFTxGJRAhWf0t8wnXUXzKJjoktFgPTh1K6Cia2NO238S6pGhvrPzEjN2+APv0gbe25L/VuC451H5sfjh6w17SRism40vaDCTRnaj7pa2tNI1IxmcDo8aZWsnyJ9Ru+/Qam3pnzd+k+0vdY7lzPTZh9dF/e3jMoKEyp0cHAd36pwveTwOlSOKFKexc9j9b9CCInn2GSuR0lsGPzepwrlxE+52K05Oy/PxJ4P41Z8ZFjMY46DqGuGuO5J3C2nrFPPQPeWpBSqU4cYn7YtcMcJDsqUbuWQXnb6r7hcFgGmKKbrsg6sOFyuZA2racO0L1+wuFwKt/De0OwIWWp7XVU7ockJIVlZCk9LJMwx51qDv4hPXE4HBY5o88uzZDGSuVmYscMhHMugvl/zlrf7gnSxjVIOyvR+vYnPHoC3jfn5zR01d9mWqKZ/SBSxnBse+BHfjbQbMs/3oT4wkzcbtP8Fbv9MfbH+5sYaDY/tLIp6J27oxeVpI3PDXvX8AC9oCBtZfrd+CLmEA0pK+6egiAktpKS20imKq326EX+/TdT9Ntf4Fq1zEzTeo/WoXyvIO/8N3l/uo2iX48GSUYvKMqxDyzvQz1yWK5bhxzWbceKJaYxa9go1D7lCB+vQJIkFIcj8zcTpxI96ngwDCKXTiY4/EJzLfXCn5EkCdfGteDxIixZR8nPTqBTaSmdSkvxzHwFthl4Zr5CUWGhmQ6om3wrTdf/MaN88UHDabpyqiUVdV238tUfe4l44vmhq6alrKSJuogtiYF40mmonXuAYZjbTWknoJL1MdxehKt/T1FhIX6fD23Wq6jHnJSRzvnRe+bnX1xN6NSzrfJZ20N7aWv/q8+bE8jtj9Bw2xMZ3wVuuJfaR15E61oGC+daxqTvtPtw4hAK8vPx+3wI059AHTk2+/dtlTN9GTXzbrMfTxtBcMrtYBjonbpT/8fZ5pIokdz5j+cQ66ph1MUov/+T1b9FYyYgrdiG8EWAkp+dgKv1mn9PY/aHU6HTpLAgmFJYFImePIzw8DG4l8yn4LZJxMuPJ3jpr4icNMxcG6frGMk89lVd+PdXeF/6C66lf0eIhIkddwqh83+B4ctLVU4QEpOQRHvCvWaFtY3QlvpMx1KaZi8mXXEV5s9G3L4FV1ER4v03ERowGL1vf6pf+SizaeuqCd13M0IggP/+mwgddSx6n36Eu/ckfMHl2V2xaQPG43fhyM/HlUzftz91Ty1KpQkHMyzCrteeo2XsFRjdexJY/DnJ1b64eUOGxdr1yQeEzjofY+qdVOVSOROqomPFEpQPlhI79QwCD/zVyk/aUQlFezfIuJ5/HOXInxA7+wKiZ4+m6uzR2fVcsgDt0Tvx5+fvc1+5PlttTkojx1CfS+Uv7vTdjZlvLCQwejzxCddRNeG6tg2Ar8+jefwUYhOupWrCtZlax/xnqF3/yfc64bf/J7FykTgRWq66CbXr4RiCgLzxE/KnTaTD1EtxfrgUVDWVQ8YEILYZ5J2V+B++hcKJI3AtegEiYXSHQstV09A7lmbPTIk8f4gTQrSRxnv/TeYsXGtanxVFyf7NTRNh+7aEYaQann4I4+aJeDweBFHEAIrHnmRuHaRj7UqMKZcg7diKx+Mx011+BtKCZ1JbFWkWWObNNi3ZioLT5bLSiyvSrM7vvYnxj5cy6iLs+oaC269OlTFknvTSP/84I53/jknIb7yc+dz33jS3xhL7sLphYAAdbrwMecGcjO0Ybca0NtuxdegwfTLKI9Oz67lpvdl+V4/F6/Va9Wwr3wyr9vOP45zziFm/9Pweus3sl46laJq2z/kl+9+xcE5mnvNmp9oykc49625cj7aqT201zJuNdvOV1ljY1/bJmtBcLpfhcrmQZRlBEPD5fIRCob0yv+amB9A7dEztuXr95l+XGxwKzrUfkn/n1QihTFUndvSJhC6+iuiJPzclcusDH2kSWf5mC+4FT+NeMh8hnFmmlqtvI3zeOAzFmSl9BcH8X9cpPa1s7waRSISmpiZ8Pl9OIxZATU0NkiRlWCVjoypomPYgwpIFiNdeQseOHVP9s2CVqeoN7UNhcy0tLS3E43EkScLr9VprsIyDAoFAhlrocrnw+XxZxpRgMEgsFsvY9nA4HDidzpzlb25uJhwOm+153zOoYybAvNn47r7OSh+Px60yiqKIz+dD13UCgQD5+fnWAY/WZXS73SiKQlNTE4qi0KFDh4xyBgIBy6Dl8/mor6/H6/Xi8/n2qV/C4XBGPRVFweVyZbRfPB7PmW8y3uVykZ+Q1uFwmEAgYFmcFUXB7XYTCAQwDMPatsnV323FB4NB8y0miTyFLwJQuxvhtF4Z20Ct6yNJEm63O6PP2npuxm5AOIwsy9Za+fup0G1t4QDRE4YQGToK1z9fRlBTpgJl3Uco6z4yiXzpJKIDBmcSGZB2VuKZ9xTuJfOyiAsQO/ZkIj8fiSFKoMazLeO51jNtqVcuV9YJpCwNK8d+XMuFE8zHvPHKHn+/tw6xVC2fb58GttfrbXOiyYW8vDzr0ENAEnNuATkcjpxlbP2ctsqYq/65yllaWrrvau8+9Euy7LnyzRXvdrtzTp6tn9PW/msyPj54BPX3PYO0s5LCay7Gu+sbABofeI6o24tQ+XXWxLu/46wdt5H2QmJDp2XSrTjWr0HevjV7myFB5ODFVxH8xTUYPj8IAs4P3yZvxm8R62tyZ604CUy8AT2vAOKtXvYkioCUWGO3j1MCS7oC4qcr0Re/lG19tvH/Go4VSxB3VKJ1K6Omle2CcBBj1gxkWT4gZRHbtOTtLezJthWLgqZiuFwmOV2eNvPxvjgL5bOVEI8jNNbjf/xO03LXRvpgxWTTYhoOIQRbIBoxiayp5taRpoGh73s9vmOQanZbayj9hgm4nE4crS3e+9um7R4O1XL9+ELRtRchrngzy3bBlecifvQOXo+nfZ691zWw17tva+CbH8y9Bna6cK5ajvfvf0VobgRBRN65bY/7smr3I2h48Hl8zz5iqtzxWJtptc7dQNcxZJnQqAoig8/GcHtSe9Gyw9zSAkpP79Uus15TUxORaBRFUcjPz0fMYUmvr68nrqoUFxfn/P5gIRgKEQgEzDW/x2OL0+8B3TAIBAKWjQHA5XTmtF38UAhHInteA/8QXimjg85C73QYnhdm4fzoHYy9HKqQtm+l4PoKpP9sBzW+x+eLu3YQ/8nPCJ53GbGjjjHXzfGYSVxRzNinbi/PXnn5+eS1arPW6JCmVh9KHsY8Ho919M/2fPb9IAhC6lRcDh4dCMjtVDPifY+mafqTONZ9jPf5J1DWfbRHKZxrnZwlqXv0Ivg/lxHrNwBDkswtKcMAI2EEk2yHfDb+u/D9jlLuKT7xN15+HI3TZ+J853W8L89F3r7lO5NMLywmdNYFhAcPx5DlxHpXTVmcRSl7K+lH5tbHho0fxoi1r9gTCVv7xxIEoqecQcNds2i5bIp5bnkfCGa4PIRGjKX+948RGjrKVEtiUVNlVuOmRE8e/cxxoORAIDTpVuoWrqZ69W6qV++m/tll1nd1C1cTvHHGIdnxyXKnI3buOGre2fbD2wweeM5qn+rVu2mZPrNd6xYfMoLq1bsxumSe8W6ZPpOGma/ZBAbIf2Emylcb96AWJ89Kp05ZGQ6F8GnnUD/tYQKjLkX35bc5AUROHkb9rX8icO44dKcrZW2Ox03VOf36V/rJLUFAqtpJ3n2/bX+D0I0zCJ1zMY45jyD3dsCUS1C7llF3/R8xuvRA61pG5P239skoeKChdToMqquor69PDfw+/RFqqy2vIj8EWqbPRD38SFwjjrYu+IfPGk3TyWe2H4F/eixiXTU1n6/JeJdu7KhjMLb8i6amJpvAju1bKJh9P3nPPYZUtTNFqNaqrOVeJ+X8zvD5CZ11AQ1T7yZ8yhkYaf6rYr3LabhmOs0XX4VWUGRK3FjUJK6mmltE6fknXfiIIkI8hmfhM3SYPBrXmy+3LwH6nUDwgvE477me+LOP4/P5KFmzHM/82ei6QaCsr5lu6l0E1rdQ88424kNGWNKv5p1tlkQKTTJdrtS8s42Gma9lxceHjLCkfN3C1dS8s43YuePQ+p2QIf2T0j4+ZAS1izdSvXp3xnMzBnlZb4StmzKspWppF4R/f40w7cEMSRyadCu1izcSvHEGtYs3WnmnaxvBG2dY5ahbuBqtn3kDKXr8IIQNn6Ju+ZLi4mJK1iyn8Pgioq8+R2TQ8Kx6xYeMIHjjjAztIKnJGF16UP/ssoznJKVsy/SZVnx42DkI32xFkqSMW0p6UQnawCFE/xXJaN9k/ZLtFUv4FmuY+ZqlLRhdelC9ejfxISMITbo1ZxnaaoNDU4VOwLX2QwrvmYr3lb+a+7Kt96ySJJazPVVqJZ1pGTORhim3Ex44lObLptA08Ubih/cyJXtSVdbT9nYRMp3oJYJz7Qd0mFqB76kZqQvd7YjI2Rci7agk/Pe/kZ+fb12x8826G989v0ErP85M+NaryL0dGAY0Hnsq0fIBBMZPwfnALQhHiLB2JYEThxA45SwMtxf1qy9w/sQFm9YTOHEIoY5daPrtDBwfvYfc24G223Tz07RsMfX3zkZJxDPlEoIXjCdY1JnmKbehvLsYqZeM8c1WGkZenHWvWOtWhjpmgjWYq1fvJnrqGQhV3+L44lMMt5cabweMLj0Ijr0C+R8vECruhIEBd16LeO2lqL3Lqb94EqFJtxI5cTCeCcOhp4C2excN549H0zQ8r7+EOvwC1HWNND/4PKFJtyLLMsU/G0Dg5vuz6tX4ySpipV2g8mtLO9C6lhHZvo363/wBDFD6OmHKJWhdy6jvP5DAjTOIHj8I1+VnW/FG1bcZhym0fidguL0YlV+b7ZXW7oHxU5D/8YLZXl+uo3HcZGKxGFr3I4h/u51AIED8+EEmqdesJDB+Cq67roOhfdAKS6gbeQmhSbe02QaHvBVaCAfxvjIH55r3CI6/huhJp4NLBEFKEU5PEC79umKC4GqPXrR065mKT1ePM9bSYpbzAKm+Gt+8p1A+fm+P+8c/NNTSLvDvr5FlOevUjdvtRu3SDenTVWj3XI/b7ycgAC1NaB+/h/vluYQHD0e8/FqMbmWI779FrFtP87bQ7ybi8PnQwyG0qp1ETj8Pw+MhfvNE8xjgxrUEDz8SY+RYKCoxbyal3U4K5hchB4NELrgcsfw4vBs/JX7LLwknHAEkpYnh9iJUDMNYtTxV8I0B1A1rcb39KrFwEOOU0wkePQCxrpr4H36D8O5WxNdewFgyn/z8fBrrqlF9eYSGnoPetYzQnLS7yu+/RTgcxjfzDwgP3ULLtIeJdu5KdPwUIqVd8Gz5MrteJZ0xKjejH34kwqp3cTgclvagLXoJ/4Y1hCZch/qXRTDYVMG1r74gcuVvkN55nfiHb1NUUEBDXTX6pvUZ2kX86BPM9r38bBxuN4IootVUETlvHPJnq4jddR1+vx9j41oCY68gUHyY6cRv3cdIkkS8T3/EHZXoifEe+f2fcJw2EueC2QTvuZ7Qu1vbbgOf79CVwBmzwY5t5P/hOvLv+Q3ytk2gxQEjpeo60rx2uNwJB3iulBtYUTJD1i0lKc1lrek4TwC8i1+kcNpEnB8uPaDktYxsXn+WR4akaptUUZ1OJ64j+prX+NavITJjLrEThyCJAo6HTUd3+n92wGE9ELdvQxAEPB4PenEpQqDZitd1HY/Hg9bpMMRvtiJ2PRxpcysnbT0FWL2c/HE/R1rwDHrVfwheMB79Ty9k7FVGh44yB/Oq5RQVFVFSUkKHMZebd5M/fNuclDZtQDjqGMIjLsQx5xEkScLoWALvLMHj8SB1PwK9qARxwyfo3cqQ7rgmoxz6+LOs9afb7abk4Wn4rr4Q6Y2XUQ/vRai0a3a9aqqQZdmUoF98hiRJaImJjU5dCTyxAEkQEHd/a954CgVh9XL0bmXoGz/D7XYjdutpluubLRl9o3XubrWv3+8327dqJ0ZZL9hi9pPb7TbLsX0b2sDTTLV70Ys4HA50nx+hpgp55zY6/rwMliwg3rGUwPhrUK69fa9t8KMgcBLOD5fS4ZqxeJ95GKGpIWUlluQMEpokdqfInHTH41AyL/9bvzHTOtd9RIfpk/HOe8oc5AcBjq2b0I89ifj192SsU4PDx6Ct/cD0S/XtN6YUSahfxusvoQ8YhLDqXYQrR6Kef5lJmm+/wTiiL0LlV9ag07qWwRefm9ebO5Yi9zqK+JARRAafhbD7P2Z8957I51VQ/LMBSCu24Z75Mr7bH6V+xTcUvjgL74ybEOqqUZsarZtBycEs1FYjCIIlpZJEMSo343A4kKv/g3HuxQjbtxGd+yiucy/FcHvRzrkIRVFouPcZ5M0b0Re9iBAOop02koKCAny3P4rwRYCiYecQe/OLjHWy+8ifQL9jkTesxcAwy3/KGal6bd2EeNJQszx5BQgDBhP8n3Em8YaONNt5/FlIq5ajDR2JWGfWQQgH0QYMQpZlmqfebREvXQLHevbJ2b5iTRXawCE4HA5i544jMvgs5H++gtgj4Q748N7ooy+3yqfPXkzD35ZTcufVOP9yvzkh1ta02Qbt/baIdns7oRAK4n3+SVzvLiY4/lqig87CkBPO7lo7hFcTQXaYhqr0MiQlsMOBvGsH3vlPo3y+OuOG08GA58m7iJR2Qb3iOqqvuM60ByycizrtfwklJK62bTOSKGaoX85PPiA8ZgKMmYDzg6VogNFYj97jCMSt/0KWZeKDE2rjijfxrf2AlhN/TvyfG2jeUWnm+691uN5+jejA01Affo4awPHZauJTLoIjf4ow9BxqXjHv9Do+W41+61WILpfVpmppF8SNn5rtn4jTOndH/Nd6dEFAANMw6fZivPAXHA4H4uFHmgQfNoq6i65E3rwR4dpLTBew82cTGH8NjZ82INbV4HzgFuqXLyavoIjma26jevVua6nlXrKQ2C2/xNXrKMIDTyP+7Jupeu2oxPXph2ibN6BNvZNAXTViKIixdTPyijdRK67C2Kqj7qxErN2NbhimZ5Pk80eOQdpZafruAuS0+unFpbDly+z2DTQR/N39BNa3IISDKIsXEHt0Or4hZxM4rwJj+WZadlSa6XdU4lq1nPDds6w6uRbOJfLcEzjLehGZcG1WGxR26NBuxyohx1lot9udcbbzh0Js4GkEx1+LekRfc12s66ZxStNM0sYTxipVTTNYAYKIEI/ifmMBntdfzLpffLCRvA+aRNJLoWEY1NbW0qFDB2RZJhQKEY1G6dChQ8ZvXC4XkUiE/Px8AoEALpcLj8eDqqo0NDRY94wbGxtRf3sfXHoVnHMsefVVKIpixicMVE6nk7y8PAzDyBmfsb3T0oIoihlX/kKhEKqqkpeXR/3LHyFUfo06/izy8/OJ3/oI0bLe6GNOQRRFNE1DURTy8vIQBIFIJEJLi+lzUZIkfD4fiqKgqiotLS1WWZJLhGQbNTY2oh4/GF5YBpcOI+/LT3A6nTQ1NRGLxSxLcvIucENDA4ZhZJwHzs/Pz3h+0iaRfj8ZoKGhAafTmdW+mqbR3NyMpmkZ5dM0jaamJjRNM1V7TcPv9yNJEo2NjZZ6nOzzttrgh0Q0Gs2o+wEjMJhXAcPnjSN80f+i5xemDFZJIif/JuMFAeeqZXhf+rN5Tvq/7Jik0aUHDY/Nt64vSjsrccx5hOjcRykqKvrOHgz3yTg3ZCQNM+aYkuzKUcg7tuL3+2mc9Q+Mqm+RplZkTQbf26J/2RQCV07FOMpHYWFhu0qsHzsOKoFThwi6Eqr4NdFh55p7wNbWk26pz/KWL/H+7TGUz1cn3PD8d6K1NJVlGa/X+4PP7BkkTkgnWZYpKCiwJorm5mbLq0h7DMyWlpYMzyY2DlECW2r1MScTnHgDaq+fmutcQGhuNL1xvPY3hEjY7jEbNg5VAidECuFzxxE+rwLHv9bhefZRpF077FtFNmz8KAhsw4aN/Saw2Hq9ZcOGjR8Psv1Ctz7GaMOGjUMCubiZRWBVVdtle8KGDRvfD2qO3ZgsAiede9uwYePQkr7JgyatCZx1CyDjZcc2bNg46OSNxWLmue9EABAEIS4Cn6Ybr5JfxmIxVFU132NrG7ds2DigMAzDIm4kEjGlrSgiiqLFUYdDaZQNw3jeMIyBhmGkMxtJklBVFVVVMQzDJrENGwcBQuIl7aIoZnkY8fv9lYKiKIrL5fpSkqQj0s+gJkmr67ptmbZh4yASOEnidPXZ4VAajjyy1xJZ1/WYIAjDRFH8WNf1EuuER5q+bRu1bNg4+CROQlGU+u7dD18uimKlkDyBVV7er7S5uemvwWDwWFVVO9BeTt9t2LCxPyRWFUVp8Pn8lSUlpV+JolgJPPR/AwA7Wx4mp7es5gAAAABJRU5ErkJggg=='
button_reaction_adder = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABvSSURBVHja7J15mBTV1f8/t6q6ep8ZZhiGHQYQRAFxQ4KyCG4sYhQVFV5x4Rd/ESFqNKIxiiYaRdw1Go2KxjWCvhqRIC6IiLggIhgBZReQWZiZ7q5ea3n/qO6e7pkBAVmGpL7Pc5/puX3r9Dm36nvPubfqnhKKopCGCkyUJGm8EKKXECKIAwcOmgvCwErLsp63LOtvpmkmAUSawO2EEHNlWe4tyzKyLCOEQAjhdJsDB80ElmVhWRbA90JIw6JRbZNQFEUVQixRFOVol8uFLMtIkuSQ14GDZkpi0zSRJOnHDh06HSVLkvRrRVEuU1UVRVGy3teBAwfND0IIJEnCsqyAEKKPUFX1E5fL1V9VVWRZzmvo8Xhwp+sdSjtwcAA9LWAYBolEgngikQmd86AoSqVwu90Jt9utulyurOeVJInCggIkSSKZTKLrOoZpOr3qwMGB9LZpLkqSRCwex2zMQUMRQqi5C1ZCCAoLChBCoGkaZhPMd+DAwQHywqaJYZq4FIVEMtmwiSxlSJuB1+NBkiSi0ahDXgcOmhGZ03PfvHqpYUO3200ymXTI68BBM4MkxK4JLIRASBLJVMrpLQcOmtucWJIwTTOPxFKT7trxvg4cND8CC9GIwEoT7LWLAwcOmn9Y7XSBAwcOgR04cOAQ2IEDBw6BHTj4byWw5ZS9KtGLrmTrx1t3Wn58cznaFTc2C12rH32N6kdfa6R79KIrD5pO8VEXsfXjrdTd+ugeHZcceMZuHbe77Zp72W8eOH54X6r/ZzKx3sdj5WyKOFSgt2zNjvMmEjp51H6Rb5aUUnfxZHZMvOGg2mm26Uiib39SpkVNTU3ed7WJJPF4/KDopQ0/1/57zImEw+E9Pz6l79Zxu9vu0A2hTbP+VtIelMjxg0i27UzdGeejHTcY0+PbKzkHoyQ7dKF25AUkuh5B9NiBeycng1eegi6icXnlKQASZ15IVNMOrs1Q/6SdZeF94VFaHNMCHvnjQdHHbN2BZI/eSKtXQMtWRG9+cA+Ozw0f90W7Zl4aQNlXI4Gluu2/ikJ42GhS7cvxf/YB6ub1YDXPnUymP0i0Tz+0E07G9PpBCCyX62fLDQaDBPz+/MoHb2b7gKGYJa2IaBo+ny/7VWjaX9BOO7v++NeeJTBjat7hRq/jCU2YQvzEU7J1rjUrKXzqPlwfzc1rmytPxDQCc2cRmDGV2LhJ1E662W507ADi/46RuuEy9I5dqJ10M0WP/gnPC49mPXXdtXfk/Z7/ndcpmHZl9v/UwOFU3f00/ndex/AHs22l6kqCc17G9/idu9Vf0XFXYnn98OITiCl/wOw/hIimNe7DBra51qwkOHtmkzJ3t13kurvQBo/ALCkFwL1sCUV/+g3Stk3ZNj++9z2+j96xPfhpZyNiGq3GD81rc7CwzwjsW/EF4cHD7fBZkogf0Zdk+WF4Vy7F8+0yXJvXIwy9WRDXKGxBomtPor37kWrdAWQZhAAh8Kz+er/8ZuS6uzA7lCOqK/KepKmaOZ9U9155bcPnTCBW2obSGyZkyVT156eyF1mWQN17UTXtYUouHIxasaVJeZbXT/icCcRNE//2LY30qorGCJpWNoQW8ThqeXeqHnwZo315fvh52tnEevalbOyARvVNTRf05Z9T8Mn8nw5rB4+w++Xvj+AecDKJ088hes4lBOa9mq9rA9tS3XtRM35SY5t2s13DgRMgcXR/Kh54mVbn9UeS6gNU7fCjoGMXu081jcrlX1DasmVem0N6Fdr35SICi95BWCZIEkgyZrAI7RfDqDnv/1E75lKixw0iVdYOxIE32vQFSHTtSejkM6k551JCp5xDqm0nm7ySBLKMe8Magh/O+Xk/NPZywstDbFu8La+Ez7HJaL3+fHb3V+S6u0h174W0agVcNMwOtYf2gFVfow88jeozxmY9lFlSinh7Vn5Yvupr8PrZMeoiTNMkNm4Sqe69ENUVMPlCu819t0BUIzXifIwnplM0+hhbz6WL7e/nvNx4sLliKkb7ckSuXpMvhE3rMDuUU3H1HY3tzp06rLIHQa3fYFI/8Vx9bNwk27b33kKWZYLvv2UPsqMuyNs+lzhznG3b5vX1tk2+0PbcuQTczXapgcPRTjsbafN6u48yus95FatDOVXX/jlf0Y5dkOam+79fWTYzRrPzwOZOVrt+Eqkk/sXzkWuqiAwbjV7WziYHArNFS+ItSoj3Og65phKlcjvKj5tQKrYh11Qha2FETEMkEwjD2HtrhISlKJgeL5bXj1FQhF5cit6qLXpJa4zilpgerz2ApD0ukoQwDHyffYhv8XzkUC375UHSVV/D27PgkT/iLyjAAmK9jkXENMwRfVBVlcLSUuR4COOmiVS+8AHJwcNJvPl3/DOmwm2TCYfDKI/OQpUl9NI2JA/vYw8KwUJi8TjJvv3t/9/9J/K/XqWopATXrCeJP/8woVAIDWiZM0XweDwUFRURl0TeXYjYsSchYhrWleeibt1g67V0AbGHb6funpkYfY4jommoubbdOJFgMIjf7yfx+nPU3DgDAgUkkkmUXUxLIqf+0u6Dx+8m6POhfDQXefVKjJ5HoZW2Q62rtBdJjz3R1u/VZ3C9M5uCkhJcSxcQeutlopdMyeq+2+1OGGxf70/ei+uVJ/AXFeHxeOCOKVT0OQ5j6Cgid1yNPxPGRzXMSefh9/sJBoNZOf8xIXT2ovh2Ga5tm4j2H0qs/1DMQE52WsWFUdYeo7QNie69ELEoIhlHJOJI0YhNYF3HEgJZi+D/+B2U6oqdd5UQaCcMIdmhq+1FhcBSXJgeH5bbi+VSMT0ekNIhcvqYDHFBoG5Yg/+Td1HXrULo+yDEf+UpuHGi/XnkBXD9HeALwKN/Rp3/Gr7MhQKYJWW2Z1hnkQQqG5pX1oZ4PI6qqsReXQzde6EDTWlpWRamL2D/s+hdfD4frjRxPB5P/W/uznqGzweV25E2fU9RTpjo/XgeoZiG1bEriUSinsBrV6OqavZil2p35KyJ7vwXUwOHo2dC3fdXE8bOnZpB8tLfYN53E5JkD1gAvPUKfr8/a5t/8btZYgK7366snf3h9kdI3f4ItY1CA41oNFpP4JiGJElZ8jYXKPtDqFxbTfCd2XhWfE7shCHEjx6AGSxMT0ANe1FLkrEUBcsMQDrrgL3KVr/aJsUiBBbORSSavrWR6Nwd7fjBmIHCenLmkrTh/6T/mibq5nX4li5C/W4lUlTbp/ZnPBFLFxC/fQq1D78Cd/8NXyyM599L84mySyIF0HWd0LS/oKfDQuvrL+wvV6+AHr1h5HlNHquq6s9blASUdIbSJm+7NRjsXHux+BcbduaudRh6JrE7rqkn0R7atqt22cFuZ/D6sTp1h2j6VpsWaZbJHvdfEG+auLZsoOC1mZQ8fCuu7VtAcYHbDWq6uD31n1U3qCq40kVxYRSWYEk7v6dsBgtBVuo9qiSBothFThfFZReXastXVYLvvUGL5x/Bs/zTfU7eRhHJv5cS+MdT4PNTe8tDGDlTBHnzeohqTd926iJgSFcsyyKeCWkHd8F17Tj8Uy/F/8x9KG3b55/MaMT+cNIpP0tnEY1CyzLo3L2Rx7S8fsSmtfukb2IDT7PnoE3ZPudVaNkK7ZJrbDKuX20fNGpsvk5H9csn7Z62u+Wqnfa/ue7bvAiiOcx5DxyBc0dSWcEMFKQJlCarx4uQJORwLXK4DimZQDJ0JNOwM2DKCuoP6xD6zhdBXFs3IofrEIaOSCWQUgmkeBxZC6PUViEl4zZ51fxBwwoUHNCFtMBf/4y8egV07MKO395VT+6VS8HnR7y9nFZH96N169a0bt0a3+OvwToL3+OvUVJSkl1NFlf9gZKSEoLBIMbj/4t+9C/yB4uvltgfhp1JbNCI7Ap25T8W8+PibSTOHFff2L9zD+RZugh8fvQHXyR15HFZ8tZO/oOty/LPyXmjx16vylteP9a813G5XFnbM6VkoX1rzBw+hng8jvvTD+0DL76K6ElnZHUKXXBFntw9bjfxWgrGTMj+bsG0hxDfRJAXrqN169bNkrT7PYRuNNfp2A2zsEW9t7QnbYhEnMJXnkCu2o5R3ArL68WSZCyPDxGP4v52GSKV3LnyVdsp+Nc/0Evb2ETXDYRpINftQArVEB49nvgxJ9r3qDMeWkikuvXE/GwBciJ2wDq6+N7fU/ngSxijxhKe+yrB1V8RmDGV6PGDMA/vQ8XsT/O9YHUF0bumIsJhPEsXET3tbKxrb+fHa29vYoQosIn3wqPIp5yF0aM30XufI5orb9UKap68l+LiYtubH96H+NIqzPFDmxhw7iLesy/m4X2ofvKf+XptXod140TcP3MuGM3cOrrzt3gLChoPzh/NRVm2BP3o/kQGj6TlR3NRF80nedKpRGY8SyQ3ism5vebai3ahe2YSahjdPXkf1dXV2QG0ueLAeGCvr37+Kcs2kV0qZlEJCIFcU4X6/Te4V3yBZ/mneD/9AM/yTxHJ5E/Kdm3ZiPerJXhWLsWz6ivca1agbN+CFItieX32IpHHmy4+8PqwgkW2DgcQ8srP8b09C3x+ojfcnQ2lW40dYN+eyMXSxViTL0TevBa/30/BtCtR5s7Ob/PhPPv2B0DXHtlQr/TS0xrLm/MqVnqlW1VV/JnvvX4qh49tlP9M2raJkt+MRVo4r7GcwV1xuVyN5qV7gniDW0e+nawFBBa/a8+3TzmLVCpF8e8uRnn1mbyVfWP6TY0Hyz1tV1WRf7fgvluw/v5Is1uwanK64/F4LI/Hg6IoCCEoKChA0/btvDB2whBC4yZh+YM581MZEYtSfOc1uNZ+u1+ygNRdPIXYL4bZc21ZtlejZRn3ssUUPHUf8o6Kffp78Xic2tra+kWsJqBpGuFwGFVVKS4uztaHw+G8fvd4PASDwbxk+w3b+Hw+VFWltrb2J+Xl3v7I1QOgIJ0DvLa2lqLcVXLTJBKJEI1GdyonlUpRXV292/V70le57XLl5OquqirBYLDJ39qTdtFoNDuoqqqKz+fL9gNARUUFsiwfdI8cjUZRFCUb2jcmcCCAFo3u2xC6fWdqrvwDZmlrex6aXqRybfiOFnf9FmlH5X4xVht+PpHR4+w5r6JkCex/4+8EZs9EZBZ9HDg4RBCNxfIIfEBCaNcPG1BXfw2JRPo2kgVC4P5sASIS2m+/616+BLm2qt77KgpSLIp72ScOeR38R0BWFGVahtFCCFyq+pOPv+0VibdsJNWhHLO4JcguPJ9/iH/W0/uVSFK4DikSRu92BFagAGEaBF58DPfnC6GZPJftwMGeQNf1vLeHNgqhA4FA3pxnX8IMFpHodSzC0HF//RkifmBWgVOdDyN1WC9cm9ehrP12lyvbDhw0Z8QahNAHlMAOHDjYtwR2cmI5cHAIw0ns7sDBIQzHAztw8J/kgXeW/c6BAweOB3bgwIFDYAcOHBwiBLb3+lqKK69kMmo0B2jXT6d61pJdtql57A3Ctz222/XNDdr107N6Vs9agnb99H0q08E+mgMfbJheH2agELOgCKOgCEv1YPr8WB5fPWlNA0kL26l4tDByqBYpXIsUCSFSqQM6izd69yM2ZASWz8eOwlKK65p+rtvo2BVr2RIikQiBQOAn65sb4icMQlqygEgkQsm5/dmxYwfC49npTqI9ldmcbXcIvDtEKC4l0b03yfLu6KVt7WwbDVOY5P6f81mkkkh1Nbi2bMC9+mvUA/i0VWTCFNwL5hA/fhDG6edgvfI4QghSg0cQmnwLRvty5B/W2ylhl38Gp4+h+prbmqyvuulee5tdTKNo2lW4Pnw777eiv74Z7fzLshkWA88+jO+xP+W12fHce5glZZglpfhnP4tr9deErpialVt4/y2obz6/U1lW207U3PW0ncInrUf48t9itC/HOLcc5ZMPqLj3OUrP6Yd+2JFUp20E8M9+Fv89v0O7fjqxISMQsUjWzuIpYxFbN+bpmStTGzAMbYyduVP+YT1Ft01BXvHZHttf89gbmKVlWZ0KHvkj0dPORu/eC/mH9ZSc2x+jdz9qb32okd6pwSOo+930RuegbsbzJE46FQD3ovkUXjc+r58yOmdsDN/2GLHTz7EJtmYlAMUXD0O7fvpP2nhIhtDJTt2oO/sSIsPOItn1CMyComySOnv/sFyfKkdJp8mR69PmWB4fRlk74scMoO6CK9BOHmUnat/feo8eT6pnX7jlSqSN3yPadyaZTGK17UTd76bj+vRDlO4ujO3b7OhixVLiN81ouv7q21AXzEE+TMHauJaakRfk5Z0yevcjMmEy7hm/R3SVYOliIicMJhbLfxzV6FAOG79DPkxBm/0cddfcjvexO225b75M7fhJxI48bqeyQtfegeXz4zqjN1bldmpGXoDvyRm28KE9iLXrjFRdQWVtHXW/m4604XuU7i545Sm0MRPQStqQ7NIDCwum/gp52hSM9uXs6NM/Lx928Kl762X2G0xsyHC8v70YhvbA8PipOXtCXvqh3bVfP7w3ViRi67R0MaELrsD9xD0oD0yz9TjsKGrueho1fQ6YfGFW79DkWxqdA23cJJLHDsAz4ii45SoSJ51K3eFHE7r2DrBAPdwNky/M2hi5fjqJ4wbiueQMmHwhevdemGtXUf2rqcRPGITv0uHQRWBs39bIxkOTwEKgDR2N3rpdfsbIDGkzea0yubIyubPc7vySk08rOmg4qc6HNfbg+xjhi69C/eeLJJNJPBXboFtPDMMgMfRMLJ+P1NSJeDweAiuX2nmKR43F8vkb129YgxTViI+5BOutZfi/WYb6q9F5F6e84jO8s2cSHzQcsWAtHDsAqfJHEolEto3VtpOdpmbmwyiKgnfCJCyvH+3m+zG+02Hs5Qh/gNhH7zQpK96mE4mTTkWa/SzWulWUntcfZeIooj37IlVXwIY1eI7si9i4Fmnc/8fy+TAvHY7L5aLk3f+157VdemKWliG9/xZ8+gEBzd5tZiycl7dJJnXEMVmZ0imjkT+YQ/LNFykOVeFetRyrrO3e2/+XO5EkCZckIX++kPgbL+CWJURMQz+6P2ZJKbExl6CvScHDL9l6F5YgtMbnIFVTjeX1E5+1GPdpZxG4bgKJhfPwznwQq2Ir+hP/zMow1nxDvN8g5A/eIvXxu5QsmY9UXYG5ZRPmqb/EaF9O9Jm5sM6CYwdAsKDRAHQIemBhJ67L5GrOkDdD3Nw8WrnJ8HZVVLctaz8+URb99c0Y7cuJX/IbjO90tDETsHr2IZVKYbTpiLRpHaZp4vP5MFq3Q6r8Eal95ybrFUWheMIw5FefxvxxK9qYCZgPvJi36Tx822MkTxiMLAlc99vJ2s2tm/M2/CeG2lkerZVf4vf7SZV3tzNO5CRqs44vw3jgpSZlSUf0tcn1/Wr8fj9CCIqLi3G164jYuBZZljFatUVs34po2wGRtiUYDJI6qh8ipsE3X9qh6Tdf4fV6sTp1tes3rMnLXGm0bmfL7NoTs6QUY+WXeL1eFEVB79wNed3qPO+0O/anjhto2//WywQCAczSMoiEcLvd0LYToqoC0a6TnZ+sYRK7Je9TOH5Io3NQ9PbLBC8fCZ8vItGxK5EZz1IwZgJ1D7+CLATS9i12H0c1WPI+ZodyzJXL8Hq9SB26YJa0QlrxBVaHcuRpU/KT5k04PS8qOTQJbJkE3nsD5cfN9qKyJKc9rqve47o9dkocr50SB0+D4q5PlyMkCd9H83Bt+G7/qdy2E9r5l+H549X1J2RoDyyvn+Sp9qs6zI5dUE48ldTgEcQHnY5Yu8rOaNtEPVPvofKDdRS/9Dj+6TcgqivQ62qJROq3WiaOG4j4ZAHi8pHoZ/+PnQxvy8a8C9ho09HO8rhhDbIsI7QIRv8h+HseRYvzLkF8E6Hg2tsRJwxuUpaUiViOOh7rlF9SsWQ7ydHj0dOkVRQFo2NXWL0CEQlnbTF690P75XiUD/+F6HVM1uMqipIdzIQQeWlZszJ/WGcndj9+EIqioF0/HbOkFbz5Uh7hd8f+VI8+tv2A3LGrPZB8/J6dV7qsLWLDdwghbL3PGkdp3+ORF67D+9hsArc+xI6FGxudg8o5KzBHnE/JdeNQPv0Qohqh9ECRmnA68ifvYwwdiVRdYdsY0zB6HoWiKHaYnZ4iiZiGcfJIioqKCNxqJ84rGTbqZ6ftabyIlc3PfOCgrl9N0ct/JdW+HL1NB4ySMswWLbHcHpvI6RQ8dogt5S9gmSZCCyHtqELZtgnXd98gb920y2yWP3vh6oqpuBfOIzHzIYoKC+38w1oNNcuWkDrxFNRnHyLWbxCp5+YR2rzefkvE5vX43nuTWP+Tm64/9SwqX7MXNFzLlmDefAWSx5M9F+4vPiJ23qVw3qW4F83HAKzaHciSlG2jl7VFpD26AAIv/ZXaG+5Gm/MVGuCZNZPw/beidDuCVBOy1PfeQF80n9TEawml29f+7T5cA89AHz4GIiF70W39GgLvvUGk/xBSz82jGlAXzceccgHK1HvQYxrWhjW4WrZE69IDsS7tfXOuK0kLkxg+BrFtM/5/PEVkwhRqR56H/MN63Pf8nsTid3G3aLHX9uvdjrQHkq+/QHW5iHXuhvhkAa5nHiD5i5PR73+eynRfpyaPhW5HIIaOanQO5GgY7dKr0cZMQKquxDPj9yRWr4DRF2CtNdF/WI9UtR3TspBlGU/GlrGXI/+w3s7lvWFNvY1f1iBVV+Ke8Xt2vD+H4hYt8gahPY5fG24n9Hq9Pzsu/29AJt9Uw3xOoVDInn96vdTW1qLrun1B6ToFBQXZHFa7qgdwu90UNMjWmMndBHbOrHg8TmFmAMmEmuEwlmVlj9V1nVAolA1H/X4/Pp9vl7LC4XD2PcGZ9pk6v9+Ppmm0SF94uTpn8njF43EikQgtW7bM9oksy436KiMz44Uy+asURcHv9zdKzL6n9uu6Tk1NDS1btkQIQU1NDW63O+/c5Pa1ZVlN1sfj8axusiwTCASQZZmamhosy8rb3ldYWGi3L2kDM+ciLVmAdPMVtGjRokk5e5qAP5FI7Ho/sENgBw72DrErbyYyof71Leqi+ZiXjcDtdv+s++UOgR04OEDI9bK5Ucm+QkMCK06XO3Cw75D7IrkDAWczgwMHhzAcAjtw8J9CYMtJpePAwaHtgXf1QmYHDhwcPDTFzUYE1nW9Wb7I2IGD/3Y0fKl6kwROpVLN/p2oDhz8N3pfwzAaOVcJaLRxNpl03lzgwEFzIm8ymcw+T559rYoQKQn4MnfxKvNlMplE13VM03QWtxw4OMCwLCtL3MxjrZIk5b0XyeVSaxXLsl6wLKu/ZVm5zEaWZXRdR9d1LMtySOzAwUGAECJLXFmW80LoYDC4Xqiqqno8nn/Lstw1d1dEhrSmaTor0w4cHEQCZ0icGz67XGpNt26Hva2YppkUQgyTJOkz0zRbZR+Szom3nUUtBw4OPokzUFV1R8eOnd+XJGm9yGxi6NWrd1koVPespmnH6LreAuc5aQcOmhOJdVVVawKB4PpWrcrWSJK0Hrjv/wYAPllHpHSNE/wAAAAASUVORK5CYII='
|
'''
crie um programa que leia nome e duas notas de vários alunos e guarde tudo em uma lista composta.
no final, mostre um boletim contendo a média de cada um e permita que o usuário possa mostrar
as notas de cada aluno individualmente.
'''
ficha = []
while True:
nome = str(input('nome: ')).strip().title()
nota1 = float(input('Nota 1: '))
nota2 = float(input('Nota 2: '))
media = (nota1 + nota2) / 2
ficha.append([nome, [nota1, nota2], media])
resposta = str(input('Deseja continuar? \033[36m[S]\033[m para sim / \033[36m[N]\033[m para não: ').strip().upper())
while resposta != 'S' and resposta != 'N':
print('\033[31mResposta inválida, tente novamente.\033[m')
resposta = str(input('Deseja continuar? \033[36m[S]\033[m para sim / \033[36m[N]\033[m para não: ')).strip().upper()
if resposta == 'N':
break
print(ficha)
print('-=' * 15)
print('{:<4}{:<15}{:>8}'.format('No.', 'NOME', 'MÉDIA'))
print('-' * 30)
for voltas, listaPequena in enumerate(ficha):
# dentro da ficha, existem pequenas listas que contém o nome do aluno, as notas e a média. chamei as listas internas de listasPequenas. listasPequenas, no índice 0 tem os nomes. no índice 1 tem as notas 1 e 2 e no índice 2 tem a média.
# voltas é a quantidade de voltas que o for dá.
print('{:<4}{:<15}{:>8}'.format(voltas + 1, listaPequena[0], listaPequena[2]))
while True:
print('-' * 30)
resposta = int(input('''Digite o número do aluno para abrir as notas:
(aperte 0 para sair) '''))
if resposta == 0:
break
elif resposta <= len(ficha) + 1:
print('Notas de {}: {}'.format(ficha[resposta - 1][0], ficha[resposta - 1][1]))
print('''
''')
print('\033[7mFIM DO PROGRAMA\033[m')
|
"""
Some functions about numbers
"""
###############################################
def is_number(v):
try:
v = float(v)
return True
except ValueError:
return False
except TypeError:
return False
###############################################
def get_number(v):
defaultVal = None
try:
v = float(v)
return v
except ValueError:
return defaultVal
except TypeError:
return defaultVal
###############################################
def represents_int(s):
try:
int(s)
return True
except ValueError:
return False
###############################################
def represents_float(s):
try:
float(s)
return True
except ValueError:
return False |
# Apresentação
print('Programa para determinar se um número é par ou ímpar')
print()
# Entradas
numero = int(input('Informe um valor: '))
# Processamento e saídas
if (numero % 2 == 0):
print('Número par')
else:
print('Número ímpar')
|
"""
There is a fence with n posts, each post can be painted with one of the k
colors.
You have to paint all the posts such that no more than two adjacent fence posts
have the same color.
Return the total number of ways you can paint the fence.
Note:
n and k are non-negative integers.
"""
class Solution(object):
def numWays(self, n, k):
"""
:type n: int
:type k: int
:rtype: int
"""
if n==0 or k<=0:
return 0
elif n<=2:
return k**n
soln=[0 for i in range(n+1)]
soln[1],soln[2]=k,k*k
for i in range(3,n+1):
soln[i]=(k-1)*(soln[i-1]+soln[i-2])
return soln[-1]
"""
Note:
Choose the right boundary condition
"""
|
ENTRY_POINT = 'f'
#[PROMPT]
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == [1, 2, 6, 24, 15]
"""
#[SOLUTION]
ret = []
for i in range(1,n+1):
if i%2 == 0:
x = 1
for j in range(1,i+1): x *= j
ret += [x]
else:
x = 0
for j in range(1,i+1): x += j
ret += [x]
return ret
#[CHECK]
def check(candidate):
assert candidate(5) == [1, 2, 6, 24, 15]
assert candidate(7) == [1, 2, 6, 24, 15, 720, 28]
assert candidate(1) == [1]
assert candidate(3) == [1, 2, 6]
|
def fibonacci():
"""generartor of fibonacci numbers"""
a, b, n = 0, 1, 1
yield n, b
while True:
n += 1
a, b = b, b + a
yield n, b
def triangle():
n = 1
while True:
yield n, n * (n + 1) // 2
n += 1
|
DATA = {
"website": None,
"myspace_name": None,
"last_name": "Bizness",
"reposts_count": 0,
"public_favorites_count": 0,
"followings_count": 2,
"full_name": "Nonya Bizness",
"id": 12345,
"city": "Los Angeles",
"first_name": "Nonya",
"track_count": 123,
"playlist_count": 0,
"discogs_name": None,
"followers_count": 54321,
"online": False,
"username": "some podcast",
"description": None,
"kind": "user",
"last_modified": "2016/09/29 05:31:52 +0000",
"website_title": None,
"permalink_url": "http://soundcloud.com/some-podcast",
"permalink": "some-podcast",
"country": "United States",
"uri": "https://api.soundcloud.com/users/12345",
"avatar_url": "https://i1.sndcdn.com/avatars-000067787890-onwv2r-large.jpg",
"plan": "Pro Plus"
