content
stringlengths
7
1.05M
fixed_cases
stringlengths
1
1.28M
format = "%(asctime)s - %(levelname)s - %(name)s - %(message)s" minimal_format = "%(message)s" def _get_formatter_and_handler(use_minimal_format: bool = False): logging_dict = { "version": 1, "disable_existing_loggers": True, "formatters": { "colored": { "()": "coloredlogs.ColoredFormatter", "format": minimal_format if use_minimal_format else format, "datefmt": "%m-%d %H:%M:%S", } }, "handlers": { "console": { "class": "logging.StreamHandler", "formatter": "colored", }, }, "loggers": {}, } return logging_dict def get_logging_config(django_log_level: str, wkz_log_level: str): logging_dict = _get_formatter_and_handler() logging_dict["loggers"] = { "django": { "handlers": ["console"], "level": django_log_level, }, "wizer": { "handlers": ["console"], "level": wkz_log_level, }, } return logging_dict
format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s' minimal_format = '%(message)s' def _get_formatter_and_handler(use_minimal_format: bool=False): logging_dict = {'version': 1, 'disable_existing_loggers': True, 'formatters': {'colored': {'()': 'coloredlogs.ColoredFormatter', 'format': minimal_format if use_minimal_format else format, 'datefmt': '%m-%d %H:%M:%S'}}, 'handlers': {'console': {'class': 'logging.StreamHandler', 'formatter': 'colored'}}, 'loggers': {}} return logging_dict def get_logging_config(django_log_level: str, wkz_log_level: str): logging_dict = _get_formatter_and_handler() logging_dict['loggers'] = {'django': {'handlers': ['console'], 'level': django_log_level}, 'wizer': {'handlers': ['console'], 'level': wkz_log_level}} return logging_dict
#!/bin/python3 # Set .union() Operation # https://www.hackerrank.com/challenges/py-set-union/problem if __name__ == '__main__': n = int(input()) students_n = set(map(int, input().split())) b = int(input()) students_b = set(map(int, input().split())) print(len(students_n | students_b))
if __name__ == '__main__': n = int(input()) students_n = set(map(int, input().split())) b = int(input()) students_b = set(map(int, input().split())) print(len(students_n | students_b))
def ddd(): for i in 'fasdffghdfghjhfgj': yield i a = ddd() print(next(a)) print(next(a)) print(next(a)) print(next(a)) print(next(a))
def ddd(): for i in 'fasdffghdfghjhfgj': yield i a = ddd() print(next(a)) print(next(a)) print(next(a)) print(next(a)) print(next(a))
# Customer States C_CALLING = 0 C_WAITING = 1 C_IN_VEHICLE = 2 C_ARRIVED = 3 C_DISAPPEARED = 4 # Vehicle States V_IDLE = 0 V_CRUISING = 1 V_OCCUPIED = 2 V_ASSIGNED = 3 V_OFF_DUTY = 4
c_calling = 0 c_waiting = 1 c_in_vehicle = 2 c_arrived = 3 c_disappeared = 4 v_idle = 0 v_cruising = 1 v_occupied = 2 v_assigned = 3 v_off_duty = 4
# app seettings EC2_ACCESS_ID = 'A***Q' EC2_ACCESS_KEY = 'R***I' YCSB_SIZE =0 MCROUTER_NOISE = 0 MEMCACHED_OD_SIZE = 1 MEMCACHED_SPOT_SIZE = 0 G_M_MIN = 7.5*1024 G_M_MAX = 7.5*1024 G_C_MIN = 2 G_C_MAX = 2 M_DEFAULT = 7.5*1024 C_DEFAULT = 2 G_M_MIN_2 = 7.5*1024 G_M_MAX_2 = 7.5*1024 G_C_MIN_2 = 2 G_C_MAX_2 = 2 M_DEFAULT_2 = 7.5*1024 C_DEFAULT_2 = 2
ec2_access_id = 'A***Q' ec2_access_key = 'R***I' ycsb_size = 0 mcrouter_noise = 0 memcached_od_size = 1 memcached_spot_size = 0 g_m_min = 7.5 * 1024 g_m_max = 7.5 * 1024 g_c_min = 2 g_c_max = 2 m_default = 7.5 * 1024 c_default = 2 g_m_min_2 = 7.5 * 1024 g_m_max_2 = 7.5 * 1024 g_c_min_2 = 2 g_c_max_2 = 2 m_default_2 = 7.5 * 1024 c_default_2 = 2
def read_input(): n = int(input()) return ( [input() for _ in range(n)], input() ) def find_position(matrix, symbol): for i in range(len(matrix)): line = matrix[i] if symbol in line: return (i, line.index(symbol)) return None (matrix, symbol) = read_input() result = find_position(matrix, symbol) if result: (row, col) = result print(f'({row}, {col})') else: print(f'{symbol} does not occur in the matrix')
def read_input(): n = int(input()) return ([input() for _ in range(n)], input()) def find_position(matrix, symbol): for i in range(len(matrix)): line = matrix[i] if symbol in line: return (i, line.index(symbol)) return None (matrix, symbol) = read_input() result = find_position(matrix, symbol) if result: (row, col) = result print(f'({row}, {col})') else: print(f'{symbol} does not occur in the matrix')
#string: temperatura Gc = float(input("Digite grados Centigrados: ")) Gk = (Gc + 273.15) print("el valor de los grados kelvin es el siguiente: ",Gk)
gc = float(input('Digite grados Centigrados: ')) gk = Gc + 273.15 print('el valor de los grados kelvin es el siguiente: ', Gk)
class Triangular: ### Constructor ### def __init__(self, init, end, center=None, peak=1, floor=0): # initialize attributes self._init = init self._end = end if center: #using property to test if its bewtween init and end self.center = center else: self._center = (end + init) / 2 self._peak = peak self._floor = floor ### Desctructor ### def __close__(self): # releases attributes self._init = None self._end = None self._center = None self._peak = None self._floor = None ### Getters and Setter (as Properties) ### ## init @property def init(self): return self._init @init.setter def init(self, init): if type(init) == float or type(init) == int: self._init = init else: raise ValueError( 'Error: Function initial element must be float or integer') ## end @property def end(self): return self._end @end.setter def end(self, end): if type(end) == float or type(end) == int: self._end = end else: raise ValueError( 'Error: Function end element must be float or integer') ## center @property def center(self): return self._center @center.setter def center(self, center): if type(center) == float or type(center) == int: if center > self._init and center < self._end: self._center = center else: raise ValueError( 'Error: Center of the function must be between init and end' ) else: raise ValueError( 'Error: Function center element must be float or integer') ## peak @property def peak(self): return self._peak @peak.setter def peak(self, peak): if type(peak) == float or type(peak) == int: self._peak = peak else: raise ValueError( 'Error: Function peak element must be float or integer') ## floor @property def floor(self): return self._floor @floor.setter def floor(self, floor): if type(floor) == float or type(floor) == int: self._floor = floor else: raise ValueError( 'Error: Function floor element must be float or integer') ### Methods ### def function(self, x): if x <= self._init: return self._floor elif x <= self._center: delta_y = self._peak - self._floor delta_x = self._center - self._init slope = delta_y / delta_x return slope * (x - self._init) + self._floor elif x <= self._end: delta_y = self._floor - self._peak delta_x = self._end - self._center slope = delta_y / delta_x return slope * (x - self._center) + self._peak else: return self._floor
class Triangular: def __init__(self, init, end, center=None, peak=1, floor=0): self._init = init self._end = end if center: self.center = center else: self._center = (end + init) / 2 self._peak = peak self._floor = floor def __close__(self): self._init = None self._end = None self._center = None self._peak = None self._floor = None @property def init(self): return self._init @init.setter def init(self, init): if type(init) == float or type(init) == int: self._init = init else: raise value_error('Error: Function initial element must be float or integer') @property def end(self): return self._end @end.setter def end(self, end): if type(end) == float or type(end) == int: self._end = end else: raise value_error('Error: Function end element must be float or integer') @property def center(self): return self._center @center.setter def center(self, center): if type(center) == float or type(center) == int: if center > self._init and center < self._end: self._center = center else: raise value_error('Error: Center of the function must be between init and end') else: raise value_error('Error: Function center element must be float or integer') @property def peak(self): return self._peak @peak.setter def peak(self, peak): if type(peak) == float or type(peak) == int: self._peak = peak else: raise value_error('Error: Function peak element must be float or integer') @property def floor(self): return self._floor @floor.setter def floor(self, floor): if type(floor) == float or type(floor) == int: self._floor = floor else: raise value_error('Error: Function floor element must be float or integer') def function(self, x): if x <= self._init: return self._floor elif x <= self._center: delta_y = self._peak - self._floor delta_x = self._center - self._init slope = delta_y / delta_x return slope * (x - self._init) + self._floor elif x <= self._end: delta_y = self._floor - self._peak delta_x = self._end - self._center slope = delta_y / delta_x return slope * (x - self._center) + self._peak else: return self._floor
# Python - 3.6.0 test.describe('Fixed tests') test.assert_equals(whatday(1), 'Sunday') test.assert_equals(whatday(2), 'Monday') test.assert_equals(whatday(3), 'Tuesday') test.assert_equals(whatday(8), 'Wrong, please enter a number between 1 and 7') test.assert_equals(whatday(20), 'Wrong, please enter a number between 1 and 7')
test.describe('Fixed tests') test.assert_equals(whatday(1), 'Sunday') test.assert_equals(whatday(2), 'Monday') test.assert_equals(whatday(3), 'Tuesday') test.assert_equals(whatday(8), 'Wrong, please enter a number between 1 and 7') test.assert_equals(whatday(20), 'Wrong, please enter a number between 1 and 7')
# # PySNMP MIB module TPLINK-PORTMIRROR-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/TPLINK-PORTMIRROR-MIB # Produced by pysmi-0.3.4 at Wed May 1 15:25:34 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ConstraintsIntersection, ConstraintsUnion, ValueRangeConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueRangeConstraint", "ValueSizeConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") ModuleIdentity, TimeTicks, Counter32, Gauge32, IpAddress, Unsigned32, Counter64, Bits, iso, ObjectIdentity, MibIdentifier, NotificationType, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "TimeTicks", "Counter32", "Gauge32", "IpAddress", "Unsigned32", "Counter64", "Bits", "iso", "ObjectIdentity", "MibIdentifier", "NotificationType", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") tplinkMgmt, = mibBuilder.importSymbols("TPLINK-MIB", "tplinkMgmt") tplinkPortMirrorMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 11863, 6, 11)) tplinkPortMirrorMIB.setRevisions(('2012-12-14 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: tplinkPortMirrorMIB.setRevisionsDescriptions(('Initial version of this MIB module.',)) if mibBuilder.loadTexts: tplinkPortMirrorMIB.setLastUpdated('201212140000Z') if mibBuilder.loadTexts: tplinkPortMirrorMIB.setOrganization('TPLINK') if mibBuilder.loadTexts: tplinkPortMirrorMIB.setContactInfo('www.tplink.com.cn') if mibBuilder.loadTexts: tplinkPortMirrorMIB.setDescription('The config of the port mirror.') tplinkPortMirrorMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1)) tplinkPortMirrorMIBNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 11863, 6, 11, 2)) tpPortMirrorTable = MibTable((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1), ) if mibBuilder.loadTexts: tpPortMirrorTable.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorTable.setDescription('') tpPortMirrorEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1), ).setIndexNames((0, "TPLINK-PORTMIRROR-MIB", "tpPortMirrorSession")) if mibBuilder.loadTexts: tpPortMirrorEntry.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorEntry.setDescription('') tpPortMirrorSession = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tpPortMirrorSession.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorSession.setDescription('This object indicates the session number of the mirror group.') tpPortMirrorDestination = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 2), OctetString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tpPortMirrorDestination.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorDestination.setDescription(' This object indicates a destination port which monitors specified ports on the switch, should be given as 1/0/1. Note: The member of LAG cannot be assigned as a destination port.') tpPortMirrorIngressSource = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 3), OctetString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tpPortMirrorIngressSource.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorIngressSource.setDescription(" This object indicates a list of the source ports. Any packets received from these ports will be copyed to the assigned destination port. This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.") tpPortMirrorEgressSource = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 4), OctetString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tpPortMirrorEgressSource.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorEgressSource.setDescription(" This object indicates a list of the source ports. Any packets sended out from these ports will be copyed to the assigned destination ports.This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.") tpPortMirrorBothSource = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 5), OctetString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tpPortMirrorBothSource.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorBothSource.setDescription(" This object indicates a list of the source ports. Any packets received or sended out from these ports will be copyed to the assigned destination ports.This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.") tpPortMirrorSessionState = MibTableColumn((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("negative", 1), ("active", 2), ("clear", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: tpPortMirrorSessionState.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorSessionState.setDescription(' This object indicates the state of mirror session.If a session has been assigned both destination port and source ports, then the value of this object changes to active(2). Otherwise the value of this object is to be negative(1). When the value of this object is assigned to clear(3), then the configuration of this session will be cleared, and the state changes to negative(1). Be aware of that only clear(3) can be assigned to this object.') mibBuilder.exportSymbols("TPLINK-PORTMIRROR-MIB", tpPortMirrorIngressSource=tpPortMirrorIngressSource, tpPortMirrorTable=tpPortMirrorTable, tpPortMirrorBothSource=tpPortMirrorBothSource, tplinkPortMirrorMIBNotifications=tplinkPortMirrorMIBNotifications, tpPortMirrorEgressSource=tpPortMirrorEgressSource, tpPortMirrorSessionState=tpPortMirrorSessionState, tplinkPortMirrorMIBObjects=tplinkPortMirrorMIBObjects, tpPortMirrorEntry=tpPortMirrorEntry, tpPortMirrorDestination=tpPortMirrorDestination, tplinkPortMirrorMIB=tplinkPortMirrorMIB, tpPortMirrorSession=tpPortMirrorSession, PYSNMP_MODULE_ID=tplinkPortMirrorMIB)
(object_identifier, octet_string, integer) = mibBuilder.importSymbols('ASN1', 'ObjectIdentifier', 'OctetString', 'Integer') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (single_value_constraint, constraints_intersection, constraints_union, value_range_constraint, value_size_constraint) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'SingleValueConstraint', 'ConstraintsIntersection', 'ConstraintsUnion', 'ValueRangeConstraint', 'ValueSizeConstraint') (module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup') (module_identity, time_ticks, counter32, gauge32, ip_address, unsigned32, counter64, bits, iso, object_identity, mib_identifier, notification_type, integer32, mib_scalar, mib_table, mib_table_row, mib_table_column) = mibBuilder.importSymbols('SNMPv2-SMI', 'ModuleIdentity', 'TimeTicks', 'Counter32', 'Gauge32', 'IpAddress', 'Unsigned32', 'Counter64', 'Bits', 'iso', 'ObjectIdentity', 'MibIdentifier', 'NotificationType', 'Integer32', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn') (textual_convention, display_string) = mibBuilder.importSymbols('SNMPv2-TC', 'TextualConvention', 'DisplayString') (tplink_mgmt,) = mibBuilder.importSymbols('TPLINK-MIB', 'tplinkMgmt') tplink_port_mirror_mib = module_identity((1, 3, 6, 1, 4, 1, 11863, 6, 11)) tplinkPortMirrorMIB.setRevisions(('2012-12-14 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: tplinkPortMirrorMIB.setRevisionsDescriptions(('Initial version of this MIB module.',)) if mibBuilder.loadTexts: tplinkPortMirrorMIB.setLastUpdated('201212140000Z') if mibBuilder.loadTexts: tplinkPortMirrorMIB.setOrganization('TPLINK') if mibBuilder.loadTexts: tplinkPortMirrorMIB.setContactInfo('www.tplink.com.cn') if mibBuilder.loadTexts: tplinkPortMirrorMIB.setDescription('The config of the port mirror.') tplink_port_mirror_mib_objects = mib_identifier((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1)) tplink_port_mirror_mib_notifications = mib_identifier((1, 3, 6, 1, 4, 1, 11863, 6, 11, 2)) tp_port_mirror_table = mib_table((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1)) if mibBuilder.loadTexts: tpPortMirrorTable.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorTable.setDescription('') tp_port_mirror_entry = mib_table_row((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1)).setIndexNames((0, 'TPLINK-PORTMIRROR-MIB', 'tpPortMirrorSession')) if mibBuilder.loadTexts: tpPortMirrorEntry.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorEntry.setDescription('') tp_port_mirror_session = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 1), integer32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tpPortMirrorSession.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorSession.setDescription('This object indicates the session number of the mirror group.') tp_port_mirror_destination = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 2), octet_string()).setMaxAccess('readwrite') if mibBuilder.loadTexts: tpPortMirrorDestination.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorDestination.setDescription(' This object indicates a destination port which monitors specified ports on the switch, should be given as 1/0/1. Note: The member of LAG cannot be assigned as a destination port.') tp_port_mirror_ingress_source = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 3), octet_string()).setMaxAccess('readwrite') if mibBuilder.loadTexts: tpPortMirrorIngressSource.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorIngressSource.setDescription(" This object indicates a list of the source ports. Any packets received from these ports will be copyed to the assigned destination port. This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.") tp_port_mirror_egress_source = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 4), octet_string()).setMaxAccess('readwrite') if mibBuilder.loadTexts: tpPortMirrorEgressSource.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorEgressSource.setDescription(" This object indicates a list of the source ports. Any packets sended out from these ports will be copyed to the assigned destination ports.This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.") tp_port_mirror_both_source = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 5), octet_string()).setMaxAccess('readwrite') if mibBuilder.loadTexts: tpPortMirrorBothSource.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorBothSource.setDescription(" This object indicates a list of the source ports. Any packets received or sended out from these ports will be copyed to the assigned destination ports.This should be given as 1/0/1,1/0/2-12. Note: The ports in other sessions and destination port can't add to this list.") tp_port_mirror_session_state = mib_table_column((1, 3, 6, 1, 4, 1, 11863, 6, 11, 1, 1, 1, 6), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3))).clone(namedValues=named_values(('negative', 1), ('active', 2), ('clear', 3)))).setMaxAccess('readwrite') if mibBuilder.loadTexts: tpPortMirrorSessionState.setStatus('current') if mibBuilder.loadTexts: tpPortMirrorSessionState.setDescription(' This object indicates the state of mirror session.If a session has been assigned both destination port and source ports, then the value of this object changes to active(2). Otherwise the value of this object is to be negative(1). When the value of this object is assigned to clear(3), then the configuration of this session will be cleared, and the state changes to negative(1). Be aware of that only clear(3) can be assigned to this object.') mibBuilder.exportSymbols('TPLINK-PORTMIRROR-MIB', tpPortMirrorIngressSource=tpPortMirrorIngressSource, tpPortMirrorTable=tpPortMirrorTable, tpPortMirrorBothSource=tpPortMirrorBothSource, tplinkPortMirrorMIBNotifications=tplinkPortMirrorMIBNotifications, tpPortMirrorEgressSource=tpPortMirrorEgressSource, tpPortMirrorSessionState=tpPortMirrorSessionState, tplinkPortMirrorMIBObjects=tplinkPortMirrorMIBObjects, tpPortMirrorEntry=tpPortMirrorEntry, tpPortMirrorDestination=tpPortMirrorDestination, tplinkPortMirrorMIB=tplinkPortMirrorMIB, tpPortMirrorSession=tpPortMirrorSession, PYSNMP_MODULE_ID=tplinkPortMirrorMIB)
File = open("File PROTEK/Data2.txt", "w") while True: nim = input('Masukan NIM:') nama = input('Masukan Nama:') alamat = input('Masukan Alamat:') print('') File.write(nim + '|' + nama + '|' + alamat + '\n') repeat = input('Apakah ingin memasukan data lagi?(y/n):') print('') if(repeat in {'n','N'}): File.close() break
file = open('File PROTEK/Data2.txt', 'w') while True: nim = input('Masukan NIM:') nama = input('Masukan Nama:') alamat = input('Masukan Alamat:') print('') File.write(nim + '|' + nama + '|' + alamat + '\n') repeat = input('Apakah ingin memasukan data lagi?(y/n):') print('') if repeat in {'n', 'N'}: File.close() break
# Lv-677_Ivan_Vaulin # Task2. Write a script that checks the login that the user enters. # If the login is "First", then greet the users. If the login is different, send an error message. # (need to use loop while) user_name = input('Hello, please input your Log in:') while user_name != 'First': user_name = input('Error: wrong username, please try one more time. Username:') else: print('Greeting. Access granted!!!', user_name)
user_name = input('Hello, please input your Log in:') while user_name != 'First': user_name = input('Error: wrong username, please try one more time. Username:') else: print('Greeting. Access granted!!!', user_name)
