content
stringlengths
7
1.05M
YEAR_IN_S = 31557600. GEV_IN_KEV = 1.e6 C_KMSEC = 299792.458 NUCLEON_MASS = 0.938272 # Nucleon mass in GeV P_MAGMOM = 2.793 # proton magnetic moment, PDG Live N_MAGMOM = -1.913 # neutron magnetic moment, PDG Live NUCLEAR_MASSES = { 'xenon': 122.298654871, 'germanium': 67.663731424, 'argon': 37.2113263068, 'silicon': 26.1614775455, 'sodium': 21.4140502327, 'iodine': 118.206437626, 'fluorine': 17.6969003039, 'he3': 3., 'helium': 4., 'nitrogen': 14., 'neon': 20., } # this is target nucleus mass in GeV: mT[GeV] = 0.9314941 * A[AMU] ELEMENT_INFO = {"xenon":{128:0.0192,129:0.2644,130:0.0408,131:0.2118,132:0.2689,134:0.1044,136:0.0887,'weight':131.1626},"germanium":{70:0.2084,72:0.2754,73:0.0773,74:0.3628,76:0.0761,'weight':72.6905},"iodine":{127:1.,'weight':127.},"sodium":{23:1.,'weight':23.},"silicon":{28:0.922,29:0.047,30:0.031,'weight':28.109},"fluorine":{19:1.,'weight':19.},"argon":{40:1.,'weight':40.},"helium":{4:1.,'weight':4.},"he3":{3:1.,'weight':3.},"nitrogen":{14:1.,'weight':14.},"neon":{20:1.,'weight':20.}}
class FrameworkTextComposition(TextComposition): """ Represents a composition during the text input events of a System.Windows.Controls.TextBox. """ def Complete(self): """ Complete(self: FrameworkTextComposition) Finalizes the composition. """ pass CompositionLength=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the length of the current composition in Unicode symbols. Get: CompositionLength(self: FrameworkTextComposition) -> int """ CompositionOffset=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the position at which the composition text occurs in the System.Windows.Controls.TextBox. Get: CompositionOffset(self: FrameworkTextComposition) -> int """ ResultLength=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the length of the finalized text in Unicode symbols when the System.Windows.Input.TextCompositionManager.TextInput event occurs. Get: ResultLength(self: FrameworkTextComposition) -> int """ ResultOffset=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the offset of the finalized text when the System.Windows.Input.TextCompositionManager.TextInput event occurs. Get: ResultOffset(self: FrameworkTextComposition) -> int """
def get_version(testbed: str): path = [e for e in testbed.split(" ") if e.find("/") > -1][0] full_name = path.split("/")[-1] return full_name.replace(".jar", "") def parse_engine_name(testbed: str): return get_version(testbed).split("-")[0]
def predict(text, with_neu=True): # requires string input. start_at = time.time() x_test = pad_sequences(tokenizer.texts_to_sequences([text]), maxlen=seq_len) score = model.predict([x_test])[0] label = decode_sentiment(score, with_neu=with_neu) score = float(score) return {print(f"label: {label}, score: {score}, calculation duration: {time.time()-start_at}.")} print('Welcome!') print('Script for post toxicity estimation is evaluated. Enter your text below for sentiment estimation and press ENTER.') post_text = str(input('Your text: ')) print(predict(post_text)) print(f'In terminal type predict(text) and pass string to it for the next prediction. Type file_sanalysis(filepath) to make several predictions. Local time: {datetime.datetime.now().time()}') def file_sanalysis(filepath): file = open(filepath, 'rt') c = 0 n = 0 processed_file = file.readlines() for text in processed_file: n += 1 print(n,'', text) print(predict(text)) c += 1 print(f'\n') print(f'Total comments analyzed: {c}') file_sanalysis('../comment.txt')
def get_session_attributes(previous_intent = "", previous_intent_attributes = "", requested_value = "", previous_requested_value = "", questions_urls = [], question_now_id = 0, question_name = "", answers_ids = [], answer_now_id = 0, comments_ids = [], comment_now_id = 0, complete_answer = [], complete_code = [], complete_code_now_id = 0): sessionAttributes = {} sessionAttributes["questions_urls"] = questions_urls sessionAttributes["question_now_id"] = question_now_id sessionAttributes["question_name"] = question_name sessionAttributes["answers_ids"] = answers_ids sessionAttributes["answer_now_id"] = answer_now_id sessionAttributes["comments_ids"] = comments_ids sessionAttributes["comment_now_id"] = comment_now_id sessionAttributes["previous_intent"] = previous_intent sessionAttributes["previous_intent_attributes"] = previous_intent_attributes sessionAttributes["complete_answer"] = complete_answer sessionAttributes["complete_code"] = complete_code sessionAttributes["complete_code_now_id"] = complete_code_now_id sessionAttributes["requested_value"] = requested_value sessionAttributes["previous_requested_value"] = previous_requested_value return sessionAttributes def get_outputSpeech(outputSpeech_type, outputSpeech_text): outputSpeech = {} outputSpeech["type"] = outputSpeech_type outputSpeech["text"] = outputSpeech_text return outputSpeech def get_card(card_type, card_title, card_content, card_text): card = {} card["type"] = card_type card["title"] = card_title card["content"] = card_content card["text"] = card_text return card def get_repromt(repromt_outputSpeech_type, repromt_outputSpeech_text): reprompt = {} reprompt["outputSpeech"] = get_outputSpeech(repromt_outputSpeech_type, repromt_outputSpeech_text) return reprompt def get_response(outputSpeech_text, outputSpeech_type = "PlainText", card_type = "Standard", card_title = "", card_content = "", card_text = "", repromt_outputSpeech_type = "PlainText", repromt_outputSpeech_text = "", shouldEndSession = True): response = {} response["outputSpeech"] = get_outputSpeech(outputSpeech_type, outputSpeech_text) if card_title != "": response["card"] = get_card(card_type, card_title, card_content, card_text) if repromt_outputSpeech_text != "": response["reprompt"] = get_repromt(repromt_outputSpeech_type, repromt_outputSpeech_text) response["shouldEndSession"] = shouldEndSession return response def give_response(response, session_attributes = {}): lambda_response = {} lambda_response["version"] = "string" if session_attributes != {}: lambda_response["sessionAttributes"] = session_attributes lambda_response["response"] = response return lambda_response
# Definición de parámetros de configuración PeriodoDePoleo = 30000 # Milisegundos entre cada poleo de mediciones AlmacenamientoLocal = False # Define si los datos se alamacenarán localmente o no Compresion = False # Define si los datos que se almacenarán localmente serán comprimidos EnvioAlaNube = True # Define si los datos serán enviados a Internet a traves del protocolo MQTT TxRxPins = [33, 19] # Los pines donde está conectado el sensor [33, 19] para cancay a1, LogEnTerminal = False # Habilita el envío de log a la consola repl # Esta es solo una línea para probar el OTA # Seguimos probando el OTA
def bag_of_words(text): """Returns bag-of-words representation of the input text. Args: text: A string containing the text. Returns: A dictionary of strings to integers. """ bag = {} for word in text.lower().split(): bag[word] = bag.get(word, 0) + 1 return bag
STATS = [ { "num_node_expansions": 0, "search_time": 0.0929848, "total_time": 0.206795, "plan_length": 209, "plan_cost": 209, "objects_used": 145, "objects_total": 253, "neural_net_time": 0.09392738342285156, "num_replanning_steps": 0, "wall_time": 0.9533143043518066 }, { "num_node_expansions": 0, "search_time": 0.0644765, "total_time": 0.15406, "plan_length": 178, "plan_cost": 178, "objects_used": 139, "objects_total": 253, "neural_net_time": 0.0441431999206543, "num_replanning_steps": 0, "wall_time": 0.7657253742218018 }, { "num_node_expansions": 0, "search_time": 0.106279, "total_time": 0.234601, "plan_length": 199, "plan_cost": 199, "objects_used": 166, "objects_total": 359, "neural_net_time": 0.0629584789276123, "num_replanning_steps": 0, "wall_time": 1.0160789489746094 }, { "num_node_expansions": 0, "search_time": 0.108802, "total_time": 0.238978, "plan_length": 242, "plan_cost": 242, "objects_used": 167, "objects_total": 359, "neural_net_time": 0.06333541870117188, "num_replanning_steps": 0, "wall_time": 1.0204391479492188 }, { "num_node_expansions": 0, "search_time": 0.0803484, "total_time": 0.181895, "plan_length": 181, "plan_cost": 181, "objects_used": 141, "objects_total": 378, "neural_net_time": 0.06571578979492188, "num_replanning_steps": 0, "wall_time": 0.8968064785003662 }, { "num_node_expansions": 0, "search_time": 0.142677, "total_time": 0.253942, "plan_length": 207, "plan_cost": 207, "objects_used": 135, "objects_total": 378, "neural_net_time": 0.06601405143737793, "num_replanning_steps": 0, "wall_time": 0.9965448379516602 }, { "num_node_expansions": 0, "search_time": 0.11895, "total_time": 0.255997, "plan_length": 167, "plan_cost": 167, "objects_used": 125, "objects_total": 255, "neural_net_time": 0.04192996025085449, "num_replanning_steps": 1, "wall_time": 1.385655164718628 }, { "num_node_expansions": 0, "search_time": 0.157901, "total_time": 0.30572, "plan_length": 202, "plan_cost": 202, "objects_used": 126, "objects_total": 255, "neural_net_time": 0.04552125930786133, "num_replanning_steps": 0, "wall_time": 1.1248347759246826 }, { "num_node_expansions": 0, "search_time": 0.0805039, "total_time": 0.176183, "plan_length": 170, "plan_cost": 170, "objects_used": 109, "objects_total": 175, "neural_net_time": 0.03158974647521973, "num_replanning_steps": 5, "wall_time": 2.148319959640503 }, { "num_node_expansions": 0, "search_time": 0.0587677, "total_time": 0.173702, "plan_length": 165, "plan_cost": 165, "objects_used": 106, "objects_total": 175, "neural_net_time": 0.03000664710998535, "num_replanning_steps": 0, "wall_time": 0.9106862545013428 }, { "num_node_expansions": 0, "search_time": 0.0402155, "total_time": 0.147669, "plan_length": 127, "plan_cost": 127, "objects_used": 111, "objects_total": 249, "neural_net_time": 0.07640314102172852, "num_replanning_steps": 0, "wall_time": 0.922156572341919 }, { "num_node_expansions": 0, "search_time": 0.101752, "total_time": 0.19686, "plan_length": 150, "plan_cost": 150, "objects_used": 105, "objects_total": 249, "neural_net_time": 0.07982420921325684, "num_replanning_steps": 0, "wall_time": 0.9400062561035156 }, { "num_node_expansions": 0, "search_time": 0.0719713, "total_time": 0.137339, "plan_length": 228, "plan_cost": 228, "objects_used": 107, "objects_total": 197, "neural_net_time": 0.05859208106994629, "num_replanning_steps": 0, "wall_time": 0.7167832851409912 }, { "num_node_expansions": 0, "search_time": 0.0929935, "total_time": 0.190003, "plan_length": 209, "plan_cost": 209, "objects_used": 114, "objects_total": 197, "neural_net_time": 0.03446316719055176, "num_replanning_steps": 0, "wall_time": 0.8573403358459473 }, { "num_node_expansions": 0, "search_time": 0.079714, "total_time": 0.185505, "plan_length": 173, "plan_cost": 173, "objects_used": 103, "objects_total": 199, "neural_net_time": 0.03453779220581055, "num_replanning_steps": 0, "wall_time": 0.8996772766113281 }, { "num_node_expansions": 0, "search_time": 0.0926601, "total_time": 0.21608, "plan_length": 169, "plan_cost": 169, "objects_used": 105, "objects_total": 199, "neural_net_time": 0.05138850212097168, "num_replanning_steps": 0, "wall_time": 0.988412618637085 }, { "num_node_expansions": 0, "search_time": 0.153958, "total_time": 0.230492, "plan_length": 219, "plan_cost": 219, "objects_used": 170, "objects_total": 264, "neural_net_time": 0.04536151885986328, "num_replanning_steps": 0, "wall_time": 0.8006608486175537 }, { "num_node_expansions": 0, "search_time": 0.0818528, "total_time": 0.188787, "plan_length": 220, "plan_cost": 220, "objects_used": 177, "objects_total": 264, "neural_net_time": 0.04852485656738281, "num_replanning_steps": 0, "wall_time": 0.8596897125244141 }, { "num_node_expansions": 0, "search_time": 0.0492729, "total_time": 0.125523, "plan_length": 179, "plan_cost": 179, "objects_used": 125, "objects_total": 226, "neural_net_time": 0.04153084754943848, "num_replanning_steps": 2, "wall_time": 1.2470283508300781 }, { "num_node_expansions": 0, "search_time": 0.0572884, "total_time": 0.12549, "plan_length": 210, "plan_cost": 210, "objects_used": 121, "objects_total": 226, "neural_net_time": 0.03936648368835449, "num_replanning_steps": 0, "wall_time": 0.6882929801940918 }, { "num_node_expansions": 0, "search_time": 0.155052, "total_time": 0.264927, "plan_length": 157, "plan_cost": 157, "objects_used": 126, "objects_total": 271, "neural_net_time": 0.04673433303833008, "num_replanning_steps": 0, "wall_time": 0.9777631759643555 }, { "num_node_expansions": 0, "search_time": 0.0738639, "total_time": 0.171292, "plan_length": 178, "plan_cost": 178, "objects_used": 125, "objects_total": 271, "neural_net_time": 0.05072212219238281, "num_replanning_steps": 0, "wall_time": 0.8584322929382324 }, { "num_node_expansions": 0, "search_time": 0.068614, "total_time": 0.165012, "plan_length": 178, "plan_cost": 178, "objects_used": 117, "objects_total": 254, "neural_net_time": 0.046701908111572266, "num_replanning_steps": 0, "wall_time": 0.8422744274139404 }, { "num_node_expansions": 0, "search_time": 0.0784991, "total_time": 0.185713, "plan_length": 189, "plan_cost": 189, "objects_used": 118, "objects_total": 254, "neural_net_time": 0.045041799545288086, "num_replanning_steps": 0, "wall_time": 0.910815954208374 }, { "num_node_expansions": 0, "search_time": 0.0377378, "total_time": 0.0919111, "plan_length": 155, "plan_cost": 155, "objects_used": 108, "objects_total": 168, "neural_net_time": 0.02987837791442871, "num_replanning_steps": 0, "wall_time": 0.5988538265228271 }, { "num_node_expansions": 0, "search_time": 0.05612, "total_time": 0.117127, "plan_length": 156, "plan_cost": 156, "objects_used": 110, "objects_total": 168, "neural_net_time": 0.029909610748291016, "num_replanning_steps": 0, "wall_time": 0.6504032611846924 }, { "num_node_expansions": 0, "search_time": 0.118899, "total_time": 0.236672, "plan_length": 187, "plan_cost": 187, "objects_used": 117, "objects_total": 283, "neural_net_time": 0.04805254936218262, "num_replanning_steps": 0, "wall_time": 1.0010144710540771 }, { "num_node_expansions": 0, "search_time": 0.0412124, "total_time": 0.148293, "plan_length": 137, "plan_cost": 137, "objects_used": 117, "objects_total": 283, "neural_net_time": 0.05118083953857422, "num_replanning_steps": 0, "wall_time": 0.8539888858795166 }, { "num_node_expansions": 0, "search_time": 0.130546, "total_time": 0.284641, "plan_length": 208, "plan_cost": 208, "objects_used": 152, "objects_total": 278, "neural_net_time": 0.051322221755981445, "num_replanning_steps": 0, "wall_time": 1.119509220123291 }, { "num_node_expansions": 0, "search_time": 0.1676, "total_time": 0.278637, "plan_length": 189, "plan_cost": 189, "objects_used": 144, "objects_total": 278, "neural_net_time": 0.052797555923461914, "num_replanning_steps": 0, "wall_time": 0.9699740409851074 }, { "num_node_expansions": 0, "search_time": 0.0559687, "total_time": 0.152069, "plan_length": 162, "plan_cost": 162, "objects_used": 145, "objects_total": 316, "neural_net_time": 0.05460691452026367, "num_replanning_steps": 0, "wall_time": 0.822706937789917 }, { "num_node_expansions": 0, "search_time": 0.0838116, "total_time": 0.182175, "plan_length": 186, "plan_cost": 186, "objects_used": 144, "objects_total": 316, "neural_net_time": 0.05571866035461426, "num_replanning_steps": 0, "wall_time": 0.8658485412597656 }, { "num_node_expansions": 0, "search_time": 0.0603922, "total_time": 0.163295, "plan_length": 165, "plan_cost": 165, "objects_used": 117, "objects_total": 254, "neural_net_time": 0.04593300819396973, "num_replanning_steps": 0, "wall_time": 0.843583345413208 }, { "num_node_expansions": 0, "search_time": 0.0459874, "total_time": 0.13095, "plan_length": 159, "plan_cost": 159, "objects_used": 115, "objects_total": 254, "neural_net_time": 0.04458308219909668, "num_replanning_steps": 0, "wall_time": 0.7566969394683838 }, { "num_node_expansions": 0, "search_time": 0.222052, "total_time": 0.382279, "plan_length": 259, "plan_cost": 259, "objects_used": 139, "objects_total": 238, "neural_net_time": 0.04237771034240723, "num_replanning_steps": 0, "wall_time": 1.23612642288208 }, { "num_node_expansions": 0, "search_time": 0.19537, "total_time": 0.32901, "plan_length": 246, "plan_cost": 246, "objects_used": 133, "objects_total": 238, "neural_net_time": 0.042508602142333984, "num_replanning_steps": 0, "wall_time": 1.1203975677490234 }, { "num_node_expansions": 0, "search_time": 0.135153, "total_time": 0.268125, "plan_length": 214, "plan_cost": 214, "objects_used": 149, "objects_total": 343, "neural_net_time": 0.059821367263793945, "num_replanning_steps": 0, "wall_time": 1.05523681640625 }, { "num_node_expansions": 0, "search_time": 0.103736, "total_time": 0.220218, "plan_length": 257, "plan_cost": 257, "objects_used": 147, "objects_total": 343, "neural_net_time": 0.06213259696960449, "num_replanning_steps": 0, "wall_time": 0.9649918079376221 }, { "num_node_expansions": 0, "search_time": 0.0568394, "total_time": 0.159339, "plan_length": 142, "plan_cost": 142, "objects_used": 110, "objects_total": 222, "neural_net_time": 0.03833651542663574, "num_replanning_steps": 0, "wall_time": 0.8489890098571777 }, { "num_node_expansions": 0, "search_time": 0.0806894, "total_time": 0.189079, "plan_length": 188, "plan_cost": 188, "objects_used": 110, "objects_total": 222, "neural_net_time": 0.03789353370666504, "num_replanning_steps": 0, "wall_time": 0.9437530040740967 }, { "num_node_expansions": 0, "search_time": 0.151005, "total_time": 0.222475, "plan_length": 190, "plan_cost": 190, "objects_used": 101, "objects_total": 250, "neural_net_time": 0.04339957237243652, "num_replanning_steps": 0, "wall_time": 0.8491106033325195 }, { "num_node_expansions": 0, "search_time": 0.0478454, "total_time": 0.150686, "plan_length": 142, "plan_cost": 142, "objects_used": 110, "objects_total": 250, "neural_net_time": 0.07555818557739258, "num_replanning_steps": 0, "wall_time": 0.8761661052703857 }, { "num_node_expansions": 0, "search_time": 0.123577, "total_time": 0.257152, "plan_length": 204, "plan_cost": 204, "objects_used": 130, "objects_total": 269, "neural_net_time": 0.04827475547790527, "num_replanning_steps": 0, "wall_time": 1.0524470806121826 }, { "num_node_expansions": 0, "search_time": 0.0871824, "total_time": 0.221488, "plan_length": 210, "plan_cost": 210, "objects_used": 129, "objects_total": 269, "neural_net_time": 0.04716014862060547, "num_replanning_steps": 0, "wall_time": 1.0055983066558838 }, { "num_node_expansions": 0, "search_time": 0.0819503, "total_time": 0.208188, "plan_length": 159, "plan_cost": 159, "objects_used": 146, "objects_total": 367, "neural_net_time": 0.06378006935119629, "num_replanning_steps": 0, "wall_time": 0.9702720642089844 }, { "num_node_expansions": 0, "search_time": 0.268373, "total_time": 0.452797, "plan_length": 266, "plan_cost": 266, "objects_used": 160, "objects_total": 367, "neural_net_time": 0.06560254096984863, "num_replanning_steps": 5, "wall_time": 3.011348009109497 }, { "num_node_expansions": 0, "search_time": 0.0941831, "total_time": 0.221279, "plan_length": 178, "plan_cost": 178, "objects_used": 127, "objects_total": 263, "neural_net_time": 0.04631924629211426, "num_replanning_steps": 0, "wall_time": 1.009706735610962 }, { "num_node_expansions": 0, "search_time": 0.0539835, "total_time": 0.119023, "plan_length": 171, "plan_cost": 171, "objects_used": 116, "objects_total": 263, "neural_net_time": 0.04792213439941406, "num_replanning_steps": 0, "wall_time": 0.6958885192871094 }, { "num_node_expansions": 0, "search_time": 0.138429, "total_time": 0.26899, "plan_length": 228, "plan_cost": 228, "objects_used": 132, "objects_total": 307, "neural_net_time": 0.05261349678039551, "num_replanning_steps": 0, "wall_time": 1.0931148529052734 }, { "num_node_expansions": 0, "search_time": 0.122325, "total_time": 0.287355, "plan_length": 191, "plan_cost": 191, "objects_used": 138, "objects_total": 307, "neural_net_time": 0.052745819091796875, "num_replanning_steps": 0, "wall_time": 1.2211828231811523 }, { "num_node_expansions": 0, "search_time": 