content
stringlengths 7
1.05M
| fixed_cases
stringlengths 1
1.28M
|
---|---|
format = "%(asctime)s - %(levelname)s - %(name)s - %(message)s"
minimal_format = "%(message)s"
def _get_formatter_and_handler(use_minimal_format: bool = False):
logging_dict = {
"version": 1,
"disable_existing_loggers": True,
"formatters": {
"colored": {
"()": "coloredlogs.ColoredFormatter",
"format": minimal_format if use_minimal_format else format,
"datefmt": "%m-%d %H:%M:%S",
}
},
"handlers": {
"console": {
"class": "logging.StreamHandler",
"formatter": "colored",
},
},
"loggers": {},
}
return logging_dict
def get_logging_config(django_log_level: str, wkz_log_level: str):
logging_dict = _get_formatter_and_handler()
logging_dict["loggers"] = {
"django": {
"handlers": ["console"],
"level": django_log_level,
},
"wizer": {
"handlers": ["console"],
"level": wkz_log_level,
},
}
return logging_dict
| format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s'
minimal_format = '%(message)s'
def _get_formatter_and_handler(use_minimal_format: bool=False):
logging_dict = {'version': 1, 'disable_existing_loggers': True, 'formatters': {'colored': {'()': 'coloredlogs.ColoredFormatter', 'format': minimal_format if use_minimal_format else format, 'datefmt': '%m-%d %H:%M:%S'}}, 'handlers': {'console': {'class': 'logging.StreamHandler', 'formatter': 'colored'}}, 'loggers': {}}
return logging_dict
def get_logging_config(django_log_level: str, wkz_log_level: str):
logging_dict = _get_formatter_and_handler()
logging_dict['loggers'] = {'django': {'handlers': ['console'], 'level': django_log_level}, 'wizer': {'handlers': ['console'], 'level': wkz_log_level}}
return logging_dict |
#!/bin/python3
# Set .union() Operation
# https://www.hackerrank.com/challenges/py-set-union/problem
if __name__ == '__main__':
n = int(input())
students_n = set(map(int, input().split()))
b = int(input())
students_b = set(map(int, input().split()))
print(len(students_n | students_b)) | if __name__ == '__main__':
n = int(input())
students_n = set(map(int, input().split()))
b = int(input())
students_b = set(map(int, input().split()))
print(len(students_n | students_b)) |
def ddd():
for i in 'fasdffghdfghjhfgj':
yield i
a = ddd()
print(next(a))
print(next(a))
print(next(a))
print(next(a))
print(next(a))
| def ddd():
for i in 'fasdffghdfghjhfgj':
yield i
a = ddd()
print(next(a))
print(next(a))
print(next(a))
print(next(a))
print(next(a)) |
# Customer States
C_CALLING = 0
C_WAITING = 1
C_IN_VEHICLE = 2
C_ARRIVED = 3
C_DISAPPEARED = 4
# Vehicle States
V_IDLE = 0
V_CRUISING = 1
V_OCCUPIED = 2
V_ASSIGNED = 3
V_OFF_DUTY = 4 | c_calling = 0
c_waiting = 1
c_in_vehicle = 2
c_arrived = 3
c_disappeared = 4
v_idle = 0
v_cruising = 1
v_occupied = 2
v_assigned = 3
v_off_duty = 4 |
# app seettings
EC2_ACCESS_ID = 'A***Q'
EC2_ACCESS_KEY = 'R***I'
YCSB_SIZE =0
MCROUTER_NOISE = 0
MEMCACHED_OD_SIZE = 1
MEMCACHED_SPOT_SIZE = 0
G_M_MIN = 7.5*1024
G_M_MAX = 7.5*1024
G_C_MIN = 2
G_C_MAX = 2
M_DEFAULT = 7.5*1024
C_DEFAULT = 2
G_M_MIN_2 = 7.5*1024
G_M_MAX_2 = 7.5*1024
G_C_MIN_2 = 2
G_C_MAX_2 = 2
M_DEFAULT_2 = 7.5*1024
C_DEFAULT_2 = 2
| ec2_access_id = 'A***Q'
ec2_access_key = 'R***I'
ycsb_size = 0
mcrouter_noise = 0
memcached_od_size = 1
memcached_spot_size = 0
g_m_min = 7.5 * 1024
g_m_max = 7.5 * 1024
g_c_min = 2
g_c_max = 2
m_default = 7.5 * 1024
c_default = 2
g_m_min_2 = 7.5 * 1024
g_m_max_2 = 7.5 * 1024
g_c_min_2 = 2
g_c_max_2 = 2
m_default_2 = 7.5 * 1024
c_default_2 = 2 |
def read_input():
n = int(input())
return (
[input() for _ in range(n)],
input()
)
def find_position(matrix, symbol):
for i in range(len(matrix)):
line = matrix[i]
if symbol in line:
return (i, line.index(symbol))
return None
(matrix, symbol) = read_input()
result = find_position(matrix, symbol)
if result:
(row, col) = result
print(f'({row}, {col})')
else:
print(f'{symbol} does not occur in the matrix')
| def read_input():
n = int(input())
return ([input() for _ in range(n)], input())
def find_position(matrix, symbol):
for i in range(len(matrix)):
line = matrix[i]
if symbol in line:
return (i, line.index(symbol))
return None
(matrix, symbol) = read_input()
result = find_position(matrix, symbol)
if result:
(row, col) = result
print(f'({row}, {col})')
else:
print(f'{symbol} does not occur in the matrix') |
#string: temperatura
Gc = float(input("Digite grados Centigrados: "))
Gk = (Gc + 273.15)
print("el valor de los grados kelvin es el siguiente: ",Gk)
| gc = float(input('Digite grados Centigrados: '))
gk = Gc + 273.15
print('el valor de los grados kelvin es el siguiente: ', Gk) |
class Triangular:
### Constructor ###
def __init__(self, init, end, center=None, peak=1, floor=0):
# initialize attributes
self._init = init
self._end = end
if center:
#using property to test if its bewtween init and end
self.center = center
else:
self._center = (end + init) / 2
self._peak = peak
self._floor = floor
### Desctructor ###
def __close__(self):
# releases attributes
self._init = None
self._end = None
self._center = None
self._peak = None
self._floor = None
### Getters and Setter (as Properties) ###
## init
@property
def init(self):
return self._init
@init.setter
def init(self, init):
if type(init) == float or type(init) == int:
self._init = init
else:
raise ValueError(
'Error: Function initial element must be float or integer')
## end
@property
def end(self):
return self._end
@end.setter
def end(self, end):
if type(end) == float or type(end) == int:
self._end = end
else:
raise ValueError(
'Error: Function end element must be float or integer')
## center
@property
def center(self):
return self._center
@center.setter
def center(self, center):
if type(center) == float or type(center) == int:
if center > self._init and center < self._end:
self._center = center
else:
raise ValueError(
'Error: Center of the function must be between init and end'
)
else:
raise ValueError(
'Error: Function center element must be float or integer')
## peak
@property
def peak(self):
return self._peak
@peak.setter
def peak(self, peak):
if type(peak) == float or type(peak) == int:
self._peak = peak
else:
raise ValueError(
'Error: Function peak element must be float or integer')
## floor
@property
def floor(self):
return self._floor
@floor.setter
def floor(self, floor):
if type(floor) == float or type(floor) == int:
self._floor = floor
else:
raise ValueError(
'Error: Function floor element must be float or integer')
### Methods ###
def function(self, x):
if x <= self._init:
return self._floor
elif x <= self._center:
delta_y = self._peak - self._floor
delta_x = self._center - self._init
slope = delta_y / delta_x
return slope * (x - self._init) + self._floor
elif x <= self._end:
delta_y = self._floor - self._peak
delta_x = self._end - self._center
slope = delta_y / delta_x
return slope * (x - self._center) + self._peak
else:
return self._floor | class Triangular:
def __init__(self, init, end, center=None, peak=1, floor=0):
self._init = init
self._end = end
if center:
self.center = center
else:
self._center = (end + init) / 2
self._peak = peak
self._floor = floor
def __close__(self):
self._init = None
self._end = None
self._center = None
self._peak = None
self._floor = None
@property
def init(self):
return self._init
@init.setter
def init(self, init):
if type(init) == float or type(init) == int:
self._init = init
else:
raise value_error('Error: Function initial element must be float or integer')
@property
def end(self):
return self._end
@end.setter
def end(self, end):
if type(end) == float or type(end) == int:
self._end = end
else:
raise value_error('Error: Function end element must be float or integer')
@property
def center(self):
return self._center
@center.setter
def center(self, center):
if type(center) == float or type(center) == int:
if center > self._init and center < self._end:
self._center = center
else:
raise value_error('Error: Center of the function must be between init and end')
else:
raise value_error('Error: Function center element must be float or integer')
@property
def peak(self):
return self._peak
@peak.setter
def peak(self, peak):
if type(peak) == float or type(peak) == int:
self._peak = peak
else:
raise value_error('Error: Function peak element must be float or integer')
@property
def floor(self):
return self._floor
@floor.setter
def floor(self, floor):
if type(floor) == float or type(floor) == int:
self._floor = floor
else:
raise value_error('Error: Function floor element must be float or integer')
def function(self, x):
if x <= self._init:
return self._floor
elif x <= self._center:
delta_y = self._peak - self._floor
delta_x = self._center - self._init
slope = delta_y / delta_x
return slope * (x - self._init) + self._floor
elif x <= self._end:
delta_y = self._floor - self._peak
delta_x = self._end - self._center
slope = delta_y / delta_x
return slope * (x - self._center) + self._peak
else:
return self._floor |
# Python - 3.6.0
test.describe('Fixed tests')
test.assert_equals(whatday(1), 'Sunday')
test.assert_equals(whatday(2), 'Monday')
test.assert_equals(whatday(3), 'Tuesday')
test.assert_equals(whatday(8), 'Wrong, please enter a number between 1 and 7')
test.assert_equals(whatday(20), 'Wrong, please enter a number between 1 and 7')
| test.describe('Fixed tests')
test.assert_equals(whatday(1), 'Sunday')
test.assert_equals(whatday(2), 'Monday')
test.assert_equals(whatday(3), 'Tuesday')
test.assert_equals(whatday(8), 'Wrong, please enter a number between 1 and 7')
test.assert_equals(whatday(20), 'Wrong, please enter a number between 1 and 7') |
#
# PySNMP MIB module TPLINK-PORTMIRROR-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/TPLINK-PORTMIRROR-MIB
# Produced by pysmi-0.3.4 at Wed May 1 15:25:34 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
SingleValueConstraint, ConstraintsIntersection, ConstraintsUnion, ValueRangeConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueRangeConstraint", "ValueSizeConstraint")
ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup")
ModuleIdentity, TimeTicks, Counter32, Gauge32, IpAddress, Unsigned32, Counter64, Bits, iso, ObjectIdentity, MibIdentifier, NotificationType, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "TimeTicks", "Counter32", "Gauge32", "IpAddress", "Unsigned32", "Counter64", "Bits", "iso", "ObjectIdentity", "MibIdentifier", "NotificationType", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn")
TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString")
tplinkMgmt, = mibBuilder.importSymbols("TPLINK-MIB", "tplinkMgmt")
tplinkPortMirrorMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 11863, 6, 11))
tplinkPortMirrorMIB.setRevisions(('2012-12-14 00:00',))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
if mibBuilder.loadTexts: tplinkPortMirrorMIB.setRevisionsDescriptions(('Initial version of this MIB module.',))
if mibBuilder.loadTexts: tplinkPortMirrorMIB.setLastUpdated('201212140000Z')
if mibBuilder.loadTexts: tplinkPortMirrorMIB.setOrganization('TPLINK')
if mibBuilder.loadTexts: tplinkPortMirrorMIB.setContactInfo('www.tplink.com.cn')
if mibBuilder.loadTexts: tplinkPortMirrorMIB.setDescription('The config of the port mirror.')
tplinkPortMirrorMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1))
tplinkPortMirrorMIBNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 11863, 6, 11, 2))
tpPortMirrorTable = MibTable((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1), )
if mibBuilder.loadTexts: tpPortMirrorTable.setStatus('current')
if mibBuilder.loadTexts: tpPortMirrorTable.setDescription('')
tpPortMirrorEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1), ).setIndexNames((0, "TPLINK-PORTMIRROR-MIB", "tpPortMirrorSession"))
if mibBuilder.loadTexts: tpPortMirrorEntry.setStatus('current')
if mibBuilder.loadTexts: tpPortMirrorEntry.setDescription('')
tpPortMirrorSession = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 1), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: tpPortMirrorSession.setStatus('current')
if mibBuilder.loadTexts: tpPortMirrorSession.setDescription('This object indicates the session number of the mirror group.')
tpPortMirrorDestination = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 2), OctetString()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: tpPortMirrorDestination.setStatus('current')
if mibBuilder.loadTexts: tpPortMirrorDestination.setDescription(' This object indicates a destination port which monitors specified ports on the switch, should be given as 1/0/1. Note: The member of LAG cannot be assigned as a destination port.')
tpPortMirrorIngressSource = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 3), OctetString()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: tpPortMirrorIngressSource.setStatus('current')
if mibBuilder.loadTexts: tpPortMirrorIngressSource.setDescription(" This object indicates a list of the source ports. Any packets received from these ports will be copyed to the assigned destination port. This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.")
tpPortMirrorEgressSource = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 4), OctetString()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: tpPortMirrorEgressSource.setStatus('current')
if mibBuilder.loadTexts: tpPortMirrorEgressSource.setDescription(" This object indicates a list of the source ports. Any packets sended out from these ports will be copyed to the assigned destination ports.This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.")
tpPortMirrorBothSource = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 5), OctetString()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: tpPortMirrorBothSource.setStatus('current')
if mibBuilder.loadTexts: tpPortMirrorBothSource.setDescription(" This object indicates a list of the source ports. Any packets received or sended out from these ports will be copyed to the assigned destination ports.This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.")
tpPortMirrorSessionState = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("negative", 1), ("active", 2), ("clear", 3)))).setMaxAccess("readwrite")
if mibBuilder.loadTexts: tpPortMirrorSessionState.setStatus('current')
if mibBuilder.loadTexts: tpPortMirrorSessionState.setDescription(' This object indicates the state of mirror session.If a session has been assigned both destination port and source ports, then the value of this object changes to active(2). Otherwise the value of this object is to be negative(1). When the value of this object is assigned to clear(3), then the configuration of this session will be cleared, and the state changes to negative(1). Be aware of that only clear(3) can be assigned to this object.')
mibBuilder.exportSymbols("TPLINK-PORTMIRROR-MIB", tpPortMirrorIngressSource=tpPortMirrorIngressSource, tpPortMirrorTable=tpPortMirrorTable, tpPortMirrorBothSource=tpPortMirrorBothSource, tplinkPortMirrorMIBNotifications=tplinkPortMirrorMIBNotifications, tpPortMirrorEgressSource=tpPortMirrorEgressSource, tpPortMirrorSessionState=tpPortMirrorSessionState, tplinkPortMirrorMIBObjects=tplinkPortMirrorMIBObjects, tpPortMirrorEntry=tpPortMirrorEntry, tpPortMirrorDestination=tpPortMirrorDestination, tplinkPortMirrorMIB=tplinkPortMirrorMIB, tpPortMirrorSession=tpPortMirrorSession, PYSNMP_MODULE_ID=tplinkPortMirrorMIB)
| (object_identifier, octet_string, integer) = mibBuilder.importSymbols('ASN1', 'ObjectIdentifier', 'OctetString', 'Integer')
(named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues')
(single_value_constraint, constraints_intersection, constraints_union, value_range_constraint, value_size_constraint) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'SingleValueConstraint', 'ConstraintsIntersection', 'ConstraintsUnion', 'ValueRangeConstraint', 'ValueSizeConstraint')
(module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup')
(module_identity, time_ticks, counter32, gauge32, ip_address, unsigned32, counter64, bits, iso, object_identity, mib_identifier, notification_type, integer32, mib_scalar, mib_table, mib_table_row, mib_table_column) = mibBuilder.importSymbols('SNMPv2-SMI', 'ModuleIdentity', 'TimeTicks', 'Counter32', 'Gauge32', 'IpAddress', 'Unsigned32', 'Counter64', 'Bits', 'iso', 'ObjectIdentity', 'MibIdentifier', 'NotificationType', 'Integer32', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn')
(textual_convention, display_string) = mibBuilder.importSymbols('SNMPv2-TC', 'TextualConvention', 'DisplayString')
(tplink_mgmt,) = mibBuilder.importSymbols('TPLINK-MIB', 'tplinkMgmt')
tplink_port_mirror_mib = module_identity((1, 3, 6, 1, 4, 1, 11863, 6, 11))
tplinkPortMirrorMIB.setRevisions(('2012-12-14 00:00',))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
if mibBuilder.loadTexts:
tplinkPortMirrorMIB.setRevisionsDescriptions(('Initial version of this MIB module.',))
if mibBuilder.loadTexts:
tplinkPortMirrorMIB.setLastUpdated('201212140000Z')
if mibBuilder.loadTexts:
tplinkPortMirrorMIB.setOrganization('TPLINK')
if mibBuilder.loadTexts:
tplinkPortMirrorMIB.setContactInfo('www.tplink.com.cn')
if mibBuilder.loadTexts:
tplinkPortMirrorMIB.setDescription('The config of the port mirror.')
tplink_port_mirror_mib_objects = mib_identifier((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1))
tplink_port_mirror_mib_notifications = mib_identifier((1, 3, 6, 1, 4, 1, 11863, 6, 11, 2))
tp_port_mirror_table = mib_table((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1))
if mibBuilder.loadTexts:
tpPortMirrorTable.setStatus('current')
if mibBuilder.loadTexts:
tpPortMirrorTable.setDescription('')
tp_port_mirror_entry = mib_table_row((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1)).setIndexNames((0, 'TPLINK-PORTMIRROR-MIB', 'tpPortMirrorSession'))
if mibBuilder.loadTexts:
tpPortMirrorEntry.setStatus('current')
if mibBuilder.loadTexts:
tpPortMirrorEntry.setDescription('')
tp_port_mirror_session = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 1), integer32()).setMaxAccess('readonly')
if mibBuilder.loadTexts:
tpPortMirrorSession.setStatus('current')
if mibBuilder.loadTexts:
tpPortMirrorSession.setDescription('This object indicates the session number of the mirror group.')
tp_port_mirror_destination = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 2), octet_string()).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
tpPortMirrorDestination.setStatus('current')
if mibBuilder.loadTexts:
tpPortMirrorDestination.setDescription(' This object indicates a destination port which monitors specified ports on the switch, should be given as 1/0/1. Note: The member of LAG cannot be assigned as a destination port.')
tp_port_mirror_ingress_source = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 3), octet_string()).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
tpPortMirrorIngressSource.setStatus('current')
if mibBuilder.loadTexts:
tpPortMirrorIngressSource.setDescription(" This object indicates a list of the source ports. Any packets received from these ports will be copyed to the assigned destination port. This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.")
tp_port_mirror_egress_source = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 4), octet_string()).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
tpPortMirrorEgressSource.setStatus('current')
if mibBuilder.loadTexts:
tpPortMirrorEgressSource.setDescription(" This object indicates a list of the source ports. Any packets sended out from these ports will be copyed to the assigned destination ports.This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.")
tp_port_mirror_both_source = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 5), octet_string()).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
tpPortMirrorBothSource.setStatus('current')
if mibBuilder.loadTexts:
tpPortMirrorBothSource.setDescription(" This object indicates a list of the source ports. Any packets received or sended out from these ports will be copyed to the assigned destination ports.This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.")
tp_port_mirror_session_state = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 6), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3))).clone(namedValues=named_values(('negative', 1), ('active', 2), ('clear', 3)))).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
tpPortMirrorSessionState.setStatus('current')
if mibBuilder.loadTexts:
tpPortMirrorSessionState.setDescription(' This object indicates the state of mirror session.If a session has been assigned both destination port and source ports, then the value of this object changes to active(2). Otherwise the value of this object is to be negative(1). When the value of this object is assigned to clear(3), then the configuration of this session will be cleared, and the state changes to negative(1). Be aware of that only clear(3) can be assigned to this object.')
mibBuilder.exportSymbols('TPLINK-PORTMIRROR-MIB', tpPortMirrorIngressSource=tpPortMirrorIngressSource, tpPortMirrorTable=tpPortMirrorTable, tpPortMirrorBothSource=tpPortMirrorBothSource, tplinkPortMirrorMIBNotifications=tplinkPortMirrorMIBNotifications, tpPortMirrorEgressSource=tpPortMirrorEgressSource, tpPortMirrorSessionState=tpPortMirrorSessionState, tplinkPortMirrorMIBObjects=tplinkPortMirrorMIBObjects, tpPortMirrorEntry=tpPortMirrorEntry, tpPortMirrorDestination=tpPortMirrorDestination, tplinkPortMirrorMIB=tplinkPortMirrorMIB, tpPortMirrorSession=tpPortMirrorSession, PYSNMP_MODULE_ID=tplinkPortMirrorMIB) |
File = open("File PROTEK/Data2.txt", "w")
while True:
nim = input('Masukan NIM:')
nama = input('Masukan Nama:')
alamat = input('Masukan Alamat:')
print('')
File.write(nim + '|' + nama + '|' + alamat + '\n')
repeat = input('Apakah ingin memasukan data lagi?(y/n):')
print('')
if(repeat in {'n','N'}):
File.close()
break
| file = open('File PROTEK/Data2.txt', 'w')
while True:
nim = input('Masukan NIM:')
nama = input('Masukan Nama:')
alamat = input('Masukan Alamat:')
print('')
File.write(nim + '|' + nama + '|' + alamat + '\n')
repeat = input('Apakah ingin memasukan data lagi?(y/n):')
print('')
if repeat in {'n', 'N'}:
File.close()
break |
# Lv-677_Ivan_Vaulin
# Task2. Write a script that checks the login that the user enters.
# If the login is "First", then greet the users. If the login is different, send an error message.
# (need to use loop while)
user_name = input('Hello, please input your Log in:')
while user_name != 'First':
user_name = input('Error: wrong username, please try one more time. Username:')
else:
print('Greeting. Access granted!!!', user_name) | user_name = input('Hello, please input your Log in:')
while user_name != 'First':
user_name = input('Error: wrong username, please try one more time. Username:')
else:
print('Greeting. Access granted!!!', user_name) |
# -*- coding: UTF-8 -*-
# Copyright 2013 Felix Friedrich, Felix Schwarz
# Copyright 2015, 2019 Felix Schwarz
# The source code in this file is licensed under the MIT license.
# SPDX-License-Identifier: MIT
__all__ = ['Result']
class Result(object):
def __init__(self, value, **data):
self.value = value
self.data = data
def __repr__(self):
klassname = self.__class__.__name__
extra_data = [repr(self.value)]
for key, value in sorted(self.data.items()):
extra_data.append('%s=%r' % (key, value))
return '%s(%s)' % (klassname, ', '.join(extra_data))
def __eq__(self, other):
if isinstance(other, self.value.__class__):
return self.value == other
elif hasattr(other, 'value'):
return self.value == other.value
return False
def __ne__(self, other):
return not self.__eq__(other)
def __bool__(self):
return bool(self.value)
# Python 2 compatibility
__nonzero__ = __bool__
def __len__(self):
return len(self.value)
def __getattr__(self, key):
if key in self.data:
return self.data[key]
elif key.startswith('set_'):
attr_name = key[4:]
if attr_name in self.data:
return self.__build_setter(attr_name)
klassname = self.__class__.__name__
msg = '%r object has no attribute %r' % (klassname, key)
raise AttributeError(msg)
def __build_setter(self, attr_name):
def setter(value):
self.data[attr_name] = value
setter.__name__ = 'set_'+attr_name
return setter
def __setattr__(self, key, value):
if key in ('data', 'value'):
# instance attributes, set by constructor
self.__dict__[key] = value
return
if key not in self.data:
raise AttributeError("'%s' object has no attribute '%s'" % (self.__class__.__name__, key))
setter = getattr(self, 'set_'+key)
setter(value)
| __all__ = ['Result']
class Result(object):
def __init__(self, value, **data):
self.value = value
self.data = data
def __repr__(self):
klassname = self.__class__.__name__
extra_data = [repr(self.value)]
for (key, value) in sorted(self.data.items()):
extra_data.append('%s=%r' % (key, value))
return '%s(%s)' % (klassname, ', '.join(extra_data))
def __eq__(self, other):
if isinstance(other, self.value.__class__):
return self.value == other
elif hasattr(other, 'value'):
return self.value == other.value
return False
def __ne__(self, other):
return not self.__eq__(other)
def __bool__(self):
return bool(self.value)
__nonzero__ = __bool__
def __len__(self):
return len(self.value)
def __getattr__(self, key):
if key in self.data:
return self.data[key]
elif key.startswith('set_'):
attr_name = key[4:]
if attr_name in self.data:
return self.__build_setter(attr_name)
klassname = self.__class__.__name__
msg = '%r object has no attribute %r' % (klassname, key)
raise attribute_error(msg)
def __build_setter(self, attr_name):
def setter(value):
self.data[attr_name] = value
setter.__name__ = 'set_' + attr_name
return setter
def __setattr__(self, key, value):
if key in ('data', 'value'):
self.__dict__[key] = value
return
if key not in self.data:
raise attribute_error("'%s' object has no attribute '%s'" % (self.__class__.__name__, key))
setter = getattr(self, 'set_' + key)
setter(value) |
# Test that systemctl will accept service names both with or without suffix.
def test_dot_service(sysvenv):
service = sysvenv.create_service("foo")
service.will_do("status", 3)
service.direct_enable()
out, err, status = sysvenv.systemctl("status", "foo.service")
assert status == 3
assert service.did("status")
| def test_dot_service(sysvenv):
service = sysvenv.create_service('foo')
service.will_do('status', 3)
service.direct_enable()
(out, err, status) = sysvenv.systemctl('status', 'foo.service')
assert status == 3
assert service.did('status') |
num_list = []
num_list.append(1)
num_list.append(2)
num_list.append(3)
print(num_list[1]) | num_list = []
num_list.append(1)
num_list.append(2)
num_list.append(3)
print(num_list[1]) |
#!/usr/bin/env python
# Paths
VIDEOS_PATH = '~/Desktop/Downloaded Youtube Videos'
VIDEOS_PATH_WIN = '/mnt/e/Alex/Videos/Youtube'
| videos_path = '~/Desktop/Downloaded Youtube Videos'
videos_path_win = '/mnt/e/Alex/Videos/Youtube' |
# Variables that contain the user credentials to access Twitter API
ACCESS_TOKEN ="< Enter your Twitter Access Token >"
ACCESS_TOKEN_SECRET ="< Enter your Access Token Secret >"
CONSUMER_KEY = "< Enter Consumer Key >"
CONSUMER_SECRET = "< Enter Consumer Key Secret >" | access_token = '< Enter your Twitter Access Token >'
access_token_secret = '< Enter your Access Token Secret >'
consumer_key = '< Enter Consumer Key >'
consumer_secret = '< Enter Consumer Key Secret >' |
ft_name = 'points'
featuretype_api = datastore_api.featuretype(name=ft_name, data={
"featureType": {
"circularArcPresent": False,
"enabled": True,
"forcedDecimal": False,
"maxFeatures": 0,
"name": ft_name,
"nativeName": ft_name,
"numDecimals": 0,
"overridingServiceSRS": False,
"padWithZeros": False,
"projectionPolicy": "FORCE_DECLARED",
"serviceConfiguration": False,
"skipNumberMatched": False,
"srs": "EPSG:404000",
"title": ft_name,
"attributes": {
"attribute": {
"binding": "java.lang.String",
"maxOccurs": 1,
"minOccurs": 0,
"name": "point",
"nillable": True
}
},
"keywords": {
"string": [
"features",
ft_name
]
},
"latLonBoundingBox": {
"maxx": -68.036694,
"maxy": 49.211179,
"minx": -124.571077,
"miny": 25.404663,
"crs": "EPSG:4326"
},
"nativeBoundingBox": {
"minx": -90,
"maxx": 90,
"miny": -180,
"maxy": 180,
"crs": "EPSG:4326"
},
}
}) | ft_name = 'points'
featuretype_api = datastore_api.featuretype(name=ft_name, data={'featureType': {'circularArcPresent': False, 'enabled': True, 'forcedDecimal': False, 'maxFeatures': 0, 'name': ft_name, 'nativeName': ft_name, 'numDecimals': 0, 'overridingServiceSRS': False, 'padWithZeros': False, 'projectionPolicy': 'FORCE_DECLARED', 'serviceConfiguration': False, 'skipNumberMatched': False, 'srs': 'EPSG:404000', 'title': ft_name, 'attributes': {'attribute': {'binding': 'java.lang.String', 'maxOccurs': 1, 'minOccurs': 0, 'name': 'point', 'nillable': True}}, 'keywords': {'string': ['features', ft_name]}, 'latLonBoundingBox': {'maxx': -68.036694, 'maxy': 49.211179, 'minx': -124.571077, 'miny': 25.404663, 'crs': 'EPSG:4326'}, 'nativeBoundingBox': {'minx': -90, 'maxx': 90, 'miny': -180, 'maxy': 180, 'crs': 'EPSG:4326'}}}) |
class Solution:
def spiralMatrixIII(self, R: int, C: int, r0: int, c0: int) -> List[List[int]]:
step = sign = 1
result = [[r0, c0]]
r, c = r0, c0
while len(result) < R*C:
for _ in range(step):
c += sign
if 0 <= r < R and 0 <= c < C:
result.append([r, c])
for _ in range(step):
r += sign
if 0 <= r < R and 0 <= c < C:
result.append([r, c])
step += 1
sign *= -1
return result
| class Solution:
def spiral_matrix_iii(self, R: int, C: int, r0: int, c0: int) -> List[List[int]]:
step = sign = 1
result = [[r0, c0]]
(r, c) = (r0, c0)
while len(result) < R * C:
for _ in range(step):
c += sign
if 0 <= r < R and 0 <= c < C:
result.append([r, c])
for _ in range(step):
r += sign
if 0 <= r < R and 0 <= c < C:
result.append([r, c])
step += 1
sign *= -1
return result |
# -*- coding: utf-8 -*-
def includeme(config):
config.register_service_factory('.services.user.rename_user_factory', name='rename_user')
config.include('.views')
config.add_route('admin_index', '/')
config.add_route('admin_admins', '/admins')
config.add_route('admin_badge', '/badge')
config.add_route('admin_features', '/features')
config.add_route('admin_cohorts', '/features/cohorts')
config.add_route('admin_cohorts_edit', '/features/cohorts/{id}')
config.add_route('admin_groups', '/groups')
config.add_route('admin_groups_csv', '/groups.csv')
config.add_route('admin_nipsa', '/nipsa')
config.add_route('admin_staff', '/staff')
config.add_route('admin_users', '/users')
config.add_route('admin_users_activate', '/users/activate')
config.add_route('admin_users_delete', '/users/delete')
config.add_route('admin_users_rename', '/users/rename')
| def includeme(config):
config.register_service_factory('.services.user.rename_user_factory', name='rename_user')
config.include('.views')
config.add_route('admin_index', '/')
config.add_route('admin_admins', '/admins')
config.add_route('admin_badge', '/badge')
config.add_route('admin_features', '/features')
config.add_route('admin_cohorts', '/features/cohorts')
config.add_route('admin_cohorts_edit', '/features/cohorts/{id}')
config.add_route('admin_groups', '/groups')
config.add_route('admin_groups_csv', '/groups.csv')
config.add_route('admin_nipsa', '/nipsa')
config.add_route('admin_staff', '/staff')
config.add_route('admin_users', '/users')
config.add_route('admin_users_activate', '/users/activate')
config.add_route('admin_users_delete', '/users/delete')
config.add_route('admin_users_rename', '/users/rename') |
## Iterative approach - BFS - Using Queue
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
# ITERATIVE - USING QUEUE
if root is None: return None
queue = deque([root])
while queue:
current = queue.popleft()
current.left, current.right = current.right, current.left
if current.left:
queue.append(current.left)
if current.right:
queue.append(current.right)
return root
| class Solution:
def invert_tree(self, root: TreeNode) -> TreeNode:
if root is None:
return None
queue = deque([root])
while queue:
current = queue.popleft()
(current.left, current.right) = (current.right, current.left)
if current.left:
queue.append(current.left)
if current.right:
queue.append(current.right)
return root |
motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles)
motorcycles[0] = 'ducati'
print(motorcycles)
motorcycles.append('honda')
print(motorcycles)
motorcycles = []
motorcycles.append('suzuki')
motorcycles.append('honda')
motorcycles.append('bmw')
print(motorcycles)
motorcycles.insert(0, 'ducati')
print(motorcycles)
motorcycles.insert(2, 'yamaha')
print(motorcycles)
del motorcycles[3]
print(motorcycles)
print('\npop example')
popped = motorcycles.pop()
print(motorcycles)
print(popped)
print('\npop from first position')
popped = motorcycles.pop(0)
print(motorcycles)
print(popped)
print('\nappend at the end and remove by value: only removes first ocurrence')
motorcycles.append('suzuki')
motorcycles.remove('suzuki')
print(motorcycles)
print('\nremove by value using var')
remove_this = 'yamaha'
motorcycles.remove(remove_this)
print(motorcycles)
| motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles)
motorcycles[0] = 'ducati'
print(motorcycles)
motorcycles.append('honda')
print(motorcycles)
motorcycles = []
motorcycles.append('suzuki')
motorcycles.append('honda')
motorcycles.append('bmw')
print(motorcycles)
motorcycles.insert(0, 'ducati')
print(motorcycles)
motorcycles.insert(2, 'yamaha')
print(motorcycles)
del motorcycles[3]
print(motorcycles)
print('\npop example')
popped = motorcycles.pop()
print(motorcycles)
print(popped)
print('\npop from first position')
popped = motorcycles.pop(0)
print(motorcycles)
print(popped)
print('\nappend at the end and remove by value: only removes first ocurrence')
motorcycles.append('suzuki')
motorcycles.remove('suzuki')
print(motorcycles)
print('\nremove by value using var')
remove_this = 'yamaha'
motorcycles.remove(remove_this)
print(motorcycles) |
#
# PySNMP MIB module HP-ICF-LAYER3VLAN-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/HP-ICF-LAYER3VLAN-MIB
# Produced by pysmi-0.3.4 at Mon Apr 29 19:21:56 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
SingleValueConstraint, ValueSizeConstraint, ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueSizeConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion")
hpSwitch, = mibBuilder.importSymbols("HP-ICF-OID", "hpSwitch")
ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex")
ObjectGroup, ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "ModuleCompliance", "NotificationGroup")
Gauge32, TimeTicks, Bits, Unsigned32, Counter32, ObjectIdentity, Integer32, IpAddress, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, iso, ModuleIdentity, NotificationType, MibIdentifier = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "TimeTicks", "Bits", "Unsigned32", "Counter32", "ObjectIdentity", "Integer32", "IpAddress", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "iso", "ModuleIdentity", "NotificationType", "MibIdentifier")
TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString")
hpicfLayer3VlanConfigMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70))
hpicfLayer3VlanConfigMIB.setRevisions(('2010-03-23 00:00',))
if mibBuilder.loadTexts: hpicfLayer3VlanConfigMIB.setLastUpdated('201003230000Z')
if mibBuilder.loadTexts: hpicfLayer3VlanConfigMIB.setOrganization('HP Networking')
hpicfLayer3VlanConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1))
hpicfLayer3VlanConfigConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2))
hpicfLayer3VlanConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1), )
if mibBuilder.loadTexts: hpicfLayer3VlanConfigTable.setStatus('current')
hpicfLayer3VlanConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"))
if mibBuilder.loadTexts: hpicfLayer3VlanConfigEntry.setStatus('current')
hpicfLayer3VlanStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2))).clone('enable')).setMaxAccess("readwrite")
if mibBuilder.loadTexts: hpicfLayer3VlanStatus.setStatus('current')
hpicfL3VlanConfigMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 1))
hpicfLayer3VlanConfigMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 2))
hpicfL3VlanConfigMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 1, 1)).setObjects(("HP-ICF-LAYER3VLAN-MIB", "hpicfLayer3VlanConfigGroup"), ("HP-ICF-LAYER3VLAN-MIB", "hpicfLayer3VlanConfigGroup"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
hpicfL3VlanConfigMIBCompliance = hpicfL3VlanConfigMIBCompliance.setStatus('current')
hpicfLayer3VlanConfigGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 2, 1)).setObjects(("HP-ICF-LAYER3VLAN-MIB", "hpicfLayer3VlanStatus"))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
hpicfLayer3VlanConfigGroup = hpicfLayer3VlanConfigGroup.setStatus('current')
mibBuilder.exportSymbols("HP-ICF-LAYER3VLAN-MIB", hpicfLayer3VlanConfig=hpicfLayer3VlanConfig, PYSNMP_MODULE_ID=hpicfLayer3VlanConfigMIB, hpicfLayer3VlanConfigTable=hpicfLayer3VlanConfigTable, hpicfLayer3VlanConfigConformance=hpicfLayer3VlanConfigConformance, hpicfLayer3VlanConfigGroup=hpicfLayer3VlanConfigGroup, hpicfLayer3VlanStatus=hpicfLayer3VlanStatus, hpicfL3VlanConfigMIBCompliance=hpicfL3VlanConfigMIBCompliance, hpicfLayer3VlanConfigMIB=hpicfLayer3VlanConfigMIB, hpicfLayer3VlanConfigEntry=hpicfLayer3VlanConfigEntry, hpicfLayer3VlanConfigMIBGroups=hpicfLayer3VlanConfigMIBGroups, hpicfL3VlanConfigMIBCompliances=hpicfL3VlanConfigMIBCompliances)
| (octet_string, integer, object_identifier) = mibBuilder.importSymbols('ASN1', 'OctetString', 'Integer', 'ObjectIdentifier')
(named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues')
(single_value_constraint, value_size_constraint, value_range_constraint, constraints_intersection, constraints_union) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'SingleValueConstraint', 'ValueSizeConstraint', 'ValueRangeConstraint', 'ConstraintsIntersection', 'ConstraintsUnion')
(hp_switch,) = mibBuilder.importSymbols('HP-ICF-OID', 'hpSwitch')
(if_index,) = mibBuilder.importSymbols('IF-MIB', 'ifIndex')
(object_group, module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ObjectGroup', 'ModuleCompliance', 'NotificationGroup')
(gauge32, time_ticks, bits, unsigned32, counter32, object_identity, integer32, ip_address, counter64, mib_scalar, mib_table, mib_table_row, mib_table_column, iso, module_identity, notification_type, mib_identifier) = mibBuilder.importSymbols('SNMPv2-SMI', 'Gauge32', 'TimeTicks', 'Bits', 'Unsigned32', 'Counter32', 'ObjectIdentity', 'Integer32', 'IpAddress', 'Counter64', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'iso', 'ModuleIdentity', 'NotificationType', 'MibIdentifier')
(textual_convention, display_string) = mibBuilder.importSymbols('SNMPv2-TC', 'TextualConvention', 'DisplayString')
hpicf_layer3_vlan_config_mib = module_identity((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70))
hpicfLayer3VlanConfigMIB.setRevisions(('2010-03-23 00:00',))
if mibBuilder.loadTexts:
hpicfLayer3VlanConfigMIB.setLastUpdated('201003230000Z')
if mibBuilder.loadTexts:
hpicfLayer3VlanConfigMIB.setOrganization('HP Networking')
hpicf_layer3_vlan_config = mib_identifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1))
hpicf_layer3_vlan_config_conformance = mib_identifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2))
hpicf_layer3_vlan_config_table = mib_table((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1))
if mibBuilder.loadTexts:
hpicfLayer3VlanConfigTable.setStatus('current')
hpicf_layer3_vlan_config_entry = mib_table_row((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1, 1)).setIndexNames((0, 'IF-MIB', 'ifIndex'))
if mibBuilder.loadTexts:
hpicfLayer3VlanConfigEntry.setStatus('current')
hpicf_layer3_vlan_status = mib_table_column((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1, 1, 1), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('enable', 1), ('disable', 2))).clone('enable')).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
hpicfLayer3VlanStatus.setStatus('current')
hpicf_l3_vlan_config_mib_compliances = mib_identifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 1))
hpicf_layer3_vlan_config_mib_groups = mib_identifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 2))
hpicf_l3_vlan_config_mib_compliance = module_compliance((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 1, 1)).setObjects(('HP-ICF-LAYER3VLAN-MIB', 'hpicfLayer3VlanConfigGroup'), ('HP-ICF-LAYER3VLAN-MIB', 'hpicfLayer3VlanConfigGroup'))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
hpicf_l3_vlan_config_mib_compliance = hpicfL3VlanConfigMIBCompliance.setStatus('current')
hpicf_layer3_vlan_config_group = object_group((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 2, 1)).setObjects(('HP-ICF-LAYER3VLAN-MIB', 'hpicfLayer3VlanStatus'))
if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0):
hpicf_layer3_vlan_config_group = hpicfLayer3VlanConfigGroup.setStatus('current')
mibBuilder.exportSymbols('HP-ICF-LAYER3VLAN-MIB', hpicfLayer3VlanConfig=hpicfLayer3VlanConfig, PYSNMP_MODULE_ID=hpicfLayer3VlanConfigMIB, hpicfLayer3VlanConfigTable=hpicfLayer3VlanConfigTable, hpicfLayer3VlanConfigConformance=hpicfLayer3VlanConfigConformance, hpicfLayer3VlanConfigGroup=hpicfLayer3VlanConfigGroup, hpicfLayer3VlanStatus=hpicfLayer3VlanStatus, hpicfL3VlanConfigMIBCompliance=hpicfL3VlanConfigMIBCompliance, hpicfLayer3VlanConfigMIB=hpicfLayer3VlanConfigMIB, hpicfLayer3VlanConfigEntry=hpicfLayer3VlanConfigEntry, hpicfLayer3VlanConfigMIBGroups=hpicfLayer3VlanConfigMIBGroups, hpicfL3VlanConfigMIBCompliances=hpicfL3VlanConfigMIBCompliances) |
class BaseClient(object):
def __init__(self, username, password, randsalt):
## password = {MD5(pwrd) for old clients, SHA256(pwrd + salt) for new clients}
## randsalt = {"" for old clients, random 16-byte binary string for new clients}
## (here "old" means user was registered over an unencrypted link, without salt)
self.set_user_pwrd_salt(username, (password, randsalt))
## note: do not call on Client instances prior to login
def has_legacy_password(self):
return (len(self.randsalt) == 0)
def set_user_pwrd_salt(self, user_name = "", pwrd_hash_salt = ("", "")):
assert(type(pwrd_hash_salt) == tuple)
self.username = user_name
self.password = pwrd_hash_salt[0]
self.randsalt = pwrd_hash_salt[1]
def set_pwrd_salt(self, pwrd_hash_salt):
assert(type(pwrd_hash_salt) == tuple)
self.password = pwrd_hash_salt[0]
self.randsalt = pwrd_hash_salt[1]
| class Baseclient(object):
def __init__(self, username, password, randsalt):
self.set_user_pwrd_salt(username, (password, randsalt))
def has_legacy_password(self):
return len(self.randsalt) == 0
def set_user_pwrd_salt(self, user_name='', pwrd_hash_salt=('', '')):
assert type(pwrd_hash_salt) == tuple
self.username = user_name
self.password = pwrd_hash_salt[0]
self.randsalt = pwrd_hash_salt[1]
def set_pwrd_salt(self, pwrd_hash_salt):
assert type(pwrd_hash_salt) == tuple
self.password = pwrd_hash_salt[0]
self.randsalt = pwrd_hash_salt[1] |
TITLE = "Metadata extractor"
SAVE = "Save"
OPEN = "Open"
EXTRACT = "Extract"
DELETE = "Delete"
META_TITLE = "title"
META_NAMES = "names"
META_CONTENT = "content"
META_LOCATIONS = "locations"
META_KEYWORD = "keyword"
META_REF = "reference"
TYPE_TXT = "txt"
TYPE_ISO19115v2 = "iso19115v2"
TYPE_FGDC = "fgdc"
LABLE_NAME = "Name"
LABLE_ORGANISATION = "Organisation"
LABLE_PHONE = "Phone"
LABLE_FACS = "Facs"
LABLE_DELIVERY_POINT = "Delivery point"
LABLE_CITY = "City"
LABLE_AREA = "Area"
LABLE_POSTAL_CODE = "Postal code"
LABLE_COUNTRY = "Country"
LABLE_EMAIL = "Email"
LABLE_TYPE = "Type"
LABLE_WEST = "West"
LABLE_EAST = "East"
LABLE_NORTH = "North"
LABLE_SOUTH = "South"
LABLE_LINK = "Link"
LABLE_ORIGIN = "Origin"
LABLE_TITLE = "Title"
LABLE_DATE = "Date"
LABLE_DATE_BEGIN = "Date begin"
LABLE_DATE_END = "Date end"
LABLE_DESCRIPT_ABSTRACT = "Abstract"
LABLE_DESCRIPT_PURPOSE = "Purpose"
LABLE_DESCRIPT_SUPPLEMENTAL = "Supplemental"
LABLE_STATUS_PROGRESS = "Progress"
LABLE_POSTAL_STATUS_UPDATE = "Update"
LABLE_ACCESS = "Access"
LABLE_UUID = "UUID"
LABLE_CB_UUID = "Generate random UUID"
LABLE_LOCATION = "Locations"
LABLE_KEY_WORD = "Key words"
DIALOG_TITLE_ABOUT = "About"
DIALOG_TITLE_SETTINGS = "Settings"
DIALOG_BTN_OK = "OK"
LABLE_ABOUT_NAME = "Name"
LABLE_ABOUT_VERSION = "Version"
LABLE_ABOUT_AUTHOR = "Author"
LABLE_HOME_PAGE = "Home page"
TOOLTIP_DELETE_ELEMENT = "Delete element"
TOOLTIP_ADD_REFERENCE = "Add reference"
TOOLTIP_ADD_LOCATION = "Add location"
TOOLTIP_ADD_KEYWORD = "Add keyword"
TOOLTIP_ADD_PERSON = "Add person"
TOOLTIP_OPEN_PDF = "Open PDF"
TOOLTIP_SAVE_METADATA = "Save metadata"
TOOLTIP_EXTRACT_METADATA = "Extract metadata"
TAB_CONTROL = "Control"
TAB_INFO = "Info"
TAB_CONTACT = "Contact"
TAB_PERSON = "Person"
TAB_KEYWORD = "Keyword"
TAB_LOCATION = "Location"
TAB_REFERENCE = "Reference"
BTN_ADD = "Add"
MENU_ABOUT = "About"
MENU_EXIT = "Exit"
MENU_FILE = "&File"
MENU_QUESTION = "&?"