# -*- coding: UTF-8 -*- # Copyright 2013 Felix Friedrich, Felix Schwarz # Copyright 2015, 2019 Felix Schwarz # The source code in this file is licensed under the MIT license. # SPDX-License-Identifier: MIT __all__ = ['Result'] class Result(object): def __init__(self, value, **data): self.value = value self.data = data def __repr__(self): klassname = self.__class__.__name__ extra_data = [repr(self.value)] for key, value in sorted(self.data.items()): extra_data.append('%s=%r' % (key, value)) return '%s(%s)' % (klassname, ', '.join(extra_data)) def __eq__(self, other): if isinstance(other, self.value.__class__): return self.value == other elif hasattr(other, 'value'): return self.value == other.value return False def __ne__(self, other): return not self.__eq__(other) def __bool__(self): return bool(self.value) # Python 2 compatibility __nonzero__ = __bool__ def __len__(self): return len(self.value) def __getattr__(self, key): if key in self.data: return self.data[key] elif key.startswith('set_'): attr_name = key[4:] if attr_name in self.data: return self.__build_setter(attr_name) klassname = self.__class__.__name__ msg = '%r object has no attribute %r' % (klassname, key) raise AttributeError(msg) def __build_setter(self, attr_name): def setter(value): self.data[attr_name] = value setter.__name__ = 'set_'+attr_name return setter def __setattr__(self, key, value): if key in ('data', 'value'): # instance attributes, set by constructor self.__dict__[key] = value return if key not in self.data: raise AttributeError("'%s' object has no attribute '%s'" % (self.__class__.__name__, key)) setter = getattr(self, 'set_'+key) setter(value)
__all__ = ['Result'] class Result(object): def __init__(self, value, **data): self.value = value self.data = data def __repr__(self): klassname = self.__class__.__name__ extra_data = [repr(self.value)] for (key, value) in sorted(self.data.items()): extra_data.append('%s=%r' % (key, value)) return '%s(%s)' % (klassname, ', '.join(extra_data)) def __eq__(self, other): if isinstance(other, self.value.__class__): return self.value == other elif hasattr(other, 'value'): return self.value == other.value return False def __ne__(self, other): return not self.__eq__(other) def __bool__(self): return bool(self.value) __nonzero__ = __bool__ def __len__(self): return len(self.value) def __getattr__(self, key): if key in self.data: return self.data[key] elif key.startswith('set_'): attr_name = key[4:] if attr_name in self.data: return self.__build_setter(attr_name) klassname = self.__class__.__name__ msg = '%r object has no attribute %r' % (klassname, key) raise attribute_error(msg) def __build_setter(self, attr_name): def setter(value): self.data[attr_name] = value setter.__name__ = 'set_' + attr_name return setter def __setattr__(self, key, value): if key in ('data', 'value'): self.__dict__[key] = value return if key not in self.data: raise attribute_error("'%s' object has no attribute '%s'" % (self.__class__.__name__, key)) setter = getattr(self, 'set_' + key) setter(value)
# Test that systemctl will accept service names both with or without suffix. def test_dot_service(sysvenv): service = sysvenv.create_service("foo") service.will_do("status", 3) service.direct_enable() out, err, status = sysvenv.systemctl("status", "foo.service") assert status == 3 assert service.did("status")
def test_dot_service(sysvenv): service = sysvenv.create_service('foo') service.will_do('status', 3) service.direct_enable() (out, err, status) = sysvenv.systemctl('status', 'foo.service') assert status == 3 assert service.did('status')
num_list = [] num_list.append(1) num_list.append(2) num_list.append(3) print(num_list[1])
num_list = [] num_list.append(1) num_list.append(2) num_list.append(3) print(num_list[1])
#!/usr/bin/env python # Paths VIDEOS_PATH = '~/Desktop/Downloaded Youtube Videos' VIDEOS_PATH_WIN = '/mnt/e/Alex/Videos/Youtube'
videos_path = '~/Desktop/Downloaded Youtube Videos' videos_path_win = '/mnt/e/Alex/Videos/Youtube'
# Variables that contain the user credentials to access Twitter API ACCESS_TOKEN ="< Enter your Twitter Access Token >" ACCESS_TOKEN_SECRET ="< Enter your Access Token Secret >" CONSUMER_KEY = "< Enter Consumer Key >" CONSUMER_SECRET = "< Enter Consumer Key Secret >"
access_token = '< Enter your Twitter Access Token >' access_token_secret = '< Enter your Access Token Secret >' consumer_key = '< Enter Consumer Key >' consumer_secret = '< Enter Consumer Key Secret >'
ft_name = 'points' featuretype_api = datastore_api.featuretype(name=ft_name, data={ "featureType": { "circularArcPresent": False, "enabled": True, "forcedDecimal": False, "maxFeatures": 0, "name": ft_name, "nativeName": ft_name, "numDecimals": 0, "overridingServiceSRS": False, "padWithZeros": False, "projectionPolicy": "FORCE_DECLARED", "serviceConfiguration": False, "skipNumberMatched": False, "srs": "EPSG:404000", "title": ft_name, "attributes": { "attribute": { "binding": "java.lang.String", "maxOccurs": 1, "minOccurs": 0, "name": "point", "nillable": True } }, "keywords": { "string": [ "features", ft_name ] }, "latLonBoundingBox": { "maxx": -68.036694, "maxy": 49.211179, "minx": -124.571077, "miny": 25.404663, "crs": "EPSG:4326" }, "nativeBoundingBox": { "minx": -90, "maxx": 90, "miny": -180, "maxy": 180, "crs": "EPSG:4326" }, } })
ft_name = 'points' featuretype_api = datastore_api.featuretype(name=ft_name, data={'featureType': {'circularArcPresent': False, 'enabled': True, 'forcedDecimal': False, 'maxFeatures': 0, 'name': ft_name, 'nativeName': ft_name, 'numDecimals': 0, 'overridingServiceSRS': False, 'padWithZeros': False, 'projectionPolicy': 'FORCE_DECLARED', 'serviceConfiguration': False, 'skipNumberMatched': False, 'srs': 'EPSG:404000', 'title': ft_name, 'attributes': {'attribute': {'binding': 'java.lang.String', 'maxOccurs': 1, 'minOccurs': 0, 'name': 'point', 'nillable': True}}, 'keywords': {'string': ['features', ft_name]}, 'latLonBoundingBox': {'maxx': -68.036694, 'maxy': 49.211179, 'minx': -124.571077, 'miny': 25.404663, 'crs': 'EPSG:4326'}, 'nativeBoundingBox': {'minx': -90, 'maxx': 90, 'miny': -180, 'maxy': 180, 'crs': 'EPSG:4326'}}})
class Solution: def spiralMatrixIII(self, R: int, C: int, r0: int, c0: int) -> List[List[int]]: step = sign = 1 result = [[r0, c0]] r, c = r0, c0 while len(result) < R*C: for _ in range(step): c += sign if 0 <= r < R and 0 <= c < C: result.append([r, c]) for _ in range(step): r += sign if 0 <= r < R and 0 <= c < C: result.append([r, c]) step += 1 sign *= -1 return result
class Solution: def spiral_matrix_iii(self, R: int, C: int, r0: int, c0: int) -> List[List[int]]: step = sign = 1 result = [[r0, c0]] (r, c) = (r0, c0) while len(result) < R * C: for _ in range(step): c += sign if 0 <= r < R and 0 <= c < C: result.append([r, c]) for _ in range(step): r += sign if 0 <= r < R and 0 <= c < C: result.append([r, c]) step += 1 sign *= -1 return result
# -*- coding: utf-8 -*- def includeme(config): config.register_service_factory('.services.user.rename_user_factory', name='rename_user') config.include('.views') config.add_route('admin_index', '/') config.add_route('admin_admins', '/admins') config.add_route('admin_badge', '/badge') config.add_route('admin_features', '/features') config.add_route('admin_cohorts', '/features/cohorts') config.add_route('admin_cohorts_edit', '/features/cohorts/{id}') config.add_route('admin_groups', '/groups') config.add_route('admin_groups_csv', '/groups.csv') config.add_route('admin_nipsa', '/nipsa') config.add_route('admin_staff', '/staff') config.add_route('admin_users', '/users') config.add_route('admin_users_activate', '/users/activate') config.add_route('admin_users_delete', '/users/delete') config.add_route('admin_users_rename', '/users/rename')
def includeme(config): config.register_service_factory('.services.user.rename_user_factory', name='rename_user') config.include('.views') config.add_route('admin_index', '/') config.add_route('admin_admins', '/admins') config.add_route('admin_badge', '/badge') config.add_route('admin_features', '/features') config.add_route('admin_cohorts', '/features/cohorts') config.add_route('admin_cohorts_edit', '/features/cohorts/{id}') config.add_route('admin_groups', '/groups') config.add_route('admin_groups_csv', '/groups.csv') config.add_route('admin_nipsa', '/nipsa') config.add_route('admin_staff', '/staff') config.add_route('admin_users', '/users') config.add_route('admin_users_activate', '/users/activate') config.add_route('admin_users_delete', '/users/delete') config.add_route('admin_users_rename', '/users/rename')
## Iterative approach - BFS - Using Queue # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def invertTree(self, root: TreeNode) -> TreeNode: # ITERATIVE - USING QUEUE if root is None: return None queue = deque([root]) while queue: current = queue.popleft() current.left, current.right = current.right, current.left if current.left: queue.append(current.left) if current.right: queue.append(current.right) return root
class Solution: def invert_tree(self, root: TreeNode) -> TreeNode: if root is None: return None queue = deque([root]) while queue: current = queue.popleft() (current.left, current.right) = (current.right, current.left) if current.left: queue.append(current.left) if current.right: queue.append(current.right) return root
motorcycles = ['honda', 'yamaha', 'suzuki'] print(motorcycles) motorcycles[0] = 'ducati' print(motorcycles) motorcycles.append('honda') print(motorcycles) motorcycles = [] motorcycles.append('suzuki') motorcycles.append('honda') motorcycles.append('bmw') print(motorcycles) motorcycles.insert(0, 'ducati') print(motorcycles) motorcycles.insert(2, 'yamaha') print(motorcycles) del motorcycles[3] print(motorcycles) print('\npop example') popped = motorcycles.pop() print(motorcycles) print(popped) print('\npop from first position') popped = motorcycles.pop(0) print(motorcycles) print(popped) print('\nappend at the end and remove by value: only removes first ocurrence') motorcycles.append('suzuki') motorcycles.remove('suzuki') print(motorcycles) print('\nremove by value using var') remove_this = 'yamaha' motorcycles.remove(remove_this) print(motorcycles)
motorcycles = ['honda', 'yamaha', 'suzuki'] print(motorcycles) motorcycles[0] = 'ducati' print(motorcycles) motorcycles.append('honda') print(motorcycles) motorcycles = [] motorcycles.append('suzuki') motorcycles.append('honda') motorcycles.append('bmw') print(motorcycles) motorcycles.insert(0, 'ducati') print(motorcycles) motorcycles.insert(2, 'yamaha') print(motorcycles) del motorcycles[3] print(motorcycles) print('\npop example') popped = motorcycles.pop() print(motorcycles) print(popped) print('\npop from first position') popped = motorcycles.pop(0) print(motorcycles) print(popped) print('\nappend at the end and remove by value: only removes first ocurrence') motorcycles.append('suzuki') motorcycles.remove('suzuki') print(motorcycles) print('\nremove by value using var') remove_this = 'yamaha' motorcycles.remove(remove_this) print(motorcycles)
# # PySNMP MIB module HP-ICF-LAYER3VLAN-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/HP-ICF-LAYER3VLAN-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:21:56 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueSizeConstraint, ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueSizeConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion") hpSwitch, = mibBuilder.importSymbols("HP-ICF-OID", "hpSwitch") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") ObjectGroup, ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "ModuleCompliance", "NotificationGroup") Gauge32, TimeTicks, Bits, Unsigned32, Counter32, ObjectIdentity, Integer32, IpAddress, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, iso, ModuleIdentity, NotificationType, MibIdentifier = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "TimeTicks", "Bits", "Unsigned32", "Counter32", "ObjectIdentity", "Integer32", "IpAddress", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "iso", "ModuleIdentity", "NotificationType", "MibIdentifier") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") hpicfLayer3VlanConfigMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70)) hpicfLayer3VlanConfigMIB.setRevisions(('2010-03-23 00:00',)) if mibBuilder.loadTexts: hpicfLayer3VlanConfigMIB.setLastUpdated('201003230000Z') if mibBuilder.loadTexts: hpicfLayer3VlanConfigMIB.setOrganization('HP Networking') hpicfLayer3VlanConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1)) hpicfLayer3VlanConfigConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2)) hpicfLayer3VlanConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1), ) if mibBuilder.loadTexts: hpicfLayer3VlanConfigTable.setStatus('current') hpicfLayer3VlanConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: hpicfLayer3VlanConfigEntry.setStatus('current') hpicfLayer3VlanStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2))).clone('enable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpicfLayer3VlanStatus.setStatus('current') hpicfL3VlanConfigMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 1)) hpicfLayer3VlanConfigMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 2)) hpicfL3VlanConfigMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 1, 1)).setObjects(("HP-ICF-LAYER3VLAN-MIB", "hpicfLayer3VlanConfigGroup"), ("HP-ICF-LAYER3VLAN-MIB", "hpicfLayer3VlanConfigGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hpicfL3VlanConfigMIBCompliance = hpicfL3VlanConfigMIBCompliance.setStatus('current') hpicfLayer3VlanConfigGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 2, 1)).setObjects(("HP-ICF-LAYER3VLAN-MIB", "hpicfLayer3VlanStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hpicfLayer3VlanConfigGroup = hpicfLayer3VlanConfigGroup.setStatus('current') mibBuilder.exportSymbols("HP-ICF-LAYER3VLAN-MIB", hpicfLayer3VlanConfig=hpicfLayer3VlanConfig, PYSNMP_MODULE_ID=hpicfLayer3VlanConfigMIB, hpicfLayer3VlanConfigTable=hpicfLayer3VlanConfigTable, hpicfLayer3VlanConfigConformance=hpicfLayer3VlanConfigConformance, hpicfLayer3VlanConfigGroup=hpicfLayer3VlanConfigGroup, hpicfLayer3VlanStatus=hpicfLayer3VlanStatus, hpicfL3VlanConfigMIBCompliance=hpicfL3VlanConfigMIBCompliance, hpicfLayer3VlanConfigMIB=hpicfLayer3VlanConfigMIB, hpicfLayer3VlanConfigEntry=hpicfLayer3VlanConfigEntry, hpicfLayer3VlanConfigMIBGroups=hpicfLayer3VlanConfigMIBGroups, hpicfL3VlanConfigMIBCompliances=hpicfL3VlanConfigMIBCompliances)
(octet_string, integer, object_identifier) = mibBuilder.importSymbols('ASN1', 'OctetString', 'Integer', 'ObjectIdentifier') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (single_value_constraint, value_size_constraint, value_range_constraint, constraints_intersection, constraints_union) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'SingleValueConstraint', 'ValueSizeConstraint', 'ValueRangeConstraint', 'ConstraintsIntersection', 'ConstraintsUnion') (hp_switch,) = mibBuilder.importSymbols('HP-ICF-OID', 'hpSwitch') (if_index,) = mibBuilder.importSymbols('IF-MIB', 'ifIndex') (object_group, module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ObjectGroup', 'ModuleCompliance', 'NotificationGroup') (gauge32, time_ticks, bits, unsigned32, counter32, object_identity, integer32, ip_address, counter64, mib_scalar, mib_table, mib_table_row, mib_table_column, iso, module_identity, notification_type, mib_identifier) = mibBuilder.importSymbols('SNMPv2-SMI', 'Gauge32', 'TimeTicks', 'Bits', 'Unsigned32', 'Counter32', 'ObjectIdentity', 'Integer32', 'IpAddress', 'Counter64', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'iso', 'ModuleIdentity', 'NotificationType', 'MibIdentifier') (textual_convention, display_string) = mibBuilder.importSymbols('SNMPv2-TC', 'TextualConvention', 'DisplayString') hpicf_layer3_vlan_config_mib = module_identity((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70)) hpicfLayer3VlanConfigMIB.setRevisions(('2010-03-23 00:00',)) if mibBuilder.loadTexts: hpicfLayer3VlanConfigMIB.setLastUpdated('201003230000Z') if mibBuilder.loadTexts: hpicfLayer3VlanConfigMIB.setOrganization('HP Networking') hpicf_layer3_vlan_config = mib_identifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1)) hpicf_layer3_vlan_config_conformance = mib_identifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2)) hpicf_layer3_vlan_config_table = mib_table((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1)) if mibBuilder.loadTexts: hpicfLayer3VlanConfigTable.setStatus('current') hpicf_layer3_vlan_config_entry = mib_table_row((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1, 1)).setIndexNames((0, 'IF-MIB', 'ifIndex')) if mibBuilder.loadTexts: hpicfLayer3VlanConfigEntry.setStatus('current') hpicf_layer3_vlan_status = mib_table_column((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 1, 1, 1, 1), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('enable', 1), ('disable', 2))).clone('enable')).setMaxAccess('readwrite') if mibBuilder.loadTexts: hpicfLayer3VlanStatus.setStatus('current') hpicf_l3_vlan_config_mib_compliances = mib_identifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 1)) hpicf_layer3_vlan_config_mib_groups = mib_identifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 2)) hpicf_l3_vlan_config_mib_compliance = module_compliance((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 1, 1)).setObjects(('HP-ICF-LAYER3VLAN-MIB', 'hpicfLayer3VlanConfigGroup'), ('HP-ICF-LAYER3VLAN-MIB', 'hpicfLayer3VlanConfigGroup')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hpicf_l3_vlan_config_mib_compliance = hpicfL3VlanConfigMIBCompliance.setStatus('current') hpicf_layer3_vlan_config_group = object_group((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 5, 1, 70, 2, 2, 1)).setObjects(('HP-ICF-LAYER3VLAN-MIB', 'hpicfLayer3VlanStatus')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hpicf_layer3_vlan_config_group = hpicfLayer3VlanConfigGroup.setStatus('current') mibBuilder.exportSymbols('HP-ICF-LAYER3VLAN-MIB', hpicfLayer3VlanConfig=hpicfLayer3VlanConfig, PYSNMP_MODULE_ID=hpicfLayer3VlanConfigMIB, hpicfLayer3VlanConfigTable=hpicfLayer3VlanConfigTable, hpicfLayer3VlanConfigConformance=hpicfLayer3VlanConfigConformance, hpicfLayer3VlanConfigGroup=hpicfLayer3VlanConfigGroup, hpicfLayer3VlanStatus=hpicfLayer3VlanStatus, hpicfL3VlanConfigMIBCompliance=hpicfL3VlanConfigMIBCompliance, hpicfLayer3VlanConfigMIB=hpicfLayer3VlanConfigMIB, hpicfLayer3VlanConfigEntry=hpicfLayer3VlanConfigEntry, hpicfLayer3VlanConfigMIBGroups=hpicfLayer3VlanConfigMIBGroups, hpicfL3VlanConfigMIBCompliances=hpicfL3VlanConfigMIBCompliances)
class BaseClient(object): def __init__(self, username, password, randsalt): ## password = {MD5(pwrd) for old clients, SHA256(pwrd + salt) for new clients} ## randsalt = {"" for old clients, random 16-byte binary string for new clients} ## (here "old" means user was registered over an unencrypted link, without salt) self.set_user_pwrd_salt(username, (password, randsalt)) ## note: do not call on Client instances prior to login def has_legacy_password(self): return (len(self.randsalt) == 0) def set_user_pwrd_salt(self, user_name = "", pwrd_hash_salt = ("", "")): assert(type(pwrd_hash_salt) == tuple) self.username = user_name self.password = pwrd_hash_salt[0] self.randsalt = pwrd_hash_salt[1] def set_pwrd_salt(self, pwrd_hash_salt): assert(type(pwrd_hash_salt) == tuple) self.password = pwrd_hash_salt[0] self.randsalt = pwrd_hash_salt[1]
class Baseclient(object): def __init__(self, username, password, randsalt): self.set_user_pwrd_salt(username, (password, randsalt)) def has_legacy_password(self): return len(self.randsalt) == 0 def set_user_pwrd_salt(self, user_name='', pwrd_hash_salt=('', '')): assert type(pwrd_hash_salt) == tuple self.username = user_name self.password = pwrd_hash_salt[0] self.randsalt = pwrd_hash_salt[1] def set_pwrd_salt(self, pwrd_hash_salt): assert type(pwrd_hash_salt) == tuple self.password = pwrd_hash_salt[0] self.randsalt = pwrd_hash_salt[1]
TITLE = "Metadata extractor" SAVE = "Save" OPEN = "Open" EXTRACT = "Extract" DELETE = "Delete" META_TITLE = "title" META_NAMES = "names" META_CONTENT = "content" META_LOCATIONS = "locations" META_KEYWORD = "keyword" META_REF = "reference" TYPE_TXT = "txt" TYPE_ISO19115v2 = "iso19115v2" TYPE_FGDC = "fgdc" LABLE_NAME = "Name" LABLE_ORGANISATION = "Organisation" LABLE_PHONE = "Phone" LABLE_FACS = "Facs" LABLE_DELIVERY_POINT = "Delivery point" LABLE_CITY = "City" LABLE_AREA = "Area" LABLE_POSTAL_CODE = "Postal code" LABLE_COUNTRY = "Country" LABLE_EMAIL = "Email" LABLE_TYPE = "Type" LABLE_WEST = "West" LABLE_EAST = "East" LABLE_NORTH = "North" LABLE_SOUTH = "South" LABLE_LINK = "Link" LABLE_ORIGIN = "Origin" LABLE_TITLE = "Title" LABLE_DATE = "Date" LABLE_DATE_BEGIN = "Date begin" LABLE_DATE_END = "Date end" LABLE_DESCRIPT_ABSTRACT = "Abstract" LABLE_DESCRIPT_PURPOSE = "Purpose" LABLE_DESCRIPT_SUPPLEMENTAL = "Supplemental" LABLE_STATUS_PROGRESS = "Progress" LABLE_POSTAL_STATUS_UPDATE = "Update" LABLE_ACCESS = "Access" LABLE_UUID = "UUID" LABLE_CB_UUID = "Generate random UUID" LABLE_LOCATION = "Locations" LABLE_KEY_WORD = "Key words" DIALOG_TITLE_ABOUT = "About" DIALOG_TITLE_SETTINGS = "Settings" DIALOG_BTN_OK = "OK" LABLE_ABOUT_NAME = "Name" LABLE_ABOUT_VERSION = "Version" LABLE_ABOUT_AUTHOR = "Author" LABLE_HOME_PAGE = "Home page" TOOLTIP_DELETE_ELEMENT = "Delete element" TOOLTIP_ADD_REFERENCE = "Add reference" TOOLTIP_ADD_LOCATION = "Add location" TOOLTIP_ADD_KEYWORD = "Add keyword" TOOLTIP_ADD_PERSON = "Add person" TOOLTIP_OPEN_PDF = "Open PDF" TOOLTIP_SAVE_METADATA = "Save metadata" TOOLTIP_EXTRACT_METADATA = "Extract metadata" TAB_CONTROL = "Control" TAB_INFO = "Info" TAB_CONTACT = "Contact" TAB_PERSON = "Person" TAB_KEYWORD = "Keyword" TAB_LOCATION = "Location" TAB_REFERENCE = "Reference" BTN_ADD = "Add" MENU_ABOUT = "About" MENU_EXIT = "Exit" MENU_FILE = "&File" MENU_QUESTION = "&?" MENU_HELP = "Help" MENU_LOAD = "Load" MENU_FILE_LOAD = "Load file" MENU_EXTRACT = "Extract" MENU_SAVE = "Save" MENU_OPEN = "Open" MENU_SETTINGS = "Settings" MENU_TOOLTIP_HELP = "Help" MENU_TOOLTIP_ABOUT = "About" MENU_TOOLTIP_OPEN_PDF = "Open pdf file" MENU_TOOLTIP_LOAD_METADATA = "Load metadata" MENU_TOOLTIP_LOAD_FILE_METADATA = "Load file metadata" MENU_TOOLTIP_EXTRACT_METADATA = "Extract metadata" MENU_TOOLTIP_SAVE_METADATA = "Save file with metadata" MENU_TOOLTIP_EXIT = "Exit application" MENU_TOOLTIP_SETTINGS = "Settings" ICON_CLOSE = "data/icons/close.png" ICON_OPEN = "data/icons/open.png" ICON_SAVE = "data/icons/save.png" ICON_PROCESS = "data/icons/process.png" ICON_LOAD = "data/icons/load.png"