0.0702098, "total_time": 0.161979, "plan_length": 152, "plan_cost": 152, "objects_used": 109, "objects_total": 186, "neural_net_time": 0.0562443733215332, "num_replanning_steps": 0, "wall_time": 0.873492956161499 }, { "num_node_expansions": 0, "search_time": 0.0607624, "total_time": 0.168418, "plan_length": 133, "plan_cost": 133, "objects_used": 111, "objects_total": 186, "neural_net_time": 0.0317075252532959, "num_replanning_steps": 0, "wall_time": 0.8738946914672852 }, { "num_node_expansions": 0, "search_time": 0.105255, "total_time": 0.232733, "plan_length": 196, "plan_cost": 196, "objects_used": 137, "objects_total": 425, "neural_net_time": 0.0749213695526123, "num_replanning_steps": 0, "wall_time": 1.0104260444641113 }, { "num_node_expansions": 0, "search_time": 0.161776, "total_time": 0.321529, "plan_length": 239, "plan_cost": 239, "objects_used": 143, "objects_total": 425, "neural_net_time": 0.07435131072998047, "num_replanning_steps": 0, "wall_time": 1.2037241458892822 }, { "num_node_expansions": 0, "search_time": 0.10898, "total_time": 0.20831, "plan_length": 231, "plan_cost": 231, "objects_used": 161, "objects_total": 452, "neural_net_time": 0.08123517036437988, "num_replanning_steps": 0, "wall_time": 0.9305424690246582 }, { "num_node_expansions": 0, "search_time": 0.0706434, "total_time": 0.194282, "plan_length": 205, "plan_cost": 205, "objects_used": 162, "objects_total": 452, "neural_net_time": 0.08131527900695801, "num_replanning_steps": 0, "wall_time": 0.9569718837738037 }, { "num_node_expansions": 0, "search_time": 0.0423357, "total_time": 0.118826, "plan_length": 167, "plan_cost": 167, "objects_used": 120, "objects_total": 185, "neural_net_time": 0.03236651420593262, "num_replanning_steps": 0, "wall_time": 0.7566854953765869 }, { "num_node_expansions": 0, "search_time": 0.0918883, "total_time": 0.182959, "plan_length": 186, "plan_cost": 186, "objects_used": 123, "objects_total": 185, "neural_net_time": 0.032120704650878906, "num_replanning_steps": 0, "wall_time": 0.817650556564331 }, { "num_node_expansions": 0, "search_time": 0.0979132, "total_time": 0.224043, "plan_length": 220, "plan_cost": 220, "objects_used": 118, "objects_total": 294, "neural_net_time": 0.05071663856506348, "num_replanning_steps": 0, "wall_time": 1.0140111446380615 }, { "num_node_expansions": 0, "search_time": 0.105051, "total_time": 0.223332, "plan_length": 205, "plan_cost": 205, "objects_used": 123, "objects_total": 294, "neural_net_time": 0.05296945571899414, "num_replanning_steps": 0, "wall_time": 1.0141093730926514 }, { "num_node_expansions": 0, "search_time": 0.134815, "total_time": 0.264608, "plan_length": 179, "plan_cost": 179, "objects_used": 134, "objects_total": 239, "neural_net_time": 0.04209327697753906, "num_replanning_steps": 0, "wall_time": 1.0186936855316162 }, { "num_node_expansions": 0, "search_time": 0.0863073, "total_time": 0.194703, "plan_length": 216, "plan_cost": 216, "objects_used": 128, "objects_total": 239, "neural_net_time": 0.04327273368835449, "num_replanning_steps": 0, "wall_time": 0.8725950717926025 }, { "num_node_expansions": 0, "search_time": 0.0789072, "total_time": 0.165693, "plan_length": 192, "plan_cost": 192, "objects_used": 137, "objects_total": 441, "neural_net_time": 0.08032083511352539, "num_replanning_steps": 0, "wall_time": 0.8416461944580078 }, { "num_node_expansions": 0, "search_time": 0.125951, "total_time": 0.252282, "plan_length": 216, "plan_cost": 216, "objects_used": 142, "objects_total": 441, "neural_net_time": 0.07857489585876465, "num_replanning_steps": 0, "wall_time": 1.0415000915527344 }, { "num_node_expansions": 0, "search_time": 0.0625197, "total_time": 0.144617, "plan_length": 215, "plan_cost": 215, "objects_used": 140, "objects_total": 322, "neural_net_time": 0.05614805221557617, "num_replanning_steps": 0, "wall_time": 0.7807624340057373 }, { "num_node_expansions": 0, "search_time": 0.171375, "total_time": 0.314981, "plan_length": 212, "plan_cost": 212, "objects_used": 151, "objects_total": 322, "neural_net_time": 0.05498790740966797, "num_replanning_steps": 0, "wall_time": 1.1263976097106934 }, { "num_node_expansions": 0, "search_time": 0.0524852, "total_time": 0.166942, "plan_length": 138, "plan_cost": 138, "objects_used": 112, "objects_total": 232, "neural_net_time": 0.04028916358947754, "num_replanning_steps": 0, "wall_time": 0.8710212707519531 }, { "num_node_expansions": 0, "search_time": 0.103607, "total_time": 0.198748, "plan_length": 169, "plan_cost": 169, "objects_used": 106, "objects_total": 232, "neural_net_time": 0.039990901947021484, "num_replanning_steps": 0, "wall_time": 0.8681793212890625 }, { "num_node_expansions": 0, "search_time": 0.0643245, "total_time": 0.143637, "plan_length": 165, "plan_cost": 165, "objects_used": 117, "objects_total": 302, "neural_net_time": 0.051032304763793945, "num_replanning_steps": 0, "wall_time": 0.7398231029510498 }, { "num_node_expansions": 0, "search_time": 0.0679649, "total_time": 0.169156, "plan_length": 179, "plan_cost": 179, "objects_used": 121, "objects_total": 302, "neural_net_time": 0.050397396087646484, "num_replanning_steps": 0, "wall_time": 0.8502187728881836 }, { "num_node_expansions": 0, "search_time": 0.0490003, "total_time": 0.11576, "plan_length": 159, "plan_cost": 159, "objects_used": 119, "objects_total": 221, "neural_net_time": 0.039055585861206055, "num_replanning_steps": 0, "wall_time": 0.6635472774505615 }, { "num_node_expansions": 0, "search_time": 0.131966, "total_time": 0.200885, "plan_length": 204, "plan_cost": 204, "objects_used": 118, "objects_total": 221, "neural_net_time": 0.04007387161254883, "num_replanning_steps": 0, "wall_time": 0.7671856880187988 }, { "num_node_expansions": 0, "search_time": 0.0901247, "total_time": 0.188966, "plan_length": 189, "plan_cost": 189, "objects_used": 118, "objects_total": 263, "neural_net_time": 0.04721832275390625, "num_replanning_steps": 0, "wall_time": 0.9165947437286377 }, { "num_node_expansions": 0, "search_time": 0.0420897, "total_time": 0.138097, "plan_length": 129, "plan_cost": 129, "objects_used": 118, "objects_total": 263, "neural_net_time": 0.04863762855529785, "num_replanning_steps": 0, "wall_time": 0.8551199436187744 }, { "num_node_expansions": 0, "search_time": 0.0570443, "total_time": 0.116505, "plan_length": 144, "plan_cost": 144, "objects_used": 89, "objects_total": 110, "neural_net_time": 0.01940011978149414, "num_replanning_steps": 0, "wall_time": 0.6247892379760742 }, { "num_node_expansions": 0, "search_time": 0.0458228, "total_time": 0.118598, "plan_length": 159, "plan_cost": 159, "objects_used": 92, "objects_total": 110, "neural_net_time": 0.020870208740234375, "num_replanning_steps": 0, "wall_time": 0.6696300506591797 }, { "num_node_expansions": 0, "search_time": 0.0455459, "total_time": 0.170986, "plan_length": 156, "plan_cost": 156, "objects_used": 171, "objects_total": 398, "neural_net_time": 0.07069921493530273, "num_replanning_steps": 0, "wall_time": 0.9098761081695557 }, { "num_node_expansions": 0, "search_time": 0.178719, "total_time": 0.333981, "plan_length": 273, "plan_cost": 273, "objects_used": 176, "objects_total": 398, "neural_net_time": 0.0706338882446289, "num_replanning_steps": 0, "wall_time": 1.2203617095947266 }, { "num_node_expansions": 0, "search_time": 0.0924526, "total_time": 0.181018, "plan_length": 240, "plan_cost": 240, "objects_used": 141, "objects_total": 299, "neural_net_time": 0.05379128456115723, "num_replanning_steps": 0, "wall_time": 0.8276622295379639 }, { "num_node_expansions": 0, "search_time": 0.0828678, "total_time": 0.159347, "plan_length": 208, "plan_cost": 208, "objects_used": 136, "objects_total": 299, "neural_net_time": 0.05095386505126953, "num_replanning_steps": 0, "wall_time": 0.7490129470825195 }, { "num_node_expansions": 0, "search_time": 0.0452422, "total_time": 0.114662, "plan_length": 171, "plan_cost": 171, "objects_used": 87, "objects_total": 129, "neural_net_time": 0.022167205810546875, "num_replanning_steps": 0, "wall_time": 0.6578855514526367 }, { "num_node_expansions": 0, "search_time": 0.0585229, "total_time": 0.133924, "plan_length": 168, "plan_cost": 168, "objects_used": 90, "objects_total": 129, "neural_net_time": 0.022145986557006836, "num_replanning_steps": 0, "wall_time": 0.7226030826568604 }, { "num_node_expansions": 0, "search_time": 0.0916457, "total_time": 0.221311, "plan_length": 171, "plan_cost": 171, "objects_used": 131, "objects_total": 298, "neural_net_time": 0.05045294761657715, "num_replanning_steps": 0, "wall_time": 1.0133440494537354 }, { "num_node_expansions": 0, "search_time": 0.0623154, "total_time": 0.161016, "plan_length": 178, "plan_cost": 178, "objects_used": 125, "objects_total": 298, "neural_net_time": 0.05021095275878906, "num_replanning_steps": 0, "wall_time": 0.8984758853912354 }, { "num_node_expansions": 0, "search_time": 0.0358807, "total_time": 0.121069, "plan_length": 116, "plan_cost": 116, "objects_used": 107, "objects_total": 198, "neural_net_time": 0.03419780731201172, "num_replanning_steps": 0, "wall_time": 0.730410099029541 }, { "num_node_expansions": 0, "search_time": 0.0472072, "total_time": 0.13457, "plan_length": 143, "plan_cost": 143, "objects_used": 103, "objects_total": 198, "neural_net_time": 0.03411746025085449, "num_replanning_steps": 0, "wall_time": 0.7624046802520752 }, { "num_node_expansions": 0, "search_time": 0.052692, "total_time": 0.180943, "plan_length": 153, "plan_cost": 153, "objects_used": 123, "objects_total": 249, "neural_net_time": 0.0444490909576416, "num_replanning_steps": 0, "wall_time": 1.0244402885437012 }, { "num_node_expansions": 0, "search_time": 0.075898, "total_time": 0.196162, "plan_length": 180, "plan_cost": 180, "objects_used": 123, "objects_total": 249, "neural_net_time": 0.04358696937561035, "num_replanning_steps": 0, "wall_time": 0.916325569152832 }, { "num_node_expansions": 0, "search_time": 0.109635, "total_time": 0.25776, "plan_length": 204, "plan_cost": 204, "objects_used": 129, "objects_total": 242, "neural_net_time": 0.043290138244628906, "num_replanning_steps": 0, "wall_time": 1.0722479820251465 }, { "num_node_expansions": 0, "search_time": 0.0918233, "total_time": 0.190336, "plan_length": 148, "plan_cost": 148, "objects_used": 122, "objects_total": 242, "neural_net_time": 0.04327988624572754, "num_replanning_steps": 0, "wall_time": 0.8662850856781006 }, { "num_node_expansions": 0, "search_time": 0.0500598, "total_time": 0.130817, "plan_length": 151, "plan_cost": 151, "objects_used": 99, "objects_total": 181, "neural_net_time": 0.032167673110961914, "num_replanning_steps": 0, "wall_time": 0.7324697971343994 }, { "num_node_expansions": 0, "search_time": 0.104269, "total_time": 0.21618, "plan_length": 171, "plan_cost": 171, "objects_used": 104, "objects_total": 181, "neural_net_time": 0.031090497970581055, "num_replanning_steps": 0, "wall_time": 0.9418821334838867 }, { "num_node_expansions": 0, "search_time": 0.318445, "total_time": 0.389018, "plan_length": 180, "plan_cost": 180, "objects_used": 97, "objects_total": 152, "neural_net_time": 0.02628469467163086, "num_replanning_steps": 0, "wall_time": 0.9369549751281738 }, { "num_node_expansions": 0, "search_time": 0.0519396, "total_time": 0.114015, "plan_length": 148, "plan_cost": 148, "objects_used": 94, "objects_total": 152, "neural_net_time": 0.026342153549194336, "num_replanning_steps": 0, "wall_time": 0.6257641315460205 }, { "num_node_expansions": 0, "search_time": 0.0752088, "total_time": 0.143422, "plan_length": 192, "plan_cost": 192, "objects_used": 126, "objects_total": 306, "neural_net_time": 0.05185842514038086, "num_replanning_steps": 0, "wall_time": 0.7288417816162109 }, { "num_node_expansions": 0, "search_time": 0.034485, "total_time": 0.106152, "plan_length": 151, "plan_cost": 151, "objects_used": 126, "objects_total": 306, "neural_net_time": 0.05185699462890625, "num_replanning_steps": 0, "wall_time": 0.6879549026489258 }, { "num_node_expansions": 0, "search_time": 0.136146, "total_time": 0.293922, "plan_length": 194, "plan_cost": 194, "objects_used": 137, "objects_total": 252, "neural_net_time": 0.04554438591003418, "num_replanning_steps": 0, "wall_time": 1.176285982131958 }, { "num_node_expansions": 0, "search_time": 0.110748, "total_time": 0.231414, "plan_length": 202, "plan_cost": 202, "objects_used": 129, "objects_total": 252, "neural_net_time": 0.0443422794342041, "num_replanning_steps": 0, "wall_time": 0.9532647132873535 }, { "num_node_expansions": 0, "search_time": 0.0635986, "total_time": 0.207597, "plan_length": 178, "plan_cost": 178, "objects_used": 160, "objects_total": 590, "neural_net_time": 0.11240124702453613, "num_replanning_steps": 0, "wall_time": 1.0796713829040527 }, { "num_node_expansions": 0, "search_time": 0.115994, "total_time": 0.2062, "plan_length": 222, "plan_cost": 222, "objects_used": 156, "objects_total": 590, "neural_net_time": 0.10931205749511719, "num_replanning_steps": 0, "wall_time": 0.948901891708374 }, { "num_node_expansions": 0, "search_time": 0.0546317, "total_time": 0.139553, "plan_length": 127, "plan_cost": 127, "objects_used": 98, "objects_total": 137, "neural_net_time": 0.024482250213623047, "num_replanning_steps": 0, "wall_time": 0.7495617866516113 }, { "num_node_expansions": 0, "search_time": 0.04194, "total_time": 0.126749, "plan_length": 153, "plan_cost": 153, "objects_used": 96, "objects_total": 137, "neural_net_time": 0.022912263870239258, "num_replanning_steps": 0, "wall_time": 0.7276170253753662 }, { "num_node_expansions": 0, "search_time": 0.0657196, "total_time": 0.151708, "plan_length": 185, "plan_cost": 185, "objects_used": 108, "objects_total": 194, "neural_net_time": 0.03308534622192383, "num_replanning_steps": 0, "wall_time": 0.7719326019287109 }, { "num_node_expansions": 0, "search_time": 0.0385118, "total_time": 0.112582, "plan_length": 142, "plan_cost": 142, "objects_used": 105, "objects_total": 194, "neural_net_time": 0.03346872329711914, "num_replanning_steps": 0, "wall_time": 0.6850829124450684 }, { "num_node_expansions": 0, "search_time": 0.12478, "total_time": 0.209107, "plan_length": 218, "plan_cost": 218, "objects_used": 124, "objects_total": 273, "neural_net_time": 0.0484766960144043, "num_replanning_steps": 0, "wall_time": 0.8329904079437256 }, { "num_node_expansions": 0, "search_time": 0.0934944, "total_time": 0.175708, "plan_length": 188, "plan_cost": 188, "objects_used": 124, "objects_total": 273, "neural_net_time": 0.04935503005981445, "num_replanning_steps": 0, "wall_time": 0.8079173564910889 }, { "num_node_expansions": 0, "search_time": 0.0576064, "total_time": 0.15922, "plan_length": 136, "plan_cost": 136, "objects_used": 112, "objects_total": 252, "neural_net_time": 0.050174713134765625, "num_replanning_steps": 0, "wall_time": 0.8631553649902344 }, { "num_node_expansions": 0, "search_time": 0.0809324, "total_time": 0.16812, "plan_length": 193, "plan_cost": 193, "objects_used": 108, "objects_total": 252, "neural_net_time": 0.04494309425354004, "num_replanning_steps": 0, "wall_time": 0.8042213916778564 }, { "num_node_expansions": 0, "search_time": 0.150789, "total_time": 0.277772, "plan_length": 193, "plan_cost": 193, "objects_used": 130, "objects_total": 342, "neural_net_time": 0.05874204635620117, "num_replanning_steps": 0, "wall_time": 1.0789546966552734 }, { "num_node_expansions": 0, "search_time": 0.137949, "total_time": 0.286343, "plan_length": 244, "plan_cost": 244, "objects_used": 135, "objects_total": 342, "neural_net_time": 0.057566165924072266, "num_replanning_steps": 1, "wall_time": 1.4527130126953125 }, { "num_node_expansions": 0, "search_time": 0.105657, "total_time": 0.235481, "plan_length": 201, "plan_cost": 201, "objects_used": 128, "objects_total": 239, "neural_net_time": 0.043076276779174805, "num_replanning_steps": 0, "wall_time": 0.9969813823699951 }, { "num_node_expansions": 0, "search_time": 0.0734793, "total_time": 0.225471, "plan_length": 193, "plan_cost": 193, "objects_used": 132, "objects_total": 239, "neural_net_time": 0.042589426040649414, "num_replanning_steps": 0, "wall_time": 1.0482325553894043 }, { "num_node_expansions": 0, "search_time": 0.155992, "total_time": 0.400421, "plan_length": 238, "plan_cost": 238, "objects_used": 191, "objects_total": 548, "neural_net_time": 0.10288858413696289, "num_replanning_steps": 0, "wall_time": 1.5625355243682861 }, { "num_node_expansions": 0, "search_time": 0.334524, "total_time": 0.505858, "plan_length": 230, "plan_cost": 230, "objects_used": 187, "objects_total": 548, "neural_net_time": 0.09901881217956543, "num_replanning_steps": 0, "wall_time": 1.4250199794769287 }, { "num_node_expansions": 0, "search_time": 0.0619202, "total_time": 0.131806, "plan_length": 185, "plan_cost": 185, "objects_used": 129, "objects_total": 285, "neural_net_time": 0.049799442291259766, "num_replanning_steps": 0, "wall_time": 0.7084746360778809 }, { "num_node_expansions": 0, "search_time": 0.122541, "total_time": 0.20295, "plan_length": 189, "plan_cost": 189, "objects_used": 130, "objects_total": 285, "neural_net_time": 0.05124354362487793, "num_replanning_steps": 0, "wall_time": 0.8297102451324463 }, { "num_node_expansions": 0, "search_time": 0.117833, "total_time": 0.237295, "plan_length": 222, "plan_cost": 222, "objects_used": 165, "objects_total": 356, "neural_net_time": 0.06300878524780273, "num_replanning_steps": 0, "wall_time": 1.0006396770477295 }, { "num_node_expansions": 0, "search_time": 0.132216, "total_time": 0.252078, "plan_length": 231, "plan_cost": 231, "objects_used": 167, "objects_total": 356, "neural_net_time": 0.0627584457397461, "num_replanning_steps": 0, "wall_time": 0.9945011138916016 }, { "num_node_expansions": 0, "search_time": 0.0590759, "total_time": 0.149012, "plan_length": 156, "plan_cost": 156, "objects_used": 107, "objects_total": 204, "neural_net_time": 0.03542733192443848, "num_replanning_steps": 0, "wall_time": 0.8198165893554688 }, { "num_node_expansions": 0, "search_time": 0.106132, "total_time": 0.217121, "plan_length": 218, "plan_cost": 218, "objects_used": 110, "objects_total": 204, "neural_net_time": 0.06274199485778809, "num_replanning_steps": 0, "wall_time": 1.00437593460083 }, { "num_node_expansions": 0, "search_time": 0.0634019, "total_time": 0.141975, "plan_length": 176, "plan_cost": 176, "objects_used": 94, "objects_total": 130, "neural_net_time": 0.02202630043029785, "num_replanning_steps": 0, "wall_time": 0.7373795509338379 }, { "num_node_expansions": 0, "search_time": 0.0335487, "total_time": 0.0920351, "plan_length": 144, "plan_cost": 144, "objects_used": 88, "objects_total": 130, "neural_net_time": 0.02197718620300293, "num_replanning_steps": 0, "wall_time": 0.5983211994171143 }, { "num_node_expansions": 0, "search_time": 0.109335, "total_time": 0.256434, "plan_length": 171, "plan_cost": 171, "objects_used": 135, "objects_total": 282, "neural_net_time": 0.04994654655456543, "num_replanning_steps": 4, "wall_time": 2.322432518005371 }, { "num_node_expansions": 0, "search_time": 0.131862, "total_time": 0.247472, "plan_length": 220, "plan_cost": 220, "objects_used": 131, "objects_total": 282, "neural_net_time": 0.05040121078491211, "num_replanning_steps": 4, "wall_time": 2.156909465789795 }, { "num_node_expansions": 0, "search_time": 0.137213, "total_time": 0.24042, "plan_length": 205, "plan_cost": 205, "objects_used": 122, "objects_total": 241, "neural_net_time": 0.04193997383117676, "num_replanning_steps": 0, "wall_time": 0.9178109169006348 }, { "num_node_expansions": 0, "search_time": 0.117394, "total_time": 0.241386, "plan_length": 187, "plan_cost": 187, "objects_used": 121, "objects_total": 241, "neural_net_time": 0.04581952095031738, "num_replanning_steps": 1, "wall_time": 1.299536943435669 }, { "num_node_expansions": 0, "search_time": 0.116395, "total_time": 0.211216, "plan_length": 174, "plan_cost": 174, "objects_used": 117, "objects_total": 303, "neural_net_time": 0.05017542839050293, "num_replanning_steps": 0, "wall_time": 0.8741514682769775 }, { "num_node_expansions": 0, "search_time": 0.0966587, "total_time": 