MENU_HELP = "Help"
MENU_LOAD = "Load"
MENU_FILE_LOAD = "Load file"
MENU_EXTRACT = "Extract"
MENU_SAVE = "Save"
MENU_OPEN = "Open"
MENU_SETTINGS = "Settings"
MENU_TOOLTIP_HELP = "Help"
MENU_TOOLTIP_ABOUT = "About"
MENU_TOOLTIP_OPEN_PDF = "Open pdf file"
MENU_TOOLTIP_LOAD_METADATA = "Load metadata"
MENU_TOOLTIP_LOAD_FILE_METADATA = "Load file metadata"
MENU_TOOLTIP_EXTRACT_METADATA = "Extract metadata"
MENU_TOOLTIP_SAVE_METADATA = "Save file with metadata"
MENU_TOOLTIP_EXIT = "Exit application"
MENU_TOOLTIP_SETTINGS = "Settings"
ICON_CLOSE = "data/icons/close.png"
ICON_OPEN = "data/icons/open.png"
ICON_SAVE = "data/icons/save.png"
ICON_PROCESS = "data/icons/process.png"
ICON_LOAD = "data/icons/load.png"
| title = 'Metadata extractor'
save = 'Save'
open = 'Open'
extract = 'Extract'
delete = 'Delete'
meta_title = 'title'
meta_names = 'names'
meta_content = 'content'
meta_locations = 'locations'
meta_keyword = 'keyword'
meta_ref = 'reference'
type_txt = 'txt'
type_iso19115v2 = 'iso19115v2'
type_fgdc = 'fgdc'
lable_name = 'Name'
lable_organisation = 'Organisation'
lable_phone = 'Phone'
lable_facs = 'Facs'
lable_delivery_point = 'Delivery point'
lable_city = 'City'
lable_area = 'Area'
lable_postal_code = 'Postal code'
lable_country = 'Country'
lable_email = 'Email'
lable_type = 'Type'
lable_west = 'West'
lable_east = 'East'
lable_north = 'North'
lable_south = 'South'
lable_link = 'Link'
lable_origin = 'Origin'
lable_title = 'Title'
lable_date = 'Date'
lable_date_begin = 'Date begin'
lable_date_end = 'Date end'
lable_descript_abstract = 'Abstract'
lable_descript_purpose = 'Purpose'
lable_descript_supplemental = 'Supplemental'
lable_status_progress = 'Progress'
lable_postal_status_update = 'Update'
lable_access = 'Access'
lable_uuid = 'UUID'
lable_cb_uuid = 'Generate random UUID'
lable_location = 'Locations'
lable_key_word = 'Key words'
dialog_title_about = 'About'
dialog_title_settings = 'Settings'
dialog_btn_ok = 'OK'
lable_about_name = 'Name'
lable_about_version = 'Version'
lable_about_author = 'Author'
lable_home_page = 'Home page'
tooltip_delete_element = 'Delete element'
tooltip_add_reference = 'Add reference'
tooltip_add_location = 'Add location'
tooltip_add_keyword = 'Add keyword'
tooltip_add_person = 'Add person'
tooltip_open_pdf = 'Open PDF'
tooltip_save_metadata = 'Save metadata'
tooltip_extract_metadata = 'Extract metadata'
tab_control = 'Control'
tab_info = 'Info'
tab_contact = 'Contact'
tab_person = 'Person'
tab_keyword = 'Keyword'
tab_location = 'Location'
tab_reference = 'Reference'
btn_add = 'Add'
menu_about = 'About'
menu_exit = 'Exit'
menu_file = '&File'
menu_question = '&?'
menu_help = 'Help'
menu_load = 'Load'
menu_file_load = 'Load file'
menu_extract = 'Extract'
menu_save = 'Save'
menu_open = 'Open'
menu_settings = 'Settings'
menu_tooltip_help = 'Help'
menu_tooltip_about = 'About'
menu_tooltip_open_pdf = 'Open pdf file'
menu_tooltip_load_metadata = 'Load metadata'
menu_tooltip_load_file_metadata = 'Load file metadata'
menu_tooltip_extract_metadata = 'Extract metadata'
menu_tooltip_save_metadata = 'Save file with metadata'
menu_tooltip_exit = 'Exit application'
menu_tooltip_settings = 'Settings'
icon_close = 'data/icons/close.png'
icon_open = 'data/icons/open.png'
icon_save = 'data/icons/save.png'
icon_process = 'data/icons/process.png'
icon_load = 'data/icons/load.png' |
class SpaceAge(object):
def __init__(self, seconds):
self.seconds = seconds
def on_earth(self):
return round(self.seconds / 31557600, 2)
def on_mercury(self):
earth = self.on_earth()
return round(earth / 0.2408467, 2)
def on_venus(self):
return round(self.seconds/ 31557600 / 0.61519726, 2)
def on_mars(self):
earth = self.on_earth()
return round(earth / 1.8808158, 2)
def on_jupiter(self):
earth = self.on_earth()
return round(earth / 11.862615, 2)
def on_saturn(self):
earth = self.on_earth()
return round(earth / 29.447498, 2)
def on_uranus(self):
earth = self.on_earth()
return round(earth / 84.016846, 2)
def on_neptune(self):
earth = self.on_earth()
return round(earth / 164.79132, 2)
| class Spaceage(object):
def __init__(self, seconds):
self.seconds = seconds
def on_earth(self):
return round(self.seconds / 31557600, 2)
def on_mercury(self):
earth = self.on_earth()
return round(earth / 0.2408467, 2)
def on_venus(self):
return round(self.seconds / 31557600 / 0.61519726, 2)
def on_mars(self):
earth = self.on_earth()
return round(earth / 1.8808158, 2)
def on_jupiter(self):
earth = self.on_earth()
return round(earth / 11.862615, 2)
def on_saturn(self):
earth = self.on_earth()
return round(earth / 29.447498, 2)
def on_uranus(self):
earth = self.on_earth()
return round(earth / 84.016846, 2)
def on_neptune(self):
earth = self.on_earth()
return round(earth / 164.79132, 2) |
class Tester(object):
def __init__(self):
self.results = dict()
self.params = dict()
self.problem_data = dict()
def set_params(self, params):
self.params = params | class Tester(object):
def __init__(self):
self.results = dict()
self.params = dict()
self.problem_data = dict()
def set_params(self, params):
self.params = params |
class SlackResponseTool:
@classmethod
def response2is_ok(cls, response):
return response["ok"] is True
@classmethod
def response2j_resopnse(cls, response):
return response.data
| class Slackresponsetool:
@classmethod
def response2is_ok(cls, response):
return response['ok'] is True
@classmethod
def response2j_resopnse(cls, response):
return response.data |
#!/usr/bin/env python
NAME = 'Cloudflare (Cloudflare Inc.)'
def is_waf(self):
# This should be given first priority (most reliable)
if self.matchcookie('__cfduid'):
return True
# Not all servers return cloudflare-nginx, only nginx ones
if self.matchheader(('server', 'cloudflare-nginx')) or self.matchheader(('server', 'cloudflare')):
return True
# Found a new nice fingerprint for cloudflare
if self.matchheader(('cf-ray', '.*')):
return True
return False | name = 'Cloudflare (Cloudflare Inc.)'
def is_waf(self):
if self.matchcookie('__cfduid'):
return True
if self.matchheader(('server', 'cloudflare-nginx')) or self.matchheader(('server', 'cloudflare')):
return True
if self.matchheader(('cf-ray', '.*')):
return True
return False |
s = input()
K = int(input())
n = len(s)
substr = set()
for i in range(n):
for j in range(i + 1, i + 1 + K):
if j <= n:
substr.add(s[i:j])
substr = sorted(list(substr))
print(substr[K - 1])
| s = input()
k = int(input())
n = len(s)
substr = set()
for i in range(n):
for j in range(i + 1, i + 1 + K):
if j <= n:
substr.add(s[i:j])
substr = sorted(list(substr))
print(substr[K - 1]) |
def exc():
a=10
b=0
try:
c=a/b
except(ZeroDivisionError ):
print("Divide by zero")
exc()
| def exc():
a = 10
b = 0
try:
c = a / b
except ZeroDivisionError:
print('Divide by zero')
exc() |
A, B, K = map(int, input().split())
for i, num in enumerate(range(A, B + 1)):
if i + 1 > K:
break
print(num)
x = []
for i, num in enumerate(range(B, A-1, -1)):
if i + 1 > K:
break
x.append(num)
x.sort()
k = B - A +1
for i in x:
if k < 2 * K:
k += 1
else:
print(i)
| (a, b, k) = map(int, input().split())
for (i, num) in enumerate(range(A, B + 1)):
if i + 1 > K:
break
print(num)
x = []
for (i, num) in enumerate(range(B, A - 1, -1)):
if i + 1 > K:
break
x.append(num)
x.sort()
k = B - A + 1
for i in x:
if k < 2 * K:
k += 1
else:
print(i) |
s = sum(range(1, 101)) ** 2
ss = sum(list(map(lambda x: x ** 2, range(1, 101))))
print(s - ss)
| s = sum(range(1, 101)) ** 2
ss = sum(list(map(lambda x: x ** 2, range(1, 101))))
print(s - ss) |
class Solution(object):
def generateParenthesis(self, n):
# corner case
if n == 0:
return []
# level: tree level
# openCount: open bracket count
def dfs(level, n1, n2, n, stack, ret, openCount):
if level == 2 * n:
ret.append("".join(stack[:]))
# dfs
if n1 < n:
stack.append("(")
dfs(level + 1, n1 + 1, n2, n, stack, ret, openCount + 1)
stack.pop()
if openCount >= 1 and n2 < n:
stack.append(")")
dfs(level + 1, n1, n2 + 1, n, stack, ret, openCount - 1)
stack.pop()
stack = list()
ret = list()
dfs(0, 0, 0, n, stack, ret, 0)
return ret | class Solution(object):
def generate_parenthesis(self, n):
if n == 0:
return []
def dfs(level, n1, n2, n, stack, ret, openCount):
if level == 2 * n:
ret.append(''.join(stack[:]))
if n1 < n:
stack.append('(')
dfs(level + 1, n1 + 1, n2, n, stack, ret, openCount + 1)
stack.pop()
if openCount >= 1 and n2 < n:
stack.append(')')
dfs(level + 1, n1, n2 + 1, n, stack, ret, openCount - 1)
stack.pop()
stack = list()
ret = list()
dfs(0, 0, 0, n, stack, ret, 0)
return ret |
def find(n: int):
for i in range(1, 1000001):
total = 0
for j in str(i):
total += int(j)
total += i
if total == n:
print(i)
return
print(0)
find(int(input()))
| def find(n: int):
for i in range(1, 1000001):
total = 0
for j in str(i):
total += int(j)
total += i
if total == n:
print(i)
return
print(0)
find(int(input())) |
if True:
pass
else:
x = 3
| if True:
pass
else:
x = 3 |
print("Welcome to the Band Name Generator.")
city_name =input("What's name of the city you grew up in?\n")
pet_name =input("What's your pet's name?\n")
print("Your band name could be Bristole Rabbit")
| print('Welcome to the Band Name Generator.')
city_name = input("What's name of the city you grew up in?\n")
pet_name = input("What's your pet's name?\n")
print('Your band name could be Bristole Rabbit') |
class Settings:
info = {
"version": "0.2.0",
"description": "Python library which allows to read, modify, create and run EnergyPlus files and simulations."
}
groups = {
'simulation_parameters': [
'Timestep',
'Version',
'SimulationControl',
'ShadowCalculations',
'SurfaceConvectionAlgorithm:Outside',
'SurfaceConvectionAlgorithm:Inside'
'GlobalGeometryRules',
'HeatBalanceAlgorithm'
],
'building': [
'Site:Location',
'Building'
],
'climate': [
'SizingPeriod:DesignDay',
'Site:GroundTemperature:BuildingSurface',
],
'schedules': [
'ScheduleTypeLimits',
'ScheduleDayHourly',
'ScheduleDayInterval',
'ScheduleWeekDaily',
'ScheduleWeekCompact',
'ScheduleConstant',
'ScheduleFile',
'ScheduleDayList',
'ScheduleYear',
'ScheduleCompact'
],
'construction': [
'Material',
'Material:NoMass',
'Material:AirGap',
'WindowMaterial:SimpleGlazingSystem',
'WindowMaterial:Glazing',
'WindowMaterial:Gas',
'WindowMaterial:Gap',
'Construction'
],
'internal_gains': [
'People',
'Lights',
'ElectricEquipment',
],
'airflow': [
'ZoneInfiltration:DesignFlowRate',
'ZoneVentilation:DesignFlowRate'
],
'zone': [
'BuildingSurface:Detailed',
],
'zone_control': [
'ZoneControl:Thermostat',
'ThermostatSetpoint:SingleHeating',
'ThermostatSetpoint:SingleCooling',
'ThermostatSetpoint:SingleHeatingOrCooling',
'ThermostatSetpoint:DualSetpoint',
],
'systems': [
'Zone:IdealAirLoadsSystem',
'HVACTemplate:Zone:IdealLoadsAirSystem'
],
'outputs': [
'Output:SQLite',
'Output:Table:SummaryReports'
]
} | class Settings:
info = {'version': '0.2.0', 'description': 'Python library which allows to read, modify, create and run EnergyPlus files and simulations.'}
groups = {'simulation_parameters': ['Timestep', 'Version', 'SimulationControl', 'ShadowCalculations', 'SurfaceConvectionAlgorithm:Outside', 'SurfaceConvectionAlgorithm:InsideGlobalGeometryRules', 'HeatBalanceAlgorithm'], 'building': ['Site:Location', 'Building'], 'climate': ['SizingPeriod:DesignDay', 'Site:GroundTemperature:BuildingSurface'], 'schedules': ['ScheduleTypeLimits', 'ScheduleDayHourly', 'ScheduleDayInterval', 'ScheduleWeekDaily', 'ScheduleWeekCompact', 'ScheduleConstant', 'ScheduleFile', 'ScheduleDayList', 'ScheduleYear', 'ScheduleCompact'], 'construction': ['Material', 'Material:NoMass', 'Material:AirGap', 'WindowMaterial:SimpleGlazingSystem', 'WindowMaterial:Glazing', 'WindowMaterial:Gas', 'WindowMaterial:Gap', 'Construction'], 'internal_gains': ['People', 'Lights', 'ElectricEquipment'], 'airflow': ['ZoneInfiltration:DesignFlowRate', 'ZoneVentilation:DesignFlowRate'], 'zone': ['BuildingSurface:Detailed'], 'zone_control': ['ZoneControl:Thermostat', 'ThermostatSetpoint:SingleHeating', 'ThermostatSetpoint:SingleCooling', 'ThermostatSetpoint:SingleHeatingOrCooling', 'ThermostatSetpoint:DualSetpoint'], 'systems': ['Zone:IdealAirLoadsSystem', 'HVACTemplate:Zone:IdealLoadsAirSystem'], 'outputs': ['Output:SQLite', 'Output:Table:SummaryReports']} |
DEBUG = False
SECRET_KEY = '3tJhmR0XFbSOUG02Wpp7'
CSRF_ENABLED = True
CSRF_SESSION_LKEY = 'e8uXRmxo701QarZiXxGf'
| debug = False
secret_key = '3tJhmR0XFbSOUG02Wpp7'
csrf_enabled = True
csrf_session_lkey = 'e8uXRmxo701QarZiXxGf' |
'''
Statement
Given a month - an integer from 1 to 12, print the number of days in it in the year 2017.
Example input #1
1
(January)
Example output #1
31
Example input #2
2
(February)
Example output #2
28
'''
month = int(input())
if month == 2:
print(28)
elif month < 8:
if month % 2 == 0:
print(30)
else:
print(31)
else:
if month % 2 == 0:
print(31)
else:
print(30)
| """
Statement
Given a month - an integer from 1 to 12, print the number of days in it in the year 2017.
Example input #1
1
(January)
Example output #1
31
Example input #2
2
(February)
Example output #2
28
"""
month = int(input())
if month == 2:
print(28)
elif month < 8:
if month % 2 == 0:
print(30)
else:
print(31)
elif month % 2 == 0:
print(31)
else:
print(30) |
# Challenge No 9 Intermediate
# https://www.reddit.com/r/dailyprogrammer/comments/pu1y6/2172012_challenge_9_intermediate/
# Take a string, scan file for string, and replace with another string
def main():
pass
def f_r():
fn = input('Please input filename: ')
sstring = input('Please input string to search: ')
rstring = input('Please input string to replace: ')
with open(fn, 'r') as f:
filedata = f.read()
filedata = filedata.replace(sstring, rstring)
with open(fn, 'w') as f:
f.write(filedata)
# To print line by line:
# with open('*.txt', 'r') as f:
# for line in f:
# print(line)
if __name__ == '__main__':
main()
| def main():
pass
def f_r():
fn = input('Please input filename: ')
sstring = input('Please input string to search: ')
rstring = input('Please input string to replace: ')
with open(fn, 'r') as f:
filedata = f.read()
filedata = filedata.replace(sstring, rstring)
with open(fn, 'w') as f:
f.write(filedata)
if __name__ == '__main__':
main() |
list1=[2,3,8,5,9,2,7,4]
i=0
print("before list",list1)
while i<len(list1):
j=0
while j<i:
if list1[i]<list1[j]:
temp=list1[i]
list1[i]=list1[j]
list1[j]=temp
j+=1
i+=1
print("after",list1) | list1 = [2, 3, 8, 5, 9, 2, 7, 4]
i = 0
print('before list', list1)
while i < len(list1):
j = 0
while j < i:
if list1[i] < list1[j]:
temp = list1[i]
list1[i] = list1[j]
list1[j] = temp
j += 1
i += 1
print('after', list1) |
class TimezoneTool:
@classmethod
def tzdb2abbreviation(cls, tzdb):
if tzdb == "Asia/Seoul":
return "KST"
if tzdb == "America/Los_Angeles":
return "ET"
raise NotImplementedError({"tzdb":tzdb})
| class Timezonetool:
@classmethod
def tzdb2abbreviation(cls, tzdb):
if tzdb == 'Asia/Seoul':
return 'KST'
if tzdb == 'America/Los_Angeles':
return 'ET'
raise not_implemented_error({'tzdb': tzdb}) |
def shortest_path(sx, sy, maze):
w = len(maze[0])
h = len(maze)
board = [[None for i in range(w)] for i in range(h)]
board[sx][sy] = 1
arr = [(sx, sy)]
while arr:
x, y = arr.pop(0)
for i in [[1, 0], [-1, 0], [0, -1], [0, 1]]:
nx, ny = x + i[0], y + i[1]
if 0 <= nx < h and 0 <= ny < w:
if board[nx][ny] is None:
board[nx][ny] = board[x][y] + 1
if maze[nx][ny] == 1:
continue
arr.append((nx, ny))
return board
def solution(maze):
w = len(maze[0])
h = len(maze)
tb = shortest_path(0, 0, maze)
bt = shortest_path(h-1, w-1, maze)
board = []
ans = 2 ** 32-1
for i in range(h):
for j in range(w):
if tb[i][j] and bt[i][j]:
ans = min(tb[i][j] + bt[i][j] - 1, ans)
return ans | def shortest_path(sx, sy, maze):
w = len(maze[0])
h = len(maze)
board = [[None for i in range(w)] for i in range(h)]
board[sx][sy] = 1
arr = [(sx, sy)]
while arr:
(x, y) = arr.pop(0)
for i in [[1, 0], [-1, 0], [0, -1], [0, 1]]:
(nx, ny) = (x + i[0], y + i[1])
if 0 <= nx < h and 0 <= ny < w:
if board[nx][ny] is None:
board[nx][ny] = board[x][y] + 1
if maze[nx][ny] == 1:
continue
arr.append((nx, ny))
return board
def solution(maze):
w = len(maze[0])
h = len(maze)
tb = shortest_path(0, 0, maze)
bt = shortest_path(h - 1, w - 1, maze)
board = []
ans = 2 ** 32 - 1
for i in range(h):
for j in range(w):
if tb[i][j] and bt[i][j]:
ans = min(tb[i][j] + bt[i][j] - 1, ans)