title = 'Metadata extractor' save = 'Save' open = 'Open' extract = 'Extract' delete = 'Delete' meta_title = 'title' meta_names = 'names' meta_content = 'content' meta_locations = 'locations' meta_keyword = 'keyword' meta_ref = 'reference' type_txt = 'txt' type_iso19115v2 = 'iso19115v2' type_fgdc = 'fgdc' lable_name = 'Name' lable_organisation = 'Organisation' lable_phone = 'Phone' lable_facs = 'Facs' lable_delivery_point = 'Delivery point' lable_city = 'City' lable_area = 'Area' lable_postal_code = 'Postal code' lable_country = 'Country' lable_email = 'Email' lable_type = 'Type' lable_west = 'West' lable_east = 'East' lable_north = 'North' lable_south = 'South' lable_link = 'Link' lable_origin = 'Origin' lable_title = 'Title' lable_date = 'Date' lable_date_begin = 'Date begin' lable_date_end = 'Date end' lable_descript_abstract = 'Abstract' lable_descript_purpose = 'Purpose' lable_descript_supplemental = 'Supplemental' lable_status_progress = 'Progress' lable_postal_status_update = 'Update' lable_access = 'Access' lable_uuid = 'UUID' lable_cb_uuid = 'Generate random UUID' lable_location = 'Locations' lable_key_word = 'Key words' dialog_title_about = 'About' dialog_title_settings = 'Settings' dialog_btn_ok = 'OK' lable_about_name = 'Name' lable_about_version = 'Version' lable_about_author = 'Author' lable_home_page = 'Home page' tooltip_delete_element = 'Delete element' tooltip_add_reference = 'Add reference' tooltip_add_location = 'Add location' tooltip_add_keyword = 'Add keyword' tooltip_add_person = 'Add person' tooltip_open_pdf = 'Open PDF' tooltip_save_metadata = 'Save metadata' tooltip_extract_metadata = 'Extract metadata' tab_control = 'Control' tab_info = 'Info' tab_contact = 'Contact' tab_person = 'Person' tab_keyword = 'Keyword' tab_location = 'Location' tab_reference = 'Reference' btn_add = 'Add' menu_about = 'About' menu_exit = 'Exit' menu_file = '&File' menu_question = '&?' menu_help = 'Help' menu_load = 'Load' menu_file_load = 'Load file' menu_extract = 'Extract' menu_save = 'Save' menu_open = 'Open' menu_settings = 'Settings' menu_tooltip_help = 'Help' menu_tooltip_about = 'About' menu_tooltip_open_pdf = 'Open pdf file' menu_tooltip_load_metadata = 'Load metadata' menu_tooltip_load_file_metadata = 'Load file metadata' menu_tooltip_extract_metadata = 'Extract metadata' menu_tooltip_save_metadata = 'Save file with metadata' menu_tooltip_exit = 'Exit application' menu_tooltip_settings = 'Settings' icon_close = 'data/icons/close.png' icon_open = 'data/icons/open.png' icon_save = 'data/icons/save.png' icon_process = 'data/icons/process.png' icon_load = 'data/icons/load.png'
class SpaceAge(object): def __init__(self, seconds): self.seconds = seconds def on_earth(self): return round(self.seconds / 31557600, 2) def on_mercury(self): earth = self.on_earth() return round(earth / 0.2408467, 2) def on_venus(self): return round(self.seconds/ 31557600 / 0.61519726, 2) def on_mars(self): earth = self.on_earth() return round(earth / 1.8808158, 2) def on_jupiter(self): earth = self.on_earth() return round(earth / 11.862615, 2) def on_saturn(self): earth = self.on_earth() return round(earth / 29.447498, 2) def on_uranus(self): earth = self.on_earth() return round(earth / 84.016846, 2) def on_neptune(self): earth = self.on_earth() return round(earth / 164.79132, 2)
class Spaceage(object): def __init__(self, seconds): self.seconds = seconds def on_earth(self): return round(self.seconds / 31557600, 2) def on_mercury(self): earth = self.on_earth() return round(earth / 0.2408467, 2) def on_venus(self): return round(self.seconds / 31557600 / 0.61519726, 2) def on_mars(self): earth = self.on_earth() return round(earth / 1.8808158, 2) def on_jupiter(self): earth = self.on_earth() return round(earth / 11.862615, 2) def on_saturn(self): earth = self.on_earth() return round(earth / 29.447498, 2) def on_uranus(self): earth = self.on_earth() return round(earth / 84.016846, 2) def on_neptune(self): earth = self.on_earth() return round(earth / 164.79132, 2)
class Tester(object): def __init__(self): self.results = dict() self.params = dict() self.problem_data = dict() def set_params(self, params): self.params = params
class Tester(object): def __init__(self): self.results = dict() self.params = dict() self.problem_data = dict() def set_params(self, params): self.params = params
class SlackResponseTool: @classmethod def response2is_ok(cls, response): return response["ok"] is True @classmethod def response2j_resopnse(cls, response): return response.data
class Slackresponsetool: @classmethod def response2is_ok(cls, response): return response['ok'] is True @classmethod def response2j_resopnse(cls, response): return response.data
#!/usr/bin/env python NAME = 'Cloudflare (Cloudflare Inc.)' def is_waf(self): # This should be given first priority (most reliable) if self.matchcookie('__cfduid'): return True # Not all servers return cloudflare-nginx, only nginx ones if self.matchheader(('server', 'cloudflare-nginx')) or self.matchheader(('server', 'cloudflare')): return True # Found a new nice fingerprint for cloudflare if self.matchheader(('cf-ray', '.*')): return True return False
name = 'Cloudflare (Cloudflare Inc.)' def is_waf(self): if self.matchcookie('__cfduid'): return True if self.matchheader(('server', 'cloudflare-nginx')) or self.matchheader(('server', 'cloudflare')): return True if self.matchheader(('cf-ray', '.*')): return True return False
s = input() K = int(input()) n = len(s) substr = set() for i in range(n): for j in range(i + 1, i + 1 + K): if j <= n: substr.add(s[i:j]) substr = sorted(list(substr)) print(substr[K - 1])
s = input() k = int(input()) n = len(s) substr = set() for i in range(n): for j in range(i + 1, i + 1 + K): if j <= n: substr.add(s[i:j]) substr = sorted(list(substr)) print(substr[K - 1])
def exc(): a=10 b=0 try: c=a/b except(ZeroDivisionError ): print("Divide by zero") exc()
def exc(): a = 10 b = 0 try: c = a / b except ZeroDivisionError: print('Divide by zero') exc()
A, B, K = map(int, input().split()) for i, num in enumerate(range(A, B + 1)): if i + 1 > K: break print(num) x = [] for i, num in enumerate(range(B, A-1, -1)): if i + 1 > K: break x.append(num) x.sort() k = B - A +1 for i in x: if k < 2 * K: k += 1 else: print(i)
(a, b, k) = map(int, input().split()) for (i, num) in enumerate(range(A, B + 1)): if i + 1 > K: break print(num) x = [] for (i, num) in enumerate(range(B, A - 1, -1)): if i + 1 > K: break x.append(num) x.sort() k = B - A + 1 for i in x: if k < 2 * K: k += 1 else: print(i)
s = sum(range(1, 101)) ** 2 ss = sum(list(map(lambda x: x ** 2, range(1, 101)))) print(s - ss)
s = sum(range(1, 101)) ** 2 ss = sum(list(map(lambda x: x ** 2, range(1, 101)))) print(s - ss)
class Solution(object): def generateParenthesis(self, n): # corner case if n == 0: return [] # level: tree level # openCount: open bracket count def dfs(level, n1, n2, n, stack, ret, openCount): if level == 2 * n: ret.append("".join(stack[:])) # dfs if n1 < n: stack.append("(") dfs(level + 1, n1 + 1, n2, n, stack, ret, openCount + 1) stack.pop() if openCount >= 1 and n2 < n: stack.append(")") dfs(level + 1, n1, n2 + 1, n, stack, ret, openCount - 1) stack.pop() stack = list() ret = list() dfs(0, 0, 0, n, stack, ret, 0) return ret
class Solution(object): def generate_parenthesis(self, n): if n == 0: return [] def dfs(level, n1, n2, n, stack, ret, openCount): if level == 2 * n: ret.append(''.join(stack[:])) if n1 < n: stack.append('(') dfs(level + 1, n1 + 1, n2, n, stack, ret, openCount + 1) stack.pop() if openCount >= 1 and n2 < n: stack.append(')') dfs(level + 1, n1, n2 + 1, n, stack, ret, openCount - 1) stack.pop() stack = list() ret = list() dfs(0, 0, 0, n, stack, ret, 0) return ret
def find(n: int): for i in range(1, 1000001): total = 0 for j in str(i): total += int(j) total += i if total == n: print(i) return print(0) find(int(input()))
def find(n: int): for i in range(1, 1000001): total = 0 for j in str(i): total += int(j) total += i if total == n: print(i) return print(0) find(int(input()))
if True: pass else: x = 3
if True: pass else: x = 3
print("Welcome to the Band Name Generator.") city_name =input("What's name of the city you grew up in?\n") pet_name =input("What's your pet's name?\n") print("Your band name could be Bristole Rabbit")
print('Welcome to the Band Name Generator.') city_name = input("What's name of the city you grew up in?\n") pet_name = input("What's your pet's name?\n") print('Your band name could be Bristole Rabbit')
class Settings: info = { "version": "0.2.0", "description": "Python library which allows to read, modify, create and run EnergyPlus files and simulations." } groups = { 'simulation_parameters': [ 'Timestep', 'Version', 'SimulationControl', 'ShadowCalculations', 'SurfaceConvectionAlgorithm:Outside', 'SurfaceConvectionAlgorithm:Inside' 'GlobalGeometryRules', 'HeatBalanceAlgorithm' ], 'building': [ 'Site:Location', 'Building' ], 'climate': [ 'SizingPeriod:DesignDay', 'Site:GroundTemperature:BuildingSurface', ], 'schedules': [ 'ScheduleTypeLimits', 'ScheduleDayHourly', 'ScheduleDayInterval', 'ScheduleWeekDaily', 'ScheduleWeekCompact', 'ScheduleConstant', 'ScheduleFile', 'ScheduleDayList', 'ScheduleYear', 'ScheduleCompact' ], 'construction': [ 'Material', 'Material:NoMass', 'Material:AirGap', 'WindowMaterial:SimpleGlazingSystem', 'WindowMaterial:Glazing', 'WindowMaterial:Gas', 'WindowMaterial:Gap', 'Construction' ], 'internal_gains': [ 'People', 'Lights', 'ElectricEquipment', ], 'airflow': [ 'ZoneInfiltration:DesignFlowRate', 'ZoneVentilation:DesignFlowRate' ], 'zone': [ 'BuildingSurface:Detailed', ], 'zone_control': [ 'ZoneControl:Thermostat', 'ThermostatSetpoint:SingleHeating', 'ThermostatSetpoint:SingleCooling', 'ThermostatSetpoint:SingleHeatingOrCooling', 'ThermostatSetpoint:DualSetpoint', ], 'systems': [ 'Zone:IdealAirLoadsSystem', 'HVACTemplate:Zone:IdealLoadsAirSystem' ], 'outputs': [ 'Output:SQLite', 'Output:Table:SummaryReports' ] }
class Settings: info = {'version': '0.2.0', 'description': 'Python library which allows to read, modify, create and run EnergyPlus files and simulations.'} groups = {'simulation_parameters': ['Timestep', 'Version', 'SimulationControl', 'ShadowCalculations', 'SurfaceConvectionAlgorithm:Outside', 'SurfaceConvectionAlgorithm:InsideGlobalGeometryRules', 'HeatBalanceAlgorithm'], 'building': ['Site:Location', 'Building'], 'climate': ['SizingPeriod:DesignDay', 'Site:GroundTemperature:BuildingSurface'], 'schedules': ['ScheduleTypeLimits', 'ScheduleDayHourly', 'ScheduleDayInterval', 'ScheduleWeekDaily', 'ScheduleWeekCompact', 'ScheduleConstant', 'ScheduleFile', 'ScheduleDayList', 'ScheduleYear', 'ScheduleCompact'], 'construction': ['Material', 'Material:NoMass', 'Material:AirGap', 'WindowMaterial:SimpleGlazingSystem', 'WindowMaterial:Glazing', 'WindowMaterial:Gas', 'WindowMaterial:Gap', 'Construction'], 'internal_gains': ['People', 'Lights', 'ElectricEquipment'], 'airflow': ['ZoneInfiltration:DesignFlowRate', 'ZoneVentilation:DesignFlowRate'], 'zone': ['BuildingSurface:Detailed'], 'zone_control': ['ZoneControl:Thermostat', 'ThermostatSetpoint:SingleHeating', 'ThermostatSetpoint:SingleCooling', 'ThermostatSetpoint:SingleHeatingOrCooling', 'ThermostatSetpoint:DualSetpoint'], 'systems': ['Zone:IdealAirLoadsSystem', 'HVACTemplate:Zone:IdealLoadsAirSystem'], 'outputs': ['Output:SQLite', 'Output:Table:SummaryReports']}
DEBUG = False SECRET_KEY = '3tJhmR0XFbSOUG02Wpp7' CSRF_ENABLED = True CSRF_SESSION_LKEY = 'e8uXRmxo701QarZiXxGf'
debug = False secret_key = '3tJhmR0XFbSOUG02Wpp7' csrf_enabled = True csrf_session_lkey = 'e8uXRmxo701QarZiXxGf'
''' Statement Given a month - an integer from 1 to 12, print the number of days in it in the year 2017. Example input #1 1 (January) Example output #1 31 Example input #2 2 (February) Example output #2 28 ''' month = int(input()) if month == 2: print(28) elif month < 8: if month % 2 == 0: print(30) else: print(31) else: if month % 2 == 0: print(31) else: print(30)
""" Statement Given a month - an integer from 1 to 12, print the number of days in it in the year 2017. Example input #1 1 (January) Example output #1 31 Example input #2 2 (February) Example output #2 28 """ month = int(input()) if month == 2: print(28) elif month < 8: if month % 2 == 0: print(30) else: print(31) elif month % 2 == 0: print(31) else: print(30)
# Challenge No 9 Intermediate # https://www.reddit.com/r/dailyprogrammer/comments/pu1y6/2172012_challenge_9_intermediate/ # Take a string, scan file for string, and replace with another string def main(): pass def f_r(): fn = input('Please input filename: ') sstring = input('Please input string to search: ') rstring = input('Please input string to replace: ') with open(fn, 'r') as f: filedata = f.read() filedata = filedata.replace(sstring, rstring) with open(fn, 'w') as f: f.write(filedata) # To print line by line: # with open('*.txt', 'r') as f: # for line in f: # print(line) if __name__ == '__main__': main()
def main(): pass def f_r(): fn = input('Please input filename: ') sstring = input('Please input string to search: ') rstring = input('Please input string to replace: ') with open(fn, 'r') as f: filedata = f.read() filedata = filedata.replace(sstring, rstring) with open(fn, 'w') as f: f.write(filedata) if __name__ == '__main__': main()
list1=[2,3,8,5,9,2,7,4] i=0 print("before list",list1) while i<len(list1): j=0 while j<i: if list1[i]<list1[j]: temp=list1[i] list1[i]=list1[j] list1[j]=temp j+=1 i+=1 print("after",list1)
list1 = [2, 3, 8, 5, 9, 2, 7, 4] i = 0 print('before list', list1) while i < len(list1): j = 0 while j < i: if list1[i] < list1[j]: temp = list1[i] list1[i] = list1[j] list1[j] = temp j += 1 i += 1 print('after', list1)
class TimezoneTool: @classmethod def tzdb2abbreviation(cls, tzdb): if tzdb == "Asia/Seoul": return "KST" if tzdb == "America/Los_Angeles": return "ET" raise NotImplementedError({"tzdb":tzdb})
class Timezonetool: @classmethod def tzdb2abbreviation(cls, tzdb): if tzdb == 'Asia/Seoul': return 'KST' if tzdb == 'America/Los_Angeles': return 'ET' raise not_implemented_error({'tzdb': tzdb})
def shortest_path(sx, sy, maze): w = len(maze[0]) h = len(maze) board = [[None for i in range(w)] for i in range(h)] board[sx][sy] = 1 arr = [(sx, sy)] while arr: x, y = arr.pop(0) for i in [[1, 0], [-1, 0], [0, -1], [0, 1]]: nx, ny = x + i[0], y + i[1] if 0 <= nx < h and 0 <= ny < w: if board[nx][ny] is None: board[nx][ny] = board[x][y] + 1 if maze[nx][ny] == 1: continue arr.append((nx, ny)) return board def solution(maze): w = len(maze[0]) h = len(maze) tb = shortest_path(0, 0, maze) bt = shortest_path(h-1, w-1, maze) board = [] ans = 2 ** 32-1 for i in range(h): for j in range(w): if tb[i][j] and bt[i][j]: ans = min(tb[i][j] + bt[i][j] - 1, ans) return ans
def shortest_path(sx, sy, maze): w = len(maze[0]) h = len(maze) board = [[None for i in range(w)] for i in range(h)] board[sx][sy] = 1 arr = [(sx, sy)] while arr: (x, y) = arr.pop(0) for i in [[1, 0], [-1, 0], [0, -1], [0, 1]]: (nx, ny) = (x + i[0], y + i[1]) if 0 <= nx < h and 0 <= ny < w: if board[nx][ny] is None: board[nx][ny] = board[x][y] + 1 if maze[nx][ny] == 1: continue arr.append((nx, ny)) return board def solution(maze): w = len(maze[0]) h = len(maze) tb = shortest_path(0, 0, maze) bt = shortest_path(h - 1, w - 1, maze) board = [] ans = 2 ** 32 - 1 for i in range(h): for j in range(w): if tb[i][j] and bt[i][j]: ans = min(tb[i][j] + bt[i][j] - 1, ans) return ans
# ----------------------------------------------------------------------------- # Copyright (c) 2013-2022, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) # ----------------------------------------------------------------------------- # numpy._pytesttester is unconditionally imported by numpy.core, thus we can not exclude _pytesttester (which would be # preferred). Anyway, we can avoid importing pytest, which pulls in anotehr 150+ modules. See # https://github.com/numpy/numpy/issues/17183 excludedimports = ["pytest"]
excludedimports = ['pytest']
# 1 # Answer: Programming language # 2 # Answer: B # 3 print("Hi") # 4 # Answer: quit() # 5 # Answer: 6 # 6 # Answer: B # 7 # Answer: - 10 + # 8 # Answer: >>> 1 / 0 # 9 # Answer: A # 10 # Answer: 15.0 # 11 # Answer: 3 # 12 # Answer: A # 13 # Answer: \"something\" # 14 # Answer: input # 15 # Answer: "World" # 16 # Answer: D # 17 # Answer: 777 # 18 # Answer: A # 19 # Answer: A # 20 # Answer: B # 21 # Answer: 7 # 22 # Answer: A # 23 # Answer: 20 # 24 # Answer: 12 # 25 # Answer: aaa # 26 # Answer: A # 27 # Answer: C # 28 # Answer: B # 29 # Answer: 82 # 30 # Answer: 2
print('Hi')
#!/usr/bin/env python NAME = 'BIG-IP Local Traffic Manager (F5 Networks)' def is_waf(self): if self.matchcookie(r'^BIGipServer'): return True elif self.matchheader(('X-Cnection', r'^close$'), attack=True): return True else: return False
name = 'BIG-IP Local Traffic Manager (F5 Networks)' def is_waf(self): if self.matchcookie('^BIGipServer'): return True elif self.matchheader(('X-Cnection', '^close$'), attack=True): return True else: return False
print("ma petite chaine en or", end='')
print('ma petite chaine en or', end='')
# function for insertion sort def Insertion_Sort(list): for i in range(1, len(list)): temp = list[i] j = i - 1 while j >= 0 and list[j] > temp: list[j + 1] = list[j] j -= 1 list[j + 1] = temp # function to print list def Print_list(list): for i in range(0, len(list)): print(list[i],end=" ") print() num = int(input()) list = [] for i in range(0, num): list.append(int(input())) Insertion_Sort(list) Print_list(list) ''' Input : num = 6 array = [1, 6, 3, 3, 5, 2] Output : [1, 2, 3, 3, 5, 6] '''
def insertion__sort(list): for i in range(1, len(list)): temp = list[i] j = i - 1 while j >= 0 and list[j] > temp: list[j + 1] = list[j] j -= 1 list[j + 1] = temp def print_list(list): for i in range(0, len(list)): print(list[i], end=' ') print() num = int(input()) list = [] for i in range(0, num): list.append(int(input())) insertion__sort(list) print_list(list) '\nInput :\nnum = 6\narray = [1, 6, 3, 3, 5, 2]\n\nOutput :\n[1, 2, 3, 3, 5, 6]\n'
def cleanupFile(file_path): with open(file_path,'r') as f: with open("data/transactions.csv",'w') as f1: next(f) # skip header line for line in f: f1.write(line) def getDateParts(date_string): year = '' month = '' day = '' date_parts = date_string.split('-') if (len(date_parts) > 2): year = date_parts[0] month = date_parts[1] day = date_parts[2] return year, month, day def dollarStringToNumber(dollar_string): numeric_value = 0.0 # float conversion doesn't like commas so remove them dollar_string = dollar_string.replace(',', '') # remove $ and any leading +/- character parts = dollar_string.split('$') if (len(parts) > 1): value_string = parts[1] numeric_value = float(value_string) return numeric_value
def cleanup_file(file_path): with open(file_path, 'r') as f: with open('data/transactions.csv', 'w') as f1: next(f) for line in f: f1.write(line) def get_date_parts(date_string): year = '' month = '' day = '' date_parts = date_string.split('-') if len(date_parts) > 2: year = date_parts[0] month = date_parts[1] day = date_parts[2] return (year, month, day) def dollar_string_to_number(dollar_string): numeric_value = 0.0 dollar_string = dollar_string.replace(',', '') parts = dollar_string.split('$') if len(parts) > 1: value_string = parts[1] numeric_value = float(value_string) return numeric_value
#calculation of power using recursion def exponentOfNumber(base,power): if power == 0: return 1 else: return base * exponentOfNumber(base,power-1) print("Enter only positive numbers below: ",) print("Enter a base: ") number = int(input()) print("Enter a power: ") exponent = int(input()) result = exponentOfNumber(number,exponent) print(number,"raised to the power of",exponent,"is",result)
def exponent_of_number(base, power): if power == 0: return 1 else: return base * exponent_of_number(base, power - 1) print('Enter only positive numbers below: ') print('Enter a base: ') number = int(input()) print('Enter a power: ') exponent = int(input()) result = exponent_of_number(number, exponent) print(number, 'raised to the power of', exponent, 'is', result)
def sma(): pass def ema(): pass
def sma(): pass def ema(): pass
dict1={'Influenza':['Relenza','B 0 D'],'Swine Flu':['Symmetrel','B L D'],'Cholera':['Ciprofloxacin','B 0 D'],'Typhoid':['Azithromycin','B L D'],'Sunstroke':['Barbiturates','0 0 D'],'Common cold':['Ibuprufen','B 0 D'],'Whooping Cough':['Erthromycin','B 0 D'],'Gastroentritis':['Gelusil','B 0 D'],'Conjunctivitus':['Romycin','B 0 D'],'Dehydration':['ORS','B L D'],'Asthama':['Terbutaline','B L D'],'Cardiac arrest':['Adrenaline','B 0 D'],'Malaria':['Doxycyline','B L D'],'Anaemia':['Hydroxyurea','B 0 D'],'Pneumonia':['Ibuprofen','B 0 D'],'Arthritis':['Lubrijoint 750','B 0 D'],'Depression':['Sleeping Pills','B L D'],'Food poisoning':['Norflox','B 0 D'],'Migraine':['Crocin','B 0 D'],'Insomnia':['Sleeping Pills','B 0 D']} {'Influenza':'Relenza','Swine Flu':'Symmetrel','Cholera':'Ciprofloxacin','Typhoid':'Azithromycin','Sunstroke':'Barbiturates','Common cold':'Ibuprufen','Whooping Cough':'Erthromycin','Gastroentritis':'Gelusil','Conjunctivitus':'Romycin','Dehydration':'ORS','Asthama':'Terbutaline','Cardiac arrest':'Adrenaline','Malaria':'Doxycyline','Anaemia':'Hydroxyurea','Pneumonia':'Ibuprofen','Arthritis':'Lubrijoint 750','Depression':'Sleeping Pills','Food poisoning':'Norflox','Migraine':'Crocin','Insomnia':'Sleeping Pills'} dict1={'Influenza':['Relenza','After Breakfast 0 After Dinner'],'Swine Flu':['Symmetrel','After Breakfast After Lunch After Dinner'],'Cholera':['Ciprofloxacin','After Breakfast 0 After Dinner'],'Typhoid':['Azithromycin','After Breakfast After Lunch After Dinner'],'Sunstroke':['After Breakfastarbiturates','0 0 After Dinner'],'Common cold':['Ibuprufen','After Breakfast 0 After Dinner'],'Whooping Cough':['Erthromycin','After Breakfast 0 After Dinner'],'Gastroentritis':['Gelusil','After Breakfast 0 After Dinner'],'Conjunctivitus':['Romycin','After Breakfast 0 After Dinner'],'Dehydration':['ORS','After Breakfast After Lunch After Dinner'],'Asthama':['Terbutaline','After Breakfast After Lunch After Dinner'],'Cardiac arrest':['Adrenaline','After Breakfast 0 After Dinner'],'Malaria':['Doxycyline','B After Lunch After Dinner'],'Anaemia':['Hydroxyurea','After Breakfast 0 After Dinner'],'Pneumonia':['Ibuprofen','After Breakfast 0 After Dinner'],'Arthritis':['Lubrijoint 750','After Breakfast 0 After Dinner'],'Depression':['Sleeping Pills','After Breakfast After Lunch After Dinner'],'Food poisoning':['Norflox','After Breakfast 0 After Dinner'],'Migraine':['Crocin','After Breakfast 0 After Dinner'],'Insomnia':['Sleeping Pills','After Breakfast 0 After Dinner']}