}
|
# parsetab.py
# This file is automatically generated. Do not edit.
# pylint: disable=W,C,R
_tabversion = '3.10'
_lr_method = 'LALR'
_lr_signature = 'leftpuntobipuntoleftcomarightigualleftcor1cor2leftmasmenosleftasteriscodivporcentajeleftpotrightumenosumasleftpar1par2leftt_orleftt_andleftdiferenteleftmayormenormayorimenorirightt_notasterisco bipunto char coma cor1 cor2 decimal diferente diferentede div entero id igual mas mayor mayori menor menori menos par1 par2 porcentaje pot punto pyc string t_abs t_acos t_acosd t_acosh t_add t_all t_alter t_and t_as t_asc t_asin t_asind t_asinh t_atan t_atan2 t_atan2d t_atand t_atanh t_avg t_bigint t_bool t_boolean t_by t_cbrt t_ceil t_ceiling t_character t_charn t_check t_column t_constraint t_convert t_cos t_cosd t_cosh t_cot t_cotd t_count t_create t_current t_current_user t_database t_databases t_date t_decimal t_decode t_default t_degrees t_delete t_desc t_distinct t_div t_double t_drop t_encode t_enum t_exists t_exp t_factorial t_false t_first t_floor t_foreign t_from t_full t_gcd t_get_byte t_group t_having t_if t_inherits t_inner t_insert t_integer t_into t_join t_key t_last t_left t_length t_like t_limit t_ln t_log t_max t_md5 t_min t_min_scale t_mod t_mode t_money t_natural t_not t_null t_nulls t_numeric t_of t_offset t_on t_only t_or t_order t_outer t_owner t_pi t_power t_precision t_primary t_radians t_random t_real t_references t_rename t_replace t_returning t_right t_round t_scale t_select t_session_user t_set t_set_byte t_setseed t_sha256 t_show t_sign t_sin t_sind t_sinh t_smallint t_sqrt t_substr t_substring t_sum t_table t_tan t_tand t_tanh t_text t_to t_trim t_trim_scale t_true t_trunc t_type t_unique t_update t_use t_using t_values t_varchar t_varying t_where t_width_bucketSQL : Sentencias_SQLSQL : emptySentencias_SQL : Sentencias_SQL Sentencia_SQLSentencias_SQL : Sentencia_SQLSentencia_SQL : Sentencias_DMLSentencia_SQL : Sentencias_DDLSentencias_DML : t_select Lista_EXP Select_SQL Condiciones GRP ORD pyc\n | t_select asterisco Select_SQL Condiciones GRP ORD pyc\n | t_insert t_into id Insert_SQL pyc\n | t_update id t_set Lista_EXP Condiciones1 pyc\n | t_delete t_from id Condiciones1 pyc\n | t_use id pycSelect_SQL : t_from Table_ExpressionSelect_SQL : emptyTable_Expression : Alias_Tabla\n | SubqueriesAlias_Tabla : Lista_ID\n | Lista_AliasSubqueries : par1 t_select par2Insert_SQL : par1 Lista_ID par2 t_values par1 Lista_EXP par2Insert_SQL : t_values par1 Lista_EXP par2Condiciones : t_where EXP\n | emptyCondiciones1 : t_where EXP\n | emptyGRP : t_group t_by Lista_ID\n | t_group t_by Lista_ID HV\n | emptyHV : t_having EXPORD : t_order t_by LSORT\n | t_order t_by LSORT LMT\n | emptyLSORT : LSORT coma SORT\n | SORTSORT : EXP AD NFL\n | EXP AD\n | EXPAD : t_asc\n | t_descNFL : t_nulls t_first\n | t_nulls t_lastLMT : t_limit NAL t_offset entero\n | t_limit NAL\n | t_offset entero NAL : entero\n | t_all Sentencias_DDL : t_show t_databases Show_DB_Like_Char pyc\n | Enum_Type\n | t_drop Drop pyc\n | t_alter Alter pyc\n | t_create Create pycShow_DB_Like_Char : t_like char \n | empty Enum_Type : t_create t_type id t_as t_enum par1 Lista_Enum par2 pycDrop : t_database DropDB id\n | t_table id DropDB : t_if t_exists\n | emptyAlter : t_database id AlterDB\n | t_table id AlterTB AlterDB : t_rename t_to id\n | t_owner t_to SesionDB SesionDB : id\n | t_current_user\n | t_session_user AlterTB : t_add Add_Opc\n | t_drop Drop_Opc\n | t_alter t_column Alter_Column\n | t_rename t_column id t_to id Add_Opc : t_column id Tipo\n | Constraint_AlterTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2\n | Constraint_AlterTB t_unique par1 id par2\n | Constraint_AlterTB t_check EXP Constraint_AlterTB : t_constraint id\n | empty Drop_Opc : t_column id\n | t_constraint id Alter_Column : id t_set t_not t_null\n | Alter_Columns Alter_Columns : Alter_Columns coma Alter_Column1\n | Alter_Column1Alter_Column1 : id t_type t_varchar par1 entero par2\n | t_alter t_column id t_type t_varchar par1 entero par2Create : CreateDBCreate : CreateTB CreateDB : OrReplace_CreateDB t_database IfNotExist_CreateDB id Sesion OrReplace_CreateDB : t_or t_replace\n | empty IfNotExist_CreateDB : t_if t_not t_exists\n | empty Sesion : t_owner Op_Sesion Sesion_mode\n | t_mode Op_Mode\n | empty Op_Sesion : igual char\n | char Sesion_mode : t_mode Op_Mode\n | empty Op_Mode : igual entero\n | entero CreateTB : t_table id par1 Columnas par2 Inherits Inherits : t_inherits par1 id par2\n | empty Columnas : Columnas coma Columna\n | Columna Columna : id Tipo Cond_CreateTB\n | Constraint Cond_CreateTB : Constraint_CreateTB t_default id Cond_CreateTB\n | Constraint_CreateTB t_not t_null Cond_CreateTB\n | Constraint_CreateTB t_null Cond_CreateTB\n | Constraint_CreateTB t_unique Cond_CreateTB\n | Constraint_CreateTB t_check par1 EXP par2 Cond_CreateTB\n | Constraint_CreateTB t_primary t_key Cond_CreateTB\n | Constraint_CreateTB t_references id Cond_CreateTB\n | emptyConstraint_CreateTB : t_constraint id\n | empty Constraint : Constraint_CreateTB t_unique par1 Lista_ID par2\n | Constraint_CreateTB t_check par1 EXP par2\n | Constraint_CreateTB t_primary t_key par1 Lista_ID par2\n | Constraint_CreateTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2\n | empty Tipo : t_smallint\n | t_integer\n | t_bigint\n | t_decimal\n | t_numeric par1 entero par2\n | t_real\n | t_double t_precision\n | t_money\n | t_character t_varying par1 entero par2\n | t_varchar par1 entero par2\n | t_character par1 entero par2\n | t_charn par1 entero par2\n | t_text\n | t_boolean\n | t_date\n | id Valor : decimal\n | entero\n | string\n | char\n | t_true\n | t_falseValor : idempty :EXP : EXP mas EXP\n | EXP menos EXP\n | EXP asterisco EXP\n | EXP div EXP\n | EXP pot EXP\n | EXP porcentaje EXPEXP : par1 EXP par2EXP : id par1 Lista_EXP par2EXP : EXP mayor EXP\n | EXP mayori EXP\n | EXP menor EXP\n | EXP menori EXP\n | EXP igual EXP\n | EXP diferente EXP\n | EXP diferentede EXPEXP : EXP t_and EXP\n | EXP t_or EXP\n EXP : mas EXP %prec umas\n | menos EXP %prec umenos\n | t_not EXPEXP : ValorEXP : id punto idEXP : EXP t_as EXPEXP : t_avg par1 EXP par2\n | t_sum par1 EXP par2\n | t_count par1 EXP par2\n | t_count par1 asterisco par2\n | t_max par1 EXP par2\n | t_min par1 EXP par2EXP : t_abs par1 EXP par2\n | t_cbrt par1 EXP par2\n | t_ceil par1 EXP par2\n | t_ceiling par1 EXP par2\n | t_degrees par1 EXP par2\n | t_exp par1 EXP par2\n | t_factorial par1 EXP par2\n | t_floor par1 EXP par2\n | t_gcd par1 Lista_EXP par2\n | t_ln par1 EXP par2\n | t_log par1 EXP par2\n | t_pi par1 par2\n | t_radians par1 EXP par2\n | t_round par1 EXP par2\n | t_min_scale par1 EXP par2\n | t_scale par1 EXP par2\n | t_sign par1 EXP par2\n | t_sqrt par1 EXP par2\n | t_trim_scale par1 EXP par2\n | t_trunc par1 EXP par2\n | t_width_bucket par1 Lista_EXP par2\n | t_random par1 par2\n | t_setseed par1 EXP par2 EXP : t_div par1 EXP coma EXP par2\n | t_mod par1 EXP coma EXP par2\n | t_power par1 EXP coma EXP par2 EXP : t_acos par1 EXP par2\n | t_acosd par1 EXP par2\n | t_asin par1 EXP par2\n | t_asind par1 EXP par2\n | t_atan par1 EXP par2\n | t_atand par1 EXP par2\n | t_cos par1 EXP par2\n | t_cosd par1 EXP par2\n | t_cot par1 EXP par2\n | t_cotd par1 EXP par2\n | t_sin par1 EXP par2\n | t_sind par1 EXP par2\n | t_tan par1 EXP par2\n | t_tand par1 EXP par2 EXP : t_atan2 par1 EXP coma EXP par2\n | t_atan2d par1 EXP coma EXP par2 EXP : t_length par1 id par2\n | t_substring par1 char coma entero coma entero par2\n | t_trim par1 char par2\n | t_md5 par1 char par2\n | t_sha256 par1 par2\n | t_substr par1 par2\n | t_get_byte par1 par2\n | t_set_byte par1 par2\n | t_convert par1 EXP t_as Tipo par2\n | t_encode par1 par2\n | t_decode par1 par2 Lista_ID : Lista_ID coma id\n | id Lista_Enum : Lista_Enum coma char\n | char Lista_EXP : Lista_EXP coma EXP\n | EXP Lista_Alias : Lista_Alias coma Nombre_Alias\n | Nombre_Alias Nombre_Alias : id id'
_lr_action_items = {'$end':([0,1,2,3,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[-145,0,-1,-2,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_select':([0,2,4,5,6,13,17,198,202,207,210,224,313,391,396,453,487,490,593,],[7,7,-4,-5,-6,-48,-3,-12,-49,-50,-51,336,-47,-9,-11,-10,-7,-8,-54,]),'t_insert':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[8,8,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_update':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[9,9,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_delete':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[10,10,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_use':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[11,11,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_show':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[12,12,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_drop':([0,2,4,5,6,13,17,198,202,207,209,210,313,391,396,453,487,490,593,],[14,14,-4,-5,-6,-48,-3,-12,-49,-50,322,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_alter':([0,2,4,5,6,13,17,198,202,207,209,210,313,391,396,408,453,487,490,513,593,],[15,15,-4,-5,-6,-48,-3,-12,-49,-50,323,-51,-47,-9,-11,466,-10,-7,-8,466,-54,]),'t_create':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[16,16,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'asterisco':([7,20,24,26,76,77,87,88,89,90,131,132,133,136,139,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[19,117,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,117,-165,250,117,117,117,-148,-149,-150,-151,-154,-155,-156,-157,117,-159,117,-161,-162,117,-152,-167,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,-186,117,117,117,117,117,117,117,117,-196,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,-221,-222,-223,-224,117,-226,-227,117,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,117,117,117,117,117,117,-144,-198,-199,-200,-215,-216,-225,117,117,117,117,-218,117,]),'par1':([7,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,79,80,81,82,83,84,85,86,111,112,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,195,196,213,216,308,311,367,368,369,384,385,390,394,410,440,444,445,446,450,461,462,482,483,488,500,504,507,527,531,532,533,538,545,550,565,574,600,618,637,640,],[23,23,23,23,134,23,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,23,224,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,307,23,329,23,394,23,23,23,23,23,23,23,23,472,498,501,502,503,134,508,23,530,531,23,541,545,546,568,23,571,572,23,23,592,600,23,23,632,641,643,]),'id':([7,9,11,21,22,23,25,91,93,97,98,100,101,103,107,111,112,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,135,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,192,196,203,205,212,216,225,307,311,316,326,328,329,334,335,367,368,369,384,385,390,394,398,399,401,403,406,407,408,409,413,419,423,426,459,462,477,481,488,508,510,513,514,530,531,538,545,546,561,567,568,571,572,574,600,631,635,641,643,],[24,92,94,24,24,24,24,195,197,-145,206,208,209,211,213,24,225,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,246,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,295,24,24,315,-58,-145,24,337,393,24,-57,411,-90,413,424,426,24,24,24,24,24,450,24,454,456,459,463,464,465,468,471,478,486,393,337,478,24,-89,413,24,547,548,552,553,393,24,24,24,393,596,602,603,393,393,24,24,637,640,393,393,]),'mas':([7,20,21,22,23,24,25,26,76,77,87,88,89,90,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,311,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,388,389,390,394,397,429,430,431,432,433,450,462,488,491,492,493,494,495,497,509,531,536,538,545,570,574,580,581,600,622,],[21,115,21,21,21,-144,21,-166,-141,-139,-138,-140,-142,-143,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,-163,-164,115,21,-165,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,115,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,115,-159,115,-161,-162,115,-152,-167,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,-186,115,115,115,115,115,115,115,115,-196,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,-221,-222,-223,-224,115,-226,-227,21,115,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,21,21,21,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,21,21,-217,-219,-220,21,21,115,115,115,115,115,115,-144,21,21,-198,-199,-200,-215,-216,-225,115,21,115,21,21,115,21,115,-218,21,115,]),'menos':([7,20,21,22,23,24,25,26,76,77,87,88,89,90,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,311,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,388,389,390,394,397,429,430,431,432,433,450,462,488,491,492,493,494,495,497,509,531,536,538,545,570,574,580,581,600,622,],[22,116,22,22,22,-144,22,-166,-141,-139,-138,-140,-142,-143,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,-163,-164,116,22,-165,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,116,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,116,-159,116,-161,-162,116,-152,-167,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,-186,116,116,116,116,116,116,116,116,-196,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,-221,-222,-223,-224,116,-226,-227,22,116,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,22,22,22,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,22,22,-217,-219,-220,22,22,116,116,116,116,116,116,-144,22,22,-198,-199,-200,-215,-216,-225,116,22,116,22,22,116,22,116,-218,22,116,]),'t_not':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,327,367,368,369,384,385,390,394,436,437,438,439,441,443,447,448,449,462,478,479,486,488,499,511,524,525,531,538,545,563,564,574,582,584,585,586,596,597,600,601,602,615,634,],[25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,412,25,25,25,25,25,25,25,-122,-123,-124,-125,-127,-129,-134,-135,-136,25,-137,-145,-115,25,-128,549,562,-116,25,25,25,-145,-145,25,-126,-132,-131,-133,-145,-145,25,-145,-145,-130,-145,]),'t_avg':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,]),'t_sum':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,]),'t_count':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,]),'t_max':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,]),'t_min':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,]),'t_abs':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,]),'t_cbrt':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,]),'t_ceil':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,]),'t_ceiling':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,]),'t_degrees':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,]),'t_exp':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,]),'t_factorial':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,]),'t_floor':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,]),'t_gcd':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,]),'t_ln':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,]),'t_log':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,]),'t_pi':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,]),'t_radians':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,]),'t_round':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,]),'t_min_scale':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,]),'t_scale':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,]),'t_sign':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,]),'t_sqrt':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,]),'t_trim_scale':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,]),'t_trunc':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,]),'t_width_bucket':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,]),'t_random':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,]),'t_setseed':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,]),'t_div':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,]),'t_mod':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,]),'t_power':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,]),'t_acos':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,]),'t_acosd':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,]),'t_asin':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,]),'t_asind':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,]),'t_atan':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,]),'t_atand':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,]),'t_cos':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,]),'t_cosd':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,]),'t_cot':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,]),'t_cotd':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,]),'t_sin':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,]),'t_sind':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,]),'t_tan':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,]),'t_tand':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,]),'t_atan2':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,]),'t_atan2d':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,]),'t_length':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,]),'t_substring':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,]),'t_trim':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,]),'t_md5':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,]),'t_sha256':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,]),'t_substr':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,]),'t_get_byte':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,]),'t_set_byte':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,]),'t_convert':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,]),'t_encode':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,]),'t_decode':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,]),'decimal':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,]),'entero':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,387,390,394,462,475,488,496,498,501,502,503,521,531,538,541,545,557,574,575,576,592,600,628,632,],[77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,434,77,77,77,522,77,539,540,542,543,544,560,77,77,583,77,522,77,610,612,619,77,636,638,]),'string':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,]),'char':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,185,186,187,192,196,200,216,311,367,368,369,384,385,390,394,462,472,474,488,518,531,538,545,555,574,600,],[76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,296,297,298,76,76,314,76,76,76,76,76,76,76,76,76,76,516,519,76,559,76,76,76,594,76,76,]),'t_true':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,]),'t_false':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,]),'t_into':([8,],[91,]),'t_from':([10,18,19,20,24,26,76,77,87,88,89,90,131,132,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,581,],[93,112,112,-233,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-232,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,-218,]),'t_databases':([12,],[95,]),'t_database':([14,15,16,106,109,214,],[97,100,-145,212,-88,-87,]),'t_table':([14,15,16,],[98,101,107,]),'t_type':([16,468,548,552,],[103,512,590,512,]),'t_or':([16,20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[108,129,-144,-166,-141,-139,-138,-140,-142,-143,129,129,129,-165,129,129,129,129,129,129,129,-154,-155,-156,-157,129,-159,129,-161,-162,129,-152,-167,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,-186,129,129,129,129,129,129,129,129,-196,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,-221,-222,-223,-224,129,-226,-227,129,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,129,129,129,129,129,129,-144,-198,-199,-200,-215,-216,-225,129,129,129,129,-218,129,]),'coma':([18,20,24,26,76,77,87,88,89,90,131,132,136,218,222,223,225,226,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,261,264,273,274,276,277,278,293,294,296,299,300,301,302,304,305,309,329,337,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,392,393,414,415,416,418,424,425,434,436,437,438,439,441,443,447,448,449,452,469,470,478,479,481,489,491,492,493,494,495,497,499,515,516,523,525,529,534,535,536,551,563,564,569,577,578,579,581,582,584,585,586,587,588,594,596,597,598,599,601,602,604,605,606,607,608,613,615,620,621,623,624,626,629,630,633,634,639,642,644,645,647,],[111,-233,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-232,334,335,-229,-235,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,111,-167,111,-186,111,-196,367,368,369,384,385,387,-221,-222,-223,-224,-226,-227,111,-145,-236,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,334,-229,481,-104,-106,-121,-228,-234,496,-122,-123,-124,-125,-127,-129,-134,-135,-136,111,513,-81,-137,-145,-145,334,-198,-199,-200,-215,-216,-225,-128,555,-231,-105,-114,-103,574,-34,-37,-80,-145,-145,334,-36,-38,-39,-218,-126,-132,-131,-133,111,334,-230,-145,-145,-109,-110,-145,-145,-117,-118,334,334,-33,-35,-130,-107,-108,-112,-113,-119,-40,-41,-82,-145,-111,-83,334,334,-120,]),'t_where':([18,19,20,24,26,76,77,87,88,89,90,110,113,114,131,132,136,197,218,219,220,221,222,223,225,226,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,309,337,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,424,425,427,491,492,493,494,495,497,581,],[-145,-145,-233,-144,-166,-141,-139,-138,-140,-142,-143,216,-14,216,-163,-164,-165,311,-232,-13,-15,-16,-17,-18,-229,-235,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,311,-236,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-228,-234,-19,-198,-199,-200,-215,-216,-225,-218,]),'t_group':([18,19,20,24,26,76,77,87,88,89,90,110,113,114,131,132,136,215,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,333,337,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,424,425,427,491,492,493,494,495,497,581,],[-145,-145,-233,-144,-166,-141,-139,-138,-140,-142,-143,-145,-14,-145,-163,-164,-165,331,-23,-232,-13,-15,-16,-17,-18,-229,-235,331,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-22,-236,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-228,-234,-19,-198,-199,-200,-215,-216,-225,-218,]),'t_order':([18,19,20,24,26,76,77,87,88,89,90,110,113,114,131,132,136,215,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,330,332,333,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,393,424,425,427,489,491,492,493,494,495,497,537,580,581,],[-145,-145,-233,-144,-166,-141,-139,-138,-140,-142,-143,-145,-14,-145,-163,-164,-165,-145,-23,-232,-13,-15,-16,-17,-18,-229,-235,-145,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,421,-28,-22,-236,421,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-229,-228,-234,-19,-26,-198,-199,-200,-215,-216,-225,-27,-29,-218,]),'pyc':([18,19,20,24,26,76,77,87,88,89,90,94,95,96,99,102,104,105,110,113,114,131,132,136,197,199,201,206,215,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,306,309,310,312,314,315,317,320,330,332,333,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,393,395,397,400,405,411,420,422,424,425,427,428,436,437,438,439,441,443,447,448,449,454,455,456,457,458,464,465,467,469,470,473,476,478,480,489,491,492,493,494,495,497,499,505,506,509,517,519,520,522,526,528,534,535,536,537,551,553,554,556,558,559,560,573,577,578,579,580,581,582,584,585,586,589,591,595,608,609,610,611,612,613,615,616,625,629,630,633,636,642,646,],[-145,-145,-233,-144,-166,-141,-139,-138,-140,-142,-143,198,-145,202,207,210,-84,-85,-145,-14,-145,-163,-164,-165,-145,313,-53,-56,-145,-23,-232,-13,-15,-16,-17,-18,-229,-235,-145,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,391,-145,396,-25,-52,-55,-59,-60,-145,-28,-22,-236,-145,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-229,453,-24,-66,-67,-145,487,-32,-228,-234,-19,490,-122,-123,-124,-125,-127,-129,-134,-135,-136,-61,-62,-63,-64,-65,-76,-77,-68,-79,-81,-86,-93,-137,-145,-26,-198,-199,-200,-215,-216,-225,-128,-21,-70,-73,-145,-95,-92,-99,-100,-102,-30,-34,-37,-27,-80,-69,593,-91,-97,-94,-98,-31,-36,-38,-39,-29,-218,-126,-132,-131,-133,-72,-78,-96,-33,-43,-45,-46,-44,-35,-130,-20,-101,-40,-41,-82,-42,-83,-71,]),'par2':([20,24,26,76,77,87,88,89,90,131,132,133,136,153,163,188,189,190,191,193,194,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,279,280,281,282,283,284,285,286,287,288,289,290,291,292,295,297,298,299,300,301,302,304,305,329,336,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,392,393,414,415,416,418,424,429,430,431,432,433,435,436,437,438,439,441,443,447,448,449,450,452,478,479,481,491,492,493,494,495,497,499,515,516,523,525,529,539,540,542,543,544,547,563,564,569,570,581,582,583,584,585,586,587,588,594,596,597,598,599,601,602,603,604,605,606,607,615,619,620,621,622,623,624,626,634,638,639,644,645,647,],[-233,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,244,-165,264,274,299,300,301,302,304,305,-232,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,339,-167,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,-186,357,358,359,360,361,362,363,364,365,-196,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,-221,-222,-223,-224,-226,-227,-145,427,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,451,-229,480,-104,-106,-121,-228,491,492,493,494,495,497,-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,505,-137,-145,-145,-198,-199,-200,-215,-216,-225,-128,554,-231,-105,-114,-103,581,582,584,585,586,589,-145,-145,604,605,-218,-126,615,-132,-131,-133,616,617,-230,-145,-145,-109,-110,-145,-145,625,-117,-118,626,627,-130,633,-107,-108,634,-112,-113,-119,-145,642,-111,646,647,-120,]),'div':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[118,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,118,-165,118,118,118,-148,-149,-150,-151,-154,-155,-156,-157,118,-159,118,-161,-162,118,-152,-167,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,-186,118,118,118,118,118,118,118,118,-196,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,-221,-222,-223,-224,118,-226,-227,118,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,118,118,118,118,118,118,-144,-198,-199,-200,-215,-216,-225,118,118,118,118,-218,118,]),'pot':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[119,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,119,-165,119,119,119,119,119,-150,119,-154,-155,-156,-157,119,-159,119,-161,-162,119,-152,-167,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,-186,119,119,119,119,119,119,119,119,-196,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,-221,-222,-223,-224,119,-226,-227,119,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,119,119,119,119,119,119,-144,-198,-199,-200,-215,-216,-225,119,119,119,119,-218,119,]),'porcentaje':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[120,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,120,-165,120,120,120,-148,-149,-150,-151,-154,-155,-156,-157,120,-159,120,-161,-162,120,-152,-167,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,-186,120,120,120,120,120,120,120,120,-196,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,-221,-222,-223,-224,120,-226,-227,120,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,120,120,120,120,120,120,-144,-198,-199,-200,-215,-216,-225,120,120,120,120,-218,120,]),'mayor':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[121,-144,-166,-141,-139,-138,-140,-142,-143,121,121,121,-165,121,121,121,121,121,121,121,-154,-155,-156,-157,121,121,121,121,121,121,-152,-167,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,-186,121,121,121,121,121,121,121,121,-196,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,-221,-222,-223,-224,121,-226,-227,121,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,121,121,121,121,121,121,-144,-198,-199,-200,-215,-216,-225,121,121,121,121,-218,121,]),'mayori':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[122,-144,-166,-141,-139,-138,-140,-142,-143,122,122,122,-165,122,122,122,122,122,122,122,-154,-155,-156,-157,122,122,122,122,122,122,-152,-167,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,-186,122,122,122,122,122,122,122,122,-196,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,-221,-222,-223,-224,122,-226,-227,122,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,122,122,122,122,122,122,-144,-198,-199,-200,-215,-216,-225,122,122,122,122,-218,122,]),'menor':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[123,-144,-166,-141,-139,-138,-140,-142,-143,123,123,123,-165,123,123,123,123,123,123,123,-154,-155,-156,-157,123,123,123,123,123,123,-152,-167,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,-186,123,123,123,123,123,123,123,123,-196,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,-221,-222,-223,-224,123,-226,-227,123,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,123,123,123,123,123,123,-144,-198,-199,-200,-215,-216,-225,123,123,123,123,-218,123,]),'menori':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[124,-144,-166,-141,-139,-138,-140,-142,-143,124,124,124,-165,124,124,124,124,124,124,124,-154,-155,-156,-157,124,124,124,124,124,124,-152,-167,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,-186,124,124,124,124,124,124,124,124,-196,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,-221,-222,-223,-224,124,-226,-227,124,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,124,124,124,124,124,124,-144,-198,-199,-200,-215,-216,-225,124,124,124,124,-218,124,]),'igual':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,474,475,491,492,493,494,495,497,509,536,557,570,580,581,622,],[125,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,125,-165,125,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,125,-159,125,-161,-162,125,-152,-167,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,-186,125,125,125,125,125,125,125,125,-196,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,-221,-222,-223,-224,125,-226,-227,125,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,125,125,125,125,125,125,-144,518,521,-198,-199,-200,-215,-216,-225,125,125,521,125,125,-218,125,]),'diferente':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[126,-144,-166,-141,-139,-138,-140,-142,-143,126,126,126,-165,126,126,126,126,126,126,126,-154,-155,-156,-157,126,-159,126,126,126,126,-152,-167,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,-186,126,126,126,126,126,126,126,126,-196,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,-221,-222,-223,-224,126,-226,-227,126,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,126,126,126,126,126,126,-144,-198,-199,-200,-215,-216,-225,126,126,126,126,-218,126,]),'diferentede':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[127,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,127,-165,127,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,127,-161,-162,127,-152,-167,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,-186,127,127,127,127,127,127,127,127,-196,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,-221,-222,-223,-224,127,-226,-227,127,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,127,127,127,127,127,127,-144,-198,-199,-200,-215,-216,-225,127,127,127,127,-218,127,]),'t_and':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[128,-144,-166,-141,-139,-138,-140,-142,-143,128,128,128,-165,128,128,128,128,128,128,128,-154,-155,-156,-157,128,-159,128,-161,128,128,-152,-167,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,-186,128,128,128,128,128,128,128,128,-196,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,-221,-222,-223,-224,128,-226,-227,128,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,128,128,128,128,128,128,-144,-198,-199,-200,-215,-216,-225,128,128,128,128,-218,128,]),'t_as':([20,24,26,76,77,87,88,89,90,131,132,133,136,211,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[130,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,130,-165,325,130,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,130,-161,-162,130,-152,-167,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,-186,130,130,130,130,130,130,130,130,-196,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,-221,-222,-223,-224,390,-226,-227,130,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,130,130,130,130,130,130,-144,-198,-199,-200,-215,-216,-225,130,130,130,130,-218,130,]),'punto':([24,450,],[135,135,]),'t_asc':([24,26,76,77,87,88,89,90,131,132,136,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,536,581,],[-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,578,-218,]),'t_desc':([24,26,76,77,87,88,89,90,131,132,136,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,536,581,],[-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,579,-218,]),'t_limit':([24,26,76,77,87,88,89,90,131,132,136,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,534,535,536,577,578,579,581,608,613,629,630,],[-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,575,-34,-37,-36,-38,-39,-218,-33,-35,-40,-41,]),'t_offset':([24,26,76,77,87,88,89,90,131,132,136,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,534,535,536,577,578,579,581,608,609,610,611,613,629,630,],[-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,576,-34,-37,-36,-38,-39,-218,-33,628,-45,-46,-35,-40,-41,]),'t_set':([92,468,],[196,511,]),'t_like':([95,],[200,]),'t_if':([97,212,],[204,327,]),'t_replace':([108,],[214,]),'t_values':([195,451,],[308,504,]),'t_exists':([204,412,],[316,477,]),'t_rename':([208,209,],[318,324,]),'t_owner':([208,411,],[319,474,]),'t_add':([209,],[321,]),'t_to':([318,319,471,],[398,399,514,]),'t_column':([321,322,323,324,466,],[401,406,408,409,510,]),'t_constraint':([321,322,329,436,437,438,439,441,443,447,448,449,478,479,481,499,563,564,582,584,585,586,596,597,601,602,615,634,],[403,407,419,-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,419,419,-128,419,419,-126,-132,-131,-133,419,419,419,419,-130,419,]),'t_foreign':([321,329,402,404,417,418,463,481,486,],[-145,-145,460,-75,485,-116,-74,-145,-115,]),'t_unique':([321,329,402,404,417,418,436,437,438,439,441,443,447,448,449,463,478,479,481,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,634,],[-145,-145,461,-75,482,-116,-122,-123,-124,-125,-127,-129,-134,-135,-136,-74,-137,-145,-145,-115,-128,564,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_check':([321,329,402,404,417,418,436,437,438,439,441,443,447,448,449,463,478,479,481,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,634,],[-145,-145,462,-75,483,-116,-122,-123,-124,-125,-127,-129,-134,-135,-136,-74,-137,-145,-145,-115,-128,565,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_enum':([325,],[410,]),'t_primary':([329,417,418,436,437,438,439,441,443,447,448,449,478,479,481,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,634,],[-145,484,-116,-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,-145,-145,-115,-128,566,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_by':([331,421,],[423,488,]),'t_smallint':([390,413,459,],[436,436,436,]),'t_integer':([390,413,459,],[437,437,437,]),'t_bigint':([390,413,459,],[438,438,438,]),'t_decimal':([390,413,459,],[439,439,439,]),'t_numeric':([390,413,459,],[440,440,440,]),'t_real':([390,413,459,],[441,441,441,]),'t_double':([390,413,459,],[442,442,442,]),'t_money':([390,413,459,],[443,443,443,]),'t_character':([390,413,459,],[444,444,444,]),'t_varchar':([390,413,459,512,590,],[445,445,445,550,618,]),'t_charn':([390,413,459,],[446,446,446,]),'t_text':([390,413,459,],[447,447,447,]),'t_boolean':([390,413,459,],[448,448,448,]),'t_date':([390,413,459,],[449,449,449,]),'t_having':([393,424,489,],[-229,-228,538,]),'t_current_user':([399,],[457,]),'t_session_user':([399,],[458,]),'t_mode':([411,517,519,559,],[475,557,-95,-94,]),'t_default':([436,437,438,439,441,443,447,448,449,478,479,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,634,],[-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,-145,-115,-128,561,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_null':([436,437,438,439,441,443,447,448,449,478,479,486,499,524,525,549,562,563,564,582,584,585,586,596,597,601,602,615,634,],[-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,-145,-115,-128,563,-116,591,597,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_references':([436,437,438,439,441,443,447,448,449,478,479,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,617,627,634,],[-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,-145,-115,-128,567,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,631,635,-145,]),'t_precision':([442,],[499,]),'t_varying':([444,],[500,]),'t_key':([460,484,485,566,],[507,532,533,601,]),'t_inherits':([480,],[527,]),'t_all':([575,],[611,]),'t_nulls':([577,578,579,],[614,-38,-39,]),'t_first':([614,],[629,]),'t_last':([614,],[630,]),}
_lr_action = {}
for _k, _v in _lr_action_items.items():
for _x,_y in zip(_v[0],_v[1]):
if not _x in _lr_action: _lr_action[_x] = {}
_lr_action[_x][_k] = _y
del _lr_action_items
_lr_goto_items = {'SQL':([0,],[1,]),'Sentencias_SQL':([0,],[2,]),'empty':([0,16,18,19,95,97,110,114,197,212,215,227,309,321,329,330,338,411,479,480,481,517,563,564,596,597,601,602,634,],[3,109,113,113,201,205,217,217,312,328,332,332,312,404,418,422,422,476,525,528,418,558,525,525,525,525,525,525,525,]),'Sentencia_SQL':([0,2,],[4,17,]),'Sentencias_DML':([0,2,],[5,5,]),'Sentencias_DDL':([0,2,],[6,6,]),'Enum_Type':([0,2,],[13,13,]),'Lista_EXP':([7,134,150,162,196,394,545,],[18,245,261,273,309,452,587,]),'EXP':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[20,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,20,247,248,249,251,252,253,254,255,256,257,258,259,260,20,262,263,265,266,267,268,269,270,271,272,20,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,303,20,333,397,429,430,431,432,433,243,20,509,536,570,580,20,536,622,]),'Valor':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,]),'Drop':([14,],[96,]),'Alter':([15,],[99,]),'Create':([16,],[102,]),'CreateDB':([16,],[104,]),'CreateTB':([16,],[105,]),'OrReplace_CreateDB':([16,],[106,]),'Select_SQL':([18,19,],[110,114,]),'Show_DB_Like_Char':([95,],[199,]),'DropDB':([97,],[203,]),'Condiciones':([110,114,],[215,227,]),'Table_Expression':([112,],[219,]),'Alias_Tabla':([112,],[220,]),'Subqueries':([112,],[221,]),'Lista_ID':([112,307,423,530,546,571,572,641,643,],[222,392,489,569,588,606,607,644,645,]),'Lista_Alias':([112,],[223,]),'Nombre_Alias':([112,335,],[226,425,]),'Insert_SQL':([195,],[306,]),'Condiciones1':([197,309,],[310,395,]),'AlterDB':([208,],[317,]),'AlterTB':([209,],[320,]),'IfNotExist_CreateDB':([212,],[326,]),'GRP':([215,227,],[330,338,]),'Add_Opc':([321,],[400,]),'Constraint_AlterTB':([321,],[402,]),'Drop_Opc':([322,],[405,]),'Columnas':([329,],[414,]),'Columna':([329,481,],[415,529,]),'Constraint':([329,481,],[416,416,]),'Constraint_CreateTB':([329,479,481,563,564,596,597,601,602,634,],[417,524,417,524,524,524,524,524,524,524,]),'ORD':([330,338,],[420,428,]),'Tipo':([390,413,459,],[435,479,506,]),'SesionDB':([399,],[455,]),'Alter_Column':([408,],[467,]),'Alter_Columns':([408,],[469,]),'Alter_Column1':([408,513,],[470,551,]),'Sesion':([411,],[473,]),'Lista_Enum':([472,],[515,]),'Op_Sesion':([474,],[517,]),'Op_Mode':([475,557,],[520,595,]),'Cond_CreateTB':([479,563,564,596,597,601,602,634,],[523,598,599,620,621,623,624,639,]),'Inherits':([480,],[526,]),'LSORT':([488,],[534,]),'SORT':([488,574,],[535,608,]),'HV':([489,],[537,]),'Sesion_mode':([517,],[556,]),'LMT':([534,],[573,]),'AD':([536,],[577,]),'NAL':([575,],[609,]),'NFL':([577,],[613,]),}
_lr_goto = {}
for _k, _v in _lr_goto_items.items():
for _x, _y in zip(_v[0], _v[1]):
if not _x in _lr_goto: _lr_goto[_x] = {}
_lr_goto[_x][_k] = _y
del _lr_goto_items
_lr_productions = [
("S' -> SQL","S'",1,None,None,None),
('SQL -> Sentencias_SQL','SQL',1,'p_sql','Gramatica.py',318),
('SQL -> empty','SQL',1,'p_sql2','Gramatica.py',322),
('Sentencias_SQL -> Sentencias_SQL Sentencia_SQL','Sentencias_SQL',2,'p_Sentencias_SQL_Sentencia_SQL','Gramatica.py',326),
('Sentencias_SQL -> Sentencia_SQL','Sentencias_SQL',1,'p_Sentencias_SQL','Gramatica.py',332),
('Sentencia_SQL -> Sentencias_DML','Sentencia_SQL',1,'p_Sentencia_SQL_DML','Gramatica.py',337),
('Sentencia_SQL -> Sentencias_DDL','Sentencia_SQL',1,'p_Sentencia_SQL_DDL','Gramatica.py',346),
('Sentencias_DML -> t_select Lista_EXP Select_SQL Condiciones GRP ORD pyc','Sentencias_DML',7,'p_Sentencias_DML','Gramatica.py',352),
('Sentencias_DML -> t_select asterisco Select_SQL Condiciones GRP ORD pyc','Sentencias_DML',7,'p_Sentencias_DML','Gramatica.py',353),
('Sentencias_DML -> t_insert t_into id Insert_SQL pyc','Sentencias_DML',5,'p_Sentencias_DML','Gramatica.py',354),
('Sentencias_DML -> t_update id t_set Lista_EXP Condiciones1 pyc','Sentencias_DML',6,'p_Sentencias_DML','Gramatica.py',355),
('Sentencias_DML -> t_delete t_from id Condiciones1 pyc','Sentencias_DML',5,'p_Sentencias_DML','Gramatica.py',356),
('Sentencias_DML -> t_use id pyc','Sentencias_DML',3,'p_Sentencias_DML','Gramatica.py',357),
('Select_SQL -> t_from Table_Expression','Select_SQL',2,'p_Select_SQL','Gramatica.py',376),
('Select_SQL -> empty','Select_SQL',1,'p_Select2_SQL','Gramatica.py',382),
('Table_Expression -> Alias_Tabla','Table_Expression',1,'p_Table_Expression','Gramatica.py',388),
('Table_Expression -> Subqueries','Table_Expression',1,'p_Table_Expression','Gramatica.py',389),
('Alias_Tabla -> Lista_ID','Alias_Tabla',1,'p_Alias_Tabla','Gramatica.py',395),
('Alias_Tabla -> Lista_Alias','Alias_Tabla',1,'p_Alias_Tabla','Gramatica.py',396),
('Subqueries -> par1 t_select par2','Subqueries',3,'p_Subqueries','Gramatica.py',401),
('Insert_SQL -> par1 Lista_ID par2 t_values par1 Lista_EXP par2','Insert_SQL',7,'p_Insert_SQL','Gramatica.py',406),
('Insert_SQL -> t_values par1 Lista_EXP par2','Insert_SQL',4,'p_Insert_SQL2','Gramatica.py',411),
('Condiciones -> t_where EXP','Condiciones',2,'p_Condiciones','Gramatica.py',416),
('Condiciones -> empty','Condiciones',1,'p_Condiciones','Gramatica.py',417),
('Condiciones1 -> t_where EXP','Condiciones1',2,'p_Condiciones1','Gramatica.py',426),
('Condiciones1 -> empty','Condiciones1',1,'p_Condiciones1','Gramatica.py',427),
('GRP -> t_group t_by Lista_ID','GRP',3,'p_GRP','Gramatica.py',438),
('GRP -> t_group t_by Lista_ID HV','GRP',4,'p_GRP','Gramatica.py',439),
('GRP -> empty','GRP',1,'p_GRP','Gramatica.py',440),
('HV -> t_having EXP','HV',2,'p_HV','Gramatica.py',447),
('ORD -> t_order t_by LSORT','ORD',3,'p_ORD','Gramatica.py',451),
('ORD -> t_order t_by LSORT LMT','ORD',4,'p_ORD','Gramatica.py',452),
('ORD -> empty','ORD',1,'p_ORD','Gramatica.py',453),
('LSORT -> LSORT coma SORT','LSORT',3,'p_L_SORT','Gramatica.py',461),
('LSORT -> SORT','LSORT',1,'p_L_SORT','Gramatica.py',462),
('SORT -> EXP AD NFL','SORT',3,'p_SORT','Gramatica.py',469),
('SORT -> EXP AD','SORT',2,'p_SORT','Gramatica.py',470),
('SORT -> EXP','SORT',1,'p_SORT','Gramatica.py',471),
('AD -> t_asc','AD',1,'p_AD','Gramatica.py',480),
('AD -> t_desc','AD',1,'p_AD','Gramatica.py',481),
('NFL -> t_nulls t_first','NFL',2,'p_NFL','Gramatica.py',486),
('NFL -> t_nulls t_last','NFL',2,'p_NFL','Gramatica.py',487),
('LMT -> t_limit NAL t_offset entero','LMT',4,'p_LMT','Gramatica.py',491),
('LMT -> t_limit NAL','LMT',2,'p_LMT','Gramatica.py',492),
('LMT -> t_offset entero','LMT',2,'p_LMT','Gramatica.py',493),
('NAL -> entero','NAL',1,'p_NAL','Gramatica.py',500),
('NAL -> t_all','NAL',1,'p_NAL','Gramatica.py',501),
('Sentencias_DDL -> t_show t_databases Show_DB_Like_Char pyc','Sentencias_DDL',4,'p_Sentencias_DDL','Gramatica.py',506),
('Sentencias_DDL -> Enum_Type','Sentencias_DDL',1,'p_Sentencias_DDL','Gramatica.py',507),
('Sentencias_DDL -> t_drop Drop pyc','Sentencias_DDL',3,'p_Sentencias_DDL','Gramatica.py',508),
('Sentencias_DDL -> t_alter Alter pyc','Sentencias_DDL',3,'p_Sentencias_DDL','Gramatica.py',509),
('Sentencias_DDL -> t_create Create pyc','Sentencias_DDL',3,'p_Sentencias_DDL','Gramatica.py',510),
('Show_DB_Like_Char -> t_like char','Show_DB_Like_Char',2,'p_show_db_like_regex','Gramatica.py',530),
('Show_DB_Like_Char -> empty','Show_DB_Like_Char',1,'p_show_db_like_regex','Gramatica.py',531),
('Enum_Type -> t_create t_type id t_as t_enum par1 Lista_Enum par2 pyc','Enum_Type',9,'p_Enum_Type','Gramatica.py',540),
('Drop -> t_database DropDB id','Drop',3,'p_Drop','Gramatica.py',545),
('Drop -> t_table id','Drop',2,'p_Drop','Gramatica.py',546),
('DropDB -> t_if t_exists','DropDB',2,'p_DropDB','Gramatica.py',555),
('DropDB -> empty','DropDB',1,'p_DropDB','Gramatica.py',556),
('Alter -> t_database id AlterDB','Alter',3,'p_Alter','Gramatica.py',565),
('Alter -> t_table id AlterTB','Alter',3,'p_Alter','Gramatica.py',566),
('AlterDB -> t_rename t_to id','AlterDB',3,'p_AlterDB','Gramatica.py',575),
('AlterDB -> t_owner t_to SesionDB','AlterDB',3,'p_AlterDB','Gramatica.py',576),
('SesionDB -> id','SesionDB',1,'p_SesionDB','Gramatica.py',585),
('SesionDB -> t_current_user','SesionDB',1,'p_SesionDB','Gramatica.py',586),
('SesionDB -> t_session_user','SesionDB',1,'p_SesionDB','Gramatica.py',587),
('AlterTB -> t_add Add_Opc','AlterTB',2,'p_AlterTB','Gramatica.py',597),
('AlterTB -> t_drop Drop_Opc','AlterTB',2,'p_AlterTB','Gramatica.py',598),
('AlterTB -> t_alter t_column Alter_Column','AlterTB',3,'p_AlterTB','Gramatica.py',599),
('AlterTB -> t_rename t_column id t_to id','AlterTB',5,'p_AlterTB','Gramatica.py',600),
('Add_Opc -> t_column id Tipo','Add_Opc',3,'p_Add_Opc','Gramatica.py',615),
('Add_Opc -> Constraint_AlterTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2','Add_Opc',11,'p_Add_Opc','Gramatica.py',616),
('Add_Opc -> Constraint_AlterTB t_unique par1 id par2','Add_Opc',5,'p_Add_Opc','Gramatica.py',617),
('Add_Opc -> Constraint_AlterTB t_check EXP','Add_Opc',3,'p_Add_Opc','Gramatica.py',618),
('Constraint_AlterTB -> t_constraint id','Constraint_AlterTB',2,'p_Constraint_AlterTB','Gramatica.py',633),
('Constraint_AlterTB -> empty','Constraint_AlterTB',1,'p_Constraint_AlterTB','Gramatica.py',634),
('Drop_Opc -> t_column id','Drop_Opc',2,'p_Drop_Opc','Gramatica.py',643),
('Drop_Opc -> t_constraint id','Drop_Opc',2,'p_Drop_Opc','Gramatica.py',644),
('Alter_Column -> id t_set t_not t_null','Alter_Column',4,'p_Alter_Column','Gramatica.py',653),
('Alter_Column -> Alter_Columns','Alter_Column',1,'p_Alter_Column','Gramatica.py',654),
('Alter_Columns -> Alter_Columns coma Alter_Column1','Alter_Columns',3,'p_Alter_Columns','Gramatica.py',663),
('Alter_Columns -> Alter_Column1','Alter_Columns',1,'p_Alter_Columns','Gramatica.py',664),
('Alter_Column1 -> id t_type t_varchar par1 entero par2','Alter_Column1',6,'p_Alter_Colum1','Gramatica.py',674),
('Alter_Column1 -> t_alter t_column id t_type t_varchar par1 entero par2','Alter_Column1',8,'p_Alter_Colum1','Gramatica.py',675),
('Create -> CreateDB','Create',1,'p_Create','Gramatica.py',690),
('Create -> CreateTB','Create',1,'p_Create1','Gramatica.py',695),
('CreateDB -> OrReplace_CreateDB t_database IfNotExist_CreateDB id Sesion','CreateDB',5,'p_CreateDB','Gramatica.py',700),
('OrReplace_CreateDB -> t_or t_replace','OrReplace_CreateDB',2,'p_CreateDB_or_replace','Gramatica.py',705),
('OrReplace_CreateDB -> empty','OrReplace_CreateDB',1,'p_CreateDB_or_replace','Gramatica.py',706),
('IfNotExist_CreateDB -> t_if t_not t_exists','IfNotExist_CreateDB',3,'p_IfNotExist_CreateDB','Gramatica.py',715),
('IfNotExist_CreateDB -> empty','IfNotExist_CreateDB',1,'p_IfNotExist_CreateDB','Gramatica.py',716),
('Sesion -> t_owner Op_Sesion Sesion_mode','Sesion',3,'p_Sesion','Gramatica.py',725),
('Sesion -> t_mode Op_Mode','Sesion',2,'p_Sesion','Gramatica.py',726),
('Sesion -> empty','Sesion',1,'p_Sesion','Gramatica.py',727),
('Op_Sesion -> igual char','Op_Sesion',2,'p_Op_Sesion','Gramatica.py',739),
('Op_Sesion -> char','Op_Sesion',1,'p_Op_Sesion','Gramatica.py',740),
('Sesion_mode -> t_mode Op_Mode','Sesion_mode',2,'p_Sesion_mode','Gramatica.py',749),
('Sesion_mode -> empty','Sesion_mode',1,'p_Sesion_mode','Gramatica.py',750),
('Op_Mode -> igual entero','Op_Mode',2,'p_Op_Mode','Gramatica.py',759),
('Op_Mode -> entero','Op_Mode',1,'p_Op_Mode','Gramatica.py',760),
('CreateTB -> t_table id par1 Columnas par2 Inherits','CreateTB',6,'p_CreateTB','Gramatica.py',769),
('Inherits -> t_inherits par1 id par2','Inherits',4,'p_Inherits','Gramatica.py',774),
('Inherits -> empty','Inherits',1,'p_Inherits','Gramatica.py',775),
('Columnas -> Columnas coma Columna','Columnas',3,'p_Columnas','Gramatica.py',784),
('Columnas -> Columna','Columnas',1,'p_Columnas','Gramatica.py',785),
('Columna -> id Tipo Cond_CreateTB','Columna',3,'p_Columna','Gramatica.py',795),
('Columna -> Constraint','Columna',1,'p_Columna','Gramatica.py',796),
('Cond_CreateTB -> Constraint_CreateTB t_default id Cond_CreateTB','Cond_CreateTB',4,'p_Cond_CreateTB','Gramatica.py',805),
('Cond_CreateTB -> Constraint_CreateTB t_not t_null Cond_CreateTB','Cond_CreateTB',4,'p_Cond_CreateTB','Gramatica.py',806),
('Cond_CreateTB -> Constraint_CreateTB t_null Cond_CreateTB','Cond_CreateTB',3,'p_Cond_CreateTB','Gramatica.py',807),
('Cond_CreateTB -> Constraint_CreateTB t_unique Cond_CreateTB','Cond_CreateTB',3,'p_Cond_CreateTB','Gramatica.py',808),
('Cond_CreateTB -> Constraint_CreateTB t_check par1 EXP par2 Cond_CreateTB','Cond_CreateTB',6,'p_Cond_CreateTB','Gramatica.py',809),
('Cond_CreateTB -> Constraint_CreateTB t_primary t_key Cond_CreateTB','Cond_CreateTB',4,'p_Cond_CreateTB','Gramatica.py',810),
('Cond_CreateTB -> Constraint_CreateTB t_references id Cond_CreateTB','Cond_CreateTB',4,'p_Cond_CreateTB','Gramatica.py',811),
('Cond_CreateTB -> empty','Cond_CreateTB',1,'p_Cond_CreateTB','Gramatica.py',812),
('Constraint_CreateTB -> t_constraint id','Constraint_CreateTB',2,'p_Constraint_CreateTB','Gramatica.py',846),
('Constraint_CreateTB -> empty','Constraint_CreateTB',1,'p_Constraint_CreateTB','Gramatica.py',847),
('Constraint -> Constraint_CreateTB t_unique par1 Lista_ID par2','Constraint',5,'p_Constraint','Gramatica.py',856),
('Constraint -> Constraint_CreateTB t_check par1 EXP par2','Constraint',5,'p_Constraint','Gramatica.py',857),
('Constraint -> Constraint_CreateTB t_primary t_key par1 Lista_ID par2','Constraint',6,'p_Constraint','Gramatica.py',858),
('Constraint -> Constraint_CreateTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2','Constraint',11,'p_Constraint','Gramatica.py',859),
('Constraint -> empty','Constraint',1,'p_Constraint','Gramatica.py',860),
('Tipo -> t_smallint','Tipo',1,'p_Tipo','Gramatica.py',878),
('Tipo -> t_integer','Tipo',1,'p_Tipo','Gramatica.py',879),
('Tipo -> t_bigint','Tipo',1,'p_Tipo','Gramatica.py',880),
('Tipo -> t_decimal','Tipo',1,'p_Tipo','Gramatica.py',881),
('Tipo -> t_numeric par1 entero par2','Tipo',4,'p_Tipo','Gramatica.py',882),
('Tipo -> t_real','Tipo',1,'p_Tipo','Gramatica.py',883),
('Tipo -> t_double t_precision','Tipo',2,'p_Tipo','Gramatica.py',884),
('Tipo -> t_money','Tipo',1,'p_Tipo','Gramatica.py',885),
('Tipo -> t_character t_varying par1 entero par2','Tipo',5,'p_Tipo','Gramatica.py',886),
('Tipo -> t_varchar par1 entero par2','Tipo',4,'p_Tipo','Gramatica.py',887),
('Tipo -> t_character par1 entero par2','Tipo',4,'p_Tipo','Gramatica.py',888),
('Tipo -> t_charn par1 entero par2','Tipo',4,'p_Tipo','Gramatica.py',889),
('Tipo -> t_text','Tipo',1,'p_Tipo','Gramatica.py',890),
('Tipo -> t_boolean','Tipo',1,'p_Tipo','Gramatica.py',891),
('Tipo -> t_date','Tipo',1,'p_Tipo','Gramatica.py',892),
('Tipo -> id','Tipo',1,'p_Tipo','Gramatica.py',893),
('Valor -> decimal','Valor',1,'p_Valor','Gramatica.py',978),
('Valor -> entero','Valor',1,'p_Valor','Gramatica.py',979),
('Valor -> string','Valor',1,'p_Valor','Gramatica.py',980),
('Valor -> char','Valor',1,'p_Valor','Gramatica.py',981),
('Valor -> t_true','Valor',1,'p_Valor','Gramatica.py',982),
('Valor -> t_false','Valor',1,'p_Valor','Gramatica.py',983),
('Valor -> id','Valor',1,'p_Valor2','Gramatica.py',989),
('empty -> <empty>','empty',0,'p_empty','Gramatica.py',994),
('EXP -> EXP mas EXP','EXP',3,'p_aritmeticas','Gramatica.py',1001),
('EXP -> EXP menos EXP','EXP',3,'p_aritmeticas','Gramatica.py',1002),
('EXP -> EXP asterisco EXP','EXP',3,'p_aritmeticas','Gramatica.py',1003),
('EXP -> EXP div EXP','EXP',3,'p_aritmeticas','Gramatica.py',1004),
('EXP -> EXP pot EXP','EXP',3,'p_aritmeticas','Gramatica.py',1005),
('EXP -> EXP porcentaje EXP','EXP',3,'p_aritmeticas','Gramatica.py',1006),
('EXP -> par1 EXP par2','EXP',3,'p_parentesis','Gramatica.py',1011),
('EXP -> id par1 Lista_EXP par2','EXP',4,'p_funciones','Gramatica.py',1017),
('EXP -> EXP mayor EXP','EXP',3,'p_relacionales','Gramatica.py',1024),
('EXP -> EXP mayori EXP','EXP',3,'p_relacionales','Gramatica.py',1025),
('EXP -> EXP menor EXP','EXP',3,'p_relacionales','Gramatica.py',1026),
('EXP -> EXP menori EXP','EXP',3,'p_relacionales','Gramatica.py',1027),
('EXP -> EXP igual EXP','EXP',3,'p_relacionales','Gramatica.py',1028),
('EXP -> EXP diferente EXP','EXP',3,'p_relacionales','Gramatica.py',1029),
('EXP -> EXP diferentede EXP','EXP',3,'p_relacionales','Gramatica.py',1030),
('EXP -> EXP t_and EXP','EXP',3,'p_logicos','Gramatica.py',1035),
('EXP -> EXP t_or EXP','EXP',3,'p_logicos','Gramatica.py',1036),
('EXP -> mas EXP','EXP',2,'p_unario','Gramatica.py',1042),
('EXP -> menos EXP','EXP',2,'p_unario','Gramatica.py',1043),
('EXP -> t_not EXP','EXP',2,'p_unario','Gramatica.py',1044),
('EXP -> Valor','EXP',1,'p_EXP_Valor','Gramatica.py',1053),
('EXP -> id punto id','EXP',3,'p_EXP_Indices','Gramatica.py',1058),
('EXP -> EXP t_as EXP','EXP',3,'p_EXP_IndicesAS','Gramatica.py',1064),
('EXP -> t_avg par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1071),
('EXP -> t_sum par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1072),
('EXP -> t_count par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1073),
('EXP -> t_count par1 asterisco par2','EXP',4,'p_exp_agregacion','Gramatica.py',1074),
('EXP -> t_max par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1075),
('EXP -> t_min par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1076),
('EXP -> t_abs par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1081),
('EXP -> t_cbrt par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1082),
('EXP -> t_ceil par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1083),
('EXP -> t_ceiling par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1084),
('EXP -> t_degrees par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1085),
('EXP -> t_exp par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1086),
('EXP -> t_factorial par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1087),
('EXP -> t_floor par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1088),
('EXP -> t_gcd par1 Lista_EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1089),
('EXP -> t_ln par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1090),
('EXP -> t_log par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1091),
('EXP -> t_pi par1 par2','EXP',3,'p_funciones_matematicas','Gramatica.py',1092),
('EXP -> t_radians par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1093),
('EXP -> t_round par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1094),
('EXP -> t_min_scale par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1095),
('EXP -> t_scale par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1096),
('EXP -> t_sign par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1097),
('EXP -> t_sqrt par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1098),
('EXP -> t_trim_scale par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1099),
('EXP -> t_trunc par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1100),
('EXP -> t_width_bucket par1 Lista_EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1101),
('EXP -> t_random par1 par2','EXP',3,'p_funciones_matematicas','Gramatica.py',1102),
('EXP -> t_setseed par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1103),
('EXP -> t_div par1 EXP coma EXP par2','EXP',6,'p_funciones_matematicas2','Gramatica.py',1108),
('EXP -> t_mod par1 EXP coma EXP par2','EXP',6,'p_funciones_matematicas2','Gramatica.py',1109),
('EXP -> t_power par1 EXP coma EXP par2','EXP',6,'p_funciones_matematicas2','Gramatica.py',1110),
('EXP -> t_acos par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1115),
('EXP -> t_acosd par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1116),
('EXP -> t_asin par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1117),
('EXP -> t_asind par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1118),
('EXP -> t_atan par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1119),
('EXP -> t_atand par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1120),
('EXP -> t_cos par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1121),
('EXP -> t_cosd par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1122),
('EXP -> t_cot par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1123),
('EXP -> t_cotd par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1124),
('EXP -> t_sin par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1125),
('EXP -> t_sind par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1126),
('EXP -> t_tan par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1127),
('EXP -> t_tand par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1128),
('EXP -> t_atan2 par1 EXP coma EXP par2','EXP',6,'p_funciones_Trigonometricas1','Gramatica.py',1133),
('EXP -> t_atan2d par1 EXP coma EXP par2','EXP',6,'p_funciones_Trigonometricas1','Gramatica.py',1134),
('EXP -> t_length par1 id par2','EXP',4,'p_funciones_String_Binarias','Gramatica.py',1138),
('EXP -> t_substring par1 char coma entero coma entero par2','EXP',8,'p_funciones_String_Binarias','Gramatica.py',1139),
('EXP -> t_trim par1 char par2','EXP',4,'p_funciones_String_Binarias','Gramatica.py',1140),
('EXP -> t_md5 par1 char par2','EXP',4,'p_funciones_String_Binarias','Gramatica.py',1141),
('EXP -> t_sha256 par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1142),
('EXP -> t_substr par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1143),
('EXP -> t_get_byte par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1144),
('EXP -> t_set_byte par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1145),
('EXP -> t_convert par1 EXP t_as Tipo par2','EXP',6,'p_funciones_String_Binarias','Gramatica.py',1146),
('EXP -> t_encode par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1147),
('EXP -> t_decode par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1148),
('Lista_ID -> Lista_ID coma id','Lista_ID',3,'p_Lista_ID','Gramatica.py',1158),
('Lista_ID -> id','Lista_ID',1,'p_Lista_ID','Gramatica.py',1159),
('Lista_Enum -> Lista_Enum coma char','Lista_Enum',3,'p_Lista_Enum','Gramatica.py',1168),
('Lista_Enum -> char','Lista_Enum',1,'p_Lista_Enum','Gramatica.py',1169),
('Lista_EXP -> Lista_EXP coma EXP','Lista_EXP',3,'p_Lista_EXP','Gramatica.py',1178),
('Lista_EXP -> EXP','Lista_EXP',1,'p_Lista_EXP','Gramatica.py',1179),
('Lista_Alias -> Lista_Alias coma Nombre_Alias','Lista_Alias',3,'p_Lista_Alias','Gramatica.py',1194),
('Lista_Alias -> Nombre_Alias','Lista_Alias',1,'p_Lista_Alias','Gramatica.py',1195),
('Nombre_Alias -> id id','Nombre_Alias',2,'p_Nombre_Alias','Gramatica.py',1204),
]
|
"""
@Author: huuuuusy
@GitHub: https://github.com/huuuuusy
系统: Ubuntu 18.04
IDE: VS Code 1.37.1
工具: python == 3.7.3
"""
"""
思路:
数字N如果是奇数,它的约数必然都是奇数;若为偶数,则其约数可奇可偶。
无论N初始为多大的值,游戏最终只会进行到N=2时结束,那么谁轮到N=2时谁就会赢。
因为爱丽丝先手,N初始若为偶数,爱丽丝则只需一直选1,使鲍勃一直面临N为奇数的情况,这样爱丽丝稳赢;
N初始若为奇数,那么爱丽丝第一次选完之后N必为偶数,那么鲍勃只需一直选1就会稳赢。
综述,判断N是奇数还是偶数,即可得出最终结果!
结果:
执行用时 : 40 ms, 在所有 Python3 提交中击败了96.94%的用户
内存消耗 : 13.7 MB, 在所有 Python3 提交中击败了100%的用户
"""
class Solution:
def divisorGame(self, N):
return N%2==0
if __name__ == "__main__":
N = 3
answer = Solution().divisorGame(N)
print(answer)
|
"""
This hard-coded list would need to be maintained differently if/when the
available units, available upgrades or their in-game IDs change.