return ans |
# -----------------------------------------------------------------------------
# Copyright (c) 2013-2022, PyInstaller Development Team.
#
# Distributed under the terms of the GNU General Public License (version 2
# or later) with exception for distributing the bootloader.
#
# The full license is in the file COPYING.txt, distributed with this software.
#
# SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception)
# -----------------------------------------------------------------------------
# numpy._pytesttester is unconditionally imported by numpy.core, thus we can not exclude _pytesttester (which would be
# preferred). Anyway, we can avoid importing pytest, which pulls in anotehr 150+ modules. See
# https://github.com/numpy/numpy/issues/17183
excludedimports = ["pytest"]
| excludedimports = ['pytest'] |
# 1
# Answer: Programming language
# 2
# Answer: B
# 3
print("Hi")
# 4
# Answer: quit()
# 5
# Answer: 6
# 6
# Answer: B
# 7
# Answer: - 10 +
# 8
# Answer: >>> 1 / 0
# 9
# Answer: A
# 10
# Answer: 15.0
# 11
# Answer: 3
# 12
# Answer: A
# 13
# Answer: \"something\"
# 14
# Answer: input
# 15
# Answer: "World"
# 16
# Answer: D
# 17
# Answer: 777
# 18
# Answer: A
# 19
# Answer: A
# 20
# Answer: B
# 21
# Answer: 7
# 22
# Answer: A
# 23
# Answer: 20
# 24
# Answer: 12
# 25
# Answer: aaa
# 26
# Answer: A
# 27
# Answer: C
# 28
# Answer: B
# 29
# Answer: 82
# 30
# Answer: 2 | print('Hi') |
#!/usr/bin/env python
NAME = 'BIG-IP Local Traffic Manager (F5 Networks)'
def is_waf(self):
if self.matchcookie(r'^BIGipServer'):
return True
elif self.matchheader(('X-Cnection', r'^close$'), attack=True):
return True
else:
return False
| name = 'BIG-IP Local Traffic Manager (F5 Networks)'
def is_waf(self):
if self.matchcookie('^BIGipServer'):
return True
elif self.matchheader(('X-Cnection', '^close$'), attack=True):
return True
else:
return False |
print("ma petite chaine en or", end='')
| print('ma petite chaine en or', end='') |
# function for insertion sort
def Insertion_Sort(list):
for i in range(1, len(list)):
temp = list[i]
j = i - 1
while j >= 0 and list[j] > temp:
list[j + 1] = list[j]
j -= 1
list[j + 1] = temp
# function to print list
def Print_list(list):
for i in range(0, len(list)):
print(list[i],end=" ")
print()
num = int(input())
list = []
for i in range(0, num):
list.append(int(input()))
Insertion_Sort(list)
Print_list(list)
'''
Input :
num = 6
array = [1, 6, 3, 3, 5, 2]
Output :
[1, 2, 3, 3, 5, 6]
'''
| def insertion__sort(list):
for i in range(1, len(list)):
temp = list[i]
j = i - 1
while j >= 0 and list[j] > temp:
list[j + 1] = list[j]
j -= 1
list[j + 1] = temp
def print_list(list):
for i in range(0, len(list)):
print(list[i], end=' ')
print()
num = int(input())
list = []
for i in range(0, num):
list.append(int(input()))
insertion__sort(list)
print_list(list)
'\nInput :\nnum = 6\narray = [1, 6, 3, 3, 5, 2]\n\nOutput :\n[1, 2, 3, 3, 5, 6]\n' |
def cleanupFile(file_path):
with open(file_path,'r') as f:
with open("data/transactions.csv",'w') as f1:
next(f) # skip header line
for line in f:
f1.write(line)
def getDateParts(date_string):
year = ''
month = ''
day = ''
date_parts = date_string.split('-')
if (len(date_parts) > 2):
year = date_parts[0]
month = date_parts[1]
day = date_parts[2]
return year, month, day
def dollarStringToNumber(dollar_string):
numeric_value = 0.0
# float conversion doesn't like commas so remove them
dollar_string = dollar_string.replace(',', '')
# remove $ and any leading +/- character
parts = dollar_string.split('$')
if (len(parts) > 1):
value_string = parts[1]
numeric_value = float(value_string)
return numeric_value | def cleanup_file(file_path):
with open(file_path, 'r') as f:
with open('data/transactions.csv', 'w') as f1:
next(f)
for line in f:
f1.write(line)
def get_date_parts(date_string):
year = ''
month = ''
day = ''
date_parts = date_string.split('-')
if len(date_parts) > 2:
year = date_parts[0]
month = date_parts[1]
day = date_parts[2]
return (year, month, day)
def dollar_string_to_number(dollar_string):
numeric_value = 0.0
dollar_string = dollar_string.replace(',', '')
parts = dollar_string.split('$')
if len(parts) > 1:
value_string = parts[1]
numeric_value = float(value_string)
return numeric_value |
#calculation of power using recursion
def exponentOfNumber(base,power):
if power == 0:
return 1
else:
return base * exponentOfNumber(base,power-1)
print("Enter only positive numbers below: ",)
print("Enter a base: ")
number = int(input())
print("Enter a power: ")
exponent = int(input())
result = exponentOfNumber(number,exponent)
print(number,"raised to the power of",exponent,"is",result)
| def exponent_of_number(base, power):
if power == 0:
return 1
else:
return base * exponent_of_number(base, power - 1)
print('Enter only positive numbers below: ')
print('Enter a base: ')
number = int(input())
print('Enter a power: ')
exponent = int(input())
result = exponent_of_number(number, exponent)
print(number, 'raised to the power of', exponent, 'is', result) |
def sma():
pass
def ema():
pass
| def sma():
pass
def ema():
pass |
dict1={'Influenza':['Relenza','B 0 D'],'Swine Flu':['Symmetrel','B L D'],'Cholera':['Ciprofloxacin','B 0 D'],'Typhoid':['Azithromycin','B L D'],'Sunstroke':['Barbiturates','0 0 D'],'Common cold':['Ibuprufen','B 0 D'],'Whooping Cough':['Erthromycin','B 0 D'],'Gastroentritis':['Gelusil','B 0 D'],'Conjunctivitus':['Romycin','B 0 D'],'Dehydration':['ORS','B L D'],'Asthama':['Terbutaline','B L D'],'Cardiac arrest':['Adrenaline','B 0 D'],'Malaria':['Doxycyline','B L D'],'Anaemia':['Hydroxyurea','B 0 D'],'Pneumonia':['Ibuprofen','B 0 D'],'Arthritis':['Lubrijoint 750','B 0 D'],'Depression':['Sleeping Pills','B L D'],'Food poisoning':['Norflox','B 0 D'],'Migraine':['Crocin','B 0 D'],'Insomnia':['Sleeping Pills','B 0 D']}
{'Influenza':'Relenza','Swine Flu':'Symmetrel','Cholera':'Ciprofloxacin','Typhoid':'Azithromycin','Sunstroke':'Barbiturates','Common cold':'Ibuprufen','Whooping Cough':'Erthromycin','Gastroentritis':'Gelusil','Conjunctivitus':'Romycin','Dehydration':'ORS','Asthama':'Terbutaline','Cardiac arrest':'Adrenaline','Malaria':'Doxycyline','Anaemia':'Hydroxyurea','Pneumonia':'Ibuprofen','Arthritis':'Lubrijoint 750','Depression':'Sleeping Pills','Food poisoning':'Norflox','Migraine':'Crocin','Insomnia':'Sleeping Pills'}
dict1={'Influenza':['Relenza','After Breakfast 0 After Dinner'],'Swine Flu':['Symmetrel','After Breakfast After Lunch After Dinner'],'Cholera':['Ciprofloxacin','After Breakfast 0 After Dinner'],'Typhoid':['Azithromycin','After Breakfast After Lunch After Dinner'],'Sunstroke':['After Breakfastarbiturates','0 0 After Dinner'],'Common cold':['Ibuprufen','After Breakfast 0 After Dinner'],'Whooping Cough':['Erthromycin','After Breakfast 0 After Dinner'],'Gastroentritis':['Gelusil','After Breakfast 0 After Dinner'],'Conjunctivitus':['Romycin','After Breakfast 0 After Dinner'],'Dehydration':['ORS','After Breakfast After Lunch After Dinner'],'Asthama':['Terbutaline','After Breakfast After Lunch After Dinner'],'Cardiac arrest':['Adrenaline','After Breakfast 0 After Dinner'],'Malaria':['Doxycyline','B After Lunch After Dinner'],'Anaemia':['Hydroxyurea','After Breakfast 0 After Dinner'],'Pneumonia':['Ibuprofen','After Breakfast 0 After Dinner'],'Arthritis':['Lubrijoint 750','After Breakfast 0 After Dinner'],'Depression':['Sleeping Pills','After Breakfast After Lunch After Dinner'],'Food poisoning':['Norflox','After Breakfast 0 After Dinner'],'Migraine':['Crocin','After Breakfast 0 After Dinner'],'Insomnia':['Sleeping Pills','After Breakfast 0 After Dinner']}
| dict1 = {'Influenza': ['Relenza', 'B 0 D'], 'Swine Flu': ['Symmetrel', 'B L D'], 'Cholera': ['Ciprofloxacin', 'B 0 D'], 'Typhoid': ['Azithromycin', 'B L D'], 'Sunstroke': ['Barbiturates', '0 0 D'], 'Common cold': ['Ibuprufen', 'B 0 D'], 'Whooping Cough': ['Erthromycin', 'B 0 D'], 'Gastroentritis': ['Gelusil', 'B 0 D'], 'Conjunctivitus': ['Romycin', 'B 0 D'], 'Dehydration': ['ORS', 'B L D'], 'Asthama': ['Terbutaline', 'B L D'], 'Cardiac arrest': ['Adrenaline', 'B 0 D'], 'Malaria': ['Doxycyline', 'B L D'], 'Anaemia': ['Hydroxyurea', 'B 0 D'], 'Pneumonia': ['Ibuprofen', 'B 0 D'], 'Arthritis': ['Lubrijoint 750', 'B 0 D'], 'Depression': ['Sleeping Pills', 'B L D'], 'Food poisoning': ['Norflox', 'B 0 D'], 'Migraine': ['Crocin', 'B 0 D'], 'Insomnia': ['Sleeping Pills', 'B 0 D']}
{'Influenza': 'Relenza', 'Swine Flu': 'Symmetrel', 'Cholera': 'Ciprofloxacin', 'Typhoid': 'Azithromycin', 'Sunstroke': 'Barbiturates', 'Common cold': 'Ibuprufen', 'Whooping Cough': 'Erthromycin', 'Gastroentritis': 'Gelusil', 'Conjunctivitus': 'Romycin', 'Dehydration': 'ORS', 'Asthama': 'Terbutaline', 'Cardiac arrest': 'Adrenaline', 'Malaria': 'Doxycyline', 'Anaemia': 'Hydroxyurea', 'Pneumonia': 'Ibuprofen', 'Arthritis': 'Lubrijoint 750', 'Depression': 'Sleeping Pills', 'Food poisoning': 'Norflox', 'Migraine': 'Crocin', 'Insomnia': 'Sleeping Pills'}
dict1 = {'Influenza': ['Relenza', 'After Breakfast 0 After Dinner'], 'Swine Flu': ['Symmetrel', 'After Breakfast After Lunch After Dinner'], 'Cholera': ['Ciprofloxacin', 'After Breakfast 0 After Dinner'], 'Typhoid': ['Azithromycin', 'After Breakfast After Lunch After Dinner'], 'Sunstroke': ['After Breakfastarbiturates', '0 0 After Dinner'], 'Common cold': ['Ibuprufen', 'After Breakfast 0 After Dinner'], 'Whooping Cough': ['Erthromycin', 'After Breakfast 0 After Dinner'], 'Gastroentritis': ['Gelusil', 'After Breakfast 0 After Dinner'], 'Conjunctivitus': ['Romycin', 'After Breakfast 0 After Dinner'], 'Dehydration': ['ORS', 'After Breakfast After Lunch After Dinner'], 'Asthama': ['Terbutaline', 'After Breakfast After Lunch After Dinner'], 'Cardiac arrest': ['Adrenaline', 'After Breakfast 0 After Dinner'], 'Malaria': ['Doxycyline', 'B After Lunch After Dinner'], 'Anaemia': ['Hydroxyurea', 'After Breakfast 0 After Dinner'], 'Pneumonia': ['Ibuprofen', 'After Breakfast 0 After Dinner'], 'Arthritis': ['Lubrijoint 750', 'After Breakfast 0 After Dinner'], 'Depression': ['Sleeping Pills', 'After Breakfast After Lunch After Dinner'], 'Food poisoning': ['Norflox', 'After Breakfast 0 After Dinner'], 'Migraine': ['Crocin', 'After Breakfast 0 After Dinner'], 'Insomnia': ['Sleeping Pills', 'After Breakfast 0 After Dinner']} |
def solve(captcha, step):
result = 0
for i in range(len(captcha)):
if captcha[i] == captcha[(i + step) % len(captcha)]:
result += int(captcha[i])
return result
if __name__ == '__main__':
solve_part1 = lambda captcha: solve(captcha, 1)
solve_part2 = lambda captcha: solve(captcha, len(captcha) // 2)
with open('day1.in') as file:
captcha = file.read()
print(f'Solution to Part 1: {solve_part1(captcha)}')
print(f'Solution to Part 2: {solve_part2(captcha)}') | def solve(captcha, step):
result = 0
for i in range(len(captcha)):
if captcha[i] == captcha[(i + step) % len(captcha)]:
result += int(captcha[i])
return result
if __name__ == '__main__':
solve_part1 = lambda captcha: solve(captcha, 1)
solve_part2 = lambda captcha: solve(captcha, len(captcha) // 2)
with open('day1.in') as file:
captcha = file.read()
print(f'Solution to Part 1: {solve_part1(captcha)}')
print(f'Solution to Part 2: {solve_part2(captcha)}') |
print ('{0:.3f}'.format(1.0/3))
print('{0} / {1} = {2:.3f}'.format(3, 4,3/4 ))
# fill with underscores (_) with the text centered
# (^) to 11 width '___hello___'
print ('{0:_^9}'.format('hello'))
def variable(name=''):
print('{0:*^12}'.format(name))
variable()
print('{0:*^12}'.format('sendra'))
variable()
# keyword-based
print ('{name} read {book} now.'.format(name='My Lovely Friend Sendra', book='A Byte of Python')) | print('{0:.3f}'.format(1.0 / 3))
print('{0} / {1} = {2:.3f}'.format(3, 4, 3 / 4))
print('{0:_^9}'.format('hello'))
def variable(name=''):
print('{0:*^12}'.format(name))
variable()
print('{0:*^12}'.format('sendra'))
variable()
print('{name} read {book} now.'.format(name='My Lovely Friend Sendra', book='A Byte of Python')) |
INH = "Inherent" # The 'address' is inherent in the opcode. e.g. ABX
INT = "Interregister" # An pseudo-addressing for an immediate operand which specified registers for the EXG and TFR instructions
IMM = "Immediate" # Operand immediately follows the opcode. A literal. Could be 8-bit (LDA), 16-bit (LDD), or 32-bit (LDQ)
DIR = "PageDirect" # An 8-bit offset pointer from the base of the direct page, as defined by the DP register. Also known as just 'Direct'.
IDX = "Indexed" # Relative to the address in a base register (an index register or stack pointer)
EXT = "ExtendedDirect" # A 16-bit pointer to a memory location. Also known as just 'Extended'.
REL8 = "Relative8 8-bit" # Program counter relative
REL16 = "Relative8 16-bit" # Program counter relative
# What about what Leventhal calls 'Register Addressing'. e.g. EXG X,U | inh = 'Inherent'
int = 'Interregister'
imm = 'Immediate'
dir = 'PageDirect'
idx = 'Indexed'
ext = 'ExtendedDirect'
rel8 = 'Relative8 8-bit'
rel16 = 'Relative8 16-bit' |
'''
Given a number A. Find the fatorial of the number.
Problem Constraints
1 <= A <= 100
'''
def factorial(A: int) -> int:
if A <= 1:
return 1
return (A * factorial(A-1))
if __name__ == "__main__":
A = 3
print(factorial(A)) | """
Given a number A. Find the fatorial of the number.
Problem Constraints
1 <= A <= 100
"""
def factorial(A: int) -> int:
if A <= 1:
return 1
return A * factorial(A - 1)
if __name__ == '__main__':
a = 3
print(factorial(A)) |
i = 125874
while True:
if sorted(str(i)) == sorted(str(i * 2)) == sorted(str(i * 3)) == sorted(str(i * 4)) == sorted(str(i * 5)) == sorted(str(i * 6)):
break
else:
i += 1
print(i) | i = 125874
while True:
if sorted(str(i)) == sorted(str(i * 2)) == sorted(str(i * 3)) == sorted(str(i * 4)) == sorted(str(i * 5)) == sorted(str(i * 6)):
break
else:
i += 1
print(i) |
#!/usr/bin/env python3
a = ["uno", "dos", "tres"]
b = [f"{i:#04d} {e}" for i,e in enumerate(a)]
print(b)
| a = ['uno', 'dos', 'tres']
b = [f'{i:#04d} {e}' for (i, e) in enumerate(a)]
print(b) |
def test_app_is_created(app):
assert app.name == 'care_api.app'
def test_request_returns_404(client):
assert client.get('/url_not_found').status_code == 404 | def test_app_is_created(app):
assert app.name == 'care_api.app'
def test_request_returns_404(client):
assert client.get('/url_not_found').status_code == 404 |
def pi_nks(limit: int) -> float:
pi: float = 3.0
s: int = 1
for i in range(2, limit, 2):
pi += (s*4/(i*(i+1)*(i+2)))
s = s*(-1)
return pi
def pi_gls(limit: int) -> float:
pi: float = 0.0
s: int = 1
for i in range(1, limit, 2):
pi += (s*(4/i))
s = s*(-1)
return pi
if __name__ == "__main__":
LIMIT: int = 100
print(f"NKS: {pi_nks(limit=LIMIT):.13f}")
print(f"GLS: {pi_gls(limit=LIMIT):.13f}")
| def pi_nks(limit: int) -> float:
pi: float = 3.0
s: int = 1
for i in range(2, limit, 2):
pi += s * 4 / (i * (i + 1) * (i + 2))
s = s * -1
return pi
def pi_gls(limit: int) -> float:
pi: float = 0.0
s: int = 1
for i in range(1, limit, 2):
pi += s * (4 / i)
s = s * -1
return pi
if __name__ == '__main__':
limit: int = 100
print(f'NKS: {pi_nks(limit=LIMIT):.13f}')
print(f'GLS: {pi_gls(limit=LIMIT):.13f}') |
#
# Script for converting collected NR data into
# the format for comparison with the simulations
#
def clean_and_save(file1, file2, cx, cy, ech):
''' Remove rows with character ech from
the data in file1 column cy and corresponding
rows in cx, then save to file2. Column numbering
starts with 0. '''
with open(file1, 'r') as fin, open(file2, 'w') as fout:
# Skip the header
next(fin)
for line in fin:
temp = line.strip().split()
if temp[cy] == ech:
continue
else:
fout.write((' ').join([temp[cx], temp[cy], '\n']))
# Input
data_file = 'input_data/New_Rochelle_covid_data.txt'
no_entry_mark = '?'
# Number of active cases
clean_and_save(data_file, 'output/real_active_w_time.txt', 1, 2, no_entry_mark)
# Total number of cases
clean_and_save(data_file, 'output/real_tot_cases_w_time.txt', 1, 3, no_entry_mark)
# Number of deaths in the county
clean_and_save(data_file, 'output/real_tot_deaths_county_w_time.txt', 1, 4, no_entry_mark)
| def clean_and_save(file1, file2, cx, cy, ech):
""" Remove rows with character ech from
the data in file1 column cy and corresponding
rows in cx, then save to file2. Column numbering
starts with 0. """
with open(file1, 'r') as fin, open(file2, 'w') as fout:
next(fin)
for line in fin:
temp = line.strip().split()
if temp[cy] == ech:
continue
else:
fout.write(' '.join([temp[cx], temp[cy], '\n']))
data_file = 'input_data/New_Rochelle_covid_data.txt'
no_entry_mark = '?'
clean_and_save(data_file, 'output/real_active_w_time.txt', 1, 2, no_entry_mark)
clean_and_save(data_file, 'output/real_tot_cases_w_time.txt', 1, 3, no_entry_mark)
clean_and_save(data_file, 'output/real_tot_deaths_county_w_time.txt', 1, 4, no_entry_mark) |
# Set to 1 or 2 to show what we send and receive from the SMTP server
SMTP_DEBUG = 0
SMTP_HOST = ''
SMTP_PORT = 465
SMTP_FROM_ADDRESSES = ()
SMTP_TO_ADDRESS = ''
# these two can also be set by the environment variables with the same name
SMTP_USERNAME = ''
SMTP_PASSWORD = ''
IMAP_HOSTNAME = ''
IMAP_USERNAME = ''
IMAP_PASSWORD = ''
IMAP_LIST_FOLDER = 'INBOX'
CHECK_ACCEPT_AGE_SECONDS = 3600 | smtp_debug = 0
smtp_host = ''
smtp_port = 465
smtp_from_addresses = ()
smtp_to_address = ''
smtp_username = ''
smtp_password = ''
imap_hostname = ''
imap_username = ''
imap_password = ''
imap_list_folder = 'INBOX'
check_accept_age_seconds = 3600 |
class Memorability_Prediction:
def mem_calculation(frame1):
#print ("Inside mem_calculation function")
start_time1 = time.time()
resized_image = caffe.io.resize_image(frame1,[227,227])
net1.blobs['data'].data[...] = transformer1.preprocess('data', resized_image)
value = net1.forward()
value = value['fc8-euclidean']
end_time1 = time.time()
execution_time1 = end_time1 - start_time1
#print ("*********** \t Execution Time in Memobarility = ", execution_time1, " secs \t***********")
return value[0][0] | class Memorability_Prediction:
def mem_calculation(frame1):
start_time1 = time.time()
resized_image = caffe.io.resize_image(frame1, [227, 227])
net1.blobs['data'].data[...] = transformer1.preprocess('data', resized_image)
value = net1.forward()
value = value['fc8-euclidean']
end_time1 = time.time()
execution_time1 = end_time1 - start_time1
return value[0][0] |
#
# PySNMP MIB module ZYXEL-OAM-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ZYXEL-OAM-MIB
# Produced by pysmi-0.3.4 at Mon Apr 29 21:45:03 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
ValueSizeConstraint, ConstraintsUnion, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint")
ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex")
EnabledStatus, = mibBuilder.importSymbols("P-BRIDGE-MIB", "EnabledStatus")
ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup")
ModuleIdentity, NotificationType, Counter64, TimeTicks, iso, Counter32, Gauge32, ObjectIdentity, IpAddress, MibIdentifier, Unsigned32, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "NotificationType", "Counter64", "TimeTicks", "iso", "Counter32", "Gauge32", "ObjectIdentity", "IpAddress", "MibIdentifier", "Unsigned32", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Bits")
DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention")
esMgmt, = mibBuilder.importSymbols("ZYXEL-ES-SMI", "esMgmt")
zyxelOam = ModuleIdentity((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56))
if mibBuilder.loadTexts: zyxelOam.setLastUpdated('201207010000Z')
if mibBuilder.loadTexts: zyxelOam.setOrganization('Enterprise Solution ZyXEL')
zyxelOamSetup = MibIdentifier((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1))
zyOamState = MibScalar((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 1), EnabledStatus()).setMaxAccess("readwrite")
if mibBuilder.loadTexts: zyOamState.setStatus('current')
zyxelOamPortTable = MibTable((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2), )
if mibBuilder.loadTexts: zyxelOamPortTable.setStatus('current')
zyxelOamPortEntry = MibTableRow((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"))
if mibBuilder.loadTexts: zyxelOamPortEntry.setStatus('current')
zyOamPortFunctionsSupported = MibTableColumn((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2, 1, 1), Bits().clone(namedValues=NamedValues(("unidirectionalSupport", 0), ("loopbackSupport", 1), ("eventSupport", 2), ("variableSupport", 3)))).setMaxAccess("readwrite")
if mibBuilder.loadTexts: zyOamPortFunctionsSupported.setStatus('current')
mibBuilder.exportSymbols("ZYXEL-OAM-MIB", zyxelOam=zyxelOam, zyOamState=zyOamState, PYSNMP_MODULE_ID=zyxelOam, zyxelOamPortEntry=zyxelOamPortEntry, zyxelOamSetup=zyxelOamSetup, zyxelOamPortTable=zyxelOamPortTable, zyOamPortFunctionsSupported=zyOamPortFunctionsSupported)
| (octet_string, object_identifier, integer) = mibBuilder.importSymbols('ASN1', 'OctetString', 'ObjectIdentifier', 'Integer')
(named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues')
(value_size_constraint, constraints_union, constraints_intersection, single_value_constraint, value_range_constraint) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'ValueSizeConstraint', 'ConstraintsUnion', 'ConstraintsIntersection', 'SingleValueConstraint', 'ValueRangeConstraint')
(if_index,) = mibBuilder.importSymbols('IF-MIB', 'ifIndex')
(enabled_status,) = mibBuilder.importSymbols('P-BRIDGE-MIB', 'EnabledStatus')
(module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup')
(module_identity, notification_type, counter64, time_ticks, iso, counter32, gauge32, object_identity, ip_address, mib_identifier, unsigned32, integer32, mib_scalar, mib_table, mib_table_row, mib_table_column, bits) = mibBuilder.importSymbols('SNMPv2-SMI', 'ModuleIdentity', 'NotificationType', 'Counter64', 'TimeTicks', 'iso', 'Counter32', 'Gauge32', 'ObjectIdentity', 'IpAddress', 'MibIdentifier', 'Unsigned32', 'Integer32', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'Bits')
(display_string, textual_convention) = mibBuilder.importSymbols('SNMPv2-TC', 'DisplayString', 'TextualConvention')
(es_mgmt,) = mibBuilder.importSymbols('ZYXEL-ES-SMI', 'esMgmt')
zyxel_oam = module_identity((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56))
if mibBuilder.loadTexts:
zyxelOam.setLastUpdated('201207010000Z')
if mibBuilder.loadTexts:
zyxelOam.setOrganization('Enterprise Solution ZyXEL')
zyxel_oam_setup = mib_identifier((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1))
zy_oam_state = mib_scalar((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 1), enabled_status()).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
zyOamState.setStatus('current')
zyxel_oam_port_table = mib_table((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2))
if mibBuilder.loadTexts:
zyxelOamPortTable.setStatus('current')
zyxel_oam_port_entry = mib_table_row((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2, 1)).setIndexNames((0, 'IF-MIB', 'ifIndex'))
if mibBuilder.loadTexts:
zyxelOamPortEntry.setStatus('current')
zy_oam_port_functions_supported = mib_table_column((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2, 1, 1), bits().clone(namedValues=named_values(('unidirectionalSupport', 0), ('loopbackSupport', 1), ('eventSupport', 2), ('variableSupport', 3)))).setMaxAccess('readwrite')
if mibBuilder.loadTexts:
zyOamPortFunctionsSupported.setStatus('current')
mibBuilder.exportSymbols('ZYXEL-OAM-MIB', zyxelOam=zyxelOam, zyOamState=zyOamState, PYSNMP_MODULE_ID=zyxelOam, zyxelOamPortEntry=zyxelOamPortEntry, zyxelOamSetup=zyxelOamSetup, zyxelOamPortTable=zyxelOamPortTable, zyOamPortFunctionsSupported=zyOamPortFunctionsSupported) |
class ToolVariables:
@classmethod
def ExcheckUpdate(cls):
cls.INTAG = "ExCheck"
return cls
| class Toolvariables:
@classmethod
def excheck_update(cls):
cls.INTAG = 'ExCheck'
return cls |
class ScheduleItem:
def __init__(item, task):
item.task = task
item.start_time = None
item.end_time = None
item.child_start_time = None
item.pred_task = None
item.duration = task.duration
item.total_effort = None
item.who = ''
class Schedule:
def __init__(schedule, target, schedule_items, critical_path, items_by_resource):
schedule.target = target if isinstance(target, ScheduleItem) else schedule_items[target.__qualname__]
schedule.items = schedule_items
schedule.critical_path = critical_path
schedule.items_by_resource = items_by_resource
schedule.duration = schedule.target.end_time
schedule.outdir = None
| class Scheduleitem:
def __init__(item, task):
item.task = task
item.start_time = None
item.end_time = None
item.child_start_time = None
item.pred_task = None
item.duration = task.duration
item.total_effort = None
item.who = ''
class Schedule:
def __init__(schedule, target, schedule_items, critical_path, items_by_resource):
schedule.target = target if isinstance(target, ScheduleItem) else schedule_items[target.__qualname__]
schedule.items = schedule_items
schedule.critical_path = critical_path
schedule.items_by_resource = items_by_resource
schedule.duration = schedule.target.end_time
schedule.outdir = None |
#%%
class Book:
def __init__(self,author,name,pageNum):
self.__author = author
self.__name = name
self.__pageNum = pageNum
def getAuthor(self):
return self.__author
def getName(self):
return self.__name
def getPageNum(self):
return self.__pageNum
def __str__(self):
return "Author is: " + self.__author + " book name: " + self.__name + " number of pages: " + str(self.__pageNum)
def __len__(self):
return self.__pageNum
def __del__(self):
print("The book {} has deleted!".format(self.__name))
x = Book("Jon Duckett","HTML & CSS",460)
print(x)
del x
#%%
| class Book:
def __init__(self, author, name, pageNum):
self.__author = author
self.__name = name
self.__pageNum = pageNum
def get_author(self):
return self.__author
def get_name(self):
return self.__name
def get_page_num(self):
return self.__pageNum
def __str__(self):
return 'Author is: ' + self.__author + ' book name: ' + self.__name + ' number of pages: ' + str(self.__pageNum)
def __len__(self):
return self.__pageNum
def __del__(self):
print('The book {} has deleted!'.format(self.__name))
x = book('Jon Duckett', 'HTML & CSS', 460)
print(x)
del x |
# ---------------------------------------------------------------------------------------------
# Copyright (c) Akash Nag. All rights reserved.
# Licensed under the MIT License. See LICENSE.md in the project root for license information.
# ---------------------------------------------------------------------------------------------
# This module implements the CursorPosition abstraction
class CursorPosition:
def __init__(self, y, x):
self.y = y
self.x = x
# returns a string representation of the cursor position for the user
def __str__(self):
return "(" + str(self.y+1) + "," + str(self.x+1) + ")"
# returns the string representation for internal use
def __repr__(self):
return "(" + str(self.y) + "," + str(self.x) + ")" | class Cursorposition:
def __init__(self, y, x):
self.y = y
self.x = x
def __str__(self):
return '(' + str(self.y + 1) + ',' + str(self.x + 1) + ')'
def __repr__(self):
return '(' + str(self.y) + ',' + str(self.x) + ')' |
N = int(input())
M = int(input())
res = list()
for x in range(N, M+1):
cnt = 0
if x > 1:
for i in range(2, x):
if x % i == 0:
cnt += 1
break
if cnt == 0:
res.append(x)
if len(res) > 0:
print(sum(res))
print(min(res))
else:
print(-1)
| n = int(input())
m = int(input())
res = list()
for x in range(N, M + 1):
cnt = 0
if x > 1:
for i in range(2, x):
if x % i == 0:
cnt += 1
break
if cnt == 0:
res.append(x)
if len(res) > 0:
print(sum(res))
print(min(res))
else:
print(-1) |
# Application settings
# Flask settings
DEBUG = False
# Flask-restplus settings
RESTPLUS_MASK_SWAGGER = False
SWAGGER_UI_DOC_EXPANSION = 'none'
# API metadata
API_TITLE = 'MAX Breast Cancer Mitosis Detector'
API_DESC = 'Predict the probability of the input image containing mitosis.'