dict1 = {'Influenza': ['Relenza', 'B 0 D'], 'Swine Flu': ['Symmetrel', 'B L D'], 'Cholera': ['Ciprofloxacin', 'B 0 D'], 'Typhoid': ['Azithromycin', 'B L D'], 'Sunstroke': ['Barbiturates', '0 0 D'], 'Common cold': ['Ibuprufen', 'B 0 D'], 'Whooping Cough': ['Erthromycin', 'B 0 D'], 'Gastroentritis': ['Gelusil', 'B 0 D'], 'Conjunctivitus': ['Romycin', 'B 0 D'], 'Dehydration': ['ORS', 'B L D'], 'Asthama': ['Terbutaline', 'B L D'], 'Cardiac arrest': ['Adrenaline', 'B 0 D'], 'Malaria': ['Doxycyline', 'B L D'], 'Anaemia': ['Hydroxyurea', 'B 0 D'], 'Pneumonia': ['Ibuprofen', 'B 0 D'], 'Arthritis': ['Lubrijoint 750', 'B 0 D'], 'Depression': ['Sleeping Pills', 'B L D'], 'Food poisoning': ['Norflox', 'B 0 D'], 'Migraine': ['Crocin', 'B 0 D'], 'Insomnia': ['Sleeping Pills', 'B 0 D']} {'Influenza': 'Relenza', 'Swine Flu': 'Symmetrel', 'Cholera': 'Ciprofloxacin', 'Typhoid': 'Azithromycin', 'Sunstroke': 'Barbiturates', 'Common cold': 'Ibuprufen', 'Whooping Cough': 'Erthromycin', 'Gastroentritis': 'Gelusil', 'Conjunctivitus': 'Romycin', 'Dehydration': 'ORS', 'Asthama': 'Terbutaline', 'Cardiac arrest': 'Adrenaline', 'Malaria': 'Doxycyline', 'Anaemia': 'Hydroxyurea', 'Pneumonia': 'Ibuprofen', 'Arthritis': 'Lubrijoint 750', 'Depression': 'Sleeping Pills', 'Food poisoning': 'Norflox', 'Migraine': 'Crocin', 'Insomnia': 'Sleeping Pills'} dict1 = {'Influenza': ['Relenza', 'After Breakfast 0 After Dinner'], 'Swine Flu': ['Symmetrel', 'After Breakfast After Lunch After Dinner'], 'Cholera': ['Ciprofloxacin', 'After Breakfast 0 After Dinner'], 'Typhoid': ['Azithromycin', 'After Breakfast After Lunch After Dinner'], 'Sunstroke': ['After Breakfastarbiturates', '0 0 After Dinner'], 'Common cold': ['Ibuprufen', 'After Breakfast 0 After Dinner'], 'Whooping Cough': ['Erthromycin', 'After Breakfast 0 After Dinner'], 'Gastroentritis': ['Gelusil', 'After Breakfast 0 After Dinner'], 'Conjunctivitus': ['Romycin', 'After Breakfast 0 After Dinner'], 'Dehydration': ['ORS', 'After Breakfast After Lunch After Dinner'], 'Asthama': ['Terbutaline', 'After Breakfast After Lunch After Dinner'], 'Cardiac arrest': ['Adrenaline', 'After Breakfast 0 After Dinner'], 'Malaria': ['Doxycyline', 'B After Lunch After Dinner'], 'Anaemia': ['Hydroxyurea', 'After Breakfast 0 After Dinner'], 'Pneumonia': ['Ibuprofen', 'After Breakfast 0 After Dinner'], 'Arthritis': ['Lubrijoint 750', 'After Breakfast 0 After Dinner'], 'Depression': ['Sleeping Pills', 'After Breakfast After Lunch After Dinner'], 'Food poisoning': ['Norflox', 'After Breakfast 0 After Dinner'], 'Migraine': ['Crocin', 'After Breakfast 0 After Dinner'], 'Insomnia': ['Sleeping Pills', 'After Breakfast 0 After Dinner']}
def solve(captcha, step): result = 0 for i in range(len(captcha)): if captcha[i] == captcha[(i + step) % len(captcha)]: result += int(captcha[i]) return result if __name__ == '__main__': solve_part1 = lambda captcha: solve(captcha, 1) solve_part2 = lambda captcha: solve(captcha, len(captcha) // 2) with open('day1.in') as file: captcha = file.read() print(f'Solution to Part 1: {solve_part1(captcha)}') print(f'Solution to Part 2: {solve_part2(captcha)}')
def solve(captcha, step): result = 0 for i in range(len(captcha)): if captcha[i] == captcha[(i + step) % len(captcha)]: result += int(captcha[i]) return result if __name__ == '__main__': solve_part1 = lambda captcha: solve(captcha, 1) solve_part2 = lambda captcha: solve(captcha, len(captcha) // 2) with open('day1.in') as file: captcha = file.read() print(f'Solution to Part 1: {solve_part1(captcha)}') print(f'Solution to Part 2: {solve_part2(captcha)}')
print ('{0:.3f}'.format(1.0/3)) print('{0} / {1} = {2:.3f}'.format(3, 4,3/4 )) # fill with underscores (_) with the text centered # (^) to 11 width '___hello___' print ('{0:_^9}'.format('hello')) def variable(name=''): print('{0:*^12}'.format(name)) variable() print('{0:*^12}'.format('sendra')) variable() # keyword-based print ('{name} read {book} now.'.format(name='My Lovely Friend Sendra', book='A Byte of Python'))
print('{0:.3f}'.format(1.0 / 3)) print('{0} / {1} = {2:.3f}'.format(3, 4, 3 / 4)) print('{0:_^9}'.format('hello')) def variable(name=''): print('{0:*^12}'.format(name)) variable() print('{0:*^12}'.format('sendra')) variable() print('{name} read {book} now.'.format(name='My Lovely Friend Sendra', book='A Byte of Python'))
INH = "Inherent" # The 'address' is inherent in the opcode. e.g. ABX INT = "Interregister" # An pseudo-addressing for an immediate operand which specified registers for the EXG and TFR instructions IMM = "Immediate" # Operand immediately follows the opcode. A literal. Could be 8-bit (LDA), 16-bit (LDD), or 32-bit (LDQ) DIR = "PageDirect" # An 8-bit offset pointer from the base of the direct page, as defined by the DP register. Also known as just 'Direct'. IDX = "Indexed" # Relative to the address in a base register (an index register or stack pointer) EXT = "ExtendedDirect" # A 16-bit pointer to a memory location. Also known as just 'Extended'. REL8 = "Relative8 8-bit" # Program counter relative REL16 = "Relative8 16-bit" # Program counter relative # What about what Leventhal calls 'Register Addressing'. e.g. EXG X,U
inh = 'Inherent' int = 'Interregister' imm = 'Immediate' dir = 'PageDirect' idx = 'Indexed' ext = 'ExtendedDirect' rel8 = 'Relative8 8-bit' rel16 = 'Relative8 16-bit'
''' Given a number A. Find the fatorial of the number. Problem Constraints 1 <= A <= 100 ''' def factorial(A: int) -> int: if A <= 1: return 1 return (A * factorial(A-1)) if __name__ == "__main__": A = 3 print(factorial(A))
""" Given a number A. Find the fatorial of the number. Problem Constraints 1 <= A <= 100 """ def factorial(A: int) -> int: if A <= 1: return 1 return A * factorial(A - 1) if __name__ == '__main__': a = 3 print(factorial(A))
i = 125874 while True: if sorted(str(i)) == sorted(str(i * 2)) == sorted(str(i * 3)) == sorted(str(i * 4)) == sorted(str(i * 5)) == sorted(str(i * 6)): break else: i += 1 print(i)
i = 125874 while True: if sorted(str(i)) == sorted(str(i * 2)) == sorted(str(i * 3)) == sorted(str(i * 4)) == sorted(str(i * 5)) == sorted(str(i * 6)): break else: i += 1 print(i)
#!/usr/bin/env python3 a = ["uno", "dos", "tres"] b = [f"{i:#04d} {e}" for i,e in enumerate(a)] print(b)
a = ['uno', 'dos', 'tres'] b = [f'{i:#04d} {e}' for (i, e) in enumerate(a)] print(b)
def test_app_is_created(app): assert app.name == 'care_api.app' def test_request_returns_404(client): assert client.get('/url_not_found').status_code == 404
def test_app_is_created(app): assert app.name == 'care_api.app' def test_request_returns_404(client): assert client.get('/url_not_found').status_code == 404
def pi_nks(limit: int) -> float: pi: float = 3.0 s: int = 1 for i in range(2, limit, 2): pi += (s*4/(i*(i+1)*(i+2))) s = s*(-1) return pi def pi_gls(limit: int) -> float: pi: float = 0.0 s: int = 1 for i in range(1, limit, 2): pi += (s*(4/i)) s = s*(-1) return pi if __name__ == "__main__": LIMIT: int = 100 print(f"NKS: {pi_nks(limit=LIMIT):.13f}") print(f"GLS: {pi_gls(limit=LIMIT):.13f}")
def pi_nks(limit: int) -> float: pi: float = 3.0 s: int = 1 for i in range(2, limit, 2): pi += s * 4 / (i * (i + 1) * (i + 2)) s = s * -1 return pi def pi_gls(limit: int) -> float: pi: float = 0.0 s: int = 1 for i in range(1, limit, 2): pi += s * (4 / i) s = s * -1 return pi if __name__ == '__main__': limit: int = 100 print(f'NKS: {pi_nks(limit=LIMIT):.13f}') print(f'GLS: {pi_gls(limit=LIMIT):.13f}')
# # Script for converting collected NR data into # the format for comparison with the simulations # def clean_and_save(file1, file2, cx, cy, ech): ''' Remove rows with character ech from the data in file1 column cy and corresponding rows in cx, then save to file2. Column numbering starts with 0. ''' with open(file1, 'r') as fin, open(file2, 'w') as fout: # Skip the header next(fin) for line in fin: temp = line.strip().split() if temp[cy] == ech: continue else: fout.write((' ').join([temp[cx], temp[cy], '\n'])) # Input data_file = 'input_data/New_Rochelle_covid_data.txt' no_entry_mark = '?' # Number of active cases clean_and_save(data_file, 'output/real_active_w_time.txt', 1, 2, no_entry_mark) # Total number of cases clean_and_save(data_file, 'output/real_tot_cases_w_time.txt', 1, 3, no_entry_mark) # Number of deaths in the county clean_and_save(data_file, 'output/real_tot_deaths_county_w_time.txt', 1, 4, no_entry_mark)
def clean_and_save(file1, file2, cx, cy, ech): """ Remove rows with character ech from the data in file1 column cy and corresponding rows in cx, then save to file2. Column numbering starts with 0. """ with open(file1, 'r') as fin, open(file2, 'w') as fout: next(fin) for line in fin: temp = line.strip().split() if temp[cy] == ech: continue else: fout.write(' '.join([temp[cx], temp[cy], '\n'])) data_file = 'input_data/New_Rochelle_covid_data.txt' no_entry_mark = '?' clean_and_save(data_file, 'output/real_active_w_time.txt', 1, 2, no_entry_mark) clean_and_save(data_file, 'output/real_tot_cases_w_time.txt', 1, 3, no_entry_mark) clean_and_save(data_file, 'output/real_tot_deaths_county_w_time.txt', 1, 4, no_entry_mark)
# Set to 1 or 2 to show what we send and receive from the SMTP server SMTP_DEBUG = 0 SMTP_HOST = '' SMTP_PORT = 465 SMTP_FROM_ADDRESSES = () SMTP_TO_ADDRESS = '' # these two can also be set by the environment variables with the same name SMTP_USERNAME = '' SMTP_PASSWORD = '' IMAP_HOSTNAME = '' IMAP_USERNAME = '' IMAP_PASSWORD = '' IMAP_LIST_FOLDER = 'INBOX' CHECK_ACCEPT_AGE_SECONDS = 3600
smtp_debug = 0 smtp_host = '' smtp_port = 465 smtp_from_addresses = () smtp_to_address = '' smtp_username = '' smtp_password = '' imap_hostname = '' imap_username = '' imap_password = '' imap_list_folder = 'INBOX' check_accept_age_seconds = 3600
class Memorability_Prediction: def mem_calculation(frame1): #print ("Inside mem_calculation function") start_time1 = time.time() resized_image = caffe.io.resize_image(frame1,[227,227]) net1.blobs['data'].data[...] = transformer1.preprocess('data', resized_image) value = net1.forward() value = value['fc8-euclidean'] end_time1 = time.time() execution_time1 = end_time1 - start_time1 #print ("*********** \t Execution Time in Memobarility = ", execution_time1, " secs \t***********") return value[0][0]
class Memorability_Prediction: def mem_calculation(frame1): start_time1 = time.time() resized_image = caffe.io.resize_image(frame1, [227, 227]) net1.blobs['data'].data[...] = transformer1.preprocess('data', resized_image) value = net1.forward() value = value['fc8-euclidean'] end_time1 = time.time() execution_time1 = end_time1 - start_time1 return value[0][0]
# # PySNMP MIB module ZYXEL-OAM-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ZYXEL-OAM-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 21:45:03 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") EnabledStatus, = mibBuilder.importSymbols("P-BRIDGE-MIB", "EnabledStatus") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") ModuleIdentity, NotificationType, Counter64, TimeTicks, iso, Counter32, Gauge32, ObjectIdentity, IpAddress, MibIdentifier, Unsigned32, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "NotificationType", "Counter64", "TimeTicks", "iso", "Counter32", "Gauge32", "ObjectIdentity", "IpAddress", "MibIdentifier", "Unsigned32", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Bits") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") esMgmt, = mibBuilder.importSymbols("ZYXEL-ES-SMI", "esMgmt") zyxelOam = ModuleIdentity((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56)) if mibBuilder.loadTexts: zyxelOam.setLastUpdated('201207010000Z') if mibBuilder.loadTexts: zyxelOam.setOrganization('Enterprise Solution ZyXEL') zyxelOamSetup = MibIdentifier((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1)) zyOamState = MibScalar((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 1), EnabledStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: zyOamState.setStatus('current') zyxelOamPortTable = MibTable((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2), ) if mibBuilder.loadTexts: zyxelOamPortTable.setStatus('current') zyxelOamPortEntry = MibTableRow((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: zyxelOamPortEntry.setStatus('current') zyOamPortFunctionsSupported = MibTableColumn((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2, 1, 1), Bits().clone(namedValues=NamedValues(("unidirectionalSupport", 0), ("loopbackSupport", 1), ("eventSupport", 2), ("variableSupport", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: zyOamPortFunctionsSupported.setStatus('current') mibBuilder.exportSymbols("ZYXEL-OAM-MIB", zyxelOam=zyxelOam, zyOamState=zyOamState, PYSNMP_MODULE_ID=zyxelOam, zyxelOamPortEntry=zyxelOamPortEntry, zyxelOamSetup=zyxelOamSetup, zyxelOamPortTable=zyxelOamPortTable, zyOamPortFunctionsSupported=zyOamPortFunctionsSupported)
(octet_string, object_identifier, integer) = mibBuilder.importSymbols('ASN1', 'OctetString', 'ObjectIdentifier', 'Integer') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (value_size_constraint, constraints_union, constraints_intersection, single_value_constraint, value_range_constraint) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'ValueSizeConstraint', 'ConstraintsUnion', 'ConstraintsIntersection', 'SingleValueConstraint', 'ValueRangeConstraint') (if_index,) = mibBuilder.importSymbols('IF-MIB', 'ifIndex') (enabled_status,) = mibBuilder.importSymbols('P-BRIDGE-MIB', 'EnabledStatus') (module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup') (module_identity, notification_type, counter64, time_ticks, iso, counter32, gauge32, object_identity, ip_address, mib_identifier, unsigned32, integer32, mib_scalar, mib_table, mib_table_row, mib_table_column, bits) = mibBuilder.importSymbols('SNMPv2-SMI', 'ModuleIdentity', 'NotificationType', 'Counter64', 'TimeTicks', 'iso', 'Counter32', 'Gauge32', 'ObjectIdentity', 'IpAddress', 'MibIdentifier', 'Unsigned32', 'Integer32', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'Bits') (display_string, textual_convention) = mibBuilder.importSymbols('SNMPv2-TC', 'DisplayString', 'TextualConvention') (es_mgmt,) = mibBuilder.importSymbols('ZYXEL-ES-SMI', 'esMgmt') zyxel_oam = module_identity((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56)) if mibBuilder.loadTexts: zyxelOam.setLastUpdated('201207010000Z') if mibBuilder.loadTexts: zyxelOam.setOrganization('Enterprise Solution ZyXEL') zyxel_oam_setup = mib_identifier((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1)) zy_oam_state = mib_scalar((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 1), enabled_status()).setMaxAccess('readwrite') if mibBuilder.loadTexts: zyOamState.setStatus('current') zyxel_oam_port_table = mib_table((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2)) if mibBuilder.loadTexts: zyxelOamPortTable.setStatus('current') zyxel_oam_port_entry = mib_table_row((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2, 1)).setIndexNames((0, 'IF-MIB', 'ifIndex')) if mibBuilder.loadTexts: zyxelOamPortEntry.setStatus('current') zy_oam_port_functions_supported = mib_table_column((1, 3, 6, 1, 4, 1, 890, 1, 15, 3, 56, 1, 2, 1, 1), bits().clone(namedValues=named_values(('unidirectionalSupport', 0), ('loopbackSupport', 1), ('eventSupport', 2), ('variableSupport', 3)))).setMaxAccess('readwrite') if mibBuilder.loadTexts: zyOamPortFunctionsSupported.setStatus('current') mibBuilder.exportSymbols('ZYXEL-OAM-MIB', zyxelOam=zyxelOam, zyOamState=zyOamState, PYSNMP_MODULE_ID=zyxelOam, zyxelOamPortEntry=zyxelOamPortEntry, zyxelOamSetup=zyxelOamSetup, zyxelOamPortTable=zyxelOamPortTable, zyOamPortFunctionsSupported=zyOamPortFunctionsSupported)
class ToolVariables: @classmethod def ExcheckUpdate(cls): cls.INTAG = "ExCheck" return cls
class Toolvariables: @classmethod def excheck_update(cls): cls.INTAG = 'ExCheck' return cls
class ScheduleItem: def __init__(item, task): item.task = task item.start_time = None item.end_time = None item.child_start_time = None item.pred_task = None item.duration = task.duration item.total_effort = None item.who = '' class Schedule: def __init__(schedule, target, schedule_items, critical_path, items_by_resource): schedule.target = target if isinstance(target, ScheduleItem) else schedule_items[target.__qualname__] schedule.items = schedule_items schedule.critical_path = critical_path schedule.items_by_resource = items_by_resource schedule.duration = schedule.target.end_time schedule.outdir = None
class Scheduleitem: def __init__(item, task): item.task = task item.start_time = None item.end_time = None item.child_start_time = None item.pred_task = None item.duration = task.duration item.total_effort = None item.who = '' class Schedule: def __init__(schedule, target, schedule_items, critical_path, items_by_resource): schedule.target = target if isinstance(target, ScheduleItem) else schedule_items[target.__qualname__] schedule.items = schedule_items schedule.critical_path = critical_path schedule.items_by_resource = items_by_resource schedule.duration = schedule.target.end_time schedule.outdir = None
#%% class Book: def __init__(self,author,name,pageNum): self.__author = author self.__name = name self.__pageNum = pageNum def getAuthor(self): return self.__author def getName(self): return self.__name def getPageNum(self): return self.__pageNum def __str__(self): return "Author is: " + self.__author + " book name: " + self.__name + " number of pages: " + str(self.__pageNum) def __len__(self): return self.__pageNum def __del__(self): print("The book {} has deleted!".format(self.__name)) x = Book("Jon Duckett","HTML & CSS",460) print(x) del x #%%
class Book: def __init__(self, author, name, pageNum): self.__author = author self.__name = name self.__pageNum = pageNum def get_author(self): return self.__author def get_name(self): return self.__name def get_page_num(self): return self.__pageNum def __str__(self): return 'Author is: ' + self.__author + ' book name: ' + self.__name + ' number of pages: ' + str(self.__pageNum) def __len__(self): return self.__pageNum def __del__(self): print('The book {} has deleted!'.format(self.__name)) x = book('Jon Duckett', 'HTML & CSS', 460) print(x) del x
# --------------------------------------------------------------------------------------------- # Copyright (c) Akash Nag. All rights reserved. # Licensed under the MIT License. See LICENSE.md in the project root for license information. # --------------------------------------------------------------------------------------------- # This module implements the CursorPosition abstraction class CursorPosition: def __init__(self, y, x): self.y = y self.x = x # returns a string representation of the cursor position for the user def __str__(self): return "(" + str(self.y+1) + "," + str(self.x+1) + ")" # returns the string representation for internal use def __repr__(self): return "(" + str(self.y) + "," + str(self.x) + ")"
class Cursorposition: def __init__(self, y, x): self.y = y self.x = x def __str__(self): return '(' + str(self.y + 1) + ',' + str(self.x + 1) + ')' def __repr__(self): return '(' + str(self.y) + ',' + str(self.x) + ')'
N = int(input()) M = int(input()) res = list() for x in range(N, M+1): cnt = 0 if x > 1: for i in range(2, x): if x % i == 0: cnt += 1 break if cnt == 0: res.append(x) if len(res) > 0: print(sum(res)) print(min(res)) else: print(-1)
n = int(input()) m = int(input()) res = list() for x in range(N, M + 1): cnt = 0 if x > 1: for i in range(2, x): if x % i == 0: cnt += 1 break if cnt == 0: res.append(x) if len(res) > 0: print(sum(res)) print(min(res)) else: print(-1)
# Application settings # Flask settings DEBUG = False # Flask-restplus settings RESTPLUS_MASK_SWAGGER = False SWAGGER_UI_DOC_EXPANSION = 'none' # API metadata API_TITLE = 'MAX Breast Cancer Mitosis Detector' API_DESC = 'Predict the probability of the input image containing mitosis.' API_VERSION = '0.1' # default model MODEL_NAME = 'MAX Breast Cancer Mitosis Detector' DEFAULT_MODEL_PATH = 'assets/deep_histopath_model.hdf5' MODEL_LICENSE = "Custom" # TODO - what are we going to release this as? MODEL_META_DATA = { 'id': '{}'.format(MODEL_NAME.lower()), 'name': '{} Keras Model'.format(MODEL_NAME), 'description': '{} Keras model trained on TUPAC16 data to detect mitosis'.format(MODEL_NAME), 'type': 'image_classification', 'license': '{}'.format(MODEL_LICENSE) }
debug = False restplus_mask_swagger = False swagger_ui_doc_expansion = 'none' api_title = 'MAX Breast Cancer Mitosis Detector' api_desc = 'Predict the probability of the input image containing mitosis.' api_version = '0.1' model_name = 'MAX Breast Cancer Mitosis Detector' default_model_path = 'assets/deep_histopath_model.hdf5' model_license = 'Custom' model_meta_data = {'id': '{}'.format(MODEL_NAME.lower()), 'name': '{} Keras Model'.format(MODEL_NAME), 'description': '{} Keras model trained on TUPAC16 data to detect mitosis'.format(MODEL_NAME), 'type': 'image_classification', 'license': '{}'.format(MODEL_LICENSE)}