"""
codeMap = {
"protoss" : {
"ground" : {
4 : "Colossus",
73 : "Zealot",
74 : "Stalker",
75 : "HighTemplar",
76 : "DarkTemplar",
77 : "Sentry",
83 : "Immortal",
84 : "Probe",
141 : "Archon",
694 : "Disruptor",
311 : "Adept",
},
"air" : {
78 : "Phoenix",
79 : "Carrier",
80 : "VoidRay",
81 : "WarpPrism",
495 : "Oracle",
496 : "Tempest",
},
"defense" : {
66 : "PhotonCannon",
1910: "ShieldBattery",
},
"detection" : {
82 : "Observer",
},
"upgrades" : {
4 : "CarrierLaunchSpeedUpgrade",
42 : "ProtossGroundWeaponsLevel1",
43 : "ProtossGroundWeaponsLevel2",
44 : "ProtossGroundWeaponsLevel3",
45 : "ProtossGroundArmorsLevel1",
46 : "ProtossGroundArmorsLevel2",
47 : "ProtossGroundArmorsLevel3",
48 : "ProtossShieldsLevel1",
49 : "ProtossShieldsLevel2",
50 : "ProtossShieldsLevel3",
51 : "ObserverGraviticBooster",
52 : "GraviticDrive",
53 : "ExtendedThermalLance",
55 : "PsiStormTech",
87 : "WarpGateResearch",
90 : "BlinkTech",
89 : "Charge",
81 : "ProtossAirWeaponsLevel1",
82 : "ProtossAirWeaponsLevel2",
83 : "ProtossAirWeaponsLevel3",
84 : "ProtossAirArmorsLevel1",
85 : "ProtossAirArmorsLevel2",
86 : "ProtossAirArmorsLevel3",
148 : "PhoneixRangeUpgrade",
181 : "AdeptPiercingAttack",
198 : "DarkTemplarBlinkUpgrade",
},
},
"terran" : {
"ground" : {
33 : "SiegeTank",
45 : "SCV",
48 : "Marine",
49 : "Reaper",
50 : "Ghost",
51 : "Marauder",
52 : "Thor",
53 : "Hellion",
498 : "WidowMine",
692 : "Cyclone",
},
"air" : {
35 : "VikingFighter",
54 : "Medivac",
55 : "Banshee",
57 : "Battlecruiser",
689 : "Liberator",
},
"defense" : {
23 : "MissileTurret",
24 : "Bunker",
25 : "SensorTower",
},
"detection": {
56 : "Raven",
},
"upgrades" : {
8 : "HiSecAutoTracking",
9 : "TerranBuildingArmor",
10 : "TerranInfantryWeaponsLevel1",
11 : "TerranInfantryWeaponsLevel2",
12 : "TerranInfantryWeaponsLevel3",
13 : "NeosteelFrame",
14 : "TerranInfantryArmorsLevel1",
15 : "TerranInfantryArmorsLevel2",
16 : "TerranInfantryArmorsLevel3",
18 : "Stimpack",
19 : "CombatShields",
20 : "PunisherGrenades",
22 : "HighCapacityBarrels",
23 : "BansheeCloak",
25 : "RavenCorvidReactor",
28 : "PersonalCloaking",
33 : "TerranVehicleWeaponsLevel1",
34 : "TerranVehicleWeaponsLevel2",
35 : "TerranVehicleWeaponsLevel3",
39 : "TerranShipWeaponsLevel1",
40 : "TerranShipWeaponsLevel2",
41 : "TerranShipWeaponsLevel3",
79 : "BattlecruiserEnableSpecializations",
162 : "TerranVehicleAndShipArmorsLevel1",
163 : "TerranVehicleAndShipArmorsLevel2",
164 : "TerranVehicleAndShipArmorsLevel3",
168 : "DrillClaws",
187 : "SmartServos",
189 : "CycloneRapidFireLaunchers",
192 : "BansheeSpeed",
195 : "MedivacIncreaseSpeedBoost",
196 : "LiberatorAGRangeUpgrade",
},
},
"zerg" : {
"ground" : {
9 : "Baneling",
104 : "Drone",
105 : "Zergling",
107 : "Hydralisk",
109 : "Ultralisk",
110 : "Roach",
111 : "Infestor",
126 : "Queen",
494 : "SwarmHostMP",
502 : "LurkerMP",
#898 : "InfestedTerran",
},
"air" : {
106 : "Overlord",
108 : "Mutalisk",
112 : "Corruptor",
114 : "BroodLord",
499 : "Viper",
893 : "OverlordTransport",
},
"defense" : {
98 : "SpineCrawler",
99 : "SporeCrawler",
},
"detection": {
129 : "Overseer",
},
"upgrades" : {
5 : "GlialReconstitution",
6 : "TunnelingClaws",
7 : "ChitinousPlating",
56 : "ZergMeleeWeaponsLevel1",
57 : "ZergMeleeWeaponsLevel2",
58 : "ZergMeleeWeaponsLevel3",
59 : "ZergGroundArmorsLevel1",
60 : "ZergGroundArmorsLevel2",
61 : "ZergGroundArmorsLevel3",
62 : "ZergMissleWeaponsLevel",
63 : "ZergMissleWeaponsLeve2",
64 : "ZergMissleWeaponsLeve3",
65 : "overlordsepeed",
67 : "Burrow",
68 : "zerglingattackspeed",
69 : "zerglingmovementspeed",
71 : "ZergFlyerWeaponsLevel1",
72 : "ZergFlyerWeaponsLevel2",
73 : "ZergFlyerWeaponsLevel3",
74 : "ZergFlyerArmorsLevel1",
75 : "ZergFlyerArmorsLevel2",
76 : "ZergFlyerArmorsLevel3",
77 : "InfestorEnergyUpgrade",
78 : "CentrificalHooks",
150 : "NeuralParasite",
199 : "DiggingClaws",
190 : "EvolveGroovedSpines",
191 : "EvolveMuscularAguments",
},
}
}
|
items = "ABCDE"
pairs = []
for a in range(len(items)):
for b in range(len(items)):
pairs.append((items[a], items[b]))
print(pairs)
ret = [(items[a], items[b]) for a in range(len(items)) for b in range( len(items))]
print(ret)
ret2 = [(x, y) for x in range(2) for y in range(2)]
ret3 = [(x, y) for x in range(2) for y in range(x, 2)]
print(ret2)
print(ret3)
|
# 此处可 import 模块
"""
@param string line 为单行测试数据
@return string 处理后的结果
"""
def solution(line):
# 缩进请使用 4 个空格,遵循 PEP8 规范
# please write your code here
# return 'your_answer'
int_10 = int(line)
int_2 = bin(int_10).replace('0b', '')
int_2_r = int_2[::-1]
x = 32 - len(int_2_r)
int_2_r += '0'*x
return int(int_2_r, 2)
aa = solution("4626149")
print(aa)
|
# -*- coding: utf-8 -*-
def skip(model, layer, inputs):
inputs[layer.name] = inputs[layer.input.name]
return model, layer, inputs
|
def fixing_float(size, n_float):
fmt = ".{n}f"
fix = [None]
for i in range(size):
fix.append(fmt.format(n=n_float))
return fix
|
#
# PySNMP MIB module UPS-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/UPS-MIB
# Produced by pysmi-0.3.4 at Mon Apr 29 18:50:47 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
ValueRangeConstraint, ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint")
ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance")
MibScalar, MibTable, MibTableRow, MibTableColumn, iso, Unsigned32, Integer32, MibIdentifier, Counter32, mib_2, ModuleIdentity, ObjectIdentity, Gauge32, TimeTicks, Counter64, Bits, IpAddress, NotificationType = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "iso", "Unsigned32", "Integer32", "MibIdentifier", "Counter32", "mib-2", "ModuleIdentity", "ObjectIdentity", "Gauge32", "TimeTicks", "Counter64", "Bits", "IpAddress", "NotificationType")
TimeStamp, AutonomousType, TimeInterval, TestAndIncr, TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TimeStamp", "AutonomousType", "TimeInterval", "TestAndIncr", "TextualConvention", "DisplayString")
upsMIB = ModuleIdentity((1, 3, 6, 1, 2, 1, 33))
if mibBuilder.loadTexts: upsMIB.setLastUpdated('9402230000Z')
if mibBuilder.loadTexts: upsMIB.setOrganization('IETF UPS MIB Working Group')
class PositiveInteger(TextualConvention, Integer32):
status = 'current'
displayHint = 'd'
subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(1, 2147483647)
class NonNegativeInteger(TextualConvention, Integer32):
status = 'current'
displayHint = 'd'
subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 2147483647)
upsObjects = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1))
upsIdent = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 1))
upsIdentManufacturer = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 31))).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsIdentManufacturer.setStatus('current')
upsIdentModel = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsIdentModel.setStatus('current')
upsIdentUPSSoftwareVersion = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsIdentUPSSoftwareVersion.setStatus('current')
upsIdentAgentSoftwareVersion = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsIdentAgentSoftwareVersion.setStatus('current')
upsIdentName = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsIdentName.setStatus('current')
upsIdentAttachedDevices = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsIdentAttachedDevices.setStatus('current')
upsBattery = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 2))
upsBatteryStatus = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("unknown", 1), ("batteryNormal", 2), ("batteryLow", 3), ("batteryDepleted", 4)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsBatteryStatus.setStatus('current')
upsSecondsOnBattery = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 2), NonNegativeInteger()).setUnits('seconds').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsSecondsOnBattery.setStatus('current')
upsEstimatedMinutesRemaining = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 3), PositiveInteger()).setUnits('minutes').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsEstimatedMinutesRemaining.setStatus('current')
upsEstimatedChargeRemaining = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 100))).setUnits('percent').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsEstimatedChargeRemaining.setStatus('current')
upsBatteryVoltage = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 5), NonNegativeInteger()).setUnits('0.1 Volt DC').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsBatteryVoltage.setStatus('current')
upsBatteryCurrent = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 6), Integer32()).setUnits('0.1 Amp DC').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsBatteryCurrent.setStatus('current')
upsBatteryTemperature = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 7), Integer32()).setUnits('degrees Centigrade').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsBatteryTemperature.setStatus('current')
upsInput = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 3))
upsInputLineBads = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 3, 1), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsInputLineBads.setStatus('current')
upsInputNumLines = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 3, 2), NonNegativeInteger()).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsInputNumLines.setStatus('current')
upsInputTable = MibTable((1, 3, 6, 1, 2, 1, 33, 1, 3, 3), )
if mibBuilder.loadTexts: upsInputTable.setStatus('current')
upsInputEntry = MibTableRow((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1), ).setIndexNames((0, "UPS-MIB", "upsInputLineIndex"))
if mibBuilder.loadTexts: upsInputEntry.setStatus('current')
upsInputLineIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 1), PositiveInteger())
if mibBuilder.loadTexts: upsInputLineIndex.setStatus('current')
upsInputFrequency = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 2), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsInputFrequency.setStatus('current')
upsInputVoltage = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 3), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsInputVoltage.setStatus('current')
upsInputCurrent = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 4), NonNegativeInteger()).setUnits('0.1 RMS Amp').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsInputCurrent.setStatus('current')
upsInputTruePower = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 5), NonNegativeInteger()).setUnits('Watts').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsInputTruePower.setStatus('current')
upsOutput = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 4))
upsOutputSource = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 4, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7))).clone(namedValues=NamedValues(("other", 1), ("none", 2), ("normal", 3), ("bypass", 4), ("battery", 5), ("booster", 6), ("reducer", 7)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsOutputSource.setStatus('current')
upsOutputFrequency = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 4, 2), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsOutputFrequency.setStatus('current')
upsOutputNumLines = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 4, 3), NonNegativeInteger()).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsOutputNumLines.setStatus('current')
upsOutputTable = MibTable((1, 3, 6, 1, 2, 1, 33, 1, 4, 4), )
if mibBuilder.loadTexts: upsOutputTable.setStatus('current')
upsOutputEntry = MibTableRow((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1), ).setIndexNames((0, "UPS-MIB", "upsOutputLineIndex"))
if mibBuilder.loadTexts: upsOutputEntry.setStatus('current')
upsOutputLineIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 1), PositiveInteger())
if mibBuilder.loadTexts: upsOutputLineIndex.setStatus('current')
upsOutputVoltage = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 2), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsOutputVoltage.setStatus('current')
upsOutputCurrent = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 3), NonNegativeInteger()).setUnits('0.1 RMS Amp').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsOutputCurrent.setStatus('current')
upsOutputPower = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 4), NonNegativeInteger()).setUnits('Watts').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsOutputPower.setStatus('current')
upsOutputPercentLoad = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 200))).setUnits('percent').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsOutputPercentLoad.setStatus('current')
upsBypass = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 5))
upsBypassFrequency = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 5, 1), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsBypassFrequency.setStatus('current')
upsBypassNumLines = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 5, 2), NonNegativeInteger()).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsBypassNumLines.setStatus('current')
upsBypassTable = MibTable((1, 3, 6, 1, 2, 1, 33, 1, 5, 3), )
if mibBuilder.loadTexts: upsBypassTable.setStatus('current')
upsBypassEntry = MibTableRow((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1), ).setIndexNames((0, "UPS-MIB", "upsBypassLineIndex"))
if mibBuilder.loadTexts: upsBypassEntry.setStatus('current')
upsBypassLineIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 1), PositiveInteger())
if mibBuilder.loadTexts: upsBypassLineIndex.setStatus('current')
upsBypassVoltage = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 2), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsBypassVoltage.setStatus('current')
upsBypassCurrent = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 3), NonNegativeInteger()).setUnits('0.1 RMS Amp').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsBypassCurrent.setStatus('current')
upsBypassPower = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 4), NonNegativeInteger()).setUnits('Watts').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsBypassPower.setStatus('current')
upsAlarm = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 6))
upsAlarmsPresent = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 6, 1), Gauge32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsAlarmsPresent.setStatus('current')
upsAlarmTable = MibTable((1, 3, 6, 1, 2, 1, 33, 1, 6, 2), )
if mibBuilder.loadTexts: upsAlarmTable.setStatus('current')
upsAlarmEntry = MibTableRow((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1), ).setIndexNames((0, "UPS-MIB", "upsAlarmId"))
if mibBuilder.loadTexts: upsAlarmEntry.setStatus('current')
upsAlarmId = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1, 1), PositiveInteger())
if mibBuilder.loadTexts: upsAlarmId.setStatus('current')
upsAlarmDescr = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1, 2), AutonomousType()).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsAlarmDescr.setStatus('current')
upsAlarmTime = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1, 3), TimeStamp()).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsAlarmTime.setStatus('current')
upsWellKnownAlarms = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 6, 3))
upsAlarmBatteryBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 1))
if mibBuilder.loadTexts: upsAlarmBatteryBad.setStatus('current')
upsAlarmOnBattery = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 2))
if mibBuilder.loadTexts: upsAlarmOnBattery.setStatus('current')
upsAlarmLowBattery = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 3))
if mibBuilder.loadTexts: upsAlarmLowBattery.setStatus('current')
upsAlarmDepletedBattery = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 4))
if mibBuilder.loadTexts: upsAlarmDepletedBattery.setStatus('current')
upsAlarmTempBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 5))
if mibBuilder.loadTexts: upsAlarmTempBad.setStatus('current')
upsAlarmInputBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 6))
if mibBuilder.loadTexts: upsAlarmInputBad.setStatus('current')
upsAlarmOutputBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 7))
if mibBuilder.loadTexts: upsAlarmOutputBad.setStatus('current')
upsAlarmOutputOverload = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 8))
if mibBuilder.loadTexts: upsAlarmOutputOverload.setStatus('current')
upsAlarmOnBypass = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 9))
if mibBuilder.loadTexts: upsAlarmOnBypass.setStatus('current')
upsAlarmBypassBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 10))
if mibBuilder.loadTexts: upsAlarmBypassBad.setStatus('current')
upsAlarmOutputOffAsRequested = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 11))
if mibBuilder.loadTexts: upsAlarmOutputOffAsRequested.setStatus('current')
upsAlarmUpsOffAsRequested = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 12))
if mibBuilder.loadTexts: upsAlarmUpsOffAsRequested.setStatus('current')
upsAlarmChargerFailed = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 13))
if mibBuilder.loadTexts: upsAlarmChargerFailed.setStatus('current')
upsAlarmUpsOutputOff = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 14))
if mibBuilder.loadTexts: upsAlarmUpsOutputOff.setStatus('current')
upsAlarmUpsSystemOff = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 15))
if mibBuilder.loadTexts: upsAlarmUpsSystemOff.setStatus('current')
upsAlarmFanFailure = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 16))
if mibBuilder.loadTexts: upsAlarmFanFailure.setStatus('current')
upsAlarmFuseFailure = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 17))
if mibBuilder.loadTexts: upsAlarmFuseFailure.setStatus('current')
upsAlarmGeneralFault = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 18))
if mibBuilder.loadTexts: upsAlarmGeneralFault.setStatus('current')
upsAlarmDiagnosticTestFailed = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 19))
if mibBuilder.loadTexts: upsAlarmDiagnosticTestFailed.setStatus('current')
upsAlarmCommunicationsLost = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 20))
if mibBuilder.loadTexts: upsAlarmCommunicationsLost.setStatus('current')
upsAlarmAwaitingPower = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 21))
if mibBuilder.loadTexts: upsAlarmAwaitingPower.setStatus('current')
upsAlarmShutdownPending = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 22))
if mibBuilder.loadTexts: upsAlarmShutdownPending.setStatus('current')
upsAlarmShutdownImminent = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 23))
if mibBuilder.loadTexts: upsAlarmShutdownImminent.setStatus('current')
upsAlarmTestInProgress = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 24))
if mibBuilder.loadTexts: upsAlarmTestInProgress.setStatus('current')
upsTest = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 7))
upsTestId = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 1), ObjectIdentifier()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsTestId.setStatus('current')
upsTestSpinLock = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 2), TestAndIncr()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsTestSpinLock.setStatus('current')
upsTestResultsSummary = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("donePass", 1), ("doneWarning", 2), ("doneError", 3), ("aborted", 4), ("inProgress", 5), ("noTestsInitiated", 6)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsTestResultsSummary.setStatus('current')
upsTestResultsDetail = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsTestResultsDetail.setStatus('current')
upsTestStartTime = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 5), TimeStamp()).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsTestStartTime.setStatus('current')
upsTestElapsedTime = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 6), TimeInterval()).setMaxAccess("readonly")
if mibBuilder.loadTexts: upsTestElapsedTime.setStatus('current')
upsWellKnownTests = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 7, 7))
upsTestNoTestsInitiated = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 1))
if mibBuilder.loadTexts: upsTestNoTestsInitiated.setStatus('current')
upsTestAbortTestInProgress = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 2))
if mibBuilder.loadTexts: upsTestAbortTestInProgress.setStatus('current')
upsTestGeneralSystemsTest = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 3))
if mibBuilder.loadTexts: upsTestGeneralSystemsTest.setStatus('current')
upsTestQuickBatteryTest = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 4))
if mibBuilder.loadTexts: upsTestQuickBatteryTest.setStatus('current')
upsTestDeepBatteryCalibration = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 5))
if mibBuilder.loadTexts: upsTestDeepBatteryCalibration.setStatus('current')
upsControl = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 8))
upsShutdownType = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("output", 1), ("system", 2)))).setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsShutdownType.setStatus('current')
upsShutdownAfterDelay = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483648))).setUnits('seconds').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsShutdownAfterDelay.setStatus('current')
upsStartupAfterDelay = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483648))).setUnits('seconds').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsStartupAfterDelay.setStatus('current')
upsRebootWithDuration = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 300))).setUnits('seconds').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsRebootWithDuration.setStatus('current')
upsAutoRestart = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("on", 1), ("off", 2)))).setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsAutoRestart.setStatus('current')
upsConfig = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 9))
upsConfigInputVoltage = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 1), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsConfigInputVoltage.setStatus('current')
upsConfigInputFreq = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 2), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsConfigInputFreq.setStatus('current')
upsConfigOutputVoltage = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 3), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsConfigOutputVoltage.setStatus('current')
upsConfigOutputFreq = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 4), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsConfigOutputFreq.setStatus('current')
upsConfigOutputVA = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 5), NonNegativeInteger()).setUnits('Volt-Amps').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsConfigOutputVA.setStatus('current')
upsConfigOutputPower = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 6), NonNegativeInteger()).setUnits('Watts').setMaxAccess("readonly")
if mibBuilder.loadTexts: upsConfigOutputPower.setStatus('current')
upsConfigLowBattTime = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 7), NonNegativeInteger()).setUnits('minutes').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsConfigLowBattTime.setStatus('current')
upsConfigAudibleStatus = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("disabled", 1), ("enabled", 2), ("muted", 3)))).setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsConfigAudibleStatus.setStatus('current')
upsConfigLowVoltageTransferPoint = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 9), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsConfigLowVoltageTransferPoint.setStatus('current')
upsConfigHighVoltageTransferPoint = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 10), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readwrite")
if mibBuilder.loadTexts: upsConfigHighVoltageTransferPoint.setStatus('current')
upsTraps = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 2))
upsTrapOnBattery = NotificationType((1, 3, 6, 1, 2, 1, 33, 2, 1)).setObjects(("UPS-MIB", "upsEstimatedMinutesRemaining"), ("UPS-MIB", "upsSecondsOnBattery"), ("UPS-MIB", "upsConfigLowBattTime"))
if mibBuilder.loadTexts: upsTrapOnBattery.setStatus('current')
upsTrapTestCompleted = NotificationType((1, 3, 6, 1, 2, 1, 33, 2, 2)).setObjects(("UPS-MIB", "upsTestId"), ("UPS-MIB", "upsTestSpinLock"), ("UPS-MIB", "upsTestResultsSummary"), ("UPS-MIB", "upsTestResultsDetail"), ("UPS-MIB", "upsTestStartTime"), ("UPS-MIB", "upsTestElapsedTime"))
if mibBuilder.loadTexts: upsTrapTestCompleted.setStatus('current')
upsTrapAlarmEntryAdded = NotificationType((1, 3, 6, 1, 2, 1, 33, 2, 3)).setObjects(("UPS-MIB", "upsAlarmId"), ("UPS-MIB", "upsAlarmDescr"))
if mibBuilder.loadTexts: upsTrapAlarmEntryAdded.setStatus('current')
upsTrapAlarmEntryRemoved = NotificationType((1, 3, 6, 1, 2, 1, 33, 2, 4)).setObjects(("UPS-MIB", "upsAlarmId"), ("UPS-MIB", "upsAlarmDescr"))
if mibBuilder.loadTexts: upsTrapAlarmEntryRemoved.setStatus('current')
upsConformance = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3))
upsCompliances = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 1))
upsSubsetCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 33, 3, 1, 1)).setObjects(("UPS-MIB", "upsSubsetIdentGroup"), ("UPS-MIB", "upsSubsetBatteryGroup"), ("UPS-MIB", "upsSubsetInputGroup"), ("UPS-MIB", "upsSubsetOutputGroup"), ("UPS-MIB", "upsSubsetAlarmGroup"), ("UPS-MIB", "upsSubsetControlGroup"), ("UPS-MIB", "upsSubsetConfigGroup"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsSubsetCompliance = upsSubsetCompliance.setStatus('current')
upsBasicCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 33, 3, 1, 2)).setObjects(("UPS-MIB", "upsBasicIdentGroup"), ("UPS-MIB", "upsBasicBatteryGroup"), ("UPS-MIB", "upsBasicInputGroup"), ("UPS-MIB", "upsBasicOutputGroup"), ("UPS-MIB", "upsBasicAlarmGroup"), ("UPS-MIB", "upsBasicTestGroup"), ("UPS-MIB", "upsBasicControlGroup"), ("UPS-MIB", "upsBasicConfigGroup"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicCompliance = upsBasicCompliance.setStatus('current')
upsFullCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 33, 3, 1, 3)).setObjects(("UPS-MIB", "upsFullIdentGroup"), ("UPS-MIB", "upsFullBatteryGroup"), ("UPS-MIB", "upsFullInputGroup"), ("UPS-MIB", "upsFullOutputGroup"), ("UPS-MIB", "upsFullAlarmGroup"), ("UPS-MIB", "upsFullTestGroup"), ("UPS-MIB", "upsFullControlGroup"), ("UPS-MIB", "upsFullConfigGroup"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullCompliance = upsFullCompliance.setStatus('current')
upsGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 2))
upsSubsetGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 2, 1))
upsSubsetIdentGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 1)).setObjects(("UPS-MIB", "upsIdentManufacturer"), ("UPS-MIB", "upsIdentModel"), ("UPS-MIB", "upsIdentAgentSoftwareVersion"), ("UPS-MIB", "upsIdentName"), ("UPS-MIB", "upsIdentAttachedDevices"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsSubsetIdentGroup = upsSubsetIdentGroup.setStatus('current')
upsSubsetBatteryGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 2)).setObjects(("UPS-MIB", "upsBatteryStatus"), ("UPS-MIB", "upsSecondsOnBattery"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsSubsetBatteryGroup = upsSubsetBatteryGroup.setStatus('current')
upsSubsetInputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 3)).setObjects(("UPS-MIB", "upsInputLineBads"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsSubsetInputGroup = upsSubsetInputGroup.setStatus('current')
upsSubsetOutputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 4)).setObjects(("UPS-MIB", "upsOutputSource"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsSubsetOutputGroup = upsSubsetOutputGroup.setStatus('current')
upsSubsetAlarmGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 6)).setObjects(("UPS-MIB", "upsAlarmsPresent"), ("UPS-MIB", "upsAlarmDescr"), ("UPS-MIB", "upsAlarmTime"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsSubsetAlarmGroup = upsSubsetAlarmGroup.setStatus('current')
upsSubsetControlGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 8)).setObjects(("UPS-MIB", "upsShutdownType"), ("UPS-MIB", "upsShutdownAfterDelay"), ("UPS-MIB", "upsAutoRestart"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsSubsetControlGroup = upsSubsetControlGroup.setStatus('current')
upsSubsetConfigGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 9)).setObjects(("UPS-MIB", "upsConfigInputVoltage"), ("UPS-MIB", "upsConfigInputFreq"), ("UPS-MIB", "upsConfigOutputVoltage"), ("UPS-MIB", "upsConfigOutputFreq"), ("UPS-MIB", "upsConfigOutputVA"), ("UPS-MIB", "upsConfigOutputPower"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsSubsetConfigGroup = upsSubsetConfigGroup.setStatus('current')
upsBasicGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 2, 2))
upsBasicIdentGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 1)).setObjects(("UPS-MIB", "upsIdentManufacturer"), ("UPS-MIB", "upsIdentModel"), ("UPS-MIB", "upsIdentUPSSoftwareVersion"), ("UPS-MIB", "upsIdentAgentSoftwareVersion"), ("UPS-MIB", "upsIdentName"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicIdentGroup = upsBasicIdentGroup.setStatus('current')
upsBasicBatteryGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 2)).setObjects(("UPS-MIB", "upsBatteryStatus"), ("UPS-MIB", "upsSecondsOnBattery"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicBatteryGroup = upsBasicBatteryGroup.setStatus('current')
upsBasicInputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 3)).setObjects(("UPS-MIB", "upsInputLineBads"), ("UPS-MIB", "upsInputNumLines"), ("UPS-MIB", "upsInputFrequency"), ("UPS-MIB", "upsInputVoltage"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicInputGroup = upsBasicInputGroup.setStatus('current')
upsBasicOutputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 4)).setObjects(("UPS-MIB", "upsOutputSource"), ("UPS-MIB", "upsOutputFrequency"), ("UPS-MIB", "upsOutputNumLines"), ("UPS-MIB", "upsOutputVoltage"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicOutputGroup = upsBasicOutputGroup.setStatus('current')
upsBasicBypassGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 5)).setObjects(("UPS-MIB", "upsBypassFrequency"), ("UPS-MIB", "upsBypassNumLines"), ("UPS-MIB", "upsBypassVoltage"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicBypassGroup = upsBasicBypassGroup.setStatus('current')
upsBasicAlarmGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 6)).setObjects(("UPS-MIB", "upsAlarmsPresent"), ("UPS-MIB", "upsAlarmDescr"), ("UPS-MIB", "upsAlarmTime"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicAlarmGroup = upsBasicAlarmGroup.setStatus('current')
upsBasicTestGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 7)).setObjects(("UPS-MIB", "upsTestId"), ("UPS-MIB", "upsTestSpinLock"), ("UPS-MIB", "upsTestResultsSummary"), ("UPS-MIB", "upsTestResultsDetail"), ("UPS-MIB", "upsTestStartTime"), ("UPS-MIB", "upsTestElapsedTime"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicTestGroup = upsBasicTestGroup.setStatus('current')
upsBasicControlGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 8)).setObjects(("UPS-MIB", "upsShutdownType"), ("UPS-MIB", "upsShutdownAfterDelay"), ("UPS-MIB", "upsStartupAfterDelay"), ("UPS-MIB", "upsRebootWithDuration"), ("UPS-MIB", "upsAutoRestart"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicControlGroup = upsBasicControlGroup.setStatus('current')
upsBasicConfigGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 9)).setObjects(("UPS-MIB", "upsConfigInputVoltage"), ("UPS-MIB", "upsConfigInputFreq"), ("UPS-MIB", "upsConfigOutputVoltage"), ("UPS-MIB", "upsConfigOutputFreq"), ("UPS-MIB", "upsConfigOutputVA"), ("UPS-MIB", "upsConfigOutputPower"), ("UPS-MIB", "upsConfigLowBattTime"), ("UPS-MIB", "upsConfigAudibleStatus"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsBasicConfigGroup = upsBasicConfigGroup.setStatus('current')
upsFullGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 2, 3))
upsFullIdentGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 1)).setObjects(("UPS-MIB", "upsIdentManufacturer"), ("UPS-MIB", "upsIdentModel"), ("UPS-MIB", "upsIdentUPSSoftwareVersion"), ("UPS-MIB", "upsIdentAgentSoftwareVersion"), ("UPS-MIB", "upsIdentName"), ("UPS-MIB", "upsIdentAttachedDevices"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullIdentGroup = upsFullIdentGroup.setStatus('current')
upsFullBatteryGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 2)).setObjects(("UPS-MIB", "upsBatteryStatus"), ("UPS-MIB", "upsSecondsOnBattery"), ("UPS-MIB", "upsEstimatedMinutesRemaining"), ("UPS-MIB", "upsEstimatedChargeRemaining"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullBatteryGroup = upsFullBatteryGroup.setStatus('current')
upsFullInputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 3)).setObjects(("UPS-MIB", "upsInputLineBads"), ("UPS-MIB", "upsInputNumLines"), ("UPS-MIB", "upsInputFrequency"), ("UPS-MIB", "upsInputVoltage"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullInputGroup = upsFullInputGroup.setStatus('current')
upsFullOutputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 4)).setObjects(("UPS-MIB", "upsOutputSource"), ("UPS-MIB", "upsOutputFrequency"), ("UPS-MIB", "upsOutputNumLines"), ("UPS-MIB", "upsOutputVoltage"), ("UPS-MIB", "upsOutputCurrent"), ("UPS-MIB", "upsOutputPower"), ("UPS-MIB", "upsOutputPercentLoad"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullOutputGroup = upsFullOutputGroup.setStatus('current')
upsFullBypassGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 5)).setObjects(("UPS-MIB", "upsBypassFrequency"), ("UPS-MIB", "upsBypassNumLines"), ("UPS-MIB", "upsBypassVoltage"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullBypassGroup = upsFullBypassGroup.setStatus('current')
upsFullAlarmGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 6)).setObjects(("UPS-MIB", "upsAlarmsPresent"), ("UPS-MIB", "upsAlarmDescr"), ("UPS-MIB", "upsAlarmTime"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullAlarmGroup = upsFullAlarmGroup.setStatus('current')
upsFullTestGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 7)).setObjects(("UPS-MIB", "upsTestId"), ("UPS-MIB", "upsTestSpinLock"), ("UPS-MIB", "upsTestResultsSummary"), ("UPS-MIB", "upsTestResultsDetail"), ("UPS-MIB", "upsTestStartTime"), ("UPS-MIB", "upsTestElapsedTime"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullTestGroup = upsFullTestGroup.setStatus('current')
upsFullControlGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 8)).setObjects(("UPS-MIB", "upsShutdownType"), ("UPS-MIB", "upsShutdownAfterDelay"), ("UPS-MIB", "upsStartupAfterDelay"), ("UPS-MIB", "upsRebootWithDuration"), ("UPS-MIB", "upsAutoRestart"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullControlGroup = upsFullControlGroup.setStatus('current')
upsFullConfigGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 9)).setObjects(("UPS-MIB", "upsConfigInputVoltage"), ("UPS-MIB", "upsConfigInputFreq"), ("UPS-MIB", "upsConfigOutputVoltage"), ("UPS-MIB", "upsConfigOutputFreq"), ("UPS-MIB", "upsConfigOutputVA"), ("UPS-MIB", "upsConfigOutputPower"), ("UPS-MIB", "upsConfigLowBattTime"), ("UPS-MIB", "upsConfigAudibleStatus"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
upsFullConfigGroup = upsFullConfigGroup.setStatus('current')
mibBuilder.exportSymbols("UPS-MIB", upsEstimatedChargeRemaining=upsEstimatedChargeRemaining, upsInputTable=upsInputTable, upsInputCurrent=upsInputCurrent, upsAlarmOutputBad=upsAlarmOutputBad, upsIdentUPSSoftwareVersion=upsIdentUPSSoftwareVersion, upsInputVoltage=upsInputVoltage, upsOutputEntry=upsOutputEntry, upsAlarmShutdownPending=upsAlarmShutdownPending, upsOutputFrequency=upsOutputFrequency, upsAlarmOutputOverload=upsAlarmOutputOverload, upsSubsetControlGroup=upsSubsetControlGroup, upsAlarmShutdownImminent=upsAlarmShutdownImminent, upsAlarmLowBattery=upsAlarmLowBattery, upsBatteryCurrent=upsBatteryCurrent, upsConfigOutputFreq=upsConfigOutputFreq, upsWellKnownTests=upsWellKnownTests, upsIdentManufacturer=upsIdentManufacturer, upsTestAbortTestInProgress=upsTestAbortTestInProgress, upsConfig=upsConfig, upsFullInputGroup=upsFullInputGroup, upsAlarmsPresent=upsAlarmsPresent, upsAlarmTempBad=upsAlarmTempBad, upsBypassFrequency=upsBypassFrequency, upsShutdownType=upsShutdownType, upsBatteryStatus=upsBatteryStatus, upsTrapTestCompleted=upsTrapTestCompleted, upsBasicIdentGroup=upsBasicIdentGroup, upsFullBatteryGroup=upsFullBatteryGroup, upsAlarmFuseFailure=upsAlarmFuseFailure, upsOutputCurrent=upsOutputCurrent, upsWellKnownAlarms=upsWellKnownAlarms, upsAlarmOnBattery=upsAlarmOnBattery, upsFullTestGroup=upsFullTestGroup, upsOutputNumLines=upsOutputNumLines, upsAlarmGeneralFault=upsAlarmGeneralFault, upsInputLineIndex=upsInputLineIndex, upsOutputPower=upsOutputPower, upsSubsetOutputGroup=upsSubsetOutputGroup, upsAlarmChargerFailed=upsAlarmChargerFailed, upsBasicBatteryGroup=upsBasicBatteryGroup, upsAlarmOnBypass=upsAlarmOnBypass, upsBasicOutputGroup=upsBasicOutputGroup, upsAlarmDiagnosticTestFailed=upsAlarmDiagnosticTestFailed, upsTestGeneralSystemsTest=upsTestGeneralSystemsTest, upsTestId=upsTestId, upsTrapAlarmEntryRemoved=upsTrapAlarmEntryRemoved, upsEstimatedMinutesRemaining=upsEstimatedMinutesRemaining, upsIdentAttachedDevices=upsIdentAttachedDevices, upsAlarmCommunicationsLost=upsAlarmCommunicationsLost, upsTestStartTime=upsTestStartTime, upsBasicInputGroup=upsBasicInputGroup, upsAlarmId=upsAlarmId, upsAlarmTime=upsAlarmTime, upsSubsetAlarmGroup=upsSubsetAlarmGroup, upsAlarmUpsOutputOff=upsAlarmUpsOutputOff, upsIdentName=upsIdentName, upsGroups=upsGroups, upsConfigOutputPower=upsConfigOutputPower, upsAlarmTestInProgress=upsAlarmTestInProgress, upsTestNoTestsInitiated=upsTestNoTestsInitiated, upsBasicConfigGroup=upsBasicConfigGroup, upsBatteryTemperature=upsBatteryTemperature, upsInputLineBads=upsInputLineBads, upsInputTruePower=upsInputTruePower, upsTest=upsTest, upsIdent=upsIdent, upsBypassVoltage=upsBypassVoltage, upsFullControlGroup=upsFullControlGroup, upsTraps=upsTraps, upsOutputTable=upsOutputTable, upsIdentModel=upsIdentModel, upsSubsetCompliance=upsSubsetCompliance, upsInputFrequency=upsInputFrequency, upsOutputVoltage=upsOutputVoltage, upsTrapOnBattery=upsTrapOnBattery, upsOutput=upsOutput, upsFullConfigGroup=upsFullConfigGroup, upsSubsetConfigGroup=upsSubsetConfigGroup, upsTestQuickBatteryTest=upsTestQuickBatteryTest, upsConfigOutputVoltage=upsConfigOutputVoltage, upsAlarmBypassBad=upsAlarmBypassBad, upsSecondsOnBattery=upsSecondsOnBattery, upsFullAlarmGroup=upsFullAlarmGroup, upsBypass=upsBypass, upsBypassLineIndex=upsBypassLineIndex, upsBypassNumLines=upsBypassNumLines, upsBypassCurrent=upsBypassCurrent, upsInput=upsInput, upsOutputSource=upsOutputSource, upsConfigAudibleStatus=upsConfigAudibleStatus, upsAlarmTable=upsAlarmTable, upsAlarmFanFailure=upsAlarmFanFailure, upsSubsetGroups=upsSubsetGroups, upsBasicControlGroup=upsBasicControlGroup, upsConfigHighVoltageTransferPoint=upsConfigHighVoltageTransferPoint, upsAlarmDepletedBattery=upsAlarmDepletedBattery, upsAutoRestart=upsAutoRestart, upsBasicGroups=upsBasicGroups, upsConfigOutputVA=upsConfigOutputVA, upsAlarmUpsSystemOff=upsAlarmUpsSystemOff, upsAlarmUpsOffAsRequested=upsAlarmUpsOffAsRequested, upsConformance=upsConformance, PYSNMP_MODULE_ID=upsMIB, upsIdentAgentSoftwareVersion=upsIdentAgentSoftwareVersion, upsRebootWithDuration=upsRebootWithDuration, upsObjects=upsObjects, upsTestResultsDetail=upsTestResultsDetail, upsOutputPercentLoad=upsOutputPercentLoad, upsBypassTable=upsBypassTable, upsFullBypassGroup=upsFullBypassGroup, upsSubsetBatteryGroup=upsSubsetBatteryGroup, upsAlarmEntry=upsAlarmEntry, upsControl=upsControl, upsTestDeepBatteryCalibration=upsTestDeepBatteryCalibration, upsStartupAfterDelay=upsStartupAfterDelay, upsCompliances=upsCompliances, upsFullOutputGroup=upsFullOutputGroup, NonNegativeInteger=NonNegativeInteger, upsFullIdentGroup=upsFullIdentGroup, upsInputNumLines=upsInputNumLines, upsBatteryVoltage=upsBatteryVoltage, upsBasicCompliance=upsBasicCompliance, upsSubsetInputGroup=upsSubsetInputGroup, upsOutputLineIndex=upsOutputLineIndex, upsAlarmBatteryBad=upsAlarmBatteryBad, upsBypassEntry=upsBypassEntry, upsConfigLowVoltageTransferPoint=upsConfigLowVoltageTransferPoint, upsMIB=upsMIB, upsBypassPower=upsBypassPower, upsConfigLowBattTime=upsConfigLowBattTime, upsBasicTestGroup=upsBasicTestGroup, upsConfigInputVoltage=upsConfigInputVoltage, upsTrapAlarmEntryAdded=upsTrapAlarmEntryAdded, upsTestSpinLock=upsTestSpinLock, upsBasicBypassGroup=upsBasicBypassGroup, upsTestElapsedTime=upsTestElapsedTime, upsInputEntry=upsInputEntry, PositiveInteger=PositiveInteger, upsFullCompliance=upsFullCompliance, upsAlarmAwaitingPower=upsAlarmAwaitingPower, upsShutdownAfterDelay=upsShutdownAfterDelay, upsConfigInputFreq=upsConfigInputFreq, upsAlarmDescr=upsAlarmDescr, upsAlarmOutputOffAsRequested=upsAlarmOutputOffAsRequested, upsBasicAlarmGroup=upsBasicAlarmGroup, upsBattery=upsBattery, upsSubsetIdentGroup=upsSubsetIdentGroup, upsAlarmInputBad=upsAlarmInputBad, upsFullGroups=upsFullGroups, upsTestResultsSummary=upsTestResultsSummary, upsAlarm=upsAlarm)
|
#
# PySNMP MIB module ELTEX-MES-SNMP-COMMUNITY-EXT-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ELTEX-MES-SNMP-COMMUNITY-EXT-MIB
# Produced by pysmi-0.3.4 at Wed May 1 13:01:57 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
ConstraintsUnion, ConstraintsIntersection, ValueRangeConstraint, SingleValueConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ConstraintsIntersection", "ValueRangeConstraint", "SingleValueConstraint", "ValueSizeConstraint")
eltMesSnmpCommExtMIB, = mibBuilder.importSymbols("ELTEX-MES-MNG-MIB", "eltMesSnmpCommExtMIB")
snmpCommunityEntry, = mibBuilder.importSymbols("SNMP-COMMUNITY-MIB", "snmpCommunityEntry")
ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup")
TimeTicks, ObjectIdentity, Counter64, Bits, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, MibIdentifier, Unsigned32, iso, Gauge32, IpAddress, Integer32, ModuleIdentity, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "TimeTicks", "ObjectIdentity", "Counter64", "Bits", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "MibIdentifier", "Unsigned32", "iso", "Gauge32", "IpAddress", "Integer32", "ModuleIdentity", "Counter32")
TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString")
eltSnmpCommunityTable = MibTable((1, 3, 6, 1, 4, 1, 35265, 1, 23, 1, 4, 1), )
if mibBuilder.loadTexts: eltSnmpCommunityTable.setStatus('current')
if mibBuilder.loadTexts: eltSnmpCommunityTable.setDescription("The table of community strings configured in the SNMP engine's Local Configuration Datastore (LCD).")
eltSnmpCommunityEntry = MibTableRow((1, 3, 6, 1, 4, 1, 35265, 1, 23, 1, 4, 1, 1), )
snmpCommunityEntry.registerAugmentions(("ELTEX-MES-SNMP-COMMUNITY-EXT-MIB", "eltSnmpCommunityEntry"))
eltSnmpCommunityEntry.setIndexNames(*snmpCommunityEntry.getIndexNames())
if mibBuilder.loadTexts: eltSnmpCommunityEntry.setStatus('current')
if mibBuilder.loadTexts: eltSnmpCommunityEntry.setDescription('Information about a particular community string.')
eltSnmpCommunityAccessList = MibTableColumn((1, 3, 6, 1, 4, 1, 35265, 1, 23, 1, 4, 1, 1, 1), Integer32()).setMaxAccess("readcreate")
if mibBuilder.loadTexts: eltSnmpCommunityAccessList.setStatus('current')
if mibBuilder.loadTexts: eltSnmpCommunityAccessList.setDescription('Index assigned to the ACL for SNMP community to filter SNMP requests.')
mibBuilder.exportSymbols("ELTEX-MES-SNMP-COMMUNITY-EXT-MIB", eltSnmpCommunityTable=eltSnmpCommunityTable, eltSnmpCommunityEntry=eltSnmpCommunityEntry, eltSnmpCommunityAccessList=eltSnmpCommunityAccessList)
|
def fun(x):
return 2*x
fun(4)
|
# Define a class for the maze board
class Maze:
# Initialize number of rows, cols and start position
def __init__(self, rows, cols, start):
self.rows = rows
self.cols = cols
self.i = start[0]
self.j = start[1]
self.start = start
def set(self, rewards, actions):
self.rewards = rewards
self.actions = actions
def set_state(self, state):
self.i = state[0]
self.j = state[1]
def current_state(self):
return (self.i, self.j)
def is_terminal(self, state):
return state not in self.actions
def move(self, action):
if action in self.actions[(self.i, self.j)]:
if action == 'U':
self.i -= 1
elif action == 'D':
self.i += 1
elif action == 'L':
self.j -= 1
elif action == 'R':
self.j += 1
return self.rewards.get((self.i, self.j), 0)
def undo_move(self, action):
if action == 'U':
self.i += 1
elif action == 'D':
self.i -= 1
elif action == 'L':
self.j += 1
elif action == 'R':
self.j -= 1
def game_over(self):
return (self.i, self.j) not in self.actions
def all_states(self):
return set(self.actions.keys()) | set(self.rewards.keys())
def standard_maze(rows=8, cols=10, start=(7, 0)):
g = Maze(rows, cols, start)
stoppers = []
stoppers = [[(7, 7)], [(7, 3)], [
(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (4, 1), (6, 1), (7, 1), (1, 2),
(6, 2), (1, 3), (3, 3), (4, 3), (5, 3), (6, 3), (0, 5), (1, 5), (7, 5),
(7, 6), (5, 6), (5, 7), (0, 8), (2, 8), (4, 8), (5, 8), (7, 8), (0, 9), (7, 9),
(7, 2)
]]
'''
temp = []
ar, b = input("Enter a win: ").split(',')
stoppers.append(([[int(ar), int(b)]]))
ar, b = input("Enter a loss: ").split(',')
stoppers.append(([[int(ar), int(b)]]))
for t in range(int(input("Enter number of rocks"))):
ar, b = input("Enter a rock: ").split(',')
temp.append(([int(ar), int(b)]))
stoppers.append(temp)
actions = {}'''
actions = {}
for i in range(rows):
for j in range(cols):
list1 = []
if [(i, j)] not in stoppers and (i, j) not in stoppers[-1]:
if (i + 1, j) not in stoppers[-1] and i + 1 < rows:
list1.append('D')
if (i - 1, j) not in stoppers[-1] and i - 1 >= 0:
list1.append('U')
if (i, j + 1) not in stoppers[-1] and j + 1 < cols:
list1.append('R')
if (i, j - 1) not in stoppers[-1] and j - 1 >= 0:
list1.append('L')
actions[i, j] = tuple(list1)
'''
for i in range(rows):
for j in range(cols):
list1 = []
if [[i, j]] not in stoppers and [i, j] not in stoppers[-1]:
if [i + 1, j] not in stoppers[-1] and i + 1 < rows:
list1.append('D')
if [i - 1, j] not in stoppers[-1] and i - 1 >= 0:
list1.append('U')
if [i, j + 1] not in stoppers[-1] and j + 1 < cols:
list1.append('R')
if [i, j - 1] not in stoppers[-1] and j - 1 >= 0:
list1.append('L')
actions[i, j] = tuple(list1)
'''
rewards = {}
for win in stoppers[0]:
rewards[tuple(win)] = 1
for loss in stoppers[1]:
rewards[tuple(loss)] = -5
actions = {k: v for k, v in actions.items() if v is not ()}
g.set(rewards, actions)
return g
def negative_maze(step_cost=-0.1, rows=8, cols=10, start=(7, 0)):
g = standard_maze(rows, cols, start)
for i in list(g.actions.keys()):
g.rewards[i] = step_cost
return g
def print_values(Val, g):
for i in range(g.rows):
print("----------------------------------------------------------------------")
for j in range(g.cols):
v = Val.get((i, j), 0)
if v > 0:
print(" %.2f|" % v, end="")
elif v == 0:
print(" ### |", end="")
else:
print("%.2f|" % v, end="")
print("")
def print_policy(P, g):
for i in range(g.rows):
print("----------------------------------------------------------------------")
for j in range(g.cols):
p = P.get((i, j), " ")
if p != '':
print("%s |" % p, end="")
else:
print(" ### |", end="")
print("")
|
SUPPORTED_TRANS = {
"height": "h",
"width": "w",
"aspect_ratio": "ar",
"quality": "q",
"crop": "c",
"crop_mode": "cm",
"x": "x",
"y": "y",
"focus": "fo",
"format": "f",
"radius": "r",
"background": "bg",
"border": "bo",
"rotation": "rt",
"blur": "bl",
"named": "n",
"overlay_image": "oi",
"overlay_x": "ox",
"overlay_y": "oy",
"overlay_focus": "ofo",
"overlay_height": "oh",
"overlay_width": "ow",
"overlay_text": "ot",
"overlay_text_font_size": "ots",
"overlay_text_font_family": "otf",
"overlay_text_color": "otc",
"overlay_alpha": "oa",
"overlay_text_typography": "ott",
"overlay_background": "obg",
"overlay_image_trim": "oit",
"progressive": "pr",
"lossless": "lo",
"trim": "t",
"metadata": "md",
"color_profile": "cp",
"default_image": "di",
"dpr": "dpr",
"effect_sharpen": "e-sharpen",
"effect_usm": "e-usm",
"effect_contrast": "e-contrast",
"effect_gray": "e-grayscale",
"original": "orig",
}
|
# As cordenadas são dadas pelas variaveis que guardão a posição do mouse
def setup():
size(480, 120)
fill(0, 102)
noStroke()
def draw():
background(204)
ellipse(mouseX, mouseY, 9,9)
|
"""
Datos de entrada
edad_uno-->e1-->int
edad_dos-->e2-->int
edad_tres-->e3-->int
Datos de salida
promedio-->p-->float
"""
#Entradas
e1=int(input("Ingrese la edad de la primera persona: "))
e2=int(input("Ingrese la edad de la segunda persona: "))
e3=int(input("Ingrese la edad de la tercera persona: "))
#Caja negra
p=(e1+e2+e3)/3
#Salidas
print("El promedio de edad de los tres es: ", p) |
"""
Vigenere Cipher
The Vigenere Cipher is a poly-alphabetic substitution cipher that uses a set of shift ciphers and a keyword.
One of the simplest ciphers is the Caesar/shift cipher, where each letter in the plaintext message is replaced by the letter a particular number of positions up, or downstream in the alphabet. Shift 1 Caesar cipher:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
The Vigenere table is generated by doing a shift-1 Caesar cipher as many times as the number of letters in the alphabet (English alphabet, for this challenge).
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
To encipher the message, first, spaces and punctuation are removed to create the plaintext.
All characters are transformed to uppercase to match the table:
message = "Soylent Green is people."
plaintext = "SOYLENTGREENISPEOPLE"
A keyword is chosen, in this case, "spoiler" and repeated as many times as necessary to match the length of the plaintext:
key = "SPOILERSPOILERSPOILE"
The last "r" is dropped as the plaintext length has been reached.
The plaintext and key are lined up. To encipher the 1st letter, a search is done across the first row to find the column of the plaintext letter, in this case "S", in the 19th column.
Then a search is done down the first column to locate the row of the 1st key letter,
in this case also "S", in the 19th row. The letter at the intersection between column 19 and row 19, "K", will be the 1st letter in the ciphertext.
The 2nd plaintext letter "O" is at column 15, while the 2nd key letter "P" is at row 16.
The letter at the intersection is "D". And so on.
Plaintext S O Y L E N T G R E E N I S P E O P L E
Key S P O I L E R S P O I L E R S P O I L E
Ciphertext K D M T P R K Y G S M Y M J H T C X W I
Create a function that takes two strings: a message or ciphertext, and a keyword. Return the ciphertext if the input is a message, or the deciphered text (without spaces or punctuation) if the input is in ciphertext.
Examples
vigenere("Soylent Green is people.", "spoiler") ➞ "KDMTPRKYGSMYMJHTCXWI"
vigenere("Darth Vader is Luke's father.", "spoiler") ➞ "VPFBSZRVTFQDPLCTGNLXYWG"
vigenere("HMRSSAIEKLSAXQILCCAC", "python") ➞ "SOYLENTGREENISPEOPLE"
"""
def vigenere(text, keyword):
alf = "ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ"
d = list(range(len(alf)+1))
c = []
t = list("".join(text.upper().split()))
k = list(keyword.upper())
if t[-1] == ".":
t=t[:-1]
for i in t:
if not i in alf:
t.remove(i)
k1=[]
for j in range( (len(t)//len(k))):
for i in k:
k1.append(i)
for i in range(len(t)%len(k)):
k1.append(k[i])
for i in range(len(t)):
if " " in list(text):
c.append(alf[alf.index(t[i]) + alf.index(k1[i])])
else:
c.append(alf[26+alf.index(t[i]) - alf.index(k1[i])])
return "".join(c)
#vigenere("Soylent Green is people.", "spoiler") #➞ "KDMTPRKYGSMYMJHTCXWI"
#vigenere("Darth Vader is Luke's father.", "spoiler") #➞ "VPFBSZRVTFQDPLCTGNLXYWG"
vigenere("HMRSSAIEKLSAXQILCCAC", "python") #➞ "SOYLENTGREENISPEOPLE" |
#! /usr/bin/env python3
n = input("Entrez un nombre :")
n = int(n)
if(n == 42):
print("C'est LA réponse")
if((n % 2) == 0):
print("Pair !")
else:
print("Impair")
if(n>0):
print("Positif")
elif(n<0):
print("Négatif")
else:
print("Nul")
print( "Pair" if (n%2 == 0) else "Impair" )
|
""" Asked by: Google [Medium].
On our special chessboard, two bishops attack each other if they share the same diagonal.
This includes bishops that have another bishop located between them, i.e. bishops can attack through pieces.
You are given N bishops, represented as (row, column) tuples on a M by M chessboard.
Write a function to count the number of pairs of bishops that attack each other.
The ordering of the pair doesn't matter: (1, 2) is considered the same as (2, 1).
For example, given M = 5 and the list of bishops:
(0, 0)
(1, 2)
(2, 2)
(4, 0)
The board would look like this:
[b 0 0 0 0]
[0 0 b 0 0]
[0 0 b 0 0]
[0 0 0 0 0]
[b 0 0 0 0]
You should return 2, since bishops 1 and 3 attack each other, as well as bishops 3 and 4.
""" |
class Agent:
'''
Base class for all agents
'''
def __init__(self, player):
self.player = player
pass
def get_next_action(self, game_env):
'''
Evaluates the game environment and returns the next best action according to the agent
Arguments:
game_env -> game environment
Returns:
next_move -> best move according to the agent
'''
pass
def update_agent_state(self, action):
'''
Observes the environment and updates the agent
Arguments:
action -> Action taken to change the state
'''
pass
def reset_agent(self):
'''
Reset the state of the agent
'''
pass
def get_action_value(self, game_env, action):
'''
Get the value of the next state achieved by the input action
Arguments:
action -> Action whose value has to be estimated
'''
pass
|
class InvalidTag(Exception):
pass
class IgnoreObject(Exception):
def __init__(self, original_exception=None, trback=None, *args, **kwargs):
super(Exception, self).__init__(*args, **kwargs)
self.original_exception = original_exception
self.trback = trback
class UnknownProtocol(Exception):
pass
class MissingTransform(Exception):
pass
class ExtraTransform(Exception):
pass
|
"""
小明买一个西瓜还差5元,小花买这个西瓜还差10元,两人的钱加在一起还差3元。请问西瓜多少钱?