API_VERSION = '0.1'
# default model
MODEL_NAME = 'MAX Breast Cancer Mitosis Detector'
DEFAULT_MODEL_PATH = 'assets/deep_histopath_model.hdf5'
MODEL_LICENSE = "Custom" # TODO - what are we going to release this as?
MODEL_META_DATA = {
'id': '{}'.format(MODEL_NAME.lower()),
'name': '{} Keras Model'.format(MODEL_NAME),
'description': '{} Keras model trained on TUPAC16 data to detect mitosis'.format(MODEL_NAME),
'type': 'image_classification',
'license': '{}'.format(MODEL_LICENSE)
}
| debug = False
restplus_mask_swagger = False
swagger_ui_doc_expansion = 'none'
api_title = 'MAX Breast Cancer Mitosis Detector'
api_desc = 'Predict the probability of the input image containing mitosis.'
api_version = '0.1'
model_name = 'MAX Breast Cancer Mitosis Detector'
default_model_path = 'assets/deep_histopath_model.hdf5'
model_license = 'Custom'
model_meta_data = {'id': '{}'.format(MODEL_NAME.lower()), 'name': '{} Keras Model'.format(MODEL_NAME), 'description': '{} Keras model trained on TUPAC16 data to detect mitosis'.format(MODEL_NAME), 'type': 'image_classification', 'license': '{}'.format(MODEL_LICENSE)} |
#
# @lc app=leetcode id=1431 lang=python3
#
# [1431] Kids With the Greatest Number of Candies
#
# @lc code=start
class Solution:
def kidsWithCandies(self, candies: List[int], extra_candies: int) -> List[bool]:
max_candies = max(candies)
return [i + extra_candies >= max_candies for i in candies]
# @lc code=end
| class Solution:
def kids_with_candies(self, candies: List[int], extra_candies: int) -> List[bool]:
max_candies = max(candies)
return [i + extra_candies >= max_candies for i in candies] |
def repeated_n_times(nums):
# nums.length == 2 * n
n = len(nums) // 2
for num in nums:
if nums.count(num) == n:
return num
print(repeated_n_times([1, 2, 3, 3]))
print(repeated_n_times([2, 1, 2, 5, 3, 2]))
print(repeated_n_times([5, 1, 5, 2, 5, 3, 5, 4]))
| def repeated_n_times(nums):
n = len(nums) // 2
for num in nums:
if nums.count(num) == n:
return num
print(repeated_n_times([1, 2, 3, 3]))
print(repeated_n_times([2, 1, 2, 5, 3, 2]))
print(repeated_n_times([5, 1, 5, 2, 5, 3, 5, 4])) |
# (C) Datadog, Inc. 2020-present
# All rights reserved
# Licensed under a 3-clause BSD style license (see LICENSE)
# See:
# https://docs.microsoft.com/en-us/windows/win32/eventlog/event-types
# https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-reporteventa#parameters
# https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-even/1ed850f9-a1fe-4567-a371-02683c6ed3cb
#
# However, event viewer & the C api do not show the constants from above, but rather return these:
# https://docs.microsoft.com/en-us/windows/win32/wes/eventmanifestschema-leveltype-complextype#remarks
EVENT_TYPES = {
'success': 4,
'error': 2,
'warning': 3,
'information': 4,
'success audit': 4,
'failure audit': 2,
}
| event_types = {'success': 4, 'error': 2, 'warning': 3, 'information': 4, 'success audit': 4, 'failure audit': 2} |
@outputSchema('vals: {(val:chararray)}')
def convert(the_input):
# This converts the indeterminate number of vals into a bag.
out = []
for map in the_input:
out.append(map)
return out
| @output_schema('vals: {(val:chararray)}')
def convert(the_input):
out = []
for map in the_input:
out.append(map)
return out |
class Solution:
def recurse(self, n, stack, cur_open) :
if n == 0 :
self.ans.append(stack+')'*cur_open)
return
for i in range(cur_open+1) :
self.recurse(n-1, stack+(')'*i)+'(', cur_open-i+1)
# @param A : integer
# @return a list of strings
def generateParenthesis(self, A):
if A <= 0 :
return []
self.ans = []
self.recurse(A, "", 0)
return self.ans
| class Solution:
def recurse(self, n, stack, cur_open):
if n == 0:
self.ans.append(stack + ')' * cur_open)
return
for i in range(cur_open + 1):
self.recurse(n - 1, stack + ')' * i + '(', cur_open - i + 1)
def generate_parenthesis(self, A):
if A <= 0:
return []
self.ans = []
self.recurse(A, '', 0)
return self.ans |
class Solution:
def rangeBitwiseAnd(self, left: int, right: int) -> int:
i = 0 # how many bit right shifted
while left != right:
left >>= 1
right >>= 1
i += 1
return left << i
# TESTS
for left, right, expected in [
(5, 7, 4),
(0, 1, 0),
(26, 30, 24),
]:
sol = Solution()
actual = sol.rangeBitwiseAnd(left, right)
print("Bitwise AND of all numbers in range", f"[{left}, {right}] ->", actual)
assert actual == expected
| class Solution:
def range_bitwise_and(self, left: int, right: int) -> int:
i = 0
while left != right:
left >>= 1
right >>= 1
i += 1
return left << i
for (left, right, expected) in [(5, 7, 4), (0, 1, 0), (26, 30, 24)]:
sol = solution()
actual = sol.rangeBitwiseAnd(left, right)
print('Bitwise AND of all numbers in range', f'[{left}, {right}] ->', actual)
assert actual == expected |
# AUTOGENERATED BY NBDEV! DO NOT EDIT!
__all__ = ["index", "modules", "custom_doc_links", "git_url"]
index = {"plot_sequence": "10_core_overview.ipynb",
"plot_sequence_1d": "10_core_overview.ipynb",
"get_alphabet": "11_core_elements.ipynb",
"get_element_counts": "11_core_elements.ipynb",
"get_first_positions": "11_core_elements.ipynb",
"get_element_frequency": "11_core_elements.ipynb",
"plot_element_counts": "11_core_elements.ipynb",
"get_subsequences": "12_core_subsequences.ipynb",
"get_ndistinct_subsequences": "12_core_subsequences.ipynb",
"get_unique_ngrams": "13_core_ngrams.ipynb",
"get_all_ngrams": "13_core_ngrams.ipynb",
"get_ngram_universe": "13_core_ngrams.ipynb",
"get_ngram_counts": "13_core_ngrams.ipynb",
"plot_ngram_counts": "13_core_ngrams.ipynb",
"get_transitions": "14_core_transitions.ipynb",
"get_ntransitions": "14_core_transitions.ipynb",
"get_transition_matrix": "14_core_transitions.ipynb",
"plot_transition_matrix": "14_core_transitions.ipynb",
"get_spells": "15_core_spells.ipynb",
"get_longest_spell": "15_core_spells.ipynb",
"get_spell_durations": "15_core_spells.ipynb",
"is_recurrent": "16_core_statistics.ipynb",
"get_entropy": "16_core_statistics.ipynb",
"get_turbulence": "16_core_statistics.ipynb",
"get_complexity": "16_core_statistics.ipynb",
"get_routine": "16_core_statistics.ipynb",
"plot_sequences": "20_multi_overview.ipynb",
"are_recurrent": "21_multi_attributes.ipynb",
"get_summary_statistic": "21_multi_attributes.ipynb",
"get_routine_scores": "21_multi_attributes.ipynb",
"get_synchrony": "21_multi_attributes.ipynb",
"get_sequence_frequencies": "21_multi_attributes.ipynb",
"get_motif": "22_multi_derivatives.ipynb",
"get_modal_state": "22_multi_derivatives.ipynb",
"get_optimal_distance": "23_multi_edit_distances.ipynb",
"get_levenshtein_distance": "23_multi_edit_distances.ipynb",
"get_hamming_distance": "23_multi_edit_distances.ipynb",
"get_combinatorial_distance": "24_multi_nonalignment.ipynb"}
modules = ["core/__init__.py",
"core/elements.py",
"core/subsequences.py",
"core/ngrams.py",
"core/transitions.py",
"core/spells.py",
"core/statistics.py",
"multi/__init__.py",
"multi/attributes.py",
"multi/derivatives.py",
"multi/editdistances.py",
"multi/nonalignment.py"]
doc_url = "https://pysan-dev.github.io/pysan/"
git_url = "https://github.com/pysan-dev/pysan/tree/master/"
def custom_doc_links(name): return None
| __all__ = ['index', 'modules', 'custom_doc_links', 'git_url']
index = {'plot_sequence': '10_core_overview.ipynb', 'plot_sequence_1d': '10_core_overview.ipynb', 'get_alphabet': '11_core_elements.ipynb', 'get_element_counts': '11_core_elements.ipynb', 'get_first_positions': '11_core_elements.ipynb', 'get_element_frequency': '11_core_elements.ipynb', 'plot_element_counts': '11_core_elements.ipynb', 'get_subsequences': '12_core_subsequences.ipynb', 'get_ndistinct_subsequences': '12_core_subsequences.ipynb', 'get_unique_ngrams': '13_core_ngrams.ipynb', 'get_all_ngrams': '13_core_ngrams.ipynb', 'get_ngram_universe': '13_core_ngrams.ipynb', 'get_ngram_counts': '13_core_ngrams.ipynb', 'plot_ngram_counts': '13_core_ngrams.ipynb', 'get_transitions': '14_core_transitions.ipynb', 'get_ntransitions': '14_core_transitions.ipynb', 'get_transition_matrix': '14_core_transitions.ipynb', 'plot_transition_matrix': '14_core_transitions.ipynb', 'get_spells': '15_core_spells.ipynb', 'get_longest_spell': '15_core_spells.ipynb', 'get_spell_durations': '15_core_spells.ipynb', 'is_recurrent': '16_core_statistics.ipynb', 'get_entropy': '16_core_statistics.ipynb', 'get_turbulence': '16_core_statistics.ipynb', 'get_complexity': '16_core_statistics.ipynb', 'get_routine': '16_core_statistics.ipynb', 'plot_sequences': '20_multi_overview.ipynb', 'are_recurrent': '21_multi_attributes.ipynb', 'get_summary_statistic': '21_multi_attributes.ipynb', 'get_routine_scores': '21_multi_attributes.ipynb', 'get_synchrony': '21_multi_attributes.ipynb', 'get_sequence_frequencies': '21_multi_attributes.ipynb', 'get_motif': '22_multi_derivatives.ipynb', 'get_modal_state': '22_multi_derivatives.ipynb', 'get_optimal_distance': '23_multi_edit_distances.ipynb', 'get_levenshtein_distance': '23_multi_edit_distances.ipynb', 'get_hamming_distance': '23_multi_edit_distances.ipynb', 'get_combinatorial_distance': '24_multi_nonalignment.ipynb'}
modules = ['core/__init__.py', 'core/elements.py', 'core/subsequences.py', 'core/ngrams.py', 'core/transitions.py', 'core/spells.py', 'core/statistics.py', 'multi/__init__.py', 'multi/attributes.py', 'multi/derivatives.py', 'multi/editdistances.py', 'multi/nonalignment.py']
doc_url = 'https://pysan-dev.github.io/pysan/'
git_url = 'https://github.com/pysan-dev/pysan/tree/master/'
def custom_doc_links(name):
return None |
print("Challenges 38: WAF program to print the number of prime numbers which are less than or equal to a given integer.")
n = 7
nums = range(2, n+1)
num_of_divisors = 0
counter = 0
for x in nums:
for i in range(1, x+1):
if x % i == 0:
num_of_divisors += 1
if num_of_divisors == 2:
counter += 1
num_of_divisors = 0
print(counter) | print('Challenges 38: WAF program to print the number of prime numbers which are less than or equal to a given integer.')
n = 7
nums = range(2, n + 1)
num_of_divisors = 0
counter = 0
for x in nums:
for i in range(1, x + 1):
if x % i == 0:
num_of_divisors += 1
if num_of_divisors == 2:
counter += 1
num_of_divisors = 0
print(counter) |
def n_to_triangularno_stevilo(n):
stevilo = 0
a = 1
for i in range(n):
stevilo += a
a += 1
return stevilo
def prvo_triangularno_stevilo_Z_vec_kot_k_delitelji(k):
j = 0
n = 0
stevilo_deliteljev = 0
while stevilo_deliteljev <= k:
stevilo_deliteljev = 0
j += 1
n = n_to_triangularno_stevilo(j)
i = 1
while i <= n**0.5:
if n % i == 0:
stevilo_deliteljev += 1
i += 1
stevilo_deliteljev *= 2
return n
print(prvo_triangularno_stevilo_Z_vec_kot_k_delitelji(500)) | def n_to_triangularno_stevilo(n):
stevilo = 0
a = 1
for i in range(n):
stevilo += a
a += 1
return stevilo
def prvo_triangularno_stevilo_z_vec_kot_k_delitelji(k):
j = 0
n = 0
stevilo_deliteljev = 0
while stevilo_deliteljev <= k:
stevilo_deliteljev = 0
j += 1
n = n_to_triangularno_stevilo(j)
i = 1
while i <= n ** 0.5:
if n % i == 0:
stevilo_deliteljev += 1
i += 1
stevilo_deliteljev *= 2
return n
print(prvo_triangularno_stevilo_z_vec_kot_k_delitelji(500)) |
# mock.py
# Test tools for mocking and patching.
# Copyright (C) 2007 Michael Foord
# E-mail: fuzzyman AT voidspace DOT org DOT uk
# mock 0.3.1
# http://www.voidspace.org.uk/python/mock.html
# Released subject to the BSD License
# Please see http://www.voidspace.org.uk/python/license.shtml
# Scripts maintained at http://www.voidspace.org.uk/python/index.shtml
# Comments, suggestions and bug reports welcome.
__all__ = (
'Mock',
'patch',
'sentinel',
'__version__'
)
__version__ = '0.3.1'
class Mock(object):
def __init__(self, methods=None, spec=None, name=None, parent=None):
self._parent = parent
self._name = name
if spec is not None and methods is None:
methods = [member for member in dir(spec) if not
(member.startswith('__') and member.endswith('__'))]
self._methods = methods
self.reset()
def reset(self):
self.called = False
self.return_value = None
self.call_args = None
self.call_count = 0
self.call_args_list = []
self.method_calls = []
self._children = {}
def __call__(self, *args, **keywargs):
self.called = True
self.call_count += 1
self.call_args = (args, keywargs)
self.call_args_list.append((args, keywargs))
parent = self._parent
name = self._name
while parent is not None:
parent.method_calls.append((name, args, keywargs))
if parent._parent is None:
break
name = parent._name + '.' + name
parent = parent._parent
return self.return_value
def __getattr__(self, name):
if self._methods is not None and name not in self._methods:
raise AttributeError("object has no attribute '%s'" % name)
if name not in self._children:
self._children[name] = Mock(parent=self, name=name)
return self._children[name]
def _importer(name):
mod = __import__(name)
components = name.split('.')
for comp in components[1:]:
mod = getattr(mod, comp)
return mod
def patch(target, attribute, new=None):
if isinstance(target, basestring):
target = _importer(target)
def patcher(func):
original = getattr(target, attribute)
if hasattr(func, 'restore_list'):
func.restore_list.append((target, attribute, original))
func.patch_list.append((target, attribute, new))
return func
func.restore_list = [(target, attribute, original)]
func.patch_list = [(target, attribute, new)]
def patched(*args, **keywargs):
for target, attribute, new in func.patch_list:
if new is None:
new = Mock()
args += (new,)
setattr(target, attribute, new)
try:
return func(*args, **keywargs)
finally:
for target, attribute, original in func.restore_list:
setattr(target, attribute, original)
patched.__name__ = func.__name__
return patched
return patcher
class SentinelObject(object):
def __init__(self, name):
self.name = name
def __repr__(self):
return '<SentinelObject "%s">' % self.name
class Sentinel(object):
def __init__(self):
self._sentinels = {}
def __getattr__(self, name):
return self._sentinels.setdefault(name, SentinelObject(name))
sentinel = Sentinel()
| __all__ = ('Mock', 'patch', 'sentinel', '__version__')
__version__ = '0.3.1'
class Mock(object):
def __init__(self, methods=None, spec=None, name=None, parent=None):
self._parent = parent
self._name = name
if spec is not None and methods is None:
methods = [member for member in dir(spec) if not (member.startswith('__') and member.endswith('__'))]
self._methods = methods
self.reset()
def reset(self):
self.called = False
self.return_value = None
self.call_args = None
self.call_count = 0
self.call_args_list = []
self.method_calls = []
self._children = {}
def __call__(self, *args, **keywargs):
self.called = True
self.call_count += 1
self.call_args = (args, keywargs)
self.call_args_list.append((args, keywargs))
parent = self._parent
name = self._name
while parent is not None:
parent.method_calls.append((name, args, keywargs))
if parent._parent is None:
break
name = parent._name + '.' + name
parent = parent._parent
return self.return_value
def __getattr__(self, name):
if self._methods is not None and name not in self._methods:
raise attribute_error("object has no attribute '%s'" % name)
if name not in self._children:
self._children[name] = mock(parent=self, name=name)
return self._children[name]
def _importer(name):
mod = __import__(name)
components = name.split('.')
for comp in components[1:]:
mod = getattr(mod, comp)
return mod
def patch(target, attribute, new=None):
if isinstance(target, basestring):
target = _importer(target)
def patcher(func):
original = getattr(target, attribute)
if hasattr(func, 'restore_list'):
func.restore_list.append((target, attribute, original))
func.patch_list.append((target, attribute, new))
return func
func.restore_list = [(target, attribute, original)]
func.patch_list = [(target, attribute, new)]
def patched(*args, **keywargs):
for (target, attribute, new) in func.patch_list:
if new is None:
new = mock()
args += (new,)
setattr(target, attribute, new)
try:
return func(*args, **keywargs)
finally:
for (target, attribute, original) in func.restore_list:
setattr(target, attribute, original)
patched.__name__ = func.__name__
return patched
return patcher
class Sentinelobject(object):
def __init__(self, name):
self.name = name
def __repr__(self):
return '<SentinelObject "%s">' % self.name
class Sentinel(object):
def __init__(self):
self._sentinels = {}
def __getattr__(self, name):
return self._sentinels.setdefault(name, sentinel_object(name))
sentinel = sentinel() |
a = 10
def f():
global a
a = 100
def ober():
b = 100
def unter():
nonlocal b
b = 1000
def unterunter():
nonlocal b
b = 10000
unterunter()
unter()
print(b)
ober()
def xyz(x):
return x * x
z = lambda x: x * x
print(z(3))
myList = [10,20,30,40,50]
def s(x):
return -x
myList = sorted(myList,key= lambda x:-x)
print(myList)
| a = 10
def f():
global a
a = 100
def ober():
b = 100
def unter():
nonlocal b
b = 1000
def unterunter():
nonlocal b
b = 10000
unterunter()
unter()
print(b)
ober()
def xyz(x):
return x * x
z = lambda x: x * x
print(z(3))
my_list = [10, 20, 30, 40, 50]
def s(x):
return -x
my_list = sorted(myList, key=lambda x: -x)
print(myList) |
# Responsible for giving targets to the Quadrocopter control lopp
class HighLevelLogic:
def __init__(self, control_loop, state_provider):
self.controllers
self.flightmode = FlightModeLanded()
self.control_loop = control_loop
state_provider.registerListener(self)
# Tells all systems that time has passed.
# timeDelta is the time since the last update call in seconds
def update(self, timedelta):
# check if we need to change the flight mode
newmode = self.flightmode.update(timedelta)
if newmode.name != self.flightmode.name:
print("HighLevelLogic: changing FlightMode from %s to %s" % (self.flightmode.name, newmode.name))