# # @lc app=leetcode id=1431 lang=python3 # # [1431] Kids With the Greatest Number of Candies # # @lc code=start class Solution: def kidsWithCandies(self, candies: List[int], extra_candies: int) -> List[bool]: max_candies = max(candies) return [i + extra_candies >= max_candies for i in candies] # @lc code=end
class Solution: def kids_with_candies(self, candies: List[int], extra_candies: int) -> List[bool]: max_candies = max(candies) return [i + extra_candies >= max_candies for i in candies]
def repeated_n_times(nums): # nums.length == 2 * n n = len(nums) // 2 for num in nums: if nums.count(num) == n: return num print(repeated_n_times([1, 2, 3, 3])) print(repeated_n_times([2, 1, 2, 5, 3, 2])) print(repeated_n_times([5, 1, 5, 2, 5, 3, 5, 4]))
def repeated_n_times(nums): n = len(nums) // 2 for num in nums: if nums.count(num) == n: return num print(repeated_n_times([1, 2, 3, 3])) print(repeated_n_times([2, 1, 2, 5, 3, 2])) print(repeated_n_times([5, 1, 5, 2, 5, 3, 5, 4]))
# (C) Datadog, Inc. 2020-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) # See: # https://docs.microsoft.com/en-us/windows/win32/eventlog/event-types # https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-reporteventa#parameters # https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-even/1ed850f9-a1fe-4567-a371-02683c6ed3cb # # However, event viewer & the C api do not show the constants from above, but rather return these: # https://docs.microsoft.com/en-us/windows/win32/wes/eventmanifestschema-leveltype-complextype#remarks EVENT_TYPES = { 'success': 4, 'error': 2, 'warning': 3, 'information': 4, 'success audit': 4, 'failure audit': 2, }
event_types = {'success': 4, 'error': 2, 'warning': 3, 'information': 4, 'success audit': 4, 'failure audit': 2}
@outputSchema('vals: {(val:chararray)}') def convert(the_input): # This converts the indeterminate number of vals into a bag. out = [] for map in the_input: out.append(map) return out
@output_schema('vals: {(val:chararray)}') def convert(the_input): out = [] for map in the_input: out.append(map) return out
class Solution: def recurse(self, n, stack, cur_open) : if n == 0 : self.ans.append(stack+')'*cur_open) return for i in range(cur_open+1) : self.recurse(n-1, stack+(')'*i)+'(', cur_open-i+1) # @param A : integer # @return a list of strings def generateParenthesis(self, A): if A <= 0 : return [] self.ans = [] self.recurse(A, "", 0) return self.ans
class Solution: def recurse(self, n, stack, cur_open): if n == 0: self.ans.append(stack + ')' * cur_open) return for i in range(cur_open + 1): self.recurse(n - 1, stack + ')' * i + '(', cur_open - i + 1) def generate_parenthesis(self, A): if A <= 0: return [] self.ans = [] self.recurse(A, '', 0) return self.ans
class Solution: def rangeBitwiseAnd(self, left: int, right: int) -> int: i = 0 # how many bit right shifted while left != right: left >>= 1 right >>= 1 i += 1 return left << i # TESTS for left, right, expected in [ (5, 7, 4), (0, 1, 0), (26, 30, 24), ]: sol = Solution() actual = sol.rangeBitwiseAnd(left, right) print("Bitwise AND of all numbers in range", f"[{left}, {right}] ->", actual) assert actual == expected
class Solution: def range_bitwise_and(self, left: int, right: int) -> int: i = 0 while left != right: left >>= 1 right >>= 1 i += 1 return left << i for (left, right, expected) in [(5, 7, 4), (0, 1, 0), (26, 30, 24)]: sol = solution() actual = sol.rangeBitwiseAnd(left, right) print('Bitwise AND of all numbers in range', f'[{left}, {right}] ->', actual) assert actual == expected
# AUTOGENERATED BY NBDEV! DO NOT EDIT! __all__ = ["index", "modules", "custom_doc_links", "git_url"] index = {"plot_sequence": "10_core_overview.ipynb", "plot_sequence_1d": "10_core_overview.ipynb", "get_alphabet": "11_core_elements.ipynb", "get_element_counts": "11_core_elements.ipynb", "get_first_positions": "11_core_elements.ipynb", "get_element_frequency": "11_core_elements.ipynb", "plot_element_counts": "11_core_elements.ipynb", "get_subsequences": "12_core_subsequences.ipynb", "get_ndistinct_subsequences": "12_core_subsequences.ipynb", "get_unique_ngrams": "13_core_ngrams.ipynb", "get_all_ngrams": "13_core_ngrams.ipynb", "get_ngram_universe": "13_core_ngrams.ipynb", "get_ngram_counts": "13_core_ngrams.ipynb", "plot_ngram_counts": "13_core_ngrams.ipynb", "get_transitions": "14_core_transitions.ipynb", "get_ntransitions": "14_core_transitions.ipynb", "get_transition_matrix": "14_core_transitions.ipynb", "plot_transition_matrix": "14_core_transitions.ipynb", "get_spells": "15_core_spells.ipynb", "get_longest_spell": "15_core_spells.ipynb", "get_spell_durations": "15_core_spells.ipynb", "is_recurrent": "16_core_statistics.ipynb", "get_entropy": "16_core_statistics.ipynb", "get_turbulence": "16_core_statistics.ipynb", "get_complexity": "16_core_statistics.ipynb", "get_routine": "16_core_statistics.ipynb", "plot_sequences": "20_multi_overview.ipynb", "are_recurrent": "21_multi_attributes.ipynb", "get_summary_statistic": "21_multi_attributes.ipynb", "get_routine_scores": "21_multi_attributes.ipynb", "get_synchrony": "21_multi_attributes.ipynb", "get_sequence_frequencies": "21_multi_attributes.ipynb", "get_motif": "22_multi_derivatives.ipynb", "get_modal_state": "22_multi_derivatives.ipynb", "get_optimal_distance": "23_multi_edit_distances.ipynb", "get_levenshtein_distance": "23_multi_edit_distances.ipynb", "get_hamming_distance": "23_multi_edit_distances.ipynb", "get_combinatorial_distance": "24_multi_nonalignment.ipynb"} modules = ["core/__init__.py", "core/elements.py", "core/subsequences.py", "core/ngrams.py", "core/transitions.py", "core/spells.py", "core/statistics.py", "multi/__init__.py", "multi/attributes.py", "multi/derivatives.py", "multi/editdistances.py", "multi/nonalignment.py"] doc_url = "https://pysan-dev.github.io/pysan/" git_url = "https://github.com/pysan-dev/pysan/tree/master/" def custom_doc_links(name): return None
__all__ = ['index', 'modules', 'custom_doc_links', 'git_url'] index = {'plot_sequence': '10_core_overview.ipynb', 'plot_sequence_1d': '10_core_overview.ipynb', 'get_alphabet': '11_core_elements.ipynb', 'get_element_counts': '11_core_elements.ipynb', 'get_first_positions': '11_core_elements.ipynb', 'get_element_frequency': '11_core_elements.ipynb', 'plot_element_counts': '11_core_elements.ipynb', 'get_subsequences': '12_core_subsequences.ipynb', 'get_ndistinct_subsequences': '12_core_subsequences.ipynb', 'get_unique_ngrams': '13_core_ngrams.ipynb', 'get_all_ngrams': '13_core_ngrams.ipynb', 'get_ngram_universe': '13_core_ngrams.ipynb', 'get_ngram_counts': '13_core_ngrams.ipynb', 'plot_ngram_counts': '13_core_ngrams.ipynb', 'get_transitions': '14_core_transitions.ipynb', 'get_ntransitions': '14_core_transitions.ipynb', 'get_transition_matrix': '14_core_transitions.ipynb', 'plot_transition_matrix': '14_core_transitions.ipynb', 'get_spells': '15_core_spells.ipynb', 'get_longest_spell': '15_core_spells.ipynb', 'get_spell_durations': '15_core_spells.ipynb', 'is_recurrent': '16_core_statistics.ipynb', 'get_entropy': '16_core_statistics.ipynb', 'get_turbulence': '16_core_statistics.ipynb', 'get_complexity': '16_core_statistics.ipynb', 'get_routine': '16_core_statistics.ipynb', 'plot_sequences': '20_multi_overview.ipynb', 'are_recurrent': '21_multi_attributes.ipynb', 'get_summary_statistic': '21_multi_attributes.ipynb', 'get_routine_scores': '21_multi_attributes.ipynb', 'get_synchrony': '21_multi_attributes.ipynb', 'get_sequence_frequencies': '21_multi_attributes.ipynb', 'get_motif': '22_multi_derivatives.ipynb', 'get_modal_state': '22_multi_derivatives.ipynb', 'get_optimal_distance': '23_multi_edit_distances.ipynb', 'get_levenshtein_distance': '23_multi_edit_distances.ipynb', 'get_hamming_distance': '23_multi_edit_distances.ipynb', 'get_combinatorial_distance': '24_multi_nonalignment.ipynb'} modules = ['core/__init__.py', 'core/elements.py', 'core/subsequences.py', 'core/ngrams.py', 'core/transitions.py', 'core/spells.py', 'core/statistics.py', 'multi/__init__.py', 'multi/attributes.py', 'multi/derivatives.py', 'multi/editdistances.py', 'multi/nonalignment.py'] doc_url = 'https://pysan-dev.github.io/pysan/' git_url = 'https://github.com/pysan-dev/pysan/tree/master/' def custom_doc_links(name): return None
print("Challenges 38: WAF program to print the number of prime numbers which are less than or equal to a given integer.") n = 7 nums = range(2, n+1) num_of_divisors = 0 counter = 0 for x in nums: for i in range(1, x+1): if x % i == 0: num_of_divisors += 1 if num_of_divisors == 2: counter += 1 num_of_divisors = 0 print(counter)
print('Challenges 38: WAF program to print the number of prime numbers which are less than or equal to a given integer.') n = 7 nums = range(2, n + 1) num_of_divisors = 0 counter = 0 for x in nums: for i in range(1, x + 1): if x % i == 0: num_of_divisors += 1 if num_of_divisors == 2: counter += 1 num_of_divisors = 0 print(counter)
def n_to_triangularno_stevilo(n): stevilo = 0 a = 1 for i in range(n): stevilo += a a += 1 return stevilo def prvo_triangularno_stevilo_Z_vec_kot_k_delitelji(k): j = 0 n = 0 stevilo_deliteljev = 0 while stevilo_deliteljev <= k: stevilo_deliteljev = 0 j += 1 n = n_to_triangularno_stevilo(j) i = 1 while i <= n**0.5: if n % i == 0: stevilo_deliteljev += 1 i += 1 stevilo_deliteljev *= 2 return n print(prvo_triangularno_stevilo_Z_vec_kot_k_delitelji(500))
def n_to_triangularno_stevilo(n): stevilo = 0 a = 1 for i in range(n): stevilo += a a += 1 return stevilo def prvo_triangularno_stevilo_z_vec_kot_k_delitelji(k): j = 0 n = 0 stevilo_deliteljev = 0 while stevilo_deliteljev <= k: stevilo_deliteljev = 0 j += 1 n = n_to_triangularno_stevilo(j) i = 1 while i <= n ** 0.5: if n % i == 0: stevilo_deliteljev += 1 i += 1 stevilo_deliteljev *= 2 return n print(prvo_triangularno_stevilo_z_vec_kot_k_delitelji(500))
# mock.py # Test tools for mocking and patching. # Copyright (C) 2007 Michael Foord # E-mail: fuzzyman AT voidspace DOT org DOT uk # mock 0.3.1 # http://www.voidspace.org.uk/python/mock.html # Released subject to the BSD License # Please see http://www.voidspace.org.uk/python/license.shtml # Scripts maintained at http://www.voidspace.org.uk/python/index.shtml # Comments, suggestions and bug reports welcome. __all__ = ( 'Mock', 'patch', 'sentinel', '__version__' ) __version__ = '0.3.1' class Mock(object): def __init__(self, methods=None, spec=None, name=None, parent=None): self._parent = parent self._name = name if spec is not None and methods is None: methods = [member for member in dir(spec) if not (member.startswith('__') and member.endswith('__'))] self._methods = methods self.reset() def reset(self): self.called = False self.return_value = None self.call_args = None self.call_count = 0 self.call_args_list = [] self.method_calls = [] self._children = {} def __call__(self, *args, **keywargs): self.called = True self.call_count += 1 self.call_args = (args, keywargs) self.call_args_list.append((args, keywargs)) parent = self._parent name = self._name while parent is not None: parent.method_calls.append((name, args, keywargs)) if parent._parent is None: break name = parent._name + '.' + name parent = parent._parent return self.return_value def __getattr__(self, name): if self._methods is not None and name not in self._methods: raise AttributeError("object has no attribute '%s'" % name) if name not in self._children: self._children[name] = Mock(parent=self, name=name) return self._children[name] def _importer(name): mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod def patch(target, attribute, new=None): if isinstance(target, basestring): target = _importer(target) def patcher(func): original = getattr(target, attribute) if hasattr(func, 'restore_list'): func.restore_list.append((target, attribute, original)) func.patch_list.append((target, attribute, new)) return func func.restore_list = [(target, attribute, original)] func.patch_list = [(target, attribute, new)] def patched(*args, **keywargs): for target, attribute, new in func.patch_list: if new is None: new = Mock() args += (new,) setattr(target, attribute, new) try: return func(*args, **keywargs) finally: for target, attribute, original in func.restore_list: setattr(target, attribute, original) patched.__name__ = func.__name__ return patched return patcher class SentinelObject(object): def __init__(self, name): self.name = name def __repr__(self): return '<SentinelObject "%s">' % self.name class Sentinel(object): def __init__(self): self._sentinels = {} def __getattr__(self, name): return self._sentinels.setdefault(name, SentinelObject(name)) sentinel = Sentinel()
__all__ = ('Mock', 'patch', 'sentinel', '__version__') __version__ = '0.3.1' class Mock(object): def __init__(self, methods=None, spec=None, name=None, parent=None): self._parent = parent self._name = name if spec is not None and methods is None: methods = [member for member in dir(spec) if not (member.startswith('__') and member.endswith('__'))] self._methods = methods self.reset() def reset(self): self.called = False self.return_value = None self.call_args = None self.call_count = 0 self.call_args_list = [] self.method_calls = [] self._children = {} def __call__(self, *args, **keywargs): self.called = True self.call_count += 1 self.call_args = (args, keywargs) self.call_args_list.append((args, keywargs)) parent = self._parent name = self._name while parent is not None: parent.method_calls.append((name, args, keywargs)) if parent._parent is None: break name = parent._name + '.' + name parent = parent._parent return self.return_value def __getattr__(self, name): if self._methods is not None and name not in self._methods: raise attribute_error("object has no attribute '%s'" % name) if name not in self._children: self._children[name] = mock(parent=self, name=name) return self._children[name] def _importer(name): mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod def patch(target, attribute, new=None): if isinstance(target, basestring): target = _importer(target) def patcher(func): original = getattr(target, attribute) if hasattr(func, 'restore_list'): func.restore_list.append((target, attribute, original)) func.patch_list.append((target, attribute, new)) return func func.restore_list = [(target, attribute, original)] func.patch_list = [(target, attribute, new)] def patched(*args, **keywargs): for (target, attribute, new) in func.patch_list: if new is None: new = mock() args += (new,) setattr(target, attribute, new) try: return func(*args, **keywargs) finally: for (target, attribute, original) in func.restore_list: setattr(target, attribute, original) patched.__name__ = func.__name__ return patched return patcher class Sentinelobject(object): def __init__(self, name): self.name = name def __repr__(self): return '<SentinelObject "%s">' % self.name class Sentinel(object): def __init__(self): self._sentinels = {} def __getattr__(self, name): return self._sentinels.setdefault(name, sentinel_object(name)) sentinel = sentinel()
a = 10 def f(): global a a = 100 def ober(): b = 100 def unter(): nonlocal b b = 1000 def unterunter(): nonlocal b b = 10000 unterunter() unter() print(b) ober() def xyz(x): return x * x z = lambda x: x * x print(z(3)) myList = [10,20,30,40,50] def s(x): return -x myList = sorted(myList,key= lambda x:-x) print(myList)
a = 10 def f(): global a a = 100 def ober(): b = 100 def unter(): nonlocal b b = 1000 def unterunter(): nonlocal b b = 10000 unterunter() unter() print(b) ober() def xyz(x): return x * x z = lambda x: x * x print(z(3)) my_list = [10, 20, 30, 40, 50] def s(x): return -x my_list = sorted(myList, key=lambda x: -x) print(myList)
# Responsible for giving targets to the Quadrocopter control lopp class HighLevelLogic: def __init__(self, control_loop, state_provider): self.controllers self.flightmode = FlightModeLanded() self.control_loop = control_loop state_provider.registerListener(self) # Tells all systems that time has passed. # timeDelta is the time since the last update call in seconds def update(self, timedelta): # check if we need to change the flight mode newmode = self.flightmode.update(timedelta) if newmode.name != self.flightmode.name: print("HighLevelLogic: changing FlightMode from %s to %s" % (self.flightmode.name, newmode.name)) self.flightmode = newmode # TODO: do we need to update the control loop? # will be called by State Provider whenever a new sensor reading is ready # timeDelta is the time since the last newState call in seconds def new_sensor_reading(self, timedelta, state): target_state = self.flightmode.calculate_target_state(state) self.control_loop.setTargetState(target_state) class FlightMode: def __init__(self): self.timeInState = 0 def update(self, time_delta): self.timeInState += time_delta return self._update(time_delta) class FlightModeLanded(FlightMode): def __init__(self): self.name = "FlightModeLanded" def _update(self, timedelta): if self.timeInState > 2.0: return FlightModeRiseTo1m() return self def calculate_target_state(self, current_state): # no need to react to anything return self class FlightModeRiseTo1m(FlightMode): def __init__(self): # TODO: start motors self.name = "FlightModeRiseTo1m" def _update(self, timedelta): if self.timeInState > 3.0: return FlightModeHover() return self def calculate_target_state(self, current_state): # no need to react to anything return self class FlightModeHover(FlightMode): def __init__(self): self.name = "FlightModeHover" def _update(self, timedelta): if self.timeInState > 5.0: return FlightModeGoDown() return self def calculate_target_state(self, current_state): # no need to react to anything return self class FlightModeGoDown(FlightMode): def __init__(self): self.name = "FlightModeGoDown" def _update(self, timedelta): if self.timeInState > 7.0: return FlightModeLanded() return self def calculate_target_state(self, current_state): # no need to react to anything return self
class Highlevellogic: def __init__(self, control_loop, state_provider): self.controllers self.flightmode = flight_mode_landed() self.control_loop = control_loop state_provider.registerListener(self) def update(self, timedelta): newmode = self.flightmode.update(timedelta) if newmode.name != self.flightmode.name: print('HighLevelLogic: changing FlightMode from %s to %s' % (self.flightmode.name, newmode.name)) self.flightmode = newmode def new_sensor_reading(self, timedelta, state): target_state = self.flightmode.calculate_target_state(state) self.control_loop.setTargetState(target_state) class Flightmode: def __init__(self): self.timeInState = 0 def update(self, time_delta): self.timeInState += time_delta return self._update(time_delta) class Flightmodelanded(FlightMode): def __init__(self): self.name = 'FlightModeLanded' def _update(self, timedelta): if self.timeInState > 2.0: return flight_mode_rise_to1m() return self def calculate_target_state(self, current_state): return self class Flightmoderiseto1M(FlightMode): def __init__(self): self.name = 'FlightModeRiseTo1m' def _update(self, timedelta): if self.timeInState > 3.0: return flight_mode_hover() return self def calculate_target_state(self, current_state): return self class Flightmodehover(FlightMode): def __init__(self): self.name = 'FlightModeHover' def _update(self, timedelta): if self.timeInState > 5.0: return flight_mode_go_down() return self def calculate_target_state(self, current_state): return self class Flightmodegodown(FlightMode): def __init__(self): self.name = 'FlightModeGoDown' def _update(self, timedelta): if self.timeInState > 7.0: return flight_mode_landed() return self def calculate_target_state(self, current_state): return self
keyb = '`1234567890-=QWERTYUIOP[]\\ASDFGHJKL;\'ZXCVBNM,./' while True: try: frase = input() decod = '' for c in frase: if c == ' ': decod += c else: decod += keyb[keyb.index(c)-1] print(decod) except EOFError: break
keyb = "`1234567890-=QWERTYUIOP[]\\ASDFGHJKL;'ZXCVBNM,./" while True: try: frase = input() decod = '' for c in frase: if c == ' ': decod += c else: decod += keyb[keyb.index(c) - 1] print(decod) except EOFError: break
def fun(n): fact = 1 for i in range(1,n+1): fact = fact * i return fact n= int(input()) k = fun(n) j = fun(n//2) l = j//(n//2) print(((k//(j**2))*(l**2))//2)
def fun(n): fact = 1 for i in range(1, n + 1): fact = fact * i return fact n = int(input()) k = fun(n) j = fun(n // 2) l = j // (n // 2) print(k // j ** 2 * l ** 2 // 2)
palavras = ("Aprender", "Programar", "Linguagem", "Python", "Curso", "Gratis", "Estudar", "Praticar", "Trabalhar ", "Mercado", "Programar", "Futuro") for vol in palavras: print(f"\nNa palavra {vol.upper()} temos", end=" ") for letra in vol: if letra.lower() in "aeiou": print(letra, end=" ")
palavras = ('Aprender', 'Programar', 'Linguagem', 'Python', 'Curso', 'Gratis', 'Estudar', 'Praticar', 'Trabalhar ', 'Mercado', 'Programar', 'Futuro') for vol in palavras: print(f'\nNa palavra {vol.upper()} temos', end=' ') for letra in vol: if letra.lower() in 'aeiou': print(letra, end=' ')
# a = int(input('Numerador: ')) # se tentarmos colocar uma letra aqui vai da erro de valor ValueError # b = int(input('Denominador: ')) # se colocar 0 aqui vai acontecer uma excecao ZeroDivisionError - divisao por zero # r = a/b # print(f'A divisao de {a} por {b} vale = {r}') # para tratar erros a gente usa o comando try, except, else try: # o python vai tentar realizar este comando a = int(input('Numerador: ')) b = int(input('Denominador: ')) r = a / b # caso aconteca qualquer erro de valor ou divisao por 0, etc.. Ele vai pular para o comando except except Exception as erro: # poderia colocar apenas except: , porem criou uma variavel para demonstrar o erro que ta aparecendo print(f'Erro encontrado = {erro.__class__}') # mostrar a classe do erro else: # Se a operacao de try der certo ele vai realizar o comando else tambem, comando opcional print(f'O resultado foi = {r}') finally: print('Volte sempre! Obrigado!') # o finally vai acontecer sempre independente de o try der certo ou errado, comando opcional
try: a = int(input('Numerador: ')) b = int(input('Denominador: ')) r = a / b except Exception as erro: print(f'Erro encontrado = {erro.__class__}') else: print(f'O resultado foi = {r}') finally: print('Volte sempre! Obrigado!')