"""
def qian(a, b, c):
x = a - c
y = x + b
return y
z = qian(5, 10, 3)
print(z)
|
commands = {
'app': {
'label': 'Application',
'actions': {
'neweditor': {
'label': 'New SQL editor',
'description': 'Open new SQL editor',
'icon': 'document-new-symbolic',
'shortcut': '<Control>N',
'callback': 'win.docview.add_worksheet'
},
'switch_editor1': {
'label': 'Switch to editor 1',
'shortcut': '<Alt>1',
'callback': 'win.docview.switch_to_editor',
'args': [1]
},
'switch_editor2': {
'label': 'Switch to editor 2',
'shortcut': '<Alt>2',
'callback': 'win.docview.switch_to_editor',
'args': [2]
},
'switch_editor3': {
'label': 'Switch to editor 3',
'shortcut': '<Alt>3',
'callback': 'win.docview.switch_to_editor',
'args': [3]
},
'switch_editor4': {
'label': 'Switch to editor 4',
'shortcut': '<Alt>4',
'callback': 'win.docview.switch_to_editor',
'args': [4]
},
'switch_editor5': {
'label': 'Switch to editor 5',
'shortcut': '<Alt>5',
'callback': 'win.docview.switch_to_editor',
'args': [5]
},
'switch_editor6': {
'label': 'Switch to editor 6',
'shortcut': '<Alt>6',
'callback': 'win.docview.switch_to_editor',
'args': [6]
},
'switch_editor7': {
'label': 'Switch to editor 7',
'shortcut': '<Alt>7',
'callback': 'win.docview.switch_to_editor',
'args': [7]
},
'switch_editor8': {
'label': 'Switch to editor 8',
'shortcut': '<Alt>8',
'callback': 'win.docview.switch_to_editor',
'args': [8]
},
'switch_editor9': {
'label': 'Switch to editor 9',
'shortcut': '<Alt>9',
'callback': 'win.docview.switch_to_editor',
'args': [9]
}
}
},
'editor': {
'label': 'SQL Editor',
'actions': {
'run': {
'label': 'Run SQL statement',
'description': 'Run SQL statement at cursor',
'icon': 'media-playback-start-symbolic',
'shortcut': '<Control>Return',
'callback': 'run_query'
},
'dbconnect': {
'label': 'Connect',
'description': 'Open or change database connection',
'icon': 'gtk-connect',
'shortcut': 'F9',
'callback': 'assume_connection',
'args': [True]
},
'openconnection': {
'label': 'Open assigned connection',
'description': 'Opens the currently assigned connection',
'shortcut': 'F10',
'callback': 'open_connection',
},
'dbdisconnect': {
'label': 'Disconnect',
'description': 'Close database connection',
'icon': 'gtk-disconnect',
'shortcut': 'F11',
'callback': 'set_connection',
'args': [None]
},
'format': {
'label': 'Format SQL',
'description': 'Format SQL statement at cursor',
'icon': 'format-indent-more-symbolic',
'shortcut': '<Alt>f',
'callback': 'editor.format_statement'
},
'jump_next': {
'label': 'Next statement',
'description': 'Jump to next statement',
'shortcut': '<Alt><Shift>Down',
'callback': 'editor.jump_next'
},
'jump_prev': {
'label': 'Previous statement',
'description': 'Jump to previous statement',
'shortcut': '<Alt><Shift>Up',
'callback': 'editor.jump_prev'
},
'close': {
'label': 'Close editor',
'description': 'Closes the current editor',
'shortcut': '<Ctrl>W',
'callback': 'editor.close',
},
'insert_uuid': {
'label': 'Insert UUID',
'description': 'Inserts a new UUID at cursor',
'callback': 'editor.insert_uuid',
'shortcut': '<Alt><Shift>u'
}
}
}
}
|
"""Wrapper service for kraken api."""
class ApiService:
"""Serivce for kraken api call."""
def __init__(self):
"""Create service object."""
pass
|
# squares = []
# for value in range(1,11):
# squares.append(value ** 2);
# print(squares);
squares = [value ** 2 for value in range(1,11)]
print(squares) |
"""
LeetCode Problem: 79. Word Search
Link: https://leetcode.com/problems/word-search/
Language: Python
Written by: Mostofa Adib Shakib
Number of rows = M
Number of columns = N
Average time complexity: O(M*N * dfs complexity)
Space Complexity: O(M*N)
Worst-case time complexity:
If the dfs traverses in a zigzag fashion. The traversal would be E -> E-> D->A -> S -> F->C->S->E->C->B->A .
In such a case, the dfs would cost O(MN) for the worst case.
Worst-case time complexity: O(M^2 * N^2)
"""
class Solution:
def exist(self, board: List[List[str]], word: str) -> bool:
def dfs(row, column, idx, board, word, visited):
# boundary conditions
if row < 0 or column < 0 or row >= len(board) or column >= len(board[0]) or visited[row][column] == True or board[row][column] != word[idx]:
return False
# if the idx value is equal to the length of the word then we have found a possible path
if idx == len(word) - 1:
return True
# mark the current cell as visited
visited[row][column] = True
# if any of the dfs calls return True then we have found the given word in the matrix
if dfs(row-1, column, idx+1, board, word, visited) or dfs(row+1, column, idx+1, board, word, visited) or dfs(row, column+1, idx+1, board, word, visited) or dfs(row, column-1, idx+1, board, word, visited):
return True
# mark the expored cell as unvisited
visited[row][column] = False
row = len(board)
column = len(board[0])
# we maintain a visited matrix as we cannot go back to the previous step
visited = [ [False for i in range(column)] for j in range(row) ]
for i in range(row):
for j in range(column):
if board[i][j] == word[0] and dfs(i, j, 0, board, word, visited):
return True
# return False if the given word is not present in the matrix
return False |
# Copyright (C) 2016-2017 Perceval Wajsburt <[email protected]>
#
# This module is part of SublimeTerm and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
class SpecialChar:
NEW_LINE = '\n'
TAB = '\t'
BEL = '\x07'
BACKSPACE = '\x08'
DEL = '\x7f'
UP = '\x1BOA'
DOWN = '\x1BOB'
LEFT = '\x1BOD'
RIGHT = '\x1BOC' # '\x1B[C'
ESCAPE = '\x1B'
|
'''
Exercício Python 070: Crie um programa que leia o nome e o preço de vários
produtos. O programa deverá perguntar se o usuário vai continuar ou não. No
final, mostre: A) qual é o total gasto na compra.
'''
print('-' * 30)
print('{:^30}'.format(' LOJA SUPER BARATÃO '))
print('-' * 30)
menorPreco = preco = totPreco = totMaiorMil = cont = 0
prodMenor = ''
while True:
nome_produto = str(input('Nome do Produto: ')).strip()
preco = float(input('Preço: R$ '))
totPreco += preco
cont += 1
if preco > 1000:
totMaiorMil += 1
if cont == 1 or preco < menorPreco:
menorPreco = preco
prodMenor = nome_produto
continua = str(input('Quer continuar: '))
if continua not in 'Ss':
break
print('-' * 30)
print('{:-^30}'.format(' FIM DO PROGRAMA '))
print('O total da compra foi R$ {:2.2f}'.format(totPreco))
print('Temos {} produtos custando mais de R$ 1.000,00'.format(totMaiorMil))
print('O produto mais barato foi {} que custa R$ {:2.2f}'.format(prodMenor, menorPreco))
|
class Passenger:
def __init__(self, passenger_id, source, destination, spawn_time, controller):
self.passenger_id = passenger_id
self.destination = destination
self.source = source
self.spawn_time = spawn_time
self.current_stop = source
self.controller = controller
def get_waiting_time(self):
return self.controller.ticks-self.spawn_time
def get_attractivity(self, next_stop):
urgency = self.controller.average_minumum_delivery_time + self.get_waiting_time()
attractivity = self.controller.attractivity[self.current_stop.stop_id, self.destination.stop_id, next_stop]
return urgency * attractivity
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.passenger_id == other.passenger_id
else:
return False |
n = int(input())
x = int(input())
li = list(map(int, input().split()))
l = [0]*n
print(*l,sep=" ")
if (x):
print("YES")
else:
print("NO") |
print('-'* 30)
print('\033[:31mCALCULADOR AUMENTO DE SALÁRIO\033[m')
print('-'* 30)
salario = float(input('Qual o salário? '))
aumento = salario + (salario * 15 / 100)
print(f'O funcionário que recebia {salario:.2f} com 15% de aumento\n'
f'agora vai receber {aumento:.2f}') |
VERIFY_EMAIL_TOKEN_EXPIRES = 24*60*60
# 用户地址数据上限
USER_ADDRESS_COUNTS_LIMIT = 20
#用户浏览历史
USER_BROWSING_HISTORY_COUNTS_LIMIT = 5 |
distance = 1.500
years = 1
days_training = 200
times_year = years * days_training
sum_distance = 0
kkal_ksu = 0
kkal_mity = 0
kkal_km = [50, 110]
for i in range(times_year):
sum_distance += distance
kkal_ksu = kkal_km[0] * sum_distance
kkal_mity = kkal_km[1] * sum_distance
print('Количество тренировок:', times_year, 'шт')
print('Ваш путь составил: {:.0f}'.format(sum_distance), 'км')
print('Всего потрачено ккалорий - Ксюша:', kkal_ksu)
print('Всего потрачено ккалорий - Митя:', kkal_mity)
|
print("holis")
#TODO agregar la linea intermedia
print("holis")
#print("holis")
print("holis")
print("holis")
#TODO agregar la linea numero 6 |
class TrainingStatus:
NEW = "NEW"
NEW_LOAD_MODEL = "NEW_LOAD_MODEL"
STARTED = "STARTED"
FINISHED = "FINISHED"
|
#
# PySNMP MIB module ALTIGA-HARDWARE-STATS-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ALTIGA-HARDWARE-STATS-MIB
# Produced by pysmi-0.3.4 at Wed May 1 11:21:29 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
alHardwareMibModule, = mibBuilder.importSymbols("ALTIGA-GLOBAL-REG", "alHardwareMibModule")
alStatsHardware, alHardwareGroup = mibBuilder.importSymbols("ALTIGA-MIB", "alStatsHardware", "alHardwareGroup")
ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsIntersection")
ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance")
IpAddress, ObjectIdentity, MibIdentifier, Bits, Integer32, Gauge32, TimeTicks, Unsigned32, Counter64, iso, ModuleIdentity, NotificationType, Counter32, MibScalar, MibTable, MibTableRow, MibTableColumn = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "ObjectIdentity", "MibIdentifier", "Bits", "Integer32", "Gauge32", "TimeTicks", "Unsigned32", "Counter64", "iso", "ModuleIdentity", "NotificationType", "Counter32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn")
DisplayString, TruthValue, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TruthValue", "TextualConvention")
altigaHardwareStatsMibModule = ModuleIdentity((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2))
altigaHardwareStatsMibModule.setRevisions(('2003-03-27 13:00', '2002-09-05 13:00', '2002-07-10 00:00',))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setRevisionsDescriptions(('Added new emun to ConcentratorCard.', 'Added module compliance.', 'Updated with new header',))
if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setLastUpdated('200303271300Z')
if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setOrganization('Cisco Systems, Inc.')
if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setContactInfo('Cisco Systems 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]')
if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setDescription('The Altiga Hardware Statistics MIB models counters and objects that are of management interest for the hardware. Acronyms The following acronyms are used in this document: CPU: Central Processing Unit MB: Megabyte MIB: Management Information Base PS: Power Supply RPM: Revolutions Per Minute SEP: Scalable Encryption Processor WAN: Wide Area Network ')
class ConcentratorCard(TextualConvention, Integer32):
description = 'Concentrator Card Type.'
status = 'current'
subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))
namedValues = NamedValues(("none", 1), ("sep", 2), ("dualT1Wan", 3), ("sepE", 4))
class ConcentratorType(TextualConvention, Integer32):
description = 'Concentrator Type indicates the chassis type.'
status = 'current'
subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3))
namedValues = NamedValues(("cxx", 1), ("c5", 2), ("c1", 3))
alStatsHardwareGlobal = MibIdentifier((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1))
alHardwareCpuVoltage = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 1), Gauge32()).setUnits('centivolts').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCpuVoltage.setStatus('current')
if mibBuilder.loadTexts: alHardwareCpuVoltage.setDescription('The current CPU voltage in centivolts.')
alHardwareCpuVoltageAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 2), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCpuVoltageAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwareCpuVoltageAlarm.setDescription('The alarm status for CPU voltage. This alarm will fired when the CPU voltage is detected out of configured range.')
alHardwareCpuVoltageCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 3), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCpuVoltageCount.setStatus('current')
if mibBuilder.loadTexts: alHardwareCpuVoltageCount.setDescription('The number of alarm events for CPU voltage.')
alHardwareCpuVoltageTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 4), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCpuVoltageTime.setStatus('current')
if mibBuilder.loadTexts: alHardwareCpuVoltageTime.setDescription('The sysUptime at the time of the last change of alarm status for CPU voltage.')
alHardwarePs1Voltage3v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 5), Gauge32()).setUnits('centivolts').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs1Voltage3v.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs1Voltage3v.setDescription('The current 3V voltage of Power Supply 1 in centivolts.')
alHardwarePs1Voltage3vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 6), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs1Voltage3vAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs1Voltage3vAlarm.setDescription('The alarm status for PS1 3v voltage. This alarm will fired when the 3v power supply 1 voltage is detected out of configured range.')
alHardwarePs1Voltage3vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 7), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs1Voltage3vCount.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs1Voltage3vCount.setDescription('The number of alarm events for PS1 3v voltage.')
alHardwarePs1Voltage3vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 8), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs1Voltage3vTime.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs1Voltage3vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS1 3v voltage.')
alHardwarePs1Voltage5v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 9), Gauge32()).setUnits('centivolts').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs1Voltage5v.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs1Voltage5v.setDescription('The current 5V voltage of Power Supply 1 in centivolts.')
alHardwarePs1Voltage5vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 10), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs1Voltage5vAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs1Voltage5vAlarm.setDescription('The alarm status for PS1 5v voltage. This alarm will fired when the 5v power supply 1 voltage is detected out of configured range.')
alHardwarePs1Voltage5vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 11), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs1Voltage5vCount.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs1Voltage5vCount.setDescription('The number of alarm events for PS1 5v voltage.')
alHardwarePs1Voltage5vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 12), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs1Voltage5vTime.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs1Voltage5vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS1 5v voltage.')
alHardwarePs2Voltage3v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 13), Gauge32()).setUnits('centivolts').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs2Voltage3v.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs2Voltage3v.setDescription('The current 3V voltage of Power Supply 2 in centivolts.')
alHardwarePs2Voltage3vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 14), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs2Voltage3vAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs2Voltage3vAlarm.setDescription('The alarm status for PS2 3v voltage. This alarm will fired when the 3v power supply 2 voltage is detected out of configured range.')
alHardwarePs2Voltage3vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 15), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs2Voltage3vCount.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs2Voltage3vCount.setDescription('The number of alarm events for PS2 3v voltage.')
alHardwarePs2Voltage3vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 16), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs2Voltage3vTime.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs2Voltage3vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS2 3v voltage.')
alHardwarePs2Voltage5v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 17), Gauge32()).setUnits('centivolts').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs2Voltage5v.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs2Voltage5v.setDescription('The current 5V voltage of Power Supply 2 in centivolts.')
alHardwarePs2Voltage5vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 18), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs2Voltage5vAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs2Voltage5vAlarm.setDescription('The alarm status for PS2 5v voltage. This alarm will fired when the 5v power supply 2 voltage is detected out of configured range.')
alHardwarePs2Voltage5vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 19), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs2Voltage5vCount.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs2Voltage5vCount.setDescription('The number of alarm events for PS2 5v voltage.')
alHardwarePs2Voltage5vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 20), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs2Voltage5vTime.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs2Voltage5vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS2 5v voltage.')
alHardwareBoardVoltage3v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 21), Gauge32()).setUnits('centivolts').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareBoardVoltage3v.setStatus('current')
if mibBuilder.loadTexts: alHardwareBoardVoltage3v.setDescription('The current 3V voltage of the mainboard in centivolts.')
alHardwareBoardVoltage3vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 22), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareBoardVoltage3vAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwareBoardVoltage3vAlarm.setDescription('The alarm status for the mainboard 3v voltage. This alarm will fired when the 3v mainboard voltage is detected out of configured range.')
alHardwareBoardVoltage3vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 23), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareBoardVoltage3vCount.setStatus('current')
if mibBuilder.loadTexts: alHardwareBoardVoltage3vCount.setDescription('The number of alarm events for the mainboard 3v voltage.')
alHardwareBoardVoltage3vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 24), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareBoardVoltage3vTime.setStatus('current')
if mibBuilder.loadTexts: alHardwareBoardVoltage3vTime.setDescription('The sysUptime at the time of the last change of alarm status for the mainboard 3v voltage.')
alHardwareBoardVoltage5v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 25), Gauge32()).setUnits('centivolts').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareBoardVoltage5v.setStatus('current')
if mibBuilder.loadTexts: alHardwareBoardVoltage5v.setDescription('The current 5V voltage of the mainboard in centivolts.')
alHardwareBoardVoltage5vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 26), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareBoardVoltage5vAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwareBoardVoltage5vAlarm.setDescription('The alarm status for the mainboard 5v voltage. This alarm will fired when the 5v mainboard voltage is detected out of configured range.')
alHardwareBoardVoltage5vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 27), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareBoardVoltage5vCount.setStatus('current')
if mibBuilder.loadTexts: alHardwareBoardVoltage5vCount.setDescription('The number of alarm events for the mainboard 5v voltage.')
alHardwareBoardVoltage5vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 28), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareBoardVoltage5vTime.setStatus('current')
if mibBuilder.loadTexts: alHardwareBoardVoltage5vTime.setDescription('The sysUptime at the time of the last change of alarm status for the mainboard 5v voltage.')
alHardwareCpuTemp = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 29), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-40, 120))).setUnits('degrees Celsius').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCpuTemp.setStatus('current')
if mibBuilder.loadTexts: alHardwareCpuTemp.setDescription('The current CPU temperature in degrees C.')
alHardwareCpuTempAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 30), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCpuTempAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwareCpuTempAlarm.setDescription('The alarm status for the CPU temperature. This alarm will fired when the CPU temperature is detected out of configured range.')
alHardwareCpuTempCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 31), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCpuTempCount.setStatus('current')
if mibBuilder.loadTexts: alHardwareCpuTempCount.setDescription('The number of alarm events for the CPU temperature.')
alHardwareCpuTempTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 32), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCpuTempTime.setStatus('current')
if mibBuilder.loadTexts: alHardwareCpuTempTime.setDescription('The sysUptime at the time of the last change of alarm status for the CPU temperature.')
alHardwareCageTemp = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 33), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-40, 120))).setUnits('degrees Celsius').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCageTemp.setStatus('current')
if mibBuilder.loadTexts: alHardwareCageTemp.setDescription('The current cage temperature in degrees C.')
alHardwareCageTempAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 34), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCageTempAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwareCageTempAlarm.setDescription('The alarm status for the cage temperature. This alarm will fired when the cage temperature is detected out of configured range.')
alHardwareCageTempCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 35), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCageTempCount.setStatus('current')
if mibBuilder.loadTexts: alHardwareCageTempCount.setDescription('The number of alarm events for the cage temperature.')
alHardwareCageTempTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 36), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCageTempTime.setStatus('current')
if mibBuilder.loadTexts: alHardwareCageTempTime.setDescription('The sysUptime at the time of the last change of alarm status for the cage temperature.')
alHardwareFan1Rpm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 37), Gauge32()).setUnits('RPM').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan1Rpm.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan1Rpm.setDescription('The current speed of fan 1 in RPM.')
alHardwareFan1RpmAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 38), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan1RpmAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan1RpmAlarm.setDescription('The alarm status for fan 1 RPM. This alarm will fired when fan 1 RPM is detected out of configured range.')
alHardwareFan1RpmCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 39), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan1RpmCount.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan1RpmCount.setDescription('The number of alarm events for fan 1 RPM.')
alHardwareFan1RpmTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 40), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan1RpmTime.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan1RpmTime.setDescription('The sysUptime at the time of the last change of alarm status for fan 1 RPM.')
alHardwareFan2Rpm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 41), Gauge32()).setUnits('RPM').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan2Rpm.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan2Rpm.setDescription('The current speed of fan 2 in RPM.')
alHardwareFan2RpmAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 42), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan2RpmAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan2RpmAlarm.setDescription('The alarm status for fan 2 RPM. This alarm will fired when fan 2 RPM is detected out of configured range.')
alHardwareFan2RpmCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 43), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan2RpmCount.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan2RpmCount.setDescription('The number of alarm events for fan 2 RPM.')
alHardwareFan2RpmTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 44), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan2RpmTime.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan2RpmTime.setDescription('The sysUptime at the time of the last change of alarm status for fan 2 RPM.')
alHardwareFan3Rpm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 45), Gauge32()).setUnits('RPM').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan3Rpm.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan3Rpm.setDescription('The current speed of fan 3 in RPM.')
alHardwareFan3RpmAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 46), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan3RpmAlarm.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan3RpmAlarm.setDescription('The alarm status for fan 3 RPM. This alarm will fired when fan 3 RPM is detected out of configured range.')
alHardwareFan3RpmCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 47), Counter32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan3RpmCount.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan3RpmCount.setDescription('The number of alarm events for fan 3 RPM.')
alHardwareFan3RpmTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 48), TimeTicks()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareFan3RpmTime.setStatus('current')
if mibBuilder.loadTexts: alHardwareFan3RpmTime.setDescription('The sysUptime at the time of the last change of alarm status for fan 3 RPM.')
alHardwarePs1Type = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 49), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("ac", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs1Type.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs1Type.setDescription('The type of power supply for Power Supply slot 1.')
alHardwarePs2Type = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 50), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("ac", 2)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwarePs2Type.setStatus('current')
if mibBuilder.loadTexts: alHardwarePs2Type.setDescription('The type of power supply for Power Supply slot 2.')
alHardwareSlot1Card = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 51), ConcentratorCard()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareSlot1Card.setStatus('current')
if mibBuilder.loadTexts: alHardwareSlot1Card.setDescription('The type of card in slot 1.')
alHardwareSlot2Card = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 52), ConcentratorCard()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareSlot2Card.setStatus('current')
if mibBuilder.loadTexts: alHardwareSlot2Card.setDescription('The type of card in slot 2.')
alHardwareSlot3Card = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 53), ConcentratorCard()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareSlot3Card.setStatus('current')
if mibBuilder.loadTexts: alHardwareSlot3Card.setDescription('The type of card in slot 3.')
alHardwareSlot4Card = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 54), ConcentratorCard()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareSlot4Card.setStatus('current')
if mibBuilder.loadTexts: alHardwareSlot4Card.setDescription('The type of card in slot 4.')
alHardwareSlot1Operational = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 55), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareSlot1Operational.setStatus('current')
if mibBuilder.loadTexts: alHardwareSlot1Operational.setDescription('The operational status of card in slot 1.')
alHardwareSlot2Operational = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 56), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareSlot2Operational.setStatus('current')
if mibBuilder.loadTexts: alHardwareSlot2Operational.setDescription('The operational status of card in slot 2.')
alHardwareSlot3Operational = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 57), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareSlot3Operational.setStatus('current')
if mibBuilder.loadTexts: alHardwareSlot3Operational.setDescription('The operational status of card in slot 3.')
alHardwareSlot4Operational = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 58), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareSlot4Operational.setStatus('current')
if mibBuilder.loadTexts: alHardwareSlot4Operational.setDescription('The operational status of card in slot 4.')
alHardwareRamSize = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 59), Unsigned32()).setUnits('MB').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareRamSize.setStatus('current')
if mibBuilder.loadTexts: alHardwareRamSize.setDescription('The amount of memory, in MB on the concentrator.')
alHardwareChassis = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 60), ConcentratorType()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareChassis.setStatus('current')
if mibBuilder.loadTexts: alHardwareChassis.setDescription('The type of VPN Concentrator this is.')
alHardwareCpuVoltageNominal = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 61), Gauge32()).setUnits('centivolts').setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareCpuVoltageNominal.setStatus('current')
if mibBuilder.loadTexts: alHardwareCpuVoltageNominal.setDescription('The nominal CPU voltage in centivolts for the concentrator.')
alHardwareClientEthPrivSwitch = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 62), TruthValue()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareClientEthPrivSwitch.setStatus('current')
if mibBuilder.loadTexts: alHardwareClientEthPrivSwitch.setDescription('Whether or not the 3002 Hardware Client has an Ethernet Switch for the private interface.')
alHardwareSerialNumber = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 63), DisplayString()).setMaxAccess("readonly")
if mibBuilder.loadTexts: alHardwareSerialNumber.setStatus('current')
if mibBuilder.loadTexts: alHardwareSerialNumber.setDescription('Unit serial number.')
altigaHardwareStatsMibConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2, 1))
altigaHardwareStatsMibCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2, 1, 1))
altigaHardwareStatsMibCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2, 1, 1, 1)).setObjects(("ALTIGA-HARDWARE-STATS-MIB", "altigaHardwareStatsGroup"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
altigaHardwareStatsMibCompliance = altigaHardwareStatsMibCompliance.setStatus('current')
if mibBuilder.loadTexts: altigaHardwareStatsMibCompliance.setDescription('The compliance statement for agents which implement the Altiga Hardware Statistics MIB.')
altigaHardwareStatsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 3076, 2, 1, 1, 1, 22, 2)).setObjects(("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltage"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltageAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltageCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltageTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage3v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage3vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage3vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage3vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage5v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage5vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage5vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage5vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage3v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage3vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage3vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage3vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage5v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage5vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage5vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage5vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage3v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage3vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage3vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage3vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage5v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage5vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage5vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage5vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuTemp"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuTempAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuTempCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuTempTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCageTemp"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCageTempAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCageTempCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCageTempTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan1Rpm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan1RpmAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan1RpmCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan1RpmTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan2Rpm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan2RpmAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan2RpmCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan2RpmTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan3Rpm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan3RpmAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan3RpmCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan3RpmTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Type"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Type"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot1Card"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot2Card"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot3Card"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot4Card"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot1Operational"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot2Operational"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot3Operational"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot4Operational"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareRamSize"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareChassis"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltageNominal"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareClientEthPrivSwitch"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSerialNumber"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
altigaHardwareStatsGroup = altigaHardwareStatsGroup.setStatus('current')
if mibBuilder.loadTexts: altigaHardwareStatsGroup.setDescription('The objects for Hardware statistics.')
mibBuilder.exportSymbols("ALTIGA-HARDWARE-STATS-MIB", alHardwareBoardVoltage3vCount=alHardwareBoardVoltage3vCount, alHardwareFan2RpmTime=alHardwareFan2RpmTime, altigaHardwareStatsMibModule=altigaHardwareStatsMibModule, alHardwarePs2Voltage5vCount=alHardwarePs2Voltage5vCount, alHardwareSlot2Card=alHardwareSlot2Card, alHardwareFan3Rpm=alHardwareFan3Rpm, alHardwarePs1Voltage3vCount=alHardwarePs1Voltage3vCount, alHardwareFan2RpmAlarm=alHardwareFan2RpmAlarm, altigaHardwareStatsMibCompliance=altigaHardwareStatsMibCompliance, alHardwareCpuVoltageCount=alHardwareCpuVoltageCount, alHardwareSlot2Operational=alHardwareSlot2Operational, alHardwareFan3RpmAlarm=alHardwareFan3RpmAlarm, alHardwareBoardVoltage3v=alHardwareBoardVoltage3v, alHardwareCageTemp=alHardwareCageTemp, altigaHardwareStatsMibConformance=altigaHardwareStatsMibConformance, alHardwarePs2Voltage5v=alHardwarePs2Voltage5v, alHardwarePs1Voltage3vAlarm=alHardwarePs1Voltage3vAlarm, alHardwareBoardVoltage5v=alHardwareBoardVoltage5v, alHardwareBoardVoltage5vAlarm=alHardwareBoardVoltage5vAlarm, alStatsHardwareGlobal=alStatsHardwareGlobal, alHardwarePs1Voltage5vTime=alHardwarePs1Voltage5vTime, alHardwareCageTempCount=alHardwareCageTempCount, alHardwarePs2Voltage3vTime=alHardwarePs2Voltage3vTime, alHardwareCageTempAlarm=alHardwareCageTempAlarm, alHardwareFan1Rpm=alHardwareFan1Rpm, alHardwareFan1RpmTime=alHardwareFan1RpmTime, alHardwarePs2Type=alHardwarePs2Type, alHardwareSlot4Card=alHardwareSlot4Card, alHardwareCpuVoltageNominal=alHardwareCpuVoltageNominal, alHardwarePs1Voltage5vAlarm=alHardwarePs1Voltage5vAlarm, alHardwareFan3RpmCount=alHardwareFan3RpmCount, alHardwareSlot4Operational=alHardwareSlot4Operational, alHardwareCpuTemp=alHardwareCpuTemp, alHardwareCpuVoltage=alHardwareCpuVoltage, alHardwareSlot1Operational=alHardwareSlot1Operational, altigaHardwareStatsMibCompliances=altigaHardwareStatsMibCompliances, alHardwarePs1Type=alHardwarePs1Type, ConcentratorType=ConcentratorType, alHardwareFan1RpmCount=alHardwareFan1RpmCount, altigaHardwareStatsGroup=altigaHardwareStatsGroup, alHardwareCpuVoltageTime=alHardwareCpuVoltageTime, ConcentratorCard=ConcentratorCard, alHardwarePs2Voltage3vCount=alHardwarePs2Voltage3vCount, alHardwareCpuTempAlarm=alHardwareCpuTempAlarm, alHardwarePs1Voltage3v=alHardwarePs1Voltage3v, alHardwarePs2Voltage3v=alHardwarePs2Voltage3v, alHardwareBoardVoltage5vCount=alHardwareBoardVoltage5vCount, alHardwareFan1RpmAlarm=alHardwareFan1RpmAlarm, alHardwarePs1Voltage5vCount=alHardwarePs1Voltage5vCount, alHardwareBoardVoltage3vTime=alHardwareBoardVoltage3vTime, alHardwarePs1Voltage3vTime=alHardwarePs1Voltage3vTime, alHardwareFan3RpmTime=alHardwareFan3RpmTime, alHardwareBoardVoltage5vTime=alHardwareBoardVoltage5vTime, alHardwareSlot3Operational=alHardwareSlot3Operational, alHardwareCpuTempTime=alHardwareCpuTempTime, alHardwareRamSize=alHardwareRamSize, alHardwarePs2Voltage5vTime=alHardwarePs2Voltage5vTime, alHardwareBoardVoltage3vAlarm=alHardwareBoardVoltage3vAlarm, alHardwareCageTempTime=alHardwareCageTempTime, alHardwareSerialNumber=alHardwareSerialNumber, alHardwarePs2Voltage3vAlarm=alHardwarePs2Voltage3vAlarm, alHardwareCpuVoltageAlarm=alHardwareCpuVoltageAlarm, alHardwareClientEthPrivSwitch=alHardwareClientEthPrivSwitch, PYSNMP_MODULE_ID=altigaHardwareStatsMibModule, alHardwareSlot1Card=alHardwareSlot1Card, alHardwarePs1Voltage5v=alHardwarePs1Voltage5v, alHardwarePs2Voltage5vAlarm=alHardwarePs2Voltage5vAlarm, alHardwareFan2Rpm=alHardwareFan2Rpm, alHardwareChassis=alHardwareChassis, alHardwareSlot3Card=alHardwareSlot3Card, alHardwareCpuTempCount=alHardwareCpuTempCount, alHardwareFan2RpmCount=alHardwareFan2RpmCount)
|
def Adj2GraphID(adj):
n = adj.shape[0]
GraphID = str(n)+"_"
binID = ''
for i in range(n):
for j in range(i+1,n):
binID += str(int(adj[i][j]))
GraphID += hex(int(binID,2)).split('x')[1]
return GraphID.upper()
def GraphID2Adj(GraphID):
n_str, hexID = GraphID.split("_")
n = int(n_str)
binID = "{:b}".format(int(hexID, 16))
binID = '0'*((n-1)*n//2 - len(binID)) + binID
adj = np.zeros([n,n])
pos = 0
for i in range(n):
for j in range(i+1,n):
adj[i][j] = adj[j][i] = int(binID[pos])
pos +=1
return adj
|
#-*- coding: utf-8 -*-
class INSERT(object):
def __init__(self, schema, target):
self._sql = u"INSERT INTO {}.{}".format(
schema, target)
def VALUES(self, fields):
values = ", ".join(["%(" + field + ")s" for field in fields])
self._sql += "({}) values({})".format(", ".join(fields), values)
self._sql += " returning id"
def __str__(self):
return self._sql
@property
def sql(self):
return self.__str__()
|
def calculateEMA(period, data):
returnData = {}
emaList = []
key = 'ema' + str(period)
if data:
historicalEma = data[0]
e = 2/(period + 1)
for i in range(len(data)):
ema = (data[i] - historicalEma) * e + historicalEma
historicalEma = ema
emaList.append(ema)
returnData.update({key : emaList})
else:
returnData.update({key:[]})
return returnData
def calculateNBFilter(period=4, fields=[], data ={}):
pass
|
"""
Tema: Complejidad Algoritmica. Conteo abstracto
Curso: Pensamiento Computacional, 2da entrega.
Plataforma: Platzi.
Profesor: David Aroesti.
Alumno: @edinsonrequena.
"""
def f(x):
respuesta = 0
for i in range(1000):
print(i)
respuesta += 1
for i in range(x):
respuesta += x
for i in range(x):
for j in range(x):
print(i)
print(j)
respuesta += 1
respuesta += 1
return respuesta
def main():
x = 1000
f(x)
if __name__ == '__main__':
main()
|
def test():
# Here we can either check objects created in the solution code, or the
# string value of the solution, available as __solution__. A helper for
# printing formatted messages is available as __msg__. See the testTemplate
# in the meta.json for details.
# If an assertion fails, the message will be displayed
assert "pivot_table" in __solution__, "Make sure you are using the pivot_table function."
msg = "The tidied_lego dataframe contains the incorrect columns. Are you using the correct index column when pivoting? \
\nExpected ['set_num', 'name', 'year', 'num_parts', 'theme_id'], but got {0}".format(
list(tidied_lego.columns))
assert sorted(list(tidied_lego.columns)) == sorted(['set_num', 'name', 'year', 'num_parts', 'theme_id']), msg
assert "reset_index" in __solution__, "Are you resetting the index using .reset_index()?"
assert "groupby" in __solution__, "Are you using the groupby function?"
assert "year" in __solution__, "Are you grouping by year?"
assert year_parts_mean.num_parts.sum() == 8093.0, "The mean values are incorrect. Are you taking the mean after grouping by year?"
__msg__.good("Nice work, well done!")
|
############################################################
#
# uploadhaddocks
# Copyright (C) 2017, Richard Cook
# Released under MIT License
# https://github.com/rcook/upload-haddocks
#
############################################################
__project_name__ = "upload-haddocks"
__version__ = "0.5"
__description__ = "Fix up Haskell documentation and upload it to Hackage"
|
# エラトステネスの篩, 素因数分解
def make_prime_table(n):
sieve = list(range(n + 1))
sieve[0] = -1
sieve[1] = -1
for i in range(4, n + 1, 2):
sieve[i] = 2
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i] != i:
continue
for j in range(i * i, n + 1, i * 2):
if sieve[j] == j:
sieve[j] = i
return sieve
def prime_factorize(n):
result = []
while n != 1:
p = prime_table[n]
e = 0
while n % p == 0:
n //= p
e += 1
result.append((p, e))
return result
N = int(input())
prime_table = make_prime_table(N)
d = {}
for i in range(2, N + 1):
for p, e in prime_factorize(i):
d.setdefault(p, 0)
d[p] += e
# 75 = 5 * 5 * 3
# = 15 * 5
# = 25 * 3
# = 75
n74 = 0
n24 = 0
n14 = 0
n4 = 0
n2 = 0
for k in d:
if d[k] >= 74:
n74 += 1
if d[k] >= 24:
n24 += 1
if d[k] >= 14:
n14 += 1
if d[k] >= 4:
n4 += 1
if d[k] >= 2:
n2 += 1
result = 0
# x ^ 4 * y ^ 4 * z ^ 2 の約数の個数は75個
result += n4 * (n4 - 1) // 2 * (n2 - 2)
# x ^ 14 * y ^ 4 の約数の個数は75個
result += n14 * (n4 - 1)
# x ^ 24 * y ^ 2 の約数の個数は75個
result += n24 * (n2 - 1)
# x ^ 74 の約数の個数は75個
result += n74
print(result)
|
'''
'''
# Implement a quicksort
items = [20, 6, 8, 53, 56, 23, 87, 41, 49, 19]
def quickSort(dataset, first, last):
# Comparo el inificio y el final.
if first < last:
# calculate the split point
pivotIdx = partition(dataset, first, last)
# now sort the two partitions
#Izquierda
quickSort(dataset, first, pivotIdx-1)
#Derecha
quickSort(dataset, pivotIdx+1, last)
def partition(datavalues, first, last):
# choose the first item as the pivot value
pivotvalue = datavalues[first]
# establish the upper and lower indexes
lower = first + 1
upper = last
# start searching for the crossing point
done = False
while not done:
# TODO: advance the lower index
while lower <= upper and datavalues[lower] < pivotvalue:
# Avanzamos el punto Lower una posición a la derecha
lower +=1
# TODO: advance the upper index
while datavalues[upper]>= pivotvalue and upper>= lower:
upper -=1
# TODO: if the two indexes cross, we have found the split point, si sucede tenemos
if upper < lower:
done =True # Crossing point
else:
#Swap
temp = datavalues[lower]
datavalues[lower] = datavalues[upper]
datavalues[upper] = temp
# when the split point is found, exchange the pivot value, encuentr el punto para dividir y muevo el punto pivote
temp = datavalues[first]
datavalues[first] = datavalues[upper]
datavalues[upper] = temp
# return the split point index
return upper
# test the merge sort with data
print(items)
quickSort(items, 0, len(items)-1)
print(items)
|
# standard libraries
pass
# third party libraries
pass
# first party libraries
pass
alphanumeric = 'abcdefghijklmnopqrstuvwxyz' \
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' \
'123456789'
# alphanumerics unlikely to be mistaken for each other
legible = 'abcdefghijkmnopqrstuvwxyz' \
'ABCDEFGHJKLMNPQRSTUVWXYZ' \
'23456789'
|
self.description = "Upgrade packages with various reasons"
lp1 = pmpkg("pkg1")
lp1.reason = 0
lp2 = pmpkg("pkg2")
lp2.reason = 1
for p in lp1, lp2:
self.addpkg2db("local", p)
p1 = pmpkg("pkg1", "1.0-2")
p2 = pmpkg("pkg2", "1.0-2")
for p in p1, p2:
self.addpkg(p)
self.args = "-U %s" % " ".join([p.filename() for p in (p1, p2)])
self.addrule("PACMAN_RETCODE=0")
self.addrule("PKG_REASON=pkg1|0")
self.addrule("PKG_REASON=pkg2|1")
|
class Interval:
def __init__(self, start=0, end=0):
self.start = start
self.end = end
|
PATH_TRAIN = "../../data/train.csv"
PATH_VALID = "../../data/valid.csv"
PICKLES_PATH = "./pickles"
TRAIN = "../../data/train.tsv"
TEST = "../../data/test.tsv"
DEV = "../../data/dev.tsv"
|
class Libro:
#definimos todos los atributos que caracteizan a un libro
isbn=0 #texto
autor=0
titito=0 #texto
año_de_publicacion=0 #texto
idioma=0 #texto
editor=0
ejemplares=0 #texto
#ahora creamos el constructor
def __init__(self, isbn,autor, titulo, año_de_publicacion, idioma,editor, ejemplares):
self._isbn=isbn
self._autor=autor
self._titulo=titulo
self._año_de_publicacion=año_de_publicacion
self._idioma=idioma
self._editor=editor
self._ejemplares=ejemplares
def getISBN(self):
return self._isbn
def setISBN(self, isbn):
self._isbn=isbn
def getAutor(self):
return self._autor
def setAutor(self, autor):
self._autor=autor
def getTitulo(self):
return self._titulo
def setTitulo(self, titulo):
self._titulo=titulo
def getAñoPublicacion(self):
return self._año_de_publicacion
def setAñoPublicacion(self, año_de_publicacion):
self._año_de_publicacion=año_de_publicacion
def getIdidoma(self):
return self._idioma
def setIdioma(self, idioma):
self._idioma=idioma
def getEditor(self):
return self._editor
def setEditor(self, editor):
self._editor=editor
def getEjemplares(self):
return self._ejemplares
def setEjemplares(self, ejemplares):
self._ejemplares=ejemplares
|
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
def deps(repo_mapping = {}):
if "com_github_nodejs_http_parser" not in native.existing_rules():
http_archive(
name = "com_github_nodejs_http_parser",
# This commit includes fix for
# https://github.com/nodejs/http-parser/issues/517 which
# allows (opt-in) to serve requests with both
# Content-Legth and Transfer-Encoding: chunked headers
# set.
urls = ["https://github.com/nodejs/http-parser/archive/4f15b7d510dc7c6361a26a7c6d2f7c3a17f8d878.tar.gz"],
sha256 = "6a12896313ce1ca630cf516a0ee43a79b5f13f5a5d8143f56560ac0b21c98fac",
strip_prefix = "http-parser-4f15b7d510dc7c6361a26a7c6d2f7c3a17f8d878",
repo_mapping = repo_mapping,
build_file = "@com_github_3rdparty_bazel_rules_http_parser//:BUILD.bazel",
)
|
def BaseHTTPRequestHandler(*args, **kwargs): pass
def Camera(*args, **kwargs): pass
def GSprint(*args, **kwargs): pass
def GSversion(*args, **kwargs): pass
def GW(*args, **kwargs): pass
def GlowWidget(*args, **kwargs): pass
def HTTPServer(*args, **kwargs): pass
def INTERACT_PERIOD(*args, **kwargs): pass
def MAX_RENDERS(*args, **kwargs): pass
def MIN_RENDERS(*args, **kwargs): pass
def MISC(*args, **kwargs): pass
def Mouse(*args, **kwargs): pass
def RackOutline(*args, **kwargs): pass
def RateKeeper(*args, **kwargs): pass
def ToothOutline(*args, **kwargs): pass
def USER_FRACTION(*args, **kwargs): pass
def WSserver(*args, **kwargs): pass
def WebSocketServerFactory(*args, **kwargs): pass
def WebSocketServerProtocol(*args, **kwargs): pass
def absolute_import(*args, **kwargs): pass
def acos(*args, **kwargs): pass
def acosh(*args, **kwargs): pass
def addpos(*args, **kwargs): pass
def adjust_axis(*args, **kwargs): pass
def adjust_up(*args, **kwargs): pass
def arange(*args, **kwargs): pass
def arrow(*args, **kwargs): pass
def asin(*args, **kwargs): pass
def asinh(*args, **kwargs): pass
def asyncio(*args, **kwargs): pass
def atan(*args, **kwargs): pass
def atan2(*args, **kwargs): pass
def atanh(*args, **kwargs): pass
def attach_arrow(*args, **kwargs): pass
def attach_trail(*args, **kwargs): pass
def baseObj(*args, **kwargs): pass
def box(*args, **kwargs): pass
def bumpmaps(*args, **kwargs): pass
def button(*args, **kwargs): pass
def canvas(*args, **kwargs): pass
def ceil(*args, **kwargs): pass
def checkbox(*args, **kwargs): pass
def clock(*args, **kwargs): pass
def color(*args, **kwargs): pass
def colorsys(*args, **kwargs): pass
def combin(*args, **kwargs): pass
def comp(*args, **kwargs): pass
def compound(*args, **kwargs): pass
def cone(*args, **kwargs): pass
def controls(*args, **kwargs): pass
def convert(*args, **kwargs): pass
def copy(*args, **kwargs): pass
def copysign(*args, **kwargs): pass
def cos(*args, **kwargs): pass
def cosh(*args, **kwargs): pass
def cross(*args, **kwargs): pass
def curve(*args, **kwargs): pass
def curveMethods(*args, **kwargs): pass
def cylinder(*args, **kwargs): pass
def cyvector(*args, **kwargs): pass
def degrees(*args, **kwargs): pass
def diff_angle(*args, **kwargs): pass
def distant_light(*args, **kwargs): pass
def division(*args, **kwargs): pass
def dot(*args, **kwargs): pass
def e(*args, **kwargs): pass
def ellipsoid(*args, **kwargs): pass
def erf(*args, **kwargs): pass
def erfc(*args, **kwargs): pass
def event_return(*args, **kwargs): pass
def exp(*args, **kwargs): pass
def expm1(*args, **kwargs): pass
def extrusion(*args, **kwargs): pass
def fabs(*args, **kwargs): pass
def faces(*args, **kwargs): pass
def factorial(*args, **kwargs): pass
def fd(*args, **kwargs): pass
def find_free_port(*args, **kwargs): pass
def floor(*args, **kwargs): pass
def fmod(*args, **kwargs): pass
def frame(*args, **kwargs): pass
def frexp(*args, **kwargs): pass
def fsum(*args, **kwargs): pass
def gamma(*args, **kwargs): pass
def gcd(*args, **kwargs): pass
def gcurve(*args, **kwargs): pass
def gdots(*args, **kwargs): pass
def ghbars(*args, **kwargs): pass
def glowcomm(*args, **kwargs): pass
def gobj(*args, **kwargs): pass
def graph(*args, **kwargs): pass
def gs_version(*args, **kwargs): pass
def gvbars(*args, **kwargs): pass
def hat(*args, **kwargs): pass
def helix(*args, **kwargs): pass
def httpserving(*args, **kwargs): pass
def hypot(*args, **kwargs): pass
def inf(*args, **kwargs): pass
def inspect(*args, **kwargs): pass
def isclose(*args, **kwargs): pass
def isfinite(*args, **kwargs): pass
def isinf(*args, **kwargs): pass
def isnan(*args, **kwargs): pass
def js(*args, **kwargs): pass
def json(*args, **kwargs): pass
def label(*args, **kwargs): pass
def ldexp(*args, **kwargs): pass
def lgamma(*args, **kwargs): pass
def list_to_vec(*args, **kwargs): pass
def local_light(*args, **kwargs): pass
def log(*args, **kwargs): pass
def log10(*args, **kwargs): pass
def log1p(*args, **kwargs): pass
def log2(*args, **kwargs): pass
def long(*args, **kwargs): pass
def mag(*args, **kwargs): pass
def mag2(*args, **kwargs): pass
def menu(*args, **kwargs): pass
def meta_canvas(*args, **kwargs): pass
def modf(*args, **kwargs): pass
def nan(*args, **kwargs): pass
def no_notebook(*args, **kwargs): pass
def norm(*args, **kwargs): pass
def npdefault(*args, **kwargs): pass
def object_rotate(*args, **kwargs): pass
def os(*args, **kwargs): pass
def path_object(*args, **kwargs): pass
def paths(*args, **kwargs): pass
def pi(*args, **kwargs): pass
def platform(*args, **kwargs): pass
def points(*args, **kwargs): pass
def pow(*args, **kwargs): pass
def print_anchor(*args, **kwargs): pass
def print_function(*args, **kwargs): pass
def print_to_string(*args, **kwargs): pass
def proj(*args, **kwargs): pass
def pyramid(*args, **kwargs): pass
def quad(*args, **kwargs): pass
def radians(*args, **kwargs): pass
def radio(*args, **kwargs): pass
def random(*args, **kwargs): pass
def rate(*args, **kwargs): pass
def rate_control(*args, **kwargs): pass
def ring(*args, **kwargs): pass
def rotate(*args, **kwargs): pass
def rotatecp(*args, **kwargs): pass
def roundc(*args, **kwargs): pass
def scalecp(*args, **kwargs): pass
def scene(*args, **kwargs): pass
def serveHTTP(*args, **kwargs): pass
def shape_object(*args, **kwargs): pass
def shapes(*args, **kwargs): pass
def shapespaths(*args, **kwargs): pass
def signature(*args, **kwargs): pass
def simulateDelay(*args, **kwargs): pass
def sin(*args, **kwargs): pass
def sinh(*args, **kwargs): pass
def sleep(*args, **kwargs): pass
def slider(*args, **kwargs): pass
def socket(*args, **kwargs): pass
def sphere(*args, **kwargs): pass
def sqrt(*args, **kwargs): pass
def standardAttributes(*args, **kwargs): pass
def sys(*args, **kwargs): pass
def tan(*args, **kwargs): pass
def tanh(*args, **kwargs): pass
def tau(*args, **kwargs): pass
def text(*args, **kwargs): pass
def textures(*args, **kwargs): pass
def threading(*args, **kwargs): pass
def time(*args, **kwargs): pass
def triangle(*args, **kwargs): pass
def trunc(*args, **kwargs): pass
def v(*args, **kwargs): pass
def vec(*args, **kwargs): pass
def vector(*args, **kwargs): pass
def version(*args, **kwargs): pass
def vertex(*args, **kwargs): pass
def vpython(*args, **kwargs): pass
def websocketserving(*args, **kwargs): pass
def wtext(*args, **kwargs): pass
color.black = color.blue = color.cyan = color.gray = color.green = color.magenta = color.orange = color.red = color.white = color.yellow = 0
|
spreadsheet = [[5806,6444,1281,38,267,1835,223,4912,5995,230,4395,2986,6048,4719,216,1201],
[74,127,226,84,174,280,94,159,198,305,124,106,205,99,177,294],
[1332,52,54,655,56,170,843,707,1273,1163,89,23,43,1300,1383,1229],
[5653,236,1944,3807,5356,246,222,1999,4872,206,5265,5397,5220,5538,286,917],
[3512,3132,2826,3664,2814,549,3408,3384,142,120,160,114,1395,2074,1816,2357],
[100,2000,112,103,2122,113,92,522,1650,929,1281,2286,2259,1068,1089,651],
[646,490,297,60,424,234,48,491,245,523,229,189,174,627,441,598],
[2321,555,2413,2378,157,27,194,2512,117,140,2287,277,2635,1374,1496,1698],
[101,1177,104,89,542,2033,1724,1197,474,1041,1803,770,87,1869,1183,553],
[1393,92,105,1395,1000,85,391,1360,1529,1367,1063,688,642,102,999,638],
[4627,223,188,5529,2406,4980,2384,2024,4610,279,249,2331,4660,4350,3264,242],
[769,779,502,75,1105,53,55,931,1056,1195,65,292,1234,1164,678,1032],
[2554,75,4406,484,2285,226,5666,245,4972,3739,5185,1543,230,236,3621,5387],
[826,4028,4274,163,5303,4610,145,5779,157,4994,5053,186,5060,3082,2186,4882],
[588,345,67,286,743,54,802,776,29,44,107,63,303,372,41,810],
[128,2088,3422,111,3312,740,3024,1946,920,131,112,477,3386,2392,1108,2741]]
acc=0
# for i in range(len(spreadsheet)):
# min_value = min(spreadsheet[i])
# max_value = max(spreadsheet[i])
# acc+=max_value - min_value
# print(acc)
def sum_of_divisors(numbers):
length = len(numbers)
for i in range(length):
for j in range(length):
if i != j:
if numbers[i] > numbers[j] and numbers[i] % numbers[j] ==0:
return int(numbers[i]/numbers[j])
acc=0
for val in spreadsheet:
acc+=sum_of_divisors(val)
print(acc) |
#!/usr/bin/python
# coding=UTF-8
"""
Criado em 16 de Janeiro de 2017
Descricao: esta biblioteca possui as seguintes funcoes:
readArq_DadosTemporais: esta funcao faz a leitura do arquivo Arquivo_DadosTemporais gerado pela funcao criaArq_DadosTemporais, retornando os parametros e tabelas nela contidos.
readArq_Etime: esta funcao realiza a leitura do arquivo Arquivo_Etime gerado pela funcao criaArq_DadosTemporais, retornando um vetor contendo seus valores.
@author: Denis Varise Bernardes & Eder Martioli
Laboratorio Nacional de Astrofisica, Brazil.
"""
__version__ = "1.0"
__copyright__ = """
Copyright (c) ... All rights reserved.
"""
def infoCaractTemporal():
VetorImgMedian, VetorStdImg = [], []
with open('infoCaractTemporal') as arq:
Linhas = arq.read().splitlines()
arq.close()
coefAjust = float(Linhas[0].split('=')[1])
intercept = float(Linhas[1].split('=')[1])
stdLinAjust = float(Linhas[2].split('=')[1])
for linha in Linhas [4:]:
dados = linha.split('\t\t')
VetorImgMedian.append(float(dados[0]))
VetorStdImg.append(float(dados[1]))
return VetorImgMedian, VetorStdImg, coefAjust, intercept, stdLinAjust
def Etime():
VetorEtime=[]
with open('Arquivo_Etime') as arq:
Linhas = arq.read().splitlines()
arq.close()
for linha in Linhas[1:]:
VetorEtime.append(float(linha))
return VetorEtime
def returnListDirectories() :
with open('Directories') as f:
lines = f.read().splitlines()
return lines
def returnListImages(keyword):
with open(keyword+'list') as f:
lines = f.read().splitlines()
return lines
|
a = [0]
for i in range(1000000):
a[0] = i
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def levelOrderBottom(self, root):
"""
:type root: TreeNode
:rtype: List[List[int]]
"""
ret = [[]for _ in range(self.getHeight(root))]
self.dfs(root, ret, self.getHeight(root)-1)
return ret
def getHeight(self, root):
if root is None:
return 0
left = self.getHeight(root.left)
right = self.getHeight(root.right)
return max(left, right) + 1
def dfs(self, root, ret, level):
if root is None:
return
ret[level].append(root.val)
self.dfs(root.left, ret, level-1)
self.dfs(root.right, ret, level-1) |
pkgname = "nasm"
pkgver = "2.15.05"
pkgrel = 0
build_style = "gnu_configure"
make_cmd = "gmake"
make_dir = "."
make_check_target = "test"
hostmakedepends = ["gmake"]
checkdepends = ["perl"]
pkgdesc = "80x86 assembler designed for portability and modularity"
maintainer = "q66 <[email protected]>"
license = "BSD-2-Clause"
url = "https://www.nasm.us"
source = f"{url}/pub/{pkgname}/releasebuilds/{pkgver}/{pkgname}-{pkgver}.tar.xz"
sha256 = "3caf6729c1073bf96629b57cee31eeb54f4f8129b01902c73428836550b30a3f"
def post_install(self):
self.install_license("LICENSE")
|
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def mergeTwoLists(self, list1: Optional[ListNode], list2: Optional[ListNode]) -> Optional[ListNode]:
l=[]
l1=list1
l2=list2
while l1:
l.append(l1.val)
l1=l1.next
while l2:
l.append(l2.val)
l2=l2.next
l.sort()
oplist=ListNode()
lfin=oplist
for i in l:
lfin.next=ListNode(i)
lfin=lfin.next
return oplist.next |
class CifsBcVersionControl(basestring):
"""
Versions of CIFS BranchCache that are currently supported.
"""
@staticmethod
def get_api_name():
return "cifs-bc-version-control"
|
# coding: utf-8
n = int(input())
sta = [i for i in ''.join(input().split()).split('0') if i != '']
ans = 0
for i in sta:
ans += 2+len(i)-1
if ans != 0:
print(ans-1)
else:
print(0)
|
#Question Link
#https://practice.geeksforgeeks.org/problems/find-pair-given-difference/0
for _ in range(t):
L,N = map(int,input().split())
arr = list(map(int,input().split()))
arr.sort()
flag = -1
i =0
j = L-1
for i in range(len(arr)):
for j in range(i+1,len(arr)):
if arr[j] - arr[i] == N:
flag = 1
break
print(flag)
|
class Solution(object):
def groupAnagrams(self, strs):
"""
:type strs: List[str]
:rtype: List[List[str]]
"""
dict = {}
for word in strs:
sorted_word = ''.join(sorted(word[:]))
if sorted_word in dict:
dict[sorted_word].append(word[:])
else:
dict[sorted_word] = [word[:]]
return dict.values() |
def glen(generator):
"""
len implementation for generators.