self.flightmode = newmode
# TODO: do we need to update the control loop?
# will be called by State Provider whenever a new sensor reading is ready
# timeDelta is the time since the last newState call in seconds
def new_sensor_reading(self, timedelta, state):
target_state = self.flightmode.calculate_target_state(state)
self.control_loop.setTargetState(target_state)
class FlightMode:
def __init__(self):
self.timeInState = 0
def update(self, time_delta):
self.timeInState += time_delta
return self._update(time_delta)
class FlightModeLanded(FlightMode):
def __init__(self):
self.name = "FlightModeLanded"
def _update(self, timedelta):
if self.timeInState > 2.0:
return FlightModeRiseTo1m()
return self
def calculate_target_state(self, current_state):
# no need to react to anything
return self
class FlightModeRiseTo1m(FlightMode):
def __init__(self):
# TODO: start motors
self.name = "FlightModeRiseTo1m"
def _update(self, timedelta):
if self.timeInState > 3.0:
return FlightModeHover()
return self
def calculate_target_state(self, current_state):
# no need to react to anything
return self
class FlightModeHover(FlightMode):
def __init__(self):
self.name = "FlightModeHover"
def _update(self, timedelta):
if self.timeInState > 5.0:
return FlightModeGoDown()
return self
def calculate_target_state(self, current_state):
# no need to react to anything
return self
class FlightModeGoDown(FlightMode):
def __init__(self):
self.name = "FlightModeGoDown"
def _update(self, timedelta):
if self.timeInState > 7.0:
return FlightModeLanded()
return self
def calculate_target_state(self, current_state):
# no need to react to anything
return self
| class Highlevellogic:
def __init__(self, control_loop, state_provider):
self.controllers
self.flightmode = flight_mode_landed()
self.control_loop = control_loop
state_provider.registerListener(self)
def update(self, timedelta):
newmode = self.flightmode.update(timedelta)
if newmode.name != self.flightmode.name:
print('HighLevelLogic: changing FlightMode from %s to %s' % (self.flightmode.name, newmode.name))
self.flightmode = newmode
def new_sensor_reading(self, timedelta, state):
target_state = self.flightmode.calculate_target_state(state)
self.control_loop.setTargetState(target_state)
class Flightmode:
def __init__(self):
self.timeInState = 0
def update(self, time_delta):
self.timeInState += time_delta
return self._update(time_delta)
class Flightmodelanded(FlightMode):
def __init__(self):
self.name = 'FlightModeLanded'
def _update(self, timedelta):
if self.timeInState > 2.0:
return flight_mode_rise_to1m()
return self
def calculate_target_state(self, current_state):
return self
class Flightmoderiseto1M(FlightMode):
def __init__(self):
self.name = 'FlightModeRiseTo1m'
def _update(self, timedelta):
if self.timeInState > 3.0:
return flight_mode_hover()
return self
def calculate_target_state(self, current_state):
return self
class Flightmodehover(FlightMode):
def __init__(self):
self.name = 'FlightModeHover'
def _update(self, timedelta):
if self.timeInState > 5.0:
return flight_mode_go_down()
return self
def calculate_target_state(self, current_state):
return self
class Flightmodegodown(FlightMode):
def __init__(self):
self.name = 'FlightModeGoDown'
def _update(self, timedelta):
if self.timeInState > 7.0:
return flight_mode_landed()
return self
def calculate_target_state(self, current_state):
return self |
keyb = '`1234567890-=QWERTYUIOP[]\\ASDFGHJKL;\'ZXCVBNM,./'
while True:
try:
frase = input()
decod = ''
for c in frase:
if c == ' ':
decod += c
else:
decod += keyb[keyb.index(c)-1]
print(decod)
except EOFError:
break | keyb = "`1234567890-=QWERTYUIOP[]\\ASDFGHJKL;'ZXCVBNM,./"
while True:
try:
frase = input()
decod = ''
for c in frase:
if c == ' ':
decod += c
else:
decod += keyb[keyb.index(c) - 1]
print(decod)
except EOFError:
break |
def fun(n):
fact = 1
for i in range(1,n+1):
fact = fact * i
return fact
n= int(input())
k = fun(n)
j = fun(n//2)
l = j//(n//2)
print(((k//(j**2))*(l**2))//2) | def fun(n):
fact = 1
for i in range(1, n + 1):
fact = fact * i
return fact
n = int(input())
k = fun(n)
j = fun(n // 2)
l = j // (n // 2)
print(k // j ** 2 * l ** 2 // 2) |
palavras = ("Aprender", "Programar", "Linguagem", "Python", "Curso", "Gratis", "Estudar", "Praticar", "Trabalhar ", "Mercado", "Programar", "Futuro")
for vol in palavras:
print(f"\nNa palavra {vol.upper()} temos", end=" ")
for letra in vol:
if letra.lower() in "aeiou":
print(letra, end=" ")
| palavras = ('Aprender', 'Programar', 'Linguagem', 'Python', 'Curso', 'Gratis', 'Estudar', 'Praticar', 'Trabalhar ', 'Mercado', 'Programar', 'Futuro')
for vol in palavras:
print(f'\nNa palavra {vol.upper()} temos', end=' ')
for letra in vol:
if letra.lower() in 'aeiou':
print(letra, end=' ') |
# a = int(input('Numerador: ')) # se tentarmos colocar uma letra aqui vai da erro de valor ValueError
# b = int(input('Denominador: ')) # se colocar 0 aqui vai acontecer uma excecao ZeroDivisionError - divisao por zero
# r = a/b
# print(f'A divisao de {a} por {b} vale = {r}')
# para tratar erros a gente usa o comando try, except, else
try: # o python vai tentar realizar este comando
a = int(input('Numerador: '))
b = int(input('Denominador: '))
r = a / b # caso aconteca qualquer erro de valor ou divisao por 0, etc.. Ele vai pular para o comando except
except Exception as erro: # poderia colocar apenas except: , porem criou uma variavel para demonstrar o erro que ta aparecendo
print(f'Erro encontrado = {erro.__class__}') # mostrar a classe do erro
else: # Se a operacao de try der certo ele vai realizar o comando else tambem, comando opcional
print(f'O resultado foi = {r}')
finally:
print('Volte sempre! Obrigado!') # o finally vai acontecer sempre independente de o try der certo ou errado, comando opcional
| try:
a = int(input('Numerador: '))
b = int(input('Denominador: '))
r = a / b
except Exception as erro:
print(f'Erro encontrado = {erro.__class__}')
else:
print(f'O resultado foi = {r}')
finally:
print('Volte sempre! Obrigado!') |
class Solution:
def numTilings(self, n: int) -> int:
mod = 1_000_000_000 + 7
f = [[0 for i in range(1 << 2)] for i in range(2)]
f[0][(1 << 2) - 1] = 1
o0 = 0
o1 = 1
for i in range(n):
f[o1][0] = f[o0][(1 << 2) - 1]
f[o1][1] = (f[o0][0] + f[o0][2]) % mod
f[o1][2] = (f[o0][0] + f[o0][1]) % mod
f[o1][(1 << 2) - 1] = (f[o0][0] + f[o0][1] + f[o0][2] + f[o0][(1 << 2) - 1]) % mod
o0 = o1
o1 ^= 1
return f[o0][(1 << 2) - 1] | class Solution:
def num_tilings(self, n: int) -> int:
mod = 1000000000 + 7
f = [[0 for i in range(1 << 2)] for i in range(2)]
f[0][(1 << 2) - 1] = 1
o0 = 0
o1 = 1
for i in range(n):
f[o1][0] = f[o0][(1 << 2) - 1]
f[o1][1] = (f[o0][0] + f[o0][2]) % mod
f[o1][2] = (f[o0][0] + f[o0][1]) % mod
f[o1][(1 << 2) - 1] = (f[o0][0] + f[o0][1] + f[o0][2] + f[o0][(1 << 2) - 1]) % mod
o0 = o1
o1 ^= 1
return f[o0][(1 << 2) - 1] |
def escreva(texto):
tam = len(texto) + 4
print('~' * tam)
print(f' {texto}')
print('~' * tam)
escreva(str(input('Digite um texto: '))) | def escreva(texto):
tam = len(texto) + 4
print('~' * tam)
print(f' {texto}')
print('~' * tam)
escreva(str(input('Digite um texto: '))) |
# Definition for a binary tree node
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
# normal recursive solution
# this recursive solution will call more methods which cause Time Limit Exceed
class Solution1:
# @param {TreeNode} root
# @return {integer}
def maxDepth(self, root):
if root is None:
return 0
if self.left is None and self.right is None:
return 1
elif self.left is not None and self.right is not None:
return self.maxDepth(self.left) + 1 if self.maxDepth(self.left) > \
self.maxDepth(self.right) else self.maxDepth(self.right) + 1
elif self.left is not None:
return self.maxDepth(self.left) + 1
elif self.rigith is not None:
return self.maxDepth(self.right) + 1
# recursive solution with only two methods call
# This is a cleaner solution with only two methods
# This is passed in the leetcode
class Solution2:
# @param {TreeNode} root
# @return {integer}
def maxDepth(self, root):
if root is None:
return 0
leftDepth = self.maxDepth(root.left)
rightDepth = self.maxDepth(root.right)
return leftDepth + 1 if leftDepth > rightDepth else rightDepth + 1
| class Solution1:
def max_depth(self, root):
if root is None:
return 0
if self.left is None and self.right is None:
return 1
elif self.left is not None and self.right is not None:
return self.maxDepth(self.left) + 1 if self.maxDepth(self.left) > self.maxDepth(self.right) else self.maxDepth(self.right) + 1
elif self.left is not None:
return self.maxDepth(self.left) + 1
elif self.rigith is not None:
return self.maxDepth(self.right) + 1
class Solution2:
def max_depth(self, root):
if root is None:
return 0
left_depth = self.maxDepth(root.left)
right_depth = self.maxDepth(root.right)
return leftDepth + 1 if leftDepth > rightDepth else rightDepth + 1 |
url = 'http://127.0.0.1:3001/post'
dapr_url = "http://localhost:3500/v1.0/invoke/dp-61c2cb20562850d49d47d1c7-executorapp/method/health"
# dapr_url = "http://localhost:3500/v1.0/healthz"
# res = requests.post(dapr_url, json.dumps({'a': random.random() * 1000}))
# res = requests.get(dapr_url, )
#
#
#
# print(res.text)
# print(res.status_code)
# INFO[0000] *----/v1.0/invoke/{id}/method/{method:*}
# INFO[0000] GET----/v1.0/state/{storeName}/{key}
# INFO[0000] DELETE----/v1.0/state/{storeName}/{key}
# INFO[0000] PUT----/v1.0/state/{storeName}
# INFO[0000] PUT----/v1.0/state/{storeName}/bulk
# INFO[0000] PUT----/v1.0/state/{storeName}/transaction
# INFO[0000] POST----/v1.0/state/{storeName}
# INFO[0000] POST----/v1.0/state/{storeName}/bulk
# INFO[0000] POST----/v1.0/state/{storeName}/transaction
# INFO[0000] POST----/v1.0-alpha1/state/{storeName}/query
# INFO[0000] PUT----/v1.0-alpha1/state/{storeName}/query
# INFO[0000] GET----/v1.0/secrets/{secretStoreName}/bulk
# INFO[0000] GET----/v1.0/secrets/{secretStoreName}/{key}
# INFO[0000] POST----/v1.0/publish/{pubsubname}/{topic:*}
# INFO[0000] PUT----/v1.0/publish/{pubsubname}/{topic:*}
# INFO[0000] POST----/v1.0/bindings/{name}
# INFO[0000] PUT----/v1.0/bindings/{name}
# INFO[0000] GET----/v1.0/healthz
# INFO[0000] GET----/v1.0/healthz/outbound
# INFO[0000] GET----/v1.0/actors/{actorType}/{actorId}/method/{method}
# INFO[0000] GET----/v1.0/actors/{actorType}/{actorId}/state/{key}
# INFO[0000] GET----/v1.0/actors/{actorType}/{actorId}/reminders/{name}
# INFO[0000] POST----/v1.0/actors/{actorType}/{actorId}/state
# INFO[0000] POST----/v1.0/actors/{actorType}/{actorId}/method/{method}
# INFO[0000] POST----/v1.0/actors/{actorType}/{actorId}/reminders/{name}
# INFO[0000] POST----/v1.0/actors/{actorType}/{actorId}/timers/{name}
# INFO[0000] PUT----/v1.0/actors/{actorType}/{actorId}/state
# INFO[0000] PUT----/v1.0/actors/{actorType}/{actorId}/method/{method}
# INFO[0000] PUT----/v1.0/actors/{actorType}/{actorId}/reminders/{name}
# INFO[0000] PUT----/v1.0/actors/{actorType}/{actorId}/timers/{name}
# INFO[0000] DELETE----/v1.0/actors/{actorType}/{actorId}/method/{method}
# INFO[0000] DELETE----/v1.0/actors/{actorType}/{actorId}/reminders/{name}
# INFO[0000] DELETE----/v1.0/actors/{actorType}/{actorId}/timers/{name}
# INFO[0000] *----/{method:*}
# INFO[0000] GET----/v1.0/metadata
# INFO[0000] PUT----/v1.0/metadata/{key}
# INFO[0000] POST----/v1.0/shutdown
| url = 'http://127.0.0.1:3001/post'
dapr_url = 'http://localhost:3500/v1.0/invoke/dp-61c2cb20562850d49d47d1c7-executorapp/method/health' |
#!/usr/bin/env python
# Copyright Contributors to the Open Shading Language project.
# SPDX-License-Identifier: BSD-3-Clause
# https://github.com/AcademySoftwareFoundation/OpenShadingLanguage
command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_v_floatarray.tif test_splineinverse_c_float_v_floatarray")
command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_u_floatarray.tif test_splineinverse_c_float_u_floatarray")
command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_c_floatarray.tif test_splineinverse_c_float_c_floatarray")
outputs.append ("splineinverse_c_float_v_floatarray.tif")
outputs.append ("splineinverse_c_float_u_floatarray.tif")
outputs.append ("splineinverse_c_float_c_floatarray.tif")
command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_v_floatarray.tif test_splineinverse_u_float_v_floatarray")
command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_u_floatarray.tif test_splineinverse_u_float_u_floatarray")
command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_c_floatarray.tif test_splineinverse_u_float_c_floatarray")
outputs.append ("splineinverse_u_float_v_floatarray.tif")
outputs.append ("splineinverse_u_float_u_floatarray.tif")
outputs.append ("splineinverse_u_float_c_floatarray.tif")
command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_v_floatarray.tif test_splineinverse_v_float_v_floatarray")
command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_u_floatarray.tif test_splineinverse_v_float_u_floatarray")
command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_c_floatarray.tif test_splineinverse_v_float_c_floatarray")
outputs.append ("splineinverse_v_float_v_floatarray.tif")
outputs.append ("splineinverse_v_float_u_floatarray.tif")
outputs.append ("splineinverse_v_float_c_floatarray.tif")
command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_v_floatarray.tif test_deriv_splineinverse_c_float_v_floatarray")
command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_u_floatarray.tif test_deriv_splineinverse_c_float_u_floatarray")
command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_c_floatarray.tif test_deriv_splineinverse_c_float_c_floatarray")
outputs.append ("deriv_splineinverse_c_float_v_floatarray.tif")
outputs.append ("deriv_splineinverse_c_float_u_floatarray.tif")
outputs.append ("deriv_splineinverse_c_float_c_floatarray.tif")
command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_v_floatarray.tif test_deriv_splineinverse_u_float_v_floatarray")
command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_u_floatarray.tif test_deriv_splineinverse_u_float_u_floatarray")
command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_c_floatarray.tif test_deriv_splineinverse_u_float_c_floatarray")
outputs.append ("deriv_splineinverse_u_float_v_floatarray.tif")
outputs.append ("deriv_splineinverse_u_float_u_floatarray.tif")
outputs.append ("deriv_splineinverse_u_float_c_floatarray.tif")
command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_v_floatarray.tif test_deriv_splineinverse_v_float_v_floatarray")
command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_u_floatarray.tif test_deriv_splineinverse_v_float_u_floatarray")
command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_c_floatarray.tif test_deriv_splineinverse_v_float_c_floatarray")
outputs.append ("deriv_splineinverse_v_float_v_floatarray.tif")
outputs.append ("deriv_splineinverse_v_float_u_floatarray.tif")
outputs.append ("deriv_splineinverse_v_float_c_floatarray.tif")
# expect a few LSB failures
failthresh = 0.008
failpercent = 3
| command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_v_floatarray.tif test_splineinverse_c_float_v_floatarray')
command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_u_floatarray.tif test_splineinverse_c_float_u_floatarray')
command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_c_floatarray.tif test_splineinverse_c_float_c_floatarray')
outputs.append('splineinverse_c_float_v_floatarray.tif')
outputs.append('splineinverse_c_float_u_floatarray.tif')
outputs.append('splineinverse_c_float_c_floatarray.tif')
command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_v_floatarray.tif test_splineinverse_u_float_v_floatarray')
command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_u_floatarray.tif test_splineinverse_u_float_u_floatarray')
command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_c_floatarray.tif test_splineinverse_u_float_c_floatarray')
outputs.append('splineinverse_u_float_v_floatarray.tif')
outputs.append('splineinverse_u_float_u_floatarray.tif')
outputs.append('splineinverse_u_float_c_floatarray.tif')
command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_v_floatarray.tif test_splineinverse_v_float_v_floatarray')
command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_u_floatarray.tif test_splineinverse_v_float_u_floatarray')
command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_c_floatarray.tif test_splineinverse_v_float_c_floatarray')
outputs.append('splineinverse_v_float_v_floatarray.tif')
outputs.append('splineinverse_v_float_u_floatarray.tif')
outputs.append('splineinverse_v_float_c_floatarray.tif')
command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_v_floatarray.tif test_deriv_splineinverse_c_float_v_floatarray')
command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_u_floatarray.tif test_deriv_splineinverse_c_float_u_floatarray')
command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_c_floatarray.tif test_deriv_splineinverse_c_float_c_floatarray')
outputs.append('deriv_splineinverse_c_float_v_floatarray.tif')
outputs.append('deriv_splineinverse_c_float_u_floatarray.tif')
outputs.append('deriv_splineinverse_c_float_c_floatarray.tif')
command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_v_floatarray.tif test_deriv_splineinverse_u_float_v_floatarray')
command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_u_floatarray.tif test_deriv_splineinverse_u_float_u_floatarray')
command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_c_floatarray.tif test_deriv_splineinverse_u_float_c_floatarray')
outputs.append('deriv_splineinverse_u_float_v_floatarray.tif')
outputs.append('deriv_splineinverse_u_float_u_floatarray.tif')
outputs.append('deriv_splineinverse_u_float_c_floatarray.tif')
command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_v_floatarray.tif test_deriv_splineinverse_v_float_v_floatarray')
command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_u_floatarray.tif test_deriv_splineinverse_v_float_u_floatarray')
command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_c_floatarray.tif test_deriv_splineinverse_v_float_c_floatarray')
outputs.append('deriv_splineinverse_v_float_v_floatarray.tif')
outputs.append('deriv_splineinverse_v_float_u_floatarray.tif')
outputs.append('deriv_splineinverse_v_float_c_floatarray.tif')
failthresh = 0.008
failpercent = 3 |
'''
Example:
import dk
cfg = dk.load_config(config_path='~/donkeycar/donkeycar/parts/RLConfig.py')
print(cfg.CAMERA_RESOLUTION)
'''
MODE_COMPLEX_LANE_FOLLOW = 0
MODE_SIMPLE_LINE_FOLLOW = 1
MODE_STEER_THROTTLE = MODE_COMPLEX_LANE_FOLLOW
# MODE_STEER_THROTTLE = MODE_SIMPLE_LINE_FOLLOW
PARTIAL_NN_CNT = 45000
# SWITCH_TO_NN = 45000
# SWITCH_TO_NN = 15000
# SWITCH_TO_NN = 9000
# SWITCH_TO_NN = 6000
# SWITCH_TO_NN = 300
# SWITCH_TO_NN = 10
# SWITCH_TO_NN = 100
# SWITCH_TO_NN = 150
# SWITCH_TO_NN = 7500
# SWITCH_TO_NN = 3000
SWITCH_TO_NN = 1000
UPDATE_NN = 1000
# UPDATE_NN = 100
SAVE_NN = 1000
THROTTLE_CONSTANT = 0
# THROTTLE_CONSTANT = .3
STATE_EMERGENCY_STOP = 0
STATE_NN = 1
STATE_OPENCV = 2
STATE_MODEL_TRANSFER_STARTED = 3
STATE_MODEL_PREPARE_NN = 4
STATE_MODEL_WEIGHTS_SET = 5
STATE_PARTIAL_NN = 6
STATE_TRIAL_NN = 7
EMERGENCY_STOP = 0.000001
SIM_EMERGENCY_STOP = -1000
# DISABLE_EMERGENCY_STOP = True
DISABLE_EMERGENCY_STOP = False
# USE_COLOR = False
USE_COLOR = True
# HSV
# Note: The YELLOW/WHITE parameters are longer used and are now dynamically computed
# from simulation:
# line_color_y: [[84, 107, 148], [155, 190, 232]]
# line_color_w: [[32, 70, 101], [240, 240, 248]]
# COLOR_YELLOW = [[20, 80, 100], [35, 255, 255]]
# COLOR_YELLOW = [[20, 0, 100], [30, 255, 255]]
# COLOR_YELLOW = [[20, 40, 70], [70, 89, 95]]
COLOR_YELLOW = [[84, 107, 148], [155, 190, 232]]
# COLOR_YELLOW = 50, 75, 83
# using saturation 40 for WHITE
# COLOR_WHITE = [[0,0,255-40],[255,40,255]]
# COLOR_WHITE = [[50,0,80],[155,10,100]]
COLOR_WHITE = [[32, 70, 101], [240, 240, 248]]
# COLOR_WHITE = 72,2, 90]
TURNADJ = .02
# DESIREDPPF = 35
DESIREDPPF = 20
# MAXBATADJ = .10
# BATADJ = .001
MAXBATADJ = .000 # simulation doesn't have battery
BATADJ = .000 # simulation doesn't have battery
RL_MODEL_PATH = "~/d2/models/rlpilot"
RL_STATE_PATH = "~/d2/models/"