class Solution: def numTilings(self, n: int) -> int: mod = 1_000_000_000 + 7 f = [[0 for i in range(1 << 2)] for i in range(2)] f[0][(1 << 2) - 1] = 1 o0 = 0 o1 = 1 for i in range(n): f[o1][0] = f[o0][(1 << 2) - 1] f[o1][1] = (f[o0][0] + f[o0][2]) % mod f[o1][2] = (f[o0][0] + f[o0][1]) % mod f[o1][(1 << 2) - 1] = (f[o0][0] + f[o0][1] + f[o0][2] + f[o0][(1 << 2) - 1]) % mod o0 = o1 o1 ^= 1 return f[o0][(1 << 2) - 1]
class Solution: def num_tilings(self, n: int) -> int: mod = 1000000000 + 7 f = [[0 for i in range(1 << 2)] for i in range(2)] f[0][(1 << 2) - 1] = 1 o0 = 0 o1 = 1 for i in range(n): f[o1][0] = f[o0][(1 << 2) - 1] f[o1][1] = (f[o0][0] + f[o0][2]) % mod f[o1][2] = (f[o0][0] + f[o0][1]) % mod f[o1][(1 << 2) - 1] = (f[o0][0] + f[o0][1] + f[o0][2] + f[o0][(1 << 2) - 1]) % mod o0 = o1 o1 ^= 1 return f[o0][(1 << 2) - 1]
def escreva(texto): tam = len(texto) + 4 print('~' * tam) print(f' {texto}') print('~' * tam) escreva(str(input('Digite um texto: ')))
def escreva(texto): tam = len(texto) + 4 print('~' * tam) print(f' {texto}') print('~' * tam) escreva(str(input('Digite um texto: ')))
# Definition for a binary tree node # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None # normal recursive solution # this recursive solution will call more methods which cause Time Limit Exceed class Solution1: # @param {TreeNode} root # @return {integer} def maxDepth(self, root): if root is None: return 0 if self.left is None and self.right is None: return 1 elif self.left is not None and self.right is not None: return self.maxDepth(self.left) + 1 if self.maxDepth(self.left) > \ self.maxDepth(self.right) else self.maxDepth(self.right) + 1 elif self.left is not None: return self.maxDepth(self.left) + 1 elif self.rigith is not None: return self.maxDepth(self.right) + 1 # recursive solution with only two methods call # This is a cleaner solution with only two methods # This is passed in the leetcode class Solution2: # @param {TreeNode} root # @return {integer} def maxDepth(self, root): if root is None: return 0 leftDepth = self.maxDepth(root.left) rightDepth = self.maxDepth(root.right) return leftDepth + 1 if leftDepth > rightDepth else rightDepth + 1
class Solution1: def max_depth(self, root): if root is None: return 0 if self.left is None and self.right is None: return 1 elif self.left is not None and self.right is not None: return self.maxDepth(self.left) + 1 if self.maxDepth(self.left) > self.maxDepth(self.right) else self.maxDepth(self.right) + 1 elif self.left is not None: return self.maxDepth(self.left) + 1 elif self.rigith is not None: return self.maxDepth(self.right) + 1 class Solution2: def max_depth(self, root): if root is None: return 0 left_depth = self.maxDepth(root.left) right_depth = self.maxDepth(root.right) return leftDepth + 1 if leftDepth > rightDepth else rightDepth + 1
url = 'http://127.0.0.1:3001/post' dapr_url = "http://localhost:3500/v1.0/invoke/dp-61c2cb20562850d49d47d1c7-executorapp/method/health" # dapr_url = "http://localhost:3500/v1.0/healthz" # res = requests.post(dapr_url, json.dumps({'a': random.random() * 1000})) # res = requests.get(dapr_url, ) # # # # print(res.text) # print(res.status_code) # INFO[0000] *----/v1.0/invoke/{id}/method/{method:*} # INFO[0000] GET----/v1.0/state/{storeName}/{key} # INFO[0000] DELETE----/v1.0/state/{storeName}/{key} # INFO[0000] PUT----/v1.0/state/{storeName} # INFO[0000] PUT----/v1.0/state/{storeName}/bulk # INFO[0000] PUT----/v1.0/state/{storeName}/transaction # INFO[0000] POST----/v1.0/state/{storeName} # INFO[0000] POST----/v1.0/state/{storeName}/bulk # INFO[0000] POST----/v1.0/state/{storeName}/transaction # INFO[0000] POST----/v1.0-alpha1/state/{storeName}/query # INFO[0000] PUT----/v1.0-alpha1/state/{storeName}/query # INFO[0000] GET----/v1.0/secrets/{secretStoreName}/bulk # INFO[0000] GET----/v1.0/secrets/{secretStoreName}/{key} # INFO[0000] POST----/v1.0/publish/{pubsubname}/{topic:*} # INFO[0000] PUT----/v1.0/publish/{pubsubname}/{topic:*} # INFO[0000] POST----/v1.0/bindings/{name} # INFO[0000] PUT----/v1.0/bindings/{name} # INFO[0000] GET----/v1.0/healthz # INFO[0000] GET----/v1.0/healthz/outbound # INFO[0000] GET----/v1.0/actors/{actorType}/{actorId}/method/{method} # INFO[0000] GET----/v1.0/actors/{actorType}/{actorId}/state/{key} # INFO[0000] GET----/v1.0/actors/{actorType}/{actorId}/reminders/{name} # INFO[0000] POST----/v1.0/actors/{actorType}/{actorId}/state # INFO[0000] POST----/v1.0/actors/{actorType}/{actorId}/method/{method} # INFO[0000] POST----/v1.0/actors/{actorType}/{actorId}/reminders/{name} # INFO[0000] POST----/v1.0/actors/{actorType}/{actorId}/timers/{name} # INFO[0000] PUT----/v1.0/actors/{actorType}/{actorId}/state # INFO[0000] PUT----/v1.0/actors/{actorType}/{actorId}/method/{method} # INFO[0000] PUT----/v1.0/actors/{actorType}/{actorId}/reminders/{name} # INFO[0000] PUT----/v1.0/actors/{actorType}/{actorId}/timers/{name} # INFO[0000] DELETE----/v1.0/actors/{actorType}/{actorId}/method/{method} # INFO[0000] DELETE----/v1.0/actors/{actorType}/{actorId}/reminders/{name} # INFO[0000] DELETE----/v1.0/actors/{actorType}/{actorId}/timers/{name} # INFO[0000] *----/{method:*} # INFO[0000] GET----/v1.0/metadata # INFO[0000] PUT----/v1.0/metadata/{key} # INFO[0000] POST----/v1.0/shutdown
url = 'http://127.0.0.1:3001/post' dapr_url = 'http://localhost:3500/v1.0/invoke/dp-61c2cb20562850d49d47d1c7-executorapp/method/health'
#!/usr/bin/env python # Copyright Contributors to the Open Shading Language project. # SPDX-License-Identifier: BSD-3-Clause # https://github.com/AcademySoftwareFoundation/OpenShadingLanguage command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_v_floatarray.tif test_splineinverse_c_float_v_floatarray") command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_u_floatarray.tif test_splineinverse_c_float_u_floatarray") command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_c_floatarray.tif test_splineinverse_c_float_c_floatarray") outputs.append ("splineinverse_c_float_v_floatarray.tif") outputs.append ("splineinverse_c_float_u_floatarray.tif") outputs.append ("splineinverse_c_float_c_floatarray.tif") command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_v_floatarray.tif test_splineinverse_u_float_v_floatarray") command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_u_floatarray.tif test_splineinverse_u_float_u_floatarray") command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_c_floatarray.tif test_splineinverse_u_float_c_floatarray") outputs.append ("splineinverse_u_float_v_floatarray.tif") outputs.append ("splineinverse_u_float_u_floatarray.tif") outputs.append ("splineinverse_u_float_c_floatarray.tif") command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_v_floatarray.tif test_splineinverse_v_float_v_floatarray") command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_u_floatarray.tif test_splineinverse_v_float_u_floatarray") command += testshade("-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_c_floatarray.tif test_splineinverse_v_float_c_floatarray") outputs.append ("splineinverse_v_float_v_floatarray.tif") outputs.append ("splineinverse_v_float_u_floatarray.tif") outputs.append ("splineinverse_v_float_c_floatarray.tif") command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_v_floatarray.tif test_deriv_splineinverse_c_float_v_floatarray") command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_u_floatarray.tif test_deriv_splineinverse_c_float_u_floatarray") command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_c_floatarray.tif test_deriv_splineinverse_c_float_c_floatarray") outputs.append ("deriv_splineinverse_c_float_v_floatarray.tif") outputs.append ("deriv_splineinverse_c_float_u_floatarray.tif") outputs.append ("deriv_splineinverse_c_float_c_floatarray.tif") command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_v_floatarray.tif test_deriv_splineinverse_u_float_v_floatarray") command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_u_floatarray.tif test_deriv_splineinverse_u_float_u_floatarray") command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_c_floatarray.tif test_deriv_splineinverse_u_float_c_floatarray") outputs.append ("deriv_splineinverse_u_float_v_floatarray.tif") outputs.append ("deriv_splineinverse_u_float_u_floatarray.tif") outputs.append ("deriv_splineinverse_u_float_c_floatarray.tif") command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_v_floatarray.tif test_deriv_splineinverse_v_float_v_floatarray") command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_u_floatarray.tif test_deriv_splineinverse_v_float_u_floatarray") command += testshade("--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_c_floatarray.tif test_deriv_splineinverse_v_float_c_floatarray") outputs.append ("deriv_splineinverse_v_float_v_floatarray.tif") outputs.append ("deriv_splineinverse_v_float_u_floatarray.tif") outputs.append ("deriv_splineinverse_v_float_c_floatarray.tif") # expect a few LSB failures failthresh = 0.008 failpercent = 3
command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_v_floatarray.tif test_splineinverse_c_float_v_floatarray') command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_u_floatarray.tif test_splineinverse_c_float_u_floatarray') command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_c_float_c_floatarray.tif test_splineinverse_c_float_c_floatarray') outputs.append('splineinverse_c_float_v_floatarray.tif') outputs.append('splineinverse_c_float_u_floatarray.tif') outputs.append('splineinverse_c_float_c_floatarray.tif') command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_v_floatarray.tif test_splineinverse_u_float_v_floatarray') command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_u_floatarray.tif test_splineinverse_u_float_u_floatarray') command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_u_float_c_floatarray.tif test_splineinverse_u_float_c_floatarray') outputs.append('splineinverse_u_float_v_floatarray.tif') outputs.append('splineinverse_u_float_u_floatarray.tif') outputs.append('splineinverse_u_float_c_floatarray.tif') command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_v_floatarray.tif test_splineinverse_v_float_v_floatarray') command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_u_floatarray.tif test_splineinverse_v_float_u_floatarray') command += testshade('-t 1 -g 64 64 --center -od uint8 -o Fout splineinverse_v_float_c_floatarray.tif test_splineinverse_v_float_c_floatarray') outputs.append('splineinverse_v_float_v_floatarray.tif') outputs.append('splineinverse_v_float_u_floatarray.tif') outputs.append('splineinverse_v_float_c_floatarray.tif') command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_v_floatarray.tif test_deriv_splineinverse_c_float_v_floatarray') command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_u_floatarray.tif test_deriv_splineinverse_c_float_u_floatarray') command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_c_float_c_floatarray.tif test_deriv_splineinverse_c_float_c_floatarray') outputs.append('deriv_splineinverse_c_float_v_floatarray.tif') outputs.append('deriv_splineinverse_c_float_u_floatarray.tif') outputs.append('deriv_splineinverse_c_float_c_floatarray.tif') command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_v_floatarray.tif test_deriv_splineinverse_u_float_v_floatarray') command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_u_floatarray.tif test_deriv_splineinverse_u_float_u_floatarray') command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_u_float_c_floatarray.tif test_deriv_splineinverse_u_float_c_floatarray') outputs.append('deriv_splineinverse_u_float_v_floatarray.tif') outputs.append('deriv_splineinverse_u_float_u_floatarray.tif') outputs.append('deriv_splineinverse_u_float_c_floatarray.tif') command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_v_floatarray.tif test_deriv_splineinverse_v_float_v_floatarray') command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_u_floatarray.tif test_deriv_splineinverse_v_float_u_floatarray') command += testshade('--vary_udxdy --vary_vdxdy -t 1 -g 64 64 --center -od uint8 -o ValDxDyOut deriv_splineinverse_v_float_c_floatarray.tif test_deriv_splineinverse_v_float_c_floatarray') outputs.append('deriv_splineinverse_v_float_v_floatarray.tif') outputs.append('deriv_splineinverse_v_float_u_floatarray.tif') outputs.append('deriv_splineinverse_v_float_c_floatarray.tif') failthresh = 0.008 failpercent = 3
''' Example: import dk cfg = dk.load_config(config_path='~/donkeycar/donkeycar/parts/RLConfig.py') print(cfg.CAMERA_RESOLUTION) ''' MODE_COMPLEX_LANE_FOLLOW = 0 MODE_SIMPLE_LINE_FOLLOW = 1 MODE_STEER_THROTTLE = MODE_COMPLEX_LANE_FOLLOW # MODE_STEER_THROTTLE = MODE_SIMPLE_LINE_FOLLOW PARTIAL_NN_CNT = 45000 # SWITCH_TO_NN = 45000 # SWITCH_TO_NN = 15000 # SWITCH_TO_NN = 9000 # SWITCH_TO_NN = 6000 # SWITCH_TO_NN = 300 # SWITCH_TO_NN = 10 # SWITCH_TO_NN = 100 # SWITCH_TO_NN = 150 # SWITCH_TO_NN = 7500 # SWITCH_TO_NN = 3000 SWITCH_TO_NN = 1000 UPDATE_NN = 1000 # UPDATE_NN = 100 SAVE_NN = 1000 THROTTLE_CONSTANT = 0 # THROTTLE_CONSTANT = .3 STATE_EMERGENCY_STOP = 0 STATE_NN = 1 STATE_OPENCV = 2 STATE_MODEL_TRANSFER_STARTED = 3 STATE_MODEL_PREPARE_NN = 4 STATE_MODEL_WEIGHTS_SET = 5 STATE_PARTIAL_NN = 6 STATE_TRIAL_NN = 7 EMERGENCY_STOP = 0.000001 SIM_EMERGENCY_STOP = -1000 # DISABLE_EMERGENCY_STOP = True DISABLE_EMERGENCY_STOP = False # USE_COLOR = False USE_COLOR = True # HSV # Note: The YELLOW/WHITE parameters are longer used and are now dynamically computed # from simulation: # line_color_y: [[84, 107, 148], [155, 190, 232]] # line_color_w: [[32, 70, 101], [240, 240, 248]] # COLOR_YELLOW = [[20, 80, 100], [35, 255, 255]] # COLOR_YELLOW = [[20, 0, 100], [30, 255, 255]] # COLOR_YELLOW = [[20, 40, 70], [70, 89, 95]] COLOR_YELLOW = [[84, 107, 148], [155, 190, 232]] # COLOR_YELLOW = 50, 75, 83 # using saturation 40 for WHITE # COLOR_WHITE = [[0,0,255-40],[255,40,255]] # COLOR_WHITE = [[50,0,80],[155,10,100]] COLOR_WHITE = [[32, 70, 101], [240, 240, 248]] # COLOR_WHITE = 72,2, 90] TURNADJ = .02 # DESIREDPPF = 35 DESIREDPPF = 20 # MAXBATADJ = .10 # BATADJ = .001 MAXBATADJ = .000 # simulation doesn't have battery BATADJ = .000 # simulation doesn't have battery RL_MODEL_PATH = "~/d2/models/rlpilot" RL_STATE_PATH = "~/d2/models/" MAXBATCNT = 1000 # MINMINTHROT = 0.035 # for Sim MINMINTHROT = 0.05 # for Sim # OPTFLOWTHRESH = 0.75 # for Sim OPTFLOWTHRESH = 0.14 # for Sim OPTFLOWINCR = 0.01 # for Sim # OPTFLOWINCR = 0.01 # for Sim # MINMINTHROT = 25 # real car # MINMINTHROT = 29 # real car # OPTFLOWTHRESH = 0.40 # real # OPTFLOWINCR = 0.001 # MAX_ACCEL = 10 MAX_ACCEL = 3 # CHECK_THROTTLE_THRESH = 20 CHECK_THROTTLE_THRESH = 40 MAXLANEWIDTH = 400 # should be much smaller MIN_DIST_FROM_CENTER = 20 # client to server MSG_NONE = -1 MSG_GET_WEIGHTS = 1 MSG_STATE_ANGLE_THROTTLE_REWARD_ROI = 2 # server to client MSG_RESULT = 4 MSG_WEIGHTS = 5 MSG_EMERGENCY_STOP = 6 # control1 to control2 MSG_ROI = 7 # control2 to control1 MSG_ANGLE_THROTTLE_REWARD = 8 # RLPi States RLPI_READY1 = 1 RLPI_READY2 = 2 RLPI_OPENCV = 1 RLPI_TRIAL_NN = 2 RLPI_NN = 3 # PORT_RLPI = "10.0.0.5:5557" # PORT_RLPI = "localhost:5557" # PORT_CONTROLPI = "localhost:5558" PORT_RLPI = 5557 PORT_CONTROLPI = 5558 PORT_CONTROLPI2 = None PORT_CONTROLPI2RL = None # PORT_CONTROLPI2 = 5556 # PORT_CONTROLPI2RL = 5555 # Original reward for throttle was too high. Reduce. # THROTTLE_INCREMENT = .4 # THROTTLE_BOOST = .1 THROTTLE_INCREMENT = .3 THROTTLE_BOOST = .05 REWARD_BATCH_MIN = 3 REWARD_BATCH_MAX = 10 REWARD_BATCH_END = 50 REWARD_BATCH_BEGIN = 500 # pass angle bin back and forth; based on 15 bins ANGLE_INCREMENT = (1/15) SAVE_MOVIE = False # SAVE_MOVIE = True TEST_TUB = "/home/ros/d2/data/tub_18_18-08-18" MOVIE_LOC = "/tmp/movie4" # to make movie from jpg in MOVIE_LOC use something like: # ffmpeg -framerate 4 -i /tmp/movie4/1%03d_cam-image_array_.jpg -c:v libx264 -profile:v high -crf 20 -pix_fmt yuv420p output.mp4 # INIT_STEER_FRAMES = 25 INIT_STEER_FRAMES = 125 # For PPO Q_LEN_THRESH = 200 Q_LEN_MAX = 250 # Almost all initial batches were under 20 Q_FIT_BATCH_LEN_THRESH = 50 # Very short batches to compute rewards are likely "car resets" # maybe should be 5 Q_MIN_ACTUAL_BATCH_LEN = 4 RWD_LOW = 10 RWD_HIGH = 500 RWD_HIGH_THRESH = 3 DISCOUNT_FACTOR = .8
""" Example: import dk cfg = dk.load_config(config_path='~/donkeycar/donkeycar/parts/RLConfig.py') print(cfg.CAMERA_RESOLUTION) """ mode_complex_lane_follow = 0 mode_simple_line_follow = 1 mode_steer_throttle = MODE_COMPLEX_LANE_FOLLOW partial_nn_cnt = 45000 switch_to_nn = 1000 update_nn = 1000 save_nn = 1000 throttle_constant = 0 state_emergency_stop = 0 state_nn = 1 state_opencv = 2 state_model_transfer_started = 3 state_model_prepare_nn = 4 state_model_weights_set = 5 state_partial_nn = 6 state_trial_nn = 7 emergency_stop = 1e-06 sim_emergency_stop = -1000 disable_emergency_stop = False use_color = True color_yellow = [[84, 107, 148], [155, 190, 232]] color_white = [[32, 70, 101], [240, 240, 248]] turnadj = 0.02 desiredppf = 20 maxbatadj = 0.0 batadj = 0.0 rl_model_path = '~/d2/models/rlpilot' rl_state_path = '~/d2/models/' maxbatcnt = 1000 minminthrot = 0.05 optflowthresh = 0.14 optflowincr = 0.01 max_accel = 3 check_throttle_thresh = 40 maxlanewidth = 400 min_dist_from_center = 20 msg_none = -1 msg_get_weights = 1 msg_state_angle_throttle_reward_roi = 2 msg_result = 4 msg_weights = 5 msg_emergency_stop = 6 msg_roi = 7 msg_angle_throttle_reward = 8 rlpi_ready1 = 1 rlpi_ready2 = 2 rlpi_opencv = 1 rlpi_trial_nn = 2 rlpi_nn = 3 port_rlpi = 5557 port_controlpi = 5558 port_controlpi2 = None port_controlpi2_rl = None throttle_increment = 0.3 throttle_boost = 0.05 reward_batch_min = 3 reward_batch_max = 10 reward_batch_end = 50 reward_batch_begin = 500 angle_increment = 1 / 15 save_movie = False test_tub = '/home/ros/d2/data/tub_18_18-08-18' movie_loc = '/tmp/movie4' init_steer_frames = 125 q_len_thresh = 200 q_len_max = 250 q_fit_batch_len_thresh = 50 q_min_actual_batch_len = 4 rwd_low = 10 rwd_high = 500 rwd_high_thresh = 3 discount_factor = 0.8
def build_filter(args): return Filter(args) class Filter: def __init__(self, args): pass def file_data_filter(self, file_data): file_ctx = file_data["file_ctx"] if not file_ctx.isbinary(): file_data["data"] = file_data["data"].replace(b"\r\n", b"\n")
def build_filter(args): return filter(args) class Filter: def __init__(self, args): pass def file_data_filter(self, file_data): file_ctx = file_data['file_ctx'] if not file_ctx.isbinary(): file_data['data'] = file_data['data'].replace(b'\r\n', b'\n')
print(round(1.23,1)) print(round(1.2345, 3)) # Negative numbers round the ones, tens, hundreds and so on.. print(round(123124123, -1)) print(round(54213, -2)) # Round is not neccessary for display reasons. use format instead x = 1.8913479812313 print("value is {:0.3f}".format(x))
print(round(1.23, 1)) print(round(1.2345, 3)) print(round(123124123, -1)) print(round(54213, -2)) x = 1.8913479812313 print('value is {:0.3f}'.format(x))
def get_emails(): while True: email_info = input().split(' ') if email_info[0] == 'Stop': break sender, receiver, content = email_info email = Email(sender, receiver, content) emails.append(email) class Email: def __init__(self, sender, receiver, content): self.sender = sender self.receiver = receiver self.content = content self.is_sent = False def send(self): self.is_sent = True def get_info(self): return f'{self.sender} says to {self.receiver}: {self.content}. Sent: {self.is_sent}' emails = [] get_emails() email_indices = map(int, input().split(', ')) for i in email_indices: emails[i].send() [print(email.get_info()) for email in emails]
def get_emails(): while True: email_info = input().split(' ') if email_info[0] == 'Stop': break (sender, receiver, content) = email_info email = email(sender, receiver, content) emails.append(email) class Email: def __init__(self, sender, receiver, content): self.sender = sender self.receiver = receiver self.content = content self.is_sent = False def send(self): self.is_sent = True def get_info(self): return f'{self.sender} says to {self.receiver}: {self.content}. Sent: {self.is_sent}' emails = [] get_emails() email_indices = map(int, input().split(', ')) for i in email_indices: emails[i].send() [print(email.get_info()) for email in emails]
pattern_zero=[0.0, 0.017538265306, 0.03443877551, 0.035714285714, 0.050701530612, 0.05325255102, 0.066326530612, 0.070153061224, 0.071428571429, 0.08131377551, 0.086415816327, 0.088966836735, 0.095663265306, 0.102040816327, 0.105867346939, 0.107142857143, 0.109375, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.13137755102, 0.134885204082, 0.137755102041, 0.141581632653, 0.142857142857, 0.145089285714, 0.146683673469, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449] pattern_odd=[0.0, 0.002232142857, 0.003826530612, 0.008928571429, 0.009885204082, 0.014987244898, 0.015306122449, 0.017538265306, 0.020089285714, 0.024234693878, 0.025510204082, 0.027742346939, 0.030612244898, 0.032844387755, 0.03443877551, 0.035395408163, 0.035714285714, 0.037946428571, 0.039540816327, 0.044642857143, 0.045599489796, 0.050701530612, 0.051020408163, 0.05325255102, 0.055803571429, 0.059948979592, 0.061224489796, 0.063456632653, 0.066326530612, 0.068558673469, 0.070153061224, 0.071109693878, 0.071428571429, 0.073660714286, 0.075255102041, 0.080357142857, 0.08131377551, 0.086415816327, 0.086734693878, 0.088966836735, 0.091517857143, 0.095663265306, 0.09693877551, 0.099170918367, 0.102040816327, 0.104272959184, 0.105867346939, 0.106823979592, 0.107142857143, 0.109375, 0.110969387755, 0.116071428571, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.127232142857, 0.13137755102, 0.132653061224, 0.134885204082, 0.137755102041, 0.139987244898, 0.141581632653, 0.142538265306, 0.142857142857, 0.145089285714, 0.146683673469, 0.151785714286, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.162946428571, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.175701530612, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.198660714286, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449] pattern_even=[0.0, 0.002232142857, 0.003826530612, 0.008928571429, 0.009885204082, 0.014987244898, 0.015306122449, 0.017538265306, 0.020089285714, 0.024234693878, 0.025510204082, 0.027742346939, 0.030612244898, 0.032844387755, 0.03443877551, 0.035395408163, 0.035714285714, 0.037946428571, 0.039540816327, 0.044642857143, 0.045599489796, 0.050701530612, 0.051020408163, 0.05325255102, 0.055803571429, 0.059948979592, 0.061224489796, 0.063456632653, 0.066326530612, 0.068558673469, 0.070153061224, 0.071109693878, 0.071428571429, 0.073660714286, 0.075255102041, 0.080357142857, 0.08131377551, 0.086415816327, 0.086734693878, 0.088966836735, 0.091517857143, 0.095663265306, 0.09693877551, 0.099170918367, 0.102040816327, 0.104272959184, 0.105867346939, 0.106823979592, 0.107142857143, 0.109375, 0.110969387755, 0.116071428571, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.127232142857, 0.13137755102, 0.132653061224, 0.134885204082, 0.137755102041, 0.139987244898, 0.141581632653, 0.142538265306, 0.142857142857, 0.145089285714, 0.146683673469, 0.151785714286, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.162946428571, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.175701530612, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.198660714286, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449] averages_even={0.0: [0.5, 0.0], 0.109375: [0.875, 0.125], 0.1875: [0.25, 0.75], 0.392857142857: [0.5, 0.0], 0.127232142857: [0.375, 0.625], 0.188456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.209183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.744897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.856823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.5: [0.5, 0.0], 0.946109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.657844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.03443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.244897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.354272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.535714285714: [0.5, 0.0], 0.473214285714: [0.75, 0.25], 0.78443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.753826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.59693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.537946428571: [0.875, 0.125], 0.813456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.780612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.015306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.488520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.999681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.559948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.382653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.651785714286: [0.75, 0.25], 0.009885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.823660714286: [0.875, 0.125], 0.6875: [0.75, 0.25], 0.412946428571: [0.375, 0.625], 0.882653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.502232142857: [0.875, 0.125], 0.270089285714: [0.375, 0.625], 0.08131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.75: [0.5, 0.0], 0.104272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.973214285714: [0.75, 0.25], 0.443558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.713010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.253826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.887755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.035714285714: [0.5, 0.0], 0.287946428571: [0.875, 0.125], 0.142538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.892857142857: [0.5, 0.0], 0.238520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.345663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.561224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.680803571429: [0.875, 0.125], 0.177295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.988520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.259885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.454081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.45631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.377232142857: [0.375, 0.625], 0.19387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.580357142857: [0.75, 0.25], 0.742028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.032844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.981823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.357142857143: [0.5, 0.0], 0.645089285714: [0.875, 0.125], 0.468112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.425701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.277742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.535395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.258928571429: [0.25, 0.75], 0.086415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.588966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.372448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.938456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.867028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.355867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.366071428571: [0.75, 0.25], 0.294642857143: [0.25, 0.75], 0.713966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.464285714286: [0.5, 0.0], 0.017538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.313456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.738520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.854272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.606823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.675701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.948660714286: [0.375, 0.625], 0.389987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.020089285714: [0.375, 0.625], 0.67825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.384885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.359375: [0.875, 0.125], 0.265306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.770089285714: [0.375, 0.625], 0.099170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.575255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.289540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.395089285714: [0.875, 0.125], 0.917091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.821428571429: [0.5, 0.0], 0.658163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.927295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.178571428571: [0.5, 0.0], 0.670599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.352040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.311224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.014987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.213010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.729272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.709183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.071109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.229272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.604272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.09693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.821109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.338966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.461415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.652742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.723214285714: [0.75, 0.25], 0.231823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.066326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.55325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.275510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.452806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.157844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.989795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.002232142857: [0.875, 0.125], 0.624681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.336734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.489795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.84693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.05325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.63137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.800701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.525510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.420599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.039540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.9375: [0.75, 0.25], 0.678571428571: [0.5, 0.0], 0.080357142857: [0.25, 0.75], 0.151785714286: [0.25, 0.75], 0.866071428571: [0.75, 0.25], 0.80325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.320153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.198660714286: [0.375, 0.625], 0.202806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.627232142857: [0.375, 0.625], 0.774234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.479591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.739795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.563456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.891581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.497130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.545599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.162946428571: [0.375, 0.625], 0.908163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.711415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.050701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.896683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.860969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.902742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.765306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.282844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.463966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.356823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.360969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.702806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.794642857143: [0.75, 0.25], 0.830357142857: [0.75, 0.25], 0.928571428571: [0.5, 0.0], 0.923469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.204081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.918367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.677295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.401785714286: [0.75, 0.25], 0.146683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.025510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.836734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.747130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.38137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.063456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.855867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.418367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.168367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.474170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.239795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.196109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.752232142857: [0.875, 0.125], 0.825255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.789540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.816326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.106823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.075255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.027742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.550701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.17825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.402742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.503826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.508928571429: [0.75, 0.25], 0.92825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.595663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.341517857143: [0.375, 0.625], 0.318558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.213966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.423469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.374681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.809948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.599170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.716517857143: [0.875, 0.125], 0.943558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.035395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.438456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.295599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.994897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.145089285714: [0.875, 0.125], 0.729591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.609375: [0.875, 0.125], 0.229591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.494897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.309948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.857142857143: [0.5, 0.0], 0.4375: [0.75, 0.25], 0.852040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.484375: [0.375, 0.625], 0.895089285714: [0.875, 0.125], 0.524234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.158163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.642857142857: [0.5, 0.0], 0.321109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.952806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.285714285714: [0.5, 0.0], 0.408163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.660395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.966517857143: [0.875, 0.125], 0.872448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.070153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.141581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.446109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.998724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.330357142857: [0.75, 0.25], 0.44387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.008928571429: [0.25, 0.75], 0.910395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.968112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.83131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.105867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.963010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.764987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.805803571429: [0.625, 0.375], 0.030612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.305803571429: [0.375, 0.625], 0.134885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.731823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.573660714286: [0.875, 0.125], 0.591517857143: [0.375, 0.625], 0.055803571429: [0.375, 0.625], 0.142857142857: [0.5, 0.0], 0.13137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.734375: [0.375, 0.625], 0.28443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.059948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.170599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.872130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.068558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.110969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.718112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.877232142857: [0.375, 0.625], 0.264987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.173469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.336415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.795599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.073660714286: [0.875, 0.125], 0.801020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.704081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.285395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.137755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.30325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.300701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.874681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.095663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.061224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.838966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.387755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.044642857143: [0.25, 0.75], 0.180803571429: [0.875, 0.125], 0.901785714286: [0.75, 0.25], 0.696109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.223214285714: [0.75, 0.25], 0.463010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.051020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.20631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.182397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.224170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.193558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.820153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.53443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.107142857143: [0.5, 0.0], 0.992028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.748724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.132653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.954081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.961415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.124681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.247130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.566326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.242028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.167091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.698660714286: [0.375, 0.625], 0.641581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.845663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.69387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.515306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.785714285714: [0.5, 0.0], 0.964285714286: [0.5, 0.0], 0.527742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.639987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.997130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.139987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.116071428571: [0.25, 0.75], 0.071428571429: [0.5, 0.0], 0.634885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.767538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.391581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.642538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.811224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.417091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.920599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.859375: [0.875, 0.125], 0.932397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.622448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.252232142857: [0.875, 0.125], 0.724170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.787946428571: [0.875, 0.125], 0.782844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.551020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.586734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.396683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.963966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.479272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.514987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.34693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.428571428571: [0.5, 0.0], 0.974170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.249681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.216517857143: [0.875, 0.125], 0.925701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.979591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.530612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.33131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.884885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.367028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.539540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.152742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.602040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.775510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.372130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.979272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.617028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.492028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.607142857143: [0.5, 0.0], 0.662946428571: [0.375, 0.625], 0.321428571429: [0.5, 0.0], 0.605867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.325255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.930803571429: [0.875, 0.125], 0.175701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.610969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.091517857143: [0.375, 0.625], 0.759885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.616071428571: [0.75, 0.25], 0.410395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.892538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.849170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.688456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.160395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.520089285714: [0.375, 0.625], 0.466517857143: [0.875, 0.125], 0.117028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.818558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.984375: [0.625, 0.375], 0.509885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.498724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.045599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.912946428571: [0.625, 0.375], 0.481823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.407844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.907844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.749681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.785395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.568558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.682397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.58131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.088966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.841517857143: [0.375, 0.625], 0.430803571429: [0.875, 0.125], 0.024234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.70631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.037946428571: [0.875, 0.125], 0.632653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.218112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.086734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.349170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.88137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.392538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.570153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.777742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.95631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.532844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.323660714286: [0.875, 0.125], 0.499681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.316326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.544642857143: [0.75, 0.25], 0.622130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.586415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.673469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.274234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.427295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.637755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.102040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.758928571429: [0.75, 0.25], 0.267538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.555803571429: [0.375, 0.625], 0.211415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.714285714286: [0.5, 0.0], 0.459183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.889987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.448660714286: [0.375, 0.625], 0.571109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.667091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.94387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.432397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.571428571429: [0.5, 0.0], 0.214285714286: [0.5, 0.0], 0.42825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.280612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.693558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.646683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.248724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.234375: [0.375, 0.625], 0.836415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.25: [0.5, 0.0], 0.959183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.003826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.668367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.517538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.301020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429]} averages_odd={0.0: [0.5, 0.0], 0.109375: [0.875, 0.125], 0.1875: [0.25, 0.75], 0.392857142857: [0.5, 0.0], 0.127232142857: [0.375, 0.625], 0.188456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.209183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.744897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.856823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.5: [0.5, 0.0], 0.946109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.657844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.03443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.244897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.354272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.535714285714: [0.5, 0.0], 0.473214285714: [0.75, 0.25], 0.78443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.753826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.59693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.537946428571: [0.875, 0.125], 0.813456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.780612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.015306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.488520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.999681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.559948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.382653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.651785714286: [0.75, 0.25], 0.009885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.823660714286: [0.875, 0.125], 0.6875: [0.75, 0.25], 0.412946428571: [0.375, 0.625], 0.882653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.502232142857: [0.875, 0.125], 0.270089285714: [0.375, 0.625], 0.08131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.75: [0.5, 0.0], 0.104272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.973214285714: [0.75, 0.25], 0.443558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.713010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.253826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.887755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.035714285714: [0.5, 0.0], 0.287946428571: [0.875, 0.125], 0.142538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.892857142857: [0.5, 0.0], 0.238520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.345663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.561224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.680803571429: [0.875, 0.125], 0.177295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.988520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.259885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.454081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.45631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.377232142857: [0.375, 0.625], 0.19387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.580357142857: [0.75, 0.25], 0.742028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.032844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.981823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.357142857143: [0.5, 0.0], 0.645089285714: [0.875, 0.125], 0.468112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.425701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.277742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.535395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.258928571429: [0.25, 0.75], 0.086415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.588966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.372448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.938456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.867028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.355867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.366071428571: [0.75, 0.25], 0.294642857143: [0.25, 0.75], 0.713966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.464285714286: [0.5, 0.0], 0.017538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.313456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.738520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.854272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.606823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.675701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.948660714286: [0.375, 0.625], 0.389987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.020089285714: [0.375, 0.625], 0.67825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.384885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.359375: [0.875, 0.125], 0.265306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.770089285714: [0.375, 0.625], 0.099170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.575255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.289540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.395089285714: [0.875, 0.125], 0.917091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.821428571429: [0.5, 0.0], 0.658163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.927295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.178571428571: [0.5, 0.0], 0.670599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.352040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.311224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.014987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.213010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.729272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.709183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.071109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.229272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.604272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.09693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.821109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.338966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.461415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.652742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.723214285714: [0.75, 0.25], 0.231823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.066326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.55325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.275510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.452806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.157844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.989795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.002232142857: [0.875, 0.125], 0.624681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.336734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.489795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.84693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.05325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.63137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.800701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.525510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.420599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.039540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.9375: [0.75, 0.25], 0.678571428571: [0.5, 0.0], 0.080357142857: [0.25, 0.75], 0.151785714286: [0.25, 0.75], 0.866071428571: [0.75, 0.25], 0.80325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.320153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.198660714286: [0.375, 0.625], 0.202806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.627232142857: [0.375, 0.625], 0.774234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.479591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.739795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.563456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.891581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.497130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.545599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.162946428571: [0.375, 0.625], 0.908163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.711415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.050701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.896683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.860969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.902742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.765306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.282844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.463966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.356823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.360969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.702806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.794642857143: [0.75, 0.25], 0.830357142857: [0.75, 0.25], 0.928571428571: [0.5, 0.0], 0.923469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.204081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.918367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.677295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.401785714286: [0.75, 0.25], 0.146683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.025510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.836734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.747130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.38137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.063456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.855867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.418367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.168367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.474170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.239795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.196109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.752232142857: [0.875, 0.125], 0.825255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.789540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.816326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.106823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.075255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.027742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.550701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.17825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.402742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.503826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.508928571429: [0.75, 0.25], 0.92825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.595663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.341517857143: [0.375, 0.625], 0.318558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.213966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.423469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.374681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.809948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.599170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.716517857143: [0.875, 0.125], 0.943558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.035395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.438456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.295599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.994897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.145089285714: [0.875, 0.125], 0.729591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.609375: [0.875, 0.125], 0.229591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.494897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.309948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.857142857143: [0.5, 0.0], 0.4375: [0.75, 0.25], 0.852040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.484375: [0.375, 0.625], 0.895089285714: [0.875, 0.125], 0.524234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.158163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.642857142857: [0.5, 0.0], 0.321109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.952806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.285714285714: [0.5, 0.0], 0.408163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.660395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.966517857143: [0.875, 0.125], 0.872448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.070153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.141581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.446109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.998724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.330357142857: [0.75, 0.25], 0.44387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.008928571429: [0.25, 0.75], 0.910395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.968112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.83131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.105867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.963010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.764987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.805803571429: [0.625, 0.375], 0.030612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.305803571429: [0.375, 0.625], 0.134885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.731823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.573660714286: [0.875, 0.125], 0.591517857143: [0.375, 0.625], 0.055803571429: [0.375, 0.625], 0.142857142857: [0.5, 0.0], 0.13137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.734375: [0.375, 0.625], 0.28443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.059948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.170599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.872130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.068558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.110969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.718112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.877232142857: [0.375, 0.625], 0.264987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.173469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.336415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.795599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.073660714286: [0.875, 0.125], 0.801020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.704081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.285395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.137755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.30325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.300701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.874681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.095663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.061224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.838966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.387755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.044642857143: [0.25, 0.75], 0.180803571429: [0.875, 0.125], 0.901785714286: [0.75, 0.25], 0.696109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.223214285714: [0.75, 0.25], 0.463010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.051020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.20631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.182397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.224170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.193558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.820153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.53443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.107142857143: [0.5, 0.0], 0.992028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.748724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.132653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.954081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.961415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.124681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.247130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.566326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.242028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.167091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.698660714286: [0.375, 0.625], 0.641581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.845663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.69387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.515306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.785714285714: [0.5, 0.0], 0.964285714286: [0.5, 0.0], 0.527742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.639987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.997130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.139987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.116071428571: [0.25, 0.75], 0.071428571429: [0.5, 0.0], 0.634885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.767538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.391581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.642538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.811224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.417091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.920599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.859375: [0.875, 0.125], 0.932397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.622448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.252232142857: [0.875, 0.125], 0.724170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.787946428571: [0.875, 0.125], 0.782844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.551020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.586734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.396683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.963966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.479272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.514987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.34693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.428571428571: [0.5, 0.0], 0.974170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.249681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.216517857143: [0.875, 0.125], 0.925701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.979591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.530612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.33131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.884885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.367028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.539540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.152742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.602040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.775510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.372130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.979272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.617028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.492028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.607142857143: [0.5, 0.0], 0.662946428571: [0.375, 0.625], 0.321428571429: [0.5, 0.0], 0.605867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.325255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.930803571429: [0.875, 0.125], 0.175701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.610969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.091517857143: [0.375, 0.625], 0.759885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.616071428571: [0.75, 0.25], 0.410395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.892538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.849170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.688456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.160395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.520089285714: [0.375, 0.625], 0.466517857143: [0.875, 0.125], 0.117028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.818558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.984375: [0.625, 0.375], 0.509885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.498724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.045599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.912946428571: [0.625, 0.375], 0.481823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.407844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.907844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.749681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.785395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.568558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.682397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.58131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.088966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.841517857143: [0.375, 0.625], 0.430803571429: [0.875, 0.125], 0.024234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.70631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.037946428571: [0.875, 0.125], 0.632653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.218112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.086734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.349170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.88137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.392538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.570153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.777742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.95631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.532844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.323660714286: [0.875, 0.125], 0.499681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.316326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.544642857143: [0.75, 0.25], 0.622130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.586415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.673469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.274234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.427295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.637755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.102040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.758928571429: [0.75, 0.25], 0.267538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.555803571429: [0.375, 0.625], 0.211415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.714285714286: [0.5, 0.0], 0.459183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.889987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.448660714286: [0.375, 0.625], 0.571109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.667091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.94387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.432397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.571428571429: [0.5, 0.0], 0.214285714286: [0.5, 0.0], 0.42825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.280612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.693558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.646683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.248724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.234375: [0.375, 0.625], 0.836415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.25: [0.5, 0.0], 0.959183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.003826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.668367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.517538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.301020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429]}
pattern_zero = [0.0, 0.017538265306, 0.03443877551, 0.035714285714, 0.050701530612, 0.05325255102, 0.066326530612, 0.070153061224, 0.071428571429, 0.08131377551, 0.086415816327, 0.088966836735, 0.095663265306, 0.102040816327, 0.105867346939, 0.107142857143, 0.109375, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.13137755102, 0.134885204082, 0.137755102041, 0.141581632653, 0.142857142857, 0.145089285714, 0.146683673469, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449] pattern_odd = [0.0, 0.002232142857, 0.003826530612, 0.008928571429, 0.009885204082, 0.014987244898, 0.015306122449, 0.017538265306, 0.020089285714, 0.024234693878, 0.025510204082, 0.027742346939, 0.030612244898, 0.032844387755, 0.03443877551, 0.035395408163, 0.035714285714, 0.037946428571, 0.039540816327, 0.044642857143, 0.045599489796, 0.050701530612, 0.051020408163, 0.05325255102, 0.055803571429, 0.059948979592, 0.061224489796, 0.063456632653, 0.066326530612, 0.068558673469, 0.070153061224, 0.071109693878, 0.071428571429, 0.073660714286, 0.075255102041, 0.080357142857, 0.08131377551, 0.086415816327, 0.086734693878, 0.088966836735, 0.091517857143, 0.095663265306, 0.09693877551, 0.099170918367, 0.102040816327, 0.104272959184, 0.105867346939, 0.106823979592, 0.107142857143, 0.109375, 0.110969387755, 0.116071428571, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.127232142857, 0.13137755102, 0.132653061224, 0.134885204082, 0.137755102041, 0.139987244898, 0.141581632653, 0.142538265306, 0.142857142857, 0.145089285714, 0.146683673469, 0.151785714286, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.162946428571, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.175701530612, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.198660714286, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449] pattern_even = [0.0, 0.002232142857, 0.003826530612, 0.008928571429, 0.009885204082, 0.014987244898, 0.015306122449, 0.017538265306, 0.020089285714, 0.024234693878, 0.025510204082, 0.027742346939, 0.030612244898, 0.032844387755, 0.03443877551, 0.035395408163, 0.035714285714, 0.037946428571, 0.039540816327, 0.044642857143, 0.045599489796, 0.050701530612, 0.051020408163, 0.05325255102, 0.055803571429, 0.059948979592, 0.061224489796, 0.063456632653, 0.066326530612, 0.068558673469, 0.070153061224, 0.071109693878, 0.071428571429, 0.073660714286, 0.075255102041, 0.080357142857, 0.08131377551, 0.086415816327, 0.086734693878, 0.088966836735, 0.091517857143, 0.095663265306, 0.09693877551, 0.099170918367, 0.102040816327, 0.104272959184, 0.105867346939, 0.106823979592, 0.107142857143, 0.109375, 0.110969387755, 0.116071428571, 0.117028061224, 0.122130102041, 0.122448979592, 0.124681122449, 0.127232142857, 0.13137755102, 0.132653061224, 0.134885204082, 0.137755102041, 0.139987244898, 0.141581632653, 0.142538265306, 0.142857142857, 0.145089285714, 0.146683673469, 0.151785714286, 0.152742346939, 0.157844387755, 0.158163265306, 0.160395408163, 0.162946428571, 0.167091836735, 0.168367346939, 0.170599489796, 0.173469387755, 0.175701530612, 0.177295918367, 0.17825255102, 0.178571428571, 0.180803571429, 0.182397959184, 0.1875, 0.188456632653, 0.193558673469, 0.19387755102, 0.196109693878, 0.198660714286, 0.202806122449, 0.204081632653, 0.20631377551, 0.209183673469, 0.211415816327, 0.213010204082, 0.213966836735, 0.214285714286, 0.216517857143, 0.218112244898, 0.223214285714, 0.224170918367, 0.229272959184, 0.229591836735, 0.231823979592, 0.234375, 0.238520408163, 0.239795918367, 0.242028061224, 0.244897959184, 0.247130102041, 0.248724489796, 0.249681122449, 0.25, 0.252232142857, 0.253826530612, 0.258928571429, 0.259885204082, 0.264987244898, 0.265306122449, 0.267538265306, 0.270089285714, 0.274234693878, 0.275510204082, 0.277742346939, 0.280612244898, 0.282844387755, 0.28443877551, 0.285395408163, 0.285714285714, 0.287946428571, 0.289540816327, 0.294642857143, 0.295599489796, 0.300701530612, 0.301020408163, 0.30325255102, 0.305803571429, 0.309948979592, 0.311224489796, 0.313456632653, 0.316326530612, 0.318558673469, 0.320153061224, 0.321109693878, 0.321428571429, 0.323660714286, 0.325255102041, 0.330357142857, 0.33131377551, 0.336415816327, 0.336734693878, 0.338966836735, 0.341517857143, 0.345663265306, 0.34693877551, 0.349170918367, 0.352040816327, 0.354272959184, 0.355867346939, 0.356823979592, 0.357142857143, 0.359375, 0.360969387755, 0.366071428571, 0.367028061224, 0.372130102041, 0.372448979592, 0.374681122449, 0.377232142857, 0.38137755102, 0.382653061224, 0.384885204082, 0.387755102041, 0.389987244898, 0.391581632653, 0.392538265306, 0.392857142857, 0.395089285714, 0.396683673469, 0.401785714286, 0.402742346939, 0.407844387755, 0.408163265306, 0.410395408163, 0.412946428571, 0.417091836735, 0.418367346939, 0.420599489796, 0.423469387755, 0.425701530612, 0.427295918367, 0.42825255102, 0.428571428571, 0.430803571429, 0.432397959184, 0.4375, 0.438456632653, 0.443558673469, 0.44387755102, 0.446109693878, 0.448660714286, 0.452806122449, 0.454081632653, 0.45631377551, 0.459183673469, 0.461415816327, 0.463010204082, 0.463966836735, 0.464285714286, 0.466517857143, 0.468112244898, 0.473214285714, 0.474170918367, 0.479272959184, 0.479591836735, 0.481823979592, 0.484375, 0.488520408163, 0.489795918367, 0.492028061224, 0.494897959184, 0.497130102041, 0.498724489796, 0.499681122449, 0.5, 0.502232142857, 0.503826530612, 0.508928571429, 0.509885204082, 0.514987244898, 0.515306122449, 0.517538265306, 0.520089285714, 0.524234693878, 0.525510204082, 0.527742346939, 0.530612244898, 0.532844387755, 0.53443877551, 0.535395408163, 0.535714285714, 0.537946428571, 0.539540816327, 0.544642857143, 0.545599489796, 0.550701530612, 0.551020408163, 0.55325255102, 0.555803571429, 0.559948979592, 0.561224489796, 0.563456632653, 0.566326530612, 0.568558673469, 0.570153061224, 0.571109693878, 0.571428571429, 0.573660714286, 0.575255102041, 0.580357142857, 0.58131377551, 0.586415816327, 0.586734693878, 0.588966836735, 0.591517857143, 0.595663265306, 0.59693877551, 0.599170918367, 0.602040816327, 0.604272959184, 0.605867346939, 0.606823979592, 0.607142857143, 0.609375, 0.610969387755, 0.616071428571, 0.617028061224, 0.622130102041, 0.622448979592, 0.624681122449, 0.627232142857, 0.63137755102, 0.632653061224, 0.634885204082, 0.637755102041, 0.639987244898, 0.641581632653, 0.642538265306, 0.642857142857, 0.645089285714, 0.646683673469, 0.651785714286, 0.652742346939, 0.657844387755, 0.658163265306, 0.660395408163, 0.662946428571, 0.667091836735, 0.668367346939, 0.670599489796, 0.673469387755, 0.675701530612, 0.677295918367, 0.67825255102, 0.678571428571, 0.680803571429, 0.682397959184, 0.6875, 0.688456632653, 0.693558673469, 0.69387755102, 0.696109693878, 0.698660714286, 0.702806122449, 0.704081632653, 0.70631377551, 0.709183673469, 0.711415816327, 0.713010204082, 0.713966836735, 0.714285714286, 0.716517857143, 0.718112244898, 0.723214285714, 0.724170918367, 0.729272959184, 0.729591836735, 0.731823979592, 0.734375, 0.738520408163, 0.739795918367, 0.742028061224, 0.744897959184, 0.747130102041, 0.748724489796, 0.749681122449, 0.75, 0.752232142857, 0.753826530612, 0.758928571429, 0.759885204082, 0.764987244898, 0.765306122449, 0.767538265306, 0.770089285714, 0.774234693878, 0.775510204082, 0.777742346939, 0.780612244898, 0.782844387755, 0.78443877551, 0.785395408163, 0.785714285714, 0.787946428571, 0.789540816327, 0.794642857143, 0.795599489796, 0.800701530612, 0.801020408163, 0.80325255102, 0.805803571429, 0.809948979592, 0.811224489796, 0.813456632653, 0.816326530612, 0.818558673469, 0.820153061224, 0.821109693878, 0.821428571429, 0.823660714286, 0.825255102041, 0.830357142857, 0.83131377551, 0.836415816327, 0.836734693878, 0.838966836735, 0.841517857143, 0.845663265306, 0.84693877551, 0.849170918367, 0.852040816327, 0.854272959184, 0.855867346939, 0.856823979592, 0.857142857143, 0.859375, 0.860969387755, 0.866071428571, 0.867028061224, 0.872130102041, 0.872448979592, 0.874681122449, 0.877232142857, 0.88137755102, 0.882653061224, 0.884885204082, 0.887755102041, 0.889987244898, 0.891581632653, 0.892538265306, 0.892857142857, 0.895089285714, 0.896683673469, 0.901785714286, 0.902742346939, 0.907844387755, 0.908163265306, 0.910395408163, 0.912946428571, 0.917091836735, 0.918367346939, 0.920599489796, 0.923469387755, 0.925701530612, 0.927295918367, 0.92825255102, 0.928571428571, 0.930803571429, 0.932397959184, 0.9375, 0.938456632653, 0.943558673469, 0.94387755102, 0.946109693878, 0.948660714286, 0.952806122449, 0.954081632653, 0.95631377551, 0.959183673469, 0.961415816327, 0.963010204082, 0.963966836735, 0.964285714286, 0.966517857143, 0.968112244898, 0.973214285714, 0.974170918367, 0.979272959184, 0.979591836735, 0.981823979592, 0.984375, 0.988520408163, 0.989795918367, 0.992028061224, 0.994897959184, 0.997130102041, 0.998724489796, 0.999681122449] averages_even = {0.0: [0.5, 0.0], 0.109375: [0.875, 0.125], 0.1875: [0.25, 0.75], 0.392857142857: [0.5, 0.0], 0.127232142857: [0.375, 0.625], 0.188456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.209183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.744897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.856823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.5: [0.5, 0.0], 0.946109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.657844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.03443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.244897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.354272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.535714285714: [0.5, 0.0], 0.473214285714: [0.75, 0.25], 0.78443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.753826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.59693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.537946428571: [0.875, 0.125], 0.813456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.780612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.015306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.488520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.999681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.559948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.382653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.651785714286: [0.75, 0.25], 0.009885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.823660714286: [0.875, 0.125], 0.6875: [0.75, 0.25], 0.412946428571: [0.375, 0.625], 0.882653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.502232142857: [0.875, 0.125], 0.270089285714: [0.375, 0.625], 0.08131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.75: [0.5, 0.0], 0.104272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.973214285714: [0.75, 0.25], 0.443558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.713010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.253826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.887755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.035714285714: [0.5, 0.0], 0.287946428571: [0.875, 0.125], 0.142538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.892857142857: [0.5, 0.0], 0.238520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.345663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.561224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.680803571429: [0.875, 0.125], 0.177295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.988520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.259885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.454081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.45631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.377232142857: [0.375, 0.625], 0.19387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.580357142857: [0.75, 0.25], 0.742028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.032844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.981823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.357142857143: [0.5, 0.0], 0.645089285714: [0.875, 0.125], 0.468112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.425701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.277742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.535395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.258928571429: [0.25, 0.75], 0.086415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.588966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.372448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.938456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.867028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.355867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.366071428571: [0.75, 0.25], 0.294642857143: [0.25, 0.75], 0.713966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.464285714286: [0.5, 0.0], 0.017538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.313456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.738520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.854272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.606823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.675701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.948660714286: [0.375, 0.625], 0.389987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.020089285714: [0.375, 0.625], 0.67825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.384885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.359375: [0.875, 0.125], 0.265306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.770089285714: [0.375, 0.625], 0.099170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.575255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.289540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.395089285714: [0.875, 0.125], 0.917091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.821428571429: [0.5, 0.0], 0.658163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.927295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.178571428571: [0.5, 0.0], 0.670599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.352040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.311224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.014987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.213010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.729272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.709183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.071109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.229272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.604272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.09693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.821109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.338966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.461415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.652742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.723214285714: [0.75, 0.25], 0.231823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.066326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.55325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.275510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.452806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.157844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.989795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.002232142857: [0.875, 0.125], 0.624681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.336734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.489795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.84693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.05325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.63137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.800701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.525510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.420599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.039540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.9375: [0.75, 0.25], 0.678571428571: [0.5, 0.0], 0.080357142857: [0.25, 0.75], 0.151785714286: [0.25, 0.75], 0.866071428571: [0.75, 0.25], 0.80325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.320153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.198660714286: [0.375, 0.625], 0.202806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.627232142857: [0.375, 0.625], 