0.211036, "plan_length": 162, "plan_cost": 162, "objects_used": 115, "objects_total": 303, "neural_net_time": 0.051862478256225586, "num_replanning_steps": 0, "wall_time": 0.8510780334472656 }, { "num_node_expansions": 0, "search_time": 0.113647, "total_time": 0.211338, "plan_length": 183, "plan_cost": 183, "objects_used": 115, "objects_total": 187, "neural_net_time": 0.03305411338806152, "num_replanning_steps": 0, "wall_time": 0.8724808692932129 }, { "num_node_expansions": 0, "search_time": 0.110512, "total_time": 0.199805, "plan_length": 211, "plan_cost": 211, "objects_used": 113, "objects_total": 187, "neural_net_time": 0.03314328193664551, "num_replanning_steps": 0, "wall_time": 0.8387811183929443 }, { "num_node_expansions": 0, "search_time": 0.0512388, "total_time": 0.143361, "plan_length": 166, "plan_cost": 166, "objects_used": 122, "objects_total": 149, "neural_net_time": 0.026326417922973633, "num_replanning_steps": 0, "wall_time": 0.7781620025634766 }, { "num_node_expansions": 0, "search_time": 0.0492694, "total_time": 0.109376, "plan_length": 190, "plan_cost": 190, "objects_used": 115, "objects_total": 149, "neural_net_time": 0.026416301727294922, "num_replanning_steps": 0, "wall_time": 0.642287015914917 }, { "num_node_expansions": 0, "search_time": 0.0489913, "total_time": 0.132804, "plan_length": 150, "plan_cost": 150, "objects_used": 132, "objects_total": 270, "neural_net_time": 0.050424814224243164, "num_replanning_steps": 0, "wall_time": 0.7631943225860596 }, { "num_node_expansions": 0, "search_time": 0.102728, "total_time": 0.211444, "plan_length": 188, "plan_cost": 188, "objects_used": 134, "objects_total": 270, "neural_net_time": 0.04851222038269043, "num_replanning_steps": 0, "wall_time": 0.9128179550170898 }, { "num_node_expansions": 0, "search_time": 0.0515611, "total_time": 0.157182, "plan_length": 146, "plan_cost": 146, "objects_used": 106, "objects_total": 159, "neural_net_time": 0.02697467803955078, "num_replanning_steps": 0, "wall_time": 0.8290927410125732 }, { "num_node_expansions": 0, "search_time": 0.0603945, "total_time": 0.139822, "plan_length": 146, "plan_cost": 146, "objects_used": 100, "objects_total": 159, "neural_net_time": 0.0265805721282959, "num_replanning_steps": 0, "wall_time": 0.7267487049102783 }, { "num_node_expansions": 0, "search_time": 0.109096, "total_time": 0.197121, "plan_length": 184, "plan_cost": 184, "objects_used": 122, "objects_total": 245, "neural_net_time": 0.0434718132019043, "num_replanning_steps": 0, "wall_time": 0.8433651924133301 }, { "num_node_expansions": 0, "search_time": 0.0569313, "total_time": 0.149679, "plan_length": 157, "plan_cost": 157, "objects_used": 122, "objects_total": 245, "neural_net_time": 0.04352283477783203, "num_replanning_steps": 0, "wall_time": 0.7943651676177979 }, { "num_node_expansions": 0, "search_time": 0.0688804, "total_time": 0.162913, "plan_length": 166, "plan_cost": 166, "objects_used": 105, "objects_total": 224, "neural_net_time": 0.03991389274597168, "num_replanning_steps": 0, "wall_time": 0.8286600112915039 }, { "num_node_expansions": 0, "search_time": 0.087877, "total_time": 0.205901, "plan_length": 187, "plan_cost": 187, "objects_used": 110, "objects_total": 224, "neural_net_time": 0.04076838493347168, "num_replanning_steps": 0, "wall_time": 0.9610884189605713 }, { "num_node_expansions": 0, "search_time": 0.108875, "total_time": 0.287741, "plan_length": 203, "plan_cost": 203, "objects_used": 162, "objects_total": 344, "neural_net_time": 0.06036639213562012, "num_replanning_steps": 0, "wall_time": 1.199660301208496 }, { "num_node_expansions": 0, "search_time": 0.140254, "total_time": 0.301378, "plan_length": 210, "plan_cost": 210, "objects_used": 158, "objects_total": 344, "neural_net_time": 0.06137275695800781, "num_replanning_steps": 0, "wall_time": 1.1875953674316406 }, { "num_node_expansions": 0, "search_time": 0.0948984, "total_time": 0.225837, "plan_length": 177, "plan_cost": 177, "objects_used": 125, "objects_total": 461, "neural_net_time": 0.08402681350708008, "num_replanning_steps": 0, "wall_time": 1.1599135398864746 }, { "num_node_expansions": 0, "search_time": 0.165758, "total_time": 0.41311, "plan_length": 180, "plan_cost": 180, "objects_used": 149, "objects_total": 461, "neural_net_time": 0.08339810371398926, "num_replanning_steps": 10, "wall_time": 5.166301012039185 }, { "num_node_expansions": 0, "search_time": 0.053683, "total_time": 0.141606, "plan_length": 158, "plan_cost": 158, "objects_used": 96, "objects_total": 213, "neural_net_time": 0.03530240058898926, "num_replanning_steps": 0, "wall_time": 0.7653453350067139 }, { "num_node_expansions": 0, "search_time": 0.08182, "total_time": 0.180951, "plan_length": 144, "plan_cost": 144, "objects_used": 100, "objects_total": 213, "neural_net_time": 0.03677558898925781, "num_replanning_steps": 0, "wall_time": 0.8767471313476562 }, { "num_node_expansions": 0, "search_time": 0.112981, "total_time": 0.219522, "plan_length": 172, "plan_cost": 172, "objects_used": 120, "objects_total": 210, "neural_net_time": 0.03706240653991699, "num_replanning_steps": 0, "wall_time": 0.9154744148254395 }, { "num_node_expansions": 0, "search_time": 0.0566878, "total_time": 0.200295, "plan_length": 158, "plan_cost": 158, "objects_used": 126, "objects_total": 210, "neural_net_time": 0.038547515869140625, "num_replanning_steps": 0, "wall_time": 1.0092735290527344 }, { "num_node_expansions": 0, "search_time": 0.0664906, "total_time": 0.151631, "plan_length": 163, "plan_cost": 163, "objects_used": 97, "objects_total": 176, "neural_net_time": 0.029233455657958984, "num_replanning_steps": 0, "wall_time": 0.7926013469696045 }, { "num_node_expansions": 0, "search_time": 0.0538599, "total_time": 0.118603, "plan_length": 145, "plan_cost": 145, "objects_used": 90, "objects_total": 176, "neural_net_time": 0.02914142608642578, "num_replanning_steps": 0, "wall_time": 0.7353930473327637 }, { "num_node_expansions": 0, "search_time": 0.066048, "total_time": 0.157862, "plan_length": 153, "plan_cost": 153, "objects_used": 131, "objects_total": 173, "neural_net_time": 0.030073165893554688, "num_replanning_steps": 0, "wall_time": 0.7830359935760498 }, { "num_node_expansions": 0, "search_time": 0.0921026, "total_time": 0.175147, "plan_length": 147, "plan_cost": 147, "objects_used": 128, "objects_total": 173, "neural_net_time": 0.030555248260498047, "num_replanning_steps": 0, "wall_time": 0.7749836444854736 }, { "num_node_expansions": 0, "search_time": 0.118463, "total_time": 0.282047, "plan_length": 184, "plan_cost": 184, "objects_used": 139, "objects_total": 339, "neural_net_time": 0.059423208236694336, "num_replanning_steps": 0, "wall_time": 1.1752550601959229 }, { "num_node_expansions": 0, "search_time": 0.0597391, "total_time": 0.164878, "plan_length": 168, "plan_cost": 168, "objects_used": 131, "objects_total": 339, "neural_net_time": 0.059804677963256836, "num_replanning_steps": 0, "wall_time": 0.8735132217407227 }, { "num_node_expansions": 0, "search_time": 0.0707919, "total_time": 0.171617, "plan_length": 162, "plan_cost": 162, "objects_used": 113, "objects_total": 215, "neural_net_time": 0.03980255126953125, "num_replanning_steps": 0, "wall_time": 0.8347995281219482 }, { "num_node_expansions": 0, "search_time": 0.136539, "total_time": 0.297679, "plan_length": 193, "plan_cost": 193, "objects_used": 125, "objects_total": 215, "neural_net_time": 0.03705787658691406, "num_replanning_steps": 0, "wall_time": 1.171936273574829 }, { "num_node_expansions": 0, "search_time": 0.166099, "total_time": 0.332001, "plan_length": 213, "plan_cost": 213, "objects_used": 153, "objects_total": 333, "neural_net_time": 0.056998491287231445, "num_replanning_steps": 0, "wall_time": 1.1840345859527588 }, { "num_node_expansions": 0, "search_time": 0.137145, "total_time": 0.253378, "plan_length": 191, "plan_cost": 191, "objects_used": 145, "objects_total": 333, "neural_net_time": 0.057398319244384766, "num_replanning_steps": 0, "wall_time": 0.9758951663970947 }, { "num_node_expansions": 0, "search_time": 0.0572285, "total_time": 0.141806, "plan_length": 168, "plan_cost": 168, "objects_used": 117, "objects_total": 286, "neural_net_time": 0.05305218696594238, "num_replanning_steps": 0, "wall_time": 0.7997596263885498 }, { "num_node_expansions": 0, "search_time": 0.0730807, "total_time": 0.174237, "plan_length": 178, "plan_cost": 178, "objects_used": 119, "objects_total": 286, "neural_net_time": 0.05058908462524414, "num_replanning_steps": 0, "wall_time": 0.877018928527832 }, { "num_node_expansions": 0, "search_time": 0.0436968, "total_time": 0.113316, "plan_length": 161, "plan_cost": 161, "objects_used": 109, "objects_total": 200, "neural_net_time": 0.03450441360473633, "num_replanning_steps": 0, "wall_time": 0.6501560211181641 }, { "num_node_expansions": 0, "search_time": 0.171478, "total_time": 0.346798, "plan_length": 194, "plan_cost": 194, "objects_used": 127, "objects_total": 200, "neural_net_time": 0.034224510192871094, "num_replanning_steps": 0, "wall_time": 1.2174389362335205 }, { "num_node_expansions": 0, "search_time": 0.0350258, "total_time": 0.111698, "plan_length": 136, "plan_cost": 136, "objects_used": 100, "objects_total": 181, "neural_net_time": 0.030783414840698242, "num_replanning_steps": 0, "wall_time": 0.7171695232391357 }, { "num_node_expansions": 0, "search_time": 0.0683696, "total_time": 0.173089, "plan_length": 150, "plan_cost": 150, "objects_used": 105, "objects_total": 181, "neural_net_time": 0.03152823448181152, "num_replanning_steps": 0, "wall_time": 0.8520138263702393 }, { "num_node_expansions": 0, "search_time": 0.0871958, "total_time": 0.182047, "plan_length": 204, "plan_cost": 204, "objects_used": 135, "objects_total": 229, "neural_net_time": 0.041161537170410156, "num_replanning_steps": 0, "wall_time": 0.8202221393585205 }, { "num_node_expansions": 0, "search_time": 0.0800008, "total_time": 0.177595, "plan_length": 171, "plan_cost": 171, "objects_used": 138, "objects_total": 229, "neural_net_time": 0.04072093963623047, "num_replanning_steps": 0, "wall_time": 0.8345837593078613 }, { "num_node_expansions": 0, "search_time": 0.407514, "total_time": 0.551243, "plan_length": 231, "plan_cost": 231, "objects_used": 153, "objects_total": 333, "neural_net_time": 0.059165000915527344, "num_replanning_steps": 0, "wall_time": 1.3791015148162842 }, { "num_node_expansions": 0, "search_time": 0.112556, "total_time": 0.249969, "plan_length": 192, "plan_cost": 192, "objects_used": 155, "objects_total": 333, "neural_net_time": 0.057951927185058594, "num_replanning_steps": 0, "wall_time": 1.1176068782806396 }, { "num_node_expansions": 0, "search_time": 0.0470725, "total_time": 0.0825322, "plan_length": 146, "plan_cost": 146, "objects_used": 81, "objects_total": 161, "neural_net_time": 0.02678227424621582, "num_replanning_steps": 0, "wall_time": 0.5234506130218506 }, { "num_node_expansions": 0, "search_time": 0.0364912, "total_time": 0.0741524, "plan_length": 156, "plan_cost": 156, "objects_used": 82, "objects_total": 161, "neural_net_time": 0.02719879150390625, "num_replanning_steps": 0, "wall_time": 0.524160623550415 }, { "num_node_expansions": 0, "search_time": 0.0875584, "total_time": 0.180473, "plan_length": 196, "plan_cost": 196, "objects_used": 145, "objects_total": 400, "neural_net_time": 0.0715029239654541, "num_replanning_steps": 0, "wall_time": 0.8854470252990723 }, { "num_node_expansions": 0, "search_time": 0.0949566, "total_time": 0.206312, "plan_length": 225, "plan_cost": 225, "objects_used": 147, "objects_total": 400, "neural_net_time": 0.07208442687988281, "num_replanning_steps": 0, "wall_time": 0.9514024257659912 } ]
# -*- coding: utf-8 -*- """ Created on Sun Sep 17 10:43:46 2017 @author: ASUS This code snippet finds the given spliced motif within the given DNA sequence """ #I put \n manually so that it fits to my solution fasta_formatted_input = ">Rosalind_4080\nGTTACTGCCGAGTGCAAGCAACTTATTGCTGATTGGTCCGTGTAGGCTGTTAGCAGTTAGAATCTCTTAGCCTCAGCACAGTTTGTTTTCACGAAACAATGCGGAAACTATCTAGAACAACAAAAACATTATTGGAAGTTTGTGCTTCATCAATTATCGTGATAACACACCTACTAGTAGCAGTCGTGGAGCAATCGAGTCTCATGGAATGTAGCTTACGCGGTGGAACAAAATCGCCTATTAGTTGTTTGGTACAACATATTGTGCCAGCCTGCCGTTTCCTTAAAGAGGCCTAGCCACGGTTGGAACCCTCCATTTTTTTCAGAAGGGGGGTGCTGCTGCTCGGTTGTGACGCTAGGCATCTTTAAGCAACACGAATCAAAGAAGGAAATCATAGTCTATATCACACGAGTACCGCAAGCTAACTTGAGACGTCCTGAAGTTCACAGGCGTTCACTACTACCCCCCGCGGCGCTCGGATTTGCAGAAGATCGCGTGTCGTCTGGGAGACACAAAGCTCGCCAGAATAAACTAAGCAATGAGTAGGTAAGCGAAGCAGACCAGGGCCTATGCAGGGTCTATAGCCTCTAGCTAATTGGTAGAATTAACATCTATCTAACGTCATACTGATTGCTCCACGGGAATGGAAGTCCAGTGATGAGTTCATTACTGAAACCTCAGTTCGCGAGGATCACTAAGGACAATCAGTGCACGCTGGGCTCTATGCCATTGTCGATGAAAGGAGGTATTGTAACAATGTGGGATAGGCAAACTCGCGGTTGGCCGATCTTCGCAGATTTCTGAAAAAAATATCAATCACCGTTGCGCCCGTGCTTGCGTACTTTTTCCCTGGCTACGTTTCTCGGTCGACTTCGAAAGAACAG\n>Rosalind_6924\nCACCTTGACTATCCAATCACTACCAGCTAAGTACGTGGGGTTGCACCAGAACATTATGAATTCCGAGCTGATTTAGGGTGCAA" splitted_input = fasta_formatted_input.split("\n") #If you look input carefully you will see that #First index corresponds to DNA itself, wherease third index corresponds to the motif dna_sequence = splitted_input[1] motif = splitted_input[3] indices = "" dna_index = 0 motif_index = 0 #Iterate through the DNA for base in dna_sequence: #If current base is equal to the `current` base in the motif #By current I mean the latest base we are looking for if base == motif[motif_index]: motif_index += 1 #`dna_index + 1` is because question assumes first index is 1 indices += str(dna_index + 1) + " " #If we are out of motif base then done if motif_index == len(motif): break dna_index += 1 print(indices)
""" Files in nftfw - and a description of what they do PackageIndex.txt this file __init__.py amend the Python module lookup Main nftfw application ---------------------- __main__.py Main application, deals with argument decode and dispatch config.py Class Config - supplies default config settings, reads a config.ini file, supports overriding the settings from the command line Sets up logging the object is passed into all modules loggermanager.py Manages the Python Logger modules so output can be controlled to the terminal and also the terminal stdargs.py Decodes -q -v and -o arguments also used by nftfwadm Utilities -------- locker.py Provides an overall filesystem lock for the various applications sqdb.py Class SqDb - simple interface to sqlite3 fileposdb.py Derived from SqDb, FileposdB is interface to the sqlite3 filepos table storing last seek positions for log files fwdb.py Derived from SqDb, FwDb is interface to sqlite3 providing an interface to the blacklist database scheduler.py Provides locking and command sequencing for both background commands run from cron, systemd or incron and also for commands run from the command line stats.py Compute durations and frequencies Nftfw modules ------------- 'load' function: fwmanage.py fw_manage manages creation and installation of nftables rulesreader.py Class RulesReader - reads rules from rules directory rules translate actions into nft commands ruleserr.py Exception class for RulesReader firewallreader.py Class FirewallReader - reads specification files from the incoming and outgoing directories firewallprocess.py Class FireWallProcess - generates nft commands from data read by FirewallReader listreader.py Class ListReader - reads files from whitelist & blacklist directories listprocess.py Class ListProcess - generates nft commands from the two directories, generates nftable sets with ip addresses netreader.py Class NetReader - reads files from blacknets directory validates entries and creates lists that can be used in listprocess to output the sets. nft.py Interface to nftables, calls the nft program to do its work, tested with Python 3.6 'whitelist' function whitelist.py Reads information from wtmp looking for user logins, adds whitelist entries to the directory when found. Will automatically remove entries after a set period nftfw_utmp.py Interface to libc utmp processing I got fed up with waiting for the Debian utmp package to be available for Python3 on Buster utmpconst.py Constants for the utmp interface 'blacklist' function blacklist.py Controls blacklisting, reads patterns from patterns.d to establish files to scan and how to scan them. Using this information is maintains the blacklist sqlite3 database, and writes files in the blacklist directory patternreader.py Parses pattern files, establishing log files to scan and regexes to apply. logreader.py Uses patternreader output and manages file scanning whitelistcheck.py Checks whether addresses found in logs are actually whitelisted, don't blacklist whitelist addresses normaliseaddress.py Validates IP addresses, does checking to ignore local ones Separate nftfw programs ----------------------- nftfwadm.py Front end for the nftfwadm command 'clean','save' & 'restore' functions fwcmds.py flush action: removes all nftables commands cleans install directory clean action: cleans install directory nftfwls.py Provides a pretty print of the contents of the blacklist database matching the entries in the blacklist directory nftfwedit.py Prints data from the system, integrating GeoIP2 lookups and DNSBL Lookups Also provides cmdline interface to add, delete and blacklist ip addresses nf_edit_dbfns.py Main editing functions for nftfwedit nf_edit_print.py Print function for nftfwedit nf_edit_validate.p User input validate functions dnsbl.py DNS Blacklist lookup geoipcountry.py Geolocation interface """
class Basededados: def __init__(self): self._dados = {} def inserir_cliente(self,id , nome): if 'clientes' not in self._dados: #Se o cliente não existir nos dados self._dados['clientes'] = {id:nome} #o ID vai ser o nome else: self._dados['clientes'].update({id:nome}) #se já existir, atualiza o nome def lista_cliente(self): for id, nome in self._dados['clientes'].items(): print(id, nome) def apaga_cliente(self,id): #remover um cliente if 'clientes' in self._dados: if id in self._dados['clientes']: del self._dados['clientes'][id] bd = Basededados() bd.inserir_cliente(1, 'Joao') bd.inserir_cliente(2, 'Maria') bd.inserir_cliente(3, 'Pedro') bd.apaga_cliente(2) print(bd._dados) bd.lista_cliente()
# Copyright (c) 2020 Trail of Bits, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. class Colors: class c: green = '\033[92m' yellow = '\033[93m' red = '\033[91m' magneta = '\033[95m' bg_yellow = '\033[43m' orange = '\033[38;5;202m' RESET = '\033[0m' def get_result_color(total, success): if total == 0: return Colors.c.magneta if total == success: return Colors.c.green if success == 0: return Colors.c.red return Colors.c.yellow def get_bin_result(result): if result == 1: return Colors.c.green if result == 0: return Colors.c.red return Colors.c.magneta def clean(): return Colors.RESET def c(color, message): return color + message + clean() def fail(): return Colors.c.red def succ(): return Colors.c.green #TODO: Not sure if it's worth to generate these for each color from attrs dynamically def green(message): return c(Colors.c.green, message) def red(message): return c(Colors.c.red, message) def yellow(message): return c(Colors.c.yellow, message) def magneta(message): return c(Colors.c.magneta, message) def bg_yellow(message): return c(Colors.c.bg_yellow, message) def orange(message): return c(Colors.c.orange, message) def id(message): return message
# container.py - Creates META-INF/content.xml within the epub file def create_container(epub_file): epub_file.writestr('META-INF/container.xml', '''<?xml version="1.0"?> <container version="1.0" xmlns="urn:oasis:names:tc:opendocument:xmlns:container"> <rootfiles> <rootfile full-path="OEBPS/content.opf" media-type="application/oebps-package+xml"/> </rootfiles> </container>''')
APP_MIN_WIDTH = 1024 APP_MIN_HEIGHT = 800 APP_NAME = 'Fractals' APP_FONT = 12
s = input() ans = [] i=0 while i<len(s): if s[i]=='.': ans.append('0') else: if s[i+1]=='.': ans.append('1') else: ans.append('2') i=i+1 i+=1 for j in ans: print(j,end='')