MAXBATCNT = 1000
# MINMINTHROT = 0.035 # for Sim
MINMINTHROT = 0.05 # for Sim
# OPTFLOWTHRESH = 0.75 # for Sim
OPTFLOWTHRESH = 0.14 # for Sim
OPTFLOWINCR = 0.01 # for Sim
# OPTFLOWINCR = 0.01 # for Sim
# MINMINTHROT = 25 # real car
# MINMINTHROT = 29 # real car
# OPTFLOWTHRESH = 0.40 # real
# OPTFLOWINCR = 0.001
# MAX_ACCEL = 10
MAX_ACCEL = 3
# CHECK_THROTTLE_THRESH = 20
CHECK_THROTTLE_THRESH = 40
MAXLANEWIDTH = 400 # should be much smaller
MIN_DIST_FROM_CENTER = 20
# client to server
MSG_NONE = -1
MSG_GET_WEIGHTS = 1
MSG_STATE_ANGLE_THROTTLE_REWARD_ROI = 2
# server to client
MSG_RESULT = 4
MSG_WEIGHTS = 5
MSG_EMERGENCY_STOP = 6
# control1 to control2
MSG_ROI = 7
# control2 to control1
MSG_ANGLE_THROTTLE_REWARD = 8
# RLPi States
RLPI_READY1 = 1
RLPI_READY2 = 2
RLPI_OPENCV = 1
RLPI_TRIAL_NN = 2
RLPI_NN = 3
# PORT_RLPI = "10.0.0.5:5557"
# PORT_RLPI = "localhost:5557"
# PORT_CONTROLPI = "localhost:5558"
PORT_RLPI = 5557
PORT_CONTROLPI = 5558
PORT_CONTROLPI2 = None
PORT_CONTROLPI2RL = None
# PORT_CONTROLPI2 = 5556
# PORT_CONTROLPI2RL = 5555
# Original reward for throttle was too high. Reduce.
# THROTTLE_INCREMENT = .4
# THROTTLE_BOOST = .1
THROTTLE_INCREMENT = .3
THROTTLE_BOOST = .05
REWARD_BATCH_MIN = 3
REWARD_BATCH_MAX = 10
REWARD_BATCH_END = 50
REWARD_BATCH_BEGIN = 500
# pass angle bin back and forth; based on 15 bins
ANGLE_INCREMENT = (1/15)
SAVE_MOVIE = False
# SAVE_MOVIE = True
TEST_TUB = "/home/ros/d2/data/tub_18_18-08-18"
MOVIE_LOC = "/tmp/movie4"
# to make movie from jpg in MOVIE_LOC use something like:
# ffmpeg -framerate 4 -i /tmp/movie4/1%03d_cam-image_array_.jpg -c:v libx264 -profile:v high -crf 20 -pix_fmt yuv420p output.mp4
# INIT_STEER_FRAMES = 25
INIT_STEER_FRAMES = 125
# For PPO
Q_LEN_THRESH = 200
Q_LEN_MAX = 250
# Almost all initial batches were under 20
Q_FIT_BATCH_LEN_THRESH = 50
# Very short batches to compute rewards are likely "car resets"
# maybe should be 5
Q_MIN_ACTUAL_BATCH_LEN = 4
RWD_LOW = 10
RWD_HIGH = 500
RWD_HIGH_THRESH = 3
DISCOUNT_FACTOR = .8
| """
Example:
import dk
cfg = dk.load_config(config_path='~/donkeycar/donkeycar/parts/RLConfig.py')
print(cfg.CAMERA_RESOLUTION)
"""
mode_complex_lane_follow = 0
mode_simple_line_follow = 1
mode_steer_throttle = MODE_COMPLEX_LANE_FOLLOW
partial_nn_cnt = 45000
switch_to_nn = 1000
update_nn = 1000
save_nn = 1000
throttle_constant = 0
state_emergency_stop = 0
state_nn = 1
state_opencv = 2
state_model_transfer_started = 3
state_model_prepare_nn = 4
state_model_weights_set = 5
state_partial_nn = 6
state_trial_nn = 7
emergency_stop = 1e-06
sim_emergency_stop = -1000
disable_emergency_stop = False
use_color = True
color_yellow = [[84, 107, 148], [155, 190, 232]]
color_white = [[32, 70, 101], [240, 240, 248]]
turnadj = 0.02
desiredppf = 20
maxbatadj = 0.0
batadj = 0.0
rl_model_path = '~/d2/models/rlpilot'
rl_state_path = '~/d2/models/'
maxbatcnt = 1000
minminthrot = 0.05
optflowthresh = 0.14
optflowincr = 0.01
max_accel = 3
check_throttle_thresh = 40
maxlanewidth = 400
min_dist_from_center = 20
msg_none = -1
msg_get_weights = 1
msg_state_angle_throttle_reward_roi = 2
msg_result = 4
msg_weights = 5
msg_emergency_stop = 6
msg_roi = 7
msg_angle_throttle_reward = 8
rlpi_ready1 = 1
rlpi_ready2 = 2
rlpi_opencv = 1
rlpi_trial_nn = 2
rlpi_nn = 3
port_rlpi = 5557
port_controlpi = 5558
port_controlpi2 = None
port_controlpi2_rl = None
throttle_increment = 0.3
throttle_boost = 0.05
reward_batch_min = 3
reward_batch_max = 10
reward_batch_end = 50
reward_batch_begin = 500
angle_increment = 1 / 15
save_movie = False
test_tub = '/home/ros/d2/data/tub_18_18-08-18'
movie_loc = '/tmp/movie4'
init_steer_frames = 125
q_len_thresh = 200
q_len_max = 250
q_fit_batch_len_thresh = 50
q_min_actual_batch_len = 4
rwd_low = 10
rwd_high = 500
rwd_high_thresh = 3
discount_factor = 0.8 |
def build_filter(args):
return Filter(args)
class Filter:
def __init__(self, args):
pass
def file_data_filter(self, file_data):
file_ctx = file_data["file_ctx"]
if not file_ctx.isbinary():
file_data["data"] = file_data["data"].replace(b"\r\n", b"\n")
| def build_filter(args):
return filter(args)
class Filter:
def __init__(self, args):
pass
def file_data_filter(self, file_data):
file_ctx = file_data['file_ctx']
if not file_ctx.isbinary():
file_data['data'] = file_data['data'].replace(b'\r\n', b'\n') |
print(round(1.23,1))
print(round(1.2345, 3))
# Negative numbers round the ones, tens, hundreds and so on..
print(round(123124123, -1))
print(round(54213, -2))
# Round is not neccessary for display reasons. use format instead
x = 1.8913479812313
print("value is {:0.3f}".format(x)) | print(round(1.23, 1))
print(round(1.2345, 3))
print(round(123124123, -1))
print(round(54213, -2))
x = 1.8913479812313
print('value is {:0.3f}'.format(x)) |
def get_emails():
while True:
email_info = input().split(' ')
if email_info[0] == 'Stop':
break
sender, receiver, content = email_info
email = Email(sender, receiver, content)
emails.append(email)
class Email:
def __init__(self, sender, receiver, content):
self.sender = sender
self.receiver = receiver
self.content = content
self.is_sent = False
def send(self):
self.is_sent = True
def get_info(self):
return f'{self.sender} says to {self.receiver}: {self.content}. Sent: {self.is_sent}'
emails = []
get_emails()
email_indices = map(int, input().split(', '))
for i in email_indices:
emails[i].send()
[print(email.get_info()) for email in emails]
| def get_emails():
while True:
email_info = input().split(' ')
if email_info[0] == 'Stop':
break
(sender, receiver, content) = email_info
email = email(sender, receiver, content)
emails.append(email)
class Email:
def __init__(self, sender, receiver, content):
self.sender = sender
self.receiver = receiver
self.content = content
self.is_sent = False
def send(self):
self.is_sent = True
def get_info(self):
return f'{self.sender} says to {self.receiver}: {self.content}. Sent: {self.is_sent}'
emails = []
get_emails()
email_indices = map(int, input().split(', '))
for i in email_indices:
emails[i].send()
[print(email.get_info()) for email in emails] |
pattern_zero=[0.0, 0.017538265306, 0.03443877551, 0.035714285714, 0.050701530612, 0.05325255102, 0.066326530612, 0.070153061224, 0.071428571429, 0.08131377551, 0.086415816327, 0.088966836735, 0.095663265306, 0.102040816327, 0.105867346939, 0.107142857143, 0.109375, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.13137755102, 0.134885204082, 0.137755102041, 0.141581632653, 0.142857142857, 0.145089285714, 0.146683673469, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449]
pattern_odd=[0.0, 0.002232142857, 0.003826530612, 0.008928571429, 0.009885204082, 0.014987244898, 0.015306122449, 0.017538265306, 0.020089285714, 0.024234693878, 0.025510204082, 0.027742346939, 0.030612244898, 0.032844387755, 0.03443877551, 0.035395408163, 0.035714285714, 0.037946428571, 0.039540816327, 0.044642857143, 0.045599489796, 0.050701530612, 0.051020408163, 0.05325255102, 0.055803571429, 0.059948979592, 0.061224489796, 0.063456632653, 0.066326530612, 0.068558673469, 0.070153061224, 0.071109693878, 0.071428571429, 0.073660714286, 0.075255102041, 0.080357142857, 0.08131377551, 0.086415816327, 0.086734693878, 0.088966836735, 0.091517857143, 0.095663265306, 0.09693877551, 0.099170918367, 0.102040816327, 0.104272959184, 0.105867346939, 0.106823979592, 0.107142857143, 0.109375, 0.110969387755, 0.116071428571, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.127232142857, 0.13137755102, 0.132653061224, 0.134885204082, 0.137755102041, 0.139987244898, 0.141581632653, 0.142538265306, 0.142857142857, 0.145089285714, 0.146683673469, 0.151785714286, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.162946428571, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.175701530612, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.198660714286, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449]
pattern_even=[0.0, 0.002232142857, 0.003826530612, 0.008928571429, 0.009885204082, 0.014987244898, 0.015306122449, 0.017538265306, 0.020089285714, 0.024234693878, 0.025510204082, 0.027742346939, 0.030612244898, 0.032844387755, 0.03443877551, 0.035395408163, 0.035714285714, 0.037946428571, 0.039540816327, 0.044642857143, 0.045599489796, 0.050701530612, 0.051020408163, 0.05325255102, 0.055803571429, 0.059948979592, 0.061224489796, 0.063456632653, 0.066326530612, 0.068558673469, 0.070153061224, 0.071109693878, 0.071428571429, 0.073660714286, 0.075255102041, 0.080357142857, 0.08131377551, 0.086415816327, 0.086734693878, 0.088966836735, 0.091517857143, 0.095663265306, 0.09693877551, 0.099170918367, 0.102040816327, 0.104272959184, 0.105867346939, 0.106823979592, 0.107142857143, 0.109375, 0.110969387755, 0.116071428571, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.127232142857, 0.13137755102, 0.132653061224, 0.134885204082, 0.137755102041, 0.139987244898, 0.141581632653, 0.142538265306, 0.142857142857, 0.145089285714, 0.146683673469, 0.151785714286, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.162946428571, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.175701530612, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.198660714286, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449]
averages_even={0.0: [0.5, 0.0], 0.109375: [0.875, 0.125], 0.1875: [0.25, 0.75], 0.392857142857: [0.5, 0.0], 0.127232142857: [0.375, 0.625], 0.188456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.209183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.744897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.856823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.5: [0.5, 0.0], 0.946109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.657844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.03443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.244897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.354272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.535714285714: [0.5, 0.0], 0.473214285714: [0.75, 0.25], 0.78443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.753826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.59693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.537946428571: [0.875, 0.125], 0.813456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.780612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.015306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.488520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.999681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.559948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.382653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.651785714286: [0.75, 0.25], 0.009885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.823660714286: [0.875, 0.125], 0.6875: [0.75, 0.25], 0.412946428571: [0.375, 0.625], 0.882653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.502232142857: [0.875, 0.125], 0.270089285714: [0.375, 0.625], 0.08131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.75: [0.5, 0.0], 0.104272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.973214285714: [0.75, 0.25], 0.443558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.713010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.253826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.887755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.035714285714: [0.5, 0.0], 0.287946428571: [0.875, 0.125], 0.142538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.892857142857: [0.5, 0.0], 0.238520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.345663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.561224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.680803571429: [0.875, 0.125], 0.177295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.988520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.259885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.454081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.45631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.377232142857: [0.375, 0.625], 0.19387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.580357142857: [0.75, 0.25], 0.742028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.032844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.981823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.357142857143: [0.5, 0.0], 0.645089285714: [0.875, 0.125], 0.468112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.425701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.277742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.535395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.258928571429: [0.25, 0.75], 0.086415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.588966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.372448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.938456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.867028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.355867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.366071428571: [0.75, 0.25], 0.294642857143: [0.25, 0.75], 0.713966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.464285714286: [0.5, 0.0], 0.017538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.313456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.738520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.854272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.606823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.675701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.948660714286: [0.375, 0.625], 0.389987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.020089285714: [0.375, 0.625], 0.67825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.384885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.359375: [0.875, 0.125], 0.265306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.770089285714: [0.375, 0.625], 0.099170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.575255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.289540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.395089285714: [0.875, 0.125], 0.917091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.821428571429: [0.5, 0.0], 0.658163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.927295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.178571428571: [0.5, 0.0], 0.670599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.352040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.311224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.014987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.213010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.729272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.709183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.071109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.229272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.604272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.09693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.821109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.338966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.461415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.652742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.723214285714: [0.75, 0.25], 0.231823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.066326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.55325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.275510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.452806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.157844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.989795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.002232142857: [0.875, 0.125], 0.624681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.336734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.489795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.84693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.05325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.63137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.800701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.525510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.420599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.039540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.9375: [0.75, 0.25], 0.678571428571: [0.5, 0.0], 0.080357142857: [0.25, 0.75], 0.151785714286: [0.25, 0.75], 0.866071428571: [0.75, 0.25], 0.80325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.320153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.198660714286: [0.375, 0.625], 0.202806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.627232142857: [0.375, 0.625], 0.774234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.479591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.739795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.563456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.891581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.497130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.545599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.162946428571: [0.375, 0.625], 0.908163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.711415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.050701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.896683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.860969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.902742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.765306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.282844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.463966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.356823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.360969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.702806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.794642857143: [0.75, 0.25], 0.830357142857: [0.75, 0.25], 0.928571428571: [0.5, 0.0], 0.923469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.204081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.918367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.677295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.401785714286: [0.75, 0.25], 0.146683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.025510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.836734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.747130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.38137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.063456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.855867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.418367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.168367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.474170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.239795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.196109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.752232142857: [0.875, 0.125], 0.825255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.789540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.816326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.106823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.075255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.027742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.550701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.17825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.402742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.503826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.508928571429: [0.75, 0.25], 0.92825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.595663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.341517857143: [0.375, 0.625], 0.318558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.213966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.423469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.374681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.809948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.599170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.716517857143: [0.875, 0.125], 0.943558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.035395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.438456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.295599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.994897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.145089285714: [0.875, 0.125], 0.729591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.609375: [0.875, 0.125], 0.229591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.494897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.309948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.857142857143: [0.5, 0.0], 0.4375: [0.75, 0.25], 0.852040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.484375: [0.375, 0.625], 0.895089285714: [0.875, 0.125], 0.524234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.158163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.642857142857: [0.5, 0.0], 0.321109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.952806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.285714285714: [0.5, 0.0], 0.408163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.660395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.966517857143: [0.875, 0.125], 0.872448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.070153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.141581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.446109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.998724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.330357142857: [0.75, 0.25], 0.44387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.008928571429: [0.25, 0.75], 0.910395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.968112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.83131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.105867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.963010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.764987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.805803571429: [0.625, 0.375], 0.030612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.305803571429: [0.375, 0.625], 0.134885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.731823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.573660714286: [0.875, 0.125], 0.591517857143: [0.375, 0.625], 0.055803571429: [0.375, 0.625], 0.142857142857: [0.5, 0.0], 0.13137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.734375: [0.375, 0.625], 0.28443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.059948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.170599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.872130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.068558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.110969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.718112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.877232142857: [0.375, 0.625], 0.264987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.173469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.336415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.795599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.073660714286: [0.875, 0.125], 0.801020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.704081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.285395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.137755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.30325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.300701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.874681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.095663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.061224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.838966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.387755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.044642857143: [0.25, 0.75], 0.180803571429: [0.875, 0.125], 0.901785714286: [0.75, 0.25], 0.696109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.223214285714: [0.75, 0.25], 0.463010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.051020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.20631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.182397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.224170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.193558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.820153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.53443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.107142857143: [0.5, 0.0], 0.992028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.748724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.132653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.954081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.961415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.124681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.247130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.566326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.242028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.167091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.698660714286: [0.375, 0.625], 0.641581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.845663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.69387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.515306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.785714285714: [0.5, 0.0], 0.964285714286: [0.5, 0.0], 0.527742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.639987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.997130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.139987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.116071428571: [0.25, 0.75], 0.071428571429: [0.5, 0.0], 0.634885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.767538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.391581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.642538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.811224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.417091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.920599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.859375: [0.875, 0.125], 0.932397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.622448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.252232142857: [0.875, 0.125], 0.724170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.787946428571: [0.875, 0.125], 0.782844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.551020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.586734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.396683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.963966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.479272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.514987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.34693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.428571428571: [0.5, 0.0], 0.974170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.249681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.216517857143: [0.875, 0.125], 0.925701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.979591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.530612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.33131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.884885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.367028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.539540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.152742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.602040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.775510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.372130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.979272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.617028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.492028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.607142857143: [0.5, 0.0], 0.662946428571: [0.375, 0.625], 0.321428571429: [0.5, 0.0], 0.605867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.325255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.930803571429: [0.875, 0.125], 0.175701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.610969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.091517857143: [0.375, 0.625], 0.759885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.616071428571: [0.75, 0.25], 0.410395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.892538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.849170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.688456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.160395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.520089285714: [0.375, 0.625], 0.466517857143: [0.875, 0.125], 0.117028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.818558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.984375: [0.625, 0.375], 0.509885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.498724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.045599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.912946428571: [0.625, 0.375], 0.481823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.407844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.907844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.749681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.785395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.568558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.682397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.58131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.088966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.841517857143: [0.375, 0.625], 0.430803571429: [0.875, 0.125], 0.024234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.70631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.037946428571: [0.875, 0.125], 0.632653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.218112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.086734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.349170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.88137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.392538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.570153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.777742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.95631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.532844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.323660714286: [0.875, 0.125], 0.499681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.316326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.544642857143: [0.75, 0.25], 0.622130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.586415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.673469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.274234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.427295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.637755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.102040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.758928571429: [0.75, 0.25], 0.267538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.555803571429: [0.375, 0.625], 0.211415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.714285714286: [0.5, 0.0], 0.459183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.889987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.448660714286: [0.375, 0.625], 0.571109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.667091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.94387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.432397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.571428571429: [0.5, 0.0], 0.214285714286: [0.5, 0.0], 0.42825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.280612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.693558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.646683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.248724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.234375: [0.375, 0.625], 0.836415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.25: [0.5, 0.0], 0.959183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.003826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.668367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.517538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.301020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429]}
averages_odd={0.0: [0.5, 0.0], 0.109375: [0.875, 0.125], 0.1875: [0.25, 0.75], 0.392857142857: [0.5, 0.0], 0.127232142857: [0.375, 0.625], 0.188456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.209183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.744897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.856823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.5: [0.5, 0.0], 0.946109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.657844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.03443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.244897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.354272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.535714285714: [0.5, 0.0], 0.473214285714: [0.75, 0.25], 0.78443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.753826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.59693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.537946428571: [0.875, 0.125], 0.813456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.780612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.015306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.488520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.999681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.559948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.382653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.651785714286: [0.75, 0.25], 0.009885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.823660714286: [0.875, 0.125], 0.6875: [0.75, 0.25], 0.412946428571: [0.375, 0.625], 0.882653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.502232142857: [0.875, 0.125], 0.270089285714: [0.375, 0.625], 0.08131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.75: [0.5, 0.0], 0.104272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.973214285714: [0.75, 0.25], 0.443558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.713010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.253826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.887755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.035714285714: [0.5, 0.0], 0.287946428571: [0.875, 0.125], 0.142538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.892857142857: [0.5, 0.0], 0.238520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.345663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.561224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.680803571429: [0.875, 0.125], 0.177295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.988520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.259885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.454081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.45631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.377232142857: [0.375, 0.625], 0.19387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.580357142857: [0.75, 0.25], 0.742028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.032844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.981823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.357142857143: [0.5, 0.0], 0.645089285714: [0.875, 0.125], 0.468112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.425701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.277742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.535395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.258928571429: [0.25, 0.75], 0.086415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.588966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.372448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.938456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.867028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.355867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.366071428571: [0.75, 0.25], 0.294642857143: [0.25, 0.75], 0.713966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.464285714286: [0.5, 0.0], 0.017538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.313456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.738520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.854272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.606823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.675701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.948660714286: [0.375, 0.625], 0.389987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.020089285714: [0.375, 0.625], 0.67825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.384885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.359375: [0.875, 0.125], 0.265306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.770089285714: [0.375, 0.625], 0.099170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.575255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.289540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.395089285714: [0.875, 0.125], 0.917091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.821428571429: [0.5, 0.0], 0.658163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.927295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.178571428571: [0.5, 0.0], 0.670599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.352040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.311224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.014987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.213010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.729272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.709183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.071109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.229272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.604272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.09693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.821109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.338966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.461415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.652742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.723214285714: [0.75, 0.25], 0.231823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.066326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.55325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.275510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.452806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.157844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.989795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.002232142857: [0.875, 0.125], 0.624681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.336734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.489795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.84693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.05325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.63137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.800701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.525510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.420599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.039540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.9375: [0.75, 0.25], 0.678571428571: [0.5, 0.0], 0.080357142857: [0.25, 0.75], 0.151785714286: [0.25, 0.75], 0.866071428571: [0.75, 0.25], 0.80325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.320153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.198660714286: [0.375, 0.625], 0.202806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.627232142857: [0.375, 0.625], 0.774234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.479591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.739795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.563456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.891581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.497130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.545599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.162946428571: [0.375, 0.625], 0.908163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.711415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.050701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.896683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.860969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.902742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.765306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.282844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.463966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.356823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.360969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.702806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.794642857143: [0.75, 0.25], 0.830357142857: [0.75, 0.25], 0.928571428571: [0.5, 0.0], 0.923469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.204081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.918367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.677295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.401785714286: [0.75, 0.25], 0.146683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.025510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.836734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.747130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.38137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.063456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.855867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.418367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.168367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.474170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.239795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.196109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.752232142857: [0.875, 0.125], 0.825255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.789540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.816326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.106823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.075255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.027742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.550701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.17825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.402742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.503826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.508928571429: [0.75, 0.25], 0.92825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.595663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.341517857143: [0.375, 0.625], 0.318558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.213966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.423469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.374681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.809948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.599170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.716517857143: [0.875, 0.125], 0.943558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.035395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.438456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.295599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.994897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.145089285714: [0.875, 0.125], 0.729591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.609375: [0.875, 0.125], 0.229591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.494897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.309948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.857142857143: [0.5, 0.0], 0.4375: [0.75, 0.25], 0.852040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.484375: [0.375, 0.625], 0.895089285714: [0.875, 0.125], 0.524234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.158163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.642857142857: [0.5, 0.0], 0.321109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.952806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.285714285714: [0.5, 0.0], 0.408163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.660395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.966517857143: [0.875, 0.125], 0.872448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.070153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.141581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.446109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.998724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.330357142857: [0.75, 0.25], 0.44387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.008928571429: [0.25, 0.75], 0.910395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.968112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.83131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.105867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.963010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.764987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.805803571429: [0.625, 0.375], 0.030612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.305803571429: [0.375, 0.625], 0.134885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.731823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.573660714286: [0.875, 0.125], 0.591517857143: [0.375, 0.625], 0.055803571429: [0.375, 0.625], 0.142857142857: [0.5, 0.0], 0.13137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.734375: [0.375, 0.625], 0.28443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.059948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.170599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.872130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.068558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.110969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.718112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.877232142857: [0.375, 0.625], 0.264987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.173469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.336415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.795599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.073660714286: [0.875, 0.125], 0.801020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.704081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.285395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.137755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.30325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.300701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.874681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.095663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.061224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.838966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.387755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.044642857143: [0.25, 0.75], 0.180803571429: [0.875, 0.125], 0.901785714286: [0.75, 0.25], 0.696109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.223214285714: [0.75, 0.25], 0.463010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.051020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.20631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.182397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.224170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.193558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.820153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.53443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.107142857143: [0.5, 0.0], 0.992028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.748724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.132653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.954081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.961415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.124681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.247130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.566326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.242028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.167091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.698660714286: [0.375, 0.625], 0.641581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.845663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.69387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.515306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.785714285714: [0.5, 0.0], 0.964285714286: [0.5, 0.0], 0.527742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.639987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.997130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.139987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.116071428571: [0.25, 0.75], 0.071428571429: [0.5, 0.0], 0.634885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.767538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.391581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.642538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.811224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.417091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.920599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.859375: [0.875, 0.125], 0.932397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.622448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.252232142857: [0.875, 0.125], 0.724170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.787946428571: [0.875, 0.125], 0.782844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.551020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.586734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.396683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.963966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.479272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.514987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.34693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.428571428571: [0.5, 0.0], 0.974170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.249681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.216517857143: [0.875, 0.125], 0.925701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.979591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.530612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.33131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.884885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.367028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.539540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.152742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.602040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.775510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.372130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.979272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.617028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.492028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.607142857143: [0.5, 0.0], 0.662946428571: [0.375, 0.625], 0.321428571429: [0.5, 0.0], 0.605867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.325255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.930803571429: [0.875, 0.125], 0.175701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.610969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.091517857143: [0.375, 0.625], 0.759885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.616071428571: [0.75, 0.25], 0.410395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.892538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.849170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.688456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.160395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.520089285714: [0.375, 0.625], 0.466517857143: [0.875, 0.125], 0.117028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.818558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.984375: [0.625, 0.375], 0.509885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.498724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.045599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.912946428571: [0.625, 0.375], 0.481823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.407844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.907844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.749681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.785395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.568558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.682397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.58131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.088966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.841517857143: [0.375, 0.625], 0.430803571429: [0.875, 0.125], 0.024234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.70631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.037946428571: [0.875, 0.125], 0.632653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.218112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.086734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.349170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.88137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.392538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.570153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.777742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.95631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.532844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.323660714286: [0.875, 0.125], 0.499681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.316326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.544642857143: [0.75, 0.25], 0.622130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.586415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.673469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.274234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.427295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.637755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.102040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.758928571429: [0.75, 0.25], 0.267538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.555803571429: [0.375, 0.625], 0.211415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.714285714286: [0.5, 0.0], 0.459183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.889987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.448660714286: [0.375, 0.625], 0.571109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.667091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.94387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.432397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.571428571429: [0.5, 0.0], 0.214285714286: [0.5, 0.0], 0.42825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.280612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.693558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.646683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.248724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.234375: [0.375, 0.625], 0.836415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.25: [0.5, 0.0], 0.959183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.003826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.668367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.517538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.301020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429]} | pattern_zero = [0.0, 0.017538265306, 0.03443877551, 0.035714285714, 0.050701530612, 0.05325255102, 0.066326530612, 0.070153061224, 0.071428571429, 0.08131377551, 0.086415816327, 0.088966836735, 0.095663265306, 0.102040816327, 0.105867346939, 0.107142857143, 0.109375, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.13137755102, 0.134885204082, 0.137755102041, 0.141581632653, 0.142857142857, 0.145089285714, 0.146683673469, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449]