"""
return sum(1 for _ in generator) |
'''
https://practice.geeksforgeeks.org/problems/sort-an-array-of-0s-1s-and-2s/0
'''
def sort_z_o_t(A):
count = [0 for i in range(3)]
for i in A:
count[i] += 1
aIdx = 0
for i, n in enumerate(count):
while n > 0:
A[aIdx] = i
n -= 1
aIdx += 1
if __name__ == '__main__':
A = [0, 2, 1, 2, 0]
sort_z_o_t(A)
print(A) |
ll = []
for i in range(0, 3):
ll.append(int((input('Digite um número: '))))
print('Lista 1:', ll)
# Inverte a lista
ll.reverse()
print('Lista 2:', ll)
|
def for_a():
"""printing small 'a' using for loop"""
for row in range(7):
for col in range(4):
if col==3 and row!=0 or col==0 and row not in(0,2,3,6) or row==3 and col in(1,2) or row==6 and col in(1,2) or row==0 and col in(1,2):
print("*",end=" ")
else:
print(" ",end=" ")
print()
def while_a():
"""printing small 'a' using while loop"""
i=0
while i<4:
j=0
while j<6:
if j==0 and i in (1,2) or i==0 and j in(1,2) or j==3 and i in(1,2) or i==3 and j in(1,2,4) or j==5 and i==2:
print("*",end=" ")
else:
print(" ",end=" ")
j+=1
i+=1
print()
|
class Algorithm:
def __init__(self, np, ic, h, force, params):
self.np = np
self.h = h
self.sq2h = np.sqrt(2 * h)
self.sqh2 = np.sqrt(h / 2)
self.h2 = h / 2
self.force = force
self.acc = 0
fres = self.force(ic)
self.v, self.f, self.ff = (
fres.get("llh"),
fres.get("grad"),
fres.get("grad_data"),
)
self.p = np.random.randn(*ic.shape)
self.xi = np.random.randn(1)
def clear(self, q):
self.acc = 0
fres = self.force(q)
self.v, self.f, self.ff = (
fres.get("llh"),
fres.get("grad"),
fres.get("grad_data"),
)
pass
def step(self, q):
pass
|
expected_output = {
'type': {
'BYTE': {
'allocated': 7045122,
'allocations': 737743,
'frees': 734750,
'requested': 6877514,
},
'BYTE*': {
'allocated': 29128,
'allocations': 345,
'frees': 309,
'requested': 27112,
},
'PArray': {
'allocated': 0,
'allocations': 180,
'frees': 180,
'requested': 0,
},
'Summary': {
'allocated': 7969955,
'allocations': 762405,
'frees': 759097,
'requested': 7784707,
},
'_btrace_ctx_global_': {
'allocated': 7864,
'allocations': 26,
'frees': 7,
'requested': 6800,
},
'_btrace_module_*': {
'allocated': 4389,
'allocations': 66,
'frees': 0,
'requested': 693,
},
'_dns_resolver_ctxt': {
'allocated': 128,
'allocations': 1,
'frees': 0,
'requested': 72,
},
'bipc_channel_': {
'allocated': 136128,
'allocations': 412,
'frees': 404,
'requested': 135680,
},
'bipc_rx_stream_': {
'allocated': 459328,
'allocations': 412,
'frees': 404,
'requested': 458880,
},
'brand_context_s': {
'allocated': 0,
'allocations': 9,
'frees': 9,
'requested': 0,
},
'chasfs_ctx_int_': {
'allocated': 12576,
'allocations': 6,
'frees': 3,
'requested': 12408,
},
'confd_cs_node**': {
'allocated': 0,
'allocations': 84,
'frees': 84,
'requested': 0,
},
'confd_event_node': {
'allocated': 0,
'allocations': 246,
'frees': 246,
'requested': 0,
},
'confd_hkeypath': {
'allocated': 0,
'allocations': 129,
'frees': 129,
'requested': 0,
},
'evContext_p': {
'allocated': 12640,
'allocations': 1,
'frees': 0,
'requested': 12584,
},
'file_alloc_handle_s': {
'allocated': 1120,
'allocations': 14,
'frees': 0,
'requested': 336,
},
'file_info': {
'allocated': 71536,
'allocations': 34,
'frees': 0,
'requested': 69632,
},
'filter_key_s': {
'allocated': 0,
'allocations': 3,
'frees': 3,
'requested': 0,
},
'green_args_s': {
'allocated': 0,
'allocations': 284,
'frees': 284,
'requested': 0,
},
'green_assist_be_defer_': {
'allocated': 0,
'allocations': 3,
'frees': 3,
'requested': 0,
},
'green_subscribe_tblcur': {
'allocated': 0,
'allocations': 3,
'frees': 3,
'requested': 0,
},
'green_subscribe_toc_tb': {
'allocated': 104,
'allocations': 1,
'frees': 0,
'requested': 48,
},
'hash_table_s': {
'allocated': 1664,
'allocations': 16,
'frees': 0,
'requested': 768,
},
'hashtable': {
'allocated': 96,
'allocations': 1,
'frees': 0,
'requested': 40,
},
'int32': {
'allocated': 0,
'allocations': 1,
'frees': 1,
'requested': 0,
},
'lru_id_mgr_handle_': {
'allocated': 372,
'allocations': 1,
'frees': 0,
'requested': 316,
},
'mdt_obj_mgr_t': {
'allocated': 88,
'allocations': 1,
'frees': 0,
'requested': 32,
},
'mdtpub_sensor_periodic': {
'allocated': 0,
'allocations': 26,
'frees': 26,
'requested': 0,
},
'mqipc_ctl_': {
'allocated': 2480,
'allocations': 79,
'frees': 69,
'requested': 1920,
},
'netconf_write_buffer_s': {
'allocated': 0,
'allocations': 10402,
'frees': 10402,
'requested': 0,
},
's_mdt_dc_filters_list': {
'allocated': 0,
'allocations': 29,
'frees': 29,
'requested': 0,
},
's_mdt_filter_dc_choice': {
'allocated': 0,
'allocations': 29,
'frees': 29,
'requested': 0,
},
's_yp_sensor_oc': {
'allocated': 0,
'allocations': 3,
'frees': 3,
'requested': 0,
},
'section_data_s': {
'allocated': 0,
'allocations': 3,
'frees': 3,
'requested': 0,
},
'sensor_data_collection': {
'allocated': 0,
'allocations': 10399,
'frees': 10399,
'requested': 0,
},
'service_dir_connect_ac': {
'allocated': 0,
'allocations': 28,
'frees': 28,
'requested': 0,
},
'tc_work_queue_s': {
'allocated': 0,
'allocations': 5,
'frees': 5,
'requested': 0,
},
'tdl_epoch_s': {
'allocated': 152,
'allocations': 1,
'frees': 0,
'requested': 96,
},
'tdldb_info_': {
'allocated': 3136,
'allocations': 14,
'frees': 0,
'requested': 2352,
},
'tdldb_plat_data_s*': {
'allocated': 2432,
'allocations': 16,
'frees': 0,
'requested': 1536,
},
'tdlhandle_s': {
'allocated': 53584,
'allocations': 1290,
'frees': 1256,
'requested': 51680,
},
'tdlhandle_s*': {
'allocated': 0,
'allocations': 29,
'frees': 29,
'requested': 0,
},
'vista_context_': {
'allocated': 125888,
'allocations': 30,
'frees': 0,
'requested': 124208,
},
},
}
|
"""bin
405. Convert a Number to Hexadecimal
Given an integer, write an algorithm to convert it to hexadecimal. For negative integer, two’s complement method is used.
Note:
All letters in hexadecimal (a-f) must be in lowercase.
The hexadecimal string must not contain extra leading 0s. If the number is zero, it is represented by a single zero character '0'; otherwise, the first character in the hexadecimal string will not be the zero character.
The given number is guaranteed to fit within the range of a 32-bit signed integer.
You must not use any method provided by the library which converts/formats the number to hex directly.
Example 1:
Input:
26
Output:
"1a"
Example 2:
Input:
-1
Output:
"ffffffff"
"""
class Solution:
def toHex(self, num: int) -> str:
if num==0: return '0'
mp = '0123456789abcdef' # like a map
ans = ''
for i in range(8):
# this means num & 1111b
n = num & 15
# get the hex char
c = mp[n]
ans = c + ans
num = num >> 4
#strip leading zeroes
return ans.lstrip('0') |
class Solution:
def validPalindrome(self, s: str) -> bool:
def isValid (s,i,j):
while i < j:
if s[i] != s[j]:
return False
i += 1
j -= 1
return True
i ,j = 0,len(s)
while i < j:
if s[i] != s[j]:
return isValid(s, i + 1, j) or isValid(s, i , j - 1)
i += 1
j -= 1
return True |
#!/usr/bin/env python3
#A palindromic number reads the same both ways.
#The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
#
#Find the largest palindrome made from the product of two 3-digit numbers.
def find_palindrome(n_digits):
is_palendrome = lambda s: s[:len(s)] == s[len(s)-1::-1] if len(s) % 2 == 0 else False
max_ab = int('9' * n_digits)
palendromes = []
for a in range(max_ab, 1, -1):
for b in range(max_ab, a, -1):
product = b * a
if is_palendrome(str(product)):
palendromes.append(product)
return max(palendromes)
if __name__ == '__main__':
solution = find_palindrome(3)
print(solution)
|
class QueryDeviceGroupsInDTO(object):
def __init__(self):
self.accessAppId = None
self.pageNo = None
self.pageSize = None
self.name = None
def getAccessAppId(self):
return self.accessAppId
def setAccessAppId(self, accessAppId):
self.accessAppId = accessAppId
def getPageNo(self):
return self.pageNo
def setPageNo(self, pageNo):
self.pageNo = pageNo
def getPageSize(self):
return self.pageSize
def setPageSize(self, pageSize):
self.pageSize = pageSize
def getName(self):
return self.name
def setName(self, name):
self.name = name
|
'''
The MIT License (MIT)
Copyright (c) 2016 WavyCloud
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
def can_paginate(operation_name=None):
"""
Check if an operation can be paginated.
:type operation_name: string
:param operation_name: The operation name. This is the same name\nas the method name on the client. For example, if the\nmethod name is create_foo, and you\'d normally invoke the\noperation as client.create_foo(**kwargs), if the\ncreate_foo operation can be paginated, you can use the\ncall client.get_paginator('create_foo').
"""
pass
def create_medical_vocabulary(VocabularyName=None, LanguageCode=None, VocabularyFileUri=None):
"""
Creates a new custom vocabulary that you can use to change how Amazon Transcribe Medical transcribes your audio file.
See also: AWS API Documentation
Exceptions
:example: response = client.create_medical_vocabulary(
VocabularyName='string',
LanguageCode='en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
VocabularyFileUri='string'
)
:type VocabularyName: string
:param VocabularyName: [REQUIRED]\nThe name of the custom vocabulary. This case-sensitive name must be unique within an AWS account. If you try to create a vocabulary with the same name as a previous vocabulary you will receive a ConflictException error.\n
:type LanguageCode: string
:param LanguageCode: [REQUIRED]\nThe language code used for the entries within your custom vocabulary. The language code of your custom vocabulary must match the language code of your transcription job. US English (en-US) is the only language code available for Amazon Transcribe Medical.\n
:type VocabularyFileUri: string
:param VocabularyFileUri: [REQUIRED]\nThe Amazon S3 location of the text file you use to define your custom vocabulary. The URI must be in the same AWS region as the API endpoint you\'re calling. Enter information about your VocabularyFileUri in the following format:\n\nhttps://s3.<aws-region>.amazonaws.com/<bucket-name>/<keyprefix>/<objectkey>\nThis is an example of a vocabulary file uri location in Amazon S3:\n\nhttps://s3.us-east-1.amazonaws.com/AWSDOC-EXAMPLE-BUCKET/vocab.txt\nFor more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .\nFor more information about custom vocabularies, see Medical Custom Vocabularies .\n
:rtype: dict
ReturnsResponse Syntax
{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'VocabularyState': 'PENDING'|'READY'|'FAILED',
'LastModifiedTime': datetime(2015, 1, 1),
'FailureReason': 'string'
}
Response Structure
(dict) --
VocabularyName (string) --
The name of the vocabulary. The name must be unique within an AWS account. It is also case-sensitive.
LanguageCode (string) --
The language code you chose to describe the entries in your custom vocabulary. US English (en-US) is the only valid language code for Amazon Transcribe Medical.
VocabularyState (string) --
The processing state of your custom vocabulary in Amazon Transcribe Medical. If the state is READY you can use the vocabulary in a StartMedicalTranscriptionJob request.
LastModifiedTime (datetime) --
The date and time you created the vocabulary.
FailureReason (string) --
If the VocabularyState field is FAILED , this field contains information about why the job failed.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.ConflictException
:return: {
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'VocabularyState': 'PENDING'|'READY'|'FAILED',
'LastModifiedTime': datetime(2015, 1, 1),
'FailureReason': 'string'
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.ConflictException
"""
pass
def create_vocabulary(VocabularyName=None, LanguageCode=None, Phrases=None, VocabularyFileUri=None):
"""
Creates a new custom vocabulary that you can use to change the way Amazon Transcribe handles transcription of an audio file.
See also: AWS API Documentation
Exceptions
:example: response = client.create_vocabulary(
VocabularyName='string',
LanguageCode='en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
Phrases=[
'string',
],
VocabularyFileUri='string'
)
:type VocabularyName: string
:param VocabularyName: [REQUIRED]\nThe name of the vocabulary. The name must be unique within an AWS account. The name is case-sensitive. If you try to create a vocabulary with the same name as a previous vocabulary you will receive a ConflictException error.\n
:type LanguageCode: string
:param LanguageCode: [REQUIRED]\nThe language code of the vocabulary entries.\n
:type Phrases: list
:param Phrases: An array of strings that contains the vocabulary entries.\n\n(string) --\n\n
:type VocabularyFileUri: string
:param VocabularyFileUri: The S3 location of the text file that contains the definition of the custom vocabulary. The URI must be in the same region as the API endpoint that you are calling. The general form is\nFor more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .\nFor more information about custom vocabularies, see Custom Vocabularies .\n
:rtype: dict
ReturnsResponse Syntax
{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'VocabularyState': 'PENDING'|'READY'|'FAILED',
'LastModifiedTime': datetime(2015, 1, 1),
'FailureReason': 'string'
}
Response Structure
(dict) --
VocabularyName (string) --
The name of the vocabulary.
LanguageCode (string) --
The language code of the vocabulary entries.
VocabularyState (string) --
The processing state of the vocabulary. When the VocabularyState field contains READY the vocabulary is ready to be used in a StartTranscriptionJob request.
LastModifiedTime (datetime) --
The date and time that the vocabulary was created.
FailureReason (string) --
If the VocabularyState field is FAILED , this field contains information about why the job failed.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.ConflictException
:return: {
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'VocabularyState': 'PENDING'|'READY'|'FAILED',
'LastModifiedTime': datetime(2015, 1, 1),
'FailureReason': 'string'
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.ConflictException
"""
pass
def create_vocabulary_filter(VocabularyFilterName=None, LanguageCode=None, Words=None, VocabularyFilterFileUri=None):
"""
Creates a new vocabulary filter that you can use to filter words, such as profane words, from the output of a transcription job.
See also: AWS API Documentation
Exceptions
:example: response = client.create_vocabulary_filter(
VocabularyFilterName='string',
LanguageCode='en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
Words=[
'string',
],
VocabularyFilterFileUri='string'
)
:type VocabularyFilterName: string
:param VocabularyFilterName: [REQUIRED]\nThe vocabulary filter name. The name must be unique within the account that contains it.If you try to create a vocabulary filter with the same name as a previous vocabulary filter you will receive a ConflictException error.\n
:type LanguageCode: string
:param LanguageCode: [REQUIRED]\nThe language code of the words in the vocabulary filter. All words in the filter must be in the same language. The vocabulary filter can only be used with transcription jobs in the specified language.\n
:type Words: list
:param Words: The words to use in the vocabulary filter. Only use characters from the character set defined for custom vocabularies. For a list of character sets, see Character Sets for Custom Vocabularies .\nIf you provide a list of words in the Words parameter, you can\'t use the VocabularyFilterFileUri parameter.\n\n(string) --\n\n
:type VocabularyFilterFileUri: string
:param VocabularyFilterFileUri: The Amazon S3 location of a text file used as input to create the vocabulary filter. Only use characters from the character set defined for custom vocabularies. For a list of character sets, see Character Sets for Custom Vocabularies .\nThe specified file must be less than 50 KB of UTF-8 characters.\nIf you provide the location of a list of words in the VocabularyFilterFileUri parameter, you can\'t use the Words parameter.\n
:rtype: dict
ReturnsResponse Syntax
{
'VocabularyFilterName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1)
}
Response Structure
(dict) --
VocabularyFilterName (string) --
The name of the vocabulary filter.
LanguageCode (string) --
The language code of the words in the collection.
LastModifiedTime (datetime) --
The date and time that the vocabulary filter was modified.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.ConflictException
:return: {
'VocabularyFilterName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1)
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.ConflictException
"""
pass
def delete_medical_transcription_job(MedicalTranscriptionJobName=None):
"""
Deletes a transcription job generated by Amazon Transcribe Medical and any related information.
See also: AWS API Documentation
Exceptions
:example: response = client.delete_medical_transcription_job(
MedicalTranscriptionJobName='string'
)
:type MedicalTranscriptionJobName: string
:param MedicalTranscriptionJobName: [REQUIRED]\nThe name you provide to the DeleteMedicalTranscriptionJob object to delete a transcription job.\n
"""
pass
def delete_medical_vocabulary(VocabularyName=None):
"""
Deletes a vocabulary from Amazon Transcribe Medical.
See also: AWS API Documentation
Exceptions
:example: response = client.delete_medical_vocabulary(
VocabularyName='string'
)
:type VocabularyName: string
:param VocabularyName: [REQUIRED]\nThe name of the vocabulary you are choosing to delete.\n
"""
pass
def delete_transcription_job(TranscriptionJobName=None):
"""
Deletes a previously submitted transcription job along with any other generated results such as the transcription, models, and so on.
See also: AWS API Documentation
Exceptions
:example: response = client.delete_transcription_job(
TranscriptionJobName='string'
)
:type TranscriptionJobName: string
:param TranscriptionJobName: [REQUIRED]\nThe name of the transcription job to be deleted.\n
"""
pass
def delete_vocabulary(VocabularyName=None):
"""
Deletes a vocabulary from Amazon Transcribe.
See also: AWS API Documentation
Exceptions
:example: response = client.delete_vocabulary(
VocabularyName='string'
)
:type VocabularyName: string
:param VocabularyName: [REQUIRED]\nThe name of the vocabulary to delete.\n
"""
pass
def delete_vocabulary_filter(VocabularyFilterName=None):
"""
Removes a vocabulary filter.
See also: AWS API Documentation
Exceptions
:example: response = client.delete_vocabulary_filter(
VocabularyFilterName='string'
)
:type VocabularyFilterName: string
:param VocabularyFilterName: [REQUIRED]\nThe name of the vocabulary filter to remove.\n
"""
pass
def generate_presigned_url(ClientMethod=None, Params=None, ExpiresIn=None, HttpMethod=None):
"""
Generate a presigned url given a client, its method, and arguments
:type ClientMethod: string
:param ClientMethod: The client method to presign for
:type Params: dict
:param Params: The parameters normally passed to\nClientMethod.
:type ExpiresIn: int
:param ExpiresIn: The number of seconds the presigned url is valid\nfor. By default it expires in an hour (3600 seconds)
:type HttpMethod: string
:param HttpMethod: The http method to use on the generated url. By\ndefault, the http method is whatever is used in the method\'s model.
"""
pass
def get_medical_transcription_job(MedicalTranscriptionJobName=None):
"""
Returns information about a transcription job from Amazon Transcribe Medical. To see the status of the job, check the TranscriptionJobStatus field. If the status is COMPLETED , the job is finished. You find the results of the completed job in the TranscriptFileUri field.
See also: AWS API Documentation
Exceptions
:example: response = client.get_medical_transcription_job(
MedicalTranscriptionJobName='string'
)
:type MedicalTranscriptionJobName: string
:param MedicalTranscriptionJobName: [REQUIRED]\nThe name of the medical transcription job.\n
:rtype: dict
ReturnsResponse Syntax{
'MedicalTranscriptionJob': {
'MedicalTranscriptionJobName': 'string',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'MediaSampleRateHertz': 123,
'MediaFormat': 'mp3'|'mp4'|'wav'|'flac',
'Media': {
'MediaFileUri': 'string'
},
'Transcript': {
'TranscriptFileUri': 'string'
},
'StartTime': datetime(2015, 1, 1),
'CreationTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'Settings': {
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyName': 'string'
},
'Specialty': 'PRIMARYCARE',
'Type': 'CONVERSATION'|'DICTATION'
}
}
Response Structure
(dict) --
MedicalTranscriptionJob (dict) --An object that contains the results of the medical transcription job.
MedicalTranscriptionJobName (string) --The name for a given medical transcription job.
TranscriptionJobStatus (string) --The completion status of a medical transcription job.
LanguageCode (string) --The language code for the language spoken in the source audio file. US English (en-US) is the only supported language for medical transcriptions. Any other value you enter for language code results in a BadRequestException error.
MediaSampleRateHertz (integer) --The sample rate, in Hertz, of the source audio containing medical information.
If you don\'t specify the sample rate, Amazon Transcribe Medical determines it for you. If you choose to specify the sample rate, it must match the rate detected by Amazon Transcribe Medical. In most cases, you should leave the MediaSampleHertz blank and let Amazon Transcribe Medical determine the sample rate.
MediaFormat (string) --The format of the input media file.
Media (dict) --Describes the input media file in a transcription request.
MediaFileUri (string) --The S3 object location of the input media file. The URI must be in the same region as the API endpoint that you are calling. The general form is:
For example:
For more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .
Transcript (dict) --An object that contains the MedicalTranscript . The MedicalTranscript contains the TranscriptFileUri .
TranscriptFileUri (string) --The S3 object location of the medical transcript.
Use this URI to access the medical transcript. This URI points to the S3 bucket you created to store the medical transcript.
StartTime (datetime) --A timestamp that shows when the job started processing.
CreationTime (datetime) --A timestamp that shows when the job was created.
CompletionTime (datetime) --A timestamp that shows when the job was completed.
FailureReason (string) --If the TranscriptionJobStatus field is FAILED , this field contains information about why the job failed.
The FailureReason field contains one of the following values:
Unsupported media format - The media format specified in the MediaFormat field of the request isn\'t valid. See the description of the MediaFormat field for a list of valid values.
The media format provided does not match the detected media format - The media format of the audio file doesn\'t match the format specified in the MediaFormat field in the request. Check the media format of your media file and make sure the two values match.
Invalid sample rate for audio file - The sample rate specified in the MediaSampleRateHertz of the request isn\'t valid. The sample rate must be between 8000 and 48000 Hertz.
The sample rate provided does not match the detected sample rate - The sample rate in the audio file doesn\'t match the sample rate specified in the MediaSampleRateHertz field in the request. Check the sample rate of your media file and make sure that the two values match.
Invalid file size: file size too large - The size of your audio file is larger than what Amazon Transcribe Medical can process. For more information, see Guidlines and Quotas in the Amazon Transcribe Medical Guide
Invalid number of channels: number of channels too large - Your audio contains more channels than Amazon Transcribe Medical is configured to process. To request additional channels, see Amazon Transcribe Medical Endpoints and Quotas in the Amazon Web Services General Reference
Settings (dict) --Object that contains object.
ShowSpeakerLabels (boolean) --Determines whether the transcription job uses speaker recognition to identify different speakers in the input audio. Speaker recongition labels individual speakers in the audio file. If you set the ShowSpeakerLabels field to true, you must also set the maximum number of speaker labels in the MaxSpeakerLabels field.
You can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException .
MaxSpeakerLabels (integer) --The maximum number of speakers to identify in the input audio. If there are more speakers in the audio than this number, multiple speakers are identified as a single speaker. If you specify the MaxSpeakerLabels field, you must set the ShowSpeakerLabels field to true.
ChannelIdentification (boolean) --Instructs Amazon Transcribe Medical to process each audio channel separately and then merge the transcription output of each channel into a single transcription.
Amazon Transcribe Medical also produces a transcription of each item detected on an audio channel, including the start time and end time of the item and alternative transcriptions of item. The alternative transcriptions also come with confidence scores provided by Amazon Transcribe Medical.
You can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException
ShowAlternatives (boolean) --Determines whether alternative transcripts are generated along with the transcript that has the highest confidence. If you set ShowAlternatives field to true, you must also set the maximum number of alternatives to return in the MaxAlternatives field.
MaxAlternatives (integer) --The maximum number of alternatives that you tell the service to return. If you specify the MaxAlternatives field, you must set the ShowAlternatives field to true.
VocabularyName (string) --The name of the vocabulary to use when processing a medical transcription job.
Specialty (string) --The medical specialty of any clinicians providing a dictation or having a conversation. PRIMARYCARE is the only available setting for this object. This specialty enables you to generate transcriptions for the following medical fields:
Family Medicine
Type (string) --The type of speech in the transcription job. CONVERSATION is generally used for patient-physician dialogues. DICTATION is the setting for physicians speaking their notes after seeing a patient. For more information, see how-it-works-med
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.NotFoundException
:return: {
'MedicalTranscriptionJob': {
'MedicalTranscriptionJobName': 'string',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'MediaSampleRateHertz': 123,
'MediaFormat': 'mp3'|'mp4'|'wav'|'flac',
'Media': {
'MediaFileUri': 'string'
},
'Transcript': {
'TranscriptFileUri': 'string'
},
'StartTime': datetime(2015, 1, 1),
'CreationTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'Settings': {
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyName': 'string'
},
'Specialty': 'PRIMARYCARE',
'Type': 'CONVERSATION'|'DICTATION'
}
}
:returns:
Family Medicine
"""
pass
def get_medical_vocabulary(VocabularyName=None):
"""
Retrieve information about a medical vocabulary.
See also: AWS API Documentation
Exceptions
:example: response = client.get_medical_vocabulary(
VocabularyName='string'
)
:type VocabularyName: string
:param VocabularyName: [REQUIRED]\nThe name of the vocabulary you are trying to get information about. The value you enter for this request is case-sensitive.\n
:rtype: dict
ReturnsResponse Syntax{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'VocabularyState': 'PENDING'|'READY'|'FAILED',
'LastModifiedTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'DownloadUri': 'string'
}
Response Structure
(dict) --
VocabularyName (string) --The valid name that Amazon Transcribe Medical returns.
LanguageCode (string) --The valid language code returned for your vocabulary entries.
VocabularyState (string) --The processing state of the vocabulary.
LastModifiedTime (datetime) --The date and time the vocabulary was last modified with a text file different from what was previously used.
FailureReason (string) --If the VocabularyState is FAILED , this field contains information about why the job failed.
DownloadUri (string) --The Amazon S3 location where the vocabulary is stored. Use this URI to get the contents of the vocabulary. You can download your vocabulary from the URI for a limited time.
Exceptions
TranscribeService.Client.exceptions.NotFoundException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.BadRequestException
:return: {
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'VocabularyState': 'PENDING'|'READY'|'FAILED',
'LastModifiedTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'DownloadUri': 'string'
}
"""
pass
def get_paginator(operation_name=None):
"""
Create a paginator for an operation.
:type operation_name: string
:param operation_name: The operation name. This is the same name\nas the method name on the client. For example, if the\nmethod name is create_foo, and you\'d normally invoke the\noperation as client.create_foo(**kwargs), if the\ncreate_foo operation can be paginated, you can use the\ncall client.get_paginator('create_foo').
:rtype: L{botocore.paginate.Paginator}
ReturnsA paginator object.
"""
pass
def get_transcription_job(TranscriptionJobName=None):
"""
Returns information about a transcription job. To see the status of the job, check the TranscriptionJobStatus field. If the status is COMPLETED , the job is finished and you can find the results at the location specified in the TranscriptFileUri field. If you enable content redaction, the redacted transcript appears in RedactedTranscriptFileUri .
See also: AWS API Documentation
Exceptions
:example: response = client.get_transcription_job(
TranscriptionJobName='string'
)
:type TranscriptionJobName: string
:param TranscriptionJobName: [REQUIRED]\nThe name of the job.\n
:rtype: dict
ReturnsResponse Syntax{
'TranscriptionJob': {
'TranscriptionJobName': 'string',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'MediaSampleRateHertz': 123,
'MediaFormat': 'mp3'|'mp4'|'wav'|'flac',
'Media': {
'MediaFileUri': 'string'
},
'Transcript': {
'TranscriptFileUri': 'string',
'RedactedTranscriptFileUri': 'string'
},
'StartTime': datetime(2015, 1, 1),
'CreationTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'Settings': {
'VocabularyName': 'string',
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyFilterName': 'string',
'VocabularyFilterMethod': 'remove'|'mask'
},
'JobExecutionSettings': {
'AllowDeferredExecution': True|False,
'DataAccessRoleArn': 'string'
},
'ContentRedaction': {
'RedactionType': 'PII',
'RedactionOutput': 'redacted'|'redacted_and_unredacted'
}
}
}
Response Structure
(dict) --
TranscriptionJob (dict) --An object that contains the results of the transcription job.
TranscriptionJobName (string) --The name of the transcription job.
TranscriptionJobStatus (string) --The status of the transcription job.
LanguageCode (string) --The language code for the input speech.
MediaSampleRateHertz (integer) --The sample rate, in Hertz, of the audio track in the input media file.
MediaFormat (string) --The format of the input media file.
Media (dict) --An object that describes the input media for the transcription job.
MediaFileUri (string) --The S3 object location of the input media file. The URI must be in the same region as the API endpoint that you are calling. The general form is:
For example:
For more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .
Transcript (dict) --An object that describes the output of the transcription job.
TranscriptFileUri (string) --The S3 object location of the the transcript.
Use this URI to access the transcript. If you specified an S3 bucket in the OutputBucketName field when you created the job, this is the URI of that bucket. If you chose to store the transcript in Amazon Transcribe, this is a shareable URL that provides secure access to that location.
RedactedTranscriptFileUri (string) --The S3 object location of the redacted transcript.
Use this URI to access the redacated transcript. If you specified an S3 bucket in the OutputBucketName field when you created the job, this is the URI of that bucket. If you chose to store the transcript in Amazon Transcribe, this is a shareable URL that provides secure access to that location.
StartTime (datetime) --A timestamp that shows with the job was started processing.
CreationTime (datetime) --A timestamp that shows when the job was created.
CompletionTime (datetime) --A timestamp that shows when the job was completed.
FailureReason (string) --If the TranscriptionJobStatus field is FAILED , this field contains information about why the job failed.
The FailureReason field can contain one of the following values:
Unsupported media format - The media format specified in the MediaFormat field of the request isn\'t valid. See the description of the MediaFormat field for a list of valid values.
The media format provided does not match the detected media format - The media format of the audio file doesn\'t match the format specified in the MediaFormat field in the request. Check the media format of your media file and make sure that the two values match.
Invalid sample rate for audio file - The sample rate specified in the MediaSampleRateHertz of the request isn\'t valid. The sample rate must be between 8000 and 48000 Hertz.
The sample rate provided does not match the detected sample rate - The sample rate in the audio file doesn\'t match the sample rate specified in the MediaSampleRateHertz field in the request. Check the sample rate of your media file and make sure that the two values match.
Invalid file size: file size too large - The size of your audio file is larger than Amazon Transcribe can process. For more information, see Limits in the Amazon Transcribe Developer Guide .
Invalid number of channels: number of channels too large - Your audio contains more channels than Amazon Transcribe is configured to process. To request additional channels, see Amazon Transcribe Limits in the Amazon Web Services General Reference .
Settings (dict) --Optional settings for the transcription job. Use these settings to turn on speaker recognition, to set the maximum number of speakers that should be identified and to specify a custom vocabulary to use when processing the transcription job.
VocabularyName (string) --The name of a vocabulary to use when processing the transcription job.
ShowSpeakerLabels (boolean) --Determines whether the transcription job uses speaker recognition to identify different speakers in the input audio. Speaker recognition labels individual speakers in the audio file. If you set the ShowSpeakerLabels field to true, you must also set the maximum number of speaker labels MaxSpeakerLabels field.
You can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException .
MaxSpeakerLabels (integer) --The maximum number of speakers to identify in the input audio. If there are more speakers in the audio than this number, multiple speakers are identified as a single speaker. If you specify the MaxSpeakerLabels field, you must set the ShowSpeakerLabels field to true.
ChannelIdentification (boolean) --Instructs Amazon Transcribe to process each audio channel separately and then merge the transcription output of each channel into a single transcription.
Amazon Transcribe also produces a transcription of each item detected on an audio channel, including the start time and end time of the item and alternative transcriptions of the item including the confidence that Amazon Transcribe has in the transcription.
You can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException .
ShowAlternatives (boolean) --Determines whether the transcription contains alternative transcriptions. If you set the ShowAlternatives field to true, you must also set the maximum number of alternatives to return in the MaxAlternatives field.
MaxAlternatives (integer) --The number of alternative transcriptions that the service should return. If you specify the MaxAlternatives field, you must set the ShowAlternatives field to true.
VocabularyFilterName (string) --The name of the vocabulary filter to use when transcribing the audio. The filter that you specify must have the same language code as the transcription job.
VocabularyFilterMethod (string) --Set to mask to remove filtered text from the transcript and replace it with three asterisks ("***") as placeholder text. Set to remove to remove filtered text from the transcript without using placeholder text.
JobExecutionSettings (dict) --Provides information about how a transcription job is executed.
AllowDeferredExecution (boolean) --Indicates whether a job should be queued by Amazon Transcribe when the concurrent execution limit is exceeded. When the AllowDeferredExecution field is true, jobs are queued and executed when the number of executing jobs falls below the concurrent execution limit. If the field is false, Amazon Transcribe returns a LimitExceededException exception.
If you specify the AllowDeferredExecution field, you must specify the DataAccessRoleArn field.
DataAccessRoleArn (string) --The Amazon Resource Name (ARN) of a role that has access to the S3 bucket that contains the input files. Amazon Transcribe assumes this role to read queued media files. If you have specified an output S3 bucket for the transcription results, this role should have access to the output bucket as well.
If you specify the AllowDeferredExecution field, you must specify the DataAccessRoleArn field.
ContentRedaction (dict) --An object that describes content redaction settings for the transcription job.
RedactionType (string) --Request parameter that defines the entities to be redacted. The only accepted value is PII .
RedactionOutput (string) --The output transcript file stored in either the default S3 bucket or in a bucket you specify.
When you choose redacted Amazon Transcribe outputs only the redacted transcript.
When you choose redacted_and_unredacted Amazon Transcribe outputs both the redacted and unredacted transcripts.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.NotFoundException
:return: {
'TranscriptionJob': {
'TranscriptionJobName': 'string',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'MediaSampleRateHertz': 123,
'MediaFormat': 'mp3'|'mp4'|'wav'|'flac',
'Media': {
'MediaFileUri': 'string'
},
'Transcript': {
'TranscriptFileUri': 'string',
'RedactedTranscriptFileUri': 'string'
},
'StartTime': datetime(2015, 1, 1),
'CreationTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'Settings': {
'VocabularyName': 'string',
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyFilterName': 'string',
'VocabularyFilterMethod': 'remove'|'mask'
},
'JobExecutionSettings': {
'AllowDeferredExecution': True|False,
'DataAccessRoleArn': 'string'
},
'ContentRedaction': {
'RedactionType': 'PII',
'RedactionOutput': 'redacted'|'redacted_and_unredacted'
}
}
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.NotFoundException
"""
pass
def get_vocabulary(VocabularyName=None):
"""
Gets information about a vocabulary.
See also: AWS API Documentation
Exceptions
:example: response = client.get_vocabulary(
VocabularyName='string'
)
:type VocabularyName: string
:param VocabularyName: [REQUIRED]\nThe name of the vocabulary to return information about. The name is case-sensitive.\n
:rtype: dict
ReturnsResponse Syntax{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'VocabularyState': 'PENDING'|'READY'|'FAILED',
'LastModifiedTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'DownloadUri': 'string'
}
Response Structure
(dict) --
VocabularyName (string) --The name of the vocabulary to return.
LanguageCode (string) --The language code of the vocabulary entries.
VocabularyState (string) --The processing state of the vocabulary.
LastModifiedTime (datetime) --The date and time that the vocabulary was last modified.
FailureReason (string) --If the VocabularyState field is FAILED , this field contains information about why the job failed.
DownloadUri (string) --The S3 location where the vocabulary is stored. Use this URI to get the contents of the vocabulary. The URI is available for a limited time.
Exceptions
TranscribeService.Client.exceptions.NotFoundException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.BadRequestException
:return: {
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'VocabularyState': 'PENDING'|'READY'|'FAILED',
'LastModifiedTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'DownloadUri': 'string'
}
"""
pass
def get_vocabulary_filter(VocabularyFilterName=None):
"""
Returns information about a vocabulary filter.
See also: AWS API Documentation
Exceptions
:example: response = client.get_vocabulary_filter(
VocabularyFilterName='string'
)
:type VocabularyFilterName: string
:param VocabularyFilterName: [REQUIRED]\nThe name of the vocabulary filter for which to return information.\n
:rtype: dict
ReturnsResponse Syntax{
'VocabularyFilterName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'DownloadUri': 'string'
}
Response Structure
(dict) --
VocabularyFilterName (string) --The name of the vocabulary filter.
LanguageCode (string) --The language code of the words in the vocabulary filter.
LastModifiedTime (datetime) --The date and time that the contents of the vocabulary filter were updated.
DownloadUri (string) --The URI of the list of words in the vocabulary filter. You can use this URI to get the list of words.
Exceptions
TranscribeService.Client.exceptions.NotFoundException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.BadRequestException
:return: {
'VocabularyFilterName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'DownloadUri': 'string'
}
"""
pass
def get_waiter(waiter_name=None):
"""
Returns an object that can wait for some condition.
:type waiter_name: str
:param waiter_name: The name of the waiter to get. See the waiters\nsection of the service docs for a list of available waiters.
:rtype: botocore.waiter.Waiter
"""
pass
def list_medical_transcription_jobs(Status=None, JobNameContains=None, NextToken=None, MaxResults=None):
"""
Lists medical transcription jobs with a specified status or substring that matches their names.
See also: AWS API Documentation
Exceptions
:example: response = client.list_medical_transcription_jobs(
Status='QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
JobNameContains='string',
NextToken='string',
MaxResults=123
)
:type Status: string
:param Status: When specified, returns only medical transcription jobs with the specified status. Jobs are ordered by creation date, with the newest jobs returned first. If you don\'t specify a status, Amazon Transcribe Medical returns all transcription jobs ordered by creation date.
:type JobNameContains: string
:param JobNameContains: When specified, the jobs returned in the list are limited to jobs whose name contains the specified string.
:type NextToken: string
:param NextToken: If you a receive a truncated result in the previous request of ListMedicalTranscriptionJobs , include NextToken to fetch the next set of jobs.
:type MaxResults: integer
:param MaxResults: The maximum number of medical transcription jobs to return in the response. IF there are fewer results in the list, this response contains only the actual results.
:rtype: dict
ReturnsResponse Syntax
{
'Status': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'NextToken': 'string',
'MedicalTranscriptionJobSummaries': [
{
'MedicalTranscriptionJobName': 'string',
'CreationTime': datetime(2015, 1, 1),
'StartTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'FailureReason': 'string',
'OutputLocationType': 'CUSTOMER_BUCKET'|'SERVICE_BUCKET',
'Specialty': 'PRIMARYCARE',
'Type': 'CONVERSATION'|'DICTATION'
},
]
}
Response Structure
(dict) --
Status (string) --
The requested status of the medical transcription jobs returned.
NextToken (string) --
The ListMedicalTranscriptionJobs operation returns a page of jobs at a time. The maximum size of the page is set by the MaxResults parameter. If the number of jobs exceeds what can fit on a page, Amazon Transcribe Medical returns the NextPage token. Include the token in the next request to the ListMedicalTranscriptionJobs operation to return in the next page of jobs.
MedicalTranscriptionJobSummaries (list) --
A list of objects containing summary information for a transcription job.
(dict) --
Provides summary information about a transcription job.
MedicalTranscriptionJobName (string) --
The name of a medical transcription job.
CreationTime (datetime) --
A timestamp that shows when the medical transcription job was created.
StartTime (datetime) --
A timestamp that shows when the job began processing.
CompletionTime (datetime) --
A timestamp that shows when the job was completed.
LanguageCode (string) --
The language of the transcript in the source audio file.
TranscriptionJobStatus (string) --
The status of the medical transcription job.
FailureReason (string) --
If the TranscriptionJobStatus field is FAILED , a description of the error.
OutputLocationType (string) --
Indicates the location of the transcription job\'s output.
The CUSTOMER_BUCKET is the S3 location provided in the OutputBucketName field when the
Specialty (string) --
The medical specialty of the transcription job. Primary care is the only valid value.
Type (string) --
The speech of the clinician in the input audio.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
:return: {
'Status': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'NextToken': 'string',
'MedicalTranscriptionJobSummaries': [
{
'MedicalTranscriptionJobName': 'string',
'CreationTime': datetime(2015, 1, 1),
'StartTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'FailureReason': 'string',
'OutputLocationType': 'CUSTOMER_BUCKET'|'SERVICE_BUCKET',
'Specialty': 'PRIMARYCARE',
'Type': 'CONVERSATION'|'DICTATION'
},
]
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
"""
pass
def list_medical_vocabularies(NextToken=None, MaxResults=None, StateEquals=None, NameContains=None):
"""
Returns a list of vocabularies that match the specified criteria. You get the entire list of vocabularies if you don\'t enter a value in any of the request parameters.
See also: AWS API Documentation
Exceptions
:example: response = client.list_medical_vocabularies(
NextToken='string',
MaxResults=123,
StateEquals='PENDING'|'READY'|'FAILED',
NameContains='string'
)
:type NextToken: string
:param NextToken: If the result of your previous request to ListMedicalVocabularies was truncated, include the NextToken to fetch the next set of jobs.
:type MaxResults: integer
:param MaxResults: The maximum number of vocabularies to return in the response.
:type StateEquals: string
:param StateEquals: When specified, only returns vocabularies with the VocabularyState equal to the specified vocabulary state.
:type NameContains: string
:param NameContains: Returns vocabularies in the list whose name contains the specified string. The search is case-insensitive, ListMedicalVocabularies returns both 'vocabularyname' and 'VocabularyName' in the response list.
:rtype: dict
ReturnsResponse Syntax
{
'Status': 'PENDING'|'READY'|'FAILED',
'NextToken': 'string',
'Vocabularies': [
{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'VocabularyState': 'PENDING'|'READY'|'FAILED'
},
]
}
Response Structure
(dict) --
Status (string) --
The requested vocabulary state.
NextToken (string) --
The ListMedicalVocabularies operation returns a page of vocabularies at a time. The maximum size of the page is set by the MaxResults parameter. If there are more jobs in the list than the page size, Amazon Transcribe Medical returns the NextPage token. Include the token in the next request to the ListMedicalVocabularies operation to return the next page of jobs.
Vocabularies (list) --
A list of objects that describe the vocabularies that match the search criteria in the request.
(dict) --
Provides information about a custom vocabulary.
VocabularyName (string) --
The name of the vocabulary.
LanguageCode (string) --
The language code of the vocabulary entries.
LastModifiedTime (datetime) --
The date and time that the vocabulary was last modified.
VocabularyState (string) --
The processing state of the vocabulary. If the state is READY you can use the vocabulary in a StartTranscriptionJob request.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
:return: {
'Status': 'PENDING'|'READY'|'FAILED',
'NextToken': 'string',
'Vocabularies': [
{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'VocabularyState': 'PENDING'|'READY'|'FAILED'
},
]
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
"""
pass
def list_transcription_jobs(Status=None, JobNameContains=None, NextToken=None, MaxResults=None):
"""
Lists transcription jobs with the specified status.
See also: AWS API Documentation
Exceptions
:example: response = client.list_transcription_jobs(
Status='QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
JobNameContains='string',
NextToken='string',
MaxResults=123
)
:type Status: string
:param Status: When specified, returns only transcription jobs with the specified status. Jobs are ordered by creation date, with the newest jobs returned first. If you don\xe2\x80\x99t specify a status, Amazon Transcribe returns all transcription jobs ordered by creation date.
:type JobNameContains: string
:param JobNameContains: When specified, the jobs returned in the list are limited to jobs whose name contains the specified string.
:type NextToken: string
:param NextToken: If the result of the previous request to ListTranscriptionJobs was truncated, include the NextToken to fetch the next set of jobs.
:type MaxResults: integer
:param MaxResults: The maximum number of jobs to return in the response. If there are fewer results in the list, this response contains only the actual results.
:rtype: dict
ReturnsResponse Syntax
{
'Status': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'NextToken': 'string',
'TranscriptionJobSummaries': [
{
'TranscriptionJobName': 'string',
'CreationTime': datetime(2015, 1, 1),
'StartTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'FailureReason': 'string',
'OutputLocationType': 'CUSTOMER_BUCKET'|'SERVICE_BUCKET',
'ContentRedaction': {
'RedactionType': 'PII',
'RedactionOutput': 'redacted'|'redacted_and_unredacted'
}
},
]
}
Response Structure
(dict) --
Status (string) --
The requested status of the jobs returned.
NextToken (string) --
The ListTranscriptionJobs operation returns a page of jobs at a time. The maximum size of the page is set by the MaxResults parameter. If there are more jobs in the list than the page size, Amazon Transcribe returns the NextPage token. Include the token in the next request to the ListTranscriptionJobs operation to return in the next page of jobs.
TranscriptionJobSummaries (list) --
A list of objects containing summary information for a transcription job.
(dict) --
Provides a summary of information about a transcription job.
TranscriptionJobName (string) --
The name of the transcription job.
CreationTime (datetime) --
A timestamp that shows when the job was created.
StartTime (datetime) --
A timestamp that shows when the job started processing.
CompletionTime (datetime) --
A timestamp that shows when the job was completed.
LanguageCode (string) --
The language code for the input speech.
TranscriptionJobStatus (string) --
The status of the transcription job. When the status is COMPLETED , use the GetTranscriptionJob operation to get the results of the transcription.
FailureReason (string) --
If the TranscriptionJobStatus field is FAILED , a description of the error.
OutputLocationType (string) --
Indicates the location of the output of the transcription job.
If the value is CUSTOMER_BUCKET then the location is the S3 bucket specified in the outputBucketName field when the transcription job was started with the StartTranscriptionJob operation.
If the value is SERVICE_BUCKET then the output is stored by Amazon Transcribe and can be retrieved using the URI in the GetTranscriptionJob response\'s TranscriptFileUri field.
ContentRedaction (dict) --
The content redaction settings of the transcription job.
RedactionType (string) --
Request parameter that defines the entities to be redacted. The only accepted value is PII .
RedactionOutput (string) --
The output transcript file stored in either the default S3 bucket or in a bucket you specify.
When you choose redacted Amazon Transcribe outputs only the redacted transcript.
When you choose redacted_and_unredacted Amazon Transcribe outputs both the redacted and unredacted transcripts.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
:return: {
'Status': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'NextToken': 'string',
'TranscriptionJobSummaries': [
{
'TranscriptionJobName': 'string',
'CreationTime': datetime(2015, 1, 1),
'StartTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'FailureReason': 'string',
'OutputLocationType': 'CUSTOMER_BUCKET'|'SERVICE_BUCKET',
'ContentRedaction': {
'RedactionType': 'PII',
'RedactionOutput': 'redacted'|'redacted_and_unredacted'
}
},
]
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
"""
pass
def list_vocabularies(NextToken=None, MaxResults=None, StateEquals=None, NameContains=None):
"""
Returns a list of vocabularies that match the specified criteria. If no criteria are specified, returns the entire list of vocabularies.
See also: AWS API Documentation
Exceptions
:example: response = client.list_vocabularies(
NextToken='string',
MaxResults=123,
StateEquals='PENDING'|'READY'|'FAILED',
NameContains='string'
)
:type NextToken: string
:param NextToken: If the result of the previous request to ListVocabularies was truncated, include the NextToken to fetch the next set of jobs.
:type MaxResults: integer
:param MaxResults: The maximum number of vocabularies to return in the response. If there are fewer results in the list, this response contains only the actual results.
:type StateEquals: string
:param StateEquals: When specified, only returns vocabularies with the VocabularyState field equal to the specified state.
:type NameContains: string
:param NameContains: When specified, the vocabularies returned in the list are limited to vocabularies whose name contains the specified string. The search is case-insensitive, ListVocabularies returns both 'vocabularyname' and 'VocabularyName' in the response list.
:rtype: dict
ReturnsResponse Syntax
{
'Status': 'PENDING'|'READY'|'FAILED',
'NextToken': 'string',
'Vocabularies': [
{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'VocabularyState': 'PENDING'|'READY'|'FAILED'
},
]
}
Response Structure
(dict) --
Status (string) --
The requested vocabulary state.
NextToken (string) --
The ListVocabularies operation returns a page of vocabularies at a time. The maximum size of the page is set by the MaxResults parameter. If there are more jobs in the list than the page size, Amazon Transcribe returns the NextPage token. Include the token in the next request to the ListVocabularies operation to return in the next page of jobs.
Vocabularies (list) --
A list of objects that describe the vocabularies that match the search criteria in the request.
(dict) --
Provides information about a custom vocabulary.
VocabularyName (string) --
The name of the vocabulary.
LanguageCode (string) --
The language code of the vocabulary entries.
LastModifiedTime (datetime) --
The date and time that the vocabulary was last modified.
VocabularyState (string) --
The processing state of the vocabulary. If the state is READY you can use the vocabulary in a StartTranscriptionJob request.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
:return: {
'Status': 'PENDING'|'READY'|'FAILED',
'NextToken': 'string',
'Vocabularies': [
{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'VocabularyState': 'PENDING'|'READY'|'FAILED'
},
]
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
"""
pass
def list_vocabulary_filters(NextToken=None, MaxResults=None, NameContains=None):
"""
Gets information about vocabulary filters.
See also: AWS API Documentation
Exceptions
:example: response = client.list_vocabulary_filters(
NextToken='string',
MaxResults=123,
NameContains='string'
)
:type NextToken: string
:param NextToken: If the result of the previous request to ListVocabularyFilters was truncated, include the NextToken to fetch the next set of collections.
:type MaxResults: integer
:param MaxResults: The maximum number of filters to return in the response. If there are fewer results in the list, this response contains only the actual results.
:type NameContains: string
:param NameContains: Filters the response so that it only contains vocabulary filters whose name contains the specified string.
:rtype: dict
ReturnsResponse Syntax
{
'NextToken': 'string',
'VocabularyFilters': [
{
'VocabularyFilterName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1)
},
]
}
Response Structure
(dict) --
NextToken (string) --
The ListVocabularyFilters operation returns a page of collections at a time. The maximum size of the page is set by the MaxResults parameter. If there are more jobs in the list than the page size, Amazon Transcribe returns the NextPage token. Include the token in the next request to the ListVocabularyFilters operation to return in the next page of jobs.
VocabularyFilters (list) --
The list of vocabulary filters. It contains at most MaxResults number of filters. If there are more filters, call the ListVocabularyFilters operation again with the NextToken parameter in the request set to the value of the NextToken field in the response.
(dict) --
Provides information about a vocabulary filter.
VocabularyFilterName (string) --
The name of the vocabulary filter. The name must be unique in the account that holds the filter.
LanguageCode (string) --
The language code of the words in the vocabulary filter.
LastModifiedTime (datetime) --
The date and time that the vocabulary was last updated.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
:return: {
'NextToken': 'string',
'VocabularyFilters': [
{
'VocabularyFilterName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1)
},
]
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
"""
pass
def start_medical_transcription_job(MedicalTranscriptionJobName=None, LanguageCode=None, MediaSampleRateHertz=None, MediaFormat=None, Media=None, OutputBucketName=None, OutputEncryptionKMSKeyId=None, Settings=None, Specialty=None, Type=None):
"""
Start a batch job to transcribe medical speech to text.
See also: AWS API Documentation
Exceptions
:example: response = client.start_medical_transcription_job(
MedicalTranscriptionJobName='string',
LanguageCode='en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
MediaSampleRateHertz=123,
MediaFormat='mp3'|'mp4'|'wav'|'flac',
Media={
'MediaFileUri': 'string'
},
OutputBucketName='string',
OutputEncryptionKMSKeyId='string',
Settings={
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyName': 'string'
},
Specialty='PRIMARYCARE',
Type='CONVERSATION'|'DICTATION'
)
:type MedicalTranscriptionJobName: string
:param MedicalTranscriptionJobName: [REQUIRED]\nThe name of the medical transcription job. You can\'t use the strings '.' or '..' by themselves as the job name. The name must also be unique within an AWS account. If you try to create a medical transcription job with the same name as a previous medical transcription job you will receive a ConflictException error.\n
:type LanguageCode: string
:param LanguageCode: [REQUIRED]\nThe language code for the language spoken in the input media file. US English (en-US) is the valid value for medical transcription jobs. Any other value you enter for language code results in a BadRequestException error.\n
:type MediaSampleRateHertz: integer
:param MediaSampleRateHertz: The sample rate, in Hertz, of the audio track in the input media file.\nIf you do not specify the media sample rate, Amazon Transcribe Medical determines the sample rate. If you specify the sample rate, it must match the rate detected by Amazon Transcribe Medical. In most cases, you should leave the MediaSampleRateHertz field blank and let Amazon Transcribe Medical determine the sample rate.\n
:type MediaFormat: string
:param MediaFormat: The audio format of the input media file.
:type Media: dict
:param Media: [REQUIRED]\nDescribes the input media file in a transcription request.\n\nMediaFileUri (string) --The S3 object location of the input media file. The URI must be in the same region as the API endpoint that you are calling. The general form is:\nFor example:\nFor more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .\n\n\n
:type OutputBucketName: string
:param OutputBucketName: [REQUIRED]\nThe Amazon S3 location where the transcription is stored.\nYou must set OutputBucketName for Amazon Transcribe Medical to store the transcription results. Your transcript appears in the S3 location you specify. When you call the GetMedicalTranscriptionJob , the operation returns this location in the TranscriptFileUri field. The S3 bucket must have permissions that allow Amazon Transcribe Medical to put files in the bucket. For more information, see Permissions Required for IAM User Roles .\nYou can specify an AWS Key Management Service (KMS) key to encrypt the output of your transcription using the OutputEncryptionKMSKeyId parameter. If you don\'t specify a KMS key, Amazon Transcribe Medical uses the default Amazon S3 key for server-side encryption of transcripts that are placed in your S3 bucket.\n
:type OutputEncryptionKMSKeyId: string
:param OutputEncryptionKMSKeyId: The Amazon Resource Name (ARN) of the AWS Key Management Service (KMS) key used to encrypt the output of the transcription job. The user calling the StartMedicalTranscriptionJob operation must have permission to use the specified KMS key.\nYou use either of the following to identify a KMS key in the current account:\n\nKMS Key ID: '1234abcd-12ab-34cd-56ef-1234567890ab'\nKMS Key Alias: 'alias/ExampleAlias'\n\nYou can use either of the following to identify a KMS key in the current account or another account:\n\nAmazon Resource Name (ARN) of a KMS key in the current account or another account: 'arn:aws:kms:region:account ID:key/1234abcd-12ab-34cd-56ef-1234567890ab'\nARN of a KMS Key Alias: 'arn:aws:kms:region:account ID:alias/ExampleAlias'\n\nIf you don\'t specify an encryption key, the output of the medical transcription job is encrypted with the default Amazon S3 key (SSE-S3).\nIf you specify a KMS key to encrypt your output, you must also specify an output location in the OutputBucketName parameter.\n
:type Settings: dict
:param Settings: Optional settings for the medical transcription job.\n\nShowSpeakerLabels (boolean) --Determines whether the transcription job uses speaker recognition to identify different speakers in the input audio. Speaker recongition labels individual speakers in the audio file. If you set the ShowSpeakerLabels field to true, you must also set the maximum number of speaker labels in the MaxSpeakerLabels field.\nYou can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException .\n\nMaxSpeakerLabels (integer) --The maximum number of speakers to identify in the input audio. If there are more speakers in the audio than this number, multiple speakers are identified as a single speaker. If you specify the MaxSpeakerLabels field, you must set the ShowSpeakerLabels field to true.\n\nChannelIdentification (boolean) --Instructs Amazon Transcribe Medical to process each audio channel separately and then merge the transcription output of each channel into a single transcription.\nAmazon Transcribe Medical also produces a transcription of each item detected on an audio channel, including the start time and end time of the item and alternative transcriptions of item. The alternative transcriptions also come with confidence scores provided by Amazon Transcribe Medical.\nYou can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException\n\nShowAlternatives (boolean) --Determines whether alternative transcripts are generated along with the transcript that has the highest confidence. If you set ShowAlternatives field to true, you must also set the maximum number of alternatives to return in the MaxAlternatives field.\n\nMaxAlternatives (integer) --The maximum number of alternatives that you tell the service to return. If you specify the MaxAlternatives field, you must set the ShowAlternatives field to true.\n\nVocabularyName (string) --The name of the vocabulary to use when processing a medical transcription job.\n\n\n
:type Specialty: string
:param Specialty: [REQUIRED]\nThe medical specialty of any clinician speaking in the input media.\n
:type Type: string
:param Type: [REQUIRED]\nThe type of speech in the input audio. CONVERSATION refers to conversations between two or more speakers, e.g., a conversations between doctors and patients. DICTATION refers to single-speaker dictated speech, e.g., for clinical notes.\n
:rtype: dict
ReturnsResponse Syntax
{
'MedicalTranscriptionJob': {
'MedicalTranscriptionJobName': 'string',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'MediaSampleRateHertz': 123,
'MediaFormat': 'mp3'|'mp4'|'wav'|'flac',
'Media': {
'MediaFileUri': 'string'
},
'Transcript': {
'TranscriptFileUri': 'string'
},
'StartTime': datetime(2015, 1, 1),
'CreationTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'Settings': {
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyName': 'string'
},
'Specialty': 'PRIMARYCARE',
'Type': 'CONVERSATION'|'DICTATION'
}
}
Response Structure
(dict) --
MedicalTranscriptionJob (dict) --
A batch job submitted to transcribe medical speech to text.