def usersagein_Sec(): users_age = int(input("Enter user age in years")) agein_sec = users_age *12 *365 * 24 print(f"Age in sec is {agein_sec}") print("Welcome to function project 1 ") usersagein_Sec() # Never use same name in anywhere inside a function program. else going to get error. friends = [] def friend(): friends.append("Ram") friend() friend() friend() print(friends)
def test_non_standard_default_desired_privilege_level(iosxe_conn): # purpose of this test is to ensure that when a user sets a non-standard default desired priv # level, that there is nothing in genericdriver/networkdriver that will prevent that from # actually being set as the default desired priv level iosxe_conn.close() iosxe_conn.default_desired_privilege_level = "configuration" iosxe_conn.open() current_prompt = iosxe_conn.get_prompt() assert current_prompt == "csr1000v(config)#" iosxe_conn.close()
class Trader(object): """An entity buying and/or selling on the market.""" def __init__(self, name, funds=0, units=0): self.name = name self.funds = funds self.units = units def __repr__(self): return "[Trader: name={}, funds={}, units={}]".format(self.name, self.funds, self.units) NO_TRADER = Trader("No Trader", -1, -1)
fruits = { "orange" :"a sweet,orange citrus fruit", "apple" :"good for making cider", "lemon" :"a sour,yellow citrus fruit", "grape" :"a small, sweet fruit growing in bunches", "lime" :"a sour,yellow citrus fruit", } def simple_operation(): print("To find the details in Fruits dictionary") print(fruits) print() print('To find description for "lemon" in Fruits dictionary') print(fruits["lemon"]) print() print('To add a fruit name "pear" in in Fruits dictionary') fruits["pear"] = "an odd shaped apple" print(fruits) print() print('To change description of fruit "lime" in in Fruits dictionary') fruits["lime"] = "great with tequilla" print(fruits) print() print('Deleting a Key "Apple" from fruits') del(fruits["apple"]) print(fruits) print() print("Clearing the fruits dictionary") fruits.clear() print(fruits) def find_description(): print("To Find the description of a fruit") while True: dict_key = input("Please Enter Fruit name:\n") if dict_key == "quit": break if dict_key in fruits: description = fruits.get(dict_key) print(description) else: print("The details of {} doesn't exist".format(dict_key)) if __name__ == "__main__": print("""Select any one the below options 1. To find the description of fruit 2. To Display simple operation""") choice = input("Enter Your choice here: ") if choice == "1": print("*" * 120) find_description() elif choice == "2": print("*" * 120) simple_operation()
# Mac address of authentication server AUTH_SERVER_MAC = "b8:ae:ed:7a:05:3b" # IP address of authentication server AUTH_SERVER_IP = "192.168.1.42" # Switch port authentication server is facing AUTH_SERVER_PORT = 3 #CTL_REST_IP = "192.168.1.39" CTL_REST_IP = "10.0.1.8" CTL_REST_PORT = "8080" CTL_MAC = "b8:27:eb:b0:1d:6b" GATEWAY_MAC = "24:09:95:79:31:7e" GATEWAY_PORT = 1 # L2 src-dst pairs which are whitelisted and does not need to go through auth WHITELIST = [ (AUTH_SERVER_MAC, CTL_MAC), (CTL_MAC, AUTH_SERVER_MAC), (GATEWAY_MAC, "00:1d:a2:80:60:64"), ("00:1d:a2:80:60:64", GATEWAY_MAC) # (GATEWAY_MAC, "9c:eb:e8:01:6e:db"), # ("9c:eb:e8:01:6e:db", GATEWAY_MAC) ]
print('-=-=-=-= DESAFIO 64 -=-=-=-=') print() n = tot = soma = 0 print('Para sair, digite "999".') while n != 999: n = int(input('Digite um número: ')) if n != 999: tot += 1 soma += n print('Foram digitados {} valores e a soma entre eles vale {}.'.format(tot, soma)) # RESOLUÇÃO do PROF: # n = int(input('Digite um número [999 para sair]: ')) # while n != 999: # tot += 1 # soma += n # n = int(input('Digite um número [999 para sair]: ')) # print('Foram digitados {} valores e a soma entre eles vale {}.'.format(tot, soma))
running = True # Global Options SIZES = {'small': [7.58, 0], 'medium': [9.69, 1], 'large': [12.09, 2], 'jumbo': [17.99, 3], 'party': [20.29, 4]} # [Price, ID] TOPPINGS = {'pepperoni': [0, False], 'bacon': [0, True], 'sausage': [0, False], 'mushroom': [1, False], 'black olive': [1, False], 'green pepper': [1, False]} # [Group, Special] TOPPING_PRICES = [[1.6, 2.05, 2.35, 3.15, 3.30], [1.95, 2.25, 2.65, 3.49, 3.69]] # 0: No Special - 1: Special [Inc size] def ask(question, options, show = True): answer = False o = "" # Choices to show, only if show = true if show: o = " (" + ', '.join([str(lst).title() for lst in options]) + ")" while True: a = input(question + o + ": ").lower() # User input if a.isdigit(): # Allow users to pick via number too a = int(a) - 1 # Set to an int if a in range(0, len(options)): a = options[a] # Set to value so next function completes if a in options: # Is option valid? answer = a break print("Not a valid option, try again!") # Nope return answer # Return answer def splitter(): print("---------------------------------------------------") # Only do while running, used for confirmation. while running: PIZZA = {} # Pizza config DELIVERY = {} # Delivery config TOTAL = 0 # Start title print(" MAKAN PIZZA ") splitter() # Delivery or pickup? DELIVERY['type'] = ask("Type of order", ['delivery', 'pickup']) while True: DELIVERY['location'] = input("Location of " + DELIVERY['type'] + ": ") # Need a location # Did they leave it blank? if DELIVERY['location']: break else: print("Please enter a valid location!") # If delivery, ask for special instructions if DELIVERY['type'] == "delivery": DELIVERY['special_instructions'] = input("Special instructions (Blank for None): ") # Do they have special instructions? if not DELIVERY['special_instructions']: DELIVERY['special_instructions'] = "None" splitter() # Size of the pizza PIZZA['size'] = ask("Select the size", ['small', 'medium', 'large', 'jumbo', 'party']) # Dough type PIZZA['dough'] = ask("Select dough type", ['regular', 'whole wheat', 'carbone']) # Type of sauce PIZZA['sauce'] = ask("Type of sauce", ['tomato', 'pesto', 'bbq sauce', 'no sauce']) # Type of primary cheese PIZZA['cheese'] = ask("Type of cheese", ['mozzarella', 'cheddar', 'dairy-free', 'no cheese']) splitter() # Pick your topping section! print("Pick your Toppings!", end = "") count = -1 # Category count for i in TOPPINGS: start = "" # Used for the comma # Check category and print to new line if so. if TOPPINGS[i][0] != count: count = TOPPINGS[i][0] print("\n--> ", end = "") else: start = ", " # Split toppings print(start + i.title(), end = "") # Print topping # Special topping? if TOPPINGS[i][1]: print(" (*)", end = "") print() # New line # Extra functions print("--> Typing in list will show current toppings.") print("--> Retyping in a topping will remove it.") print("--> Press enter once you're done!") # Topping selector PIZZA['toppings'] = [] while True: top = input("Pick your topping: ") # Get input if top == "list": # Want a list of toppings. if not len(PIZZA['toppings']): # Do they have toppings? print("You have no toppings!") else: for i in PIZZA['toppings']: # Go through and print toppings. print("--> ", i.title()) elif not top: # Done picking. break else: # Picked a topping? if top.endswith('s'): # If it ends with s, remove and check (sausages -> sausage) top = top[:-1] if top in TOPPINGS: if top in PIZZA['toppings']: print("Topping", top.title(), "has been removed from your order.") PIZZA['toppings'].remove(top) # Remove topping else: print("Topping", top.title(), "has been added to your order.") PIZZA['toppings'].append(top) # Add topping else: print("That topping does not exist!") splitter() print(" MAKAN PIZZA ORDER CONFIRMATION ") splitter() # Calculate the price of order and print. print(PIZZA['size'].title() + " Pizza (CAD$" + str(SIZES[PIZZA['size']][0]) + ")") TOTAL += SIZES[PIZZA['size']][0] # Price of size # Free Things print("--> " + PIZZA['dough'].title() + " (FREE)") print("--> " + PIZZA['sauce'].title() + " (FREE)") print("--> " + PIZZA['cheese'].title() + " (FREE)") # Toppings if PIZZA['toppings']: print("--> Toppings:") # If they have any toppings, print title # Go through all the toppings for i in PIZZA['toppings']: if TOPPINGS[i][1]: tpp = TOPPING_PRICES[1][SIZES[PIZZA['size']][1]] # Special pricing else: tpp = TOPPING_PRICES[0][SIZES[PIZZA['size']][1]] # Non-Special pricing print(" --> " + i.title() + " (CAD$" + format(tpp, '.2f') + ")") # Print the topping name and price TOTAL += tpp # Add price of topping to total splitter() print("Sub-Total: CAD$" + format(TOTAL, '.2f')) # total # Delivery has delivery fee (Fixed $3.50) if DELIVERY['type'] == "delivery": print("Delivery Fee: CAD$3.50") TOTAL += 3.5 # Calculate and add tax TAX = round(TOTAL * 0.13, 2) TOTAL += TAX print("Tax: CAD$" + format(TAX, '.2f')) print("Total: CAD$" + format(TOTAL, '.2f')) splitter() CONFIRM = ask("Do you wish to confirm this order", ['yes', 'no']) splitter() # Done? if CONFIRM == "yes": break # Final order print print("Your order is on the way, we'll be there in 45 minutes or you get a refund!") if DELIVERY['type'] == "delivery": # Did they get delivery? print("Delivery to:", DELIVERY['location'], "(Special Instructions:", DELIVERY['special_instructions'] + ")") else: print("Pickup at:", DELIVERY['location']) splitter()
# # PySNMP MIB module EdgeSwitch-QOS-AUTOVOIP-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/EdgeSwitch-QOS-AUTOVOIP-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:10:44 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint", "SingleValueConstraint") fastPathQOS, = mibBuilder.importSymbols("EdgeSwitch-QOS-MIB", "fastPathQOS") InterfaceIndex, InterfaceIndexOrZero = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex", "InterfaceIndexOrZero") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") NotificationType, TimeTicks, Counter32, ModuleIdentity, iso, Bits, Unsigned32, MibIdentifier, Counter64, ObjectIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, Gauge32, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "NotificationType", "TimeTicks", "Counter32", "ModuleIdentity", "iso", "Bits", "Unsigned32", "MibIdentifier", "Counter64", "ObjectIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "Gauge32", "Integer32") DisplayString, RowStatus, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "RowStatus", "TextualConvention") fastPathQOSAUTOVOIP = ModuleIdentity((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4)) fastPathQOSAUTOVOIP.setRevisions(('2012-02-18 00:00', '2011-01-26 00:00', '2007-11-23 00:00', '2007-11-23 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: fastPathQOSAUTOVOIP.setRevisionsDescriptions(('Added OUI based auto VoIP support.', 'Postal address updated.', 'Ubiquiti branding related changes.', 'Initial revision.',)) if mibBuilder.loadTexts: fastPathQOSAUTOVOIP.setLastUpdated('201101260000Z') if mibBuilder.loadTexts: fastPathQOSAUTOVOIP.setOrganization('Broadcom Inc') if mibBuilder.loadTexts: fastPathQOSAUTOVOIP.setContactInfo('') if mibBuilder.loadTexts: fastPathQOSAUTOVOIP.setDescription('The MIB definitions for Quality of Service - VoIP Flex package.') agentAutoVoIPCfgGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1)) agentAutoVoIPVLAN = MibScalar((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentAutoVoIPVLAN.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPVLAN.setDescription('The VLAN to which all VoIP traffic is mapped to.') agentAutoVoIPOUIPriority = MibScalar((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentAutoVoIPOUIPriority.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPOUIPriority.setDescription('The priority to which all VoIP traffic with known OUI is mapped to.') agentAutoVoIPProtocolPriScheme = MibScalar((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("trafficClass", 1), ("remark", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentAutoVoIPProtocolPriScheme.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPProtocolPriScheme.setDescription('The priotization scheme which is used to priritize the voice data. ') agentAutoVoIPProtocolTcOrRemarkValue = MibScalar((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 7))).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentAutoVoIPProtocolTcOrRemarkValue.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPProtocolTcOrRemarkValue.setDescription("If 'agentAutoVoIPProtocolPriScheme' is traffic class, then the object 'agentAutoVoIPProtocolTcOrRemarkValue' is CoS Queue value to which all VoIP traffic is mapped to. if 'agentAutoVoIPProtocolPriScheme' is remark, then the object 'agentAutoVoIPProtocolTcOrRemarkValue' is 802.1p priority to which all VoIP traffic is remarked at the ingress port. This is used by Protocol based Auto VoIP") agentAutoVoIPTable = MibTable((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 5), ) if mibBuilder.loadTexts: agentAutoVoIPTable.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPTable.setDescription('A table providing configuration of Auto VoIP Profile.') agentAutoVoIPEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 5, 1), ).setIndexNames((0, "EdgeSwitch-QOS-AUTOVOIP-MIB", "agentAutoVoIPIntfIndex")) if mibBuilder.loadTexts: agentAutoVoIPEntry.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPEntry.setDescription('Auto VoIP Profile configuration for a port.') agentAutoVoIPIntfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 5, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: agentAutoVoIPIntfIndex.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPIntfIndex.setDescription('This is a unique index for an entry in the agentAutoVoIPTable. A non-zero value indicates the ifIndex for the corresponding interface entry in the ifTable. A value of zero represents global configuration, which in turn causes all interface entries to be updated for a set operation, or reflects the most recent global setting for a get operation.') agentAutoVoIPProtocolMode = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 5, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2))).clone(2)).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentAutoVoIPProtocolMode.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPProtocolMode.setDescription('Enables / disables AutoVoIP Protocol profile on an interface.') agentAutoVoIPOUIMode = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 5, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2))).clone(2)).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentAutoVoIPOUIMode.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPOUIMode.setDescription('Enables / disables AutoVoIP OUI profile on an interface.') agentAutoVoIPProtocolPortStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 5, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("up", 1), ("down", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: agentAutoVoIPProtocolPortStatus.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPProtocolPortStatus.setDescription('AutoVoIP protocol profile operational status of an interface.') agentAutoVoIPOUIPortStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 5, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("up", 1), ("down", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: agentAutoVoIPOUIPortStatus.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPOUIPortStatus.setDescription('AutoVoIP OUI profile operational status of an interface.') agentAutoVoIPOUITable = MibTable((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 6), ) if mibBuilder.loadTexts: agentAutoVoIPOUITable.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPOUITable.setDescription('A table providing configuration of Auto VoIP Profile.') agentAutoVoIPOUIEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 6, 1), ).setIndexNames((0, "EdgeSwitch-QOS-AUTOVOIP-MIB", "agentAutoVoIPOUIIndex")) if mibBuilder.loadTexts: agentAutoVoIPOUIEntry.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPOUIEntry.setDescription('Auto VoIP Profile OUI configuration.') agentAutoVoIPOUIIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 6, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 128))).setMaxAccess("readonly") if mibBuilder.loadTexts: agentAutoVoIPOUIIndex.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPOUIIndex.setDescription('The Auto VoIP OUI table index.') agentAutoVoIPOUI = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 6, 1, 2), OctetString().subtype(subtypeSpec=ValueSizeConstraint(3, 3)).setFixedLength(3)).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentAutoVoIPOUI.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPOUI.setDescription('The Organizationally Unique Identifier (OUI), as defined in IEEE std 802-2001, is a 24 bit (three octets) globally unique assigned number referenced by various standards, of the information received from the remote system.') agentAutoVoIPOUIDesc = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 6, 1, 3), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 32))).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentAutoVoIPOUIDesc.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPOUIDesc.setDescription('The Description of the Organizationally Unique Identifier (OUI), as defined in IEEE std 802-2001(up to 32 characters)') agentAutoVoIPOUIRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 6, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: agentAutoVoIPOUIRowStatus.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPOUIRowStatus.setDescription('The row status variable is used according to installation and removal conventions for conceptual rows.') agentAutoVoIPSessionTable = MibTable((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 7), ) if mibBuilder.loadTexts: agentAutoVoIPSessionTable.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPSessionTable.setDescription('A table providing configuration of Auto VoIP Profile.') agentAutoVoIPSessionEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 7, 1), ).setIndexNames((0, "EdgeSwitch-QOS-AUTOVOIP-MIB", "agentAutoVoIPSessionIndex")) if mibBuilder.loadTexts: agentAutoVoIPSessionEntry.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPSessionEntry.setDescription('Auto VoIP Session Table.') agentAutoVoIPSessionIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 7, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 127))).setMaxAccess("readonly") if mibBuilder.loadTexts: agentAutoVoIPSessionIndex.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPSessionIndex.setDescription('The Auto VoIP session index.') agentAutoVoIPSourceIP = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 7, 1, 2), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: agentAutoVoIPSourceIP.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPSourceIP.setDescription('The source IP address of the VoIP session.') agentAutoVoIPDestinationIP = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 7, 1, 3), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: agentAutoVoIPDestinationIP.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPDestinationIP.setDescription('The destination IP address of the VoIP session.') agentAutoVoIPSourceL4Port = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 7, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: agentAutoVoIPSourceL4Port.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPSourceL4Port.setDescription('The source L4 Port of the VoIP session.') agentAutoVoIPDestinationL4Port = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 7, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: agentAutoVoIPDestinationL4Port.