0.774234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.479591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.739795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.563456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.891581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.497130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.545599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.162946428571: [0.375, 0.625], 0.908163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.711415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.050701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.896683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.860969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.902742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.765306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.282844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.463966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.356823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.360969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.702806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.794642857143: [0.75, 0.25], 0.830357142857: [0.75, 0.25], 0.928571428571: [0.5, 0.0], 0.923469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.204081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.918367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.677295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.401785714286: [0.75, 0.25], 0.146683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.025510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.836734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.747130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.38137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.063456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.855867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.418367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.168367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.474170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.239795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.196109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.752232142857: [0.875, 0.125], 0.825255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.789540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.816326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.106823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.075255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.027742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.550701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.17825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.402742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.503826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.508928571429: [0.75, 0.25], 0.92825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.595663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.341517857143: [0.375, 0.625], 0.318558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.213966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.423469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.374681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.809948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.599170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.716517857143: [0.875, 0.125], 0.943558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.035395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.438456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.295599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.994897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.145089285714: [0.875, 0.125], 0.729591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.609375: [0.875, 0.125], 0.229591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.494897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.309948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.857142857143: [0.5, 0.0], 0.4375: [0.75, 0.25], 0.852040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.484375: [0.375, 0.625], 0.895089285714: [0.875, 0.125], 0.524234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.158163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.642857142857: [0.5, 0.0], 0.321109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.952806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.285714285714: [0.5, 0.0], 0.408163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.660395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.966517857143: [0.875, 0.125], 0.872448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.070153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.141581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.446109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.998724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.330357142857: [0.75, 0.25], 0.44387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.008928571429: [0.25, 0.75], 0.910395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.968112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.83131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.105867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.963010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.764987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.805803571429: [0.625, 0.375], 0.030612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.305803571429: [0.375, 0.625], 0.134885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.731823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.573660714286: [0.875, 0.125], 0.591517857143: [0.375, 0.625], 0.055803571429: [0.375, 0.625], 0.142857142857: [0.5, 0.0], 0.13137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.734375: [0.375, 0.625], 0.28443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.059948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.170599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.872130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.068558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.110969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.718112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.877232142857: [0.375, 0.625], 0.264987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.173469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.336415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.795599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.073660714286: [0.875, 0.125], 0.801020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.704081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.285395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.137755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.30325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.300701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.874681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.095663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.061224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.838966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.387755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.044642857143: [0.25, 0.75], 0.180803571429: [0.875, 0.125], 0.901785714286: [0.75, 0.25], 0.696109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.223214285714: [0.75, 0.25], 0.463010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.051020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.20631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.182397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.224170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.193558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.820153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.53443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.107142857143: [0.5, 0.0], 0.992028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.748724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.132653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.954081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.961415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.124681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.247130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.566326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.242028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.167091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.698660714286: [0.375, 0.625], 0.641581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.845663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.69387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.515306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.785714285714: [0.5, 0.0], 0.964285714286: [0.5, 0.0], 0.527742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.639987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.997130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.139987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.116071428571: [0.25, 0.75], 0.071428571429: [0.5, 0.0], 0.634885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.767538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.391581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.642538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.811224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.417091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.920599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.859375: [0.875, 0.125], 0.932397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.622448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.252232142857: [0.875, 0.125], 0.724170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.787946428571: [0.875, 0.125], 0.782844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.551020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.586734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.396683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.963966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.479272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.514987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.34693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.428571428571: [0.5, 0.0], 0.974170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.249681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.216517857143: [0.875, 0.125], 0.925701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.979591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.530612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.33131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.884885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.367028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.539540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.152742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.602040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.775510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.372130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.979272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.617028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.492028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.607142857143: [0.5, 0.0], 0.662946428571: [0.375, 0.625], 0.321428571429: [0.5, 0.0], 0.605867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.325255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.930803571429: [0.875, 0.125], 0.175701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.610969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.091517857143: [0.375, 0.625], 0.759885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.616071428571: [0.75, 0.25], 0.410395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.892538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.849170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.688456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.160395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.520089285714: [0.375, 0.625], 0.466517857143: [0.875, 0.125], 0.117028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.818558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.984375: [0.625, 0.375], 0.509885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.498724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.045599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.912946428571: [0.625, 0.375], 0.481823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.407844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.907844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.749681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.785395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.568558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.682397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.58131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.088966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.841517857143: [0.375, 0.625], 0.430803571429: [0.875, 0.125], 0.024234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.70631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.037946428571: [0.875, 0.125], 0.632653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.218112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.086734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.349170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.88137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.392538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.570153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.777742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.95631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.532844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.323660714286: [0.875, 0.125], 0.499681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.316326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.544642857143: [0.75, 0.25], 0.622130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.586415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.673469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.274234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.427295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.637755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.102040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.758928571429: [0.75, 0.25], 0.267538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.555803571429: [0.375, 0.625], 0.211415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.714285714286: [0.5, 0.0], 0.459183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.889987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.448660714286: [0.375, 0.625], 0.571109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.667091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.94387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.432397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.571428571429: [0.5, 0.0], 0.214285714286: [0.5, 0.0], 0.42825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.280612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.693558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.646683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.248724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.234375: [0.375, 0.625], 0.836415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.25: [0.5, 0.0], 0.959183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.003826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.668367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.517538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.301020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429]} averages_odd = {0.0: [0.5, 0.0], 0.109375: [0.875, 0.125], 0.1875: [0.25, 0.75], 0.392857142857: [0.5, 0.0], 0.127232142857: [0.375, 0.625], 0.188456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.209183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.744897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.856823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.5: [0.5, 0.0], 0.946109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.657844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.03443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.244897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.354272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.535714285714: [0.5, 0.0], 0.473214285714: [0.75, 0.25], 0.78443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.753826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.59693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.537946428571: [0.875, 0.125], 0.813456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.780612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.015306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.488520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.999681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.559948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.382653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.651785714286: [0.75, 0.25], 0.009885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.823660714286: [0.875, 0.125], 0.6875: [0.75, 0.25], 0.412946428571: [0.375, 0.625], 0.882653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.502232142857: [0.875, 0.125], 0.270089285714: [0.375, 0.625], 0.08131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.75: [0.5, 0.0], 0.104272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.973214285714: [0.75, 0.25], 0.443558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.713010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.253826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.887755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.035714285714: [0.5, 0.0], 0.287946428571: [0.875, 0.125], 0.142538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.892857142857: [0.5, 0.0], 0.238520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.345663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.561224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.680803571429: [0.875, 0.125], 0.177295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.988520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.259885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.454081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.45631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.377232142857: [0.375, 0.625], 0.19387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.580357142857: [0.75, 0.25], 0.742028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.032844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.981823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.357142857143: [0.5, 0.0], 0.645089285714: [0.875, 0.125], 0.468112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.425701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.277742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.535395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.258928571429: [0.25, 0.75], 0.086415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.588966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.372448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.938456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.867028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.355867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.366071428571: [0.75, 0.25], 0.294642857143: [0.25, 0.75], 0.713966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.464285714286: [0.5, 0.0], 0.017538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.313456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.738520408163: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.854272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.606823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.675701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.948660714286: [0.375, 0.625], 0.389987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.020089285714: [0.375, 0.625], 0.67825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.384885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.359375: [0.875, 0.125], 0.265306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.770089285714: [0.375, 0.625], 0.099170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.575255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.289540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.395089285714: [0.875, 0.125], 0.917091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.821428571429: [0.5, 0.0], 0.658163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.927295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.178571428571: [0.5, 0.0], 0.670599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.352040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.311224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.014987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.213010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.729272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.709183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.071109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.229272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.604272959184: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.09693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.821109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.338966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.461415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.652742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.723214285714: [0.75, 0.25], 0.231823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.066326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.55325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.275510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.452806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.157844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.989795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.002232142857: [0.875, 0.125], 0.624681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.336734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.489795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.84693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.05325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.63137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.800701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.525510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.420599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.039540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.9375: [0.75, 0.25], 0.678571428571: [0.5, 0.0], 0.080357142857: [0.25, 0.75], 0.151785714286: [0.25, 0.75], 0.866071428571: [0.75, 0.25], 0.80325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.320153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.198660714286: [0.375, 0.625], 0.202806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.627232142857: [0.375, 0.625], 0.774234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.479591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.739795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.563456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.891581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.497130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.545599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.162946428571: [0.375, 0.625], 0.908163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.711415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.050701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.896683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.860969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.902742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.765306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.282844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.463966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.356823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.360969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.702806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.794642857143: [0.75, 0.25], 0.830357142857: [0.75, 0.25], 0.928571428571: [0.5, 0.0], 0.923469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.204081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.918367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.677295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.401785714286: [0.75, 0.25], 0.146683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.025510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.836734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.747130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.38137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.063456632653: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.855867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.418367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.168367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.474170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.239795918367: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.196109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.752232142857: [0.875, 0.125], 0.825255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.789540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.816326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.106823979592: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.075255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.027742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.550701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.17825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.402742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.503826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.508928571429: [0.75, 0.25], 0.92825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.595663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.341517857143: [0.375, 0.625], 0.318558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.213966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.423469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.374681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.809948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.599170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.716517857143: [0.875, 0.125], 0.943558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.035395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.438456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.295599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.994897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.145089285714: [0.875, 0.125], 0.729591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.609375: [0.875, 0.125], 0.229591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.494897959184: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.309948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.857142857143: [0.5, 0.0], 0.4375: [0.75, 0.25], 0.852040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.484375: [0.375, 0.625], 0.895089285714: [0.875, 0.125], 0.524234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.158163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.642857142857: [0.5, 0.0], 0.321109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.952806122449: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.285714285714: [0.5, 0.0], 0.408163265306: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.660395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.966517857143: [0.875, 0.125], 0.872448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.070153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.141581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.446109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.998724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.330357142857: [0.75, 0.25], 0.44387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.008928571429: [0.25, 0.75], 0.910395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.968112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.83131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.105867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.963010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.764987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.805803571429: [0.625, 0.375], 0.030612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.305803571429: [0.375, 0.625], 0.134885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.731823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.573660714286: [0.875, 0.125], 0.591517857143: [0.375, 0.625], 0.055803571429: [0.375, 0.625], 0.142857142857: [0.5, 0.0], 0.13137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.734375: [0.375, 0.625], 0.28443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.059948979592: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.170599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.872130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.068558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.110969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.718112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.877232142857: [0.375, 0.625], 0.264987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.173469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.336415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.795599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.073660714286: [0.875, 0.125], 0.801020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.704081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.285395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.137755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.30325255102: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.300701530612: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.874681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.095663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.061224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.838966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.387755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.044642857143: [0.25, 0.75], 0.180803571429: [0.875, 0.125], 0.901785714286: [0.75, 0.25], 0.696109693878: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.223214285714: [0.75, 0.25], 0.463010204082: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.051020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.20631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.182397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.224170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.193558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.820153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.53443877551: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.107142857143: [0.5, 0.0], 0.992028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.748724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.132653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.954081632653: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.961415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.124681122449: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.247130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.566326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.242028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.167091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.698660714286: [0.375, 0.625], 0.641581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.845663265306: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.69387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.515306122449: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.785714285714: [0.5, 0.0], 0.964285714286: [0.5, 0.0], 0.527742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.639987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.997130102041: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.139987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.116071428571: [0.25, 0.75], 0.071428571429: [0.5, 0.0], 0.634885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.767538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.391581632653: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.642538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.811224489796: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.417091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.920599489796: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.122130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.859375: [0.875, 0.125], 0.932397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.622448979592: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.252232142857: [0.875, 0.125], 0.724170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.787946428571: [0.875, 0.125], 0.782844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.551020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.586734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.396683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.963966836735: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.479272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.514987244898: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.34693877551: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.428571428571: [0.5, 0.0], 0.974170918367: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.249681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.216517857143: [0.875, 0.125], 0.925701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.979591836735: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.530612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.33131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.884885204082: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.367028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.539540816327: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.152742346939: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.602040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.775510204082: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.372130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.979272959184: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.617028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.492028061224: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.607142857143: [0.5, 0.0], 0.662946428571: [0.375, 0.625], 0.321428571429: [0.5, 0.0], 0.605867346939: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.325255102041: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.930803571429: [0.875, 0.125], 0.175701530612: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.610969387755: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.091517857143: [0.375, 0.625], 0.759885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.616071428571: [0.75, 0.25], 0.410395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.892538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.849170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.688456632653: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.160395408163: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.520089285714: [0.375, 0.625], 0.466517857143: [0.875, 0.125], 0.117028061224: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.818558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.984375: [0.625, 0.375], 0.509885204082: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.498724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.045599489796: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.912946428571: [0.625, 0.375], 0.481823979592: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.407844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.907844387755: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.749681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.785395408163: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.568558673469: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.682397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.58131377551: [0.9107142857143, 0.0892857142857, 0.6607142857143, 0.3392857142857], 0.088966836735: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.841517857143: [0.375, 0.625], 0.430803571429: [0.875, 0.125], 0.024234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.70631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.037946428571: [0.875, 0.125], 0.632653061224: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.218112244898: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.086734693878: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.349170918367: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.88137755102: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.392538265306: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.570153061224: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.777742346939: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.95631377551: [0.4107142857143, 0.1607142857143, 0.5892857142857, 0.8392857142857], 0.532844387755: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.323660714286: [0.875, 0.125], 0.499681122449: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.316326530612: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.544642857143: [0.75, 0.25], 0.622130102041: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.586415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.673469387755: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.274234693878: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.427295918367: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.637755102041: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.102040816327: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.758928571429: [0.75, 0.25], 0.267538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.555803571429: [0.375, 0.625], 0.211415816327: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.714285714286: [0.5, 0.0], 0.459183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.889987244898: [0.6964285714286, 0.4464285714286, 0.3035714285714, 0.5535714285714], 0.448660714286: [0.375, 0.625], 0.571109693878: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.667091836735: [0.8928571428571, 0.3928571428571, 0.6071428571429, 0.1071428571429], 0.94387755102: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429], 0.432397959184: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.571428571429: [0.5, 0.0], 0.214285714286: [0.5, 0.0], 0.42825255102: [0.5178571428571, 0.4821428571429, 0.7678571428571, 0.2321428571429], 0.280612244898: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.693558673469: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.646683673469: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.248724489796: [0.0357142857143, 0.9642857142857, 0.5357142857143, 0.4642857142857], 0.234375: [0.375, 0.625], 0.836415816327: [0.9464285714286, 0.1964285714286, 0.0535714285714, 0.8035714285714], 0.25: [0.5, 0.0], 0.959183673469: [0.5714285714286, 0.4285714285714, 0.9285714285714, 0.0714285714286], 0.003826530612: [0.8214285714286, 0.3214285714286, 0.1785714285714, 0.6785714285714], 0.668367346939: [0.2857142857143, 0.7142857142857, 0.7857142857143, 0.2142857142857], 0.517538265306: [0.0178571428571, 0.2678571428571, 0.7321428571429, 0.9821428571429], 0.301020408163: [0.1428571428571, 0.6428571428571, 0.3571428571429, 0.8571428571429]}
def main() -> None: x0, y0, x1, y1 = map(int, input().split()) for dx in range(-2, 3): for dy in range(-2, 3): if abs(dx) + abs(dy) != 3: continue if abs(dx) == 0 or abs(dy) == 0: continue x = x0 + dx y = y0 + dy dx = abs(x1 - x) dy = abs(y1 - y) if abs(dx) + abs(dy) != 3: continue if abs(dx) == 0 or abs(dy) == 0: continue print("Yes") return print("No") if __name__ == "__main__": main()
def main() -> None: (x0, y0, x1, y1) = map(int, input().split()) for dx in range(-2, 3): for dy in range(-2, 3): if abs(dx) + abs(dy) != 3: continue if abs(dx) == 0 or abs(dy) == 0: continue x = x0 + dx y = y0 + dy dx = abs(x1 - x) dy = abs(y1 - y) if abs(dx) + abs(dy) != 3: continue if abs(dx) == 0 or abs(dy) == 0: continue print('Yes') return print('No') if __name__ == '__main__': main()
# Copyright (c) 2010 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This file was split off from ppapi.gyp to prevent PPAPI users from # needing to DEPS in ~10K files due to mesa. { 'includes': [ '../../../third_party/mesa/mesa.gypi', ], 'variables': { 'chromium_code': 1, # Use higher warning level. }, 'targets': [ { 'target_name': 'ppapi_egl', 'type': 'static_library', 'dependencies': [ '<(DEPTH)/ppapi/ppapi.gyp:ppapi_c', ], 'include_dirs': [ 'include', ], 'defines': [ # Do not export internal Mesa funcations. Exporting them is not # required because we are compiling both - API dispatcher and driver # into a single library. 'PUBLIC=', # Define a new PPAPI platform. '_EGL_PLATFORM_PPAPI=_EGL_NUM_PLATFORMS', '_EGL_NATIVE_PLATFORM=_EGL_PLATFORM_PPAPI', ], 'conditions': [ ['OS=="win"', { 'defines': [ '_EGL_OS_WINDOWS', ], }], ['OS=="mac"', { # TODO(alokp): Make this compile on mac. 'suppress_wildcard': 1, }], ], 'sources': [ # Mesa EGL API dispatcher sources. '<@(mesa_egl_sources)', # PPAPI EGL driver sources. 'egl/egldriver.c', 'egl/egldriver_ppapi.c', ], }, ], }
{'includes': ['../../../third_party/mesa/mesa.gypi'], 'variables': {'chromium_code': 1}, 'targets': [{'target_name': 'ppapi_egl', 'type': 'static_library', 'dependencies': ['<(DEPTH)/ppapi/ppapi.gyp:ppapi_c'], 'include_dirs': ['include'], 'defines': ['PUBLIC=', '_EGL_PLATFORM_PPAPI=_EGL_NUM_PLATFORMS', '_EGL_NATIVE_PLATFORM=_EGL_PLATFORM_PPAPI'], 'conditions': [['OS=="win"', {'defines': ['_EGL_OS_WINDOWS']}], ['OS=="mac"', {'suppress_wildcard': 1}]], 'sources': ['<@(mesa_egl_sources)', 'egl/egldriver.c', 'egl/egldriver_ppapi.c']}]}
# 5658. Maximum Absolute Sum of Any Subarray # Biweekly contest 45 class Solution: def maxAbsoluteSum(self, nums: List[int]) -> int: currentmax = globalmax = currentmin = nums[0] for i in range(1, len(nums)): x, y = nums[i] + currentmax, nums[i] + currentmin currentmax = max(nums[i], x, y) currentmin = min(nums[i], x, y) globalmax = max(globalmax, abs(currentmax), abs(currentmin)) return globalmax
class Solution: def max_absolute_sum(self, nums: List[int]) -> int: currentmax = globalmax = currentmin = nums[0] for i in range(1, len(nums)): (x, y) = (nums[i] + currentmax, nums[i] + currentmin) currentmax = max(nums[i], x, y) currentmin = min(nums[i], x, y) globalmax = max(globalmax, abs(currentmax), abs(currentmin)) return globalmax