MedicalTranscriptionJobName (string) --
The name for a given medical transcription job.
TranscriptionJobStatus (string) --
The completion status of a medical transcription job.
LanguageCode (string) --
The language code for the language spoken in the source audio file. US English (en-US) is the only supported language for medical transcriptions. Any other value you enter for language code results in a BadRequestException error.
MediaSampleRateHertz (integer) --
The sample rate, in Hertz, of the source audio containing medical information.
If you don\'t specify the sample rate, Amazon Transcribe Medical determines it for you. If you choose to specify the sample rate, it must match the rate detected by Amazon Transcribe Medical. In most cases, you should leave the MediaSampleHertz blank and let Amazon Transcribe Medical determine the sample rate.
MediaFormat (string) --
The format of the input media file.
Media (dict) --
Describes the input media file in a transcription request.
MediaFileUri (string) --
The S3 object location of the input media file. The URI must be in the same region as the API endpoint that you are calling. The general form is:
For example:
For more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .
Transcript (dict) --
An object that contains the MedicalTranscript . The MedicalTranscript contains the TranscriptFileUri .
TranscriptFileUri (string) --
The S3 object location of the medical transcript.
Use this URI to access the medical transcript. This URI points to the S3 bucket you created to store the medical transcript.
StartTime (datetime) --
A timestamp that shows when the job started processing.
CreationTime (datetime) --
A timestamp that shows when the job was created.
CompletionTime (datetime) --
A timestamp that shows when the job was completed.
FailureReason (string) --
If the TranscriptionJobStatus field is FAILED , this field contains information about why the job failed.
The FailureReason field contains one of the following values:
Unsupported media format - The media format specified in the MediaFormat field of the request isn\'t valid. See the description of the MediaFormat field for a list of valid values.
The media format provided does not match the detected media format - The media format of the audio file doesn\'t match the format specified in the MediaFormat field in the request. Check the media format of your media file and make sure the two values match.
Invalid sample rate for audio file - The sample rate specified in the MediaSampleRateHertz of the request isn\'t valid. The sample rate must be between 8000 and 48000 Hertz.
The sample rate provided does not match the detected sample rate - The sample rate in the audio file doesn\'t match the sample rate specified in the MediaSampleRateHertz field in the request. Check the sample rate of your media file and make sure that the two values match.
Invalid file size: file size too large - The size of your audio file is larger than what Amazon Transcribe Medical can process. For more information, see Guidlines and Quotas in the Amazon Transcribe Medical Guide
Invalid number of channels: number of channels too large - Your audio contains more channels than Amazon Transcribe Medical is configured to process. To request additional channels, see Amazon Transcribe Medical Endpoints and Quotas in the Amazon Web Services General Reference
Settings (dict) --
Object that contains object.
ShowSpeakerLabels (boolean) --
Determines whether the transcription job uses speaker recognition to identify different speakers in the input audio. Speaker recongition labels individual speakers in the audio file. If you set the ShowSpeakerLabels field to true, you must also set the maximum number of speaker labels in the MaxSpeakerLabels field.
You can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException .
MaxSpeakerLabels (integer) --
The maximum number of speakers to identify in the input audio. If there are more speakers in the audio than this number, multiple speakers are identified as a single speaker. If you specify the MaxSpeakerLabels field, you must set the ShowSpeakerLabels field to true.
ChannelIdentification (boolean) --
Instructs Amazon Transcribe Medical to process each audio channel separately and then merge the transcription output of each channel into a single transcription.
Amazon Transcribe Medical also produces a transcription of each item detected on an audio channel, including the start time and end time of the item and alternative transcriptions of item. The alternative transcriptions also come with confidence scores provided by Amazon Transcribe Medical.
You can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException
ShowAlternatives (boolean) --
Determines whether alternative transcripts are generated along with the transcript that has the highest confidence. If you set ShowAlternatives field to true, you must also set the maximum number of alternatives to return in the MaxAlternatives field.
MaxAlternatives (integer) --
The maximum number of alternatives that you tell the service to return. If you specify the MaxAlternatives field, you must set the ShowAlternatives field to true.
VocabularyName (string) --
The name of the vocabulary to use when processing a medical transcription job.
Specialty (string) --
The medical specialty of any clinicians providing a dictation or having a conversation. PRIMARYCARE is the only available setting for this object. This specialty enables you to generate transcriptions for the following medical fields:
Family Medicine
Type (string) --
The type of speech in the transcription job. CONVERSATION is generally used for patient-physician dialogues. DICTATION is the setting for physicians speaking their notes after seeing a patient. For more information, see how-it-works-med
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.ConflictException
:return: {
'MedicalTranscriptionJob': {
'MedicalTranscriptionJobName': 'string',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'MediaSampleRateHertz': 123,
'MediaFormat': 'mp3'|'mp4'|'wav'|'flac',
'Media': {
'MediaFileUri': 'string'
},
'Transcript': {
'TranscriptFileUri': 'string'
},
'StartTime': datetime(2015, 1, 1),
'CreationTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'Settings': {
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyName': 'string'
},
'Specialty': 'PRIMARYCARE',
'Type': 'CONVERSATION'|'DICTATION'
}
}
:returns:
Unsupported media format - The media format specified in the MediaFormat field of the request isn\'t valid. See the description of the MediaFormat field for a list of valid values.
The media format provided does not match the detected media format - The media format of the audio file doesn\'t match the format specified in the MediaFormat field in the request. Check the media format of your media file and make sure the two values match.
Invalid sample rate for audio file - The sample rate specified in the MediaSampleRateHertz of the request isn\'t valid. The sample rate must be between 8000 and 48000 Hertz.
The sample rate provided does not match the detected sample rate - The sample rate in the audio file doesn\'t match the sample rate specified in the MediaSampleRateHertz field in the request. Check the sample rate of your media file and make sure that the two values match.
Invalid file size: file size too large - The size of your audio file is larger than what Amazon Transcribe Medical can process. For more information, see Guidlines and Quotas in the Amazon Transcribe Medical Guide
Invalid number of channels: number of channels too large - Your audio contains more channels than Amazon Transcribe Medical is configured to process. To request additional channels, see Amazon Transcribe Medical Endpoints and Quotas in the Amazon Web Services General Reference
"""
pass
def start_transcription_job(TranscriptionJobName=None, LanguageCode=None, MediaSampleRateHertz=None, MediaFormat=None, Media=None, OutputBucketName=None, OutputEncryptionKMSKeyId=None, Settings=None, JobExecutionSettings=None, ContentRedaction=None):
"""
Starts an asynchronous job to transcribe speech to text.
See also: AWS API Documentation
Exceptions
:example: response = client.start_transcription_job(
TranscriptionJobName='string',
LanguageCode='en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
MediaSampleRateHertz=123,
MediaFormat='mp3'|'mp4'|'wav'|'flac',
Media={
'MediaFileUri': 'string'
},
OutputBucketName='string',
OutputEncryptionKMSKeyId='string',
Settings={
'VocabularyName': 'string',
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyFilterName': 'string',
'VocabularyFilterMethod': 'remove'|'mask'
},
JobExecutionSettings={
'AllowDeferredExecution': True|False,
'DataAccessRoleArn': 'string'
},
ContentRedaction={
'RedactionType': 'PII',
'RedactionOutput': 'redacted'|'redacted_and_unredacted'
}
)
:type TranscriptionJobName: string
:param TranscriptionJobName: [REQUIRED]\nThe name of the job. Note that you can\'t use the strings '.' or '..' by themselves as the job name. The name must also be unique within an AWS account. If you try to create a transcription job with the same name as a previous transcription job you will receive a ConflictException error.\n
:type LanguageCode: string
:param LanguageCode: [REQUIRED]\nThe language code for the language used in the input media file.\n
:type MediaSampleRateHertz: integer
:param MediaSampleRateHertz: The sample rate, in Hertz, of the audio track in the input media file.\nIf you do not specify the media sample rate, Amazon Transcribe determines the sample rate. If you specify the sample rate, it must match the sample rate detected by Amazon Transcribe. In most cases, you should leave the MediaSampleRateHertz field blank and let Amazon Transcribe determine the sample rate.\n
:type MediaFormat: string
:param MediaFormat: The format of the input media file.
:type Media: dict
:param Media: [REQUIRED]\nAn object that describes the input media for a transcription job.\n\nMediaFileUri (string) --The S3 object location of the input media file. The URI must be in the same region as the API endpoint that you are calling. The general form is:\nFor example:\nFor more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .\n\n\n
:type OutputBucketName: string
:param OutputBucketName: The location where the transcription is stored.\nIf you set the OutputBucketName , Amazon Transcribe puts the transcript in the specified S3 bucket. When you call the GetTranscriptionJob operation, the operation returns this location in the TranscriptFileUri field. If you enable content redaction, the redacted transcript appears in RedactedTranscriptFileUri . If you enable content redaction and choose to output an unredacted transcript, that transcript\'s location still appears in the TranscriptFileUri . The S3 bucket must have permissions that allow Amazon Transcribe to put files in the bucket. For more information, see Permissions Required for IAM User Roles .\nYou can specify an AWS Key Management Service (KMS) key to encrypt the output of your transcription using the OutputEncryptionKMSKeyId parameter. If you don\'t specify a KMS key, Amazon Transcribe uses the default Amazon S3 key for server-side encryption of transcripts that are placed in your S3 bucket.\nIf you don\'t set the OutputBucketName , Amazon Transcribe generates a pre-signed URL, a shareable URL that provides secure access to your transcription, and returns it in the TranscriptFileUri field. Use this URL to download the transcription.\n
:type OutputEncryptionKMSKeyId: string
:param OutputEncryptionKMSKeyId: The Amazon Resource Name (ARN) of the AWS Key Management Service (KMS) key used to encrypt the output of the transcription job. The user calling the StartTranscriptionJob operation must have permission to use the specified KMS key.\nYou can use either of the following to identify a KMS key in the current account:\n\nKMS Key ID: '1234abcd-12ab-34cd-56ef-1234567890ab'\nKMS Key Alias: 'alias/ExampleAlias'\n\nYou can use either of the following to identify a KMS key in the current account or another account:\n\nAmazon Resource Name (ARN) of a KMS Key: 'arn:aws:kms:region:account ID:key/1234abcd-12ab-34cd-56ef-1234567890ab'\nARN of a KMS Key Alias: 'arn:aws:kms:region:account ID:alias/ExampleAlias'\n\nIf you don\'t specify an encryption key, the output of the transcription job is encrypted with the default Amazon S3 key (SSE-S3).\nIf you specify a KMS key to encrypt your output, you must also specify an output location in the OutputBucketName parameter.\n
:type Settings: dict
:param Settings: A Settings object that provides optional settings for a transcription job.\n\nVocabularyName (string) --The name of a vocabulary to use when processing the transcription job.\n\nShowSpeakerLabels (boolean) --Determines whether the transcription job uses speaker recognition to identify different speakers in the input audio. Speaker recognition labels individual speakers in the audio file. If you set the ShowSpeakerLabels field to true, you must also set the maximum number of speaker labels MaxSpeakerLabels field.\nYou can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException .\n\nMaxSpeakerLabels (integer) --The maximum number of speakers to identify in the input audio. If there are more speakers in the audio than this number, multiple speakers are identified as a single speaker. If you specify the MaxSpeakerLabels field, you must set the ShowSpeakerLabels field to true.\n\nChannelIdentification (boolean) --Instructs Amazon Transcribe to process each audio channel separately and then merge the transcription output of each channel into a single transcription.\nAmazon Transcribe also produces a transcription of each item detected on an audio channel, including the start time and end time of the item and alternative transcriptions of the item including the confidence that Amazon Transcribe has in the transcription.\nYou can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException .\n\nShowAlternatives (boolean) --Determines whether the transcription contains alternative transcriptions. If you set the ShowAlternatives field to true, you must also set the maximum number of alternatives to return in the MaxAlternatives field.\n\nMaxAlternatives (integer) --The number of alternative transcriptions that the service should return. If you specify the MaxAlternatives field, you must set the ShowAlternatives field to true.\n\nVocabularyFilterName (string) --The name of the vocabulary filter to use when transcribing the audio. The filter that you specify must have the same language code as the transcription job.\n\nVocabularyFilterMethod (string) --Set to mask to remove filtered text from the transcript and replace it with three asterisks ('***') as placeholder text. Set to remove to remove filtered text from the transcript without using placeholder text.\n\n\n
:type JobExecutionSettings: dict
:param JobExecutionSettings: Provides information about how a transcription job is executed. Use this field to indicate that the job can be queued for deferred execution if the concurrency limit is reached and there are no slots available to immediately run the job.\n\nAllowDeferredExecution (boolean) --Indicates whether a job should be queued by Amazon Transcribe when the concurrent execution limit is exceeded. When the AllowDeferredExecution field is true, jobs are queued and executed when the number of executing jobs falls below the concurrent execution limit. If the field is false, Amazon Transcribe returns a LimitExceededException exception.\nIf you specify the AllowDeferredExecution field, you must specify the DataAccessRoleArn field.\n\nDataAccessRoleArn (string) --The Amazon Resource Name (ARN) of a role that has access to the S3 bucket that contains the input files. Amazon Transcribe assumes this role to read queued media files. If you have specified an output S3 bucket for the transcription results, this role should have access to the output bucket as well.\nIf you specify the AllowDeferredExecution field, you must specify the DataAccessRoleArn field.\n\n\n
:type ContentRedaction: dict
:param ContentRedaction: An object that contains the request parameters for content redaction.\n\nRedactionType (string) -- [REQUIRED]Request parameter that defines the entities to be redacted. The only accepted value is PII .\n\nRedactionOutput (string) -- [REQUIRED]The output transcript file stored in either the default S3 bucket or in a bucket you specify.\nWhen you choose redacted Amazon Transcribe outputs only the redacted transcript.\nWhen you choose redacted_and_unredacted Amazon Transcribe outputs both the redacted and unredacted transcripts.\n\n\n
:rtype: dict
ReturnsResponse Syntax
{
'TranscriptionJob': {
'TranscriptionJobName': 'string',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'MediaSampleRateHertz': 123,
'MediaFormat': 'mp3'|'mp4'|'wav'|'flac',
'Media': {
'MediaFileUri': 'string'
},
'Transcript': {
'TranscriptFileUri': 'string',
'RedactedTranscriptFileUri': 'string'
},
'StartTime': datetime(2015, 1, 1),
'CreationTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'Settings': {
'VocabularyName': 'string',
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyFilterName': 'string',
'VocabularyFilterMethod': 'remove'|'mask'
},
'JobExecutionSettings': {
'AllowDeferredExecution': True|False,
'DataAccessRoleArn': 'string'
},
'ContentRedaction': {
'RedactionType': 'PII',
'RedactionOutput': 'redacted'|'redacted_and_unredacted'
}
}
}
Response Structure
(dict) --
TranscriptionJob (dict) --
An object containing details of the asynchronous transcription job.
TranscriptionJobName (string) --
The name of the transcription job.
TranscriptionJobStatus (string) --
The status of the transcription job.
LanguageCode (string) --
The language code for the input speech.
MediaSampleRateHertz (integer) --
The sample rate, in Hertz, of the audio track in the input media file.
MediaFormat (string) --
The format of the input media file.
Media (dict) --
An object that describes the input media for the transcription job.
MediaFileUri (string) --
The S3 object location of the input media file. The URI must be in the same region as the API endpoint that you are calling. The general form is:
For example:
For more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .
Transcript (dict) --
An object that describes the output of the transcription job.
TranscriptFileUri (string) --
The S3 object location of the the transcript.
Use this URI to access the transcript. If you specified an S3 bucket in the OutputBucketName field when you created the job, this is the URI of that bucket. If you chose to store the transcript in Amazon Transcribe, this is a shareable URL that provides secure access to that location.
RedactedTranscriptFileUri (string) --
The S3 object location of the redacted transcript.
Use this URI to access the redacated transcript. If you specified an S3 bucket in the OutputBucketName field when you created the job, this is the URI of that bucket. If you chose to store the transcript in Amazon Transcribe, this is a shareable URL that provides secure access to that location.
StartTime (datetime) --
A timestamp that shows with the job was started processing.
CreationTime (datetime) --
A timestamp that shows when the job was created.
CompletionTime (datetime) --
A timestamp that shows when the job was completed.
FailureReason (string) --
If the TranscriptionJobStatus field is FAILED , this field contains information about why the job failed.
The FailureReason field can contain one of the following values:
Unsupported media format - The media format specified in the MediaFormat field of the request isn\'t valid. See the description of the MediaFormat field for a list of valid values.
The media format provided does not match the detected media format - The media format of the audio file doesn\'t match the format specified in the MediaFormat field in the request. Check the media format of your media file and make sure that the two values match.
Invalid sample rate for audio file - The sample rate specified in the MediaSampleRateHertz of the request isn\'t valid. The sample rate must be between 8000 and 48000 Hertz.
The sample rate provided does not match the detected sample rate - The sample rate in the audio file doesn\'t match the sample rate specified in the MediaSampleRateHertz field in the request. Check the sample rate of your media file and make sure that the two values match.
Invalid file size: file size too large - The size of your audio file is larger than Amazon Transcribe can process. For more information, see Limits in the Amazon Transcribe Developer Guide .
Invalid number of channels: number of channels too large - Your audio contains more channels than Amazon Transcribe is configured to process. To request additional channels, see Amazon Transcribe Limits in the Amazon Web Services General Reference .
Settings (dict) --
Optional settings for the transcription job. Use these settings to turn on speaker recognition, to set the maximum number of speakers that should be identified and to specify a custom vocabulary to use when processing the transcription job.
VocabularyName (string) --
The name of a vocabulary to use when processing the transcription job.
ShowSpeakerLabels (boolean) --
Determines whether the transcription job uses speaker recognition to identify different speakers in the input audio. Speaker recognition labels individual speakers in the audio file. If you set the ShowSpeakerLabels field to true, you must also set the maximum number of speaker labels MaxSpeakerLabels field.
You can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException .
MaxSpeakerLabels (integer) --
The maximum number of speakers to identify in the input audio. If there are more speakers in the audio than this number, multiple speakers are identified as a single speaker. If you specify the MaxSpeakerLabels field, you must set the ShowSpeakerLabels field to true.
ChannelIdentification (boolean) --
Instructs Amazon Transcribe to process each audio channel separately and then merge the transcription output of each channel into a single transcription.
Amazon Transcribe also produces a transcription of each item detected on an audio channel, including the start time and end time of the item and alternative transcriptions of the item including the confidence that Amazon Transcribe has in the transcription.
You can\'t set both ShowSpeakerLabels and ChannelIdentification in the same request. If you set both, your request returns a BadRequestException .
ShowAlternatives (boolean) --
Determines whether the transcription contains alternative transcriptions. If you set the ShowAlternatives field to true, you must also set the maximum number of alternatives to return in the MaxAlternatives field.
MaxAlternatives (integer) --
The number of alternative transcriptions that the service should return. If you specify the MaxAlternatives field, you must set the ShowAlternatives field to true.
VocabularyFilterName (string) --
The name of the vocabulary filter to use when transcribing the audio. The filter that you specify must have the same language code as the transcription job.
VocabularyFilterMethod (string) --
Set to mask to remove filtered text from the transcript and replace it with three asterisks ("***") as placeholder text. Set to remove to remove filtered text from the transcript without using placeholder text.
JobExecutionSettings (dict) --
Provides information about how a transcription job is executed.
AllowDeferredExecution (boolean) --
Indicates whether a job should be queued by Amazon Transcribe when the concurrent execution limit is exceeded. When the AllowDeferredExecution field is true, jobs are queued and executed when the number of executing jobs falls below the concurrent execution limit. If the field is false, Amazon Transcribe returns a LimitExceededException exception.
If you specify the AllowDeferredExecution field, you must specify the DataAccessRoleArn field.
DataAccessRoleArn (string) --
The Amazon Resource Name (ARN) of a role that has access to the S3 bucket that contains the input files. Amazon Transcribe assumes this role to read queued media files. If you have specified an output S3 bucket for the transcription results, this role should have access to the output bucket as well.
If you specify the AllowDeferredExecution field, you must specify the DataAccessRoleArn field.
ContentRedaction (dict) --
An object that describes content redaction settings for the transcription job.
RedactionType (string) --
Request parameter that defines the entities to be redacted. The only accepted value is PII .
RedactionOutput (string) --
The output transcript file stored in either the default S3 bucket or in a bucket you specify.
When you choose redacted Amazon Transcribe outputs only the redacted transcript.
When you choose redacted_and_unredacted Amazon Transcribe outputs both the redacted and unredacted transcripts.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.ConflictException
:return: {
'TranscriptionJob': {
'TranscriptionJobName': 'string',
'TranscriptionJobStatus': 'QUEUED'|'IN_PROGRESS'|'FAILED'|'COMPLETED',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'MediaSampleRateHertz': 123,
'MediaFormat': 'mp3'|'mp4'|'wav'|'flac',
'Media': {
'MediaFileUri': 'string'
},
'Transcript': {
'TranscriptFileUri': 'string',
'RedactedTranscriptFileUri': 'string'
},
'StartTime': datetime(2015, 1, 1),
'CreationTime': datetime(2015, 1, 1),
'CompletionTime': datetime(2015, 1, 1),
'FailureReason': 'string',
'Settings': {
'VocabularyName': 'string',
'ShowSpeakerLabels': True|False,
'MaxSpeakerLabels': 123,
'ChannelIdentification': True|False,
'ShowAlternatives': True|False,
'MaxAlternatives': 123,
'VocabularyFilterName': 'string',
'VocabularyFilterMethod': 'remove'|'mask'
},
'JobExecutionSettings': {
'AllowDeferredExecution': True|False,
'DataAccessRoleArn': 'string'
},
'ContentRedaction': {
'RedactionType': 'PII',
'RedactionOutput': 'redacted'|'redacted_and_unredacted'
}
}
}
:returns:
Unsupported media format - The media format specified in the MediaFormat field of the request isn\'t valid. See the description of the MediaFormat field for a list of valid values.
The media format provided does not match the detected media format - The media format of the audio file doesn\'t match the format specified in the MediaFormat field in the request. Check the media format of your media file and make sure that the two values match.
Invalid sample rate for audio file - The sample rate specified in the MediaSampleRateHertz of the request isn\'t valid. The sample rate must be between 8000 and 48000 Hertz.
The sample rate provided does not match the detected sample rate - The sample rate in the audio file doesn\'t match the sample rate specified in the MediaSampleRateHertz field in the request. Check the sample rate of your media file and make sure that the two values match.
Invalid file size: file size too large - The size of your audio file is larger than Amazon Transcribe can process. For more information, see Limits in the Amazon Transcribe Developer Guide .
Invalid number of channels: number of channels too large - Your audio contains more channels than Amazon Transcribe is configured to process. To request additional channels, see Amazon Transcribe Limits in the Amazon Web Services General Reference .
"""
pass
def update_medical_vocabulary(VocabularyName=None, LanguageCode=None, VocabularyFileUri=None):
"""
Updates an existing vocabulary with new values in a different text file. The UpdateMedicalVocabulary operation overwrites all of the existing information with the values that you provide in the request.
See also: AWS API Documentation
Exceptions
:example: response = client.update_medical_vocabulary(
VocabularyName='string',
LanguageCode='en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
VocabularyFileUri='string'
)
:type VocabularyName: string
:param VocabularyName: [REQUIRED]\nThe name of the vocabulary to update. The name is case-sensitive. If you try to update a vocabulary with the same name as a previous vocabulary you will receive a ConflictException error.\n
:type LanguageCode: string
:param LanguageCode: [REQUIRED]\nThe language code of the entries in the updated vocabulary. US English (en-US) is the only valid language code in Amazon Transcribe Medical.\n
:type VocabularyFileUri: string
:param VocabularyFileUri: The Amazon S3 location of the text file containing the definition of the custom vocabulary. The URI must be in the same AWS region as the API endpoint you are calling. You can see the fields you need to enter for you Amazon S3 location in the example URI here:\n\nhttps://s3.<aws-region>.amazonaws.com/<bucket-name>/<keyprefix>/<objectkey>\nFor example:\n\nhttps://s3.us-east-1.amazonaws.com/AWSDOC-EXAMPLE-BUCKET/vocab.txt\nFor more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .\nFor more information about custom vocabularies in Amazon Transcribe Medical, see Medical Custom Vocabularies .\n
:rtype: dict
ReturnsResponse Syntax
{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'VocabularyState': 'PENDING'|'READY'|'FAILED'
}
Response Structure
(dict) --
VocabularyName (string) --
The name of the updated vocabulary.
LanguageCode (string) --
The language code for the text file used to update the custom vocabulary. US English (en-US) is the only language supported in Amazon Transcribe Medical.
LastModifiedTime (datetime) --
The date and time the vocabulary was updated.
VocabularyState (string) --
The processing state of the update to the vocabulary. When the VocabularyState field is READY the vocabulary is ready to be used in a StartMedicalTranscriptionJob request.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.NotFoundException
TranscribeService.Client.exceptions.ConflictException
:return: {
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'VocabularyState': 'PENDING'|'READY'|'FAILED'
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.NotFoundException
TranscribeService.Client.exceptions.ConflictException
"""
pass
def update_vocabulary(VocabularyName=None, LanguageCode=None, Phrases=None, VocabularyFileUri=None):
"""
Updates an existing vocabulary with new values. The UpdateVocabulary operation overwrites all of the existing information with the values that you provide in the request.
See also: AWS API Documentation
Exceptions
:example: response = client.update_vocabulary(
VocabularyName='string',
LanguageCode='en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
Phrases=[
'string',
],
VocabularyFileUri='string'
)
:type VocabularyName: string
:param VocabularyName: [REQUIRED]\nThe name of the vocabulary to update. The name is case-sensitive. If you try to update a vocabulary with the same name as a previous vocabulary you will receive a ConflictException error.\n
:type LanguageCode: string
:param LanguageCode: [REQUIRED]\nThe language code of the vocabulary entries.\n
:type Phrases: list
:param Phrases: An array of strings containing the vocabulary entries.\n\n(string) --\n\n
:type VocabularyFileUri: string
:param VocabularyFileUri: The S3 location of the text file that contains the definition of the custom vocabulary. The URI must be in the same region as the API endpoint that you are calling. The general form is\nFor example:\nFor more information about S3 object names, see Object Keys in the Amazon S3 Developer Guide .\nFor more information about custom vocabularies, see Custom Vocabularies .\n
:rtype: dict
ReturnsResponse Syntax
{
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'VocabularyState': 'PENDING'|'READY'|'FAILED'
}
Response Structure
(dict) --
VocabularyName (string) --
The name of the vocabulary that was updated.
LanguageCode (string) --
The language code of the vocabulary entries.
LastModifiedTime (datetime) --
The date and time that the vocabulary was updated.
VocabularyState (string) --
The processing state of the vocabulary. When the VocabularyState field contains READY the vocabulary is ready to be used in a StartTranscriptionJob request.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.NotFoundException
TranscribeService.Client.exceptions.ConflictException
:return: {
'VocabularyName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1),
'VocabularyState': 'PENDING'|'READY'|'FAILED'
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.NotFoundException
TranscribeService.Client.exceptions.ConflictException
"""
pass
def update_vocabulary_filter(VocabularyFilterName=None, Words=None, VocabularyFilterFileUri=None):
"""
Updates a vocabulary filter with a new list of filtered words.
See also: AWS API Documentation
Exceptions
:example: response = client.update_vocabulary_filter(
VocabularyFilterName='string',
Words=[
'string',
],
VocabularyFilterFileUri='string'
)
:type VocabularyFilterName: string
:param VocabularyFilterName: [REQUIRED]\nThe name of the vocabulary filter to update. If you try to update a vocabulary filter with the same name as a previous vocabulary filter you will receive a ConflictException error.\n
:type Words: list
:param Words: The words to use in the vocabulary filter. Only use characters from the character set defined for custom vocabularies. For a list of character sets, see Character Sets for Custom Vocabularies .\nIf you provide a list of words in the Words parameter, you can\'t use the VocabularyFilterFileUri parameter.\n\n(string) --\n\n
:type VocabularyFilterFileUri: string
:param VocabularyFilterFileUri: The Amazon S3 location of a text file used as input to create the vocabulary filter. Only use characters from the character set defined for custom vocabularies. For a list of character sets, see Character Sets for Custom Vocabularies .\nThe specified file must be less than 50 KB of UTF-8 characters.\nIf you provide the location of a list of words in the VocabularyFilterFileUri parameter, you can\'t use the Words parameter.\n
:rtype: dict
ReturnsResponse Syntax
{
'VocabularyFilterName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1)
}
Response Structure
(dict) --
VocabularyFilterName (string) --
The name of the updated vocabulary filter.
LanguageCode (string) --
The language code of the words in the vocabulary filter.
LastModifiedTime (datetime) --
The date and time that the vocabulary filter was updated.
Exceptions
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.NotFoundException
:return: {
'VocabularyFilterName': 'string',
'LanguageCode': 'en-US'|'es-US'|'en-AU'|'fr-CA'|'en-GB'|'de-DE'|'pt-BR'|'fr-FR'|'it-IT'|'ko-KR'|'es-ES'|'en-IN'|'hi-IN'|'ar-SA'|'ru-RU'|'zh-CN'|'nl-NL'|'id-ID'|'ta-IN'|'fa-IR'|'en-IE'|'en-AB'|'en-WL'|'pt-PT'|'te-IN'|'tr-TR'|'de-CH'|'he-IL'|'ms-MY'|'ja-JP'|'ar-AE',
'LastModifiedTime': datetime(2015, 1, 1)
}
:returns:
TranscribeService.Client.exceptions.BadRequestException
TranscribeService.Client.exceptions.LimitExceededException
TranscribeService.Client.exceptions.InternalFailureException
TranscribeService.Client.exceptions.NotFoundException
"""
pass
|
# parsetab.py
# This file is automatically generated. Do not edit.
_lr_method = 'LALR'
_lr_signature = 'XP\xd6":$v\xd1\xacQ\xe2\x1d\xc8\x10T\xa2'
_lr_action_items = {'VOID':([118,261,15,238,171,3,50,37,359,33,170,24,68,197,284,328,361,12,2,141,39,29,73,173,232,288,222,60,166,8,21,281,82,135,65,168,239,0,13,388,27,278,4,16,333,187,231,9,53,280,279,354,164,169,74,18,1,360,138,243,117,131,36,48,61,236,270,52,35,23,57,31,134,206,287,88,5,6,357,10,32,38,19,66,59,26,340,40,228,67,124,28,55,],[-169,-219,-2,6,-142,6,-166,-130,-135,-243,6,-117,-138,-249,-145,6,-253,-118,6,6,-165,6,6,6,6,-251,6,6,-245,-124,-168,-137,6,-224,6,6,-170,-1,-134,-254,-167,-244,-164,-123,-156,6,-172,-125,-157,-143,6,-136,-218,6,-248,-131,6,-252,6,-220,-255,-171,-129,6,6,-173,-222,-104,-126,-3,-247,-242,-246,-250,6,6,-132,-122,-144,-119,-128,-133,-127,-139,-223,-120,-221,-121,-155,6,-174,6,6,]),'DIV_ASSIGN':([315,105,367,91,156,182,183,365,389,221,180,411,293,143,106,75,85,317,92,181,100,103,218,369,314,76,212,214,78,310,79,421,311,101,185,319,186,318,424,110,364,111,],[-7,-10,-25,-11,-4,-14,-44,-48,-32,-46,-15,-33,-21,252,-13,-20,-12,-26,-19,-16,-16,-4,-17,-23,-5,-18,-29,-28,-9,-8,-56,-34,-6,-22,-45,-24,-47,-27,-35,-43,-57,-49,]),'PP_DEFINE':([74,388,23,278,134,31,57,117,360,261,243,164,197,15,270,0,33,288,206,361,340,166,52,1,],[-248,-254,-3,-244,-246,-242,-247,-255,-252,-219,-220,-218,-249,-2,-222,-1,-243,-251,-250,-253,-221,-245,-104,11,]),'LE_OP':([78,302,310,100,214,293,301,79,311,212,297,103,307,298,364,75,182,369,218,76,91,186,110,101,92,299,86,185,97,105,156,300,183,143,106,221,309,296,411,181,84,367,111,318,180,389,312,87,319,421,98,365,315,85,317,306,313,308,314,424,],[-9,-67,-8,-16,-28,-21,-66,-56,-6,-29,-64,-4,-69,-59,-57,-20,-14,-23,-17,-18,-11,-47,-43,-22,-19,-61,-62,-45,202,-10,-4,-60,-44,-56,-13,-46,-70,-63,-33,-16,-65,-25,-49,-27,-15,-32,202,-68,-24,-34,-58,-48,-7,-12,-26,-71,202,-72,-5,-35,]),'(':([9,345,3,145,50,85,108,288,218,254,75,333,155,199,40,243,409,415,314,131,151,248,36,48,128,172,94,339,109,263,360,189,66,74,106,182,211,268,398,377,14,165,367,257,162,403,235,177,250,380,187,52,117,138,166,231,311,397,19,196,208,17,78,148,160,118,13,57,6,141,372,181,193,115,136,201,395,260,379,214,46,44,277,154,247,88,190,255,270,135,232,265,134,341,96,278,343,400,220,29,228,175,152,82,217,319,331,5,361,2,91,10,38,225,146,407,349,206,15,27,369,35,350,354,281,76,317,23,239,105,394,244,0,358,167,8,144,347,355,252,61,414,26,140,205,184,249,198,37,373,101,137,30,95,293,261,273,92,204,381,47,416,103,24,269,382,203,68,262,371,159,32,259,156,164,241,53,410,73,153,267,197,209,58,383,114,194,340,393,83,62,59,285,142,219,7,104,124,378,195,56,100,258,180,192,1,294,359,236,191,271,325,188,253,110,77,246,332,18,80,229,256,264,329,222,31,226,43,388,45,370,251,202,21,39,310,375,216,318,4,69,16,81,385,290,212,224,33,406,12,368,42,70,315,200,],[-125,-217,-111,-227,55,-12,-55,-251,-17,-90,-20,-156,-214,73,-121,-220,138,-234,-5,-171,265,-99,-129,73,232,17,-41,-237,-53,138,-252,73,-139,-248,-13,-14,73,138,-232,-197,17,17,-25,138,273,410,232,73,-98,-216,138,-104,-255,138,-245,-172,-6,-233,-127,-148,73,17,-9,138,-212,-169,-134,-247,-122,138,-195,-16,73,222,-211,305,138,-226,138,-28,-177,-176,138,-225,-93,-149,73,-94,-222,-224,232,138,-246,-241,-51,-244,138,-230,138,-109,-155,73,73,-147,138,-24,-196,-132,-253,-107,-11,-119,-133,73,258,138,-215,-250,-2,55,-23,-126,382,-136,-137,-18,-26,-3,-170,-10,-199,-240,-1,17,138,-124,-210,138,73,-92,138,-236,-120,-209,73,138,-100,73,-130,-202,-22,-213,17,-50,-21,-219,138,-19,73,138,71,-231,-4,-117,-239,138,73,-138,-228,-201,138,-128,-238,-4,-218,138,-157,138,138,267,138,-249,73,17,138,73,73,-221,-203,-52,-110,-223,73,138,73,-175,-54,-174,138,73,73,-16,138,-15,73,17,73,-135,-173,73,-229,-200,-146,-96,216,184,-95,328,-131,184,73,-97,138,73,222,-242,222,-112,-254,-179,73,-91,73,-168,-165,-8,-198,138,-27,-164,-180,-123,187,138,73,-29,328,-243,-235,-118,138,-108,-178,-7,-42,]),',':([182,218,183,274,300,29,90,405,39,100,372,70,313,185,318,107,387,325,386,186,212,346,311,120,176,38,24,65,371,75,234,4,45,106,323,293,66,92,356,352,315,161,304,110,402,321,111,228,13,245,301,235,40,384,93,143,314,118,236,413,367,423,239,2,85,421,331,8,296,127,180,5,338,224,322,348,87,373,50,76,422,16,316,86,128,123,101,364,102,103,7,68,281,307,424,163,9,35,396,133,342,214,306,332,122,178,308,394,375,221,26,231,78,6,401,275,392,377,282,299,43,389,403,297,418,276,317,46,97,283,344,129,36,336,365,53,42,419,98,124,156,64,312,353,292,21,333,359,10,335,391,181,62,72,113,417,19,32,12,27,116,174,18,44,303,411,334,390,369,298,37,63,351,393,404,69,363,3,399,105,130,84,125,302,91,420,149,309,319,131,233,324,286,354,320,79,310,],[-14,-17,-44,-114,-60,-109,-80,412,-165,-16,-195,-178,-74,-45,-27,-78,-151,-200,-154,-47,-29,263,-6,-160,291,-133,-117,-115,-201,-20,-185,-164,-179,-13,-85,-21,-139,-19,-153,-207,-7,-101,-83,-43,-206,368,-49,-155,-134,263,-66,-192,-121,-205,-84,-56,-5,-169,-173,-36,-25,412,-170,-107,-12,-34,-196,-124,-63,-183,-15,-132,-184,-193,263,263,-68,-202,-166,-18,-36,-123,-77,-62,-187,230,-22,-57,-76,-4,-175,-138,-137,-69,-35,-88,-125,-126,263,-115,-89,-28,-71,-194,-162,263,-72,-199,-198,-46,-120,-172,-9,-122,-208,-116,-87,-197,-150,-61,-112,-32,-39,-64,-38,-204,-26,-177,-73,-152,-102,237,-129,-189,-48,-157,-108,412,-58,-174,-4,165,-75,385,-81,-168,-156,-135,-119,-161,-31,-16,-110,-82,-86,263,-127,-128,-118,-167,-103,-256,-131,-176,-79,-33,-163,-36,-23,-59,-130,-113,263,-203,-37,-180,-257,-111,263,-10,238,-65,-188,-67,-11,-40,263,-70,-24,-171,-186,263,358,-136,-30,-56,-8,]),'LONG':([53,52,222,16,31,340,36,281,134,21,333,9,18,287,68,236,164,67,357,57,37,166,280,27,35,354,243,171,328,138,10,8,231,55,284,278,88,3,124,38,23,135,360,232,131,238,197,32,74,12,359,39,24,4,117,48,29,168,40,288,60,5,187,0,66,28,65,361,239,19,33,73,118,141,13,82,388,279,26,173,6,228,50,61,270,206,59,170,261,15,169,2,1,],[-157,-104,19,-123,-242,-221,-129,-137,-246,-168,-156,-125,-131,19,-138,-173,-218,19,-144,-247,-130,-245,-143,-167,-126,-136,-220,-142,19,19,-119,-124,-172,19,-145,-244,19,19,-174,-133,-3,-224,-252,19,-171,19,-249,-128,-248,-118,-135,-165,-117,-164,-255,19,19,19,-121,-251,19,-132,19,-1,-139,19,19,-253,-170,-127,-243,19,-169,19,-134,19,-254,19,-120,19,-122,-155,-166,19,-222,-250,-223,19,-219,-2,19,19,19,]),'ELLIPSIS':([238,],[337,]),'^':([315,156,298,296,91,97,314,100,79,212,312,76,369,424,293,110,301,299,182,90,317,311,75,303,107,389,85,316,306,367,214,308,365,313,180,307,310,102,78,111,87,92,292,185,221,183,302,106,300,181,98,143,364,319,297,309,218,101,318,86,421,411,84,105,103,186,],[-7,-4,-59,-63,-11,-73,-5,-16,-56,-29,-75,-18,-23,-35,-21,-43,-66,-61,-14,198,-26,-6,-20,-79,-78,-32,-12,-77,-71,-25,-28,-72,-48,-74,-15,-69,-8,-76,-9,-49,-68,-19,198,-45,-46,-44,-67,-13,-60,-16,-58,-56,-57,-24,-64,-70,-17,-22,-27,-62,-34,-33,-65,-10,-4,-47,]),'<':([301,212,421,105,313,186,101,365,221,315,106,364,389,314,312,181,367,297,299,91,309,78,103,156,75,293,87,310,182,296,218,183,306,97,185,79,319,369,86,298,85,98,411,311,424,300,317,100,308,307,318,84,214,302,92,180,110,111,143,76,],[-66,-29,-34,-10,203,-47,-22,-48,-46,-7,-13,-57,-32,-5,203,-16,-25,-64,-61,-11,-70,-9,-4,-4,-20,-21,-68,-8,-14,-63,-17,-44,-71,203,-45,-56,-24,-23,-62,-59,-12,-58,-33,-6,-35,-60,-26,-16,-72,-69,-27,-65,-28,-67,-19,-15,-43,-49,-56,-18,]),'GOTO':([347,136,137,164,407,409,414,244,148,262,268,269,160,260,261,395,241,243,400,135,398,159,270,61,271,416,341,140,406,349,259,141,397,415,154,264,345,155,59,340,383,144,380,145,381,379,339,52,],[139,-211,-213,-218,139,139,-236,-240,139,-228,139,-239,-212,-226,-219,139,139,-220,-230,-224,-232,139,-222,139,-229,-231,-241,-209,-235,-215,-238,139,-233,-234,-225,139,-217,-214,-223,-221,139,-210,-216,-227,139,139,-237,-104,]),'ENUM':([170,59,3,16,8,197,88,10,61,328,13,29,231,9,279,361,228,21,37,388,50,24,40,238,33,166,117,12,164,281,2,360,280,171,53,239,66,82,168,65,27,187,23,39,57,73,28,135,357,131,5,333,138,18,169,19,32,48,15,31,206,222,278,1,141,74,52,67,340,236,35,243,287,55,60,270,118,36,38,0,288,124,26,354,359,261,232,68,284,4,134,6,173,],[25,-223,25,-123,-124,-249,25,-119,25,25,-134,25,-172,-125,25,-253,-155,-168,-130,-254,-166,-117,-121,25,-243,-245,-255,-118,-218,-137,25,-252,-143,-142,-157,-170,-139,25,25,25,-167,25,-3,-165,-247,25,25,-224,-144,-171,-132,-156,25,-131,25,-127,-128,25,-2,-242,-250,25,-244,25,25,-248,-104,25,-221,-173,-126,-220,25,25,25,-222,-169,-129,-133,-1,-251,-174,-120,-136,-135,-219,25,-138,-145,-164,-246,-122,25,]),'PERIOD':([319,105,91,212,78,156,76,318,311,100,293,110,315,101,182,369,367,310,218,92,180,85,317,314,106,75,181,214,103,],[-24,-10,-11,-29,-9,-4,-18,-27,-6,-16,-21,213,-7,-22,-14,-23,-25,-8,-17,-19,-15,-12,-26,-5,-13,-20,-16,-28,-4,]),'PP_END_DEFINE':([310,311,323,306,362,281,100,36,101,116,19,91,103,319,98,115,107,292,88,46,371,307,84,332,289,331,32,5,308,369,316,6,364,110,359,97,111,44,312,373,303,315,86,180,302,183,223,377,221,196,16,7,318,99,226,182,389,290,296,314,4,69,106,375,18,372,181,411,35,309,70,37,313,424,8,75,82,367,393,228,48,49,301,218,39,298,325,79,421,102,38,185,45,175,13,93,105,68,392,113,365,394,76,66,9,90,212,297,299,186,293,317,300,304,224,89,188,85,333,72,92,87,214,78,354,53,],[-8,-6,-85,-71,388,-137,-16,-129,-22,-103,-127,-11,-4,-24,-58,-190,-78,-81,-149,-177,-201,-69,-65,-194,360,-196,-128,-132,-72,-23,-77,-122,-57,-43,-135,-73,-49,-176,-75,-202,-79,-7,-62,-15,-67,-44,-191,-197,-46,-148,-123,-175,-27,206,-192,-14,-32,361,-63,-5,-164,-180,-13,-198,-131,-195,-16,-33,-126,-70,-178,-130,-74,-35,-124,-20,-147,-25,-203,-155,74,117,-66,-17,-165,-59,-200,-56,-34,-76,-133,-45,-179,288,-134,-84,-10,-138,-87,-86,-48,-199,-18,-139,-125,-80,-29,-64,-61,-47,-21,-26,-60,-83,-193,197,-146,-12,-156,-82,-19,-68,-28,-9,-136,-157,]),'LEFT_OP':([110,299,302,309,308,103,92,76,389,75,306,111,87,86,365,91,364,424,180,106,311,105,143,181,98,212,218,317,156,101,367,369,100,310,421,182,85,186,298,318,314,79,411,185,296,300,183,214,221,315,293,307,319,84,297,301,78,],[-43,-61,-67,194,194,-4,-19,-18,-32,-20,194,-49,194,-62,-48,-11,-57,-35,-15,-13,-6,-10,-56,-16,-58,-29,-17,-26,-4,-22,-25,-23,-16,-8,-34,-14,-12,-47,-59,-27,-5,-56,-33,-45,-63,-60,-44,-28,-46,-7,-21,194,-24,-65,-64,-66,-9,]),'DOUBLE':([340,6,278,164,236,88,2,270,27,18,124,279,29,228,281,0,1,359,361,10,16,35,82,354,37,65,8,9,239,288,55,141,131,73,28,280,197,360,66,170,36,166,231,21,168,169,19,74,118,222,57,187,39,238,12,13,284,31,50,4,5,134,33,135,232,243,206,48,67,3,173,23,38,40,60,388,15,357,171,328,52,138,59,68,61,287,26,32,261,117,53,333,24,],[-221,-122,-244,-218,-173,36,36,-222,-167,-131,-174,36,36,-155,-137,-1,36,-135,-253,-119,-123,-126,36,-136,-130,36,-124,-125,-170,-251,36,36,-171,36,36,-143,-249,-252,-139,36,-129,-245,-172,-168,36,36,-127,-248,-169,36,-247,36,-165,36,-118,-134,-145,-242,-166,-164,-132,-246,-243,-224,36,-220,-250,36,36,36,36,-3,-133,-121,36,-254,-2,-144,-142,36,-104,36,-223,-138,36,36,-120,-128,-219,-255,-157,-156,-117