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPDestinationL4Port.setDescription('The destination L4 Port of the VoIP session.') agentAutoVoIPProtocol = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 3, 4, 1, 7, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: agentAutoVoIPProtocol.setStatus('current') if mibBuilder.loadTexts: agentAutoVoIPProtocol.setDescription('The Protocol of the VoIP session.') mibBuilder.exportSymbols("EdgeSwitch-QOS-AUTOVOIP-MIB", agentAutoVoIPProtocolMode=agentAutoVoIPProtocolMode, agentAutoVoIPOUIMode=agentAutoVoIPOUIMode, agentAutoVoIPProtocol=agentAutoVoIPProtocol, agentAutoVoIPOUIDesc=agentAutoVoIPOUIDesc, agentAutoVoIPDestinationIP=agentAutoVoIPDestinationIP, agentAutoVoIPOUIEntry=agentAutoVoIPOUIEntry, agentAutoVoIPCfgGroup=agentAutoVoIPCfgGroup, agentAutoVoIPEntry=agentAutoVoIPEntry, fastPathQOSAUTOVOIP=fastPathQOSAUTOVOIP, agentAutoVoIPSessionIndex=agentAutoVoIPSessionIndex, agentAutoVoIPSourceL4Port=agentAutoVoIPSourceL4Port, agentAutoVoIPOUIPriority=agentAutoVoIPOUIPriority, agentAutoVoIPOUIIndex=agentAutoVoIPOUIIndex, agentAutoVoIPDestinationL4Port=agentAutoVoIPDestinationL4Port, agentAutoVoIPOUI=agentAutoVoIPOUI, agentAutoVoIPOUIRowStatus=agentAutoVoIPOUIRowStatus, PYSNMP_MODULE_ID=fastPathQOSAUTOVOIP, agentAutoVoIPSessionEntry=agentAutoVoIPSessionEntry, agentAutoVoIPProtocolTcOrRemarkValue=agentAutoVoIPProtocolTcOrRemarkValue, agentAutoVoIPSourceIP=agentAutoVoIPSourceIP, agentAutoVoIPTable=agentAutoVoIPTable, agentAutoVoIPProtocolPriScheme=agentAutoVoIPProtocolPriScheme, agentAutoVoIPSessionTable=agentAutoVoIPSessionTable, agentAutoVoIPOUIPortStatus=agentAutoVoIPOUIPortStatus, agentAutoVoIPOUITable=agentAutoVoIPOUITable, agentAutoVoIPProtocolPortStatus=agentAutoVoIPProtocolPortStatus, agentAutoVoIPIntfIndex=agentAutoVoIPIntfIndex, agentAutoVoIPVLAN=agentAutoVoIPVLAN)
# #!/usr/bin/env python # encoding: utf-8 # # -------------------------------------------------------------------------------------------------------------------- # Name: amortization.py # Version: 0.0.1 # Summary: Para que a dívida seja totalmente paga, o tomador deve quitar o montante inicial adicionado aos juros # acrescidos. A forma como o valor total do saldo devedor será calculado é definida de acordo com o sistema de # amortização aplicado. Ele caracteriza como a dívida vai ser diminuída até chegar a sua total liquidação. # # Author: Alexsander Lopes Camargos # Author-email: [email protected] # # License: MIT # -------------------------------------------------------------------------------------------------------------------- class Amortization: def __init__(self): self.amortization = list() @staticmethod def taxa_equivalente(taxa, periodo_da_taxa_atual, periodo_da_taxa_equivalente): """Realiza a conversão de uma taxa de juros dada ao ano para taxa de juros ao mês. 1 + taxa equivalente = (1 + taxa de juros)período da taxa equivalente/período da taxa atual Primeiro você deve transformar esses 2% dividindo o número 2 por 100 para encontrar 0,02 dessa forma: 2% = 2/100 = 0,02. O período da taxa equivalente que queremos descobrir é 12 meses. O período da taxa atual que temos é de 1 mês, então utilizaremos 12/1 = 12. 1 + taxa equivalente = (1 + 0,02)12/1 1 + taxa equivalente = 1,0212 1 + taxa equivalente = 1,2682 taxa equivalente = 1,2682 – 1 taxa equivalente = 0,2682 taxa equivalente = 26,82% A taxa anual de juros equivalente a 2% ao mês é de 26,82%. """ taxa /= 100 return ((1 + taxa) ** (periodo_da_taxa_equivalente / periodo_da_taxa_atual)) - 1 def calcular(self): """Calcula as parcelas, amortizações, juros e evolução do saldo devedor.""" # Deve ser implementado nas classes filhas. pass def show(self): """Mostra uma tabela contendo todas as parcelas da operação de financiamento, no padrão: # Parcelas Amortizações Juros Saldo Devedor """ # Realiza o calculo das parcelas a serem pagas durante o financiamento. self.calcular() # Totalizando os valores pagos durante a operação de financiamento. total_parcela = 0 total_amortization = 0 total_juros = 0 print('{:<5}{:<12}{:<16}{:<12}{:<12}'.format('#', 'Parcelas', 'Amortizações', 'Juros', 'Saldo Devedor')) for pmt, pgto, amortization, juros, saldo_devedor in self.amortization: print(f'{pmt:<5}R${pgto:<10.2f}R${amortization:<16.2f}R${juros:<10.2f}R${saldo_devedor:<10.2f}') total_parcela += pgto total_amortization += amortization total_juros += juros print('Parcela = Amortização + Juro') print(f'\nValor total pago de Parcelas: R${total_parcela:.2f}') print(f'Valor total pago de Amortizações: R${total_amortization:.2f}') print(f'Valor total pago de Juros: R${total_juros:.2f}') class TabelaSAC(Amortization): """O Sistema de Amortização Constante (SAC) ou Método Hamburguês consiste na amortização constante da dívida com base em pagamentos periódicos decrescentes. Ou seja, quanto mais o tempo passa, menores ficam as parcelas de quitação do saldo devedor enquanto o valor é amortizado de maneira constante em todos os períodos. De forma geral, os juros e o capital são calculados uma única vez e divididos para o pagamento em várias parcelas durante o prazo de quitação. """ def __init__(self, present_value, period, interest_rate): """ Sistema de Amortização Constante (SAC) ou Método Hamburguês :param present_value: Valor total do empréstimo ou financiamento. :param period: Número de parcelas. :param interest_rate: Taxa de juros """ super().__init__() self.__present_value = present_value self.__period = period self.__interest_rate = self.taxa_equivalente(interest_rate, 12, 1) self.amortization = [] def calcular(self): """Calcula as parcelas, amortizações, juros e evolução do saldo devedor.""" amortization = round(self.__present_value / self.__period, 2) saldo_devedor = self.__present_value # Rotina de cálculo de cada prestação mensal. for pmt in range(1, (self.__period + 1)): juros = round(saldo_devedor * self.__interest_rate, 2) # pagamento = amortização + juros Sobre Saldo Devedor pgto = amortization + juros saldo_devedor -= amortization self.amortization.append([pmt, pgto, amortization, juros, saldo_devedor]) class TabelaPrice(Amortization): """O modelo de amortização por Tabela Price é um dos mais conhecidos. Por ele, o montante total é amortizado ao longo do contrato e de forma crescente. Assim, o pagamento é feito através de um conjunto de prestações sucessivas e constantes. Geralmente, as parcelas são pagas mensalmente em valores iguais, já com os juros embutidos. Também pode ser chamado de Sistema de Parcelas Fixas ou Sistema Francês. """ def __init__(self, present_value, period, interest_rate): """Amortização por Tabela Price :param present_value: Valor total do empréstimo ou financiamento. :param period: Número de parcelas. :param interest_rate: Taxa de juros """ super().__init__() self.__present_value = present_value self.__period = period self.__interest_rate = self.taxa_equivalente(interest_rate, 12, 1) self.__parcela = self.payment_value() self.amortization = [] def payment_value(self): """A tabela Price usa o regime de juros compostos para calcular o valor das parcelas de um empréstimo e, dessa parcela, há uma proporção relativa ao pagamento de juros e amortização do valor emprestado.""" return (self.__present_value * self.__interest_rate) / (1 - (1 + self.__interest_rate) ** -self.__period) def calcular(self): """Calcula as parcelas, amortizações, juros e evolução do saldo devedor.""" saldo_devedor = self.__present_value # Rotina de cálculo de cada prestação mensal. for pmt in range(1, (self.__period + 1)): juros = round(saldo_devedor * self.__interest_rate, 2) amortization = self.__parcela - juros saldo_devedor -= amortization self.amortization.append([pmt, self.__parcela, amortization, juros, saldo_devedor])
def reverse(my_list): if type(my_list) != list: return f"{my_list} is not a list" elif len(my_list) ==0: return 'list should not be empty' reversed_list = my_list[::-1] return reversed_list if __name__ == "__main__": riddle_index = 0
""" @author: David Lei @since: 28/08/2016 @modified: ReTRIEval tree = Trie Tree data structure (reTRIEval tree) - used to store collections of strings - if 2 strings have a common prefix, will have a same ancestor in this tree - idea for dictionaries, less space compared to hashtable a.k.a digital tree, radix tree, prefix tree (as they can be searched by prefixes) is a search tree (ordered tree data structure) that is used to store a dynamic set or associative array where the keys are usually strings. note: associative array, map, symbol table, or dictionary is an abstract data type composed of a collection of (key, value) pairs, such that each possible key appears at most once in the collection. based on: https://www.youtube.com/watch?v=AXjmTQ8LEoI Time Complexity: There can not be more than n * l nodes in the tree, where n is the number of strings and l is the length of search string so at worst the below operations are O(n * l) - look up (search): - delete (remove): - insert (add): Space Complexity: O(n * l) where l is the avg length of the strings A standard trie storing a collection S of s strings of total length n from an alphabet Σ has the following properties: • The height of T is equal to the length of the longest string in S. • Every internal node of T has at most |Σ| children. • T has s leaves • The number of nodes of T is at most n+1 """ class Trie_Node: def __init__(self): self.children = {} # dictionary, can also be done with array of 26 for alphabet self.end_of_word = False # dictionary provides a mapping of 'char': next_tree_node_object class Trie: def __init__(self): self.root = Trie_Node() def insert_iterative(self, string): node = self.root for character in string: if character in node.children: # O(1) best=avg case look up for a dictionary node = node.children[character] else: # finished searching prior to string ending # add this character to the trie new_node = Trie_Node() node.children[character] = new_node # add the char:obj mapping to node.children node = new_node # update the node to be the new node we just created node.end_of_word = True def insert_recursive(self, string): self._insert_recursive_aux(self.root, string, 0) def _insert_recursive_aux(self, node, string, char_index): if char_index == len(string): # done looping through string node.end_of_word = True elif string[char_index] in node.children: self._insert_recursive_aux(node.children[string[char_index]], string, char_index + 1) else: new_node = Trie_Node() node.children[string[char_index]] = new_node self._insert_recursive_aux(node.children[string[char_index]], string, char_index + 1) def search_iterative(self, string): node = self.root for i in range(len(string)): if string[i] in node.children: node = node.children[string[i]] else: return False if node.end_of_word: return True return False def search_recursive(self, string): start = self.root return self._search_recursive_aux(start, string, 0) def _search_recursive_aux(self, node, string, char_index): if char_index == len(string): # search loop through string return node.end_of_word elif string[char_index] in node.children: return self._search_recursive_aux(node.children[string[char_index]], string, char_index + 1) else: return False def remove(self, string): """ needs a recessive implementation as you might delete all the way up one side of the tree doing this iteratively is a lot of work and might take a lot of space """ start = self.root self._remove_aux(start, string, 0) def _remove_aux(self, node, string, char_index): """ note: we can remove a node from the trie if that node no children """ if char_index == len(string): if node.end_of_word: # the string is in the tree, can delete node.end_of_word = False # no string ends here anymore print("string " + str(string) +" in trie, trying to delete up") return len(node.children) == 0 # return whether this node has any children # if not, we can delete, else we can't else: # raise KeyError("Not in trie") print("Can't delete, it's not in the trie") return False # can't delete, return false elif string[char_index] in node.children: # just keep searching node_next = node.children[string[char_index]] can_remove_child = self._remove_aux(node_next, string, char_index + 1) if can_remove_child: # nothing in my child's .children # can delete print("Can delete, prev: " + str(node.children.items())) node.children.pop(string[char_index]) # can remove the child referencing returning node print("Can delete, after: " + str(node.children.items())) return len(node.children) == 0 # no more children else: # can't delete print("Can't delete, it's has other children") return False else: # character is not in the children dict of current node # raise KeyError("Not in trie") print("Can't delete, it's not in the trie") return False if __name__ == "__main__": T = Trie() T.insert_iterative('abcd') T.insert_recursive('egg') T.insert_recursive('abg') print(T.search_iterative('gp')) print(T.search_iterative('egg')) print(T.search_iterative('eg')) print(T.search_recursive('abc')) print(T.search_recursive('abcd')) print("\nTrie structure works fine!\n") print(T.remove('xg')) print(T.remove('eg')) print(T.remove('abcd')) print("Removed things, for the case where we could delete, the path from b --> c --> d got truncated, b --> g stil here ") print() # note: check tree strcuture via debugging because didn't have time to implement a print fn
class _dafny: def print(value): if type(value) == bool: print("true" if value else "false", end="") elif type(value) == property: print(value.fget(), end="") else: print(value, end="")
limit=int(input("enter the limit")) no=int(input("enter the no")) for i in range(1,limit+1,1): multi=no*i print(no,"*",i,"=",multi)
"""Exceptions raised by `e2e.pom` at runtime.""" class PomError(Exception): """Base exception from which all `e2e.pom` errors inherit.""" class ElementNotUniqueErrror(PomError): """Raised when multiple DOM matches are found for a "unique" model.""" class ElementNotFoundErrror(PomError): """Raised when no DOM matches are found for a "unique" model."""
months = { '01':'janvier', '02':'février', '03':'mars', '04':'avril', '05':'mai', '06':'juin', '07':'juillet', '08':'août', '09':'septembre', '10':'octobre', '11':'novembre', '12':'décembre' } def str_date_fr(date: str) -> str: date = date.split('-') if len(date) == 3 and date[2][0] == '0': date[2] = date[2][1] if date[2] == '1': date[2] += '<sup>er</sup>' if len(date) == 1: return date[0] else: date[1] = months[date[1]] return ' '.join(reversed(date))
class Arithmetic: def __init__(self, command): self.text = command def operation(self): return self.text.strip() class MemoryAccess: def __init__(self, command): self.op, self.seg, self.idx = tuple(command.split()) def operation(self): return self.op def segment(self): return self.seg def index(self): return self.idx class ProgramFlow: def __init__(self, command, function): self.op, self.lb = tuple(command.split()) self.func = function def operation(self): return self.op def label(self): return f'{self.func}${self.lb}' class FunctionCall: def __init__(self, command): self.cmd = tuple(command.split()) def operation(self): return self.cmd[0] def func_name(self): return self.cmd[1] def arg_count(self): return int(self.cmd[2])
N = int(input()) pokemons = [] while (N != 0): Name = input() pokemons.append(Name) N-= 1 print('Falta(m) {} pomekon(s).'.format(151 - len(set(pokemons))))
def count_salutes(hallway): count=hallway.count("<") total=0 for i in hallway: count-=i=="<" if i==">": total+=count*2 return total
# Python - 3.6.0 Test.assert_equals(catch_sign_change([1, 3, 4, 5]), 0) Test.assert_equals(catch_sign_change([1, -3, -4, 0, 5]), 2) Test.assert_equals(catch_sign_change([]), 0) Test.assert_equals(catch_sign_change([-47, 84, -30, -11, -5, 74, 77]), 3)
num = int(input('Digite um número para teste:')) tot = 0 for c in range(1, num + 1): if num % c == 0: print('\033[1;33m', end='') tot +=1 else: print('\033[1;34m', end='') print(f'{c}', end=' ') print(f'\nO número {c} foi divisível {tot} vezes.') if tot == 2: print('E por isso ele é primo!') else: print('E por isso ele não é primo!') #OUTRA RESOLUCAO: #frase = input("Qual a frase? ").upper().replace(" ", "") #if frase == frase[::-1]: #print("A frase é um palíndromo") #else: #print("A frase não é um palíndromo")
{ 'targets': [ { 'target_name': 'murmurhash3', 'sources': ['src/MurmurHash3.cpp', 'src/node_murmurhash3.cc'], 'cflags': ['-fexceptions'], 'cflags_cc': ['-fexceptions'], 'cflags!': ['-fno-exceptions'], 'cflags_cc!': ['-fno-exception'], "include_dirs" : [ "<!(node -e \"require('nan')\")" ], 'conditions': [ ['OS=="win"', { 'msvs_settings': { 'VCCLCompilerTool': { 'AdditionalOptions': [ '/EHsc' ] } } } ], ['OS=="mac"', { 'xcode_settings': { 'GCC_ENABLE_CPP_EXCEPTIONS': 'YES' } } ] ] } ] }
def create_desktop_file_KDE(): path="/usr/share/applications/klusta_process_manager.desktop" text=["[Desktop Entry]", "Version=0.1", "Name=klusta_process_manager", "Comment=GUI", "Exec=klusta_process_manager", "Icon=eyes", "Terminal=False", "Type=Application", "Categories=Applications;"] with open(path,"w") as f: f.write("\n".join(text)) if __name__=="__main__": print("Create a .desktop file in /usr/share/application") print("Only tested with Linux OpenSuse KDE") print("--------------") try: create_desktop_file_KDE() print("Shortcut created !") except PermissionError: print("Needs admin rights: try 'sudo python create_shortcut.py'")
class BinarySearchTreeNode: def __init__(self,data): self.data=data self.left=None self.right=None def add_child(self,data): if data == self.data: return if data <self.data: #add on the left side of the subtree if self.left: self.left.add_child(data) else: self.left = BinarySearchTreeNode(data) else: #add on the right side of the subtree if self.right: self.right.add_child(data) else: self.right = BinarySearchTreeNode(data) def in_order_traversal(self): elements=[] #visits left tree if self.left: elements+=self.left.in_order_traversal() #visits root node elements.append(self.data) #visits right tree if self.right: elements+=self.right.in_order_traversal() return elements def post_traversal(self): elements=[] #visits left tree if self.left: elements+=self.left.post_traversal() #vists right tree if self.right: elements+=self.right.post_traversal() #vists root elements.append(self.data) def pre_traversal(self): elements=[self.data] #visits left tree if self.left: elements+=self.left.append.pre_traversal() #visits right tree if self.right: elements+=self.right.append.pre_traversal() def find_max(self): if self.right is None: return self.data return self.right.find_max() def find_min(self): if self.left is None: return self.data return self.left.find_min() def calculate_sum(self): left_sum = self.left.calculate_sum() if self.left else 0 right_sum = self.right.calculate_sum() if self.right else 0 return self.data + left_sum + right_sum def build_tree(elements): root=BinarySearchTreeNode(elements[0]) for i in range(1,len(elements)): root.add_child(elements[i]) return root if __name__ == '__main__': numbers = [17, 4, 1, 20, 9, 23, 18, 34] numbers = [15,12,7,14,27,20,23,88 ] numbers_tree = build_tree(numbers) print("Input numbers:",numbers) print("Min:",numbers_tree.find_min()) print("Max:",numbers_tree.find_max()) print("Sum:", numbers_tree.calculate_sum()) print("In order traversal:", numbers_tree.in_order_traversal()) print("Pre order traversal:", numbers_tree.pre_traversal()) print("Post order traversal:", numbers_tree.post_traversal())