pattern_odd = [0.0, 0.002232142857, 0.003826530612, 0.008928571429, 0.009885204082, 0.014987244898, 0.015306122449, 0.017538265306, 0.020089285714, 0.024234693878, 0.025510204082, 0.027742346939, 0.030612244898, 0.032844387755, 0.03443877551, 0.035395408163, 0.035714285714, 0.037946428571, 0.039540816327, 0.044642857143, 0.045599489796, 0.050701530612, 0.051020408163, 0.05325255102, 0.055803571429, 0.059948979592, 0.061224489796, 0.063456632653, 0.066326530612, 0.068558673469, 0.070153061224, 0.071109693878, 0.071428571429, 0.073660714286, 0.075255102041, 0.080357142857, 0.08131377551, 0.086415816327, 0.086734693878, 0.088966836735, 0.091517857143, 0.095663265306, 0.09693877551, 0.099170918367, 0.102040816327, 0.104272959184, 0.105867346939, 0.106823979592, 0.107142857143, 0.109375, 0.110969387755, 0.116071428571, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.127232142857, 0.13137755102, 0.132653061224, 0.134885204082, 0.137755102041, 0.139987244898, 0.141581632653, 0.142538265306, 0.142857142857, 0.145089285714, 0.146683673469, 0.151785714286, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.162946428571, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.175701530612, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.198660714286, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449]
pattern_even = [0.0, 0.002232142857, 0.003826530612, 0.008928571429, 0.009885204082, 0.014987244898, 0.015306122449, 0.017538265306, 0.020089285714, 0.024234693878, 0.025510204082, 0.027742346939, 0.030612244898, 0.032844387755, 0.03443877551, 0.035395408163, 0.035714285714, 0.037946428571, 0.039540816327, 0.044642857143, 0.045599489796, 0.050701530612, 0.051020408163, 0.05325255102, 0.055803571429, 0.059948979592, 0.061224489796, 0.063456632653, 0.066326530612, 0.068558673469, 0.070153061224, 0.071109693878, 0.071428571429, 0.073660714286, 0.075255102041, 0.080357142857, 0.08131377551, 0.086415816327, 0.086734693878, 0.088966836735, 0.091517857143, 0.095663265306, 0.09693877551, 0.099170918367, 0.102040816327, 0.104272959184, 0.105867346939, 0.106823979592, 0.107142857143, 0.109375, 0.110969387755, 0.116071428571, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.127232142857, 0.13137755102, 0.132653061224, 0.134885204082, 0.137755102041, 0.139987244898, 0.141581632653, 0.142538265306, 0.142857142857, 0.145089285714, 0.146683673469, 0.151785714286, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.162946428571, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.175701530612, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.198660714286, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449]
averages_even = {0.0: [0.5, 0.0], 0.109375: [0.875, 0.125], 0.1875: [0.25, 0.75], 0.392857142857: [0.5, 0.0], 0.127232142857: [0.375, 0.625], 0.188456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.209183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.744897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.856823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.5: [0.5, 0.0], 0.946109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.657844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.03443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.244897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.354272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.535714285714: [0.5, 0.0], 0.473214285714: [0.75, 0.25], 0.78443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.753826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.59693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.537946428571: [0.875, 0.125], 0.813456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.780612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.015306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.488520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.999681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.559948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.382653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.651785714286: [0.75, 0.25], 0.009885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.823660714286: [0.875, 0.125], 0.6875: [0.75, 0.25], 0.412946428571: [0.375, 0.625], 0.882653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.502232142857: [0.875, 0.125], 0.270089285714: [0.375, 0.625], 0.08131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.75: [0.5, 0.0], 0.104272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.973214285714: [0.75, 0.25], 0.443558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.713010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.253826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.887755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.035714285714: [0.5, 0.0], 0.287946428571: [0.875, 0.125], 0.142538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.892857142857: [0.5, 0.0], 0.238520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.345663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.561224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.680803571429: [0.875, 0.125], 0.177295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.988520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.259885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.454081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.45631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.377232142857: [0.375, 0.625], 0.19387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.580357142857: [0.75, 0.25], 0.742028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.032844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.981823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.357142857143: [0.5, 0.0], 0.645089285714: [0.875, 0.125], 0.468112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.425701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.277742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.535395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.258928571429: [0.25, 0.75], 0.086415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.588966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.372448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.938456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.867028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.355867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.366071428571: [0.75, 0.25], 0.294642857143: [0.25, 0.75], 0.713966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.464285714286: [0.5, 0.0], 0.017538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.313456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.738520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.854272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.606823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.675701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.948660714286: [0.375, 0.625], 0.389987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.020089285714: [0.375, 0.625], 0.67825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.384885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.359375: [0.875, 0.125], 0.265306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.770089285714: [0.375, 0.625], 0.099170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.575255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.289540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.395089285714: [0.875, 0.125], 0.917091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.821428571429: [0.5, 0.0], 0.658163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.927295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.178571428571: [0.5, 0.0], 0.670599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.352040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.311224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.014987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.213010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.729272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.709183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.071109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.229272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.604272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.09693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.821109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.338966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.461415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.652742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.723214285714: [0.75, 0.25], 0.231823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.066326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.55325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.275510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.452806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.157844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.989795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.002232142857: [0.875, 0.125], 0.624681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.336734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.489795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.84693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.05325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.63137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.800701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.525510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.420599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.039540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.9375: [0.75, 0.25], 0.678571428571: [0.5, 0.0], 0.080357142857: [0.25, 0.75], 0.151785714286: [0.25, 0.75], 0.866071428571: [0.75, 0.25], 0.80325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.320153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.198660714286: [0.375, 0.625], 0.202806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.627232142857: [0.375, 0.625], 0.774234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.479591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.739795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.563456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.891581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.497130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.545599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.162946428571: [0.375, 0.625], 0.908163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.711415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.050701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.896683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.860969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.902742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.765306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.282844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.463966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.356823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.360969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.702806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.794642857143: [0.75, 0.25], 0.830357142857: [0.75, 0.25], 0.928571428571: [0.5, 0.0], 0.923469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.204081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.918367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.677295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.401785714286: [0.75, 0.25], 0.146683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.025510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.836734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.747130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.38137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.063456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.855867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.418367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.168367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.474170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.239795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.196109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.752232142857: [0.875, 0.125], 0.825255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.789540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.816326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.106823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.075255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.027742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.550701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.17825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.402742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.503826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.508928571429: [0.75, 0.25], 0.92825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.595663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.341517857143: [0.375, 0.625], 0.318558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.213966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.423469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.374681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.809948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.599170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.716517857143: [0.875, 0.125], 0.943558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.035395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.438456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.295599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.994897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.145089285714: [0.875, 0.125], 0.729591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.609375: [0.875, 0.125], 0.229591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.494897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.309948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.857142857143: [0.5, 0.0], 0.4375: [0.75, 0.25], 0.852040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.484375: [0.375, 0.625], 0.895089285714: [0.875, 0.125], 0.524234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.158163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.642857142857: [0.5, 0.0], 0.321109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.952806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.285714285714: [0.5, 0.0], 0.408163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.660395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.966517857143: [0.875, 0.125], 0.872448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.070153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.141581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.446109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.998724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.330357142857: [0.75, 0.25], 0.44387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.008928571429: [0.25, 0.75], 0.910395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.968112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.83131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.105867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.963010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.764987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.805803571429: [0.625, 0.375], 0.030612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.305803571429: [0.375, 0.625], 0.134885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.731823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.573660714286: [0.875, 0.125], 0.591517857143: [0.375, 0.625], 0.055803571429: [0.375, 0.625], 0.142857142857: [0.5, 0.0], 0.13137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.734375: [0.375, 0.625], 0.28443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.059948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.170599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.872130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.068558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.110969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.718112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.877232142857: [0.375, 0.625], 0.264987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.173469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.336415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.795599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.073660714286: [0.875, 0.125], 0.801020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.704081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.285395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.137755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.30325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.300701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.874681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.095663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.061224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.838966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.387755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.044642857143: [0.25, 0.75], 0.180803571429: [0.875, 0.125], 0.901785714286: [0.75, 0.25], 0.696109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.223214285714: [0.75, 0.25], 0.463010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.051020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.20631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.182397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.224170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.193558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.820153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.53443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.107142857143: [0.5, 0.0], 0.992028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.748724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.132653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.954081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.961415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.124681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.247130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.566326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.242028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.167091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.698660714286: [0.375, 0.625], 0.641581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.845663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.69387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.515306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.785714285714: [0.5, 0.0], 0.964285714286: [0.5, 0.0], 0.527742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.639987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.997130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.139987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.116071428571: [0.25, 0.75], 0.071428571429: [0.5, 0.0], 0.634885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.767538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.391581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.642538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.811224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.417091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.920599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.859375: [0.875, 0.125], 0.932397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.622448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.252232142857: [0.875, 0.125], 0.724170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.787946428571: [0.875, 0.125], 0.782844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.551020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.586734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.396683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.963966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.479272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.514987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.34693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.428571428571: [0.5, 0.0], 0.974170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.249681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.216517857143: [0.875, 0.125], 0.925701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.979591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.530612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.33131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.884885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.367028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.539540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.152742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.602040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.775510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.372130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.979272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.617028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.492028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.607142857143: [0.5, 0.0], 0.662946428571: [0.375, 0.625], 0.321428571429: [0.5, 0.0], 0.605867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.325255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.930803571429: [0.875, 0.125], 0.175701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.610969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.091517857143: [0.375, 0.625], 0.759885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.616071428571: [0.75, 0.25], 0.410395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.892538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.849170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.688456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.160395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.520089285714: [0.375, 0.625], 0.466517857143: [0.875, 0.125], 0.117028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.818558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.984375: [0.625, 0.375], 0.509885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.498724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.045599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.912946428571: [0.625, 0.375], 0.481823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.407844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.907844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.749681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.785395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.568558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.682397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.58131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.088966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.841517857143: [0.375, 0.625], 0.430803571429: [0.875, 0.125], 0.024234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.70631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.037946428571: [0.875, 0.125], 0.632653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.218112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.086734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.349170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.88137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.392538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.570153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.777742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.95631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.532844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.323660714286: [0.875, 0.125], 0.499681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.316326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.544642857143: [0.75, 0.25], 0.622130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.586415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.673469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.274234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.427295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.637755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.102040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.758928571429: [0.75, 0.25], 0.267538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.555803571429: [0.375, 0.625], 0.211415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.714285714286: [0.5, 0.0], 0.459183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.889987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.448660714286: [0.375, 0.625], 0.571109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.667091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.94387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.432397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.571428571429: [0.5, 0.0], 0.214285714286: [0.5, 0.0], 0.42825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.280612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.693558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.646683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.248724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.234375: [0.375, 0.625], 0.836415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.25: [0.5, 0.0], 0.959183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.003826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.668367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.517538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.301020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429]}
averages_odd = {0.0: [0.5, 0.0], 0.109375: [0.875, 0.125], 0.1875: [0.25, 0.75], 0.392857142857: [0.5, 0.0], 0.127232142857: [0.375, 0.625], 0.188456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.209183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.744897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.856823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.5: [0.5, 0.0], 0.946109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.657844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.03443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.244897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.354272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.535714285714: [0.5, 0.0], 0.473214285714: [0.75, 0.25], 0.78443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.753826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.59693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.537946428571: [0.875, 0.125], 0.813456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.780612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.015306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.488520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.999681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.559948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.382653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.651785714286: [0.75, 0.25], 0.009885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.823660714286: [0.875, 0.125], 0.6875: [0.75, 0.25], 0.412946428571: [0.375, 0.625], 0.882653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.502232142857: [0.875, 0.125], 0.270089285714: [0.375, 0.625], 0.08131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.75: [0.5, 0.0], 0.104272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.973214285714: [0.75, 0.25], 0.443558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.713010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.253826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.887755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.035714285714: [0.5, 0.0], 0.287946428571: [0.875, 0.125], 0.142538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.892857142857: [0.5, 0.0], 0.238520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.345663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.561224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.680803571429: [0.875, 0.125], 0.177295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.988520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.259885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.454081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.45631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.377232142857: [0.375, 0.625], 0.19387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.580357142857: [0.75, 0.25], 0.742028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.032844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.981823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.357142857143: [0.5, 0.0], 0.645089285714: [0.875, 0.125], 0.468112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.425701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.277742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.535395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.258928571429: [0.25, 0.75], 0.086415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.588966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.372448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.938456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.867028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.355867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.366071428571: [0.75, 0.25], 0.294642857143: [0.25, 0.75], 0.713966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.464285714286: [0.5, 0.0], 0.017538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.313456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.738520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.854272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.606823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.675701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.948660714286: [0.375, 0.625], 0.389987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.020089285714: [0.375, 0.625], 0.67825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.384885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.359375: [0.875, 0.125], 0.265306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.770089285714: [0.375, 0.625], 0.099170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.575255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.289540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.395089285714: [0.875, 0.125], 0.917091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.821428571429: [0.5, 0.0], 0.658163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.927295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.178571428571: [0.5, 0.0], 0.670599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.352040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.311224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.014987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.213010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.729272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.709183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.071109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.229272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.604272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.09693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.821109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.338966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.461415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.652742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.723214285714: [0.75, 0.25], 0.231823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.066326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.55325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.275510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.452806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.157844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.989795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.002232142857: [0.875, 0.125], 0.624681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.336734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.489795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.84693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.05325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.63137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.800701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.525510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.420599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.039540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.9375: [0.75, 0.25], 0.678571428571: [0.5, 0.0], 0.080357142857: [0.25, 0.75], 0.151785714286: [0.25, 0.75], 0.866071428571: [0.75, 0.25], 0.80325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.320153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.198660714286: [0.375, 0.625], 0.202806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.627232142857: [0.375, 0.625], 0.774234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.479591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.739795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.563456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.891581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.497130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.545599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.162946428571: [0.375, 0.625], 0.908163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.711415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.050701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.896683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.860969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.902742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.765306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.282844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.463966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.356823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.360969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.702806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.794642857143: [0.75, 0.25], 0.830357142857: [0.75, 0.25], 0.928571428571: [0.5, 0.0], 0.923469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.204081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.918367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.677295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.401785714286: [0.75, 0.25], 0.146683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.025510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.836734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.747130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.38137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.063456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.855867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.418367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.168367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.474170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.239795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.196109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.752232142857: [0.875, 0.125], 0.825255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.789540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.816326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.106823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.075255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.027742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.550701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.17825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.402742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.503826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.508928571429: [0.75, 0.25], 0.92825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.595663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.341517857143: [0.375, 0.625], 0.318558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.213966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.423469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.374681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.809948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.599170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.716517857143: [0.875, 0.125], 0.943558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.035395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.438456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.295599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.994897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.145089285714: [0.875, 0.125], 0.729591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.609375: [0.875, 0.125], 0.229591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.494897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.309948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.857142857143: [0.5, 0.0], 0.4375: [0.75, 0.25], 0.852040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.484375: [0.375, 0.625], 0.895089285714: [0.875, 0.125], 0.524234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.158163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.642857142857: [0.5, 0.0], 0.321109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.952806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.285714285714: [0.5, 0.0], 0.408163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.660395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.966517857143: [0.875, 0.125], 0.872448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.070153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.141581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.446109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.998724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.330357142857: [0.75, 0.25], 0.44387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.008928571429: [0.25, 0.75], 0.910395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.968112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.83131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.105867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.963010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.764987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.805803571429: [0.625, 0.375], 0.030612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.305803571429: [0.375, 0.625], 0.134885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.731823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.573660714286: [0.875, 0.125], 0.591517857143: [0.375, 0.625], 0.055803571429: [0.375, 0.625], 0.142857142857: [0.5, 0.0], 0.13137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.734375: [0.375, 0.625], 0.28443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.059948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.170599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.872130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.068558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.110969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.718112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.877232142857: [0.375, 0.625], 0.264987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.173469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.336415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.795599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.073660714286: [0.875, 0.125], 0.801020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.704081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.285395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.137755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.30325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.300701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.874681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.095663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.061224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.838966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.387755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.044642857143: [0.25, 0.75], 0.180803571429: [0.875, 0.125], 0.901785714286: [0.75, 0.25], 0.696109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.223214285714: [0.75, 0.25], 0.463010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.051020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.20631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.182397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.224170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.193558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.820153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.53443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.107142857143: [0.5, 0.0], 0.992028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.748724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.132653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.954081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.961415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.124681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.247130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.566326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.242028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.167091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.698660714286: [0.375, 0.625], 0.641581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.845663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.69387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.515306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.785714285714: [0.5, 0.0], 0.964285714286: [0.5, 0.0], 0.527742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.639987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.997130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.139987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.116071428571: [0.25, 0.75], 0.071428571429: [0.5, 0.0], 0.634885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.767538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.391581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.642538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.811224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.417091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.920599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.859375: [0.875, 0.125], 0.932397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.622448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.252232142857: [0.875, 0.125], 0.724170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.787946428571: [0.875, 0.125], 0.782844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.551020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.586734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.396683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.963966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.479272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.514987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.34693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.428571428571: [0.5, 0.0], 0.974170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.249681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.216517857143: [0.875, 0.125], 0.925701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.979591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.530612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.33131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.884885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.367028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.539540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.152742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.602040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.775510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.372130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.979272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.617028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.492028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.607142857143: [0.5, 0.0], 0.662946428571: [0.375, 0.625], 0.321428571429: [0.5, 0.0], 0.605867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.325255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.930803571429: [0.875, 0.125], 0.175701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.610969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.091517857143: [0.375, 0.625], 0.759885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.616071428571: [0.75, 0.25], 0.410395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.892538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.849170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.688456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.160395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.520089285714: [0.375, 0.625], 0.466517857143: [0.875, 0.125], 0.117028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.818558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.984375: [0.625, 0.375], 0.509885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.498724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.045599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.912946428571: [0.625, 0.375], 0.481823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.407844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.907844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.749681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.785395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.568558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.682397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.58131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.088966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.841517857143: [0.375, 0.625], 0.430803571429: [0.875, 0.125], 0.024234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.70631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.037946428571: [0.875, 0.125], 0.632653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.218112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.086734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.349170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.88137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.392538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.570153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.777742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.95631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.532844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.323660714286: [0.875, 0.125], 0.499681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.316326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.544642857143: [0.75, 0.25], 0.622130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.586415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.673469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.274234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.427295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.637755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.102040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.758928571429: [0.75, 0.25], 0.267538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.555803571429: [0.375, 0.625], 0.211415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.714285714286: [0.5, 0.0], 0.459183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.889987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.448660714286: [0.375, 0.625], 0.571109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.667091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.94387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.432397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.571428571429: [0.5, 0.0], 0.214285714286: [0.5, 0.0], 0.42825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.280612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.693558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.646683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.248724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.234375: [0.375, 0.625], 0.836415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.25: [0.5, 0.0], 0.959183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.003826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.668367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.517538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.301020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429]} |
def main() -> None:
x0, y0, x1, y1 = map(int, input().split())
for dx in range(-2, 3):
for dy in range(-2, 3):
if abs(dx) + abs(dy) != 3:
continue
if abs(dx) == 0 or abs(dy) == 0:
continue
x = x0 + dx
y = y0 + dy
dx = abs(x1 - x)
dy = abs(y1 - y)
if abs(dx) + abs(dy) != 3:
continue
if abs(dx) == 0 or abs(dy) == 0:
continue
print("Yes")
return
print("No")
if __name__ == "__main__":
main()
| def main() -> None:
(x0, y0, x1, y1) = map(int, input().split())
for dx in range(-2, 3):
for dy in range(-2, 3):
if abs(dx) + abs(dy) != 3:
continue
if abs(dx) == 0 or abs(dy) == 0:
continue
x = x0 + dx
y = y0 + dy
dx = abs(x1 - x)
dy = abs(y1 - y)
if abs(dx) + abs(dy) != 3:
continue
if abs(dx) == 0 or abs(dy) == 0:
continue
print('Yes')
return
print('No')
if __name__ == '__main__':
main() |
# Copyright (c) 2010 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
# This file was split off from ppapi.gyp to prevent PPAPI users from
# needing to DEPS in ~10K files due to mesa.
{
'includes': [
'../../../third_party/mesa/mesa.gypi',
],
'variables': {
'chromium_code': 1, # Use higher warning level.
},
'targets': [
{
'target_name': 'ppapi_egl',
'type': 'static_library',
'dependencies': [
'<(DEPTH)/ppapi/ppapi.gyp:ppapi_c',
],
'include_dirs': [
'include',
],
'defines': [
# Do not export internal Mesa funcations. Exporting them is not
# required because we are compiling both - API dispatcher and driver
# into a single library.
'PUBLIC=',
# Define a new PPAPI platform.
'_EGL_PLATFORM_PPAPI=_EGL_NUM_PLATFORMS',
'_EGL_NATIVE_PLATFORM=_EGL_PLATFORM_PPAPI',
],
'conditions': [
['OS=="win"', {
'defines': [
'_EGL_OS_WINDOWS',
],
}],
['OS=="mac"', {
# TODO(alokp): Make this compile on mac.
'suppress_wildcard': 1,
}],
],
'sources': [
# Mesa EGL API dispatcher sources.
'<@(mesa_egl_sources)',
# PPAPI EGL driver sources.
'egl/egldriver.c',
'egl/egldriver_ppapi.c',
],
},
],
}
| {'includes': ['../../../third_party/mesa/mesa.gypi'], 'variables': {'chromium_code': 1}, 'targets': [{'target_name': 'ppapi_egl', 'type': 'static_library', 'dependencies': ['<(DEPTH)/ppapi/ppapi.gyp:ppapi_c'], 'include_dirs': ['include'], 'defines': ['PUBLIC=', '_EGL_PLATFORM_PPAPI=_EGL_NUM_PLATFORMS', '_EGL_NATIVE_PLATFORM=_EGL_PLATFORM_PPAPI'], 'conditions': [['OS=="win"', {'defines': ['_EGL_OS_WINDOWS']}], ['OS=="mac"', {'suppress_wildcard': 1}]], 'sources': ['<@(mesa_egl_sources)', 'egl/egldriver.c', 'egl/egldriver_ppapi.c']}]} |
# 5658. Maximum Absolute Sum of Any Subarray
# Biweekly contest 45
class Solution:
def maxAbsoluteSum(self, nums: List[int]) -> int:
currentmax = globalmax = currentmin = nums[0]
for i in range(1, len(nums)):
x, y = nums[i] + currentmax, nums[i] + currentmin
currentmax = max(nums[i], x, y)
currentmin = min(nums[i], x, y)
globalmax = max(globalmax, abs(currentmax), abs(currentmin))
return globalmax
| class Solution:
def max_absolute_sum(self, nums: List[int]) -> int:
currentmax = globalmax = currentmin = nums[0]
for i in range(1, len(nums)):
(x, y) = (nums[i] + currentmax, nums[i] + currentmin)
currentmax = max(nums[i], x, y)
currentmin = min(nums[i], x, y)
globalmax = max(globalmax, abs(currentmax), abs(currentmin))
return globalmax |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.