,]),'INC_OP':([189,255,264,349,159,378,96,85,114,270,252,383,225,195,410,52,267,397,214,191,380,109,140,415,257,247,256,370,249,319,77,106,262,385,244,135,217,212,181,56,216,205,355,259,138,277,341,343,91,414,345,155,251,184,294,180,137,81,241,80,145,311,59,395,190,219,248,152,367,76,141,209,254,48,369,208,273,187,318,198,347,105,317,108,175,204,409,269,83,177,243,268,101,382,156,407,100,315,194,73,258,192,182,211,253,144,229,160,199,293,246,271,310,339,103,218,368,416,167,261,75,104,260,329,92,340,110,400,164,203,148,61,136,250,381,290,406,154,220,285,379,398,314,78,202,193,263,142,265,95,],[77,-94,77,-215,77,77,-51,-12,77,-222,-92,77,77,77,77,-104,77,-233,-28,77,-216,-53,-209,-234,77,-93,-97,77,-100,-24,77,-13,-228,77,-240,-224,77,-29,-16,77,77,77,77,-238,77,77,-241,77,-11,-236,-217,-214,-91,77,77,-15,-213,77,77,77,-227,-6,-223,77,77,77,-99,77,-25,-18,77,77,-90,77,-23,77,77,77,-27,77,77,-10,-26,-55,77,77,77,-239,-52,77,-220,77,-22,77,-4,77,-16,-7,77,77,77,77,-14,77,-96,-210,77,-212,77,-21,-95,-229,-8,-237,-4,-17,77,-231,77,-219,-20,-54,-226,77,-19,-221,214,-230,-218,77,77,77,-211,-98,77,77,-235,-225,77,77,77,-232,-5,-9,77,77,77,77,77,-50,]),'|':([316,421,105,301,297,212,186,293,317,107,365,310,296,182,85,308,309,78,369,411,300,100,101,313,97,185,319,92,315,180,86,292,311,307,84,389,111,143,76,72,181,314,364,303,75,299,87,218,306,91,79,103,102,298,156,98,183,318,90,221,110,106,424,312,214,367,302,304,],[-77,-34,-10,-66,-64,-29,-47,-21,-26,-78,-48,-8,-63,-14,-12,-72,-70,-9,-23,-33,-60,-16,-22,-74,-73,-45,-24,-19,-7,-15,-62,-81,-6,-69,-65,-32,-49,-56,-18,177,-16,-5,-57,-79,-20,-61,-68,-17,-71,-11,-56,-4,-76,-59,-4,-58,-44,-27,-80,-46,-43,-13,-35,-75,-28,-25,-67,177,]),'NE_OP':([421,105,221,186,182,297,293,78,317,365,313,212,85,309,369,296,302,86,316,101,97,185,306,300,100,411,180,319,389,92,315,84,311,367,181,307,301,76,310,218,111,143,102,364,298,98,318,314,424,308,75,299,110,87,106,156,91,79,214,103,183,312,],[-34,-10,-46,-47,-14,-64,-21,-9,-26,-48,-74,-29,-12,-70,-23,-63,-67,-62,208,-22,-73,-45,-71,-60,-16,-33,-15,-24,-32,-19,-7,-65,-6,-25,-16,-69,-66,-18,-8,-17,-49,-56,208,-57,-59,-58,-27,-5,-35,-72,-20,-61,-43,-68,-13,-4,-11,-56,-28,-4,-44,-75,]),'SHORT':([10,50,82,357,36,138,13,141,26,27,57,340,8,40,284,261,228,333,12,231,278,19,3,288,280,166,88,354,67,1,170,73,68,48,328,18,15,0,21,187,6,37,232,29,279,16,164,236,238,197,24,31,388,59,61,9,38,281,222,239,169,23,55,168,118,131,134,53,35,4,32,66,39,270,173,52,2,287,361,124,28,5,171,74,243,117,359,135,206,33,65,60,360,],[-119,-166,9,-144,-129,9,-134,9,-120,-167,-247,-221,-124,-121,-145,-219,-155,-156,-118,-172,-244,-127,9,-251,-143,-245,9,-136,9,9,9,9,-138,9,9,-131,-2,-1,-168,9,-122,-130,9,9,9,-123,-218,-173,9,-249,-117,-242,-254,-223,9,-125,-133,-137,9,-170,9,-3,9,9,-169,-171,-246,-157,-126,-164,-128,-139,-165,-222,9,-104,9,9,-253,-174,9,-132,-142,-248,-220,-255,-135,-224,-250,-243,9,9,-252,]),'CONSTANT':([152,257,345,61,368,407,144,155,263,190,140,184,343,349,225,251,398,211,341,217,160,203,294,409,381,138,416,199,137,269,271,205,290,378,192,59,73,370,220,395,52,270,154,267,253,260,259,273,250,83,191,258,195,208,248,202,142,104,194,410,347,193,136,159,329,80,339,177,216,262,261,198,385,209,175,96,406,355,187,141,167,340,249,277,383,380,382,48,219,241,414,254,400,204,247,81,256,246,415,77,135,148,56,252,285,189,109,244,229,255,268,264,145,108,397,243,164,265,379,95,114,],[78,78,-217,78,78,78,-210,-214,78,78,-209,78,78,-215,78,-91,-232,78,-241,78,-212,78,78,78,78,78,-231,78,-213,-239,-229,78,78,78,78,-223,78,78,78,78,-104,-222,-225,78,-96,-226,-238,78,-98,-52,78,78,78,78,-99,78,78,-54,78,78,78,78,-211,78,78,78,-237,78,78,-228,-219,78,78,78,78,-51,-235,78,78,78,78,-221,-100,78,78,-216,78,78,78,78,-236,-90,-230,78,-93,78,-97,-95,-234,78,-224,78,78,-92,78,78,-53,-240,78,-94,78,78,-227,-55,-233,-220,-218,78,78,-50,78,]),'DEC_OP':([52,397,192,190,252,258,285,395,268,81,219,246,92,250,416,95,400,409,249,270,78,256,310,343,269,254,407,259,263,76,85,314,140,379,109,208,257,108,145,144,277,155,311,271,199,294,198,175,182,193,253,135,243,340,204,367,220,247,187,203,398,152,211,378,177,156,75,385,225,241,218,217,355,194,96,105,184,154,244,382,137,255,414,260,61,48,181,103,164,59,191,262,114,202,229,212,267,205,369,91,73,100,261,56,83,410,167,273,159,248,349,110,142,341,264,104,293,315,180,370,141,101,381,195,380,345,347,329,290,317,251,339,216,80,265,318,383,138,406,160,415,189,368,136,77,319,214,106,148,209,],[-104,-233,80,80,-92,80,80,80,80,80,80,-95,-19,-98,-231,-50,-230,80,-100,-222,-9,-97,-8,80,-239,-90,80,-238,80,-18,-12,-5,-209,80,-53,80,80,-55,-227,-210,80,-214,-6,-229,80,80,80,80,-14,80,-96,-224,-220,-221,80,-25,80,-93,80,80,-232,80,80,80,80,-4,-20,80,80,80,-17,80,80,80,-51,-10,80,-225,-240,80,-213,-94,-236,-226,80,80,-16,-4,-218,-223,80,-228,80,80,80,-29,80,80,-23,-11,80,-16,-219,80,-52,80,80,80,80,-99,-215,212,80,-241,80,-54,-21,-7,-15,80,80,-22,80,80,-216,-217,80,80,80,-26,-91,-237,80,80,80,-27,80,80,-235,-212,-234,80,80,-211,80,-24,-28,-13,80,80,]),'STATIC':([340,281,141,4,360,206,118,74,37,131,28,53,288,3,57,359,135,0,6,124,228,29,9,27,333,239,31,12,66,8,40,164,197,361,39,61,35,1,134,388,24,18,222,354,168,238,32,13,38,36,68,59,16,328,10,60,5,166,270,232,19,2,21,278,52,15,117,261,26,23,55,33,65,236,50,243,231,],[-221,-137,10,-164,-252,-250,-169,-248,-130,-171,10,-157,-251,10,-247,-135,-224,-1,-122,-174,-155,10,-125,-167,-156,-170,-242,-118,-139,-124,-121,-218,-249,-253,-165,10,-126,10,-246,-254,-117,-131,10,-136,10,10,-128,-134,-133,-129,-138,-223,-123,10,-119,10,-132,-245,-222,10,-127,10,-168,-244,-104,-2,-255,-219,-120,-3,10,-243,10,-173,-166,-220,-172,]),'EQ_OP':([100,308,103,311,84,314,101,301,185,307,212,421,297,369,317,367,319,186,78,110,79,310,97,298,312,299,318,315,424,98,182,364,111,156,309,300,86,87,316,106,306,85,296,313,105,143,183,91,218,181,214,221,302,411,365,293,102,92,76,389,180,75,],[-16,-72,-4,-6,-65,-5,-22,-66,-45,-69,-29,-34,-64,-23,-26,-25,-24,-47,-9,-43,-56,-8,-73,-59,-75,-61,-27,-7,-35,-58,-14,-57,-49,-4,-70,-60,-62,-68,209,-13,-71,-12,-63,-74,-10,-56,-44,-11,-17,-16,-28,-46,-67,-33,-48,-21,209,-19,-18,-32,-15,-20,]),'SIZEOF':([80,343,203,254,192,73,268,247,345,368,191,96,187,219,253,81,249,339,95,415,406,381,209,407,269,199,190,264,290,380,263,410,152,259,77,217,167,56,265,195,141,148,137,341,204,270,193,398,378,244,383,400,379,114,241,255,246,285,145,142,229,164,294,347,144,250,414,409,251,395,220,48,397,216,225,160,267,194,262,205,189,140,184,260,349,177,59,109,370,329,211,108,83,136,138,52,261,256,61,252,135,248,154,277,104,159,273,155,416,257,208,340,271,355,385,198,175,258,382,243,202,],[81,81,81,-90,81,81,81,-93,-217,81,81,-51,81,81,-96,81,-100,-237,-50,-234,-235,81,81,81,-239,81,81,81,81,-216,81,81,81,-238,81,81,81,81,81,81,81,81,-213,-241,81,-222,81,-232,81,-240,81,-230,81,81,81,-94,-95,81,-227,81,81,-218,81,81,-210,-98,-236,81,-91,81,81,81,-233,81,81,-212,81,81,-228,81,81,-209,81,-226,-215,81,-223,-53,81,81,81,-55,-52,-211,81,-104,-219,-97,81,-92,-224,-99,-225,81,-54,81,81,-214,-231,81,81,-221,-229,81,81,81,81,81,81,-220,81,]),'+':([208,109,164,191,110,144,293,252,183,395,269,212,409,268,217,273,381,100,105,192,246,314,56,83,243,329,290,317,310,219,92,248,152,365,265,264,138,343,298,424,277,400,301,79,257,256,106,84,140,145,244,190,319,253,260,339,186,263,383,182,193,349,378,368,142,225,136,385,296,249,148,175,299,421,155,311,340,345,204,218,271,254,199,187,61,194,159,211,85,75,154,135,86,220,247,398,114,181,180,96,318,195,156,369,262,407,389,411,258,285,294,101,76,103,216,81,80,143,59,415,341,205,410,267,370,141,270,379,78,52,241,111,167,261,300,108,91,177,382,406,137,315,189,297,95,203,77,214,380,416,104,397,414,355,202,229,251,98,259,185,184,367,198,209,364,73,160,255,302,347,221,250,48,],[83,-53,-218,83,-43,-210,-21,-92,-44,83,-239,-29,83,83,83,83,83,-16,-10,83,-95,-5,83,-52,-220,83,83,-26,-8,83,-19,-99,83,-48,83,83,83,83,-59,-35,83,-230,189,-56,83,-97,-13,189,-209,-227,-240,83,-24,-96,-226,-237,-47,83,83,-14,83,-215,83,83,83,83,-211,83,-63,-100,83,83,-61,-34,-214,-6,-221,-217,83,-17,-229,-90,83,83,83,83,83,83,-12,-20,-225,-224,-62,83,-93,-232,83,-16,-15,-51,-27,83,-4,-23,-228,83,-32,-33,83,83,83,-22,-18,-4,83,83,83,-56,-223,-234,-241,83,83,83,83,83,-222,83,-9,-104,83,-49,83,-219,-60,-55,-11,83,83,-235,-213,-7,83,-64,-50,83,83,-28,-216,-231,-54,-233,-236,83,83,83,-91,-58,-238,-45,83,-25,83,83,-57,83,-212,-94,189,83,-46,-98,83,]),'UNSIGNED':([36,52,231,135,18,66,50,206,287,35,170,141,61,53,2,10,357,333,88,73,131,281,164,222,67,59,60,55,39,134,16,354,124,171,232,359,328,5,243,38,118,360,24,4,278,65,37,32,236,28,12,40,23,187,166,340,74,19,48,228,13,173,239,27,138,168,284,31,388,0,169,197,117,82,361,279,1,33,29,238,280,8,57,288,26,6,3,261,270,68,21,9,15,],[-129,-104,-172,-224,-131,-139,-166,-250,18,-126,18,18,18,-157,18,-119,-144,-156,18,18,-171,-137,-218,18,18,-223,18,18,-165,-246,-123,-136,-174,-142,18,-135,18,-132,-220,-133,-169,-252,-117,-164,-244,18,-130,-128,-173,18,-118,-121,-3,18,-245,-221,-248,-127,18,-155,-134,18,-170,-167,18,18,-145,-242,-254,-1,18,-249,-255,18,-253,18,18,-243,18,18,-143,-124,-247,-251,-120,-122,18,-219,-222,-138,-168,-125,-2,]),'/':([180,369,300,86,76,315,367,75,411,111,364,91,100,98,317,78,101,314,92,221,186,365,297,293,106,183,212,105,110,421,218,318,298,185,79,181,319,424,214,389,310,103,143,156,296,299,182,311,85,],[-15,-23,-60,193,-18,-7,-25,-20,-33,-49,-57,-11,-16,-58,-26,-9,-22,-5,-19,-46,-47,-48,193,-21,-13,-44,-29,-10,-43,-34,-17,-27,-59,-45,-56,-16,-24,-35,-28,-32,-8,-4,-56,-4,193,-61,-14,-6,-12,]),';':([113,42,245,333,90,50,359,264,38,116,63,98,312,145,342,367,301,124,212,409,131,5,182,75,4,270,88,52,309,66,397,13,12,240,356,303,317,148,21,424,298,2,311,158,185,118,218,271,231,10,319,76,282,214,314,36,302,299,243,172,261,84,144,260,35,398,380,181,64,395,269,339,268,26,316,242,105,306,160,276,341,82,135,296,241,79,384,414,30,196,136,143,87,3,244,107,421,19,292,186,262,155,29,354,389,402,349,392,163,37,106,8,408,140,85,154,111,416,65,343,369,91,286,386,364,161,68,156,61,275,323,407,164,411,180,27,18,293,387,379,308,53,137,97,58,43,159,141,281,347,221,142,258,236,102,62,59,101,110,365,147,20,283,157,40,297,315,310,304,340,400,345,274,300,183,344,78,9,381,103,6,313,239,86,415,259,133,16,93,92,307,39,383,318,24,406,100,72,188,228,149,32,],[-86,-108,341,-156,-80,-166,-135,145,-133,-103,-113,-58,-75,-227,-89,-25,-66,-174,-29,145,-171,-132,-14,-20,-164,-222,-149,-104,-70,-139,-233,-134,-118,339,-153,-79,-26,145,-168,-35,-59,-107,-6,271,-45,-169,-17,-229,-172,-119,-24,-18,-150,-28,-5,-129,-67,-61,-220,284,-219,-65,-210,-226,-126,-232,-216,-16,-106,145,-239,-237,145,-120,-77,271,-10,-71,-212,-204,-241,-147,-224,-63,145,-56,-205,-236,-105,-148,-211,-56,-68,-111,-240,-78,-34,-127,-81,-47,-228,-214,-109,-136,-32,-206,-215,-87,-88,-130,-13,-124,415,-209,-12,-225,-49,-231,-115,145,-23,-11,357,-154,-57,-101,-138,-4,145,-116,-85,145,-218,-33,-15,-167,-131,-21,-151,145,-72,-157,-213,-73,-105,-112,145,145,-137,145,-46,244,145,-173,-76,-110,-223,-22,-43,-48,259,52,-152,269,-121,-64,-7,-8,-83,-221,-230,-217,-114,-60,-44,-102,-9,-125,145,-4,-122,-74,-170,-62,-234,-238,-115,-123,-84,-19,-69,-165,145,-27,-117,-235,-16,-82,-146,-155,262,-128,]),'?':([85,111,302,369,91,103,107,100,365,323,92,221,101,364,97,367,93,183,303,317,110,313,411,218,180,309,102,98,185,301,86,181,90,78,318,314,212,310,143,306,319,315,84,298,389,312,300,182,311,307,421,76,72,299,424,113,75,87,304,316,292,105,214,79,106,296,308,297,186,293,156,],[-12,-49,-67,-23,-11,-4,-78,-16,-48,-85,-19,-46,-22,-57,-73,-25,-84,-44,-79,-26,-43,-74,-33,-17,-15,-70,-76,-58,-45,-66,-62,-16,-80,-9,-27,-5,-29,-8,-56,-71,-24,-7,-65,-59,-32,-75,-60,-14,-6,-69,-34,-18,-82,-61,-35,220,-20,-68,-83,-77,-81,-10,-28,-56,-13,-63,-72,-64,-47,-21,-4,]),'$end':([23,361,340,15,31,388,0,74,57,52,134,117,261,33,166,1,360,278,288,270,243,206,164,197,],[-3,-253,-221,-2,-242,-254,-1,-248,-247,-104,-246,-255,-219,-243,-245,0,-252,-244,-251,-222,-220,-250,-218,-249,]),'FOR':([347,141,340,135,400,155,144,268,52,164,243,397,136,260,345,61,137,406,262,244,339,407,241,160,159,271,154,395,145,381,264,59,259,383,379,415,341,148,398,380,349,409,416,140,414,261,269,270,],[146,146,-221,-224,-230,-214,-210,146,-104,-218,-220,-233,-211,-226,-217,146,-213,-235,-228,-240,-237,146,146,-212,146,-229,-225,146,-227,146,146,-223,-238,146,146,-234,-241,146,-232,-216,-215,146,-231,-209,-236,-219,-239,-222,]),'UNION':([228,65,173,238,68,40,37,284,278,287,13,357,3,23,333,236,24,354,164,1,21,232,66,38,170,222,36,12,280,243,39,57,328,33,141,0,8,29,60,135,35,82,169,16,231,48,67,10,206,270,5,15,32,61,73,18,361,28,52,59,281,134,55,124,27,168,197,6,261,239,53,340,9,118,19,288,4,74,50,138,388,171,31,279,360,26,2,166,131,88,187,117,359,],[-155,22,22,22,-138,-121,-130,-145,-244,22,-134,-144,22,-3,-156,-173,-117,-136,-218,22,-168,22,-139,-133,22,22,-129,-118,-143,-220,-165,-247,22,-243,22,-1,-124,22,22,-224,-126,22,22,-123,-172,22,22,-119,-250,-222,-132,-2,-128,22,22,-131,-253,22,-104,-223,-137,-246,22,-174,-167,22,-249,-122,-219,-170,-157,-221,-125,-169,-127,-251,-164,-248,-166,22,-254,-142,-242,22,-252,-120,22,-245,-171,22,22,-255,-135,]),'ELSE':([340,345,269,339,271,416,140,137,136,400,259,406,261,415,243,397,349,155,144,398,145,341,262,270,414,160,244,380,164,],[-221,-217,-239,-237,-229,-231,-209,-213,-211,409,-238,-235,-219,-234,-220,-233,-215,-214,-210,-232,-227,-241,-228,-222,-236,-212,-240,-216,-218,]),'[':([377,32,394,7,44,105,182,4,332,359,82,46,124,212,76,91,37,70,8,13,128,2,29,239,218,62,317,369,18,45,315,16,231,319,43,3,331,38,293,236,27,393,318,88,100,115,232,78,21,281,110,66,69,53,24,36,226,118,373,12,39,371,188,10,180,314,131,5,333,325,35,19,224,196,214,228,50,75,375,40,311,106,6,222,310,181,9,103,92,26,354,68,85,156,367,372,235,42,101,],[-197,-128,-199,-175,-176,-10,-14,-164,329,-135,-147,-177,-174,-29,-18,-11,-130,-178,-124,-134,225,-107,-109,-170,-17,-110,-26,-23,-131,-179,-7,-123,-172,-24,-112,-111,-196,-133,-21,-173,56,-203,-27,-149,-16,225,225,-9,-168,-137,217,-139,-180,-157,-117,-129,225,-169,-202,-118,-165,-201,-146,-119,-15,-5,-171,-132,-156,-200,-126,-127,329,-148,-28,-155,56,-20,-198,-121,-6,-13,-122,225,-8,-16,-125,-4,-19,-120,-136,-138,-12,-4,-25,-195,225,-108,-22,]),'OR_OP':([221,156,86,312,97,367,302,316,365,300,110,314,218,84,309,113,318,98,307,185,103,306,319,78,87,91,100,424,303,143,323,421,310,186,72,411,297,101,180,106,311,369,304,92,85,105,90,293,93,183,298,212,102,79,308,76,301,313,75,292,107,296,111,364,299,389,181,214,317,315,182,],[-46,-4,-62,-75,-73,-25,-67,-77,-48,-60,-43,-5,-17,-65,-70,219,-27,-58,-69,-45,-4,-71,-24,-9,-68,-11,-16,-35,-79,-56,-85,-34,-8,-47,-82,-33,-64,-22,-15,-13,-6,-23,-83,-19,-12,-10,-80,-21,-84,-44,-59,-29,-76,-56,-72,-18,-66,-74,-20,-81,-78,-63,-49,-57,-61,-32,-16,-28,-26,-7,-14,]),'SUB_ASSIGN':([293,105,79,186,367,421,318,221,218,424,111,78,411,317,92,311,389,185,91,314,310,103,180,315,365,76,183,214,182,85,156,101,212,143,110,369,364,181,106,100,75,319,],[-21,-10,-56,-47,-25,-34,-27,-46,-17,-35,-49,-9,-33,-26,-19,-6,-32,-45,-11,-5,-8,-4,-15,-7,-48,-18,-44,-28,-14,-12,-4,-22,-29,246,-43,-23,-57,-16,-13,-16,-20,-24,]),'XOR_ASSIGN':([182,156,91,311,78,183,85,100,369,365,389,315,185,424,76,214,143,310,92,221,110,106,421,79,319,218,101,411,75,186,180,367,111,103,317,364,105,181,314,318,212,293,],[-14,-4,-11,-6,-9,-44,-12,-16,-23,-48,-32,-7,-45,-35,-18,-28,248,-8,-19,-46,-43,-13,-34,-56,-24,-17,-22,-33,-20,-47,-15,-25,-49,-4,-26,-57,-10,-16,-5,-27,-29,-21,]),'INT':([2,29,32,61,27,59,88,82,117,65,16,124,3,239,236,9,288,131,360,359,24,1,28,141,279,232,281,55,66,8,135,170,197,354,53,164,118,280,231,238,48,284,18,37,361,13,388,31,357,0,73,52,169,21,173,38,40,206,287,270,5,33,36,15,12,19,74,26,278,39,50,57,68,138,134,166,60,168,67,6,261,35,340,222,187,228,4,243,10,328,171,23,333,],[35,35,-128,35,-167,-223,35,35,-255,35,-123,-174,35,-170,-173,-125,-251,-171,-252,-135,-117,35,35,35,35,35,-137,35,-139,-124,-224,35,-249,-136,-157,-218,-169,-143,-172,35,35,-145,-131,-130,-253,-134,-254,-242,-144,-1,35,-104,35,-168,35,-133,-121,-250,35,-222,-132,-243,-129,-2,-118,-127,-248,-120,-244,-165,-166,-247,-138,35,-246,-245,35,35,35,-122,-219,-126,-221,35,35,-155,-164,-220,-119,35,-142,-3,-156,]),'SIGNED':([31,6,53,168,50,28,287,284,0,36,2,170,35,27,124,38,360,10,57,32,281,134,131,359,333,171,59,118,67,13,173,388,3,88,166,23,328,288,138,354,222,5,66,73,236,74,48,278,24,141,239,279,37,197,65,12,9,243,39,68,187,15,206,357,280,55,261,82,169,29,4,1,228,19,16,40,26,270,231,60,8,340,238,21,117,18,361,61,33,135,164,52,232,],[-242,-122,-157,37,-166,37,37,-145,-1,-129,37,37,-126,-167,-174,-133,-252,-119,-247,-128,-137,-246,-171,-135,-156,-142,-223,-169,37,-134,37,-254,37,37,-245,-3,37,-251,37,-136,37,-132,-139,37,-173,-248,37,-244,-117,37,-170,37,-130,-249,37,-118,-125,-220,-165,-138,37,-2,-250,-144,-143,37,-219,37,37,37,-164,37,-155,-127,-123,-121,-120,-222,-172,37,-124,-221,37,-168,-255,-131,-253,37,-243,-224,-218,-104,37,]),'CONTINUE':([155,340,243,345,271,347,383,154,264,269,260,380,144,241,407,136,160,159,400,137,339,416,259,349,268,406,148,415,398,135,164,381,414,145,61,141,395,140,52,59,261,270,379,397,244,341,262,409,],[-214,-221,-220,-217,-229,147,147,-225,147,-239,-226,-216,-210,147,147,-211,-212,147,-230,-213,-237,-231,-238,-215,147,-235,147,-234,-232,-224,-218,147,-236,-227,147,147,147,-209,-104,-223,-219,-222,147,-233,-240,-241,-228,147,]),'MUL_ASSIGN':([311,105,76,318,100,317,389,365,183,314,78,91,181,315,182,85,369,424,185,319,364,106,310,75,411,79,214,143,180,221,111,421,92,103,212,186,101,110,156,293,367,218,],[-6,-10,-18,-27,-16,-26,-32,-48,-44,-5,-9,-11,-16,-7,-14,-12,-23,-35,-45,-24,-57,-13,-8,-20,-33,-56,-28,251,-15,-46,-49,-34,-19,-4,-29,-47,-22,-43,-4,-21,-25,-17,]),'{':([341,52,416,379,397,124,159,409,136,407,164,66,41,243,395,137,398,339,271,381,241,145,380,261,144,415,269,383,262,340,406,34,135,414,140,168,264,53,141,349,270,154,27,60,148,25,68,131,61,167,260,21,385,268,118,28,231,347,236,59,155,400,345,22,277,160,239,259,244,65,50,],[-241,-104,-231,61,-233,-174,61,61,-211,61,-218,169,67,-220,61,-213,-232,-237,-229,61,61,-227,-216,-219,-210,-234,-239,61,-228,-221,-235,-140,-224,-236,-209,61,61,119,61,-215,-222,-225,-167,61,61,54,173,-171,61,277,-226,-168,277,61,-169,61,-172,61,-173,-223,-214,-230,-217,-141,277,-212,-170,-238,-240,61,-166,]),'RIGHT_OP':([315,86,319,369,307,78,311,365,212,317,300,308,309,296,297,301,367,293,105,185,143,424,186,85,103,91,182,183,87,421,75,79,221,314,318,306,218,310,156,364,214,299,106,110,111,98,389,100,180,92,411,84,298,101,302,76,181,],[-7,-62,-24,-23,195,-9,-6,-48,-29,-26,-60,195,195,-63,-64,-66,-25,-21,-10,-45,-56,-35,-47,-12,-4,-11,-14,-44,195,-34,-20,-56,-46,-5,-27,195,-17,-8,-4,-57,-28,-61,-13,-43,-49,-58,-32,-16,-15,-19,-33,-65,-59,-22,-67,-18,-16,]),'REGISTER':([168,2,13,118,39,360,4,68,340,261,52,231,238,74,53,333,206,0,124,361,36,135,359,65,33,131,31,6,9,141,59,24,1,388,40,8,27,5,278,66,38,28,197,354,61,37,239,35,29,270,21,55,23,3,243,166,26,281,10,60,117,328,228,232,134,50,57,32,12,19,164,16,15,18,288,222,236,],[40,40,-134,-169,-165,-252,-164,-138,-221,-219,-104,-172,40,-248,-157,-156,-250,-1,-174,-253,-129,-224,-135,40,-243,-171,-242,-122,-125,40,-223,-117,40,-254,-121,-124,-167,-132,-244,-139,-133,40,-249,-136,40,-130,-170,-126,40,-222,-168,40,-3,40,-220,-245,-120,-137,-119,40,-255,40,-155,40,-246,-166,-247,-128,-118,-127,-218,-123,-2,-131,-251,40,-173,]),'RIGHT_ASSIGN':([221,185,183,218,182,364,369,367,78,186,156,111,389,315,91,421,318,310,105,103,110,75,92,79,181,100,106,76,143,424,365,317,311,293,212,319,101,214,85,180,314,411,],[-46,-45,-44,-17,-14,-57,-23,-25,-9,-47,-4,-49,-32,-7,-11,-34,-27,-8,-10,-4,-43,-20,-19,-56,-16,-16,-13,-18,256,-35,-48,-26,-6,-21,-29,-24,-22,-28,-12,-15,-5,-33,]),'DEFAULT':([159,52,155,407,345,140,381,141,260,416,154,383,397,341,379,380,59,269,339,136,270,137,271,164,160,145,241,414,243,395,262,406,261,259,61,340,400,268,135,349,415,148,244,347,144,264,398,409,],[150,-104,-214,150,-217,-209,150,150,-226,-231,-225,150,-233,-241,150,-216,-223,-239,-237,-211,-222,-213,-229,-218,-212,-227,150,-236,-220,150,-228,-235,-219,-238,150,-221,-230,150,-224,-215,-234,150,-240,150,-210,150,-232,150,]),'CHAR':([206,15,18,164,4,13,280,21,55,29,135,26,60,361,197,37,278,228,68,141,360,48,66,12,1,39,138,288,239,169,5,279,9,187,23,354,82,236,65,24,222,284,31,73,74,166,333,2,67,118,57,3,170,171,88,28,134,32,8,340,59,35,287,173,131,281,52,6,10,243,0,231,359,388,232,27,238,328,124,50,168,38,16,261,36,117,33,53,357,61,270,19,40,],[-250,-2,-131,-218,-164,-134,-143,-168,8,8,-224,-120,8,-253,-249,-130,-244,-155,-138,8,-252,8,-139,-118,8,-165,8,-251,-170,8,-132,8,-125,8,-3,-136,8,-173,8,-117,8,-145,-242,8,-248,-245,-156,8,8,-169,-247,8,8,-142,8,8,-246,-128,-124,-221,-223,-126,8,8,-171,-137,-104,-122,-119,-220,-1,-172,-135,-254,8,-167,8,8,-174,-166,8,-133,-123,-219,-129,-255,-243,-157,-144,8,-222,-127,-121,]),'WHILE':([244,160,347,137,269,259,341,52,136,145,164,415,349,397,339,379,380,59,264,409,345,159,141,148,155,272,243,260,398,140,154,406,381,61,270,407,400,241,268,340,383,414,135,416,262,271,261,144,395,],[-240,-212,151,-213,-239,-238,-241,-104,-211,-227,-218,-234,-215,-233,-237,151,-216,-223,151,151,-217,151,151,151,-214,350,-220,-226,-232,-209,-225,-235,151,151,-222,151,-230,151,151,-221,151,-236,-224,-231,-228,-229,-219,-210,151,]),'EXTERN':([4,1,31,23,117,29,270,361,32,21,281,59,333,65,57,359,206,124,68,236,328,66,261,15,26,50,232,6,243,53,164,197,24,118,36,238,12,33,222,134,40,60,228,61,16,5,38,2,19,231,3,340,0,27,28,360,55,9,39,131,37,288,10,8,239,74,278,35,18,135,141,168,13,354,388,166,52,],[-164,12,-242,-3,-255,12,-222,-253,-128,-168,-137,-223,-156,12,-247,-135,-250,-174,-138,-173,12,-139,-219,-2,-120,-166,12,-122,-220,-157,-218,-249,-117,-169,-129,12,-118,-243,12,-246,-121,12,-155,12,-123,-132,-133,12,-127,-172,12,-221,-1,-167,12,-252,12,-125,-165,-171,-130,-251,-119,-124,-170,-248,-244,-126,-131,-224,12,12,-134,-136,-254,-245,-104,]),'RETURN':([416,347,52,406,136,260,241,164,383,339,264,340,145,148,159,269,135,244,262,414,141,61,271,398,379,415,243,400,381,341,155,59,259,349,397,407,160,140,345,137,144,395,409,154,380,270,268,261,],[-231,142,-104,-235,-211,-226,142,-218,142,-237,142,-221,-227,142,142,-239,-224,-240,-228,-236,142,142,-229,-232,142,-234,-220,-230,142,-241,-214,-223,-238,-215,-233,142,-212,-209,-217,-213,-210,142,142,-225,-216,-222,142,-219,]),'__ASM__':([385,381,167,407,164,135,269,416,258,144,175,398,202,382,260,109,285,368,252,397,160,198,229,345,137,257,104,211,80,48,189,191,380,370,96,148,378,290,249,203,261,246,263,177,108,243,410,340,190,400,355,253,192,219,136,277,81,244,141,138,270,294,339,329,262,264,414,383,379,154,114,217,140,56,254,209,341,267,61,343,152,406,409,83,59,268,250,52,220,216,241,347,271,395,415,187,247,73,155,204,225,255,193,349,142,199,208,184,259,145,194,251,77,248,265,195,95,273,256,205,159,],[94,94,94,94,-218,-224,-239,-231,94,-210,94,-232,94,94,-226,-53,94,94,-92,-233,-212,94,94,-217,-213,94,-54,94,94,94,94,94,-216,94,-51,94,94,94,-100,94,-219,-95,94,94,-55,-220,94,-221,94,-230,94,-96,94,94,-211,94,94,-240,94,94,-222,94,-237,94,-228,94,-236,94,94,-225,94,94,-209,94,-90,94,-241,94,94,94,94,-235,94,-52,-223,94,-98,-104,94,94,94,94,-229,94,-234,94,-93,94,-214,94,94,-94,94,-215,94,94,94,94,-238,-227,94,-91,94,-99,94,94,-50,94,-97,94,94,]),'CASE':([381,395,259,341,345,241,339,409,379,137,380,159,136,269,154,270,145,397,264,164,243,135,148,59,340,260,144,271,407,140,141,244,52,414,155,416,398,400,262,268,160,406,349,347,383,61,415,261,],[152,152,-238,-241,-217,152,-237,152,152,-213,-216,152,-211,-239,-225,-222,-227,-233,152,-218,-220,-224,152,-223,-221,-226,-210,-229,152,-209,152,-240,-104,-236,-214,-231,-232,-230,-228,152,-212,-235,-215,152,152,152,-234,-219,]),'PP_DEFINE_MACRO_NAME':([11,],[47,]),'&':([205,98,106,256,52,329,214,407,136,91,308,202,95,148,156,381,318,211,219,187,306,191,198,260,349,315,184,192,385,290,140,181,257,142,145,84,92,277,285,254,154,340,312,249,216,409,241,319,220,389,382,195,251,300,313,83,261,398,316,185,78,355,271,73,270,416,424,167,104,85,370,255,177,341,317,218,262,379,248,189,383,135,252,209,314,77,48,108,293,301,194,79,364,225,310,298,87,183,190,59,406,414,307,250,61,294,56,253,229,369,411,299,246,267,160,365,111,421,114,311,180,243,264,199,378,144,103,368,203,339,347,102,164,258,143,367,96,193,296,107,75,247,268,137,309,141,101,109,400,395,343,80,244,265,273,212,397,100,186,302,217,410,204,97,105,175,182,76,269,138,86,208,155,81,221,159,415,345,259,152,297,263,380,110,303,],[95,-58,-13,-97,-104,95,-28,95,-211,-11,-72,95,-50,95,-4,95,-27,95,95,95,-71,95,95,-226,-215,-7,95,95,95,95,-209,-16,95,95,-227,-65,-19,95,95,-90,-225,-221,-75,-100,95,95,95,-24,95,-32,95,95,-91,-60,-74,-52,-219,-232,-77,-45,-9,95,-229,95,-222,-231,-35,95,-54,-12,95,-94,95,-241,-26,-17,-228,95,-99,95,95,-224,-92,95,-5,95,95,-55,-21,-66,95,-56,-57,95,-8,-59,-68,-44,95,-223,-235,-236,-69,-98,95,95,95,-96,95,-23,-33,-61,-95,95,-212,-48,-49,-34,95,-6,-15,-220,95,95,95,-210,-4,95,95,-237,95,-76,-218,95,-56,-25,-51,95,-63,211,-20,-93,95,-213,-70,95,-22,-53,-230,95,95,95,-240,95,95,-29,-233,-16,-47,-67,95,95,95,-73,-10,95,-14,-18,-239,95,-62,95,-214,95,-46,95,-234,-217,-238,95,-64,95,-216,-43,211,]),'*':([52,45,208,278,195,300,268,214,385,204,185,290,191,277,2,182,270,260,219,187,104,206,311,145,196,297,256,247,56,81,218,148,192,141,199,134,109,271,39,361,202,10,389,414,319,44,12,249,264,31,255,341,315,232,407,251,343,177,4,314,269,288,23,262,26,250,0,205,243,198,166,137,261,48,15,105,86,35,140,197,383,381,257,354,76,263,193,379,40,8,98,285,59,416,221,241,68,36,378,128,398,294,58,13,265,19,156,380,6,143,367,92,293,299,267,79,85,18,5,24,229,222,136,78,298,1,225,7,259,349,317,164,310,411,29,110,281,100,360,246,160,217,186,77,96,329,115,83,220,188,38,395,175,9,370,152,111,82,318,69,88,37,43,365,400,180,333,30,254,135,359,33,406,409,369,42,228,415,16,358,3,61,364,345,339,211,347,66,252,273,53,410,73,216,165,184,209,32,114,388,382,101,75,244,212,62,340,167,138,144,368,103,355,189,106,74,253,80,296,17,172,424,258,159,108,57,194,95,181,155,421,142,117,91,397,183,248,203,154,190,],[-104,-179,96,-244,96,-60,96,-28,96,96,-45,96,96,96,-107,-14,-222,-226,96,96,-54,-250,-6,-227,-148,191,-97,-93,96,96,-17,96,96,96,96,-246,-53,-229,-165,-253,96,-119,-32,-236,-24,7,-118,-100,96,-242,-94,-241,-7,7,96,-91,96,96,-164,-5,-239,-251,-3,-228,-120,-98,-1,96,-220,96,-245,-213,-219,96,-2,-10,191,-126,-209,-249,96,96,96,-136,-18,96,96,96,-121,-124,-58,96,-223,-231,-46,96,-138,-129,96,7,-232,96,7,-134,96,-127,-4,-216,-122,-56,-25,-19,-21,-61,96,-56,-12,-131,-132,-117,96,7,-211,-9,-59,7,96,7,-238,-215,-26,-218,-8,-33,-109,-43,-137,-16,-252,-95,-212,96,-47,96,-51,96,7,-52,96,-146,-133,96,96,-125,96,96,-49,-147,-27,-180,-149,-130,-112,-48,-230,-15,-156,7,-90,-224,-135,-243,-235,96,-23,-108,-155,-234,-123,7,-111,96,-57,-217,-237,96,96,-139,-92,96,-157,96,96,96,7,96,96,-128,96,-254,96,-22,-20,-240,-29,-110,-221,96,96,-210,96,-4,96,96,-13,-248,-96,96,191,7,7,-35,96,96,-55,-247,96,-50,-16,-214,-34,96,-255,-11,-233,-44,-99,96,-225,96,]),'SWITCH':([414,380,270,155,145,340,379,59,261,262,406,144,241,395,398,409,160,243,61,349,381,407,397,148,154,264,141,268,415,383,259,400,135,269,271,347,137,345,159,341,244,416,339,260,136,140,164,52,],[-236,-216,-222,-214,-227,-221,153,-223,-219,-228,-235,-210,153,153,-232,153,-212,-220,153,-215,153,153,-233,153,-225,153,153,153,-234,153,-238,-230,-224,-239,-229,153,-213,-217,153,-241,-240,-231,-237,-226,-211,-209,-218,-104,]),'AND_ASSIGN':([421,389,111,311,318,181,143,367,110,76,411,293,186,156,319,106,314,221,183,365,185,78,103,182,180,100,310,101,214,369,91,212,364,75,315,85,218,424,105,79,317,92,],[-34,-32,-49,-6,-27,-16,250,-25,-43,-18,-33,-21,-47,-4,-24,-13,-5,-46,-44,-48,-45,-9,-4,-14,-15,-16,-8,-22,-28,-23,-11,-29,-57,-20,-7,-12,-17,-35,-10,-56,-26,-19,]),'IDENTIFIER':([9,246,160,217,82,209,194,257,83,55,23,0,259,243,164,16,141,88,215,281,128,134,58,33,5,144,329,38,175,370,345,59,333,108,24,62,1,138,77,397,216,409,19,42,17,22,172,159,211,360,37,43,400,66,254,268,252,145,207,273,225,349,53,382,188,190,3,155,294,167,142,104,196,406,368,96,248,220,195,74,61,73,152,54,165,191,361,114,10,388,253,199,358,381,264,139,31,203,154,80,340,270,232,244,52,25,398,347,189,414,192,12,184,187,198,137,213,35,45,117,202,177,208,269,247,81,262,95,70,258,36,204,210,251,18,57,343,48,140,197,13,44,249,263,260,277,255,230,288,34,407,15,219,109,39,14,41,26,30,4,235,68,278,56,148,250,379,383,385,237,205,271,2,290,261,267,119,410,339,206,341,229,256,354,380,136,193,395,40,285,8,7,6,265,166,416,46,69,241,355,378,135,359,32,29,228,415,],[-125,-95,-212,103,-147,103,103,103,-52,125,-3,-1,-238,-220,-218,-123,156,-149,318,-137,21,-246,21,-243,-132,-210,103,-133,103,103,-217,-223,-156,-55,-117,-110,21,103,103,-233,103,156,-127,-108,21,-141,21,156,103,-252,-130,-112,-230,-139,-90,156,-92,-227,103,103,103,-215,-157,103,-146,103,-111,-214,103,103,103,-54,-148,-235,103,-51,-99,103,103,-248,156,103,103,122,21,103,-253,103,-119,-254,-96,103,21,156,156,240,-242,103,-225,103,-221,-222,21,-240,-104,53,-232,156,103,-236,103,-118,103,103,103,-213,317,-126,-179,-255,103,103,103,-239,-93,103,-228,-50,-178,103,-129,103,103,-91,-131,-247,103,103,-209,-249,-134,-176,-100,103,-226,103,-94,122,-251,-140,156,-2,103,-53,-165,21,68,-120,21,-164,21,-138,-244,103,156,-98,156,156,103,336,103,-229,-107,103,-219,103,122,103,-237,-250,-241,103,-97,-136,-216,-211,103,156,-121,103,-124,-175,-122,103,-245,-231,-177,-180,156,103,103,-224,-135,-128,-109,-155,-234,]),'ADD_ASSIGN':([424,181,369,78,91,218,156,293,185,79,182,315,85,221,314,100,111,143,214,367,92,180,364,421,105,212,317,103,186,183,75,365,310,101,411,106,311,318,319,389,110,76,],[-35,-16,-23,-9,-11,-17,-4,-21,-45,-56,-14,-7,-12,-46,-5,-16,-49,255,-28,-25,-19,-15,-57,-34,-10,-29,-26,-4,-47,-44,-20,-48,-8,-22,-33,-13,-6,-27,-24,-32,-43,-18,]),'>':([300,298,85,221,296,389,183,98,79,181,424,87,411,421,143,367,105,307,364,309,313,317,111,182,186,106,314,306,318,312,214,369,91,110,308,365,315,310,100,302,156,75,319,311,97,101,180,92,86,76,299,218,297,84,301,293,103,212,185,78,],[-60,-59,-12,-46,-63,-32,-44,-58,-56,-16,-35,-68,-33,-34,-56,-25,-10,-69,-57,-70,205,-26,-49,-14,-47,-13,-5,-71,-27,205,-28,-23,-11,-43,-72,-48,-7,-8,-16,-67,-4,-20,-24,-6,205,-22,-15,-19,-62,-18,-61,-17,-64,-65,-66,-21,-4,-29,-45,-9,]),'PP_MACRO_PARAM':([83,263,207,414,144,385,225,220,48,211,104,382,108,368,370,277,56,254,192,290,216,205,138,61,410,250,202,381,71,91,155,142,219,378,256,141,329,258,189,195,199,137,218,52,261,184,270,114,265,249,269,341,260,229,135,398,241,204,264,257,190,268,380,217,406,73,154,416,285,167,77,187,96,182,349,177,109,253,259,148,210,246,112,345,267,339,262,409,343,395,81,340,415,255,193,145,198,271,355,181,152,175,383,85,400,194,397,106,273,247,209,80,243,160,75,180,191,379,244,251,203,136,347,291,140,252,407,100,208,164,95,59,248,159,294,],[-52,100,310,-236,-210,100,100,100,100,100,-54,100,-55,100,100,100,100,-90,100,100,100,100,100,100,100,-98,100,100,174,-11,-214,100,100,100,-97,100,100,100,100,100,100,-213,-17,-104,-219,100,-222,100,100,-100,-239,-241,-226,100,-224,-232,100,100,100,100,100,100,-216,100,-235,100,-225,-231,100,100,100,100,-51,-14,-215,100,-53,-96,-238,100,315,-95,218,-217,100,-237,-228,100,100,100,100,-221,-234,-94,100,-227,100,-229,100,-16,100,100,100,-12,-230,100,-233,-13,100,-93,100,100,-220,-212,181,-15,100,100,-240,-91,100,-211,100,363,-209,-92,100,-16,100,-218,-50,-223,-99,100,100,]),'GE_OP':([110,84,297,186,214,79,106,317,302,78,306,221,367,312,300,182,156,98,180,87,299,181,411,103,301,389,307,424,97,75,364,111,86,308,293,76,315,212,314,183,101,310,313,296,92,143,311,100,218,91,319,421,185,85,105,298,318,365,369,309,],[-43,-65,-64,-47,-28,-56,-13,-26,-67,-9,-71,-46,-25,204,-60,-14,-4,-58,-15,-68,-61,-16,-33,-4,-66,-32,-69,-35,204,-20,-57,-49,-62,-72,-21,-18,-7,-29,-5,-44,-22,-8,204,-63,-19,-56,-6,-16,-17,-11,-24,-34,-45,-12,-10,-59,-27,-48,-23,-70,]),'STRING_LITERAL':([211,182,340,184,61,187,96,414,241,406,343,252,160,255,193,52,216,257,395,249,409,271,199,398,260,243,400,219,269,380,192,218,413,208,225,385,248,263,148,381,345,136,349,155,246,305,108,145,268,339,251,277,341,250,190,180,195,390,256,259,285,415,189,258,265,81,140,83,397,264,56,290,383,104,142,194,209,106,75,273,48,329,254,77,267,368,138,347,244,159,370,59,410,253,135,379,412,262,100,378,204,141,177,164,80,109,144,261,191,217,355,91,152,247,407,167,181,294,220,85,154,198,73,175,203,229,137,416,202,382,205,95,114,422,270,],[91,-14,-221,91,91,91,-51,-236,91,-235,91,-92,-212,-94,91,-104,91,91,91,-100,91,-229,91,-232,-226,-220,-230,91,-239,-216,91,-17,91,91,91,91,-99,91,91,91,-217,-211,-215,-214,-95,91,-55,-227,91,-237,-91,91,-241,-98,91,-15,91,91,-97,-238,91,-234,91,91,91,91,-209,-52,-233,91,91,91,91,-54,91,91,91,-13,91,91,91,91,-90,91,91,91,91,91,-240,91,91,-223,91,-96,-224,91,91,-228,-16,91,91,91,91,-218,91,-53,-210,-219,91,91,91,-11,91,-93,91,91,-16,91,91,-12,-225,91,91,91,91,91,-213,-231,91,91,91,-50,91,91,-222,]),'MOD_ASSIGN':([76,293,369,365,182,156,221,319,101,424,185,110,100,181,411,318,389,103,367,317,214,314,364,315,212,310,79,78,105,183,92,106,180,218,111,143,311,186,91,85,75,421,],[-18,-21,-23,-48,-14,-4,-46,-24,-22,-35,-45,-43,-16,-16,-33,-27,-32,-4,-25,-26,-28,-5,-57,-7,-29,-8,-56,-9,-10,-44,-19,-13,-15,-17,-49,247,-6,-47,-11,-12,-20,-34,]),':':([231,143,297,5,97,82,318,86,403,317,228,310,299,418,90,110,358,196,32,364,78,292,413,365,309,344,116,113,111,359,301,75,323,296,419,302,172,124,36,88,180,105,308,293,354,103,313,8,424,21,405,163,316,303,333,118,307,100,306,156,38,9,92,304,298,150,37,98,72,319,185,87,283,369,404,107,421,311,79,281,50,102,218,39,84,214,411,101,16,392,186,76,324,420,93,4,27,188,367,66,239,35,390,266,131,212,106,18,342,315,389,300,182,314,68,366,236,53,85,221,13,181,6,183,312,91,161,19,],[-172,-56,-64,-132,-73,-147,-27,-62,-39,-26,-155,-8,-61,-38,-80,-43,285,-148,-128,-57,-9,-81,-36,-48,-70,-102,-103,-86,-49,-135,-66,-20,-85,-63,422,-67,285,-174,-129,-149,-15,-10,-72,-21,-136,-4,-74,-124,-35,-168,413,-88,-77,-79,-156,-169,-69,-16,-71,268,-133,-125,-19,-83,-59,264,-130,-58,-82,-24,-45,-68,355,-23,-37,-78,-34,-6,-56,-137,-166,-76,-17,-165,-65,-28,-33,-22,-123,-87,-47,-18,370,-40,-84,-164,-167,-146,-25,-139,-170,-126,-36,347,-171,-29,-13,-131,-89,-7,-32,-60,-14,-5,-138,390,-173,-157,-12,-46,-134,-16,-122,-44,-75,-11,-101,-127,]),'TYPE_NAME':([57,13,65,67,228,74,53,173,82,68,138,41,35,32,361,278,169,279,60,21,37,28,16,124,197,166,354,5,12,59,24,236,19,61,168,55,357,22,8,243,360,388,4,359,6,10,333,2,48,134,141,36,88,135,66,38,340,3,33,231,27,9,34,50,39,29,15,1,238,288,164,131,40,18,239,222,270,52,328,206,287,284,187,26,73,118,261,280,170,117,0,171,31,232,281,23,],[-247,-134,13,13,-155,-248,-157,13,13,-138,13,66,-126,-128,-253,-244,13,13,13,-168,-130,13,-123,-174,-249,-245,-136,-132,-118,-223,-117,-173,-127,13,13,13,-144,-141,-124,-220,-252,-254,-164,-135,-122,-119,-156,13,13,-246,13,-129,13,-224,-139,-133,-221,13,-243,-172,-167,-125,-140,-166,-165,13,-2,13,13,-251,-218,-171,-121,-131,-170,13,-222,-104,13,-250,13,-145,13,-120,13,-169,-219,-143,13,-255,-1,-142,-242,13,-137,-3,]),'OR_ASSIGN':([110,91,218,76,78,185,212,317,221,318,424,75,365,315,182,111,364,85,106,103,101,314,100,180,92,293,183,79,389,105,369,143,319,310,311,186,367,214,181,411,156,421,],[-43,-11,-17,-18,-9,-45,-29,-26,-46,-27,-35,-20,-48,-7,-14,-49,-57,-12,-13,-4,-22,-5,-16,-15,-19,-21,-44,-56,-32,-10,-23,249,-24,-8,-6,-47,-25,-28,-16,-33,-4,-34,]),'BREAK':([241,407,269,59,155,260,397,270,137,154,345,135,61,141,349,262,383,261,409,259,400,145,416,264,341,243,268,415,380,271,347,244,398,148,340,414,159,164,339,144,395,136,140,160,406,381,52,379,],[157,157,-239,-223,-214,-226,-233,-222,-213,-225,-217,-224,157,157,-215,-228,157,-219,157,-238,-230,-227,-231,157,-241,-220,157,-234,-216,-229,157,-240,-232,157,-221,-236,157,-218,-237,-210,157,-211,-209,-212,-235,157,-104,157,]),'VOLATILE':([340,170,66,74,7,45,261,360,40,8,19,26,59,357,38,4,13,278,94,57,23,187,117,236,138,279,53,280,1,206,0,243,270,61,18,5,131,169,287,35,168,6,52,166,31,48,16,388,222,24,281,354,9,231,12,239,69,60,164,27,65,33,135,359,82,50,124,284,29,173,3,333,21,88,328,68,232,288,141,73,39,171,197,361,15,55,32,238,228,37,67,134,28,44,118,36,2,10,],[-221,39,-139,-248,39,-179,-219,-252,-121,-124,-127,-120,-223,-144,-133,-164,-134,-244,200,-247,-3,39,-255,-173,39,39,-157,-143,39,-250,-1,-220,-222,39,-131,-132,-171,39,39,-126,39,-122,-104,-245,-242,39,-123,-254,39,-117,-137,-136,-125,-172,-118,-170,-180,39,-218,-167,39,-243,-224,-135,39,-166,-174,-145,39,39,39,-156,-168,39,39,-138,39,-251,39,39,-165,-142,-249,-253,-2,39,-128,39,-155,-130,39,-246,39,39,-169,-129,39,-119,]),'error':([136,345,380,383,347,264,341,59,141,261,349,159,164,400,61,137,244,262,241,398,260,414,154,135,271,155,144,340,243,258,379,269,145,259,343,140,270,11,381,407,268,395,409,416,397,148,415,160,406,52,339,],[-211,-217,-216,242,242,242,-241,-223,242,-219,-215,242,-218,-230,158,-213,-240,-228,242,-232,-226,-236,-225,-224,-229,-214,-210,-221,-220,242,242,-239,-227,-238,242,-209,-222,49,242,242,242,242,242,-231,-233,242,-234,-212,-235,-104,-237,]),'~':([416,56,397,410,244,380,189,285,252,246,160,256,217,195,262,263,400,254,194,251,225,249,77,241,48,202,415,382,204,191,355,144,368,80,345,152,209,277,154,340,243,167,141,175,339,329,136,290,193,347,271,199,261,138,381,269,159,104,135,248,81,268,83,273,407,258,219,187,406,96,250,164,73,379,260,253,414,192,385,198,255,229,137,52,216,409,370,109,203,177,148,211,205,398,184,190,114,247,155,341,208,349,343,257,220,140,294,383,265,259,378,145,267,61,264,142,270,108,395,95,59,],[-231,104,-233,104,-240,-216,104,104,-92,-95,-212,-97,104,104,-228,104,-230,-90,104,-91,104,-100,104,104,104,104,-234,104,104,104,104,-210,104,104,-217,104,104,104,-225,-221,-220,104,104,104,-237,104,-211,104,104,104,-229,104,-219,104,104,-239,104,-54,-224,-99,104,104,-52,104,104,104,104,104,-235,-51,-98,-218,104,104,-226,-96,-236,104,104,104,-94,104,-213,-104,104,104,104,-53,104,104,104,104,104,-232,104,104,104,-93,-214,-241,104,-215,104,104,104,-209,104,104,104,-238,104,-227,104,104,104,104,-222,-55,104,-50,-223,]),'DO':([381,271,347,243,339,136,155,383,415,140,380,409,398,137,397,59,159,416,164,407,379,259,270,145,141,264,340,345,144,160,135,414,52,154,260,241,395,148,61,244,269,400,262,349,268,406,261,341,],[159,-229,159,-220,-237,-211,-214,159,-234,-209,-216,159,-232,-213,-233,-223,159,-231,-218,159,159,-238,-222,-227,159,159,-221,-217,-210,-212,-224,-236,-104,-225,-226,159,159,159,159,-240,-239,-230,-228,-215,159,-235,-219,-241,]),'CONST':([359,166,19,24,388,31,9,173,270,32,37,59,118,10,88,45,50,13,18,28,231,15,117,60,21,26,61,68,55,360,222,6,74,261,124,27,3,67,171,206,354,33,197,232,135,2,16,8,4,357,141,73,340,38,281,29,228,12,236,39,44,82,57,48,164,278,5,69,7,361,134,52,168,53,138,288,36,239,23,66,287,35,243,328,169,333,0,40,279,284,238,170,65,131,187,280,1,],[-135,-245,-127,-117,-254,-242,-125,4,-222,-128,-130,-223,-169,-119,4,-179,-166,-134,-131,4,-172,-2,-255,4,-168,-120,4,-138,4,-252,4,-122,-248,-219,-174,-167,4,4,-142,-250,-136,-243,-249,4,-224,4,-123,-124,-164,-144,4,4,-221,-133,-137,4,-155,-118,-173,-165,4,4,-247,4,-218,-244,-132,-180,4,-253,-246,-104,4,-157,4,-251,-129,-170,-3,-139,4,-126,-220,4,4,-156,-1,-121,4,-145,4,4,4,-171,4,-143,4,]),'!':([241,246,341,204,265,269,189,262,73,220,77,229,138,285,96,104,243,254,263,108,61,379,270,152,155,380,398,159,211,80,253,109,59,177,244,193,381,256,249,260,167,95,290,144,250,294,247,397,216,205,148,194,382,257,198,217,370,261,145,209,414,255,416,409,52,191,339,164,202,349,410,343,199,267,406,187,225,56,140,175,355,141,340,208,190,347,219,251,142,114,137,385,378,160,273,48,195,329,135,258,407,400,81,345,252,277,395,83,203,154,264,184,192,268,271,415,383,136,248,368,259,],[108,-95,-241,108,108,-239,108,-228,108,108,108,108,108,108,-51,-54,-220,-90,108,-55,108,108,-222,108,-214,-216,-232,108,108,108,-96,-53,-223,108,-240,108,108,-97,-100,-226,108,-50,108,-210,-98,108,-93,-233,108,108,108,108,108,108,108,108,108,-219,-227,108,-236,-94,-231,108,-104,108,-237,-218,108,-215,108,108,108,108,-235,108,108,108,-209,108,108,108,-221,108,108,108,108,-91,108,108,-213,108,108,-212,108,108,108,108,-224,108,108,-230,108,-217,-92,108,108,-52,108,-225,108,108,108,108,-229,-234,108,-211,-99,108,-238,]),'_BOOL':([238,88,18,138,66,50,53,135,74,236,28,12,16,2,36,3,6,388,59,280,270,288,9,357,206,13,243,82,8,197,231,33,117,171,239,328,57,222,68,32,40,354,278,168,29,134,37,279,131,118,169,261,35,164,124,26,187,0,361,340,4,52,141,60,10,359,67,1,39,38,333,5,228,232,61,287,166,15,19,360,23,173,65,24,73,281,27,48,31,55,21,284,170,],[16,16,-131,16,-139,-166,-157,-224,-248,-173,16,-118,-123,16,-129,16,-122,-254,-223,-143,-222,-251,-125,-144,-250,-134,-220,16,-124,-249,-172,-243,-255,-142,-170,16,-247,16,-138,-128,-121,-136,-244,16,16,-246,-130,16,-171,-169,16,-219,-126,-218,-174,-120,16,-1,-253,-221,-164,-104,16,16,-119,-135,16,16,-165,-133,-156,-132,-155,16,16,16,-245,-2,-127,-252,-3,16,16,-117,16,-137,-167,16,-242,16,-168,-145,16,]),'%':([424,98,311,314,86,92,103,212,293,76,111,389,75,365,110,180,299,300,296,214,91,78,319,315,100,310,183,186,297,182,367,411,79,221,421,218,318,298,364,369,156,101,143,185,317,85,181,106,105,],[-35,-58,-6,-5,192,-19,-4,-29,-21,-18,-49,-32,-20,-48,-43,-15,-61,-60,192,-28,-11,-9,-24,-7,-16,-8,-44,-47,192,-14,-25,-33,-56,-46,-34,-17,-27,-59,-57,-23,-4,-22,-56,-45,-26,-12,-16,-13,-10,]),')':([29,68,106,391,12,310,348,318,131,346,179,16,70,331,309,423,97,42,392,371,6,281,130,223,369,118,161,36,304,46,299,378,231,13,311,332,342,115,127,325,44,373,92,389,75,113,419,413,84,337,316,185,38,32,86,233,296,62,344,5,53,321,375,196,224,307,354,319,239,76,399,124,420,69,292,40,88,212,100,180,27,163,24,336,78,128,303,178,55,9,333,366,174,422,323,365,403,234,102,262,182,300,317,51,312,297,93,101,72,411,295,21,90,393,293,218,71,26,417,85,338,98,313,351,143,7,236,126,418,306,214,37,8,396,110,228,363,424,404,232,181,18,3,50,326,66,176,103,129,183,320,328,405,79,216,10,39,87,394,377,43,314,390,372,91,301,19,221,367,2,105,302,235,315,82,359,298,308,145,35,125,421,45,186,188,226,327,111,271,364,374,222,4,107,],[-109,-138,-13,-31,-118,-8,381,-27,-171,379,294,-123,-178,-196,-70,424,-73,-108,-87,-201,-122,-137,-181,-191,-23,-169,-101,-129,-83,-177,-61,395,-172,-134,-6,-194,-89,-190,-183,-200,-176,-202,-19,-32,-20,-86,421,-36,-65,-182,-77,-45,-133,-128,-62,-186,-63,-110,-102,-132,-157,367,-198,-148,-193,-69,-136,-24,-170,-18,408,-174,-40,-180,-81,-121,-149,-29,-16,-15,-167,-88,-117,-189,-9,-187,-79,293,124,-125,-156,389,-256,-36,-85,-48,-39,-185,-76,-228,-14,-60,-26,118,-75,-64,-84,-22,-82,-33,365,-168,-80,-203,-21,-17,175,-120,420,-12,-184,-58,-74,383,-56,-175,-173,231,-38,-71,-28,-130,-124,407,-43,-155,-257,-35,-37,325,-16,-131,-111,-166,371,-139,290,-4,236,-44,-30,373,411,-56,319,-119,-165,-68,-199,-197,-112,-5,-36,-195,-11,-66,-127,-46,-25,-107,-10,-67,-192,-7,-147,-135,-59,-72,-227,-126,-188,-34,-179,-47,-146,-192,372,-49,-229,-57,393,325,-164,-78,]),'-':([378,300,364,83,409,252,61,98,148,247,261,311,246,248,110,315,156,424,250,310,101,78,407,81,318,183,154,180,202,329,379,296,184,177,181,203,381,190,297,347,104,76,85,48,52,368,290,355,389,415,251,285,263,302,75,79,365,383,160,155,244,249,209,144,73,187,175,182,108,243,135,254,298,340,186,205,395,185,152,159,59,106,367,385,192,370,56,398,345,253,220,256,105,219,77,267,271,95,369,421,216,262,264,414,218,294,229,217,255,273,189,265,103,91,143,225,100,164,136,380,114,397,339,109,299,145,194,212,268,349,410,258,221,193,269,257,211,270,92,84,140,241,208,293,343,260,96,259,317,141,167,138,142,406,137,341,382,301,319,80,214,195,314,416,111,411,204,277,400,199,191,198,86,],[109,-60,-57,-52,109,-92,109,-58,109,-93,-219,-6,-95,-99,-43,-7,-4,-35,-98,-8,-22,-9,109,109,-27,-44,-225,-15,109,109,109,-63,109,109,-16,109,109,109,-64,109,-54,-18,-12,109,-104,109,109,109,-32,-234,-91,109,109,190,-20,-56,-48,109,-212,-214,-240,-100,109,-210,109,109,109,-14,-55,-220,-224,-90,-59,-221,-47,109,109,-45,109,109,-223,-13,-25,109,109,109,109,-232,-217,-96,109,-97,-10,109,109,109,-229,-50,-23,-34,109,-228,109,-236,-17,109,109,109,-94,109,109,109,-4,-11,-56,109,-16,-218,-211,-216,109,-233,-237,-53,-61,-227,109,-29,109,-215,109,109,-46,109,-239,109,109,-222,-19,190,-209,109,109,-21,109,-226,-51,-238,-26,109,109,109,109,-235,-213,-241,109,190,-24,109,-28,109,-5,-231,-49,-33,109,109,-230,109,109,109,-62,]),'CHARACTER_CONSTANT':([380,250,204,199,81,290,148,83,400,252,140,329,247,414,177,381,285,383,382,379,56,249,184,203,209,73,104,191,48,52,368,355,415,251,205,263,349,416,160,385,155,370,378,345,253,187,175,398,244,77,262,108,243,144,154,294,229,217,152,273,189,265,159,59,192,220,256,114,397,219,109,267,271,145,61,216,264,135,255,194,269,257,270,164,225,136,410,339,241,406,407,141,268,138,142,137,341,248,211,347,208,343,260,96,277,190,195,340,259,167,258,198,409,202,80,261,193,95,254,246,395,],[-216,-98,105,105,105,105,105,-52,-230,-92,-209,105,-93,-236,105,105,105,105,105,105,105,-100,105,105,105,105,-54,105,105,-104,105,105,-234,-91,105,105,-215,-231,-212,105,-214,105,105,-217,-96,105,105,-232,-240,105,-228,-55,-220,-210,-225,105,105,105,105,105,105,105,105,-223,105,105,-97,105,-233,105,-53,105,-229,-227,105,105,105,-224,-94,105,-239,105,-222,-218,105,-211,105,-237,105,-235,105,105,105,105,105,-213,-241,-99,105,105,105,105,-226,-51,105,105,105,-221,-238,105,105,105,105,105,105,-219,105,-50,-90,-95,105,]),'PP_STRINGIFY':([195,160,104,268,263,145,259,77,290,347,100,220,204,142,155,345,382,193,177,96,269,255,249,409,381,180,164,190,91,211,199,218,252,294,137,136,85,285,194,217,329,273,257,256,355,205,189,208,379,370,108,167,95,270,247,181,415,410,148,159,75,59,253,135,400,198,243,106,395,340,219,339,261,152,229,260,380,397,144,264,154,184,191,262,216,73,267,114,244,48,254,414,140,383,246,241,83,192,271,182,248,187,265,250,109,407,406,368,225,385,202,141,138,378,81,175,56,258,341,349,398,416,203,52,61,80,251,209,343,277,],[112,-212,-54,112,112,-227,-238,112,112,112,-16,112,112,112,-214,-217,112,112,112,-51,-239,-94,-100,112,112,-15,-218,112,-11,112,112,-17,-92,112