# -*- coding: utf-8 -*- # Scrapy settings for cosme project # # For simplicity, this file contains only the most important settings by # default. All the other settings are documented here: # # http://doc.scrapy.org/en/latest/topics/settings.html # BOT_NAME = 'cosme' SPIDER_MODULES = ['cosme.spiders'] NEWSPIDER_MODULE = 'cosme.spiders' DOWNLOAD_DELAY = 1.5 COOKIES_ENABLES = False ITEM_PIPELINES = { # 'cosme.pipelines.CosmePipeline': 1, # 'cosme.pipelines.ProductPipeline': 1, 'cosme.pipelines.ProductDetailPipeline': 1, } #---mysql config--- HOST, DB, USER, PWD = '127.0.0.1', 'cosme', 'root', '123456' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'cosme (+http://www.yourdomain.com)'
# The Tribonacci sequence Tn is defined as follows: # T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 + Tn+2 for n >= 0. # Given n, return the value of Tn. # Example 1: # Input: n = 4 # Output: 4 # Explanation: # T_3 = 0 + 1 + 1 = 2 # T_4 = 1 + 1 + 2 = 4 # Example 2: # Input: n = 25 # Output: 1389537 # Constraints: # 0 <= n <= 37 # The answer is guaranteed to fit within a 32-bit integer, ie. answer <= 2^31 - 1. # Hints: # Make an array F of length 38, and set F[0] = 0, F[1] = F[2] = 1. # Now write a loop where you set F[n+3] = F[n] + F[n+1] + F[n+2], and return F[n]. # M1. 动态规划 class Solution(object): def tribonacci(self, n): """ :type n: int :rtype: int """ if n < 3: return 1 if n else 0 x, y, z = 0, 1, 1 for _ in range(n-2): x, y, z = y, z, x + y + z return z # M2. 记忆递归 # class Tri: # def __init__(self): # def helper(k): # if k == 0: # return 0 # if nums[k]: # return nums[k] # nums[k] = helper(k - 1) + helper(k - 2) + helper(k - 3) # return nums[k] # n = 38 # self.nums = nums = [0] * n # nums[1] = nums[2] = 1 # helper(n - 1) # class Solution: # t = Tri() # def tribonacci(self, n): # """ # :type n: int # :rtype: int # """ # return self.t.nums[n] # M3. 记忆动态规划 # class Tri: # def __init__(self): # n = 38 # self.nums = nums = [0] * n # nums[1] = nums[2] = 1 # for i in range(3, n): # nums[i] = nums[i - 1] + nums[i - 2] + nums[i - 3] # class Solution: # t = Tri() # def tribonacci(self, n): # """ # :type n: int # :rtype: int # """ # return self.t.nums[n]
# Time: O(n) # Space: O(h), h is height of binary tree # 129 # Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number. # # An example is the root-to-leaf path 1->2->3 which represents the number 123. # # Find the total sum of all root-to-leaf numbers. # # For example, # # 1 # / \ # 2 3 # The root-to-leaf path 1->2 represents the number 12. # The root-to-leaf path 1->3 represents the number 13. # # Return the sum = 12 + 13 = 25. # # Definition for a binary tree node class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: # @param root, a tree node # @return an integer def sumNumbers(self, root: TreeNode) -> int: # USE THIS ans = 0 stack = [(root, 0)] while stack: node, v = stack.pop() if node: if not node.left and not node.right: ans += v*10 + node.val else: stack.append((node.right, v*10+node.val)) stack.append((node.left, v*10+node.val)) return ans def sumNumbers_rec1(self, root): return self.recu(root, 0) def recu(self, root, num): if root is None: return 0 if root.left is None and root.right is None: return num * 10 + root.val return self.recu(root.left, num * 10 + root.val) + self.recu(root.right, num * 10 + root.val) # the following recursion is not very good (use global var, don't leverage return value) def sumNumbers_rec2(self, root: TreeNode) -> int: def dfs(node, v): if node: if not (node.left or node.right): self.ans += v*10 + node.val return dfs(node.left, v*10+node.val) dfs(node.right, v*10+node.val) self.ans = 0 dfs(root, 0) return self.ans if __name__ == "__main__": root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) print(Solution().sumNumbers(root)) # 137
""" Georgia Institute of Technology - CS1301 HW04 - Strings, Indexing and Lists """ ######################################### """ Function Name: findMax() Parameters: a caption list of numbers (list), start index (int), stop index (int) Returns: highest number (int) """ def findMax(theNumbersMason, theStart, theEnd): highscore = theNumbersMason[theStart] for x in theNumbersMason[theStart:theEnd+1]: if x > highscore: highscore = x return highscore ######################################### """ Function Name: fruitPie() Parameters: list of fruits (list), minimum quantity (int) Returns: list of fruits (list) """ def fruitPie(theFruit, theMin): acceptableFruit = [] for x in range(0, len(theFruit)): if x % 2 != 0 and theFruit[x] >= theMin: acceptableFruit.append(theFruit[x-1]) return acceptableFruit ######################################### """ Function Name: replaceWord() Parameters: initial sentence (str), replacement word (str) Returns: corrected sentence (str) """ def replaceWord(sentence, word): segments = sentence.split() sentence = "" for x in segments: if len(x) >= 5: sentence = sentence + word + " " else: sentence = sentence + x + " " return sentence[0:len(sentence) - 1] ######################################### """ Function Name: highestSum() Parameters: list of strings (strings) Returns: index of string with the highest sum (int) """ def highestSum(theStrings): high = [0, 0] # index, score for x in range(0, len(theStrings)): sum = 0 for y in theStrings[x]: if y.isdigit(): sum = sum + int(y) if sum > high[1]: high = [x, sum] return high[0] ######################################### """ Function: sublist() Parameters: alist (list), blist (list) Returns: True or False (`boolean`) """ def sublist(aList, bList): bLength = len(bList) if bLength == 0: return True for x in aList: if x == bList[0]: if len(bList) == 1: return True bList = bList[1:len(bList)] else: if bLength != len(bList): return False return False
""" Midi pitch values: A0 has value 21 C8 has value 108 """ NAME_TO_VAL = { "C": 0, "D": 2, "E": 4, "F": 5, "G": 7, "A": 9, "B": 11, } def name_to_val(name): name = name.upper() note = name[0] mod = None octave = None offset = 12 if name[1] in ("#", "B"): mod = name[1] octave = int(name[2:]) else: octave = int(name[1:]) val = NAME_TO_VAL[note] if mod == "#": val += 1 elif mod == "B": val -= 1 val += octave * 12 val += offset return val
task = int(input()) points = int(input()) course = input() if task == 1: if course == 'Basics': points = points * 0.08 - (0.2 * (points * 0.08)) elif course == 'Fundamentals': points = points * 0.11 elif course == 'Advanced': points = points * 0.14 + (0.2 * (points * 0.14)) elif task == 2: if course == 'Basics': points = points * 0.09 elif course == 'Fundamentals': points = points * 0.11 elif course == 'Advanced': points = points * 0.14 + (0.2 * (points * 0.14)) elif task == 3: if course == 'Basics': points = points * 0.09 elif course == 'Fundamentals': points = points * 0.12 elif course == 'Advanced': points = points * 0.15 + (0.2 * (points * 0.15)) elif task == 4: if course == 'Basics': points = points * 0.10 elif course == 'Fundamentals': points = points * 0.13 elif course == 'Advanced': points = points * 0.16 + (0.2 * (points * 0.16)) print(f'Total points: {points:.2f}')
# Given a number N, print the odd digits in the number(space seperated) or print -1 if there is no odd digit in the given number. number = int(input('')) array = list(str(number)) flag = 0 for digit in range(0, len(array)-1): if(int(array[digit]) % 2 == 0): print(' ', end='') else: print(array[digit], end='') flag = flag+1 if(int(array[len(array)-1]) % 2 == 0): print('', end='') else: print(int(array[len(array)-1]), end='') if(flag == 0): print(-1)
"""A function to reverse a string. By Ted Silbernagel """ def reverse_string(input_word: str) -> str: return_word = '' for _ in input_word: return_word += input_word[-1:] input_word = input_word[:-1] return return_word if __name__ == '__main__': user_string = input('Please enter a word/string to reverse: ') result = reverse_string(user_string) print(result)
""" File: forestfire.py ---------------- This program highlights fires in an image by identifying pixels who red intensity is more than INTENSITY_THRESHOLD times the average of the red, green, and blue values at a pixel. Those "sufficiently red" pixels are then highlighted in the image and the rest of the image is turned grey, by setting the pixels red, green, and blue values all to be the same average value. """ def main(): # write a program to ask user their height in METERS # it will be a float! # evaluate if their height is too short or too tall or ok to ride # print response depending on evaluation # precondition: we don't know if they can ride # postcondition: we know if they can ride and tell them. # what is their height in meters? rider_height = float(input("Enter height in meters: ")) if (rider_height < 1 or rider_height > 2): print("You can't ride the roller coaster.") else: print("You can ride the roller coaster.") if __name__ == '__main__': main()
class Rectangle: def __init__(self, width): self.__width = width @property def width(self): return self.__width @width.setter def width(self, w): if w > 0: self.__width = w else: raise ValueError # Теперь работать с width и height можно так, как будто они являются атрибутами: rect = Rectangle(10) print(rect.width) # Можно не только читать, но и задавать новые значения свойствам: rect.width = 50 rect.height = 70 print(rect.width) print(rect.height) # Если вы обратили внимание: в setter’ах этих свойств осуществляется # проверка входных значений, если значение меньше нуля, то будет выброшено исключение ValueE rect.width = -50
t5_generation_config = { "do_sample": True, "num_beams": 2, "repetition_penalty": 5.0, "length_penalty": 1.0, "num_return_sequences": 1, } GPT2_generation_config = { "do_sample": True, "num_beams": 2, "repetition_penalty": 5.0, "length_penalty": 1.0, }
# -*- coding: utf-8 -*- """ Created on Tue May 7 12:11:09 2019 @author: DiPu """ A1=int(input()) A2=int(input()) A3=int(input()) E1=int(input()) E2=int(input()) weighted_score=((A1+A2+A3)*0.1)+((E1+E2)*0.35 ) print("weightrd score is",weighted_score)
# Pyomniar # Copyright 2011 Chris Kelly # See LICENSE for details. class OmniarError(Exception): """Omniar exception""" def __init__(self, reason, response=None): self.reason = unicode(reason) self.response = response def __str__(self): return self.reason
while True: number = int(input('Enter a number: ')) while number != 1: if number % 2 == 0: number //= 2 else: number = number * 3 + 1 print(number) print()
# ------------------------------ # 276. Paint Fence # # Description: # There is a fence with n posts, each post can be painted with one of the k colors. # You have to paint all the posts such that no more than two adjacent fence posts have the same color. # # Return the total number of ways you can paint the fence. # # Note: # n and k are non-negative integers. # # Version: 1.0 # 12/11/17 by Jianfa # ------------------------------ class Solution(object): def numWays(self, n, k): """ :type n: int :type k: int :rtype: int """ if n == 0: return 0 if n == 1: return k same, diff = k, k * (k-1) for i in range(3, n + 1): # Note it's n + 1 here, not n same, diff = diff, (same + diff) * (k-1) return same + diff # Used for testing if __name__ == "__main__": test = Solution() # ------------------------------ # Summary: # Get the idea from "Python solution with explanation" in discuss section # If n == 1, there would be k-ways to paint. # # if n == 2, there would be two situations: # # 2.1 You paint same color with the previous post: k*1 ways to paint, named it as same # 2.2 You paint differently with the previous post: k*(k-1) ways to paint this way, named it as dif # So, you can think, if n >= 3, you can always maintain these two situations, # You either paint the same color with the previous one, or differently. # # Since there is a rule: "no more than two adjacent fence posts have the same color." # # We can further analyze: # # from 2.1, since previous two are in the same color, next one you could only paint differently, and it would # form one part of "paint differently" case in the n == 3 level, and the number of ways to paint this way # would equal to same*(k-1). # from 2.2, since previous two are not the same, you can either paint the same color this time (dif*1) ways # to do so, or stick to paint differently (dif*(k-1)) times. # Here you can conclude, when seeing back from the next level, ways to paint the same, or variable same would # equal to dif*1 = dif, and ways to paint differently, variable dif, would equal to same*(k-1)+dif*(k-1) = (same + dif)*(k-1)
def get_index_different_char(chars): alphanumeric_count, not_alphanumeric_count = 0, 0 last_alphanumeric_idx, last_not_alphanumeric_idx = 0, 0 alphanumeric = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' for idx, char in enumerate(chars): if str(char) in alphanumeric: alphanumeric_count += 1 last_alphanumeric_idx = idx else: not_alphanumeric_count += 1 last_not_alphanumeric_idx = idx if alphanumeric_count > not_alphanumeric_count: return last_not_alphanumeric_idx return last_alphanumeric_idx if __name__ == '__main__': print(get_index_different_char(['A', 'f', '.', 'Q', 2])) print(get_index_different_char(['.', '{', ' ^', '%', 'a'])) print(get_index_different_char([1, '=', 3, 4, 5, 'A', 'b', 'a', 'b', 'c'])) print(get_index_different_char(['=', '=', '', '/', '/', 9, ':', ';', '?', '¡'])) print(get_index_different_char(list(range(1,9)) + ['}'] + list('abcde'))) #pytest --cov-report term-missing --cov='.'
#Conditional if x = 22 y = 100 if y < x: print("This is True, y is not greater than x!") elif y == x: print("This is True, y is greater than x!") else: print("Anything else!") print("Completed")
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ models ---------------------------------- Models store record state during parsing and serialisation to other formats. """ class InventoryItem(object): """ Inventory Item Model """ def __init__(self, id=None, price=None, description=None, cost=None, price_type=None, quantity_on_hand=None, modifiers=[]): self._id = id self._price = price self._description = description self._cost = cost self._price_type = price_type self._quantity_on_hand = quantity_on_hand self._modifiers = modifiers @property def id(self): """ get id property """ return self._id @id.setter def id(self, id): """ set id property """ self._id = id @property def price(self): """ get price property """ return self._price @price.setter def price(self, price): """ set price property """ self._price = price @property def description(self): """ get description property """ return self._description @description.setter def description(self, _description): """ set description property """ self._description = _description @property def cost(self): """ set cost property """ return self._cost @cost.setter def cost(self, cost): """ get cost property """ self._cost = cost @property def price_type(self): """ get price_type property """ return self._price_type @price_type.setter def price_type(self, price_type): """ set price_type property """ self._price_type = price_type @property def quantity_on_hand(self): """ set quantity_on_hand property """ return self._quantity_on_hand @quantity_on_hand.setter def quantity_on_hand(self, quantity_on_hand): """ get quantity_on_hand property """ self._quantity_on_hand = quantity_on_hand @property def modifiers(self): """ get modifiers property """ return self._modifiers @modifiers.setter def modifiers(self, modifiers): """ set modifiers property """ self._modifiers = modifiers
"""""" _TEST_TEMPLATE = """#!/bin/bash # Unset TEST_SRCDIR since we're trying to test the non-test behavior unset TEST_SRCDIR # --- begin runfiles.bash initialization v2 --- # Copy-pasted from the Bazel Bash runfiles library v2. set -uo pipefail; f=bazel_tools/tools/bash/runfiles/runfiles.bash source "${RUNFILES_DIR:-/dev/null}/$f" 2>/dev/null || \ source "$(grep -sm1 "^$f " "${RUNFILES_MANIFEST_FILE:-/dev/null}" | cut -f2- -d' ')" 2>/dev/null || \ source "$0.runfiles/$f" 2>/dev/null || \ source "$(grep -sm1 "^$f " "$0.runfiles_manifest" | cut -f2- -d' ')" 2>/dev/null || \ source "$(grep -sm1 "^$f " "$0.exe.runfiles_manifest" | cut -f2- -d' ')" 2>/dev/null || \ { echo>&2 "ERROR: cannot find $f"; exit 1; }; f=; set -e # --- end runfiles.bash initialization v2 --- runfiles_export_envvars $(rlocation {nested_tool}) """ def _runfiles_path(ctx, file): if file.short_path.startswith("../"): return file.short_path[3:] else: return ctx.workspace_name + "/" + file.short_path def _impl(ctx): runfiles = ctx.runfiles() runfiles = runfiles.merge(ctx.attr._bash_runfiles.default_runfiles) runfiles = runfiles.merge(ctx.attr.nested_tool.default_runfiles) script = ctx.actions.declare_file(ctx.label.name) ctx.actions.write( script, _TEST_TEMPLATE.replace("{nested_tool}", _runfiles_path(ctx, ctx.executable.nested_tool)), is_executable = True ) return [ DefaultInfo( executable = script, runfiles = runfiles, ), ] nested_tool_test = rule( implementation = _impl, test = True, # executable = True, attrs = { "nested_tool": attr.label( executable = True, mandatory = True, cfg = "target", ), "_bash_runfiles": attr.label( allow_files = True, default = Label("@bazel_tools//tools/bash/runfiles"), ), }, )
#!/usr/bin/env python # encoding: utf-8 """ constants.py Useful constants; the ones embedded in classes can be thought of as Enums. Created by Niall Richard Murphy on 2011-05-25. """ _DNS_SEPARATOR = "." # What do we use to join hostname to domain name _FIRST_ONE_ONLY = 0 # If we only want the first match back from an array class Types(object): """Types of router configuration.""" UNKNOWN=0 DEFAULT_CISCO=1 DEFAULT_JUNIPER=2 class Regex(object): """These regular expressions use named capturing groups; most of them are gross simplifications.""" V4_ADDR = '((25[0-5]|2[0-4]\d|1\d\d|[1-9]\d|\d)\.){3}(25[0-5]|2[0-4]\d|1\d\d|[1-9]\d|\d)' V6_ADDR = '::' ANY_ADDR = '\S+' ANY_MASK = '\S+' INTERFACE = '[a-zA-Z-]+\d+(/\d+)?' ANY_METRIC = '\d+' SNMP_VERSION = '\d|\dc' SSH_VERSION = '1|2' SINGLE_STRING = '\S+' GREEDY_STRING = '.*' DIGITS = '\d+' STANDARD_ACL_DIGITS = '\d{1,2}' EXTENDED_ACL_DIGITS = '\d{3}' ACL_DIRECTION = 'in|out' ACCESS_GROUP = DIGITS CISCO_WILDCARD = '(\d+)\.(\d+)\.(\d+)\.(\d+)' ETHER_SPEED = 'nonegotiate|auto|\d+' ETHER_DUPLEX = 'full|half|auto' SHUTDOWN_STATE = 'shutdown' NO_IP_STATE = 'no ip address' VTY_COMPRESS = '(\d+)\s+(\d+)' ACL_PROTO = 'ip|tcp|udp' ACL_ACTION = 'permit|deny' ACL_SOURCE = '\S+' INTERFACE_PROPERTIES = "ip address (?P<addr1>%s) (?P<mask1>%s)|" \ "ipv6 address (?P<addr2>%s)|" \ "speed (?P<speed>%s)|" \ "duplex (?P<duplex>%s)|" \ "ip access-group (?P<aclin>%s) in|" \ "ip access-group (?P<aclout>%s) out|" \ "(?P<shutdown>%s)|" \ "(?P<noip>%s)|" \ "description (?P<descr>%s)" % ( SINGLE_STRING, # ip address ANY_MASK, # mask SINGLE_STRING, # ip address ETHER_SPEED, # ethernet speed ETHER_DUPLEX, # ethernet duplicity ACCESS_GROUP, # access group ACCESS_GROUP, # access group SHUTDOWN_STATE, # shutdown state NO_IP_STATE, # no ip address GREEDY_STRING) # description CON_CONFIG = "transport preferred (?P<tpref>%s)|transport output (?P<tout>%s)|" \ "exec-timeout (?P<timeo>%s\ +\d+)|stopbits (?P<stopb>%s)|" \ "password (?P<encrlevel>%s) (?P<passw>%s)" % ( SINGLE_STRING, # tpref SINGLE_STRING, # tout SINGLE_STRING, # timeo DIGITS, # stopb DIGITS, # encrlevel SINGLE_STRING) # passwd VTY_CONFIG = CON_CONFIG + "|transport input (?P<inputm>%s)" \ "|access-class (?P<acl>%s) (?P<acldir>%s)" \ "|ipv6 access-class (?P<aclv6>%s) (?P<dirv6>%s)" % ( GREEDY_STRING, # inputm - could be multiple inputs supported SINGLE_STRING, # v4 acl SINGLE_STRING, # v4 direction SINGLE_STRING, # v6 acl SINGLE_STRING) # v6 direction STANDARD_ACL = "^access-list (?P<id>%s) (?P<action>%s) (?P<netw>%s) (?P<netm>%s)$" % ( STANDARD_ACL_DIGITS, # id ACL_ACTION, # permit SINGLE_STRING, # 127.0.0.1 SINGLE_STRING) # 0.0.0.255 EXTENDED_ACL = "(?P<action1>%s) (?P<netw1>%s) (?P<netm1>%s)|" \ "(?P<action2>%s) (?P<proto>%s) (?P<netw2>%s) (?P<netm2>%s) (.*$)" % ( ACL_ACTION, # permit ANY_ADDR, # 127.0.0.1 SINGLE_STRING, # 0.0.0.255 ACL_ACTION, # permit ACL_PROTO, # tcp ANY_ADDR, # 8.8.8.0 SINGLE_STRING) # 0.0.0.255 AAA_NEWMODEL = "^aaa new-model" TACACS_SERVERS = "tacacs-server host (?P<host>%s)" % (ANY_ADDR) TACACS_KEY = "tacacs-server key 7 (?P<key>%s)" % (SINGLE_STRING) class UserClasses(object): CORE_ROUTER = 0 ACCESS_ROUTER = 1 DISTRIBUTION_ROUTER = 2 class NetworkConstants(object): SLASH_32 = '255.255.255.255'
""" Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum. For example: Given the below binary tree and sum = 22, 5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1 return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22. """ # Definition for a binary tree node # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param root, a tree node # @param sum, an integer # @return a boolean def hasPathSum(self, root, sum): if root is None: return False if root.left is None and root.right is None: # Found a leaf if sum == root.val: return True return self.hasPathSum(root.left, sum-root.val) or self.hasPathSum(root.right, sum-root.val) # Need to note, a leaf is a node has no left chind and no right child
#import sys #sys.stdin = open('rectangles.in', 'r') #sys.stdout = open('rectangles.out', 'w') n, m, k = map(int, input().split()) a = [[100000, 0, 100000, 0] for i in range(k)] field = [] for i in range(n): field.append(list(map(int, input().split()))) field.reverse() for i in range(n): for j in range(m): if field[i][j] > 0: v = field[i][j] - 1 a[v][0] = min(a[v][0], j) a[v][1] = max(a[v][1], j) a[v][2] = min(a[v][2], i) a[v][3] = max(a[v][3], i) for i in range(k): print(a[i][0], a[i][2], a[i][1] + 1, a[i][3] + 1)
def _cc_injected_toolchain_header_library_impl(ctx): hdrs = ctx.files.hdrs transitive_cc_infos = [dep[CcInfo] for dep in ctx.attr.deps] compilation_ctx = cc_common.create_compilation_context(headers = depset(hdrs)) info = cc_common.merge_cc_infos( cc_infos = transitive_cc_infos + [CcInfo(compilation_context = compilation_ctx)], ) return [info, DefaultInfo(files = depset(hdrs))] cc_injected_toolchain_header_library = rule( _cc_injected_toolchain_header_library_impl, attrs = { "hdrs": attr.label_list( doc = "A list of headers to be included into a toolchain implicitly using -include", allow_files = True, ), "deps": attr.label_list( doc = "list of injected header libraries that this target depends on", providers = [CcInfo], ), }, provides = [CcInfo], ) def _cc_toolchain_header_polyfill_library_impl(ctx): hdrs = ctx.files.hdrs system_includes = [ctx.label.package + "/" + inc for inc in ctx.attr.system_includes] + [ctx.label.workspace_root] transitive_cc_infos = [dep[CcInfo] for dep in ctx.attr.deps] compilation_ctx = cc_common.create_compilation_context(headers = depset(hdrs), system_includes = depset(system_includes)) info = cc_common.merge_cc_infos(cc_infos = transitive_cc_infos + [CcInfo(compilation_context = compilation_ctx)]) return [info, DefaultInfo(files = depset(hdrs, transitive = [info.compilation_context.headers]))] cc_polyfill_toolchain_library = rule( _cc_toolchain_header_polyfill_library_impl, attrs = { "hdrs": attr.label_list( doc = "A list of headers to be included into the toolchains system libraries", allow_files = True, ), "system_includes": attr.string_list( doc = "A list of directories to be included when the toolchain searches for headers", ), "deps": attr.label_list( doc = "list of injected header libraries that this target depends on", providers = [CcInfo], ), }, )
""" Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For example, If n = 4 and k = 2, a solution is: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ] """ class Solution(object): def combine(self, n, k): """ :type n: int :type k: int :rtype: List[List[int]] """ a = range(1, n + 1) return self.combine_aux(a, k) def combine_aux(self, a, k): if k == 0: return [[]] else: res = [] for i, e in enumerate(a): rest_comb = self.combine_aux(a[i + 1:], k - 1) for comb in rest_comb: comb.insert(0, e) res += rest_comb return res
# # PySNMP MIB module TRAPEZE-NETWORKS-REGISTRATION-DEVICES-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/TRAPEZE-NETWORKS-REGISTRATION-DEVICES-MIB # Produced by pysmi-0.3.4 at Wed May 1 15:27:22 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ValueSizeConstraint, ValueRangeConstraint, ConstraintsUnion, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ValueSizeConstraint", "ValueRangeConstraint", "ConstraintsUnion", "SingleValueConstraint") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Unsigned32, iso, MibScalar, MibTable, MibTableRow, MibTableColumn, ModuleIdentity, Counter32, Counter64, Gauge32, MibIdentifier, IpAddress, TimeTicks, ObjectIdentity, NotificationType, Bits, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "Unsigned32", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ModuleIdentity", "Counter32", "Counter64", "Gauge32", "MibIdentifier", "IpAddress", "TimeTicks", "ObjectIdentity", "NotificationType", "Bits", "Integer32") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") trpzRegistration, = mibBuilder.importSymbols("TRAPEZE-NETWORKS-ROOT-MIB", "trpzRegistration") trpzRegistrationDevicesMib = ModuleIdentity((1, 3, 6, 1, 4, 1, 14525, 3, 6)) trpzRegistrationDevicesMib.setRevisions(('2011-08-09 00:32', '2011-03-08 00:22', '2010-12-02 00:11', '2009-12-18 00:10', '2007-11-30 00:01', '2007-08-22 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: trpzRegistrationDevicesMib.setRevisionsDescriptions(('v1.4.2: added switch models WLC8, WLC2, WLC800R, WLC2800. (This was first published in 7.3 MR4 release.)', 'v1.3.2: added switch model WLC880R (This will be published in 7.5 release.)', 'v1.2.1: Revision history correction for v1.2: switch model MX-800 was introduced in 7.3 release.', 'v1.2: added switch model MX-800.', 'v1.1: added switch model MX-2800 (This will be published in 7.0 release.)', 'v1.0: initial version, published in 6.2 release',)) if mibBuilder.loadTexts: trpzRegistrationDevicesMib.setLastUpdated('201108090032Z') if mibBuilder.loadTexts: trpzRegistrationDevicesMib.setOrganization('Trapeze Networks') if mibBuilder.loadTexts: trpzRegistrationDevicesMib.setContactInfo('Trapeze Networks Technical Support www.trapezenetworks.com US: 866.TRPZ.TAC International: 925.474.2400 [email protected]') if mibBuilder.loadTexts: trpzRegistrationDevicesMib.setDescription("The MIB module for Trapeze Networks wireless device OID registrations. Copyright 2007-2011 Trapeze Networks, Inc. All rights reserved. This Trapeze Networks SNMP Management Information Base Specification (Specification) embodies Trapeze Networks' confidential and proprietary intellectual property. Trapeze Networks retains all title and ownership in the Specification, including any revisions. This Specification is supplied 'AS IS' and Trapeze Networks makes no warranty, either express or implied, as to the use, operation, condition, or performance of the Specification.") mobilityExchange = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 1)) mobilityExchange20 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 1, 1)) mobilityExchange8 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 1, 2)) mobilityExchange400 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 1, 3)) mobilityExchangeR2 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 1, 4)) mobilityExchange216 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 1, 6)) mobilityExchange200 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 1, 7)) mobilityExchange2800 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 1, 12)) mobilityExchange800 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 1, 13)) mobilityPoint = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 2)) mobilityPoint101 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 2, 1)) mobilityPoint122 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 2, 2)) mobilityPoint241 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 2, 3)) mobilityPoint252 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 2, 4)) wirelessLANController = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 3)) wirelessLANController880R = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 3, 1)) wirelessLANController8 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 3, 2)) wirelessLANController2 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 3, 3)) wirelessLANController800r = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 3, 4)) wirelessLANController2800 = MibIdentifier((1, 3, 6, 1, 4, 1, 14525, 3, 3, 5)) mibBuilder.exportSymbols("TRAPEZE-NETWORKS-REGISTRATION-DEVICES-MIB", mobilityExchange2800=mobilityExchange2800, mobilityExchange8=mobilityExchange8, wirelessLANController880R=wirelessLANController880R, wirelessLANController800r=wirelessLANController800r, mobilityPoint101=mobilityPoint101, wirelessLANController2800=wirelessLANController2800, mobilityPoint241=mobilityPoint241, mobilityExchange20=mobilityExchange20, wirelessLANController2=wirelessLANController2, mobilityPoint122=mobilityPoint122, mobilityExchange800=mobilityExchange800, mobilityExchange400=mobilityExchange400, mobilityPoint252=mobilityPoint252, mobilityExchange=mobilityExchange, mobilityPoint=mobilityPoint, mobilityExchange216=mobilityExchange216, mobilityExchangeR2=mobilityExchangeR2, PYSNMP_MODULE_ID=trpzRegistrationDevicesMib, mobilityExchange200=mobilityExchange200, wirelessLANController8=wirelessLANController8, wirelessLANController=wirelessLANController, trpzRegistrationDevicesMib=trpzRegistrationDevicesMib)
# coding: utf-8 def base_reducer(suffler_results): # Неплохо бы рекурсивную реализацию n = len(suffler_results) if n == 1: return suffler_results else: A_raw = suffler_results[:n/2] B_raw = suffler_results[n/2:] A = base_reducer(A_raw) B = base_reducer(B_raw) D = base_merge(A, B) return D def split_and_merge(C): n = len(C) if n == 1: return C else: A_raw = C[:n/2] B_raw = C[n/2:] A = split_and_merge(A_raw) B = split_and_merge(B_raw) D = merge(A, B) return D def merge(A, B): for at in A[0][0]: B[0][0][at] += A[0][0][at] # Суммирование списков B[0][1][0] += A[0][1][0] B[0][1][1] += A[0][1][1] return B def base_merge(A, B): """ [{index}, [count_sents, summ_sents_len], url] """ #print A[1], B[1] #asfdasd for at in A[0][0]: try: B[0][0][at]['N'] += A[0][0][at]['N'] for iat in A[0][0][at]['S']: B[0][0][at]['S'].append(iat) # Сжатие tmp = set(B[0][0][at]['S']) B[0][0][at]['S'] = list(tmp) except KeyError as e: B[0][0][at] = {'S': [], 'N': 0} B[0][0][at]['N'] = A[0][0][at]['N'] for iat in A[0][0][at]['S']: B[0][0][at]['S'].append(iat) # Сжатие tmp = set(B[0][0][at]['S']) B[0][0][at]['S'] = list(tmp) # Сжать списки слов возникшие после работы стеммера #print B return B
class Solution: def searchMatrix(self, matrix, target): i = 0 m = len(matrix) while i < m and matrix[i][0] <= target: i = i + 1 i = i - 1 return target in matrix[i] if __name__ == '__main__': matrix = [[1]] target = 1 ans = Solution().searchMatrix(matrix, target) print(ans)
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_file") def _download_binary(ctx): ctx.download( url = [ ctx.attr.uri, ], output = ctx.attr.binary_name, executable = True, ) ctx.file( "BUILD.bazel", content = 'exports_files(glob(["*"]))', ) download_binary = repository_rule( _download_binary, doc = """Downloads a single binary that is not tarballed. Example: download_binary( name = "jq_macos_amd64", binary_name = "jq", uri = "https://github.com/stedolan/jq/releases/download/jq-1.6/jq-osx-amd64", ) """, attrs = { "binary_name": attr.string( mandatory = True, ), "uri": attr.string( mandatory = True, ), }, ) def _declare_binary(ctx): out = ctx.actions.declare_file(ctx.attr.binary_name) ctx.actions.symlink( output = out, target_file = ctx.files.binary[0], ) return DefaultInfo(executable = out) declare_binary = rule( _declare_binary, doc = """Declares a single binary, used as a wrapper around a select() statement Example: declare_binary( name = "jq", binary = select({ "@platforms//os:linux": "@jq_linux_amd64//:jq", "@platforms//os:osx": "@jq_macos_amd64//:jq", }), binary_name = "jq", visibility = ["//visibility:public"], ) """, attrs = { "binary_name": attr.string( mandatory = True, ), "binary": attr.label( mandatory = True, executable = True, cfg = "exec", allow_files = True, ), }, )
# Basic type checking: no types necessary x = 3 x + 'a' def return_type() -> float: return 'a' return_type(9) def argument_type(x: float): return argument_type()
def sudoku(board, rows, columns): return helper(board, 0, 0, columns, rows) def helper(board, r, c, rows, columns): def inbound(r, c): return (0 <= r < rows) and (0 <= c < columns) # Out of bounds: # We filled all blank cells and, thus, a valid solution if not inbound(r, c): return True nr, nc = next_pos(r, c, rows, columns) if board[r][c] != 0: # This is a pre-filled cell, so skip # for the next one return helper(board, nr, nc, rows, columns) for i in range(1, 10): if valid_placement(board, r, c, rows, columns, i): # "i" can be place in the cell without breaking # the sudoku rules. So, it's a canditate for solution. # Mark the cell with the value and try to solve # recursively for the remaining blank cells board[r][c] = i if helper(board, nr, nc, rows, columns): return True else: # No solution found for the search branch: # reset the cell for the future attemps board[r][c] = 0 return False def next_pos(r, c, rows, columns): if c + 1 == columns: return (r + 1, 0) else: return (r, c + 1) def valid_placement(board, r, c, rows, columns, v): # Check conflict with row if v in board[r]: return False # Check conflict with column for i in range(0, rows): if v == board[i][c]: return False # Check conflict with the subgrid row_offset = r - r % 3 col_offset = c - c % 3 for i in range(3): for j in range(3): if board[i + row_offset][j + col_offset] == v: return False return True
""" Configuration file """ URL = 'localhost' PORT = 1883 KEEPALIVE = 60 UDP_URL = 'localhost' UDP_PORT = 1885
'''Print multiplication table of given number''' n=int(input("Enter the no:")) print("Multiplication table is:") for i in range(1,11): print(i*n)
# CONVERT DB_DATA TO STRING FOR SELF-MESSAGE def format_to_writeable_db_data(db_data: list) -> str: writeable_data = "" for user in db_data: listed_mangoes = "" for manga in user['mangoes']: listed_mangoes += f"{manga}>(u*u)>" writeable_data = f"{writeable_data}{user['name']}:{listed_mangoes}\n" return writeable_data # ADD OR REMOVE SUBSCRIPTION BASED ON MESSAGE def update(db_data: list, messages: list, conf: dict) -> list: for message in messages: if message.subject.lower() == conf['UNSUB_MESSAGE_SUBJECT']: db_data = _update_unsubscribe(db_data, message) elif message.subject.lower() == conf['SUB_MESSAGE_SUBJECT']: db_data = _update_subscribe(db_data, message) db_data = _remove_users_with_no_subscriptions(db_data) return db_data # DONT KEEP TRACK OF USERS WHEN THEY HAVE 0 SUBSCRIPTIONS def _remove_users_with_no_subscriptions(db_data: list) -> list: remove_users = [] for user in db_data: if user['mangoes'] is None or len(user['mangoes']) == 0: remove_users.append(user) db_data = [x for x in db_data if x not in remove_users] return db_data # ADD NEWLY SUBSCRIBED MANGA TO USER OR NEW USER def _update_subscribe(db_data: list, message: dict) -> list: lines = message.body.splitlines() for user in db_data: if user['name'] == message.author.name: for line in lines: if line not in user['mangoes']: user['mangoes'].append(line) return db_data db_data.append({'name': message.author.name, 'mangoes': lines}) return db_data # REMOVE NEWLY UNSUBSCRIBED MANGA FROM USER def _update_unsubscribe(db_data: list, message: dict) -> list: print("unsubscribing") for user in db_data: if user['name'] == message.author.name: lines = message.body.splitlines() user['mangoes'] = [x for x in user['mangoes'] if x not in lines ] break return db_data # INIT DB_DATA BASED ON SELF-MESSAGE def init_db(message: str) -> list: db_data = [] lines = message.splitlines() for line in lines: var_break = line.find(':') db_data.append({'name': line[:var_break], 'mangoes': line[var_break+1:].split('>(u*u)>')[:-1]}) return db_data
class SuperList(list): def __len__(self): return 1000 super_list1 = SuperList() print((len(super_list1))) super_list1.append(5) print(super_list1[0]) print(issubclass(SuperList, list)) # true print(issubclass(list, object))
vline = '│' hline = '─' tlcorner = '┌' trcorner = '┐' blcorner = '└' brcorner = '┘' cross = '┼' tcross = '┬' lcross = '├' rcross = '┤' bcross = '┴' block = '█' lblock = '▌' rblock = '▐' edge = hline * 4 tile_blank = ' ' * 4 tile_full = ' ' + block*2 + ' ' class Grid: def __init__(self, x, y): self.x = x self.y = y self.board = [0 for _ in range(x*y)] self.top_row = tlcorner + (edge + tcross) * (self.x-1) + edge + trcorner self.mid_row = lcross + (edge + cross) * (self.x-1) + edge + rcross self.bot_row = blcorner + (edge + bcross) * (self.x-1) + edge + brcorner self.hold_array = list() def _get_pos(self, x, y): return y * self.y + x def get_tile(self, x, y): if self.board[self._get_pos(x, y)]: return tile_full return tile_blank def flip_tile(self, x, y): self.board[self._get_pos(x, y)] = 1 - self.board[self._get_pos(x, y)] def array(self, x, y, piece): for i in self.hold_array: self.board[i] = 0 self.hold_array = list() for i in range(1, 26): if piece[i-1]: self.hold_array.append(self._get_pos(x, y)) if i % 5 == 0: y += 1 x -= 4 else: x += 1 for i in self.hold_array: self.board[i] = 1 #def set_array(self, array): # for i in array: # self.board[i] = 1 def display(self): # top print(self.top_row) # mid for y in range(self.y): tiles = [self.get_tile(x, y) for x in range(self.x)] print(vline + vline.join(tiles) + vline) if y != self.y-1: print(self.mid_row) # bot print(self.bot_row)
def reverse(SA): reverse = [0] * len(SA) for i in range(len(SA)): reverse[SA[i] - 1] = i + 1 return reverse def prefix_doubling(text, n): '''Computes suffix array using Karp-Miller-Rosenberg algorithm''' text += '$' mapping = {v: i + 1 for i, v in enumerate(sorted(set(text[1:])))} R, k = [mapping[v] for v in text[1:]], 1 while k < 2 * n: pairs = [(R[i], R[i + k] if i + k < len(R) else 0) for i in range(len(R))] mapping = {v: i + 1 for i, v in enumerate(sorted(set(pairs)))} R, k = [mapping[pair] for pair in pairs], 2 * k return reverse(R)
N, M = map(int, input().split()) case = [i for i in range(1, N+1)] disk = [] for _ in range(M): disk.append(int(input())) now = 0 for d in disk: if d == now: continue i = case.index(d) tmp = case[i] case[i] = now now = tmp for c in case: print(c)
def maximum(): A = input('Enter the 1st number:') B = input('Enter the 2nd number:') if A > B: print("%d The highest num than %d"%(A,B)) else: print('The highest num is:' ,B) print("Optised max",max(A,B)) def minimum(): A1 = input('Enter the 1st number:') B1 = input('Enter the 2nd number:') C1 = input('Enter the 3rd number:') print("Optimised min " ,min(A1,B1,C1)) if(A1<B1) and (A1<C1): print("Smallest number is",A1) else : if(B1 <C1): print("Smallest number is ",B1) else : print("Smallest number is ", C1) def main(): print("Enter your choice") print("1.Max of 2 numbers") print("2.Min of 3 numbers") choice=input("Enter your choice") if(choice == 1): maximum() else : minimum() main()
position = list(input()) xPos = int(position[1]) yPos = int(ord(position[0])) - int(ord('a')) + 1 result = 0 # x 2칸 이동 if xPos + 2 > 0 and yPos - 1 > 0: result += 1 if xPos + 2 > 0 and yPos + 1 > 0: result += 1 if xPos - 2 > 0 and yPos - 1 > 0: result += 1 if xPos - 2 > 0 and yPos + 1 > 0: result += 1 # y 2칸 이동 if xPos + 1 > 0 and yPos - 2 > 0: result += 1 if xPos + 1 > 0 and yPos + 2 > 0: result += 1 if xPos - 1 > 0 and yPos - 2 > 0: result += 1 if xPos - 1 > 0 and yPos + 2 > 0: result += 1 print(result)
""" # Sample code to perform I/O: name = input() # Reading input from STDIN print('Hi, %s.' % name) # Writing output to STDOUT # Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail """ # Write your code here n = int(input()) shelters = [0] * (n + 1) for _ in range(n - 1): x, y = map(int, input().strip().split()) shelters[x] += 1 shelters[y] += 1 max_seen = max(shelters) good_shelters = [i for i, v in enumerate(shelters) if i != 0 and v == max_seen] print(len(good_shelters)) print(' '.join(map(str, good_shelters)))