,-213,-211,-12,112,112,112,112,112,112,-97,112,112,112,112,112,112,-55,112,-50,-222,-93,-16,-234,112,112,112,112,-223,-96,-224,-230,112,-220,-13,112,-221,112,-237,-219,112,112,-226,-216,-233,-210,112,-225,112,112,-228,112,112,112,112,-240,112,-90,-236,-209,112,-95,112,-52,112,-229,-14,-99,112,112,-98,-53,112,-235,112,112,112,112,112,112,112,112,112,112,112,-241,-215,-232,-231,112,-104,112,112,-91,112,112,112,]),'PTR_OP':([110,319,181,85,369,91,315,92,103,218,100,76,106,78,314,101,105,293,180,214,310,182,311,317,367,318,156,212,75,],[215,-24,-16,-12,-23,-11,-7,-19,-4,-17,-16,-18,-13,-9,-5,-22,-10,-21,-15,-28,-8,-14,-6,-26,-25,-27,-4,-29,-20,]),'=':([65,424,156,133,389,182,118,185,143,315,85,78,21,218,91,122,293,79,27,314,100,221,239,369,421,310,92,180,186,111,367,364,106,124,50,212,101,236,105,231,319,214,311,317,110,103,76,183,131,75,365,181,411,318,],[167,-35,-4,167,-32,-14,-169,-45,254,-7,-12,-9,-168,-17,-11,229,-21,-56,-167,-5,-16,-46,-170,-23,-34,-8,-19,-15,-47,-49,-25,-57,-13,-174,-166,-29,-22,-173,-10,-172,-24,-28,-6,-26,-43,-4,-18,-44,-171,-20,-48,-16,-33,-27,]),'TYPEDEF':([131,52,40,333,328,236,21,270,3,35,28,38,16,231,57,26,61,55,222,232,74,68,15,261,2,37,6,141,50,288,10,359,281,5,33,27,340,388,31,117,18,135,53,134,278,8,66,9,13,1,361,60,197,118,164,19,23,354,168,32,36,24,239,59,238,29,243,166,12,65,0,4,39,124,360,206,228,],[-171,-104,-121,-156,24,-173,-168,-222,24,-126,24,-133,-123,-172,-247,-120,24,24,24,24,-248,-138,-2,-219,24,-130,-122,24,-166,-251,-119,-135,-137,-132,-243,-167,-221,-254,-242,-255,-131,-224,-157,-246,-244,-124,-139,-125,-134,24,-253,24,-249,-169,-218,-127,-3,-136,24,-128,-129,-117,-170,-223,24,24,-220,-245,-118,24,-1,-164,-165,-174,-252,-250,-155,]),'AUTO':([278,60,36,3,57,31,236,28,33,8,59,37,27,65,232,18,66,333,340,40,288,231,13,228,39,206,10,360,361,35,26,74,131,38,32,261,239,243,68,16,15,124,9,359,270,12,118,21,388,1,135,2,197,50,117,24,5,141,53,164,168,23,61,238,29,55,222,4,281,354,328,166,6,52,19,0,134,],[-244,26,-129,26,-247,-242,-173,26,-243,-124,-223,-130,-167,26,26,-131,-139,-156,-221,-121,-251,-172,-134,-155,-165,-250,-119,-252,-253,-126,-120,-248,-171,-133,-128,-219,-170,-220,-138,-123,-2,-174,-125,-135,-222,-118,-169,-168,-254,26,-224,26,-249,-166,-255,-117,-132,26,-157,-218,26,-3,26,26,26,26,26,-164,-137,-136,26,-245,-122,-104,-127,-1,-246,]),'AND_OP':([101,301,97,76,308,107,424,93,293,364,111,319,75,311,411,84,296,90,86,143,183,100,300,106,302,72,92,212,367,185,314,299,105,421,110,310,307,91,313,180,186,292,323,79,312,303,156,298,87,309,218,182,306,318,317,103,365,369,102,98,297,181,221,315,85,214,389,304,316,78,],[-22,-66,-73,-18,-72,-78,-35,199,-21,-57,-49,-24,-20,-6,-33,-65,-63,-80,-62,-56,-44,-16,-60,-13,-67,-82,-19,-29,-25,-45,-5,-61,-10,-34,-43,-8,-69,-11,-74,-15,-47,-81,199,-56,-75,-79,-4,-59,-68,-70,-17,-14,-71,-27,-26,-4,-48,-23,-76,-58,-64,-16,-46,-7,-12,-28,-32,-83,-77,-9,]),']':([106,304,132,342,424,316,221,317,303,182,102,76,322,296,116,113,93,344,369,421,225,364,186,365,180,218,214,302,161,72,298,292,311,107,79,86,300,318,329,309,389,105,185,301,293,183,110,315,92,312,181,75,313,308,307,85,323,163,411,392,212,101,306,314,97,87,297,330,376,310,98,78,299,103,111,367,100,56,84,319,91,90,143,],[-13,-83,239,-89,-35,-77,-46,-26,-79,-14,-76,-18,369,-63,-103,-86,-84,-102,-23,-34,331,-57,-47,-48,-15,-17,-28,-67,-101,-82,-59,-81,-6,-78,-56,-62,-60,-27,375,-70,-32,-10,-45,-66,-21,-44,-43,-7,-19,-75,-16,-20,-74,-72,-69,-12,-85,-88,-33,-87,-29,-22,-71,-5,-73,-68,-64,377,394,-8,-58,-9,-61,-4,-49,-25,-16,131,-65,-24,-11,-80,-56,]),'IF':([241,260,61,262,269,145,144,141,349,159,398,244,379,400,259,415,340,341,339,164,381,140,137,380,154,261,395,148,52,409,416,406,243,160,155,383,347,271,414,264,268,397,59,407,135,136,345,270,],[162,-226,162,-228,-239,-227,-210,162,-215,162,-232,-240,162,-230,-238,-234,-221,-241,-237,-218,162,-209,-213,-216,-225,-219,162,162,-104,162,-231,-235,-220,-212,-214,162,162,-229,-236,162,162,-233,-223,162,-224,-211,-217,-222,]),'STRUCT':([15,354,124,238,29,39,359,48,12,74,26,131,53,171,68,138,360,21,261,170,18,88,278,37,3,27,67,31,357,59,66,32,388,231,206,38,10,270,281,16,57,187,61,284,117,1,5,164,239,173,82,134,166,36,280,222,6,73,141,279,169,328,118,55,197,28,340,50,65,228,236,0,333,287,40,4,35,19,60,9,13,361,23,135,288,24,52,168,33,232,2,8,243,],[-2,-136,-174,34,34,-165,-135,34,-118,-248,-120,-171,-157,-142,-138,34,-252,-168,-219,34,-131,34,-244,-130,34,-167,34,-242,-144,-223,-139,-128,-254,-172,-250,-133,-119,-222,-137,-123,-247,34,34,-145,-255,34,-132,-218,-170,34,34,-246,-245,-129,-143,34,-122,34,34,34,34,34,-169,34,-249,34,-221,-166,34,-155,-173,-1,-156,34,-121,-164,-126,-127,34,-125,-134,-253,-3,-224,-251,-117,-104,34,-243,34,34,-124,-220,]),'PP_IDENTIFIER_PASTE':([310,100,103,156,315,],[207,207,210,210,207,]),'PP_DEFINE_NAME':([11,],[48,]),'FLOAT':([13,357,88,340,29,231,53,1,35,82,39,10,279,55,173,74,239,228,9,222,360,36,141,8,32,238,135,168,281,52,278,287,24,21,134,61,50,138,187,66,23,12,6,73,28,328,124,4,0,354,206,359,388,57,3,18,19,48,166,232,164,236,65,40,170,37,26,31,333,27,261,59,243,16,2,270,197,33,288,67,169,5,60,131,280,117,15,284,171,118,361,68,38,],[-134,-144,32,-221,32,-172,-157,32,-126,32,-165,-119,32,32,32,-248,-170,-155,-125,32,-252,-129,32,-124,-128,32,-224,32,-137,-104,-244,32,-117,-168,-246,32,-166,32,32,-139,-3,-118,-122,32,32,32,-174,-164,-1,-136,-250,-135,-254,-247,32,-131,-127,32,-245,32,-218,-173,32,-121,32,-130,-120,-242,-156,-167,-219,-223,-220,-123,32,-222,-249,-243,-251,32,32,-132,32,-171,-143,-255,-2,-145,-142,-169,-253,-138,-133,]),'LEFT_ASSIGN':([367,101,314,365,85,421,180,186,317,221,364,79,212,369,318,218,100,78,111,319,110,424,143,389,315,293,181,106,92,185,311,411,76,183,182,310,156,105,91,214,75,103,],[-25,-22,-5,-48,-12,-34,-15,-47,-26,-46,-57,-56,-29,-23,-27,-17,-16,-9,-49,-24,-43,-35,253,-32,-7,-21,-16,-13,-19,-45,-6,-33,-18,-44,-14,-8,-4,-10,-11,-28,-20,-4,]),'}':([292,181,212,269,244,221,103,261,389,303,296,98,384,398,300,102,111,367,385,364,123,85,61,341,287,148,120,154,163,260,106,401,353,160,218,137,315,279,352,319,312,87,298,271,313,84,241,214,340,302,311,79,317,380,414,357,76,411,91,136,309,397,406,122,421,323,342,243,171,135,186,392,424,280,230,284,52,299,182,308,270,339,107,141,116,93,59,349,306,90,415,105,144,400,155,145,97,140,185,158,101,227,297,110,164,301,334,310,276,78,307,316,75,365,293,259,304,72,335,121,416,314,402,100,170,143,345,318,113,86,369,183,92,180,262,],[-81,-16,-29,-239,-240,-46,-4,-219,-32,-79,-63,-58,-205,-232,-60,-76,-49,-25,402,-57,-158,-12,164,-241,359,261,-160,-225,-88,-226,-13,-208,384,-212,-17,-213,-7,354,-207,-24,-75,-68,-59,-229,-74,-65,340,-28,-221,-67,-6,-56,-26,-216,-236,-144,-18,-33,-11,-211,-70,-233,-235,-162,-34,-85,-89,-220,-142,-224,-47,-87,-35,-143,-159,-145,-104,-61,-14,-72,-222,-237,-78,243,-103,-84,-223,-215,-71,-80,-234,-10,-210,-230,-214,-227,-73,-209,-45,270,-22,333,-64,-43,-218,-66,-163,-8,-204,-9,-69,-77,-20,-48,-21,-238,-83,-82,-161,228,-231,-5,-206,-16,281,-56,-217,-27,-86,-62,-23,-44,-19,-15,-228,]),}
_lr_action = { }
for _k, _v in _lr_action_items.items():
for _x,_y in zip(_v[0],_v[1]):
_lr_action[(_x,_k)] = _y
del _lr_action_items
_lr_goto_items = {'expression_statement':([395,264,347,343,409,381,258,141,148,407,379,61,159,241,383,268,],[136,136,136,378,136,136,343,136,136,136,136,136,136,136,136,136,]),'storage_class_specifier':([29,141,28,222,55,60,61,232,65,2,3,328,1,238,168,],[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,]),'str_opt_expr_pair':([422,412,413,390,],[404,418,404,404,]),'constant':([191,152,211,329,61,187,159,407,81,409,205,273,80,277,202,56,241,114,209,379,383,203,194,395,385,378,48,368,355,268,265,190,189,229,177,225,264,204,381,370,347,193,257,198,382,220,343,217,290,216,77,142,141,267,192,258,199,73,148,175,208,195,184,410,294,219,263,138,167,285,],[92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,]),'volatile_opt':([94,],[201,]),'unary_expression':([273,202,208,114,209,138,192,370,229,194,263,175,198,241,265,195,184,177,410,225,187,219,409,381,148,77,407,167,189,193,257,191,382,217,152,211,290,159,142,141,385,294,379,80,258,285,368,73,203,268,56,347,383,329,204,395,48,355,205,343,277,190,264,216,61,267,81,199,220,378,],[143,79,79,79,79,143,79,79,79,79,143,79,79,143,143,79,143,79,143,79,143,79,143,143,143,183,143,143,79,79,143,79,143,143,79,79,79,143,143,143,143,79,143,185,143,79,143,143,79,143,79,143,143,79,79,143,79,79,79,143,143,79,143,143,143,143,186,79,143,143,]),'struct_or_union_specifier':([138,2,168,88,169,222,67,65,328,187,48,55,1,279,238,82,28,73,232,141,61,3,287,60,170,29,173,],[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,]),'exclusive_or_expression':([329,355,148,73,264,184,219,152,216,407,229,48,141,285,61,410,138,370,343,267,187,167,257,217,177,241,347,159,383,199,382,395,379,220,56,381,277,385,378,290,263,268,273,258,368,175,142,225,265,409,],[90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,292,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,]),'identifier_list':([55,],[129,]),'define':([1,],[23,]),'initializer':([385,277,167,],[401,352,275,]),'macro_param':([329,225,167,208,56,81,191,148,193,273,257,294,203,159,381,209,385,395,343,355,194,378,265,383,177,80,205,189,190,410,219,229,75,175,264,216,241,142,192,202,217,220,48,211,114,409,187,267,368,285,277,290,184,73,258,268,77,195,61,141,198,382,407,347,138,199,204,263,152,370,379,],[106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,180,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,]),'struct_declaration_list':([173,67,169,],[287,170,279,]),'macro_parameter_list':([71,],[176,]),'enumerator':([54,119,230,],[120,120,335,]),'declaration_list':([61,28,65,],[141,60,168,]),'iteration_statement':([148,264,407,395,383,61,159,241,379,381,347,141,268,409,],[137,137,137,137,137,137,137,137,137,137,137,137,137,137,]),'additive_expression':([265,329,355,217,220,229,395,257,73,264,142,138,208,285,61,268,381,195,56,277,343,290,152,216,407,199,209,48,383,241,148,187,382,410,141,205,370,203,204,347,379,263,184,368,219,409,167,202,378,211,159,194,258,267,175,273,385,225,177,198,],[84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,302,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,301,84,84,84,84,84,84,84,84,]),'assignment_expression':([167,216,258,265,220,148,347,264,184,217,410,241,263,381,383,407,378,267,385,187,409,379,277,73,273,268,159,257,141,61,395,382,343,142,368,138,],[276,320,161,161,161,161,161,161,161,161,161,161,344,161,161,161,161,161,276,161,161,161,276,161,161,161,161,342,161,161,161,161,161,161,391,161,]),'external_declaration':([1,],[15,]),'type_specifier':([67,29,28,328,88,279,48,173,232,238,141,222,3,60,82,287,65,138,61,73,168,169,1,55,187,170,2,],[82,29,29,29,82,82,82,82,29,29,29,29,29,29,82,82,29,82,29,82,29,82,29,29,82,82,29,]),'compound_statement':([60,264,409,383,159,268,241,65,347,141,61,381,407,148,379,168,28,395,],[134,144,144,144,144,144,144,166,144,144,144,144,144,144,144,278,57,144,]),'inclusive_or_expression':([73,407,152,409,329,379,167,385,184,368,61,395,175,48,148,241,347,159,268,277,370,199,220,56,225,216,267,378,343,219,258,265,383,381,229,285,410,217,263,257,355,290,138,142,264,382,141,187,273,],[72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,304,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,]),'pointer':([58,44,165,17,232,358,7,172,30,128,115,1,222,],[14,70,14,14,235,14,46,14,14,235,226,14,226,]),'selection_statement':([407,141,61,347,159,268,148,241,264,409,395,379,381,383,],[160,160,160,160,160,160,160,160,160,160,160,160,160,160,]),'postfix_expression':([73,192,294,56,199,194,263,187,383,378,175,77,217,141,152,189,285,159,219,142,193,257,329,355,81,395,379,268,381,205,202,190,410,204,61,241,290,208,148,229,407,277,265,114,184,409,203,138,267,216,343,198,264,191,347,382,211,48,220,177,368,273,225,385,195,370,167,80,258,209,],[110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,]),'asm_expression':([290,241,56,142,395,273,385,202,141,205,48,378,204,265,329,268,383,199,80,198,184,192,148,343,194,73,159,370,229,258,187,257,225,189,138,114,407,211,219,177,263,285,355,209,175,203,277,379,264,195,220,409,152,347,216,193,267,382,190,61,167,410,368,381,81,77,208,217,294,191,],[111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,]),'declaration_impl':([28,168,65,61,141,1,60,],[20,20,20,20,20,20,20,]),'and_expression':([370,167,217,152,285,198,73,219,381,385,383,273,257,61,141,199,290,343,263,184,329,264,410,56,379,395,268,159,347,241,225,409,148,277,216,229,265,187,138,378,267,220,355,175,142,258,382,48,177,368,407,],[107,107,107,107,107,303,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,]),'type_name':([73,48,138,187,],[179,89,179,295,]),'relational_expression':([378,73,241,217,264,382,263,48,211,225,285,258,381,177,347,268,159,368,175,273,219,329,409,343,138,184,56,209,355,257,142,148,187,370,267,277,198,395,216,152,379,410,220,61,383,141,167,199,208,265,385,407,229,290,],[97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,313,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,312,97,97,97,97,97,]),'statement':([264,407,381,347,379,148,409,159,241,395,61,141,268,383,],[345,414,398,380,397,260,416,272,260,406,154,154,349,400,]),'cast_expression':([395,407,217,385,159,347,229,202,177,257,211,343,189,193,273,73,285,258,209,198,216,184,264,114,194,382,203,378,409,205,219,187,267,138,381,329,208,220,195,56,142,268,61,141,175,148,379,370,192,204,152,191,241,48,190,225,294,410,199,167,290,265,383,368,277,263,355,],[98,98,98,98,98,98,98,98,98,98,98,98,98,300,98,98,98,98,98,98,98,98,98,221,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,299,98,98,298,98,98,98,98,364,98,98,98,98,98,98,98,98,98,98,]),'init_declarator':([58,165,30,],[63,274,63,]),'struct_declarator_list':([172,],[286,]),'logical_or_expression':([343,407,265,217,285,395,347,258,273,257,410,138,184,378,264,73,381,216,142,382,268,61,141,187,267,175,220,370,148,48,409,56,167,379,152,263,329,290,241,225,383,385,277,368,159,229,355,],[113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,]),'unary_operator':([77,141,241,148,277,159,192,407,56,184,194,409,294,203,187,217,205,189,198,219,202,142,382,190,211,220,204,368,273,257,225,258,167,208,379,385,229,265,114,138,378,267,175,290,61,285,191,355,370,343,48,193,177,329,152,195,81,80,209,264,395,216,73,268,381,199,263,410,347,383,],[114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,]),'translation_unit':([0,],[1,]),'struct_or_union':([55,141,3,88,173,232,170,287,328,48,60,2,61,82,238,138,67,222,169,29,187,279,168,1,28,73,65,],[41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,]),'type_qualifier_list':([7,],[44,]),'struct_declaration':([279,169,67,287,173,170,],[280,171,171,280,171,280,]),'string_literal':([203,148,381,265,220,216,395,202,294,382,80,219,412,347,77,241,211,167,192,410,189,142,56,184,370,217,422,263,198,285,205,383,152,379,175,190,195,390,75,407,264,177,277,290,378,225,208,191,114,267,355,187,409,329,204,258,343,368,193,138,199,159,268,257,141,48,229,61,385,305,81,194,413,209,73,273,],[85,85,85,85,85,85,85,85,85,85,85,85,403,85,85,85,85,85,85,85,85,85,85,85,85,85,403,85,85,85,85,85,85,85,85,85,85,403,182,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,366,85,85,403,85,85,85,]),'parameter_type_list':([222,232,328,55,],[326,326,374,126,]),'parameter_declaration':([328,232,238,55,222,],[127,127,338,127,127,]),'multiplicative_expression':([381,167,61,195,355,204,138,379,203,409,198,175,177,258,285,277,225,187,219,211,268,48,194,148,142,257,73,378,56,395,202,229,407,159,189,209,343,385,329,273,265,208,368,290,382,205,141,184,199,383,220,190,264,410,216,217,152,241,370,267,347,263,],[86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,296,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,297,86,86,86,86,86,86,86,86,86,86,]),'declarator':([232,165,1,30,128,58,172,17,358,],[51,133,28,65,234,133,283,51,283,]),'argument_expression_list':([216,],[321,]),'str_opt_expr_pair_list':([390,413,422,],[405,419,423,]),'statement_list':([61,141,],[148,241,]),'constant_expression':([48,290,56,175,225,285,152,329,355,229,],[99,362,132,289,330,356,266,376,386,334,]),'enumerator_list_iso':([54,119,],[123,123,]),'primary_expression':([385,73,187,220,370,267,277,199,191,209,204,241,347,208,257,48,211,205,159,355,194,379,219,61,141,175,290,329,198,343,216,138,184,56,264,265,294,152,410,285,192,258,407,229,202,77,381,378,148,273,268,409,395,80,81,382,195,225,177,142,203,368,114,190,193,217,383,189,167,263,],[101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,]),'declaration_specifiers':([29,222,238,232,28,168,328,60,1,61,141,55,65,3,2,],[62,128,128,128,58,58,128,58,30,58,58,128,58,43,42,]),'declaration':([141,60,1,168,65,28,61,],[135,135,31,135,59,59,59,]),'direct_declarator':([172,1,128,235,14,30,358,232,58,17,165,],[27,27,27,50,50,27,27,27,27,27,27,]),'logical_and_expression':([347,56,407,355,138,378,61,141,379,395,290,220,48,175,263,410,258,285,277,225,187,267,73,229,142,381,329,273,265,167,368,343,385,383,184,264,241,409,370,268,216,217,152,219,148,257,159,382,],[93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,323,93,93,93,93,]),'init_declarator_list':([58,30,],[64,64,]),'shift_expression':([208,229,211,378,241,184,216,410,285,141,409,379,217,395,265,263,202,257,56,167,199,187,219,159,258,370,264,209,175,220,205,385,142,225,329,273,368,383,347,355,177,48,343,152,267,382,407,198,277,148,61,290,204,203,73,381,268,138,],[87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,306,87,87,87,87,87,87,87,87,87,87,87,87,87,309,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,308,307,87,87,87,87,]),'equality_expression':([48,268,381,378,343,368,216,267,56,199,385,225,177,198,383,265,355,241,217,148,229,395,257,347,409,61,379,277,184,290,152,167,407,211,159,258,175,273,187,382,329,141,220,73,264,370,142,138,263,285,219,410,],[102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,316,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,]),'jump_statement':([264,159,381,379,347,407,141,268,241,148,61,395,383,409,],[155,155,155,155,155,155,155,155,155,155,155,155,155,155,]),'struct_declarator':([358,172,],[387,282,]),'function_definition':([1,],[33,]),'parameter_list':([328,222,55,232,],[130,130,130,130,]),'enum_specifier':([82,170,29,168,61,1,3,88,48,222,169,232,65,287,60,238,173,28,328,67,187,141,73,279,138,55,2,],[38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,]),'type_qualifier':([187,55,88,82,44,28,169,328,238,279,65,173,222,60,141,7,287,2,138,73,232,29,168,67,3,61,48,170,1,],[88,3,88,88,69,3,88,3,3,88,3,88,3,3,3,45,88,3,88,88,3,3,3,88,3,3,88,88,3,]),'enumerator_list':([119,54,],[227,121,]),'labeled_statement':([141,148,395,407,61,383,379,159,268,241,347,264,409,381,],[140,140,140,140,140,140,140,140,140,140,140,140,140,140,]),'abstract_declarator':([115,222,232,128,],[223,327,327,233,]),'specifier_qualifier_list':([169,170,173,48,279,73,187,138,287,88,82,67,],[172,172,172,115,172,115,115,115,172,196,188,172,]),'multi_string_literal':([205,267,138,203,184,114,265,229,343,290,81,410,385,61,257,204,193,192,347,190,142,202,381,159,219,268,285,379,152,395,217,294,209,264,263,194,199,407,241,355,258,80,195,189,141,77,175,273,382,220,378,383,187,56,73,198,216,167,370,277,148,409,225,329,368,177,48,211,208,191,],[75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,]),'assignment_operator':([143,],[257,]),'initializer_list':([277,],[353,]),'conditional_expression':([257,56,217,285,187,265,141,258,241,148,48,385,216,368,273,184,329,159,378,343,267,407,73,225,263,410,370,277,268,382,264,167,175,152,395,409,138,61,290,355,229,220,381,383,142,379,347,],[163,116,163,116,163,163,163,163,163,163,116,163,163,163,163,163,116,163,163,163,163,163,163,116,163,163,392,163,163,163,163,163,116,116,163,163,163,163,116,116,116,163,163,163,163,163,163,]),'direct_abstract_declarator':([115,235,226,128,232,222,],[224,332,332,224,224,224,]),'identifier':([205,410,368,285,407,294,195,56,264,208,203,277,355,273,175,263,199,258,81,207,148,385,267,61,141,77,329,290,220,210,167,73,193,219,381,204,382,138,347,225,177,265,229,48,184,187,378,189,192,216,383,209,217,343,409,114,190,241,202,198,257,80,142,370,159,211,152,268,191,379,395,194,],[76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,311,76,76,76,76,76,76,76,76,76,314,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,]),'expression':([378,73,187,381,343,409,265,61,268,379,347,264,267,142,273,383,138,410,258,141,159,148,382,184,217,395,220,407,241,],[396,178,178,149,149,149,346,149,149,149,149,149,348,245,351,149,178,417,149,149,149,149,399,178,322,149,324,149,149,]),}
_lr_goto = { }
for _k, _v in _lr_goto_items.items():
for _x,_y in zip(_v[0],_v[1]):
_lr_goto[(_x,_k)] = _y
del _lr_goto_items
_lr_productions = [
("S'",1,None,None,None),
('translation_unit',0,'p_translation_unit','ctypesgencore/parser/cgrammar.py',57),
('translation_unit',2,'p_translation_unit','ctypesgencore/parser/cgrammar.py',58),
('translation_unit',2,'p_translation_unit','ctypesgencore/parser/cgrammar.py',59),
('identifier',1,'p_identifier','ctypesgencore/parser/cgrammar.py',67),
('identifier',3,'p_identifier','ctypesgencore/parser/cgrammar.py',68),
('identifier',3,'p_identifier','ctypesgencore/parser/cgrammar.py',69),
('identifier',3,'p_identifier','ctypesgencore/parser/cgrammar.py',70),
('identifier',3,'p_identifier','ctypesgencore/parser/cgrammar.py',71),
('constant',1,'p_constant','ctypesgencore/parser/cgrammar.py',87),
('constant',1,'p_constant','ctypesgencore/parser/cgrammar.py',88),
('string_literal',1,'p_string_literal','ctypesgencore/parser/cgrammar.py',111),
('multi_string_literal',1,'p_multi_string_literal','ctypesgencore/parser/cgrammar.py',115),
('multi_string_literal',1,'p_multi_string_literal','ctypesgencore/parser/cgrammar.py',116),
('multi_string_literal',2,'p_multi_string_literal','ctypesgencore/parser/cgrammar.py',117),
('multi_string_literal',2,'p_multi_string_literal','ctypesgencore/parser/cgrammar.py',118),
('macro_param',1,'p_macro_param','ctypesgencore/parser/cgrammar.py',127),
('macro_param',2,'p_macro_param','ctypesgencore/parser/cgrammar.py',128),
('primary_expression',1,'p_primary_expression','ctypesgencore/parser/cgrammar.py',136),
('primary_expression',1,'p_primary_expression','ctypesgencore/parser/cgrammar.py',137),
('primary_expression',1,'p_primary_expression','ctypesgencore/parser/cgrammar.py',138),
('primary_expression',3,'p_primary_expression','ctypesgencore/parser/cgrammar.py',139),
('postfix_expression',1,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',147),
('postfix_expression',4,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',148),
('postfix_expression',3,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',149),
('postfix_expression',4,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',150),
('postfix_expression',3,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',151),
('postfix_expression',3,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',152),
('postfix_expression',2,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',153),
('postfix_expression',2,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',154),
('argument_expression_list',1,'p_argument_expression_list','ctypesgencore/parser/cgrammar.py',187),
('argument_expression_list',3,'p_argument_expression_list','ctypesgencore/parser/cgrammar.py',188),
('asm_expression',5,'p_asm_expression','ctypesgencore/parser/cgrammar.py',197),
('asm_expression',7,'p_asm_expression','ctypesgencore/parser/cgrammar.py',198),
('asm_expression',9,'p_asm_expression','ctypesgencore/parser/cgrammar.py',199),
('asm_expression',11,'p_asm_expression','ctypesgencore/parser/cgrammar.py',200),
('str_opt_expr_pair_list',0,'p_str_opt_expr_pair_list','ctypesgencore/parser/cgrammar.py',212),
('str_opt_expr_pair_list',1,'p_str_opt_expr_pair_list','ctypesgencore/parser/cgrammar.py',213),
('str_opt_expr_pair_list',3,'p_str_opt_expr_pair_list','ctypesgencore/parser/cgrammar.py',214),
('str_opt_expr_pair',1,'p_str_opt_expr_pair','ctypesgencore/parser/cgrammar.py',218),
('str_opt_expr_pair',4,'p_str_opt_expr_pair','ctypesgencore/parser/cgrammar.py',219),
('volatile_opt',0,'p_volatile_opt','ctypesgencore/parser/cgrammar.py',223),
('volatile_opt',1,'p_volatile_opt','ctypesgencore/parser/cgrammar.py',224),
('unary_expression',1,'p_unary_expression','ctypesgencore/parser/cgrammar.py',239),
('unary_expression',2,'p_unary_expression','ctypesgencore/parser/cgrammar.py',240),
('unary_expression',2,'p_unary_expression','ctypesgencore/parser/cgrammar.py',241),
('unary_expression',2,'p_unary_expression','ctypesgencore/parser/cgrammar.py',242),
('unary_expression',2,'p_unary_expression','ctypesgencore/parser/cgrammar.py',243),
('unary_expression',4,'p_unary_expression','ctypesgencore/parser/cgrammar.py',244),
('unary_expression',1,'p_unary_expression','ctypesgencore/parser/cgrammar.py',245),
('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',262),
('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',263),
('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',264),
('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',265),
('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',266),
('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',267),
('cast_expression',1,'p_cast_expression','ctypesgencore/parser/cgrammar.py',272),
('cast_expression',4,'p_cast_expression','ctypesgencore/parser/cgrammar.py',273),
('multiplicative_expression',1,'p_multiplicative_expression','ctypesgencore/parser/cgrammar.py',287),
('multiplicative_expression',3,'p_multiplicative_expression','ctypesgencore/parser/cgrammar.py',288),
('multiplicative_expression',3,'p_multiplicative_expression','ctypesgencore/parser/cgrammar.py',289),
('multiplicative_expression',3,'p_multiplicative_expression','ctypesgencore/parser/cgrammar.py',290),
('additive_expression',1,'p_additive_expression','ctypesgencore/parser/cgrammar.py',305),
('additive_expression',3,'p_additive_expression','ctypesgencore/parser/cgrammar.py',306),
('additive_expression',3,'p_additive_expression','ctypesgencore/parser/cgrammar.py',307),
('shift_expression',1,'p_shift_expression','ctypesgencore/parser/cgrammar.py',322),
('shift_expression',3,'p_shift_expression','ctypesgencore/parser/cgrammar.py',323),
('shift_expression',3,'p_shift_expression','ctypesgencore/parser/cgrammar.py',324),
('relational_expression',1,'p_relational_expression','ctypesgencore/parser/cgrammar.py',341),
('relational_expression',3,'p_relational_expression','ctypesgencore/parser/cgrammar.py',342),
('relational_expression',3,'p_relational_expression','ctypesgencore/parser/cgrammar.py',343),
('relational_expression',3,'p_relational_expression','ctypesgencore/parser/cgrammar.py',344),
('relational_expression',3,'p_relational_expression','ctypesgencore/parser/cgrammar.py',345),
('equality_expression',1,'p_equality_expression','ctypesgencore/parser/cgrammar.py',360),
('equality_expression',3,'p_equality_expression','ctypesgencore/parser/cgrammar.py',361),
('equality_expression',3,'p_equality_expression','ctypesgencore/parser/cgrammar.py',362),
('and_expression',1,'p_and_expression','ctypesgencore/parser/cgrammar.py',372),
('and_expression',3,'p_and_expression','ctypesgencore/parser/cgrammar.py',373),
('exclusive_or_expression',1,'p_exclusive_or_expression','ctypesgencore/parser/cgrammar.py',382),
('exclusive_or_expression',3,'p_exclusive_or_expression','ctypesgencore/parser/cgrammar.py',383),
('inclusive_or_expression',1,'p_inclusive_or_expression','ctypesgencore/parser/cgrammar.py',392),
('inclusive_or_expression',3,'p_inclusive_or_expression','ctypesgencore/parser/cgrammar.py',393),
('logical_and_expression',1,'p_logical_and_expression','ctypesgencore/parser/cgrammar.py',402),
('logical_and_expression',3,'p_logical_and_expression','ctypesgencore/parser/cgrammar.py',403),
('logical_or_expression',1,'p_logical_or_expression','ctypesgencore/parser/cgrammar.py',412),
('logical_or_expression',3,'p_logical_or_expression','ctypesgencore/parser/cgrammar.py',413),
('conditional_expression',1,'p_conditional_expression','ctypesgencore/parser/cgrammar.py',422),
('conditional_expression',5,'p_conditional_expression','ctypesgencore/parser/cgrammar.py',423),
('assignment_expression',1,'p_assignment_expression','ctypesgencore/parser/cgrammar.py',444),
('assignment_expression',3,'p_assignment_expression','ctypesgencore/parser/cgrammar.py',445),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',460),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',461),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',462),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',463),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',464),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',465),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',466),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',467),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',468),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',469),
('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',470),
('expression',1,'p_expression','ctypesgencore/parser/cgrammar.py',475),
('expression',3,'p_expression','ctypesgencore/parser/cgrammar.py',476),
('constant_expression',1,'p_constant_expression','ctypesgencore/parser/cgrammar.py',482),
('declaration',2,'p_declaration','ctypesgencore/parser/cgrammar.py',487),
('declaration_impl',1,'p_declaration_impl','ctypesgencore/parser/cgrammar.py',494),
('declaration_impl',2,'p_declaration_impl','ctypesgencore/parser/cgrammar.py',495),
('declaration_specifiers',1,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',519),
('declaration_specifiers',2,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',520),
('declaration_specifiers',1,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',521),
('declaration_specifiers',2,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',522),
('declaration_specifiers',1,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',523),
('declaration_specifiers',2,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',524),
('init_declarator_list',1,'p_init_declarator_list','ctypesgencore/parser/cgrammar.py',532),
('init_declarator_list',3,'p_init_declarator_list','ctypesgencore/parser/cgrammar.py',533),
('init_declarator',1,'p_init_declarator','ctypesgencore/parser/cgrammar.py',541),
('init_declarator',3,'p_init_declarator','ctypesgencore/parser/cgrammar.py',542),
('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',549),
('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',550),
('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',551),
('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',552),
('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',553),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',558),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',559),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',560),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',561),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',562),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',563),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',564),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',565),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',566),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',567),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',568),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',569),
('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',570),
('struct_or_union_specifier',5,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',579),
('struct_or_union_specifier',5,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',580),
('struct_or_union_specifier',4,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',581),
('struct_or_union_specifier',2,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',582),
('struct_or_union_specifier',2,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',583),
('struct_or_union',1,'p_struct_or_union','ctypesgencore/parser/cgrammar.py',599),
('struct_or_union',1,'p_struct_or_union','ctypesgencore/parser/cgrammar.py',600),
('struct_declaration_list',1,'p_struct_declaration_list','ctypesgencore/parser/cgrammar.py',605),
('struct_declaration_list',2,'p_struct_declaration_list','ctypesgencore/parser/cgrammar.py',606),
('struct_declaration',3,'p_struct_declaration','ctypesgencore/parser/cgrammar.py',614),
('struct_declaration',2,'p_struct_declaration','ctypesgencore/parser/cgrammar.py',615),
('specifier_qualifier_list',2,'p_specifier_qualifier_list','ctypesgencore/parser/cgrammar.py',635),
('specifier_qualifier_list',1,'p_specifier_qualifier_list','ctypesgencore/parser/cgrammar.py',636),
('specifier_qualifier_list',2,'p_specifier_qualifier_list','ctypesgencore/parser/cgrammar.py',637),
('specifier_qualifier_list',1,'p_specifier_qualifier_list','ctypesgencore/parser/cgrammar.py',638),
('struct_declarator_list',1,'p_struct_declarator_list','ctypesgencore/parser/cgrammar.py',647),
('struct_declarator_list',3,'p_struct_declarator_list','ctypesgencore/parser/cgrammar.py',648),
('struct_declarator',1,'p_struct_declarator','ctypesgencore/parser/cgrammar.py',656),
('struct_declarator',2,'p_struct_declarator','ctypesgencore/parser/cgrammar.py',657),
('struct_declarator',3,'p_struct_declarator','ctypesgencore/parser/cgrammar.py',658),
('enum_specifier',4,'p_enum_specifier','ctypesgencore/parser/cgrammar.py',669),
('enum_specifier',5,'p_enum_specifier','ctypesgencore/parser/cgrammar.py',670),
('enum_specifier',2,'p_enum_specifier','ctypesgencore/parser/cgrammar.py',671),
('enumerator_list',1,'p_enumerator_list','ctypesgencore/parser/cgrammar.py',684),
('enumerator_list',2,'p_enumerator_list','ctypesgencore/parser/cgrammar.py',685),
('enumerator_list_iso',1,'p_enumerator_list_iso','ctypesgencore/parser/cgrammar.py',692),
('enumerator_list_iso',3,'p_enumerator_list_iso','ctypesgencore/parser/cgrammar.py',693),
('enumerator',1,'p_enumerator','ctypesgencore/parser/cgrammar.py',701),
('enumerator',3,'p_enumerator','ctypesgencore/parser/cgrammar.py',702),
('type_qualifier',1,'p_type_qualifier','ctypesgencore/parser/cgrammar.py',710),
('type_qualifier',1,'p_type_qualifier','ctypesgencore/parser/cgrammar.py',711),
('declarator',2,'p_declarator','ctypesgencore/parser/cgrammar.py',716),
('declarator',1,'p_declarator','ctypesgencore/parser/cgrammar.py',717),
('direct_declarator',1,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',729),
('direct_declarator',3,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',730),
('direct_declarator',4,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',731),
('direct_declarator',3,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',732),
('direct_declarator',4,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',733),
('direct_declarator',4,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',734),
('direct_declarator',3,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',735),
('pointer',1,'p_pointer','ctypesgencore/parser/cgrammar.py',764),
('pointer',2,'p_pointer','ctypesgencore/parser/cgrammar.py',765),
('pointer',2,'p_pointer','ctypesgencore/parser/cgrammar.py',766),
('pointer',3,'p_pointer','ctypesgencore/parser/cgrammar.py',767),
('type_qualifier_list',1,'p_type_qualifier_list','ctypesgencore/parser/cgrammar.py',784),
('type_qualifier_list',2,'p_type_qualifier_list','ctypesgencore/parser/cgrammar.py',785),
('parameter_type_list',1,'p_parameter_type_list','ctypesgencore/parser/cgrammar.py',793),
('parameter_type_list',3,'p_parameter_type_list','ctypesgencore/parser/cgrammar.py',794),
('parameter_list',1,'p_parameter_list','ctypesgencore/parser/cgrammar.py',803),
('parameter_list',3,'p_parameter_list','ctypesgencore/parser/cgrammar.py',804),
('parameter_declaration',2,'p_parameter_declaration','ctypesgencore/parser/cgrammar.py',812),
('parameter_declaration',2,'p_parameter_declaration','ctypesgencore/parser/cgrammar.py',813),
('parameter_declaration',1,'p_parameter_declaration','ctypesgencore/parser/cgrammar.py',814),
('identifier_list',1,'p_identifier_list','ctypesgencore/parser/cgrammar.py',822),
('identifier_list',3,'p_identifier_list','ctypesgencore/parser/cgrammar.py',823),
('type_name',1,'p_type_name','ctypesgencore/parser/cgrammar.py',835),
('type_name',2,'p_type_name','ctypesgencore/parser/cgrammar.py',836),
('abstract_declarator',1,'p_abstract_declarator','ctypesgencore/parser/cgrammar.py',852),
('abstract_declarator',1,'p_abstract_declarator','ctypesgencore/parser/cgrammar.py',853),
('abstract_declarator',2,'p_abstract_declarator','ctypesgencore/parser/cgrammar.py',854),
('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',873),
('direct_abstract_declarator',2,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',874),
('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',875),
('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',876),
('direct_abstract_declarator',4,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',877),
('direct_abstract_declarator',2,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',878),
('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',879),
('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',880),
('direct_abstract_declarator',4,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',881),
('initializer',1,'p_initializer','ctypesgencore/parser/cgrammar.py',918),
('initializer',3,'p_initializer','ctypesgencore/parser/cgrammar.py',919),
('initializer',4,'p_initializer','ctypesgencore/parser/cgrammar.py',920),
('initializer_list',1,'p_initializer_list','ctypesgencore/parser/cgrammar.py',924),
('initializer_list',3,'p_initializer_list','ctypesgencore/parser/cgrammar.py',925),
('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',929),
('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',930),
('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',931),
('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',932),
('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',933),
('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',934),
('labeled_statement',3,'p_labeled_statement','ctypesgencore/parser/cgrammar.py',938),
('labeled_statement',4,'p_labeled_statement','ctypesgencore/parser/cgrammar.py',939),
('labeled_statement',3,'p_labeled_statement','ctypesgencore/parser/cgrammar.py',940),
('compound_statement',2,'p_compound_statement','ctypesgencore/parser/cgrammar.py',944),
('compound_statement',3,'p_compound_statement','ctypesgencore/parser/cgrammar.py',945),
('compound_statement',3,'p_compound_statement','ctypesgencore/parser/cgrammar.py',946),
('compound_statement',4,'p_compound_statement','ctypesgencore/parser/cgrammar.py',947),
('compound_statement',3,'p_compound_statement_error','ctypesgencore/parser/cgrammar.py',951),
('declaration_list',1,'p_declaration_list','ctypesgencore/parser/cgrammar.py',956),
('declaration_list',2,'p_declaration_list','ctypesgencore/parser/cgrammar.py',957),
('statement_list',1,'p_statement_list','ctypesgencore/parser/cgrammar.py',961),
('statement_list',2,'p_statement_list','ctypesgencore/parser/cgrammar.py',962),
('expression_statement',1,'p_expression_statement','ctypesgencore/parser/cgrammar.py',966),
('expression_statement',2,'p_expression_statement','ctypesgencore/parser/cgrammar.py',967),
('expression_statement',2,'p_expression_statement_error','ctypesgencore/parser/cgrammar.py',970),
('selection_statement',5,'p_selection_statement','ctypesgencore/parser/cgrammar.py',975),
('selection_statement',7,'p_selection_statement','ctypesgencore/parser/cgrammar.py',976),
('selection_statement',5,'p_selection_statement','ctypesgencore/parser/cgrammar.py',977),
('iteration_statement',5,'p_iteration_statement','ctypesgencore/parser/cgrammar.py',981),
('iteration_statement',7,'p_iteration_statement','ctypesgencore/parser/cgrammar.py',982),
('iteration_statement',6,'p_iteration_statement','ctypesgencore/parser/cgrammar.py',983),
('iteration_statement',7,'p_iteration_statement','ctypesgencore/parser/cgrammar.py',984),
('jump_statement',3,'p_jump_statement','ctypesgencore/parser/cgrammar.py',988),
('jump_statement',2,'p_jump_statement','ctypesgencore/parser/cgrammar.py',989),
('jump_statement',2,'p_jump_statement','ctypesgencore/parser/cgrammar.py',990),
('jump_statement',2,'p_jump_statement','ctypesgencore/parser/cgrammar.py',991),
('jump_statement',3,'p_jump_statement','ctypesgencore/parser/cgrammar.py',992),
('external_declaration',1,'p_external_declaration','ctypesgencore/parser/cgrammar.py',996),
('external_declaration',1,'p_external_declaration','ctypesgencore/parser/cgrammar.py',997),
('function_definition',4,'p_function_definition','ctypesgencore/parser/cgrammar.py',1003),
('function_definition',3,'p_function_definition','ctypesgencore/parser/cgrammar.py',1004),
('function_definition',3,'p_function_definition','ctypesgencore/parser/cgrammar.py',1005),
('function_definition',2,'p_function_definition','ctypesgencore/parser/cgrammar.py',1006),
('define',3,'p_define','ctypesgencore/parser/cgrammar.py',1010),
('define',4,'p_define','ctypesgencore/parser/cgrammar.py',1011),
('define',4,'p_define','ctypesgencore/parser/cgrammar.py',1012),
('define',5,'p_define','ctypesgencore/parser/cgrammar.py',1013),
('define',6,'p_define','ctypesgencore/parser/cgrammar.py',1014),
('define',6,'p_define','ctypesgencore/parser/cgrammar.py',1015),
('define',7,'p_define','ctypesgencore/parser/cgrammar.py',1016),
('define',3,'p_define_error','ctypesgencore/parser/cgrammar.py',1049),
('macro_parameter_list',1,'p_macro_parameter_list','ctypesgencore/parser/cgrammar.py',1078),
('macro_parameter_list',3,'p_macro_parameter_list','ctypesgencore/parser/cgrammar.py',1079),
]
|
"""
Author: Srayan Gangopadhyay
2020-08-06
met.no symbol names mapped to emoji
"""
symbols = {
'fog': '🌫',
'heavyrain': '🌧',
'heavyrainandthunder': '⛈',
'heavyrainshowers_day': '🌧',
'heavyrainshowers_night': '🌧',
'heavyrainshowers_polartwilight': '🌧',
'heavyrainshowersandthunder_day': '⛈',
'heavyrainshowersandthunder_night': '⛈',
'heavyrainshowersandthunder_polartwilight': '⛈',
'heavysleet': '🌨',
'heavysleetandthunder': '🌨',
'heavysleetshowers_day': '🌨',
'heavysleetshowers_night': '🌨',
'heavysleetshowers_polartwilight': '🌨',
'heavysleetshowersandthunder_day': '🌨',
'heavysleetshowersandthunder_night': '🌨',
'heavysleetshowersandthunder_polartwilight': '🌨',
'heavysnow': '🌨',
'heavysnowandthunder': '🌨',
'heavysnowshowers_day': '🌨',
'heavysnowshowers_night': '🌨',
'heavysnowshowers_polartwilight': '🌨',
'heavysnowshowersandthunder_day': '🌨',
'heavysnowshowersandthunder_night': '🌨',
'heavysnowshowersandthunder_polartwilight': '🌨',
'lightrain': '☔',
'lightrainandthunder': '⛈',
'lightrainshowers_day': '☔',
'lightrainshowers_night': '☔',
'lightrainshowers_polartwilight': '☔',
'lightrainshowersandthunder_day': '⛈',
'lightrainshowersandthunder_night': '⛈',
'lightrainshowersandthunder_polartwilight': '⛈',
'lightsleet': '❄',
'lightsleetandthunder': '⛈',
'lightsleetshowers_day': '❄',
'lightsleetshowers_night': '❄',
'lightsleetshowers_polartwilight': '❄',
'lightsnow': '🌨',
'lightsnowandthunder': '⛈',
'lightsnowshowers_day': '🌨',
'lightsnowshowers_night': '🌨',
'lightsnowshowers_polartwilight': '🌨',
'lightssleetshowersandthunder_day': '⛈',
'lightssleetshowersandthunder_night': '⛈',
'lightssleetshowersandthunder_polartwilight': '⛈',
'lightssnowshowersandthunder_day': '⛈',
'lightssnowshowersandthunder_night': '⛈',
'lightssnowshowersandthunder_polartwilight': '⛈',
'partlycloudy_day': '🌤',
'partlycloudy_night': '⛅',
'partlycloudy_polartwilight': '⛅',
'rain': '🌧',
'rainandthunder': '⛈',
'rainshowers_day': '🌧',
'rainshowers_night': '🌧',
'rainshowers_polartwilight': '🌧',
'rainshowersandthunder_day': '⛈',
'rainshowersandthunder_night': '⛈',
'rainshowersandthunder_polartwilight': '⛈',
'sleet': '🌨',
'sleetandthunder': '⛈',
'sleetshowers_day': '🌨',
'sleetshowers_night': '🌨',
'sleetshowers_polartwilight': '🌨',
'sleetshowersandthunder_day': '⛈',
'sleetshowersandthunder_night': '⛈',
'sleetshowersandthunder_polartwilight': '⛈',
'snow': '🌨',
'snowandthunder': '⛈',
'snowshowers_day': '🌨',
'snowshowers_night': '🌨',
'snowshowers_polartwilight': '🌨',
'snowshowersandthunder_day': '⛈',
'snowshowersandthunder_night': '⛈',
'snowshowersandthunder_polartwilight': '⛈',
'clearsky_day': '🌞',
'clearsky_night': '🌒',
'clearsky_polartwilight': '🌆',
'cloudy': '☁',
'fair_day': '🌞',
'fair_night': '🌒',
'fair_polartwilight': '🌆'
}
|
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# @author JourWon
# @date 2021/12/29
# @file pyIf.py
if __name__ == "__main__":
n = 10
if n < 0:
print(-1)
elif n == 0:
print(0)
else:
print(1) |
n=int(input())
s=input()
s=s.split(' ')
m=int(input())
v=0
p=0
b=input()
b=b.split(' ')
for x in range(0,m):
a=int(b[x])
for i in range(0,n):
if a==int(s[i]):
v=v+i+1
p=p+n-i
print(str(v)+' '+str(p)) |
# Uzd. Nr.3
num = int(input("Please Enter a number that you would like to check: ")) #input a number to check
if num > 1: # to exclude all numbers < 2, those are not prime numbers
for i in range(2, int(num**0.5)+1): #loop for checking the number (square root)
# same result will be ### for i in range(2, int(num/2)+1): ### devided by 2 - the simple way
if num % i == 0: #check if for the modulus of number from interpretator should be 0, if not than FALSE
print(f"{num} is not a prime, it divides by {i}")
break
else:
print(f" {num} is a prime number") #if number is > than 1, and is a prime
else:
print(f"{num} is not a prime number") #if number <= 1 than not a a prime |
class Solution:
def isAnagram(self, s: str, t: str) -> bool:
len1, len2 = len(s), len(t)
if len1 != len2:
return False
elif len1 == 1:
if s!= t:
return False
else:
return True
else:
dict1 = {}
dict2 = {}
for i, j in zip(s, t):
if i in dict1:
dict1[i] += 1
else:
dict1[i] = 1
if j in dict2:
dict2[j] += 1
else:
dict2[j] = 1
print(f"-----{dict1}----")
print(f"+++++{dict2}++++")
if dict2 == dict1:
return True
else:
return False
if __name__ == "__main__":
case1 = ["anagram", "nagaram"]
s = Solution()
s.isAnagram(case1[0], case1[1])
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.