__author__ = 'varx' class BaseRenderer(object): """ Base renderer that all renders should inherit from """ def can_render(self, path): raise NotImplementedError() def render(self, path): raise NotImplementedError()
# -*- coding: utf-8 -*- # According to https://tools.ietf.org/html/rfc2616#section-7.1 _ENTITY_HEADERS = frozenset( [ "allow", "content-encoding", "content-language", "content-length", "content-location", "content-md5", "content-range", "content-type", "expires", "last-modified", "extension-header", ] ) # According to https://tools.ietf.org/html/rfc2616#section-13.5.1 _HOP_BY_HOP_HEADERS = frozenset( [ "connection", "keep-alive", "proxy-authenticate", "proxy-authorization", "te", "trailers", "transfer-encoding", "upgrade", ] ) def is_entity_header(header): """Checks if the given header is an Entity Header""" return header.lower() in _ENTITY_HEADERS def is_hop_by_hop_header(header): """Checks if the given header is a Hop By Hop header""" return header.lower() in _HOP_BY_HOP_HEADERS def remove_entity_headers(headers, allowed=("content-location", "expires")): """去掉实体头部 Removes all the entity headers present in the headers given. According to RFC 2616 Section 10.3.5, Content-Location and Expires are allowed as for the "strong cache validator". https://tools.ietf.org/html/rfc2616#section-10.3.5 returns the headers without the entity headers """ allowed = set([h.lower() for h in allowed]) headers = { header: value for header, value in headers.items() if not is_entity_header(header) or header.lower() in allowed } return headers
# 2020 @Cmlohr MENU = { "espresso": { "ingredients": { "water": 50, "coffee": 18, }, "cost": 1.5, }, "latte": { "ingredients": { "water": 200, "milk": 150, "coffee": 24, }, "cost": 2.5, }, "cappuccino": { "ingredients": { "water": 250, "milk": 100, "coffee": 24, }, "cost": 3.0, } } resources = { "water": 300, "milk": 200, "coffee": 100, } def menu(): print("Welcome to the Coffee Kiosk") print(" MENU") print("---------------------------") print("Espresso\nLatte\nCappuccino") print("---------------------------") print(" type your selection") def kiosk_help(): print("Instructions") print("Type your order, eg: espresso") print("Other kiosk commands:") print("---------------------------") print("'report' displays a report of\nthe stock level and bank") print("'off' turns off machine") print("---------------------------") def kiosk(): print("---------------------------") nickle = 0.05 dime = 0.10 penny = 0.01 quarter = 0.25 wallet = 0.00 bank = 0.00 water_supply = resources.get('water') milk_supply = resources.get('milk') coffee_supply = resources.get('coffee') cont = True while cont: # Separating out the values espr_drink = MENU.get('espresso') latte_drink = MENU.get('latte') capp_drink = MENU.get('cappuccino') # PRICES price_espr = float(espr_drink.get('cost')) price_latte = float(latte_drink.get('cost')) price_capp = float(capp_drink.get('cost')) # Drink resources requirements espr_rec = espr_drink.get('ingredients') latte_rec = latte_drink.get('ingredients') capp_rec = capp_drink.get('ingredients') menu() order = input("What would you like to order?:\n> ").lower() if order == "help": kiosk_help() elif order == "report": print("----------report-----------") print(f"Water Level: {water_supply}ml") print(f"Milk Level: {milk_supply}ml") print(f"Coffee Level: {coffee_supply}g") form_bank = "{:.2f}".format(bank) print(f"Bank: ${form_bank}") print("---------------------------") elif order == "espresso": if espr_rec.get('water') > water_supply: print("Sorry there isn't enough water.\nPlease contact management.") print("---------------------------") kiosk() if espr_rec.get('coffee') > coffee_supply: print("Sorry there isn't enough coffee grounds.\nPlease contact management.") print("---------------------------") kiosk() total = 0.00 total += price_espr water_supply -= espr_rec.get('water') coffee_supply -= espr_rec.get('coffee') form_total = "{:.2f}".format(total) print(f"your total is: {form_total}") print("Please insert coins:") q_coin = float(input("How many Quarters?\n> ")) wallet += q_coin * quarter d_coin = float(input("How many Dimes?\n> ")) wallet += d_coin * dime n_coin = float(input("How many Nickles?\n> ")) wallet += n_coin * nickle p_coin = float(input("How many Pennies?\n> ")) wallet += p_coin * penny if wallet < total: print("---------------------------") print("Sorry, that is not enough.\nYour transaction has been\ncanceled and money refunded.") print("---------------------------") kiosk() change = wallet - total form_change = "{:.2f}".format(change) bank += total print(f"Your change is ${form_change}") print(f"Here is your Espresso.️Enjoy!") print("Thank you for shopping with us!") print("---------------------------") elif order == "latte": if latte_rec.get('water') > water_supply: print("Sorry there isn't enough water.\nPlease contact management.") kiosk() if latte_rec.get('coffee') > coffee_supply: print("Sorry there isn't enough coffee grounds.\nPlease contact management.") kiosk() if latte_rec.get('milk') > milk_supply: print("Sorry there isn't enough milk.\nPlease contact management.") kiosk() total = 0.00 total += price_latte water_supply = water_supply - latte_rec.get('water') coffee_supply = coffee_supply - latte_rec.get('coffee') milk_supply = milk_supply - latte_rec.get('milk') form_total = "{:.2f}".format(total) print(f"your total is: {form_total}") print("Please insert coins:") q_coin = float(input("How many Quarters?\n> ")) wallet += q_coin * quarter d_coin = float(input("How many Dimes?\n> ")) wallet += d_coin * dime n_coin = float(input("How many Nickles?\n> ")) wallet += n_coin * nickle p_coin = float(input("How many Pennies?\n> ")) wallet += p_coin * penny if wallet < total: print("---------------------------") print("Sorry, that is not enough.\nYour transaction has been\ncanceled and money refunded.") kiosk() change = wallet - total form_change = "{:.2f}".format(change) bank += total print(f"Your change is ${form_change}") print(f"Here is your Latte.️Enjoy!") print("Thank you for shopping with us!") elif order == "cappuccino": if capp_rec.get('water') > water_supply: print("Sorry there isn't enough water.\nPlease contact management.") kiosk() if capp_rec.get('coffee') > coffee_supply: print("Sorry there isn't enough coffee grounds.\nPlease contact management.") kiosk() if capp_rec.get('milk') > milk_supply: print("Sorry there isn't enough milk.\nPlease contact management.") kiosk() total = 0 total += price_capp water_supply -= capp_rec.get('water') coffee_supply -= capp_rec.get('coffee') milk_supply -= capp_rec.get('milk') form_total = "{:.2f}".format(total) print(f"your total is: ${form_total}") print("Please insert coins:") q_coin = float(input("How many Quarters?\n> ")) wallet += q_coin * quarter d_coin = float(input("How many Dimes?\n> ")) wallet += d_coin * dime n_coin = float(input("How many Nickles?\n> ")) wallet += n_coin * nickle p_coin = float(input("How many Pennies?\n> ")) wallet += p_coin * penny if wallet < total: print("---------------------------") print("Sorry, that is not enough.\nYour transaction has been\ncanceled and money refunded.") kiosk() change = wallet - total form_change = "{:.2f}".format(change) bank += total print(f"Your change is ${form_change}") print(f"Here is your Cappuccino. Enjoy!") print("Thank you for shopping with us!") elif order == "off": cont = False else: print("Invalid Input") kiosk() kiosk()
stores = [] command = input() while command != 'END': tokens = command.split('->') store_name = tokens[1] if tokens[0] == 'Add': items = tokens[2].split(',') if len([x for x in stores if x[0] == store_name]) > 0: idx = stores.index([x for x in stores if x[0] == store_name][0]) stores[idx][1].extend(items) else: stores.append([store_name, items]) elif tokens[0] == 'Remove': if len([x for x in stores if x[0] == store_name]) > 0: idx = stores.index([x for x in stores if x[0] == store_name][0]) del stores[idx] command = input() sorted_stores = sorted(stores, key=lambda x: (len(x[1]), x[0]), reverse=True) print('Stores list:') for store in sorted_stores: store_name = store[0] items = store[1] print(store_name) for item in items: print(f'<<{item}>>')
# This is a great place to put your bot's version number. __version__ = "0.1.0" # You'll want to change this. GUILD_ID = 845688627265536010
#dictionary and for statements with values method linguagens = { 'lea': 'python', 'sara': 'c', 'eddie': 'java', 'phil': 'python', } for linguagem in linguagens.values(): #values method shows us the values of a dictionary print(linguagem.title())
class EmitterTypeError(Exception): pass class EmitterValidationError(Exception): pass
class BSTNode(): def __init__(self, Key, Value=None): self.key = Key self.Value = Value self.left = None self.right = None self.parent = None @staticmethod def remove_none(lst): return [x for x in lst if x is not None] def check_BSTNode(self): if self is None: return True, None, None is_BSTNode_l, max_l, min_l = BSTNode.check_BSTNode(self.left) is_BSTNode_r, max_r, min_r = BSTNode.check_BSTNode(self.right) is_BSTNode = (is_BSTNode_l and is_BSTNode_r and (max_l is None or max_l < self.key) and ( min_l is None or min_r > self.key)) min_key = min(BSTNode.remove_none([min_l, self.key, min_r])) max_key = max(BSTNode.remove_none([max_l, self.key, max_r])) return is_BSTNode, max_key, min_key def display(self, lvl=0): if self is None: return if self.right is None and self.left is None: print("\t" * lvl + str(self.key)) return BSTNode.display(self.right, lvl + 1) print("\t" * lvl + str(self.key)) BSTNode.display(self.left, lvl + 1) @staticmethod def parse(data): if isinstance(data, tuple) and len(data) == 3: node = BSTNode(data[1]) node.left = BSTNode.parse(data[0]) node.right = BSTNode.parse(data[2]) node.left.parent = node node.right.parent = node elif data is None: node = None else: node = BSTNode(data) return node def insert(self, key, value=None): if self is None: self = BSTNode(key, value) elif self.key > key: self.left = BSTNode.insert(self.left, key, value) self.left.parent = self elif self.key < key: self.right = BSTNode.insert(self.right, key, value) self.right.parent = self return self def find(self, key): if self is None: return False elif self.key == key: return True elif self.key<key: return BSTNode.find(self.right, key) else: return BSTNode.find(self.left, key) if __name__ == "__main__": print(f"Input Range :") k = BSTNode.insert(None, 7) k.insert(1) k.insert(9) k.insert(4) k.insert(10) k.insert(8) k.display() print(f"\n\n Find- { k.find(0) }")
LSM9DS1_MAG_ADDRESS = 0x1C #Would be 0x1E if SDO_M is HIGH LSM9DS1_ACC_ADDRESS = 0x6A LSM9DS1_GYR_ADDRESS = 0x6A #Would be 0x6B if SDO_AG is HIGH #///////////////////////////////////////// #// LSM9DS1 Accel/Gyro (XL/G) Registers // #///////////////////////////////////////// LSM9DS1_ACT_THS = 0x04 LSM9DS1_ACT_DUR = 0x05 LSM9DS1_INT_GEN_CFG_XL = 0x06 LSM9DS1_INT_GEN_THS_X_XL = 0x07 LSM9DS1_INT_GEN_THS_Y_XL = 0x08 LSM9DS1_INT_GEN_THS_Z_XL = 0x09 LSM9DS1_INT_GEN_DUR_XL = 0x0A LSM9DS1_REFERENCE_G = 0x0B LSM9DS1_INT1_CTRL = 0x0C LSM9DS1_INT2_CTRL = 0x0D LSM9DS1_WHO_AM_I_XG = 0x0F LSM9DS1_CTRL_REG1_G = 0x10 LSM9DS1_CTRL_REG2_G = 0x11 LSM9DS1_CTRL_REG3_G = 0x12 LSM9DS1_ORIENT_CFG_G = 0x13 LSM9DS1_INT_GEN_SRC_G = 0x14 LSM9DS1_OUT_TEMP_L = 0x15 LSM9DS1_OUT_TEMP_H = 0x16 LSM9DS1_STATUS_REG_0 = 0x17 LSM9DS1_OUT_X_L_G = 0x18 LSM9DS1_OUT_X_H_G = 0x19 LSM9DS1_OUT_Y_L_G = 0x1A LSM9DS1_OUT_Y_H_G = 0x1B LSM9DS1_OUT_Z_L_G = 0x1C LSM9DS1_OUT_Z_H_G = 0x1D LSM9DS1_CTRL_REG4 = 0x1E LSM9DS1_CTRL_REG5_XL = 0x1F LSM9DS1_CTRL_REG6_XL = 0x20 LSM9DS1_CTRL_REG7_XL = 0x21 LSM9DS1_CTRL_REG8 = 0x22 LSM9DS1_CTRL_REG9 = 0x23 LSM9DS1_CTRL_REG10 = 0x24 LSM9DS1_INT_GEN_SRC_XL = 0x26 LSM9DS1_STATUS_REG_1 = 0x27 LSM9DS1_OUT_X_L_XL = 0x28 LSM9DS1_OUT_X_H_XL = 0x29 LSM9DS1_OUT_Y_L_XL = 0x2A LSM9DS1_OUT_Y_H_XL = 0x2B LSM9DS1_OUT_Z_L_XL = 0x2C LSM9DS1_OUT_Z_H_XL = 0x2D LSM9DS1_FIFO_CTRL = 0x2E LSM9DS1_FIFO_SRC = 0x2F LSM9DS1_INT_GEN_CFG_G = 0x30 LSM9DS1_INT_GEN_THS_XH_G = 0x31 LSM9DS1_INT_GEN_THS_XL_G = 0x32 LSM9DS1_INT_GEN_THS_YH_G = 0x33 LSM9DS1_INT_GEN_THS_YL_G = 0x34 LSM9DS1_INT_GEN_THS_ZH_G = 0x35 LSM9DS1_INT_GEN_THS_ZL_G = 0x36 LSM9DS1_INT_GEN_DUR_G = 0x37 #/////////////////////////////// #// LSM9DS1 Magneto Registers // #/////////////////////////////// LSM9DS1_OFFSET_X_REG_L_M = 0x05 LSM9DS1_OFFSET_X_REG_H_M = 0x06 LSM9DS1_OFFSET_Y_REG_L_M = 0x07 LSM9DS1_OFFSET_Y_REG_H_M = 0x08 LSM9DS1_OFFSET_Z_REG_L_M = 0x09 LSM9DS1_OFFSET_Z_REG_H_M = 0x0A LSM9DS1_WHO_AM_I_M = 0x0F LSM9DS1_CTRL_REG1_M = 0x20 LSM9DS1_CTRL_REG2_M = 0x21 LSM9DS1_CTRL_REG3_M = 0x22 LSM9DS1_CTRL_REG4_M = 0x23 LSM9DS1_CTRL_REG5_M = 0x24 LSM9DS1_STATUS_REG_M = 0x27 LSM9DS1_OUT_X_L_M = 0x28 LSM9DS1_OUT_X_H_M = 0x29 LSM9DS1_OUT_Y_L_M = 0x2A LSM9DS1_OUT_Y_H_M = 0x2B LSM9DS1_OUT_Z_L_M = 0x2C LSM9DS1_OUT_Z_H_M = 0x2D LSM9DS1_INT_CFG_M = 0x30 LSM9DS1_INT_SRC_M = 0x30 LSM9DS1_INT_THS_L_M = 0x32 LSM9DS1_INT_THS_H_M = 0x33 #//////////////////////////////// #// LSM9DS1 WHO_AM_I Responses // #//////////////////////////////// LSM9DS1_WHO_AM_I_AG_RSP = 0x68 LSM9DS1_WHO_AM_I_M_RSP = 0x3D
def handle(event, context): """handle a request to the function Args: event (dict): request params context (dict): function call metadata """ return { "message": "Hello From Python3 runtime on Serverless Framework and Scaleway Functions" }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 10 15:19:36 2020 @author: krishan """ class Book: def __init__(self, pages): self.pages = pages def __add__(self, other): total = self.pages + other.pages b = Book(total) return b def __mul__(self, other): total = self.pages * other.pages b = Book(total) return b def __str__(self): return str(self.pages) b1 = Book(100) b2 = Book(200) b3 = Book(300) b4 = Book(400) b5 = Book(500) print(b1 + b2 + b3 + b4 + b5) print(b1 * b2 + b3 + b4 * b5)
""" 字符串抽取程序 抽取类型: - 抽取单个,抽取全部 """ """ string_util 主要处理 比较短的文本,长文本的处理交给text_util 对字符串的一些常见的判断. 1. is_blank 为None或者strip以后为0 2. is_empty 为None或者长度为0 3. has? 4. 返回字符串特点 提取请求url中的中文内容. """ def is_blank(_str): """ 判断是否为空(除去空格换行) :param _str: :return: """ return _str is None or len(_str.strip()) == 0 def is_empty(_str): """ 判断是否为空(包含空格字符) :param _str: :return: """ return _str is None or len(_str) == 0 def is_valid_string(_str): return isinstance(_str, str) and _str.strip() != '' def is_equal(actual, expected): ''' :param _str: :return: ''' return actual == expected def approximate_equal(actual, expected, min_length=5, accepted_rate=0.8): """ 利用字符串近似算法进行近似比较 :param actual: :param expected: :param min_length: :param accepted_rate: :return: """ raise NotImplementedError() HALF2FULL = dict((i, i + 0xFEE0) for i in range(0x21, 0x7F)) HALF2FULL[0x20] = 0x3000 FULL2HALF = dict((i + 0xFEE0, i) for i in range(0x21, 0x7F)) FULL2HALF[0x3000] = 0x20 def turn_full_to_half_width(_str): ''' Convert all ASCII characters to the full-width counterpart. ''' return str(_str).translate(FULL2HALF) def turn_half_to_full_width(_str): ''' Convert full-width characters to ASCII counterpart ''' return str(_str).translate(HALF2FULL) def LevenshteinDistance(s, t): '''字符串相似度算法(Levenshtein Distance算法) 一个字符串可以通过增加一个字符,删除一个字符,替换一个字符得到另外一个 字符串,假设,我们把从字符串A转换成字符串B,前面3种操作所执行的最少 次数称为AB相似度 这算法是由俄国科学家Levenshtein提出的。 Step Description 1 Set n to be the length of s. Set m to be the length of t. If n = 0, return m and exit. If m = 0, return n and exit. Construct a matrix containing 0..m rows and 0..n columns. 2 Initialize the first row to 0..n. Initialize the first column to 0..m. 3 Examine each character of s (i from 1 to n). 4 Examine each character of t (j from 1 to m). 5 If s[i] equals t[j], the cost is 0. If s[i] doesn't equal t[j], the cost is 1. 6 Set cell d[i,j] of the matrix equal to the minimum of: a. The cell immediately above plus 1: d[i-1,j] + 1. b. The cell immediately to the left plus 1: d[i,j-1] + 1. c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost. 7 After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m]. ''' m, n = len(s), len(t) if not (m and n): return m or n # 构造矩阵 matrix = [[0 for i in range(n + 1)] for j in range(m + 1)] matrix[0] = list(range(n + 1)) for i in range(m + 1): matrix[i][0] = i for i in range(m): for j in range(n): cost = int(s[i] != t[j]) # 因为 Python 的字符索引从 0 开始 matrix[i + 1][j + 1] = min( matrix[i][j + 1] + 1, # a. matrix[i + 1][j] + 1, # b. matrix[i][j] + cost # c. ) return matrix[m][n] valid_similarity = LevenshteinDistance
n = int(input('digite um numero: ')) n2 = int(input('digite um numero: ')) def soma (): s = n + n2 print(soma)
# noinspection PyUnusedLocal # skus = unicode string def checkout(skus): sd = dict() for sku in skus: if sku in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ': if sku in sd: sd[sku] += 1 else: sd[sku] = 1 else: return -1 na = sd.get('A', 0) p = int(na/5) * 200 na %= 5 p += int(na/3) * 130 + (na%3) * 50 p += 20 * sd.get('C', 0) p += 15 * sd.get('D', 0) ne = sd.get('E', 0) p += 40 * ne nb = max(0, sd.get('B', 0)-int(ne/2)) p += int(nb / 2) * 45 + (nb % 2) * 30 ff = int(sd.get('F', 0) / 3) nf = max(0, sd.get('F', 0)-ff) p += 10 * nf p += 20 * sd.get('G', 0) nh = sd.get('H', 0) p += int(nh/10) * 80 nh %= 10 p += int(nh/5) * 45 nh %= 5 p += nh * 10 p += sd.get('I', 0) * 35 p += sd.get('J', 0) * 60 nk = sd.get('K', 0) p += int(nk/2) * 120 nk %= 2 p += nk * 70 p += sd.get('L', 0) * 90 nn = sd.get('N', 0) p += 40 * nn nm = max(0, sd.get('M', 0)-int(nn/3)) p += nm * 15 p += sd.get('O', 0) * 10 np = sd.get('P', 0) p += int(np/5) * 200 np %= 5 p += np * 50 nr = sd.get('R', 0) p += nr * 50 fq = int(nr/3) nq = max(0, sd.get('Q', 0)-fq) p += int(nq/3) * 80 p += (nq%3) * 30 fu = int(sd.get('U', 0) / 4) nu = max(0, sd.get('U', 0)-fu) p += 40 * nu nv = sd.get('V', 0) p += int(nv/3) * 130 nv %= 3 p += int(nv/2) * 90 nv %= 2 p += nv * 50 p += 20 * sd.get('W', 0) ns = sd.get('S', 0) nt = sd.get('T', 0) nx = sd.get('X', 0) ny = sd.get('Y', 0) nz = sd.get('Z', 0) # it was cut highest priced first then others (ZSTYX) # actually I could not get the exact criteria from the specs :( ngrp = ns + nt + nx + ny + nz p += int(ngrp/3) * 45 fgrp = ngrp % 3 while fgrp > 0: if nx > 0: p += 17 nx -= 1 elif ny > 0: p += 20 ny -= 1 elif nt > 0: p += 20 nt -= 1 elif ns > 0: p += 20 ns -= 1 elif nz > 0: p += 21 nz -= 1 fgrp -= 1 return int(p)
def test_upgrade_atac_alignment_enrichment_quality_metric_1_2( upgrader, atac_alignment_enrichment_quality_metric_1 ): value = upgrader.upgrade( 'atac_alignment_enrichment_quality_metric', atac_alignment_enrichment_quality_metric_1, current_version='1', target_version='2', ) assert value['schema_version'] == '2' assert 'fri_blacklist' not in value assert value['fri_exclusion_list'] == 0.0013046877081284722
PREVIEW_CHOICES = [ ('slider', 'Slider'), ('pre-order', 'Pre-order'), ('new', 'New'), ('offer', 'Offer'), ('hidden', 'Hidden'), ] CATEGORY_CHOICES = [ ('accesory', 'Accesory'), ('bottom', 'Bottoms'), ('hoodie', 'Hoodies'), ('outerwear', 'Outerwears'), ('sneaker', 'Sneakers'), ('t-shirt', 'T-Shirts'), ]
# SPDX-License-Identifier: BSD-2-Clause """osdk-manager about details. Manage osdk and opm binary installation, and help to scaffold, release, and version Operator SDK-based Kubernetes operators. This file contains some basic variables used for setup. """ __title__ = "osdk-manager" __name__ = __title__ __summary__ = "A script for managing Operator SDK-based operators." __uri__ = "https://github.com/jharmison-redhat/osdk-manager" __version__ = "0.3.0" __release__ = "1" __status__ = "Development" __author__ = "James Harmison" __email__ = "[email protected]" __license__ = "BSD-2-Clause" __copyright__ = "2020 %s" % __author__ __requires__ = [ 'requests', 'click', 'lastversion', 'python-gnupg', 'PyYAML' ]
print("Let's practice everything") print('You\'d need to know \'bout escapes with \\ that do:') print('\n newlines and \t tabs.') poem=""" \tThe lovely world with logic so firmly planted cannnot discern \n the needs of love nor comprehend passion from intuition and requires an explanation \n\t\twhere there is none. """ print("---------------") print(poem) print("---------------") five=10-2+3-6 print(f"This should be five:{five}") def secret_formula(started): jelly_beans=started*500 jars=jelly_beans / 1000 crates=jars /100 return jelly_beans,jars,crates start_point=10000 beans,jars,crates=secret_formula(start_point) print("With a starting point of :{}".format(start_point)) print(f"We'd have {beans} beans,{jars} jars, and {crates}crates.") start_point=start_point /10 print("We can also do that this way:") formula=secret_formula(start_point) print("We'd have {} beans,{} jars,{} crates.".format(*formula))
class Estereo: def __init__(self, marca) -> None: self.marca = marca self.estado = 'apagado'
list = [2, 4, 6, 8] sum = 0 for num in list: sum = sum + num print("The sum is:", sum)
class RDBMSHost: def __init__(self, host: str, port: int, db_name: str, db_schema: str, db_user: str, db_password: str): self.host: str = host self.port: int = port self.db_name: str = db_name self.db_schema: str = db_schema self.db_user: str = db_user self.db_password: str = db_password
grid = [input() for _ in range(323)] width = len(grid[0]) height = len(grid) trees = 0 i, j = 0, 0 while (i := i + 1) < height: j = (j + 3) % width if grid[i][j] == '#': trees += 1 print(trees)